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Preface

The biennal ECSQARU conference is a major forum for advances in the theory and
practice of reasoning under uncertainty. Contributions are provided by researchers in
advancing the state of the art and practitioners using uncertainty techniques in
applications. The scope of the ECSQARU conferences encompasses fundamental
topics as well as practical issues, related to representation, inference, learning, and
decision making both in qualitative and numeric uncertainty paradigms.

Previous ECSQARU events were held in Lugano (2017), Compiegne (2015),
Utrecht (2013), Belfast (2011), Verona (2009), Hammamet (2007), Barcelona (2005),
Aalborg (2003), Toulouse (2001), London (1999), Bonn (1997), Fribourg (1995),
Granada (1993), and Marseille (1991).

The 15th European Conference on Symbolic and Quantitative Approaches to
Reasoning with Uncertainty (ECSQARU 2019) was held in Belgrade, Serbia, during
September 18–20, 2019. The 41 papers in this volume were selected from 62
submissions, after a rigorous peer-review process by the members of the Program
Committee and some external reviewers. Each submission was reviewed by at least 2,
and on the average 3.1, reviewers. ECSQARU 2019 also included invited talks by
outstanding researchers in the field: Fabio Gagliardi Cozman (University of São Paulo),
Lluís Godo (Artificial Intelligence Research Institute IIIA, Spanish National Research
Council CSIC), and Francesca Toni (Imperial College London).

We would like to thank all those who submitted papers, the members of the Program
Committee and the external reviewers for their valuable reviews, and the members
of the local Organizing Committee for their contribution to the success of the
conference. Financial support from the Ministry of Education, Science and Techno-
logical Development of the Republic of Serbia, as well as operational support from the
Serbian Academy of Sciences and Arts Council was greatly appreciated. We are also
grateful to Springer Nature for granting a Best Paper Award of the conference, and for
the smooth collaboration when preparing the proceedings. Moreover, EasyChair
proved to be a convenient platform for handling submissions, reviewing, and final
papers for the proceedings of ECSQARU 2019, which was greatly appreciated.

July 2019 Gabriele Kern-Isberner
Zoran Ognjanović
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Knowledge Representation
in Knowledge-Enhanced Machine Learning:

How? Where?

Fabio Gagliardi Cozman

Escola Politécnica, Universidade de São Paulo
fgcozman@usp.br

Amazing success has been attained by artificial intelligences that resort to data inten-
sive machine learning, for instance in natural language processing and in recommen-
dation systems. Can we build an artificial intelligence endowed with full logical and
commonsense reasoning just out of pattern extraction from ever increasing datasets?
Possibly. But it seems reasonable to assume that tasks at higher abstraction levels
demand at least bits of knowledge representation mixed with machine learning. In any
event, several questions must be answered before we can have knowledge-enhanced
machine learning at our fingertips.

How can we bring theoretical insights and practical tools from knowledge repre-
sentation into machine learning tasks? Where is it worthwhile to add the power (and the
cost) of knowledge representation to available datasets? How to evaluate the resulting
combination of formalisms? This invited talk discusses these questions, necessarily
focusing on a small subset of possible answers. Overall we emphasize the knowledge
representation aspects of knowledge-enhanced machine learning, optimistically
assuming that optimization and estimation methods will be available whenever needed.

We start by examining languages that combine logical formulas/rules with prob-
abilities, as such languages must be key tools in our intended mix. The combination of
logic and probability has an old and rich history; connections have been rediscovered
more than once in artificial intelligence research [7]. In particular, during the past two
decades there has been steady interest in languages that mix probabilistic graphical
models, such as Bayesian networks, and relational logic [4]. Another line of research
under investigation for more than twenty years has focused on probabilistic logic
programming [10]. There are now solid techniques, often imported from finite model
theory, that support us in studying these languages; results discussed in the talk are
extracted from Refs. [1–3]. We compare the various languages, arguing that several
ideas behind probabilistic logic programming are particularly valuable.

However, given the often “unreasonable” effectiveness of data in producing
ostensibly intelligent behavior [6], it seems that we should not try to force knowledge
representation into any machine learning task. Rather, we should carefully look for
those tasks where knowledge-enhanced techniques will really make a difference. In this
talk we discuss the task of explaining a link prediction in a knowledge base. In such a

Partially supported by CNPq grant 312180/2018-7 and by FAPESP grant 2016/18841-0.
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task we do have knowledge, and the state of art methods resort to embeddings that are
very difficult to interpret (that is, all entities and relations are mapped into vectors, and
relationships are then expressed by relatively simple mathematical operations such as
addition) [9]. The difficulty with embeddings is that decisions depend on numerical
values that are apparently disconnected from semantic meaning. We discuss how
explanations for link predictions can be extracted from embeddings, explanations that
for instance resort to Horn clauses and similar formalisms [5, 11].

But even explanations can be learned from data: one can learn how to explain the
behavior of another learner… and so on. Thus one might just argue that we can keep
improving our pattern extraction methods so that they learn both to decide and to
explain decisions, leaving aside any need for knowledge representation. To investigate
the limits of knowledge-free learning, we propose a test inspired by the Winograd
challenge [8] that can exercise the connection between commonsense reasoning and
data intensive language processing. We suggest that such a Winograd Explaining
Challenge, where the goal is to explain the answer to a Winograd scheme, can help
focus our attention on problems that can only be solved by a mix of machine learning
and commonsense reasoning. We discuss how we might go about facing such a test,
and which research directions it opens.
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Boolean Algebras of Conditionals,
Probability and Logic

Lluis Godo

Artificial Intelligence Research Institute (IIIA - CSIC), Campus UAB,
Bellaterra 08193, Spain
godo@iiia.csic.es

Conditionals play a fundamental role both in qualitative and in quantitative uncertain
reasoning, see e.g. [1, 2, 8, 12, 13]. In the former, conditionals constitute the core focus
of non-monotonic reasoning [9–11]. In the latter, conditionals are central for the
foundations of conditional uncertainty measures, in particular in connection to condi-
tional probability [3, 6].

Conditionals have been investigated –largely independently– both in probability
and in logic. Each has its own theory and deep questions arise if we consider com-
bining the two settings as in the field of probability logic, which is of great interest to
Artificial Intelligence.

In two previous ECSQARU conference papers [4, 5], we have preliminarily
introduced and studied a new construction of a Boolean structure for conditionals
motivated by the goal of “separating” the measure-theoretic from the logical properties
of conditional probabilities. The question is well-posed: it is in fact well-known that if
events a, b are to be taken as arbitrary elements of a Boolean algebra, the conditional
probability P b j að Þ cannot be identified with the probability of the (material) impli-
cation a ! b. So the following questions about conditional probability become inter-
esting: which of its properties depend on the properties of unconditional probability
measures and not on the logical properties of conditional events, and which properties
instead depend on the logic of conditional events. Motivated by these questions, our
ultimate aims are:

(a) identify the desirable properties (axioms) which characterise the notion of a
Boolean algebra of conditional events, and investigate the atomic structure of these
algebras;

(b) show that the axioms of our Boolean algebras of conditional events give rise
naturally to a logic of conditionals which satisfies widely accepted logical
properties;

(c) investigate unconditional probabilistic measures on the algebra of conditional
events;

(d) prove that classically defined conditional probability functions can be viewed as
unconditional probability measures on the algebra of conditional events.

Joint work with T. Flaminio and H. Hosni.



Parts (a) and (b) have been mostly addressed in [4, 5], but (c) and (d) remained
open.

In this talk we present an investigation on the structure of conditional events and on
the probability measures which arise naturally in this context. In particular we intro-
duce a construction which defines a (finite) Boolean algebra of conditionals from any
(finite) Boolean algebra of events.

Moreover, as for (c) and (d) above, we provide positive and satisfying solutions. In
particular, we have approached the following main problem, which is known in the
literature as the strong conditional event problem [7]: given a measurable space ðX;AÞ
and a probability measure P over ðX;AÞ, find another measurable space ðX�;A�Þ, of
which the former is a subspace, and a probability measure P� over ðX�;A�Þ, satisfying
the two following conditions:

1. Any conditional event of the form ða j bÞ with a; b 2 A is mapped to an element
ða j bÞ� of A�.

2. For each conditional event ða j bÞ, P�ðða j bÞ�Þ ¼ Pða ^ bÞ=PðbÞ (whenever
PðbÞ[ 0).

A solution of the above was first proposed by Van Frassseen [14], and then
reworked by Goodman and Nguyen [7] within the frame of conditional event algebras.
They take X� as the countably infinite Cartesian product space XN, and A� is always
infinite, even if the original structure of (unconditional) events A is finite. Indeed, A�

has countably many atoms and conditional events in A� are defined as countable unions
of special cylinders sets. In contraposition, our approach provides a finitary solution to
the strong conditional event problem in the setting of finite Boolean algebras of con-
ditionals.

Acknowledgments. This research has been partially supported by the Spanish FEDER/MINECO
project TIN2015-71799-C2-1-P.
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Dialectical Explanations

Francesca Toni

Department of Computing, Imperial College London, UK
ft@imperial.ac.uk

Abstract. The lack of transparency of AI techniques, e.g. prediction systems or
recommender systems, is one of the most pressing issues in the field, especially
given the ever-increasing integration of AI into everyday systems used by
experts and non-experts alike, and the need to explain how and/or why these
systems compute outputs, for any or for specific inputs. The need for explain-
ability arises for a number of reasons: an expert may require more transparency
to justify outputs of an AI system, especially in safety-critical situations, while a
non-expert may place more trust in an AI system providing basic (rather than
no) explanations, regarding, for example, items suggested by a recommender
system. Explainability is also needed to fulfil the requirements of regulation,
notably the General Data Protection Regulation (GDPR), effective from May 25,
2018. Furthermore, explainability is crucial to guarantee comprehensibility in
human-machine interactions, to support collaboration and communication
between human beings and machines.

In this talk I will overview recent efforts to use argumentative abstractions
for data-centric methods in AI as a basis for generating dialectical explanations.
These abstractions are formulated in the spirit of argumentation in AI,
amounting to a (family of) symbolic formalism(s) where arguments are seen as
nodes in a graph with relations between arguments, e.g. attack and support, as
edges. Argumentation allows for conflicts to be managed effectively, an
important capability in any AI system tasked with decision-making. It also
allows for reasoning to be represented in a human-like manner, and can serve as
a basis for a principled theory of explanation supporting human-machine
dialectical exchanges and conversations.

Keywords: Explanation � Argumentation � Conversational AI
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Abstract. Recently, the notion of similarity between arguments, namely those
built using propositional logic, has been investigated and several similarity mea-
sures have been defined. This paper shows that those measures may lead to inac-
curate results when arguments are not concise, i.e., their supports contain infor-
mation that is useless for inferring their conclusions. For circumventing this limi-
tation, we start by refining arguments for making them concise. Then, we propose
two families of similarity measures that extend existing ones and that deal with
concise arguments.

Keywords: Logical arguments · Similarity

1 Introduction

Argumentation is a reasoning process based on the justification of claims by arguments.
It has received great interest from the Artificial Intelligence community, which used it
for solving various problems like decision making (eg., [1,2]), defeasible reasoning
(eg., [3,4]), handling inconsistency in propositional knowledge bases (eg., [5,6]), etc.

In case of inconsistency handling, an argument is built from a knowledge base and
contains two parts: a conclusion, which is a single propositional formula, and a support,
which is a minimal (for set inclusion) and consistent subset of the base that infers log-
ically the conclusion. Examples of arguments are A = 〈{p ∧ q}, p〉, B = 〈{p}, p〉 and
C = 〈{p ∧ p}, p〉. Such arguments may be in conflict and thus an evaluation method,
called also semantics in the literature, is used for evaluating their strengths. Some
weighting semantics, like h-Categorizer [5], satisfy the Counting (or strict monotony)
principle defined in [7]. This principle states that each attacker of an argument con-
tributes to weakening the argument. For instance, if the argument D = 〈{¬p},¬p〉 is
attacked by A,B,C, then each of the three arguments will decrease the strength of D.
However, the three attackers are somehow similar, thus D will loose more than nec-
essary. Consequently, the authors in [8] have motivated the need for investigating the
notion of similarity between pairs of such logical arguments. They introduced a set
of principles that a reasonable similarity measure should satisfy, and provided several
measures that satisfy them. In [9] the authors introduced three possible extensions of
h-Categorizer that take into account similarities between arguments.

While the measures from [8] return reasonable results in most cases, they may
lead to inaccurate assessments if arguments are not concise. An argument is concise
c© Springer Nature Switzerland AG 2019
G. Kern-Isberner and Z. Ognjanović (Eds.): ECSQARU 2019, LNAI 11726, pp. 3–13, 2019.
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if its support contains only information that is useful for inferring its conclusion. For
instance, the argument A is not concise since its support {p ∧ q} contains q, which
is useless for the conclusion p. Note that minimality of supports does not guarantee
conciseness. For example, the support of A is minimal while A is not concise. The sim-
ilarity measures from [8] declare the two arguments A and B as not fully similar while
they support the same conclusion on the same grounds (p). Consequently, both A and B
will have an impact on D using h-Categorizer. For circumventing this problem, we pro-
pose in this paper to clean up arguments from any useless information. This amounts to
generating the concise versions of each argument. The basic idea is to weaken formulas
of an argument’s support. Then, we apply the measures from [8] on concise arguments
in two ways, leading to two different families of measures.

The paper is organized as follows: Sect. 2 recalls the measures proposed in [8],
Sect. 3 shows how to make arguments concise, Sect. 4 refines existing measures, and
Sect. 5 concludes and presents some perspectives.

2 Background

We consider classical propositional logic (L,�), where L is a propositional language
built up from a finite setP of variables, called atoms, the two Boolean constants� (true)
and ⊥ (false), and the usual connectives (¬, ∨, ∧, →, ↔), and � is the consequence
relation of the logic. A literal of L is either a variable of P or the negation of a variable
of P , the set of all literals is denoted by P±. A formula φ is in negation normal form
(NNF) if and only if it does not contain implication or equivalence symbols, and every
negation symbol occurs directly in front of an atom. NNF(φ) denotes the NNF of φ.
For instance, NNF(¬((p → q) ∨ ¬t)) = p ∧ ¬q ∧ t. Lit(φ) denotes the set of literals
occurring in NNF(φ), hence Lit(¬((p → q)∨¬t)) = {p,¬q, t}. Two formulas φ, ψ ∈ L
are logically equivalent, denoted by φ ≡ ψ, iff φ � ψ and ψ � φ. In [10], the authors
defined the notion of independence of a formula from literals as follows.

Definition 1 (Literals Independence). Let φ ∈ L and l ∈ P±. The formula φ is
independent from the literal l iff ∃ψ ∈ L such that φ ≡ ψ and l /∈ Lit(ψ). Otherwise,
φ is dependent on l. DepLit(φ) denotes the set of all literals that φ is dependent on.

For instance, DepLit((¬p∨q)∧(¬p∨¬q)) = {¬p} while DepLit(¬p∧q) = {¬p, q}.
A finite subset Φ of L, denoted by Φ ⊆f L, is consistent iff Φ � ⊥, it is inconsistent

otherwise. Two subsets Φ, Ψ ⊆f L are equivalent, denoted by Φ ∼= Ψ , iff ∀φ ∈ Φ,
∃ψ ∈ Ψ such that φ ≡ ψ and ∀ψ′ ∈ Ψ , ∃φ′ ∈ Φ such that φ′ ≡ ψ′. We write
Φ �∼= Ψ otherwise. This definition is useful in the context of similarity where arguments
are compared with respect to their contents. Assume, for instance, p and q that stand
respectively for “bird” and “fly”. Clearly, the two rules “birds fly” and “everything
that flies is a bird” express different information. Thus, the two sets {p, p → q} and
{q, q → p} should be considered as different. Note that {p, p → q} �∼= {q, q → p} even
if CN({p, p → q}) = CN({q, q → p}), where CN(Φ) denotes the set of all formulas that
follow from the set Φ of formulas.

Let us now recall the backbone of our paper, the notion of logical argument.
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Definition 2 (Argument). An argument built under the logic (L,�) is a pair 〈Φ, φ〉,
where Φ ⊆f L and φ ∈ L, such that:

– Φ is consistent, (Consistency)
– Φ � φ, (Validity)
– �Φ′ ⊂ Φ such that Φ′ � φ. (Minimality)

An argument 〈Φ, φ〉 is trivial iff Φ = ∅.

It is worth noticing that trivial arguments support tautologies. It was shown in [11] that
the set of arguments that can be built from a finite set of formulas is infinite.

Example 1. The following pairs are all arguments.
A = 〈{p ∧ q}, p〉 B = 〈{p}, p〉
C = 〈{p ∧ q ∧ r}, r〉 D = 〈{p ∧ q, p ∧ r}, p ∧ q ∧ r〉
E = 〈{p ∧ q, (p ∨ q) → r}, r〉 F = 〈{p ∧ q}, p ∨ q〉
Notations: Arg(L) denotes the set of all arguments that can be built under the logic
(L,�). For any A = 〈Φ, φ〉 ∈ Arg(L), the functions Supp and Conc return respectively
the support (Supp(A) = Φ) and the conclusion (Conc(A) = φ) of A.

In [11], the notion of equivalence of arguments has been investigated, and differ-
ent variants of equivalence have been proposed. The most general one states that two
arguments are equivalent if their supports are equivalent (in the sense of ∼=) and their
conclusions are equivalent (in the sense of ≡). For the purpose of our paper, we focus
on the following one that requires equality of conclusions.

Definition 3 (Equivalent Arguments). Two arguments A,B ∈ Arg(L) are equivalent,
denoted by A ≈ B, iff (Supp(A) ∼= Supp(B)) and (Conc(A) = Conc(B)).

In [8], the authors have investigated the notion of similarity between pairs of argu-
ments, and have introduced several measures which are based on thewell-known Jaccard
measure [12], Dice measure [13], Sorensen one [14], and those proposed in [15–18]. All
these measures compare pairs of non-empty sets (X and Y ) of objects. Table 1 shows
how to adapt their definitions for comparing supports (respectively conclusions) of argu-
ments, which are sets of propositional formulas. In that table, Co(Φ, Ψ) is a function that
returns for all Φ, Ψ ⊆f L a set of formulas such that:

Co(Φ, Ψ) = {φ ∈ Φ | ∃ψ ∈ Ψ such that φ ≡ ψ}.

The definition of each similarity measure between sets of formulas follows the
schema below that we illustrate with the Jaccard-based measure. For all Φ, Ψ ⊆f L,

sj(Φ, Ψ) =

⎧
⎨

⎩

|Co(Φ,Ψ)|
|Φ|+|Ψ |−|Co(Φ,Ψ)| if Φ �= ∅, Ψ �= ∅
1 if Φ = Ψ = ∅
0 otherwise.

In [8], a similarity measure between arguments is a function that assigns to every
pair of arguments a value from the interval [0, 1]. The greater the value, the more similar
are the arguments. Such measure should satisfy some properties including symmetry.
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Table 1. Similarity Measures for Sets Φ, Ψ ⊆f L.

Extended Jaccard sj(Φ, Ψ) =
|Co(Φ, Ψ)|

|Φ| + |Ψ | − |Co(Φ, Ψ)|
Extended Dice sd(Φ, Ψ) =

2|Co(Φ, Ψ)|
|Φ| + |Ψ |

Extended Sorensen ss(Φ, Ψ) =
4|Co(Φ, Ψ)|

|Φ| + |Ψ | + 2|Co(Φ, Ψ)|
Extended Symmetric Anderberg sa(Φ, Ψ) =

8|Co(Φ, Ψ)|
|Φ| + |Ψ | + 6|Co(Φ, Ψ)|

Extended Sokal and Sneath 2 sss(Φ, Ψ) =
|Co(Φ, Ψ)|

2(|Φ| + |Ψ |) − 3|Co(Φ, Ψ)|
Extended Ochiai so(Φ, Ψ) =

|Co(Φ, Ψ)|
√|Φ|√|Ψ |

Extended Kulczynski 2 sku(Φ, Ψ) =
1

2

( |Co(Φ, Ψ)|
|Φ| +

|Co(Φ, Ψ)|
|Ψ |

)

Definition 4 (Similarity Measure). A similarity measure is a function S : Arg(L) ×
Arg(L) → [0, 1] such that:

Symmetry: for all a, b ∈ Arg(L), S(a, b) = S(b, a).
Maximality: for any a ∈ Arg(L), S(a, a) = 1.
Substitution: for all a, b, c ∈ Arg(L), if S(a, b) = 1 then S(a, c) = S(b, c).
In [8], several similary measures have been defined. They apply any measure from

Table 1 for assessing similarity of both arguments’ supports and their conclusions. Fur-
thermore, they use a parameter that allows a user to give different importance degrees
to the two components of an argument. Those measures satisfy the three properties
(Symmetry, Maximality, Substitution) and additional ones (see [8] for more details).

Definition 5 (Extended Measures). Let 0 < σ < 1 and x ∈ {j, d, s, a, ss, o, ku}. A
similarity measure Sσ

x is a function assigning to any pair (A,B) ∈ Arg(L)×Arg(L) a
value Sσ

x (A,B) = σ ·sx(Supp(A), Supp(B)) +(1−σ) ·sx({Conc(A)}, {Conc(B)}).
Example 1 (Continued). Let σ = 0.5 and x = j.

– S0.5
j (A,B) = 0.5 · 0 + 0.5 · 1 = 0.5

– S0.5
j (A,D) = 0.5 · 0.5 + 0.5 · 0 = 0.25

– S0.5
j (A,F ) = 0.5 · 1 + 0.5 · 0 = 0.5

3 Concise Arguments

The two arguments A = 〈{p ∧ q}, p〉 and B = 〈{p}, p〉 are not fully similar according
to the existing measures from [8] while they support the same conclusion and on the
same grounds. This inaccuracy is due to the non-conciseness of A, which contains the
useless information q in its support. In what follows, we refine arguments by removing
from their supports such information. The idea is to weaken formulas in supports.
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Definition 6 (Refinement). Let A,B ∈ Arg(L) such that A = 〈{φ1, . . . , φn}, φ〉 and
B = 〈{φ′

1, . . . , φ
′
n}, φ′〉. B is a refinement of A iff:

1. φ = φ′,
2. There exists a permutation ρ of the set {1, . . . , n} such that ∀k ∈ {1, . . . , n}, φk �

φ′
ρ(k) and Lit(φ′

ρ(k)) ⊆ DepLit(φk).

Let Ref be a function that returns the set of all refinements of a given argument.

The second condition states that each formula of an argument’s support is weak-
ened. Furthermore, novel literals are not allowed in the weakening step since such liter-
als would negatively impact similarity between supports of arguments. Finally, literals
from which a formula is independent should be removed since they are useless for infer-
ring the conclusion of an argument. It is worth mentioning that an argument may have
several refinements as shown in the following example.
Example 1 (Continued).

– {〈{p}, p〉, 〈{p ∧ p}, p〉} ⊆ Ref(A)
– {〈{p ∧ r}, r〉, 〈{q ∧ r}, r〉, 〈{r}, r〉} ⊆ Ref(C)
– {〈{p ∧ q, r}, p ∧ q ∧ r〉, 〈{q, p ∧ r}, p ∧ q ∧ r〉} ⊆ Ref(D)
– {〈{p ∨ q, (p ∨ q) → r}, r〉, 〈{p, p → r}, r〉, 〈{q, q → r}, r〉} ⊆ Ref(E)
– {〈{p}, p ∨ q〉, 〈{q}, p ∨ q〉, 〈{p ∨ q}, p ∨ q〉} ⊆ Ref(F )

The following property shows that there exists a unique possible permutation ρ for
each refinement of an argument.

Proposition 1. For all A = 〈{φ1, . . . , φn}, φ〉, B = 〈{φ′
1, . . . , φ

′
n}, φ′〉 ∈ Arg(L)

such that B ∈ Ref(A), there exists a unique permutation ρ of the set {1, · · · , n} such
that ∀k ∈ {1, . . . , n}, φk � φ′

ρ(k).

Obviously, a trivial argument is the only refinement of itself.

Proposition 2. For any trivial argument A ∈ Arg(L), Ref(A) = {A}.

A non-trivial argument has a non-empty set of refinements. Moreover, such argu-
ment is a refinement of itself only if the formulas of its support do not contain literals
from which they are independent.

Proposition 3. Let A ∈ Arg(L) be a non-trivial argument. The following hold:

– Ref(A) �= ∅,
– A ∈ Ref(A) iff ∀φ ∈ Supp(A), Lit(φ) = DepLit(φ).

We show next that the function Ref is somehow monotonic, and that equivalent
arguments have the same refinements.

Proposition 4. Let A,B ∈ Arg(L). The following hold:

– If B ∈ Ref(A), then Ref(B) ⊆ Ref(A).
– If A ≈ B, then Ref(A) = Ref(B).



8 L. Amgoud et al.

We are now ready to define the backbone of the paper, the novel notion of concise
argument. An argument is concise if it is equivalent to any of its refinements. This
means that a concise argument cannot be further refined.

Definition 7 (Conciseness). An argument A ∈ Arg(L) is concise iff for all B ∈
Ref(A), A ≈ B.

Example 1 (Continued). The two refinements 〈{p ∧ r}, r〉 and 〈{q ∧ r}, r〉 of the argu-
ment C are not concise. Indeed, 〈{r}, r〉 ∈ Ref(〈{p ∧ r}, r〉), 〈{r}, r〉 ∈ Ref(〈{q ∧
r}, r〉) while 〈{r}, r〉 �≈ 〈{p ∧ r}, r〉 and 〈{r}, r〉 �≈ 〈{q ∧ r}, r〉.

For any argument from Arg(L), we generate its concise versions. The latter are
simply its concise refinements.

Definition 8 (Concise Refinements). A concise refinement of an argument A ∈
Arg(L) is any concise argument B such that B ∈ Ref(A). We denote the set of all
concise refinements of A by CR(A).

Example 1 (Continued).

– 〈{p}, p〉 ∈ CR(A)
– 〈{r}, r〉 ∈ CR(C)
– {〈{p ∧ q, r}, p ∧ q ∧ r〉, 〈{q, p ∧ r}, p ∧ q ∧ r〉} ⊆ CR(D)
– {〈{p ∨ q, (p ∨ q) → r}, r〉, 〈{p, p → r}, r〉, 〈{q, q → r}, r〉} ⊆ CR(E)
– {〈{p}, p ∨ q〉, 〈{q}, p ∨ q〉, 〈{p ∨ q}, p ∨ q〉} ⊆ CR(F )

Next we state some properties of concise refinements.

Proposition 5. Let A ∈ Arg(L). The following hold:

1. For any B ∈ CR(A) the following hold: B ∈ Ref(B) and ∀C ∈ Ref(B), C ≈ B.
2. CR(A) �= ∅.
3. If A is non-trivial, then CR(A) is infinite.
4. If A ≈ B, then CR(A) = CR(B).
5. ∀B ∈ Ref(A), CR(B) ⊆ CR(A).

The following result shows that any formula in the support of a concise argument
cannot be further weakened without introducing additional literals.

Proposition 6. Let A,B ∈ Arg(L) such that B ∈ CR(A). For any φ ∈ Supp(B), if
∃ψ ∈ L such that φ � ψ, ψ �� φ, and 〈(Supp(B) \ {φ}) ∪ {ψ}, Conc(B)〉 ∈ Arg(L),
then Lit(ψ) \ Lit(φ) �= ∅.
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4 Similarity Measures

As already said in previous sections, although the similarity measures from Definition 5
return reasonable results in most cases, they might lead to inaccurate assessments if
the arguments are not concise. Indeed, as we illustrated in Sect. 2, the measures from
Definition 5 declare the two arguments A = 〈{p∧ q}, p〉 and B = 〈{p}, p〉 as not fully
similar, while they support the same conclusion based on the same grounds (p).

In this section, we extend those measures in two ways, leading to two families of
similarity measures, using concise refinements of arguments, and we show that they
properly resolve the drawbacks of the existing measures. Note that by Proposition 5(3),
every non-trivial argument A has infinitely many concise refinements. This is due to the
fact that every formula α from a support of a concise refinement can be equivalently
rewritten in infinitely many ways using the same set of literals (eg. α ≡ α ∧ α ≡
α ∧ α ∧ α ≡ · · · ). In the rest of the paper, we will consider only one argument from
CR(A) per equivalence class. For that reason, we consider a fixed set L ⊂ L such that
φ ∈ L there exists a unique ψ ∈ L such that ψ ≡ φ. Furthermore, we assume that each
ψ ∈ L contains only dependent literals.

Definition 9. Let A ∈ Arg(L). We define the set

CR(A) = {B ∈ CR(A) | Supp(B) ⊂ L}.
In this way, we obtain a finite set of non-equivalent concise refinements.

Proposition 7. For every A ∈ Arg(L), the set CR(A) is finite.

Now we propose our first family of similarity measures. In the following definition,
for A ∈ Arg(L), Σ ⊆f Arg(L) and a similarity measure S from Definition 5, we
denote by Max(A,Σ, S) the maximal similarity value between A and an argument from
Σ according to S, i.e.,

Max(A,Σ, S) = max
B∈Σ

S(A,B).

The first family of measures compares the sets of concise refinements of the two
arguments under study. Indeed, the similarity between A and B is the average of max-
imal similarities (using any existing measure from Definition 5) between any concise
refinement of A and those of B.

Definition 10 ( A-CR Similarity Measures). Let A,B ∈ Arg(L), and let S be a simi-
larity measure from Definition 5. We define A-CR similarity measure1 by

sACR(A,B, S) =

∑

Ai∈CR(A)

Max(Ai, CR(B), S) +
∑

Bj∈CR(B)

Max(Bj , CR(A), S)

|CR(A)| + |CR(B)| .

The value of A-CR similarity measure always belongs to the unit interval.

Proposition 8. Let A,B ∈ Arg(L), Sσ
x a similarity measure where x ∈ {j, d, s, a, ss,

o, ku} and 0 < σ < 1. Then sACR(A,B, Sσ
x ) ∈ [0, 1].

1 The letter A in A-CR stands for “average”.
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Next we show that the new measure properly resolves the problem of non-
conciseness of the argument A = 〈{p ∧ q}, p〉 from our running example. We illustrate
that by considering Extended Jaccard measure with the parameter σ = 0.5.2

Example 1 (Continued). It is easy to check that CR(A) = {〈{p}, p〉} and CR(B) =
{〈{p}, p〉}. Then sACR(A,B, S0.5

j ) = 1 while S0.5
j (A,B) = 0.5.

Now we define our second family of similarity measures, which is based on com-
parison of sets obtained by merging supports of concise refinements of arguments. For
an argument A ∈ Arg(L), we denote that set by

US(A) =
⋃

A′∈CR(A)

Supp(A′).

Definition 11 ( U-CR Similarity Measures). Let A,B ∈ Arg(L), 0 < σ < 1, and sx

be a similarity measure from Table 1. We define U-CR similarity measure3 by

sUCR(A,B, sx, σ) = σ · sx(US(A), US(B)) + (1 − σ) · sx({Conc(A)}, {Conc(B)}).

Next example illustrates that U-CR also properly resolves the problem of non-
conciseness of the argument A = 〈{p ∧ q}, p〉 from our running example.

Example 1 (Continued). Let σ = 0.5 and x = j. It is easy to check that
sUCR(A,B, sj, 0.5) = 1 while S0.5

j (A,B) = 0.5.
Let us now consider another more complex example where existing similarity mea-

sures provide inaccurate values while the new ones perform well.

Example 2. Let us consider the following arguments:

– A = 〈{p ∧ q, (p ∨ q) → t, (p ∨ t) → r}, t ∧ r〉
– B = 〈{p, p → t, p → r}, t ∧ r〉
It is easy to check that CR(A) = {A1, A2, A3, A4, A5} and CR(B) = {B1}, where:
– A1 = 〈{p, p → t, p → r}, t ∧ r〉
– A2 = 〈{p, p → t, t → r}, t ∧ r〉
– A3 = 〈{q, q → t, t → r}, t ∧ r〉
– A4 = 〈{p ∨ q, (p ∨ q) → t, t → r}, t ∧ r〉
– A5 = 〈{p ∧ q, q → t, p → r}, t ∧ r〉
– B1 = 〈{p, p → t, p → r}, t ∧ r〉

It is worth noticing that the Extended Jaccard measure could not detect any simi-
larity between the supports of A and B while their concise arguments A1 and B1 are
identical. Indeed, sj(Supp(A), Supp(B)) = 0 and S0.5

j (A,B) = 0.5 · 0+ 0.5 · 1 = 0.5
while sUCR(A,B, sj, 0.5) = 0.5 · 3

9 + 0.5 · 1 = 2
3 = 0.666 and sACR(A,B, S0.5

j ) =
0.5 · 9

20 + 0.5 · 1 = 29
40 = 0.725.

2 In this section, we slightly relax the notation by simply assuming that p ∈ L. We will make
similar assumptions throughout this section.

3 U in U-CR stands for “union”.
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The following proposition characterizes the arguments which are fully similar
according to the novel measures. It states that full similarity is obtained exactly in the
case when two arguments have equivalent concise refinements.

Proposition 9. Let A,B ∈ Arg(L), 0 < σ < 1 and x ∈ {j, d, s, a, ss, o, ku}. Then
sACR(A,B, Sσ

x ) = sUCR(A,B, sx, σ) = 1 iff:

– ∀A′ ∈ CR(A), ∃B′ ∈ CR(B) such that Supp(A′) ∼= Supp(B′), Conc(A′) ≡
Conc(B′) and

– ∀B′ ∈ CR(B), ∃A′ ∈ CR(A) such that Supp(B′) ∼= Supp(A′), Conc(B′) ≡
Conc(A′).

In [8], the authors proposed a set of principles that a reasonable similarity measure
should satisfy. Now we show that the new measures satisfy four of them but violate
Monotony. The reason of violation is due to the definition itself of the principle. Indeed,
it is based on the supports of arguments. The newmeasures do not handle those supports
but those of the concise refinements of the initial arguments.

Proposition 10. Let 0 < σ < 1 and x ∈ {j, d, s, a, ss, o, ku}. The following hold:

(Syntax Independence) Let π be a permutation on the set of variables, and
A,B,A′, B′ ∈ Arg(L) such that

• A′ is obtain by replacing each variable p in A with π(p),
• B′ is obtain by replacing each variable p in B with π(p).

Then sACR(A,B, Sσ
x ) = sACR(A

′, B′, Sσ
x ) and sUCR(A,B, sx, σ) = sUCR(A

′, B′, sx, σ).
(Maximality) For every A ∈ Arg(L), sACR(A,A, Sσ

x ) = sUCR(A,A, sx, σ) = 1.
(Symmetry) For all A,B ∈ Arg(L), sACR(A,B, Sσ

x ) = sACR(B,A, Sσ
x ) and

sUCR(A,B, sx, σ) = sUCR(B,A, sx, σ).
(Substitution) For all A,B,C ∈ Arg(L),

• if sACR(A,B, Sσ
x ) = 1, then sACR(A,C, Sσ

x ) = sACR(B,C, Sσ
x ),

• if sUCR(A,B, sx, σ) = 1, then sUCR(A,C, sx, σ) = sUCR(B,C, sx, σ).

The next proposition shows that if we apply A-CR or U-CR to any similarity measure
Sσ

x from Definition 5 (respectively sx from Table 1), then both novel measures will
coincide with Sσ

x on the class of concise arguments.

Proposition 11. Let A,B ∈ Arg(L) be two concise arguments. Then, for every 0 <
σ < 1 and x ∈ {j, d, s, a, ss, o, ku}, it holds

sACR(A,B, Sσ
x ) = sUCR(A,B, sx, σ) = Sσ

x (A,B). (1)

Remark. Note that the Eq. (1) might also hold for some A and B that are not con-
cise. For example, let A = 〈{p ∧ q, t ∧ s}, p ∧ t〉 and B = 〈{p, t ∧ s}, p ∧ s〉.
Then CR(A) = {〈{p, t}, p ∧ t〉} and CR(B) = {〈{p, s}, p ∧ s〉}, so sACR(A,B, S0.5

j ) =
sUCR(A,B, sj, 0.5) = S0.5

j (A,B) = 0.25.

The following example shows that A-CR and U-CR may return different results.
Indeed, it is possible for three arguments A, B and C that A is more similar to B
than to C according to one measure, but not according to the other one.
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Example 3. Let A = 〈{p, p → q1 ∧ q2}, q1 ∨ q2〉, B = 〈{p, s}, p ∧ s〉 and C =
〈{p → q1}, p → q1〉. We have CR(A) = {〈{p, p → q1}, q1 ∨ q2〉, 〈{p, p → q2}, q1 ∨
q2〉, 〈{p, p → q1∨q2}, q1∨q2〉}, CR(B) = {〈{p, s}, p∧s〉}, CR(C) = {〈{p → q1}, p →
q1〉}. Consequently:

– sACR(A,B, S0.5
j ) = 1

6 > sACR(A,C, S0.5
j ) = 1

8 , but
– sUCR(A,B, sj, 0.5) = 1

10 < sUCR(A,C, sj, 0.5) = 1
8 .

The next example shows that none of the two novel measures dominates the other.
Indeed, some pairs of arguments have greater similarity value according to A-CR, and
other pairs have greater similarity value using U-CR.

Example 3 (Continued). Note that sUCR(A,B, sj, 0.5) < sACR(A,B, S0.5
j ). Let us consider

A′ = 〈{p ∧ q}, p ∨ q〉, B′ = 〈{p, q}, p ∧ q〉 ∈ Arg(L). sUCR(A′, B′, sj, 0.5) = 0.5 · 2
3 +

0.5 · 0 = 1
3 = 0.333 and sACR(A

′, B′, S0.5
j ) = 0.5 · 3

8 + 0.5 · 0 = 3
16 = 0.1875, thus

sUCR(A
′, B′, sj, 0.5) > sACR(A

′, B′, S0.5
j ).

5 Conclusion

The paper tackled the question of similarity between logical arguments. Starting from
the observation that existing similarity measures may provide inaccurate assessments,
the paper investigated the origin of this limitation and showed that it is due to the pres-
ence of useless information in the supports of arguments. It then introduced the novel
notion of concise argument, and a procedure for generating the concise versions of any
argument. These versions are then used together with existing similarity measures for
extending the latter into more efficient measures.

This work can be extended in different ways. The first one consists of identifying
a principle, or formal property for distinguishing the new measures. The second one
consists of investigating other approaches for generating concise arguments, namely
we plan to use the well-known forgetting operator for getting rid of useless literals in
formulas. The Third one consists of using the new measures for refining argumenta-
tion systems that deal with inconsistent information. Finally, we plan to investigate the
notion of similarity for other types of arguments, like analogical arguments.

Acknowledgment. Support from the ANR-3IA Artificial and Natural Intelligence Toulouse
Institute is gratefully acknowledged.
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Abstract. Multilateral negotiation and its importance in today’s soci-
ety, makes it an interesting application in the Artificial Intelligence
domain. This paper proposes a new generic framework for multilateral
multi-issue Argumentation-Based Negotiation. Agents are first clustered
based on their offers to reduce the negotiation complexity. These agents
negotiate via a mediator who has two roles: (1) organize the dialogue
between them and (2) step in when no mutual agreement is found to
get them out of the bottleneck, we formulate this problem as a linear
problem where the mediator maximizes both parties’ utilities fairly. To
highlight the performance of our framework, we tested it on the tourism
domain using real data. We study the cases where agents are: not clus-
tered, clustered using hard clustering techniques and clustered using soft
clustering techniques. We also study the impact of the mediator in each
variant by detecting agreements reached with and without his help.

Keywords: Argumentation-Based Negotiation · Multi-issue ·
Multilateral · Mediator · Multi-agent system · Clustering · CBR

1 Introduction

Automated negotiation is characterized by many factors influencing its complex-
ity. These factors include the number of involved parties (bilateral or multilat-
eral), the negotiation protocol, the number of issues and their interactions, time
constraints, etc. In order to deal with this complexity, several researches incorpo-
rate advanced Artificial Intelligence technologies including predicting and learn-
ing methods, clustering techniques, Case-Based Reasoning etc. One of the pre-
vailing approaches for automated negotiation is the Argumentation-based nego-
tiation (ABN) where agents go beyond exchanging offers and have the possibility
to exchange arguments that backup their positions. This enhances the negotia-
tion process and its final outcome quality [1,2]. Moreover, Case-Based Reasoning
c© Springer Nature Switzerland AG 2019
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(CBR) may be used as mean of helping agents to generate offers and arguments
in Argumentation-Based Negotiations. But contrarily to automated negotiation
and even ABN where several researchers have proposed generic frameworks [3–
5], most of proposed work gathering ABN and CBR is domain specific [6,7].
Recently, we have investigated this issue in [8] by proposing a generic frame-
work for ABN (so-called, GANC for Generic Argumentation-Based Negotiation
using CBR) gathering Case-Based Reasoning (CBR) to Argumentation-Based
Negotiation. However, it is restricted to bilateral and one issue negotiations.

In this paper, we propose to extend GANC framework to multilateral and
multi-issue setting. To this end, we propose to cluster agents starting from the
idea that agents can form clusters where each cluster will have a representative
agent who will negotiate for it. Then, all representative agents will negotiate
with the intervention of a mediator which is a neutral and impartial agent that
helps remaining agents at reaching a settlement. Grouping agents in automated
negotiation has already been explored in the literature [9,10]. In the last decades,
automated mediated negotiation has received a considerable attention [11,12].
Tasks ensured by the mediator differ depending on the attributed authority.
Indeed, the mediator can: (i) organize the discussion between agents (facilitator)
[13], (ii) impose a solution on different parties of the negotiation (arbitrator) [14],
(iii) analyze the ongoing discussion like in [15] where the mediator’s goal is to
reduce the negative consequences of the conflict or (iv) give proposals to the
conflicting parties [16].

Computational mediators have been the interest of many research works
[11,16,17]. In ABN field, several computational mediators were proposed [6,15,
16,18]. Most of the research works concerning mediated Argumentation-Based
Negotiation were focusing on the proposal of a computational mediator that can
handle disputants’ conflicts and find a solution that satisfies both of them. In this
paper, we are focusing on the negotiation process as a whole where we handle
the negotiation protocol, mediator’s tasks, the exchange of arguments and the
use of CBR.

The paper is organized as follows, Sect. 2 introduces the new proposed frame-
work, discusses the clustering and the negotiation phases and highlights the
role of the mediator. Section 3 discusses the experimental environment and the
obtained results.

2 A New Framework for Multilateral Mediated ABN
Using CBR

For multilateral and-issues settings, we propose MGANC: Multilateral Generic
framework for Argumentation-Based Negotiation using CBR. MGANC is a
generic framework that supports multi-argumentative negotiator agents. We opt
for a mediated negotiation where the mediator helps agents to reach a mutually
beneficial outcome. Moreover, agents will take advantage of their past experi-
ences using their own CBR to generate arguments. In MGANC, the process of
searching an agreement between many agents is based on two main phases: (i)
the clustering phase and (ii) the negotiation phase detailed below.
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2.1 Clustering Phase

The complexity of the negotiation process is highly influenced by the number
of involved parties. In this work we explore the interesting idea of clustering
agents. Generally, agents are grouped based on their goals (e.g., buyers and sell-
ers) [19]. In our framework, we propose to cluster agents based on their offers.
Several clustering algorithms are available in the literature (e.g., Hierarchical
clustering, soft clustering, hard clustering) and some of them are used in auto-
mated negotiation such as Hierarchical clustering [10]. Since agents’ offers can
be close, we propose to apply clustering on the involved agents based on their
offers. While clustering negotiating parties, they may switch clusters looking for
better solutions, which is known as soft clustering. For this purpose, we propose
to use Evidential C-Means (ECM) [20] and Fuzzy C-Means (FCM) [24] which
are soft clustering algorithms that group parties in a soft way where one agent
can belong to more than one cluster with different degrees. This flexibility allows
to gain a deeper insight in the data. ECM and FCM showed better results than
c-means since they better reflect real world situations.

From each cluster we choose one representative agent. This agent presents
the center of the cluster and has the highest degree of belonging to it. Thus, we
move from n agents entering the negotiation phase to k agents where k < n.

2.2 Negotiation Phase

In the proposed framework called MGANC, argumentative negotiator agents
follow a state machine protocol that specifies the rules of interaction between
them via a mediator. Figure 1 depicts the proposed protocol that explicitly
expresses the rules that should be followed by different agents as well as the
different locutions (i.e., messages) exchanged between them. Agents start from
the “BEGIN” state and end at the “DIE” state. Once an agent enters the state
“BEGIN”, she will go to “OPEN” state waiting for all negotiation parties to
start the negotiation at the same time. Next, according to the type of agents
(i.e., opponent, proponent, mediator), they will follow the intermediary states
(e.g., BEGIN, ENTER, ASSERT) where in each state they generate the corre-
sponding messages. The most important messages are:

– Propose: with this locution, an agent sends her proposal to the commitment
store where it can be checked by the mediator.

– Assert: with this locution, an agent asserts her offer by giving arguments
explaining her choice.

– Attack: with this locution, agents attack each others’ arguments and offers
via the mediator.

– Why: with this locution, the opponent asks to the mediator for some expla-
nations from the proponent.

– SAY Why: with this locution, the mediator asks the proponent to assert her
offer.

– Propose solution: with this locution, at the end of each round, the mediator
proposes a solution that may be accepted by both opponent and proponent.
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Fig. 1. Proposed multilateral argumentation-based negotiation protocol (dotted lines
indicate wait states and solid lines are send states).

The end state is “DIE” and it can be reached through “OPEN” state trig-
gered by the following locutions:

– Agree: with this locution, an agent agrees on the opponent’s argument while
she still believes that her offer is better and then a new round will start where
she is the proponent agent.

– Reject: with this locution, an agent rejects the counter party’s offer and indi-
cates that she has no more arguments to present. Just like agreeing, agents
exchange roles and the opponent becomes proponent and vice-versa.

– Accept: with this locution, agents accept an offer:
1. If the offer is proposed by the counter party agent, it is accepted in two

cases: (i) if the proposal is the agent’s current preferred value. (ii) If the
argument respects the agent’s conditions such as: (a) the number of sim-
ilar premises between premises characterizing her offer and premises sent
by the opponent, (b) the number of the received distinguished premises
that exists in her CBR (these premises were once a reason to choose a
given offer). As an example, an agent can accept the other agent’s pro-
posal if their positions are characterized by two common premises with
the same value. These conditions differ from agent to another based on
their flexibility and how much they are open minded. Finally, in case
where a counter-example argument is received, the agent will immedi-
ately accept the offer since this kind of argument has the highest power
of convincing.
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2. If the offer is proposed by the mediator, agents will compare the utility
of the offer to their reservation point utility. If it exceeds than they will
accept otherwise, they refuse the solution. This is explained by the fact
that agents can’t get better solution since the mediator proposes the last
offer by trying to maximize both negotiation parties’ utilities. If one of
them rejects the mediator’s offer, the negotiation ends with a disagree-
ment.

The Role of the Mediator. Agents always negotiate via an autonomous
agent: the mediator. The mediation process can be classified into two categories,
agreement centred and relationship centred [21]. Our work belongs to the first
category “agreement centred” where the goal of the mediator is to reach a solu-
tion accepted by the conflicting parties. Although the mediator in this frame-
work is a facilitator that has no power on the negotiation parties, if after a series
of arguments exchange (i.e., attacks and counter-attacks) still no agreement is
reached, he proposes a solution that respects agents’ reservation points and that
he values beneficial for both parties. Indeed, the mediator tries to maximize the
utility of both parties fairly. We propose to formulate the problem as a linear
problem:

Maximize α UOpp + (1 − α) UProp (1)

s.t

UiOpp =aiOppxi + biOpp (2)

UiProp =aiPropxi + biProp (3)

LBi ≤ xi ≤ UBi (4)

MinUtilopp ≤ UOpp ≤ MaxUtilopp (5)

MinUtilProp ≤ UProp ≤ MaxUtilProp (6)

UOpp =

n∑

i=1

wioppUiOpp (7)

UProp =
n∑

i=1

wiPropUiProp (8)

i = 1, ..., n (9)

Table 1 presents the nomenclature used to represent the linear problem.
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Table 1. Nomenclature

α Can take values from 0 to 1, used to
calibrate the importance of each agent

UOpp (resp. UProp) The opponent’s (resp. proponent’s) total
utility

UiOpp (resp. UiProp) The opponent’s (resp. proponent’s) utility
on issue i

ai The slope of the utility function calculated
based on the utilities of two different values
of an issue i

bi The intercept of the utility function
calculated based on the utilities of two
different values of an issue i

LBi The lower bound of issue i

UBi The upper bound of issue i

xi The value of issue i

n Total number of issues

MinUtilProp (resp. MinUtilOpp) The proponent (resp. the opponent)
minimum utility under which he would
never accept an offer

MaxUtilProp (resp. MaxUtilOpp) The proponent (resp. the opponent)
maximum utility, which is the utility of his
first offer

wiopp (resp. wiprop) The weight attributed by the opponent
(resp. proponent) to each utility

The Negotiation Process Description. This framework supports many
agents A = A1...An where each agent has a starting offer O = O1...On about m
issues. Thus, for each agent Ai, Oi = Oi1...Oim. Algorithm 1, outlines the main
steps of the negotiation process. Agents are first clustered based on their initial
offers using the function Clustering(A,O). Then the center of each cluster Ci is
detected using SelectRepresentative(Ci). This agent Ai has the highest degree
of belonging to her cluster. Then, each representative agent Ai will enter in a dia-
logue with the counter party agent Ag to negotiate the issues. During the negoti-
ation, the representative agent and the counter party will negotiate by exchang-
ing arguments in order to convince each other following the negotiation protocol
depicted in Fig. 1 called by the function FollowNegotiationProtocol(Ai, Ag). An
argument takes the form of premises/claim where premises are the explanations
and reasons to choose the given claim. For example, if agents are negotiating
one issue, a holiday destination, an argument may take the form: warm weather,
beaches, 5 stars hotels: Bahamas. The “Bahamas” represents the claim and the
negotiation offer while “warm weather, beaches, 5 stars hotels” are the premises
explaining the reasons to accept the claim. Arguments are selected using agents’
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CBR. They represent agents’ past experiences that are similar to the current
negotiation case. At each round, agents start by discussing the proponent offer
and then the opponent offer after exchanging roles. By the end of each round, if
an agreement is found then the negotiation ends. Otherwise, the mediator steps
in and proposes a solution using MediatorPropose(Sol, Ai, Ag). If it is accepted
by both agents, the negotiation ends successfully. In the other case a new round
starts. This process is repeated until the number of maximum rounds fixed at
the beginning of the negotiation is achieved or an agreement is reached. The
acceptance is: (1) argument-based, an agent accepts an offer because she was
convinced by the counter-party’s argument, (2) utility-based, the agent accepts
an offer only if the utility of this offer exceeds her reservation point utility.
Finally, to determine the utility of each agent from the final outcome: (1) We
compute the distance between the final outcome and each agent’s initial offer.
(2) We compute the similarity between them.

3 Experimental Study

3.1 Experimental Protocol

The framework is implemented on the multi-agent platform, Magentix2 [22], in
Java. Agents use their old argumentation and negotiation experiences (i.e., case
bases) that are stored in files acceded by their own CBR.

Data. Experiments are conducted in the tourism domain. Real data was gath-
ered from different sources: (1) the tourism ministry of Tunisia, (2) many web-
sites such as Trivago1, HolidayWeather2, Bandsintown3 and eDreams4 and (3)
the Travel and Tourism Competitiveness Report 2017 published by the World
Economic Forum. The database contains 509 lines about 126 different destina-
tions characterized by 29 features (e.g., safety rank, plane ticket’s price etc.). In
the tourism domain, many clients choose to travel through a travel agency to
take advantage of their organized trips. Under this context, we study the case
where many clients negotiate their trip. We suppose that agents are negotiating
over 5 issues: the price of a trip, the destination, the number of stars of the stay
in hotel, the board of the stay in hotel and the season while the rest of features
are left to be used as arguments’ premises in agents’ case-bases. The price and
the number of the stars of the hotel are numeric and ready to be clustered. As for
the rest of the issues they are originally in a qualitative format. Thus, they were
converted from qualitative to quantitative. The board of the stay can be: hous-
ing, breakfast and bed, all inclusive, breakfast and dinner and breakfast and lunch
and dinner. They are represented in order from 1 to 5. The season represents the
period of the trip: June, July or August and were represented respectively, 1, 2
1 https://www.trivago.fr/.
2 http://www.holiday-weather.com/.
3 https://news.bandsintown.com/home.
4 https://www.edreams.fr/.

https://www.trivago.fr/
http://www.holiday-weather.com/
https://news.bandsintown.com/home
https://www.edreams.fr/
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Algorithm 1. Multilateral negotiation over multi-issue
Input: A = A1...An the set of agents, Ag the counter party, I = I1...Im the set of
issues, O = O11...Onm the set of offers
Parameters: MaxNbRounds
Output: NegotiationOutcome

1: agreement ← false, round ← 0.
2: clusters ← Clustering(A, O). {Clustering phase}
3: for each Ci ∈ clusters do
4: Ai ← SelectRepresentative(Ci)
5: EnterDialogue(Ai, Ag) {Negotiation phase}
6: repeat
7: FollowNegotiationProtocol(Ai, Ag)
8: if FindAgreement() then
9: agreement ← true

10: NegotiationOutcome ← offer
11: else
12: ExchangeRoles(Ai, Ag)
13: FollowNegotiationProtocol(Ai, Ag)
14: end if
15: if FindAgreement() then
16: agreement ← true
17: NegotiationOutcome ← offer
18: else
19: MediatorPropose(Sol, Ai, Ag)
20: if Accept(Ai, Sol) AND Accept(Ag, Sol) then
21: agreement ← true
22: NegotiationOutcome ← Sol
23: else
24: round ← round + 1
25: end if
26: end if
27: until (agreement = true) OR (round = MaxNbRounds)
28: end for
29: return NegotiationOutcome

and 3. For the issue destination that represents the country/city to visit were
converted to numbers (1, 2,...,n) with respect to their continent. This means,
destinations having the closest numbers are the closest geographically and have
many common characteristics (presented by the features).

Moreover, issues such as price and season varies in very different intervals.
The price varies from 40 to 18000 euros and the season varies from 1 to 3. To
overcome this gap, we normalized data using: x′ = (x−min)/(max−min) with
x′ is the new normalized value, x is the original value, min and max are the
minimal and the maximal values of the interval, respectively.

Evaluation Metrics. The framework is evaluated based on: (1) the utility,
which depicts how much an agent gained from the final outcome. More precisely,
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we compute the average utility of agents. (2) Time, which is a crucial criteria
when it comes to negotiation. Thus, we compare the average needed time to
reach an agreement in several scenarios. (3) Ratio of agreements, which is a
ratio of the number of agreements reached with the help of the mediator by the
total number of agreements.

Experiments Description. The experiments proceed following the steps out-
lined below:

Table 2. Example of clustered entities

Agent Price Destination Stars Accommodation Season Cluster 1 Cluster 2 Cluster 3

A1 774 1 5 1 1 0.008 0.971 0.020

A2 651 44 5 1 1 0.003 0.88 0.08

A3 132 9 4 1 3 0.18 0.05 0.75

In the first step, 50 agents (clients) are clustered to 3, 5 and then 10 clusters
based on their offers. An example of agents’ clustering results on 3 clusters using
ECM is depicted in Table 2. Row 1 of Table 2 depicts agent A1’s offer where
she proposes a price of 774 euros for the destination “Cancun” for a 5 stars
hotel with “housing” as an accommodation and to travel in June. The cluster
of this agent is cluster 2 and her second cluster is cluster 3. Once agents are
clustered, the center element of each cluster is detected. The corresponding agent
represents the cluster and negotiates on behalf of the whole group. Then, another
agent represents the travel agency. Consequently, both agents start negotiating
by exchanging offers and arguments. The negotiation is held over 3 rounds.
By the end of each round, if no agreement is found, the mediator steps in and
proposes a solution that can satisfy both of them. The mediator follows the linear
problem discussed before to propose solutions to the conflicting parties. In order
to guarantee the fairness between both agents, α is fixed to 0.5. w is fixed to 1 so
that all issues will have the same importance. The agent representing the travel
agency will negotiate with each cluster’s representative to find an agreement.
This agreement can be an already planned trip or it can be created. Actually,
the travel agency’s agent may accept to create a new trip only if it was proposed
by the mediator and she conceives that this would be better for her.

At the end of the negotiation, we have 3 outcomes coming from the three
negotiation scenarios between clusters’ representative and the travel agency
agent. To compute the distance between the final outcome and each agent’s ini-
tial offer, we used the Manhattan distance. Dis(X,Y ) = |x1−y1|+|x2−y2|+. . .+
|xn−yn|. Finally, to detect the similarity between the negotiation final outcome
and the initial offer of each agent we computed: Sim(X,Y ) = 1 − Dis(X,Y ).
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Example 1. We suppose that an agent A1 belongs to cluster c1 and her offer is:
<price : 402, destination : Toulouse, France, stars : 4, board : housing(1), season :
3(August)>. If the final outcome is: <price : 249, destination : Porto, Portugal, stars :
1, board : housing(1), season : 1(June)> then the Manhattan distances between the
agent’s first offer and the final solution on each issue are: 0.138, 0.954, 0.66, 0 and 1 for
issue price, destination, number of the hotel stars, the board of the stay and the season in
order.

In order to evaluate our framework, we conducted the discussed experiments:
(1) without any clustering among agents, (2) with a hard clustering algorithm
namely, K-means [23] and (3) with a soft clustering namely, ECM and FCM.

3.2 Experimental Results

Computing agents’ offers similarity to the final outcome depicts their utility from
the solution found by their representative. In case of 3 clusters, the average util-
ity of each cluster in order: 60%, 61% and 65%. These results are found using
ECM, soft clustering where agents changed their original cluster to get solu-
tions with bigger utilities from the other clusters. We also calculate the utility of
the travel agency from all negotiations: 66% (with cluster 1), 40% (with cluster
2) and 88% (cluster 3). For the 2nd negotiation scenario, we can see that the
travel agency made more concessions in order to convince her clients. Neverthe-
less, this is always with respect to the agent’s reservation point. Table 3 depicts
the results from different scenarios (i.e., different clustering techniques and no
clustering situation) in terms of the average time needed for the negotiation
phase, the average utility and the impact of the mediator. The time decreases
remarkably when agents are clustered based on their offers. The highest util-
ity is attended when agents were not clustered which is due to the fact that
each agent negotiate by herself and thus, she maximizes her own utility without
taking into consideration the rest of the agents. However, using soft clustering
didn’t cost agents in terms of utility since it still presents considerable utilities
(i.e., column 3 and 4 of the Table 3) which is bigger than their utilities following
a hard clustering. This is due to the fact that agents changed their clusters to get
better solutions. In case where agents are clustered using ECM and FCM, agents
may switch clusters. Thus, if no agreement is reached in their original cluster
they switch to a cluster that presents a satisfying offer for them. However, when
agents were not clustered, on 50 agents only 43 found agreements and 36 of them
were reached with the help of the mediator. Similarly in hard clustering, agents
can’t switch clusters and thus, the average utility decreases.
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Table 3. Results in terms of time, utility and mediator’s impact

Nb
clusters

Criteria Clustering

Without
clustering

Soft
clustering
(ECM)

Soft
clustering
(FCM)

Hard
clustering
(K-means)

0 Time 3.15 h - - -

Average utility 69% - - -

Ratio of agreements 36/43 - - -

3 Time - 12.41 min 17.03 min 13.21 min

Average utility - 63% 63% 54%

Ratio of agreements - 3/3 3/3 3/3

5 Time - 27.63 min 22.15 min 19.21 min

Average utility - 65% 68% 45%

Ratio of agreements - 2/2 3/4 3/4

10 Time - 34.16 min 34.38 min 48.76 min

Average utility - 62% 66% 35%

Ratio of agreements - 5/6 6/9 5/6

4 Conclusion

This paper proposes a new framework for multi-agent negotiations over multi-
issues. The framework combines three different fields: argumentation, negotiation
and CBR. Agents negotiate via a mediator that has two main roles: (i) assist
the negotiation process by sending messages to the negotiation parties and (ii)
propose a solution that can satisfy both parties in case of no agreement. This
will get them out of the bottleneck and help them to overcome their conflicts. To
ensure the fairness for all negotiation parties, the mediator proposes solutions
that maximizes all parties’ utilities with respect to a set of conditions. In order to
reduce the negotiation complexity, we propose soft clustering over agents. A rep-
resentative agent is chosen from each cluster to lead the negotiation. The results
showed that the time dedicated for negotiation decreases remarkably when we
use the clustering technique while agents’ utilities show that the clustering tech-
nique preserves their self-interested behaviour.

We assumed that if the agent client proposes a new trip that was unplanned
by the travel agency it will be refused. However, it may be accepted if the pro-
posal was coming from the mediator since the latter has a bigger view on the
problem and ensures that both parties’ utilities are maximized. Further experi-
mental investigations are needed to test other negotiation strategies. Moreover,
we assumed that all agents belonging to one cluster trust the representative
agent and they all agreed on her. As perspective, we will include voting in the
process of choosing a representative agent.
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10. Buccafurri, F., Rosaci, D., Sarnè, G.M.L., Ursino, D.: An agent-based hierarchical
clustering approach for E-commerce environments. In: Bauknecht, K., Tjoa, A.M.,
Quirchmayr, G. (eds.) EC-Web 2002. LNCS, vol. 2455, pp. 109–118. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45705-4 12
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Abstract. Argumentation, in the field of Artificial Intelligence, is a for-
malism allowing to reason with contradictory information as well as to
model an exchange of arguments between one or several agents. For this
purpose, many semantics have been defined with, amongst them, grad-
ual semantics aiming to assign an acceptability degree to each argument.
Although the number of these semantics continues to increase, there is
currently no method allowing to explain the results returned by these
semantics. In this paper, we study the interpretability of these seman-
tics by measuring, for each argument, the impact of the other arguments
on its acceptability degree. We define a new property and show that the
score of an argument returned by a gradual semantics which satisfies this
property can also be computed by aggregating the impact of the other
arguments on it. This result allows to provide, for each argument in an
argumentation framework, a ranking between arguments from the most
to the least impacting ones w.r.t. a given gradual semantics.

Keywords: Abstract argumentation · Gradual semantics ·
Interpretability

1 Introduction

The issue of interpreting the results obtained by Artificial Intelligence (AI) meth-
ods is receiving an increasing attention both in the AI community but also from
a wider audience. In particular, the ability to interpret the rationale behind the
results (e.g., classifications, decisions) returned by an artificial intelligent agent
is of main importance to ensure the transparency of the interaction between the
two entities in order to accomplish cooperative tasks. According to Miller [13],
interpretability is the degree to which an observer can understand the cause(s)
of a result. An algorithm, a program or a decision is said to be interpretable
if it is possible to identify the elements or the features that have the great-
est impact on (and thus lead to) the result. This term must not be confused
with the term explanation which is the answer to a why-question or with the
term justification which explains why a result is good, but does not necessarily
aim to give an explanation of the process. Despite the numerous (formal and
empirical) approaches [9,11,12,17] to tackle the problem of interpretability of
c© Springer Nature Switzerland AG 2019
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artificial intelligent systems, it is still an open research problem. As highlighted
by Mittelstadt et al. [14], artificial argumentation [3] may play an important role
in addressing this open issue, thanks to its inner feature of combining decision
making with the pro and con arguments leading to a certain decision.

In this paper, we aim to study, from a formal point of view, how to cast the
notion of interpretability in abstract argumentation so that the reasons leading
to the acceptability of one or a set of arguments in a framework may be explicitly
assessed. More precisely, this research question breaks down into the following
sub-questions: (i) how to formally define and characterise the notion of impact
of an argument with respect to the acceptability of the other arguments in the
framework? and (ii) how does this impact play a role in the interpretation process
of the acceptability of arguments in the framework?

To answer these questions, we start from the family of graded semantics [4,6],
and we select two semantics which present different features so that we can show
the generality of our approach to characterise the notion of impact. In partic-
ular, we select the h-categorizer semantics initially proposed by Besnard and
Hunter [5] and the counting semantics from Pu et al. [16]. In both approaches,
the acceptability of an argument, differently from standard Dung’s semantics [10]
where arguments are either (fully) accepted or rejected, is represented through
an acceptability degree in the range [0, 1]. Roughly, we say that the impact of
a certain argument (or a set of arguments) on the degree of acceptability of
another argument can be measured by computing the difference between the
current acceptability degree of the argument and its acceptability degree when
the first argument is deleted. We study the formal properties of the notion of
impact instantiated through these two graded semantics both for cyclic and
acyclic abstract argumentation frameworks. Finally, we show that studying the
impact of an argument on the other arguments allows us to answer to some main
needs in terms of interpretability of argument-based decision maker’s resolutions.

The remainder of the paper is as follows: in Sect. 2, we provide same basics
about gradual semantics and more precisely, the h-categorizer [5] and the count-
ing semantics [16], Sect. 3 discusses the notion of impact of an argument in an
argumentation framework and its formal properties, Sect. 4 focuses on the bal-
anced impact property, in Sect. 5 we highlight how the notion of impact and its
properties play a role on the interpretability of abstract argumentation frame-
works and the acceptability of the arguments. The discussion of the related
literature and conclusions end the paper.

2 Preliminaries

An abstract argumentation framework (AF) is a set of abstract arguments con-
nected by an attack relation.

Definition 1 (AF). An (abstract) argumentation framework (AF) is a tuple
F = 〈A,R〉 where A is a finite and non-empty set of (abstract) arguments,
and R ⊆ A × A is a binary relation on A, called the attack relation. For two
arguments x, y ∈ A, the notation (x, y) ∈ R (or xRy) means that x attacks y.
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Definition 2 (Non-attacked set of arguments). Let F = 〈A,R〉 be an AF.
The set of arguments X ⊆A is non-attacked if ∀x ∈ X, �y ∈ A\X s.t. (y, x) ∈ R.

Notation 1. Let F = 〈A,R〉 be an AF and x, y ∈ A. A path P from y to x,
noted P (y, x), is a sequence 〈x0, . . . , xn〉 of arguments in A such that x0 = x,
xn = y and ∀i < n, (xi+1, xi) ∈ R. The length of the path P is n (i.e., the
number of attacks it is composed of) and is denoted by lP = n. A cycle is a path
from x to x and a loop is a cycle of length 1.
Let R−

n (x) = {y | ∃P (y, x) with lP = n} be the multiset of arguments that are
bound by a path of length n to the argument x. Thus, an argument y ∈ R−

n (x)
is a direct attacker (resp. defender) of x if n = 1 (resp. n = 2). More generally,
y is an attacker (resp. defender) of x if n is odd (resp. even).

A gradual semantics assigns to each argument in an argumentation framework
a score, called acceptability degree, depending on different criteria. This degree
must be selected among the interval [0, 1].

Definition 3 (gradual semantics). A gradual semantics is a function S which
associates to any argumentation framework F = 〈A,R〉 a function DegS

F : A →
[0, 1]. Thus, DegS

F(x) represents the acceptability degree of x ∈ A.

h-categorizer Semantics [5,15]. This gradual semantics uses a categorizer
function to assign a value to each argument which captures the relative strength
of an argument taking into account the strength of its attackers, which itself
takes into account the strength of its attackers, and so on.

Definition 4. Let F = 〈A,R〉 be an argumentation framework. The catego-
rizer function DegCat

F : A → ]0, 1] is defined such that ∀x ∈ A,

DegCat
F (x) =

{
1 if R−

1 (x) = ∅
1

1+
∑

y∈R−
1(x)

DegCat
F (y)

otherwise

Counting Semantics [16]. This gradual semantics allows to rank arguments
by counting the number of their respective attackers and defenders. In order
to assign a value to each argument, they consider an AF as a dialogue game
between the proponents of a given argument x (i.e., the defenders of x) and
the opponents of x (i.e., the attackers of x). The idea is that an argument is
more acceptable if it has many arguments from proponents and few arguments
from opponents. Formally, they first convert a given AF into a matrix Mn×n

(where n is the number of arguments in AF ) which corresponds to the adjacency
matrix of AF (as an AF is a directed graph). The matrix product of k copies
of M , denoted by Mk, represents, for all the arguments in AF , the number of
defenders (if k is even) or attackers (if k is odd) situated at the beginning of
a path of length k. Finally, a normalization factor N (e.g., the matrix infinite
norm) is applied to M in order to guarantee the convergence, and a damping
factor α is used to have a more refined treatment on different length of attacker
and defenders (i.e., shorter attacker/defender lines are preferred).
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Definition 5 (Counting model). Let F = 〈A,R〉 be an argumentation frame-
work with A = {x1, . . . , xn}, α ∈ ]0, 1[ be a damping factor and k ∈ N. The
n-dimensional column vector v over A at step k is defined by,

vk
α =

k∑
i=0

(−1)iαiM̃ iI

where M̃ is the normalized matrix such that M̃ = M/N with N as normalization
factor and I the n-dimensional column vector containing only 1s.
The counting model of F is vα = lim

k→+∞
vk

α. The strength value of xi ∈ A is the

ith component of vα, denoted by DegCS
F (xi).

3 Impact Measure

The impact of an argument on another argument can be measured by computing
the difference when this argument exists and when it is deleted. To capture this
notion of deletion, we need to define the complement operator which deletes a set
of arguments from the initial argumentation framework w.r.t. a given argument
(i.e., the targeted argument of the impact). These changes have also a direct
impact on the set of attacks because the attacks directly related to the deleted
arguments (attacking as well as attacked) are automatically deleted too.

Definition 6. Let F = 〈A,R〉 be an AF, X ⊆ A and y ∈ A. The complement
operator 
 is defined as F 
y X = 〈A′,R′〉, where

– A′ = A\(X\{y});
– R′ = {(x, z) | (x, z) ∈ R and x ∈ A\X, z ∈ A\X}.
Let us first formalise how to compute the impact of a non-attacked set of argu-
ments on a given argument before generalising it for every set of arguments.

3.1 Impact of a Non-attacked Set of Arguments

The impact of a non-attacked set of arguments X on the degree of acceptability
of an argument y can be measured by computing the difference between the
current acceptability degree of y and its acceptability degree when X is deleted.

Definition 7 (Impact of a non-attacked set of arguments). Let F =
〈A,R〉 be an AF, y ∈ A and X ⊆ A be a non-attacked set of arguments. Let S
be a gradual semantics. The impact of X on y is defined as follows:

ImpS
F(X, y) = DegS

F(y) − DegS
F�yX(y)
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a

0.2691/0.444

d

0.9806/0.75

e

0.02/0.333

f

1/1

g

1/1

b

0.51/0.5

c

1/1

ImpSF(X, a) CS Cat
X = A -0.7309 -0.556
X = {e, f, g} 0.0138 0.044
X = {b, c} -0.2547 -0.127
X = {f, g} -0.2215 -0.056
X = {c} 0.2353 0.0808

Fig. 1. On the left hand side, an AF with, above each argument, its scores returned
by the counting semantics (with α = 0.98) and the h-categorizer semantics [CS/Cat].
On the right hand side, the table contains the impact of some non-attacked sets of
arguments on the degree of acceptability of argument a.

Globally, this definition is implicitly included in the formula of existing
gradual semantics. A proof of this is that it is possible to compute the score
of an argument by combining its basic score and the impact of each argu-
ment in the AF: DegS

F(y) = 1 + ImpS
F(A, y). Figure 1 illustrates this idea where

DegCS
F (a) = 1+ImpCS

F (A, a) = 1+(DegS
F(a)−DegS

F�aA(a)) = 1−0.7309 = 0.2691.
Measuring the impact of these sets of arguments could be interesting for

applications like the online debate platforms where people can argue on a given
topic. A debate can be formalised with an AF which has, in many cases, a
tree-shaped structure meaning that several sub-debates exist. For example, the
arguments for/against the vegan diet can be divided into several categories like
the environmental impact, health impact, psychological effects, etc. Checking
the impact of these different categories (i.e., the sub-trees in the AF) on the
topic implies to better know the influence of each part on the debate.

3.2 General Impact

As it stands, the formula of the impact (Definition 7) cannot be used for an
attacked set of arguments. Indeed, calculating the impact of {e} on a in Fig. 1
reverts to compute the impact of {e, f, g} on a because, by deleting e, the path
from f and g (the direct attackers of e) to a are also removed implying to
indirectly take into account the impact of f and g on a too.

In order to compute the impact of any set of arguments X on an argument
y, we propose to consider the degree of acceptability of y when the arguments in
X are the strongest (i.e., when their direct attackers are deleted). The fact that
these arguments are attacked will be taken into account during the computation
of the impact of these attackers on y.

Definition 8 (Impact). Let F = 〈A,R〉 be an AF, y ∈ A and X ⊆ A. Let S
be a gradual semantics. The impact of X on y is:

ImpS
F(X, y) = DegS

F�y(
⋃

x∈X

R−
1 (x))

(y) − DegS
F�yX(y)
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This definition generalises Definition 7 because if
⋃

x∈X

R−
1 (x) = ∅ (meaning

that X is non-attacked) then the two formulae are equivalent.
As the acceptability degree of an argument is between 0 and 1 (see Definition

3), the impact of a set of arguments on an argument is in the interval [−1, 1].

Proposition 1. Let F = 〈A,R〉 be an AF, y ∈ A and X ⊆ A. Let S be a
gradual semantics. We have ImpS

F(X, y) ∈ [−1, 1].

Three categories of impact can be defined, i.e., positive, negative and neutral.

Definition 9. Let F = 〈A,R〉 be an AF, y ∈ A and X ⊆ A. Let S be a gradual
semantics. We say that X has a positive impact on y if ImpS

F(X, y) > 0, X
has a negative impact on y if ImpS

F(X, y) < 0, X has a neutral impact on y
if ImpS

F(X, y) = 0.

Note that the fact that a set of arguments has a specific impact (positive,
negative or neutral) does not mean that all arguments belonging to this set also
have this specific impact. For example, in Fig. 1, we can see that, when CS is
used, the set {e, f, g} has a positive impact whereas only e has a positive impact
(f and g have a negative impact).

In order to be used for interpretability (Sect. 5), we define three notations
to select the single arguments which have either a positive, negative or neutral
impact on another argument.

Notation 2. Let F = 〈A,R〉 be an AF and y ∈ A. Let S be a gradual semantics.
I+S (y) = {x ∈ A | {x} has a positive impact on y}
I−

S (y) = {x ∈ A | {x} has a negative impact on y}
I=S (y) = {x ∈ A | {x} has a neutral impact on y}.
Example 1. Let us compute the impact of each single argument in the AF
visualised in Fig. 1 on a when CS is used (α = 0.98). Focusing on e, we
have ImpCS

F ({e}, a) = DegCS
F�a{f,g}(a) − DegCS

F�a{e}(a) = 0.4906 − 0.25530 =
0.2353. For the other arguments, we have ImpCS

F ({a}, a) = 0, ImpCS
F ({b}, a) =

ImpCS
F ({d}, a) = −0.49, ImpCS

F ({c}, a) = 0.2353 and ImpCS
F ({f}, a) =

ImpCS
F ({g}, a) = −0.1108.

Thus, we have I+CS(a) = {c, e}, I−
CS(a) = {b, d, f, g} and I=CS(a) = {a}.

4 Balanced Impact Property

The definition of a new gradual semantics is often coupled with an axiomatic
evaluation [1,4]. Such axioms are mainly used to better understand the behaviour
of gradual semantics in specific situations. The role and impact of an argu-
ment/attack are also discussed. Such axioms have the aim to answer questions
like: Is an attack between two arguments killing (cf. Killing property [1]) or just
weakening (cf. Weakening property [1]) the target of the attack? In addition,
two semantics can both consider that an attack weakens its target (and then
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Fig. 2. Three argumentation frameworks F1, F2, F3 showing the difference of impact
among the counting semantics and the h-categorizer semantics.

both satisfy the Weakening property) but with different levels of weakening.
Unfortunately, this distinction cannot be captured with such axioms.

For example, computing the impact of b and c on a in the three AFs visualised
in Fig. 2 with the h-categorizer semantics shows that their impact on a is less
important when they attack together (ImpCat

F3
({b, c}, a) = −0.667) than when

they attack it separately (ImpCat
F1

({b}, a) + ImpCat
F2

({c}, a) = −0.5 + −0.5 = −1).
Conversely, for the counting semantics, both return the same result:
ImpCS

F3
({b, c}, a) = −0.98 = −0.49 + −0.49 = ImpCS

F1
({b}, a) + ImpCS

F2
({c}, a).

To capture this idea, we define a new property, called Balanced Impact (BI),
which states that the sum of the impact of two arguments alone on an argument
y should be equal to the impact of these two arguments together on y.

Property 1 (Balanced Impact (BI)). A gradual semantics S satisfies Balanced
Impact if and only if for any F = 〈A,R〉 and x, y, z ∈ A,

ImpS
F({x}, y) + ImpS

F({z}, y) = ImpS
F({x, z}, y)

Let us check which semantics (among CS and Cat) satisfies Balanced Impact.

Proposition 2. The counting semantics satisfies Balanced Impact.

Proposition 3. The h-categorizer semantics does not satisfy Balanced Impact.

Thus, this property allows to distinguish the semantics which distribute the
impact of the arguments on another in a balanced way. Interestingly, this balance
allows to go further because it is possible to compute the score of an argument
w.r.t. a gradual semantics which satisfies BI from the impact of each single argu-
ment in the AF on this argument. Indeed, as explained in Sect. 3.1, the score of an
argument y depends on the impact of all the arguments in the AF (ImpS

F(A, y)),
but thanks to the balanced impact property, we can split ImpS

F(A, y) into the
impact of each individual argument in the AF. Let us first formally define it for
the acyclic argumentation frameworks.

Definition 10. Let F = 〈A,R〉 be an acyclic AF and y ∈ A. Let S be a gradual
semantics which satisfies BI. The score of y can be defined as follows:

DegS
F (y) = 1 +

∑
x∈A

ImpS
F ({x}, y)
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Algorithm 1. Transformation function ACY

Data: F = 〈A = {x1, . . . , xn}, R〉 and x1 ∈ A the targeted argument.
Result: F′ = 〈A′, R′〉 the infinite acyclic AF of F
C = {x1}; A′ = {x0

1}; R′ = ∅ // x0
1 is called the universal sink vertex of F′

for every argument xi in C do
C = C\{xi}
m1 ← maximum value of m among xm

i ∈ A′

for every argument xj in R−
1 (xi) do

C = C ∪ {xj}
if x0

j /∈ A′ then
A′ = A′ ∪ x0

j ; R′ = R′ ∪ (x0
j , x

m1
i )

else
m2 ← (maximum value of m among xm

j ∈ A′) + 1
A′ = A′ ∪ xm2

j ; R′ = R′ ∪ (xm2
j , xm1

i )

Example 2. Let us compute the score of a in the AF visualised in Fig. 1 using
the impact of each single argument when CS is used.

DegCS
F (a) = 1 + (ImpCS

F ({a}, a) + ImpCS
F ({b}, a) + ImpCS

F ({c}, a) + ImpCS
F ({d}, a)

+ ImpCS
F ({e}, a) + ImpCS

F ({f}, a) + ImpCS
F ({g}, a))

= 1 + (0 − 0.49 + 0.2353 − 0.49 + 0.2353 − 0.1108 − 0.1108) = 0.2691

In order to generalise this definition for any AF, a preprocessing step is required.
Indeed, deleting an argument in a cycle removes as well its impact as the ones
of other arguments in the cycle. As the method works for acyclic AFs, we
propose to transform a cyclic AF into an infinite acyclic AF1 focused on a given
argument a. Thus, as visualised in Fig. 3, we obtain a tree-shaped AF where the
root node is a itself, its parent nodes are its direct attackers, the parent nodes of its
parent nodes are its direct defenders, and so on. Algorithm 1 details the transfor-
mation mechanism called ACY.

b a c ⇒ a0 b0

c0

a1 b1

c1

. . .

. . .

Fig. 3. Cyclic AF transformed into its infinite acyclic AF

1 From a computational point of view, the scores of each argument are computed using
a fixed-point approach. If the function used in the gradual semantics converges, the
number of iterations needed for convergence can also be used to define the maximal
depth of the tree-shaped AF.
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We can now use the transformation of an AF, denoted by F, to define the impact
of any argument x on a given argument y as the sum of the impact of all the
sub-arguments of x (x0, x1, . . . ) on y0 (the universal sink vertex) in ACYy(F).

Definition 11. Let F = 〈A,R〉 be an AF with y ∈ A. Let F′ = ACYy(F) and
X = {x0, x1, . . . } be the sub-arguments of x ∈ A in F′. Let S be a gradual seman-
tics which satisfies BI. The impact of x on y is 0 if X = ∅, otherwise it is defined
as follows:

ImpS
F ({x}, y) =

∑
xi∈X

ImpS
F′({xi}, y0)

This new definition of impact can then be used in Definition 10 to compute the
score of a given argument.

Example 3. By focusing on the AF visualised in Fig. 3, the impact of b on a is
ImpCS

F ({b}, a) = ImpCS
ACYa(F)

({b0}, a0) + ImpCS
ACYa(F)

({b1}, a0) + · · · � −0.63. We
also have ImpCS

F ({c}, a) � −0.63 and ImpCS
F ({a}, a) � 0.3.

We obtain DegCS
F (a) � 0.04 = 1 + 0.3 − 0.63 − 0.63 = 1 +

∑
x∈{a,b,c}

ImpCS
F ({x}, a).

5 Interpretability of Gradual Semantics

One of the goals of interpretability for gradual semantics is to identify the ele-
ments which have an impact on the score assigned by the selected gradual seman-
tics on each argument. Definition 9 allows to assess whether an argument has a
positive, negative or neutral impact on the acceptability degree of an argument.
It allows to answer questions about the impact of certain arguments on the oth-
ers, like in the following example about the AF (F) in Fig. 1:
Q:Which arguments have a positive impact on a in F when CS is used?
A: c and e have a positive impact on a. I+CS(a) = {c, e}

Through the impact values (see Definition 8), it is possible to provide, for
each argument, a ranking between the arguments from the most positive to the
most negative impacting ones w.r.t. a given gradual semantics.

Definition 12 (Impact ranking). Let F = 〈A,R〉 be an AF and S be a gradual
semantics. The impact ranking �S

y on A with respect to y ∈ A is defined such
that ∀x, z ∈ A, x �S

y z iff ImpS
F({x}, y) ≥ ImpS

F({z}, y).

This ranking allows us to select, for each argument, its most positive and negative
impacting arguments, if they exist.

Definition 13. Let F = 〈A,R〉 be an AF and S be a gradual semantics. The
most positive (resp. negative) impacting arguments on the acceptability
degree of y ∈ A are defined as follows:

PIS
F (y) = argmaxx∈I+S (y)|{z ∈ I+S (y) | x �S

y z}|
NIS

F (y) = argmaxx∈I−
S (y)|{z ∈ I−

S (y) | z �S
y x}|
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Example 4. Let us consider the AF depicted in Fig. 1. The impact ranking of
argument a, when CS is used, is c �CS

a e �CS
a a �CS

a f �CS
a g �CS

a b �CS
a d.

Consequently, we have PICS
F (a) = {c, e} and NICS

F (a) = {b, d}.
In addition to providing a better understanding of the scores assigned to each
argument, this information can also be used to develop strategies during a
debate. For example, if someone wants to defend a point of view (i.e., increase
the degree of acceptability of an argument in a debate), she can identify the
argument(s) with the most negative impact and therefore look for solutions to
attack them by introducing some counter-arguments.

6 Related Work

Interpretability has already been studied in the context of extension-based
semantics in formal argumentation. Fan and Toni [11] first studied how to give
explanations for arguments that are acceptable w.r.t. the admissible semantics
in terms of arguments defending them, before formalising explanations for argu-
ments that are not acceptable w.r.t. the admissible semantics by using a dispute
tree [12]. Although the extension-based semantics and the gradual semantics
share the same goal (i.e., evaluating the arguments), the two approaches are dif-
ferent (see the discussion in [7] for more details). Consequently, the investigation
of the notion of interpretability for these two families of semantics also differs.

Concerning the gradual semantics, Amgoud et al. [2] have introduced the
concept of contribution measure for evaluating the intensity of each attack in
an argumentation graph. The Shapley value is used as contribution measure.
However, only a specific family of gradual semantics is considered (i.e., the
ones which satisfy the syntax-independent and monotonicity properties like the
h-categorizer semantics). Moreover, unlike our method which checks the impact
of all arguments in the framework, their method only measures the contribution
of direct attacks on an argument which is coherent for the family of semantics
studied in this work, but it is not necessarily the case for all existing semantics.

7 Conclusion

In this paper, we have presented a formal framework to interpret the results of
gradual semantics in abstract argumentation. More precisely, we have considered
the h-categorizer and the counting semantics, and we have formally studied the
notion of impact of an argument with respect to the acceptability degree of
another argument in the framework both for cyclic and acyclic frameworks. The
impact of arguments on the acceptability degree of the other arguments is then
employed to interpret the rationale behind the resulting ranking, and to provide
a further understanding of the reasons why attacking one argument rather than
another may be a strategically better choice.

Two main open issues will be considered as future work: first, in this paper
we do not consider the support relation [8] between arguments but we aim to
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extend our formal framework to capture this relation too given its importance
in many practical applications, and second, we plan to extend our analysis to
the other gradual semantics proposed in the literature to provide a complete
overview of the properties of the impact notion over such semantics.

Acknowledgements. This work benefited from the support of the project DGA
RAPID CONFIRMA.
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Abstract. Some abstract argumentation approaches consider that argu-
ments have a degree of uncertainty, which impacts on the degree of uncer-
tainty of the extensions obtained from a abstract argumentation frame-
work (AAF) under a semantics. In these approaches, both the uncer-
tainty of the arguments and of the extensions are modeled by means of
precise probability values. However, in many real life situations the exact
probabilities values are unknown and sometimes there is a need for aggre-
gating the probability values of different sources. In this paper, we tackle
the problem of calculating the degree of uncertainty of the extensions
considering that the probability values of the arguments are imprecise.
We use credal sets to model the uncertainty values of arguments and
from these credal sets, we calculate the lower and upper bounds of the
extensions. We study some properties of the suggested approach and
illustrate it with an scenario of decision making.

Keywords: Abstract argumentation · Imprecise probability ·
Uncertainty · Credal sets

1 Introduction

The AAF that was introduced in the seminal paper of Dung [3] is one of the
most significant developments in the computational modelling of argumentation
in recent years. The AAF is composed of a set of arguments and a binary rela-
tion encoding attacks between arguments. Some recent approaches on abstract
argumentation assign uncertainty to the elements of the AAF to represent the
degree of believe on arguments or attacks. Some of these works assign uncer-
tainty to the arguments (e.g., [4,6–9,12–14]), others to the attacks (e.g., [9]),
and others to both arguments and attacks (e.g., [11]). These works use pre-
cise probability approaches to model the uncertainty values. However, precise
probability approaches have some limitations to quantify epistemic uncertainty,
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for example, to represent group disagreeing opinions. These can be better rep-
resented by means of imprecise probabilities, which use lower and upper bounds
instead of exact values to model the uncertainty values.

For a better illustration of the problem, consider a discussion between a
group of medicine students (agents). The discussion is about the diagnose of
a patient. In this context, arguments represent the student’s opinions and the
attacks represent the disagreements between such opinions. Figure 1 shows the
argumentation graph where nodes represent arguments and edges the attacks
between arguments. In the graph, two arguments represent two possible diag-
noses namely measles and chickenpox, there is an argument against measles and
two arguments against chickenpox, and there are three arguments that have no
attack relations with the rest of arguments.

A = The patient has measles

C = She has blisters

E = The patient

G = The patient has fever

H = The patient’s temperature is 39°

B= The patient has chickenpox

D = She only has small red spots

patient has brown eyes

F = The patient was
vaccinated for chickenpox

Fig. 1. Argumentation graph for the discussion about the diagnose of a patient.

Suppose that each opinion – i.e., argument – has a probability value between
0 and 1 that represents the degree of believe of each student. Since there is
more than one opinion, this means that each argument has associated a set of
probability values. Thus, we cannot model these degrees of believe by means
of an unique probability value (precise probability value), what we need is to
represent a range of the possible degrees of believe.

To the best of our knowledge, there is no work that models the uncertainty
values of arguments by using an imprecise probability approach. Therefore, we
aim to propose an approach for abstract argumentation in which the uncertainty
of the arguments is modeled by an imprecise probability value. Thus, the research
questions that are addressed in this paper are:

1. How to model the imprecise uncertainty values of arguments?
2. In abstract argumentation, several semantics have been proposed, which

return sets of arguments – called extensions – whose basic characteristic is
that these arguments do not attack each other, i.e. they are consistent. The
fact that the arguments that belong to an extension are uncertain, causes
that such extension also has a degree of uncertainty. How to calculate the
lower and upper bounds of extensions?
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In addressing the first question, we use credal sets to model the uncertainty
values of arguments. Regarding the second question, we base on the credal sets of
the arguments to calculate the uncertainty values of extensions obtained under
a given semantics. These values are represented by lower and upper bounds.
The way to aggregate the credal sets depends on a causal relation between the
arguments.

The remainder of this paper is structured as follows. Next section gives a brief
overview on credal sets and abstract argumentation. In Sect. 3, we present the
AAF based on credal sets and the causality graph concept, which are the base
for the calculation of the upper and lower bounds of extension. This calculation
is tackled in Sect. 4. We study the main properties of our approach in Sect. 5.
Related work is presented in Sect. 6. Finally, Sect. 7 is devoted to conclusions
and future work.

2 Background

In this section, we revise concepts of credal sets and abstract argumentation.

2.1 Credal Sets

Assume that we have a finite set of events E = {E1, ..., En} and a probability
distribution p on this set, where p is a mapping p : E → [0, 1]. According to
Levi [10], a closed convex set of probability distributions p is called a credal set.
Given an event E, a credal set for E – denoted K(E) – is a set of probability
distributions about this event and K = {K(E1), ...,K(En)} denotes a set of all
credal sets. Every credal set has the same number of elements. In this work, we
assume that the cardinality of the credal sets of K is the same (let us denote it
by m); moreover, we assume that pi(E) denotes the suggested probability of the
agent i w.r.t the event E such that 1 ≤ i ≤ m and E ∈ E. Given a credal set
K(E), the lower and upper bounds for event E are determined as follows:

Lower probability:P (E) = inf{p(E) : p(E) ∈ K(E)}
Upper probability:P (E) = sup{p(E) : p(E) ∈ K(E)} (1)

Given l events {E1, ..., El} ⊆ E and their respective credal sets K(E1) =
{p1(E1), ..., pm(E1)}, ...,K(El) = {p1(El), ..., pm(El)}. If {E1, ..., El} are inde-
pendent events, the lower and upper probabilities are defined as follows:

P ({E1, ..., El}) = min1≤j≤m{
∏i≤l

i=1
pj(Ei)}where pj ∈ K(Ei)

P ({E1, ..., El}) = max1≤j≤m{
∏i≤l

i=1
pj(Ei)} (2)

On the other hand, when the independence relation is not assumed, the first
step is to calculate a credal set for {E1, ..., El} as follows:

K({E1, ..., El}) = {pE |pE = min1≤j≤m{pj(E1), ...pj(El)}}where
pj(Ei) ∈ K(Ei) (3)
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Based on K({E1, ..., El}), we obtain the lower and upper probabilities:

P ({E1, ..., El}) = min(K({E1, ..., El}))
P ({E1, ..., El}) = max(K({E1, ..., El})) (4)

Example 1. Let {E1, E2, E3} be three events and K(E1) = {p1(E1), p2(E1),
p3(E1)},K(E2) = {p1(E2), p2(E2), p3(E2)}, and K(E3) = {p1(E3), p2(E3),
p3(E3)} their respective credal sets. Next table shows the values of the prob-
ability distributions for each event.

E1 E2 E3

p1 0.3 0.5 0.75

p2 0.6 0.7 0.55

p3 0.45 0.65 0.8

Assuming that E1, E2, and E3 are independent, the lower and upper prob-
abilities of (E1, E2, E3) are calculated as follows: P (E1, E2, E3) = min{0.3 ×
0.5 × 0.75, 0.6 × 0.7 × 0.55, 0.45 × 0.65 × 0.8} = min{0.1125, 0.231, 0.234}; hence
P (E1, E2, E3) = 0.1125 and P (E1, E2, E3) = max{0.1125, 0.231, 0.234} = 0.234.

On the other hand, if we assume that E1, E2, and E3 are not independent,
then the lower and upper probabilities are calculated as follows: K(E1, E2, E3) =
{min{0.3, 0.5, 0.75},min{0.6, 0.7, 0.5},min{0.45, 0.65, 0.8}} = {0.3, 0.55, 0.45}.
Thus, P (E1, E2, E3) = 0.3 and P (E1, E2, E3) = 0.55.

2.2 Abstract Argumentation

In this subsection, we will recall basic concepts related to the AAF defined by
Dung [3], including the notion of acceptability and the main semantics.

Definition 1 (Abstract AF). An abstract argumentation framework AF is a
tuple AF = 〈ARG,R〉 where ARG is a finite set of arguments and R is a binary
relation R ⊆ ARG×ARG that represents the attack between two arguments of ARG,
so that (A,B) ∈ R denotes that the argument A attacks the argument B.

Next, we introduce the concepts of conflict-freeness, defense, admissibility
and the four semantics proposed by Dung [3].

Definition 2 (Argumentation Semantics). Given an argumentation frame-
work AF = 〈ARG,R〉 and a set E ⊆ ARG:

– E is conflict-free if ∀A,B ∈ E , (A,B) 	∈ R.
– E defends an argument A iff for each argument B ∈ ARG, if (B,A) ∈ R, then

there exist an argument C ∈ E such that (C,B) ∈ R.
– E is admissible iff it is conflict-free and defends all its elements.
– A conflict-free E is a complete extension iff we have E = {A|E defendsA}.
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– E is a preferred extension iff it is a maximal (w.r.t set inclusion) complete
extension.

– E is a grounded extension iff it is the smallest (w.r.t set inclusion) complete
extension.

– E is a stable extension iff E is conflict-free and ∀A ∈ ARG and A 	∈ E , ∃B ∈ E
such that (B,A) ∈ R.

In this article, there is a set of agents that give their opinions (degrees of
belief) regarding each argument in ARG by means of probability distributions.
The set of arguments can be compared with the events of set E; hence, we can
say that E = ARG. The number of agents that give their opinions determines the
cardinality of credal sets. Thus, given m agents and an argument A ∈ ARG, the
credal set for A is represented by K(A) = {p1(A), ..., pm(A)}. Finally, K denotes
all the credal sets of the arguments in ARG.

3 The Building Blocks

In this section, we present the definitions of AAF based on credal sets and
causality graph. These concepts are important for the calculation of the lower
and upper bounds of extensions.

We use credal sets to model the opinions (degrees of belief) of a set of agents
about a set of arguments. Thus, each argument in an AAF has associated a
credal set, which contains probability distributions that represent the opinions
of the agents about it.

Definition 3 (Credal Abstract Argumentation Framework). An AAF
based on credal sets is a tuple AFCS = 〈ARG,R,K, fCS〉 where (i) ARG is a set
of arguments, (ii) R is the attack relation presented in Definition 1, (iii) K is a
set of credal sets, and (iv) fCS : ARG → K maps a credal set for each argument
in ARG.

Recall that the cardinality of every credal set depends on the number of
agents. Since all the agents give their opinions about all the arguments, all the
credal sets have the same number of elements.

Definition 4 (Agent’s Opinions). Let AFCS = 〈ARG,R,K, fCS〉 be a Credal
AAF and AGT = {ag1, ..., agm} a set of agents. The opinion pi of an agent agi
(for 1 ≤ i ≤ m) is ruled as follows:

1. If A ∈ ARG, there is pi(A) ∈ K(A) where K(A) ∈ K.
2. ∀A ∈ ARG, 0 ≤ pi(A) ≤ 1.

Regarding the probability values given to the arguments, it is important to
consider the notion of rational probability distribution given in [8]. According
to Hunter [8], if the degree of belief in an argument is high, then the degree
of belief in the arguments it attacks is low. Thus, a probability function p is
rational for an AFCS iff for each (A,B) ∈ R, if p(A) > 0.5 then p(B) ≤ 0.5
where p(A) ∈ K(A) and p(B) ∈ K(B).
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Example 2. Consider that AGT = {ag1, ag2, ag3, ag4}. The Credal AAF for the
example given in Introduction is AFCS = 〈ARG,R,K, fCS〉 where:

- ARG = {A,B,C,D,E, F,G.H}
- R = {(A,B), (B,A), (F,B), (D,B), (C,A)}
- K= {K(A),K(B),K(C),K(D),K(E),K(F ),K(G),K(H)}. The table below

shows the credal set of each argument
- fCS(A) = K(A), fCS(B) = K(B), ..., fCS(H) = K(H)

K(A) K(B) K(C) K(D) K(E) K(F ) K(G) K(H)

p1 0.2 0.8 0.2 0.75 0.8 0.75 0.7 0.8

p2 0.7 0.25 0.75 0.15 0.65 0.2 0.8 0.9

p3 0.55 0.45 0.4 0.5 0.8 0.55 1 1

p4 0.75 0.1 0.2 0.8 0.7 0.8 0.9 0.9

In a Credal AAF, besides the attack relation between the arguments, there
may be a causality relation between them. To make this discussion more concrete,
consider the following conflict-free sets:

– {G,E}: Having fever does not have to do with the eyes’ color of the patient
and vice-verse, so there is no relation between these arguments. This means
that they are independent from each other.

– {A,G} and {A,F}: In both cases the arguments are related in some way. In
the first case, having fever (G) is a symptom of (causes) measles (A) and in
the second case, the fact that the patient is vaccinated for chickenpox (F )
causes that he may have measles and not chickenpox (A).

Definition 5 (Causality Graph). Let AFCS = 〈ARG,R,K, fCS〉 be a Credal
AAF, a causality graph C is a tuple C = 〈ARG,RCAU〉 such that:
(i) ARG = ARG← ∪ ARG→ ∪ ARG◦ is a set of arguments,
(ii) RCAU ⊆ ARG × ARG represents a causal relation between two arguments of
ARG (the existence of this relation depends on the domain knowledge), such that
(A,B) ∈ RCAU denotes that argument A causes argument B. It holds that if
(A,B) ∈ R, then (A,B) /∈ RCAU and (B,A) /∈ RCAU,
(iii) ARG← = {B|(A,B) ∈ RCAU}, ARG→ = {A|(A,B) ∈ RCAU}, and ARG◦ =
{C|C ∈ ARG − (ARG← ∪ ARG→)},
(iv) ARG← and ARG→ are not necessarily pairwise disjoint; however, (ARG← ∪
ARG→) ∩ ARG◦ = ∅.
Example 3. A causality graph for the Credal AAF of Example 2 is C =
〈{A,B,C,D,E, F,G,H}, {(D,A), (F,A), (H,A), (G,A), (H,G), (G,B), (C,B)}〉
(see Fig. 2), where ARG← = {A,B,G}, ARG→ = {D,F,H,G,C}, and ARG◦ = {E}.



Approach for Abstract Argumentation Based on Credal Sets 45

A

GF

D

H

B
C

G E

Fig. 2. Causality graph for Example 3. Traced edges represent the causality relation.

4 Lower and Upper Bounds of Extensions

Section 2 presented the definition of conflict-free (cf) and admissible (ad) sets
and complete (co), preferred (pr), grounded (gr), and stable (st) semantics.
Considering the causality graph, the arguments of an extension Ex (for x ∈
{cf, ad, co, pr, gr, st}) may belong to ARG→, ARG←, or ARG◦. Depending on it,
the calculation of the probabilistic lower and upper bounds of each extension is
different. Thus, we can distinguish the following cases: (i) the extension is empty,
(ii) the extension has only one argument, and (iii) the extension includes more
than one argument.

Definition 6 (Upper and Lower Bounds of Extensions). Let AFCS =
〈ARG,R,K, fCS〉 be a Credal AAF, C = 〈ARG,RCAU〉 a causality graph, and Ex ⊆
ARG (for x ∈ {cf, ad, co, pr, gr, st}) an extension under semantics x. The lower
and uppers bounds of Ex are obtained as follows:

1. If Ex = {}, then P (Ex) = 0 and P (Ex) = 1, which denotes ignorance.
2. If |Ex| = 1, then P (Ex) = P (A) and P (Ex) = P (A) s.t. A ∈ Ex, where
P (A) and P (A) are obtained by applying Eq. (1).
3. If |Ex| > 1, then (P (Ex), P (Ex)) = UL BOUNDS(Ex) (see Algorithm 1).
Consider the following functions:
- fCAU(A) = {B|(B,A) ∈ RCAU ∪ fCAU(B)}
- TOP CAU(Ex) = {A|A ∈ ARG← ∩ Ex and ∀B s.t. A ∈ fCAU(B), B /∈ Ex}
- FREE CAU(Ex) = {A|A ∈ ARG→ ∩ Ex and ∀B ∈ fCAU(A), B /∈ Ex}
TOP CAU and FREE CAU consider only the arguments of Ex and their causal

relations restricted to Ex. The former returns the arguments that are caused by
any of the other argument in Ex but do not cause other argument(s) in Ex. If
there is an argument that belongs to ARG← and ARG→ in C but the argument(s)
caused by it are not in Ex, then it is returned by TOP CAU. The latter returns the
arguments that belong to ARG→ but whose caused arguments do not belong to
extension Ex.
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Algorithm 1. Function UL BOUNDS

Input: An extension Ex and a causality graph C = 〈ARG,RCAU〉
Output: (P (Ex), P (Ex))
1: if (Ex ∩ ARG←) �= ∅ then
2: ARG′′

← = TOP CAU(Ex)
3: for i = 1 to |ARG′′

←| do
4: Ei

A = A ∪ (fCAU(A) ∩ Ex)
5: Calculate K(Ei

A) //Calculate the credal set for Ei
A by applying Equation (3)

6: end for
7: end if
8: ARG′

◦ = Ex ∩ ARG◦
9: if (Ex ∩ ARG→) �= ∅ then

10: ARG′′
→ = FREE CAU(Ex)

11: end if
12: //* — Ex contains only one set of related arguments — *//
13: if |ARG′′

←| == 1 && ARG′
◦ == ∅ && ARG′′

→ == ∅ then
14: // Apply Equation (4) for obtaining the lower and upper bounds of Ex

15: P (Ex) = P (ARG′′
←), P (Ex) = P (ARG′′

←)
16: else
17: //Apply Equation (2) for obtaining the lower and upper bounds of Ex

18: P (Ex) = P (
⋃i≤|ARG′′

←|
i=1 Ei

A ∪ ARG′
◦ ∪ ARG′′

→),

19: P (Ex) = P (
⋃i≤|ARG′′

←|
i=1 Ei

A ∪ ARG′
◦ ∪ ARG′′

→)
20: end if
21: return (P (Ex, P (Ex)

Example 4 (Cont. Example 2 considering the causality graph of Example 3).
After applying the semantics presented in Definition 2, we obtain that ECO =
EPR = EGR = EST = {C,E, F,D,H,G}. Since this extension has more than one
element, the Algorithm 1 has to be applied:

– We first evaluate the number of the caused arguments: Ey ∩ARG← = {G} (for
y ∈ {CO, PR, GR, ST}), then we obtain TOP CAU(Ey) = {G} and fCAU(G) = {H};
hence, EG = {G,H}. At last, we calculate the credal set for EG by applying
Eq. (3): K(EG) = {0.7, 0.8, 1, 0.9}.

– Next, we obtain those arguments that belong to the extension and that neither
cause any other argument nor are caused by any other argument: ARG′

◦ = {E}.
– Then, we evaluate the number of causing arguments: Ey ∩ ARG← = {C,D,F}

and we obtain FREE CAU(Ey) = {C,D,F}.
– Since Ey do not contains only related arguments, we apply Eq. (2) considering
K(EG),K(E),K(C),K(D), and K(F ).

– Finally, we obtain: (P (Ey), P (Ey) = [0.0117, 0.0806].

Let us also take some conflict-free sets: E1
CF = {A,F,H,D,E,G}, E2

CF =
{A,F,H,D,G}, E3

CF = {B,C,G,H}, and E4
CF = {A}. The lower and upper bounds

for these extensions are: (P (E1
CF), P (E1

CF)) = [0.13, 0.525], (P (E2
CF), P (E2

CF)) =
[0.2, 0.75], (P (E3

CF), P (E3
CF)) = [0.02, 0.1875], and (P (E4

CF), P (E4
CF)) = [0.2, 0.75].
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So far, we have calculated the lower and upper bounds of extensions obtained
under a given semantics. The next step is to compare these bounds in order to
determine an ordering over the extensions, which can be used to choose an exten-
sion that resolves the problem. In this case, the problem was making a decision
about a possible diagnosis between two alternatives: measles or chickenpox. We
are not going to tackle the problem of comparing and ordering the extensions
because it is out of the scope of this article; however, we can do a brief analysis
taking into account the result of the previous example. Arguments A and B
represent each of the alternatives. The unique extension under any semantics y
does not include any of the alternatives. On other hand, free-conflict sets E1

CF,
E2
CF and E4

CF include argument A and conflict free set E3
CF includes argument B.

We can notice that there is a notorious difference between the lower and upper
bounds of Ey and the lower and upper bounds of any of the other conflict-free
sets. In fact, the lower and upper bounds of the conflict-free sets have a bet-
ter location. This may indicate that lower and upper bounds of extensions that
include one of the alternatives are better than others of extensions that do not
include any of the alternatives. This in turn indicates that using uncertainty in
AAF may improve the resolutions of some problems, which was demonstrated
in [7] for precise uncertainty and it is showed in the example by using imprecise
uncertainty.

5 Properties of the Approach

In this section, we study two properties of the proposed approach that guarantee
(i) that the approach can be reduced to the AAF of Dung and (ii) that the values
of both the lower and upper bounds of the extensions are between 0 and 1.

Given a Credal AAF AFCS = 〈ARG,R,K, fCS〉, AFCS is maximal if ∀A ∈ ARG
it holds that pi = 1 (1 ≤ i ≤ m) where pi ∈ K(A) and K(A) = fCS(A) and AFCS
is uniform if 0 ≤ pi ≤ 1. Be maximal transforms an AFCS into a standard AAF
of Dung, which means that every agent believes that every argument is believed
without doubts. The next proposition shows that a AFCS can be reduced to an
AAF that follows Dung’s definitions.

Proposition 1. Given a credal AAF AFCS = 〈ARG,R,K, fCS〉 and a extension
Ex (x ∈ {cf, ad, co, pr, gr, st}). If AFCS is maximal, then ∀Ex ⊆ ARG, P (Ex) =
P (Ex) = 1.

Proof. Since AFCS is maximal, then ∀A ∈ ARG,K(A) = {11, ..., 1m}. In order to
obtain the P (Ex) and P (Ex), Eqs. (1), (2), or (4) have to be applied. For Eq. (1):
the inf{1, ..., 1} = sup{1, ..., 1} = 1. For Eq. (2): ∀A,∏{1, ..., 1} = 1, so the
minimum and maximum of a set composed of 1s is always 1. The same happens
with Eq. (4).

Proposition 2. Given a credal AAF AFCS = 〈ARG,R,K, fCS〉 and a extension
Ex (x ∈ {cf, ad, co, pr, gr, st}). If AFCS is uniform, then ∀Ex ⊆ ARG, 0 ≤
P (Ex) ≤ 1 and 0 ≤ P (Ex) ≤ 1.
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Proof. In order to obtain the P (Ex) and P (Ex), Eqs. (1), (2), or (4) have to be
applied. Since AFCS is uniform, we can say that the minimums (infimums) and
maximums (supremums) are always between 0 and 1. Besides, the product of
two numbers between 0 and 1 is always between 0 and 1.

6 Related Work

In this section, we present the most relevant works – to the best of our knowl-
edge – that study probability and abstract argumentation. These works assign
probability to the arguments, to the attacks, or to the extensions and all of them
use precise probabilistic approaches. Thus, as far as we know, we are introducing
the first abstract argumentation approach that employs imprecise probabilistic
approaches.

Dung and Thang [4] propose an AF for jury-based dispute resolution, which
is based on probabilistic spaces, from which are assigned probable weights –
between zero and one – to arguments. In the same way, Li et al. [11] present and
extension of Dung’s original AF by assigning probabilities to both arguments and
defeats. Hunter [7] bases on the two articles previously presented and focuses on
studying the notion of probability independence in the argumentation context.
The author also propose a set of postulates for the probability function regarding
admissible sets and extensions like grounded and preferred. Following the idea
of using probabilistic graphs, the author assigns a probability value to attacks
in [9].

Thimm [13] focuses on studying probability and argumentation semantics.
Thus, he proposes a probability semantics such that instead of extensions or
labellings, probability functions are used to assign degrees of belief to arguments.
An extension of this work was published in [14]. Gabbay and Rodrigues [6] also
focus on studying the extensions obtained from an argumentation framework.
Thus, they introduce a probabilistic semantics based on the equational approach
to argumentation networks proposed in [5].

7 Conclusions and Future Work

This work presents an approach for abstract argumentation under imprecise
probability. We defined a credal AAF, in which credal sets are used to model the
uncertainty values of the arguments, which correspond to opinions of a set of
agents about their degree of believe about each argument. We have considered
that – besides the attack relation – there also exists a causality relation between
the arguments of a credal AAF. Based on the credal sets and the causality rela-
tion, the lower and upper bounds of the extensions – obtained from a semantics
– are calculated.

We have done a brief analysis about the problem of comparing and ordering
the extensions based on their lower and upper bounds; however, a more complete
analysis and study are necessary. In this sense, we plan to follow this direction
in our future work. We also plan to further study the causality relations, more
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specifically in the context of credal networks [2]. Finally, we want to study the
relation of this approach with bipolar argumentation frameworks [1].
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Abstract. Epistemic graphs are a recent proposal for probabilistic argu-
mentation that allows for modelling an agent’s degree of belief in an argu-
ment and how belief in one argument may influence the belief in other
arguments. These beliefs are represented by probability distributions and
how they affect each other is represented by logical constraints on these
distributions. Within the full language of epistemic constraints, we dis-
tinguish a restricted class which offers computational benefits while still
being powerful enough to allow for handling of many other argumenta-
tion formalisms and that can be used in applications that, for instance,
rely on Likert scales. In this paper, we propose a model-based theorem
prover for reasoning with the restricted epistemic language.

Keywords: Probabilistic argumentation ⋅ Epistemic argumentation ⋅
Abstract argumentation

1 Introduction

Both the constellations approach [4–6,9,11,14,16] and the epistemic approach [3,
10,13,18–20] to probabilistic argumentation offer a valuable way to represent and
reason with various aspects of uncertainty arising in argumentation. The epistemic
uncertainty is seen as the degree to which an argument is believed or disbelieved,
thus providing a more fine–grained alternative to the standard Dung’s approaches
when it comes to determining the status of a given argument. Following the results
of an empirical studywith participants [17], epistemic graphs have been introduced
as a generalization of the epistemic approach to probabilistic argumentation [8,12].

In this approach, the graph is augmented with a set of epistemic constraints
that can restrict the belief we have in an argument with a varying degree of
specificity and state how beliefs in arguments influence each other. This is illus-
trated in Example 1. The graphs can therefore model both attack and support
as well as relations that are neither positive nor negative. The flexibility of this
approach allows us to both model the rationale behind the existing semantics
as well as completely deviate from them when required. The fact that we can
specify the rules under which arguments should be evaluated and that we can
include constraints between unrelated arguments permits the framework to be
more context–sensitive. It also allows for better modelling of imperfect agents,
which can be important in multi–agent applications.
c© Springer Nature Switzerland AG 2019
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A = The train will arrive at 2pm because it is timetabled for a 2pm arrival.

B = Normally this
train service ar-
rives a bit late.

C = The train ap-
pears to be travelling
slower than normal.

D = The live travel
info app lists it as
arriving on time.

Fig. 1. Example of an epistemic graph. The + (resp. -) label denote support (resp.
attack) relations. These are specified via the constraints given in Example 1.

Example 1. Consider the graph in Fig. 1, and let us assume that if D is strongly
believed, and B or C is strongly disbelieved, then A is strongly believed, whereas
if D is believed, and B or C is disbelieved, then A is believed. Furthermore, if B
or C is believed, then A is disbelieved. These constraints could be reflected by
the following formulae: ϕ1 ∶ p(D) > 0.8 ∧ p(B ∨ C) < 0.2⇒ p(A) > 0.8; ϕ2 ∶ p(D) >
0.5 ∧ p(B ∨ C) ≤ 0.5⇒ p(A) > 0.5; and ϕ3 ∶ p(B ∧ C) > 0.5⇒ p(A) < 0.5.

Epistemic graphs are therefore a flexible and valuable tool for argumentation,
and [12] has already provided methods for harnessing them in user modelling
for persuasion dialogues. However, reasoning with the full epistemic language
is non-trivial as the size of a probability distribution (i.e. the number of sets of
arguments needing an assignment) is exponential w.r.t. the number of arguments,
and there can potentially be infinitely many distributions satisfying a given set
of constraints. As presented in [8], for certain applications a restricted form of
logical constraint can be used, i.e. one where the probability values appearing
in constraints and distributions come from a finite, restricted set of values. This
may be appropriate if we want to represent beliefs in arguments as in a Likert
scale [15], or we want to use epistemic graphs as a medium for existing extension-
based or labeling-based methods. It also has the benefit of always producing a
finite set of answers.

In order to reason with constraints based on a restricted set of values, we
present a model-based theorem prover in this paper which can be used to check
(1) whether constraints are consistent; (2) if one constraint entails another; and
(3) find satisfying distributions. Our aim in this paper is to present a simple
baseline system that can be implemented easily and used for small examples.
This will help us understand some of the underlying issues in developing theorem
provers for this formalism, and serve as a comparison for future systems.

We proceed as follows: Sect. 2 reviews epistemic graphs from [8]; Sect. 3 intro-
duces a method for identifying the models for a constraint and Sect. 4 an algo-
rithm for model-based reasoning (see [1] for proofs); and Sect. 5 discusses the
contributions.

2 Epistemic Language

This section reviews the necessary basic definitions from [8]. We assume a
directed graph G = (V,R), where each node in V denotes an argument (as illus-
trated by Fig. 1), an edge in R denotes a relation between arguments and a
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labeling L ∶ R → 2{+,−,∗} ∖ {∅} tells us whether it is positive (+), negative (−),
or neither (∗). We use Nodes(G) and Arcs(G) to denote V and R respectively.
Epistemic graphs are simply labelled directed graphs equipped with a set of
epistemic constraints (defined next) for capturing the influences between argu-
ments. Both the labelled graph and the constraints provide information about
the argumentation. In this paper, we focus on the constraints rather than on the
full power of the graphs, and refer the readers to [8] for further details.

Like previously stated, the restricted epistemic language only allows values
from a certain, finite set to appear in the formulae. However, in order for the
approach to be coherent, this set should meet certain basic requirements. We
thus use the notion of a (reasonable) restricted value set, which has to be closed
under addition and subtraction (assuming the resulting value is still in the [0,1]
interval) and contain value 1.

Definition 1. A finite set of rational numbers from the unit interval Π is a
reasonable restricted value set iff 1 ∈Π and for any x, y ∈Π it holds that if
x + y ≤ 1, then x + y ∈Π, and if x − y ≥ 0, then x − y ∈Π.

We can also create subsets of this set according to a given inequality and
threshold value as well as sequences of values that can be seen as satisfying a
given arithmetical formula, which will become useful in the next sections:

Definition 2. With Πx
# = {y ∈ Π ∣ y#x} we denote the subset of Π obtained

according to the value x and relationship # ∈ {=,≠,≥,≤,>,<}. The combination
set for Π and a sequence of arithmetic operations (∗1, . . . ,∗k) where ∗i ∈ {+,−}
and k ≥ 0 is defined as:

Π
x,(∗1,...,∗k)
# =

{(v) ∣ v ∈Πx
#} k = 0

{(v1, . . . , vk+1) ∣ vi ∈Π, v1 ∗1 . . . ∗k vk+1#x} otherwise

Example 2. Let Π1 = {0,0.5,0.75,1}. We can observe that it is not a restricted
value set, since 0.75 − 0.5 = 0.25 is missing from Π1. Its modification, Π2 =

{0,0.25,0.5,0.75,1}, is a restricted value set. The subsets of Π2 for x = 0.25
under various inequalities are as follows: Π2

x
> = {0.5,0.75,1}, Π2

x
< = {0}, Π2

x
≥ =

{0.25,0.5,0.75,1}, Π2
x
≤ = {0,0.25}, Π2

x
≠ = {0,0.5,0.75,1}, and Π2

x
= = {0.25}.

Assume we have a reasonable restricted value set Π3 = {0,0.5,1}, a sequence
of operations (+,−), an operator = and a value x = 1. In order to find an appro-
priate combination set, we are simply looking for triples of values (τ1, τ2, τ3) s.t.
x+y−z = 1. This produces six possible value sequences, i.e. Π2

1,(+,−)
= = {(0,1,0),

(0.5,0.5,0), (0.5,1,0.5), (1,0,0), (1,0.5,0.5), (1,1,1)}.

2.1 Syntax and Semantics

Based on a given graph and restricted value set, we can now define the epistemic
language. An epistemic formula can be seen as a propositional formula built
out of components stating how the sums and/or subtractions of probabilities of
argument terms should compare to values from Π.
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Definition 3. The restricted epistemic language based on G and a reason-
able restricted value set Π is defined as follows:

– a term is a Boolean combination of arguments. We use ∨, ∧ and ¬ as con-
nectives and can derive secondary connectives, such as →, as usual. Terms(G)
denotes all the terms that can be formed from the arguments in G.

– an operational formula is of the form p(αi) ∗1 . . .∗k−1 p(αk) where all αi ∈

Terms(G) and ∗j ∈ {+,−}. OForm(G) denotes the set of all possible operational
formulae of G and we read p(α) as the probability of α.

– an epistemic atom is of the form γ#x where # ∈ {=,≠,≥,≤,>,<}, x ∈Π and
γ ∈ OForm(G).

– an epistemic formula is a Boolean combination of epistemic atoms.
EForm(G) denotes the set of all possible epistemic formulae of G.

The full, unrestricted language simply permits x to be a rational value in the
unit interval, hence we do not recall it here.

Example 3. Let Π = {0,0.5,1}. In the epistemic language restricted w.r.t. Π, we
can only have atoms of the form β#0, β#0.5, and β#1, where β ∈ OForm(G)
and # ∈ {=,≠,≥,≤,>,<}. From these atoms we compose epistemic formulae using
the Boolean connectives, such as p(A) + p(B) ≤ 0.5 ∧ p(C) = 0.

The semantics for constraints come in the form of belief distributions, which
assign probabilities to sets of arguments. Their restricted counterparts enforce
that the assigned probabilities come from a restricted value set:

Definition 4. A belief distribution on arguments is a function P ∶

2Nodes(G) → [0,1] s.t. ∑Γ⊆Nodes(G) P (Γ ) = 1. With Dist(G) we denote the set
of all belief distributions on Nodes(G). P is restricted w.r.t. Π iff for every
X ⊆ Nodes(G), P (X) ∈ Π1. With Dist(G,Π) we denote the set of restricted
distributions of G.

From the probability distribution, we can derive the probability of a term and
therefore of an argument. Each Γ ⊆ Nodes(G) corresponds to an interpretation
of arguments. We say that Γ satisfies an argument A and write Γ ⊧ A iff A ∈ Γ .
Essentially ⊧ is a classical satisfaction relation and can be extended to complex
terms as usual. For instance, Γ ⊧ ¬α iff Γ /⊧ α and Γ ⊧ α∧β iff Γ ⊧ α and Γ ⊧ β.
With this, we can define the following:

Definition 5. The probability of a term is defined as the sum of the proba-
bilities (beliefs) of its models: P (α) = ∑Γ⊆Nodes(G) s.t. Γ⊧α P (Γ ).

We say that an agent believes a term α to some degree if P (α) > 0.5, disbe-
lieves α to some degree if P (α) < 0.5, and neither believes nor disbelieves α when
P (α) = 0.5. Please observe that in this notation, P (A) stands for the probability
of a simple term A (i.e. sum of probabilities of all sets containing A), which is
different from P ({A}), i.e. the probability assigned to set {A}.

Using this, we can finally produce (restricted) satisfying distributions of a
given atom, and therefore of a given formula:
1 We note that this is a simpler, but still equivalent version of the notion in [8].
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Definition 6. Let ϕ ∶ p(αi)⋆1 . . .⋆k−1p(αk)#b be an epistemic atom. The satis-
fying distributions, or equivalently models, of ϕ are defined as Sat(ϕ) = {P ′ ∈
Dist(G) ∣ P (αi) ⋆1 . . .⋆k−1 P (αk)#b}. The restricted satisfying distribution
of ϕ w.r.t. Π are defined as Sat(ψ,Π) = Sat(ψ) ∩Dist(G,Π).

The set of satisfying distributions for a given epistemic formula is as follows
where φ and ψ are epistemic formulae: Sat(φ∧ψ) = Sat(φ)∩Sat(ψ); Sat(φ∨ψ) =
Sat(φ)∪Sat(ψ); and Sat(¬φ) = Sat(⊺)∖Sat(φ). For a set of epistemic formulae Φ =
{φ1, . . . , φn}, the set of satisfying distributions is Sat(Φ) = Sat(φ1)∩. . .∩Sat(φn).
The same holds for the restricted scenario.

Example 4. Let us assume we have a formula ψ ∶ p(A) + p(B) ≤ 0.5 on a graph
s.t. {A,B} = Nodes(G). There can be infinitely many satisfying distributions of
this formula, including P1 s.t. P1(∅) = 1, P2 s.t. P2(∅) = P2({A}) = 0.5, P3 s.t.
P3(∅) = P3({B}) = 0.5, or P4 s.t. P4(∅) = 0.68, P4({A}) = 0.13 and P4({B}) =
0.19 (omitted sets are assigned 0). In contrast, a probability distribution P5 s.t.
P5({A,B}) = 0.3 and P5(∅) = 0.7 would not be satisfying. If we considered a
restricted value set Π = {0,0.5,1}, then we could observe that P1 to P3 would
be the all and only restricted satisfying distributions of ψ.

2.2 Epistemic Entailment Relation

In order to reason with the restricted epistemic language, we can use the con-
sequence or the entailment relation. Given the focus of this paper, we will now
recall the latter. From now on, unless stated otherwise, we will assume that the
argumentation framework we are dealing with is finite and nonempty (i.e. the
set of arguments in the graph is finite and nonempty).

Definition 7. Let Π be a reasonable restricted value set, ψ ∈ EForm(G,Π) an
epistemic formula and {φ1, . . . , φn} ⊆ EForm(G,Π) a set of epistemic formu-
lae. The restricted epistemic entailment relation w.r.t. Π, denoted ⊫Π , is
defined as follows.

{φ1, . . . , φn} ⊫Π ψ iff Sat({φ1, . . . , φn},Π) ⊆ Sat(ψ,Π)

Example 5. Consider Π = {0,0.25,0.5,0.75,1} and restricted epistemic formulae
p(A) + p(¬B) ≤ 1 and p(A) + p(¬B) ≤ 0.75. It holds that

{p(A) + p(¬B) ≤ 0.75} ⊫Π p(A) + p(¬B) ≤ 1

It is worth noting how changing the restricted valued set affects the entail-
ment. We can observe that a less restricted entailment (i.e. one with Π permit-
ting more values) implies a more restricted one, but not necessarily the other
way around, as seen in Example 6.

Proposition 1. (From [8]) Let Π1 ⊆ Π2 be reasonable restricted value sets.
For a set of epistemic formulae Φ ⊆ EForm(G,Π1), and an epistemic formula
ψ ∈ EForm(G), if Φ⊫Π2 ψ, then Φ⊫Π1 ψ.
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Example 6. Consider two formulae ϕ1 ∶ p(A) ≠ 0.5 and ϕ2 ∶ p(A) = 0 ∨ p(A) = 1
and a reasonable restricted set Π = {0,0.5,1}. We can observe that Sat(ϕ1,Π) =
Sat(ϕ2,Π) and therefore {ϕ1} ⊫Π ϕ2. However, if we had set such as Π ′ =
{0,0.25,0.5,0.75,1}, we could then consider a probability distribution P s.t.
P (A) = 0.75 in order to show that Sat(ϕ1) ⊈ Sat(ϕ2).

3 Model-Based Reasoning

A simple route to theorem proving is to use the definition of entailment. This
involves identifying the models of the formulae by decomposing them to find the
models of their subformulae, and then composing these sets of models to identify
the models of the original formulae. We first define decomposition rules to split
the formulae (Definition 8). These rules are used to reduce an epistemic formula
to epistemic atoms of the form p(α) = v (if possible), and then finally to a set
of models that satisfy the epistemic atom. Once we have decomposed a formula,
we use the model propagation function (Definition 10) to combine the models of
the epistemic atoms into models of the original formula.

Definition 8. The decomposition rules are as follows where for each rule,
the condition is an epistemic formula, and where Π is a reasonable restricted
value set and # ∈ {=,≠,≥,≤,>,<}.

– The propositional rules are as follows where x∣y denotes that x is the left
child and y is the right child, and from left to right, they are the conjunction,
disjunction, implication, and negation rules.

φ ∧ ψ φ ∨ψ φ→ ψ ¬φ

φ ∣ ψ φ ∣ ψ ¬φ ∣ ψ φ

– The operational rules are defined as follows, where either n > 0 or # is
different from =.

p(α1) ∗1 . . . ∗n p(αn+1)#x

⋁(v1,...,vn+1)∈Π
x,(∗1,...,∗n)

#
(p(α1) = v1 ∧ . . . ∧ p(αk) = vn+1) if Πx

# ≠ ∅

p(α1) ∗1 . . . ∗n p(αn+1)#x

∅ otherwise

– The term rule is defined as follows.

p(α) = v

{P ∈ Dist(G,Π) ∣ (∑X⊆Nodes(G) s.t. X⊧α P (X)) = v}

The decomposition of an epistemic formula using the above decomposition
rules can be represented by a decomposition tree which we define next. For this,
we assume that for a node n in a tree T , Children(n) is the set of children of n.
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Definition 9. A decomposition tree for an epistemic formula φ ∈ EForm(G)
is a tree where (1) the root is labelled with φ; (2) each non-leaf node is labelled
with an epistemic formula ψ ∈ EForm(G); (3) each non-leaf node is associated
with a decomposition rule such that the epistemic formula labelling the node
satisfies the condition for the decomposition rule, and the child (or children in the
case of the proposition rules) are obtained by the application of the decomposition
rule; and (4) each leaf is a (possibly empty) set of models. Rule(n) denotes the
decomposition rule that was applied to a non-leaf node n.

Each decomposition tree is exhaustive, i.e. no further decomposition rules
can be applied without violating the conditions of it being a decomposition tree.
A possible decomposition tree can be seen in Fig. 2 paired with Table 1.

Fig. 2. A decomposition tree. Let P0 to P9 be defined as in Table 1. For the root, the
set of models is {P0, P1, P2, P4, P5, P6, P7, P8, P9}.

Table 1. Models for Fig. 2 where Π = {0,0.5,1} and Nodes(G) = {A,B}

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

∅ 1 0 0 0 0.5 0.5 0.5 0 0 0

{A} 0 1 0 0 0.5 0 0 0.5 0.5 0

{B} 0 0 1 0 0 0.5 0 0.5 0 0.5

{A,B} 0 0 0 1 0 0 0.5 0 0.5 0.5

Each leaf of a decomposition tree is a, possibly empty, set of models (i.e. a set
of probability distributions) that satisfy the epistemic formula at its parent node.
In other words, the models of the leaf can be used to determine the models of its
parent. Furthermore, for each non-leaf node, its models can be used to determine
the models of its parent. So in general, for any non-leaf node, its models are a
function of the models of its children, as we specify next.
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Definition 10. For a decomposition tree T , the model propagation function
for T, denoted Models, is defined a follows,

1. If Rule(n) is the conjunction rule, and Children(n) = {n1, n2}, then Models(n)
= Models(n1) ∩Models(n2).

2. If Rule(n) is the disjunction or implication rule, and Children(n) = {n1, n2},
then Models(n) = Models(n1) ∪Models(n2).

3. If Rule(n) is the negation rule, and Children(n) = {n1}, then Models(n) =
Sat(⊺,Π)∖Models(n1).

4. If Rule(n) is the term rule or the operational rule, and Children(n) = {n1},
then Models(n) = Models(n1).

For any given epistemic formula, the decomposition trees for the epistemic
formula have the same set of leaves where Leaves(T ) is the set of leaves in T .

Proposition 2. If T1 and T2 are decomposition trees for φ, then Leaves(T1) =
Leaves(T2).

Furthermore, the model propagation function ensures that the decomposi-
tions trees for an epistemic formula have the same set of models at the root.

Proposition 3. If T1 and T2 are decomposition trees for φ, and the root of T1

(respectively T2) is n1 (respectively n2), then Models(n1) = Models(n2).

For each decomposition rule, the models of the epistemic formula in the
condition of the rule are a function of the models in the consequent of the rule.
For the conjunction (respectively disjunction) propositional decomposition rule,
with condition φ, and consequent ψ1 ∣ ψ2, P ∈ Sat(φ,Π) iff P ∈ Sat(ψ1,Π) and
(respectively or) P ∈ Sat(ψ2,Π). For the negation propositional decomposition
rule, with condition φ, and consequent ψ, P ∈ Sat(φ,Π) iff P /∈ Sat(ψ,Π).
For the term rule or the operational rule, the models of the condition of the
rule are the models of the consequent. Hence, given a decomposition tree for
an epistemic formula, the models of that formula are the models returned by
backwards induction.

Proposition 4. If T is a decomposition tree for epistemic formula φ, and the
root of the tree is node n, then Sat(φ,Π) =Models(n).

So constructing a decomposition tree is a method that is guaranteed to return
exactly the models for the epistemic formula at the root.

4 Model-Based Theorem Proving

Our proposal for model based theorem proving is based on the Entailment
method given in Algorithm1 which is defined in terms of the GetModels. The
advantage of the algorithm is that it is straightforward to implement.
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Entailment(φ,ψ)
return GetModels(φ) ⊆ GetModels(ψ)

GetModels(φ);
if φ = ψ1 ∧ψ2 for some ψ1, ψ2

return GetModels(ψ1) ∩ GetModels(ψ2)
else if φ = ψ1 ∨ψ2 for some ψ1, ψ2

return GetModels(ψ1) ∪ GetModels(ψ2)
else if φ = ψ1 → ψ2 for some ψ1, ψ2

return GetModels(¬ψ1) ∪ GetModels(ψ2)
else if φ = ¬ψ for some ψ

return Dist(G,Π) ∖ GetModels(ψ)
else if φ = p(α) = v for some α

return {P ∈ Dist(G,Π) ∣ (∑X⊆Nodes(G) s.t. X⊧α P (X)) = v}
else if φ = p(α1) ∗1 . . . ∗n p(αn+1)#x for some α1, . . . , αn+1

if Π
x,(∗1,...,∗n)
# = ∅
return ∅

else return ⋃
(v1,...,vn+1)∈Π

x,(∗1,...,∗n)

#
(⋂1≤i≤n+1 GetModels(p(αi) = vi))

Algorithm 1: Entailment which if the entailment holds, returns true, oth-
erwise returns false.

