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Preface

The biennal ECSQARU conference is a major forum for advances in the theory and
practice of reasoning under uncertainty. Contributions are provided by researchers in
advancing the state of the art and practitioners using uncertainty techniques in
applications. The scope of the ECSQARU conferences encompasses fundamental
topics as well as practical issues, related to representation, inference, learning, and
decision making both in qualitative and numeric uncertainty paradigms.

Previous ECSQARU events were held in Lugano (2017), Compiegne (2015),
Utrecht (2013), Belfast (2011), Verona (2009), Hammamet (2007), Barcelona (2005),
Aalborg (2003), Toulouse (2001), London (1999), Bonn (1997), Fribourg (1995),
Granada (1993), and Marseille (1991).

The 15th European Conference on Symbolic and Quantitative Approaches to
Reasoning with Uncertainty (ECSQARU 2019) was held in Belgrade, Serbia, during
September 18-20, 2019. The 41 papers in this volume were selected from 62
submissions, after a rigorous peer-review process by the members of the Program
Committee and some external reviewers. Each submission was reviewed by at least 2,
and on the average 3.1, reviewers. ECSQARU 2019 also included invited talks by
outstanding researchers in the field: Fabio Gagliardi Cozman (University of Sao Paulo),
Lluis Godo (Artificial Intelligence Research Institute IITA, Spanish National Research
Council CSIC), and Francesca Toni (Imperial College London).

We would like to thank all those who submitted papers, the members of the Program
Committee and the external reviewers for their valuable reviews, and the members
of the local Organizing Committee for their contribution to the success of the
conference. Financial support from the Ministry of Education, Science and Techno-
logical Development of the Republic of Serbia, as well as operational support from the
Serbian Academy of Sciences and Arts Council was greatly appreciated. We are also
grateful to Springer Nature for granting a Best Paper Award of the conference, and for
the smooth collaboration when preparing the proceedings. Moreover, EasyChair
proved to be a convenient platform for handling submissions, reviewing, and final
papers for the proceedings of ECSQARU 2019, which was greatly appreciated.

July 2019 Gabriele Kern-Isberner
Zoran Ognjanovic¢
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Knowledge Representation
in Knowledge-Enhanced Machine Learning:
How? Where?

Fabio Gagliardi Cozman

Escola Politécnica, Universidade de Sao Paulo
fgcozman@usp.br

Amazing success has been attained by artificial intelligences that resort to data inten-
sive machine learning, for instance in natural language processing and in recommen-
dation systems. Can we build an artificial intelligence endowed with full logical and
commonsense reasoning just out of pattern extraction from ever increasing datasets?
Possibly. But it seems reasonable to assume that tasks at higher abstraction levels
demand at least bits of knowledge representation mixed with machine learning. In any
event, several questions must be answered before we can have knowledge-enhanced
machine learning at our fingertips.

How can we bring theoretical insights and practical tools from knowledge repre-
sentation into machine learning tasks? Where is it worthwhile to add the power (and the
cost) of knowledge representation to available datasets? How to evaluate the resulting
combination of formalisms? This invited talk discusses these questions, necessarily
focusing on a small subset of possible answers. Overall we emphasize the knowledge
representation aspects of knowledge-enhanced machine learning, optimistically
assuming that optimization and estimation methods will be available whenever needed.

We start by examining languages that combine logical formulas/rules with prob-
abilities, as such languages must be key tools in our intended mix. The combination of
logic and probability has an old and rich history; connections have been rediscovered
more than once in artificial intelligence research [7]. In particular, during the past two
decades there has been steady interest in languages that mix probabilistic graphical
models, such as Bayesian networks, and relational logic [4]. Another line of research
under investigation for more than twenty years has focused on probabilistic logic
programming [10]. There are now solid techniques, often imported from finite model
theory, that support us in studying these languages; results discussed in the talk are
extracted from Refs. [1-3]. We compare the various languages, arguing that several
ideas behind probabilistic logic programming are particularly valuable.

However, given the often “unreasonable” effectiveness of data in producing
ostensibly intelligent behavior [6], it seems that we should noft try to force knowledge
representation into any machine learning task. Rather, we should carefully look for
those tasks where knowledge-enhanced techniques will really make a difference. In this
talk we discuss the task of explaining a link prediction in a knowledge base. In such a

Partially supported by CNPq grant 312180/2018-7 and by FAPESP grant 2016/18841-0.
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task we do have knowledge, and the state of art methods resort to embeddings that are
very difficult to interpret (that is, all entities and relations are mapped into vectors, and
relationships are then expressed by relatively simple mathematical operations such as
addition) [9]. The difficulty with embeddings is that decisions depend on numerical
values that are apparently disconnected from semantic meaning. We discuss how
explanations for link predictions can be extracted from embeddings, explanations that
for instance resort to Horn clauses and similar formalisms [5, 11].

But even explanations can be learned from data: one can learn how to explain the
behavior of another learner... and so on. Thus one might just argue that we can keep
improving our pattern extraction methods so that they learn both to decide and to
explain decisions, leaving aside any need for knowledge representation. To investigate
the limits of knowledge-free learning, we propose a test inspired by the Winograd
challenge [8] that can exercise the connection between commonsense reasoning and
data intensive language processing. We suggest that such a Winograd Explaining
Challenge, where the goal is to explain the answer to a Winograd scheme, can help
focus our attention on problems that can only be solved by a mix of machine learning
and commonsense reasoning. We discuss how we might go about facing such a test,
and which research directions it opens.
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Boolean Algebras of Conditionals,
Probability and Logic

Lluis Godo

Artificial Intelligence Research Institute (IIIA - CSIC), Campus UAB,
Bellaterra 08193, Spain
godo@iiia.csic.es

Conditionals play a fundamental role both in qualitative and in quantitative uncertain
reasoning, see e.g. [1, 2, 8, 12, 13]. In the former, conditionals constitute the core focus
of non-monotonic reasoning [9-11]. In the latter, conditionals are central for the
foundations of conditional uncertainty measures, in particular in connection to condi-
tional probability [3, 6].

Conditionals have been investigated —largely independently— both in probability
and in logic. Each has its own theory and deep questions arise if we consider com-
bining the two settings as in the field of probability logic, which is of great interest to
Artificial Intelligence.

In two previous ECSQARU conference papers [4, 5], we have preliminarily
introduced and studied a new construction of a Boolean structure for conditionals
motivated by the goal of “separating” the measure-theoretic from the logical properties
of conditional probabilities. The question is well-posed: it is in fact well-known that if
events a, b are to be taken as arbitrary elements of a Boolean algebra, the conditional
probability P(b | a) cannot be identified with the probability of the (material) impli-
cation a — b. So the following questions about conditional probability become inter-
esting: which of its properties depend on the properties of unconditional probability
measures and not on the logical properties of conditional events, and which properties
instead depend on the logic of conditional events. Motivated by these questions, our
ultimate aims are:

(a) identify the desirable properties (axioms) which characterise the notion of a
Boolean algebra of conditional events, and investigate the atomic structure of these
algebras;

(b) show that the axioms of our Boolean algebras of conditional events give rise
naturally to a logic of conditionals which satisfies widely accepted logical
properties;

(c) investigate unconditional probabilistic measures on the algebra of conditional
events;

(d) prove that classically defined conditional probability functions can be viewed as
unconditional probability measures on the algebra of conditional events.

Joint work with T. Flaminio and H. Hosni.
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Parts (a) and (b) have been mostly addressed in [4, 5], but (c¢) and (d) remained
open.

In this talk we present an investigation on the structure of conditional events and on
the probability measures which arise naturally in this context. In particular we intro-
duce a construction which defines a (finite) Boolean algebra of conditionals from any
(finite) Boolean algebra of events.

Moreover, as for (c) and (d) above, we provide positive and satisfying solutions. In
particular, we have approached the following main problem, which is known in the
literature as the strong conditional event problem [7]: given a measurable space (2, A)
and a probability measure P over (2, A), find another measurable space (Q*,A*), of
which the former is a subspace, and a probability measure P* over (Q", A*), satisfying
the two following conditions:

1. Any conditional event of the form (a | b) with a,b € A is mapped to an element
(a | b)" of A*.

2. For each conditional event (a|b), P*((a|b)")=P(aAb)/P(b) (whenever
P(b) > 0).

A solution of the above was first proposed by Van Frassseen [14], and then
reworked by Goodman and Nguyen [7] within the frame of conditional event algebras.

They take Q" as the countably infinite Cartesian product space Q", and A* is always
infinite, even if the original structure of (unconditional) events A is finite. Indeed, A*
has countably many atoms and conditional events in A* are defined as countable unions
of special cylinders sets. In contraposition, our approach provides a finitary solution to
the strong conditional event problem in the setting of finite Boolean algebras of con-
ditionals.

Acknowledgments. This research has been partially supported by the Spanish FEDER/MINECO
project TIN2015-71799-C2-1-P.
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Dialectical Explanations

Francesca Toni

Department of Computing, Imperial College London, UK
ft@imperial.ac.uk

Abstract. The lack of transparency of Al techniques, e.g. prediction systems or
recommender systems, is one of the most pressing issues in the field, especially
given the ever-increasing integration of Al into everyday systems used by
experts and non-experts alike, and the need to explain how and/or why these
systems compute outputs, for any or for specific inputs. The need for explain-
ability arises for a number of reasons: an expert may require more transparency
to justify outputs of an Al system, especially in safety-critical situations, while a
non-expert may place more trust in an Al system providing basic (rather than
no) explanations, regarding, for example, items suggested by a recommender
system. Explainability is also needed to fulfil the requirements of regulation,
notably the General Data Protection Regulation (GDPR), effective from May 25,
2018. Furthermore, explainability is crucial to guarantee comprehensibility in
human-machine interactions, to support collaboration and communication
between human beings and machines.

In this talk I will overview recent efforts to use argumentative abstractions
for data-centric methods in Al as a basis for generating dialectical explanations.
These abstractions are formulated in the spirit of argumentation in Al
amounting to a (family of) symbolic formalism(s) where arguments are seen as
nodes in a graph with relations between arguments, e.g. attack and support, as
edges. Argumentation allows for conflicts to be managed effectively, an
important capability in any Al system tasked with decision-making. It also
allows for reasoning to be represented in a human-like manner, and can serve as
a basis for a principled theory of explanation supporting human-machine
dialectical exchanges and conversations.

Keywords: Explanation - Argumentation - Conversational Al
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Abstract. Recently, the notion of similarity between arguments, namely those
built using propositional logic, has been investigated and several similarity mea-
sures have been defined. This paper shows that those measures may lead to inac-
curate results when arguments are not concise, i.e., their supports contain infor-
mation that is useless for inferring their conclusions. For circumventing this limi-
tation, we start by refining arguments for making them concise. Then, we propose
two families of similarity measures that extend existing ones and that deal with
concise arguments.

Keywords: Logical arguments - Similarity
1 Introduction

Argumentation is a reasoning process based on the justification of claims by arguments.
It has received great interest from the Artificial Intelligence community, which used it
for solving various problems like decision making (eg., [1,2]), defeasible reasoning
(eg., [3,4]), handling inconsistency in propositional knowledge bases (eg., [5,6]), etc.

In case of inconsistency handling, an argument is built from a knowledge base and
contains two parts: a conclusion, which is a single propositional formula, and a support,
which is a minimal (for set inclusion) and consistent subset of the base that infers log-
ically the conclusion. Examples of arguments are A = ({p A ¢},p), B = ({p},p) and
C = ({p A p},p). Such arguments may be in conflict and thus an evaluation method,
called also semantics in the literature, is used for evaluating their strengths. Some
weighting semantics, like h-Categorizer [5], satisfy the Counting (or strict monotony)
principle defined in [7]. This principle states that each attacker of an argument con-
tributes to weakening the argument. For instance, if the argument D = ({—p}, —p) is
attacked by A, B, C, then each of the three arguments will decrease the strength of D.
However, the three attackers are somehow similar, thus D will loose more than nec-
essary. Consequently, the authors in [8] have motivated the need for investigating the
notion of similarity between pairs of such logical arguments. They introduced a set
of principles that a reasonable similarity measure should satisfy, and provided several
measures that satisfy them. In [9] the authors introduced three possible extensions of
h-Categorizer that take into account similarities between arguments.

While the measures from [8] return reasonable results in most cases, they may
lead to inaccurate assessments if arguments are not concise. An argument is concise
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if its support contains only information that is useful for inferring its conclusion. For
instance, the argument A is not concise since its support {p A ¢} contains ¢, which
is useless for the conclusion p. Note that minimality of supports does not guarantee
conciseness. For example, the support of A is minimal while A is not concise. The sim-
ilarity measures from [8] declare the two arguments A and B as not fully similar while
they support the same conclusion on the same grounds (p). Consequently, both A and B
will have an impact on D using h-Categorizer. For circumventing this problem, we pro-
pose in this paper to clean up arguments from any useless information. This amounts to
generating the concise versions of each argument. The basic idea is to weaken formulas
of an argument’s support. Then, we apply the measures from [8] on concise arguments
in two ways, leading to two different families of measures.

The paper is organized as follows: Sect.2 recalls the measures proposed in [8],
Sect. 3 shows how to make arguments concise, Sect.4 refines existing measures, and
Sect. 5 concludes and presents some perspectives.

2 Background

We consider classical propositional logic (£, ), where £ is a propositional language
built up from a finite set P of variables, called atoms, the two Boolean constants T (true)
and | (false), and the usual connectives (—, V, A, —, <), and |- is the consequence
relation of the logic. A literal of L is either a variable of P or the negation of a variable
of P, the set of all literals is denoted by P*. A formula ¢ is in negation normal form
(NNF) if and only if it does not contain implication or equivalence symbols, and every
negation symbol occurs directly in front of an atom. NNF(¢) denotes the NNF of ¢.
For instance, NNF(—((p — ¢) V —t)) = p A =g A t. Lit(¢) denotes the set of literals
occurring in NNF(¢), hence Lit(—((p — ¢)V—t)) = {p, ~q, t}. Two formulas ¢, 1) € £
are logically equivalent, denoted by ¢ = ¥, iff ¢ - ¢ and ¢ - ¢. In [10], the authors
defined the notion of independence of a formula from literals as follows.

Definition 1 (Literals Independence). Let ¢ € L and | € P*. The formula ¢ is
independent from the literal | iff I € L such that ¢ = ¢ and | ¢ Lit(vy). Otherwise,
¢ is dependent on . DepLit () denotes the set of all literals that ¢ is dependent on.

For instance, DepLit((—pV¢) A (—pV—q)) = {—p} while DepLit(—-pAq) = {-p, ¢}.

A finite subset @ of £, denoted by @ C ¢ L, is consistent iff & ¥ L, it is inconsistent
otherwise. Two subsets &, ¥ C; L are equivalent, denoted by & = ¥, iff V¢ € P,
I € ¥ such that ¢ = 1) and Vo' € ¥, 3¢’ € P such that ¢’ = «'. We write
& 2 ¥ otherwise. This definition is useful in the context of similarity where arguments
are compared with respect to their contents. Assume, for instance, p and ¢ that stand
respectively for “bird” and “fly”. Clearly, the two rules “birds fly” and “everything
that flies is a bird” express different information. Thus, the two sets {p,p — ¢} and
{q,q — p} should be considered as different. Note that {p,p — ¢} % {q,q¢ — p} even
if CN({p,p — ¢}) = CN({q, ¢ — p}), where CN(®) denotes the set of all formulas that
follow from the set ¢ of formulas.

Let us now recall the backbone of our paper, the notion of logical argument.
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Definition 2 (Argument). An argument built under the logic (L,\) is a pair (D, ®),
where  Cy¢ L and ¢ € L, such that:

— @ is consistent, (Consistency)
- P 9, (Validity)
— 3’ C b such that &' - ¢.  (Minimality)

An argument (P, ¢) is trivial iff & = (.

It is worth noticing that trivial arguments support tautologies. It was shown in [11] that
the set of arguments that can be built from a finite set of formulas is infinite.

Example 1. The following pairs are all arguments.

A: {pAa},p) B = {{p},p)
={pnrgnr},r) D={pAgpAr},pAqAr)
={pArg,(pVg) —r} ) F={pNg},pVa)

Notations: Arg(L) denotes the set of all arguments that can be built under the logic
(L,F).Forany A = (P, ¢) € Arg(L), the functions Supp and Conc return respectively
the support (Supp(A) = ®) and the conclusion (Conc(A) = ¢) of A.

In [11], the notion of equivalence of arguments has been investigated, and differ-
ent variants of equivalence have been proposed. The most general one states that two
arguments are equivalent if their supports are equivalent (in the sense of 22) and their
conclusions are equivalent (in the sense of =). For the purpose of our paper, we focus
on the following one that requires equality of conclusions.

Definition 3 (Equivalent Arguments). Two arguments A, B € Arg(L) are equivalent,
denoted by A ~ B, iff (Supp(A) = Supp(B)) and (Conc(A) = Conc(B)).

In [8], the authors have investigated the notion of similarity between pairs of argu-
ments, and have introduced several measures which are based on the well-known Jaccard
measure [12], Dice measure [13], Sorensen one [14], and those proposed in [15-18]. All
these measures compare pairs of non-empty sets (X and Y) of objects. Table 1 shows
how to adapt their definitions for comparing supports (respectively conclusions) of argu-
ments, which are sets of propositional formulas. In that table, Co(®, ¥) is a function that
returns for all &, ¥ C¢ L a set of formulas such that:

Co(®,W) = {¢ € & | Fp € ¥ such that ¢ = ¢}

The definition of each similarity measure between sets of formulas follows the
schema below that we illustrate with the Jaccard-based measure. For all ,¥ C L,
|co(2,9)]
- ey i 2 # 0.0 # 0
55(,¥) =<1 ifo=v=1_(
0 otherwise.
In [8], a similarity measure between arguments is a function that assigns to every

pair of arguments a value from the interval [0, 1]. The greater the value, the more similar
are the arguments. Such measure should satisfy some properties including symmetry.
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Table 1. Similarity Measures for Sets &, ¥ C; L.

[Co(®, V)]
9| + |¥| — |Co(,¥)|
2|Co(2,¥)|
D]+ |¥|
4|Co(2,¥)|
|P| + |¥| + 2|Co(P, V)|
8|Co(P, V)
|P| + |¥| + 6|Co(¢ v)|
?,¥)

[Co \

Extended Jaccard si(P,¥) =

Extended Dice 54(P,¥) =

Extended Sorensen $s(P,¥) =

Extended Symmetric Anderberg | s,(®,¥) =

Extended Sokal and Sneath 2 5ss(P,0) =

2(|9| kDIWI) — 3|Co(2, V)|
Extended Ochiai so(@,w) = 1CA&P)]
1@||c |(¢q;| V)| |, [co(.7)]
o o
Extended Kulczynski 2 o(B, W) = = ’ :
Xtendae ulcZynsKi Sk 2 ( |¢| |W| )

Definition 4 (Similarity Measure). A similarity measure is a function S : Arg(L) x
Arg(L) — [0,1] such that:

Symmetry: for all a,b € Arg(L), S(a,b) = S(b,a).
Maximality: for any a € Arg(L), S(a,a) = 1.
Substitution: for all a,b,c € Arg(L), if S(a,b) = 1 then S(a,c) = S(b, ¢).

In [8], several similary measures have been defined. They apply any measure from
Table 1 for assessing similarity of both arguments’ supports and their conclusions. Fur-
thermore, they use a parameter that allows a user to give different importance degrees
to the two components of an argument. Those measures satisfy the three properties
(Symmetry, Maximality, Substitution) and additional ones (see [8] for more details).

Definition 5 (Extended Measures). Let 0 < 0 < 1 and x € {j,d, s, a,ss,o0,ku}. A
similarity measure S is a function assigning to any pair (A, B) € Arg(L) x Arg(L) a
value S7(A, B) = 0 s,(Supp(A), Supp(B)) + (1 —0)-s,({Conc(A)}, {Conc(B)}).

Example 1 (Continued). Let 0 = 0.5 and = j.

SO~5(A B)=05-0+05-1=0.5
- §)°(A,D)=05-05+0.5-0=0.25

~ SVS(A,F)=05-14+0.5-0=0.5

3 Concise Arguments

The two arguments A = ({p A q},p) and B = ({p}, p) are not fully similar according
to the existing measures from [8] while they support the same conclusion and on the
same grounds. This inaccuracy is due to the non-conciseness of A, which contains the
useless information ¢ in its support. In what follows, we refine arguments by removing
from their supports such information. The idea is to weaken formulas in supports.
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Definition 6 (Refinement). Let A, B € Arg(L) such that A = ({¢1,...,¢n}, d) and
B={{¢},...,¢,},d"). Bis arefinement of A iff:

1. ¢=¢,
2. There exists a permutation p of the set {1, ... ,n} such thatVk € {1,... ,n}, ¢ -
Oy and Lit(¢), ) C DepLit(gy).

Let Ref be a function that returns the set of all refinements of a given argument.

The second condition states that each formula of an argument’s support is weak-
ened. Furthermore, novel literals are not allowed in the weakening step since such liter-
als would negatively impact similarity between supports of arguments. Finally, literals
from which a formula is independent should be removed since they are useless for infer-
ring the conclusion of an argument. It is worth mentioning that an argument may have
several refinements as shown in the following example.

Example 1 (Continued).

- {{p}.p), {p A p},p)} C Ref(A)

- {<{p/\ 7‘},7“>, <{q /\T}7T>7 <{7‘}77‘>} g Ref(C)
-{{pAgrhongnr),{a,p AT} pAgAT)} CRef(D)
-{{pVa,(pvae) —rtr),{p,p = r}r),{¢.q — r},7)} CRef(E)
-{{rh,pVva), {ahpVa),{pValpVa} CRef(F)

The following property shows that there exists a unique possible permutation p for
each refinement of an argument.

Proposition 1. For all A = ({¢1,...,0n},0),B = ({¢1,..., 00}, ¢") € Arg(L)
such that B € Ref (A), there exists a unique permutation p of the set {1,--- ,n} such

thatVk € {1,...,n}, ¢p = &), ;).
Obviously, a trivial argument is the only refinement of itself.
Proposition 2. For any trivial argument A € Arg(L), Ref(A) = {A}.

A non-trivial argument has a non-empty set of refinements. Moreover, such argu-
ment is a refinement of itself only if the formulas of its support do not contain literals
from which they are independent.

Proposition 3. Let A € Arg(L) be a non-trivial argument. The following hold:

— Ref(A4) # 10,
— A € Ref(A) iff V¢ € Supp(A), Lit(¢) = DepLit(¢).

We show next that the function Ref is somehow monotonic, and that equivalent
arguments have the same refinements.

Proposition 4. Let A, B € Arg(L). The following hold:

— If B € Ref(A), then Ref(B) C Ref(A).
— If A = B, then Ref(A) = Ref(B).
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We are now ready to define the backbone of the paper, the novel notion of concise
argument. An argument is concise if it is equivalent to any of its refinements. This
means that a concise argument cannot be further refined.

Definition 7 (Conciseness). An argument A € Arg(L) is concise iff for all B €
Ref(A), A~ B.

Example 1 (Continued). The two refinements ({p A r},r) and ({g A r},r) of the argu-
ment C are not concise. Indeed, ({r},r) € Ref({{p A7},7)), ({r},r) € Ref({{g A
r}.r)) while ({r},r) % ({p Ar},r) and ({r},r) # ({g Ar},7).

For any argument from Arg(L), we generate its concise versions. The latter are
simply its concise refinements.

Definition 8 (Concise Refinements). A concise refinement of an argument A €
Arg(L) is any concise argument B such that B € Ref(A). We denote the set of all
concise refinements of A by CR(A).

Example 1 (Continued).

- ({p},p) € CR(A)

- ({r},r) € CR(C)

-{{pragrtpAgAr),{g,p ATy, pAgAT)} CCR(D)
-{{pVva,(pva) —=ryr),{p,p —r}r),{q,q — r},7)} CCR(E)
- {{prhpVva),{d,rVva),{rVal,pVae} CCR(F)

Next we state some properties of concise refinements.
Proposition 5. Let A € Arg(L). The following hold:

For any B € CR(A) the following hold: B € Ref(B) andVC € Ref(B), C' =~ B.
CR(A) # 0.

If A is non-trivial, then CR(A) is infinite.

If A =~ B, then CR(A) = CR(B).

VB € Ref(A), CR(B) C CR(A).

SR W~

The following result shows that any formula in the support of a concise argument
cannot be further weakened without introducing additional literals.

Proposition 6. Let A, B € Arg(L) such that B € CR(A). For any ¢ € Supp(B), if

I € L suchthat ¢ & o, Y I/ ¢, and ((Supp(B) \ {¢}) U {¢}, Conc(B)) € Arg(L),
then Lit(v)) \ Lit(¢) # 0.
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4 Similarity Measures

As already said in previous sections, although the similarity measures from Definition 5
return reasonable results in most cases, they might lead to inaccurate assessments if
the arguments are not concise. Indeed, as we illustrated in Sect. 2, the measures from
Definition 5 declare the two arguments A = ({p A ¢}, p) and B = ({p}, p) as not fully
similar, while they support the same conclusion based on the same grounds (p).

In this section, we extend those measures in two ways, leading to two families of
similarity measures, using concise refinements of arguments, and we show that they
properly resolve the drawbacks of the existing measures. Note that by Proposition 5(3),
every non-trivial argument A has infinitely many concise refinements. This is due to the
fact that every formula o from a support of a concise refinement can be equivalently
rewritten in infinitely many ways using the same set of literals (eg. @ = a A a =
a Ao Aa = ---). In the rest of the paper, we will consider only one argument from
CR(A) per equivalence class. For that reason, we consider a fixed set £ C £ such that
¢ € L there exists a unique 1 € £ such that 1) = ¢. Furthermore, we assume that each
) € L contains only dependent literals.

Definition 9. Let A € Arg(L). We define the set
CR(A) = {B € CR(A) | Supp(B) C L}.
In this way, we obtain a finite set of non-equivalent concise refinements.
Proposition 7. For every A € Arg(L), the set CR(A) is finite.

Now we propose our first family of similarity measures. In the following definition,
for A € Arg(L), X' C; Arg(L) and a similarity measure S from Definition 5, we
denote by Max(A, X, S) the maximal similarity value between A and an argument from
X according to S, i.e.,

Max(A, X, S) = max S(A, B).
Bex

The first family of measures compares the sets of concise refinements of the two
arguments under study. Indeed, the similarity between A and B is the average of max-
imal similarities (using any existing measure from Definition 5) between any concise
refinement of A and those of B.

Definition 10 ( A-CR Similarity Measures). Let A, B € Arg(L), and let S be a simi-
larity measure from Definition 5. We define A-CR similarity measure' by

> Max(A4;,CR(B),S)+ > Max(Bj,CR(A),S)
Aleﬁ(A) BjEﬁ(B)

se(A, B, S) = ICR(A)| + |CR(B)|

The value of A-CR similarity measure always belongs to the unit interval.

Proposition 8. Let A, B € Arg(L), S a similarity measure where x € {j,d, s, a, ss,
o,ku} and 0 < o < 1. Then sgx(A, B,S7) € [0,1].

! The letter A in A-CR stands for “average”.
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Next we show that the new measure properly resolves the problem of non-
conciseness of the argument A = ({p A ¢}, p) from our running example. We illustrate
that by considering Extended Jaccard measure with the parameter o = 0.5.

Example 1 (Continued). It is easy to check that CR(A) = {({p},p)} and CR(B) =
{({p},p)}. Then sgz(A, B, S{-5) = 1 while 8{-°(A, B) = 0.5.

Now we define our second family of similarity measures, which is based on com-
parison of sets obtained by merging supports of concise refinements of arguments. For
an argument A € Arg(L), we denote that set by

us(A)= | J supp(4).
A’E€CR(A)

Definition 11 ( U-CR Similarity Measures). Ler A, B € Arg(L), 0 < 0 < 1, and s,
be a similarity measure from Table 1. We define U-CR. similarity measure® by

sor(A, B, 5,,0) = 0 - 5,(US(A),US(B)) + (1 — o) - 5,({Conc(A)}, {Conc(B)}).

Next example illustrates that U-CR also properly resolves the problem of non-
conciseness of the argument A = ({p A ¢}, p) from our running example.

Example 1 (Continued). Let 0 = 0.5 and x = j. It is easy to check that
sta(A, B, s3,0.5) = 1 while 8J-*(A, B) = 0.5.

Let us now consider another more complex example where existing similarity mea-
sures provide inaccurate values while the new ones perform well.

Example 2. Let us consider the following arguments:

- A:<{p/\q,(p\/q)—>t,(p\/t)—>r},t/\7“>
- B=<{p,p—>t7p—>r},t/\7“>

It is easy to check that CR(A) = {A;, Ay, A3, A4, A5} and CR(B) = { By }, where:

- Al = {p7p_>t7p_>r}7 t/\’l")
- A ={pp—-tit—or} tAr)
- As={gq—t,t—=r}tAr)

- As={pANqg,q—t,p—r1} tAT)

(
E
- A4:§{qu,(p\/Q)—>t7t—>T}, tAT)
- Bl = <{p,p—>t,p—>r},t/\7”>

It is worth noticing that the Extended Jaccard measure could not detect any simi-
larity between the supports of A and B while their concise arguments A; and B; are
identical. Indeed, s;(Supp(A), Sugp(B)) =0and ${5(4,B) =0.5-0+0.5-1=0.5
while s (A4, B,s3,0.5) = 0.5 2 +05-1 = 2 = 0.666 and sg(4, B, S)%) =

§ =
9 29
0.5- 2 +05-1= 2 =0.725.

% In this section, we slightly relax the notation by simply assuming that p € £. We will make
similar assumptions throughout this section.
* U in U-CR stands for “union”.



Similarity Measures Between Arguments Revisited 11

The following proposition characterizes the arguments which are fully similar
according to the novel measures. It states that full similarity is obtained exactly in the
case when two arguments have equivalent concise refinements.

Proposition 9. Ler A, B € Arg(L),0 < 0 < land xz € {j,d,s,a,ss,o,ku}. Then
sta(A, B, S%) = s%:(A, B, sy, 0) = 1iff:

- VA" € CR(A), 3B’ € CR(B) such that Supp(A’)
Conc(B’) and

- VB’ € CR(B), A’ € CR(A) such that Supp(B’)
Conc(A").

1%

Supp(B’), Conc(4’) =

1

Supp(A’), Conc(B’) =

In [8], the authors proposed a set of principles that a reasonable similarity measure
should satisfy. Now we show that the new measures satisfy four of them but violate
Monotony. The reason of violation is due to the definition itself of the principle. Indeed,
it is based on the supports of arguments. The new measures do not handle those supports
but those of the concise refinements of the initial arguments.

Proposition 10. Let 0 < 0 < land x € {j,d, s, a, ss, o, ku}. The following hold:

(Syntax Independence) Let m be a permutation on the set of variables, and
A,B, A", B' € Arg(L) such that

o A’ is obtain by replacing each variable p in A with w(p),

e B’ is obtain by replacing each variable p in B with 7(p).
Then sgz(A, B, S9) = sk (A’, B',S7) and s% (A, B, 55,0) = st (A, B, 85, 0).
(Maximality) For every A € Arg(L), shp(A, A, S9) = ss(A, A, sz,0) = 1.
(Symmetry) For all A, B € Arg(L), stz (A, B Sg) = sk (B, A, S7) and
sea(A, B, sz,0) = s% (B, A, 84, 0).
(Substitution) For all A, B,C € Arg(L),

hd lfséR(Aa Ba Sg) = 1’ then SéR(*A» Ca Sg) = SéR(B’ Ca Sg)’

i lfng(Av Ba Sz, U) = ]-’ then SgR(Aa Ca Sz, J) = SgR(Bv Ca Sz, 0)'

The next proposition shows that if we apply A-CR or U-CR to any similarity measure
S¢ from Definition 5 (respectively s, from Table 1), then both novel measures will
coincide with S7 on the class of concise arguments.

Proposition 11. Let A, B € Arg(L) be two concise arguments. Then, for every 0 <
o<landz € {j,d,s,a,ss,o,ku}, it holds

séR(A,B,S;) = ng(A,B,sx,cr) = SJ7(A, B). (1)

Remark. Note that the Eq. (1) might also hold for some A and B that are not con-
cise. For example, let A = ({p A ¢,t A sh,p At) and B = ({p,t A s},p A s).
Then CR(A) = {({p,t},p A1)} and CR(B) = {({p, s},p A 5)}, 50 s (A4, B, 577) =
ser(A, B, s3,0.5) = S?'E’(A,B) = 0.25.

The following example shows that A-CR and U-CR may return different results.
Indeed, it is possible for three arguments A, B and C that A is more similar to B
than to C according to one measure, but not according to the other one.
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Example 3. Let A = {({p,p — @1 N @2}, @1 V q2), B = ({p,s},p A s) and C =
({p — a1}, p — q1). We have CR(A) = {{{p,p — a1}, @1 V @2), {({p,p — @2}, @1 V

@), ({p,p — 1V}, 1V}, CR(B) = {{{p, s}, pAs)},CR(C) = {{{p — q1 },p —
q1)}- Consequently:

- SéR(AvasJQ'B) = % > séR(Aa Ca 5?5) = %, but
— s%(A, B, s3,05) = & < s(A,C,55,05) = &

The next example shows that none of the two novel measures dominates the other.
Indeed, some pairs of arguments have greater similarity value according to A-CR, and
other pairs have greater similarity value using U-CR.

Example 3 (Continued). Note that sg (A, B, s5,0.5) < sgg(A, B, SJ-°). Let us consider
A= {pAa},pVa), B = ({p.a},p A q) € Arg(L). sGu(A', B',53,0.5) =05 5 +
0.5-0 = 3 = 0.333 and sgz(A’, B/, 59%) = 0.5- 2 +0.5-0 = & = 0.1875, thus
SCR(A',B’,SJ,O.5) > SCR(A’,B',SJO 5).

5 Conclusion

The paper tackled the question of similarity between logical arguments. Starting from
the observation that existing similarity measures may provide inaccurate assessments,
the paper investigated the origin of this limitation and showed that it is due to the pres-
ence of useless information in the supports of arguments. It then introduced the novel
notion of concise argument, and a procedure for generating the concise versions of any
argument. These versions are then used together with existing similarity measures for
extending the latter into more efficient measures.

This work can be extended in different ways. The first one consists of identifying
a principle, or formal property for distinguishing the new measures. The second one
consists of investigating other approaches for generating concise arguments, namely
we plan to use the well-known forgetting operator for getting rid of useless literals in
formulas. The Third one consists of using the new measures for refining argumenta-
tion systems that deal with inconsistent information. Finally, we plan to investigate the
notion of similarity for other types of arguments, like analogical arguments.

Acknowledgment. Support from the ANR-3IA Artificial and Natural Intelligence Toulouse
Institute is gratefully acknowledged.
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Abstract. Multilateral negotiation and its importance in today’s soci-
ety, makes it an interesting application in the Artificial Intelligence
domain. This paper proposes a new generic framework for multilateral
multi-issue Argumentation-Based Negotiation. Agents are first clustered
based on their offers to reduce the negotiation complexity. These agents
negotiate via a mediator who has two roles: (1) organize the dialogue
between them and (2) step in when no mutual agreement is found to
get them out of the bottleneck, we formulate this problem as a linear
problem where the mediator maximizes both parties’ utilities fairly. To
highlight the performance of our framework, we tested it on the tourism
domain using real data. We study the cases where agents are: not clus-
tered, clustered using hard clustering techniques and clustered using soft
clustering techniques. We also study the impact of the mediator in each
variant by detecting agreements reached with and without his help.

Keywords: Argumentation-Based Negotiation - Multi-issue -
Multilateral - Mediator - Multi-agent system - Clustering - CBR

1 Introduction

Automated negotiation is characterized by many factors influencing its complex-
ity. These factors include the number of involved parties (bilateral or multilat-
eral), the negotiation protocol, the number of issues and their interactions, time
constraints, etc. In order to deal with this complexity, several researches incorpo-
rate advanced Artificial Intelligence technologies including predicting and learn-
ing methods, clustering techniques, Case-Based Reasoning etc. One of the pre-
vailing approaches for automated negotiation is the Argumentation-based nego-
tiation (ABN) where agents go beyond exchanging offers and have the possibility
to exchange arguments that backup their positions. This enhances the negotia-
tion process and its final outcome quality [1,2]. Moreover, Case-Based Reasoning
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G. Kern-Isberner and Z. Ognjanovi¢ (Eds.): ECSQARU 2019, LNAI 11726, pp. 14-26, 2019.
https://doi.org/10.1007/978-3-030-29765-7_2


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29765-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-29765-7_2

A New Generic Framework for Mediated Multilateral ABN Using CBR 15

(CBR) may be used as mean of helping agents to generate offers and arguments
in Argumentation-Based Negotiations. But contrarily to automated negotiation
and even ABN where several researchers have proposed generic frameworks [3—
5], most of proposed work gathering ABN and CBR is domain specific [6,7].
Recently, we have investigated this issue in [8] by proposing a generic frame-
work for ABN (so-called, GANC for Generic Argumentation-Based Negotiation
using CBR) gathering Case-Based Reasoning (CBR) to Argumentation-Based
Negotiation. However, it is restricted to bilateral and one issue negotiations.

In this paper, we propose to extend GANC' framework to multilateral and
multi-issue setting. To this end, we propose to cluster agents starting from the
idea that agents can form clusters where each cluster will have a representative
agent who will negotiate for it. Then, all representative agents will negotiate
with the intervention of a mediator which is a neutral and impartial agent that
helps remaining agents at reaching a settlement. Grouping agents in automated
negotiation has already been explored in the literature [9,10]. In the last decades,
automated mediated negotiation has received a considerable attention [11,12].
Tasks ensured by the mediator differ depending on the attributed authority.
Indeed, the mediator can: (i) organize the discussion between agents (facilitator)
[13], (ii) impose a solution on different parties of the negotiation (arbitrator) [14],
(iii) analyze the ongoing discussion like in [15] where the mediator’s goal is to
reduce the negative consequences of the conflict or (iv) give proposals to the
conflicting parties [16].

Computational mediators have been the interest of many research works
[11,16,17]. In ABN field, several computational mediators were proposed [6,15,
16,18]. Most of the research works concerning mediated Argumentation-Based
Negotiation were focusing on the proposal of a computational mediator that can
handle disputants’ conflicts and find a solution that satisfies both of them. In this
paper, we are focusing on the negotiation process as a whole where we handle
the negotiation protocol, mediator’s tasks, the exchange of arguments and the
use of CBR.

The paper is organized as follows, Sect. 2 introduces the new proposed frame-
work, discusses the clustering and the negotiation phases and highlights the
role of the mediator. Section 3 discusses the experimental environment and the
obtained results.

2 A New Framework for Multilateral Mediated ABN
Using CBR

For multilateral and-issues settings, we propose M GANC'": Multilateral Generic
framework for Argumentation-Based Negotiation using CBR. MGANC' is a
generic framework that supports multi-argumentative negotiator agents. We opt
for a mediated negotiation where the mediator helps agents to reach a mutually
beneficial outcome. Moreover, agents will take advantage of their past experi-
ences using their own CBR to generate arguments. In MGANC), the process of
searching an agreement between many agents is based on two main phases: (i)
the clustering phase and (ii) the negotiation phase detailed below.
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2.1 Clustering Phase

The complexity of the negotiation process is highly influenced by the number
of involved parties. In this work we explore the interesting idea of clustering
agents. Generally, agents are grouped based on their goals (e.g., buyers and sell-
ers) [19]. In our framework, we propose to cluster agents based on their offers.
Several clustering algorithms are available in the literature (e.g., Hierarchical
clustering, soft clustering, hard clustering) and some of them are used in auto-
mated negotiation such as Hierarchical clustering [10]. Since agents’ offers can
be close, we propose to apply clustering on the involved agents based on their
offers. While clustering negotiating parties, they may switch clusters looking for
better solutions, which is known as soft clustering. For this purpose, we propose
to use Evidential C-Means (ECM) [20] and Fuzzy C-Means (FCM) [24] which
are soft clustering algorithms that group parties in a soft way where one agent
can belong to more than one cluster with different degrees. This flexibility allows
to gain a deeper insight in the data. ECM and FCM showed better results than
c-means since they better reflect real world situations.

From each cluster we choose one representative agent. This agent presents
the center of the cluster and has the highest degree of belonging to it. Thus, we
move from n agents entering the negotiation phase to k agents where k < n.

2.2 Negotiation Phase

In the proposed framework called MGANC, argumentative negotiator agents
follow a state machine protocol that specifies the rules of interaction between
them via a mediator. Figurel depicts the proposed protocol that explicitly
expresses the rules that should be followed by different agents as well as the
different locutions (i.e., messages) exchanged between them. Agents start from
the “BEGIN” state and end at the “DIE” state. Once an agent enters the state
“BEGIN”, she will go to “OPEN” state waiting for all negotiation parties to
start the negotiation at the same time. Next, according to the type of agents
(i.e., opponent, proponent, mediator), they will follow the intermediary states
(e.g., BEGIN, ENTER, ASSERT) where in each state they generate the corre-
sponding messages. The most important messages are:

— Propose: with this locution, an agent sends her proposal to the commitment
store where it can be checked by the mediator.

— Assert: with this locution, an agent asserts her offer by giving arguments
explaining her choice.

— Attack: with this locution, agents attack each others’ arguments and offers
via the mediator.

— Why: with this locution, the opponent asks to the mediator for some expla-
nations from the proponent.

— SAY Why: with this locution, the mediator asks the proponent to assert her
offer.

— Propose solution: with this locution, at the end of each round, the mediator
proposes a solution that may be accepted by both opponent and proponent.
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The end state is “DIE” and it can be reached through “OPEN” state trig-
gered by the following locutions:

— Agree: with this locution, an agent agrees on the opponent’s argument while
she still believes that her offer is better and then a new round will start where
she is the proponent agent.

— Reject: with this locution, an agent rejects the counter party’s offer and indi-
cates that she has no more arguments to present. Just like agreeing, agents
exchange roles and the opponent becomes proponent and vice-versa.

— Accept: with this locution, agents accept an offer:

1. If the offer is proposed by the counter party agent, it is accepted in two
cases: (1) if the proposal is the agent’s current preferred value. (ii) If the
argument respects the agent’s conditions such as: (a) the number of sim-
ilar premises between premises characterizing her offer and premises sent
by the opponent, (b) the number of the received distinguished premises
that exists in her CBR (these premises were once a reason to choose a
given offer). As an example, an agent can accept the other agent’s pro-
posal if their positions are characterized by two common premises with
the same value. These conditions differ from agent to another based on
their flexibility and how much they are open minded. Finally, in case
where a counter-example argument is received, the agent will immedi-
ately accept the offer since this kind of argument has the highest power
of convincing.
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2. If the offer is proposed by the mediator, agents will compare the utility
of the offer to their reservation point utility. If it exceeds than they will
accept otherwise, they refuse the solution. This is explained by the fact
that agents can’t get better solution since the mediator proposes the last
offer by trying to maximize both negotiation parties’ utilities. If one of
them rejects the mediator’s offer, the negotiation ends with a disagree-
ment.

The Role of the Mediator. Agents always negotiate via an autonomous
agent: the mediator. The mediation process can be classified into two categories,
agreement centred and relationship centred [21]. Our work belongs to the first
category “agreement centred” where the goal of the mediator is to reach a solu-
tion accepted by the conflicting parties. Although the mediator in this frame-
work is a facilitator that has no power on the negotiation parties, if after a series
of arguments exchange (i.e., attacks and counter-attacks) still no agreement is
reached, he proposes a solution that respects agents’ reservation points and that
he values beneficial for both parties. Indeed, the mediator tries to maximize the
utility of both parties fairly. We propose to formulate the problem as a linear
problem:

Mazimize o Uopp + (1 — @) Uprop (1)
s.t

Uiopp =@ioppTi + biopp (2)
U'LProp =Qi;Propxi + biProp (3)
LB, <z, <UB; (4)
MinUtilopp < Uopp < MazUtilopy (5)
MinUtilprop < Uprop < MazUtilprop (6)
UOpp = Z wioppUiOpp (7)

i=1
UP'r‘op = ZwiPropUiProp (8)

i=1
i=1,...,n (9)

Table 1 presents the nomenclature used to represent the linear problem.
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Table 1. Nomenclature

Can take values from 0 to 1, used to
calibrate the importance of each agent

Uopp (resp. Uprop)

The opponent’s (resp. proponent’s) total
utility

Uiopp (resp. Uiprop)

The opponent’s (resp. proponent’s) utility
on issue %

a; The slope of the utility function calculated
based on the utilities of two different values
of an issue ¢

b; The intercept of the utility function
calculated based on the utilities of two
different values of an issue ¢

LB; The lower bound of issue %

UB; The upper bound of issue 14

T; The value of issue ¢

n Total number of issues

MinUtilprop (resp. MinUtilopp)

The proponent (resp. the opponent)

minimum utility under which he would
never accept an offer

MazUtilprop (resp. MaxUtilopp,) | The proponent (resp. the opponent)
maximum utility, which is the utility of his

first offer

The weight attributed by the opponent
(resp. proponent) to each utility

Wiopp (T€SP. Wiprop)

The Negotiation Process Description. This framework supports many
agents A = A;...A, where each agent has a starting offer O = O;...0,, about m
issues. Thus, for each agent A;, O; = O;1...0;,. Algorithm 1, outlines the main
steps of the negotiation process. Agents are first clustered based on their initial
offers using the function Clustering(A, O). Then the center of each cluster C; is
detected using Select Representative(C;). This agent A; has the highest degree
of belonging to her cluster. Then, each representative agent A; will enter in a dia-
logue with the counter party agent Ag to negotiate the issues. During the negoti-
ation, the representative agent and the counter party will negotiate by exchang-
ing arguments in order to convince each other following the negotiation protocol
depicted in Fig. 1 called by the function FollowNegotiationProtocol(A;, Ag). An
argument takes the form of premises/claim where premises are the explanations
and reasons to choose the given claim. For example, if agents are negotiating
one issue, a holiday destination, an argument may take the form: warm weather,
beaches, 5 stars hotels: Bahamas. The “Bahamas” represents the claim and the
negotiation offer while “warm weather, beaches, 5 stars hotels” are the premises
explaining the reasons to accept the claim. Arguments are selected using agents’
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CBR. They represent agents’ past experiences that are similar to the current
negotiation case. At each round, agents start by discussing the proponent offer
and then the opponent offer after exchanging roles. By the end of each round, if
an agreement is found then the negotiation ends. Otherwise, the mediator steps
in and proposes a solution using Mediator Propose(Sol, A;, Ag). If it is accepted
by both agents, the negotiation ends successfully. In the other case a new round
starts. This process is repeated until the number of maximum rounds fixed at
the beginning of the negotiation is achieved or an agreement is reached. The
acceptance is: (1) argument-based, an agent accepts an offer because she was
convinced by the counter-party’s argument, (2) utility-based, the agent accepts
an offer only if the utility of this offer exceeds her reservation point utility.
Finally, to determine the utility of each agent from the final outcome: (1) We
compute the distance between the final outcome and each agent’s initial offer.
(2) We compute the similarity between them.

3 Experimental Study

3.1 Experimental Protocol

The framework is implemented on the multi-agent platform, Magentiz2 [22], in
Java. Agents use their old argumentation and negotiation experiences (i.e., case
bases) that are stored in files acceded by their own CBR.

Data. Experiments are conducted in the tourism domain. Real data was gath-
ered from different sources: (1) the tourism ministry of Tunisia, (2) many web-
sites such as Trivago!, HolidayWeather?, Bandsintown® and eDreams* and (3)
the Travel and Tourism Competitiveness Report 2017 published by the World
Economic Forum. The database contains 509 lines about 126 different destina-
tions characterized by 29 features (e.g., safety rank, plane ticket’s price etc.). In
the tourism domain, many clients choose to travel through a travel agency to
take advantage of their organized trips. Under this context, we study the case
where many clients negotiate their trip. We suppose that agents are negotiating
over 5 issues: the price of a trip, the destination, the number of stars of the stay
in hotel, the board of the stay in hotel and the season while the rest of features
are left to be used as arguments’ premises in agents’ case-bases. The price and
the number of the stars of the hotel are numeric and ready to be clustered. As for
the rest of the issues they are originally in a qualitative format. Thus, they were
converted from qualitative to quantitative. The board of the stay can be: hous-
ing, breakfast and bed, all inclusive, breakfast and dinner and breakfast and lunch
and dinner. They are represented in order from 1 to 5. The season represents the
period of the trip: June, July or August and were represented respectively, 1, 2

! https://www.trivago.fr/.

2 http://www.holiday-weather.com/.

3 https://news.bandsintown.com/home.
4 https://www.edreams.fr/.
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Algorithm 1. Multilateral negotiation over multi-issue

Input: A = A;...A, the set of agents, Ag the counter party, I = I;...I,, the set of
issues, O = O11...0pm the set of offers

Parameters: MaxzNbRounds

Output: NegotiationOutcome

1: agreement «— false, round <« 0.
2: clusters « Clustering(A, O). {Clustering phase}
3: for each C; € clusters do
4: A; — SelectRepresentative(C;)
5. EnterDialogue(A;, Ag) {Negotiation phase}
6: repeat
T FollowNegotiation Protocol (A;, Ag)
8: if FindAgreement() then
9: agreement < true
10: NegotiationOutcome «— of fer
11: else
12: ExchangeRoles(A;, Ag)
13: FollowNegotiationProtocol (A;, Ag)
14: end if
15: if FindAgreement() then
16: agreement < true
17: NegotiationOutcome «— of fer
18: else
19: Mediator Propose(Sol, A;, Ag)
20: if Accept(A;, Sol) AND Accept(Ag, Sol) then
21: agreement «— true
22: NegotiationOutcome «— Sol
23: else
24: round «— round + 1
25: end if
26: end if
27:  until (agreement = true) OR (round = MaxNbRounds)
28: end for

29: return NegotiationOutcome

and 3. For the issue destination that represents the country/city to visit were
converted to numbers (1, 2,...,n) with respect to their continent. This means,
destinations having the closest numbers are the closest geographically and have
many common characteristics (presented by the features).

Moreover, issues such as price and season varies in very different intervals.
The price varies from 40 to 18000 euros and the season varies from 1 to 3. To
overcome this gap, we normalized data using: 2’ = (z —min)/(maz —min) with
2’ is the new normalized value, x is the original value, min and mazx are the
minimal and the maximal values of the interval, respectively.

Evaluation Metrics. The framework is evaluated based on: (1) the utility,
which depicts how much an agent gained from the final outcome. More precisely,
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we compute the average utility of agents. (2) Time, which is a crucial criteria
when it comes to negotiation. Thus, we compare the average needed time to
reach an agreement in several scenarios. (3) Ratio of agreements, which is a
ratio of the number of agreements reached with the help of the mediator by the
total number of agreements.

Experiments Description. The experiments proceed following the steps out-
lined below:

Table 2. Example of clustered entities

Agent | Price | Destination | Stars | Accommodation | Season | Cluster 1 | Cluster 2 | Cluster 3
Al 774 1 5 1 1 0.008 0.971 0.020

A2 651 |44 5 1 1 0.003 0.88 0.08

A3 132 9 4 1 3 0.18 0.05 0.75

In the first step, 50 agents (clients) are clustered to 3, 5 and then 10 clusters
based on their offers. An example of agents’ clustering results on 3 clusters using
ECM is depicted in Table2. Row 1 of Table2 depicts agent Al’s offer where
she proposes a price of 774 euros for the destination “Cancun” for a 5 stars
hotel with “housing” as an accommodation and to travel in June. The cluster
of this agent is cluster 2 and her second cluster is cluster 3. Once agents are
clustered, the center element of each cluster is detected. The corresponding agent
represents the cluster and negotiates on behalf of the whole group. Then, another
agent represents the travel agency. Consequently, both agents start negotiating
by exchanging offers and arguments. The negotiation is held over 3 rounds.
By the end of each round, if no agreement is found, the mediator steps in and
proposes a solution that can satisfy both of them. The mediator follows the linear
problem discussed before to propose solutions to the conflicting parties. In order
to guarantee the fairness between both agents, « is fixed to 0.5. w is fixed to 1 so
that all issues will have the same importance. The agent representing the travel
agency will negotiate with each cluster’s representative to find an agreement.
This agreement can be an already planned trip or it can be created. Actually,
the travel agency’s agent may accept to create a new trip only if it was proposed
by the mediator and she conceives that this would be better for her.

At the end of the negotiation, we have 3 outcomes coming from the three
negotiation scenarios between clusters’ representative and the travel agency
agent. To compute the distance between the final outcome and each agent’s ini-
tial offer, we used the Manhattan distance. Dis(X,Y) = |z1—yl|+|z2—y2|+. . .+
|xn —yn|. Finally, to detect the similarity between the negotiation final outcome
and the initial offer of each agent we computed: Sim(X,Y) =1— Dis(X,Y).
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Example 1. We suppose that an agent Al belongs to cluster ¢l and her offer is:
<price : 402, destination : Toulouse, France, stars : 4,board : housing(1l), season :
3(August)>. If the final outcome is: <price : 249, destination : Porto, Portugal, stars :
1,board : housing(l), season : 1(June)> then the Manhattan distances between the
agent’s first offer and the final solution on each issue are: 0.138, 0.954, 0.66, 0 and 1 for
issue price, destination, number of the hotel stars, the board of the stay and the season in
order.

In order to evaluate our framework, we conducted the discussed experiments:
(1) without any clustering among agents, (2) with a hard clustering algorithm
namely, K-means [23] and (3) with a soft clustering namely, ECM and FCM.

