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Preface

The International Cross-Domain Conference for Machine Learning and Knowledge
Extraction CD-MAKE, is a joint effort of IFIP TC 5, TC 12, IFIP WG 8.4, IFIP WG
8.9, and IFIP WG 12.9 and is held in conjunction with the International Conference on
Availability, Reliability and Security (ARES). The third conference was organized at
the University of Kent at Canterbury, UK. A few words about IFIP:

IFIP – the International Federation for Information Processing – is the leading
multinational, non-governmental, apolitical organization in information and
communications technologies and computer sciences, is recognized by the United
Nations (UN), and was established in the year 1960 under the auspices of the UNESCO
as an outcome of the first World Computer Congress held in Paris in 1959.

IFIP is incorporated in Austria by decree of the Austrian Foreign Ministry (20th
September 1996, GZ 1055.170/120-I.2/96) granting IFIP the legal status of a
non-governmental international organization under the Austrian Law on the Granting
of Privileges to Non-Governmental International Organizations (Federal Law Gazette
1992/174).

IFIP brings together more than 3,500 scientists without boundaries from both
academia and industry, organized in more than 100 Working Groups (WGs) and 13
Technical Committees (TCs).

CD stands for “cross-domain,” and means the integration and appraisal of different
fields and application domains to provide an atmosphere to foster different perspectives
and opinions. The conference fosters an integrative machine learning approach, taking
into account the importance of data science and visualization for the algorithmic
pipeline with a strong emphasis on privacy, data protection, safety, and security. It is
dedicated to offering an international platform for novel ideas and a fresh look on
methodologies to put crazy ideas into business for the benefit of humans. Serendipity is
a desired effect and should lead to the cross-fertilize of methodologies and the transfer
of algorithmic developments.

The acronym MAKE stands for “MAchine Learning and Knowledge Extraction,” a
field of Artificial Intelligence (AI) that, while quite old in its fundamentals, has just
recently begun to thrive based on both novel developments in the algorithmic area and
the availability of vast computing resources at a comparatively low cost.

Machine learning studies algorithms which can learn from data to gain knowledge
from experience and to generate decisions and predictions. A grand goal is in under-
standing intelligence for the design and development of algorithms that work auton-
omously (ideally without a human-in-the-loop) and can improve their learning behavior
over time. The challenge is to discover relevant structural and/or temporal patterns
(“knowledge”) in data, which is often hidden in arbitrarily high dimensional spaces,
and thus simply not accessible to humans. Knowledge extraction is one of the oldest
fields in AI and sees a renaissance, particularly in the combination of statistical
methods with classical ontological approaches. AI currently undergoes a kind of



Cambrian explosion and is the fastest growing field in computer science today thanks
to the usable successes in machine learning. There are many application domains, e.g.,
in medicine, etc. with many use cases from our daily lives, e.g., recommender systems,
speech recognition, autonomous driving, etc. The grand challenges lie in sense-making,
in context understanding, and in decision-making under uncertainty. Our real world is
full of uncertainties and probabilistic inference had an enormous influence on AI
generally and machine learning specifically. Inverse probability allows to infer
unknowns, to learn from data, and to make predictions to support decision-making.
Whether in social networks, recommender systems, health applications or industrial
applications, the increasingly complex data sets require a joint interdisciplinary effort,
bringing the human-in-control to foster ethical and social issues, accountability,
retractability, explainability, causability and privacy, as well as safety and security.

To acknowledge all those who contributed to the efforts and stimulating discussions
is not possible in a preface with limited space like this one. Many people contributed to
the development of this volume, either directly or indirectly, and it is impossible to list
all of them here. We herewith thank all local, national and international colleagues, and
friends for their positive and supportive encouragement. Finally, yet importantly, we
thank the Springer management team and the Springer production team for their
professional support.

Thank you to all! Let’s MAKE it!

August 2019 Andreas Holzinger
Peter Kieseberg

A Min Tjoa
Edgar Weippl

vi Preface
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KANDINSKY Patterns as IQ-Test
for Machine Learning

Andreas Holzinger1(B) , Michael Kickmeier-Rust2, and Heimo Müller1

1 Medical University Graz, Auenbruggerplatz 2, 8036 Graz, Austria
{andreas.holzinger,heimo.mueller}@medunigraz.at

2 University of Teacher Education, Notkerstrasse 27, 9000 St. Gallen, Switzerland
michael.kickmeier@phsg.ch

Abstract. AI follows the notion of human intelligence which is unfortu-
nately not a clearly defined term. The most common definition given by
cognitive science as mental capability, includes, among others, the ability
to think abstract, to reason, and to solve problems from the real world. A
hot topic in current AI/machine learning research is to find out whether
and to what extent algorithms are able to learn abstract thinking and
reasoning similarly as humans can do – or whether the learning out-
come remains on purely statistical correlation. In this paper we provide
some background on testing intelligence, report some preliminary results
from 271 participants of our online study on explainability, and propose
to use our Kandinsky Patterns as an IQ-Test for machines. Kandinsky
Patterns are mathematically describable, simple, self-contained hence
controllable test data sets for the development, validation and training
of explainability in AI. Kandinsky Patterns are at the same time easily
distinguishable from human observers. Consequently, controlled patterns
can be described by both humans and computers. The results of our study
show that the majority of human explanations was made based on the
properties of individual elements in an image (i.e., shape, color, size) and
the appearance of individual objects (number). Comparisons of elements
(e.g., more, less, bigger, smaller, etc.) were significantly less likely and
the location of objects, interestingly, played almost no role in the expla-
nation of the images. The next step is to compare these explanations
with machine explanations.

Keywords: Artificial intelligence · Human intelligence ·
Intelligence testing · IQ-Test · Explainable-AI ·
Interpretable machine learning

1 Introduction and Motivation

“If you can’t measure it, nor assign it an exact numerical value, nor express it
in numbers, then your knowledge is of a meager and unsatisfactory kind”

(attributed to William Thomson (1824–1907), aka Lord Kelvin)
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
A. Holzinger et al. (Eds.): CD-MAKE 2019, LNCS 11713, pp. 1–14, 2019.
https://doi.org/10.1007/978-3-030-29726-8_1
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2 A. Holzinger et al.

Impressive successes in artificial intelligence (AI) and machine learning (ML)
have been achieved in the last two decades, including: (1) IBM Deep Blue [6]
defeating the World Chess Champion Garry Kasparov in 1997, (2) the success
of IBM Watson [10] in 2011 in defeating the Jeopardy players Brad Rutter and
Ken Jennings, or (3) the sensation of DeepMind’s Alpha Go [42] in defeating Go
masters Fan Hui in 2015 and Lee Sedol in 2016.

Such successes are often seen as milestones for and “measurements” of AI. We
argue that such successes are reached in very specific tasks and not appropriate
for evaluating the “intelligence” of machines.

The development of intelligence, therefore, is the result of the incremental
interplay between challenge/task, a conceptual change (physiological as well as
mentally) of the system, and the assessment of the effects of the conceptual
change. To advance AI, specifically in the direction of explainable AI, we suggest
bridging the human strength and the human assessment methods with those
of AI. In other words, we suggest introducing principles of human intelligence
testing as an innovative benchmark for artificial systems.

The ML community is becoming now aware that human IQ-tests are a more
robust approach to machine intelligence evaluation than such very specific tasks
[9]. In this paper we provide (1) some background on testing intelligence, (2)
report on some preliminary results from 271 participants of our online study
on explainability1, and (3) propose to use our Kandinsky Patterns [32]2 as an
IQ-Test for machines.

2 Background

A fundamental problem for AI are often the vague and widely different defini-
tions of the notion of intelligence and this is particularly acute when considering
artificial systems which are significantly different to humans [28]. Consequently,
intelligence testing for AI in general and ML in particular has generally not
been in the focus of extensive research in the AI community. The evaluation
of approaches and algorithms primarily occurred along certain benchmarks (cf.
[33,34]).

The most popular approach is the one proposed by Alan Turing in 1950 [45],
claiming that an algorithm can be considered intelligent (enough) for a certain
kind of tasks if and only if it could finish all the possible tasks of its kind. The
shortcoming of this approach, however, is that it is heavily task-centric and that
it requires an a-priori knowledge of all possible tasks and the possibility to define
these tasks. The latter, in turn, bears the problem of the granularity and pre-
cision of definitions. An indicative example is the evaluation, or in other terms,
the “intelligence testing” for autonomously driving cars [29], or another example
is CAPTCHA (completely automated public Turing test to tell computers and
humans apart), which are simple for humans but hard for machines and therefore

1 https://human-centered.ai/experiment-exai-patterns.
2 https://human-centered.ai/project/kandinsky-patterns.

https://human-centered.ai/experiment-exai-patterns
https://human-centered.ai/project/kandinsky-patterns


KANDINSKY Patterns: IQ-Test for Machine Learning 3

used for security applications [1]. Such CAPTCHAs use either text or images of
different complexity and pose individual differences in cognitive processing [3].

In cognitive science, the testing of human aptitude – intelligence being a
form of cognitive aptitude – has a very long tradition. Basically, the idea of
psychological measurement stems from the general developments in 19th century
science and particularly physics, which put substantial focus on the accurate
measurement of variables.

This view was the beginning of so-called anthropometry [36] and subsequently
the psychological measurement. The beginning of intelligence testing occurred
around 1900 when the French government had passed a law requiring all French
children to go to school. Consequently, the government regarded it as important
to find a way to identify children who would not be capable to follow school
education. Alfred Binet (1857–1911) [11] started the development of assess-
ment questions to identify such children. Remarkably, Binet not only focused
on aspects which were explicitly taught in schools but also on more general
and perhaps more abstract capabilities, including attention span, memory, and
problem solving skills. Binet and his colleagues found out that the children’s
capacity to answer the questions and solve the tasks was not necessarily a mat-
ter of physical age. Based on this observation, Binet proposed a “mental age” –
which actually was the first intelligence measure [4]. The level of aptitude was
seen relative to the average aptitude of the entire population. Charles Spearman
(1863–1945) coined in 1904 [43], in this context, the term g-factor, a general,
higher level of intelligence.

This very early example for an intelligence test already makes the funda-
mental difference to the task-centric evaluation of later AI very clear. Human
intelligence was not seen as the capability to solve one particular task, such
as a pure classification task, it was considered being a much wider construct.
Moreover, human intelligence generally was not measured in an isolated way
but always in relation to an underlying population. By the example of the self-
driving cars, the question would be whether one car can drive “better” against
all the other cars, or even whether and to what extent the car does better than
human drivers. In the 1950s, the American psychologist David Wechsler (1896–
1981) extended the ideas of Binet and colleagues and published the Wechsler
Adult Intelligence Scale (WAIS), which, in its fourth revision, is a quasi stan-
dard test battery today [48]. The WAIS-IV contains essentially ten subtests and
provides scores in four major areas of intelligence, that is, verbal comprehension,
perceptual reasoning, working memory, and processing speed. Moreover, the test
provides two broad scores that can be used as a summary of overall intelligence.
The overall full-scale intelligence value (IQ was already coined by William Stern
in 1912 for the German term Intelligenzquotient) uses the popular mean 100,
standard deviation 15 metric.

In advancing Spearman’s g-factor idea, Horn and Cattell [17] argued that
intelligence is determined by about 100 interplaying factors and proposed two
different levels of human intelligence, fluid and crystallized intelligence. The for-
mer includes general cognitive abilities such as pattern recognition, abstract
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reasoning, and problem solving. The latter is based on experience, learning, and
acculturation; it includes general knowledge or the use of language. In addition
to Wechsler’s WAIS-IV, among the most commonly used tests, for example, is
Raven’s Progressive Matrices [37], which is a non-verbal multiple choice mea-
sures of the reasoning component of Spearman’s g, more exactly, the two com-
ponents (i) “thinking clearly” and “making sense of complexity”, and (ii) the
“ability to store and reproduce information”. The test was originally developed
by John Raven in 1936 [37]. The task is to continue a visual pattern (cf. Fig. 1).
Other tests are the Reynolds Intellectual Assessment Scales, the Multidimen-
sional Aptitude Battery II, the Naglieri Nonverbal Ability Test (cf. Urbina [46]),
and in German speaking countries the IST-2000R [2] or the Berlin Intelligence
Structure Test (BIS; [20]).

There exists a large amount of classifications and sub-classifications of sub-
factors of intelligence, The Cattell-Horn [17] classification includes, for example:

– Quantitative knowledge (the ability to understand and work with mathemat-
ical concepts)

– Reading and writing
– Comprehension-Knowledge (the ability to understand and produce language)
– Fluid reasoning (incl. inductive and deductive reasoning and reasoning speed)
– Short term memory
– Long term storage and retrieval
– Visual processing (including closure of patterns and rotation of elements)
– Auditory processing (including musical capabilities)
– General processing speed.

An - at the first sight similar - classification was introduced by Gardner [12]
based on his theory of multiple intelligences. As opposed to prior classification,
his theory includes a much broader understanding of intelligence as human apti-
tude. Gardner’s theory, therefore, was a starting point for an (often discussed as
inflationary) increase of types of intelligence, for example in direction of emo-
tional, social, and artistic “intelligence” [30]. Over the past 120 years, the 20th
century ideas of human intelligence have been further developed and new mod-
els have been proposed. These new models tend to interpret general intelligence
as an emergent construct reflecting the patterns of correlations between differ-
ent test scores and not as a causal latent variable. The models aim to bridge
correlational and experimental psychology and account for inter-individual dif-
ferences in terms of intra-individual psychological processes and, therefore, the
approaches look into neuronal correlates of performance [7]. One of these new
approaches is, for example, process overlap theory, a novel sampling account,
based upon cognitive process models, specifically models of working memory [22].

When explaining predictions of deep learning models we apply an explanation
method, e.g. simple sensitivity analysis, to understand the prediction in terms
of the input variables. The result of such an explainability method can be a
heatmap. This visualization indicates which pixels need to be changed to make
the image look (from the AI-systems perspective!) more or less like the predicted
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class [40]. On the other hand there are the corresponding human concepts and
“contextual understanding” needs effective mapping of them both [24], and is
among the future grand goal of human-centered AI [13].

For a detailed description of the KANDINSKY Patterns please refer to [32].
When talking about explainable AI it is important from the very beginning

to differentiate between Explainability and Causability: under explainability we
understand the property of the AI-system to generate machine explanations,
whilst causability is the property of the human to understand the machine
explanations [15]. Consequently, the key to effective human-AI interaction is
an efficient mapping of explainability with causability. Compared to the map
metaphor, this is about establishing connections and relations - not drawing a
new map. It is about identifying the same areas in two completely different maps.

3 Related Work

Within the machine learning community there is an intensive debate if e.g. neural
networks can learn abstract reasoning or whether they merely rely on pure cor-
relation. In a recent paper the authors [41] propose a data set and a challenge to
investigate abstract thinking inspired by a well-known human IQ test: the Raven
test, or more specifically the Raven’s Progressive Matrices (RPM) and Mill Hill
Vocabulary Scales, which were developed 1936 for use in fundamental research
into both the genetic and the environmental determinants of “intelligence” [37].
The premise behind RPMs is simple: one must reason about the relationships
between perceptually obvious visual features – such as shape positions or line
colors – to choose an image that completes the matrix. For example, perhaps
the size of squares increases along the rows, and the correct image is that which
adheres to this size relation (see Fig. 1). RPMs are strongly diagnostic of abstract
verbal, spatial and mathematical reasoning ability. To succeed at the challenge,
models must cope with various generalisation ‘regimes’ in which the training and
test data differ in clearly-defined ways.

The amazingly advancing field of AI and ML technologies adds another
dimension to the discourse of intelligence testing, that is, the evaluation of arti-
ficial intelligence as opposed to human intelligence. Human intelligence tends
to focus on adapting to the environment based on various cognitive, neuronal
processes. The field of AI, in turn, very much focuses on designing algorithms
that can mimic human behavior (weak or narrow AI). This is specifically true
in applied genres such as autonomously driving cars, robotics, or games. This
also leads to distinct differences in what we consider intelligent. Humans have a
consciousness, they can improvise, and the human physiology exhibits plasticity
that leads to “real” learning by altering the brain itself. Although humans tend
to make more errors, human intelligence as such is usually more reliable and
robust against catastrophic errors, whereas AI is vulnerable against software,
hardware and energy failures. Human intelligence develops based on infinite
interactions with an infinite environment, while AI is limited to the small world
of a particular task.
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Fig. 1. Raven-style Progressive Matrices. In (a) the underlying abstract rule is an
arithmetic progression on the number of shapes along the columns. In (b) there is an
XOR relation on the shape positions along the rows (panel 3 = XOR(panel 1, panel 2)).
Other features such as shape type do not factor in. A is the correct choice for both,
Figure taken from [41].

The development of intelligence, therefore, is the result of the incremental
interplay between challenge/task, a conceptual change (physiological as well as
mentally) of the system, and the assessment of the effects of the conceptual
change. To advance AI, specifically in the direction of explainable AI, we suggest
bridging the human strength and the human assessment methods with those
of AI. In other words, we suggest introducing principles of human intelligence
testing as an innovative benchmark for artificial systems.

We want to exemplify this idea by the challenge of the identification and
interpretation/explanation of visual patterns. In essence, this refers to the human
ability to make sense of the world (e.g., by identifying the nature of a series of
visual patterns that need to be continued). Sensemaking is an active processing
of sensations to achieve an understanding of the outside world and involves
the acquisition of information, learning about new domains, solving problems,
acquiring situation awareness, and participating in social exchanges of knowledge
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[35]. The ability can be applied to concrete domains such as various HCI acts
[35] but also to abstract domains such as pattern recognition.

This topic was specifically in the focus of medical research. Kundel and
Nodine [23], for example, investigated gaze paths in medical images (a sono-
gram, a tomogram, and two standard radiographic images). They were asked to
summarize each of the images in one sentence. The results of this study revealed
that correct interpretations of the images were related to attending the rele-
vant areas of the images as opposed to attending visually dominant areas of the
images. The authors also found a strong relation of explanations to experiences
with images.

A fundamental principle in the perception and interpretation of visual pat-
terns is the likelihood principle, originally formulated by Helmholtz, which states
that the preferred perceptual organization of an abstract visual pattern is based
on the likelihood of specific objects [27]. A, to a certain degree competing, expla-
nation is the minimum principle, proposed by Gestalt psychology, which claims
that humans perceive a visual pattern according the simplest possible interpre-
tation. The role of experience is also reflected in studies in the context of the
perception of abstract versus representative visual art; [47] demonstrated distinct
differences in art experts and laymen in the perception and their preferences of
visual art. Psychological research could demonstrate that the nature of perceiv-
ing and interpreting visual patterns, therefore, is a function of expectations [50].
On the one hand, this often leads to misinterpretations or premature interpre-
tations, on the other hand, it increases the “explainability” of interpretations
since the visual perception is determined by existing conceptualizations.

4 How Do Humans Explain? How Do Machines Explain?

In a recent online study [14], we asked (human) participants to explain random
visual patterns (Fig. 2). We recorded and classified the free verbal explanations
of in total 271 participants. Figure 3 summarizes the results. The results show
that the majority of explanations was made based on the properties of individual
elements in an image (i.e., shape, color, size) and the appearance of individual
objects (number). Comparisons of elements (e.g., more, less, bigger, smaller, etc.)
were significantly less likely and the location of objects, interestingly, played
almost no role in the explanation of the images.

In a natural language statement about a Kandinsky Figure humans use a
series of basic concepts which are combined through logical operators. The fol-
lowing (incomplete) examples illustrate some concepts of increasing complexity.

– Basic concepts given by the definition of a Kandinsky Figure: a set of objects,
described by shape, color, size and position, see Fig. 4(A) for color and (B)
for shapes.

– Existence, numbers, set-relations (number, quantity or quantity ratios of
objects), e.g. “a Kandinsky Figure contains 4 red triangles and more yellow
objects than circles” , see Fig. 4(C).
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Fig. 2. Visual patterns to be explained by humans.

Fig. 3. Visual patterns to be explained by humans.

– Spatial concepts describing the arrangement of objects, either absolute (upper,
lower, left, right, . . . ) or relative (below, above, on top, touching, . . . ), e.g. “in
a Kandinsky Figure red objects are on the left side, blue objects on the right
side, and yellow objects are below blue squares”, see Fig. 4(D).

– Gestalt concepts (see below) e.g. closure, symmetry, continuity, proximity,
similarity, e.g. “in a Kandinsky Figure objects are grouped in a circular man-
ner”, see Fig. 4(E).

– Domain concepts, e.g. “a group of objects is perceived as a “flower””, see
Fig. 4(F).
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Fig. 4. Kandinsky Pattern showing concepts as color (A), shape (B), numeric relations
(C), spatial relations (D), Gestalt concepts (E) and domain concepts (F) (Color figure
online)

These basic concepts can be used to select groups of objects, e.g. ‘all red
circles in the upper left corner’, and to further combine single objects and groups
in a statement with logic operator, e.g. ‘if there is a red circle in the upper left
corner, there exists no blue object’, or with complex domain specific rules, e.g.
‘if the size of a red circle is smaller then the size of a yellow circle, red circles
are arranged circular around yellow circles’.

In their experiments [18] discovered, among others, that the visual system
builds an image from very simple stimuli into more complex representations. This
inspired the neural network community to see their so-called “deep learning”
models as a cascading model of cell types, which follows always similar simple
rules: at first lines are learned, then shapes, then objects are formed, eventually
leading to concept representations.
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By use of back-propagation such a model is able to discover intricate struc-
tures in large data sets to indicate how the internal parameters should be
adapted, which are used to compute the representation in each layer from the rep-
resentation in the previous layer [26]. Building concept representations refers to
the human ability to learn categories for objects and to recognize new instances of
those categories. In machine learning, concept learning is defined as the inference
of a Boolean-valued function from training examples of its inputs and outputs
[31] in other words it is training an algorithm to distinguish between examples
and non-examples (we call the latter counterfactuals).

Concept learning has been a relevant research area in machine learning for
a long time and had it origins in cognitive science, defined as search for attributes
which can be used to distinguish exemplars from non exemplars of various cate-
gories [5]. The ability to think in abstractions is one of the most powerful tools
humans possess. Technically, humans order their experience into coherent cate-
gories by defining a given situation as a member of that collection of situations
for which responses x, y, etc. are most likely appropriate. This classification is
not a passive process and to understand how humans learn abstractions is essen-
tial not only to the understanding of human thought, but to building artificial
intelligence machines [19].

In computer vision an important task is to find a likely interpretation W for
an observed image I, where W includes information about the spatial location,
the extent of objects, the boundaries etc. Let SW be a function associated with
an interpretation W that encodes the spatial location and extent of a component
of interest, where SW(i,j) = 1 for each image location (i, j) that belongs to the
component and 0 else-where. Given an image, obtaining an optimal or even
likely interpretation W, or associated SW, can be difficult. For example, in edge
detection previous work [8] asked what is the probability of a given location in
a given image belonging to the component of interest.

[44] presented a model of concept learning that is both computationally
grounded and able to fit to human behaviour. He argued that two apparently dis-
tinct modes of generalizing concepts – abstracting rules and computing similarity
to exemplars – should both be seen as special cases of a more general Bayesian
learning framework. Originally, Bayes (and more specific [25]) explained the spe-
cific workings of these two modes, i.e. which rules are abstracted, how similarity
is measured, why generalization should appear in different situations. This analy-
sis also suggests why the rules/similarity distinction, even if not computationally
fundamental, may still be useful at the algorithmic level as part of a principled
approximation to fully Bayesian learning.

Gestalt-Principles (“Gestalt” = German for shape) are a set of empiri-
cal laws describing how humans gain meaningful perceptions and make sense
of chaotic stimuli of the real-world. As so-called Gestalt-cues they have been
used in machine learning for a long time. Particularly, in learning classification
models for segmentation, the task is to classify between “good” segmentations
and “bad” segmentations and to use the Gestalt-cues as features (the priors) to
train the learning model. Images segmented manually by humans are used as
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examples of “good” segmentations (ground truth), and “bad” segmentations are
constructed by randomly matching a human segmentation to a different image
[39]. Gestalt-principles [21] can be seen as rules, i.e. they discriminate competing
segmentations only when everything else is equal, therefore we speak more gener-
ally as Gestalt-laws and one particular group of Gestalt-laws are the Gestalt-laws
of grouping, called Prägnanz [49], which include the law of Proximity: objects
that are close to one another appear to form groups, even if they are completely
different, the Law of Similarity: similar objects are grouped together; or the
law of Closure: objects can be perceived as such, even if they are incomplete or
hidden by other objects.

Unfortunately, the currently best performing machine learning methods have
a number of disadvantages, and one is of particular relevance: Neural networks
(“deep learning”) are difficult to interpret due to their complexity and are there-
fore considered as “black-box” models [16]. Image Classifiers operate on low-level
features (e.g. lines, circles, etc.) rather than high-level concepts, and with domain
concepts (e.g images with a storefront). This makes their inner workings diffi-
cult to interpret and understand. However, the “why” would often be much more
useful than the simple classification result.

5 Conclusion

By comparing both the strengths of machine intelligence and human intelligence
it is possible to solve problems where we are currently lacking appropriate meth-
ods. One grand general question is “How can we perform a task by exploiting
knowledge extracted during solving previous tasks?” To answer such questions
it is necessary to get insight into human behavior, but not with the goal of mim-
icking human behavior, rather to contrast human learning methods to machine
learning methods. We hope that our Kandinsky Patterns challenge the inter-
national machine learning community and we are looking forward to receiving
many comments and results. Updated information can be found at the accompa-
nying Web page3. A single Kandinsky pattern may serve as an “intelligence (IQ)
test” for an AI system. To make the step towards a more human-like and prob-
ably in-depth assessment of an AI system, we propose to apply the principles of
human intelligence tests, as outlined in this paper. In relation to the Kandin-
sky patterns we suggest applying the principle of Raven’s progressive matrices.
This test is strongly related to the identification of a “meaning” in the complex
visual patterns [38]. The underlying complex pattern, however, is not based on
a single image, the meaning only arises from the sequential combination of mul-
tiple images. To assess AI, a set of Kandinsky patterns, each of which complex
in itself, can be used. A “real” intelligent achievement would be identifying the
concepts - and therefore the meaning ! - of sequences of multiple Kandinsky pat-
terns. At the same time, the approach solves one key problem of testing “strong
AI”, the language component. With this approach it is not necessary to verbal-
ize the insights of the AI system. Per definition, the identification of the right
3 https://human-centered.ai/kandinksy-challenge.

https://human-centered.ai/kandinksy-challenge
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visual pattern that “traverses” the Kandinsky patterns (analogous to Raven’s
matrices) indicates the identification of an underlying meaning. Much further
experimental and theoretical work is needed here.
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Abstract. The role of decisions made by machine learning algorithms in
our lives is ever increasing. In reaction to this phenomenon, the European
General Data Protection Regulation establishes that citizens have the
right to receive an explanation on automated decisions affecting them.
For explainability to be scalable, it should be possible to derive explana-
tions in an automated way. A common approach is to use simpler, more
intuitive decision algorithms to build a surrogate model of the black-box
model (for example a deep learning algorithm) used to make a decision.
Yet, there is a risk that the surrogate model is too large for it to be really
comprehensible to humans. We focus on explaining black-box models by
using decision trees of limited size as a surrogate model. Specifically, we
propose an approach based on microaggregation to achieve a trade-off
between comprehensibility and representativeness of the surrogate model
on the one side and privacy of the subjects used for training the black-box
model on the other side.

