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Preface

This post-proceedings contains the papers selected for presentation at ACNS 2019
satellite workshops, which were held in conjunction with the main conference (the 17th
International Conference on Applied Cryptography and Network Security) during June
5–7, 2019, in Bogota, Colombia. The local organization was in the capable hands of
Professors Valerie Gauthier-Umana from Universidad del Rosario, Colombia, and
Martin Ochoa, Universidad del Rosario and Cyxtera Technologies; we are deeply
indebted to them for their generous support and leadership to ensure the success of the
event.

It was a new initiative for ACNS to set up satellite workshops in 2019. Each
workshop provided a forum to address a specific topic at the forefront of cybersecurity
research. In response to this year’s call for workshop proposals, the following five
workshops were launched.

– AIBlock – First International Workshop on Application Intelligence and
Block-chain Security

– AIoTS – First International Workshop on Artificial Intelligence and Industrial
Internet-of-Things Security

– Cloud S&P – First International Workshop on Cloud Security and Privacy
– PriDA – First International Workshop on Privacy-preserving Distributed Data

Analysis
– SiMLA – First International Workshop on Security in Machine Learning and its

Applications

This year, we received a total of 30 submissions. Each workshop had its own
Program Committee (PC) in charge of the review process. These papers were evaluated
on the basis of their significance, novelty, and technical quality. The review process
was double-blind. In the end, 10 papers were selected for presentation at four
workshops (PriDA was canceled), with an acceptance rate of 33%. The following paper
received the ACNS 2019 Best Workshop Paper Award.

– “Risk-based Static Authentication in Web Applications with Behavioural
Biometrics and Session Context Analytics,” by Jesus Solano, Luis Camacho,
Alejandro Correa, Claudio Deiro, Javier Vargas, and Martin Ochoa.

A couple of papers from the post-proceedings will be nominated for submission of
an extended version to a special issue in the International Journal of Information
Security published by Springer.

ACNS 2019 workshops were made possible by the joint efforts of many individuals
and organizations. We appreciate Springer’s strong support on our new initiative. We
sincerely thank the authors of all submissions. We are grateful to the program chairs
and PC members of each workshop for their great effort in providing professional
reviews and interesting feedback to authors in a tight time schedule. We thank all the



external reviewers for assisting the PC in their particular areas of expertise. We also
thank the organizing team members of the main conference as well as each workshop
for their help in various aspects.

Last but not least, we thank everyone else, speakers and session chairs, for their
contribution to the program of ACNS 2019 workshops.

We believe this is a good start for the success of ACNS satellite workshops. We
hope the existing workshops will keep growing and new workshops on emerging topics
will be launched in the coming years. We expect it could provide a stimulating platform
to discuss open problems at the forefront of cybersecurity research.

July 2019 Jianying Zhou
ACNS 2019 Workshop Chair

vi Preface
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Risk-Based Static Authentication in Web
Applications with Behavioral Biometrics

and Session Context Analytics

Jesus Solano(B), Luis Camacho, Alejandro Correa, Claudio Deiro,
Javier Vargas, and Mart́ın Ochoa

Cyxtera Technologies, Coral Gables, USA
{jesus.solano,luis.camacho,alejandro.correa,claudio.deiro,

javier.vargas,martin.ochoa}@cyxtera.com

Abstract. In order to improve the security of password-based authen-
tication in web applications, it is a common industry practice to profile
users based on their sessions context, such as IP ranges and Browser type.
On the other hand, behavioral dynamics such as mouse and keyword fea-
tures have been proposed in order to improve authentication, but have
been shown most effective only in continuous authentication scenarios.
In this paper we propose to combine both fingerprinting and behavioral
dynamics (for mouse and keyboard) in order to increase security of login
mechanisms. We do this by using machine learning techniques that aim
at high accuracy, and only occasionally raise alarms for manual inspec-
tion. Our combined approach achieves an AUC of 0.957. We discuss the
practicality of our approach in industrial contexts.

Keywords: Behavioral dynamics · Static authentication ·
Machine learning

1 Introduction

With the increasing popularity of web services and cloud-based applications, we
have also seen an increase on attacks to those platforms in the past decade.
Several of those publicly known attacks have involved stealing of authentication
credential to services (see for instance [10]). In addition to this, passwords are
often the target of Malware (for instance banking related Malware such as Zeus
[6] and its variants). So even if one would assume users are forced to select
strong passwords (from the point of view of difficulty to guess), several studies
have pointed out the challenges that password-based authentication pose for
robust security [2,11].

In order to mitigate the risk posed by attackers impersonating legitimate
users by means of compromised or guessed credentials, many applications use
mechanisms to detect anomalies by analyzing the connection features such as
incoming IP, browser and OS type as read by HTTP headers, among others.
c© Springer Nature Switzerland AG 2019
J. Zhou et al. (Eds.): ACNS 2019 Workshops, LNCS 11605, pp. 3–23, 2019.
https://doi.org/10.1007/978-3-030-29729-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29729-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-29729-9_1
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Some of this context-based features have been also been discussed in the scien-
tific literature [1]. However, there are some limitations of those defensive mech-
anisms, for example, if the anomaly detection is too strict, there could be false
positives that would harm user experience and thus hurt the webservices from
a business perspective. On the other hand, if a careful attacker manages to
bypass such context-related filters, for instance by manipulating HTTP parame-
ters, using VPN services, or ultimately using a victim’s machine [12], then such
countermeasures fall short to provide better security.

Behavioral biometrics [17] have been proposed in the literature as a strategy
to enhance the security of both web and desktop applications. They have shown
to work with reasonable accuracy in the context of continuous authentication [9,
19], when the monitoring time of mouse and/or keyboard activity is long enough.
In the context of static authentication, where interaction during log-in time with
users is limited, such methods are less accurate and may be impractical [13],
unless long static authentication interactions are assumed. However, in today’s
internet of services, many websites rely on third parties for security related
functionality, that is integrated in the form of external javascript snippets. In
domains handling highly sensitive data such as banking, those services are often
only allowed to interact with a user’s session during or before log-in, but not
post-login. Therefore improving static risk-based authentication is a practical
challenge.

Our proposed solution to address the above mentioned shortcomings of the
individual context-based risk assessment techniques is to synergistically consider
machine-learning based methods to detect anomalies in both context (browser
type, country of origin of IP etc.) and behavioral features of a given user at login
time. By considering a model that takes into account several features of browser,
operating system, internet connection, connection times, keystroke and mouse
dynamics one gains more confidence on the legitimacy of a given log-in attempt.
Our model analyzes several previous log-in attempts in order to evaluate the risk
of a new log-in attempt and is based on realistic data from customers of several
major banks. In summary, the contributions made by this paper are:

– We propose a novel model that combines historical HTTP and behavioral
data to detect anomalies during static authentication based part on real data
from the banking domain, and part on a publicly available dataset.

– We evaluate the effectiveness of our model obtaining an AUC of 0.957 in our
experimental setup.

– We discuss the practical applicability of our solution to realistic industrial
scenarios based on our experience in the banking domain.

The rest of the paper is organized as follows: in Sect. 2 we recap some notions
of context analytics and behavioral dynamics. In Sect. 3 we present our app-
roach, and describe the data collected and the experimental design. In Sect. 4 we
describe the experiments carried out in order to assess the effectiveness of the
proposed approach. We discuss related work in Sect. 5 and conclude in Sect. 6.
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2 Background and Attacker Model

User authentication has been traditionally based on passwords or passphrases
which are meant to be secret. However, secrets can be stolen or guessed and,
without further authentication mechanisms, attackers could impersonate a vic-
tim and steal sensitive information. To avoid this, the implementation of risk
based authentication has allowed traditional authentication systems to increase
confidence on a given user’s identity by analyzing not only a pre-shared secret,
but other features, such as device characteristics or user interaction which are
expected to be unique [14,16]. In the following we review some fundamental
concepts related to device fingerprinting for authentication and behavioral bio-
metrics.

2.1 Device Fingerprinting

Device fingerprinting is an identification technique used both for user track-
ing and authentication purposes. The main goal of this technique is to gather
characteristics that uniquely identify a device. There are different ways to cre-
ate this profile, the most reliable of them involves creating an identifier based
on hardware signatures. However, acquiring these signatures requires high level
privileges on the device, which is often hard to achieve.

Thanks to the popularization of the internet and the increased browser capa-
bilities it is possible to also use statistical identification techniques using infor-
mation gathered from the web browser [1,18], such as browser history, installed
plugins, supported mime types, user agents and also network information like
headers, timestamps, origin IP and geolocation. Geolocation can be either col-
lected using HTML5 or approximated from an IP address by using appropriate
services. Gathering only browser information means these techniques identify
web browsers and not necessarily devices or users. On the other hand, parame-
ters such as HTTP request parameters are easy to spoof. Most recent techniques
try to combine both hardware and statistical analysis gathering the informa-
tion using the web browser capabilities, these techniques use HTML5 [3] and
javascript APIs to measure the execution time of common javascript functions
and the final result of rendering images as hardware signatures, these measure-
ments are compared to a base line of time execution and rendering performed
in a known hardware used as control [5,15].

2.2 User Behavior Identification

Another popular risk-based authentication technique is behavioral analysis,
based on mouse and keyboard dynamic statistics. The underlying idea of mea-
suring user behavior is to turn human-computer interactions into numerical,
categorical and temporal information. The standard interactions gathered for
a behavioral model are key-strokes, mouse movements and mouse clicks. For
instance, common features extracted from keyboard events are key pressed and
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Fig. 1. Mouse directions segmentation.

key released events, together with their time-stamps. For mouse, cursor posi-
tion, click coordinates and timestamps are commonly used [4]. Such features
are processed and aggregated to profile user behavior. In this work, we will use
aggregations such as the ones discussed in [7] and summarized in Tables 7 and 8.
As shown in Fig. 1 we used the suggested space segmentation in [7] to calculate
mouse movement features.

These behavioral features give us information about very unique characteris-
tics of each user such as how fast the user types, how many special keys the user
uses, what is the proportion of use of mouse and keyboard, how long the user
stops interacting before finishing an activity. The intuition behind this is that it
must be easy to distinguish a user who uses mainly mouse from a user who uses
mainly keyboard, also intuitively some physical conditions like hardware and
user’s ability with the peripheral devices makes these interactions more unique.

Behavioral models use machine learning to identify users by using these fea-
ture vectors. Notice that by recording one user’s interaction in the same situation
many times, it is expected that this user will interact with the computer simi-
larly each time and also that it differs from the interactions gathered from other
users.

2.3 TWOS Dataset

For the behavioral dynamics analysis, that we will illustrate in the following
sections, it is important to have mouse and keyboard dynamics data, in order
to evaluate our models. For this purpose, we have chosen to user data from a
public data set known as The Wolf Of SUTD (TWOS) [4]. The data set contains
realistic instances of insider threats based on a gamified competition. We have
chosen this dataset since it contains both mouse and keyboard traces, among
others. In [4], authors attempted to simulated user interactions in competing
companies, inducing two types of behaviors (normal and malicious). The data
set contains both mouse and keyboard data of 24 different users. We chose the
TWOS dataset because of the large amount of behavioral patterns they recorded.
In total, TWOS data set has more than 320 h of mouse and keyboard dynamics.
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Data was continuously collected for volunteers during routine internet browsing
activities in the context of a gamified experiment. The mouse agent collected the
position of the cursor in the screen, the action’s timestamp, screen resolution,
the mouse action, and user ID. The mouse actions involved in our analysis are
mouse movement, button press/release and scroll. The keyboard agent logged all
characters pressed by the users. The data set includes the timestamp of event,
movement type (press/release), key and user ID. Both alphanumeric and special
keys were recorded by the agent. Since the users typed potentially sensitive
information the data is provided in an anonymized fashion. The keyboard was
divided into zones to accomplish the anonymization. Figure 2 shows the mapping
of the keyboard into three zones to enhance the privacy concerns.

Fig. 2. Keyboard mapping layout to anonymize sensitive information.

2.4 Attacker Model

We assume an attacker that has gained access to a victim’s credentials to authen-
ticate to a webservice (login and password). An attacker may also gain knowledge
about, or try to guess, the context in which a victim uses a service: the time of
the day in which a user usually connects, the operating system used, the browser
used and IP range from which a victim connects. We assume that an attacker
could employ one of the following strategies, or more than one in combination
with others to attempt to impersonate a victim:

– Simple attack: The attacker connects to the webservice from a machine dif-
ferent than the victim’s machine.

– Context simulation attack: The attacker connects to the webservice from a
machine different than the victim’s machine, but tries to replicate or guess
the victim’s access patterns: OS, Browser type, IP range and time of the day
similar to victim’s access patterns.

– Physical access to victim’s machine: An attacker connects from the victim’s
machine, thereby having very faithfully replicated a victim’s context, and
attempts at impersonating the victim.

Note that we explicitly exclude from the attacker’s capabilities that of record-
ing and attempting to replicate a victim’s behavioral dynamics (keyboard and
mouse usage features). We believe that although this is an interesting attacker
model, it is an extremely powerful one, and we leave its treatment to future
work.
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3 Approach

The goal of our approach is to overcome the shortcomings of the single risk
assessment strategies (context-based analysis of HTTP connections and behav-
ioral dynamics) by obtaining a single model that takes into account both
strategies.

In Table 1 we summarize the effectiveness of various strategies in detecting
the attacks discussed in the previous section, and also highlight the desired
outcome of our approach. In essence, we expect a combined model to perform
better in case of attacks, given that the combined model can recognize both
changes in context and changes in behavior. Note that in this table we assume
there is always impersonation (and thus always changes in behavior).

Table 1. Strategies vs. attack vectors

Approach Simple attack Context simulation Physical attack

Context analytics Effective Partially effective Ineffective

behavioral dynamics Partially effective Partially effective Partially effective

Combination Effective More effective than
single approaches

Partially Effective

Moreover, we highlight the potential misclassfication of the various
approaches in various scenarios in Table 2. Here, we summarize the expecta-
tion of the combination of both approaches in terms of reducing false positives.
When a user uses a new device, one would expect its behavior to be similar in
terms of keystrokes and mouse dynamics (although not exact). When he travels,
it should remain very similar, those correcting possible false positives from the
context analysis.

Table 2. Strategies vs. benign context changes.

Approach New machine User travels

Context analytics Likely FP Likely FP

Behavioral dynamics Likely accurate Accurate

Combination Likely accurate Accurate

In the following we will summarize the models we used for the single risk-
based strategies, and describe how these models are used in combination to
produce a combined risk-based assessment strategy. It is important to note that
for the context analytics data we will assume that some users have a heteroge-
nous access pattern (i.e. from multiple devices and locations, due to travel), as
depicted in Fig. 3 for a user for which we have 338 access records. On the other
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hand, the time of activity considered for behavioral interaction reflects the aver-
age time of a password based log-in (which typically is a value between 25 and
30 s). Because of these challenges single models are not perfect within a global
context attack, but can be used in synergy to produce a better model as we will
show in the evaluation section.

(a) Connection per country distribution. (b) Connection per operative system dis-
tribution.

(c) Connection per browser distribution.

Fig. 3. Context of user with heterogeneous access patterns.

3.1 History-Aware Context Analytics

In this subsection we describe the high-level construction of a session context
model, based solely on session data obtained from HTTP requests. We assume
users with complex access behaviors such as the ones depicted in Fig. 3, so we
need to build a system that is good at detecting anomalies and potential attacks,
but also it is somewhat flexible to certain changes in context that could be
benign.

We assume a system that records usage statistics of the number of times that
a user logs in, the day and time of the week at which the user logs in, what type
of device and browser they are using, and the country and region from which the
user is accessing. Currently, platform and browser data is obtained parsing the
user agent, and geographic data is obtained parsing the IP address, information
that can be obtained from network sessions corresponding to successful log-ins
for a given user.
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One of the challenges of building such a model is the fact that several cat-
egories considered are non-numerical (for instance a given browser version or
operating system). This forces us to use a feature vector with connections statis-
tics on each browser model version, each day of the week, each country and
region etc. On the other hand, we must somehow assess the likelihood of a given
connection context in order to decide whether a new connection is anomalous or
not. One way to do this is to simply compute the ratio of observations in a given
field of a category divided by the sum of all the observations in that category.

For instance, let c the number of connections coming from a country K. Let
C the total number of observations coming from all countries for a given users.
Then the likelihood of an incoming connection from K could be computed as c

C .
In order to assign a probability of 1 to the most likely event within a category,
and a relative weight to other events in decreasing order from most likely to
less likely, we normalize all values within a category as follows: order fields from
most likely to less likely, define a new probability for a given field within a
category as the sum of the probabilities for categories with probability equal or
less to the one of the given field. For example, consider three countries with the
following probabilities based on access frequency: US = 1

2 , UK = 1
3 , FR = 1

6 .
The normalized probabilities would be: US = 1, UK = 3

6 and FR = 1
6 .

Moreover, temporal categories (hours, days, etc.) are considered cyclical,
because for instance events around midnight (before or after 24:00) should be
considered relatively close to each other. Also, in order to smooth the notion of
‘closeness’ in discretized events such as frequencies of access in different hours
of the day, we use a convolution as depicted in Fig. 4. In this example, we have
a distribution of discrete frequencies around the clock for a given user. In this
scenario, 7PM is the hour of the day with most access. However this is close to
say, 8PM, so it would be appropriate to consider an access at 8PM relatively
normal for this context.

The feature vector for a session login attempt is formed using the normalized
probability for each variable gathered from the HTTP request. For example, in
the countries case above, a session which comes from US will have a value of 1
for variable country in the feature vector. To train the model we calculate the
probability profiles for each user using the login history. Afterwards we evaluate
a subset of new logins with the user probability profile and compute the feature
vector for each visit. The feature vector is fed to a Random Forest model that
assesses how anomalous the current event is. The impersonation records were
synthesized comparing login events from one user to the history of another user.
With this in mind, the model assesses the likelihood of an impersonation. Finally
the statistics are updated, the idea being that the system will gradually adapt
to permanent changes in the user profile.

3.2 Behavioral Dynamics Combining Keystrokes and Mouse
Activity

Both keyboard and mouse events are enough to describe a human-computer
interactions and turn it into behavioral features. It is obvious that a regular
user uses both at the same time. However, there is no simple way to merge both
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Fig. 4. Graphical representation of convolution used for temporal categories (e.g. hour
of connection).

keyboard and mouse dynamics features. To describe a user behavior during a
session we calculate the keyboard and mouse dynamics as behavioral features, as
described in Tables 7 and 8, using all the gathered events in one single session,
where a session is defined as a time frame where the user is performing any
activity on the computer. Once the keyboard and mouse dynamics are calculated,
we combine both set of features, resulting in only one single vector of features per
session. The combination of both set of features describes the use of keyboard
and mouse dynamics in a single session. This process is repeated each time
a new session is gathered. To compare a session behavior vector against the
sessions in history we defined a maximum number of sessions to compare, in
our experiment for each user we randomly chose between 10 and 30 sessions,
this allows to test the algorithm performance with different history length. We
calculated the history mean by using Eq. 1, as follows:

FeatureHistMeanj =
∑

J FeatureHistj
|J | (1)

Where FeatureHistMeanj is defined as the mean of one feature,
FeatureHistj is the individual observation of the feature and J is the number
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of observations in the history. To compare the gathered session against the user
sessions history we used Eq. 2.

FeatureDisti =
Featurei − FeatureHistMeani

σ(FeatureHisti)
(2)

Where FeatureHistMeani is the calculated mean of the feature and
σ(FeatureHisti) is the feature standard deviation. The resulting vectors of devi-
ations give us the distance of a session compared to the history.

Using the previously described behavioral analysis process, we created a data
set of sessions with labeled data. To create the positive labels we calculated for
each user a base history. Then we calculated the behavioral features and devi-
ation vectors. To create the negative labels for each user we randomly selected
different users sessions and ran the behavioral analysis against the original user
history. The resulting vectors feed a random forest algorithm to assess if a session
is legitimate or not.

3.3 Overview of Combined Model

Assume we have a model to assess the risk of a session based on the browser
context information, and another model to identify users by using behavioral
patterns. As discussed in the introduction, there are however inherent limitations
to each of the single models: context-based info of an incoming network (HTTP)
connection cannot detect advanced impersonation attacks, whereas behavioral
info is not accurate enough in short interactions such as log-ins. As a result we
propose to enhance the risk-based authentication system’s overall performance
by combining the predictions of both models.

In principle, there are several ways to build such a combined meta-model,
for instance by building a decision flowchart that takes the scores produced by
the singles models and decides whether a given session should be considered
suspicious or not. For simplicity’s sake, in the following we propose to consider
a parametric linear combination of the scores. In the evaluation section we will
discuss an example instance of the parameters.

Let us to define ŷc, ŷb ∈ [0, 1] as the prediction of context-based and behav-
ioral model, respectively. We unify the models’ prediction using a linear convex
combination as we describe in Eq. 3.

ŷt = αc · ŷc + αb · ŷb (3)

where αc, αb ∈ [0, 1] are the coefficient parameters of each model. Note the
coefficients must satisfy αc + αb = 1, because to be a meaningful prediction
ŷt ∈ [0, 1]. As a result we expect, by considering a model that takes into account
several learned features of browser context and behavioral dynamics, one gains
more confidence on the legitimacy of a given log-in attempt.

Scalability of the combined model Note that the models obtained for the
two risk assessment strategies involve training with a dataset of multiple users,
however one model is generated that can be applied for each user (there is no
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need to build one model for each user). Therefore, the approach is designed to
scale to millions of users, once the two respective models are trained.

4 Evaluation

In order to train and evaluate the performance of our proposed method we collect
two sets of data. The behavioral data set, containing both mouse and keyboard
data, was retrieved from a public data set known as The Wolf Of SUTD (TWOS)
[4] as we describe in Subsect. 2.3. Conversely, the context analytics data set was
collected in house from banking web services. This data set contains information
about context-based features for online banking log-in sessions. The context-
based data set has ca. 13 million entries summarizing connection features when
users perform a password-based authentication process. Within those features
each entry has information of session timestamp, IP Address and user agent.

For the behavioral dynamics analysis, first we extract mouse traces and
keystrokes from the TWOS dataset for all users. The next step is to corre-
late the mouse and keyboard data for the different sessions the users performed.
For each user, a session is created by collecting all mouse entries within a time
window before the final login click is observed. Afterwards, the keyboard data
is correlated searching for all keystrokes in keyboard data set within the same
time windows for the same user. With both mouse and keyboard session’s infor-
mation, we created the features described in Sect. 3. Once the feature data sets
are correlated we train the behavioral dynamics model. A random forest was
trained in order to capture the behavioral patterns of each user. In order to test
the performance of the model we split the full data set into 70% to train and the
remaining data’s entries to test model. The evaluation of the performance is done
using standard classification evaluation measures. Using a confusion matrix, the
following measures are calculated:

Accuracy =
TP + TN

TP + TN + FP + FN
Recall =

TP

TP + FN

Precision =
TP

TP + FP
F1-Score =

2PΔR

P + R

where P,R, TP, FN, TN and FP are the precision score, recall score, the num-
bers of true positives, false negatives, true negatives and false positives, respec-
tively. We define as positive the sessions with context simulation or imperson-
ation attacks. The sessions without any attack are the negative ones. As we are
facing a classification problem some performance metrics are dependent of the
decision threshold λ. The λ parameter defines the minimum output probability
a prediction must hold to be classified as a attack. In the Table 3 we summarize
the performance of the single behavioral dynamics model for different decision
threshold.
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Table 3. Single behavioral model performance for different classification
thresholds (λ)

Decision threshold F1-score Precision Accuracy Recall

0.3 0.798 0.862 0.725 0.743

0.5 0.735 0.932 0.680 0.607

0.7 0.593 0.972 0.572 0.427

(a) ROC curve and AUC score. (b) Precision-Recall curve.

Fig. 5. Threshold dependent performance curves for the single model of behavioral
dynamics.

From the Table 3 we observe the model has a high precision independent
of the decision threshold. However, the cost of high precision is the sensitivity
of recall metric while the threshold is increasing. The problem addressed in
this paper considers the high cost of false negative predictions because they
generates a cascade of attacks which the system does not alert. For this reason
we compare precision and recall curves Fig. 5b for the behavioral model to find
out the threshold which minimizes the critical cases. Additionally, we show in
Fig. 5a the model receiver operating characteristic (ROC) curve performance.

On the other hand, we train a model for the context-based information.
Starting from the session timestamp, IP Address and user agent in the session
start we calculate the convolutions and probability profiles described in Sect. 3.
From the ca. 13 million of session log in attempts, we take the 30% of data to
test the models performance and the remaining to train algorithm. The model
used to predict the risk of a connection based on contextual information was a
random forest. As we did with the behavioral model, we define as positive the
sessions with context simulation or impersonation attacks. The sessions without
any attack are the negative ones. Table 3 summarizes the performance of the
single random forest model trained to alert attacks based on device context
information.

The results in Table 4 show the context-based model performs better than the
behavioral model. Particularly, we observe that the model has a minor variation
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Table 4. Single context-based model performance for different classification thresholds.

Decision threshold F1-score Precision Accuracy Recall

0.3 0.803 0.948 0.750 0.697

0.5 0.792 0.972 0.743 0.668

0.7 0.771 0.986 0.725 0.633

for the recall metric when the threshold is increased. We compare precision
and recall curves Fig. 5b for the context-based model. Furthermore, we show in
Fig. 5a the model area under the curve (AUC) metric.

(a) ROC curve and AUC score. (b) Precision-Recall curve.

Fig. 6. Threshold dependent performance curves for the single model of context-based
analysis of HTTP connections.

The AUC scores for both models are around 0.80, however, the precision and
the recall metrics are not accurate enough for the problem we are addressing.

For instance, the recall for context based model indicates a high rate of false
negatives which in our context means a high rate of attacks are unnoticeable for
the system. Moreover, F1-scores denote that each model separately has a similar
performance when they try to detect a global attack. The issue is therefore that
each model is not able to detect the counterpart attack: the context-based model
will not detect changes in biometric features, and the behavioral model, on its
own, will ignore changes in the connection context (Fig. 6).

Therefore we develop a model that attempts to overcome the shortcomings
of the single risk assessment strategies (context-based analysis of HTTP connec-
tions and behavioral dynamics individually) by proposing a single model that
takes into account both strategies, as we describe in Subsect. 3.3. In order to
test the combined model we perform a match between the session attempts in
TWOS data and context-based data. First we find out the data set with less
entries, for us TWOS data. Afterwards we split the TWOS data set into positive
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(impersonation attacks) and negative samples. As we balanced TWOS dataset
before we train the behavioral model the behavioral data has as many positives
as negatives entries. We take the positives entries of TWOS and split them into
two sets. One of those subsets is matched with an equal number of random
sessions from the context-based data set. In that vein, the remaining subset is
matched with negatives samples from context-based data. The same process is
performed for the positive entries in TWOS data set. As a result, the data set
for the combined model is distributed as Table 5 shows.

Table 5. Distribution of combined label to test the model that aggregates the predic-
tions of single models.

Label behavioral Label context Data percentage Combined label

0 0 25% 0

0 1 25% 1

1 0 25% 1

1 1 25% 1

To combine the predictions of single models we use Eq. 3 using αc = 0.5 and
αb = 0.5. Those parameters for the convex combination were chosen following
the intuition that both attacks are equally probable in our data set construction.
We let as future work an analysis to define the best parameters. We show the
results for combined model with a decision threshold of 0.3 and compare it with
the single behavioral and context-based models in Table 6.

Table 6. Model performance comparison with a decision threshold of 0.3 for the three
models we build to increase security in login attempts.

Model F1-score Precision Accuracy Recall

Behavioral 0.798 0.862 0.725 0.743

Context-based 0.803 0.948 0.750 0.697

Behavioral + Context-based 0.939 0.937 0.910 0.940

The results achieved with the combined model show an important enhance-
ment in detection of attacks, as Table 6 reveals. The high precision and recall val-
ues bring to light that the use of a combined model performs better in detecting
attacks, given that the combined model can recognize both changes in context
and changes in behavior. At the same time, an improved F1-Score and accu-
racy show that the overall classification was improved, thus also false positives
caused by use of new devices or travel can be sometimes mitigated by using the
information from the behavioral model (Fig. 7).
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Finally, we show in Fig. 8 the model receiver operating characteristic (ROC)
for all models we discuss in this work. As it is also evident from the AUC in this
figure, a combined model has better performance than the individual models in
the data set we have considered.

Scalability of the combined model. We have measure the time it takes to
evaluate a given session against the separate strategies, in order to assess the
scalability of the approach. These times were measured in a i7-7700hq processor
(2.8 ghz), using a single core. For the context-based model, we obtain an execu-
tion time of 105 ms in average (±435µs) per session. For the behavioral dynamics
model we can classify a session within 106 ms (±263µs) per session. Since the
combination of the scores is a simple linear combination, the risk-assessment can
be completed within 1 s per each session.

Fig. 7. Precision - Recall curves for the combined risk assessment model (i.e. context-
based analysis of HTTP connections and behavioral dynamics)

4.1 Use in Industrial Scenarios

There is no single approach for including an anomaly detection system such as
the one discussed in this paper in an operational workflow, nor a one-size-fits-
all choice of parameters. Smaller entities – especially if not experiencing a high
level of fraud – may want to handle assessments manually. In this case human
operators in a SOC receive an alert and react to it. Actions may include blocking
the user account, or contacting the user. Aggregated data can also be used to
drive the decision process towards more sophisticated, and effective, solutions.

In this scenario where all alerts are handled by a human operator it is manda-
tory that the alert rate is reasonably small. While it is impossible to define a
generic threshold, 1% may be a useful benchmark. As the user base, or the
fraud level, grows the institution may decide to integrate the assessments in the
application work-flow. If this is done with hard-coded rules then a low rate of
false positives is critical, as each alert will generate an action and therefore an
expense.
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Bigger, or more security-aware, institutions will probably feed the assessment
generated from this module to additional systems. While in practice there is no
such clear distinction – one single system can often play the two roles – we can
typify this systems in two categories:

– Dynamic authentication systems. Based on the assessment and other factors
such as the user’s risk profile and the money at stake the system can decide if
additional authentication factors are to be requested to the user, or if access
has to be blocked altogether, once or permanently.

– Transaction anomaly detection systems, that can include the information
related to the transaction to decide if it can be approved, denied or fur-
ther action should be requested, including sending the transaction to a SOC
for further human analysis.

Fig. 8. ROC curves and AUC scores for the single risk assessment strategies (context-
based analysis of HTTP connections and behavioral dynamics) and the model which
combines both strategies.

In this last scenario a higher rate of false positives is acceptable, as the alerts
will be filtered using independent criteria. Furthermore, a numeric assessment
is preferable with respect to a binary value, letting the institution fine tune,
possibly in real time, how to react to the assessment.

In the context of web-application static authentication, we believe that opti-
mizing the choice of parameters in the model to minimize false negatives (i.e.
undetected attacks), is acceptable if in those cases, users can be prompted for
a 2-Factor-Authentication such as an OTP sent to their mobile phones. In our
model, setting the threshold between 0.2 and 0.25 will yield between 35% and
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24.6% false-positive rate against 1, 9% and 3.5% false-negative rate respectively.
This means roughly one out four users is prompted for 2-FA, whereas between
one out 30 to 50 attacks goes undetected. Note that these number hold for our
experiments, where 75% of the data consists of attacks, in practice attacks are
much less common.

For very sensitive customers, further manual action can be taken depending
on the transactions performed in the application. For instance, in the banking
domain, further filters depending on transaction amounts can be applied, given
a suspicion on context and behavior.

4.2 Discussion and Limitations

We have shown that in principle the combination of both risk-based authentica-
tion strategies indeed improves the performance of the single models in isolation.
There are a number of limitations to our evaluation. First, the data from the
HTTP contextual model and the behavioral model do not belong to the same
users. Although in principle there should be no strong correlation between con-
text and behavior, a more accurate model could be built if variations in behavior
from the same user across devices are taken into account.

On the other hand, experiments were built under the assumption that the dif-
ferent scenarios combinations (between contextual and behavioral attacks) were
equally likely. In practice, attacks are rare, and this aspect should be considered
in future work. Last, we have considered behavioral data that has been adapted
to simulate static authentication, but that in reality may belong to other activ-
ities in the context of the competition where it was gathered. In future work,
we plan to consider ad-hoc gathered data from user log-ins. To the best of our
knowledge, there is no public database containing both mouse and keyboard data
for static authentication, although there are some datasets containing either of
them.

Last, regarding Tables 1 and 2, although we have shown implicitly that the
overall combined model performs better in both senses (FP and FN), we have
not evaluated concretely the single combinations pointed out in the tables, which
is also left for future work.

5 Related Work

Risk-based authentication has seen popularity in web applications due to the
limitations of password authentication. In [2] Bonneau et al. give a historical
overview of the introduction of risk-based authentication in practical systems in
order to complement password-based authentication. In [1] Alaca et al. classify
and survey several device fingerprinting mechanisms that can be used as the
basis for authentication, and discuss different ways in which authentication can
be complemented by them. In [8] Misbahuddin et al. study the application of
machine learning techniques for risk-based authentication using HTTP and net-
work patterns, in a similar spirit of our technique, but do not take into account
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behavioral biometric patterns from mouse and keyboard, that as we have shown,
improve the accuracy of risk-based authentication.

On the other hand, there are several works exploring applications of behav-
ioral biometrics for static and continuous authentication. In the general context
of desktop based applications, Mondal et al. [9] have studied the combination
of keyboard and mouse for continuous authentication. Different from them, we
focus on static authentication for web applications. In [13] Shen et al. study
the applicability of mouse-based analytics for static authentication and conclude
that longer than typical log-in interactions would be necessary in order to obtain
high accuracy in such models. Traore et al. [16] explore the combination of both
mouse and keyboard for risk-based authentication in web applications, however
they assume the behavior monitor to be in the application after log-in as well
(continuous authentication), and obtain an equal error rate of around 8% (even
when considering full web sessions).

To the best of our knowledge the combination of traditional risk-based
authentication based on HTTP and network information and behavioral bio-
metrics for static (log-in time) authentication, as proposed in this work, has not
been discussed in the literature.

6 Conclusions

The results of our proposed method demonstrates that device identification and
behavioral analytics are complementary methods of risk measurement thus by
combining both of them, efficacy and performance are never lower than single
method approach. Moreover, our approach seams to be more resilient to changes,
for instance when a user changes his/her device, an only device identification app-
roach will alert event though there is no attack and an only behavioral approach
will not notice the change at all.

In this work we also have shown that, by combining both device identification
and behavioral identification risk assessment methods during login time, static
web authentication performance can be enhanced by detecting single and mixed
attack models with higher or equal accuracy in each case. This also makes web
authentication systems more robust and may give the user a better security
experience.

We have also discussed the practical applicability of our solution in industrial
scenarios. In the future, we plan to consider a more powerful attacker model that
is aware of a behavioral risk assessment component and attempts to bypass it, as
well as reproducing this experiments on novel datasets that collect both session
information and behavioral dynamics simultaneously.
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A Appendix

Table 7. List of behavioral features from keyboard dynamics

Variable name Variable type Description

Average Key Press Float General time average of key press

event

Standard Deviation Key Press Float General time standard Deviation

of key press event

Median Key Press Float General time median of key press

event

Count Key Press Float General count of pressed keys

Average Key Press per Second Float Average time of key press event

per second

Average Hold key RIGHT Float Average hold time of a right side

key

Standard Deviation Hold key RIGHT Float Standard deviation of hold time

of a right side key

Median Hold key RIGHT Float Median hold time of a right side

key

Count Hold key RIGHT Float Count of pressed keys in the right

side

Average Hold key LEFT Float Average hold time of a left side

key

Standard Deviation Hold key LEFT Float Standard deviation of hold time

of a left side key

Median Hold key LEFT Float Median hold time of a left side

key

Count Hold key LEFT Float Count of pressed keys in the left

side

Average Hold key CENTER Float Average hold time of a center side

key

Standard Deviation Hold key CENTER Float Standard deviation of hold time

of a center side key

Median Hold key CENTER Float Median hold time of a center side

key

Count Hold key CENTER Float Count of pressed keys in the

center side

Average Hold key ctrl left Float Average hold time of a left

control key

Standard Deviation Hold ctrl left Float Standard deviation of hold time

of a left control key
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Table 8. List of behavioral features from mouse dynamics

Variable name Var type Description

Average Speed Dir1 Float Average speed in px per second in Direction 1

Average Speed Dir2 Float Average speed in px per second in Direction 2

Average Speed Dir3 Float Average speed in px per second in Direction 3

Average Speed Dir4 Float Average speed in px per second in Direction 4

Average Speed Dir5 Float Average speed in px per second in Direction 5

Average Speed Dir6 Float Average speed in px per second in Direction 6

Average Speed Dir7 Float Average speed in px per second in Direction 7

Average Speed Dir8 Float Average speed in px per second in Direction 8

Percentage in Dir1 Float Average speed in px per second in Direction 1

Percentage in Dir2 Float Average speed in px per second in Direction 2

Percentage in Dir3 Float Average speed in px per second in Direction 3

Percentage in Dir4 Float Average speed in px per second in Direction 4

Percentage in Dir5 Float Average speed in px per second in Direction 5

Percentage in Dir6 Float Average speed in px per second in Direction 6

Percentage in Dir7 Float Average speed in px per second in Direction 7

Percentage in Dir8 Float Average speed in px per second in Direction 8
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Abstract. The market demand for online machine-learning services is
increasing, and so have the threats against them. Adversarial inputs rep-
resent a new threat to Machine-Learning-as-a-Services (MLaaSs). Metic-
ulously crafted malicious inputs can be used to mislead and confuse the
learning model, even in cases where the adversary only has limited access
to input and output labels. As a result, there has been an increased
interest in defence techniques to combat these types of attacks. In this
paper, we propose a network of High-Interaction Honeypots (HIHP) as
a decentralized defence framework that prevents an adversary from cor-
rupting the learning model. We accomplish our aim by (1) preventing the
attacker from correctly learning the labels and approximating the archi-
tecture of the black-box system; (2) luring the attacker away, towards
a decoy model, using Adversarial HoneyTokens; and finally (3) creating
infeasible computational work for the adversary.

Keywords: Adversarial machine learning · Deception-as-a-defence ·
Exploratory attacks · Evasion attacks · High-interaction honeypots ·
Honey-tokens

1 Introduction

Recent years has seen an exponential growth in the utilization of machine-
learning tools in critical applications, services and domains. This has led to
many service providers now offering their machine-learning products in the form
of online cloud services, known as Machine-Learning-as-a-Service (MLaaS) [20].
These services allow user to simply use these tools, without the efforts needed to
train, test, and fine-tune the underlying machine-learning models. While some
more experienced users may still prefer to control how their models are con-
structed and deployed, to protect their models MLaaS providers typically hide
the complex internal mechanisms from most of their users, and simply package
the services in non-transparent and obfuscated ways. That is they provide their
services in the form of a black-box [12,18]. This opaque system container accepts
some input and produces an output, but in this system the internal details of the
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prediction model are hidden from the user. Although hiding the internal mech-
anisms of models used can provide some protection against insider and outsider
attacks, these types of deployments remain susceptible to attacks. For example,
an attacker can try to mislead and confuse the MLaaS prediction model, using
specifically crafted examples, known as adversarial examples [12], leading to a
violation of the model integrity [18]. Most proposed defences against these types
of attacks aim to strengthen the underlying model by training it against possible
expected adversarial malicious inputs. These approaches - such as Regulariza-
tion and Adversarial Training [26] - may have limited success, as they do not
generalize against newer and more complex adversarial inputs. In this paper,
we propose a new defence framework, that can provide an additional layer of
protection for MLaaS services. As an example, we show how our framework can
be used to defend against malicious attacks on Artificial Neural Network (ANN)
classifiers. It has been shown that adversarial attacks on these type of classifiers
can go undetected [15]. Maliciously crafted adversarial examples can be used to
exploit blind spots in the classifier boundary space. Exploiting these blind sports
can be used to mislead and confuse the learning mechanism in the classifier, post
model training, for purposes of violating model integrity.

Our challenge here lies in constructing an adversarial defence technique capa-
ble of dealing with different, and possibly adaptive types of attacks. Part of
our defence framework utilizes adversarial HoneyTokens, fictional digital bread-
crumbs designed to lure the attacker. They are made conspicuously detectable,
to be discovered by the adversary. It is possible to generate a unique token for
each item (or sequence) to deceive the attacker and track his abuse. However
each token must be strategically designed, generated and deliberately embedded
into the system, to misinform and fool the adversary. A major component of
our defence framework is focused on designing a decentralized network of High-
Interaction Honeypots (HIHP), as an open target for adversaries, acting as a
type of perimeter defence. This decentralized network of honeypot nodes act as
self-contained sandboxes, to contain the decoy neural network, collect valuable
data, and potentially gain insight into adversarial attacks. We believe this can
also confound and deter adversaries from attacking the target model to begin
with. Other adversarial defences can also benefit by utilizing this framework as
an additive layer of security to their techniques to protect production servers
where learning models reside. Unlike other defence models proposed in litera-
ture, we have designed our defence framework to deceive the adversary in three
consecutive steps, occurring in strategic order. The information collected from
the attacker’s interaction with the decoy model could then potentially be used
to learn from the attacker, re-train and fortify the deep learning model in future
training iterations, but for now this falls out outside of our scope.

The contributions of this paper are the following:

– We propose an adversarial defence approach that will act as a secondary-level
of protecting to cloak and reinforce existing adversarial defence mechanisms.
This approach aims to: (1) prevent an attacker from correctly learning the
classifier labels and approximating the correct architecture of the black-box
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system; (2) lure attackers away from the target model towards a decoy model,
and re-channel adversarial transferability; (3) create unfeasible computational
work for the adversary, with no functional use or benefit, other than to waste
his resources and distract him while learning his techniques.

– We provide an architecture and extended implementation of the Adversarial
HoneyTokens, their designs, features, usage, deployment benefits, and evalu-
ations.

This paper focuses on using honeypots in defending against adversarial
attacks against machine learning techniques, and in particular deep learning. For
completeness, we have included some background and relevant concepts such as
adversarial examples, adversarial transferability and black-box learning systems
in the appendix. The rest of this paper is organized as follows. In Sect. 1, we
present the role of honeypots in our approach, threat models, attack environ-
ments and settings. In Sect. 2, we present our 3-tier defence approach. In Sect. 3
we will discuss the related work, followed by conclusions and future work in
Sect. 4.

1.1 Problem Definition

The main goal of this paper to build a decentralized adversarial defence frame-
work against adversarial examples. This level of defence will shield the black-box
learning system, using honeypots as one of the primary components of decep-
tion in building the framework. This decentralized framework must consist of H
high-interaction honeypots. Each of these honeypots is embedded with a decoy
target model Tdecoy, designed to lure and prevent an adversary with adversarial
input x from succeeding in causing a mislabeling attack f(x) = ytrue on the tar-
get model Ttarget. Essentially, the framework must perform the following tasks
below.

– task 1 - prevent the adversary from mimicking the neural network behaviour
in the learning function f() and replicating the decision space of the model.
This will be done by blocking adversarial transferability, prevent the building
of the correct substitute training model F (Sp) from occurring and the transfer
of samples from the substitute model F to the target model Ttarget. This
makes it difficult to find a perturbation that satisfies O{x + δx} = O{x},
since the target model duplicated is fake.

– task 2 - the framework must lure the adversary away from the target model T,
using deception techniques. These methods consist of using: (1) deployment
of uniquely generated digital breadcrumbs (HoneyTokens) TKn, (2) making
the network of honeypot nodes easily accessible (3) set up decoy target models
Tdecoy, deployed inside the honeypots for the attacker to interact with, instead
of the actual target model Ttarget.