3.2 Experimental Results

Computing agents’ offers similarity to the final outcome depicts their utility from
the solution found by their representative. In case of 3 clusters, the average util-
ity of each cluster in order: 60%, 61% and 65%. These results are found using
ECM, soft clustering where agents changed their original cluster to get solu-
tions with bigger utilities from the other clusters. We also calculate the utility of
the travel agency from all negotiations: 66% (with cluster 1), 40% (with cluster
2) and 88% (cluster 3). For the 2"¢ negotiation scenario, we can see that the
travel agency made more concessions in order to convince her clients. Neverthe-
less, this is always with respect to the agent’s reservation point. Table 3 depicts
the results from different scenarios (i.e., different clustering techniques and no
clustering situation) in terms of the average time needed for the negotiation
phase, the average utility and the impact of the mediator. The time decreases
remarkably when agents are clustered based on their offers. The highest util-
ity is attended when agents were not clustered which is due to the fact that
each agent negotiate by herself and thus, she maximizes her own utility without
taking into consideration the rest of the agents. However, using soft clustering
didn’t cost agents in terms of utility since it still presents considerable utilities
(i.e., column 3 and 4 of the Table 3) which is bigger than their utilities following
a hard clustering. This is due to the fact that agents changed their clusters to get
better solutions. In case where agents are clustered using ECM and FCM, agents
may switch clusters. Thus, if no agreement is reached in their original cluster
they switch to a cluster that presents a satisfying offer for them. However, when
agents were not clustered, on 50 agents only 43 found agreements and 36 of them
were reached with the help of the mediator. Similarly in hard clustering, agents
can’t switch clusters and thus, the average utility decreases.
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Table 3. Results in terms of time, utility and mediator’s impact

Nb Criteria Clustering
clusters
Without Soft Soft Hard
clustering | clustering |clustering | clustering
(ECM) (FCM) (K-means)
0 Time 3.15h - - -
Average utility 69% - - -
Ratio of agreements | 36/43 - - -
3 Time - 12.41 min 17.03 min 13.21 min
Average utility - 63% 63% 54%
Ratio of agreements | - 3/3 3/3 3/3
5 Time - 27.63 min 22.15min 19.21 min
Average utility - 65% 68% 45%
Ratio of agreements | - 2/2 3/4 3/4
10 Time - 34.16 min 34.38 min 48.76 min
Average utility - 62% 66% 35%
Ratio of agreements | - 5/6 6/9 5/6

4 Conclusion

This paper proposes a new framework for multi-agent negotiations over multi-
issues. The framework combines three different fields: argumentation, negotiation
and CBR. Agents negotiate via a mediator that has two main roles: (i) assist
the negotiation process by sending messages to the negotiation parties and (ii)
propose a solution that can satisfy both parties in case of no agreement. This
will get them out of the bottleneck and help them to overcome their conflicts. To
ensure the fairness for all negotiation parties, the mediator proposes solutions
that maximizes all parties’ utilities with respect to a set of conditions. In order to
reduce the negotiation complexity, we propose soft clustering over agents. A rep-
resentative agent is chosen from each cluster to lead the negotiation. The results
showed that the time dedicated for negotiation decreases remarkably when we
use the clustering technique while agents’ utilities show that the clustering tech-
nique preserves their self-interested behaviour.

We assumed that if the agent client proposes a new trip that was unplanned
by the travel agency it will be refused. However, it may be accepted if the pro-
posal was coming from the mediator since the latter has a bigger view on the
problem and ensures that both parties’ utilities are maximized. Further experi-
mental investigations are needed to test other negotiation strategies. Moreover,
we assumed that all agents belonging to one cluster trust the representative
agent and they all agreed on her. As perspective, we will include voting in the
process of choosing a representative agent.
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Abstract. Argumentation, in the field of Artificial Intelligence, is a for-
malism allowing to reason with contradictory information as well as to
model an exchange of arguments between one or several agents. For this
purpose, many semantics have been defined with, amongst them, grad-
ual semantics aiming to assign an acceptability degree to each argument.
Although the number of these semantics continues to increase, there is
currently no method allowing to explain the results returned by these
semantics. In this paper, we study the interpretability of these seman-
tics by measuring, for each argument, the impact of the other arguments
on its acceptability degree. We define a new property and show that the
score of an argument returned by a gradual semantics which satisfies this
property can also be computed by aggregating the impact of the other
arguments on it. This result allows to provide, for each argument in an
argumentation framework, a ranking between arguments from the most
to the least impacting ones w.r.t. a given gradual semantics.

Keywords: Abstract argumentation + Gradual semantics *
Interpretability

1 Introduction

The issue of interpreting the results obtained by Artificial Intelligence (AI) meth-
ods is receiving an increasing attention both in the AT community but also from
a wider audience. In particular, the ability to interpret the rationale behind the
results (e.g., classifications, decisions) returned by an artificial intelligent agent
is of main importance to ensure the transparency of the interaction between the
two entities in order to accomplish cooperative tasks. According to Miller [13],
interpretability is the degree to which an observer can understand the cause(s)
of a result. An algorithm, a program or a decision is said to be interpretable
if it is possible to identify the elements or the features that have the great-
est impact on (and thus lead to) the result. This term must not be confused
with the term explanation which is the answer to a why-question or with the
term justification which explains why a result is good, but does not necessarily
aim to give an explanation of the process. Despite the numerous (formal and
empirical) approaches [9,11,12,17] to tackle the problem of interpretability of
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artificial intelligent systems, it is still an open research problem. As highlighted
by Mittelstadt et al. [14], artificial argumentation [3] may play an important role
in addressing this open issue, thanks to its inner feature of combining decision
making with the pro and con arguments leading to a certain decision.

In this paper, we aim to study, from a formal point of view, how to cast the
notion of interpretability in abstract argumentation so that the reasons leading
to the acceptability of one or a set of arguments in a framework may be explicitly
assessed. More precisely, this research question breaks down into the following
sub-questions: (i) how to formally define and characterise the notion of impact
of an argument with respect to the acceptability of the other arguments in the
framework? and (7) how does this impact play a role in the interpretation process
of the acceptability of arguments in the framework?

To answer these questions, we start from the family of graded semantics [4, 6],
and we select two semantics which present different features so that we can show
the generality of our approach to characterise the notion of impact. In partic-
ular, we select the h-categorizer semantics initially proposed by Besnard and
Hunter [5] and the counting semantics from Pu et al. [16]. In both approaches,
the acceptability of an argument, differently from standard Dung’s semantics [10]
where arguments are either (fully) accepted or rejected, is represented through
an acceptability degree in the range [0,1]. Roughly, we say that the impact of
a certain argument (or a set of arguments) on the degree of acceptability of
another argument can be measured by computing the difference between the
current acceptability degree of the argument and its acceptability degree when
the first argument is deleted. We study the formal properties of the notion of
impact instantiated through these two graded semantics both for cyclic and
acyclic abstract argumentation frameworks. Finally, we show that studying the
impact of an argument on the other arguments allows us to answer to some main
needs in terms of interpretability of argument-based decision maker’s resolutions.

The remainder of the paper is as follows: in Sect. 2, we provide same basics
about gradual semantics and more precisely, the h-categorizer [5] and the count-
ing semantics [16], Sect. 3 discusses the notion of impact of an argument in an
argumentation framework and its formal properties, Sect.4 focuses on the bal-
anced impact property, in Sect. 5 we highlight how the notion of impact and its
properties play a role on the interpretability of abstract argumentation frame-
works and the acceptability of the arguments. The discussion of the related
literature and conclusions end the paper.

2 Preliminaries

An abstract argumentation framework (AF) is a set of abstract arguments con-
nected by an attack relation.

Definition 1 (AF). An (abstract) argumentation framework (AF) is a tuple
F = (A, R) where A is a finite and non-empty set of (abstract) arguments,
and R C A x A is a binary relation on A, called the attack relation. For two
arguments x,y € A, the notation (z,y) € R (or xRy) means that x attacks y.
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Definition 2 (Non-attacked set of arguments). Let F = (A, R) be an AF.
The set of arguments X C A is non-attacked if Vo € X, Py € A\X s.t. (y,z) € R.

Notation 1. Let F = (A, R) be an AF and z,y € A. A path P from y to x,
noted P(y,x), is a sequence {(xq,...,T,) of arguments in A such that o = x,
Tn =y and Vi < n,(x;41,2;) € R. The length of the path P is n (i.e., the
number of attacks it is composed of ) and is denoted by lp = n. A cycle is a path
from x to x and a loop is a cycle of length 1.

Let R, (x) = {y | IP(y,xz) with lp = n} be the multiset of arguments that are
bound by a path of length n to the argument x. Thus, an argument y € R, (z)
is a direct attacker (resp. defender) of x if n =1 (resp. n =2). More generally,
y s an attacker (resp. defender) of x if n is odd (resp. even).

A gradual semantics assigns to each argument in an argumentation framework
a score, called acceptability degree, depending on different criteria. This degree
must be selected among the interval [0, 1].

Definition 3 (gradual semantics). A gradual semantics is a function S which
associates to any argumentation framework F = (A, R) a function Deg : A —
[0,1]. Thus, Deg(x) represents the acceptability degree of x € A.

h-categorizer Semantics [5,15]. This gradual semantics uses a categorizer
function to assign a value to each argument which captures the relative strength
of an argument taking into account the strength of its attackers, which itself
takes into account the strength of its attackers, and so on.

Definition 4. Let F = (A, R) be an argumentation framework. The catego-
rizer function Deg&® : A — 10,1] is defined such that Vx € A,

1 if Ry () =10
Deg?“t(w) = { > L otherwise

Cat
yeR () DOBF (v)

Counting Semantics [16]. This gradual semantics allows to rank arguments
by counting the number of their respective attackers and defenders. In order
to assign a value to each argument, they consider an AF as a dialogue game
between the proponents of a given argument x (i.e., the defenders of z) and
the opponents of = (i.e., the attackers of x). The idea is that an argument is
more acceptable if it has many arguments from proponents and few arguments
from opponents. Formally, they first convert a given AF into a matrix M, xn
(where n is the number of arguments in AF') which corresponds to the adjacency
matrix of AF (as an AF is a directed graph). The matrix product of k copies
of M, denoted by MP”, represents, for all the arguments in AF, the number of
defenders (if k is even) or attackers (if &k is odd) situated at the beginning of
a path of length k. Finally, a normalization factor N (e.g., the matrix infinite
norm) is applied to M in order to guarantee the convergence, and a damping
factor « is used to have a more refined treatment on different length of attacker
and defenders (i.e., shorter attacker/defender lines are preferred).
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Definition 5 (Counting model). Let F = (A, R) be an argumentation frame-
work with A = {x1,...,x,}, a € ]0,1] be a damping factor and k € WN. The
n-dimensional column vector v over A at step k is defined by,

k
oF = Z(—l)iaiMiI
i=0

?

where M is the normalized matriz such that M = M /N with N as normalization
factor and I the n-dimensional column vector containing only 1s.
The counting model of F is v, = klim vE. The strength value of x; € A is the

——+o00

ith component of v, denoted by Deg%S(x;).

3 Impact Measure

The impact of an argument on another argument can be measured by computing
the difference when this argument exists and when it is deleted. To capture this
notion of deletion, we need to define the complement operator which deletes a set
of arguments from the initial argumentation framework w.r.t. a given argument
(i.e., the targeted argument of the impact). These changes have also a direct
impact on the set of attacks because the attacks directly related to the deleted
arguments (attacking as well as attacked) are automatically deleted too.

Definition 6. Let F = (A, R) be an AF, X C A andy € A. The complement
operator & is defined as F &, X = (A, R’), where

- A= A\
- R ={(z,2) | (£,2) € R and v € A\X,z € A\X}.

Let us first formalise how to compute the impact of a non-attacked set of argu-
ments on a given argument before generalising it for every set of arguments.

3.1 Impact of a Non-attacked Set of Arguments

The impact of a non-attacked set of arguments X on the degree of acceptability
of an argument y can be measured by computing the difference between the
current acceptability degree of y and its acceptability degree when X is deleted.

Definition 7 (Impact of a non-attacked set of arguments). Let F =
(A, R) be an AF, y € A and X C A be a non-attacked set of arguments. Let S
be a gradual semantics. The impact of X on y is defined as follows:

Imp7(X, y) = Deg(y) — Deghe, x (1)
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0.2691/0.444  0.9806/0.75  0.02/0.333 1/1 Impi (X, a) CS Cat
X=A -0.7309 | -0.556
X = {e, f,g}| 0.0138 | 0.044
X ={b,c} |-0.2547-0.127
X ={f,g} |-0.2215-0.056
X = {c} 0.2353 | 0.0808

Fig. 1. On the left hand side, an AF with, above each argument, its scores returned
by the counting semantics (with o = 0.98) and the h-categorizer semantics [CS/Cat].
On the right hand side, the table contains the impact of some non-attacked sets of
arguments on the degree of acceptability of argument a.

Globally, this definition is implicitly included in the formula of existing
gradual semantics. A proof of this is that it is possible to compute the score
of an argument by combining its basic score and the impact of each argu-
ment in the AF: Deg(y) = 1 + Impg(A,y). Figurel illustrates this idea where
Degf¥(a) = 1+ImpLS (A, a) = 14 (Degg(a) —Degfy, 4(a)) = 1—0.7309 = 0.2691.

Measuring the impact of these sets of arguments could be interesting for
applications like the online debate platforms where people can argue on a given
topic. A debate can be formalised with an AF which has, in many cases, a
tree-shaped structure meaning that several sub-debates exist. For example, the
arguments for/against the vegan diet can be divided into several categories like
the environmental impact, health impact, psychological effects, etc. Checking
the impact of these different categories (i.e., the sub-trees in the AF) on the
topic implies to better know the influence of each part on the debate.

3.2 General Impact

As it stands, the formula of the impact (Definition 7) cannot be used for an
attacked set of arguments. Indeed, calculating the impact of {e} on a in Fig. 1
reverts to compute the impact of {e, f,g} on a because, by deleting e, the path
from f and g (the direct attackers of e) to a are also removed implying to
indirectly take into account the impact of f and g on a too.

In order to compute the impact of any set of arguments X on an argument
1y, we propose to consider the degree of acceptability of y when the arguments in
X are the strongest (i.e., when their direct attackers are deleted). The fact that
these arguments are attacked will be taken into account during the computation
of the impact of these attackers on y.

Definition 8 (Impact). Let F = (A, R) be an AF, y€ A and X C A. Let S
be a gradual semantics. The impact of X on y is:

Imp‘;’(X7 y) = Deg‘;@y(u Ry (x)) (y) - Deg‘l—s;‘eyX(y)
zeX



32 J. Delobelle and S. Villata

This definition generalises Definition 7 because if (JR] () = 0 (meaning
reX
that X is non-attacked) then the two formulae are equivalent.

As the acceptability degree of an argument is between 0 and 1 (see Definition
3), the impact of a set of arguments on an argument is in the interval [—1, 1].

Proposition 1. Let F = (A, R) be an AF, y € A and X C A. Let S be a
gradual semantics. We have Imp3(X,y) € [-1,1].

Three categories of impact can be defined, i.e., positive, negative and neutral.

Definition 9. Let F = (A, R) be an AF, y € A and X C A. Let S be a gradual
semantics. We say that X has a positive impact on y if Imp‘}sr(X, y) >0, X
has a negative impact on y if Imp}?:(X7 y) <0, X has a neutral impact on y
if Imp%(X,y) = 0.

Note that the fact that a set of arguments has a specific impact (positive,
negative or neutral) does not mean that all arguments belonging to this set also
have this specific impact. For example, in Fig. 1, we can see that, when CS is
used, the set {e, f, g} has a positive impact whereas only e has a positive impact
(f and g have a negative impact).

In order to be used for interpretability (Sect.5), we define three notations
to select the single arguments which have either a positive, negative or neutral
impact on another argument.

Notation 2. LetF = (A, R) be an AF and y € A. Let S be a gradual semantics.
15 (y) = {x € A | {z} hasapositive impact ony}
I5(y) ={z € A | {z} hasanegativeimpactony}
I5(y) = {z € A | {z} hasaneutralimpactony}.

Example 1. Let us compute the impact of each single argument in the AF
visualised in Fig.1 on a when CS is used (a = 0.98). Focusing on e, we
have Imp$S({e},a) = Deggga{ﬁq}(a) - Deggga{e}(a) = 0.4906 — 0.25530 =
0.2353. For the other arguments, we have Imp$°({a},a) = 0, Imp&3({b},a) =
Imp&S({d},a) = -0.49, Imp$&3({c},a) = 0.2353 and Imp%°({f},a) =
Imp$9({g},a) = —0.1108.

Thus, we have I5g(a) = {c,e}, Ig(a) = {b,d, f,g} and Ig(a) = {a}.

4 Balanced Impact Property

The definition of a new gradual semantics is often coupled with an axiomatic
evaluation [1,4]. Such axioms are mainly used to better understand the behaviour
of gradual semantics in specific situations. The role and impact of an argu-
ment/attack are also discussed. Such axioms have the aim to answer questions
like: Is an attack between two arguments killing (cf. Killing property [1]) or just
weakening (cf. Weakening property [1]) the target of the attack? In addition,
two semantics can both consider that an attack weakens its target (and then
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Degcs 1 0.51 0.51 0.02
De Cat : : : : : : .a .
g 1 Fq 0.5 Fo Fs 0.333

Fig. 2. Three argumentation frameworks Fi, F2, F3 showing the difference of impact
among the counting semantics and the h-categorizer semantics.

both satisfy the Weakening property) but with different levels of weakening.
Unfortunately, this distinction cannot be captured with such axioms.

For example, computing the impact of b and ¢ on a in the three AFs visualised
in Fig.2 with the h-categorizer semantics shows that their impact on a is less
important when they attack together (ImpF?*({b,c},a) = —0.667) than when
they attack it separately (ImpE™ ({b},a) + Impcat({c}, a) =—-05+-05=—-1).
Conversely, for the counting semantics, both return the same result:

Imp( ({b, ¢}, a) = —0.98 = —0.49 + —0.49 = Impg> ({b},a) + Impg] ({c}, a).

To capture this idea, we define a new property, called Balanced Impact (BI),
which states that the sum of the impact of two arguments alone on an argument
y should be equal to the impact of these two arguments together on y.

Property 1 (Balanced Impact (BI)). A gradual semantics S satisfies Balanced
Impact if and only if for any F = (A, R) and z,y, 2 € A,

Impi ({2}, ) + Inpg ({2}, ) = Imp ({z, 2}, y)
Let us check which semantics (among CS and Cat) satisfies Balanced Impact.

Proposition 2. The counting semantics satisfies Balanced Impact.
Proposition 3. The h-categorizer semantics does not satisfy Balanced Impact.

Thus, this property allows to distinguish the semantics which distribute the
impact of the arguments on another in a balanced way. Interestingly, this balance
allows to go further because it is possible to compute the score of an argument
w.r.t. a gradual semantics which satisfies BI from the impact of each single argu-
ment in the AF on this argument. Indeed, as explained in Sect. 3.1, the score of an
argument y depends on the impact of all the arguments in the AF (ImpS(A,y)),
but thanks to the balanced impact property, we can split Impg(A, y) into the
impact of each individual argument in the AF. Let us first formally define it for
the acyclic argumentation frameworks.

Definition 10. Let F = (A, R) be an acyclic AF and y € A. Let S be a gradual
semantics which satisfies BI. The score of y can be defined as follows:

Degf (y) = 1+ Y Inpf ({x}, )
zeA
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Algorithm 1. Transformation function ACY

Data: F = (A= {z1,...,2,},R) and z1 € A the targeted argument.
Result: F/ = (A’,R’) the infinite acyclic AF of F

C={zih; A ={2}; R =0 // 23 is called the universal sink vertex of F'
for every argument x; in C do
C=C\{i}

m1 + maximum value of m among z}* € A’
for every argument x; in Ry (x;) do
CcC=CuU {:IZ']}
if 2§ ¢ A’ then
| A=AUz}; R =R Ul 2™)
else
mg — (maximum value of m among z7* € A") + 1
L A =AUzl R =R Uz}, z")

J %

Example 2. Let us compute the score of a in the AF visualised in Fig. 1 using
the impact of each single argument when CS is used.

Degf *(a) =1 + (Impf°({a},a) + Imp°({b}, a) + Impf°({c}, @) + Imp*({d}, a)

+ Imp°({e}, a) + ImpE5({f}, @) + ImpF*({g}, a))
— 14 (0 — 0.49 + 0.2353 — 0.49 + 0.2353 — 0.1108 — 0.1108) = 0.2691

In order to generalise this definition for any AF, a preprocessing step is required.
Indeed, deleting an argument in a cycle removes as well its impact as the ones
of other arguments in the cycle. As the method works for acyclic AFs, we
propose to transform a cyclic AF into an infinite acyclic AF! focused on a given
argument a. Thus, as visualised in Fig. 3, we obtain a tree-shaped AF where the
root node is a itself, its parent nodes are its direct attackers, the parent nodes of its
parent nodes are its direct defenders, and so on. Algorithm 1 details the transfor-

mation mechanism called ACY.

o o0 - @Fo—F—©® -

Fig. 3. Cyclic AF transformed into its infinite acyclic AF

! From a computational point of view, the scores of each argument are computed using
a fixed-point approach. If the function used in the gradual semantics converges, the
number of iterations needed for convergence can also be used to define the maximal
depth of the tree-shaped AF.
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We can now use the transformation of an AF, denoted by F, to define the impact
of any argument z on a given argument y as the sum of the impact of all the

sub-arguments of z (z°,21,...) on y° (the universal sink vertex) in ACY,,(F).

Deﬁnition 11. Let F = (A, R) be an AF with y € A. Let F' = ACY,(F) and
X = {20 2, ...} be the sub-arguments of v € A in F'. Let S be a gradual seman-
tics which satzsﬁes BI. The impact of x ony is 0 if X = 0, otherwise it is defined
as follows:

Imp? ({},y) = Y Impg ({a'},4°)

zieX

This new definition of impact can then be used in Definition 10 to compute the
score of a given argument.

Example 3. By focusing on the AF visualised in Fig. 3, the impact of b on a is
Imp&o({b},a) = ImpEgYa(F)({bo}, a®) + ImpggYa(F)({bl}, a’) + -~ —0.63. We
also have Imp&({c},a) ~ —0.63 and ImpFS({a},a) ~ 0.3.

We obtain DegE®(a) ~0.04 =1+0.3-0.63-0.63=1+ > ImpfS({z},a).
z€e{a,b,c}

5 Interpretability of Gradual Semantics

One of the goals of interpretability for gradual semantics is to identify the ele-
ments which have an impact on the score assigned by the selected gradual seman-
tics on each argument. Definition 9 allows to assess whether an argument has a
positive, negative or neutral impact on the acceptability degree of an argument.
It allows to answer questions about the impact of certain arguments on the oth-
ers, like in the following example about the AF (F) in Fig. 1:

Q: Which arguments have a positive impact on a in F when CS is used?

A: c and e have a positive impact on a. Ils(a) ={c e}

Through the impact values (see Definition 8), it is possible to provide, for
each argument, a ranking between the arguments from the most positive to the
most negative impacting ones w.r.t. a given gradual semantics.

Definition 12 (Impact ranking). Let F = (A, R) be an AF and S be a gradual
semantics. The impact ranking tf on A with respect to y € A is defined such

that Ve, z € A, x tf z iff ImpS({z},y) > Imp3({z},v).

This ranking allows us to select, for each argument, its most positive and negative
impacting arguments, if they exist.

Definition 13. Let F = (A, R) be an AF and S be a gradual semantics. The
most positive (resp. negative) impacting arguments on the acceptability
degree of y € A are defined as follows:

PIS(y) = argmamwe%(yﬂ{z €EIt(y) |z tf z}

NI§(y) = argmaz, ey |{z € I5(y) | = =5 2}
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Example 4. Let us consider the AF depicted in Fig. 1. The impact ranking of
argument a, when CS is used, is ¢ =% e =5 a =05 f ~09 g =05 p ~09 4.
Consequently, we have PIS%(a) = {c,e} and NIS(a) = {b,d}.

In addition to providing a better understanding of the scores assigned to each
argument, this information can also be used to develop strategies during a
debate. For example, if someone wants to defend a point of view (i.e., increase
the degree of acceptability of an argument in a debate), she can identify the
argument(s) with the most negative impact and therefore look for solutions to
attack them by introducing some counter-arguments.

6 Related Work

Interpretability has already been studied in the context of extension-based
semantics in formal argumentation. Fan and Toni [11] first studied how to give
explanations for arguments that are acceptable w.r.t. the admissible semantics
in terms of arguments defending them, before formalising explanations for argu-
ments that are not acceptable w.r.t. the admissible semantics by using a dispute
tree [12]. Although the extension-based semantics and the gradual semantics
share the same goal (i.e., evaluating the arguments), the two approaches are dif-
ferent (see the discussion in [7] for more details). Consequently, the investigation
of the notion of interpretability for these two families of semantics also differs.
Concerning the gradual semantics, Amgoud et al. [2] have introduced the
concept of contribution measure for evaluating the intensity of each attack in
an argumentation graph. The Shapley value is used as contribution measure.
However, only a specific family of gradual semantics is considered (i.e., the
ones which satisfy the syntax-independent and monotonicity properties like the
h-categorizer semantics). Moreover, unlike our method which checks the impact
of all arguments in the framework, their method only measures the contribution
of direct attacks on an argument which is coherent for the family of semantics
studied in this work, but it is not necessarily the case for all existing semantics.

7 Conclusion

In this paper, we have presented a formal framework to interpret the results of
gradual semantics in abstract argumentation. More precisely, we have considered
the h-categorizer and the counting semantics, and we have formally studied the
notion of impact of an argument with respect to the acceptability degree of
another argument in the framework both for cyclic and acyclic frameworks. The
impact of arguments on the acceptability degree of the other arguments is then
employed to interpret the rationale behind the resulting ranking, and to provide
a further understanding of the reasons why attacking one argument rather than
another may be a strategically better choice.

Two main open issues will be considered as future work: first, in this paper
we do not consider the support relation [8] between arguments but we aim to
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extend our formal framework to capture this relation too given its importance
in many practical applications, and second, we plan to extend our analysis to
the other gradual semantics proposed in the literature to provide a complete
overview of the properties of the impact notion over such semantics.

Acknowledgements. This work benefited from the support of the project DGA
RAPID CONFIRMA.
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Abstract. Some abstract argumentation approaches consider that argu-
ments have a degree of uncertainty, which impacts on the degree of uncer-
tainty of the extensions obtained from a abstract argumentation frame-
work (AAF) under a semantics. In these approaches, both the uncer-
tainty of the arguments and of the extensions are modeled by means of
precise probability values. However, in many real life situations the exact
probabilities values are unknown and sometimes there is a need for aggre-
gating the probability values of different sources. In this paper, we tackle
the problem of calculating the degree of uncertainty of the extensions
considering that the probability values of the arguments are imprecise.
We use credal sets to model the uncertainty values of arguments and
from these credal sets, we calculate the lower and upper bounds of the
extensions. We study some properties of the suggested approach and
illustrate it with an scenario of decision making.

Keywords: Abstract argumentation - Imprecise probability -
Uncertainty - Credal sets

1 Introduction

The AAF that was introduced in the seminal paper of Dung [3] is one of the
most significant developments in the computational modelling of argumentation
in recent years. The AAF is composed of a set of arguments and a binary rela-
tion encoding attacks between arguments. Some recent approaches on abstract
argumentation assign uncertainty to the elements of the AAF to represent the
degree of believe on arguments or attacks. Some of these works assign uncer-
tainty to the arguments (e.g., [4,6-9,12-14]), others to the attacks (e.g., [9]),
and others to both arguments and attacks (e.g., [11]). These works use pre-
cise probability approaches to model the uncertainty values. However, precise
probability approaches have some limitations to quantify epistemic uncertainty,
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for example, to represent group disagreeing opinions. These can be better rep-
resented by means of imprecise probabilities, which use lower and upper bounds
instead of exact values to model the uncertainty values.

For a better illustration of the problem, consider a discussion between a
group of medicine students (agents). The discussion is about the diagnose of
a patient. In this context, arguments represent the student’s opinions and the
attacks represent the disagreements between such opinions. Figure 1 shows the
argumentation graph where nodes represent arguments and edges the attacks
between arguments. In the graph, two arguments represent two possible diag-
noses namely measles and chickenpox, there is an argument against measles and
two arguments against chickenpox, and there are three arguments that have no
attack relations with the rest of arguments.

| H = The patient’s temperature is 39° F = The patient was

vaccinated for chickenpox

| G = The patient has fever ‘

| A =The patient has measles %| B= The patient has chickenpox |

‘ C = She has blisters | ‘ D = She only has small red spots ‘

| E = The patient has brown eyes |

Fig. 1. Argumentation graph for the discussion about the diagnose of a patient.

Suppose that each opinion — i.e., argument — has a probability value between
0 and 1 that represents the degree of believe of each student. Since there is
more than one opinion, this means that each argument has associated a set of
probability values. Thus, we cannot model these degrees of believe by means
of an unique probability value (precise probability value), what we need is to
represent a range of the possible degrees of believe.

To the best of our knowledge, there is no work that models the uncertainty
values of arguments by using an imprecise probability approach. Therefore, we
aim to propose an approach for abstract argumentation in which the uncertainty
of the arguments is modeled by an imprecise probability value. Thus, the research
questions that are addressed in this paper are:

1. How to model the imprecise uncertainty values of arguments?

2. In abstract argumentation, several semantics have been proposed, which
return sets of arguments — called extensions — whose basic characteristic is
that these arguments do not attack each other, i.e. they are consistent. The
fact that the arguments that belong to an extension are uncertain, causes
that such extension also has a degree of uncertainty. How to calculate the
lower and upper bounds of extensions?
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In addressing the first question, we use credal sets to model the uncertainty
values of arguments. Regarding the second question, we base on the credal sets of
the arguments to calculate the uncertainty values of extensions obtained under
a given semantics. These values are represented by lower and upper bounds.
The way to aggregate the credal sets depends on a causal relation between the
arguments.

The remainder of this paper is structured as follows. Next section gives a brief
overview on credal sets and abstract argumentation. In Sect. 3, we present the
AAF based on credal sets and the causality graph concept, which are the base
for the calculation of the upper and lower bounds of extension. This calculation
is tackled in Sect.4. We study the main properties of our approach in Sect. 5.
Related work is presented in Sect.6. Finally, Sect.7 is devoted to conclusions
and future work.

2 Background

In this section, we revise concepts of credal sets and abstract argumentation.

2.1 Credal Sets

Assume that we have a finite set of events E = {E}, ..., E,,} and a probability
distribution p on this set, where p is a mapping p : E — [0,1]. According to
Levi [10], a closed convex set of probability distributions p is called a credal set.
Given an event E, a credal set for E — denoted K(FE) — is a set of probability
distributions about this event and K = {K(E), ..., K(E,)} denotes a set of all
credal sets. Every credal set has the same number of elements. In this work, we
assume that the cardinality of the credal sets of K is the same (let us denote it
by m); moreover, we assume that p;(E) denotes the suggested probability of the
agent ¢ w.r.t the event E such that 1 < i < m and E € E. Given a credal set
K(E), the lower and upper bounds for event E are determined as follows:

Lower probability: P(E) = inf{p(F) : p(F) € K(E)}
Upper probability: P(E) = sup{p(E) : p(E) € K(E)} (1)

Given [ events {Fjy,..., E;} C E and their respective credal sets K(F;) =

{p1(E1)s s o (BN}, oo, K(E)) = {p1(E)),....pm(E)}. I {E4, ..., E;} are inde-
pendent events, the lower and upper probabilities are defined as follows:

i<l
B({El, ey El}) = minlgjgm{Hizl pj(El)} Wherepj S K(EZ)

PUE, .. 1)) = mazi<jen{[ ] 93 (E)} (2)

On the other hand, when the independence relation is not assumed, the first
step is to calculate a credal set for {Eq, ..., E;} as follows:

K({Er, ... Ei}) = {pelpp = mini<j<m{p;(Er), ...p; (E1) }} where
pi(E:) € K(E;) (3)
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Based on K({Ej,..., E;}), we obtain the lower and upper probabilities:

P({{E,...,E}) = min(K({E,...,E}))
?({Eh?El}) :max(K({Elval})) (4)

Ezample 1. Let {E;, Es, E3} be three events and K(F1) = {p1(F1),p2(En),
p3(E1)}, K(E2) = {p1(E2),p2(E2), p3(E2)}, and K(E3) = {pi(E3),p2(E3),
p3(Es3)} their respective credal sets. Next table shows the values of the prob-
ability distributions for each event.

E, E, Es
p1 0.3 |05 0.75
p2 0.6 0.7 |0.55
ps 0.45 0.65 0.8

Assuming that F, E5, and F3 are independent, the lower and upper prob-
abilities of (E1, Fa, E3) are calculated as follows: P(FEq, Fa, E5) = min{0.3 x
0.5 x 0.75,0.6 x 0.7 x 0.55,0.45 x 0.65 x 0.8} = min{0.1125,0.231,0.234}; hence
P(E,, By, E3) = 0.1125 and P(Ey, Es, E3) = max{0.1125,0.231,0.234} = 0.234.

On the other hand, if we assume that E;, F5, and F3 are not independent,
then the lower and upper probabilities are calculated as follows: K (Ey, Fa, F3) =
{min{0.3,0.5,0.75}, min{0.6,0.7,0.5}, min{0.45,0.65,0.8} } = {0.3,0.55,0.45}.
Thus, B(El, E27 E3) = 0.3 and ?(El, EQ, Eg) = 0.55.

2.2 Abstract Argumentation

In this subsection, we will recall basic concepts related to the AAF defined by
Dung [3], including the notion of acceptability and the main semantics.

Definition 1 (Abstract AF). An abstract argumentation framework AF is a
tuple AF = (ARG, R) where ARG is a finite set of arguments and R is a binary
relation R C ARG X ARG that represents the attack between two arguments of ARG,
so that (A, B) € R denotes that the argument A attacks the argument B.

Next, we introduce the concepts of conflict-freeness, defense, admissibility
and the four semantics proposed by Dung [3].

Definition 2 (Argumentation Semantics). Given an argumentation frame-
work AF = (ARG, R) and a set £ C ARG:

- & is conflict-free if VA, B € £, (A,B) ¢ R.

— & defends an argument A iff for each argument B € ARG, if (B, A) € R, then
there exist an argument C € € such that (C,B) € R.

— & is admissible iff it is conflict-free and defends all its elements.

— A conflict-free £ is a complete extension iff we have £ = {A|€ defendsA}.
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~ & is a preferred extension iff it is a mazimal (w.r.t set inclusion) complete
extension.

~ & is a grounded extension iff it is the smallest (w.r.t set inclusion) complete
extension.

— & is a stable extension iff € is conflict-free and VA € ARG and A€ E, IB € &£
such that (B, A) € R.

In this article, there is a set of agents that give their opinions (degrees of
belief) regarding each argument in ARG by means of probability distributions.
The set of arguments can be compared with the events of set [E; hence, we can
say that E = ARG. The number of agents that give their opinions determines the
cardinality of credal sets. Thus, given m agents and an argument A € ARG, the
credal set for A is represented by K(A) = {p1(A),...,pm(A)}. Finally, K denotes
all the credal sets of the arguments in ARG.

3 The Building Blocks

In this section, we present the definitions of AAF based on credal sets and
causality graph. These concepts are important for the calculation of the lower
and upper bounds of extensions.

We use credal sets to model the opinions (degrees of belief) of a set of agents
about a set of arguments. Thus, each argument in an AAF has associated a
credal set, which contains probability distributions that represent the opinions
of the agents about it.

Definition 3 (Credal Abstract Argumentation Framework). An AAF
based on credal sets is a tuple AFcs = (ARG, R, K, fcs) where (i) ARG is a set
of arguments, (ii) R is the attack relation presented in Definition 1, (iii) K is a
set of credal sets, and (iv) fes : ARG — K maps a credal set for each argument
1 ARG.

Recall that the cardinality of every credal set depends on the number of
agents. Since all the agents give their opinions about all the arguments, all the
credal sets have the same number of elements.

Definition 4 (Agent’s Opinions). Let AFcs = (ARG, R, K, fes) be a Credal
AAF and AGT = {ag, ...,agm} a set of agents. The opinion p; of an agent ag;
(for 1 < i <m) is ruled as follows:

1. If A € ARG, there is p;(A) € K(A) where K(A) € K.

2. VA € ARG, 0 < p;(A4) < 1.

Regarding the probability values given to the arguments, it is important to
consider the notion of rational probability distribution given in [8]. According
to Hunter [8], if the degree of belief in an argument is high, then the degree
of belief in the arguments it attacks is low. Thus, a probability function p is
rational for an AF¢g iff for each (A, B) € R, if p(A) > 0.5 then p(B) < 0.5
where p(A) € K(A) and p(B) € K(B).
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Ezample 2. Consider that AGT = {ag1, ags, ags,ags}. The Credal AAF for the
example given in Introduction is AF¢s = (ARG, R, K, fcs) where:

ARG = {A,B,C,D,E,F,G.H)}

-R= {(Av B),(B,A),(F,B),(D,B),(C, A)}

- K={K(A4),K(B),K(C),K(D),K(E),K(F),K(G),K(H)}. The table below
shows the credal set of each argument

- fes(A) = K(A), fes(B) = K(B), ..., fes(H) = K(H)

- |K() K(B)|K(C)| K(D) K(B)| K(F)| K(G)| K(H)
p1 02 08 |02 075 08 075 07 08
p2 0.7 025 075 015 065 02 08 09
p3 055 [0.45 |0.4 0.5 0.8 055 |1 1
pa 075 01 02 08 07 08 09 09

In a Credal AAF, besides the attack relation between the arguments, there
may be a causality relation between them. To make this discussion more concrete,
consider the following conflict-free sets:

— {G, E}: Having fever does not have to do with the eyes’ color of the patient
and vice-verse, so there is no relation between these arguments. This means
that they are independent from each other.

— {A,G} and {A, F}: In both cases the arguments are related in some way. In
the first case, having fever (G) is a symptom of (causes) measles (A) and in
the second case, the fact that the patient is vaccinated for chickenpox (F')
causes that he may have measles and not chickenpox (A).

Definition 5 (Causality Graph). Let AFcs = (ARG, R, K, fes) be a Credal
AAF, a causality graph C is a tuple C = (ARG, Rcay) such that:

(i) ARG = ARG U ARG_, U ARG, is a set of arguments,

(i) Reaw € ARG X ARG represents a causal relation between two arguments of
ARG (the existence of this relation depends on the domain knowledge), such that
(A,B) € Rcuy denotes that argument A causes argument B. It holds that if
(A,B) € R, then (A,B) ¢ RCAU and (B7A) ¢ Rcmj,

(ZZZ) ARG_ = {B‘(A,B) € RCAU}: ARG_, = {A|(A,B) € RCAU}7 and ARG, =
{C|C € ARG — (ARG_ U ARG_.)},

(iv) ARG and ARG_, are not necessarily pairwise disjoint; however, (ARG._ U
ARG_,) NARG, = 0.

Ezample 8. A causality graph for the Credal AAF of Example 2 is C =
({4,B,C,D,E,F,G,H},{(D,A),(F,A),(H,A),(G,A),(H,G),(G, B),(C,B)})
(see Fig. 2), where ARG, = {A, B,G}, ARG, = {D, F, H,G,C}, and ARG, = {E'}.
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Fig. 2. Causality graph for Example 3. Traced edges represent the causality relation.

4 Lower and Upper Bounds of Extensions

Section 2 presented the definition of conflict-free (cf) and admissible (ad) sets
and complete (co), preferred (pr), grounded (gr), and stable (st) semantics.
Considering the causality graph, the arguments of an extension &, (for x €
{cf,ad, co,pr,gr,st}) may belong to ARG_,, ARG._, or ARG,. Depending on it,
the calculation of the probabilistic lower and upper bounds of each extension is
different. Thus, we can distinguish the following cases: (i) the extension is empty,
(ii) the extension has only one argument, and (iii) the extension includes more
than one argument.

Definition 6 (Upper and Lower Bounds of Extensions). Let AFcs =
(ARG, R, K, fcs) be a Credal AAF, C = (ARG, Reay) a causality graph, and Ex C
ARG (for x € {cf,ad, co,pr,gr,st}) an extension under semantics x. The lower
and uppers bounds of & are obtained as follows:

1. If & = {}, then P(&;) =0 and P(&) = 1, which denotes ignorance.

2. If |&| = 1, then P(&) = P(A) and P(&) = P(A) s.t. A € &, where

P(A) and P(A) are obtained by applying Eq. (1).

3. If |E| > 1, then (P(Ey), P(Eyx)) = UL_BOUNDS(E,) (see Algorithm 1).

Consider the following functions:

- feaw(A) = {B[(B, A) € Reaw U fonu(B)}
- TOP_CAU(E,) = {A|A € ARG_ N &, and VB s.t. A € foy(B), B & &)}
- FREE_CAU(&) = {A|A € ARG, N &, and VB € fe(A), B ¢ &}

TOP_CAU and FREE_CAU consider only the arguments of & and their causal
relations restricted to &. The former returns the arguments that are caused by
any of the other argument in & but do not cause other argument(s) in &. If
there is an argument that belongs to ARG and ARG_, in C but the argument(s)
caused by it are not in &, then it is returned by TOP_CAU. The latter returns the
arguments that belong to ARG_, but whose caused arguments do not belong to
extension &.
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Algorithm 1. Function UL_BOUNDS

Input: An extension & and a causality graph C = (ARG, Rcav)
Output: (P(&), P(&))

1:
2:

3
4
5:
6
7
8

9:

10:
11:

12:
13:
14:
15:
16:
17:

18:

19:
20:
21:

if (&xNARG._) # 0 then
ARG?. = TOP_CAU(&y)
for i = 1 to |ARG” | do
Ey =AU (feau(A) N &) _
Calculate K(EY) //Calculate the credal set for EY by applying Equation (3)
end for

: end if
: ARG, = &, N ARG,

if (& NARG_) # 0 then
ARG”, = FREE_CAU(&y)
end if
//* — & contains only one set of related arguments — *//
if |ARGY | == 1 && ARG, == () && ARG”, == () then
// Apply Equation (4) for obtaining the lower and upper bounds of Ex

P(&) = P(ARGY), P(&x) = P(ARGY)
else
//Apply Equation (2) for obtaining the lower and upper bounds of Ex
P(&) = E(Ug'l“‘“;/—‘ E’ U ARG, U ARG".),
P(&) = P(U="' B, U ARG, U ARG".)
end if -
return (P (&, P(&)

Ezample 4 (Cont. Example 2 considering the causality graph of Example 3).
After applying the semantics presented in Definition 2, we obtain that & =
Em = Ex = Er = {C,E,F,D, H,G}. Since this extension has more than one
element, the Algorithm 1 has to be applied:

We first evaluate the number of the caused arguments: & NARG.. = {G} (for
y € {CO,PR,GR, ST}), then we obtain TOP_CAU(Ey) = {G} and fe(G) = {H};
hence, Eq = {G, H}. At last, we calculate the credal set for Eg by applying
Eq.(3): K(Eg) ={0.7,0.8,1,0.9}.

Next, we obtain those arguments that belong to the extension and that neither
cause any other argument nor are caused by any other argument: ARG, = {E'}.
Then, we evaluate the number of causing arguments: & NARG_ = {C, D, F'}
and we obtain FREE_CAU(Ey) = {C, D, F'}.

Since & do not contains only related arguments, we apply Eq. (2) considering
K(Eg),K(F),K(C),K(D), and K(F).

Finally, we obtain: (P(&), P(&y) = [0.0117,0.0806].

Let us also take some conflict-free sets: £ = {A,F,H,D,E,G}, £& =

{A,F,H,D,G}, &3 = {B,C,G,H},and £ = {A}. The lower and upper bounds

for

these extensions are: (P(E&), P(E&)) = [0.13,0.525], (P(E%), P(EZ%)) =

[0.2,0.75], (P(E%), P(E4)) = [0.02,0.1875], and (P(EL), P(EL)) = [0.2,0.75].
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So far, we have calculated the lower and upper bounds of extensions obtained
under a given semantics. The next step is to compare these bounds in order to
determine an ordering over the extensions, which can be used to choose an exten-
sion that resolves the problem. In this case, the problem was making a decision
about a possible diagnosis between two alternatives: measles or chickenpox. We
are not going to tackle the problem of comparing and ordering the extensions
because it is out of the scope of this article; however, we can do a brief analysis
taking into account the result of the previous example. Arguments A and B
represent each of the alternatives. The unique extension under any semantics y
does not include any of the alternatives. On other hand, free-conflict sets Eg,
EZ and &G include argument A and conflict free set £ includes argument B.
We can notice that there is a notorious difference between the lower and upper
bounds of & and the lower and upper bounds of any of the other conflict-free
sets. In fact, the lower and upper bounds of the conflict-free sets have a bet-
ter location. This may indicate that lower and upper bounds of extensions that
include one of the alternatives are better than others of extensions that do not
include any of the alternatives. This in turn indicates that using uncertainty in
AAF may improve the resolutions of some problems, which was demonstrated
in [7] for precise uncertainty and it is showed in the example by using imprecise
uncertainty.

5 Properties of the Approach

In this section, we study two properties of the proposed approach that guarantee
(i) that the approach can be reduced to the AAF of Dung and (ii) that the values
of both the lower and upper bounds of the extensions are between 0 and 1.

Given a Credal AAF AFcs = (ARG, R, K, fes), AFes is mazimal if VA € ARG
it holds that p; = 1 (1 <4 < m) where p; € K(A) and K(A) = fes(A) and AFes
is uniform if 0 < p; < 1. Be maximal transforms an AF¢s into a standard AAF
of Dung, which means that every agent believes that every argument is believed
without doubts. The next proposition shows that a AF¢s can be reduced to an
AAF that follows Dung’s definitions.

Proposition 1. Given a credal AAF AFcs = (ARG, R, K, fcs) and a extension
& (x € {cf,ad,co,pr,gr,st}). If AFcs is mazrimal, then VE; C ARG, P(&) =

P(&,) = 1.

Proof. Since AF¢s is maximal, then VA € ARG, K (A) = {14, ..., 1;»}. In order to
obtain the P(&,) and P(&,), Egs. (1), (2), or (4) have to be applied. For Eq. (1):
the inf{1,...,1} = sup{l,...,1} = 1. For Eq.(2): VA, [[{1,...,1} = 1, so the
minimum and maximum of a set composed of 1s is always 1. The same happens
with Eq. (4).

Proposition 2. Given a credal AAF AFcs = (ARG, R, K, fes) and a extension
& (x € {cf,ad,co,pr,gr,st}). If AFcs is uniform, then VE, C ARG, 0 <
P(&)<1and0< P(&) <1.
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Proof. In order to obtain the P(&;) and P(&;), Egs. (1), (2), or (4) have to be
applied. Since AF¢s is uniform, we can say that the minimums (infimums) and
maximums (supremums) are always between 0 and 1. Besides, the product of
two numbers between 0 and 1 is always between 0 and 1.

6 Related Work

In this section, we present the most relevant works — to the best of our knowl-
edge — that study probability and abstract argumentation. These works assign
probability to the arguments, to the attacks, or to the extensions and all of them
use precise probabilistic approaches. Thus, as far as we know, we are introducing
the first abstract argumentation approach that employs imprecise probabilistic
approaches.

Dung and Thang [4] propose an AF for jury-based dispute resolution, which
is based on probabilistic spaces, from which are assigned probable weights —
between zero and one — to arguments. In the same way, Li et al. [11] present and
extension of Dung’s original AF by assigning probabilities to both arguments and
defeats. Hunter [7] bases on the two articles previously presented and focuses on
studying the notion of probability independence in the argumentation context.
The author also propose a set of postulates for the probability function regarding
admissible sets and extensions like grounded and preferred. Following the idea
of using probabilistic graphs, the author assigns a probability value to attacks
in [9].

Thimm [13] focuses on studying probability and argumentation semantics.
Thus, he proposes a probability semantics such that instead of extensions or
labellings, probability functions are used to assign degrees of belief to arguments.
An extension of this work was published in [14]. Gabbay and Rodrigues [6] also
focus on studying the extensions obtained from an argumentation framework.
Thus, they introduce a probabilistic semantics based on the equational approach
to argumentation networks proposed in [5].

7 Conclusions and Future Work

This work presents an approach for abstract argumentation under imprecise
probability. We defined a credal AAF, in which credal sets are used to model the
uncertainty values of the arguments, which correspond to opinions of a set of
agents about their degree of believe about each argument. We have considered
that — besides the attack relation — there also exists a causality relation between
the arguments of a credal AAF. Based on the credal sets and the causality rela-
tion, the lower and upper bounds of the extensions — obtained from a semantics
— are calculated.

We have done a brief analysis about the problem of comparing and ordering
the extensions based on their lower and upper bounds; however, a more complete
analysis and study are necessary. In this sense, we plan to follow this direction
in our future work. We also plan to further study the causality relations, more
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specifically in the context of credal networks [2]. Finally, we want to study the
relation of this approach with bipolar argumentation frameworks [1].
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Abstract. Epistemic graphs are a recent proposal for probabilistic argu-
mentation that allows for modelling an agent’s degree of belief in an argu-
ment and how belief in one argument may influence the belief in other
arguments. These beliefs are represented by probability distributions and
how they affect each other is represented by logical constraints on these
distributions. Within the full language of epistemic constraints, we dis-
tinguish a restricted class which offers computational benefits while still
being powerful enough to allow for handling of many other argumenta-
tion formalisms and that can be used in applications that, for instance,
rely on Likert scales. In this paper, we propose a model-based theorem
prover for reasoning with the restricted epistemic language.

Keywords: Probabilistic argumentation - Epistemic argumentation -
Abstract argumentation

1 Introduction

Both the constellations approach [4-6,9,11,14,16] and the epistemic approach |3,
10,13,18-20] to probabilistic argumentation offer a valuable way to represent and
reason with various aspects of uncertainty arising in argumentation. The epistemic
uncertainty is seen as the degree to which an argument is believed or disbelieved,
thus providing a more fine—grained alternative to the standard Dung’s approaches
when it comes to determining the status of a given argument. Following the results
of an empirical study with participants [17], epistemic graphs have been introduced
as a generalization of the epistemic approach to probabilistic argumentation [8,12].

In this approach, the graph is augmented with a set of epistemic constraints
that can restrict the belief we have in an argument with a varying degree of
specificity and state how beliefs in arguments influence each other. This is illus-
trated in Example 1. The graphs can therefore model both attack and support
as well as relations that are neither positive nor negative. The flexibility of this
approach allows us to both model the rationale behind the existing semantics
as well as completely deviate from them when required. The fact that we can
specify the rules under which arguments should be evaluated and that we can
include constraints between unrelated arguments permits the framework to be
more context—sensitive. It also allows for better modelling of imperfect agents,
which can be important in multi-agent applications.
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( A = The train will arrive at 2pm because it is timetabled for a 2pm arrival. )
= - +
B = Normally this C = The train ap- D = The live travel
train service ar- pears to be travelling info app lists it as
rives a bit late. slower than normal. arriving on time.

Fig. 1. Example of an epistemic graph. The + (resp. -) label denote support (resp.
attack) relations. These are specified via the constraints given in Example 1.

Example 1. Consider the graph in Fig. 1, and let us assume that if D is strongly
believed, and B or C is strongly disbelieved, then A is strongly believed, whereas
if D is believed, and B or C is disbelieved, then A is believed. Furthermore, if B
or C is believed, then A is disbelieved. These constraints could be reflected by
the following formulae: 7 : p(D) > 0.8 Ap(BVv C) < 0.2 = p(A) > 0.8; ¢2 : p(D) >
0.5Ap(BvC)<0.5=p(a)>0.5; and ¢3:p(BAC)>0.5= p(A) <0.5.

Epistemic graphs are therefore a flexible and valuable tool for argumentation,
and [12] has already provided methods for harnessing them in user modelling
for persuasion dialogues. However, reasoning with the full epistemic language
is non-trivial as the size of a probability distribution (i.e. the number of sets of
arguments needing an assignment) is exponential w.r.t. the number of arguments,
and there can potentially be infinitely many distributions satisfying a given set
of constraints. As presented in [8], for certain applications a restricted form of
logical constraint can be used, i.e. one where the probability values appearing
in constraints and distributions come from a finite, restricted set of values. This
may be appropriate if we want to represent beliefs in arguments as in a Likert
scale [15], or we want to use epistemic graphs as a medium for existing extension-
based or labeling-based methods. It also has the benefit of always producing a
finite set of answers.

In order to reason with constraints based on a restricted set of values, we
present a model-based theorem prover in this paper which can be used to check
(1) whether constraints are consistent; (2) if one constraint entails another; and
(3) find satisfying distributions. Our aim in this paper is to present a simple
baseline system that can be implemented easily and used for small examples.
This will help us understand some of the underlying issues in developing theorem
provers for this formalism, and serve as a comparison for future systems.

We proceed as follows: Sect. 2 reviews epistemic graphs from [8]; Sect. 3 intro-
duces a method for identifying the models for a constraint and Sect.4 an algo-
rithm for model-based reasoning (see [1] for proofs); and Sect.5 discusses the
contributions.

2 Epistemic Language

This section reviews the necessary basic definitions from [8]. We assume a
directed graph G = (V, R), where each node in V' denotes an argument (as illus-
trated by Fig.1), an edge in R denotes a relation between arguments and a



52 A. Hunter and S. Polberg

labeling £ : R — 2{*=*} <\ {@} tells us whether it is positive (+), negative (=),
or neither (*). We use Nodes(G) and Arcs(G) to denote V' and R respectively.
Epistemic graphs are simply labelled directed graphs equipped with a set of
epistemic constraints (defined next) for capturing the influences between argu-
ments. Both the labelled graph and the constraints provide information about
the argumentation. In this paper, we focus on the constraints rather than on the
full power of the graphs, and refer the readers to [8] for further details.

Like previously stated, the restricted epistemic language only allows values
from a certain, finite set to appear in the formulae. However, in order for the
approach to be coherent, this set should meet certain basic requirements. We
thus use the notion of a (reasonable) restricted value set, which has to be closed
under addition and subtraction (assuming the resulting value is still in the [0, 1]
interval) and contain value 1.

Definition 1. A finite set of rational numbers from the unit interval II is a
reasonable restricted value set iff 1 € Il and for any x,y € II it holds that if
r+y<l, thenx+yell, and if xt —y >0, then x —y € II.

We can also create subsets of this set according to a given inequality and
threshold value as well as sequences of values that can be seen as satisfying a
given arithmetical formula, which will become useful in the next sections:

Definition 2. With 1Ty, = {y € II | y#x} we denote the subset of II obtained
according to the value x and relationship # € {=,#,>,<,>,<}. The combination

set for IT and a sequence of arithmetic operations (*1,...,*x) where *; € {+,-}
and k > 0 is defined as:
Hxv(*h---a*k) _ {(U) |U€H;§&} k=0
# {(v1,. -y 0k41) | Vs € I, 01 *1 ... % Vg1 Fx ) otherwise

Ezample 2. Let IT; = {0,0.5,0.75,1}. We can observe that it is not a restricted
value set, since 0.75 — 0.5 = 0.25 is missing from [I;. Its modification, ITs =
{0,0.25,0.5,0.75,1}, is a restricted value set. The subsets of [T for x = 0.25
under various inequalities are as follows: IT5S = {0.5,0.75,1}, II,Z = {0}, II3 =
{0.25,0.5,0.75,1}, II,Z = {0,0.25}, II1% = {0,0.5,0.75,1}, and IT,Z = {0.25}.

Assume we have a reasonable restricted value set I3 = {0,0.5,1}, a sequence
of operations (+,—), an operator = and a value x = 1. In order to find an appro-
priate combination set, we are simply looking for triples of values (71,72, 73) s.t.
x+y—2z = 1. This produces six possible value sequences, i.e. H2i7(+’7) ={(0,1,0),
(0.5,0.5,0), (0.5,1,0.5), (1,0,0), (1,0.5,0.5), (1,1,1)}.

2.1 Syntax and Semantics

Based on a given graph and restricted value set, we can now define the epistemic
language. An epistemic formula can be seen as a propositional formula built
out of components stating how the sums and/or subtractions of probabilities of
argument terms should compare to values from I7.
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Definition 3. The restricted epistemic language based on G and a reason-
able restricted value set II is defined as follows:

— a term is a Boolean combination of arguments. We use v, A and — as con-
nectives and can derive secondary connectives, such as —, as usual. Terms(G)
denotes all the terms that can be formed from the arguments in G.