Proposition 5. Algorithm1 terminates.

However, the disadvantage of this algorithm is that it is computationally
naive, and does not scale well, because it considers the potentially large number
of probability distributions. In order to investigate the algorithm in practice, we
implemented it in Python (see [2] for code), and ran an evaluation on a Windows
10 HP Pavilion Laptop (with AMD A10 2 GHz processor and 8 GB RAM) on a
number of examples taken from [8]. For instance, for the following formulae, we
obtained the results in Table 2 for time taken for entailment.

(1) p(A + B) ≤ 1 (2) p(A) > 0.5→ P (B) ≤ 0.5
(3) p(A) < 0.9 ∧ p(A) > 0.7 (4) p(A) > 0.7 ∧ ¬(p(A) ≥ 0.9)
(5) (p(B) < 0.5 ∧ p(C) > 0.5 ∧ p(D) > 0.5) → p(B) > 0.5
(6) (p(B) < 0.5 ∧ p(C ∧ D) > 0.5) → p(B) > 0.5
(7) p(A) ∨ p(B) ∨ p(C) ∨ p(D) > 0.5 (8) p(A ∨ B ∨ C ∨ D) > 0.5

Since the implementation is based on generating and manipulating sets of
models, the number of models is the dominant factor in the running time. To
illustrate this, we focus on the method in the implementation for generating
the methods. For example, for generating the models for ∣Π ∣ = 5, the running
time with ∣Nodes(G)∣ = 2 (respectively 3, 4, and 5) is 0.001 (respectively 0.032,
1.927, and 59.12) s, and so the theoretical results (that are discussed below) are
reflected in the running time. Essentially, the implementation takes a brute-force
approach since it generates all the models for the given set of arguments in the
graph and the restricted value set, before decomposing the formulae and finding
the models of the subformulae.
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Table 2. Average running time in seconds for implementation of entailment on exam-
ples of formulae for each column where Π = {0,0.25,0.5,0.75,1}. Time is average of 10
runs for each pair. For each pair (x, y), x is the assumption and y is the conclusion of
the entailment. For all pairs, entailment holds, except for (6,5) and (8,7).

(1, 2) (2, 1) (3, 4) (4, 3) (5, 6) (6, 5) (7, 8) (8, 7)

Time (secs) 0.037 0.036 0.008 0.010 1.023 1.032 137.6 122.0

For comparison, we look at the number of models that are generated in
general. Given Π and Nodes(G), we can calculate the number of probability
distributions for any language for epistemic formulae. For this, we say that a set
of rational numbers Ξ is compatible with an integer n iff there is a bijection
f ∶ Ξ → {0,1, . . . , n} and a value k ∈ N such that for each x ∈ Ξ, f(x) = kx.
For example, Ξ = {0,0.5,1} is compatible with 2 and Ξ = {0,0.25,0.5,0.75,1} is
compatible with 4.

Lemma 1. If Π is a reasonable restricted value set, then there is an integer n
s.t. Π is compatible with n.

Proposition 6. Let Π be compatible with integer n. The cardinality of the set of
probability distributions for Π and G is given by the following binomial coefficient
(using the stars and bars method [7]) where k = 2∣Nodes(G)∣

(

n + k − 1
n

) =

(n + k − 1)!
(k − 1)!n!

So, for a set Π = {0,0.5,1} and ∣Nodes(G)∣ = 2, we have ∣Dist(G),Π ∣ = 10, for
Π = {0,0.25,0.5,0.75,1} and ∣Nodes(G)∣ = 2, we have ∣Dist(G,Π)∣ = 35, and for
Π = {0,0.25,0.5,0.75,1} and ∣Nodes(G)∣ = 5, we have ∣Dist(G,Π)∣ = 52,360.

5 Discussion

Epistemic graphs offer a rich formalism for modelling argumentation. There
is some resemblance with variants of abstract argumentation such as ranking
and weighted approaches, constrained argumentation frameworks, and weighted
ADFs. However, the conceptual differences between epistemic probabilities and
abstract weights lead to significant differences in modelling (see [8] for details).
Also see [8] for a discussion of differences with Bayesian networks. In [8], a
sound and complete proof theory is provided for constraints with restricted value
sets but no algorithmic method is provided. In this paper, we have addressed
this by giving a formal and transparent algorithmic method for reasoning with
constraints. It is a practical alternative (for small examples) to the probabilistic
optimization approach presented in [12]), and it can be used as a baseline system
for which new algorithms can be compared. In future work, we will improve the
efficiency of the algorithm (for example, by a lazy construction of models). We
will also move beyond this baseline system by rewriting the constraints into a
set of propositional clauses, and use a SAT solver.
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Abstract. Abstract dialectical frameworks (ADFs) are introduced as a
general formalism for modeling and evaluating argumentation. However,
the role of discussion in reasoning in ADFs has not been clarified well
so far. The current work provides a discussion game as a proof method
for preferred semantics of ADFs to cover this gap. We show that an
argument is credulously acceptable (deniable) by an ADF under pre-
ferred semantics iff there exists a discussion game that can defend the
acceptance (denial) of the argument in question.

Keywords: Argumentation · Abstract dialectical frameworks ·
Decision theory · Game theory · Structural discussion

1 Introduction

Abstract Dialectical frameworks (ADFs), first introduced in [7] and have been
further refined in [5,6], are expressive generalizations of Dung’s widely used
argumentation frameworks (AFs) [15]. ADFs are formalisms that abstract away
from the content of arguments but are expressive enough to model different
types of relations among arguments. Applications of ADFs have been presented
in legal reasoning [1,2] and text exploration [8].

Basically, the term ‘dialectical method’ refers to a discussion among two or
more people who have different points of view about a subject but are willing to
find out the truth by argumentation. That is, in classical philosophy, dialectic is
a method of reasoning based on arguments and counter-arguments [20,22].

In ADFs, dialectical methods have a role in picking the truth-value of argu-
ments under principles governed by several types of semantics, defined mainly
based on three-valued interpretations, a form of labelings. Thus, in ADFs,
beyond an argument being acceptable (the same as defended in AFs) there is
a symmetric notion of deniable. One of the most common argumentation seman-
tics are the admissible semantics, which in ADFs come in the form of inter-
pretations that do not contain unjustifiable information. The other semantics
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of ADFs fulfil the admissibility property. Maximal admissible interpretations
are called preferred interpretations. Preferred semantics have a higher compu-
tational complexity than other semantics in ADFs [25]. That is, answering the
decision problems of preferred semantics is more complicated than answering the
same problems of other semantics in a given ADF. Therefore, having a structural
discussion to investigate whether a decision problem is fulfilled under preferred
semantics in a given ADF has a crucial importance.

There exists a number of works in which the relation between semantics of
AFs and structural discussions are studied [9,16,17,19,23,24]. As far as we know,
the relation between semantics of ADFs and dialectical methods in the sense of
discussion among agents has not been studied yet [3]. We aim to investigate
whether semantics of ADFs are expressible in terms of discussion games.

In this paper we introduce the first existing discussion game for ADFs. We
focus on preferred semantics and we show that for an argument being credu-
lously accepted (denied) under preferred semantics in a given ADF there is a
discussion game successfully defending the argument. Given the unique struc-
ture of ADFs, standard existing approaches known from the AFs setting could
not be straightforwardly reused [11,12,27,28]. We thus propose a new approach
based on interpretations that can be revised by evaluating the truth values of
parents of the argument in question. The current methodology can be reused in
other formalisms that can be represented in ADFs, such as AFs.

In the following, we first recall the relevant background of ADFs. Then, in
Sect. 3, we present the preferred discussion game, which is a game with perfect
information, that can capture the notion of preferred semantics. We show that
there exists a proof strategy for arguments that are credulously acceptable (deni-
able) under preferred semantics in a given ADF and vice versa. Further, we show
soundness and completeness of the method.

2 Background: Abstract Dialectical Frameworks

The basic definitions in this section are derived from those given in [5–7].

Definition 1. An abstract dialectical framework (ADF) is a tuple F = (A,L,C)
where:

– A is a finite set of arguments (statements, positions);
– L ⊆ A × A is a set of links among arguments;
– C = {ϕa}a∈A is a collection of propositional formulas over arguments, called

acceptance conditions.

An ADF can be represented by a graph in which nodes indicate arguments
and links show the relation among arguments. Each argument a in an ADF is
attached by a propositional formula, called acceptance condition, ϕa over par(a)
such that, par(a) = {b | (b, a) ∈ R}. The acceptance condition of each argument
clarifies under which condition the argument can be accepted [5–7]. Further, the
acceptance conditions indicate the type of links. An interpretation v (for F ) is a
function v : A �→ {t, f ,u}, that maps arguments to one of the three truth values
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true (t), false (f), or undecided (u). Truth values can be ordered via information
ordering relation <i given by u <i t and u <i f and no other pair of truth
values are related by <i. Relation �i is the reflexive and transitive closure of <i.
Interpretations can be ordered via �i with respect to their information content.
It is said that an interpretation v is an extension of another interpretation w, if
w(a) �i v(a) for each a ∈ A, denoted by w �i v. Interpretations v and w are
incomparable if neither w �i v nor v �i w, denoted by w �∼ v.

Semantics for ADFs can be defined via the characteristic operator ΓF which
maps interpretations to interpretations. Given an interpretation v (for F ), the
partial valuation of ϕa by v, is ϕv

a = ϕa[b/� : v(b) = t][b/⊥ : v(b) = f ], for
b ∈ par(a). Applying ΓF on v leads to v′ such that for each a ∈ A, v′ is as
follows:

v′(a) =

⎧
⎪⎨

⎪⎩

t if ϕv
a is irrefutable (i.e., a tautology),

f if ϕv
a is unsatisfiable (i.e., ϕv

a is a contradiction),
u otherwise.

From now on whenever there is no ambiguity, in order to make three-valued
interpretations more readable, we rewrite them by the sequence of truth values,
by choosing the lexicographic order on arguments. For instance, v = {a �→ t, b �→
u, c �→ f} can be represented by the sequence tuf . The semantics of ADFs are
defined via the characteristic operator as in Definition 2.

Definition 2. Given an ADF F , an interpretation v is:

– admissible in F iff v �i ΓF (v), denoted by adm;
– preferred in F iff v is �i-maximal admissible, denoted by prf;
– a (two-valued) model of F iff v is two-valued and ΓF (v) = v, denoted by mod.

The notion of an argument being accepted and the symmetric notion of a argu-
ment being denied in an interpretation are as follows.

Definition 3. Let F = (A,L,C) be an ADF and let v be an interpretation of F .

– An argument a ∈ A is called acceptable with respect to v if ϕv
a is irrefutable.

– An argument a ∈ A is called deniable with respect to v if ϕv
a is unsatisfiable.

One of the main decision problems of ADFs is whether an argument is cred-
ulously acceptable (deniable) under a particular semantics. Given an ADF
F = (A,L,C), an argument a ∈ A and a semantics σ ∈ {adm, prf,mod}, argu-
ment a is credulously acceptable (deniable) under σ if there exists a σ interpre-
tation v of F in which a is acceptable (a is deniable, respectively).

3 Discussion Game for Preferred Semantics

In this section, we present the structure of the discussion game for preferred
semantics. The aim is to show that an argument is credulously accepted (denied)
under preferred semantics in an ADF iff there exists a discussion game and a
winning strategy for a player who starts the game.
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Fig. 1. ADF of Example 1

A preferred discussion game, which is similar to Socrates’ form of reason-
ing [10,29], is a (non-deterministic) two-player game of perfect information
between defender (proponent) and challenger (opponent). So, both agents know
all acceptance conditions. The game starts with a belief of proponent (P) about
credulous acceptance (denial) of an argument under preferred semantics in a
given ADF. Then opponent (O) challenges the proponent by investigating the
consequences of P’s belief and demanding reasons for those consequences. The
game continues alternately: P has to convince O why consequences of the claim
can be held. Till the time that there is a new claim by P or there is a new
challenge by O and there is no contradiction, the game will be continued.

Since each preferred interpretation is an admissible interpretation, if we want
to investigate whether an argument is credulously acceptable (deniable) under
preferred semantics, we study whether the argument is credulously acceptable
(deniable) under admissible semantics. The key advantage of the current method
is that the credulous acceptability (deniability) problem for preferred semantics
in an ADF F can be solved without enumeration of all admissible interpretations
of F . In the following, Examples 1 and 2 represent preferred discussion games,
in which there are winning strategies for P’s belief.

Example 1. Given an ADF F = ({a, b, c, d}, {ϕa : �, ϕb : (c ∨ ¬d) ∧ a, ϕc :
d ∨ ¬b, ϕd : c ∨ ¬b}), depicted in Fig. 1.

– Assume that P claims that d is credulously acceptable under preferred seman-
tics. The knowledge of P consists of information about the truth value of d,
and there is no further information about the truth values of other arguments.
This initial knowledge of P can be shown by the interpretation v0 = uuut.

– O checks the consequence of P’s belief. O says that, based on the acceptance
condition of d, argument d is acceptable in a preferred interpretation iff either
c is accepted or b is denied in that interpretation. That is, O revises the
information of v0 to two interpretations; v1 = uutt and v′

1 = ufut, and
challenges P by asking, ‘Why does either b have to be assigned to f or c have
to be assigned to t, if d is assigned to t in a preferred interpretation?’

– In both v1 and v′
1 there exists a new challenge, then the dialogue between

players can be continued on any of them. P attempts to defeat the challenge
by convincing O about the truth value of the arguments which are challenged
by O in the preceding step.
P chooses to work on v1 in which the only new challenged argument is c. P
checks under which condition c can be accepted in a preferred interpretation.
Based on, ϕc : d ∨ ¬b, c is assigned to t if and only if either d is assigned
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to t or b is assigned to f . That is, the new information of P about the truth
values of arguments can be represented by v2 = uutt and v′

2 = uftt. In the
former one there is no new claim, that is, the dialogue v0, v1 and v2 cannot
be continued by O anymore. Further, in v2 P answers the question of O (why
is c assigned to t), with no contradiction. Thus, P wins this dialogue. Since
P can defend the initial claim via this dialogue, P wins the game and there is
no need of continuing the game.

Definitions 4–6 are needed to define the systematic method of computation of
moves of each player in Definition 8. In the following, w and v are interpretations
such that w �i v.

Definition 4. An argument a is recently presented in interpretation v with
respect to w if w(a) = u and v(a) �= u.

In contrast with standard interpretations in ADFs, in Definition 5 we define so-
called minimal interpretations that only give values to argument a and par(a).
In the following the notations of v(b) and wa(b) are used to indicate the truth
value of argument b in v and wa, respectively.

Definition 5. Let v be an interpretation of an ADF F , in which a �→ t/f and
par(a) �= ∅. An interpretation wa, which is defined over (par(a) ∪ {a}), is called
a minimal interpretation around a in F , if ΓF (wa)(a) = v(a), and there
exists no w′ <i wa such that ΓF (w′)(a) = v(a). In contrast, when par(a) = ∅
then wa assigns a to ΓF (v)(a).

Since the acceptance condition of each argument is indicated by a propositional
formula, argument a may have more than one minimal interpretation around a
in F . The set of all minimal interpretations around a in F is denoted by Wa.

Definition 6. Let A′ = {a1, . . . , an} be the set of arguments recently presented
in v w.r.t. w and choose WA′ = {wa1 , . . . , wan

} s.t. wai
∈ Wai

, for 1 � i � n.
The output of the binary function δ(v,WA′) is called an evaluation of the
parents of arguments in A′ w.r.t. v and WA′ defined as follows:

– If v(b) = t/f and �i s.t. ((wai
(b) = t/f) ∨ (wai

(b) �= v(b))) ∧ �c s.t ((wb(c) �=
v(c)) ∧ (wb(c) �= wai

(c))) then δ(v,WA′)(b) = v(b).
– If v(b) = u and ∃i s.t. wai

(b) = t/f ∧ �j s.t. wai
(b) �= waj

(b) then δ(v,WA′)
(b) = wai

(b).
– If (v(b) = t/f and ∃i, c s.t. (v(b) �= wai

(b)) ∨ (v(c) �= wb(c)) ∨ (wb(c) �=
wai

(c))) ∨ (v(b) = u and (∃i, j s.t. wai
(b) �= waj

(b)) ∨ (�i s.t. wai
(b) =

t/f)) then δ(v,WA′)(b) = u.

The set of all possible evaluations of parents of arguments in A′ is called all
evaluations of parents of A′, and denoted by δA′(v) such that:

δA′(v) = {δ(v,WA′) | WA′ = {wa1 , . . . , wan
} s.t. wai

∈ Wai
, for 1 � i � n}
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Note that when A′ contains only one argument a, we address an evaluation of
parents of a with δ(v, wa), in which wa is a minimal interpretation around a,
and we denote the set of all evaluations of A′ with δa(v).

In Example 1, it is assumed that d is credulously accepted, v0 = uuut. In
comparison to interpretation vu = uuuu, argument d is recently presented in
v0. Based on the acceptance condition of d, namely ϕd : c ∨ ¬b, interpretations
wd = {b �→ u, c �→ t, d �→ t} and w′

d = {b �→ f , c �→ u, d �→ t} are minimal
interpretations around d in F . As a consequence, the evaluation of the parents of
the argument in question may lead to more than one interpretation. For instance,
the evaluation of the parents of d with respect to v0 and wd is δ(v0, wd) = uutt,
and with respect to v0 and w′

d it is δ(v0, w′
d) = ufut. Therefore, the set of

evaluations of parents of d is δd(v0) = {uutt,ufut}.
Now we are going to define moves of each player based on the evaluation of

the parents of the recently presented arguments, proposed in Definition 6. The
information of each player in games can be represented by an interpretation. In
the first claim of P there exists only information about the truth value of the
argument which is claimed.

Definition 7. The first claim of P about credulous acceptance (denial) of an
argument is named initial claim, denoted by interpretation v0, in which the
argument in question is assigned to t (f , respectively) and all other argument
are assigned to u.

After each claim move of P, presented by interpretation v, O checks the condi-
tions under which the claim of P can be valid. That is, O evaluates the truth
values of the parents of arguments in A′, recently presented by P in v with δA′(v).
Then, O demands P to propose logical reasons for those results with the hope
of leading to a contradiction. The game continues alternately: P has to convince
O why at least one consequence of the claim can be held.

Definition 8. Given interpretations v and w, such that v �i w. Let A′ be a set
of arguments, recently presented in w. 1. If w is given by P, it is named that
a ∈ A′ is claimed by P in w and δA′(w) is named challenge move. 2. If w
is given by O, it is named that a ∈ A′ is challenged by O in w and δA′(w) is
named claim move.

Specifically, the initial claim is a claim move in comparison to the interpretation
that assigns all arguments to u. Actually, a preferred discussion game can be rep-
resented as a labeled rooted tree in which the root is labeled by the initial claim, v0.
The nodes of depth i > 0 are labeled by all δ(v,WA′) such that v is the label of the
directly preceding node of the tree with depth i − 1, and WA′ = {wa | s.t. a ∈ A′}
in which A′ is a set of arguments that are recently presented in v with respect to the
label of the directly preceding node of v. A part of the tree of Example 1, including
a winning strategy for P, is depicted in Fig. 2.

Definition 9. A dialogue is the sequence of labels of a branch of the tree cor-
responding to the game which is started by an initial claim, and continued by
applying δ(vi,WA′), for i � 0 s.t. a ∈ A′ is recently presented in vi.
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Fig. 2. Associated tree of the game in Example 1

We say that there is a contradiction in a dialogue if the dialogue consists of
interpretations vi and vi+1 that are incomparable. For instance, the dialogue
[v0, δ(v0, wd), δ(v1, w′

c), δ(v2, wb)] in Fig. 2 leads to a contradiction. Definitions 10
and 11 explain under which conditions a dialogue can be continued or halted.

Definition 10. Let [v0, . . . , vn] be a dialogue with no contradiction. The dia-
logue is continued on vn: 1. by O if an argument is claimed in vn by P; or 2.
by P if an argument is challenged in vn by O.

Definition 11. Let [v0, . . . , vn] be a dialogue. It is said that the dialogue is
blocked on vn when: 1. a is challenged in vn−1 by O, and vn−1 ∼ vn. We say
that the game is blocked by P in this step. Or, 2. a is claimed in vn−1 by P, and
vn−1 ∼ vn. We say that the game is blocked by O in this step. Or 3. there is a
contradiction, that is, vn−1 �∼ vn.

In Example 1, dialogue [v0, δ(v0, w0d), δ(v10 , w0c)] is blocked by P. If a dialogue
is blocked by P, it means that P could defeat a challenge of O without making a
new claim. Thus, there is no further move for O. Therefore, P won the dialogue.
Since P can defend the initial claim via this dialogue, P wins the game, as well.
Thus, after this dialogue there is no need of continuing the game.

– P wins the dialogue if the dialogue is blocked by P.

Example 2 investigates the other condition under which P wins the dialogue.

Example 2. Let F be the ADF given in Example 1.

– P believes that d can be denied in a preferred interpretation in F , v0 = uuuf .
– The challenge move of O on d leads to v1 = δ(v0, wd) = utff .
– The recently challenged arguments are b and c. The minimal interpretations

around b are wb = {a �→ t, c �→ t} and w′
b = {a �→ t, d �→ f}, and the minimal

interpretation around c is wc = {b �→ t, d �→ f}. Thus, v2 = δ(v1,Wbc) = ttuf
and v′

2 = δ(v1,W ′
bc) = ttff .
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– Since v1 �∼ v2, O cannot continue this dialogue. However, v1 <i v′
2 and the

challenge move on v′
2 is δ(v′

2, wa) = v′
2. Thus, the game is blocked by O.

If a dialogue is blocked by O, it means that O cannot find a contradiction between
P’s claim and O’s challenging, which is done by O in an element of the claim
move, and O cannot make a new challenge for P. Thus, P wins the dialogue and
the initial claim of P is proved via this dialogue.

– P wins the dialogue if the dialogue is blocked by O.

The ADF of Example 1 can also be used as an example in which there is a
winning strategy for O, explained in Example 3.

Example 3. Given ADF F of Example 1.

– P believes that b can be denied in a preferred interpretation in F, v0 = ufuu.
– There are three different dialogues based on this initial claim; 1. [v0 =

ufuu, v1 = ufft, v2 = uufu], 2. [v0 = ufuu, v1 = ufft, v′
2 = uuuu], 3.

[v0 = ufuu, v′
1 = ffuu, v′′

2 = ufuu].

Each of the dialogues of this game is blocked by contradictions. That is, in each
dialogue P cannot defeat the challenge of O. On the other hand, O defeats P in
all the ways that P attempts to prove the initial claim, by finding contradictions.
That is, P cannot make any reasonable discussion to defend the initial claim.
Thus, O wins all dialogues and wins the game in consequence.

– O wins the dialogue, when O can block the dialogue by contradiction.

The examples which were studied above illustrate that each player only has
to consider the arguments which are recently presented by the competitor in
the directly preceding move. The discussion game that can decide the credu-
lous acceptance (denial) problem in ADFs under preferred semantics is called,
preferred discussion game, introduced in Definition 12.

Definition 12. Given an ADF F = (A,L,C). A preferred discussion
game for credulous acceptance (denial) of an argument of A is a sequence
[Δ0, . . . ,Δn](n � 0) such that all the following conditions hold:

– Δ0 consists of an initial claim;
– for i � 1, Δi =

⋃
v δA′(v), for each v ∈ Δi−1 such that set of arguments of A′

are recently presented in v;
– each [v0, . . . , vm] such that vi ∈ Δi is a dialogue of the game, for 1 � m � n,

when: vi = δ(vi−1,WA′), such that the set A′ is recently presented in vi−1;
– the game is finished in Δn if at least a dialogue of the game is blocked by P

or O, or if all the dialogues lead to contradictions.

In Definition 12, 1. if i is odd, for each v ∈ Δi−1, Δi consists of all challenge
moves δA′(v) such that a ∈ A′ is claimed in v; and 2. if i � 2 is even, for each
v ∈ Δi−1, Δi consists of all claim moves δA′(v) such that a ∈ A′ is challenged
in v. The winning strategy of each player is explained in Definition 13.
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Definition 13. Let F be a given ADF. Let [Δ0, . . . ,Δn] be a preferred discus-
sion game for credulous acceptance (denial) of an argument.

– P has a winning strategy in the game if P wins a dialogue of the game.
– O has a winning strategy in the game if O wins all dialogues of the game.

Let F be an ADF and let [Δ0, . . . ,Δn] be a preferred discussion game of an
initial claim of F . The length of the preferred discussion game is the length of
the sequence [Δ0, . . . ,Δn], which is the number of elements of the sequence.

Proposition 1. Let F = (A,L,C) be an ADF and |A| = n. The length of each
preferred discussion game of F is at most n + 1.

Proof. Toward a contradiction, assume that that there exists a preferred dis-
cussion game [Δ0, . . . ,Δm] of F such that m > n. On the other hand, each
dialogue [v0, . . . , vi] of the game is continued in vi if vi−1 <i vi. This can be
done by indicating the truth value of an argument in vi that is not indicated
before. Since the number of arguments of F is n, the longest dialogue contains
interpretations such that v0 < · · · < vn−1, and in the next step, the parents of
arguments of claimed or challenged items in vn−1 will be evaluated. That is, the
longest dialogue can be a sequence of n + 1 interpretations. Thus, the length of
each game cannot be more that n + 1.

Since we assumed in the definition of ADFs that each ADF is finite, the immedi-
ate result of Proposition 1 is that each preferred discussion game halts and there
exists a winning strategy either for O or P.

Theorem 1. Let an ADF F = (A,L,C) be given.

– Soundness: if there exists a winning strategy in a preferred discussion game
with initial claim of accepting (denying) an argument a, then a is credulously
acceptable (deniable) under preferred semantics in F .

– Completeness: if an argument a is credulously acceptable (deniable) under
preferred semantics in F , then there is a preferred discussion game with a
winning strategy for the initial claim of accepting (denying) of a.

Proof. Soundness: assume that there is winning strategy for P in a preferred
discussion game [Δ0, . . . ,Δn], for accepting (denying) of an argument a. There-
fore, there is a winning dialogue [v0, . . . , vm] for P, for 0 < m � n. To show the
soundness it is enough to investigate whether vm is an admissible interpretation.
Towards a contradiction, assume that vm is not an admissible interpretation,
that is, vm ��i ΓF (vm). Thus, there exists an argument b s.t. b �→ t/f ∈ vm, how-
ever, the valuation of the acceptance condition of b under vm is not the same as
vm; we prove the case that b �→ t ∈ vm. The proof method for the case in which
b �→ f ∈ vm is analogous.

b �→ t ∈ vm means that either P claims this assignment in an interpretation
vi, 0 � i < m, or O challenges it in an interpretation vi, 0 < i < m. Assume that
this is claimed by P in vi, 0 � i < m. An element of the challenge move of O on
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vi is vi+1. That is, O presents the truth values of par(b) in vi+1. Since there is
a winning strategy for P in this dialogue, vm−1 ∼ vm. That is, ϕvm

b ≡ �, since
vm consists of the truth values of par(b) presented in vi+1. Thus, ΓF (vm)(b) = t.
Therefore, the assumption that vm is not an admissible interpretation is rejected.
The proof method for a challenge move is analogous.

Completeness: assume that an argument a is credulously accepted under
preferred semantics in F (the proof method in case a is credulously denied is
analogous). Then, there is a preferred interpretation v of F in which a is accepted.
We construct the corresponding preferred discussion game as follows. Let v0,
the initial claim, be an interpretation in which a is assigned to t and all other
arguments of A are assigned to u. Extend v0 to v1 by changing the truth values
of the parents of a in v0 by their truth values in v. Continue this method and
construct vi+1 by changing the truth value of the parents of arguments which are
recently presented in vi, by the ones which are in v, for i > 0. Since the number
of arguments is finite, this procedure will end in some vn. To construct vi+1 only
the truth values of the arguments which are assigned to u in vi can be changed,
then vi < vi+1, for 0 � i < n. Let vn+1 = vn. The sequence [v0, . . . , vn+1] is a
dialogue of the preferred discussion game [Δ0, . . . ,Δn+1] of F , in which v0 ∈ Δ0.
Further, this dialogue is a winning strategy for P in this game.

4 Conclusion and Future Work

In this paper, preferred discussion games between two agents, proponent and
opponent, are considered as a proof method to investigate credulous acceptance
(denial) of arguments in an ADF under preferred semantics. Some notable results
of the current work are: 1. The method is sound and complete. 2. The presented
methodology can be reused in AFs and generalizations of AFs that can be rep-
resented as subclasses of ADFs, namely set argumentation frameworks [21] and
bipolar argumentation framework [13]. 3. Winning one dialogue of the game by
P is sufficient to show that there exists a preferred interpretation in which the
argument in question is assigned to the truth value which is claimed. In contrast,
for AFs [23,26,27], P has a winning strategy if P can address all O’s challenges.
4. In each move each player has to study the truth value of arguments that are
recently presented in the directly preceding move. In contrast, in [9], O has to
check all past moves of P to find a contradiction. 5. To investigate the credu-
lous decision problem of ADFs under preferred semantics, there is no need to
enumerate all preferred interpretations of an ADF. 6. Preferred semantics of an
ADF corresponds to a preferred discussion game with winning strategy for P. 7.
In [14] it is shown that in the class of acyclic ADFs all semantics coincide. Thus,
in acyclic ADFs the presented game can be used to decide the credulous problem
on other semantics. As future work, we could investigate structural discussion
games for other semantics of ADFs. In addition, we could study discussion games
for other decision problems of ADFs. Further, we could investigate whether the
presented method is more effective than the methods used in current ADF-
solvers, e.g. [4,18]. This study may lead to new ADF-solvers that work locally
on an argument to answer decision problems.



72 A. Keshavarzi Zafarghandi et al.

References

1. Al-Abdulkarim, L., Atkinson, K., Bench-Capon, T.J.M.: Abstract dialectical
frameworks for legal reasoning. In: Legal Knowledge and Information Systems
JURIX. Frontiers in Artificial Intelligence and Applications, vol. 271, pp. 61–70.
IOS Press (2014)

2. Al-Abdulkarim, L., Atkinson, K., Bench-Capon, T.J.M.: A methodology for design-
ing systems to reason with legal cases using abstract dialectical frameworks. Artif.
Intell. Law 24(1), 1–49 (2016)

3. Barth, E.M., Krabbe, E.C.: From Axiom to Dialogue: A Philosophical Study of
Logics and Argumentation. Walter de Gruyter, Berlin (1982)

4. Brewka, G., Diller, M., Heissenberger, G., Linsbichler, T., Woltran, S.: Solving
advanced argumentation problems with answer-set programming. In: Conference
on Artificial Intelligence, AAAI, pp. 1077–1083. AAAI Press (2017)

5. Brewka, G., Ellmauthaler, S., Strass, H., Wallner, J.P., Woltran, S.: Abstract
dialectical frameworks. An overview. IFCoLog J. Logics Appl. (FLAP) 4(8), 2263–
2317 (2017)

6. Brewka, G., Strass, H., Ellmauthaler, S., Wallner, J.P., Woltran, S.: Abstract
dialectical frameworks revisited. In: Proceedings of the Twenty-Third International
Joint Conference on Artificial Intelligence (IJCAI 2013), pp. 803–809 (2013)

7. Brewka, G., Woltran, S.: Abstract dialectical frameworks. In: Proceedings of the
Twelfth International Conference on the Principles of Knowledge Representation
and Reasoning (KR 2010), pp. 102–111 (2010)

8. Cabrio, E., Villata, S.: Abstract dialectical frameworks for text exploration. In:
Proceedings of the 8th International Conference on Agents and Artificial Intelli-
gence (ICAART 2016), vol. 2, pp. 85–95. SciTePress (2016)

9. Caminada, M.: Argumentation semantics as formal discussion. In: Handbook of
Formal Argumentation, vol. 1, pp. 487–518 (2017)

10. Caminada, M.W.: A formal account of Socratic-style argumentation. J. Appl. Logic
6(1), 109–132 (2008)
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Abstract. Probabilistic epistemic argumentation allows for reasoning
about argumentation problems in a way that is well founded by proba-
bility theory. Epistemic states are represented by probability functions
over possible worlds and can be adjusted to new beliefs using update
operators. While the use of probability functions puts this approach on
a solid foundational basis, it also causes computational challenges as
the amount of data to process depends exponentially on the number of
arguments. This leads to bottlenecks in applications such as modelling
opponent’s beliefs for persuasion dialogues. We show how update oper-
ators over probability functions can be related to update operators over
much more compact representations that allow polynomial-time updates.
We discuss the cognitive and probabilistic-logical plausibility of this app-
roach and demonstrate its applicability in computational persuasion.

1 Introduction

Probabilistic epistemic argumentation [13,18,20,40] is an extension of Dung’s
classical argumentation framework [7]. While the original framework allows only
for talking about attacks and accepting or rejecting arguments, probabilistic epis-
temic argumentation also allows more general relationships between arguments
like support [4,5,29] and allows expressing more fine-grained beliefs by means of
probabilities. Recent experiments give empirical evidence that these extensions
are, in particular, beneficial when it comes to modelling human decision mak-
ing [28]. One large application area of probabilistic epistemic argumentation is
computational persuasion [15,16]. Computational persuasion aims at convincing
the user of a persuasion goal such as giving up bad habits or living a health-
ier lifestyle. In order to derive persuasion strategies autonomously, we require a
user model that represents the user’s beliefs and simulates belief changes when
new arguments are presented to the user. The user’s epistemic state can be
represented by a probability function and different update operators have been
studied that can be used to adapt the current beliefs [15,17,19].
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A = Universities should continue charging students the 9k fee.

B = Student fees should be abolished because they are unfair.

C = Charging tuition fees to students reduces the tax burden on the rest of
the UK population, many of whom have not and will not go to university.

D = University education is
an investment in the economy
of the whole country, and

therefore everyone should con-
tribute to university education.

E = Everyone in soci-
ety benefits from those
who are educated in

universities, and so ev-
eryone should contribute.

F = The currently
charged fees exceed the
teaching expenses of the
universities, hence the fees
could be reduced anyway.

G = Many graduates choose
courses in arts and humanities,
and therefore do not benefit
the economy of the country.

H = The extra income from student fees is of-
ten used to fund outreach activities and sum-
mer schools, particularly for students from low
socio-economic backgrounds and minorities.

I = Arts and human-
ities graduates can
work in the creative
industries which
are a substantial
export earner for
the UK economy.

J = Graduates that choose
courses in arts and hu-
manities often become
successful company em-

ployees or business owners,
and therefore benefit the
economy of the country.

K = Universities organize outreach
activities in order to encourage

people to go to universities, which
in its essence is marketing and
advertising to get more students

to enroll, and the existing students
should not be paying for that.

L = Most arts and humanities students
do not take courses needed for working
in the creative industries, so the taxpayer
should not be required to cover their fees.

M = Most art and humanities graduates are
not employed in the ares they studied for,
hence covering their fees is not worthwhile.

−

−

− − −

− −

− − −

− −

Fig. 1. Study fee dialogue.

Probability theory provides a strong foundational basis for probabilistic epis-
temic argumentation, but also comes with computational limitations. Without
further assumptions, probability functions grow exponentially with the number
of arguments. However, sometimes we are only interested in atomic beliefs in
arguments, so that the full power of probability functions may not be required.
For instance, we can consider the graph depicted in Fig. 1 induced by a dialogue
between an automated dialogue system and a human participant that occurred
in the empirical study considered in [11]. There are various constraints that could
be attached to such a graph, as we will discuss further in Sect. 5. For instance,
we could use postulates from the classical epistemic approach [13,40] such as
coherence, which bounds the belief in an argument based on the belief of its
attacker. Formally, in our scenario, for every argument-attacker pair X and Y
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this would create a constraint of the form π(X) + π(Y ) ≤ 1, where π(α) should
be read as the probability of α.

We observe that the aforementioned formulas operate on probabilities of sin-
gle arguments rather than on complex logical expressions. Consequently, the
detailed information contained in a full probability function can be seen as
excessive. In such a situation, probability functions can sometimes be replaced
by probability labellings that assign probabilities to arguments directly with-
out changing the semantics [33]. In our case, this would decrease the number
of probabilities that need to be processed from 8,192 (i.e. 213) to 13, which has
obvious computational benefits.

In this paper, we are interested in the relationship between epistemic
states represented by probability functions and those represented by probability
labellings. Formally, probability labellings can be related to equivalence classes
of probability functions that assign the same atomic beliefs to arguments [33]. In
order to establish an interesting relationship, update operators must respect this
equivalence relation. We define such an operator in Sect. 3 and show in Sect. 4
that it satisfies our desiderata. In particular, updates can be computed in poly-
nomial time In this approach, epistemic states correspond to sets of probability
functions that satisfy the same atomic beliefs and updates are performed by
satisfying the new beliefs while minimizing the required changes. We will argue
that this approach is not only computationally attractive, but can also result
in cognitively more plausible updates. We illustrate our method with an appli-
cation in computational persuasion in Sect. 5. All proofs for the results in this
article can be found in the corresponding technical report [35].

2 Basics

We consider bipolar argumentation frameworks (BAFs) (A,R,S) consisting of
a set of arguments A, an attack relation R ⊆ A × A and a support relation
S ⊆ A × A. Ω = {w | w ⊆ A} denotes the set of possible worlds. Intuitively,
each w ∈ Ω contains the arguments that are accepted in a particular state of
the world. We represent beliefs by probability functions P : Ω → [0, 1] such that∑

w∈Ω P (w) = 1. PA denotes the set of all probability functions over A. The
probability of an argument A ∈ A under P is defined by adding the probabilities
of all worlds in which A is accepted, that is, P (A) =

∑
w∈Ω,A∈w P (w). P (A) can

be understood as a degree of belief, where P (A) = 1 means complete acceptance
and P (A) = 0 means complete rejection1.

The epistemic probabilistic argumentation approach developed in [13,18,20,
40] defines semantics of attack and support relations by means of constraints over
probability functions. Some constraints can be automatically derived from the
relations between arguments. For example, the coherence constraint demands
that if A attacks B, we must have P (B) ≤ 1 − P (A), that is, the belief in
1 Note that P (A) denotes the probability of argument A (the sum of probabilities

of all possible worlds that accept A), while P ({A}) denotes the probability of the
possible world {A}.
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an attacked argument B is bounded from above by the belief in an attacker
A. However, it is also possible to design individual constraints manually. For
example, if B is attacked by three related arguments A1, A2, A3, we may want
to bound the belief in B by the average belief in these attackers via P (B) ≤
1− 1

3

∑3
i=1 P (Ai). To allow this flexibility, a general constraint language has been

introduced in [17,18]. We will focus on the fragment of linear atomic constraints
here because it is sufficiently expressive for most of the constraints considered
in [13,20,40] and sometimes allows polynomial-time computations [33].

Formally, a linear atomic constraint over a set of arguments A is an expres-
sion of the form

∑n
i=1 ci · π(Ai) ≤ c0, where Ai ∈ A and ci ∈ Q. π is just a

syntactic symbol that can be read as “the probability of”. We let CA denote
the set of all linear atomic constraints over A. A probability function P satisfies
such a linear atomic constraint iff

∑n
i=1 ci ·P (Ai) ≤ c0. P satisfies a set of linear

atomic constraints C, denoted as P |= C, iff it satisfies all l ∈ C. In this case,
we call C satisfiable. We let SatΠ(C) = {P ∈ PA | P |= C} denote the set of all
probability functions that satisfy C. We call sets of constraints C1, C2 equivalent
and write C1 ≡ C2 iff they are satisfied by the same probability functions, that
is, SatΠ(C1) = SatΠ(C2).

Note that constraintswith≥ and=canbe expressed aswell in our language.For
≥, just note that

∑n
i=1 ci ·π(Ai) ≤ c0 is equivalent to

∑n
i=1 −ci ·π(Ai) ≥ −c0. For

=, note that
∑n

i=1 ci ·π(Ai) ≤ c0 and
∑n

i=1 ci ·π(Ai) ≥ c0 together are equivalent
to

∑n
i=1 ci · π(Ai) = c0. In particular, we can express probability assignments of

the form π(A) = p or probability bounds of the form l ≤ π(A) ≤ u.
Now assume that we are given an epistemic state represented as a probability

function P ∈ PA. Given some new evidence represented as a set of linear atomic
constraints (and possibly some existing constraints that we want to preserve),
we want to update P . To this end, different update operators have been studied
in [15,17,19]. Here, we are interested in update operators of the following type.

Definition 1 (Epistemic Update Operator). An epistemic update opera-
tor is a function U : PA ×CA → PA ∪{⊥} that satisfies the following properties:

– Success: If C ⊆ CA is satisfiable, then U(P,C) ∈ SatΠ(C).
– Failure: If C ⊆ CA is not satisfiable, then U(P,C) = ⊥.
– Representation Invariance: If C1 ≡ C2, then U(P,C1) = U(P,C2).
– Idempotence: If C ⊆ CA is satisfiable, then U(U(P,C), C) = U(P,C).

Success and failure guarantee a well-defined update. That is, if the constraints
are satisfiable, the update operator will return a new epistemic state that satis-
fies the constraints. If the constraints are not satisfiable, ⊥ will be returned to
indicate an inconsistency. Representation invariance guarantees that the result is
independent of the syntactic representation of the evidence. Finally idempotence
guarantees that applying the same update twice does not change the outcome.
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3 The Two-Stage Least-Squares Update Operator

Several update operators in [17,19] are based on the idea of satisfying new
evidence by changing the current epistemic state in a minimal way. The dis-
tance between two probability functions is determined by looking at the prob-
abilities that they assign to possible worlds. For example, one can use the
least-squares distance d2(P, P ′) =

∑
w∈Ω(P (w) − P ′(w))2 or the KL-divergence

dKL(P, P ′) =
∑

w∈Ω P (w) · log P (w)
P ′(w) . While this makes perfect sense from a

probability-theoretical point of view, the resulting belief changes may be intu-
itively implausible.

Table 1. Some probability functions over possible worlds used in Example 1.

w P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

∅ 0.1 0 0 0.4 0.45 0.26 0 0.3 0.15 0.35

{A} 0.2 0.4 0.33 0.05 0 0.19 0.3 0 0.15 0

{B} 0.3 0 0 0.15 0.1 0.29 0 0.1 0.35 0.15

{A,B} 0.4 0.6 0.67 0.4 0.45 0.26 0.7 0.6 0.35 0.5

Example 1. Consider a BAF ({A,B}, ∅, ∅) with two unrelated arguments A,B.
Suppose our current epistemic state is P1 as defined in Table 1. Then we have
P1(A) = 0.6 and P1(B) = 0.7. Now suppose that we want to update the belief in
A to 1. A distance-minimizing update w.r.t. d2 (i.e. update returning a proba-
bility distribution satisfying π(A) = 1 that is minimally different from P1 w.r.t.
d2) yields the new epistemic state P2 from Table 1. Now we have P2(A) = 1 as
desired. However, we also have P2(B) = 0.6 < 0.7 = P1(B). Similarly, updating
with respect to dKL yields P3 from Table 1 with P3(B) = 2

3 < 0.7 = P1(B). This
behaviour is rather counterintuitive in this context, since A and B are completely
unrelated. Therefore, we should have P1(B) = P2(B) = P3(B).

In order to bring our model closer to humans’ intuition, a two-stage mini-
mization process has been proposed in [17]. In stage 1, we identify all probability
distributions that minimize an atomic distance measure. Instead of comparing
probability functions elementwise on possible worlds, atomic distance measures
compare probability functions only based on the probabilities that they assign
to arguments [19]. We consider a quadratic variant here that will allow us to
compute some updates in polynomial time.

Definition 2 (Atomic Least-squares Distance (ALS)). The ALS dis-
tance measure is defined as d2At(P, P ′) =

∑
A∈A(P (A) − P ′(A))2 for all

P, P ′ ∈ PA.

To begin with, we use the ALS distance to define a naive update operator which
does not satisfy our desiderate from Definition 1 yet.
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Definition 3 (Naive Least-squares Update Operator). The naive LS
update operator uAt : PA × CA → 2PA is defined by uAt(P,C) =
arg minP ′∈SatΠ(C) d2At(P, P ′).

uAt yields those probability functions that satisfy C and minimize the ALS
distance to P . However, there is not necessarily a unique solution.

Example 2. Consider P1 from Table 1. Suppose we recognize a conflict between
A and B and want to update with the constraint l1 : π(A) + π(B) ≤ 1. We have
P1(A) = 0.6 and P1(B) = 0.7. The cheapest way to satisfy the constraint with
respect to the ALS distance is to decrease both probabilities by 0.15. That is,
a solution P ′ must satisfy P ′(A) = P ′({A}) + P ′({A,B}) = 0.45 and P ′(B) =
P ′({B})+P ′({A,B}) = 0.55. P4 and P5 from Table 1 show two minimal solutions
from the set uAt(P1, {l1}).

The second stage of the minimization process from [17] deals with the uniqueness
problem. Among those probability functions that minimize the atomic distance,
we pick the unique one that minimizes a sufficiently strong second distance
measure. Here, we will consider again the least-squares distance for stage 2.

Definition 4 (Two-stage Least-squares Update Operator (2LS)). The
2LS update operator U2

At : PA × CA → PA ∪ {⊥} is defined by

U2
At(P,C) =

{
arg minP ′∈uAt(P,C)

∑
w∈Ω(P (w) − P ′(w))2, if uAt(P,C) �= ∅

⊥ otherwise.

Before looking at an example, we note that U2
At is an epistemic update operator

as defined in Definition 1.

Proposition 1. The 2LS update operator is an epistemic update operator.

Example 3. Consider again P1 and the constraint l1 from Example 2. P6, shown
in Table 1, is the unique solution that minimizes the least-squares distance to
P1 among those distributions that minimize the ALS distance to P1. That is,
U2
At(P1, {l1}) = P6.

Example 4. As another example, we consider again the scenario from Example 1
where a one-stage update changed the belief in B in an implausible way. We get
U2
At(P1, {π(A) = 1}) = P7 shown in Table 1. In particular, we have P7(B) = 0.7 =

P1(B) as desired.

Intuitively, stage 1 determines which atomic beliefs in arguments have to be
changed in order to satisfy the new constraints. This avoids the counterintuitive
behaviour of elementwise minimization over the possible worlds, but does not
yield a unique solution. Therefore, stage 2 performs an elementwise minimization
over the possible worlds to pick a best solution among the ones that minimize
the change in atomic beliefs.
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4 Updates over Probability Labellings

The two-stage minimization process solves our semantical problems, but we are
still left with a considerable computational problem. This is because we consider
probability functions over possible worlds whose number grows exponentially
with the number of arguments in our framework. However, as illustrated in
our previous examples, human reasoning may be guided by atomic beliefs in
arguments rather than by beliefs in possible worlds. Therefore, a natural question
is, what changes semantically when considering belief functions over arguments
rather than over possible worlds? As shown in [33], probability functions over
possible worlds can sometimes just be replaced with probability labellings L :
A → [0, 1] that assign beliefs to atomic arguments directly without changing the
semantics. We let LA denote the set of all probability labellings.

Formally, probability functions can be related to probability labellings via an
equivalence relation [33]. Two probability functions P1, P2 are called atomically
equivalent, denoted as P1 ≡ P2, iff P1(A) = P2(A) for all A ∈ A. As usual,
[P ] = {P ′ ∈ PA | P ′ ≡ P} denotes the equivalence class of P and PA/ ≡ =
{[P ] | P ∈ PA} denotes the set of all equivalence classes. As shown in [32], there
is a one-to-one relationship between PA/≡ and LA.

Lemma 1 ([32]). The function r : PA/≡ → LA defined by r([P ]) = LP , where
LP (A) = P (A) for all A ∈ A is a bijection.

Intuitively, r determines a compact representation of the equivalence class
[P ], namely the probability labelling LP = r([P ]). Since r is a bijection,
every probability labelling can also be related to a set of probability functions
r−1(LP ) = [P ] = {P ′ ∈ PA | P ′ ≡ P}. Intuitively, r−1(L) is just the set of
probability functions that satisfy the atomic beliefs encoded in L. We say that a
probability labelling L satisfies a linear atomic constraint

∑n
i=1 ci ·π(Ai) ≤ c0 iff∑n

i=1 ci · L(Ai) ≤ c0. The set of probability labellings that satisfy a set of such
constraints C is denoted by SatΛ(C). The following observations from [32] are
helpful to simplify computational problems by replacing probability functions
with probability labellings.

Lemma 2 ([32]). The following statements are equivalent: (1) P satisfies a
linear atomic constraint l; (2) All P ′ ∈ [P ] satisfy l; (3) LP = r([P ]) satisfies l.

For example, in order to decide whether a set of linear atomic constraints C
is satisfiable by a probability function (of exponential size), we can just check
whether it can be satisfied by a probability labelling (of linear size) [32]. If such
a labelling L exists, all probability functions in r−1(L) satisfy C. Conversely, if
some probability function P satisfies C, then L = r([P ]) satisfies C as well.

In order to perform updates more efficiently, we could represent epistemic
states by probability labellings. However, we should ask, what is the relation-
ship between updates over probability functions and updates over probabil-
ity labellings? We first note that update operators UW that simply minimize
the distance over possible worlds are not necessarily compatible with atomic
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equivalence. That is, given a set of linear atomic constraints C and two prob-
ability functions P1 and P2 such that P1 ≡ P2, we do not necessarily have
UW (P1, C) ≡ UW (P2, C).

Example 5. Consider P1 and P8 in Table 1. We have P1(A) = 0.6 = P8(A)
and P1(B) = 0.7 = P2(B), that is, P1 ≡ P8. Suppose, we update with C =
{π(A) = 0.5} and update by just minimizing the least-squares distance to P1.
Then UW (P1, C) = P9 and UW (P8, C) = P10, where P9, P10 are again shown in
Table 1. We have P9(B) = 0.7 �= 0.65 = P10(B), that is, P9 �≡ P10.

Update operators based on atomic distance measures give us compatibility guar-
antees that we explain in the following proposition.

Proposition 2. Let P1, P2 ∈ PA and let C ⊂ CA be a finite set of linear atomic
constraints. If P1 ≡ P2, then

1. d2At(P1, P ) = d2At(P2, P ) for all P ∈ PA,
2. uAt(P1, C) = uAt(P2, C),
3. P ′

1 ≡ P ′
2 for all P ′

1, P
′
2 ∈ uAt(P1, C),

4. U2
At(P1, C) ≡ U2

At(P2, C).

Item 1 says that the ALS distance is invariant under atomically equivalent prob-
ability functions. This implies that the updates that minimize the ALS distance
are invariant as well (item 2). As we demonstrated in Example 2, such updates
do not necessarily yield a unique solution. However, when using the ALS dis-
tance, we can guarantee that all solutions are atomically equivalent (item 3).
This implies that the 2LS update operator is invariant under atomically equiva-
lent probability functions in the sense that it yields equivalent results when the
prior probability functions are equivalent (item 4).

Hence, when updating with respect to linear atomic constraints, there
is a well defined relationship between probability functions and probability
labellings. If we start with an epistemic state represented by a probability
labelling L, L can be understood as a compact representation of the set of
probability functions r−1(L) that satisfy the atomic beliefs encoded in L. The
2LS update operator is compatible with this representation. That is, no mat-
ter which probability functions from r−1(L) we choose, an update with linear
atomic constraints will always lead to the same equivalence class and therefore
to a well defined next probability labelling L∗. We illustrate this in Fig. 2.

Fig. 2. The 2LS update operator U2
At respects atomic equivalence.
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If we are only interested in atomic beliefs, it would be convenient if we could
move directly from L to L∗ in Fig. 2 without generating (exponentially large)
probability functions in the process. We can do this indeed in polynomial time
for the 2LS update operator. In order to show this, we first define an update
operator on labellings.

Definition 5 (Least-squares Labelling Update Operator (2LS)). The LS
labelling update operator LU2

λ : LA × CA → LA ∪ {⊥} is defined by

LU2
λ(L,C) =

{
arg minL′∈SatΛ(C)

∑
A∈A(L(A) − L′(A))2, if SatΛ(C) �= ∅

⊥ otherwise.

As we explain in the following theorem, LU2
λ provides us with a direct path from

L to L∗ and can be computed in polynomial time.

Theorem 1. Let C ⊂ CA be a finite and satisfiable set of linear atomic con-
straints and let L ∈ LA. Then LU2

λ(L,C) = L∗ is well-defined and can be com-
puted in polynomial time. Furthermore, L∗ = r([U2

At(P,C)]) for all P ∈ r−1(L).

Hence, when we are only interested in atomic beliefs, we can use probability
labellings to represent epistemic states and use the least-squares labelling update
operator for updates. Semantically, this is equivalent to regarding epistemic
states as sets of probability functions that satisfy the same atomic beliefs and
updating with respect to the 2LS update operator. The benefit of the labelling
representation is that we can perform updates in polynomial time.

5 Application Example

In this section we come back to the graph in Fig. 1 and analyze a scenario
that, while being hypothetical, uses the data from an empirical study in [11]. In
this study, the user’s belief in argument A changed from 0 to 0.19 during the
dialogue2.

The graph inFig. 1 is generated froman existing dialogue that involved an auto-
mated dialogue system and a human user. Arguments at even depth (starting from
A) are system arguments (A, C, G, H, L and M), while the ones at odd depth are
user arguments. The agents take turns in uttering their arguments (starting with
A), and arguments at the samedepth are uttered at the samepoint by a given party.
We observe that not all user arguments are met with a system response (see argu-
ments E and K). Despite this fact, the presented arguments have led to a positive
change in belief in A, contrary to what would be the intuition from the classical
Dungean approaches. It is possible that if all of the user’s counterarguments were
addressed, then the belief increase would be even more prominent.

We can try to provide an explanation for the belief change observed in [11]
by modeling the reasoning process in our framework. Let us assume that the
2 We note that the study data contained examples of dialogues that resulted in a bigger

belief change, however, we have chosen this one due to its interesting structure.
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Table 2. Probability labellings before and after the dialogue from Sect. 5.

L A B C D E F G H I J K L M

L0 0 1 0 1 1 1 0 0 1 1 1 0 0

L1 = LU2
λ(L, C ∪ Φ) 0.19 0.81 0.19 0.505 0.975 0.95 0.495 0.05 0.92 0.09 0.95 0.08 0.91

constraints representing the user’s reasoning demand that the belief in an argu-
ment is dual to the belief in the average of its attackers. That is, we assume
P (X) = 1 − 1

|Att(X)|
∑

Y ∈Att(X) P (Y ), where Att(X) = {Y ∈ A | (Y,X) ∈ R}).
This assumption leads to the following set of constraints:

C = {π(A) + π(B) = 1, π(B) + π(C) = 1, π(D) + π(G) = 1, π(F ) + π(H) = 1,
π(C) + 0.33π(D) + 0.34π(E) + 0.33π(F ) = 1, π(C) + 0.5π(I) + 0.5π(J) = 1,
π(H) + π(K) = 1, π(I) + π(L) = 1, π(J) + π(M) = 1}
Let us further assume that the user initially completely accepts his or her

own arguments and completely rejects the system’s arguments. This belief state
is represented by the labeling L0 shown in Table 2. We now consider a possible
persuasion system which, once a given dialogue branch is exhausted, asks the
user about his or her beliefs in the unattacked arguments. In our case, the user
states that he or she believes L, M , E and K with the degrees 0.08, 0.91, 0.975
and 0.95 respectively. This produces constraints Φ = {π(L) = 0.08, π(M) =
0.91, π(E) = 0.975, π(K) = 0.95}. We can use this information along with C to
update L0 without asking the user his or her beliefs in all possible arguments.
The resulting labeling L1 = LU2

λ(L,C ∪ Φ) is shown in Table 2.
We observe that the belief in A in and L0 and L1 match the expected beliefs

0 and 0.19 based on the data in [11].

6 Related Work

There is a large variety of other probabilistic argumentation approaches [6,8,14,
24,25,27,37–39,41,42], which basically differ in the level of detail (e.g., struc-
tured or abstract argumentation), in the way how uncertainty is introduced (e.g.
possible worlds correspond to argument interpretations or the graph structure)
and in the nature of uncertainty (e.g., uncertainty about the acceptance state or
uncertainty about the nature of a relation between arguments).

One limitation when restricting to probability labellings is that we cannot
compute the probabilities of complex formulas over arguments anymore without
adding further assumptions. However, as we demonstrated, we can sometimes do
without complex formulas. In this context, probability labellings can be seen as
an alternative to weighted argumentation frameworks that also assign a strength
value between 0 and 1 to arguments [2,3,26,31,36]. What makes probability
labellings an interesting alternative is their well-defined relationship to proba-
bility functions and probability theory.
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The problem of adapting an epistemic state with respect to new knowledge
has been studied extensively in the belief revision literature that evolved from the
AGM theory developed in [1]. An up-to-date discussion of the main ideas can be
found in [12]. Our postulates are inspired by AGM postulates. For example, Suc-
cess and Representation Invariance can be seen as the counterparts of the Closure
and Extensionality postulates in AGM theory. The closest relative to our setting
is probably the probabilistic belief change framework from [21]. For a discussion of
relationships between classical and probabilistic belief changes, see [21,22].

Other equivalence relations have been studied in order to improve the compu-
tational performance of probabilistic reasoning algorithms [9,10,23,30]. However,
usually, these equivalence relations are introduced over possible worlds, not over
probability functions.They canbeapplied tomore expressive reasoning formalisms
(they are not restricted to atomic beliefs), but identifying compact representatives
for the corresponding equivalence classes remains intractable in general [34].

7 Conclusions

We demonstrated that, in the fragment of linear atomic constraints, it is possible
to relate updates over probability labellings to equivalent updates over classes of
probability functions. This is interesting from a cognitive, a probabilistic-logical
and a computational perspective. Atomic beliefs are often easier to understand
for humans. If we can relate these beliefs to probability functions, we get a strong
foundational basis. Finally, they can be stored much more compactly and give us
polynomial runtime guarantees. Our results can probably be generalized to other
two-stage update operators. However, the building blocks for the two stages have
to be chosen carefully in order to guarantee that the update operator respects
atomic equivalence. For example, it may not be possible to relate the two-stage
update process considered in [17], Sect. 5, to an update operator over probability
labellings in a meaningful way. However, we may be able to construct similar
relationships by replacing the least-squares distance with KL-divergence or more
general classes of distance measures. An implementation of our update operator
is available in the Java library ProBabble3.
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Abstract. This paper introduces two orderings over abstract argumen-
tation frameworks to compare justification status under argumentation
semantics. Given two argumentation frameworks AF1 and AF2 and an
argumentation semantics σ, AF2 is more �-general than (or equal to)
AF1 (written AF1 ��

σ AF2) if for any σ-extension F of AF2 there is a
σ-extension E of AF1 such that E ⊆ F . In contrast, AF2 is more �-general
than (or equal to) AF1 (written AF1 ��

σ AF2) if for any σ-extension E
of AF1 there is a σ-extension F of AF2 such that E ⊆ F . We show
that if AF1 ��

σ AF2 then AF2 skeptically accepts arguments more than
AF1 (under the σ-semantics) while if AF1 ��

σ AF2 then AF2 credulously
accepts arguments more than AF1. Mathematically, these orders consti-
tute pre-order sets over the set of all argumentation frameworks. Next we
consider comparing two AFs under dynamic environments by observing
the effect of incorporating new information into given AFs. We introduce
two orderings in such dynamic environments and show its connection to
strong equivalence between argumentation frameworks.

Keywords: Argumentation · Ordering · Strong equivalence

1 Introduction

There are several ways for comparing different theories. Given two first-order the-
ories T1 and T2, if T1 |= T2 holds then every formula derived from T2 is derived
from T1. In this case, T1 is considered more general (or informative) than T2. For
instance, p |= p∨q means that p is more informative than p∨q. In particular, T1 is
equivalent to T2 (T1 ≡ T2) if T1 |= T2 and T2 |= T1. Inoue and Sakama [7,8] argue
that, in contrast to classical monotonic logic, there is difficulty in defining informa-
tion ordering in nonmonotonic logics. A nonmonotonic theory generally has mul-
tiple extensions, and there are two kinds of consequences of a theory, i.e., skeptical
and credulous consequences. This is contrasted to a first-order theory that has a
unique extension as the logical consequences of the theory. Then, depending on
types of consequences, there exist several definitions for determining that a theory
is more informative than another theory. For instance, consider two (nonmono-
tonic) logic programs: P1 = { p ← not q } and P2 = { p ← not q, q ← not p }.
Then P1 has the single answer set (or stable model) {p} and P2 has two answer
c© Springer Nature Switzerland AG 2019
G. Kern-Isberner and Z. Ognjanović (Eds.): ECSQARU 2019, LNAI 11726, pp. 87–98, 2019.
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sets {p} and {q}. If we compare skeptical consequences, we can say that P1 is more
informative than P2 because p is entailed from the former only. Instead, if we com-
pare credulous consequences, P2 is more informative than P1 because q is derived
from the latter only. As such, the result depends on the type of inference, and in
this circumstance information ordering in classical logic cannot be applied. The
study [7] then introduces two orderings to logic programs. Given two logic pro-
grams P1 and P2, P1 |=� P2 (P1 is more �-general than P2) iff for any answer set
S of P1 there is an answer set T of P2 such that T ⊆ S. Likewise, P1 |=� P2 (P1 is
more �-general than P2) iff for any answer set T of P2 there is an answer set S of P1

such that T ⊆ S. These two orderings are respectively called the Smyth order and
the Hoare order in the domain theory [6]. The study [7] shows that if P1 |=� P2

(resp. P1 |=� P2) then P1 entails more skeptical (resp. credulous) consequences
than P2 under the answer set semantics [5]. These orderings are also applied to
default theories [8] and abductive theories [9].

In this paper, we are interested in comparing justification status in (abstract)
argumentation frameworks (AFs) [3]. Given an argumentation framework AF ,
an argument x is skeptically accepted (or justified) under the σ semantics if it
is included in every σ-extension of AF , while x is credulously accepted if it is
included in some σ-extension of AF . The notion of skeptical/credulous justifica-
tion is of interest in the field of argumentation because “skepticism is related with
making more or less committed evaluations about the justification state of argu-
ments in a given situation: more skeptical attitude corresponds to less commit-
ted (i.e. more cautious) evaluations” [1]. Baroni and Giacomin [1] then provide
systematic comparison of argumentation semantics with respect to their skepti-
cism. They compare skeptical/credulous consequences of different argumentation
semantics on a single argumentation framework. In contrast, the current study
aims at comparing skeptical/credulous consequences of different argumentation
frameworks under the same semantics. Suppose agents (or groups) who have their
own argumentation frameworks in which each AF represents an agent’s private
view of arguments and attack relations. Then it is meaningful to compare those
AFs to see which party is more skeptical/credulous in reasoning about argu-
ments. We apply two orderings of [7,8] to argumentation frameworks and show
that those orderings are useful for comparing skeptical/credulous acceptance
among different argumentation theories. We also compare AFs under dynamic
environments and provide a connection to strong equivalence of AFs. The rest of
this paper is organized as follows. Section 2 reviews notions used in this paper.
Section 3 introduces two orderings between AFs. Section 4 introduces orderings
in dynamic environments, and Sect. 5 addresses final remarks.

2 Preliminaries

2.1 Argumentation Framework

Let U be the universe of all arguments. An argumentation framework (AF) [3] is
a pair (A,R) where A ⊆ U is a finite set of arguments and R ⊆ A×A is the attack
relation. The collection of all AFs (induced by U) is denoted by AF . We write
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a → b (a attacks b) iff (a, b) ∈ R. A set S of arguments attacks an argument
a (written S → a) iff there is an argument b ∈ S that attacks a. A set S of
arguments is conflict-free if there are no arguments a, b ∈ S such that a attacks
b. A set S of arguments defends an argument a if S attacks every argument
that attacks a. We write D(S) = { a | S defends a }. Given AF = (A,R), a
conflict-free set of arguments S ⊆ A is:

– an admissible set iff S ⊆ D(S);
– a complete extension iff S = D(S);
– a stable extension iff S attacks each argument in A \ S;
– a preferred extension iff S is a maximal complete extension of AF (wrt ⊆);
– a grounded extension iff S is the minimal complete extension of AF (wrt ⊆).

Let Eadm
AF , Ecom

AF , Estb
AF , Eprf

AF , and Egrd
AF be the sets of admissible sets, complete

extensions, stable extensions, preferred extensions, and the grounded extension
of an AF , respectively. Then the following relations hold:

Estb
AF ⊆ Eprf

AF ⊆ Ecom
AF ⊆ Eadm

AF and Egrd
AF ⊆ Ecom

AF .

Estb
AF is possibly empty, while others are not. In particular, Egrd

AF is a singleton set.
We often write Eσ

AF where σ means either adm, com, prf , stb or grd. We say that
two argumentation frameworks AF1 and AF2 are σ-equivalent (written AF1 ≡σ

AF2) if Eσ
AF1

= Eσ
AF2

. An argument a ∈ A is credulously (resp. skeptically)
accepted under the σ semantics of AF = (A,R) iff a ∈ E for some (resp. every)
E ∈ Eσ

AF . The set of all credulously (resp. skeptically) accepted arguments under
the σ semantics of AF is denoted by crdσ(AF ) (resp. skpσ(AF )). When Estb

AF = ∅,
we define crdstb(AF ) = ∅ and skpstb(AF ) = U .

2.2 Ordering on Powersets

We recall some mathematical definitions about domains [6]. A pre-order (or
quasi-order) � is a binary relation which is reflexive and transitive. A pre-order
� is a partial order if it is also anti-symmetric. A pre-ordered set (resp. partially
ordered set ; poset) is a set D with a pre-order (resp. partial order) � on D. For
a pre-ordered set 〈D,� 〉 and x, y ∈ D, we write x ≺ y if x � y and y �� x. For a
poset 〈D,� 〉, two elements x, y ∈ D are comparable if x � y or y � x; otherwise,
they are incomparable. A chain in 〈D,� 〉 is a subset C of D in which each pair
of elements is comparable. An antichain in 〈D,� 〉 is a subset A of D in which
each pair of different elements is incomparable, i.e., there is no order relation
between any two different elements in A. For a pre-ordered set 〈D,� 〉 and any
set X ⊆ D, we denote the maximal and minimal elements of X as follows.

min�(X) = {x ∈ X | ¬∃y∈X s.t. y ≺ x },

max�(X) = {x ∈ X | ¬∃y∈X s.t. x ≺ y }.
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We often denote these as min(X) and max(X) by omitting �. We also assume
that the relation � is well-founded (resp. upwards well-founded) on D1 whenever
min�(X) (resp. max�(X)) is concerned in order to guarantee the existence of
a minimal (resp. maximal) element of any X ⊆ D. Note that, when D is finite,
any pre-order is both well-founded and upwards well-founded on D.

For any set D, let P(D) be the powerset of D. Given a poset 〈D,� 〉 and
X,Y ∈ P(D), two orders are defined as follows:

X �� Y iff ∀y∈Y ∃x∈X s.t. x � y ,

X �� Y iff ∀x∈X ∃y∈Y s.t. x � y .

The relations �� and �� are respectively called the Smyth order and the Hoare
order , and both 〈 P(D),�� 〉 and 〈 P(D),�� 〉 are pre-ordered sets.

Example 1. Consider the poset 〈 P({p, q}),⊆ 〉. It holds that {{p}, {q}} ��

{{p}} �� {{p, q}} and {{p}} �� {{p}, {q}} �� {{p, q}}. Since {∅, {p}} ��

{∅, {q}} �� {∅, {p}} and {{p}, {p, q}} �� {{q}, {p, q}} �� {{p}, {p, q}} hold,
both �� and �� are not partial orders.

For notational convenience, we often denote two orderings as ��/� when dis-
tinction between them is unimportant.

3 Ordering Argumentation Frameworks

3.1 Ordering AFs

In this section, we consider a pre-ordered set 〈D,� 〉 in which the domain D
is P(U), i.e., the class of sets of arguments in U , and the pre-order � is the
inclusion relation ⊆ over P(U). In this case 〈 P(U),⊆ 〉 becomes a poset. The
Smyth and Hoare orderings on P(P(U)) are then defined, which enables us to
order classes of sets of arguments.

Definition 1 (orderings over sets of arguments). Let 〈 P(U),⊆ 〉 be a
poset. For any Σ1 and Σ2 in P(P(U)),

Σ1 �� Σ2 iff ∀T ∈Σ2 ∃S ∈Σ1 s.t. S ⊆ T ,

Σ1 �� Σ2 iff ∀S ∈Σ1 ∃T ∈Σ2 s.t. S ⊆ T .

Definition 2 (ordering AFs). Let AF1 and AF2 be two argumentation frame-
works.

AF1 ��
σ AF2 iff Eσ

AF1
�� Eσ

AF2
,

AF1 ��
σ AF2 iff Eσ

AF1
�� Eσ

AF2

1 A relation R is well-founded on a class D iff every non-empty subset of D has a
minimal element with respect to R. A relation R is upwards well-founded on D iff
the inverse relation R−1 is well-founded on D.
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where σ ∈ { adm, com, prf , stb, grd }. We say that AF2 is more (or equally) �-
general (resp. �-general) than AF1 (under the σ-semantics) if AF1 ��

σ AF2 (resp.
AF1 ��

σ AF2).
We write AF1 ≡�

σ AF2 (resp. AF1 ≡�
σ AF2) iff AF1 ��

σ AF2 and AF2 ��
σ AF1

(resp. AF1 ��
σ AF2 and AF2 ��

σ AF1).

For notational convenience, we often denote two orderings as ��/�
σ when dis-

tinction between them is unimportant.

Proposition 1. Let AF be the collection of all AFs. Then 〈AF ,��/�
σ 〉 is a

pre-ordered set where σ ∈ { adm, com, prf , stb, grd }.
Example 2. Consider AF1 = ({a, b, c}, {(a, b), (b, a), (b, c), (c, c)}) and AF2 =
({a, b, c, d}, {(a, d), (d, a), (b, d), (d, b)}).

AF1

�� � ���

��

• • •
a b c

AF2

�� ��• • • •
a d b c

Then, Eadm
AF1

=Ecom
AF1

={∅, {a}, {b}}, Eprf
AF1

={{a}, {b}}, Estb
AF1

={{b}}, Egrd
AF1

={∅};
and Eadm

AF2
={∅, {a}, {b}, {c}, {a, b}, {c, d}, {a, b, c}}, Ecom

AF2
={{c}, {c, d}, {a, b, c}},

Eprf
AF2

= Estb
AF2

= {{c, d}, {a, b, c}}, Egrd
AF2

= {{c}}. In this case, it holds
that AF1 ��

σ AF2 for σ ∈ { adm, com, grd }; and AF1 ��
σ AF2 for σ ∈

{ adm, com, prf , stb, grd }.

In what follows, some formal properties are addressed.

Proposition 2. Let AF1 and AF2 be two argumentation frameworks. It holds
that (i) AF1 ��

adm AF2, and (ii) AF1 ��
grd AF2 iff AF1 ��

grd AF2.

Proof. For any AF , ∅ ∈ Eadm
AF , and Egrd

AF is a singleton set. Hence, the results
hold. ��

Two relations �� and �� are monotonic with respect to the increase of exten-
sions.

Proposition 3. For any set Σ1 and Σ2 in P(P(U)), Σ1 ⊆ Σ2 implies Σ1 �� Σ2

and Σ2 �� Σ1.

Proof. If Σ1 ⊆ Σ2, then ∀S ∈ Σ1, S ∈ Σ2 thereby Σ1 �� Σ2 and Σ2 �� Σ1. ��
Proposition 4. Let AF1 and AF2 be two argumentation frameworks. If Eσ

AF1
⊆

Eσ
AF2

then AF1 ��
σ AF2 and AF2 ��

σ AF1 hold for σ ∈ { adm, com, prf , stb, grd }.
Proof. The result follows from Proposition 3. ��
Proposition 5. Let AF1 and AF2 be two argumentation frameworks. Then the
following results hold for σ ∈ { adm, com, prf , stb, grd }.
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(1) AF1 ≡�
σ AF2 iffmin⊆(Eσ

AF1
) = min⊆(Eσ

AF2
).

(2) AF1 ≡�
σ AF2 iffmax⊆(Eσ

AF1
) = max⊆(Eσ

AF2
).

Proof. In what follows, min⊆ is written as min. (1) If AF1 ��
σ AF2, then

∀S ∈ min(Eσ
AF2

)∃T ∈ Eσ
AF1

s.t. T ⊆ S, and then ∃U ∈ min(Eσ
AF1

) s.t.
U ⊆ T . Thus, min(Eσ

AF1
) �� min(Eσ

AF2
). Likewise, AF2 ��

σ AF1 implies
min(Eσ

AF2
) �� min(Eσ

AF1
). Assume min(Eσ

AF1
) �= min(Eσ

AF2
). Then, (i) ∃U ∈

min(Eσ
AF1

) \ min(Eσ
AF2

) or (ii) ∃V ∈ min(Eσ
AF2

) \ min(Eσ
AF1

). In case of (i),
∃U ′ ∈ min(Eσ

AF2
) s.t. U ′ ⊆ U by min(Eσ

AF2
) �� min(Eσ

AF1
). Also, ∃U ′′ ∈

min(Eσ
AF1

) s.t. U ′′ ⊆ U ′ by min(Eσ
AF1

) �� min(Eσ
AF2

). Thus, U ′′ ⊆ U . Since
both U and U ′′ are in min(Eσ

AF1
), U = U ′′ thereby U ′ = U . This contradicts the

assumption U �∈ min(Eσ
AF2

). Similarly, (ii) also leads to contradiction. Hence,
min(Eσ

AF1
) = min(Eσ

AF2
). (2) is shown in a similar manner. ��

Proposition 6. Let AF1 and AF2 be two argumentation frameworks. Then the
following three are equivalent for σ ∈ {prf , stb, grd}: (1) AF1 ≡�

σ AF2, (2)
AF1 ≡�

σ AF2, (3) AF1 ≡σ AF2.

Proof. Consider a poset 〈 P(U),⊆ 〉. Since Eσ
AF is an antichain set for σ ∈

{prf , stb, grd}, max⊆(Eσ
AF ) = min⊆(Eσ

AF ) = Eσ
AF . Hence, the result holds by

Proposition 5. ��
Example 3. Consider AF1 = ({p, q}, {(p, q), (q, p), (q, q)}) and AF2 = ({p, q},
{(p, q), (q, p), (p, p)}) where Ecom

AF1
= {∅, {p}} and Ecom

AF2
= {∅, {q}}. Then,

AF1 ≡�
com AF2 but AF1 �≡com AF2.

Two orderings are related to credulous/skeptical acceptance of arguments.

Proposition 7. Let AF1 and AF2 be two argumentation frameworks. Then the
following relations hold for σ ∈ { adm, com, prf , stb, grd }.
1. If AF1 ��

σ AF2 then crdσ(AF1) ⊆ crdσ(AF2).
2. If AF1 ��

σ AF2 then skpσ(AF1) ⊆ skpσ(AF2).

Proof. (1) Assume AF1 ��
σ AF2. If Eσ

AF1
= ∅ then crdσ(AF1) = ∅ by definition,

and the result holds immediately. Suppose that Eσ
AF1

�= ∅ and ψ ∈ crdσ(AF1).
Then ψ ∈ E for some E ∈ Eσ

AF1
. By AF1 ��

σ AF2, for any E ∈ Eσ
AF1

there is
F ∈ Eσ

AF2
such that E ⊆ F . Then ψ ∈ E implies ψ ∈ F , thereby ψ ∈ crdσ(AF2).

Hence, crdσ(AF1) ⊆ crdσ(AF2).
(2) Assume AF1 ��

σ AF2. If Eσ
AF2

= ∅ then skpσ(AF2) = U by definition, and
the result holds immediately. Suppose that Eσ

AF2
�= ∅. In this case, Eσ

AF1
�= ∅ by

AF1 ��
σ AF2. If ψ ∈ skpσ(AF1) then ψ ∈ E for every E ∈ Eσ

AF1
. By AF1 ��

σ AF2,
for any F ∈ Eσ

AF2
there is E ∈ Eσ

AF1
such that E ⊆ F . Then ψ ∈ E implies ψ ∈ F ,

thereby ψ ∈ skpσ(AF2). Hence, skpσ(AF1) ⊆ skpσ(AF2). ��
Example 4. Consider AFs in Example 2. By AF1 ��

prf AF2, crdprf (AF1) =
{a, b} is a subset of crdprf (AF2) = {a, b, c, d}. By AF1 ��

com AF2,
skpcom(AF1) = ∅ is a subset of skpcom(AF2) = {c}.
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By Proposition 7, when AF1 ��
σ AF2, AF2 has more (or equally) credulously

accepted arguments than AF1. In contrast, when AF1 ��
σ AF2, AF2 has more (or

equally) skeptically accepted arguments than AF1. As such, two orderings over
AFs characterize the amount of acceptable arguments in two different modes of
reasoning.

3.2 Comparing Different Semantics

In this section, we compare different semantics of a single AF under two order-
ings. By Proposition 3 and the relations Estb

AF ⊆ Eprf
AF ⊆ Ecom

AF ⊆ Eadm
AF and

Egrd
AF ⊆ Ecom

AF , we have: Estb
AF �� Eprf

AF �� Ecom
AF �� Eadm

AF , Egrd
AF �� Ecom

AF ,
Eadm

AF �� Ecom
AF �� Eprf

AF �� Estb
AF , and Ecom

AF �� Egrd
AF . Moreover, we have the

next results.

Proposition 8. Let AF be an argumentation framework. Then, (1) Egrd
AF ��

Eλ
AF for λ ∈ { com, prf , stb, grd }, and (2) Eσ

AF �� Ecom
AF for σ ∈

{ adm, com, prf , stb, grd }.
Proof. (1) Since a grounded extension is the least element of Ecom

AF , ∀E ∈ Eλ
AF ,

F ∈ Egrd
AF and F ⊆ E, thereby Egrd

AF �� Eλ
AF . (2) The results Eσ

AF �� Ecom
AF for

σ ∈ { com, prf , stb, grd } is already known. If E ∈ Eadm
AF then ∃F ∈ Ecom

AF such
that E ⊆ F . Hence, Eadm

AF �� Ecom
AF . ��

The above results are combined with the ordering of different AFs. For
instance, suppose that AF1 ��

stb AF2 holds. By Eσ
AF1

�� Estb
AF1

for σ =
{adm, com, prf , stb, grd}, for any stable extension F of AF1 there is a σ-extension
E of AF1 such that E ⊆ F . This means that if AF2 employs the stable semantics,
then AF2 is more �-general than AF1 that employs any semantics. Suppose, on
the other hand, that AF1 ��

σ AF2 holds. By Eσ
AF2

�� Ecom
AF2

(Proposition 8(2)),
for any σ-extension E of AF2 there is a complete extension F of AF2 such that
E ⊆ F . This means that if AF2 employs the complete semantics, then AF2 is
more �-general than AF1 that employs any semantics.

3.3 Minimal Upper and Maximal Lower Bounds

In this section, we consider a minimal upper bound and a maximal lower bound
of the sets of extensions with respect to two orderings �� and ��.

Definition 3. (mub, mlb). Let 〈 P(P(U)),��/� 〉 be a pre-ordered set. For any
Σ1 and Σ2 in P(P(U)), a set Σ ∈ P(P(U)) is an upper bound of Σ1 and Σ2

if Σ1 ��/� Σ and Σ2 ��/� Σ. An upper bound Σ is a minimal upper bound
(mub) of Σ1 and Σ2 if for any upper bound Σ′ of Σ1 and Σ2, Σ′ ��/� Σ implies
Σ ��/� Σ′.

On the other hand, a set Σ ∈ P(P(U)) is a lower bound of Σ1 and Σ2 if
Σ ��/� Σ1 and Σ ��/� Σ2. A lower bound Σ is a maximal lower bound (mlb) of
Σ1 and Σ2 if for any lower bound Σ′ of Σ1 and Σ2, Σ ��/� Σ′ implies Σ′ ��/� Σ.
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Proposition 9. Let Σ1 and Σ2 be two antichain sets in 〈 P(U),⊆ 〉.
1. Σ ∈ P(P(U)) is an mub of Σ1 and Σ2 in 〈 P(P(U)),�� 〉 iff Σ = min⊆(X)

where X = {S ∪ T | S ∈ Σ1 and T ∈ Σ2 }.
2. Σ ∈ P(P(U)) is an mub of Σ1 and Σ2 in 〈 P(P(U)),�� 〉 iff Σ = max⊆(X)

where X = {S ∩ T | S ∈ Σ1 and T ∈ Σ2 }.
3. Σ ∈ P(P(U)) is an mlb of Σ1 and Σ2 in 〈 P(P(U)),�� 〉 iff Σ = min⊆(Σ1 ∪

Σ2).
4. Σ ∈ P(P(U)) is an mlb of Σ1 and Σ2 in 〈 P(P(U)),�� 〉 iff Σ = max⊆(Σ1 ∪

Σ2).

Proof. We show (1) and (3). The results of (2) and (4) are shown in similar
ways.
(1) Σ is an upper bound of Σ1 and Σ2 in 〈 P(P(U)),�� 〉 iff Σ1 �� Σ and
Σ2 �� Σ
iff ∀S ∈ Σ ∃T1 ∈ Σ1 s.t. T1 ⊆ S and ∀S ∈ Σ ∃T2 ∈ Σ2 s.t. T2 ⊆ S
iff ∀S ∈ Σ ∃T1 ∈ Σ1 ∃T2 ∈ Σ2 s.t. T1 ∪ T2 ⊆ S (∗).

Now suppose that Σ is given as min⊆({S∪T | S ∈ Σ1 and T ∈ Σ2}). Σ is an
antichain set. Then Σ is an upper bound of Σ1 and Σ2 because (∗) is satisfied.
Assume that Σ is not an mub. Then there is an antichain set2 Γ ∈ P(P(U))
s.t. (i) Γ is an upper bound of Σ1 and Σ2, and (ii) Γ �� Σ and (iii) Σ ��� Γ .
Thus, Γ �= Σ. For any U ∈ Σ, there are S1 ∈ Σ1 and T1 ∈ Σ2 s.t. U = S1 ∪ T1

by the definition of Σ. For this U , there is a set V ∈ Γ such that V ⊆ U by
(ii) and that S2 ∪ T2 ⊆ V for some S2 ∈ Σ1 and T2 ∈ Σ2 by (i) and (∗). So
S2 ∪ T2 ⊆ S1 ∪ T1. Since Σ is the collection of minimal sets, S2 ∪ T2 = S1 ∪ T1.
Thus, U = V . Hence, Σ ⊆ Γ . By Σ �= Γ , there is W ∈ Γ \Σ. Again S3∪T3 ⊆ W
for some S3 ∈ Σ1 and T3 ∈ Σ2 by (i) and (∗). However, there must be some
X ∈ Σ such that X ⊆ W by the construction of Σ and the minimality of Σ.
Because W �∈ Σ, X ⊂ W holds. However, by Γ �� Σ there is Y ∈ Γ such that
Y ⊆ X and hence Y ⊂ W . This contradicts the fact that Γ is an antichain set.

(3) Σ is a lower bound of Σ1 and Σ2 in 〈 P(P(U)),�� 〉 iff Σ �� Σ1 and
Σ �� Σ2

iff ∀S1 ∈ Σ1 ∃T ∈ Σ s.t. T ⊆ S1 and ∀S2 ∈ Σ2 ∃T ∈ Σ s.t. T ⊆ S2

iff ∀S ∈ Σ1 ∪ Σ2 ∃T ∈ Σ s.t. T ⊆ S (†).
Now suppose that Σ = min⊆(Σ1 ∪ Σ2). Then Σ is a lower bound of Σ1

and Σ2 because (†) is satisfied. Assume that Σ is not an mlb. Then there is
an antichain set Γ ∈ P(P(U)) s.t. (i) Γ is a lower bound of Σ1 and Σ2, and
(ii) Σ �� Γ and (iii) Γ ��� Σ. Thus, Σ �= Γ . By (ii), for any V ∈ Γ , there is
U ∈ Σ such that U ⊆ V . By this and the fact that Γ is a lower bound of Σ1

and Σ2, we have that ∀W ∈ Σ1 ∪ Σ2, ∃V ∈ Γ ∃U ∈ Σ such that U ⊆ V ⊆ W .
As U ∈ Σ1 ∪ Σ2, it must be U = V by the minimality of Σ, and thus Γ ⊆ Σ.
By Σ �= Γ , there is X ∈ Σ \ Γ . Since X ∈ Σ1 ∪ Σ2 by the construction of

2 Without loss of generality, Γ is assumed to be an antichain set. If Γ is not an
antichain set, there is S, T ∈ Γ s.t. S ⊆ T . Put Γ ′ = Γ \ {T}. Then Γ ′ is an upper
bound of Σ1 and Σ2 (because if Γ satisfies (∗) then Γ ′ satisfies (∗)) and also satisfies
(ii) and (iii).
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Σ, there must be some Y ∈ Γ such that Y ⊆ X by (†). As X �∈ Γ , Y ⊂ X
holds. However, by (ii) there is Z ∈ Σ such that Z ⊆ Y and thus Z ⊂ X. This
contradicts the fact that Σ is an antichain set. Therefore, Σ is a mlb of Σ1 and
Σ2 in 〈 P(P(U)),�� 〉. ��

Proposition 9 states that an mub or mlb of two antichain sets in
〈 P(P(U)),��/� 〉 is constructed by the operations min or max. Suppose two
argumentation frameworks AF1 and AF2 having the sets of σ-extensions Eσ

AF1

and Eσ
AF2

, respectively. Then, a question is whether there is AF ∈AF such that
Eσ

AF is obtained as an mub (or mlb) of Eσ
AF1

and Eσ
AF2

. If σ = grd, there is an
AF that has the extension obtained as the mub of Proposition 9(1) or (2). This
is because if Egrd

AF1
= {E} and Egrd

AF2
= {F} then we can construct an AF s.t.

Egrd
AF = {E ∪ F} or Egrd

AF = {E ∩ F} as AF = (E ∪ F, ∅) or AF = (E ∩ F, ∅).
On the other hand, an AF having the grounded extension as the mlb of Propo-
sition 9(3) or (4) does not always exist. This is because min⊆(Egrd

AF1
∪ Egrd

AF2
) or

max⊆(Egrd
AF1

∪ Egrd
AF2

) is not a singleton set in general. When an AF has multiple
extensions, the answer is also negative in general.

Example 5. Consider AF1 and AF2 such that Estb
AF1

= {{a, b}, {a, c}} and
Estb

AF2
= {{b, c}}. Then, min⊆(Estb

AF1
∪ Estb

AF2
) = max⊆(Estb

AF1
∪ Estb

AF2
) =

{{a, b}, {a, c}, {b, c}}, but there is no AF such that Estb
AF = {{a, b}, {a, c}, {b, c}}.

Any stable extension must be incomparable and tight , and the set
{{a, b}, {a, c}, {b, c}} does not satisfy this condition [2,4]. As such, the existence
of an mub or mlb as a set of extensions as in Proposition 9 does not imply that
it is realizable under a particular semantics [2,4], that is, it is not necessarily
the case that there is an AF having the set of σ-extensions that coincide with
an mub or mlb of two sets of extensions of two AFs. Investigating necessary
and/or sufficient conditions for the existence of an mub/mlb of two AFs under
σ-semantics is left for future study.

4 Strong Ordering

This section considers comparing two AFs under dynamic environments by
observing the effect of incorporating new information into given argumenta-
tion frameworks. In this section we consider AF = (A,R) where A ⊆ U and
R ⊆ U × U .3 Given AF1 = (A1, R1) and AF2 = (A2, R2), define AF1 � AF2 =
(A1 ∪ A2, R1 ∪ R2).

Definition 4. Let AF1 and AF2 be two argumentation frameworks. Then,

AF1 ��
σ AF2 iff (AF1 � AF ) ��

σ (AF2 � AF ) for any AF ∈ AF ,

AF1 ��
σ AF2 iff (AF1 � AF ) ��

σ (AF2 � AF ) for any AF ∈ AF
where σ ∈ { adm, com, prf , stb, grd }.
3 We relax the condition by technical reasons but it does not affect the results of

previous sections. This is because attack relations in (U×U)\(A×A) do not change
extensions of AF .
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We write ��/�
σ to represent both ��

σ and ��
σ together. The relation AF1 ��/�

σ

AF2 implies AF1 ��/�
σ AF2 by putting AF = (∅, ∅).

Proposition 10. Let AF1 and AF2 be two argumentation frameworks. If
AF1 ��/�

σ AF2 then AF1 ��/�
σ AF2 where σ ∈ { adm, com, prf , stb, grd }.

By Proposition 2, the next result holds.

Proposition 11. Let AF1 and AF2 be two argumentation frameworks. Then,
(i) AF1 ��

adm AF2, and (ii) AF1 ��
grd AF2 iff AF1 ��

grd AF2.

Two argumentation frameworks AF1 and AF2 are strongly equivalent (wrt
σ semantics) if AF1 � AF ≡σ AF2 � AF for any AF ∈ AF [10]. The notion of
strong equivalence is related to the orderings ��/�

σ as follows.

Proposition 12. Let AF1 and AF2 be two argumentation frameworks. Then the
following three are equivalent for σ ∈ { prf , stb, grd }: (1) AF1 ��

σ AF2 ��
σ AF1,

(2) AF1 ��
σ AF2 ��

σ AF1, (3) AF1 and AF2 are strongly equivalent.

Proof. AF1 ��/�
σ AF2 ��/�

σ AF1

iff (AF1 � AF ) ��/�
σ (AF2 � AF ) ��/�

σ (AF1 � AF ) for any AF ∈ AF
iff (AF1 � AF ) ≡σ (AF2 � AF ) for any AF ∈ AF (Proposition 6)
iff AF1 and AF2 are strongly equivalent. ��
Example 6. ([10]) Two argumentation frameworks AF1 = ({a, b, c}, {(a, b), (b, c),
(c, a)}) and AF2 = ({a, b, c}, {(a, c), (c, b), (b, a)}) have the same preferred exten-
sion ∅, but they are not strongly equivalent. This is explained by the fact that for
AF = ({a, b}, {(a, b)}), AF1 �AF has the preferred extension ∅, while AF2 �AF

has the preferred extension {a}, thereby (AF2 � AF ) ���
prf (AF1 � AF ).

Proposition 13. Let AF1 and AF2 be two argumentation frameworks. Then
the following results hold for σ ∈ { prf , stb, grd }.
1. If AF1 ��

σ AF2 then Eσ
AF1

⊆ Eσ
AF2

.
2. If AF1 ��

σ AF2 then Eσ
AF2

⊆ Eσ
AF1

.

Proof. (1) Let AF1 = (A1, R1) and AF2 = (A2, R2). If AF1��
σAF2, then AF1 ��

σ

AF2 (Proposition 10). Assume Eσ
AF1

�⊆ Eσ
AF2

. Then there is an extension E ∈
Eσ

AF1
\ Eσ

AF2
. By AF1 ��

σ AF2, there is F ∈ Eσ
AF2

such that E ⊂ F . For any F
satisfying E ⊂ F , there is an argument a ∈ F \E. Since F is conflict-free, E �→ a.
Suppose that a ∈ A1. The fact a �∈ E implies a �∈ D(E). Then there is (b, a) ∈ R1

s.t. b ∈ A1 and E �→ b. Since (E �→ a), b �∈ E thereby b �∈ D(E). Then there is
(c, b) ∈ R1 s.t. c ∈ A1, c �= a and E �→ c. (If c = a then E′ = E ∪ {a} defends
every element in E′. So E′ ∈ Eσ

AF1
which contradicts the antichain property of

Eσ
AF1

.) Since (E �→ b), c �∈ E thereby c �∈ D(E). Repeating the above argument,
A1 becomes an infinite set. This contradicts the assumption that A1 is finite.
Hence, there is an argument a ∈ F \E s.t. a �∈ A1. Consider AF = ({d}, {(a, d)})
where d �∈A1 ∪ A2. Then AF1 � AF has an extension E′ = E ∪ {d}, while F is
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an extension of AF2 � AF . So E′ �⊆ F . Moreover, for any G ∈ Eσ
AF2

such that
E �⊂ G, E′ = E ∪ {d} �⊆ G. Thus, for any extension G′ of AF2 � AF , E′ �⊆ G′.
Hence, (AF1 � AF ) ���

σ (AF2 � AF ), thereby AF1 ���
σAF2. Contradiction. (2) is

shown in a similar manner. ��
Proposition 13 shows that ��/�

σ provides a sufficient condition for inclusion
between the sets of extensions, while ��/�

σ provides a necessary condition for it
(Proposition 4).

Proposition 14. Let AF1 and AF2 be two argumentation frameworks. Then
the following three are equivalent for σ ∈ { prf , stb, grd }: (1) AF1 ��

σ AF2, (2)
AF2 ��

σ AF1, (3) Eσ
AF1�AF ⊆ Eσ

AF2�AF for any AF ∈ AF .

Proof. We show (1)⇔(3). The relation (2)⇔(3) is shown in a similar way.
Suppose AF1 ��

σ AF2. By definition, (AF1 � AF ) ��
σ (AF2 � AF ) for any

AF ∈ AF . Then (AF1 � AF ) � AF ′ ��
σ (AF2 � AF ) � AF ′ for any AF and

AF ′ in AF . So AF1 � AF ��
σ AF2 � AF for any AF ∈ AF . By Proposi-

tion 13(1), Eσ
AF1�AF ⊆ Eσ

AF2�AF . Conversely, suppose Eσ
AF1�AF ⊆ Eσ

AF2�AF for
any AF ∈ AF . By Proposition 4, AF1 � AF ��

σ AF2 � AF for any AF ∈ AF .
Hence, AF1 ��

σ AF2. ��
As such, two relations ��

σ and ��
σ are symmetric for σ ∈ { prf , stb, grd }.

5 Concluding Remarks

We introduced several orderings for comparing sets of extensions in argumenta-
tion frameworks. We showed that two orderings ��

σ and ��
σ are used for com-

paring skeptical/credulous acceptance of arguments in different argumentation
frameworks. Moreover, those relations have connections to inclusion/equivalence
relations between sets of extensions. Since argumentation theories are nonmono-
tonic, some formal properties addressed in this paper have their counterpart in
[7–9]. On the other hand, we show that those orderings are used for comparing
different semantics of argumentation, which is not considered in the context of
default theories or logic programming. The existence of an AF that has a set
of extensions as an mub or mlb of given two sets of extensions is not always
guaranteed, which is in contrast with the cases of default theories and logic pro-
gramming where the existence of an mub or mlb is guaranteed. We considered
five semantics of AFs in this paper, but the most results obtained in this paper
are independent of particular semantics and applied to other semantics as well.
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Abstract. Bayesian networks (BNs) are powerful tools that are well-
suited for reasoning about the uncertain consequences that can be
inferred from evidence. Domain experts, however, typically do not have
the expertise to construct BNs and instead resort to using other tools
such as argument diagrams and mind maps. Recently, we proposed a
structured approach to construct a BN graph from arguments anno-
tated with causality information. As argumentative inferences may not
be causal, we generalize this approach to include other types of infer-
ences in this paper. Moreover, we prove a number of formal properties
of the generalized approach and identify assumptions under which the
construction of an initial BN graph can be fully automated.

Keywords: Bayesian networks · Argumentation · Inference ·
Reasoning

1 Introduction

Bayesian networks (BNs) [11] are compact graphical models of joint probability
distributions that have found applications in many different fields where uncer-
tainty plays a role, including medicine, forensics and law [6]. BNs are well-suited
for reasoning about the uncertain consequences that can be inferred from evi-
dence. However, especially in data-poor domains, their construction needs to
be done mostly manually, which is a difficult, time-consuming and error-prone
process [7], and domain experts typically resort to using other tools such as
argument diagrams, mind maps and ontologies [4,8]. Hence, we believe BN con-
struction can be facilitated by automatically extracting information relevant for
a BN from such tools. More specifically, in this paper we study how information
expressed as structured arguments [2] about the domain can inform the design
of a BN graph, a directed acyclic graph (DAG) which captures the independence
relation among variables.

In previous research, Bex and Renooij [3] identified constraints on BNs given
structured arguments, but these only suffice for constructing an undirected skele-
ton of a BN graph. Recently, we were able to derive a directed graph [18], but only
c© Springer Nature Switzerland AG 2019
G. Kern-Isberner and Z. Ognjanović (Eds.): ECSQARU 2019, LNAI 11726, pp. 99–110, 2019.
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by assuming that all inferences in the initial structured arguments are explicitly
labeled with causality information [1,14]. Arcs in the BN graph are then set in
the causal direction, following the heuristic typically used in the manual con-
struction of BN graphs [11]. However, in [18] it is assumed that all inferences
are labeled with causality information, which precludes the use of other types
of inferences, such as mere statistical correlations and definitions. Furthermore,
formal properties of the proposed proposals were not studied in [3,18].

Accordingly, in this paper we present an approach that generalizes our pre-
viously proposed construction approach [18] to other types of inference. In addi-
tion, we formally prove that BN graphs constructed by our approach allow rea-
soning patterns similar to the inferences represented in the original structured
arguments. Moreover, we identify assumptions under which the fully automat-
ically constructed initial graph is guaranteed to be a DAG, and we identify
bounds on the complexity of inference in BNs constructed by our approach.

The paper is structured as follows. Section 2 provides preliminaries on argu-
mentation and BNs. In Sect. 3, we present our generalized approach for con-
structing BN graphs from inferences. In Sect. 4, we prove a number of formal
properties of the approach. In Sect. 5, we discuss related research and conclude.

2 Preliminaries

2.1 Argumentation

Throughout this paper, we assume that the domain experts’ analysis is cap-
tured in an argument graph (AG), in which claims are substantiated by chaining
inferences from the observed evidence; an example is depicted in Fig. 1a. AGs
are closely related to argument diagrams and mind maps [4], familiar to many
domain experts. Formally, an AG is a directed graph GA = (P,AA), where P
is a set of nodes representing propositions from a literal language with ordinary
negation symbol ¬, and AA is a set of directed (hyper)arcs. We write p = −q
in case p = ¬q or q = ¬p. Nodes Ep ⊆ P corresponding to the (observed)
evidence are root nodes in GA. We assume that for every p ∈ Ep it holds that
¬p /∈ P. AA is comprised of three pairwise disjoint sets S, R and U, which are
sets of support arcs, rebuttal arcs and undercutter arcs, respectively. A support
arc is a (hyper)arc s : {p1, . . . , pn} → p ∈ S, indicating an inference step from
{p1, . . . , pn} ⊆ P (called the tails of s, denoted by Tails(s)) to a single propo-
sition p ∈ P (called the head of s, denoted by head(s)). Here, curly brackets
are omitted in case |Tails(s)| = 1. Support arcs s1, . . . , sm form a support chain
(s1, . . . , sm) iff head(si) ∈ Tails(si+1) for 1 ≤ i < m.

There are two types of attack arcs. A rebuttal arc r ∈ R is a bidirectional
arc r : p ←→ ¬p in GA that exists for every pair p,¬p ∈ P. An undercutter arc
u ∈ U is a hyperarc u : p → (s), where p ∈ P undercuts s ∈ S. Informally, a
rebuttal is an attack on a proposition, while an undercutter attacks an inference
by providing exceptional circumstances under which the inference may not be
applicable. In figures in this paper, nodes in GA corresponding to elements of
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Ep are shaded. Support arcs are denoted by solid (hyper)arcs and rebuttal arcs
and undercutter arcs are denoted by dashed (hyper)arcs.

In reasoning about evidence, a distinction can be made between causal and
evidential inferences [1,14]. Causal inferences are of the form “c is a cause for e”
(e.g. fire causes smoke), whereas evidential inferences are of the form “e is caused
by c” (e.g. smoke is caused by fire). Inferences may also be neither causal nor
evidential. For instance, definitions, or abstractions [5], allow for reasoning at dif-
ferent levels of abstraction, such as stating that guns can generally be considered
deadly weapons. Another example of a different type of inference is an inference
representing a mere statistical correlation, such as a correlation between home-
lessness and criminality. While there may be one or more confounding factors
that cause both homelessness and criminality (e.g. unemployment), a domain
expert may be unaware of these factors or may wish to refrain from capturing
them in the AG. For our current purposes, we assume that support arcs in S are
either annotated with a causal “c” label, an evidential “e” label, or are labeled
“o” for all other types of inferences. S then divides into three disjoint sets Sc,
Se and So of causal, evidential and other types of support arcs, respectively. In
figures in this paper, “o” labels are omitted.

In this paper, some further assumptions are made. We assume that support
chains are non-repetitive in that there does not exist a support chain (s, . . . , s) in
AG. We assume that for every support chain (s1, . . . , sn) the heads of s1, . . . , sn
are consistent in that �i, j ∈ {1, . . . , n}, i �= j such that head(si) = −head(sj).
Furthermore, we assume that AGs do not include causal cycles in that there do
not exist two support chains (s1, . . . , sn) and (s′

1, . . . , s
′
m) in AG with s1, . . . , sn ∈

Sc, s′
1, . . . , s

′
m ∈ Se, Tails(s1) ∩ Tails(s′

1) �= ∅ and head(sn) = head(s′
m) or

head(sn) = −head(s′
m). Informally, this assumption says that for every p, q ∈ P,

if p is a cause of q, then q (or −q) cannot be a cause of p (see also [1]).
As noted by Pearl [14], the chaining of a causal inference and an evidential

inference can lead to undesirable results. Consider the example in which a causal
inference states that a smoke machine causes smoke and an evidential inference
states that smoke is evidence for fire. Chaining these inferences would make us
conclude there is a fire when seeing a smoke machine, which is clearly undesirable.
We therefore assume that an AG does not include a support chain (s1, s2) where
s1 ∈ Sc, s2 ∈ Se, and refer to this assumption as Pearl’s C-E constraint.

For those familiar with argumentation, we note that, although we use
the term “argument graph”, the graph only represents inferences and attacks
between propositions by means of arcs; actual arguments are not represented
in the graph. Preferences over arguments, as well as their status, are thus not
taken into account in our formalism, since they are not needed for our current
purposes. Our formalism can be straightforwardly mapped to ASPIC+ (cf. [2])
if all inferences are considered to be defeasible.

2.2 Bayesian Networks

A BN [11] compactly represents a joint probability distribution Pr(V) over a
finite set of discrete random variables V; in this paper we assume all variables
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to be Boolean. The variables are represented as nodes in a DAG GB = (V,AB),
where AB ⊆ V ×V is a set of directed arcs Vi → Vj from parent Vi to child Vj .
The BN further includes, for each node, a conditional probability table (CPT)
specifying the probabilities of the values of the node conditioned on the possible
joint value combinations of its parents. A node is called instantiated iff it is set
to a specific value. Given a set of instantiations, or evidence, for nodes EV ⊆ V,
the probability distributions over the other nodes in the network can be updated
through probabilistic inference [11]. An example of a BN graph is depicted in
Fig. 1b, where ovals represent nodes and instantiated nodes are shaded.

The BN graph GB captures the independence relation among its variables.
Let a chain be defined as a sequence of distinct nodes and arcs in the BN graph.
A node V is called a head-to-head node on a chain c if it has two incoming
arcs on c. A chain c between nodes V1 and V2 is blocked iff it includes a node
V /∈ {V1, V2} such that (1) V is an uninstantiated head-to-head node on c
without instantiated descendants; or (2) V is instantiated and has at most one
incoming arc on c. A chain that is not blocked is called active. If no active
chains exist between V1 and V2 given instantiations of Z ⊆ V, then they are
considered conditionally independent given Z. In case a head-to-head node or
one of its descendants is instantiated, an active chain is induced between its
parents, allowing for interparental interactions. If one of the parents is now true,
then the probability of another parent being true as well may change, depending
on the specific synergistic effect modeled in the CPT for the head-to-head node.

BN construction is typically an iterative process. After constructing an initial
BN graph, we should verify that this graph is acyclic and that it correctly cap-
tures the (conditional) independencies. If the graph does not yet exhibit these
properties, arcs should be reversed, added or removed by the BN modeler in
consultation with the domain expert. We call this the “graph validation step”.

3 Constructing BN Graphs from Argument Graphs

To facilitate the BN construction process, we previously proposed a stepwise app-
roach for constructing an initial BN graph from domain knowledge represented
in AGs with support arcs in Sc ∪Se only [18]. In this section, we generalize this
approach to include inferences in So.

Upon using an AG to inform BN construction, we have to consider their
difference in semantics. An AG, by means of its support chains, describes the
iterative inference steps that can be made from the observed evidence towards
the conclusions. In comparison, a BN describes a joint probability distribution
which does not model such directionality. Only when probabilistic inference is
performed is available evidence propagated through the network using the exist-
ing active chains. To mimic the inferences described by an AG in a BN, we will
focus on ensuring that the (chains of) support arcs in the AG, originating from
evidence Ep ⊆ P, are captured in the BN graph by means of active chains for
propagating instantiations of EV ⊆ V (see also [18]). Note that since the notion
of an active chain is a symmetrical concept, a BN graph will also capture rea-
soning patterns in the direction opposite of the support chains present in the
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AG. In Sect. 4, we formally prove that all support chains in an AG indeed have
corresponding active chains in the BN when following our generalized approach.

In the manual construction of BN graphs, arcs are typically directed using
the notion of causality as a guiding principle [11]. By following this heuristic, two
competing causes form a head-to-head connection in the node corresponding to
the common effect, allowing synergistic effects between the causes to be directly
captured in the CPT for this node. Hence, we propose to use the same heuristic
in automatically directing arcs, where we exploit causality information explicitly
expressed in an AG by means of “c” and “e” labels.

Undercutters attack inferences in support chains by providing exceptions to
the inference. For instance, if an inference is in the evidential direction, then
an undercutter suggests an alternative cause for the same effect. Accordingly,
we propose to enable capturing such interactions between an undercutter and a
support arc in the CPT of a head-to-head node formed in the BN graph.

3.1 The Generalized Approach

In this subsection, we present and explain the steps of the generalized approach.
Let var : P → V be an operator mapping every proposition p or ¬p ∈ P in an
AG to a BN variable var(p) = var(¬p) ∈ V describing values p and ¬p. For an
AG GA = (P,AA), a BN graph GB = (V,AB) is constructed as follows:

(1) ∀p,¬p ∈ P, include var(p) in V; if p or ¬p ∈ Ep, also include var(p) in EV.
(2) For every support arc s : {p1, . . . , pn} → p:

(2a) If s ∈ Se, include var(p) → var(pi), i = 1, . . . , n in AB.
(2b) If s ∈ Sc, include var(pi) → var(p), i = 1, . . . , n in AB.
(2c) If s ∈ So and �s1 ∈ Se such that (s, s1) form a support chain, include

var(pi) → var(p), i = 1, . . . , n in AB.
(2d) If s ∈ So and ∃s1, . . . , sm ∈ Se such that (s1, . . . , sm) is a maximal

chain of evidential support arcs in AG following s, include var(pi) →
var(head(sm)), i = 1, . . . , n in AB.

(3) For every undercutter arc u : p → (s) ∈ U with s : {q1, . . . , qn} → q:
(3a) If s ∈ Se, include var(p) → var(qi), i = 1, . . . , n in AB.
(3b) If s /∈ Se, include var(p) → var(q) in AB.

(4) Verify the properties of the constructed graph GB:
(4a) Break cycles in GB introduced by so-called evidential shortcuts resulting

from the combination of steps 2a and 2d (see Sect. 3.3 for further details).
(4b) Apply the standard graph validation step (see Sect. 2.2).

While our approach exploits the domain knowledge captured in the AG in con-
structing a BN graph, the AG may lack information needed to prevent cycles
and unwarranted (in)dependencies in the obtained BN graph; hence the manual
validation step (step 4b above), which is standard in BN construction.

The first step is to capture every proposition in GA and its negation as two
values of a random variable in GB. By the same step, two propositions involved
in a rebuttal are captured as two mutually exclusive values of the same node.
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The steps pertaining to s ∈ Sc ∪ Se are analogous to those proposed previously
in [18]. These steps formalize the approach of setting arcs using the notion of
causality as a guiding principle [11]. For further details, the reader is referred
to [18]. In Sects. 3.2 and 3.3, we motivate and explain the steps pertaining to
s ∈ So with several examples.

3.2 Explanation and Motivation of Steps 2c and 3b

Consider Fig. 1, illustrating steps 1−2c and 3b of the generalized approach for a
forensic example. A dead body was found and we are interested in the cause of
death of this person. According to witness testimony (tes1 ), the person was hit
with a hammer (hammer); however, according to another testimony (tes2 ), the
person was hit with a stone (stone). We conclude that the person was hit with
an angular object (angular), as hammers and stones can generally be considered
to be angular. Note that the relation between hammer (stone) and angular is
neither causal nor evidential; instead, the support arcs between these proposi-
tions express that, at a higher level of abstraction, both hammers and stones
can generally be considered angular objects. A mallet was found at the crime
scene (mallet), which undercuts inference hammer → angular since a mallet is
an exceptional type of hammer that is not angular but instead has a large cylin-
drical head. Finally, an autopsy report (autopsy) further supports the claim that
the person was hit with an angular object. By following steps 1−3 of the general-
ized approach, the BN graph of Fig. 1b is constructed from the AG in Fig. 1a. By
steps 2c and 3b, variables Hammer and Stone and variables Mallet and Hammer
respectively form head-to-head connections in Angular.

In general, by step 2c head-to-head nodes are formed in the nodes correspond-
ing to the heads of support arcs in So. Specifically, let p1, . . . , pn be tails of one
or more si ∈ So with head(si) = p. Then AB includes arcs var(pj) → var(p),
j = 1, . . . , n by step 2c; head-to-head nodes are, therefore, formed in var(p). By
setting arcs as per step 2c, we thus allow for including synergistic effects, if any,
of the tails on the probability of p in the CPT for the head-to-head node.

Similarly, by step 3b head-to-head nodes are formed in the nodes corre-
sponding to the heads of undercut support arcs in Sc ∪ So. Specifically, let
u : p → (s) ∈ U be an undercutter of s : {q1, . . . , qn} → q ∈ Sc∪So. Then by step

(a)

angular

tes2

(b)

Stone

Angular

tes1

Hammerautopsy Autopsyhammer stone

Tes2Tes1
e

mallet
Mallet

e

e

Fig. 1. An AG including support arcs in So (a); the corresponding BN graph con-
structed by steps 1−2c and 3b of the generalized approach (b).
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3b, head-to-head nodes are formed in var(q) as AB includes arc var(p) → var(q).
Again, this allows for modeling possible interactions between p and qi, and hence
between var(p) and var(qi), directly in the CPT for var(q). Bex and Renooij [3]
previously noted that the presence of an undercutter should decrease the proba-
bility that the conclusion of the undercut inference is true. By setting arcs as per
step 3b, this interaction can be directly captured by the following constraints on
the CPT for var(q): Pr(q | p, qi) < Pr(q | ¬p, qi) for i = 1, . . . , n.

3.3 Explanation and Motivation of Steps 2d and 4a

Next, consider Figs. 2a and b, illustrating step 2d of the generalized approach
for a medical example (taken from [7]). After performing a CT scan (scan) on
a patient who has severe difficulty swallowing, it is established that a tumor is
present in the lower (distal) part of his esophagus. Clinical studies indicate a
strong correlation between the location of an esophageal tumor and its cell type;
however, neither can be considered a cause of the other. Distal tumors generally
consist of cylindrical cells (cylindrical), often formed as a result of frequent
gastric reflux (reflux ). The BN graph constructed by steps 1−2a and 2d of the
generalized approach from the AG in Fig. 2a is depicted in Fig. 2b. As arcs Distal
→ Reflux and Reflux → Cylindrical are included in AB and the involved nodes
are not instantiated, active chains exist between Distal and Reflux and Distal
and Cylindrical. Note that we do not wish to set arcs as per step 2c, as in this
case a head-to-head node would instead be formed in Cylindrical which would
block the chain between Distal and Reflux.

Under specific conditions, cycles are introduced in step 2d of the generalized
approach, namely when a so-called evidential shortcut exists in the AG, i.e. if in
addition to the conditions of step 2d, also ∃s′

1, . . . , s
′
k ∈ Se such that (s′

1, . . . , s
′
k)

form a support chain, Tails(s) ∩ Tails(s′
1) �= ∅ and head(s′

k) = head(sj) or
head(s′

k) = −head(sj) for a j ∈ {1, . . . ,m}. An example is depicted in Fig. 2c.
In this example, s : p → q1 ∈ So is followed by a chain of support arcs s1 : q1 →
r, s2 : r → s ∈ Se, where there also exists a chain of support arcs s′

1 : p →

(a)

reflux

distal

cylindrical

scan

(b)

Distal

Cylindrical

Reflux

Scan

e

e
p

q1

r
e

(c)

s
e

P

Q1

R

S

(d)

q2

¬r
e

e
Q2

Fig. 2. An AG (a) and the corresponding BN graph (b) illustrating step 2d of the
generalized approach; an AG (c) and the corresponding BN graph (d), illustrating the
conditions under which a cycle is introduced in step 2d.
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q2, s
′
2 : q2 → ¬r ∈ Se. By step 2a, arcs S → R,R → Q2 and Q2 → P are

included in AB. By step 2d, arc P → S is also included, introducing a cycle
in GB. We note that this arc can safely be removed, as an active chain already
exists between P and S via Q2 and R. In general, cycles are broken in step 4a
by removing arcs var(pl) → var(head(sm)) from AB ∀pl ∈ Tails(s) ∩Tails(s′

1).

4 Properties of the Generalized Approach

In this section, we prove a number of formal properties of the generalized app-
roach. The first property states that for every support chain in a given AG there
indeed exists a corresponding active chain in the BN graph.

Proposition 1. Let GA = (P,AA) be an AG with root nodes Ep, and let GB =
(V,AB) be the corresponding BN graph constructed according to steps 1−4a of
the generalized approach. Let (s1, . . . , sn) be any support chain in GA, where
Tails(s1) = {p1, . . . , pm} and head(sn) = q. Then there exist active chains
between var(pi) and var(q) in GB given EV for every i ∈ {1, . . . ,m}.

Proof (Sketch). The following cases are distinguished:

– If sk ∈ Sc ∪ Se ∀k ∈ {1, . . . , n}, then when following steps 2a and 2b a head-
to-head node can only be formed in var(head(sj)) for an arbitrary sj , j ∈
{1, . . . , n − 1} if sj ∈ Sc, sj+1 ∈ Se; however, this construction is prohibited
as it violates Pearl’s C-E constraint (see Sect. 2.1). Furthermore, since heads
of support arcs are not propositions in Ep, corresponding nodes in GB are
not instantiated. Chains between var(pi) and var(q) are thus never blocked.

– If (s1, . . . , sn) includes support arcs in So and none of these arcs is followed
by an s ∈ Se, then arcs in AB are set similarly as for s ∈ Sc by step 2c. As
per the above proof, chains are not blocked.

– Let an sj ∈ So, 1 ≤ j < n be followed by a chain of support arcs in Se,
and let (sj+1, . . . , sj+l) be a maximal such chain. If j + l ≤ n, then step 2d
introduces direct arcs, and therefore active chains, between nodes in {var(p) |
p ∈ Tails(sj)} and var(head(sj+l)). If j + l > n, then AB in addition includes
a directed path from var(head(sj+l)) to var(head(sn)) by step 2a; therefore,
chains between nodes in {var(p) | p ∈ Tails(sj)} and var(head(sn)) via
var(head(sj+l)) are active, as var(head(sj+l)) is not a head-to-head node. In
step 4a, a subset of the arcs introduced in step 2d is removed (see Sect. 3.3)
iff an evidential shortcut and a corresponding active chain already exist.

Finally, AB is only extended for undercutter arcs in step 3; active chains formed
between var(pi) and var(q) in step 2 are, therefore, not affected by this step. �
In Proposition 2, we prove that under specific conditions on AGs an acyclic
graph is automatically obtained when following steps 1−4a of the approach,
which simplifies the manual verification involved in step 4b. Conditions (a) and
(b) concern the existence of undercutter arcs within and between connected
subgraphs of AGs. Condition (c) is a generalization of our assumption that no
causal cycles exist in AGs (see Sect. 2.1) to support arcs in So.
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Proposition 2. Let GA = (P,AA), and let G∗
A = (P,A∗

A) be the subgraph of
GA with A∗

A = AA \U. Let an AG component of GA be defined as a connected
component of G∗

A. Assume the following conditions are satisfied:

(a) For any AG component C = (P′,A′
A) of GA with P′ ⊆ P, A′

A ⊆ A∗
A, there

does not exist a u : p → (s) ∈ U with p ∈ P′, s ∈ A′
A.

(b) For every pair of AG components C1 = (P′,A′
A) and C2 = (P′′,A′′

A) of GA
with P′,P′′ ⊆ P, A′

A,A
′′
A ⊆ A∗

A, there does not exist both a u1 : p1 → (s1) ∈
U with p1 ∈ P′, s1 ∈ A′′

A and a u2 : p2 → (s2) ∈ U with p2 ∈ P′′, s2 ∈ A′
A.

(c) There do not exist two support chains (s1, . . . , sn) and (s′
1, . . . , s

′
m) with

s1, . . . , sn ∈ Sc ∪ So, s′
1, . . . , s

′
m ∈ Se, Tails(s1) ∩ Tails(s′

1) �= ∅, and
head(sn) = head(s′

m) or head(sn) = −head(s′
m).

Let GB = (V,AB) be the graph constructed from GA according to steps 1−4a of
the generalized approach. Then GB is a DAG.

Proof (Sketch). The following cases are distinguished:

– In steps 2a and 2b, no cycles are introduced. Specifically, our non-
repetitiveness assumption and our consistency assumption (see Sect. 2.1)
jointly assume that for every p ∈ P, p or −p cannot be inferred via a chain
of support arcs. Therefore, no chain of arcs exists in AB from a node P to
itself. The only other case in which cycles can be introduced is when a causal
cycle exists in GA, which is also prohibited by assumption (see Sect. 2.1).

– No cycles are introduced in step 2c if condition (c) is satisfied. Cycles are only
introduced in step 2d if an evidential shortcut exists; however, these cycles
are broken again in step 4a as described in Sect. 3.3.

– After step 2, there is a correspondence between AG components and the
connected components of the underlying undirected graph S of the thus far
constructed BN graph. Under condition (a), no cycles are introduced within
a connected component of S when including additional arcs in AB for every
u ∈ U in step 3. Furthermore, for every pair of AG components C1 and C2 of
GA with corresponding connected components C ′

1 and C ′
2 of S, no cycles are

introduced between components C ′
1 and C ′

2 in step 3 under condition (b). �

Figures 3a and c depict examples of AGs that do not satisfy conditions (a) and
(b) of Proposition 2, respectively. In the validation step that follows the initial
construction of these BN graphs, arcs can be reversed or removed to make these
graphs acyclic. The choice of arc to reverse or remove will depend on its effect
on active chains, including those between nodes not directly incident on the arc.
We note that this type of manual verification is standard in BN construction,
especially in data-poor domains. While the domain knowledge expressed in the
original AG has been exploited to construct an initial BN graph, additional
domain knowledge may need to be elicited to obtain a valid graph.

Proposition 3 gives an upper-bound on the number of parents introduced by
the approach for each node var(p) in a BN graph, which bounds both the size of
the CPTs and the complexity of inference in the BN. This bound captures the
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Fig. 3. Examples of AGs (a, c) for which a cyclic graph is constructed by steps 1−4a
of the generalized approach (b, d).

number of support arcs and undercutters that involve either proposition p or ¬p.
The proof of this result is straightforward and omitted due to space limitations.

Proposition 3. Let GA = (P,AA) be an AG, and let GB = (V,AB) be the
BN graph constructed according to steps 1−4a of the generalized approach. For
every p ∈ P, let Parp = {pi | pi ∈ Tails(s), s ∈ Sc ∪ So, head(s) = p}
and let Par′

p = {pi | pi ∈ Tails(s), s ∈ So, s is followed by maximal chain
s1, . . . , sm ∈ Se with head(sm) = p or head(sm) = ¬p}. Let Se

p be a subset of
Se, where s ∈ Se

p iff p ∈ Tails(s). Let Ue
p ⊆ U be the subset of undercutter arcs

directed to an s ∈ Se
p or s ∈ Se

¬p. Similarly, let Uc
p,U

o
p ⊆ U be the subsets of

undercutter arcs directed to an s ∈ Sc respectively So for which head(s) = p or
head(s) = ¬p. Then an upper-bound for the number of parents of var(p) is:

(1) |Parp| + |Par¬p| + |Par′
p| + |Uc

p| + |Uo
p | if Se

p = Se
¬p = ∅;

(2) |Parp| + |Se
¬p| + |Par′

p| + |Ue
p| + |Uc

p| + |Uo
p | if Se

p = ∅ and Se
¬p �= ∅;

(3) |Par¬p| + |Se
p| + |Par′

p| + |Ue
p| + |Uc

p| + |Uo
p | if Se

p �= ∅ and Se
¬p = ∅;

(4) |Se
p| + |Se

¬p| + |Ue
p| + |Uo

p | if Se
p �= ∅ and Se

¬p �= ∅.

5 Conclusion

In this paper, we have studied how domain knowledge expressed as labeled argu-
ments can be exploited to construct a BN graph. Firstly, we have generalized our
previously proposed approach [18] by allowing inference types that are neither
causal nor evidential. Moreover, we have formally proven that, as intended, our
approach captures all support chains in an AG in the form of active chains in
the BN graph. We have also identified conditions on AGs under which a DAG is
automatically constructed by the approach, simplifying the manual verification
step. Lastly, we have identified bounds on the size of the CPTs and the com-
plexity of inference in BNs constructed by our approach. All properties also hold
for the limited case considered in [18] but were not proven in that paper.

The generalized approach allows us to construct an initial BN graph from
a domain expert’s initial argument-based analysis, capturing similar reasoning
patterns as their original AG; it thereby simplifies the BN elicitation process.
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We note that BN construction is an iterative process in which both the domain
expert and BN modeler should stay involved; this also holds when applying our
approach, as the provided AG may be incomplete or incorrect. To aid in this
iterative process, approaches were proposed in related work which allow experts
to use argumentation to argue about the BN under construction instead of about
the domain [13,19]. In other related work, approaches for explaining the reason-
ing patterns captured in BNs in terms of argumentation were proposed [12,17],
which allow domain experts more accustomed to argumentation to understand
the probabilistic reasoning captured in a BN. Compared to the present paper,
this work is in the reverse direction, namely from BNs to arguments.

Recently, there has been much other work on probabilistic argumentation.
However, most approaches concern abstract argumentation (see e.g. [10] for an
overview) while we need structured arguments. Rienstra [16] considers proba-
bilistic structured argumentation; however, he takes what Hunter [9] calls the
constellations approach to probabilistic argumentation by considering uncer-
tainty in the existence of arguments. Instead, we take what Hunter calls the
epistemic approach to probabilistic argumentation by considering probabilities
to express uncertainty concerning the reliability of an argument’s inferences.
There is some work on the epistemic approach to probabilistic structured argu-
mentation (e.g. [9,15]). In future work, this may become relevant for deriving
probabilistic constraints on BNs.
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Abstract. The life cycle of Case-Based Reasoning (CBR) systems
implies the maintenance of their knowledge containers for reasons of
efficiency and competence. However, two main issues occur. First, knowl-
edge within such systems is full of uncertainty and imprecision since they
involve real-world experiences. Second, it is not obvious to choose from
the wealth of maintenance policies, available in the literature, the most
adequate one to preserve the competence towards problems’ solving. In
fact, this competence is so difficult to be actually estimated due to the
diversity of influencing factors within CBR systems. For that reasons,
we propose, in this work, an entire evaluating process that allows to
assess Case Base Maintenance (CBM) policies using information coming
from both a statistical measure and a competence model under the belief
function theory.

Keywords: Case-Based Reasoning · Case-Base Maintenance ·
Competence evaluation · Uncertainty · Belief function theory ·
Combination

1 Introduction

Case-Based Reasoning (CBR) is a methodology of problem solving that reuses
past experiences to solve new problems according to their similarities [1]. Every
new solved problem by a CBR system is retained in a memory structure called a
Case Base (CB) to serve for future problems resolution. Although the incremen-
tal learning of CBR systems presents a strong point, it is not free of drawbacks. In
fact, this evolution can be uncontrollable, caused by the retention of redundant
and noisy cases which conduct to the degradation of systems’ problem-solving
competence and performance. For those reasons, the Case Base Maintenance
(CBM) field presents the key factor’s success of CBR systems. As has been
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defined in [2], “Case-base maintenance implements policies for revising the orga-
nization or contents (representation, domain contents, accounting information,
or implementation) of the case base in order to facilitate future reasoning for
a particular set of performance objectives”. During the last five decades [4], a
wide range of CBM policies have been proposed, even in Machine Learning or
CBR communities, that aim to update CBs content in such a way to be per-
former and more competent to make high quality decisions. Different attempts
to classify them have been proposed in different papers [5,6,9,10]. One of the
simplest categorizations consists at regrouping CBM policies by their ability for
uncertainty management (hard and soft). Condensed Nearest Neighbor (CNN)
[11] and Reduced Nearest Neighbor (RNN) [12] present the baseline of the CB
maintenance task. For the soft CBM policies, less work have been proposed,
where two are implemented within the framework of the belief function theory
which are Evidential Clustering and case Types Detection for CBM (ECTD) [6]
and Dynamic policy for CBM (DETD) [13].

After performing a maintenance task, the question that arises is whether
the original CBR is better, tantamount, or worse than the maintained one. The
intuitive answer to this question is to measure the competence of the CB before
and after maintenance. Therefore, this allows us to estimate the support degree
of the CBM policy as well as its adequacy to be applied. However, estimating the
real competence of a given CBR system in problem-solving is a very complex task
since this competence depends on many affecting factors, such as statistical and
problem solving properties [3]. To deal with these problems, available research
are even measuring the accuracy of the CBR system using a statistical measure
[6,7] or estimating their competence using a competence model [3,8]. Some of
them are aware of the great importance of managing uncertainty within such
knowledge since they reflect real-world situations. Consequently, we aim, in this
work, to evaluate CBM policies by offering a support/adequacy degree through
combining information coming from an accuracy measure and a competence
model. To offer high quality aggregation with managing conflict within both
sources’ information, and to deal with uncertainty within case knowledge, we
use one among the most powerful tools for uncertainty management called the
belief function theory.

The rest of the paper is organized as follows. In the next section, we overview
the key factors that affect CBs competence and the two used ways for CBR eval-
uation. Section 3 presents, then, the basics of the belief function theory, as well
as the used tools. Throughout Sect. 4, our CBM evaluating process is detailed to
indicate the adequacy of the used CBM policy and estimate its support degree.
In Sect. 5, we elaborate the experimental study on different CBM policies and
using different CBs. Finally, Sect. 6 concludes the paper and proposes some future
work.

2 Case Base Competence Evaluation

The competence (or coverage) of a CBR system presents the range of problems
that it can successfully solve [3]. Actually, this criterion cannot be well estimated
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when we use a simple metric due to the diversity of influencing factors (Sub-
sect. 2.1). In the literature, this competence is even estimated using statistical mea-
sure such as the accuracy (Subsect. 2.2), or using some competence model such as
CEC-Model [14] (Subsect. 2.3).

2.1 Key Factors Affecting CBs Competence

Estimating the competence of a CBR system needs an awareness regarding the
set of elements that may affect it. Actually, we note that the statistical properties
of cases within a CB is highly influencing its ability in covering the problem
space. Besides, problem-solving properties are an intuitive influencing factor of
CBR systems competence. As done in [3,14], we can enumerate these factors
as follows: CB size∗, cases distribution∗, density of cases∗, cases vocabulary∗,
Similarity∗, and adaptation knowledge1.

2.2 Statistical Measures for CBR Evaluation

Some works mention that the precision or the accuracy presents a kind of true
competence [3] with some limitations. Actually, the competence of a CBR system
can be recognized as input problem solving capability with the right solutions.
The most common and straightforward practice consists at using a test set from
the original CB and applying a classification algorithm2 to solve problems. By
this way, we can estimate the competence of the CBR system using statistical
measures such as the accuracy as the percentage of correct classifications, the
specificity as the true negative rate, and others [15].

Actually, this kind of measures has to be taken into account when measuring
the competence of a CB. However, it is not sufficient since it does not cover
several affected factors. Hence, competence models are also used for this matter.

2.3 Competence Models for CBR Evaluation

Various competence models have been proposed to take into account different
influencing factors. For instance, we find Case Competence Categories Model [16]
which consists at dividing cases into four types so as to fix a maintenance strat-
egy to be followed. However, it is not able to tangibly and mathematically quan-
tify the global competence of the entire CB. Besides, we find Coverage model
based on Mahalanobis Distance and clustering [17], that uses a density-based
clustering method to distinguish three types of cases on which the overall CB
competence depends. However, we cannot well estimate this competence without
deeply studying the relation between cases. Although Smyth & McKenna model
[3] is able to deal with different influencing factors, it suffers from its disability
to manage the uncertainty within the real stored situations. Hence, the Cover-
age & Evidential Clustering based Model (CEC-Model) [14] has been proposed
in a preliminary work to tackle the problem of uncertainty management while
regrouping cases and measuring similarities. Its entire cycle is described in Fig. 1.
1 The factors identified with a star (∗) are taken into account in the current work.
2 The (k-NN) classifier is the most used within the CBR community.
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Fig. 1. CEC-Model’s process

By this way, we use the latter mentioned CEC-Model [14], and the accuracy
measure, during our proposed CBM evaluation process, where both of knowl-
edge uncertainty and information fusion are taken into account under the belief
function theory framework.

3 Belief Function Theory: Basic Concepts

The belief function theory [18,19], called also Evidence theory, is a mathematical
framework for reasoning under partial and unreliable knowledge. This model is
basically defined by a frame of discernment Ω which represents a set of a finite
elementary events. The major strength of this theory is its ability to model all
levels of uncertainty, from the complete ignorance to the total certainty, on a
power set 2Ω which contains all the possible subsets of Ω.

The key point of this theory is the basic belief assignment (bba) m which is
defined as follows:

m : 2Ω → [0, 1]
A �→ m(A)

(1)

with m is satisfying the following constraint:
∑

A⊆Ω

m(A) = 1 (2)

It aims at allocating to every set A ∈ 2Ω a degree of belief to represent the
partial knowledge about the actual value of y defined on Ω. A mass function is
normalized if it assigns to the empty set partition null degree of belief (m(∅) = 0).
Contrariwise, the assigned amount of belief to the empty set reflects the flexibility
to consider that the value of y may not belong to Ω. The latter situation has
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usually been used during the evidential clustering to identify noisy instances
[20,21], where the frame of discernment Ω defines the set of clusters.

Actually, we often need to calculate the distance between two mass functions
defined in the same frame of discernment. To do so, Jousselme Distance [22]
presents one among the most used tools to measure distances between two pieces
of evidence. It is defined as follows:

d(m1,m2) =

√
1
2
(−→m1 − −→m2)T D (−→m1 − −→m2) (3)

where D is a square matrix of size 2K (K = |Ω|), and its elements are calculated
such that:

D(A,B) =

{
1 if A = B = ∅
|A∩B|
|A∪B| otherwise (4)

In the framework of belief function theory, various combination rules of evi-
dence have been proposed. The conjunctive rule of combination [23] is one of the
most used ones to combine two pieces of evidence induced from two independent
and reliable sources of information. When the normality constraint (m(∅) = 0)
is imposed, we may use the Dempster rule of combination [18].