– task 3 - create an in-feasible amount of computational work for the attacker,
with no useful outcome or benefit. This can be accomplished by presenting
the attacker with a non-convex, non-linear and hard optimization problem,
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which is generating adversarial samples to transfer to the remote target model
Ttarget, which in this case is a decoy; a decoy of the same optimization problem
we saw in the earlier sections:

x∗ = x + argmin{z : Ô(x + z) �= Ô(x)} = x + δx

This strenuous task is complicated further for the attacker because in order to
generate the synthetic samples, the attacker must approximate the unknown
target model architecture and structure F to train the substitute model
F (Sp), which is challenging. Evasion is further complicated as the number
of deployed honeypots in the framework increases. Therefore, building this
system consists of solving three problems in one, preventing of adversarial
transferability1, deceiving the attacker and creating immense computational
work for adversary targeting the system to waste computational time and
resources; all the later, while keeping the actual target model Ttarget out-of-
reach.

The adversarial examples generated need to have such an effect on the classi-
fier, that it explicitly lowers the confidence on the target label. Misclassification
attacks, to us, were less attractive since they do not make for interesting adver-
saries, not to mention the fact that these type of attacks appear random in
nature, focusing on an arbitrary set of data samples. With no fringe inconsis-
tencies to dispute, it becomes difficult to discern failures brought about by non-
malicious factors effecting the classifier. Building on the latter, misclassification
attacks make it all the more difficult to design defences and robust frameworks
to thwart adversaries when the attack itself seems arbitrary in nature.

1.2 Threat Model

Attack Specificity - generally, for an adversary to succeed in his attack, and
whether the attacker has his sight set on violating the availability or integrity
of the model, adversarial transferability needs to be successful. For purposes of
our paper, we have decided to design our adversarial attack to be a targeted
exploratory one in nature [9]. A targeted attack is when the adversary has a spe-
cific set of data samples in mind, and is discriminatory in his attack. This means
the adversary wants to force the DNN to output a specific target label ytarget,
f(x) −→ ytarget, instead of the correct label ytrue, f(x) � ytrue. See Fig. 1 for
an illustration of an adversarial targeted attack, violating model integrity.

Exploited Vulnerability - the cogent properties of adversarial examples x∗

make them a prime candidate for adversarial attacks on deep learning systems.
It should be anticipated that an ambitious and equally resourceful adversary
will conspire to use these perturbations for malicious purposes. Generally, deep

1 Even with the little knowledge possessed by a potential adversary, a targeted attack
in a black-box setting is still in fact probable.
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Fig. 1. Input x (left), modification δ + x controlled by ε (middle) which controls the
magnitude of modification in the image, generating the adversarial evading sample
x∗(right). As you can see, both bus images look astoundingly similar.

neural nets (DNN) work by extracting and learning the key multi-dimensional
discriminate features Xm,n = {xn,1, xn,2, xn,3, ..., xn,m} embedded within the
input sample x pixels, to correctly classify it with the correct output label ytrue.
However, with adversarial examples entities, the acuity of a DNN’s classifica-
tion ability becomes slightly manipulable, and the adversary is aware of this
weaknesses.

In our paper, the designed adversary’s attack depends on the successful
exploitation of a fundamental vulnerability found in most, if not universally
all DNN learning systems. This vulnerability is acquired during faulty model
training. This weakness is embodied by a lack of non-linearity in poorly trained
DNN models, that these visually indistinguishable adversarial examples, born in
a high-dimensional space, epitomize. Other factors may also be responsible, such
as poor model regularization. This inability to cope with non-linearity makes the
DNN classifier insensitive to certain blind-spots in the high-dimensional classifi-
cation region. Knowing the latter, an adversary can generate impressions of the
input samples with slight perturbations. These examples can then be transferred
between adjacent models, due to the cross-model-generalization property which
allow the transfer of adversarial examples between the original and target model
the adversary desires to exploit. The above vulnerability is manifested after the
examples are synthesized and injected during the testing phase.

Attacker Capabilities - each honeypot node in the decentralized defence
framework contains a decoy target model Tdecoy, presented to the adversary
as the legitimate target model. Here, an Oracle O represents the means for the
adversary to observe the current state of the DNN classifier learning by observ-
ing how a target model Ttarget handles the testing sample set (x

′
, y

′
). In our

attack environment, querying the Oracle O with queries q = {q1, q2, q3, ..., qn} is
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the exclusive and only capability an adversary possesses for learning about the
target model and collecting his synthetic dataset Sp to build and gradually train
his DNN substitute model F.

The adversary can create a small synthetic set of adversarial training samples
from the initial set S0 with output label y

′
for any input x

′
by sending qn > 1

queries to the Oracle O. The output label y
′

recurred is the result of assigning
the highest probability assigned a label y

′
which maps back to a given x

′
is the

only capability that the attacker has for learning about presumed target model
Ttarget through its Oracle O. The attacker has virtually no information about
the DNN internal details. The adversary is restrained by the same restrictions
a regular user querying the Oracle O has. The latter is something an adversary
should adhere to make his querying attempts seem harmless, while engaging
the decoy model within the adversarial honeypot. Finally, we anticipate that
the adversary will not restrict himself to querying one model and will likely
connect to multiple nodes and DNN model classifiers from the same connection
for purposes of synthetic data collection in parallel. This should trigger an alarm
within our framework, indicating multiple access and that something abnormal
is occurring.

1.3 Attack Setting

Our envisioned profile for the adversary targeting our black-box learning system
does not possess any internal knowledge regarding the core functional compo-
nents of the target model Ttarget DNN. This restriction entails no access to
model’s DNN architecture, model hyper-parameters, learning rate, etc. We have
already established that an adversary can prepare for an attack by simply mon-
itoring target model Ttarget through its Oracle O and use the labels to replicate
and train an approximated architecture F.

The ad-hoc approach at the adversary’s disposal is that he can learn the
corresponding labels by observing how the target model Ttarget classifies them
during the testing phase. The adversary can then build his own substitute train-
ing model F and use this substitute model F in conjunction with synthetic
labels Sp to generate adversarial examples propped against the substitute classi-
fier, which the attacker has access to. Even if the substitute model S and target
model Ttarget are different in architecture, the adversarial examples x∗ generated
for one can still tarnish the other if transferred using adversarial transferability.
Since the adversarial examples between both models are only separated by added
tiny noise ε, the examples look similar in appearance. The latter is true even
if both models, original Ttarget and substitute model F, differ in architecture
and training data. As long as both models have the same purpose and model
type. Although the Adversarial transferability phenomena is discouraging, but
alone it is advantageous for the adversarial attackers to launch targeted attacks,
with little or no constraint on their attack blueprint. Adversarial transferability
eventually becomes a serious concern because attacks will grow in sophistication
and potency over time. It is challenging to design a model that can generalize
against more advanced attacks, if not all. Also, it is difficult to dismantle and
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reverse-engineer how these attacks propagate and cause harm, since no tools
exist to expedite the process to learn from the attack in time to re-train the
network.

2 Deception-As-A-Defense Approach

The proposed Adversarial Honeynet framework is considered as an added layer
of protection to blanket a deployed deep learning system, in order to combat
imperceptible adversarial examples, within a black-box attack setting. There are
several advantages and benefits that this framework can bring in the protection
of existing learning systems. A single adversarial honeypot node in this decen-
tralized framework may offer the following benefits: (1) adversarial re-learning ;
conceptually, it is a pragmatic method of collecting intelligence on the adversary,
such as attack patterns, propagation, frequency and evolution. The latter results
can be used to learn and reverse-engineer adversarial attacks; (2) an anomalous
classifier used to identify whether the attackers actions are malicious or benign,
this will help to determine whether or not to record the attackers session infor-
mation based on behaviour patters against a white-list ; (3) a decoy target model,
used as a placeholder for the adversary to engage and interact in case his inten-
tion are indeed malicious in nature. The attacker’s interaction with model is rep-
resented by the Oracle Ô, that an adversary observes and queries, re-channeling
his efforts; (4) an Adversarial Database, used to collect and securely store attack
session data on the adversary’s actions and maneuvers, used later to research
and understand the adversary in adversarial re-learning.

2.1 Adversarial Honeynet

All honeypot nodes are deployed with identical decoy models Tdecoy that resem-
ble the original target DNN model Ttarget. Also, all services and applications on
the high-interaction honeypot are real and not simulated, prompting the attacker
to assume the model is indeed real, published or leaked by mistake. Neigh-
bouring adversarial honeypots are called HoneyPeers, these nodes are always
active and have a weak non-privileged TCP/IP port open that is known to
attract adversaries, supported with adversarial honey-tokens. The docker con-
tainer node begins recording information when the anomalous classifier detects
that the attacker is attempting to do something malicious and discretely notifies
the neighbouring HoneyPeers that an attacker is active within the network. Hon-
eyCollectors are used to aggregate and collect information from each individual
adversarial honeypot node and store it in the central Adversarial Database. All
activities on the node are collected and stored with a public-key hashed time-
stamp. In our framework, the central database is a Samba database is used to
collect structured,unstructured, and semi-structured session data to record the
adversary-honeypot-decoy interaction. An analysis module, used to aggregate
adversarial information and use that to learn about the attacker, this learned
information can potentially be used to perform inference for future attacks.
Figure 2 gives an illustration of our adversarial honeynet architecture.
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Fig. 2. Adversarial honeynet architecture

2.2 Honeynet Functional Components

– HoneyPeers are a series of interconnected high-interaction honeypots joined
in a decentralized network topology. Each HoneyPeer is an autonomous high-
interaction honeypot contained node, with a copy of the decoy learning model
Tdecoy, embedded within a monitored Linux container, powered by Docker.
Encrypted communication messages are passed between the nodes in order
to notify adjacent nodes that an attack is occurring or has occurred. All com-
munication is governed by our message-passing-protocol defined in the next
section. Each node-to-node interaction is initiated by exchanging a HoneySes-
sion Key, which is used to authenticate a node’s identity with each of its peers
and is reused in verify future interactions. If a node should become unrespon-
sive, it is assumed that the node has been compromised and is infected. In the
case that a node should become infected, it can be assumed has been com-
promised by the adversary, in which case all neighbouring nodes will sever all
future communication with it, flag any local session HoneySession keys, and
the infected honeypot will be cautionary labeled. Furthermore, all node-to-
node interactions are securely stored and recorded in the central adversarial
database.

– Decoy Classifier represents our solution for preventing the adversary from
interacting with the target classifier learning model Ttarget, and block trans-
ferability from occurring by re-channeling it to the honeypot. We distribute
fake decoy learning systems throughout the enterprise or specifically in the
anterior of a production system, acting as a type of sentinel. In this paper,
we hypothesize that legitimate users querying the learning system have no
cause to interact with decoys or take notice of our adversarial honeypot.
We decided to experiment with deception-as-a-defence using honeypot and
decoys because we wanted to give the adversary a false sense of assurance,
then identify and study them, and greatly reduce the rate of false-negatives
FN violating classifier integrity.
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We suspect the adversary will attack our decoy learning classifier system
Tdecoy once he infiltrates the tailored honeypot container. It’s purpose is to
simply simulate and mimic value, in order to distract the adversary and
prevent him from interacting with the legitimate target model Ttarget. If we
consider the adversary to be weak, we see that the designed adversary only
has partial knowledge of the model’s purpose. This means the adversary does
not have possess any internal details of the architecture, hidden layers, or
hyper-parameters, etc. Knowing that the adversary is in a black-box setting
and can only access input/output gives us great leverage over him. Before the
adversary launches his attack, the adversarial actor in this case is like any
other regular user in the system, with no systematic knowledge of the classi-
fier. Here, the adversary’s capability to interact with the decoy model Tdecoy

is represented by the Oracle Ô. Ô represents the means for an adversary to
interact with and learn from decoy model. Since the adversary wishes to pro-
duce adversarial examples x∗ for a specific set of input samples x̄, collected
by querying the Ô, and then transfer them. However, adversarial transfer-
ability can be re-channeled if we can switch the target model Ttarget and the
Oracle O with a decoy model Tdecoy and thereupon Oracle Ô, and convince
the adversary that no tampering has occurred.

– HoneyCollector is the component responsible for collecting all the adver-
sarial session information on the adversary within each of the honeypot nodes
in the network, it is the Samba component within our system.

– Anomaly Classifier used to predict whether the adversary’s actions inside
the honeypot are considered abnormal or not. It depends on indicators, such
as (1) Number of DNN labeling requests; (2) execution of unusual scripts;
(3) irregular outbound traffic from source; (4) sporadic DNN querying ; (5)
persistent activity on the DNN ; (6) use of foreign synthetic data for labeling.

– Adversarial Tokens - They can be thought of as a digital pieces of infor-
mation. It can manifested from a document, database entry, E-mail, or a
credentials. In essence, it could be anything considered valuable enough to
lure and bait the adversary.

2.3 HoneyPeer Node Inter-communication

This section describes the message passing protocol between the nodes in the
adversarial Honeynet framework. A message can only be sent and received
between two HoneyPeer nodes in the network that have exchanged HoneySession
key between them. Any message that has been received or sent spontaneously
should not be accepted. A reliable message passing technology must be set in
place to avoid congestion and bottleneck at one of many parts of the network.
Also, all messages sent, received, and dropped are time-stamped and recorded
within the adversarial central database for bookkeeping purposes.

– HoneyPeerALRM - a distress message indicating that host node (Sender)
has been compromised. The message is broadcast to the nearest adversar-
ial honeypot node in the network. The neighbouring nodes (Receivers) are
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responsible for intercepting and passing the message to all neighbouring nodes
in the network. For obvious security concerns and as fault-resistance, another
HoneyPeerALRM message is sent on behalf of the anomalous classifier, in
the case an adversary manages to seize control of the node and hijack it after
detection. Each HoneyPeerALRM message must receive an HoneyPeerACK
to indicate that the distress HoneyPeerALRM message has been received and
acknowledged. Failure to reply might indicate one or several neighbouring
nodes have also been compromised. To add, nodes should not receive unso-
licited HoneyPeerALRM reply messages from other adversarial nodes, as this
may indicate malicious misrepresentation.

– HoneyPeerAck - this is a message sent corresponding to each HoneyPeer-
ALRM message sent on behalf of the node. A HoneyPeerACK indicates that
the distress HoneyPeerALRM message has been received and confirmed by
the endpoint node. Failure to receive and acknowledge one ore more Acks
might indicate that one or all the surrounding neighbouring nodes have been
compromised. Also, nodes should not receive unsolicited HoneyPeerALRM
reply messages from other adversarial nodes.

– HoneyPeerSafePulse - Periodically, a honeypot node will send a pulse indi-
cating that it is still active and part of the decentralized network, and not
compromised. If the node neighbouring it does not reply in 180 s with an Hon-
eyPotSafeAck response, it is assumed that the node has been compromised.

– HoneyPeerSafeAck - A confirmation message sent to indicate that the node
is active. After 3 consecutive (60 s interval) no replies, it can be assumed that
either the receiving node is down or has been compromised, in which case,
all neighbouring nodes will sever all communication with it, purge any Hon-
eySession keys, and the infected honeypot will be labeled as an InfectedPeer.

– HoneySession Key - An adversarial session key is exchanged between two
HoneyPeer nodes. This HoneySession Key is exchanged at the beginning of a
node-to-node interaction and will be used an authentication method in future
node-to-node communications.

2.4 Attracting the Adversary

Adversarial Honey-Tokens. We extended the honeybit token generator in
[1] to create the adversarial honey-tokens generator, which acts as an automatic
monitoring system that generates adversarial deep learning related tokens. It is
composed of several components and processes. In order to understand how the
system functions, one must have an understanding of the individual operative
components and processes. The following points offer an insight into how the
system functions used to create token and decoy digital information to bait the
adversary:

– Baiting the Attacker - in order for the digital tokens generated by the
application to bait the attacker successfully they should have the following
properties: (1) be simple enough to be generated by the adversarial honey-
tokens application, (2) difficult to be identified and flagged as a bait token
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by the adversary, (3) sufficiently pragmatic to pass itself as a factual object,
which makes it difficult for the adversary to discern it from other legitimate
digital items. The purpose of these monitored (and falsified) resources is to
persuade and lure the adversary away from the target DNN model Ttarget,
and bait him to instead direct his attack efforts towards a decoy model Tdecoy

residing within the honeypot trap. The goal here is to allow the adversary’s
malicious behaviour to compromise the hoaxed model, preventing the adver-
sarial examples transferability to the Ttarget model from occurring, and forc-
ing the attacker to reveal his strategies, in a controlled environment. The
biggest challenge associated with designing these tokens is adequate camou-
flaging to mimic realism, to prevent being detected and uncloaked by the
adversary.

– Adversarial Token Configuration - the configuration of the adversarial
honeypot generator occurs within the .yaml markup file (hbconf.yaml). Here,
the administrator sets the honeypot decoy host IP address, deployment paths,
and content format. The configuration file, through the path variables, set
where the tokens will be leaked inside the operating system, offering by that a
large degree of freedom. Also, the administrator can customize the individual
file tokens, as well as the general honey-tokens and the adversarial machine
learning tokens added. As mentioned, this file allows the building of several
types of tokens. The first type of tokens are the honeyfiles, which include
txtmail, trainingdata, and testingdata. These type of tokens are text-based and
derive their formatted content from the template files stored in the templates
folder. The second type of tokens include network honeybits, which include
fake records deployed inside the UNIX configuration file or any arbitrary
folder. The latter include general type tokens such ssh, wget, ftp, aws, etc.,
These tokens usually consist of an IP, Password, Port, and other arguments.
The third type of tokens deployed are the custom honey-tokens which are
deployed in the bash history; these tokens are much more interesting since
they take any structure or format the defender desires.

– Token Leakage - the most dominant feature of the adversarial honey-
token generator is its ability to inconspicuously implant artificial digital
data (credentials, files, commands, etc) into the productions server’s file
system. The embedding location can be set inside the .yaml configura-
tion file (hbconf.yaml) using the PATHS: bashhistory, awsconf, awscred and
hosts. After the defender compiles and builds the adversarial tokens they are
stealthily deployed at set path/locations within the designated production
server’s operating system. There, the tokens reside until they are found and
accessed by the adversary. The Docker container at this point records intelli-
gence on the attacker’s interaction with the token.

– Docker to Monitor the Adversary Access - Docker was selected since
it provides a free and practical way to contain application processes and sim-
ulate file system isolation, where the adversarial tokens application image
will be run. In our defence framework, the numerous production servers not
open to the public domain will be reserved for adversarial research to cap-
ture intelligence and analyze attacks. They will open via an exposed TCP/IP
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port open to the public, with weak non-privileged access points. The docker
container will act as the sandbox, acting as entire layer to envelop the honey-
token application image. Using the insight gained from the adversaries later
lured to the honeypots will be used study emergent adversarial strategies,
input perturbations and discovering techniques used by adversaries in their
exploits. Docker will create a new container object for each new incoming
connects and set up a barrier represented as the sandbox. An unsuspecting
attacker that connects to the container and finds the tokens is presumably
lured to the honeypot containing the decoy DNN model Tdecoy. If the adver-
sary decides to leave, he is already keyed to that particular container using
his IP address, which connects him to the same container if he decides to
disconnect and then reconnect.

– Adversarial Token Generation - through the extended adversarial token
framework we compile the tokens using go build command. The following are
only some of the tokens that can be generated using the adversarial honey-
tokens framework: (1) SSH token, (2) host configuration token, (3) ftp token,
(4) scp token, (5) rsync token, (6) SQL token, (7) AWS token, (8) text-mail
token, (9) training-data token, (10) testing-data token, (11) comment tokens,
(12) SSH password token, (13) start-cluster node token, (14) prepare DNN
model token, (15) train DNN model token, (16) test DNN model token and
(17) deploy DNN model token.

2.5 Detecting Adversarial Behaviour

One of the greatest challenges in this paper was deciding how to adequately
detect, classify and label adversarial behaviour as malicious. Not to mention
building the actual classification model that would be responsible for doing so
would have been a great undertaking on its own. However, there were other prac-
tical detection methods at our disposal, such as using signature-based detection
to compare an object’s behaviour against a blacklist, and anomaly-based detec-
tion to compare an object against a white-list. We chose to lean towards the
former method (white-list) over blacklisting since we did not have reliable adver-
sarial data that could have been used to generate a signature to fingerprint a
potential adversary. White-list detection works best when attempting to detect
entity behaviour that falls out of anticipated and well-defined user actions, such
as over-querying the DNN model, or causing a sudden decline in the classifica-
tion model performance. White-list based anomaly detection fits perfectly into
our defence framework since we can characterize any pattern of activities devi-
ating from the norm as an intrusion. The latter is in our favour since we are
trying to detect actions to exploit the classifier which are novel in nature.

2.6 Adversarial Behaviour

In order detect adversarial anomaly behaviour, we have summarized a list of
adversarial actions and indicators that may signal an an-out-of the-ordinary
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on the learning model. We will later use this indicators to build our white-list
security rules. The following are some of those indicators:

– Persistent DNN Querying - While normal (non-adversaries) users will be
querying the DNN Tdecoy model with 1 or 2 queries per session, the adversary
will be sending hundreds, if not thousands per session. All this in effort to
build his synthetic training dataset Sp, the adversary will need to continuously
collect training data, augment it and gradually train his substitute adversarial
model F (S0). Repetitive queries Q̃ from the same source user within a set
unit of time might indicate the adversary is query-thrashing the DNN model
for labels (x

′
, y

′
). The latter could be a possible indication of an adversarial

attack on the prediction model.
– Spontaneous DNN Activity - In order for the adversary to craft adversar-

ial examples x∗, he will need to collect an initial set of labels S0 from labeling
(x

′
, y

′
). Then, he needs to build a substitute training model F that mimics

the learning mechanism inherent in the decoy model Tdecoy. Naturally, col-
lecting enough sample labels to accurately train the model F requires a large
number of queries Q̃ solicited from the Oracle Õ. Consequently, in order to
avoid raising suspicions, the adversary will try to build this initial substitute
model training set S0, as quickly and discretely as possible. The latter could
be a possible indication of an adversarial attack on the prediction model.
This is true since a few queries are within normal user behaviour, who have
no malicious intent in mind. But spontaneously querying the oracle falls out
of normal activity.

– High number of DNN Labeling Requests - an abnormally high number
of query requests to the Oracle Õ is not normal either. Let us not forget, that
training of the substitute model F (S0) is repeated several times in order to
increase the DNN model accuracy and similarity to Tdecoy. With each new
substitute training epoch e, the adversary returns to Õ and queries to augment
(enlarge) the substitute model training set S0 produced from labeling. This
will produce a large training set with more synthetic data for training. With
the correct model architecture F, the enlarged dataset is used to prototype
the model’s decision boundaries separating the classification regions.

– Sudden Drop in Classification Accuracy - Building on the above and as
discussed in Sect. 2, our designed adversary seeks to cause a misclassification
attack on the target decoy model Tdecoy, by inserting malicious input in the
testing phase. Because of this, an input unrecognizable to the model’s dis-
criminate function can be classified with high-confidence (false positive), and
an input recognizable to the model can be classified with low-confidence (false
negative), violating the integrity of the model. Other factors may influence
a drop in accuracy, such as a poor learning or added bias in the data. This
does not normally occur in a production environment, which indicates that
our classification model is under attack.
- Other known indicators are more network related, such as execution of
unusual scripts alongside the DNN, Irregular outbound traffic or source, any
sensitive or privileged path accessed during the interaction, and any spawning
of suspicious child process.
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3 Related Work

The literature review below focuses directly on the concept of defending against
adversarial examples, aimed at misleading the classifier. Most of the known
defence methods are mainly based on data pre-processing and sanitation tech-
niques, employed during the training phase of DNN model preparation. Pre-
processing and sanitation typically mean influencing the effect that sample
training-set data, X, has on neuron weights of the underlying DNN model, by
distinguishing and filtering out malicious perturbations, inserted by an adver-
sary that may mislead and/or confuse the classifier causing a misclassification
or violation of model integrity. Other notable work in this section focus on the
role of cybersecurity defence through means of deception, specifically with the
use of decoys and fake entities to deceive the attacker. Our challenge here lays
in constructing a secondary-level of protection and defence, designed not to
replace known adversarial defence techniques, but to supplement and reinforce
existing ones, with the use of adversarial deception re-enforcing the application
perimeter.

[27] focuses on addressing the lack of efficient defences against adversar-
ial attacks that undermine and then fool deep neural networks (DNNs). The
need to tackle this issue has been amplified by the fact that there is no uni-
fied understanding of how or what makes these DNN models so vulnerable
to attacks caused by adversarial examples. The authors propose an effective
solution which focuses on reinforcing the existent DNN model and making it
robust against adversarial attacks, attempting to fool it. The proposed solution
focuses on utilizing two strategies to strengthen the model, which can be used
separately or together. The first strategy is using a bounded ReLU activation
function,fR(x) → y, in the DNN architecture to stabilize the overall model pre-
diction ability. The second is based on augmented Gaussian data for training.
Defences based on data augmentation improve generalization since they con-
sider both the true input and its perturbed version. The latter enables a broader
range of searches in the input, then say adversarial training, which is limited
in its partial of the input, causing it to fall short. The result of applying both
strategies results in a much smoother and more stable model, without signifi-
cantly degrading the model’s performance or accuracy.

Work in [8] is the most relevant academic paper, with regard to motivation
and stimulus for the purpose of developing our proposed auxiliary defence tech-
nique, using honeypots. The authors in [8] propose a training approach aimed at
building adversarial-resistant black-box learning systems against adversarial per-
turbations, by blocking transferability. The proposed method of training, called
NULL-labeling works by evaluating input x and lowers confidence on the true
label y, if x is suspected to be perturbed and rejecting it as invalid input. The
criteria on which the method evaluates x is if it spans out of the training-data
data distribution area. The training method smoothly labels, filters out, and dis-
cards invalid input (NULL), which does not resemble training-data. This is to
prevent from allowing it to be classified into intended target label. The ingenu-
ity of this approach lies in how it is able to decisively distinguish between clean
and malicious input. NULL labeling proves its capability in blocking adversarial



38 F. Younis and A. Miri

transferability and resisting the invalid input that attempts to exploit it. The
latter is achieved by mapping malicious input to a NULL label and allowing
clean test data to be classified into its original true label, all while maintaining
prediction accuracy.

In [21], a training approach for combating adversarial examples and fortifying
the learning model. The authors propose this defence technique in response to
adversarial examples, with their abnormal and ambiguous nature. The authors
argue that model adversarial training still makes the model vulnerable and
exposed to adversarial examples. For this very purpose, the authors present a
data-training approach, known as Batch Adjusted Network Gradients or BANG.
This method works by attempting to balance the causality that each input ele-
ment has on the node weight updates. This efficient method achieves enhanced
stability in the model by forming smoother areas concentrated in the classi-
fication region that has classified inputs correctly and has become resistant
against malicious input perturbations that aim to exploiting and violating model
integrity. This method is designed to avoid instability brought about by adver-
sarial examples, which work by pushing the misclassified samples across the
decision boundary into incorrect classes. This training method achieves good
results on DNNs with two distinct datasets, and has low computational cost
while maintaining classification accuracy for both sets.

In [2], the authors suggest a framework that actively and purposefully leaks
digital entities into the network to deceive adversaries and lure them to a hon-
eypot that is covertly monitors, tracks token access, and records any new adver-
sarial trends. In a period of one year, the monitored system was compromised
by multiple adversaries, without being identified as a controlled decoy environ-
ment. The authors argue that this method is successful, as long as the attacker
does not change his attack strategy. However, a main concern for the authors is
designing convincing fake data to deceive, attract, and fool an adversary. The
authors also argue that the defender should design fake entities that are attrac-
tive enough to bait the attacker, while not revealing important or compromising
information to the attacker. The defender’s goal is to learn as much as possible
about the attacker. The message that the authors try to convey is that as the
threat of adversarial attacks increases, so will the need for novelty in the defence
approaches to combat it.

Work in [19], serves as an examination of the concept of fake entities and
digital tokens, which my framework partially relies upon. Fake entities, although
primitive, are an attractive asset in any security system. The authors suggest
fake entities could be files, interfaces, memory, database entries, meta-data, etc.
For the authors, these inexpensive, lightweight, and easy-to-deploy pawns are
as valuable as any of the other security mechanisms in the field, such as fire-
walls or a packet analyzers. Simply, they are digital objects, embedded with
fake divulged information, intended to be found and accessed by the attacker.
The authors advocate that operating-system based fake entities are the most
attractive and fitting to become decoys, due to the variety of ways the operat-
ing system interface can be configured and customized. Once in possession of
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the attacker, the defender is notified and can begin monitoring the attacker’s
activity. Later in this work, the authors implement a framework that actively
leaks credentials and leads adversaries to a controlled and monitored honeypot.
However, the authors have yet to build a functioning proof-of-concept.

There is also extensive work done on utilizing adversarial transferability in
other forms of adversarial attacks, deep learning vulnerabilities in DNNs, and
black-box attacks in machine learning. Among other interesting work that served
as motivation for this paper include: utilizing honeypots in defence techniques,
such as design and implementation of a honey-trap [5]; deception in decentralized
system environments [22]; and using containers in deceptive honeypots [11]. Our
approach using honeypots, does not seek to replace any of the existing methods
to combat adversarial examples in a black-box attack context. However, it can
be used effectively as an auxiliary method of protection that strengthen existing
defence methods in production systems.

4 Conclusions

In this paper, we have discussed adversarial transferability of malicious exam-
ples, and proposed a defence framework to counter it, using deception derived
from existing cyber-security techniques. Our approach is the first of its kind
to use methods derived from cyber-security deception techniques to combat
adversarial examples. We have shown it to be possible to use deception to pre-
vent an adversary from mimicking a target model’s classification behaviour, if
we successfully re-channel adversarial transferability. We have also presented a
novel defence framework that essentially lures an adversary away from the target
model, and blocks adversarial transferability, using various deception techniques.
We proposed presenting the adversary with an infeasible amount of computa-
tional with no useful outcome or benefit. This can be accomplished by presenting
the attacker with a hard non-convex optimization problem, similar to the one
used for generating adversarial samples. Our framework allows the adversary
to transfer these examples to a remote decoy learning model, deployed inside a
high-interaction-honeypot.

A Appendix

A.1 Deep Neural Nets (DNNs)

Deep Neural Networks (DNNs) are a widely known machine-learning technique
that utilizes n parametric functions to model an input sample x, where x could
be an image tensor, a stream of text, video, etc. [18]. DNNs differ from con-
ventional neural networks is the large number of (hidden) learning layers they
can use, which in return allows these models to adapt to intricate features and
solve complex problems. Amongst the countless uses for DNNs’ is their utility
in building image classification systems that can identify an object from the its
intricate edges, features, depth and colours. All of that information is processed
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in the hidden layers of the model, known as the deep layers. As the number
of these deep layers increases, so does the capability of the DNN to model and
solve complex tasks. Simply expressed, a DNN is composed of a series of para-
metric functions. Each parametric function fi represents a hidden layer i in
the DNN, where each layer i compromises a sequence of perceptrons (artificial
neurons), which a processing units that can be modeled into chain sequence of
computation. Each neuron maps an input x to an output y, f : x −→ y, using
an activation function f (ϕ). With each layer, every neuron is influenced by a
parameterized weight vector represented by θij . The weight vectors holds the
knowledge of the DNN when it comes to training and preparing the model F. A
DNN computes and defines model a F for an input x as follows [18]:

F (x) = fn(θij , fn−1(θn−1,j , · · · , f2(θ2j , f1(θ1j ,x))))

A.2 Security of Deep Learning

In recent deep learning literature, there has been a lot of works that has focused
on deploying deep neural networks in malicious environments, in which the net-
work is potentially exposed to numerous attacks [6,12,26]. At the centre of these
threats are Adversarial Examples. Adversarial examples are perturbed or mod-
ified versions of input samples x, that are used by adversaries to mislead and
exploit deep neural networks, during test time, after training of the model is
completed [16]. They are injected in order to circumvent the learning mecha-
nism acquired by the DNN with the goal of misclassifying a target label. They
are crafted with carefully articulated perturbations, added to the input x+ δx,
that forces the DNN to display a different behaviour than intended, chosen
by the adversary [16]. It is important to note that the magnitude of perturba-
tions must be kept small enough to have a significant effect on the DNN, yet
remain unnoticed by a human being. These adversarial exploitations vary in
their motivation for corrupting a DNN classifier, however some of the most com-
mon incentives range from simply reducing the confidence of a target label to a
arbitrary source-label misclassification [16]. Confidence reduction entails reduc-
ing the accuracy on a label y for a particular input x in the testing pair (x

′
, y

′
).

By contrast, source label misclassification involves having the model classify an
input x as a chosen target label ytarget, different from the original (and intended)
true source label ytrue. For any attack to be successful, it requires the adver-
sary to have previous knowledge of the DNN architecture, preferably a strong
one. This knowledge can perfect white-box attacks, partial black-box attacks or
blind attacks with no adversarial knowledge. However, it is possible to attack
a DNN model F with limited knowledge in hand. In past work, such as [16],
the attacker was able to approximate the architecture of a target model, Ftarget,
in a black-box setting, and create a substitute training model, which was then
used to craft adversarial examples that generalize on both models. These exam-
ple were transferred back to target model, by way of adversarial transferability
[16] - a very powerful property, which enables an adversary to transfer malicious
examples between models to evade a target classifier model. While deep learning
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networks have gathered much attention in terms of capability to solve complex
and hard to solve problems, there are perilous threats that can erode and inhibit
their potential [25]. It is believed that deep neural networks can be exploited
from these three directions:

– Modified Training Data - commonly known as a causative or poisoning attack,
in which the adversary influences or manipulates the training data-set χ, with
a transformation. This modification could entail control over a small portion
or an important determinant feature dimension Di in the training data. With
this type of attack advance, the attacker can mislead the learner in order to
produce a badly classifier, which the adversary exploits post training [9].

– Poorly Trained DNN Models - although considered an oversight, rather than
blamed on an external adversary. A perfunctory trained DNN could be due to
several reasons. Most of the time, developers Credulously use DNNs prepared
and trained by others. These same DNNs could have hidden vulnerabilities
ripe for exploitation, which can become easy targets for manipulation by
adversaries during deployment [25].

– Perturbed Input Image - commonly known as adversarial examples [12],
attackers are also known to attack DNN models, during testing, by construct-
ing malformed input to evade the learning mechanism learned of the DNN
classifier. This is known as an evasion attack [9]. Our paper focuses on com-
bating the this kind of attack.

A.3 Adversarial Examples

As mentioned, machine-learning models are vulnerable to adversarial attacks
that seek to destabilize the neural network’s ability to generalize new input;
which jeopardizes the security of the model. From what we learned from the
authors in [9], these attacks can either occur during the training phase as a poi-
soning attack, or testing phase as an evasive attack, on the classification model.
In a test-time attack scenario, the attacker actively attempts to circumvent and
evade the learning process achieved by training the model. This is done by insert-
ing inputs that exploit blind spots in a poorly trained model, which cannot be
easily detected. These disruptive anomalies are known as adversarial examples.
Adversarial examples are slightly perturbed versions of regular input samples
normally accepted classifiers. They are maliciously designed to have the same
appearance as regular input, from a human’s point of view, at least. These mas-
querading inputs are designed to confuse, mislead, and force the classifier to
output the wrong label [8], violating the integrity of the model. These examples
can be best thought of as “glitches” that can fool the deep learning model. These
glitches are difficult to detect and are widely exploitable, if left unattended. To
better understand them, consider this example: given an input sample x classified
with function C, such that C(x) = �, producing output �, that was correctly clas-
sified by model A(· ), we say the perturbed input sample x∗, so that C(x∗) = �,
we say x

′
is an adversarial example of x such that A(x

′
) = A(x). Classification

models are considered robust if their classification ability is unaffected by the
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presence and exploits of adversarial examples. Adversarial examples x∗ possess
an appearance similar or close to the original input samples x. Normally used,
although not the only form of measurement. This measure of closeness or sim-
ilarity between the pair of original and modified input is known as the p-norm
distance ‖ x ‖p. This degree of closeness could be l2, which is the Euclidean
Distance between two pixels in an input sample x, l∞, which is the absolute
or max change made to a pixel in x, or l1; which is the total number of pixel
changes made to the input sample x [3]. If the measure of distortion in any of the
previous metrics of closeness is small, then those input samples must be visu-
ally similar to each other, which makes them a prime candidate for adversarial
example generation.

A.4 The Adversarial Optimization Problem

Generating adversarial examples means there is a computational cost involved.
In the general case, adversarial examples are generated by solving a hard opti-
mization problem similar to the one below [18]:

x∗ = x + argmin{z : Ô(x + z) �= Ô(x)} = x + δx

Where x + δx represents the least possible amount of noise added to cause a
perturbation, while remaining unnoticeable by humans. The adversary wishes to
produce adversarial examples x∗ for a specific input sample x that will cause a
misclassification by the target model Ttarget, with a queried adversarial sample,
such that O{x + δx} = O{x}. This misclassification proves that the classifier
has been compromised, and is no longer usable. The misclassification error and
drop in target label accuracy the attacker is after is achieved by adding the
least amount of possible noise δx to the input x, in order to be unnoticeable by
humans, but just enough to mislead the DNN. Solving for x∗ is an optimization
problem that is not easy to solve since it is non-linear, where multiple true
solutions exist, and non-convex, where there not so easy to find. An optimization
problem is considered to be convex if convex optimization methods can be used
on the cost function J(θ), that if minimized minx J0(x), for the best possible
and unique outcome can guarantee a global optimal solution. In convex-type
problems, optimization is likely a well-defined problem here with one optimal
solution or global optimum across all feasible search regions. On the other hand, a
non-convex problem is one where multiple local minimums exist (solutions) exist
for the cost function J(θ). Computationally, it is difficult to find one solution
that satisfied all constraints. Here, optimality has become a problem, and an
exponential amount of time and variables are required to find a feasible solution,
where many indeed exist. By preventing the attacker from learning anything
about the model Ttarget in a black-box system setting; it makes it more difficult
to solve this computational challenge.

In our approach, we introduce this difficulty by deceiving the adversary and
allowing him to attempt in solving this optimization problem, as an infeasi-
ble task for a decoy model Tdecoy, which has no real value. Generating these
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adversarial examples is already exhaustive in computational cost time, as well
as approximating and training the substitute decoy model to craft the examples.
And if the attacker does indeed succeed in generating these examples, it would
a highly infeasible task done in vanity.

A.5 Impact of Adversarial Examples on Deep Neural Nets

As it is known, a machine-learning application could be in severe jeopardy if the
underlying model were to fall in the hands of an adversary, with intentions on
launching an attack. However, there are certain measures taken to prevent the
latter from occurring. However, equally menacing, and as likely, is if an adversary
were able insert an input, image or query that would bypass the model’s learning
mechanism, and cause a misclassification attack, in full view of the defender.
Adversarial Examples have the ability to do just that.

Deep neural nets depend on the discriminate features Xm,n = (x1,1, x1,2,
x1,3,. . . , x1,n), embedded within the image that the DNN model recognizes and
learns, which it then assigns to its correct class label. However, according to
[15] it was shown that the DNN models can be tricked and convinced that a
slightly perturbed image or input that should otherwise be unrecognizable and
consequently rejected by the neural network, can be forced to be generalized and
accepted as a recognizable member of a class in the targeted model. The conse-
quence of this is that many state-of-the-art machine-learning systems deployed
in a real-world setting are left vulnerable to adversarial attacks, at any point in
time from any user. This creates calamity, because any chosen input unrecogniz-
able to the model can be transformed and classified with high confidence causing
a (false positive), and an input recognizable to the model can be classified with
low confidence (false negative), violating the integrity of a prediction model,
eventually making it unusable. For instance, some of the most striking examples
are in the case of audio inputs that sound unintelligible (to human), but contain
voice-command instructions that could mislead the deep neural network [12]. In
the case of facial recognition scenario, where the input is subtly modified with
markings that a human being would recognize their identity correctly, but the
model identifies them as someone else [12].

A.6 Adversarial Transferability

According to the authors in [24], the hypothesis of Adversarial Transferability
is formulated as the following:

“If two models achieve low error for some task while also exhibiting low
robustness to adversarial examples, adversarial examples crafted on one
model transfer to the other.”

In simple terms, the idea behind Adversarial Transferability is that for
an input sample x, the adversarial examples x∗ generated to confuse and
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mislead one model m can be transferred and used to confuse other models
n1, n2, n3, ..., ni, that are of homogeneous or even heterogeneous classifier archi-
tectures. This mysterious phenomena is mainly due to the determining property
commonly shared by most, if not all machine-learning classifiers, which states
that predictions made by these models vary smoothly around the input samples
making them prime candidates for adversarial examples [8]. It is also worth not-
ing these perturbed samples, referred to here as adversarial examples, do not
exist in the decision space as a mere coincidence. But according to one hypoth-
esis in [6], they occur within large regions of the classification model decision
space. Here, dimensionality of the data is a crucial factor associated with the
transferability of adversarial examples. The authors hypothesize that the higher
dimensionality of the training data example set D, the more likely that the sub-
spaces will intersect significantly, guaranteeing the transfer of samples between
the two sub-spaces [6]. According to the above hypothesis, transferability holds
true between two models as long as both models share a similar purpose or task
[17]. Knowing this, an attacker can leverage the property of transferability to
launch an preemptive attack, by training a local substitute classifier model F on
sample testing data pairs (x

′
, y

′
), that the chosen remote target classifier Ttarget

were generalized on. Collecting these testing pairs can be formed into a training
dataset Dtraining of size N of similar dimensions and content. With the latter
we can produce adversarial examples x∗. It is also worth noting that the success
rate of transferability varies depending on the type of remote target classifier
the examples x∗ are being transferred to. These modified examples can then be
transferred to the target classifier. Hence, the same perturbations that influence
model n also affect model m. Knowing that the above hypothesis is true in the
general case, Papernot used this very same concept to attack learning systems
using adversarial examples generated and transferred from a substitute classifier
in [18], which is the same attack we also used for our designed adversary. This
transfer property is an anomaly, and creates an obstacle in the face of deploying
and securing machine-learning services on the cloud, enabling exploitation and
ultimately attacks on black-box systems [24], as we’ll see in the coming sections.

A.7 Black-Box Learning Systems

To explain a black-box threat model, we start by describing the term black-box
system concept. A black-box is essentially a system that can be construed in
terms of inputs x and outputs y, with the internal mechanisms of the system
f(x) = y transforming x into y remaining invisible. The functionality of the
black-box can only be understood by observation, which is what the attacker
depends on to begin his attack. The black-box threat model is by extension a
black-box system. In our paper, we are attempting to prevent the attacker from
polluting the target classifier Ttarget, by blocking transferability and access to
the target model to change the prediction on the class label y. Here, we consider
the adversary to be weak with limited knowledge, as in he can only observe the
inputs inserted and outputs produced, while possessing little knowledge of the
classifier itself. The adversary possesses very little, if no knowledge at all of the
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classifier architecture, structure, number or type of hyper-parameters, activation
function, node weights, etc. Such an environment is considered to be a black-box
system and the type of attacks are called black-box attacks. The adversary need
not know the internal details of the system to exploit and compromise it [18].

Generally, in order to attack the model, in a black-box learning setting, the
adversary attempts to generate adversarial examples, which are then transferred
from the substitute classifier F to the target classifier Ttarget, in an effort to suc-
cessfully distort the classification of the output labels [8]. The intention of the
attacker is to train a substitute classifier in a way that is to mimic or simulate
the decision space of the target classifier. For the latter purpose, the attacker
continuously updates the substitute learning model and queries the target clas-
sifier (represented by the Oracle) for labels to train the substitute model, craft
adversarial examples and attack the black-box target classifier.

Generally, the model being targeted is a multi-class classifier system, other-
wise known as the Oracle O. Querying the Oracle represents the only capability
which the attacker possesses. Querying the Oracle O for input x, which repre-
sents the only capability available to the attacker, as in the black-box model no
access to the Oracle internal details is possible [18]. The goal of the adversary is
to produce a perturbed version of any input x, known as an adversarial sample
after modification, denoted x∗. This represents an attack on the integrity of the
classification model (oracle) [18]. What the adversary attempts to do is solve
the following optimization problem to generate the adversarial samples, as seen
below:

x∗ = x + arg min{z : Ô(x + z) �= Ô(x)} = x + δx

The adversary must able to solve this optimization problem by adding a
perturbation at an appropriate rate with δx , to avoid human detection. The
magnitude ε of the rate must be generated in such a way with the least per-
turbation possible in δx to influence the classifier, as well remain undetected
by a human [18]. This is considered a hard optimization problem, since find-
ing a minimal value to δx is no trivial task. Further more, removing knowledge
of the architecture and training data makes it difficult to find a perturbation
that satisfied the condition for successful adversarial examples secretion, where
O{x + δx} = O{x} [18].