- an operational formula is of the form p(a;) *1 ... *k-1 p(ag) where all o; €
Terms(G) and % € {+,—-}. OForm(G) denotes the set of all possible operational
formulae of G and we read p(a) as the probability of «.

- an epistemic atom is of the form y#x where # € {=,+,>,<,>,<}, x € IT and
~ € OForm(G).

— an epistemic formula is a Boolean combination of epistemic atoms.
EForm(G) denotes the set of all possible epistemic formulae of G.

The full, unrestricted language simply permits x to be a rational value in the
unit interval, hence we do not recall it here.

Ezample 3. Let IT = {0,0.5,1}. In the epistemic language restricted w.r.t. I, we
can only have atoms of the form S#0, 5#0.5, and S#1, where 3 € OForm(G)
and # € {=,#,>,<,>,<}. From these atoms we compose epistemic formulae using
the Boolean connectives, such as p(A) + p(B) < 0.5 A p(C) = 0.

The semantics for constraints come in the form of belief distributions, which
assign probabilities to sets of arguments. Their restricted counterparts enforce
that the assigned probabilities come from a restricted value set:

Definition 4. A belief distribution on arguments is a function P
oNodes(9) _, 10,1] s.t. Y renodes(g) P(I") = 1. With Dist(G) we denote the set
of all belief distributions on Nodes(G). P is restricted w.r.t. IT iff for every
X ¢ Nodes(G), P(X) e II'. With Dist(G,II) we denote the set of restricted
distributions of G.

From the probability distribution, we can derive the probability of a term and
therefore of an argument. Each I" € Nodes(G) corresponds to an interpretation
of arguments. We say that I' satisfies an argument A and write ' = A iff Ae .
Essentially E is a classical satisfaction relation and can be extended to complex
terms as usual. For instance, I' = ~a iff ' aand I'Eanfif 'eaand I'E S.
With this, we can define the following:

Definition 5. The probability of a term is defined as the sum of the proba-
bilities (beliefs) of its models: P() = ¥ prenodes(g) s.t. rea £(17)-

We say that an agent believes a term « to some degree if P(a) > 0.5, disbe-
lieves « to some degree if P(«) < 0.5, and neither believes nor disbelieves o when
P(«) = 0.5. Please observe that in this notation, P(A) stands for the probability
of a simple term A (i.e. sum of probabilities of all sets containing A), which is
different from P({A}), i.e. the probability assigned to set {A}.

Using this, we can finally produce (restricted) satisfying distributions of a
given atom, and therefore of a given formula:

! We note that this is a simpler, but still equivalent version of the notion in [8].
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Definition 6. Let ¢ : p(c;)*1...xp_1p(ak)#b be an epistemic atom. The satis-
fying distributions, or equivalently models, of ¢ are defined as Sat(p) = {P’ €
Dist(G) | P(c;) *1 ... *g-1 P(ag)#b}. The restricted satisfying distribution
of o w.r.t. IT are defined as Sat(v, IT) = Sat(v) n Dist(G, IT).

The set of satisfying distributions for a given epistemic formula is as follows
where ¢ and 1) are epistemic formulae: Sat(¢ A1) = Sat(¢) nSat(v); Sat(pvp) =
Sat(¢)uSat(v)); and Sat(—-¢) = Sat(T)\Sat(¢). For a set of epistemic formulae ¢ =
{b1,...,0n}, the set of satisfying distributions is Sat(®) = Sat(¢p1)n...nSat(¢py,).
The same holds for the restricted scenario.

Ezample 4. Let us assume we have a formula v : p(A) + p(B) < 0.5 on a graph
s.t. {A,B} = Nodes(G). There can be infinitely many satisfying distributions of
this formula, including Py s.t. P1(@) =1, Py s.t. Po(@) = P,({A}) = 0.5, P5 s.t.
P3(2) = Ps({B}) = 0.5, or Py s.t. Py(@) = 0.68, P4({A}) = 0.13 and P4({B}) =
0.19 (omitted sets are assigned 0). In contrast, a probability distribution Ps s.t.
P5({A,B}) = 0.3 and P5(@) = 0.7 would not be satisfying. If we considered a
restricted value set IT = {0,0.5,1}, then we could observe that P; to P would
be the all and only restricted satisfying distributions of .

2.2 Epistemic Entailment Relation

In order to reason with the restricted epistemic language, we can use the con-
sequence or the entailment relation. Given the focus of this paper, we will now
recall the latter. From now on, unless stated otherwise, we will assume that the
argumentation framework we are dealing with is finite and nonempty (i.e. the
set of arguments in the graph is finite and nonempty).

Definition 7. Let IT be a reasonable restricted value set, » € EForm(G,IT) an
epistemic formula and {¢1,...,¢0,} € EForm(G,IT) a set of epistemic formu-
lae. The restricted epistemic entailment relation w.r.t. IT, denoted |7, is
defined as follows.

{1,...,ont lET ¥ iff Sat({d1,...,dn}, IT) € Sat(v, IT)

Ezample 5. Consider IT = {0,0.25,0.5,0.75, 1} and restricted epistemic formulae
p(A) +p(-B) <1 and p(A) + p(-B) < 0.75. It holds that

{p(8) + p(-B) <0.75} 1=z p(A) + p(-B) < 1

It is worth noting how changing the restricted valued set affects the entail-
ment. We can observe that a less restricted entailment (i.e. one with IT permit-
ting more values) implies a more restricted one, but not necessarily the other
way around, as seen in Example 6.

Proposition 1. (From [8]) Let II; ¢ IIy be reasonable restricted value sets.
For a set of epistemic formulae & € EForm(G,II1), and an epistemic formula

v € EForm(G), if @ 1=, ¥, then @ =, .
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Ezxample 6. Consider two formulae ¢ : p(A) # 0.5 and @9 : p(A) =0vp(a) =1
and a reasonable restricted set IT = {0,0.5,1}. We can observe that Sat(y1, IT) =
Sat(pa,II) and therefore {¢1} e @o. However, if we had set such as II' =
{0,0.25,0.5,0.75,1}, we could then consider a probability distribution P s.t.
P(4) =0.75 in order to show that Sat(y1) ¢ Sat(p2).

3 Model-Based Reasoning

A simple route to theorem proving is to use the definition of entailment. This
involves identifying the models of the formulae by decomposing them to find the
models of their subformulae, and then composing these sets of models to identify
the models of the original formulae. We first define decomposition rules to split
the formulae (Definition 8). These rules are used to reduce an epistemic formula
to epistemic atoms of the form p(«) = v (if possible), and then finally to a set
of models that satisfy the epistemic atom. Once we have decomposed a formula,
we use the model propagation function (Definition 10) to combine the models of
the epistemic atoms into models of the original formula.

Definition 8. The decomposition rules are as follows where for each rule,
the condition is an epistemic formula, and where II is a reasonable restricted
value set and # € {=,+,>,<,>,<}.

— The propositional rules are as follows where x|y denotes that x is the left
child and y is the right child, and from left to right, they are the conjunction,
disjunction, implication, and negation rules.

oA oV ¢~ —¢

o1y o1y K ¢

— The operational rules are defined as follows, where either n > 0 or # is
different from =.

plar) *1 ... %y plap1)#e
V(v1 .... Un+1)EH:;,(*1 ,,,,, *n) (p(Oél) =V A... /\p(ak) = Un+1) Zf H;& *+J

p(al) *1...%p p(an+1)#x
%] otherwise

— The term rule is defined as follows.

p(a)=v
{P eDist(G, 1) | (ZXgNodes(g) s.t. xea P(X)) =0}

The decomposition of an epistemic formula using the above decomposition
rules can be represented by a decomposition tree which we define next. For this,
we assume that for a node n in a tree T, Children(n) is the set of children of n.
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Definition 9. A decomposition tree for an epistemic formula ¢ € EForm(G)
is a tree where (1) the root is labelled with ¢; (2) each non-leaf node is labelled
with an epistemic formula ¢ € EForm(G); (3) each non-leaf node is associated
with a decomposition rule such that the epistemic formula labelling the node
satisfies the condition for the decomposition rule, and the child (or children in the
case of the proposition rules) are obtained by the application of the decomposition
rule; and (4) each leaf is a (possibly empty) set of models. Rule(n) denotes the
decomposition rule that was applied to a non-leaf node n.

Each decomposition tree is exhaustive, i.e. no further decomposition rules
can be applied without violating the conditions of it being a decomposition tree.
A possible decomposition tree can be seen in Fig. 2 paired with Table 1.

| P(A) > 0.5 P(B) < 0.5

~(P(8) > 0.5)

P(4)>0.5

[(P(®)=0)v (P(3)=05)]

P(B)=0

.

|{P07P1,P4}| |{P57P67P77P8}|

Fig. 2. A decomposition tree. Let Py to Py be defined as in Table 1. For the root, the
set Of models is {Po, Pl, P27 P4, P57 Pﬁ7 P7, Pg, Pg}

Table 1. Models for Fig. 2 where IT = {0,0.5,1} and Nodes(G) = {A,B}

Po\Pr\ P |Ps| Py | Ps |Ps | Pr | Ps | Py
%] 1 /0 |0 |0 |0.5/05][05(0 |0 |O
{4} 0|1 [0 |0 |05]/0 |O |05]/0.5/0
{B} 0 /0 1 |0 |0 |05/0 |05]|0 |05
(A8} 0 0 0|1 0 0 050 0505

Each leaf of a decomposition tree is a, possibly empty, set of models (i.e. a set
of probability distributions) that satisfy the epistemic formula at its parent node.
In other words, the models of the leaf can be used to determine the models of its
parent. Furthermore, for each non-leaf node, its models can be used to determine
the models of its parent. So in general, for any non-leaf node, its models are a
function of the models of its children, as we specify next.
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Definition 10. For a decomposition tree T', the model propagation function
for T, denoted Models, is defined a follows,

1. IfRule(n) is the conjunction rule, and Children(n) = {ny,ns}, then Models(n)
= Models(n;) n Models(ns).

2. If Rule(n) is the disjunction or implication rule, and Children(n) = {n1,na},
then Models(n) = Models(n;) u Models(ns).

3. If Rule(n) is the negation rule, and Children(n) = {n1}, then Models(n) =
Sat(T, IT)~Models(n1).

4. If Rule(n) is the term rule or the operational rule, and Children(n) = {n1},
then Models(n) = Models(ny).

For any given epistemic formula, the decomposition trees for the epistemic
formula have the same set of leaves where Leaves(T") is the set of leaves in T

Proposition 2. If Ty and Ty are decomposition trees for ¢, then Leaves(Ty) =
Leaves(T3).

Furthermore, the model propagation function ensures that the decomposi-
tions trees for an epistemic formula have the same set of models at the root.

Proposition 3. If T1 and Ty are decomposition trees for ¢, and the root of Ty
(respectively Ty ) is ny (respectively ny), then Models(nq) = Models(ns).

For each decomposition rule, the models of the epistemic formula in the
condition of the rule are a function of the models in the consequent of the rule.
For the conjunction (respectively disjunction) propositional decomposition rule,
with condition ¢, and consequent 1y | 1o, P € Sat(¢, IT) iff P € Sat(vy, ) and
(respectively or) P € Sat(ws, IT). For the negation propositional decomposition
rule, with condition ¢, and consequent @, P € Sat(¢,II) iff P ¢ Sat(¢y,II).
For the term rule or the operational rule, the models of the condition of the
rule are the models of the consequent. Hence, given a decomposition tree for
an epistemic formula, the models of that formula are the models returned by
backwards induction.

Proposition 4. If T is a decomposition tree for epistemic formula ¢, and the
root of the tree is node n, then Sat(¢, IT) = Models(n).

So constructing a decomposition tree is a method that is guaranteed to return
exactly the models for the epistemic formula at the root.

4 Model-Based Theorem Proving

Our proposal for model based theorem proving is based on the Entailment
method given in Algorithm 1 which is defined in terms of the GetModels. The
advantage of the algorithm is that it is straightforward to implement.
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Entailment(¢,)
return GetModels(¢) c GetModels (7))

GetModels(¢);
if ¢ = 1 A 2 for some 1,2
return GetModels(t1) N GetModels(t)2)
else if ¢ = i1 v 12 for some 11,12
return GetModels(t1) U GetModels(1)2)
else if ¢ = ¢1 — 2 for some 1,2
return GetModels(—1) U GetModels(v2)
else if ¢ = - for some ¥
return Dist(G, IT) \ GetModels(v)
else if ¢ = p(a) = v for some a
return {P € Dist(G, IT) | (X xcnodes(0) s.t. xra F(X)) = v}
else if ¢ =p(a1) *1 ... *n p(@n+1)F#x for some ai,...,an+1
if H;,(*l ,,,,, *p) =@
return g

else return U o.0e1sein) (Nicicns1 GetModels(p(a;) = vi))

Loy Unt1 €T

Algorithm 1: Entailment which if the entailment holds, returns true, oth-
erwise returns false.

Proposition 5. Algorithm 1 terminates.

However, the disadvantage of this algorithm is that it is computationally
naive, and does not scale well, because it considers the potentially large number
of probability distributions. In order to investigate the algorithm in practice, we
implemented it in Python (see [2] for code), and ran an evaluation on a Windows
10 HP Pavilion Laptop (with AMD A10 2 GHz processor and 8 GB RAM) on a
number of examples taken from [8]. For instance, for the following formulae, we
obtained the results in Table 2 for time taken for entailment.

(1) p(A+B) <1 (2) p(a) >0.5 > P(B)<0.5
(3) p(8) <0.9Ap(4)>0.7 (4) p(8) > 0.7 A =(p(A) >0.9)
(5) (p(B) <0.5Ap(C)>0.5Ap(D) >0.5) > p(B) >0.5

(6) (p(B) <0.5Ap(CAD)>0.5) > p(B)>0.5

(7) p(8) v p(B) vp(C) vp(D)>05 (8) p(AVBvVCvVD)>0.5

Since the implementation is based on generating and manipulating sets of
models, the number of models is the dominant factor in the running time. To
illustrate this, we focus on the method in the implementation for generating
the methods. For example, for generating the models for |II| = 5, the running
time with |[Nodes(G)| = 2 (respectively 3, 4, and 5) is 0.001 (respectively 0.032,
1.927, and 59.12) s, and so the theoretical results (that are discussed below) are
reflected in the running time. Essentially, the implementation takes a brute-force
approach since it generates all the models for the given set of arguments in the
graph and the restricted value set, before decomposing the formulae and finding
the models of the subformulae.
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Table 2. Average running time in seconds for implementation of entailment on exam-
ples of formulae for each column where IT = {0,0.25,0.5,0.75,1}. Time is average of 10
runs for each pair. For each pair (z,y), « is the assumption and y is the conclusion of
the entailment. For all pairs, entailment holds, except for (6,5) and (8,7).

(1,2)1(2,1)3,4) (4,3) (5,6) (6,5) (7,8)](8T7)
Time (secs) | 0.037  0.036 |0.008 | 0.010 |1.023 | 1.032  137.6 | 122.0

For comparison, we look at the number of models that are generated in
general. Given IT and Nodes(G), we can calculate the number of probability
distributions for any language for epistemic formulae. For this, we say that a set
of rational numbers = is compatible with an integer n iff there is a bijection
f:52->{0,1,...,n} and a value k € N such that for each x € =, f(x) = k.
For example, = = {0,0.5,1} is compatible with 2 and = = {0,0.25,0.5,0.75,1} is
compatible with 4.

Lemma 1. If II is a reasonable restricted value set, then there is an integer n
s.t. IT is compatible with n.

Proposition 6. Let II be compatible with integer n. The cardinality of the set of
probability distributions for II and G is given by the following binomial coefficient
(using the stars and bars method [7]) where k = 2INodes(9)]

(n+k—1) _(n+k-1)!
~ (k-1)n!

So, for a set IT = {0,0.5,1} and |Nodes(G)| = 2, we have |Dist(G), II| = 10, for
IT = {0,0.25,0.5,0.75,1} and |Nodes(G)| = 2, we have |Dist(G, IT)| = 35, and for
I7T ={0,0.25,0.5,0.75,1} and |Nodes(G)| = 5, we have |Dist(G, IT)| = 52, 360.

n

5 Discussion

Epistemic graphs offer a rich formalism for modelling argumentation. There
is some resemblance with variants of abstract argumentation such as ranking
and weighted approaches, constrained argumentation frameworks, and weighted
ADFs. However, the conceptual differences between epistemic probabilities and
abstract weights lead to significant differences in modelling (see [8] for details).
Also see [8] for a discussion of differences with Bayesian networks. In [8], a
sound and complete proof theory is provided for constraints with restricted value
sets but no algorithmic method is provided. In this paper, we have addressed
this by giving a formal and transparent algorithmic method for reasoning with
constraints. It is a practical alternative (for small examples) to the probabilistic
optimization approach presented in [12]), and it can be used as a baseline system
for which new algorithms can be compared. In future work, we will improve the
efficiency of the algorithm (for example, by a lazy construction of models). We
will also move beyond this baseline system by rewriting the constraints into a
set of propositional clauses, and use a SAT solver.



60

A. Hunter and S. Polberg

References

1.
2.
3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

http://wwwO0.cs.ucl.ac.uk/staff/A.Hunter /papers/autoepigraphextra.pdf
http://www0.cs.ucl.ac.uk/staff/A.Hunter /papers/autoepigraph.py

Baroni, P., Giacomin, M., Vicig, P.: On rationality conditions for epistemic proba-
bilities in abstract argumentation. In: Parsons, S., Oren, N., Reed, C., Cerutti, F.
(eds.) COMMA 2014. FAIA, vol. 266, pp. 121-132. IOS Press (2014)

Bistarelli, S., Mantadelis, T., Santini, F., Taticchi, C.: Probabilistic argumentation
frameworks with MetaProbLog and ConArg. In: Tsoukalas, L.H., Grégoire, E.,
Alamaniotis, M. (eds.) ICTAI 2018, pp. 675-679. IEEE (2018)

Doder, D., Woltran, S.: Probabilistic argumentation frameworks — a logical app-
roach. In: Straccia, U., Cali, A. (eds.) SUM 2014. LNCS (LNAI), vol. 8720, pp.
134-147. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11508-5_12
Fazzinga, B., Flesca, S., Furfaro, F.: Complexity of fundamental problems in prob-
abilistic abstract argumentation: beyond independence. Artif. Intell. 268, 1-29
(2018)

Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 1, 2nd
edn. Wiley, London (1950)

Hunter, A., Polberg, S., Thimm, M.: Epistemic graphs for representing and rea-
soning with positive and negative influences of arguments. arXiv CoRR (2018).
abs/1802.07489

Hunter, A.: Some foundations for probabilistic abstract argumentation. In: Verheij,
B., Szeider, S., Woltran, S. (eds.) COMMA 2012. FAIA, vol. 245, pp. 117-128. 10S
Press (2012)

Hunter, A.: A probabilistic approach to modelling uncertain logical arguments. Int.
J. Approximate Reasoning 54(1), 47-81 (2013)

Hunter, A.: Probabilistic qualification of attack in abstract argumentation. Int. J.
Approximate Reasoning 55, 607-638 (2014)

Hunter, A., Polberg, S., Potyka, N.: Updating belief in arguments in epistemic
graphs. In: Thielscher, M., Toni, F., Wolter, F. (eds.) KR 2018, pp. 138-147. AAAI
Press (2018)

Hunter, A., Thimm, M.: Probabilistic reasoning with abstract argumentation
frameworks. J. Artif. Intell. Res. 59, 565-611 (2017)

Li, H., Oren, N., Norman, T.J.: Probabilistic argumentation frameworks. In: Mod-
gil, S., Oren, N., Toni, F. (eds.) TAFA 2011. LNCS (LNAI), vol. 7132, pp. 1-16.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29184-5_1

Likert, R.: A technique for the measurement of attitudes. Arch. Psychol. 140, 1-55
(1931)

Polberg, S., Doder, D.: Probabilistic abstract dialectical frameworks. In: Fermé,
E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 591-599. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11558-0-42

Polberg, S., Hunter, A.: Empirical evaluation of abstract argumentation: support-
ing the need for bipolar and probabilistic approaches. Int. J. Approximate Reason-
ing 93, 487-543 (2018)

Polberg, S., Hunter, A., Thimm, M.: Belief in attacks in epistemic probabilistic
argumentation. In: Moral, S., Pivert, O., Sanchez, D., Marin, N. (eds.) SUM 2017.
LNCS (LNAI), vol. 10564, pp. 223-236. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-67582-4_16

Thimm, M.: A probabilistic semantics for abstract argumentation. In: De Raedt,
L., Bessiere, C., Dubois, D., Doherty, P., Frasconi, P., Heintz, F., Lucas, P. (eds.)
ECAI 2012. FAIA, vol. 242, pp. 750-755. 10S Press (2012)


http://www0.cs.ucl.ac.uk/staff/A.Hunter/papers/autoepigraphextra.pdf
http://www0.cs.ucl.ac.uk/staff/A.Hunter/papers/autoepigraph.py
https://doi.org/10.1007/978-3-319-11508-5_12
https://doi.org/10.1007/978-3-642-29184-5_1
https://doi.org/10.1007/978-3-319-11558-0_42
https://doi.org/10.1007/978-3-319-67582-4_16
https://doi.org/10.1007/978-3-319-67582-4_16

A Model-Based Theorem Prover for Epistemic Graphs for Argumentation 61

20. Thimm, M., Polberg, S., Hunter, A.: Epistemic attack semantics. In: Modgil, S.,

Budzynska, K., Lawrence, J. (eds.) COMMA 2018. FAIA, vol. 305, pp. 37-48. I0S
Press (2018)



l‘)

Check for
updates

Discussion Games for Preferred Semantics
of Abstract Dialectical Frameworks

Atefeh Keshavarzi Zafarghandi®, Rineke Verbrugge, and Bart Verheij

Department of Artificial Intelligence, Bernoulli Institute of Mathematics,
Computer Science and Artificial Intelligence, University of Groningen,
Groningen, The Netherlands
{A.Keshavarzi.Zafarghandi,L.C.Verbrugge,Bart.Verheij}@rug.nl

Abstract. Abstract dialectical frameworks (ADFs) are introduced as a
general formalism for modeling and evaluating argumentation. However,
the role of discussion in reasoning in ADF's has not been clarified well
so far. The current work provides a discussion game as a proof method
for preferred semantics of ADFs to cover this gap. We show that an
argument is credulously acceptable (deniable) by an ADF under pre-
ferred semantics iff there exists a discussion game that can defend the
acceptance (denial) of the argument in question.

Keywords: Argumentation + Abstract dialectical frameworks -
Decision theory - Game theory - Structural discussion

1 Introduction

Abstract Dialectical frameworks (ADFs), first introduced in [7] and have been
further refined in [5,6], are expressive generalizations of Dung’s widely used
argumentation frameworks (AFs) [15]. ADFs are formalisms that abstract away
from the content of arguments but are expressive enough to model different
types of relations among arguments. Applications of ADFs have been presented
in legal reasoning [1,2] and text exploration [8].

Basically, the term ‘dialectical method’ refers to a discussion among two or
more people who have different points of view about a subject but are willing to
find out the truth by argumentation. That is, in classical philosophy, dialectic is
a method of reasoning based on arguments and counter-arguments [20,22].

In ADFs, dialectical methods have a role in picking the truth-value of argu-
ments under principles governed by several types of semantics, defined mainly
based on three-valued interpretations, a form of labelings. Thus, in ADFs,
beyond an argument being acceptable (the same as defended in AFs) there is
a symmetric notion of deniable. One of the most common argumentation seman-
tics are the admissible semantics, which in ADFs come in the form of inter-
pretations that do not contain unjustifiable information. The other semantics
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of ADFs fulfil the admissibility property. Maximal admissible interpretations
are called preferred interpretations. Preferred semantics have a higher compu-
tational complexity than other semantics in ADFs [25]. That is, answering the
decision problems of preferred semantics is more complicated than answering the
same problems of other semantics in a given ADF. Therefore, having a structural
discussion to investigate whether a decision problem is fulfilled under preferred
semantics in a given ADF has a crucial importance.

There exists a number of works in which the relation between semantics of
AF's and structural discussions are studied [9,16,17,19,23,24]. As far as we know,
the relation between semantics of ADFs and dialectical methods in the sense of
discussion among agents has not been studied yet [3]. We aim to investigate
whether semantics of ADF's are expressible in terms of discussion games.

In this paper we introduce the first existing discussion game for ADFs. We
focus on preferred semantics and we show that for an argument being credu-
lously accepted (denied) under preferred semantics in a given ADF there is a
discussion game successfully defending the argument. Given the unique struc-
ture of ADFs, standard existing approaches known from the AFs setting could
not be straightforwardly reused [11,12,27,28]. We thus propose a new approach
based on interpretations that can be revised by evaluating the truth values of
parents of the argument in question. The current methodology can be reused in
other formalisms that can be represented in ADF's, such as AFs.

In the following, we first recall the relevant background of ADFs. Then, in
Sect. 3, we present the preferred discussion game, which is a game with perfect
information, that can capture the notion of preferred semantics. We show that
there exists a proof strategy for arguments that are credulously acceptable (deni-
able) under preferred semantics in a given ADF and vice versa. Further, we show
soundness and completeness of the method.

2 Background: Abstract Dialectical Frameworks

The basic definitions in this section are derived from those given in [5-7].

Definition 1. An abstract dialectical framework (ADF) is a tuple F' = (A, L,C)
where:

- A is a finite set of arguments (statements, positions);

- L C Ax A is a set of links among arguments;

— C = {@a}taca is a collection of propositional formulas over arguments, called
acceptance conditions.

An ADF can be represented by a graph in which nodes indicate arguments
and links show the relation among arguments. Each argument a in an ADF is
attached by a propositional formula, called acceptance condition, ¢, over par(a)
such that, par(a) = {b| (b,a) € R}. The acceptance condition of each argument
clarifies under which condition the argument can be accepted [5—7]. Further, the
acceptance conditions indicate the type of links. An interpretation v (for F) is a
function v : A — {t,f,u}, that maps arguments to one of the three truth values
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true (t), false (f), or undecided (u). Truth values can be ordered via information
ordering relation <; given by u <; t and u <; f and no other pair of truth
values are related by <;. Relation <; is the reflexive and transitive closure of <;.
Interpretations can be ordered via <; with respect to their information content.
It is said that an interpretation v is an extension of another interpretation w, if
w(a) <; v(a) for each a € A, denoted by w <; v. Interpretations v and w are
incomparable if neither w %; v nor v £; w, denoted by w # v.

Semantics for ADFs can be defined via the characteristic operator I' p which
maps interpretations to interpretations. Given an interpretation v (for F'), the
partial valuation of ¢, by v, is ¢? = u[b/T : v(b) = t][b/L : v(b) = f], for
b € par(a). Applying T'r on v leads to v’ such that for each a € A, v’ is as
follows:

t if p? is irrefutable (i.e., a tautology),
v'(a)=<f if ¥ is unsatisfiable (i.e., ¥ is a contradiction),
u otherwise.

From now on whenever there is no ambiguity, in order to make three-valued
interpretations more readable, we rewrite them by the sequence of truth values,
by choosing the lexicographic order on arguments. For instance, v = {a — t,b —
u,c — f} can be represented by the sequence tuf. The semantics of ADFs are
defined via the characteristic operator as in Definition 2.

Definition 2. Given an ADF F, an interpretation v is:

— admissible in F iff v <; Tr(v), denoted by adm;
— preferred in F iff v is <;-mazximal admissible, denoted by prf;
- a (two-valued) model of F iff v is two-valued and T'r(v) = v, denoted by mod.

The notion of an argument being accepted and the symmetric notion of a argu-
ment being denied in an interpretation are as follows.

Definition 3. Let F = (A, L,C) be an ADF and let v be an interpretation of F.

— An argument a € A is called acceptable with respect to v if % is irrefutable.
— An argument a € A is called deniable with respect to v if @} is unsatisfiable.

One of the main decision problems of ADFs is whether an argument is cred-
ulously acceptable (deniable) under a particular semantics. Given an ADF
F = (A,L,C), an argument a € A and a semantics o € {adm, prf, mod}, argu-
ment a is credulously acceptable (deniable) under o if there exists a ¢ interpre-
tation v of F' in which a is acceptable (a is deniable, respectively).

3 Discussion Game for Preferred Semantics

In this section, we present the structure of the discussion game for preferred
semantics. The aim is to show that an argument is credulously accepted (denied)
under preferred semantics in an ADF iff there exists a discussion game and a
winning strategy for a player who starts the game.
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o~ .
F—O—0—0

cv—=b dv —b (cv—d)ra T

Fig. 1. ADF of Example 1

A preferred discussion game, which is similar to Socrates’ form of reason-
ing [10,29], is a (non-deterministic) two-player game of perfect information
between defender (proponent) and challenger (opponent). So, both agents know
all acceptance conditions. The game starts with a belief of proponent (P) about
credulous acceptance (denial) of an argument under preferred semantics in a
given ADF. Then opponent (O) challenges the proponent by investigating the
consequences of P’s belief and demanding reasons for those consequences. The
game continues alternately: P has to convince O why consequences of the claim
can be held. Till the time that there is a new claim by P or there is a new
challenge by O and there is no contradiction, the game will be continued.

Since each preferred interpretation is an admissible interpretation, if we want
to investigate whether an argument is credulously acceptable (deniable) under
preferred semantics, we study whether the argument is credulously acceptable
(deniable) under admissible semantics. The key advantage of the current method
is that the credulous acceptability (deniability) problem for preferred semantics
in an ADF F' can be solved without enumeration of all admissible interpretations
of F. In the following, Examples1 and 2 represent preferred discussion games,
in which there are winning strategies for P’s belief.

Ezample 1. Given an ADF F = ({a,b,¢,d},{pa : T, : (¢ V —d) A a, ¢ :
dV —b,pg : ¢V —b}), depicted in Fig. 1.

— Assume that P claims that d is credulously acceptable under preferred seman-
tics. The knowledge of P consists of information about the truth value of d,
and there is no further information about the truth values of other arguments.
This initial knowledge of P can be shown by the interpretation vy = uuut.

— O checks the consequence of P’s belief. O says that, based on the acceptance
condition of d, argument d is acceptable in a preferred interpretation iff either
¢ is accepted or b is denied in that interpretation. That is, O revises the
information of vy to two interpretations; v; = uutt and v{ = ufut, and
challenges P by asking, ‘Why does either b have to be assigned to f or ¢ have
to be assigned to t, if d is assigned to t in a preferred interpretation?’

— In both v; and v} there exists a new challenge, then the dialogue between
players can be continued on any of them. P attempts to defeat the challenge
by convincing O about the truth value of the arguments which are challenged
by O in the preceding step.

P chooses to work on v; in which the only new challenged argument is c. P
checks under which condition ¢ can be accepted in a preferred interpretation.
Based on, @, : dV b, ¢ is assigned to t if and only if either d is assigned
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to t or b is assigned to f. That is, the new information of P about the truth
values of arguments can be represented by ve = uutt and v5 = uftt. In the
former one there is no new claim, that is, the dialogue vy, v; and vs cannot
be continued by O anymore. Further, in vo P answers the question of O (why
is ¢ assigned to t), with no contradiction. Thus, P wins this dialogue. Since
P can defend the initial claim via this dialogue, P wins the game and there is
no need of continuing the game.

Definitions 46 are needed to define the systematic method of computation of
moves of each player in Definition 8. In the following, w and v are interpretations
such that w <; v.

Definition 4. An argument a is recently presented in interpretation v with
respect to w if w(a) = u and v(a) # u.

In contrast with standard interpretations in ADF's, in Definition 5 we define so-
called minimal interpretations that only give values to argument a and par(a).
In the following the notations of v(b) and w,(b) are used to indicate the truth
value of argument b in v and w,, respectively.

Definition 5. Let v be an interpretation of an ADF F, in which a — t/f and
par(a) # . An interpretation wq, which is defined over (par(a)U{a}), is called
a minimal interpretation around a in F, if T'r(w,)(a) = v(a), and there
exists no w' <; wg such that Tp(w')(a) = v(a). In contrast, when par(a) = @
then w, assigns a to Tr(v)(a).

Since the acceptance condition of each argument is indicated by a propositional
formula, argument a may have more than one minimal interpretation around a
in F. The set of all minimal interpretations around « in F' is denoted by W,.

Definition 6. Let A’ = {aq,...,a,} be the set of arguments recently presented
in v w.r.t. w and choose War = {wq,, ..., Wa, } s.t. W, € W, for 1 <i < n.
The output of the binary function §(v,Wa/) is called an evaluation of the
parents of arguments in A’ w.r.t. v and W4 defined as follows:

~ Ifv(b) = t/f and Pi s.t. ((wa,(b) = t/£) V (wq, (D) # v(b))) A Be s.t (wp(c) #
v(e)) A (wp(€) # wa,(¢))) then 6(v, War)(b) = v(b).

~ Ifv(b) = u and i s.t. wa, (b) = t/£ AP s.t. wa, (b) # wa, (b) then 5(v,Wa)
(b) = wa, (b)

= If (v(b) = t/f and Fi,c s.t. (v(b) # wgy, (b)) V (v(c) # wp(c)) V (wp(c) #
W, () V (v(b) = u and (3i,j s.t. we,(b) # wa, (b)) V (Fi s.t. we,(b) =
t/f)) then §(v, Wa/)(b) = u.

The set of all possible evaluations of parents of arquments in A’ is called all
evaluations of parents of A’, and denoted by 0.4:(v) such that:

dar(v) ={6(v,Wa) | War ={wqy,...,Wa,} s.t. we, € Wy,, for 1 <i<n}
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Note that when A’ contains only one argument a, we address an evaluation of
parents of a with §(v,w,), in which w, is a minimal interpretation around a,
and we denote the set of all evaluations of A" with d,(v).

In Example 1, it is assumed that d is credulously accepted, vg = uuut. In
comparison to interpretation v, = uuuu, argument d is recently presented in
vg. Based on the acceptance condition of d, namely @4 : ¢ V —b, interpretations
wqg = {b— uw,c— t,d— t} and v, = {b — f,c — u,d — t} are minimal
interpretations around d in F'. As a consequence, the evaluation of the parents of
the argument in question may lead to more than one interpretation. For instance,
the evaluation of the parents of d with respect to vy and wy is d(vo, wq) = uutt,
and with respect to vy and w/} it is 0(vo,w) = ufut. Therefore, the set of
evaluations of parents of d is d4(vg) = {uutt, ufut}.

Now we are going to define moves of each player based on the evaluation of
the parents of the recently presented arguments, proposed in Definition 6. The
information of each player in games can be represented by an interpretation. In
the first claim of P there exists only information about the truth value of the
argument which is claimed.

Definition 7. The first claim of P about credulous acceptance (denial) of an
argument is named initial claim, denoted by interpretation vg, in which the
argument in question is assigned to t (f, respectively) and all other argument
are assigned to u.

After each claim move of P, presented by interpretation v, O checks the condi-
tions under which the claim of P can be valid. That is, O evaluates the truth
values of the parents of arguments in A’, recently presented by P in v with 4/ (v).
Then, O demands P to propose logical reasons for those results with the hope
of leading to a contradiction. The game continues alternately: P has to convince
O why at least one consequence of the claim can be held.

Definition 8. Given interpretations v and w, such that v <; w. Let A’ be a set
of arguments, recently presented in w. 1. If w is given by P, it is named that
a € A is claimed by P in w and 04 (w) is named challenge move. 2. If w
is given by O, it is named that a € A’ is challenged by O in w and § 4/ (w) is
named claim move.

Specifically, the initial claim is a claim move in comparison to the interpretation
that assigns all arguments to u. Actually, a preferred discussion game can be rep-
resented as a labeled rooted tree in which the root is labeled by the initial claim, vg.
The nodes of depth ¢ > 0 are labeled by all §(v, W4+) such that v is the label of the
directly preceding node of the tree with depth ¢ — 1, and Wa, = {w, | s.t.a € A’}
in which A’ is a set of arguments that are recently presented in v with respect to the
label of the directly preceding node of v. A part of the tree of Example 1, including
a winning strategy for P, is depicted in Fig. 2.

Definition 9. A dialogue is the sequence of labels of a branch of the tree cor-
responding to the game which is started by an initial claim, and continued by
applying 6(v;, War), fori >0 s.t. a € A" is recently presented in v;.
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vg = uuut
3(vp, wy) = uutt d(vg, wy) = ufut
4(v1, we) = uutt 5(vq, w)) = uftt

P wins,
d(vg, wg) ~ 6(v1, we)

6(vp, wy) = ufut S(vo, wy)) = ffitt

blocked by contradiction!,
(v, we) # 6(v2, wp)

Fig. 2. Associated tree of the game in Example 1

We say that there is a contradiction in a dialogue if the dialogue consists of
interpretations v; and v;4; that are incomparable. For instance, the dialogue
[vo, 8(vo, wq), 0(vy, wl), 6(ve, wy)] in Fig. 2 leads to a contradiction. Definitions 10
and 11 explain under which conditions a dialogue can be continued or halted.

Definition 10. Let [vy,...,v,] be a dialogue with no contradiction. The dia-
logue is continued on v,: 1. by O if an argument is claimed in v, by P; or 2.
by P if an argument is challenged in v, by O.

Definition 11. Let [vg,...,v,] be a dialogue. It is said that the dialogue is
blocked on v, when: 1. a is challenged in v,_1 by O, and v,_1 ~ v,. We say
that the game is blocked by P in this step. Or, 2. a is claimed in v,_1 by P, and
Up_1 ~ Up. We say that the game is blocked by O in this step. Or 3. there is a
contradiction, that is, vy,_1 %% Uy,.

In Example 1, dialogue [vg, 6(vo, wod), 6(v1,, woc)] is blocked by P. If a dialogue
is blocked by P, it means that P could defeat a challenge of O without making a
new claim. Thus, there is no further move for O. Therefore, P won the dialogue.
Since P can defend the initial claim via this dialogue, P wins the game, as well.
Thus, after this dialogue there is no need of continuing the game.

— P wins the dialogue if the dialogue is blocked by P.

Example 2 investigates the other condition under which P wins the dialogue.
Ezxample 2. Let F be the ADF given in Example 1.

— P believes that d can be denied in a preferred interpretation in F, vy = uuuf.

— The challenge move of O on d leads to v1 = d(vg, wy) = utff.

— The recently challenged arguments are b and c¢. The minimal interpretations
around b are wy, = {a — t,c+— t} and w; = {a — t,d — f}, and the minimal
interpretation around ¢ is w, = {b + t,d — f}. Thus, vy = §(v1, Wp) = ttuf
and vy = 0(v1, Wy,,) = ttff.
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— Since vy % v9, O cannot continue this dialogue. However, v; <; v5 and the
challenge move on v} is 6(vh, w,) = v4. Thus, the game is blocked by O.

If a dialogue is blocked by O, it means that O cannot find a contradiction between
P’s claim and O’s challenging, which is done by O in an element of the claim
move, and O cannot make a new challenge for P. Thus, P wins the dialogue and
the initial claim of P is proved via this dialogue.

— P wins the dialogue if the dialogue is blocked by O.

The ADF of Examplel can also be used as an example in which there is a
winning strategy for O, explained in Example 3.

Ezxample 3. Given ADF F of Example 1.

— P believes that b can be denied in a preferred interpretation in F, vg = ufuu.

— There are three different dialogues based on this initial claim; 1. [vy =
ufuu,v; = ufft,vo = uufu], 2. [vy = ufuu,v; = ufft,v) = uwuuul, 3.
[vo = ufuu, v] = ffuu, v§ = ufuu].

Each of the dialogues of this game is blocked by contradictions. That is, in each
dialogue P cannot defeat the challenge of O. On the other hand, O defeats P in
all the ways that P attempts to prove the initial claim, by finding contradictions.
That is, P cannot make any reasonable discussion to defend the initial claim.
Thus, O wins all dialogues and wins the game in consequence.

— O wins the dialogue, when O can block the dialogue by contradiction.

The examples which were studied above illustrate that each player only has
to consider the arguments which are recently presented by the competitor in
the directly preceding move. The discussion game that can decide the credu-
lous acceptance (denial) problem in ADFs under preferred semantics is called,
preferred discussion game, introduced in Definition 12.

Definition 12. Given an ADF F = (A,L,C). A preferred discussion
game for credulous acceptance (denial) of an argument of A is a sequence
[Ag, ..., An]l(n > 0) such that all the following conditions hold:

— Ay consists of an initial claim;

~ fori>=1, A; =J,0a4(v), for each v € A;_y such that set of arguments of A’
are recently presented in v;

— each [vg, ..., vm] such that v; € A; is a dialogue of the game, for 1 < m < n,
when: v; = §(vi—1, War), such that the set A’ is recently presented in v;_1;

— the game is finished in A, if at least a dialogue of the game is blocked by P
or O, or if all the dialogues lead to contradictions.

In Definition 12, 1. if ¢ is odd, for each v € A;_1, A; consists of all challenge
moves d4/(v) such that a € A" is claimed in v; and 2. if ¢ > 2 is even, for each
v € A;_1, A; consists of all claim moves d4/(v) such that a € A’ is challenged
in v. The winning strategy of each player is explained in Definition 13.
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Definition 13. Let F' be a given ADF. Let [Ag,...,A,] be a preferred discus-
sion game for credulous acceptance (denial) of an argument.

— P has a winning strategy in the game if P wins a dialogue of the game.
— O has a winning strategy in the game if O wins all dialogues of the game.

Let F be an ADF and let [Ag,...,A,] be a preferred discussion game of an
initial claim of F'. The length of the preferred discussion game is the length of
the sequence [Ao,...,A,], which is the number of elements of the sequence.

Proposition 1. Let F = (A, L,C) be an ADF and |A| = n. The length of each
preferred discussion game of F is at most n + 1.

Proof. Toward a contradiction, assume that that there exists a preferred dis-
cussion game [Ag,...,A,] of F such that m > n. On the other hand, each
dialogue [vg,...,v;] of the game is continued in v; if v;_1 <; v;. This can be
done by indicating the truth value of an argument in v; that is not indicated
before. Since the number of arguments of F' is n, the longest dialogue contains
interpretations such that vy < .-+ < v,_1, and in the next step, the parents of
arguments of claimed or challenged items in v,,_; will be evaluated. That is, the
longest dialogue can be a sequence of n + 1 interpretations. Thus, the length of
each game cannot be more that n + 1.

Since we assumed in the definition of ADFs that each ADF is finite, the immedi-
ate result of Proposition 1 is that each preferred discussion game halts and there
exists a winning strategy either for O or P.

Theorem 1. Let an ADF F = (A, L,C) be given.

— Soundness: if there exists a winning strategy in a preferred discussion game
with initial claim of accepting (denying) an argument a, then a is credulously
acceptable (deniable) under preferred semantics in F'.

— Completeness: if an argument a is credulously acceptable (deniable) under
preferred semantics in F, then there is a preferred discussion game with a
winning strategy for the initial claim of accepting (denying) of a.

Proof. Soundness: assume that there is winning strategy for P in a preferred
discussion game [Ag,...,A,], for accepting (denying) of an argument a. There-
fore, there is a winning dialogue [vg, . . ., vy, ] for P, for 0 < m < n. To show the
soundness it is enough to investigate whether v,,, is an admissible interpretation.
Towards a contradiction, assume that v,, is not an admissible interpretation,
that is, vy, €; Tr (v ). Thus, there exists an argument b s.t. b — t/f € v,,, how-
ever, the valuation of the acceptance condition of b under v,, is not the same as
VUm; we prove the case that b +— t € v,,. The proof method for the case in which
b+— f € v, is analogous.

b— t € v, means that either P claims this assignment in an interpretation
vi, 0 <7 < m, or O challenges it in an interpretation v;, 0 < i < m. Assume that
this is claimed by P in v;, 0 < i < m. An element of the challenge move of O on
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v; 18 v;41. That is, O presents the truth values of par(b) in v;11. Since there is
a winning strategy for P in this dialogue, vy,—1 ~ vy,. That is, ¢;™ = T, since
U, consists of the truth values of par(b) presented in v;11. Thus, I'p(v,,)(b) = t.
Therefore, the assumption that v,, is not an admissible interpretation is rejected.
The proof method for a challenge move is analogous.

Completeness: assume that an argument a is credulously accepted under
preferred semantics in F' (the proof method in case a is credulously denied is
analogous). Then, there is a preferred interpretation v of F' in which a is accepted.
We construct the corresponding preferred discussion game as follows. Let vy,
the initial claim, be an interpretation in which a is assigned to t and all other
arguments of A are assigned to u. Extend vg to v; by changing the truth values
of the parents of a in vy by their truth values in v. Continue this method and
construct v;41 by changing the truth value of the parents of arguments which are
recently presented in v;, by the ones which are in v, for ¢ > 0. Since the number
of arguments is finite, this procedure will end in some v,,. To construct v;;1 only
the truth values of the arguments which are assigned to u in v; can be changed,
then v; < w41, for 0 < ¢ < n. Let v,41 = v,. The sequence [vy, ..., Vnt1] IS &
dialogue of the preferred discussion game [Ag, ..., A, 1] of F, in which vy € Ay.
Further, this dialogue is a winning strategy for P in this game.

4 Conclusion and Future Work

In this paper, preferred discussion games between two agents, proponent and
opponent, are considered as a proof method to investigate credulous acceptance
(denial) of arguments in an ADF under preferred semantics. Some notable results
of the current work are: 1. The method is sound and complete. 2. The presented
methodology can be reused in AFs and generalizations of AFs that can be rep-
resented as subclasses of ADFs, namely set argumentation frameworks [21] and
bipolar argumentation framework [13]. 3. Winning one dialogue of the game by
P is sufficient to show that there exists a preferred interpretation in which the
argument in question is assigned to the truth value which is claimed. In contrast,
for AFs [23,26,27], P has a winning strategy if P can address all O’s challenges.
4. In each move each player has to study the truth value of arguments that are
recently presented in the directly preceding move. In contrast, in [9], O has to
check all past moves of P to find a contradiction. 5. To investigate the credu-
lous decision problem of ADFs under preferred semantics, there is no need to
enumerate all preferred interpretations of an ADF. 6. Preferred semantics of an
ADF corresponds to a preferred discussion game with winning strategy for P. 7.
In [14] it is shown that in the class of acyclic ADF's all semantics coincide. Thus,
in acyclic ADF's the presented game can be used to decide the credulous problem
on other semantics. As future work, we could investigate structural discussion
games for other semantics of ADFs. In addition, we could study discussion games
for other decision problems of ADF's. Further, we could investigate whether the
presented method is more effective than the methods used in current ADF-
solvers, e.g. [4,18]. This study may lead to new ADF-solvers that work locally
on an argument to answer decision problems.
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Abstract. Probabilistic epistemic argumentation allows for reasoning
about argumentation problems in a way that is well founded by proba-
bility theory. Epistemic states are represented by probability functions
over possible worlds and can be adjusted to new beliefs using update
operators. While the use of probability functions puts this approach on
a solid foundational basis, it also causes computational challenges as
the amount of data to process depends exponentially on the number of
arguments. This leads to bottlenecks in applications such as modelling
opponent’s beliefs for persuasion dialogues. We show how update oper-
ators over probability functions can be related to update operators over
much more compact representations that allow polynomial-time updates.
We discuss the cognitive and probabilistic-logical plausibility of this app-
roach and demonstrate its applicability in computational persuasion.

1 Introduction

Probabilistic epistemic argumentation [13,18,20,40] is an extension of Dung’s
classical argumentation framework [7]. While the original framework allows only
for talking about attacks and accepting or rejecting arguments, probabilistic epis-
temic argumentation also allows more general relationships between arguments
like support [4,5,29] and allows expressing more fine-grained beliefs by means of
probabilities. Recent experiments give empirical evidence that these extensions
are, in particular, beneficial when it comes to modelling human decision mak-
ing [28]. One large application area of probabilistic epistemic argumentation is
computational persuasion [15,16]. Computational persuasion aims at convincing
the user of a persuasion goal such as giving up bad habits or living a health-
ier lifestyle. In order to derive persuasion strategies autonomously, we require a
user model that represents the user’s beliefs and simulates belief changes when
new arguments are presented to the user. The user’s epistemic state can be
represented by a probability function and different update operators have been
studied that can be used to adapt the current beliefs [15,17,19].
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A = Universities should continue charging students the 9k fee.

B = Student fees should be abolished because they are unfair.
C' = Charging tuition fees to students reduces the tax burden on the rest of
the UK population, many of whom have not and will not go to university.

Al TN

N N M)
— O

{ D = University education is E = Everyone in soci- F' = The currently
an investment in the economy ety benefits from those charged fees exceed the
of the whole country, and who are educated in teaching expenses of the
therefore everyone should con- universities, and so ev- universities, hence the fees
tribute to university education. eryone should contribute. could be reduced anyway. )
G = Many graduates choose H = The extra income from student fees is of- )
courses in arts and humanities, ten used to fund outreach activities and sum-
and therefore do not benefit mer schools, particularly for students from low
the economy of the country. socio-economic backgrounds and minorities.
= Arts and human- J = Graduates that choose K = Universities organize outreach
ities graduates can courses in arts and hu- activities in order to encourage
work in the creative manities often become people to go to universities, which
industries which successful company em- in its essence is marketing and
are a substantial ployees or business owners, advertising to get more students
export earner for and therefore benefit the to enroll, and the existing students
the UK economy. economy of the country. N should not be paying for that.

L = Most arts and humanities students
do not take courses needed for working
in the creative industries, so the taxpayer
should not be required to cover their fees.

M = Most art and humanities graduates are
not employed in the ares they studied for,
hence covering their fees is not worthwhile.

)

Fig. 1. Study fee dialogue.

Probability theory provides a strong foundational basis for probabilistic epis-
temic argumentation, but also comes with computational limitations. Without
further assumptions, probability functions grow exponentially with the number
of arguments. However, sometimes we are only interested in atomic beliefs in
arguments, so that the full power of probability functions may not be required.
For instance, we can consider the graph depicted in Fig. 1 induced by a dialogue
between an automated dialogue system and a human participant that occurred
in the empirical study considered in [11]. There are various constraints that could
be attached to such a graph, as we will discuss further in Sect.5. For instance,
we could use postulates from the classical epistemic approach [13,40] such as
coherence, which bounds the belief in an argument based on the belief of its
attacker. Formally, in our scenario, for every argument-attacker pair X and Y
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this would create a constraint of the form 7(X) + 7(Y) < 1, where m(«) should
be read as the probability of a.

We observe that the aforementioned formulas operate on probabilities of sin-
gle arguments rather than on complex logical expressions. Consequently, the
detailed information contained in a full probability function can be seen as
excessive. In such a situation, probability functions can sometimes be replaced
by probability labellings that assign probabilities to arguments directly with-
out changing the semantics [33]. In our case, this would decrease the number
of probabilities that need to be processed from 8,192 (i.e. 2'3) to 13, which has
obvious computational benefits.

In this paper, we are interested in the relationship between epistemic
states represented by probability functions and those represented by probability
labellings. Formally, probability labellings can be related to equivalence classes
of probability functions that assign the same atomic beliefs to arguments [33]. In
order to establish an interesting relationship, update operators must respect this
equivalence relation. We define such an operator in Sect.3 and show in Sect. 4
that it satisfies our desiderata. In particular, updates can be computed in poly-
nomial time In this approach, epistemic states correspond to sets of probability
functions that satisfy the same atomic beliefs and updates are performed by
satisfying the new beliefs while minimizing the required changes. We will argue
that this approach is not only computationally attractive, but can also result
in cognitively more plausible updates. We illustrate our method with an appli-
cation in computational persuasion in Sect.5. All proofs for the results in this
article can be found in the corresponding technical report [35].

2 Basics

We consider bipolar argumentation frameworks (BAFs) (A, R,S) consisting of
a set of arguments A, an attack relation R C A x A and a support relation
SCAxA 2 ={w|wC A} denotes the set of possible worlds. Intuitively,
each w € {2 contains the arguments that are accepted in a particular state of
the world. We represent beliefs by probability functions P : £2 — [0, 1] such that
> weq P(w) = 1. P4 denotes the set of all probability functions over A. The
probability of an argument A € A under P is defined by adding the probabilities
of all worlds in which A is accepted, that is, P(A) = >~ ,c o ac,, P(w). P(A) can
be understood as a degree of belief, where P(A) = 1 means complete acceptance
and P(A) = 0 means complete rejection’.

The epistemic probabilistic argumentation approach developed in [13,18, 20,
40] defines semantics of attack and support relations by means of constraints over
probability functions. Some constraints can be automatically derived from the
relations between arguments. For example, the coherence constraint demands
that if A attacks B, we must have P(B) < 1 — P(A), that is, the belief in

! Note that P(A) denotes the probability of argument A (the sum of probabilities
of all possible worlds that accept A), while P({A}) denotes the probability of the
possible world {A}.
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an attacked argument B is bounded from above by the belief in an attacker
A. However, it is also possible to design individual constraints manually. For
example, if B is attacked by three related arguments A, As, A3, we may want
to bound the belief in B by the average belief in these attackers via P(B) <
1—% Zle P(A;). To allow this flexibility, a general constraint language has been
introduced in [17,18]. We will focus on the fragment of linear atomic constraints
here because it is sufficiently expressive for most of the constraints considered
in [13,20,40] and sometimes allows polynomial-time computations [33].

Formally, a linear atomic constraint over a set of arguments A is an expres-
sion of the form Z?:l ¢i - m(4;) < ¢, where A; € A and ¢; € Q. 7 is just a
syntactic symbol that can be read as “the probability of”. We let C4 denote
the set of all linear atomic constraints over A. A probability function P satisfies
such a linear atomic constraint iff Y. ; ¢;- P(A;) < co. P satisfies a set of linear
atomic constraints C, denoted as P = C, iff it satisfies all [ € C. In this case,
we call C satisfiable. We let Sat(C) = {P € P4 | P |= C} denote the set of all
probability functions that satisfy C. We call sets of constraints C7, Cy equivalent
and write C; = C5 iff they are satisfied by the same probability functions, that
iS, SatH(Cl) = SatH(Cg).

Note that constraints with > and = can be expressed as well in our language. For
>, just note that >, ¢;-m(A;) < ¢p is equivalent to Y- | —¢; - w(A;) > —co. For
=, note that Y | ¢;-m(A;) < cpand D1+ ¢;-w(A;) > ¢o together are equivalent
to > i, ¢i - w(A;) = ¢o. In particular, we can express probability assignments of
the form m(A) = p or probability bounds of the form ! < 7(4) < .

Now assume that we are given an epistemic state represented as a probability
function P € P 4. Given some new evidence represented as a set of linear atomic
constraints (and possibly some existing constraints that we want to preserve),
we want to update P. To this end, different update operators have been studied
in [15,17,19]. Here, we are interested in update operators of the following type.

Definition 1 (Epistemic Update Operator). An epistemic update opera-
tor is a function U : Py xCq — PoU{L} that satisfies the following properties:

— Success: If C C Cy4 is satisfiable, then U(P,C) € Satz(C).

— Failure: If C C C4 is not satisfiable, then U(P,C) = L.