Ultimately, to make decision under the belief function theory, we may use
the pignistic probability transformation, denoted BetP , which is considered as
one of the best ways for decision making. If the mass function is normalized,
then BetP is defined as follows:

BetP (y) =
1

1 − m(∅)

∑

y∈A,A⊆Ω

m(A)
|A| (5)

where y ∈ Ω and |A| is the cardinality of the subset A ⊆ Ω.

4 Evidential CBM Evaluating Process

In this section, we propose an evaluation method for Case Base Maintenance
policies that aims to estimate their support/adequacy degree for a given CBR
system. Its main idea consists at combining two mass functions reflecting their
adequacy. These mass functions are deduced from the improvement degree of
competence, extracted respectively from the CEC-Model [14] and the accuracy
criterion before and after applying the CBM policy. For the sake of clarity, a
general depict of the proposed evaluating method is shown in Fig. 2.

4.1 Two-Level Original CBR Evaluation

First of all, we aim at measuring the competence of the original non-maintained
CBR system using both the evidential competence model CEC-Model [14] to
provide CompO and the accuracy criterion to provide AccO .
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Fig. 2. The proposed CBM evaluating process

CompO Estimation: The original CB denoted CBRO presents the input of
CEC-Model. As shown in Fig. 1, it applies the Evidential C-Means (ECM) [20] for
cases clustering, Jousselme Distance [22] (Eqs. 3 and 4) for similarity calculation,
and pignistic probability transformation (Eq. 5) for cases membership decision.
Finally, groups coverage and CB competence are estimated through the density
and size properties. The output result is bounded in [0, 1], where the more it is
near to 1 the more CBRO is considered as competent in solving problems.

AccO Estimation: The accuracy criterion is studied using 10-fold cross valida-
tion and the k-NN as a classifier (we chose to take k = 1). To be measured,
the original CB is divided into training set (Tr = 0.8 × CB) and test set
(Ts = 0.2 × CB), where Tr plays the role of the entire CB and Ts contains
the set of input problems to be solved from Tr. AccO is therefore calculated as
follows:

AccO =
#Correct Classifications on Ts

Size of Ts
(6)

4.2 Case Base Maintenance Application

After measuring the Original CB competence through the two previous identified
sources (competence model and accuracy criterion), we perform on CBRO the
CBM policy to be evaluated. Actually, the main purpose of CBM policies is to
detect the subset of cases that let a high problem-solving capability. In this step,
we may consider the applied policy as a black box and we only focus on its
input (CBRO) and output, which is the maintained CB (CBRM ). By this way,
any CBM policy, in the literature, may be applied at the aim to be evaluated,
thereafter, by our evaluating process.
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4.3 Two-Level Maintained CBR Evaluation

Once the CBM policy completes its execution, our next step consists at measur-
ing the edited CB competence using the same tools and settings as the first step
to generate CompM and AccM values.

CompM Estimation: As previously done, we evaluate the CB using the CEC-
Model, whereas that time it is applied to assess the maintained CB (CBRM )
and provide CompM between 0 and 1.

AccM Estimation: The testing strategy of the accuracy after the maintenance
task consists at dividing CBRO into training set Tr and test set Ts. Then, the
used CBM policy is applied on Tr to generate an edited training set TrM . Using
1-NN, the accuracy is measured through classifying Ts using TrM . Finally, AccM

is obtained by averaging ten trials values using 10-fold cross validation.

4.4 Extracting CBM Adequacy Knowledge from Statistical
Measure and Competence Model Independently

Up to now, we have four different competence estimation values (in [0, 1]) that
come from two sources: CEC-Model and Accuracy measure. The first is measur-
ing the competence of CBRO, and the second assesses the quality of the applied
CBM task through CBRM . During this step, we highlight the improvement of
CBRO against CBRM , in terms of both competence and accuracy. Therefore,
we define these two improvements (ImpComp and ImpAcc) as follows:

ImpComp = CompM − CompO (7)

and
ImpAcc = AccM − AccO (8)

Knowing that their offered values are in [−1, 1], three distinguished situations
arise regarding Impx, where x replaces even Comp or Acc terms:

– If Impx � 1, then a high degree of adequacy is assigned to the applied CBM
policy for the CBR system.

– If Impx � −1, then the used CBM policy is not adequate at all for the CBR
system.

– If Impx � 0, then we have no preference regarding the maintenance task.

4.5 Knowledge Combination Under the Belief Function Theory

Based on the situations mentioned above, we build two mass functions on the
same frame of discernment which contains two events. The first consists at indi-
cating that the CBM policy is adequate to be applied on a given CBR system,
and the second presents its complementary event. Hence, this frame is defined
as follows:

Ω = {Adequate,Adequate} (9)
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By this way, the mass functions, defined on Ω, indicates the evaluation of
the CBM policy. The first mComp describes the knowledge coming from the
improvement in terms of competence, and the second mAcc informs the knowl-
edge originated by the improvement in terms of accuracy. Consequently, we
similarly define them as follows:

mComp

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

mComp(∅) = 0

mComp(Adequate) =
{

ImpComp If ImpComp ≥ 0
0 Otherwise

mComp(Adequate) =
{ |ImpComp| If ImpComp < 0

0 Otherwise
mComp(Ω) = 1 − |ImpComp|

(10)

and

mAcc

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

mAcc(∅) = 0

mAcc(Adequate) =
{

ImpAcc If ImpAcc ≥ 0
0 Otherwise

mAcc(Adequate) =
{ |ImpAcc| If ImpAcc < 0

0 Otherwise
mAcc(Ω) = 1 − |ImpAcc|

(11)

Obviously, knowledge obtained from each source is not perfect. Hence, their
aggregation presents an interesting solution to reach more relevant information.
For that reason, we opt to synthesize the knowledge obtained in mComp and mAcc

by combining them using tools offered within the evidence theory. Since mComp

and mAcc present normalized mass functions that are defined in the same frame
of discernment Ω and induced from two distinct information sources, which are
considered to be reliable, we use the conjunctive rule of combination defined in
[23] as follows:

(mComp ∩ mAcc)(C) =
∑

A∩B=C

mComp(A)mAcc(B), ∀C ⊆ Ω (12)

In the current work, we are not interested in making decision regarding
whether the applied CBM policy is adequate or not, but we aim to estimate
the adequacy support degree for the applied maintenance task. To do, we inter-
pret this rate as the pignistic probability of the event “Adequate”. Consequently,
we measure this probability using Eq. 5 in such a way that:

CBM support degree = BetP (Adequate) (13)

5 Experimentation

The following experiments aim at projecting our proposal on the maintenance
field within CBR systems and use it to evaluate this CBM policies adequacy. In
this section, we present used data and the followed settings during implementa-
tion and tests (Subsect. 5.1). Offered results and discussion are then provided in
Subsect. 5.2.
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5.1 Experimental Setup

Our proposed evaluating process of the current work have been tested on five case
bases from UCI Machine Learning Repository3 to assess CBM policies available
in the literature. These datasets are described in Table 1 in term of size, number
of problems attributes, and number of classes or solutions.

Table 1. Case bases description

Case base # instances # attributes # solutions

1 Breast Cancer 569 32 2

2 Glass 214 9 6

3 Ionosphere 351 34 2

4 Indian 583 10 2

5 Sonar 208 60 2

For every CB, we estimate the support maintenance degree of four CBM
policies. We have chosen CNN [11] and RNN [12] as the most widely used CBM
algorithms, as well as ECTD [6] and DETD [13] as the two existing CBM policies
under the belief function theory. These methods have been developed according
to their default settings as described in their referenced papers.

5.2 Results and Discussion

As regards to the study of results offered, in Table 2, by our proposed evaluating
process, some particular situations should be pointed out. If the offered support
degree is equal to 50%, then the applied CBM method was able to retain exactly
the initial competence of the CBR system. The amount above 50 represents the
capability rate of the CBM policy to improve that competence. Therefore, the
higher this value, the more the CBM policy is adequate to be applied. On the
contrary, the amount below 50 reflects the amount of competence degradation
after maintenance. In Table 2, we note that almost all the offered CBM support
degrees are in [40, 60], which means that performed CBM policies slightly reduce
or improve the CBR competence in problem-solving. Nevertheless, we remark
that CNN and RNN algorithms are not adequate to be applied on some CBs
such as “Ionosphere” and “Glass” datasets (25.74% and 29.98% with CNN,
and 17.95% and 29.98% with RNN). In our sense, we may tolerate values in
[45, 50] if other evaluation criteria are improved such as CBR performance and
response time4. Ultimately, we note that the ECTD policy is the most supported
CBM method to be applied on the different tested CBs, where it offers support
values equal to 57.27% with “Breast Cancer”, 50.84% with “Glass”, 47.66% with
3 https://archive.ics.uci.edu/ml/.
4 Forthcoming research work will carry out with other evaluation criteria.

https://archive.ics.uci.edu/ml/
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“Ionosphere”, 50.68% with “Indian”, and 50.78% with “Sonar”. These values
indicate that maintenance task applied by ECTD improves the performance of
almost all the original tested CBs.

Table 2. Support degree results of some CBM policies applied on some CBs

CB CBM CompO (%) CompM (%) AccO (%) AccM (%) CBM support degree (%)

Cancer CNN 83.44 81.52 59.39 71.45 55.08

RNN 83.44 82.11 59.39 71.45 55.37

ECTD 83.44 83.12 59.39 74.25 57.27

DETD 83.44 83.06 59.39 70.12 55.18

Glass CNN 55.86 54.24 87.38 48.33 29.98

RNN 55.86 54.24 87.38 48.33 29.98

ECTD 55.86 55.18 87.38 89.75 50.84

DETD 55.86 54.26 87.38 73.81 42.52

Ionosphere CNN 93.86 69.74 86.61 54.46 25.74

RNN 93.86 68.88 86.61 34.46 17.95

ECTD 93.86 89.17 86.61 86.61 47.66

DETD 93.86 88.72 86.61 77.53 43.12

Indian CNN 74.22 72.12 65.26 61.88 47.30

RNN 74.22 71.03 65.26 61.75 46.71

ECTD 74.22 73.68 65.26 67.15 50.68

DETD 74.22 70.13 65.26 59.87 47.05

Sonar CNN 78.11 73.87 81.28 64.22 39.71

RNN 78.11 72.96 81.28 62.85 39.63

ECTD 78.11 76.32 81.28 84.62 50.78

DETD 78.11 76.01 81.28 78.55 47.31

6 Conclusion

In this paper, a process for evaluating Case Base Maintenance policies is pro-
posed. Its main idea consists at applying a given CBM policy and measuring
the CB competence before and after maintenance using both of an evidential
competence model and the statistical accuracy measure. The output of these
two sources are modeled and aggregated within the belief function framework
to offer a high-quality CBM support degree estimation. During the experimen-
tation, this process has been performed on different CBM policies and using
different datasets. As future work, we opt to intervene on the opposite sense by
setting parameters of some CBM policies at the aim of maximizing the support
degree offered by the proposed evaluation process.
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Abstract. A hidden conflict of belief functions in the case where the
sum of all multiples of conflicting belief masses being equal to zero
was observed. To handle that, degrees of non-conflictness and full non-
conflictness are defined. The family of these degrees of non-conflictness is
analyzed, including its relation to full non-conflictness. Further, mutual
non-conflictness between two belief functions accepting internal con-
flicts of individual belief functions are distinguished from global non-
conflictness excluding both mutual conflict between belief functions and
also all internal conflicts of individual belief functions. Finally, both the-
oretical and computational issues are presented.
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1 Introduction

When combining belief functions (BFs) by the conjunctive rules of combination,
some conflicts often appear (they are assigned either to ∅ by non-normalised
conjunctive rule ∩© or distributed among other belief masses by normalization in
Dempster’s rule of combination ⊕). Combination of conflicting BFs and inter-
pretation of their conflicts are often questionable in real applications.

Sum of all multiples of conflicting belief masses (denoted by m ∩©(∅)) was
interpreted as a conflict between BFs in the classic Shafer’s approach [19]. Nev-
ertheless, non-conflicting BFs with high m ∩©(∅) have been observed already in
90’s examples. Classification of a conflict is very important in the combination
of BFs from different belief sources. Thus a series of papers related to conflicts
of BFs was published, e.g. [1,6,7,10,11,13–15,18,21].
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A new interpretation of conflicts of belief functions was introduced in [4]:
an important distinction of an internal conflict of individual BF (due to its
inconsistency) from a conflict between two BFs (due to conflict/contradiction
of evidence represented by the BFs). Note that zero-sum of all multiples of
conflicting belief masses m ∩©(∅) is usually considered as non-conflictness of the
belief functions in all the above mentioned approaches.

On the other hand, when analyzing the conflict between BFs based on their
non-conflicting parts1 [7] a positive value of conflict was observed even in a sit-
uation when the sum of all multiples of conflicting belief masses equals to zero.
The observed conflicts—hidden conflicts [9]—are against the generally accepted
classification of BFs, i.e. to be either mutually conflicting or mutually non-
conflicting. Above that, different “degrees” of non-conflictness were observed.
This also arose a question of what is a sufficient condition for full non-conflictness
of BFs.

Section 5 presents the entire family of “non-conflictness” of different degrees
between m ∩©(∅) = 0 and a full non-conflictness. Results for both general BFs
and special classes of BFs are included. Relations to other approaches to non-
conflictness are analysed in Sect. 6. Further computational complexity and other
computational aspects are presented in Sect. 7.

2 Preliminaries

We assume classic definitions of basic notions from theory of belief functions
[19] on finite exhaustive frames of discernment Ωn = {ω1, ω2, ..., ωn}. P(Ω) =
{X|X ⊆ Ω} is a power-set of Ω.

A basic belief assignment (bba) is a mapping m : P(Ω) −→ [0, 1] such that∑
A⊆Ω m(A) = 1; the values of the bba are called basic belief masses (bbm).

m(∅) = 0 is usually assumed.
A belief function (BF) is a mapping Bel : P(Ω) −→ [0, 1], such that

Bel(A) =
∑

∅�=X⊆A m(X). A plausibility function Pl : P(Ω) −→ [0, 1], Pl(A) =∑
∅�=A∩X m(X). Because there is a unique correspondence among m and corre-

sponding Bel and Pl, we often speak about m as of a belief function.
A focal element is a subset of the frame of discernment X ⊆ Ω, such that

m(X) > 0; if X � Ω then it is a proper focal element. If all focal elements are
singletons (i.e. one-element subsets of Ω), then we speak about a Bayesian belief
function; in fact, it is a probability distribution on Ω. If there are only focal
elements such that |X| = 1 or |X| = n we speak about quasi-Bayesian BF. In
the case of m(Ω) = 1 we speak about vacuous BF and about a non-vacuous BF
otherwise. In the case of m(X) = 1 for X ⊂ Ω we speak about categorical BF.
If all focal elements have a non-empty intersection, we speak about a consistent
BF; and if all of them are nested, about a consonant BF.

Dempster’s (normalized conjunctive) rule of combination ⊕: (m1 ⊕
m2)(A) =

∑
X∩Y =A Km1(X) m2(Y ) for A �= ∅, where K = 1

1−κ , κ =

1 Conflicting and non-conflicting parts of belief functions originally come from [5].
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∑
X∩Y =∅ m1(X)m2(Y ), and (m1 ⊕ m2)(∅) = 0, see [19]. Putting K = 1 and

(m1 ∩©m2)(∅) = κ = m ∩©(∅) we obtain the non-normalized conjunctive rule of
combination ∩©, see e.g. [20].

Smets’ pignistic probability is given by BetP (ωi) =
∑

ωi∈X⊆Ω
1

|X|
m(X)

1−m(∅) , see
e.g. [20]. Normalized plausibility of singletons2 of Bel is a probability distribu-
tion Pl P such that Pl P (ωi) = Pl({ωi})∑

ω∈Ω Pl({ω}) [2,3]. Sometimes we speak about
pignistic and plausibility transform of respective BF.

3 Conflicts of Belief Functions

Original Shafer’s definition of the conflict measure between two belief functions
[19] is the following: κ =

∑
X∩Y =∅ m1(X)m2(Y ) = (m′ ∩©m′′)(∅) = m ∩©(∅), more

precisely its transformation log(1/(1 − κ)).
After several counter-examples, W. Liu’s approach [14] appeared in 2006

followed by a series of other approaches and their modifications. W. Liu suggested
a two-dimensional conflict measure composed from m ∩©(∅) and DifBetPmi

mj
—a

maximal difference of BetP (ω) for mi,mj over singletons ω ∈ Ω (as kind of a
distance); as it was shown, neither m ∩©(∅) nor any distance of BFs alone may
be used as a convenient measure of conflict of BFs.

Further, we have to mention two axiomatic approaches to conflict of BFs
by Desterke and Burger [11] and by Martin [15]. In 2010, Daniel distinguished
internal conflict inside an individual BF from the conflict between them [4] and
defined three new approaches to conflict; the most prospective of them - plausi-
bility conflict - was further elaborated in [6,10]. Finally, Daniel’s conflict based
on non-conflicting parts of BFs was introduced in [7]. This last-mentioned mea-
sure motivated our research of hidden conflict [9], hidden auto-conflict [8] and
also current research of degrees of non-conflictness.

Among the other approaches, we can mention e.g. Burger’s geometric app-
roach [1].

A conflict of BFs Bel′, Bel′′ based on their non-conflicting parts Bel′0, Bel′′0
is defined by the expression Conf(Bel′, Bel′′) = (m′

0 ∩©m′′
0)(∅), where non-

conflicting part Bel0 (of a BF Bel) is unique consonant BF such that Pl P0 =
Pl P (normalized plausibility of singletons corresponding to Bel0 is the same
as that corresponding to Bel); m0 is a bba related to Bel0. For an algorithm to
compute Bel0 see [7].

This measure of conflict analogously to Daniel’s approaches from [4] does not
include internal conflict of individual BFs in conflict between them. Similarly to
plausibility conflict, it respects plausibilities equivalent to the BFs; and it better
generalises the original idea to general frame of discernment.

2 Plausibility of singletons is called contour function by Shafer in [19], thus Pl P (Bel)
is a normalization of contour function in fact.



128 M. Daniel and V. Kratochv́ıl

4 Hidden Conflict

Example 1. Introductory example: Let us assume two simple consistent belief
functions Bel′ and Bel′′ on Ω3 = {ω1, ω2, ω3} given by the bbas m′({ω1, ω2}) =
0.6, m′({ω1, ω3}) = 0.4, and m′′({ω2, ω3}) = 1.0.

For the better understanding of the problem, see Fig. 1: The only focal
element of m′′ has a non-empty intersection with both focal elements of m′,
thus

∑
(X∩Y )=∅ m′(X)m′′(Y ) = (m′ ∩©m′′)(∅) is an empty sum. Considering

the conflict based on non-conflicting parts, respective consonant BFs with the
same plausibility transform has to be found. Because Bel′′ is consonant then
Bel′′0 = Bel′′, m′′

0 = m′′. In case of m′ we can easily calculate that Pl′({ω1}) = 1,
Pl′({ω2}) = 0.6, Pl′({ω3}) = 0.4, thus m′

0({ω1}) = 0.4, m′
0({ω1, ω2}) = 0.2,

m′
0({ω1, ω2, ω3}) = 0.4, hence Conf(Bel′, Bel′′) = (m′

0 ∩©m′′
0)(∅) = m′

0({ω1})·
m′′

0({ω2, ω3}) = 0.4 · 1 = 0.4. Let us recall that the computational algorithm has
been published in [7]—we are not putting it here because of the lack of space.

∩
=

Fig. 1. Introductory Example: focal elements of m′, m′′, and of m′ ∩© m′′.

Then (m′ ∩©m′′)(∅) = 0. This seems—and it is usually considered—to be a
proof of non-conflictness of m′ and m′′. Nevertheless, the conflict based on non-
conflicting parts Conf(Bel′, Bel′′) = (m′

0 ∩©m′′
0)(∅) = 0.4 > 0 (which holds true

despite of Theorem 4 from [7] which should be revised in future).

Observation of a Hidden Conflict in Example 1

The following questions arise: Does (m′ ∩©m′′)(∅) = 0 represent non-conflictness
of respective BFs as it is usually assumed? Is the definition of conflict based
on non-conflicting parts correct? Are m′ and m′′ conflicting? What does
(m′ ∩©m′′)(∅) = 0 mean?

For the moment, suppose that Bel′ and Bel′′ are non-conflicting. Thus both
of them should be non-conflicting with the result of their combination as well.
Does it hold for BFs from Example 1? It does if one combines m′ ∩©m′′ with
m′′ one more time (assuming two instances of m′′ coming from two inde-
pendent belief sources). It follows from the idempotency of categorical m′′:
m′ ∩©m′′ ∩©m′′ = m′ ∩©m′′ and therefore (m′ ∩©m′′ ∩©m′′)(∅) = 0 again. On the other
hand, we obtain positive (m′ ∩©m′′ ∩©m′)(∅) = (m′ ∩©m′ ∩©m′′)(∅) = 0.48 (assuming
m′ coming from two independent belief sources again). See Table 1 and Fig. 2.
When m′′ and m′ are combined once, then we observe m ∩©(∅) = 0. When com-
bining m′′ with m′ twice then m ∩©(∅) = 0.48. We observe some kind of a hidden
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conflict. Moreover, because both individual BFs are consistent, there are no
internal conflicts. Thus our hidden conflict is a hidden conflict between the BFs
and we have an argument for correctness of positive value of Conf(Bel′, Bel′′).

Table 1. Hidden conflict in the introductory example

X {ω1} {ω2} {ω3} {ω1, ω2} {ω1, ω3} {ω2, ω3} {ω1, ω2, ω3} ∅
m′(X) 0.0 0.0 0.0 0.60 0.40 0.00 0.00 –

m′′(X) 0.0 0.0 0.0 0.00 0.00 1.00 0.00 –

(m′ ∩©m′′)(X) 0.00 0.60 0.40 0.00 0.00 0.00 0.00 0.00

(m′ ∩©m′′ ∩©m′′)(X) 0.00 0.60 0.40 0.00 0.00 0.00 0.00 0.00

(m′ ∩©m′′ ∩©m′)(X) 0.00 0.36 0.16 0.00 0.00 0.00 0.00 0.48

(m′ ∩©m′′ ∩©m′ ∩©m′′)(X) 0.00 0.36 0.16 0.00 0.00 0.00 0.00 0.48

∩ ∩ = ∩ = ∅and

Fig. 2. Arising of a hidden conflict between BFs in the Introductory Example: focal
elements of m′, m′, m′′—m′ ∩© m′, m′′ and of (m′ ∩© m′) ∩© m′′.

What is a decisional interpretation of our BFs? Since contours (plausibilities
of singletons) are Pl′ = (1.0, 0.6, 0.4) and Pl′′ = (0.0, 1.0, 1.0), then by normal-
ization we obtain Pl P ′ = (0.5, 0.3, 0.2) and Pl P ′′ = (0.0, 0.5, 0.5). This can
be interpreted in a way that ω1 is significantly preferred by Bel′, while it is the
opposite in case of Bel′′. This is also an argument for a positive value of mutual
conflict of the BFs.

Note that in this special case, Smets’ pignistic transform and plausibil-
ity transform lead to the same result. We obtain BetP ′ = (0.5, 0.3, 0.2) and
BetP ′′ = (0.0, 0.5, 0.5). Both the probabilistic approximations BetP and Pl P
(in general different) give the highest value to a different singleton for Bel′ and
Bel′′. Thus the argument for mutual conflictness of the BFs is strengthened
and we obtain the same pair of incompatible decisions based on the BFs in
both frequent decisional approaches: using either normalized contour (which is
compatible with the conjunctive combination of BFs) or pignistic probability
(designed for betting).

Hence (m′ ∩©m′′)(∅) does not mean real non-conflictness of the BFs. It means
simple or partial compatibility of their focal elements only. Or we can accept it
as some weak version of non-conflictness.
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5 Degrees of Non-conflictness

A case of a hidden conflict could be seen in the introductory example: Note that
the example describes a situation when (m′ ∩©m′′)(∅) = 0 while (m′ ∩©m′ ∩©m′′
∩©m′′)(∅) > 0. I.e. there is some type of non-conflictness, but weak as both
Conf(m′,m′′) > 0 and (m′ ∩©m′ ∩©m′′ ∩©m′′)(∅) > 0.

Thus the following question arises now: Is (m′ ∩©m′ ∩©m′′ ∩©m′′)(∅) = 0 suffi-
cient for full non-conflictness of belief functions? The answer is of course “no”.

Example 2. Little Angel example: Assume for example the following bbas
defined over Ω5 = {ω1, . . . , ω5}—as described in Table 2 (the example and its
title comes from [9], the title is inspired by graphical visualization of respective
focal elements structure).

Table 2. Little Angel Example

X A = {ω1, ω2, ω5} B = {ω1, ω2, ω3, ω4} C = {ω1, ω3, ω4, ω5} D = {ω2, ω3, ω4, ω5}
m′(X) 0.10 0.30 0.60 0.00

m′′(X) 0.00 0.00 0.00 1.00

Indeed, while we can observe both (m′ ∩©m′′)(∅) = 0 and (m′ ∩©m′′ ∩©m′
∩©m′′)(∅) = 0 here, note that (m′ ∩©m′ ∩©m′ ∩©m′′ ∩©m′′ ∩©m′′)(∅) = 0.108 > 0, which
witnesses some kind of a hidden conflict again. Nevertheless, one can feel that the
degree of the non-conflictness is higher than in the case described by Example 1.

To make our findings more formal, note that due to associativity and commu-
tativity of conjunctive combination rule ∩© we can write (m′ ∩©m′ ∩©m′ ∩©m′′ ∩©m′′

∩©m′′)(∅) = ((m′ ∩©m′′) ∩©(m′ ∩©m′′) ∩©(m′ ∩©m′′))(∅) = ( ∩©3
i=1(m

′ ∩©m′′))(∅). Thus,
in case of Example 2, one can say that while m ∩©(∅) = ( ∩©1

1(m
′ ∩©m′′))(∅) =

( ∩©2
1(m

′ ∩©m′′))(∅) = 0, there is ( ∩©3
1(m

′ ∩©m′′))(∅) = 0.108 > 0. See Table 3.

Table 3. Hidden conflict in the Little Angel Example—Example 2

X A ∩ D B ∩ D C ∩ D A ∩ B ∩ D A ∩ C ∩ D B ∩ C ∩ D ∅
(m′ ∩©m′′)(X) 0.10 0.30 0.60 0.00 0.00 0.00 0.00

( ∩©2
1 (m′ ∩©m′′))(X) 0.01 0.09 0.36 0.06 0.12 0.36 0.00

( ∩©3
1 (m′ ∩©m′′))(X) 0.001 0.027 0.216 0.036 0.126 0.486 0.108

Definition 1. (i) Let Bel′ and Bel′′ be BFs defined by bbms m′ and m′′. We
say that the BFs are non-conflicting in k-th degree if ( ∩©k

1(m
′ ∩©m′′)(∅) = 0.

(ii) BFs Bel′ and Bel′′ are fully non-conflicting if they are non-conflicting in
any degree.
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Thus we can say that BFs from Table 2 are non-conflicting in the second
degree, nevertheless, they are still conflicting in the third degree due to the
observed hidden conflict.

Utilizing our results on hidden conflicts we obtain the following theorem.

Theorem 1. Any two BFs on n-element frame of discernment Ωn non-
conflicting in the n-th degree are fully non-conflicting.

Idea of the Proof: When combining two conflicting BFs defined over Ωn repeat-
edly then, because of set intersection operator properties, we either obtain the
least focal element of a cardinality lower than in the previous step, or a stable
structure of focal elements as the least focal element is already contained in all
others. Hence the empty set will appear as a focal element either in n steps or
it will not appear at all.

The theorem offers an upper bound for a number of different degrees of non-
conflictness of BFs. If a pair of BFs is non-conflicting in n-th degree then it
is non-conflicting in any degree. Note that it is possible to find a pair of BFs
non-conflicting in (n − 2)-th degree but conflicting in (n − 1)-th degree, as it is
shown in the general example below.

Example 3. Assume n-element Ωn and BFs mi and mii are given by:

mi({ω1, ω2, ..., ωn−1}) = 1
n−1 ,

mi({ω1, ω2, ..., ωn−2, ωn}) = 1
n−1 ,

mi({ω1, ω2, ..., ωn−3, ωn−1, ωn}) = 1
n−1 ,

. . .,
mi({ω1, ω3, ω4, ..., ωn}) = 1

n−1 , and
mii({ω2, ω3, ..., ωn}) = 1.

There is ( ∩©k
1(m

i ∩©mii))(∅) = 0 for k ≤ n − 2, ( ∩©2
1(m

i ∩©mii))(∅) = 0.5 on Ω3

and e.g. ( ∩©15
1 (mi ∩©mii))(∅) = 2.98 · 10−6 on Ω16.

Following the proof of Theorem 1, we can go further in the utilization of
results on hidden conflicts and obtain the following theorem, which decreases
the number of different degrees of BFs.

Theorem 2. Any two non-vacuous BFs on any finite frame of discernment non-
conflicting in degree c are fully non-conflicting for c = min(c′, c′′)+|sgn(c′−c′′)|,
where c′, c′′ are maximal cardinalities of proper focal elements of BFs Bel′, Bel′′

and sgn() stands for signum.

Idea of Proof. The smaller is the maximal cardinality of a proper focal element
the faster an empty set—as a result of repeated combination of the BFs—may
appear.

Corollary 1. (i) There is only one degree of non-conflictness of any BFs on
any two-element frame of discernment Ω2. In the other words, all degrees of
non-conflictness of BFs are equivalent on any two-element frame Ω2.
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(ii) There is only one degree of non-conflictness of any quasi-Bayesian BFs on
any finite frame of discernment Ωn.

(iii) There are at most two different degrees of non-conflictness of a quasi-
Bayesian BF an any other BF on any finite frame of discernment Ωn.

6 Relation to Other Approaches to Non-conflictness

6.1 Degrees of Non-conflictness and Conf = 0.

We have described that there are n − 1 different degrees of non-conflictness on
Ωn in the previous section. Besides that, we can observe also different types of
non-conflictness. Note that (m′ ∩©m′′)(∅) = 0 and Conf(m′,m′′) > 0 in both
Examples 1 and 2. On the other hand, the opposite situation can be found—as
follows:

Example 4. Let us recall W. Liu’s Example 2 from [14] on Ω5 where mi({ωj}) =
0.2 for i = 1, 2 and j = 1, 2, . . . , 5 and mi(X) = 0 otherwise (i.e. Bayesian bbas
corresponding to uniform probability distributions). Note that while Conf(Bel1,

Bel2) = 0, then (m1 ∩©m2)(∅) = 0.8 and ( ∩©k
1(m1 ∩©m2))(∅) > 0.8 for any k > 1.

Specifically, 0.9922, 0.99968, . . ..

Example 5. Similarly, we can present more general example on frame Ωn for an
arbitrary n ≥ 3 – see Table 4.

Table 4. BFs from Example 5

X {ω1} {ω2} {ω1, ω2} Ω ∅
mi(X) 0.4 0.2 0.2 0.2 –

mii(X) 0.3 0.1 0.1 0.5 –

(mi ∩©mii)(X) 0.48 0.18 0.14 0.10 0.10

( ∩©2
1(m

i ∩©mii))(X) 0.4608 0.1188 0.0476 0.0100 0.3628

Our n − 1 degrees of non-conflictness are related to conjunctive combination
of BFs, it covers general/global non-conflictness. If ( ∩©k

1(m
′ ∩©m′′))(∅) = 0 hold

for any k < n then there is neither internal conflict of any of individual BFs nor
a mutual conflict between the two BFs. On the other hand, Conf(m′,m′′) = 0
is related only to mutual conflict between the BFs. Indeed, both the BFs in
Example 4 are identical. There is no mutual conflict between them, but both
of them are highly internally conflicting. Therefore there is also high conflict
( ∩©k

1(m1 ∩©m2))(∅) for any k.
In Example 5 (Table 4), there are two different BFs with the same order of

bbms of proper focal elements. Their ∩© combination has the same order of bbms
as well. Thus, there is no mutual conflict between them, but, there is an internal
conflict inside both of them. We can obtain analogous results also in the case
when the internal conflict is hidden in only one of the BFs.



Belief Functions and Degrees of Non-conflictness 133

6.2 A Comparison of the Approaches

From the above examples, we can simply see that the 1-st degree of non-
conflictness is not comparable with Conf(m′,m′′) = 0.

A relation of the other degrees of non-conflictness to Conf(m′,m′′) = 0 is an
open issue for further investigation. We can only see that full non-conflictness
is stronger than Conf(m′,m′′) = 0. This is nicely illustrated by the follow-
ing theorem. We can also see the full non-conflictness is equivalent to strong
non-conflictness and that the 1-st degree of non-conflictness is equivalent to
non-conflictness both from Destercke & Burger approach [11]. A relation of
Conf(m′,m′′) = 0 to Destercke & Burger approach is also an open problem
for future.

Theorem 3. (i) Non-conflictness of the 1-st degree is equivalent to Destercke-
Burger non-conflictness ((m1 ∩©m2)(∅) = 0, see [11]).

(ii) Full non-conflictness is equivalent to Destercke-Burger strong non-
conflictness (non-empty intersection of all focal elements of both BFs, see
[11]).

(iii) If BFs m′ and m′′ are fully non-conflicting then Conf(m′,m′′) = 0 as well.

Idea of Proof:

(i) The first statement just follows the definition of the of the 1-st degree of
non-conflictness.

(ii) Computing ∩©n
1 (m′ ∩©m′′), the intersection of all focal elements of both the

BFs appears among the resulting focal elements.
(iii) The intersection of all focal elements of both the BFs is non-empty in the

case of full non-conflictness. Thus the intersection of sets of elements with
maximal plausibility is non-empty.

7 Computational Complexity and Computational
Aspects

When looking for maximal degree of non-conflictness m of two BFs Beli and
Belii on general frame of discernment Ωn we need to compute ∩©m

1 (mi ∩©mii).
Following Theorem 1, we know that m ≤ n. Based on this we obtain complexity
O(n) of ∩© operations. Analogously to the case of complexity of looking for hidden
conflict [9] we can reduce the complexity to O(log2(n)) of ∩© operations utiliz-
ing a simplification of computation based on ∩©2k

j=1(m
i ∩©mii) = ∩©k

j=1(m
i ∩©mii)

∩© ∩©k
j=1(m

i ∩©mii). Note that the complexity of ∩© operation depends on the num-
ber and the structure of focal elements. Utilizing Theorem 3 we can go further
in reduction of computational complexity to O(n) of intersection operations ∩.

Beside theoretical research of properties degrees of non-conflictness we have
also performed a series of example computations on frames of discernment of
cardinality from 5 to 16. A number of focal elements rapidly grows up to
|P(Ω)| = 2|Ω| − 1 when conjunctive combination ∩© is repeated. Note that
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there are 32.766 and 32.767 focal elements on Ω16 in Example 3. Because the
conflictness/non-conflictness of BFs depends on the number and the structure of
their focal elements not on their bbms, we have frequently used same bbms for
all focal elements of BFs in our computations on frames of cardinality greater
than 10.

All our experiments were performed in Language R [16] using R Studio [17].
We are currently developing an R package for dealing with belief functions on
various frames of discernment. It is based on a relational database approach -
nicely implemented in R, in a package called data.table [12].

8 An Important Remark

Repeated applications of the conjunctive combination ∩© of a BF with itself
is used here to simulate situations where different independent believers have
numerically the same bbm. Thus this has nothing to do with idempotent belief
combination (where, of course, no conflict between two BFs is possible).

Our study was motivated by the investigation of conflict Conf of BFs based
on their non-conflicting parts [7], thus we were interested in independent BFs
when a hidden conflict was observed. But we have to note that conflictness/non-
conflictness of BFs has nothing to do with dependence/independence of the
BFs. Repeated computation of several (up to n) numerically identical BFs, when
looking for hidden conflict is just a technical tool for computation of m(∅) or
more precisely say for computation of κ =

∑
X∩Y =∅ mj(X)mj(Y ). We are not

interested in entire result of repeated application of ∩©, we are interested only in
m ∩©(∅) or, more precisely, in κ =

∑
X1∩X2∩...∩Xk=∅ mj(X1) mj(X2)...mj(Xk).

Thus our computation has nothing to do with any idempotent combination of
BFs. We can look for non-conflictness of higher degrees using ∩©k

1 (or κ) in the
same way for both dependent and independent BFs. It is also not necessary to
include any independence assumption in Definition 1.

9 Summary and Conclusion

Based on existence and observation of hidden conflicts (when the sum of all multi-
ples of conflicting belief masses is zero) a family of degrees of non-conflictness has
been observed. Number of non-equivalent/different degrees of non-conflictness
depends on the size of the corresponding frame of discernment.

Maximal size of degrees of non-conflictness is n − 1 for belief functions on
a general finite frame of discernment Ωn. Nevertheless, for special types of BFs
or for particular BFs, a size of the family may be reduced in accordance to the
sizes of the focal elements of the BFs in question. The highest degree of non-
conflictness (different from lower ones) is equivalent to full non-conflictness and
also to strong non-conflictness defined by Destescke and Burger [11]. The family
of non-conflictness is further compared with non-conflictness given by Daniel’s
Conf(Beli, Belii) = 0 [7].
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The presented approach to non-conflictness includes both the internal non-
conflictness of individual BFs and also mutual non-conflictness between them.

Presented theoretical results move us to a better understanding of the nature
of belief functions in general. Due to the important role of conflictness/non-
conflictness of BFs within their combination, the presented results may conse-
quently serve as a basis for a better combination of conflicting belief functions
and better interpretation of the results of belief combination whenever conflicting
belief functions appear in real applications.
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Abstract. The paper introduces a new approach to constructing mod-
els exhibiting the ambiguity aversion. The level of ambiguity aversion
is described by a subjective parameter from the unit interval with the
semantics: the higher the aversion, the higher the coefficient. On three
examples, we illustrate the approach is consistent with the experimental
results observed by Ellsberg and other authors.

Keywords: Belief function · Credal set · Probability transform ·
Decision-making · Vagueness

1 Introduction

It is well known, and it has also been confirmed by our experiments that people
prefer lotteries, in which they know the content of a drawing drum to situations
when the constitution of the drum’s content is unknown. In our experiments, the
participants were asked to choose one from six predetermined colors and they got
the prize when the color of a randomly drawn ball coincided with their choice.
It appeared that the participants were willing to pay in average by 90% more to
take part in games when they knew that the urn contained the same number of
balls of all six colors in comparison with the situation when they knew only that
the urn contained balls of the specified colors and their proportion was unknown.
This well known, seemingly paradoxical phenomenon, can hardly be explained
by different subjective utility functions or by different subjective probability
distributions. To explain this fact, we accepted a hypothesis that humans do not
use their personal probability distributions but just capacity functions that do
not sum up to one [13]. Roughly speaking, the subjective probability of drawing
a red ball is 1

6 in the case that the person knows that all colors are in the same
amount in the drum. However, the respective “subjective probability” in the case
of lack of knowledge is ε < 1

6 . The lack of knowledge psychologically decreases
the subjective chance of drawing the selected color – it decreases the subjective
chance of success.

This paper is one of many studying the so-called ambiguity aversion, which
is used to model the fact that human behavior violates Savage’s expected utility
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theory [17]. We present one possible way how to find a personal weight func-
tion (the above-mentioned capacity) that can be used, similarly to probability
function, to compute the personal subjective expected value of a reward in case
that the description of the situation is ambiguous. It is clear from the litera-
ture [6–8,15] that it cannot be a probability function. It cannot be normalized
because our experiments show that people usually expect smaller reward under
total ignorance than in case they know that all alternatives are of equal prob-
abilities. As we will see later (when discussing the Ellsberg’s experiments), this
function is neither additive. Thus, the considered function will belong to the
class of superadditive capacities.

To find a way, how to compute this personal weight function we will take
advantage of the fact that situations with ambiguity are well described by tools
of a theory of belief functions. This theory distinguishes between two types of
uncertainty: the uncertainty connected with the fact that we do not know the
result of a random experiment (a result of a random lottery) and the ignorance
arising when we do not know the content of a drawing urn. In this paper, we start
with describing the situation by belief functions that can be interpreted as gener-
alized probability [9], i.e., each belief function corresponds to a set of probability
functions, which is called a credal set [9]. Then, we adopt a decision-theoretic
framework used also by other authors based on the transformation of the belief
function into a probability function. However, we do not use the achieved prob-
abilistic representative directly to decision, we add one additional step. Before
computing the expected reward, we reduce the probabilities to account for ambi-
guity aversion. This is the only point in which our approach differs from Smets’
decision-making framework [20], which is based on the Dempster-Shafer theory
of belief functions [5,18].

Before describing the process in more details, let us stress that our aim is
not as ambitious as developing a mathematical theory describing the ambiguity
aversion within the theory of belief functions. In fact, it was already done by
Jaffray [12], who shows how to compute generalized expected utility for belief
function. We do not even consider all elements from a credal set with all the
preference relations as, for example, in [3]. The ambition of our approach is to
provide tools making it possible to assign a personal coefficient of ambiguity
to experimental persons. Then, we will have a possibility to study its stabil-
ity with respect to different decision tasks and/or its stability in time. Such a
coefficient of ambiguity is considered also by Srivastava [22] and the suggested
approach repeats some of his basic ideas. For example, we use almost the same
idea to identify the amount of ambiguity connected with individual states of the
considered state space.

2 Belief Functions

The basic concepts and notations are taken over from [13], where the described
approach was introduced for the first time. We consider only a finite state
space Ω. In the examples described below, Ω is the set of six considered
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colors: Ω = {red, black, white, yellow, green, azure} (Ω = {r, b, w, y, g, a} for
short in the sequel). Similar to probability theory, where a probability measure
is a set function defined on some algebra of the considered events, belief func-
tions are represented by functions defined on the set of all nonempty subsets of
Ω [5,18]. Let 2Ω denote the set of all subsets of Ω.

The fundamental notion is that of a basic probability assignment (bpa), which
describes all the information we have about the considered situation. It is a
function m : 2Ω → [0, 1], such that

∑
a∈2Ω m(a) = 1 and m(∅) = 0.

For bpa m, a ∈ 2Ω is said to be a focal element of m if m(a) > 0. This
enables us to distinguish the following two special classes of bpa’s representing
the extreme situations:

(1) m is said to be vacuous if m(Ω) = 1, i.e., it has only one focal element,
Ω. A vacuous bpa is denoted by mι. It represents total ignorance. In our
examples, mι represents situations when we do not have any information as
for the proportion of colors in the drawing urn.

(2) m is said to be Bayesian, if all its focal elements are singletons, i.e., for
Bayesian bpa m, m(a) > 0 implies |a| = 1. Bayesian bpa’s represents
exactly the same knowledge as probability functions. As all focal elements
of a Bayesian bpa m are singletons, we can define probability distribution
Pm for Ω such that

Pm(x) = m({x}) (1)

for all x ∈ Ω. Thus, Bayesian bpa’s represent in our examples situations
when the proportion of colors in a drawing ball is known.

The same knowledge that is expressed by a bpa m can also be expressed by
a belief function, and by plausibility function.

Belm(a) =
∑

b∈2Ω :b⊆a

m(b). (2)

Plm(a) =
∑

b∈2Ω :b∩a �=∅
m(b). (3)

We have already mentioned that we interpret the belief function theory as a
generalization of the probability theory. It means that for each bpa we consider
its credal set, which is a convex set of probability distributions P on Ω defined
as follows (P denote the set of all probability distributions on Ω):

P(m) =

{

P ∈ P :
∑

x∈a

P (x) ≥ Belm(a) for ∀a ∈ 2Ω

}

.

Notice that Pm defined by Eq. (1) for a Bayesian bpa m is such that P(m) =
{Pm}, and that P(mι) = P. It is also easy to show that for all P ∈ P(m)

Belm(a) ≤ P (a) ≤ Plm(a),

for all a ∈ 2Ω . Thus, if Bel(a) = Pl(a) then we are sure that the probability of
a equals Bel(a). Otherwise, the larger the difference Pl(a) − Bel(a), the more
uncertain we are about the value of the probability of a.
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In this paper, we use belief functions only to represent the knowledge regard-
ing the content of a drawing drum. How can we model the computation of a
subjective expected gain if we know that in situation x ∈ Ω our reward will be
g(x)? Since we want to reduce the expected value on the account of ambiguity
we do not apply any direct formula (e.g., Choquet integral [2], Shenoy expec-
tation [19]). We propose to use some of the probability transforms suggested
to find a probabilistic representation of a belief function [4]. In this paper, we
take advantage of the fact that for the examples presented in the next section
it was shown in [14] that several probabilistic transforms yield the same results.
Therefore we choose the simplest of them, the famous pignistic transform, which
was for this purpose strongly advocated by Smets [20,21]):

Bet Pm(x) =
∑

a∈2Ω :x∈a

m(a)
|a| . (4)

3 Experimental Lotteries

In our experiments, we considered 12 simple lotteries described below. For each
lottery, the subjects were asked how much they are maximally willing to pay to
be allowed to take part in the specified lottery. The considered lotteries should
reveal the behavior of subjects in the following three situations.

Ellsberg’s Example. First, we wanted to verify whether the behavior of our
subjects corresponds to what was observed by many other authors. Therefore we
included a simple modification of the original Ellsberg’s example ([6], pp. 653–
654) with an urn containing 30 red balls and 60 black or yellow balls, the latter
in an unknown proportion. With this urn, Ellsberg considered two experiments.
The first experiment (Ellsberg’s Actions I and II) studied whether people prefer
betting on the red or black ball, in which case they get the reward ($100) if
the ball of the respective color is drawn at random. In the second experiment
(Ellsberg’s Actions III and IV), a person has a possibility to bet on red and
yellow, or, alternatively, on black and yellow. Again, the participant gets the
reward ($100) in case that the randomly drawn ball is of one of the selected
colors.

Following the Ellsberg’s idea we included two lotteries:
E1 The drawing urn contains 15 red, black and yellow balls, you know that
exactly 5 of them are red, you do not know the proportion of the remaining
black and yellow balls. How much you are maximally willing to pay to take
part in the lottery in which you choose a color and get 100 CZK if the
randomly drawn ball has the color of your choice?

E2 The drawing urn contains 15 red, black and yellow balls, you know that
exactly 5 of them are red, you do not know the proportion of the remaining
black and yellow balls. How much you are maximally willing to pay to take
part at the lottery in which you choose a color and get 100 CZK if the
randomly drawn ball is either yellow or of the color of your choice?
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One Red Ball Example. This example is designed to test the decrease of a
subjective “probability” in comparison with the combinatorial probability. For
this, we included eight lotteries, which differ from each other just in the total
number of balls in the drawing urn: the number n. We included lotteries with
n = 5, 6, 7, 8, 9, 10, 11, 12:
Rn The drawing urn contains n balls, each of which is either red, or black, or
yellow, or white, or green, or azure. You know that one and only one of them
is red, nothing more. You even do not know how many colors are present
in the urn. How much you are maximally willing to pay to take part in the
lottery in which you choose a color and get 100 CZK if the randomly drawn
ball is of the color of your choice?

6-Color Example. This example concerns situations, in which six colors are
considered and we do not have any reason to prefer one of them to others. Such
situations occur in two completely different setting: fair distribution of colors
and total ignorance. Thus, the following two lotteries considered:
F1 The drawing urn contains 30 balls, five of each of the following colors: red,
black, yellow, white, green, and azure. How much you are maximally willing
to pay to take part in the lottery in which you choose a color and get 100
CZK if the randomly drawn ball is of the color of your choice?

F2 The drawing urn contains 30 balls, they may be of the following colors:
red, black, yellow, white, green, and azure. You know nothing more, you even
do not know how much colors are present in the urn. How much you are
maximally willing to pay to take part in the lottery in which you choose a
color and get 100 CZK if the randomly drawn ball is of the color of your
choice?

4 Decision Models

As said in the introduction, to describe the considered situations we define the
respective bba’s, and belief and plausibility functions. These belief function mod-
els are further transformed into probabilistic ones. As we have already mentioned
in Sect. 2, for the specified simple situations we consider only the pignistic trans-
form Bet Pm defined by Eq. (4). However, the resulting probability distribution
is not directly used to compute an expected reward. Before computing the sub-
jective expected reward, the considered probabilities are reduced using a coeffi-
cient of ambiguity α, and the subjective expected reward is computed using the
resulting capacity function rm,α. Let us stress again that rm,α is not a probabil-
ity distribution because it does not sum up to one. Now, we describe this process
in more details.

Denote m the bpa describing the situation under consideration. Let Bet Pm

be the corresponding probability distribution obtained by the pignistic trans-
form. Denote by Belm and Plm belief and plausibility functions corresponding



142 R. Jiroušek and V. Kratochv́ıl

to bpa m. Let us recall that the higher Plm({x})−Belm({x}), the higher ambigu-
ity about the probability of state x ∈ Ω. Our intuition says, the higher ambiguity
about the probability of a state x, the greater reduction of the respective prob-
ability should be done. Therefore we define a reduced capacity function rm,α for
all x ∈ Ω as follows:

rm,α(x) = (1 − α)Bet Pm(x) + αBelm({x}), (5)

where α ∈ [0, 1] denote a subjective coefficient of ambiguity aversion α ∈ [0, 1].
Its introduction is inspired by the Hurwicz’s optimism-pessimism coefficient
[10,11]. In contrary to Hurwicz, who suggests that everybody can choose a
personal coefficient expressing her optimism, we assume that each person has
a personal coefficient of ambiguity aversion. The higher the aversion the higher
the coefficient α. The detection of this coefficient for experimental persons is one
of the goals why do we propose the described approach.

Notice that the amount of reduction realized in Formula (5) depends on the
ambiguity aversion coefficient α, and the amount of ignorance associated with
the state x. If we are certain about the probability of state x, it means that
Bet Pm(x) = Belm({x}), then the corresponding probability is not reduced:
rm,α(x) = Bet Pm(x). On the other hand, the maximum reduction is achieved
for the states connected with maximal ambiguity, i.e., for the states for which
Belm({x}) = 0.

Some trivial properties of function rm,α (we will call it r-weight function, or
simply r-weight, in the sequel) are as follows:

1.
∑

x∈Ω rm,α(x) ≤ 1; and
2. m is Bayesian if and only if m({x}) = Bet Pm(x) = rm,α(x) for all x ∈ Ω,

and α ∈ [0, 1].

This r-weight function is then used to compute expected subjective reward,
which is computed similarly to expected value, but the probabilities are substi-
tuted by the respective r-weights.

Rm,α =
∑

x∈Ω

rm,α(x)g(x), (6)

where g(x) denote the reward (gain) one expects in case x ∈ Ω occurs. Thus,
Rm,α does not express a mathematical expected reward, but a subjectively
reduced expectation of a decision maker, whose subjectivity, i.e., level of ambigu-
ity aversion, is described by α. Let us note that for α > 0, betting the amount
Rm,α guarantees a sure gain [1,15].

Let us now apply this computational process to the situations considered in
the preceding section. To proceed from simpler models to more complex ones,
let us consider the respective examples in reverse order.

6-Color Example. For this example, Ω = {r, b, y, w, g, a}. The knowledge
about the content of the drawing urn differs; in case of lottery F1, the situation
is described by a Bayesian bpa defined mφ({x}) = 1

6 for all x ∈ Ω; in case of
lottery F2, the situation is described by the vacuous bpa mι.
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For both the lotteries, the pignistic transforms coincide: Bet Pmφ
(x) =

Bet Pmι
(x) = 1

6 for all colors x ∈ Ω. However, the respective subjective r-weight
functions differ because the respective belief functions differ: Belmφ

({x}) = 1
6

for all x ∈ Ω, whilst Belmι
({x}) = 0 for all x ∈ Ω. Therefore, using Formula (5),

rmφ,α(x) = 1
6 , and rmι,α(x) = 1−α

6 for all x ∈ Ω.
Consider that a player chose, let us say, red color. Let g(x) denote the gain

received in case when color x is drawn, i.e., g(r) = 100, and for x �= r, g(x) = 0.
The expected subjective rewards are as follows:

Rmφ,α =
∑

x∈Ω

rmφ,α(x)g(x) =
∑

x∈Ω

1
6

g(x) =
100
6

,

Rmι,α =
∑

x∈Ω

rmι,α(x)g(x) =
∑

x∈Ω

1 − α

6
g(x) =

100 · (1 − α)
6

,

for F1 and F2, respectively. This can be interpreted as follows. If there were not
for the subjective utility functions and for a different subjective risk attitude, a
person should be willing to pay a maximum amount of 100

6 CZK and 100·(1−α)
6

CZK for taking part at lottery F1 and F2, respectively. The fact that in case
of lottery F1 the person is willing to pay maximally b �= 100

6 CZK is explained
by her personal risk attitude and utility functions. Nevertheless, the difference
between the amounts the person is willing to pay for F1 and F2 can be explained
only by her ambiguity aversion measured by the coefficient α. Assuming a linear
dependence, it gives us a possibility to estimate the value of a personal coefficient
of aversion. If a person is willing to pay a CZK for taking part at lotteries F1/F2
and b CZK for taking part at I1/I2 one can assume that her personal coefficient
of ambiguity is about

α =
a − b

a
. (7)

One Red Ball Example. For this example, again Ω = {r, b, y, w, g, a}, and
the uncertainty is described by the bpa m� as follows:

m�(a) =

⎧
⎨

⎩

1
n , if a = {r};
n−1

n , if a = {b, g, o, y, w};
0, otherwise.

Using the pignistic transform, we get:

Bet Pm�
(x) =

{
1
n , if x = r ;
n−1
5n , for x ∈ {b, g, o, y, w}.

Since Belm�
({x}) = 0 for all x ∈ {b, g, o, y, w}, and Belm�

({r}) = 1
n we get the

following reduced weights:

rm�,α(x) =
{

1
n , if x = r ;
(1 − α) · n−1

5n , for x ∈ {b, g, o, y, w}.
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Considering (for the sake of simplicity just two) gain functions gr(x), and
gw(x), the total subjective rewards are as follows. When betting on red it equals

Rm�,α(r) =
1
n

gr(r) +
∑

x∈Ω:x�=r

(1 − α)(n − 1)
5n

gr(x) =
100
n

,

and analogously, for betting on white

Rm�,α(w) =
1
n

gw(r) +
∑

x∈Ω:x�=r

(1 − α)(n − 1)
5n

gw(x) =
100(1 − α)(n − 1)

5n
.

Table 1. One Red Ball Example: Total subjective reward as a function of the coefficient
of ambiguity aversion α, and the number of balls n.

n Rm�,α(r) Rm�,α(w)

α = 0 α = 0.1 α = 0.2 α = 0.28 α = 0.3 α = 0.4 α = 0.5

5 20.00 16.00 14.40 12.80 11.52 11.20 9.60 8.00

6 16.67 16.67 15.00 13.33 12.00 11.67 10.00 8.33

7 14.29 17.14 15.43 13.71 12.34 12.00 10.29 8.57

8 12.50 17.50 15.75 14.00 12.60 12.25 10.50 8.75

9 11.11 17.78 16.00 14.22 12.80 12.44 10.67 8.89

10 10.00 18.00 16.20 14.40 12.96 12.60 10.80 9.00

Some of the values of these functions are tabulated in Table 1. From this
table we see that, for example, a person with α = 0.28 should bet on red color
for n ≤ 7, because for these Rm�,α(r) > Rm�,α(x) (x �= r), and bet on any other
color for n ≥ 8, because for these n, Rm�,α(r) ≤ Rm�,α(x) (x �= r). This means
that for n ≤ 7, it is subjectively more advantageous to bet on the red color.

Ellsberg’s Example. Before showing how the idea of reduced weights is applied
to Ellsberg’s experiment, let us confess that to clear the main idea to the reader,
we have purposely simplified the exposition. The computation of a r-weight
function by Formula (5) and its application to computation of a total subjective
reward by Formula (6) can be used only in simple situations when the gain
function g : Ω → R does not assign the same positive value to two different
states from Ω, i.e.,

x1, x2 ∈ Ω, x1 �= x2, g(x1) > 0 =⇒ g(x1) �= g(x2). (8)

This condition was obviously met by the gain functions considered above because
the gain function was positive just for one state from Ω. Let us now introduce a
proper general belief function approach that can be used for any gain function.
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Generally, we have to consider distribution Bet Pm that is got from bpa m
by the pignistic transform as a set function, and, analogously, also the r-weight
function must be defined for all nonempty subsets a of Ω

rm,α(a) = (1 − α)Pm(a) + αBelm(a), (9)

with the same subjective coefficient of ambiguity aversion α. The reader can
easily show that this r-weight is monotonous and superadditive

1. for a ⊆ b, rm,α(a) ≤ rm,α(b);
2. for a ∩ b = ∅, rm,α(a ∪ b) ≥ rm,α(a) + rm,α(b).

Realize also that we can use the same symbol to denote it, because for singletons
it coincide with Formula (5).

As it can be expected, this r-weight set function is used to compute the
expected subjective reward. For this, denote Γ = {g(x) : x ∈ Ω} \ {0}, then

Rm,α =
∑

γ∈Γ

γ rm,α(g−1(γ)), (10)

where g−1(γ) = {x ∈ Ω : g(x) = γ}. Notice that most of authors use for this
purpose Choquet integral [3,16], which is not, in our opinion, as intuitive as the
proposed formula, and which can be shown to be always less or equal to the
introduced Rm,α.

Now, let us apply this general approach to the belief function model corre-
sponding to E1 and E2 lotteries. For this, Ω = {r, b, y} and the bpa mε is as
follows:

mε(a) =

⎧
⎪⎪⎨

⎪⎪⎩

1
3 , if a = {r};
2
3 , if a = {b, y};

0, otherwise.

Its pignistic transform yields a uniform distribution Bet Pmε
(x) = 1

3 for all
x ∈ Ω. The corresponding belief function is Belmε

({r}) = 1
3 , and Belmε

({b}) =
Belmε

({y}) = 0, Belmε
({r, b}) = Belmε

({r, y}) = 1
3 , Belmε

({b, y}) = 2
3 , and

Belmε
(Ω) = 1. Therefore,

rmε,α(a) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
3 , if a = {r};

(1−α)
3 , for a = {b}, {y};

(2−α)
3 , for a = {r, b}, {r, y};

2
3 , if a = {b, y}.

For E1, we have to consider two gain functions: gr(x), and gb(x) for betting
on red and black balls, respectively. These functions are as follows:

gr(r) = 100, gr(b) = gr(y) = 0,

gb(b) = 100, gb(r) = gb(y) = 0.
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Using Formula (10), the total subjective reward for betting on red ball is

Rmε,α(r) = 100 rmε,α((gr)−1(100)) = 100 rmε,α({r}) =
100
3

,

and analogously, for betting on black ball is as follows:

Rmε,α(b) = 100 rmε,α((gb)−1(100)) = 100 rmε,α({b}) =
100(1 − α)

3
.

Thus, for positive α, we get Rmε,α(r) > Rmε,α(b), which is consistent with the
Ellsberg’s observation that “very frequent pattern of response is that betting on
red is preferred to betting on black.”

Let us consider the lottery E2, which involves betting on a couple of colors. In
comparison with the first experiment, the situation changes only in the respective
gain functions; denote them gry(x) and gby(x) for betting on red and yellow, and
for betting on black and yellow balls, respectively.

gry(r) = gry(y) = 100, gry(b) = 0,

gby(b) = gby(y) = 100, gby(r) = 0.

Thus, the expected subjective rewards are as follows:

Rmε,α(ry) = 100 rmε,α((gry)−1(100)) = 100 rmε,α({ry}) = 100
(2 − α)

3
,

Rmε,α(by) = 100 rmε,α((gby)−1(100)) = 100 rmε,α({by}) = 100
2
3
.

Thus, we observe that, for positive α, Rmε,α(by) > Rmε,α(ry), which is consistent
with Ellsberg’s observations that “betting on black and yellow is preferred to
betting on red and yellow balls.”

5 Conclusions

In the paper, we have introduced a belief function model manifesting a similar
ambiguity aversion as human decision-makers. The intensity of this aversion is
expressed by the subjective coefficient α ∈ [0, 1] with the semantics: the higher
the aversion, the higher the coefficient. In the time of submitting the paper for
the conference, we have data about the behavior of 32 experimental subjects
(university and high school students), who were offered a possibility to take part
at the lotteries described in Sect. 3. Thus, one can hardly make serious conclu-
sions. Nevertheless, it appears that computing the ambiguity aversion coefficient
as suggested in Formula (7), the experimental subjects show a great variety of
the intensity of ambiguity aversion; in fact, the individual coefficients are from
the whole interval [0, 1], including both extreme values. The average value of this
coefficient is about 0.36.
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Abstract. There exist many rules to combine the available pieces of
information in Dempster-Shafer theory of Evidence (DST). The first one
of them was the Dempster’s rule of combination (DRC), which has some
known drawbacks. In the literature, many rules have tried to solve the
problems founds on DRC but normally they have other non-desirable
behaviors too. In this paper, it is proposed a set of mathematical proper-
ties that a rule of that type should verify; it is analyzed some of the most
used alternatives to the DRC including some of the last hybrid rules, via
their properties and behaviors; and it is presented a new hybrid rule
that satisfies an important set of properties and does not suffer from the
counterintuitive behaviors of other rules.

Keywords: Theory of evidence · Combination rules ·
Dempster’s rule · Conflict · Disagreement factor · Hybrid rules

1 Introduction

Dempster-Shafer theory (DST) [4,10] is based on an extension of the probability
distributions in probability theory (PT), called basic probability assignment (or
evidence). When we want to measure the degree of disagreement between 2 evi-
dences, a measure called conflict is normally used. It is must be distinguished from
the known concept of conflict as a measure of uncertainty-based-information in
DST for a evidence [1,3,8]. Hence, here we will use the concept of conflict-based-
combination (cbc)whenwe refer to the disagreement degree between two evidences
when they are considered for combining or fusing in DST.

Dempster’s rule of combination (DRC) was the first rule to combine informa-
tion from different sources in DST. It can be considered as a natural extension
of the Bayes rule in PT. Normally DRC gives us intuitive results but it has been
shown that it can give us counterintuitive results when it is used to combined
evidences with a high degree of cbc.
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Due to the problems found in the application of DRC, many alternatives to
this rule have appeared in the last years, using different ways to manage the cbc.
The last alternatives to the DRC that seem to be the better ones are the called
hybrid rules. Examples of this issue can be found in [7]. Normally, they use a
mixture of 2 rules to obtain a final one that pretends to have a good performance
in all the situations.

A combination rule (CR) must verify a set of mathematical properties coher-
ent with the operation that it represents. A set of desirable properties for a CR
in DST will be proposed in this work by analyzing the importance of most of
the mathematical properties used in the literature, under our point of view. It
is obvious that not only a CR must verify a set of properties, but we also hope
that a rule for such an aim has good behavior, i.e. a CR should give us coherent
results in very different situations.

In this paper, we analyze some of the most used alternatives to the DRC
and some of the last hybrid rules. Our first aim is to compare them (i) under
a theoretical point of view, analyzing the properties that a rule of combination
in DST must verify; and (ii) under a practical point of view, studying behaviors
in different situations to show if they give us non-counterintuitive results. Our
second aim is to analyze the way to quantify the cbc between two bpas with the
aim of presenting a new alternative of CR that can satisfy the majority of the
needed properties without counterintuitive results.

The paper is arranged as follows: Sect. 2 presents a resume of the known
Dempster-Shafer theory of Evidence. Section 3 describes some of the classic rules
for the combination of information in DST; analyzes the properties that such
a type of rule must verify, and shows some of the more problematic situations
that can appear for these rules. Section 4 exposes known alternative rules to
the classic ones, taking into account their properties and behaviors. Section 5
presents a new factor to quantify the maximum degree of disagreement between
evidences; and used it to present a new hybrid rule. Conclusions are given in
Sect. 6.

2 Dempster-Shafer Theory

Let X be a finite set considered as a set of possible situations, |X| = k, ℘(X)
the power set of X and x any element in X.

Dempster-Shafer theory [4,10] is based on the concept of mass assignment,
basic probability assignment (bpa) or evidence. A mass assignment or bpa is a
mapping m : ℘(X) → [0, 1] , such that m(∅) = 0 and

∑

A⊆X

m(A) = 1.

The value m(A) represents the degree of belief that a specific element of X
belongs to set A, but not to any particular subset of A.

The subsets A of X for which m(A) �= 0 are called focal elements.
There are two functions associated with each bpa: a belief function, Bel, and

a plausibility function, Pl:
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Bel(A) =
∑

B⊆A

m(B), P l(A) =
∑

A∩B �=∅
m(B)

We may note that belief and plausibility are connected for all A ∈ ℘(X)

Pl(A) = 1 − Bel(A), (1)

where A denotes the complement of A. Furthermore, Bel(A) ≤ Pl(A).

3 Combination Rules in DST

A combination rule (CR) in DST can be seen as a procedure to combine different
sources of information, i.e., unify the information from 2 different evidences in
one bpa1.

In the literature, there exist many procedures for such an aim and they
can give us different results when they are applied to the same evidences. The
problem is that every rule is based on a different approach and normally every
one works well in certain situations but has problems in other ones.

The first rule exposed in DST was the Dempster’s rule of combination (DRC).
It is considered as a generalization of the Bayes’s rule in probability theory.
DRC is based on the orthogonal sum of two bpa that is expressed as follows,
considering m1 and m2 two bpas on the finite set X:

m1 ⊕ m2(A) =
∑

B∩C=A

m1(B)m2(C), ∀A ⊆ X (2)

Hence, the DRC is defined as follows:

mD
12(A) =

m1 ⊕ m2(A)
1 − K

, ∀A �= ∅, mD
12(∅) = 0, K =

∑

B∩C=∅
m1(B)m2(C)

Here, K represents the mass assigned to the “conflict” between two sources
of evidence. When K = 1 it is not possible to use this expression to combine
the information in DST, it is the case of maximum conflict. In this point we
must remark that the “conflict” concept here is different to the one used in
uncertainty-based-information measures [3,8].

The origin of the conflict between two bpas for combination is the K value
of Dempster. We will call the concept related to the meaning of K as conflict-
based-combination (cbc). The K value has been analyzed in the literature and it
has been shown that it has been considered as not a good way for measuring the
cbc because its use in the DRC expression can give us counterintuitive results
in situations where a high grade of cbc appears. This has been the principal
drawback found on the application of the DRC.

1 In this work we consider that the sources of information are independent, which is
not always true in the reality.
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Based on the drawbacks found on DRC, Yager [11] exposed a rule of combina-
tion where the mass of the empty set is assigned to the whole set of alternatives.
Considering m1 and m2 two bpas on the finite set X, the Yager’s rule can be
expressed as follows:

mY
12(A) = m1 ⊕ m2(A), ∀A �= X, ∅ (3)

mY
12(X) = m1 ⊕ m2(X) + m1 ⊕ m2(∅) mY

12(∅) = 0 (4)

3.1 Properties

A CR should verify a set of desired properties. To determinate the goodness of
a rule, we cannot only focus on a set of the mathematical properties that a rule
should verify because a rule can have bad behavior in some situations although
it verifies a large set of properties.

About the set of desired properties expressed in the literature, we remark
the following ones:

– Idempotency: When two similar sources of information are combined, the
rule must give us the same information.

– Commutativity: When a rule of combination is used on two bpas the result-
ing bpa must do not depend on the order used on the bpas.

– Associativity: When a rule is used on several bpas, the resulting one must
not vary with the order on the bpas used.

– Continuity: If we have two very similar information and we use a rule to
combine each one with a third one, then both bpas obtained must be very
similar too.

– Absorption: When a bpa is combined with the total ignorance the resulting
bpa must be the original one.

About these properties, we must express the following comments:

– Idempotency: It makes sense that when the same information is repeated
we have only that information. If a CR does not verify this property and
we combine similar information many times via that CR, the final bpa could
be quite different from the original, producing important incoherent results.
Hence, this property can be considered as an essential one.

– Commutativity: When two bpas are combined it makes sense that the
resulting one must not depend on the order used.

– Associativity: When we combine two informations we use a one-to-one func-
tion to obtain a final information. When a new information appears to be
combined with that last one, the resulting bpa obtained depends only on the
two bpas used in the procedure of combination. Hence, it makes sense that
some information of the first two bpas were lost, because they are used in a
combination rule with less strength than the third one. If we reorder the 3
bpas to combine, it is logical that we obtain a different final bpa because the
one-to-one procedure used to combine.
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– Continuity: It makes sense that few variations in information must pro-
duce few variations on the information obtained by combination with other
information.

– Absorption: We do not agree with this property. If b.p.a is combined with
the total ignorance, that absence of information must be taken into account
in the combination, in such a way that it must imply a decreasing of the mass
values for the focal sets of the first bpa that are different from the whole set
of alternatives.

To be coherent with the above comments, under our point of view, only the
following basic properties must be verified by a rule of combination in DST2:

1.- Idempotency
2.- Commutativity
3.- Continuity

Example 1. Let X = {x1, x2, x3} be a finite set and the following set of bpas
{mk, k = 1, .., 4} on X:

m1
1 = 0.80 m1

2 = 0.10 m1
3 = 0 m1

23 = 0.10
m2

1 = 0.70 m2
2 = 0.10 m2

3 = 0.10 m2
23 = 0.10

m3
1 = 0.80 m3

2 = 0 m3
3 = 0 m3

23 = 0.20
m4

1 = 0.80 m4
2 = 0.10 m4

3 = 0 m4
23 = 0.10

where mk
i expresses the value mk(xi), mk

ij the one of mk({xi, xj}), and so on
(Table 1).

Table 1. Results of the combination by the rules of Dempster and Yager. The expres-
sions mijk in columns indicate, in their superscript, the order of the bpas in the com-
bination. Also mi expresses the value m(xi), mij the one of m({xi, xj}), and so on for
each order of combination.

Rule m12 m123 m1234

mD mD
1 = 0.918 mD

1 = 0.9782 mD
1 = 0.995

mD
2 = 0.0492 mD

2 = 0.0131 mD
2 = 0.004

mD
3 = 0.0164 mD

3 = 0.00435 mD
3 = 0.0005

mD
23 = 0.0164 mD

23 = 0.00435 mD
23 = 0.0005

mD
123 = 0 mD

123 = 0 mD
123 = 0

mY mY
1 = 0.56 mY

1 = 0.048 mY
1 = 0.0384

mY
2 = 0.03 mY

2 = 0.006 mY
2 = 0.0012

mY
3 = 0.01 mY

3 = 0.002 mY
3 = 0.0002

mY
23 = 0.01 mY

23 = 0.002 mY
23 = 0.0002

mY
123 = 0.39 mY

123 = 0.942 mY
123 = 0.96

2 If we have the aim to use these rules in applications, other property could be added
about the complexity of the rule that allows us to use it easily.
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The results obtained by both rules are very counterintuitive due to the no
idempotency of these rules. The DRC produces a very high value for x1 and
values close to 0 for the rest ones. On the other hand, the rule of Yager produces a
very high value for the total set, being the rest of values close to 0. Consequently,
the result provided by the Yager rule is close to total ignorance.

With respect to the behaviors of a rule, there exist different situations that
give us counterintuitive results for a determinate rule. Almost every rule gives
us debatable results when it is used in a certain situation. By the large set of
different situations, it is not possible to give a list of each possible situation. The
most known one is the one represented by a high degree of cbc via the K value
between 2 bpas that represents the principal drawback found on the DRC, and
can be seen in the following example of Zadeh [12]:

Example 2. A patient is analyzed by two doctors. The first one founds that the
patient has Meningitis with a mass of assignment of 0.99 or a Cerebral Tumor
with a mass of 0.01. The second doctor founds that the patient has a Concussion
with a mass of assignment of 0.99 or a Cerebral Tumor with a mass of 0.01. Using
the DRC we have that the final combined information says us that the patient
has a Cerebral Tumor with a mass of assignment of 1, which was very unlikely
for each doctor.

In the above example, we have a high degree of cbc expressed by the K value,
in this case K = 0.99 · 0.99 + 2 · 0.01 · 0.99 = 0.9999. More discussion about this
example can be found in [5].

It is known that the DRC satisfies Property 2. About Property 3, we show
that also it is not verified by DRC in the following example:

Example 3. Let X be the finite set X = {x1, x2, x3} and m′ and m′′ the following
bpas on X: m′

12 = 0.98, m′
2 = 0.01, m′

3 = 0.01; m′′
12 = 0.99, m′

2 = 0.01,
where m′

i expresses the value m′(xi), mij the one of m′({xi, xj}); and similar
for m′′. We note that m and m′ are very close bpas. We combine each one with
the following bpa m via DRC: m3 = 1.

Noting as m′D and m′′D to the combination of m′ and m′′ with m via DRC
respectively, we have the following values: m′D

3 = 0.01·1
1−0.99 = 1, whereas m′′D

cannot be obtained because the K value is 1.

Yager’s rule has not the problem expressed by Example 2 and verifies the
Property 2, but its main drawback is that it does not verify the essential idem-
potency property.

4 Some Alternative Rules to the DRC

There exist many mathematical expressions to combine two evidences in the
DST. Most of them have the same problem than the one of Yager and DRC:
they do not verify the essential Property 1.
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The Averaging rule [9] is expressed as the mean values for each focal set.
The expression to combine two bpa m and m′ on a finite set X is: mAv(A) =
m(A)+m′(A)

2 , ∀A ⊆ X.
This is a rule that verifies all the needed properties, as it can be easily

checked, but it cannot be considered as a good rule because in some situations
its application has little sense. We show two cases about this issue:

(c1) We suppose 2 bpas m1, m2 on a finite set X = {x1, ..x10}, such that they
have many and different focal sets but with K = 0 for these bpas. It makes
little sense that the resulting bpa has many focal elements that are not in
each one of the original bpas.

(c2) Suppose the case that all the focal sets are different but the majority of
them share only the element xt. Then the shared element must have a high
mass of evidence in the resulting bpa, but if the set {xt} is not a focal set
of one of the bpas, this does not occur.

To avoid the problem caused by the managing of the cbc, Dubois and Prade [6]
presented the following rule based on the orthogonal sum and on a disjunction
sum, using same notation than in the other expressions:

mDP (A) = m1 ⊕ m2(A) +
∑

A1∪A2=A,A1∩A2=∅
m1(A1)m2(A2) (5)

It is considered as a hybrid rule. This rule gives coherent results when it is
applied in cases where the K value is high and the DRC gives counterintuitive
results. But it does not verify the Property 1, producing counterintuitive results
in many situations, though it verifies Properties 2 and 3.

The K value can be arguable as a measure of the cbc between two bpas. In
Dymova et al. [7], this value is analyzed and it is showed that it has incorrect
behaviors in some situations. Also, in that work, the authors presented another
expression to measure the cbc and use it in a new hybrid combination rule. The
expressions are the following ones:

– The new value to measure the cbc between two bpas m1 and m2 on a finite
set X is expressed as follows:

Mc(m1,m2) =
1

Nc

∑

A⊆X

|m1(A) − m2(A)|, (6)

with Nc the number of focal sets A where |m1(A) − m2(A)| > 0.
– Based on the above measure of cbc, the following combination rule is pre-

sented in Dymova et al. [7]:

mDy(A) = Mc(mAv) + (1 − Mc)mD(A) (7)

Authors expressed that this rule gives better results than the DRC and the
one of Dubois and Prade. Their rule is based on a new way to measure the cbc
via the Mc value.
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The Dymova’s rule is not idempotent because in that case Mc = 0 and then
the rule coincides with the DRC rule. It is obviously commutative. However, it
has some problems with Property 3. Via the following example, we can see that
the use of the Mc value can be problematic because for very close bpas we can
obtain very different Mc values.

Example 4. We consider the following bpas on the finite set X = {x1, x2, x3, x4}
m1

4 = 0.1, m1
12 = 0.9; m2

4 = 0.9, m2
12 = 0.1

and m′1 the following one built very close to m1

m′1
1 = 0.001, m′1

2 = 0.001, m′1
3 = 0.001, m′1

4 = 0.1, m′1
12 = 0.897

In this case, we obtain the following Mc values:

Mc(m1,m2) = 0.8; Mc(m′1,m2) =
(0.003 + 0.8 + 0.797)

5
= 0.32

The difference between these two Mc values can imply very different values
of masses for the resulting bpa obtained via the combination rule. Hence, we can
say that a rule using the Mc value does not verify the Property 3. It has been
shown that MC is not a good measure of cbc.

We have that the Dymova’s rule only verifies the Property 2, and has some
problems of behavior motivated by the way to quantify the cbc and its use in
the expression of the hybrid rule used.

These two rules, DRC and Av, can be used to obtain a hybrid rule with good
performance in all the conflictive situations exposed in this paper.

5 A Proposal of a New Rule

With the above notation, we propose the use of the following value that can be
considered as a factor related to the cbc concept between bpas:

Mx(m1,m2) = max
A⊆X

|m1(A) − m2(A)| (8)

The Mx value can be considered as a factor to quantify the maximum disagree-
ment between two bpas. Perhaps it is not an excellent measure of cbc but it
makes more sense that the Mc value.

In this point, we could use the Mx and K values to define new hybrid rules
with sense. But if we want to correct the problems of the Dymova’s rule, it is
not a good way to change only the expression to quantify the conflict, i.e. it is
not a good alternative the following variation:

mADy(A) = Mx(mAv) + (1 − Mx)mD(A), ∀A ⊆ X
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This new rule corrects some problems with Dymova’s rule. The Mx value has
not the problem of the Mc expressed in Example 4. Also, this rule has not the
problem expressed in Example 3 because in that case K = Mx = 1 and the mAv

is only applied. However, in the case of Property 1, it still has problems because
Mx = 0 and the rule coincides with the DRC that is not idempotent.

We propose the following hybrid rule:

mN (A) =
(
(1 − Mx|K − Mx|)mAv + Mx|K − Mx|mD

)
(A), ∀A ⊆ X (9)

The new hybrid rule has the following characteristics expressed in the following
3 points:

(1) It has no problem when the maximum K value appears (see Example 2).
Here, Mx = K = 1 and the new rule coincides with the mAv rule.

(2) It has not the problem expressed in Example 4. When we produce little
changes in a bpa, the variation of the values obtained for the maximum
value of differences Mx is little too, and then the final bpas obtained by
combination with a third bpa, are similar too.

(3) It has not the problem expressed in Example 3. In this case, K = 1 and the
rule coincides with the mAv rule.

As a consequence of some of the comments expressed above, the new hybrid
rule verifies the 3 properties:

Property 1 : It is Idempotent because when Mx = 0 the hybrid rule coincides
with the Idempotent rule mAv.

Property 2 : It is a convex combination of 2 commutative rules, then it is
commutative.

Property 3 : It is a consequence of the points above commented. By point (2)
little variations in the values of a bpa produce little variations in
the resulting bpas. The problematic case that appears when we
are very close to the maximum K value is solved too, taking into
account the above point (3). In that case, from Example 3, the
resulting bpa is very close to the one obtained only by mAv rule.

5.1 Applications of the New Rule

Finally, we want to apply the new proposed rule on the examples shown in this
paper to see its performance. We will use it on the examples where some of the
rules showed here have counterintuitive behavior. Each item “EXi” corresponds
with the Example i in this paper.

Ex1: In each step of the process of combination, we obtain the following mass
values with the new combination rule:
The results are very coherent and different from the ones obtained by
DRC and Yager’s rule.
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Rule m12 m123 m1234

mN mN
1 = 0.7549 mN

1 = 0.7811 mN
1 = 0.7927

mN
2 = 0.0985 mN

2 = 0.0488 mN
2 = 0.0738

mN
3 = 0.0490 mN

3 = 0.0243 mN
3 = 0.0120

mN
23 = 0.0976 mN

23 = 0.1458 mN
23 = 0.1214

mN
123 = 0 mN

123 = 0 mN
123 = 0

Ex2: In this case, K = 0.9999 and Mx = 0.99. Then Mx|K − Mx| = 0.0099
and the new rule produces similar values than the ones of the Av rule,
that have a correct sense: mN (Meningitis) = mN (Concussion) = 0.4901
and mN (CT ) = 0.0198

Ex3: With the same notation than in that example, we have the following values

m′N
2 = 0.005, m′N

3 = 0.505, m′N
12 = 0.49,

m′′N
2 = 0.005, m′′N

3 = 0.5, m′′N
12 = 0.495,

For m′′N we have a coefficient of 0 for the DRC, then we can combine m′′

with m; and in both cases we obtain very similar coherent results.

Ex4: The new rule obtains similar results when m1 is combined with m2 than
when m′1 is combined with m2, because their K and Mx values are very
similar in both cases, and m1 is very close to m′1. Here we have that
K(m1,m2) = 0.82, K(m′1,m2) = 0.8203; and Mx(m1,m2) = 0.8 =
Mx(m′1,m2). Hence, we have the following values when m1 is combined
with m2:

mN
4 = 0.5, mN

12 = 0.5

and the following ones when m′1 is combined with m2:

mN
1 = 0.0005, mN

2 = 0.0005, mN
3 = 0.00049, mN

4 = 0.5, mN
12 = 0.4985

In the situation expressed by the item (c2) about the performing of the Av
rule, this new rule obtains the same values than the DRC, i.e. it is coherent with
the Bayesian updating reasoning. In this case, Mx = 1 and K = 0, producing a
coefficient of 0 for the Av rule in the expression of mN ; and 1 for the DRC.

6 Conclusions

In this paper we have analyzed the properties that a CR must verify, presenting
a set of desirable properties. The idempotency property has been considered here
as an essential one. We have shown that no verification of this property can give
us important not logical results.

As the behavior in certain situations of a CR is as important as the veri-
fication of mathematical properties, we have done a short analysis of some of
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the most known CRs in the literature under those two ways. We have studied
a recent hybrid rule presented as a good alternative, and we found that it has
some important drawbacks.

We have presented a factor to quantify the maximum disagreement between
2 bpas and we have used it to define a new hybrid rule based on the Dempster’s
rule of combination and on the Averaging rule. We have shown that in some
situations the application of DRC gives counterintuitive results; also we have
shown situations where the Av gives little coherent results. With the new hybrid
rule, one can fill the problems of the other one. The new CR has shown to verify
all the proposed properties and not to suffer from the bad behaviors that the
other CRs exposed here have.

The development of functions to information fusion has important applica-
tions in many areas. Our nest goal will be to apply these type of functions to
combine information from diverse methods that extract knowledge from financial
data, as we use in [2].
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Abstract. Analogical proportions are statements of the form “a is to b as c is to
d”. They have known a revival of interest after they have been formalized and
used in analogical inference. In particular their meaning has been made clear
through a logical modeling. The paper shows that they are closely related to the
heart of the reasoning process, since dichotomic trees built from pairs of mutually
exclusive properties have also a reading in terms of Boolean analogical propor-
tions. This provides a link between analogy and logically expressed taxonomies.
Moreover, this gives birth to noticeable opposition structures, and can be also
related to formal concept analysis.

1 Introduction

Analogical proportions, which are statements of the form “a is to b as c is to d”, are
closely related to analogical reasoning that puts in parallel two situations regarded as
similar, one including a and b, and the other c and d. The proportion states that the
relationship between a and b is the same as the one between c and d. Analogical rea-
soning amounts to infer that something may be true in situation 2 since an homologous
statement is known to be true in situation 1 (considered as similar enough to situation 2
in other respects). As such, it has been regarded for a long time as a useful, but brittle,
mode of reasoning that yields plausible conclusions (which may turn to be wrong).

Clearly analogical reasoning does not at all offer the guarantees of deductive rea-
soning. Maybe for this reason, it has not attracted the interest of logicians up to few
exceptions [12,32]. It is only quite recently that a Boolean modeling of analogical pro-
portions have been proposed [23,27]. It exactly expresses that “a differs from b as c
differs from d and b differs from a as d differs from c”. This modeling (and its gradual
extension for handling numerical features) has proved to be of interest in classification
tasks [4,20] or in solving IQ tests [6].

In this paper, we enlarge the logical perspective on analogical proportions by show-
ing that they are naturally associated with dichotomic trees reflecting taxonomic deduc-
tion. The paper is organized as follows. After a brief reminder of their Boolean model-
ing, which is proved to be compatible with a function-based view of analogical propor-
tion in Sect. 2, Sect. 3 shows that pairs of mutually exclusive Boolean properties induce
both a dichotomic tree and an equivalent set of analogical proportions; moreover these
proportions can be organized in remarkable opposition structures. Section 4 exhibits
another noticeable linkage between analogical proportions and semi-products of formal
contexts in formal concept analysis [11].
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2 Analogical Proportions: Logical and Functional Views

As numerical proportions, an analogical proportion is a quaternary relation, denoted
a : b :: c : d between items a, b, c, d, supposed to obey the three following postulates
(e.g., [9,16,21]):

1. ∀a, b, a : b :: a : b (reflexivity);
2. ∀a, b, c, d, a : b :: c : d → c : d :: a : b (symmetry);
3. ∀a, b, c, d, a : b :: c : d → a : c :: b : d (central permutation).

These postulates entail that an analogical proportion a : b :: c : d has eight equivalent
forms: a : b :: c : d = c : d :: a : b = c : a :: d : b = d : b :: c : a = d : c :: b : a
= b : a :: d : c = b : d :: a : c = a : c :: b : d.

Boolean Definition. From now on, a, b, c, d denote Boolean variables. This may be
thought as encoding the fact that a given property is true or false for the considered item.
Since items are usually described in terms of several properties, the Boolean modeling
of analogical proportions is then extended to vectors in a component-wise manner. As
shown in [28], the minimal Boolean model obeying the analogical proportion postulates
makes a : b :: c : d true only for the 6 patterns exhibited in Table 1 a : b :: c : d is false
for the 10 other patterns of values for a, b, c, d.

Table 1. Boolean patterns making a : b :: c : d true

a b c d

0 0 0 0

1 1 1 1

0 0 1 1

1 1 0 0

0 1 0 1

1 0 1 0

Thus, it can be checked that the analogical proportion “a is to b as c is to d” more
formally states that “a differs from b as c differs from d and b differs from a as d
differs from c”, which means a = b ⇔ c = d, and a �= b ⇔ c �= d (with the further
requirement that both changes are in the same direction (either from 1 to 0, or from 0
to 1). This is logically expressed as a quaternary connective [23] by

a : b :: c : d = ((a ∧ ¬b) ≡ (c ∧ ¬d)) ∧ ((¬a ∧ b) ≡ (¬c ∧ d)) (1)

Besides, it has been noticed [23] that a : b :: c : d can be equivalently written as

a : b :: c : d = ((a ∧ d) ≡ (b ∧ c)) ∧ ((¬a ∧ ¬d) ≡ (¬b ∧ ¬c)) (2)

or still equivalently

a : b :: c : d = ((a ∧ d) ≡ (b ∧ c)) ∧ ((a ∨ d) ≡ (b ∨ c)) (3)

Expression (3) can be viewed as the logical counterpart of a well-known property of
geometrical proportions: the product of themeans is equal to the product of the extremes.
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Boolean analogical proportions are transitive, namely a : b :: c : d and c : d :: e : f
entails that a : b :: e : f holds as well. They are also code independent, namely a : b :: c :
d = ¬a : ¬b ::¬c : ¬d. This latter property means that the Boolean variable of the
considered attribute pertaining to items underlying a, b, c, d can be encoded positively
or negatively without changing anything.

Representing objects with a single Boolean value is not generally sufficient and
when items are represented by vectors of Boolean values, each component being the
value of a binary attribute, a simple extension of the previous definition to Boolean
vectors in Bn of the form �a = (a1, ..., an) can be defined as follows:

�a : �b ::�c : �d iff ∀i ∈ [1, n], ai : bi :: ci : di

It has been recently pointed out that it is easy to build analogical proportions as soon
as we compare two items that differ at least on two attribute values [7].

Function-Based View. As often mentioned (see, e.g., [26]), x : f(x) :: y : f(y) looks
like a good prototype of analogical proportion. Indeed a statement of the form “x is to
f(x) as y is to f(y)” sounds as a statement making sense, namely one applies the same
function f for obtaining f(x) and f(y) from x and y respectively. However, note that
such a view differs from the view of a numerical proportion, since a : a2 :: b : b2, for
some integers a and b, makes sense with f(x) = x2, but not in terms of differences or
of ratios. If we accept x : f(x) :: y : f(y), some derived form (according to postulates)
such as “x is to y as f(x) is to f(y)” suggests that f should be injective (one-to-one)
for making sure that f(x) �= f(y) as soon as x �= y.

The above remark suggests that if we consider 4 items a, b, c, d, and we are won-
dering if a : b :: c : d can be stated, one may think in terms of the change from a to b
(and c to d), hypothesizing that b is obtained by the application of some unknown func-
tion f , i.e., b = f(a). Such intuition is implicitly underlying the approach developed in
COPYCAT [13] for completing a, b, c with a plausible d. It can be also found in formal
models such as the ones of [8] in terms of a mapping between algebras (with an algo-
rithm that computes a fourth pattern such that an identical relation holds between the
items of the two pairs making the analogical proportion), or of [19] based on category-
based view (advocated much earlier in formal anthropology). So d should be obtained
as f(c), when b = f(a) (assuming that a : b :: c : x has a unique solution). Thus, one
may consider that there is no harm to assume that f is onto. Thus f is bijective and can
be inverted.

Still, it is also natural, especially when trying to complete a, b, c, to look at the
change from a to c and to hypothesize that c is obtained from a by the application of
some unknown function g, i.e., c = g(a). This leads to a : f(a) :: g(a) : f(g(a))1,
which indeed sounds right. However, due to central permutation postulates we have
a : g(a) :: f(a) : f(g(a)), and thus we should also have a : g(a) :: f(a) : g(f(a)). This
means that f(g(a)) = g(f(a)), i.e., f and g commute. Moreover g, as f , is bijective
and can be inverted.
1 It can be noticed that there is no analogical proportion equivalent to a : b :: c : d of the form
b : c ::x : y, or c : b ::x : y, or b : x :: c : y, or c : x :: b : y, which suggests that there is no
need for considering a function h(b) = c, or h′(c) = b.
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As we are going to see this view is compatible with the Boolean modeling. When
a : b :: c : d holds true, we can state a ∧ ¬b = c ∧ ¬d = α and b ∧ ¬a = d ∧ ¬c = β,
where α∧β = ⊥. Similarly, since a : c :: b : d also holds true, let a∧¬c = b∧¬d = ϕ
and c ∧ ¬a = d ∧ ¬b = ψ, where ϕ ∧ ψ = ⊥. Thus, we can introduce the two Boolean
functions

f(x) = (x ∧ ¬α) ∨ β; g(x) = (x ∧ ¬ϕ) ∨ ψ

and check that we indeed have

a : c :: b : d = a : f(a) :: g(a) : f(g(a)) = a : f(a) :: g(a) : g(f(a))

Proof 1. 1. f(a) = (a∧¬α)∨β = (a∧¬(a∧¬b))∨(b∧¬a) = (a∧b)∨(b∧¬a) = b
2. Similarly g(a) = (a ∧ ¬(a ∧ ¬c)) ∨ (c ∧ ¬a) = c.
3. g(f(a)) = g(b) = (b ∧ ¬(b ∧ ¬d)) ∨ (d ∧ ¬b) = (b ∧ d) ∨ (d ∧ ¬b) = d. �

This shows the agreement of the Boolean view with function-based view.

3 Analogical Structures of Opposition and Binary Trees

In this section, we investigate another aspect of the pervasiveness of analogical propor-
tions by building them from mutually exclusive properties that also give birth to binary
classification trees. Indeed a binary tree is a way of cataloguing objects by means of a
set of relevant attributes. As such, it is a taxonomic structure, where a node represents a
sub-class of any other node on the path from the root to the former node. This has been
observed for a long time. In that respect, Johann Christian Lange (1669–1756) deserves
a particular mention since he invented a tree-like diagram for solving syllogisms and
finding the valid ones [14]; see [15] for details.

The analogical proportions associated to binary classification trees lead to a partic-
ular type of square, of cube, and more generally of hypercube of opposition. A prelim-
inary sketch of these ideas can be found in an extended abstract [1].

3.1 Oppositions Underlying an Analogical Proportion Organized into a Square

An analogical proportion can be obtained by taking pairs of mutually exclusive Boolean
properties, (p, p′), (q, q′), (r, r′) (i.e., such that p ∧ p′ = ⊥, q ∧ q′ = ⊥, r ∧ r′ = ⊥),
and then by considering the four items a, a’,b,b’ respectively described on the six
properties (p, q, r, r′, q′, p′) according to the following Table 2.

Table 2. Analogical proportion obtained from pairs of mutually exclusive properties

p q r r q p

a 1 1 1 0 0 0
a’ 1 1 0 1 0 0
b 1 0 1 0 1 0
b’ 1 0 0 1 1 0

It can be seen that for any vector component,

(ai ∧ ¬a′
i ≡ bi ∧ ¬b′

i) ∧ (¬ai ∧ a′
i ≡ ¬bi ∧ b′

i)
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holds true, where a = (a1, a2, a3, a4, a5, a6), a’,b,b’ being similarly defined, and each
component ai (i = 1, · · · , 6) refers to the truth-value of a for properties p, q, r, r′, q′, p′

respectively. We can observe that (ai, a
′
i, bi, b

′
i) for i = 1, · · · , 6 takes respectively the

values (1, 1, 1, 1), (1, 1, 0, 0), (1, 0, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1), and (0, 0, 0, 0) which
are the six 4-tuples that make an analogical proportion true. Thus the proportion a :
a’ :: b : b’ holds true.

It is worth noticing that a, a’,b,b’ make a kind of square of opposition (not to be
confused with the traditional one [3,25]), as pictured below:

b (q′r) b′ (q′r′)

a (qr) a′ (qr′)

Indeed a, a’,b,b’ can be organized as a square exhibiting oppositions in the follow-
ing sense: a, a’ satisfy q while b,b’ satisfy q′, and a,b satisfy r while a’,b’ satisfy r′.
Moreover, diagonals ab’ and a’b link items that are opposite with respect to properties
q, q′, r, r′.

Note that an equivalent binary (classification) tree can be built from the properties
p, q, q′, r, r′, where we have indicated in bold the item associated to each path going
from the root to the corresponding leave.

p

q

r a r’ a’

q’

r b r’ b’

Although the above tree could be closely related to a decision tree, it does not follow
the usual convention of associating each node with a property that is true in the left
branch and false in the right branch, below the node. It is rather a classification tree
organizing the items into classes and sub-classes. Indeed, the root node is associated
with the property which is true for the whole class (p in the above example), then the
nodes below are associated with the property that specializes the two subclasses (q and
q′ above), and so on. Following the path from the root to a leave, we read the collection
of properties that are true for the item in bold, near the leave (e.g., pq′r for b).

In this paper, we only consider Boolean analogical proportions defined for Boolean
variables. However, the definition can be straightforwardly extended to n-valued vari-
ables [29]. Assuming that the domain of a considered variable may be now D =
{d1, · · · , dn} (instead of {0, 1}), the patterns di : dj :: di : dj and di : di :: dj : dj ,
for all di, dj ∈ D, would be the only ones that make an analogical proportion true,
which would be false otherwise. This would enable us to extend the above approach
to non binary trees where we deal with n-tuples of mutually exclusive properties. For
instance, suppose we have objects whose size can be big or small and whose color
is a value in D = {blue, red, yellow}; then we would be led to consider analogical
proportions such that (big, red) : (small, red) :: (big, blue) : (small, blue).
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3.2 Analogical Cube of Opposition

The above process can be obviously iterated. Let us introduce one more pair of mutu-
ally exclusive properties, say o, o′, and thus one more level in the tree, as below:

o

p

q

r a r’ a’

q’

r b r’ b’

p’

q

r c r’ c’

q’

r d r’ d’

This corresponds to a table (see Table 3) which has now eight items a, a’,b,b’,
c, c’,d,d’. Note that the table is also associated with an example of practical inter-
pretation, involving the four oppositions: animal/plant, canid/suidae, tame/wild and
young/adult.

Table 3. Example of a super analogical proportion obtained from pairs of mutually exclusive
properties

o (animal)p (canid)q (tame)r (young)r’ (adult)q’ (wild)p’ (suidae)o’ (plant)

a puppy 1 1 1 1 0 0 0 0
a dog 1 1 1 0 1 0 0 0

b wolf cub 1 1 0 1 0 1 0 0
b wolf 1 1 0 0 1 1 0 0
c piglet 1 0 1 1 0 0 1 0
c pig 1 0 1 0 1 0 1 0

d yg.wd.boar 1 0 0 1 0 1 1 0
d wild boar 1 0 0 0 1 1 1 0

This gives birth to the cube2 in Fig. 1 where parallel facets are in opposition
on one property (e.g., facet a,b, c,d corresponds to young animals (or), while facet
a’,b’, c’,d’) corresponds to adult animals (or′). As can be seen, the edges of the cube
link items in opposition on only one property over three (e.g., a’ (pqr′) and c’ (p′qr′)).
Diagonals in a facet link items in opposition on two properties over three (e.g., a’ (pqr′)
and c (p′qr)), while diagonals in the cube link items in complete opposition on three
properties (e.g., a’ (pqr′) and d (p′q′r)).

3.3 Super Analogical Proportion

Looking at Table 3, we may see it as the truth table of a connective with 8 Boolean
variables a, a′, b, b′, c, c′, d, d′ (we no longer use here the bold notation since we are

2 This cube is distinct from the cube of opposition obtained as an extension of the traditional
square of opposition; see [5,10,30].
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d p q r

b pq r b pq r

d p q r

c p qr

a pqr a pqr

c p qr

Fig. 1. Analogical cube

no longer dealing with vectors), which would be true only for the eight Boolean
8-tuples corresponding to the eight columns of Table 3, and false for any other Boolean
8-tuples (among the 28 = 256 possible ones). This defines a connective with 8 entries
which would be denoted a/a′/b/b′/c/c′/d/d′. Since the 8 patterns that make it true are
obtained by concatenation of 4-tuples defining the analogical proportion semantically,
we call it super proportion. It can be shown that we have the following result:3

a/a′/b/b′/c/c′/d/d′

=(a : a′ :: b : b′)∧(a : a′ :: c : c′)∧(a : b :: c : d)∧(a′ : b′ :: c′ : d′) (4)

Proof of Equation (4). Let us show that (a : a′ :: b : b′) ∧ (a : a′ :: c : c′) ∧ (a :
b :: c : d) ∧ (a′ : b′ :: c′ : d′) is true only for the 8 patterns exhibited in the columns of
Table 3 and false for any other 8-tuple (among 28). Since a : a′ :: b : b′ should be true,
it is impossible to have either a = a′ and b �= b′, or a �= a′ and b = b′. We have 4 cases

– (a, a′) = (0, 1). Thus (b, b′) = (0, 1) = (c, c′) since a : a′ :: c : c′ should hold. Then
we should have (a, a′, b : b′, c : c′, d, d′) = (0, 1, 0, 1, 0, 1, 0, 1) since (a : b :: c :
d) ∧ (a′ : b′ :: c′ : d′) should also hold.

– (a, a′) = (1, 0). Then similarly (b, b′) = (1, 0) = (c, c′).
It leads to (a, a′, b, b′, c, c′, d, d′) = (1, 0, 1, 0, 1, 0, 1, 0).

– (a, a′) = (1, 1). Due to the two first conjuncts in (4), there are four sub-cases
• (b, b′) = (1, 1) and (c, c′) = (1, 1). The two last conjuncts in (4) lead to

(a, a′, b, b′, c, c′, d, d′) = (1, 1, 1, 1, 1, 1, 1, 1).
• (b, b′) = (1, 1) and (c, c′) = (0, 0). The two last conjuncts in (4) lead to
(a, a′, b, b′, c, c′, d, d′) = (1, 1, 1, 1, 0, 0, 0, 0).

• (b, b′) = (0, 0) and (c, c′) = (1, 1). The two last conjuncts in (4) lead to
(a, a′, b, b′, c, c′, d, d′) = (1, 1, 0, 0, 1, 1, 0, 0).

• (b, b′) = (0, 0) and (c, c′) = (0, 0). Then there is no solution for the equations
a : b :: c : x and a′ : b′ :: c′ : x′.

3 The third conjunct is unfortunately missing in [1].
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– (a, a′) = (0, 0). There are the same four sub-cases again
• (b, b′) = (1, 1) and (c, c′) = (1, 1) Then there is no solution for the equations

a : b :: c : x and a′ : b′ :: c′ : x′.
• (b, b′) = (1, 1) and (c, c′) = (0, 0). The two last conjuncts in (4) lead to

(a, a′, b, b′, c, c′, d, d′) = (0, 0, 1, 1, 0, 0, 1, 1).
• (b, b′) = (0, 0) and (c, c′) = (1, 1). The two last conjuncts in (4) lead to
(a, a′, b, b′, c, c′, d, d′) = (0, 0, 0, 0, 1, 1, 1, 1).

• (b, b′) = (0, 0) and (c, c′) = (0, 0). The two last conjuncts in (4) lead to
(a, a′, b : b′, c : c′, d, d′) = (0, 0, 0, 0, 0, 0, 0, 0).

As can be seen, the only patterns that make (4) true are precisely the eight 8-tuples
appearing in Table 3. �

The four conjuncts of expression (4) correspond to four facets of the cube. The two
other facets of the cube are also associated with analogical proportions, as well as its
six diagonal plans. Indeed the truth of (4) entails that the following eight analogical
proportions hold as well (as can be checked in Table 3):

– c : c′ :: d : d′,
– b : b′ :: d : d′,

and for the six diagonal plans:
– b : b′ :: c : c′,
– a : a′ :: d : d′,
– a : b :: c′ : d′,
– a′ : b′ :: c : d,
– a : b′ :: c : d′,
– a′ : b :: c′ : d.

Thus, all facets and all diagonal plans correspond to analogical proportions in the ana-
logical cube. The cube is associated to 128 syntactically distinct analogical proportions,
since each of the 12 above proportions have 8 different syntactic forms that are seman-
tically equivalent due to symmetry and central permutation properties. Moreover there
are 32 degenerated proportions with only one, or two distinct items (having two syn-
tactic forms each in this latter case) corresponding respectively to the eight vertices and
twelve edges. This makes a total of 12 × 8 + 32 = 128 analogical proportions.

It is clear that the procedure that has led us from a square to a cube can be iterated by
considering more properties, and thus generalized to hypercubes, involving still more
analogical proportions. This iteration process can be also understood in the setting of
formal concept analysis, as we are now going to see briefly.

4 A Linkage with Formal Concept Analysis

The construction can be related to semi-products4 in formal concept analysis (FCA)
[11]. FCA defines a formal concept as a pair made of a subset of objects and a subset
of Boolean attributes describing the extension and the intension of the concept respec-
tively. It starts from a so-called formal context, which is a relation defined on a Cartesian

4 This subsection follows from an idea suggested by Bernhard Ganter to the second author.
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as at

×
×

product of a referential of objects and a referential of attributes, which records the infor-
mation that each object is described by a subset of attributes that it possesses. The reader
is referred to [11] for details. In the following, we only make use of the notion of semi-
product of formal contexts. The formal contexts considered are basic ones, all have the
same form, as sketched above with two attributes as and at and two objects (corre-
sponding to the two lines of the above table, where the symbol × means that the object
has the attribute of the column where the symbol is). As can be seen there is a form
of opposition between the two objects, where an object has one of the two attributes
and not the other, while it is the converse for the other one. The semi-product, denoted
, of two formal contexts yields another formal context whose number of columns is

the sum of the number of columns of the formal contexts involved in the semi-product,
and the number of lines is the product of their number of lines. Let us first consider the
semi-product of two basic formal contexts of the above form. As can be seen, the first
line of the result is obtained by inserting the first line of the second context in the first
line of the first context, then the second line of the result is obtained by inserting the
second line of the second context in the first line of the first context, the third line of the
result is obtained by inserting the first line of the second context in the second line of
the first context, and the fourth line of the result is obtained by inserting the second line
of the second context in the second line of the first context. In FCA, the ordering of the
attributes (and the objects) is a matter of convenience; it is here chosen for the purpose
of making clear a link with analogical proportions. Indeed, we recognize in the columns
of the result four of the patterns making an analogical proportion true (replacing each
× by 1, and blanks by 0). The only missing patterns are (1, 1, 1, 1) and (0, 0, 0, 0), but
lines or columns full of ×, as well as blank lines or columns, are not considered in FCA
for mathematical convenience and because it corresponds to extreme situations where
attributes are not discriminating. The above result is called an analogical complex [22]
which plays an important role for finding out analogical proportions between formal
concepts in a formal context [2].

a1 a 6 a2 a5

a1 a2 a5 a6

Let us iterate the application of the semi-product by “multiplying” the result of
first semi-product again by a basic formal context. The result has now six columns and
eight lines. It can be checked that the six columns correspond to six of the eight 8-
tuples making a super analogical proportion (see Table 3). The two missing patterns are
(1, 1, 1, 1, 1, 1, 1, 1) and (0, 0, 0, 0, 0, 0, 0, 0) corresponding again to a column full of ×
and to a blank column.
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A new “multiplication” of the result by a basic formal context, would lead to a
formal context with 6 + 2 = 8 columns and 23 × 2 = 16 lines, corresponding to a
“super super” analogical proportion true for 8 + 2 = 10 16-tuples, and false for all other
16-tuples. This would have an hypercube with 4 dimensions, and a binary tree of depth
4, as counterparts. More generally, this construction process shows that a “supern” ana-
logical proportion is true for 2·(n+3) 2n+2-tuples only (a “super0” analogical propor-
tion is just an analogical proportion).

5 Conclusion

In this paper, we have seen that a binary classification tree not only supports an under-
standing in terms of taxonomic (deductive) reasoning, but also can be seen as equivalent
to a collection of analogical proportions! This suggests an unexpected interplay between
two modes of reasoning, usually regarded as very different in nature. Both have their
roots in the differentiation process of the items in terms of their characteristic attributes.
The (hyper)cube representation reflects the levels of opposition between two items in
such a structure. It may help explaining results in classification by lying bare what items
have in common and how they differ. Formal concept analysis provides another view
of the relation linking an object to its properties. This paper has only identified hidden
relationships between classification trees, analogical proportions, and formal concept
analysis. How to take advantage of these relationships is a still a largely open question:
for doing that they have also to be better understood and developed (for instance for
handling n-ary trees).

Besides, the example leading to the cube of opposition suggests that analogical
proportions do not exist in complete isolation. For instance, we have “a puppy is to a
dog as a piglet is to a pig”, “a puppy is to a dog as a wolf cub is to a wolf” and “a
piglet is to a pig as a wolf cub is to a wolf”. This might be useful for trying to solve
analogical proportion equations between words in natural language. Indeed, following
the pioneering work of Rumelhart and Abrahamson [31] in computational linguistics,
the parallelogram-based modeling of analogical proportions for solving word analogies
has become a standard evaluation tool for vector-space semantic models where words
are represented as numerical vectors (e.g., [17,18,24]). However computing �d as the
solution of �a −�b = �c − �d, yields only a family of potential solutions (the neighbors of
�d corresponding to a word), and the closest neighbor is rarely the right solution. Taking
advantage that the equation to be solved is related to other equations might help find the
right solutions. This would contribute to bridge this computational view of analogical
proportions with the work presented here.
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12. Gust, H., Kühnberger, K., Schmid, U.: Metaphors and heuristic-driven theory projection

(HDTP). Theoret. Comput. Sci. 354(1), 98–117 (2006)
13. Hofstadter, D., Mitchell, M.: The Copycat project: a model of mental fluidity and analogy-

making. In: Hofstadter, D., The Fluid Analogies Research Group (eds.) Fluid Concepts and
Creative Analogies: Computer Models of the Fundamental Mechanisms of Thought, pp.
205–267. Basic Books Inc., New York (1995)

14. Langius, I.C.: Inventvm NovvmQuadrati Logici Vniversalis [...]. Henningius Millerus, Gissa
Hassorum (1714)

15. Lemanski, J.: Logic diagrams in the Weigel and Weise circles. Hist. Philos. Log. 39(1), 3–28
(2018)

16. Lepage, Y.: Analogy and formal languages. Electr. Not. Theor. Comp. Sci. 53, 180–191
(2002). Moss, L.S., Oehrle, R.T. (eds.) Proceedings of Joint Meeting of the 6th Conference
on Formal Grammar and the 7th Conference on Mathematics of Language

17. Levy, O., Goldberg, Y., Dagan, I.: Improving distributional similarity with lessons learned
from word embeddings. Trans. Ass. Comput. Ling. 3, 211–225 (2015)

18. Linzen, T.: Issues in evaluating semantic spaces using word analogies. CoRR,
abs/1606.07736 (2016)
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Abstract. Desirable properties of a normal form for conditional knowl-
edge are, for instance, simplicity, minimality, uniqueness, and the respect-
ing of adequate equivalences. In this paper, we propose the notion of
antecedentwise equivalence of knowledge bases. It identifies more knowl-
edge bases as being equivalent and allows for a simpler and more compact
normal form than previous proposals. We develop a set of transformation
rules mapping every knowledge base into an equivalent knowledge base
that is in antecedent normal form (ANF). Furthermore, we present an
algorithm for systematically generating conditional knowledge bases in
ANF over a given signature. The approach is complete in the sense that,
taking renamings and equivalences into account, every consistent knowl-
edge base is generated. Moreover, it is also minimal in the sense that no
two knowledge bases are generated that are antecedentwise equivalent or
that are isomorphic to antecedentwise equivalent knowledge bases.

Keywords: Conditional · Knowledge base · Equivalence ·
Antecedentwise equivalence · Antecedent normal form · ANF ·
Renaming · Knowledge base generation

1 Introduction

A core question in knowledge representation and reasoning is what a knowl-
edge base consisting of a set of conditionals like “If A then usually B”, formally
denoted by (B|A), entails [20]. For investigating this question and correspond-
ing properties of a knowledge base, for comparing the inference relations induced
by different knowledge bases, for implementing systems realizing reasoning with
conditional knowledge bases, and for many related tasks a notion of normal
form for knowledge bases is advantageous. Desirable properties of a normal form
for conditional knowledge bases are, for instance, simplicity, minimality, unique-
ness, and the respecting of adequate equivalences of knowledge bases. Normal
forms of conditional knowledge bases have been investigated in e.g. [3,4]. In
this paper, we propose the new notion of antecedentwise equivalence of condi-
tional knowledge bases and the concept of antecedent normal form (ANF) of
a knowledge base. Antecedentwise equivalence identifies more knowledge bases
as being equivalent and allows for a simpler and more compact normal form
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than previous proposals. As an effective way of transforming every knowledge
base R into an equivalent knowledge base being in ANF, we develop a set of
transformation rules Θ achieving this goal. Furthermore, we present an algo-
rithm KBae

gen enumerating conditional knowledge bases over a given signature.
The algorithm is complete in the sense that every consistent knowledge base is
generated when taking renamings and antecedentwise equivalences into account.
Moreover, KBae

gen is also minimal: It will not generate any two different knowl-
edge bases R, R′ such that R and R′ or any isomorphic images of R and R′ are
antecedentwise equivalent. This algorithm is a major improvement over the app-
roach given in [9] because it generates significantly fewer knowledge bases, while
still being complete and minimal. Systematic generation of knowledge bases as
achieved by KBae

gen is fruitful for various purposes, for instance for the empirical
comparison and evaluation of different nonmonotonic inference relations induced
by a knowledge base (e.g. [5,17,20,22]) with the help of implemented reasoning
systems like InfOCF [6].

For illustrating purposes, we will use ranking functions, also called ordinal
conditional functions (OCF) [23,24], as semantics for conditionals. However, it
should be noted that all notions and concepts developed in this paper are inde-
pendent of the semantics of ranking functions we use in this paper. They also
apply to every semantics satisfying system P [1,17], e.g., Lewis’ system of spheres
[21], conditional objects evaluated using Boolean intervals [12], possibility dis-
tributions [10], or special classes of ranking functions like c-representations [15].
A common feature of these semantics is that a conditional (B|A) is accepted if
its verification A∧B is considered more plausible, more possible, less surprising,
etc. than its falsification A ∧ ¬B.

After recalling required basics in Sect. 2, antecedentwise equivalence and ANF
is introduced in Sect. 3. The system Θ transforming a knowledge base into ANF is
presented in Sect. 4. Orderings and renamings developed in Sect. 5 are exploited
in knowledge base generation by KBae

gen in Sect. 6, before concluding in Sect. 7.

2 Background: Conditional Logic

Let L be a propositional language over a finite signature Σ of atoms a, b, c, . . ..
The formulas of L will be denoted by letters A,B,C, . . .. We write AB for A∧B
and A for ¬A. We identify the set of all complete conjunctions over Σ with the
set Ω of possible worlds over L. For ω ∈ Ω, ω |= A means that A ∈ L holds
in ω, and the set of worlds satisfying A is ΩA = {ω | ω |= A}. By introducing
a new binary operator |, we obtain the set (L | L) = {(B|A) | A,B ∈ L} of
conditionals over L. For a conditional r = (B|A), ant(r) = A is the antecedent
of r, and cons(r) = B is its consequent. The counter conditional of r = (B|A) is
r = (B|A). As semantics for conditionals, we use ordinal conditional functions
(OCF) [24]. An OCF is a function κ : Ω → N expressing degrees of plausibility of
possible worlds where a lower degree denotes “less surprising”. At least one world
must be regarded as being normal; therefore, κ(ω) = 0 for at least one ω ∈ Ω.
Each κ uniquely extends to a function mapping sentences to N ∪ {∞} given by
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κ(A) = min{κ(ω) | ω |= A} where min ∅ = ∞. An OCF κ accepts a conditional
(B|A), written κ |= (B|A), if the verification of the conditional is less surprising
than its falsification, i.e., if κ(AB) < κ(AB); equivalently, κ |= (B|A) iff for every
ω′ ∈ ΩAB there is ω ∈ ΩAB with κ(ω) < κ(ω′). A conditional (B|A) is trivial
if it is self-fulfilling (A |= B) or contradictory (A |= B); a set of conditionals
is self-fulfilling if every conditional in it is self-fulfilling. A finite set R ⊆ (L|L)
of conditionals is called a knowledge base. An OCF κ accepts R if κ accepts all
conditionals in R, and R is consistent if an OCF accepting R exists [14]. We
use 	 to denote an inconsistent knowledge base. Mod(R) denotes the set of all
OCFs κ accepting R. Two knowledge bases R,R′ are model equivalent, denoted
by R ≡mod R′, if Mod(R) = Mod(R′). We say (B|A) ≡ (B′|A′) if A ≡ A′ and
AB ≡ A′B′. Example 1 presents a knowledge base we will use for illustration.

Example 1 (Rcar [4]). Let Σcar = {c, e, f} where c indicates whether something
is a car, e indicates whether something is an e-car, and f indicates whether some-
thing needs fossil fuel. The knowledge base Rcar contains seven conditionals:
q1: (f |c) “Usually cars need fossil fuel.”
q2: (f |e) “Usually e-cars do not need fossil fuel.”
q3: (c|e) “E-cars usually are cars.”
q4: (e|ef ) “E-cars that do not need fossil fuel usually are e-cars.”
q5: (ef |e) “E-cars usually are e-cars that do not need fossil fuel.”
q6: (e|�) “Usually things are no e-cars.”
q7: (cf ∨cf |ce ∨ce) “Things that are cars and e-cars or cars but not e-cars

are cars that need fossil fuel or are no cars but need fossil fuel.”

3 Antecedentwise Equivalence of Knowledge Bases

For comparing or generating knowledge bases, it is useful to abstract from merely
syntactic variants. In particular, it is desirable to have minimal versions and
normal forms of knowledge bases at hand. The following notion of equivalence
presented in [4] employs the idea that each piece of knowledge in one knowledge
base directly corresponds to a piece of knowledge in the other knowledge base.

Definition 1 (equivalence ≡ee [4]). Let R, R′ be knowledge bases.

– R is an elementwise equivalent sub-knowledge base of R′, denoted by R 
ee

R′, if for every conditional (B|A) ∈ R that is not self-fulfilling there is a
conditional (B′|A′) ∈ R′ such that (B|A) ≡ (B′|A′).

– R and R′ are strictly elementwise equivalent if R 
ee R′ and R′ 
ee R.
– R and R′ are elementwise equivalent, denoted by R ≡ee R′, if either both

are inconsistent, or both are consistent and strictly elementwise equivalent.

Elementwise equivalence is a stricter notion than model equivalence. In
[3], as a simple example the knowledge bases R1 = {(a|�), (b|�), (ab|�)} and
R2 = {(a|�), (b|�)} are given which are model equivalent, but not elementwise
equivalent since for (ab|�) ∈ R1 there is no corresponding conditional in R2.
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The idea of the notion of antecedentwise equivalence we will introduce here is
to take into account the set of conditionals having the same (or propositionally
equivalent) antecedent when comparing to knowledge bases.

Definition 2 (Ant(R), R|A, ANF). Let R be a knowledge base.

– Ant(R) = {A | (B|A) ∈ R} is the set of antecedents of R.
– For A ∈ Ant(R), the set R|A = {(B′|A′) | (B′|A′) ∈ R and A ≡ A′} is the

set of A-conditionals in R.
– R is in antecedent normal form (ANF) if either R is inconsistent and R = 	,

or R is consistent, does not contain any self-fulfilling conditional, contains
only conditionals of the form (AB|A), and

∣
∣R|A

∣
∣ = 1 for all A ∈ Ant(R).

Definition 3 (
ae, equivalence ≡ae). Let R, R′ be knowledge bases.

– R is an antecedentwise equivalent sub-knowledge base of R′, denoted by
R 
ae R′, if for every A ∈ Ant(R) such that R|A is not self-fulfilling there
is an A′ ∈ Ant(R′) with R|A ≡mod R′

|A′ .
– R and R′ are strictly antecedentwise equivalent if R 
ae R′ and R′ 
ae R.
– R and R′ are antecedentwise equivalent, denoted by R ≡ae R′, if either both

are inconsistent, or both are consistent and strictly antecedentwise equivalent.

Note that any two inconsistent knowledge bases are also antecedentwise
equivalent according to Definition 3, e.g., {(b|a), (b|b)} ≡ae {(b|b), (aa|�)},
enabling us to avoid cumbersome case distinctions when dealing with consis-
tent and inconsistent knowledge bases. In general, we have:

Proposition 1 (≡ae). Let R,R′ be consistent knowledge bases.

1. If R 
ae R′ then Mod(R′) ⊆ Mod(R).
2. If R ≡ae R′ then R ≡mod R′.
3. If R 
ee R′ then R 
ae R′.
4. If R ≡ee R′ then R ≡ae R′.
5. None of the implications (1.)–(4.) holds in general in the reverse direction.

Proof. (1.) If R 
ae R′, Definition 3 implies that there is a function f :
Ant(R) → Ant(R′) with R|A ≡mod R′

|f(A) for each A ∈ Ant(R). Thus,
R =

⋃

A∈Ant(R) R|A ≡mod

⋃

A∈Ant(R) R′
|f(A) ⊆ R′ implies Mod(R′) ⊆ Mod(R).

Employing (1.) in both directions, we get (2.).
(3.) If R 
ee R′, Definition 1 ensures a function f : R → R′ with

{(B|A)} ≡mod {f((B|A))} for each (B|A) ∈ R. Hence, A ≡ A′ must hold
if (B′|A′) = f((B|A)). Thus, {(B|A) | (B|A) ∈ R|A} ≡mod {f((B|A)) |
(B|A) ∈ R|A} for each A ∈ Ant(R). Together with R =

⋃

A∈Ant(R) R|A and
{f((B|A)) | (B|A) ∈ R|A} ⊆ R′ this implies R 
ae R′. Employing (3.) in both
directions yields (4.).

For proving (5.) w.r.t. both (1.) and (2.), consider R3 = {(c|a), (c|b)} and
R4 = {(c|a), (c|b), (c|a∨b)}. Then R3 ≡mod R4 and R3 
ae R4, but R4 �
ae R3

and therefore R3 �≡ae R4. For (5.) w.r.t. both (3.) and (4.), consider again
R1 = {(a|�), (b|�), (ab|�)} and R2 = {(a|�), (b|�)}. We have R1 ≡ae R2

because R1|� ≡mod R2|�, but R1 �
ee R2 and therefore R1 �≡ee R2. ��
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In the proof of Proposition 1 R1 �≡ee R2 and R1 ≡ae R2 holds, but also
R2 
ee R1. The following example shows that two knowledge bases may be
antecedentwise equivalent even if they are not comparable with respect to 
ee.

Example 2 (≡ae). Let R5 = {(bc|a), (cd|a)} and R6 = {(bd|a), (bcd|a)}. Then
R5 ≡ae R6, but R5 �≡ee R6, R5 �
ee R6, and R6 �
ee R5.

4 Transforming Knowledge Bases into ANF

In order to be able to deal with normal forms of formulas in L without having to
select a specific representation, we assume a function ν mapping a propositional
formula A to a unique normal form ν(A) such that A ≡ A′ iff ν(A) = ν(A′).
We also use a function Π with Π(R) = 	 iff R is inconsistent; Π can easily be
implemented by the tolerance test for conditional knowledge bases [14]. Using
Π and the propositional normalization function ν, the system Θ given in Fig. 1
contains four transformation rules:

(SF ) removes a self-fulling conditional (B|A) with A �≡ ⊥.
(AE ) merges two conditionals (B|A) and (B′|A′) with propositionally equiv-
alent antecedents to a conditional having this antecedent and the conjunction
of the consequents.
(NO) transforms a conditional (B|A) by sharpening its consequent to the
conjunction with its antecedent and propositionally normalizes the antecedent
and the resulting consequent.
(IC ) transforms an inconsistent knowledge base into 	.

Example 3 (N (Rcar )). Consider the knowledge base Rcar from Example 1.

(SF ) As ef |= e, q4 is self-fulfilling, and the application of (SF ) removes q4.
(AE ) Applying this rule to q3 and q5 yields q8 : (cef |e).

(SF ) self -fulfilling :
R ∪ {(B|A)}

R A |= B, A

(AE) antecedence equivalence :
R ∪ {(B|A), (B |A )}

R ∪ {(BB |A)} A ≡ A

(NO) normalization :
R ∪ {(B|A)}

R ∪ {(ν(AB)|ν(A))} A = ν(A) or B = ν(AB)

(IC ) inconsistency :
R R = , Π(R) =

Fig. 1. Transformation rules Θ and their applicability conditions for the normalization
of knowledge bases respecting antecedence equivalence; Π is a consistency test, e.g. the
tolerance criterion [14], and ν a normalization function for propositional formulas.
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(NO) Applying this rule to q1 or to q7 yields q̃1 : (ν(cf)|ν(c)) in both cases,
applying it to q2 or to q5 yields q̃2 : (ν(ef)|ν(e)), applying it to q3 yields
q̃3 : (ν(ce)|ν(e)), and applying it to q6 yields q̃6 : (ν(e)|ν(�)). Applying (NO)
to q8 : (cef |e) yields q̃8 : (ν(cef)|ν(e)); note that first applying (AE ) to q̃2
and q̃3 and then (NO) to the result also yields exactly q̃8.
(IC ) As Rcar is consistent, (IC ) can not be applied to Rcar .

Thus, applying Θ exhaustively and in arbitrary sequence to Rcar gives us the
knowledge base Θ(Rcar ) = {q̃1, q̃6, q̃8}. In contrast, the transformation system T
given in [4] would yield T (Rcar ) = {q̃1, q̃2, q̃3, q̃6} containing more conditionals.

Proposition 2 (properties of Θ). Let R be a knowledge base.

1. (termination) Θ is terminating.
2. (confluence) Θ is confluent.
3. (≡mod correctness) R ≡mod Θ(R).
4. (≡ae correctness) R ≡ae Θ(R).
5. (≡ae minimizing) If R is inconsistent then Θ(R) = 	. If R is consistent,

then for all knowledge bases R′ it holds that R′
� Θ(R) implies R′ �≡ae R.

6. (ANF) Θ(R) is in antecedent normal form.

Proof. (1.) (SF ), (AE ), and (IC ) remove at least one conditional, and (NO) can
be applied at most once to any conditional. Hence, Θ is terminating.

(2.) Since Θ is terminating, local confluence of Θ implies confluence of Θ;
local confluence of Θ in turn can be shown by ensuring that for every critical
pair obtained form superpositioning two left hand sides of rules in Θ reduces
to the same knowledge base [2,16]: Any critical pair obtained from (IC ) and
another rule in Θ reduces to 	 since all rules preserve the consistency status
of a knowledge base. Any critical pair obtained from (SF ) with (NO) reduces
to the same knowledge base since applying (NO) to a self-fulfilling conditional
yields again a self-fulfilling conditional. Regarding critical pairs with respect to
(NO), we observe that if R contains two distinct conditionals (B|A) and (B′|A′)
with (ν(AB)|ν(A)) = (ν(A′B′)|ν(A′)), then applying (NO) first to either of the
conditionals and second to the other one yields the same result. Critical pairs
between (AE ) and (NO) reduce to the same result because propositional nor-
malization commutes with (AE ). For a critical pair of (SF ) and (AE ) consider
R0 = R ∪ {(B|A), (B′|A′)} with A ≡ A′ and A′ |= B′. Applying (SF ) yields
R1 = R ∪ {(B|A)}, and applying (AE ) yields R2 = R ∪ {(BB′|A)}. Applying
(NO) to both R1 and R2 yields the same result because A ≡ A′, A′ |= B′ and
therefore AB ≡ ABB′. Thus, we are left with critical pairs obtained from (AE )
which arise from R∪{(B|A), (B′|A′), (B′′|A′′)} with A ≡ A′ ≡ A′′ so that (AE )
could be applied to {(B|A), (B′|A′)} and to {(B′|A′), (B′′|A′′)}. Applying (AE )
to the result followed by (NO) yields R ∪ {(ν(BB′B′′)|ν(A))} in both cases.

(3.) By Proposition 1, (3.) will follow from the proof of (4.).
(4.) We will show that ≡ae-equivalence is preserved by every rule in Θ.
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(IC ) Since Π is a consistency test, R ≡ae 	 because all inconsistent knowledge
bases are ≡ae-equivalent. Because all other rules preserve the consistency status of
R, we assume that R is consistent when dealing with the other rules in Θ. (SF ) By
Definition 3 we get R ∪ {(B|A)} ≡ae R. (AE ) This rule preserves ≡ae-equivalence
because A ≡ A′ implies {(B|A), (B′|A′)} ⊆ (R ∪ {(B|A), (B′|A′)})|A, (BB′|A) ∈
(R ∪ {(BB′|A)})|A, and Mod({(B|A), (B′|A′)}) = Mod({(BB′|A)}). (NO) This
rule preserves ≡ae-equivalence because (B|A) ∈ (R∪{(B|A)})|A, (ν(AB)|ν(A)) ∈
(R ∪ {(ν(AB)|ν(A))})|A, and Mod({(B|A)}) = Mod({(ν(AB)|ν(A))}).

(5.) The ≡ae-minimizing property will follow from the proof of (6.).
(6.) From (1.) and (2.) we conclude that Θ(R) is well defined. If Θ(R) was

not in ANF then at least one of the rules in Θ would be applicable to Θ(R),
contradicting that Θ has been applied exhaustively. ��

Proposition 2 ensures that applying Θ to a knowledge base R always yields the
unique normal form Θ(R) that is in ANF. This provides a convenient decision
procedure for antecedentwise equivalence and thus also for model equivalence.

Proposition 3 (antecedentwise equivalence). Let R, R′ be knowledge
bases. Then R ≡ae R′ iff Θ(R) = Θ(R′).

5 Orderings and Renamings for Conditionals

For developing a method for the systematic generation of knowledge bases in
ANF, we will represent each formula A ∈ L uniquely by its set ΩA of satisfying
worlds. The two conditions B � A and B �= ∅ then ensure the falsifiability and
the verifiability of a conditional (B|A), thereby excluding any trivial conditional
[8]. This yields a propositional normalization function ν, giving us:

Proposition 4 (NFC (Σ) [9]). For NFC (Σ) = {(B|A) | A ⊆ ΩΣ , B � A, B �=
∅}, the set of normal form conditionals over a signature Σ, the following holds:

(nontrivial) NFC (Σ) does not contain any trivial conditional.
(complete) For every nontrivial conditional over Σ there is an equivalent
conditional in NFC (Σ).
(minimal) All conditionals in NFC (Σ) are pairwise non-equivalent.

For instance, for Σab = {a, b} we have ({ab, ab}|{ab, ab}) ≡ ({ab}|{ab, ab})
where the latter is in NFC (Σab). Out of the different 256 conditionals over Σab

obtained when using sets of worlds as formulas, only 50 are in NFC (Σab) [9].
For defining a linear order on NFC (Σ), we use the following notation. For

an ordering relation � on a set M , its lexicographic extension to strings over
M is denoted by �lex . For ordered sets S, S′ ⊆ M with S = {e1, . . . , en} and
S′ = {e′

1, . . . , e
′
n′} where ei � ei+1 and e′

j � e′
j+1 its extension �set to sets is:

S �set S′ iff n < n′, or n = n′ and e1 . . . en �lex e′
1 . . . e′

n′ (1)

For Σ with ordering �, [[ω]]
�

is the usual interpretation of a world ω as a binary
number; e.g., for Σab with a�b, [[ab]]

�
= 3, [[ab]]

�
= 2, [[ab]]

�
= 1, and [[ab]]

�
= 0.
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Definition 4 (induced ordering on formulas and conditionals). Let Σ
be a signature with linear ordering �. The orderings induced by � on worlds
ω, ω′ and conditionals (B|A), (B′|A′) over Σ are given by:

ω
w
�. ω′ iff [[ω]]

�
� [[ω′]]

�
(2)

(B|A)
c
�. (B′|A′) iff ΩA

w
�set ΩA′ , or ΩA = ΩA′ and ΩB

w
�.

set ΩB′ (3)

In order to ease our notation, we will omit the upper symbol in
w
� and

c
�, and

write just � instead, and analogously �. for the non-strict variants. For instance,
for Σab with a � b we have ab � ab � ab � ab for worlds, and (ab|ab ∨ ab) �

(ab|ab ∨ ab) and (ab ∨ ab|ab ∨ ab ∨ ab) � (ab|ab ∨ ab ∨ ab ∨ ab) for conditionals.

Proposition 5 (NFC (Σ), � [9]). For a linear ordering � on a signature Σ, the
induced ordering � according to Definition 4 is a linear ordering on NFC (Σ).

Given the ordering � on NFC (Σ) from Proposition 5, we will now define a
new ordering ≺· on these conditionals that takes isomorphisms (or renamings)
ρ : Σ → Σ into account and prioritizes the �-minimal elements in each isomor-
phism induced equivalence class. As usual, ρ is extended canonically to worlds,
formulas, conditionals, knowledge bases, and to sets thereof. We say that X and
X ′ are isomorphic, denoted by X � X ′, if there exists a renaming ρ such that
ρ(X) = X ′. For a set M , m ∈ M , and an equivalence relation ≡ on M , the
set of equivalence classes induced by ≡ is denoted by [M ]/≡, and the unique
equivalence class containing m is denoted by [m]≡. For instance, for Σab the
only non-identity renaming is the function ρab with ρab(a) = b and ρab(b) = a,
[ΩΣab

]/� = {[ab], [ab, ab], [ab]} are the three equivalence classes of worlds over
Σab, and we have [(ab|ab ∨ ab)]� = [(ab|ab ∨ ab)]�.