A.8 Transferability and Black-Box Learning Systems

Adversarial Transferability is critical for black-box Attacks, to say the least. In
fact black-box systems are dependent on its success. In [25], it is suggested that
the adversary can build a substitute training model F with synthetic labels S0

collected by observing the labeling of test samples by the Oracle O, despite the
DNN model and dataset being inaccessible. The attacker can then build a sub-
stitute model F from what he learns from O. The attacker will can then craft
adversarial samples that will be misclassified by the substitute model F [16].
Now that the attacker has approximated the knowledge of the internal architec-
ture of F, he can use it to construct. For as long as adversarial transferability
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holds between F (S0) and Ttarget. Adversarial examples misclassified by F will
be misclassified by the target as well. In our paper, we find a way to re-channel
adversarial transferability and prevent an attack. We plan to accomplish the
latter via deception. It was Papernot in [17,18], who proposed that transferabil-
ity can be used to transfer adversarial examples from one neural network to
the other that share a common purpose or task, yet are dissimilar in network
architecture. Transferability is essential for the success of black-box attacks on
deep neural nets, which is due to the limitations imposed on the adversary, such
as lack of architecture, model and training dataset knowledge. Even with lim-
ited knowledge, the adversary with the aid of the transferability property in the
adversary’s armaments, the adversary can train a substitute model and gener-
ate transferable examples, then transfer them to the unprepared target model,
making the victim’s trained model vulnerable to attack [26]. There has been
much work focused on the abilities possessed by adversarial examples, and its
ability to transplant itself between machine-learning techniques (DNN, CNN,
SVM, etc.). Work, namely in [3,14,18], all reached the same conclusion - adver-
sarial examples will transfer across different models trained on different dataset
implementations, with different machine-learning techniques.

A.9 Honeypots

A honeypot can be thought of as a single or group of fake systems to collect intel-
ligence on an adversary, by inducing him/her to attack it. A honeypot is meant
to appear and respond like a real system, within a production environment. How-
ever, the data contained within the honeypot is both falsified and spurious, or
better understood as fake. A honeypot has no real production value, instead its
functionality is meant to record information on malicious activity. In the scenario
that it should become compromised it contains no real data and therefore poses
no threat on the production environment [13,23]. As mentioned, honeypots can
be deployed with fabricated information, this can be an attractive target to out-
side attackers, and with the correctly engineered characteristics can be used to
re-direct attackers towards decoy systems and away from critical infrastructure
[7]. As mentioned above, honeypots have a wide array of enterprise applications
and uses. Currently, honeypot technology has been utilized in detecting Internet
of Things (IoT) cyberattack behaviour, by analyzing incoming network traffic
traversing through IoT nodes, and gathering attack intelligence [4]. In robotics,
a honeypot was built to investigate remote network attacks on robotic systems
[10]. Evidently, there is an increasing need to install red-herring systems in place
to thwart adversarial attacks before they occur, and cause damage to production
systems. One of the most popular type of honeypots technologies witnessing an
increase in its popularity is High-Interaction Honeypots (HIHP). This type of
honeypot is preferred, since it provides a real-live system for the attacker to
be active in. This property is valuable, since it can potentially capture the full
spectrum of attacks launched by adversaries within the system. It allows to learn
as much as possible about the attacker, the strategy involved and tools used.
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Gaining this knowledge allows security experts to get insight into what future
attacks might look like, and better understand the current ones.
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Abstract. Due to ubiquitous-elastic computing mechanism, platform
independence and sustainable architecture, cloud computing emerged as
the most dominant technology. However, security threats become the
most blazing issue in adopting such a diversified and innovative app-
roach. To address some of the shortcomings of traditional security pro-
tocols (e.g., SSL/TLS), we propose a cloud communication architecture
(Graphene) that can provide security for data-in-transit and authentic-
ity of cloud users (CUs) and cloud service providers (CSPs). Graphene
also protects the communication channel against some most common
attacks such as man-in-the-middle (MITM) (including eavesdropping,
sniffing, identity spoofing, data tampering), sensitive information disclo-
sure, replay, compromised-key, repudiation and session hijacking attacks.
This work also involves the designing of a novel high-performance cloud
focused security protocol. This protocol efficiently utilizes the strength
and speed of symmetric block encryption with Galois/Counter mode
(GCM), cryptographic hash, public key cryptography and ephemeral
key-exchange. It provides faster reconnection facility for supporting fre-
quent connectivity and dealing with connection trade-offs. The secu-
rity analysis of Graphene shows promising protection against the above
discussed attacks. Graphene also outperforms TLSv1.3 (the latest sta-
ble version among the SSL successors) in performance and bandwidth
consumption significantly and shows reasonable memory usage at the
server-side.

Keywords: Cloud computing · Security protocol · Data-in-transit ·
Authentication · Perfect forward secrecy

1 Introduction

Security concerns such as data breaches and tampering, weak identities and
access management, malicious insiders, system and application vulnerabilities
and shared technology vulnerabilities have hazardous impact on the cloud as
reported by the Cloud Security Alliance (CSA) [15]. To deal with these con-
cerns, the majority cloud service providers (CSPs) implement a mixture of secu-
rity and privacy controls to provide services to their customers. Cloud users
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(CUs) connect to the cloud services using internet connectivity. However, exist-
ing traditional security protocols (e.g., SSL/TLS) that protect this connectivity,
should be more efficient to handle cloud communication related security issues.
Every now and then, a new security threat is raised. In most cases, man-in-
the-middle (MITM) (including eavesdropping, sniffing, identity spoofing, data
tampering), sensitive information disclosure, replay, compromised-key, repudia-
tion and session hijacking attacks can happen in cloud communications [8,15].
Traditional security protocols (e.g., SSL/TLS) are not always able to satisfy
the growing demand of security in cloud communications for various reasons.
These reasons are mainly related to maintaining middlebox compatibility, back-
ward compatibility for older systems, downgrading due to unavailability of the
selected protocol version or cipher suites and some recent attacks (e.g., BEAST,
DROWN, CRIME, BREACH, WeakDH and Logjam, SSLv3 fallback, POODLE
and ROBOT attacks) [3–5,7,10,13,17–19,28].

The final draft of TLSv1.3 [30] is published recently. It claims to have some
improvements over TLSv1.2 [31] in terms of security and performance. TLSv1.3
stops supporting all legacy symmetric encryption algorithms and static RSA and
Diffie-Hellman cipher suites. It adds (EC)DHE to the base specification. Also,
it uses only authenticated encryption with associated data (AEAD) algorithms.
However, it still has some vulnerabilities. In TLSv1.3, the first two roundtrip
handshake messages are merged into a single roundtrip message. This merged
message includes the client key-exchange information, supported cipher suites
information and “ClientHello” message together in unencrypted form. Most
importantly, before the client receives “ServerHello” message, all communica-
tions are performed in unencrypted form. The client key-exchange information
is one half of the key-exchange mechanism that is generated by random guessing
of the server-side algorithm. Therefore, if the server does not agree or support
that algorithm or the client sends no key-exchange information, the client needs
to generate and send the key-exchange information again using the agreed algo-
rithm which increases the roundtrip time. It still uses pre-shared key (PSK)
cipher suites along with the above changes. Also, superfluous messages such as
“ChangeCipherSpec” are eliminated while keeping a backdoor open for middle-
box compatibility.

In this paper, we propose a comprehensive secure cloud communication
architecture (Graphene). This architecture can effectively mitigate the exist-
ing threats of cloud communications between cloud entities. Graphene ensures
security for data-in-transit and authenticity of cloud users (CUs) and cloud ser-
vice providers (CSPs). It does not have any middlebox or backward compatibil-
ity. Either both parties communicate using the supported cipher suites recom-
mended by the NIST or the secure channel cannot be established. We perform
security analysis based on the man-in-the-middle (MITM) (including eavesdrop-
ping, sniffing, identity spoofing, data tampering), sensitive information disclo-
sure, replay, compromised-key, repudiation and session hijacking attacks. Thus,
we show that this architecture can efficiently mitigate these attacks. Graphene
protects the cloud communication channels with significantly less negotiation
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and bandwidth overhead, reasonable memory usage and faster connectivity than
the traditional security protocols (e.g., TLSv1.3).

Our main contribution in this paper is a comprehensive secure cloud com-
munication architecture called Graphene. More specifically, the paper makes the
following contributions:

• Graphene provides a novel high-performance cloud focused security protocol.
This protocol efficiently utilizes the strength and speed of symmetric block
encryption, cryptographic hash, public key cryptography and ephemeral key-
exchange mechanism.

• It utilizes new highly-compact message structures to support secure session
establishment, reconnection and data transmission. These message structures
help achieve minimal bandwidth consumption and reasonable memory usage
than TLSv1.3 (the latest stable version among the SSL successors) and embed
other communication protocols inside it.

• Graphene ensures security of the data-in-transit and all associated secret
keys. It maintains perfect forward secrecy (PFS) by performing ephemeral
key-exchange on each session and encrypting the session with a new secret
key.

• It is applicable to both TCP and UDP-based communications. It has no
dependency on the SSL/TLS/DTLS implementations at any part of the com-
munication channel.

The rest of this paper is organized as follows. Section 2 presents the related
work. Section 3 discusses the proposed secure cloud communication architec-
ture. Section 4 provides the implementation and experimental environment of
the architecture. Section 5 presents the results. Finally, Sect. 6 summarizes the
paper.

2 Related Work

The main purpose of the existing cloud security research is to secure data during
cloud communications (data-in-transit) as well as the cloud data storages (data-
at-rest).

Google [20–22] uses multi-layer encryption model to secure the data-at-rest
while relying on default TLS for protecting the data-in-transit. Amazon Web
Services (AWS) [9] and Microsoft Azure [27] focus on protecting data integrity
using keyed-HMAC. AWS uses temporary non-stored session keys in EC2 load
balancers and Azure uses two-factor authentication to prevent unauthorized
access of data. However, they still use secure sockets layer (SSL) to provide
transmission protection to their customers. They also maintain MD5 compati-
bility for older systems. It is clearly visible that the CSPs are mostly concerned
to secure the data stored in their data centers by using multi-layer encryp-
tion model, keyed-HMAC, two-factor authentication etc. However, they rely on
default TLS and sometimes even SSL for protecting the data-in-transit which
makes the existing implementations vulnerable to all recent SSL/TLS related
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attacks [3–5,7,10,13,17–19,28]. On the contrary, Graphene ensures security of
data-in-transit and authenticity of cloud entities. It does not support any security
techniques which have any known vulnerabilities. Graphene has its own novel
protocol, highly compact message structures and secure session management. It
provides higher level of security with lower level of bandwidth consumption and
reasonable memory usage.

AbdAllah et al. [6] propose a generic trust model (TRUST-CAP) for cloud-
based applications by focusing on infrastructure-as-a-service (IaaS). However, it
does not provide any specific protocol for securing cloud communications. Con-
versely, Graphene provides a cloud-focused security protocol. It ensures adequate
protection to the communication channel and its associated cloud entities against
some most common cloud attacks. As Graphene follows the security objectives
of the TRUST-CAP model, it can be used as the security protocol for cloud
communications in TRUST-CAP as well.

Kaaniche et al. [23] propose a cloud data sharing framework (CloudaSec)
that encrypts the data at the server-side using the hash of the data as the
symmetric key. Then, it encrypts the symmetric key using recipient’s public key
and includes that in the response metadata. Basically, it uses a form of hybrid
cryptography [2] where the symmetric key remains the same for unchanged data.
On the other hand, Liang et al. [26] and Chandu et al. [14] also propose a similar
approach that follows the generic hybrid cryptography. It uses AES to encrypt
the data at the client-side. Then, it encrypts the AES key using owner’s RSA
public key. After that, it uploads both the encrypted data and the encrypted
key to the cloud storage. Both approaches are vulnerable to compromised-key,
permanent data tampering, identity spoofing, MITM and MATE attacks.

Khanezaei et al. [24] propose a secure cloud storage service using server’s
public-key to perform RSA encryption to protect the data during communication
and storage. The service generates an AES secret key and stores it in the database
along with the RSA encrypted data for future sharing. However, this solution
imposes tremendous computing overhead on the cloud server for decrypting large
amount of RSA encrypted data on every request which is a very cumbersome
and slow process. The RSA encrypted data uses server’s public key which can
be decrypted easily using server’s private key. Moreover, the AES secret key
is stored along with the RSA encrypted data which makes this solution highly
prone to compromised-key, permanent data tampering, identity spoofing, MITM
and MATE attacks.

Kerberos [29] is a network authentication protocol that provides authentica-
tion in a non-secured environment. It uses a key distribution center (KDC) which
receives request for tickets from the clients. Then, the KDC generates ticket-
granting tickets (TGT) and encrypts it using client’s password. After receiving
the encrypted response, the client decrypts it using the password. This is dif-
ferent from the central key server (CKS) mechanism in Graphene. The CKS
is a root public key management system which helps Graphene architecture to
prevent MITM in all phases. It is designed to store, revoke and distribute root
public keys securely.
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All the above discussed related work are focused on a specific facet of security
and operational behavior. They are mostly concerned about the data-at-rest and
their confidentiality, integrity or access control. Also, some recent attacks such
as BEAST, DROWN, CRIME, BREACH, WeakDH and Logjam, POODLE,
ShellShock and ROBOT attacks [3–5,7,10,13,17–19,28] have shown that the
existing security protocols are not able to mitigate the increasing threats of
cloud communications. It becomes a major hindrance while expanding towards
IoT, fog or edge computing, connected vehicles etc. Therefore, a comprehensive
secure cloud communication architecture is mandatory to mitigate the rising
threats against cloud communications.

3 Graphene Architecture

This section presents the proposed secure cloud communication architecture in
detail. In the following section, we discuss about the design of this architecture
and different communication phases of it. In Sect. 3.2, we explain the sequence
of events executed at both user and server ends.

3.1 Design Specification

Graphene focuses on the security of data-in-transit in cloud computing. It guar-
antees the authenticity of cloud entities by using a new Central Key Server (CKS)
mechanism. The CKS is designed to store, revoke and distribute root public keys
securely. Graphene efficiently combines and utilizes the strength and speed of
the symmetric block encryption, cryptographic hash, public key cryptography
and ephemeral key-exchange mechanism. Symmetric encryption provides con-
fidentiality, cryptographic hash enables integrity and public key cryptography
ensures authenticity and non-repudiation. It embeds these four essential secu-
rity elements into the communications in such a way so that a cloud user (CU)
can have a secure communication channel with the Cloud Front End (CFE)
server. It ensures security for both the data and the cryptographic keys.

The system does not use any long-term keys. Each session is encrypted with a
new secret key thus ensuring perfect forward secrecy (PFS). Graphene is appli-
cable for both TCP and UDP-based communications. It works in the appli-
cation layer. Thus, it can be easily integrated with any protocols and server
systems. Graphene utilizes seven highly compact new message structures: (i)
publish (PUB), (ii) acknowledge (ACK), (iii) reconnect (RECON), (iv) request
(REQ), (v) response (RES), (vi) expired (EXP), and (vii) error (ERR). They
make Graphene more efficient in terms of performance, bandwidth consumption,
memory usage and integration with the existing protocols. These message struc-
tures facilitate the secure session establishment, reconnection, data transmission
and error handling between cloud entities.

The architecture consists of six different communication phases such as regis-
tration, initialization, session establishment, data transmission, termination and
reconnection. First, the cloud entities need to register their root public keys to
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the central key server (CKS) in the registration phase. After that, when any cloud
user wants to communicate to the cloud server, temporary cryptographic key-
pairs and hash functions are initialized in the initialization phase to establish an
encrypted session. Then, both the entities exchange their temporary public keys
with each other, signed by their respective root private key. The key-exchange
of temporary public keys is secured by hybrid-crypto mechanism [2,16] using
AES-GCM for data encryption and RSA/ECC for key encryption during the
session establishment phase.

After that, both entities generate common symmetric encryption key using
ephemeral key-exchange. Then, they start transmitting encrypted signed data
to each other in the data transmission phase. After sending the response payload
successfully to the cloud user, cloud server terminates the connection which is
called the termination phase. At this point, the server keeps the encrypted session
information till the session expires. Within that period, the cloud user can send
a reconnection request and re-establish the encrypted session for further data
transmission which is called the reconnection phase. Figure 1 shows these phases
of communications used by Graphene which we discuss in detail in the following
paragraphs.

Cloud User (CU) Cloud Server (CI)

Keypair Genera on

Asymmetric Key 
Exchange

Publish (PUB)

Hash 
Func on

Keypair Genera on

Asymmetric Key 
Exchange Hash 

Func on

Acknowledge (ACK)

Send Encrypted Signed Data

Receive Encrypted Signed Data

Shu ng Down 
Connec on

Closing Connec on, 
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Temp. Public Keys
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Secret Key Genera on Secret Key Genera on
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Fig. 1. Different communication phases between cloud entities in Graphene
architecture
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Registration Phase. All cloud entities must register their root public keys
to the central key server (CKS) prior to any communication. The CKS public
keys must also be installed in the cloud entity systems, to ensure integrity and
authenticity of the data communicated between the CKS and the cloud enti-
ties. The CKS itself and all communications (key registration, revocation and
distribution) with it are assumed to be secured at this point.

Initialization Phase. In case of cloud server instance (CI), this phase occurs
at the very beginning when the CI is initiated. However, for the cloud user (CU),
it occurs when a new cloud connection is created to commence communication
with the cloud front end (CFE) server. During this phase, each cloud entity
generates a pair of temporary public-private keypairs. One keypair (RSA/ECC)
is for maintaining the authenticity and integrity of the payloads. The other
keypair (DHE/ECDHE) is for the ephemeral key-exchange. Each cloud entity
also initializes cryptographic hash functions according to the design specification.

Session Establishment Phase. When a CU tries to connect to the CI for the
first time, a temporary encrypted session is initialized between the CU and the
CI. During this time, a pair of messages (PUB-ACK) are transmitted between
them. Both parties store the other party’s pair of public keys in that temporary
session protected by a 64-byte hashed session key. Then, they generate a common
secret key to proceed with the data transmission phase. The 64-byte hashed
session key is updated after every successful transaction (request-response). The
CU always receives the updated session key hidden inside the encrypted response.
When this session expires, all the negotiated public keys and generated common
secret key are destroyed automatically.

Data Transmission Phase. After establishing the secure session, both parties
use the common secret key to perform symmetric block encryption for maintain-
ing the confidentiality of the request and response payloads. The negotiated tem-
porary keypair (RSA/ECC) is used to perform payload signing and verification
that ensures authenticity and integrity of the payload throughout the session.
Every signing operation performed in this architecture involves timestamp to
protect against replay attacks. During this phase, a cloud focused cryptographic
hash function (Blake2b [1]) is used to protect the data integrity.

Termination Phase. In this phase, when the CI sends encrypted response back
to the CU successfully, the communication channel is terminated. The existing
session remains valid for reconnection until it is expired.

Reconnection Phase. This phase is not explicitly shown in Fig. 1. It has
implicit activity in this architecture. After the termination phase, if the CU
again connects to the server and sends a valid reconnection (RECON) packet
with the last received session key, the encrypted session is re-established between
the CU and the CI. The CFE maintains a session key mapping of the CIs. Based
on the session key, it reconnects the CU to the appropriate CI. Both parties use
the previously negotiated pair of public keys and the stored common secret key.
Therefore, re-keying the block cipher during the session is not needed.
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3.2 Flow of Execution

This section explains how this architecture establishes a secure encrypted channel
for communications and all the internal steps illustrated by the sequence diagram
shown in Fig. 2.

Step-1. In this step, the cloud user (CU) initializes a cloud connection. A pair
of temporary public-private keypair is generated and the cryptographic hash
functions are initialized.

Step-2. After initializing the connection, the cloud user fetches the cloud server’s
root public key which is signed by the central key server (CKS) that ensures
authenticity and non-repudiation for both parties.

Step-3. The cloud user (CU) connects to the cloud front end (CFE) server and
a cloud instance (CI) is allocated for this connection.

Fig. 2. Sequence diagram showing the flow of execution in Graphene architecture

Step-4. The CU signs its temporary public keys with own root private key to
protect authenticity and integrity of the “publish” payload (PUB). After that,
the signed “publish” payload is encrypted using symmetric block encryption to
maintain the confidentiality of the payload in a hybrid-crypto mechanism [2,16].
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Step-5. The CU and CI utilize the “publish” and “acknowledge” packets (PUB-
ACK) to share all temporarily generated public keys to each other. The CU
sends the encrypted signed “publish” payload to the CI. After decrypting the
received packet, the CI requests the cloud user’s root public key from the central
key server (CKS). Then, the CI validates the authenticity and integrity of the
received “publish” payload. After validation, the CI sends the encrypted signed
“acknowledge” payload (ACK) to the CU. This approach protects the session
establishment phase from man-in-the-middle (MITM) attacks.

Step-6. When the CU receives the encrypted signed “acknowledge” packet
(ACK), it also validates the authenticity and integrity of the received payload.
The cloud user stores cloud server’s temporary public keys in the session. After
finishing session establishment phase, the common secret key is generated at
both ends using the ephemeral key-exchange mechanism (DHE or ECDHE). A
secure encrypted communication channel is established without using any pre-
shared key or transmitting any part of the secret key. This generated secret key
is used to perform symmetric block encryption on the signed cloud payload.

Step-7, 8. In this step, both parties perform data transmission (request-
response) which is first signed and then encrypted to protect confidentiality,
integrity and authenticity of the data. After sending the response, the cloud
instance (CI) terminates the connection with the cloud user (CU).

Step-9, 10. When the CU again wants to accomplish any more data connectiv-
ity and it has the valid session information, it can send a reconnection packet
(RECON) to the cloud front end (CFE) server. If any associated session is found,
the secure channel is re-established between the CU and the CI. They do not
need to perform the session establishment steps again. Otherwise, the CU must
go through Step-4 to Step-6 again.

Step-11, 12. Once the secure session is re-established, both the CU and the CI
can do data transmission again. After the response is sent back to the CU, the
CI closes the connection.

4 Implementation and Experimental Environment

This section explains the implementation and experimental environment used to
evaluate Graphene in terms of performance, bandwidth consumption and mem-
ory usage. In the following section, we briefly discuss the implementation details
of the architecture. Then, in Sect. 4.2, we explain the experimental environment.

4.1 Implementation

Graphene is developed using Java and Java Cryptography Architecture (JCA).
It has no dependency on any other platforms, tools and libraries. Therefore, our
implementation can be deployed in any platform or environment where Java run-
time environment (JRE) is available. To compare Graphene against TLSv1.3, we
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run all our experiments in Java11.0.1 (LTS) which includes an implementation
of the TLSv1.3 specification [30]. A novel high-performance cloud focused secu-
rity protocol is designed and implemented with seven highly compact message
structures. Any types of payload data (e.g., HTTP, XML, JSON and Binary)
can be sent and received using this protocol with minimal changes in the existing
infrastructures and applications.

Graphene uses public-key cryptography for signing the payloads and
ephemeral Diffie-Hellman (at least 2048-bit) using MODP groups [25] as the
key-exchange mechanism. A latest cryptographic hashing algorithm Blake2b [1]
is used for maintaining the integrity of the data-in-transit. It is faster than SHA-
families and as secure as SHA-3 at minimum, which makes it a perfect candi-
date for cloud communications and large volume of data hashing. SHA-512 is
used to generate temporary session keys from the connection properties and the
client supplied information. AES-256 with Galois/Counter mode (GCM) is used
as the symmetric block encryption for ensuring confidentiality throughout all
the communication phases. The system operates over 256-bit encrypted channel
which is the approved encryption standard for top secret information by both
the National Institute of Standards and Technology (NIST) and the National
Security Agency (NSA) of the USA.

This architecture is configurable to use any of the supported (RSA/ECC)
public-key cryptographic algorithms for payload signing and verification. How-
ever, the minimum key size recommended by the NIST is 2048-bit for RSA and
224-bit for ECC [12]. Our implementation strictly follows these recommenda-
tions made by the NIST at all steps [11,12]. AES (128/192/256-bit) encryption
is used as the supported symmetric block encryption in Graphene. AES-256 is
the highest level (military-grade) of symmetric encryption available at present.
It is also the default choice for confidentiality in Graphene. However, Graphene
can be configured to use any of the other key sizes or encryption algorithms if
this level of security is not required.

4.2 Experimental Environment

As illustrated in Fig. 3, cloud instances (CIs) are configured according to the
requirement. Each CI has 1 hyper-threaded vCPU core (4.0 GHz frequency with
turbo boost), 4 GB of RAM, 20 GB of local SSD storage. Each cloud instance
runs CentOS 7 (minimal version) to have less interference from other processes.
The cloud instances are setup and controlled by a cloud front end (CFE) server.
The CFE server has a built-in basic load balancer which works in a simplified
round-robin fashion. It is responsible for distributing all incoming traffics to these
cloud instances equally by assigning the same weight to each instance (CI) unless
the incoming traffic is a reconnection request with valid session information.

The CI records execution time for session establishment (if any), request
and response at the server-side for plaintext, TLSv1.3, TLSv1.2 and Graphene
with and without session-reconnection mechanism. However, the cloud user (CU)
monitors roundtrip time information at the client-side for further analysis. All
CUs run in an iterative fashion and send request with a specific size (100B, 500B,
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Fig. 3. Experimental environment of the Graphene architecture

1 KB, 500 KB or 1 MB) of data every time. A separate secure public key regis-
tration and distribution server runs as a central key server (CKS) for managing
root public keys. In CKS, all cloud entities have their root public keys registered
against their unique identifier. In Graphene, the CFE server and the CUs have
their public keys registered against their IP addresses and assigned random string
tokens. All experiments are performed in an iterative fashion (1000 times). Each
request belongs to a temporary encrypted session which has a hashed session key
generated from the connection properties and the client supplied information.

The reason behind comparing with TLSv1.3 in our experiment is that it is the
latest stable version among the SSL (Secure Sockets Layer) successors. TLSv1.3
is claimed to be more secure than TLSv1.2, where TLSv1.2 is proved to have a
steady and secure implementation than SSL, TLSv1.0 and TLSv1.1. SSLv3 and
TLSv1.0 are already declared obsolete and some vulnerabilities are reported for
TLSv1.1. Due to the severe data breaches caused by recent attacks, TLSv1.3 is
now recommended for secure communications over the internet. If TLSv1.3 is
not available, at least TLSv1.2 should be used for secure communications.

5 Results and Analysis

This section presents the results and analyzes the solution. All prominent crypto-
graphic technologies (public key cryptography, digital signature and verification,
symmetric block encryption and cryptographic hash) are evaluated iteratively
for different payload sizes (100B–20 MB) to select the optimal choice for imple-
menting a high-performance cloud focused security protocol (i.e. Graphene) that
efficiently utilizes these technologies with respect to their strength and speed.
The following section presents a thorough security analysis of Graphene against
different types of attacks. After that, we evaluate the performance of Graphene in
terms of execution time on server-side, roundtrip time on client-side, bandwidth
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overhead with respect to plaintext, memory usage at server-side and impact of
different payload sizes in the above mentioned scenarios.

5.1 Security Analysis

To show the level of defense provided by Graphene with respect to MITM
(including eavesdropping, sniffing, identity spoofing, data tampering), sensitive
information disclosure, replay, forward secrecy (compromised-key), repudiation
and session hijacking attacks, we provide a thorough analysis.

(i) Man-in-the-Middle (MITM) Attack. This attack is basically a combi-
nation of different security attacks like eavesdropping, sniffing, identity spoofing
and data tampering. In MITM attacks, an adversary can actively eavesdrop to
a private communication between two legitimate users or even create separate
connections to each of the users to appear as a legitimate entity to both par-
ties (identity spoofing). Then, the attacker captures all the packets (sniffing)
and forwards them to the other party in such a way so that the victims are
forced to believe that they are communicating directly to each other over a pri-
vate connection. In the later approach, the attacker has full control over the
communication and can easily steal valuable information or even manipulate
the packets (data tampering) sent to the victims. In order to analyze Graphene
against these attacks, we investigate two types of connections made from any
entity in Graphene. One is from cloud user (CU) or cloud instance (CI) to the
central key server (CKS) and the other is in between CU and CI as discussed
below.
(a) CU/CI to CKS. When any CU/CI requests any public key from the CKS,
the CKS responds with the requested public key payload signed by its own
root private key. The root public key of CKS is installed to all entity systems
during setup time. Thus, the receiver can verify the authenticity and integrity of
the received public key payload from the CKS which prevents identity spoofing
and data tampering. Since the payload is a public key and it is meant to be
shared publicly, confidentiality of this type of payload is not required at all.
Therefore, even if any adversary is eavesdropping or sniffing to this connection,
the adversary cannot tamper with the payload. Hence, MITM attacks are not
possible for this type of connection.
(b) Between CU and CI. All communications between the CU and the CI are
securely protected (signed and encrypted). Each packet is signed by their root
or temporary private key based on the communication phase. Thus, the other
entity can always verify the authenticity of the sender by using sender’s root or
temporary public key. Signing each packet ensures the authenticity and integrity
of the received payload in all phases which prevents the identity spoofing and
data tampering attacks on DHE key-exchange and request-response payloads.
Finally, due to AES-GCM encryption, the adversary can never see the payloads
transmitted through this channel at any time which eliminates the scope of
eavesdropping or sniffing. Thus, ensuring MITM attacks cannot be successful on
this connection at all.
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(ii) Sensitive Information Disclosure. This attack often happens where the
payload is transmitted in plaintext or the encryption technique used is prone to
cryptanalysis attacks. In this scenario, the adversary can capture all the packets
and steal transmitted sensitive information without the knowledge of the user.
However, in Graphene, all communications between CU and CI are performed
using AES-GCM encrypted channel (at least 128-bit) from the transmission of
first packet. Thus, no sensitive information can be accessed without establishing
a proper communication channel.
(iii) Replay Attack. This is one of the most common attacks which helps
the attacker to intercept valid payloads and retransmit those captured payloads
repeatedly to perform some malicious or fraudulent activities. In Graphene, we
designed the architecture in a manner so that this kind of attack cannot be suc-
cessful. First, all our payload signing involve timestamp to create randomness in
the output. Then, temporary session key is updated after every successful trans-
action (request-response) during the data transmission phase. This timestamp-
based signing and temporary session key enable Graphene to prevent replay
attacks. Thus, at no point, an adversary can gain any benefit from repeating
any previously captured data.
(iv) Forward Secrecy. In cryptography, forward secrecy is a feature that
ensures compromising any secret key does not compromise the security of the
past payloads communicated between the entities. In our approach, we maintain
perfect forward secrecy (PFS) through ephemeral Diffie-Hellman key-exchange
with at least 2048-bit key size on each new session and by generating all asso-
ciated cryptographic keys per session as well. Therefore, even if one session is
compromised, other past and future sessions remain secure.
(v) Repudiation. This means denying the responsibility of any actions per-
formed. In Graphene, all entities must be registered to CKS prior to any com-
munication. The session establishment phase is performed using their registered
root public-private keypair and both entities (CU and CI) negotiate tempo-
rary keypairs for this session. Later on, all communications are authenticated
using these temporary public-private keypairs. This ensures authenticity and
non-repudiation of the entities throughout this communication. Thus, this attack
is not feasible by any means over this communication channel.
(vi) Session Hijacking. In session-based communications, attackers often try
to capture session related information. More specifically, they try to lookup ses-
sion keys or nonce information. In our approach, we use temporary hashed session
keys generated based on connection properties and client supplied information.
This session key enables cloud entities to re-establish their previous encrypted
session if not expired already. Each session key is updated after every successful
transaction (request-response) and most importantly, all transmitted packets in
Graphene are AES-GCM encrypted.
(vii) Some Recent Attacks. Some hazardous attacks such as DROWN,
CRIME, BREACH, BEAST, WeakDH and Logjam, SSLv3 fallback, POODLE
and ROBOT attacks [3–5,7,10,13,17–19,28] happen on traditional security pro-
tocols (e.g., SSL/TLS) that highly threaten the existing cloud infrastructures
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and their expansion towards fog or edge computing, IoT, connected vehicles,
smart city etc. Some of the attacks are performed by exploiting weaknesses in
the security technologies whereas some are caused by misconfiguration of the sys-
tem. Due to the advancement of computing resources, security measures which
deemed secure in the past become vulnerable to brute force attacks, adaptive
chosen plaintext attacks, compression ratio leak, discrete logarithm or other
cryptanalysis attack techniques. Graphene strongly follows the NIST recom-
mendations in choosing suitable cryptographic algorithms and their minimum
supported key sizes. This enables Graphene to prevent such attacks. It uses
Galois/Counter mode (GCM) as the mode of operation for AES with new ini-
tialization vector (IV) values for each request. Graphene does not deal with any
compression techniques. It strictly follows the recommended key sizes by the
NIST [11,12] for the minimum level of security and also uses MODP [25] groups
(group id 14 or above) to perform ephemeral key-exchange.

5.2 Performance Analysis

This section presents the performance evaluation of the implemented architec-
ture in terms of average execution time on the server-side, roundtrip time on the
client-side, bandwidth overhead with respect to plaintext, TLSv1.3 and TLSv1.2
communications and memory usage at the server-side. Table 1 represents the
specification of the experimental environment used for evaluating performance,
bandwidth overhead and memory usage.

Table 1. Cloud Instance Specification

Parameters Values

Virtual CPU(s), Memory vCPUs: 1 (HyperThreaded), RAM: 4GB

VM Class Regular (Non-Preemptible)

Processing Unit 4.0 GHz with Turbo Boost (8M Cache)

Cloud OS & Storage CentOS 7 (Minimal) with 20GB SSD Storage

CFE Load Balancer Round Robin

Sample Data 100B, 500B, 1 KB, 500 KB, 1 MB

Number of Iteration 1000

Figure 4(a) shows the average execution time for one of the investigated
cloud instances in milliseconds. We investigate the average execution times in
different cloud instances for plaintext (yellow curve), TLSv1.3 (purple curve),
TLSv1.2 (orange curve), Graphene without session-reconnection (blue curve)
and Graphene with session-reconnection (green curve) for different payload sizes
(100B, 500B, 1 KB, 500 KB and 1 MB).
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Fig. 4. Comparison of average (a) server-side execution time and (b) client-side
roundtrip time in Graphene architecture (with/without session-reconnection) with
respect to plaintext, TLSv1.3 and TLSv1.2 communications for different payload sizes
(Color figure online)

Graphene with session-reconnection mechanism (green curve) outperforms
TLSv1.3 (purple curve) significantly for all payload sizes and lies very close to
the plaintext (yellow) curve and behaves the same in all cloud server instances.
Graphene with session-reconnection (green curve) performs around 90% faster
than the TLSv1.3 communication. Our solution even shows better results with
session-reconnection (green curve) and without session-reconnection (blue curve)
mechanism with respect to TLSv1.2 (orange curve).

On the client-side, we have measured the average roundtrip time (in mil-
liseconds) by taking the sum of observed durations for connection creation, ses-
sion establishment (if present) and request-response time for different payload
sizes. Figure 4(b) presents the average roundtrip time for one of the investi-
gated client instances under plaintext (yellow curve), TLSv1.3 (purple curve),
TLSv1.2 (orange curve), Graphene without session-reconnection (blue curve)
and Graphene with session-reconnection (green curve) for different payload sizes
(100B, 500B, 1 KB, 500 KB, 1 MB).

As observed from the performance curves of client-side average roundtrip
time, Graphene with session-reconnection mechanism (green curve) performs very
close to that of the plaintext (yellow) curve and shows promising performance
against TLSv1.3 (purple curve). The performance of Graphene without session-
reconnection mechanism (blue curve) deteriorates in terms of average roundtrip
time at the client-side. However, if it is used with session-reconnection mechanism,
it is able to provide faster communication with higher level of security.

The bandwidth overhead graph shown in Fig. 5(a) is calculated with respect
to the bandwidth consumption of the plaintext communication. It is readily
noticed that the bandwidth overhead for 100 bytes of payload size is more than
280% for TLSv1.3 (purple column) and over 380% more for Graphene with-
out session-reconnection mechanism (blue column). However, when Graphene is
used with session-reconnection mechanism (green column), it shows only 80%
overhead with respect to plaintext communication and provides 54% gain over
TLSv1.3 communication.
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Fig. 5. Comparison of (a) bandwidth overhead and (b) average server-side memory
usage in Graphene architecture (with/without session-reconnection) with respect to
plaintext, TLSv1.3 and TLSv1.2 communications for different payload sizes (Color
figure online)

For 1 KB of payload size, Graphene with session-reconnection mechanism
provides 32% gain over the bandwidth consumption of TLSv1.3. The graph
shows a decreasing trend with increasing payload sizes and for 500 KB payload
size the overhead becomes nearly 1% for all types of communications with respect
to plaintext. Therefore, in case of large volume of data, it seems like the overhead
is negligible. However, Graphene with session-reconnection performs noticeably
well in smaller payload sizes as well as with the increasing payload sizes.

Figure 5(b) shows the server-side memory usage (in MB) of Graphene in
one of the investigated cloud instances with respect to plaintext, TLSv1.3 and
TLSv1.2 communications. From the figure, it is readily noticed that Graphene
with and without session-reconnection mechanism shows reasonable amount of
memory usage for different payload sizes which lies very close to the memory
usage of TLSv1.3 and TLSv1.2 communications. The usage pattern shows similar
behavior in all the investigated cloud instances and the memory usage increases
proportionally with the increase in payload size.

Overall, Graphene with session-reconnection mechanism performs signifi-
cantly better than the TLSv1.3 in terms of server-side performance, client-side
roundtrip time, bandwidth overhead and memory usage at server-side. Once
the session establishment phase is complete, it can efficiently establish 256-
bit encrypted channel without causing any performance, bandwidth or memory
overhead. However, Graphene without session-reconnection mechanism performs
worse than TLSv1.3 because of the temporary keypair generations in each session
at both ends (client and server). In every session, two temporary keypairs are
generated at each side to establish the session. Communicating with the central
key server (CKS) by the cloud user and the cloud instance does not have that
much impact on the roundtrip time. Also, Graphene was not evaluated against
TLSv1.3 0-RTT mode due to unavailability of the implementation of this mode
in Java11.0.1 (LTS).
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6 Conclusion

Most recent security attacks and vulnerabilities of the traditional security pro-
tocols (SSL/TLS), are the major road blocks in the expansion of cloud com-
puting. In this paper, we propose a comprehensive secure cloud communica-
tion architecture (Graphene) that mitigates these attacks and vulnerabilities.
In Graphene, security of data-in-transit and authenticity of cloud entities are
ensured and firmly integrated into the communications to protect against wide
range of cloud attacks. A novel high-performance cloud focused security pro-
tocol is designed and implemented. It has seven highly compact new message
structures which establish a secure performance and bandwidth-efficient proto-
col with reasonable memory usage. This architecture can successfully prevent
man-in-the-middle (MITM) (including eavesdropping, sniffing, identity spoof-
ing, data tampering), sensitive information disclosure, replay, compromised-key,
repudiation and session hijacking attacks. Graphene with session-reconnection
mechanism shows 90% faster execution time than TLSv1.3 (the latest stable
version among the SSL successors) on the server-side and exhibits similar per-
formance at the client-side as well. In terms of bandwidth consumption, it shows
54% gain over TLSv1.3 and overall reasonable memory usage against different
payload sizes. It enforces the NIST recommendation as the base level of secu-
rity for data-in-transit in cloud computing. In the future, we will work on the
applications of this architecture in different sectors.
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Abstract. The number of machine learning (ML) applications on net-
working security has increased recently thanks to the availability of pro-
cessing and storage capabilities. Combined with new technologies such
as Software Defined Networking (SDN) and Network Function Virtual-
ization (NFV), it becomes an even more interesting topic for the research
community. In this survey, we present studies that employ ML techniques
in SDN environments for security applications. The surveyed papers are
classified into ML techniques (used to identify general anomalies or spe-
cific attacks) and IDS frameworks for SDN. The latter category is rele-
vant since reviewed paers include the implementation of data collection
and mitigation techniques, besides just defining a ML model, as the first
category. We also identify the standard datasets, testbeds, and additional
tools for researchers.

Keywords: Software defined networks · Machine learning ·
Network security

1 Introduction

Separation of control and data planes is not a new idea, but only recently it has
obtained high interest from the scientific community and commercial vendors
with the popularization of Software Defined Networks (SDN). There have been
several contributions to the technology, but it is still under development by the
industry and academic community. In combination with other technologies such
as Network Function Virtualization (NFV), SDN approach presents a solution
to everyday problems existing in traditional networks like scalability and man-
ageability issues. Additionally, it offers alternatives to monitor and control the
traffic in the network, providing new possibilities for security applications. How-
ever, the de-facto protocol for control-data communication, OpenFlow [42], has
been identified as a vulnerable solution [26]. It also presents additional security
issues, as we will show in Sect. 3.
c© Springer Nature Switzerland AG 2019
J. Zhou et al. (Eds.): ACNS 2019 Workshops, LNCS 11605, pp. 70–93, 2019.
https://doi.org/10.1007/978-3-030-29729-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29729-9_4&domain=pdf
http://orcid.org/0000-0001-7401-4286
http://orcid.org/0000-0002-3562-4441
https://doi.org/10.1007/978-3-030-29729-9_4


Survey on ML Applications for SDN Security 71

SDN definition is comprised of three layers. However, as technology develops,
additional elements are required. In [18] Clark et al. propose a Knowledge Plane
or KP as an individual entity for the network that aims to maintain a high-level
view of the network and help in the operation, management, and improvement.
Knowledge Defined Networking (KDN) [44], adds a knowledge plane (KP) to
the SDN architecture, intending to integrate behavioral models and reasoning
processes oriented to decision making. One of the tools to leverage the KP is
Machine Learning.

Machine Learning is a powerful tool to provide cognitive capabilities for iden-
tifying security breaches. It has a significant improvement due to the processing
and storage capabilities as well as the availability of large datasets. However,
SDN is not broadly used in operative networks, though there is an important
reference: Google’s B4 [43] is a deployment of SDN over WAN network to connect
several data centers. It included a switch design to handle the interconnection
with traditional networks and ONIX [30] as the controller. It was proven to be a
useful technique for the gradual integration of traditional to SDN infrastructure.
The implementation did not present any contribution related to security, except
for the use of the Paxos algorithm [33] for fault tolerance. Considering there are
no available data on security research in SDN, obtaining realistic datasets for
IDS becomes a challenge.

On [50], authors present an overview of the challenges and opportunities to
use ML in new technologies such as SDN, however it is not exhaustive in the
description or study. Other works such as [19,32,49,61] have shown different ML
techniques applicable to SDN anomaly detection but focus on the methods and
lack of an analysis from the network security perspective.

In this paper, we present the most recent research (to the best of our knowl-
edge) for network security in an SDN environment using ML techniques. Our
motivation is to contribute to the creation of a KP for SDN, focused on secu-
rity. The study presents the surveyed papers organized per network attacks, in
contrast to other surveys related to ML methods used in SDN. It also shows the
testbeds and datasets commonly used in the literature.

The rest of the paper is organized as follows. Section 2 presents the method-
ology used to select and classify the studies. Section 3 presents an overview of
the SDN architecture and security issues. Section 4 presents the studies for ML-
based techniques for IDS, only with a proposal of the detection model. Section 5
presents studies that include methods to collect data to feed the ML model,
as well as mitigation schemes once the anomaly is detected. Section 6 aims to
provide additional tools for researches with studies related to security, as well as
used datasets and testbeds in the surveyed works. Finally, Sect. 7 concludes the
presented survey.