- Representation Invariance: If C; = Cs, then U(P,Cy) =U(P,Cy).
— Idempotence: If C C C4 is satisfiable, then UU(P,C),C) =U(P,C).

Success and failure guarantee a well-defined update. That is, if the constraints
are satisfiable, the update operator will return a new epistemic state that satis-
fies the constraints. If the constraints are not satisfiable, | will be returned to
indicate an inconsistency. Representation invariance guarantees that the result is
independent of the syntactic representation of the evidence. Finally idempotence
guarantees that applying the same update twice does not change the outcome.
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3 The Two-Stage Least-Squares Update Operator

Several update operators in [17,19] are based on the idea of satisfying new
evidence by changing the current epistemic state in a minimal way. The dis-
tance between two probability functions is determined by looking at the prob-
abilities that they assign to possible worlds. For example, one can use the
least-squares distance dy(P, P') = Y co(P(w) — P'(w))? or the KL-divergence

dgr(P,P") = > coP(w) - log %. While this makes perfect sense from a
probability-theoretical point of view, the resulting belief changes may be intu-

itively implausible.

Table 1. Some probability functions over possible worlds used in Example 1.

w PP\ Ps Py (Ps |Ps |Pr Ps| Py | Puo
] 0.1/0 |0 04 1045/0.26/0 |0.3/0.15/0.35
{A} 0.2/0.4]0.33/0.05/0 0.19/0.3/0 |0.15|0
{B} 03/0 |0 0.15/0.1 |0.29/0 |0.1]/0.35/0.15
{A,B}|0.4/0.6]0.67 /0.4 |0.45/0.26|0.7/0.6|0.35|0.5

FEzample 1. Consider a BAF ({A, B},0,0) with two unrelated arguments A, B.
Suppose our current epistemic state is P, as defined in Table 1. Then we have
Py(A) = 0.6 and P;(B) = 0.7. Now suppose that we want to update the belief in
A to 1. A distance-minimizing update w.r.t. do (i.e. update returning a proba-
bility distribution satisfying w(A) = 1 that is minimally different from P; w.r.t.
ds) yields the new epistemic state Pp from Table 1. Now we have Py(A) = 1 as
desired. However, we also have P»(B) = 0.6 < 0.7 = P;(B). Similarly, updating
with respect to dxr yields Ps from Table 1 with P3(B) = 2 < 0.7 = Py(B). This
behaviour is rather counterintuitive in this context, since A and B are completely
unrelated. Therefore, we should have P;(B) = P»2(B) = P3(B).

In order to bring our model closer to humans’ intuition, a two-stage mini-
mization process has been proposed in [17]. In stage 1, we identify all probability
distributions that minimize an atomic distance measure. Instead of comparing
probability functions elementwise on possible worlds, atomic distance measures
compare probability functions only based on the probabilities that they assign
to arguments [19]. We consider a quadratic variant here that will allow us to
compute some updates in polynomial time.

Definition 2 (Atomic Least-squares Distance (ALS)). The ALS dis-
tance measure is defined as d3 (P,P') = Y ,.4(P(A) — P'(A))* for all
PP ecPy.

To begin with, we use the ALS distance to define a naive update operator which
does not satisfy our desiderate from Definition 1 yet.
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Definition 3 (Naive Least-squares Update Operator). The naive LS
update operator ua; : Pa x Ca — 2PA s defined by ua(P,C) =
arg minprcgat,; (C) d3. (P, P).

upy yields those probability functions that satisfy C' and minimize the ALS
distance to P. However, there is not necessarily a unique solution.

Ezxample 2. Consider P; from Table 1. Suppose we recognize a conflict between
A and B and want to update with the constraint 1 : 7(A) +7(B) < 1. We have
Py(A) = 0.6 and P;(B) = 0.7. The cheapest way to satisfy the constraint with
respect to the ALS distance is to decrease both probabilities by 0.15. That is,
a solution P’ must satisfy P'(A) = P'({A}) + P'({A,B}) = 0.45 and P'(B) =
P'({B})+P'({A, B}) = 0.55. P, and P from Table 1 show two minimal solutions
from the set up (P, {l1}).

The second stage of the minimization process from [17] deals with the uniqueness
problem. Among those probability functions that minimize the atomic distance,
we pick the unique one that minimizes a sufficiently strong second distance
measure. Here, we will consider again the least-squares distance for stage 2.

Definition 4 (Two-stage Least-squares Update Operator (2LS)). The
2LS update operator U3, : Pa x Ca — P4 U{L} is defined by

Uit(P, C) _ arg minP/GuAt(P,C) ZwEQ(P(w) - P/(w))27 Zf uAt(Pa C) 7é @
1 otherwise.

Before looking at an example, we note that Uit is an epistemic update operator
as defined in Definition 1.

Proposition 1. The 2LS update operator is an epistemic update operator.

Ezample 3. Consider again P; and the constraint /; from Example 2. Py, shown
in Table 1, is the unique solution that minimizes the least-squares distance to
P, among those distributions that minimize the ALS distance to P;. That is,
Uz (P, {lL}) = Ps.

Example 4. As another example, we consider again the scenario from Example 1
where a one-stage update changed the belief in B in an implausible way. We get
U2, (P1,{n(A) = 1}) = P; shown in Table 1. In particular, we have P;(B) = 0.7 =
Py (B) as desired.

Intuitively, stage 1 determines which atomic beliefs in arguments have to be
changed in order to satisfy the new constraints. This avoids the counterintuitive
behaviour of elementwise minimization over the possible worlds, but does not
yield a unique solution. Therefore, stage 2 performs an elementwise minimization
over the possible worlds to pick a best solution among the ones that minimize
the change in atomic beliefs.
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4 Updates over Probability Labellings

The two-stage minimization process solves our semantical problems, but we are
still left with a considerable computational problem. This is because we consider
probability functions over possible worlds whose number grows exponentially
with the number of arguments in our framework. However, as illustrated in
our previous examples, human reasoning may be guided by atomic beliefs in
arguments rather than by beliefs in possible worlds. Therefore, a natural question
is, what changes semantically when considering belief functions over arguments
rather than over possible worlds? As shown in [33], probability functions over
possible worlds can sometimes just be replaced with probability labellings L :
A — [0, 1] that assign beliefs to atomic arguments directly without changing the
semantics. We let £ 4 denote the set of all probability labellings.

Formally, probability functions can be related to probability labellings via an
equivalence relation [33]. Two probability functions Py, P, are called atomically
equivalent, denoted as Py = Py, iff Pi(A) = Py(A) for all A € A. As usual,
[P] = {P' € P4 | P' = P} denotes the equivalence class of P and P4/ = =
{[P] | P € P4} denotes the set of all equivalence classes. As shown in [32], there
is a one-to-one relationship between P4 /= and L 4.

Lemma 1 ([32]). The functionr : Po/= — L4 defined by r([P]) = Lp, where
Lp(A) = P(A) for all A€ A is a bijection.

Intuitively, r determines a compact representation of the equivalence class
[P], namely the probability labelling Lp = r([P]). Since r is a bijection,
every probability labelling can also be related to a set of probability functions
r~Y(Lp) = [P] = {P" € P4 | P' = P}. Intuitively, r—*(L) is just the set of
probability functions that satisfy the atomic beliefs encoded in L. We say that a
probability labelling L satisfies a linear atomic constraint >, ¢;-m(4;) < ¢o iff
iy ¢i- L(A;) < ¢o. The set of probability labellings that satisfy a set of such
constraints C' is denoted by Sat,(C). The following observations from [32] are
helpful to simplify computational problems by replacing probability functions
with probability labellings.

Lemma 2 ([32]). The following statements are equivalent: (1) P satisfies a
linear atomic constraint l; (2) All P' € [P] satisfy l; (3) Lp = r([P]) satisfies l.

For example, in order to decide whether a set of linear atomic constraints C'
is satisfiable by a probability function (of exponential size), we can just check
whether it can be satisfied by a probability labelling (of linear size) [32]. If such
a labelling L exists, all probability functions in »~1(L) satisfy C. Conversely, if
some probability function P satisfies C, then L = r([P]) satisfies C as well.

In order to perform updates more efficiently, we could represent epistemic
states by probability labellings. However, we should ask, what is the relation-
ship between updates over probability functions and updates over probabil-
ity labellings? We first note that update operators Uy that simply minimize
the distance over possible worlds are not necessarily compatible with atomic
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equivalence. That is, given a set of linear atomic constraints C' and two prob-
ability functions P; and P, such that P, = P, we do not necessarily have
Z/{W(Pl, C) = Z/{W(PQ, C)

Ezample 5. Consider P; and Pg in Tablel. We have P;(4) = 0.6 = Ps(A)
and P;(B) = 0.7 = Py(B), that is, P, = Ps. Suppose, we update with C =
{m(A) = 0.5} and update by just minimizing the least-squares distance to P;.
Then Uy (Py,C) = Py and Uy (Ps, C) = Pyg, where Py, Pyg are again shown in
Table 1. We have Py(B) = 0.7 # 0.65 = Pyo(B), that is, Py # Pjo.

Update operators based on atomic distance measures give us compatibility guar-
antees that we explain in the following proposition.

Proposition 2. Let P, P, € P4 and let C C C4 be a finite set of linear atomic
constraints. If Py = P, then

1. d&, (P, P) = di,(Ps, P) for all P € Py,
2. uae(P1,C) = uae(Pr, C),

3. P| = Py for all P/, Py € uas(P1,C),

4. U3 (P1,C) = U}, (P,, ).

Item 1 says that the ALS distance is invariant under atomically equivalent prob-
ability functions. This implies that the updates that minimize the ALS distance
are invariant as well (item 2). As we demonstrated in Example 2, such updates
do not necessarily yield a unique solution. However, when using the ALS dis-
tance, we can guarantee that all solutions are atomically equivalent (item 3).
This implies that the 2LS update operator is invariant under atomically equiva-
lent probability functions in the sense that it yields equivalent results when the
prior probability functions are equivalent (item 4).

Hence, when updating with respect to linear atomic constraints, there
is a well defined relationship between probability functions and probability
labellings. If we start with an epistemic state represented by a probability
labelling L, L can be understood as a compact representation of the set of
probability functions r~1(L) that satisfy the atomic beliefs encoded in L. The
2LS update operator is compatible with this representation. That is, no mat-
ter which probability functions from 7~1(L) we choose, an update with linear
atomic constraints will always lead to the same equivalence class and therefore
to a well defined next probability labelling L*. We illustrate this in Fig. 2.

Rt &L\ P Z/{/?\t(Plc) P (
pe B n sty
) ) ) \ ..
Zer P, P Pa))
(L) 2 I/{Xt(PQ,C) 4 T \ 4

Fig. 2. The 2LS update operator U2, respects atomic equivalence.
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If we are only interested in atomic beliefs, it would be convenient if we could
move directly from L to L* in Fig.2 without generating (exponentially large)
probability functions in the process. We can do this indeed in polynomial time
for the 2LS update operator. In order to show this, we first define an update
operator on labellings.

Definition 5 (Least-squares Labelling Update Operator (2LS)). The LS
labelling update operator LU : L4 x Ca — L4 U{L} is defined by

LUX(L,C) = argmingsesat, () 2o aea(L(A) — L'(A))?, if SatA(C) #0

€ otherwise.
As we explain in the following theorem, LU} provides us with a direct path from
L to L* and can be computed in polynomial time.

Theorem 1. Let C C C4 be a finite and satisfiable set of linear atomic con-
straints and let L € L 4. Then LU}(L,C) = L* is well-defined and can be com-
puted in polynomial time. Furthermore, L* = r(U3,(P,C)]) for all P € r=Y(L).

Hence, when we are only interested in atomic beliefs, we can use probability
labellings to represent epistemic states and use the least-squares labelling update
operator for updates. Semantically, this is equivalent to regarding epistemic
states as sets of probability functions that satisfy the same atomic beliefs and
updating with respect to the 2LS update operator. The benefit of the labelling
representation is that we can perform updates in polynomial time.

5 Application Example

In this section we come back to the graph in Fig.1 and analyze a scenario
that, while being hypothetical, uses the data from an empirical study in [11]. In
this study, the user’s belief in argument A changed from 0 to 0.19 during the
dialogue?.

The graph in Fig. 1 is generated from an existing dialogue that involved an auto-
mated dialogue system and a human user. Arguments at even depth (starting from
A) are system arguments (A, C, G, H, L and M), while the ones at odd depth are
user arguments. The agents take turns in uttering their arguments (starting with
A), and arguments at the same depth are uttered at the same point by a given party.
We observe that not all user arguments are met with a system response (see argu-
ments E and K). Despite this fact, the presented arguments have led to a positive
change in belief in A, contrary to what would be the intuition from the classical
Dungean approaches. It is possible that if all of the user’s counterarguments were
addressed, then the belief increase would be even more prominent.

We can try to provide an explanation for the belief change observed in [11]
by modeling the reasoning process in our framework. Let us assume that the

2 We note that the study data contained examples of dialogues that resulted in a bigger
belief change, however, we have chosen this one due to its interesting structure.
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Table 2. Probability labellings before and after the dialogue from Sect. 5.

L A B C D E F G H I J K L M
Lo 0 1 0 1 1 1 0 0 1 1 1 0 0
Ly = LU% (L,Cu®)|0.19|0.81|0.19 | 0.505 | 0.975 | 0.95 | 0.495 | 0.05 | 0.92 | 0.09 | 0.95 | 0.08 | 0.91

constraints representing the user’s reasoning demand that the belief in an argu-
ment is dual to the belief in the average of its attackers. That is, we assume
P(X) =1~ mmcoy) Lveanx) P(Y), where Att(X) = {Y € A| (Y, X) € R}).
This assumption leads to the following set of constraints:

C={n(A)+n(B)=1,7n(B)+n(C) = 1,7r(D) m(G) =1, m(F)+n(H) =1,
7(C) + 0.337(D) + 0.347(E) + 0.337(F) = ( )+05 ( )+ 0.57(J) = 1,
T7(H)+7n(K)=1,7(I)+n(L)=1,7n(J)+n(M) =1}

Let us further assume that the user initially completely accepts his or her
own arguments and completely rejects the system’s arguments. This belief state
is represented by the labeling Ly shown in Table2. We now consider a possible
persuasion system which, once a given dialogue branch is exhausted, asks the
user about his or her beliefs in the unattacked arguments. In our case, the user
states that he or she believes L, M, F and K with the degrees 0.08, 0.91, 0.975
and 0.95 respectively. This produces constraints & = {w(L) = 0.08,7(M) =
0.91,7(E) = 0.975,7(K) = 0.95}. We can use this information along with C to
update Ly without asking the user his or her beliefs in all possible arguments.
The resulting labeling L; = LU(L,C U @) is shown in Table 2.

We observe that the belief in A in and Ly and L; match the expected beliefs
0 and 0.19 based on the data in [11].

6 Related Work

There is a large variety of other probabilistic argumentation approaches [6,8,14,
24,25,27,37-39,41,42], which basically differ in the level of detail (e.g., struc-
tured or abstract argumentation), in the way how uncertainty is introduced (e.g.
possible worlds correspond to argument interpretations or the graph structure)
and in the nature of uncertainty (e.g., uncertainty about the acceptance state or
uncertainty about the nature of a relation between arguments).

One limitation when restricting to probability labellings is that we cannot
compute the probabilities of complex formulas over arguments anymore without
adding further assumptions. However, as we demonstrated, we can sometimes do
without complex formulas. In this context, probability labellings can be seen as
an alternative to weighted argumentation frameworks that also assign a strength
value between 0 and 1 to arguments [2,3,26,31,36]. What makes probability
labellings an interesting alternative is their well-defined relationship to proba-
bility functions and probability theory.
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The problem of adapting an epistemic state with respect to new knowledge
has been studied extensively in the belief revision literature that evolved from the
AGM theory developed in [1]. An up-to-date discussion of the main ideas can be
found in [12]. Our postulates are inspired by AGM postulates. For example, Suc-
cess and Representation Invariance can be seen as the counterparts of the Closure
and Ezxtensionality postulates in AGM theory. The closest relative to our setting
is probably the probabilistic belief change framework from [21]. For a discussion of
relationships between classical and probabilistic belief changes, see [21,22].

Other equivalence relations have been studied in order to improve the compu-
tational performance of probabilistic reasoning algorithms [9, 10,23,30]. However,
usually, these equivalence relations are introduced over possible worlds, not over
probability functions. They can be applied to more expressive reasoning formalisms
(they are not restricted to atomic beliefs), but identifying compact representatives
for the corresponding equivalence classes remains intractable in general [34].

7 Conclusions

We demonstrated that, in the fragment of linear atomic constraints, it is possible
to relate updates over probability labellings to equivalent updates over classes of
probability functions. This is interesting from a cognitive, a probabilistic-logical
and a computational perspective. Atomic beliefs are often easier to understand
for humans. If we can relate these beliefs to probability functions, we get a strong
foundational basis. Finally, they can be stored much more compactly and give us
polynomial runtime guarantees. Our results can probably be generalized to other
two-stage update operators. However, the building blocks for the two stages have
to be chosen carefully in order to guarantee that the update operator respects
atomic equivalence. For example, it may not be possible to relate the two-stage
update process considered in [17], Sect. 5, to an update operator over probability
labellings in a meaningful way. However, we may be able to construct similar
relationships by replacing the least-squares distance with KL-divergence or more
general classes of distance measures. An implementation of our update operator
is available in the Java library ProBabble®.
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Abstract. This paper introduces two orderings over abstract argumen-
tation frameworks to compare justification status under argumentation
semantics. Given two argumentation frameworks AF; and AF» and an
argumentation semantics o, AF, is more f-general than (or equal to)
AF, (written AFy Cf AF) if for any o-extension F of AF; there is a
o-extension E of AF; such that E C F'. In contrast, AF5 is more b-general
than (or equal to) AFy (written AFy T AF) if for any o-extension E
of AF; there is a o-extension F' of AFy such that £ C F. We show
that if AFy C! AF, then AF, skeptically accepts arguments more than
AF, (under the o-semantics) while if AFy EZ AF» then AF> credulously
accepts arguments more than AF;. Mathematically, these orders consti-
tute pre-order sets over the set of all argumentation frameworks. Next we
consider comparing two AFs under dynamic environments by observing
the effect of incorporating new information into given AFs. We introduce
two orderings in such dynamic environments and show its connection to
strong equivalence between argumentation frameworks.

Keywords: Argumentation - Ordering - Strong equivalence

1 Introduction

There are several ways for comparing different theories. Given two first-order the-
ories T and Ty, if T} = T» holds then every formula derived from T5 is derived
from T7. In this case, Tj is considered more general (or informative) than Ty. For
instance, p = pV ¢ means that p is more informative than pV ¢. In particular, T} is
equivalent to Ty (Ty = T3) it Ty = Tz and Ty | T7. Inoue and Sakama [7,8] argue
that, in contrast to classical monotonic logic, there is difficulty in defining informa-
tion ordering in nonmonotonic logics. A nonmonotonic theory generally has mul-
tiple extensions, and there are two kinds of consequences of a theory, i.e., skeptical
and credulous consequences. This is contrasted to a first-order theory that has a
unique extension as the logical consequences of the theory. Then, depending on
types of consequences, there exist several definitions for determining that a theory
is more informative than another theory. For instance, consider two (nonmono-
tonic) logic programs: Py = {p «— notq} and P, = {p < notq, q < notp}.
Then P; has the single answer set (or stable model) {p} and P, has two answer
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sets {p} and {q}. If we compare skeptical consequences, we can say that P; is more
informative than P, because p is entailed from the former only. Instead, if we com-
pare credulous consequences, Ps is more informative than P; because ¢ is derived
from the latter only. As such, the result depends on the type of inference, and in
this circumstance information ordering in classical logic cannot be applied. The
study [7] then introduces two orderings to logic programs. Given two logic pro-
grams Py and Py, P, |=F Py (Py is more §-general than Py) iff for any answer set
S of P; there is an answer set T of P, such that T' C S. Likewise, P; |:b P, (P is
moreb-general than P») iff for any answer set T of P, there is an answer set S of P,
such that T' C S. These two orderings are respectively called the Smyth order and
the Hoare order in the domain theory [6]. The study [7] shows that if P; =f P,
(resp. P; |=° P,) then P; entails more skeptical (resp. credulous) consequences
than P, under the answer set semantics [5]. These orderings are also applied to
default theories [8] and abductive theories [9].

In this paper, we are interested in comparing justification status in (abstract)
argumentation frameworks (AFs) [3]. Given an argumentation framework AF,
an argument x is skeptically accepted (or justified) under the o semantics if it
is included in every o-extension of AF, while x is credulously accepted if it is
included in some o-extension of AF'. The notion of skeptical/credulous justifica-
tion is of interest in the field of argumentation because “skepticism is related with
making more or less committed evaluations about the justification state of argu-
ments in a given situation: more skeptical attitude corresponds to less commit-
ted (i.e. more cautious) evaluations” [1]. Baroni and Giacomin [1] then provide
systematic comparison of argumentation semantics with respect to their skepti-
cism. They compare skeptical/credulous consequences of different argumentation
semantics on a single argumentation framework. In contrast, the current study
aims at comparing skeptical/credulous consequences of different argumentation
frameworks under the same semantics. Suppose agents (or groups) who have their
own argumentation frameworks in which each AF represents an agent’s private
view of arguments and attack relations. Then it is meaningful to compare those
AFs to see which party is more skeptical/credulous in reasoning about argu-
ments. We apply two orderings of [7,8] to argumentation frameworks and show
that those orderings are useful for comparing skeptical/credulous acceptance
among different argumentation theories. We also compare AFs under dynamic
environments and provide a connection to strong equivalence of AFs. The rest of
this paper is organized as follows. Section 2 reviews notions used in this paper.
Section 3 introduces two orderings between AFs. Section 4 introduces orderings
in dynamic environments, and Sect. 5 addresses final remarks.

2 Preliminaries

2.1 Argumentation Framework

Let U be the universe of all arguments. An argumentation framework (AF) [3] is
a pair (A, R) where A C U is a finite set of arguments and R C Ax A is the attack
relation. The collection of all AFs (induced by i) is denoted by AF. We write
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a — b (a attacks b) iff (a,b) € R. A set S of arguments attacks an argument
a (written S — a) iff there is an argument b € S that attacks a. A set S of
arguments is conflict-free if there are no arguments a,b € S such that a attacks
b. A set S of arguments defends an argument a if S attacks every argument
that attacks a. We write D(S) = {a | S defends a}. Given AF = (A,R), a
conflict-free set of arguments S C A is:

— an admissible set ifft S C D(S);

— a complete extension iff S = D(S);

— a stable extension iff S attacks each argument in A\ S;

— a preferred extension iff S is a maximal complete extension of AF (wrt C);
— a grounded extension iff S is the minimal complete extension of AF (wrt C).

Let £94m, g5om, £51b, 27 and €977 be the sets of admissible sets, complete
extensions, stable extensions, preferred extensions, and the grounded extension
of an AF, respectively. Then the following relations hold:

getb C g}ﬂf C gcom C gadm and ggTd C gcom-

&y Stb is possibly empty, while others are not. In particular, £ f{ﬁ is a singleton set.
We often write £ where o means either adm, com, prf, stb or grd. We say that
two argumentation frameworks AF; and AFy are o-equivalent (written AF) =,
AFy) if £y, = E3p,- An argument a € A is credulously (resp. skeptically)
accepted under the o semantics of AF = (A, R) iff a € E for some (resp. every)
E € £9p. The set of all credulously (resp. skeptically) accepted arguments under
the o semantics of AF is denoted by crd? (AF) (resp. skp? (AF)). When £5'2 = 0,
we define crd*®®(AF) = () and skp*"*(AF) =U

2.2 Ordering on Powersets

We recall some mathematical definitions about domains [6]. A pre-order (or
quasi-order) < is a binary relation which is reflexive and transitive. A pre-order
< is a partial order if it is also anti-symmetric. A pre-ordered set (vesp. partially
ordered set; poset) is a set D with a pre-order (resp. partial order) < on D. For
a pre-ordered set (D, <) and z,y € D, we write < y if x < y and y £ z. For a
poset ( D, <), two elements z,y € D are comparable if v < y or y < x; otherwise,
they are incomparable. A chain in (D, <) is a subset C of D in which each pair
of elements is comparable. An antichain in (D, <) is a subset A of D in which
each pair of different elements is incomparable, i.e., there is no order relation
between any two different elements in A. For a pre-ordered set ( D, <) and any
set X C D, we denote the maximal and minimal elements of X as follows.

ming(X)={rze X | -JyeX st.y<uz},
marg(X)={z e X | ~FyeX st.z <y}
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We often denote these as min(X) and maz(X) by omitting 5. We also assume
that the relation < is well-founded (resp. upwards well-founded) on D! whenever
ming(X) (resp. mar (X)) is concerned in order to guarantee the existence of
a minimal (resp. maximal) element of any X C D. Note that, when D is finite,
any pre-order is both well-founded and upwards well-founded on D.

For any set D, let P(D) be the powerset of D. Given a poset (D, <) and
X,Y € P(D), two orders are defined as follows:

X <ty iff VyeYIreX st ox<
X <Y iff VeeX3IyeY st x<

The relations < and < are respectively called the Smyth order and the Hoare
order, and both (P (D), =*) and (P(D),=<") are pre-ordered sets.

Ezample 1. Consider the poset (P({p,q}),C). It holds that {{p},{q}} =*

{{r}} =* {{p,q}} and {{p}} =" {{p}.{}} =" {{p.4}}. Since {0, {p}} =*
{0.{q}} =* {0,{p}} and {{p}.{p,q}} =" {{a}.{p.a}} =" {{p}.{p.q}} hold,

both < and <" are not partial orders.

For notational convenience, we often denote two orderings as <#” when dis-
tinction between them is unimportant.

3 Ordering Argumentation Frameworks

3.1 Ordering AFs

In this section, we consider a pre-ordered set (D, <) in which the domain D
is P(U), i.e., the class of sets of arguments in U, and the pre-order < is the
inclusion relation C over P(U). In this case (P(U),C) becomes a poset. The
Smyth and Hoare orderings on P(P(U)) are then defined, which enables us to
order classes of sets of arguments.

Definition 1 (orderings over sets of arguments). Let (P(U),C) be a
poset. For any Xy and Xy in P(P(U)),
=ty iff VIex,3Sex; st.SCT,
<0y, iff VSeX 3ITeX,st. SCT.
Definition 2 (ordering AFs). Let AF; and AF; be two argumentation frame-
works.
AR, CE AR, iff E53p =P E5p,,
AF, T AF, iff &9 =" %R,
L A relation R is well-founded on a class D iff every non-empty subset of D has a

minimal element with respect to R. A relation R is upwards well-founded on D iff
the inverse relation B! is well-founded on D.
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where o € {adm,com, prf, stb, grd }. We say that AFy is more (or equally) #-
general (resp. b-general) than AFy (under the o-semantics) if AF; Cf AF, (resp.
AF, T AF;).

We write AF} =f AF, (resp. AFy = =’ ° AL iff AFy Cf AF, and AF, Cf AFy
(resp. AF} C° AF, and AF, 0 AFY).

For notational convenience, we often denote two orderings as Eg/ ° when dis-
tinction between them is unimportant.

Proposition 1. Let AF be the collection of all AFs. Then (AF, E?/b> is a
pre-ordered set where o € { adm, com, prf, stb, grd }.

Ezample 2. Consider AFy; = ({a,b,c},{(a,b),(b,a),(b,c),(c,c)}) and AF» =
({a,b,¢,d}, {(a,d), (d,a), (b, d), (d,b)}).

AF1 AF2
a b a d b c
[ ] [ ] [ ] [ ] e [ ]

Then, 477" = E57 = {0, {a}, {0} }, 47, = {{a}, {b}}, &% = {{0}), €97 = {0);
and 447 ={0, {a} {0}, {c}, {a, b}, {e,d}, {a, b, b}, €47 ={{c}, {e d}, {a, b, ¢},
Sf‘;é = &t {{e,d}, {a,b,c}}, Egrd = {{c}}. In this case, it holds
that AF ;B, AFQ for o € {adm7com7grd}; and AF, C° AF, for ¢ €
{adm, com, prf, stb, grd }.

In what follows, some formal properties are addressed.

Proposition 2 Let AF, and AFy be two argumentatzon frameworks. It holds

that (i) AFy T, AFy, and (i) ARy T AF, iff AR 0 AF,.

Proof. For any AF, () € £5%", and E%ff is a singleton set. Hence, the results
hold. O

Two relations <! and < are monotonic with respect to the increase of exten-
sions.

Proposition 3. For any set X1 and Xy in P(P(U)), X1 C Xy implies X1 <"
and 22 ju 21.

Proof. If X1 C X5, then VS € X, S € Xy thereby ¥y < ¥y and Xy <! ¥,. O

Proposition 4. Let AFy and AF; be two argumentation frameworks. If G C
Eqr, then A QZ AFy and AF, CF AFy hold for o € { adm, com, prf, stb, grd }.

Proof. The result follows from Proposition 3. O

Proposition 5. Let AFy and AF5 be two argumentation frameworks. Then the
following results hold for o € { adm, com, prf, stb,grd }.
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(1) ARy = AFy iffminc (€3 5,) = minc (€3F,)-
(2) AFy = _b ?AF, zﬁmaxc(EAF )= maxg(Esz).

Proof. In what follows, minc is written as min. (1) If AFy C! AF, then
VS € min(EQp,) T € E3p, st. T C S, and then 3U € min(£3p,) st.
U C T. Thus, min(EGx,) =% min(€9p,). Likewise, AFy Cf AF; implies
min(Eqp,) =* min(Eqp, ). Assume min(E9y, ) # min(Ey,). Then, (i) 3U €
mzn(EAF )\ min(Eqp,) or (i) 3V € min(E3p,) \ min(Eqy, ). In case of (i),
W € min(€%p,) st. U C U by min(€9y,) =* min(€9y,). Also, 3U" €
min(Eqp,) st. U” C U by min(€%p,) =¥ min(€9p,). Thus, U” C U. Since
both U and U" are in min(£3y, ), U = U" thereby U’ = U. This contradicts the
assumption U & min(Eqp,). Similarly, (ii) also leads to contradiction. Hence,
min(Eqp, ) = min(Eqp,). (2) is shown in a similar manner. O

Proposition 6. Let AFy and AFy be two argumentation frameworks. Then the
following three are equivalent for o € {prf,stb,grd}: (1) AFy =t AF,, (2)
AF) =° AF,, (3) AF, =, AF;.

Proof. Consider a poset (P(U),C). Since £4p is an antichain set for o €
{prf, stb, grd}, mazc(EGr) = minc(E9p) = €G- Hence, the result holds by
Proposition 5. g

Ezample 3. Consider AFy = ({p,q},{(p,q),(q,p),(¢,q9)}) and AF>, = ({p,q},

{(p.9),(@.p), (p,p)}) where £ = {0,{p}} and £ = {0,{q}}. Then,
AFl Egom AF2 but AFl ?_écom AF2

Two orderings are related to credulous/skeptical acceptance of arguments.

Proposition 7. Let AFy and AFy be two argumentation frameworks. Then the
following relations hold for o € { adm, com, prf, stb,grd }.

1. If AFy, C° AF, thencrd® (AF,) C crd? (AFy).
2. If AF) CF AP, thenskp® (AF)) C skp® (AFy).

Proof. (1) Assume AFy C° AF,. If E4r, = 0 then crd”(AF;) = () by definition,
and the result holds immediately. Suppose that £, # 0 and ¢ € crd®(AFy).
Then ¢ € E for some E € £ . By AF} C’ AF,, for any E € Eqp, there is
F € %, such that £ C F. Then ) € E implies ¢ € F, thereby ¢ € crd?(AFy).
Hence, crd? (AF)) C crd? (AFs).

(2) Assume AFy T AF,. If €%, = 0 then skp? (AFz) = U by definition, and
the result holds immediately. Suppose that £9p, # 0. In this case, £Fp, # 0 by
AF, Cf AF,. 14 € skp? (AF)) then ¢ € E for every E € Ear - By ARy C! AR,
for any I' € £, thereis F € £, such that £ C F. Then ¢ € E implies ¢ € F,
thereby ¢ € skp” (AF»). Hence, skp? (AFy) C skp® (AF>). O

Example 4. Consider AFs in Example 2. By AF} E;Tf AFy, crd?™ (AFy) =
{a,b} is a subset of crd?”(AFy) = {a,b,c,d}. By AF, L& AFy,

skp™(AF;) = 0 is a subset of skp®™(AFy) = {c}.
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By Proposition 7, when AFy C? AF,, AF, has more (or equally) credulously
accepted arguments than AF}. In contrast, when AF} Eg AF,, AF5 has more (or
equally) skeptically accepted arguments than AF;. As such, two orderings over
AFs characterize the amount of acceptable arguments in two different modes of
reasoning.

3.2 Comparing Different Semantics

In this section, we compare different semantics of a single AF under two order-
ings. By Proposition 3 and the relations 55 C ENL C £S5 C E44" and
EF C Ef, we have: Efp <0 ERY <0 g 2 oeqqr, £y 20 &R
gadm <t geom b ghrf <4 gsib and €55 < 974, Moreover, we have the
next results.

Proposition 8. Let AF be an argumentation framework. Then, (1) Efﬁf <t
EAp for X € {com,prf,stbgrd}, and (2) E%p =<* &S for o €
{adm, com, prf, stb, grd }.

Proof. (1) Since a grounded extension is the least element of £, VE € 4p,
F e &4 and F C E, thereby £54 <t £). (2) The results €5, <’ 54 for
o € {com, prf,stb,grd} is already known. If E € £44" then IF € £ such
that £ C F. Hence, 44 < £597. O

The above results are combined with the ordering of different AFs. For
instance, suppose that AF; Eﬁtb AF; holds. By &7p <t &b for o =
{adm, com, prf, stb, grd}, for any stable extension F' of AF} there is a o-extension
E of AF; such that E C F'. This means that if AF, employs the stable semantics,
then AF5 is more f-general than AF; that employs any semantics. Suppose, on
the other hand, that AFy T AF, holds. By €%, =" €5 (Proposition 8(2)),
for any o-extension E of AF5 there is a complete extension F' of AF5 such that
E C F. This means that if AFy employs the complete semantics, then AF5 is

more b-general than AF; that employs any semantics.

3.3 Minimal Upper and Maximal Lower Bounds

In this section, we consider a minimal upper bound and a mazimal lower bound
of the sets of extensions with respect to two orderings <t and <P,

Definition 3. (mub, mlb). Let ( P(P(U)), <#/*) be a pre-ordered set. For any
Yy and Xy in P(P(U)), a set X' € P(P(U)) is an upper bound of X; and Xy
if X1 <% ¥ and ¥, <" ¥. An upper bound X is a minimal upper bound
(mub) of ¥ and Yy if for any upper bound X’ of Xy and Xy, X’ <#/* X implies
PRSI

On the other hand, a set X' € P(PU)) is a lower bound of Xy and X if
X <t/ 37 and X <¥/? 3,. A lower bound X is a mazimal lower bound (mlb) of
X1 and X, if for any lower bound X’ of Xy and X5, ¥ <#/° X/ implies X’ <#/" ¥
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Proposition 9. Let Xy and X5 be two antichain sets in (PU),C).

1. X € P(PU)) is an mub of £y and Xy in (P(PU)), <) iff ¥ = minc(X)
where X = {SUT | S € X andT € X5 }.

2. X € P(PUL)) is an mub of Xy and Xy in (P(PU)), =) iff ¥ = mazc(X)
where X ={SNT|Se€ X andT € Xy }.

3. X e P(PU)) is an mib of X1 and Xy in (P(PU)),=*) iff ¥ = minc (X1 U
).

4. X € P(PU)) is an mlb of Xy and Xy in (P(PU)), =") iff ¥ = mazc (XU
).

Proof. We show (1) and (3). The results of (2) and (4) are shown in similar
ways.

(1) ¥ is an upper bound of ¥ and Xy in (P(PU)), =*) iff ¥ =¥ ¥ and
Tty

iffvSeXdIieXist. Ty CSandVS e Y dTh € Yy st. Th C S

iffVvS e X AT, € Xy d15 € Yy st. Ty UTy C S(*)

Now suppose that X' is given as minc ({SUT | S € Zyand T € Xp}). X'is an
antichain set. Then X is an upper bound of X7 and X5 because () is satisfied.
Assume that X is not an mub. Then there is an antichain set?> I" € P(P(U))
s.t. (i) I' is an upper bound of X; and X, and (ii) I' <* ¥ and (iii) X A* I'.
Thus, I" # Y. For any U € X, there are S; € Xy and T} € Yy 8.t. U =5, UT)
by the definition of X. For this U, there is a set V € I' such that V C U by
(ii) and that Sy UTy C V for some Sy € Xy and Ty € Xy by (i) and (x). So
SoUTy C S;UTY. Since X is the collection of minimal sets, Sy U Ty = S U T.
Thus, U = V. Hence, ¥ C I'. By X # I', thereis W € I'\ X. Again S3UT5 C W
for some S3 € Xy and T3 € X5 by (i) and (*). However, there must be some
X € XY such that X C W by the construction of X and the minimality of X.
Because W ¢ X, X C W holds. However, by I' <% X there is Y € I" such that
Y C X and hence Y C W. This contradicts the fact that I" is an antichain set.

(3) ¥ is a lower bound of ¥} and Xy in (P(PU)), =*) iff ¥ < X and
X<ty
iffvS e Xy 3T e Yst. TC Sy and VS € Xy dT € X st. T C Sy
ffVS e U, AT e Yst. TCS (1)

Now suppose that X' = minc(X: U X3). Then X is a lower bound of X4
and X5 because (t) is satisfied. Assume that X' is not an mlb. Then there is
an antichain set I" € P(P(U)) s.t. (i) I' is a lower bound of X} and X5, and
(i) ¥ <* I' and (iii) I" #* X. Thus, ¥ # I'. By (ii), for any V € I, there is
U € X such that U C V. By this and the fact that I" is a lower bound of X
and Y5, we have that VW € Xy U Xy, 3V € I' AU € Y such that U CV C W.
As U € Y1 U X5, it must be U = V by the minimality of X, and thus I" C X.
By ¥ # I', there is X € X'\ I'. Since X € Y, U Xy by the construction of

2 Without loss of generality, I" is assumed to be an antichain set. If I" is not an
antichain set, there is S,T € I s.t. S CT. Put I" = ' \ {T'}. Then I" is an upper
bound of Xy and X5 (because if I satisfies (x) then I satisfies (*)) and also satisfies
(ii) and (iii).
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Y, there must be some Y € I'such that Y € X by (). As X ¢ 'Y C X
holds. However, by (ii) there is Z € X' such that Z C Y and thus Z C X. This
contradicts the fact that X' is an antichain set. Therefore, X is a mlb of Xy and

T in (P(PU)), <*). 0

Proposition 9 states that an mub or mlb of two antichain sets in
(P(PU)),=*") is constructed by the operations min or maz. Suppose two
argumentation frameworks AF; and AF, having the sets of o-extensions £ r,
and £ , respectively. Then, a question is whether there is AF € AF such that
&4 is obtained as an mub (or mlb) of €9, and £3p,. If 0 = grd, there is an
AF that has the extension obtained as the mub of Proposition 9(1) or (2). This
is because if 5%% = {E} and Ei}‘i = {F} then we can construct an AF s.t.
ENY = {EUF} or &3 = {ENF} as AF = (EUF,0) or AF = (ENF,0).
On the other hand, an AF having the grounded extension as the mlb of Propo-
sition 9(3) or (4) does not always exist. This is because ming(é'g}dl U S%%) or
maxc (Eﬁg u 5%;12) is not a singleton set in general. When an AF has multiple
extensions, the answer is also negative in general.

Ezample 5. Consider AFy and AF, such that €% = {{a,b},{a,c}} and
&b = {{b,c}}. Then, minc(Efp U &) = maxc(Eh U EXL) =
{{a,b},{a,c},{b,c}}, but there is no AF such that 5% = {{a, b}, {a,c}, {b,c}}.

Any stable extension must be incomparable and tight, and the set
{{a,b},{a,c}, {b, c}} does not satisfy this condition [2,4]. As such, the existence
of an mub or mlb as a set of extensions as in Proposition 9 does not imply that
it is realizable under a particular semantics [2,4], that is, it is not necessarily
the case that there is an AF having the set of o-extensions that coincide with
an mub or mlb of two sets of extensions of two AF's. Investigating necessary
and/or sufficient conditions for the existence of an mub/mlb of two AFs under
o-semantics is left for future study.

4 Strong Ordering

This section considers comparing two AFs under dynamic environments by
observing the effect of incorporating new information into given argumenta-
tion frameworks. In this section we consider AF = (A, R) where A C U and
R - U x Z/l3 Given AF1 = (Al,Rl) and AF2 = (14.2,.[“22)7 define AF1 (] AF2 =
(A1 UAs, R U RQ)

Definition 4. Let AF} and AF5 be two argumentation frameworks. Then,
AF, <f AF, iff (AFy UAF) C! (AF, U AF) for any AF € AF,
AF, < AF, iff (AF, U AF)C° (AF, U AF) for any AF € AF
where o € { adm, com, prf, stb, grd }.

3 We relax the condition by technical reasons but it does not affect the results of
previous sections. This is because attack relations in (U xU)\ (Ax A) do not change
extensions of AF'.
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We write SIE/ > to represent both Slfi, and ﬁf, together. The relation AF} g?/ ’
AF, implies AF; C¥ AR, by putting AF = (0,0).

Proposition 10. Let AF} and AF; be two argumentation frameworks. If
AF g?/b AF5 then AF g?/b AFy where o € { adm, com, prf, sth,grd }.

By Proposition 2, the next result holds.

Proposition 11. Let AFy and AFy be two argumentation frameworks. Then,
(i) AF, <* . AF,, and (i) AFy ggm AF, iff ARy <0 AF.

—adm grd

Two argumentation frameworks AF; and AF» are strongly equivalent (wrt
o semantics) if AFy UAF =, AF, U AF for any AF € AF [10]. The notion of

strong equivalence is related to the orderings 51?/ " as follows.

Proposition 12. Let AFy and AF5 be two argumentation frameworks. Then the
following three are equivalent for o € { prf,stb,grd}: (1) AFy <t AF, <b AFy,
(2) ARy ﬁi’, AF, SIZ AFy, (3) AFy and AF5 are strongly equivalent.

Proof. AF, <¥" AF, <¥" AF,

iff (AFy, UAF) C¥° (AF, U AF) C¥° (AF, U AF) for any AF € AF

iff (AFy UAF) =, (AF> U AF) for any AF € AF (Proposition 6)

iff AFy and AF; are strongly equivalent. O

Ezample 6. ([10]) Two argumentation frameworks AFy = ({a, b, ¢}, {(a,b), (b, ¢),
(c,a)}) and AFy = ({a,b,c}, {(a,c),(c,b), (b,a)}) have the same preferred exten-
sion @), but they are not strongly equivalent. This is explained by the fact that for
AF = ({a,b},{(a,b)}), AFy UAF has the preferred extension ), while AF, UAF
has the preferred extension {a}, thereby (AF, U AF) z?)rf (AF, U AF).

Proposition 13. Let AF; and AF; be two argumentation frameworks. Then
the following results hold for o € { prf, stb, grd }.

1. If ARy <0, AF; then E5 . C EGp, -
2. If ARy <%, AF, then €95, C E9p, -

Proof. (1) Let AFy = (A1, Ry) and AF, = (A, Ry). If AF;<° AF,, then AF, C”
AF, (Proposition 10). Assume €9 € £7p, . Then there is an extension E €
E%p \ Eqp,- By AFy T AFj, there is F' € £, such that E C F. For any F
satisfying ' C F, there is an argument a € F'\ E. Since F' is conflict-free, E / a.
Suppose that a € A;. The fact a € E implies a ¢ D(FE). Then there is (b,a) € Ry
st. b€ Ay and E 4 b. Since (E +4 a),b ¢ E thereby b ¢ D(E). Then there is
(¢,b) € Ry st.c€ Ay, c#aand E 4 ¢. (If ¢ =a then E' = FU {a} defends
every element in E'. So E' € £ r, Which contradicts the antichain property of
Eqr,-) Since (E £+ b),c € E thereby ¢ ¢ D(E). Repeating the above argument,
A; becomes an infinite set. This contradicts the assumption that A; is finite.
Hence, there is an argument a € F\ E s.t. a € A;. Consider AF = ({d}, {(a,d)})
where d € A; U Ay. Then AF; U AF has an extension E' = E'U {d}, while F is
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an extension of AFy U AF. So E € F. Moreover, for any G € £y, such that
E ¢ G, E' = EU{d} Z G. Thus, for any extension G’ of AF, UAF, E' € G'.
Hence, (AF; U AF) [Z° (AF, U AF), thereby AF;, < AF,. Contradiction. (2) is
shown in a similar manner. O

Proposition 13 shows that 319/ ’ provides a sufficient condition for inclusion
between the sets of extensions, while g’i,/ ’ provides a necessary condition for it
(Proposition 4).

Proposition 14. Let AF; and AF; be two argumentation frameworks. Then
the following three are equivalent for o € { prf,stb,grd}: (1) AFy <0 AFy, (2)
AR, <t AF, (3) Eqmuar € Eqpuar for any AF € AF.

Proof. We show (1)<(3). The relation (2)<(3) is shown in a similar way.
Suppose AF; §l£’7 AF,. By definition, (AF; U AF) Qf (AF, U AF) for any
AF € AF. Then (AFy, U AF) U AF' C° (AF, U AF) U AF’ for any AF and
AF' in AF. So AF; U AF < AF, U AF for any AF € AF. By Proposi-
tion 13(1), £4puar € E4puap- Conversely, suppose E4p ar € Eqp,uap for
any AF € AF. By Proposition 4, AF; LI AF C° AF, U AF for any AF € AF.
Hence, AF} 31?, ALy, a

As such, two relations Slz and <! are symmetric for o € { prf, stb, grd }.

5 Concluding Remarks

We introduced several orderings for comparing sets of extensions in argumenta-
tion frameworks. We showed that two orderings Eg and EZ are used for com-
paring skeptical/credulous acceptance of arguments in different argumentation
frameworks. Moreover, those relations have connections to inclusion/equivalence
relations between sets of extensions. Since argumentation theories are nonmono-
tonic, some formal properties addressed in this paper have their counterpart in
[7-9]. On the other hand, we show that those orderings are used for comparing
different semantics of argumentation, which is not considered in the context of
default theories or logic programming. The existence of an AF that has a set
of extensions as an mub or mlb of given two sets of extensions is not always
guaranteed, which is in contrast with the cases of default theories and logic pro-
gramming where the existence of an mub or mlb is guaranteed. We considered
five semantics of AF's in this paper, but the most results obtained in this paper
are independent of particular semantics and applied to other semantics as well.
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Abstract. Bayesian networks (BNs) are powerful tools that are well-
suited for reasoning about the uncertain consequences that can be
inferred from evidence. Domain experts, however, typically do not have
the expertise to construct BNs and instead resort to using other tools
such as argument diagrams and mind maps. Recently, we proposed a
structured approach to construct a BN graph from arguments anno-
tated with causality information. As argumentative inferences may not
be causal, we generalize this approach to include other types of infer-
ences in this paper. Moreover, we prove a number of formal properties
of the generalized approach and identify assumptions under which the
construction of an initial BN graph can be fully automated.

Keywords: Bayesian networks + Argumentation + Inference -
Reasoning

1 Introduction

Bayesian networks (BNs) [11] are compact graphical models of joint probability
distributions that have found applications in many different fields where uncer-
tainty plays a role, including medicine, forensics and law [6]. BNs are well-suited
for reasoning about the uncertain consequences that can be inferred from evi-
dence. However, especially in data-poor domains, their construction needs to
be done mostly manually, which is a difficult, time-consuming and error-prone
process [7], and domain experts typically resort to using other tools such as
argument diagrams, mind maps and ontologies [4,8]. Hence, we believe BN con-
struction can be facilitated by automatically extracting information relevant for
a BN from such tools. More specifically, in this paper we study how information
expressed as structured arguments [2] about the domain can inform the design
of a BN graph, a directed acyclic graph (DAG) which captures the independence
relation among variables.

In previous research, Bex and Renooij [3] identified constraints on BNs given
structured arguments, but these only suffice for constructing an undirected skele-
ton of a BN graph. Recently, we were able to derive a directed graph [18], but only
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by assuming that all inferences in the initial structured arguments are explicitly
labeled with causality information [1,14]. Arcs in the BN graph are then set in
the causal direction, following the heuristic typically used in the manual con-
struction of BN graphs [11]. However, in [18] it is assumed that all inferences
are labeled with causality information, which precludes the use of other types
of inferences, such as mere statistical correlations and definitions. Furthermore,
formal properties of the proposed proposals were not studied in [3,18].
Accordingly, in this paper we present an approach that generalizes our pre-
viously proposed construction approach [18] to other types of inference. In addi-
tion, we formally prove that BN graphs constructed by our approach allow rea-
soning patterns similar to the inferences represented in the original structured
arguments. Moreover, we identify assumptions under which the fully automat-
ically constructed initial graph is guaranteed to be a DAG, and we identify
bounds on the complexity of inference in BNs constructed by our approach.
The paper is structured as follows. Section 2 provides preliminaries on argu-
mentation and BNs. In Sect.3, we present our generalized approach for con-
structing BN graphs from inferences. In Sect. 4, we prove a number of formal
properties of the approach. In Sect. 5, we discuss related research and conclude.

2 Preliminaries

2.1 Argumentation

Throughout this paper, we assume that the domain experts’ analysis is cap-
tured in an argument graph (AG), in which claims are substantiated by chaining
inferences from the observed evidence; an example is depicted in Fig.la. AGs
are closely related to argument diagrams and mind maps [4], familiar to many
domain experts. Formally, an AG is a directed graph G4 = (P, A 4), where P
is a set of nodes representing propositions from a literal language with ordinary
negation symbol —, and A 4 is a set of directed (hyper)arcs. We write p = —¢q
in case p = —g or ¢ = —p. Nodes E, C P corresponding to the (observed)
evidence are root nodes in G 4. We assume that for every p € Ep it holds that
-p ¢ P. A4 is comprised of three pairwise disjoint sets S, R and U, which are
sets of support arcs, rebuttal arcs and undercutter arcs, respectively. A support
arc is a (hyper)arc s: {p1,...,pn} — p € S, indicating an inference step from
{p1,-..,pn} C P (called the tails of s, denoted by Tails(s)) to a single propo-
sition p € P (called the head of s, denoted by head(s)). Here, curly brackets
are omitted in case |Tails(s)| = 1. Support arcs s, ..., s, form a support chain
(S15.-.,8m) iff head(s;) € Tails(s;41) for 1 <i < m.

There are two types of attack arcs. A rebuttal arc r € R is a bidirectional
arc r: p «—— —p in G 4 that exists for every pair p, —-p € P. An undercutter arc
u € U is a hyperarc u: p — (s), where p € P undercuts s € S. Informally, a
rebuttal is an attack on a proposition, while an undercutter attacks an inference
by providing exceptional circumstances under which the inference may not be
applicable. In figures in this paper, nodes in G_4 corresponding to elements of
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E, are shaded. Support arcs are denoted by solid (hyper)arcs and rebuttal arcs
and undercutter arcs are denoted by dashed (hyper)arcs.

In reasoning about evidence, a distinction can be made between causal and
evidential inferences [1,14]. Causal inferences are of the form “c is a cause for e”
(e.g. fire causes smoke), whereas evidential inferences are of the form “e is caused
by ¢” (e.g. smoke is caused by fire). Inferences may also be neither causal nor
evidential. For instance, definitions, or abstractions [5], allow for reasoning at dif-
ferent levels of abstraction, such as stating that guns can generally be considered
deadly weapons. Another example of a different type of inference is an inference
representing a mere statistical correlation, such as a correlation between home-
lessness and criminality. While there may be one or more confounding factors
that cause both homelessness and criminality (e.g. unemployment), a domain
expert may be unaware of these factors or may wish to refrain from capturing
them in the AG. For our current purposes, we assume that support arcs in S are
either annotated with a causal “c” label, an evidential “e” label, or are labeled
“o” for all other types of inferences. S then divides into three disjoint sets S€,
S€ and S° of causal, evidential and other types of support arcs, respectively. In
figures in this paper, “0” labels are omitted.

In this paper, some further assumptions are made. We assume that support
chains are non-repetitive in that there does not exist a support chain (s, ..., s) in
AG. We assume that for every support chain (sq,. .., s,) the heads of s1,..., s,
are consistent in that i, j € {1,...,n}, i # j such that head(s;) = —head(s;).
Furthermore, we assume that AGs do not include causal cycles in that there do

/!

not exist two support chains (s, ..., s,) and (s7,...,s.,) in AG with s1,...,s, €

Se, sh,...,s), € S, Tails(s;) N Tails(s}) # 0 and head(s,) = head(s),) or
head(s,) = —head(s},). Informally, this assumption says that for every p,q € P,
if p is a cause of ¢, then ¢ (or —¢g) cannot be a cause of p (see also [1]).

As noted by Pearl [14], the chaining of a causal inference and an evidential
inference can lead to undesirable results. Consider the example in which a causal
inference states that a smoke machine causes smoke and an evidential inference
states that smoke is evidence for fire. Chaining these inferences would make us
conclude there is a fire when seeing a smoke machine, which is clearly undesirable.
We therefore assume that an AG does not include a support chain (s, s2) where
s1 € 8¢, s5 € S°, and refer to this assumption as Pearl’s C-E constraint.

For those familiar with argumentation, we note that, although we use
the term “argument graph”, the graph only represents inferences and attacks
between propositions by means of arcs; actual arguments are not represented
in the graph. Preferences over arguments, as well as their status, are thus not
taken into account in our formalism, since they are not needed for our current
purposes. Our formalism can be straightforwardly mapped to ASPICT (cf. [2])
if all inferences are considered to be defeasible.

2.2 Bayesian Networks

A BN [11] compactly represents a joint probability distribution Pr(V) over a
finite set of discrete random variables V; in this paper we assume all variables
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to be Boolean. The variables are represented as nodes in a DAG Gg = (V, Ap),
where Ag C 'V x V is a set of directed arcs V; — V; from parent V; to child V.
The BN further includes, for each node, a conditional probability table (CPT)
specifying the probabilities of the values of the node conditioned on the possible
joint value combinations of its parents. A node is called instantiated iff it is set
to a specific value. Given a set of instantiations, or evidence, for nodes Eyvy C 'V,
the probability distributions over the other nodes in the network can be updated
through probabilistic inference [11]. An example of a BN graph is depicted in
Fig. 1b, where ovals represent nodes and instantiated nodes are shaded.