Keywords: Explainability · Machine learning · Data protection ·
Microaggregation · Privacy

1 Introduction

Since the turn of the century, big data are a reality. One of the main uses of this
wealth of data is to train machine learning algorithms. Once trained, these algo-
rithms make decisions, and a good number of decisions affect people: credit grant-
ing, insurance premiums, diagnosis, etc. While transparency measures are being
implemented by public administrations worldwide, there is a risk of automated
decisions becoming an omnipresent black box. This could result in formally trans-
parent democracies operating in practice as computerized totalitarian societies.

To protect citizens, explainability requirements are starting to appear in legal
regulations and ethics guidelines. For example, article 22 of the EU General Data
Protection Regulation (GDPR, [6]) states the right of citizens to an explanation
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on automated decisions. Also, the European Commission’s Ethics Guidelines for
Trustworthy AI [5] urge organizations making automated decisions to be ready to
explain them on request of the affected citizens, whom we will call also subjects
in what follows.

To be scalable, explanations must be automatically generated: even if a
human auditor was able to produce a compelling explanation, one cannot assume
that such an auditor will be available to explain every automated decision to the
affected subject. Older machine learning models, based on rules, decision trees
or linear models, are understandable by humans and are thus self-explanatory,
as long as they are not very large (i.e. as long as the number of rules, the size of
the decision trees or the number of explanatory attributes stay small). However,
the appearance of deep learning has worsened matters: it is much easier to pro-
gram an artificial neural network and train it than to understand why it yields
a certain output for a certain input.

Contribution and Plan of this Paper

A usual strategy to generate explanations for decisions made by a black-box
machine learning model, such as a deep learning model, is to build a surrogate
model based on more expressive machine learning algorithms, such as the afore-
mentioned decision rules [10,14], decision trees [1,12], or linear models [13]. The
surrogate model is trained on the same data set as the black-box model to be
explained or on new data points classified by that same model. Global surrogate
models explain decisions on points in the whole domain, while local surrogate
models build explanations that are relevant for a single point or a small region
of the domain.

We present an approach that assumes that the party generating the expla-
nations has unrestricted access to the black-box model and to the training data
set. We will take as surrogate models decision trees trained on disjoint subsets
of the training data set. We focus on the comprehensibility of the models which
we measure as the inverse of the number of nodes of the trained decision trees.
In general, the fewer the nodes of a decision tree, the easier it is to comprehend
it.

Section 2 characterizes the type of explanations we seek to generate and the
risks of generating them through straighforward release of surrogate models.
Section 3 describes our microaggregation-based approach to generate explana-
tions of limited size. Experimental results are provided in Sect. 4. Finally, Sect. 5
gathers conclusions and future research directions.

2 Explanations via Surrogate Models

2.1 Machine Learning Explanations

According to [9], an explanation for a black-box machine learning model should
take into account the following properties:
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Accuracy. This property refers to how well an explanation predicts unseen
data. Low explanation accuracy can be fine only if the black-box model to be
explained is also inaccurate.

Fidelity. The explanations ought to be close to the predictions of the explained
model. Accuracy and fidelity are very related: if the black-box model is very
accurate and the explanation has high fidelity, then the explanation has also
high accuracy.

Consistency. Explanations should apply equally well to any model trained on
the same data set.

Stability. When providing explanations to particular instances, similar
instances should produce similar explanations.

Representativeness. A highly representative explanation is one that can be
applied to several decisions on several instances.

Certainty. If the model at study provides a measure of confidence on its deci-
sions, an explanation of this decision should reflect this.

Novelty. This property refers to the capability of the explanation mechanism
to cover instances far from the training domain.

Degree of Importance. The explanation should pinpoint the important
features.

Comprehensibility. Explanations should be understandable to humans. This
depends on the target audience and has psychological and social implications,
although short explanations generally go a long way towards comprehensibility.

Miller analyzes explainability from the social sciences perspective [8] and
makes four important observations: (i) people prefer contrastive explanations,
i.e. why the algorithm took a certain decision does not matter as much to us
as why did it not take a different decision instead; (ii) people select only a few
causes from the many causes that make up an explanation, and personal biases
guide this selection; (iii) referring to probabilities or statistical connections is
not as effective as referring to causes; and (iv) explanations are social, and thus
should be part of a wider conversation, or an interaction between the explainer
and the explainee.

In [7], the authors emphasize the importance of human field experts guiding
the development of explanation mechanisms, given that current machine learning
systems work on a statistical and/or model-free mode, and require context from
human/scientific models to convey convincing explanations (especially for other
field experts).

No single explanation model in the current literature is able to satisfy all
the above properties (refer to [2,9] for extensive surveys on explainable artificial
intelligence techniques). In what follows we will focus on accuracy, fidelity, sta-
bility, representativeness and comprehensibility, to which we will add privacy.
See Sect. 2.2 about the privacy risks of explanations.
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2.2 Risks of Surrogate Model Release

A common strategy to provide explanations satisfying the above properties is
via a surrogate model based on intrinsically interpretable algorithms. However,
care must be exercised to ensure that the surrogate model does not violate trade
secret, privacy and explainability.

Trade Secret Risks. A very detailed surrogate model may reveal properties of
the data set that was used to train the black-box model. This may be in conflict
with trade secret. Indeed, training data are often the result of long-term corporate
experience and reflect successes and failures. It takes time to accumulate good
training data. Thus, organizations owning such data regard them as a valuable
asset they do not want disclosed to competitors.

At the same time, too much detail in the released surrogate model may
reveal more about the black-box model to be explained than its owner is willing
to disclose. Traning complex models, like for example deep models, requires a
costly process involving time and computing power. Hence, a well-trained black-
box model is also a highly valued asset that organizations view as a trade secret.

Privacy Risks. If the released surrogate model leaks information on the train-
ing data and these contain personally-identifiable information, then we have a
conflict with privacy legislation [6].

Comprehensibility Risks. A complex surrogate model, even if based on intrin-
sically interpretable algorithms, may fail to be comprehensible to humans. We
illustrate this risk in Figs. 1 and 2.

Figure 1 shows a simple data set with two continuous attributes, represented
by the two dimensions of the graph, and a binary class attribute, represented
by the color of points in the graph. Thus, points represent the records in the
data set. Figure 2 shows a surrogate model consisting of a decision tree trained
on the example data set. With 303 nodes, this model is not very useful as an
explanation to humans: it is very hard to comprehend it.

3 Microaggregation-Based Surrogate Models

To avert the risks identified in Sect. 2.2 while achieving as many of the properties
listed in Sect. 2.1 as possible, we need a method to construct surrogate models
that keep at bay leakage and complexity. To that end, we propose to provide sub-
jects with partial or local explanations, that cover an area of the original training
data set close to the subject (that is, attribute values similar to the subject’s).
Algorithm 1 describes a procedure for the owner of the training data and the
black-box model to generate cluster-based explanations. Then, Protocol 1 shows
how a subject obtains an explanation close to her. The fact that explanations
are cluster-based favors stability: all instances in the cluster are similar and they
are explained by the same interpretable model, so explanations can be expected
to be similar.
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Fig. 1. Example data set

Fig. 2. Decision tree trained on the example data set

Algorithm 1: Generation of cluster-based explanations
Input: Training data set X

1 Compute a clustering C(X) for X based on all attributes except the class
attribute

2 for each cluster Ci ∈ C(X) do
3 Compute a representative, e.g. the centroid or average record c̃i
4 end
5 for each cluster Ci ∈ C(X) do
6 Train an interpretable model, such as a decision tree DTi

7 end

Protocol 1 (Provision of explanations)

1. A subject submits a query x̂ to the black-box model.
2. The black-box model returns to the subject:

(a) A decision d = f(x̂);
(b) The closest representative c̃x = arg minc̃idist(c̃i, x̂) for some distance dist;
(c) The interpretable model DTx corresponding to the cluster represented by

c̃x.
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A shortcoming of Protocol 1 is that the decision output by the interpretable
model DTx on input x̂ may not match the decision d = f(x̂) made by the black-
box model. This is bad for fidelity and can be fixed by returning the closest
representative to x̂ whose decision tree yields d. In this way, the explanation
provision is guided by the black-box model. The search for a valid representative
is restricted by a parameter N : if none of the decision trees associated with the
N closest representatives to x̂ matches the decision of the black-box model, the
decision tree corresponding to the closest representative is returned. While this
may hurt the fidelity of the explanations, returning the tree of an arbitrarily
distant cluster representative would be of little explanatory power. The guided
provision is formalized in Protocol 2.

Protocol 2 (Guided provision of explanations)

1. A subject submits a query x̂ to the black-box model.
2. The black-box model owner does:

(a) Compute the decision d = f(x̂) using the black-box model;
(b) let U be the list of cluster representatives c̃i ordered by their distance to

x̂, being c̃1 the closest representative;
(c) let i = 1;
(d) let found = 0;
(e) repeat

i. let DTi be the interpretable model corresponding to the cluster repre-
sented by c̃i;

ii. if DTi(x̂) = d then found=1 else i = i + 1;
until found = 1 or i > N ;

(f) if found = 1 then return d, c̃i and DTi

else return d, c̃1 and DT1

We choose microaggregation [3,4] as the type of clustering in Algorithm 1,
because it allows enforcing that clusters consist of at least a minimum number
k of records. This minimum cardinality allows trading off privacy and represen-
tativeness for comprehensibility of explanations:

– Parameter k ensures that returning the representative c̃x in Protocol 1 is
compatible with k-anonymity [4,11] for the subjects in the training data set.
Indeed, the representative equally represents k subjects in the training data
set. In this respect, the larger k, the more privacy.

– Additionally, large values of k result in clusters that contain larger parts of
the domain, thus yielding explanations with higher representativeness.

– While choosing large values for k has a positive effect on privacy and repre-
sentativeness, it does so at the expense of comprehensibility. A small k results
in very local explanations, that have the advantage of consisting of simpler
and thus more comprehensible surrogate models.

Specifically, we compute microaggregation clusters using MDAV (Mean Dis-
tance to Average Vector), a well-known microaggregation heuristic [4]. We recall
it in Algorithm 2.
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Algorithm 2: MDAV
Input: X, k
Output: C: set of clusters

1 C ← ∅
2 while |X| ≥ 3k do
3 xc ← mean record(X)
4 xr ← argmaxxi

distance(xi, xc)

5 xs ← argmaxxi
distance(xi, xr)

6 Cr ← cluster(xr, k,X) // Algorithm 3

7 Cs ← cluster(xs, k,X)
8 C ← C ∪ {Cr, Cs}
9 X ← X \ Cr \ Cs

10 end
11 if 2k ≤ |X| < 3k then
12 xc ← mean record(X)
13 xr ← argmaxxi

distance(xi, xc)

14 Cr ← cluster(xr, k,X)
15 C ← C ∪ {Cr}
16 X ← X \ Cr

17 else
18 C ← C ∪ {X}
19 end
20 return C

Figure 3 depicts the representatives (centroids) of clusters computed by
MDAV with k = 200 on the example data set of Fig. 1. The figure also shows
the decision trees that are obtained as explanations for three of the clusters.

Algorithm 3: cluster
Input: x, k, X
Output: C: cluster

1 C ← {x}
2 while |C| < k do
3 xi ← argminxi

distance(xi, x)

4 C ← C ∪ {xi}
5 X ← X \ {xi}
6 end
7 return C

4 Empirical Work

We generated a data set consisting of 30,000 records, each with 10 numeric con-
tinuous attributes and a single binary class label using the make classification
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method from Scikit-learn1. Out of the 30,000 records, we reserved 2/3 to train
the models, and the remaining 1/3 to validate them. The code to generate the
data set and conduct all the experiments reported in this section is available as
a Jupyter notebook2.

We took as a black-box model a neural network denoted by ANN with three
hidden layers of 100 neurons each, which achieves 94.22% classification accuracy.
We also trained a decision tree on the whole data set, to check its accuracy and
its number of nodes. The classification accuracy of this global decision tree is
88.37%, and it has 2,935 nodes. We expected our local decision trees (trained
on a single cluster) to achieve a similar accuracy on average, although it could
happen that clusters containing points from a single class would produce more
accurate classifiers.

Then, we tested our cluster-based mechanism for different values of k. As
stated in Sect. 3, smaller values of k could be expected to produce simpler clas-
sifiers. Instead of directly choosing arbitrary values for k, we chose several per-
centages of the 20,000 records of the training data set that we wanted the clusters
to contain, ranging from 0.1% to 50%; this translated to k values ranging from
20 to 10,000.

Fig. 3. Left, clusters produced by MDAV with k = 200 for the data set of Fig. 1; for
each cluster, points are in a different color and the centroid is depicted. Right, decision
tree-based explanations generated for the three clusters whose centroids have been
marked with � symbols on the left figure. (Color figure online)

1 https://scikit-learn.org/stable/index.html.
2 Download address: https://www.dropbox.com/s/ex46twifl780fj4/MDAV-DT-

Explainability.ipynb?dl=0.

https://scikit-learn.org/stable/index.html
https://www.dropbox.com/s/ex46twifl780fj4/MDAV-DT-Explainability.ipynb?dl=0
https://www.dropbox.com/s/ex46twifl780fj4/MDAV-DT-Explainability.ipynb?dl=0
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The experiment was as follows. For each value of k, we used MDAV to obtain
a clustering of the training data set. Then we computed the centroid represen-
tatives of clusters, and we trained a decision tree for each cluster. After that, we
measured the classification accuracy and the fidelity of the explanations. Classifi-
cation accuracy was computed in the usual manner, with the ground truth being
the labels in the evaluation data set (1/3 of the original data set, that is, the
10,000 records not used for training). Fidelity was computed as the classification
accuracy with respect to the decisions made by the black-box model.

Figure 4a shows the accuracy of our local explanations, which for all values
of k is lower than the accuracy of the black-box model ANN by around 5% in the
unguided approach (Protocol 1) and by only around 2% in the guided approach
(Protocol 2, with N = 3). On the other hand, the accuracy of the unguided
approach of Protocol 1 was basically the same as that of the global decision tree
mentioned above, with the guided approach of Protocol 2 clearly outperforming
both.

Moreover, it is important to note that accuracy is not very affected by the
value of k, although very small values of k seem to produce slightly better results.
This same behavior has been observed for several different generated data sets,
so it cannot be attributed to randomness. In fact, even our unguided approach
outperforms the global decision tree by around 5% in classification accuracy
when trained on very small clusters (0.1% to 1%, or k = 20 to k = 200 for our
data set size). The most plausible reason for this phenomenon is that for these
small values of k, a substantial number of clusters are such that all records in
the cluster have the same class attribute value. For these clusters, the decision
tree is trivial. This hypothesis is further supported by Fig. 5, discussed in more
detail below, where for small values of k we find decision trees containing 0
nodes: these must correspond to clusters whose records all belong to the same
class. Whether this is beneficial from the point of view of explainability is to be
further explored.

(a) Accuracy (b) Fidelity

Fig. 4. Accuracy and fidelity of the decision trees for each value of k. For the guided
approach N = 3 was used.
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Figure 4b, on the other hand, depicts the fidelity of our explanations with
respect to the black-box model. For Protocol 1 (unguided approach) the expla-
nations coincide with the black-box model for 90% of the decisions. When using
Protocol 2 (guided by the ANN with N = 3), these results improve to up to 97%
coincidence, which demonstrates that our method achieves a high accuracy and
fidelity with respect to the black-box model.

Figure 5 deals with the comprehensibility of the explanations, by depicting
the number of nodes of the decision trees trained for each choice of k: since there
is one decision tree per cluster, the box plot represents for each k the median
and the upper and lower quartiles of the number of nodes per decision tree. We
can see that for small k (up to 1% of the training set, in our case k = 200),
the number of nodes per decision tree is well below 100. We argue that decision
trees with 100 or more nodes are not very useful as explanations of a decision.
Since according to Fig. 4a k does not significantly affect accuracy, one should
take the smallest k that is deemed sufficient for privacy (explanations are best
understood if trees have no more than 10 or 20 nodes).

Fig. 5. Comprehensibility of explanations: the box plot represents for each k the median
and lower and upper quartiles of the number of nodes per decision tree.

5 Conclusions and Future Research

We have presented an approach based on microaggregation that allows deriv-
ing explanations of machine learning decisions while controlling their accuracy,
fidelity, representativeness, comprehensibility and privacy preservation. In addi-
tion, being based on clusters our explanations offer stability by design.
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Future research will involve trying different distances in Protocols 1 and 2
and also in the microaggregation algorithm, in order to improve the trade-off
between the above properties. Options to be explored include various semantic
distances.

On the other hand, in this paper we have assumed that explanations are
generated by the owner of the black-box model and the training data set. It is
worth investigating the case in which a third party or even the subjects them-
selves generate the explanations. In this situation the black-box model owner
may limit access to his model to protect his trade secrets. We will explore
ways to generate microaggregation-based explanations that are compatible with
such access restrictions. Possible strategies include cooperation between subjects
and/or smart contracts between the generator of explanations and the owner of
the black-box model.
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Abstract. In this paper we focus on the importance of interpreting
the quality of the input of predictive models (potentially a GI, i.e., a
Garbage In) to make sense of the reliability of their output (potentially
a GO, a Garbage Out) in support of human decision making, especially
in critical domains, like medicine. To this aim, we propose a framework
where we distinguish between the Gold Standard (or Ground Truth)
and the set of annotations from which this is derived, and a set of qual-
ity dimensions that help to assess and interpret the AI advice: fineness,
trueness, representativeness, conformity, dryness. We then discuss impli-
cations for obtaining more informative training sets and for the design
of more usable Decision Support Systems.

Keywords: Ground truth · Explainable AI · Reliability · Usable AI

1 Introduction

In the specialist literature around the topics of Fairness, Accountability, and
Transparency in Machine Learning (FAT-ML), many approaches to make AI
explainable (XAI) are proposed and discussed. A XAI system can be intrinsically
interpretable, when it adopts a model whose internal functioning is immediately
accessible to the decision maker, like in the case of linear or rule-based models
(e.g., decision trees); or it can be made interpretable by focusing on two aspects:
the model itself; or its output on one or more given cases. The former case of
interpretability (also called understandability or intelligibility) regards “how the
model works”: this kind of model interpretability is pursued by providing the
decision makers, i.e., the users of XAI systems, with indications about how the
model produced a certain prediction, e.g., by plotting the loss function, or by
visualizing the boundary region on a PCA-reduced space, or by telling what
feature the model based more on to produce its prediction, as represented by
feature relevance scores or saliency maps. In the latter case, when authors speak
also of post-hoc interpretations, the focus is on output data, and the aim is “to
explain the predictions without elucidating the mechanisms by which models
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work” [31]. In this case, decision makers can be given counterfactual outputs
(that is alternative outputs if the input case were different) or the rules or func-
tional relationships that locally apply for the output of surrogate (and more
interpretable, in the sense mentioned above) models. These models are intended
to locally “simulate” the black-box model “at the terminals”, and explain the
original relationship between the prediction and the input instance more intu-
itively. This approach is also the basis for the only proposal, to our knowledge,
to make the concept of interpretability fully formalized [29].

In this paper we want discuss a third, and still neglected, general approach:
instead of focusing on either the model or its outputs, we aim to discuss input
explainability, that is on ways to have the decision makers to get an idea of how
much they should trust the single output prediction on the basis of the “quality”
of the ground truth on which the model has been trained, that is on the basis of
the input of the learning process that yielded the model.

2 First Things First: The Importance of Input

Ground Truth, or Gold Standard (as the reference data are commonly called in
medicine, our reference domain), is assumed to be true, by definition: the ML
model is then supposed to “learn” from it the hidden patterns actually lying in
the complex and manifold relationships between the phenomenon’s predictors
(variables that express the phenomenon symbolically) and the target variable
(seen as a sort of interpretation or further measure of the phenomenon). However,
any data is but an approximation of reality, a mere representation of it: as obvious
as it sounds, maps are not the territory, likewise, also our “truths” are more “map
truth” rather than ground truths. However, scholars in the Machine Learning
and AI communities seldom address the question of how good their ground truth
actually is, that is how much “golden” their Gold Standard is (or, to adopt the
jewellery jargon, what its fineness is).

Most works that compare machine and human performance in delicate tasks,
like diagnostic ones in medical practice, assume ground truth good enough to
yield reliable results but, at the same time, understand that relying on the inter-
pretation of a single source or interpreter would be over-optimistic, hence lead
to too inaccurate performance. For this reason, Gold Standard sets are usually
built by gathering a number of observers (or raters, annotators) and asking them
to observe a phenomenon of interest (i.e., a unit of observation, or case), judge
it, rate it and annotate the sets of data that describe it with a value from a
scale of measurement, which can be either scalar, ordinal or nominal in nature.
In this later case, the raters annotate the case with a code, class or category,
which best describes the case. The ML model is then aimed at associating the
one best class with any new case extracted from the same reference population.

The multiplicity of ratings at the origin on the Gold Standard does not
result only from multi-rater settings, but also when there is the necessity to
“sample” a complex phenomenon with multiple measurements. For instance,
a Gold Standard could regard the outcome of a medical intervention as it is
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perceived 3 months after the intervention; this outcome could be represented
in terms of PROs (i.e., Patient Reported Outcome Measures), by asking the
patient to report how they feel on an ordinal scale a number of times in the
week occurring approximately a dozen of weeks after the intervention, and then
averaging these measures [6].

Both in multi-rater and in single-rater settings, it is seldom considered
whether the Gold Standard built from a set of annotations is reliable or not, i.e.,
whether each case were described by a sufficient number of rating, or whether the
raters involved were expert or adequately committed to the task. For instance
(to limit ourselves to some of the most relevant works in medical AI), the authors
of [14] report to have used Gold Standard diagnoses “based on expert opinion
(including dermatologists and dermatopathologists)” from open-source reposito-
ries, where yet the details on the number and expertise of the raters involved are
not available. Also the supplementary materials related to the work by Haenssle
and colleagues [21] do not provide any detail on the number of dermatologists
involved. The dataset used in [22] was annotated by just three dermatologists.
The data set used in [37] for the task to detect tumor cells was annotated by
non-specialists. One of the studies that has involved more raters to date, i.e.,
the study mentioned in [19], involved 54 raters, and these were all either US-
licensed ophthalmologists or ophthalmology trainees; however, we do not know
the proportions of trainees, and inter-rater reliability was assessed for less than
a third of the sample, as only 16 raters had graded a sufficient volume of repeat
images; furthermore, agreement proportions were not adjusted for chance effects.
Although these are only anecdotal mentions, we argue that current debate on
accuracy (and explainability) of AI focuses primarily on the technology (i.e., the
model), and not on the underlying data, whose production and validation still
lies in the background.

Notwithstanding this relative lack of transparency on the number and skills
of the original annotators involved in ground truthing, in various ambits – and
especially in medicine – the phenomenon of observer variability has been known
(and studied) since decades [3]: this phenomenon regards how different observers,
who are called to annotate data can simply differ and disagree with each others.
This observer variability affects the reliability of the resulting data set, what
we call Diamond Standard (as it represents a multi-perspective view on, and a
multi-facet record of, reality). In the context of observer variability assessment
reliability is defined as the concordance of repeated measurements (the anno-
tations of the multiple annotators) and is usually calculated by the intraclass
correlation coefficient (ICC) [33], which estimates the average correlation among
all possible orderings of data pairs. As ICC is sensitive to data range also stan-
dard error of measurement SEM is proposed as a measure of variability in case
of scalar values.

To this regard we will focus on questions such as: how much true is the
ground truth? To this respect, we will introduce the concept of fineness of
the Gold Standard. How much reliable is the ground truth? We relate ground
truth reliability to the extent the single “measuring instruments”, often human



30 F. Cabitza et al.

annotators, are accurate in their measure (i.e., in mapping a property of the
object of interest to a value) and precise with respect to each other, i.e., how
much their measures/annotations vary (or agree upon each other) for a single
object of observation. How much informative (or representative) is the ground
truth with respect to the reference population? This is also related to its con-
formity, that is the degree of resemblance between the available data and the
reference population from which they have been drawn. How much uncertain is
the set (which we call Diamond Standard) of all of the observations from which
the ground truth is derived? To try to address the above questions, we propose
a general framework to circumscribe the main concepts regarding the quality of
data feeding the learning process of Machine Learning. With reference to Fig. 1,
we call Gold Standard the training set, that is the data set where each case is
annotated with a unique “true” value for the target feature. We distinguish it
from the Diamond Standard, that is the data set where multiple (m) annota-
tors (also called raters or observers), have associated the description of the cases
to the target class. We call reductions, the data transformations that produce
the Gold Standard from the Diamond Standard: reductions necessarily entail
some information loss, because they allow to pass from a multi-rater labelling to
“the one best” labelling by a “collective” rater. Obviously, if m = 1, the Gold
Standard and the Diamond Standard coincide. On the basis of the number and
interpretative skills of the annotators the Diamond Standard represents a more
or less approximate representation of the truth (still yet, a symbolic and datafied
expression of the truth), that is, of an unknown (and unknowable) data set that
we call the UR-SET (Ultimately Realistic Symbolic Expression of Truth1).

In the next sections, we will consider methods to assess the quality of the
input of the learning process, that is the data with which it has been trained to
produce an accurate output when applied to new instances of data: we will illus-
trate the common cases of reliability and representativeness, and will introduce
three original dimensions, by distinguishing between the Fineness and Dryness
(of the Gold Standard), and the Trueness of the Diamond Set.

3 Reliability

The intuitive notion of reliability is straightforward: how much can we rely upon
our ground truth to make decisions? How much can a ML model rely on its
training set to make realistic (beside accurate2) predictions? More technically,
the reliability of a dataset regards the precision of the measures it contains,
for each case that it represents. This allows us to speak of reliability of a Gold
Standard only in terms of the reliability of the Diamond Standard from which

1 Notably, the UR-SET could be annotated with a different alphabet than the Gold
Standard and the Diamond Standard. For instance, while the Gold Standard uses a
binary symbol set (e.g., positive/negative) the UR-SET could be annotated with a
set encompassing a symbol expressing that a case is 25% positive and 75% negative.

2 Accuracy is historically defined in terms of closeness between the prediction and the
Gold Standard, not with respect to the reality.
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it has been derived. The reliability of a Diamond Standard regards the extent
this set expresses a unitary interpretation of the single cases observed, despite
the multiplicity of views entailed by the different raters involved in interpreting
each case. If all of the raters agree upon each and every case (or the single raters
agree with themselves, as in the case of the PRO meaasures mentioned above),
that is if no disagreement among the case’s annotations has been observed, both
the reliability (and the trueness, as we will see) are maximum3.