2 Methodology

This survey focuses on the works that use machine learning (ML) including deep
learning (DP) techniques to address security issues for software defined networks
(SDN). We initially set the period of the publication to be used in the study as
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five years; however, during the first search within databases, we found valuable
literature since the year 2013. Because of this, the publication period covers
papers from that year until the beginning of 2019.

To search for papers for our study, we reviewed the IEEE Xplore, ScienceDi-
rect, and Wiley databases, as well as Google Scholar to expand the scope to other
repositories. The key-words used to conduct the study were: “SDN,” “Security,”
“Machine learning,” and “Deep learning.” We combined the terms to create
different search streams such as: (“SDN security” AND “machine learning”),
(“SDN security” AND “deep learning”), OR (“SDN Security”). Only the titles
of the studies were considered to select an initial list of 200 papers. Later, we
classified the articles into those to be used in the survey and those to be excluded
by reviewing the abstract, introduction and conclusion, only.

We selected papers that included all areas of the keywords (SDN, ML/DP,
and network security), but also those that presented traffic classification or mon-
itoring, since those methods are useful for securing the network. Out of the
selected papers, we classified them into the following categories:

– Surveys
– Proposal for framework or security application
– Experiment of existing tools

Using this classification, we selected a total of 70 papers and excluded out of
the initial list. These papers were reviewed in detail, and using them we identified
other studies to be included.

3 SDN Architecture and Security

SDN was born out of the need to break the vertical integration of the network
equipment. Its premise is to separate the control from the data plane, and the
interface between them is OpenFlow (OF) [42] protocol, proposed in 2008, which
leveraged its development. It also allows defining network functions (e.g., routing,
firewall, load balancing, bandwidth optimization) as software applications that
can run on top of the control plane. The architecture has three parts: data plane
(composed of switches), the control plane (composed of one or more controllers),
and application plane (composed of one or more network applications). Figure 1
shows an SDN architecture.

Within SDN, a flow is a set of packets with similar features that go from one
endpoint (or group) to another endpoint (or group) in a single direction. Each
flow has its entry in the flow table, which is a database within the switches con-
sulted to determine what to do with each packet that arrives at the switch. The
flow-tables are created by order of the controller. At the beginning of a trans-
mission (new flow), the switch will receive a packet without an entry on the flow
table. The OF protocol sends the “Packet in” message, from the switch to the
controller for analysis and definition of a new flow-table entry. The “Packet in”
is a particular feature that could become a vulnerability to the system. OF also
defines the information collection, using a request from the controller that the
switch answers with parts of the flow-table along with packet counters.
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Fig. 1. SDN Architecture: Data plane, Control plane and Applications plane as its
main components

This new paradigm represents a solution to several problems of traditional
networks, such as manageability, configuration, scalability, and security. Under
this perspective, a clear advantage for security with SDN is the ability to gather
traffic information without additional elements. This is due to the centralized
role of the controller, which communicates with the switches in the data plane.
Proposals such as [8,27,47] take advantage of this ability to implement security
functions such as Intrusion Detection Systems (IDS) and protection against Dis-
tributed Denial of Service (DDoS) within the network. SDN is, however, a model
under development with open research lines and security challenges common to
traditional networks, as well as unique to it. Different studies [7,31,57] presented
analysis to network security from different viewpoints. A common conclusion is
that security applications in SDN are still not mature enough for widespread
implementation. A non-exhaustive review of SDN security architecture issues is
presented below.

Kreutz et al. [31], created one of the firsts attempts to determine the vul-
nerabilities in SDN architecture. In this survey, the authors presented seven
threat vectors: (1) Forged or faked traffic flow; (2) Attacks on vulnerabilities in
switches; (3) Attacks on control plane communications; (4) Attacks on and vul-
nerabilities in controllers; (5) Lack of mechanisms to ensure trust between the
controller and management applications; (6) Attacks on and vulnerabilities in
administrative stations; and (7) Lack of trusted resources for forensics and reme-
diation. Other studies [56,71] also used this scheme to analyze SDN security. The
paper also proposes the mechanisms required to secure a controller: Replication,
Diversity, Self-healing mechanisms, Dynamic device association, Trust between
devices and controllers, as well as between controllers and applications, Security
domains, Secure components, and Dependable maintenance of software.

The first attack vector was exploited in [58]. Initially, they detect if a
given network uses SDN by comparing the response times. If it is SDN, at the
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beginning of the transmission the response time is longer, since the network has
a “flow setup” latency. The times have subtle differences, so the authors present
a solution with an SDN scanner. After the confirmation that the network is an
SDN, specially crafted traffic is sent to the network to cause data plane resource
consumption or Distributed Denial of Service (DDoS) attacks.

Moving Target Defense (MTD) is a widespread approach used by several
studies. In [17], authors proposed a framework to prevent, detect and mitigate
attacks. The research was directed to virtualized environments in the cloud and
presented two areas to secure resources. First, the authors studied MTD for
network programmability and software vulnerability. Then, traffic engineering
was reviewed. The latter allows the provision of different tenants securely. For
the former one, a set of countermeasures must be included to enforce after the
detection and analysis with an attack graph (AG) based vulnerability analysis.

The same approach was studied in detail in [16]. The authors presented AG
techniques to reconfigure the network automatically and used MTD as a coun-
termeasure. However, it does not present information on the attack detection
but assumes the intrusion detection already in place. It still needs a phase for
attack analysis in which ML could be used.

Few studies present machine learning solutions for the SDN architecture secu-
rity problems identified by [31]. However, some works suggest the possibility to
use it. In [64], authors presented three levels of complexity to use cognition:
Reactive reasoning (rule-based reaction), Tactical reasoning (Profiling based on
classification with dynamic multi-objective optimization), and Strategical rea-
soning (Anticipation with online multi-objective optimization). The study pro-
poses to formulate optimization functions related to the security concerns in the
network.

On the other hand, in [29] authors presented a framework to provide
autonomous response and mitigation against attacks in an SDN/NFV network.
The approach is called SARNET and has a transverse loop with five stages:
Detect, Analyze, Decide, Respond, and Learn. An essential contribution of the
study is the definition of an efficiency estimation that allows measuring the per-
formance of the proposed framework. A group of simulations of different attacks
(UDP DDoS attack, CPU utilization attack, Password attack) showed that the
efficiency measure helps in selecting the best countermeasure. Within all the
loop, it is suitable to use ML, and the authors present it as future research.

As presented, there is not extensive research to secure the SDN architecture
using ML. However, SDN architecture can leverage network security since it
allows the managers to know, rather than infer, the specific status of the net-
work. OF gives the opportunity to collect statistics and traffic information that
could be used to identify anomalies, intruders or configuration failures within
the controller, devices or applications.

These abilities present the possible implementation of security applications
on top of the SDN architecture. They are also leveraged by the use of Network
Function Virtualization (NFV). NFV intends to apply IT virtualization technol-
ogy for networking functions [15], and the objective is to break the dependence
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of hardware. In this scenario, security applications can be implemented on com-
modity devices, and the necessity of specific equipment could be eliminated.

In the following sections, we will discuss the different proposals to use SDN
as a mean to improve network security. Our approach is to analyze the use
of machine learning to achieve the desired result. As presented in Fig. 2, we
classified the papers into Type 1: ML-based intrusion detection Systems in SDN,
and Type 2: ML-based intrusion detection Systems in SDN. In the first case, the
sub-classification depends on the type of detected attack. In the second case, the
sub-classification depends on the data collection method to feed the ML-Model.

ML applications
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Packet in detection

Database registry
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OF statistics

ML-based intrusion
detection Systems
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Distributed Denial of
Service Attacks

Login attackDoS, Probe, U2R,
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General anomaly
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Fig. 2. Classification of studies in the survey

4 ML-Based Intrusion Detection Systems in SDN

Intrusion detection systems (IDS) are one of the most widespread applications for
security in SDN. Since OF provides traffic statistics using the messages “StatsRe-
quest” and “StatsResponse,” it becomes a compelling tool to identify anomalies
and intruders.

Fundamentals of IDS operations apply equally for traditional and SDN envi-
ronments. Considering the location of the method IDS techniques can be divided
into Network IDS and Host IDS. The former performs intrusion detection by
analyzing the overall situation of the network. On the other hand, HIDS is host-
based detection that monitors the operation of a particular device.

As detection mechanisms, IDS employ two types of strategies: (1) Traditional,
signature-based detection that compares data to an existing database; and (2)
Anomaly-based detection, which identifies odd-behaviour traffic, and can make
use of ML techniques for better results. Examples of IDS proposals with the
traditional approach in SDN are [14,40,72]. For instance in [40] of the first
attempts to identify anomalies issues leveraging on SDN. The intention was to
determine the main security issues related to the cloud computing environment
to propose an SDN-based approach that allows the network to react in case
of an attack. On the other hand, in [72] the authors proposed a Deep Packet
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Inspection system for network intrusion detection and prevention using NFV.
It was implemented, and it presented reasonable performance. Finally, authors
on [14] proposed to detect and mitigate anomalies in SDN, with a statistical
approach for detection. A definition of a “normal traffic” profile is the base for
the statistical analysis.

Feature
selection
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Traffic variance

Connection
level

Flow level
Mean packets per

flow

Flow mean
duration

Packet size

Throughput

TCP window size

Fig. 3. Features to select in network traffic

At the packet level, the information can be statistical for the network and
related to packet size, variance, root mean square. It is useful to characterize
traffic in the network, for example with the Hurst parameter H, used to measure
the self-similarity and burstiness (the burstier the traffic, the higher H ) [37].
Flow and connection level features are most commonly used in SDN, as we will
show below. Examples of each level are presented in Fig. 3.

In the sections below, we will present the surveyed papers and a summary in
Table 1.

4.1 General Anomaly Detection

Some studies propose general anomaly detection with ML. For example, in
[21,22], authors present IDS with deep learning techniques applied to SDN envi-
ronments. Both studies implemented the IDS as a component of the control
plane, instead of deployment as an application. The location allows interacting
directly through the network hence protect the controller itself. In [21], they pre-
sented a general SDN environment with unsupervised learning. The approach is
to use an autoencoder, which has two phases (encoder + decoder) to detect and
minimize the reconstruction error for each test sample. The development library
was Tensorflow although it is not clear what was the used dataset. The second
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study presents a secure framework for IoT based on SDN with a brief review
of the security in SDN architecture, but also presents a ML-based IDS. It uses
deep learning with a Restricted Boltzmann Machine (RBM). For simulation, the
authors focused on the detection model with Tensorflow, and the dataset used
was KDD99. The proposed algorithm showed 94% of accuracy.

Authors in [60] present a proposal for both IDS and an action triggered by it:
Moving Target Defense. They created a simulated network to obtain data for the
training (about 40,000 packets). For the architecture, they presented a neuro-
evolutionary model as a light-weight detector that allows real-time operation. To
achieve it, they developed two distinctive detectors, one per each type of attack
to identify: DDoS and worm. To combine the detectors, authors use Neuro-
evolution of Augmenting Topologies (NEAT), an approach to neuro-evolution
with crossover context.

4.2 Specific Network Scenarios

There are also proposals for specific network scenarios. That is the case of [73]
that presents the implementation of ML-based IDS in optical SDN, and [55]
that proposes an scenario of Intelligent Transport Networks. The study in [73]
starts by surveying the attacks in control plane and categorize them into unau-
thorized access, data leakage, data modification, denial of service, and security
policy misuse. Since the scenario is optical networks, anomaly detection must
consider features related to optical links. Examples are average bandwidth usage,
frequent source and destination nodes, average route length, and modulation for-
mats. The possible attacks in this type of network include light-path creation,
modification, and deletion (all directed to the link-data layer of the OSI model
in optical networks). The first detection methods are point-anomaly-based, as
a data instance represented by a point is outside a common region of normal
behavior. It uses an algorithm created by the authors to calculate a probability.
The second is a sequence-anomaly based method where anomalies occur together
as a sequence and use an improved cumulative sum approach. For testing, the
authors use NSFNET topology with an owned dataset, and the results present
an average detection accuracy of 85%.

On the other hand, [55] presents the cross-fire attack in ITS. The attack
consists of a large number of compromised nodes that generate coordinated and
low-intensity traffic to disconnect victims (hosts or links) from the network.
A ML approach is used to classify the coordinated attacks using three deep
learning algorithms: (1) Artificial Neural Networks (ANN); (2) Convolutional
Neural Networks (CNN); and (3) Long Short-Term Memory (LSTM) networks.
The authors created a testbed in mininet [65] to generate a dataset of their own,
with increased traffic for the compromised nodes. They later used this dataset to
train and test the model. The results proved the efficiency of the proposal with
a slight reduction of performance when the speed of the vehicles increases. A
highlight from the study is that it presents the training time and it is about 100
seconds for each algorithm. The short time allows the system to be re-trained
as necessary.
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4.3 Login Attack

From the surveyed papers, we only found one that addresses login attacks in [46].
The proposal includes defining security rules on the SDN controller to identify
and block that type of threat. The study presents the feasibility with the use
of four ML techniques: C4.5, BayesNet (BN), Decision Table (DT), and Naive-
Bayes (NB). The intention is to give the network the ability to act against a
chain of attacks from multiple IP addresses used by each attacker. The used
features for the models are attacker IP, attacked host, number of attempts in
an attack, and timestamp. The study shows that even a small probability of
attack should not be ignored and security rules on the SDN controller must be
accordingly modified. For experimentation, the “long tail” dataset was used [23].

4.4 DoS, Probe, U2R and R2L

The studies presented in this section address four kinds of attacks: DoS, Probe,
User to Root (U2R), and Remote to local (R2L). The common characteristic
between all of them is the dataset used: NSL-KDD [13] that classifies the attacks
in the aforementioned categories.

In [62], authors proposed the use of deep neural networks to detect anomalies
based on six flow-based features regarded as suitable for SDN: duration, pro-
tocol type, src bytes, dst bytes, count and srv count. The authors trained and
tested the model, and compared their proposal with other algorithms such as J48,
Naive Bayes (NB), NB Tree, Random Forest (RF), Random Tree (RT), Multi-
layer Perceptron, and Support Vector Machines (SVM). The paper states the
potential of deep learning for the flow-based anomaly detection system. Authors
also argue that ML is not fully developed.

In [35], an study of nine ML classifiers with supervised machine learning
approaches is presented. They perform tests for accuracy, false alarm rate,
precision, recall, f1-measure, the area under the curve (ROC), execution time
and Mc Nemar’s test. The tests were made with Principal Component Analy-
sis (PCA) for dimensionality reduction with NN, Linear Discriminant Analysis
(LDA), DT, RF, Linear SVM, K Nearest-Neighbour (KNN), NB, Extreme Learn-
ing Machine (ELM), AdaBoost, RUSBoost, LogitBoost, and BaggingTrees. The
results showed that DT, bagging and boosting approaches had better perfor-
mance than the rest. The selected features were a subset of the features of the
dataset, excluding content features.

The same authors proposed in [34] a 5-level hybrid classification system for
IDS inspired in the work presented in [9], in a not-SDN network. The paper aims
to use flow-statistics provided by the controller to develop a NIDS. The classi-
fication methods used are the kNN in the first level, ELM for the second level,
and Hierarchical Extreme Learning Machine (H-ELM) for the rest. Each level
detects a type of attack using the same features selected in [62]. The system was
implemented as a module of POX controller instead of a function of the appli-
cation plane, for scalability purposes. The approach for selecting these features
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is the easiness to get them directly from the controller. The results presented
showed improved accuracy, compared to other techniques.

Authors in [53] also place their IDS in the control plane. The technique is
a meta-heuristic Bayesian network to classify traffic, and the dataset is NSL-
KDD. The proposed process includes a phase of feature selection and extraction
to optimize the classifier that consists of the fitness evaluation of the extracted
features. It is later fed to the Bayesian classifier. The proposed algorithm is
compared with seven other approaches and showed the best overall efficiency for
the performance measures with a total of 82.99%.

4.5 Distributed Denial of Service Attacks

Although several of the previous studies consider DoS attacks, they are presented
as part of a greater range. In this section, we present studies that investigate
specifically DDoS attacks for two reasons. The first one is that a large section of
studies for IDS focuses on DDoS attacks. Secondly, with the perspective of the
Internet of Things (IoT) and recent threats such as Mirai botnet [28] it is worth
to consider the attack individually.

In [68], authors present a specific application for anomaly detection using
SDN as a solution to solve scalability challenges. The scenario is a Wireless SDN
enable E-Health system. The main feature of this type of network is the massive
machine-type communications (mMTC) in which human interaction is minimal.
The ML technique used is contrastive pessimistic likelihood estimation (CPLE)
for semi-supervised operation with offline training. The intention is to perform
online testing to allow running localized detection within the devices to avoid
the need to frequently collect network traffics at the controller to update the
anomaly detection model. The features used for the classifications are the same
defined by [62].

In [11], authors provided an overview of the use of ML for IDS in SDN.
The study investigates five ML techniques to mitigate intrusion and DDoS
attacks (Neural networks, support vector machine, genetic algorithms, fuzzy
logic, Bayesian networks, and decision tree). The authors theoretically analyzed
each method and generated a comparison scheme that presents the pros and
cons of the techniques. The paper serves as an initial review to select the best
approach, according to the needs of the system. However, it does not proposes
or test any model.

An analysis of SVM and comparison with other techniques for DDoS detec-
tion in SDN is presented in [27]. The paper briefly discussed the types of DDoS
attacks and security threats to the controller in SDN. Later, the paper gave four
SMV methods and the system description. The 1999 and 1998 DARPA datasets
were used for training and testing (about 50/50 ratio), and the technique was
compared with RBF, Naive Bayes, Bagging, J48, and Random Forest methods.
Accuracy was highest for the proposed SMV with 95%.
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In [70], the authors proposed a learning algorithm based on Support Vector
Classifier (SVC), leveraged on an Iterative Dichotomiser 3 (ID3) decision tree for
feature selection. The model was evaluated in a software testbed with three main
components (1) Open vSwitch as a virtual switch, (2) Ryu as the controller, and
(3) sFlow Toolkit for data collection. The used dataset is KDD-Cup 1999.

A Dirichlet Process Mixture Model is used in [6], to mitigate DNS-based
DDoS attack. Authors used an owned dataset created from the technique to
generate them presented in [59].

In [52], authors present an IDS system to identify DDoS attacks. They com-
pare three methods: Naive Bayes, K-Nearest Neighbor (KNN BEST), and Sup-
port vector machine (SVM) with an accuracy of 97%, 83%, and 83%, respec-
tively. The features considered as inputs are the number of Packets, Protocol,
Delay, Bandwidth, Source IP, and Destination IP. For testing, they use an owned
dataset.

In [24], authors present a proposal to improve resiliency in an SDN network,
by detecting DoS attacks, specifically SYN flood attack. For classification, the
study shows three different techniques: DT, SVM, and NB. The results presented
over 99% accuracy, recall, and precision for DT. Dataset KDD 99 is used in the
study with the features source IP address, destination IP address, source port,
destination port, and protocol. They are later reduced using PCA.

Authors in [48] present an approach to detect and classify DDoS attacks
in a cloud environment. For it, they use a two-stage ensemble learning scheme
with multivariate Gaussian and Bayesian techniques. The employed features
are src ip, dst ip, no of packets, spoof dst ip, blacklist ip. Although the study is
composed of complementary elements to the ML technique, it does not directly
try to secure and SDN. Instead, it defines the steps to protect the cloud infras-
tructure (Virtual machines, orchestrators, etc.).

The previous works were the application of ML techniques for IDS. However,
they do not consider implementation issues within the network. In Sect. 5, we
present a set of works classified as “frameworks,” since they include considera-
tions such as collection and mitigation methods.

4.6 Techniques Comparison

Considering the broad spectrum of cyber-security attacks is noteworthy to have
just six specific attacks (DoS, DDoS, Probe, U2R, R2L and login). Even though
SDN is an innovative paradigm, we could expect every type of known attack
used against an SDN. Also, the research community should prepare to deal with
new adapted attacks. It is essential to review how to adapt current techniques
to detect, mitigate and prevent different attacks in SDN. Several of the attacks
already are recognized using ML techniques applied to them in traditional net-
works.

Table 1 shows that ML techniques used are very diverse. Most of the papers
(9 out of 16) use a single ML technique. The others use at least two methods with
one of two approaches: comparison between techniques or combination of them
to improve the anomaly detection. Artificial Neural Networks were used in 50%
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Table 1. ML techniques proposals for anomaly detection in SDN

Ref. Detected attack Detection method Feature selection Training dataset

[22] General anomaly RBM 41 Features KDD-Cup 1999

[21] General anomaly Autoencoder 41 Features KDD-Cup 1999

[73] Optical network Point anomaly:

probability-based.

Sequence

anomaly: CUSUM

Related to optical links.

(e.g. bandwidth, source

and destination nodes,

route length, and

modulation formats)

NSFNET

[60] DDoS and worm NEAT 3 packet-level features Owned: 800000+ packets

[35] DoS, Probe,

U2R, R2L

DT, ELM, NB,

LDA, NN, SVM,

RT, KNN,

AdaBoost,

RUSBoost,

LogitBoost and

BaggingTrees

Subset of features and

Principal Components

Analysis (PCA)

approach

NSL-KDD

[53] DoS, Probe,

U2R, R2L

MHBNC Preprocessing+ feature

extraction

NSL-KDD

[62] DoS, Probe,

U2R, R2L

DNN 6-flow-based features NLS KDD

[34] DoS, Probe,

U2R, R2L

kNN, ELM, and

H-ELM for the

rest

6-flow-based features NSL-KDD

[68] DoS, Probe, R2L

and U2R

CPLE 6 features vs 41 features NSL-KDD

[46] Login C4.5, BayesNet,

Decision Table

(DT), and NB

4-attack-based features LongTail.

[55] Crossfire ANN,CNN,LSTM 3-flow-based features Owned

[70] SYN Flood

DDoS

SVC ID3 KDD-Cup 1999

[27] DDoS SVM Grid search method 1999& 1998 DARPA

[52] DDoS NB, KNN BEST

and SVM

6 fixed features. 6000

data samples

Owned

[48] DDoS Ensemble learning

with multivariate

Gaussian and

bayesian

5 flow-based features Owned

[24] DDoS DT, SVM, and

NB

4-flow-based features

and reduce space

withPCA

KDD-Cup 1999

(RBM, NEAT, Generic NN, KNN, ANN, CNN). Another common approach in
the reviewed papers is the use of Support Vector Machines. Several articles also
presented a Naive Bayes method. However, it was only part of a comparison to
other techniques.
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Finally, considering feature selection, we found it very diverse. However, in
[62] the authors presented a set of six features that were used in four studies,
regarded as suitable for SDN. On the other cases, the technique or definition of
the features to be included in the ML model was independently selected.

5 IDS Frameworks for SDN

The implementation of the ML techniques for IDS needs to consider articula-
tion with the network environment. That is, define how to collect the data for
analysis, as well as mechanisms to activate in case of anomaly detection. For col-
lection, we found three main sources of data to feed the ML model: (1) Statistic
collection with OF methods [8,36,38], (2) Getting a copy of the flow table from
the switches [45], and (3) With packet-in messages [20,63,67].

Regarding the mitigation, the typical method is to define a module at the
control plane (next to the controller) or a dedicated application in the application
plane that affects the OF tables of the switches.

In the paragraphs below, we will present the frameworks found in the survey
and their main considerations, in contrast to the previous section (studies of the
single ML model). The studies are organized regarding the collection method.

5.1 Frameworks Description

Authors in [8] present a system that applies Machine Learning (ML) classification
algorithms to detect DDoS attacks. They also propose two defense mechanism
for specific SDN attacks: miss-behavior attack and new-flow attack. The first
refers to the attack directed to a target using an existing, validated flow. The
second exploits the packet-in vulnerability to create a DoS attack. Both are
statistical-analysis based. Regarding the DDoS detection mechanism, the system
uses a ranker algorithm, a genetic algorithm, and a greedy algorithm for feature
selection and Sequential Minimal Optimization (SMO) for classification. The
achieved accuracy is 99.40%.

OF statistics are also used in [38] with a 5G scenario implemented with SDN.
The study presents Random Forest classifier for feature selection and combines
k-means++ with Adaboost for flow classification. The former creates two clus-
ters, which most probably represent the normal and abnormal instances and the
later further partition the anomaly clusters into four main classes of attacks.
The techniques are part of a complete architecture for ML-based IDS within
the SDN scheme. It includes modules in each plane of SDN to allow the col-
lection of data and mitigation action. The ML techniques used are varied and
does not evaluate the classification algorithms, but the combination of them
with the feature selection techniques. The combinations in the study are RF-
KA, RF-GDBT, RF-DT, RF-SVM, Tree-KA, Fisher-KA, and ReliefF-KA. The
study presents an analysis of these combinations in an environment that balance
the attacks (over-sample the minority intrusion such as R2L, and under-sample
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the majority intrusions such as DDoS). For evaluation, the study uses KDD-Cup
1999 [66]. Two relevant conclusions from the study are: (1) Feature selection is
critical for better accuracy and lower false rate; and (2) The sampling technique
could improve the detection accuracy of minority intrusions dramatically while
maintains a reasonable detection rate of the majority ones.

In [36], authors present a framework to use ML for IDS. They propose a NIDS
over SDN architecture in which the packets from the switches are captured on a
computer with many network cards that act as OpenFlow vSwitch. It sends the
Ethernet packet to a Feature Extractor module that analyzes them and extracts
25 features, depending on the transport protocol (TCP, UDP, ICMP). Later the
C4.5 algorithm classifies packets for malicious activity. For testing, the authors
used the 1999 Darpa dataset [39], and they showed detection of DoS and Probe
attacks at high precision. They also proposed and tested a network topology to
generate real traffic.

The second type of collection method is to obtain flows from the data plane,
using the forwarding.l2 learning Method provided by POX. The technique is
used by [45] in combination with an unsupervised RBM algorithm with 92%
accuracy. The training method is based on Contrastive Divergence (CD), and
the features used for the model are flow-level, and connection-level: total number
of packets transmitted (ToP), the ratio of source and destination bytes (RoSD),
and connection duration time (CT).

Another technique to collect data is the use of packet-in messages of OF. The
method is proposed as part of the framework DaMask in [67]. Even though it is
presented as DDoS detection, the study does not present the ML detection tech-
nique. According to that, the architecture could be implemented in other types
of attacks. The primary goal is to apply DaMask to a cloud computing envi-
ronment from an enterprise view, which is inherently different than a network.
The identified differences are: (1) Control of the computational resources are
out of hands of the defender (provider’s responsibility); (2) Fast and straight-
forward resource allocation generates constant topology changes to adapt to;
and (3) Network resources are shared with all other users of the cloud, which
requires separation mechanisms not considered in traditional DDoS. To answer
the requirements, the authors created a three-layer framework (one per each
plane in SDN). The system has two main modules (attack detection and attack
mitigation) at the application level. For feature selection, they used the Chow–
Liu algorithm, and the attack detection is made with a graphical model. The
testing was done with the UNB ISCX [59] dataset. As a result of the evaluation,
the authors concluded the proposed framework requires little effort from the
provider for implementation.

Packet-in detection as a collection method is also used in [20], in combination
with a neural network for detection of DDoS attacks. The solution consists of
four mechanisms: attack detection trigger, attack detection, attack traceback,
and attack mitigation. The study of the detection trigger (when to start the
detection process) and traceback (find the source of the attack) are differentiators
for this proposal. Similarly to other proposals, [63,67] the authors selected an
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abnormal detection of packet-in messages as a trigger to start the detection
mechanism (Backpropagation neural network BPNN). It has one input layer (five
neurons), one hidden layer (ten neurons) and one output layer (one neuron). On
the other hand, the backtracking mechanism seeks for the path followed by the
malicious flow by marking the switches, which allows identifying the source. The
mitigation method creates new flow entries with the highest priority to drop the
traffic directed to the target, and use OpenFlow modification message to clean
the flow tables. The study presents the results based on the performance of the
detection trigger but not the BPNN classification.

Finally, authors in [63] also use packet-in detection as a collection method
and present a Gated Recurrent Unit Recurrent Neural Network as part of a
framework for IDS. The detector is implemented as part of the control plane,
next to the controller. For this case, the feature srv count is changed for the
dst host same src port rate, although they used the same features and dataset
of their previous work [62]. The proposal presented low processing impact on the
controller and a detection rate of 89%.

5.2 Frameworks Comparison

In Table 2 we present the surveyed frameworks. Only seven (7) out of the stud-
ied papers, presented a complete framework to implement in a network. The
elements identified in these papers to classify them as frameworks are the descrip-
tion of collection and mitigation methods. They are applied before and after the
detection mechanism and provide a clear architecture to deploy the solution in
a functioning network.

We identify three types of collection methods: OF statistics, database copy
with forwarding.l2-learning command, and packet-in. All of the methods are
based on OF possibilities. However, there is diversity in SDN implementation,
and it is essential to define other alternatives for other scenarios. An appeal-
ing option is sFlow [4], a monitoring tool for packet sampling with an analysis
module.

For mitigation, papers [36,45] do not provide a proposal. Frameworks [8,20,
38,63] base their technique on the use of OF, with table modification on the data
plane. The proposals consider an additional module in the controller to handle
the changes.

However, the proposal in [67], DaMask, presents an architecture in which
the mitigation is located on the application layer of SDN. That approach would
allow some flexibility for the deployment of the design.
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6 Complementary Proposals, Datasets and Testbeds

To identify open research problems, as well as the primary tools, we present in
this section other ML studies related to security, datasets used from the surveyed
studies and used testbeds in the cases a network simulation or emulation was
created, that is only for the frameworks.

6.1 Other ML Studies Related to Security

Additional to the use of ML for IDS, we identify other studies to consider. On
the first place, we recognize the issue related to adversarial machine learning,
which was addressed by Nguyen in [49]. The author presented a cyber kill-chain
directed to attack machine learning models. The study provides an analysis of the
current use of ML in SDN security as well as attacks directed to ML models such
as equation-solving, model inversion, pathfinding, and others. It then presents
the cyber kill chain, composed of seven steps: (1) Recon; (2) Weaponization; (3)
Delivery; (4) Exploitation; (5) Installation; (6) Command and control; and (7)
Action. The paper concludes with four recommendations to use ML in network
security: (1) Invest time and effort in the threat models while designing ML
solutions; (2) Make the ML model auditable; (3) Follow a secure development
process; and (4) Produce an initial operational cost model.

An open, available implementation of ML techniques for IDS is [1]. Authors in
[41] perform tests on the platform and concluded that the ML algorithm a large
training dataset to reduce the false positives. They also present the possibility
to create poisoning attacks to cause miss-classifications.

Additionally, it is important to identify tools that could be used in the analy-
sis of traffic. Studies such as [10,12,25,54,69] present ML-based traffic classifiers
to identify applications or flow features in different SDN scenarios. Although the
proposals are not specific for security, they might leverage the implementation
of security applications.

6.2 Datasets and Testbeds

Regarding datasets, from Tables 2 and 1, we identify a total of six public datasets
used on the studies. In Table 3 we present the available datasets (items 1 to 6) and
also a type that was created by the researches (item 7). The last two columns
of the table indicate how many studies use a particular dataset for Type 1
studies (Sects. 4.1 to 4.5), and the second represents Type 2 studies (frameworks
presented in Sect. 5).

It is noteworthy that most of the studies use similar datasets, which could
cause the same bias issues in the models. Twelve studies use the KDD-Cup 1999
and NSL-KDD datasets that are 20 and 10 years old respectively. Even though
they are used extensively in the research community, it is crucial to consider
that attacks become more and more sophisticated every day. Besides the owned
datasets, LongTail is the newest, but a single study uses it.
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Table 3. Datasets used for ML-based IDS in SDN

Item Dataset Year Studies

Type 1 Type 2

1 DARPA 99 1999 1 1

2 KDD-Cup 1999 1999 4 1

3 LongTail 2015 1 0

4 NSFNET topology NA 1 0

5 NSL-KDD 2009 5 2

6 UNB ISCX 2012 0 1

7 Owned NA 4 2

Regarding the datasets generated by the authors (classified as owned), stan-
dard tools are Mininet, Scapy [5], Distributed Internet TrafficGenerator (D-ITG)
and the DDoS attack tool TFN2K.

A common approach for creating datasets is to use the guide provided in [59].
The study presents a systematic approach to develop datasets although it is not
focused on SDN.

A more modern methodology is presented in [51]. The paper describes a con-
trolled environment to experiment and create datasets for training supervised
ML components and validate supervised and unsupervised solutions. The inten-
tion is to fill two gaps: (1) The need for threat data generation; and (2) Lack
of new datasets to design, train and validate ML models, instead of the old,
overused dataset. That is the case of the NSL-KDD. The proposal is an applica-
tion of NFV/SDN than ML. It presents, however, the possibility to obtain data
to be used in these type of systems.

Table 4. Testbeds used for ML-based IDS in SDN

Framework Testbed

[8] Emulation on mininet with pox controller and four OVS switches

[20] Emulation on mininet with RYU controller and 25 switchES with 200
hosts (2 different computers)

[36] Network implementation with Opendaylight controller and single
computer with many network cards acting as an Openflow vSwitch.

[38] Not defined

[45] Emulation on mininet with POX controller and one switch with 5 hosts

[63] Emulation with Cbench with POX controller

[67] Emulation on mininet implemented in public cloud (AWS EC2) and
extended in a privated cloud with Floodlight controller one switch and
two hosts. One of the hosts is a web server
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On the other hand, for testing of the complete frameworks, the most common
tools was Mininet. Authors also used Open VSwitch [3], and Cbench [2] for
emulation, as well as network implementation in the case of [36]. Authors in
[36], used public cloud environment AWS EC2 in combination of an emulated
private cloud.

We present the description of each testbed in Table 4.

7 Conclusion

We present the state of the art of ML-based SDN security proposals. The clas-
sification into ML techniques and frameworks allows identifying that very few
attacks are being studied in this context. Considering the broad spectrum of
cyber-security, there should be more work on different kind of attacks. Addi-
tionally, most of the proposals do not include collection techniques to feed the
ML model, or mitigation methods to act after detection. There is a need to define
specific schemes to implement the ML techniques in SDN. We also identify the
need to use updated and SDN-specific datasets that allow creating models to
fit actual networks and current attacks. Finally, we present the typical testbeds
for the proposals that include network implementation, where there is no imple-
mentation on any operative network. This survey allows scholars to find out
new research directions that address open problems in SDN security at differ-
ent levels. There are also opportunities to involve ML techniques to solve such
problems.

We also show in this paper that the use of ML techniques in SDN scenarios is
an interesting topic for the research community. However, some aspects receive
little attention and could be studied further. One key finding is related to the
absence of enough open datasets that can be used to compare new methods. From
the networking perspective, there is a lack of a comprehensive attack detection
that considers a broad spectrum.

As future work, we want to extend the analysis of the ML techniques used
in the reviewed papers with a more detailed study.
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Abstract. In this paper, we first present a theoretical analysis model on
the Proof-of-Work (PoW) for cryptocurrency blockchain. Based on this
analysis, we present a new type of PoW, which relies on the hardness of
solving a set of random quadratic equations over the finite field GF(2).
We will present the advantages of such a PoW, in particular, in terms of
its impact on decentralization and the incentives involved, and therefore
demonstrate that this is a new good alternative as a new type for PoW
in blockchain applications.
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1 Introduction

The idea of Proof-of-work was invented in 1992 by Dwork and Naor [12] and
it was initially invented to combat the spam attacks and the denial of ser-
vice attacks by making such attacks economically unviable. Proof-of-Work can
be defined as a protocol, which requires certain (from minimum to maximum)
amount of computations in order to finish a task. The computation performed
should produce something, which can be used to verify that the required amount
of computations are indeed accomplished. The concept of Proof of Work has since
found application. In 1997, Adam Back invented a protocol: HashCash, where
Proof-of-Work is built upon a hash function. The term “PoW” was coined by
M. Jakobsson and A. Juels later.

In October of 2008, Satoshi Nakamoto published his Bitcoin whitepaper [16],
where Proof of Work is a key element of the Bitcoin protocol. The white paper
stated that

“We propose a solution to the double-spending problem using a peer-to-peer
network. The network timestamps transactions by hashing them into an ongoing
chain of hash-based proof-of-work, forming a record that cannot be changed
without redoing the proof-of-work.”

Satoshi cited the work of HashCash. Therefore, however, the application of
the PoW in Bitcoins serves a purpose very different from the original intention.
c© Springer Nature Switzerland AG 2019
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A key innovation in Bitcoin is that it uses a Proof of Work to build a competitive
process called mining, which, with the help of digital signature system, help to
solve three key problems:

1. prevention of the unlawful modification of the record or high cost of unlawful
modification of the record;

2. synchronization of a decentralized system.
3. prevention of double spending;

In terms of our understanding, the main function of PoW is actually the prop-
erty (1) and (2), since double spending is actually detected through the digital
signature and therefore the stability of the blockchain due to the functionality of
PoW enable us to easily solve the problem of double spending. Therefore, in bit-
coin, Proof of Work systems is used to provide stability and security to an entire
decentralized network, where we do not request trust on any speciifc player but
the trust of the overall whole set of players. Proof of Work is used mainly to
build a stable consensus mechanism, namely if there are enough mining nodes
participating to perform the PoW, then the computational PoWer needed to
control or attack the network becomes unattainable for any single entity. Also
mining was really a great promotion tool to bring people participating in the
process to therefore build a truly trustworthy decentralized system. However, as
we all know, due to the appearance of the ASIC mining machines, the mining
PoWer is increasingly controlled by big business players, and it does not make
any sense for an ordinary user to doing mining on his or her PC on the side.

Later people invented many new PoW algorithms for various new altercoins,
which we will not mention here, since none of them give a solid scientific base for
their choices. In this paper, what we would like to do is to perform a complete
theoretical analysis of PoW in the context of PoW for cryptocurrency, namely
what are the theoretical properties we would like to have for a good PoW for a
cryptocurrency. There is some initial work done before [15] in this direction but
it is rather incomplete.

Then we will present our new PoW system, which is based on solving a
set of random multivariate quadratic equations over GF(2), and we will show
advantages of such a PoW system.

Remark 1. Here we would like to remark that the new PoW in bitcoin invented
something that we humans never had before namely we can produce a document,
which can be destroyed but can not be altered without incurring a tremendous
cost. From this perspective, we believe PoW is much better choice than Proof of
Stake (POS), since in a POS system, if someone controls the system, they can
do whatever they want with essentially no cost, but in the case of PoW system
for bitcoin, even if someone controls the system, if they want to do something
illegitimate, to change the record, they still must pay a high prize, which is the
best deterrence against the corruption of the system.
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2 Theoretical Analysis of PoW in Bitcoin and Its
Theoretical Model

The definition of PoW first requires certain amount of computations in order to
finish a task and the computation performed should produce something, which
can be used by anyone to publicly verify that the required amount of computa-
tions are indeed accomplished. From the mathematical perspective, we can view
PoW as a task to solve certain mathematical problem, which can be verified by
anyone. This requires clearly two properties of this mathematical problem:

1. This mathematical problem requires a certain amount computation (or a cer-
tain level of computational complexity) and no one should be able (easily) to
find a new way to solve the problem that substantially reduce the computa-
tion complexity, which otherwise allow certain people to cheat. We call such
a property the intrinsic hardness (IH) property of the problem.

2. Anyone can easily verify the solution is indeed a solution, We call this the
solution public verifiability (SPV) property of the problem.

The IH property clearly indicates that we should use some problem that is a
historicalluy very well-studied hard problem and we know very well computation
complexity to solve this problem. Clearly in the case of bitcoin, Satoshi chose
a very good problem, which we call the partial invertibility (PI) problem of
hash functions. A simplified way to define the problem can be presented as the
problem to find a string x of fixed length, such that

H(B, x) = (0, 0, ..., 0, ∗, ...∗),

where B is the block to be mined, H is a Hash function and ∗ means values we
do not care. Namely the problem is to find a preimage of any element whose
first fixed number of entries are zeroes. This problem is hard to solve due to
the Non-invertibility property of the hash functions, namely we can not find the
preimage of a Hash function for a randomly chosen elements in the image space.

But one thing he missed, we believe, is that he did not expect that the ASIC
machines can gain so much advantage compared with our ordinary PCs (scale
of million), which, in some way, causes some kind of centralization of the mining
PoWer being in the hands a few big miner and mining pools. However from
the recent history of development of Hash function, we should also know this
problem is not one of the historically well-studied problem since hash functions
has a short history, and as we know the Non-invertibility hash function (like
MD5) can be broken [11,18].

In the case of bitcoins, since it is a decentralized system, it means the mining
problem that needs to be solved for each block in any node can be easily set up by
anyone who has the information about the block, and the specific problem itself
can also be easily verified. We call this the easy set-up and public verifiability
(ESUVP) property of the problem. Since the Hash function is standardized and
widely used, it clearly satisfies this property.
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Also we should require that one can not easily find a block such that the
problem associated with that block is substantially easier than the usual mining
problem. This implies that in this family of the mathematical problems, it is
computationally impossible to find a problem which is substantially easier than
the hardest cases. We call such a property the homogenous hardness (HH) of
the problem. We can see that if the problem is not HH, it is possible for someone
to find an easier case and mine on such a case to gain advantage over others. In
the case of bitcoin, it means that we can not easily find a meaningful B (a valid
new block) such that it is easy to find x such that

H(B, x) = (0, 0, ..., 0, ∗, ...∗).

Surely one may say that that if we find already a solution for the problem,
H(B, x) = (0, 0, ..., 0, ∗, ...∗), we can repartition (B, x) to derive another solution,
but this is impossible due to the fact that we want x to be of the fixed length.

In the case of bitcoin, to ensure the timing of mining of each blocks to be
stable, the hardness of the problem of mining is adjusted accordingly if the
mining time is substantially higher or lower than 10 min. This means we can
actually adjust hardness in a controlled manner. In this case of bitcoin, the
hardness is adjusted by increasing or decreasing the number of bits of zeroes,
namely by increasing or decreasing the number of zeroes in the R.H.S. of

H(B, x) = (0, 0, ..., 0, ∗, ...∗).

The hardness is basically either doubled or halfed when we increase or decrease
the number of zeroes of the Hash image. In the case of Bitcoin, though we claim
we have more precise adjustment, the nature of searching algorithm decides that
the mining time has substantial fluctuations. Surely it will be much better to
have ways to make more precisely controlled, for example, reduce hardness by
a fixed percentage, however such a problem is clearly not easily to find. We will
call this the difficulty adjustability (DA) property [15].

One more thing the bitcoin system wanted is that it should be a decentral-
ized system that anyone can participate and make meaning contributions in the
mining process. This means that the algorithm to solve the problem can be dis-
tributed independently to many independent users. We call this the independent
distributability (ID) property of the problem. In the case of mining for bitcoin,
we actually do a brutal force search on x for all H(B, x), which can be easily
distributed. If a problem does not have this property, then the participants will
be very limited and it will not be a true decentralized system.

One more key property for PoW problems is that we should make sure that
the work done for one block can not be reused substantially for another block,
otherwise it will make it very hard to control the hardness since anyone can gain
advantage in mining or even performing attacks. One such extreme situation
is that, for any mined block, if someone can easily find a new block, which is
associate to exactly the same hard problem and therefore has the same solution,
then miners could reuse this problem and the solution to cheat or perform an
attack by replaced published blocks with new and different blocks. In general,
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it is better to have the property that the mathematical problem associated with
a given block to be uniquely determined, and for any given two blocks whose
associated problems are totally independent and therefore no work done in one
problem can be reused in another. Overall, the key is that work done for one
block can not be (meaningfully) reused for another block, and this is called
non-reusability (NR) properties [15].

Overall our conclusion is that a good PoW problem should have the following
properties:

1. the intrinsic hardness (IH) property,
2. the solution public verifiability (SPV) property,
3. the easy set-up and public verifiability (ESUVP) property,
4. the homogenous hardness (HH) property,
5. the r difficulty adjustability DA) poperty,
6. the independent distributability (ID) property.
7. the non-reusability (NR) property.