The BN graph Gp captures the independence relation among its variables.
Let a chain be defined as a sequence of distinct nodes and arcs in the BN graph.
A node V is called a head-to-head node on a chain c¢ if it has two incoming
arcs on c. A chain ¢ between nodes Vi and V5 is blocked iff it includes a node
V ¢ {V1,V2} such that (1) V' is an uninstantiated head-to-head node on ¢
without instantiated descendants; or (2) V' is instantiated and has at most one
incoming arc on c¢. A chain that is not blocked is called active. If no active
chains exist between Vi and V5 given instantiations of Z C V., then they are
considered conditionally independent given Z. In case a head-to-head node or
one of its descendants is instantiated, an active chain is induced between its
parents, allowing for interparental interactions. If one of the parents is now true,
then the probability of another parent being true as well may change, depending
on the specific synergistic effect modeled in the CPT for the head-to-head node.

BN construction is typically an iterative process. After constructing an initial
BN graph, we should verify that this graph is acyclic and that it correctly cap-
tures the (conditional) independencies. If the graph does not yet exhibit these
properties, arcs should be reversed, added or removed by the BN modeler in
consultation with the domain expert. We call this the “graph validation step”.

3 Constructing BN Graphs from Argument Graphs

To facilitate the BN construction process, we previously proposed a stepwise app-
roach for constructing an initial BN graph from domain knowledge represented
in AGs with support arcs in S€U S® only [18]. In this section, we generalize this
approach to include inferences in S°.

Upon using an AG to inform BN construction, we have to consider their
difference in semantics. An AG, by means of its support chains, describes the
iterative inference steps that can be made from the observed evidence towards
the conclusions. In comparison, a BN describes a joint probability distribution
which does not model such directionality. Only when probabilistic inference is
performed is available evidence propagated through the network using the exist-
ing active chains. To mimic the inferences described by an AG in a BN, we will
focus on ensuring that the (chains of) support arcs in the AG, originating from
evidence E, C P, are captured in the BN graph by means of active chains for
propagating instantiations of Eyv C V (see also [18]). Note that since the notion
of an active chain is a symmetrical concept, a BN graph will also capture rea-
soning patterns in the direction opposite of the support chains present in the
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AG. In Sect. 4, we formally prove that all support chains in an AG indeed have
corresponding active chains in the BN when following our generalized approach.

In the manual construction of BN graphs, arcs are typically directed using
the notion of causality as a guiding principle [11]. By following this heuristic, two
competing causes form a head-to-head connection in the node corresponding to
the common effect, allowing synergistic effects between the causes to be directly
captured in the CPT for this node. Hence, we propose to use the same heuristic
in automatically directing arcs, where we exploit causality information explicitly
expressed in an AG by means of “c” and “e” labels.

Undercutters attack inferences in support chains by providing exceptions to
the inference. For instance, if an inference is in the evidential direction, then
an undercutter suggests an alternative cause for the same effect. Accordingly,
we propose to enable capturing such interactions between an undercutter and a
support arc in the CPT of a head-to-head node formed in the BN graph.

3.1 The Generalized Approach

In this subsection, we present and explain the steps of the generalized approach.
Let var: P — V be an operator mapping every proposition p or =p € P in an
AG to a BN variable var(p) = var(—p) € V describing values p and —p. For an
AG G4 = (P,A4), a BN graph G = (V, Ap) is constructed as follows:

(1) ¥p,—p € P, include var(p) in V; if p or —p € Ep, also include var(p) in Ev.
2) For every support arc s: {p1,...,pn+ — p:
( y supp p 2 P

(2a) If s € S®, include var(p) — var(p;), i =1,...,n in Ag.

(2b) If s € S, include var(p;) — var(p), i=1,...,nin Ag.

)

(2c) If s € S° and Ps; € S such that (s,s;) form a support chain, include
var(p;) — var(p),i=1,...,nin Ag.
(2d) If s € S° and 3sy,...,s, € S© such that (s1,...,5m) is a maximal

chain of evidential support arcs in AG following s, include var(p;) —
var(head(sy,)), i =1,...,nin Ag.
(3) For every undercutter arc u: p — (s) € U with s: {q1,...,qn} — ¢
(3a) If s € S®, include var(p) — var(q;), i=1,...,nin Ag.
(3b) If s ¢ S®, include var(p) — var(q) in Ag.
(4) Verify the properties of the constructed graph Gp:
(4a) Break cycles in Gp introduced by so-called evidential shortcuts resulting
from the combination of steps 2a and 2d (see Sect. 3.3 for further details).
(4b) Apply the standard graph validation step (see Sect.2.2).

While our approach exploits the domain knowledge captured in the AG in con-
structing a BN graph, the AG may lack information needed to prevent cycles
and unwarranted (in)dependencies in the obtained BN graph; hence the manual
validation step (step 4b above), which is standard in BN construction.

The first step is to capture every proposition in G4 and its negation as two
values of a random variable in Gg. By the same step, two propositions involved
in a rebuttal are captured as two mutually exclusive values of the same node.
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The steps pertaining to s € S¢ U S® are analogous to those proposed previously
in [18]. These steps formalize the approach of setting arcs using the notion of
causality as a guiding principle [11]. For further details, the reader is referred
to [18]. In Sects. 3.2 and 3.3, we motivate and explain the steps pertaining to
s € S° with several examples.

3.2 Explanation and Motivation of Steps 2¢ and 3b

Consider Fig. 1, illustrating steps 1—2¢ and 3b of the generalized approach for a
forensic example. A dead body was found and we are interested in the cause of
death of this person. According to witness testimony (tes1), the person was hit
with a hammer (hammer); however, according to another testimony (tes2), the
person was hit with a stone (stone). We conclude that the person was hit with
an angular object (angular), as hammers and stones can generally be considered
to be angular. Note that the relation between hammer (stone) and angular is
neither causal nor evidential; instead, the support arcs between these proposi-
tions express that, at a higher level of abstraction, both hammers and stones
can generally be considered angular objects. A mallet was found at the crime
scene (mallet), which undercuts inference hammer — angular since a mallet is
an exceptional type of hammer that is not angular but instead has a large cylin-
drical head. Finally, an autopsy report (autopsy) further supports the claim that
the person was hit with an angular object. By following steps 1—3 of the general-
ized approach, the BN graph of Fig. 1b is constructed from the AG in Fig. 1a. By
steps 2c and 3b, variables Hammer and Stone and variables Mallet and Hammer
respectively form head-to-head connections in Angular.

In general, by step 2¢ head-to-head nodes are formed in the nodes correspond-
ing to the heads of support arcs in S°. Specifically, let py,...,p, be tails of one
or more s; € S° with head(s;) = p. Then Ap includes arcs var(p;) — var(p),
j=1,...,n by step 2¢; head-to-head nodes are, therefore, formed in var(p). By
setting arcs as per step 2¢, we thus allow for including synergistic effects, if any,
of the tails on the probability of p in the CPT for the head-to-head node.

Similarly, by step 3b head-to-head nodes are formed in the nodes corre-
sponding to the heads of undercut support arcs in S€ U S°. Specifically, let
u: p— (s) € U be an undercutter of s: {q1,...,q,} — ¢ € S°US®. Then by step

|
mallet}----~
|hammer| | stone |
+

i) o)

(a)

Fig.1. An AG including support arcs in S°® (a); the corresponding BN graph con-
structed by steps 1—2c¢ and 3b of the generalized approach (b).
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3b, head-to-head nodes are formed in var(q) as Ap includes arc var(p) — var(q).
Again, this allows for modeling possible interactions between p and ¢;, and hence
between var(p) and var(g;), directly in the CPT for var(q). Bex and Renooij [3]
previously noted that the presence of an undercutter should decrease the proba-
bility that the conclusion of the undercut inference is true. By setting arcs as per
step 3b, this interaction can be directly captured by the following constraints on
the CPT for var(q): Pr(q | p,q;) < Pr(q| —-p,q) fori=1,... n.

3.3 Explanation and Motivation of Steps 2d and 4a

Next, consider Figs.2a and b, illustrating step 2d of the generalized approach
for a medical example (taken from [7]). After performing a CT scan (scan) on
a patient who has severe difficulty swallowing, it is established that a tumor is
present in the lower (distal) part of his esophagus. Clinical studies indicate a
strong correlation between the location of an esophageal tumor and its cell type;
however, neither can be considered a cause of the other. Distal tumors generally
consist of cylindrical cells (cylindrical), often formed as a result of frequent
gastric reflux (refluz). The BN graph constructed by steps 1—2a and 2d of the
generalized approach from the AG in Fig. 2a is depicted in Fig. 2b. As arcs Distal
— Reflux and Reflux — Cylindrical are included in Apg and the involved nodes
are not instantiated, active chains exist between Distal and Reflux and Distal
and Cylindrical. Note that we do not wish to set arcs as per step 2c¢, as in this
case a head-to-head node would instead be formed in Cylindrical which would
block the chain between Distal and Reflux.

Under specific conditions, cycles are introduced in step 2d of the generalized
approach, namely when a so-called evidential shortcut exists in the AG, i.e. if in
addition to the conditions of step 2d, also 3!, ..., s}, € S® such that (s/,...,s})
form a support chain, Tails(s) N Tails(s}) # 0 and head(s)) = head(s;) or
head(s),) = —head(s;) for a j € {1,...,m}. An example is depicted in Fig. 2c.
In this example, s: p — g1 € S° is followed by a chain of support arcs s1: g1 —
r,s3: 7 — s € S° where there also exists a chain of support arcs sj: p —

e

(a)

Fig.2. An AG (a) and the corresponding BN graph (b) illustrating step 2d of the
generalized approach; an AG (c) and the corresponding BN graph (d), illustrating the
conditions under which a cycle is introduced in step 2d.
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g2,85: g — —r € S°. By step 2a, arcs S — R,R — @2 and Q2 — P are
included in Apg. By step 2d, arc P — S is also included, introducing a cycle
in Gp. We note that this arc can safely be removed, as an active chain already
exists between P and S via @2 and R. In general, cycles are broken in step 4a
by removing arcs var(p;) — var(head(s,,)) from Ap Vp; € Tails(s) N Tails(s]).

4 Properties of the Generalized Approach

In this section, we prove a number of formal properties of the generalized app-
roach. The first property states that for every support chain in a given AG there
indeed exists a corresponding active chain in the BN graph.

Proposition 1. Let G4 = (P, A 4) be an AG with root nodes Ep, and let Gg =
(V, Ap) be the corresponding BN graph constructed according to steps 1—4a of
the generalized approach. Let (si,...,8,) be any support chain in G4, where
Tails(s1) = {p1,...,pm} and head(s,) = q. Then there exist active chains
between var(p;) and var(q) in Gg given Ev for every i € {1,...,m}.

Proof (Sketch). The following cases are distinguished:

— If s, € SCUS® Vk € {1,...,n}, then when following steps 2a and 2b a head-
to-head node can only be formed in var(head(s;)) for an arbitrary s;, j €
{1,...,n—1}if s; € S°, s;41 € S®; however, this construction is prohibited
as it violates Pearl’s C-E constraint (see Sect. 2.1). Furthermore, since heads
of support arcs are not propositions in Ep, corresponding nodes in G are
not instantiated. Chains between var(p;) and var(q) are thus never blocked.

— If (s1,..., sn) includes support arcs in S° and none of these arcs is followed
by an s € S€, then arcs in Ap are set similarly as for s € S® by step 2c. As
per the above proof, chains are not blocked.

— Let an s; € 8°, 1 < j < n be followed by a chain of support arcs in S€,
and let (s;j41,...,8;j41) be a maximal such chain. If j + 1 < n, then step 2d
introduces direct arcs, and therefore active chains, between nodes in {var(p) |
p € Tails(s;)} and var(head(sj4+;)).If j + 1 > n, then Ap in addition includes
a directed path from var(head(s;41)) to var(head(sy)) by step 2a; therefore,
chains between nodes in {var(p) | p € Tails(s;)} and var(head(s,)) via
var(head(sj4;)) are active, as var(head(s;1;)) is not a head-to-head node. In
step 4a, a subset of the arcs introduced in step 2d is removed (see Sect. 3.3)
iff an evidential shortcut and a corresponding active chain already exist.

Finally, Ap is only extended for undercutter arcs in step 3; active chains formed
between var(p;) and var(q) in step 2 are, therefore, not affected by this step. O

In Proposition 2, we prove that under specific conditions on AGs an acyclic
graph is automatically obtained when following steps 1—4a of the approach,
which simplifies the manual verification involved in step 4b. Conditions (a) and
(b) concern the existence of undercutter arcs within and between connected
subgraphs of AGs. Condition (c¢) is a generalization of our assumption that no
causal cycles exist in AGs (see Sect. 2.1) to support arcs in S°.
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Proposition 2. Let G4 = (P,Ay), and let Gy = (P, A%) be the subgraph of
G4 with A% = A\ U. Let an AG component of G4 be defined as a connected
component of G*. Assume the following conditions are satisfied:

(a) For any AG component C = (P',A')) of G4 with P' CP, A’y C A%, there
does not exist a u: p — (s) € U withp € P/, s € A/j.

(b) For every pair of AG components C1 = (P, A’y) and Cy = (P, A’}) of G4
with P',P" C P, A'y, A’y C A%, there does not exist both a uy: p1 — (s1) €
U with p1 € P!, 51 € A} and a uz: ps — (s2) € U with p, € P”, 55 € A/).

(c) There do not exist two support chains (s1,...,8,) and (s},...,s.,) with

r m

S1,---,8, € S€ U S°, s),...,s. € S°, Tails(s;) N Tails(s}) # 0, and

r m

head(sy) = head(s.,) or head(s,) = —head(s),).

Let Gg = (V, Ap) be the graph constructed from G 4 according to steps 1—4a of
the generalized approach. Then Gg is a DAG.

Proof (Sketch). The following cases are distinguished:

— In steps 2a and 2b, no cycles are introduced. Specifically, our non-
repetitiveness assumption and our consistency assumption (see Sect.2.1)
jointly assume that for every p € P, p or —p cannot be inferred via a chain
of support arcs. Therefore, no chain of arcs exists in A from a node P to
itself. The only other case in which cycles can be introduced is when a causal
cycle exists in G 4, which is also prohibited by assumption (see Sect.2.1).

— No cycles are introduced in step 2¢ if condition (c) is satisfied. Cycles are only
introduced in step 2d if an evidential shortcut exists; however, these cycles
are broken again in step 4a as described in Sect. 3.3.

— After step 2, there is a correspondence between AG components and the
connected components of the underlying undirected graph S of the thus far
constructed BN graph. Under condition (a), no cycles are introduced within
a connected component of S when including additional arcs in Ap for every
u € U in step 3. Furthermore, for every pair of AG components C; and Cy of
G4 with corresponding connected components Cf and C} of S, no cycles are
introduced between components C7 and C4 in step 3 under condition (b). O

Figures 3a and ¢ depict examples of AGs that do not satisfy conditions (a) and
(b) of Proposition 2, respectively. In the validation step that follows the initial
construction of these BN graphs, arcs can be reversed or removed to make these
graphs acyclic. The choice of arc to reverse or remove will depend on its effect
on active chains, including those between nodes not directly incident on the arc.
We note that this type of manual verification is standard in BN construction,
especially in data-poor domains. While the domain knowledge expressed in the
original AG has been exploited to construct an initial BN graph, additional
domain knowledge may need to be elicited to obtain a valid graph.

Proposition 3 gives an upper-bound on the number of parents introduced by
the approach for each node var(p) in a BN graph, which bounds both the size of
the CPTs and the complexity of inference in the BN. This bound captures the
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IR = B
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Lo ] [a |
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(a) (c)

Fig. 3. Examples of AGs (a, ¢) for which a cyclic graph is constructed by steps 1—4a
of the generalized approach (b, d).

number of support arcs and undercutters that involve either proposition p or —p.
The proof of this result is straightforward and omitted due to space limitations.

Proposition 3. Let G4 = (P,A4) be an AG, and let Gg = (V,Ap) be the
BN graph constructed according to steps 1—4a of the generalized approach. For
every p € P, let Par, = {p;, | p; € Tails(s), s € S® U S°, head(s) = p}
and let Par; = {p; | pi € Tails(s), s € S°, s is followed by mazimal chain
81,-++,8m € S with head(sy,) = p or head(s,,) = —p}. Let S5 be a subset of
S¢, where s € S5 iff p € Tails(s). Let Uy, C U be the subset of undercutter arcs
directed to an s € Sy or s € S¢,. Similarly, let Uy, Uy C U be the subsets of
undercutter arcs directed to an s € S¢ respectively S® for which head(s) = p or
head(s) = —p. Then an upper-bound for the number of parents of var(p) is:

(1) |Par,| + [Par_,| + |Par, | + [Ug| + [Ug] if S¢ = 8°, = 0;

(2) [Par,|+ |Se | + [Par)| + |US| + |US| + [UZ] if S = 0 and S, # 0;
(3) [Par_,| + [SS| + [Par)| + US| + [US| + [UZ] if SS # 0 and S, = 0;
(4) [SS| +18,| + US| + [US] if SS # 0 and S<,, # 0.

5 Conclusion

In this paper, we have studied how domain knowledge expressed as labeled argu-
ments can be exploited to construct a BN graph. Firstly, we have generalized our
previously proposed approach [18] by allowing inference types that are neither
causal nor evidential. Moreover, we have formally proven that, as intended, our
approach captures all support chains in an AG in the form of active chains in
the BN graph. We have also identified conditions on AGs under which a DAG is
automatically constructed by the approach, simplifying the manual verification
step. Lastly, we have identified bounds on the size of the CPTs and the com-
plexity of inference in BNs constructed by our approach. All properties also hold
for the limited case considered in [18] but were not proven in that paper.

The generalized approach allows us to construct an initial BN graph from
a domain expert’s initial argument-based analysis, capturing similar reasoning
patterns as their original AG; it thereby simplifies the BN elicitation process.
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We note that BN construction is an iterative process in which both the domain
expert and BN modeler should stay involved; this also holds when applying our
approach, as the provided AG may be incomplete or incorrect. To aid in this
iterative process, approaches were proposed in related work which allow experts
to use argumentation to argue about the BN under construction instead of about
the domain [13,19]. In other related work, approaches for explaining the reason-
ing patterns captured in BNs in terms of argumentation were proposed [12,17],
which allow domain experts more accustomed to argumentation to understand
the probabilistic reasoning captured in a BN. Compared to the present paper,
this work is in the reverse direction, namely from BNs to arguments.

Recently, there has been much other work on probabilistic argumentation.
However, most approaches concern abstract argumentation (see e.g. [10] for an
overview) while we need structured arguments. Rienstra [16] considers proba-
bilistic structured argumentation; however, he takes what Hunter [9] calls the
constellations approach to probabilistic argumentation by considering uncer-
tainty in the existence of arguments. Instead, we take what Hunter calls the
epistemic approach to probabilistic argumentation by considering probabilities
to express uncertainty concerning the reliability of an argument’s inferences.
There is some work on the epistemic approach to probabilistic structured argu-
mentation (e.g. [9,15]). In future work, this may become relevant for deriving
probabilistic constraints on BNs.
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Abstract. The life cycle of Case-Based Reasoning (CBR) systems
implies the maintenance of their knowledge containers for reasons of
efficiency and competence. However, two main issues occur. First, knowl-
edge within such systems is full of uncertainty and imprecision since they
involve real-world experiences. Second, it is not obvious to choose from
the wealth of maintenance policies, available in the literature, the most
adequate one to preserve the competence towards problems’ solving. In
fact, this competence is so difficult to be actually estimated due to the
diversity of influencing factors within CBR systems. For that reasons,
we propose, in this work, an entire evaluating process that allows to
assess Case Base Maintenance (CBM) policies using information coming
from both a statistical measure and a competence model under the belief
function theory.

Keywords: Case-Based Reasoning + Case-Base Maintenance *
Competence evaluation - Uncertainty - Belief function theory -
Combination

1 Introduction

Case-Based Reasoning (CBR) is a methodology of problem solving that reuses
past experiences to solve new problems according to their similarities [1]. Every
new solved problem by a CBR system is retained in a memory structure called a
Case Base (CB) to serve for future problems resolution. Although the incremen-
tal learning of CBR systems presents a strong point, it is not free of drawbacks. In
fact, this evolution can be uncontrollable, caused by the retention of redundant
and noisy cases which conduct to the degradation of systems’ problem-solving
competence and performance. For those reasons, the Case Base Maintenance
(CBM) field presents the key factor’s success of CBR systems. As has been
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defined in [2], “Case-base maintenance implements policies for revising the orga-
nization or contents (representation, domain contents, accounting information,
or implementation) of the case base in order to facilitate future reasoning for
a particular set of performance objectives”. During the last five decades [4], a
wide range of CBM policies have been proposed, even in Machine Learning or
CBR communities, that aim to update CBs content in such a way to be per-
former and more competent to make high quality decisions. Different attempts
to classify them have been proposed in different papers [5,6,9,10]. One of the
simplest categorizations consists at regrouping CBM policies by their ability for
uncertainty management (hard and soft). Condensed Nearest Neighbor (CNN)
[11] and Reduced Nearest Neighbor (RNN) [12] present the baseline of the CB
maintenance task. For the soft CBM policies, less work have been proposed,
where two are implemented within the framework of the belief function theory
which are Evidential Clustering and case Types Detection for CBM (ECTD) [6]
and Dynamic policy for CBM (DETD) [13].

After performing a maintenance task, the question that arises is whether
the original CBR is better, tantamount, or worse than the maintained one. The
intuitive answer to this question is to measure the competence of the CB before
and after maintenance. Therefore, this allows us to estimate the support degree
of the CBM policy as well as its adequacy to be applied. However, estimating the
real competence of a given CBR system in problem-solving is a very complex task
since this competence depends on many affecting factors, such as statistical and
problem solving properties [3]. To deal with these problems, available research
are even measuring the accuracy of the CBR system using a statistical measure
[6,7] or estimating their competence using a competence model [3,8]. Some of
them are aware of the great importance of managing uncertainty within such
knowledge since they reflect real-world situations. Consequently, we aim, in this
work, to evaluate CBM policies by offering a support/adequacy degree through
combining information coming from an accuracy measure and a competence
model. To offer high quality aggregation with managing conflict within both
sources’ information, and to deal with uncertainty within case knowledge, we
use one among the most powerful tools for uncertainty management called the
belief function theory.

The rest of the paper is organized as follows. In the next section, we overview
the key factors that affect CBs competence and the two used ways for CBR eval-
uation. Section 3 presents, then, the basics of the belief function theory, as well
as the used tools. Throughout Sect. 4, our CBM evaluating process is detailed to
indicate the adequacy of the used CBM policy and estimate its support degree.
In Sect.5, we elaborate the experimental study on different CBM policies and
using different CBs. Finally, Sect. 6 concludes the paper and proposes some future
work.

2 Case Base Competence Evaluation

The competence (or coverage) of a CBR system presents the range of problems
that it can successfully solve [3]. Actually, this criterion cannot be well estimated
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when we use a simple metric due to the diversity of influencing factors (Sub-
sect. 2.1). In the literature, this competence is even estimated using statistical mea-
sure such as the accuracy (Subsect. 2.2), or using some competence model such as
CEC-Model [14] (Subsect. 2.3).

2.1 Key Factors Affecting CBs Competence

Estimating the competence of a CBR system needs an awareness regarding the
set of elements that may affect it. Actually, we note that the statistical properties
of cases within a CB is highly influencing its ability in covering the problem
space. Besides, problem-solving properties are an intuitive influencing factor of
CBR systems competence. As done in [3,14], we can enumerate these factors
as follows: CB size*, cases distribution®, density of cases®, cases vocabulary™®,
Similarity*, and adaptation knowledge!.

2.2 Statistical Measures for CBR Evaluation

Some works mention that the precision or the accuracy presents a kind of true
competence [3] with some limitations. Actually, the competence of a CBR system
can be recognized as input problem solving capability with the right solutions.
The most common and straightforward practice consists at using a test set from
the original CB and applying a classification algorithm? to solve problems. By
this way, we can estimate the competence of the CBR system using statistical
measures such as the accuracy as the percentage of correct classifications, the
specificity as the true negative rate, and others [15].

Actually, this kind of measures has to be taken into account when measuring
the competence of a CB. However, it is not sufficient since it does not cover
several affected factors. Hence, competence models are also used for this matter.

2.3 Competence Models for CBR Evaluation

Various competence models have been proposed to take into account different
influencing factors. For instance, we find Case Competence Categories Model [16]
which consists at dividing cases into four types so as to fix a maintenance strat-
egy to be followed. However, it is not able to tangibly and mathematically quan-
tify the global competence of the entire CB. Besides, we find Coverage model
based on Mahalanobis Distance and clustering [17], that uses a density-based
clustering method to distinguish three types of cases on which the overall CB
competence depends. However, we cannot well estimate this competence without
deeply studying the relation between cases. Although Smyth & McKenna model
[3] is able to deal with different influencing factors, it suffers from its disability
to manage the uncertainty within the real stored situations. Hence, the Cover-
age & Evidential Clustering based Model (CEC-Model) [14] has been proposed
in a preliminary work to tackle the problem of uncertainty management while
regrouping cases and measuring similarities. Its entire cycle is described in Fig. 1.

! The factors identified with a star (*) are taken into account in the current work.
2 The (k-NN) classifier is the most used within the CBR community.
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Fig. 1. CEC-Model’s process

By this way, we use the latter mentioned CEC-Model [14], and the accuracy
measure, during our proposed CBM evaluation process, where both of knowl-
edge uncertainty and information fusion are taken into account under the belief
function theory framework.

3 Belief Function Theory: Basic Concepts

The belief function theory [18,19], called also Evidence theory, is a mathematical
framework for reasoning under partial and unreliable knowledge. This model is
basically defined by a frame of discernment {2 which represents a set of a finite
elementary events. The major strength of this theory is its ability to model all
levels of uncertainty, from the complete ignorance to the total certainty, on a
power set 22 which contains all the possible subsets of £2.
The key point of this theory is the basic belief assignment (bba) m which is
defined as follows:
m: 27 —[0,1]

A m(A) M)

with m is satisfying the following constraint:

Yo m4)=1 (2)

ACQR

It aims at allocating to every set A € 2 a degree of belief to represent the
partial knowledge about the actual value of y defined on (2. A mass function is
normalized if it assigns to the empty set partition null degree of belief (m()) = 0).
Contrariwise, the assigned amount of belief to the empty set reflects the flexibility
to consider that the value of y may not belong to (2. The latter situation has
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usually been used during the evidential clustering to identify noisy instances
[20,21], where the frame of discernment (2 defines the set of clusters.

Actually, we often need to calculate the distance between two mass functions
defined in the same frame of discernment. To do so, Jousselme Distance [22]
presents one among the most used tools to measure distances between two pieces
of evidence. It is defined as follows:

s, ma) = [ St — 37D (it — i 3)

where D is a square matrix of size 25 (K = |£2]), and its elements are calculated
such that:

if A=B=10
otherwise

(4)

D(A,B) = {hmm
[AUB]

In the framework of belief function theory, various combination rules of evi-
dence have been proposed. The conjunctive rule of combination [23] is one of the
most used ones to combine two pieces of evidence induced from two independent
and reliable sources of information. When the normality constraint (m(() = 0)
is imposed, we may use the Dempster rule of combination [18].

Ultimately, to make decision under the belief function theory, we may use
the pignistic probability transformation, denoted BetP, which is considered as
one of the best ways for decision making. If the mass function is normalized,
then BetP is defined as follows:

BetP(y) = — > mi4) (5)

o 1—m(®)y6A’AgQ |A|

where y € 2 and |A] is the cardinality of the subset A C (2.

4 Evidential CBM Evaluating Process

In this section, we propose an evaluation method for Case Base Maintenance
policies that aims to estimate their support/adequacy degree for a given CBR
system. Its main idea consists at combining two mass functions reflecting their
adequacy. These mass functions are deduced from the improvement degree of
competence, extracted respectively from the CEC-Model [14] and the accuracy
criterion before and after applying the CBM policy. For the sake of clarity, a
general depict of the proposed evaluating method is shown in Fig. 2.

4.1 Two-Level Original CBR Evaluation

First of all, we aim at measuring the competence of the original non-maintained
CBR system using both the evidential competence model CEC-Model [14] to
provide Compgo and the accuracy criterion to provide Acco.
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Fig. 2. The proposed CBM evaluating process

Compo FEstimation: The original CB denoted CBRo presents the input of
CEC-Model. As shown in Fig. 1, it applies the Evidential C-Means (ECM) [20] for
cases clustering, Jousselme Distance [22] (Eqgs. 3 and 4) for similarity calculation,
and pignistic probability transformation (Eq.5) for cases membership decision.
Finally, groups coverage and CB competence are estimated through the density
and size properties. The output result is bounded in [0, 1], where the more it is
near to 1 the more C'BRy is considered as competent in solving problems.

Accp Estimation: The accuracy criterion is studied using 10-fold cross valida-
tion and the k-NN as a classifier (we chose to take k = 1). To be measured,
the original CB is divided into training set (I'r = 0.8 x CB) and test set
(T's = 0.2 x CB), where Tr plays the role of the entire CB and T's contains
the set of input problems to be solved from T'r. Acco is therefore calculated as

follows: e
#Correct Classifications on T's

Size of T's

(6)

Acco =

4.2 Case Base Maintenance Application

After measuring the Original CB competence through the two previous identified
sources (competence model and accuracy criterion), we perform on CBRo the
CBM policy to be evaluated. Actually, the main purpose of CBM policies is to
detect the subset of cases that let a high problem-solving capability. In this step,
we may consider the applied policy as a black box and we only focus on its
input (CBRo) and output, which is the maintained CB (CBRj;). By this way,
any CBM policy, in the literature, may be applied at the aim to be evaluated,
thereafter, by our evaluating process.



Evidential CBM Evaluation Process 119

4.3 Two-Level Maintained CBR Evaluation

Once the CBM policy completes its execution, our next step consists at measur-
ing the edited CB competence using the same tools and settings as the first step
to generate Compys and Accyy values.

Compys Estimation: As previously done, we evaluate the CB using the CEC-
Model, whereas that time it is applied to assess the maintained CB (CBRjy)
and provide Compy; between 0 and 1.

Accyy Estimation: The testing strategy of the accuracy after the maintenance
task consists at dividing C BRo into training set Tr and test set T's. Then, the
used CBM policy is applied on T'r to generate an edited training set 7rj;. Using
1-NN, the accuracy is measured through classifying T's using T'rs. Finally, Accys
is obtained by averaging ten trials values using 10-fold cross validation.

4.4 Extracting CBM Adequacy Knowledge from Statistical
Measure and Competence Model Independently

Up to now, we have four different competence estimation values (in [0,1]) that
come from two sources: CEC-Model and Accuracy measure. The first is measur-
ing the competence of CBRp, and the second assesses the quality of the applied
CBM task through CBR);. During this step, we highlight the improvement of
CBRo against CBR);, in terms of both competence and accuracy. Therefore,
we define these two improvements (Impcomp and Impac.) as follows:

ImpComp = Compl\/l - COmpO (7)

and
Impace = Aceyr — Acco (8)

Knowing that their offered values are in [—1,1], three distinguished situations
arise regarding I'mp,, where x replaces even Comp or Acc terms:

— If Imp, ~ 1, then a high degree of adequacy is assigned to the applied CBM
policy for the CBR system.

— If Imp, ~ —1, then the used CBM policy is not adequate at all for the CBR
system.

— If I'mp,, ~ 0, then we have no preference regarding the maintenance task.

4.5 Knowledge Combination Under the Belief Function Theory

Based on the situations mentioned above, we build two mass functions on the
same frame of discernment which contains two events. The first consists at indi-
cating that the CBM policy is adequate to be applied on a given CBR system,
and the second presents its complementary event. Hence, this frame is defined
as follows:

2 = {Adequate, Adequate} (9)
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By this way, the mass functions, defined on (2, indicates the evaluation of
the CBM policy. The first mcomp describes the knowledge coming from the
improvement in terms of competence, and the second m 4., informs the knowl-
edge originated by the improvement in terms of accuracy. Consequently, we
similarly define them as follows:

Mcomp(?) =0

Impcom If Impcomp >0
MComp(Adequate) = 0 paemr O{herw]i?; ’ (10)
mcomp - Im 7 i 10
PCom MPComp < 0
moomp( Adequate) = l) com O{herwi; !
mComp(Q) =1- |]mpcomp|
and
mAcc(@) - O
Im If Im >0
mace(Adequate) = 0 e O{herwlz??ecc - (11)
e 11
Adeauate Impace If Imppce <0
Macc(Adequate) = |0 P Ocherwzzge

mAcc(Q) =1- |ImpAcc‘

Obviously, knowledge obtained from each source is not perfect. Hence, their
aggregation presents an interesting solution to reach more relevant information.
For that reason, we opt to synthesize the knowledge obtained in mcomp and m acc
by combining them using tools offered within the evidence theory. Since mcomp
and m 4. present normalized mass functions that are defined in the same frame
of discernment {2 and induced from two distinct information sources, which are
considered to be reliable, we use the conjunctive rule of combination defined in
[23] as follows:

(mComp @ mAcc)<C> = Z mComp(A)mAcc<B)a vC - 2 (12)
ANB=C

In the current work, we are not interested in making decision regarding
whether the applied CBM policy is adequate or not, but we aim to estimate
the adequacy support degree for the applied maintenance task. To do, we inter-
pret this rate as the pignistic probability of the event “Adequate”. Consequently,
we measure this probability using Eq. 5 in such a way that:

CBM support degree = BetP(Adequate) (13)

5 Experimentation

The following experiments aim at projecting our proposal on the maintenance
field within CBR systems and use it to evaluate this CBM policies adequacy. In
this section, we present used data and the followed settings during implementa-
tion and tests (Subsect. 5.1). Offered results and discussion are then provided in
Subsect. 5.2.
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5.1 Experimental Setup

Our proposed evaluating process of the current work have been tested on five case
bases from UCI Machine Learning Repository® to assess CBM policies available
in the literature. These datasets are described in Table 1 in term of size, number
of problems attributes, and number of classes or solutions.

Table 1. Case bases description

Case base # instances | # attributes | # solutions
1| Breast Cancer | 569 32 2
2| Glass 214 9 6
3 | Ionosphere 351 34 2
4 | Indian 583 10 2
5| Sonar 208 60 2

For every CB, we estimate the support maintenance degree of four CBM
policies. We have chosen CNN [11] and RNN [12] as the most widely used CBM
algorithms, as well as ECTD [6] and DETD [13] as the two existing CBM policies
under the belief function theory. These methods have been developed according
to their default settings as described in their referenced papers.

5.2 Results and Discussion

As regards to the study of results offered, in Table 2, by our proposed evaluating
process, some particular situations should be pointed out. If the offered support
degree is equal to 50%, then the applied CBM method was able to retain exactly
the initial competence of the CBR system. The amount above 50 represents the
capability rate of the CBM policy to improve that competence. Therefore, the
higher this value, the more the CBM policy is adequate to be applied. On the
contrary, the amount below 50 reflects the amount of competence degradation
after maintenance. In Table 2, we note that almost all the offered CBM support
degrees are in [40, 60], which means that performed CBM policies slightly reduce
or improve the CBR competence in problem-solving. Nevertheless, we remark
that CNN and RNN algorithms are not adequate to be applied on some CBs
such as “Ionosphere” and “Glass” datasets (25.74% and 29.98% with CNN,
and 17.95% and 29.98% with RNN). In our sense, we may tolerate values in
[45, 50] if other evaluation criteria are improved such as CBR performance and
response time*. Ultimately, we note that the ECTD policy is the most supported
CBM method to be applied on the different tested CBs, where it offers support
values equal to 57.27% with “Breast Cancer”, 50.84% with “Glass”, 47.66% with

3 https://archive.ics.uci.edu/ml/.
4 Forthcoming research work will carry out with other evaluation criteria.
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“Tonosphere”, 50.68% with “Indian”, and 50.78% with “Sonar”. These values
indicate that maintenance task applied by ECTD improves the performance of
almost all the original tested CBs.

Table 2. Support degree results of some CBM policies applied on some CBs

CB CBM | Compp (%) | Compps (%) | Acco (%) | Acepr (%) | CBM support degree (%)
Cancer CNN 83.44 81.52 59.39 71.45 55.08
RNN 83.44 82.11 59.39 71.45 55.37
ECTD | 83.44 83.12 59.39 74.25 57.27
DETD | 83.44 83.06 59.39 70.12 55.18
Glass CNN 55.86 54.24 87.38 48.33 29.98
RNN 55.86 54.24 87.38 48.33 29.98
ECTD | 55.86 55.18 87.38 89.75 50.84
DETD | 55.86 54.26 87.38 73.81 42.52
Ionosphere | CNN 93.86 69.74 86.61 54.46 25.74
RNN 93.86 68.88 86.61 34.46 17.95
ECTD | 93.86 89.17 86.61 86.61 47.66
DETD | 93.86 88.72 86.61 77.53 43.12
Indian CNN 74.22 72.12 65.26 61.88 47.30
RNN 74.22 71.03 65.26 61.75 46.71
ECTD | 74.22 73.68 65.26 67.15 50.68
DETD | 74.22 70.13 65.26 59.87 47.05
Sonar CNN 78.11 73.87 81.28 64.22 39.71
RNN 78.11 72.96 81.28 62.85 39.63
ECTD | 78.11 76.32 81.28 84.62 50.78
DETD | 78.11 76.01 81.28 78.55 47.31

6 Conclusion

In this paper, a process for evaluating Case Base Maintenance policies is pro-
posed. Its main idea consists at applying a given CBM policy and measuring
the CB competence before and after maintenance using both of an evidential
competence model and the statistical accuracy measure. The output of these
two sources are modeled and aggregated within the belief function framework
to offer a high-quality CBM support degree estimation. During the experimen-
tation, this process has been performed on different CBM policies and using
different datasets. As future work, we opt to intervene on the opposite sense by
setting parameters of some CBM policies at the aim of maximizing the support
degree offered by the proposed evaluation process.
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Abstract. A hidden conflict of belief functions in the case where the
sum of all multiples of conflicting belief masses being equal to zero
was observed. To handle that, degrees of non-conflictness and full non-
conflictness are defined. The family of these degrees of non-conflictness is
analyzed, including its relation to full non-conflictness. Further, mutual
non-conflictness between two belief functions accepting internal con-
flicts of individual belief functions are distinguished from global non-
conflictness excluding both mutual conflict between belief functions and
also all internal conflicts of individual belief functions. Finally, both the-
oretical and computational issues are presented.
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1 Introduction

When combining belief functions (BFs) by the conjunctive rules of combination,
some conflicts often appear (they are assigned either to () by non-normalised
conjunctive rule @ or distributed among other belief masses by normalization in
Dempster’s rule of combination @). Combination of conflicting BFs and inter-
pretation of their conflicts are often questionable in real applications.

Sum of all multiples of conflicting belief masses (denoted by meg(0)) was
interpreted as a conflict between BF's in the classic Shafer’s approach [19]. Nev-
ertheless, non-conflicting BFs with high mg (0) have been observed already in
90’s examples. Classification of a conflict is very important in the combination
of BFs from different belief sources. Thus a series of papers related to conflicts
of BFs was published, e.g. [1,6,7,10,11,13-15,18,21].
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A new interpretation of conflicts of belief functions was introduced in [4]:
an important distinction of an internal conflict of individual BF (due to its
inconsistency) from a conflict between two BFs (due to conflict/contradiction
of evidence represented by the BFs). Note that zero-sum of all multiples of
conflicting belief masses meg (0) is usually considered as non-conflictness of the
belief functions in all the above mentioned approaches.

On the other hand, when analyzing the conflict between BFs based on their
non-conflicting parts! [7] a positive value of conflict was observed even in a sit-
uation when the sum of all multiples of conflicting belief masses equals to zero.
The observed conflicts—hidden conflicts [9]—are against the generally accepted
classification of BFs, i.e. to be either mutually conflicting or mutually non-
conflicting. Above that, different “degrees” of non-conflictness were observed.
This also arose a question of what is a sufficient condition for full non-conflictness
of BFs.

Section 5 presents the entire family of “non-conflictness” of different degrees
between mg (@) = 0 and a full non-conflictness. Results for both general BFs
and special classes of BFs are included. Relations to other approaches to non-
conflictness are analysed in Sect. 6. Further computational complexity and other
computational aspects are presented in Sect. 7.

2 Preliminaries

We assume classic definitions of basic notions from theory of belief functions
[19] on finite exhaustive frames of discernment 2, = {wi,wa,...,wy}. P(2) =
{X|X C 2} is a power-set of (2.

A basic belief assignment (bba) is a mapping m : P(£2) — [0, 1] such that
Y acom(A) = 1; the values of the bba are called basic belief masses (bbm,).
m(0) = 0 is usually assumed.

A belief function (BF) is a mapping Bel : P(£2) — [0,1], such that
Bel(A) =3 g xcam(X). A plausibility function PL:P(£2) — [0,1], PI(A) =
>0 £ANX m(X). Because there is a unique correspondence among m and corre-
sponding Bel and PI, we often speak about m as of a belief function.

A focal element is a subset of the frame of discernment X C (2, such that
m(X) > 0; if X C {2 then it is a proper focal element. If all focal elements are
singletons (i.e. one-element subsets of {2), then we speak about a Bayesian belief
function; in fact, it is a probability distribution on (2. If there are only focal
elements such that |[X| =1 or |X| = n we speak about quasi-Bayesian BF. In
the case of m(£2) = 1 we speak about vacuous BF and about a non-vacuous BF
otherwise. In the case of m(X) =1 for X C {2 we speak about categorical BF.
If all focal elements have a non-empty intersection, we speak about a consistent
BF;, and if all of them are nested, about a consonant BF.

Dempster’s (normalized conjunctive) rule of combination @: (m; @
ma)(A) = Y yryoa Kmi(X) mao(Y) for A # 0, where K = £ x =

1-r?

! Conflicting and non-conflicting parts of belief functions originally come from [5].
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> xry—g M1 (X)m(Y), and (my & mz)(0) = 0, see [19]. Putting K = 1 and
(m1@m2)(0) = k = mg(0) we obtain the non-normalized conjunctive rule of
combination ©, see e.g. [20].

Smets’ pignistic probability is given by BetP(w;) =3, cxco ﬁ%, see
e.g. [20]. Normalized plausibility of singletons® of Bel is a probability distribu-

tion PI_P such that Pl_P(w;) = % [2,3]. Sometimes we speak about
we

pignistic and plausibility transform of respective BF.

3 Conflicts of Belief Functions

Original Shafer’s definition of the conflict measure between two belief functions
[19] is the following: k = >_ vy M1 (X)ma(Y) = (m'@m”)(0) = mg(0), more
precisely its transformation log(1/(1 — k)).

After several counter-examples, W. Liu’s approach [14] appeared in 2006
followed by a series of other approaches and their modifications. W. Liu suggested
a two-dimensional conflict measure composed from mg (0) and Di [BetPyi—a
maximal difference of BetP(w) for m;, m; over singletons w € 2 (as kind of a
distance); as it was shown, neither m@g () nor any distance of BFs alone may
be used as a convenient measure of conflict of BF's.

Further, we have to mention two axiomatic approaches to conflict of BFs
by Desterke and Burger [11] and by Martin [15]. In 2010, Daniel distinguished
internal conflict inside an individual BF from the conflict between them [4] and
defined three new approaches to conflict; the most prospective of them - plausi-
bility conflict - was further elaborated in [6,10]. Finally, Daniel’s conflict based
on non-conflicting parts of BF's was introduced in [7]. This last-mentioned mea-
sure motivated our research of hidden conflict [9], hidden auto-conflict [8] and
also current research of degrees of non-conflictness.

Among the other approaches, we can mention e.g. Burger’s geometric app-
roach [1].

A conflict of BF's Bel’, Bel” based on their non-conflicting parts Belj,, Bel
is defined by the expression Conf(Bel’, Bel”) = (my@m()(?), where non-
conflicting part Bely (of a BF Bel) is unique consonant BF such that PI_Py =
PI_P (normalized plausibility of singletons corresponding to Bely is the same
as that corresponding to Bel); myg is a bba related to Bely. For an algorithm to
compute Belg see [7].

This measure of conflict analogously to Daniel’s approaches from [4] does not
include internal conflict of individual BFs in conflict between them. Similarly to
plausibility conflict, it respects plausibilities equivalent to the BFs; and it better
generalises the original idea to general frame of discernment.

2 Plausibility of singletons is called contour function by Shafer in [19], thus PI_P(Bel)
is a normalization of contour function in fact.
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4 Hidden Conflict

Ezample 1. Introductory example: Let us assume two simple consistent belief
functions Bel’ and Bel” on 25 = {w1,wq,ws} given by the bbas m/({w1,ws}) =
0.6, m'({w1,ws}) = 0.4, and m” ({wa,ws}) = 1.0.

For the better understanding of the problem, see Fig.1: The only focal
element of m” has a non-empty intersection with both focal elements of m’,
thus 3> yvryy—gm/ (X)m"(Y) = (m'@m”)(0) is an empty sum. Considering
the conflict based on non-conflicting parts, respective consonant BFs with the
same plausibility transform has to be found. Because Bel” is consonant then
Belfj = Bel”, m{ = m/. In case of m’ we can easily calculate that Pl'({w1}) = 1,
Pl'({w2}) = 0.6, PI'({ws}) = 0.4, thus m{({w1}) = 0.4, m{({w1,w2}) = 0.2,
my({w1,ws,ws}) = 0.4, hence Conf(Bel',Bel”) = (my@my) (@) = my({w1})
mf ({wa2,ws}) = 0.4-1 = 0.4. Let us recall that the computational algorithm has
been published in [7]—we are not putting it here because of the lack of space.

[ ) B [ )
e o O ®
Fig. 1. Introductory Example: focal elements of m/, m”, and of m’'®@m”.

Then (m’@m’)(#) = 0. This seems—and it is usually considered—to be a
proof of non-conflictness of m’ and m”. Nevertheless, the conflict based on non-
conflicting parts Conf(Bel’, Bel”) = (m{©@m()(0) = 0.4 > 0 (which holds true
despite of Theorem 4 from [7] which should be revised in future).

Observation of a Hidden Conflict in Example 1

The following questions arise: Does (m'@m’)(#) = 0 represent non-conflictness
of respective BF's as it is usually assumed? Is the definition of conflict based
on non-conflicting parts correct? Are m’ and m” conflicting? What does
(m'&m’)(0) = 0 mean?

For the moment, suppose that Bel’ and Bel” are non-conflicting. Thus both
of them should be non-conflicting with the result of their combination as well.
Does it hold for BFs from Example 17 It does if one combines m’@m’ with
m'” one more time (assuming two instances of m” coming from two inde-
pendent belief sources). It follows from the idempotency of categorical m'":
m'@m” @m’" = m'@m’ and therefore (m’@m”@m’)(0) = 0 again. On the other
hand, we obtain positive (m’@m”@m’)(0) = (m’@m’em’)(0) = 0.48 (assuming
m/ coming from two independent belief sources again). See Table1 and Fig. 2.
When m” and m’ are combined once, then we observe meg () = 0. When com-
bining m” with m’ twice then mg(0) = 0.48. We observe some kind of a hidden
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conflict. Moreover, because both individual BFs are consistent, there are no
internal conflicts. Thus our hidden conflict is a hidden conflict between the BFs
and we have an argument for correctness of positive value of Conf(Bel’, Bel”).

Table 1. Hidden conflict in the introductory example

X {w1} | {w2} | {ws} | {w1, w2} | {w1, w3} | {w2, w3} | {w1, w2, w3} | O
m' (X) 0.0 |00 |00 060 0.40 0.00 0.00 -
m”(X) 0.0 0.0 0.0 0.00 0.00 1.00 0.00 -
(m'om”)(X) 0.00 | 0.60 | 0.40 | 0.00 0.00 0.00 0.00 0.00
(m'om” om”)(X) 0.00 |0.60 |0.40 |0.00 0.00 0.00 0.00 0.00
(m' om’ ©m’)(X) 0.00 | 0.36 |0.16 | 0.00 0.00 0.00 0.00 0.48
(m' ©m" ©m’©m’)(X) | 0.00 | 0.36 |0.16 | 0.00 0.00 0.00 0.00 0.48

PSR '

Fig. 2. Arising of a hidden conflict between BFs in the Introductory Example: focal
elements of m', m’,m”"—m’®@m’,m"” and of (m'®@m’)om”.

What is a decisional interpretation of our BFs? Since contours (plausibilities
of singletons) are P’ = (1.0,0.6,0.4) and PI” = (0.0,1.0,1.0), then by normal-
ization we obtain PI_P’" = (0.5,0.3,0.2) and PI_P" = (0.0,0.5,0.5). This can
be interpreted in a way that wy is significantly preferred by Bel’, while it is the
opposite in case of Bel”. This is also an argument for a positive value of mutual
conflict of the BFs.

Note that in this special case, Smets’ pignistic transform and plausibil-
ity transform lead to the same result. We obtain BetP’ = (0.5,0.3,0.2) and
BetP"” = (0.0,0.5,0.5). Both the probabilistic approximations BetP and Pl_P
(in general different) give the highest value to a different singleton for Bel’ and
Bel”. Thus the argument for mutual conflictness of the BFs is strengthened
and we obtain the same pair of incompatible decisions based on the BFs in
both frequent decisional approaches: using either normalized contour (which is
compatible with the conjunctive combination of BFs) or pignistic probability
(designed for betting).

Hence (m'@m')(0) does not mean real non-conflictness of the BFs. It means
simple or partial compatibility of their focal elements only. Or we can accept it
as some weak version of non-conflictness.
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5 Degrees of Non-conflictness

A case of a hidden conflict could be seen in the introductory example: Note that
the example describes a situation when (m’@m”)(@) = 0 while (m’@m’e@m”
@m”)(@) > 0. Le. there is some type of non-conflictness, but weak as both
Conf(m/,m") > 0 and (m’@m’e@m”em')(0) > 0.

Thus the following question arises now: Is (m'@m’em”e@m”)(0) = 0 suffi-
cient for full non-conflictness of belief functions? The answer is of course “no”.

Example 2. Little Angel example: Assume for example the following bbas
defined over 25 = {w1,...,ws}—as described in Table2 (the example and its
title comes from [9], the title is inspired by graphical visualization of respective
focal elements structure).

Table 2. Little Angel Example

X A= {wi,wa,ws} | B={wi,wa,w3,ws} | C = {wi,ws,ws,ws} | D= {ws,w3z,ws,ws}
m'(X) | 0.10 0.30 0.60 0.00

m”(X) | 0.00 0.00 0.00 1.00

Indeed, while we can observe both (m'@m”)(@) = 0 and (m'@m”om’

@m")(0) = 0 here, note that (m’@m’@m’@m”@m”e@m’)(?) = 0.108 > 0, which
witnesses some kind of a hidden conflict again. Nevertheless, one can feel that the
degree of the non-conflictness is higher than in the case described by Example 1.

To make our findings more formal, note that due to associativity and commu-
tativity of conjunctive combination rule ® we can write (m’®@m’@m’e@m”e@m”

em”)(0) = (m'em™)e(m'em”)e(m'em”))#) = (@:_,(m'@m”))(®). Thus,
in case of Example 2, one can say that while mg(0) = (@}(m'@m”))(@) =
(@F (m'em))(0) = 0, there is (O (m’'@m))(#) = 0.108 > 0. See Table 3.

Table 3. Hidden conflict in the Little Angel Example—Example 2

X AND|BNnD | CNnD|ANnBND AnCNnD|BNCND |0

(m'om/")(X) 0.10 |0.30 |0.60 |0.00 0.00 0.00 0.00
(®2 (m'©@m’))(X) | 0.01 |0.09 |0.36 |0.06 0.12 0.36 0.00
(@3 (m'®m’"))(X) | 0.001 |0.027 |0.216 |0.036 0.126 0.486 0.108

Definition 1. (i) Let Bel’ and Bel” be BFs defined by bbms m' and m”. We
say that the BFs are non-conflicting in k-th degree if (@’f(m’@m”)(@) =0.
(i) BFs Bel' and Bel” are fully non-conflicting if they are non-conflicting in
any degree.
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Thus we can say that BFs from Table2 are non-conflicting in the second
degree, nevertheless, they are still conflicting in the third degree due to the
observed hidden conflict.

Utilizing our results on hidden conflicts we obtain the following theorem.

Theorem 1. Any two BFs on n-element frame of discernment (2, non-
conflicting in the n-th degree are fully non-conflicting.

Idea of the Proof: When combining two conflicting BFs defined over (2,, repeat-
edly then, because of set intersection operator properties, we either obtain the
least focal element of a cardinality lower than in the previous step, or a stable
structure of focal elements as the least focal element is already contained in all
others. Hence the empty set will appear as a focal element either in n steps or
it will not appear at all.

The theorem offers an upper bound for a number of different degrees of non-
conflictness of BFs. If a pair of BFs is non-conflicting in n-th degree then it
is non-conflicting in any degree. Note that it is possible to find a pair of BFs
non-conflicting in (n — 2)-th degree but conflicting in (n — 1)-th degree, as it is
shown in the general example below.

Example 3. Assume n-element (2, and BFs m® and m® are given by:
mi({wlaw%"'vwnfl}) nil
mz({W]JOJQ, -'-awn—Q? wn}) = n, 1
mz({wlaw%'“awn—&wn 1 }) =
e

mi({w1, w3, Wa, ooy wp }) = ﬁ, and
m" ({wa,ws, ...,wn }) = 1.

There is (©F (m'em¥))(®) = 0 for k < n — 2, (@ (miem*))(®) = 0.5 on 2
and e.g. (@}5(mi®m”))(®) =2.98-107% on $246.

Following the proof of Theorem 1, we can go further in the utilization of
results on hidden conflicts and obtain the following theorem, which decreases
the number of different degrees of BFs.

Theorem 2. Any two non-vacuous BFs on any finite frame of discernment non-
conflicting in degree ¢ are fully non-conflicting for ¢ = min(c’, ") +|sgn(c'—c")|,
where ¢, ¢’ are maximal cardinalities of proper focal elements of BFs Bel’, Bel”
and sgn() stands for signum.

Idea of Proof. The smaller is the maximal cardinality of a proper focal element
the faster an empty set—as a result of repeated combination of the BFs—may
appear.

Corollary 1. (i) There is only one degree of non-conflictness of any BF's on
any two-element frame of discernment 25. In the other words, all degrees of
non-conflictness of BFs are equivalent on any two-element frame (2.



132 M. Daniel and V. Kratochvil

(i) There is only one degree of non-conflictness of any quasi-Bayesian BF's on
any finite frame of discernment (2,,.

(iti) There are at most two different degrees of non-conflictness of a quasi-
Bayesian BF an any other BF on any finite frame of discernment §2,,.

6 Relation to Other Approaches to Non-conflictness

6.1 Degrees of Non-conflictness and Conf = 0.

We have described that there are n — 1 different degrees of non-conflictness on
{2, in the previous section. Besides that, we can observe also different types of
non-conflictness. Note that (m’@m’)(@) = 0 and Conf(m’,m”) > 0 in both
Examples 1 and 2. On the other hand, the opposite situation can be found—as
follows:

Ezample 4. Let us recall W. Liu’s Example 2 from [14] on £25 where m;({w;}) =
0.2fori=1,2and j =1,2,...,5 and m;(X) = 0 otherwise (i.e. Bayesian bbas
corresponding to uniform probability distributions). Note that while Con f(Bely,
Bely) = 0, then (m1@my)(®) = 0.8 and (@F (m,0m2))(®) > 0.8 for any k > 1.
Specifically, 0.9922,0.99968, . . ..