Definition 5 (cNFC (Σ), ≺· [9]). Given a signature Σ with linear ordering
�, let [NFC (Σ)]/� = {[r1]�, . . . , [rm]�} be the equivalence classes of NFC (Σ)
induced by isomorphisms such that for each i ∈ {1, . . . , m}, the conditional ri is
the minimal element in [ri]� with respect to �, and r1 � . . .� rm. The canonical
normal form conditionals over Σ are cNFC (Σ) = {r1, . . . , rm}. The canonical
ordering on NFC (Σ), denoted by ≺·, is given by the schema

r1 ≺· . . . ≺· rm ≺· [r1]� \ {r1} ≺· . . . ≺· [rm]� \ {rm}

where r ≺· r′ iff r � r′ for all i ∈ {1, . . . , m} and all r, r′ ∈ [ri]� \ {ri}.

Proposition 6 (NFC (Σ), ≺· [9]). For a linear ordering � on a signature Σ, the
induced ordering ≺· according to Definition 5 is a linear ordering on NFC (Σ).

While NFC (Σab) contains 50 conditionals, there are 31 equivalence classes in
[NFC (Σab)]/�; hence cNFC (Σab) has 31 elements [9]. The three smallest ele-
ments in NFC (Σab) w.r.t. ≺· are ({ab}|{ab, ab}), ({ab}|{ab, ab}), ({ab}|{ab, ab}),
and their corresponding equivalence classes are [({ab}|{ab, ab}), ({ab}|{ab, ab})],
[({ab}|{ab, ab}), ({ab}|{ab, ab})], and [({ab}|{ab, ab})].
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6 Generating Knowledge Bases in ANF

The algorithm KBae
gen (Algorithm 1) generates all consistent knowledge bases

up to antecedentwise equivalence and up to isomorphisms. It uses pairs 〈R, C〉
where R is a knowledge base and C is a set of conditionals that are candidates
for extending R to obtain a new knowledge base. For extending R, conditionals
are considered sequentially according to their ≺· ordering. Note that in Line 3,
only the canonical conditionals (which are minimal with respect ≺·) are used
for initializing the set of one-element knowledge bases. In Line 3 (and in Line
11, respectively), a conditional r is selected for initializing (or extending, respec-
tively) a knowledge base. In Lines 4–6 (and in lines 13–15, respectively), in the
set D conditionals are collected that do not have to be considered as candidates
for further extending the current knowledge base: D1 contains all conditionals
that are smaller than r w.r.t. ≺·, D2 contains all conditionals having the same
antecedent as r (since R should be ANF), and r would make R inconsistent. The
consistency test used in Line 12 can easily be implemented by the well-known
tolerance test for conditional knowledge bases [14].

Proposition 7 (KBae
gen). Let Σ be a signature with linear ordering �. Then

applying KBae
gen to it terminates and returns KB for which the following holds:

1. (correctness) If R ∈ KB then R is a knowledge base over Σ.
2. (ANF) If R ∈ KB then R is in ANF.

Algorithm 1. KBae
gen – Generate knowledge bases over Σ up to ≡ae

Input: signature Σ with linear ordering �

Output: set KB of knowledge bases in ANF of over Σ that are consistent, pairwise
antecedentwise non-equivalent and pairwise non-isomorphic

1: L1 ← ∅
2: k ← 1
3: for r ∈ cNFC (Σ) do � only canonical conditionals for initialization
4: D1 ← {d | d ∈ NFC (Σ), d �· r} � conditional d can not extend {r}
5: D2 ← {(B|A) | (B|A) ∈ NFC (Σ), A = ant(r)} � (B|A) can not extend {r}
6: D ← D1 ∪ D2 ∪ {r} � r can not extend {r}
7: L1 ← L1 ∪ {〈{r}, NFC (Σ) \ D〉}
8: while Lk �= ∅ do
9: Lk+1 ← ∅
10: for 〈R, C〉 ∈ Lk do � R knowledge base, C candidates for extending R
11: for r ∈ C do
12: if R ∪ {r} is consistent then � extend R with conditional r
13: D1 ← {d | d ∈ C, d �· r} � conditional d can not extend R ∪ {r}
14: D2 ← {(B|A) | (B|A) ∈ C, A = ant(r)} � (B|A) can not extend R ∪ {r}
15: D ← D1 ∪ D2 ∪ {r} � r can not extend R ∪ {r}
16: Lk+1 ← Lk+1 ∪ {〈R ∪ {r}, C \ D〉}
17: k ← k + 1

18: return KB = {R | 〈R, C〉 ∈ Li, i ∈ {1, . . . , k}}
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3. (≡ae minimality) If R,R′ ∈ KB and R �= R′ then R �≡ae R′.
4. (� minimality) If R,R′ ∈ KB and R �= R′ then R �� R′.
5. (consistency) If R ∈ KB then R is consistent.
6. (completeness) If Ris a consistent knowledge base over Σ then there is

R′ ∈ KB and an isomorphism ρ such that R ≡ae ρ(R′).

Proof. The proof is obtained by formalizing the description of KBae
gen given above

and the following observations. Note that KBae
gen exploits the fact that every sub-

set of a consistent knowledge base is again a consistent knowledge base. Thus
building up knowledge bases by systematically adding remaining conditionals
according to their linear ordering ≺· ensures completeness; the removal of can-
didates in Lines 5 and 14 does not jeopardize completeness since Proposition 2
ensures that for each knowledge base an antecedentwise equivalent knowledge
base exists that for any propositional formula A contains at most one condi-
tional with antecedent A. Checking consistency when adding a new conditional
ensures consistency of the resulting knowledge base. ANF is ensured because all
conditionals in NFC (Σ) are of the form (AB|A). Because for all A, each gen-
erated R contains at most one conditional with antecedent A, ≡ae-minimality
is guaranteed, and �-minimality can be shown by induction on the number of
conditionals in a knowledge base. ��

Note that KBae
gen generates significantly fewer knowledge bases than the algo-

rithm GenKB given in [9]. For each formula A, each R ∈ GenKB(Σ) may
contain up to half of all conditionals in NFC (Σ) with antecedent A,1 while
R ∈ KBae

gen(Σ) may contain at most one conditional with antecedent A.
For instance, KBae

gen(Σab) will generate the knowledge base R7 =
{({ab}|{ab, ab}), ({ab}|{ab, ab, ab})}, but it will not generate the knowl-
edge base R8 = {({ab}|{ab, ab}), ({ab, ab}|{ab, ab, ab}), ({ab, ab}|{ab, ab, ab})}
which is antecedentwise equivalent to R7, i.e., R8 ≡ae R7. Further-
more, KBae

gen(Σab) will also not generate, e.g., the knowledge bases
R9 = {({ab, ab}|{ab, ab, ab}), ({ab}|{ab, ab}), ({ab, ab}|{ab, ab, ab})} or R10 =
{({ab}|{ab, ab}), ({ab}|{ab, ab, ab})} which are both antecedentwise equivalent
to R7 when taking isomorphisms into account; specifically, we have ρab(R10) =
R7, and ρab(R9) = R8 and hence also ρab(R9) ≡ae R7.

7 Conclusions and Further Work

Aiming at a compact and unique normal form of conditional knowledge bases,
we introduced the new notion of antecedentwise equivalence. We developed a
system Θ transforming every knowledge base into its unique antecedent normal
form. The algorithm KBae

gen is complete in the sense that it generates, for any
signature Σ, knowledge bases in ANF such that all knowledge bases over Σ are

1 Note that it can not be more than half of these conditionals with the same antecedent
because otherwise there would be a conditional together with its counter conditional,
leading to inconsistency of the knowledge base.
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covered up to isomorphisms and antecedentwise equivalence. Furthermore, the
set of knowledge bases returned by KBae

gen is minimal because no two different
knowledge bases are generated such that they or any isomorphic images of them
are antecedentwise equivalent. Currently, we are working with KBae

gen and the
reasoning system InfOCF [6] for empirically evaluating different nonmonotonic
inference relations induced by a conditional knowledge base and for computing
the full closures of such inference relations [18]. Another part of our future work
is the investigation of inferential equivalence of ANF (for another normal form
see [3,7]) with respect to semantics that are not syntax independent like rational
closure (cf. [11,13]), but that are syntax dependent like lexicographic closure [19].
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Abstract. A conditional preference statement takes the form “in context c, a is
preferred to not a”. It is quite similar to the piece of knowledge “if c is true, a is
more plausible than not a”, which is a standard way of understanding the default
rule “if c then generally a”. A set of such defaults translates into a set of con-
straints that can be represented in the setting of possibility theory. The application
of a minimum specificity principle, natural when handling knowledge, enables us
to compute a priority ranking between possible worlds. The paper investigates
if a similar approach could be applied to preferences as well. Still in this case,
the use of a maximum specificity principle is as natural as the converse princi-
ple, depending on the decision maker attitude in terms of pessimism or optimism.
The paper studies the differences between this approach and qualitative graphi-
cal approaches to preference modeling such as π-pref-nets (based on possibility
theory) and CP-nets (relying on ceteris paribus principle). While preferences in
a conditional preference network can always be expressed as “default-like” con-
straints, there are cases where “non monotonic” preferences cannot be associated
with a preference network structure, but can still be dealt with as constraints.
When both approaches can be applied, they may lead to different orderings of
solutions. The paper discusses this discrepancy and how to remedy it.

1 Introduction

Possibilistic preference networks (π-pref-nets for short) [1] have been recently proposed
as a model, whose graphical structure is identical to the one of conditional preference
networks (CP-nets for short), but where each node is associated with a conditional pos-
sibility table (with symbolic weights) that represents the conditional preferences cor-
responding to the node. Then a chain rule enables us to attach a symbolic expression
to any configuration or solution (i.e., to any complete instantiation of the variables).
This method induces a partial ordering of the solutions, which has been shown to coin-
cide with the inclusion-based ordering of the sets of violated preferences characterizing
the solutions (when no further constraints is added between the symbolic weights) [4].
This partial order agrees with the CP-net partial ordering, but is more cautious. Adding
appropriate constraints between the symbolic weights enables us to approach the CP-net
partial order. More generally, the addition of meaningful constraints guarantees a better
control of the representation of the preferences really expressed by the user, without the
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blind introduction of extra preferences (as, e.g., in the case of CP nets, where the viola-
tion of preferences associated to father nodes is made more important than the violation
of preferences associated to children nodes).

Conditional preferences are statements of the form “in context p, q is preferred
to q̄”, where q̄ denotes “not q”. This sounds a bit similar to a default rule “if p then
generally q”, understood as “if p is true, q is more plausible than q̄”, although it is a
piece of knowledge rather than the expression of some preference. Possibility theory
is a framework that can be used for representing either knowledge or preferences. In
the first case the degree of possibility is understood as a degree of plausibility, and the
dual necessity means certainty; in the second case the degree of possibility is a degree
of satisfaction and the degree of necessity is a priority level. In both cases, the con-
ditional statement translates into the constraint Π(p ∧ q) > Π(p ∧ q̄). Thus, a set of
such default rules is turned into a set of possibilistic constraints. Then the application of
a minimum specificity principle, natural when handling knowledge, ensures that each
interpretation remains as much possible as allowed by the constraints. This method
enables us to compute a priority ranking on interpretations among defaults then repre-
sented by possibilistic formulas. This leads to an approach to default reasoning with a
simple semantics, which is in agreement with Lehmann et al. postulates [11,14]. The
minimum specificity principle makes sense for knowledge, while for preferences, the
maximum specificity principle is natural as well [10]. So it is tempting to investigate a
“default-like” treatment of conditional preferences and to compare it with π-pref-nets.

The paper is organized as follows. Sections 2 and 3 provide the necessary
background on possibility theory and preference modeling respectively. Section 4
first studies how the topology of a preference graph influences the num-
ber of layers in the well-ordered partition obtained with the minimum speci-
ficity approach. Then we show that there are preference statements not repre-
sentable by neither π-pref-nets nor CP-nets that can still be handled by the
“default-like” method. Finally, we discuss the effects of the minimum and max-
imum specificity principles, and compare them to what is obtained with the
π-pref-nets ordering when they are both applicable.

2 Background

Finding an order or ranking between configurations describing complete instantiations
of preference variables can be achieved in several manners. One way of proceeding
is to use default statements and non-monotonic logic interpreted in terms of possibil-
ity distributions. In a first subsection, we recall the background on possibility theory
understood in terms of preference. The second subsection explains how to induce a
well-ordered partition of configurations by means of some information principle.

2.1 Possibility Theory

Let us assume a finite set of configurations Ω = {ω1, ..., ωn} composed of all possible
interpretations of a set of Boolean decision variables X = {X1, ..., Xm}, where n = 2m
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possible combinations. Each interpretation ωi is a vector which is a complete instantia-
tion of variables in X. In order to rank order these alternatives, a possibility distribution
π is used. It is a mapping fromΩ to a totally ordered scale S= [0,1]. Based on possibility
degrees π(ωi), this distribution provides a complete pre-order between interpretations.
Originally, π(ω) was only used to evaluate to what extent ω is possible\plausible. How-
ever, further studies [7] showed that this encoding is also convenient for expressing
preferences over a set of choices. Indeed, possibility values are adapted to satisfaction
degrees in view of finding a rank ordering between interpretations of Ω. A constraint of
the form π(ω) > π(ω′) stipulates that the largest π is, the more satisfactory ω is.

A distribution π is said to be normalized if ∃ ω ∈ Ω, such that, π(ω) = 1, meaning
that there is at least one configuration which is totally satisfactory. By contrast, π(ω) = 0
amounts to saying thatω is rejected. Based on a possibility distribution π, the possibility
measure Π of the event P, s.t. ∀P ⊆ Ω is defined by,

Π(P) = max
ω∈P
π(ω) ∀P ⊆ Ω (1)

Π(P) estimates to what extent at least one configuration in P is satisfactory.
Another measure using the minimum operator called guaranteed possibility measure
can be defined,

Δ(P) = min
ω∈P π(ω) ∀P ⊆ Ω (2)

It estimates the extent to which the least preferred model of P is satisfactory. So Δ(P)
represents a guaranteed satisfaction level when taking a configuration in P.

Let p be a proposition that models P (ωi ∈ P if and only if ωi |= p). Using the two
measures, a preference specification p 	 p̄ can be interpreted in different ways [12,13].
Given a subset of interpretations P the statement “I prefer the best case in which p is true
to the best case in which p̄ is true” is seen as an optimistic modeling of preference and is
formally expressed by Π(P) > Π(P̄). In contrast, a pessimistic approach for expressing
p 	 p̄ would be “I prefer the worst case in which p is true to the worst case in which p̄
is true”, namely Δ(P) > Δ(P̄). The claim “I prefer the best configurations in which p is
true to the worst configurations in which p̄ is true” expresses an opportunistic approach
and is encoded by Π(P) > Δ(P̄). Finally a cautious, stronger statement “I prefer the
worst configurations in which p is true to the best configurations in which p̄ is true” is
expressed by Δ(P) > Π(P̄).

2.2 Possibilistic Approach to Default Preferences

A conditional preference p� q may be encoded by the constraint Π(p∧q) > Π(p∧ q̄).
It explicitly means that “In the context defined by p, the best situation that models q is
preferred to the best situation that models q̄”. A possibility distribution on configura-
tions ofΩ can be deduced from such constraints, based on some informational principle.
Then, a well-ordered partition of configurations can be generated [8]. Considering pos-
sibility distributions π1 and π2, π1 is said to be less specific than π2 in the wide sense if
∀ω ∈ Ω, π1(ω) ≥ π2(ω). Then agent 1 is considered less demanding than agent 2.
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Definition 1 Minimum specificity principle. Assuming a set of possibilistic constraints
Π(pi ∧ qi) > Π(pi ∧ q̄i), the least specific distribution π∗ in accordance with these
statements is the one that maximizes possibility degrees of configurations.

The meaning of this principle is that if a configuration ω has not been explicitly
rejected, it is considered as preferred (π(ω) = 1). Given a conditional preference base
S = {pi � qi : i = 1, . . . , k}, CΠ denotes the set of constraints derived from these
statements. Using an optimistic modeling of preference, CΠ is formally denoted by

CΠ = {Π(pi ∧ qi) > Π(pi ∧ q̄i) : pi � qi ∈ S} (3)

Maximizing possibility degrees of configurations based on the minimum specificity
principle is achieved via the following algorithm which outputs a well-ordered partition
composed of sets E j of configurations [8].

Algorithm 1. Algorithm of partitioning of Ω

Input: a set of possibilistic constraints
Begin
1. E0 = {∅};
2. While Ω � ∅, repeat

2.1 E j = {ωi, i = 1, · · · , n} s.t. ωi does not appear on the right-hand side of any constraint (ωi

is never dominated)
2.2 Remove the added configurations to E j from Ω
2.3 Remove from CΠ all satisfied constraints (their left-hand side are consistent with config-

urations of E j)
End while
End

Given a set of constraints, the first step consists of finding configurations that are
never dominated. They can be derived from calculating the negation of the disjunc-
tion of formulas that appear on the right side of constraints of CΠ. In accordance
with the minimum specificity principle and using an optimistic interpretation approach,
the resulting configurations are then associated to the highest possibility degree (e.g.
π(ωi) = 1) and are assigned to the first partition E0. Constraints that are satisfied are
then deleted from CΠ. The same process is repeated until no constraints are left. In a
final step, the remaining configurations of Ω are assigned to a final last level.

Note that this algorithm allows to rank configurations in terms of preference in the
most compact way in accordance to the given constraints.

In contrast, p� q may express the conditional constraint Δ(p∧q) > Δ(p∧ q̄) under
a pessimistic view, evaluating p ∧ q by its worst configuration. They can be similarly
handled by the opposite principle.

Definition 2 Maximum specificity principle. Assuming a set of possibilistic con-
straints Δ(pi ∧ qi) > Δ(pi ∧ q̄i), the maximum specific distribution π∗ in accordance
with these statements is the one that minimizes possibility degrees of configurations.
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3 Background on Graphical Preferences

Graphical representations can be used to express conditional preferences. In this
section, we will closely examine two such structures: CP-nets [9] and π-pref nets [6].
Both represent qualitative counterparts of Bayesian networks and are based on the same
type of preferential specification. They happen to share the same graphical structure,
which is a directed acyclic graph (shortly DAG) between variables. Each node of the
graph is associated to conditional data tables representing local preferences of variable
values in the context of values assigned to their parents. Each model uses a specific
independence property between variables, which enables to construct preference order-
ings between configurations [2,5].

3.1 CP-nets

CP-nets rely on the Ceteris Paribus preferential independence. It states that the pref-
erence of a partial configuration over another (as stated in the conditional preference
tables attached to each variable in the acyclic graph) holds everything else being equal.
Since this assumption leads to compare configurations that only differ by a single flip,
a directed a-cyclic worsening flip graph of configurations can be built. It is a partial
order. A configuration ω is said to be preferred to ω′, if there exists a chain of worsen-
ing flips that links ω to ω′. Finding the optimal solution amounts to sweeping through
conditional preferences from top to bottom of the preference graph and to assigning its
preferred value to each variable in the context of its parents.

3.2 π-pref Nets

The data component of a π-pref net involves conditional symbolic possibility distribu-
tions over the domains of each variable and its parents. The assignment π(xi|Par(Xi)) =
α is interpreted as “In the context of Par(Xi), I prefer xi to x̄i with a satisfaction degree
of α” (an unspecified value in [0, 1]). The degree of satisfaction of full configurations
is computed using the chain rule associated to the product-based conditioning, namely,
the symbolic expression π(Xi, ..., Xn) =

∏
i=1,...,n π(Xi|Par(Xi)). Comparing two out-

comes comes down to comparing such symbolic expressions. Yet, finding the optimal
solution can proceed in the same way as for CP-nets, by choosing for each node the best
instantiation in the context of parents. π-pref nets are constructed based on the Marko-
vian independence property which stipulates that each variable is independent from its
non-descendants (N) in the context of its parents (Par). It is noticeable that, assuming
the same specifications in both representations, comparisons generated by the Ceteris
Paribus assumption can be expressed by adding constraints between products of sym-
bolic weights of the π-pref net. The preference orderings induced by the two model
kinds are consistent [3].

4 Application of Default Reasoning to Conditional Preferences

Conditional statements in a preference network can always be translated into “default-
like” rules of the form “one value of a variable is generally preferred to another in some
instantiation of its parents”. This section studies this approach in more details.



192 N. Ben Amor et al.

4.1 Well-Ordered Partition Induced by a Conditional Preference Graph

A preference statement of the form x1x2 : x 	 x̄ is now expressed by the default prefer-
ence rule x1x2 � x, which translates into the constraint Π(x1x2x) > Π(x1x2 x̄) (in case
of two parent variables X1 and X2). A conditional preference network can be expressed
as a collection of such constraints. Generating a ranking of configurations can then be
achieved by Algorithm 1 that uses the minimum specificity assumption. As seen now,
for some preference networks having specific graph structures, the procedure outputs
a well-ordered partition of exactly 3 level sets whatever the size of the preference net-
work. First we consider the case of a path graph, where each variable has exactly one
variable as a parent (except for the root one) and the graph forms a single path (as on
Fig. 1). Hence conditional preference constraints are of the form xi : xi+1 > x̄i+1.

Fig. 1. A path preference graph Fig. 2. Example of a preference network

Proposition 1. Interpreting conditional preference statements as possibilistic con-
straints under the minimum specificity principle, any conditional preference path graph
results into a well-ordered partition of solutions with exactly 3 elements.

Proof. Let us assume a path graph G of n vertices. The root node holds a preference
constraint of the form x1 	 x̄1, whereas, for i = 2, n, the remaining nodes hold condi-
tional preferences of the form xi−1 ∧ xi 	 xi−1 ∧ xi for the preferred instantiation of the
parent Xi and xi−1∧ xi 	 xi−1∧ xi for its negation. The non-dominated solution is unique
and is defined by

x̄1 ∨
n∨

i=2

(xi−1 ∧ x̄i) ∨
n∨

i=2

(xi−1 ∧ xi) = x1 ∧
n∧

i=2

(xi−1 ∨ xi) ∧
n∧

i=2

(xi−1 ∨ x̄i) = ∧ni=1xi

At the end of this iteration, the root constraint and the children constraints in the context
of preferred parents configurations are satisfied by this best solution and can be deleted.
The remaining constraints are xi−1 ∧ xi 	 xi−1 ∧ xi, i = 1, . . . n. The dominated solutions
are the models of

∨n
i=2 xi−1∧xi. The non-dominated ones are thus of the form

∧n
i=2 xi−1∨

xi. This formula is consistent with the left-hand sides of the constraints xi−1 ∧ xi 	
xi−1 ∧ xi since they have in common the solution ∧ni=1xi. Hence the solutions can be
ranked in three levels: ∧ni=1xi at the top forming E0, and

∨n
i=2 xi−1 ∧ xi at the bottom

forming E2, the rest being of the form E1 = (
∨n

i=2 xi−1 ∧ xi) ∧ ∨ni=1xi.

Actually, the number of layers for ordering preferences using the constraint based
algorithm increases by adding edges between the grandparent nodes and those of chil-
dren nodes. The graph on Fig. 2 differs from graph on Fig. 1 by an additional edge going
from node A to node C. Applying the algorithm yields 4 preference levels.
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Example 1. Adding the edge A→ C to the preference network of Fig. 7, changes state-
ments and constraints of the node C. The set of constraints is of the form: a > ā, ab >
ab̄, ab > ab̄, āb̄ > āb, abc > abc̄, ābc > ābc̄, ab̄c > ab̄c̄, āb̄c̄ > āb̄c. Again ω = abc is
preferred. Only remain constraints āb̄ > āb, ābc > ābc̄, ab̄c > ab̄c̄, āb̄c̄ > āb̄c, which
puts models of (a ∨ b̄) ∧ (a ∨ b̄ ∨ c) ∧ (ā ∨ b ∨ c) ∧ (ā ∨ b ∨ c) at the second level or
higher. This enforces ab̄c̄ down to a fourth level.

Whatever the topology of the graph, if the network does not hold edges from the
grandparents nodes to children nodes, the number of elements forming the well-ordered
partition remains constant and equal to 3. The following propositions confirm this claim
for topologies of Fig. 3 and Fig. 4, respectively.

Proposition 2. Given any conditional preference network with one parent node and
n−1 children, the well-ordered partition of configurations output by the minimum speci-
ficity principle based algorithm has exactly 3 levels.

Proof. Assume the graph G of Fig. 3 with one parent and n − 1 children node. The root
has a preference statement x1 	 x̄1. For i = 2· · · , n, each child node bears conditional
constraints of the form x1xi 	 x1 x̄i and x̄1 x̄i 	 x̄1xi. The un-dominated set is the com-
plement of propositions on the left of constraints, namely E0 = x1∧∧n

i=2 xi. Constraints
x1 	 x̄1 and x1xi 	 x1 x̄i are satisfied by this solution and are then deleted. The second
level set E1 contains models of x̄1 ∧∨n

i=2 xi = x1 ∨∧n
i=2 x̄i. Note that all the left-hand

side propositions x̄1 x̄i of the remaining constraints are consistent with x1 ∨ ∧n
i=2 x̄i.

Hence again 3 levels are obtained.

Proposition 3. Given any conditional preference network with n−1 independent parent
nodes and one child variable, the well-ordered partition of configurations output by the
minimum specificity principle based algorithm has exactly 3 levels.

Proof. Assume the graph G of Fig. 4. In the same vein as Propositions 1 and 2, parent
nodes bear constraints xi 	 x̄i for i = 1,· · · , n−1. Denote by u the disjunction of parents
configurations such that xn is preferred to x̄n, where it is supposed that u is satisfied
by ∧n−1

i=1 xi and ū is satisfied by ∧n−1
i=1 x̄i. The remaining conditional constraints at step 2

reduce to uxn > ux̄n and ūx̄n > ūxn. Obviously we get 3 levels again.

The last result considers a more general structure (see Fig. 5) we call quasi-linear
and subsumes the preceding results.

Proposition 4. Consider a conditional preference network G = {V,E}, where the set
V of variables is partitioned inV1,· · · ,Vn. Suppose ∀ j ∈ [1,m], each variable X ∈ Vi

has its parents only at the previous level i − 1, i.e., Par(X) ⊆ Vi−1∀X ∈ Vi. The
minimum specificity principle results in a well-ordered 3-partition of solutions.

Proof. ∀i = 2,· · · , n all nodes Xi ∈ Vi are associated to the conditional constraints
uixi 	 ui x̄i and uixi 	 uixi, where ui is the disjunction of configurations of Par(Xi) such
that xi is preferred to x̄i, plus x1 	 x1 for nodes X1 ∈ V1. Assuming

∧
Xi−1∈Par(Xi) xi |= ui

and
∧

Xi−1∈Par(Xi) x̄i |= ūi, the non-dominated set E0 reduces to
(∧

X1∈V1
x1

)
∧∧n

i=2
∧

Xi∈Vi[
(ūi ∨ xi) ∧ (ui ∨ x̄i j)

]
=
∧

X∈V x. After deleting the satisfied constraints, the remaining
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ones are ∀Xi ∈ Vi, ūi x̄i 	 ūixi, ∀i = 2,· · · , n. The un-dominated set E1 ∪ E0 forms
the models of

∧n
i=2
∧

Xi∈Vi
(ui ∨ x̄i). We can easily check that ūi x̄i is consistent with E1

since they share x̄i, ∀i = 2,· · · , n and ∀Xi ∈ Vi. By consequence the third element of
the well-ordered partition E2 equals

∨n
i=2
∨m

j=1
∨

Xi j∈Vi
ūi ∧ xi.

Fig. 3. A graph with one parent and n children

Fig. 4. A graph with n parents and one child Fig. 5. A quasi-linear DAG

4.2 From Default Preference Rules to Conditional Preference Networks

While conditional preference graphs can be turned into default preference bases, we
consider the reverse transformation, i.e., whether from any preference rule base, a net-
work of conditional constraints can be generated. We show that this is generally not
the case. Preference networks lead to very specific default preference statements. Con-
texts are always conjunctions of literals, which make it possible the construction of
corresponding conditional data tables. But general preference statements admit more
general forms of contexts. Moreover preferences in networks are local in the sense
that they deal with values of single variables only. Finally, information in a preference
base can be insufficient to build a conditional preference graph. Consider the following
counter-example.

Example 2. Considering the counterpart of the “penguin” example in non-monotonic
reasoning [8,14]. Let c, r and s now stand for “Chicken (C)”, “Red wine (R)” and
“Spicy plate (S)”. Preference rules are R = { “With chicken, I prefer red wine”, “If
spicy, I prefer white wine” and “If spicy, I prefer chicken”}, where “White wine” is the
negation of “red wine”. It corresponds to constraints cr > cr̄, sr̄ > sr, sc > sc̄ using
the minimum specificity principle, it is well-known we get a well-ordered 3-partition
with E0 = s̄ ∧ (c̄ ∨ r), E1 = c ∧ r̄ and E2 = s ∧ (r ∨ c̄). The rules indicate values of
C and R depend on S and R depend on C, hence the graph of Fig. 6. However some
information is missing to get a full preference graph. We miss the absolute preference
between s and s̄ on node S , the preference for chicken or not when the plate is not spicy
is not given (represented by a question mark in Fig. 6). We also miss the preferences
about wine when the chicken is spicy (from the rules this is a conflicting case, a double
question mark in Fig. 6) and when the dish is not chicken nor spicy. In fact, S and C act
as independent parents of R, which causes the conflict. It is forbidden in a preference



Revisiting Conditional Preferences 195

graph for a variable to have several
parent groups. The conflict between S
and C is solved when applying minimum
specificity ranking to the default rules
(we conclude that s̄ > s, that s̄c > s̄c̄,
scr̄ > scr and no preference between
s̄c̄r and s̄c̄r̄.

Fig. 6. Partial network from preference rules

Clearly there is a gap between general default preference rules and conditional pref-
erence networks. However from the well-ordered partition of solutions obtained by
the minimum specificity principle, one can generate a conditional preference network.
(This solves the question marks in the example).

4.3 Comparing π-pref Nets and Default Reasoning Approach

The preference between configurations in π-pref nets is based on the comparison
between symbolic expressions obtained by the product chain rule. In this subsection,
results are compared with those of the minimal specificity approach.

Example 3. Consider a π-pref net expressing conditional preferences over 4 variables
V = {A, B,C,D}. Conditional distributions are derived from specifications of Fig. 7.

Fig. 7. Example of a π-pref net

The set S represents conditional preference spec-
ifications written under the form of defaults.
S={a, a � b, ā � b̄, b � c, b̄ � c̄, bc � d,
bc̄� d, b̄c� d̄, b̄c̄� d̄}. The well-ordered par-
tition output by Algorithm 1 is given in Table 1
(left). To construct the ordering between con-
figurations, let us now proceed by means the
product-based chain rule on symbolic weights
π(ABCD) = π(A) × π(B|A) × π(C|B) × π(D|BC).
This leads to a 5-element well-ordered partition
given in Table 1 (right).

Mind that in the minimum specificity column of Table 1, being in some subset
means indifference while in the chain rule column it corresponds to incomparability.
Taking a closer look at the obtained results of Table 1, we notice that, not only the chain
rule results in more preference levels than minimal specificity (which is unsurprizing),
but also the orderings are not in full agreement. The product chain rule agrees with the
order of inclusion between subsets of nodes associated with violated preferences [4],
and thus ranks solutions according to the number of violated nodes, whereas, the speci-
ficity algorithm just finds the most compact ordering where constraints are respected.
Nevertheless, the two approaches lead to distinct results that are not fully compatible,
since ∃ ω′ ∈ Ω such that for the chain rule approach ω′ 	 ω whereas for the minimum
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specificity based approach ω 	 ω′. Indeed, the worst configuration ābc̄d̄ is ranked on
the lowest level by the product chain rule, whereas it appears in the third level based
on the minimum specificity approach. This is due to the fact that at some iteration the
unsatisfied constraints do not prevent ābc̄d̄ from being higher than the remaining con-
figurations ab̄cd, āb̄cd.

Table 1. Well-ordered partitions based on three approaches
Minimum specificity Levels Maximum specificity Chain rule

{abcd} 1 {ab̄c̄d̄, āb̄c̄d̄} {abcd}
{abcd̄, abc̄d, ab̄c̄d̄, āb̄c̄d̄} 2 {abcd, abcd̄, abc̄d, abc̄d̄, {abcd̄, abc̄d, ab̄c̄d̄, āb̄c̄d̄}

ab̄cd̄, ab̄c̄d, ābcd, āb̄cd̄, āb̄c̄d}
{abc̄d̄, ab̄cd̄, ab̄c̄d, ābcd, 3 {ab̄cd, ābcd̄, ābc̄d, āb̄cd} {abc̄d̄, ab̄cd̄, ab̄c̄d, ābcd,
ābcd̄, ābc̄d, ābc̄d̄, āb̄cd̄, āb̄c̄d} āb̄cd̄, āb̄c̄d}
{ab̄cd, āb̄cd} 4 {ābc̄d̄} {ab̄cd, ābcd̄, ābc̄d, āb̄cd}
{∅} 5 {∅} {ābc̄d̄}

4.4 Maximal Specificity on Default Preference Statements

The minimum specificity algorithm outputs a well-ordered partition that clusters the
worst configuration(s) with other less preferred ones all in the same set. This is due to
the focus on the best models of formulas. It does not provide information on the least
preferred models. In order to refine results of the optimistic preference interpretation
approach, we can also exploit preference statements based on the maximum specificity
principle using the guaranteed possibility measure Δ(.) (see end of Sect. 2.2). A proce-
dure, symmetric to the one for minimal specificity can be devised, adapting step 2.1 of
Algorithm 1, where we now assign to E j solutions that do not appear on the left-hand
side of remaining constraints. On the graph structure of Proposition 4, one can prove
that again the maximum specificity well-ordered partition will have three elements. So
the best solutions are left on a par using the maximum specificity method. It is tempt-
ing to consider the conjunction of the minimum and the maximum specificity rankings,
say >mM . Since the chain rule partial ordering is unquestionable (it corresponds to the
Pareto dominance condition), it is interesting in the future to check whether the joint
(partial) ordering >mM of configurations allows to refine the chain rule ordering without
conflicting with it.

Example 4. Let us consider again the π-pref net of Example 3. The result of apply-
ing both minimal and maximal specificity are given in Table 1. Note that the maxi-
mum specificity ranking partially contradicts the ordering of some elements put in lev-
els 3 and 4 by the minimum specificity procedure. The reader can check that on this
example, the joint (partial) ordering >mM is consistent with and does refine the chain
rule ordering (adding the comparisons āb̄c̄d̄ >mM abcd̄, ab̄c̄d̄ >mM abcd̄, ab̄c̄d̄ >mM

abc̄d, āb̄c̄d̄ >mM abc̄d, ābcd̄ >mM āb̄cd, ābc̄d >mM āb̄cd to it). On the other hand,
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some pairs are judged incomparable by >mM ((abcd, ab̄c̄d̄), (abcd, āb̄c̄d̄), (ābc̄d̄, āb̄cd),
(ābc̄d̄, ab̄cd)) while the chain rule ordering can order them (see Table 1). In this exam-
ple it is thus possible to refine the chain rule ordering by >mM.

5 Conclusion

We investigate an approach to conditional preference graphs inspired by the possibilistic
handling of default rules. First results indicate that it is not very discriminant on some
graph structures. Ideally, two opposite information principles (minimal and maximal
specificity) can be used jointly to refine the ranking of solutions obtained by the chain
rule in π-pref nets. More work is needed to show that this is possible and to compare in
a more detailed way the new approach with π-pref nets and CP nets.
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Abstract. We study the relationship between a notion of conjunction
among conditional events, introduced in recent papers, and the notion of
Frank t-norm. By examining different cases, in the setting of coherence,
we show each time that the conjunction coincides with a suitable Frank
t-norm. In particular, the conjunction may coincide with the Product
t-norm, the Minimum t-norm, and Lukasiewicz t-norm. We show by a
counterexample, that the prevision assessments obtained by Lukasiewicz
t-norm may be not coherent. Then, we give some conditions of coherence
when using Lukasiewicz t-norm.

Keywords: Coherence · Conditional event · Conjunction ·
Frank t-norm

1 Introduction

In this paper we use the coherence-based approach to probability of de Finetti
([1,2,7,9,10,13,14,16–18,22,34]). We use a notion of conjunction which, differ-
ently from other authors, is defined as a suitable conditional random quan-
tity with values in the unit interval (see, e.g. [20,21,23,24,36]). We study
the relationship between our notion of conjunction and the notion of Frank
t-norm. For some aspects which relate probability and Frank t-norm see, e.g.,
[5,6,8,11,15,33]. We show that, under the hypothesis of logical independence,
if the prevision assessments involved with the conjunction (A|H) ∧ (B|K) of
two conditional events are coherent, then the prevision of the conjunction
coincides, for a suitable λ ∈ [0,+∞], with the Frank t-norm Tλ(x, y), where
x = P (A|H), y = P (B|K). Moreover, (A|H) ∧ (B|K) = Tλ(A|H,B|K). Then,
we consider the case A = B, by determining the set of all coherent assessment
(x, y, z) on {A|H,A|K, (A|H)∧(A|K)}. We show that, under coherence, it holds
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that (A|H)∧(A|K) = Tλ(A|H,A|K), where λ ∈ [1,+∞]. We also study the par-
ticular case where A = B and HK = ∅. Then, we consider conjunctions of three
conditional events and we show that to make prevision assignments by means of
the Product t-norm, or the Minimum t-norm, is coherent. Finally, we examine
the Lukasiewicz t-norm and we show by a counterexample that coherence is in
general not assured. We give some conditions for coherence when the prevision
assessments are made by using the Lukasiewicz t-norm.

2 Preliminary Notions and Results

In our approach, given two events A and H, with H �= ∅, the conditional
event A|H is looked at as a three-valued logical entity which is true, or false,
or void, according to whether AH is true, or ĀH is true, or H̄ is true. We
observe that the conditional probability and/or conditional prevision values are
assessed in the setting of coherence-based probabilistic approach. In numerical
terms A|H assumes one of the values 1, or 0, or x, where x = P (A|H) represents
the assessed degree of belief on A|H. Then, A|H = AH + xH̄. Given a family
F = {X1|H1, . . . , Xn|Hn}, for each i ∈ {1, . . . , n} we denote by {xi1, . . . , xiri

}
the set of possible values of Xi when Hi is true; then, for each i and j = 1, . . . , ri,
we set Aij = (Xi = xij). We set C0 = H̄1 · · · H̄n (it may be C0 = ∅); moreover,
we denote by C1, . . . , Cm the constituents contained in H1 ∨ · · · ∨ Hn. Hence∧n

i=1(Ai1 ∨ · · · ∨ Airi
∨ H̄i) =

∨m
h=0 Ch. With each Ch, h ∈ {1, . . . , m}, we

associate a vector Qh = (qh1, . . . , qhn), where qhi = xij if Ch ⊆ Aij , j = 1, . . . , ri,
while qhi = μi if Ch ⊆ H̄i; with C0 it is associated Q0 = M = (μ1, . . . , μn).
Denoting by I the convex hull of Q1, . . . , Qm, the condition M ∈ I amounts to
the existence of a vector (λ1, . . . , λm) such that:

∑m
h=1 λhQh = M ,

∑m
h=1 λh =

1 , λh � 0 , ∀h; in other words, M ∈ I is equivalent to the solvability of the
system (Σ), associated with (F ,M),

(Σ)
∑m

h=1 λhqhi = μi , i ∈ {1, . . . , n} ,
∑m

h=1 λh = 1, λh � 0 , h ∈ {1, . . . , m} .
(1)

Given the assessment M = (μ1, . . . , μn) on F = {X1|H1, . . . , Xn|Hn}, let S
be the set of solutions Λ = (λ1, . . . , λm) of system (Σ). We point out that
the solvability of system (Σ) is a necessary (but not sufficient) condition for
coherence of M on F . When (Σ) is solvable, that is S �= ∅, we define:

I0 = {i : maxΛ∈S

∑
h:Ch⊆Hi

λh = 0}, F0 = {Xi|Hi , i ∈ I0}, M0 = (μi, i ∈ I0) . (2)

For what concerns the probabilistic meaning of I0, it holds that i ∈ I0 if and
only if the (unique) coherent extension of M to Hi|(

∨n
j=1 Hj) is zero. Then, the

following theorem can be proved ([3, Theorem 3]).

Theorem 1 [Operative characterization of coherence]. A conditional prevision
assessment M = (μ1, . . . , μn) on the family F = {X1|H1, . . . , Xn|Hn} is coher-
ent if and only if the following conditions are satisfied:
(i) the system (Σ) defined in (1) is solvable; (ii) if I0 �= ∅, then M0 is coherent.
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Coherence can be related to proper scoring rules ([4,19,29–31]).

Definition 1. Given any pair of conditional events A|H and B|K, with
P (A|H) = x and P (B|K) = y, their conjunction is the conditional random
quantity (A|H) ∧ (B|K), with P[(A|H) ∧ (B|K)] = z, defined as

(A|H) ∧ (B|K) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if AHBK is true,
0, if ĀH ∨ B̄K is true,
x, if H̄BK is true,
y, if AHK̄ is true,
z, if H̄ K̄ is true.

(3)

In betting terms, the prevision z represents the amount you agree to pay, with the
proviso that you will receive the quantity (A|H)∧(B|K). Different approaches to
compounded conditionals, not based on coherence, have been developed by other
authors (see, e.g., [26,32]). We recall a result which shows that Fréchet-Hoeffding
bounds still hold for the conjunction of conditional events ([23, Theorem 7]).

Theorem 2. Given any coherent assessment (x, y) on {A|H,B|K}, with
A,H,B, K logically independent, H �= ∅,K �= ∅, the extension z = P[(A|H) ∧
(B|K)] is coherent if and only if the following Fréchet-Hoeffding bounds are
satisfied:

max{x + y − 1, 0} = z′ � z � z′′ = min{x, y}. (4)

Remark 1. From Theorem 2, as the assessment (x, y) on {A|H,B|K} is coher-
ent for every (x, y) ∈ [0, 1]2, the set Π of coherent assessments (x, y, z) on
{A|H,B|K, (A|H) ∧ (B|K)} is

Π = {(x, y, z) : (x, y) ∈ [0, 1]2,max{x + y − 1, 0} � z � min{x, y}}. (5)

The set Π is the tetrahedron with vertices the points (1, 1, 1), (1, 0, 0), (0, 1, 0),
(0, 0, 0). For other definition of conjunctions, where the conjunction is a condi-
tional event, some results on lower and upper bounds have been given in [35].

Definition 2. Let be given n conditional events E1|H1, . . . , En|Hn. For each
subset S, with ∅ �= S ⊆ {1, . . . , n}, let xS be a prevision assessment on∧

i∈S(Ei|Hi). The conjunction C1···n = (E1|H1) ∧ · · · ∧ (En|Hn) is defined as

C1···n =

⎧
⎨

⎩

1, if
∧n

i=1 EiHi, is true
0, if

∨n
i=1 ĒiHi, is true,

xS , if
∧

i∈S H̄i

∧
i/∈S EiHi is true, ∅ �= S ⊆ {1, 2 . . . , n}.

(6)

In particular, C1 = E1|H1; moreover, for S = {i1, . . . , ik} ⊆ {1, . . . , n}, the
conjunction

∧
i∈S(Ei|Hi) is denoted by Ci1···ik and xS is also denoted by xi1···ik .

In the betting framework, you agree to pay x1···n = P(C1···n) with the proviso
that you will receive: 1, if all conditional events are true; 0, if at least one of the
conditional events is false; the prevision of the conjunction of that conditional
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events which are void, otherwise. The operation of conjunction is associative and
commutative. We observe that, based on Definition 2, when n = 3 we obtain

C123 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if E1H1E2H2E3H3 is true,
0, if Ē1H1 ∨ Ē2H2 ∨ Ē3H3 is true,
x1, if H̄1E2H2E3H3 is true,
x2, if H̄2E1H1E3H3 is true,
x3, if H̄3E1H1E2H2 is true,
x12, if H̄1H̄2E3H3 is true,
x13, if H̄1H̄3E2H2 is true,
x23, if H̄2H̄3E1H1 is true,
x123, if H̄1H̄2H̄3 is true.

(7)

We recall the following result ([24, Theorem 15]).

Theorem 3. Assume that the events E1, E2, E3,H1,H2,H3 are logically inde-
pendent, with H1 �= ∅,H2 �= ∅,H3 �= ∅. Then, the set Π of all coherent assess-
ments M = (x1, x2, x3, x12, x13, x23, x123) on F = {C1, C2, C3, C12, C13, C23, C123}
is the set of points (x1, x2, x3, x12, x13, x23, x123) which satisfy the following con-
ditions

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x1, x2, x3) ∈ [0, 1]3,
max{x1 + x2 − 1, x13 + x23 − x3, 0} � x12 � min{x1, x2},
max{x1 + x3 − 1, x12 + x23 − x2, 0} � x13 � min{x1, x3},
max{x2 + x3 − 1, x12 + x13 − x1, 0} � x23 � min{x2, x3},
1 − x1 − x2 − x3 + x12 + x13 + x23 � 0,
x123 � max{0, x12 + x13 − x1, x12 + x23 − x2, x13 + x23 − x3},
x123 � min{x12, x13, x23, 1 − x1 − x2 − x3 + x12 + x13 + x23}.

(8)

Remark 2. As shown in (8), the coherence of (x1, x2, x3, x12, x13, x23, x123)
amounts to the condition

max{0, x12 + x13 − x1, x12 + x23 − x2, x13 + x23 − x3} � x123

� min{x12, x13, x23, 1 − x1 − x2 − x3 + x12 + x13 + x23}. (9)

Then, in particular, the extension x123 on C123 is coherent if and only if x123 ∈
[x′

123, x
′′
123], where x′

123 = max{0, x12 + x13 − x1, x12 + x23 − x2, x13 + x23 − x3},
x′′
123 = min{x12, x13, x23, 1 − x1 − x2 − x3 + x12 + x13 + x23}.

Then, by Theorem 3 it follows [24, Corollary 1].

Corollary 1. For any coherent assessment (x1, x2, x3, x12, x13, x23)
on {C1, C2, C3, C12, C13, C23} the extension x123 on C123 is coherent if and only
if x123 ∈ [x′

123, x
′′
123], where

x′
123 = max{0, x12 + x13 − x1, x12 + x23 − x2, x13 + x23 − x3},

x′′
123 = min{x12, x13, x23, 1 − x1 − x2 − x3 + x12 + x13 + x23}. (10)
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We recall that in case of logical dependencies, the set of all coherent assessments
may be smaller than that one associated with the case of logical independence.
However (see [24, Theorem 16]) the set of coherent assessments is the same
when H1 = H2 = H3 = H (where possibly H = Ω; see also [25, p. 232]) and a
corollary similar to Corollary 1 also holds in this case. For a similar result based
on copulas see [12].

3 Representation by Frank t-Norms for (A|H) ∧ (B|K)

We recall that for every λ ∈ [0,+∞] the Frank t-norm Tλ : [0, 1]2 → [0, 1] with
parameter λ is defined as

Tλ(u, v) =

⎧
⎪⎪⎨

⎪⎪⎩

TM (u, v) = min{u, v}, if λ = 0,
TP (u, v) = uv, if λ = 1,
TL(u, v) = max{u + v − 1, 0}, if λ = +∞,

logλ(1 + (λu−1)(λv−1)
λ−1 ), otherwise.

(11)

We recall that Tλ is continuous with respect to λ; moreover, for every λ ∈
[0,+∞], it holds that TL(u, v) � Tλ(u, v) � TM (u, v), for every (u, v) ∈ [0, 1]2

(see, e.g., [27,28]). In the next result we study the relation between our notion
of conjunction and t-norms.

Theorem 4. Let us consider the conjunction (A|H) ∧ (B|K), with A,B,H,K
logically independent and with P (A|H) = x, P (B|K) = y. Moreover, given
any λ ∈ [0,+∞], let Tλ be the Frank t-norm with parameter λ. Then, the
assessment z = Tλ(x, y) on (A|H) ∧ (B|K) is a coherent extension of (x, y)
on {A|H,B|K}; moreover (A|H) ∧ (B|K) = Tλ(A|H,B|K). Conversely, given
any coherent extension z = P[(A|H) ∧ (B|K)] of (x, y), there exists λ ∈ [0,+∞]
such that z = Tλ(x, y).

Proof. We observe that from Theorem 2, for any given λ, the assessment z =
Tλ(x, y) is a coherent extension of (x, y) on {A|H,B|K}. Moreover, from (11)
it holds that Tλ(1, 1) = 1, Tλ(u, 0) = Tλ(0, v) = 0, Tλ(u, 1) = u, Tλ(1, v) = v.
Hence,

Tλ(A|H,B|K) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if AHBK is true,
0, if ĀH is true or B̄K is true,
x, if H̄BK is true,
y, if K̄AH is true,
Tλ(x, y), if H̄ K̄ is true,

(12)

and, if we choose z = Tλ(x, y), from (3) and (12) it follows that (A|H)∧(B|K) =
Tλ(A|H,B|K).
Conversely, given any coherent extension z of (x, y), there exists λ such that
z = Tλ(x, y). Indeed, if z = min{x, y}, then λ = 0; if z = max{x + y − 1, 0},
then λ = +∞; if max{x + y − 1, 0} < z < min{x, y}, then by continuity of Tλ

with respect to λ it holds that z = Tλ(x, y) for some λ ∈ ]0,∞[ (for instance, if
z = xy, then z = T1(x, y)) and hence (A|H) ∧ (B|K) = Tλ(A|H,B|K). 
�
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Remark 3. As we can see from (3) and Theorem 4, in case of logically inde-
pendent events, if the assessed values x, y, z are such that z = Tλ(x, y) for a
given λ, then the conjunction (A|H) ∧ (B|K) = Tλ(A|H,B|K). For instance,
if z = T1(x, y) = xy, then (A|H) ∧ (B|K) = T1(A|H,B|K) = (A|H) · (B|K).
Conversely, if (A|H) ∧ (B|K) = Tλ(A|H,B|K) for a given λ, then z = Tλ(x, y).
Then, the set Π given in (5) can be written as Π = {(x, y, z) : (x, y) ∈ [0, 1]2, z =
Tλ(x, y), λ ∈ [0,+∞]}.

4 Conjunction of (A|H) and (A|K)

In this section we examine the conjunction of two conditional events in the
particular case when A = B, that is (A|H) ∧ (A|K). By setting P (A|H) = x,
P (A|K) = y and P[(A|H) ∧ (A|K)] = z, it holds that

(A|H) ∧ (A|K) = AHK + xH̄AK + yK̄AH + zH̄ K̄ ∈ {1, 0, x, y, z}.

Theorem 5. Let A,H,K be three logically independent events, with H �= ∅,
K �= ∅. The set Π of all coherent assessments (x, y, z) on the family F =
{A|H,A|K, (A|H) ∧ (A|K)} is given by

Π = {(x, y, z) : (x, y) ∈ [0, 1]2, TP (x, y) = xy � z � min{x, y} = TM (x, y)}.
(13)

Proof. Let M = (x, y, z) be a prevision assessment on F . The constituents
associated with the pair (F ,M) and contained in H ∨ K are: C1 = AHK,
C2 = ĀHK, C3 = ĀH̄K, C4 = ĀHK̄, C5 = AH̄K, C6 = AHK̄. The associated
points Qh’s are Q1 = (1, 1, 1), Q2 = (0, 0, 0), Q3 = (x, 0, 0), Q4 = (0, y, 0), Q5 =
(x, 1, x), Q6 = (1, y, y). With the further constituent C0 = H̄K̄ it is associated
the point Q0 = M = (x, y, z). Considering the convex hull I (see Fig. 1) of
Q1, . . . , Q6, a necessary condition for the coherence of the prevision assessment
M = (x, y, z) on F is that M ∈ I, that is the following system must be solvable

(Σ)

{
λ1 + xλ3 + xλ5 + λ6 = x, λ1 + yλ4 + λ5 + yλ6 = y, λ1 + xλ5 + yλ6 = z,
∑6

h=1 λh = 1, λh � 0, h = 1, . . . , 6.

First of all, we observe that solvability of (Σ) requires that z � x and z � y,
that is z � min{x, y}. We now verify that (x, y, z), with (x, y) ∈ [0, 1]2 and
z = min{x, y}, is coherent. We distinguish two cases: (i) x � y and (ii) x > y.
Case (i). In this case z = min{x, y} = x. If y = 0 the system (Σ) becomes

λ1 + λ6 = 0, λ1 + λ5 = 0, λ1 = 0, λ2 + λ3 + λ4 = 1, λh � 0, h = 1, . . . , 6.

which is clearly solvable. In particular there exist solutions with λ2 > 0, λ3 > 0,
λ4 > 0, by Theorem 1, as the set I0 is empty the solvability of (Σ) is sufficient
for coherence of the assessment (0, 0, 0). If y > 0 the system (Σ) is solvable and a
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solution is Λ = (λ1, . . . , λ6) = (x, x(1−y)
y , 0, y−x

y , 0, 0). We observe that, if x > 0,
then λ1 > 0 and I0 = ∅ because C1 = HK ⊆ H ∨ K, so that M = (x, y, x) is
coherent. If x = 0 (and hence z = 0), then λ4 = 1 and I0 ⊆ {2}. Then, as the sub-
assessment P (A|K) = y is coherent, it follows that the assessment M = (0, y, 0)
is coherent too.
Case (ii). The system is solvable and a solution is Λ = (λ1, . . . , λ6) =
(y, y(1−x)

x , x−y
x , 0, 0, 0). We observe that, if y > 0, then λ1 > 0 and I0 = ∅ because

C1 = HK ⊆ H ∨K, so that M = (x, y, y) is coherent. If y = 0 (and hence z = 0),
then λ3 = 1 and I0 ⊆ {1}. Then, as the sub-assessment P (A|H) = x is coher-
ent, it follows that the assessment M = (x, 0, 0) is coherent too. Thus, for every
(x, y) ∈ [0, 1]2, the assessment (x, y,min{x, y}) is coherent and, as z � min{x, y},
the upper bound on z is min{x, y} = TM (x, y).

We now verify that (x, y, xy), with (x, y) ∈ [0, 1]2 is coherent; moreover we will
show that (x, y, z), with z < xy, is not coherent, in other words the lower bound for
z isxy. First of all, we observe thatM = (1−x)Q4+xQ6, so that a solution of (Σ) is
Λ1 = (0, 0, 0, 1−x, 0, x). Moreover,M = (1−y)Q3+yQ5, so that another solution
is Λ2 = (0, 0, 1−y, 0, y, 0). Then Λ = Λ1+Λ2

2 = (0, 0, 1−y
2 , 1−x

2 , y
2 , x

2 ) is a solution of
(Σ) such that I0 = ∅. Thus the assessment (x, y, xy) is coherent for every (x, y) ∈
[0, 1]2. In order to verify that xy is the lower bound on z we observe that the points
Q3, Q4, Q5, Q6 belong to a plane π of equation: yX +xY −Z = xy, where X,Y,Z
are the axis’ coordinates.Now, by considering the function f(X,Y,Z) = yX+xY −
Z, we observe that for each constant k the equation f(X,Y,Z) = k represents a
plane which is parallel to π and coincides with π when k = xy. We also observe
that f(Q1) = f(1, 1, 1) = x + y − 1 = TL(x, y) � xy = TP (x, y), f(Q2) =
f(0, 0, 0) = 0 � xy = TP (x, y), and f(Q3) = f(Q4) = f(Q5) = f(Q6) = xy =
TP (x, y). Then, for every P =

∑6
h=1 λhQh, with λh � 0 and

∑6
h=1 λh = 1, that

is P ∈ I, it holds that f(P) = f
( ∑6

h=1 λhQh

)
=

∑6
h=1 λhf(Qh) � xy. On

the other hand, given any a > 0, by considering P = (x, y, xy − a) it holds that
f(P) = f(x, y, xy−a) = xy+xy−xy+a = xy+a > xy. Therefore, for any given
a > 0 the assessment (x, y, xy−a) is not coherent because (x, y, xy−a) /∈ I. Then,
the lower bound on z is xy = TP (x, y). Finally, the set of all coherent assessments
(x, y, z) on F is the set Π in (13). 
�
Based on Theorem 5, we can give an analogous version for the Theorem 4 (when
A = B).

Theorem 6. Let us consider the conjunction (A|H)∧ (A|K), with A,H,K log-
ically independent and with P (A|H) = x, P (A|K) = y. Moreover, given any
λ ∈ [1,+∞], let Tλ be the Frank t-norm with parameter λ. Then, the assess-
ment z = Tλ(x, y) on (A|H) ∧ (A|K) is a coherent extension of (x, y) on
{A|H,A|K}; moreover (A|H) ∧ (A|K) = Tλ(A|H,A|K). Conversely, given any
coherent extension z = P[(A|H)∧ (A|K)] of (x, y), there exists λ ∈ [1,+∞] such
that z = Tλ(x, y).

The next result follows from Theorem 5 when H, K are incompatible.
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Fig. 1. Convex hull I of the points Q1, Q2, Q3, Q4, Q5, Q6. M′ = (x, y, z′),M′′ =
(x, y, z′′), where (x, y) ∈ [0, 1]2, z′ = xy, z′′ = min{x, y}. In the figure the numerical
values are: x = 0.35, y = 0.45, z′ = 0.1575, and z′′ = 0.35.

Theorem 7. Let A,H,K be three events, with A logically independent from
both H and K, with H �= ∅, K �= ∅, HK = ∅. The set Π of all coherent
assessments (x, y, z) on the family F = {A|H,A|K, (A|H) ∧ (A|K)} is given by
Π = {(x, y, z) : (x, y) ∈ [0, 1]2, z = xy = TP (x, y)}.
Proof. We observe that

(A|H) ∧ (A|K) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if ĀH̄K ∨ ĀHK̄ is true,
x, if H̄AK is true,
y, if AHK̄ is true,
z, if H̄K̄ is true.

Moreover, as HK = ∅, the points Qh’s are (x, 0, 0), (0, y, 0), (x, 1, x), (1, y, y),
which coincide with the points Q3, . . . , Q6 of the case HK �= ∅. Then, as shown
in the proof of Theorem 5, the condition M = (x, y, z) belongs to the convex
hull of (x, 0, 0), (0, y, 0), (x, 1, x), (1, y, y) amounts to the condition z = xy. 
�
Remark 4. From Theorem 7, when HK = ∅ it holds that (A|H) ∧ (A|K) =
(A|H) · (A|K) = TP (A|H,A|K), where x = P (A|H) and y = P (A|K).

5 Further Results on Frank t-Norms

In this section we give some results which concern Frank t-norms and the family
F = {C1, C2, C3, C12, C13, C23, C123}. We recall that, given any t-norm T (x1, x2) it
holds that T (x1, x2, x3) = T (T (x1, x2), x3).
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5.1 On the Product t-Norm

Theorem 8. Assume that the events E1, E2, E3,H1,H2,H3 are logically inde-
pendent, with H1 �= ∅,H2 �= ∅,H3 �= ∅. If the assessment M = (x1, x2, x3, x12,
x13, x23, x123) on F = {C1, C2, C3, C12, C13, C23, C123} is such that (x1, x2, x3) ∈
[0, 1]3, xij = T1(xi, xj) = xixj, i �= j, and x123 = T1(x1, x2, x3) = x1x2x3,
then M is coherent. Moreover, Cij = T1(Ci, Cj) = CiCj, i �= j, and C123 =
T1(C1, C2, C3) = C1C2C3.
Proof. From Remark 2, the coherence of M amounts to the inequalities in (9).
As xij = T1(xi, xj) = xixj , i �= j, and x123 = T1(x1, x2, x3) = x1x2x3, the
inequalities (9) become

max{0, x1(x2 + x3 − 1), x2(x1 + x3 − 1), x3(x1 + x2 − 1)} � x1x2x3

� min{x1x2, x1x3, x2x3, (1 − x1)(1 − x2)(1 − x3) + x1x2x3}. (14)

Thus, by recalling that xi+xj−1 � xixj , the inequalities are satisfied and hence
M is coherent. Moreover, from (3) and (7) it follows that Cij = T1(Ci, Cj) = CiCj ,
i �= j, and C123 = T1(C1, C2, C3) = C1C2C3. 
�

5.2 On the Minimum t-Norm

Theorem 9. Assume that the events E1, E2, E3,H1,H2,H3 are logically inde-
pendent, with H1 �= ∅,H2 �= ∅,H3 �= ∅. If the assessment M = (x1, x2, x3, x12,
x13, x23, x123) on F = {C1, C2, C3, C12, C13, C23, C123} is such that (x1, x2, x3) ∈
[0, 1]3, xij = TM (xi, xj) = min{xi, xj}, i �= j, and x123 = TM (x1, x2, x3) =
min{x1, x2, x3}, then M is coherent. Moreover, Cij = TM (Ci, Cj) = min{Ci, Cj},
i �= j, and C123 = TM (C1, C2, C3) = min{C1, C2, C3}.
Proof. From Remark 2, the coherence of M amounts to the inequalities in
(9). Without loss of generality, we assume that x1 � x2 � x3. Then x12 =
TM (x1, x2) = x1, x13 = TM (x1, x3) = x1, x23 = TM (x2, x3) = x2, and
x123 = TM (x1, x2, x3) = x1. The inequalities (9) become

max{0, x1, x1 + x2 − x3} = x1 � x1 � x1 = min{x1, x2, 1 − x3 + x1}. (15)

Thus, the inequalities are satisfied and hence M is coherent. Moreover, from
(3) and (7) it follows that Cij = TM (Ci, Cj) = min{Ci, Cj}, i �= j, and C123 =
TM (C1, C2, C3) = min{C1, C2, C3}. 
�
Remark 5. As we can see from (15) and Corollary 1, the assessment x123 =
min{x1, x2, x3} is the unique coherent extension on C123 of the assessment
(x1, x2, x3,min{x1, x2},min{x1, x3},min{x2, x3}) on {C1, C2, C3, C12, C13, C23}.
We also notice that, if C1 � C2 � C3, then C12 = C1, C13 = C1, C23 = C2, and
C123 = C1. Moreover, x12 = x1, x13 = x1, x23 = x2, and x123 = x1.
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5.3 On Lukasiewicz t-Norm

We observe that in general the results of Theorems 8 and 9 do not hold for the
Lukasiewicz t-norm (and hence for any given Frank t-norm), as shown in the
example below. We recall that TL(x1, x2, x3) = max{x1 + x2 + x3 − 2, 0}.
Example 1. The assessment (x1, x2, x3, TL(x1, x2), TL(x1, x3), TL(x2, x3),
TL(x1, x2, x3)) on the family F = {C1, C2, C3, C12, C13, C23, C123}, with
(x1, x2, x3) = (0.5, 0.6, 0.7) is not coherent. Indeed, by observing that
TL(x1, x2) = 0.1 TL(x1, x3) = 0.2, TL(x2, x3) = 0.3, and TL(x1, x2, x3) = 0,
formula (9) becomes max{0, 0.1 + 0.2 − 0.5, 0.1 + 0.3 − 0.6, 0.2 + 0.3 − 0.7} �
0 � min{0.1, 0.2, 0.3, 1 − 0.5 − 0.6 − 0.7 + 0.1 + 0.2 + 0.3}, that is:
max{0,−0.2} � 0 � min{0.1, 0.2, 0.3,−0.2}; thus the inequalities are not
satisfied and the assessment is not coherent.

More in general we have

Theorem 10. The assessment (x1, x2, x3, TL(x1, x2), TL(x1, x3), TL(x2, x3)) on
the family F = {C1, C2, C3, C12, C13, C23}, with TL(x1, x2) > 0, TL(x1, x3) > 0,
TL(x2, x3) > 0 is coherent if and only if x1 + x2 + x3 − 2 � 0. Moreover, when
x1 + x2 + x3 − 2 � 0 the unique coherent extension x123 on C123 is x123 =
TL(x1, x2, x3).

Proof. We distinguish two cases: (i) x1+x2+x3−2 < 0; (ii) x1+x2+x3−2 � 0.

Case (i). From (8) the inequality 1 − x1 − x2 − x3 + x12 + x13 + x23 � 0 is not
satisfied because 1 − x1 − x2 − x3 + x12 + x13 + x23 = x1 + x2 + x3 − 2 < 0.
Therefore the assessment is not coherent.
Case (ii). We set x123 = TL(x1, x2, x3) = x1 + x2 + x3 − 2. Then, by observ-
ing that 0 < xi + xj − 1 � x1 + x2 + x3 − 2, i �= j, formula (9) becomes
max{0, x1 + x2 + x3 − 2} � x1 + x2 + x3 − 2 � min{x1 + x2 − 1,
x1 + x3 − 1, x2 + x3 − 1, x1 + x2 + x3 − 2}, that is: x1 + x2 + x3 − 2 �
x1 + x2 + x3 − 2 � x1 + x2 + x3 − 2. Thus, the inequalities are satisfied
and the assessment (x1, x2, x3, TL(x1, x2), TL(x1, x3), TL(x2, x3), TL(x1, x2, x3))
on {C1, C2, C3, C12, C13, C23, C123} is coherent and the sub-assess-
ment (x1, x2, x3, TL(x1, x2), TL(x1, x3), TL(x2, x3)) on F is coherent too. 
�
A result related with Theorem 10 is given below.

Theorem 11. If the assessment (x1, x2, x3, TL(x1, x2), TL(x1, x3), TL(x2, x3),
TL(x1, x2, x3)) on the family F = {C1, C2, C3, C12, C13, C23, C123}, is such that
TL(x1, x2, x3) > 0, then the assessment is coherent.

Proof. We observe that TL(x1, x2, x3) = x1 + x2 + x3 − 2 > 0; then xi > 0,
i = 1, 2, 3, and 0 < xi+xj−1 � x1+x2+x3−2, i �= j. Then formula (9) becomes:
max{0, x1+x2+x3−2} � x1+x2+x3−2 � min{x1+x2−1, x1+x3−1, x2+x3−
1, x1+x2+x3−2}, that is: x1+x2+x3−2 � x1+x2+x3−2 � x1+x2+x3−2.
Thus, the inequalities are satisfied and the assessment is coherent. 
�
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6 Conclusions

We have studied the relationship between the notions of conjunction and of
Frank t-norms. We have shown that, under logical independence of events and
coherence of prevision assessments, for a suitable λ ∈ [0,+∞] it holds that
P((A|H) ∧ (B|K)) = Tλ(x, y) and (A|H) ∧ (B|K) = Tλ(A|H,B|K). Then, we
have considered the case A = B, by determining the set of all coherent assess-
ment (x, y, z) on (A|H,B|K, (A|H)∧ (A|K)). We have shown that, under coher-
ence, for a suitable λ ∈ [1,+∞] it holds that (A|H) ∧ (A|K) = Tλ(A|H,A|K).
We have also studied the particular case where A = B and HK = ∅. Then, we
have considered the conjunction of three conditional events and we have shown
that the prevision assessments produced by the Product t-norm, or the Minimum
t-norm, are coherent. Finally, we have examined the Lukasiewicz t-norm and we
have shown, by a counterexample, that coherence in general is not assured. We
have given some conditions for coherence when the prevision assessments are
based on the Lukasiewicz t-norm. Future work should concern the deepening
and generalization of the results of this paper.

Acknowledgments. We thank three anonymous referees for their useful comments.
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Abstract. Starting from the observation that rational closure has the
undesirable property of being an “all or nothing” mechanism, we here
consider a multipreferential semantics, which enriches the preferential
semantics underlying rational closure in order to separately deal with
the inheritance of different properties in an ontology with exceptions. We
show that the MP-closure of an ALC knowledge base is a construction
which is sound with respect to minimal entailment in the multipreference
semantics for ALC.

1 Introduction

Reasoning about exceptions in ontologies is one of the challenges the descrip-
tion logics community is facing, a challenge which is at the very roots of
the development of non-monotonic reasoning in the 80’s. Many non-monotonic
extensions of Description Logics (DLs) have been developed incorporating non-
monotonic features from most of the non-monotonic formalisms in the literature
[2,6,7,12,15,16,20–23,29–31,34–36,41,43], and defining new constructions and
semantics such as in [4,5,8,9].

In this paper we focus on the rational closure for DLs [14–16,19,31] and on its
refinements. While the rational closure provides a simple and efficient approach
for reasoning with exceptions, exploiting polynomial reductions to standard DLs
[24,40], it is well known that it does not allow an independent handling of the
inheritance of different defeasible properties of concepts: if a subclass of C is
exceptional for a given aspect, it is exceptional tout court and does not inherit
any of the typical properties of C. This problem was called by Pearl [42] “the
blocking of property inheritance problem”, and it is an instance of the “drowning
problem” in [3].

To cope with this problem Lehmann [39] introduced the notion of the lexico-
graphic closure, which was extended to Description Logics by Casini and Strac-
cia [18], while in [19] the same authors develop an inheritance-based approach for
defeasible DLs. In [13] Casini et al. also developed a closure construction weaker

c© Springer Nature Switzerland AG 2019
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than the lexicographic closure, called the Relevant Closure. In [33] Gliozzi devel-
oped a multi-preference semantics for defeasible inclusions in which models are
equipped with several preference relations, providing a refinement of the rational
closure semantics for ALC. Some other proposal for non-monotonic reasoning in
the literature, still based on a preferential semantics, also suffer from the problem
of inheritance blocking such as, for instance, the typicality logic ALC +Tmin [30].
Its semantics, differently from the rational closure, is not based on ranked models.
A multi-typicality version of this logic has been studied by Fernandez Gil [23] to
address this problem. A logic which may build on the rational closure to determine
specificity of defaults, but does not suffer from the problem of inheritance blocking,
is the logic of overriding, DLN , proposed by Bonatti et al. [5,8].

In this paper, we reconsider the multi-preference semantics for ALC in [33]
and we show that entailment in the multipreference semantics can be approxi-
mated by the MP-closure construction for ALC. The idea of the multipreference
semantics was to define a refinement of the rational closure for ALC in which
preference with respect to specific aspects is considered. It is formulated in terms
of enriched models, which also consider the preference relations <Ai

, associated
with the different aspects (or concepts, like having feather or flying, being a
sport lover or a swimmer), as for any two individuals, one may be more typical
than the other one as a sport lover, but less typical as a swimmer.

Here, we refer to the definition of multipreference semantics in [27], which is
slightly stronger than the one originally introduce by Gliozzi in [33] (although
both of them lead to refinements of the rational closure), and we show that
entailment in the multipreference semantics can be soundly approximated by
the MP-closure, a notion of closure that is more cautious than the lexicographic
closure. In the propositional case, the MP-closure has been studied as the natural
alternative to the lexicographic closure when the Maximal Entropy approach
is abandoned [28], and it has been proved to be weaker than the lexicographic
closure, but stronger than the rational closure and the relevant closure. The MP-
closure, as the lexicographic closure builds over the RC. Lehmann’s lexicographic
closure [39] strengthens the RC by allowing, roughly speaking, a class to inherit
as many as possible of the defeasible properties of more general classes, giving
preference to the more specific properties. It has been extended to the description
logic ALC by Casini and Straccia in [18]. The idea underlying the construction
of the MP-closure is similar to that of the lexicographic closure but, while the
lexicographic ordering in [39] takes into consideration the size of the sets of
defaults satisfied at each rank (and is modular), the MP-closure construction
only compares sets of defaults based on subset inclusion.

A semantic characterization of the MP-closure for the description logic ALC
was developed in [25] using bi-preferential (BP) interpretations, that is, pref-
erential interpretations developed along the lines of the preferential semantics
introduced by Kraus, Lehmann and Magidor [37,38], but containing two prefer-
ence relations, the first <1 playing the role of preference relations in the models
of the RC, and the second <2 representing a refinement of <1. Instead, in the
propositional case [28], we have considered a simpler semantic characterization
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of the MP-closure, more similar to the model-theoretic semantics of the lexico-
graphic closure defined by Lehmann [39]. While we refer therein for details on
the different semantics, here, we will only consider the multipreference semantics
and the MP-closure construction used to prove the soundness result. The proofs
can be found in [27].

2 The Rational Closure for ALC
In this section we recall the extension of ALC with a typicality operator intro-
duced in [29,31] under the preferential and ranked semantics. In particular, we
recall the logic ALC +TR which is at the basis of a rational closure construction
proposed in [31] for ALC. The general idea is that of extending the descrip-
tion logic ALC with concepts of the form T(C), whose instances are the typi-
cal instances of concept C, thus distinguishing the properties that hold for all
instances of concept C (given by strict inclusions C � D), from the proper-
ties that hold for the typical instances of C (given by the defeasible inclusions
T(C) � D). The extended language is defined as follows:

CR := A | � | ⊥ | ¬CR | CR � CR | CR � CR | ∀R.CR | ∃R.CR

CL := CR | T(CR),

where A is a concept name and R a role name. A knowledge base K is a pair
(T ,A), where the TBox T contains a finite set of concept inclusions CL �
CR, and the ABox A contains a finite set of assertions of the form CR(a) and
R(a, b), for a, b individual names, and R role name. The TBox contains two
kinds of inclusions: strict inclusions C � D (the C’s are D’s), where C and D
are ALC concepts, and typicality inclusions T(C) � D (the typical C’s are D’s),
corresponding to KLM conditionals C |∼ D.

The semantics of ALC with typicality is defined in terms of preferential
models, extending to ALC the preferential semantics by Kraus, Lehmann and
Magidor in [37,38]: ordinary models of ALC are equipped with a preference rela-
tion < on the domain, whose intuitive meaning is to compare the “typicality”
of domain elements: x < y means that x is more typical than y. The instances
of T(C) are the instances of concept C that are minimal with respect to <.
The preference relation < is assumed to be well-founded (i.e., there is no infinite
<-descending chain, so that, if S 	= ∅, also min<(S) 	= ∅). In ranked models,
which characterize ALC + TR, < is further assumed to be modular (i.e., for all
x, y, z ∈ Δ, if x < y then either x < z or z < y). Ranked models characterize
ALC + TR. Let us shortly recap their definition.

Definition 1 (Preferential and ranked interpretations of ALC + T). A
preferential interpretation M is any structure M = 〈Δ,<, I〉 where: Δ is the
domain; < is an irreflexive, transitive and well-founded relation over Δ. I is an
interpretation function that maps each concept name C ∈ NC to CI ⊆ Δ, each
role name R ∈ NR to RI ⊆ ΔI×ΔI and each individual name a ∈ NI to aI ∈ Δ.
For concepts of ALC, CI is defined in the usual way in ALC interpretations
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[1]. In particular: �I = Δ, ⊥I = ∅, (¬C)I = Δ\CI , (C � D)I = CI ∩ DI ,
(C � D)I = CI ∪ DI and

(∀R.C)I = {x ∈ Δ | for all y, (x, y) ∈ RI implies y ∈ CI}
(∃R.C)I = {x ∈ Δ | for some y (x, y) ∈ RI and y ∈ CI}

For the T operator, we have (T(C))I = min<(CI).
When the interpretation I is also modular, I is called a ranked interpretation.

The notion of satisfiability of a KB in an interpretation is defined as usual. Given
an ALC interpretation M = 〈Δ,<, I〉:

– I satisfies an inclusion C � D if CI ⊆ DI ;
– I satisfies an assertion C(a) if aI ∈ CI ;
– I satisfies an assertion R(a, b) if (aI , bI) ∈ RI .

Definition 2 (Model of a KB [29]). A preferential (ranked) model of a knowl-
edge base K = (T ,A) is a preferential (ranked) interpretation M that satisfies
all inclusions in T and all assertions in A.

A query F (either an assertion CL(a) or an inclusion relation CL � CR) is
preferentially (rationally) entailed by a knowledge base K, written K|=ALC+TF
(resp., K |=ALC+TR

F ) if F is satisfied in all the models (resp., ranked models)
of K.

In particular, the definition of the rational closure for ALC and its semantics
in [31] exploit the extension of ALC with typicality under a ranked semantics,
which was called ALC + TR. As shown therein, the logic ALC + TR enjoys the
finite model property and finite ALC + TR models can be equivalently defined
by postulating the existence of a function kM : Δ �−→ N, where kM assigns a
finite rank to each world: the rank kM of a domain element x ∈ Δ is the length
of the longest chain x0 < · · · < x from x to a minimal x0 (s. t. there is no x′ with
x′ < x0). The rank kM(CR) of a concept CR in M is i = min{kM(x) : x ∈ CI

R}.
In [31,32] a non monotonic construction of rational closure has been defined

for ALC + TR, extending the construction of rational closure introduced by
Lehmann and Magidor [38] to the description logic ALC (alternative construc-
tions have been studied in [15,16]). Its definition is based on the notion of excep-
tionality. Roughly speaking T(C) � D holds in the rational closure of K if C
is less exceptional than C � ¬D. We shortly recall the construction of rational
closure of TBox and refer to [31] for details.

Definition 3 (Exceptionality of concepts and inclusions). Let E be a
TBox and C a concept. C is exceptional for E if and only if E |=ALC+TR

T(�) � ¬C. An inclusion T(C) � D is exceptional for E if C is exceptional
for E. The set of inclusions which are exceptional for E will be denoted by E(E).

Given a TBox T , it is possible to define a sequence of non increasing subsets
of the TBox T ordered according to the exceptionality of the elements E0 ⊇
E1 ⊇ E2 . . . by letting E0 = T and, for i > 0, Ei = E(Ei−1) ∪ {C � D ∈ T s.t.
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T does not occur in C}. Observe that, being knowledge base finite, there is an
n ≥ 0 such that, for all m > n,Em = En or Em = ∅. A concept C has rank i
in the rational closure (denoted rank(C) = i) for TBox, iff i is the least natural
number for which C is not exceptional for Ei. If C is exceptional for all Ei then
rank(C) = ∞ (C has no rank in the rational closure). The rank of a typicality
inclusion T(C) � D is rank(C). Observe that, for i < j, Ei contains less specific
defeasible properties then Ej .

Example 1. Consider a knowledge base K = (T ,A), where A = ∅ and T contains
the following inclusions:

T(Bird) � Fly Penguin � Bird
T(Penguin) � ¬Fly T(Penguin) � BlackFeather
BabyPenguin � Penguin T(BabyPenguin) � ¬BlackFeather

stating that normally birds fly, normally penguins (which are birds) do not fly
and have black feather, while normally baby penguins do not have black feather.
The rational closure construction, assigns rank 0 to Bird , rank 1 to Penguin and
rank 2 to BabyPenguin. In particular, Penguin has rank 1, as it is exceptional
w.r.t. the property that birds typically fly.

Rational closure builds on this notion of exceptionality:

Definition 4 (Rational closure of TBox). Let K = (T ,A) be a DL knowl-
edge base. The rational closure of TBox is defined as:

RC(T ) = {T(C) � D ∈ T | either rank(C) < rank(C � ¬D) or
rank(C) = ∞} ∪ {C � D ∈ T | KB |=ALC+TR

C � D}

where C and D are ALC concepts.

For instance, in Example 1, T(Penguin � Antarticus) � ¬Fly is in RC(T ), as
rank (Penguin � Antarticus) = 1 < rank(Penguin � Antarticus � Fly) = 2.

In [31] it is shown that deciding if an inclusion T(C) � D belongs to the
rational closure of TBox is a problem in ExpTime and that the semantics corre-
sponding to rational closure can be given in terms of minimal canonical ALC+TR

models. In such models the rank of domain elements is minimized to make each
domain element as typical as possible. This is expressed by the following defini-
tions.

Definition 5 (Minimal models of K). Given M = 〈Δ,<, I〉 and M′ =
〈Δ′, <′, I ′〉, we say that M is preferred to M′ (M ≺ M′) if: Δ = Δ′, CI = CI′

for all (non-extended) concepts C, for all x ∈ Δ, it holds that kM(x) ≤ kM′(x)
whereas there exists y ∈ Δ such that kM(y) < kM′(y).

Given a knowledge base K = (T ,A), we say that M is a minimal model of
K (with respect to TBox) if it is a model satisfying K and there is no M′ model
satisfying K such that M′ ≺ M.
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The models corresponding to rational closure are required to be canonical. This
property, expressed by the next definition, is needed when reasoning about the
(relative) rank of the concepts: it is important to have them all represented by
some instance in Δ.

Definition 6 (Canonical model). Given K = (T ,A), a model M = 〈Δ,<, I〉
satisfying K is canonical if for each set of concepts {C1, C2, . . . , Cn} consistent
with K, there exists (at least) a domain element x ∈ Δ such that x ∈ (C1 �C2 �
· · · � Cn)I .

Definition 7 (Minimal canonical models (with respect to TBox)). M
is a minimal canonical model of K, if it is a canonical model of K and it is
minimal with respect ≺ (see Definition 5) among the canonical models of K.

The correspondence between minimal canonical models and rational closure
is established by the following theorem.

Theorem 1 ([31]). Let K = (T ,A) be a knowledge base and C � D a query.
Let RC(T ) be the rational closure of K w.r.t. TBox. We have that C � D ∈
RC(T ) if and only if C � D holds in all minimal canonical models of K with
respect to TBox.

Furthermore: the rank of a concept C in any minimal canonical model of K is
exactly the rank rank(C) assigned by the rational closure construction, when
rank(C) is finite. Otherwise, rank(C) = ∞ and concept C is not satisfiable in
any model of the TBox.

It can be seen that, in Example 1, the defeasible inclusion T(BabyPenguin)
� ¬Fly is not minimally entailed from K and, consistently, this inclusion does
not belong to the rational closure of T . Indeed, baby penguins are exceptional
penguins, as they violates the defeasible property of penguins that, normally,
they have black feather. For this reason, BabyPenguin does not inherit “any”
of the defeasible properties of Penguin, the well-known “blocking of property
inheritance problem” [42].

To overcome this weakness of the rational closure, Lehmann introduced the
notion of lexicographic closure [39], which strengthens the rational closure by
allowing a class to inherit as many as possible of the defeasible properties of
more general classes, giving preference to the more specific properties. The lex-
icographic closure has been extended to the description logic ALC by Casini
and Straccia in [18]. In the example above, the property that penguins do not
fly would be inherited by baby penguins, as it is consistent with all (strict and
defeasible) properties of baby penguins.

3 The Multipreference Semantics

The aim of the multipreference semantics in [33] is to define a refinement of
the ranked models of the rational closure of a knowledge base K in which the
modular preference relation < satisfies the following additional condition on the
preference relations <Ai

:
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(a) If x <Ai
y, for some Ai, and there is no Aj such that y <Aj

x, then
x < y.

The intended meaning of x <Ai
y is that x satisfies some default for Ai which

is instead violated by y. More precisely, <Ai
is the preference relation in a ranked

model of a knowledge baseKi containing only the defaults of the formT(C) � Ai ∈
K. In the minimal canonical ranked models Mi = 〈Δ,<Ai

, I〉 of Ki (according to
Definition 7), x <Ai

y has precisely the meaning that x satisfies some default for
Ai which is violated by y1. Condition (a) alone, however, is to weak to capture
refinements of the models of rational closure, and a specificity condition was added
to define enriched models. Here, we refer to the definition of S-enriched rational
models in [27], which is slightly stronger than the one in [33].

Definition 8 (S-Enriched rational models of K). M = 〈Δ,<A1 , . . . , <An

, <, I〉 is a strongly enriched model of K if the following conditions hold:

– 〈Δ,<, I〉 is a ranked model of K (as in Definition 2, Sect. 2);
– for all T(C) � Ai ∈ K, for all w ∈ Δ, if w ∈ MinM

<Ai
(C) then M, w |= Ai;

– the preference relation < satisfies the conditions (a) above, and the following
specificity condition: for all x, y ∈ Δ

x < y if (i) y violates some defeasible inclusion satisfied by x and

(ii) for all T(Cj) � Dj ∈ K, which is violated by x and not by y,

there is a T(Ck) � Dk ∈ K, which is violated by y and not by x,

such that kM(Cj) < kM(Ck).

In (i) and (ii) the ranking function kM of model M is the one associated with
< itself, and the intended meaning of the specificity condition is that preference
should be given to the worlds that falsifies less specific defaults (defaults with
lower ranks). Namely, the defaults violated by x are less serious than the defaults
violated by y, as formula Ck is more specific than Cj .

A simplification to the notion of S-enriched models comes from the fact that
the semantics in [27,33] considers the minimal S-enriched models, among all the
S-enriched models if K, which are obtained by first minimizing the <Ai

and
then minimizing < (as done for the ranked models of the rational closure), in
this order, thus giving preference to models with lower ranks. It was proved in
[27] (Proposition 1 therein) that, in minimal S-enriched models, the specificity
condition is strong enough to enforce condition (a). As a consequence, one can
simplify the definition of S-enriched rational models from the beginning, by
removing condition (a) as well as the preference relations <A1 , . . . , <An

, thus
starting from the following simplified notion of enriched model. That is, the
multipreference semantics in [27] collapses into a semantics without multiple
preferences.
1 Indeed, it is easy to see that, for a satisfiable Ki, in the minimal ranked models Mi of

Ki, which are the models of the rational closure of Ki, two elements x, y ∈ Δ either
have rank 0, and satisfy all the conditionals T(C) � Ai in Ki, or have rank 1, and
falsify at least some conditional T(C) � Ai in Ki.
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Definition 9 (Simplified-enriched models of K). A simplified-enriched
model of K is a ranked model M = 〈Δ,<, I〉 of K (according to Definition 2
in Sect. 2) such that the preference relation < satisfies the specificity condition.

With this simplification, minimal canonical S-enriched models of K in [27] corre-
spond to minimal canonical simplified-enriched rational models of K (according
to the notion of minimal canonical model in Definition 7, Sect. 2). In the follow-
ing we will write: K|=min

ALCRTSE
C � D to mean that C � D holds in all minimal

canonical S-enriched models of K.

Example 2. To see that, in the KB in Example 1, the typical baby penguins
inherit the defeasible property of not flying, although the property of having
BlackFeather is overridden, let us consider two domain elements z and w which
are both baby penguins and have a non black feather. Suppose that z flies and w
doesn’t. Then z violates the defeasible property that penguins typically do not
fly, while w violates the defeasible property that birds typically fly. As z <Fly w
and w <¬Fly z, condition (a) neither allows to conclude w < z, nor z < w.
However, z violates a more specific defeasible property than w and, hence, by
the specificity condition (4) of S-enriched models in Definition 8, we can conclude
that w < z holds. Indeed, the S-enriched minimal model semantics allows us to
conclude that T(BabyPenguin) � ¬Fly, as wanted.

Although in this example the lexicographic closure comes to the same conclusions
as the multipreference semantics, it can be seen that it does not define a weaker
notion of entailment wrt. minimal entailment in S-enriched models.

4 A Sound Closure Construction for the Multipreference
Semantics

The lexicographic closure strengthens the rational closure by allowing, roughly
speaking, a class to inherit as many as possible of the defeasible properties of
more general classes, giving preference to the more specific properties. The next
example, adapted from Example 1 in [8], shows that the lexicographic closure is
not weaker than the multipreference semantics.

Example 3. Suppose that project coordinators are both administrative staff and
research staff. Typical administrative staff are allowed to sign payments, while
typical research staff are not. Also, normally, administrative staff have no pub-
lications, while researchers have publications, and normally the project coordi-
nator defines milestones.

1. T(Admin) � ∃hasRight .Sign
2. T(Admin) � ¬HasPublication
3. T(Research) � ¬∃hasRight .Sign � HasPublication
4. T(PrjCrd) � DefineMilestones
5. PrjCrd � Admin � Research
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Defaults 1, 2 and 3 have rank 0 in RC, while default 4 has rank 1. There is
a single basis {1, 2, 4} in the lexicographic closure. Indeed, the set of defaults
{1, 2, 4} is preferred to {3, 4} as both of them contain one default with rank 1,
but the first set contains two defaults with rank 0, while the second set just one.
The lexicographic closure would then conclude that a typical project coordina-
tor has no publications, i.e., T(PrjCrd) � ¬HasPublication. The multipreference
semantics, instead, is more cautious and would not conclude this.

As an alternative refinement of the rational closure, the MP-closure, a variant
of the lexicographic closure which has been considered in [25,27], would not
come to the conclusion that a typical project coordinator has no publications.
In this example, the MP-closure would consider the alternative sets of defaults
{1, 2} and {3}, as being incomparable (using subset inclusion), and both {1, 2, 4}
and {3, 4} are bases for PrjCrd . The notion of MP-closure is therefore a good
candidate as a sound construction for minimal entailment in the multipreference
semantics.

Observe that, although in this example the MP-closure, as the multipreference
semantics, appears to be more cautious and less syntax dependent than the
lexicographic closure, all such refinements of the rational closure are syntax
dependent to some extent (and the specificity condition used in Definitions 8
and 9 is syntax dependent).

Let n be the number of finite ranks in the rational closure construction, for a
given TBox T . Let Di to be the set of all typicality inclusions with rank i and D∞
the set of defeasible inclusions with rank ∞. Given a set S of typicality inclusions
in T , we let: Si = S ∩ Di, for all ranks i = 0, . . . , n in the rational closure, and
S∞ = S ∩ D∞ thus defining a partition of S, according to the ranks of the
defaults. We represent such a partition of S with a tuple 〈S∞, Sn, . . . , S1, S0〉,
where each set contains defaults with decreasing rank. Considering the (strict)
subset inclusion relation ⊂ among sets, we consider a natural lexicoghaphic
ordering ≺ on the tuples 〈S∞, Sn, . . . , S1, S0〉, which is a strict partial ordering
and we call ≺ MP-ordering, to distinguish it from the ordering used in the
lexicographic closure. The MP-ordering ≺ is not necessarily modular. Instead,
the lexicographic ordering used in the definition of the lexicographic closure is a
strict modular partial ordering [39].

For instance, in the previous example, n = 1 and a set of defaults S can
be represented as a tuple 〈S∞, S1, S0〉. In particular, 〈∅, ∅, ∅〉 ≺ 〈∅, {4}, {1}〉 ≺
〈∅, {4}, {1, 2}〉. The two bases {1, 2, 4} and {3, 4} are not comparable, as neither
〈∅, {4}, {1, 2}〉 ≺ 〈∅, {4}, {3}〉, nor 〈∅, {4}, {3}〉 ≺ 〈∅, {4}, {1, 2}〉. Instead, in the
lexicographic closure, the base {1, 2, 4} is preferred to {3, 4}. In fact, the base
{1, 2, 4} is associated with the tuple 〈0, 1, 2〉, the base {3, 4} is associated with
the tuple 〈0, 1, 1〉, and 〈0, 1, 1〉 ≺ 〈0, 2, 1〉 in the lexicographic order.

Let us introduce the definition of an MP-basis for the typicality extension of
ALC.
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Definition 10. Let B be a concept such that rank(B) = k and let S be a set of
typicality inclusions in T .

– S is consistent with B iff Ek 	|=ALC+TR
T(�) ∩ S̃ � ¬B.

– S is an MP-basis for B w.r.t. T , if S is consistent with B and S is maximal
with respect to the MP-ordering ≺ for this property, i.e. there is no S′ ⊆
δ(TBox) such that S′ is consistent with B and S ≺ S′ (S′ is preferred to S).

where S̃ is the materialization of S, i.e., S̃ = �{(¬C � D) | T(C) � D ∈ S}.

Informally, S is and MP-basis for B if it is a maximal set of defeasible inclusions
consistent with B: there is no set S′ which is consistent with B and is preferred
to S as it contains more specific defeasible inclusions. Remember that Ek also
contains the strict inclusions in T . The construction is similar to that of a basis in
the lexicographic closure [18,39], although, the lexicographic ordering is different.

A subsumption T(B) � D follows from the MP-closure of T if D holds in
all the MP-bases for B, i.e., for all MP-bases S for B w.r.t. T :

Ek |=ALC+TR
T(�) � S̃ � (¬B � D)

It can be proved (see [27]) that the MP-closure is a sound construction for
capturing entailment in minimal canonical S-enriched models.

Proposition 1. If T(B) � D is in the MP-closure of K, then K |=min
ALCRTSE

T(B) � D.

The MP-closure is not complete for minimal entailment in the S-enriched
semantics. In fact, in an S-enriched model M, < depends on kM, and it may
occur that there are two concepts Cj and Ck, such that kM(Cj) < kM(Ck)
although in the rational closure (whose ranking is used by the MP-closure)
rank(Cj) = rank(Ck). This may cause additional conclusions in the S-enriched
semantics (see [27]) with an iterative flavor.

5 Conclusions and Related Work

In this paper, we reconsider the multi-preference semantics proposed for ALC [33]
and we show that entailment in the multipreference semantics can be approx-
imated by the MP-closure construction for ALC. The idea of the multipref-
erence semantics was to define a refinement of the rational closure for ALC,
considering preference with respect to specific aspects and reconciling it with a
global notion of preference and a single typicality operator. We consider the MP-
closure for ALC, a closure construction which is a valiant of the lexicographic
closure defined by Lehmann [39] and extended to description logics by Casini and
Straccia [18], and we show that it provides a weaker entailment wrt. the multi-
preference semantics.

The multi-preference closure (MP-closure for short) was first introduced in
[27] as a sound approximation of Gliozzi’s multi-preference semantics [33]. As the
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lexicographic closure, it builds over the rational closure but it defines a prefer-
ential, not necessarily ranked, semantics, using a different lexicographic order to
compare sets of defaults. A semantic characterization of the MP-closure for the
description logic ALC was developed in [25] using bi-preferential (BP) interpre-
tations, preferential interpretations developed along the lines of the preferential
semantics introduced by Kraus, Lehmann and Magidor [37,38], but containing
two preference relations. The skeptical closure [26] was shown to be a weaker
variant of the MP-closure in [25].

The relevant closure [13] is based on the idea of relevance of subsumptions to
a query, to overcome the limitation of the weakness of rational closure. Relevance
is determined based on justifications and, in minimal relevant closure, the idea
is that subsumptions with lower ranks are removed first. Another refinement of
the rational closure, which also deal with the problem of inheritance blocking, is
the inheritance-based rational closure in [17,19], a closure construction which is
defined by combining the rational closure with defeasible inheritance networks.

In the propositional case, the relations of the MP-closure with the Relevant
Closure and with the Lexicographic closure have been explored in [28], where it
has been shown that the MP-closure is weaker than the Lexicographic closure
but stronger than the Relevant Closure. Similar relations may be expected to
hold in the description logic setting, in which it is already known from [13]
that the relevant closure is a weaker construction than the lexicographic closure.
Further investigation is needed.

The idea of having different preference relations, was first exploited by Gil
[23] to define a multi-typicality formulation of the preferential logic ALC +Tmin

[30], a logic with a preferential but not a ranked minimal model semantics. As
a further difference, here we consider a single typicality operator. An extension
of DLs with defeasible roles and defeasible role subsumptions has been studied
by Britz and Varzinczak in [10,11].

The logic DLN , proposed by Bonatti et al. in [5,8], captures a form of “inher-
itance with overriding”: a defeasible inclusion is inherited by a more specific class
if it is not overridden by more specific (conflicting) properties. The logic DLN

is not necessarily applied starting from the ranking given by the rational closure
but, when it does, it provides another approach to deal with the problem of
inheritance blocking in the rational closure. The approach in DLN is a skeptical
and polynomial one (it builds a single base). An unsolved conflict among differ-
ent defeasible inclusions gives rise to an inconsistent prototype. In such cases,
the MP-closure, the Relevant Closure and the Lexicographic closure all silently
ignore the conflicting defaults. In DLN , instead, unresolved conflicts have to be
detected and fixed by modifying the knowledge base.

Bozzato et al. in [9] present an extension of the CKR framework in which
defeasible axioms are allowed in the global context and can be overridden by
knowledge in a local context. Exceptions have to be justified in terms of semantic
consequence. A translation of extended CHRs (with knowledge bases in SROIQ-
RL) into Datalog programs under the answer set semantics is also defined.



Reasoning About Exceptions in Ontologies 223

Acknowledgement. This research is partially supported by INDAM-GNCS Project
2018 “Metodi di prova orientati al ragionamento automatico per logiche non-classiche”.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The
Description Logic Handbook - Theory, Implementation, and Applications, 2nd edn.
Cambridge University Press, New York (2007)

2. Baader, F., Hollunder, B.: Priorities on defaults with prerequisites, and their appli-
cation in treating specificity in terminological default logic. J. Autom. Reason.
(JAR) 15(1), 41–68 (1995)

3. Benferhat, S., Dubois, D., Prade, H.: Possibilistic logic: from nonmonotonicity to
logic programming. In: Clarke, M., Kruse, R., Moral, S. (eds.) ECSQARU 1993.
LNCS, vol. 747, pp. 17–24. Springer, Heidelberg (1993). https://doi.org/10.1007/
BFb0028177

4. Bonatti, P.A.: Rational closure for all description logics. Artif. Intell. 274, 197–223
(2019)

5. Bonatti, P.A., Faella, M., Petrova, I., Sauro, L.: A new semantics for overriding in
description logics. Artif. Intell. 222, 1–48 (2015)

6. Bonatti, P.A., Faella, M., Sauro, L.: Defeasible inclusions in low-complexity DLs.
J. Artif. Intell. Res. (JAIR) 42, 719–764 (2011)

7. Bonatti, P.A., Lutz, C., Wolter, F.: The complexity of circumscription in DLs. J.
Artif. Intell. Res. (JAIR) 35, 717–773 (2009)

8. Bonatti, P.A., Sauro, L.: On the logical properties of the nonmonotonic description
logic DLN. Artif. Intell. 248, 85–111 (2017)

9. Bozzato, L., Eiter, T., Serafini, L.: Enhancing context knowledge repositories with
justifiable exceptions. Artif. Intell. 257, 72–126 (2018)

10. Britz, K., Varzinczak, I.: Rationality and context in defeasible subsumption. In:
Ferrarotti, F., Woltran, S. (eds.) FoIKS 2018. LNCS, vol. 10833, pp. 114–132.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90050-6 7

11. Britz, A., Varzinczak, I.: Contextual rational closure for defeasible ALC (extended
abstract). In: Proceedings of the 32nd International Workshop on Description Log-
ics, Oslo, Norway, 18–21 June 2019 (2019)

12. Britz, K., Heidema, J., Meyer, T.: Semantic preferential subsumption. In: Brewka,
G., Lang, J. (eds.) Principles of Knowledge Representation and Reasoning: Pro-
ceedings of the 11th International Conference (KR 2008), Sidney, Australia,
September 2008, pp. 476–484. AAAI Press (2008)

13. Casini, G., Meyer, T., Moodley, K., Nortjé, R.: Relevant closure: a new form of
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Ferilli, S. (eds.) ISMIS 2015. LNCS (LNAI), vol. 9384, pp. 248–258. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-25252-0 27

25. Giordano, L., Gliozzi, V.: Reasoning about exceptions in ontologies: from the lex-
icographic closure to the skeptical closure. CoRR, abs/1807.02879 (2018)

26. Giordano, L., Gliozzi, V.: Reasoning about exceptions in ontologies: from the lexi-
cographic closure to the skeptical closure. In: Proceedings of the Second Work-
shop on Logics for Reasoning about Preferences, Uncertainty, and Vagueness,
PRUV@IJCAR 2018, Oxford, UK, 19 July 2018 (2008)

27. Giordano, L., Gliozzi, V.: Reasoning about multiple aspects in DLs: semantics and
closure construction. CoRR, abs/1801.07161 (2018)

28. Giordano, L., Gliozzi, V.: A reconstruction of the multipreference closure. CoRR,
abs/1905.03855 (2019)

29. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: ALC+T: a preferential exten-
sion of description logics. Fundamenta Informaticae 96, 1–32 (2009)

30. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: A NonMonotonic description
logic for reasoning about typicality. Artif. Intell. 195, 165–202 (2013)

31. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Semantic characterization of
rational closure: from propositional logic to description logics. Artif. Intell. 226,
1–33 (2015)

32. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Minimal model semantics and
rational closure in description logics. In: 26th International Workshop on Descrip-
tion Logics (DL 2013), August 2013, vol. 1014, pp. 168–180 (2013)

33. Gliozzi, V.: Reasoning about multiple aspects in rational closure for DLs. In: Pro-
ceedings of AI*IA 2016 - XVth International Conference of the Italian Association
for Artificial Intelligence, Genova, Italy, 29 November–1 December 2016, pp. 392–
405 (2016)

34. Gottlob, G., Hernich, A., Kupke, C., Lukasiewicz, T.: Stable model semantics for
guarded existential rules and description logics. In: Proceedings of KR 2014 (2014)

https://doi.org/10.1007/978-3-642-15675-5_9
https://doi.org/10.1007/978-3-319-25252-0_27


Reasoning About Exceptions in Ontologies 225

35. Ke, P., Sattler, U.: Next steps for description logics of minimal knowledge and nega-
tion as failure. In: Baader, F., Lutz, C., Motik, B. (eds.) Proceedings of Description
Logics, volume 353 of CEUR Workshop Proceedings, Dresden, Germany, May 2008
CEUR-WS.org (2008)

36. Knorr, M., Hitzler, P., Maier, F.: Reconciling owl and non-monotonic rules for the
semantic web. In: ECAI 2012, pp. 474–479 (2012)

37. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential mod-
els and cumulative logics. Artif. Intell. 44(1–2), 167–207 (1990)

38. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artif.
Intell. 55(1), 1–60 (1992)

39. Lehmann, D.J.: Another perspective on default reasoning. Ann. Math. Artif. Intell.
15(1), 61–82 (1995)

40. Moodley, K.: Practical reasoning for defeasible description logics. Ph.D. Thesis,
University of Kwazulu-Natal (2016)

41. Motik, B., Rosati, R.: Reconciling description logics and rules. J. ACM 57(5), 1–62
(2010)

42. Pearl, J.: System Z: a natural ordering of defaults with tractable applications to
nonmonotonic reasoning. In: Parikh, R. (ed.) TARK 3rd Conference on Theoretical
Aspects of Reasoning about Knowledge, pp. 121–135. Morgan Kaufmann, Pacific
Grove, CA, USA (1990)

43. Straccia, U.: Default inheritance reasoning in hybrid KL-one-style logics. In:
Bajcsy, R. (ed.) Proceedings of the 13th International Joint Conference on Artificial
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Abstract. Conditionals of the form “If A, then usually B” are often
used to define nonmonotonic inference relations. Many ways have been
proposed to inductively complete a knowledge base consisting of a finite
set of conditionals to a complete inference relation. Implementations of
these semantics are usually used to answer specific queries on demand.
However, for some applications it is necessary or advantageous to com-
pute the closure of the inference relation induced by a knowledge base.
In this paper, we propose an approach to computing complete inference
relations using implementations of inference systems for single queries.
Our approach exploits special characteristics of conditionals and infer-
ence properties like Right Weakening in order to reduce the amount of
costly query answering to a minimum.

1 Introduction

A common way to model nonmonotonic inference relations is using conditional
statements of the form “If A, then usually B”. Several semantics have been
proposed for knowledge bases R containing conditionals, for example Lewis’
system of spheres [15], conditional objects evaluated using boolean intervals
[9], possibility distributions [8], ranking functions [17,18], or special classes of
ranking functions like c-representations [13]. Under each of these semantics, R
induces a nonmonotonic inference relation |∼ . Implementations like InfOCF [3]
realize these inference relations by taking a knowledge base R as input, and
allowing the user to ask questions of the form “In the context of R, does A |∼ B
hold?” Equivalently, one may ask whether under the given semantics R entails
the conditional (B|A). If this is the case, we formally denote this by A |∼RB.
The system then answers the question in the context of the knowledge base R.

For some applications it is however necessary or advantageous to compute
the closure of an inference relation. One such application is the comparison of
two inference relations for empirical purposes (e.g. [5]). In order to automatically
compare two inference relations induced by different knowledge bases or defined
using different semantics (e.g. different sets of models), the answer to every
possible query needs to be available.
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Another example is the empirical discovery of counterexamples with respect
to inference properties. For instance, for the inference property Rational
Monotony

A |∼ B A �|∼ C

AC |∼ B
(RM)

formulas A, B and C need to be determined such that A |∼ B and A �|∼ C, but
not AC |∼ B. This can be achieved by iterating systematically for A, B and C
over all formulas and checking the inclusion of the required conditionals in |∼ ,
which requires access to the full closure of |∼ (assuming that no particularities
of the inference property can be exploited).

In this paper we present an approach to calculate the closure of a nonmono-
tonic inference relation defined by conditional statements. The approach uses a
decision procedure to answer arbitrary queries of the form “Does A |∼RB hold?”.
Since in general these decision procedures may be computationally expensive, our
approach minimizes the number of calls to this procedure and exploits particular
properties of conditionals and nonmonotonic inference relations to determine the
inclusion of most conditionals without answering a query.

Note that, while we use similar terminology, our approach can not only be
used for calculating the rational closure of a conditional knowledge base [14].
Lehmann and Magidor’s rational closure is just one inference relation defined for
sets of conditionals, that is implemented via a decision procedure that answers
the question “Is the conditional (B|A) contained in the rational closure of the
knowledge base R?”. Our approach uses any such decision procedure to calcu-
late the closure of the inference relation implemented by that decision procedure.
Thus, besides abstracting from the knowledge base R inducing the inference rela-
tion |∼R, our approach also abstracts from the different ways how an inference
relation could be induced by R (see e.g. [1,2,14,16]).

The idea of calculating complete closures of inference relations is related to
saturation [11], a popular technique in the area of automated theorem proving.
Although the aim of our approach is different, techniques for increasing efficiency
originating in saturation-based theorem provers will also be employed here.

2 Background

Let Σ = {v1, ..., vm} be a propositional alphabet. A literal is the positive (vi) or
negated (vi) form of a propositional variable. From these we obtain the propo-
sitional language L as the set of formulas of Σ closed under negation ¬, con-
junction ∧, and disjunction ∨. For shorter formulas, we abbreviate conjunction
by juxtaposition (i.e., AB stands for A ∧ B), and negation by overlining (i.e., A
is equivalent to ¬A). Let ΩΣ denote the set of possible worlds over L; ΩΣ will
be taken here simply as the set of all propositional interpretations over L and
can be identified with the set of all complete conjunctions over Σ; we will often
just write Ω instead of ΩΣ . For ω ∈ Ω, ω |= A means that the propositional
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formula A ∈ L holds in the possible world ω. For any propositional formula A
let ΩA = {ω ∈ Ω | ω |= A} be the set of all possible worlds satisfying A.

A conditional (B|A) with A,B ∈ L encodes the defeasible rule “if A then
usually B” and is a trivalent logical entity with the evaluation [10,13]

�(B|A)�ω =

⎧
⎨

⎩

true iff ω |= AB (verification)
false iff ω |= AB (falsification)
undefined iff ω |= A (not applicable)

(1)

We say (B|A) is conditionally equivalent to (B′|A′) if A ≡ A′ and AB ≡
A′B′. With (L|L) we denote the set of all conditionals over the language L.

For inference relations |∼ defined over sets of conditionals, we will assume
that |∼ satisfies the KLM postulates [14]. While several semantics for condi-
tionals satisfy these postulates, we will use Spohn’s ranking functions as an
example. A Ranking Function (Ordinal Conditional Function, OCF) [17] is a
function κ : Ω → N0 ∪ {∞} that assigns to each world ω ∈ Ω an implau-
sibility rank κ(ω): the higher κ(ω), the more surprising ω is. OCFs have to
satisfy the normalization condition that there has to be a world that is max-
imally plausible, i.e., κ−1(0) �= ∅. The rank of a formula A is defined by
κ(A) = min{κ(ω) | ω |= A} where min ∅ = ∞. An OCF κ accepts a condi-
tional (B|A), denoted by κ |= (B|A), iff the verification of the conditional is
less surprising than its falsification, i.e., iff κ(AB) < κ(AB). This can also be
understood as a nonmonotonic inference relation between the premise A and
the conclusion B: We say that A κ-entails B, written A |∼ κ

B, iff κ accepts the
conditional (B|A) or if A ≡ ⊥:

A |∼ κ
B iff A ≡ ⊥ or κ(AB) < κ(AB). (2)

Note that κ-entailment is based on the total preorder on possible worlds
induced by a ranking function κ as A |∼ κ

B iff for all ω′ ∈ ΩAB , there is a
ω ∈ ΩAB such that κ(ω) < κ(ω′). Note also that, in order to ensure supra
classicality, explicit handling of the case A ≡ ⊥ is necessary when using the
formulation via the ranks of verification and falsification directly, as in (2).

The acceptance relation is extended as usual to a set R of conditionals, called
a knowledge base, by defining κ |= R iff κ |= (B|A) for all (B|A) ∈ R. This is
synonymous to saying that κ is admissible with respect to R [12], or that κ is a
ranking model of R. Then A entails B in the context of R if for every model κ
of R, A κ-entails B:

A |∼RB iff A |∼ κ
B for all κ |= R.

3 Notations and Running Example

In the rest of this paper, we will consider the signature Σab = {a, b} for
illustrating our approach. There are four possible worlds over Σab, namely
ΩΣab

=
{
ab, ab, ab, ab

}
. There are therefore 16 formulas in the form of disjunc-

tions over complete conjunctions (i.e. disjunctions over elements of ΩΣ) given in
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Table 1. All formulas over Σab = {a, b} given as disjunctions over complete conjunc-
tions and clauses of possible worlds. The order is given as in [6].

n Formula Sets of interpretations n Formula Sets of interpretations

1 ⊥ {} 9 ab ∨ ab
{
ab, ab

}

2 ab {ab} 10 ab ∨ ab
{
ab, ab

}

3 ab
{
ab

}
11 ab ∨ ab

{
ab, ab

}

4 ab {ab} 12 ab ∨ ab ∨ ab
{
ab, ab, ab

}

5 ab
{
ab

}
13 ab ∨ ab ∨ ab

{
ab, ab, ab

}

6 ab ∨ ab
{
ab, ab

}
14 ab ∨ ab ∨ ab

{
ab, ab, ab

}

7 ab ∨ ab {ab, ab} 15 ab ∨ ab ∨ ab
{
ab, ab, ab

}

8 ab ∨ ab
{
ab, ab

}
16 ab ∨ ab ∨ ab ∨ ab

{
ab, ab, ab, ab

}

Table 1. With [LΣ ] we denote the list of formulas over Σab in the order given in
Table 1.

For the signature Σab we have therefore 162 possible conditionals using this
representation of propositional formulas. In the following, we will illustrate infer-
ence relations over Σab as 16×16 grids called closure matrices (cf. Fig. 1a). Each
conditional (B|A) is represented by one cell in the grid. The column indicates
the antecedent A and the row indicates the consequent B. The numbers indexing
the rows/columns correspond to the numbers of formulas given in Table 1.

With CM we denote the data structure holding a grid as given in Fig. 1. Then
CM is a representation of the closure of the inference relation |∼ if CM (A,B) =
1 iff (B|A) ∈ |∼ and CM (A,B) = 0 iff (B|A) �∈ |∼ . CM will be computed
incrementally, and it will be initiated with a template described in Sect. 5.

For a signature Σ, the set Cond(Σ ) denotes the finite sets of all conditionals
over LΣ with antecedent and consequent represented as disjunctions of possible
worlds over Σ. In reference to the set representation of formulas, we write |A|
to denote the number of possible worlds present in the disjunction A.

4 Trivial Conditionals

We first discuss conditionals that are contained in all inference relations |∼ or
that are not contained in any inference relation.

Due to supra classicality (which in turn follows from (Ref) and (RW)), all
conditionals (B|A) with A |= B are included in every nonmonotonic inference
relation that satisfy the KLM postulates. We call these conditionals self-fulfilling.

Definition 1 (self-fulfilling). A conditional (B|A) is called self-fulfilling if
A |= B holds. The set of all self-fulfilling condtionals in Cond(Σ ) is denoted
by Cond+(Σ).

Proposition 1. For every self-fulfilling conditional (B|A) and every nonmono-
tonic inference relation |∼ satisfying KLM it holds that A |∼ B.
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B
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(b)

Fig. 1. (a) An empty grid representation of a nonmonotonic inference relation over Σab.
Every cell represents a conditional (B|A) in Cond(Σab) with the column indicating the
antecedent A and the row indicating the consequent B. The inclusion of all conditionals
in the inference relation to be represented is undetermined. (b) Every trivial conditional
marked in an inference relation. Self-fulfilling conditionals are marked green (lined) as
being contained in every inference relation and contradictory conditionals are marked
red (dotted) as not being contained in any inference relation. (Color figure online)

Another large portion of conditionals over Σ is contradictory.

Definition 2 (contradictory). A conditional (B|A) is called contradictory if
A �≡ ⊥ and AB ≡ ⊥ holds. The set of all contradictory condtionals in Cond(Σ )
is denoted by Cond−(Σ).

Proposition 2. For every contradictory conditional (B|A) and every nonmono-
tonic inference relation |∼ it holds that A �|∼ B.

Proof. Let A �≡ ⊥ and AB ≡ ⊥. Then for every ranking function κ it holds that
κ(AB) = ∞. It also holds that AB ≡ A and therefore κ(AB) = κ(A) < ∞,
which implies κ(AB) > κ(AB). 
�

Again, we proved Proposition 2 for ranked inference relations, but the result
can be translated to similar semantics.

We denote the set of all trivial conditionals in Cond(Σ ) with Cond+
− (Σ) =

Cond+(Σ) ∪ Cond−(Σ).
Because of Propositions 1 and 2, we can fill in a portion of CM for every infer-

ence relation with self-fulfilling conditionals being contained in every inference
relation and contradictory conditionals being contained in no inference relation.
Figure 1b shows the grid representation of CM containing entries for all trivial
conditionals in Cond(Σ ).
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Fig. 2. (a) CM -template for Σab. Self-fulfilling conditionals are marked green (lined),
contradictory conditionals are marked red (dotted). Non-trivial Conditionals not in
conditional normal form are marked in gray (unpatterned). Normal form conditionals
are marked white. All gray conditionals are equivalent to a normal form conditional
in the same column. (b) The arrows indicate the links in CM -template from the
conditional (ab|ab ∨ ab) (cf. (5)) represented in cell (6, 2) to its three syntactic variants
(ab ∨ ab|ab ∨ ab), (ab ∨ ab|ab ∨ ab) and (ab ∨ ab ∨ ab|ab ∨ ab), represented by the cells
(6, 7), (6, 8) and (6, 14), respectively. (Color figure online)

5 Normal Form Conditionals and CM-Templates

In [6] the concept of normal form conditionals was introduced. Normal form
conditionals are both verifiable and falsifiable. The set NFC (Σ) also does not
contain any conditional that is pairwise equivalent to any other conditional in
NFC (Σ).

Definition 3 (Normal Form Conditionals NFC (Σ)). Let Σ be a propo-
sitional signature. The set of normal form conditionals over Σ, denoted by
NFC (Σ), is defined as

NFC (Σ) = {(B|A) ∈ Cond(Σ ) | A ⊆ ΩΣ , B � A, B �= ∅}. (3)

Recall that A and B in Definition 3 are sets of interpretations. Figure 2 shows
the CM grid representation of all 50 normal form conditionals over Σab marked in
white. Every conditional (B|A) marked in gray can be assigned to a normal form
conditional (AB|A) in the same column. Note that the normal form (AB|A) of
a conditional is conditionally equivalent to the original syntactic variant (B|A),
because both conditionals partition the set of possible worlds according to (1)
in the same way, i.e.

For example, the conditional

(ab ∨ ab ∨ ab|ab ∨ ab) (4)
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represented by cell (6, 14) has the conditional normal from

(ab|ab ∨ ab) (5)

represented by the cell (6, 2) in Fig. 2.
Because of their conditional equivalence, for a conditional (B|A) and its

conditional normal form (AB|A) and every nonmonotonic inference relation |∼ ,
it holds that

A |∼ B iff A |∼ AB. (6)

Proposition 3 (NFC (Σ) [6]). For the set NFC (Σ) the following holds:

(nontrivial) NFC (Σ) does not contain any trivial conditional.
(complete) For every nontrivial conditional over Σ there is an equivalent con-

ditional in NFC (Σ).
(minimal) All conditional in NFC (Σ) are pairwise non-equivalent.

Using the notation nNFC (Σ) = Cond(Σ ) \ (Cond+
− (Σ) ∪ NFC (Σ)) we thus

obtain a partition of Cond(Σ ) in the form

Cond(Σ ) = Cond+(Σ) ∪ Cond−(Σ) ∪ NFC (Σ) ∪ nNFC (Σ). (7)

Using this partition, we can build a template for CM , in which every self-
fulfilling conditional is set to 1, every contradictory conditional is set to 0 and
every conditional that is not in normal form is linked to its normal form. This
directly corresponds to Fig. 2, where every cell marked in gray represents a link
to the corresponding normal form conditional marked in white. The procedure
producing this CM -template is called CMTemplate(Σ).

CMTemplate(Σ) effectively partitions the grid, and therefore the set
Cond(Σ ), into three components:

Cond+(Σ): all self-fulfilling conditionals over Σ (green),
Cond−(Σ): all contradictory conditionals over Σ (red),
NFC (Σ): all normal form conditionals over Σ (white), and
nNFC (Σ): all non-trivial conditionals over Σ not in normal form (gray).

This partition only depends on Σ and is identical for all inference relations over
LΣ . CMTemplate(Σ) can therefore be computed in advance and can be reused
for all inference relations over LΣ .

The majority of the grid is in the components Cond+
− (Σ) and nNFC (Σ).

For Σab there are only 50 normal form conditionals but 206 conditionals not
in normal form (including trivial conditionals). For Σabc = {a, b, c} there are
6,050 normal form conditionals and 59,486 conditionals from Cond(Σabc) not in
normal form (including trivial conditionals).

Thus, for computing the closure of an inference relation |∼ , we need to
determine whether A |∼ B holds only for (B|A) ∈ NFC (Σ). We may however
reduce the amount of explicit query answering further by taking general inference
properties into account.
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6 Exploiting Right Weakening to Calculate CM

A well known property of nonmonotonic inference relations defined over condi-
tional statements is Right Weakening,

A |∼ B B |= B′

A |∼ B′ (RW)

stating that, if the conditional (B|A) is contained in |∼ , then all conditionals
(B′|A) with B |= B′ are also contained in |∼ . We will call a conditional (B′|A)
a right weakening of a conditional (B|A) if B |= B′.

Some normal form conditionals are right weakenings of other normal form
conditionals. In particular, every normal form conditional with |B| > 1 is a right
weakening of a normal form conditional with |B| = 1.

Definition 4 (Single Consequent Normal Form Conditionals,
NFC ∗(Σ)). Let Σ be a propositional signature. The set of single consequent
normal form conditionals over Σ, denoted by NFC ∗(Σ), is defined as

NFC ∗(Σ) = {(B|A) ∈ NFC (Σ) | |B| = 1} (8)

If we know that the inference relation |∼ satisfies (RW), it is sufficient to
explicitly determine the inclusion of all single consequent normal form condition-
als, and then determine the inclusion of right weakenings of single consequent
normal form conditionals that are not contained in |∼ .

This allows us to determine the inclusion of normal form conditionals with
larger consequents, if their stronger version is already determined to be included
in |∼ .

We can ensure that the strongest versions of normal form conditionals are
checked first by iterating over the set NFC (Σ) in the order defined in [6]. Intu-
itively this order is given by first sorting NFC (Σ) by antecedents from smallest
to largest (as given in Table 1) and then sorting by consequent among the con-
ditionals with equal antecedents in the same manner. The list of normal form
conditionals over a signature LΣ in this order is denoted by [NFC (Σ)]. In our
grid representation this corresponds to iterating over all normal form condition-
als from left to right and from bottom to top.

The algorithm CalcClosure (Algorithm 1) uses a procedure
AnswerQuery(A,B) to determine if the conditional (B|A) is contained in |∼ .
Usually, this procedure uses a knowledge base R (e.g. [4,7,14]), but since we
abstract froma concrete inference relation andknowledge base,we omit the param-
eter R. It starts by initializing CM with a template as described in Sect. 5. It then
iterates over NFC (Σ) in the order described above. If CM (A,B) is already set to
1 (Line 4), then (B|A) is a right weakening of a normal form conditional that has
already been determined to be included in |∼ . In Line 6 the inclusion of the current
normal form conditional (B|A) is determined by calling AnswerQuery(A,B).
If A |∼ B holds, CM (A,B) is set to 1. Note that due to the preprocessing in
CMTemplate(Σ), this also effects all syntactic variants (B′|A) of (B|A), such
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Algorithm 1. CalcClosure(Σ,AnswerQuery)
Input : Signature Σ, Boolean valued procedure AnswerQuery for

inference relation |∼
Output: Closure CM for |∼

1 begin
2 CM ← CMTemplate(Σ)
3 foreach (B|A) ∈ [NFC (Σ)] do // NF conditionals
4 if CM (A,B) = 1 then // already included
5 break

6 if AnswerQuery(A,B) then // determine A |∼ B?
7 CM (A,B) ← 1
8 foreach (B′|A) ∈ NFC (Σ) with B ⊂ B′ do // (RW)
9 CM (A,B′) ← 1

10 else
11 CM (A,B) ← 0 // cond. not in |∼
12 return CM

that CM (B′, A) is also set to 1. In Lines 8 and 9 the inclusion of every right weak-
ening of the current normal form conditional is then set in CM . These conditionals
will be skipped in subsequent iterations (Line 4). If A �|∼ B holds, CM (A,B) is set
to 0 in Line 11. As above, this effects all syntactic variants via the links introduced
in CMTemplate(Σ).

Proposition 4. Given a signature Σ and a decision procedure AnswerQuery
for a nonmonotonic inference relation |∼ over LΣ satisfying (RW) and defined
over conditional statements, the Algorithm CalcClosure terminates and
returns CM , for which the following holds:

(full representation) For all A and B it holds that CM (A,B) = 1 or
CM (A,B) = 0.

(soundness) If CM (A,B) = 1 then A |∼ B.
(completeness) If A |∼ B then CM (A,B) = 1.

Further, Algorithm CalcClosure has the following properties:

(no trivial queries) For all (B|A) ∈ Cond+
− (Σ) there is no call

AnswerQuery(A,B).
(no non normal form queries) For all (B|A) ∈ nNFC (Σ) there is no call

AnswerQuery(A,B).
(RW exploitation) If A |∼ B, then for all B � B′ there is no call

AnswerQuery(A,B′).
(no repeated queries) For all (B|A) ∈ NFC (Σ), there is at most one call

AnswerQuery(A,B).
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Using Propositions 1–3 the proof of Proposition 4 is obtained by formalizing
the observations given above in the description of the algorithm CalcClosure.

In the case of Σab, compared to the naive approach of calling AnswerQuery
for all 256 conditionals, the algorithm CalcClosure only calls AnswerQuery
at most for the 50 normal form conditionals. Due to the order in which normal
form conditionals are checked, in the best case only single consequent normal
form conditionals need to be checked. For Σab there are only 28 single consequent
normal form conditionals with the remaining 22 normal form conditionals being
right weakenings.

More generally, for a signature Σ with |Σ| = n, the naive approach of call-
ing AnswerQuery(A,B) for every possible conditional (B|A) over Σ requires
f(n) = 22

n×2 calls of AnswerQuery(A,B). The algorithm CalcClosure only
calls AnswerQuery for the

g(n) =
2n∑

i=2

(
2n

i

)

(2i − 2)

normal form conditionals. In the best case only

2n∑

i=2

(
2n

i

)

i

single consequent normal form conditionals are checked. As n grows, the dif-
ference between the number of conditionals and the number of normal form
conditionals becomes arbitrarily large, i.e.

lim
n→∞

g(n)
f(n)

= 0.

7 Conclusions and Future Work

Some applications in the domain of nonmonotonic inference research require
access to the complete inference closures. We presented an approach for calcu-
lating the closure of nonmonotonic inference relations defined over conditional
statements. Our approach uses a simple grid representation, employs a strong
preprocessing step that only depends on the signature and can be reused for
every inference relation over that signature, and it reduces the number of explicit
query answering by exploiting properties of conditionals and inference relations
defined over them.

In our current work, we are using our approach for empirically checking and
evaluating inference relations implemented within the InfOCF system [3] with
respect to various postulates proposed for nonmonotonic inference relation.
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Abstract. Analogical proportions are statements of the form ‘a is to b
as c is to d’, formally denoted a : b :: c : d. This means that the way
a and b (resp. b and a) differ is the same as c and d (resp. d and c)
differ, as revealed by their logical modeling. The postulates supposed to
govern such proportions entail that when a : b :: c : d holds, then seven
permutations of a, b, c, d still constitute valid analogies. It can also be
derived that a : a :: a : b does not hold except if a = b. From a machine
learning perspective, this provides guidelines to build training sets of
positive and negative examples. We then suggest improved methods to
classify word-analogies and also to solve analogical equations. Viewing
words as vectors in a multi-dimensional space, we depart from the tradi-
tional parallelogram view of analogy to adopt a purely machine-learning
approach. In some sense, we learn a functional definition of analogi-
cal proportions without assuming any pre-existing formulas. We mainly
use the logical properties of proportions to define our training sets and
to design proper neural networks, approximating the hidden relations.
Using a GloVe embedding, the results we get show high accuracy and
improve state of the art on words analogy-solving problems.

1 Introduction

Analogical proportions are statements of the form a is to b as c is to d, usually
denoted a : b :: c : d, such as “the calf is to the cow as the foal is to the mare”.
Such statements have been considered for a long time as a linguistic counterpart
to numerical proportions. Although they naturally emerge when stating parallels
between two situations regarded as analogous (e.g., “electrons are to the atom
nucleus as planets are to the sun”), they were rarely studied in the mainstream
literature. However, in the last two decades we have witnessed an increased
interest in the development of original research directions.

At least two branches can be roughly distinguished in this recent series of
work. First, a numerically oriented trend based on an arithmetic proportion-
based modeling having its roots in a seminal paper by Rumelhart and
Abrahamson [20] and illustrations in recent works such as [10,15]. In a visual
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context, analogical proportions have also been used for expressing constraints in
multi-class categorization tasks and attribute transfer [4,5].

The second branch covers propositional logic modelings of analogical propor-
tions [13,18] which originates in various formal models [7,21,26], and computa-
tional linguistics [1,6,8].

The logical modeling of analogical proportions has revealed that analogy is
as much a matter of dissimilarity as a matter of similarity. Indeed the logical
expression of a is to b as c is to d exactly says that a differs from b as c differs
from d and that b differs from a as d differs from c. This is also made clear in
the numerical modeling which corresponds to the constraint a − b = c − d when
a, b, c, d refers to numbers rather than to Boolean variables. Importantly enough,
dissimilarity and similarity are put on a par by the logical modeling which is
also equivalent to “what a and d have in common (positively or negatively), b
and c have it also” [13,18]. The logical modeling straightforwardly extends from
Boolean variables to vectors thereof in a component-wise way.Then given three
vectors −→a ,

−→
b ,−→c , one may look for a fourth one

−→
d , if it exists, s.t.−→a :

−→
b ::−→c :−→

d holds. It is the basis of analogical proportion-based inference [3,21].
In case of a vector-based encoding, the inference is based on the apparent

consequence of the arithmetic proportion-based view, which leads to computing−→
d as −→c +

−→
b − −→a . Items such as calf, cow, foal, mare can be represented in

terms of Boolean features (such as bovid, equid, male, female, adult, young, ...),
or in a numerical manner using word embedding techniques. Then it is natural
to bridge the gap between the logical and numerical viewpoints, or at least to
take advantage of one for improving the inferential result of the other.

The paper is structured as follows. Section 2 recalls the postulates character-
izing analogical proportions and identifies a method of enlarging a set of exam-
ples and counterexamples. Section 3 provides a new approach to the recognition
of analogical proportions, and the solving of analogical proportion equations,
between natural language words. Sections 4 and 5 present the experimental set-
ting and report promising results showing the interest of the approach. Related
works are discussed in Sect. 6, before concluding.

2 Analogical Proportions: What They Are

Basic postulates. Taking inspiration from the properties of numerical propor-
tions, such as geometric proportions (i.e., a

b = c
d ), or arithmetic proportion (i.e.,

a− b = c−d), analogical proportions are quaternary relations, supposed to obey
the three following postulates (e.g., [7]): ∀a, b, c, d,

1. a : b :: a : b (reflexivity);
2. a : b :: c : d → c : d :: a : b (symmetry);
3. a : b :: c : d → a : c :: b : d (central permutation).

Other properties are direct consequences of these postulates like a : a :: b : b
(identity); a : b :: c : d → b : a :: d : c (inside pair reversing); a : b :: c : d → d :
b :: c : a (extreme permutation).
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Repeated applications of postulates (2) and (3) show that an analogical pro-
portion has exactly eight equivalent forms:
a : b :: c : d = c : d :: a : b = c : a :: d : b = d : b :: c : a =
d : c :: b : a = b : a :: d : c = b : d :: a : c = a : c :: b : d.

Moreover a postulate stronger than (1) may be expected:

4. ∀a, b, x, a : b :: a : x → (x = b) (unicity).
The failure of such postulate would lead to proportions such as b : a :: c : a,
which might seem acceptable (e.g., one can say “Bob is to Peter as Ric is to
Peter” as soon as, e.g., Bob and Ric are Peter’s sons), but a : a :: b : c looks
troublesome since a and a are identical, while b and c are clearly not.
Consequences of postulates (2)–(3)–(4) that can be derived.

Fact 1. a : a :: b : x =⇒ x = b

Proof: a : a :: b : x =⇒ a : b :: a : x (3) =⇒ x = b (4) �
Fact 2. a : b :: c : c =⇒ a = b

Proof: a : b :: c : c =⇒ c : c :: a : b (2) =⇒ a = b (Fact 1) �
Fact 3. a : b :: c : b =⇒ a = c

Proof: a :b ::c :b =⇒ a :c ::b :b (2) =⇒ a = c (Fact 2) �
Fact 4. a : b :: c : d ∧ (a �= b) =⇒ c �= d

Proof: Suppose c = d. Then a : b :: c : d is a : b :: c : c, and by symmetry,
c : c :: a : b which implies a = b (from (Fact 1)). Which contradicts the hypothesis
a �= b. �

However, from a : b :: b : c, we cannot infer a = c: it is called a continuous
analogical proportion, and for arithmetic proportions, it just means that b is the
middle of the segment [a, c]. Clearly, all the above properties are satisfied by
arithmetic proportions.

Given 4 distinct items a, b, c, d, they can be ordered in 4! = 24 different
ways. This indicates that among these 24 permutations there are 3 classes of 8
permutations each that are stable under the postulates of analogical proportions,
since a : b :: c : d can be written in 8 equivalent forms.

As a consequence b : a :: c : d and a : d :: c : b do not belong to the same
class as a : b :: c : d and are in fact elements of two different classes. If an
element of a class is a valid (resp. not valid) proportion, then the 7 remaining
ones are also valid (resp. not valid). Although it does not follow from postulates
(2)–(3)–(4), one can consider that if a : b :: c : d holds then neither b : a :: c : d
nor a : d :: c : b hold as valid analogical proportions. This indeed can be observed
on the example a = calf, b = cow, c = foal, d = mare, and is also incompatible
with a function-based view of analogical proportion where a : b :: c : d holds
iff ∃f, b = f(a), d = f(c).