From the above analysis, we can see that it is not easy to find such a problem,
in particular, the properties IH and HH. It is clear to us many of the new PoW
algorithms in altercoins are very risky choices since we know not so much about
the hardness of these problems. Also it is very clear that Satoshi made a very
good choice with what we knew at the time.

In [15], Kim presented a new PoW where he pointed out clearly the NR and
DA property, but he did not state clearly the rest of the properties, in particular,
the ID property. He presented a new POW using prime numbers, but it is not
clear that his PoW satisfies all the properties we have here and we will address
it in a subsequent paper.

3 A New Proof of Work Based on Random Multivariate
Quadratic Equations

In this section, we propose a new idea to build a new family of PoW algorithms.
The basic objects of this section are systems of quadratic polynomial equations
in several variables over a finite field F = Fq with q elements (see equation (1)).

p(1)(x1, . . . , xn) =
n∑

i=1

n∑

j=i

p
(1)
ij · xixj +

n∑

i=1

p
(1)
i · xi + p

(1)
0

p(2)(x1, . . . , xn) =
n∑

i=1

n∑

j=i

p
(2)
ij · xixj +

n∑

i=1

p
(2)
i · xi + p

(2)
0

...

p(m)(x1, . . . , xn) =
n∑

i=1

n∑

j=i

p
(m)
ij · xixj +

n∑

i=1

p
(m)
i · xi + p

(m)
0 . (1)
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A well-known hard mathematical problem is the MQ Problem:

Problem MQ: Given m quadratic polynomials p(1)(x), . . . , p(m)(x) in the n
variables x1, . . . , xn as shown in equation (1) with the coefficients of the equations
uniformly and independently random chosen, find a vector x̄ = (x̄1, . . . , x̄n) such
that

p(1)(x̄) = . . . = p(m)(x̄) = 0.

The MQ Problem is proven to be NP hard including quadratic polynomials over
the field GF(2) [13] when m and n are of roughly the same size and this problem
is known to be hard on average. In this paper we will now only concentrate on
the case of GF(2).

The hardness of the MQ problem is the security foundation of the multivari-
ate public key cryptosystems [6], a new family of post-quantum cryptosystems
that can resist quantum computer attacks. Several such algorithms including
Rainbow signature [9] are selected in the second round of the National Insti-
tute of Standardization of Technology post-quantum crypto standardization
process [17].

The idea of using MQ problem for PoW is inspired by the work [10], where the
MQ problem is used to build a Hash functions. However that Hash function has
some security issues due to the collision resistance but NOT non-invertibility.

We will now present the construction of the new PoW algorithm based on
the MQ problem.

First we will select
n = m + 8,

namely we will have 8 more variables than the number of equations.
Let us now count the number of bits of coefficients of the all the polynomials

p(i), which is

N = m × (n(n − 1)/2 + n + 1) = (n − 8)(n2/2 + n/2 + 1).

Suppose that we have a block B which needs to be mined. The node will then
compute

hi = Hi(B) = H(H(..H(B))),

for i =, 1, 2..., �N/256�, if H is a 256 bit Hash function (or i =, 1, 2..., �N/512�,
if H is a 512 bit Hash function).

Then we will use hi one by one to assign them in a fixed order to be the coef-
ficients of the multivariate polynomials p(j)(x1, . . . , xn), and dump any leftover
bits.

Then the mining task is to find a vector

x̄ = (x̄1, . . . , x̄n)

such that
p(1)(x̄) = . . . = p(m)(x̄) = 0.
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Here we would like use the random oracle mode [2] to claim that we can view
these polynomials are indeed random polynomials since we can treat a hash
function as a random oracle.

Practically, the first question one may ask is that if there is indeed a solution.
The answer is positive with extremely high probability.

Theorem 1. For a MQ map with m random polynomials and m + 8 variables,
the probability that

p(1)(x̄) = . . . = p(m)(x̄) = 0

has no solution is approximately e−256, when m is big enough.

Here we will give a sketch of proof assuming the that the quadratic map is a
random function. Assume that we have a map from GF (2)m+8 to GF (2)m, due
to the randomness of the hash functions, we can assume that this is a random
functions. Then this becomes a map from a set of size 2m+8 to a set of size 2m.
We would like to find out the probability that there is no vector being mapped
to (0, . . . , 0, 0). It is easy to see that the probability is given as

(1 − 2−m)2
m+8

= ((1 − 2−m)2
m

)2
8
.

We know that if m is big enough (like 30), we have that

((1 − 2−m)2
m

) ≈ e−1.

Therefore the probability will be roughly

((1 − 2−m)2
m

)2
8 ≈ e−256.

This more or less guarantees that a miner can always find a solution.

Remark 2. In Bitcoin there is also no guarantee that for every block B there
is a string x such that H(B——x) is of the required form. However, each miner
works on a slightly different block (with different transactions) and every block in
Bitcoin also contains a so called coinbase transaction (this transaction contains
the Bitcoin address of the miner who wants to earn the reward money of creating
the new block as well as a nonce randomly chosen by the miner.) Therefore, there
exist many slightly different versions of the search problem which are worked on
in parallel by the different miners. One can be relatively sure that some of these
problem is actually solvable.

From the construction, it is clear that the solution public verifiability (SPV)
property and the easy set-up and public verifiability (ESUVP) property are
satisfied.

Due to the usage of hash functions, which can be viewed as a random oracle,
to produce the problem, we can see that two different blocks can never have the
same mining problems due to the collision resistance of hash functions and they
should be essentially independent of each other. There the property of NR is
satisfied.
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Let us then look that the intrinsic hardness (IH) property, which is actually
guaranteed by the NP-Hardness of the random MQ problem, and similarly we
can promise the homogenous hardness (HH) property due to again the NP-
Hardness of the random MQ problem.

Here we would like to remark that the hardness of partial inversion of a
hash function in general has a much higher theoretical risk in the sense we can
not actually prove the hardness of such a problem for the existing hash function,
which is evident by the fact that in the past hash functions like MD5 were broken
pretty badly.

Now, we would like to discuss the independent distributability (ID) prop-
erty of the MQ problem. In terms of human history, more than four thousand
years ago, Babylonian mathematicians could solve the problem of single variable
quadratic equations. For multivariate quadratic equations, the first “smart” algo-
rithm appeared in 1965 by Buchberger [4]. However for the problem we proposed
for mining, the state of the art of the best algorithm is actually again the brutal
force algorithm, which is clearly indicated in the Fukuoka MQ challenge, where
there is a public challenge to find solutions for such problems (https://www.
mqchallenge.org).

Due to the situation above, we also know that we can easily adjust the diffi-
culty of the problem for each block by adjusting the number of equations where
adding one more equation and one more variable means essentially doubling the
hardness and reducing one equation and one variable means halfing the hardness.
Therefore our PoW satisfies the DA property.

In addition, the new mining algorithm has other clear advantages.

1. The first one is the property we call ASIC resistance. Namely due to the
following properties:

– the simplicity of calculating the value of multivariate quadratic polynomi-
als, which involves very few number of simple addition and multiplica-
tion in GF(2) after checking the first element, by this we mean that in the
fast implementation of multivariate quadratic polynomial solving, we use
the so called Gray code, where we search solutions in the order that each
time we check if a new element is indeed a solution, it has only one bit
difference from the previous element checked, to speed up tremendously
the computation [3].
More precisely, for a quadratic function f(x1, ..., xn) over GF(2), it can
be written as

f(x1, ..., xn) =
∑

i<j

aijxixj +
∑

bixi + c.

We will look at the case where there only 1 bit change on x1. Assume that
we already know the value of f(x1, ..., xn) and we would like to calculate
f(x1 + 1, ...xn). We know that

https://www.mqchallenge.org
https://www.mqchallenge.org
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f(x1 + 1, ...xn) − f(x1 + 1, ..., xn)

=
∑

j>1
a1j(x1 + 1)xj + b1(x1 + 1) −

∑
j>1

a1j(x1)xj + b1(x1)

=
∑

j>1
a1jxj + b1.

This means that

f(x1 + 1, ...xn) = f(x1 + 1, ...xn) +
∑

j>1

a1jxj + b1.

Therefore we only need to calculate
∑

j>1

a1jxj + b1

to derive the value of f(x1+1, ...xn) from the value of f(x1, ...xn). Similar
formula applies to the case of change of value of any variable xi.

f(x1, ., xi, .., xn) = f(x1, ., xi, .., xn) +
∑

i�=j

aijxj + bj .

For such a simple calculation, GPU can achieve already great efficiency
that ASIC should not be able to improve too much, while this is not the
case at all in the case of PoW using hash functions.

– the polynomials for each block actually changes all the time (almost like
we use a different hash function for every block), which make it hard and
costly for ASIC implementations.

we do not think that ASIC implementation can gain that much advantage
compared to the usual GPUs. Surely this is based on our current technology.
We believe that ASIC surely will gain advantages but it will not be more
than a scale of 10 while the advantage of the case of bitcoin is about the
scale of 5000. Due to the high initial cost in ASIC production, we think this
design should greatly discourage the development of ASIC machines for do
such a mining and therefore make it viable for small miners to do mining
independently.

2. There is some work recently on attacks on PoW using quantum computers
[1,8,14] due to the large key sizes of the coefficients of the MQ polynomials,
the MQ-based PoW will be much harder to attack using quantum computers
since it will require much more qubits for finding solutions and each time a
different new set of multivariate quadratic functions has to be reloaded into
the quantum system.

3. Due to the long history (thousands of years) of study of solving polynomials
equations and the NP hardness of the problem, we expect that to attack our
new PoW is much harder.

4. In the case of mining in bicoins, the mining is used solely to support the
decentralized network. But in the MQ-based mining, the system actually
rewards any progress made on solving a NP-hard problem, which is a much
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more meaningful task compared to the case of hash-based mining. For exam-
ple, many of the problems to attack various cryptosystems, namely many of
the cryptanalysis problem, can be reduced to solving a hard seeming random
quadratic systems over GF(2) and any breakthrough in this area could have
tremendous effect in cryptography.

The new ideas presented in this paper is already implemented in a new cryp-
tocurrency called ABC (www.ABCMint.org) [5,7] and it has worked very well.
The research work in this paper was essentially finished in 2017. The public
chain for ABC was launched on June 18, 2018. However this paper is the first
publication to explain exactly the mathematics theory behind the PoW in ABC.

Surely there are many well-studied NP-hard problems, for example, the short-
est vector problem (SVP) for a lattice. However if we want to use the SVP prob-
lem for mining, it is not a good choice due to the property SPV, and ESUPV. It
is very hard to set up a SVP problem such that everyone can publicly verify, it is
indeed a hard problem and no one can cheat in the set up process. This is why,
unlike the MQ challenges, it is hard to set up pubic SVP challenges. Namely if
it is indeed a random lattice, it is very hard to verify a given vector is indeed a
shortest vector or not. Therefore it is actually better to use NP-complete prob-
lems, where we can easily verify the answers. A good example of a NP-complete
problem is the Knapsack problem, but the Knapsack problem does not satisfy
the HH property while the hardest cases of Knapsack problem is very hard but a
random case is often easy to solve. To build the hard for PoW for cryptocurrency
is not an easy task. From what we know by now, we believe nearly all the new
PoW algorithms for altercoins needs much more careful scrutiny and they all
look rather risky.

4 Conclusion

It is clear that PoW in bitcoin is different from usual PoW used in other applica-
tions and requires additional properties. We present a theoretical study of those
properties required and propose a new PoW algorithms based on the MQ prob-
lem an NP-hard problem. We show the advantages of this new PoW. We hope
to use this work to stimulate the research direction in PoW for cryptocurrencies.
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1 Colombian School of Engineering Julio Garavito, Bogota, Colombia
{andres.pardo-m,fabian.ardila}@mail.escuelaing.edu.co,

daniel.diaz@escuelaing.edu.co
2 Faculty of Computer Science, University of Murcia, Murcia, Spain

felixgm@um.es

Abstract. The paper at hand proposes BSIEM-IoT, a Security Informa-
tion and Event Management solution (SIEM) for the Internet of Things
(IoT) relying on blockchain to store and access security events. The secu-
rity events included in the blockchain are contributed by a number of
IoT sentinels in charge of protecting a group of IoT devices. A key fea-
ture here is that the blockchain guarantees a secure registry of security
events. Additionally, the proposal permits SIEM functional components
to be assigned to different miners servers composing a resilient and dis-
tributed SIEM. Our proposal is implemented using Ethereum and vali-
dated through different use cases and experiments.

Keywords: IoT · Intrusion detection system · Blockchain · SIEM

1 Introduction

The Internet of Things (IoT) has brought uncountable benefits in a number of
diverse and relevant environments. Yet, one of its current major drawbacks lies
in the lack of security solutions to protect these systems against cyber attacks.
One approach in this regard consists in processing the security events coming
from such ecosystem and use them to prevent, detect and mitigate security inci-
dents [2]. Security events, stemming either from IoT devices or from intermediate
security components, are collected and sent toward a centralized Security Infor-
mation and Event Management (SIEM) server to detect such incidents using one
of its available modules (correlation rules, policies, statistic models).

In this regard, the integrity of the security events is critical, since an alter-
ation of this data could induce false alarms. Likewise, availability is another
security requirement for those security events: all the security events should be
available to the SIEM modules in a timely manner, as well as resilient against
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denial attacks. Furthermore, traceability is also a key requirement here. A com-
prehensive registry of all event operations should be kept and maintained to
support an effective audit in case of a potential security violation.

Finally, a centralized architecture to detect intrusions in IoT ecosystems con-
stitutes a single-point of attack and a bottle-neck that in case of failure would
impact adversely all related security functions, mainly containment and recovery.
Thus, resiliency becomes another requirement for the security infrastructure, so
the security functions can not be interrupted.

In this paper, we present BSIEM-IoT, a blockchain-based and distributed
SIEM to detect attacks against IoT devices. This proposal is built over a
blockchain architecture, allowing interoperability between components of the IoT
ecosystem that contribute information related to security events. Every security
event is effectively protected in terms of integrity and non-repudiation due to
the intrinsic features of the blockchain [7]. Further, smart contracts (SC) [8]
in the blockchain guarantee a consistent behavior of the system, including the
authorization of actions over the security events. BSIEM-IoT is able to consume
local threat intelligence, enabling the detection of distributed attacks which can
only be discovered by correlating security events coming from different sources.
Moreover, our proposal connects to different external sources to get updated
threat intelligence and improve the analysis of the security events within the
blockchain.

The main contributions of this paper are as follows:

– A distributed SIEM proposal for IoT scenarios leveraging the benefits of a
blockchain (server-less operations, integrity, non-repudiation and resiliency).

– Development of methods in a smart contract to handle blocks of security
events and detect attacks from the security events available in the blockchain.

– Integration of the External and the Internal Threat Intelligence of the
BSIEM-IoT to make local validations originated in smart contracts.

– The evaluation of the proposal and its features through exhaustive experi-
ments, which in turn proved the feasibility of the solution for organizations.

2 Background

Blockchain is a decentralized P2P network where all transactions are validated
by all the nodes and recorded in a distributed and immutable ledger. Consensus
is the core of the blockchain technology as it guarantees the reliability of the
network, and some of the existing types are presented next [11]:

– Proof of Work (PoW): A transaction is approved if at least half plus one of
the nodes in the P2P network accept it.

– Proof of Stake (PoS): The node who has more wealth has greater probability
to participate in the consensus and create a block.
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– Proof of Importance (PoI): The nodes that can create a block are the ones
with the greatest number of transactions into the network.

– Proof of Authority (PoA): Only some nodes are explicitly allowed to create
new blocks and secure the blockchain.

In general, blockchain proposes two key ways to build a network [9], namely,
permissioned and permissionless blockchains, being the main difference the level
of governance implemented by each node. Permissionless blockchains (i.e public
blockchains) allow anyone to become a node and belong to the network. Nodes
on this blockchain can perform any task if they have the physical capability
(e.g., mine blocks, validate transactions, etc.). In turn, permissioned blockchains
(i.e. private blockchains) restrict the nodes belonging to the network and per-
forming tasks. A relevant feature of this kind of blockchain is that it may choose
the level of decentralization on the network, i.e., fully or partially decentralized.

With blockchain one can develop Decentralized Applications or DApps. To do
so, a Dapp requires a back-end component, and in this regard, blockchains imple-
ment smart contracts (SC) to support any required operation by the application
logic. Ethereum [1] is an open source platform to create smart contracts.

3 State of the Art

A number of proposals have arisen in the last years to protect IoT ecosystems.
Thus for instance, [2] proposes a security architecture employing security events.
Such architecture relies on a multi-relation between: (i) security events cate-
gories, providing information about the impact of an attack over a given IoT
device, (ii) vulnerabilities, to explain the causes of the attack, and (iii) attack
surfaces, yielding information on how the attack was conducted.

In turn, authors of [4] propose an IoT security framework for a smart home
scenario. This framework applies a novel instance of blockchain by eliminating
the concept of PoW and the need of coins. This work relies on a hierarchical struc-
ture that coordinates methods over the blockchain network to keep the security
and privacy benefits offered by this technology. Such hierarchical structure is
more suitable for the specific requirements of IoT since tasks on the network are
performed in a different and adjusted manner than a common blockchain such as
Bitcoin [3]. The framework proposes to manage the network and the belonging
devices with the methods store, access, monitor, genesis and remove.

A blockchain-based framework to support access control in IoT is introduced
in [10], implementing multiple smart contracts: (i) Access Control Contract
(ACCs) to manage the authorization of users over an IoT device, (ii) Judge Con-
tract (JC) to implement a misbehavior-judging method to facilitate the dynamic
validation of the ACCs, and (iii) Register Contract (RC) to register the infor-
mation of the access control and misbehavior-judging methods plus their smart
contracts. When an access request arrives to the framework, different validations
are done with the smart contracts before resolving such request.
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In addition, [5] investigates on the applicability of a blockchain to develop the
next-generation SIEM 3.0 systems, designed to detect information security inci-
dents in a modern and fully interconnected organization network environment.
This work brings the next generation of SIEM to a qualitatively new and higher
level by proposing a methodology for its evaluation based on the B method, the
most popular formal method to be used in industry projects and safety-critical
system applications to allow for highly accurate expressions of the properties
required by specifications and models systems in their environment.

As observed, there are already works dealing with cyber security for IoT sce-
narios and blockchains to tackle different IoT challenges. In particular, we found
that blockchain has been applied to support IoT operations like data synchro-
nization, communication or access control. In the paper at hand, we propose
BSIEM-IoT which, in contrast to all previous proposals, is specifically focused
on the management of IoT security events. Our proposal brings the principal
security features of blockchain to a regular SIEM to finally compose a security
solution which is specifically focused on IoT, resilient, trust-oriented, auditable
and scalable. To our best knowledge, there is no security solution applicable to
IoT ecosystems holding these attributes with verifiable functionality.

4 BSIEM-IoT

Our proposed blockchain-based and distributed SIEM for IoT, BSIEM-IoT, val-
idates and analyzes the compilation of security events stored in a distributed
ledger of a blockchain that keeps completely safe all the information against any
kind of unexpected modification. Additionally, our solution uses both internal
and external threat intelligence to identify suspicious behaviors and promptly
warn about an in-progress attack. Thus, BSIEM-IoT must satisfy these goals:

– Resilient: In order to offer a high availability of security services, the solution
should provide a go on alive capability, ensuring protection of IoT devices and
attack detection, even if the SIEM gets in a hostile situation.

– Trust-oriented: Only trusted nodes, i.e., IoT sentinels [6], must be allowed
to create transactions containing security events, avoiding data pollution.

– Auditable: The solution must be able to audit the block of events to identify
key elements in an incident response procedure, such as identifying node(s)
that issued an event or discovering causality relation between events.

– Scalable: The solution should be able to integrate new IoT Sentinels into
the blockchain network without impacting adversely other existing nodes.

It is important to understand that a blockchain network is composed of nodes.
While the IoT sentinels are the only ones who may create transactions in the
blockchain, solely some special nodes, called miners, can receive transactions
and mine (create) new blocks to be added to the blockchain. Moreover, both
IoT sentinels and miners participate in the consensus algorithm.

The architecture of our proposal BSIEM-IoT = (D,S,M, T ) is shown in
Fig. 1, encompassing the following elements: IoT devices (D), IoT sentinels (S),
distributed SIEMs (miners M) and external Threat Intelligence providers (T ).
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4.1 IoT Devices

IoT devices (D = {D1, . . . , DnD
}) are widely deployed nowadays, including sce-

narios like smart homes and smart offices, amongst others. Wherever they oper-
ate, they communicate with each other and/or with other entities in the overall
Internet. Due to the negative impact that a successful cyber attack would have
on these (usually unprotected) devices, their communications must be secured.

Miner groups 
events in a 
new block 

Miner groups 
events in a 
new block 

Miner checks 
blocks to 
detect attacks 

Sentinels generate security 
events (se ) from the 

behaviour of the IoT devices

Fig. 1. Architecture of the blockchain-based and distributed SIEM, BSIEM-IoT

4.2 IoT Sentinels

IoT sentinels (S = {S1, . . . , SnS
}) are in charge of shielding all the IoT devices in

their nearby against cyber attacks. In this regard, whenever an intrusion attempt
happens, the IoT sentinels generate the corresponding security event sei and
integrate it into a transaction that will subsequently be sent to the distributed
SIEM (miner), who will evolve it into a block and add it to the blockchain.

Thanks to the benefits offered by the blockchain network, the sentinel here
is only required to gather and keep a small portion of security events before
creating an actual transaction. Thus, the sentinel just needs to run a lightweight
blockchain client, turning such sentinel into a new node of the blockchain with
the capacity to create transactions and to participate in a consensus validation.
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The lightweight blockchain client allows the sentinel to handle smart con-
tracts, and such smart contracts, in turn, are employed to execute several useful
operations. For instance, the sentinel is able to format new security events and
add them to a transaction when a given threshold of collected security events is
reached. Likewise, the sentinel can also delete a specific security event from an
already created transaction, so to avoid storing trash data.

4.3 Distributed SIEM (miner)

In contrast to the IoT sentinels, the distributed SIEM acts as the miner node in
the blockchain (M = {M1, . . . ,MnM

}) and must have the highest hardware fea-
tures. Hence, the distributed SIEM is in charge of creating new blocks containing
the transactions got from the IoT sentinels. To this end, the miner employs its
computational power to solve a challenge in the blockchain network.

Moreover, the distributed SIEM will decode the information received from
the lightweight blockchain client (running within the IoT sentinel) and transfer
it to the external Threat Intelligence under specific formats, depending on the
IoT source where the data were collected.

4.4 External Threat Intelligence

The external Threat Intelligence (T ) is provided by a third-party service ana-
lyzing malware campaigns addressed to the most prominent industries and iden-
tifying Indicators of Compromise (IoC) and Indicators of Attack (IoA) that can
help another organization to detect an ongoing attack or to investigate a past
attack sharing some common features with a known attack.

Intelligence information delivered by an external Threat Intelligence provider
is definitely useful for BSIEM-IoT, as it may use it to analyze security events
that exist in the blockchain and consequently detect IoT attacks. BSIEM-IoT is
also able to incorporate this info from a third-party into its internal Threat Intel-
ligence database, so it can be usable in the attacks detection. It is important to
note that BSIEM-IoT is a distributed solution composed by a set of SIEMs, each
one having different security functions and even connected to different external
Threat Intelligence providers

5 Use Cases

5.1 Adding Blocks of Security Events to the Blockchain

As stated before, IoT sentinels are the only nodes in the blockchain network able
to generate transactions containing security events. Yet, this action should only
be granted when such devices are trustworthy enough. The novel implementation
of BSIEM-IoT includes a strategic permissioned operation mode to guarantee the
control and reliability of the information to be added to the blockchain.

Further, for the sake of efficiency, IoT sentinels may also group security events
and include them all within the same transaction. This feature avoids creating
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one block for each security event, which could impact the performance of the
blockchain. Thus, the Threshold of Security Events (λse > 0) is defined as
the minimum number of events that must be grouped to create a transaction
and is set previously in the configuration of the sentinels.

Finally, whenever a transaction is created by an IoT sentinel, the latter sends
it to a distributed SIEM, who will in turn mine a new block with such transaction
and add it to the blockchain.

5.2 Consuming the Blockchain to Detect Distributed Attacks

When BSIEM-IoT is launched, IoT sentinels start building security events for
every incident they detect. Hence, when a distributed cyber attack arises in the
protected network, aiming at different IoT devices, the IoT sentinels shielding
each of those victim IoT devices generate the corresponding security events.

While the IoT sentinels keep accumulating security events, they send trans-
actions (once the threshold λse is reached) to be validated and processed by the
distributed SIEM (miners). The miner processes the transaction, evolves it into
a new block with all the security events and adds it to the blockchain.

In case of a distributed attack, security events related to at least two victim
IoT devices are reported and added to the blockchain. If the security events are
reported by two different IoT sentinels, then each of them sends its corresponding
transaction to a miner. After the respective blocks are added to the blockchain,
the miner consumes the security events and analyzes them using its local threat
intelligence. This analysis includes the validation of security rules and policies
employed to correlate security events and consequently identify distributed cyber
attacks. To this end, miners can retrieve information from previous blocks stored
in the blockchain. In the course of the validation process, the relevant security
events are spotted and correlated to raise an alarm about the suspicious behavior.

5.3 Detecting Attacks Under Hostile Scenarios

BSIEM-IoT is resilient against unexpected situations or even attacks aimed
at the SIEM itself, without affecting its overall performance. Thus, if a miner
becomes the target of a cyber attack, leading to its operational disruption, IoT
sentinels would still keep generating transactions of security events. Further, the
redundant and distributed additional miners, would in turn keep supporting the
validation tasks needed to maintain the expected operational mode of the SIEM.

5.4 Auditing a Security Incident

Thanks to the traceability provided by the blockchain, along with the immutabil-
ity of its blocks, all the information recorded in the blockchain is permanently
available to be consumed in the future. Besides the security events, each block
also contains data such as the address and ID of the sentinel who created the
events, creation date and any information that can be useful for further analysis.
Such approach allows BSIEM-IoT to guarantee a completely auditable system.
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5.5 Scaling an IoT Security Infrastructure

By leveraging the scalability properties of blockchain, BSIEM-IoT permits inte-
grating further IoT sentinels as well as distributed SIEMs (miners) effortlessly. It
is worth noting that every new node in the network (either sentinel or distributed
SIEM) must be granted beforehand, prior to their actual functioning.

6 Experiments

Several preliminary experiments were conducted on the proposed solution to
prove its suitability in an IoT ecosystem. Since BSIEM-IoT is composed of dif-
ferent elements, as shown in Fig. 1, the experiments developed in this paper have
used the following infrastructure:

– IoT sentinels: Each sentinel has been deployed on a Raspberry Pi 3 model B,
equipped with a quad core 1.2 GHz CPU, 1 GB RAM, 16 GB Hard Disk and
OS Ubuntu Mate 16.1.

– Distributed SIEMs (miners): One SIEM (A) has been deployed in a desktop
computer, equipped with a core i3 3.4 GHz x4 CPU, 5.71 GB RAM, 1.82 TB
Hard Disk and OS Debian. The other SIEM (B) was deployed on a laptop
Lenovo L470 equipped with Intel Core i7 7500U (2.7 GHz), 16 GB RAM,
512 GB Hard Disk and OS Debian. All SIEMs have been tested using Alien-
vault OSSIM1 (Open Source SIEM) version 5.5.1.

For the ease of reading, the experiments settings are reported in Subsect. 6.1,
while a significant analysis of the results is carried out in Subsect. 6.2.

6.1 Settings

The experiments were conducted by running one Ethereum [1] node on each
physical component, i.e., the IoT sentinels and the SIEMs (miners). The SIEMs
(miners) were able to create mined blocks thanks to their computational capa-
bilities, whereas the IoT sentinels were only able to create transactions.

Each mined block in BSIEM-IoT is composed of a block header and a transac-
tion. The header contains regular Ethereum header data (time stamp, difficulty,
gas limit, uncles hash, gas used, among others) and the transaction includes in
the data field the security events that were generated by IoT sentinels.

As mentioned in Sect. 5.1, BSIEM-IoT is based on a permissioned blockchain
that allows only known nodes (IoT sentinels and SIEMs) to be part of the net-
work. The consensus mechanism was the one supported currently by Ethereum,
i.e. PoW; however, as Ethereum evolves, a more efficient consensus mechanism,
e.g. PoS, could be used instead of PoW. PoS would reduce the time and effort
that are currently required for the mining process.

1 https://www.alienvault.com/products/ossim.

https://www.alienvault.com/products/ossim
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The reward system for BSIEM-IoT defines its own token, which is similar
to Ether, but only valid internally. In a real scenario, users interested in pro-
tecting his own IoT devices could host an IoT sentinel connected to BSIEM-IoT
to share security events. Additionally, distributed SIEMs could be hosted by
different security providers at different levels like (i) Internet Service Providers
(ISP), which can be interested in providing security for residential customers,
(ii) National Computer Emergency Response Teams (CERTs), monitoring secu-
rity incidents with a possible massive impact, or (iii) Security vendors, which
can offer IoT security protection under a subscription. In this context, even if all
blockchain nodes are identified, not all nodes are necessarily trusted for sharing
security events. Security events are fundamental to detect and prevent attacks
through the use of Threat Intelligence.

The experiments were carried out using several clients that ease the imple-
mentation of BSIEM-IoT, namely: (i) A Remix2 client for the IoT sentinel, which
is in charge of grouping and encoding security events to be added to a new trans-
action, (ii) a JavaScript client for the SIEM (miner), running in the desktop
computer and responsible for listening and capturing new transactions of the
blockchain, in order to decode security events and make them understandable
for the OSSIM server, and (iii) a JavaScript client, running in the Raspberry Pi
and emulating the monitoring action that an IoT sentinel performs to generate
a set of security events.

6.2 Analysis of Results

This Section offers an in-depth analysis of the outcomes from the experiments
conducted over the BSIEM-IoT. The obtained results will be organized around
two kind of metrics (performance, blockchain) as shown in Table 1.

Table 1. Performance and blockchain metrics for BSIEM-IoT

Category Name Description

Performance CPU SIEM (miner) CPU usage along an experiment
time lapse

RAM SIEM (miner) RAM usage along an experiment
time lapse

Blockchain Number of blocks Blocks added to the blockchain

Gas used Cost of carrying out an operation(s) in the
Ethereum network

Difficulty Measure of how difficult is to generate a new block

2 https://remix.ethereum.org/.

https://remix.ethereum.org/
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To validate the capabilities of BSIEM-IoT, two scenarios have been consid-
ered and tested:

i. Scenario 1: No critical security events (e.g. informational syslog message)
are communicated from the IoT sentinel to the distributed SIEMs, which
can be retained in the sentinel until reaching a Threshold of Security Events
(λse = 5), and then be grouped in one transaction, until a total of 4,085
transactions is reached.

ii. Scenario 2: Critical security events (e.g. emergency syslog message) need to
be communicated in a short time from the IoT sentinel to the distributed
SIEMs, incorporating 1 security event per transaction, until reaching a total
of 1,000 transactions.

In both cases, all the metrics have been measured over the SIEM (miner).
Figures 2, 3, 4 and 5 plot the measures for each metric for both cases.
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Fig. 2. Blockchain metrics for scenario 1 with 4085 transactions with 5 events per
transaction

The outcomes of scenario 1 observed in Fig. 2 show how each function in a
smart contract generates a gas value that defines how complex it is to execute
the method in the corresponding Ethereum node. Since the first transaction was
mined, 663 s elapsed until the miner created the last transaction, so, on average,
each block took approximately one second to be mined.

On the other hand, the difficulty and number of blocks are directly propor-
tional, given that every new block increases the complexity to calculate a new
hash, and the difficulty considers this hash rate to be calculated. The number of
blocks increases in a rate of 0.92 blocks per second, while the difficulty raises in
a rate of 123.73 points of difficulty per second.
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Finally, the performance metrics for the SIEM 1 in the scenario 1 (see Fig. 3)
show a maximum percentage of 28.5 of used memory with some gaps where the
usage of CPU is zero. When the miner is in mining process, it used practically
all the CPU capability (i.e. four cores). On the other hand, the performance
metrics for the SIEM B in the scenario 1 (see Fig. 3) show a constant percentage
of 28.5 of used memory with some gaps where the usage of CPU is zero.

Fig. 3. Performance metrics for scenario 1 with 4085 transactions with 5 events per
transaction
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Fig. 4. Blockchain metrics for scenario 2 with 1000 transactions with 1 event per
transaction
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With regards to scenario 2, in Fig. 4 we observe that the time elapsed between
the mining of the first and last block for this test was 43 s. In this case, where
we have a greater number of transactions but lower quantity of events per trans-
actions, every block mined took approximately 0.043 s.

After both analysis and having in mind that difficulty is adjusted periodically
as function of how much hashing power has to be deployed by the network of
miners, it is possible to observe that it increases with the time at different rates
for each case. The above understanding let us realize that the difficulty rate is
related to the block production rate which should change when more miners join
the network.

Fig. 5. Performance metrics for scenario 2 with 1000 transactions with 1 event per
transaction

As for performance capabilities (see Fig. 5), in this scenario we found a similar
behavior compared to the first scenario. That is to say, the miners used almost
all its resources for both RAM memory and CPU usage. In this test, however,
the CPU does not have gaps of zero usage, but it is rather continually in use.

As a consequence of the previously analyzed experiments, we can conclude
that BSIEM-IoT yields a performance represented by a high CPU consumption
(98% approx) for the CPU and a medium RAM consumption (1.4 GB approx)
for the SIEMs (miners). Additionally, in both scenarios, BSIEM-IoT showcased
a stable behavior with an increasing difficulty as the number of blocks grew.
Last but not least, it is important to note that a block containing more events,
due to the grouping made by the IoT sentinel, could require more gas since the
block size is bigger in this scenario.
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7 Conclusions and Future Work

By leveraging the benefits of blockchains, this paper presented BSIEM-IoT, con-
tributing directly to the safety of IoT ecosystems managing the security events in
a strict way preserving integrity and non-repudiation. Additionally, BSIEM-IoT
offers desirable features for a sturdy security system such as resilience, trust-
orientation, auditability and scalability. Experiments show that BSIEM-IoT is
able to get a desirable performance with low transaction times, which depends
on the settings, being affected mainly by the Threshold of Security Events (λse)
and the consensus method.

As for future works, we plan to allow new types of transactions in our solution
according to the type of security event detected by the IoT sentinel, e.g. more
critical security events could be added to the blockchain with a higher priority,
whereas medium or low priority could be hold to be grouped. Finally, we will
study the feasibility of building a new generation of IoT devices that can be
blockchain-capable, qualified to report internal security events to the blockchain.
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Abstract. To protect distributed network resources and assets, collab-
orative intrusion detection systems/networks (CIDSs/CIDNs) have been
widely deployed in various organizations with the purpose of detect-
ing any potential threats. While such systems and networks are usually
vulnerable to insider attacks, some kinds of trust mechanisms should be
integrated in a real-world application. Challenge-based trust mechanisms
are one promising solution, which can measure the trustworthiness of a
node by sending challenges to other nodes. In the literature, challenge-
based CIDNs have proven to be robust against common insider attacks,
but it may still be susceptible to advanced insider attacks. How to fur-
ther improve the robustness of challenge-based CIDNs remains an issue.
Motivated by the recently rapid development of blockchains, in this work,
we aim to combine these two and provide a blockchained challenge-based
CIDN framework. Our evaluation shows that blockchain technology has
the potential to enhance the robustness of challenge-based CIDNs in the
aspects of trust management (i.e., enhancing the detection of insider
nodes) and alarm aggregation (i.e., identifying untruthful inputs).

Keywords: Intrusion detection · Collaborative network ·
Insider attack · Blockchain technology ·
Challenge-based trust mechanism

1 Introduction

Due to the connectivity and sensing features, Internet-of-Things (IoT) has been
gradually adopted by many organizations. The Gartner manager predicted that
the IoT would keep delivering new opportunities for digital business innovation
over the next decade, many of which can be further boosted by newly developed
technologies like artificial intelligence [12]. Their report forecasts that up to 14.2
billion things will be connected by the end of 2019, and will finally reach a total
of 25 billion devices by the end of 2021 [11].
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The rapid growth of IoT devices brings many benefits, i.e., facilitating our
daily lives, but it also becomes a major target by cyber criminals. The Symantec
security report indicated that the overall volume of IoT attacks remained con-
sistent and high in 2018 [51]. In particular, connected cameras and routers were
the most infected devices - there is an increase on the infection vector. While
worms and bots are still the most commonly detected IoT attacks. For example,
the Mirai distributed denial of service (DDoS) worm remained an active threat
and, account for 16% of the detected attacks, which was the third most common
IoT threat in 2018.

To help protect the security of IoT, intrusion detection systems (IDSs) are a
basic and essential security mechanism. To fit the distributed nature, collabora-
tive intrusion detection systems/network (CIDSs/CIDNs) are often deployed in
a distributed environment, which allow a set of IDS nodes to exchange required
messages and understand the protected environment [54,59]. A detector could be
either rule-based (signature-based) or anomaly-based. The former has to com-
pare its stored rules with incoming events, in order to identify an attack [44,55].
The latter discovers a potential threat through identifying an anomaly between
its pre-built benign profile and the current profile [45].

Insider attacks are one major threat to distributed networks and envi-
ronments, hence some trust mechanisms are often implemented to protect
CIDSs/CIDNs. In the literature, challenge-based trust mechanism is one promis-
ing solution, which evaluates a node’s reputation by sending challenges and
receiving the corresponding feedback [8]. A series of research like [8,9] has
proven its effectiveness against common insider attacks; however, some stud-
ies demonstrated that such challenge-based CIDNs may still be susceptible
to advanced attacks [23–25,27]. For instance, the Passive Message Fingerprint
Attack (PMFA) [23] enables suspicious nodes to cooperate in identifying normal
messages and remain their reputation without being detected. Thus, there is a
great need to design a more robust challenge-based CIDNs to ensure its detection
effectiveness. Below are three desirable attributes for a new CIDN framework.

– To avoid the issue of a single point of failure (SPOF), the CIDN framework
should not rely mainly on a centralized server.

– The CIDN framework should provide a robust trust management process,
which can evaluate the trustworthiness of nodes in an accurate way.

– The CIDN framework should be able to identify malicious inputs, which are
even from some trusted nodes.

Recently, blockchain technology has become quite popular encouraged by the
success of cryptocurrency Bitcoin. The Gemalto report [10] indicates that the
adoption of blockchains has doubled from 9% to 19% in the early 2019, and this
trend is likely to continue in the next year and beyond. They also described a
survey that up to 23% of respondents believed that blockchain technology would
be an ideal solution to use for securing IoT devices, and 91% of organisations
are likely to consider it in the future. For instance, Amazon announced its new
managed service, Amazon Managed Blockchain, which allows users to set up and
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configure a scalable blockchain network with just a few clicks [2]. With a huge
number of devices, blockchains can increasingly be used to monitor and record
those communications and transactions in an IoT environment [29].

Currently, blockchains have been applied into many domains like IoT [28,48],
transportation [17,22], and energy [47]. The strong encryption used to secure
blockchains can greatly increase the difficulty for cyber criminals to brute-force
their way into private and sensitive environments. Due to these merits, some
research has started trying to combine blockchains with CIDSs/CIDNs. An ini-
tial blockchain-based framework was proposed by Alexopoulos et al. [1], aiming
to protect the alarm exchange among the collaborating nodes. They regarded
raw alarms generated by the monitors are stored as transactions in a blockchain,
replicated among the participating nodes of peer-to-peer network. While they did
not show any experimental implementation or results. Tug et al. [52] introduced
CBSigIDS, a framework of collaborative blockchained signature-based IDSs, by
incrementally sharing and building a trusted signature database via blockchains
in a CIDN network. They mainly targeted the combination of blockchains with
signature-based IDSs, but remained anomaly-based detection as future work. On
the other hand, a blockchain-based framework called CIoTA was proposed by
Golomb et al. [13], which focused solely on anomaly detection via updating a
trusted detection model.

Contributions. Though some studies have discussed the intersection between
CIDSs and blockchains, to the best of our knowledge, most existing work was ini-
tialized at the high level, without specifying a concrete CIDS/CIDN. In addition,
there is no work focusing on a specific trust-based detection system. To make
up this gap, in this work, we focus on the challenge-based trust mechanism, and
develop a blockchained challenge-based CIDN framework. Our contributions can
be summarized as below.

– To combine the blockchain technology with a concrete type of trust-based
CIDN, we propose a blockchained challenge-based CIDN framework, which
can be workable under both signature-based and anomaly-based detection.
In particular, blockchains can be served as an additional layer to provide the
flexibility in practical deployment.

– Under our framework, we show how to use blockchains to enhance the robust-
ness of trust management against attacks, as well as protect the alarm aggre-
gation process from malicious inputs. The enhancement is valid for both
signature-based and anomaly-based detection.

– In the evaluation, we exploit the performance of our framework in the aspects
of trust computation and alarm aggregation. Our results demonstrate that our
framework can become more robust via the implementation of blockchains,
i.e., identifying malicious nodes and untruthful inputs.

Paper Organization. Section 2 introduces research studies on collaborative
intrusion detection and the background of blockchains. Section 3 describes our
framework of blockchained challenge-based CIDNs that can be suitable for both
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signature-based and anomaly-based detection. We show how to use blockchains
to enhance the trust management and alarm aggregation. Section 4 shows our
experimental settings and analyzes the collected results. We discuss some chal-
lenges in Sect. 5 and conclude the work in Sect. 6.

Each block 
contains 
data

A block is 
tied to 
previous 
block

Data
Structure

Consensus 
Algorihtms

Fig. 1. The high-level review of blockchains.

2 Background and Related Work

In this section, we introduce the background of blockchain technology and review
research studies on distributed detection systems, collaborative intrusion detec-
tion and blockchain-based detection.

2.1 Background of Blockchains

The original purpose of blockchains is to make payments between entities without
a trust relationship and build a temper-resistant blockchain. Cryptocurrencies
like Bitcoin have proven to be a phenomenal success. The underlying blockchain
technique, which is an ingenious combination of multiple technologies such as
peer-to-peer network, consensus protocol over a distributed network, crypto-
graphic schemes, distributed database, smart contract and game theory, provides
a decentralized way to build trust in our social and economic activities, and thus
holds a huge promise to change the future of financial transactions, and even our
way of computation and collaboration. As one of the hottest topics in the fields
of IT and Fintech, blockchain has drawn much attention from researchers, as
well as IT and FinTech industry. So far, both research community and indus-
try community have made significant progresses in blockchain technologies and
applications.

A blockchain node often maintains a list of records (known as blocks), which
are organized in a chronological order based on discrete time stamps [60]. A
block is typically comprised of a payload, a timestamp and a cryptographic hash
value. The first block is called genesis block, and the node behind can connect to
the previous one via a hash value. New blocks are added in a sequential manner
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with the next block containing a hash of the previous block. A new block can
be generated once the previous block enters in the blockchain. The big feature
of a block is that the recorded data in any block could not be modified without
the alteration of all subsequent blocks [38]. The high-level review of blockchains
is depicted in Fig. 1.

A blockchain can be generally classified into two categories: public blockchain
and permissioned blockchains [60]. The former enables anyone to join and con-
tribute to the network like Bitcoin [39] and Ethereum [58]. A public blockchain
is completely open and anyone is free to join & leave. Everyone can partici-
pate in the major activities of the blockchain network including reading, writing
and auditing the ongoing activities on the public blockchain network. The lat-
ter allows only verified entities to join the network, and perform only certain
activities on the network like Hyperledger [15]. For example, Such blockchains
would grant special permissions to each participant to have permissions to read,
access and write pre-defined information on the blockchains. Blockchain nodes
can make a decision-making process via consensus algorithms. There are some
requirements for consensus algorithms in blockchains. For instance, the algo-
rithm should collect all the agreements from chain nodes. Each node should aim
at a better agreement to fit a whole interest.