Over time, many measures of inter-rater agreement, and hence reliability,
have been proposed, like the Fleiss’s Kappa, the Cohen’s Kappa, or the Krippen-
dorff’s Alpha. These indices aim to go beyond the simple proportion of matched
pairs (a score called Proportion of Agreement, and usually denoted as Po). This
aim is motivated for the important, and often neglected, limitation of the Po:
it includes the amount of agreement that could be due to chance, and hence it
produces an overly optimistic measure of the real agreement. All of the proposed
metrics present some limitations, for instance in regard to the presence of miss-
ing values, or to the nature of ratings (e.g., categorical or ordinal), and all of
them are subject to a number of paradoxes, e.g., when the cases to be rated are
not well-distributed across the rating categories [34].

Unfortunately, scholars interested in assessing the reliability of annotated
data still often rely on one of the indices presenting the most severe method-
ological problems [15], i.e., the Kappa; and, what is worst, they still usually
adopt the range divisions proposed by Landis and Koch in 1977 [30] to interpret
the scores, i.e., a scale that is obsolete, related to the first formulations of the
Kappa, is “clearly arbitrary” (as frankly admitted by the first proponents), and

Fig. 1. The general framework and the main concepts illustrated in this contribution.

3 That notwithstanding, it would be inaccurate to say that the Diamond Standard
coincides with the UR-SET, which is unknowable.
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manifestly inflating the degree of agreement (e.g., for the agreement to be con-
sidered “fair” it is sufficient that only 20% of times raters agree beyond the effect
due to chance), likely one of the reasons for its fortune4. For these reasons we
propose the adoption of more robust reliability measures, like the Krippendorf’s
Alpha, and to follow the indications for its interpretation given by Krippen-
dorf [28]: he proposed to consider as sufficiently reliable for critical applications,
like in the case of medical interpretation and prediction, collective annotations
that would be associated with an Alpha of .8, or above, only. Krippendorff
also considers two more robust criteria for acceptable reliability, both consider-
ing the distribution of the α (computed via bootstrapping): the first considers
computing the confidence interval [αmin, αmax] and then establishing accept-
able reliability if the established threshold αrequired (at least 0.8, as previously
specified) is lower than αmin; the second approach, on the other hand, consists
of computing the probability q that α ≤ αrequired and then confronting this
probability q with an a priori confidence threshold. These demanding require-
ments are seldom verified in the ML literature and, when they are, even less
frequently met. We raised awareness on the issue of low reliability of the ground
truth used to train medical AI in [5] and [7]. In this latter study we reported
the low agreement between multiple raters in two settings from different medical
specialties: cardiology and spine surgery. It is important to notice, yet, that dis-
agreements do not occur only because some rater is less skilled than the others,
and hence commits an interpretation error (due to what is called label bias [25]);
in fact, this is seldom the case. More often, it is the intrinsic ambiguity of the
interpretand phenomenon that brings raters to different, yet equally plausible,
interpretations [5]. Other factors that could undermine the potential for agree-
ment between raters, and hence the reliability of the Diamond Standard (and
then the Gold Standard as mentioned above), are related to differences in how
the raters react to the experimental conditions in which their opinions and inter-
pretations are collected (since ground truthing tasks occur often in controlled
experimental settings), and more generally, to the fact of being involved in an
experiment. These phenomena are generally known as “Hawthorne effect” [36],
but it is not clear whether the “awareness of being observed or involved in an
experiment” affects the ratings more in terms of increasing the accuracy (up to
levels that in real-world settings would not be tenable, mainly for conditions of
uninterrupted concentration and focused commitment), or rather in terms of its
reduction (an effect known as “laboratory effect” [20], which is mainly due to
lack of real motivations, engagement or just of the fear of consequences in case
of errors).

4 To date, this single contribution has been cited almost 50,000 times, but likely more
often by habit and imitation, than by the deliberate adoption of the assumptions
therein discussed.
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4 Representativeness and Conformity

“Representative” is a term that equally applies to individuals, with respect to
a group from which they are ideally drawn; and to groups, with respect to
wider groups, or populations, from which these groups are drawn as samples.
To consider both these kinds of representativeness and, at the same time, avoid
potential ambiguities, we distinguish between the representativeness of the Gold
Standard, with respect to the single new case to predict; and the conformity of
the Diamond Standard, with respect to the reference population. This analysis
requires to focus on the moments of the probability distribution of our data:
what we call representativeness regards the first moment, i.e., the centroid of the
distribution, while conformity regards other higher-order moments, like variance,
skewness, and kurtosis (the “shape” of the multi-dimensional distribution).

The simplest way to assess the conformity of the Diamond Standard is to
consider, when available, the reference distributions of the single features, con-
sidering them separately: we call this basic type of population representativeness
conformityu, and this is based on the strong assumptions to know how the mul-
tivariate distribution of the population really is (e.g., from census information
or other random sampling surveys), and that its change rate (or time constant)
is negligible with respect to the sampling procedure.

Suppose that f is a categorical feature with k possible values, then we can
test the conformity using the χ2 goodness–of–fit test or the G-test ; if f is an
ordinal or continuous feature instead, we can apply the Kolmogorov–Smirnov
test. In both cases, the obtained statistic (or the related p–value) represents a
degree of the extent the Diamond Standard is similarly shaped with respect to
the reference population.

When having access to the full joint distribution for the reference population
we can extend the approach above described to define a multivariate definition
of conformity, that we denote as conformitym, using the multivariate versions
of the respective statistical tests (see, as an example, [26] for a multivariate
extension of the Kolmogorov–Smirnov test).

If we also have access to an analytic or model–based representation M of
the reference population distribution we can give a third measure of conformity,
that we term conformityp, by directly computing the probability of the Dia-
mond Standard D given M, P (D|M) and then sample (e.g., using Markov Chain
Monte Carlo simulation techniques) the model in order to compute the probabil-
ity q to obtain a probability P ≤ P (D|M) which can be taken as a measure of
conformity (i.e., the greater q the greater our belief that D is indeed a fair rep-
resentation of the reference population), because large values of q would imply
that the Diamond Standard D is indeed “more probable” than most datasets
generated according to the reference population distribution.

On the other hand, representativeness is defined between a given input case
for the ML model, drawn from the reference population, and the Gold Standard:
the Gold Standard is said to be representative of the input case if the input
case resembles a “typical member” of the Gold Standard. This concept, while
not usually evaluated, is important in checking whether the prediction that we
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would obtain from our model is meaningful; indeed, one of the major assumption
of ML methodologies is that all the cases (the ones given as training examples as
well as those which we are interested in making predictions on) come from the
same distribution, that is are independent and identically distributed (IID). The
most basic approach is to consider a case x representative of the Gold Standard
G if it is “close” to its center, as described by the following algorithm:

Algorithm 1: Centroid–based Representativeness
Data: Gold Standard G, input case x
Result: Representativeness rc(G, x) of x

1 c = 1
|G|

∑
p∈G p;

2 dist(x, c) =

√
∑

f∈F (
vx

f
−vc

f

vmax
f

−vmin
f

)2;

3 rc(G, x) = 1 − dist(x,c)
max{dist(p,c)|p is not an outlier} ;

where
∑

p∈G p, assuming that the instances belong to a vector space, is simply
defined as the vector sum, F is the set of all features and the outlierness of a
case is established via any outlier–detection algorithm.

The centroid–based representativeness rc assumes values in (−∞, 1], with
maximum value when x is exactly equal to the centroid of the Gold Standard.
This basic technique, while simple also from a computational point of view, has
various limitations: the most relevant one is that the whole distribution of G is
not taken into account: the centroid in itself could be a non–representative point
of G; x, while being quite distant from the center, could be in a region of the
feature space which is actually homogeneous with respect to the distance and so
on. A more valid approach would be to consider locality–based outlier–detection
algorithm, such as the Local Outlier Factor [4], as described in the algorithm 2
which is based on the statistical transformation defined in [27].

Algorithm 2: Locality–based Representativeness
Data: Gold Standard G, input case x, number of neighbors k
Result: Representativeness rl(G, x, k) of x

1 k − distance(x) = d(x, pk) where pkis the k-th nearest neighbor of x;
2 Nk(x) = {p ∈ G|dist(x, p) ≤ k − distance(x)};
3 S(x) = Locality-Based-Outlier-Scoring(x,Nk(x));
4 R(x) = max{0, S(x) − 1};

5 rl(G, x, k) = max{0, erf(R(x)−μR

σR∗√
2

)}

In the algorithm erf is the Gaussian error function, S(x) ∈ [0,+∞) and
Locality-Based-Outlier-Scoring refers to any locality–based outlier detection
algorithm. The locality–based representativeness can be understood as the prob-
ability of obtaining, from the Gold Standard G, a point similar to x, considering
its connectivity degree (how much is it near to its nearest points) with respect
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to that of its neighbors. We also notice that Algorithm 2 can be used also in case
of nominal attributes and missing values, by means of a suitable distance [40].

A last approach to define a measure of representativeness, which we denote
as rp(MG, x), can be given when we have access to a generative ML model MG

for G. In this case, using a procedure analogous to the one used for defining
conformityp, we can compute the probability of x given the model P (x|MG)
and then sample the model to evaluate the probability q of getting a probability
value as extreme as P (x|MG). In the case of representativeness we could also
refine this approach in order to define a local version of rp(MG, x) by limiting
the sampled cases to ones belonging to a neighborhood of x.

An open question that these reflections invite to consider regards the feedback
loop that could be established between the model’s predictions (which affect the
human decision making) and the reference population. If the decisions affected
by the AI’s advice can have an impact on the population from which new cases
are to be extracted (like in case of prognostic models, where the model suggests
how much an intervention could improve the health conditions of a patient, and
hence also suggest who should receive a treatment, or an intensive one, and who
should not), then it should be considered that the representativeness of the Gold
Standard could change accordingly, usually for the worse. This would urge us
for a continuous update of both the Diamond and the Gold Standard, or for the
need to stratify the past interventions by distinguishing those who were likely
impacted by the decision aid (directly or indirectly) and those who were not,
and extract new cases for the ground truthing process from this latter portion
of the reference population, using techniques akin to active learning [32].

5 Fineness of the Gold Standard

The fineness(G,O) is the probability that the Gold Standard G, obtained from
the Diamond Standard D by means of a reduction – e.g., taking the majority
vote over a set O of observers (i.e., the mode for each case) – is equal to the
true (unknowable) annotation (i.e., interpretation) of the portion of the reality of
interest, what we call the UR−SET . For this reason, we consider fineness(G,O)
as a first measure of quality of the dataset which is fed into the ML model as a
training set.

Let O = {o1,...,om} be m raters independently labeling the cases in dataset
D; let also assume that each oi has a constant error rate ηi. Assume that, in
order to obtain the Gold Standard (G), for each case x we select the mode (i.e.
the label who received the vote of the majority among the ois) ō: thus, what is
the probability that ō(x) is a false label for x? This amounts to the probability
that at least m+1

2 raters made an error, this probability can be computed via
the Poisson binomial distribution:

P (error) =
m∑

k=m+1
2

∑

A∈Fk

Πi∈AηiΠj /∈A(1 − ηj) (1)
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where Fk is the family of sets in which exactly k observers gave the wrong
labeling.
Then, the probability to obtain a Gold Standard without errors is:

fineness(G,O) = (1 − P (error))|G| (2)

An interesting aspect of this is that the fineness of a Gold Standard (and thus
the probability of no errors) is exponentially decreasing with the size of the Gold
Standard itself. Via the Chernoff bound, and omitting some terms, we can upper
bound P (error) as:

P (error) ≤ e− m+1
2 log m+1

2μ (3)

where μ =
∑

i ηi, thus the probability of an error decreases exponentially with
both increasing number of raters and decreasing expected errors. By directly
inserting this estimate into the bound for PAC learnability given in [1] we obtain
that the true (but unknown) target is learnable, with probability 1 − δ over
samples and maximum error ε, when given at least:

O
(

d · log 1
δ

ε(1 − 2e− m+1
2 log m+1

2μ )2

)

(4)

samples whose target is obtained by taking the majority vote as previously
specified, where d is the Vapnik-Chervonenkis dimension [38] of the class of
models adopted.

The inverse problem of determining the minimum number of raters needed to
obtain a certain level of fineness can be solved via the method proposed in [23].
Then, to obtain a desired level of fineness = 1 − δ for each case x ∈ D we
should involve

O
(

log |D|
δ

(1 − 2ηO)2

)

(5)

raters, where ηO is the average error rate among O.

6 Trueness of the Diamond Standard

Where fineness is a propriety of the Gold Standard (with respect to the UR-
SET), trueness is a propriety of the original Diamond Standard (always with
respect to the UR-SET). The total trueness of the Diamond Standard is defined
on the basis of the case-wise trueness. Basically, the trueness of a labeling
〈o1(x), ..., om(x)〉 for a given case x is a measure of how much this labelling
could be taken as a representation of the underlying (and unknown) true label-
ing, that is the corresponding case in the UR−SET . In other words, the trueness
is the probability that this diamond (i.e., multi-facet, multi-rater) labeling actu-
ally corresponds to the true one. Basically we would assume that this probability
is maximum when o1(x) = ... = om(x), that is, all of the raters agree with each
other upon the labeling, while it is minimum when all the possible outcomes are
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equi–frequent. The trueness of the Diamond Standard as a whole can be com-
puted in various ways starting from the the trueness of its units/cases, among
which the simplest way is to take the average trueness for all its cases, with its
%95 Confidence Interval (CI).

To quantify the trueness of a case x with its diamond labeling o(x) we
propose two approaches. Without loss of generalization, we will focus on the
binary case (i.e. where the target can assume only values {0, 1}). Let k ∈ [0, 1]
be a threshold value, above which we get vote proportions that can be denoted as
an overwhelming majority (usually proportions higher than 0.9 or even 0.95 and
above according to the application domain); and let p be the observed probability
of the majority labeling, taken as a rough estimate of the trueness.

Then the 95% confidence interval of p can be computed as

trueness′
c(o(x)) = p ± 1.96

√
p(1 − p)

m
(6)

where m is the number of observers, and we say that o(x) has acceptable trueness
if inf(truenessc(o(x))) ≥ k.

In the second approach, we know that the maximum number of disagreements
is Md = m2−1

4 and we expect the trueness(o(x)) to decrease as the number of
observed disagreements approaches Md.

Thus if Od is the number of observed disagreements, then

trueness′′
c (o(x)) = 1 − Od + ε

Md + ε
(7)

where the ε acts as a smoothing factor (avoiding a value of 1 when Od = 0 that
could be misleading, since even in that the case there is a non–zero probabil-
ity that the, unique, Diamond labeling is distinct from the true one). The two
approaches have the following properties:

1. With fixed m, trueness′′
c has minimum value when p = m+1

2m and maximum
value when p = 1;

2. With fixed m, trueness′
c has maximum width when p = m+1

2m and minimum
width when p = 1;

3. Increasing m the width of trueness′
c decreases monotonically, this means that,

fixing k and p, it is easier to obtain acceptable trueness;
4. If p ∈ o(m2) then limm→+∞trueness′′

c (o(x)) = 1.

As suggested above, in order to extend this two case-wise definitions of
trueness to the Diamond Standard trueness truenessD, we can take different
approaches. The most simple approach to extend the trueness′

c definition is to
say that the Diamond Standard D has strong acceptable trueness if ∀x∈D x has
acceptable trueness. However, since this criterion of trueness is very restrictive,
we can define other Diamond Standard–level measures of trueness, by making
two assumptions: for the trueness′′

c definition we can assume that the trueness
of the cases are distributed as independent Bernoullis; for both trueness′

c and
trueness′′

c we can assume an underlying distribution of the values of p (resp.
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truenessc(o(x))′′), which could be seen as a distribution of the difficulty degrees
of assigning the correct labeling to the cases. Under the first approach we obtain
the following expression of truenessind

D = Πx∈Dtrueness′′
c (o(x)).

Under the second approach we first compute the average proportion (resp.
trueness) and we can thus provide an interval estimate, about the average, of
the value of trueness in two ways: assuming an underlying model distribution
(with expected value equal to the computed average) and then compute (analyt-
ically or numerically) the 95% confidence interval; in a non–parametric way via a
bootstrap–based estimate of the confidence interval (i.e. drawing a large number
of samples with replacements of the original Diamond Standard and then com-
puting the average proportion of trueness for each of these samples). In both
cases we obtain an interval estimate truenessint

D = [truenessinf
D , truenesssup

D ]
and we say that the Diamond Standard D has weak acceptable trueness if
truenessinf

D ≥ k.
It is noteworthy that the concepts of trueness and fineness are, obviously,

related with each other: in particular, the greater the trueness of the Diamond
Standard, the greater the fineness of the resulting Gold Standard. Most signif-
icantly, we could take trueness′

c or trueness′′
c as estimates of 1 − P (error) to

have an approximation of the degree of fineness of the resulting Gold Standard.
If we assume that the error rates ηi (i.e., the probability of the annotation of
the observer to be in perfect disagreement with the true symbolic representa-
tion, cf. accuracy in metrology) are constant for all the cases x, then given that
P (error) is also constant, we could simply average p (respectively, trueness′′

c )
over the whole dataset to obtain an estimate P̃ (error) that we can connect to
the fineness bounds obtained in Sect. 5. Moreover we could also assume that for
each case x each observer oi has a distinct error rate ηi(x) (approximated by p or
trueness′′

c (x)), this setting is known as Constant Partition Classification Noise
(CPCN) which, as shown in [35], is equivalent (in terms of learning complexity)
to the setting described in Sect. 5.

7 Dryness of the Gold Standard

Dryness regards how much the information content of the Diamond Standard has
dried off, or “shrinked”, in the reduction of this latter into the Gold Standard.
The reference is an homage to the seminal idea by Goguen of dry and wet
information [17]: the more multiple, collaborative, social, and even ambiguous,
the information, the “wetter” (that is “impregnated” with information) it is.
Therefore, the higher the information loss implied by the reduction, the higher
the dryness. Since the reduction implies that the information contained in m
columns is reduced in the content of a single column, assessing the dryness of the
resulting set can be useful to understand if some reduction is more information-
preserving than others, and hence preferable.

In the following we will assume a nominal valued target, thus the target of
the Diamond Standard is expressed in terms of a m–dimensional vector over a
set Y (i.e. o(x) ∈ Y m) and we suppose that the target of the Gold Standard
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is generated from o(x) via a reduction T : Y m 	→ C(Y ) where C(Y ) is a set of
structures, in a general sense, over Y (e.g. the set of probability distributions
over Y ). In general, the reduction T involves an information loss (or an increase
in dryness) given by the fact that only observing T (o(x)) it is impossible to
(perfectly) recover o(x) (assuming that C(Y ) �= Y m and T �= idY m); this means
that T implicitly defines an inverse set–valued map L: C(Y ) 	→ P(Y m) allowing
us to define a measure of dryness in both quantitative and qualitative terms.

In quantitative terms we will define the dryness of T (o(x)) as:

dryness(o(x), T ) =
|L(T (o(x)))| − 1

|Y |m − 1
(8)

which can be understood as the ratio of the information contents of o(x), in the
denumerator, and T (o(x)), in the numerator: in particular, the numerator is the
number of objects in |Y |m satisfying the constraints imposed by L. From the
values of dryness(o(x)), for each case x, we can obtain the value of the dryness,
under reduction T , for the whole Gold Standard as:

dryness(G,T ) =
1

|G|
∑

x∈G

dryness(o(x)) (9)

Usually, in the nominal case, the reduction T is taken as the mode, that
is T (o(x)) = mode(o(x)); in this case the numerator is given by all possible
diamond labelings in which mode(o(x)) is in fact the most frequent label, which
can be approximated via the following bound:

dryness(o(x),mode) = O(

∑
π

∑
π|Y |≤...≤m∗

(
m

m∗,...,π|Y |

)

|Y |m − 1
) (10)

where π is any assignment of m − 1 least frequent classes, πi is the i-th least
frequeny class in the assignment π and m∗ is the frequency of the mode. However,
other reductions could be defined, a first such example is the transformation freq
defined as:

freq(o(x)) = 〈m1

m
, ...,

m|Y |
m

〉 (11)

where mi is the frequency of class ci ∈ Y in o(x). The dryness of freq is defined
as:

dryness(o(x), freq) =

(
m

m1,...,m|Y |

) − 1

|Y |m − 1
(12)

in which the numerator is given exactly by the number of diamond labelings
in which the labels occur with exactly the frequency given by freq(o(x)). Evi-
dently, dryness(o(x), freq) ≤ dryness(o(x),mode) and, freq is the reduction
with minimal dryness among the ones that are order–irrelevant. However, besides
the quantitative part of the dryness, there is also a qualitative part: each reduc-
tion defines which information is deemed relevant (and thus conserved), and
which information is instead discarded. The mode reduction maintains only the
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most frequent label and discards every other information; on the other hand,
the freq reduction keeps the proportions of each possible alternative and only
“forgets” the order–part of the vector (i.e. which option each observer selected).

Another qualitative aspect of the dryness is given by the fact that we can
provide two different interpretations of each reduction T :

1. The epistemic view, according to which we suppose that the true labeling of
x in the UR–SET is a single label in Y and T (o(x)) represents our degree
of belief assigned to the alternatives for that label (e.g. freq represents our
subjective posterior probability of which it is the real labeling);

2. The ontic view, according to which we suppose that in fact the true labeling
of x in the UR-SET is not a label from Y but one from im(T ) = C(Y ) and
reduction T allows us to estimate this label from the information given by o(x)
(e.g. the ontic view associated with the freq reduction is that our phenomenon
is indeed a non–deterministic one and freq(o(x)) is an estimation of the
propensities of the system to be in one of the alternative states).

If we look at the quantitative component of the dryness, the freq reduc-
tion is manifestly the optimal choice to construct the Gold Standard. However,
the qualitative approach suggests that it may retain “too much” information:
the exact proportions may be observed only “by accident” or they could be
irrelevant. In the following, we will suggest two alternative reductions that are
mid–way between mode and freq in terms of dryness.

7.1 Fuzzy–Possibilistic Reductions

Let m∗ = maxi(mi) be the index of the most frequent labels in o(x), then we
define the possibilistic reduction as:

poss(o(x)) = 〈m1

m∗ , ...,
m|Y |
m∗ 〉 (13)

Under the qualitative point of view, the poss reduction preserves the prefer-
ence ordering among the possible alternatives and also a “relative” indication of
degrees of preference of an alternative compared to the others: thus, the numer-
ator of the dryness is the number of diamond labelings in which the proportions
between the most frequent label and the other ones are determined by m and
the values of poss(o(x)). If we denote by σ the ordering of the labels in Y in
order of decreasing value of poss, then we can bound the dryness as:

dryness(o(x), poss) = o(

∑m
mσ1=

1
ρ|Y |

(
m

mσ1 ,mσ1 ·ρ2,...,mσ1 ·ρ|Y |

) − 1

|Y |m − 1
) (14)

Under the epistemic interpretation, the poss reduction models our degree of
belief in terms of a possibility distribution [42], which could be taken as repre-
senting an imprecise probability distribution [12] representing our belief in the
relative preferences and their proportions but not the exact counts.
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Under the ontic interpretation, on the other hand, the poss reduction rep-
resents a fuzzy set, that is, we assume that the different labelings given by the
observers are not due to errors but due to the fact that the phenomenon itself
is multi–faceted and, in some sense, vaguely defined and the labelings reported
more frequently are prototypical for the observed instance of the phenomenon.

7.2 Three–Way Reduction

Three–way decision theory [41] refers to an extension of standard decision–theory
in which the “decision maker” (in a general sense, including also an algorithm)
has the ability to abstain (totally or partially) instead of expressing a decision.

We will describe two approaches to perform a three-way transformation. Let
ε ∈ [0, 1], freq(o(x)) be the frequencies of the labels in Y and σ the ordering
of the labels in decreasing frequency order. Then we say that o(x) is (m, ε) −
ambiguous if

∀i ∈ {1, ...,m}.|σ1 − σi| ≤ ε (15)

Let m∗ be the greatest m such that o(x) is (m, ε) − ambiguous, then we define
the twa reduction as:

twa(o(x), ε) = {σ1, ..., σm∗} (16)

In this case the numerator of Eq. (8) is given by the number of diamond labelings
for which the labels in twa(o(x), ε) are the most frequent ones and their distance
is at most ε.

The second approach, that we term decision–cost theoretic, descends from
our previous work on three–way classification [9,10]. Let ε be an error cost, α be
an abstention cost and freq(o(x)), σ defined as above. Then we define the twd

reduction as:

twd(o(x), ε, α) =

{
{σ1, ..., σj} α · ∑j

i=1 σi + ε · ∑k
i=j+1 σi < ε ∗ (1 − σ1)

σ1 the inequality has no solution
(17)

where j is the optimal index satisfying the inequality.
Future work will be devoted to understand how knowledge about the raters’

skills, and confidence (even self-perceived) in the raters’ interpretation, can be
integrated in the reduction to make the Gold Standard finer (and reduce the
information loss in the transformation from the Diamond Standard).

Example 1. Let D be a Diamond Standard of 3 cases and

o(D) =

⎡

⎣
0 1 0 1 0
1 0 1 1 1
1 0 0 0 0

⎤

⎦

the respective labeling given by 5 observers.
Applying the mode reduction we obtain, mode(o(D)) =

[
0 1 1

]
for which the

dryness dryness(o(D),mode) =
[
15/31 15/31 15/31

]
. The total dryness of G

(reduced from D in this way) is then the average, 0.48.
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On the other hand, for transformation freq we obtain

freq(o(D)) =
[
(0 : 3/5, 1 : 2/5) (0 : 1/5, 1 : 4/5) (0 : 4/5, 1 : 1/5)

]

for which the dryness is dryness(o(D), freq) =
[
10/31 5/31 5/31

]
. The total

dryness of G (reduced from D in this second way) is then the average, 0.22.
For the twa reduction, setting ε = 0.4 we have that twa(o(D), ε) =

[{0, 1} 1 0
]

for which the dryness is dryness(o(D), twa) =
[
19/31 6/31 6/31

]
. The total

dryness of G (reduced from D in this third way) is then the average, 0.33.
Finally for the poss reduction we have that

poss(o(D)) =
[
(0 : 1, 1 : 2/3) (0 : 1/4, 1 : 1) (0 : 1, 1 : 1/4)

]

for which the dryness is dryness(o(D), poss) =
[
10/31 5/31 5/31

]
. Thus, the

total dryness of G (reduced from D in this last way) is then the average, 0.22.
Summarizing, when computing the values of dryness(G) obtained with different
reductions, we get that:

dryness(D, poss) = dryness(D, freq) < dryness(D, twa) < dryness(D,mode)

We remind that the higher the dryness, the higher the information loss, and
hence the informatively “poorer” the Gold Standard.

8 Some More Idle Reflections

Explainable AI (XAI) has recently been set forth as a necessary component of
human agencies where decision making is supported by computational means5.

Apart from a “XAI paradox”, which we will mention at the end of this contri-
bution, we agree that some form of XAI is necessary for human decision makers
who use some kind of AI decision support to reach more informed decisions and
be rightly held fully accountable for these decisions.