Despite their obvious semantics, these fundamental properties of analogical
proportions are rarely used in practice. However, they have implications when
it comes to machine learning, as seen in Sect. 3.
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3 Machine Learning for Analogical Proportions

We take advantage of the previous theoretical analysis for revisiting the problems
of identifying and solving analogical proportions expressed in natural language
and proposing a new approach to this issue which has been widely investigated
by the NLP community [7,9,10,14,24]. It is now common to convert words into
numerical vectors for computational purposes, a process known as word embed-
ding. If V is the target vector space and W the corpus of words, we denote
embed(W ) the subset of V representing the words of W .

There are two well-known embedding models: word2vec [14,15] from Google
and GloVe [17] from Stanford University. Both models learn geometrical encod-
ings (vectors) of words from their co-occurrence information. They differ in how
they learn this information, and a detailed overview of the available options
with their advantages and drawbacks can be found in [11]. In both techniques,
V = R

n with n ∈ {50, 100, 200, 300}. They also found that the qualities of the
embeddings are almost on-par if tuned using the correct parameters, but the
qualities of the analogical testings differ depending on the formulas used. Based
on the observations in Sect. 2, we suggest improved methods to classify word-
analogies and also to solve analogical equations. Viewing words as vectors in a
multi-dimensional space, we depart from the traditional parallelogram view of
analogy to adopt a purely machine-learning approach. For all our experiments,
we use GloVe.

3.1 Analogy Testing as a Classification Problem

As far as we know, the problem of deciding if a quadruple of words is a valid
analogical proportion or not is a binary classification task, and it has not been
widely investigated (see [2] for instance). One method that has been successful in
classification tasks is convolutional neural network (CNN) - it is believed that this
network can capture high-level features not easily extracted otherwise, especially
within pictures. So, we believe CNN can also capture hidden semantical links
underlying a valid analogy.

Embedding 4 words via GloVe in the space of dimension n and stacking
together the 4 vectors, we get a matrix n × 4 that we can consider as an image.
From this point of view, our problem is to build a binary classifier for images
using CNN. Using the permutation properties described in Sect. 2, we provide a
proper dataset with both positive and negative examples to avoid semantic loss.

3.2 Analogy Solving as a Regression Problem

In natural language processing, analogy-solving is the problem of having a set
of triple words a, b, c and looking for d such that a : b :: c : d is a valid analogy 1.
It has been shown in [10] that cosine similarity multiplication (3CosMul) is the

1 From now on, we use lower case letter a to denote the word or the vector. Moreover
we alleviate the notation by writing a instead of −→a and so on for b, c, d.
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state-of-the-art approach of finding d. Still, there are plenty of unsatisfactory
results (that the solution fails to form an analogy). We feel that the problem
comes from the fact that the authors consider analogy as a matter of similarity
only, introducing in the various suggestions, similarities between the candidate
solution d and the input variables a, b and c. As explained in the beginning,
analogical proportions, as expressed by our indicators, cannot be reduced to
equalities of similarities: dissimilarities matter!

That is why our approach is entirely different. We agree that the solution d
should be a function of a, b, and c but we do not suggest any formula. We want
to learn the hidden function f such that f(a, b, c) = d where d is the solution,
and we do not assume a predefined analytic form for d. In that case, we can
consider it is a multi-variable regression problem where the training set is just
built from the initial set of analogies a : b :: c : d as pair (a, b, c), d. As multi-layer
neural networks are universal function approximators, it is appropriate to use
such a network to estimate our target function.

4 Experimental Settings

The driving force behind our ideas is to improve classification accuracy and
analogy solving success.

4.1 Initial Datasets

To get a dataset of analogies, we started from Google dataset (questions-words)
containing exactly 19,544 analogies, each one involving 4 distinct words. These
analogies are classified in diverse categories such as capital-common-countries
like Athens : Greece : Ottawa : Canada, country-currency, or opposite like
acceptable : unacceptable :: aware : unaware, etc. Considering a quadruple of
words, like (engine, car, heart, human) in that order, we want to build a classifier
able to tell us if the proportion engine:car::heart:human is a valid analogy. Valid
means that a human considers it as an analogy, without being able to give us a
concise definition of an analogy.

GloVe provides R
n words embedding where n ∈ {50, 100, 200, 300}. Ulti-

mately, our dataset was loaded as a CSV file, and each row was compiled into
a real-valued matrix of dimension n × 4. The GloVe embedding originally con-
tained 400,000 words, but we removed non-alphabetical words, so we were left
with 317,544 words.

4.2 Extended Datasets

Due to the properties of analogical proportions viewed in Sect. 2, it is easy to
rigorously extend our dataset by applying the permutation properties. Doing so,
we end up with 19,544 × 8 = 156,352 valid analogies. We get invalid analogies
just by using the previous dataset and permuting only the 2 first elements of
a valid analogy. Starting from 19,544 valid analogies, we then get 19,544× 16
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Table 1. Positive/negative examples with m = 19, 544

+ − − −
a : b :: c : d b : a :: c : d c : b :: a : d a : a :: c : d

Theory 8 × m 8 × m 8 × m 8 × m

Practice 156, 352 156, 352 156, 352 156, 352

invalid analogies. Permuting the 1st and the 3rd elements still provides an invalid
analogy, and we end up with 19,544× 16 invalid analogies. It has also been seen
in Sect. 2 that when we have 3 distinct elements a, b, c, then a : a :: c : d is an
invalid analogy. It is then appropriate to add a set of negative examples such as
a : a :: c : d, getting 19,544 × 8 more negative examples. All in all, we get a final
dataset of 19,544 × 32 = 625,408 examples, among which only 156,352 are valid
analogies, and the remaining 469,056 examples are invalid analogies.

We summarize in Table 1 the process of building a dataset having positive
and negative examples.

4.3 Neural Networks Approach

Classification Task. Stacking together the 4 vectors corresponding to a
quadruple a, b, c, d, we get a matrix n × 4 considered as an image. We design
and train a CNN to classify between valid analogies/invalid analogies. With
filters respecting the boundaries of the 2 pairs, this is the structure of the CNN:

– 1st layer (convolutional): 128 filters of size h × w = 1 × 2 with strides (1, 2)
and relu activation.

– 2nd layer (convolutional): 64 filters of size (2, 2) with strides (2, 2) and relu
activation.

– 3rd layer (dense): one output and sigmoid activation as we want a score
between 0 and 1.

The structure of this network can be seen in (Fig. 1), and the results with
this approach are given in Subsect. 5.1.

a b c d

...

64 2x2 filters

.

.

..

output[0,1]flatten

128 1x2 filters

Fig. 1. Structure of the CNN as a classifier.
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Fig. 2. Structure of the neural network for regression, that is given a : b :: c, the network
is to find d. All a, b and c used R

n words embedding where n ∈ {50, 100, 200, 300}, where
n is the number of dimensions for embedding the words.

Regression Problem. Regarding the equation solving problem, we first con-
sider a, b, c as the input of our network, and d as the output. A neural net
with 3 × n input neurons and n output neurons was first designed to approx-
imate the function f such that f(a, b, c, ) = d. We obtained inferior results,
probably because this way of processing does not take into account the similar-
ity/dissimilarity:

1. between a and b on one side and
2. between a and c on the other side

A high-level of description would then be as follows:

1. The hidden link between a and b is described via a (unknown) function f1
2. The hidden link between a and c is described via a (unknown) function f2
3. The final solution is then a function g of f1(a, b) and f2(a, c) i.e.: d =

g(f1(a, b), f2(a, c)).

Starting from this point of view, we approximate this function g(f1, f2) via two
networks approximating f1 (resp. f2). A final neural network approximating
g received as input two values: the output of f1 and the output of f2. The
output of g(f1, f2) is d, is then an approximation of d = g(f1(a, b), f2(a, c)).
Figure 2 describes the structure of the regression neural network. The output of
the network, d, is unlikely to be a GloVe embedding, so we have to find the word
closest to d i.e. the nearest neighbor of d in embed(W ). This word is assumed to
be the word represented by d, and could the correct answer.

We compared the results of the neural network regression with 3CosMul,
the state of the art analogy recovery method [10,11], and it is defined as:

argmaxd ∈ embed(W )
d · b × d · c

d · a + ε
(1)

5 Experimental Results

The data and networks described above were designed to:
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1. classify whether a quadruple of words is a valid analogical proportion or not
(binary classification task): in that case, the output is either true or false (see
Sect. 5.1).

2. solve an equation to find the valid word to complete an analogy (regression
task): in that case, the output is a word (see Sect. 5.2).

We then ran a batch of experiments. The results are provided and commented
in the following sections. Obviously, the baseline here is the parallelogram app-
roach where a : b :: c : d is considered as a valid analogy iff a, b, c, d define a
parallelogram in the word embedding space.

5.1 Analogy Testing as a Classification Task

With 10 fold cross-validation, the network was trained to minimize binary cross-
entropy, and its performance was measured via its accuracy. As we used 10-fold
cross-validation, we ended up with training sets of size 562, 848 = 32 × 17, 589
and testing sets of size 62, 560 = 32 × 1, 955. The network’s performance on
several dimensions is given in Table 2, which shows the performance of the CNN
classifier with R

n words embedding where n ∈ {50, 100, 200, 300}.
As shown in Table 2, the accuracy increases as the number of dimensions and

epochs increase, with the highest accuracy of 99.34% (300 dimension vectors
trained for 10 epochs). The accuracy increases significantly when increasing the
number of dimensions from 50 to 100. For 50 dimensions, the accuracy is 91.02%,
but at 100 dimensions, the accuracy increases by over 6% to 96.79%. However,
the gain appears to be less significant for the higher dimensions, as the accuracy
for 200 dimensions is only 2.4% higher than 100 dimensions, and the accuracy
for 300 dimensions is just 0.1% higher than 200 dimensions. It appears that 100
dimensions are a good compromise for efficient and effective analogy classification
task.

Table 2. Accuracy of the CNN for analogy classification: impact of word embedding
dimensions and the number of epochs.

#epochs Average accuracy (std dev.)

50 100 200 300

1 83.9% (± 6.4) 81.1% (± 8.5) 75.5 (± 1.2) 80.26 (± 11.13)

3 81.19% (± 6.87) 81.40% (±12.01) 84.27% (± 8.19) 83.84% (± 7.77%)

5 90.68% (± 5.77) 93.07% (± 6.83) 93.19% (± 6.21) 95.22% (± 4.90%)

10 91.02% (± 7.67) 96.79% (± 5.05) 99.24% (± 1.17) 99.34% (± 0.79%)

5.2 Equation Solving as a Regression Task

In this experiment, we used R
n word embedding where n ∈ {50, 100, 200, 300}.

The network was trained for 50 epochs 10 fold cross-validation (training and
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testing split of 90/10). Recall that the total number of the dataset was 156,352
(19,544 × 8 permutations). To ensure that there was enough independent data
for testing and training for each fold, the permutation was applied after splitting.
The results of the experiment are given in Table 3, which shows the accuracy of
neural network regression and 3CosMul when embedding the words in 50, 100,
200, and 300 dimensions. For the neural network, the best overall performance
is given by 100 dimensions at 79.0% of accuracy, and the performance drops as
the number of dimensions increases. It is also interesting to note that the MSE
for regression decreases as the number of dimensions increases, yet the accuracy
drops after the 100 dimensions. For 3CosMul, the 300 dimensions give the best
performance (68.1% accuracy), but it is nearly 11% lower than the best results
from the neural network. Table 3 also shows the accuracy for each category within
the dataset. It can be seen that the regression for 100 dimensions outperforms
3CosMul for 12 of the 14 categories, on par for one category (nationality) and
below par for one category (gender).

The formula 3CosMul, although it is so far the most accurate equation,
suffers from some drawbacks. A literal implementation often provides b or c as a
candidate solution for a : b :: c : x. The implementation in [11] removes b, c and
also a from the candidate solution - our implementation of 3CosMul also follows
this practice. Also, 3CosMul is not robust to reverse analogies (i.e. even if we

Table 3. Comparing the effectiveness of the neural network and the formula 3CosMul
for all categories and each category. The total number of analogies is 19,544, and the
“Common Capital” category has 506 analogies.

Neural network regression 3CosMul

50 100 200 300 50 100 200 300

Overall 63.9% 79.0% 75.4% 71.4% 36.2% 56.7% 65.0% 68.1%

Common capitals (506) 96.3% 98.8% 97.4% 96.9% 63.8% 80.0% 86.9% 88.9%

All capitals (4524) 86.7% 97.1% 97.1% 90.9% 50.0% 77.0% 87.5% 90.1%

Currencies (866) 50.2% 63.4% 61.2% 56.3% 5.0% 15.0% 22.5% 24.4%

US cities (2467) 32.4% 53.5% 62.0% 59.5% 6.9% 17.0% 29.8% 36.5%

Gender (506) 53.2% 44.3% 40.7% 34.4% 61.5% 79.4% 86.6% 88.6%

Adj to adverb (992) 34.5% 55.1% 31.9% 30.1% 10.8% 22.0% 22.9% 23.4%

Opposite (812) 24.9% 43.1% 26.3% 23.3% 6.2% 17.1% 21.5% 25.4%

Comparative (1332) 74.6% 89.2% 85.6% 83.2% 41.4% 71.9% 79.8% 83.3%

Superlative (1122) 73.1% 86.4% 78.9% 76.2% 18.6% 50.1% 67.5% 73.7%

Base to gerund (1056) 43.9% 78.3% 67.9% 70.3% 35.2% 65.6% 68.1% 71.0%

Nationalities (1599) 93.5% 94.4% 96.3% 94.3% 84.7% 89.1% 94.1% 94.6%

Gerund to past (1560) 52.2% 80.8% 69.5% 66.7% 27.3% 53.1% 59.6% 62.5%

Plurals (1332) 78.3% 87.1% 88.1% 74.6% 48.2% 68.5% 74.1% 76.5%

Base to 3rd person (870) 46.2% 74.8% 59.2% 56.4% 28.8% 59.1% 64.9% 68.4%

MSE (train) 0.1 0.07 0.06 0.05

MSE (test) 0.1 0.07 0.06 0.05
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are not far from finding the solution d of a : b :: c : x, one can by far missing the
solution c of b : a :: d : x). The neural network regression does not seem to suffer
from these two drawbacks: it does not return b or c as the candidate solution,
and it appears to be more robust with respect to permutation.

6 Related Work

Our work makes use of recent word embedding systems to develop machine learn-
ing solutions to deal with word analogies. Nevertheless, the problem of recog-
nizing word analogies has been attempted well before the emergence of effective
words embedding systems: we can cite [19,22–25] for instance. The dataset was
generally limited with regard to the current standard. For instance [24] uses a
corpus of 374 questions coming from the SAT analogy questions: the higher accu-
racy on this set is 56.1% knowing that a random guess yields an accuracy of 20%
and senior high school students get 57%. The results are quite interesting as the
dataset mainly consists of semantic analogies like mason:stone::carpenter:wood.
More recently, researchers were more interested in working on the equation solv-
ing problem, as with the word embedding techniques, numerical tools became
widely available. Instead of dealing with discrete space of words, they deal with
continuous space language models.

One of the landmark paper is [16] where the representation is learned via a
recurrent neural network. These vectors representations attempt to capture syn-
tactic and semantic regularities in the English language, and the relationships
between words can be characterized by vector offsets. Still solution of the equa-
tion a : b :: c : x is supposed to be (close to) b + c − a (offset method), where
“close to” relation is cosine similarity of normalized vectors. The best equa-
tion approximating this relation is the 3CosMul formula described in Eq. 1.
In Sect. 5.2, we showed a neural network regression based solution outperforms
3CosMul. From another perspective, the BART (for Bayesian Analogy with
Relational Transformations) model [12], is also neural network-based but more
dedicated to finding a pair (c, d) when a pair (a, b) is given.

7 Conclusion

We have investigated the axioms of analogical proportions to derive new prop-
erties rarely used in practice and showing that analogy is as much a matter of
dissimilarity as a matter of similarity. When we refer to numbers or vectors,
an analogy is often viewed as a − b = c − d (arithmetic analogy) and may be
unable to capture the complexity of similarity/dissimilarity. To try to bridge
the gap between the Boolean view and the numerical one, we focus on natural
language analogies using word embedding techniques. This leads us to suggest
radically new approaches not only for classifying whether a quadruple of words
is an analogy but also for solving analogical equations.

Previous attempts rely on predefined formulas: this can be restrictive as it
assumes that we have a clear understanding of what an analogy is in natural
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language. In fact, we have no such understanding. Our methodology is quite
different: it takes advantages of the theoretical analysis and recent word embed-
ding systems to learn the unknown relationship amongst the words in an analogy.
Embedding the words using GloVe into a multi-dimensional vector space R

n, the
matrix constituted of 4 vectors can be viewed as an image of dimension n × 4.
From a machine learning perspective, the permutation properties of analogical
proportion lead to an increase of the dataset size by 8 for positive examples and
by 24 for negative examples. Using analogies from Google as the dataset, we
have implemented a CNN classifier with an accuracy higher than 94%.

Regarding the equation solving process, we also depart from the classical
views derived from the arithmetic analogy using a formula. Instead, we learned
such a definition via neural networks. Considering that the solution of a : b :: c : x
is related to hidden high-level relationships between the pairs (a, b) and (a, c), we
try to capture these relationships in the network. Experiment results show that
the neural network outperforms the formula-based methods and might be useful
for solving more semantic analogies. Unlike previous methods, the network does
not return b or c as candidate solutions, and it appears to be more robust with
respect to permutation.

More in-depth investigations are needed to confirm our view: especially using
other datasets and other word embedding systems. For instance, we could gener-
ate a more effective word embedding dictionary, and take advantage of the work
in [11] which provides tips on how to properly tune the hyper-parameters of such
a process. Also, the neural networks we used were not entirely optimized in terms
of structure and parameters. Doing so could lead to substantial improvements.
In addition, for the classification task, we could compare our approach, which
uses the convolutional network, to fully connected layers as we are unsure if the
translation invariance of convolution brings any value to our work.

Finally, the target dataset does not include truly semantic analogies, and it
is worth investigating such analogies as they are part of the day to day language.
These are tracks for future work.
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CIMI (Centre International de Mathématiques et d’Informatique) within the program
ANR-11-IDEX-0002-02, project ISIPA.
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Abstract. While research on iterated revision is predominant in the
field of iterated belief change, the class of iterated contraction operators
received more attention in recent years. In this article, we examine a
non-prioritized generalisation of iterated contraction. In particular, the
class of weak decrement operators is introduced, which are operators
that by multiple steps achieve the same as a contraction. Inspired by
Darwiche and Pearl’s work on iterated revision the subclass of decrement
operators is defined. For both, decrement and weak decrement operators,
postulates are presented and for each of them a representation theorem
in the framework of total preorders is given. Furthermore, we present
two sub-types of decrement operators.

Keywords: Belief revision · Belief contraction ·
Non-prioritized change · Gradual change · Forgetting ·
Decrement operator

1 Introduction

Changing beliefs in a rational way in the light of new information is one of
the core abilities of an agent - and thus one of the main concerns of artificial
intelligence. The established AGM theory [1] deals with desirable properties
of rational belief change. The AGM approach provides properties for different
types of belief changes. If new beliefs are incorporated into an agent’s beliefs
while maintaining consistency, this is called a revision. Expansion adds a belief
unquestioned to an agent’s beliefs, and contraction removes a belief from an
agent’s beliefs. Building upon the characterisations of these kinds of changes and
the underlying principle of minimal change, the theory fanned out in different
directions and sub-fields.

The field of iterated belief revision examines the properties of belief revision
operators which, due to their nature, can be applied iteratively. In this sub-field,
one of the most influential articles is the seminal paper [6] by Darwiche and
Pearl (DP), establishing the insight that belief sets are not a sufficient repre-
sentation for iterated belief revision. An agent has to encode more information
about her belief change strategy into her epistemic state - where the revision
strategy deeply corresponds with conditional beliefs. This requires additional
postulates that guarantee intended behaviour in forthcoming changes. The com-
mon way of encoding, also established by Darwiche and Pearl [6], is an extension
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of Katsuno and Mendelzon’s characterisation of AGM revision in terms of plau-
sibility orderings [11], where it is assumed that the epistemic states contain an
order over worlds (or interpretations).

Similar work has been done in recent years for iterated contraction. Chopra,
Ghose, Meyer and Wong [5] contributed postulates for contraction on epistemic
states. Caridroit, Konieczny and Marquis [4] provided postulates for contraction
in propositional logic and a characterisation with plausibility orders in the style
of Katsuno and Mendelzon. By this characterisation, the main characteristic of
a contraction with α is that the worlds of the previous state remain plausible
and that the most plausible counter-models of α become plausible.

However, in the sub-field of non-prioritised belief change, or more specifically,
in the field of gradual belief change much work remains to be done on contrac-
tion. An important generalisation of iterated revision operators are the class of
improvement operators by Konieczny and Pino Pérez [13], which achieve the
state of an revision by multiple steps in a gradual way. These kind of changes
where intensively studied by Konieczny, Pino Pérez, Booth, Fermé and Grespan
[3,12]. A counterpart of improvement operators for the case of contraction is
missing. This article fills this gap. We investigate the contraction analogon to
improvement operators, which we call decrement operators. The leading idea is
to examine a class of operators which lead, after enough consecutive applications,
to the same states as an (iterative) contraction would do.

The research presented in this paper is also motivated by the quest for a
formalisation of forgetting operators within the field of knowledge representation
and reasoning (KRR). In a recent survey article by Eiter and Kern-Isberner [7]
the connection between contraction and forgetting of a belief is dealt with from
a KRR point of view. Steps towards a general framework for kinds of forgetting
in common-sense based belief management, revealing links to well-known KRR
methods, are taken in [2]. However, for the fading out of rarely used beliefs
that takes places in humans gradually over time, or for the change of routines,
e.g. in established workflows, often requiring many iterations and the intentional
forgetting of the previous routines, counterparts in the formal methods of KRR
are missing. With our work on decrement operators, we provide some basic
building blocks that may prove useful for developing a formalisation of these
psychologically inspired forgetting operations.
In summary, the main contributions of this paper are1:

– Postulates for operators which allow one to perform contractions gradually.
– Representation theorems for these classes in the framework or epistemic states

and total preorders.
– Define two special types of decrement operators.

1 The complete version of this paper contains full proofs for all theorems given here.
Due to the lack of space, the proofs are not included in this version.
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The rest of the paper is organised as follows. Section 2 briefly presents the
required background on belief change. Section 3 introduces the main idea and
the postulates along with a representation theorem for weak decrement opera-
tors. In Sect. 4 the weak decrement operators are restricted by DP-like iteration
postulates, leading to the class of decrement operators; we give also a represen-
tation theorem for the class of decrement operators. In Sect. 5 two special types
of decrement operators are specified. We close the paper with a discussion and
point out future work in Sect. 6.

2 Background

Let Σ be a propositional signature. The propositional language LΣ is the smallest
set, such that a ∈ LΣ for every a ∈ LΣ and ¬α ∈ LΣ , α ∧ β, α ∨ β ∈ LΣ if
α, β ∈ LΣ . We omit often Σ and write L instead of LΣ . We write formulas in L
with lower Greek letters α, β, γ, . . ., and propositional variables with lower case
letters a, b, c, . . . ∈ Σ. The set of propositional interpretations Ω, also called set of
worlds, is identified with the set of corresponding complete conjunctions over Σ.
Propositional entailment is denoted by |=, with �α� we denote the set of models
of α, and Cn(α) = {β | α |= β} is the deductive closure of α. This is lifted to a set
X by defining Cn(X) = {β | X |= β}. For two sets of formulas X,Y we say X is
equivalent to Y with respect to the formula α, written X =α Y , if Cn(X∪{α}) =
Cn(Y ∪{α})2. For two sets of interpretations Ω1, Ω2 ⊆ Ω we say Ω1 is equivalent
to Ω2 with respect to the formula α, written Ω1 =α Ω2, if Ω1 and Ω2 contain
the same set of models of α, i.e. {ω1 ∈ Ω1 | ω1 |= α} = {ω2 ∈ Ω2 | ω2 |= α}. For
a set of worlds Ω′ ⊆ Ω and a total preorder ≤ (reflexive and transitive relation)
over Ω, we denote with min(Ω′,≤) = {ω | ω ∈ Ω′ and ∀ω′ ∈ Ω′ ω ≤ ω′} the
set of all worlds in the lowest layer of ≤ that are elements in Ω′. For a total
preorder ≤, we denote with < its strict variant, i.e. x < y iff x ≤ y and y 	≤ x;
with 
 the direct successor variant, i.e. x 
 y iff x < y and there is no z such
that x < z < y; and we write x � y iff x ≤ y and y ≤ x.

2.1 Epistemic States and Belief Changes

Every agent is equipped with an epistemic state, sometimes also called belief
state, that maintains all necessary information for her belief apparatus. With
E we denote the set of all epistemic states. Without defining what a epistemic
state is, we assume that for every epistemic state Ψ ∈ E we can obtain the set
of plausible sentences Bel (Ψ) ⊆ L of Ψ , which is deductively closed. We write
Ψ |= α iff α ∈ Bel (Ψ) and we define �Ψ� = {ω | ω |= α for each α ∈ Bel (Ψ)}. A
belief change operator over L is a (left-associative) function ◦ : E × L → E . We
denote with Ψ ◦n α the n-times application of α by ◦ to Ψ [13].

2 Cn(X ∪{α}) matches belief expansion with α on belief sets. However, in the context
here, the context of iterative changes, we understand this purely technically. The
problem of expansion in this context is more complex [8].
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Darwiche and Pearl [6] propose that an epistemic state ψ should be equipped
with an ordering ≤Ψ of the worlds (interpretations), where the compatibility with
Bel (Ψ) is ensured by the so-called faithfulness. Based on the work of Katsuno and
Medelezon [11], a mapping Ψ �→≤Ψ is called faithful assignment if the following
is satisfied [6]:

if ω1 ∈ �Ψ� and ω2 ∈ �Ψ�, then ω1 �Ψ ω2

if ω1 ∈ �Ψ� and ω2 /∈ �Ψ�, then ω1 <Ψ ω2

Konieczny and Pino Pérez give a stronger variant of faithful assignments for
iterated belief change [13], which ensures that the mapping Ψ �→≤Ψ is compatible
with the belief change operator with respect to syntax independence.

Definition 1 (Strong Faithful Assignment [13]). Let ◦ be a belief change
operator. A function Ψ �→≤Ψ that maps each epistemic state to a total preorder
on interpretations is said to be a strong faithful assignment with respect to ◦ if:

if ω1 ∈ �Ψ� and ω2 ∈ �Ψ�, then ω1 �Ψ ω2(SFA1)
if ω1 ∈ �Ψ� and ω2 /∈ �Ψ�, then ω1 <Ψ ω2(SFA2)
if α1 ≡ β1, . . . , αn ≡ βn, then ≤Ψ◦α1◦...◦αn

=≤Ψ◦β1◦...◦βn
(SFA3)

We will make use of strong faithful assignments for the characterisation
theorems.

2.2 Iterated Contraction

Postulates for AGM contraction in the framework of epistemic states were given
by Chopra, Ghose, Meyer and Wong [5] and by Konieczny and Pino Pérez [14].
We give here the formulation by Chopra et al. [5]:

Bel (Ψ − α) ⊆ Bel (Ψ)(C1)
if α /∈ Bel (Ψ) , then Bel (Ψ) ⊆ Bel (Ψ − α)(C2)
if α 	≡ �, then α /∈ Bel (Ψ − α)(C3)
Bel (Ψ) ⊆ Cn(Bel (Ψ − α) ∪ α)(C4)
if α ≡ β, then Bel (Ψ − α) = Bel (Ψ − β)(C5)
Bel (Ψ − α) ∩ Bel (Ψ − β) ⊆ Bel (Ψ − (α ∧ β))(C6)
if β /∈ Bel (Ψ − (α ∧ β)) , then Bel (Ψ − (α ∧ β)) ⊆ Bel (Ψ − β)(C7)

For an explanation of these postulates we refer to the article of Caridroit
et al. [4]. A characterisation in terms of total preorders on epistemic states is
given by the following proposition.
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Proposition 1 (AGM Contraction for Epistemic State [14]). A belief
change operator − fulfils the postulates (C1) to (C7) if and only if there is a
faithful assignment Ψ �→≤Ψ such that:

(1) �Ψ − α� = �Ψ� ∪ min(�¬α�,≤Ψ )

In addition to the postulates (C1) to (C7), Konieczny and Pino Pérez give
DP-like postulates for intended iteration behaviour of contraction [14]. In the
following, we call these class of operators iterated contraction operators, which
are characterized by the following proposition.

Proposition 2 (Iterated Contraction [14]). Let − be a belief change operator
− which satisfies (C1) to (C7). Then − is an iterated contraction operator if
and only if there exists a faithful assignment Ψ �→≤Ψ such that (1) holds and the
following is satisfied:

if ω1, ω2 ∈ �α�, then ω1 ≤Ψ ω2 ⇔ ω1 ≤Ψ−α ω2

if ω1, ω2 ∈ �¬α�, then ω1 ≤Ψ ω2 ⇔ ω1 ≤Ψ−α ω2

if ω1 ∈ �¬α� and ω2 ∈ �α�, then ω1 <Ψ ω2 ⇒ ω1 <Ψ−α ω2

if ω1 ∈ �¬α� and ω2 ∈ �α�, then ω1 ≤Ψ ω2 ⇒ ω1 ≤Ψ−α ω2

2.3 Improvement Operators

The idea of (weak) improvements is to split the process of an AGM revision
for epistemic states [6, p. 7ff] into multiple steps of an operator ˝. For such a
gradual operator ˝ define Ψ ‚ α = Ψ ˝n α, where n ∈ N is smallest integer such
that α /∈ Bel (Ψ ˝n α). In the initial paper about improvement operators [13],
Konieczny and Pino Pérez gave postulates for ˝, such that ‚ is an AGM revision
for epistemic states. Due to space reasons, we refer the interested reader to the
original paper for the postulates [13]. The following representation theorem gives
an impression on weak improvement operators.

Proposition 3 (Weak Improvement Operator [13, Thm. 1]). A belief
change operator ˝ is a weak improvement operator if and only if there exists
a strong faithful assignment Ψ �→≤Ψ such that:

�Ψ ‚ α� = min(�α�,≤Ψ )

Furthermore, the class of weak improvement operators is restricted by DP-
like iteration postulates to the so-called improvement operators [13], which are
unique3. Again, we refer to the work of Konieczny and Pino Pérez [13] for these
postulates, and only present the characterisation in the framework of total pre-
orders.

3 Note that the notion of improvement operators is not used consistently in the liter-
ature. For instance, the improvement operators as defined in [12] are not unique.
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Proposition 4 (Improvement Operator [13, Thm. 2]). A weak improve-
ment operator ˝ is an improvement operator if and only if there exists a strong
faithful Ψ �→≤Ψ assignment such that

holds and the following is satisfied:

�Ψ ‚ α� = min(�α�,≤Ψ )

In the following section we use the basic ideas of (weak) improvement operators
as a starting point for developing the weak decrement operators.

3 Weak Decrement Operators

A property of a contraction operator − is that the success condition of contrac-
tion is instantaneously achieved, i.e., if α is believed in a state (α ∈ Bel (Ψ))
then after the contraction with α, it is not believed any more (α /∈ Bel (Ψ − α)).
As a generalisation, we define hesitant contractions as operators who achieve the
success condition of contraction after multiple consecutive applications.

Definition 2. A belief change operator ◦ is called a hesitant contraction oper-
ator if the following postulate is fulfilled:

if α 	≡ �, then there exists n ∈ N0 such that α /∈ Bel (Ψ ◦n α)(hesitance)

If ◦ is an hesitant contraction operator, then we define a corresponding operator
• by Ψ • α = Ψ ◦n α, where n = 0 if α ≡ �, otherwise n is the smallest integer
such that α /∈ Bel (Ψ ◦n α).

The following Example 1 shows a modelling application for hesitant belief
change operators.

Example 1. Addison bought a new mobile with much easier handling. She does
no longer have to press a sequence of buttons to access her favourite application.
However, it takes multiple changes of her epistemic state before she contracts the
belief of having to press the sequence of buttons for her favourite application.

We now introduce weak decrement operators, which fulfil AGM-like contrac-
tion postulates, adapted for the decrement of beliefs.
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Definition 3 (Weak Decrement Operator). A belief change operator ◦ is
called a weak decrement operator if the following postulates are fulfilled:

Bel (Ψ • α) ⊆ Bel (Ψ)(D1)
if α /∈ Bel (Ψ) , then Bel (Ψ) ⊆ Bel (Ψ • α)(D2)
◦ is a hesitant contraction operator(D3)
Bel (Ψ) ⊆ Cn(Bel (Ψ • α) ∪ {α})(D4)
if α1 ≡ β1, ..., αn ≡ βn, then Bel (Ψ ◦ α1 ◦ ... ◦ αn)=Bel (Ψ ◦ β1 ◦ ... ◦ βn)(D5)
Bel (Ψ • α) ∩ Bel (Ψ • β) ⊆ Bel (Ψ • (α ∧ β))(D6)
if β /∈ Bel (Ψ • (α ∧ β)) , then Bel (Ψ • (α ∧ β)) ⊆ Bel (Ψ • β)(D7)

The postulates (D1) to (D7) correspond to the postulates (C1) to (C7). By
(D1) a weak decrement does not add new beliefs, and together with (D2) the
beliefs of an agent are not changed if α is not believed priorly. (D3) ensures that
after enough consecutive application a belief α is removed. (D4) is the recovery
postulate, stating that removing α and then adding α again recovers all initial
beliefs. The postulate (D5) ensures syntax independence in the case of iteration.
(D6) and (D7) state that a contraction of a conjunctive belief is constrained by
the results of the contractions with each of the conjuncts alone.

For the class of weak decrement operators the following representation the-
orem holds:

Theorem 1 (Representation Theorem: Weak Decrement Operators).
Let ◦ be a belief change operator. Then the following items are equivalent:

(a) ◦ is a weak decrement operator
(b) there exists a strong faithful assignment Ψ �→≤Ψ with respect to ◦ such that:

there exists n ∈ N0 such that �Ψ ◦n α� = �Ψ� ∪ min(�¬α�,≤Ψ )
(decrement sucess)

and n is the smallest integer such that �Ψ ◦n α� 	⊆ �α�

From Theorem 1 we easily get the following corollary:

Corollary 1. If ◦ is a weak decrement operator, then • fulfils (C1) to (C7).
Furthermore, every belief change operator that fulfils (C1) to (C7) and (D5) is
a weak decrement operator.

This shows that weak decrement operators are (up to (D5)) a generalisation of
AGM contraction for epistemic states in the sense of Proposition 1.

4 Decrement Operators

We now introduce an ordering on the formulas in order to shorten our notion in
the following postulates.
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Definition 4. Let ◦ be a hesitant contraction operator, then we define for every
epistemic state Ψ and every two formula α, β:

α �◦
Ψ β iff Bel (Ψ • αβ) ⊆ Bel (Ψ • α)

With ≺◦
Ψ we denote the strict variant of �◦

Ψ and define α Î◦
Ψ β if α ≺◦

Ψ β and
there is no γ such that α ≺◦

Ψ γ ≺◦
Ψ β.

Intuitively α ≺◦
Ψ β means that in the state Ψ the agent is more willing to give

up the belief α than the belief β.
For the iteration of decrement operators we give the following postulates:

if ¬α |= β, then Bel (Ψ ◦ α • β) =α Bel (Ψ • β)(D8)
if α |= β, then Bel (Ψ ◦ α • β) =¬β Bel (Ψ • β)(D9)
if α |= γ, then Ψ ◦ α • β |= γ ⇒ Ψ • β |= γ(D10)
if ¬α |= γ, then Ψ • β |= γ ⇒ Ψ ◦ α • β |= γ(D11)
if α |= β and ¬α |= γ, then γ Î◦

Ψ β ⇒ β �◦
Ψ◦α γ(D12)

Bel (Ψ ◦ α) ⊆ Bel (Ψ)(D13)

(D8) states that a prior decrement with α does not influence the beliefs of an
decrement with β if ¬α |= β. states that a prior decrement with α does not
influence the beliefs of an decrement with β if α |= β. The postulate (D10) states
that if a belief in γ is believed after a decrement of α and the removal of β, then
only a removal of β does not influence the belief in γ if α¬γ implies β. By (D11),
if γ and α do not share anything, then a decrease of α does not influence this
belief. By (D12), if in the state Ψ the agent prefers removing a consequence of
¬α minimally more than removing a consequence of α, then after a decrement
of α, she is more willing to remove the consequence of α. The postulate (D13)
axiomatically enforces that a single step does not add beliefs.

We call operators that fulfil these postulates decrement operators.

Definition 5 (Decrement Operator). A ◦ weak decrement operator is called
a decrement operator if ◦ satisfies (D8) – (D13).

On the semantic side, we define a specific form of strong faithful assignment
which implements decrementing on total preorders.

Definition 6 (Decreasing Assignment). Let ◦ be a hesitant belief change
operator. A strong faithful assignment Ψ �→≤Ψ with respect to ◦ is said to be a
decreasing assignment (with respect to ◦) if the following postulates are satisfied:

if ω1, ω2 ∈ �α�, then ω1 ≤Ψ ω2 ⇔ ω1 ≤Ψ◦α ω2(DR8)
if ω1, ω2 ∈ �¬α�, then ω1 ≤Ψ ω2 ⇔ ω1 ≤Ψ◦α ω2(DR9)
if ω1 ∈ �¬α� and ω2 ∈ �α�, then ω1 ≤Ψ ω2 ⇒ ω1 ≤Ψ◦α ω2(DR10)
if ω1 ∈ �¬α� and ω2 ∈ �α�, then ω1 <Ψ ω2 ⇒ ω1 <Ψ◦α ω2(DR11)
if ω1 ∈ �¬α� and ω2 ∈ �α�, then ω2 
Ψ ω1 ⇒ ω1 ≤Ψ◦α ω2(DR12)
if ω1 ∈ �¬α�, ω2 ∈ �α� and ω2 ≤Ψ ω3 for all ω3, then ω2 ≤Ψ◦α ω1(DR13)
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The postulates (DR8) to (DR11) are the same as given by Konieczny and Pino
Pérez [14] for iterated contraction (cf. Proposition 2). The postulate (DR12)
states that a world of ¬α which is minimally less plausible than a world of α
should be made at least as plausible as this world of α. (DR13) ensures that
(together with the other postulates) that world in �Ψ� stays plausible after a
decrement.

The main result is that decrement operators are exactly those which are
compatible with a decreasing assignment.

Theorem 2 (Representation Theorem: Decrement Operators). Let ◦ be
a belief change operator. Then the following items are equivalent:

(a) ◦ is a decrement operator
(b) there exists a decreasing assignment Ψ �→≤Ψ with respect to ◦ that satisfies

(decrement sucess), i.e.:

there exists n ∈ N0 such that �Ψ ◦n α� = �Ψ� ∪ min(�¬α�,≤Ψ )
and n is the smallest integer such that �Ψ ◦n α� 	⊆ �α�

Table 1. Example changes by two decrement operators ◦1 and ◦2.

The following proposition presents a nice property of decrement operators:
Like AGM contraction for epistemic sates (cf. Proposition 1) a decrement oper-
ators keeps plausible worlds; and only the least unplausible counter-worlds may
become plausible.

Proposition 5. Let ◦ be a hesitant belief change operator. If there exists a
decreasing assignment Ψ �→≤Ψ with respect to ◦, then we have:

�Ψ� ⊆ �Ψ ◦ α� ⊆ �Ψ� ∪ min(�¬α�,≤Ψ )(partial success)

5 Specific Decrement Operators

Unlike improvement operators [13], there is no unique decrement operator. The
reason for this is, that if ω2 �Ψ ω1 for ω1 ∈ �¬α� and ω2 ∈ �α�, and it is
not required otherwise by (DR12), then the relative plausibility of ω1 and ω2

might not be changed by a decrement operator ◦, i.e. ω2 �Ψ◦α ω1. Example 2
demonstrates this.
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Example 2. Let Σ = {a, b} and Ψ1 be an epistemic state as given in Table 1.
Then the change from Ψ1 to Ψ1 ◦2 a in Table 1 is a valid change by a decrement
operator. Likewise, the change from Ψ1 to Ψ1 ◦2 a from Table 1 is also a valid
change for a decrement operator.

We capture this observation by two types of decrement operators. In the
first case, the decrement operator improves the plausibility of a counter-model
whenever it is possible.

Definition 7 (Type-1 Decrement Operator). A decrement operator ◦ is a
type-1 decrement operator if there exists a decreasing assignment Ψ �→≤Ψ with:

if ω1 ∈ �¬α� and ω2 ∈ �α�, then ω2 �Ψ ω1 ⇒ ω1 
Ψ◦α ω2(DR14)

The second type of decrement operators keeps the order ω1 �Ψ ω2 whenever
possible. We capture the cases when this is possible by the following notion. If
≤⊆ Ω × Ω is a total preorder on worlds, we say ω1 is frontal with respect to α,
if (1) there is no ω3 ∈ �α� such that ω3 
 ω1, and (2) there is no ω3 ∈ �¬α� such
that ω1 
 ω3. We define the second type of decrement operators as follows.

Definition 8 (Type-2 Decrement Operator). A decrement operator ◦ is a
type-2 decrement operator if there exists a decreasing assignment Ψ �→≤Ψ with:

if ω1 ∈ �¬α�, ω2 ∈ �α� and ω1 is frontal w.r.t α, then ω2 �Ψ ω1 ⇒ ω2 �Ψ◦α ω1

(DR15)

Example (continuation of Example 2). The change from Ψ1 to Ψ1 ◦1 a in Table 1
can be made by a type-1 decrement operator, but not by a type-2 decrement
operator. Conversely, the change from Ψ1 to Ψ1 ◦2 a from Table 1 can be made
by a type-2 decrement operator, but not by a type-1 decrement operator.

6 Discussion and Future Work

We provide postulates and representation theorems for gradual variants of AGM
contractions in the Darwich-Pearl framework of epistemic states. These so-called
weak decrement operators are a generalisation of AGM contraction for epistemic
states. Additionally, we give postulates for intended iterative behaviour of these
operators, forming the class of decrement operators. For both classes of opera-
tors we presented a representation theorem in the framework of total preorders.
For the definition of the postulates, the new relation �◦

Ψ (see Definition 4) is
introduced. While �◦

Ψ is related to epistemic entrenchment [9], it can be shown
that �◦

Ψ is not an epistemic entrenchment. The exploration of the exact nature
of �◦

Ψ remains an open task.
The next natural step will be to investigate the interrelation between (weak)

decrement operators and (weak) improvement operators. One approach is to
generalize the Levi identity [15] and Haper identity [10] to these operators.
Another approach could be the direct definition of a contraction operator from
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improvement operators, as suggested by Konieczny and Pino Pérez [13]. For such
operators, after achieving success, a next improvement may make certain mod-
els unplausible, while a decrement operator keeps the plausibility. While this
already indicated a difference between the operators, the study of their specific
interrelationship is part of future work. Another goal for future work is to gen-
eralize (weak) decrement operators to a more general class of gradual change
operators [16]. Such operators are candidates for a formalisation of psycholog-
ically inspired forgetting operations. An immediate target towards this goal is
to take a closer look at subclasses and interrelate them with the taxonomy of
improvement operators [12].
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Abstract. We propose a novel document generation process based on
hierarchical latent tree models (HLTMs) learned from data. An HLTM
has a layer of observed word variables at the bottom and multiple layers
of latent variables on top. For each document, the generative process first
samples values for the latent variables layer by layer via logic sampling,
then draws relative frequencies for the words conditioned on the values
of the latent variables, and finally generates words for the document
using the relative word frequencies. The motivation for this work is to
take word counts into consideration with HLTMs. In comparison with
LDA-based hierarchical document generation processes, the new process
achieves drastically better model fit with much fewer parameters. It also
yields more meaningful topics and topic hierarchies. It is the new state-
of-the-art for the hierarchical topic detection.

Keywords: Latent Tree Models · Topic detection

1 Introduction

The objective of hierarchical topic detection is, given a corpus of documents, to
obtain a tree of topics with more general topics at high levels of the tree and
more specific topics at low levels of the tree. Several hierarchical topic detec-
tion methods have been proposed based on latent Dirichlet allocation (LDA) [7],
including the hierarchical latent Dirichlet allocation (hLDA) model [5], the hier-
archical Pachinko allocation model (hPAM) [15,20], and the nested hierarchical
Dirichlet process (nHDP) [23].

A very different method named hierarchical latent tree analysis (HLTA) is
recently proposed by [10,11,16]. HLTA essentially learns a Bayesian network
such as the one shown in Fig. 1, where there is a layer of observed variables at
the bottom, and one or more layers of latent variables on top. The variables are
connected up to form a tree. The model is hence called a hierarchical latent tree
model (HLTM). The observed variables are binary and represent the absence
or presence of words in documents. The latent variables are also binary and
c© Springer Nature Switzerland AG 2019
G. Kern-Isberner and Z. Ognjanović (Eds.): ECSQARU 2019, LNAI 11726, pp. 265–276, 2019.
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Fig. 1. An example hierarchical latent tree model from [11], learned by HLTA on a toy
text dataset.

introduced during data analysis to explain co-occurrence patterns. For exam-
ple, z14 explains the probabilistic co-occurrences of the words card, video and
driver; z16 explains the co-occurrences of display, graphics and image; and
z22 explains the probabilistic co-occurrence of the patterns represented by z14,
z15, z16 and z17.

HLTMs is a generalization of latent class models (LCMs) [3], which is a type
of finite mixture models for discrete data. In a finite mixture model, there is one
latent variable and it is used to partition objects into soft clusters. Similarly, in
an HLTM, each latent variable z partitions all the documents into two clusters.
One of the clusters (corresponds to latent state z = 1) consists of the documents
where the words in subtree rooted at the latent variable occur with much higher
probabilities. It is interpreted as a topic. The other cluster (z = 0) is viewed as
the background. Hence each latent variable gives one topic.

Topics given by some of the latent variables in Fig. 1 are listed below. For
example, z14 gives a topic that consists of 12% of the documents, and the words
card, video and driver occur with relatively high probabilities inside the topic
and relatively low probabilities outside. Note that, for z22, only a subset of words
in its subtree are used when characterizing the topic. The reader is referred to [10]
for how the words for characterizing a topic are picked and ordered.

z22 [0.24] windows card graphics video dos

z14 [0.12] card video driver

z15 [0.15] windows dos

z16 [0.10] graphics display image

Z17 [0.09] computer science

In general, latent variables at high levels of an HLTM capture “long-range”
word co-occurrence patterns and hence give thematically more general topics,
while those at low levels capture “short-range” word co-occurrence patterns with
thematically more specific topics. For example, the topic given by z22 concerns
several aspects of computers, while its subtopics are each concerned with only
one aspect of computers. Hence HLTA is a tool for hierarchical topic detection.

HLTA differs fundamentally from the LDA-based methods. However, com-
parisons between them are still possible. The reason is that they both define
distributions over documents and characterize topics using lists of words. Empir-
ical results reported by [10,11] show that HLTA significantly outperforms the
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LDA-based methods in terms of model quality as measured by held-out likeli-
hood, and it finds more meaningful topics and topic hierarchies.

It should be noted, however, that the aforementioned comparisons were con-
ducted only on binary data. The reason is that HLTA is unable to take word
counts into consideration. In the experiments, documents were represented as
binary vectors over the vocabulary for HLTA. For the LDA-based methods, they
were represented as bags of words, where duplicates were removed such that no
word appears more than once. The two representations are equivalent.

To amend the serious drawback, this paper extends HLTA so as to take
word counts into consideration. Specifically, we propose a document generation
model based on the model structure learned by HLTA from binary data, design
a parameter learning algorithm for the new model, and give an importance sam-
pling method for model evaluation. The new method is named HLTA-c, where
the letter “c” stands for count data. We present empirical results to show that,
on count data, HLTA-c also significantly outperforms LDA-based methods in
terms of both model quality and meaningfulness of topics and topic hierarchies.

2 Related Work

Detecting topics and topic hierarchies from large archives of documents has been
one of the most active research areas in last decade. The most commonly used
method is latent Dirichlet allocation (LDA) [7]. LDA has been extended in var-
ious ways for additional modeling capabilities. Topic correlations are considered
in [14,15]; topic evolution is modeled in [1,6,27]; topic hierarchies are built in
[4,15,20]; side information is exploited in [2,13]; and so on.

A fundamental difference between HLTA/HLTA-c and the LDA-based meth-
ods for hierarchical topic detection is that observed variables in HLTA/HLTA-c
correspond to words in the vocabulary, while those in the LDA-based methods
correspond to tokens in the documents. The use of word variables allows the
detection and representation of patterns of word co-occurrences qualitatively
using model structures as illustrated in Fig. 1.

Another important difference is in the definition and characterization of top-
ics. Topics in the LDA-based methods are probabilistic distributions over a
vocabulary. When presented to users, a topic is characterized using a few words
with the highest probabilities. In contrast, topics in HLTA/HLTA-c are clusters
of documents. For presentation to users, a topic is characterized using the words
that not only occur with high probabilities in the topic but also occur with low
probabilities outside the topic.

The document generation process of HLTA/HLTA-c differs fundamentally
with LDA and its variants. Generally, HLTA/HLTA-c assumes a document is
generated in two steps: (1) Decide to which of the clusters it belongs to; and (2)
generate individual words according to the characteristics of the clusters.
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3 Document Generation Process

Our HLTM-c model for document generation is illustrated in Fig. 2(b). It is
based on an HLTM Mb learned from binary data.

(a) Mb (b) Mc (c) Ma

Fig. 2. The model Mb is learned by HLTA from binary data. Each vi is binary variable
and corresponds to the i-th word in the vocabulary. Its distribution given its parent
is a Bernoulli distribution. The model Mc is for modeling count data and defines a
document generation process. Each xi takes its value from the interval [0, 1] and its
distribution given its parent is a truncated Normal distribution. The y′

i are obtained by
normalizing the x′

is. The model Ma is a auxiliary model used in parameter estimation
and model evaluation. It shares the same parameters as Mc, except that the variables
ri are observed and are not restricted to the interval [0, 1].

We regard Mb as a model that generates binary vectors over words as follows:
First, pick values for the latent variables using logic sampling [24]. Specifically,
sample a value for the root z21 from its marginal distribution P (z21) and sample
values for other latent variables from their conditional distributions given their
respective parents. For example, the value for z11 is sampled from the distribution
P (z11|z21). Then, sample a binary value for each of the word variables v1, . . . , v7
from the its conditional distribution given its parent such as P (v1|z11). Note
that all distributions mentioned here are Bernoulli distributions.

In the HLTM-c model Mc, we generate values for the latent variables in the
same way as in Mb. However, we do not sample binary values for word variables.
Instead, we draw a real value xi for each word vi. The value xi is restricted to lie
in the interval [0, 1] and it is meant to be, approximately, the relative frequency
of the word vi in a document. Let z be the parent of xi. We draw xi from a
truncated normal distribution P (xi|z) = T N (μiz, σ

2
iz, 0, 1) with mean μiz and

standard deviation σiz. Note that, for a fixed xi, both the notation μiz and σiz

refer to two numerical values, one for z = 0 and another for z = 1.
Different xi’s are drawn independently and hence there is no guarantee that

they sum to 1. We normalize them to get a multinomial distribution (y1, . . . , y7).
Finally, we draw words W for a document from this multinomial distribution.

In general, suppose there is a collection D of documents and there are V words
in the vocabulary. Assume an HLTM Mb with binary word variables has been



Topic Detection Based on HLTMs 269

learned from the binary version of the data using the HLTA algorithm described
in [10]. To take word counts into consideration, we turn Mb into a document
generation model Mc by replacing the binary word variables vi with real-valued
variables xi, and we assume a document of length N is generated using Mc as
follows:1, Draw values of the binary latent variables via logic sampling; 2, For
each i ∈ {1, . . . , V }, draw xi from the conditional distribution p(xi|pa(xi)), a
truncated normal distribution, of xi given its parent pa(xi); 3, For each i ∈
{1, . . . , V }, set yi = xi/

∑n
i=1 xi; 4, For each n ∈ {1, . . . , N}, draw the n-th word

of the document from Multi(y1, . . . , yn).
In the generation process, Step 2 generates the unnormalized relative fre-

quencies (URF) x = (x1, . . . ,xV ), while Step 3 obtains the (normalized) rel-
ative frequencies y = (y1, . . . , yn). The first three steps define a distribution
over all possible the relative frequency vectors, i.e., over the probability sim-
plex S = {(y1, . . . , yn)|yi ≥ 0,

∑n
i=1 yi = 1}. We denote the distribution as

p(y|Mc, θ). The parameter vector θ includes the parameters for the distribu-
tions of all binary latent variables, and the means and standard deviations for
the truncated normal distributions for the URF variables.

Let Ni be the number of times the i-th word from the vocabulary occurs
in a document d. The count vector c = (N1, N2, . . . , NV ) can be used as a
representation of d. The sum of those counts is the document length, i.e., N =∑V

i=1 Ni. The conditional probability of d given the relative frequencies y is:

P (d|y) =
N !

N1! . . . NV !

∏V

i=1
yNi

i . (1)

The entire generation process defines a distribution over documents. The prob-
ability of a document d is:

P (d|Mc, θc) =
∫

y

P (d|y)p(y|Mc, θ)dy. (2)

In HLTA-c, a cluster is characterized using the relative frequencies xi that word
vi occurs. For each latent variable z, z = 1 corresponds to the document cluster
on topic, where the words in subtree appear more often, and z = 0 corresponds
to the documents off the topic. The relative frequencies yi of words vi in a
document is obtained by normalizing the relevant x′

is. Note that the x′
is are

w.r.t document clusters, and the y′
is are w.r.t a document to be generated.

The document generation process given here is very different in flavor from
the generation processes one typically sees in the LDA literature. Nonetheless, it
is a well-defined generation process by defining a distribution over count-vector
representations of documents. An LDA-based model, on the other hand, defines a
distribution over bag-of-words representations of documents. Because the count-
vector representation is equivalent to the bag-of-words representation, the two
methods define distributions over the same collection of objects and hence can
be compared with each other.
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4 Parameter Estimation

We now consider how to estimate the parameters θ of the mode Mc. The log
likelihood function of θ given a collection of documents D is:

log P (D|Mc, θ) =
∑

d∈D
log P (d|Mc, θ). (3)

The objective of parameter estimation is to find the value of θ that maximizes the
likelihood function. This task is difficult because of the use of truncated normal
distributions and the normalization step in the document generation process.

We propose an approximate method based on two ideas. First, notice that
the model parameters θ influence the relative frequencies y and the word counts
c indirectly through the URF variables x. Given x, c and y are independent
of θ. Our first idea is to obtain a point estimate of x from c and regard x as
observed variables afterwards.

It is well known that, given the word counts c, the maximum likelihood
estimation (MLE) of y is yi = Ni/N for all i, i.e., the empirical relative word
frequencies. Ignoring the normalization step, we also use the empirical relative
word frequencies as a point estimation for URF variables x, i.e., we assume
x = (N1/N, . . . , NV /N).

The second idea is to relax the restriction that xi must be from the interval
[0, 1], and to assume that xi is sampled from a normal distribution N (μiz, σ

2
iz)

instead of a truncated normal distribution T N (μiz, σ
2
iz, 0, 1).

Those two considerations turn the problem of estimating θ in Mc with data
represented as count vectors into the problem of estimating θ in a related model,
denoted as Ma, with data represented as vectors of relative frequencies. As shown
in Fig. 2(c), the auxiliary model Ma is the same as the top part of Mc, except that
the URF variables xi’s are replaced with real-value variables ri’s. The conditional
distribution of each ri given its parent z is a normal distribution, i.e., p(ri|z) =
N (μiz, σ

2
iz).

Use df to denote the vector of relative word frequencies in a document d,
i.e., df = (N1/N, . . . , NV /N). Moreover, use Df to denote the entire data set
when represented as vectors of relative frequencies. In the auxiliary model Ma,
the log likelihood of θ given Df is

log P (Df |Ma, θ) =
∑

df∈Df

log P (df |Ma, θ). (4)

Maximizing this likelihood function is relatively easy because Ma is a tree model.
It can be done using the EM algorithm.

There are strong reasons to believe that maximizing (4) would result in high
quality parameter estimation for the generative model Mc due to the way the
approximation is derived. Empirical results to be presented later show that the
method does produce good enough parameter estimations for Mc to achieve
substantially higher held-out likelihood than the LDA-based methods.

Although Ma is a tree model, EM can still be very time consuming when the
sample size is large. Here we use stepwise EM [8,25], which scales much better
by applying the idea of stochastic gradient descent to EM.
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5 Model Evaluation

After obtaining an estimation θ∗ of the parameters in the document generation
model Mc, we need to evaluate it by calculating its log likelihood on a test set
Dt:

log P (Dt|Mg, θ
∗)) =

∑

d∈Dt

log P (d|Mc, θ
∗).

To calculate the probability log P (d|Mc, θ
∗) of a test document d, we need to

approximately compute the integral in (2). Since the distribution of P (y|Mc, θ
∗)

is defined through a generative process, it is straightforward to obtain samples
of y by running the process multiple times. Suppose K samples y(1), . . . ,y(K)

of y are obtained. We can estimate P (d|Mc, θ
∗) as follows:

P (d|Mc, θ
∗) ≈ 1

K

∑K

k=1
P (d|y(k)). (5)

Unfortunately, there is a well-known problem with this naive method [26]. When
the document d is long, the integrand p(d|y) as a function of y is highly peaked
around the MLE of y and is very small elsewhere in the probability simplex.
Because the document d is not taken into consideration when drawing samples
of y, it is unlikely for the samples to hit the high value area. This can easily lead
to underestimation and high variance. Unless K is extremely large, there could
be large differences in the estimates one obtains at different runs.

A standard way to solve this problem is to use importance sampling [22],
and to utilize a proposal distribution that is related to d and has its density
concentrated in the region where the integrand function P (d|y) is not close to
zero. We derive such a distribution using the auxiliary model Ma.

Let z be the set of all latent variables in the auxiliary model Ma on the level
right above the ri’s. For each latent variable z in z, it is easy to compute the
posterior distribution p(z|df ,Ma, θ∗) of z given a document d (represented as a
vector of relative word frequencies df ) because Ma is a tree model. In fact, it
can be done in linear time using message propagation. We define

q(z|d) =
∏

z∈z
p(z|df ,Ma, θ∗). (6)

Note that z (defined in Ma) is the same as the set of all latent variables in the
generative model Mc on the level right above the xi’s. We rewrite (2) as follows
for the test document d: P (d|Mc, θ

∗) =
∫ ∑

z P (d|y)p(y|z)p(z|Mc, θ
∗)dy. Note

that p(z|Mc, θ
∗) = p(z|Ma, θ∗). Inserting q(z|d)

q(z|d) into the right hand side and

rearranging terms, we get P (d|Mc, θ
∗) =

∫ ∑
z P (d|y)p(z|Ma,θ∗)

q(z|d) p(y|z)q(z|d)dy.
This expression implies that we can sample a sequence of pairs

(y(1), z(1)), . . . , (y(K), z(K)) from p(y|z)q(z|d), and estimate P (d|Mc, θ
∗) as fol-

lows:

P (d|M, θ∗) ≈ 1
K

∑K

k=1
P (d|y(k))

p(z(k)|Ma, θ∗)
q(z(k))

. (7)
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Note that P (d|y(k)) can be calculated using (1) and the term p(z(k)|Ma, θ∗)
is obtained using message propagation in Ma. As mentioned earlier, the term
q(z(k)) can also be easily computed in Ma.

In comparison with (5), the use of (7) improves estimation accuracy and
reduces the variance because the sample points (y(k), z(k)) are generated by
taking the test document d into consideration. Hence, the samples are more
likely to hit the area where the integrand function P (d|y) has high values. In
the experiments, we set K = 300.

6 Empirical Results

In this section, we present empirical results to compare HLTA-c with com-
mon LDA-based methods for hierarchical topic detection, including hPAM [20],
hLDA [5] and nHDP [23]. The comparisons are in terms of both model quality
and the quality of topics and topic hierarchies. Model quality can be measured
using held-out likelihood on test data as pointed out in [10,17]. The quality of
topics is assessed using topic coherence [21] and topic compactness [12]. Exam-
ple branches of the topic hierarchies obtained by nHDP and HLTA-c are also
included for qualitative comparisons.

Table 1. Per-document held-out log likelihood scores. The sign “-” indicates non-
termination after 96 h.

NIPS-1k NIPS-5k NIPS-10k News-1k News-5k NYT AI

HLTA-c −1,182±2 −2,658±1 −3,249±2 −183±1 −383±2 −1,255±3 −3,216±3

hLDA −2,951±35 −5,626±117 — — — — —

nHDP −3,273±6 −7,169±11 −8,318±18 −262±1 −565±3 −2,070±6 −7,606± 12

hPAM −3,196±3 −6,759±15 −7,922 ± 12 −255±2 −556±4 — —

Table 2. Average coherence scores.

NIPS-1k NIPS-5k NIPS-10k News-1k News-5k NYT AI

HLTA-c−6.46±0.01−8.20±0.02−8.93±0.04−12.50±0.08 −13.43±0.15−12.70 ± 0.18−16.18 ± 0.15

hLDA −7.46±0.31 −9.03±0.16 — — — — —

nHDP −7.66±0.23 −9.70±0.19 −10.89±0.38−13.51±0.08 −13.93±0.21 −12.90±0.16 −18.66±0.21

hPAM −6.86±0.08 −8.89±0.04 −9.74±0.04 −11.74±0.14−14.06 ±0.09 — —

6.1 Datasets and Settings

We used four datasets in our experiments: (1) NIPS dataset, which consists of
1,955 articles published at the NIPS conference between 1988 and 1999; (2) 20
Newsgroup dataset consisting of 19,940 newsgroup posts; (3) New York Times
(NYT) dataset1 with 300,000 articles published on New York Times between
1 NIPS: http://www.cs.nyu.edu/∼roweis/data.html, News: http://qwone.com/

∼jason/20Newsgroups/, NYT: http://archive.ics.uci.edu/ml/datasets/Bag+of
+Words.

http://www.cs.nyu.edu/~roweis/data.html
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://archive.ics.uci.edu/ml/datasets/Bag+of+Words
http://archive.ics.uci.edu/ml/datasets/Bag+of+Words
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1987 and 2007; and (4) AI dataset which includes all 24,307 papers published at
seven AI conferences and three AI journals between 2000 to 2017.

To have some variabilities on the vocabulary size, we created different ver-
sions of the NIPS and the Newsgroup datasets by choosing vocabularies with
different sizes using average TF-IDF. The NIPS dataset has three versions with
vocabulary sizes of 1,000, 5,000 and 10,000 respectively, and the Newsgroup
dataset has two versions with vocabulary sizes of 5,000 and 10,000. The NYT
and AI datasets each have only one version with vocabulary size 10,000.

Implementations of HLTA and the LDA baselines were obtained from their
authors2. HLTA-c was implemented on top of HLTA. The implementation will
be released along with the publication of this paper. HLTA-c determined the
height of topic hierarchy and the number of nodes at each level by running the
HLTA at its default parameter settings on the binary version of a dataset. We
tuned the parameters of the LDA-based baselines in such a way that they would
yield roughly the same total number of topics as HLTA-c. The other parameters
of the baselines were left at their default values.

HLTA-c needs to call stepwise EM in the parameter estimation step. Stepwise
EM has a parameter called stepwise ηt, which we set as ηt = (t + 2)−0.75 as is
usually done in the literature.

Table 3. Average compactness scores.

NIPS-1k NIPS-5k NIPS-10k News-1k News-5k NYT AI

HLTA-c0.228±0.0010.255±0.0010.243±0.0010.219±0.0010.226±0.001 0.288±0.0090.229±0.001

hLDA 0.163±0.003 0.153±0.001 — — — — —

nHDP 0.164±0.005 0.147±0.006 0.138±0.002 0.150±0.003 0.148±0.004 0.250±0.003 0.144±0.001

hPAM 0.211±0.003 0.167±0.001 0.141±0.002 0.210±0.006 0.178±0.002 — —

6.2 Model Quality

We randomly divided each dataset into a training set with 80% of the data, and
a test set with 20% of the data. The per-document log likelihood scores on test
data are reported in Table 1.

The held-out likelihood scores for HLTA-c are drastically higher than those
for all the baseline methods. On the NYT and AI datasets, the models produced
by HLTA-c have scores of −1,255 and −3,216 respectively, while the models by
nHDP have scores of −2,070 and −7,606. This implies that the models obtained
by HLTA-c can predict unseen data much better. HLTA-c not only achieved
much higher held-out likelihood scores than the baselines, but also did so with
much fewer parameters.

2 github.com/kmpoon/hlta; github.com/blei-lab/hlda; www.columbia.edu/∼jwp21
28/code/nHDP.zip; www.arbylon.net/projects/knowceans-lda-cgen/Hpam2pGibbs
Sampler.java.

http://github.com/kmpoon/hlta
http://github.com/blei-lab/hlda
www.columbia.edu/~jwp2128/code/nHDP.zip
www.columbia.edu/~jwp2128/code/nHDP.zip
www.arbylon.net/projects/knowceans-lda-cgen/Hpam2pGibbsSampler.java
www.arbylon.net/projects/knowceans-lda-cgen/Hpam2pGibbsSampler.java
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6.3 Topic Quality

After an HLTM-c has been learned, we extract topics from it as described in [9].
Both HLTA-c and the LDA-based methods characterize topics using lists of
words when presenting them to users. Direct comparisons are therefore possible.
We measure the quality of a topic using two metrics. The first one is the topic
coherence score [21]. The intuition behind this metric is that words in a good
topic should tend to co-occur in the documents. Suppose a topic t is character-
ized by a list {w1, w2, . . . , wM} of M words. The coherence score of t is given
by: coherence(t) =

∑M
i=2

∑i−1
j=1 log D(wi,wj)+1

D(wj)
, where D(wi) is the number of

documents containing the word wi, and D(wi, wj) is the number of documents
containing both wi and wj . Higher coherence score means better topic quality.

The second metric is the topic compactness score [12]. It is calculated on
the basis of the word2vec model that was trained on a part of the Google
News dataset [18,19]. The word2vec model maps each word into a vector
that captures the semantic meaning of the word. The intuition behind the
compactness score is that words in a good topic should be closely related
semantically. The compactness score of a topic t is given by:compactness(t)=

2
M(M−1)

∑M
i=2

∑i−1
j=1 S(wi, wj) where S(wi, wj) is the cosine similarity between

the vector representations of the words wi and wj . Words that do not occur
in the word2vec model were simply skipped. Higher compactness score means
better topic quality.

Both of the scores decrease with the length M of the word list. Some of the
topics produced by HLTA-c consist of only 4 words. Hence, we set M = 4. Using
a higher value for M would put the LDA-based methods at a disadvantage.

The average coherence and compactness scores are shown in Tables 2 and 3.
HLTA-c achieved the highest compactness score in all cases. It also achieved the
highest coherence score in most datasets. The differences between the scores for
HLTA-c and other methods are often large.

6.4 Selected Branches of Topic Hierarchies

Figure 3 shows branches of the topic trees produced by HLTA-c and nHDP on
the AI dataset that are related to neural networks and deep learning. In the
HLTA-c topic tree, there is a topic on neural network and deep learning. The
subtopic neural network in turn has subtopics on network architecture and train-
ing algorithms (contrastive divergence and stochastic gradient descent). The topic
on deep learning has subtopics on convolutional neural network, restricted Boltz-
mann machine, deep neural network, and autoencoder. The names of several
prominent deep learning authors appear in the topic descriptions. The topics
recurrent neural network and lstm are placed in the first group instead of the
second, which indicates that they co-occur more often with the neural network
topics than the deep learning topics. A similar statement can be made about
word embedding. The last three topics of nHDP clearly do not fit well with the
other topics in the group.
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Fig. 3. Selected branches of the topic trees produced by HLTA-c (left) and nHDP
(right) on the AI dataset.

7 Concluding Remarks

HLTA is a recently proposed method for hierarchical topic detection. It can
only deal with binary data. In this paper we extend HLTA to HLTA-c so as
to take word counts into consideration. It is achieved by proposing a document
generation process based on the model structure learned by HLTA. In comparison
with LDA-based methods, HLTA-c achieves far better held-out likelihood with
much fewer parameters, with significantly better topics and topic hierarchies.
The work on HLTA and this paper serve to illustrate a strategy where one
uses a simpler form of data for model structure learning and the full data for
parameter learning. Such a strategy can lead to superior performances when
compared with the practice where ones relies on manually constructed model
structures.

Acknowledgements. Research on this article was supported by Hong Kong Research
Grants Council under grants 16202515.
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Abstract. Despite the popularity of deep learning, structure learning
for deep models remains a relatively under-explored area. In contrast,
structure learning has been studied extensively for probabilistic graphical
models (PGMs). In particular, an efficient algorithm has been developed
for learning a class of tree-structured PGMs called hierarchical latent
tree models (HLTMs), where there is a layer of observed variables at
the bottom and multiple layers of latent variables on top. In this paper,
we propose a simple unsupervised method for learning the structures of
feedforward neural networks (FNNs) based on HLTMs. The idea is to
expand the connections in the tree skeletons from HLTMs and to use
the resulting structures for FNNs. Our method is very fast and it yields
deep structures of virtually the same quality as those produced by the
very time-consuming grid search method.

Keywords: Fast structure learning · Feedforward neural networks

1 Introduction

Deep learning has achieved great successes in the past few years [10,15,17,22].
More and more researchers are now starting to investigate the possibility of learn-
ing structures for deep models instead of constructing them manually [3,6,24,31].
There are three main objectives in structure learning: improving model perfor-
mance, reducing model size, and saving manual labor and/or computation time.
Most previous methods focus on the first and second objectives. For example,
the goal of constructive algorithms [16] and neural architecture search [31] is to
find network structures which can achieve good performance for specific tasks.
Network pruning [9,18], on the other hand, aims to learn models which contain
fewer parameters but still achieve comparable performance compared with dense
models.

In this paper, we focus on the third objective. In practice, people usu-
ally determine model structure by manual tuning or grid-search. This is time-
consuming as there can be a large number of hyper-parameter combinations to
consider. We propose a fast unsupervised structure learning method for neural
c© Springer Nature Switzerland AG 2019
G. Kern-Isberner and Z. Ognjanović (Eds.): ECSQARU 2019, LNAI 11726, pp. 277–289, 2019.
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networks. Our method determines the bulk of a network automatically, while
allowing minor adjustments. It also learns the sparse connectivity between adja-
cent layers.

Our work is carried out in the context of standard feedforward neural net-
works (FNNs). While convolutional neural networks (CNNs) and recurrent neu-
ral networks (RNNs) are designed for spatial and sequential data respectively,
standard FNNs are used for data that are neither spatial nor sequential. The
structures of CNNs and RNNs are relatively more sophisticated than those of
FNNs. For example, a neuron at a convolutional layer is connected only to neu-
rons in a small receptive field at the level below. The underlying assumption
is that neurons in a small spatial region tend to be strongly correlated in their
activations. In contrast, a neuron in an FNN is connected to all neurons at the
level below. We aim to learn sparse FNN structures where a neuron is connected
to only a small number of strongly correlated neurons at the level below.

Fig. 1. Model structure of our Tree Skeleton Expansion Networks (TSE-Nets). The
PGM core includes the bottom three layers x−h2. The solid connections make up the
skeleton and the dashed connections are added during the expansion phase. The black
part of the model is called the Backbone, while the red part provides narrow skip-paths
from the PGM core to the output layer.

Our work is built upon hierarchical latent tree analysis (HLTA) [5,20], an
algorithm for learning tree-structured PGMs where there is a layer of observed
variables at the bottom and multiple layers of latent variables on top. HLTA first
partitions all the observed variables into groups such that the variables in each
group are strongly correlated and the correlations can be better modelled using
a single latent variable than using two. It then introduces a latent variable to
explain the correlations among the variables in each group. After that it converts
the latent variables into observed variables via data completion and repeats the
process to produce a hierarchy.

To learn a sparse FNN structure, we assume data are generated from a PGM
with multiple layers of latent variables and we try to approximately recover the
structure of the generative model. To do so, we first run HLTA to obtain a
tree model and use it as a skeleton. Then we expand it with additional edges
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to model salient probabilistic dependencies not captured by the skeleton. The
result is a PGM structure and we call it a PGM core. To use the PGM core for
classification, we further introduce a small number of neurons for each layer, and
we connect them to all the units at the layers and all output units. This is to
allow features from all layers to contribute to classification directly.

Figure 1 illustrates the result of our method. The PGM core includes the
bottom three layers x − h2. The solid connections make up the skeleton and the
dashed connections are added during the expansion phase. The neurons at layer
h3 and the output units are added at the last step. The neurons at layer h3

can be conceptually divided into two groups: those connected to the top layer
of the PGM core and those connected to other layers. The PGM core, the first
group at layer h3 and the output units together form the Backbone of the model,
while the second group at layer h3 provide narrow skip-paths from low layers of
the PGM core to the output layer. As the structure is obtained by expanding
the connections of a tree skeleton, our model is called Tree Skeleton Expansion
Network (TSE-Net).

2 Related Works

The primary goal in structure learning is to find a model with optimal or close-
to-optimal generalization performance. Brute-force search is not feasible because
the search space is large and evaluating each model is costly as it necessitates
model training. Early works in the 1980’s and 1990’s have focused on what we
call the micro expansion approach where one starts with a small network and
gradually adds new neurons to the network until a stopping criterion is met [2,4,
16]. The word “micro” is used here because at each step only one or a few neurons
are added. This makes learning large model computationally difficult as reaching
a large model would require many steps and model evaluation is needed at each
step. In addition, those early methods typically do not produce layered structures
that are commonly used nowadays. Recently, a macro expansion method [19] has
been proposed where one starts from scratch and repeatedly add layers of hidden
units until a threshold is met.

Other recent efforts have concentrated on what we call the contraction app-
roach where one starts with a larger-than-necessary structure and reduces it to
the desired size. Contraction can be done either by repeatedly pruning neurons
and/or connections [9,18,26], or by using regularization to force some of the
weights to zero [28]. From the perspective of structure learning, the contraction
approach is not ideal because it requires a complex model as input. After all,
a key motivation for a user to consider structure learning is to avoid building
models manually.

A third approach is to explore the model space stochastically. One way is
to place a prior over the space of all possible structures and carry out MCMC
sampling to obtain a collection of models with high posterior probabilities [1].
Another way is to encode a model structure as a sequence of numbers, use a
reinforcement learning meta model to explore the space of such sequences, learn
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a good meta policy from the sequences explored, and use the policy to gener-
ate model structures [31]. An obvious drawback of such stochastic exploration
method is that they are computationally very expensive.

All the aforementioned methods learn model structures from supervised feed-
back. While useful, class labels contain far less information than model struc-
tures. As pointed out by [8], “The process of classification discards most of the
information in the input and produces a single output (or a probability distribu-
tion over values of that single output).” In other words, there are rich information
in data beyond class labels that we can make use of. As such, there are severe
limitations if one relies only on supervised information to determine model struc-
tures. In this paper, we propose a novel structure learning method that makes use
of unsupervised information in data. The method is called skeleton expansion.
We first learn a tree-structured model based on correlations among variables,
and then add a certain number of new units and connections to it in one shot.
The method has two advantages: First, learning tree models is easier than learn-
ing non-tree models; Second, we need to train only one non-tree model, i.e., the
final model.

Fig. 2. Tree skeleton expansion. Left: A multi-layer tree skeleton is first learned. AK

is the ancestor of V which is K = 2 layers above V . Nodes in the blue circle are the
descendants of AK at the layer below V . Middle: New connections are then added to
connect V to all the descendants of AK at the layer below V . Right: Expansion is
conducted on all the layers exception the top K layers. Read Sect. 4 for more details.

The skeleton expansion idea has been used in [6] to learn structures for
restricted Boltzmann machines, which have only one hidden layer. This is the
first time that the idea is applied to and tested on multi-layer feedforward net-
works.

3 Learning Tree Skeleton via HLTA

The first step of our method is to learn a tree-structured probabilistic graphical
model T (an example T is shown in the left panel in Fig. 2). Let X be the set of
observed variables at the bottom and H be the latent variables. Then T defines
a joint distribution over all the variables:

P (X,H) =
∏

v∈{X,H}
p(v|pa(v)),
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where pa(v) denotes the parent variable of v in T . The distribution of X can be
computed as:

P (X) =
∑

H

P (X,H).

When learning the structure of T , the objective is to maximize the BIC score [25]
of T over data:

BIC(T |D) = log P (D|θ∗) − d

2
log(N),

where θ∗ is the maximum likelihood estimate of the parameters, d denotes the
number of free parameters and D denotes the training data with N training
samples. Guided by the BIC score, HLTA builds the structure in a layer-wise
manner. It first partitions the observed variables into groups and learns a latent
class model (LCM) [14] for each group. Let S denotes the set of observed vari-
ables which haven’t been included into any variable groups. HLTA computes the
mutual information for each pair of variables in S. Then it picks the pair with
the highest mutual information and uses them as the seeds of a new variable
group G. Other variables from S are then added to G one by one in descending
order of their mutual information with variables already in G. Each time when
a new variable is added into G, HLTA builds two models (M1 and M2). The
two models are the best models with one single latent variable and two latent
variables respectively, as shown in Fig. 3. HLTA computes the BIC scores of the
two models and tests whether the following condition is met:

BIC(M2|D) − BIC(M1|D) ≤ δ, (1)

where δ is a threshold which is always set at 3 in our experiments. When the
condition is met, the two latent variable model M2 is not significantly better
than the one latent variable model M1. Correlations among variables in G are
still well modelled using a single latent variable. Then HLTA keeps on adding
new variables to G. If the test fails, HLTA takes the subtree in M2 which doesn’t
contain the newly added variable and identifies the observed variables in it as
a finalized variable group. The group are then removed from S. And the above
process is repeated on S until all the variables are partitioned into disjoint groups
(Fig. 4(b)).

Fig. 3. Test whether five observed variables should be grouped together: (a) The best
model with one latent variable. (b) The best model with two latent variables.

Next, HLTA introduces a latent variable for each variable group to explain
the correlations among variables in the group. This results in a collection of
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latent class models, which are sometimes referred to as islands (Fig. 4(c), Left).
To build the next layer, HLTA links up the islands and obtains what is called
a flat model (Fig. 4(c), Right), and it turns the latent variables into observed
variables by carrying out data completion within the flat model. Linking up
the islands and carrying out data completion in the connected model is time-
consuming. In this paper, we propose not to link up the islands. Instead, we carry
out data completion in each individual island, which is crucial to speeding up
the structure learning process. After converting the latent variables into observed
variables X′, the above process is repeated over X′ to obtain another layer of
latent variables (Fig. 4(d)). And this is repeated until there is only one new island
(Fig. 4(e)). All the variables are then linked up as a multi-layer tree skeleton T
with the last latent variable as the root (Fig. 4(f)).

4 Expanding Tree Skeleton to PGM Core

We have restricted the structure of T to be a tree, as parameter estimation in
tree-structured PGMs is relatively efficient. However, this restriction in return
also hurts the model’s expressiveness. For example, in text analysis, the word
Apple is highly correlated with both fruit words and technology words concep-
tually. But Apple is directly connected to only one latent variable in T and it
is difficult for the single latent variable to express both the two concepts, which
may cause severe underfitting. On the other hand, in standard FNNs, units at a
layer are always fully connected to those at the previous layer, resulting in high
connection redundancies.

In this paper, we aim to learn sparse connections between adjacent layers,
such that they are neither as sparse as those in a tree, nor as dense as those
in an FNN. To this end, the sparse connections should capture only the most
important correlations among the observed variables. Thus we propose to use T
as a structure skeleton and expand it to a denser structure G which we call the
PGM core.

Our tree skeleton expansion method works as follows. For a node V at layer
L, it finds the ancestor AK of V that is K layers above V , and connects V to all
descendants of AK at layer L−1. We call K the up-looking parameter and set it
to 2 in all our experiments. This means that each node is connected to all nodes in
the “next generation” who descend from the same grandparent of the node (See
Figure 2). We call it the “Grandparent expansion rule”. This expansion phase
is carried out over all the adjacent layers except the top K layers, as shown in
Fig. 2 (Right). After the expansion phase, we take the bottom M layers and use
the resulting sparse deep structure as the PGM core G. M is a hyper-parameter
that we need to determine in experiments.

5 Constructing Sparse FNNs from PGM Core

Our tree expansion method learns a multi-layer sparse structure G in an unsu-
pervised manner. To utilize the resulting structure in a discriminative model, we
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convert each latent variable h in G to a hidden unit by defining:

h = o(W′x + b),

where x denotes a vector of the units directly connected to h at the layer below,
W and b are connection weights and bias respectively, and o denotes a non-linear
activation function, e.g. ReLU [7,23]. In this way, we convert G into a sparse
multi-layer neural network. Next we discuss how we use it as a feature extractor
in supervised learning tasks. Our model contains two parts, the Backbone and
the skip-paths.

The Backbone. For a specific classification or regression task, we introduce a
fully-connected layer on the top of G, which we call the feature layer, followed
by a output layer. As shown in Fig. 1, the feature layer serves as a feature “aggre-
gator”, aggregating the features extracted by G and feeding them to the output
layer. We call the whole resulting module (G, feature layer and output layer
together) the Backbone, as it is supposed to be the major module of our model.
The user needs to determine the number of units U at the feature layer. We set
it to 100 in all our experiments.

The Skip-paths. As the structure of G is sparse and is learned to capture the
strongest correlations in data, some weak but useful correlations may easily be
missed. More importantly, different tasks may rely on different weak correlations
and this cannot be taken into consideration during the unsupervised structure
learning. To remedy this, we consider allowing the model to contain some narrow
fully-connected paths to the feature layer such that they can capture those missed
features. More specifically, as there are M layers of units in G, we introduce M−1
more groups of units into the feature layer, with each group fully connected from

Fig. 4. The structure learning procedure for multi-layer tree skeleton. Black nodes
represent observed variables while white nodes represent latent variables. (a) A set of
observed variables X. (b) Partition the observed variables into groups. (c) Two options:
(Left) Introduce a latent variable for each group. (Right) Introduce a latent variable
for each group and link up the latent variables. The first option is much faster and is
used in this paper. (d) Convert the layer-1 latent variables H1 into observed variables
and repeat the previous process on them. (e) Convert the layer-2 latent variables H2

into observed variables and repeat (a)-(c) on them. (f) Stack the LCMs up to form a
multi-layer tree skeleton.
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a layer in G except the top one. In this way, each layer except the top one in G
has both a sparse path (the Backbone) and a fully-connected path to the feature
layer. The fully-connected paths are supposed to capture those minor features
during parameter learning. These new paths are called skip-paths. Each group
of units in the feature layer contains U units.

As shown in Fig. 1, the Backbone and the skip-paths together form our final
model, named Tree Skeleton Expansion Network (TSE-Net). The model can then
be trained like a normal neural network using back-propagation.

6 Discussion on Hyper-Parameters

There are four hyper-parameters, δ,K,M and U , in our method. The threshold
δ is set at 3, which is determined from a threshold [5] suggested for Bayes factor.
As for the up-looking parameter K and feature layer group size U , we suggest
fixing K = 2 and U = 100 which work well on a range of datasets. The only
hyper-parameter that the user needs to tune during training is the depth M of
PGM core. The value depends heavily on the specific dataset. Tuning M allows
the user to introduce minor adjustments to the model structure depending on
the task and data.

7 Experiments

7.1 Datasets

We evaluate our method in 17 classification tasks. Table 1 gives a summary of the
datasets. We choose 12 tasks of chemical compounds classification and 5 tasks
of text classification. All the datasets are published by previous researchers.

Tox21 Challenge Dataset1. There are about 12,000 environmental chemical com-
pounds in the dataset, each represented as its chemical structure. The tasks are
to predict 12 different toxic effects for the chemical compounds [13,21]. We treat
them as 12 binary classification tasks. We filter out sparse features which are
present in fewer than 5% compounds, and rescale the remaining 1,644 features
to zero mean and unit variance. The validation set is randomly sampled and
removed from the original training set.

Text Classification Datasets2. We use 5 text classification datasets from [30].
After removing stop words, the top 10,000 frequent words in each dataset are
selected as the vocabulary respectively and each document is represented as
bag-of-words over the vocabulary. The validation set is randomly sampled and
removed from the training samples.

1 https://github.com/bioinf-jku/SNNs.
2 https://github.com/zhangxiangxiao/Crepe.

https://github.com/bioinf-jku/SNNs
https://github.com/zhangxiangxiao/Crepe
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Table 1. Statistics of all the datasets.

Dataset Classes Training samples Validation samples Test samples

Tox21 2 ∼ 9,000 500 ∼600

Yelp Review Full 5 640,000 10,000 50,000

DBPedia 14 549,990 10,010 70,000

Sogou News 5 440,000 10,000 60,000

Yahoo!Answer 10 1,390,000 10,000 60,000

AG’s News 4 110,000 10,000 7,600

7.2 Experiment Setup

We compare our model TSE-Net with standard FNN. For fair comparison, we
treat the number of units and number of layers as hyper-parameters of an FNN
and optimize them via grid-search over all the defined combinations using valida-
tion data. Table 2 shows the space of network configurations considered, following
the setup in [13]. In TSE-Net, the number of layers and number of units at each
layer are determined by the algorithm.

We also compare our model with pruned FNN whose connections are sparse.
We take the best FNN as the initial model and perform pruning as in [9]. As
micro expansion and stochastic exploration methods are not learning layered
FNNs and are computationally expensive, they are not included in comparison.

We use ReLUs [23] as the non-linear activation functions in all the networks.
Dropout [11,27] with rate 0.5 is applied after each non-linear projection. We use
Adam [12] as the network optimizer. Codes will be released after the paper is
accepted.

7.3 Results

Training Time and Effective FLOP. The training time and effective FLOP
(floating point operations) of TSE-Net, Backbone and FNN are reported in
Table 3. The Total Time column shows the total time of structure learn-
ing/validation and network training in seconds. Effective FLOP is derived for
the final model by calculating the number of non-zero weights, which can show
us the computation saving when using the sparse model.

Table 2. Hyper-parameters for the structure of FNNs.

Hyper-parameter Values considered

Number of units per layer {512, 1024, 2048}
Number of hidden layers {1,2,3,4}
Network shape {Rectangle, Conic}
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From the table we can see that, the training of TSE-Net and Backbone with
unsupervised structure learning is significantly faster than that of FNN with
grid-search, especially on large datasets. On the largest dataset, the training
time ratio of TSE-Net w.r.t FNN is only 3.5%. And these differences can even
be larger if we slightly increase the grid-search space. Moreover, our method
is learning sparse models. The FLOP ratios of TSE-Net w.r.t FNN range from
7.01% to 37%, which means that our model can also save a significant part of
computations in test time, given appropriate hardware support. In addition, our
model is also containing much fewer parameters than the best FNN, which can
save memory use in practice.

Classification. Classification results are reported in Table 4. All the experi-
ments are run for three times and we report the average classification AUC
scores/accuracies with standard deviations.

TSE-Nets vs FNNs. From the table we can see that, TSE-Net performs very
close to the best FNN in 4 out of the 6 datasets, and achieves a 2.01% relative
improvement on the Tox21 dataset. In our experiments, TSE-Net achieves better
AUC scores than FNN in 9 out of the 12 tasks in the Tox21 dataset. It should
be emphasized that, the structure of TSE-Net is trained in an unsupervised
manner and it contains much fewer parameters than FNN, while the structure
of FNN is manually optimized over the validation data. The results show that,
the structure of TSE-Net successfully captures the crucial correlations in data
and greatly reduces parameter number without significant performance loss.

It is worth noting that pure FNNs are not the state-of-the-art models for
the tasks here. For example, [21] proposes an ensemble of FNNs, random forests
and SVMs with expert knowledge for the Tox21 dataset. [13] tests different
normalization techniques for FNNs on the Tox21 dataset. They both achieve
an average AUC score around 0.846. Complicated RNNs [29] with attention also
achieve better results than FNNs for the 5 text datasets. However, the goal of our
paper is to learn sparse structure for FNNs, instead of proposing state-of-the-art
methods for any specific tasks. Their methods are all much more complex and
even task-specific, and hence it is not fair to include their results as comparison.
Moreover, their methods can also be combined with ours to give better results.

Contribution of the Backbone. To validate our assumption that the Backbone
in TSE-Net captures most of the crucial correlations in data and acts as a main
part of the model, we remove the narrow skip-paths in TSE-Net and train the
model to test its performance.

As we can see from the results, the Backbone path alone already achieves
AUC scores or accuracies which are only slightly worse than those of TSE-Net.
Note that the number of parameters in the Backbone is even much smaller than
that of TSE-Net. The Backbone contains only 2%∼17% of the parameters in
FNN. The results not only show the importance of the Backbone in TSE-Net,
but also show that our structure learning for the Backbone path is effective.
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Table 3. Time and sparsity. Total time contains time for structure learning/validation
and network training in seconds. FLOP% column shows the FLOP ratio w.r.t FNN.

Task TSE-Net (Ours) Backbone FNN

Total time FLOP% Total time FLOP% Total time FLOP

Tox21 Average 128 17.25% 144 2.90% 154 1.64M

AG’s News 1,107 7.01% 1,071 3.13% 11,099 28.88M

DBPedia 1,161 19.80% 1,327 8.98% 24,570 10.36M

Yelp Review Full 1,253 37.00% 1,332 16.06% 18,949 5.38M

Yahoo!Answer 1,315 36.70% 1,480 16.97% 37,475 5.39M

Sogou News 1,791 14.90% 1,806 6.38% 27,654 13.39M

Table 4. Classification results. All the experiments are run for three times and we
report the average classification AUC scores/accuracies with standard deviations.

Task TSE-Net (Ours) Backbone FNN Pruned FNN

Tox21 Average 0.8168±0.0037 0.7856±0.0066 0.8010±0.0017 0.7998±0.0034

AG’s News 91.49%±0.05% 91.54%±0.05% 91.61%±0.01% 91.49%±0.09%

DBPedia 98.04%±0.01% 97.74%±0.02% 97.99%±0.04% 97.95%±0.02%

Yelp Review Full 58.98%±0.09% 58.38%±0.07% 59.13%±0.14% 58.83%±0.01%

Yahoo!Answer 71.48%±0.12% 70.72%±0.02% 71.84%±0.07% 71.74%±0.05%

Sogou News 95.91%±0.01% 95.44%±0.06% 96.11%±0.06% 96.20%±0.06%

TSE-Nets vs Pruned FNNs. We also compare our method with a baseline
method [9] for obtaining sparse FNNs. The pruning method provides regular-
ization over the weights of a network. The regularization is even stronger than
l1/l2 norm as it is producing many weights being exactly zeros. We start from
the fully pretrained FNNs reported in Table 4, and prune the weak connections
with the smallest absolute weight values. The pruned networks are then retrained
again to compensate for the removed connections. After pruning, the number of
remaining parameters in each FNN is the same as that in the corresponding TSE-
Net for the same task. As shown in Table 4, TSE-Net and pruned FNN achieve
pretty similar results. Note again that pruned FNN took much longer time than
TSE-Net. Without any supervision or pre-training over connection weights, our
unsupervised structure learning successfully identifies important connections and
learns sparse structures. TSE-Net also achieves better interpretability as shown
in https://arxiv.org/pdf/1803.06120.pdf.

8 Conclusions

It is important to the applications of deep learning to quickly learn a model
structure appropriate for the problem at hand. A fast unsupervised structure

https://arxiv.org/pdf/1803.06120.pdf
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learning method is proposed and investigated in this paper. In comparison with
standard FNN, our model contains much fewer parameters and it takes much
shorter time to learn. It also achieves comparable classification results in a range
of tasks. Our method is also shown to learn models with better interpretability.
In the future, we will generalize our method to networks like RNNs and CNNs.

Acknowledgments. Research on this article was supported by Hong Kong Research
Grants Council under grants 16212516.
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Abstract. With the latest advances in technology, almost all systems
are getting substantially more uncertain and complex. Since increased
complexity costs more, it is challenging to cope with this situation. Main-
tenance optimization plays a critical role in ensuring effective decision-
making on the correct maintenance actions in multi-component systems.
A Partially Observable Markov Decision Process (POMDP) is an appro-
priate framework for such problems. Nevertheless, POMDPs are rarely
used for tackling maintenance problems. This study aims to formulate
and solve a factored POMDP model to tackle the problems that arise
with maintenance planning of multi-component systems. An empirical
model consisting of four partially observable components deteriorating
in time is constructed. We resort to Symbolic Perseus solver, which
includes an adapted variant of the point-based value iteration algorithm,
to solve the empirical model. The obtained maintenance policy is sim-
ulated on the empirical model in a finite horizon for many replications
and the results are compared to the other predefined maintenance poli-
cies. Drawing upon the policy results of the factored representation, we
present how factored POMDPs offer an effective maintenance policy for
the multi-component systems.

Keywords: POMDP · Factored representations · Maintenance

1 Introduction

In recent years, technology and state-of-the-art methods in the area of the indus-
try have led an undeniable wave of change in the industrial world. Due to the
latest advances in technology, the complexity of systems has increased. Every
system used in the manufacturing sector has a certain life span and the systems
need maintenance during their life cycle. Therefore, to ensure the continuity
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of the system, the role, and importance of the maintenance has increased. It
is important to keep up with innovative technologies in the selection of main-
tenance policies and to cope with increased cost as well. In other words, it is
essential to know how to handle associated challenges for implementing efficient
planning and management of maintenance activities. There is uncertainty in the
majority of maintenance problems. Hence, the maintenance problem can be said
to be a real-life example problem that can be observed with partial observabil-
ity and modeled with the POMDP framework. In this study, we investigate the
applicability of the maintenance problem in the context of factored POMDPs.
POMDPs are used to make sequential decisions under uncertainty in decision
problems where system states cannot be fully observed throughout the planning
horizon. In typical POMDPs, flat representation is used via a single node which
has multiple states. However, multi-component POMDP models in real life may
require a compact representation because belief space size grows exponentially
with the number of states while using flat representations. In literature, fac-
tored representations [2] have been proposed to simplify the complexity of the
states by taking advantage of the factored structure already available in the
nature of the problem. The main idea of factored POMDPs is that they can
be compactly modeled through dynamic Bayesian networks (DBNs), which are
graphical representations for stochastic processes, by exploiting the structure of
this representation. In the flat representation, it is required that all states and all
transitions are explicitly enumerated in the model. However, factored POMDPs
can be modeled and solved by taking advantage of compact data structure rep-
resentations for problems with large state space spaces. Decision trees [2] and
algebraic decision diagrams (ADDs) [9] can be used to represent data compactly.
Symbolic Perseus [17] and Heuristic Search Value Iteration (HSVI) [19] are pro-
posed to solve the factored POMDP models by using ADDs.

Recently, POMDPs are getting more popular in the domain of maintenance.
A machine may have several interacting components having different depen-
dencies on each other, and degrading or deteriorating over time. POMDPs are
generally adopted for maintenance planning of civil structures. In [11], POMDPs
are applied to decision-making for highway pavement. In [7] and [6], POMDP
models were formulated to generate a policy for bridge inspection. In [3], seasonal
dependent situation-based maintenance policies are obtained for wind turbines
with finite horizon. Papakonstantinou et al. conducted a comprehensive litera-
ture review in the area of inspection scheduling and maintenance planning using
POMDPs [15]. Also, they obtained inspection and maintenance policies for cor-
roded structures and erected concrete structures respectively using POMDPs
[13]. Although many maintenance optimization approaches are present in liter-
ature that are used to model sequential decision problems, factored-POMDPs
have not been well studied yet. However, they can be well-suited frameworks for
obtaining optimal or near-optimal maintenance policies.

The rest of this paper is structured as follows: Sect. 2 introduces the prelimi-
naries of POMDPs including definitions and the methodology. Section 3 presents
the empirical POMDP model and the proposed maintenance policies. Section 4
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covers the experimental evaluations. Finally, conclusion and future studies are
provided in Sect. 5.

2 Preliminaries

Markov Decision Processes (MDPs) are used to model decision-making problems
in uncertain environments as a sequential decision-making model [18]. However,
MDPs are limited in models with further state uncertainty. For this reason,
MDPs have been extended to POMDPs which take into account the partial
observability of the states. POMDPs are stochastic models with better results in
planning optimal policies under uncertainty in real life domain [14]. A POMDP
is defined by the 6-tuple: < S, A, T , R, θ, O >. S is a finite set of system state.
A is a finite set of all alternative actions that can be chosen. The agent aims to
maximize his/her reward by the correct actions. T : S × A × S → Δ(S) is the
transition function that gives the probability of a transition from current state s
to the state s′ after executing action a. R: S ×A×S ×θ → � is the reward after
executing an action, making a state transition and receiving an observation. θ
is a finite set of observations that the agent can observe. O : S × A × θ → Δ(O)
is the observation probabilities describing the relationships among observations,
states, and actions. A typical POMDP representation is illustrated in Fig. 1.

Fig. 1. A typical POMDP representation.

Point-based approaches are approximate POMDP methods that have come
popular recently due to their ability to solve much larger problems than exact
methods. Modern point based solvers can solve thousands of state problems.
An important breakthrough for this type of solvers is the approximation of the
belief space by selective belief point sampling. Thus, the exponential growth of
the value function is prevented. For this reason, much less computing power is
required for the solution of the long-term horizon and large state space POMDPs.

Point-based value iteration (PBVI) [16] is based solely on the idea of creating
a limited set of belief space. The main point of point-based value iteration is
that a representative belief points can be selected to cover the reachable areas
of belief with high approximation accuracy. In each iteration, PBVI expands its
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belief subsets by choosing the new accessible beliefs that are as far away from
the current belief points.

Perseus: Randomized point-based value iteration for POMDPs [5] is a random-
ized version of point-based value iteration. By reducing the number of belief
updates required for each iteration, Perseus increases the computational effi-
ciency in the value iteration process, without any loss in the value function
approximation. Perseus initially creates a fixed set of accessible belief points.
This set of belief points is formed in a less complex way compared to other
point-based algorithms that use heuristic approaches. In each iteration, it backs
up minimum number of belief points through working on a subset of the set
of created belief points only at the beginning. This process continues until it
ensures that the value function approach is improved for all points in the initial
set of beliefs [14].

Symbolic Perseus is an adapted variant of the point-based value iteration
algorithm to solve the factored POMDP models [17]. The distinctive feature of
Symbolic Perseus is a limitation of the number of the vector representing the
value function without a loss of quality. This reduces the cost of calculation of
backup operations. ADDs used for belief states and vectors provide significant
savings in required memory and calculations. Real-life problems require scalable
POMDP algorithms that will be powerful against two major challenges, such as
the curse of dimensionality and the curse of history. Symbolic Perseus can han-
dle large state-space complexity with a limited number of backups of reachable
beliefs. It also solves the curse of dimensionality by using ADDs to represent
the alpha vectors and beliefs. Alpha-vectors are a set of hyperplanes that define
belief functions. The curse of history can be handled by limiting the number of
vectors for the value function. The classic value iteration application with ADDs
was implemented by [9,10].

3 Maintenance Policies with POMDPs

In this study, an empirical model consisting of four partially observable com-
ponents deteriorating in time, three processes and one observation node is con-
structed to symbolize the maintenance problem of a multi-component system.
It is not possible to observe the system, i.e., the components and the processes,
directly. However, the state of processes and components can be estimated by the
observation node. The relationship between components and processes is shown
in Fig. 2. There are three states of all components (“working”, “deteriorate” and
“fail”), two states of all processes (“working” and “fail”), and three states of the
observation node (“green”, “yellow” and “red”).
The assumptions about the empirical maintenance model are as follows:

– Processes 1 and 2 are defined as the result of the interaction between their
predecessor components. P1 with the interaction of C1 and C2, P2 with the
interaction of C3 and C4. The main process node, P3, which points to the
performance of the system and is directly influenced by the process nodes P1
and P2.
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Fig. 2. Empirical POMDP model for two time slots.

– P3 is directly linked to the observable node O which is used to gather infor-
mation from the process node. Conditional probabilities of the observation
node are given in Table 1.

– All components (C1, C2, C3, C4) are replaceable, and at most one of them
can be replaced at a day. Hence, there are 5 action states (“Do nothing”,
“Replace C1”, “Replace C2”, “Replace C3”, “Replace C4”) at a time.

– All components are in their “working” state initially.
– Rewards -costs for the maintenance models- are collected from actions and

observations. Maintenance costs depend on the observations received and the
maintenance activity executed. The total maintenance cost consists of the
cost of the production loss and the repair of the relevant component.

– Replacement costs of components are {100, 200, 300, 400} when a green
or yellow signal is observed, and {200, 400, 600, 800} when a red signal is
observed respectively.

– A downtime cost of 2,500 incurs, when a green or yellow signal is observed,
also 7,500 incurs as a downtime cost when a red signal is observed.

Table 1. Conditional probabilities of the observation.

P3 W NW

Green 0.90 0

Yellow 0.09 0.01

Red 0.01 0.99

Maintenance costs of each component including both the cost of production
losses depending on the observation received and also the cost of the action taken
are given in Table 2.
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Table 2. Maintenance costs.

Action Observation

G Y R

Do nothing 0 0 7,500

Replace C1 2,600 2,600 7,700

Replace C2 2,700 2,700 7,900

Replace C3 2,800 2,800 8,100

Replace C4 2,900 2,900 8,300

There are two uncertainties in the model. The current system state is not
known to the agent; however, it can be estimated by the observations received.
Furthermore, the system state after the action is taken is not known precisely as
in MDPs. For this reason, POMDPs fit well for solving this kind of maintenance
problem.

4 Experimental Evaluations

We use Symbolic Perseus which is an adapted variant of the PBVI algorithm
to solve the factored POMDP models to solve the empirical maintenance model
[17]. Classical POMDPs are limited to solve problems because the size of the
state spaces grows exponentially as the number of components increases. The
empirical model works well with the factored representation due to the inherent
factored structure of the maintenance problem. Thus, an approximate policy
is obtained via Symbolic Perseus (SP) for the empirical maintenance problem.
Then, this policy is simulated using DBNs to evaluate its performance and sen-
sitivity analysis is conducted under different cost parameters. The simulation
algorithm used is given in Fig. 3.

Fig. 3. Maintenance policy simulation.
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4.1 Comparison of Various Maintenance Policies

The maintenance problem is first formulated as a factored POMDP and solved
by Symbolic Perseus to obtain an approximate maintenance policy. Model is
discounted by a factor of 0.99. The policy is then simulated using DBNs for a
planning horizon of 100 days and the simulation is repeated 50 times. Sensitivity
analysis is performed with different downtime cost values. The results of the
sensitivity analysis are given in Table 3; where TCost is the total cost of the
given horizon, TRed is the number of total red signals observed and TRep is the
total number of replacement on the same horizon. The averages and the standard
deviations of these measures are reported in the table. Also, the average total
replacements for each component is given in the table. As can be seen from the
table, the average total cost increases naturally as the downtime cost increases. In
addition, as the downtime cost increases, the average total number of red signals
decreases while the average total number of replacements increases. It can be
said that as the downtime cost increases, the policy behaves more proactively
without waiting for a red signal.

Table 3. Sensitivity analysis under different downtime costs - SP.

Downtime Cost TCost TRed TRep Avg. Comp. Rep.

Avg Std Avg Std Avg Std C1 C2 C3 C4

2,500 72,190 12,972 24.98 4.44 24.98 4.44 12.02 5.52 4.12 3.32

5,000 136,698 22,423 23.96 4.16 26,68 4.18 11.84 5.68 4.62 4.54

7,500 190,874 33,829 20.72 3.94 30.94 5.14 12.44 6.72 6.18 5.60

10,000 233,002 42,878 17.90 3.58 35.44 6.03 13.66 7.96 6.94 6.88

12,500 281,028 48,529 17.00 3.59 39.78 4.90 13.06 8.42 9.08 9.22

15,000 310,562 65,675 15.94 3.84 40.06 6.75 13.00 10.16 8.32 8.58

17,500 364,738 67,988 15.80 3.66 45.96 5.54 13.54 11.56 10.60 10.26

The maintenance problem is also formulated as a classical POMDP with a flat
representation and run by SARSOP [1] which is one of the approximate point-
based solvers. The model is discounted by a factor of 0.99 and run for two hours
to obtain an approximate policy. The policy is then simulated using DBNs for a
planning horizon of 100 days and the simulation is repeated 50 times. Sensitivity
analysis is performed with the same downtime cost values used in the sensitivity
analysis of the SP policy. The results are given in Table 4. According to Tables 3
and 4, it can be concluded SARSOP and SP policies behave similarly and there
is no significant difference between the TCost values of SP and SARSOP. It is
important to note here that no exact solution is found with “POMDP-solve” [4]
which is a well known exact POMDP solver.
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Table 4. Sensitivity analysis under different downtime costs - SARSOP.

Downtime cost TCost TRed TRep Avg. Comp. Rep.

Avg Std Avg Std Avg Std C1 C2 C3 C4

2,500 77,404 12,032 27.24 4.24 20.94 4.27 9.88 4.92 3.36 2.78

5,000 135,230 24,605 20.04 3.77 30.28 5.49 12.36 6.70 6.16 5.06

7,500 193,246 31,912 18.62 3.51 35.92 5.43 14.06 7.28 7.86 6.72

10,000 238,452 35,806 17.44 3.20 36.68 4.62 13.68 8.64 8.78 7.58

12,500 292,710 45,874 17.16 3.40 43.56 4.70 13.98 10.34 10.24 9.00

15,000 324,478 58,937 15.84 3.61 45.42 5.62 13.88 10.70 10.76 10.08

17,500 366,034 66,325 13.98 3.83 56.78 3.55 22.02 11.24 12.46 11.06

In addition, the performance of the policies for the empirical model is com-
pared with some predefined practical corrective and proactive maintenance
strategies. The predefined maintenance strategies and their explanations are
given in Table 5 where R, Y, G denote red, yellow and green signal respec-
tively. In the table, the observations where maintenance can be done according
to the respective output policy for SP and SARSOP are marked with cross sign.
Furthermore, the observations where maintenance is done are also marked for
the other predefined strategies. For the downtime cost of 7,500, the results are
given in Table 6.

In the Random and Order algorithms, the components are selected randomly
and in order for the maintenance respectively. In the Fault Effect Myopic (FEM)
algorithm (similar to FEMfp in [12]), the component with the maximum effi-
ciency measure based on the worst state probability and maintenance cost is
selected for the maintenance. The Fault Effect Look-ahead (FEL) algorithm
(similar to FELfp in [12]) also takes into account the worst state probability of
components as in the FEM method, however, the component with the maximum
efficiency measure based on the worst state probability and maintenance cost in
the next period is selected for maintenance.

For a comparison of the cost means of the methods in Table 6, the one-way
analysis of variance is used. The assumption of normality and the assumption
of homoscedasticity have been checked. Although residuals fit the normal distri-
bution, the assumption of homoscedasticity is violated. Thus, the comparison is
further performed by the Games Howell post hoc test [8] which does not assume
equal variances. The results of the analysis are given in Table 7. The strategies
using the random method give the highest cost as expected. Within the oth-
ers, SARSOP and SP policy costs are the least. However, SP requires a shorter
solution time (approximately 0.5 min) than SARSOP (120 min) in generating
policy.
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Table 5. Overview of the predefined maintenance policies.

Method Method explanation Obs Algorithms

G Y R

SP Symbolic Perseus X X X SP

SARSOP SARSOP X X X SARSOP

CorRND Corrective Random Selection X Random

ProCorRND Proactive Corrective Random Selection X X Random

CorFEM Corrective Fault Effect Myopic X FEM

ProCorFEM Proactive Corrective Fault Effect Myopic X X FEM

CorFEL Corrective Fault Effect Look-ahead X FEL

ProCorFEL Proactive Corrective Fault Effect Look-ahead X X FEL

CorORD Corrective Order Method X Order

CorProORD Proactive Corrective Order X X Order

We also evaluate the approximation quality of the policies obtained from
SP for different values of parameters such as the number of belief points and
the number of α-vectors since these parameters directly affect the quality of
the policy. Belief space is sampled for 100 and 500 belief points and for each
iteration, the maximum number of alpha vectors used in the algorithm is taken
as 100 and 500 respectively. The results are given in Table 8. Average total cost
doesn’t differ in the two parameter sets for this size of the problem. However, the
computational time required for the solver increases considerably by the number
of selected belief points.

Table 6. Comparison of the maintenance policies when the downtime cost is 7,500.

Method TCost TRed TRep Avg. Comp. Rep.

Avg Std Avg Std Avg Std C1 C2 C3 C4

SARSOP 193,246 31,912 18.62 3.51 35.92 5.43 14.06 7.28 7.86 6.72

SP 190,874 33,830 20.72 3.94 30.94 5.14 12.44 6.72 6.18 5.60

CorRND 255,322 47,131 31.90 5.86 31.90 5.86 7.82 7.92 7.94 8.22

ProCorRND 266,432 50,793 31.04 6.39 37.68 6.51 9.58 9.68 9.18 9.24

CorFEM 210,322 35,433 27.02 4.51 27.02 4.51 19.70 3.90 2.82 0.60

ProCorFEM 227,060 32,995 26.7 4.46 33.92 4.30 24.26 5.00 3.74 0.92

CorFEL 218,588 34,687 28.20 4.45 28.20 4.45 21.40 6.36 0.44 0.00

ProCorFEL 226,158 31,298 26.64 4.22 34.04 4.14 26.12 5.88 1.98 0.06

CorORD 211,106 37,682 26.42 4.71 26.42 4.71 7.00 6.74 6.42 6.26

ProCorORD 211,598 37,713 24.10 5.05 31.02 4.36 8.18 7.88 7.66 7.30
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Table 7. Games-Howell Post-Hoc Test.

Method Avg. Cost Std. Dev. 95% CI Games-Howell group

ProCorRND 266,432 50,793 (241,927; 268,717) A

CorRND 255,322 47,131 (208,730; 228,446) A

ProCorFEM 227,060 32,995 (200,397; 221,815) B

ProCorFEL 226,158 31,298 (251,997; 280,867) B

CorFEL 218,588 34,687 (205,450, 229,350) B

ProCorORD 211,598 37,713 (217,683; 236,437) B,C

CorORD 211,106 37,682 (217,263; 235,053) B,C

CorFEM 210,322 35,433 (200,880; 222,316) B,C

SARSOP 193,246 31,912 (181,260; 200,488) C

SP 190,874 33,830 (184,177; 202,315) C

Table 8. Comparison of different parameters for the solution of SP.

Parameters TCost TRed TRep Time

Avg Std Avg Std Avg Std Sec

100 Belief Points-100 Alpha Vectors 190,874 33,829 20.72 3.94 30.94 5.14 26.80

500 Belief Points-500 Alpha Vectors 190,228 35,035 19.86 4.10 32.46 5.28 75.05

5 Conclusion

We formulate a factored POMDP offers a near-optimal maintenance policy for
an empirical maintenance model of the four-component partially observable
dynamic system. The sensitivity of the methodology is also analyzed under dif-
ferent downtime cost values. We compare ten different policies. The first two
are the computed POMDP policies generated by SP and SARSOP, while the
other eight are predefined policies based on corrective or proactive maintenance
strategies. The results show that the computed policies from the POMDP model
are superior to the others. Statistical results clearly show that the performances
of the two POMDP solvers do not differ. However, SP provides a compact rep-
resentation due to the factored nature of the problem and uses this property
to result in a shorter solution time than SARSOP in generating policy. Future
studies involve the implementation of a real-life maintenance problem.
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Abstract. Epistemic sets are a simple and efficient way of represent-
ing uncertain beliefs in AI, in which an agent identifies those states or
worlds that she deems to be possible. We investigate their application
to multi-agent distributed learning and decision making, in particular to
best-of-n problems in which a population of agents must reach a consen-
sus by identifying the best out of n possible alternatives or choices, each
of different quality. We show that, despite their limited representational
power, epistemic sets can be effectively deployed by agents engaged in a
learning process in which they receive evidence directly from the envi-
ronment and also pool or fuse their beliefs with those of other agents,
in order to solve a best-of-n problem. We describe an analytical model
of such a system based on ordinary differential equations and conduct a
fixed point analysis so as to obtain insights into macro-level convergence
properties. We then conduct a series of agent-based simulation experi-
ments to investigate the robustness of the epistemic set approach. The
results suggest that when applied to best-of-n problems epistemic sets
are robust to noise and scalable to large state spaces, even when the
population size is relatively small. This in turn supports the claim that
they have potential applications in decentralised AI and swarm robotics
at a range of different scales.

Keywords: Epistemic sets · Multi-agent systems · Consensus

1 Introduction

Epistemic sets are one of the simplest formalisms for representing uncertainty
in AI, in which an agent’s belief is represented by the set of states or worlds
that she deems possible [5,6]. The concept dates back at least to Hintikka’s
possible worlds semantics [8] with early applications in computer science and AI
proposed by Vardi [21] and Ruspini [17]. Epistemic sets are equivalent to Boolean
possibility distributions [4] in that they can be characterised by a function from
states into {0, 1}, but they lack the quantitative aspect of general possibility
theory [22] or indeed many of the established theories of uncertainty such as
probability theory, imprecise probabilities or Dempster-Shafer theory. Despite
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their limited expressiveness, in this paper we aim to show that when used in
a dynamic multi-agent setting, epistemic sets can enable effective learning and
problem solving at the population level, which is surprisingly robust to noise and
scalable to large state spaces. In particular, we will consider a type of distributed
learning problem referred to as best-of-n and show that it can be solved by
a population of agents who iteratively update epistemic sets upon receiving
evidence and who also regularly pool or fuse their beliefs with those of other
agents. In this respect we are not concerned with proposing new fusion operators
or with studying the axiomatic properties of particular fusion operators at a local
level (see [6] for an overview of the latter). Instead our main contribution is to
demonstrate the useful macro or population level properties of a system of agents
applying well-known operators and updating rules in the framework of epistemic
sets.

Best-of-n is a general class of problem in collective decision-making and learn-
ing which is particularly important in areas such as swarm robotics [20]. The aim
in such problems is for a population of agents to collectively identify the best
out of a set of n possible alternatives based only on local feedback and inter-
actions. These alternatives might correspond to physical locations such as in
decentralised search and rescue in which a robot swarm must identify the region
of a search area in which the most casualties are located [14]. Another applica-
tion of this kind is pollution treatment swarms which could be deployed after
an oil spill and which would need to identify the region where there is highest
concentration of pollutants [9]. On the other hand the n alternatives could also
refer to different possible control strategies in swarm flocking, or different routes
in a routing problem. A variety of different methods have been applied to the
best-of-n problem many of which are inspired by the behaviour of social insects
such as honeybees or ants [16]. For example, the weighted voter model [19] is
inspired by the behaviour of honeybees and Tembothorax ants when searching
for nest sites. However, in most cases the assumption is that a large population
of agents are deployed to solve a problem in which n is relatively low, e.g. n ≤ 10.
In contrast, we will show that epistemic sets provide a computationally efficient
means of solving best-of-n problems with much larger values of n and varying
population sizes.

Emergent behaviour where groups of agents reach consensus on the basis of
only local interactions is also extensively studied in the context of social net-
work analysis and opinion dynamics [2]. Opinion diffusion logic is of particular
relevance to this paper in that it sometimes employs a semantic model of belief
which is similar or equivalent to epistemic sets e.g. [7] and [18]. For example, an
agent’s belief may be represented by a logical formula F or equivalently by the
epistemic set consisting of those states (or interpretations) in which F is true
[3]. In such studies, however, the focus is often on a network of agents each of
whose beliefs is affected by a restricted set of ‘influencers’ to whom they are con-
nected. In contrast, the type of swarm robotics or decentralised AI applications
on which we are focusing will involve individuals moving independently through
an environment and encountering a variety of different agents at different times.
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This may be better modelled by a system where there is free mixing between
agents, i.e., a totally connected graph of agents, but where there are only rela-
tively few interactions at any given time. This is referred to as a ‘well-stirred’
system in [13], corresponding to the assumption that each agent is equally likely
to interact with any other agent in the population and that such interactions
are independent events.

An outline of the rest of the paper is as follows: Sect. 2 introduces a pooling
operator and an evidential updating method for epistemic sets relevant to a
decentralised agent-based setting. In Sect. 3 we write down a set of ordinary
differential equations to describe the rate of change of beliefs in a population
of agents applying these operators to tackle best-of-n, and then carry out a
fixed point stability analysis to provide insight into macro-level convergence
properties of the system. Section 4 then presents an extensive study of robustness
and scalability of the proposed model using agent-based simulations. Finally, in
Sect. 5 we give some discussions and conclusions.

2 Decentralised Pooling and Updating of Epistemic Sets

In this section we formulate the best-of-n problem within the framework of
epistemic sets. Let S = {s1, . . . , sn} be a finite set of all possible states of the
world and for each state si we assume that there is an associated quality value qi

which we take to be in the interval [0, 1]. Without loss of generality we will assume
that the states are enumerated so that q1 < q2 < . . . < qn. Let A = {a1, . . . , ak}
denote a population of k agents, where each agent’s belief is represented by
an epistemic set B ⊆ S such that B �= ∅, indicating which she believes to
be the possible states of the world. In the best-of-n problem we conceive of
agents as exploring their environment, interacting and pooling their beliefs with
other agents, as well as receiving evidence directly. In particular, we will focus
on the following well-known intersection & union operator as a mechanism for
combining agent beliefs.

Definition 1. Intersection & Union Pooling Operator
For ∅ �= B1, B2 ⊆ S;

B1 � B2 =

{
B1 ∩ B2 : B1 ∩ B2 �= ∅
B1 ∪ B2 : B1 ∩ B2 = ∅

This is a merging operator in the sense of [11] and in an extensive overview
of information fusion under uncertainty, Dubois et al. [6] show that Definition 1
is the only operator for combining epistemic sets which satisfies the following
properties: optimism which requires that the combination of two intersecting
epistemic sets B1 and B2 to be a subset of both of them, unanimity according
to which the combination of B1 and B2 is a superset of B1 ∩ B2 and a subset of
B1∪B2, and minimal commitment by which the combination of B1 and B2 is the
largest epistemic set satisfying both optimism and unanimity. Notice that this
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operator is not associative and consequently that the requirement of associativity
is not consistent with optimism, unanimity and minimal commitment. Further-
more, the operator is non-monotonic in the sense that as |B1∩B2| decreases, the
combined epistemic set represents an increasingly precise belief until the two sets
are inconsistent, at which point the precision of the combined belief decreases.
Nonetheless, the experimental results presented in this paper will suggest that
the failure of associativity has little impact on population level convergence in
the best-of-n problem, at least in the case where there is free mixing between
agents, as is often assumed in swarm robotics applications1. Furthermore, the
decrease in precision when combining inconsistent beliefs seems to provide a
mechanism by which errors can be corrected and an overall consensus can be
reached.

In addition to pooling their beliefs with others, agents also receive evidence
directly from the environment. Here we will assume that evidence is received in
the form of a direct comparison between the quality values of two states. In this
case, a piece of evidence E could be a comparison between the quality values
for states si and sj and if qi > qj then this can be represented by the epistemic
set Ej = S − {sj} expressing the information that sj is not the best state. On
receiving evidence we propose that agents update their beliefs according to the
following general belief updating rule, which is an evidential updating rule in
the sense of [1]2.

Definition 2. Evidential Updating
For ∅ �= B,E ⊆ S;

B|E =

{
B ∩ E : B ∩ E �= ∅
B : B ∩ E = ∅

This form of negative updating in which certain states are ruled out as part
of the learning process has already been applied effectively in swarm robotics.
For example, in [12] a swarm of robots must identify the best location from a
number of options. Applying probabilistic pooling and updating they visit two
locations at a time, receive quality feedback from both, and then use negative
updating, as above, to rule one of them out. This approach was shown to have
much lower convergence times than other updating approaches even when the
cost of visiting two sites during an exploration is taken into account.

3 Fixed Point Analysis

We adopt a discrete time model in order to study the macro-level convergence
properties of a population of agents each attempting to individually solve a
1 In some cases swarms alternate between periods of exploration and periods of pooling

where for the latter they move to a common location to ensure mixing of different
beliefs.

2 We recognize that there are other possible approaches to updating in this context,
especially when the agent’s belief is inconsistent with the evidence [10]. Here we
simply adopt this updating method as one viable possibility.



Epistemic Sets Applied to Best-of-n Problems 305

best-of-n problem formulated using epistemic sets as outlined in Sect. 2. At each
time step t two agents are selected at random to combine their beliefs by applying
the operator given in Definition 1. Also, within a time-step each agent selects
a pair of distinct states to investigate by picking them randomly from their
current epistemic set. There is then a probability ρ, referred to as the evidence
rate, that the agent will succeed in sampling both relevant quality values and
update their beliefs accordingly. Hence, we have two stochastic functions applied
consecutively to each agent in A. There is a pooling function P such that for
epistemic state B;

P(B) =

{
B : with probability 1 − π

B � B′ : for ∅ �= B′ ⊆ S with probability πxB′

where π is the probability that an individual agent will be selected for pooling
corresponding to π = 2

k − 1
k2 in the proposed model, and for ∅ �= B′ ⊆ S, xB′

denotes the proportion of agents with epistemic set B′ as their belief. There is
then an evidential updating function U such that for epistemic state B;

U(B) =

{
B : with probability 1 − ρ

B|Ej : with probability ρpB
j

where pB
j is the probability that two states are selected at random from B such

that one is sj and the other is a state with quality greater than qj . Hence, at
each time step we can model the combined process of evidential updating and
pooling by the composition U ◦P applied to the agents in A. This compositional
mapping can then be used to determine a set of ordinary differential equations
for the rate of change of proportions for each epistemic set, and stability analysis
of the fixed points of these equations can then give an insight into the macro
level convergence properties of the system. In the remainder of this section we
present this analysis for the case when n = 3. This is an extension of earlier
work by Perron and Vasudevan [15] which studied the convergence properties of
the n = 2 case in which there is pooling but no evidence. Interestingly in [15]
they present their model as one in which agents are attempting to determine
the truth value of a single proposition, but where there was a third truth value
corresponding to ‘unknown’. This can be translated into our state based model
by taking s1 to be the state in which the proposition is true, s2 to be the state
in which the proposition is false, and the epistemic set {s1, s2} to representing
unknown.

For notational simplicity we enumerate the proportions xB in the n = 3 case
such that x1 = x{s1,s2,s3}, x2 = x{s1,s2}, x3 = x{s1,s3}, x4 = x{s2,s3}, x5 = x{s1},
x6 = x{s2} and x7 = x{s3}, and where since these represent proportions we have
the constraint that

∑7
i=1 xi = 1. The composite stochastic function U ◦ P then
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generates a set of ODEs defining the rate of change of the proportion of each
epistemic set, as follows;

ẋ1 = 2π(1 − ρ)x7x2 + 2π(1 − ρ)x6x3 + 2π(1 − ρ)x5x3

+ x1 (−(1 − π)ρ − π + π(1 − ρ)x1)

ẋ2 = 2π(1 − ρ)x5x6 + 2π(1 − ρ)x1x2 + x2 (−(1 − π)ρ − π + π(1 − ρ)x2)

ẋ3 = x1
1
3

((1 − π)ρ + πρx1) + 2π(1 − ρ)x1x3 + 2
3
πρx2x7 + 2

3
πρx3x6 + πρx4x5

+ 2π(1 − ρ)x5x7 + x3 (−(1 − π)ρ − π + π(1 − ρ)x3)

ẋ4 = x1
2
3

((1 − π)ρ + πρx1) + 2π(1 − ρ)x1x4 + 4
3
πρx2x7 + 4

3
πρx3x6 + 4

3
πρx4x5

+ 2π(1 − ρ)x6x7 + x4 (−(1 − π)ρ − π + π(1 − ρ)x4)

ẋ5 = πx1x5 + x2π (x3 + x5) + x3π (x2 + x5) + x5π (−x4 − x6 − x7)

ẋ6 = x1π (ρx2 + x6) + x2 ((1 − π)ρ + πρx1 + πρx2 + πx4 + πx6) + x4π (x2 + x6)

+ πρx5x6 + x6π (x3 − (1 − ρ)x5 − x7)

ẋ7 = x1π (ρx3 + ρx4 + x7) + x3 ((1 − π)ρ + πρx1 + πρx3 + πx4 + πx7)

+ x4 ((1 − π)ρ + πρx1 + πx3 + πρx4 + πx7) + πρx5x7 + πρx6x7

+ x7π (−x2 − (1 − ρ)x5 − (1 − ρ)x6)

The fixed points for this system of equations are those values of x1, . . . , x7 sat-
isfying ẋ1 = . . . = ẋ7 = 0. Stability is then determined from the Jacobian
J =

(
∂ẋi

∂xj

)
by evaluating J at each fixed point and finding the eigenvalues.

A fixed point is stable if and only if the real parts of all the eigenvalues are
negative. For the above system of ODEs the only stable fixed points are those
for which the entire population converges on epistemic sets with only a single
element3, but which of these are stable depends on the values of ρ and π (and
therefore indirectly on the population size k). This is summarised in Fig. 1 in
which the black region corresponds to those values of ρ and k for which all of
x{s1} = 1, x{s2} = 1 and x{s3} = 1 are all stable fixed points, while the white
region consists of those values for which only x{s3} = 1 is a stable fixed point.
Hence, for parameter values in the white region of Fig. 1 we can expect stable
convergence to the best state across a range of initial conditions.

In fact the epistemic set model is rather more effective for very low evidence
rates than is suggested by the above fixed point analysis. This seems to be
particularly true if agents are initialised as being completely ignorant, so that
their beliefs’ at t = 0 correspond to the most general epistemic set i.e. B = S.
This is reasonable in many multi-agent and swarm robotics applications where,
in the absence of any prior evidence, agents would begin by considering all states
as being equally possible. We can generate a discrete time simulation of the above
set of ODEs under these initial conditions by applying the following mapping at
each time step;

xB → xB + Δt ẋB

3 In other words, the only possible stable fixed points are (x1, . . . , x7) =
(0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 1, 0) or (0, 0, 0, 0, 0, 0, 1) corresponding to x{s1} = 1,
x{s2} = 1 and x{s3} = 1 respectively.
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Fig. 1. A map showing the stability of fixed points. In the white region the only stable
fixed point is x{s3} = 1. In the black region all three fixed points, x{s1} = 1, x{s2} = 1
and x{s3} = 1, are stable.

Figure 2 shows the resulting time series trajectories of the proportions of vari-
ous epistemic sets for k = 100 and ρ = 0.01. Even though this combination of
k and ρ values is in the black region of Fig. 1 there is nonetheless full conver-
gence to the highest quality state {s3} with agents adopting intermediate beliefs
corresponding to the epistemic sets {s1, s3} and {s2, s3}.

x{s3}
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Time
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Fig. 2. Trajectories of the proportions holding different beliefs as function of time
generated from the ODEs given in Sect. 3 with k = 100, ρ = 0.01 and initialised so
that x{s1,s2,s3} = 1 at time t = 0.

In the next section we will describe the results from a more systematic study
of this model using agent-based simulations under different parameter values
and in the presence of noise.

4 Agent-Based Simulations

We now present the results from a series of agent-based simulation experiments
of the discrete time model described in Sect. 3 with a completely ignorant initial
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population, i.e. so that B = S for all agents at time t = 0. The aim here is
to demonstrate the effectiveness and robustness of the epistemic set approach
under a range of different conditions and parameter values. We begin by noting
that the combination of agent pooling and evidential updating tends to lead
to faster convergence than evidential updating alone. In other words, pooling
plays a positive role in propagating evidence across the population of agents.
For instance, Fig. 3 shows the proportion of the population with belief {x5}, i.e.
the best state, plotted against time for n = 5, k = 100 and for an evidence rate of
ρ = 0.01. Results are averaged over 100 independent runs of the simulation and
error bars show 90% confidence intervals. In this case we see that the combination
of pooling and updating (black line) converges after only 400 iterations, while
evidence only (grey line) requires over 1000 iterations.

To study the effect of noise on this system we introduce a model of noise
in which the probability of confusing the order of quality values qi and qj is
a decreasing function of their difference. That is we define a decreasing error
function f : [0, 1] → [0, 1] such that if an agent with belief B receives evidence
E corresponding to a comparison between states si and sj where qi > qj then
their updated belief will be given by;

B|E =

{
B|Ej : with probability 1 − f(qi − qj)
B|Ei : with probability f(qi − qj)

where, as in Sect. 2, Ei = S − {si} and Ej = S − {sj}. We now propose a
parametrised error function f , allowing for error regimes of greater or lesser
severity.

Definition 3. Error Function
For d ∈ [0, 1] and λ ∈ R,

f(d) =

{
0.5(e−λd−e−λ)

1−e−λ : λ �= 0
0.5(1 − d) : λ = 0

In the following experiments we will assume that quality values are uniformly
distributed over the interval [0, 1] so that qi = i

n+1 for i = 1, . . . , n. Figure 4a
shows plots of the error function for different values of the parameter λ from
which we can see that increasing the value of λ decreases the severity of the
error model. In the following we will consider error models including those of
up to a severity level given by λ = 0 i.e. as corresponding to linear error. In
this context Fig. 4b shows the proportion of agents with belief {s5} after 1500
iterations plotted against the error parameter λ when k = 100, n = 5 and
ρ = 0.01. With the exception of very low values of λ, i.e. λ < 2, we see that the
presence of pooling significantly improves the robustness to error with close to
total convergence to the best state for λ ≥ 5. In fact for only a slight increase
in the evidence rate ρ, Fig. 4c suggests that with pooling, the epistemic set
model can be robust even for a λ = 0 error regime. Here we see that for λ = 0
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Fig. 3. Time series plot of the proportion of agents with belief {s5} averaged over 100
runs of the simulation. Parameter values are k = 100, n = 5 and ρ = 0.01. The grey
line is for evidential updating only and the black line is for both updating and pooling.

the combination of pooling and updating results in convergence to an average
proportion x{s5} of over 0.95 for ρ ≥ 0.05.

For this model we also investigate the scalability of epistemic sets to varying
population sizes k and number of states n. In the swarm literature, studies of the
best-of-n problem have predominantly focussed on scenarios in which k is high and
n is relatively low [20]. However, in many application domains it may be more real-
istic to consider smaller swarms deployed to solve very high-dimensional problems.
For example, for search and rescue we might expect swarms sizes of order tens of
robots to be deployed to search a large and complex environment. Figure 5 shows
heat plots of epistemic set proportions after 1500 iterations under different λ and ρ,
as k and n vary. Figure 5a is a heat map of the proportion of agents with epistemic
set {sn} after 1500 iterations with an evidence rate of ρ = 0.01 and assuming no
errors in evidential updating. In this case the approach is very robust to varying
population size and number of states with performance only declining for a popula-
tion size of 5 and where there are more than 75 states. However, Figs. 5b and c sug-
gest that robustness declines significantly under increasingly severe error regimes

Difference between quality values d

Pr
ob
ab
ili
ty

of
er
ro
r
f
(d

)

λ = −3

λ = 0

λ = 1

λ = 3

λ = 5
λ = 10

λ = 30

(a) The error function f .
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(c) Average x{s5} against ρ.