Ezxample 5. Similarly, we can present more general example on frame (2,, for an
arbitrary n > 3 — see Table 4.

Table 4. BF's from Example 5

X {wi} [{w2} [{w1,w2}| 2 0
mH(X) 0.4 0.2 0.2 0.2 -
m*(X) 0.3 0.1 0.1 0.5 -
(miem™)(X) 0.48 |0.18 |0.14 0.10 |0.10
(@F(m‘em™))(X) | 0.4608 | 0.1188 | 0.0476 | 0.0100 | 0.3628

Our n — 1 degrees of non-conflictness are related to conjunctive combination
of BFs, it covers general/global non-conflictness. If (@]f(m’ @m))(0) = 0 hold
for any k < n then there is neither internal conflict of any of individual BFs nor
a mutual conflict between the two BFs. On the other hand, Conf(m/,m") =0
is related only to mutual conflict between the BFs. Indeed, both the BFs in
Example 4 are identical. There is no mutual conflict between them, but both
of them are highly internally conflicting. Therefore there is also high conflict
(©F (m1@my))(0) for any k.

In Example 5 (Table4), there are two different BFs with the same order of
bbms of proper focal elements. Their @ combination has the same order of bbms
as well. Thus, there is no mutual conflict between them, but, there is an internal
conflict inside both of them. We can obtain analogous results also in the case
when the internal conflict is hidden in only one of the BFs.
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6.2 A Comparison of the Approaches

From the above examples, we can simply see that the 1-st degree of non-
conflictness is not comparable with Conf(m’,m’) = 0.

A relation of the other degrees of non-conflictness to Conf(m’,m”) = 0 is an
open issue for further investigation. We can only see that full non-conflictness
is stronger than Conf(m’,m”) = 0. This is nicely illustrated by the follow-
ing theorem. We can also see the full non-conflictness is equivalent to strong
non-conflictness and that the 1-st degree of non-conflictness is equivalent to
non-conflictness both from Destercke & Burger approach [11]. A relation of
Conf(m',m") = 0 to Destercke & Burger approach is also an open problem
for future.

Theorem 3. (i) Non-conflictness of the 1-st degree is equivalent to Destercke-
Burger non-conflictness ((m1@ms)(0) = 0, see [11]).
(i1) Full non-conflictness is equivalent to Destercke-Burger strong non-
conflictness (non-empty intersection of all focal elements of both BFs, see
[11]).

(iii) If BFsm’ and m” are fully non-conflicting then Conf(m’,m") =0 as well.
Idea of Proof:

(i) The first statement just follows the definition of the of the 1-st degree of
non-conflictness.
(ii) Computing @7 (m/@m”), the intersection of all focal elements of both the
BF's appears among the resulting focal elements.
(iii) The intersection of all focal elements of both the BFs is non-empty in the
case of full non-conflictness. Thus the intersection of sets of elements with
maximal plausibility is non-empty.

7 Computational Complexity and Computational
Aspects

When looking for maximal degree of non-conflictness m of two BFs Bel® and
Bel™ on general frame of discernment £2,, we need to compute @' (m!@m®).
Following Theorem 1, we know that m < n. Based on this we obtain complexity
O(n) of ® operations. Analogously to the case of complexity of looking for hidden
conflict [9] we can reduce the complexity to O(loga(n)) of ® operations utiliz-
(mfem)

ing a simplification of computation based on @jil(mi©m“) = @5:1

© @le (m*@m™). Note that the complexity of ® operation depends on the num-
ber and the structure of focal elements. Utilizing Theorem 3 we can go further
in reduction of computational complexity to O(n) of intersection operations N.

Beside theoretical research of properties degrees of non-conflictness we have
also performed a series of example computations on frames of discernment of
cardinality from 5 to 16. A number of focal elements rapidly grows up to
|P(2)] = 2/l =1 when conjunctive combination ® is repeated. Note that
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there are 32.766 and 32.767 focal elements on (21 in Example 3. Because the
conflictness/non-conflictness of BFs depends on the number and the structure of
their focal elements not on their bbms, we have frequently used same bbms for
all focal elements of BF's in our computations on frames of cardinality greater
than 10.

All our experiments were performed in Language R [16] using R Studio [17].
We are currently developing an R package for dealing with belief functions on
various frames of discernment. It is based on a relational database approach -
nicely implemented in R, in a package called data.table [12].

8 An Important Remark

Repeated applications of the conjunctive combination @ of a BF with itself
is used here to simulate situations where different independent believers have
numerically the same bbm. Thus this has nothing to do with idempotent belief
combination (where, of course, no conflict between two BF's is possible).

Our study was motivated by the investigation of conflict Conf of BFs based
on their non-conflicting parts [7], thus we were interested in independent BFs
when a hidden conflict was observed. But we have to note that conflictness/non-
conflictness of BFs has nothing to do with dependence/independence of the
BF's. Repeated computation of several (up to n) numerically identical BF's, when
looking for hidden conflict is just a technical tool for computation of m (@) or
more precisely say for computation of k = 3 vy _gm;(X)m;(Y). We are not
interested in entire result of repeated application of ®, we are interested only in
m@(0) or, more precisely, in & = 3"« x.n ~x,—0 M (X1) my(Xa)..m;(Xi).
Thus our computation has nothing to do with any idempotent combination of
BFs. We can look for non-conflictness of higher degrees using @]f (or k) in the
same way for both dependent and independent BFs. It is also not necessary to
include any independence assumption in Definition 1.

9 Summary and Conclusion

Based on existence and observation of hidden conflicts (when the sum of all multi-
ples of conflicting belief masses is zero) a family of degrees of non-conflictness has
been observed. Number of non-equivalent/different degrees of non-conflictness
depends on the size of the corresponding frame of discernment.

Maximal size of degrees of non-conflictness is n — 1 for belief functions on
a general finite frame of discernment (2,,. Nevertheless, for special types of BF's
or for particular BFs, a size of the family may be reduced in accordance to the
sizes of the focal elements of the BFs in question. The highest degree of non-
conflictness (different from lower ones) is equivalent to full non-conflictness and
also to strong non-conflictness defined by Destescke and Burger [11]. The family
of non-conflictness is further compared with non-conflictness given by Daniel’s
Conf(Belt, Bel'") = 0 [7].
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The presented approach to non-conflictness includes both the internal non-

conflictness of individual BFs and also mutual non-conflictness between them.

Presented theoretical results move us to a better understanding of the nature

of belief functions in general. Due to the important role of conflictness/non-
conflictness of BFs within their combination, the presented results may conse-
quently serve as a basis for a better combination of conflicting belief functions
and better interpretation of the results of belief combination whenever conflicting
belief functions appear in real applications.
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Abstract. The paper introduces a new approach to constructing mod-
els exhibiting the ambiguity aversion. The level of ambiguity aversion
is described by a subjective parameter from the unit interval with the
semantics: the higher the aversion, the higher the coefficient. On three
examples, we illustrate the approach is consistent with the experimental
results observed by Ellsberg and other authors.
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1 Introduction

It is well known, and it has also been confirmed by our experiments that people
prefer lotteries, in which they know the content of a drawing drum to situations
when the constitution of the drum’s content is unknown. In our experiments, the
participants were asked to choose one from six predetermined colors and they got
the prize when the color of a randomly drawn ball coincided with their choice.
It appeared that the participants were willing to pay in average by 90% more to
take part in games when they knew that the urn contained the same number of
balls of all six colors in comparison with the situation when they knew only that
the urn contained balls of the specified colors and their proportion was unknown.
This well known, seemingly paradoxical phenomenon, can hardly be explained
by different subjective utility functions or by different subjective probability
distributions. To explain this fact, we accepted a hypothesis that humans do not
use their personal probability distributions but just capacity functions that do
not sum up to one [13]. Roughly speaking, the subjective probability of drawing
a red ball is é in the case that the person knows that all colors are in the same
amount in the drum. However, the respective “subjective probability” in the case
of lack of knowledge is £ < %. The lack of knowledge psychologically decreases
the subjective chance of drawing the selected color — it decreases the subjective
chance of success.

This paper is one of many studying the so-called ambiguity aversion, which
is used to model the fact that human behavior violates Savage’s expected utility
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theory [17]. We present one possible way how to find a personal weight func-
tion (the above-mentioned capacity) that can be used, similarly to probability
function, to compute the personal subjective expected value of a reward in case
that the description of the situation is ambiguous. It is clear from the litera-
ture [6-8,15] that it cannot be a probability function. It cannot be normalized
because our experiments show that people usually expect smaller reward under
total ignorance than in case they know that all alternatives are of equal prob-
abilities. As we will see later (when discussing the Ellsberg’s experiments), this
function is neither additive. Thus, the considered function will belong to the
class of superadditive capacities.

To find a way, how to compute this personal weight function we will take
advantage of the fact that situations with ambiguity are well described by tools
of a theory of belief functions. This theory distinguishes between two types of
uncertainty: the uncertainty connected with the fact that we do not know the
result of a random experiment (a result of a random lottery) and the ignorance
arising when we do not know the content of a drawing urn. In this paper, we start
with describing the situation by belief functions that can be interpreted as gener-
alized probability [9], i.e., each belief function corresponds to a set of probability
functions, which is called a credal set [9]. Then, we adopt a decision-theoretic
framework used also by other authors based on the transformation of the belief
function into a probability function. However, we do not use the achieved prob-
abilistic representative directly to decision, we add one additional step. Before
computing the expected reward, we reduce the probabilities to account for ambi-
guity aversion. This is the only point in which our approach differs from Smets’
decision-making framework [20], which is based on the Dempster-Shafer theory
of belief functions [5,18].

Before describing the process in more details, let us stress that our aim is
not as ambitious as developing a mathematical theory describing the ambiguity
aversion within the theory of belief functions. In fact, it was already done by
Jaffray [12], who shows how to compute generalized expected utility for belief
function. We do not even consider all elements from a credal set with all the
preference relations as, for example, in [3]. The ambition of our approach is to
provide tools making it possible to assign a personal coefficient of ambiguity
to experimental persons. Then, we will have a possibility to study its stabil-
ity with respect to different decision tasks and/or its stability in time. Such a
coefficient of ambiguity is considered also by Srivastava [22] and the suggested
approach repeats some of his basic ideas. For example, we use almost the same
idea to identify the amount of ambiguity connected with individual states of the
considered state space.

2 Belief Functions

The basic concepts and notations are taken over from [13], where the described
approach was introduced for the first time. We consider only a finite state
space §2. In the examples described below, 2 is the set of six considered
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colors: 2 = {red,black,white, yellow, green,azure} (2 = {r,b,w,y,g,a} for
short in the sequel). Similar to probability theory, where a probability measure
is a set function defined on some algebra of the considered events, belief func-
tions are represented by functions defined on the set of all nonempty subsets of
2 [5,18]. Let 2 denote the set of all subsets of 2.

The fundamental notion is that of a basic probability assignment (bpa), which
describes all the information we have about the considered situation. It is a
function m : 2¢ — [0,1], such that ", . m(a) = 1 and m(0) = 0.

For bpa m, a € 2% is said to be a focal element of m if m(a) > 0. This
enables us to distinguish the following two special classes of bpa’s representing
the extreme situations:

(1) m is said to be vacuous if m(§2) = 1, i.e., it has only one focal element,
£2. A vacuous bpa is denoted by m,. It represents total ignorance. In our
examples, m, represents situations when we do not have any information as
for the proportion of colors in the drawing urn.

(2) m is said to be Bayesian, if all its focal elements are singletons, i.e., for
Bayesian bpa m, m(a) > 0 implies |a] = 1. Bayesian bpa’s represents
exactly the same knowledge as probability functions. As all focal elements
of a Bayesian bpa m are singletons, we can define probability distribution

P,, for {2 such that
P (z) = m({z}) (1)

for all x € 2. Thus, Bayesian bpa’s represent in our examples situations
when the proportion of colors in a drawing ball is known.

The same knowledge that is expressed by a bpa m can also be expressed by
a belief function, and by plausibility function.

Beln(a)= Y m(b). (2)

be22:bCa

Plp(a)= Y m(b). (3)
be22: bna#()

We have already mentioned that we interpret the belief function theory as a
generalization of the probability theory. It means that for each bpa we consider
its credal set, which is a convex set of probability distributions P on {2 defined
as follows (P denote the set of all probability distributions on {2):

P(m) = {P eP: ZP(m) > Bel,,(a) for Va € 29} .

rEea
Notice that P, defined by Eq. (1) for a Bayesian bpa m is such that P(m) =
{P,,}, and that P(m,) = P. It is also easy to show that for all P € P(m)
Bel,,(a) < P(a) < Ply(a),

for all a € 2. Thus, if Bel(a) = Pl(a) then we are sure that the probability of
a equals Bel(a). Otherwise, the larger the difference Pl(a) — Bel(a), the more
uncertain we are about the value of the probability of a.
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In this paper, we use belief functions only to represent the knowledge regard-
ing the content of a drawing drum. How can we model the computation of a
subjective expected gain if we know that in situation x € {2 our reward will be
g(x)? Since we want to reduce the expected value on the account of ambiguity
we do not apply any direct formula (e.g., Choquet integral [2], Shenoy expec-
tation [19]). We propose to use some of the probability transforms suggested
to find a probabilistic representation of a belief function [4]. In this paper, we
take advantage of the fact that for the examples presented in the next section
it was shown in [14] that several probabilistic transforms yield the same results.
Therefore we choose the simplest of them, the famous pignistic transform, which
was for this purpose strongly advocated by Smets [20,21]):

Bet Pp(x)= m(a) (4)

ac2f:zca |a|

3 Experimental Lotteries

In our experiments, we considered 12 simple lotteries described below. For each
lottery, the subjects were asked how much they are maximally willing to pay to
be allowed to take part in the specified lottery. The considered lotteries should
reveal the behavior of subjects in the following three situations.

Ellsberg’s Example. First, we wanted to verify whether the behavior of our
subjects corresponds to what was observed by many other authors. Therefore we
included a simple modification of the original Ellsberg’s example ([6], pp. 653~
654) with an urn containing 30 red balls and 60 black or yellow balls, the latter
in an unknown proportion. With this urn, Ellsberg considered two experiments.
The first experiment (Ellsberg’s Actions I and II) studied whether people prefer
betting on the red or black ball, in which case they get the reward ($100) if
the ball of the respective color is drawn at random. In the second experiment
(Ellsberg’s Actions IIT and IV), a person has a possibility to bet on red and
yellow, or, alternatively, on black and yellow. Again, the participant gets the
reward ($100) in case that the randomly drawn ball is of one of the selected
colors.
Following the Ellsberg’s idea we included two lotteries:

E1 The drawing urn contains 15 red, black and yellow balls, you know that

exactly 5 of them are red, you do not know the proportion of the remaining

black and yellow balls. How much you are maximally willing to pay to take

part in the lottery in which you choose a color and get 100 CZK if the

randomly drawn ball has the color of your choice?

E2 The drawing urn contains 15 red, black and yellow balls, you know that
exactly 5 of them are red, you do not know the proportion of the remaining
black and yellow balls. How much you are maximally willing to pay to take
part at the lottery in which you choose a color and get 100 CZK if the
randomly drawn ball is either yellow or of the color of your choice?
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One Red Ball Example. This example is designed to test the decrease of a
subjective “probability” in comparison with the combinatorial probability. For
this, we included eight lotteries, which differ from each other just in the total
number of balls in the drawing urn: the number n. We included lotteries with
n=2>5,6,7,8910,11,12:

Rn The drawing urn contains n balls, each of which is either red, or black, or
yellow, or white, or green, or azure. You know that one and only one of them
is red, nothing more. You even do not know how many colors are present
in the urn. How much you are maximally willing to pay to take part in the
lottery in which you choose a color and get 100 CZK if the randomly drawn
ball is of the color of your choice?

6-Color Example. This example concerns situations, in which six colors are
considered and we do not have any reason to prefer one of them to others. Such
situations occur in two completely different setting: fair distribution of colors
and total ignorance. Thus, the following two lotteries considered:
F1 The drawing urn contains 30 balls, five of each of the following colors: red,
black, yellow, white, green, and azure. How much you are maximally willing
to pay to take part in the lottery in which you choose a color and get 100
CZK if the randomly drawn ball is of the color of your choice?

F2 The drawing urn contains 30 balls, they may be of the following colors:
red, black, yellow, white, green, and azure. You know nothing more, you even
do not know how much colors are present in the urn. How much you are
maximally willing to pay to take part in the lottery in which you choose a
color and get 100 CZK if the randomly drawn ball is of the color of your
choice?

4 Decision Models

As said in the introduction, to describe the considered situations we define the
respective bba’s, and belief and plausibility functions. These belief function mod-
els are further transformed into probabilistic ones. As we have already mentioned
in Sect. 2, for the specified simple situations we consider only the pignistic trans-
form Bet_P,, defined by Eq. (4). However, the resulting probability distribution
is not directly used to compute an expected reward. Before computing the sub-
jective expected reward, the considered probabilities are reduced using a coeffi-
cient of ambiguity a, and the subjective expected reward is computed using the
resulting capacity function r,, o. Let us stress again that 7, o is not a probabil-
ity distribution because it does not sum up to one. Now, we describe this process
in more details.

Denote m the bpa describing the situation under consideration. Let Bet_P,,
be the corresponding probability distribution obtained by the pignistic trans-
form. Denote by Bel,, and Pl,, belief and plausibility functions corresponding
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to bpa m. Let us recall that the higher Pl,,({z})—Bel,,({z}), the higher ambigu-
ity about the probability of state x € (2. Our intuition says, the higher ambiguity
about the probability of a state z, the greater reduction of the respective prob-
ability should be done. Therefore we define a reduced capacity function ry, o for
all z € 2 as follows:

Tm.a(®) = (1 — a)Bet_P,,(x) + aBely, ({z}), (5)

where a € [0, 1] denote a subjective coefficient of ambiguity aversion « € [0, 1].
Its introduction is inspired by the Hurwicz’s optimism-pessimism coefficient
[10,11]. In contrary to Hurwicz, who suggests that everybody can choose a
personal coefficient expressing her optimism, we assume that each person has
a personal coefficient of ambiguity aversion. The higher the aversion the higher
the coeflicient «. The detection of this coefficient for experimental persons is one
of the goals why do we propose the described approach.

Notice that the amount of reduction realized in Formula (5) depends on the
ambiguity aversion coefficient «, and the amount of ignorance associated with
the state x. If we are certain about the probability of state x, it means that
Bet_P,,(z) = Bel,,({z}), then the corresponding probability is not reduced:
Tm,a(x) = Bet_Pp,(z). On the other hand, the maximum reduction is achieved
for the states connected with maximal ambiguity, i.e., for the states for which
Bel,,({z}) =0.

Some trivial properties of function r,, o (we will call it r-weight function, or
simply r-weight, in the sequel) are as follows:

L > coTmalz) <1;and
2. m is Bayesian if and only if m({z}) = Bet_P,,(z) = rm,o(z) for all x € £,
and « € [0,1].

This r-weight function is then used to compute expected subjective reward,
which is computed similarly to expected value, but the probabilities are substi-
tuted by the respective r-weights.

Rm,a = Z Tm,a(x)g(w)u (6)

e

where g(z) denote the reward (gain) one expects in case x € {2 occurs. Thus,
R, o does not express a mathematical expected reward, but a subjectively
reduced expectation of a decision maker, whose subjectivity, i.e., level of ambigu-
ity aversion, is described by «. Let us note that for @ > 0, betting the amount
R, guarantees a sure gain [1,15].

Let us now apply this computational process to the situations considered in
the preceding section. To proceed from simpler models to more complex ones,
let us consider the respective examples in reverse order.

6-Color Example. For this example, 2 = {r, b, y, w, g, a}. The knowledge
about the content of the drawing urn differs; in case of lottery F1, the situation
is described by a Bayesian bpa defined mg({z}) = § for all z € (2; in case of
lottery F2, the situation is described by the vacuous bpa m,.
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For both the lotteries, the pignistic transforms coincide: Bet_Pp,(z) =
Bet_P,, (z) = £ for all colors x € £2. However, the respective subjective r-weight
functions differ because the respective belief functions differ: Belm,, ({z}) = &
for all € £2, whilst Bel,,, ({x}) = 0 for all € £2. Therefore, using Formula (5),
Tmga(®) = 5, and ry, o(z) = 152 for all z € £2.

Consider that a player chose, let us say, red color. Let g(x) denote the gain
received in case when color z is drawn, i.e., g(r) = 100, and for = # r, g(x) = 0.

The expected subjective rewards are as follows:

Rinpia = 3 P al@)gla) = 3 5 gla) = 67

zes? zes?

Rm“a = Z Tm,,,a(x)g($) = Z 1- ag(x) — M,

6
€2 e

for F1 and F2, respectively. This can be interpreted as follows. If there were not
for the subjective utility functions and for a different subjective risk attitude, a
person should be willing to pay a maximum amount of % CZK and W
CZK for taking part at lottery F1 and F2, respectively. The fact that in case
of lottery F1 the person is willing to pay maximally b # 1%0 CZK is explained
by her personal risk attitude and utility functions. Nevertheless, the difference
between the amounts the person is willing to pay for F1 and F2 can be explained
only by her ambiguity aversion measured by the coefficient a. Assuming a linear
dependence, it gives us a possibility to estimate the value of a personal coefficient
of aversion. If a person is willing to pay a CZK for taking part at lotteries F1/F2
and b CZK for taking part at I1/I2 one can assume that her personal coefficient

of ambiguity is about
a—1b
= . 7
a="" 7)

One Red Ball Example. For this example, again 2 = {r, b, y, w, g, a}, and
the uncertainty is described by the bpa m, as follows:
1 ifa={r}
mg(a): 7L;1aifa:{b1 8, 0, ), W},
0, otherwise.

Using the pignistic transform, we get:

ifz=r;
,for x € {b, g, o, y, w}.

1
Bet_P,,(x) = { n’y
5n

Since Bely,, ({z}) = 0for all z € {b, g, o, y, w}, and Bel,,,({r}) = L we get the
following reduced weights:

=17 o =1
’I"m97a t)= (l_a)'%7f0r.@€{b, 8,0, ), W}
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Considering (for the sake of simplicity just two) gain functions ¢g*(x), and
g% (x), the total subjective rewards are as follows. When betting on red it equals

1 (I1-a)(n—1) 100
R i r _ 7
mea() = 20+ S B gy = 22,
TE2:xF#r
and analogously, for betting on white
(I-a)(n—-1) _100(1 — a)(n —1)

5n

Table 1. One Red Ball Example: Total subjective reward as a function of the coefficient
of ambiguity aversion «, and the number of balls n.

N | R, al(r) | Rmgy,a(w)

a=0 a=01 a=02 =028 a=03 =04 a=0.5
20.00 1 16.00 1440 1280 11.52 1120 9.60  8.00
16.67 1500 13.33 1200  11.67 10.00 8.33
14.29  |17.14 13.71 1234 1200 1029  8.57
1250 |17.50 1575 12.25 1050 8.75
1111 [17.78  16.00 1422  12.80 10.67  8.89
10/10.00  |18.00 16.20 1440 12.96  12.60 [10.80] 9.00

© 0 N O o

Some of the values of these functions are tabulated in Table1. From this
table we see that, for example, a person with o = 0.28 should bet on red color
for n <7, because for these Ry, (1) > R, o(2) (x # r), and bet on any other
color for n > 8, because for these n, Ry, o(r) < Rp,.o(z) (v # r). This means
that for n < 7, it is subjectively more advantageous to bet on the red color.

Ellsberg’s Example. Before showing how the idea of reduced weights is applied
to Ellsberg’s experiment, let us confess that to clear the main idea to the reader,
we have purposely simplified the exposition. The computation of a r-weight
function by Formula (5) and its application to computation of a total subjective
reward by Formula (6) can be used only in simple situations when the gain
function g : 2 — R does not assign the same positive value to two different
states from (2, i.e.,

T1,T2 € 2,71 # x2,9(v1) >0 = g(71) # g(z2). (8)

This condition was obviously met by the gain functions considered above because
the gain function was positive just for one state from (2. Let us now introduce a
proper general belief function approach that can be used for any gain function.
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Generally, we have to consider distribution Bet_P,, that is got from bpa m
by the pignistic transform as a set function, and, analogously, also the r-weight
function must be defined for all nonempty subsets a of 2

Tm,a(d) = (1 — a)Pp(a) + aBely,(a), (9)

with the same subjective coefficient of ambiguity aversion «. The reader can
easily show that this r-weight is monotonous and superadditive

1. for a C b, 7y a(a) < rim.a(b);
2. foranb=0, rpma(@aUb) > ry o(a) + 7m.a(b).

Realize also that we can use the same symbol to denote it, because for singletons
it coincide with Formula (5).

As it can be expected, this r-weight set function is used to compute the
expected subjective reward. For this, denote I' = {g(x) : x € £2} \ {0}, then

Rm,a = Z ’Y""m,a(gil(’w)a (10)

yel’

where g~1(vy) = {z € 2 : g(x) = v}. Notice that most of authors use for this
purpose Choquet integral [3,16], which is not, in our opinion, as intuitive as the
proposed formula, and which can be shown to be always less or equal to the
introduced R, -

Now, let us apply this general approach to the belief function model corre-
sponding to E1 and E2 lotteries. For this, {2 = {r, b, y} and the bpa m. is as
follows:

me(a) =4 5,ifa={b, y};
0, otherwise.
Its pignistic transform yields a uniform distribution Bet_P,,_(z) = % for all
x € £2. The corresponding belief function is Bel,,_({r}) = 1, and Bel,,_({b}) =

Belm, ({y}) = 0, Bely, ({1, b}) = Bely, ({1, y}) = 3, Belp.({b, y}) = §, and
Bel,,_(£2) = 1. Therefore,

%, ifa={r};

=9 for a = {b}, {y};
259 for a = {r, b}, {r, y};
%, ifa={b, y}.

T'me,a (a) =

For E1, we have to consider two gain functions: ¢"(z), and g”(z) for betting
on red and black balls, respectively. These functions are as follows:
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Using Formula (10), the total subjective reward for betting on red ball is

_ 100
Ry a(r) =100 7, 0 ((g") 1(100)) =100 7 o({r}) = 3
and analogously, for betting on black ball is as follows:
_ 100(1 — «
R (1) = 100 0 (6") 7 (100)) = 100 1y o ((0)) = 25—,

Thus, for positive a, we get Ry,_ o(r) > Ry o(b), which is consistent with the
Ellsberg’s observation that “very frequent pattern of response is that betting on
red is preferred to betting on black.”

Let us consider the lottery E2, which involves betting on a couple of colors. In
comparison with the first experiment, the situation changes only in the respective
gain functions; denote them ¢™(z) and g™ (z) for betting on red and yellow, and
for betting on black and yellow balls, respectively.

Y(r) = g™ (y) = 100, g"(Db)

g” 0,
g™ (b) = g™ (y) = 100, g™ (1)

0.

Thus, the expected subjective rewards are as follows:

R (1) = 100 731_a((6)7(100)) = 100 1o (fr}) = 100 B2,

2
R, o(by) = 100 7. o ((g™)71(100)) = 100 7, o ({by}) = 100 3

Thus, we observe that, for positive o, Ry, o(by) > R, o(ry), which is consistent
with Ellsberg’s observations that “betting on black and yellow is preferred to
betting on red and yellow balls.”

5 Conclusions

In the paper, we have introduced a belief function model manifesting a similar
ambiguity aversion as human decision-makers. The intensity of this aversion is
expressed by the subjective coefficient « € [0, 1] with the semantics: the higher
the aversion, the higher the coefficient. In the time of submitting the paper for
the conference, we have data about the behavior of 32 experimental subjects
(university and high school students), who were offered a possibility to take part
at the lotteries described in Sect.3. Thus, one can hardly make serious conclu-
sions. Nevertheless, it appears that computing the ambiguity aversion coefficient
as suggested in Formula (7), the experimental subjects show a great variety of
the intensity of ambiguity aversion; in fact, the individual coefficients are from
the whole interval [0, 1], including both extreme values. The average value of this
coefficient is about 0.36.
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Abstract. There exist many rules to combine the available pieces of
information in Dempster-Shafer theory of Evidence (DST). The first one
of them was the Dempster’s rule of combination (DRC), which has some
known drawbacks. In the literature, many rules have tried to solve the
problems founds on DRC but normally they have other non-desirable
behaviors too. In this paper, it is proposed a set of mathematical proper-
ties that a rule of that type should verify; it is analyzed some of the most
used alternatives to the DRC including some of the last hybrid rules, via
their properties and behaviors; and it is presented a new hybrid rule
that satisfies an important set of properties and does not suffer from the
counterintuitive behaviors of other rules.

Keywords: Theory of evidence - Combination rules -
Dempster’s rule - Conflict - Disagreement factor - Hybrid rules

1 Introduction

Dempster-Shafer theory (DST) [4,10] is based on an extension of the probability
distributions in probability theory (PT), called basic probability assignment (or
evidence). When we want to measure the degree of disagreement between 2 evi-
dences, a measure called conflict is normally used. It is must be distinguished from
the known concept of conflict as a measure of uncertainty-based-information in
DST for a evidence [1,3,8]. Hence, here we will use the concept of conflict-based-
combination (cbc) when we refer to the disagreement degree between two evidences
when they are considered for combining or fusing in DST.

Dempster’s rule of combination (DRC) was the first rule to combine informa-
tion from different sources in DST. It can be considered as a natural extension
of the Bayes rule in PT. Normally DRC gives us intuitive results but it has been
shown that it can give us counterintuitive results when it is used to combined
evidences with a high degree of cbc.
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Due to the problems found in the application of DRC, many alternatives to
this rule have appeared in the last years, using different ways to manage the cbc.
The last alternatives to the DRC that seem to be the better ones are the called
hybrid rules. Examples of this issue can be found in [7]. Normally, they use a
mixture of 2 rules to obtain a final one that pretends to have a good performance
in all the situations.

A combination rule (CR) must verify a set of mathematical properties coher-
ent with the operation that it represents. A set of desirable properties for a CR
in DST will be proposed in this work by analyzing the importance of most of
the mathematical properties used in the literature, under our point of view. It
is obvious that not only a CR must verify a set of properties, but we also hope
that a rule for such an aim has good behavior, i.e. a CR should give us coherent
results in very different situations.

In this paper, we analyze some of the most used alternatives to the DRC
and some of the last hybrid rules. Our first aim is to compare them (i) under
a theoretical point of view, analyzing the properties that a rule of combination
in DST must verify; and (ii) under a practical point of view, studying behaviors
in different situations to show if they give us non-counterintuitive results. Our
second aim is to analyze the way to quantify the cbc between two bpas with the
aim of presenting a new alternative of CR that can satisfy the majority of the
needed properties without counterintuitive results.

The paper is arranged as follows: Sect.2 presents a resume of the known
Dempster-Shafer theory of Evidence. Section 3 describes some of the classic rules
for the combination of information in DST; analyzes the properties that such
a type of rule must verify, and shows some of the more problematic situations
that can appear for these rules. Section4 exposes known alternative rules to
the classic ones, taking into account their properties and behaviors. Section b
presents a new factor to quantify the maximum degree of disagreement between
evidences; and used it to present a new hybrid rule. Conclusions are given in

Sect. 6.

2 Dempster-Shafer Theory

Let X be a finite set considered as a set of possible situations, |X| = k, p(X)
the power set of X and x any element in X.

Dempster-Shafer theory [4,10] is based on the concept of mass assignment,
basic probability assignment (bpa) or evidence. A mass assignment or bpa is a
mapping m : p(X) — [0,1], such that m(@) =0 and > m(A)=1.

ACX

The value m(A) represents the degree of belief that a specific element of X
belongs to set A, but not to any particular subset of A.

The subsets A of X for which m(A) # 0 are called focal elements.

There are two functions associated with each bpa: a belief function, Bel, and
a plausibility function, Pl:
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Bel(A)= " m(B), PI(A)= Y m(B)

BCA ANB#Q

We may note that belief and plausibility are connected for all A € p(X)
PI(A) =1 — Bel(A), (1)

where A denotes the complement of A. Furthermore, Bel(A) < PI(A).

3 Combination Rules in DST

A combination rule (CR) in DST can be seen as a procedure to combine different
sources of information, i.e., unify the information from 2 different evidences in
one bpal.

In the literature, there exist many procedures for such an aim and they
can give us different results when they are applied to the same evidences. The
problem is that every rule is based on a different approach and normally every
one works well in certain situations but has problems in other ones.

The first rule exposed in DST was the Dempster’s rule of combination (DRC).
It is considered as a generalization of the Bayes’s rule in probability theory.
DRC is based on the orthogonal sum of two bpa that is expressed as follows,
considering m! and m? two bpas on the finite set X:

m'em?(A)= > m'(Bm*(C), VACX (2)
BNC=A
Hence, the DRC is defined as follows:
mt & m?(A)
- 1-K

VA#0D, mB0)=0, K= > m'B)m*C)

BNC=0

Here, K represents the mass assigned to the “conflict” between two sources
of evidence. When K = 1 it is not possible to use this expression to combine
the information in DST, it is the case of maximum conflict. In this point we
must remark that the “conflict” concept here is different to the one used in
uncertainty-based-information measures [3,8].

The origin of the conflict between two bpas for combination is the K value
of Dempster. We will call the concept related to the meaning of K as conflict-
based-combination (cbc). The K value has been analyzed in the literature and it
has been shown that it has been considered as not a good way for measuring the
cbe because its use in the DRC expression can give us counterintuitive results
in situations where a high grade of cbc appears. This has been the principal
drawback found on the application of the DRC.

! In this work we consider that the sources of information are independent, which is
not always true in the reality.
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Based on the drawbacks found on DRC, Yager [11] exposed a rule of combina-
tion where the mass of the empty set is assigned to the whole set of alternatives.
Considering m!' and m? two bpas on the finite set X, the Yager’s rule can be
expressed as follows:

mly(A) =m' @m?(A), VA#X, 0 (3)
mL(X) =m! @ m?(X) +m! @m?(0) miy0)=0 (4)

3.1 Properties

A CR should verify a set of desired properties. To determinate the goodness of
a rule, we cannot only focus on a set of the mathematical properties that a rule
should verify because a rule can have bad behavior in some situations although
it verifies a large set of properties.

About the set of desired properties expressed in the literature, we remark
the following ones:

— Idempotency: When two similar sources of information are combined, the
rule must give us the same information.

— Commutativity: When a rule of combination is used on two bpas the result-
ing bpa must do not depend on the order used on the bpas.

— Associativity: When a rule is used on several bpas, the resulting one must
not vary with the order on the bpas used.

— Continuity: If we have two very similar information and we use a rule to
combine each one with a third one, then both bpas obtained must be very
similar too.

— Absorption: When a bpa is combined with the total ignorance the resulting
bpa must be the original one.

About these properties, we must express the following comments:

— Idempotency: It makes sense that when the same information is repeated
we have only that information. If a CR does not verify this property and
we combine similar information many times via that CR, the final bpa could
be quite different from the original, producing important incoherent results.
Hence, this property can be considered as an essential one.

— Commutativity: When two bpas are combined it makes sense that the
resulting one must not depend on the order used.

— Associativity: When we combine two informations we use a one-to-one func-
tion to obtain a final information. When a new information appears to be
combined with that last one, the resulting bpa obtained depends only on the
two bpas used in the procedure of combination. Hence, it makes sense that
some information of the first two bpas were lost, because they are used in a
combination rule with less strength than the third one. If we reorder the 3
bpas to combine, it is logical that we obtain a different final bpa because the
one-to-one procedure used to combine.
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— Continuity: It makes sense that few variations in information must pro-
duce few variations on the information obtained by combination with other
information.

— Absorption: We do not agree with this property. If b.p.a is combined with
the total ignorance, that absence of information must be taken into account
in the combination, in such a way that it must imply a decreasing of the mass
values for the focal sets of the first bpa that are different from the whole set
of alternatives.

To be coherent with the above comments, under our point of view, only the
following basic properties must be verified by a rule of combination in DST?:

1.- Idempotency
2.- Commutativity
3.- Continuity

Ezample 1. Let X = {x1,z2, 23} be a finite set and the following set of bpas
{mF k=1,..,4} on X:

mi =080 mi=010 mi=0 mis = 0.10
m?=070 m3=010 m3=0.10 m3;=0.10
m3=0.80 m3=0 m3 =0 m3, = 0.20
mi=0.80 mi=010 mi=0 mas = 0.10

where m} expresses the value m*(x;), mf; the one of m*({z;,2;}), and so on
(Table1).

Table 1. Results of the combination by the rules of Dempster and Yager. The expres-
sions m™* in columns indicate, in their superscript, the order of the bpas in the com-
bination. Also m; expresses the value m(z;), mi; the one of m({z;,z;}), and so on for
each order of combination.

123 1234

Rule | m!?

m m

mP |mP =0.918 mP =0.9782 |mP =0.995
m¥y =0.0492 | m¥ =0.0131 | m¥ =0.004
m% = 0.0164 | m¥ = 0.00435 | m¥ = 0.0005
mi, =0.0164 | mZ; = 0.00435  mL; = 0.0005
mngg,:O mngg,:O mf’g3:0

mY |m¥ =056 |m} =0048 |m) =0.0384
my =0.03 |m) =0.006 |m) =0.0012
my =0.01 |m) =0.002 |m} =0.0002
mis =0.01 | mi; =0.002 |ml;=0.0002
miss =0.39 |miy; =0.942 | mis; =0.96

2 If we have the aim to use these rules in applications, other property could be added

about the complexity of the rule that allows us to use it easily.
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The results obtained by both rules are very counterintuitive due to the no
idempotency of these rules. The DRC produces a very high value for z; and
values close to 0 for the rest ones. On the other hand, the rule of Yager produces a
very high value for the total set, being the rest of values close to 0. Consequently,
the result provided by the Yager rule is close to total ignorance.

With respect to the behaviors of a rule, there exist different situations that
give us counterintuitive results for a determinate rule. Almost every rule gives
us debatable results when it is used in a certain situation. By the large set of
different situations, it is not possible to give a list of each possible situation. The
most known one is the one represented by a high degree of cbc via the K value
between 2 bpas that represents the principal drawback found on the DRC, and
can be seen in the following example of Zadeh [12]:

Example 2. A patient is analyzed by two doctors. The first one founds that the
patient has Meningitis with a mass of assignment of 0.99 or a Cerebral Tumor
with a mass of 0.01. The second doctor founds that the patient has a Concussion
with a mass of assignment of 0.99 or a Cerebral Tumor with a mass of 0.01. Using
the DRC we have that the final combined information says us that the patient
has a Cerebral Tumor with a mass of assignment of 1, which was very unlikely
for each doctor.

In the above example, we have a high degree of cbc expressed by the K value,
in this case K =0.99-0.99 4+ 2-0.01 - 0.99 = 0.9999. More discussion about this
example can be found in [5].

It is known that the DRC satisfies Property 2. About Property 3, we show
that also it is not verified by DRC in the following example:

Ezample 3. Let X be the finite set X = {z1, 2, 23} and m’ and m”’ the following
bpas on X: mj, = 0.98, mf, =0.01, m4=0.01; mf, =099, mi=0.01,
where m/ expresses the value m/(x;), m;; the one of m/({z;,z;}); and similar
for m”. We note that m and m’ are very close bpas. We combine each one with
the following bpa m via DRC: mgz = 1.

Noting as m’P and m/’P to the combination of m/ and m” with m via DRC
respectively, we have the following values: m4P = 10;001"919 = 1, whereas m''"
cannot be obtained because the K value is 1.

Yager’s rule has not the problem expressed by Example 2 and verifies the
Property 2, but its main drawback is that it does not verify the essential idem-
potency property.

4 Some Alternative Rules to the DRC

There exist many mathematical expressions to combine two evidences in the
DST. Most of them have the same problem than the one of Yager and DRC:
they do not verify the essential Property 1.
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The Averaging rule [9] is expressed as the mean values for each focal set.
The expression to combine two bpa m and m’ on a finite set X is: m4v(4) =
mAAmIA) A C X,

This is a rule that verifies all the needed properties, as it can be easily
checked, but it cannot be considered as a good rule because in some situations
its application has little sense. We show two cases about this issue:

(c1) We suppose 2 bpas m', m? on a finite set X = {x1,..z10}, such that they
have many and different focal sets but with K = 0 for these bpas. It makes
little sense that the resulting bpa has many focal elements that are not in
each one of the original bpas.

(c2) Suppose the case that all the focal sets are different but the majority of
them share only the element x;. Then the shared element must have a high
mass of evidence in the resulting bpa, but if the set {z;} is not a focal set
of one of the bpas, this does not occur.

To avoid the problem caused by the managing of the cbe, Dubois and Prade [6]
presented the following rule based on the orthogonal sum and on a disjunction
sum, using same notation than in the other expressions:

mPP(A) =m! @ m?(A4) + > m' (A1)m?(A) (5)
AjUA=A, A1NA>=()

It is considered as a hybrid rule. This rule gives coherent results when it is
applied in cases where the K value is high and the DRC gives counterintuitive
results. But it does not verify the Property 1, producing counterintuitive results
in many situations, though it verifies Properties 2 and 3.

The K value can be arguable as a measure of the cbc between two bpas. In
Dymova et al. [7], this value is analyzed and it is showed that it has incorrect
behaviors in some situations. Also, in that work, the authors presented another
expression to measure the cbc and use it in a new hybrid combination rule. The
expressions are the following ones:

1

— The new value to measure the cbc between two bpas m! and m? on a finite

set X is expressed as follows:

Me(m',m?) = <= 3 m(4) — m?(4)), (6)
ACX

with Nc the number of focal sets A where [m!(A) — m2?(A)| > 0.
— Based on the above measure of cbc, the following combination rule is pre-
sented in Dymova et al. [7]:

mPY(A) = Mc(m™) + (1 — Mc)mP (A) (7)

Authors expressed that this rule gives better results than the DRC and the
one of Dubois and Prade. Their rule is based on a new way to measure the cbc
via the Mc value.
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The Dymova’s rule is not idempotent because in that case Mc¢ = 0 and then
the rule coincides with the DRC rule. It is obviously commutative. However, it
has some problems with Property 3. Via the following example, we can see that
the use of the Mc¢ value can be problematic because for very close bpas we can
obtain very different Mc values.

Ezample 4. We consider the following bpas on the finite set X = {1, 29, z3, 24}
my = 0.1, mi, = 0.9; m3 =09, m3, =0.1
and m'! the following one built very close to m!
mit = 0.001, m5 = 0.001, m4' = 0.001, mj = 0.1, mt}, = 0.897
In this case, we obtain the following M c¢ values:

0.003 + 0.8 + 0.797)

=0.32
)

Mc(m',m?) =08, Mc(m',m?) = (

The difference between these two Mc values can imply very different values
of masses for the resulting bpa obtained via the combination rule. Hence, we can
say that a rule using the Mc value does not verify the Property 3. It has been
shown that M C' is not a good measure of cbc.

We have that the Dymova’s rule only verifies the Property 2, and has some
problems of behavior motivated by the way to quantify the cbc and its use in
the expression of the hybrid rule used.

These two rules, DRC and Av, can be used to obtain a hybrid rule with good
performance in all the conflictive situations exposed in this paper.

5 A Proposal of a New Rule

With the above notation, we propose the use of the following value that can be
considered as a factor related to the cbc concept between bpas:
M 1 m?) = ma LA) —m?(A 8
wlm’ m?) = mae m! (4) - m?(A) (®)
The Mx value can be considered as a factor to quantify the maximum disagree-
ment between two bpas. Perhaps it is not an excellent measure of cbc but it
makes more sense that the Mc value.
In this point, we could use the Mz and K values to define new hybrid rules
with sense. But if we want to correct the problems of the Dymova’s rule, it is

not a good way to change only the expression to quantify the conflict, i.e. it is
not a good alternative the following variation:

mAPY(A) = Mx(mA?) + (1 — Mz)mP(A), VAC X
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This new rule corrects some problems with Dymova’s rule. The Mz value has
not the problem of the Mc expressed in Example 4. Also, this rule has not the
problem expressed in Example 3 because in that case K = M, = 1 and the m“?
is only applied. However, in the case of Property 1, it still has problems because
Mz = 0 and the rule coincides with the DRC that is not idempotent.

We propose the following hybrid rule:

m™(A) = (1 — Mz|K — Mz|)m™ + Mz|K — Mz|mP) (A), VAC X (9)

The new hybrid rule has the following characteristics expressed in the following
3 points:

(1) Tt has no problem when the maximum K value appears (see Example 2).
Here, Mz = K = 1 and the new rule coincides with the m4v rule.

(2) Tt has not the problem expressed in Example 4. When we produce little
changes in a bpa, the variation of the values obtained for the maximum
value of differences Mz is little too, and then the final bpas obtained by
combination with a third bpa, are similar too.

(3) It has not the problem expressed in Example 3. In this case, K = 1 and the
rule coincides with the m4? rule.

As a consequence of some of the comments expressed above, the new hybrid
rule verifies the 3 properties:

Property 1 : It is Idempotent because when Mx = 0 the hybrid rule coincides
with the Idempotent rule m*”.

Property 2 : It is a convex combination of 2 commutative rules, then it is
commutative.

Property 3 : It is a consequence of the points above commented. By point (2)
little variations in the values of a bpa produce little variations in
the resulting bpas. The problematic case that appears when we
are very close to the maximum K value is solved too, taking into
account the above point (3). In that case, from Example 3, the
resulting bpa is very close to the one obtained only by mA? rule.

5.1 Applications of the New Rule

Finally, we want to apply the new proposed rule on the examples shown in this
paper to see its performance. We will use it on the examples where some of the
rules showed here have counterintuitive behavior. Each item “EXi” corresponds
with the Example i in this paper.

Ex1: In each step of the process of combination, we obtain the following mass
values with the new combination rule:
The results are very coherent and different from the ones obtained by
DRC and Yager’s rule.
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Rule m12 m123 m1234

mY mi¥ =0.7549 m{ =0.7811 m{ =0.7927
mY =0.0085 md =0.0488 md =0.0738
m =0.0490 mi =0.0243 mi =0.0120
mds = 0.0976 mds = 0.1458 mbs =0.1214

N N N
mizz =0 mizz =0 mizz =0

Ex2: In this case, K = 0.9999 and Mz = 0.99. Then Mx|K — Mx| = 0.0099
and the new rule produces similar values than the ones of the Av rule,
that have a correct sense: m”~ (Meningitis) = m (Concussion) = 0.4901
and m™ (CT) = 0.0198

Ex3: With the same notation than in that example, we have the following values
N =0.005, m5Y = 0.505, m}y = 0.49,

my™N = 0.005, mi™N = 0.5, myN = 0.495,

For m"Y we have a coefficient of 0 for the DRC, then we can combine m’”

with m; and in both cases we obtain very similar coherent results.
Ex4: The new rule obtains similar results when m! is combined with m? than
when m'! is combined with m?2, because their K and Mz values are very
similar in both cases, and m! is very close to m'!. Here we have that

K(ml,mQ) = 0.82, K(m'',m?) = 0.8203; and Mx(m!',m?) = 0.8 =
Max(m't,m?). Hence, we have the following values when m! is combined
with m?:

my = 0.5 mp, =05

and the following ones when m/! is combined with m?:
mY = 0.0005, mY = 0.0005, m5 = 0.00049, my = 0.5, m¥, = 0.4985

In the situation expressed by the item (c2) about the performing of the Av
rule, this new rule obtains the same values than the DRC, i.e. it is coherent with
the Bayesian updating reasoning. In this case, Mz = 1 and K = 0, producing a
coefficient of 0 for the Av rule in the expression of m’V; and 1 for the DRC.

6 Conclusions

In this paper we have analyzed the properties that a CR must verify, presenting
a set of desirable properties. The idempotency property has been considered here
as an essential one. We have shown that no verification of this property can give
us important not logical results.

As the behavior in certain situations of a CR is as important as the veri-
fication of mathematical properties, we have done a short analysis of some of
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the most known CRs in the literature under those two ways. We have studied
a recent hybrid rule presented as a good alternative, and we found that it has
some important drawbacks.

We have presented a factor to quantify the maximum disagreement between
2 bpas and we have used it to define a new hybrid rule based on the Dempster’s
rule of combination and on the Averaging rule. We have shown that in some
situations the application of DRC gives counterintuitive results; also we have
shown situations where the Av gives little coherent results. With the new hybrid
rule, one can fill the problems of the other one. The new CR has shown to verify
all the proposed properties and not to suffer from the bad behaviors that the
other CRs exposed here have.

The development of functions to information fusion has important applica-
tions in many areas. Our nest goal will be to apply these type of functions to
combine information from diverse methods that extract knowledge from financial
data, as we use in [2].
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Abstract. Analogical proportions are statements of the form “a is to b as c is to
d”. They have known a revival of interest after they have been formalized and
used in analogical inference. In particular their meaning has been made clear
through a logical modeling. The paper shows that they are closely related to the
heart of the reasoning process, since dichotomic trees built from pairs of mutually
exclusive properties have also a reading in terms of Boolean analogical propor-
tions. This provides a link between analogy and logically expressed taxonomies.
Moreover, this gives birth to noticeable opposition structures, and can be also
related to formal concept analysis.

1 Introduction

Analogical proportions, which are statements of the form “a is to b as c is to d”, are
closely related to analogical reasoning that puts in parallel two situations regarded as
similar, one including a and b, and the other ¢ and d. The proportion states that the
relationship between a and b is the same as the one between ¢ and d. Analogical rea-
soning amounts to infer that something may be true in situation 2 since an homologous
statement is known to be true in situation 1 (considered as similar enough to situation 2
in other respects). As such, it has been regarded for a long time as a useful, but brittle,
mode of reasoning that yields plausible conclusions (which may turn to be wrong).

Clearly analogical reasoning does not at all offer the guarantees of deductive rea-
soning. Maybe for this reason, it has not attracted the interest of logicians up to few
exceptions [12,32]. It is only quite recently that a Boolean modeling of analogical pro-
portions have been proposed [23,27]. It exactly expresses that “a differs from b as ¢
differs from d and b differs from a as d differs from ¢”. This modeling (and its gradual
extension for handling numerical features) has proved to be of interest in classification
tasks [4,20] or in solving 1Q tests [6].

In this paper, we enlarge the logical perspective on analogical proportions by show-
ing that they are naturally associated with dichotomic trees reflecting taxonomic deduc-
tion. The paper is organized as follows. After a brief reminder of their Boolean model-
ing, which is proved to be compatible with a function-based view of analogical propor-
tion in Sect. 2, Sect. 3 shows that pairs of mutually exclusive Boolean properties induce
both a dichotomic tree and an equivalent set of analogical proportions; moreover these
proportions can be organized in remarkable opposition structures. Section 4 exhibits
another noticeable linkage between analogical proportions and semi-products of formal
contexts in formal concept analysis [11].
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2 Analogical Proportions: Logical and Functional Views

As numerical proportions, an analogical proportion is a quaternary relation, denoted
a : b:c: dbetween items a, b, ¢, d, supposed to obey the three following postulates
(e.g., [9,16,21]):

1. Va,b, a:b::a:b(reflexivity),
2. Ya,b,c,d, a:b:c:d— c:d:a:b(symmetry);
3. Va,b,c,d, a:b::c:d— a:c:b:d(central permutation).

These postulates entail that an analogical proportion a : b:: ¢ : d has eight equivalent
forms:a : bic:d=c:da:b=c:ax:d:b=d:bic:a=d:c:b:a
=b:azd:c=b:dra:c=a:c:b:d.

Boolean Definition. From now on, a, b, ¢, d denote Boolean variables. This may be
thought as encoding the fact that a given property is true or false for the considered item.
Since items are usually described in terms of several properties, the Boolean modeling
of analogical proportions is then extended to vectors in a component-wise manner. As
shown in [28], the minimal Boolean model obeying the analogical proportion postulates
makes a : b::c : d true only for the 6 patterns exhibited in Table 1 a : b::c : d is false
for the 10 other patterns of values for a, b, ¢, d.

Table 1. Boolean patterns making a : b:: ¢ : d true
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Thus, it can be checked that the analogical proportion “a is to b as ¢ is to d” more
formally states that “a differs from b as c differs from d and b differs from a as d
differs from ¢”, which means ¢ = b < ¢ = d, and a # b < ¢ # d (with the further
requirement that both changes are in the same direction (either from 1 to 0, or from 0
to 1). This is logically expressed as a quaternary connective [23] by
a:bic:d=((an=b)=(cA—=d)A((-aAb) = (-cAd)) (D)

Besides, it has been noticed [23] that a : b:: ¢ : d can be equivalently written as
a:bic:d=((and)=((bAc)A((maN-d)=(-bAc)) (2)
or still equivalently

a:bic:d=((and)=0BA))A((aVd)=(bVc)) 3)

Expression (3) can be viewed as the logical counterpart of a well-known property of
geometrical proportions: the product of the means is equal to the product of the extremes.
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Boolean analogical proportions are transitive, namely a : b::c: dandc: d::e: f
entails thata : b:: e : f holds as well. They are also code independent, namely a : b::c:
d = —a : —b::—=c @ —d. This latter property means that the Boolean variable of the
considered attribute pertaining to items underlying a, b, ¢, d can be encoded positively
or negatively without changing anything.

Representing objects with a single Boolean value is not generally sufficient and
when items are represented by vectors of Boolean values, each component being the
value of a binary attribute, a simple extension of the previous definition to Boolean
vectors in B™ of the form @ = (a1, ..., a,,) can be defined as follows:

G:buc:diffVie [1,n], a; : bi:c; : d;

It has been recently pointed out that it is easy to build analogical proportions as soon
as we compare two items that differ at least on two attribute values [7].

Function-Based View. As often mentioned (see, e.g., [26]), = : f(x)::y : f(y) looks
like a good prototype of analogical proportion. Indeed a statement of the form “z is to
f(z)asyisto f(y)” sounds as a statement making sense, namely one applies the same
function f for obtaining f(x) and f(y) from z and y respectively. However, note that
such a view differs from the view of a numerical proportion, since a : a?::b : b2, for
some integers a and b, makes sense with f(x) = 2, but not in terms of differences or
of ratios. If we accept = : f(x)::y : f(y), some derived form (according to postulates)
such as “z is to y as f(x) is to f(y)” suggests that f should be injective (one-to-one)
for making sure that f(x) # f(y) as soon as © # y.

The above remark suggests that if we consider 4 items a, b, ¢, d, and we are won-
dering if @ : b::c : d can be stated, one may think in terms of the change from a to b
(and c to d), hypothesizing that b is obtained by the application of some unknown func-
tion f,i.e., b = f(a). Such intuition is implicitly underlying the approach developed in
COPYCAT [13] for completing a, b, c with a plausible d. It can be also found in formal
models such as the ones of [8] in terms of a mapping between algebras (with an algo-
rithm that computes a fourth pattern such that an identical relation holds between the
items of the two pairs making the analogical proportion), or of [19] based on category-
based view (advocated much earlier in formal anthropology). So d should be obtained
as f(c), when b = f(a) (assuming that a : b:: ¢ : z has a unique solution). Thus, one
may consider that there is no harm to assume that f is onto. Thus f is bijective and can
be inverted.