In the context of the XAI discourse, human decision makers must be able to
interpret the AI system output, that is make sense of it in terms of why the sys-
tem proposed a specific output for the provided input [24] and, to some extent,
of how the system yielded this output, so as to take its advice into due con-
sideration in making their decision. In this line, interpretability is often tightly
related to explainability (so much that these two terms are often used inter-
changeably) and both are usually articulated in terms of the capability of the
AI system “to explain its reasoning” [11]. Thus, the lack of a formal, or at least
unique and non-ambiguous definition of explanation (and hence explainability),
which is lamented by many observers (e.g., [11,31]), should not make us over-
look the fact that the ability to interpret the system behavior by the humans,
so that they can make an informed use of the system output, is often translated
5 To this respect, here we are covering different cases than those covered by the GDPR

article no. 22, which regards decisions that are solely based on automated processing,
without human intervention [39].



New Frontiers in Explainable AI: Understanding the GI to Interpret the GO 43

into a property of the system, that is its capability to provide human decision
makers with resolving clues about its functioning and “reasons” for a predic-
tion. However, while this property can be linked to the presence or absence of
specific functions that make some information available to the decision makers
(e.g., what aspects of the phenomenon at hand, i.e., predictor variables, were
more important for proposing a specific advice), self-explanations tell nothing
about their suitability of being understood and hence of their potential to con-
tribute to the interpretation of the system. This allows us to relate the notion of
interpretability/explainability to the notion of usability of the system. A focus
on usability suggests to assess AI not only in regard to task efficiency (e.g.,
time to completion) and effectiveness (e.g., error rate) but also in terms of user
satisfaction. In the context of human decision making this regards the extent
decision makers are satisfied by their interaction with the system; feel to be in
control of the situation; believe to have got a sufficient number of indications to
formulate an informed decision; feel to be able to account for it; are confident
that the system supported them in considering all of the aspects that were due;
and that it did not misled them. However, usability, as widely known, is not a
property of the system, but rather of the coupling between the system and the
human users; in other words, usability emerges in the interaction between the
AI and its users, in the fit between system functionalities and the user skills.
So does the XAI. In the light of seeing interpretability as a kind of usability
(or better yet, as a way in which the usability of AI-driven decision support
is manifested), we also advocate an interpretable and explainable AI [18] as a
necessary condition for the embedding of AI in human agencies that are called
to make critical decisions significantly affecting other people’s life. Even more
than this, we emphasize the importance to design for an interpretand AI, that
is an AI that must be interpreted by the decision makers, so that that they build
a local narrative to convince themselves, as well as the others, of the soundness
and reasonability of the resulting decision. Thus, in the human-AI interaction, it
is important to distinguish between a right to explanation, that is for the users
to receive indications by the AI system that satisfactorily bring them to believe
to have understood why the decision support gave them a certain advice; and
the obligation to interpretation, that is for the users to have to adopt an active
attitude to collect and interpret these indications: advocacy for explainable AI
should not diminish responsibility for decision makers. This duty to active inter-
pretation can be promoted, and even afforded, by the decision support system
itself: to this aim we are testing a decision support system that is currently
adopted in a large teaching hospital specialized in musculoskeletal disorders and
surgery and is endowed with programmed inefficiencies, that is features aimed at
purposely increase the “decision friction” (cf. [13]), by requiring an active stance
by the users so as to minimize the risk of automation bias and deskilling [8].

9 Conclusion

In this paper, we focused on the importance of letting the decision makers know
and understand the quality of the data used to train the models by which an AI
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can provide its predictions and advice. In fact, no model can bring meaningful
output if the input data are not reliable: the notorious phrase “Garbage In,
Garbage Out” here applies, and is the central tenet of our contribution, as the
tongue-in-cheek title suggests.

To make the AI system more transparent, we propose to focus on the ground
truth by which the AI has been trained. To make the ground truth more inter-
pretable, we proposed a framework that distinguishes between Gold Standards
and Diamond Standards, and encompasses some common (but relevant) qual-
ity dimensions, like representativeness and reliability, and some novel quality
dimensions, like fineness, trueness and dryness, which we discuss and for which
provide a preliminary yet formal specification.

These metrics are given for a twofold aim. First, their definition and appli-
cation invite AI researchers to devise alternative ways to produce the ground
truth from the observations and interpretations available (what we call alter-
native reductions), other than the simple majority vote, so that the quality
of the training set could improve along multiple dimensions. However, this is
still a technicality, although of no little importance. More importantly: since we
usually assume that our ground truth is perfect, reflecting on its quality nec-
essarily entails growing an informed prudence in regard to its reliability and
adequacy for the task of supporting decision making in delicate domains. Thus,
our ultimate main aim is to contribute to raising awareness of the impact of
our assumptions, models, and representations in intensive cognitive tasks. The
dimensions we started to envision are aimed at facilitating people to reflect on
these aspects, rather than focus on model details and misleading performance
metrics, like accuracy, which only regards the match between the AI predictions
and the Gold Standard (see Fig. 1). From the design point of view, we should
ask what an actually useful support from AI looks like. We hold that a useful AI
is a usable AI, but not necessarily an AI providing decision makers with simple
and clear-cut predictions, nor the system that combines its output with a plenty
of indications and explanations. In the light of the research on the use of com-
puters as persuasive technologies [2] (evocatively called captology by Fogg [16]),
we should be aware of a potential conundrum on effective XAI, what we could
call a captological XAI paradox : “AI can give us a wrong advice, and yet also in
that case accompany it with plausible reasons that prime our interpretation and
convince us. The more imperscrutable AI is, the more likely we can doubt it, and
make sense of the available data with less interference”. Obviously, awareness of
this paradox should not convince us to stop pursuing a better XAI. All the oppo-
site, it urges us to consider new and more effective ways by which technology
itself can promote a reflective stance in the decision makers and a stronger will
and commitment to take full responsibility of the vigilant use of that technology.

References

1. Angluin, D., Laird, P.: Learning from noisy examples. Mach. Learn. 2(4), 343–370
(1988)



New Frontiers in Explainable AI: Understanding the GI to Interpret the GO 45

2. Atkinson, B.M.C.: Captology: a critical review. In: IJsselsteijn, W.A., de Kort,
Y.A.W., Midden, C., Eggen, B., van den Hoven, E. (eds.) PERSUASIVE 2006.
LNCS, vol. 3962, pp. 171–182. Springer, Heidelberg (2006). https://doi.org/10.
1007/11755494 25

3. Brennan, P., Silman, A.: Statistical methods for assessing observer variability in
clinical measures. BMJ: Br. Med. J. 304(6840), 1491 (1992)

4. Breunig, M.M., Kriegel, H.P., Ng, R.T., et al.: Identifying density-based local out-
liers. SIGMOD Rec. 29(2), 93–104 (2000)

5. Cabitza, F., Ciucci, D., Rasoini, R.: A giant with feet of clay: on the validity of the
data that feed machine learning in medicine. In: Cabitza, F., Batini, C., Magni,
M. (eds.) Organizing for the Digital World. LNISO, vol. 28, pp. 121–136. Springer,
Cham (2019). https://doi.org/10.1007/978-3-319-90503-7 10

6. Cabitza, F., Dui, L.G., Banfi, G.: PROs in the wild: assessing the validity of patient
reported outcomes in an electronic registry. Comput. Methods Program. Biomed.
(2019)

7. Cabitza, F., Locoro, A., Alderighi, C., Rasoini, R., Compagnone, D., Berjano, P.:
The elephant in the record: on the multiplicity of data recording work. Health
Inform. J. (2019)

8. Cabitza F., Campagner A., Ciucci D., Seveso A.: Programmed inefficiencies in DSS-
supported human decision making. In: Proceedings of 16th MDAI International
Conference (2019, to appear)

9. Campagner, A., Cabitza, F., Ciucci, D.: Exploring medical data classification with
three-way decision trees. In: Proceedings of the 12th BIOSTEC International Joint
Conference - Volume 5: HEALTHINF, pp. 147–158 (2019)

10. Campagner, A., Cabitza, F., Ciucci, D.: Three–way classification: ambiguity and
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Abstract. Automated Machine Learning (Auto-ML) methods search for the
best classification algorithm and its best hyper-parameter settings for each input
dataset. Auto-ML methods normally maximize only predictive accuracy,
ignoring the classification model’s interpretability – an important criterion in
many applications. Hence, we propose a novel approach, based on Auto-ML, to
investigate the trade-off between the predictive accuracy and the interpretability
of classification-model representations. The experiments used the Auto-WEKA
tool to investigate this trade-off. We distinguish between white box (inter-
pretable) model representations and two other types of model representations:
black box (non-interpretable) and grey box (partly interpretable). We consider as
white box the models based on the following 6 interpretable knowledge rep-
resentations: decision trees, If-Then classification rules, decision tables, Baye-
sian network classifiers, nearest neighbours and logistic regression. The
experiments used 16 datasets and two runtime limits per Auto-WEKA run: 5 h
and 20 h. Overall, the best white box model was more accurate than the best
non-white box model in 4 of the 16 datasets in the 5-hour runs, and in 7 of the
16 datasets in the 20-hour runs. However, the predictive accuracy differences
between the best white box and best non-white box models were often very
small. If we accept a predictive accuracy loss of 1% in order to benefit from the
interpretability of a white box model representation, we would prefer the best
white box model in 8 of the 16 datasets in the 5-hour runs, and in 10 of the 16
datasets in the 20-hour runs.

Keywords: Automated Machine Learning (Auto-ML) �
Classification algorithms � Interpretable models

1 Introduction

This work focuses on the classification task of machine learning, where each instance
(example, or data point) consists of a set of predictive features and a class label.
A classification algorithm learns a predictive model from a set of training data, where
the algorithm has access to the values of both the features and the class labels of the
instances, and then the learned model can be used to predict the class labels of instances
in a separate set of testing data, which was not used during training.
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Recently, classification algorithms have been used by an increasingly larger and
more diverse set of users, including users with relatively little or no expertise in
machine learning. In addition, a large amount of machine learning research has pro-
duced many different types of algorithms [5, 19] with increasingly greater complexity.
Also, in general these algorithms have several hyper-parameters whose settings need to
be carefully tuned to maximize predictive accuracy, for each input dataset.

As a result, recently there has been an increasing research interest in the area of
Automated Machine Learning (Auto-ML). In the context of the classification task,
Auto-ML methods usually try to solve the problem of finding the best classification
algorithm and its best configuration (hyper-parameter settings) for any given dataset
provided as input by the user. This is sometimes referred to as the CASH problem –

Combined Algorithm Selection and Hyper-parameter optimization [16, 18].
There has also been a growing interest in learning interpretable classification

models, motivated by several factors like the need to improve users’ trust on the
models’ recommendations, legal requirements for explaining the model’s recommen-
dations in some domains, and the opportunity to provide users with new insight about
the data and the underlying application domain [7]. Furthermore, several studies have
discussed how to evaluate the interpretability of classification models – e.g., [7, 8].

Despite this increasing interest in the interpretability of classification models, the
classification literature is still overwhelmingly dominated by the use of predictive
accuracy as the main (and very often the only) evaluation criterion. As a result, the
literature is currently dominated by black box classification models, produced by
algorithms that were designed to maximize predictive accuracy only, without taking
into account model interpretability.

This focus on predictive accuracy as the only criterion to evaluate a classification
model is particularly strong in the area of Auto-ML, where the interpretability of
classification models is normally ignored.

Hence, we propose a novel approach, based on Auto-ML, to investigate the trade-
off between the predictive accuracy and the interpretability of classification-model
representations. Note that the focus of this investigation is on the type of knowledge
representation used by the learned classification models, rather than the contents of the
models themselves. Broadly speaking, we consider as interpretable the following 6
types of model representation: decision trees, If-Then classification rules, decision
tables, Bayesian network classifiers, nearest neighbours and logistic regression repre-
sentations. Hence, in this work we distinguish mainly between learned models using
these representations and learned models using other (non-interpretable or only partly
interpretable) representations – as discussed in more details in Sect. 2.2.

Although using an interpretable knowledge representation is not a sufficient con-
dition for a model to be really interpretable by a user, arguably an interpretable rep-
resentation tends to be a necessary or at least highly desirable condition for obtaining
model interpretability. In addition, the full notion of model interpretability involves
very subjective, user-dependent issues, which are out of the scope of this work.

Hence, in this work we perform a number of experiments with Auto-WEKA, whose
search space includes many classification algorithms for learning models with both
interpretable and non-interpretable representations, and then analyze in detail the
results to investigate to what extent (if any) the best interpretable-representation models
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produced by Auto-WEKA are sacrificing predictive accuracy by comparison with the
best non-interpretable-representation models produced by Auto-WEKA. This is an
interesting approach to analyze the trade-off between accuracy and interpretability
because Auto-WEKA automatically selects the best algorithm and its best hyper-
parameter settings in a way customized to each input dataset. Hence, the discussion on
the trade-off between accuracy and interpretability is raised to a new, more challenging
level than usual, where the question is how much accuracy (if any) an interpretable-
representation model is sacrificing, not just by comparison with a strong algorithm, but
rather by comparison with the strongest (most accurate) algorithm found by Auto-
WEKA for each particular dataset at hand.

Note that, although there are several studies evaluating the performance of Auto-
ML methods [6, 10, 14], in general these studies focus only on the predictive accuracy
of the selected algorithms, ignoring the issue of the interpretability of their learned
models. To the best of our knowledge, this current work is the first one to investigate
the trade-off between the predictive accuracy and interpretability of classification
models which were optimized to each input dataset by an Auto-ML method.

More precisely, this paper presents the following contributions. First, we investi-
gate the influence of two different runtime limits (as ‘computational budgets’) given to
Auto-WEKA on the predictive accuracy of the best algorithms selected by Auto-
WEKA for each of the 16 datasets used in our experiments. Second, we investigate the
frequencies with which different classification algorithms (using different knowledge
representations for their learned models) are selected by Auto-WEKA for each dataset,
across several runs with different random seeds used to initialize the Auto-WEKA’s
search. Third, as the main contribution of this work, we analyze the trade-off between
the predictive accuracy and the interpretability of the model representations selected by
Auto-WEKA for each dataset.

The remainder of this paper is organized as follows. Section 2 reviews background
on Auto-ML and interpretable classification models. Section 3 describes the proposed
experimental methodology. Section 4 reports the computational results of the experi-
ments with 16 datasets. Section 5 summarizes the results, and Sect. 6 presents the
conclusions and some future research directions.

2 Background

2.1 Background on Automated Machine Learning (Auto-ML)

With the increasing interest in the area of Auto-ML, several types of Auto-ML methods
have been proposed in the literature [18], using a variety of search methods to perform
a search in the space of candidate machine learning algorithms and their hyper-
parameter settings. However, most Auto-ML methods use, as the search method, some
variation of Bayesian Optimization (BO) [6, 16] or Evolutionary Algorithms (EAs) [3,
15]. Both BO and EAs are suitable for Auto-ML because they are derivative-free global
search methods. That is, they do not require knowledge of the derivative of the
objective function, which is suitable for the discreate search space of candidate solu-
tions (involving choices of algorithms), and they perform a global search in the space
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of candidate solutions, coping with the trade-off between exploitation and exploration
in a way that reduces the chances of getting trapped into local optima in the search
space. There are also Auto-ML methods based on other types of search methods, like
hierarchical planning [14].

Two popular Auto-ML tools, representing seminal work in this area, are Auto-
WEKA [16] and Auto-sklearn [6], which search in the space of classification algo-
rithms offered by the popular WEKA and scikit-learn machine learning libraries,
respectively – both using BO as the search method. In this work we focus on the Auto-
WEKA tool, mainly due to the wide range of classification algorithms considered by
this tool – particularly because it includes classification algorithms learning 6 types of
interpretable model representations, as discussed in Sect. 2.2. This is in contrast with
e.g. Auto-sklearn, which has a considerably smaller diversity of algorithms learning
such interpretable model representations.

The search space considered by Auto-WEKA also includes feature selection
methods and their hyper-parameter settings. That is, for each input dataset, the output
of Auto-WEKA will be at least a recommended classification algorithm and its hyper-
parameter settings, and that output may or may not include also a feature selection
algorithm and its hyper-parameter settings, applied in a data pre-processing step. In this
work, however, we focus only on the classification algorithms selected by Auto-
WEKA, since we focus on analyzing the trade-off between the predictive accuracy and
interpretability of the models learned by the classification algorithms.

2.2 Background on Interpretable Classification Models

Classification algorithms can be categorized into groups based on the type of knowl-
edge representation used by the classification models that they produce. We emphasize
that this grouping is based on the knowledge representation used by the classification
model, i.e., the output of a classification algorithm. This distinction is important
because the same type of model can be learned by very different types of algorithms –
e.g., decision trees can be learned by a conventional greedy search method or by a more
global search method like evolutionary algorithms [1].

In this work we categorize classification models into 4 broad groups, based on two
criteria: (a) whether or not the model is an ensemble (i.e. combining the predictions of a
set of base classifiers), and (b) the model’s type of knowledge representation – which
can be broadly considered interpretable or non-interpretable. These two criteria are
combined into the 2 � 2 matrix shown in Fig. 1.

The bottom-right quadrant of the matrix in Fig. 1 (non-ensemble, non-interpretable
knowledge representation) contains models categorized as black boxes. That is, users
cannot normally understand such black box models in their original form. Examples
include, in general, artificial neural networks and support vector machines (SVMs).
Note that it is possible to extract interpretable knowledge from a black box model [9],
e.g. by extracting a set of rules from neural networks or from SVMs, but in this case of
course it is the set of rules which would be interpreted, not the original black box
model.
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The bottom-left quadrant of the matrix in Fig. 1 (ensemble, non-interpretable
knowledge representation) contains models which are also categorized as black boxes.
They are in general even harder to interpret than a non-ensemble black box model, due
to the typically large number of non-interpretable models in the ensemble.

The top-right quadrant of the matrix in Fig. 1 (non-ensemble, interpretable
knowledge representation) contains models categorized as white boxes (sometimes
called glass boxes [12]). Such models are, at least in principle, directly interpretable by
users. In practice, their degree of interpretability varies depending on several factors,
including e.g. the user’s understanding about the meaning of the features (attributes)
occurring in the model and the user’s understanding about the model’s knowledge
representation. In this work, we consider the following 6 types of knowledge repre-
sentation as ‘white box’ models: decision trees, If-Then classification rules, decision
tables, Bayesian network classifiers, nearest neighbours and logistic regression models.
The interpretability of the former 5 types of model representations was discussed in
detail in [7], whilst logistic regression is also usually recognized as an interpretable
type of model in the literature.

Finally, the top-left quadrant of the matrix in Fig. 1 (ensemble, interpretable
knowledge representation) contains models categorized as ‘grey boxes’. This term is
used here to refer to some kinds of ensemble models that are partly interpretable,
although substantially less interpretable than white box models. Broadly speaking, we
will refer to an ensemble as a grey box if its base classifiers are white box models, since
in principle some approaches for interpreting such white box models can be applied to
the ensemble’s members and the results can then be combined to get some inter-
pretability for the ensemble as a whole.

An example of how an ensemble can be partly interpreted involves random forests.
In general random forest models are not directly interpretable by users, since they
contain too many decision trees as base classifiers, and each tree by itself is also hardly
interpretable – each tree tends to be large and to have its contents heavily influenced by
random samplings of instances and features. Hence, a random forest model is not a
white box model. However, random forest models can be partly interpreted by com-
puting a measure of the importance of each feature across all trees in the forest, and
ranking the features in decreasing order of importance. Several such feature importance

Model’s overall type

Ensemble Non-Ensemble

Knowledge 
Representation

Interpretable Grey box White box

Non-Interpretable Black box Black box

Fig. 1. Categorization of classification models into ‘white box’, ‘black box’ and ‘grey box’
models, based on whether or not the model is an ensemble (combining the outputs of multiple
base classifiers) and whether or not the model’s knowledge representation is interpretable.
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measures have been proposed in the literature [4, 17]. By using feature importance
measures, a random forest model can be considered a grey box model.

3 Experimental Methodology

3.1 Datasets Used in the Experiments

We report the results of experiments using 16 datasets, whose main characteristics are
mentioned in Table 1. More precisely, this table shows, for each dataset, its number of
training and testing instances, as well as its number of predictive features and class
labels. The training and testing sets used here are in general the same as used in the first
Auto-WEKA paper [16], and they were in general downloaded from: https://www.cs.
ubc.ca/labs/beta/Projects/autoweka/datasets/. The exception is the Adult Census data-
set, whose training and testing sets were downloaded from the well-known UCI dataset
repository: http://mlr.cs.umass.edu/ml/datasets.html.

3.2 Auto-WEKA’s Parameters and Experimental Set up

The output of Auto-WEKA depends on several user-specified parameters. We specified
the values of three of such parameters, as discussed next, and kept the other parameters
at their default values.

First, the output of Auto-WEKA naturally depends on the runtime limit (‘com-
putational budget’) specified by the user, i.e. how much time the system is allowed to
spend in the search for the best classification/feature selection algorithm and its/their

Table 1. Main characteristics of the datasets used in the experiments

Dataset Training Inst. Testing Inst. Features Class labels

Adult Census 32561 16281 14 2
Car 1209 519 6 4
CIFAR10-small 10000 10000 3,072 10
Convex 8000 50000 784 2
Dexter 420 180 2,000 2
GermanCredit 700 300 20 2
Gisette 4900 2100 5,000 2
KDD09-Appentency 35000 15000 230 2
Kr-vs-kp 2237 959 36 2
Madelon 1820 780 500 2
MNIST basic 12000 50000 784 10
Secom 1096 471 590 2
Semeion 1115 478 256 10
Shuttle 43500 14500 9 7
Waveform 3500 1500 40 3
Yeast 1038 446 8 10
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best hyper-parameter settings for the input dataset. We report results for Auto-WEKA
running with 5 h and 20 h of runtime limit.

Second, like Auto-ML systems in general, Auto-WEKA is non-deterministic, i.e.,
its output (selected algorithm and hyper-parameter settings) depends on the random
seed number used to initialize the search. We report results of Auto-WEKA with 5
different random seed numbers, for each of the two time limits, for each dataset.

Third, Auto-WEKA’s evaluation function (used to guide the search) was modified
from the default ‘error rate’ to the Area Under the ROC curve (AUROC) [13]. The
rationale for this modification was that the error rate does not cope well with very
imbalanced class distributions, which is the case for several datasets used in the
experiments. In addition, the AUROC is one of the most used measures of predictive
accuracy in practice. The AUROC measure takes values in the range [0..1], with the
value 0.5 indicating a predictive accuracy equivalent to that of a random classifier, and
1 indicating the maximal predictive accuracy.

Auto-WEKA was run 10 times (5 seeds � 2 runtime limits) for each dataset. The
total time taken by the experiments for each dataset was 125 h: 25 h for the 5 runs
taking 5 h each, and 100 h for the 5 runs taking 20 h each. So, the total time taken by
the experiments for all 16 datasets was 2,000 h. All experiments were run on a desktop
computer with an Intel® Core(TM) i7-7700 CPU with 3.6 GHz and 16.0 GB of RAM
memory.

3.3 The Type of Auto-WEKA’s Output Analyzed in This Work

Recall that the output of Auto-WEKA consists of the best classification algorithm (with
its best hyper-parameter settings) selected for the input dataset, and possibly also the
best feature selection algorithm (with its best hyper-parameter settings) to be applied in
a data pre-processing step. In this work we analyze only on the types of classification
algorithms selected by Auto-WEKA, i.e., the analysis of the feature selection algo-
rithms output by Auto-WEKA is out of the scope of this work. In addition, we focus on
analyzing the output algorithms by themselves, i.e., an analysis of the selected hyper-
parameter settings for each algorithm selected by Auto-WEKA is also out of the scope
of this work.

Recall that the classification algorithms output by Auto-WEKA have been cate-
gorized into the three broad groups of white box, black box and grey box models, based
on whether or not their learned model is an ensemble and on the broad interpretability
of their model’s knowledge representation, as discussed in Sect. 2.2.

A brief overview of the classification algorithms selected by Auto-WEKA in our
experiments (reported in the next Section) is given next, first for ensembles and then for
non-ensemble algorithms.
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Ensemble Algorithms:

• AdaBoost-M1: It learns an ensemble of base classifiers by iteratively re-weighting
instances – increasing the weights of instances misclassified in previous iterations.

• Bagging (Bag): It learns an ensemble of base classifiers, each of them is learned
from randomly sampling instances.

• Random Committee (RandCom): It learns an ensemble of randomized base clas-
sifiers; each is learned from the same data, but using a different random seed
number.

• Random Forest (RF): It learns a forest (set) of decision trees, each of them is learned
by randomly sampling instances and features.

• Random SubSpace (RandSS): It learns an ensemble of randomized base classifiers;
each is learned by randomly sampling features (creating different feature
subspaces).

• Vote: An ensemble combining the outputs of different types of base classifiers.

Non-ensemble Algorithms:

• BayesNet: It learns a Bayesian network classifier, it can cope with dependences
among features (unlike Naïve Bayes).

• Decision Table (DecTable): It learns a decision table model, finding a good set of
features to be used in the table.

• Decision Stump (DecStump): It learns a decision stump, which is a decision tree
with just one internal (non-leaf) node.

• IBk: A k-nearest neighbour (instance-based learning) classifier.
• JRip: It implements the RIPPER algorithm for learning a list of IF-THEN rules.
• KStar (K*): A specific type of k-nearest neighbour (instance-based learning) clas-

sifier that uses an entropy-based distance function.
• Logistic (Log): It learns a multinomial logistic regression model with a ridge

estimator.
• LMT: It learns a Logistic Model Tree, i.e., a decision tree with logistic regression

models at the leaf nodes.
• LWL: Locally Weighted Learning – It uses an instance-based learning algorithm to

assign instance weights, which are then used by a suitable classifier.
• MLP: It learns a Multi-Layer Perceptron neural network using backpropagation.
• Naïve Bayes (NB): The simplest type of Bayesian network classifier; it assumes that

features are independent from each other given the class variable.
• PART: Rule induction algorithm that iteratively learns a list of IF-THEN rules, by

iteratively converting a learned partial decision tree into a rule.
• RepTree: A decision tree learning algorithm designed to be faster than other

algorithms of this type – it sorts numeric attributes just once.
• SimpleLogistic (SimpLog): It learns linear logistic regression models.
• SMO: The Sequential Minimal Optimization algorithm for learning an SVM

(Support Vector Machine) model.
• ZeroR: No learned model; it simply predicts the most frequently class in the data.
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4 Computational Results

4.1 Analysis of the Influence of the Runtime Limit on Auto-WEKA’s
Predictive Accuracy

Table 2 shows the mean and standard deviation (over 5 runs varying the random seed)
of the Area Under the ROC curve (AUROC) values obtained by the algorithms selected
by Auto-WEKA, measured on the test sets, for the experiments with 5 h and 20 h of
runtime limit. The last column of this table shows the difference between the mean
AUROC with 20 h and the mean AUROC with 5 h. Hence, a positive (negative) value
in that column indicates that increasing the runtime limit from 5 to 20 h had a positive
(negative) effect on the AUROC. The AUROC difference in the last column tends to be
larger for datasets with smaller AUROC values, which of course offer more opportu-
nities for larger differences to arise.