Fig. 4. Performance under different error regimes. In Figs. 4b and c the grey line shows
the results for evidence only updating while the black line is for pooling and updating
combined. Results are averaged over 100 simulation runs with k = 100 and n = 5. For
Fig. 4b ρ = 0.01 and for Fig. 4c λ = 0. All results are after 1500 iterations.
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(a) x{sn} no noise, ρ = 0.01. (b) x{sn}; λ = 10, ρ = 0.01. (c) x{sn}; λ = 0, ρ = 0.01.

(d)
∑

i:qi≥ 3
4

x{si}; λ = 10,
ρ = 0.01.

(e)
∑

i:qi≥ 3
4

x{si};λ = 0,
ρ = 0.01.

(f) x{sn};λ = 10, ρ = 0.1.

Fig. 5. Heat maps showing robustness to varying population size and number of states
under different error regimes.

with good performance only achieved for higher numbers of agents and lower num-
bers of states. Part of this effect is likely to be an artefact of the way in which quality
values have been defined for different values of n. Recall that we define qi = i

n+1
and hence, for example, the difference between consecutive quality values, given
by d = (qi+1 − qi) = i

n+1 , decreases with n. Furthermore, since the error function
is a decreasing function of d for all λ, then this implies that the probability of con-
fusing the order of consecutive quality values increases with n. One way to adjust
for this would be to assess performance in terms of a quality threshold. For exam-
ple, we could evaluate the proportion of the population who have converged to an
epistemic state {si} with quality greater than or equal to some specified threshold.
Figures 5d and e are heat maps showing the value of

∑
i:qi≥ 3

4
x{si} for λ = 10 and

λ = 0 respectively after 1500 iterations and with an evidence rate of ρ = 0.01. In
comparison to Figs. 5b and c we note that the degradation of performance under
increasingly severe error regimes is much less stark4. Alternatively, Fig. 4c suggests
that another route to increasing robustness would be to increase the evidence rate
ρ. Figure 5f shows x{sn} after 1500 iterations for λ = 10 and an increased evidence
rate of ρ = 0.1. In comparison to Fig. 5b which shows x{sn} for the same level of
error, i.e. λ = 10, but at the lower evidence rate of ρ = 0.01, we see that there are
much better results for higher values of n and lower values of k.

4 Arguably in this case the agents are not strictly solving best-of-n since they may not
be identifying the best choice but rather just choices of high quality.
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5 Discussion and Conclusions

Epistemic sets are a very simple way of representing uncertain beliefs in AI. They
provide a computationally efficient approach to belief revision, and despite their
representational limitations, we have shown that when deployed in a multi-agent
system setting, they can provide a framework in which a whole population of
agents can efficiently solve best-of-n problems. By combining updating based on
direct evidence with belief pooling between agents, the agent population is able
to compensate for sparsity of evidence, and also correct errors resulting from
noise in the evidence collection process.

In future work we will investigate the application of epistemic sets to a
broader class of decentralised learning problems, operating under different local
interaction rules. In particular, we will weaken the well-stirred system assump-
tion by imposing restrictions on the communications between agents. We will
also consider other forms of evidential updating in which agents aim to discover
the true state of the world rather than the highest quality state.
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Abstract. Graphical Event Models (GEMs) can approximate any
smooth multivariate temporal point processes and can be used for captur-
ing the dynamics of events occurring in continuous time for applications
with event logs like web logs or gene expression data. In this paper, we
propose a multi-task transfer learning algorithm for Timescale GEMs
(TGEMs): the aim is to learn the set of k models given k corresponding
datasets from k distinct but related tasks. The goal of our algorithm is to
find the set of models with the maximal posterior probability. The pro-
cedure encourages the learned structures to become similar and simul-
taneously modifies the structures in order to avoid local minima. Our
algorithm is inspired from an universal consistent algorithm for TGEM
learning that retrieves both qualitative and quantitative dependencies
from event logs. We show on a toy example that our algorithm could
help to learn related tasks even with limited data.

Keywords: Graphical Event Model (GEM) · Transfer learning ·
Multi-task learning (MTL) · Multivariate temporal point process ·
Process mining

1 Introduction

While probabilistic graphical models such as Dynamic Bayesian Networks [5,7]
allow modeling of temporal dependencies in discrete time, some recent works
are dedicated to modeling continuous time processes, with for instance, Contin-
uous Time Bayesian Networks [10], Poisson Networks [12], Conjoint Piecewise-
Constant Conditional Intensity Models [11].

In [6], Gunawardana and Meek have introduced Graphical Event Models
(GEMs) that generalize such models, and Timescale GEM (TGEMs) which are
GEMs where the temporal range and granularity of each temporal dependency
is made explicit. TGEMs provide a way to understand temporal relationships
between some variables, through a graph whose nodes are those variables and
whose edges are the dependencies between them. In the case that the observed
phenomena is a sequence of events, we can call it a process, so nodes are events
and an edge between nodei and nodej means that the appearance of eventi has
some influence on the occurrence frequency of eventj .
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In the same work, they have proposed an asymptotically consistent greedy
algorithm to learn the structure and parameters of one single TGEM from an
event log file. However, one may want to learn multiple processes that might be
close. In order to complete this goal, multi-task transfer learning [3] is useful
since it allows to learn k related models from k corresponding data sets.

In this paper, we propose an algorithm for transfer learning with TGEM,
to allow simultaneous Multi Task Learning (MTL), inspired from Niculescu’s
method for MTL [8,9] with Bayesian Networks. Section 2 is a recall of the back-
ground elements useful afterwards, which include Timescale Graphical Event
Models definition and current learning methods. Section 3 explains the global
strategy used for learning multiple TGEMs, and proposes a method for likeli-
hood and prior calculation in order to find the k structures that maximize the
posterior probability of the structures given the data. Finally, a toy example in
Sect. 4 illustrates the interest of MTL on TGEMs and Sect. 5 concludes on the
contribution of this paper and the perspectives of research afterwards.

2 Background

This section is a reminder about formal definition of TGEMs and about the
greedy search algorithm used for TGEM learning. More details about TGEM
definition and learning can be found in Ref. [6].

The data D we use for learning consists in a timed sequence of events until
time t∗:

D = {(t1, l1), ..., (ti, li), ..., (tn, ln)}, (1)

where t0 = 0 < ti < ti+1 < t∗ and 1 ≤ i ≤ n − 1. li are labels from a finite
vocabulary. The history h(t) at any time t is the subset of events that occurred
before t.

2.1 Timescale Graphical Event Models

A Timescale Graphical Event Model M = (G, T ) is a probabilistic graphical
model that can represent data D as given above, using conditional intensity
functions. The directed graph G = (L, E) represents the dependencies between
events, with L the labels of the events, E the edges of the graph. T = {Te}e∈E

associates each edge e to a list of consecutive timescales Te where |Te| ≥ 1. A
timescale has the form (a, b], with a ≥ 0 and b > a.

We call temporal range the moment during which the timescales of some
parent has an impact on the child node. On Fig. 1, the temporal range of A on
C takes place between t and t−2 with a certain intensity and between t−2 and
t − 4 with another one.

In all the models generalizing in the GEM family, the conditional intensity
function is used to specify how the present depends on the past in an evolutionary
process. This conditional intensity λl of a given event is usually a piecewise-
constant function and varies according to the history of the parents in the model.
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A

B C

(0, 2], (2, 4]

Fig. 1. One example of TGEM. L = {A,B,C}, E = {AC} and T = {TAC =
(0, 2], (2, 4]}. The occurrence of event C at time t will depend on possible occurrence
of A in time windows [t − 4, t − 2) and [t − 2, t). The occurrences of A and B are
independent from other events.

λl(t|h) = λl,Cl(h,t) where the index Cl(h, t) is the parent count vector of l: the
number of occurrences of the parents in the timescales. For the entire paper, we
consider that every element of Cl(h, t) is either 0 or 1, thus only the fact that a
parent has occurred or not within the corresponding timescale is important.

The marginal likelihood of a TGEM M according to data D can be computed
at any time t, as defined in [6]:

p(D|M, λ) =
∏

l∈L

∏

j∈pcv

λ
nt,l,j(D)
l,j e−λl,jdt,l,j(D), (2)

with nt,l,j(D) and dt,l,j(D) respectively the total, at time t, number of occur-
rences of the event l within its parents configuration j, and duration of this
configuration.

2.2 Learning TGEM for a Single Task

Single Task Learning (STL) consists in finding the optimal TGEM (its graph G
and its timescales T ) from a dataset D as defined in Sect. 2.1.

A greedy BIC procedure for TGEM structure learning has been proven as
asymptotically consistent in [6]. This strategy is to maximize the BIC score by
performing the search on two stages, a Forward search by adding edges and
refining the suitability of the timescales, and a Backward search which simplifies
the model and deletes unnecessary edges.

The Forward search starts from the empty model M0 and computes the
neighborhood until convergence to finally reach the model MFS . The neighbor-
hood NFS(M) of M is computed with the three operators (add, split and extend)
defined below. M′ ∈ NFS(M) ⇔ ∃O ∈ O = {Oadd(e), Osplit(Te), Oextend(e)}
such as O(M) = M′.

The Backward search starts with MFS and generates all neighbors M′ ∈
NBS(M) such as O(M′) = M until convergence.

The BIC score used for the structure learning procedure is, at time t∗:

BICt∗(M) = log p(D|M, λt∗(D)) −
∑

l∈L
|Cl| log t∗, (3)

with λt∗(D) the optimal parameters obtained by likelihood estimation and |Cl|
the number of distinct parents configurations of node l.
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The subfamily of TGEMs used by the structure learning procedure is called
Recursive Timescale Graphical Event Models. A RTGEM refers to any TGEM
that can be reached by performing recursively the following operators, starting
from an empty model.

The add edge operator Oadd(e) takes as input an edge to be added to the
graph with the default timescale T = (0, hdef ] with hdef the default horizon. The
split timescale operator Osplit(Te) takes as input a timescale (a, b] of a specific
existing edge and substitutes it by (a, a+b

2 ], (a+b
2 , b]. The extend horizon operator

Oextend(e) takes as input an existing edge with horizon h and adds a timescale
to this edge (h, 2h] to double its horizon.

Gunawardana and Meek [6] have also proven than RTGEMs can approximate
any non-explosive non-deterministic smooth marked point process with finite
horizon.

2.3 Distance Between Two RTGEMs

In order to estimate the distance between two RTGEMs, Antakly et al. [1] have
proposed an extension of the usual Structural Hamming Distance. The distance
between two RTGEMs M1 = ((L, E1), T1) and M2 = ((L, E2), T2) with the
same set of labels, is defined by:

d(M1,M2) =
∑

e∈Esd

1 +
∑

e∈Einter

d(T1,e, T2,e), (4)

where Esd are the edges that are present in just one of the two models, and
Einter are present in both models. Ti,e are the timescales for edge e in model Mi

and vi is the list of endpoints1 of model Mi. The distance between the timescales
is defined by:

d(T1,e, T2,e) =
vnid

vnid + vid
, (5)

where vnid = |v1\v2| + |v2\v1| and vid = |v1 ∩ v2| is the number of endpoints
that exist respectively in one and two of timescales T1,e and T2,e.

2.4 Example of Single Task Learning

The aim of this example is to illustrate the previously introduced notions. We
consider the two models of user behavior on e-banking sites described by the
underlying RTGEMs MR

1 (Fig. 2) and MR
2 (Fig. 3). We also consider that we

have (relatively small) web logs D1 and D2 for both sites.
The procedure when considering 2 models separately is to apply the Forward-

Backward search introduced in Sect. 2.2, with a default horizon of edge h = 10.
Figure 4 (resp. Fig. 5) describes the RTGEM MSTL

1 (resp. MSTL
2 ) obtained at

the end of this STL algorithm applied to the event log D1 (resp. D2).

1 It is another way of representing timescales. T = (0, a], (a, b], (b, c] is equivalent to
v = [0, a, b, c].
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Log out

Log in Check account

Transfer money

(0, 10]

(0, 5]
(0, 10]

(0, 10], (10, 20]

Fig. 2. Model MR
1

Log out

Log in Check account

Transfer money

(0, 5]

(0, 5], (5, 10]

(0, 5]

Fig. 3. Model MR
2

Log out

Log in Check account

Transfer money

(0, 10]

(0, 5]

(0, 10]

Fig. 4. Model MSTL
1 learned from D1

Log out

Log in Check account

Transfer money

(0, 5]

(0, 5], (5, 10]

(0, 5]

Fig. 5. Model MSTL
2 learned from D2

This single task learning doesn’t take advantage of similarities between both
tasks, and can lead to inaccurate results when there is a lack of data. For instance,
in this toy example, the event log D1 is not sufficient to identify the dependence
between Check Account and Transfer Money in MSTL

1 .

3 Learning Multiple RTGEMs for Related Tasks

3.1 Problem Statement

In the previous section, we were interested in learning one single RTGEM from
one single dataset. We now want to learn a set Sbest = {M∗

1, . . . ,M∗
k} of k

RTGEMs from k datasets D = {D1, . . . , Dk}. The datasets contains event logs
as defined in Sect. 2.1, with overlapping labels L =

⋂k
q=1 Lq �= ∅.

We are then interested in maximizing the posterior probability of the set of
models given the data:

Sbest = argmaxM1,...,Mk
(p(M1, ...,Mk|D1, . . . , Dk)). (6)
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According to Bayes rules, this posterior probability is proportional to the prior
of the models and the marginal likelihood of the set:

p(M1, . . . ,Mk|D1, ...,Dk) ∝ p(M1, ...,Mk)p(D1, ...,Dk|M1, ...,Mk). (7)

When considering a priori parameters independence, the marginal likelihood
over the set of models can be factorized into the product of the marginal likeli-
hood of each data set, and our problem statement can now be expressed as:

Sbest = argmaxM1,...,Mk
(p(M1, ...,Mk)

k∏

q=1

p(Dq|Mq)). (8)

In order to solve this task, we have to compute the marginal likelihood of each
model Mq, as well as the prior of the joint distribution over the models M1 ...Mk

and finally we need a strategy to find the best set.

3.2 Marginal Likelihood

It was demonstrated by Chickering and Heckerman in [4] that the marginal
log-likelihood of a Bayesian Network can be approximated by its BIC score.
We will conjecture in this paper that the same approximation can be made for
Timescale Graphical Event Models, which is the approximation made by [6] and
[2]. For a model Mq at time t∗, the marginal log-likelihood log p(Dq|Mq) can
be approximated by the BIC score defined in Eq. (3) (Sect. 2.2).

3.3 Prior

The probability p(M1, . . . ,Mk) is called the prior because it represents the a
priori knowledge of how similar the models might be. The two extreme cases
are therefore, if the models have to be:

– independent: p(M1, . . . ,Mk) =
∏k

q=1 p(Mq),
– equal: p(M1, . . . ,Mk) should be 1 if there is no difference between models,

and 0 otherwise.

The solution offered in [8] for Bayesian Networks is to use a constant δ ∈ [0, 1]
that penalizes every difference between the models structure when calculating
the prior. Niculescu-Mizil and Caruana propose two different priors: one of them
considers the minimum number of modifications necessary to make each edge the
same in every structure (Edit Prior), and the other one considers the differences
per pair of structures (Paired Prior). However, finding the minimum of edits
to make all the edges the same is more difficult in TGEMs than in Bayesian
Networks. Indeed, there are only two possibilities (present, not present) when
considering an arc of a Bayesian Network, while the search space for a single
arc of a TGEM is infinite because of the timescales that can always be split
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or extended. For this reason, the prior we suggest for TGEM learning is an
adaptation of the Paired Prior and is defined as follows:

p(M1, ...,Mk) = Zδ,k

∏

1≤q≤k

p(Mq)
1

1+(k−1)δ

∏

1≤q<q′≤k

(1 − δ)
d(Mq,M

q′ )
k−1 , (9)

where Zδ,k is a normalization constant and d(Mq,Mq′) is the distance between
two RTGEMs introduced in Sect. 2.3. In transfer learning context, all the models
may not have identical labels. However, for the distance computing, we will
only consider shared labels from both models Linter = L1 ∩ L2 where M1 =
((L1, E1), T1) and M2 = ((L2, E2), T2).

The choice of the penalty δ affects the prior such as the higher δ, the closer
the models have to be. When δ = 0, the differences d(Mq,Mq′) will not affect
p(M1, . . . ,Mk), so the models are considered as independent. When δ = 1, any
distance other than zero between the models makes p(M1, . . . ,Mk) = 0 so the
models have to be equal if we want a non-zero prior.

3.4 Finding the Best Set

The strategy named MTL Forward-Backward search that we propose to learn
multiple TGEMs is inspired from the one proposed for Single Task Learning in
Sect. 2.2. The strategy uses two steps, one MTL Forward search (Algorithm 1)
that starts from an empty set S0 (i.e. a set of empty graphs) and one MTL
Backward search (Algorithm 2) that starts with the set SFS resulting from the
MTL Forward search.

The scoring function p(S|D) optimized here is obtained from Eq. (8) with
the posterior distribution defined in Eq. 9 and a marginal log-likelihood approx-
imated by the BIC score defined in Eq. (3).

Algorithm 1. MTL Forward search
Input: D = {D1, · · ·Dk},S0

Output: SFS

1: S ← S0

2: repeat
3: refined ← false
4: for S ′ ∈ NFS(S) do
5: if p(S ′|D) > p(S|D) then
6: S ← S ′

7: refined ← true
8: end if
9: end for

10: until not refined
11: SFS ← S
12: return SFS

Algorithm 2. MTL Backward search
Input: D = {D1, · · ·Dk},SFS

Output: SBS

1: S ← SBS

2: repeat
3: coarsened ← false
4: for S ′ ∈ NBS(S) do
5: if p(S ′|D) > p(S|D) then
6: S ← S ′

7: refined ← true
8: break
9: end if

10: end for
11: until not coarsened
12: SBS ← S
13: return SBS
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Log out

Log in Check account

Transfer money

(0, 10]

(0, 10]

Log out

Log in Check account

Transfer money

(0, 10]

(0, 5], (5, 10]

Fig. 6. S = {M1,M2}, set of models obtained during MTL Forward search

As highlighted in [9], changing only one model in the set at each iteration
will usually weakly increase the score function or will lead to local optima, so our
greedy algorithm has to test modifications in several models at the same time.
For this reason, the neighborhoods NFS(S) or NBS(S) are generated thanks to
the three operators (add, split and extend) introduced in Sect. 2.2, but applied
to all the possible subsets of models in S.

As also observed by Niculescu-Mizil and Caruana for Bayesian Networks,
the size of a set of models neighborhood grows much faster than the size of
a single model neighborhood. However, the search of the best solution in each
neighborhood can be optimized by using a Branch and Bound algorithm, in a
similar way to [9], that we can not describe here due to a lack of space.

4 Toy Example of Multi Task Learning

Let us take the simple example (labels are identical) used in Sect. 2.4, and con-
sider now a Multi Task Learning by applying the MTL Forward-Backward search
proposed in Sect. 3. It is not necessary that the labels are the same, just that they
overlap. Figure 6 describes the set of RTGEMs {M1,M2}) jointly obtained at
the end of the third iteration of the MTL Forward phase. The optimal sequence
of operators was:

1. M1,2:Oadd(Log in, Check account) (adding the edge in both models),
2. M1,2:Oadd(Transfer money, Log out) (adding the edge in both models),
3. M2:Osplit(Transfer money, Log out, (0, 10]) (splitting the edge in M2 only).

Let us develop now the next step of this phase. As usual in greedy algo-
rithms, the neighborhood of S, NFS(S), will be explored in order to find the
next considered set of models. This neighborhood consists in all the pairs of
models {M1,M2} generated from S by applying one single operator to M1

only, M2 only, and both M1 and M2.
Each box in Fig. 7 contains one neighbor of S corresponding to the operator

Oadd(Check account, Transfer money) applied to M1 only, M2 only, or both
M1 and M2 (and respectively leading to S1,S2 and S12).
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Log out

Log in Check account
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Log out

Log in Check account

Transfer money
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(0, 10]
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Log in Check account

Transfer money

(0, 10]

(0, 10]

(0, 5], (5, 10]

Log out

Log in Check account
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(0, 10]

(0, 10]

(0, 10]

Log out

Log in Check account

Transfer money

(0, 10]

(0, 10]

(0, 5], (5, 10]

Fig. 7. Some neighbors of S during MTL Forward search: considering to add an edge
between Check account and Transfer money (Oadd(Check account, Transfer money))
to M1 only, M2 only, or both M1 and M2 and respectively leading to (from top to
bottom) S1,S2 and S12.

We consider now our objective function (Eq. (8)) with the Paired prior of
Eq. (9) for our set of two models to determine which of the neighbors will be the
one selected for the next step of the phase.

In a need for simplicity, we assume that p(M1) = p(M2). To select the most
likely set, we look for

argmaxM1,M2(p(D1|M1) · p(D2|M2) · (1 − δ)d(M1,M2)) . (10)
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The distance between the models M1 and M2 on the sets S,S1,S2 and S12.
From Figs. 6 and 7 are dS1(M1,M2) = dS2(M1,M2) = 4

3 and dS(M1,M2) =
dS12(M1,M2) = 1

3 .
pS1(D1|M1) < pS(D1|M1), and M2 is the same in both S1 and S. From pre-

vious calculations of distances, we know that the penalty term (1− δ)dS(M1,M2)

is higher than (1 − δ)dS1 (M1,M2), so S1 has a lower posterior than S.
We assume that there is a strong dependency between Check account and

Transfer money in D2, that makes the presence of the arc from Check account
to Transfer Money in M2 more likely than its absence in M1. We can express
it with:

pS12(D1|M1)
pS2(D1|M1)

>
pS12(D2|M2)
pS2(D2|M2)

. (11)

Therefore, from (1 − δ)
1
3 > (1 − δ)

4
3 and Eq. (11), S12 happens to be more

likely than S2, and both are better sets than S. Finally, S12 is selected for the
next step of the MTL Forward search and the edge between Check Account and
Transfer Money is now present in M1 when it was not considered in MSTL

1

because of the lack of data.
We can see in this example that using our Multi-task learning algorithm can

help to learn several related tasks even with limited data by using information
from their related tasks.

5 Conclusion

Multi Task Learning is one kind of Transfer Learning, well studied in Machine
Learning, but no so developed for probabilistic graphical models such as Bayesian
Networks. Graphical Event Models are probabilistic graphical models dedicated
to modeling continuous time processes. Single Task Learning such models from
event logs have been very recently studied in a few works.

In this paper we proposed an algorithm for Multi Task Learning with Time-
scale Graphical Event Models. This algorithm, MTL Forward-Backward search,
is an adaptation of the one proposed for Bayesian networks by [9] that also
combines the efficient TGEM structure learning method proposed by [6] and
the TGEM distance recently proposed in [1]. In this preliminary work, we also
illustrated this algorithm with a simple toy example in order to give the intuition
of its interest.

In the future, we plan to finalize the implementation of our algorithm, and
to apply it on real world case studies in computer security. We also look forward
to generalize this approach to another very recent GEM approach (Proximal
GEM) [2].

We are also interested in studying beyond Multi-task learning and looking
at other Transfer Learning tasks for Graphical Event Models, and dealing with
both Incremental and Transfer Learning.
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Abstract. Advanced question answering typically employs large-scale
knowledge bases such as DBpedia or Freebase, and are often based on
mappings from entities to real-valued vectors. These mappings, called
embeddings, are accurate but very hard to explain to a human sub-
ject. Although interpretability has become a central concern in machine
learning, the literature so far has focused on non-relational classifiers
(such as deep neural networks); embeddings, however, require a whole
range of different approaches. In this paper, we describe a combination
of symbolic and quantitative processes that explain, using sequences of
predicates, completions generated by embeddings.

Keywords: Knowledge graph · Knowledge base · Explainable AI ·
Embedding · Interpretability

1 Introduction

Query answering systems and chatbots have benefited from symbolic facts stored
in knowledge graphs (KGs) such as NELL [16], YAGO [22], Freebase [2]. Even
though KGs contain many facts, typically stored as triples “subject, relationship,
object”, KGs are far from complete, and a broad range of completion techniques
have emerged recently. These techniques often resort to embeddings that turn the
symbolic data into quantitative vectors, modeling relations between entities by
numeric operations over vectors [19]. Completion of a KG then relies on deciding
whether a particular triple is predicted through these numeric operations [25].

While embeddings usually offer the most accurate way to predict relation-
ships between entities, they are rather hard to be interpreted by human users.
Consider an example that provides background on what it means to “interpret
an embedding”. Take, for instance, a chatbot answering the question “Is Paris
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the capital of France?”. Suppose the chatbot uses a KG containing countries and
cities and the relation is capital of, but the triple “Paris, is capital of, France”
is not in the KG. And suppose chatbot returns YES: why is it? An acceptable
reason might be that another triple shows that Paris is a capital, and Paris as
located in France. Another possible explanation to the YES-answer would be one
focusing on properties of the embedding itself: we might learn that every time we
have a city and a country that map into vectors aligned in some particular direc-
tion, the former is the capital of the latter—and that this is happening with Paris
and France. Note that the purpose of the latter explanation is to understand the
behavior of the embedding when answering a particular question. Both expla-
nations require insights that are more sophisticated than existing techniques to
explain classifiers based on detecting which features are most relevant [13,20],
as indicating that a particular dimension of an embedding strongly affects the
decision does not, in itself, provides any clue as to what the embedding is doing.

In previous work [10], we proposed a framework that can produce expla-
nations for KG completion tasks performed by any embedding model (model-
agnostic). In essence, it works by mining significant paths in the KG to build
a feature matrix from which explanations are extracted through logistic regres-
sion. We present here novel insights and refinements that significantly increase
the fidelity of explanations. We start by providing in the next section some
background knowledge about KBs and KGs, as well as a brief description of
KG completion, graph features and latent features. We then summarize a few
notions about interpretability and explanations and present our approach. Later
we describe experiments and results and then close the paper with a discussion
of possible future work.

2 Background

In this section, we provide a short review of the required concepts about knowl-
edge graphs and knowledge graph completion.

2.1 Knowledge Graphs and Their Completion Tasks

Several large knowledge bases have been created to store information in triples of
the form 〈entity, predicate, entity〉 (loosely following the RDF framework [23]).
One may use also head for the subject, relation for the predicate, and tail for
the object. For instance, information about the religion of the king Francis II of
the Two Sicilies would be represented as a triple 〈Francis II of the Two Sicilies,
Religion, Catholic〉. A set of triples can naturally be depicted as a directed acyclic
graph, with an edge from the head to the tail of a triple.

Large KBs, generally built by extracting facts from unstructured text, suffer
from incorrect/incomplete information. A fundamental task that involves KGs
is link prediction. This is the task of, given a specific entity and a relation,
finding a matching entity. For instance, for a given head and relation, to predict
the tail 〈eh, r, ?〉, or, given a tail and a relation, to predict the matching head
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〈?, r, et〉. One may be interested instead in finding a relation between two entities
〈eh, ?, et〉, a challenge sometimes called relation prediction. Another task is, given
a triple 〈eh, r, et〉 not previously seen on the KG, to evaluate whether this triple is
true or false. This is referred to as triple classification. Finally, in entity resolution
one must detect the same entity in different bits of information. For instance,
one can find Barak Obama represented as Barak Obama and B. Obama.

Completion problems have been investigated within statistical relational
learning [7,19]. Some useful notation from that literature will be employed in
this paper. Let E = {e1, ..., eN} represent the set of all possible entities and
R = {r1, ..., rM} represent the set of all possible relations in a KG. A possible
triple is represented by xh,r,t = 〈eh, r, et〉, where eh, r and et stand for head, rela-
tion and tail, respectively. Note that we use the open world assumption in this
paper, meaning that facts not present in the KG are only considered unknown.
We denote the set of all possible triples (or facts) in G by T = E × R × E .

We now contrast two approaches to KG completion: graph feature models
and embedding models.

2.2 Graph Feature Models

Graph feature models aim to perform KG completion by observing characteris-
tics of the graph to infer new facts, often by resorting to rules or similar symbolic
manipulation [19].

With the PRA algorithm [11], Lao and Cohen suggested that triples can
be predicted by a feature matrix constructed with random walks of bounded
length in a KG. Based on PRA, Gardner et al. [6] proposed the Subgraph Feature
Extraction (SFE) algorithm that we now summarize.

The idea is to focus on a relation r at a time. Denote by D+ the triples that
have r as relation, to emphasize that these are “positive” triples. Note that D+

depends on the particular r, but we simplify notation by not explicitly referring
to r. To train the model, a set of “negative” triples D− is built by corrupting
positive triples in the KG by randomly replacing one of its entities (head or
tail) [25]. For a generic triple 〈eh, r, et〉 we take a path (a sequence of edges) π
from eh to et with at most L edges; each edge in a path corresponds to a relation
or the inverse of a relation. A triple is then associated with the set of all path
patterns connecting its head to tail. In fact, not all possible paths from head to
tail are generated; the SFE algorithm runs random walks to sample such paths.

Denote by πL(h, r, t) a path type of maximum length L connecting entity
eh to et. The set of all encountered paths πL(h, r, t) between those entities is
represented by ΠL(h, r, t). Denote by zπ a binary variable that indicates existence
or not of a given path π. The feature vector extracted for a given triple is
represented by φSFE

hrt = [zπ : π ∈ ΠL(h, r, t)]. For a given relation r, using the
latter expression, the SFE algorithm constructs a feature matrix combining the
feature vectors φSFE

hrt extracted for each training example 〈eh, r, et〉 ∈ {D+∪D−}.
This feature matrix can be used as input to any classifier; if one chooses a
logistic regressor, a parameter matrix wr is then obtained for the relation r.
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We then calculate the probability of existence of the triple 〈ea, r, eb〉 /∈ D+ with
fSFE

abc := wT
r φSFE

abc .
To extract paths, the SFE algorithm builds subgraphs departing from each

entity eh and et with k steps. If two subgraphs Gh and Gt contain paths πh,i

and πt,i departing from each entity and arriving at some intermediate node i,
then a path type πh,i ∪ πi,t is stored in the feature vector. Gardner et al. [6]
adopted random walks for the SFE algorithm but also proposed to construct the
subgraphs via a breadth-first search (BFS), to increase the number of extracted
features. To keep the search computationally tractable during BFS in large KGs,
they proposed to skip the expansion of nodes with a high out-degree (the number
of incoming/outcoming edges). So if a path departing from eh reaches a node with
degree higher than a given number (a parameter of the model), that node will
not be expanded in further steps, but it will still be considered as an intermediate
node i that can later be merged to the subgraph departing from et. This strategy
significantly increases the number of extracted features.

2.3 Embedding Models

Latent feature models map semantically rich entities and relations into real-
valued vectors. The mappings are referred to as embeddings. The state-of-the-
art in KG tasks uses this idea because operations and gradients can be easily
run in numerical spaces. Usually, an embedding model represents entities as
vectors of an arbitrary dimension and relations as operations within the same
vector space. The symbolic data is then manipulated through numeric opera-
tions over those vectors. The “plausibility” of a triple xh,r,t is represented by a
scoring function f(xh,r,t | Θ) [25], where Θ represents the set of parameters of
the model. Basically, there are two major families of embeddings: the first one,
called translational distance models, focus in distance-base scoring functions like
TransE and its extensions [17,25]. The second is formed of semantic matching
models, that rely on scoring functions that measure semantic similarity, being
ANALOGY and RESCAL examples of this family [17,25].

Although the interpretability techniques we propose in this paper are agnostic
to any particular embedding, we will focus on TransE, a very popular embedding
model proposed by Bordes et al. [3], inspired by Word2Vec [14]. In TransE,
entities and relations are represented by vectors of an arbitrary dimension, and
relations are translations within the vector space. A triple 〈eh, r, et〉 is deemed
true when eh+r = et (or rather, when this equality is approximately true within
some threshold). The various vectors are obtained by optimization, taking into
account all the information in the KG of interest. In short, a vector representation
of entities and relations is learned so as to minimize the loss function ||eh+r−et ||
for all facts in the knowledge base.

3 Explaining Embeddings

Currently, embeddings offer the most accurate way to complete KGs, but they
are difficult to understand as they strip the underlying KG of its semantic con-
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tent. On the other hand, graph feature models capture some of the structure of
the KG, thus offering decisions that can be related to semantic properties but
that are less accurate than the ones produced by embeddings. Thus one natu-
rally asks whether it is possible to automatically explain completions produced
by embeddings, perhaps using the symbolic features of the KG as a source of
semantic guidance. This is our strategy in this paper.

First, a word on “Explainable AI”, a topic that has received significant atten-
tion. Even though there has been work on explaining neural networks since at
least the nineties [1,4], the recent emergence of very complex classifiers, for
instance, ones based on very deep neural networks or very wide random forests,
has led to many insights concerning the interpretation of automated decisions
by classifiers [8]. It should be noted that the notion of “interpretability” is not a
simple one [12]; it is certainly not an absolute notion as it depends on the target
customer. A classifier can be interpreted through mathematical equations if the
customer is a data scientist, but it should be explained in a textual manner if the
customer is a lawyer in the auditing department. In any practical scenario, one
may have “degrees” of interpretability depending on the understanding of causes
for the prediction at hand [15]. Also, the interpretation of a model is related to
the trust assigned by the user to the model; it is hard to trust a decision that
cannot be adequately explained. Another perspective is this: when explaining
a prediction, do we want to explain it “absolutely” in the sense that we want
to justify why it makes sense, or do we want to explain is “relatively” to the
model, focusing on the reasons why the model made the decision even if they
are not logically perfect? The former seems useful in all circumstances, but the
latter can be even more critical when the intended user is a data scientist try-
ing to figure out the behavior of a classifier, or an auditing specialist trying to
determine whether a classifier is biased or not. Simple metrics like accuracy are
of no help when interpretability is needed [5]; in fact, there is a natural tension
between accuracy and interpretability: more accuracy in the presence of large
datasets tends to require more complex models that lead to less interpretable
decisions.

There are two distinct basic approaches to interpreting classifiers. First,
decompositional approaches extract rules and explanations by taking into
account the specific structure of the classifier of interest [1]. Second, pedagog-
ical or agnostic approaches consider the classifier as a black-box and implement
a simpler classifier to mimic the outputs from the complex one and also provide
explanations about the outputs. In this paper, we focus on agnostic techniques
as we wish to provide tools that can be useful for a variety of embedding frame-
works.

Interpretations are often generated by detecting which features are most
important, through various sensitivity analyses, or perhaps by detecting which
data points are most influential [24].

Alas, such approaches cannot work in interpreting embeddings. Indeed,
embeddings turn a semantically rich input into numeric vectors, and one cannot
operate in the vector space that is actually used in classification. The transfor-
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Henry the Lion Catholic

Person X

religion

children

parent

re
lig
ion

Fig. 1. Example produced from FB13. Entities of interest are in blue; dashed edge is
assigned by TransE (other edges belong to FB13). (Color figure online)

mation from semantic entities to vectors is indeed a crucial part of the whole
model, and should also be explained.

Our idea is to consider the embedding model we are trying to explain as a
black-box and to implement an interpretable classifier around it, by extracting
features (path patterns) from the original graph, using the labels predicted by
the embedding. This interpretable classifier is then used to produced symbolic
explanations, in the form of weighted Horn clauses, that are regarded as easily
interpretable [19]. The result is a set of symbolic explanations obtained by graph
features for each completion produced by the embedding. We pursued this basic
idea in a previous publication [10], but our previous proposals had rather low
fidelity. Here fidelity refers to the fraction of completions where the extracted
graph feature model agrees with the original embedding. Of course one should
aim at 100% fidelity when interpreting embeddings: there is no point in hiring
an “interpreter” that may provide reasons for decisions that were not made.

The contribution of this paper is to present a framework able to produce
explanations that correctly mimic the embedding classifier for every prediction.
Before we plunge into a description of our contributions, it is worth considering a
pair of examples generated by our implementation and depicted in Figs. 1 and 2.
These examples were generated with data from two popular KGs, namely FB13
[2,21] and NELL186 [9,16]. Each explanation consists of a subgraph containing
entities in the KGs; in some cases the specific entity is irrelevant (“Person X”,
and so on). However, a symbolic explanation can be easily produced: for instance,
we see that Henry the Lion is considered catholic by TransE in the FB13 dataset
for a simple reason: his child is catholic (a fact that is in FB13). Similarly, Fig. 2
describes why TransE determines UIC Flames to play in the Ice Hockey league
using data in NELL186.

We now describe our method in detail; to do so, in this paragraph, we review
the XKE-TRUE algorithm by Gusmão et al. [10]. Consider a KG G with T =
E×R×E representing the set of all possible triples of this KG. Denote by g : T →
{0, 1} the function of the embedding black-box classifier. Define ΠG as the set of
all possible paths connecting two entities, and P (ΠG) its power set. The feature
extraction function performed by the SFE algorithm for a given triple xh,r,t ∈ T ,
and for the given graph G, is represented by SFE : T → P (ΠG). The result of
applying the SFE algorithm to a triple xh,r,t is denoted by Πh,r,t|G ∈ P (ΠG).
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UIC Flames Ice Hockey

Team XLeague X

plays sport

plays in league

plays in league

plays sport

Fig. 2. Example extracted from NELL186. Entities of interest are in blue; the dashed
edge is assigned by TransE (other edges belong to NELL186). The explanation for the
fact that the team UIC Flames plays Ice Hockey is the fact that they play in a league,
and another team that also plays in the same league also plays Ice Hockey. (Color
figure online)

Then XKE-TRUE builds an auxiliary training set

D = {(SFE(xh,r,t | G), g(xh,r,t)) | xh,r,t ∈ D} (1)

and trains a interpretable classifier, in our case a logistic regressor, g′′ : P (ΠG) →
{0, 1} using D, from which explanations are drawn in the form of weighted Horn
clauses, where each rule (feature) is a path type extracted from G, preceded by
a weight assigned by the logistic regressor.

Even though the XKE-TRUE algorithm just outlined works reasonably, it
has a severe drawback: its fidelity is far from 100%, thus making it fail to provide
explanations in many cases. We now present two enhancements to the original
XKE-TRUE to improve its fidelity. The first one allows SFE to extract more fea-
tures from the KG, leading to a substantial increase in fidelity, while the second
deals with the case where the interpretable classifier contradicts an embedding
prediction.

3.1 Modified SFE

We have implemented a new version of the SFE algorithm, following the same
principles proposed by Gardner et al. [6]. Gardner’s SFE implementation with
BFS makes use of a parameter of the model that specifies the maximum node
out-degree, and nodes with out-degree above that value will not be expanded.
In our BFS implementation, starting nodes with out-degree higher than the
maximum value will be expanded only one step away. This single step turned
out to be very useful to build many more paths sequences to be used as features.

3.2 XKE-e

Despite the modified SFE algorithm described above, for a reasonable amount of
training examples, BFS was not able to find any feature in the KG simply because
there was no path of length L connecting the triples entities. This hinders the
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fidelity of the resulting logistic regressor. One way to overcome this issue would
be to increase L and find paths of greater length, but in large KGs, this would be
computationally very expensive. Instead, we propose to leverage the knowledge
obtained by applying SFE and logistic regression: for the triples with inconsistent
prediction between the logistic regression and the embedding, we build new paths
(using the embedding for KG completion) connecting the entities using the most
critical paths according to the weights assigned by the logistic regression.

Let us denote by D0 the subset of D in which the SFE function applied to
the triple resulted in an empty set Πh,r,t|G = ∅. For each triple xh,r,t ∈ D0 we
get the active rules wc of the trained logistic regression and construct this path
using g(·), following the algorithm below:

Algorithm 1.1 XKE-e
1: procedure BUILD-EXTENDED-SET(g, G, xh,r,t)
2: Π̂ ← {} � Set of path types for the triple
3: ĝ ← {} � Set of new found facts

4: for all πh,r,t ∈ Π
(w �=0)

h,r,t|G do
5: for each edge ∈ πh,r,t do
6: if g(πi,j,k) = 1 then � If edge holds
7: ĝ ← πi,j,k ∪ ĝ
8: if πh,r,t = TRUE then � If path holds
9: Π̂ ← πh,r,t

⋃
Π̂

return Π̂, ĝ

10: procedure XKE-E
11: Πh,r,t|G ← SFE(xh,r,t | G)
12: for all xh,r,t ∈ D0 do
13: Π̂, ĝ ← BUILD-EXTENDED-SET(g, G, xh,r,t)
14: Πh,r,t|G ← Π̂
15: G ← G ∪ ĝ

16: Using D, train an interpretable classifier g′ : P (ΠG) ← {0, 1}
17: Draw explanations from g’ in the form of Horn clauses

4 Experiments

Here we present the results obtained with our novel approach, comparing them
with results obtained by Gusmão et al. [10]. We will evaluate them according to
the following metrics:

– Accuracy: ratio of correct predictions by the logistic regressor (logit);
– Fidelity: ratio of prediction matches between logit and embedding;
– F1: the classical definition, obtained for accuracy and fidelity;
– Average # of features per example: is the average number of features

extracted by SFE per example in the test set;
– % of Examples with # of features > 0: represents the proportion of

cases in the test set with at least one feature extracted by SFE;
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Table 1. Results (micro-average) for XKE-TRUE/TransE. Results marked with * were
extracted from Gusmão et al. [10]. Results highlighted in bold are the best for each
dataset.

Dataset FB13 NELL186

Embedding accuracy (%) 82.55 86.40

Maximum path length (SFE) 4* 4 6 4* 4

Expand initial node (SFE) No Yes Yes No Yes

Maximum node out-degree (SFE) 100 100 100 100 unl

Avg # of features per example 2.91 4.15 55.89 70.66 78.39

% Examples with # features > 0 54.73 87.09 91.41 50.01 55.47

Explanation mean rules 2.29 3.60 18.86 105.30 102.06

Explanation mean body rule length 3.09 3.01 4.62 3.86 3.86

Fidelity (%) 73.26 75.54 83.04 86.55 88.59

Accuracy (%) 73.43 75.49 79.98 89.10 92.33

F1 Fidelity (%) 76.66 76.24 80.47 83.19 86.53

F1 Accuracy (%) 77.35 77.25 77.69 86.89 91.40

For interpretability, we consider the following metrics:

– Explanation Mean # of Rules: the average number of rules per example
that the logistic regressor assigned a weight different than zero;

– Explanation Mean Body Rule Length: the average number of relations
forming active rules with weight different than zero assigned by the logistic
regressor.

Below we describe all model parameters used in our experiments. To fairly
compare each SFE strategy, we used the same embeddings trained by Gusmão
et al. [10] as proposed by [18]; negative examples were generated via Bernoulli
distribution at a 1–1 rate. Model training was limited to 1,000 epochs, split-
ted into 100 mini-batches and using SGD with Adagrad optimizer. The best
model accuracy was obtained with a learning rate η = 1, �2 norm, margin
γ = 1 and embedding dimension k = 100 for FB13 and k = 50 for NELL.
For the feature extraction with our implementation of the SFE algorithm, we
now describe the parameters. The logistic regressor for each relation was trained
using SGD to minimize the log loss with elastic net regularization and a grid
search was run to find the best fidelity using the following parameters: η = 1
regularization ratio γ = {0.1, 0.7, 0.7, 0.9, 0.95, 0.99, 1.0}, regularization weight
α = {0.1, 0.001, 0.0001} and stopping criteria ε = 0.001; class weights were
inversely proportional to their frequency to properly balance classes.

We can see from Table 1 that relaxing the parameters of the feature extraction
deployed by the SFE algorithm helped to increase the number of features; more
importantly, this increase led to an improvement in the fidelity results for both
datasets. We were able to generate a scenery using paths of length 6 with FB13,
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which turned out to provide the highest amount of examples with at least one
feature, and also the best fidelity in mimicking the embeddings predictions.

For the NELL186 dataset, we found the same positive effect, mainly because
we were able to run tests with unlimited out-degree. We can see here that the
accuracy of the interpretable model was better than the accuracy of the embed-
ding model itself, indicating that one could use SFE+logistic regression as a
primary tool for KG completion, without the use of the embedding.

As for the interpretability metrics, we saw no significant changes, except for
the FB13 scenery with paths of maximum size 6, where the number of active
rules per example exploded. In contrast, the explanation mean body rule length
only grew from 3 to 4.63, which still can be regarded as easily interpretable.

Table 2. Example of explanation generated by XKE-TRUE, extracted from. [10].

Head Henry the Lion

Relation Religion

Tail Catholic

Reason #1 (0.649) parent−1, religion

Reason #2 (0.500) children, religion

Bias (0.681)

XKE 0.862

Embedding 1

Table 2 brings the same example from Fig. 1, now showing the active rules
obtained by the logistic regressor with its weights, explaining the prediction of
the embedding. The intuition behind this explanation is that, by applying the
SFE algorithm followed by a logistic regression, XKE-e generalized this fact from
the KG attributing a weight for that reason. Indeed it is a much more convincing
explanation than a statement saying that de dimension 43 of the entity vectors
in R

100 was the one that contributed to the correct answer.

5 Conclusion and Future Work

We have presented a novel method to produce explanations for completions
generated by embeddings. We started with the XKE-TRUE algorithm [10]; our
purpose was to increase the fidelity of that algorithm. We did this by introduc-
ing changes to the SFE algorithm and by adding various steps to XKE-TRUE
(Algorithm 1.1). The resulting XKE-e algorithm is a novel scheme that has high
fidelity, and that produces intuitive and plausible explanations, as we have shown
through experiments and through examples.

Despite the advances described here, a significant concern when dealing with
operations in knowledge graphs is the exponential growth of possible paths with
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the number of entities. In future work, we would like to investigate local expla-
nations through the extraction of more expressive paths, as we believe that this
would even further improve the fidelity of our explanations.
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Abstract. When decisions must be based on incomplete (coarsened)
observations and the coarsening mechanism is unknown, a minimax app-
roach offers the best guarantees on the decision maker’s expected loss.
Recent work has derived mathematical conditions characterizing mini-
max optimal decisions, but also found that computing such decisions is a
difficult problem in general. This problem is equivalent to that of maxi-
mizing a certain conditional entropy expression. In this work, we present
a highly efficient algorithm for the case where the coarsening mechanism
can be represented by a tree, whose vertices are outcomes and whose
edges are coarse observations.

Keywords: Coarse data · Incomplete observations ·
Minimax decision making · Maximum entropy

1 Introduction

Suppose a decision maker needs to choose an action a, and will suffer an amount
of loss determined by a and an unobserved random variable X. The decision
maker knows the distribution of X, and receives some information on the realized
value X = x in the form of a coarsened observation: a set Y = y that includes
x but also other, unrealized outcomes. Here, x lies in a finite set X , and y is a
member of some family Y ⊂ 2X ; both X and Y are also known to the decision
maker, but importantly, the distribution P (Y | X) of the coarsening mechanism
is not.

One of the most well-known examples illustrating this setting is the Monty
Hall puzzle [14]: In a game show, the contestant is faced with three doors X =
{1, 2, 3}. X indicates which of these hides a prize. The contestant initially picks
a door; we will assume w.l.o.g. this is door 2. Then the quizmaster opens either
door 1 or 3, revealing a goat. When both doors could be opened (i.e. if X =
2), one is chosen by the quizmaster’s unknown coarsening mechanism. (In our
c© Springer Nature Switzerland AG 2019
G. Kern-Isberner and Z. Ognjanović (Eds.): ECSQARU 2019, LNAI 11726, pp. 336–347, 2019.
https://doi.org/10.1007/978-3-030-29765-7_28
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notation, Y is the set of the two doors that are still closed at this point; its
possible values are the two members of Y = {{1, 2}, {2, 3}}.) The contestant is
now offered the option to switch to another door. The surprising insight is that
the strategy of switching doors results in a larger probability of winning the
prize.

We adopt a minimax (or worst-case) approach: we want to find a strategy (a
function that maps each y ∈ Y to an action) for which the maximum expected
loss over all possible coarsening mechanisms is as small as possible. Such a strat-
egy does not require us to make any assumptions on the coarsening mechanism,
so is a robust choice when the mechanism is unknown. (In the case of the Monty
Hall puzzle, this means we do not need to assume anything about the distribution
of Y given X = 2.)

In this paper, we propose efficient algorithms for a decision problem that
generalizes the Monty Hall puzzle in the following way: to any number of out-
comes, any distribution P (X) over them, a very general class of loss functions,
and any family Y that is the set of edges of an undirected tree over vertices X .
In other words, each set y ∈ Y consists of two elements of X , and for each pair
xa, xb ∈ X , there exists a unique sequence (xi)ki=1 of distinct elements from X
with x1 = xa, xk = xb, and {x1, x2}, {x2, x3}, . . . , {xk−1, xk} ∈ Y. We will call
Y the message structure, and its elements y ∈ Y messages.

To illustrate this generalization, consider a version of the Monty Hall game
show with a row of doors X = {1, 2, . . . , n}, where the quizmaster will pick two
adjacent doors that he leaves shut, revealing a goat behind each other door (so
Y = {{i, i + 1} | i = 1, . . . , n − 1}). If the number of doors n is odd and the
distribution on X is uniform, we find (see Sect. 2) that, upon observing Y = y,
a cautious decision maker should assign probability (n + 1)/(2n) > 1/2 to the
door in y with the odd index, and (n − 1)/(2n) < 1/2 to the one with the even
index. The case n = 3 is the original Monty Hall puzzle, where a contestant who
always switches to door 1 or 3 will have a probability of 2/3 of winning the prize.
The generalization we consider also extends to distributions over X other than
uniform, for which the problem becomes computationally trickier.

The above message structure Y (which we call a path graph) may occur in
practice as the message structure of a decision problem when, for example, a
real-valued quantity of interest is reported to us as an integer, but we do not
know if the value was rounded up or down. Then outcomes x ∈ X correspond to
the intervals (ai, ai + 1) between consecutive integers (we assume that the true
value is a.s. not an integer), and messages to unions of two adjacent intervals.

This type of decision problem with incomplete information was introduced
in [16], where minimax optimal strategies are characterized for arbitrary Y, but
where the question of how to compute them is not addressed. This computational
problem was considered previously in [17], where it was demonstrated that the
problem is hard for general Y, but a direct formula could be given for finding a
minimax optimal strategy in the special case that Y forms a partition matroid.1

1 We refer to that paper for a definition, but remark that if each message consists
of two outcomes, the class of partition matroids coincides with complete bipartite
graphs. The message structure of the Monty Hall puzzle is an example.
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Related work dealing with coarse data sometimes proceeds by making
assumptions about the coarsening mechanism; for example, the CAR (coars-
ened at random) assumption [9] or the superset assumption [10] (see Sect. 2 for
an explanation). Neither of these assumptions is compatible with the Monty Hall
setting; see e.g. [5,7].

The approach we consider is more closely related to the maximin strategy
described in [3] and studied specifically in [8]. However, it differs in some respects,
e.g.: our objective does not feature a marginal or joint, but a conditional distri-
bution of outcomes given messages (see (1)); and our objective is not interpreted
as a (generalized) likelihood function, as we do not have a data set. This reflects
that we are interested in making a decision pertaining to an unknown outcome
given a single message (which is a coarsened observation of the outcome).

The general problem of finding a minimax optimal strategy can be solved
using convex optimization. Reasonably efficient algorithms exist for this task
[2], but they converge to the solution rather than computing it exactly. The
algorithms in this paper are strongly polynomial [13]. A strongly polynomial
algorithm finds the exact solution in a number of steps polynomial in the number
of elements in the input, regardless of the precision of any numeric elements.

The rest of this paper is structured as follows. In Sect. 2, relevant results from
[16] are summarized. We consider in Sect. 3 the special case where (X ,Y) is a
path graph, where the solution is given by a surprising and intuitive algorithm.
This algorithm is extended to the case of arbitrary trees in Sect. 4. All proofs are
in the appendix. The results on path graphs were previously described in [15];
the results on trees have not appeared elsewhere.

2 Preliminaries

A decision problem with tree-structured incompleteness is given by a finite set X ,
a family Y of two-element subsets of X such that the undirected graph (X ,Y)
forms a tree, a distribution p over X having px > 0 everywhere, and a loss
function L : X × A → [0,∞], where A is the set of actions available to the
decision maker. We assume that the loss function L satisfies the conditions in
Theorem 18 of [16].2 A coarsening mechanism for this problem is an (unknown)
joint distribution P on X × Y that satisfies P (x, y) = 0 whenever x /∈ y, and
P (x) =

∑
y�x P (x, y) = px for each x.

The minimax approach may be viewed as a game: first the decision maker
chooses a strategy A : Y → A, then the opponent chooses a coarsening mecha-
nism P , and finally the decision maker’s expected loss

∑
x,y P (x, y)L(x,A(y)) is

evaluated. The opponent’s goal is to make the expected loss as large as possible
(i.e. it is a zero-sum game). If the opponent were to move first, their best strat-
egy would be the maximin optimal coarsening mechanism. In the case that L is

2 Namely, that the generalized entropy HL [6] is finite and continuous; further, HL or
an affine transformation of it is invariant under permutation of x1 and x3 whenever
{x1, x2}, {x2, x3} ∈ Y. See [16] for definitions.
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logarithmic loss, this is the P that maximizes the expected conditional entropy
∑

y∈Y
P (y)H(P (· | y)) =

∑

y∈Y
P (y)

∑

x∈y

−P (x | y) log P (x | y). (1)

It was found in [16] that if the action space is rich enough, this game has
a Nash equilibrium, so that neither player benefits from knowing the other’s
strategy before picking their own. We concentrate on finding a maximin P ,
because once it is known, minimax optimal strategies A are typically easily
determined.

For the setting considered in this paper, it was shown in [16, Theorem 18]
that a coarsening mechanism P is maximin optimal if for some vector q ∈ [0, 1]X

it satisfies the RCAR condition:

qx = P (x | y) for all y ∈ Y, x ∈ y with P (y) > 0, and
∑

x∈y

qx ≤ 1 for all y ∈ Y. (2)

Note that the second equation holds with equality for y with P (y) > 0. The
vector q is called the RCAR vector; it exists and is unique by [16, Lemma 11].
We remark that the loss function L does not feature in this condition; this
implies that a coarsening mechanism P that satisfies the RCAR condition is
maximin optimal regardless of what loss function we are interested in,3 and that
the entropy maximization (1) is relevant for any L, not just logarithmic loss.

RCAR stands for ‘reverse CAR’, because the first line of (2) mimics the form
of the CAR assumption [9], but with x and y switched. It is also similar in
form to (part of) the superset assumption [10], but both CAR and the superset
assumption look at P (y | x), while RCAR considers P (x | y). But the most
crucial difference with these is that RCAR is not an assumption, but rather a
condition we can check to verify if a coarsening mechanism is maximin optimal.

The question is: how do we find maximin optimal/RCAR coarsening mecha-
nism? One computational challenge in finding the maximin optimal coarsening
mechanism is that for some coarsening mechanisms P (including the maximin
one), some y may have P (y) = 0. At such a point P , that y’s contribution to the
expected conditional entropy is nondifferentiable. This means for instance that
standard convex optimization algorithms will converge slowly to such a point.
The algorithms in this paper overcome this challenge.

3 Path Graphs and the Taut String Algorithm

Even though the results in this section will be superseded later when we give
an algorithm for general trees, we devote this section to the subclass of decision
problems for which the graph (X ,Y) consists of just a single path. The reason is
that for such problems, the minimax optimal coarsening mechanisms turn out to
be described by an intuitive physical problem, for which an efficient algorithm
is already known.
3 This property is called loss invariance: see [16, Section 5.5].
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3.1 Correspondence

Consider a decision problem where the messages form a path: for the n ≥ 2 out-
comes X := {1, 2, . . . , n}, the messages Y are y1 = {1, 2}, . . . , yn−1 = {n − 1, n}.
(A graph of the form (X ,Y) is called a path graph.) Then the solution corre-
sponds to that of a taut string problem. Imagine a string is constrained to pass
above certain points (say, pins on a board), and below others. Then the string
is pulled taut. The taut string will follow the shortest allowed path between
its endpoints, going in straight line segments between the points it is pushed
against.

A0 A1

A2

A3

A4

p1 p2 p3 p4

p2

p4

Fig. 1. The taut string problem corresponding to the decision problem with X =
{1, 2, 3, 4}, Y = {y1, y2, y3} with yi = {i, i + 1}, and marginal on the outcomes p =
(1/3, 1/6, 1/6, 1/3). The arrowheads at the points A0, . . . , A4 show on what side the string
must pass. We see that the string, when pulled taut, touches the point A2; its slope is
1/3 to the left of A2 and 2/3 to the right.

Taut strings have been considered in the statistics literature before; see for
example [1,4,11], where taut strings appear as a way of defining simple functions
approximating noisy regression data. In these applications, all pins come in pairs,
but we do not restrict the placement of pins in this way.

The taut string problem we are interested in uses the constraining points
A0, A1, . . . , An, with A0 = (0, 0) and

Ak =
( ∑

i≤k

pi ,
∑

i≤k,
i even

pi

)
(3)

for k ∈ {1, . . . , n}. The string must pass through the points A0 and An; above
points Ak with k odd; and below Ak for k even. See Fig. 1 for an example.



Minimax Decisions Under Tree-Structured Incompleteness 341

The following theorem relates the solution of this taut string problem instance
to the maximin optimal P (the proof is in the appendix).

Theorem 1. Given a decision problem on a path graph, find the solution of
the taut string problem described in (3). Then a maximin optimal coarsening
mechanism P is given by:

– For 0 < k < n such that the string touches the point Ak, we have P (yk) = 0;
– For 0 < k < n such that the string does not touch Ak, P (yk) = |δk|/(αk(1 −

αk)), where δk is the vertical distance between Ak and the string, and αk is
the slope of the string at that point;

– Also for k such that the string does not touch the point Ak (so P (yk) > 0),
the conditional distribution P (· | yk) puts mass on the even outcome in yk
equal to the slope of the string as it passes above or below Ak.

For the decision problem and corresponding taut string problem displayed in
Fig. 1, we conclude that:

– P (y2) = 0;
– For y1, |δ1| = 1/9 (it is two-thirds of p2 = 1/6) and α1 = 1/3, so P (y1) =

(1/9)/(9/2) = 1/2. In the same way, we find P (y3) = 1/2.
– Using that the slope of the string above A1 equals 1/3, we find P (2 | y1) = 1/3

(so P (1 | y1 = 2/3). Above A3, the slope equals 2/3, so P (4 | y3) = 2/3 and
P (3 | y3) = 1/3.

3.2 Algorithm

We can now find maximin optimal coarsening mechanisms for decision problems
on path graphs efficiently using the taut string algorithm, in O(n) time [4]. This
is clearly much more efficient than using a general purpose convex optimization
algorithm. We list the taut string algorithm in Algorithm 1; for a more detailed
explanation, we refer to [4] and [1].

The algorithm keeps track of three sequences of points. These represent piece-
wise linear functions: K is the solution, specified as the sequence of points the
taut string pushes against; G is the greatest convex minorant (the pointwise
maximum convex function respecting the upper bounds) of the part of the input
that has been read but not added to the solution yet: and S the smallest concave
majorant of that part of the input. Each of these sequences is a subsequence of
the input points A0, . . . , An, and at each step of the algorithm, the first points
of G and S are equal to the last point of K. The algorithm operates only on
the beginning and end of each of these sequences, so these operations can be
implemented efficiently without the aid of complex data structures.

We denote the number of elements in a sequence by |K|, use zero-based indices
(so K[0] is the first element of K), and use negative indices to refer to the end
of a sequence: K[−1] is the last element, K[−2] the second-to-last, etc. We write
α(Ai, Aj) for the slope of the line segment from Ai to Aj , with i < j. For the
points (3) used in the taut string problem corresponding to a decision problem,
these slopes are given by α(Ai, Aj) =

∑
i<k≤j,k even pk/

∑
i<k≤j pk.
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Algorithm 1: The taut string algorithm [4]
Input: Points A0, . . . , An constraining the string, sorted from left to right
Output: Sequence of points K where the taut string pushes against the

constraints
Let the sequences G, S, and K each consist of the single point A0;
for i from 1 to n do

if i is even or i = n then
// Ai is an upper bound
Append Ai to G;
while |G| ≥ 3 and α(G[−3],G[−2]) ≥ α(G[−2],G[−1]) do

Delete second-to-last point from G;
end
// G is now convex

end
if i is odd or i = n then

// Ai is a lower bound
Append Ai to S;
while |S| ≥ 3 and α(S[−3], S[−2]) ≤ α(S[−2], S[−1]) do

Delete second-to-last point from S;
end
// S is now concave

end
while |G| ≥ 2, |S| ≥ 2, and α(G[0],G[1]) < α(S[0], S[1]) do

// No straight path remains between G and S
Remove first point from G and from S;
if (new) first point in G is to the left of first point in S then

Append first point in G to K, and prepend it to S;
else

Append first point in S to K, and prepend it to G;
end

end

end
Append An to K.

4 Generalization to Trees

Our main contribution is the generalization of the taut string algorithm to tree-
shaped coarsening mechanisms. The result is displayed as Algorithm 2.

4.1 Mathematical Description of the Algorithm

Algorithm 2 takes an arbitrary node r ∈ X to be the root of the tree. In reference
to this root, we write Ch(x) for the children of node x, pa(x) for the (unique)
parent of x �= r, and De(x) for the descendants of x, which include x itself.

The fx and f̄x in the algorithm are piecewise linear functions from [0, 1] to
[0, 1], which allows them to be stored efficiently; see Sect. 4.2 for details. If the
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graph is a path and one of its endpoint is chosen as the root, the computations
can be simplified to those of Algorithm 1.

Theorem 2. The P computed by Algorithm 2 is a coarsening mechanism that
satisfies the RCAR condition (2).

Algorithm 2: The taut tree algorithm
Treating the tree as a bipartite graph, call one of its parts S;
Pick an arbitrary node r ∈ X to be the root of the tree;
Recursively determine:

pS
x =

∑

x′∈S∩De(x)

px′ ;

fx(α) = pxα +
∑

c∈Ch(x)

f̄c(α);

f̄x(α) =

{
min(fx(α), pS

x ) if x ∈ S;

max(fx(α), pS
x ) if x �∈ S;

Find αr such that fr(αr) = pS
r , and αx such that fx(αx) = f̄x(αpa(x));

For x �= r, let P ({x, pa(x)}) =

{
1

αx(1−αx)
|f̄x(αx) − pS

x | if αx = αpa(x);

0 otherwise;

Let P (x | ·) =

{
αx for x ∈ S;

1 − αx for x �∈ S.

4.2 Efficient Implementation of the Algorithm

An efficient algorithm would require a data structure that allows us to construct
the piecewise linear function fr (or enough of it to determine αr) quickly. For
computing the αx’s afterwards, it suffices to store in each node the value of α
where fx(α) = pSx .

A function f can be represented using a double-ended priority queue whose
elements represent the bends in f , keyed by α and with values equal to the
change in slope at that point. Alongside this priority queue, f(0), f(1), f ′(0)
and f ′(1) are stored. Because the function is increasing (see the proof of Theo-
rem 2), taking a min (max) with a constant of an increasing function represented
this way can be done by testing and discarding the smallest (largest) element
repeatedly. Summing two functions requires merging their priority queues, so
ideally we would use a priority queue that supports an efficient merge operation.
By using for example a pointer-based min-max-pair heap [12], a worst-case time
complexity of O(n log n) can be achieved.
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5 Conclusion

In this paper, we showed how to efficiently find a coarsening mechanism that
maximizes the conditional entropy (1), for two special cases of the message struc-
ture Y. In the case where (X ,Y) is a path graph, the problem can be reduced to
a taut string problem, and solved in O(n). We then generalized this algorithm
to the case that (X ,Y) is a tree, and showed that this allows the solution to be
found in O(n log n).

Acknowledgments. This research was supported by Vici grant 639.073.04 and Veni
grant 639.021.439 from the Netherlands Organization for Scientific Research (NWO).

Appendix

Proof (Theorem 1). Define q ∈ Rn as follows: for x even, let qx equal the slope
of the string between Ax−1 and Ax; for x odd, let qx equal one minus this slope.
For any message yk ∈ Y and outcome x ∈ yk such that the string does not push
against Ak, we see that P (x | y) = qx since both are determined by the slope of
the string as it passes above or below Ak. Thus P is RCAR with vector q.

For any message yk with P (yk) = 0, we need to verify that P satisfies qk +
qk+1 ≤ 1. Note that the string does not touch A1, because all other points are
above the line through A0 and A1. By the same argument (replacing ‘above’ by
‘below’ if n is odd) the string does not touch An−1. If k is even, the string may be
pushed down at Ak, so the slope to the left of that point, which equals qk, must
be smaller than or equal to the slope to the right, which equals 1 − qk+1. If k is
odd, we similarly find 1 − qk ≥ qk+1. In both cases, we conclude qk + qk+1 ≤ 1.

What remains is to show that the marginal of P on the outcomes given in
the theorem agrees with p. We do this by first deriving from p a formula for the
marginal of P on the messages.

Consider two points Aa, Ab with a < b such that the string touches these
points but no points in between (thus the string follows a straight line between
points Aa and Ab). Using the notation pS for

∑
x∈S px, the slope of this segment

of the string equals
p(a,b],even

p(a,b]
.

This quantity equals qx for any even a < x ≤ b, so we call it qeven, and define
qodd := p(a,b],odd/p(a,b] = 1 − qeven.

For a < x ≤ b, the marginal constraints
∑

y�x P (y)P (x | y) = px are equiva-
lent to

∑
y�x P (y) = px/qx. By defining P (y0) and P (yn) as 0 (note that there

are no such elements in Y), we can write
∑

y�x P (y) = P (yx−1) + P (yx). For
a < k ≤ b, we must have P (yk) = pk/qk − P (yk−1) by the marginal constraint
on x = k. Using P (ya) = 0 and applying this recursion repeatedly, we find that
the following choice of marginal on messages satisfies all marginal constraints
for a < x ≤ b:

P (yk) = (−1)k
(

p(a,k],even

qeven
− p(a,k],odd

qodd

)

for a < k ≤ b.
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(Note that we get P (yb) = 0 as required.) Meanwhile in string land, the point
Ak is at height p(0,k],even, and the string intersects the vertical line through Ak

at height p(0,a],even + p(a,k]qeven; the (signed) difference is

δk := p(a,k],even − p(a,k]qeven = p(a,k],even − (p(a,k],even + p(a,k],odd)qeven
= p(a,k],evenqodd − p(a,k],oddqeven.

This is positive at even k where the string passes below Ak, and negative at odd
k. Thus the choice of marginal we found above equals the choice given in the
theorem:

P (yk) = (−1)k
δk

qevenqodd
=

|δk|
qevenqodd

.

which is positive for all a < k < b. Because P also satisfies all marginal con-
straints, it follows that P is a probability distribution.

Proof (Theorem 2). Write qx = P (x | ·); we will show that q is the RCAR vector
to P . We first prove the following claims by induction:

1. for all x, fx is a strictly increasing function of α;
2. for all x �= r, f̄x is a nondecreasing function of α;
3. for all x such that either x = r or αx �= αpa(x), fx(αx) = pSx =∑

x′∈De(x) px′αx′ .

For the first two claims, both the base case and induction step are straightfor-
ward.

For the third claim, first observe that if x = r, αx is chosen to satisfy fx(αx) =
pSx . The other case is αx �= αpa(x); this happens only if fx(αpa(x)) �= f̄x(αpa(x)),
hence if f̄x(αpa(x)) = pSx . Then we also see that αx is chosen to satisfy fx(αx) =
pSx . A base case for the induction occurs when x is such that all x′ ∈ De(x) have
the same αx′ . In such a base case, we have for all x′ ∈ De(x) that f̄x′(αx′) =
fx′(αx′), so that fx(αx) =

∑
x′∈De(x) px′αx′ . For the induction step, we can use

that for x′ ∈ De(x) with αx′ �= αpa(x′), the claim holds by induction. Let Tx

be the descendants of x that are not descendants of such an x′. Then for all
t ∈ Tx, we again have f̄t(αt) = ft(αt), so that the total contribution to fx(αx)
from terms ptα with t ∈ Tx equals

∑
t∈Tx

ptαt; combined with the induction
hypothesis, we find fx(αx) =

∑
x′∈De(x) px′αx′ . This completes the proof of

claim 3.
For given x, we get

∑
y�x P (y)qx = px (and P ({x, x′}) = 0 whenever qx +

qx′ �= 1) if the marginal distribution P (Y ) satisfies

P ({x,pa(x)}) =

{
px

qx
− ∑

x′∈Ch(x) P ({x′, x}) if qpa(x) = qx;
0 otherwise.
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For x ∈ S, this equals, and for x /∈ S, this equals the negative of,

∑

x′∈Tx∩S

px′

qx′
−

∑

x′∈Tx\S

px′

qx′
=

1 − αx

αx(1 − αx)

∑

x′∈Tx∩S

px′ − αx

αx(1 − αx)

∑

x′∈Tx∩S

px′

=
1

αx(1 − αx)

[
∑

x′∈Tx∩S

px′ − αx

∑

x′∈Tx

px′

]

=
1

αx(1 − αx)
[
pSx − fx(αx)

]
,

where the final equality follows by applying claim 3 to x′ /∈ Tx. We see that this is
equal (in both magnitude and sign) to the value assigned to P ({x,pa(x)}) by the
algorithm. Because

∑
x px = 1, it follows in particular that the algorithm’s out-

put is a probability distribution. The remaining aspects of the RCAR condition
are now easy to verify.
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Abstract. The goal of the Label Ranking (LR) Problem is to learn pref-
erence models that predict the preferred ranking of class labels for a
given unlabelled instance. Different well-known machine learning algo-
rithms have been adapted to deal with the LR problem. In particular,
fine-tuned instance-based algorithms have exhibited a remarkable per-
formance, specially when the model is trained with complete rankings,
while model-based algorithms (e.g. decision trees) have been proved to
be more robust when some data is missing, that is, the model is trained
with incomplete rankings.

Probabilistic Graphical Models (PGMs, e.g. Bayesian networks) have
not been considered to deal with this problem because of the difficulty
to model permutations in that framework. In this paper, we propose a
Hidden Naive Bayes classifier (HNB) to cope with the LR problem. By
introducing the hidden variable we can design a hybrid Bayesian network
in which several types of distributions can be combined, in particular,
the Mallows distribution, which is a well-known distribution to deal with
permutations. The experimental evaluation shows that the HNB classifier
is competitive in accuracy when compared with Label Ranking (decision)
Trees, being, moreover, considerably faster.

Keywords: Naive Bayes · Label Ranking · Machine learning

1 Introduction

Preferences are comparative judgments about a set of alternatives or choices.
The Label Ranking (LR) Problem [9] is a well-known non standard supervised
classification problem [7,17], whose goal is to learn preference models that predict
the preferred ranking over a set of class labels for a given unlabelled instance.

Formally, we consider a problem domain defined over n predictive variables
or attributes, X1, . . . , Xn, and a class variable C with k labels, dom(C) =
{c1, . . . , ck}. We are interested in predicting the ranking π of the labels for a
given unlabelled instance x = (x1, . . . , xn) ∈ dom(X1) × · · · × dom(Xn) from
a dataset D = {(xj

1, . . . , x
j
n, πj)}N

j=1 with N labelled instances. Hence, the LR
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problem consists in learning a LR-Classifier C from D which generalized well on
unseen data. In other words, the goal of the LR problem is to induce a model
able to predict permutations by taking advantage of all the available informa-
tion in the learning process. In the literature we can find different approaches to
tackle this problem:

– Transformation methods. They transform the whole problem into a set of
single-class classifiers: labelwise [29] and pairwise approaches [15,19], chain
classifiers [16], etc.

– Adaptation methods. They adapt well-known machine learning algorithms to
cope with the new class structure. Cheng et al. in [9] introduce a model-based
algorithm that induces a decision tree and a model-free algorithm which uses
k-nearest neighbors. Other techniques, like association rules [26] or neural
networks [25], have been also adapted.

– Ensemble methods. Recently, different tree-based aggregation approaches like
Random Forests [5] and Bagging predictors [4] have been successfully applied
to the LR problem [1,28,30].

In this paper we propose a new model-based LR-classifier focusing on adap-
tation methods. Our motivation is twofold:

– Although fine-tuned instance-based algorithms have exhibited a remarkable
performance, specially when the model is trained with complete rankings (i.e.,
permutations), model-based algorithms have been proved to be more robust
when some data is missing, that is, when the model is trained with incomplete
rankings.

– Probabilistic Graphical Models (PGMs), e.g. Bayesian networks [22], have not
been used in this problem because of the difficulty to model permutations in
this framework [8,9].

The proposed LR-classifier is modelled by using a hybrid Bayesian network
[12] where different probability distributions are used to conveniently model vari-
ables of distinct nature: multinomial for discrete variables, Gaussian for numeri-
cal variables and Mallows model for permutations [24]. The Mallows probability
distribution is usually considered for permutations, and is, in fact, the core of
the decision tree algorithm (Label Ranking Trees, LRT ) proposed in [9].

To overcome the constraints regarding the topology of the network when deal-
ing with different types of variables, we propose a Naive Bayes structure where
the root is a hidden discrete variable. In that way, only univariate probability dis-
tributions have to be estimated for each state of the hidden variable. We design
a learning algorithm based on the well-known Expectation-Maximization (EM)
estimation principle and we provide several inference schemes which combine
methods to tackle the Kemeny Ranking Problem (KRP) [21] with probabilistic
inference.

The rest of the paper is structured as follows. In Sect. 2 we review some
basic notions needed to deal with rank data. In Sect. 3 we formally describe the
proposed Hidden Naive Bayes (HNB) as well as the algorithms to induce it from
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data and carry out inference. In Sect. 4 we set forth the empirical study carried
out to evaluate the method designed in this paper. Finally, in Sect. 5, we provide
the conclusions and future research lines.

2 Background

In this section, we review some notions regarding the Kemeny Ranking Problem
[21], the Mallows probability distribution [24] and the Naive Bayes model [22].

2.1 Kemeny Ranking Problem

The Kemeny Ranking Problem (KRP) [21] consists in obtaining the consensus
permutation (mode) π0 ∈ Sk that best represents a sample with N permutations
Π = {π1, . . . , πN}, πi ∈ Sk. Here, Sk stands for the set of permutations of k
elements. Formally, the KRP looks for the consensus permutation π0 ∈ Sk that
minimizes

π0 = argmin
π∈Sk

N∑

i=1

D(π0, πi)

where D(π, τ), π, τ ∈ Sk, is a distance measure between two permutations π
and τ . Normally, the Kendall distance is taken, and the (greedy) Borda count
algorithm [3] is employed to solve the KRP, due to its trade-off between efficiency
and accuracy. Borda count algorithm basically assign n points to the item ranked
first, n − 1 to the second one and so on. Once all the input rankings have been
computed, the items are sorted according to the number of accumulated points.

2.2 Mallows Probability Distribution

The Mallows probability distribution (Mallows model) [24] is an exponential
probability distribution over permutations based on distances. The Mallows
model is parametrized by two parameters, the central permutation (mode)
π0 ∈ Sk and the spread parameter (dispersion) θ ∈ [0,+∞). Given a distance D
in Sk, the probability assigned to a permutation π ∈ Sk by a Mallows distribution
with π0 ∈ Sk and θ ∈ [0,+∞) is

P (π;π0, θ) =
e−θ·D(π,π0)

Ψ(θ)

where Ψ(θ) is a normalization constant. The spread parameter θ quantifies the
concentration of the distribution around π0. For θ = 0, a uniform distribution
is obtained, while for θ = +∞, the model assigns a probability equal to 1 to π0

and equal to 0 to the rest of the permutations. In our work, we take D as the
Kendall distance.

Parameter estimation can be done by using Borda count method for π0

and, although there is no closed form to estimate θ, numerical algorithms, e.g.
Newton-Raphson, can be used to accurately estimate it. Therefore, both param-
eters can be efficiently estimated (polinomial time) [20].
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2.3 Näıve Bayes

Naive Bayes models [22] are well-known probabilistic classifiers based on the con-
ditional independence hypothesis, that is, every pair of features are considered
conditionally independent given the class variable. As most of the probabilistic
classifiers, Naive Bayes models follow the maximum a posteriori (MAP) princi-
ple, that is, they return the most probable class for any input instance. Formally,
given an input instance x = (x1, . . . xn) ∈ dom(X1) × · · · × dom(Xn) and being
C the class variable with dom(C) = {c1, . . . , cn}, a Naive Bayes Classifier C
returns

C(x) = argmax
c∈dom(C)

P (c |x) = argmax
c∈dom(C)

P (x, c) = argmax
c∈dom(C)

n∏

i=1

P (xi|c) · P (c)

according to the Bayes’ theorem and the conditional independence hypothesis,
respectively. The conditional distributions above may be multinomial for discrete
attributes and Gaussian for continuous attributes.

3 Hidden Näıve Bayes LR-Classifier

This section presents the proposed model, defining the structure as well as the
parameter estimation process.

3.1 Model Definition

To overcome the constraints regarding the topology of the network when dealing
with different types of variables, the model proposed here is a mixture model
with the Naive Bayes assumption. The root element of the model is the discrete
hidden variable, which we will denote as z ∈ 1...Z, where Z is the total number
of mixture models. The rest of the variables are observed variables. We consider
two types of observed variables:

– The feature variables, observed both in the training and in the test phase. We
consider two kinds: discrete variables, denoted as dj , and continuous variables,
denoted as xk.

– The ranking variable, denoted as π, which is only present at training time.
This is the one to infer.

Figure 1 offers a representation of the model with the different types of vari-
ables described above. The model assumes that each of these variable types
follow a different conditional distribution given the root variable:

– Continuous variables follow a Gaussian distribution, P (xk|z) = N (xk;μz
k, σz

k)
– Discrete variables follow a Multinomial distribution, P (dj |z) = Mult(dj ;azj )
– The ranking variable follows a Mallows distribution, P (xk|z) = M (π;πz

0 , θ
z)

– The hidden variable follows a Multinomial distribution, P (z) = Mult(z;w)

The parameters for each of the conditional distributions need to be estimated
to perform inference using the model.
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Fig. 1. The proposed Hidden Näıve Bayes model

3.2 Parameter Estimation

Due to the fact that the model has one hidden variable, we use the EM algorithm
to estimate jointly the parameters of both the observed and the hidden variables.
The EM algorithm consists of two steps: the Expectation step (E step), where
the value for the hidden variable is estimated; and the Maximization step (M
step), where the parameters for the conditional distributions are obtained.

E step. Under the assumption that the parameters of the model (μz
k, σz

k, azj ,
πz
0 , θz, w) are known, the probability of an example to be in a mixture is

P (zi|di,xi, πi) ∝ P (zi)P (di,xi, πi|zi) = P (z)P (πi|z)
∏

j

P (dij |zi)
∏

k

P (xik|zi)

Normalizing the above expression for all values of the hidden variable we obtain
the probability of an example to be in the mixture.

M step. Under the assumption that the probabilities of belonging to each mix-
ture for all examples are known, the parameters of the model can be estimated
as follows:

– Multinomial parameters for the discrete variables, P (dj |z). MLE estimation
is done, where the count for each instance is weighted by the probability of
that instance given a mixture z = zi.

– Gaussian distribution parameters for the continuous variables, P (xk|z). Anal-
ogous to the previous case but using a Gaussian distribution N (xk;μz

k, σz
k)

for each z = zi.
– Mallows distribution parameters for the ranking variable. For each z = zi

a Mallows distribution M (π;πz
0 , θ

z) must be estimated. In particular πzi
0 is

computed by applying a weighted version of Borda count algorithm (points
assigned to items are weighted by the probability of that instance given the
mixture zi), and θzi is calculated by using a numerical optimization process
(e.g. Newton-Raphson).

– The mixture model probabilities P (z) are computed according to the weights
P (z|di,xi, πi) for each mixture z = zi.
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Stop Condition. Although the model can easily be extended to use several
types of stop conditions, we propose to check the convergence on the probabilities
with which the samples belong to each mixture.

3.3 Learning Process

The learning procedure includes several executions of the EM algorithm with an
increasing number of mixtures. This process is based on the one proposed in [23].
The algorithm starts with a predefined number of mixtures (a hyperparameter),
and at each iteration the number of mixtures is increased according to a given
parameter (in our case, one by one).

For each of these iterations, the mixtures must be initialized as a previous step
to the EM algorithm. For each new mixture added, a sample with replacement of
the dataset is used for parameter estimation. The parameters for the conditional
probabilities given this mixture are calculated as if all the data points had a
probability of 1 to belong to the sample. After that, the data points which were
not used for the initialization of the new mixtures are used for the parameter
optimization procedure. If the solution obtained does not improve upon the
previous solution (using the Kendall coefficient τK as score over a validation set),
the algorithm returns the best solution. If the solution improves, the algorithm
continues adding new mixtures.

3.4 Inference

In the inference process, the method needs to predict the best consensus ranking
for a new data point. In our proposal we do that by marginalizing variables until
obtaining an expression for the probability of a ranking

P (πs|dr,xr) ∝
∑

zi

P (zi)P (πs|zi)
J∏

j

P (drj |zi)
K∏

k

P (xrk|zi)

To estimate the best permutation π̃, we take the one that maximizes the score

π∗ = argmax
πs∈Sk

P (πs|dr,xr)

However, due to the number of values of π, an approximation may be obtained
by aggregating the rankings weighted by the factor given by the marginalization

P (zi|dr,xr) ∝ P (zi)
J∏

j

P (drj |zi)
K∏

k

P (xrk|zi)

Then, we apply weighted Borda count by using the consensus permutation iden-
tified for each component zi of the mixture and using probabilities P (zi|dr,xr)
as weights.
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4 Experimental Evaluation

In this section we carry out an experimental evaluation to assess the performance
of the proposed algorithm. Next, we describe the employed datasets, the tested
algorithms, the methodology and the results.

4.1 Datasets

We used the 21 datasets proposed in [9,19]. The first 16 may be considered semi-
synthetic since they were obtained by transforming 8 multi-class (type A) and 8
regression datasets (type B) to the LR problem, while the last 5 correspond to
real-world biological problems. Table 1 provides the main characteristics of each
dataset. The columns #rankings and max #rankings correspond to the number
of different rankings in the dataset and the maximum number of rankings that
can be generated for such dataset, respectively.

Table 1. Datasets description.

Dataset type #instances #features #labels #rankings max #rankings

authorship A 841 70 4 17 4!

bodyfat B 252 7 7 236 7!

calhousing B 20640 4 4 24 4!

cpu-small B 8192 6 5 119 5!

elevators B 16599 9 9 131 9!

fried B 40769 9 5 120 5!

glass A 214 9 6 30 6!

housing B 506 6 6 112 6!

iris A 150 4 3 5 3!

pendigits A 10992 16 10 2081 10!

segment A 2310 18 7 135 7!

stock B 950 5 5 51 5!

vehicle A 846 18 4 18 4!

vowel A 528 10 11 294 11!

wine A 178 13 3 5 3!

wisconsin B 194 16 16 194 16!

spo - 2465 24 11 2361 11!

heat - 2465 24 6 622 6!

dtt - 2465 24 4 24 4!

cold - 2465 24 4 24 4!

diau - 2465 24 7 967 7!
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4.2 Algorithms

The algorithms involved in the experimental evaluation were the following ones:

– The model-based Label Ranking Trees (LRT ) algorithm [9], based on decision
tree induction [6]. To avoid overfitting, we fixed the minimum number of
instances for splitting an inner node to twice the number of class labels.

– The model-free Instance-Based Label Ranking (IBLR) algorithm [9], which
follows the nearest neighbors paradigm [10]. The nearest neighbors were iden-
tified by using the Euclidean distance. The number of nearest neighbors were
adjusted by applying an inner five-fold cross validation method (5-cv) over
the training fold.

– Our model-based proposal of Hidden Naive Bayes LR-classifier (HNB).

4.3 Methodology

We adopted the following design decisions:

– The algorithms were assessed by using a five repetitions of a ten-fold cross
validation method (5× 10-cv).

– The Kendall coefficient τK was used as goodness score (see [1] for details).
– The algorithms were implemented in Python 3.6.5 and the experiments exe-

cuted in computers running CentOS Linux 7 with CPU Intel(R) Xeon(R)
E5-2630 running at 2.40 GHz and 16 GB of RAM memory.

4.4 Results

Next, we provide the accuracy and time results, as well as their corresponding
statistical analysis.

The accuracy results are shown in Table 2. Each cell contains the mean and
the standard deviation of the Kendall coefficient τK for the test folds over the
5 × 10-cv. The boldfaced cells correspond to the algorithm(s) that obtain(s) the
best result for each dataset.

To properly analyze the results, we applied the standard statistical analysis
procedure for machine learning algorithms described in [11,14] by using the
exreport package [2]. This procedure can be divided in two steps:

– First, a Friedman test [13] was applied using a significance level of α = 0.05.
The obtained p−value was 3.253e−5, and so we rejected the null hypothesis
(H0) that all the algorithms were equivalent in terms of accuracy in favour
of the alternative (H1), that is, at least one of them was different.

– Second, taking as control the algorithm ranked first by the Friedman test
(IBLR), we performed a post-hoc test with the Holm’s procedure [18], also
using a significance level of α = 0.05. This test compares all the algorithms
with the one taking as control to discover the outstanding methods. The
results for the post-hoc test are shown in Table 3. The win, tie and loss
columns stand for the number of datasets in which the control algorithm
wins, ties and losses with respect to the one on the column Method.
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According to these results, we can conclude that:

– The Friedman test ranked first the IBLR algorithm, which was taken as con-
trol for the post-hoc test. LRT was ranked second, and HNB third.

– The post-hoc test revealed that the IBLR algorithm was statistically different
in terms of accuracy with respect to HNB and LRT.

– Regarding LRT and HNB, the pairwise Shaffer’s post-hoc test [27] (α =
0.05) obtained a p−value of 8.774e−1. Therefore, we can not reject the null
hypothesis (H0) that these algorithms were equivalent in terms of accuracy.

Table 2. Accuracy results for each algorithm.

Dataset IBLR LRT HNB

aut 0.932 (± 0.013) 0.862 (± 0.033) 0.918 (± 0.018)

bod 0.224 (± 0.067) 0.159 (± 0.070) 0.116 (± 0.073)

cal 0.337 (± 0.010) 0.340 (± 0.011) 0.183 (± 0.026)

cpu 0.501 (± 0.013) 0.445 (± 0.015) 0.429 (± 0.014)

ele 0.728 (± 0.007) 0.753 (± 0.008) 0.683 (± 0.021)

fri 0.975 (± 0.001) 0.893 (± 0.003) 0.747 (± 0.120)

gla 0.838 (± 0.072) 0.829 (± 0.064) 0.837 (± 0.077)

hou 0.721 (± 0.0339) 0.757 (± 0.033) 0.418 (± 0.255)

iri 0.955 (± 0.042) 0.924 (± 0.056) 0.958 (± 0.044)

pen 0.941 (± 0.002) 0.924 (± 0.003) 0.863 (± 0.006)

seg 0.951 (± 0.006) 0.943 (± 0.007) 0.773 (± 0.055)

sto 0.921 (± 0.011) 0.894 (± 0.018) 0.888 (± 0.018)

veh 0.854 (± 0.027) 0.811 (± 0.044) 0.805 (± 0.039)

vow 0.870 (± 0.016) 0.718 (± 0.037) 0.748 (± 0.039)

win 0.945 (± 0.039) 0.885 (± 0.071) 0.934 (± 0.049)

wis 0.491 (± 0.047) 0.373 (± 0.046) 0.386 (± 0.051)

spo 0.148 (± 0.017) 0.105 (± 0.016) 0.144 (± 0.018)

hea 0.061 (± 0.024) 0.035 (± 0.020) 0.052 (± 0.022)

dtt 0.127 (± 0.032) 0.075 (± 0.038) 0.117 (± 0.034)

col 0.076 (± 0.028) 0.051 (± 0.027) 0.065 (± 0.034)

dia 0.225 (± 0.027) 0.151 (± 0.025) 0.217 (± 0.028)

Table 3. Post-hoc test for the accuracy results.

Method Rank p−value Win Tie Loss

IBLR 1.19 - - - -

LRT 2.38 1.205e−4 18 0 3

HNB 2.43 1.205e−4 20 0 1
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In this work, we deal with model-free and model-based methods for the LR
problem, whose CPU requirements are clearly different. Therefore, to make a fair
comparison, the time for the whole process (learning with the training dataset
and validating with the test one) was gathered. The improvement ratios (time)
of HNB with respect to IBLR and LRT are shown in Table 4.

Table 4. Time results for each algorithm.

In light of these results, we can highlight that the HNB classifier is two times
faster than the IBLR algorithm for smaller datasets, while for larger ones this
value is multiplied by a factor of ten. Regarding the LRT method, we observe
that the HNB classifier is two and ten times faster for smaller and larger datasets,
respectively. Therefore, we may sacrifice a bit of time to improve the parameters
of the HNB model.

Finally, it should be remarked that there are some datasets (e.g., segment
or pendigits) where the HNB model fails in the prediction task when compared
with the IBLR and LRT algorithms. To find an explanation, we decided to apply
the corresponding algorithms for some of these datasets but in the classification
setup. When examining these results, we realized that the Naive Bayes algorithm
also failed, while decision trees and instance-based methods succeeded. Thus, we
think that the assumption that all the features follow a Gaussian distribution
restrict the predictive power of PGMs. Our suspicions were confirmed when we
observed that the results of the Naive Bayes model strongly improved when
the features were discretized. Therefore, we expect that the HNB model also
improves when we properly apply multinomial probability distributions instead
of Gaussian ones.

5 Conclusions

In this paper, we cope with the LR problem. Based on the EM estimation princi-
ple, we have defined a Naive Bayes structure where the root is a hidden discrete
variable, used to model the different probability distributions that must be man-
aged in such problem (multinomial and Gaussian for the features and Mallows
for the permutations).
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From the experimental evaluation, we can conclude that our proposal of
Hidden Naive Bayes is clearly faster than the LRT and IBLR methods while
being competitive in accuracy with the first one.

As future research we plan to introduce a discretization method to treat
as discrete variables those features that does not follow a Gaussian probability
distribution. Also, we will deal with a more general approach where incomplete
rankings are allowed on the training dataset.
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2. Arias, J., Cózar, J.: ExReport: fast, reliable and elegant reproducible research
(2015). http://exreport.jarias.es/

3. Borda, J.: Memoire sur les elections au scrutin. Histoire de l’Academie Royal des
Sciences (1770)

4. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
5. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
6. Breiman, L., Friedman, J., Stone, C., Olshen, R.: Classification and Regression

Trees. Wadsworth Inc., Wadsworth (1984)
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Abstract. In this contribution we will present a generalization of de
Finetti’s betting game in which a gambler is allowed to buy and sell
unknown events’ betting odds from more than one bookmaker. In such
a framework, the sole coherence of the books the gambler can play with
is not sufficient, as in the original de Finetti’s frame, to bar the gambler
from a sure-win opportunity. The notion of joint coherence which we will
introduce in this paper characterizes those coherent books on which sure-
win is impossible. Our main results provide geometric characterizations
of the space of all books which are jointly coherent with a fixed one. As
a consequence we will also show that joint coherence is decidable.

Keywords: Coherence · Sure-win · De Finetti’s betting game ·
Geometry of coherence · Decidability

1 Introduction

The logical foundations of subjective probability theory find in the work of de
Finetti, started with [1] and culminated with [2], a solid ground which, especially
in the last years has been the object of a deep study and several generalizations
(see for instance [6,8,9]).

To set the scene of de Finetti’s approach to probability, let us consider a
bookmaker who fixes a finite number of events e1, . . . , ek which are represented
by sentences of classical propositional logic and a book β on them, i.e., a complete
assignment β : {e1, . . . , ek} → [0, 1] of betting odds β(ei) = βi. In order to bet on
the events, a gambler chooses stakes σ1, . . . , σk ∈ R, one for each event, and pays
the bookmaker the amount σi · βi for each ei (with i ∈ {1, . . . , k}). Note that σi

may be negative, in which case, paying σi ·βi means receiving −σi ·βi, as money
transfer is orientated from the gambler to the bookmaker. When a (classical
propositional) valuation h determines the truth-value of each ei, the gambler
c© Springer Nature Switzerland AG 2019
G. Kern-Isberner and Z. Ognjanović (Eds.): ECSQARU 2019, LNAI 11726, pp. 363–373, 2019.
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gains σi if h(ei) = 1, i.e., the event ei has actually occurred, and 0 otherwise1.
The book β is said to be coherent if there is no choice of stakes σ1, . . . , σk ∈ R

which forces gambler’s balance not to be strictly positive under every valuation
h. In other words, coherent books are those which bar the gambler from a sure-
win opportunity, i.e., a strictly positive gain, independently of the truth-value
of the events involved.

A slightly more general, yet completely realistic, situation is the one in which
a gambler is allowed to place her stakes on two or more coherent books2. As
we are going to point out in the present contribution, in such a case the sole
coherence of the books the gambler decides to play with is not sufficient to
bar her from a sure-win. Consider, for instance, the following very elementary
example: Two bookmakers B1 and B2 fix betting odds to the events “Heads” and
“Tails” of the typical coin-tossing game according to the following scheme: B1

assigns 1/2 to both “Heads” and “Tails”, while B2 assigns 1/3 to “Heads” and
2/3 to “Tails”. Notwithstanding the coherence of the two assignments, buying
“Tails” from B1 for σ1 = 1 euro and “Heads” from B2 for σ2 = 1 euro leads the
gambler to a sure-win.

Situations of this kind have been studied by Nau and his collaborators (see
[10,11]) in the context of noncooperative games. There, given a set of players,
a (conjoined) strategy is said to be jointly coherent, if it does not expose the
group to arbitrage. In other words, “players who subscribe to the standard of
joint coherence, are those who do not let themselves be used collectively as a
money pump” (see [10, p. 426]).

In this paper we deepen this research line sticking within de Finetti’s original
betting framework and we move the first steps towards a logico-mathematical for-
malization of those coherent books which avoid sure-win (i.e., arbitrage) oppor-
tunities. They will be called jointly coherent books. In particular, we will give an
answer to the following question: given a coherent book, which other coherent
books, if any, bar a malicious gambler from a sure-win opportunity? More pre-
cisely, for every coherent book β, we will provide a geometric characterization
of the set of all (coherent) books which are jointly coherent with it.

This paper is organized as follows: in the next section we will recall, in a
more precise way, de Finetti’s coherence criterion, de Finetti’s theorem and, in
particular, we will focus on its geometric version. In Sect. 3, we will formally
introduce the concepts of sure-win and joint coherence of a book. In Sect. 4 we
will study the geometry of joint coherence and provide the main result of the
paper.

2 Preliminaries

Along this paper we fix a finite set of events that we denote by Φ = {e1, . . . , ek}.
As we recalled in Sect. 1, a book β on Φ is coherent if for each choice of stakes
1 For details, see for instance [5].
2 The maybe unrealistic assumption which sees the bookmakers to consider exactly

the same set of events can indeed be relaxed with an inessential modification.
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σ1, . . . , σk ∈ R there exists at least a possible world h such that gambler’s total
balance

∑k
i=1 σi(h(ei) − β(ei)) ≤ 0.

A book β is said to be incoherent if it is not coherent. Obviously, incoherent
books are those which allow the gambler for a sure-win opportunity.

Recall that a finitely additive probability measure over a Boolean algebra A
is a map P : A → [0, 1] such that P (1) = 1 and P (a∨b) = P (a)+P (b), provided
that a ∧ b = 0. De Finetti’s theorem then states that a book β : Φ → [0, 1] is
coherent iff it extends to a finitely additive probability measure over the Boolean
algebra generated by the events in Φ, denoted by BΦ, see [2].

This result admits an equivalent geometrical formulation (see [12]), which we
are going to recall here. Any finite set of events Φ = {e1, . . . , ek} determines a
polytope in [0, 1]k by the following construction. Let h1, . . . , ht be the homomor-
phisms from BΦ to the two element Boolean algebra 2 = 〈{0, 1},∧,∨,¬, 0〉. For
every j = 1, . . . , t let qj be the point of {0, 1}k

qj = (hj(e1), . . . , hj(ek)). (1)

Finally, let CΦ be the polytope of [0, 1]k generated by q1, . . . , qt:

CΦ = co({qj | j = 1, . . . , t}),

where co stands for convex hull.
A book β : Φ → [0, 1] determines a point β = (β(e1), . . . , β(ek)) ∈ [0, 1]k. The

following result, whose proof can be found in [6, Lemma 6.3] and [12, Theorem 2],
provides a geometric characterization of coherent books.

Theorem 1. For a book β : Φ → [0, 1] the following conditions are equivalent:

1. β is coherent;
2. β ∈ CΦ.

The construction illustrated above is better visualized towards an example.

Example 1. Consider Φ = {e1, e2}, where e1 = p and e2 = p∨q in a language with
two propositional variables p, q. Following de Finetti [1], the above mentioned
events may be thought as of referring to a horse race: the atomic event p can be
interpreted as “Horse number 1 is the winner”, while p ∨ q could stand for “An
Italian horse is winning”, under the assumption that only two horses are Italian
(and one of them is actually the number 1).

The algebra BΦ counts of four homomorphisms to 2, namely those maps
h1, h2, h3, h4 : {p, q} → {0, 1} which assign, respectively, to p and q the val-
ues (0, 0), (0, 1), (1, 0) and (1, 1). Therefore, we obtain the following points
q1, . . . , q4 ∈ R

2:

q1 = (h1(e1), h1(e2)) = (h1(p), h1(p ∨ q)) = (0, 0);
q2 = (h2(e1), h2(e2)) = (h2(p), h2(p ∨ q)) = (0, 1);
q3 = (h3(e1), h3(e2)) = (h3(p), h3(p ∨ q)) = (1, 1);
q4 = (h4(e1), h4(e2)) = (h4(p), h4(p ∨ q)) = (1, 1).
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Since q3 = q4, we have:

CΦ = co({q1, q2, q3}) = co({(0, 0), (0, 1), (1, 1)}),

depicted as in Fig. 1 below. Theorem 1 tells us that a book β is coherent if and
only if it is a convex combination of q1, q2 and q3.

(1, 0)
q1

q3q2

Fig. 1. The convex set CΦ (in gray) of all coherent books on events e1 = p and e2 = p∨q.

3 Sure-Wins and Jointly Coherent Books

As mentioned in the Introduction, we are interested in situation where a gambler
has the opportunity of betting on two (or ideally more) books over the same set
of events. The gambler’s concept of sure-win opportunity becomes wider and it
is made precise in the following.

Definition 1. Let β1, β2 be coherent books on the set of events Φ = {e1, . . . , ek}.
We say that a gambler has a sure-win opportunity on β1, β2 if there exists a total
map ξ : {1, . . . , k} → {1, 2} such that, the book

β : ei 	→ βξ(i)(ei)

is incoherent. If such function ξ does not exist, then β1 and β2 are said to be
jointly coherent.

Therefore, a gambler has a sure-win opportunity on β1, β2 if there exists a map
ξ : {1, . . . , k} → {1, 2} and stakes σ1, . . . , σk ∈ R such that in very every possible
world h, gambler’s balance

k∑

i=1

σi(h(ei) − βξ(i))) > 0,

where β : ei 	→ βξ(i)(ei) is as in Definition 1.
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Remark 1. Notice that two coherent books β1 and β2 are jointly coherent if any
book in the set

Ξ(β1, β2) = {β1(e1), β2(e1)} × {β1(e2), β2(e2)} × . . . × {β1(ek), β2(ek)}

is coherent as well. For any pair of coherent books β1, β2 we will call Ξ(β1, β2)
the set of crossed-books of β1 and β2.

Also notice that, by Definition 1, a gambler is not allowed to buy (or sell)
a bet on the same event from both β1 and β2. This restriction is imposed in
order to not trivialize her opportunities of sure-win. Indeed, since β1 and β2 are
distinct, there always exists at least an event e such that β1(e) 
= β(e). Thus,
assuming that β1(e) < β2(e) without loss of generality, buying β1(e) for 1 euro
and β2(e) for -1 euro (i.e., selling β2(e) for 1 euro) would immediately ensure
the gambler a sure-win.

Example 2. Let Φ = {e1, e2} as in Example 1 and consider the books:

1. β1(e1) = 1/2 and β1(e2) = 2/3;
2. β2(e1) = 1/4 and β2(e2) = 2/3;
3. β3(e1) = β3(e2) = 1/3.

Then, β1 is jointly coherent with β2, which is joint coherent with β3. On the
other hand β1 is not jointly coherent with β3. Indeed, the book α ∈ Ξ(β1, β3)
defined by e1 	→ β1(e1) = 1/2, e2 	→ β3(e2) = 1/3 is incoherent (see Fig. 2).
Therefore, a gambler who is allowed to choose, for each event, which book to
bet with has a sure-win opportunity if the books into play are β1 and β3.

(1, 0)
q1

q3q2

β1

β3

β2

α

Fig. 2. The convex hull CΦ (gray); the coherent books β1, β2, β3 and the incoherent
book α ∈ Ξ(β1, β3).

We now present a first easy result. Recall that a subset B = {b1, . . . , br} of
a Boolean algebra A is a partition if

∨r
i=1 bi = � and, for all i 
= j, bi ∧ bj = ⊥.
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Proposition 1. If Φ = {e1, . . . , ek} is a partition of BΦ, then for any two
coherent books β1, β2 on Φ the following conditions are equivalent:

1. β1 
= β2;
2. β1 and β2 are not jointly coherent, i.e. the gambler has a sure-win opportunity

on β1, β2.

Proof. The direction (2)⇒(1) is trivial. In order to prove (1)⇒(2), observe that,
since by hypothesis Φ is a partition of BΦ, any book β on Φ is coherent if and
only if

k∑

i=1

β(ei) = 1. (2)

Now, since β1 
= β2, there exists ei ∈ Φ such that β1(ei) 
= β2(ei). Let us
assume, without loss of generality, that β1(ei) < β2(ei) and let us consider the
book β : Φ → [0, 1] defined as follows: for every e ∈ Φ,

β(e) =
{

β1(e) if e 
= ei,
β2(e) otherwise.

Notice that β ∈ Ξ(β1, β2) and it is not coherent since
∑k

j=1 β(ej) < 1. Therefore,
β1 and β2 are not jointly coherent. This settles the claim. ��

4 The Geometry of Joint Coherence

We are interested in providing a full characterization of all those coherent books
which are jointly coherent with a fixed one. In this section, we will give geometric
characterizations of the space of these books.

We set the background for proving this result. For every book β : Φ → [0, 1]
and for every i = 1, . . . , k, let δi be the pair (d+i , d−

i ) ∈ R
2 be such that:

1. d±
i ≥ 0;

2. the books βd+
i

= (β1, . . . , βi−1, βi +d+i , βi+1, . . . , βk) and βd−
i

= (β1, . . . , βi−1,

βi − d−
i , βi+1, . . . , βk) are coherent;

3. for all ε > 0, (β1, . . . , βi−1, βi + d+i + ε, βi+1, . . . , βk) and (β1, . . . , βi−1, βi −
d−

i − ε, βi+1, . . . , βk) are incoherent.

Let us hence define the rectangle

Rβ = {γ ∈ R
k | (∀i = 1, . . . , n) d−

i ≤ |γi − βi| ≤ d+i },

and the convex set
Cβ = CΦ ∩ Rβ . (3)

Obviously Cβ is nonempty iff β is coherent.

Example 3. Let Φ and β1 : Φ → [0, 1] be as in Example 2. Thus, β1(p) = 1/2
and β1(p ∨ q) = 2/3. The vertices (extreme points) of the rectangle Rβ1 are
easy to compute: v1 = (2/3, 1/2); v2 = (0, 1/2); v3 = (0, 1); v4 = (2/3, 1). Thus,
Cβ1 = CΦ ∩ Rβ1 coincides with the gray region as in Fig. 3.
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(1, 0)
q1

q3q2

v1v2

v3 v4

β1

Fig. 3. The coherent book β1 from Example 2 and the convex set Cβ1 (the gray region)
obtained by intersecting CΦ (the triangle of vertices q1, q2 and q3) and the rectangle
Rβ1 (whose vertices are v1, v2, v3 and v4).

The following result shows that, for every fixed coherent book β, the convex
set Cβ characterizes all the coherent books which are jointly coherent with β.

Proposition 2. Let β, β′ : Φ → [0, 1] be two coherent books. Then the following
conditions are equivalent:

1. β′ is jointly coherent with β;
2. β′ ∈ Cβ.

Proof. (1) ⇒ (2). Assume that β and β′ are jointly coherent. Since β′ is coherent
then, by Theorem 1, β′ ∈ CΦ. We only have to show that β′ ∈ Rβ . Suppose, by
contradiction, that β′ 
∈ Rβ , i.e. there exists 1 ≤ i ≤ k such that | βi −β′

i | > d+i
(or | βi − β′

i | < d−
i , but the reasoning is analogous). The definition of Rβ

immediately implies that β′ is not coherent, a contradiction.

(2) ⇒ (1). Let β′ ∈ Cβ = CΦ ∩ Rβ , i.e. β′ is a coherent book which satisfies
the above conditions 1.-3. Let α be any book in Ξ(β, β′). Since β is coherent,
we have that β ∈ Cβ and, by assumption, β′ ∈ Cβ , which together imply that
α ∈ Cβ . Thus α ∈ CΦ, which, by Theorem 1, implies that is coherent, therefore
β and β′ are jointly coherent books. ��
It is immediate to see that the relation of being jointly coherent is symmetric.
Therefore, from Proposition 2 above β and β′ are jointly coherent iff β′ ∈ Cβ iff
β ∈ Cβ′ . Therefore the following is immediate.

Corollary 1. Let β, β′ : Φ → [0, 1] be two coherent books. Then β and β′ are
jointly coherent iff β, β′ ∈ Cβ ∩ Cβ′ .

In the next we will show, for every coherent book β, another geometric
characterization of Cβ . Recalling that every closed convex subsets of R

k is an
intersection of halfspaces (see [4, Theorem 3.8]), for every polytope P ⊆ R

k,
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there are linear polynomials f1, . . . , fn such that P = {(x1, . . . , xk) ∈ R
k | ∀ i =

1, . . . , n, fi(x1, . . . , xk) ≥ 0}. In what follows, without danger of confusion, for
every finite set of events Φ = {e1, . . . , ek}, we will write f1, . . . , fn for those
polynomials such that

CΦ = {(x1, . . . , xk) ∈ R
k | ∀ i = 1, . . . , n, fi(x1, . . . , xk) ≥ 0}. (4)

For the sake of a lighter notation, we will denote by K the index set {1, . . . , k}.
Let us fix two points a = (a1, . . . , ak) and b = (b1, . . . , bk) of Rk, and a subset

J of K. Then, we denote by (aJ , bK\J ) the tuple obtained by substituting bj by
aj , in b, for each j ∈ J .

Theorem 2. Let CΦ, f1, . . . , fn be as in (4) and let β, β′ be two coherent books.
Then, β′ ∈ Cβ iff β′ is solution of the following system,

S (β) = {fi(βJ , xK\J ) ≥ 0 | i = 1, . . . , n, J ⊆ K}.

In other words, Cβ coincides with the set of solutions of S (β).

Proof. (⇐). Assume, by contraposition, that β′ 
∈ Cβ . Thus, by Proposition 2,
β and β′ are not jointly coherent and hence, by Remark 1, there exists a β̂ ∈
Ξ(β, β′) which is not coherent. This means, by Theorem 1, that β̂ 
∈ CΦ. There-
fore, by (4), there exists an index i ∈ {1, . . . , n} such that fi(β̂1, . . . , β̂k) < 0 and
in particular β̂ is not a solution of S (β).

(⇒). Assume, again by contraposition, that β′ is not solution of S (β). Thus,
there exists a J ⊆ K and an index i ∈ {1, . . . , n} such that fi(βJ , β′

K\J ) < 0.
Therefore, the claim immediately follows by observing that (βJ , β′

K\J ) ∈ Ξ(β, β′)
and (βJ , β′

K\J ) 
∈ CΦ proving that β and β′ are not jointly coherent. ��
An immediate consequence of the above theorem is the decidability of the

problem determining if two rational-books are jointly coherent. For the following
result to make sense, we will hence assume that the books involved take value
into the rational unit interval [0, 1] ∩ Q.

Corollary 2. Given two rational-valued books β1, β2 ∈ CΦ, the problem of deter-
mining if β1 and β2 are jointly coherent is decidable.

Proof. The following (sketched) procedure, which takes in input the events
e1, . . . , ek and the rational numbers β1(ei)’s and β2(ei)’s, decides if β1 and β2

are jointly coherent.

Step 1: Determine the extremal points of CΦ by computing, for each truth-
assignment hj , qj = (hj(e1), . . . , hj(ek)) as in (1).

Step 2: Let qt1 , . . . , qtr be, among the qj ’s, the extremal points of a face Ft of CΦ

and let ft(x1, . . . , xk) the be equation of the hyperplane through qt1 , . . . , qtr .
Step 3: Iterate Step 2 for all faces F1, . . . ,Fn of CΦ and hence determine

f1, . . . , fn such that CΦ = {(x1, . . . , xk) ∈ R
k | ∀ i = 1, . . . , n, fi(x1, . . . , xk) ≥

0} as in (4).
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Step 4: Introduce the system of inequalities S (β1) as in the statement of
Theorem 2.

Therefore, in the end, check if β2 = (β2(e1), . . . , β2(ek)) is a (rational) solution
of S (β1). ��

Our last example applies the result of Theorem 2 and exemplifies also the
procedure sketched in the proof of Corollary 2.

Example 4. Let Φ = {p, p ∨ q} and β1(p) = 1
2 , β1(p ∨ q) = 2

3 . Then

CΦ = {(x1, x2) ∈ R
2 : 0 ≤ x1, x2 ≤ 1, x1 ≤ y2}.

A book β is jointly coherent with β1 if and only if it satisfies the system given
by the following inequalities

– for J = ∅, we have x1 ≥ 0, 1 − x1 ≥ 0, x2 ≥ 0, 1 − x2 ≥ 0 and x2 − x1 ≥ 0;
– for J = {1}, we have 1/2 ≥ 0, 1−1/2 ≥ 0, x2 ≥ 0, 1−x2 ≥ 0 and x2−1/2 ≥ 0;
– for J = {2}, we have x1 ≥ 0, 1−x1 ≥ 0, 2/3 ≥ 0, 1−2/3 ≥ 0 and 2/3−x1 ≥ 0;
– for J = {1, 2}, we have 1/2 ≥ 0, 1 − 1/2 ≥ 0, 2/3 ≥ 0, 1 − 2/3 ≥ 0 and

2/3 − 1/2 ≥ 0.

Notice that the inequalities obtained for J = ∅ just describes CΦ and it is
also immediate to see that for J = {1, 2}, we get the inequalities which assure
that β1 is a coherent book.

5 Conclusion and Future Work

The present work is motivated by the observation that when two different book-
makers assign betting quotes over the same set of events, the notion of coherence
is not enough to prevent a gambler who is allowed to bet on both assignments
from a sure-win opportunity. We thereby proposed the notion of joint coherence
of two books.

Our main results consist of geometrical characterizations of the space of
books which are jointly coherent with a given one. Such a space is a closed
convex subset of the set of all coherent books and it identifies which books can
be considered “safe” once β has been fixed.

We believe that the mathematics of joint coherence as well as its computa-
tional aspects deserve further attention. In particular, since (two) jointly coher-
ent books are necessarily coherent, we wonder what is the effect of the property
of being jointly coherent on the sets of probability measures which extend them,
by de Finetti’s theorem, on the Boolean algebra generated by the events. Further,
still on this line, it would be interesting to extend the notion of joint coherence
to more general theories of uncertainty and, in particular, to Walley’s defini-
tion of coherence for imprecise probabilities where negative betting rates are
forbidden [13].
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We are interested also in providing different characterizations of the notion
of joint coherence. In particular, following [7], where it is shown that (strict)
coherence admits three characterizations (algebraic, geometrical and logical), one
of the aims for the future is to extend such characterizations to joint coherence
as well.

A very natural question that computer scientists may rise is whether it is pos-
sible to establish a computational bound to the problem of determining whether
two books are jointly coherent. Although we proved that checking joint coherence
of two books is decidable, providing a NP-bound for the same seems challenging
and it will be object of further investigation.

Joint coherence arises from allowing a multiplicity of bookmakers publishing
coherent books, who can be viewed as individually rational agents. Grounding
on this consideration, it is reasonable to think that this notion may suggest
an alternative way to approach collective judgments (see for instance [3]) and
collective rationality. This will also be addressed in our future work.
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Abstract. Recently, generalized credal sets have been introduced for
modeling contradiction (incoherence) in the information. In previous
papers, we did not discuss how such information could be updated if
some events occur. In this paper, we show that it can be done by the
conjunctive rule based on generalized credal sets. We show that the appli-
cation of generalized credal sets results in several types of conditioning
for imprecise probabilities.

Keywords: Generalized credal sets ·
Contradictory (incoherent) lower previsions · Incoherence correction ·
Updating imprecise probabilities

1 Introduction

The processing of incoherent (inconsistent) information was considered in sev-
eral papers [4,14], and the main approach was to eliminate incoherence and to
return to consistent information in order to use well-developed methods from
imprecise probabilities after that. However, there exists another way, in which
we try to model inconsistency in the information. In our opinion, this way can
be more suitable and it can allow us not to lose some important information
like the conflict between our prior information and real data [17]. In this paper,
we will demonstrate this observation showing possible conditioning for impre-
cise probabilities based on generalized credal sets. We show that this type of
conditioning is very close to conditioning proposed by Cattaneo [5], where he
tried to describe the set of possible probability distributions using the likeli-
hood function. Analogous ideas were used in earlier papers [10,11], where the
evidential information was described by possibility distributions defined on sets
of probability measures.

In this paper, we give a new interpretation of generalized credal sets. They can
be viewed as sets of probability distributions with a degree how they contradict to
given data. This degree is closely related to the corresponding likelihood function.
Based on the possible ways of transforming contradictory information to the
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consistent one, we can introduce several approaches to updating information
represented by imprecise probabilities and among of them, there are known ones,
in particular, the updating based on Dempster’s rule [7,15] or the maximal
likelihood updating [9].

2 Monotone Measures: Some Useful Constructions

Let X be a finite universal set and 2X be the power set of X. The set function
μ : 2X → [0, 1] is called

– normalized if μ(∅) = 0 and μ(X) = 1;
– monotone if A ⊆ B, A,B ∈ 2X implies μ(A) � μ(B);
– a monotone measure [6] if μ is normalized and monotone;
– a belief function [15] if there is a set function m : 2X → [0, 1] with∑

B∈2X m(B) = 1 called the basic belief assignment (bba) such that μ(A) =∑
B∈2X |B⊆A m(B).

We write μ1 � μ2 for set functions on 2X if μ1(A) � μ2(A) for all A ∈ 2X . The
set function ν is called the dual of μ if ν(A) = 1−μ(Ac) for all A ∈ 2X , where Ac

denotes the complement of A. To indicate the dual of μ, we use the upper index
d, i.e. μd denotes the dual of μ. A set function μ is a convex sum of set functions
μ1 and μ2 if there is an a ∈ [0, 1] such that μ(A) = aμ1(A) + (1 − a)μ2(A) for
all A ∈ 2X . This fact is denoted by μ = aμ1 + (1 − a)μ2.

Let Bel be a belief function with the bba m, then A ∈ 2X is called a focal
element for Bel if m(A) > 0. A belief function is called categorical if it has the
only one focal element B. This function is denoted by η〈B〉 and clearly

η〈B〉(A) =
{

1, B ⊆ A,
0, otherwise, A ∈ 2X .

Every belief function Bel with the bba m can be represented as a convex sum
of categorical belief functions as

Bel =
∑

B∈2X

m(B)η〈B〉.

3 Modeling Uncertainty with Imprecise Probabilities

One among the traditional models of uncertainty is based on probability mea-
sures. A belief function P is a probability measure if its body of evidence consists
of singletons, i.e. every probability measure P on 2X can be represented as

P =
n∑

i=1

aiη〈{xi}〉, (1)

where
∑n

i=1 ai = 1, ai � 0, i = 1, ..., n. Thus, the bba m of P is

m(A) =
{

ai, A = {xi},
0, otherwise.
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We denote the set of all possible probability measures on 2X by Mpr. Assume
that an experiment is described by a probability measure P described by (1)
and a function f : X → R shows us the award that we get after conducting
the experiment, i.e. f(xi) is the award if the outcome results in xi. Then, in a
frequentist’s view, the value

EP (f) =
n∑

i=1

f(xi)P ({xi}) =
n∑

i=1

aif(xi)

gives us the expected award. This award can be considered as the mean value
of awards obtained during the series of the same independent experiments as
follows from fundamentals of the classical probability theory. If the measure P
is not exactly known, then it is possible to describe an experiment by a set of
probability measures P, and we know the lower bound EP(f) and upper bound
EP(f) of the expected award defined by

EP(f) = inf
P∈P

EP (f), EP(f) = sup
P∈P

EP (f).

Let K be the linear space of all possible real valued functions on X. Then
functionals EP and EP on K have the following properties [1,16]:

(1) EP(af + c) = aEP(f) + c, EP(af + c) = aEP(f) + c for every a � 0, c ∈ R

and f ∈ K;
(2) EP(f1 + f2) � EP(f1)+EP(f2), EP(f1 + f2) � EP(f1)+EP(f2), for every

f1, f2 ∈ K;
(3) EP(f1) � EP(f2) for every f1, f2 ∈ K with f1(x) � f2(x) for all x ∈ X;
(4) EP(f) = −EP(−f) for every f ∈ K.

By some reasons [1,16], in the theory of imprecise probabilities such non-
empty sets of probability measures are assumed to be closed and convex sets
known in the literature as credal sets. Assume that the functional Φ : K → R

obeys properties (1), (2) and (3) as the functional EP, then there is a credal set
P such that Φ = EP on K. Thus, there is a bijection between credal sets and
functionals EP.

In the theory of imprecise probabilities, there are several ways of presenting
uncertain information. Let K ′ ⊆ K, then every functional Φ : K ′ → R is called a
lower prevision [1,16] if its values Φ(f) can be viewed as lower bounds of EP (f).
A lower prevision Φ : K ′ → R is called non-contradictory or consistent, if it
defines the credal set

P(Φ) = {P ∈ Mpr|∀f ∈ K ′ : EP (f) � Φ(f)}.

Otherwise, if the set P(Φ) is empty, then Φ is called contradictory (incoherent or
inconsistent) lower prevision. In the sequel, we assume that every lower prevision
Φ : K ′ → R obeys the property

Φ(f) � max
x∈X

f(x).
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We can analogously introduce upper previsions. Every functional Φ′ : K ′ → R

is called an upper prevision if its values Φ′(f) can be viewed as upper bounds of
EP (f) and Φ is called non-contradictory (or consistent), if it defines the credal
set

P(Φ′) = {P ∈ Mpr|∀f ∈ K ′ : EP (f) � Φ′(f)}.

In the sequel, we assume that every upper prevision Φ : K ′ → R obeys the
property Φ′(f) � min

x∈X
f(x).

Models based on lower previsions and based on upper previsions are equiv-
alent, because if we have a lower prevision Φ : K ′ → R, then we can get the
upper prevision Φ′ on {−f |f ∈ K ′} using the formula Φ′(f) = −Φ(−f), where
−f ∈ K ′, and, clearly, the corresponding credal sets coincide for both models.

We can also describe uncertain information using set functions (or monotone
measures). In this case, the set K ′ consists of characteristic functions 1A(x) = 1
if x ∈ A and 1A(x) = 0 otherwise. Thus, every Φ on K ′ = {1A|A ∈ 2X} can be
considered as a set function μ(A) = Φ(1A), A ∈ 2X . A monotone measure μ is
called a lower probability if its values are viewed as lower bounds of probabili-
ties. A lower probability μ is called non-contradictory, if it defines the credal set
P(Φ) = {P ∈ Mpr|P � μ}. Otherwise, if P(Φ) is empty, then μ is called contra-
dictory. Analogously, a monotone measure μ′ is called an upper probability if its
values are viewed as upper bounds of probabilities. An upper probability μ′ is
called non-contradictory if μ′ defines the credal set P(μ′) = {P ∈ Mpr|P � μ′}.
Otherwise, if P(μ′) = ∅, then μ′ is a contradictory upper probability.

4 Contradiction Correction Based on Generalized Credal
Sets

Assume Φ : K ′ → R is an upper prevision. Following [2], Φ can be represented
as the convex sum of two functionals:

Φ = (1 − a)Φ(1) + aΦ(2), (2)

where a ∈ [0, 1], Φ(1) is a non-contradictory upper prevision and Φ(2) is a con-
tradictory upper prevision. This representation always exists if K ′ is such that
the upper prevision

Vmin(f) = min
x∈X

f(x), f ∈ K ′,

is contradictory. The exact lower bound of a in representation (2) is called the
amount of contradiction in Φ, and this value is denoted by Con(Φ). Because,
by definition, Vmin(f) � Φ(2)(f), f ∈ K ′, for every upper prevision Φ(2), and
Φ(1) is a non-contradictory lower prevision if there is a P ∈ Mpr such that
EP (f) � Φ(1)(f) for all f ∈ K ′ the amount of contradiction can be computed by

Con(Φ) = 1 − sup{a ∈ [0, 1]|
∃P ∈ Mpr,∀f ∈ K ′ : aEP (f) + (1 − a)Vmin(f) � Φ(f)}.
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We can simplify the above formula, introducing so-called normalized func-
tions. A function f ∈ K is called normalized if minx∈X f(x) = 0. We can normal-
ize every function f ∈ K assuming that the corresponding normalized function
is f(x) = f(x)−minx∈X f(x), x ∈ X. Let us define Φ(f) = Φ(f)−minx∈X f(x),
x ∈ X. Then the inequality aEP (f) + (1 − a)Vmin(f) � Φ(f) is equivalent to
aEP (f) � Φ(f) and we rewrite the expression for Con(Φ) as

Con(Φ) = 1 − sup
{
a ∈ [0, 1]|∃P ∈ Mpr,∀f ∈ K ′ : aEP (f) � Φ(f)

}
.

Let X = {x1, ..., xn} and denote aEP (f) =
∑n

i=1 aif(xi), where ai =
aP ({xi}), i = 1, ..., n, and assume that the set K ′ is finite, then the value
Con(Φ) can be computed by solving the following linear programming problem:

Con(Φ) = 1 −
n∑

i=1

ai → min

⎧
⎪⎪⎨

⎪⎪⎩

n∑

i=1

f(xi)ai � Φ(f), f ∈ K ′,
n∑

i=1

ai � 1, ai � 0, i = 1, ..., n.

In particular, if μ is an upper probability, then the amount of contradiction
Con(μ) can be computed as

Con(Φ) = 1 −
n∑

i=1

ai → min

{ ∑

xi∈A

ai � μ(A), A ∈ 2X\{∅},
ai � 0, i = 1, ..., n.

An upper prevision Φ is called fully contradictory if Con(Φ) = 1. In decision
process, we identify the fully contradictory information with the full ignorance
that can be modeled by the upper prevision Vmax(f) = maxx∈X f(x) or by the
credal set P(Vmax) = Mpr that contains all possible probability measures. If the
information described by the upper prevision Φ is not fully contradictory, then
Con(Φ) = a ∈ [0, 1) and Φ can represented as

Φ = (1 − a)Φ(1) + aVmin,

where Φ(1) is a non-contradictory upper prevision, and for making decisions
we need to correct the contradictory information. Clearly, the decision process
should be based on the consistent information in Φ(1) and depend on the amount
of contradiction a = Con(Φ). We propose in [2,3] to take the natural extension
n.ext(Φ(1))1 of Φ(1) and transform the fully contradictory information, repre-
sented by Vmin, to the full ignorance Vmax. This transformation gives us the
1 The value n.ext(Φ(1))(f) for f ∈ K is computed by n.ext(Φ(1))(f) = EP(Φ(1))(f),

where P(Φ(1)) is the usual credal set that corresponds to Φ(1).
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coherent upper prevision

Φ′ = (1 − a)n.ext(Φ(1)) + aVmax. (3)

We can describe the above transformation using so-called generalized credal sets.
At first, consider monotone measures of the type

P = a0η〈X〉 +
n∑

i=1

aiη〈{xi}〉, (4)

where
∑n

i=0 ai = 1, and ai � 0, i = 1, ..., n, viewed as upper probabilities.
We see that the set function η〈X〉 is the counterpart of Vmin, since η〈X〉(A) =
Vmin(1A), A ∈ 2X . If a0 < 1, then P (1) = 1

1−a0

∑n
i=1 aiη〈{xi}〉 is in Mpr and

P = a0η〈X〉+(1−a0)P (1). Thus, Con(P ) = a0. We denote the set of all monotone
measures of the type (4) by Md

cpr. We can extend any P on 2X to K by

EP (f) = a0Vmin(f) + (1 − a0)EP (1)(f) = a0 min
x∈X

f(x) +
n∑

i=1

aif(xi).

Definition 1. A non-empty subset P ⊆ Md
cpr is called a lower generalized credal

set (LG-credal set) iff the following conditions hold
(1) P1 ∈ P implies P2 ∈ P for every P2 � P1 in Md

cpr;
(2) P is a convex subset of Md

cpr, i.e. P1, P2 ∈ P implies aP1 +(1−a)P2 ∈ P
for any a ∈ [0, 1];

(3) P is a closed subset of Rn (every P defined by (4) is considered as a point
(a1, ..., an) of Rn).

LG-credal sets are generalizations of usual credal sets. It can be shown using
profiles of LG-credal sets. Let P be a LG-credal set, then the set of all maximal
elements in P is called the profile of P and denoted by profile(P). If we consider
the usual credal set P′, then we identify it with the LG-credal set

P = {P ∈ Md
cpr|∃P ′ ∈ P′ : P � P ′}, (5)

whose profile is P′. The amount of contradiction in every LG-credal set P can be
computed by Con(P) = inf{Con(P )|P ∈ P}. Every upper prevision Φ : K ′ → R

can be described by the LG-credal set P(Φ) defined by

P(Φ) =
{
P ∈ Md

cpr|∀f ∈ K ′ : EP (f) � Φ
}

. (6)

Proposition 1. Let Φ : K ′ → R be an upper prevision with Con(Φ) = a0 < 1,
and let P(Φ) be the LG-credal set defined by (6), then the coherent upper prevision
Φ′ from (6) coincides with

Φ′′(f) = sup{EPd(f)|P ∈ P(Φ), Con(P ) = a0},

where EPd(f) for f ∈ K and P d = a0η
d
〈X〉+

∑n
i=1 aiη〈{xi}〉 is defined by EPd(f) =

a0 maxx∈X f(x) +
∑n

i=1 aif(xi).
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5 Basic Aggregation Rules in the Theory of Imprecise
Probabilities

In the literature, a reader can find several approaches of information aggregation
based on imprecise probabilities [8,12,13], but most of them can be considered
as a combination of conjunctive, disjunctive and mixture rules. Assume that
sources of information are described by upper previsions Φ1, ..., Φm on K ′ ⊆ K.
If these sources of information are assumed to be reliable, then we can use the
conjunctive rule:

Φ(f) = min
i=1,...,m

Φi(f), f ∈ K ′.

If we describe these sources of information by LG-credal sets P(Φi), i = 1, ...,m,
then

P(Φ) =
m⋂

i=1

P(Φi).

If we assume that at least one source of information is reliable, then we can use
the disjunctive rule defined by Φ(f) = max

i=1,...,m
Φi(f), f ∈ K ′. The counterpart

of it based on LG-credal sets is

P =

{
m∑

i=1

aiPi|Pi ∈ P(Φi),
m∑

i=1

ai = 1, ai � 0, i = 1, ...,m

}

,

where obviously P ⊆ P(Φ). The mixture rule is used if we can evaluate the
reliability of information sources by real positive numbers ri, i = 1, ...,m. Then

the result of the mixture rule is the upper prevision Φ(f) =
m∑

i=1

riΦi(f), f ∈ K ′.

The counterpart of it based on LG-credal sets is

P =

{
m∑

i=1

riPi|Pi ∈ P(Φi)

}

,

where, obviously, P ⊆ P(Φ).
We can also define analogous aggregation rules based on usual credal sets, but

in this case each source of information should be consistent and the conjunctive
rule can be applied, if the intersection of corresponding credal sets is not empty,
i.e. when there is no contradiction among information sources.

6 Updating Information Based on the Conjunctive Rule

In probability theory, the updating information has a high importance. Let P
be a probability measure on 2X and we know that an event B ⊆ X occurs, then
we can update probabilities using the conditional probability measure

PB(A) = P (A ∩ B)/P (B), A ∈ 2X .



Conditioning Based on Generalized Credal Sets 381

The conditional probability measure PB is not defined if the event B fully con-
tradicts to the probability measure P , i.e. P (B) = 0. Let us find what would be
the result if we aggregate these sources of information using the conjunctive rule
for LG-credal sets. In this case, the information that outcome is in the set B can
be described by the upper probability ηd

〈B〉. Assume that P =
∑n

i=1 aiη〈{xi}〉,
then the result of the conjunctive rule is μ = min{P, ηd

〈B〉}.

Proposition 2. Let P =
∑n

i=1 aiη〈{xi}〉 be in Mpr and μ = min{P, ηd
〈B〉} for a

B ∈ 2X\{∅}. Then the LG-credal set P(μ) = {P ∈ Md
cpr|P � μ} has the profile

{P ∗
B}, where P ∗

B = a0η〈X〉 +
∑

xi∈B aiη〈{xi}〉, where a0 = 1 − ∑
xi∈B ai.

We can generalize Proposition 2 as follows.

Proposition 3. Let P = a0ηX +
∑n

i=1 aiη〈{xi}〉 be in Md
cpr and μ =

min{P, ηd
〈B〉} for a B ∈ 2X\{∅}. Then the LG-credal set P(μ) = {P ∈

Md
cpr|P � μ} has the profile {P ∗

B}, where P ∗
B = b0η〈X〉 +

∑
xi∈B aiη〈{xi}〉 and

b0 = 1 − ∑
xi∈B ai.

We will keep the notation from Propositions 2 and 3, assuming that for every
P = a0ηX +

∑n
i=1 aiη〈{xi}〉 in Md

cpr and B ∈ 2X

P ∗
B = b0η〈X〉 +

∑

xi∈B

aiη〈{xi}〉,

where b0 = 1 − ∑
xi∈B ai, and the value P ∗

B(A) for A ∈ 2X can be computed

by P ∗
B(A) =

{
P (A ∩ B), A ∈ 2X\{X},

1, A = X.
The measure P ∗

B can be viewed as the

result of the conditioning P given B based on generalized credal sets. We see that
the result of conditioning is always defined, even in the case, when P (B) = 0 (or,
in particular, B = ∅). In this case, P ∗

B = η〈X〉, and the event B fully contradicts
to the measure P .

Consider an arbitrary LG-credal set P ⊆ Md
cpr. Then the conditioning of P

given B ∈ 2X is the subset of Md
cpr defined by P∗

B = {P ∗
B |P ∈ P}.