There are may related studies focused on consensus mechanism. Badertscher
et al. [3] put forth the first global universally composable (GUC) treatment of
PoS-based blockchains in a setting that captures arbitrary numbers of parties
that may not be fully operational (i.e., dynamic availability, which naturally cap-
tures decentralized environments within which real-world deployed blockchain
protocols are assumed to operate). They proposed a new PoS-based protocol
called “Ouroboros Genesis” which enables new or offline parties to safely (re-)
join and bootstrap their blockchain from the genesis block without any trusted
advice (such as checkpoints) or assumptions regarding past availability. With the
model allowing adversarial scheduling of messages in a network with delays and
captures the dynamic availability of participants in the worst case, the authors
proved the GUC security of Ouroboros Genesis against a fully adaptive adver-
sary controlling less than half of the total stake. Kiffer et al. [16] developed
a simple Markov-chain based method for analyzing consistency properties of
blockchain protocols. This method could be used to address a number of basic
questions about consistency of blockchains such as providing a tighter guaran-
tee on the consistency property of Nakamoto’s protocol, analyzing a family of
delaying attacks and extending them to other protocols, giving the first rigorous
consistency analysis of GHOST, and so on. Wan et al. [56] presented a novel
hybrid consensus protocol named Goshawk, in which a two-layer chain structure
with two-level PoW mining strategy and a ticket-voting mechanism are elab-
orately combined. They showed that Goshawk is the first blockchain protocol
with three key properties such as high efficiency, strong robustness against the
51% attack.

Pass et al. [42] proposed a new paradigm called Thunderella for achieving
state machine replication by combining a fast, asynchronous path with a (slow)
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synchronous “fall-back” path. With this paradigm, they provided a new resilient
blockchain protocol (for the permissionless setting) assuming only that a major-
ity of the computing power is controlled by honest players, and optimistically,
transactions could be confirmed as fast as the actual message delay in the net-
work if 3/4 of the computing power is controlled by honest players, and a special
player called the accelerator is honest. Daian et al. [4] presented a provably
secure proof-of-stake protocol called Snow White. As a matter of fact, Snow
White was publicly released in 2016. It provides a formal, end-to-end proof of a
proof-of-stake system in a truly decentralized, open-participation network. The
authors identified a core “permissioned” consensus protocol suitable for proof-
of-stake, and proposed a robust committee re-election mechanism such that as
stake switches hands, the consensus committee can evolve in a timely manner
and always reflect the most recent stake distribution. They also introduced a
formal treatment of costless simulation issue and gave both upper- and lower-
bounds that characterize exactly what setup assumptions are needed to resist
costless simulation attacks.

2.2 Related Work

In real-world applications, a separate IDS often has no information about its
deployed and protected environment, opening a chance for attackers and cyber-
criminals. Due to the lack of contextual information, it becomes very hard for
an IDS to figure out complicated attacks. Focus on this issue, there is a great
need for building a distributed system or collaborative network to enhance the
detection performance [59].

Distributed Systems. Distributed systems have been widely used in various
domains over many years. For example, Prras et al. [43] introduced EMER-
ALD (Event Monitoring Enabling Responses to Anomalous Live Disturbances)
in 1997, which aimed to monitor malicious behaviors across different layers in a
large network. It can model distributed high-volume events and correlate them
using traditional IDS techniques. Snapp et al. [46] presented a distributed Intru-
sion Detection System (DIDS), which could improve the monitoring process
with data reduction method and centralized data analysis. Then, COSSACK
system [41] was developed to reduce the impact of DDoS attack, which could
work without the support and inputs from humans, i.e., it could generate rules
and signatures in an automatic way. Then, DOMINO (Distributed Overlay for
Monitoring InterNet Outbreaks) [61] was proposed, aiming to enhance the col-
laboration process among different nodes. They particularly used an overlay
design to achieve a heterogeneous, scalable, and robust mechanism. PIER [14]
was an Internet-scale query engine and a kind of querying-based system. It could
help distribute dataflows and queries in a better way.

Collaborative Intrusion Detection. A collaborative system encourages an
IDS node to collect and exchange information with other nodes. Li et al. [18]
found that most distributed intrusion detection architectures could not be
scalable under different communication mechanisms. Thus, they proposed a
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distributed detection system by means of a decentralized routing infrastruc-
ture. However, one big limitation is that all nodes in their approach should be
intra trusted. This may lead to insider attacks, which are one common threat
for various distributed systems and collaborative networks.

To protect distributed/collaborative systems against insider attacks, it is very
important to design suitable trust mechanisms to measure the reputation in such
systems and networks. As an example, an overlay IDS was proposed by Duma
et al. [5], which could identify insider attacks. It consists of a trust-aware engine
for correlating alarms and an adaptive trust mechanism for handling trust. Then
Tuan [53] applied game theory to help enhance the detection performance in a
P2P network. They found that if a trust system was not incentive compatible,
the more numbers of nodes in the system, the less likely that a malicious node
would be identified.

Fung et al. [8] proposed a kind of challenge-based CIDNs, which could eval-
uate the trustworthiness of an IDS node based on the received answers to the
challenges. They first proposed a collaboration framework for host-based IDSs
with a forgetting factor, which can emphasize on the recent behavior of a node.
To enhance such challenge mechanisms, Li et al. [19] claimed that IDS nodes
may have different sensitivity levels in identifying particular intrusions. Then
they proposed a concept of intrusion sensitivity (IS) that measures the detection
sensitivity of an IDS for a particular intrusion. They also designed an intrusion
sensitivity-based trust management model [20] that could automatically allo-
cate the values by using machine learning classifiers like KNN classifier [34].
They also performed a study to investigated the effect of intrusion sensitivity
on detecting pollution attacks, where a set of malicious nodes collaborate to
affect alert rankings by offering untruthful information [21]. They indicated that
IS can help decrease the reputation of malicious nodes quickly. Other related
work regarding how to improve the performance of intrusion detection can refer
to [6,7,30–33,36,37,57].

Blockchain-Based Intrusion Detection. The application of blockchains in
the field of intrusion detection has been studied, but it is still an emerging
topic. Alexopoulos et al. [1] described a framework to show how to combine a
blockchain with a CIDS. They considered a set of raw alarms produced by each
IDS as transactions in a blockchain. Then, all collaborating nodes could use a
consensus protocol to ensure the transaction validity before delivering them in
a block. This can make sure that the stored alarms are tamper resistant in the
blockchain. The major limitation is that they did not provide any results or
implementation detail.

Then Meng et al. [38] provided the first review regarding the intersection
of blockchains and intrusion detection, and introduced the potential applica-
tion of such combination. They indicated that blockchains can help enhance
an IDS in the aspects of data sharing, trust computation and alarm exchange.
For anomaly detection, Golomb et al. [13] described a framework called CIoTA,
which could apply blockchains to perform anomaly detection in a distributed
manner for IoT devices. By contrast, Li et al. [26] demonstrated how to use



Towards Blockchained Challenge-Based Collaborative Intrusion Detection 129

blockchains to enhance the performance of collaborative signature-based IDSs
via building a verifiable rule database. On the other hand, some studies investi-
gated how an IDS can help protect blockchain applications. Steichen et al. [50]
introduced an OpenFlow-based firewall named ChainGuard, which could help
protect blockchain-based SDN and identify malicious traffic and behavior in the
network.
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Fig. 2. Blockchained challenge-based CIDN framework: a high-level review.

3 Our Proposed Framework

As discussed above, there are already some studies investigating the intersec-
tion of collaborative intrusion detection and blockchains. While most of them
(e.g., [1]) focused on a generic CIDS without considering a particular trust mech-
anism. In practice, the implementation of blockchains may depend on the specific
types of trust mechanisms. In this section, we propose a blockchain-based frame-
work for challenge-based CIDNs particularly.

3.1 Framework Design

Figure 2 shows the high-level framework of blockchained challenge-based CIDNs.
Under the CIDN, an IDS module is a basic component. There are some more
major components: collaboration component, trust management component, P2P
communication, and chain component.
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– Collaboration component is mainly responsible for assisting a node in com-
puting the trust values of another node by sending out normal requests or
challenges, and receiving the relevant feedback. This component can help a
tested node deliver its feedback when receiving a request or challenge. For
instance, Fig. 1 shows that when node A sends a request or challenge to node
B, it can receive relevant feedback.

– Trust management component is responsible for evaluating the reputation of
other nodes via a specific trust approach. Challenge-based mechanism is a
kind of trust approach that computes the trust values through comparing the
received feedback with the expected answers. Each node can send out either
normal requests or challenges for alert ranking (consultation). To further
protect challenges, the original work [8] assumed that challenges should be
sent out in a random manner and in a way that makes them difficult to be
distinguished from a normal alarm ranking request.

– P2P communication. This component is responsible for connecting with other
IDS nodes and providing network organization, management and communi-
cation among IDS nodes.

– Chain component. This component aims to connect the node with the
blockchain, i.e., uploading information, voting and receiving decisions.

Blockchain Layer. This layer makes the framework different from traditional
CIDN frameworks, by allowing to establish a consortium blockchain. A sepa-
rate layer can facilitate the migration from the traditional framework to our
blockchain-based framework, without the need of changing the infrastructure
much. This framework is also workable under both signature-based and anomaly-
based detection. That is, this layer provides an interface for both detection
approaches to connect with blockchains. Taking malicious feedback as an exam-
ple, each chain node can check and share the suspicious feedback to the chain,
and other chain nodes can help verify the feedback. This can help either build a
trusted rule database [26] or enhanced profile [13].

In such network, every IDS node can select its own partners according to
defined policies, and maintain a list called partner list. When a node wants to
join the CIDN, it first has to apply and get a unique proof of identity (e.g.,
a public and a private key pair) via a trusted certificate authority (CA). As
depicted in Fig. 1, if node B asks for joining the network, it has to send a request
to a CIDN node, say node A. Then, node A makes a decision and sends back an
initial partner list, if node C is accepted. A CIDN node can typically send two
types of messages: challenge and normal request.

– A challenge mainly contains a set of IDS alarms, where a testing node can
send these alarms to the tested nodes for labeling alarm severity. Because
the testing node knows the severity of these alarms in advance, it can judge
and compute the satisfaction level for the tested node, based on the received
feedback.

– A normal request is sent by a node for alarm aggregation, which is an impor-
tant feature of collaborative networks in improving the detection performance



Towards Blockchained Challenge-Based Collaborative Intrusion Detection 131

of a single detector. The aggregation process usually only considers the feed-
back from highly trusted nodes. As a response, an IDS node should send back
alarm ranking information as their feedback.

3.2 Trust Management

Node Expertise. In this work, we consider three expertise levels for an IDS
node as low (0.1), medium (0.5) and high (0.95). The expertise of an IDS can
refer to a beta function described as below:

f(p′|α, β) =
1

B(α, β)
p′α−1(1 − p′)β−1

B(α, β) =
∫ 1

0

tα−1(1 − t)β−1dt

(1)

where p′(∈ [0, 1]) is the probability of intrusion examined by the IDS. f(p′|α, β)
means the probability that a node with expertise level l responses with a value
of p′ to an intrusion examination of difficulty level d(∈ [0, 1]). A higher value of
l means a higher probability of correctly identifying an intrusion while a higher
value of d means that an intrusion is more difficult to detect. In particular, α
and β can be defined as [9]:

α = 1 +
l(1 − d)
d(1 − l)

r

β = 1 +
l(1 − d)
d(1 − l)

(1 − r)
(2)

where r ∈ {0, 1} is the expected result of detection. For a fixed difficulty level,
the node with higher level of expertise can achieve higher probability of cor-
rectly detecting an intrusion. For example, a node with expertise level of 1 can
accurately identify an intrusion with guarantee if the difficulty level is 0.

Node Trust Evaluation. To measure the reputation of a target node, a testing
node can deliver challenges via a random generation process. Then the testing
node can calculate a score to indicate the satisfaction. According to [8], we can
evaluate the reputation of a node i according to node j as follows:

T j
i = (ws

∑n
k=0 F j,i

k λtk∑n
k=0 λtk

− Ts)(1 − x)d + Ts (3)

where F j,i
k ∈ [0, 1] is the score of the received feedback k and n is the total

number of feedback. λ is a forgetting factor that assigns less weight to older
feedback response. ws is a significant weight depending on the total number of
received feedback, if there is only a few feedback under a certain minimum m,
then ws =

∑n
k=0 λtk

m , otherwise ws = 1. x is the percentage of “don’t know”
answers during a period (e.g., from t0 to tn). d is a positive incentive parameter
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to control the severity of punishment to “don’t know” replies. More details about
equation derivation can be referred to [8].

Satisfaction Evaluation. Intuitively, satisfaction can be measured between an
expected feedback (e ∈ [0, 1]) and an actual received feedback (r ∈ [0, 1]). In
addition, we can construct a function F (∈ [0, 1]) to derive the satisfaction score
as follows [8,9]:

F = 1 − (
e − r

max(c1e, 1 − e)
)c2 e > r (4)

F = 1 − (
c1(r − e)

max(c1e, 1 − e)
)c2 e ≤ r (5)

where c1 controls the degree of penalty for wrong estimates and c2 controls
satisfaction sensitivity. A larger c2 means more sensitive. In this work, we set
c1 = 1.5 and c2 = 1 based on the simulation in [9].

In Combination with Blockchains. The blockchained challenge-based CIDN
can be treated as a consortium blockchain, as each node should be verified by
a CA and get their key pair. It is a key to enhance the robustness of trust
computation by measuring the received feedback. In this case, we can submit
the received feedback to the chain for verification. If it is not passed, then the
feedback can be considered as a suspicious one.

3.3 Alarm Aggregation

Alarm aggregation is a critical process, which can help such collaborative sys-
tems make a decision. Intuitively, a node performing the process can request the
alarm rankings from other trusted nodes in its partner list. For instance, node
j can aggregate the feedback Rj(a) from others, and make a decision, e.g., the
aggregated ranking of alert a, by using a weighted majority method as below.

Rj(a) =

∑
T≥r T j

i Dj
i Ri(a)∑

T≥r T j
i Dj

i

(6)

where Ri(a)(∈ [0, 1]) indicates the aggregated ranking of alert a by node i, r
means a trust threshold that node j only accepts the alarm ranking from those
nodes whose reputation is higher than this threshold. T j

i (∈ [0, 1]) indicates the
reputation of node i according to node j. Dj

i (∈ [0, 1]) describes how many hops
between these two nodes.

In Combination with Blockchains. The alarm aggregation is a critical pro-
cess in CIDNs, in which an IDS node decides whether there is an intrusion or
not. In real-world applications, some malicious nodes may have high reputation
at first (e.g., betrayal nodes) and can send untruthful alarm feedback. To avoid
the negative impact, the blockchained challenge-based CIDN can submit the
received alarm ranking to the chain for validation. If any suspicious clues are
found, then the received alarm feedback can be discarded.
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4 Evaluation: A Case Study

In this section, as a first study, our purpose is to evaluate the initial perfor-
mance of our framework in a simulated environment, where malicious nodes
could perform an advanced collusion attack, called random poisoning attack [35].
It enables malicious nodes making untruthful feedback with a possibility. In prac-
tice, the possibility can be tuned according to the requirements from different
environments and networks. The simulated environment contains 50 nodes that
are randomly distributed in a 12 × 12 grid region. We deployed an IDS, e.g.,
Snort [49] and Zeek [62] in each node, and all IDS nodes can find their own
partners after communicating with others within a time period. The consortium
blockchain was deployed in a mid-end computer with Intel(R) Core (TM)i6,
CPU 2.5 GHz with 100 GB storage.

To evaluate the trustworthiness of partner nodes, each node can send out
challenges randomly to its partners with an average rate of ε. There are two
levels of request frequency: εl and εh. For the nodes that have a unclear trust
value around the threshold, the frequency should be set as high εh. The detailed
parameters are shown in Table 1. All the settings are maintained similar to rel-
evant work [8,20,24].

Table 1. Parameter settings in the experiment.

Parameters Value Description

λ 0.9 Forgetting factor

m 10 Lower limit of received feedback

d 0.3 Severity of punishment

εl 10/day Low request frequency

εh 20/day High request frequency

r 0.8 Trust threshold

Ts 0.5 Trust value for newcomers

Trust Evaluation Under Attack. We randomly selected three expert nodes
to perform the random poisoning attack. In particular, a malicious node under
random poisoning attack enjoys a possibility of 1/2 in sending out malicious feed-
back. Figure 3 depicts the reputation of malicious nodes under both traditional
framework and our blockchain-based framework.

– It is observed that the trustworthiness of malicious nodes could be reduced
faster under our framework than that under the traditional framework. This
is because traditional framework cannot identify all malicious feedback nodes
as the malicious nodes only behave untruthfully with a possibility.

– By contrast, our framework leverages the application of blockchains and each
feedback could be verified by all chain nodes. This can greatly increase the suc-
cessful rate of detecting malicious feedback. Thus, our framework can decrease
the reputation of malicious nodes in a fast manner.
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Alarm Aggregation Under Attack. Similarly, we also selected three expert
nodes randomly to deliver false alarm rankings to a node that performs alarm
aggregation. We mainly consider a false negative (FN) rate and a false positive
(FP) rate. Figure 4 shows the errors of alarm aggregation under both traditional
framework and our framework.
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– It is found that the errors under the traditional framework are generally
high with FN = 33.3% and FP = 34.8%. This is because the traditional
framework cannot identify malicious nodes efficiently, e.g., under the random
poisoning attack. Therefore, these malicious nodes could still make a negative
impact on the alarm aggregation.

– In the comparison, our framework could reduce the error rates significantly,
i.e., with FN = 10.8% and FP = 11.9%. There are two major reasons. One
is that our framework can help identify malicious nodes in a quick manner,
e.g., under the random poisoning attack. Also, in our framework, the received
alarm rankings can be submitted to the chain for verification, and it is easier
to detect untruthful inputs, even from trusted nodes, i.e., betrayal nodes.

Overall, our study indicates that our framework can enhance the robustness
of challenge-based CIDNs in the aspects of both trust management and alarm
aggregation, through integrating with blockchains.

5 Discussion and Challenges

Though blockchain technology can bring a lot of benefits, it is still at a developing
stage, which may suffer many challenges from both inside and outside [38].
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– Energy and cost. The computational power is a concern for blockchain applica-
tions in real-world scenarios. For example, Proof of Work (PoW) may require
huge amounts of energy while doing bitcoin mining, where the electricity
consumption could rise to 7.7 GW by the end of 2018, which is almost half a
percent of the world’s electricity consumption.

– Security and privacy. Though Bitcoin has been widely adopted, it does not
mean that it is safe. There are existing some types of attacks. Taking eclipse
attack as an example, as the chain nodes have to keep constant communi-
cation to compare data, an attacker can fool it into accepting false data if
he/she has successfully compromised that node [40]. This results in wasting
network resources or accepting fake transactions. There is a need to enhance
the security of blockchain itself.

– Complexity and speed. Blokchain is a complex system that is hard to be
established from scratch. A single mistake may cause the whole system to be
compromised. Due to the complexity, it also suffers data storage and trans-
action speed issues. As a study, we only tried a proof-of-concept chain to
investigate the performance. It is an important topic to exploit the practical
performance when the blockchain runs for a while.

– Blockchain size. In the beginning of a blockchain, the node number may be in
a small scale, which makes it vulnerable to many attacks during the growth.
For instance, assume there are only 30 nodes, if a single entity successfully
controls just or more than 51% of the blockchain nodes, then it has a high
probability to control the whole outputs.

6 Conclusion

Challenge-based Collaborative intrusion detection provides a promising solution
to safeguard assets from being compromised; however, it may still be vulnerable
to advanced attacks in practical deployment. Motivated by the fast development
of blockchains, in this work, we propose a blockchained challenge-based CIDN
framework by leveraging the benefits offered by the blockchain technology. Our
framework enables nodes to form a consortium chain and improve the robustness
of challenge-based CIDNs. In the evaluation, our results demonstrate that our
framework can enhance the robustness in the aspects of trust management by
detecting advanced malicious nodes, and alarm aggregation through identifying
untruthful inputs and reducing error rates.
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Abstract. Indoor location-based application and services based on Wi-Fi have
serious problems in terms of privacy since attackers could track users by cap-
turing their MAC addresses. Although several initiatives have been proposed by
scientific community to properly address authentication by strongly preserving
privacy, there are still improvements and steps that need to be developed as it is
not clearly stated what would occur if a device is lost, stole or compromised. It
has not been said how an affected user should proceed in such case. In this
situation, this work provides an enhancement to a previous solution based on
pseudo-certificates issued by third-party authorities for anonymous authentica-
tion of mobile devices. The proposed scheme provides privacy to users willing
to remove a device that has been stolen or lost. The proposed system offers
security while maintaining minimal cryptographic overhead.

Keywords: Privacy � Anonymous de-authentication �
Indoor positioning system � IPS � WLAN

1 Introduction

Scientific community and industry show a great interest on improving the accuracy of
Indoor Positioning Systems (IPS) [1–3] because it is an alternative to GPS and it could
be applied to different areas of Internet of Things such as healthcare and social life
[2, 4]. Even though several technologies could be applied to acquire indoor positioning
data, Wi-Fi is the most used technology since it is widely used among private and
public organizations [3, 5].

Different improvements of indoor positioning systems have been presented in
different works; however, in most of cases, the privacy issue has been left aside [6, 7].
Similarly, a novel privacy-aware authentication system for Wi-Fi IPS was proposed in
[8]. Likewise, there are other approaches looking for protecting the privacy of users
based on lightweight solutions [9], Secure Two Party Communication (STPC) [10],
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Physical Signatures [11] or application to change MAC address randomly [12].
Additionally, there are other solutions that use continuous authentication with the
exclusion of identifiers from message headers [13] or propose an scheme based on a
secret, token and biometrics [14]. As shown, many solutions have been proposed to
perform authentication by preserving anonymity. However, the aforementioned related
works, in spite of being secure and privacy conservatives, do not consider the whole
scenario which is associated when a device has been lost, stolen or compromised and
needs to be removed from the system. The user must have the power to perform such
action as he/she is the owner of the device. Moreover, the intervention of a system
administrator would cause more problems since the administrator could unsubscribe a
valid user by mistake or since the user will have to follow an administrative procedure
to request the device removal making the user to wait longer than expected.

The use of pseudo-certificates guarantees privacy because they do not store users’
information and they have a validity time to prevent being reused after a certain period
of time [8]. However, such security mechanism is not enough since if a malicious user
manages to obtain a valid (loss or stolen) device, he/she will be able to access to the
system as the device is a registered equipment with a valid set of credentials. For this
reason, this paper intends to make an improvement of [8] by providing a simple but
secure mechanism for users with valid credentials that allows users removing their
devices from the system. To reach this goal, it is necessary to design a proper protocol
with features that allow to remove every record of the device from the whole system
without disclosing information and preserving privacy and anonymity. In summary, the
major contribution of this paper is to enhance a protocol designed in a previous work
[8] by proposing a novel initiative to securely remove a device of a particular individual
that was previously registered in the system [3, 15].

The rest of the paper is structured as follows, Sect. 2 comprises a brief revision on
authentication protocols for indoor positioning systems based on WLAN. Then, the
proposed solution is explained with details in Sect. 3. Later, Sect. 4 analyzes the
proposed solution in terms of security and performance. Finally, the paper is concluded
in Sect. 5.

2 State of the Art

Scientific community has focused on addressing privacy issues by proposing different
works [8–17]. Reference [5] discusses several of those proposals including solutions
based on obfuscation of sensitive data and usage of random MAC addresses. In [13] a
proximity based control is proposed where the authors emphasize on removing pre-
viously generated information over packets to preserve privacy. An approach focused
on a triple combination of a token, secret and biometrics is discussed in [14]. Such
work is mainly oriented to use a smart phone to authenticate and authorize over a
location-based system; in such system, two protocols are proposed: one for registration
and another to handle authorization and authentication. Although the solution addresses
privacy and authentication in a secure way, it does not describe how to remove a device
that has been lost or stolen i.e. compromised. Likewise, the reference [10] indicates that
the IPS server could violates user’s privacy and that the device could forces the system
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to disclose its location. Their solution suggests the use of a Secure Two-Party Com-
putation (STP) to protect the privacy of all the involved participants. In this approach,
the user encrypts and sends the private inputs (RSSI distance measured from APs) to
the server with a secure algorithm. However, this approach does not deliver an
authentication mechanism before attaching to the system which means that any user
would be able to send his/her inputs. Additionally, in case that a user wanted to be
removed from the system, there is no formal process to achieve such goal. Indeed, lack
of authentication might lead that the user would send its position to a rogue IPS server
that might be deployed within the same network.

Moreover, the proposal discussed in [16] presents an algorithm called Tempo-
ralVectorMap (TVM). It allows a user to accurately know his/her position by taking
advantage of a k-Anonymity Bloom (kAB) filter and a bestNeighbors generator of
camouflaged localization requests. According to the authors, both of the aforemen-
tioned techniques seem to be resilient to some privacy attacks. This proposal draws two
phases: (i) initial localization and (ii) continuous localization. During the first phase, the
kAB is built based on the MAC address of an Access Point (AP), assuming that the AP
is valid within the context of the network as it has been registered by the server. Phase
of continuous location implements bestNeighbors algorithms to handle users that could
be moving around the deployed ecosystem. Authors suggests that their solution is not
prone to linking attack as there are no attribute records stored in the server and it is
resistant to homogeneity attack as it uses hashing to generate a set of unique AP MAC
values. Anyhow, along this solution, there is no formal procedure for registering or
removing a device.

Another approach based on WLAN for wireless sensor networks is discussed in [9].
The authors propose a lightweight authentication protocol which is mainly based on
Fermat Number Transform (FNT) and Chinese Remainder Theorem (CRT) to maintain
secure communication. The encryption and decryption algorithm are based on a pro-
tocol that involves a combination of substitution cipher and columnar transposition
which withstands linear crypt analysis rather than using a formal known one. The
authentication relies on generating a prime number that is stored in the node and in the
server. The node sends an authentication request to the server which is processed and
validated at the base station. Although this schema considers a secure authentication
schema, it does not deliver an optimal process for compromised node removal since the
administrator has to remove the compromised node’s key from the base station.

Furthermore, the solution named as “IMAKA-Tate” [17] proposes an schema based
on three-way handshake mutual authentication and key agreement in conjunction with
authentication against an Extensible Authentication Protocol (EAP). Mutual Authen-
tication and Key Agreement are used so that each participant generates random chal-
lenge, which is encrypted by the corresponding public key of the recipient. This work
properly addresses anonymity and privacy, but it does not include a formal procedure
for device removal.

The solution discussed in [11] proposes an authentication protocol IPS based in
WLAN that verifies user information based on the physical layer (PHY) signatures
within WLAN preambles. It mainly uses Carrier Frequency Offset (CFO) and multipath
plus Channel State Information (CSI) to protect wireless communications since the
handshake phase between the mobile users and the access point (AP), and whilst

Enhancement to the Privacy-Aware Authentication for Wi-Fi Based IPS 145



validating the truthfulness of a reported location from a user of the system. In this
current solution, there is no need of credentials for registering the user as everything is
handled at the PHY layer. This solution, like the previous ones, lacks from having a
formal procedure to remove an undesired device from the system (remove from
authentication system).

A privacy protection mechanism for indoor positioning is presented in [12]. This
mechanism proposes the use of an application that changes the MAC address of the
phone periodically. They use this approach to provide privacy to the user as the server
will not determine his/her identity. Although privacy is protected, there might be a
potential issue if a MAC address is repeated along two users handling the same
manufacturer phone. The process of authentication is not formally defined, but it
appears that the application installed will be in charge on performing such action.
Again, this solution, like the previous ones, does not deliver a formal process to remove
the device from the system rather than uninstalling the application from the phone.

Weaknesses about PriWFL are exploited and discussed in [18]. These weaknesses
might let attackers to obtain the position of a user. The authors present a practical
Server Data Privacy Attack where they point that an attacker only needs to obtain a pair
of distances. They also discuss an attack that reveals the order of RSS values. As stated
by the authors there are non-trivial problems that may dramatically affect the local-
ization accuracy. Furthermore, the authors propose Fully Homomorphic Encryption
and Somewhat Homomorphic Encryption but they are computational costly or
impractical for Wi-Fi schema. Secure Multiparty Computation (MPC) is analyzed but
as reviewed by the authors it may generate communication overhead. Paillier PKE is
analyzed from two perspectives (Signs of Differences and Garbled Circuits), where the
first approach seems secure but might be susceptible to order attack, whilst the second
approach is more secure as it resilient to Client Privacy Attacks (scenarios 1 and 2) as
the attacker could not infer the location of a client if the secret key is not known.
Likewise, if the MPC is secure and the randomness are fresh, an attacker cannot learn
combined distances. The inclusion of Paillier encryption let a client to learn only signs
of distances. The solution proposed clearly analyze and exploit weaknesses focusing on
an attacker compromising the database of a provider. This paper makes good points on
preserving privacy.

Practical Privacy-Preserving Indoor Localization using OuTsourcing (PILOT) is
another approach which focuses like the previous work on preserving privacy in an
Indoor Positioning System [19]. Semi Trusted Third Parties (STTPs), a client and an
Indoor Location Provider (ILP) are involved in the approach described by the authors.
In the described scenario the client collects signal strengths from access points pre-
defined by the ILP and then shared to the STTPs by a secure channel. Every STTP
calculates an ILP protocol by using a Secure Two-Party Computation (STPC). The
solution proposed is secure against semi-honest non-colluding STTPs, malicious clients
and ILP servers. According to the authors, the use of the ABY-Framework ensures that
intermediate secret-shares are secure as well as conversions, and final target location.
The proposed schema guarantees that if one STTP and the client are not compromised;
then, the client will not be able to determine its location. Likewise, if the ILP and one
STTP are not corrupted and no matter if there is a leak of information, it will not be
possible to determine the RSSs of the database of the ILP server. In regards of
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connectivity this approach relies on secure communication. The main contribution of
this paper is a protocol that deals with most of communication and computation on
third-parties (STTPs) rather than the mobile client as it poses limited hardware
resources. Although this contribution shows a strong on privacy-preserving schema, it
does not present as a use case where a device has been compromised or stolen and the
user would have the power to act in such case.

Another solution is discussed in [8], where the use of pseudo-certificates helps to
provide privacy and anonymity to the user attached to the system. In this proposal, the
user first has to register his device, and then the system will generate a set of pseudo-
certificates with an expiry time. These certificates will let a server to determine a user
position without knowing/revealing its identity. Although this approach describes the
process of authentication, it does not handle the process of removing a device.

We have examined several solutions in regards of authentication procedures for IPS
based on WLAN. All of them showed the need to have a formal and secure process for
removing devices that have been lost or stolen. With this antecedent, our proposal is to
perform and enhancement to [8], by adding a formal and secure process for removing
devices, giving the user the right to perform such action without compromising his/her
privacy. The proposed protocol will be described in detail and analyzed from a security
and performance perspectives in the next sections.

3 Proposed Protocol

3.1 Overview of the System

Since the objective of this work is to deliver the mobile device removal process to a
previous work, the proposed mechanism uses the same three main entities for
Authentication, Authority and Accounting (AAA). A brief overview of the previous
work that will be enhanced is shown below (see Fig. 1). The reviewed system is
composed by three main entities:

(1) User environment composed of the user and his/her mobile device(s).
(2) A Certificate Authority (CA) which manages the accounts of users, data of their

mobile devices, and devices’ pseudo-certificates/private keys.
(3) An IPS Server that provides the indoor positioning service, which is registered in

the CA.

For a better understanding of the system, we recommend to refer to the previous
work [8].

3.2 Proposal of Device Removal Functionality: An Overview

In a previous work [8], a protocol for providing privacy by using an anonymous
authentication schema was designed. However, it does not have a process to remove a
previously registered mobile device, which means that a lost or stolen mobile device
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can be used by an illegal/malicious user. In this sense, this work enhances the previous
work by adding the mobile device removal process which contains the following steps
(see Fig. 2).

The user who wants to remove his/her device must be previously registered to the
Certificate Authority (CA). The user first authenticates using his/her credentials.
The CA validates credentials and if successful, it returns a list of available devices
registered by such user. The user selects the devices to be removed and submits a

Fig. 1. Overview of the system

Fig. 2. Proposed enhancement schema
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request to remove the mobile device. Then, the CA will get all non-expired pseudo-
certificates and will perform a request for revoking the pseudo-certificates from the
Indoor Positioning System (IPS) Server. For this, the CA sends a list of certificates that
need to be revoked by the IPS Server and the IPS server validates the request’s
authenticity, revokes the pseudo-certificates and confirms the revocation procedure to
the CA. Then, the CA removes all the pseudo-certificates associated to the device that
needs to be removed. Finally, the user receives a removal confirmation message.

3.3 Proposal of Device Removal Functionality: Details

In the previous subsection, we have described briefly the flow of the proposed system.
Now, this subsection will describe the details of the proposed functionality. The
notation used to describe the protocol is detailed in Table 1.

Table 1. Notations used in the proposed solution

Notation Description

Ui ith user
MDj_Ui Ui’s j

th mobile device
RN1, RN2,…, RNn Random nonces
RK1, RK2…RKn, RKCA, RKIPS Random symmetric keys
CA Certificate Authority
PubkeyCA, PrikeyCA CA’s asymmetric key pair
PubkeyIPS, PrikeyIPS IPS Server’s asymmetric key pair
IDUi Identification of Ui

PWUi Password of Ui

NAMEMDj_Ui Name of MDj_Ui

MACMDj_Ui MAC address of MDj_Ui

{PCert(CA,MDj_Ui)1,…, PCert(CA,
MDj_Ui)n}

Pseudo-certificates of MDj_Ui

{Prikey(CA,MDj_Ui)1,…, Prikey(CA,
MDj_Ui)n}

Private keys of pseudo-certificates of MDj_Ui

IPIPS IPS Server’s IP address
PCert(CA,MDj_Ui)k kth (unused) pseudo-certificate
PosMDj_Ui Current position of MDj_Ui

|| String concatenation
h(.) One-way hash function
AEnc(x, y) Asymmetric encryption of message y using the key x
ADec(x, y) Asymmetric decryption of message y using the key x
SEnc(x, y) Symmetric encryption of message y using the key x
SDec(x, y) Symmetric decryption of message y using the key x
Sign(x, y) Digital signature of message y using the private key x
VerifySign(x, y) Digital signature verification of signature y using

public key x
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Mobile Device Removal. This protocol is executed as follows (see Fig. 3). First, the
user Ui inputs his/her identity IDUi and password PWUi to his/her mobile device
MDj_Ui. Then, MDj_Ui communicates with the third-party CA and asks for user
authentication. After receiving the request message, CA generates a random number
RN8 and sends it to MDj_Ui. Once received the response from CA, MDi_Ui generates a
random nonce RN9, a random symmetric key RK4, and calculates M12 = AEnc
(PubkeyCA, RK4) and M13 = SEnc(RK4, RN8||RN9||IDUi||h(PWUi)), where AEnc(x, y)
is an asymmetric encryption of message y using the key x, PubkeyCA is CA’s public key,
SEnc(x, y) is a symmetric encryption of message y using the key x, || is a concatenation
operation, and h(.) is a one-way hash function. Once calculated M12 and M13, MDj_Ui

sends those values to CA.
On the other side, CA gets RK4 by executing ADec(PrikeyCA, M12) where ADec(x, y)

is an asymmetric decryption of an encrypted message y using the key x, and uses RK4 to
get RN8′, RN9′, IDUi, and h(PWUi) by executing SDec(RK4, M13), where SDec(x, y) is a
symmetric decryption of an encrypted message y using the key x. Once gotten RN8′, CA
verifies the freshness of the message by comparing the decrypted RN8′ with the random
nonce created previously by itself i.e. RN8. This step allows CA to protect against replay
attacks. After verifying the validity of the message, CA verifies if IDUi and h(PWUi) are
valid credentials otherwise the process is aborted. If credentials are valid, the CA
retrieves a list of registered devices from DB that belong to the user IDUi, this list is a
collection of tuples formed by the NAME of the device and its MAC Address
{(NAMEMD1_Ui, MACMDn_Ui),…, (NAMEMDn_Ui, MACMDn_Ui)}. Then, the CA gener-
ates a random nonce RN10, and calculates M14 = SEnc(RK4, RN9′||RN10||{(NAME-
MD1_Ui, MACMDn_Ui),…, (NAMEMD1_Ui, MACMDn_Ui)}), which is sent to the mobile
device MDj_Ui.

The mobile device MDj_Ui gets RN9″||RN10||{(NAMEMD1_Ui, MACMDn_Ui),…,
(NAMEMD1_Ui, MACMDn_Ui)} by excecuting SDec(RK4, M14). Once gotten RN9″, the
mobile device verifies the freshness of the message by comparing the decrypted RN9″
with the random nonce generated previously by itself i.e. RN9. After verifying the
authenticity of the message, the mobile device generates M15 = {(NAMEMD1_Ui,
MACMD1_Ui),…, (NAMEMDn_Ui, MACMDn_Ui)}, and display the list of registered
devices to the user.

The user Ui selects the registered device from the list (M15) that wants be removed
(MACMDg_Ui). The mobile device generates a random nonce RN11, and calculates
M16 = SEnc(RK4, RN10′||RN11||MACMDg_Ui), and sends M16 to the CA.

The CA gets RN10″||RN11||MACMDg_Ui by executing SDec(RK4, M16). Once
gotten RN10″, the CA verifies the freshness of the message by comparing the decrypted
RN10″ with the random nonce created before by itself i.e. RN10. If such values are the
same, the CA gets all the not expired pseudo-certificates of the mobile device that are
stored in the DB {PCert(CA,MDj_Ui)1,…, PCert(CA,MDj_Ui)n}. Then, the CA submits a
request to the IPS Server and it generates a random nonce RN12 which is sent back to
the CA. The CA, generates and random nonce RN13, a random key RKCA and cal-
culates M17 and M18, where M17 = AEnc(PubKeyIPS,RKCA). M18 = SEnc (RKCA,
RN12||RN13||{PCert(CA,MDj_Ui)1,…, PCert(CA,MDj_Ui)n} || Sign(PriKeyCA, RKCA)), and
Sign(x, y) is the signing function of a message y using the private key x. Once cal-
cultated M17 and M18, the CA sends those messages to the IPS Server.
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IPS
Mobile Device

MDj_Ui CA

User
Ui

User Environment

Request

RN8

IDUi, PWUi

M12, M13

M14

M15

- Show M15 (list of registered devices)
- Select device to remove (MACMDg_Ui)

MACMDg_Ui

M16

RN11'

- Verify RN11'=RN11
Successful

Mobile Device Removal

RN12

M17, M18

RN13'

Request
- Generate random nonce RN12

- Generate random nonce RN9
- Generate random symmetric key RK4
- M12=AEnc(PubkeyCA, RK4)
- M13=SEnc(RK4,RN8||RN9||IDUi||h(PWUi))

- RK4=ADec(PrikeyCA, M12)
- RN8'||RN9'||IDUi||h(PWUi)=SDec(RK4, M13)
- Verify if RN8'=RN8
- If IDUi, h(PWUi) combination is not correct

Abort process
Else

Get {(NAMEMD1_Ui, MACMDn_Ui),... ,(NAMEMDn_Ui, MACMDn_Ui)}
corresponding to IDUi from DB
Generate random nonce RN10

- M14=SEnc(RK4, RN9'||RN10||{(NAMEMD1_Ui, MACMDn_Ui),... ,
(NAMEMD1_Ui, MACMDn_Ui)})

- Get RN9''||RN10'||{(NAMEMD1_Ui, MACMDn_Ui),... ,(NAMEMD1_Ui, MACMDn_Ui)} by SDec(RK4, M14)
- Verify RN9''=RN9
- M15={(NAMEMD1_Ui, MACMD1_Ui),... ,(NAMEMDn_Ui, MACMDn_Ui)}

- Get RN10''||RN11'||MACMDg_Ui by SDec(RK4, M16)
- Verify RN10''=RN10
- Get {PCert(CA,MDj_Ui)1, ..., PCert(CA,MDj_Ui)n}

- Generate random nonce RN13
- Generate random key RKCA
- M17=AEnc(PubKeyIPS, RKCA)
- M18=SEnc(RKCA, RN12||RN13||{PCert(CA,MDj_Ui)1, ..., PCert(CA,MDj_Ui)n}|| 
Sign(PriKeyCA, RKCA))

- Get RKCA by ADec(PriKeyIPS,, M17)
- Get RN12'||RN13'||{PCert(CA,MDj_Ui)1, ..., PCert(CA,MDj_Ui)n}|| 
Sign(PriKeyCA, RKCA)) by SDec(RKCA, M18)
- Verify RN12''=RN12
- VerifySign(PubKeyCA, Sign(PriKeyCA, RKCA))
- Revoke {PCert(CA,MDj_Ui)1, ..., PCert(CA,MDj_Ui)n}

- Verify RN13'=RN13
- Remove NAMEMDj_Ui, MACMDj_Ui, {PCert(CA,MDj_Ui)1, ..., PCert(CA,MDj_Ui)n},

and {Prikey(CA,MDj_Ui)1, ..., Prikey(CA,MDj_Ui)n} corresponding to MACMDg_Ui,

- Generate random noce RN11
- M16=SEnc(RK4, RN10'||RN11||MACMDg_Ui)

- Generate random nonce RN8

Fig. 3. Mobile device removal protocol
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On the other side, the IPS Server gets RKCA by executing ADec(PriKeyIPS, M17) and
uses it to get RN12″||RN13′||{PCert(CA,MDj_Ui)1,…, PCert(CA,MDj_Ui)n}||Sign(PriKeyCA,
RKCA)) by executing SDec(RKCA, M18). Once gotten RN12″, the IPS Server verifies the
freshness of the message by comparing the decrypted RN12″ with the previously
generated random nonce created by itself i.e. RN12. After verifying the validity of the
message, the IPS Server uses PubKeyCA to verify the digital signature of the message
by executing VerifySign(PubKeyCA, Sign(PriKeyCA, RKCA)) to ensure the authenticity
of the message. Once verified the authenticity of the message, the non-expired pseudo-
certificates of the registered device {PCert(CA,MDj_Ui)1,…, PCert(CA,MDj_Ui)n}, are
revoked which means that are removed from the DB. Finally, the IPS Server, sends
RN13′ to the CA.

Meanwhile, the CA, gets RN13′ and verifies the freshness of the message by
comparing the received RN13′ with the previously generated random nonce created by
itself i.e. RN13. After validating the message, the CA removes NAMEMDj_Ui,
MACMDj_Ui, {PCert(CA,MDj_Ui)1,…, PCert(CA,MDj_Ui)n}, and {Prikey(CA,MDj_Ui)1,…,
Prikey(CA,MDj_Ui)n} corresponding to the previously selected device to be removed
(MACMDg_Ui.). The CA, sents RN11′ to the user mobile device.

Finally, MDj_Ui, once received RN11′ from CA, compares such value with the
random nonce generated previously by itself i.e. RN11. If such values are the same,
MDj_Ui, confirms Ui the successful removal of the selected device.

4 Analysis of the Proposed Protocol

This section analyzes the proposed protocol in terms of security and performance in
order to evaluate the effectiveness of the protocol from a theoretical perspective.

4.1 Security Analysis

This part examines the security of the proposed protocol in terms of analysis of pos-
sible attacks. For this, the widely known Dolev-Yao [20] threat model was used, which
assumes that two communicating parties use an insecure channel.

Man in the Middle Attack. This attack is not possible because the messages are
encrypted using secure encryption functions. When MDj_Ui communicates with CA, the
message is encrypted using the public key of CA; when CA communicates with MDj_Ui

the message is encrypted with the random symmetric key generated by MDj_U; and
when CA communicates with IPS Server the message is encrypted with the public key
of PubKeyIPS. The usage of secure encryption functions allows proposed protocols to
maintain the confidentiality and integrity of messages.