In 12 of the 16 datasets included in Table 2, the difference of AUROC between the
two runtime limits was very small, smaller than 1%. In the other 4 datasets, however,
the runtime limit had a substantial effect: the longer run (20 h) led to a larger AUROC
in two datasets (an increase of 11.6% for KDD09-Appentency and 2.8% for Ger-
manCredit) but to a smaller AUROC in two other datasets (a decrease of 6.8% for
Convex and 2% for Madelon). The AUROC values’ standard deviations are in general
small, except for the 5-hour runs in two datasets (Convex and KDD09-Appentency).

Table 2. Mean and (after the symbol±) standard deviation of the AUROC obtained by Auto-
WEKA on the test set over 5 runs varying the random seed, with the runtime limit set to 5 h and
20 h, and the difference between the two AUROC values.

Dataset AUROC (5 h) AUROC (20 h) AUROC difference
(20h-AUROC–5h-AUROC)

Adult Census 0.9058 ± 0.003 0.9014 ± 0.010 −0.0044
Car 1.0 ± 0 1.0 ± 0 0
CIFAR10-small 0.7282 ± 0.020 0.7268 ± 0.013 −0.0014
Convex 0.6276 ± 0.121 0.5592 ± 0.024 −0.0684
Dexter 0.9588 ± 0.037 0.9578 ± 0.012 −0.001
GermanCredit 0.7182 ± 0.041 0.7464 ± 0.012 0.0282
Gisette 0.9878 ± 0.003 0.987 ± 0.003 −0.0008
KDD09-Appent. 0.663 ± 0.152 0.7794 ± 0.032 0.1164
Kr-vs-kp 0.9864 ± 0.019 0.9896 ± 0.013 0.0032
Madelon 0.836 ± 0.032 0.816 ± 0.042 −0.02
MNIST basic 0.989 ± 0.008 0.9878 ± 0.007 −0.0012
Secom 0.6978 ± 0.022 0.7018 ± 0.021 0.004
Semeion 0.9932 ± 0.004 0.9944 ± 0.002 0.0012
Shuttle 1.0 ± 0 1.0 ± 0 0
Waveform 0.972 ± 0.001 0.9704 ± 0.003 −0.0016
Yeast 0.828 ± 0.008 0.8292 ± 0.011 0.0012
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We used the non-parametric Wilcoxon signed-rank test of statistical significance to
compare the results for 5-hour and 20-hour runs shown in Table 2. Using a two-tailed
test and significance level a = 0.05 as usual, we obtained p = 0.94, so the difference of
AUROC values among the 5-hour and 20-hour runs is clearly not significant.

We investigated in more detail the results for the KDD09-Appetency dataset, with
the largest difference of AUROC between the two runtimes. The large increase in the
AUROC value associated with the longer runs of 20 h is due mainly to the fact that, in
the experiments with 5-hour runs, two of the 5 runs achieved a very low AUROC of 0.5
(equivalent to random predictions). In both these runs, the classifier selected by Auto-
WEKA was a trivial classifier that simply predicted the most frequent class label to all
instances, ignoring the features.

Table 3. Distribution of classification algorithms selected by Auto-WEKA for each dataset
across 5 runs, for the runtime limits of 5 h and 20 h. The number in brackets after an algorithm’s
name represents the selection frequency for that algorithm, out of the 5 runs. The absence of
numbers in brackets means the algorithm was selected only once.

Dataset Selected algorithms (5-hour runs) Selected algorithms (20-hour runs)

Adult Census BayesNet(4), RF BayesNet (2), RF; SimpLog; NB
Car MLP(2), Bag-SMO, SMO,

AdaBoost-SMO
MLP (2), AdaBoost-SMO,
AdaBoost-MLP, SMO

CIFAR10-
small

RF(2), SMO, PART, NB RF(3), NB(2)

Convex RF(4), RandCom.-RepTree RF(2), SMO, LMT, RandCom.-
RepTree

Dexter NB(2), SMO, MLP, RepTree Logistic, Bag-J48, KStar, Vote-
SimpLog, LMT

GermanCredit SMO(4), Bag-RF Vote-LMT, MLP, LWL-MLP,
Bag-MLP, RandCom-MLP

Gisette RF(2), Logistic, SimpLog,
AdaBoost-RepTree

RF(3), Logistic, AdaBoost-
RepTree

KDD09-
Appentency

DecTable(2), Bag-PART, Bag-
DecStump, ZeroR

DecTable(3), MLP, Bag-DecStump

Kr-vs-kp AdaBoost-JRip, LMT, AdaBoost-
RepTree, MLP, RandCom-MLP

AdaBoost-JRip, LMT, AdaBoost-
PART, MLP, RandCom-MLP,

Madelon RandSS-RepTree, RandCom-
RepTree, RandCom-RF, IBK, RF

RF(2), Rand-SubSp-JRip, IBK,
RandCom-RepTree

MNIST basic IBk(2), RF(2), NBmultidim IBK(2), RF(2), BayesNet
Secom BayesNet(3), NB, Bag-BayesNet BayesNet(4), Bag-BayesNet
Semeion KStar(3), MLP, RandSS-KStar KStar(3), RF, RandSS-KStar
Shuttle RF(5) RF(5)
Waveform MLP(5) MLP(3), SimpLog, Bag-MLP
Yeast RF(2), MLP, Bag-LMT, RandCom-RF RF(2), MLP, Bag-JRip Bag-MLP
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4.2 Analysis of the Distribution of the Classification Algorithms Selected
by Auto-WEKA for Each Dataset, Varying Runtime Limit
and Random Seed

Table 3 shows the distribution of classification algorithms selected by Auto-WEKA for
each dataset, separately for the experiments with runtime limits of 5 h and 20 h. Recall
that, for each runtime limit, Auto-WEKA was run 5 times for each dataset, varying the
random seed across runs. For information about the algorithms’ acronyms used in this
table, the reader is referred to Sect. 3.3.

Table 3 shows that there is a wide variety of classification algorithms selected by
Auto-WEKA across all datasets. This reinforces the motivation to use an Auto-ML
system to try find the best algorithm for each dataset, supporting the results in [16].

There is also substantial variation among the algorithms selected for each dataset,
confirming that the output of Auto-WEKA is sensitive to the random seed number used
to initialize its search. However, for some datasets the selection of the best algorithm
was reasonably stable across the runs varying the random seed. More precisely, there
were 4 algorithms that were selected in the majority (i.e. at least 3) of the 5 runs for
each of the two runtime limits (5 h and 20 h) for some dataset, as follows. First,
Random Forest (RF) was chosen in all 10 runs (5 runs � 2 runtime limits) for the
Shuttle dataset. Second, MLP was selected in 8 runs for the Waveform dataset: 5 times
with the runtime limit of 5 h and 3 times with the limit of 20 h. Third, BayesNet was
selected in 7 runs for the Secom dataset: 3 times with the runtime limit of 5 h, and 4
times with the runtime limit of 20 h. Fourth, KStar was selected in 6 runs for the
Semeion dataset: 3 times for each of the two runtime limits. In addition, when the
runtime limit was 5 h, RF was selected 4 times for the Convex dataset; and when the
runtime limit was 20 h, RF was selected 3 times for the Gisette dataset and 3 times for
the CIFAR10-small dataset.

One can also observe in Table 3 that, for the large majority of the datasets, the set
of selected algorithms is broadly similar in the two scenarios of 5-hour and 20-hour
runs. More precisely, for 13 of the 16 datasets, the intersection between the sets of
algorithms selected by Auto-WEKA in the two scenarios has at least 3 (out of 5)
algorithms. In one dataset (Shuttle) all 5 selected algorithms were the same (RF) in the
two scenarios. However, in two datasets (Dexter and GermanCredit) there was no
intersection between the sets of algorithms selected in the two scenarios. As mentioned
earlier, for the GermanCredit dataset the longer runs led to a somewhat higher
AUROC, but for the Dexter dataset the change of selected algorithms between 5-hour
and 20-hour runs did not have any substantial effect on the AUROC.

Table 4 shows the selection frequency of each algorithm for all datasets as a whole.
In Table 4 the algorithms are divided into the three previously discussed broad groups
of algorithms that learn: (a) white box models, (b) black box models, and (c) ensem-
bles, some of which can be considered as ‘grey box’ models if they use white box
models as their base classifiers, as discussed in Sect. 2.2.
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Let us first discuss in more detail the results for white box and black box models.
As a whole, white box models were selected more often than black box models in both
the experiments with 5 h of runtime limit and the experiments with 20 h. The differ-
ence of selection frequency in favour of white box models is considerably larger for the
20-hour runs (27 white box models vs. 12 black box models) than for the 5-hour runs
(25 vs. 18).

Table 4. Selection frequency for each type of model (black box, white box or ensemble model)
selected by Auto-WEKA for all datasets as a whole, for each runtime limit (5 h or 20 h), and
total frequency. In the rows for ensembles, the numbers in brackets are the numbers of ensemble
models that can be categorized as ‘grey boxes’, in the sense of consisting of base classifiers that
are a type of white box model.

Model type Algorithm Sel. Freq (5-
hours runs)

Sel. Freq (20-
hour runs)

Total Sel.
frequency

Non-ensemble white
box

BayesNet 7 7 14
Naïve Bayes 4 3 7
Naïve Bayes
multinomial

1 0 1

KStar 3 4 7
IBK 3 3 6
Decision table 2 3 5
LMT 1 3 4
SimpleLogistic 1 2 3
Logistic 1 2 3
PART 1 0 1
RepTree 1 0 1
Totals for
white boxes:

25 27 52

Non-ensemble black
box

MLP 11 9 20
MLP-LWL 0 1 1
SMO 7 2 9
Totals for
black boxes:

18 12 30

Ensemble (number
of grey boxes)

AdaBoost 4 (3) 5 (3) 9 (6)
Bagging 6 (4) 7 (4) 13 (8)
Random
Committee

5 (2) 4 (2) 9 (4)

Random
SubSpace

2 (2) 2 (2) 4 (4)

Random forest 20 (20) 21 (21) 41 (41)
Vote 0 (0) 2 (2) 2 (2)
Totals for
ensembles:

37 (31) 41 (34) 78 (65)

No model ZeroR 1 0 1
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The most frequently selected type of white box model was BayesNet, which was
selected 14 times in total (adding the selection frequencies for both runtime limits). In
addition, Naïve Bayes was the second most frequently selected white box classifier,
with a total frequency of 8 (including one selection of its variant Naïve Bayes multi-
nomial); and since both BayesNet and Naïve Bayes are instantiations of a Bayesian
network classifier, this broad type of model was selected in total 22 times.

The second most frequently selected broad type of white box model was nearest
neighbours, with the KStar and IBk algorithms selected 7 and 6 times, respectively –

i.e., 13 times in total.
Other types of white box models had smaller but still substantial selection fre-

quencies, as follows. DecisionTable was selected 5 times. LMT (Logistic Model Trees)
was selected 4 times. Note that a LMT model is a hybrid decision tree/logistic
regression model (it is a decision tree with logistic regression models at the leaf nodes).
A stand-alone logistic regression model was selected 6 times (3 times with the Logistic
algorithm and 3 times with the SimpleLogistic algorithm).

Decision trees by themselves (i.e., not counting their use in ensembles) had a
surprising low selection frequency. Not counting the 4 times a LMT model was
selected, a stand-alone decision tree model was selected just once, with the RepTree
algorithm – which was designed to be fast (not just to maximize accuracy), i.e., it may
sacrifice some accuracy to gain computational efficiency.

The black box models selected by Auto-WEKA were less diverse than the white
box models; more precisely, MLP was selected 21 times (one of them using LWL –

Local Weighted Learning – to assign weights to instances), whilst SMO (a type of
SVM algorithm) was selected 9 times.

We now turn to ensembles. As a whole, ensembles were the type of algorithm most
frequently selected by Auto-WEKA, for both runtime limits (5 and 20 h). In total,
ensembles were selected in 78 out of the 160 cases (i.e., in about 49% of the cases).
The overall success of ensembles is not surprising, due to their advantages stemming
from combining diverse base models to achieve a more effective classifier [20].

By far the most selected type of ensemble model was Random Forest, which was
selected 41 times in total (i.e., in about 23% of the 180 cases). Bagging, AdaBoost-M1
and Random Committee were also selected quite often by Auto-WEKA, in total 13, 9
and 9 times, respectively. Random SubSpace and Vote were selected only 4 and 2
times, respectively.

Recall that we considered as ‘grey box’ models the ensembles that can be partly
interpreted, due to their base classifiers being interpretable (white box) models. Hence,
in the rows for ensemble models in Table 4, the numbers in brackets are the numbers of
models that can be categorized as ‘grey boxes’.

Note that, since random forests consist of partly random decision tree models, and
many feature importance measures for random forests are available in the literature as
mentioned earlier, all 41 random forest models mentioned in Table 4 can be considered
grey box models. The other types of ensemble models in Table 4 also have a high
proportion of grey box models in general. Actually, considering all types of ensemble
models in Table 4 for the two runtime limits of 5 h and 20 h, 65 out of the 78 ensemble
models (i.e., about 83%) can be considered grey box models. It should be emphasized,
however, that a grey box model is still considerably less interpretable than a white box
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model, and it requires substantial post-processing for interpretability. That is, after the
ensemble is constructed, typically we still need to run some post-processing procedure
(e.g. the aforementioned feature importance measures). By contrast, such post-
processing is not usually required in the case of white box models, which can be more
directly interpreted. A detailed investigation of to what extent such grey box, partly
interpretable models can be really (subjectively) interpreted by users in practice is
beyond the scope of this work.

4.3 Analysis of the Trade-Off Between the Predictive Accuracy
and the Interpretability of the Selected Classification Models

Recall that Auto-WEKA’s search is guided by an evaluation function that is based on
estimating only the predictive accuracy of the candidate algorithms, without consid-
ering the interpretability of their learned models. Despite this, for any given dataset, it
is possible that the best algorithm selected by Auto-WEKA for a given input dataset is
an algorithm that learns a white box model, in which case we would get the benefit of a
model with an interpretable knowledge representation without sacrificing accuracy.

As mentioned in the Introduction, there is a growing importance of interpretability
in the classification task of machine learning, due to the increasingly large number of
applications of classification algorithms across many domains. Despite this, the liter-
ature is still overwhelmingly dominated by the goal of maximizing predictive accuracy,
with relatively little emphasis on learning interpretable models. That is, most
researchers and practitioners focus on using only black box or ensemble models,
without even trying algorithms that learn at least potentially interpretable models. It is
not clear how often this leads to missing the opportunity of learning an interpretable
model that is almost as accurate as a black box or ensemble model. Hence, it is
important to investigate this trade-off between predictive accuracy and interpretability
by considering a wide range of algorithms.

Auto-ML systems like Auto-WEKA provide an interesting novel perspective for
this investigation, because Auto-WEKA automatically searches for the best algorithm
for the input dataset, in a search space that includes both many algorithms learning
white box models and many algorithms learning black box or ensemble models.

In this context, the important research question addressed in this section is: to what
extent does the best white box model recommended by Auto-WEKA (for the input
dataset) sacrifice predictive accuracy, by comparison with the best non-white box (i.e.
black box or ensemble) model recommended by Auto-WEKA?

To investigate this issue, for each dataset, and for each of the two runtime limits
(5 h and 20 h), Table 5 reports two types of AUROC values, both measured on the test
set: (a) the highest AUROC among the non-white box (i.e., black box and ensemble)
models produced by the algorithms selected by Auto-WEKA in its 5 runs varying the
random seed; and (b) the highest AUROC among the white box models produced by
the algorithms selected by Auto-WEKA in its 5 runs. Each cell of Table 5 also indi-
cates, below the AUROC value, the name of the algorithm(s) which obtained that
result. If none of the 5 algorithms selected by Auto-WEKA for a given pair of dataset
and runtime limit learns the type of model associated with the corresponding table
column, the corresponding cell in Table 5 has the keyword ‘none’.
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Hence, in order to determine to what extent the selected white box models are
sacrificing predictive accuracy by comparison with the best non-white box model found
by Auto-WEKA, for each dataset and runtime limit, one can compare two pairs of
columns in Table 5: the second and third columns (5-hour runs), and the fourth and
fifth columns (20-hour runs). The best result for each dataset and each run time limit is
shown in boldface font.

For the 5-hour runs, the best white box model achieved a higher AUROC than the
best non-white box model in only 4 of the 16 datasets. In those 4 datasets, the gain in
predictive accuracy associated with the best white box model (versus the best non-
white box model) was: 0.5% for Adult Census, 0.9% for Semeion, 1.8% for Dexter,
and 7.3% for KDD09-Appetency. However, no white box model was selected in the 5
Auto-WEKA runs for 6 datasets. Regarding the remaining 6 datasets, it is interesting to
note that the loss of predictive accuracy associated with the best white box model
(versus the best non-white box model) was very small (less than 0.5%) in 4 of those
datasets. More precisely, these AUROC losses were: 0.1% for kr-vs-kp and MNIST
Basic, 0.2% for Gisette, 0.4% for CIFAR10-small, 3.6% for Secom, 8% for Madelon.

For the 20-hour runs, the best white box model achieved a higher AUROC than the
best non-white box model in 7 of the 16 datasets. In those 7 datasets, the gain in
predictive accuracy (AUROC value) associated with the best white box model (versus
the best non-white box model) was: 0.4% for Dexter and Semeion, 0.5% for Adult
Census, 0.9% for MNIST Basic, 1.0% for KDD09-Appetency, 2.7% for Secom, and
2.9% for CIFAR10small. However, no white box model was selected in the 5 Auto-
WEKA runs for 4 datasets. Regarding the remaining 5 datasets, it is interesting to note
that the loss of predictive accuracy associated with the best white box model (versus the
best non-white box model) was very small (less than 1%) in 3 of those datasets. More
precisely, these AUROC losses were: 0.1% for kr-vs-kp, 0.2% for Gisette, 0.7% for
Waveform, 2.8% for Convex, and 4.8% for Madelon.

We used the non-parametric Wilcoxon signed-rank test of statistical significance to
compare the aforementioned two pairs of results in Table 5, i.e., to compare the results
for the best non-white box vs. the results for the best white box model, for each runtime
limit (5 h and 20 h). For this comparison, the cases where no white box model was
selected were assigned an AUROC of 0. Using a two-tailed test and significance level
a = 0.05 as usual, we obtained p = 0.0349 and p = 0.2846 for the 5-hour and 20-hour
runs, respectively. Hence, the difference of predictive accuracy between the best non-
white box models and the best white box models is statistically significant (in favour of
non-white box models) for the 5-hour runs, but not statistically significant for the 20-
hour runs.
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5 Summary of Results and Discussion

Regarding the influence of the runtime limit on the predictive accuracy of Auto-
WEKA, the difference between the mean AUROC values for the experiments with 5 h
and 20 h of runtime limit was smaller than 1% in 12 of the 16 datasets; and overall
(across all datasets) the difference was not statistically significant.

Table 5. AUROC (on the test set) of the best non-white box model (i.e. the best among black
box and ensemble models) and the best white box models, separately for 5-hour and 20-hour
runs. In each cell, the name of the algorithm(s) producing the corresponding best model is shown
below the AUROC value. The best result for each pair of dataset and runtime limit is shown in
boldface font.

Dataset 5-hour runs 20-hour runs
Best non-white
box model

Best white
box model

Best non-white
box model

Best white
box model

Adult Census 0.903 Rand.
forest

0.908
BayesNet

0.903 Rand.
forest

0.908
BayesNet

Car 1.0 SMO, MLP,
Bagg., AdaBo.

None 1.0 SMO, MLP,
AdaBoost

None

CIFAR10-
small

0.751 SMO 0.747 Naïve
Bayes

0.718 Rand.
forest

0.747 Naïve
Bayes

Convex 0.844 Rand.
forest

None 0.584 Rand.
forest

0.556 LMT

Dexter 0.973 MLP 0.991 Naive
Bayes

0.965 Vote 0.969 LMT

GermanCredit 0.753 SMO None 0.762 Vote None
Gisette 0.991 AdaBoost 0.989 Log.,

SimpLog.
0.991 AdaBoost 0.989 Logistic

KDD09-
Appentency

0.723 Bagging 0.796
DecTable

0.786 MLP 0.796
DecTable

Kr-vs-kp 1.0 AdaBoost 0.999 LMT 1.0 AdaBoost 0.999 LMT
Madelon 0.891 Rand.

Com.
0.811 IBk 0.859 Rand.

forest
0.811 IBk

MNIST basic 0.996 Rand.
forest

0.995 IBk 0.986 Rand.
forest

0.995 IBk

Secom 0.735 Bagging 0.699 Naive
Bayes

0.708 Bagging 0.735
BayesNet

Semeion 0.987 MLP 0.996 KStar 0.993 Rand.
SubSp.

0.997 KStar

Shuttle 1.0 Rand.
forest

None 1.0 Rand. forest None

Waveform 0.973 MLP None 0.973 MLP,
Bagg.

0.966
SimpleLogistic

Yeast 0.835 Rand.
Comm.

None 0.839 Rand.
forest

none

Num. of wins 12 4 9 7
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Regarding the frequencies with which different classification algorithms are
selected by Auto-WEKA for each dataset, Auto-WEKA selected a wide variety of
classification algorithms across the 16 datasets. This supports the motivation to use an
Auto-ML system to try to find the best algorithm with its best hyper-parameter settings
for each dataset.

For most datasets, the difference between the sets of classification algorithms
selected by Auto-WEKA with 5-hour runs and 20-hour runs is not large, i.e., several
selected algorithms tend to be the same for both runtime limits.

In any case, in practice it seems important to run Auto-WEKA several times for the
same dataset by varying the random seed across the runs, since for most datasets there
was a substantial diversity of selected algorithms across different runs – which was
observed with both 5 h and 20 h of runtime limit.

Ensembles were selected by Auto-WEKA as the best algorithm in about 49% of the
cases (in 78 out of 160 cases). The high prevalence of ensembles was consistently
observed for both runtime limits (5 h and 20 h). In addition, the model type most
frequently selected by Auto-WEKA was random forest, an ensemble considered a grey
box model (see Sect. 2.2), which was selected 41 times in total – over both 5-hour and
20-hour runtime limits. Among non-ensembles, white box and black models were
selected in 52 (32.5%) and 30 (18.75%) of the 160 cases, respectively.

The most frequently selected type of white box model was Bayesian network
classifiers – more precisely, 14 selections of BayesNet and 8 selections of standard
Naïve Bayes or its multinomial variant. Although a Naïve Bayes model can be easily
interpreted due to its simplifying assumption that features are independent of each other
given the class variable, the interpretation of BayesNet becomes more difficult as more
and more feature dependencies are included in the network. In the general case of
Bayesian networks, for instance, Heckerman et al. [11] have pointed out that users can
get confused with the interpretation of (in)dependence relationships represented in
Bayesian networks, and suggested an alternative knowledge representation of depen-
dence networks that seems to have improved interpretability.

We also analyzed the difference of predictive accuracy (AUROC values) between
the best white box model and the best non-white box model selected by Auto-WEKA
for each dataset.

Overall, the best white box model achieved a higher AUROC than the best non-
white box model in only 4 of the 16 datasets in the experiments with 5 h of runtime
limit, and in 7 out of 16 datasets in the experiments with 20 h of runtime limit.
However, the loss of predictive accuracy associated with the best white box model
(versus the best non-white box model) was smaller than 0.5% for 4 datasets in the 5-
hour experiments, and smaller than 1% for 3 datasets in the 20-hour experiments. The
higher AUROC values associated with the best non-white box models was statistically
significant in the 5-hour experiments, but not in the 20-hour experiments.

6 Conclusions and Future Work

We have proposed the use of Automated Machine Learning (Auto-ML) methods as a
novel approach to investigate the trade-off between the predictive accuracy and inter-
pretability of classification models. The experiments involved 160 runs of Auto-WEKA
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(a popular Auto-ML tool) – 10 runs for each dataset, varying the runtime limit (com-
putational budget) and the random seed across the runs.

In this work classification algorithms were divided into the following groups (as
summarized in Fig. 1): white box non-ensemble models (potentially fully interpretable),
black box non-ensemble models (not interpretable) and ensembles – some of them
considered partly interpretable grey box models; whilst other ensembles are black boxes.

Overall, the algorithm type most selected by Auto-WEKA were ensembles, with
the random forest ensemble in particular being the most selected algorithm type.
Among non-ensembles, algorithms producing white box models were selected more
often than algorithms producing black box, and variations of Naïve Bayes and Baye-
sian network classification algorithms were the most selected type of algorithm pro-
ducing white box models.

Finally, we used Auto-WEKA’s automated search for the best algorithm for each
dataset as an approach to address the following research question: “to what extent does
the best white box model recommended by Auto-WEKA (for the input dataset) sac-
rifice predictive accuracy, by comparison with the best non-white box (i.e. black box or
ensemble) model recommended by Auto-WEKA?”

The results have shown the loss of predictive accuracy (AUROC value) associated
with the best white box model – by comparison with the best non-white box – is often
small, in several cases being smaller than 1%.

In application domains where interpretability is very important, an accuracy loss of
1% seems an acceptable price to pay for the benefit of having a white box, interpretable
model, instead of a non-interpretable model – see e.g. the discussion in [2], where
interpretable logistic regression models were preferred by the user over substantially
more accurate but non-interpretable neural network models in a medical domain.

If we consider an accuracy loss of 1% as acceptable in order to get the benefits of an
interpretable model representation (which is an application domain-dependent decision
in practice), the main conclusions are as follows. For the 5-hour experiments, we would
prefer the best white box model over the best non-white box one in 8 out of the 16
datasets (with the best white box model being more accurate in 4 datasets). For the 20-
hour experiments, we would prefer the best white box model in 10 of the 16 datasets
(with the best white box model being more accurate in 7 datasets).

Note, however, that this work considered as white box all models using some
interpretable knowledge representation, without analyzing the internal details of the
models to check if they are really (subjectively) interpretable by users.

As future work, it would be interesting to perform experiments with other Auto-ML
tools and more datasets. In addition, although we have to some extent discussed the
potential interpretability of ensemble models where the base classifiers are white box
models, this is a complex issue that deserves more investigation in future work.
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Abstract. Driver distraction is one of the leading causes of fatal car accidents.
Driver distraction is any task that diverts the driver attention from the primary task
of driving and increases the driver’s cognitive load. Detecting potentially dan-
gerous driving situations or automating some repetitive tasks, using Advanced
Driver Assistance Systems (ADAS), and using autonomous vehicles to reduce
human errors while driving are two suggested solutions to diminish driver dis-
traction. These solutions have some advantages, but they suffer from their inherent
inability to detect all potentially dangerous driving situations. Besides, autono-
mous vehicles and ADAS depend on sensors. As a result, their accuracy dimin-
ishes significantly in adverse conditions. Analyzing driver behavior using
machine learning methods and estimating the distraction level of drivers can be
used to detect potentially hazardous situations andwarn the drivers.We conducted
an experiment in eight different driving scenarios and collected a large dataset
from driving data and driver related data. We chose Long Short Term Memory
(LSTM) as our machine learning method. We built and trained a stacked LSTM
network to estimate the driver status using a sequence of driving data vectors. Each
driving data vector has 10 driving related features. We can accurately estimate the
driver status with no external devices and only using cars Can-Bus data.