Lemma 1. Let P ⊆ Md
cpr be a LG-credal set and B ∈ 2X . Then P∗

B = P ∩
(Md

cpr)
∗
B, where (Md

cpr)
∗
B = {P ∗

B |P ∈ Md
cpr}.

Proposition 4. The subset P∗
B of Md

cpr defined above is the LG-credal set.

Thus, by Proposition 4, we define for every LG-credal set P and every event
B ∈ 2X the conditional LG-credal set P∗

B . Then we need to make the correction
and to have the consistent information after that. Notice that the way, considered
in Sect. 4, is not suitable for us, because it does give us the usual result for
probability measures. This correction for measures in Md

cpr should be

ϕ(a0η〈X〉 +
∑n

i=1
aiη〈{xi}〉) =

1
1 − a0

n∑

i=1

aiη〈{xi}〉
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for every P = a0η〈X〉 +
∑n

i=1 aiη〈{xi}〉 in Md
cpr with a0 < 1.

For LG-credal sets correction that are not fully contradictory, we have the
following major possibilities:

1) ϕ(1)(P) = {ϕ(P )|P ∈ P, Con(P ) = Con(P)};
2) ϕ(2)(P) = {ϕ(P )|P ∈ profile(P)}.

Remark 1. It is easy to see that ϕ(1)(P) is the usual credal set for every LG-
credal set P with Con(P) < 1. Assume that P is a LG-credal set with the profile,
which is the usual credal set P′. Then the updating ϕ(1)(P∗

B) for B ∈ 2X exists
if EP′(1B) > 0 and the conditioning ϕ(1)(P∗

B) is called the maximal likelihood
conditioning because

ϕ(1)(P∗
B) =

{
PB|P ∈ P′, P (B) = EP′(1B)

}
.

Remark 2. Because the profile of a LG-credal set is not necessarily a convex set,
the set ϕ(2)(P) is not a usual credal set in general. For decision-making, we don’t
need to describe profile(P) explicitly, we need to know the extreme points of P
that belong to profile(P). This problem is investigated in [3] (see Proposition 2).
Assume that P is a LG-credal set with the profile, which is the usual credal set
P′. Then the updating ϕ(2)(P∗

B) for B ∈ 2X exists if EP′(1B) > 0. Assume
that P′ has a finite set of extreme points {P1, ..., Pk}. Then we can find all
extreme points in profile{P∗

B} in the set {(P1)∗
B , ..., (Pk)∗

B} as shown in the
next example.

Example 1. Assume that X = {x1, ..., x5} and P is the LG-credal set whose pro-
file is the usual credal set described by extreme points P1 = (0.5, 0.3, 0.1, 0.1, 0),
P2 = (0.2, 0.3, 0.1, 0.1, 0.3), P3 = (0.4, 0.2, 0.2, 0.1, 0.1). Consider the event
B = {x1, x2}. Then (P1)∗

B = (0.5, 0.3, 0, 0, 0), (P2)∗
B = (0.2, 0.3, 0, 0, 0), (P3)∗

B =
(0.4, 0.2, 0, 0, 0). Because (P1)∗

B � (P2)∗
B and (P1)∗

B � (P3)∗
B , the LG-credal set

P∗
B has the profile {(P1)∗

B}. Thus, in this case ϕ(1)(P∗
B) = ϕ(2)(P∗

B) = {(P1)B}.
Analogously, let C = {x1, x2, x3} then (P1)∗

C = (0.5, 0.3, 0.1, 0, 0), (P2)∗
C =

(0.2, 0.3, 0.1, 0, 0), (P3)∗
C = (0.4, 0.2, 0.2, 0, 0). Because (P1)∗

C � (P2)∗
C , the LG-

credal set P∗
C has the profile {a(P1)∗

C + (1 − a)(P3)∗
C |a ∈ [0, 1]}. In this case,

ϕ(1)(P∗
C) = {(P1)C} and ϕ(2)(P∗

C) = {a(P1)C + (1 − a)(P3)C |a ∈ [0, 1]}.

Remark 3. Let P′ be the usual credal set. Then the following updating
rule is often used in the theory of imprecise probabilities [1,16]: (P′)B =
{PB |P ∈ P′} for B ∈ 2X . This rule is defined iff EP′(1B) > 0. It is
well-known that if P′has a finite set of extreme points {P1, ..., Pk}, then
extreme points of (P′)B are in the set {(P1)B , ..., (Pk)B}. Thus, (P′)B ={

k∑

i=1

ai(Pi)B

∣
∣
∣
∣

k∑

i=1

ai = 1, ai � 0, i = 1, ..., k

}

.

Let us consider the conditioning when the information is presented by an upper
prevision Φ : K ′ → R. Because there are many upper previsions that define the
same LG-credal set, we can consider many rules of updating information. The
simplest way seems to be the following: let K ′′ = K ′ ∪ {1Bc} and

Φ∗
B(f) =

{
0, f = 1Bc ,

Φ(f), f ∈ K ′′\{1Bc}.
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Then the upper prevision Φ∗
B : K ′′ → R defines the LG-credal set P(Φ)∗

B , since
P(Φ)∗

B = P(Φ∗
B).

The following proposition shows how updating information is produced for
monotone measures viewed as upper probabilities.

Proposition 5. Let μ be an upper probability on 2X , B ∈ 2X , and let μ∗
B be an

upper probability on 2X defined by

μ∗
B(A) =

{
μ(A ∩ B), A 
= X,

1, A = X.

Then (P(μ))∗
B = P(μ∗

B).

Proposition 6. Let μ be an upper probability on 2X and μ(B) > 0 for some
B ∈ 2X . Then (P(μ))∗

B = {(1−μ(B))ηX +μ(B)P |P ∈ P(μB)}, where μB(A) =
μ(A ∩ B)/μ(B), A ∈ 2X .

Corollary 1. Let μ be an 2-alternating upper probability2 on 2X and μ(B) > 0
for some B ∈ 2X , and we use the notation from Proposition 5. Then

ϕ(1)((P(μ))∗
B) = ϕ(2)((P(μ))∗

B) = {P ∈ Mpr|P � μB} .

Remark 4. Let us remind that plausibility functions are the dual of belief func-
tions. We see that the conditioning based on generalized credal sets coincides
with the conditioning based on Dempster’s rule that for a plausibility function
Pl on 2X gives the result PlB(A) = Pl(A ∩ B)/P l(B) for A ∈ 2X and B ∈ 2X

such that Pl(B) > 0.

7 Conclusion

As one can see from results in Sect. 6, the conditioning based on generalized
credal sets looks simpler than in the traditional theory of imprecise probabil-
ities. The updating rule is applicable in more cases and comparing with the
traditional rule the conditioning is based only on probability measures that are
more plausible, this allows us to implement some learning process based on sta-
tistical data.

Acknowledgment. This work was partially supported by the grant 18-01-00877 of
RFBR (Russian Foundation for Basic Research).

2 A monotone measure μ is called 2-alternating if μ(A)+μ(B) � μ(A∩B)+μ(A∪B)
for all A, B ∈ 2X .
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Abstract. In this paper, we develop a probabilistic logic for reasoning
about preconditions, postconditions and execution of actions in time.
The language of our logic allows statements like “precondition of the
action A will hold in the next moment” and uncertain information like
“probability that the precondition of A will hold in the next moment
is at least one half.” We axiomatize this logic, provide corresponding
semantics built on branching-time temporal models, and prove that the
axiomatization is sound and strongly complete.

Keywords: Probabilistic logic · Temporal logic · Action

1 Introduction

In the last few decades, uncertain reasoning has become a popular topic of
investigation for the researchers in the fields of computer science and artificial
intelligence. A particular line of research concerns the formalization in terms of
logics for reasoning about probability [6,11,14].

In this paper, we focus on the problem how to apply probability logic to
model uncertainty about action and time, whose interplay is fundamental for the
design anddevelopment of intelligent systems such as autonomous systems, robotic
applications, and service agents [5,19,22]. Reasoning about actions and time has
received a lot of attention in the last couple of decades [1,8,10,16]. Several tem-
poral logical systems have been developed for reasoning about the pre and post-
conditions of actions with explicit time points, such as the Event Calculus [10],
Temporal Action Logics [8], extensions to the Fluent Calculus [18], and extensions
to the Situation Calculus [15], and a simple parametrized-time action logic PAL
[20,22] which is shown useful for revision of beliefs and intentions [21].

The starting point for this work was PAL logic from [22]. We first extend the
language of PAL by employing the full power of CTL∗ [17], allowing expressions
like “precondition of action a will always hold”. While actions are assumed to be
deterministic, different selection of available actions might lead to different future
moments, naturally leading to a branching-time semantic, in which transitions
between time moments are labeled by actions. In the second step, we apply
probability operators to those formulas, in order to represent uncertainty about
future. Semantically, that leads o probability spaces over CTL∗-like models.
c© Springer Nature Switzerland AG 2019
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Our central technical result is strong completeness of the logic, which we
obtain using Henkin’s method, modifying extensively techniques presented in [2–
4,12,13]. Since neither temporal nor probability logics are compact, it is known
that there is no finitary strongly complete axiomatization [7]. We obtain com-
pleteness using infinitary rules of inference, thus keeping formulas finite.

2 Syntax and Semantics

In this section, we present the syntax and semantics of our logic, which we
denote by pCTL∗

A. The logic contains two types of formulas: temporal formulas
without probabilities, which represents statements about the current moment
and future moment and actions that may be performed, and formulas which
deal with uncertainty in time, obtained by applying probability operators to the
first type of formulas.

Syntax. Let P be a nonempty set of propositional letters, and let Act =
{a, b, c, . . .} be a finite set of deterministic primitive actions. We will denote
the elements of P with p and q, possibly with subscripts. We use negation and
conjunction as a complete list of Boolean connectives. We use the usual abbre-
viations for the other classical connectives and the symbols � and ⊥.

Definition 1 (CTL∗
A−formula). The set of formulas ForCTL∗

A
with the set of

primitive propositions Prop = P ∪ {pre(a), post(a) | a ∈ Act} is inductively
defined in the following way:

α ::= χ | do(a) | ©α | Aα | αUα | α ∧ α | ¬α

with χ ∈ Prop and a ∈ Act. We will denote the formulas from ForCTL∗
A

with
α, β and γ, possibly with subscripts.

The temporal operators © (next), U (until) and A (universal path operator)
are standard operators of CTL∗ [17]. Other temporal operators F (sometimes),
G (always) and E (existential path quantifier) are defined as abbreviations:
Fα ≡ �Uα, Gα ≡ ¬F¬α and Eα ≡ ¬A¬α. If T is a set of formulas, then ©T
denotes {©α | α ∈ T}, while AT denotes {Aα | α ∈ T}. Furthermore, for k ∈ w,
©k+1α is an abbreviation for ©(©kα).

Example 1. The expression

(pre(a) ∧ G(pre(a) → ¬pre(b)) → ¬E © post(b)

is a CTL∗
A formula. Its meaning is that if the precondition of action a holds and

if preconditions of a and b are incompatible at all future moments, then it is not
possible that the postcondition of b will hold in the next moment.

Now we introduce our probabilistic formulas. We use the list of probability
operators of the form P≥r, for every r ∈ Q ∩ [0, 1], which can be applied to
CTL∗

A−formulas.
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Definition 2 (Probabilistic formula). A probabilistic formula is any
Boolean combination of the formulas of the form P≥rα, where α ∈ ForCTL∗

A
.

We denote by ForP the set of all probabilistic formulas, and we denote arbitrary
probabilistic formulas by φ and ψ, indexed if necessary.

We use the following abbreviations to introduce other types of operators:
P<sα is ¬P≥sα, P≤sα is P≥1−s¬α, P>sα is ¬P≤sα, and P=sα is P≥sα ∧ P≤sα.

Example 2. The expression

P≥ 1
2
(©pre(a)) → P≤ 1

2
© do(b)

is a probabilistic formula. Its meaning is that if the precondition of a will hold in
the next moment is at least a half, then the probability that b will be executed
in the next moment is at most one half.

Definition 3 (Formula). ForpCTL∗
A

= ForCTL∗
A

∪ ForP . We denote arbitrary
formulas by Φ and Ψ (possibly with subscripts).

Obviously, mixing of pure propositional formulas and probability formulas is
not allowed. In the paper, we denote both α∧¬α and φ∧¬φ by ⊥ (and similarly
for �), and we let the context determine the meaning.

Semantics. Now we define models of our logic. First we need to introduce the
structures in which CTL∗

A−formulas are evaluated.

Definition 4 (Transition System). A transition system TS is tuple (S,R, v)
where:

– S is a non- empty set of states;
– v : S → 2Prop is a valuation function from states to sets of propositions;
– R =

⋃
Ra, a ∈ Act, Ra relation on S × S, such that the following conditions

hold:
(a) R is serial;
(b) For all action a ∈ Act: If sRas′ and sRas′′ then s′ = s′′;
(c) If pre(a) ∈ v(s), a ∈ Act, s ∈ S then there existis s′ ∈ S, sRas′;
(d) If sRas′ then post(a) ∈ v(s′).

Definition 5 (Path). A path, π in TS is an infinite sequence of states of
TS and actions, π = (s0, a0, s1, a1, . . .), such that for each i, siRai

si+1. For
a path π = (s0, a0, s1, a1, . . .), we write πk for state sk, π≥i for the path
(si, ai, si+1, ai+1, . . .) and act(π, k) = ak (action on the path π in the time k
is ak).

We define what it means for a formula α to be satisfied at a path π in a
transition system TS, denoted by TS, π |=c α, as follows:

– TS, π |=c χ iff χ ∈ v(π0), χ ∈ Prop;
– TS, π |=c do(α) iff act(π, 0) = a;
– TS, π |=c ¬α iff M,π �|=c α;
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– TS, π |=c α ∧ β iff M,π |=c α and M,π |=c β;
– TS, π |=c ©α iff M,π≥1 |=c α;
– TS, π |=c αUβ iff for some i ≥ 0, M,π≥i |=c β and for all j, 0 ≤ j < i

M, π≥j |=c α;
– TS, π |=c Aα iff for all π′, π0 = π′

0, M,π′ |=c α.

The logic notions of satisfiability, validity and semantics consequences are
defined as usual. We denote the corresponding value of α in a path π in a
transition system TS by v(α,TS, π):

v(α,TS, π) = 1, if TS, π |=c α,
v(α,TS, π) = 0 otherwise.

The transition systems are just an intermediate step towards our class of models.
It is based on the possible-world approach. It captures our approach in which
CTL∗

A−formulas represent certain information, while uncertainty is represented
by probabilistic formulas.

Definition 6 (pCTL∗
A−model). A pCTL∗

A−model is a tuple M = 〈W,H, μ, σ〉
where:

– W is a nonempty set of worlds,
– 〈W,H, μ〉 is a probability space, i.e.,

• H is an algebra of subsets of W , i.e., a set of subsets of W with the
property:

∗ W ∈ H,
∗ If A,B ∈ H, then W \ A ∈ H and A ∪ B ∈ H.

The elements of H are called measurable sets.
• μ : H −→ [0, 1] is a finitely additive measure, i.e.,

∗ μ(W ) = 1,
∗ If A,B ∈ H and A ∩ B = ∅, then μ(A ∪ B) = μ(A) + μ(B).

– σ provides for each world w ∈ W a transition system and a path, i.e., σ(w) =
(TSw, πw).

For a pCTL∗
A−model is a tuple M = 〈W,H, μ, σ〉, we define

[α]M = {w ∈ W | v(α,TSw, πw) = 1}.

We say that M is measurable, if [α]M ∈ H for every α ∈ ForCTL∗
A
. We denote

the class of all measurable pCTL∗
A−models with pCTL∗

A
Meas.

Now we define the satisfiability of a formula in a model from pCTL∗
A

Meas.

Definition 7 (Satisfiability). Let M = 〈W,H, μ, π〉 be a PLLTL structure.
We define the satisfiability relation |=⊆ PLMeas

LTL × For recursively as follows:

– M |= α iff v(α,TSw, πw) = 1 for every w ∈ W ,
– M |= P≥rα if μ([α]) ≥ r,
– M |= ¬φ iff M �|= φ,
– M |= φ ∧ ψ iff M |= φ and M |= ψ.
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Definition 8 (Model of a formula, semantical consequence). For a mea-
surable structure M and a set of formulas T , we say that M is a model of T
and write M |= T iff M |= Φ for every Φ ∈ T . We also say that T is satisfiable,
if there is M such that M |= T .

We say that a set of formulas T entails a formula Φ and write T |= Φ, if all
models of T are models of Φ. A formula Φ is valid if ∅ |= Φ.

3 Axiomatization

In this section we present an axiomatization of our logic, which we denote
Ax(pCTL∗

A). First we need to introduce two useful notions.

Definition 9 (k-nested implication). A k-nested implication Φk(τ, γ) for the
formula τ , based on the sequence γ = (γ0, . . . , γk) of formulas, is defined recur-
sively as follows:

Φ0(τ, γ) = γ0 → τ

Φk(τ, γ) = γk → A(Φk−1(τ, (γ0, . . . , γk−1)).

For example, Φ2(α, (γ0, γ1, γ2)) is the formula

γ2 → A(γ1 → A(γ0 → α)).

Definition 10 (State formula). A formula is a state formula if it is a Boolean
combination of elements of Prop and formulas od the form Aα. We denote the
set of all state formulas by St.

Also, we introduce the operator Un in the following way:

αUnβ := (
n−1∧

k=0

©kα) ∧ ©vβ.

Our axiomatization contains the following axiom schemas and inference rules.

Axiom schemas:

(A1) All instances of classical propositional tautologies for both
CTL∗

A−formulas and probabilistic formulas.
(A2) ©(α → β) → (©α → ©β)
(A3) αUβ → β ∨ (α ∧ ©(αUβ))
(A4) α → Aα where α ∈ Prop
(A5) Eα → α where α ∈ Prop
(A6) Aα → α
(A7) A(α → β) → (Aα → Aβ)
(A8) Aα → AAα
(A9) Eα → AEα

(A10)
∨

a∈Act do(a)
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(A11) do(a) → ∧
b�=a ¬do(b)

(A12) pre(a) → Edo(a)
(A13) do(a) → ©post(a)
(A14) E(do(a) ∧ ©α) → A(do(a) → ©α), where α is a state formula.
(A15) P≥0α
(A16) P�rα → P<sα whenever r < s
(A17) P<rα → P�rα
(A18) (P≥rα ∧ P≥sβ ∧ P≥1(¬α ∨ ¬β)) → P≥min{1,r+s}(α ∨ β)
(A19) (P�rα ∧ P<sβ) → P<r+s(α ∨ β), whenever r + s � 1

Inference rules:

(R1) From {Φ,Φ → Ψ} infer Ψ
(R2) From α infer ©α
(R3) From α infer Aα
(R4) From the set of premises {Φk(¬(αUnβ), γ) | n ∈ N} infer Φk(¬(αUβ), γ)
(R5) From α infer P≥1α.
(R6) From the set of premises {φ → P≥r− 1

k
α | k ∈ N, k ≥ 1

r } infer φ → P≥rα.

The axioms A2–A9 are temporal axioms; A10–A14 are actions for pre and
postconditions, modified from [22]. A14 describes deterministic behavior of
actions. The axioms A16–A19 are standard probabilistic axioms [14]. R2, R3
and R5 are three forms of Necessitation. The rule R4 is a novel rule that gener-
alize a rule form [9]; R6 is so called Archimedean rule.

A formula α is a theorem, denoted by � α, if there is an at most countable
sequence of formulas α0, α1, . . . , α, such that every αi is an axiom, or it is derived
from the preceding formulas by an inference rule. A formula α is deducible from
a set T (T � α) if there is at most countable sequence of formulas α0, α1, . . . , α,
such that every αi is an axiom or a formula from T , or it is derived from the
preceding formulas by an inference rules, with exception that the inference (R2)
and (R3) can be applied to the theorems only. The sequence α0, α1, . . . , α is the
proof of T � α. A set T of formulas is consistent if there is at least one formula
which is not deducible from T , otherwise T is inconsistent.

A set T of formula is maximal consistent set (mcs) if it is consistent and
any proper subset of T is inconsistent.

Theorem 1 (Soundness). The axiomatization is sound with respect to the
class of models pCTL∗

A
Meas.

Now we show that Deduction theorem holds in pCTL∗
A.

Theorem 2 (Deduction theorem). Let T be a set of CTL∗
A−formulas. and

let α and β be two CTL∗
A−formulas. Then T, α � β iff T � α → β.

Proof. The direction from right to left it trivial. For left to right we use the
transfinite induction on the length of the inference. Here we will only consider
the case when β is obtained by the rule R4, i.e β = Φk(¬(α′Unβ′), γ), where
γ = (γ0, . . . , γk). Then we have
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T, α � γk → A(Φk−1(¬(α′Unβ′), (γ0, ..., γk−1))), for all n (definition of Φk)
T � (α ∧ γk) → A(Φk−1(¬(α′Unβ′), (γ0, ..., γk−1))), for all n (by (A1))
T � Φk(¬(α′Unβ′), (γ0, . . . , γk−1, α ∧ γk)), for all n
T � Φk(¬(α′Uβ′), (γ0, . . . , γk−1, α ∧ γk)) (by R4)
T � (α ∧ γk) → A(Φk−1(¬(α′Uβ′), (γ0, . . . , γk[1)))
T � α → (γk → A(Φk−1(¬(α′Uβ′), (γ0, ..., γk−1)))
T � α → Φk(¬(α′Unβ′), γ)
T � α → β.

Theorem 3 (Lindenbaum’s Theorem). Every consistent set of formulas
can be extended to a maximal consistent set.

Proof. Let Ψ0, Ψ1, . . . be an enumeration of all formulas. For a given consistent
set T , we define the sequence of sets Ti, i = 0, 1, 2, . . . and the set T ∗ in the
following way:

1. T0 = T ,
2. for every i ≥ 0,

(a) if Ti ∪ {Ψi} is consistent, then Ti+1 = Ti ∪ {Ψi}, otherwise
(b) if Ψi is of the form Φk(¬(αUβ), γ) , then Ti+1 = Ti ∪ { Φk(¬(αUnβ), γ)},

where n is the smallest nonnegative integer such that Ti+1 is consistent,
otherwise

(c) if Ψi is of the form φ → P≥rα, then Ti+1 = Ti ∪ {φ → P<r− 1
k
α}, where k

is the smallest positive integer such that r− 1
k ≥ 0 and Ti+1 is consistent,

otherwise
(d) Ti+1 = Ti.

3. T � =
⋃∞

i=0 Ti.

Note that using Deduction Theorem we can prove that T ∗ is correctly defined:
there exist n from the parts 2(b) and 2(c) of the construction. Each set Ti is
consistent by construction. The steps (1) and (2) guarantee that T � is maximal.
Also, T � obviously doesn’t contain all formulas. Finally, one can show that T �

is deductively closed set. Consequently, we have that T � is consistent, since
otherwise ⊥ ∈ T �.

4 Completeness

In this section we will prove our main result: the axiomatization Ax(pCTL∗
A) is

strongly complete for the class of models pCTL∗
A

Meas. As a part of the proof,
we first need to prove completeness of the sublogic CTL∗

A.

Completeness of CTL∗
A. We consider the non-probabilistic part of our logic,

with CTL∗
A−formulas and with transition systems as semantics. Let us denote

by Ax(pCTL∗
A) the subsystem of Ax(pCTL∗

A) which consists of the axioms (A1)–
(A14) and (R1)–(R4). Of course, (A1) is now restricted to CTL∗

A−formulas only.
We start with some auxiliary statements.
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Lemma 1. For any maximal consistent set T , the following are true:

1. If T is a mcs set of CTL∗
A−formulas then T ′ = {α | ©α ∈ T} is also a mcs.

2. T � α then ©T � ©α.
3. T � α then AT � Aα.
4. If Aα �∈ T then there exists T ′ ∈ [T ], such that α �∈ T ′.
5. If Eα ∈ T then there exists T ′ ∈ [T ], such that α ∈ T ′.

Proof. Let us prove 3. and 4.
3. We will use the induction on the depth of the derivation of α from T .

Suppose that T � Φk(¬(αUβ), γ) iz obtained from T � Φk(¬(αUnβ), γ), for all
n ∈ w, by the inference rule R4. Then we have

AT � A(Φk(¬(αUnβ), γ)) for all n ∈ w (by the induction hypothesis),
AT � � → A(Φk(¬(αUnβ), γ)) for all n ∈ w
AT � Φk+1(¬(αUnβ), γ) for all n ∈ w, where γ = (γ,�)
AT � Φk+1(¬(αUβ), γ) (by R4)
AT � � → A(Φk(¬(αUβ), γ))
AT � A(Φk(¬(αUβ), γ))

The other cases can be solved in a similar way.
4. Let T ′ = T ∩St. If T ∪{¬α} is consistent then, by Lindenbaum’s lemma, it

can be extended to a mcs T ∗. Since T ∗ ∩ St = T ′, then T ∗ ∈ [T ]. If T ′ ∪ {¬α} is
inconsistent then T ′ � α. By lemma 4, AT ′ � Aα. Since T ′ ⊆ St, by the axioms
A4, A8 and A9, T ′ � Aα. Thus, Aα ∈ T which contradicts the assumption.

Now we define an equivalence relation on maximal consistent sets.

Definition 11. For two maximal consistent sets T and T ′ of of
CTL∗

A−formulas, we define the equivalence relation between them, denoted by
T ≡ T ′, as follows: T ≡ T ′ iff T ∩ St = T ′ ∩ St. For the mcs T , [T ] is the set of
all mcs’s that are equivalent with T , i.e, [T ] = {T ′ | T ′ ≡ T}.

Using the relation ≡, we define the canonical transition system.

Definition 12 (Canonical transition system). We define a tuple TScan =
(S,R, v) such that:

1. S = {[T ] | T is a mcs}
2. R =

⋃
Ra, a ∈ Act, such that sRas′ iff exists mcs T ′ ∈ s, do(a) ∈ T ′ and

T ′′ ∈ s′, T ′′ = {α | ©α ∈ T ′}
Theorem 4. TScan is a transition system.

Proof. First, note that TSCan is well defined, since T ′′ is a mcs, by Lemma
1(1). We need to show that R from TScan satisfies the conditions (a) − (d) from
Definition 4.

(a) For s ∈ S, there is a mcs T1, T1 ∈ s. By A10, for some a ∈ Act, do(a) ∈ T1,
by 2. from definition of TScan it follows that R is serial.
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(b) Let a ∈ Act, and sRas′ and sRaS′′. By definition of TScan, there exists
T ∈ s, do(a) ∈ T and T ′ ∈ s′, T ′ = {α | ©α ∈ T}, i.e, there exists T1 ∈ s,
do(a) ∈ T1 and T ′

1 ∈ s′′, T ′
1 = {α | ©α ∈ T1}. From A14 it follows that

T ′ ≡ T ′
1, i.e, s′ = s′′.

(c) If pre(a) ∈ v(s), s from TScan, then there is mcs T ∈ s such that pre(a) ∈ T .
By A12, Edo(a) ∈ T , and by Lemma 1.5, there exists T ′ ∈ [T ], such that
do(a) ∈ T ′. From definition of TScan, sRas′.

(d) If sRas′ then by definition of Mcan, exists T ∈ s, do(a) ∈ T and T ′ ∈ s′,
T ′ = {α | ©α ∈ T}. By A13, ©post(a) ∈ T then post(a) ∈ T ′. Therefore,
post(a) ∈ v(s′).

Now we introduce the operator ©−n on sets of formulas: ©−nT := {α | ©nα ∈
T}. Note that if T is a mcs, then ©−nT is also a mcs, by Lemma 1(1).

Definition 13. For a given mcs T , we define the path πT = (s0, a0, s1, a1, . . . )
as follows:

– si = [©−iT ],
– ai = a such that ©ido(a) ∈ T .

It is easy to check that πT is well defined. Moreover, it can be shown that the
mapping from maximal consistent sets to paths of TSCan is a bijection.

Lemma 2. Let’s Σ be a set of all paths in TScan and MCS set of all maximal
consistent sets of CTL∗

A−formulas. Then, the function f : MCS → Σ, such that
f(T ) = πT , is bijection.

Lemma 3. (a) For two mcs, T and T ′, T ≡ T ′ iff (πT )0 = (πT ′)0;
(b) For a mcs T , π(©−kT ) = (πT )≥k.

Now we can prove the completeness result.

Theorem 5 (Strong completeness of CTL∗
A). A set of CTL∗

A−formulas is
consistent if and only if it is satisfiable in a path of a transition system.

Proof. The (⇐)-direction can be easily checked. In order to prove (⇒)-direction
we extend given consistent set to a maximal consistent set T , using Lindenbaum’s
Theorem, and we construct the canonical transition system TS = TScan. We
need to show that for every formula α, α ∈ T iff TS, πT |=c α. The proof is by
induction on the complexity of α.

The cases when α ∈ Prop and α = do(a) follow directly from the definition.
The case when formulas are negations and conjunctions can be proved as usual.

If α = ©β, α ∈ T iff β ∈ ©−1T iff (by the induction hypothesis)
TS, π(©−1T ) |=c β iff TS, πT |=c ©β (by Lemma 3(b)) iff TS, πT |=c α.

If α = βUγ, TS, πT |=c βUγ iff (for some i ≥ 0, TS, (πT )≥i |=c γ and for all
j, 0 ≤ j < i, TS, (πT )≥j |=c β) iff (for some i ≥ 0, TS, π©−iT |=c γ and for all
j, 0 ≤ j < i, TS,©−iT |=c β) (by Lemma 3(b)) iff (for some i ≥ 0, γ ∈ ©−iT
and for all j, 0 ≤ j < i, β ∈ ©−iT (by the induction hypothesis) iff βUγ ∈ T
(by (A2), (A3) and (R4)).
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Let α = Aβ. Suppose that TS, πT |=c Aβ. Then for all π′ such that π′
0 =

(πT )0, TS, π′ |=c β. By Lemma 3, for all mcs T ′ such that T ′ ≡ T , TS, πT ′ |=c β.
By the induction hypothesis, for all T ′ such that T ′ ≡ T , β ∈ T ′. Then, by
Lemma 5.4, Aβ ∈ T . For the other direction, suppose that TS, πT �|=c Aβ. Then,
there exists π′, such that π′

0 = (πT )0 and TS, π′ �|=c β. By Lemma 3, there is a
mcs T ′, such that T ′ ≡ T and π′ = πT ′ . By induction hypothesis, β �∈ T ′, so by
A6, Aβ �∈ T ′, and finally Aβ �∈ T , since T ′ ≡ T .

Completeness of pCTL∗
A Now we consider full logical language. Similarly as

above, starting from a mcs, we define a canonical model.

Definition 14 (Canonical model). For a maximal consistent set T ∗, we
define MT ∗ = 〈W,H, μ, σ〉, such that:

1. W = {(TS, π) | v(α,TS, π) = 1 for all α ∈ T ∗ ∩ ForCTL∗
A
},

2. H = {[α] | α ∈ ForCTL∗
A
}, where [α] = {(TS, π) ∈ W | v(α,TS, π) = 1},

3. μ([α]) = sup{r ∈ Q | T ∗ � P≥rα}, for every α ∈ ForCTL∗
A
,

4. σ(w) = w for every w ∈ W .

Lemma 4. MT ∗ is a measurable model.

Theorem 6 (Strong completeness). A set of formulas T ⊆ For is consis-
tent iff it is satisfiable.

Proof. The direction from right to left follows from Theorem 1. For the other
direction, it is sufficient to show that a consistent set of formulas T has a model.
First we use Lindenbaum’s theorem to extend T to a maximal consistent set
T ∗, and then we construct the canonical model MT ∗ . We show that MT ∗ is a
model of T ∗, and, consequently, a model of T . It is sufficient to prove that for
all Φ ∈ For, T ∗ � Φ iff MT ∗ |= Φ.

Let Φ = α ∈ ForCTL∗
A
. If α ∈ T ∗, then by the definition of W from MT ∗ ,

MT ∗ |= α. Conversely, if MT ∗ |= α, by Theorem 5, α ∈ T ∗.
If Φ ∈ ForP , we proceed by induction on the complexity of Φ. If Φ = P≥rα,

the proof is similar to the one presented in [14]. Conjunction and negation are
treated in a standard way.

5 Conclusion

In this work introduced a logic for reasoning about action and time in presence
of uncertainty, where uncertainty is modeled by probability. The logic can repre-
sent agent’s quantitative belief about the pre and postconditions of actions, and
execution of actions in current moment and future moments. We proposed an
axiomatic system for the logic and proved strong completeness for the considered
class of Kripke-like models, using Henkin’s construction.
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Abstract. MV-algebras with internal states, or SMV-algebras for short,
are the equivalent algebraic semantics of the logic SFP(�L, �L) which allows
to represent and reason about the probability of infinite-valued events.
In this paper we will make the first steps towards establishing complete-
ness for SFP(�L, �L) with respect to the class of standard SMV-algebras, a
problem which has been left open since the first paper on SMV-algebras
was published. More precisely we will prove that, if we restrict our atten-
tion to a particular, yet expressive, subclass of formulas, then theorems
of SFP(�L, �L) are the same as tautologies of a class of SMV-algebras that
can be reasonably called “standard”.

Keywords: MV-algebras · States · Internal states ·
Standard completeness · Probabilistic logic

1 Introduction

MV-algebras with an internal state, or SMV-algebras, have been introduced in
[6] and they consist of an MV-algebra A (cf. [2]) and a unary map σ on A
axiomatized so as to preserve some basic properties of a state of A (cf. [5,12]),
i.e., a [0, 1]-valued, normalized and finitely additive function. These structures
form a variety, denoted by SMV, which is the equivalent algebraic semantics for
the probabilistic logic SFP(�L, �L) which permits to represent and reason about
the probability of infinite-valued events. In that logic, in particular, events are
described by formulas of the infinite-valued �Lukasiewicz calculus (cf. [2]).

From the perspective of reasoning about uncertainty, the interest of �Lukasie-
wicz events is twofold: whilst capturing properties of the world which are better
described as gradual rather than yes-or-no, they also mimic bounded random
variables. Indeed, any �Lukasiewicz event e may be regarded as a [0, 1]-valued
continuous function e∗ on a compact Hausdorff space (see [2, Theorem 9.1.5]
and Sect. 2) and any state of e coincides with the expected value of e∗ (see [4,
Remark 2.8] and Sect. 3).

SMV-algebras provide a framework to treat a generalization of classical prob-
ability theory in a universal-algebraic setting. However, notwithstanding their
meaningful expressive power, several problem concerning their universal-algebraic
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properties are still open. Here, we will concentrate on the following issue: deter-
mining a proper subclass of SMV-algebras which generates SMV and which could
be regarded as a class of “measure-theoretical” models. In other words, the above
problem is to establishing a “standard completeness” for the logic SFP(�L, �L).

In particular we will show that, upon restricting our language to a special,
yet sufficiently expressive subset of well-formed formulas, the logic SFP(�L, �L)
turns out to be sound and complete with respect to a prominent subclass of
SMV-algebras which can be reasonably called “standard”. Indeed, these standard
SMV-algebras are grounded on the same MV-algebra of continuous real-valued
functions and their internal states are obtained by integrating the continuous
functions which correspond to �Lukasiewicz events by a regular, Borel (and hence
σ-additive) probability measure. Although our main result only offers a partial
solution to the problem of establishing standard completeness for SFP(�L, �L),
the idea behind its proof is promising and it suggests ways to tackle the general
problem. Indeed, the class of formulas to which we will restrict our attention,
called purely probabilistic formulas, form the ground probabilistic language upon
which the all formulas of SFP(�L, �L) are inductively defined.

This paper is organizes as follows: in the next section we will recall some
basic definitions and needed results about �Lukasiewicz logic and MV-algebras.
Section 3 is dedicated to a brief introduction to generalized probability theory
on �Lukasiewicz logic, i.e., state theory, while in Sect. 4 we will focus on SMV-
algebras and the probabilistic logic SFP(�L, �L). In Sect. 5 we will prove the main
results of this paper and in particular that a purely probabilistic formula φ is a
theorem of SFP(�L, �L) iff φ holds in all standard SMV-algebras.

2 �Lukasiewicz Logic and MV-algebras

The language of the infinite-valued �Lukasiewicz calculus �L is made of a countable
set of propositional variables {q1, q2, . . .}, the binary connective ⊕, the unary
connective ¬ and the constant ⊥. Formulas are defined by the usual inductive
rules. Further useful connectives are definable as follows:

� = ¬⊥; ϕ � ψ = ¬(¬ϕ ⊕ ¬ψ); ϕ → ψ = ¬ϕ ⊕ ψ; ϕ ∧ ψ = ϕ � (ϕ → ψ);
ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ); ϕ 	 ψ = ¬(ϕ → ψ); d(ϕ,ψ) = (ϕ → ψ) ⊕ (ψ → ϕ).

We invite the reader to consult [2,8] for an axiomatization of �Lukasiewicz logic.
For the sake of the present paper it is important to recall that this calculus
has an equivalent algebraic semantics: the variety MV of MV-algebras. These
are structures of the form A = (A,⊕,¬,⊥) (the same language of �Lukasiewicz
logic), where (A,⊕,⊥) is a commutative monoid and, defining further operations
as above, the following equations hold:

x ⊕ � = �
(x → y) → y = (y → x) → x.

The algebraizability of �Lukasiewicz logic with respect to MV implies that �L
is sound and complete w.r.t. the class of MV-algebras. This means the following:
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for every MV-algebra A, define an A-valuation as a map v from the propositional
variables qi’s to A which extends to all formulas by truth functionality; then,
a formula ϕ is a theorem of �Lukasiewicz logic iff for every MV-algebra A and
every A-valuation v, v(ϕ) = �.

Furthermore, every formula ϕ on propositional variables q1, . . . , qk can be
regarded, on the algebraic side, as a term t(x1, . . . , xk) on the same number of
variables. For every MV-algebra A and for every term t, we denote by tA the
interpretation (or semantics) of t in A.

In every MV-algebra the relation x ≤ y iff x → y = � determines a lattice-
order which coincides with the one given by the operations ∧ and ∨. If in A the
order ≤ is linear, we will say that A is an MV-chain.

The following collects two typical examples of MV-algebras which will play
a central role in this paper.

Example 1. (1) The standard MV-algebra [0, 1]MV has support on the real unit
interval [0, 1] and for all x, y ∈ [0, 1], x ⊕ y = min{1, x + y}, ¬x = 1 − x and
⊥ = 0. The semantics, in [0, 1]MV , of the �Lukasiewicz connectives we defined
above is as follows:

� = 1; x � y = max{0, x + y − 1}; x → y = min{1, 1 − x + y};
x ∧ y = min{x, y}; x ∨ y = max{x, y}; x 	 y = max{0, x − y};

d(x, y) = |x − y| (the usual Euclidean distance).

Chang’s theorem [1] shows that MV is generated by [0, 1]MV , whence �Lukasie-
wicz logic is complete w.r.t. to [0, 1]MV .

(2) For every k ∈ ω, let F(k) be the set of functions f : [0, 1]k → [0, 1] which
are continuous, piecewise linear and such that each piece has integer coefficient,
i.e., the set of k-variable McNaughton functions [2]. The point-by-point applica-
tion of the operations of [0, 1]MV makes F(k) an MV-algebra which coincides,
up to isomorphism, with the free MV-algebra over k-variables. For every formula
ψ of �Lukasiewicz language, we will denote by fψ its corresponding McNaughton
function. The free MV-algebra over infinitely-many generators will be henceforth
denoted by F(ω).

Let A and B be two MV-algebras. An MV-homomorphism is a function
h : A → B such that, adopting without danger of confusion the same symbols
for the operations of both algebras: (1) h(⊥) = ⊥; (2) h(x⊕y) = h(x)⊕h(y); (3)
h(¬x) = ¬h(x). If S is a subset of A, a map h : S → B is a partial homomorphism
provided that the above conditions (1–3) holds for the elements of S. Injective
(partial) homomorphisms are called (partial) embeddings. (Partial) embeddings
of A to B will be denoted by A ↪→ B (A ↪→p B, respectively).

Let A be an MV-algebra and let S be a subset of A. We denote 〈S〉A the MV-
subalgebra of A generated by S. In particular, if S is finite, for every b ∈ 〈S〉A,
there are a1, . . . , an ∈ S and an n-ary term t such that b = tA(a1, . . . , an).

Lemma 1. (1) For every MV-chain A and for every finite subset S of A, there
exists a partial embedding hS : S ↪→p [0, 1]MV .
(2) Let A,B be MV-algebras, let S be a finite subset of A. Every partial homo-
morphism hS : S ⊆ A → B extends to a homomorphisms ĥS : 〈S〉A → B.
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Proof. (1) Immediately follows from Gurevich-Kokorin theorem (see for instance
[8, Theorem 1.6.17]).
(2) For every element b ∈ 〈S〉A, there is an term t and a1, . . . , an ∈ S such that
b = tA(a1, . . . , an). Define ĥS : 〈S〉A → B as follows:

ĥ(b) = ĥ(tA(a1, . . . , an)) = tB(h(a1), . . . , h(an)).

It is easy to see that ĥ commutes with the operations of A and B, whence it is
an MV-homomorphism. ��
An ideal of an MV-algebra A is a subset I of A such that: (1) ⊥ ∈ I; (2) if a ∈ I
and b ∈ I, then a ⊕ b ∈ I; (3) if a ∈ I and b ≤ a, then b ∈ I. Every ideal I of A
determines a congruence ΘI of A:

(a, b) ∈ ΘI iff d(a, b) ∈ I.

For every MV-algebra A and every ideal I of A, we denote by A/I the quotient
of A by the congruence ΘI . Further, for every a ∈ A, we denote by a/I the
equivalence class of a modulo ΘI : a/I = {b ∈ A | d(a, b) ∈ I}. The set of ideals
of any MV-algebra, ordered by the set-theoretical inclusion, forms a lattice whose
maximal elements are called maximal ideals. We write Max(A) for the set of
maximal ideals of A. The intersection of all maximal ideals of an MV-algebra A
is an ideal, called the radical of A and denoted by Rad(A).

In the rest of this paper two kinds of structures will be of particular interest:
simple and semisimple MV-algebras. The latter are characterized as those MV-
chains which, up to isomorphism, are MV-subalgebra of [0, 1]MV (and therefore
can be regarded as algebras of real numbers) [2, Theorem 3.5.1]; the former are
algebras of continuous [0, 1]-valued functions defined on a compact Hausdorff
space [2, Corollary 3.6.8]. It is worth to recall that semisimple MV-algebras are
those structures whose radical coincides with {⊥}. Moreover, for every MV-
algebra A, the quotient A/Rad(A) is semisimple (see [2, Lemma 3.6.6]) and it
will be called the most general semisimple quotient of A.

3 Probability Theory on �Lukasiewicz Events

States of MV-algebras were introduced by Mundici in [12] as averaging values
of �Lukasiewicz truth-valuations.

Definition 1. A state of an MV-algebra A is a map s : A → [0, 1] satisfying
the following conditions:

(1) s(�) = 1,
(2) forall x, y ∈ A such that x � y = ⊥, s(x ⊕ y) = s(x) + s(y).

While condition (1) says that every state is normalized, (2) is usually called
additivity with respect to �Lukasiewicz sum ⊕. Indeed, the requirement x�y = 0
is analogous to disjointness of a pair of elements in a Boolean algebra: if A is a
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Boolean algebra, then x � y = ⊥ iff x ∧ y = ⊥. Thus states generalize finitely
additive probabilities to the realm of MV-algebras: finitely additive probabilities
on a Boolean algebra are states as a special case of the above definition.

The following results collect properties of states which will be used in the
proof of the main result of this paper.

Proposition 1 ([5, Proposition 3.1.7(ii)]). For every MV-algebra A, for
every state s of A and for every a, b ∈ A, if a/Rad(A) = b/Rad(A), then
s(a) = s(b).

Proposition 1 above implies that every MV-algebra A and its most general
semisimple quotient A/Rad(A) have the same class of states. Thus, every state
s of any MV-algebra A assigns, for every a, b ∈ A with b ∈ a/Rad(A), the same
value s(a) ∈ [0, 1].

The following has been proved in [11, Theorem 6] and provides an MV-
analogous of the well-known Horn-Tarski extension theorem [9].

Proposition 2. Let A and B be MV-algebras and let B be an MV-subalgebra of
A. Every state sB : B → [0, 1] extends (not uniquely) to a state sA : A → [0, 1].

Remark 1. Every homomorphism h of an MV-algebra B to [0, 1]MV is a state.
Thus, if B is an MV-subalgebra of A, Proposition 2 shows that h extends (not
uniquely) to a state of A. In other words, for every pairs of MV-algebras B and
A such that B is an MV-subalgebra of A and for every homomorphism h : B →
[0, 1]MV , there exists a state s of A such that for every b ∈ B, s(b) = h(b).

The following theorem, independently proved by Kroupa [10] and Panti [14]
(see also [5, §4]), represents every state s of an MV-algebra A as the Lebesgue
integral given by a unique regular, Borel probability measure. More precisely,
every state of an MV-algebra A is the Lebesgue integral on the continuous
functions a∗’s of its most general semisimple quotient, defined on the compact
Hausdorff space Max(A) of maximal ideals of A.

Theorem 1. For every MV-algebra A and for every state s of A there exists
a unique regular, Borel probability measure μ on the Borel subsets of Max(A)
such that, for every a ∈ A,

s(a) =
∫

Max(A)

a∗ dμ

4 A Probabilistic Logic on �Lukasiewicz Events

In this section we will recall basic definitions and properties for the logics
SFP(�L, �L) and its algebraic semantics1. The language of SFP(�L, �L) is obtained
by expanding that of �Lukasiewicz infinite-valued calculus with a unary modal-
ity P . The set SPFm of well-formed formulas in this language is defined by
1 We invite the reader to consult [6,7] and [5, §6] for a more exhaustive introduction to

SMV-algebras, fuzzy probabilistic logics and their relation with uncertain reasoning.
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induction as usual. Axioms and rules of SFP(�L, �L) are as follows: all instances
of axioms and rules of �Lukasiewicz logic, plus the following axioms and rules for
the modality P

– P (⊥) → ⊥ (Normalization);
– P (ϕ → ψ) → (P (ϕ) → P (ψ)) (Monotonicity);
– P (P (ϕ) ⊕ P (ψ)) ↔ P (ϕ) ⊕ P (ψ) (Idempotency);
– P (ϕ ⊕ ψ) ↔ [P (ϕ) ⊕ P (ψ 	 (ϕ � ψ))] (Additivity);
– from φ derive P (φ) (Necessitation).

Proofs are defined with no modification from the classical definition and �SFP φ
will be used to denote that φ is a theorem of SFP(�L, �L). If Γ ∪ {φ} is a subset of
SPFm, we will write Γ �SFP φ if there is a proof of φ from Γ .

The logic SFP(�L, �L) is algebraizable and its equivalent algebraic semantics is
the variety SMV of MV-algebras with internal state (or SMV-algebras for short).

Definition 2 ([6]). An SMV-algebra is a pair (A, σ) where A is an MV-algebra
and the internal state σ : A → A satisfies the following equations:

(σ1) σ(⊥) = ⊥;
(σ2) σ(x → y) ≤ σ(x) → σ(y);
(σ3) σ(σ(x ⊕ y))) = σ(x ⊕ y);
(σ5) σ(x ⊕ y) = σ(x) ⊕ σ(y 	 (x � y)).

Example 2. (1) Every idempotent endomorphism σ of an MV-algebra A makes
(A, σ) an SMV-algebra.

(2) Let FR(ω) be the set of all continuous and piecewise linear functions
with real coefficients. The pointwise application of ⊕ and ¬ of [0, 1]MV makes
FR(ω) into an MV-algebra which contains all constant functions α for every
α ∈ [0, 1]. These functions are continuous and hence Riemann-integrable. Let
σ : FR(ω) → FR(ω) be defined as follows: for every f ∈ FR(ω) with k variables,

σ(f) =
∫
[0,1]k

f dx.

That is, σ(f) is the function which is constantly equal to the Riemann integral
of f . This map σ is an internal state of FR(ω).

Proposition 3 ([6]). For every SMV-algebra (A, σ) the following properties
hold:

(1) the image σ(A) of A under σ, endowed with the operations inherited from
A forms an MV-subalgebra σ(A) of A;

(2) if (A, σ) is a subdirectly irreducible, then σ(A) is totally ordered. As a con-
sequence the variety SMV is generated by its elements (A, σ) such that σ(A)
is an MV-chain.
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Valuations to an SMV-algebra (A, σ) are defined in the usual way. A valua-
tion v is said to be a model of a formula φ, if v(φ) = �. A formula φ ∈ SPFm is
said to be an SMV-tautology (|=SMV φ in symbols), if v(φ) = � for every SMV-
algebra and every valuation to it. Further, for every (finite or infinite) subset
Γ ∪ {φ} of SPFm, we will write Γ |=SMV φ if for every SMV-algebra (A, σ)
and every valuation v to (A, σ) which is a model of each formulas in Γ , then v
is a model of φ as well.

Proposition 4 ([6, Theorem 4.5]). For every (finite or infinite) subset Γ ∪ φ
of SPFm, Γ �SFP φ iff Γ |=SMV φ.

We end this section with the following observation.

Remark 2. One of the most important properties for a t-norm based fuzzy logic,
is completeness with respect to the class of its standard algebras. By “standard”
we usually mean linearly ordered structures, order-embeddable into the real unit
interval. Although SFP(�L, �L) is grounded on �Lukasiewicz calculus which enjoys a
standard completeness theorem, SFP(�L, �L) is not standard complete in the usual
sense. In fact, for instance, the equation σ(x ∧ y) = σ(x) ∧ σ(y) holds in every
SMV-chain, but it does not hold in every SMV-algebra and in particular it does
not hold in the algebra (FR(ω), σ) of Example 2(2).

5 Toward a Standard Completeness for SFP(�L, �L)

In this section we will present a class of SMV-algebras that, in the light of
Remark 2, it is reasonable to call standard. Our main result will show that,
for a restricted, yet quite expressive, subset of SPFm, a formula is provable in
SFP(�L, �L) iff it is true in these standard algebras.

Definition 3. The set PFm of purely probabilistic formulas is the smallest
subset of SPFm which contains all the modal formulas P (ψ) (for ψ a �Lukasie-
wicz formula) and which is closed under the connectives of �Lukasiewicz logic.

Notice that each formula of PFm is in the form t[P (ψ1), . . . , P (ψk)] for t being
a(n MV-)term. Thus, for instance P (ϕ) → (P (ψ) ⊕ P (γ)) ∈ PFm, but neither
P (ψ → P (ϕ)), nor P (ψ) → γ belong to PFm. It is also worth to point out
that PFm forms the language for the weaker logic, with respect to SFP(�L, �L),
introduced in [3] and denoted by FP(�L, �L).

First of all, we will recall the definition of a class of SMV-algebras which was
introduced in [7].

Definition 4. An SMV-algebra (A, σ) is said to be σ-simple if A is semisimple
and σ(A) is simple.

In the light of the last comment of Subsection 2 a σ-simple SMV-algebra (A, σ)
can be regarded as an algebra of continuous functions on a compact Hausdorff
space endowed with a normalized, idempotent, finitely additive and real-valued
internal state σ.
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The notions of valuation in a σ-simple SMV-algebra and tautology are as in
Sect. 4. We will write |=σ φ to denote that the formula φ is a tautology in this
setting.

In the proof of the following result we will make use of the construction of
MV-tensor product which was introduced by Mundici in [13] and heavily used
in [6] to internalize a state of an MV-algebra. In what follows we will restrict
the attention to those MV-algebras [0, 1]MV ⊗ A defined by taking the tensor
product of the standard MV-algebra [0, 1]MV with an MV-algebra A. For the
sake of the present paper, it is important to recall the following properties: (1)
the generators of [0, 1]MV ⊗A are of the form α⊗ a for α ∈ [0, 1] and a ∈ A; (2)
the maps a ∈ A �→ 1 ⊗ a and α �→ α ⊗ � respectively are embeddings of A and
[0, 1]MV into [0, 1]MV ⊗A; (3) the top element of [0, 1]MV ⊗A is 1 ⊗ �. By (2),
[0, 1]MV ⊗ A contains isomorphic copies of both [0, 1]MV and A.2

Theorem 2. For every formula φ ∈ PFm, �SFP φ iff |=σ φ.

Proof. The left-to-right direction follows from Proposition 4.
In order to prove the right-to-left direction, assume ��SFP φ. Thus, from

Proposition 4 there exists an SMV-algebra (A, σ) and a valuation v in A such
that v(φ) < �. Without loss of generality, by Proposition 3, we can assume (A, σ)
to be subdirectly irreducible and hence σ(A) linearly ordered. Since φ ∈ PFm,
it will be in the form

t[P (ψ1), . . . , P (ψk)]

where t is a term in the language of MV-algebras. Let us denote by Sφ the
following subset of A:

Sφ = {v(φ), v(P (ψ1)), . . . , v(P (ψk))} = {v(φ), σ(v(ψ1)), . . . , σ(v(ψk))}.

Therefore Sφ is a finite subset of σ(A) and since σ(A) is an MV-chain, there is a
partial embedding hφ of Sφ into the standard MV-algebra [0, 1]MV (see Lemma 1
(1)):

hφ : Sφ ↪→p [0, 1]MV .

By Lemma 1 (2), hφ extends to a homomorphism, that we still denote by hφ, of
the MV-subalgebra S = 〈Sφ〉σ(A) of σ(A), generated by Sφ, to [0, 1]MV :

hφ : S ↪→ [0, 1]MV .

Notice that hφ(v(φ)) < 1. By Remark 1, hφ extends to a state sφ : σ(A) → [0, 1].
Thus, let s : A → [0, 1] be the map

s : a ∈ A �→ sφ(σ(a)).

2 We invite the reader to consult [13] for an exhaustive description of the MV-tensor
product construction and [6,7] for its application to the theory of SMV-algebras.
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Notice that s and sφ agree on σ(A). Indeed by the idempotency of σ (equa-
tion (σ3) of Definition 2), if a = σ(b) ∈ σ(A), s(a) = s(σ(b)) = sφ(σσ(b)) =
sφ(σ(b)) = sφ(a). Therefore, for every subformula P (ψi) of φ, since sφ extends
hφ,

s(v(ψi)) = sφ(σ(v(ψi))) = hφ(v(P (ψi))), (1)

which leads to the following fact.

Fact 1. t[0,1][s(v(ψ1)), . . . , s(v(ψk))] < 1.

As a matter of fact, by (1)

t[0,1][s(v(ψ1)), . . . , s(v(ψk))] = t[0,1][hφ(v(P (ψ1))), . . . , hφ(v(P (ψk)))]
= hφ(tA[v(P (ψ1))), . . . , v(P (ψk))])
= hφ(v(t[P (ψ1), . . . , P (ψk)]))
= hφ(v(φ)) < 1.

In order to get the claim, we have now to define a σ-simple SMV-algebra (M, σM )
and a valuation w to M such that w(φ) < 1. To this aim, let N = [0, 1]MV ⊗
A and sN : N → [0, 1] be such that sN (α ⊗ a) = α · s(a). Than sN is a
state of N which extends s (indeed, A is a subalgebra of N). Regardless of the
semisimplicity of A, N needs not to be semisimple (see [13, Theorem 3.3]). Thus,
let M its most general semisimple quotient:

M = N/Rad(N) and σM : m/Rad(N) ∈ M �→ sN (m).

Notice that σM is well-defined because of Proposition 1. Moreover, M is semisim-
ple, σM is an internal state of M (because the range [0, 1]MV of σM is a subal-
gebra of M) and σM (M) is clearly simple. Thus, (M, σM ) is σ-simple.

Let w be the following valuation to M : for each propositional variable q,
w(q) = 1⊗v(q) and w(P (γ)) = σM (v(γ))⊗�. Notice that, for every subformula
P (ψi) of φ, one has

w(P (ψi)) = σM (v(ψi)) ⊗ � = sN (v(ψi)) ⊗ � = s(v(ψi)) ⊗ �,

and hence, by Fact 1, w(φ) = t[0,1][s(v(ψ1)), . . . , s(v(ψk))] ⊗ � < 1 ⊗ �. ��
We now introduce a further refined semantics for SFP(�L, �L). To this end let
FR(ω) be the MV-algebra of Example 2(2). It is worth to notice that FR(ω)
is semisimple [7, Proposition 2.4]. Further, every state s : FR(ω) → [0, 1] can
be easily internalized by considering the map σs : FR(ω) → FR(ω) defined as
follows: for every a ∈ FR(ω)

σs(a) = s(a). (2)

Then (FR(ω), σs) is a σ-simple SMV-algebra. Notice that, thanks to Theorem 1
the internal state σs assigns to every f ∈ FR(ω), the real number

∫
f dμ: the

Lebesgue integral of f by a regular, Borel probability measure.

Definition 5. A standard SMV-algebra is a pair (FR(ω), σs) where s : FR(ω) →
[0, 1] is a state and σs is defined as in (2).
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Taking into account that the free ω-generated MV-algebra of Example 1(2) is
a subalgebra of FR(ω) (see [7, Proposition 2.4]), a valuation v of SFP(�L, �L)-
formulas in (FR(ω), σs) can be inductively defined as follows:

-v(ψ) = fψ for ψ a �Lukasiewicz formula;
- v commutes with �Lukasiewicz connectives;
- v(P (ψ)) = σs(v(ψ)).

We will write |=St φ to denote that φ is a tautology for this class of algebras.

Theorem 3. For every formula φ ∈ PFm, |=σ φ iff |=St φ. In other words,
σ-simple SMV-algebras and standard SMV-algebras share the same PFm-
tautologies.

Proof. Since every standard SMV-algebra is σ-simple, |=σ φ implies |=St φ. Let
hence assume that �|=σ φ and let v be a valuation in a σ-simple SMV-algebra
(A, σ) such that v(φ) < 1. Define s : F(ω) → [0, 1] by the following stipulation:
for every �Lukasiewicz formula ψ, s(fψ) = σ(v(ψ)).

Clearly s is a state of F(ω) which, since F(ω) is an MV-subalgebra of FR(ω),
extends to a state ŝ of FR(ω) by Proposition 2. Define σŝ by (2) and the valuation
w on (FR(ω), σŝ) by w(q) = fq. Let us prove that w is not a model of φ. Since
φ ∈ PFm, it is in the form t[P (ψ1), . . . , P (ψk)] and because s and ŝ agree on
F(ω), so do σs and σŝ by definition. Thus, by (2) one has:

w(φ) = t[0,1][σŝ(w(ψ1)), . . . , σŝ(w(ψk))]
= t[0,1][σŝ(fψ1), . . . , σŝ(fψk

)]
= t[0,1][σs(fψ1), . . . , σs(fψk

)]
= t[0,1][s(fψ1), . . . , s(fψk

)]
= v(φ) < 1

Therefore, �|=St φ which settles the claim. ��
The following result is a direct consequence of Theorems 2 and 3.

Corollary 1. For every formula φ ∈ PFm, �SFP φ iff |=St φ.

6 Conclusion and Future Work

In this paper we presented a partial solution to the problem of establishing a a
standard completeness theorem for the probabilistic logic SFP(�L, �L) introduced
in [6]. In particular we proved that, for a restricted class of formulas, theorems of
SFP(�L, �L) are tautologies for a class of SMV-algebras which are defined from real-
valued metric spaces. In our future work on this argument we plan to extend the
ideas and constructions which led to the proof of our main theorems to provide
a standard completeness theorem for the whole language of SFP(�L, �L).
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Abstract. We introduce a family of probabilistic justification logics
that feature Bayesian confirmations. Our logics include new justification
terms representing evidence that make a proposition firm in the sense of
making it more probable. We present syntax and semantics of our logic
and establish soundness and strong completeness. Moreover, we show
how to formalize in our logic the screening-off condition for transitivity
of Bayesian confirmations.
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1 Introduction

Justification logic is a type of logic that explicitly includes justifications why
something is known or believed [6,18]. The first justification logic, the Logic of
Proofs [2], has been developed to provide a classical provability semantics for
intuitionistic logic. In that approach, justifications represent proofs in a formal
system like Peano arithmetic [17]. Later justification logic was introduced into
formal epistemology where justifications can represent not only proofs but evi-
dence in general [4]. For instance, an agent’s knowledge may be justified by direct
observation or by communication with another agent. In this context, notions
like common knowledge [3,8] and public announcements [7,9] have been studied
in detail.

Milnikel [19] was the first to investigate uncertain justifications. This lead
to several further frameworks that model uncertain reasoning in justification
logic: fuzzy justification logics [12,21], possibilistic justification logics [11,28],
probabilistic justification logics [13,14,20], and logics for combining evidence
and uncertainty [1,25].

Having logics that contain justifications for belief as well as operators for
conditional probabilities, it is natural to extend them to a framework in which
justifications can represent Bayesian confirmations [29]. The main principle of
Bayesian confirmation theory says that (for simplicity we do not consider a
background theory here) evidence E confirms hypothesis H if the prior proba-
bility of H conditional on E is greater than the prior unconditional probability
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of H, that is if P(H|E) > P(H). Carnap [10] calls this condition confirmation
as increase in firmness.

We aim at a probabilistic justification logic that implements the above idea,
that is in which something like

P(H|E) > P(H) entails j(E) : H (1)

holds, where j(E) is a term that represents the evidence E. Hence in this logic
we read the formula e : F as evidence e confirms F .

In order to model this relationship between conditional probability and evi-
dence, we need a way to consider formulas as evidence terms. In (1) this is the
role of the operator j. It takes a formula E and produces an evidence term j(E)
representing the evidence E.

A similar kind of justification operator has been considered in the treatment
of public announcements [16] where the operator up transforms formulas to evi-
dence terms. We will use a similar strategy for the j-operator of (1). Further
we will employ operators for conditional probabilities CP≥s as in [20,22] and
operators for the degree of confirmation D≥s as in [26]. A formula CP≥s(A,B)
means that the conditional probability of A given B is at least s and a formula
D≥s(A,B) means that the difference between the conditional probability of A
given B and the probability of A is at least r.

The paper is organized as follows. In the next section we introduce syntax
and semantics of Bayesian justification logic, i.e. we present the deductive system
BJCS and we introduce the class of measurable Bayesian models. Then in Sect. 3
we establish soundness and completeness of BJCS with respect to those models.
Section 4 discusses transitivity of Bayesian confirmations in the framework of
justification logic. Finally, Sect. 5 concludes the paper.

2 Bayesian Justification Logic BJ

2.1 Syntax

We start with countably many constants ci, countably many variables xi, and
countably many atomic propositions pi. Further, we define S := Q ∩ [0, 1] and
S∗ := Q ∩ [−1, 1], where Q is the set of all rational numbers. The (evidence)
terms and formulas of the language of BJ are defined by simultaneous induction
as follows:

– Evidence terms.
• Every constant ci and every variable xi is an atomic term. If A is a

formula, then jA is an atomic term. Every atomic term is a term.
• If t and s are terms, then t · s is a term and !t is a term.

– Formulas.
• Every atomic proposition pi is a formula.
• ⊥ is a formula.
• If A and B are formulas, t is a term, s ∈ S, and r ∈ S∗, then A → B,

t : A, CP≥s(A,B), and D≥r(A,B) are formulas.
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The set of all constants is denoted by Con, the set of all terms is Tm, and we
use t, s, u, v, . . . to denote terms. The set of atomic propositions and the set of
justification formulas are denoted by Prop and Fml, respectively. We use A,B, . . .
to denote formulas. The classical Boolean connectives ¬,∨,∧,↔ are defined as
usual and we set

CP≤s(B,C) := CP≥1−s(¬B,C) and D≤r(B,C) := D≥−r(¬B,C)

for s ∈ S and r ∈ S∗. Moreover, we use the standard abbreviations, see [22], for
the following formulas:

CP<s(A,B) CP>s(A,B) CP=s(A,B) Pρs(A) for ρ ∈ {≥,≤, >,<,=}
and similarly for D<s(A,B), D>s(A,B) and D=s(A,B).

The axiom schemes of BJ are the following where © ∈ {CP,D}:

1. all classical tautologies
2. t : (A → B) → (s : A → t · s : B)
3. CP≥0(A,B)
4. ©≤s(A,B) → ©<t(A,B), for t > s
5. ©<s(A,B) → ©≤s(A,B)
6. P≥1(A ↔ B) → (P=sA → P=sB)
7. P=sA ∧ P=tB ∧ P≥1¬(A ∧ B)) → P=min{1,s+t}(A ∨ B)
8. P=0B → CP=1(A,B)
9. P≥s(A ∧ B) ∧ P≤tB → CP≥ s

t
(A,B), for t �= 0

10. P≤s(A ∧ B) ∧ P≥tB → CP≤ s
t
(A,B), for t �= 0

11. CP≥s(A,B) ∧ P≤tA → D≥s−t(A,B)
12. CP≤s(A,B) ∧ P≥tA → D≤s−t(A,B)
13. jB : A ↔ D>0(A,B)

Axioms 1 to 10 come from justification logic with conditional probabilities,
see [20]. The main difference is that we replaced the axiom

P=s(A ∧ B) ∧ P=tB → CP= s
t
(A,B) for t �= 0

from [20] with our axioms 9 and 10, which yields a slightly stronger system.
This additional power is needed to prove Lemma 4. Axioms 11 and 12 formalize
the relationship between conditional probabilities and degrees of confirmation as
in [26]. Axiom 13 finally states that terms jB represent Bayesian confirmations.

A constant specification is any set CS that satisfies

CS ⊆ {(c,A) | c is a constant and
A is an instance of some axiom of BJ}.

Let CS be any constant specification. The deductive system BJCS is the
Hilbert system obtained by adding to the axioms of BJ the rules (MP), (CE),
(ST.1), (ST.2) and (AN!) as given in Fig. 1.

Note that (ST.1) and (ST.2) are infinitary rules, which we need to obtain
strong completeness. Observe also the difference in the definitions of rules (MP),
(ST.1), (ST.2), and (CE) in Fig. 1. Rule (CE) can only be applied to theorems of
BJ (i.e. formulas that are deducible from the empty set), whereas (MP), (ST.1),
and (ST.2) can always be applied.
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Fig. 1. System BJCS

2.2 Semantics

To introduce semantics for BJCS, we begin with the notion of a basic evaluation,
which is the cornerstone for many interpretations of justification logic [5,15]. In
the following we use P(X) to denote the power set of a set X.

Definition 1 (Basic Evaluation). Let CS be a constant specification. A basic
evaluation for CS, or a basic CS-evaluation, is a function ∗ that maps atomic
propositions to truth values and maps justification terms to subsets of Fml, i.e.

∗ : Prop → {T,F} and ∗ : Tm → P(Fml),

such that for u, v ∈ Tm, for c ∈ Con and A,B ∈ Fml we have:

1.
(
A → B ∈ u∗ and A ∈ v∗) =⇒ B ∈ (u · v)∗

2. if (c,A) ∈ CS then for all n ∈ N we have1:

!n−1c : !n−2c : · · · :!c : c : A ∈ (!nc)∗

We usually write t∗ and p∗ instead of ∗(t) and ∗(p), respectively.

Definition 2 (Algebra over a Set). Let W be a non-empty set and let H
be a non-empty subset of P(W ). We call H an algebra over W iff the following
hold:

– W ∈ H
– U, V ∈ H =⇒ U ∪ V ∈ H
– U ∈ H =⇒ W \ U ∈ H

Definition 3 (Finitely Additive Measure). Let H be an algebra over W
and μ : H → [0, 1]. We call μ a finitely additive measure iff the following hold:

1. μ(W ) = 1

1 We agree to the convention that the formula !n−1c : !n−2c : · · · : !c : c : A represents
the formula A for n = 0.
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2. for all U, V ∈ H:

U ∩ V = ∅ =⇒ μ(U ∪ V ) = μ(U) + μ(V )

Definition 4 (Probability Space). A probability space is a triple

P = 〈W,H, μ〉,
where:

– W is a non-empty set
– H is an algebra over W
– μ : H → [0, 1] is a finitely additive measure

Definition 5 (Model). Let CS be a constant specification. A BJCS-model is a
quintuple M = 〈U,W,H, μ, ∗〉 where:

1. U is a non-empty set of objects called worlds
2. W,H, μ and ∗ are functions, which have U as their domain, such that for

every w ∈ U :
– 〈W (w),H(w), μ(w)〉 is a probability space with W (w) ⊆ U
– ∗w is a basic CS-evaluation2

The ternary satisfaction relation |= is defined between models, worlds, and
formulas. We will use μw for μ(w), p∗

w for p∗w , and t∗w for t∗w .

Definition 6 (Truth in a BJCS-model). Let CS be a constant specification
and let M = 〈U,W,H, μ, ∗〉 be a BJCS-model. We define by simultaneous induc-
tion

1. what it means for a formula to hold in M at a world w ∈ U and
2. what it means for a formula to be measurable in M at a world w ∈ U

as follows:

– M,w |= p iff p∗
w = T for p ∈ Prop;

– M,w �|= ⊥;
– M,w |= A → B iff M,w �|= A or M,w |= B;
– M,w |= t : A iff A ∈ t∗w;
– M,w |= CP≥s(A,B) iff A ∧ B and B are measurable at w and either

μw([B]) = 0, or μw([B]) > 0 and μw([A∧B])
μw([B]) ≥ s;

– M,w |= D≥s(A,B) iff A and B are measurable at w and either μw([B]) = 0
and 1 − μw([A]) ≥ s, or μw([B]) > 0 and μw([A∧B])

μw([B]) − μw([A]) ≥ s.

We say a formula B is measurable in M at a world w ∈ U if the set

[B]M,w := {x ∈ W (w) | M,x |= B}
is an element of H(w).
2 We will usually write ∗w instead of ∗(w).
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Definition 7 (Measurable Model). Let CS be a constant specification and let
M = 〈U,W,H, μ, ∗〉 be a BJCS-model. M is called measurable iff every formula A
is measurable at each w ∈ U . BJCS,Meas denotes the class of measurable BJCS
models.

Finally, we call a model Bayesian if terms of the form jA represent Bayesian
evidence.

Definition 8. A BJCS-model M = 〈U,W,H, μ, ∗〉 is called Bayesian model if at
each w ∈ U ,

M,w |= D>0(A,B) iff M,w |= jB : A.

The class of Bayesian BJCS-models is denoted by BJCS,Bayes. The class of Bayesian
measurable BJCS-models is denoted by BJCS,Meas,Bayes.

For a model M = 〈U,W,H, μ, ∗〉, M |= A means that M,w |= A for all
w ∈ U . Let T ⊆ Fml. Then M |= T means that M |= A for all A ∈ T . Further
T |= A means that for all M ∈ BJCS,Meas,Bayes, M |= T implies M |= A.

To be precise we should write T �CS A and T |=CS A instead of T � A
and T |= A, respectively, since these two notions depend on a given constant
specification CS. However, CS will always be clear from the context and we thus
omit it.

3 Soundness and Completeness for Bayesian Justification
Logic

Soundness of BJCS can be proved by induction on the depth of derivations. To
establish completeness, we make use of a canonical model construction. For lack
of space, however, we cannot give a detailed completeness proof here. We will
only present a series of definitions and lemmas (without proofs) that leads to
the completeness result.

Theorem 1 (Soundness). Let CS be a constant specification. The axiomatic
system BJCS is sound with respect to the class of BJCS,Meas,Bayes-models, i.e., for
any formula A and any set T ⊆ Fml we have

T � A =⇒ T |= A.

Now we define the notion of a BJCS-consistent sets.

Definition 9 (BJCS-Consistent Sets). Let CS be any constant specification
and let T be a set of formulas.

– T is said to be BJCS-consistent if and only if T ��BJCS ⊥. Otherwise T is said
to be BJCS-inconsistent.

– T is said to be maximal if and only if for every A ∈ Fml either A ∈ T or
¬A ∈ T .

– T is said to be maximal BJCS-consistent if and only if it is maximal and
BJCS-consistent.
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We have the following deduction theorem for BJCS. The proof is similar to
the one given in [13,22].

Theorem 2 (Deduction Theorem for BJCS). Let T be a set of formulas and
A and B be formulas. We have

T,A � B iff T � A → B.

The deduction theorem makes it possible to establish the following property
of consistent sets of formulas, see [13, Lemma 27].

Lemma 1. Let CS be a constant specification and let T be a BJCS-consistent set
of formulas.

1. If ¬(B → CP≥s(A,C)) ∈ T for s > 0, then there is some integer n ≥ 1
s such

that T,¬(B → CP≥s− 1
n
(A,C)) is BJCS-consistent.

2. If ¬(B → D≥r(A,C)) ∈ T for r > −1, then there is some integer n ≥ 1
r+1

such that T,¬(B → D≥r− 1
n
(A,C)) is BJCS-consistent.

The Lindenbaum lemma for probabilistic justification logics has been estab-
lished in [13]. The proof for BJCS is similar.

Lemma 2 (Lindenbaum). Let CS be a constant specification. Every BJCS-
consistent set of formulas can be extended to a maximal BJCS-consistent set.

Definition 10 (Canonical Model). Let CS be a constant specification. The
canonical model for BJCS is given by the quintuple M = 〈U,W,H, μ, ∗〉, defined
as follows:

– U =
{
w

∣
∣ w is a maximal BJCS-consistent set of formulas

}

– for every w ∈ U the probability space 〈W (w),H(w), μ(w)〉 is defined as fol-
lows:
1. W (w) = U
2. H(w) =

{
(A)M

∣
∣ A ∈ Fml

}
where (A)M =

{
x

∣
∣ x ∈ U,A ∈ x

}

3. for all A ∈ Fml, μ(w)
(
(A)M

)
= sups {P≥sA ∈ w}

– for every w ∈ W the basic CS-evaluation ∗w is defined as follows:
1. for all p ∈ Prop:

p∗
w =

{
T if p ∈ w

F if ¬p ∈ w

2. for all t ∈ Tm:
t∗w =

{
A

∣
∣ t : A ∈ w

}

Lemma 3. Let CS be a constant specification. The canonical model for BJCS is
a BJCS-model.

The following lemma is proved by induction on the complexity of the formula
A where we make use of a complexity measure such that the complexity of
CP≥s(B,C) and D≥s(B,C) is greater than the complexity of B ∧ C.
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Lemma 4. Let M = 〈U,W,H, μ, ∗〉 be the canonical model for BJCS. Then we
have

(∀A ∈ Fml)(∀w ∈ U)
[
[A]M,w = (A)M

]
.

From Lemma 4 we get the following corollary.

Corollary 1. Let CS be any constant specification. The canonical model for
BJCS is a BJCS,Meas-model.

Making use of the properties of maximal consistent sets, we can establish the
truth lemma.

Lemma 5 (Truth Lemma). Let CS be a constant specification and let M =
〈U,W,H, μ, ∗〉 be the canonical model for BJCS. For every A ∈ Fml and any
w ∈ U we have:

A ∈ w ⇐⇒ M,w |= A.

Using the truth lemma we find that the canonical model satisfies the condi-
tion for Bayesian models, i.e. we have the following corollary.

Corollary 2. Let CS be any constant specification. The canonical model for
BJCS is a BJCS,Meas,Bayes-model.

Finally, we get the completeness theorem as usual.

Theorem 3 (Strong Completeness for BJ). Let CS be a constant specifica-
tion, let T ⊆ Fml and let A ∈ Fml. Then we have:

T |= A =⇒ T � A.

4 Transitivity

It is well known that Bayesian confirmation is not transitive, i.e., the following
principle is not valid

P(B|A) > P(B) and P(C|B) > P(C) =⇒ P(C|A) > P(C) . (2)

We refer to, e.g., [24,27] for examples where transitivity fails.
It turns out, however, that there are conditions under which (2) holds.

Shogenji [27] introduces the following condition, called screening-off condition,

P(C|A ∧ B) = P(C|B) and P(C|A ∧ ¬B) = P(C|¬B) (3)

and shows that transitivity holds under it. Intuitively, (3) means that once truth
or falsity of B is known, A is irrelevant to the probability of C. In other words,
A affects the probability of C only indirectly through its impact on B [24].

Roche [23] presents the following weakening of (3)

P(C|A ∧ B) ≥ P(C|B) and P(C|A ∧ ¬B) ≥ P(C|¬B) . (4)

and shows that transitivity also holds under this weaker condition.
We are now going to formalize this result in Bayesian justification logic. We

show that we can represent (4) in BJ and that this condition entails transitivity
of Bayesian justifications.
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Theorem 4. Let A, B, and C be formulas of Fml. Let T be the set of formulas
that consists of:

1. CP=r(C,B) → CP≥r(C,A ∧ B) for all r ∈ S,
2. CP=r(C,¬B) → CP≥r(C,A ∧ ¬B) for all r ∈ S,
3. P�=0A, P�=0(A ∧ B), P�=0(A ∧ ¬B), P�=0B, and P�=0¬B.

Then we have that
T � jA : B ∧ jB : C → jA : C .

Let M be any BJCS,Meas,Bayes-model such that M |= T . We observe that since
M satisfies all formulas in T , the model M also satisfies condition (4). Thus
we can show that M |= jA : B ∧ jB : C → jA : C by essentially following the
original proof that transitivity holds under (4) given in [23]. The theorem follows
by strong completeness of BJCS.

5 Conclusion

In this paper we have introduced BJCS, a family of justification logics that fea-
ture Bayesian confirmations. Because the language of Bayesian justification log-
ics includes both probability operators and explicit justifications, we were able to
define a class of models that satisfies condition (1). Hence BJCS not only includes
justification terms built up from variables and constants, i.e. terms that repre-
sent assumptions and logical axioms, but also terms that represent Bayesian
confirmations. In particular, a formula jA : B, i.e. jA justifies B, can be read as
evidence A confirms B in the sense of increase in firmness.

We have established soundness and completeness of BJCS with respect to
Bayesian models. Further we have shown that we can formalize the screening-off
condition and that this condition entails transitivity of confirmation in Bayesian
models.

Future work includes studying the computational properties of Bayesian jus-
tification logic, i.e., establishing decidability and complexity results, as well as
developing a corresponding proof theory.
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1809.09608, arXiv.org (2018)

https://doi.org/10.1016/j.tcs.2006.03.009
https://doi.org/10.1017/S1755020308090060
https://doi.org/10.1007/s11225-012-9387-x
http://plato.stanford.edu/archives/fall2012/entries/logic-justification/
http://plato.stanford.edu/archives/fall2012/entries/logic-justification/
https://doi.org/10.3166/JANCL.21.35-60
https://doi.org/10.1016/j.jcss.2014.04.001
https://doi.org/10.1016/j.jcss.2014.04.001
https://doi.org/10.1093/jigpal/jzv025
https://doi.org/10.1093/jigpal/jzv025
https://doi.org/10.1007/978-3-319-27683-0_13
https://doi.org/10.1007/978-3-642-35722-0_19
https://doi.org/10.1016/j.apal.2013.07.015
https://doi.org/10.1007/978-3-662-55665-8_52
https://doi.org/10.1007/978-3-662-55665-8_52
http://arxiv.org/abs/org


418 H. Mohammadi and T. Studer
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Abstract. This paper continues our work on a coherence-based proba-
bility semantics for Aristotelian syllogisms (Gilio, Pfeifer, and Sanfilippo,
2016; Pfeifer and Sanfilippo, 2018) by studying Figure III under coher-
ence. We interpret the syllogistic sentence types by suitable conditional
probability assessments. Since the probabilistic inference of P |S from the
premise set {P |M, S|M} is not informative, we add p(M |(S _ M)) ą 0
as a probabilistic constraint (i.e., an “existential import assumption”)
to obtain probabilistic informativeness. We show how to propagate the
assigned premise probabilities to the conclusion. Thereby, we give a prob-
abilistic meaning to all syllogisms of Figure III. We discuss applications
like generalised quantifiers (like Most S are P ) and (negated) defaults.

Keywords: Aristotelian syllogisms · Coherence · Conditional events ·
Figure III · Imprecise probability · Default reasoning

1 Motivation and Outline

Aristotelian syllogisms constitute one of the oldest logical reasoning systems.
Given the over two millennia long history, not many authors proposed probabilis-
tic semantics for Aristotelian syllogisms (see, e.g., [7,8,11,16,30]) to overcome
formal restrictions inherited by deductive logic, like its monotonicity (i.e., the
inability to retract conclusions in the light of new evidence) or its bivalence (i.e.,
the inability to express degrees of belief ). This paper continues our work on cate-
gorical Aristotelian syllogisms within coherence-based probability logic (see, e.g.,
[5,10,12,16,39]; for other approach to probability logic see, e.g., [1,2,24,32]). We
aim to manage nonmonotonicity and degrees of belief, which are necessary for
the formalisation of commonsense reasoning. We have studied Figure I, which
have transitive structures [16] and Figure II, where the middle term constitutes
the consequents of both premises [41]. We extend this work by studying Figure
III under coherence. The middle term constitutes the antecedents of the premises
of Figure III syllogisms (see Table 1). After recalling some preliminary notions
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Table 1. Traditional (logically valid) Aristotelian syllogisms of Figure III (term order:
M—P , M—S, therefore S—P ). * denotes syllogisms which require implicit existential
import assumptions for logical validity (since universally quantifiers statements could
be vacuously true, M must not be “empty”, i.e., DxMx).

AII Datisi Every M is P, some M is S, therefore some S is P

AAI* Darapti Every M is P, every M is S, therefore some S is P

EIO Ferison No M is P, some M is S, therefore some S is not P

EAO* Felapton No M is P, every M is S, therefore some S is not P

IAI Disamis Some M is P, every M is S, therefore some S is P

OAO Bocardo Some M is not P, every M is S, therefore some S is not P

and results in Sect. 2, we show how to propagate the assigned probabilities to the
sequence of conditional events (P |M,S|M,M |(S _ M)) to the conclusion P |S
in Sect. 3. This result is applied in Sect. 4, where we firstly give a probabilistic
meaning to the traditionally valid syllogisms of Figure III (see Table 1). Secondly,
we connect Aristotelian syllogistics with nonmonotonic reasoning by construct-
ing syllogisms in terms of defaults and negated defaults. Section 5 concludes by
remarks on further applications and future work.

2 Preliminary Notions and Results

In this section we recall selected key features of coherence (for more details
see, e.g., [4,9,10,19,20,34,45]). Given two events E and H, with H ‰ K, the
conditional event E|H is defined as a three-valued logical entity which is true
if EH (i.e., E ^ H) is true, false if ĒH is true, and void if H is false. In
betting terms, assessing p(E|H) = x means that, for every real number s, you
are willing to pay an amount s · x and to receive s, or 0, or s · x, according to
whether EH is true, or ĒH is true, or H̄ is true (i.e., the bet is called off),
respectively. In these cases the random gain (that is, the difference between
the (random) amount that you receive and the amount that you pay) is G =
(sEH `0ĒH `sxH̄)´sx = sEH `sx(1´H)´sx = sH(E ´x). More generally
speaking, consider a real-valued function p : K → R, where K is an arbitrary
(possibly not finite) family of conditional events. Let F = (E1|H1, . . . , En|Hn)
be a sequence of conditional events, where Ei|Hi P K, i = 1, . . . , n, and let
P = (p1, . . . , pn) be the vector of values pi = p(Ei|Hi), where i = 1, . . . , n. We
denote by H0 the disjunction H1 _ · · · _ Hn. With the pair (F ,P) we associate
the random gain G =

∑n
i=1 siHi(Ei ´ pi), where s1, . . . , sn are n arbitrary real

numbers. G represents the net gain of n transactions. Let GH0 denote the set of
possible values of G restricted to H0, that is, the values of G when at least one
conditioning event is true.

Definition 1. Function p defined on K is coherent if and only if, for every inte-
ger n, for every sequence F of n conditional events in K and for every s1, . . . , sn,
it holds that: min GH0 ď 0 ď max GH0 .
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Intuitively, Definition 1, means in betting terms that a probability assessment is
coherent if and only if, in any finite combination of n bets, it cannot happen that
the values in GH0 are all positive, or all negative (no Dutch Book). Coherence can
be also characterized in terms of proper scoring rules [6], which can be related to
the notion of entropy and extropy in information theory [28,29]. Coherence can
be checked, for example, by applying [13, Algorithm 1] or by the CkC-package [3].
We recall the fundamental theorem of de Finetti for conditional events, which
states that a coherent assessment of premises can always be coherently extended
to a conclusion [4,9,25,31,43,46]:

Theorem 1. Let a coherent probability assessment P = (p1, . . . , pn) on a
sequence F = (E1|H1, . . . , En|Hn) be given. Then, for a given further condi-
tional event En`1|Hn`1, there exists a suitable closed interval [z′, z′′] Ď [0, 1]
such that the extension (P, z) of P to (F , En`1|Hn`1) is coherent if and only if
z P [z′, z′′].

Definition 2. An imprecise, or set-valued, assessment I on a finite sequence of
n conditional events F is a (possibly empty) set of precise assessments P on F .

Definition 2, introduced in [13], states that an imprecise (probability) assessment
I on a finite sequence F of n conditional events is just a (possibly empty) subset
of [0, 1]n. We recall the notions of g-coherence and total-coherence for imprecise
(in the sense of set-valued) probability assessments [16].

Definition 3. Let a sequence of n conditional events F be given. An imprecise
assessment I Ď [0, 1]n on F is g-coherent if and only if there exists a coherent
precise assessment P on F such that P P I.
Definition 4. An imprecise assessment I on F is totally coherent (t-coherent)
if and only if the following two conditions are satisfied: (i) I is non-empty; (ii)
if P P I, then P is a coherent precise assessment on F .

We denote by Π the set of all coherent precise assessments on F . We recall that if
there are no logical relations among the events E1,H1, . . . , En,Hn involved in F ,
that is E1,H1, . . . , En,Hn are logically independent, then the set Π associated
with F is the whole unit hypercube [0, 1]n. If there are logical relations, then the
set Π could be a strict subset of [0, 1]n. As it is well known Π ‰ H; therefore,
H ‰ Π Ď [0, 1]n.

Remark 1. Note that: I is g-coherent ⇐⇒ Π X I ‰ H; I is t-coherent ⇐⇒
H ‰ Π X I = I . Then: I is t-coherent ⇒ I is g-coherent. Thus, g-coherence is
weaker than t-coherence. For further details and relations to coherence see [16].

Given a g-coherent assessment I on a sequence of n conditional events F , for
each coherent precise assessment P on F , with P P I, we denote by [z′

P , z′′
P ] the

interval of coherent extensions of P to En`1|Hn`1; that is, the assessment (P, z)
on (F , En`1|Hn`1) is coherent if and only if z P [z′

P , z′′
P ]. Then, defining the

set Σ = PPΠXI [z′
P , z′′

P ], for every z P Σ, the assessment I ˆ {z} is a g-coherent
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extension of I to (F , En`1|Hn`1); moreover, for every z P [0, 1]\Σ, the extension
I ˆ {z} of I to (F , En`1|Hn`1) is not g-coherent. We say that Σ is the set of
coherent extensions of the imprecise assessment I on F to the conditional event
En`1|Hn`1.

3 Figure III: Propagation of Probability Bounds

We observe that the probabilistic inference of C|A from the premise set
{C|B,A|B}, which corresponds to the general form of syllogisms of Figure III, is
probabilistically non-informative. Therefore, we add the probabilistic constraint
p(B|A _ B) ą 0 to obtain probabilistic informativeness. This constraint serves
as an “existential import assumption” (see also [16,41]). Contrary to first order
monadic predicate logic, which requires existential import assumptions for Dara-
pti and Felapton only (see Table 1), our probabilistic existential import assump-
tion is required for all valid syllogisms of Figure III.

Remark 2. Let A,B,C be logically independent events. It can be proved that the
assessment (x, y, z) on (C|B,A|B,C|A) is coherent for every (x, y, z) P [0, 1]3,
that is, the imprecise assessment I = [0, 1]3 on (C|B,A|B,C|A) is totally
coherent. Moreover, it can also be proved that the assessment (x, y, t) on
(C|B,A|B,B|A_B) is coherent for every (x, y, t) P [0, 1]3, that is, the imprecise
assessment I = [0, 1]3 on (C|B,A|B,B|A_B) is totally coherent. It is sufficient
to check the coherence of each vertex of the unit cube [13].

Consider a coherent probability assessment (x, y, t) on the sequence of condi-
tional events (C|B,A|B,B|A _ B). The next result allows for computing the
lower and upper bounds, z′ and z′′ respectively, for the coherent extension
z = p(C|A).

Theorem 2. Let A,B,C be three logically independent events and (x, y, t) P
[0, 1]3 be a (coherent) assessment on the family

(
C|B,A|B,B|A_B

)
. Then, the

extension z = p(C|A) is coherent if and only if z P [z′, z′′], where

z′ =

⎧
⎨

⎩

0, if t(x ` y ´ 1) ď 0,
t(x ` y ´ 1)

1 ´ t(1 ´ y)
, if t(x ` y ´ 1) ą 0,

z′′ =

⎧
⎨

⎩

1, if t(y ´ x) ď 0,

1 ´ t(y ´ x)

1 ´ t(1 ´ y)
, if t(y ´ x) ą 0.

Proof. In order to compute the lower and upper probability bounds on the fur-
ther event C|A (i.e., the conclusion), we exploit Theorem 1 by applying [16,
Algorithm 1] (which is originally based on [4, Algorithm 2]) in a symbolic way.

Computation of the lower probability bound z′ on C|A.
Input. The assessment (x, y, t) on F = (C|B,A|B,B|A_B) and the event C|A.
Step 0. The constituents associated with (C|B,A|B,B|A _ B,C|A) are C0 =
ĀB̄, C1 = ABC, C2 = AB̄C, C3 = ABC̄, C4 = AB̄C̄, C5 = ĀBC, C6 =
ĀBC̄. We observe that H0 = A _ B; then, the constituents contained in H0 are
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C1, . . . , C6. We construct the starting system with the unknowns λ1, . . . , λ6, z:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ1 ` λ2 = z(λ1 ` λ2 ` λ3 ` λ4),
λ1 ` λ5 = x(λ1 ` λ3 ` λ5 ` λ6),
λ1 ` λ3 = y(λ1 ` λ3 ` λ5 ` λ6),
λ1 ` λ3 ` λ5 ` λ6 = t(

∑6
i=1 λi),∑6

i=1 λi = 1, λi ě 0, i = 1, . . . , 6 ,

⇐⇒

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ1 ` λ2 = z(λ1 ` λ2 ` λ3 ` λ4),
λ1 ` λ5 = xt,
λ1 ` λ3 = yt,
λ1 ` λ3 ` λ5 ` λ6 = t,
∑6

i=1 λi = 1, λi ě 0, i = 1, . . . , 6 .

(1)
Step 1. By setting z = 0 in System (1), we obtain

⎧
⎪⎪⎨

⎪⎪⎩

λ1 ` λ2 = 0, λ3 = yt, λ5 = xt,
λ3 ` λ5 ` λ6 = t,
λ3 ` λ4 ` λ5 ` λ6 = 1,
λi ě 0, i = 1, . . . , 6 .

⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

λ1 = λ2 = 0,
λ3 = yt, λ4 = 1 ´ t, λ5 = xt,
λ6 = t(1 ´ x ´ y),
λi ě 0, i = 1, . . . , 6 .

(2)
As (x, y, t) P [0, 1]3, the conditions λh ě 0, h = 1, . . . , 5, in System (2) are all
satisfied. Then, System (2), i.e. System (1) with z = 0, is solvable if and only if
λ6 = t(1 ´ x ´ y) ě 0. We distinguish two cases: (i) t(1 ´ x ´ y) ă 0 (i.e. t ą 0
and x ` y ą 1); (ii) t(1 ´ x ´ y) ě 0, (i.e. t = 0 or (t ą 0) ^ (x ` y ď 1)). In
Case (i), System (2) is not solvable and we go to Step 2 of the algorithm. In
Case (ii), System (2) is solvable and we go to Step 3.

Case (i). By Step 2 we have the following linear programming problem:
Compute γ′ = min(

∑
i:CiĎAC λr) = min(λ1 ` λ2) subject to:

⎧
⎨

⎩

λ1 ` λ5 = x(λ1 ` λ3 ` λ5 ` λ6), λ1 ` λ3 = y(λ1 ` λ3 ` λ5 ` λ6),
λ1 ` λ3 ` λ5 ` λ6 = t(

∑6
i=1 λi), λ1 ` λ2 ` λ3 ` λ4 = 1,

λi ě 0, i = 1, . . . , 6.
(3)

We notice that y is positive since x ` y ą 1 (and (x, y, t) P [0, 1]3). Then, also
1 ´ t(1 ´ y) is positive and the constraints in (3) can be rewritten as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ1 ` λ5 = xt(1 ` λ5 ` λ6),
λ1 ` λ3 = yt(1 ` λ5 ` λ6),
λ5 ` λ6 = (t ´ yt)(1 ` λ5 ` λ6)
λ1 ` λ2 ` λ3 ` λ4 = 1,
λi ě 0, i = 1, . . . , 6,

⇐⇒

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λ5 ` λ6 = t(1´y)
1´t(1´y)

,

λ1 ` λ5 = xt(1 ` t(1´y)
1´t(1´y)

) = xt
1´t(1´y)

,

λ1 ` λ3 = yt(1 ` t(1´y)
1´t(1´y)

) = yt
1´t(1´y)

,

λ1 ` λ2 ` λ3 ` λ4 = 1,
λi ě 0, i = 1, . . . , 6,

⇐⇒

⎧
⎪⎨

⎪⎩

max{0, t(x`y´1)
1´t(1´y)

} ď λ1 ď min{x, y} t
1´t(1´y)

,

0 ď λ2 ď 1´t
1´t(1´y)

, λ3 = yt
1´t(1´y)

´ λ1, λ4 = 1´t
1´t(1´y)

´ λ2,

λ5 = xt
1´t(1´y)

´ λ1, λ6 = t(1´x´y)
1´t(1´y)

` λ1.

(4)

Thus, by recalling that x ` y ´ 1 ą 0, the minimum γ′ of λ1 ` λ2 subject to
(3), or equivalently subject to (4), is obtained at (λ′

1, λ
′
2) = ( t(x`y´1)

1´t(1´y) , 0). The

procedure stops yielding as output z′ = γ′ = λ′
1 ` λ′

2 = t(x`y´1)
1´t(1´y) .
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Case (ii). We take Step 3 of the algorithm. We denote by Λ and S the vector
of unknowns (λ1, . . . , λ6) and the set of solutions of System (2), respectively. We
consider the following linear functions (associated with the conditioning events
H1 = H2 = B,H3 = A _ B,H4 = A) and their maxima in S:

Φ1(Λ) = Φ2(Λ) =
∑

r:CrĎB λr = λ1 ` λ3 ` λ5 ` λ6,
Φ3(Λ) =

∑
r:CrĎA_B λr = λ1 ` λ2 ` λ3 ` λ4 ` λ5 ` λ6,

Φ4(Λ) =
∑

r:CrĎA λr = λ1 ` λ2 ` λ3 ` λ4, Mi = maxΛPS Φi(Λ), i = 1, 2, 3, 4 .

(5)
By (2) we obtain: Φ1(Λ) = Φ2(Λ) = 0 ` yt ` xt ` t ´ xt ´ yt = t, Φ3(Λ) = 1,
Φ4(Λ) = yt ` 1 ´ t = 1 ´ t(1 ´ y), ∀Λ P S. Then, M1 = M2 = t, M3 = 1,
and M4 = 1 ´ (1 ´ y)t. We consider two subcases: t ă 1; t = 1. If t ă 1, then
M4 = yt ` 1 ´ t ą yt ě 0; so that M4 ą 0 and we are in the first case of Step 3
(i.e., Mn`1 ą 0). Thus, the procedure stops and yields z′ = 0 as output. If t = 1,
then M1 = M2 = M3 = 1 ą 0 and M4 = y. Hence, we are in the first case of
Step 3 (when y ą 0) or in the second case of Step 3 (when y = 0). Thus, the
procedure stops and yields z′ = 0 as output.

Computation of the upper probability bound z′′ on C|A. Input and Step 0 are the
same as in the proof of z′. Step 1. By setting z = 1 in System (1), we obtain
{

λ1 ` λ2 = λ1 ` λ2 ` λ3 ` λ4, λ1 ` λ5 = xt, λ1 ` λ3 = yt,
λ1 ` λ3 ` λ5 ` λ6 = t, λ1 ` λ2 ` λ3 ` λ4 ` λ5 ` λ6 = 1, λi ě 0, i = 1, . . . , 6 ,

or equivalently
⎧
⎪⎪⎨

⎪⎪⎩

λ3 = λ4 = 0, λ1 ` λ5 = xt,
λ1 = yt, λ1 ` λ5 ` λ6 = t,
λ1 ` λ2 ` λ5 ` λ6 = 1,
λi ě 0, i = 1, . . . , 6 ;

⇐⇒
⎧
⎨

⎩

λ1 = yt, λ2 = 1 ´ t, λ3 = λ4 = 0,
λ5 = (x ´ y)t, λ6 = t(1 ´ x),
λi ě 0, i = 1, . . . , 6 .

(6)

As (x, y, t) P [0, 1]3, the inequalities λh ě 0, h = 1, 2, 3, 4, 6 are satisfied. Then,
System (6), i.e. System (1) with z = 1, is solvable if and only if λ5 = (x´y)t ě 0.
We distinguish two cases: (i) (x ´ y)t ă 0, i.e. x ă y and t ą 0; (ii) (x ´ y)t ě 0,
i.e. x ě y or t = 0. In Case (i), System (6) is not solvable and we go to Step 2
of the algorithm. In Case (ii), System (6) is solvable and we go to Step 3.
Case (i). By Step 2 we have the following linear programming problem:
Compute γ′′ = max(λ1 `λ2) subject to the constraints in (3). As (x, y, t) P [0, 1]3

and x ă y, it follows that min{x, y} = x and y ą 0. Then, in this case the
quantity 1 ´ t(1 ´ y) is positive and the constraints in (3) can be rewritten
as in (4). Thus, the maximum γ′′ of λ1 ` λ2 subject to (4), is obtained at
(λ′′

1 , λ′′
2) = ( xt

1´t(1´y) ,
1´t

1´t(1´y) ). The procedure stops yielding as output z′′ =

γ′′ = λ′′
1 ` λ′′

2 = xt
1´t(1´y) ` 1´t

1´t(1´y) = 1´t`xt
1´t`yt = 1 ´ t(y´x)

1´t`yt .

Case (ii). We take Step 3 of the algorithm. We denote by Λ and S the vector
of unknowns (λ1, . . . , λ6) and the set of solutions of System (6), respectively.
We consider the functions Φi(Λ) and the maxima Mi, i = 1, 2, 3, 4, given in
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(5). From System (6), we observe that the functions Φ1, . . . , Φ4 are constant for
every Λ P S, in particular it holds that Φ1(Λ) = Φ2(Λ) = t, Φ3(Λ) = 1 and
Φ4(Λ) = yt ` 1 ´ t ` 0 ` 0 = 1 ´ t(1 ´ y) for every Λ P S. So that M1 = M2 = t,
M3 = 1, and M4 = 1 ´ t(1 ´ y). We consider two subcases: t ă 1; t = 1.
If t ă 1, then M4 = yt ` 1 ´ t ą yt ě 0; so that M4 ą 0 and we are in the first
case of Step 3 (i.e., Mn`1 ą 0). Thus, the procedure stops and yields z′′ = 1 as
output.
If t = 1, then M1 = M2 = M3 = 1 ą 0 and M4 = y. Hence, we are in the first
case of Step 3 (when y ą 0) or in the second case of Step 3 (when y = 0). Thus,
the procedure stops and yields z′′ = 1 as output. ��
Remark 3. From Theorem 2, we obtain z′ ą 0 if and only if t(x ` y ´ 1) ą 0.
Moreover, we obtain z′′ ă 1 if and only if t(y ´ x) ą 0.

Based on Theorem 2, the next result presents the set of coherent extensions of
a given interval-valued probability assessment I = ([x1, x2] ˆ [y1, y2] ˆ [t1, t2]) Ď
[0, 1]3 on

(
C|B,A|B,B|A _ B

)
to the further conditional event C|A.

Theorem 3. Let A,B,C be three logically independent events and I =
([x1, x2] ˆ [y1, y2] ˆ [t1, t2]) Ď [0, 1]3 be an imprecise assessment on(
C|B,A|B,B|A _ B

)
. Then, the set Σ of the coherent extensions of I on C|A

is the interval [z∗, z∗∗], where

z∗ =

⎧
⎨

⎩

0, if t1(x1 ` y1 ´ 1) ď 0,
t1(x1 ` y1 ´ 1)
1 ´ t1(1 ´ y1)

, if t1(x1 ` y1 ´ 1) ą 0, and

z∗∗ =

⎧
⎨

⎩

1, if t1(y1 ´ x2) ď 0,

1 ´ t1(y1 ´ x2)
1 ´ t1(1 ´ y1)

, if t1(y1 ´ x2) ą 0.

Proof. Since the set [0, 1]3 on
(
C|B,A|B,B|A _ B) is totally coherent

(Remark 2), it follows that I is also totally coherent. For every precise assessment
P = (x, y, t) P I, we denote by [z′

P , z′′
P ] the interval of the coherent extension

of P on C|A, where z′
P and z′′

P coincide with z′ and z′′, respectively, as defined
in Theorem 2. Then, Σ = PPI [z′

P , z′′
P ] = [z∗, z∗∗], where z∗ = infPPI z′

P and
z∗∗ = supPPI z′′

P .
Concerning the computation of z∗ we distinguish the following alternative

cases: (i) t1(x1 ` y1 ´ 1) ď 0; (ii) t1(x1 ` y1 ą 1) ą 0. Case (i). By Theorem 2
it holds that z′

P = 0 for P = (x1, y1, t1). Thus, {z′
P : P P I} ⊇ {0} and hence

z∗ = 0.
Case (ii). We note that the function t(x ` y ´ 1) : [0, 1]3 is nondecreasing in the
arguments x, y, t. Then, t(x ` y ´ 1) ě t1(x1 ` y1 ´ 1) ą 0 for every (x, y, t) P I.
Hence by Theorem 2, z′

P = t(x`y´1)
1´t(1´y) for every P P I. Moreover, the function

t(x`y´1)
1´t(1´y) is nondecreasing in the arguments x, y, t over the restricted domain I;

then, t(x`y´1)
1´t(1´y) ě t1(x1`y1´1)

1´t1(1´y1)
. Thus, z∗ = inf{z′

P : P P I} = inf
{

t(x`y´1)
1´t(1´y) :

(x, y, z) P I
}

= t1(x1`y1´1)
1´t1(1´y1)

.
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Concerning the computation of z∗∗ we distinguish the following alternative
cases: (i) t1(y1 ´ x2) ď 0; (ii) t1(y1 ´ x2) ą 0. Case (i). By Theorem 2 it holds
that z′′

P = 1 for P = (x2, y1, t1) P I. Thus, {z′′
P : P P I} ⊇ {1} and hence

z∗∗ = 1.
Case (ii). We observe that t(y ´ x) ě t1(y ´ x) ě t1(y1 ´ x) ě t1(y1 ´ x2) ą 0
for every (x, y, t) P I. Then, the condition t(y ´ x) ą 0 is satisfied for every
P = (x, y, t) P I and hence by Theorem 2, z′′

P = 1´ t(y´x)
1´t(1´y) for every P P I. The

function 1 ´ t(y´x)
1´t(1´y) is nondecreasing in the argument x and it is nonincreasing

in the arguments y, t over the restricted domain I. Thus, 1 ´ t(y´x)
1´t(1´y) ď 1 ´

t(y´x2)
1´t(1´y) ď 1 ´ t1(y1´x2)

1´t1(1´y1)
for every (x, y, t) P I. Then z∗∗ = sup{z′′

P : P P I} =

sup
{

1 ´ t(y´x)
1´t(1´y) : (x, y, z) P I

}
= 1 ´ t1(y1´x2)

1´t1(1´y1)
. ��

4 Selected Syllogisms of Figure III

In this section we consider examples of probabilistic categorical syllogisms of
Figure III (Datisi, Darapti, Ferison, Felapton, Disamis, Bocardo) by suitable
instantiations in Theorem 2. We consider three events P,M,S corresponding to
the predicate, middle, and the subject term, respectively.

Datisi. The direct probabilistic interpretation of the categorical syllogism “Every
M is P , Some M is S, therefore Some S is P” would correspond to infer
p(P |S) ą 0 from the premises p(P |M) = 1 and p(S|M) ą 0; however, this
inference is not justified. Indeed, by Remark 2, a probability assessment (1, y, z)
on (P |M,S|M,P |S) is coherent for every (y, z) P [0, 1]2. In order to construct a
probabilistically informative version of Datisi, a further constraint of the premise
set is needed. Based on [16,41] we use p(M |S _ M) ą 0 as a further constraint
(i.e., our existential import assumption). Then, by instantiating S,M,P in The-
orem 2 for A,B,C with x = 1, y ą 0 and t ą 0, as t(x ` y ´ 1) = ty ą 0, it
follows that z′ = t(x`y´1)

1´t(1´y) = ty
1´t(1´y) ą 0. Then,

p(P |M) = 1, p(S|M) ą 0, and p(M |S _ M) ą 0 =⇒ p(P |S) ą 0 . (7)

Therefore, inference (7) is a probabilistically informative version of Datisi.

Darapti. From (7) it follows that

p(P |M) = 1, p(S|M) = 1, and p(M |S _ M) ą 0 =⇒ p(P |S) ą 0 . (8)

which is a probabilistically informative interpretation of Darapti (Every M is P ,
Every M is S, therefore Some S is P ) under the existential import assumption
(p(M |S _ M) ą 0).
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Ferison. By instantiating S,M,P in Theorem 2 for A,B,C with x = 0, y ą 0
and t ą 0, as t(y ´ x) = ty ą 0, it follows by Remark 3 that z′′ ă 1. Then,
p(P |M) = 0, p(S|M) ą 0, and p(M |S _ M) ą 0 =⇒ p(P |S) ă 1, which can be
rewritten as

p(P̄ |M) = 1, p(S|M) ą 0, and p(M |S _ M) ą 0 =⇒ p(P̄ |S) ą 0 . (9)

Inference (9) is a probabilistically informative version of Ferison (No M is P ,
Some M is S, therefore Some S is not P ) under the existential import.

Felapton. From (9) it follows that

p(P̄ |M) = 1, p(S|M) = 1, and p(M |S _ M) ą 0 =⇒ p(P̄ |S) ą 0 , (10)

which is a probabilistically informative interpretation of Felapton (No M is P ,
Every M is S, therefore Some S is not P ) under the existential import.

Disamis. The direct probabilistic interpretation of the categorical syllogism
“Some M is P , Every M is S, therefore Some S is P”. By instantiating S,M,P
for A,B,C in Theorem 2 with x ą 0, y = 1, and t ą 0, as t(x ` y ´ 1) ą 0, it
follows that z′ ą 0 (see also Remark 3). Then,

p(P |M) ą 0, p(S|M) = 1, and p(M |S _ M) ą 0 =⇒ p(P |S) ą 0 . (11)

Inference (11) is a probabilistically informative version of Disamis under the
existential import assumption.

Bocardo. By instantiating S,M,P for A,B,C in Theorem 2 with x ă 1, y = 1
and t ą 0, as t(y ´ x) ą 0, it follows that z′′ ă 1. Then, p(P |M) ă 1, p(S|M) =
1, and p(M |S _ M) ą 0 =⇒ p(P |S) ă 1 , which can be rewritten as

p(P̄ |M) ą 0, p(S|M) = 1, and p(M |S _ M) ą 0 =⇒ p(P̄ |S) ą 0 . (12)

Inference (12) is a probabilistically informative version of Bocardo (Some M is
not P , Every M is S, therefore Some S is not P ) under the existential import.
Notice that Bocardo implies Felapton by strengthening the first premise (from
p(P̄ |M) ą 0 to p(P̄ |M) = 1).

Remark 4. We recall that p(M) = p(M ^ (S _ M)) = p(M |S _ M)p(S _ M).
Hence, if we assume that p(M) is positive, then p(M |S _ M) must be positive
too (the converse, however, does not hold). Therefore, the inferences (7)–(12)
hold if p(M |S _ M) ą 0 is replaced by p(M) ą 0. The constraint p(M) ą 0 can
be seen as a stronger version of an existential import assumption compared to
the conditional event existential import.

Remark 5. We observe that, traditionally, the conclusions of logically valid cate-
gorical syllogisms of Figure III are neither in the form of sentence type A (every)
nor of E (no). In terms of our probabilistic semantics, we study which assess-
ments (x, y, t) on (P |M,S|M,S|S _ M) propagate to z′ = z′′ = p(P |S) = 1 in



428 N. Pfeifer and G. Sanfilippo

order to validate A in the conclusion. According to Theorem 2, the following
conditions should be satisfied
⎧
⎨

⎩

(x, y, t) P [0, 1]3, t(x ` y ´ 1) ą 0,

t(x ` y ´ 1) = 1 ´ t(1 ´ y),

t(y ´ x) ď 0,

⇐⇒
⎧
⎨

⎩

(x, y, t) P [0, 1]3,

1 ` yt ´ t ą 0,

tx = 1, ty ď 1,

⇐⇒
⎧
⎨

⎩

x = 1,

0 ă y ď 1,

t = 1.

Then, z′ = z′′ = 1 if and only if (x, y, t) = (1, y, 1), with y ą 0. However, for
the syllogisms it would be too strong to require t = 1 as an existential import
assumption, we only require that t ą 0. Similarly, in order to validate E in the
conclusion, it can be shown that assessments (x, y, t) on (P |M,S|M,S|S _ M)
propagate to the conclusion z′ = z′′ = p(P |S) = 0 if and only if (x, y, t) =
(0, y, 1), with y ą 0. Therefore, if t is just positive neither A nor E can be
validate within in our probabilistic semantics of Figure III.

Application to Default Reasoning. We recall that the default H |∼ E denotes
the sentence “E is a plausible consequence of H” (see, e.g., [27]). Moreover,
the negated default H |∼/ E denotes the sentence “it is not the case, that: E is a
plausible consequence of H”. Based on [16, Definition 8], we interpret the default
H |∼ E by the probability assessment p(E|H) = 1; while the negated default
H |∼/ E is interpreted by the imprecise probability assessment p(E|H) ă 1.
Then, as the probability assessment p(E|H) ą 0 is equivalent to p(Ē|H) ă 1,
the negated default H |∼/ Ē is also interpreted by p(E|H) ą 0. Table 2 presents
the syllogisms (7)–(12) of Figure III in terms of inference rules which involve
defaults and negated defaults.

Table 2. Syllogisms of Figure III (see Table 1) in terms of defaults and negated defaults.

5 Concluding Remarks

In this paper we proved probability propagation rules for Aristotetlian syl-
logisms of Figure III by using an existential import assumption which we
expressed in terms of a probability constraint. Although Aristotelian syllogistics
is an ancient reasoning system, our probabilistic semantics allows for various
applications including applications to (i) rational nonmonotonic reasoning (we
showed how to express basic syllogistic sentence types in terms of defaults and
negated defaults; see also [15,16] for connections between syllogisms and default
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reasoning), (ii) the psychology of reasoning as a new rationality framework
(see, e.g., [26,35–38,42]), (iii) the square of opposition [39,40], and to (iv) formal
semantics: by setting appropriate thresholds in Theorem 3, we can interpret gen-
eralised quantifiers (see, e.g., [33]) probabilistically (like interpreting Almost all
S are P by p(P |S) ě t, where t is a given—usually context dependent—threshold
like ą .9). Resulting probabilistic syllogisms are a much more plausible ratio-
nality framework for studying commonsense contexts compared to traditional
Aristotelian syllogisms. We observe that our interpretation of syllogisms relies
on conditionals. Thus, future work will be devoted to further generalise Aris-
totelian syllogisms by iterated conditionals where the S, M , or P terms are
replaced by conditional events. We have shown in the context of conditional
syllogisms [14,44,45], that the theory of conditional random quantities (see, e.g.
[17,18,21–23]) is able manage nested conditionals without running into the noto-
rious Lewis’ triviality. Applying these results will yield further generalisations of
Aristotelian syllogisms.

Acknowledgments. We thank three anonymous referees.
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29. Lad, F., Sanfilippo, G., Agró, G.: Extropy: complementary dual of entropy. Stat.
Sci. 30(1), 40–58 (2015)

30. Lambert, J.H.: Neues Organon. Wendler, Leipzig (1764)
31. Lehman, R.S.: On confirmation and rational betting. J. Symbolic Logic 20, 251–

261 (1955)

https://doi.org/10.1007/978-3-319-42972-4_32
https://doi.org/10.1007/978-3-319-42972-4_32
https://doi.org/10.1007/978-3-319-20807-7_9
https://doi.org/10.1007/978-3-319-20807-7_9
https://doi.org/10.1007/978-3-642-39091-3_19
https://doi.org/10.1007/978-3-642-39091-3_19
https://doi.org/10.1007/978-3-642-33042-1_43
https://doi.org/10.1007/978-3-642-33042-1_43


Probability Propagation in Selected Aristotelian Syllogisms 431
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and Jorge D. Laborda1(B)
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Abstract. Aggregating a set of Bayesian Networks (BNs), also known
as BN fusion, has been studied in the literature, providing a precise the-
oretical framework for the structural phase. This phase depends on a
total ordering of the variables, but both the problem of searching for the
optimal consensus structure (according to standard problem definition),
as well as the one of looking for the optimal ordering are NP-hard.

In this paper we start from this theoretical framework and extend it
from a practical point of view. We propose a heuristic method to identify
a suitable order of the variables, which allows us to obtain consensus BNs
having (by far) less edges than those obtained by using random order-
ings. Furthermore, we apply an optimization method based on the GES
algorithm to remove the extra edges. As GES is a data-driven method
and we have not data but a set of incoming networks, we propose to
use the independences codified in the incoming networks to determine a
score in order to evaluate the goodness of removing a given edge. From
the experiments carried out, we observe that our heuristic is very com-
petitive, driving the fusion process to solutions close to the optimal one.

Keywords: Bayesian Networks · Aggregation · Fusion · Consensus ·
Heuristic orders

1 Introduction

A Bayesian network (BN) [12] is a knowledge representation technique frequently
used to design Intelligent Systems in domains where uncertainty is predominant.

A BN B = (G,P ) consists of:

– a directed acyclic graph (DAG) G = (V,E) which codifies the (in)dependence
relationships between a set of variablesV by means of the d-separation criterion
[12], E being the set of directed relations (arcs) between such variables, and
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– a set P of conditional probability distributions {p(Xi | paG(Xi)}n
1 , which

factorizes the joint probability distribution over the domain of the variables1

P (V) = P (X1, . . . , Xn) =
n∏

i=1

p(Xi|paG(Xi))

A BN can be built by domain experts [14], learnt from data [1,3] or using a
hybrid approach [7]. Once defined, it can be used for both qualitative reasoning
(visualization, relevance analysis, etc.) and quantitative reasoning (predictive or
abductive inference). When the BN is built by a single expert, the result can
be biased because of the particular expert criteria. A possible solution to this
problem is to deal with several experts, each one providing a BN and then to
combine/fuse them into a single consensus one.

Many real-world problems require learning a BN from data coming from differ-
ent sources [4,6]. Usually, this is performed by using any standard algorithm which
considers jointly all the data as a single training dataset. However, nowadays it is
usual that the data are distributed over several datacenters, and because of privacy
reasons and/or because of taking advantage of local computing power, local mod-
els are learnt at each datacenter and then these models (instead of the data) are
sent to a single station. As an example, consider a chain of national supermarkets
which have several regional datacenters. They all sell the same catalogue of prod-
ucts, but the model learnt at each datacenter reflects the specific behavior of their
customer according to particular demographic factors. Summing up, our goal is to
aggregate a set of BNs, possibly learnt in different locations (machines) and from
different (but usually similar) datasets.

This problem, also known as BN fusion, has been previously studied in the
literature both from the structural and parametric viewpoints:

– Structure. The goal of structurally combining a given set of BNs is to obtain a
new DAG containing only those (conditional) independencies which are satis-
fied in all the networks to be aggregated. In [8,9], two methods are described
to cope with this problem based on the use of a total order of the variables.
In [5], the idea of computing a consensus DAG compatible with a given order
is also studied. Specifically, their theoretical analysis concludes that, once the
input BNs have been arranged to be compatible with respect to such an order
of the variables, the union applied over the arcs of these (arranged) DAGs is
the operation which ensures that the consensus DAG maintains the indepen-
dencies codified in all the DAGs of the input set.
Later, in [11], the author amend some aspects regarding the methods in [8,9]
and proves that (1) the consensus DAG satisfying the required independence
pattern is not unique; (2) the problem is NP-hard; and (3) the amended meth-
ods obtain a proper consensus DAG.

– Parameters. When the parameters (probabilistic distributions) are also con-
sidered, the whole process is much more complex. To illustrate this fact,

1 We denote by pa(Xi) (paG(Xi)) the parent set of Xi in G. Analogously, we denote
by ch(Xi) (chG(Xi)) the children set of Xi. We take |V| = n.
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in [13] it is shown under the (quite mild) assumption of all the input BNs
agreeing on the structure, that no method of combining the parameters pro-
duces a consensus parameterization compatible with all the given parametric
structures.

To obtain the consensus BN, we follow a two steps approach as the one in
[11]: first, we identify the consensus BN structure and, then, we look for the
consensus parameters given such structure. In this paper we only deal with the
structural part of the problem, as in [5,8,9,11].

In particular, we work on the basis of [5,11]. It should be pointed out that
these papers focus on the theoretical properties of the proposed algorithms,
which heavily depend on the chosen total order defined between the variables.
Although the use of whichever order guarantees to obtain a minimal I-map of
the common independencies in the input DAGs (see Sect. 2), it usually leads to
a very dense DAG, which is of few utility for posterior qualitative/quantitative
reasoning. It is important to remark that, during the transformation of the input
DAGs into DAGs compatible with the given order, their number of arcs increases,
depending such increment on the election of the order.

The main contribution of this study is the proposal of a heuristic method to
identify a suitable order of the variables, which allows us to obtain consensus
DAGs having (by far) less arcs than those obtained by using random orders.
Furthermore, as the use of a heuristic order does not guarantee to obtain the
network with the minimum number of arcs, we apply an optimization phase
based on the GES algorithm [3] to remove the extra edges/arcs. Recall that the
GES algorithm asymptotically converges to the optimum, and so it can be used
as a measure of the quality of the chosen order (the more edges are removed,
the farther the consensus DAG is from the optimum). The novelty in this phase
is that, instead of using data to measure the goodness of a removal operator,
we directly use the independencies codified in the input DAGs. The experiments
carried out show that this optimization step removes few arcs, which supports
our heuristic proposal.

2 Fusion of Bayesian Networks

In this Section we briefly review the structural fusion method described in [11].
Let us start by revising some important notions. Let X, Y and Z be three dis-
joint subsets of variables. An independence model I is a collection of conditional
independence constraints X ⊥⊥I Y|Z, saying that X is conditionally independent
of Y given Z.

We will denote by I(G) the set of independencies codified in a DAG G by
using the d-separation criterion. Given an independence model I between the
variables of the DAG G, we say that G is an I-map of I if I(G) ⊆ I. Then, G
is a minimal I-map of I if: (i) G is an I-map of I, and (ii) if we remove any arc
from G, the resulting DAGs is not an I-map of I anymore. In particular, given
two DAGs G an H, we say that G is a (minimal) I-map of H, if G is a (minimal)
I-map of I(H).
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Algorithm 1: Fusion
Data: Incoming DAGs: {G1, . . . , Gg} defined over V = {X1, . . . , Xn}
Data: Set of orders: Σ
Result: Consensus DAG G+

1 for i = 1, . . . , |Σ| do
2 σi = i-th element of Σ
3 for j = 1, . . . , g do
4 Gσi

j = A(Gj , σi)

5 Ei =
⋃g

1 E(Gσi
j ) // E(G) are the edges of G

6 return G+ = (V, arg mini |Ei|)

We say that a total order σ of the nodes (variables) of G is an ancestral order
for G, if the variable A precedes to the variable B in σ for all arc A → B in G.

The consensus DAG G+ for a given set of DAGs G = {G1, . . . , Gg} is defined
as the DAG having the minimum number of arcs which is an I-map of ∩g

i=1I(Gi)
[5,11]. That is, if a conditional independence is in G+, then it is also present in
all the input DAGs.

The following theorem [5] gives the clue to obtain the consensus DAG G+:

Theorem 1 [5]. Let G = (V,E1) and H = (V,E2) be two DAGs. If there exists
a common ancestral order σ for both G and H, then the union G+ = (V,E1∪E2)
is a minimal I-map of I(G) ∩ I(H) and the intersection independence model
follows the grafoid axioms2.

However, given G = {G1, . . . , Gg}, there may not exist a common ancestral
order σ for all the DAGs Gi, and so the result above cannot be directly applied.
From the A method introduced in [8], Peña [11] designed a modified version and
proved the following theorem:

Theorem 2 [11]. Let Gσ be the minimal I-map of a DAG G compatible with a
node order σ. Then, the method A(G, σ) returns Gσ.

Taking these two results into account, in Algorithm 1 we show the fusion
algorithm. Note that this algorithm can iterate over a number of orders. Ideally,
all the possible orders should be used to ensure that the optimum is obtained,
but due to the enormous number of orders (n!), only a few may be tested. In
Sect. 3 we cope with this problem by proposing a greedy heuristic to obtain a
suitable order σ to guide the fusion process.

3 Greedy Heuristic Search of a Fusion Oriented Order

In this section we propose a heuristic greedy constructive search algorithm to
look for an ancestral order σ suitable to guide the fusion process. Obtaining an
ancestral order for a DAG is an simple task: (1) select a sink3 node and place
2 Symmetry, decomposition, weak union, contraction and intersection.
3 A node with no children.
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Algorithm 2: Compute costsink

Data: G = (V,E), Y ∈ V
Result: costsink(Y, G)

1 cost = 0
2 for Z ∈ ch(Y ) do
3 for X ∈ pa(Z) do
4 if X → Y /∈ E then
5 cost++

6 for X ∈ pa(Y ) do
7 if X → Z /∈ E then
8 cost++

9 return cost

it as the first node of the partially constructed order; (2) delete that node and
all its incident arcs from the DAG; (3) iterate the previous steps until a total
order of the variables is obtained. However, when dealing with a set of DAGs it
is quite improbable that a node Xi is a sink in all of them. Therefore, our idea
is to identify the node that is closest to be a sink in all the DAGs. To do this,
we propose to use a score or cost which is computed for each node over all the
DAGs.

Before defining properly such score, let us introduce some notation. An arc
A → B is covered if pa(A) = pa(B) \ {A}. If A → B is covered, we can reverse
it, that is, change its direction to B → A without introducing any additional
independence. To transform an arc A → B into a covered one, we add the
necessary arcs from the nodes in pa(A) to B and from the nodes in pa(B) to A
to make pa(A) = pa(B) \ {A}.

Definition 1 (costsink). Given a DAG G = (V,E) and a node Y ∈ V, we
define the cost of making Y a sink in G, costsink(Y,G), as the number of arcs
to be added to cover each arc Y → Z, ∀Z ∈ chG(Y ).

Algorithm 2 shows the pseudocode to compute costsink, where we count the
number of added arcs in a symbolic way, that is, without actually modifying the
DAG.

Finally, Algorithm 3 shows the pseudocode to compute the ancestral order
by making use of the costsink heuristic. Lines 5 to 12 use the costsink heuristic
to identify the next sink, that is, the node that induces the minimum number
of inserted arcs across all the DAGs. On the other hand, lines 13 to 19 actually
apply the arc-reversal operation, that is, covering followed by reversal, over the
DAGs for all the arcs bestY → Z,∀Z ∈ ch(bestY ). Finally the sink is removed
from all the DAGs to continue with the process.
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Algorithm 3: Greedy Heuristic Order
Data: G = {G1 = (V,E1), . . . , Gg = (V,Eg)}
Result: σ // A complete order for V

1 G′ = G.copy
2 V′ = V.copy
3 σ = {}
4 while V′ �= ∅ do
5 〈bestY, bestCost〉 = 〈null, +∞〉
6 for Y ∈ V′ do
7 cost=0
8 for G ∈ G′ do
9 cost += costsink(Y, G)

10 if cost < bestCost then
11 〈bestY, bestCost〉 = 〈Y, cost〉
12 σ = bestY · σ // concatenate bestY at the beginning of σ
13 for G ∈ G′ do
14 E = {bestY → Z | Z ∈ ch(bestY )}
15 while E �= ∅ do
16 Select bestY → Z ∈ E, s.t. bestY ← Z does not introduce a directed

cycle
17 Make bestY → Z covered and then reverse it
18 E = E \ {bestY → Z}
19 Remove bestY and all its incident arcs from G

20 V′ = V′ \ {bestY }
21 return σ

4 Greedy Search for an Optimal Fusion DAG

GES (Greedy Equivalence Search) [3] is a data-driven score+search structural BN
learning algorithm that carries out the search in the space of DAG’s equivalence
classes4. GES consists of two greedy phases:

– FES, a forward phase which starts from the empty graph and incremen-
tally adds an edge/arc, the one which maximizes the used scoring metric.
By score(X;S) we denote the score of having S as set of parents of X in the
graph. Due to the decomposability property of this score function, it is enough
to evaluate local changes in the DAG to update the scores. The increment
score(X;S) − score(X;S ∪ {Y }) is used to evaluate the potential inclusion
of Y → X or Y − X in the current DAG. This phase stops when all the
increments are negative.

– BES, a backward phase which starts from the solution obtained by FES,
and iteratively removes the best arc/edge according to the score increment.

4 Equivalence classes are represented by using a mixed graph structure which contains
directed and undirected arcs/edges.
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As FES, this phase stops when no arc/edge in the current structure has a
positive score increment.

Under certain assumptions, asymptotically the output of FES is an I-map,
and, after BES, the output graph is the correct graph with respect to the con-
ditional independence statements codified in the input data. These required
assumptions are: (1) there are enough data and the underlying distribution p,
from which the data was drawn, is faithful a DAG; (2) the score used is globally
and locally consistent; and (3) the delete and add operations assure that the
search space properly traverses the I-map representation of the graphs [3].

It should be pointed out that the assumption (1) is rarely satisfied in real
data, but, in spite of this, GES performs well in practice. On the other hand,
most of the used scoring metrics satisfy the assumption (2), which means that

score(X;S) − score(X;S ∪ {Y }) < 0 ⇐⇒ X ⊥⊥p Y |S (1)

In this study we use an adaptation of BES, BESd, which takes as start-
ing point the DAG returned by the fusion process (Algorithm 1), which
is an I-map of I+ = ∩g

i=1I(Gi) (Theorem 1). In that way, the output of
BESd(Fusion(G1, . . . , Gg)) is the optimal consensus graph. Note that we can-
not directly apply BES, since we have a set of input DAGs instead of data.

Assume that instead of data as source we can consult an oracle to obtain
answers about d-separation sentences. Assume also that the model used by the
oracle is a DAG, gold-standard which is unknown to us, where we could read
the d-separation sentences. According to, Eq. (1) a positive answer for a sentence
X⊥⊥G∗Y |S is equivalent to a negative score for having Y as parent of X in our
model, and so BESd can delete this arc/edge. Therefore, by using this oracle
instead of a score over the data, we can use as initial solution a complete DAG
(a trivial I-map) and then use BESd to iteratively remove the arcs/edges that
find conditionally independent via d-separation. The method stops when no more
independencies are found5.

In our framework, we know that the model I+ = ∩g
i=1I(Gi) follows the

graphoid axioms (Theorem 1), which means that we can found a minimal I-map
DAG for this model, so there exists a DAG G+ to represent I+. Therefore, we
can use I+ as our oracle. On the other hand, we also know that the output
provided by Algorithm 1 is an I-map of I+, and so we can use it as seed for
BESd. With all of this, we can state the following theorem:

Theorem 3. Given a set of DAGs G = {G1, . . . , Gg}, BESd(Fusion(G))
returns the consensus DAG G+ for G with the minimum number of edges that
is a minimal I-map of I+ = ∩g

i=1I(Gi).

5 Experimental Evaluation

In this section we describe the experiments carried out to evaluate our proposals.
5 It would be easy to show that GES would get the correct gold-standard DAG.
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Experimental setup: In this preliminary study we have only used synthet-
ically generated DAGs in order to control the complexity of the process and
the different parameters to be analyzed. Furthermore, although the proposed
algorithms can deal with any subset of DAGs, we assume that the DAGs to be
combined should be similar, because otherwise the complexity (edge density) of
the output DAG increases significantly.

We have generated the set of input DAGs by using the following method:
First, we randomly generate a DAG G1 according to a set of parameters (num-
ber of nodes, number of parents, etc.) by using the method described in [10].
Then we generate the remaining DAGs {G2, . . . , Gg} from G1 by applying some
perturbations. Specifically, a perturbation consists in randomly selecting two
nodes, and then: if they are linked by an arc, the arc is removed; otherwise and
arc between them is added taking care of not introducing a (directed) cycle. Dur-
ing this generation process, the complexity (maximum number of parents and
children for each node) of the network is controlled in order to avoid generating
so dense DAGs.

The parameters we have used to generate the DAGs are: number of nodes,
n = {10, 25, 50}; number of DAGs in the input set, g = {10, 20, 30}; maximum
number of parents and children, maxP = 3 and maxCh = 4; maximum number
of edges per DAG, maxEdges = n×2.5; and maximum number of perturbations,
maxNoP = n×0.75. For each combination of n and g (9 configurations), we have
generated 10 different sets of DAGs.

Table 1 shows some descriptive features about the complexity of the gener-
ated DAGs, averaged over the 10 different sets generated for each configuration.
Besides the number of nodes and DAGs, we also show the averaged number of
parents (AvPar) and edges (AvEdges). The configurations are numbered from 1
to 9 for their identification in the next sections.

Table 1. Descriptive statistics of the generated (set of) DAGs.

Conf. #Nodes #DAGs AvPar AvEdges

1 10 10 1,82 18,16

2 10 20 1,82 18,19

3 10 30 1,82 18,18

4 25 10 2,26 56,38

5 25 20 2,26 56,52

6 25 30 2,26 56,57

7 50 10 2,43 121,38

8 50 20 2,43 121,37

9 50 30 2,43 121,37

Results: As the fusion algorithms heavily depend on the ordering σ used to
guide the search, we consider two different scenarios:
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– Using an ancestral ordering for G1 to guide the search. As G1 is the DAG
from which the remaining DAGs in each set are obtained, this ordering may
be a good election, by far much better than a random one which usually leads
to very dense DAGs. The results obtained are shown in Table 2(a).

– Using our proposal heuristic to identify a good ancestral ordering for a
given input set of DAGs (Algorithm 3). The results obtained are shown in
Table 2(b).

Furthermore, in Table 2(c) we show the results of applying the GES-based algo-
rithm designed in Sect. 4 to the consensus DAG obtained in the second scenario
above.

More specifically, in Table 2 we show the following statistics (averaged over
the 10 generated sets):

– AddEdges: average number of additional edges in the transformed DAGs, that
is, after making them coherent with respect to the used ancestral ordering

– RatioPar: average number of parents in the consensus DAG divided by the
average number of parents in the input DAGs

– MaxPar and MaxCh: maximum number of parents and children, respectively,
observed in any of the 10 runs for the configuration

– TFusion: CPU time (ms) spent by the fusion process. In Table 2(c) the TFu-
sion is computed considering both the fusion and the GES steps.