Still, it is also natural, especially when trying to complete a, b, ¢, to look at the
change from a to ¢ and to hypothesize that c is obtained from a by the application of
some unknown function g, i.e., ¢ = g(a). This leads to a : f(a)::g(a) : f(g(a)),
which indeed sounds right. However, due to central permutation postulates we have
a:g(a): f(a): f(g(a)), and thus we should also have a : g(a) :: f(a) : g(f(a)). This
means that f(g(a)) = g(f(a)), i.e., f and g commute. Moreover g, as f, is bijective
and can be inverted.

"It can be noticed that there is no analogical proportion equivalent to a : b:: ¢ : d of the form
b:cux:yorc:bux:y,orb:xiic:y,orc: x::b: y, which suggests that there is no
need for considering a function h(b) = ¢, or h'(c) = b.
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As we are going to see this view is compatible with the Boolean modeling. When
a:b:c:dholds true, we can statea A-b=cA-d=aand bA—-a=dA—-c=p,
where a A § = L. Similarly, since a : ¢:: b : d also holds true, leta A—-c=bA—-d = ¢
and c A —a = d A —b = ), where ¢ A ¢» = L. Thus, we can introduce the two Boolean
functions

f(@) = (2 A=)V B; g(z) = (A —~p) V¥

and check that we indeed have

a:czb:d=a: fa):g(a): f(g(a)) = a: fla):g(a) : g(f(a))

Proof 1. 1. f(a) = (aA—a)V B = (aA—(aA-b))V(bA—a) = (aAb)V (bA—a) =b
2. Similarly g(a) = (a A =(a A =¢)) V (¢ A —a) = c.
3. g(f(a)) =gd) = (bBA=(bA-d)V (dA-D) = (bAd)V (dA—b) =d. O

This shows the agreement of the Boolean view with function-based view.

3 Analogical Structures of Opposition and Binary Trees

In this section, we investigate another aspect of the pervasiveness of analogical propor-
tions by building them from mutually exclusive properties that also give birth to binary
classification trees. Indeed a binary tree is a way of cataloguing objects by means of a
set of relevant attributes. As such, it is a taxonomic structure, where a node represents a
sub-class of any other node on the path from the root to the former node. This has been
observed for a long time. In that respect, Johann Christian Lange (1669-1756) deserves
a particular mention since he invented a tree-like diagram for solving syllogisms and
finding the valid ones [14]; see [15] for details.

The analogical proportions associated to binary classification trees lead to a partic-
ular type of square, of cube, and more generally of hypercube of opposition. A prelim-
inary sketch of these ideas can be found in an extended abstract [1].

3.1 Oppositions Underlying an Analogical Proportion Organized into a Square

An analogical proportion can be obtained by taking pairs of mutually exclusive Boolean
propetties, (p,p’), (¢,q4'), (r,7’) (e, suchthatp Ap' = 1L, qAqg = L,r Ar' = 1),
and then by considering the four items a,a’, b, b’ respectively described on the six
properties (p, q,r,7’,¢’,p’) according to the following Table 2.

Table 2. Analogical proportion obtained from pairs of mutually exclusive properties

parrq'p'
a [111000
2 (110100
b (101010
b 100110

It can be seen that for any vector component,

(a; A —a = by A=) A (ma; A a, = —b; ND)
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holds true, where a = (a1, as, as, a4, as, ag), a’, b, b’ being similarly defined, and each
component a; (i = 1,-- - , 6) refers to the truth-value of a for properties p, q, 7,7, ¢, p’
respectively. We can observe that (a;, a;, b;, b;) fori = 1,--- , 6 takes respectively the
values (1,1,1,1), (1,1,0,0), (1,0,1,0), (0,1,0,1), (0,0, 1,1), and (0,0, 0,0) which
are the six 4-tuples that make an analogical proportion true. Thus the proportion a :
a’::b : b’ holds true.

It is worth noticing that a,a’; b, b’ make a kind of square of opposition (not to be
confused with the traditional one [3,25]), as pictured below:

a(qr)—a’ (¢r')

b (¢'r)— Db’ (¢'r")

Indeed a,a’, b, b’ can be organized as a square exhibiting oppositions in the follow-
ing sense: a, a’ satisfy ¢ while b, b’ satisfy ¢/, and a, b satisfy » while a’, b’ satisfy 7.
Moreover, diagonals ab’ and a’b link items that are opposite with respect to properties
q,.q,r, 7.

Note that an equivalent binary (classification) tree can be built from the properties
p,q,q , 7,7, where we have indicated in bold the item associated to each path going
from the root to the corresponding leave.

20N
VAT

rb r b’

Although the above tree could be closely related to a decision tree, it does not follow
the usual convention of associating each node with a property that is true in the left
branch and false in the right branch, below the node. It is rather a classification tree
organizing the items into classes and sub-classes. Indeed, the root node is associated
with the property which is true for the whole class (p in the above example), then the
nodes below are associated with the property that specializes the two subclasses (¢ and
q' above), and so on. Following the path from the root to a leave, we read the collection
of properties that are true for the item in bold, near the leave (e.g., pg'r for b).

In this paper, we only consider Boolean analogical proportions defined for Boolean
variables. However, the definition can be straightforwardly extended to n-valued vari-
ables [29]. Assuming that the domain of a considered variable may be now D =
{d*,--- ,d"} (instead of {0,1}), the patterns d’ : d? ::d’ : d? and d* : d'::d’ : &/,
for all d;,d; € D, would be the only ones that make an analogical proportion true,
which would be false otherwise. This would enable us to extend the above approach
to non binary trees where we deal with n-tuples of mutually exclusive properties. For
instance, suppose we have objects whose size can be big or small and whose color
is a value in D = {blue,red, yellow}; then we would be led to consider analogical
proportions such that (big, red) : (small, red) :: (big, blue) : (small, blue).
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3.2 Analogical Cube of Opposition

The above process can be obviously iterated. Let us introduce one more pair of mutu-
ally exclusive properties, say o, o/, and thus one more level in the tree, as below:

p/o\p,
\ N

q q q
r a r a’ rb r b’ r c r ¢ r d r d

This corresponds to a table (see Table 3) which has now eight items a,a’; b, b’,
c,c’,d,d’. Note that the table is also associated with an example of practical inter-
pretation, involving the four oppositions: animal/plant, canid/suidae, tame/wild and
young/adult.

Table 3. Example of a super analogical proportion obtained from pairs of mutually exclusive
properties

|0 (animal)p (canid) g (tame) r (young) r’ (adult)g’ (wild)p’ (suidae)o’ (plant)

a puppy 1 1 1 1 0 0 0 0

a' dog 1 1 1 0 1 0 0 0

b wolf cub 1 1 0 1 0 1 0 0
b wolf| 1 1 0 0 1 1 0 0

c piglet 1 0 1 1 0 0 1 0

c pigl 1 0 1 0 1 0 1 0

d yg.wd.boar 1 0 0 1 0 1 1 0
d wild boar| 1 0 0 0 1 1 1 0

This gives birth to the cube? in Fig.1 where parallel facets are in opposition
on one property (e.g., facet a, b, ¢,d corresponds to young animals (or), while facet
a’,b’,¢’, d’) corresponds to adult animals (or’). As can be seen, the edges of the cube
link items in opposition on only one property over three (e.g., a’ (pgr’) and ¢’ (p’qr’)).
Diagonals in a facet link items in opposition on two properties over three (e.g.,a’ (pgr’)
and ¢ (p'qr)), while diagonals in the cube link items in complete opposition on three
properties (e.g., a’ (pgr’) andd (p'q'r)).

3.3 Super Analogical Proportion

Looking at Table 3, we may see it as the truth table of a connective with 8 Boolean
variables a,a’,b,b',c,c’,d,d (we no longer use here the bold notation since we are

2 This cube is distinct from the cube of opposition obtained as an extension of the traditional
square of opposition; see [5,10,30].
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Fig. 1. Analogical cube

no longer dealing with vectors), which would be true only for the eight Boolean
8-tuples corresponding to the eight columns of Table 3, and false for any other Boolean
8-tuples (among the 28 = 256 possible ones). This defines a connective with 8 entries
which would be denoted a/a’ /b/b' /c/c’ /d/d’. Since the 8 patterns that make it true are
obtained by concatenation of 4-tuples defining the analogical proportion semantically,
we call it super proportion. It can be shown that we have the following result:3

a/a’ /b/b' /c/c /d]d’
=(a:d =b:V)A(a:d c: YA (a:buc:d)N(a V= d) 4)

Proof of Equation (4). Let us show that (a : @’ = b: V) A(a:a =c: )N (a:
bic:d)A(a b ::c i d)is true only for the 8 patterns exhibited in the columns of
Table 3 and false for any other 8-tuple (among 28). Since @ : a’ ::b : b’ should be true,
it is impossible to have either a = a’ and b # V', or a # a’ and b = b'. We have 4 cases

- (a,a’) = (0,1). Thus (b,b") = (0,1) = (¢, ') since a : @’ :: ¢ : ¢’ should hold. Then
we should have (a,a’,b : V' c: ¢,d,d") = (0,1,0,1,0,1,0,1) since (a : b::c :
d) A (a' V¢ ¢ d') should also hold.

- (a,a’) = (1,0). Then similarly (b,%") = (1,0) = (¢, ).

It leads to (a,d’, b,V ¢, ', d,d") = (1,0,1,0,1,0,1,0).
- (a a’) = (1,1). Due to the two first conjuncts in (4), there are four sub-cases
e (b, b’) = (1, 1) and (¢,¢’) = (1,1). The two last conjuncts in (4) lead to
(a,a',b,0 ¢, d,d")=(1,1,1,1,1,1,1,1).
o (b, b’) = (1 1) and (¢,c’) = (0,0). The two last conjuncts in (4) lead to

(a,a’,b,0,¢,c,d,d)=(1,1,1,1,0,0,0,0).

e (bv) = (0, ) and (¢,c’) = (1,1). The two last conjuncts in (4) lead to
(a,a’,b,b ¢, ,d,d')=(1,1,0,0,1,1,0,0).

o (b) = ( 0) and (¢, ¢) = (O 0). Then there is no solution for the equations
a:bucixanda (b d Al

3 The third conjunct is unfortunately missing in [1].
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— (a,a’) = (0,0). There are the same four sub-cases again
o (b)) = (1,1) and (¢,c) = (1,1) Then there is no solution for the equations
a:buc:xanda Vi a2

(b,0) (1, 1) and (¢,c/) = (0,0). The two last conjuncts in (4) lead to
(a,a’,b,¥ ¢, d,d)=(0,0,1,1,0,0,1,1).
o (V) = (0, O) and (¢,¢’) = (1,1). The two last conjuncts in (4) lead to
(a,a',b,0',¢,c,d,d")=(0,0,0,0,1,1,1,1).

(b ) (0,0) and (¢, c) (0,0). The two last conjuncts in (4) lead to
(a,a’,b: ¥, c: ¢, d,d) = (0,0,0,0,0,0,0,0).

As can be seen, the only patterns that make (4) true are precisely the eight 8-tuples
appearing in Table 3. (]

The four conjuncts of expression (4) correspond to four facets of the cube. The two
other facets of the cube are also associated with analogical proportions, as well as its
six diagonal plans. Indeed the truth of (4) entails that the following eight analogical
proportions hold as well (as can be checked in Table 3):

2 nd:d,
—b:bud: d,

and for the six diagonal plans:
_ b,b/ /
—a:ad d d'
—a:bucd:d,
—a :b:ce:d,
-a: b’ c:d,
—a :bucd:d

Thus, all facets and all diagonal plans correspond to analogical proportions in the ana-
logical cube. The cube is associated to 128 syntactically distinct analogical proportions,
since each of the 12 above proportions have 8 different syntactic forms that are seman-
tically equivalent due to symmetry and central permutation properties. Moreover there
are 32 degenerated proportions with only one, or two distinct items (having two syn-
tactic forms each in this latter case) corresponding respectively to the eight vertices and
twelve edges. This makes a total of 12 x 8 4+ 32 = 128 analogical proportions.

It is clear that the procedure that has led us from a square to a cube can be iterated by
considering more properties, and thus generalized to hypercubes, involving still more
analogical proportions. This iteration process can be also understood in the setting of
formal concept analysis, as we are now going to see briefly.

4 A Linkage with Formal Concept Analysis

The construction can be related to semi-products* in formal concept analysis (FCA)
[11]. FCA defines a formal concept as a pair made of a subset of objects and a subset
of Boolean attributes describing the extension and the intension of the concept respec-
tively. It starts from a so-called formal context, which is a relation defined on a Cartesian

4 This subsection follows from an idea suggested by Bernhard Ganter to the second author.
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as ap
B
‘ X

product of a referential of objects and a referential of attributes, which records the infor-
mation that each object is described by a subset of attributes that it possesses. The reader
is referred to [11] for details. In the following, we only make use of the notion of semi-
product of formal contexts. The formal contexts considered are basic ones, all have the
same form, as sketched above with two attributes as and a; and two objects (corre-
sponding to the two lines of the above table, where the symbol x means that the object
has the attribute of the column where the symbol is). As can be seen there is a form
of opposition between the two objects, where an object has one of the two attributes
and not the other, while it is the converse for the other one. The semi-product, denoted
%, of two formal contexts yields another formal context whose number of columns is
the sum of the number of columns of the formal contexts involved in the semi-product,
and the number of lines is the product of their number of lines. Let us first consider the
semi-product of two basic formal contexts of the above form. As can be seen, the first
line of the result is obtained by inserting the first line of the second context in the first
line of the first context, then the second line of the result is obtained by inserting the
second line of the second context in the first line of the first context, the third line of the
result is obtained by inserting the first line of the second context in the second line of
the first context, and the fourth line of the result is obtained by inserting the second line
of the second context in the second line of the first context. In FCA, the ordering of the
attributes (and the objects) is a matter of convenience; it is here chosen for the purpose
of making clear a link with analogical proportions. Indeed, we recognize in the columns
of the result four of the patterns making an analogical proportion true (replacing each
x by 1, and blanks by 0). The only missing patterns are (1,1,1,1) and (0,0, 0, 0), but
lines or columns full of x, as well as blank lines or columns, are not considered in FCA
for mathematical convenience and because it corresponds to extreme situations where
attributes are not discriminating. The above result is called an analogical complex [22]
which plays an important role for finding out analogical proportions between formal
concepts in a formal context [2].

a; Gz as Gg

Let us iterate the application of the semi-product by “multiplying” the result of
first semi-product again by a basic formal context. The result has now six columns and
eight lines. It can be checked that the six columns correspond to six of the eight 8-
tuples making a super analogical proportion (see Table 3). The two missing patterns are
(1,1,1,1,1,1,1,1) and (0,0, 0,0, 0,0, 0, 0) corresponding again to a column full of x
and to a blank column.
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aj as a3 Q4 a5 Ag
X X X
ay as ag ag X X X

as ay X X X

X X X |X = | X X X
X X X X X X
X X X X X
X X X
X X X

A new “multiplication” of the result by a basic formal context, would lead to a
formal context with 6 + 2 = 8 columns and 23 x 2 = 16 lines, corresponding to a
“super super” analogical proportion true for 8 + 2 = 10 16-tuples, and false for all other
16-tuples. This would have an hypercube with 4 dimensions, and a binary tree of depth
4, as counterparts. More generally, this construction process shows that a “super™” ana-
logical proportion is true for 2-(n +3) 2"*2-tuples only (a “super’” analogical propor-
tion is just an analogical proportion).

5 Conclusion

In this paper, we have seen that a binary classification tree not only supports an under-
standing in terms of taxonomic (deductive) reasoning, but also can be seen as equivalent
to a collection of analogical proportions! This suggests an unexpected interplay between
two modes of reasoning, usually regarded as very different in nature. Both have their
roots in the differentiation process of the items in terms of their characteristic attributes.
The (hyper)cube representation reflects the levels of opposition between two items in
such a structure. It may help explaining results in classification by lying bare what items
have in common and how they differ. Formal concept analysis provides another view
of the relation linking an object to its properties. This paper has only identified hidden
relationships between classification trees, analogical proportions, and formal concept
analysis. How to take advantage of these relationships is a still a largely open question:
for doing that they have also to be better understood and developed (for instance for
handling n-ary trees).

Besides, the example leading to the cube of opposition suggests that analogical
proportions do not exist in complete isolation. For instance, we have “a puppy is to a
dog as a piglet is to a pig”, “a puppy is to a dog as a wolf cub is to a wolf” and “a
piglet is to a pig as a wolf cub is to a wolf”. This might be useful for trying to solve
analogical proportion equations between words in natural language. Indeed, following
the pioneering work of Rumelhart and Abrahamson [31] in computational linguistics,
the parallelogram-based modeling of analogical proportions for solving word analogies
has become a standard evaluation tool for vector-space semantic models where words
are represented as numerical vectors (e.g., [17,18,24]). However computing d as the
solution of @ — b = & — cf, yields only a family of potential solutions (the neighbors of
d corresponding to a word), and the closest neighbor is rarely the right solution. Taking
advantage that the equation to be solved is related to other equations might help find the
right solutions. This would contribute to bridge this computational view of analogical
proportions with the work presented here.
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Abstract. Desirable properties of a normal form for conditional knowl-
edge are, for instance, simplicity, minimality, uniqueness, and the respect-
ing of adequate equivalences. In this paper, we propose the notion of
antecedentwise equivalence of knowledge bases. It identifies more knowl-
edge bases as being equivalent and allows for a simpler and more compact
normal form than previous proposals. We develop a set of transformation
rules mapping every knowledge base into an equivalent knowledge base
that is in antecedent normal form (ANF). Furthermore, we present an
algorithm for systematically generating conditional knowledge bases in
ANF over a given signature. The approach is complete in the sense that,
taking renamings and equivalences into account, every consistent knowl-
edge base is generated. Moreover, it is also minimal in the sense that no
two knowledge bases are generated that are antecedentwise equivalent or
that are isomorphic to antecedentwise equivalent knowledge bases.
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Renaming - Knowledge base generation

1 Introduction

A core question in knowledge representation and reasoning is what a knowl-
edge base consisting of a set of conditionals like “If A then usually B”, formally
denoted by (B|A), entails [20]. For investigating this question and correspond-
ing properties of a knowledge base, for comparing the inference relations induced
by different knowledge bases, for implementing systems realizing reasoning with
conditional knowledge bases, and for many related tasks a notion of normal
form for knowledge bases is advantageous. Desirable properties of a normal form
for conditional knowledge bases are, for instance, simplicity, minimality, unique-
ness, and the respecting of adequate equivalences of knowledge bases. Normal
forms of conditional knowledge bases have been investigated in e.g. [3,4]. In
this paper, we propose the new notion of antecedentwise equivalence of condi-
tional knowledge bases and the concept of antecedent normal form (ANF) of
a knowledge base. Antecedentwise equivalence identifies more knowledge bases
as being equivalent and allows for a simpler and more compact normal form
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than previous proposals. As an effective way of transforming every knowledge
base R into an equivalent knowledge base being in ANF, we develop a set of
transformation rules @ achieving this goal. Furthermore, we present an algo-
rithm KBg7, enumerating conditional knowledge bases over a given signature.
The algorithm is complete in the sense that every consistent knowledge base is
generated when taking renamings and antecedentwise equivalences into account.
Moreover, KBg, is also minimal: It will not generate any two different knowl-
edge bases R, R’ such that R and R’ or any isomorphic images of R and R’ are
antecedentwise equivalent. This algorithm is a major improvement over the app-
roach given in [9] because it generates significantly fewer knowledge bases, while
still being complete and minimal. Systematic generation of knowledge bases as
achieved by KB(Z, is fruitful for various purposes, for instance for the empirical
comparison and evaluation of different nonmonotonic inference relations induced
by a knowledge base (e.g. [5,17,20,22]) with the help of implemented reasoning
systems like InfOCF [6].

For illustrating purposes, we will use ranking functions, also called ordinal
conditional functions (OCF) [23,24], as semantics for conditionals. However, it
should be noted that all notions and concepts developed in this paper are inde-
pendent of the semantics of ranking functions we use in this paper. They also
apply to every semantics satisfying system P [1,17], e.g., Lewis’ system of spheres
[21], conditional objects evaluated using Boolean intervals [12], possibility dis-
tributions [10], or special classes of ranking functions like c-representations [15].
A common feature of these semantics is that a conditional (B|A) is accepted if
its verification A A B is considered more plausible, more possible, less surprising,
etc. than its falsification A A =B.

After recalling required basics in Sect. 2, antecedentwise equivalence and ANF
is introduced in Sect. 3. The system O transforming a knowledge base into ANF is
presented in Sect. 4. Orderings and renamings developed in Sect. 5 are exploited

in knowledge base generation by KB, in Sect. 6, before concluding in Sect. 7.

2 Background: Conditional Logic

Let £ be a propositional language over a finite signature X' of atoms a,b,c, .. ..
The formulas of £ will be denoted by letters A, B, C,.... We write AB for A\ B
and A for =A. We identify the set of all complete conjunctions over X with the
set {2 of possible worlds over £. For w € 2, w = A means that A € £ holds
in w, and the set of worlds satisfying A is 24 = {w | w = A}. By introducing
a new binary operator |, we obtain the set (£ | L) = {(B|A) | A,B € L} of
conditionals over L. For a conditional r = (B|A), ant(r) = A is the antecedent
of r, and cons(r) = B is its consequent. The counter conditional of r = (B|A) is
7 = (B|A). As semantics for conditionals, we use ordinal conditional functions
(OCF) [24]. An OCF is a function k : {2 — N expressing degrees of plausibility of
possible worlds where a lower degree denotes “less surprising”. At least one world
must be regarded as being normal; therefore, k(w) = 0 for at least one w € (2.
Each & uniquely extends to a function mapping sentences to N U {cc} given by
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k(A) = min{x(w) | w = A} where min() = co. An OCF & accepts a conditional
(BJA), written x = (B|A), if the verification of the conditional is less surprising
than its falsification, i.e., if K(AB) < k(AB); equivalently, x = (B|A) iff for every
W' € 2,5 there is w € 24p with k(w) < k(w'). A conditional (B|A) is trivial
if it is self-fulfilling (A |= B) or contradictory (A = B); a set of conditionals
is self-fulfilling if every conditional in it is self-fulfilling. A finite set R C (L|L)
of conditionals is called a knowledge base. An OCF k accepts R if k accepts all
conditionals in R, and R is consistent if an OCF accepting R exists [14]. We
use ¢ to denote an inconsistent knowledge base. Mod(R) denotes the set of all
OCFs k accepting R. Two knowledge bases R, R’ are model equivalent, denoted
by R =moa R, if Mod(R) = Mod(R’). We say (B|A) = (B'|A") if A= A’ and
AB = A’B’. Example 1 presents a knowledge base we will use for illustration.

Ezample 1 (Rear [4]). Let Xewr = {c, e, f} where ¢ indicates whether something
is a car, e indicates whether something is an e-car, and f indicates whether some-
thing needs fossil fuel. The knowledge base R, contains seven conditionals:
q1: (fle) “Usually cars need fossil fuel.”

q2: (fle) “Usually e-cars do not need fossil fuel.”

qs: (cle) “E-cars usually are cars.”

qa: (elef) “E-cars that do not need fossil fuel usually are e-cars.”

qs: (efle) “E-cars usually are e-cars that do not need fossil fuel.”

gs: (€|T) “Usually things are no e-cars.”

gr: (¢f Vef|ceV ce) “Things that are cars and e-cars or cars but not e-cars

are cars that need fossil fuel or are no cars but need fossil fuel.”

3 Antecedentwise Equivalence of Knowledge Bases

For comparing or generating knowledge bases, it is useful to abstract from merely
syntactic variants. In particular, it is desirable to have minimal versions and
normal forms of knowledge bases at hand. The following notion of equivalence
presented in [4] employs the idea that each piece of knowledge in one knowledge
base directly corresponds to a piece of knowledge in the other knowledge base.

Definition 1 (equivalence =.. [4]). Let R, R’ be knowledge bases.

— R is an elementwise equivalent sub-knowledge base of R', denoted by R Kee
R’, if for every conditional (B|A) € R that is not self-fulfilling there is a
conditional (B'|A") € R’ such that (B|A) = (B'|4").

- R and R’ are strictly elementwise equivalent if R <. R’ and R’ <. R.

- R and R’ are elementwise equivalent, denoted by R =.. R, if either both
are inconsistent, or both are consistent and strictly elementwise equivalent.

Elementwise equivalence is a stricter notion than model equivalence. In
[3], as a simple example the knowledge bases Ry = {(a|T),(b|T), (ab|T)} and
Ro = {(a|]T), (b|T)} are given which are model equivalent, but not elementwise
equivalent since for (ab|T) € R; there is no corresponding conditional in Ra.
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The idea of the notion of antecedentwise equivalence we will introduce here is
to take into account the set of conditionals having the same (or propositionally
equivalent) antecedent when comparing to knowledge bases.

Definition 2 (Ant(R), Rja, ANF). Let R be a knowledge base.

- Ant(R) = {A | (B|A) € R} is the set of antecedents of R.

~ For A € Ant(R), the set Rjy = {(B'|A") | (B'|A’) € R and A = A’} is the
set of A-conditionals in R.

- R is in antecedent normal form (ANF) if either R is inconsistent and R = o,
or R is consistent, does not contain any self-fulfilling conditional, contains
only conditionals of the form (AB|A), and |Rj4| =1 for all A € Ant(R).

Definition 3 (<., equivalence =,.). Let R, R’ be knowledge bases.

- R is an antecedentwise equivalent sub-knowledge base of R', denoted by
R <ae R, if for every A € Ant(R) such that R4 is not self-fulfilling there
is an A" € Ant(R') with R|a =mod RTA"

- R and R’ are strictly antecedentwise equivalent if R <, R’ and R’ <4e R.

- R and R’ are antecedentwise equivalent, denoted by R =,. R’, if either both
are inconsistent, or both are consistent and strictly antecedentwise equivalent.

Note that any two inconsistent knowledge bases are also antecedentwise
equivalent according to Definition 3, e.g., {(bla), (b|b)} =ae {(b|b), (a@|T)},
enabling us to avoid cumbersome case distinctions when dealing with consis-
tent and inconsistent knowledge bases. In general, we have:

Proposition 1 (=,.). Let R, R’ be consistent knowledge bases.

If R €4e R then Mod(R') C Mod(R).

IfR Zae R then R =moq R’

If R €ee R then R <4 R'.

IfR =o R then R =q0 R’

None of the implications (1.)-(4.) holds in general in the reverse direction.

Cuds Lo do =

Proof. (1.) f R <4 R/, Definition 3 implies that there is a function f :
Ant(R) — Ant(R') with Rja =mod Rff(A) for each A € Ant(R). Thus,
R =Uscan(r) Ria =mod Usacant(r) Rif(A) C R’ implies Mod(R') C Mod(R).
Employing (1.) in both directions, we get (2.).

(3) If R < R/, Definition 1 ensures a function f : R — R’ with
{(B|A)} =moa {f((B|A))} for each (B|A) € R. Hence, A = A’ must hold
if (B'A") = f((B|A)). Thus, {(B|4) | (B|A) € Rja} =moa {f((BlA)) |
(B|A) € Rya} for each A € Ant(R). Together with R = e ani(r) Rja and
{f((B|A)) | (B]A) € Rja} € R’ this implies R <4 R'. Employing (3.) in both
directions yields (4.).

For proving (5.) w.r.t. both (1.) and (2.), consider R3 = {(cl|a), (c|b)} and
R4 = {(c|a), (c|b), (c|laVvbd)}. Then R3 =mod R4 and R3 Kge Ra, but Ry £Loe R
and therefore Rs #,. R4. For (5.) w.r.t. both (3.) and (4.), consider again
R1 = {(a|T),(0|T),(ab]T)} and Ro = {(a|T), (0| T)}. We have Ry =, Ro
because Ri|1 =mod Rz, but R1 Kee R2 and therefore Ry #ee Ro. O
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In the proof of Proposition 1 Ry #.. Re and R1 =4 R2 holds, but also
Ro Kee R1. The following example shows that two knowledge bases may be
antecedentwise equivalent even if they are not comparable with respect to <.

Ezample 2 (=4.). Let Rs = {(bcl|a), (cd|a)} and Re = {(bd|a), (bed|a)}. Then
R5 =ae RG; but R5 ?éee RG; R5 {ee RG» and RG Kce R5~

4 Transforming Knowledge Bases into ANF

In order to be able to deal with normal forms of formulas in £ without having to
select a specific representation, we assume a function v mapping a propositional
formula A to a unique normal form v(A) such that A = A’ iff v(A4) = v(4").
We also use a function IT with IT(R) = ¢ iff R is inconsistent; IT can easily be
implemented by the tolerance test for conditional knowledge bases [14]. Using
IT and the propositional normalization function v, the system © given in Fig. 1
contains four transformation rules:

(SF) removes a self-fulling conditional (B|A) with A #£ L.

(AFE) merges two conditionals (B|A) and (B’|A’) with propositionally equiv-
alent antecedents to a conditional having this antecedent and the conjunction
of the consequents.

(NO) transforms a conditional (B|A) by sharpening its consequent to the
conjunction with its antecedent and propositionally normalizes the antecedent
and the resulting consequent.

(IC) transforms an inconsistent knowledge base into ©.

Ezample 3 (N(Reqar)). Consider the knowledge base R4 from Example 1.

(SF) As ef |= e, qq is self-fulfilling, and the application of (SF') removes q4.
(AE) Applying this rule to g3 and g5 yields gg : (cef|e).

(SF) self-fulfilling : % AEB, A# L
/ ’
(AE) antecedence equivalence : RU{(BIA), (BA)} A=A

RU{(BB'|A)}

normalization : RU{(B|A)} v or v
(NO) lizat : RU{WIAB) (AN} A#v(A) B # v(AB)
(IC) inconsistency : % R#A0,II(R)=0

Fig. 1. Transformation rules © and their applicability conditions for the normalization
of knowledge bases respecting antecedence equivalence; I1 is a consistency test, e.g. the
tolerance criterion [14], and v a normalization function for propositional formulas.
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(NO) Applying this rule to g1 or to g7 yields ¢1 : (v(cf)|v(c)) in both cases,
applying it to go or to g5 yields ¢ : (v(ef)|v(e)), applying it to g3 yields
g3 : (v(ce)|v(e)), and applying it to ge yields s : (v(€)|v(T)). Applying (NO)
to gg : (cefle) yields gg : (v(cef)|v(e)); note that first applying (AE) to ¢
and g3 and then (NO) to the result also yields exactly gs.

(IC) As R oy is consistent, (IC') can not be applied to R cqr-

Thus, applying © exhaustively and in arbitrary sequence to R ... gives us the
knowledge base O(R cqr) = {71, G6, ¢} In contrast, the transformation system 7
given in [4] would yield 7 (Rear) = {q1, 42, 3, ¢} containing more conditionals.

Proposition 2 (properties of ©). Let R be a knowledge base.

. (termination) O is terminating.

. (confluence) O is confluent.

. (=mod correctness) R =,,,q O(R).

. (=qe correctness) R =, O(R).

. (=qe minimizing) IfR is inconsistent then O(R) = o. If R is consistent,
then for all knowledge bases R' it holds that R' G O(R) implies R' #ae R.

6. (ANF) O(R) is in antecedent normal form.

CUIh W INH

Proof. (1.) (SF), (AE), and (IC) remove at least one conditional, and (NO) can
be applied at most once to any conditional. Hence, © is terminating.

(2.) Since O is terminating, local confluence of © implies confluence of O;
local confluence of @ in turn can be shown by ensuring that for every critical
pair obtained form superpositioning two left hand sides of rules in © reduces
to the same knowledge base [2,16]: Any critical pair obtained from (IC) and
another rule in @ reduces to ¢ since all rules preserve the consistency status
of a knowledge base. Any critical pair obtained from (SF) with (NO) reduces
to the same knowledge base since applying (NO) to a self-fulfilling conditional
yields again a self-fulfilling conditional. Regarding critical pairs with respect to
(NO), we observe that if R contains two distinct conditionals (B|A) and (B’|A’)
with (v(AB)|v(A4)) = (v(A'B")|v(A4")), then applying (NO) first to either of the
conditionals and second to the other one yields the same result. Critical pairs
between (AF) and (NO) reduce to the same result because propositional nor-
malization commutes with (AE). For a critical pair of (SF) and (AE) consider
Ro = RU{(B|A),(B'|A")} with A = A’ and A’ | B’. Applying (SF) yields
R1=RU{(B|A)}, and applying (AFE) yields Ry = R U {(BB’|A)}. Applying
(NO) to both Ry and Ry yields the same result because A = A’; A’ = B’ and
therefore AB = ABB'. Thus, we are left with critical pairs obtained from (AE)
which arise from RU{(B|A), (B’|A’),(B"|A")} with A = A’ = A” so that (AE)
could be applied to {(B|A), (B’|A")} and to {(B’|4"), (B”|A”)}. Applying (AE)
to the result followed by (NO) yields R U {(v(BB’'B")|v(A))} in both cases.

(3.) By Proposition 1, (3.) will follow from the proof of (4.).

(4.) We will show that =,.-equivalence is preserved by every rule in O.
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(IC) Since IT is a consistency test, R =,. ¢ because all inconsistent knowledge
bases are =,.-equivalent. Because all other rules preserve the consistency status of
R, we assume that R is consistent when dealing with the other rules in 6. (SF') By
Definition 3 we get R U {(B|A)} =4 R. (AE) Thisrule preserves =,.-equivalence
because A = A" implies {(B|A), (B'|A")} € (RU{(B|A), (B'|A")})|a, (BB'|A) €
(RU{(BB'|A)})|a, and Mod({(B|A),(B'|A")}) = Mod({(BB’|A)}). (NO) This
rule preserves =4.-equivalence because (B|A) € (RU{(B|A)})ja, (W(AB)|v(A)) €
(R U {(v(AB)[v(A4))}) 4, and Mod({(BIA)}) = Mod({(v(AB)|(A))}).

(5.) The =,.-minimizing property will follow from the proof of (6.).

(6.) From (1.) and (2.) we conclude that O(R) is well defined. If O(R) was
not in ANF then at least one of the rules in © would be applicable to O(R),
contradicting that @ has been applied exhaustively. O

Proposition 2 ensures that applying © to a knowledge base R always yields the
unique normal form @(R) that is in ANF. This provides a convenient decision
procedure for antecedentwise equivalence and thus also for model equivalence.

Proposition 3 (antecedentwise equivalence). Let R, R’ be knowledge
bases. Then R =4 R’ iff O(R) = O(R’).

5 Orderings and Renamings for Conditionals

For developing a method for the systematic generation of knowledge bases in
ANF, we will represent each formula A € £ uniquely by its set {24 of satisfying
worlds. The two conditions B & A and B # () then ensure the falsifiability and
the verifiability of a conditional (B|A), thereby excluding any trivial conditional
[8]. This yields a propositional normalization function v, giving us:

Proposition 4 (NFC(X) [9]). For NFC(Y) ={(B|A) | AC 25, BG A, B#
(0}, the set of normal form conditionals over a signature X, the following holds:

(nontrivial) NFC(X) does not contain any trivial conditional.

(complete) For every nontrivial conditional over X there is an equivalent
conditional in NFC(X).

(minimal) All conditionals in NFC(X) are pairwise non-equivalent.

For instance, for X, = {a,b} we have ({ab,ab}|{ab,ab}) = ({ab}|{ab,ab})
where the latter is in NFC(X,;). Out of the different 256 conditionals over X
obtained when using sets of worlds as formulas, only 50 are in NFC(Xy) [9].

For defining a linear order on NFC(X), we use the following notation. For
an ordering relation < on a set M, its lexicographic extension to strings over
M is denoted by <. For ordered sets S, 8" C M with S = {ey,...,e,} and
S' = {e},... e, } where e; <e;41 and e; < 69‘4-1 its extension <. to sets is:

S < S iff n<n',orn=n"and ey ...e, ez €] ...€L (1)

For X with ordering <, [w]. is the usual interpretation of a world w as a binary
number; e.g., for Xy, with a<b, [ab] . = 3, [ab] . = 2, [ab] . = 1, and [ab] . = 0.
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Definition 4 (induced ordering on formulas and conditionals). Let X
be a signature with linear ordering <. The orderings induced by < on worlds
w,w’ and conditionals (B|A), (B'|A") over X are given by:

w<w iff Wl > W] 2)

(BIA) < (B'|A") iff Q4 <sor Qur, or Q4 = Qur and Qp <oor 250 (3)

In order to ease our notation, we will omit the upper symbol in % and 2, and
write just < instead, and analogously < for the non-strict variants. For instance,
for X, with a < b we have ab < ab < @b < @b for worlds, and (ablab V ab) <
(ablab Vv ab) and (abV ablabV abV ab) < (@blabV abV @bV ab) for conditionals.

Proposition 5 (NFC(X), < [9]). For a linear ordering < on a signature X, the
induced ordering < according to Definition 4 is a linear ordering on NFC(X).

Given the ordering < on NFC(X) from Proposition 5, we will now define a
new ordering < on these conditionals that takes isomorphisms (or renamings)
p: X — X into account and prioritizes the <-minimal elements in each isomor-
phism induced equivalence class. As usual, p is extended canonically to worlds,
formulas, conditionals, knowledge bases, and to sets thereof. We say that X and
X' are isomorphic, denoted by X ~ X', if there exists a renaming p such that
p(X) = X'. For a set M, m € M, and an equivalence relation = on M, the
set of equivalence classes induced by = is denoted by [M],=, and the unique
equivalence class containing m is denoted by [m]=. For instance, for X,;, the
only non-identity renaming is the function pgp with pep(a) = b and pap(b) = a,
[25,,]/~ = {[ab], [ab,ab], [ab]} are the three equivalence classes of worlds over
Y, and we have [(ablab V ab)]~ = [(ablab V @b)]~.

Definition 5 (¢cNFC(X), < [9]). Given a signature X with linear ordering
<, let [INFC(X)])~ = {[r1]~, ..., [rm]~} be the equivalence classes of NFC(X)

induced by isomorphisms such that for each i € {1,...,m}, the conditional r; is
the minimal element in [r;]~ with respect to <, and ri <...<rp,. The canonical
normal form conditionals over X are ¢cNFC(X) = {r1,...,rm}. The canonical

ordering on NFC(X), denoted by <, is given by the schema
==y =< e\ {1} =< =< ] \ {rm}
where r <" iff r <v' for alli € {1,...,m} and all r,v" € [r;]~ \ {ri}.

Proposition 6 (NFC(X), < [9]). For a linear ordering < on a signature X, the
induced ordering < according to Definition 5 is a linear ordering on NFC(X).

While NFC(X,;) contains 50 conditionals, there are 31 equivalence classes in
[NFC(Xa)]/~; hence ¢cNFC(Xy) has 31 elements [9]. The three smallest ele-
ments in NFC(X,p) w.r.t. < are ({ab}|{ab,ab}), ({ab}|{ab,ab}), ({ab}|{ab,ab}),
and their corresponding equivalence classes are [({ab}|{ab, ab}), ({ab}|{ab,ab})],

[({ab}|{ab,ab}), ({@b}|{ab,ab})], and [({ab}|{ab,ab})].
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6 Generating Knowledge Bases in ANF

The algorithm KBJ:, (Algorithm 1) generates all consistent knowledge bases
up to antecedentwise equivalence and up to isomorphisms. It uses pairs (R, C)
where R is a knowledge base and C' is a set of conditionals that are candidates
for extending R to obtain a new knowledge base. For extending R, conditionals
are considered sequentially according to their < ordering. Note that in Line 3,
only the canonical conditionals (which are minimal with respect <) are used
for initializing the set of one-element knowledge bases. In Line 3 (and in Line
11, respectively), a conditional r is selected for initializing (or extending, respec-
tively) a knowledge base. In Lines 4-6 (and in lines 13-15, respectively), in the
set D conditionals are collected that do not have to be considered as candidates
for further extending the current knowledge base: D; contains all conditionals
that are smaller than r w.r.t. <, Dy contains all conditionals having the same
antecedent as r (since R should be ANF), and 7 would make R inconsistent. The
consistency test used in Line 12 can easily be implemented by the well-known
tolerance test for conditional knowledge bases [14].

Proposition 7 (KB2 Let X be a signature with linear ordering <. Then

gen/*
applying KBgg, to it terminates and returns KB for which the following holds:

1. (correctness) If R € KB then R is a knowledge base over X.
2. (ANF) If R € KB then R is in ANF.

Algorithm 1. KB2 — Generate knowledge bases over X up to =4,

gen

Input: signature X' with linear ordering <
Output: set KB of knowledge bases in ANF of over X' that are consistent, pairwise
antecedentwise non-equivalent and pairwise non-isomorphic

1: L1 <0

2: k1

3: for r € ¢NFC(X) do > only canonical conditionals for initialization
4: Dy —{d|de NFC(X),d =< r} > conditional d can not extend {r}
5: Dy« {(B|A) | (BJA) € NFC(X), A = ant(r)} > (BJA) can not extend {r}
6: D« DiUDyU{T} > 7 can not extend {r}
7. L1 — LiU{{{r}, NFC(X)\ D)}

8: while Ly # 0 do

9: Lk+1 — @
10: for (R, C) € Li do > R knowledge base, C' candidates for extending R
11: for r € C do
12: if RU {r} is consistent then > extend R with conditional r
13: D, —{d|deC,d=r} > conditional d can not extend R U {r}
14: Dy — {(B|A) | (B|A) € C,A = ant(r)} > (B|A) can not extend R U {r}
15: D — D1 UD, U{7} > 7 can not extend R U {r}
16: Lyt1 — Ly U{(RU{r}, C\ D)}
17 ke—k+1

18: return KB={R | (R, C) € L;, i € {1,...,k}}
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3. (=4e minimality) If R, R’ € KB and R # R’ then R %4 R’.

4. (~ minimality) IfR,R' € KB and R # R’ then R #R'.

5. (consistency) If R € KB then R is consistent.

6. (completeness) If Ris a consistent knowledge base over X then there is
R’ € KB and an isomorphism p such that R =4 p(R’).

Proof. The proof is obtained by formalizing the description of KB, given above
and the following observations. Note that KB, exploits the fact that every sub-
set of a consistent knowledge base is again a consistent knowledge base. Thus
building up knowledge bases by systematically adding remaining conditionals
according to their linear ordering < ensures completeness; the removal of can-
didates in Lines 5 and 14 does not jeopardize completeness since Proposition 2
ensures that for each knowledge base an antecedentwise equivalent knowledge
base exists that for any propositional formula A contains at most one condi-
tional with antecedent A. Checking consistency when adding a new conditional
ensures consistency of the resulting knowledge base. ANF is ensured because all
conditionals in NFC(X') are of the form (AB|A). Because for all A, each gen-
erated R contains at most one conditional with antecedent A, =,.-minimality
is guaranteed, and ~-minimality can be shown by induction on the number of
conditionals in a knowledge base. O

Note that K gen generates significantly fewer knowledge bases than the algo-
rithm GenKB given in [9]. For each formula A, each R € GenKB(X) may
contain up to half of all conditionals in NFC(X) with antecedent A,' while
R € KBJ:,(X) may contain at most one conditional with antecedent A.

For instance, KB2¢ (X,,) will generate the knowledge base R; =

gen

{({@b}|{ab,ab}), ({ab}|{ab,ab,ab})}, but it will not generate the knowl-
edge base Rg = {({ab}|{ab,ab}), ({ab, ab}|{ab,ab,ab}), ({ab,ab}|{ab,ab,ab})}

which is antecedentwise equivalent to R7, ie., Rg =4 R7. Further-
more, KBJS (X,) will also mnot generate, e.g., the knowledge bases

Ro = {({ab,ab}|{ab,ab,ab}), ({ab}|{ab,ab}), ({ab,ab}|{ab,ab,ab})} or Ry =
{({@b}|{ab,ab}), ({ab}|{ab, ab,ab})} which are both antecedentwise equivalent
to Ry when taking isomorphisms into account; specifically, we have pap(R10) =
Rz, and pap(R9) = Rs and hence also pap(Ro) =qe R

7 Conclusions and Further Work

Aiming at a compact and unique normal form of conditional knowledge bases,
we introduced the new notion of antecedentwise equivalence. We developed a
system © transforming every knowledge base into its unique antecedent normal
form. The algorithm KBg7, is complete in the sense that it generates, for any
signature X, knowledge bases in ANF such that all knowledge bases over X are

! Note that it can not be more than half of these conditionals with the same antecedent
because otherwise there would be a conditional together with its counter conditional,
leading to inconsistency of the knowledge base.
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covered up to isomorphisms and antecedentwise equivalence. Furthermore, the
set of knowledge bases returned by KBg7, is minimal because no two different
knowledge bases are generated such that they or any isomorphic images of them
are antecedentwise equivalent. Currently, we are working with KB, and the
reasoning system InfOCF [6] for empirically evaluating different nonmonotonic
inference relations induced by a conditional knowledge base and for computing
the full closures of such inference relations [18]. Another part of our future work
is the investigation of inferential equivalence of ANF (for another normal form
see [3,7]) with respect to semantics that are not syntax independent like rational

closure (cf. [11,13]), but that are syntax dependent like lexicographic closure [19].
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Abstract. A conditional preference statement takes the form “in context ¢, a is
preferred to not a”. It is quite similar to the piece of knowledge “if c is true, a is
more plausible than not a”, which is a standard way of understanding the default
rule “if ¢ then generally a”. A set of such defaults translates into a set of con-
straints that can be represented in the setting of possibility theory. The application
of a minimum specificity principle, natural when handling knowledge, enables us
to compute a priority ranking between possible worlds. The paper investigates
if a similar approach could be applied to preferences as well. Still in this case,
the use of a maximum specificity principle is as natural as the converse princi-
ple, depending on the decision maker attitude in terms of pessimism or optimism.
The paper studies the differences between this approach and qualitative graphi-
cal approaches to preference modeling such as m-pref-nets (based on possibility
theory) and CP-nets (relying on ceteris paribus principle). While preferences in
a conditional preference network can always be expressed as “default-like” con-
straints, there are cases where “non monotonic” preferences cannot be associated
with a preference network structure, but can still be dealt with as constraints.
When both approaches can be applied, they may lead to different orderings of
solutions. The paper discusses this discrepancy and how to remedy it.

1 Introduction

Possibilistic preference networks (m-pref-nets for short) [1] have been recently proposed
as a model, whose graphical structure is identical to the one of conditional preference
networks (CP-nets for short), but where each node is associated with a conditional pos-
sibility table (with symbolic weights) that represents the conditional preferences cor-
responding to the node. Then a chain rule enables us to attach a symbolic expression
to any configuration or solution (i.e., to any complete instantiation of the variables).
This method induces a partial ordering of the solutions, which has been shown to coin-
cide with the inclusion-based ordering of the sets of violated preferences characterizing
the solutions (when no further constraints is added between the symbolic weights) [4].
This partial order agrees with the CP-net partial ordering, but is more cautious. Adding
appropriate constraints between the symbolic weights enables us to approach the CP-net
partial order. More generally, the addition of meaningful constraints guarantees a better
control of the representation of the preferences really expressed by the user, without the
© Springer Nature Switzerland AG 2019
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blind introduction of extra preferences (as, €.g., in the case of CP nets, where the viola-
tion of preferences associated to father nodes is made more important than the violation
of preferences associated to children nodes).

Conditional preferences are statements of the form “in context p, g is preferred
to g”, where g denotes “not ¢”. This sounds a bit similar to a default rule “if p then
generally ¢”, understood as “if p is true, ¢ is more plausible than g”, although it is a
piece of knowledge rather than the expression of some preference. Possibility theory
is a framework that can be used for representing either knowledge or preferences. In
the first case the degree of possibility is understood as a degree of plausibility, and the
dual necessity means certainty; in the second case the degree of possibility is a degree
of satisfaction and the degree of necessity is a priority level. In both cases, the con-
ditional statement translates into the constraint II(p A g) > II(p A g). Thus, a set of
such default rules is turned into a set of possibilistic constraints. Then the application of
a minimum specificity principle, natural when handling knowledge, ensures that each
interpretation remains as much possible as allowed by the constraints. This method
enables us to compute a priority ranking on interpretations among defaults then repre-
sented by possibilistic formulas. This leads to an approach to default reasoning with a
simple semantics, which is in agreement with Lehmann et al. postulates [11,14]. The
minimum specificity principle makes sense for knowledge, while for preferences, the
maximum specificity principle is natural as well [10]. So it is tempting to investigate a
“default-like” treatment of conditional preferences and to compare it with m-pref-nets.

The paper is organized as follows. Sections2 and 3 provide the necessary
background on possibility theory and preference modeling respectively. Section4
first studies how the topology of a preference graph influences the num-
ber of layers in the well-ordered partition obtained with the minimum speci-
ficity approach. Then we show that there are preference statements not repre-
sentable by neither m-pref-nets nor CP-nets that can still be handled by the
“default-like” method. Finally, we discuss the effects of the minimum and max-
imum specificity principles, and compare them to what is obtained with the
m-pref-nets ordering when they are both applicable.

2 Background

Finding an order or ranking between configurations describing complete instantiations
of preference variables can be achieved in several manners. One way of proceeding
is to use default statements and non-monotonic logic interpreted in terms of possibil-
ity distributions. In a first subsection, we recall the background on possibility theory
understood in terms of preference. The second subsection explains how to induce a
well-ordered partition of configurations by means of some information principle.

2.1 Possibility Theory

Let us assume a finite set of configurations Q = {wy, ..., w,} composed of all possible
interpretations of a set of Boolean decision variables X = {Xi, ..., X,}, where n = 2"
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possible combinations. Each interpretation w; is a vector which is a complete instantia-
tion of variables in X. In order to rank order these alternatives, a possibility distribution
mis used. It is a mapping from Q to a totally ordered scale S = [0,1]. Based on possibility
degrees m(w;), this distribution provides a complete pre-order between interpretations.
Originally, m(w) was only used to evaluate to what extent w is possible\plausible. How-
ever, further studies [7] showed that this encoding is also convenient for expressing
preferences over a set of choices. Indeed, possibility values are adapted to satisfaction
degrees in view of finding a rank ordering between interpretations of Q. A constraint of
the form m(w) > m(wr) stipulates that the largest « is, the more satisfactory w is.

A distribution 7 is said to be normalized if 4 w € Q, such that, 7(w) = 1, meaning
that there is at least one configuration which is totally satisfactory. By contrast, 7(w) = 0
amounts to saying that w is rejected. Based on a possibility distribution 7, the possibility
measure I1 of the event P, s.t. VP C Q is defined by,

II(P) = mél;( m(w) VP C Q (D)

II(P) estimates to what extent at least one configuration in P is satisfactory.
Another measure using the minimum operator called guaranteed possibility measure
can be defined,

A(P) = minm(w) VP C Q )
weP

It estimates the extent to which the least preferred model of P is satisfactory. So A(P)
represents a guaranteed satisfaction level when taking a configuration in P.

Let p be a proposition that models P (w; € P if and only if w; | p). Using the two
measures, a preference specification p > p can be interpreted in different ways [12, 13].
Given a subset of interpretations P the statement “I prefer the best case in which p is true
to the best case in which p is true” is seen as an optimistic modeling of preference and is
formally expressed by TI(P) > I1(P). In contrast, a pessimistic approach for expressing
p > p would be “I prefer the worst case in which p is true to the worst case in which p
is true”, namely A(P) > A(P). The claim “I prefer the best configurations in which p is
true to the worst configurations in which p is true” expresses an opportunistic approach
and is encoded by II(P) > A(P). Finally a cautious, stronger statement “I prefer the
worst configurations in which p is true to the best configurations in which p is true” is
expressed by A(P) > II(P).

2.2 Possibilistic Approach to Default Preferences

A conditional preference p ~» ¢ may be encoded by the constraint II(p A g) > II(p A ).
It explicitly means that “In the context defined by p, the best situation that models ¢ is
preferred to the best situation that models §”. A possibility distribution on configura-
tions of Q can be deduced from such constraints, based on some informational principle.
Then, a well-ordered partition of configurations can be generated [8]. Considering pos-
sibility distributions 7| and 75, ; is said to be less specific than 7, in the wide sense if
Yw € Q, m1(w) > m(w). Then agent 1 is considered less demanding than agent 2.
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Definition 1 Minimum specificity principle. Assuming a set of possibilistic constraints
I(p; A gi)) > (p; A G;), the least specific distribution n* in accordance with these
statements is the one that maximizes possibility degrees of configurations.

The meaning of this principle is that if a configuration w has not been explicitly
rejected, it is considered as preferred (m(w) = 1). Given a conditional preference base
S ={pi~ q; : i = 1,...,k}, Cy denotes the set of constraints derived from these
statements. Using an optimistic modeling of preference, Cyy is formally denoted by

Cn = {Il(p; A g) > (pi A G) : pi~ qi € S} 3)

Maximizing possibility degrees of configurations based on the minimum specificity
principle is achieved via the following algorithm which outputs a well-ordered partition
composed of sets E; of configurations [8].

Algorithm 1. Algorithm of partitioning of Q

Input: a set of possibilistic constraints

Begin
L. Eo = {0};
2. While Q # 0, repeat
21E; ={w;,i=1,---,n}s.t. w; does not appear on the right-hand side of any constraint (w;

is never dominated)
2.2 Remove the added configurations to E; from Q
2.3 Remove from Cy all satisfied constraints (their left-hand side are consistent with config-
urations of E;)
End while
End

Given a set of constraints, the first step consists of finding configurations that are
never dominated. They can be derived from calculating the negation of the disjunc-
tion of formulas that appear on the right side of constraints of Cp. In accordance
with the minimum specificity principle and using an optimistic interpretation approach,
the resulting configurations are then associated to the highest possibility degree (e.g.
m(w;) = 1) and are assigned to the first partition Ej. Constraints that are satisfied are
then deleted from Cp;. The same process is repeated until no constraints are left. In a
final step, the remaining configurations of Q are assigned to a final last level.

Note that this algorithm allows to rank configurations in terms of preference in the
most compact way in accordance to the given constraints.

In contrast, p ~» g may express the conditional constraint A(p Ag) > A(p A ) under
a pessimistic view, evaluating p A g by its worst configuration. They can be similarly
handled by the opposite principle.

Definition 2 Maximum specificity principle. Assuming a set of possibilistic con-
straints A(p; A q;) > A(p; N §;), the maximum specific distribution n* in accordance
with these statements is the one that minimizes possibility degrees of configurations.
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3 Background on Graphical Preferences

Graphical representations can be used to express conditional preferences. In this
section, we will closely examine two such structures: CP-nets [9] and 7-pref nets [6].
Both represent qualitative counterparts of Bayesian networks and are based on the same
type of preferential specification. They happen to share the same graphical structure,
which is a directed acyclic graph (shortly DAG) between variables. Each node of the
graph is associated to conditional data tables representing local preferences of variable
values in the context of values assigned to their parents. Each model uses a specific
independence property between variables, which enables to construct preference order-
ings between configurations [2,5].