Keywords: Recurrent Neural Network � Driver distraction � Deep learning �
Long Short Term Memory Network

1 Introduction

Everyday approximately nine people die and more than 1,000 are injured in car crashes
that are caused by distracted drivers [1]. More than 90% of car accidents happen due to
human error [2]. Using a cell phone or interacting with the car infotainment system
significantly increases drivers’ cognitive load and causes driver distraction. Car crash is
the leading cause of teenage death [3]. [4] Mentions that 21% of teenagers involved in
fatal car accidents were distracted by their cellphone. Teenagers are four times more
likely to have car crashes while they are texting or talking on the phone [4]. Being an
attentive driver can reduce the chance of car accidents significantly, but it is not the
ultimate solution for driver distraction since people do distractive tasks such as texting
although they know it is a serious issue for their safety and can lead to a car crash.
AAA Traffic Safety 2016 report mentions that from 2,501 drivers that participated in
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their research almost 90% said texting while driving is very dangerous, but 18% of
them admitted to texting while driving in the past month [5].

Driver distraction is any task that diverts the driver attention from the primary task
of driving and increases the cognitive load of the driver [6, 7]. There are four types of
driver distraction including visual, manual, audio and cognitive distraction. Some
distracting tasks such as texting cause a combination of these types of distraction, so
they are more dangerous compared to tasks that only cause one type of distraction [8,
9]. For instance, texting causes manual, visual and cognitive distraction and it makes
texting more dangerous than drunk driving. Based on NHTSA research texting while
driving is six times more dangerous than driving intoxicated [10].

Enhancing the design of user interface in cars [11, 12] to make it more suitable for
cars’ environment can reduce the cognitive load of interacting with the car’s info-
tainment system. Autonomous vehicles and Advanced Driver Assistant Systems
(ADAS) are two suggested solutions for enhancing driver safety [13–16]. ADAS can
handle some specific dangerous situations but they can’t detect all potentially menacing
situations [17]. Besides, although autonomous vehicles can drive automatically in
normal situations using complex sensors and sophisticated artificial intelligence
methods, they can’t handle some unexpected and extreme events. The human driver
needs to be ready for taking control of the car in emergency situations [18, 19].

Driver behavior analysis methods have been used in [20–22] to detect the driver’s
abnormal behavior or the level of the driver’s cognitive load to estimate and reduce
driver distraction. A variety of machine learning methods such as Neural Network,
Hidden Markov Model and Support Vector Machine have been used to analyze driver
behavior using driver status data, car related data or combination of them [22]. Deep
learning methods such as convolutional neural networks, deep neural networks and
recurrent neural networks outperform traditional machine learning approaches in many
safety-related applications such as pedestrian detection [13]. Driving is an intricated
task, so deep learning methods are suitable choices to extract and learn complex
patterns of driving.

Driving is a continuous task and the driving situation in each time step depends on
several previous steps and influences several next steps. Markov Model is a machine
learning approach that has memory making it a suitable choice for applications with
dependent inputs. It has been used in many driving safety applications successfully [23,
24]. In Hidden Markov Model all possible actions and states need to be defined in
advance, so it works accurately when we want to detect a specific condition or analyze
few specific maneuvers. On the other hand, if we have a large number of states and
possible actions or if all states can’t be defined in advanceMarkovModel is not a suitable
choice for our system. In these cases, Recurrent Neural Networks (RNN) can be used as a
more appropriate method that can learn intricated patterns with no need to have previous
information about the model [25–27]. In this paper, we use a Long Short Term Memory
(LSTM) network which is a type of Recurrent Neural Network to estimate the driver
behavior using both scaled and not scaled driving data. We collected a large dataset of
driving and driver behavior data vectors by conducting an experiment in 8 different
driving scenarios and used the dataset to train an LSTM network which estimates the
driver behavior using driving data. In Sect. 2, we talk about RNN and related works.
Section 3 is the experiment and Sect. 4 is data. In Sect. 5, we discuss the model that we
built using an LSTM network. Section 6 is results, and Sect. 7 is the conclusion.
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2 Recurrent Neural Network

Traditional Neural Networks assume that all input samples are independent of each
other, so after training the network using each sample, all information about the sample
removes and the next sample doesn’t use any information from the previous ones.
Besides, they use fixed size input and output data. These assumptions are not true in
some real-life applications such as speech recognition, language translation, and
autonomous driving. People consider their previous experiments and knowledge in
each time to make a decision and unlike traditional neural network for many real-life
applications, the feature vector in each moment depends on one or several previous
samples. Moreover, in some applications such as language translation, we need to deal
with variable length inputs and outputs [25].

A recurrent neural network (RNN) is a type of neural network that solved these
shortages of traditional neural networks using a loop in the network that allows
information to persist. A recurrent neural network can be considered as several copies
of the same network that each network passes a message to a successor. The chain
shape of unrolled RNN shows that they are a specific architecture of neural networks to
use for learning a sequence of dependent data. In this type of network, each output
influenced not only by the current input of the network but also all inputs that have
been fed to the network until the current step. RNN networks outperform many
machine learning methods in real-life applications such as speech recognition and
language translation [26, 27]. RNNs have been used in many car-related applications
such as autonomous driving, driver behavior analysis and driving safety. In these car
applications, their performance was much better than other machine learning approa-
ches that don’t have memory.

Various psychological conditions like sleepiness, fatigue, and distraction have an
adverse effect on driver performance and can lead to fatal car accidents. [28] Discussed
a model that detects driver potentially dangerous psychological conditions such as
fatigue using a brain-computer interface. It proposed a new recurrent neural network
architecture called Recurrent Self-evolving Fuzzy Neural Network. This model finds
the correlation between the driver’s brain activity, that monitors using EEG, and the
driver’s fatigue level [28].

[29] Proposed a data collection and data analysis framework called “DarNet”. It can
detect and classify driver behaviors. The framework has two parts including a data
collection system and data analyzing part. Images that are collected by a face camera
and Internal Measurement Unit (IMU) data from a mobile device are the inputs of this
framework. They used deep learning methods including Long Short Term Memory
networks and Convolutional neural network to classify driver behavior and reached
87.02% accuracy.

In this paper, we discuss a model that predicts the driver status using a sequence of
driving data vectors and a stacked Long Short Term Memory (LSTM) network. We
only used cars Can-Bus data and we didn’t use any external devices such as camera or
external sensors to make our dataset. We try both scaled and not-scaled data then we
compared the results of them. Driver status in this paper shows if the driver is inter-
acting with car infotainment system or not. Besides, if the driver has interaction with
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car infotainment system, what are the features of this interaction. We defined four
features for each interaction including the number of errors while interaction, the length
of interaction or response time, the number of navigation steps that the driver needs to
pass in order to complete the interaction and the driving mode.

3 Experiment

We conducted our experiment in the HCaI lab using a Drive Safety Research simulator
DS-600 which is fully integrated driving simulation system that includes a minimum
180° wraparound display, multi-channel audio/visual system, full-width automobile
cab (Ford Focus) including windshield, center console, driver and passenger seats, dash
and instrumentation and real-time vehicle motion simulation. This simulator provides a
variety of road types such as urban road and highway. Besides, the different driving
mode such as night, rain, fog and snow can be chosen for each road. We designed an
urban road with high traffic. Figure 1 shows the designed road.

Four driving modes have been defined including Day, Night, Fog and Fog & night.
The day mode is called the ideal mode, the Night mode and the Fog mode are adverse
modes and the Fog & Night mode is the double adverse mode. We defined eight
driving scenarios including four distracted and four non-distracted ones, so in each
driving mode, we have distracted and non-distracted driving scenarios. In a distracted
scenario, the driver interacts with the car interface continuously. An android application
has been used as the car interface in this experiment. The application was hosted on the
Android v4.4.2 based Samsung Galaxy Tab4 8.0 which was connected to the
HyperDrive simulator. Figure 2(a) shows the place that we put the tablet on it to
simulate the screen of car infotainment system. This application simulates car info-
tainment system interface in modern cars. We installed the tablet in the middle console
next to the driver and ran an android application designed for the experiment. The main
page of the application shows the main screen of car infotainment system and the driver
can navigate in this application like car infotainment system.

In this experiment we wanted to detect if the driver had any interaction with our
application. In non-distracted modes, the driver only focuses on the primary task of
driving and we use the collected data in the non-distracted modes as the baseline of the

Fig. 1. Designed road
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model since they show no interaction. On the other hand, if the driver interacts with car
infotainment system, we want to detect the features of this interaction since all inter-
actions are not equally distracting.

We used the minimalist design discussed in [12] as the navigation model of the
interface (Fig. 2(b)). In this navigation model, each command can be reached by 2, 3 or
4 steps of navigation, so we defined three types of tasks including 2-step, 3-step and
4-step tasks and use them to distract drivers in distracted scenarios. In distracted
scenarios, we asked drivers to do some tasks on the interface considering this fact that
driving is the primary task, and he/she shouldn’t only focus on the requested task that
has less priority compared to the primary task of driving. We define the task as reaching
to a specific application on the interface that based on our interface design it needs 2 or
3 or 4 steps of navigation.

We invited 35 volunteers to participate in this experiment by taking around 45 min
of simulated drive. They were undergraduate and graduate students of Arizona State
University in range 20 to 35 years old and they had at least two years of driving
experience. Each volunteer was trained for 10 min before starting the experiment to
become familiar with the simulator and the car’s interface. After that, they drove in
eight different scenarios. In non-distracted modes, they were asked to focus on the
primary task of driving. In distracted scenarios, we chose some tasks from each type of
tasks (2-step, 3-step and 4-step), and we tried to have equal number of tasks from each
type. After that, we asked the driver to start the trip. After few seconds we started
asking the driver to do some tasks on the interface, reach specific application on the
interface, and we put the same gap between each two tasks since we want to have a
border between the driving data related to each task. They were asked to give the
highest priority to the primary task of driving and drive as realistic as possible. Besides,
we added some events, such as pedestrians and bike drivers that jump into the road,
randomly to each scenario to reduce the learning effect. We observed the driver
behavior during each task and collected 4 data four each task:

Fig. 2. (a) The blue circle shows the place that we put the tablet in the simulator (b) The
navigation model that we used in our infotainment system (Color figure online)
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1. The number of errors during a task: an error is defined as touch a wrong icon on the
interface, not following traffic rules or have an accident.

2. Response time: the response time shows the length of interaction. We consider the
length of interaction from the moment that we asked the driver to do the task and
the moment that the task is done.

3. The number of navigation steps. We have three types of tasks including the 2-step,
3-step and 4-step task. The number of navigation steps is related to the task diffi-
culty level since more navigation steps and longer tasks need more attention and
cause higher level of distraction.

4. The driving mode which is the name of driving scenario. We use number 1 to 4 to
shows non-distracted scenarios and 5 to 8 to display distracted scenarios.

4 Data

In each trip, on average 19000 data vectors have been collected by the simulator and
each of them has 53 features, so we collected 5.3 million driving data vectors during
this experiment. For each task that we asked the driver to perform, we collected four
features including the mode of driving, the number of navigation steps, the driver
response time and the number of errors. In all, we collected 2025 driver related data
manually in this experiment. The sampling rate of the simulator was set on 60 samples
per second which was the maximum possible rate. We wanted to collect as much data
as possible and save it as a master data to be used for this and future experiments, so we
decided to use this high sampling rate since it did not have any negative effect on our
experiment or our budget. But we didn’t use all samples in our model since in our
application using 60 samples per second of driving is computationally very expensive
for our machine. Therefore, we decided to compress the dataset. We replaced each 20
data vectors with their mean value. Future experiments will investigate if different
methods of compressing this sampling rate (like median, mode, or any other function)
would have an effect on the system training time or intelligence level.

For each driver feature vectors that we collected there are a large number of
correlated driving data vectors that were collected by the simulator. The number of
these vectors depends on the driver response time. To find the corresponding driving
related vectors to each driver data vector we divided the collected driving vectors in
each trip based on the length of the response time of all tasks that have been done
during the trip. We calculated the sum of the response time for volunteer X in mode Y
and calculate the portion of driving data vectors samples which are correlated to each
driver data vector (1). In this equation, n shows the number of collected driver data
vectors in a specific trip and the result shows the percentage of collected driving data
vectors which is related to specific driver data vectors.

PercentageðiÞ ¼ ½responseðiÞ=
Xn

k¼0

responseðkÞ� � 100 ð1Þ
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The driving data vectors have 53 features, and we chose 10 of them including speed
limit, brake, velocity, steering wheel, longitude accelerating, lateral accelerating, lane
position, accelerating, headway time and headway distance as inputs of our model. We
used a paired t-test between distracted and non-distracted scenarios in each mode to
detect the features that are significantly different between distracted and non-distracted
modes (Table 1) and the combination of these 10 features shows significantly different
between our scenarios.

5 LSTM Model

We chose a multi-input single-output LSTM network for our model. The input of the
network is a sequence of driving data and the output is a single driver data vector. We
built three multi-layers LSTM networks with 2, 3 and 4 LSTM layers using Keras
library. We put 50 neurons in each LSTM layer to check a different combination of
batch sizes, learning rates and activation functions for this model. Finally, we chose
100 as the batch size, 0.0001 as the model’s learning rate and ReLU as the activation
function. We tried both scaled and not scaled data for training this network. We chose
80% of the dataset as training data and 20% as testing data. Besides, we used 20% of
the training data as validating data during training process.

We trained the two-layer network with different numbers of LSTM neurons from
10 to 1000 and finally, we choose three numbers including 50, 150 and 300 as the
number of LSTM neurons in each LSTM layer and analyze the effects of a low,
medium and large number of LSTM neurons on the final result. Less than 50 neurons
resulted in underfitting and increasing the number of LSTM neurons from 300 to 1000

Table 1. T-test results for distracted and non-distracted scenarios

Day distracted vs.
day non-distracted

Night distracted vs.
night non-distracted

Fog distracted vs.
fog non-distracted

Fog night distracted vs.
fog night non-distracted

Velocity Not significant Extremely significant Significant Very significant
Lane
position

Extremely
significant

Extremely significant Extremely
significant

Extremely significant

Steering Extremely
significant

Very significant Not significant Extremely significant

Speed limit Not significant Not significant Significant Not significant

Accelerating Extremely
significant

Extremely significant Extremely
significant

Extremely significant

Brake Very significant Not significant Not significant Extremely significant
Longitude
accelerating

Not significant Extremely significant Not significant Not significant

Lateral
accelerating

Not significant Not significant Not significant Not significant

Headway
time

Extremely
significant

Not significant Significant Not significant

Headway
distance

Extremely
significant

Extremely significant Extremely
significant

Not significant
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didn’t improve the accuracy of the network and only caused overfitting. After 300
LSTM neurons instead of increasing the number of neurons, we tried deeper networks
to improve the accuracy of the model. After training fully connected LSTM networks,
we tried 20%, 40%, and 50% dropout to reduce overfitting chance of the model but
using drop-out didn’t have a positive effect on the final accuracy.

6 Results

We tried pure data first and trained three different LSTM networks with two, three and
four LSTM layers. The learning rate is 0.0001, the batch size is 100 and the activation
function is ReLU for these networks. Table 2 shows the train, test and validation error
of them using 50, 150 and 300 as the number of neurons in LSTM layers. The layer
column shows the number of LSTM layers, the LSTM column shows the number of
neurons in each LSTM layer, MAE is Mean Absolute Error and MSE is Mean Square
Error of the model.

For the two-layer networks, using 50 neurons in LSTM layers resulted in the most
accurate model since it has the minimum validation and test error. Besides, the gap
between the train and test error is less than the rest of them. In the three-layer networks,
although the network with 300 LSTM neurons has the minimum test error the per-
formance of the network with 50 LSTM neurons is better since it has the minimum gap
between the train and test error that shows the model trained well and it is not over-
fitted. Besides, the test error of this network is close to the network with 300 LSTM
neurons. In the four-layer network, the model with 50 LSTM neurons resulted in the
minimum validation and test error. Moreover, it has the minimum gap between the train
and the test error, so it’s trained better than the rest of the four-layer networks.

In sum, all three networks have their best performance using 50 neurons in their
LSTM layers. Although adding more neurons enhanced their train error it didn’t have a
positive effect on the test error and the networks went toward overfitting. We scaled all
input and output data then trained all networks again using scaled data. Table 3 shows

Table 2. Summary of multi-layers LSTM networks results with not-scaled data

Layer LSTM Train MAE Train MSE Val MAE Val MSE Test MAE Test MSE

2-no scale 50 0.95 2.35 1.4 6.51 1.38 7.25
2-no scale 150 0.54 0.78 1.49 6.01 1.41 6.37
2-no scale 300 0.39 0.56 1.45 5.46 1.51 7.33
3-no scale 50 0.76 1.33 1.44 6.51 1.38 7.25
3-no scale 150 0.33 0.47 1.39 5.57 1.48 6.93
3-no scale 300 0.31 0.46 1.4 6.09 1.34 5.33
4-no scale 50 0.76 1.38 1.38 5.6 1.33 5.93
4-no scale 150 0.4 0.5 1.4 5.99 1.46 7.19
4-no scale 300 0.17 0.24 1.49 7.68 1.39 5.92
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the summary of three different networks with scaled data and 50,150 and 300 as the
number of LSTM layer’s neuron. In the two-layer LSTM network, we can see over-
fitting in all networks that we trained and the minimum gap between train and test error
is 1. When we increased the number of neurons from 50 to 300 the test error didn’t
change much but overfitting decreased. For the three-layer network, the network with
50 LSTM neurons shows the best performance and the least overfitting but the per-
formance of two other networks is similar to the two-layer networks with the same
number of neurons. Four-layer network has better performance and the least accuracy
for all three number of neurons that we tried.

In sum, the four-layer network with 50 neurons resulted in the minimum test error
which is 0.9 and it has the least gap between the train and the test error, so we can say
that the network trained well and doesn’t have overfitting. We tried more LSTM layers,
but the final result was less accurate than the four-layer network. Increasing the number
of neurons in shallower networks enhance the accuracy and in deeper networks, it just
increased the overfitting chance.

7 Conclusion

Driver distraction is any task that diverts the driver attention away from the primary
task of driving. Advances Driver Assistant Systems, Autonomous Vehicles and driver
behavior analyzing are some suggested solutions to reduce driver distraction. Driver car
infotainment system interaction is one of the main sources of driver distraction.
Although interacting with car infotainment system, even for short time, causes dis-
traction, the level of distraction and cognitive load which is caused by each task
depends on many different factors such as the length of distraction, the context of
driving and the complexity of the task. If the driver can do a specific task on the car
infotainment system in a short time and find a specific application with few simple
navigation steps, the distraction level that is caused by this task is much less than a long
task such as texting or navigating in a complex interface to reach an application.

Table 3. Summary of multi-layers LSTM networks results with scaled data

Layer LSTM Train MAE Train MSE Val MAE Val MSE Test MAE Test MSE

2-scaled 50 0.11 0.03 1.01 3.36 1 2.67
2-scaled 150 0.22 0.1 0.99 2.68 1.04 3.36
2-scaled 300 0.36 0.24 0.98 2.58 1.03 3.39
3-scaled 50 0.4 0.32 1.01 3.33 0.98 2.88
3-scaled 150 0.15 0.05 1.03 3.42 1.03 3
3-scaled 300 0.12 0.03 0.87 2.1 1 3.4
4-scaled 50 0.57 0.61 0.97 3.36 0.9 2.19
4-scaled 150 0.5 0.48 1 3.6 0.93 2.55
4-scaled 300 0.3 0.19 0.9 2.9 1.05 2.97
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We defined four features for each interaction including number of errors, response
time, number of navigation steps and the mode of driving. We used 10 driving data and
a stacked LSTM network to detect the driver status that is defined by these four
features. We reached 0.95 train MAE and 1.38 test MAE with not scaled data, two-
layer LSTM network and 50 neurons in each LSTM layer. We trained the network with
scaled data and reached 0.57 Train MAE and 0.9 test MAE with four-layer LSTM
network and 50 neurons in each LSTM layer. In sum, we detect if the driver is
distracted by interacting with car infotainment system or not and if he/she is interacting
with the car infotainment system, what are the features of this interaction. As future
work, we can extend this experiment using more driving scenario and new distracting
task that cover a larger subset of the possible distracting task while driving. Besides, we
can use the output of the model as the input of a decision system and give each feature
a specific weight to calculate the driver distraction level more accurately.
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Abstract. In decision support systems, information from many differ-
ent sources must be integrated and interpreted to aid the process of
gaining situational understanding. These systems assist users in making
the right decisions, for example when under time pressure. In this work,
we discuss a controlled automated support tool for gaining situational
understanding, where multiple sources of information are integrated.

In the domain of operational safety and security, available data is
often limited and insufficient for sub-symbolic approaches such as neural
networks. Experts generally have high level (symbolic) knowledge but
may lack the ability to adapt and apply that knowledge to the current
situation. In this work, we combine sub-symbolic information and tech-
nologies (machine learning) with symbolic knowledge and technologies
(from experts or ontologies). This combination offers the potential to
steer the interpretation of the little data available with the knowledge of
the expert.

We created a framework that consists of concepts and relations
between those concepts, for which the exact relational importance is
not necessarily specified. A machine-learning approach is used to deter-
mine the relations that fit the available data. The use of symbolic con-
cepts allows for properties such as explainability and controllability. The
framework was tested with expert rules on an attribute dataset of vehi-
cles. The performance with incomplete inputs or smaller training sets was
compared to a traditional fully-connected neural network. The results
show it as a viable alternative when data is limited or incomplete, and
that more semantic meaning can be extracted from the activations of
concepts.

Keywords: Symbolic AI · Neural networks ·
Graph-based machine learning · Explainability · Decision support

1 Introduction

Military decision making often takes place in uncertain and complex situations,
and can have a large impact on the opponent and also on civilians and cause
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collateral damage. Often the complete impact of a decision cannot be easily fore-
seen. In order to make the right choice, situational understanding is needed. To
obtain situational understanding, information from different sources needs to be
integrated. For example, information from sensors (such as cameras, thermal sen-
sors, but also social media and human observations) and expert knowledge e.g.
obtained through experience, needs to be combined to build an understanding
of the situation.

An example of a use-case where situational understanding is relevant is rec-
ognizing smuggling activities in a busy city. During a military mission in a hostile
county, there is a lot of information that might be relevant to the mission, but
not immediately linked to smuggling in an analyst’s mind. Here, the types of
vehicles in the area, the hours of active use of those vehicles, the locations and
the people that suspected smugglers meet might play a large part in determining
if there is an active smuggling operation going on. Even more general concepts
might play a role as well, such as economy and law and order in the area, but
also patterns of life, important dates, and the political situation. These factors
can be described in flows of people, goods, and information, forming an intricate
web of higher-level knowledge. Combining this knowledge in a semantic graph
(see Fig. 1) can more easily provide new insights to commanders about which
information might be relevant to the current situation. For example, a correla-
tion might be found between the detected vehicle type and the time and area of
usage, indicating smuggling activities. The values for connections between and
correlations of these concepts need to be found or learned in order to make useful
predictions.

There are, however, several factors that limit understanding. There may be
too little information on some aspects, there may be unreliable or intentionally
false information, and there may even be too much information. In those situ-
ations, human analysts and decision makers may not be well suited for sifting
through the data to find trustworthy and useful information and being able to
integrate it into the decision-making process, especially given the time pressure
and the potential severity of the consequences.

A possible solution for finding the correlations in the available data is using
Artificial Intelligence (AI) approaches. In recent years, developments in neural
networks (NNs) have made Machine Learning (ML) a popular method for solving
problems in the field of AI. However, for the use-case discussed above, such
methods lack a critical property. When making decisions with the help of decision
support systems, users require that these systems can explain themselves. They
want to be able to ask why the system indicates that something is very likely
present in the environment. Black box methods, such as neural networks, are
unsatisfactory because they struggle to provide additional insights besides its
output. What is needed is a so-called white box approach, which is able to
accept and convey knowledge in a for humans understandable way, and can
answer ‘why’ questions.

Another disadvantage of ML is the possibility that the algorithms learn to
use prevalent, but unexpected, aspects of the data, which may lead to incorrect
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Fig. 1. A simplified semantic graph showing a number of the concepts that can play a
role in a smuggling scenario.

decisions. A well-known example of the latter is an ML algorithm that learned to
classify wolves versus huskies based on the presence of snow instead of learning
the discerning characteristics of these animals [11].

Recently, research has partly shifted towards creating AI tools that are able
to explain why and how a certain conclusion came to be [13]. Van Lent [8] called
this type of artificial intelligence ‘Explainable AI’. In a system with explainable
AI users may be able to analyze the cause of (faulty) results. Furthermore, by
improving the explainability of intelligent software, it has been argued that the
users of these types of applications start to trust the systems more [17]. Having
trustworthy, meaningful and understandable decision support is critical in the
military domain.

In this work, we seek to support analysts with automated tooling. The goal
is to be able to understand important aspects of the environment in which
a military operation takes place. Often these operations take place in unfa-
miliar terrain and only a global understanding of the situation is available.
The best possible understanding is based on all available knowledge and data.
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The envisioned support tool integrates multiple sources of information, some of
which consist of data streams, some are symbolic in nature such as the knowledge
of human experts. We combine sub-symbolic information and approaches (sen-
sor data, machine learning) with symbolic knowledge and technologies (expert
knowledge, semantic networks) to work towards a decision support system that
produces better results with fewer data required for learning compared to tradi-
tional neural network approaches, and supports explainability.

In this paper we first present a brief overview of related work (Sect. 2, and
then discuss the RCN framework and its properties (Sect. 3). In Sect. 4 several
experiments and their results are discussed. Lastly, in Sect. 5, our findings are
discussed as well as some points of future work.

2 Related Work

One of the key challenges of neuro-symbolic model integration is to find suitable
ways of merging symbolic and sub-symbolic models into a unified architecture.
A good overview of the neuro-symbolic approach is provided by Besold et al. [1].
Our neuro-symbolic approach was partly inspired by Raaijmakers et al. [10], who
presented a method for explaining sub-symbolic text mining with ontology-based
information. However, this method does not allow a priori expert knowledge to
be incorporated in the text mining itself; it is used to explain the mining results
afterward. Gupta et al. [4] used an ontology to shape the architecture of the
sub-symbolic model, which enables the model to become more explainable since
high-level knowledge is embedded in the architecture. The idea to shape the
architecture based on a symbolic model is used in the approach discussed in this
paper.