Replay Attack. Random nonces are used to avoid replay attacks in mobile device
removal process. On the other hand, an illegal user will not be able to remove a device
because the MACMDg_Ui identifier is symmetrically encrypted.
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Password Guessing Attack. PWUi is not stored anywhere. Instead, a variant value
h(PWUi) is used for user validation. Since h(.) is a secure one-way hash function, the
attacker cannot guess the PWUi from h(PWUi). Hence, this attack is not possible.

Privileged-Insider Attack. In the proposed solution, MDj_Ui never transmits the
password of the user PWUi in plaintext. Instead, a variant value h(PWUi) is sent to the
CA. Even a privileged-insider of CA cannot guess the PWUi because h(PWUi) is cal-
culated using a secure one-way hash function. Also, a malicious user might try to
revoke certificates from a valid device; however, such malicious user will have to
manually generate requests to the IPS Server to obtain approval for a complete
removal.

Brute Force Attack. The attacker can attempt to remove a valid device by sending
random or sequential messages to the CA. However, the use of random nonces helps to
prevent this attack.

Separation of Responsibilities. CA manages only the information of the users/mobile
devices while IPS Server manages only the information about the relation between a
pseudo-certificate and position.

4.2 Performance Analysis

Table 2 indicates the overhead of cryptographic steps of the proposed protocol. It is
important to mention that the cryptographic overhead in each protocol is minimal;
therefore, it does not affect to the real implementation of the proposed solution.

5 Conclusions and Future Direction

This paper has proposed an enhancement to the novel authentication system for Indoor
Positioning Systems that includes a protocol for removing mobile devices. The pro-
posed solution allows a user to remove his/her registered devices if they have been
stolen or lost, so that an illegal user will not be able to use it. The proposed solution still
provides a secure authentication system for IPS while maintaining a minimal perfor-
mance overhead. The proposed approach gives to the user the power to securely
remove his/her device without the intervention of a third-party, reducing the risk of
involuntary mistakes. In the near future, we will continue our research by implementing
the suggested protocol in a real scenario and extending to more IoT devices.

Table 2. Cryptographic overhead (i.e. number of operations)

Phase Entity Proposed

Mobile Device Removal MDj_Ui 1 AEnc + 2 SEnc + 1 H + 1 SDec
CA 2 SEnc + 1 ADec + 1 SDec + 1 AEnc + 1 Sign
IPS Server 1 ADec + 1 SDec + 1 VerifySign

AEnc: Asymmetric encryption, ADec: Asymmetric decryption, H: hash, SEnc: Symmetric
encryption, SDec: Symmetric decryption, Sign: Creation of digital signature, VerifySign:
Verification of digital signature.
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Abstract. Recent times have witnessed increasing utilization of wide
area measurements to design the transmission line protection schemes
as wide area measurements improve the reliability of protection meth-
ods. Usage of ICT tools for communicating sensor measurement in power
networks demands immunity and resiliency of the associated protection
scheme against false data injection attack (FDIA). Immunity against
malicious manipulation of sensor information is attainable by secur-
ing the communication channels connecting the sensors through cryp-
tographic protocols, and encryption. However, securing all the sensors
and communication channels is economically unviable. A practical solu-
tion involves securing a reduced set of sensors without compromising
fault detection accuracy. With the aim of developing a simple, econom-
ically viable and FDIA resilient scheme under the assumption that the
adversary has complete knowledge of the system dynamics, the present
work proposes a logical analysis of data (LAD) based fault detection
scheme. The proposed scheme identifies the minimal set of sensors for
FDIA resiliency and detects the state (faulty or healthy) of the power
network relying on the measurements received from the ‘minimal sensor
set’ only. Validation of the proposed protection scheme on IEEE 9-bus
system reveals that in addition to being FDIA resilient, it is reliable and
computationally efficient.

Keywords: Smart grid · Transmission line protection ·
False Data Injection Attack (FDIA) · Fault detection ·
Partially defined Boolean function (pdBf) · Logical analysis of data

1 Introduction

The reliable operation of any power system is heavily dependent on the devel-
opment of a suitable protection scheme against line faults and contingencies.
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A reliable protection scheme allows for faster fault detection and hence early
restoration of power supply post-fault. In recent times, with the soaring assim-
ilation of the physical power transmission system with the cyber information
and communication tools in smart grids, the possibility of cyber-attacks poses
a serious challenge towards the development and implementation of a reliable
protection mechanism against faults. The protection component plays a signifi-
cant role in the overall operation and control of a power system. The increased
stress on rapid detection of faults and reduction in fault levels is arising because
of the penetration of renewable energy sources has led to a paradigm shift from
classical protection scheme using local measurements to protection scheme rely-
ing on ‘wide area measurements’ [1]. The effective performance of a protection
scheme, which rely on wide area measurements, is highly dependent on the sen-
sor information transmitted to the control centers through the cyber network.
Over-dependence of power systems on the public communication networks for
reliable monitoring and operation, makes it vulnerable to cyber attacks [2].

False data injection attack (FDIA) is considered as the most potent cyber
attack in which the overall power grid can be made to collapse by the hacker
with minimal effort. During FDIA, the attacker corrupts the integrity of a set
of measurements that are used in the protection algorithm by tampering the
meter/sensor measurements [3,4]. The protection algorithms are part of the
backup protection strategy, which is operated from the control center(s). Trans-
mission of false data to the control center may lead to unnecessary control action
that might result in contingencies or even blackout. Consequently, the present
scenario demands a protection scheme that is either immune to data falsification
or/and includes a component for preemptive detection of false data injection. The
state-of-the-art for protection of transmission lines [5–8] has not addressed the
deployment of a security mechanism against vulnerabilities caused by FDIA.

Conventional power networks address the need for system monitoring through
state estimation [9], which is carried out using the power system model, and sen-
sor informatics. Conventional bad data detection methods that are part of state
estimators are supposed to detect any malicious manipulation of sensor informa-
tion. However, Liu et al. [10] have demonstrated that a hacker, having enough
knowledge about the system dynamics, can bypass the bad data detection tech-
niques and inject any arbitrary errors into state variables by suitably injecting
malicious sensor information using FDIA. Thus, the manipulation of sensor infor-
mation during an attack can provide a deceptive picture regarding the system
dynamics and operation, leading to either non-operation of the relay during fault
or tripping of the relay followed by isolation during a non-faulty/healthy case.
Inappropriate actions of the protective relays, and a delay in the detection of
such attacks can result in a huge economic loss, asset damage, and collapse of
the related sub-systems and control mechanisms. With the explosive growth in
the use of sensors (CT, PT, PMU) and communication network for continuous
online real-time monitoring using the information of the current and/or volt-
age signals at different buses or locations, the scope of mounting a false data
injection attack has increased significantly in recent times.
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Recent works on FDIA in power grid have mainly concentrated on the mod-
eling of FDIA, detection of an attack and defensive measures [11–25]. The prob-
able implications arising out of FDIA on power system have been addressed
in [3,11,12]. The notable schemes reported for FDIA detection in power networks
are based on transmission line susceptance measurements [13], reactance per-
turbation [14], joint-transformation [15], extreme learning machine [16], sparse
optimization [17] and cumulative sum approach [18]. Yang et al. [19] proposed
a countermeasure to FDIA using the premise that the sensors, which measure
injective power flow in the buses and are connected to several other buses require
security. Since inaccessibility of those sensors will make it difficult for an attacker
to mount an FDIA. A defense mechanism to protect a set of state variables has
been proposed in [20,21].

An adaptive Markov based defense strategy for the protection of smart grid
has been reported in [22]. A two-layer attack-defense mechanism to protect
PMUs against FDIA is presented in [23]. In [24], a greedy search algorithm is pre-
sented to obtain the subset of measurements required to be protected to defend
against FDIA. In [25], a scheme based on bilevel mixed integer linear program-
ming has been presented to prevent the falsification of load data. A defensive
method against data integrity attacks based on the optimal PMU placement
strategy is proposed in [23]. An algorithm for appropriate placement of PMU in
electric transmission network for reliable state estimation against FDIA has been
presented in [26]. In [27], a generalized scheme for detecting data integrity attacks
in cyber-physical systems based on sensor characteristics and noise dynamics has
been proposed. Stackelberg game has been used for detector tunning to detect
FDIA in [28].

Most of the existing works on FDIA mentioned above have only concentrated
on detection of FDIA without analyzing its effect on the operation of the trans-
mission line protection module. To the best of our knowledge, no work has been
reported on analyzing the implications of FDIA on fault detection and develop-
ing an FDIA immune protection scheme. A simple solution to this problem is to
replace the set of all the existing sensors τ with ‘secure sensors’. Secure sensors
communicate using cryptographic protocols and methods, which prevent any
chances of FDIA unless the keys of cryptographic protocols are compromised.
Moreover, secure sensors are protected from physical tampering using tamper-
resistant hardware. However, the sheer number of installed meters/sensors in
electric grids makes it impractical to replace all the sensors with secured sen-
sors [29]. At best, we can secure a small set of sensors τs, where τs ⊂ τ .

Moreover, the selection of the reduced sensor set should ensure no degra-
dation in the performance of the protection algorithm, in terms of accurately
detecting various fault scenarios, even in the presence of FDIA. This demands
optimally locating those sensors whose information either do not contribute to
the system monitoring or can be correlated with other sensor information. With
τs, the protection algorithm is expected to carry out the intended task of detect-
ing the faults by suitable mapping of secured sensor information with the fault
scenarios. Considering a moderate-size network having a few hundred installed
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sensors, a brute force search to locate τs over all possible small-size subsets are
prohibitively costly.

In the present work, the twin problems of identifying τs and correlating
the protection scheme output (faulty/healthy) with the sensor information
are solved using a classifier, which utilizes a partially defined Boolean func-
tion based data analysis technique known as Logical Analysis of Data (LAD)
[30–32]. For a two-class classification problem, LAD aims at optimally generat-
ing a set of rules/patterns, which can collectively classify all the known observa-
tions (power system scenarios). Features/sensor-measurements, which contribute
insignificantly to the classification task, are ignored and further not included in
the rules. In addition of providing immunity against FDIA, a significant contri-
bution of the LAD based protection scheme is the reduction in complexity of the
detection algorithm since the overall sensor information is substantially reduced
without employing any dimension reduction technique.

Popular classifiers, like KNN, ANN, SVM, etc., which are generally preceded
by some feature extraction method, are difficult to implement on the digital
relays that work on threshold settings. On the contrary, in the LAD-based
scheme, the raw data (i.e., sensor information) are directly fed into the clas-
sifier without any pre-processing and the classification rules provide a threshold
for each input feature (i.e., sensor information in the present problem). Further,
the generalization of LAD to datasets of varying dimensions makes the proposed
scheme independent of the power system network topology. It is to be noted that,
unlike the existing works on ‘optimal sensor placement’ [23] based on maintain-
ing ‘system state observability’, the present work aims at the identification of
optimal sensor set for imparting immunity to protection scheme against FDIA.
Securing sensors identified using ‘system state observability’ do not guarantee
immunity to power line protection schemes against FDIA.

The effectiveness of the proposed scheme has been evaluated by performing
extensive simulations under normal operation and FDIA for IEEE 9 bus system.
While simulating the false data injection attack, it is assumed that the attacker
has complete knowledge regarding the power system model. For varying scenar-
ios, the proposed scheme is able to correctly detect the state of transmission line,
i.e., faulty or healthy under FDIA of varying degrees with significantly reduced
execution time (maximum 45µs). The highlights/novelty of the proposed work
can be summarized as:

1. Development of an FDIA immune protection scheme with the assumption
that the attacker has complete knowledge of the power system.

2. Development of a data analysis based approach for identifying the limited
set of sensors that would be secured using tamper-resistant hardware, cryp-
tographic protocol, and encryption.

3. Design of a rule-based fault detection scheme by mapping the secured sensor
information with the state of the power system using LAD-based classifier.

The remainder of the paper is organized as follows. Section 2 discusses
the development of the proposed LAD based protection scheme. Section 3
demonstrates the test results on the IEEE 9-bus system to exemplify the
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proposed scheme. Finally, Sect. 4 summarizes the contributions of the paper and
provides conclusions and future research direction.

2 Design of a LAD Based Classifier for Fault Detection

As mentioned earlier, a hacker may try to mislead the control center to take some
unnecessary action by presenting an unrealistic picture of the grid to the control
center using FDIA. For example, consider the attack on a healthy system by fal-
sification of the current signal carried out by FDIA as depicted in the Fig. 3(a).
Any corrective measure based on that falsified information will critically affect
the normal operation of the grid and may lead to power-cut or blackout. A
natural solution to avoid the damage caused by FDIA involves securing all the
sensors of the grid and that will thwart falsification of sensor information. How-
ever, the large number of sensors deployed over wide geographical span makes
the task of providing security to all the individual sensors impractical because
of the related financial implications [29]. A financially viable option is to secure
a small set of the existing sensors. For an n bus system, assuming current and
voltage monitoring at each bus, the overall sensor set τ is given as

τ = [SI1 , SV1 , SI2 , SV2 , . . . , SIn , SVn
] (1)

In the analysis of power system protection schemes, two widely used measures
are referred to as security and dependability. Security refers to the ratio of the
predicted no-fault cases to the actual number of no-fault cases while the depend-
ability relates to the ratio of the detected fault cases to the actual number of
faults. Now, the goal of identifying the minimal set of sensors τs involves finding
|τs| << |τ |, such that the security and dependability of the overall power system
protection mechanism are maintained using only the sensors from τs. In other
words, with the information provided by τs, the detection of faults can be carried
out. Also any sensor, which is a member of τs, will be protected using tamper-
resistant hardware, cryptographic protocols, and encryption algorithms. Conse-
quently, falsification of measurements transmitted from those sensors would be
impossible during any FDIA.

It should be noted that the classical dimension reduction technique like PCA,
which aims at reducing redundant information based on the interrelationship
among different attributes is not suitable for identifying τs since the physical
significance of individual sensor information is not maintained. The dual issues
of optimally reducing the sensor information while preserving the physical sig-
nificance of the data (i.e., bus voltage and current) and classification of network
state (healthy/faulty) have been addressed in the present work by adopting a
logical analysis of data (LAD) based classification scheme [30,31]. LAD is a data
analysis technique, which uses partially defined Boolean function (pdBf) and its
extensions to find patterns or rules for classification. These patterns (a.k.a. rules)
can be linked to a causal-effect relationship(s) among observations and its class
labels.
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For the present work, observations correspond to the sensor information for
a particular fault/scenario, while the class label refers to the occurrence/non-
occurrence of a fault. The patterns (or rules) correlate the magnitude of current
and voltage at different buses with the fault detector output i.e. 0 or 1 respec-
tively for no fault and fault conditions. The patterns or rules generated by LAD
with τs can be used to classify future observations, i.e., to predict the occurrence
of a fault. A typical dataset comprising of different observations (power system
scenarios) consists of two sets X+ and X− respectively comprising of sensor
information during fault X+ and no fault X− cases.

X+ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

I1,1 V1,1 I2,1 V2,1 ... ... In,1 Vn,1

I1,2 V1,2 I2,2 V2,2 ... ... In,2 Vn,2

I1,3 V1,3 I2,3 V2,3 ... ... In,3 Vn,3

. . . . . . . .

. . . . . . . .

. . . . . . . .
I1,u V1,u I2,u V2,u ... ... In,u Vn,u

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

θ(X+) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
.
.
.
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

X− =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

I1,u+1 V1,u+1 I2,u+1 V2,u+1 ... ... In,u+1 Vn,u+1

I1,u+2 V1,u+2 I2,u+2 V2,u+2 ... ... In,u+2 Vn,u+2

I1,u+3 V1,u+3 I2,u+3 V2,u+3 ... ... In,u+3 Vn,u+3

. . . . . . . .

. . . . . . . .

. . . . . . . .
I1,m V1,m I2,m V2,m ... ... In,m Vn,m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

θ(X−) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
.
.
.
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

With X+ ∩ X− = ∅.
The LAD generates positive and negative patterns corresponding to faulty

and healthy scenarios from observations X+ and X−. The patterns are generated
optimally with minimum sensor information for classifying all the cases. We refer
to Subsect. 2.3 for the formal definition of a pattern.
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Initially, LAD was designed to work with binary data only, in which the set
of binary observations X(= X+ ∪ X−) is expressed as a pdBf ρ representing a
mapping between X → θ(.){1, 0}. The algorithm aims at finding an approximate
extension γ of ρ, such that γ can classify all the unknown observations in the
sample space. In a nutshell, logical analysis of data involves the following five
steps [32].

1. Binarization of Observations: For conversion of non-binary observations to
binary while preserving the inherent characteristics of observations.

2. Elimination of Redundancy (or Support Sets Generation).
3. Pattern Generation.
4. Theory Formation: For Identification of a minimal set of patterns.
5. Classifier Design and Validation.

The above steps are dealt with in the subsequent sub-sections.

2.1 Binarization of Observations

For observations represented by numerical data, a threshold (a.k.a. cut-point)
based method is adapted to convert the numerical data to binary. A numerical
attribute β is represented in binary using two types of Boolean variables, i.e.,
level and interval variables. For a given cut-point cp, we introduce a level variable
b(β, cp) such that

b(β, cp) =

{
1, if β ≥ cp.

0, otherwise.
(6)

Similarly, interval variables b(β, cip, c
j
p) are created for each pair of cut-points cip

and cjp and given by

b(β, cip, c
j
p) =

{
1, if cip ≤ β < cjp.

0, otherwise.
(7)

The cut-point computation process is explained using an example dataset pre-
sented in the Table 1. The dataset consists of five observations with three features
A,B,C. Afterward, a class label is attached to each record (Table 2). To convert
the feature A to binary, a dataset is created as in the Table 3.

Further, we apply the following steps to estimate the cut-points.

1. Sort the dataset of Table 3 over A and we obtain the dataset of Table 4.
2. If two or more successive observations have identical attribute value vi but

different class labels, discard all those observations except one. Now, replace
the class label of vi by a new and unique class label. Refer to Table 5.

3. Repeat the step 2 until only unique values of the attribute are left.
4. Introduce a new cut-point cjp = (Ai+Ai+1)

2 , if class labels of Ai, Ai+1 are
different.
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Table 1. A numerical dataset

Attributes A B C

X+: positive
examples

3.5 3.8 2.8

2.6 1.6 5.2

1.0 2.1 3.8

X−: negative
examples

3.5 1.6 3.8

2.3 2.1 1.0

Table 2. Dataset with class
labels

A B C Class Labels
(Truth Values)

3.5 3.8 2.8 1

2.6 1.6 5.2 1

1.0 2.1 3.8 1

3.5 1.6 3.8 0

2.3 2.1 1.0 0

Table 3. Attribute A
with class labels

A Class Labels
(Truth Values)

3.5 1

2.6 1

1.0 1

3.5 0

2.3 0

Table 4. Sorted attribute
A with class labels

A Class Labels
(Truth Values)

3.5 1

3.5 0

2.6 1

2.3 0

1.0 1

Table 5. Attribute A
with updated class labels

A Class Labels

3.5 2

2.6 1

2.3 0

1.0 1

We found following cut-points using above mentioned steps.

c1p = 3.05, c2p = 2.45, c3p = 1.65.

Consequently, six Boolean variables comprising of three level and three interval
variables are created. After conversion of all the attributes, the binary dataset

Table 6. Binary dataset generated from the Table 2 having 15 binary variables from
b1 to b15.

A
≥

3
.0

5

A
≥

2
.4

5

A
≥

1
.6

5

1
.6

5
≤

A
<

3
.0

5

2
.4

5
≤

A
<

3
.0

5

1
.6

5
≤

A
<

2
.4

5

B
≥

2
.9

5

B
≥

1
.8

5

1
.8

5
≤

B
<

2
.9

5

C
≥

4
.5

C
≥

3
.3

C
≥

1
.9

1
.9

≤
C

<
4
.5

1
.9

≤
C

<
3
.3

3
.3

≤
C

<
4
.5

C
la

ss

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 L
1 1 1 0 0 0 1 1 0 0 0 1 1 1 0 1

0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 1

0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1

1 1 1 0 0 0 0 0 0 0 1 1 1 0 1 0

0 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0
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obtained is presented in the Table 6. A “categorical” attribute β can be converted
into binary by associating each possible value vi of β with a Boolean variable

b(β, vi) =

{
1, if β = vi.

0, otherwise.
(8)

2.2 Support Set Generation

Redundant attributes may be present in the binary dataset generated through
binarization or any other means and removal of redundant attributes is achieved
through the computation of minimal support set. If the projections X+

M , X−
M of

the binary attribute set M are such that X+
M ∩ X−

M = ∅, then M is known as
the support set of X. If removal of any constituent of M leads to X+

M ∩ X−
M 	=

∅, then M is known as minimal support set. For finding the minimal support
set, “Mutual-Information-Greedy” algorithm from [33] has been adapted, using
which the following binary features are selected.

M = {b2, b15, b8, b1}.

2.3 Modified Pattern Generation Method

In Boolean algebra, a Boolean variable or its negation is known as literals and
conjunction of such literals is known as term. In LAD, if a term only covers some
positive (negative) observations, then it is termed as positive (negative) pattern.
Moreover, if a pattern is minimal, i.e., removal of any literal from the pattern
leads to a pattern, which is covering both positive and negative observations,
then it is called ‘prime pattern’. In this paper, we have used an optimized version
of the prime pattern generation technique as proposed by Boros et al. [31]. The
pattern generation algorithm involves a major modification over the algorithm
proposed in [31]. The modification increases the probability that the coverage
of a point or observation by a single pattern only. Consequently, the ‘theory
formation’ step used to select the most suitable pattern to cover an observation
is no longer required.

After the execution of the algorithm on the projection M = {b2, b15, b8, b1}
of the binary dataset, following positive prime patterns are produced: (i) b̄2b15,
(ii) b2b̄15. Negative prime patterns generated by following an identical proce-
dure and the corresponding negative patterns are (i) b̄2b̄15, (ii) b2b15. It can be
observed, that the binary variables appearing in the generated patterns are not
dependent on the attribute B. Thus, the set of reduced attribute (or the set of
secured sensor in the present problem) τs is given by τs = {A,C}.

2.4 Design of Classifier

In this step, generated patterns are transformed into rules. Let us now consider
the first positive pattern b̄2b15. The rule generated using the meaning of b̄2b15
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(see Table 6) is ¬(A ≥ 2.45) ∧ (3.3 ≤ C < 4.5) =⇒ ‘Class label’ = 1. One or
more positive rules can be combined into ‘if else-if else’ structure to design a
classifier (fault detector for the present problem). A simple classifier designed
using the positive patterns is presented below.

Simple Classifier.
Input: Observation consisting of attribute A,B,C.
Output: Class label L.

1: if (¬(A ≥ 2.45) ∧ (3.3 ≤ C < 4.5)) then
2: Class label L = 1.
3: else if ((A ≥ 2.45) ∧ ¬(3.3 ≤ C < 4.5)) then
4: Class label L = 1.
5: else
6: Class label L = 0.
7: end if

It can be observed from the ‘Simple Classifier’ also that the feature B of
the original dataset is redundant and omitted by the classifier. Hence, for the
present problem, the reduced sensor τs is given by τs = {A,C}. The removal of
redundant data and reduction in the number of sensors is achieved without any
degradation in the classification accuracy.

3 Performance Evaluation

In this section, the efficacy of the proposed scheme in terms of optimality of
τs, appropriateness of rules framed by LAD for fault detection and resilience
against FDIA has been evaluated through comprehensive simulation studies.
In this regard, the performance evaluation has been conducted on IEEE 9-bus
benchmark test power system. The system has been simulated using Simulink
and Simpower system toolboxes of MATLAB and executed on a 64-bit, 4 core
workstation with an Intel Xeon processor and 16 GB RAM. The IEEE 9-bus
system includes 9 buses, 6 lines and 3 loads as shown in Fig. 1. In the system,
54 m (3 for current and 3 for voltage measurement at each bus of the line) are
deployed, which gather information at the corresponding bus.

For generating the training dataset to derive the minimal sensor set τs and to
frame the classification rules for fault detection based on the information from τs
only, normal operation without attack by any adversary is considered. Normal
operation incorporates scenarios associated with the healthy operation, contin-
gencies, and faults in the power network. Observations related to healthy system
state are having a class label 0. On the other hand, observations associated with
a faulty system state are marked by 1 as their class label. Note that, the observa-
tions related to contingencies also have the class label as 1. The details of power
system scenarios considered for training dataset preparation are presented in the
Table 7.
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During fault or power system contingencies (load variation and power swing)
the current and voltage magnitude vary widely, and protection mechanisms
present in the control center may require to take corrective measures to restore
the optimal operating condition of the power system. However, if a healthy sys-
tem is subjected to measures related to fault or contingencies, the consequences
could be devastating. Any attacker with prior knowledge regarding the power
system operation can manipulate the magnitude of voltage and current signals in
order to mislead the control center to take unnecessary action whose consequence
could be catastrophic.

To analyze the performance of the proposed protection scheme in terms
of robustness against injection of fake data that may cause unintended oper-
ation, test dataset for validation has been generated by simulating several false
data injection attack (FDIA) carried out against unsecured sensors. Two such
attacks are presented in the Figs. 2(a) and 3(a). Along with FDIAs, several fault
and no-fault cases have also been simulating under varying fault parameters

Table 7. Power syst. scenarios considered.

Fault parameters Fault type LG, 2LG, 3LG, 2L and 3L

Fault location 1% to 100% of the line length
at an interval of 5 km

Fault inception angle 0◦ to 90◦

Fault resistance 0Ω, 50Ω and 100Ω

Power syst. contingency Load variation ±20%, ±40%

Frequency variation ±2%, ±5%

Voltage variation ±5%, ±10%

No fault

Fig. 1. IEEE 9-bus system with 13 protected sensors on different buses.
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(fault location, fault inception angle and fault resistance). Some no-fault cases
involving system frequency and voltage variation, switching of transmission line
and sudden load encroachments have also been considered in the testing data
for security analysis during healthy condition. The inclusion of FDIA, fault and
no-fault cases in the test dataset allows validating the immunity of the proposed
scheme against FDIA.

With the generated training dataset consisting of normal operation only, the
LAD based approach discussed in Sect. 2 is employed for the design of a clas-
sifier to differentiate the healthy system state from the faulty state. The train-
ing dataset consists of 4648 observations. Among those, 4500 observations are
from different faulty scenarios and rest are observations from healthy scenarios.
Let us now summarize the results related to individual steps of LAD over the
training set.

1. Binarization of Observations: In this step, 12048 binary feature variables are
created from 54 current and voltage information collected from 9 different
buses following the steps described in Subsect. 2.1.

2. Support Set Generation: Here 21 binary variables are selected from 12048
available binary variables using the method described in the Subsect. 2.2.

3. Pattern Generation: In this step, 28 rules are generated. The secure sensor set
τs is also generated at this point. The details of secure sensors are available
in the Fig. 1. Form the possible 54 sensors, by using only 13 secured sensors
(7 currents and 6 voltages), it is possible to detect the faults. Note that, it is
clear from Fig. 1 that two buses, i.e., bus-8 and bus-9 (marked by arrow) do
not have any secure sensor.

4. Classifier Design and Validation: A classifier is built using the rules generated
in the last step. The details of which are available in the Algorithm2.

Fig. 2. (a) Suppression of current waveform of Phase “A” by FDIA during actual fault
at bus-9 (b) Corresponding Trip signal by resilient protection scheme.

Let us now illustrate the results using an example. A single line to ground
fault at 50 km from the bus-7 in the line between bus-7 and bus-8 has been
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simulated and the corresponding voltage and current waveform acquired by
the unsecured sensors at bus-9 during the fault in the absence and presence of
FDIA has been illustrated in Fig. 2(a). It can be observed that the current wave-
form in phase “A” during “AG” fault is manipulated at bus-9 by the attacker.
Thus, replicating the healthy scenario post-fault, and in an attempt to mislead
any fault detection process, the control center is presented with the falsified
information only. The corresponding test result of the proposed FDI resilience
protection scheme is shown in Fig. 2(b). It can be observed that the proposed
scheme is able to detect the fault correctly even in the presence of FDIA and
issued the ‘Trip signal’ for proper operation of the relay at the appropriate time.

Algorithm 2 Resilient Protection Scheme for IEEE 9-bus system.
1: if ¬(I3,B ≥ 1.105100) ∧ ¬(V4,A ≥ 0.795880) then

2: Fault.
3: else if ¬(I3,B ≥ 1.105100) ∧ ¬(V3,C ≥ 0.722580) then

4: Fault.
5: else if (V4,A ≥ 0.795880) ∧ ¬(V3,C ≥ 0.722580) then

6: Fault.
7: else if (V4,A ≥ 0.795880) ∧ ¬(V3,B ≥ 0.744375) then

8: Fault.
9: else if (V4,A ≥ 0.795880) ∧ ¬(V4,C ≥ 0.721830) then

10: Fault.
11: else if (V4,A ≥ 0.795880) ∧ (I7,A ≥ 2.697800) then

12: Fault.
13: else if ¬(I5,C ≥ 0.949195) ∧ (I7,A ≥ 2.697800) then

14: Fault.
15: else if ¬(V3,C ≥ 0.722580) ∧ (V3,B ≥ 0.744375) then

16: Fault.
17: else if (V3,C ≥ 0.722580) ∧ ¬(V6,B ≥ 0.553810) then

18: Fault.
19: else if (V3,C ≥ 0.722580) ∧ (I7,A ≥ 2.697800) then

20: Fault.
21: else if (V3,C ≥ 0.722580) ∧ ¬(V6,A ≥ 0.567410) then

22: Fault.
23: else if (V3,B ≥ 0.744375) ∧ ¬(V4,C ≥ 0.721830) then

24: Fault.
25: else if ¬(I6,A ≥ 1.196150) ∧ ¬(V6,A ≥ 0.567410) then

26: Fault.
27: else if ¬(V4,C ≥ 0.721830 ∧ ¬(V6,A ≥ 0.567410) then

28: Fault.
29: else if ¬(I2,A ≥ 2.528100) ∧ ¬(V6,B ≥ 0.553810) then

30: Fault.
31: else if (V6,B ≥ 0.553810) ∧ (I7,A ≥ 2.697800) then

32: Fault.
33: else if (I3,B ≥ 1.105100) ∧ (V4,A ≥ 0.795880) ∧ (I2,A ≥ 2.528100) then

34: Fault.
35: else if (I3,B ≥ 1.105100) ∧ (V4,A ≥ 0.795880) ∧ ¬(V6,A ≥ 0.858385) then

36: Fault.
37: else if (I3,B ≥ 1.105100) ∧ (I6,A ≥ 0.594455) ∧ ¬(I6,A ≥ 0.776730) then

38: Fault.
39: else if ¬(V4,A ≥ 0.795880) ∧ ¬(I5,C ≥ 0.949195) ∧ (V3,C ≥ 0.722580) then

40: Fault.
41: else if ¬(V4,A ≥ 0.795880) ∧ ¬(I5,C ≥ 0.949195) ∧ ¬(I2,A ≥ 2.528100) then

42: Fault.
43: else if ¬(V4,A ≥ 0.795880) ∧ (V3,C ≥ 0.722580) ∧ ¬(I4,A ≥ 0.843595) then

44: Fault.
45: else if ¬(V4,A ≥ 0.795880) ∧ (V3,B ≥ 0.744375 ∧ ¬(I7,A ≥ 0.780975) then

46: Fault.
47: else if ¬(V4,A ≥ 0.795880) ∧ (V3,B ≥ 0.744375) ∧ ¬(I6,A ≥ 1.196150) then

48: Fault.
49: else if (I5,C ≥ 0.949195) ∧ ¬(I7, A ≥ 0.780975) ∧ ¬(I4,A ≥ 0.843595) then

50: Fault.
51: else if ¬(V 3, C ≥ 0.722580) ∧ ¬(V 4, C ≥ 0.721830) ∧ (V 6, B ≥ 0.553810) then
52: Fault.
53: else if (V3,C ≥ 0.722580) ∧ (I7,A ≥ 0.780975) ∧ ¬(V4,C ≥ 0.721830) then

54: Fault.
55: else if ¬(V4,A ≥ 0.795880) ∧ ¬(I5, C ≥ 0.949195) ∧ (V4,C ≥ 0.721830) ∧ ¬(I1,A ≥ 2.874700) then

56: Fault.
57: else
58: No Fault.
59: end if
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Further, a healthy (no fault) case has also been analyzed in which the attacker
launches an FDIA at bus-8 by replicating a single line to ground fault. The
corresponding test results depicted in Fig. 3(a, b) confirm the immunity of the
proposed scheme against FDIA.

Fig. 3. (a) Suppression of current waveform of Phase “A” by FDIA during healthy
operation at bus-9 (b) Corresponding Trip signal by resilient protection scheme.

Further, the performance assessment of the proposed scheme has been car-
ried out using two statistical indices commonly used in the performance analysis
of transmission line protection schemes, i.e., dependability and security. Depend-
ability relates to the ratio of the detected fault cases to the actual number
of faults while security refers to the ratio of the predicted no-fault cases to
the actual number of no-fault cases. We could achieve 100% dependability and
security in all the scenarios. Furthermore, the detection of fault is achieved in
less than 45µs. We have also carried out similar exercise using IEEE 39-bus
bench-marked system having 234 installed voltage and current sensors, and we
have achieve 100% security and dependability in this case also.

4 Conclusion

Dependence of protection algorithms on the information from the sensors spread-
ing across wide geographical locations has increased the risk of FDIAs in power
networks. In this paper, an FDIA resilient protection scheme has been proposed,
in which immunity against FDIA has been achieved by securing a minimal set
of sensors. The identification of sensor set contributing maximum to the sys-
tem monitoring while avoiding redundancy has been carried out by employ-
ing a Boolean function based approach known as LAD. In addition of locating
the strategic sensors, and thus, reducing the dimension of measured data, the
LAD based approach provides a rule-based mapping between the secured sensor
information, and the state (i.e., healthy or faulty) of the power system both
under normal condition and FDIA. This avoids providing security to all the sen-
sors, thereby reducing the financial cost for necessary immunity against FDIA.
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The proposed computationally efficient protection scheme has been well vali-
dated for different types of faults under varying fault and power system oper-
ating parameters for IEEE three machine 9-bus system. The validation con-
firms the robustness of the proposed scheme against FDIA, by performing the
intended relaying action. Future work in this direction is planned on extending
the proposed protection scheme for fault classification, section identification, and
location estimation during FDIA.

Acknowledgment. Jianying Zhou’s work was supported by SUTD start-up research
grant SRG-ISTD-2017-124.
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Abstract. Leakage-resilient encryption is a powerful tool to protect
data confidentiality against side channel attacks. In this work, we intro-
duce a new and strong leakage setting to counter backdoor (or Tro-
jan horse) plus covert channel attack, by relaxing the restrictions on
leakage. We allow bounded leakage at anytime and anywhere and over
anything. Our leakage threshold (e.g. 10000 bits) could be much larger
than typical secret key (e.g. AES key or RSA private key) size. Under
such a strong leakage setting, we propose an efficient encryption scheme
which is semantic secure in standard setting (i.e. without leakage) and
can tolerate strong continuous leakage. We manage to construct such a
secure scheme under strong leakage setting, by hiding partial (e.g. 1%)
ciphertext as secure as we hide the secret key using a small amount
of more secure hardware resource, so that it is almost equally difficult
for any adversary to steal information regarding this well-protected par-
tial ciphertext or the secret key. We remark that, the size of such well-
protected small portion of ciphertext is chosen to be much larger than
the leakage threshold. We provide concrete and practical examples of
such more secure hardware resource for data communication and data
storage. Furthermore, we also introduce a new notion of computational
entropy, as a sort of computational version of Kolmogorov complexity.
Our quantitative analysis shows that, hiding partial ciphertext is a pow-
erful countermeasure, which enables us to achieve higher security level
than existing approaches in case of backdoor plus covert channel attacks.
We also show the relationship between our new notion of computational
entropy and existing relevant concepts, including All-or-Nothing Trans-
form and Exposure Resilient Function. This new computation entropy
formulation may have independent interests.
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1 Introduction

Leakage resilient cryptography has been studied for over a decade, aiming to
counter side channel attacks, among other goals. Existing works on leakage
resilient cryptography typically impose some restrictions on when, where, or
what can be leaked. Some work assumes that there exits a leakage-free setup
phase. Some works assume there exists a secure hardware device, such that any
computation inside this secure device is leakage-free. If some secret key is stored
in such secure device and never leaves from it, then such secret key is assumed to
be leakage-free. Some works only allow leakage on secret key. Furthermore, some
works consider bounded leakage with a very small upper bound—O(Poly(log λ))
where λ is the security parameter.

1.1 Background in Existing Leakage Models

1.1.1 Bounded Retrieve Model
The bounded retrieve model [2,3,13,15] assumes the total amount of leaked
information during the lifetime of the attacked system, is upper bounded by a
constant �, which could be as large as gigabytes. An existing approach [3,13] is to
purposely make the shared secret key size significantly larger than the leakage
upper bound—� (e.g. ≥ 2� + λ where λ is the security parameter). In order
to make the computation as fast as the case of short secret key, this approach
assumes a leakage-free phase, during which, one party (say, Alice) can randomly
extract a short session key from the large shared secret key using a random
seed. The other party (say, Bob) of communication can re-generate the same
short session key from the same shared large secret key after receiving the same
random seed.

It is easy to see, under continuous bounded leakage setting, any static secret
key can be leaked one bit by one bit, and pseudorandomness technique cannot
be applied directly since short seed could be (partially) leaked. Furthermore, we
allow O(λ) bits leakage such that leakage threshold could be larger than secret
key size (e.g. the short session key in the above paragraph), thus the whole block
cipher key (e.g. 128 bits AES key) could be leaked. Therefore, bounded retrieve
model does not satisfy our goal.

1.1.2 A Leakage-Free Time Period During the Computation Process
of Cryptography Primitive

Alwen, Dodis and Wichs [2] proposed several leakage resilient cryptography
primitives with flexible (and possibly very large) key size. A key idea in their
authenticated key agreement scheme, is: (1) Generate many keys in the setup;
(2) and during a leakage-free time period, the sender and receiver will randomly
sample a subset of keys, and use them to authenticate each other; and then
establish a short shared session key. As long as a constant fraction of all keys
are unknown to the adversary after bounded leakage, a random subset of keys
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contains at least one unknown key with very high probability. After that, stan-
dard cryptography primitives are applied with the short secure session key (e.g.
AES).

In our leakage setting, there will be no leakage-free time period and any short
value (e.g. AES key) could be leaked. So we have to seek new approaches.

1.1.3 Secret Key Never Leaves from Secure Hardware Device
The computation power of secure hardware devices (e.g. Trusted Platform Mod-
ule) may not be able to match the power of desktop Intel/AMD CPU. Further-
more, there seems no evidence to show that the vendors of secure hardware device
are more trusted than vendors of other component (e.g. CPU, GPU, RAM, hard
disk, OS, web browser, virtual machine software, etc.) in a computer system.

1.1.4 Randomness Extractor
One may consider to extract a short block cipher (e.g. AES) key from a long
secret key and then encrypt the message using the short block cipher directly.
Assuming leakage only occurred before the randomness extractor was applied,
(e.g. as the setting of [3,13]), this method will work. But in our setting, we do
not make such assumption, and instead we allow bounded leakage at any time.

1.1.5 Memoryless Leakage Oracle
An essential difference between leakage oracle in side channel attack in related
works and leakage oracle in Trojan horse malware plus covert channel attack in
this paper, is that, whether the leakage oracle has cache memory and is allowed to
access history data. Some recent works in leakage resilient cryptography [6,7,23]
assumes that: (1) for each invocation of cryptography primitive, the leakage
threshold is smaller than secret key size; and (2) leakage oracle only takes input
from current status of the cryptography computation, and is not allowed to
access historical status. They can achieve security by refreshing the secret key
frequently (together with other techniques). Imagine a simplified example [23]:
To encrypt the i-th message, one may adopt a fresh 256-bit encryption key
ki := SHA256(ki−1), and the adversary is allowed to learn only a single bit
L(ki) ∈ {0, 1} over the key ki. With all leaked information {L(kj) : j ∈ [0, i]},
a polynomial-time adversary seems not be able to learn some useful knowledge
about any secret key. However, in case of Trojan horse plus covert channel attack
in this paper, the Trojan horse malware may keep an old key k0 in a local cache
memory, and send out one bit per every invocation of encryption scheme via
covert channel. So after encrypting |k| = 256 messages, all of 256 bits of k0
could be sent out to a remote adversary, who can compute every ki from k0. With
all ciphertexts (which can be obtained via eavesdropping, without resorting to
leakage oracle), the adversary can decrypt and recover all plaintexts. Thus 256
bits leakage leads to exposure of everything—all plaintexts and (future) secret
keys. Our new security formulation in this work is aiming to prevent such kind
of leakage amplification.
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It will be interesting to study the leakage resilient cryptography with adver-
sary who has limited leakage bandwidth (say � bits per invocation of crypto
primitive) and limited cache memory (say w bits memory). In this work, we actu-
ally do not assume any upper bound in the size of cache memory. Since covert
channel with large bandwidth and/or Trojan horse with large cache memory,
may be more easily captured or prevented by existing solution (e.g. anti-virus
software and intrusion detection system, Trojan-Resilient hardware [9,16]), it is
reasonable to put some small upper bound in values of � and w. We leave this
as an open problem.

1.2 Our Contributions

The main contributions of this work can be summarized as below.

1.2.1 New Leakage Setting
Since existing leakage settings does not fit for our goal, we present a new strong
leakage model, to capture the threat of backdoor or Trojan horse and covert
channels in computer hardware/software systems. We allow bounded (e.g. 10000
bits) leakage at anytime and anywhere and over anything, with only two restric-
tions on the adversary: (1) the adversary algorithms are efficient (probabilistic
polynomial time); (2) the bandwidth of the covert channel is bounded from the
above. By our knowledge, all existing works designed for leakage settings in
Sect. 1.1 are trivially broken under our leakage setting, since the Trojan horse
could observe every step of computation of the victim program (e.g. an encryp-
tion program) and then steal the entire short private key. We emphasize that,
the white box cryptography [5,18] using program obfuscation, which claims to
protect secret key from attackers with direct control of the encryption device, is
prohibitively impractical, even for a simple function [12].

1.2.2 Notion of Steal-Entropy
We propose a new notion called “steal-entropy”, as a sort of computational
version of Kolmogorov complexity. With this “steal-entropy”, we quantitatively
analyse the advantage of our approach over existing works. Our formulation
is non-trivial and has to resolve several important issues: (1) Unlike Shannon-
Entropy, Yao-Entropy and Hill-Entropy are defined over distribution of ran-
dom variable, and Kolmogorov complexity is defined over string, our steal-
entropy will be defined over an algorithm which converts the distribution of
input random variable to the distribution of output random variable. (2) Statis-
tical or computational indistinguishability notion (e.g. semantic security under
CPA/CCA/CCA2 attack mode) is inappropriate in our leakage setting, since
a single bit of arbitrary leakage will help an adversary to win the guess-game
trivially. (3) Kolmogorov complexity is uncomputable in general, but in our for-
mulation, we should avoid to define any uncomputable function. As a result,
unlike existing variant formulations of entropy, it is hard to define our steal-
entropy as a single scalar value (More discussion is available in our full version).
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Instead, we will give an upper bound and a lower bound for the steal-entropy of
a given algorithm. To show a program has poor steal-entropy, we need provide a
small upper bound on the steal-entropy of this program; to show a program has
high steal-entropy, we need provide a large lower bound on the steal-entropy of
this program.

1.2.3 Construction
We propose an efficient encryption scheme and demonstrate that hiding partial
ciphertext could be a powerful tool to defeat strong leakage attack. We construct
our encryption scheme using Vandermonde matrix and evaluate the steal-entropy
of the proposed scheme without relying on any hard problem assumption. Infor-
mally speaking, our encryption scheme will ensure that, without complete cipher-
text, the attacker obtains very limited information about the plaintext, even if
the attacker has stolen a bounded amount of message (e.g. the entire short pri-
vate key) of his/her choice. We will compare our solution with some related
approaches, including All-or-Nothing Transform and White-Box Cryptography,
both of which could not satisfy our goal.