Analysis: From the results obtained (Table 2) we can draw several conclusions:

– Not surprisingly, as the number of DAGs to be aggregated and the number
of nodes in these DAGs increase, the resulting fusion graph is much more
complex (dense). Actually, the complexity grows when the number of DAGs
with a same number of nodes increases (configurations 1-2-3, 4-5-6 and 7-8-9),
and when the number of DAGs is fixed and the number of nodes of the DAGs
increases (configurations 1-4-7, 2-5-8 and 3-6-9). This pattern is independent
of the fusion method used.

– The election of the order to guide the fusion strongly influences the complex-
ity of the obtained consensus DAG. It becomes clear when comparing the
statistics in Table 2(a) with the corresponding ones in Table 2(b) and (c). It
worths pointing out the decisive influence of that election on the fusion time.

– The heuristic to get the initial order leads to good solutions (in terms of both
complexity and fusion time). In fact, note that Table 2(c) shows the statistics
corresponding to optimal solutions to the fusion problem, which are very close
to their counterpart in Table 2(b). Hence, at sight of the TFusion values, it
becomes clear the outstanding trade-off between accuracy and time execution
of our proposal.
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Table 2. Results for different fusion processes.

Conf. AddEdges RatioPar MaxPar MaxCh TFusion

1 1,70 1,72 6,10 6,50 14,30

2 1,46 1,96 6,90 7,20 22,00

3 1,35 2,04 7,40 7,60 26,50

4 2,96 1,59 7,40 8,60 80,00

5 3,44 1,94 9,10 10,50 175,20

6 3,56 2,29 11,50 12,50 243,20

7 18,33 2,21 13,90 18,30 1551,40

8 21,68 2,95 18,00 22,50 5317,50

9 23,20 3,35 19,80 24,50 17773,00

(a) Using an ancestral ordering for G1

Conf. AddEdges RatioPar MaxPar MaxCh TFusion

1 0,67 1,64 5,50 5,90 12,00

2 0,86 1,93 7,10 6,70 15,80

3 0,81 2,00 7,40 7,10 23,70

4 0,41 1,28 5,70 5,80 78,20

5 1,08 1,65 8,20 8,70 142,40

6 1,17 1,91 10,20 10,20 209,90

7 0,98 1,24 7,60 6,30 302,20

8 3,10 1,71 13,50 10,80 615,40

9 4,27 2,10 16,60 13,90 933,40

(b) Using an heuristically generated ordering (Algorithm 3)

Conf. AddEdges RatioPar MaxPar MaxCh TFusion

1 0,67 1,57 5,40 6,00 80,90

2 0,86 1,66 7,00 6,00 223,20

3 0,81 1,65 7,20 5,60 254,60

4 0,41 1,27 5,70 5,70 123,10

5 1,08 1,62 8,10 8,10 845,60

6 1,17 1,86 10,20 9,60 1497,30

7 0,98 1,23 7,60 6,60 1043,10

8 3,10 1,70 13,50 10,60 7095,70

9 4,27 2,09 16,60 14,00 93607,40

(c) Applying adapted GES
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6 Conclusions

In this paper we deal with the structural fusion of BNs. This problem was pre-
viously studied from a theoretical point of view. We go further and provide two
main contributions: (1) an algorithm to obtain a heuristic order to guide the
fusion process; and (2) an algorithm that, after the fusion process, applies an
adapted version of GES (BES), which uses d-separation to score arc deletion
instead of doing that from the data.

The experiments show that using our heuristic to select the order produces
high-quality consensus DAGs in comparison to those obtained when taking other
(arbitrary but also informed) orders. It becomes clear when applying our adapted
BES to the output provided by this heuristic, which allows us to check that our
solutions are significantly close (regarding complexity) to be optimal.

We should point out that, even being rather positive results, the output
consensus network could be dense due to the complexity of the BN fusion process,
which may obstruct its use for posterior reasoning (inference). Therefore, as
future a work, we aim to investigate the problem of relaxing the conditions
required in the BN fusion process in order to get more usable networks [2].
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Abstract. Non-trivial minimal balanced systems (= collections) of sets
are known to characterize through their induced linear inequalities the
class of the so-called balanced (coalitional) games. In a recent paper a
concept of an irreducible min-balanced (= minimal balanced) system of
sets has been introduced and the irreducible systems have been shown
to characterize through their induced inequalities the class of totally
balanced games. In this paper we recall the relevant concepts and results,
relate them to various contexts and offer a catalogue of permutational
types of non-trivial min-balanced systems in which the irreducible ones
are indicated. The present catalogue involves all types of such systems
on sets with at most 5 elements; it has been obtained as a result of an
alternative characterization of min-balanced systems.

Keywords: Balanced set system · Irreducible min-balanced system ·
Totally balanced games · Exact games

1 Introduction

A central notion of this note, namely the concept of a minimal balanced set
system, shortened as a min-balanced (set) system, is basically a combinatorial
concept. Nonetheless, the concept itself has been introduced in the context of
cooperative game theory, where it plays quite an important role. Specifically,
the well-known Shapley-Bondareva theorem [2,12] says that balanced systems of
subsets of a non-empty finite basic set N covering N induce linear inequalities
characterizing coalitional games over the set of players N with a non-empty
core. Note that the concept of a core (polytope) is a substantial concept in
cooperative game theory [12]. The least class of inequalities characterizing the
non-emptiness of the core consists of those inequalities, which are induced by
non-trivial minimal balanced systems, where the minimality is understood with
respect to inclusion of set systems covering N .

For analogous reasons the inequalities induced by min-balanced systems are
important in the context of the theory of imprecise probabilities [15]. In that
context the basic set N can be interpreted as the sample space for probabilities,
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(normalized non-negative) games over N correspond to lower probabilities and
the cores to credal sets of probabilities. Thus, (minimal) balanced set systems on
N correspond to the inequalities characterizing lower probabilities avoiding sure
loss, which are the lower probabilities with non-empty credal sets [15, Sect. 3.3.4].
We refer the reader to [7] for further details about the correspondence between
game-theoretical concepts and those in imprecise probabilities.

Here is a formal definition: we say that a system B = {S1, . . . , S�}, � ≥ 1, of
non-empty subsets of N is a balanced system on a non-empty subset M ⊆ N if
there exist strictly positive real coefficients λi > 0, i = 1, . . . , �, such that

χM =
�∑

i=1

λi ·χSi
, where χS ∈ R

N denotes the incidence vector of S ⊆ N . (1)

In particular, the sets Si must be subsets of M and λi ≤ 1 for i = 1, . . . , �. Thus,
the concept of a balanced set system on M generalizes a classic combinatorial
concept of a partition of M (consider λi = 1 for all i = 1, . . . , �). For example,
in case N = {a, b, c, d} the partition B = { {a}, {b, c} } of M = {a, b, c} is an
example of a balanced system on M . On the other hand, one can also find links
to fuzzy set theory with a little bit of imagination: balanced systems can perhaps
be regarded as fuzzy partitions [1] of a crisp set M with fuzzy subsets having
allowed only two grades, namely 0 and λi ∈ (0, 1].

Note that balanced systems, called balanced collections in game-theoretical
literature, do have some applications in combinatorics and topology. Shapley [13]
generalized Sperner’s celebrated topological lemma concerning triangulations of
a simplex and balanced collections of sets play a crucial role in his generaliza-
tion [4]. On the other hand, we would like to warn the reader that a combinato-
rial concept of a balanced hypergraph from [11, Sect. 83.1] has apparently nothing
common with the concept of a balanced set system; these are different notions.

As explained below, in case of a min-balanced system B the coefficients in (1)
are uniquely determined and the class of min-balanced systems on a given basic
set is finite. Every permutational type of non-trivial min-balanced systems can
be viewed as a combinatorial object: it represents a particular way in which a
finite set M can be composed from its proper subsets. Thus, questions of natural
interest are what are the permutational types of such systems, whether one can
classify/categorize them or even whether an enumeration method generating all
these types exists. Note in this context that Peleg [8] proposed an algorithm for
inductive generating min-balanced systems on a given basic set. Nonetheless, as
far as we know, no public available catalogue of their permutational types has
been generated as an output of that algorithm.

1.1 Totally Balanced and Exact Games

Because of the above mentioned Shapley-Bondareva theorem, games with non-
empty cores are named balanced games. There are two important subclasses of
the class of balanced games over a player set N . One of them is the class of totally
balanced games: these are such games m over N that, for every non-empty subset
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M ⊆ N , the subgame of m for M is a balanced game over M . An even smaller
class is the class of exact games: these are such games that each bound defining
the core polyhedron is tight (a precise definition can be found below). Since these
classes of games play an important role in cooperative game theory [9,10], some
effort has been exerted to characterize them in terms of linear inequalities.

Special set systems play an important role in this context, too. Csóka et al. [3]
characterized exact games over N by means of an infinite set of linear inequalities
which could be associated with the so-called exactly balanced set systems on N .
Lohman et al. [6] then refined that result and showed that the exact games over
N can be characterized by means of a finite set of linear inequalities. Specifically,
these are inequalities assigned to min-balanced set systems on non-empty subsets
M ⊆ N and to the so-called minimal negatively balanced set systems on N .
Nonetheless, the reader was warned in [6] that this set of inequalities is not the
the least possible set of inequalities characterizing the exact games.

In a recent paper [5] the least possible set of inequalities (up to a positive
multiple) that characterizes the totally balanced games over N was found.
These inequalities are induced by special irreducible min-balanced set systems
on non-empty subsets M ⊆ N (a formal definition is placed below). Another
interesting observation from [5] is as follows: if B is a non-trivial min-balanced
system on M ⊆ N then its complementary system relative to M , that is,

B∗ := {M \ S : S ∈ B}

is also a non-trivial min-balanced system on M . In particular, the non-trivial
min-balanced systems on a fixed non-empty set M ⊆ N come in pairs of mutually
complementary systems. Moreover, the inequality induced by B∗ is a conjugate
inequality with respect to M to the one induced by B (also to be defined below).

Finally, a conjecture about the least possible set of inequalities characterizing
the exact games was formulated in [5]. It says that a game over N is exact if and
only if it satisfies the inequalities induced by non-trivial irreducible min-balanced
systems on non-empty strict subsets M ⊂ N and their conjugate inequalities
with respect to N . The conjecture is known to be true in case |N | ≤ 5.

Therefore, the question of classifying permutational types of non-trivial irre-
ducible min-balanced systems over a fixed basic set is of great importance for
the study of totally balanced and exact games. This is a topic of this note.

1.2 Structure of the Rest of the Paper

We provide a catalogue [14] of permutational types of non-trivial min-balanced
systems on small sets in which the irreducible types are indicated. Its initial
version describes all such types on sets with at most five elements. Nonetheless,
we intend to upgrade it later into an interactive web platform and possibly
extend it to involve all types of min-balanced systems on a six-element set. Now,
we describe the structure of the rest of the paper.

In Sect. 2 we recall basic concepts and facts. In particular, we describe the
way linear inequalities are induced by min-balanced systems and introduce the
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concept of an irreducible min-balanced system. Section 3 deals with conjugate
inequalities and complementary set systems. Section 4 then describes the way
our catalogue [14] was obtained. Note that our computations were not based on
Peleg’s iterative algorithm [8] but on an alternative characterization of the min-
balanced systems in terms of linear independence of certain vectors. In Sect. 5
our tools to classify the permutational types are discussed. In last Sect. 6 we
mention possible future research directions and open tasks.

2 Basic Concepts and Facts

Let N be a non-empty finite basic set. The symbol P(N) will denote its power
set, that is, the collection {S : S ⊆ N} of all its subsets. The symbol RN will
be used to denote the Euclidean space of real vectors [xi]i∈N whose components
are indexed by elements of N . Given S ⊆ N , the symbol χS will denote the
incidence vector of S in R

N , that is, its zero-one identifier in R
N defined by

(χS)i :=

{
1 for i ∈ S,

0 for i ∈ N \ S,
whenever i ∈ N .

2.1 Game-Theoretical Notions

In this context, elements of the basic set N correspond to players and subsets
of N to coalitions. A (transferable-utility coalitional ) game over N is modeled
by a real function m : P(N) → R such that m(∅) = 0. If ∅ 	= M ⊆ N then the
restriction of m to P(M) is called a subgame of m for M .

The core C(m) of a game m over N is a polyhedron in R
N defined by

C(m) := { [xi]i∈N ∈ R
N :

∑

i∈N

xi = m(N) &
∑

i∈S

xi ≥ m(S) for any S ⊆ N} .

We say that a game m over N is balanced if C(m) 	= ∅. It is called totally
balanced if every its subgame is balanced. Finally, a game over N is exact if, for
each coalition S ⊆ N , a vector [xi]i∈N ∈ C(m) exists such that

∑
i∈S xi = m(S).

This basically means that every inequality defining the core of m is tight.
A well-known fact is that every exact game is totally balanced (see

Remark 1.19 in [10, Sect. V.1]); by definition, every totally balanced game is
balanced.

2.2 Min-Balanced Set Systems

Any subset B of P(N) is called a set system; the union of sets in B will be
denoted by

⋃ B. A set system having at most one set is considered to be trivial;
thus, set systems B ⊆ P(N) with |B| ≥ 2 will be named non-trivial.

We say that B composes to a non-empty set M ⊆ N if M =
⋃B and the

vector χM belongs to the conic hull of {χS ∈ R
N : S ∈ B}, that is, there exist

non-negative coefficients λS ≥ 0, S ∈ B, such that χM =
∑

S∈B λS · χS .
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Given B ⊆ P(N) and ∅ 	= M ⊆ N we say B is min-balanced on M if it is a
minimal set system in P(N) which composes to M . That means, B composes to
M and, moreover, there is no C ⊂ B such that C composes to M . The following
basic observation was done in [5, Lemma 2.1].

Lemma 1. A non-empty set system B ⊆ P(N) is min-balanced on a non-empty
set M ⊆ N iff the following two conditions hold:
(i) there exist strictly positive λS > 0, S ∈ B, such that χM =

∑
S∈B λS · χS,

(ii) the incidence vectors {χS ∈ R
N : S ∈ B} are linearly independent.

The condition (i), mentioned already with (1), means that B is balanced, which
is usual terminology in game-theoretical literature. The condition (ii), equivalent
to minimality, then implies the uniqueness of the so-called balancing coefficients
λS in (i). One can observe using Lemma 1 that a non-empty B ⊆ P(N) is min-
balanced on M iff it is a minimal set system satisfying (i), which is a standard
definition of a minimal balanced collection in game-theoretical literature.

Note that it follows from [5, Lemma 2.2] that any non-trivial min-balanced
system B on M ⊆ N consists of least two proper subsets of M . Moreover, the
intersection of all sets in B must be empty and one has at most |M | sets in B.

As mentioned earlier, every non-trivial min-balanced system on M ⊆ N
induces a unique non-trivial inequality (up to a positive multiple) for games m
over N . More specifically, we know by Lemma 1 that unique balancing coeffi-
cients λS > 0, S ∈ B, exist such that χM =

∑
S∈B λS ·χS . The induced inequality

for games m over N has then the form

m(M) ≥
∑

S∈B
λS · m(S) . (2)

One can show that the balancing coefficients λS must be rational [5, Sect. 3.3],
which allows one to multiply (2) by a positive factor so that the (balancing)
coefficients become integers with no common prime divisor. Moreover, it is con-
venient to introduce a conventional coefficient with the empty set which plays
no role in (2) because m(∅) = 0 for any game m. The convention is such that
one gets, after a re-arrangement, a unique standardized form of the inequality

α(M) · m(M) +
∑

S∈B
α(S) · m(S) + α(∅) · m(∅) ≥ 0 , (3)

where α(S), S ∈ B, are negative integers with no common prime divisor and
α(M), α(∅) are positive integers determined by the standardization conditions:

∑

S⊆N

α(S) = 0 and ∀ i ∈ N
∑

S⊆N : i∈S

α(S) = 0 . (4)

The point of this particular convention will be revealed in Sect. 3.

Example 1. Consider N = {a, b, c, d} and a set system B = {a, bc, bd, cd}, where
abbreviations like ab stand for sets like {a, b}. One has

χN = 1 · χa +
1
2

· χbc +
1
2

· χbd +
1
2

· χcd ,
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which allows one to observe using Lemma 1 that B is min-balanced on N .
The respective inequality (2) is multiplied by factor 2, which gives α(N) = 2,
α(a) = −2 and α(S) = −1 for remaining S ∈ B. The convention in the first
formula of (4) gives α(∅) = +3, which leads to the standardized inequality (3)

2 · m(abcd) − 2 · m(a) − m(bc) − m(bd) − m(cd) + 3 · m(∅) ≥ 0 (5)

for games m over N .

Shapley-Bondareva theorem can be re-formulated as follows [5, Lemma 3.5]:

Proposition 1. If |N | ≥ 2 then the least possible set of standardized inequalities
characterizing the balanced games m over N is the set of inequalities (3) induced
by non-trivial min-balanced systems B on N .

2.3 Irreducible Min-Balanced Systems

Let B be a min-balanced system on ∅ 	= M ⊆ N . We say that B is reducible
if there exist a set ∅ 	= A ⊂ M such that BA := {S ∈ B : S ⊂ A} composes
to A. Note that one can assume without loss of generality that both |A| ≥ 2 and
A 	∈ B because otherwise B cannot be min-balanced. A min-balanced system
B ⊆ P(N) that is not reducible is called irreducible.

The meaning of the reducibility condition is that the induced inequality (for
games over N) is a conic combination of inequalities induced by other min-
balanced systems, in particular by the irreducible ones.

Lemma 2. Given a min-balanced system B on ∅ 	= M ⊆ N , the reducibility
condition with a set ∅ 	= A ⊂ M is equivalent to the existence of min-balanced
systems C on A and D on M such that A ∈ D, C \ D 	= ∅ and B = C ∪ D \ {A}.
Proof. The sufficiency of the condition is easy as C ⊆ BA. For the necessity realize
using Lemma 1 that {χS : S ∈ BA} are linearly independent. Hence, uniquely
determined coefficients μS ≥ 0, S ∈ BA, exist such that χA =

∑
S∈BA

μS · χS .
Put C := {S ∈ BA : μS > 0} and μT := 0 for T ∈ B \ BA. Again by Lemma 1,
unique coefficients λS > 0, S ∈ B, exist such that χM =

∑
S∈B λS · χS . Let us

put ε := minC∈C λC

μC
and introduce κA := ε, κS := λS − ε · μS for S ∈ B. Then

one has χM =
∑

S∈B λS ·χS + ε · (χA −∑
S∈B μS ·χS) =

∑
S∈B∪{A} κS ·χS with

κS ≥ 0 for S ∈ B ∪ {A}. One can put D := {S ∈ B ∪ {A} : κS > 0} and verify
the conditions from Lemma 2.

One can extend the arguments used in the above proof to show that the
min-balanced systems C and D mentioned above are uniquely determined by the
set A. Lemma 2 also allows one to observe that the reducibility condition for a
min-balanced system B is equivalent to the original one from [5, Definition 4.1].
The next example illustrates the fact that the “decomposition” of B into systems
C and D leads to conic combination of the induced inequalities.



450 M. Studený et al.

Example 2. The set system B = {a, bc, bd, cd} from Example 1 is reducible. Put
A := {b, c, d}; then BA = {bc, bd, cd} composes to A because of

χA ≡ χbcd =
1
2

· χbc +
1
2

· χbd +
1
2

· χcd .

One gets C = {bc, bd, cd} and D = {a, bcd} in this particular case. The inequality
(5) induced by B is then a conic combination of inequalities induced by C and D:

1 × { 2 · m(bcd) − m(bc) − m(bd) − m(cd) + m(∅) } ≥ 0
2 × { m(abcd) − m(a) − m(bcd) + m(∅) } ≥ 0 ,

where the (conic) coefficient for C is 1 and the coefficient for D is 2.

Thus, reducible systems are superfluous for describing totally bal-
anced games. Nonetheless, the irreducible ones are substantial as shown in
[5, Theorem 5.1]:

Proposition 2. Assume |N | ≥ 2. The least set of standardized inequalities that
characterizes totally balanced games m over N is the set of inequalities (3)
induced by non-trivial irreducible min-balanced systems B on non-empty subsets
M ⊆ N .

3 Conjugate Inequalities and Complementary Systems

Every (standardized) inequality (3) for games m (over N) can be viewed as
∑

S⊆N

α(S) · m(S) ≥ 0 , where the coefficients outside B ∪ {∅,M} are zeros,

and assigned its conjugate inequality for games m (over N) with respect to N :
∑

T⊆N

α∗(T ) · m(T ) ≥ 0 , where α∗(T ) := α(N \ T ) for any T ⊆ N .

The importance of this concept for balanced and exact games is apparent from
[5, Lemma 3.4], which can be re-phrased as follows.

Proposition 3. The least set S of standardized inequalities that characterizes
balanced games over N is closed under conjugacy: whenever (3) is in S then
its conjugate inequality is in S. The same holds for the least set of standardized
inequalities characterizing exact games over N .

We know from Proposition 1 that the inequalities in the set S characterizing
balanced games over N correspond to non-trivial min-balanced systems on N .
Thus, the conjugate inequality to (3) for a system B on N also corresponds to a
non-trivial min-balanced system on N , which is nothing but the complementary
system to B relative to N . The following is a re-formulation of [5, Corollary 3.1].
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Proposition 4. Let B be a non-trivial min-balanced system on N inducing (3).
Then its complementary system B∗ := {N \ S : S ∈ B} relative to N is also a
non-trivial min-balanced system on N , inducing the conjugate inequality to (3).

The reader can now comprehend the convention from Sect. 2.2, where the
coefficient α(∅) with the empty set was introduced. It is just the coefficient α∗(N)
in the conjugate inequality, that is, the coefficient with N for the complementary
system B∗. This phenomenon is illustrated by the next example.

Example 3. Consider again the system B = {a, bc, bd, cd} on N = {a, b, c, d} from
Example 1. Its complementary system relative to N is B∗ = {ab, ac, ad, bcd}. The
standardized inequality induced by B∗ is then

3 · m(abcd) − m(ab) − m(ac) − m(ad) − 2 · m(bcd) + 2 · m(∅) ≥ 0 ,

which is, as the reader can check, the conjugate inequality to the inequality
(5) induced by B (see Example 1). Note that B∗ is an irreducible min-balanced
system unlike its complementary system B∗∗ = B (see Example 2).

4 Catalogue: Procedure

Here we describe the method our catalogue [14] has been obtained. As explained
in Sect. 2.2, a min-balanced system on a basic set N contains at most n := |N |
sets. Thus, a non-trivial such system B ⊆ P(N) can be represented by a zero-one
n×r-matrix, where 2 ≤ r ≤ n, namely by a matrix whose (distinct) columns are
incidence vectors of (all) sets S ∈ B. To get one-to-one correspondence between
such matrices and non-trivial set systems one can choose and fix an order of
elements in N and also choose and fix an order of elements in P(N).

Moreover, by Lemma 1(ii), the columns of a matrix which represents a
min-balanced system must be linearly independent, which means that the rank
of the matrix is r, the number of its columns. This is something one can easily
test using linear algebra computational tools. Thus, the first step of our proce-
dure was computing a list of representatives of permutational types of non-trivial
set systems B ⊆ P(N) such that {χS : S ∈ B} are linearly independent in R

N .
In our case n = 5 we have obtained 1649 such (non-trivial) type representatives.

The second necessary condition for a min-balanced system B ⊆ P(N) is that
B composes to M :=

⋃ B, that is, non-negative coefficients λS ≥ 0, S ∈ B, exist
such that χM =

∑
B∈B λS · χS . If A is the n × r-matrix representing B then this

condition is equivalent to the existence of a non-negative column vector λ ∈ R
r

such that A ·λ = χM , which is a standard feasibility task in linear programming.
Again, this can be tested computationally by means linear programming software
packages. In our case n = 5 we found that 934 representatives of those 1649 ones
mentioned above describe systems B composing to

⋃ B.
In case of an n × r-matrix A of the rank r the solution λ of a linear system

A · λ = χM is uniquely determined. Hence, the criterion to decide whether the
corresponding system B is min-balanced is immediate: all the components of the
unique solution λ must be strictly positive. This gave massive reduction: only
57 representatives of above mentioned 934 ones describe min-balanced systems.
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Testing irreducibility of min-balanced systems using their matrix computer
representations comes from the definition in Sect. 2.3: testing whether a set sub-
system composes to its union is a linear programming feasibility task. In our
case n = 5 we recognized 23 irreducible types of 57 of min-balanced ones. The
particular numbers are given in Table 1, the details can be found in [14].

Table 1. The numbers of non-trivial min-balanced systems in case |N | ≤ 5.

Variables Systems Permutational types Irreducible systems Irreducible types

|N | = 2 1 1 1 1

|N | = 3 5 3 4 2

|N | = 4 41 9 18 5

|N | = 5 1291 44 288 15

|N | ≤ 5 1338 57 311 23

5 Towards Classification of Permutation Types

Here we mention some characteristics which can be used to classify permutational
types of non-trivial (irreducible) min-balanced set systems.

5.1 Numerical Characteristics of Permutational Types

Let B be a non-trivial min-balanced set system on N with n := |N | ≥ 2. Intro-
duce (set) cardinality characteristics of B by ck := |{S ∈ B : |S| = k}| for
k = 1, . . . , n − 1. Note that

∑n−1
k=1 ck = |B| is the number of sets in B. The

cardinality vector [c1, . . . , cn−1] can then serve as a characteristic of any permu-
tational type of non-trivial min-balanced systems. Cardinality vectors cannot,
however, distinguish between some different permutational types.

An alternative idea comes from multiplicity characteristics which are defined
by mi := |{S ∈ B : i ∈ S}| for elements i ∈ N . One can order the numbers
mi in an increasing way, say, and get a multiplicity vector of the length |N |,
which can serve as a characteristic of the permutational type of B. The sum of
its components

∑
i∈N mi can be viewed as a kind of multiplicity index for B.

Multiplicity vectors cannot, however, distinguish between different partitions.

5.2 Archetypes

Let B be a set system on a basic set N . It defines an equivalence relation on N :
given i, j ∈ N , i ∼ j will mean that, for every S ∈ B, one has i ∈ S ⇔ j ∈ S.
For any i ∈ N put [i] := {j ∈ N : i ∼ j} and denote by Ñ := { [i] : i ∈ N}
the factor set of ∼, that is, the set of equivalence classes of ∼. Analogously, any
S ∈ B can be identified with a subset of Ñ , namely with S̃ := { [i] : i ∈ S};
note that the inverse relation is S =

⋃ {[i] : [i] ∈ S̃}. The system B itself can
be identified with B̃ := {S̃ : S ∈ B}, which is a set system on Ñ .
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Given a set system B on N 	= ∅ and a set system C on L 	= ∅ we will say
that they belong to the same archetype if there exists a one-to-one mapping
ψ : Ñ → L̃ from Ñ onto L̃ which maps B̃ to C̃, that is, C̃ = {ψ(S̃) : S̃ ∈ B̃}.

It is easy to see that this is an equivalence relation on set systems coarsening
their permutational equivalence. Trivial set systems form one equivalence class
of this archetypal equivalence; however, such systems are not of our interest.

Lemma 3. Let B be a set system on N and C a set system on L which belong
to the same archetype. Then B is min-balanced iff C is min-balanced. Moreover,
B is a non-trivial irreducible min-balanced system iff C is so.

Proof. It is enough to verify the claims for a set system B on N and the system
B̃ on Ñ in place of the system C on L. The claim about min-balanced systems
follows easily from Lemma 1: realize that one has χN =

∑
S∈B λS ·χS if and only

if χ
˜N =

∑
S∈B λS ·χ

˜S for arbitrary real coefficients λS and similar consideration
works with zero vectors in place of χN and χ

˜N .
As concerns the irreducible systems it is more convenient to show that B is

reducible iff B̃ is reducible. As mentioned in Sect. 2.3 the set A in the definition
of reducibility of B has the form A =

⋃ BA with BA = {S ∈ B : S ⊂ A}.
Such a set A is composed of equivalence classes of ∼ and can be identified with
a subset of Ñ : one has Ã := { [i] : i ∈ A} and A =

⋃ {[i] : [i] ∈ Ã}. Hence,
one has Ã ⊂ Ñ and χA =

∑
S∈BA

λS · χS iff χ
˜A =

∑
S∈BA

λS · χ
˜S for arbitrary

real coefficients λS . This implies the claim about reducible systems. The claim
about trivial/non-trivial systems is evident.

Lemma 3 implies that permutational types can be classified by their
archetypes. Any archetype can be canonically represented by an archetypal set
system, which is such a system B on N that, for any i, j ∈ N , one has i ∼ j iff
i = j.

Example 4. Consider an irreducible min-balanced system B = {ab, acd, bcd} on
N = {a, b, c, d}. One has c ∼ d in this case and the system B belongs to the
same archetype as C = {ab, ac, bc} on M = {a, b, c}. Clearly, C is an archetypal
system.

6 Conclusions

We would like to find out whether our method of generating (all) types of
min-balanced systems based on Lemma 1 can be modified and can lead to some
iterative algorithm, which would be able to produce catalogues for |N | ≥ 6.

One of our open tasks is whether the numerical characteristics from Sect. 5.1
are able to distinguish between any distinct types of min-balanced systems. If this
is so then an alternative method of generating types could possibly be designed.

This is also related to the question of finding lower and upper estimates for the
numbers (of types) of min-balanced systems and irreducible min-balanced system
in terms of |N |. The asymptotic behavior of these numbers with increasing |N |
would be of our interest, too.
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Abstract. We present an algorithm that can efficiently compute a broad
class of inferences for discrete-time imprecise Markov chains, a gener-
alised type of Markov chains that allows one to take into account par-
tially specified probabilities and other types of model uncertainty. The
class of inferences that we consider contains, as special cases, tight lower
and upper bounds on expected hitting times, on hitting probabilities and
on expectations of functions that are a sum or product of simpler ones.
Our algorithm exploits the specific structure that is inherent in all these
inferences: they admit a general recursive decomposition. This allows us
to achieve a computational complexity that scales linearly in the number
of time points on which the inference depends, instead of the exponential
scaling that is typical for a naive approach.

Keywords: Imprecise Markov chains · Upper and lower expectations ·
Recursively decomposable inferences

1 Introduction

Markov chains are popular probabilistic models for describing the behaviour
of dynamical systems under uncertainty. The crucial simplifying assumption in
these models is that the probabilities describing the system’s future behaviour
are conditionally independent of its past behaviour, given that we know the
current state of the system; this is the canonical Markov property.

It is this Markov assumption that makes the parametrisation of a Markov
chain relatively straightforward—indeed, as we will discuss in Sect. 2, the uncer-
tain dynamic behaviour is then completely characterised by a transition matrix
T , whose elements T (xn, xn+1) = P(Xn+1 = xn+1|Xn = xn) describe the prob-
abilities that the system will transition from any state xn at time n, to any state
xn+1 at time n + 1. Note that T itself is independent of the time n; this is the
additional assumption of time homogeneity that is often imposed implicitly in
this context. An important advantage of these assumptions is that the resulting
matrix T can be used to solve various important inference problems, using one
of the many available efficient algorithms.
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In many cases however, the numerical value of the transition matrix T may
not be known exactly; that is, there may be additional (higher-order) uncertainty
about the model itself. Moreover, it can be argued that simplifying assumptions
like the Markov property and time homogeneity are often unrealistic in practice.
It is of interest, then, to compute inferences in a manner that is robust ; both to
violations of such simplifying assumptions, and to variations in the numerical
values of the transition probabilities.

The theory of imprecise probabilities allows us to describe such additional
uncertainties by using, essentially, sets of traditional (“precise”) models. In par-
ticular, such a set is comprised of all the models that we deem “plausible”;
for instance, we may include all Markov chains whose characterising transition
matrix T is included in some given set T of transition matrices. In this way
we can also include non-homogeneous Markov chains, by simply requiring that
their (now time-dependent) transition matrices remain in T . Moreover, we can
even include non-Markovian models in such a set. This leads to the notion of an
imprecise Markov chain. The robust inferences that we are after, are then the
tightest possible lower and upper bounds on the inferences computed for each
of the included precise models.

In this work, we present an efficient algorithm for solving a large class of
these inferences within imprecise Markov chains. Broadly speaking, this class
consists of inferences that depend on the uncertain state of the system at a finite
number of time instances, and which can be decomposed in a particular recursive
form. As we will discuss, it contains as special cases the (joint) probabilities of
sequences of states; the hitting probabilities and expected hitting times of subsets
of the possible states; and time averages of functions of the state of the system.

Interestingly, existing algorithms for some of these inferences turn out to
correspond to special cases of our algorithm, giving our algorithm a unifying
character. Time averages, for example, were already considered in [9], and some
of the results in [8]—a theoretical study of lower and upper expected hitting
times and probabilities—can be interpreted as a special cases of the algorithm
presented here. Readers that are familiar with recursive algorithms for credal
networks under epistemic irrelevance [1,2,4] might also recognise some of what
we do; in fact, many of the ideas behind our algorithm have previously been
discussed in this more general context [2, Chapter 7].

In order to adhere to the page limit, all proofs have been relegated to the
appendix of an online extended version [13].

2 Preliminaries

We denote the natural numbers, without 0, by N, and let N0 := N ∪ {0}. The
set of positive real numbers is denoted by R>0 and the set of non-negative real
numbers by R≥0. Throughout, we let IA denote the indicator of any subset
A ⊆ Y of a set Y ; so, for any y ∈ Y , IA(y) := 1 if y ∈ A and IA(y) := 0
otherwise.
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Before we can introduce the notion of an imprecise Markov chain, we first
need to discuss general (non-Markovian) stochastic processes. These are arguably
most commonly formalised using a measure-theoretic approach; however, the
majority of our results do not require this level of generality, and so we will keep
the ensuing introduction largely intuitive and informal.

Let us start by considering the realisations of a stochastic process. At each
point in time n ∈ N, such a process is in a certain state xn, which is an element
of a finite non-empty state space X . A realisation of the process is called a path,
and is an infinite sequence ω = x1x2x3 · · · where, at each discrete time point
n ∈ N, ωn := xn ∈ X is the state obtained by the process at time n, on the
path ω. So, we can interpret any path as a map ω : N → X , allowing us to
collect all paths in the set Ω := X N. Moreover, for any ω ∈ Ω and any m,n ∈ N

with m ≤ n, we use the notation ωm:n to denote the finite sequence of states
ωm · · · ωn ∈ X n−m+1.

A stochastic process is now an infinite sequence X1X2X3 · · · of uncertain
states where, for all n ∈ N, the uncertain state at time n is a function of the
form Xn : Ω → X : ω �→ ωn. Similarly, we can consider finite sequences of such
states where, for all m,n ∈ N with m ≤ n, Xm:n : Ω → X n−m+1 : ω �→ ωm:n.
These states are uncertain in the sense that we do not know which realisation
ω ∈ Ω will obtain in reality; rather, we assume that we have assessments of the
probabilities P(Xn+1 = xn+1|X1:n = x1:n), for any n ∈ N and any x1:n ∈ X n.
Probabilities of this form tell us something about which state the process might
be in at time n + 1, given that we know that at time points 1 through n,
it followed the sequence x1:n. Moreover, we can consider probabilities of the
form P(X1 = x1) for any x1 ∈ X ; this tells us something about the state
that the process might start in. It is well known that, taken together, these
probabilities suffice to construct a global probability model for the entire process
X1X2X3 · · · , despite each assessment only being about a finite subsequence of
the states; see e.g. the discussion surrounding [7, Theorem 5.16] for further details
on formalising this in a proper measure-theoretic setting. We simply use P to
denote this global model.

Once we have such a global model P, we can talk about inferences in which
we are interested. In general, these are typically encoded by functions f : Ω → R

of the unknown realisation ω ∈ Ω, and we collect all functions of this form in the
set L (Ω). To compute such an inference consists in evaluating the (conditional)
expected value EP(f |C) of f with respect to the model P, where C ⊆ Ω is an
event of the form Xm:n = xm:n with m,n ∈ N such that m ≤ n. In particular, if
P is a global model in the measure-theoretic sense, then under some regularity
conditions like the measurability of f , we would be interested in computing the
quantity EP(f |C) :=

∫
Ω

f(ω) dP(ω|C). For notational convenience, we will also
use X1:0 := Ω as a trivial conditioning event, allowing us to regard unconditional
expectations as a special case of conditional ones.

A special type of inferences that will play an important role in the remainder
of this work are those for which the function f only depends on a finite subse-
quence of the path ω, thereby vastly simplifying the definition of its expectation.
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In particular, if an inference only depends on the states at time points m through
n, say, then it can always be represented by a function f : X n−m+1 → R eval-
uated in the uncertain states Xm:n; specifically, the inference is represented by
the composition f ◦ Xm:n, which we will denote by f(Xm:n). In the sequel, we
will call a composite function of this form finitary. Moreover, for any n ∈ N,
we denote by L (X n) the set of all functions of the form f : X n → R, and we
write Lfin(Ω) ⊂ L (Ω) for the set of all finitary functions. For a finitary function
f(X1:n), the computation of its expected value reduces to evaluating the finite
sum

EP(f(X1:n)|C) =
∑

x1:n∈X n

f(x1:n)P(X1:n = x1:n|C) .

Let us now move on from the discussion about general uncertain processes,
to the special case of Markov chains. An uncertain process P is said to satisfy
the Markov property if, for all n ∈ N and all x1:n+1 ∈ X n+1, the aforementioned
probability assessments simplify in the sense that

P(Xn+1 = xn+1|X1:n = x1:n) = P(Xn+1 = xn+1|Xn = xn) .

A process that satisfies this Markov property is called a Markov chain. Thus,
for a Markov chain, the probability that it will visit state xn+1 at time n + 1 is
independent of the states X1:n−1, given that we know the state Xn at time n.
If the process is moreover homogeneous, meaning that P(Xn+1 = y|Xn = x) =
P(X2 = y|X1 = x) for all x, y ∈ X and all n ∈ N, then the parameterisation
of the process becomes exceedingly simple. Indeed, up to the initial distribution
P(X1)—a probability mass function on X —the process’ behaviour is then fully
characterised by a single |X |×|X | matrix T that is called the transition matrix.
It is row-stochastic (meaning that, for all x ∈ X , the x-th row T (x, ·) of T is
a probability mass function on X ) and its entries satisfy T (x, y) = P(Xn+1 =
y|Xn = x) for all x, y ∈ X and n ∈ N. The usefulness of this representation
comes from the fact that we can interpret T as a linear operator on the vector
space L (X ) 
 R

|X |, due to the assumption that X is finite. For f ∈ L (X ),
this allows us to write the conditional expectation of f(Xn+1) given Xn as a
matrix-vector product: for any x ∈ X , EP(f(Xn+1)|Xn = x) equals

∑

y∈X

f(y)P(Xn+1 = y|Xn = x) =
∑

y∈X

f(y)T (x, y) =
[
Tf

]
(x).

3 Imprecise Markov Chains

Let us now move on to the discussion about imprecise Markov chains. Here, we
additionally include uncertainty about the model specification, such as uncer-
tainty about the numerical values of the probabilities P(Xn+1|X1:n), and about
the validity of structural assessments like the Markov property.

We will start this discussion by regarding the parameterisation of such an
imprecise Markov chain. We first consider the (imprecise) initial model M;
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this is simply a non-empty set of probability mass functions on X that we will
interpret as containing those probabilities that we deem to plausibly describe
the process starting in a certain state. Next, instead of being described by a
single transition matrix T , an imprecise Markov chain’s dynamic behaviour is
characterised by an entire set T of transition matrices. So, each element T ∈ T
is an |X | × |X | matrix that is row-stochastic. In the sequel, we will take T to
be fixed, and assume that it is non-empty and that it has separately specified
rows. This last property is instrumental in ensuring that computations can be
performed efficiently, and is therefore often adopted in the literature; see e.g. [6]
for further discussion. For our present purposes, it suffices to know that it means
that T can be completely characterised by providing, for any x ∈ X , a non-
empty set Tx of probability mass functions on X . In particular, it means that
T is the set of all row-stochastic |X |×|X | matrices T such that, for all x ∈ X ,
the x-row T (x, ·) is an element of Tx.

Given the sets M and T , the corresponding imprecise Markov chain is
defined as the largest set PM,T of stochastic processes that are in a specific
sense compatible with both M and T . In particular, a model P is said to be
compatible with M if P(X1) ∈ M, and it is said to be compatible with T if,
for all n ∈ N and all x1:n ∈ X n, there is some T ∈ T such that

P(Xn+1 = xn+1|X1:n = x1:n) = T (xn, xn+1) for all xn+1 ∈ X .

Notably, therefore, PM,T contains all the (precise) homogeneous Markov chains
whose characterising transition matrix T is included in T , and whose initial
distribution P(X1) is included in M. However, in general, PM,T clearly also
contains models that do not satisfy the Markov property, as well as Markov
chains that are not homogeneous.1

For such an imprecise Markov chain, we are interested in computing infer-
ences that are in a specific sense robust with respect to variations in the set
PM,T . Specifically, for any function of interest f : Ω → R, we consider its
(conditional) lower and upper expectations, which are respectively defined by

EM,T (f |C) := inf
P∈PM,T

EP(f |C) and EM,T (f |C) := sup
P∈PM,T

EP(f |C) .

In words, we are interested in computing the tightest possible bounds on the
inferences computed for each P ∈ PM,T . These lower and upper expectations
are related through conjugacy, meaning that EM,T (f |C) = −EM,T (−f |C), so
it suffices to consider only the upper expectations in the remaining discussion;
any results for lower expectations follow analogously through this relation.

From a computational point of view, it is also useful to consider the dual
representation of the set T , given by the upper transition operator T with respect
to this set [5,6]. This is a (non-linear) operator that maps L (X ) into L (X );
it is defined for any f ∈ L (X ) and any x ∈ X as

[
Tf

]
(x) := sup

T (x,·)∈Tx

∑

y∈X

T (x, y)f(y).

1 Within the field of imprecise probability theory, this model is called an imprecise
Markov chain under epistemic irrelevance [5,6,9].
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So, in order to evaluate
[
Tf

]
(x), one must solve an optimisation problem over

the set Tx containing the x-rows of the elements of T . In many practical cases,
the set Tx is closed and convex and therefore, evaluating

[
Tf

]
(x) is relatively

straightforward: for instance, if Tx is described by a finite number of (in)equality
constraints, then this problem reduces to a simple linear programming task,
which can be solved by standard techniques. We will also make use of the con-
jugate lower transition operator T , defined by [T f ](x) := −[T (−f)](x) for all
x ∈ X and all f ∈ L (X ). Results about upper transition operators translate
to results about lower transition operators through this relation; we will focus
on the former in the following discussion.

Now, the operator T can be used for computing upper expectations in much
the same way as transition matrices are used for computing expectations with
respect to precise Markov chains: for any n ∈ N, any finitary function f(Xn+1)
and any x1:n ∈ X n it holds that

EM,T (f(Xn+1)|X1:n = x1:n) =
[
Tf

]
(xn) . (1)

Observe that the right-hand side in this expression does not depend on the
history x1:n−1; this can be interpreted as saying that the model satisfies an
imprecise Markov property, which explains why we call our model an “imprecise
Markov chain”. Moreover, a slightly more general property holds that will be
useful later on:

Proposition 1. Consider the imprecise Markov chainPM,T . For any m,n ∈ N

such that m ≤ n, any function f ∈ L (X n−m+1) and any x1:m−1 ∈ X m−1 and
y ∈ X , we have that

EM,T

(
f(Xm:n)

∣
∣X1:m−1 = x1:m−1,Xm = y

)
= EM,T

(
f(X1:n−m+1)

∣
∣X1 = y

)
.

Finally, we remark that, for any m,n ∈ N such that m ≤ n, a conditional
upper expectation EM,T

(
f
∣
∣Xm:n

)
is itself a (finitary) function depending on the

states Xm:n. Using this observation, we can now introduce the law of iterated
upper expectations, which will form the basis of the algorithms developed in the
following sections:

Theorem 1. Consider the imprecise Markov chain PM,T . For all m ∈ N0, all
k ∈ N and all f ∈ Lfin(Ω), we have that

EM,T

(
f
∣
∣X1:m

)
= EM,T

(
EM,T

(
f
∣
∣X1:m+k

)∣∣
∣X1:m

)
.

4 A Recursive Inference Algorithm

In principle, for any function f ∈ L (X n) with n ∈ N, the upper expectations
of f(X1:n) can be obtained by maximising EP(f(X1:n)) over the set PM,T of
all precise models P that are compatible with M and T . Since this will almost
always be infeasible if n is large, we usually apply the law of iterated upper
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expectations in combination with the Markov property in order to divide the
optimisation problem into multiple smaller ones. Indeed, because of Theorem 1,
we have that

EM,T (f(X1:n)) = EM,T

(
EM,T (f(X1:n)|X1:n−1)

)
.

Using Eq. (1), one can easily show that EM,T (f(X1:n)|X1:n−1) can be computed
by evaluating [Tf(x1:n−1·)](xn−1) for all x1:n−1 ∈ X n−1. Here, f(x1:n−1·) is
the function in L (X ) that takes the value f(x1:n) on xn ∈ X . This accounts
for |X |n−1 optimisation problems to be solved. With the acquired function
f ′(X1:n−1) := EM,T (f(X1:n)|X1:n−1), we can then compute the upper expecta-
tion EM,T (f ′(X1:n−1)|X1:n−2) in a similar way, by solving |X |n−2 optimisation
problems. Continuing in this way, we end up with a function that only depends
on X1 and for which the expectation needs to be maximised over the initial mod-
els in M. Hence, in total,

∑n−1
i=0 |X |i optimisation problems need to be solved

in order to obtain EM,T (f(X1:n)). Although these optimisation problems are
relatively simple and therefore feasible to solve individually, the total number of
required iterations is still exponential in n, therefore making the computation of
EM,T (f(X1:n)) intractable when n is large.

In many cases, however, f(X1:n) can be recursively decomposed in a specific
way allowing for a much more efficient computational scheme to be employed;
see Theorem 2 further on. Before we present this scheme in full generality, let
us first provide some intuition about its basic working principle.

So assumewe are interested inEM,T (f(X1:n)), which, according toTheorem1,
can be obtained by maximising EP(EM,T (f(X1:n)|X1)) over P(X1) ∈ M. The
problem then reduces to the question of how to compute EM,T (f(X1:n)|X1) effi-
ciently. Suppose now that f(X1:n) takes the following form:

f(X1:n) = g(X1) + h(X1)τ(X2:n), (2)

for some g, h ∈ L (X ) and some τ ∈ L (X n−1). Then, because EM,T is a
supremum over linear expectations, we find that

EM,T (f(X1:n)|X1) = g(X1) + h(X1)EM,T (τ(X2:n)|X1),

where, for the sake of simplicity, we assumed that h does not take negative
values. Then, by appropriately combining Proposition 1 with Theorem 1, one
can express EM,T (τ(X2:n)|X1) in terms of Υ : X → R, defined by

Υ (x) := EM,T (τ(X1:n−1)|X1 = x) for all x ∈ X .

In particular, we find that

EM,T (τ(X2:n)|X1) = EM,T

(
EM,T (τ(X2:n)|X1:2)|X1

)
= EM,T

(
Υ (X2)|X1

)

= [T Υ ](X1),

where the equalities follow from Theorem 1, Proposition 1 and Eq. (1), respec-
tively. So EM,T (f(X1:n)|X1) can be obtained from Υ by solving a single opti-
misation problem, followed by a pointwise multiplication and summation.
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Now, by repeating the structural assessment (2) in a recursive way, we can
generate a whole class of functions for which the upper expectations can be
computed using the principle illustrated above. We start with a function τ1(X1),
with τ1 ∈ L (X ), that only depends on the initial state. The upper expectation
EM,T (τ1(X1)|X1) is then trivially equal to τ1(X1). Next, consider τ2(X1:2) =
g1(X1) + h1(X1)τ1(X2) for some g1, h1 in L (X ). EM,T (τ2(X1:2)|X1) is then
given by g1(X1)+h1(X1)[T Υ 1](X1), where we let Υ 1(x) := EM,T (τ1(X1)|X1 =
x) = τ1(x) for all x ∈ X and where we (again) neglect the subtlety that h1 can
take negative values. Continuing in this way, step by step considering new func-
tions constructed by multiplication and summation with functions that depend
on an additional time instance, and no longer ignoring the fact that the functions
involved can take negative values, we end up with the following result.

Theorem 2. Consider any imprecise Markov chain PM,T and two sequences
of functions {gn}n∈N0 and {hn}n∈N in L (X ). Define τ1(x1) := g0(x1) for all
x1 ∈ X , and for all n ∈ N, let

τn+1(x1:n+1) := hn(x1)τn(x2:n+1) + gn(x1) for all x1:n+1 ∈ X n+1.

If we write {Υn}n∈N and {Υn}n∈N to denote the sequences of functions in L (X )
that are respectively defined by Υn(x) := EM,T (τn(X1:n)|X1 = x) and Υn(x) :=
EM,T (τn(X1:n)|X1 = x) for all x ∈ X and all n ∈ N, then {Υn}n∈N and
{Υn}n∈N satisfy the following recursive expressions:

⎧
⎪⎨

⎪⎩

Υ 1 = Υ 1 = g0;
Υn+1 = hnIhn≥0[T Υn] + hnIhn<0[T Υn] + gn for all n ∈ N;
Υn+1 = hnIhn≥0[T Υn] + hnIhn<0[T Υn] + gn for all n ∈ N.

Here, we used Ihn≥0 ∈ L (X ) to denote the indicator of {x ∈ X : hn(x) ≥ 0},
and similarly for Ihn<0 ∈ L (X ). Note that, because we now need to evaluate
both T and T for every iteration, we will in general need to solve 2(n − 1)|X |
optimisation problems to obtain EM,T (τn(X1:n)|X1) and EM,T (τn(X1:n)|X1)
for some n ∈ N. In order to obtain the unconditional inferences EM,T (τn(X1:n))
and EM,T (τn(X1:n)), it then suffices to respectively maximise and minimise
the expectations of EM,T (τn(X1:n)|X1) and EM,T (τn(X1:n)|X1) over all initial
models in M.

5 Special Cases

To illustrate the practical relevance of our method, we now discuss a number
of important inferences that fall within its scope. As already mentioned in the
introduction section, in some of these cases, our method simplifies to a compu-
tational scheme that was already developed earlier in a more specific context.
The strength of our present contribution, therefore, lays in its unifying character
and the level of generality to which it extends.
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Functions that depend on a single time instant. As a first, very simple
inference we can consider the upper and lower expectation of a function f(Xn),
for some f ∈ L (X ) and n ∈ N, conditional on the initial state. The expressions
for these inferences are given by Tn−1f and Tn−1f , respectively [5]. For instance,
for any x ∈ X , EM,T (f(X5))|X1 = x) = [T 4f ](x). These expressions can
also easily be obtained from Theorem 2, by setting g0 := f and, for all k ∈
{1, · · · , n − 1}, gk := 0 and hk := 1.

Sums of functions. One can also use our method to compute upper and lower
expectations of sums

∑n
k=1 fk(Xk) of functions fk ∈ L (X ). Then we would

have to set g0 := fn and, for all k ∈ {1, · · · , n − 1}, gk := fn−k and hk := 1.
Although we allow the functions fk to depend on k, it is worth noting that, if we
set them all equal to the same function f , our method can also be employed to
compute the upper and lower expectation of the time average 1/n

∑n
k=1 f(Xk)

of f over the time interval n. The subtlety of the constant factor 1/n does not
raise a problem here, because upper and lower expectations are homogeneous
with respect to non-negative scaling.

Product of functions. Another interesting class of inferences are those that can
be represented by a product

∏n
k=1 fk(Xk) of functions fk ∈ L (X ). To compute

upper and lower expectations of such functions, it suffices to set g0 := fn and, for
all k ∈ {1, · · · , n−1}, gk := 0 and hk := fn−k. A typical example of an inference
than can be described in this way is the probability that the state will be in a
set A ⊆ X during a certain time interval. For instance, the upper expectation
of the function IA(X1)IA(X2) gives us a tight upper bound on the probability
that the state will be in A during the first two time instances.

Hitting probabilities. The hitting probability of some set A ⊆ X over a
finite time interval n is the probability that the state Xk will be in A some-
where within the first n time instances. The upper and lower bounds on such a
hitting probability are equal to the upper and lower expectation of the function
f(X1:n) := IA′

n
∈ L (Ω), where A′

n := {ω ∈ Ω : (∃k ≤ n)ωk ∈ A}. Note that
f(X1:n) can be decomposed in the following way:

f(X1:n) = IA(X1) + IA(X2)IAc(X1) + · · · + IA(Xn)
n−1∏

k=1

IAc(Xk)

Hence, these inferences can be obtained using Theorem 2 if we let g0 := IA and,
for all k ∈ {1, · · · , n − 1}, gk := IA and fk := IAc . Additionally, one could also
be interested in the probability that the state Xk will ever be in A. Upper and
lower bounds on this probability are given by the upper and lower expectation
of the function f := IA′ ∈ L (Ω) where A′ := {ω ∈ Ω : (∃k ∈ N)ωk ∈ A}. Since
the function f is non-finitary, we are unable to apply our method in a direct
way. However, it is shown in [8, Proposition 16] that, if the set T is convex and
closed, the upper and lower bounds on the hitting probability over a finite time
interval converge to the upper and lower bounds on the hitting probability over
an infinite time interval, therefore allowing us to approximate these inferences
by choosing n sufficiently large.
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Hitting times. The hitting time of some set A ⊆ X is defined as the time τ until
the state is in A for the first time; so τ(ω) := inf{k ∈ N0 : ωk ∈ A} for all ω ∈ Ω.
Once more, the function τ is non-finitary, necessitating an indirect approach
to the computation of its upper and lower expectation. This can be done in a
similar way as we did for the case of hitting probabilities, now considering the
finitary functions τn(X1:n), where τn ∈ L (X n) is defined by τn(x1:n) := inf{k ∈
N : xk ∈ A} if {k ∈ N : xk ∈ A} is non-empty, and τn(x1:n) := n+1 otherwise, for
all n ∈ N and all x1:n ∈ X n. These functions correspond to choosing g0 := IAc

and, for all k ∈ {1, · · · , n − 1}, gk := IAc and fk := IAc . If the set T is convex
and closed, the upper and lower expectations of these functions for large n will
then approximate those of the non-finitary hitting time [8, Proposition 10].

6 Discussion

The main contribution of this paper is a single, unified method to efficiently com-
pute a wide variety of inferences for imprecise Markov chains; see Theorem 2. The
set of functions describing these inferences is however restricted to the finitary
type, and therefore a general approach for inferences characterised by non-finitary
functions is still lacking. In some cases, however, as we already mentioned in our
discussion of hitting probabilities and hitting times, this issue can be addressed by
relying on a continuity argument.

Indeed, consider any function f = limn→+∞ τn(X1:n) that is the pointwise
limit of a sequence {τn(X1:n)}n∈N of finitary functions, defined recursively as
in Theorem 2. If EM,T is continuous with respect to {τn(X1:n)}n∈N, meaning
that limn→+∞ EM,T (τn(X1:n)) = EM,T (f), the inference EM,T (f) can then be
approximated by EM,T (τn(X1:n)) for sufficiently large n. Since we can recur-
sively compute EM,T (τn(X1:n)) for any n ∈ N using the methods discussed at
the end of Sect. 4, this yields an efficient way of approximating EM,T (f). A
completely analogous argument can be used for the lower expectation EM,T (f).
This begs the question whether the upper and lower expectations EM,T and
EM,T satisfy the appropriate continuity properties for this to work.

Unfortunately, results about the continuity properties of these operators are
rather scarce —especially compared to their precise counterparts—and depend
on the formalism that is adopted. In this paper, for didactical reasons, we have
considered one formalism: we have introduced imprecise Markov chains as being
sets of “precise” models that are in a specific sense compatible with the given
set T . It is however important to realise that there is also an entirely different
formalisation of imprecise Markov chains that is instead based on the game-
theoretic probability framework that was popularised by Shafer and Vovk; we
refer to [10,11] for details. It is well known that the inferences produced under
these two different frameworks agree for finitary functions [3,9], so the method
described by Theorem 2 is also applicable when working in a game-theoretic
framework. The continuity properties of the game-theoretic upper and lower
expectations, however, are not necessarily the same as those of the measure-
theoretic operators that we considered here. So far, the continuity properties
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of game-theoretic upper and lower expectations are better understood [10–12],
making these operators more suitable if we plan to employ the continuity argu-
ment above.
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6. Hermans, F., Škulj, D.: Stochastic processes. In: Augustin, T., Coolen, F.P.A.,
De Cooman, G., Troffaes, M.C.M. (eds.) Introduction to Imprecise Probabilities.
Wiley (2014). Chapter 11

7. Kallenberg, O.: Foundations of Modern Probability. Springer Science & Business
Media, New York (2006)

8. Krak, T’Joens, N., De Bock, J.: Hitting times and probabilities for imprecise
Markov chains (2019). Accepted for publication in the conference proceedings of
ISIPTA 2019. A preprint can be found at arXiv:1905.08781

9. Lopatatzidis, S.: Robust Modelling and Optimisation in Stochastic Processes using
Imprecise Probabilities, with an Application to Queueing Theory. Ph.D. thesis,
Ghent University (2017)

10. Shafer, G., Vovk, V.: Probability and Finance: It’s Only a Game!. Wiley, New York
(2001)

11. T’Joens, N., De Bock, J., de Cooman, G.: In search of a global belief model for
discrete-time uncertain processes (2019). Accepted for publication in the conference
proceedings of ISIPTA 2019

12. T’Joens, N., De Bock, J., de Cooman, G.: Continuity properties of game-theoretic
upper expectations. arXiv:1902.09406 (2019)

13. T’Joens, N., Krak, T., De Bock, J., de Cooman, G.: A Recursive Algorithm for
Computing Inferences in Imprecise Markov Chains. arXiv:1905.12968 (2019)

http://arxiv.org/abs/1905.08781
http://arxiv.org/abs/1902.09406
http://arxiv.org/abs/1905.12968


Uncertain Reasoning for Applications



Probabilistic Consensus of the Blockchain
Protocol

Bojan Marinković1, Paola Glavan2, Zoran Ognjanović1(B), Dragan Doder3,
and Thomas Studer4

1 Mathematical Institute of the Serbian Academy of Sciences and Arts,
Belgrade, Serbia

{bojanm,zorano}@mi.sanu.ac.rs
2 Faculty of Mechanical Engineering and Naval Architecture, Zagreb, Croatia

pglavan@fsb.hr
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Abstract. We introduce a temporal epistemic logic with probabilities as
an extension of temporal epistemic logic. This extension enables us to rea-
son about properties that characterize the uncertain nature of knowledge,
like “agent a will with high probability know after time s same fact”. To
define semantics for the logic we enrich temporal epistemic Kripke mod-
els with probability functions defined on sets of possible worlds. We use
this framework to model and reason about probabilistic properties of
the blockchain protocol, which is in essence probabilistic since ledgers
are immutable with high probabilities. We prove the probabilistic con-
vergence for reaching the consensus of the protocol.

Keywords: Multi-agent systems · Blockchain ·
Temporal epistemic logic with probabilities · Formal model ·
Specification/verification

1 Introduction

Time, knowledge and uncertainty are fundamental properties of distributed sys-
tems. In order to be able to deal with these properties we need to represent
them and reason about them. Reasoning about time and knowledge started,
if not earlier, in the 1950s, 1960s with [9,15]. Since then, epistemic temporal
logic has been applied in many fields. Particularly, it has been proven useful
in analyzing message-passing based protocols in distributed computer networks
[4,6,7], where a suitable semantics was proposed, and modal operators are used
to express both agents’ knowledge and temporal properties of actions in dis-
tributed systems. The idea of extending the epistemic logic with probability
operators which enable reasoning about uncertainty seems natural and it is not
new, see for example [5,16].
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In this paper, we extend reasoning about temporal and epistemic properties
of agents [10] with probability properties. Agents are not rigid, i.e. one agent
participate as active or passive in the system. This property of agents implies that
knowledge does not satisfy that everything which is known is true (and in that
sense it might be also called belief [4]). Knowledge of an agent a is represented
using the modal operator Ka, that is interpreted with an accessibility relation
in Kripke models. The temporal part of the logic is discrete linear time (future)
LTL logic, where the flow of time is isomorphic to the natural numbers, and
the corresponding part of the formal language contains the operators Next (©)
and Until (U). Probabilistic part is modeled by introducing probability operators
of the form Pa,�s, with the meaning that according to agent a some fact holds
with the probability greater then or equal to s. Then both Ka and Pa,�s, in
Ka(Pa,�sφ), express together probabilistic knowledge i.e. that agent a will with
probability at most s know some fact φ. We also introduce probabilistic common
knowledge operators of the form Cs, with the meaning that common knowledge
of the probability of formula holds is at least s.

Nowadays, one of the most popular distributed protocols is the blockchain
protocol [13], which is used, for example, to synchronize copies of the public
ledger in the bitcoin cryptocurrency. By its nature blockchain is the probabilis-
tic protocol [11] and every agent has its own knowledge which evaluates during
the time [10]. In the formal language of our logic we formulate a theory which
describes the blockchain. We illustrate expressiveness of the logic by reason-
ing about probabilistic consensus of agents participating in an execution of the
blockchain protocol.

A blockchain is a decentralized, distributed and public digital ledger. The
ledger is also immutable and ordered. It is used to record transactions across
many computers with the property that transactions can be added only at the
end of the ledger and a record cannot be altered retroactively, without the alter-
ation of all subsequent blocks and the consensus of the network. All participants
have a large common prefix of the ledger. A blockchain database is managed
autonomously, without third authority, using a peer-to-peer network and a dis-
tributed time-stamping server. At any point of the protocol execution (round),
each participant attempts to increase the length of its own chain by mining for
a new block: upon receiving some record m, it picks a random string and checks
whether string is a valid proof-of-work (PoW) with respect to m and a pointer
to the last block of its current chain. If so, it extends its own local chain and
broadcasts it to the all the other participants. Whenever a participant receives
a chain that is longer than its own local chain, it replaces its own chain with the
longer one [3,14]. It is possible, in the run of the protocol, that two transactions
arrive approximately simultaneously. In that case, each participant chooses one
transaction and works on it (approximately half choose the first one, and the
other half the second one), keeping the other transaction. This situation is called
fork. Fork is resolved in some of the next round when the next unique PoW is
found and one branch becomes longer; the nodes that were working on the other
branch will then switch to the longer one.
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In essence the blockchain protocol is probabilistic since the ledgers change
with high probabilities. Probabilistic temporal epistemic logic enables us to
model and reason about probabilistic characteristics of the blockchain proto-
col: we are able to prove existence of the probabilistic common knowledge of
agents about consensus on the common prefix of the ledger.

The paper [8] analyzes probabilistic conditions to achieve consensus on a
public ledger, and presents a model theoretic approach with probabilistic con-
straints on runs that guarantee that (so called Δ−�) common knowledge about
the ledger is obtained. On the other hand, in this paper a theory which describes
the blockchain is used as the starting point to prove existence of probabilistic
common knowledge about the ledger. Other related papers are: [2] describes how
an agent’s knowledge is changed when a new block that might be added to the
blockchain arrives; [10] develops a logic to analyze properties of the protocol in
terms of knowledge of agents; [3,14] using cryptographic techniques prove that
with the high probability honest agents have the same common prefix of the
ledger.

The rest of the paper is organized as follows. In Sect. 2 we describe syntax
and semantics for the considered temporal epistemic logic with probabilities.
Section 3 describes the blockchain protocol as a theory (a set of proper axioms)
of the presented logic. We prove important properties of the protocol in this
section. Section 4 contains concluding remarks and directions for further work.

2 Temporal Epistemic Logic with Probabilities

2.1 Syntax

Let N be the set of nonnegative integers, V ar a nonempty at most countable set
of propositional letters, and A = {a1, . . . , am}, where m ∈ N, a set of agents.
Also, we introduce the set of propositional letters Aa = {Aa|a ∈ A}. The
intuitive meaning of propositional letter Aa is that “agent a is active”. The set
For of all formulas is the smallest superset of V ar ∪ Aa which is closed under
the following formation rules:

– ψ �→ ∗ψ where ∗ ∈ {¬,©, Ka, C, Pa,�s, Cs}, where a ∈ A, s ∈ [0, 1]Q
– 〈φ, ψ〉 �→ φ ∗ ψ where ∗ ∈ {∧, U}.

The operators © and U are standard temporal operators Next and Until. We
read the formula ©ψ “ψ will hold in the next moment”, and the formula ϕUψ “ ϕ
will hold until ψ becomes true. The remaining Boolean and temporal connectives
∨, �, →, ↔, F (“sometimes”), and G (“always”) are defined in the usual way.
The formula Kaψ denotes that the agent a knows ψ. The knowledge operator
E, which we read “everybody knows”, is introduced as Eψ =def

∧
a∈A Kaψ. The

operator C expresses common knowledge, i.e., the meaning of the formula Cψ
is “that everyone knows that everyone knows that everyone knows. . . that ψ is
true”. The formula Pa,�sψ represents that the probability of the formula ψ,
according to agent a, is at least s. The probabilistic variants of the operators Ka
and E are defined as abbreviations, in the following way:
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– Ksaψ =def Ka(Pa,�sψ), and
– Esψ =def

∧
a∈A Ksaψ,

while Cs is the operator for probabilistic common knowledge (i.e., common knowl-
edge is that the probability of a formula is at least s). Theories are sets of
formulas.

2.2 Semantics

In this paper we will consider time flow which is isomorphic to the set N. Our
models are propositional Kripke structures with possible worlds, similar as the
interpreted systems from [4,16].

Definition 1. A model M is any tuple 〈W,R, π,A,K,P〉 such that

– W is the set of possible worlds,
– R is the set of runs, where:

• every run r is a countably infinite sequence of possible worlds r0, r1, r2,
. . . , and

• every possible world belongs to only one run.
– π = {πr

i : r ∈ R , i ∈ N} is the set of valuations:
• πr

i (q) ∈ {
,⊥}, for q ∈ V ar, associates truth values to propositional
letters of the possible world ri,

– A associates a set of active agents to each possible worlds,
– K = {Ka

i : a ∈ A} is the set of binary accessibility relations on R, such that
• if a �∈ A(ri), then rKa

i r
′ is false for all r′ ∈ R.

– P associates a probability space P(ri, a) = (Ra
ri , ξ

a
ri , μ

a
ri) to every possible

world ri and every agent a, such that
• Ra

ri is a non-empty subset of R,
• ξari is an algebra of subsets of Ra

ri whose elements are called measurable
sets, and

• μa
ri : ξari → [0, 1] is a finitely-additive probability measure.

We denote the class of all models by Mod.

Note that in Definition 1 we consider the general case and did not introduce
any restrictions on Ka

i , except introduction of “dead end worlds” in the situations
when agents are not active. In order to reason about agents’ knowledge, we will
consider the case when Ka

i are equivalence relations for the active agents.

2.3 Satisfiability Relation

The satisfiability relation |= is recursively defined as follows:

Definition 2. Let M = 〈R, π,A,K,P〉 be an Mod model. The satisfiability rela-
tion |= satisfies:

1. ri |= q iff πr
i (q) = 
, for q ∈ V ar ∪ Aa,
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2. ri |= Aa iff a ∈ A(ri),
3. ri |= β1 ∧ β2 iff ri |= β1 and ri |= β2,
4. ri |= ¬β iff not ri |= β (ri �|= β),
5. ri |= ©β iff ri+1 |= β,
6. ri |= β1Uβ2 iff there is an j � 0 such that ri+j |= β2, and for every k, such

that 0 � k < j, ri+k |= β1,
7. ri |= Kaβ iff r′

i |= β for all r′ such that rKa
i r

′,
8. ri |= Cψ iff for every n � 0, ri |= Enψ,
9. ri |= Pa,�sβ iff μa

ri({r′ ∈ R | r′
i |= β}) � s, and

10. ri |= Crβ iff for every n � 0, ri |= Enr β.
�

Our semantic definition of probabilistic common knowledge is taken from the
paper [12], where the operator Cr is introduced for a the first time, as reflexive
and transitive closure of Er.1

A set of formulas is satisfiable if there is a possible world ri of a run r in
a model M such that every formula from the set holds in ri. A formula α is
satisfiable if the set {α} is satisfiable. A formula is valid in a model, if it holds in
every world of the model. α is valid (|= α), if it is valid in each model. A formula
α is a semantic consequence of a set of formulas F (F |= α) if for every model
M in which all formulas from the set F are valid, M |= α.

In order to keep the satisfiability relation well-defined, in this work we con-
sider only so-called measurable models. A measurable model is a model in which
each set {r′ ∈ R | r′

i |= β} belongs to ξari for every possible world ri and every
agent a. The class of all measurable models is denoted by ModMeas.

We consider models with non rigid sets of active atoms. We can assume
that non-active agent (i.e. a �∈ A(ri)) knows everything (i.e. ri |= Kaβ, for every
formula β). However, since satisfiability of knowledge of a group is represented as
a conjunction of knowledge of agents from the group, knowledge of a non-active
agents do not affect the knowledge of the group of active agents.

3 Blockchain Protocol

The blockchain protocol is used in the process of obtaining the consensus among
the agents in distributed environment. The most known used version of the
blockchain protocol is the bitcoin and some other cryptocurrencies. In this
section we will describe the blockchain protocol [1,3,13,14] and provide the proof
that the consensus is achieved with the high probability.

The following properties particularly contribute to the popularity of the
blockchain protocol:

– It is managed autonomously, without third authority.
– It solves the long-standing problem of double spending.
– It provides a record that compels offer and acceptance, since the fact that all

the transactions are kept in the public ledger.
1 In [5], a slightly different definition is presented, and it is pointed out that both def-

initions are valid probabilistic generalizations of common knowledge. For the details
we refer the reader to [5].



474 B. Marinković et al.

3.1 Overview of the Blockchain Protocol

In the blockchain environment transactions, that record chaining the ownership
of goods between the agents in the distributed network, are kept permanently
and publicly available. A transaction with the corresponding data (time stamp,
identifiers of agents and value of property) are recorded in the blocks that are
parts of a digital public ledger. The agents follow certain set of rules how to add
and accept new blocks, add them to the ledger and achieve consensus among
them. The most known version of such set of rules is so called PoW, i.e. all the
agents try to solve unique cryptographic puzzle and all the agents have to accept
the first valid solution. Since the fact that the hash function is used, one block
in the ledger cannot be replace without the replacement of the whole section of
all subsequent blocks.

The blockchain protocol was introduced in the following way (quotation
from [13]):

1. New transactions are broadcast to all nodes.
2. Each node collects new transactions into a block.
3. Each node works on finding a difficult PoW for its block.
4. When a node finds a PoW, it broadcasts the block to all nodes.
5. Nodes accept the block only if all transactions in it are valid and not

already spent.
6. Nodes express their acceptance of the block by working on creating

the next block in the chain, using the hash of the accepted block as
the previous hash.

Nodes always consider the longest chain, i.e., the one containing the most
proofs-of-work, to be the correct one and will keep working on extending it.
If two nodes broadcast different versions of the next block simultaneously,
some nodes may receive one or the other first. In that case, they work on
the first one they received, but save the other branch in case it becomes
longer. The tie will be broken when the next PoW is found and one branch
becomes longer; the nodes that were working on the other branch will then
switch to the longer one.

A round is described with the above described steps (1 – 6). Each node tries to
increase the length of its own chain by “mining” the new block: find the string that
will produce the hash value of the whole block that satisfies the certain property. If
several blocks are produced approximately simultaneously every node can choose
which branch will try to extend. This situation is called fork. Forks are resolved
in later rounds, when all the nodes will accept the longest branch.
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We consider the blockchain protocol that runs in a synchronous setting (the
time needed to solve a puzzle for one round is much greater than the time to
exchange that information among the agents). We do not consider cryptographic
properties of the protocol, and we assume that all nodes in the network are
perfectly honest and reasonable, and that there are no dishonest nodes trying to
exploit cryptographic vulnerabilities of the protocol to gain benefits.

3.2 Modeling of the Blockchain Protocol

The logic presented in this paper extends the temporal epistemic logic with a
non-rigid set of agents from [10] to allow probabilistic reasoning. In [10] a theory
(set of formulas) in the corresponding language is formulated to describe a sim-
plified version of the blockchain protocol. The simplification concerns avoiding
probabilistic behavior which characterizes the blockchain, and there is an axiom
which says that forks will be resolved after a fixed number of rounds. Here we
overcome this constraint since we can express explicit probabilities. We replace
the mentioned axiom of the temporal epistemic logic with a new one ([AB11])
which determines the probability that after z rounds all agents have the same
prefix of the ledger. As a consequence, we can consider more realistic (proba-
bilistic) executions of the blockchain and formulate and prove a statement about
probabilistic common knowledge among agents.

We define V ar as V ar ⊇ POW ∪ ACC, where:

– POW = {powa,i|a ∈ A, i ∈ N} is a set of atomic propositions, with the
intended meaning of powa,i that the agent a produces a PoW for round i,
and

– ACC = {acca,b,i|a, b ∈ A, i ∈ N} is a set of atomic propositions, with the
intended meaning of acca,b,i that the agent a accepts the PoW produced for
round i by the agent b.

We set
ea,i :=

∧

b∈A

(Ab → accb,a,i)

The formulas ea,i mean that every active agent accepts the PoW produced for
round i by agent a.

Further we set
echb,i :=

∨

a∈A

accb,a,i

The formula echb,i means that agent b accepts some PoW produced for round i.
We will use pf ∈ (0, 1) to denote the probability that a fork occurs in a

particular round.
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Our theory of blockchain, denoted with BCT, consists of the following proper
axioms (let a, b and c denote agents from A):

AB1
∨

a Aa

AB2 accb,a,i → powa,i
AB3 accb,a,i → Kbaccb,a,i
AB4 accb,a,i → ¬accb,c,i, for each

c �= a
AB5 acca,c,j ∧ ©accb,a,i → ©accb,c,j ,

for j < i

AB6 Ab ∧ ∨
a powa,i → echb,i

AB7 echa,i → Aa

AB8 echa,i+1 → echa,i
AB9 echb,i → ©∨

a powa,i+1

AB10 ¬echa,i → ¬ © powa,i+1

AB11 echa,i+z∧acca,b,i → Pa,�(1−pfz)eb,i

Let us briefly discuss the meaning of the above axioms.

AB1 There is always at least one agent active.
AB2 One can only accept PoW that has been produced.
AB3 The agents know if they accept some PoW.
AB4 An agent accepts at most one PoW for a given round.
AB5 If a accepts c’s proof of work for round j and (in the next step) b accepts

a’s PoW for a later round, then b must also accept c’s PoW for round j.
This essentially means that if b accepts a’s PoW, then b accepts the whole
history of a.

AB6 If proofs-of-work for some round are produced, then each active agent
must accept one of them. Note that we do not have any assumption on
how an agent accepts a proof.

AB7 Only active agents can accept proofs-of-work.
AB8 If an agent accepts some PoW for round i+1, then the agent also accepts

some PoW for round i.
AB9 If an agent accepts some PoW for round i, then in the next round a PoW

for round i + 1 must be available.
AB10 Only an agent that has accepted a PoW for round i can create (in the next

step) a PoW for round i + 1. This models the fact that a PoW depends
on the previously accepted history.

AB11 This states how the probability that PoW remains in the common his-
tory depends on how deep it is in the ledger. Note that we do not have
any assumption on how this consensus is achieved. This formalizes the
common prefix property from [3].

Let us now briefly discuss the relationship between time instants (from the
linear time logic part) and rounds (referenced in the atomic propositions in
POW and ACC).

We start at time instant t and assume that agent b accepts some proof of
work for round i, that means agent b accepts a blockchain of length i. Because
of [AB9], at time instant t+1 some agent a will produce a PoW for round i+1.
By [AB1] at least one agent, say agent c, will be active at time instant t + 1.
By [AB6] agent c at time instant t + 1 accepts some proof of work for round
i + 1, that means a blockchain of length i + 1. Hence with every time instant,
the accepted blockchain grows by one block.



Probabilistic Consensus of the Blockchain Protocol 477

However, we do not require that all PoW for round i+1 is generated at time
instant t + 1. It is possible that some PoW for round i + 1 is produced at a later
time instant.

The following lemmas will be used to prove the statement in Theorem 1.

Lemma 1. The set of Blockchain Axioms is satisfiable.

Lemma 2. The following holds:

RPN: if BCT |= β then BCT |= Pa,�1β
RICP: if BCT |= Eisβ, for all i � 0, then BCT |= Csβ

A trivial consequence of [AB4] is that there cannot be an agreement of accep-
tance of two different proofs-of-work.

Lemma 3. The following holds BCT |= ea,i → ¬eb,i for b �= a.

Now we show that the common history persists, i.e., agreements cannot be
undone.

Lemma 4. We have BCT |= ea,i → ©ea,i.

The following lemma says that if an agent accepts the choice of an another
agent for a round then it accepts the whole history of that other agent.

Lemma 5. We have BCT |= Ab ∧ echa,i → echb,i.

For the proof of Theorem 1 we need to prove the following lemma.

Lemma 6. If BCT |= α → Esα, then BCT |= α → (Es)kα for any k ∈ N.

Proof
Suppose

BCT |= α → Esα (1)

By [RPN] BCT |= Pa,=1(α → Esα) for some agent a ∈ A
And also

BCT |= E1(α → Esα) (2)

Further from probabilistic logic we have

BCT |= Pa,=1(β → γ) → (Pa,�sβ → Pa,�sγ)

for some agent a ∈ A
Thus we get:

BCT |= E1(β → γ) → (Esβ → Esγ) (3)

Thus 2 and 3 together (with β = α and γ = Esα ) yield Esα → EsEsα
together with 1 we obtain BCT |= α → EsEsα
We can iterate this to obtain BCT |= α → (Es)kα for any natural number k. �
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As a result of Theorem 1 we get the estimation of the probability of the
consensus of an agent:

Theorem 1. We have BCT |= echa,i+z ∧ acca,b,i → C1−pfzeb,i.

Proof
For an arbitrary agent c by [AB3]:

BCT |= accc,b,i → Kcaccc,b,i. (4)

Also, BCT |= accc,d,i+z → Kcaccc,d,i+z, and: BCT |= ∨

d∈A

accc,d,i+z → ∨

d∈A
Kcaccc,d,i+z,

BCT |=
∨

d∈A

accc,d,i+z → Kc
∨

d∈A

accc,d,i+z,

which give us:

BCT |= echc,i+z → Kcechc,i+z. (5)

By 4 and 5:

BCT |= echc,i+z ∧ accc,b,i → Kcechc,i+z ∧ Kcaccc,b,i

and

BCT |= echc,i+z ∧ accc,b,i → Kc(echc,i+z ∧ accc,b,i). (6)

By [AB11]:
BCT |= echc,i+z ∧ accc,b,i → Pa,�(1−pfz)eb,i,

so by 6:
BCT |= echc,i+z ∧ accc,b,i → K1−pfz

c eb,i.

Using Lemma 5 we get

BCT |= Ac ∧ echa,i+z ∧ accc,b,i → K1−pfz

c eb,i

. We have that
BCT |= Ac ∧ eb,s → accc,b,s.

Thus we obtain

BCT |= Ac ∧ echa,i+z ∧ eb,i → K1−pfz

c eb,i

. We have that
BCT |= ¬Ac → Kc⊥.

Hence we have
BCT |= echa,i+z ∧ eb,i → K1−pfz

c eb,i.

Since c was arbitrary, this gives us

BCT |= echa,i+z ∧ eb,i → E1−pfzeb,i.
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Using Lemma 6 and [RICP] we finally conclude

BCT |= echa,i+z ∧ acca,b,i → C1−pfzeb,i.

�
As a corollary we get the following result.

Corollary 1 With high probability the active agents have unique common his-
tory: BCT |= echa,i+z → ∧i

k=0(acca,b,k → C1−pfzeb,k).

Proof Let 0 ≤ k ≤ i. BCT |= echa,i+z and [AB8] yields BCT |= echa,k+z.
Theorem 1 gives BCT |= acca,b,k → C1−pfzeb,k, which implies the statement. �

Corollary 1 corresponds to [3, Theorem 15], [8, Theorem 5.2] and [14, Claim
6.2]. This is, so called, persistence property [3]: “a transaction that goes more
than k blocks “deep” into the blockchain of one honest player will be included
in every honest player’s blockchain with overwhelming probability, and it will
be assigned a permanent position in the ledger.” The main difference with the
results given in [8] is that we can express how ledgers are evolving during the
execution of the blockchain protocol, while [8] shows how a consensus between
all agents can be achieved. Also, in [8] they reason about the probabilities to
reach common knowledge, while here we used probabilistic common knowledge.

4 Conclusion

In this paper, we define the semantics of temporal epistemic probabilistic logic.
We employ this framework to study the blockchain protocol. We prove that the
blockchain protocol has the property of achieving probabilistic common knowl-
edge among a set of agents. i.e. of reaching the consensus of the system with the
high probability.

Presented description assumes that the messages are transferred between
the agents much faster then the length of the period for the generation of a new
PoW. We plan to develop an axiomatic system for our logic and to study proof
theoretic properties of the framework. Also, another task could be to use this
approach as a base ground for formal generated proof using the proof assistants
like, e.g., Coq or Isabelle/HOL.
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Abstract. In order to make sound economic decisions it is important to mea-
sure the possibilities offered by a market in relation to investments. Provided
an investment scheme S = 〈r;R1, . . . , Rn〉, where r is a lower bound on the
desired investment return and the Ri’s are the asset yields, the power to invest
measures the capability of the scheme to fulfill requirement r. The power to invest
is inspired in the Coleman’s power of a collectivity to act. We exemplify this app-
roach considering subsets of companies from stock indexes IBEX35 and DAX.
We extend the power to invest to investment schemata with imprecise yields. We
prove basic relations with the precise yields case and we also show that good
monotonicity properties hold. Finally, we propose an analysis, through integrals
of the power function, for the case of an unspecific desired return r.

Keywords: Power to act · Investment opportunities · Power to invest ·
Uncertainty

1 Introduction

The assessment of the economic opportunities offered by a market is an important an
unavoidable topic [1,9]. For instance, a start-up will prefer to implement its innovative
business idea in a dynamic market rather than in one less promising. In this paper,
we consider stock markets and we attempt to provide a quantitative assessment of the
intuitive sentence “plentiful of investment opportunities”. This issue is a special case of
“how to measure the opportunities to do something”.

In the framework of cooperative simple games this question was answered precisely
by J. Coleman who introduced the power to act [3]. Given a collectivity with n players,
the power of such a collectivity to act is:

Power to Act =
1
2n

Number of Winning Coalitions
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We adapt this idea to provide information to investors about the degree of freedom of
choice. For a portfolio with n assets, we define the power to invest as:

Power to Invest =
1

2n − 1
Number of Investments with Adequate Expected Return.

Along the paper, we use the word return of an asset as a synonymous of the yield
of this asset. The yield can be defined in different ways depending on the available
information or on the investment strategy. The exact meaning of “asset return” in the
examples below will be clear from the context. We first introduce the power to invest
on portfolios whose assets have precise yield values. We extend later this definition
to encompass more realistic scenarios where returns of some assets are uncertain. The
power to invest provides a numerical assessment that can be used to compare the invest-
ment opportunities in different markets, even in the case that the minimum acceptable
return is not precisely defined.

The paper is organized as follows. In Sect. 2 we introduce the power to invest con-
cept for portfolios whose assets have precise returns and the power function is computed
for a couple of stock indexes. Section 3 shows basic properties of the power function. A
couple of stylized investment schemata are analyzed. Section 4 extends the power func-
tion to assets with imprecise returns. Theorem 1 shows good monotonicity properties
for the power even in the case of imprecise returns. Section 5 considers the case where
the minimum acceptable return for the investments is unspecific. We show how the
integral of the power function can be used to measure investment opportunities in this
case. Theorem 2 shows that, under an equiprobable investment schemata and having no
information about the minimum acceptable return, the integral of the power function is
the average of the asset yields. Finally in Sect. 6 we summarize the paper and suggest
some possible future developments.

2 Power to Invest

We consider a set [n] = {1, . . . , n} of assets providing returns A = (R1, . . . , Rn). We
assume that, for each i in [n], Ri > 0. An investment scheme is a pair S = 〈r;A〉, where
A is the asset return tuple and r > 0 is the minimum acceptable return for investments.
We roughly identify possible investments with non-empty subsets on [n]. In order to
associate a return to a non-empty subset I , it is customary to choose a probability dis-
tribution on the assets in I . To exemplify our approach, we consider along the paper the
uniform distribution which grants a maximal variety and diversification among invest-
ments. For an investment I ⊆ [n], the expected return is E(I) = 1

|I|
∑

i∈I Ri, where
|I| denotes the cardinality of I . An investment I is feasible (or acceptable) for S iff
E(I) ≥ r. The set of all feasible investments for scheme S is F (S) = {I | E(I) ≥ r}.
Therefore, |F (S)| ≤ 2n−1. The following definition is taken from [2] where the power
to invest is briefly analyzed in an strategic setting under the angel-daemon approach [7].

Definition 1. Given an investment scheme S = 〈r;A〉 the power to invest is the ratio
between the number of feasible investments and the total number of investments. For-
mally, Power(S) = Power(r;A) = |F (S)|/(2n − 1).
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Name Price PER Dividend Yield
ACERINOX 12.10 14.38 3.73%
DIA 3.66 11,78 4.72%
FERROVIAL 17.23 33,90 3.17%
IAG (IBERIA) 7.15 6.23 4.14%
INDITEX 25.52 20.93 3.24%
REPSOL 13.99 9.73 6.38%
SANTANDER 5.34 10.64 4.03%
SIEMENS GAMESA 12.90 1.,82 1.03%
TECNICAS REUNIDAS 26.34 22.84 5.52%
TELEFONICA 8.05 11.03 4.90%

(a) Information for companies in ECO10 index

r Power
0.01 1.0
0.02 0.999
0.03 0.975
0.04 0.546
0.05 0.030
0.06 0.000
0.07 0.000

(b) Values (c) PowerECO10 (r)

Fig. 1.Data corresponding to the Companies in the ECO10 Spanish Index. Returns are considered
to be the dividend yields.

Sometimes we fix the asset return tuple A taking the minimum acceptable return r as a
variable. In such a case the function F (r;A), as A is fixed, depends only on r and we
write FA(r). Similarly, we write in this case PowerA(r) = 1

2n−1 |FA(r)|.
To get the power to invest for a given market, we need to choose a set of assets.

A way to do that is through stock indexes. The IBEX35 [12] is the stock market index
of the Bolsa de Madrid and contains the 35 major Spanish stocks. The DAX [10] is a
market index consisting of the 25 major German companies trading on the Frankfurt
Stock Exchange. The data of the following examples is drawn from the electronic ver-
sion of the El Economista newspaper [6]. In both cases, we consider the dividend yield
or dividend-price ratio i.e., the dividend of a share divided by the price of a share [11],
as a proxy of the Ri values.

Example 1. Consider the subset of the Spanish IBEX35 companies chosen by the news-
paper elEconomista.es [5] used to build the ECO10 index. Data is shown in
Fig. 1a. The tuple of dividend yields is:

ECO10 = (0.037, 0.047, 0.031, 0.041, 0.032, 0.063, 0.040, 0.010, 0.055, 0.049).

Fig. 1b shows some power values and Fig. 1c provides a complete plot. ��
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Name Dividend Yield Name Dividend Yield
ADIDAS 0.00% E.ON 5.21%
ALLIANZ 4.58% FRESENIUS SE 1.20%
BASF SE 3.77% HENKEL 0.00%
BAYER 2.96% MERCK KGAA 0.00%

%25.4WMB MUNICH RE 4.87%
COMMERZBANK 0.00% PROSIEBEN SAT.1 N 0.00%
CONTINENTAL 0.00% RWE 6.96%
DAIMLER 5.44% %16.1PAS
DEUTSCHE 1.92% SIEMENS 3.60%
DEUTSCHE BOERSE 6.04% THYSSENKRUPP 0.00%
DEUTSCHE LUFTHANSA 0.00% VOLKSWAGEN VORZ 0.00%
DEUTSCHE POST 3.23% VONOVIA N 0.00%
DEUTSCHE TELEKOM 5.29%

(a) Information for companies in DAX

r Power
0.01 1.0
0.02 0.999
0.03 0.988
0.04 0.622
0.05 0.036
0.06 0.000
0.07 0.000

(b) Values (c) PowerDAX (r)

Fig. 2. Data corresponding to the companies belonging the DAX German Index. We consider as
returns the dividend yields

Example 2. Data of the German DAX is drawn from [4]. Yields are given in Fig. 2a. To
compute the power we only consider the non-zero yield assets. So, here the number of
assets reduces to n = 15.

DAX = (0.0458, 0.0377, 0.0296, 0.0452, 0.0544, 0.0192, 0.0604,
0.0323, 0.0529, 0.0521, 0.0120, 0.0487, 0.0696, 0.0161, 0.0360).

Figure 2b gives some power values and Fig. 2c shows the function plot. ��
Given a market, represented by A, the power to invest provides a measure of the

investment opportunities. We propose to use PowerA(r) to compare markets. We prefer
the market with the highest power to invest. The preference may depend on the specific
value of r, as we illustrate in the following example.

Example 3. The power to invest, for ECO10 and DAX, seems quite similar (see
Fig. 3a). However, looking in more detail, we get additional insight. For r ∈ (0, 0.0426],
the DAX is better. For r ≥ 0.0427, ECO10 is the best option (see Fig. 3b). ��
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(a) Powers of ECO10 and DAX

r PowerECO10 PowerDAX
0.042 0.3831 < 0.3914
0.0425 0.3431 < 0.3481
0.0426 0.3401 < 0.3402
0.0427 0.3294 > 0.3315
0.0428 0.3245 > 0.3239
0.043 0.3167 > 0.3078
0.05 0.0303 > 0.0263

(b) Numerical comparison on powers

Fig. 3. Powers corresponding to ECO10 and DAX. Initially DAX outperforms ECO10 in relation
to the power. At some point in [0.0426, 0.0427] the relation is reversed.

3 Stylized Properties

We start showing several basic properties of the power function including some ele-
mentary monotonicity relationships. Let A = (R1, . . . , Rn) and Â = (R̂1, . . . , R̂n) be
two return tuples. As usual we say that A ≤ Â iff for each i in [n] it is Ri ≤ R̂i.

Lemma 1. Let A = (R1, . . . , Rn) and Â = (R̂1, . . . , R̂n) be two return tuples. The
following holds

– 0 ≤ PowerA(r) ≤ 1, for r > 0.
– PowerA(r) = 1, for r ≤ mini∈[n] Ri and PowerA(r) = 0, for r > maxi∈[n] Ri.
– PowerA(r) is decreasing, i.e., for r ≤ r′, PowerA(r) ≥ PowerA(r′).
– Power(r;A) is increasing with respect to A i.e., if A ≤ Â, Power(r;A) ≤

Power(r; Â).

Let us consider some stylized investment schemata. First, we consider a case where
all the assets have the same return. We denote n identical returns R by n : R. So, we
write the scheme S = 〈r;R, . . . , R〉 in a shorter way as S = 〈r;n :R〉.
Lemma 2. Let S = 〈r;n :R〉. It holds Power(S) = 1 when r ≤ R and 0 otherwise.

For instance, Fig. 4a plots function PowerA(r) for S = 〈r;A〉 = 〈r; 0.05〉.
Lemma 3. Let S be a scheme with two different returns, S = 〈r, n1 :R1, n2 :R2〉.
Assume w.l.o.g that R1 ≤ R2. When r ≤ R1 the power is 1 and when r > R2 the
power is 0. When R1 ≤ r ≤ R2, we have

Power(S) =
1

2n1+n2 − 1

∑

(k1,k2)∈PS

(
n1

k1

)(
n2

k2

)

where PS = {(k1, k2) | (k1 + k2)r ≤ k1R1 + k2R2, k1 ≤ n1, k2 ≤ n2, k1 + k2 > 0}.

Consider the return tuples A1 = (1:0.05, 1:0.15), A2 = (2:0.05, 1:0.15) and A3 =
(4:0.05, 7:0.15). The respective power plots are given in Figs. 4b, c and d. All plots
have stepwise shapes. This type of shape also holds in the general case.
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(a) A1 = (1:0.05) (b) A2 = (1:0.05, 1:0.15)

(c) A3 = (2:0.05, 1:0.15) (d) A4 = (4:0.05, 7:0.15)

Fig. 4. Function Power(r, n1 :0.05, n2 :0.15) for several values of n1 and n2.

Lemma 4. Let A = (R1, . . . , Rn) be an asset return tuple. The function PowerA(r)
is a non-increasing stepwise function having a finite number of discontinuity points
in the interval [x, y] where x = mini∈[n] Ri and y = maxi∈[n] Ri. Furthermore,
PowerA(r) = 1, for r ∈ [0, x], and PowerA(r) = 0, for r ∈ (y,+∞).

Proof. Given A = (R1, . . . , Rn), we consider the function fI(r) : P([n]) × R
+ →

{0, 1} defined to be 1 when 1
|I|

∑
i∈I Ri ≥ r and 0 otherwise. Observe that, for each

I �= ∅, fI(r) is stepwise and has an unique discontinuity point. The result follows from
the equality PowerA(r) = (

∑
I⊆[n] fI(r))/(2n − 1). ��

4 Imprecise Returns

We consider a simple model of imprecision where each asset yield is an unspecific value
in a closed interval.

Definition 2. A tuple of imprecise returns A is formed by (R1, . . . , Rn) where each
Ri is a closed interval [R−

i , R+
i ]. Return of asset i is some unspecific value in Ri. An

investment scheme on imprecise returns is S = 〈r;A〉 where tuple A is imprecise.

Observe that any precise return tuple (R1, . . . , Rn) can be understood as an imprecise
one by defining Ri = [Ri, Ri]. On the other hand, an investment scheme on imprecise
returns S = 〈r;R1, . . . , Rn〉 defines two natural extreme investment schemata on pre-
cise ones: S− = 〈r;R−

1 , . . . , R−
n 〉 and S+ = 〈r;R+

1 , . . . , R+
n 〉. For imprecise return
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tuple A = (R1, . . . , Rn) we also consider the two extreme precise return tuples A−

and A+. Under equiprobable weights, for I ⊆ [n], the expected returns under those
extreme cases are E−(I) = 1

|I|
∑

i∈I R−
i and E+(I) = 1

|I|
∑

i∈I R+
i . We also con-

sider F (S+) = {I | E+(I) ≥ r} and F (S−) = {I | E−(I) ≥ r}. The following
monotonicity properties hold.

Lemma 5. Given a tuple of imprecise returns A = (R1, . . . , Rn) where, for i ∈ [n],
Ri = [R−

i , R+
i ], it holds E−(I) ≤ E+(I) and F (S−) ⊆ F (S+).

We extend the power function to the case of imprecise returns by considering the
following intuition. Given scheme S on imprecise returns in the previous paragraph,
investment I ∈ F (S−) contributes 1/(2n−1) to the power sum. This is because for any
returns choice in the imprecise intervals, investment I will be feasible. On the contrary,
when I �∈ F (S+), whatever the yield values are the investment is not feasible and
the contribution is zero. Finally, for the intermediate case where I ∈ F (S+) \ F (S−)
the contribution of I can be considered to be (E+(I) − r)/(E+(I) − E−(I)) times
1/(2n − 1). Summing up, we provide the following extension of the power definition.

Definition 3. Let S = 〈r;R1, . . . , Rn〉 be an investment scheme on imprecise returns
where for each i ∈ [n] interval Ri is [R−

i , R+
i ]. The power to invest is defined as

Power(S) =
1

2n − 1

∑

I∈F (S+)

E+(I) − max{r, E−(I)}
E+(I) − E−(I)

Here the expression (E+(I) − E−(I))/(E+(I) − E−(I)) is considered to be 1 when
E+(I) = E−(I) so that Power for imprecise returns extends Power for precise ones.

We first analyze some basic properties of Power. As one can expect the power of
an investment scheme on imprecise returns lies between the power of its two extreme
investment schemata.

Lemma 6. Given an imprecise scheme S, it holds Power(S−) ≤ Power(S) ≤
Power(S+).

Example 4. Consider the scheme S = 〈r;n :R〉 given in Lemma 2. We assume a
volatility σ on R such that R > σ. We model this volatility into imprecision by consid-
ering R′ = [R − σ,R + σ] and defining the imprecise return tuple A = (n :R′). In this
case we have A− = (n :R − σ) and A+ = (n :R + σ). From Lemma 2, we have,

PowerA−(r) =

{
1 if r ≤ R − σ

0 otherwise
PowerA+(r) =

{
1 if r ≤ R + σ

0 otherwise

For an investment I ⊆ [n], E−(I) = R − σ and E+(I) = R + σ. Therefore,

PowerA(r) =

⎧
⎪⎨

⎪⎩

1 if r ≤ R − σ,
R+σ−r

2σ if R − σ < r ≤ R + σ,

0 if R + σ < r.

PowerA is a “smooth average” between PowerA− and PowerA+ . See Fig. 5a. ��
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(a) A1=(1:[0.02,0.08]) (b) A2=(1:[0.02,0.08],1:[0.08,0.22])

(c) A3=(2:[0.02,0.08],1:[0.08,0.22]) (d) A4=(4:[0.02,0.08],7:[0.08,0.22])

Fig. 5. Power(r, n1 : [0.02, 0.08], n2 : [0.08, 0.22]) for several n1 and n2 values.

Example 5. Consider the investment scheme S = 〈r;n1 :R1, n2 :R2〉 given in
Lemma 3, where R1 < R2. We assume volatilities σ1 and σ2 on, respectively, returns
R1 and R2 such that R1 > σ1 and R2 > σ2. We model this volatility into imprecision
by considering R′

1 = [R1−σ1, R1+σ1] and R′
2 = [R2−σ2, R2+σ2], and defining the

imprecise return tuple A = (n1 :R′
1, n2 :R′

2). Figure 5 shows the plot for R1 = 0.05,
R2 = 0.15, σ1 = 0.03 and σ2 = 0.07 (so, R′

1 = [0.02, 0.08] and R′
2 = [0.08, 0.22])

and several values of n1 and n2. ��
We introduce now a partial order among imprecise returns

Definition 4. We say that the imprecise return tuple Â = (R̂1, . . . , R̂n) improves
imprecise tuple A = (R1, . . . , Rn), denoted as A � Â, when for each i ∈ [n] it is
R−

i ≤ R̂−
i and R+

i ≤ R̂+
i . When S = 〈r;A〉 and Ŝ = 〈r; Â〉 and A � Â we say that Ŝ

improves the investment scheme S. Formally we write S � Ŝ.

Our next results shows that Power is monotonic with respect to this partial order.

Theorem 1. Let S and Ŝ be two investment schemata on imprecise returns. If S � Ŝ
then Power(S) ≤ Power(Ŝ).

Proof. Assume that S = 〈r;A〉 and Ŝ = 〈r; Â〉. As A � Â, we have that F (S+) ⊆
F (Ŝ+) and F (S−) ⊆ F (Ŝ−). For an investment S and a subset I ⊆ [n] we consider
the function

fS,I(r) =

⎧⎪⎨
⎪⎩
1 if r ≤ E−(I)

E+(I)−r

E+(I)−E−(I)
if E−(I) < r ≤ E+(I)

0 if E+(I) < r.
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In the following, with an abuse of notation, we use Ê to denote the expected returns
under returns Â. As A � Â, we have that E−(I) ≤ Ê−(I) and E+(I) ≤ Ê+(I). We
have to study the relationship among fS,I and fŜ,I depending on the value of r. When

r ≤ E−(I), fS,I(r) = fŜ,I(r) = 1. When r > Ê+(I), fS,I(r) = fŜ,I(r) = 0. Now
we have to consider two cases.
Case 1: E+(I) < Ê−(I). In this case we have three relevant intervals to consider for r.
When r ∈ [E−(I), E+(I)], fS,I(r) ≤ 1 and fŜ,I(r) = 1. When r ∈ (E+(I), Ê−(I)],
fS,I(r) = 0 and fŜ,I(r) = 1. Finally, when r ∈ (Ê−(I), Ê+(I)], fS,I(r) = 0 and
0 ≤ fŜ,I(r) ≤ 1. We conclude that fS,I ≤ fŜ,I .

Case 2: Ê−(I) ≤ E+(I). Again we have to consider three intervals for r. When r ∈
[E−(I), Ê−(I)], fS,I(r) ≤ 1 and fŜ,I(r) = 1. When r ∈ (E+(I), Ê+(I)], fS,I(r) =
0 and 0 ≤ fŜ,I(r) ≤ 1. Finally, when r ∈ [Ê−(I), E+(I)], fS,I(r) = (E+(I) −
r)/(E+(I)− E−(I)) and fŜ,I(r) = (Ê+(I)− r)/(Ê+(I)− Ê−(I)). Introducing the
non-negative values a = Ê−(I) − E−(I), b = r − Ê−(I), c = E+(I) − r and d =
Ê+(I)−E+(I), we can write fS,I(r) = c/(c+a+b) and fŜ,I(r) = (c+d)/(c+d+b).
From this expression, after some algebraic calculation, it follows that fS,I ≤ fŜ,I . As
it holds that Power(S) = (

∑
I⊆[n] f(S, I)))/(2n − 1) the claim follows. ��

For instance, given imprecise return tuples A = (2 : [0.02, 0.08], 1 : [0.08, 0.22])
and Â = (2 : [0.02, 0.09], 1 : [0.085, 0.23]) it holds that A � Â and thus, by Theorem 1
PowerÂ(r) is greater or equal than PowerA(r) for any value of r . Independently of
the minimum acceptable return, we can conclude that the investment scheme defined
on Â will offer more investment opportunities.

5 Power Under Uncertain Minimum Return

In this section we offer a quantitative assessment tool of opportunities for the case of an
investor attempting to ensure an unspecific acceptable return in a predefined interval.

A natural way to provide a valuation on an interval of acceptable returns is to con-
sider the integral of the power function on such interval. The larger the integral value
is, more business opportunities the market will offer on average, although it may have
a worse performance for some return values in the uncertainty interval.

We introduce a bit of notation. For a tuple of imprecise yields A and two real num-
bers 0 ≤ x ≤ y defining the interval of acceptable investment returns, let us define:

IntegralPowerA(x, y) =
∫ y

x

PowerA(r)dr.

We analyze the case of having no information at all about the acceptable return. We do
the valuation of this case with the IntegralPower(0,+∞) value, that will be denoted
in short by IntegralPower(0).
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Lemma 7. Given a tuple of imprecise returns A = (R1, . . . , Rn)

IntegralPowerA(0) =
IntegralPowerA−(0) + IntegralPowerA+(0)

2
.

Using the fact that inside of each investment we are using the uniform distribution we
can derive another expression for the total integral value.

Theorem 2. For a tuple of imprecise returns A = (R1, . . . , Rn),

IntegralPowerA(0) =
1
n

∑n
i=1

R−
i +R+

i

2 .

For the case of precise returns the following holds.

Corollary 1. Given a tuple of precise returns A = (R1, . . . , Rn),
IntegralPowerA(0) = (

∑n
i=1 Ri)/n.

Example 6. We consider the tuple of asset returns corresponding to ECO10 and DAX
given in Examples 1 and 2. From Corollary 1, IntegralPowerECO10 (0) = 0.0405 and
IntegralPowerDAX (0) = 0.0408. We can interpret these values as follows. For the
ECO10 case, choosing an investment uniformly at random is expected —as average—
a return of value 4.05%. In contrast, we expect a bit greater return (4.08%) for a random
investment on the DAX index. ��

6 Conclusion and Open Problems

We have developed different facets of the power to invest. We have seen that this notion
has both interesting mathematical properties and potential applicability. The power to
invest has the flexibility to be adapted to deal with uncertainty in two dimensions.
Uncertainty can arise on the asset yields or on the minimum acceptable investment
return.

We have developed the equiprobable approach, but there are other possibilities.
Harry Markowitz introduced the mean-variance approach [8]. Given R1, . . . Rn as a
part of and investment scheme S = 〈r,R1, . . . Rn〉, a portfolio w = (w1, . . . , wn) ∈
Δn provides a probability distribution on [n], i.e., positive weights with

∑
i∈[w] wi = 1.

The expected return (the mean) is E(S,w) =
∑

i∈[n] wiRi. For investment I ⊆ [n] the
expected return equals to E(I) =

∑
i∈I wiRi/

∑
i∈I wi. From these values a power

function Power(S,w) can be also defined. We are working towards analyzing proper-
ties of this function for generic portfolios.

In [2] we consider the angel-daemon approach [7] to investment schemata. The
approach tries to tune cases in-between the worst and the best scenarios and analyses
them through game theory. The relation between angel-daemon games and the current
approach requires further analysis.
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Abstract. We consider the problem of assigning, in a fair way, time
limits for processes in manufacturing a product, subject to a deadline
where the duration of each activity can be uncertain. We focus on an
approach based on choosing the maximum element according to a leximin
ordering, and we prove the correctness of a simple iterative procedure for
generating this maximally preferred element. Our experimental testing
illustrates the efficiency of our approach.

Keywords: Fair division · Preferences · Scheduling under uncertainty

1 Introduction

We consider a network representing the manufacturing processes required to
make a particular product. Each of the n edges represents one of the activities
(i.e., processes) involved, and the network structure implies precedence con-
straints between the activities, allowing activities to be in series or in parallel.
We assume an overall time limit D, and we wish to assign a time limit (i.e.,
maximum duration) durj ≥ 0 to each activity j in a way that is consistent with
the overall time limit, i.e., so that the makespan (the length of the longest path)
is at most D, when the length of edge j is equal to durj .

Computing such time limits can be useful in a number of ways: given a
delayed order, we can understand which are the activities most to blame by
considering their lateness defined as Cj −durj , where Cj is the completion time
of activity j. With repeated data and considering the probability distribution
of the duration of each activity, we can see which activities are most often to
blame, which may motivate more detailed exploration of why this is the case.
This analysis can also help to identify the most critical activities, so that one
can assign more or less resources to a specific job. It can also give us information
about how reasonable the overall deadline D is.

We aim to assign the time limits durj to be slack-free and balanced, given
the overall time limit D (and potentially other constraints on the individual
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time limits). Slack-free means that it is impossible to increase the limits whilst
still satisfying the constraints. If the time limits vector is not slack-free then the
durations of activities could exceed these time limits whilst still being consistent
with the constraints.

Being balanced is a more complex notion, but the fundamental idea is being
fair to the different activities. We introduce parameterised forms of each time
limit durj = fj(α), chosen so that for any given value of α, and for any
activities i and j, a time limit of fi(α) for the duration of activity i is an
equally reasonable requirement as a time limit fj(α) for the duration of activ-
ity j. These functions fj , which we call commensuracy functions, are assumed
to be continuous and strictly increasing. Given these functions fj , a collec-
tion of parameters r(j) : j ∈ {1, . . . , n}, generates a collection of time limits
durj = fj(r(j)) : j ∈ {1, . . . , n}, so that it is sufficient to choose the vector r of
parameters. We sometimes abbreviate r(j) to rj .

Linear Case: We first consider the simple case where all the activities are in
series. In this case, we must have

∑n
j=1 durj ≤ D, or in terms of a parameters

vector r,
∑n

j=1 fj(rj) ≤ D. Then r is slack-free if and only if
∑n

j=1 fj(rj) = D.
Since there is only one complete path, all the n activities are similar in the sense
described above, so to also satisfy the basic balance property we need that for
all j = 1, . . . , n, rj = α, for the unique value of α such that

∑n
j=1 fj(α) = D.

For more general networks, the situation is more complicated. It will typically
not be possible to set the values of r to be all equal, without breaking the slack-
free property. It would mean potentially penalising an activity j whose duration
is greater than fj(rj), even though the overall time limit D (the makespan
limit) is still maintained. However, we do not want to penalise any activities
unnecessarily.

Thus, the input of the problem is a graph G, where with each edge j, rep-
resenting an activity, is associated a commensuracy function fj , and an overall
time limit D. The output is a balanced and slack-free deadline durj for each
activity j.

In this paper we focus on balancing schedules by using a standard notion
of fairness, based on maximising leximin, which is a refinement of maximising
the minimum value (see e.g., [13,24] for a deep investigation of fairness in many
different contexts). The final output is fair in the sense that there is no way to
increase the parameter rj of an activity j (and therefore the corresponding time
limit fj(rj)) without decreasing another parameter ri which is lower or equal.

A standard form of algorithm for obtaining the max leximin element for
many problems is sometimes referred to as the water filling algorithm1; the idea
is to increase the levels of each component together until one of the constraints
becomes tight; this gives a maximin solution; the components in tight constraints
are then fixed (since reducing any such component will give a solution with worse
min value, and increasing any such component will give a vector that fails to
satisfy the tight constraint). The non-fixed components are increased again until

1 This is different from the classic water pouring/filling algorithms for allocating
power [17].
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a new constraint involving one of them becomes tight, and so on. We prove
the correctness of this algorithm in a rather general setting, which makes no
assumption of convexity of the spaces (in contrast with the unifying framework
in [18]).

Different Forms of Commensuracy Function: There are different
approaches for generating the commensuracy functions fj . One kind of method
involves making use of a probability distribution over the durations of activity j
(or an approximation of this based on past data). For instance, one might define
fj(α) to be equal to μj +ασj , where μj is the mean of the distribution of the jth
duration, and σj is its standard deviation. Alternatives include fj(α) = μj +ασ2

j ;
or the quantile function: fj(α) is the value d such that the probability that the
duration is less than or equal to d is equal to α.

We first, in Sect. 2, give an example to illustrate the method and our notation.
In Sect. 3 we define some notation that we use throughout the paper. Section 4
describes the maximum leximin method for balancing the schedules, and defines
a simple iterative method that we prove generates the unique most balanced
schedule. Other balancing methods are also possible, but may lack some natural
properties. Section 5, describes the experimental testing, with the related work
being discussed in Sect. 6, and Sect. 7 concluding.

2 Running Example

Fig. 1. Activities graph

Table 1. Parameters

e1 e2 e3 e4 e5

μj 5 5 5 4 4

σj 1 1 3 2 2

Consider the graph in Fig. 1, where each edge ej is associated with the commen-
suracy function fj(rj) = μj + rjσj . Assuming a global deadline D = 20, and the
parameters of the activities shown in Table 1, we want to compute a slack-free
and balanced vector r. Starting with rj = 0 for each activity j, we increase the
values of all the parameters rj at the same rate until we find the first complete
path π1 with length D. In this example, given the assignment r = (1, 1, 1, 1, 1),
the path π1 = {e1, e2, e3} has length D(= 20); we can then fix the values rj of
the activities in π1 (i.e. r(1) = r(2) = r(3) = 1) and keep increasing the remain-
ing non-fixed rj . Repeating this procedure until all the parameters are fixed,
we obtain a slack-free assignment r that is balanced w.r.t. (with respect to) the
commensuracy functions fj . In the current example this requires three iterations:
the first to fix the parameters of π1, the second to fix r(4) = 4 (π2 = {e4, e3}),
and the third to fix r(5) = 5 (π3 = {e1, e5}). The final assignment is therefore
r = (1, 1, 1, 4, 5) with associated time limits vector dur = (6, 6, 8, 12, 14).
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3 Formal Definitions

Graphical Structure: We assume a finite directed acyclic graph G containing a
source node and a sink node and n edges, each of which we label with a different
value in {1, . . . , n}. Apart from the source (with only out-edges) and sink (with
only in-edges), every node has at least one in-edge and at least one out-edge.
A complete path is defined to be a path from source to sink; we identify this
with its set of edges π. The assumptions above imply that every edge is in at
least one complete path. We write the set of complete paths as CG . As discussed
in Sect. 1, each edge is intended to represent an activity required for making a
product, with the topology encoding precedence constraints.

Commensuracy Functions fj: For each j ∈ {1, . . . , n}, we assume a strictly
monotonic continuous function fj from closed interval I to the non-negative
reals. We write I = [LI , UI ], where we make some assumptions on I below.

Assignments: A complete assignment is a function from {1, . . . , n} to I. The
set of all complete assignments is written as CA. Given a complete assignment r,
we consider fj(rj) as the length of edge j in the graph G, which we also consider
as the time limit (maximum duration) of the jth activity.

An assignment is a function b from some subset B of {1, . . . , n} to I. We write
Dom(b) = B, and write AS as the set of all assignments. A partial assignment is
an element of PA = AS \ CA, i.e., a function from a proper subset of {1, . . . , n}
to I. For convenience we define ♦ as the empty assignment, i.e., the (trivial)
function from ∅ to I.

Consider two assignments a : A → I and b : B → I, where A ⊆ B. We
say that a is the projection of b to A if for all j ∈ A, a(j) = b(j). We write
a = b↓A. We also then say that b extends a. If, in addition, a 	= b then b strictly
extends a. For instance (see the running example in Sect. 2), complete assignment
(1, 1, 1, 4, 5) strictly extends partial assignment (1, 1, 1, , ).

Pareto Dominance: Consider two complete assignments r and s. We write
r � s if and only if for all j ∈ {1, . . . , n}, r(j) ≥ s(j). We say that r Pareto-
dominates s if r � s and r 	= s, and write r � s. We say that r is Pareto-
undominated in a set T ⊆ CA if r ∈ T and there exists no element of T that
Pareto-dominates r.

Length of Path: With the graphical case of CG , for assignment s and π ∈ CG
such that π ⊆ Dom(s), we define Lens(π) =

∑
j∈π fj(sj). This is the length of

π, given s. We also define Makespan(r) = maxπ∈CG Lenr(π), which is the length
of the longest complete path, given complete assignment r.

Consistent and Slack-Free Assignments

We will consider a somewhat more general setting than that purely based on
constraints on the maximum lengths of paths, enabling our approach to be more
generally applicable. We can add, for instance, upper bounds on time limits and
on the lengths of incomplete paths, representing e.g., completion of a part of
the product (implemented using a modified makespan relative to an internal
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node in the graph) as well as more complex constraints, which may cause the
set of consistent complete assignments (and also the set of feasible duration
vectors) to be non-convex. This can include upper bounds on more complex
sums and averages, such as OWAs (ordered weighted averages) [7,21], and use
of soft minimums to represent such constraints as either Part-1 is completed
early or Part-2 is. (In addition, direct constraints on the complete assignments
in the preference space may well lead to a non-convex space of feasible duration
vectors, via non-linear commensuracy functions.)

We are especially interested in an upper bound constraint on the makespan,
leading to a constraint for each complete path π that can be written as Lenr(π)−
D ≤ 0. The left-hand-side is a continuous function of r that is strictly increasing
in each component of π. We consider more general constraints of this form.

We assume a set C of non-empty subsets of {1, . . . , n}, such that every j ∈
{1, . . . , n} is in some element of C, and associated with each π ∈ C is a continuous
function Hπ that maps assignments with domain π to real numbers, and that is
strictly increasing w.r.t. each argument in π. We use Hπ to express constraints,
for example, a time limit on a sub-path. For complete assignment r we also write
Hπ(r) as an abbreviation for Hπ(r↓π).

We also have a value Lj associated with each j ∈ {1, . . . , n} (the lower bound
for component j), and we assume, without loss of generality, that Lj ≥ LI .

Let r ∈ CA be a complete assignment and let π ∈ C. We say that r satisfies
the lower bound constraints if for all j ∈ {1, . . . , n}, r(j) ≥ Lj . We say that r
satisfies [the constraint for] π if Hπ(r) ≤ 0.

We also say that π is tight w.r.t. r if Hπ(r) = 0. We define UT(r) to be the
union of all π ∈ C such that π is tight w.r.t. r.

In the running example, for each complete path π, Hπ(r) = Lenr(π)−D ≤ 0
is the constraint representing the upper bound limit D for the sum of the dura-
tions of the activities in the path π under the assignment r. Hπ3(1, 1, 1, 4, 4) =
Hπ3(1, , , , 4) = f1(1) + f5(4) − 20 = −2, with π3 = {e1, e5}. Thus, π3 is not
tight w.r.t. (1, 1, 1, 4, 4). We have UT(1, 1, 1, 4, 4) = {e1, e2, e3, e4}.

Defining Consistency, R and S: We say that complete assignment r is consis-
tent if r satisfies the lower bound constraints and each π ∈ C. We write S for the
set of consistent complete assignments. Partial assignment b is said to be consis-
tent if there exists an element of S extending b. We say that consistent complete
assignment r is slack-free if for all j ∈ {1, . . . , n} there exists some π ∈ C con-
taining j that is tight with respect to r; in other words, if UT(r) = {1, . . . , n}.
It can be shown that r in S is slack-free if and only if r is Pareto-undominated
in S. We write R for the set of slack-free consistent complete assignments.

Assumptions on LI , UI and on the Lower Bounds: We assume that the
empty assignment ♦ is consistent, i.e., that S is non-empty. Because of the
monotonicity of each Hπ, this is equivalent to the assumption that rL ∈ S,
where, for all j ∈ {1, . . . , n}, rL(j) is defined to be Lj . We also assume that
every partial assignment can be extended to a complete assignment not in S.
This is equivalent to the assumption that for each i ∈ {1, . . . , n}, ri

L /∈ S, for ri
L

defined by ri
L(i) = UI and ri

L(j) = Lj for j ∈ {1, . . . , n} \ {i}.
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The Case of CG: When the set of constraints is Hπ(r) = Lenr(π) − D ≤ 0 for
each complete path π ∈ CG , then, the definition of S simplifies to: r ∈ S ⇐⇒ r
satisfies the lower bound constraints and Makespan(r) ≤ D. This helps compu-
tationally since it enables us to deal with the exponential number of constraints
in a compact way. For this case, we can show a further characterisation2 of the
set R of consistent slack-free complete assignments: for complete assignment r
satisfying the lower bound constraints, r ∈ R if and only if every element of CG
is tight w.r.t. r.

Proposition 1. Suppose π ∈ CG is a complete path and π ⊆ UT(r) for some
complete assignment r ∈ S. Then, π is tight w.r.t. r, i.e., Lenr(π) = D. For
r ∈ S, we have r ∈ R if and only if every element of CG is tight w.r.t. r.

4 Leximin Maximising: Iterative Method

We aim to find a most balanced consistent slack-free complete assignment r. For
the process graph G, we then can define the time limit of activity j to be fj(rj).
The basic idea is to maximise the minimum value (over all the n co-ordinates
of r). However, there are many such vectors; it is thus natural to iterate this
process, which leads to leximin maximising.

4.1 Most Balanced Schedule

Given complete assignment r, define r↑ to be the vector in IRn formed by per-
muting the co-ordinates of r in such a way that r↑(1) ≤ r↑(2) ≤ · · · ≤ r↑(n).

We define the leximin order relation ≤lexm by s ≤lexm r if and only if either
s↑ = r↑, or there exists some i ∈ {1, . . . , n} such that s↑(i) < r↑(i), and for all
j < i, s↑(j) = r↑(j). It follows easily that ≤lexm is a total pre-order (a transitive
and complete relation); also, if r is a complete assignment, and r′ is generated
from r by permuting the n co-ordinates in some way, then r and r′ are equivalent
in the order. We always have r � s ⇒ r ≥lexm s. The maximal leximin r in S
are all those vectors r ∈ S such that for all s ∈ S, r ≥lexm s.

The main result of this section, Theorem 1, implies that there exists a unique
leximin-maximal element in R (and also in S), and this can be obtained through
a sequence of maximisations over one-dimensional sets. This allows efficient
implementation, as discussed in Sect. 5.

4.2 The Basic Iteration Operation

We will define an operation that takes a consistent partial assignment b and
generates an assignment b∗ that strictly extends b. Iterating this operation will

2 For space reasons, almost all the proofs have been omitted; they can be found in
the longer version [20], which also contains auxiliary results and many more details
about the implementation and experimental testing.
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lead to a complete assignment in S, which we prove later (in Theorem 1) to be
the unique maximum leximin complete assignment extending b.

Notation bα, b̃, Zb, γ(b), Fix(b): We will define a method for extending a
consistent partial assignment b to a complete assignment b̃ in S. For partial
assignment b ∈ PA and α ∈ I we first define bα to be the complete assignment
extending b given by, for j ∈ {1, . . . , n}\Dom(b), bα(j) = max(α,Lj). For partial
assignment b ∈ PA we define Zb to be the set of all α ∈ I such that bα ∈ S. This
is non-empty if and only if b is consistent. Our assumption about UI implies that
UI /∈ Zb.

For consistent partial assignment b, we define γ(b) to be the supremum of Zb.
We also define b̃ to be bγ(b). We write UT( b̃ ) as Fix(b); these are the variables
that are in some π that is tight w.r.t. b̃ (and they are fixed given b at the end of
each stage of the iterative sequence described in Sect. 4.3).

The lemma below, giving some basic properties, can be proved making use
of the fact that Hπ(bα) is an increasing continuous function of α.

Lemma 1. Suppose that b ∈ PA is a consistent partial assignment. Then, γ(b) ∈
Zb and b̃ ∈ S. Also, there exists π ∈ C such that π 	⊆ Dom(b) and π is tight
w.r.t. b̃. Thus, Fix(b) 	⊆ Dom(b).

Definition of b∗: For consistent partial assignment b ∈ PA, we define b∗ to be
the projection of b̃ to Dom(b) ∪ Fix(b). Thus, Dom(b∗) = Dom(b) ∪ Fix(b).

In the running example with I = [0, 10] and b2 = (1, 1, 1, , ), we have
Dom(b2) = {e1, e2, e3}, bα

2 = (1, 1, 1, α, α), γ(b2) = 4, b̃2 = (1, 1, 1, 4, 4),
Fix(b2) = {e1, e2, e3, e4}, and (b2)∗ = (1, 1, 1, 4, ).

Proposition 2. Assume that partial assignment b is consistent. Then b∗ is
consistent and strictly extends b. If Dom(b∗) 	= {1, . . . , n} then b̃∗ � b̃ and
Fix(b∗) � Fix(b).

The following proposition gives key properties related to leximin dominance.
Regarding (i), the point is that for all j ∈ Fix(b) there exists a π ∈ C that is
tight w.r.t. b̃, and also with respect to any extension of b∗. Strict monotonicity
of Hπ implies that we cannot increase the value of any such j from its value in
b∗ without violating the constraint π. Thus, r is equal to b̃ on Fix(b), and so, r
extends b∗ (since it extends b).

(ii) includes an interesting (very partial) converse of the property r � s ⇒
r ≥lexm s. The rough idea is that if r ∈ S and r extends b and r 	� bα then there
exists j ∈ {1, . . . , n} \ Dom(b) such that r(j) < α, which leads to bα >lexm r.
Then, using α = γ(b) and so, bα = b̃, we can chain (ii) and (i) to obtain (iii).

Proposition 3. Let r be an element of S that extends assignment b.

(i) If for all j ∈ Dom(b∗), r(j) ≥ b∗(j) then r extends b∗.
(ii) For any α such that bα ∈ S, r ≥lexm bα ⇐⇒ r � bα.
(iii) If r ≥lexm b̃ then r extends b∗.
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4.3 The Iterative Sequence Generated from b

Given consistent partial assignment b, we define a sequence of assignments,
b1, b2, . . . , bm, in an iterative fashion, as follows:

Define b1 = b. Assume now that bi has been defined, for some i ≥ 1. If bi is
consistent and Dom(bi) 	= {1, . . . , n}, we let bi+1 equal (bi)∗; otherwise, we end
the sequence with i, and let m = i. We call b1, b2, . . . , bm the iterative sequence
of assignments generated from b1, and we say that bm is its result.

We are mainly interested in the case in which the initial partial assignment b1
is the empty assignment ♦. However, allowing other b1 enables a simple represen-
tation of a situation in which certain of the components are fixed in advance, i.e.,
some of the durations are fixed. Table 2 shows the iterative sequence of assign-
ments generated from b1 = ♦ in the running example, where bm = b4 = (b3)∗.

Table 2. Progress of the algorithm

i γ(bi) ˜bi (bi)∗

1 1 (1, 1, 1, 1, 1) (1, 1, 1, , )

2 4 (1, 1, 1, 4, 4) (1, 1, 1, 4, )

3 5 (1, 1, 1, 4, 5) (1, 1, 1, 4, 5)

Proposition 2 implies that each bi in the sequence is consistent, and strictly
extends the previous element. This implies that the sequence terminates with
some complete assignment t = bm, with each earlier bi being a partial assignment.
The other parts of Proposition 2 can be used to show that t � b̃i and UT(t) ∪
Dom(b1) = {1, . . . , n}.

Proposition 4. Consider the iterative sequence of assignments b1, b2, . . . , bm,
generated by consistent assignment b1, and let t = bm be its result. Then, t is a
complete assignment in S that extends each bi, and for all i = 1, . . . ,m−1, t � b̃i,
and bi is a consistent partial assignment. Also, UT(t) ∪ Dom(b1) = {1, . . . , n}.

Propositions 3 and 4 lead to the following theorem, which shows that there is
a uniquely maximally leximin element in S (and in R), and the iterative sequence
can be used as the basis of an algorithmic procedure for finding it.

Theorem 1. The result of the iterative sequence of assignments generated from
b is the unique maximal leximin element in Sb, where Sb is the set of elements
of S that extend b. If b is the empty assignment then the result is in R and is
thus the unique maximal leximin element in S and the unique maximal leximin
element in R.

Proof: Let b1, b2, . . . , bm be the iterative sequence of assignments generated by
b = b1 and with result t = bm. By Proposition 4, t is in Sb, and for all i =
1, . . . ,m − 1, t � b̃i and bi is a consistent partial assignment.

Consider any element r of Sb such that r ≥lexm t. This implies that, for
all i = 1, . . . ,m − 1, r ≥lexm b̃i, because t � b̃i (and thus, t ≥lexm b̃i). Since
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r extends b = b1, Proposition 3(iii) applied iteratively shows that r extends
each bi, for i = 1, . . . ,m, and, in particular, r extends t. Since, t is a complete
assignment, we have r = t.

We have shown that for any r ∈ Sb if r ≥lexm t then r = t. Thus, if r 	= t
then r 	≥lexm t, i.e., t >lexm r. Thus, t is the unique maximally leximin element
in Sb.

Now, consider the case when b is the empty assignment ♦. Since S♦ = S,
assignment t is then the unique maximal leximin element in S. Proposition 4
implies that UT(t) = {1, . . . , n}, and so r ∈ R. Therefore, because R ⊆ S,
assignment t is the unique maximal leximin element in R. 
�

A vector t is said to be max-min fair on X ⊆ IRn if and only if for all
s ∈ X and j ∈ {1, . . . , n} if s(j) > t(j) then there exists i ∈ {1, . . . , n} such that
s(i) < t(i) ≤ t(j). Thus, increasing some component t(j) must be at the expense
of decreasing some already smaller component t(i). If there exists a max-min
fair element, then it is unique and equals the unique maximum leximin element
[18]. Theorem 1 can be used to show that there is a max-min fair element in S,
i.e., the max leximin element t. The idea behind the proof is that if max-min
fairness were to fail for t, then one can show that there would exist s and j such
that s(j) > t(j) and for all i ∈ Dom(bk), s(i) ≥ t(i), where k is minimal in the
iterative sequence such that Dom(bk) � j. Applying Proposition 3(i) iteratively
would imply that s extends bk, contradicting s(j) > t(j) = bk(j).

Corollary 1. For any consistent partial assignment b, the maximum leximin
element of Sb is max-min fair on Sb.

Corollary 2. For the maximum leximin element r in S, every component is
maximal w.r.t. some constraint, i.e., for each j ∈ {1, . . . , n} there exists π ∈ C
such that j is maximal w.r.t. π. For the graph case when C = CG, for r in S, we
have r is the maximum leximin element in S if and only if r is slack-free and
every component is maximal w.r.t. some constraint.

5 Implementation

We have implemented a version of the water filling algorithm for the graph-based
case using CG , and with both linear and non-linear commensuracy functions fj

(see Sect. 3). Our algorithm constructs the iterative sequence generated from
the empty assignment ♦ (see Sect. 4.3). To implement this, we need, for par-
tial assignment b, to compute b∗ (see Sect. 4.2), by first computing γ(b), and
setting b∗ to be the projection of bγ(b) to Fix(b), where Fix(b) is determined
using a simple forward and backward dynamic programming algorithm. We use
an obvious binary/logarithmic search algorithm to approximate γ(b) within a
chosen number ε > 0, using the fact that γ(b) is the maximal real β such that
Makespan(bβ) ≤ D. We also implemented a variation of this iterative approach
for computing γ(b), based on iterating over paths: given an upper bound β for
γ(b), we generate the longest path π w.r.t. bβ and then update β to a better
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upper bound β′, defined to be the unique solution of the equation Lenbβ′ (π) = D;
we iterate until Makespan(bβ) = D. In our experimental testing we were able to
solve problems with hundreds of activities in few seconds [20].

6 Related Work

A branch of research, that is somewhat related to our problem of computing time
limits within a network of activities, is that concerned with the minimization of
the tardiness of a set of jobs [3,4,9,22]. The tardiness is defined as max(Ci −
di, 0), where Ci is the completion time for a job and di is the due time. In our
scenario, duri is equivalent to di, and we want to evaluate the tardiness as well;
but in this case di is given as input, and the goal is finding the best scheduling
of jobs in an assembly line where a machine is able to treat only one job at
a time. Flexible constraints for scheduling (under uncertainty) have also been
considered in [5].

Max leximin (and max-min) fairness has been widely studied and applied.
For example, there are applications for balancing social welfare in markets [8],
for a price-based resource allocation scheme [12], for kidney exchange [23], and
for allocating unused classrooms [11]. Optimising leximin on constraint networks
is studied in [2], and for systems of fuzzy constraints in [6]. Regarding the work
which, like our framework, uses continuous variables, there is a substantial lit-
erature related to bandwidth allocation problems, e.g., [1,10,14,15,18,19]; see
[16] for a survey of fair optimisation for networks. The most general framework
of this kind seems to be that in [18], showing, under relatively general condi-
tions, that the water filling algorithm generates the unique max leximin, which
equals the max-min fair solution. Although the applications they focus on are
very different from our form of scheduling problem, their theoretical framework
and results still apply if the constraints on durations are linear inequalities, since
their framework assumes convexity (and compactness) of the space of durations.
In contrast, our framework makes no assumption of convexity.

7 Summary and Discussion

We have explored the problem of fairly assigning time limits for processes in man-
ufacturing a product whose duration can be uncertain, subject to a deadline. We
proved that a simple iterative procedure (a version of the water filling algorithm)
can be used to generate the unique most balanced solution, w.r.t. max leximin,
in a very general setting, not making any assumptions of convexity. This allows
a wide range of side constraints to be added to the problem, whilst maintain-
ing the same structure of the algorithm. We go on to prove, in this very general
setting, that the maximum leximin element is still max-min fair, and discuss fur-
ther properties. The experimental results of our implementation indicate that it
is scalable to large problems. In the future, we plan to apply the method for real
industrial problems, and to develop automatic methods for suggesting remedial
actions for problematic schedules.
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