Sabour et al. [12] describe a method that comes close to our approach: capsule
networks. A capsule is a group of neurons whose activity vector represents the
instantiation parameters of a specific type of entity such as an object or an
object part. Active capsules at one level make predictions for the instantiation
parameters of higher-level capsules. When multiple predictions agree, a higher
level capsule becomes active. Sabour et al. show that a discriminatively trained,
multi-layer capsule system achieves state-of-the-art performance on MNIST [7]
and is considerably better than a convolutional network at recognizing highly
overlapping digits. Although this approach was used for image processing and
our approach is about concepts, the idea of clusters of neurons signifying one
concept with relations to other clusters inspired us and is reflected in how the
activation of concepts works in the methods discussed in this paper.

For this proposal, building on the work of Voogd et al. [15], an automated sit-
uational understanding support tool is created, which uses a Relational Concept
Network (RCN), see Sect. 3.

Explainability in artificial intelligence is a topic that attracts much attention,
see e.g Holzinger et al. [5] for an overview. A benefit of our approach is that
it supports explainability. The expert knowledge that is incorporated in the
network makes it possible to explain the output in a for humans understandable
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way, as it is the symbolic knowledge that humans can comprehend, given an
appropriate user interface. The symbolic knowledge may contain relations that
are causal in nature, but this is not guaranteed. Therefore our approach falls
short of supporting explanations in terms of causality. But since it does refer to
human understandable models, albeit mixed with link-strength based on data,
it may be a way to obtain causability as defined in [5]. If in a future situation
our approach is implemented as a decision support system, and the decisions
together with observations of the results of acting on the decision are fed into
the RCN, this could lead to detecting causality [9]. For our application domain,
however, it is unfeasible to experiment freely with the decisions to actually obtain
causality.

3 RCN Framework

The Relational Concept Network (RCN) consists of a directionally organized
network of symbolic concepts (nodes) with relations (edges) connecting them
based on expert knowledge. The concepts and their (logical) relations represent
the domain knowledge provided by experts, ontologies, or other sources. The
(activation) value of a concept is to be interpreted as the probability that this
concept is present or relevant in the current situation.

Each concept has an internal predictor method to determine the concept’s
output activation based on its inputs (where an input comes from either external
data or from another concept in the network model). This predictor method can
range from a simple rule-based evaluation to a NN that has to be trained. The
exact relation values between concepts are difficult to estimate for human. It is
for example hard to determine how much the fact that a large car is moving fast
would contribute to the chance that it is smuggling. Therefore, we use a sub-
symbolic NN as each concept’s internal method that, using training data, can
learn the influence and strength of the relations, see Fig. 2 for a simple example.

Fig. 2. A simple schematic representation of the RCN where symbolic concepts (Cx)
have integrated neural networks.
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Each concept is basically a small neural network with one neuron in its
output layer: the concept. So, the whole RCN may be seen as one large neural
network where some neurons have a concept name. Compared to traditional neu-
ral networks the expert knowledge effectively limits the number of links between
neurons and therefore limits the state space of the NN, which should result in
faster training and/or less need for training data.

A concept which represents a feature of the input data is called an input
concept. The value is set using an external source, e.g. a sensor or human input
(C1 to C4 in Fig. 2). Intermediate concepts receive their input from concepts and
provide their output to other concepts (C5 to C7). End concepts are concepts
without dependents, i.e. its output is not being used by other concepts in the
network (C8 and C9).

The RCN is built as a framework to offer functionalities to create the situa-
tional understanding support system. Currently, network-related functionalities
are implemented allowing searching for concepts, paths between concepts, depen-
dency analysis, etc. The framework also enables defining and training concepts
based on NNs, and querying the (trained) concept outputs. In the following
subsections, these two functionalities will be explained further.

3.1 Training the RCN

When training the RCN, first domain knowledge of the expert is implemented
in the model through defining concepts and making connections between them.
This knowledge may come from different sources. The expert knowledge may
come from different experts at different moments. It may also come from an
existing RCN from a previous application. It is expected that especially concep-
tually higher level knowledge is more general and may be re-usable even when
applied in different locations and times, such as a previous military mission.

Training the RCN is accomplished by training the integrated NNs separately.
A training sample for a single concept consists of a vector of input data (the
features) and the associated true value (the label). Because these NN predictors
are small and typically have only a few inputs, they can be trained and evaluated
quickly. This allows fast feedback on the performance of the proposed connection.
A disadvantage of this strategy is that individual predictors can only be trained
when there is ground-truth training data available for that concept. If a new
connection is made to a concept, only that concept needs to be retrained. If
the RCN is extended with a new concept, that concept needs to be trained, but
also directly dependent concepts need to be retrained. If an expert changes links
between concepts, they may ‘break’ knowledge that was inserted by another
expert. This will sort itself out in the training phase because links that are not
supported by the data will receive little weight and therefore have little influence
on the outcome when using the RCN.

After training all concepts, the system can be used to provide indications of
relevant concepts based on new data in the form of queries.
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3.2 Querying the Concepts

After training, the RCN can be used by analysts to examine which concepts are
found in the current situation. To do this, data from sensors and other sources
are fed into the RCN at the appropriate concepts. These concepts are then used
to calculate higher-level concepts. After these calculations, the probability values
of all concepts are known. The analyst examines concepts with a high probability
value to gain insight into what might be going on.

If only a subset of the input data is available, i.e. some input concepts do
not receive data from external sources, thanks to the decoupled nature of the
RCN, some intermediate concepts may still be (recursively) inferred, creating a
chain of predictions. Furthermore, if an intermediate or end concept has several
inputs, these inputs may differ in how much they contribute to the probability
value of that concept. The contribution of an input to the output is its fea-
ture importance. Inputs with low feature importance may be ignored, making
it possible for more high-level concepts to determine their probability value, be
it with higher uncertainty (see also “Graceful degradation” in Sect. 4). Permu-
tation Importance [6] is a method to determine the importance of individual
features for a black box model. Since the method is model-agnostic it can be
used with neural networks in concepts.

Users will - at least at first - be suspicious about the results produced by the
RCN and want to be able to ask ‘why’ questions. The black box nature of a NN is
not suited for these questions. The RCN supports explainability in the following
way: if input is supplied to a trained RCN and then evaluated through the
network of concepts, each concept obtains a probability value. Then, questions
such as ‘why does this concept have a high probability value?’ can be answered
by referring to which of the input concepts have a high probability and with
what weight (i.e. the feature importance) it contributes to the concept under
consideration, all the way back to the first layer of feature data, see Fig. 5.

Besides the probability value of the concepts, it is also useful for the analysts
to query the performance of the knowledge that was supplied by the experts.
After training, a set of validation data is used to determine the performance of
the concepts. The analyst can check if there is expert knowledge that does not
fit well with the data. If so, the analyst has to determine whether the data is of
sufficient quality, or if the knowledge should be enhanced, i.e. remove connections
to concepts with a low feature importance, and add connections to concepts that
may prove to have a higher importance.

4 Experiments and Results

In this section, we discuss several tests and their results obtained by the RCN
to verify the functionality as described in the previous chapter. It is examined
how well the RCN can be trained, how modular the resulting model is thanks to
its decoupled nature, how well it performs using smaller datasets and what the
effect is on explainability.
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For the tests described below, we have used the Large-scale Attribute dataset
(LAD) [18], which is an annotated image dataset of six different super classes of
objects. For these tests, we only used the ‘Vehicles’ super class, which includes
land/air/water and civilian/military vehicles. Each item in the dataset is anno-
tated on several properties ranging from used materials or components to the
usage scenario, as well as the subclass it belongs to (e.g. whether it’s a car, an
ambulance, a train or an airplane). Figure 3 illustrates an instance of the dataset.
Note that we only use the annotations as concepts, not the images themselves.

Fig. 3. A sample from the LAD dataset, with some of the many annotated properties.

Thanks to the diversity of the annotated properties in the LAD, it is possible
to structure the properties into a hierarchy of more basic concepts (e.g. materials
and components) to concepts with a higher abstraction or complexity (e.g. usage
scenario, safety).

Combining Expert Knowledge with Data
Current AI techniques are not capable of fully learning both sub-symbolic and
symbolic data, therefore the symbolic concepts and their logical relations are
defined by an expert. In order to allow the expert to define the RCN by specifying
concepts and relations, a graphical user interface (GUI) has been made that
allows an expert to pick and place concepts (which are derived based on the
labels in the data) and connect them based on expert rules. Note that an expert
rule is not an if-then relation, but a combination of concepts that the user/expert
has specified as relevant.

In Fig. 4 an example is shown for the various vehicle types in the dataset,
the resulting multi-layered hierarchy of connected concepts is a sparse network.
In this example the user specified (among many other expert rules) that the
relations needed for the concept “Function: can dive” are “Shape: is globular”,
“Shape: is ellipsoidal”, “Parts: has a propeller”. The RCN is then generated
from this expert-made network and the user can start the learning phase. After-
wards, for a given input, the probabilities of higher level concepts and feature
importance of the links can be visualized in the same GUI.

Trainability
An obvious requirement is that the system has to be able to learn, i.e. fit the
structure in the data onto the structure defined by the relations between the
concepts. This translates into the training of the sub-symbolic parts integrated
into the concepts of the RCN.
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Fig. 4. The GUI to build the RCN and control the learning phase

As a performance measure, balanced accuracy [2] is used, which relates the
average of combined precision and recall obtained on each class, corrected for
any class imbalances. This provides a robust performance measure when dealing
with varying amounts of data per class. If the network of concepts is close to
what is present in the structure of the data, it should result in a well-trained
RCN. i.e. a balanced accuracy score between 0.5 and 1.0.

To test this, the available data is split into a training set (80%) and a test set.
As a test for this requirement we need to show that the RCN is capable of learning
the desired concept relations. In addition, we will compare the performance of
the RCN with a single traditional fully-connected NN (FCNN) that uses all
concepts as input and provides predictions for all output concepts. The neural
networks are trained using a standard multilayer perceptron [3] using 3 hidden
layers of 8 hidden nodes each.

The results (see Fig. 6 showing the averaged balanced accuracy score over all
concepts) indicate that most of the concepts can be trained to a perfect score
and the RCN performs well. However, compared to a traditional NN the overall
performance of the RCN is lower. There are some possible explanations for these
observations. The relations between concepts were chosen based on the concept
labels, without looking at the data. Therefore some relations that were defined
may not be supported by the data. Another relevant aspect is the fact that the
FCNN might learn patterns in the data that can give the correct answer in the
current context, but in fact have no connection to the actual (symbolic) relation,
similar to the previously mentioned example of the animal classifier that relies
on the presence of snow in an image [11]. Lastly, the NN architecture (number
and size of hidden layers) integrated in the concepts was chosen based on a rule
of thumb and fixed for all concepts. However, some concepts may benefit from a
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larger or smaller architecture. Furthermore, when inspecting the dataset, some
odd data points were observed. We do not know how the labels are assigned to
the data, but there are some assignments that were inconsistent with what is
semantically expected for that class. For example, some instances of the concept
‘submarine’ had no value for the concept ‘function: can dive’, which should be
the case for all submarines.

Explainability
The RCN should allow a user to find out why a concept is indicated as strongly
present in the data. To test this form of explainability, the RCN is first trained,
then one single data point is applied to the input of the RCN and all probability
values for the concepts are determined. Then a textual or graphical representa-
tion of how concepts are influenced by ‘lower’ concepts can be made. This can
be examined by the user to check whether it makes sense.

In Fig. 5, a textual example of explainability is shown for a specific con-
cept (“aim: is for military”), the dependencies on lower level concepts and their
strength are shown.

Fig. 5. The hierarchical structure of a concept, its sub-concepts and the feature impor-
tance values of those concepts that provide input for a higher-level concept.

Modularity
One of the advantages of the RCN compared to a NN is that it does not require
all inputs and corresponding labels to be available at one time. The RCN can
be neatly decomposed in concepts with their input concepts up to the point for
which data is available. It can thus be trained piece by piece.

To make sure this works, our current implementation allows that concepts
can be trained independently (or in sets). Only those concepts for which there is
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data in the training set are trained. When data for a concept becomes available
at a later date, that concept can then trained, keeping the rest of the RCN (and
its trained concepts) in tact. Note that this is not the same as true incremental
learning of the RCN where the sub-symbolic parts of the concepts get to learn
step-by-step in a more or less random order.

Improve Prediction Performance with Small Training Sets
The use of expert knowledge in the RCN effectively reduces the phase space
available compared to the use of a traditional NN. For small training datasets,
and if the expert knowledge fits this data well, this should result in a higher
performance after training than for a traditional NN.

To test this, smaller and smaller training datasets are used to train the three
different configurations have been tested:

– FCNNfull: A fully Connected NN that uses all input and intermediate con-
cepts of the RCN as input features,

– FNNinputs: A fully connected NN that uses the same input concepts as the
RCN, but does not use the intermediate concepts,

– RCNinputs: The RCN; for performance measurements only input concepts
are used, not the intermediate concepts.

Fig. 6. The performance of different methods trained on the dataset, either using
traditional fully connected NNs, or the RCN.

The results (see Fig. 6) show that FCNNfull scores a near-perfect classifica-
tion on most of the sizes. There does seem to be slight drop in performance for
smaller datasets, this small drop might indicate a sensitivity to the data present.
However, as this drop is not clearly observed in the performance of the other
algorithms, it might be the case that it is not the data itself that causes this
decrease in balanced accuracy, but an effect of the small size of the dataset.
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The FCNNinputs has a much lower score with a strongly decreasing score
for smaller datasets. The RCNinputs shows a slightly lower performance than
FCNNfull, but its performance remains more stable at smaller datasets.

The scores of the RCNinputs compared to FCNNfull is lower because the
FCNNfull are free to include subtle relations that are not included in the expert
rules. Additionally some expert rules are poorly chosen compared to the data
used. The instability of both the FCNNs performances at small dataset sizes
indicate that the expert rules in the RCNinputs are meaningful for stability.

Graceful Degradation
In the previous paragraph the size of the training dataset was decreased, but
each entry in the dataset still had values for all properties, i.e. all input and
intermediate concepts were still present in each data point. In practice it may
often be the case that for only some of the input concepts data is available.
Where traditional NNs can only function if all input data is available, the RCN
allows for some concepts to still be evaluated even if only a subset of input data
is available.

Fig. 7. The degradation of reachable concept outputs when decreasing the complete-
ness of an input feature, shown for the traditional fully connected NNs, and the RCN.
(Color figure online)

A function can be defined purely based on the connections between the con-
cepts in the RCN that returns all concepts that can be evaluated for a given
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subset of input data. This reachability function is evaluated by averaging over
the many possible configurations of available input for the RCN. Two values
are calculated: the percentage of output concepts that are reachable and the
percentage of intermediate concepts that are reachable.

In Fig. 7, the bottom graph (purple) shows that for traditional NN all input
must be available. The percentage of output concepts that are reachable as a
function of the percentage of available input concepts is the blue (middle) line, if
the reachable intermediate concepts are included the red line (top) is observed.
The higher the line the more concepts can evaluate their probability and become
useful to an analyst.

After training it becomes clear that the feature importance can differ sig-
nificantly, see Fig. 5. This opens the possibility to disregard connections with
a low feature importance, making the network more sparse and resulting in an
even higher reachability for a given percentage of available input. The drawback,
however, is an increased error in the output.

5 Discussion and Conclusion

In the previous section, some of the properties that the combination of symbolic
knowledge and sub-symbolic methods should have, are examined to determine
if this can lead to a fruitful pairing for the situational understanding support
use-case. Here we discuss the results and give directions for future work. We end
with some conclusions.

In our current implementation, the human experts are the only source of sym-
bolic knowledge in the form of expert rules, they interpret the results and make
corrections if necessary, and finally provide their analysis results to a decision
maker. Experiments with the interface show that it is easy to choose concepts
and make links between them to implement expert rules and build a hierarchy
of concepts.

In standard expert systems where symbolic rules can be entered and used, the
maintenance of the collection of rules increases drastically [14,16]. In the RCN,
adding or changing the expert rules does not lead to similar inconsistencies as
can occur with expert systems because wrong connections will, during training,
obtain a low weight. The neural network structure also allows for working with
incomplete expert knowledge.

The tests on trainability show that the RCN is capable of training the sub-
symbolic parts integrated in the concepts to match the structure in the data.
It was found that some concepts have a high performance and some a lower
performance. The concepts that work well, implement expert rules that match
well with the data. Low performing concepts are a signal for the user to examine
why this is the case. There may be several reasons: they represent a wrong
expert rule, the data is incomplete or has errors, or the structure in the data
is too complex for the current rule given the size of the sub-symbolic part. If
the last reason is the case, the sub-symbolic part can be increased, which would
also require more data for training, or additional expert rules are required: more
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or different connections between concepts are necessary, and/or more concepts
with accompanying expert rules need to be introduced.

Modularity is currently supported by collecting all relevant data at the con-
cepts and then do a learning step for separate concepts. After training, the RCN
can be used for inferring probabilities of higher level concepts in input data. Dur-
ing use, modularity is also supported, as the tests on graceful degradation show
that it is possible to evaluate the probabilities for subsets of concepts, depend-
ing on the available input data and the connections from the expert rules. In
real-world applications, it is more than likely that input data is only available
for small sections of the RCN.

It is, however, desirable to have a continuous learning approach where incom-
ing data with information on several hierarchical levels of the RCN can be used
for learning. In our current implementation, we use the scikit-learn toolkit which
supports incremental learning but this has not been tested yet.

The tests on performance as a function of training data set size indicate that
the RCN’s performance is less dependent on the amount of available training
data compared to a NN. This is an important finding from the perspective of the
use-case since it can be expected that at least for some concepts only little data
will be available, making the use of a traditional NN infeasible. On the current
dataset with imperfect expert rules, the RCN has a relatively high performance,
close to that of a traditional FCNN trained on the same data, while providing
the advantages of explainability and more flexibility in training data.

Although the basis for a decision support system that incorporates both
symbolic and sub-symbolic data has been shown in the RCN approach, there
are many things that can be enhanced. Hence, there are several plans for future
implementations.

Currently, human experts are the only source of symbolic knowledge. This can
be expanded by for example the use of ontologies that provide relevant domain
knowledge. Often ontologies use well-defined relations between concepts. A way
needs to be found to implement these in the RCN, and it needs to be studied how
these can benefit a user by giving more insightful explainability. If implemented,
the expert can also use this richer type of relations when specifying rules.

An additional source of symbolic knowledge may come from lessons learned
from previous military operations that can be entered in the form of expert rules.
It may even be possible to re-use the RCN as a whole. It is expected, however,
that lower level concepts may require significant retraining. Higher level concepts
may be more general in nature and therefore transferable from one situation to
the next.

If an expert rule performs badly while using good data, it needs correcting.
This can be done by a kind of hypothesis testing: changing the expert rule, check-
ing its performance, changing it again, etc. until a good performance has been
obtained. This can partly be automated by having the RCN check many different
combinations of connections to a concept and suggesting the best performing set
to the expert. Additionally, the predictor, here a NN with a number of hidden
layers and nodes in each layer, can be changed to better suit the complexity of
the mapping it needs to learn.
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Another element that can be improved in the fact that the current network is
a directed graph: the relation between nodes only works one way. This limits the
rules that can be entered. For many concepts in a domain, it may not be clear
what causes what, only that they are even related. This requires bidirectional
connections. A potential problem arises when anything can be connected to
anything: the output of a concept can indirectly become its own input. This will
have to be solved, for example by freezing activations or repeatedly resampling.

One important aspect that is currently missing in the RCN is an indication
of the uncertainty in the output. Uncertainty should be available integrally from
lowest level input to the output of the highest level concepts. This will be impor-
tant for analysts to consider when building their situational understanding. If
implemented, this may be used as a means of graceful degradation: if a concept
has inputs with low feature importance for which no data is available, they may
be ignored. This will, however, increase the uncertainty of the output, which
should be visible to the user.

All in all, the methods discussed in this paper show that combining sym-
bolic knowledge (from experts and expert systems) with sub-symbolic methods
(such as neural networks and sensor data), can lead to a fruitful pairing. The
combination of the flexibility of neural networks with the domain knowledge of
experts results in a form of hybrid AI, where symbolic insights from an expert
can be made more precise by training sub-symbolic networks using data. The
main advantages are the flexibility this approach offers, explainability of the
results, and a reduction of data requirements.
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Abstract. Trustworthy Machine Learning (ML) is one of significant
challenges of “black-box” ML for its wide impact on practical appli-
cations. This paper investigates the effects of presentation of influence of
training data points on machine learning predictions to boost user trust.
A framework of fact-checking for boosting user trust is proposed in a pre-
dictive decision making scenario to allow users to interactively check the
training data points with different influences on the prediction by using
parallel coordinates based visualization. This work also investigates the
feasibility of physiological signals such as Galvanic Skin Response (GSR)
and Blood Volume Pulse (BVP) as indicators for user trust in predictive
decision making. A user study found that the presentation of influences of
training data points significantly increases the user trust in predictions,
but only for training data points with higher influence values under the
high model performance condition, where users can justify their actions
with more similar facts to the testing data point. The physiological sig-
nal analysis showed that GSR and BVP features correlate to user trust
under different influence and model performance conditions. These find-
ings suggest that physiological indicators can be integrated into the user
interface of AI applications to automatically communicate user trust
variations in predictive decision making.

Keywords: Influence · Machine Learning · Trust ·
Physiological features

1 Introduction

We have witnessed a rapid increase in the availability of data sets in various fields,
for example in infrastructure, transport, energy, health, education, telecommuni-
cations, and finance. Together with the dramatic advances in Machine Learning
(ML), getting insights from these “big data” and data analytics-driven solu-
tions are increasingly in demand for different purposes. While we continuously
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find ourselves coming across ML-based Artificial Intelligence (AI) systems that
seem to work or have worked surprisingly well in practical scenarios (e.g. the self-
driving cars, and the conversational agents for self-services), ML technologies still
face prolonged challenges with low user acceptance of delivered solutions as well
as seeing system misuse, disuse, or even failure. These fundamental challenges
can be attributed to the nature of the “black-box” of ML methods for domain
experts when offering ML-based solutions [36]. For example, for many non-ML
users, they simply provide source data to an AI system, and after selecting some
menu options, the system displays colorful viewgraphs and/or recommendations
as output [37]. It is neither clear nor well understood why ML algorithms made
this prediction, or how trustworthy this output or decision based on the prediction
was. These questions demonstrate that both the explanation of and trust in ML
play significant roles in affecting the user acceptance of ML in practical applica-
tions. The explanation is closely related to the concept of interpretability, which
is referred to as the ability of an agent to explain or to present its decision to
a human user, in understandable terms [5,29]. Trust is defined as “the attitude
that an agent will help achieve an individual’s goals in a situation characterized
by uncertainty and vulnerability” [22].

As a result, recent research suggests model interpretability/explanation as a
remedy for the “black-box” ML methods [24,26,36]. While there is much work
in progress towards improving ML interpretability [15,18,30], the ideal state of
having explainable, evidence driven ML-based decisions still remains a challenge
[26]. To date, most of the work on ML interpretability has focused explicitly
on ML model explanation itself, developing various explanation approaches to
show why a prediction is made. However, the ML model explanation is just one
component of the ML pipeline. Furthermore, what and how explanation infor-
mation are presented to end users for the deployment to boost user trust plays
significant roles in an ML-based intelligent (AI) system. Taking the influence
of training data points on predictions [18] in supervised learning as an exam-
ple, the explanation with influence allows to capture the weight/contribution
of each training data point on the prediction of a testing data point. However,
these explanations are highly biased towards ML experts’ views, and are largely
dependent on abstract statistical algorithms, which introduce further complexi-
ties to domain users. While domain users are more interested in what influence
information affect and how these influence information are presented to them to
boost their trust in predictions or decisions based on predictions.

Therefore, besides explanation, Mannarswamy et al. [26] proposed that the
ability to provide justifiable and reliable evidences for ML-based decisions would
increase the trust of users. Yin et al. [32] found that the stated model accuracy
had a significant effect on the extent to which people trust the model, suggest-
ing the importance of communication of ML model performance for user trust.
Recently, fact-checking, which provides “evaluation of verifiable claims made in
public statements through investigation of primary and secondary sources” [19],
is increasingly used to check and debunk online information because of credibil-
ity challenges of the internet content [7]. Furthermore, previous research found
the physiological correlations with decision making [39], it is possible that user
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trust in predictive decision making can be evaluated by monitoring specific phys-
iological signals for intelligent user interface of AI applications.

Motivated by these investigations, this paper introduces fact-checking into
ML explanation by referring training data points as facts to users to boost user
trust. These training data points are selected based on their influence level of
predictions. We aim to investigate what influence of training data points and how
they affect user trust in order to enhance ML explanation and boost user trust.
We tackle this question by allowing users check the training data points that have
the higher influence on the prediction and the training data points that have the
lower influence on the prediction. The model performance is also introduced
into the pipeline to find how both the influence and model performance affect
user trust. Physiological signals are also collected and analysed to find their
correlations to trust under different influence and model performance conditions.

2 Related Work

2.1 Explanation for Machine Learning

In the early years, visualization is primarily used to explain simple ML algo-
rithms. For example, different visualization methods are used to examine spe-
cific values and show probabilities of selected objects visually for Näıve-Bayes [4],
decision trees [2], or SVMs [9]. Advanced visualization techniques are then used
as an interaction interface for users in data analysis. Guo et al. [13] introduced
a graphical interface named Nugget Browser allowing users to interactively sub-
mit subgroup mining queries for discovering interesting patterns dynamically.
Zhou et al. [37] revealed states of key internal variables of ML models with
interactive visualization to keep users aware what is going on inside a model.
More recent work tries to use visualization as an interactive tool to facilitate
ML diagnosis. ModelTracker [1] provides an intuitive visualization interface for
ML performance analysis and debugging. Chen et al. [10] proposed an interac-
tive visualization tool by combining ten state-of-the-art visualization methods
in ML to help users interactively carry out multi-step diagnosis for ML models.
Recently, visualization approaches are also proposed to explain complex deep
neural networks [14]. For example, saliency maps are used to explain contribu-
tions of different points of a data to predictions [6].

Besides visualization, various mathematical approaches are proposed to
explain ML models. Robnik-Sikonja et al. [30] explained classification models
by evaluating contributions of features to classifications based on the idea that
importance of a feature or a group of features in a specific model can be esti-
mated by simulating the lack of knowledge about the values of the feature(s).
Besides feature contributions, explanation of individual instance contributions
to ML models was investigated to allow users to understand why a classifica-
tion/prediction is made. For example, Landecker et al. [21] developed an app-
roach of contribution propagation to give per-instance explanations of a net-
work’s classifications. Koh et al. [18] used influence functions to evaluate influ-
ence of each training data point on predictions.
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These approaches explain ML models mostly from an ML expert’s perspec-
tive, which introduce further complexities to domain users and make users more
difficult to understand complex algorithms. Furthermore, these explanations
mostly focus on the stage of ML models and pay less attention to the stage
of deployment of ML models.