3.1 CP-nets

CP-nets rely on the Ceteris Paribus preferential independence. It states that the pref-
erence of a partial configuration over another (as stated in the conditional preference
tables attached to each variable in the acyclic graph) holds everything else being equal.
Since this assumption leads to compare configurations that only differ by a single flip,
a directed a-cyclic worsening flip graph of configurations can be built. It is a partial
order. A configuration w is said to be preferred to wr, if there exists a chain of worsen-
ing flips that links w to wr. Finding the optimal solution amounts to sweeping through
conditional preferences from top to bottom of the preference graph and to assigning its
preferred value to each variable in the context of its parents.

3.2 m-pref Nets

The data component of a m-pref net involves conditional symbolic possibility distribu-
tions over the domains of each variable and its parents. The assignment 71(x;|Par(X;)) =
a is interpreted as “In the context of Par(X;), I prefer x; to X; with a satisfaction degree
of @” (an unspecified value in [0, 1]). The degree of satisfaction of full configurations
is computed using the chain rule associated to the product-based conditioning, namely,
the symbolic expression n(X;,...,X,) = [l;iz1. , 7(Xi|Par(X;)). Comparing two out-
comes comes down to comparing such symbolic expressions. Yet, finding the optimal
solution can proceed in the same way as for CP-nets, by choosing for each node the best
instantiation in the context of parents. m-pref nets are constructed based on the Marko-
vian independence property which stipulates that each variable is independent from its
non-descendants (N) in the context of its parents (Par). It is noticeable that, assuming
the same specifications in both representations, comparisons generated by the Ceteris
Paribus assumption can be expressed by adding constraints between products of sym-
bolic weights of the m-pref net. The preference orderings induced by the two model
kinds are consistent [3].

4 Application of Default Reasoning to Conditional Preferences

Conditional statements in a preference network can always be translated into “default-
like” rules of the form “one value of a variable is generally preferred to another in some
instantiation of its parents”. This section studies this approach in more details.
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4.1 Well-Ordered Partition Induced by a Conditional Preference Graph

A preference statement of the form x;x, : x > X is now expressed by the default prefer-
ence rule x;x, ~ x, which translates into the constraint I1(x;x,x) > II(x;x,X) (in case
of two parent variables X; and X;). A conditional preference network can be expressed
as a collection of such constraints. Generating a ranking of configurations can then be
achieved by Algorithm 1 that uses the minimum specificity assumption. As seen now,
for some preference networks having specific graph structures, the procedure outputs
a well-ordered partition of exactly 3 level sets whatever the size of the preference net-
work. First we consider the case of a path graph, where each variable has exactly one
variable as a parent (except for the root one) and the graph forms a single path (as on
Fig. 1). Hence conditional preference constraints are of the form x; : x;41 > Xit1-

° a>a
a>a

i _ a:b>b
azb>b a:b>b
a:b>b
ab:c>
b:c
b:c>¢ a Zb . z
b:c>c .
Fig. 1. A path preference graph Fig. 2. Example of a preference network

Proposition 1. Interpreting conditional preference statements as possibilistic con-
straints under the minimum specificity principle, any conditional preference path graph
results into a well-ordered partition of solutions with exactly 3 elements.

Proof. Let us assume a path graph G of n vertices. The root node holds a preference
constraint of the form x; > x;, whereas, for i = 2, n, the remaining nodes hold condi-
tional preferences of the form x;_; A x; > x;_; A X; for the preferred instantiation of the
parent X; and X;_; AX; > X;_| A x; for its negation. The non-dominated solution is unique
and is defined by

n n n n
XV \/(XH A X))V \/(XH AX)=x1 A /\(XH VX)) A /\(Xi—l VX)) = AL X
i=2 i=2 i=2 i=2

At the end of this iteration, the root constraint and the children constraints in the context
of preferred parents configurations are satisfied by this best solution and can be deleted.
The remaining constraints are x;_] AX; > X;_| AXx;,i = 1,...n. The dominated solutions
are the models of \/?_, x;_] Ax;. The non-dominated ones are thus of the form A}, x;_; v
x;. This formula is consistent with the left-hand sides of the constraints x,_; A X; >
Xi-1 A x; since they have in common the solution AY ;. Hence the solutions can be
ranked in three levels: Al x; at the top forming E, and V', Xi-1 A x; at the bottom
forming E», the rest being of the form E1 = (\//_, Xi-1 A X)) A VI X,

Actually, the number of layers for ordering preferences using the constraint based
algorithm increases by adding edges between the grandparent nodes and those of chil-
dren nodes. The graph on Fig. 2 differs from graph on Fig. 1 by an additional edge going
from node A to node C. Applying the algorithm yields 4 preference levels.
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Example 1. Adding the edge A — C to the preference network of Fig. 7, changes state-
ments and constraints of the node C. The set of constraints is of the form: a > a,ab >
ab,ab > ab,ab > ab,abc > abc,abc > abe,abc > abé,abe > abc. Again w = abc is
preferred. Only remain constraints ab > ab,abc > ab¢,abc > abe,abé > abc, which
puts models of @V D) AN (@VbVeYA@VbVc)A@V bV c)at the second level or
higher. This enforces abé down to a fourth level.

Whatever the topology of the graph, if the network does not hold edges from the
grandparents nodes to children nodes, the number of elements forming the well-ordered
partition remains constant and equal to 3. The following propositions confirm this claim
for topologies of Fig. 3 and Fig. 4, respectively.

Proposition 2. Given any conditional preference network with one parent node and
n—1 children, the well-ordered partition of configurations output by the minimum speci-
ficity principle based algorithm has exactly 3 levels.

Proof. Assume the graph G of Fig. 3 with one parent and n — 1 children node. The root
has a preference statement x; > X;. For i = 2---,n, each child node bears conditional
constraints of the form x;x; > x;x; and X;x; > X1x;. The un-dominated set is the com-
plement of propositions on the left of constraints, namely Ey = x; A A, x;. Constraints
x1 > x and x1x; > x| %; are satisfied by this solution and are then deleted. The second
level set E; contains models of x; A /'L, x; = x1 V A, %;. Note that all the left-hand
side propositions X7 %; of the remaining constraints are consistent with x; vV AL, %.
Hence again 3 levels are obtained.

Proposition 3. Given any conditional preference network with n—1 independent parent
nodes and one child variable, the well-ordered partition of configurations output by the
minimum specificity principle based algorithm has exactly 3 levels.

Proof. Assume the graph G of Fig. 4. In the same vein as Propositions 1 and 2, parent
nodes bear constraints x; > X; fori = 1,---,n— 1. Denote by u the disjunction of parents
configurations such that x, is preferred to x,, where it is supposed that u is satisfied
by /\l’.’:‘l1 x; and @ is satisfied by Afz‘ll)"ci. The remaining conditional constraints at step 2
reduce to ux, > ux, and ix, > iix,. Obviously we get 3 levels again.

The last result considers a more general structure (see Fig.5) we call quasi-linear
and subsumes the preceding results.

Proposition 4. Consider a conditional preference network G = {V, &}, where the set
V of variables is partitioned in V- -,V,. Suppose V¥ j € [1,m], each variable X € V;
has its parents only at the previous level i — 1, i.e., Par(X) € V,_|VX € V;. The
minimum specificity principle results in a well-ordered 3-partition of solutions.

Proof. ¥i = 2,---,n all nodes X; € V; are associated to the conditional constraints
u;x; > u;X; and u;x; > u;x;, where u; is the disjunction of configurations of Par(X;) such
that x; is preferred to X;, plus x; > x| for nodes X; € V. Assuming Ax.  cparx,) Xi E Ui
and Ax,  cparx,) Xi F i, the non-dominated set Eq reduces to ( Nx e, xl) AN Axev,

[(ﬁi vV xi) A (u; V x',-j)] = Axey x. After deleting the satisfied constraints, the remaining
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ones are YX; € V;, u;x; > i;x;, Vi = 2,---,n. The un-dominated set E; U E; forms
the models of AL, Ax.cy,(i; V %;). We can easily check that i;%; is consistent with E;
since they share &;, Vi = 2,---,n and VX; € V;. By consequence the third element of
the well-ordered partition E, equals \/}_, \/;'7:1 Vx,ev, Wi A Xi.

L.. - @ @ @ ",

Fig. 4. A graph with n parents and one child Fig. 5. A quasi-linear DAG

4.2 From Default Preference Rules to Conditional Preference Networks

While conditional preference graphs can be turned into default preference bases, we
consider the reverse transformation, i.e., whether from any preference rule base, a net-
work of conditional constraints can be generated. We show that this is generally not
the case. Preference networks lead to very specific default preference statements. Con-
texts are always conjunctions of literals, which make it possible the construction of
corresponding conditional data tables. But general preference statements admit more
general forms of contexts. Moreover preferences in networks are local in the sense
that they deal with values of single variables only. Finally, information in a preference
base can be insufficient to build a conditional preference graph. Consider the following
counter-example.

Example 2. Considering the counterpart of the “penguin” example in non-monotonic
reasoning [8, 14]. Let ¢, r and s now stand for “Chicken (C)”, “Red wine (R)” and
“Spicy plate (S)”. Preference rules are R = { “With chicken, I prefer red wine”, “If
spicy, I prefer white wine” and “If spicy, I prefer chicken”}, where “White wine” is the
negation of “red wine”. It corresponds to constraints cr > cr, S¥ > Sr, sc > SC using
the minimum specificity principle, it is well-known we get a well-ordered 3-partition
with Eg = SA(Vr), Ei =cATFand Ey = s A (rV ¢). The rules indicate values of
C and R depend on S and R depend on C, hence the graph of Fig. 6. However some
information is missing to get a full preference graph. We miss the absolute preference
between s and § on node S, the preference for chicken or not when the plate is not spicy
is not given (represented by a question mark in Fig. 6). We also miss the preferences
about wine when the chicken is spicy (from the rules this is a conflicting case, a double
question mark in Fig. 6) and when the dish is not chicken nor spicy. In fact, S and C act
as independent parents of R, which causes the conflict. It is forbidden in a preference
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graph for a variable to have several 5?5
parent groups. The conflict between S
and C is solved when applying minimum sic>¢

specificity ranking to the default rules @ siele

(we conclude that 5 > s, that 5¢ > 3¢, scir??F
scF > scr and no preference between e ft’ri;
scr and scr. S FF

Fig. 6. Partial network from preference rules

Clearly there is a gap between general default preference rules and conditional pref-
erence networks. However from the well-ordered partition of solutions obtained by
the minimum specificity principle, one can generate a conditional preference network.
(This solves the question marks in the example).

4.3 Comparing n-pref Nets and Default Reasoning Approach

The preference between configurations in m-pref nets is based on the comparison
between symbolic expressions obtained by the product chain rule. In this subsection,
results are compared with those of the minimal specificity approach.

Example 3. Consider a n-pref net expressing conditional preferences over 4 variables
V ={A, B, C, D}. Conditional distributions are derived from specifications of Fig. 7.

The set S represents conditional preference spec- all
ifications written under the form of defaults. e

S={a,a~> b,a~> b, b~>c,b~ ¢ bc~ d, _ 1) ala
bé ~> d, bc ~ d, be ~ d}. The well-ordered par- 5., ; a b |11f
o i C . a:zb>b 5B 1
tition output by Algorithm 1 is given in Table 1 7”>b 1B
(left). To construct the ordering between con- ;... G ”(‘C‘ ) 75
figurations, let us now proceed by means the ZCZ >t§ ¢ Jaf1
product-based chain rule on symbolic weights b gi; n(.|.)|be| bz | be | be
7(ABCD) = n(A) x n(B|A) X n(C|B) x n(D|BC).  bi:d>d Q g y‘l 712 734

This leads to a 5-element well-ordered partition

given in Table 1 (right). Fig. 7. Example of a r-pref net

Mind that in the minimum specificity column of Table 1, being in some subset
means indifference while in the chain rule column it corresponds to incomparability.
Taking a closer look at the obtained results of Table 1, we notice that, not only the chain
rule results in more preference levels than minimal specificity (which is unsurprizing),
but also the orderings are not in full agreement. The product chain rule agrees with the
order of inclusion between subsets of nodes associated with violated preferences [4],
and thus ranks solutions according to the number of violated nodes, whereas, the speci-
ficity algorithm just finds the most compact ordering where constraints are respected.
Nevertheless, the two approaches lead to distinct results that are not fully compatible,
since d wr € Q such that for the chain rule approach ws > w whereas for the minimum
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specificity based approach w > wr. Indeed, the worst configuration abéd is ranked on
the lowest level by the product chain rule, whereas it appears in the third level based
on the minimum specificity approach. This is due to the fact that at some iteration the
unsatisfied constraints do not prevent abcd from being higher than the remaining con-
figurations abcd, abcd.

Table 1. Well-ordered partitions based on three approaches

Minimum specificity Levels | Maximum specificity Chain rule

{abcd) 1 (abed, abed) {abcd)}

{abcd, abed, abed, abed) 2 {abcd, abed, abéd, abéd, {abcd, abed, abed, abed)
abcd, abéd, abed, abed, abed)

{abed, abed, abéd, abed, 3 {abcd, abed, abéd, abed) {abéd, abed, abed, abed,

abcd, abed, abéd, abed, abed) abcd, abed)

{abcd, abed) 4 (abed) {abcd, abed, abed, abed)

{0} 5 (0} {abed)

4.4 Maximal Specificity on Default Preference Statements

The minimum specificity algorithm outputs a well-ordered partition that clusters the
worst configuration(s) with other less preferred ones all in the same set. This is due to
the focus on the best models of formulas. It does not provide information on the least
preferred models. In order to refine results of the optimistic preference interpretation
approach, we can also exploit preference statements based on the maximum specificity
principle using the guaranteed possibility measure A(.) (see end of Sect.2.2). A proce-
dure, symmetric to the one for minimal specificity can be devised, adapting step 2.1 of
Algorithm 1, where we now assign to £ solutions that do not appear on the left-hand
side of remaining constraints. On the graph structure of Proposition4, one can prove
that again the maximum specificity well-ordered partition will have three elements. So
the best solutions are left on a par using the maximum specificity method. It is tempt-
ing to consider the conjunction of the minimum and the maximum specificity rankings,
say >,,p. Since the chain rule partial ordering is unquestionable (it corresponds to the
Pareto dominance condition), it is interesting in the future to check whether the joint
(partial) ordering >,,3; of configurations allows to refine the chain rule ordering without
conflicting with it.

Example 4. Let us consider again the n-pref net of Example 3. The result of apply-
ing both minimal and maximal specificity are given in Table 1. Note that the maxi-
mum specificity ranking partially contradicts the ordering of some elements put in lev-
els 3 and 4 by the minimum specificity procedure. The reader can check that on this
example, the joint (partial) ordering >, is consistent with and does refine the chain
rule ordering (adding the comparisons abed >, abed,abcd >,y abed, abed >y
abed,abed >y abtd,abcd >,y abed,abed >y abed to it). On the other hand,
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some pairs are judged incomparable by >,y ((abed, abed), (abed, abed), (abed, abed),
(abed, abed)) while the chain rule ordering can order them (see Table 1). In this exam-
ple it is thus possible to refine the chain rule ordering by >,y

5 Conclusion

We investigate an approach to conditional preference graphs inspired by the possibilistic
handling of default rules. First results indicate that it is not very discriminant on some
graph structures. Ideally, two opposite information principles (minimal and maximal
specificity) can be used jointly to refine the ranking of solutions obtained by the chain
rule in m-pref nets. More work is needed to show that this is possible and to compare in
a more detailed way the new approach with z-pref nets and CP nets.
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Abstract. We study the relationship between a notion of conjunction
among conditional events, introduced in recent papers, and the notion of
Frank t-norm. By examining different cases, in the setting of coherence,
we show each time that the conjunction coincides with a suitable Frank
t-norm. In particular, the conjunction may coincide with the Product
t-norm, the Minimum t-norm, and Lukasiewicz t-norm. We show by a
counterexample, that the prevision assessments obtained by Lukasiewicz
t-norm may be not coherent. Then, we give some conditions of coherence
when using Lukasiewicz t-norm.

Keywords: Coherence - Conditional event - Conjunction -
Frank t-norm

1 Introduction

In this paper we use the coherence-based approach to probability of de Finetti
([1,2,7,9,10,13,14,16-18,22,34]). We use a notion of conjunction which, differ-
ently from other authors, is defined as a suitable conditional random quan-
tity with values in the unit interval (see, e.g. [20,21,23,24,36]). We study
the relationship between our notion of conjunction and the notion of Frank
t-norm. For some aspects which relate probability and Frank t-norm see, e.g.,
[5,6,8,11,15,33]. We show that, under the hypothesis of logical independence,
if the prevision assessments involved with the conjunction (A|H) A (B|K) of
two conditional events are coherent, then the prevision of the conjunction
coincides, for a suitable A € [0,+o00], with the Frank t-norm T)(z,y), where
x = P(A|H),y = P(B|K). Moreover, (A|H) A (B|K) = TA(A|H, B|K). Then,
we consider the case A = B, by determining the set of all coherent assessment
(z,y,2) on {A|H, A|K, (A|H)A(A|K)}. We show that, under coherence, it holds
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that (A|H)A(A|K) = Tx(A|H, A|K), where A € [1,+00]. We also study the par-
ticular case where A = B and HK = @. Then, we consider conjunctions of three
conditional events and we show that to make prevision assignments by means of
the Product t-norm, or the Minimum t-norm, is coherent. Finally, we examine
the Lukasiewicz t-norm and we show by a counterexample that coherence is in
general not assured. We give some conditions for coherence when the prevision
assessments are made by using the Lukasiewicz t-norm.

2 Preliminary Notions and Results

In our approach, given two events A and H, with H # &, the conditional
event A|H is looked at as a three-valued logical entity which is true, or false,
or void, according to whether AH is true, or AH is true, or H is true. We
observe that the conditional probability and/or conditional prevision values are
assessed in the setting of coherence-based probabilistic approach. In numerical
terms A|H assumes one of the values 1, or 0, or x, where = P(A|H) represents
the assessed degree of belief on A|H. Then, A|H = AH + zH. Given a family
F ={X1|Hy,...,Xn|Hy}, for each i € {1,...,n} we denote by {z;1,...,Zi, }
the set of possible values of X; when H; is true; then, foreach¢and j =1,... 7,
we set A;; = (X; = x;5). We set Cp = H,---H, (it may be Cy = @); moreover,
we denote by Cq,...,C,, the constituents contained in H; V ---V H,. Hence
/\?:1(141‘1 V.-V Airi V E[z) = \/ZT:O Ch. With each Cy, h € {1,. .. ,m}, we
associate a vector Qp, = (qn1,- - -, qhn), Where qn; = ;5 if Cp, C Ay, j=1,..., 74,
while gn; = p; if C, € Hy; with Cy it is associated Qo = M = (u1,. .., iin)-
Denoting by Z the convex hull of @, ..., @, the condition M € 7 amounts to
the existence of a vector (A1, ..., Ay) such that: Y 5 ApyQp =M, S0 Ay =
1, Ap = 0, Vh; in other words, M € 7 is equivalent to the solvability of the
system (X), associated with (F, M),

(2) thzl)‘hqhi = Wi, i€ {1,...,n},zhm:1>\h:1, An 20, h e {1,...,m}.
(1)
Given the assessment M = (u1,...,un) on F = {X1|H1,..., X, |Hy}, let S
be the set of solutions A = (A1,...,An) of system (X). We point out that
the solvability of system (X) is a necessary (but not sufficient) condition for
coherence of M on F. When (X)) is solvable, that is S # @, we define:

Iy = {Z I maxaes thcthi An = 0}, Fo = {X1|H1,Z S Io}, Mo = (,LLZ‘7 i € Io). (2)

For what concerns the probabilistic meaning of Iy, it holds that i € I if and
only if the (unique) coherent extension of M to Hi|(\/;7:1 H;) is zero. Then, the
following theorem can be proved ([3, Theorem 3]).

Theorem 1 [Operative characterization of coherence]. A conditional prevision
assessment M = (u1, ..., ) on the family F = {X;|Hy,..., X, |H,} is coher-
ent if and only if the following conditions are satisfied:

(i) the system (X') defined in (1) is solvable; (ii) if Iy # @, then My is coherent.



Conjunction of Conditional Events and t-Norms 201

Coherence can be related to proper scoring rules ([4,19,29-31]).

Definition 1. Given any pair of conditional events A|H and B|K, with
P(A|H) = = and P(B|K) = y, their conjunction is the conditional random
quantity (A|H) A (B|K), with P[(A|H) A (B|K)] = z, defined as

1,if AHBK is true,
0,if AHV BK is true,
(A|H) A (B|K) = { z,if HBK is true, (3)
y,if AHK is true,
z,if HK is true.

In betting terms, the prevision z represents the amount you agree to pay, with the
proviso that you will receive the quantity (A|H)A(B|K). Different approaches to
compounded conditionals, not based on coherence, have been developed by other
authors (see, e.g., [26,32]). We recall a result which shows that Fréchet-Hoeffding
bounds still hold for the conjunction of conditional events ([23, Theorem 7]).

Theorem 2. Given any coherent assessment (x,y) on {A|H,B|K}, with
A, H, B, K logically independent, H # &, K # &, the extension z = P[(A|H) A
(B|K)] is coherent if and only if the following Fréchet-Hoeffding bounds are
satisfied:

max{z +y—1,0} =2’ < z < 2’ = min{z,y}. (4)

Remark 1. From Theorem 2, as the assessment (z,y) on {A|H, B|K} is coher-
ent for every (z,y) € [0,1]?, the set II of coherent assessments (z,y,z) on
{AH, BIK, (A[H) A (BIK)} is

I ={(z,y,2) : (z,y) € [0,1]*, max{x +y — 1,0} < z < min{z,y}}. (5)

The set IT is the tetrahedron with vertices the points (1,1, 1), (1,0,0), (0,1,0),
(0,0,0). For other definition of conjunctions, where the conjunction is a condi-
tional event, some results on lower and upper bounds have been given in [35].

Definition 2. Let be given n conditional events Ei|Hy,...,E,|H,. For each
subset S, with @ # S C {1,...,n}, let xg be a prevision assessment on
Nics(EilH;). The conjunction Cy..., = (E1|Hy) A -+ A (Ey|Hy) ds defined as

1, if /\;L:1 E;H;, is true
Cr.n =210, if \i_y EiH;, is true, (6)
zs, if Nies Hi Nigs EiHi is true, @ # S C{1,2...,n}.

In particular, C; = Ey|Hy; moreover, for S = {iy,...,ix} C {1,...,n}, the
conjunction \;.¢(E;|H;) is denoted by Cy,...;;, and x5 is also denoted by x;,...;, .
In the betting framework, you agree to pay xi..., = P(C;y...,) with the proviso
that you will receive: 1, if all conditional events are true; 0, if at least one of the
conditional events is false; the prevision of the conjunction of that conditional
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events which are void, otherwise. The operation of conjunction is associative and
commutative. We observe that, based on Definition 2, when n = 3 we obtain

].7 if E1H1E2H2E3H3 is true,

O7 if ElHl \Y EQHQ \ EgHg is true,

T, if g1E2H2E3H3 is true,

T2, if H2E1H1E3H3 is true,

6123 = xs3, if H3E1H1E2H2 is true, (7)
12, if EI1H2E3H3 is true,

13, if ﬁlﬁgEgHg is true,

23, if ErgggElHl is true,

123, if H1H2H3 is true.

We recall the following result ([24, Theorem 15]).

Theorem 3. Assume that the events Ey, Ey, E3, Hy, Hy, H3 are logically inde-
pendent, with Hy # &, Hy # &, Hs # @. Then, the set Il of all coherent assess-
ments M = (21, %2, x3, 12, X13, T23, Z123) on F = {C1,C2,C3,C12,C13,C23,C123}
is the set of points (x1, %2, %3, T12,T13, T2z, T123) which satisfy the following con-
ditions

(71,2, 23) € [0,1]3,

max{xy + x2 — 1,213 + 223 — 3,0} < 212 < min{xy, 22},

max{z1 + x3 — 1,212 + 23 — 2,0} < 213 < min{xy, 3},

max{xs + x3 — 1,212 + 213 — 21,0} < zo3 < min{xzq, x5}, (8)
171’1 71’27$3+1’12+(E13+$23 20,

w123 = max{0,T12 + T13 — T1, T12 + T2z — T2, T13 + Tag — T3},

r123 < min{wy2, 213, ¥23, 1 — &1 — 22 — 3 + 12 + T13 + To3}.

Remark 2. As shown in (8), the coherence of (1, x2,%3,%12,%13, %23, T123)
amounts to the condition

max{0,Z12 + Z13 — 1, T12 + Toz — T2, 13 + Taz — T3} < T123 9)
< min{xyo, 213, T23, 1 — 1 — T2 — 23 + T12 + T13 + T3}

Then, in particular, the extension x123 on Cia3 is coherent if and only if x103 €
! " !

[ 93, 1o3], where @)o3 = max{0, 212 + x13 — x1, 212 + Tag — T2, T13 + T2z — T3},
1 :

xy3 = min{x1a, 13, 23,1 — 21 — T2 — 3 + T12 + T13 + T3}

Then, by Theorem 3 it follows [24, Corollary 1].

Corollary 1. For any  coherent  assessment  (x1,%2,T3,T12,%13,T23)
on {C1,C2,C3,C12,C13,Ca3} the extension w123 on Cizz is coherent if and only
- / "

if T123 € [T]23, Ta3], where

/ —
Tho3 = max{0,z12 + 213 — 1, T12 + T23 — T2, T13 + Toz — T3},

"o (10)
L1903 = mm{xu,xlg,xgg, 1-— Tr1 — Ty — T3 + 212 + I13 + ng}.
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We recall that in case of logical dependencies, the set of all coherent assessments
may be smaller than that one associated with the case of logical independence.
However (see [24, Theorem 16]) the set of coherent assessments is the same
when Hy = Hy = H3 = H (where possibly H = 2; see also [25, p. 232]) and a
corollary similar to Corollary 1 also holds in this case. For a similar result based
on copulas see [12].

3 Representation by Frank t-Norms for (A|H) A (B|K)

We recall that for every A € [0,4oc] the Frank t-norm T : [0, 1] — [0,1] with
parameter \ is defined as

Th(u,v) = min{u, v}, if A=0,
Tp(u,v) = uv, if A =1,

Ta(u,v) = Tr(u,v) = max{u+v —1,0}, if A = +o0, (11)
log, (1 + W), otherwise.

We recall that Ty is continuous with respect to A; moreover, for every A\ €
[0, +00], it holds that T, (u,v) < Th(u,v) < Tar(u,v), for every (u,v) € [0,1]2
(see, e.g., [27,28]). In the next result we study the relation between our notion
of conjunction and t-norms.

Theorem 4. Let us consider the conjunction (A|H) A (B|K), with A, B, H, K
logically independent and with P(A|H) = x, P(B|K) = y. Moreover, given
any A € [0,400], let T\ be the Frank t-norm with parameter \. Then, the
assessment z = Th(x,y) on (A|H) A (B|K) is a coherent extension of (x,y)
on {A|H, B|K}; moreover (A|H) A (B|K) = T\(A|H, B|K). Conversely, given
any coherent extension z = P[(A|H) A (B|K)] of (z,y), there exists X € [0, +00]
such that z = Ty (z,y).

Proof. We observe that from Theorem 2, for any given A, the assessment z =
T\ (z,y) is a coherent extension of (z,y) on {A|H, B|K}. Moreover, from (11)
it holds that Th(1,1) = 1, Th(u,0) = TA(0,v) = 0, Th(u,1) = u, Th(1,v) = v.
Hence,

1, if AHBK is true,

0, if AH is true or BK is true,
T\(A|H,B|K) = { =, if HBK is true, (12)

Y, if KAH is true,

T (z,y), if HK is true,

and, if we choose z = T\ (x, y), from (3) and (12) it follows that (A|H)A(B|K) =
T\(A|H, BIK).

Conversely, given any coherent extension z of (z,y), there exists A such that
z = Th(z,y). Indeed, if z = min{x, y}, then A = 0; if z = max{z + y — 1,0},
then A = +o0; if max{z +y — 1,0} < z < min{z, y}, then by continuity of T
with respect to A it holds that z = Ty (z,y) for some X €]0, oo[ (for instance, if
z = zy, then z = Ty (z,y)) and hence (A|H) A (B|K) = T\(A|H, B|K). O
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Remark 3. As we can see from (3) and Theorem 4, in case of logically inde-
pendent events, if the assessed values x,y, z are such that z = Th(z,y) for a
given A, then the conjunction (A|H) A (B|K) = Ta(A|H, B|K). For instance,
if z = Ty (z,y) = zy, then (A|H) A (B|K) = T\(A|H, B|K) = (A|H) - (B|K).
Conversely, if (A|H) A (B|K) = Ta(A|H, B|K) for a given A, then z = T)\(z, y).
Then, the set IT given in (5) can be written as IT = {(x,y, 2) : (z,y) € [0,1]%,z =
Tx(z,y), A € [0,+00]}.

4 Conjunction of (A|H) and (A|K)

In this section we examine the conjunction of two conditional events in the
particular case when A = B, that is (A|H) A (A|K). By setting P(A|H) = z,
P(A|K) =y and P[(A|H) A (A|K)] = z, it holds that

(A|H) A (AIK) = AHK + 2HAK +yKAH + :H K € {1,0,2,y, 2}.

Theorem 5. Let A, H, K be three logically independent events, with H # &,
K # @. The set II of all coherent assessments (x,y,z) on the family F =
{A|H,A|K,(A|H) A (A|K)} is given by

I = {(z,y,2): (z,9) € [0,1%, Tp(x,y) = vy < z < min{z, y} = TM(x,y)% |
13

Proof. Let M = (z,y,z) be a prevision assessment on F. The constituents
associated with the pair (F, M) and contained in H V K are: C; = AHK,
Cy=AHK,C;=AHK,C, = AHK, Cs = AHK, Cs = AHK. The associated
points Qp’s are Q1 = (1,1,1),Q2 = (Oa 0,0),Q3 = (l‘, 0, O)v Q47: (0,9,0),Qs =
(z,1,2),Q¢ = (1,y,y). With the further constituent Cp = HK it is associated
the point Qg = M = (z,y, z). Considering the convex hull Z (see Fig.1) of
Q1,...,Qq, a necessary condition for the coherence of the prevision assessment
M = (z,y,2) on F is that M € Z, that is the following system must be solvable

(X) Mt aAs+xrs + A6 =2, A +yd+As+yde =y, M +2hs +yre = 2,
S A=1, A\ >0 h=1,...,6

First of all, we observe that solvability of (X) requires that z < z and z < y,
that is z < min{z,y}. We now verify that (z,y,z2), with (z,y) € [0,1]* and
z = min{z, y}, is coherent. We distinguish two cases: (i) < y and (i) x > y.
Case (7). In this case z = min{x,y} = z. If y = 0 the system (X) becomes

MAN=0, M4+XA=0, M1 =0, o+As+ =1, \p>0, h=1,...,6.

which is clearly solvable. In particular there exist solutions with Ao > 0, A3 > 0,
A4 > 0, by Theorem 1, as the set Ij is empty the solvability of (X) is sufficient
for coherence of the assessment (0,0, 0). If y > 0 the system (X') is solvable and a
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solution is A = (A\1,..., ) = (z, w, 0, y;z ,0,0). We observe that, if z > 0,
then Ay > O and Iy = @ because C; = HK C H V K, so that M = (z,y,z) is
coherent. If z = 0 (and hence z = 0), then Ay = 1 and Iy C {2}. Then, as the sub-
assessment P(A|K) = y is coherent, it follows that the assessment M = (0,y,0)
is coherent too.

Case (i1). The system is solvable and a solution is A = (A\,...; ) =
(y, @, =4,0,0,0). We observe that, if y > 0, then A\; > 0 and Iy = @ because
Ci=HK C HV K, sothat M = (z,y,y) is coherent. If y = 0 (and hence z = 0),
then A3 = 1 and Iy C {1}. Then, as the sub-assessment P(A|H) = x is coher-
ent, it follows that the assessment M = (z,0,0) is coherent too. Thus, for every
(x,9) € [0,1]?, the assessment (x,y, min{x, y}) is coherent and, as z < min{z, y},
the upper bound on z is min{z, y} = Tas(z,y).

We now verify that (z,y, zy), with (x,) € [0, 1]? is coherent; moreover we will
show that (x,y, z), with z < xy, is not coherent, in other words the lower bound for
ziszy. First of all, we observe that M = (1—x)Q4+xQg, so that a solution of (X) is
Ay =(0,0,0,1—2,0,2). Moreover, M = (1—y)Q3+yQs, so that another solution
isA2 = (0,0,1—y,0,y,0). Then A = % = (0,0, 1;—9, 1_7’”, 4, %) isasolution of
(X)) such that Iy = @. Thus the assessment (x, y, xy) is coherent for every (z,y) €
[0, 1]2. In order to verify that 2y is the lower bound on z we observe that the points
Q3,Q4, @5, Qs belong to a plane 7w of equation: y X +2Y — Z = zy, where X, Y, Z
are the axis’ coordinates. Now, by considering the function f(X,Y, Z) = yX+aY —
Z, we observe that for each constant k the equation f(X,Y, Z) = k represents a
plane which is parallel to 7 and coincides with 7 when & = xy. We also observe
that f(Q1) = f(1,1,1) = z+y—1 = Ti(z,y) < 2y = Tr(z,y), f(Q2) =
f(0’070) =0<zy = Tp(l‘,y), and f(Qi’)) = f(Q4) = f(Q5) = f(QG) =Ty =
Tp(z,y). Then, for every P = 22:1 AQn, with A, > 0 and 22:1 An = 1, that
is P € T, it holds that f(P) = f(z,ﬁlzl AQp) = S0 Af(Qn) < xy. On
the other hand, given any a > 0, by considering P = (z,y,zy — a) it holds that
f(P) = f(x,y,zy—a) = xy+xy —xy+a = vy +a > xy. Therefore, for any given
a > 0 the assessment (z,y, xy — a) is not coherent because (x, y, vy —a) ¢ Z. Then,
the lower bound on z is vy = Tp(x, y). Finally, the set of all coherent assessments
(x,y,2) on F is the set IT in (13). O

Based on Theorem 5, we can give an analogous version for the Theorem 4 (when
A= B).

Theorem 6. Let us consider the conjunction (A|H) A (A|K), with A, H, K log-
ically independent and with P(A|H) = x, P(A|K) = y. Moreover, given any
A € [1,400], let T\ be the Frank t-norm with parameter X. Then, the assess-
ment z = Th(z,y) on (A|H) N (A|K) is a coherent extension of (z,y) on
{A|H, A|K}; moreover (A|H) A (A|K) = Tx(A|H, A|K). Conversely, given any
coherent extension z = P[(A|H) A (A|K)] of (z,y), there exists A € [1,4+00] such
that z = Th(x, y).

The next result follows from Theorem 5 when H, K are incompatible.
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Fig. 1. Convex hull Z of the points Q1,Q2,Q3,Q4,Q5,Qs. M' = (z,y,2"),M" =
(z,y,2"), where (x,y) € [0,1)%, 2/ = 2y, 2 = min{z,y}. In the figure the numerical
values are: z = 0.35, y = 0.45, 2/ = 0.1575, and 2" = 0.35.

Theorem 7. Let A, H,K be three events, with A logically independent from
both H and K, with H # @, K # @, HK = &. The set I of all coherent
assessments (x,y,z) on the family F = {A|H, A|K, (A|H) A\ (A|K)} is given by
I ={(z,y,2) : (x,y) € [0,1]*, 2 = zy = Tp(z,y)}.

Proof. We observe that

0, if AHK v AHK is true,
z, if HAK is true,

y, if AHK is true,

z, if HK is true.

(AlH) A (A]K) =

Moreover, as HK = @, the points @Qp’s are (z,0,0),(0,y,0), (x,1,2),(1,y,y),
which coincide with the points @3, ..., Qg of the case HK # @&. Then, as shown
in the proof of Theorem 5, the condition M = (z,y, z) belongs to the convex
hull of («,0,0),(0,y,0), (z,1,2),(1,y,y) amounts to the condition z = zy. O

Remark 4. From Theorem 7, when HK = @ it holds that (A|H) A (A|K) =
(A|H) - (A|K) =Tp(A|H, A|K), where x = P(A|H) and y = P(A|K).

5 Further Results on Frank t-Norms

In this section we give some results which concern Frank t-norms and the family
F ={(1,C2,C3,C12,C13,Ca3,C123}. We recall that, given any t-norm T'(z1,x2) it
holds that T'(z1, z2, x3) = T(T (21, x2), z3).
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5.1 On the Product t-Norm

Theorem 8. Assume that the events Fy, Fo, E3, Hy, Ha, H3 are logically inde-
pendent, with Hy # &, Hy # &, Hy # &. If the assessment M = (1,22, %3, 12,
Zlg,l'gg,xlzg) on F = {Cl,CQ,Cg,Clg,C13,C23,6123} is such that (931,1’2,%3) €
[0, 1}3, Tij = Tl(.’Ei,.’Ej) = T;Tj, ) 7& j, and T123 = Tl(fEl,.’EQ,.’Kg) = 21X2%3,
then M is coherent. Moreover, C;j = T1(C;,C;) = CiCj, i # j, and Cia3 =
Tl(cl,CQ,Cg) = C1C203.

Proof. From Remark 2, the coherence of M amounts to the inequalities in (9).
AS l‘ij = Tl(l‘i,l‘j) = .Iil‘j, 7 7é j, and T123 — Tl(l'l,l‘g,l‘g,) = I1T2%3, the
inequalities (9) become

max{0,z1(xs + x3 — 1), 20(x1 + 23 — 1), z3(x1 + 22 — 1)} < 212273 (14)
< min{w1 29, 2123, 1223, (1 — 21)(1 — 22)(1 — 23) + 217273}
Thus, by recalling that z; +z; —1 < x;x;, the inequalities are satisfied and hence
M is coherent. Moreover, from (3) and (7) it follows that C;; = T1(C;,C;) = C,Cj,
7 7é j, and 0123 = Tl(C1,C2,C3) = 616263. O

5.2 On the Minimum t-Norm

Theorem 9. Assume that the events Fy, Es, E3, Hy, Hy, Hs are logically inde-
pendent, with Hy # &, Hy # @, Hs # &. If the assessment M = (21, x2, T3, 12,
ZE13,ZZ?23,JL‘123) on F = {017027037612,C13,ng,6123} is such that (1‘1,1?2,173) S
[O, 1}3, Tij = TM(SCZ‘,SC]') = min{xi,xj}, ) 7& j, and 123 — T]\/j(l‘l,l’g,wg) =
min{z, z2, 23}, then M is coherent. Moreover, C;; = T (C;i,C;) = min{C;,C;},
) 7’5 j, and 6123 = TM(Cl,CQ,Cg) == min{Cl,Cg,Cg,}.

Proof. From Remark 2, the coherence of M amounts to the inequalities in
(9). Without loss of generality, we assume that z; < z3 < 3. Then 15 =
Tar(z1,22) = 21, w13 = Ty(21,23) = ®1, 223 = Tay(w2,23) = w2, and
2123 = T (21,22, x3) = x1. The inequalities (9) become

max{0,x1,21 + 2 — 23} =21 < 1 <1 =min{zy,22,1 —x3+21}. (15)

Thus, the inequalities are satisfied and hence M is coherent. Moreover, from
(3) and (7) it follows that C;; = Ta(C;,Cj) = min{C;,C;}, i # j, and Cia3 =
TM(Cl,CQ,Cg,) = min{Cl,Cg,Cg}. (]

Remark 5. As we can see from (15) and Corollary 1, the assessment x93 =
min{zy, z2,x3} is the unique coherent extension on Cis3 of the assessment
(a:l,xg,x3,min{xl,xg},min{xl,az3},min{xg,xg}) on {Cl,CQ,C3,ClQ7013,C23}.
We also notice that, if C; < Cy < Cs, then C15 = Cq, Ci13 = Cq1, Ca3 = Co, and
6123 = Cl. Moreover, T12 = T1, 13 = X1, T23 = T2, and T123 — 1.
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5.3 On Lukasiewicz t-Norm

We observe that in general the results of Theorems 8 and 9 do not hold for the
Lukasiewicz t-norm (and hence for any given Frank t-norm), as shown in the
example below. We recall that T7, (1, 22, x3) = max{x; + x2 + x5 — 2,0}.

Ezample 1. The assessment (x1, 22,23, T (21, 22), Tr (21, 23), Tr (22, T3),
TL(I1,$2,$3)) on the family F = {Cl,CQ,Cg,Clg,Clgg,ng,Clgg}, with
(z1,29,23) = (0.5,0.6,0.7) is not coherent. Indeed, by observing that
Tr(z1,29) = 0.1 Tp(z1,23) = 0.2, Tp(z2,23) = 0.3, and Ty (z1,z2,23) = 0,
formula (9) becomes max{0,0.1 + 0.2 — 0.5,0.1 + 0.3 — 0.6,0.2+ 0.3 — 0.7} <
0 <  min{0.1,0.2,03,1 — 0.5 — 0.6 — 0.7 + 0.1 + 0.2 + 0.3}, that is:
max{0,—0.2} < 0 < min{0.1,0.2,0.3,—0.2}; thus the inequalities are not
satisfied and the assessment is not coherent.

More in general we have

Theorem 10. The assessment (x1, 22, 3, Tr (21, 22), Tr (21, 23), Tr (22, 23)) on
the famzly F = {61762703,C12,Cl3,023}, with TL(l‘l,a?g) > 0, TL($171‘3) > 0,
Tr(x2,23) > 0 is coherent if and only if x1 + xo + x5 — 2 > 0. Moreover, when
r1 + 22 + x3 — 2 > 0 the unique coherent extension xia3 on Cioz S Tio3 =
Tr(w1, 22, 23).

Proof. We distinguish two cases: (1) 1 +xa+x3—2 < 0; (ii) 1 +ax2+2a3—2 > 0.

Case (7). From (8) the inequality 1 — xq — 29 — 23 + 12 + 213 + 223 > 0 is not
satisfied because 1 — 1 — 29 — T3 + X192 + 213 + Toz3 = 1 + 2o + 23 — 2 < 0.
Therefore the assessment is not coherent.

Case (i1). We set x123 = Tr(1,22,23) = 21 + 22 + 23 — 2. Then, by observ-
ing that 0 < @; +o; — 1 < @1 + 22 + 23 — 2, i # j, formula (9) becomes
max{0,2; + 29 + x5 — 2} < 3 a2 +a3—2 < min{z; + x5 — 1,
21+ a3 — L,ao+ x5 — 1,21 + @2 + 23 — 2}, that is: 27 + 22 + 23 — 2 <
r1 + 29 +x3 —2 < 11+ 2 + x3 — 2. Thus, the inequalities are satisfied
and the assessment (x1,x9,x3,Tr(z1,22), Tr(x1,23), T (22, x3), Tr (21, T2, 23))
on {C1,C3,C3,C12,C13,Ca3,C123} is  coherent and the  sub-assess-
ment (z1,ze,xs, Tr(x1,22), TL(21,23), T (22, x3)) on F is coherent too. |

A result related with Theorem 10 is given below.

Theorem 11. If the assessment (1,22, 23, Tr(x1,x2), T (21, x3), T (22, 23),
TL(JZ1,$2,’I3)) on the famzly f = {Cl,CQ,Cg,Clg,Clg,ng,Clgg}, 28 SUCh that
Tr(x1,x9,23) > 0, then the assessment is coherent.

Proof. We observe that T (x1,22,23) = 21 + 2 + €3 — 2 > 0; then z; > 0,
1=1,2,3,and 0 < ;+2;—1 < z1+22+23—2, ¢ # j. Then formula (9) becomes:
max{0,x1+xo+23—2} < z14+2o+w3—2 < min{z+ao—1,x1+23—1,20+25—
1,21 +xo+x5—2}, that is: x1+xo+a3—2 < 21422+ 23—2 < 21+z2+23—2.
Thus, the inequalities are satisfied and the assessment is coherent. a
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6 Conclusions

We have studied the relationship between the notions of conjunction and of
Frank t-norms. We have shown that, under logical independence of events and
coherence of prevision assessments, for a suitable A € [0,+o0] it holds that
P((A|H) A (B|K)) = T(z,y) and (A|H) A (B|K) = Tx(A|H, B|K). Then, we
have considered the case A = B, by determining the set of all coherent assess-
ment (z,y,z) on (A|H, B|K, (A|H) A (A|K)). We have shown that, under coher-
ence, for a suitable A € [1,4o00] it holds that (A|H) A (A|K) = Th(A|H, A|K).
We have also studied the particular case where A = B and HK = @. Then, we
have considered the conjunction of three conditional events and we have shown
that the prevision assessments produced by the Product t-norm, or the Minimum
t-norm, are coherent. Finally, we have examined the Lukasiewicz t-norm and we
have shown, by a counterexample, that coherence in general is not assured. We
have given some conditions for coherence when the prevision assessments are
based on the Lukasiewicz t-norm. Future work should concern the deepening
and generalization of the results of this paper.

Acknowledgments. We thank three anonymous referees for their useful comments.
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Abstract. Starting from the observation that rational closure has the
undesirable property of being an “all or nothing” mechanism, we here
consider a multipreferential semantics, which enriches the preferential
semantics underlying rational closure in order to separately deal with
the inheritance of different properties in an ontology with exceptions. We
show that the MP-closure of an ALC knowledge base is a construction
which is sound with respect to minimal entailment in the multipreference
semantics for ALC.

1 Introduction

Reasoning about exceptions in ontologies is one of the challenges the descrip-
tion logics community is facing, a challenge which is at the very roots of
the development of non-monotonic reasoning in the 80’s. Many non-monotonic
extensions of Description Logics (DLs) have been developed incorporating non-
monotonic features from most of the non-monotonic formalisms in the literature
[2,6,7,12,15,16,20-23,29-31,34-36,41,43], and defining new constructions and
semantics such as in [4,5,8,9].

In this paper we focus on the rational closure for DLs [14-16,19,31] and on its
refinements. While the rational closure provides a simple and efficient approach
for reasoning with exceptions, exploiting polynomial reductions to standard DLs
[24,40], it is well known that it does not allow an independent handling of the
inheritance of different defeasible properties of concepts: if a subclass of C is
exceptional for a given aspect, it is exceptional tout court and does not inherit
any of the typical properties of C. This problem was called by Pearl [42] “the
blocking of property inheritance problem”, and it is an instance of the “drowning
problem” in [3].

To cope with this problem Lehmann [39] introduced the notion of the lexico-
graphic closure, which was extended to Description Logics by Casini and Strac-
cia [18], while in [19] the same authors develop an inheritance-based approach for
defeasible DLs. In [13] Casini et al. also developed a closure construction weaker
© Springer Nature Switzerland AG 2019
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than the lexicographic closure, called the Relevant Closure. In [33] Gliozzi devel-
oped a multi-preference semantics for defeasible inclusions in which models are
equipped with several preference relations, providing a refinement of the rational
closure semantics for ALC. Some other proposal for non-monotonic reasoning in
the literature, still based on a preferential semantics, also suffer from the problem
of inheritance blocking such as, for instance, the typicality logic ALC + Tin [30].
Its semantics, differently from the rational closure, is not based on ranked models.
A multi-typicality version of this logic has been studied by Fernandez Gil [23] to
address this problem. A logic which may build on the rational closure to determine
specificity of defaults, but does not suffer from the problem of inheritance blocking,
is the logic of overriding, DLY , proposed by Bonatti et al. [5,8].

In this paper, we reconsider the multi-preference semantics for ALC in [33]
and we show that entailment in the multipreference semantics can be approxi-
mated by the MP-closure construction for ALC. The idea of the multipreference
semantics was to define a refinement of the rational closure for ALC in which
preference with respect to specific aspects is considered. It is formulated in terms
of enriched models, which also consider the preference relations < 4,, associated
with the different aspects (or concepts, like having feather or flying, being a
sport lover or a swimmer), as for any two individuals, one may be more typical
than the other one as a sport lover, but less typical as a swimmer.

Here, we refer to the definition of multipreference semantics in [27], which is
slightly stronger than the one originally introduce by Gliozzi in [33] (although
both of them lead to refinements of the rational closure), and we show that
entailment in the multipreference semantics can be soundly approximated by
the MP-closure, a notion of closure that is more cautious than the lexicographic
closure. In the propositional case, the MP-closure has been studied as the natural
alternative to the lexicographic closure when the Maximal Entropy approach
is abandoned [28], and it has been proved to be weaker than the lexicographic
closure, but stronger than the rational closure and the relevant closure. The MP-
closure, as the lexicographic closure builds over the RC. Lehmann’s lexicographic
closure [39] strengthens the RC by allowing, roughly speaking, a class to inherit
as many as possible of the defeasible properties of more general classes, giving
preference to the more specific properties. It has been extended to the description
logic ALC by Casini and Straccia in [18]. The idea underlying the construction
of the MP-closure is similar to that of the lexicographic closure but, while the
lexicographic ordering in [39] takes into consideration the size of the sets of
defaults satisfied at each rank (and is modular), the MP-closure construction
only compares sets of defaults based on subset inclusion.

A semantic characterization of the MP-closure for the description logic ALC
was developed in [25] using bi-preferential (BP) interpretations, that is, pref-
erential interpretations developed along the lines of the preferential semantics
introduced by Kraus, Lehmann and Magidor [37,38], but containing two prefer-
ence relations, the first <; playing the role of preference relations in the models
of the RC, and the second <, representing a refinement of <;. Instead, in the
propositional case [28], we have considered a simpler semantic characterization
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of the MP-closure, more similar to the model-theoretic semantics of the lexico-
graphic closure defined by Lehmann [39]. While we refer therein for details on
the different semantics, here, we will only consider the multipreference semantics
and the MP-closure construction used to prove the soundness result. The proofs
can be found in [27].

2 The Rational Closure for ALC

In this section we recall the extension of ALC with a typicality operator intro-
duced in [29,31] under the preferential and ranked semantics. In particular, we
recall the logic ALC 4+ Ty which is at the basis of a rational closure construction
proposed in [31] for ALC. The general idea is that of extending the descrip-
tion logic ALC with concepts of the form T(C), whose instances are the typi-
cal instances of concept C, thus distinguishing the properties that hold for all
instances of concept C' (given by strict inclusions C' T D), from the proper-
ties that hold for the typical instances of C' (given by the defeasible inclusions
T(C) C D). The extended language is defined as follows:

Cr ;:A|T|J_|—|CR|C’R|_|CR|CRHCR|VR.CR|3R.CR
CL = CR | r‘[‘(CVR)7

where A is a concept name and R a role name. A knowledge base K is a pair
(T, A), where the TBox T contains a finite set of concept inclusions Cp, C
Cr, and the ABox A contains a finite set of assertions of the form Cg(a) and
R(a,b), for a,b individual names, and R role name. The TBox contains two
kinds of inclusions: strict inclusions C' C D (the C’s are D’s), where C' and D
are ALC concepts, and typicality inclusions T(C) C D (the typical C’s are D’s),
corresponding to KLM conditionals C' ~ D.

The semantics of ALC with typicality is defined in terms of preferential
models, extending to ALC the preferential semantics by Kraus, Lehmann and
Magidor in [37,38]: ordinary models of ALC are equipped with a preference rela-
tion < on the domain, whose intuitive meaning is to compare the “typicality”
of domain elements: z < y means that x is more typical than y. The instances
of T(C) are the instances of concept C that are minimal with respect to <.
The preference relation < is assumed to be well-founded (i.e., there is no infinite
<-descending chain, so that, if S # (), also min.(S) # (). In ranked models,
which characterize ALC + Tk, < is further assumed to be modular (i.e., for all
z,y,z € A, if x < y then either x < z or z < y). Ranked models characterize
ALC + Tg. Let us shortly recap their definition.

Definition 1 (Preferential and ranked interpretations of ALC + T). A
preferential interpretation M is any structure M = (A, <,I) where: A is the
domain; < is an irreflexive, transitive and well-founded relation over A. I is an
interpretation function that maps each concept name C' € N¢ to CT C A, each
role name R € Ng to R C AT x AT and each individual name a € Ny to a’ € A.
For concepts of ALC, CT is defined in the usual way in ALC interpretations
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[1]. In particular: T1 = A, 11 =0, (-C)! = A\C!, (Cn D) = ! n D!,
(CuD) =ctuD! and

(VR.O)Y ={xc A| forall y,(x,y) € R implies y € C'}
BR.C)Y ={x € A| for somey (r,y) € Rl andy € CT}

For the T operator, we have (T(C))! = min-(CT).
When the interpretation I is also modular, I s called a ranked interpretation.

The notion of satisfiability of a KB in an interpretation is defined as usual. Given
an ALC interpretation M = (A, <, I):

— [ satisfies an inclusion C C D if ¢ C D':
— I satisfies an assertion C'(a) if o’ € C';
— I satisfies an assertion R(a,b) if (af,b!) € RI.

Definition 2 (Model of a KB [29]). A preferential (ranked) model of a knowl-
edge base K = (T, A) is a preferential (ranked) interpretation M that satisfies
all inclusions in T and all assertions in A.

A query F (either an assertion Cp(a) or an inclusion relation C;, T Cg) is
preferentially (rationally) entailed by a knowledge base K, written K= 40, o F
(resp., K Earcyry F) if F is satisfied in all the models (resp., ranked models)
of K.

In particular, the definition of the rational closure for ALC and its semantics
in [31] exploit the extension of ALC with typicality under a ranked semantics,
which was called ALC + Tg. As shown therein, the logic ALC + Tk enjoys the
finite model property and finite ALC + T models can be equivalently defined
by postulating the existence of a function kxq : A —— N, where kaq assigns a
finite rank to each world: the rank ka4 of a domain element x € A is the length
of the longest chain 2y < --- < z from x to a minimal zq (s. t. there is no 2’ with
¥’ < ). The rank kp(Cr) of a concept Cr in M is i = min{km(z) : z € CL}.

In [31,32] a non monotonic construction of rational closure has been defined
for ALC + Ty, extending the construction of rational closure introduced by
Lehmann and Magidor [38] to the description logic ALC (alternative construc-
tions have been studied in [15,16]). Its definition is based on the notion of excep-
tionality. Roughly speaking T(C) £ D holds in the rational closure of K if C
is less exceptional than C M —=D. We shortly recall the construction of rational
closure of TBox and refer to [31] for details.

Definition 3 (Exceptionality of concepts and inclusions). Let E be a
TBox and C a concept. C is exceptional for E if and only if E =accite
T(T) C =C. An inclusion T(C) T D is exceptional for E if C is exceptional
for E. The set of inclusions which are exceptional for E will be denoted by E(F).

Given a TBox 7, it is possible to define a sequence of non increasing subsets
of the TBox 7 ordered according to the exceptionality of the elements Ey O
Ey D Es... by letting Ey =7 and, for i >0, F; = E(E;—1)U{CC D €T s.t.
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T does not occur in C'}. Observe that, being knowledge base finite, there is an
n > 0 such that, for all m > n, E,, = E, or E,, = (. A concept C has rank i
i