The proposed solution will be used to construct a “virtually isolated net-
work” [29]. We discuss details later in Sect. 2.

1.3 Organizations

The rest of this paper is organized in this way: Sect. 2 gives an overview of
our work, including our leakage setting, formulation of steal-entropy, and our
proposed construction of leakage/steal-resilient encryption scheme. In addition
to the related works already discussed in Sects. 1 and 2, Sect. 3 discusses more
related works. We present our formal formulation of steal-entropy in Sect. 4,
propose and analyse our encryption scheme in Sect. 5. We conclude this paper
in Sect. 6. A full version with more details is available online [28].

2 Overview of Our Work

2.1 Our Leakage Setting

2.1.1 Motivation of New Leakage Setting
In this paper, we aim to counter not only side channel attack but also covert
channel attack. Nowadays, computer systems become so complex and consist of
a lot of software/hardware components which are designed, manufactured and
sold by various companies from various countries. It is definitely not a trivial
task for PC users to check whether some backdoor program or malware (e.g.
Trojan horse) has been planted inside his/her PC hardware/software system.
The well-known “Dual Elliptic Curve Deterministic Random Bit Generator”
(Dual EC DRBG) backdoor1 demonstrates that the potential threat from back-
door is not that far away from every computer user. Another serious threat is
1 https://en.wikipedia.org/wiki/Kleptography and https://en.wikipedia.org/wiki/

Dual EC DRBG.

https://en.wikipedia.org/wiki/Kleptography
https://en.wikipedia.org/wiki/Dual_EC_DRBG
https://en.wikipedia.org/wiki/Dual_EC_DRBG
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software Trojans horse or even hardware Trojan horse2. The backdoor or Trojan
horse malware may observe the victim’s computer system to gather information
and send collected (possibly compressed) information out via a covert channel
or subliminal channel.

Facing such threats from backdoor and Trojan horse, in this work, we have
to revise the existing leakage setting: (1) Theoretically, backdoor or Trojan horse
programs could be planted by some software/hardware vendor and they exist in
victim’s computer from the very beginning. So it might not be appropriate to
assume a leakage-free time period. (2) Possibly, the backdoor program might be
planted by vendors of the secure hardware device and the assumption of leakage-
free secure hardware device is hard to validate. (3) The backdoor or Trojan horse
malware may have their own storage buffers, so history data can be buffered and
then leaked 1 bit by 1 bit via the covert channel (thus Pereira, Standaert and
Vivek [23] would be broken trivially as discussed in Sect. 1.1.5).

2.1.2 New Leakage Setting
In general, we allow efficient leakage with bounded bandwidth at anytime and
anywhere and over anything. The only two restrictions on leakage are: (1) The
leakage amount of each encryption (i.e. the bandwidth of covert channel) is
bounded (e.g. O(λ)). In this paper, we are interested in medium value of leakage
threshold, e.g. tens of thousands bits, which is much larger than typical private
key size (e.g. AES key and RSA private key). (2) The backdoor or Trojan horse
program (i.e. the leakage function) is computationally bounded (e.g. polyno-
mial time algorithm). Our setting is closer to study of memory leakage resilient
cryptography, and does not follow the assumption that only computation leaks
information [22].

Recall that, in most, if not all, leakage-resilient cryptography research works,
an adversary has two different methods to obtain desired information:

• A cheap method to obtain a large amount of weakly protected information,
for example, eavesdropping ciphertext on communication link.

• An expensive method to obtain a small amount of strongly protected infor-
mation, for example, using side channel attack or Trojan horse malware plus
covert channel attack to obtain partial or full information of the short secret
key.

Typically in existing works, an adversary is assumed to obtain full information
of ciphertext using the cheap method (e.g. eavesdropping), meanwhile subject
to several restrictions on obtaining information of short secret key (e.g. assumed
leakage-free time period or hardware device). Unlike existing works, in this paper,
we impose minimum restrictions on information leakage, and assume that a small
part (e.g. 1% or 0.1%) of ciphertext3 is as strongly protected as the short secret
2 http://spectrum.ieee.org/semiconductors/design/stopping-hardware-Trojans-in-

their-tracks.
3 The encryption scheme is length-preserving, and the size of ciphertext is equal to

the size of plaintext.

http://spectrum.ieee.org/semiconductors/design/stopping-hardware-Trojans-in-their-tracks
http://spectrum.ieee.org/semiconductors/design/stopping-hardware-Trojans-in-their-tracks
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key, so that the adversary has to resort to the expensive method (e.g. Trojan
horse and covert channel) to obtain this part of ciphertext. Next, we will support
this assumption with real world examples.

Secure Storage Device. For data storage, we assume there are two categories of
storage: one with small capacity is relatively more expensive, in term of unit
price, but much more secure; the other with large capacity is cheaper but inse-
cure. In case that a user wish to backup large size sensitive historical data in
cloud storage server, but did not trust the cloud in data confidentiality. Then
this user’s local offline storage device, which is physically disconnected from
any computers and Internet, could be an example of the former, and the cloud
storage4 could be an example of the latter.

Secure Communication Link. For data transmission, we assume there exist two
categories of communication channels, one with small bandwidth is very expen-
sive but much more secure, such that an adversary cannot obtain the transmitted
data with low cost (e.g. eavesdropping); the other with large bandwidth is cheap
but insecure, such that an adversary can obtain all transmitted data with low
cost. The example of former could be satellite link (or even neutrinos commu-
nication in the future), which is relatively more difficult to eavesdrop, and the
example of latter could be Internet. Another example is “virtually isolated net-
work”5, recently proposed by Xu and Zhou [29], which is a hybrid network with
two communication channels: one is a physically isolated network with small
bandwidth, and the other is Internet with large bandwidth. Their work [29]
combines these two channels with unidirectional network links (a.k.a data diode
or air gap), so that the isolated network will be still always physically isolated
from Internet.

Our strategy is to enhance security level of the large amount of cheap but
insecure hardware resource by leveraging on small amount of expensive but more
secure hardware resource, essentially creating a hybrid effects in security. We aim
to prevent the adversary from eavesdropping full information of our ciphertext.

2.2 Notion of Steal-Entropy

Unlike previous leakage formulation, we attempt to formalize security in leakage
setting from a different angle. We try to answer a very important question:

“At least how many bits should the adversary steal in order to
obtain the desired secret information?”

4 Note: (1) Many cloud storage servers provide a certain amount (e.g. 15GB) of free
cloud storage for individual users; (2) the cost of offline local storage should include
not only hardware purchase cost but also hardware maintenance and storage cost
(i.e. keep the harddisk drive in a proper physical environment for a long time).

5 Actually, the motivation of this work is to provide an extremely secure (informally,
close to physically isolated network) communication method in this “virtually iso-
lated network” [29]. Here we choose strong leakage resilience against potential back-
door as our formal definition of “extremely secure”.
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In this work, we are concerning how many bits the adversary has to obtain
using the expensive method, in order to obtain full or partial information of
the plaintext. Informally, we may call this “minimum but sufficient number of
leaked/stolen bits” which will lead to compromise of secret plaintext, as the
steal-entropy of the encryption algorithm.

Let P (e.g encryption algorithm/program) denote the victim algorithm or
program. In our formulation, an adversary chooses two algorithms, denoted with
steal algorithm S and recovery algorithm R. The steal algorithm S is given oracle
access to the whole computation process of P, including any internal states (e.g.
secret keys, random seeds, input and any computation steps). Then the steal
algorithm S is allowed to pass a short message, which is at most � bits, to the
recovery algorithm R, which attempts to output desired secret information. If
the recovery algorithm R is able to output the desired secret information with
probability close to 1, with value of � much smaller than the size of desired secret
information, then we say the victim algorithm P has very low steal-entropy rate.
In this work, we are interested in medium value of leakage threshold � (e.g. tens
of thousands), which is larger than typical secret key length, but could be much
smaller than typical ciphertext length. Our notion of “steal-entropy” could be
treated as a computation version of Kolmogorov complexity.

2.2.1 Steal-Entropy in Input or Output
Pseudorandom number generators, pseudorandom function and encryption are
important cryptography primitives applied to protect data confidentiality. For
an algorithm P similar to pseudorandom number generator and pseudorandom
function, we are interested to ask a question: Assuming a Trojan horse malware
is observing the computation process of algorithm P upon a randomly chosen
input x, at least how many bits should the Trojan horse malware steal and
send out, in order to allow a remote attacker to recover the output P(x) of the
algorithm P? To address this question, we define a notion called “Steal-Entropy
of an algorithm in Output”. Due to space constrain, we will leave the formal
definition of this notion in the full version of this paper.

For algorithm P similar to encryption scheme, we are interested to ask
another question: Assuming a Trojan horse malware is observing the computa-
tion process of algorithm P upon a randomly chosen input x, at least how many
bits should this Trojan horse malware steal and send out, in order to allow a
remote attacker to recover the input x, where this remote attacker has access
to the output6 P(x)? To address this question, we define a notion called “Steal-
Entropy of an algorithm in Input”. In addition, to deal with partial information
protection, we define a notion called “Strong Steal-Entropy of an algorithm”.

2.2.2 Relation with Existing Similar Notions
We also formally analyze the differences between our notion of steal-entropy
with existing similar notions, including Yao-Entropy [30], Hill-Entropy [19],

6 Usually, it is assumed that the adversary has access to the ciphertext.
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Information Dispersal Algorithm [24], All-or-Nothing Transform [25], and Expo-
sure Resilient Function [10]. We manage to separate our proposed steal-entropy
from all of these existing formulations. More details are in our full version [28].

2.3 Our Approach

When the leakage threshold � is larger than typical secret key size, most existing
encryption schemes and leakage resilient encryption schemes (which only tol-
erates leakage upto O(poly log λ) < λ bits, where λ is the security parameter)
would fail to protect data confidentiality, since in typical setting, an adversary
could obtain all ciphertext with low cost (e.g. eavesdropping), and the secret
decryption key could be stolen by Trojan horse malware and delivered to the
remote adversary via covert channel.

Facing such stringent threat of medium size of arbitrary information leakage,
two possible directions are: (1) Construct novel encryption scheme with larger
flexible key size, say the encryption/decryption key size could be a user-tunable
parameter, and range from hundreds bits to hundreds of thousands bits or even
more. We will report our work in this direction in a separate paper. We remark
that Alwen, Dodis and Wichs [2] does not satisfy our purpose, since this work [2]
eventually extracted a short session key from arbitrary large size long term secret
key, where this extracted short session key could be stolen under our leakage
setting. (2) Break the assumption that the adversary could easily obtain all
ciphertext. Indeed, this work will attempt to hide a small portion of ciphertext
using more secure hardware resource, so that the adversary has to resort to the
expensive method to steal information about this small portion of ciphertext, in
a similar way that he/she steals the secret key.

2.3.1 Randomness Source
Any static secret information might be stolen one bit by one bit, if backdoor or
Trojan horse exists. To defeat continuous leakage/steal with buffer storage, we
have to keep investing more and more randomness. However, it is expensive to
generate cryptographically secure randomness. In our solution, we will exploit
the fact that plaintext itself is naturally a sort of random source to the view of
adversary, saving the cost to generate true randomness. We protect a small por-
tion of the ciphertext using more secure hardware resource, so that this portion
of ciphertext actually acts as another “secret key”, which is derived from the
plaintext and will change naturally with plaintext, to the view of adversary.

2.4 Our Construction

Our leakage setting provides much more freedom and power to adversary, com-
pared to existing works on leakage-resilient cryptography. Consequently, the two
very important classical tools, namely computational indistinguishability and
(statistical or computational) randomness extractor, are hardly to be applied
under our formulation. In this work, we have to resort to information theory
techniques.
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Definition 1 (Blockwise Uniform Distribution). Let y = (y1,y2, · · · ,yn),
where yi ∈ {0, 1}ρ for each i ∈ [1, n]. We say y follows (ζ, ρ)-Blockwise-Uniform
Distribution, if for any subset S = {i1, i2, · · · , iζ} ⊂ [1, n] with |S| = ζ and
i1 < i2 < i3 < · · · < iζ , we have the joint Shannon-entropy

H
Shannon(yi1 ,yi2 , · · · ,yiζ

) = ρζ. (1)

That is, any subset of ζ distinct blocks yi will have joint Shannon entropy equal
to their total bit-length (i.e. entropy rate equal to 1).

Remark 1. When ρ = 1 and ζ = n, then (ζ, ρ)-Blockwise-Uniform Distribution
is identical with uniform distribution.

In this work, we will construct an invertible algorithm P using Vandermonde
matrix, such that its inverse algorithm P−1, satisfies this property:

Property 1. Let Ctx0 and Ctx1 be the small share and large share of cipher-
text, and assume the bit-length |Ctx1| = τ · |Ctx0| = τρζ. If Ctx0 is inde-
pendently and uniformly randomly distributed over {0, 1}ρζ , then the output
x = P−1(Ctx0, Ctx1) follows (ζ, ρ)-Blockwise-Uniform Distribution, regardless
of value of Ctx1 (e.g. this value could be fixed to any given bit-string from its
domain).

Suppose somehow an attacker is able to output ζ bits among xi’s, say xij
,

j ∈ [1, ζ]. Then these ζ bits xij
’s will reside in at most ζ distinct ρ-bit blocks

in bit-string x. Since any subset of ζ blocks of x will have Shannon entropy rate
equal to 1 (i.e. entropy equal to the bit-length), the collection of these ζ bits
xij

’s will have exactly ζ bits Shannon entropy. Therefore, the adversary has to
steal at least ζ bits message via the covert channel, as desired. Apparent, the
above proof is not tight with a multiplicative loss of factor ρ. We leaf the tight
proof with better security parameters in future work.

3 Related Works

The related works in leakage resilient cryptography have been discussed in
Sect. 1.1. Here we discuss other related works.

Symmetric encryption scheme (e.g. AES, Blowfish7, and Triple DES8.) could
be the most widely adopted cryptographically secure primitive to protect data
confidentiality, especially for large volume of data. AES [11] is a typical example
of symmetric encryption scheme, and has been actively adopted in industry and
research area due to its security and efficiency for more than one decade.

In additional to encryption techniques, another well-known cryptographic
primitive that can be used to protect data confidentiality is “secret-sharing”
scheme invented by Shamir [26]. Compared to encryption scheme (e.g. AES [11])

7 https://www.schneier.com/academic/blowfish/.
8 http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf.

https://www.schneier.com/academic/blowfish/
http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf
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which can only achieve conditional security, secret-sharing scheme may achieve
unconditional security (also known as information-theoretic security), assuming
the adversary cannot collect sufficient number of shares.

Despite its strong security, Shamir’s secret sharing scheme has significant
drawbacks when protecting data confidentiality: (1) for (t, n)-secret sharing
scheme, the storage overhead is as large as (n−1) times of size of the secret (i.e.
the plaintext to be protected); (2) the reconstruction [21] (or decoding) process
is not as efficient as DES or AES.

Rabin [24] proposed “information dispersal algorithm” with zero storage
overhead, such that the sum of sizes of all shares is equal to the size of
secret message size. His solution is conceptually simple: Let row vector m =
(m0,m1, . . . ,mn) be the secret message. Choose an invertible n by n matrix
T with inverse matrix T−1. By multiplying row vector m with matrix T, we
obtain the n shares c = (c0, c1, . . . , cn−1) = m × T. Accordingly, the original
secret message m can be recovered by matrix multiplication m = c × T−1.
Othman and Mokdad [8] proposed to protect communication confidentiality by
sending each share of message in distinct network path from the same sender to
the same receiver.

Alternatively, Krawczyk [20] attempted to make each share shortened, by
dividing ciphertext of the long secret message into n pieces, and then apply
Shamir’s secret sharing scheme over the encryption key. Thus, the storage over-
head is linear in short encryption key size and is a fraction of secret message
size.

4 Steal-Entropy: How Many Bits Should Be Stolen to
Recover the Secrete Information?

In this section, we propose the notion of “Steal-Entropy”. Unlike traditional
entropy concepts (e.g. Shannon-Entropy, Yao-Entropy9, Hill-Entropy, etc) which
are defined over random variable with a certain distributions, “steal-entropy”
will be defined over algorithms which convert input distribution to output dis-
tribution. Our notion of “steal-entropy” could be considered as a computational
version of Kolmogorov Complexity [4], which is quoted in full version.

4.1 Steal-Entropy of an Algorithm in Input

Definition 2 (Steal-Entropy of an Algorithm in Input). Let P : {0, 1}n →
{0, 1}m be a deterministic10 single-input algorithm. Let ε ∈ [0, 1

4 ). Let A be a
t-adversary associated with a pair of algorithms (S, R), such that

• both the steal (or stealage) algorithm S and the recovery algorithm R are
probabilistic algorithms within time t, and

9 Shannon-Entropy is information-theoretical. Both Yao-Entropy and Hill-Entropy are
computational variants.

10 When all random coins are treated as a part of input, any probabilistic algorithm
will become deterministic.
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• for any non-negative integer �, the steal algorithm

SO(P(x))(�) ∈ {0, 1}≤� \ {EmptyString}
with oracle access to P, is allowed to observe all internal states during com-
putation process of algorithm P upon an input x, and outputs at most � bits
non-empty steal-message, and

• the recovery algorithm R takes as input the value P(x) and the steal-message
generated by S(�), and attempts to guess the value x.

We make the following definitions.

• We define the advantage of A against P w.r.t. input x ∈ {0, 1}n as below

AdvinA(�),P(x) = Pr
[
R

(
SO

(
y←P(x)

)
(�), y

)
= x

]
(2)

where the probability is taken over all random coins of algorithms S and R.
• We say the infimum of Steal-Entropy in Input of algorithm P is at least

ξ, denoted as inf Sinε,t(P) ≥ ξ, if for any t-adversary A, for any non-negative
integer � ≤ ξ,

Pr
x

R←{0,1}n

[
AdvinA(�),P(x) ≤ 1

2ξ−�
+ ε

]
≥ 1 − ε. (3)

• We say the supremum of Steal-Entropy in Input of algorithm P is at
most ξ, denoted as supS

in
ε,t(P) ≤ ξ, if for some t-adversary A,

Pr
x

R←{0,1}n

[
AdvinA(ξ),P(x) ≥ 1 − ε

]
≥ 1 − ε. (4)

• We say S
in
ε,t(P0) ≥ S

in
ε,t(P1) (or equivalently S

in
ε,t(P1) ≤ S

in
ε,t(P0)), if the follow-

ing two equations hold

inf Sinε,t(P0) ≥ inf Sinε,t(P1); supS
in
ε,t(P0) ≥ supS

in
ε,t(P1). (5)

• We say S
in
ε,t(P0) � S

in
ε,t(P1) (or equivalently, Sinε,t(P1) � S

in
ε,t(P0)), if the fol-

lowing equation holds

inf Sinε,t(P0) ≥ supS
in
ε,t(P1). (6)

Proposition 1. If P is an invertible algorithm, and the inverse algorithm P−1

has running time ≤ t, then inf Sinε,t(P) = supS
in
ε,t(P) = 0.

When the encryption/decryption key is fixed, an encryption algorithm Enc
is an invertible algorithm from plaintext to ciphertext. Before any information
leakage, an adversary may have knowledge of the whole family {Enck}k←KGen(1λ)

and do not know which one is picked from this family of permutation algorithms.
By stealing the key k, an adversary is able to recover plaintext from ciphertext.
This simple fact is summarized as below.

Proposition 2. For any PPT encryption scheme (KGen,Enc,Dec) and for any
key k generated by KGen, we have supS

in
ε,t

(
Enck

) ≤ |k|, where ε = 0, and t =
poly(·).
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4.2 Discussion

An interesting question is to evaluate the steal-entropy for classical hard prob-
lems: factorization problem and discrete log problem, where thousands (say 2048)
bits long key provides roughly 80 bits security level. PFact(p, q) = p × q where
both p and q are primes with equal bit-length. PLog(x) = gx mod p where both
g and p are public constants, p is a prime and g is a generator modulo p. Will
the steal-entropy of these algorithm be closer to their key size (i.e. thousands)
or security level (i.e. 80)? We leave it as an open problem.

4.3 Strong Steal-Entropy in Input

Informally, after stealing � bits arbitrary message, the adversary should be unable
to output � + Δ bits information about the secret value, and there will be no
leakage amplification.

Definition 3 (Strong Steal-Entropy of an Algorithm in Input). Let P :
{0, 1}n → {0, 1}m be a deterministic11 single-input algorithm. Let ε ∈ [0, 1

4 ). Let
A be a t-adversary associated with a pair of algorithms (S, R), such that

• both the steal (or stealage) algorithm S and the recovery algorithm R are
probabilistic algorithms within time t, and

• for any non-negative integer �, the steal algorithm

SO(P(x))(�) ∈ {0, 1}≤� \ {EmptyString}

with oracle access to P, is allowed to observe all internal states during com-
putation process of algorithm P upon an input x, and outputs at most � bits
non-empty steal-message, and

• the recovery algorithm R takes 2 inputs: (1) the steal-message generated by
S(�), and (2) the value P(x), and outputs two values: (1) x̄ ∈ {0, 1}n, which
is a guess of x, and (2) a subset of indices Ix ⊂ [1, n].

We introduce the following definitions.

• For any adversary A with steal algorithm S and recovery algorithm R, let us
define the set Gmsg of good steal-message as below

GR
msg(�,Δ, x, β) def=

⎧⎨
⎩Msg ∈ {0, 1}≤� :

(x̄, I) ← R(Msg,P(x));
|I| ≥ � + Δ;
∀i ∈ I,Pr[x̄[i] = x[i]] ≥ β

⎫⎬
⎭ (7)

where the probability is taken over the random coins of R.

11 When all random coins are treated as a part of input, any probabilistic algorithm
will become deterministic.
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• Similarly, let us define the set Gx of good input x as below

GS,R
x (�,Δ, α, β) def=

{
x ∈ {0, 1}n : Pr[SO(P(x))(·) ∈ GR

msg(�,Δ, x, β)] ≥ α
}
(8)

where the probability is taken over the random coins of S.
• We say the supremum of Strong Steal-Entropy in Input of algorithm
P is at most ξ, denoted as supS

sin
ε,t (P) ≤ ξ, if for some t-adversary A = (S,R),

Pr
x∈R{0,1}n

[x ∈ GS,R
x (ξ, ς(ξ, ε) + 1 − �, 1 − ε, 1 − ε)] ≥ 1 − ε (9)

where function ς(·, ·) is defined as below12

ς(�, ε)def=
{

�, if 0 ≤ ε < 2−(�−1)

� + 1, if 2−(�−1) ≤ ε < 1
4 .

(10)

• Let ε ≥ λ−c where c could be any positive integer. We say the infimum of
Strong Steal-Entropy in Input of algorithm P is at least ξ, denoted as
inf Ssinε,t (P) ≥ ξ, if for any t-adversary A = (S,R), for any � with ς(�, ε) =
� + 1 < ξ,

Pr
x∈R{0,1}n

[x ∈ GS,R
x (�, ς(�, ε) + 1 − �, 0.5 + ε, 0.5 + ε)] ≤ 0.5 + negl(λ), (11)

where λ is the security parameter, and negl(·) denotes some negligible func-
tion.

• We say S
sin
ε,t (P0) ≥ S

sin
ε,t (P1) (or equivalently S

sin
ε,t (P1) ≤ S

sin
ε,t (P0)), if the

following two equations hold

inf Ssinε,t (P0) ≥ inf Ssinε,t (P1); supS
sin
ε,t (P0) ≥ supS

sin
ε,t (P1). (12)

• We say S
sin
ε,t (P0) � S

sin
ε,t (P1)(or equivalently, S

sin
ε,t (P1) � S

sin
ε,t (P0)), if the

following equation holds

inf Ssinε,t (P0) ≥ supS
sin
ε,t (P1). (13)

Lemma 1 (Amplification). If there exists some t-adversary A0 = (S0,R0),
such that for any positive integer c, and for any ε ≥ λ−c, we have

Pr
x∈R{0,1}n

[x ∈ GS0,R0
x (�, ς(�, ε) + 1 − �, 0.5 + ε, 0.5 + ε)] ≥ μ (14)

then there exists some t · Θ(1/ε)-adversary A1 = (S1,R1), such that

Pr
x∈R{0,1}n

[x ∈ GS1,R1
x (�, ς(�, ε) + 1 − �, 1 − negl(λ), 1 − negl(λ))] ≥ μ (15)

where λ is the security parameter and negl(·) denotes some negligible function.
(The proof is in our full version [28])
12 The reason behind the definition of ς(�, σ) (i.e. Eq. 10) is explained with details in

our full version of this paper. Informally speaking, some steal algorithm S(�) is able
to convey almost � + 1 bits message to R algorithm, since |{0, 1}≤�| ≈ |{0, 1}�+1|.
When the error bound ε ≥ 2−(�−1), we do not care the difference between such
“almost” � + 1 bits message and actual � + 1 bits message.
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Definition 4 (Strong Steal-Entropy Rate in Input). Let P : {0, 1}n →
{0, 1}m be a deterministic single-input algorithm. We define the infimum and
supremum of steal-entropy rate of algorithm P as

μ⊥ def=
inf Ssinε,t (P)

n
; μ� def=

supS
sin
ε,t (P)
n

(16)

(Note that this is a counterpart notion of “entropy rate” or “leakage rate”.)

Theorem 2 (Separation between Steal-Entropy and Strong Steal-
Entropy). There exists a constant c > 0, such that for any positive integer N ,
we can construct an algorithm P, such that supS

sin
ε,t (P) ≤ c and inf Sinε,t(P) ≥ N .

(Proof is in our full version [28])

5 Our Proposed Encryption (or Encoding) Scheme

We will describe our proposed encryption scheme in two steps following a mod-
ular design.

5.1 Our Steal-Resilient Encryption (or Encoding) Scheme

Definition 5 (Steal-Resilient Encryption/Encoding). Let Φ = (KeyGen,
Encrypt,Decrypt) be a length-preserving encryption scheme. Let algorithm
SuffixΦ be defined as below

SuffixΦ(k;x) = C1, where k := KeyGen(1λ)
and C0‖C1 := Encrypt(k;x) and |C1| = τ |C0|. (17)

Let n denote the length of plaintext. We say Φ is a δ(n)-steal-resilient encryption
scheme with split-factor τ , if the algorithm SuffixΦ has infimum of strong steal-
entropy rate μ⊥ = inf Ssinε,t(SuffixΦ)

n ≥ δ(n), where δ(n) ∈ [0, 1] with 1 meaning the
best and 0 meaning the worst, t = O(poly(λ)), and ε ≥ λ−c for some positive
integer c.

We remark that, under our definition, most existing encryption schemes
(including any existing block cipher under any existing mode of operation,
and All-or-Nothing Transform by Rivest [25], and Leakage resilient encryp-
tion13 [1,2,14,17,23,27,31]) are poorly δ(n)-steal resilient encryption with
δ(n) = 1/Θ(n) approaching to zero when n approaches to infinity.

We found that the linear transformation with Vandermonde matrix is a good
steal-resilient encryption scheme. Let ρ be some positive integer (e.g. 8 or 16 or
32) and GF (2ρ) be a finite field with order 2ρ.
13 We remark that some of these cited leakage resilient cryptography works actually pro-

pose leakage resilient pseudorandom generator/functions, instead of an encryption
scheme. These pseudorandom generator/functions can be converted into encryption
scheme using classical methods. These resulting encryption schemes will be a poor
steal-resilient encryption.



Strong Leakage Resilient Encryption by Hiding Partial Ciphertext 187

We construct an encryption scheme Φ0 = (KeyGen,Encrypt,Decrypt) as
below.
Φ0.KeyGen(1λ) → M

1. Randomly choose a ζ · (1 + τ) by ζ · (1 + τ) Vandermonde matrix14, and
denote its transpose matrix as M = (Mi,j)i,j∈[1,ζ·(1+τ)], where Mi,j = αi

j ∈
GF (2ρ) \ {0}. The inverse of matrix M exists and is denoted as M−1.

2. Output M.

Φ0.Encrypt(M;x), where M is a ζ · (1 + τ) by ζ · (1 + τ) matrix and x ∈
GF (2ρ)ζ·(1+τ) is a row vector of dimension ζ ·(1+τ) (equivalently, 1 by ζ ·(1+τ)
matrix)

1. Compute product y := x × M−1 of two matrix x and M−1.
2. Treat y as a bit string with length (1 + τ)ρζ bits, which is the concatenation

of ζ(1 + τ) number of ordered ρ-bits finite field elements.
3. Let y0 be the prefix of y with length equal to ρζ bits.
4. Let y1 be the suffix of y with length equal to τρζ bits.
5. Output (y0,y1).

Φ0.Decrypt(M;y0,y1)

1. Let y be the concatenation of y0 and y1.
2. Parse bit-string y as a row vector of dimension ζ(1 + τ) where each vector

element is from GF (2ρ).
3. Compute matrix product x := y × M.
4. Output x.

We remark that, any linear transformation with an invertible matrix could con-
stitute an information dispersal algorithm [24], but is unlikely a steal-resilient
encryption.

Our experiments in a Macbook Pro Laptop with Intel i5 CPU (purchased in
2014) show that the encryption or decryption can be done in 0.037 s (about 21
megabytes per second) with a single CPU core when dimension of M is 12800
and ρ = 16, τ = 31; and in 0.149 s when dimension is 25600 and ρ = 16, τ = 63.

Theorem 3. Let x := y ×M be as stated in the above scheme. Then x follows
(ζ, ρ)-Blockwise-Uniform distribution, as defined in Definition 1 on page 9. More
precisely, parse x as a sequence of elements (x1, x2, · · · , xi, · · · , xζ(1+τ)) with
each element xi ∈ GF (2ρ). If the last τ · ζ elements of y is given and fixed,
and the first ζ elements of y uniformly distributes over {0, 1}ρζ , then any tuple
of ζ elements (· · · , xij

, · · · )j∈[1,ζ], with distinct indices ij’s, will have exactly
ρ · ζ bits Shannon-Entropy (i.e. the Shannon-Entropy rate is 1). Proof is in full
version [28].

14 The matrix row/column index starts with either zero or one, makes no essential
difference to the property of Vandermonde matrix.
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Corollary 4. The proposed scheme Φ0 is a δ(n)-steal-resilient encryption,
with δ(n) = 1

ρ(τ+1) independent on plaintext length n = ρζ(1 + τ), and
inf Ssinε,t (SuffixΦ0) ≥ ζ. We remark that both ρ and τ are system parameters
independent on plaintext length n. (Proof is in our full version [28])

We observe that, in the proof of Theorem3, we only require the first ζ rows of
matrix M satisfy the special Vandermonde matrix property. Therefore, we could
simply tweak the rest rows of matrix M, in order to speed up the decryption
performance.

Corollary 5. In algorithm Φ0.KeyGen, change the last τζ rows of matrix M
to a sparse matrix, such that M is still invertible. Then the resulting variant
version of Φ0 is still δ(n)-steal-resilient encryption, with δ(n) = 1

ρ(τ+1) , where
n = ρζ(1 + τ).

The above Corollary 5 actually separates our notion from secret-sharing
scheme: After the tweak in the above corollary, the resulting scheme is no longer
a secret sharing scheme.

5.2 Combine Steal-Resilient Encryption and Semantic Secure
Encryption

We wish to combine both of the advantage of Steal-Resilient Encryption in
leakage setting, and the advantage of semantic secure encryption in standard
adaptive chosen message/plaintext attack setting (CCA2/CPA2).

Let Φ0 be the steal-resilient encryption scheme defined above. Let Φ1 be a
given semantic-secure encryption scheme (precisely, CTR mode of a semantic
secure block cipher). Eventually, our encryption scheme Φ2 is defined as below

• Φ2.KeyGen(1λ) ← (k, k0, k1):
1. Compute key M ← Φ0.KeyGen(1λ).
2. Compute key k ← Φ1.KeyGen(1λ).
3. Output (k,M).

• Φ2.Encrypt(k,M; Msg) → (C0, C1)
1. Encrypt plaintext Msg using semantic secure encryption to obtain cipher-

text Ctx ← Φ1.Encrypt(k; Msg).
2. Split the ciphertext Ctx into two shares using steal-resilient encryption

(C0, C1) ← Φ0.Encrypt(M; Ctx).
3. Output (C0, C1).

• Φ2.Dec(k,M;C0, C1)
1. Merge the two shares C0 and C1 as ciphertext Ctx ← Φ0.

Decrypt(M;C0, C1).
2. Decrypt Ctx as Msg ← Φ1.Decrypt(k; Ctx).
3. Output Msg.

We remark that, in our proposed scheme, for large input size, Φ1 can run in
CTR mode and Φ0 can run over every ρζ(1 + τ)-bit segment in ciphertext of Φ1

independently.
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Theorem 6. Let Φ2 be the proposed encryption scheme by combining a steal-
resilient encryption Φ0 and a semantic secure encryption Φ1. Then Φ2 is
semantic-secure in standard model, and is δ(n)-steal-resilient encryption with
split-factor τ in our leakage-model, where 1/δ(n) = ρ(τ + 1) + O(1). (Proof is
given in our full version [28]).

6 Conclusion

In this work, we proposed a new and strong leakage setting, a novel notion of
computational entropy, and a construction to achieve higher security against
strong leakage. We separated our new notion from several relevant existing con-
cepts, including Yao-Entropy, Hill-Entropy, All-or-Nothing Transform, Exposure
Resilient Function. Unlike most of previous leakage resilient cryptography works
which focused on defeating side-channel attacks, we opened a new direction to
study how to defend against backdoor (or Trojan horse) and covert channel
attacks.
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19. HÅsstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

20. Krawczyk, H.: Secret sharing made short. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 136–146. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48329-2 12

21. McEliece, R.J., Sarwate, D.V.: On sharing secrets and Reed-Solomon codes. Com-
mun. ACM 24(9), 583–584 (1981)

22. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24638-1 16

https://doi.org/10.1145/3266444.3266447
https://doi.org/10.1145/3266444.3266447
https://doi.org/10.1007/3-540-45539-6_33
https://doi.org/10.1007/3-540-45539-6_33
https://eprint.iacr.org/2014/779
https://eprint.iacr.org/2014/779
https://doi.org/10.1007/11681878_12
https://doi.org/10.1007/11681878_12
https://doi.org/10.1007/978-3-642-17373-8_35
https://doi.org/10.1007/978-3-642-17373-8_35
https://doi.org/10.1007/11681878_11
https://doi.org/10.1145/2976749.2978419
https://doi.org/10.1109/FOCS.2008.56
https://doi.org/10.1007/3-540-48329-2_12
https://doi.org/10.1007/3-540-48329-2_12
https://doi.org/10.1007/978-3-540-24638-1_16
https://doi.org/10.1007/978-3-540-24638-1_16


Strong Leakage Resilient Encryption by Hiding Partial Ciphertext 191

23. Pereira, O., Standaert, F.X., Vivek, S.: Leakage-resilient authentication and
encryption from symmetric cryptographic primitives. In: Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, CCS 2015,
pp. 96–108 (2015)

24. Rabin, M.O.: Efficient dispersal of information for security, load balancing, and
fault tolerance. J. ACM 36(2), 335–348 (1989). https://doi.org/10.1145/62044.
62050

25. Rivest, R.L.: All-or-nothing encryption and the package transform. In: Proceedings
of the 4th International Workshop on Fast Software Encryption, FSE 1997, pp.
210–218 (1997)

26. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
27. Standaert, F.-X., Pereira, O., Yu, Y.: Leakage-resilient symmetric cryptogra-

phy under empirically verifiable assumptions. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013. LNCS, vol. 8042, pp. 335–352. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40041-4 19

28. Xu, J., Zhou, J.: Strong leakage resilient encryption by hiding partial ciphertext.
Cryptology ePrint Archive, Report 2018/846 (2018). https://eprint.iacr.org/2018/
846

29. Xu, J., Zhou, J.: Virtually isolated network: a hybrid network to achieve high level
security. In: Data and Applications Security and Privacy XXXII, DBSec 2018, pp.
299–311 (2018)

30. Yao, A.C.C.: Theory and applications of trapdoor functions. In: Proceedings of
23rd Annual Symposium on Foundations of Computer Science, EUROCRYPT
2007, pp. 80–91 (1982)

31. Yu, Y., Standaert, F.X., Pereira, O., Yung, M.: Practical leakage-resilient pseu-
dorandom generators. In: Proceedings of the 17th ACM Conference on Computer
and Communications Security, CCS 2010, pp. 141–151. ACM, New York (2010).
https://doi.org/10.1145/1866307.1866324

https://doi.org/10.1145/62044.62050
https://doi.org/10.1145/62044.62050
https://doi.org/10.1007/978-3-642-40041-4_19
https://eprint.iacr.org/2018/846
https://eprint.iacr.org/2018/846
https://doi.org/10.1145/1866307.1866324


Author Index

Ardila Rodríguez, Fabián 108
Arevalo Herrera, Juliana 70
Au, Man Ho 122

Barriga A., Jhonattan J. 143

Camacho, Luis 3
Camargo, Jorge E. 70
Correa, Alejandro 3

Das, Tanmoy Kanti 156
Deiro, Claudio 3
Díaz López, Daniel 108
Ding, Jintai 97

Faisal, Abu 51

Ghosh, Subhojit 156
Gómez Mármol, Félix 108

Koley, Ebha 156

Li, Jin 122
Li, Wenjuan 122

Miri, Ali 24

Ochoa, Martín 3

Pardo Mesa, Andrés 108
Polo, Juan Carlos 143

Solano, Jesus 3

Vargas, Javier 3

Wang, Yu 122

Xu, Jia 172

Yoo, Sang Guun 143
Younis, Fadi 24

Zhou, Jianying 156, 172
Zulkernine, Mohammad 51


	Preface
	SiMLA 2019
	CLOUD S&P 2019
	AIBlock 2019
	AIoTS 2019
	Contents
	SiMLA - Security in Machine Learning and its Applications
	Risk-Based Static Authentication in Web Applications with Behavioral Biometrics and Session Context Analytics
	1 Introduction
	2 Background and Attacker Model
	2.1 Device Fingerprinting
	2.2 User Behavior Identification
	2.3 TWOS Dataset
	2.4 Attacker Model

	3 Approach
	3.1 History-Aware Context Analytics
	3.2 Behavioral Dynamics Combining Keystrokes and Mouse Activity
	3.3 Overview of Combined Model

	4 Evaluation
	4.1 Use in Industrial Scenarios
	4.2 Discussion and Limitations

	5 Related Work 
	6 Conclusions
	A  Appendix
	References

	Using Honeypots in a Decentralized Framework to Defend Against Adversarial Machine-Learning Attacks
	1 Introduction
	1.1 Problem Definition
	1.2 Threat Model
	1.3 Attack Setting

	2 Deception-As-A-Defense Approach
	2.1 Adversarial Honeynet
	2.2 Honeynet Functional Components
	2.3 HoneyPeer Node Inter-communication
	2.4 Attracting the Adversary
	2.5 Detecting Adversarial Behaviour
	2.6 Adversarial Behaviour

	3 Related Work
	4 Conclusions
	A Appendix
	A.1 Deep Neural Nets (DNNs)
	A.2 Security of Deep Learning
	A.3 Adversarial Examples
	A.4 The Adversarial Optimization Problem
	A.5 Impact of Adversarial Examples on Deep Neural Nets
	A.6 Adversarial Transferability
	A.7 Black-Box Learning Systems
	A.8 Transferability and Black-Box Learning Systems
	A.9 Honeypots

	References

	Cloud S&P - Cloud Security and Privacy
	Graphene: A Secure Cloud Communication Architecture
	1 Introduction
	2 Related Work
	3 Graphene Architecture
	3.1 Design Specification
	3.2 Flow of Execution

	4 Implementation and Experimental Environment
	4.1 Implementation
	4.2 Experimental Environment

	5 Results and Analysis
	5.1 Security Analysis
	5.2 Performance Analysis

	6 Conclusion
	References

	A Survey on Machine Learning Applications for Software Defined Network Security
	1 Introduction
	2 Methodology
	3 SDN Architecture and Security
	4 ML-Based Intrusion Detection Systems in SDN
	4.1 General Anomaly Detection
	4.2 Specific Network Scenarios
	4.3 Login Attack
	4.4 DoS, Probe, U2R and R2L
	4.5 Distributed Denial of Service Attacks
	4.6 Techniques Comparison

	5 IDS Frameworks for SDN
	5.1 Frameworks Description
	5.2 Frameworks Comparison

	6 Complementary Proposals, Datasets and Testbeds
	6.1 Other ML Studies Related to Security
	6.2 Datasets and Testbeds

	7 Conclusion
	References

	AIBlock - Application Intelligence and Blockchain Security
	A New Proof of Work for Blockchain Based on Random Multivariate Quadratic Equations
	1 Introduction
	2 Theoretical Analysis of PoW in Bitcoin and Its Theoretical Model
	3 A New Proof of Work Based on Random Multivariate Quadratic Equations
	4 Conclusion
	References

	BSIEM-IoT: A Blockchain-Based and Distributed SIEM for the Internet of Things
	1 Introduction
	2 Background
	3 State of the Art
	4 BSIEM-IoT
	4.1 IoT Devices
	4.2 IoT Sentinels
	4.3 Distributed SIEM (miner)
	4.4 External Threat Intelligence

	5 Use Cases
	5.1 Adding Blocks of Security Events to the Blockchain
	5.2 Consuming the Blockchain to Detect Distributed Attacks
	5.3 Detecting Attacks Under Hostile Scenarios
	5.4 Auditing a Security Incident
	5.5 Scaling an IoT Security Infrastructure

	6 Experiments
	6.1 Settings
	6.2 Analysis of Results

	7 Conclusions and Future Work
	References

	Towards Blockchained Challenge-Based Collaborative Intrusion Detection
	1 Introduction
	2 Background and Related Work
	2.1 Background of Blockchains
	2.2 Related Work

	3 Our Proposed Framework
	3.1 Framework Design
	3.2 Trust Management
	3.3 Alarm Aggregation

	4 Evaluation: A Case Study
	5 Discussion and Challenges
	6 Conclusion
	References

	AIoTS - Artificial Intelligence and Industrial Internet-of-Things Security
	Enhancement to the Privacy-Aware Authentication for Wi-Fi Based Indoor Positioning Systems
	Abstract
	1 Introduction
	2 State of the Art
	3 Proposed Protocol
	3.1 Overview of the System
	3.2 Proposal of Device Removal Functionality: An Overview
	3.3 Proposal of Device Removal Functionality: Details

	4 Analysis of the Proposed Protocol
	4.1 Security Analysis
	4.2 Performance Analysis

	5 Conclusions and Future Direction
	Acknowledgements
	References

	Design of a FDIA Resilient Protection Scheme for Power Networks by Securing Minimal Sensor Set
	1 Introduction
	2 Design of a LAD Based Classifier for Fault Detection
	2.1 Binarization of Observations
	2.2 Support Set Generation
	2.3 Modified Pattern Generation Method
	2.4 Design of Classifier

	3 Performance Evaluation
	4 Conclusion
	References

	Strong Leakage Resilient Encryption by Hiding Partial Ciphertext
	1 Introduction
	1.1 Background in Existing Leakage Models
	1.2 Our Contributions
	1.3 Organizations

	2 Overview of Our Work
	2.1 Our Leakage Setting
	2.2 Notion of Steal-Entropy
	2.3 Our Approach
	2.4 Our Construction

	3 Related Works
	4 Steal-Entropy: How Many Bits Should Be Stolen to Recover the Secrete Information?
	4.1 Steal-Entropy of an Algorithm in Input
	4.2 Discussion
	4.3 Strong Steal-Entropy in Input

	5 Our Proposed Encryption (or Encoding) Scheme
	5.1 Our Steal-Resilient Encryption (or Encoding) Scheme
	5.2 Combine Steal-Resilient Encryption and Semantic Secure Encryption

	6 Conclusion
	References

	Author Index