2.2 User Trust in Machine Learning

As the ultimate frontline users of ML-based systems, humans are the key stake-
holders and human factors such as user trust are essential in extracting and
delivering more sensible and effective insights from data science technologies
[12]. From this perspective, Zhou et al. [35,39] argued that communicating user
cognitive responses such as trust benefits the evaluation of effectiveness of ML
approaches. Therefore, different approaches are investigated to reveal human
cognition states such as trust in predictive decision making scenarios [35,37].

Moreover, various researches have been investigated to learn user trust varia-
tions in ML. Ye and Johnson [31] experimented with three types of explanations
(trace, justification and strategy) for an expert system, and found that justifi-
cation (defined as showing the rationale behind each step in the decision) was
the most effective type of explanation in changing users’ attitudes towards the
system. Kizilcec [17] proposed that the transparency of algorithm interfaces can
promote awareness and foster user trust. It was found that appropriate trans-
parency of algorithms through explanation benefited the user trust. However,
too much explanation information on algorithms eroded user trust. Ribeiro et
al. [28] explained predictions of classifiers by learning an interpretable model
locally around the prediction and visualizing importance of the most relevant
features to improve user trust in classifications. Other studies that empirically
tested the importance of explanation to users, in various fields such as the health
informatics, consistently showed that explanations significantly increase users’
confidence and trust [8].

2.3 Physiological Responses in Decision Making

In Human-Computer Interaction (HCI), physiological responses are used to
understand an individual’s decision making process [39]. For example, GSR refers
to how well the skin conducts electricity when an external direct current of con-
stant voltage is applied [11]. It yields continuous signals that are related to activ-
ity in the sympathetic branch of the anatomical neural system during tasks. It
is well established that skin conductance covaries with the arousal dimension of
affect, indexing its intensity. The Iowa Gambling Task (IGT) [3] demonstrated
that GSR can be used as a process indicator of affective processes when mak-
ing decisions. Zhou et al. [39] showed that decision making can be measured
with GSR in order to allow users to perceive the quality of their decisions and
the level of difficulty involved in making decisions. Therefore, GSR can serve
as an objective, non-verbal, non-voluntary indicator and a physiological mea-
sure that is relatively free from demand characteristics and reporting biases in
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decision making. However, little work has been investigated on the variations of
GSR in user trust in a predictive decision making scenario under various condi-
tions such as uncertainty. Furthermore, sympathetic activation has been found
to cause changes in heart rate, stroke volume and peripheral cardiovascular resis-
tance [25]. These effects can be sensed by Blood Volume Pulse (BVP), which
measures the blood volume in the skin capillary bed in the finger with photo-
plethysmography (PPG). BVP is often used as an indicator of affective processes
and emotional arousal, which play an essential role in rational decision making,
learning and cognitive tasks [33]. Zhou et al. [16] showed a set of BVP features
for indexing cognitive load.

These previous work motivates us to consider both algorithmic explanations
and model performance in the interpretability of ML, aiming to find what expla-
nations and how these explanations affect user trust in ML. We also aim to
investigate physiological indicators which may correlate with user trust in pre-
dictive decision making. This paper uses the influence of training data points as
an example and investigates what influence and how they affect user trust in a
predictive decision making scenario.

3 Hypotheses

The following hypotheses are posed in this study:

– H1: The presentation of influence of training data points on predictions will
affect the user trust and result in the increase of user trust in predictions;

– H2: The training data points which have the higher influence on predictions
will have the higher effect on user trust than those with the lower influence;

– H3: Higher model performance together with the presentation of influence of
training data points will result in the higher user trust;

– H4: There are correlations between physiological indicators and user trust
under different influence and model performance conditions.

4 Method

In this section, a framework of fact-checking for boosting user trust is firstly
presented. A case study is then introduced. After that, the influence of training
data points is formulated to understand contributions of training data points
to test data predictions. Finally, the fact-checking visualization is proposed to
present influence of training data points on test data predictions to users.

4.1 Framework of Fact-Checking for Boosting User Trust

We present a framework of fact-checking for boosting user trust in a predictive
decision making scenario (see Fig. 1). In a typical conventional ML pipeline, a
training data is used to train an ML model and predictions are made based
on the trained model (as shown in the lower unshaded part in Fig. 1). There is
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no information on the ML explanation in order to promote the trustworthiness
of the prediction. Motivated by the online fact-checking services for strength-
ening trust [7], an influence-enhanced fact-checking approach is added on the
top of the conventional ML pipeline in the proposed framework (as shown in
the upper shaded part in Fig. 1) to explain predictions and boost user trust in
predictions. Firstly, the influence of all training data points for the prediction
of a testing data point is calculated with influence functions as presented in
the following subsection. All training data points are then ranked in descending
order based on the calculated influence values. Training data points which have
the higher influence values (e.g. the top 10 training data points in the ranking)
and training data points which have the lower influence values (e.g. the bottom
10 training data points in the ranking) are obtained respectively based on the
ranking. These training data points function as facts which are the most similar
points to the testing data point and the least similar points to the testing data
point respectively. The parallel coordinate based visualization as presented in
the following subsection is used to visualize these selected ranked training data
points allowing users to compare the facts with the testing data points to boost
trust in predictions.

Fig. 1. A framework of fact-checking for boosting user trust.

4.2 Case Study

This paper used water pipe failure prediction as a case study for predictive deci-
sion making (replicated in lab environment). Water supply networks constitute
one of the most crucial and valuable urban assets. The combination of growing
populations and aging pipe networks requires water utilities to develop advanced
risk management strategies in order to maintain their distribution systems in a
financially viable way [23,40]. Pipes are characterized by different attributes,
referred as features, such as laid year, material, diameter size, etc. If pipe fail-
ure historical data is provided, future water pipe failure rate is predictable with
respect to the inspected length of the water pipe network [23,40]. Such mod-
els are used by utility companies for budget planning and pipe maintenance.
However, different models with various presentation of influence of training data
points and various prediction performance (accuracy) may be achievable result-
ing in different possible management decisions. The experiment is then set up to
determine what influence and model performance may affect the user trust.
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4.3 Influence of Training Data Points

Consider a machine learning based prediction problem from an input space X ∈
R

D (e.g. water pipe attributes of D dimensions) to an output space Y ∈ {0, 1}
(e.g. labels on failures of water pipes), with given training data points z1, ..., zN ,
where zi = (xi , yi) ∈ X × Y , each yi is a failure observation of each pipe in
one year. Based on the data points, a model parameter θ̂ ∈ Θ can be learned
by minimizing the loss function

∑N
i=1 L(zi, θ). The influence is then defined as

how important is a training data point ztrain to the prediction of a testing data
point ztest. The influence is then calculated for each pair of (ztrain, ztest).

The intuitive way to get influence is to compare the difference of the predic-
tion results, i.e. ytest with and without ztrain used in the training. The method
cannot be scaled up as it requires retraining the model for all training data points
for each testing data, which means N +1 retraining are needed. This is infeasible
for large datasets usually with millions of data points. In this study, the influence
function is used to avoid the retraining. It is used to trace a model’s prediction
through the learning algorithm and back to its training data, thereby identifying
training data points most responsible for a given prediction [18]. For any training
data point ztrain, if its weight is to be upweighted by an infinitesimal amount
ε > 0 from 1

N , the influence to θ̂ will be quantified as:

I(ztrain) =
dθ̂ε,ztrain

dε
= −H−1

θ̂
∇θL(ztrain, θ̂) (1)

where Hθ̂ = 1
n

∑n
i=1 ∇2

θL(zi, θ̂) is the Hessian. Then the influence by remov-
ing ztrain can be approximated by − 1

N I(ztrain) and chain rule, for ztest, it is
proportional to a close-form expression:

Iremoving(ztrain, ztest) ∝ ∇θL(ztest, θ̂)I(ztrain) (2)

which can be used in our influence evaluation as we only need the influence
ranking of all training data points in the user trust evaluation. The details of
these influence functions can be found in [18].

4.4 Fact-Checking Visualization

A training data point in ML usually has multiple features/attributes. The
parallel-coordinates is one classical approach to visualize multi-attribute data
points. One advantage of this technique is that it can provide an overview of
data trend, where each attribute is represented with one axis in parallel coordi-
nates. In this study, we present a visualization approach for presenting multiple
data attributes based on parallel coordinates as shown in Fig. 2: each vertical axis
represents one data attribute with the sorted descending order, and a polyline
connecting points on each vertical axis represents a data point. In this study,
each polyline represents one water pipe with various attributes. Various pipe
attributes belonging to one pipe are encoded with the same color. Testing pipe
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is encoded with red color. The influence of each training pipe on the predic-
tion of a test is encoded with the width of polylines, the wider the polyline, the
higher the influence. Such color and line width encoding approach provides an
overview of data trend of pipes and their associated attribute details, which can
improve the information browsing efficiency. For example, Fig. 2 demonstrates
how similar the training pipes are with the testing pipe in red color. If training
pipes are considered as facts for predictions, this parallel coordinates based visu-
alization is fact-checking visualization. The pipe attributes visualized in Fig. 2
include pipe size, length, pipe age, failure times during the observation period,
and whether it was failed in the checked year (0 means no failure and 1 means
failure occured).

Fig. 2. Fact-checking visualization.

5 Experiment

This section sets up an experiment to examine our hypotheses with the case
study of a decision making scenario on water pipe management.

5.1 Experimental Data

Water pipe failure prediction uses historical pipe failure data to predict future
failure rate [23]. The historical data contain failure records of water pipes, and
various attributes of water pipes, such as laid year, length, diameter size, sur-
rounding soil type, etc. In this study, actual water pipe attributes (features) and
the associated historical failure data from a region of a city were used in this
experiment. The pipe features used in the experiment include the pipe age, pipe
size (diameter), length, and failure times during the observation period. There
are 108,745 failure records with 9,062 pipes. 80% of data was used to train the
model and the rest was used for the testing. Convolutional neural network (CNN)
[20,38] was trained to model the water pipe failures.
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In this study, two CNN models (Model 1: 3 hidden layers with number of
units of 64, 128, 256, and max iteration number of 1300 respectively; Model 2: 3
hidden layers with number of units of 32, 64, 128, and max iteration number of
700 respectively) were trained using different network settings, resulting in the
model accuracy of 90% and 55% respectively. These two model performances
were used as high model performance (90%) and low model performance (55%)
respectively to find differences of user responses in the experiment. Furthermore,
the influence of each training pipes on a prediction was calculated with the use
of influence functions introduced in the previous section.

5.2 Task Design

Tasks are designed to investigate how influence of training data points and model
performance affect user trust. In this experiment, the training pipes are ranked
in the descending order based on their influence values. Based on the ranking, the
top 10 (TOP10) and bottom 10 (BOT10) training pipes, which have the highest
and lowest influence on predictions respectively, are selected. The fact-checking
visualization based on parallel coordinates introduced in the previous section is
then used to visualize the TOP10 and BOT10 pipes respectively. Based on the
TOP10 and BOT10 pipes’ visualization, this experiment divides fact-checking
visualization settings for tasks into four categories: (1) TOP10, (2) BOT10, (3)
TOP10&BOT10 which includes both TOP10 and BOT10 visualizations in tasks,
and (4) Control which does not include any influence visualization on training
pipes. By considering both model performance cases (high and low performance)
and fact-checking visualization conditions, we finally got 8 tasks as shown in
Table 1. These 8 tasks were conducted two rounds with all same settings except
testing pipes used. Two training tasks were also conducted by each participant
before formal tasks. In summary, there were 18 tasks conducted (8 tasks × 2
rounds + 2 training tasks = 18 tasks) by each participant.

Table 1. Task setup in the experiment.

Influence

TOP10 BOT10 TOP10&BOT10 Control

Model performance High T1 T2 T3 T4

Low T5 T6 T7 T8

The decision tasks investigated are: each participant was told that he/she
would take the asset management responsibility of a water company. The water
company plans to repair pipe failures in the next financial year. He/she was asked
to make a decision on whether to replace a testing pipe, using water pipe failure
prediction models learned from the historical water pipe failure records. Each
task was divided into three stages: at the beginning of each task, participants
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were told that a pipe is predicted to fail next year with a prediction accuracy
of 90% (High) or 55% (Low); then different fact-checking visualizations based
on task settings (see Table 1) are displayed; lastly, participants were asked to
make a decision of whether or not to replace the pipe based on the prediction.
Participants were told that they were competing against other people to reach
the best budget plan in a given time period in order to push them to make their
efforts for tasks. The task orders were randomized during the experiment.

5.3 Participants and Data Collection

22 participants were recruited, who are mainly researchers and students with
the range of ages from twenties to forties and an average age of 30 years. Of all
participants, 5 were females. After each decision making task, participants were
asked to rate the trust level of predictions on which decisions were made using
a 9-point Likert scale (from 1: least trust, to 9: most trust). Participants were
asked to rate how helpful the presentation of influence is for decision making.
At the end of each round, participants were also asked to rate the usefulness of
influence on helping them more confident in decision making. Besides subjective
ratings, skin conductance responses of subjects with GSR sensors and blood
volume pulse information with BVP sensors from ProComp Infiniti of Thought
Technology Ltd were collected during task time.

6 Analysis of Subjective Ratings

In this study, we aim to understand: (1) the effects of influence on user trust
under a given model performance, and (2) the effects of model performance
on user trust under a given influence condition respectively. Therefore, for the
evaluation of each aims, we first performed Friedman test and then followed it
up with post-hoc analysis using Wilcoxon signed-rank tests (with a Bonferroni
correction) to analyze differences in participant responses of trust under a fixed
condition (e.g. trust changes with different influence types under the fixed high
model performance). Trust values were normalized with respect to each subject
to minimize individual differences in rating behavior (see Eq. 3):

TN
i =

Ti − Tmin
i

Tmax
i − Tmin

i

(3)

where Ti and TN
i are the original trust rating and the normalized trusting rating

respectively from the user i, Tmin
i and Tmax

i are the minimum and maximum of
trust ratings respectively from the user i in all of his/her tasks.

6.1 Influence and Trust

Figure 3(a) shows mean normalized trust values over different influence settings
under high model performance (error bars represent the 95% confidence interval
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of a mean and it is same in other figures). Friedman’s test gave statistically
significant differences in trust among four influence conditions, χ2(3) = 21.675,
p = .000. Then post-hoc Wilcoxon tests (with a Bonferroni correction under
a significance level set at p < .013) was applied to find pair-wise differences
between influence conditions. The adjusted significance alpha level of .013 was
calculated by dividing the original alpha of .05 by 4, based on the fact that we
had four influence conditions to test.

(a) Normalized trust by influence under
high model performance.

(b) Normalized trust by different model
performance.

Fig. 3. Normalized trust values.

The post-hoc tests found that participants had significantly higher trust in
predictions when influences of TOP10 training pipes were presented than those
without influence information presentation (Control condition) (Z = 102.0, p <
.001). Participants also showed significantly higher trust in predictions when
influences of both TOP10 and BOT10 were presented than that without influ-
ence information presentation (Control condition) (Z = 120.5, p < .004). The
results suggest that the presentation of influence of training data points on pre-
dictions significantly increases the user trust in predictions as we hypothesized
(H1). It was also found that participants had significantly higher trust in predic-
tions when influences of TOP10 training pipes were presented than that when
influences of BOT10 training pipes were presented (Z = 61.5, p < .001). This
implies that the training data points having the higher influence on predictions
have the higher effect on user trust than that having the lower influence (H2).

However under low model performance, statistically significant differences of
trust among different influence conditions have not been found.

These results suggest that the presentation of influence of training data points
on predictions significantly increases the user trust in predictions, but only for
training data points with higher influence values under the high model perfor-
mance condition.
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6.2 Model Performance and Trust

Figure 3(b) shows mean normalized trust values under two model performance
conditions (high and low). A Wilcoxon test found that participants had statisti-
cally higher trust in predictions under high model performance than that under
low model performance (Z = 854.5, p = .000). This result confirms the find-
ings in [32]. We then further drilled down to compare user trust differences
over model performance under different influence conditions. Figure 4 shows
mean normalized trust values over two model performance conditions (high and
low) under different influence settings. It was found that participants showed
significantly higher trust under high model performance than that under low
model performance over all four influence settings (TOP10: Z = 11.5, p < .000;
BOT10: Z = 52.0, p < .000; TOP10&BOT10: Z = 77.5, p < .000; Control:
Z = 77.5, p < .001). The results suggest that high model performance together
with influence information result in the higher user trust in predictions (H3).
These findings go on to support the idea that people trust more in predictions
with high model performance.

Fig. 4. Normalized trust by model performance under different influences.

7 Physiological Indicators

In this section, GSR and BVP signals are analyzed to investigate their variations
under different conditions. The GSR and BVP data analysis process is divided
into following steps: (1) signal smoothing, (2) data normalization, (3) feature
extraction, and (4) feature significance test.

Similar to the analysis of subjective ratings in the previous section, various
GSR and BVP features are also analysed to find: (1) the effects of influence on
GSR and BVP features under a given model performance, and (2) the effects of
model performance on GSR and BVP features under a given influence condition
respectively. Therefore, for the evaluation of each aims, we first performed one-
way ANOVA test and then followed it up with post-hoc analysis using t-test
(with a Bonferroni correction) to analyze differences in physiological features
under a fixed condition.
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7.1 Signal Smoothing

The first step of physiological signal analysis is the signal smoothing. For GSR
signals, we use convolution filter (similar to a low pass filter) to remove noise. All
GSR signals are convoluted to a Hann window function to remove the noise [34].
For BVP signals, we use spectrogram to detect corrupt signals and abnormal
outliers, then remove all corrupt data from the dataset [25].

7.2 Normalization

After signal smoothing, we normalize smoothed signal using subject-wise Z-
Normalization to omit subjective differences between different signals [34]. The
subject-wise normalization means that the mean and variance used in the nor-
malization as in Eq. 4 are from signals of all tasks from each subject.

SN =
S − μ

σ
(4)

where S is the original GSR/BVP value, SN is the normalized GSR/BVP value,
μ and σ are mean and variance respectively of GSR/BVP signals among all tasks
conducted by each subject.

7.3 GSR

Fig. 5. An example of GSR signals after noise filtering. (Color figure online)

GSR Feature Extractions. In this paper, GSR features are defined based on
signal extremas. The extremas are extracted from the normalized GSR signal.
Figure 5 shows an example of extremas (red star as local maxima and yellow
star as local minima) of GSR. We extracted and analysed both extreme-based
and statistical features. All the features are listed in Table 2 [39]. The definition
of duration Sdi and magnitude Smi are shown in Fig. 5. t is the time spent on
each task. The estimated area can be regarded as the area of the triangle made
by Sd and Sm, which is Sa = 1

2SdSm [39].
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Table 2. GSR features

GSR features Notes

Mean of GSR μg Summation of all GSR values divided by task time

GSR variance σg Variance of GSR values over task time

Number of peaks Sf Number of peaks in a GSR signal

Sum of duration Sd Sum of duration time of all tasks: Sd =
∑

Sdi

Sum of magnitude Sm Sum of magnitude: Sm =
∑

Smi

Estimated area Sa Sum of estimated area: Sa =
∑

Sai

Number of response per second Sfs Sfs = Sf/t

Duration per second Sds Sds = Sd/t

Magnitude per second Sms Sms = Sm/t

Maximum of duration Smax
d Smax

d = max(Sd)

Maximum of magnitude Smax
m Smax

m = max(Sm)

Maximum of estimated area Smax
a Smax

a = max(Sa)

Average gradient Ga Ga = 1
Sf

∑
Smi/Sdi

Maximum gradient Gmax Gmax = max(Smi/Sdi)

(a) Sum of duration over different
influence conditions.

(b) Sum of duration over different
model performance conditions.

Fig. 6. GSR feature of sum of duration.

GSR Features and Influence. Under the high model performance, one-
way ANOVA tests found that there are significant differences in GSR values
among different influence conditions for GSR sum of duration Sd (F (3, 112) =
2.874, p = .039) (see Fig. 6(a)). The post-hoc t-tests (with a Bonferroni correc-
tion under α = .05/4 = .013, based on the fact that 4 levels were tested) was
used to examine the pair difference between influence conditions in GSR fea-
ture of Sd. The post-hoc tests found that participants had significantly lower
GSR Sd values when influences of TOP10&BOT10 training pipes were pre-
sented than that without influence information presentation (Control condition)
(t = −3.039, p < .004). Participants also showed relatively lower GSR Sd values
when influences of TOP10&BOT10 training pipes were presented than that when
BOT10 training pipes were presented. The results suggest that the presentation
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of influence of training data points on predictions especially TOP10 training
points significantly decreases the GSR Sd values under high model performance.

GSR Features and Model Performance. Figure 6(b) shows mean GSR Sd

values over two model performance conditions (high and low). Although there
is no significant difference found in GSR Sd values over two model performance
conditions, a trend shows that GSR Sd values under high model performance
condition is relatively lower than that under low model performance condition.
The findings suggest that the high model performance condition has a trend to
decrease GSR values.

7.4 BVP

BVP Features. BVP is a periodical signal and associated with three major fre-
quency bands: Very Low Frequency (VLF) (0.00–0.04 Hz), Low Frequency (LF)
(0.05–0.15 Hz), and High Frequency (HF) (0.16–0.40 Hz). The LF/HF ratio is
calculated by finding the ratio of low frequency energy to high frequency energy
in the spectrum. Furthermore, the BVP sensor measures one of physiological
changes known as Heart Rate Variability (HRV). HRV is known to be closely
related to Respiratory Sinus Arrhythmia (RSA) which can be used as a measure-
ment to quantify the activity of the parasympathetic activity [25,27]. Therefore,
both statistical and frequency domain features of BVP are extracted for analysis
in this section. Table 3 lists BVP features extracted in this study.

Table 3. BVP features

BVP features Notes

Mean of BVP μb Summation of all BVP values divided by task time

BVP variance σb Variance of BVP values over task time

Number of peaks Sp Number of peaks in a BVP signal

BVP peak mean μbp Summation of all BVP values divided by number of peaks

BVP peak variance σbp Variance of BVP peak values

LF Power Spectral Density (PSD) for low frequency

HF Power Spectral Density (PSD) for high frequency

LF HF ratio Sr Sr = LF/HF

BVP Features and Influence. Under the high model performance, one-
way ANOVA tests found significant differences in BVP peak mean μbp values
(F (3, 120) = 4.705, p = .004) and BVP peak variance σbp values (F (3, 120) =
4.961, p = .003) among different influence conditions respectively. Figure 7
shows BVP peak mean values over four influence conditions. The post-hoc
t-tests(with a Bonferroni correction as mentioned previously) were conducted
to examine the pairwise difference between influence conditions in BVP fea-
tures. For the BVP peak mean μbp, it was found that there were statistically
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significant lower values in TOP10&BOT10 than that in other three influence
conditions TOP10 (t = −2.921, p = .005), BOT10 (t = −3.45, p = .001),
and Control (t = −3.644, p = .001) respectively. Similarly, The BVP peak
variance σbp showed significantly lower values in TOP10&BOT10 than that
in other three influence conditions TOP10 (t = −2.947, p = .005), BOT10
(t = −3.57, p = .001), and Control (t = −3.788, p = .000) respectively.

Fig. 7. BVP feature of BVP peak mean over four influence conditions.

These results show that the presentation of influence of training data points
on predictions especially both TOP10 and BOT10 training points at the same
time significantly decreases BVP values such as μbp under high model perfor-
mance. However, all extracted BVP features did not show significant differ-
ences over model performance conditions, despite the trend with relative lower
GSR values under high model performance related to influence presentations of
TOP10 training points.

In summary, we found that the presentation of influence of training data
points on predictions especially TOP10 training points significantly decreases
both GSR and BVP values such as μbp, but only under high model performance.
Furthermore, a trend shows that both GSR and BVP values are relatively lower
under high model performance than that under low model performance. By con-
sidering the relations between trust and influence/model performance concluded
in the previous section, the findings in this section on GSR and BVP features can
be used as indicators of user trust in predictive decision making under different
influence and model performance conditions as we expected in H4.

8 Discussions

As discussed in earlier sections, trust is a challenging concept to investigate in
machine learning based solutions. This paper intends to study human-machine
trust in a specialized predictive decision making scenario. As machines are
becoming more intelligent, however in many scenarios, instead of full auton-
omy, Human-Machine Teaming (HMT) is required, where humans interact with
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the intelligent (AI) system to understand why the AI system is suggesting some-
thing that the human should do or not do. Therefore, both interaction with and
transparency of the system help humans make effective uses of the AI system
for trusting decisions.

In the water pipe failure prediction example as mentioned, when pipe man-
agement staff want to use an AI tool to make decisions on pipe replacement,
they need to be confident that there is a clear rationale for the ML to predict a
pipe’s future failure, in order to build trust. Therefore, similar to precedent that
humans justify actions by analogy, the pipe management staff interact with such
kind of AI system to find similar cases (based on pipe features such as material,
age, size, and length) to support a planned pipe management protocol. In our
approach, the influence values of training pipes on the prediction were used to
help users to locate/identify pipes having higher influence values (which may
show more similar feature patterns to the testing pipe) or pipes having lower
influence values (which may show more dissimilar feature patterns to the testing
pipe). These pipes were presented to users with parallel coordinates based visu-
alizations to help users easily get the overall patterns of features of pipes. The
interaction with the visualization of pipes functioned as the fact-checking for
the prediction to help users understand why a similar or different decision was
made, thereby increases the transparency of the system and boosts user trust.

As we have seen that participants showed significantly higher trust when
TOP10 visualization was presented. It was also found that participants showed
significantly higher trust under high model performance. GSR and BVP features
showed correlation to both influence and model performance conditions, suggest-
ing that GSR and BVP features can be used as indicators for trust variations in
predictive decision making.

In order to make ML-driven AI applications not only intelligent but also
intelligible, the user interface of AI applications needs to allow users to access the
most influential facts to predictions by visualizations. Such influence-enhanced
fact-checking allows users find similar facts to the testing data point to get the
rational behind for the justification of their actions, therefore boosting user trust.

A weakness of this training data based influence interpretation approach is
the privacy issue of training data. The proposed approach is not applicable if the
training data is sensitive and/or needs to be made private. However, there are
still many applications where it is not an issue (such as the water pipe failures).

9 Conclusions and Future Work

This paper investigates the influence enhanced fact-checking for the ML explana-
tion to boost user trust in a predictive decision making scenario. Both influence
of training data points on predictions and model performance were examined to
find their effects on trust. Physiological features were analysed and showed their
correlations to influence and model performance conditions. A user study found
that the presentation of influence of training data points on predictions signifi-
cantly increased the user trust in predictions, but only for training data points



Physiological Indicators for User Trust in Machine Learning 111

with higher influence values under the high model performance condition, where
users were expected to be able to justify their actions with more similar facts
to the testing data point. These findings suggested that the access of the most
influential facts to predictions by users in the user interface of AI applications
would help users get the rational behind their actions and therefore benefit the
user trust in predictions.

Our future work will focus on the setup of ML models to automatically
predict user trust in decision making based on physiological features, which
contributes to the ultimate goal of intelligent user interface of AI applications.
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Abstract. Diabetic retinopathy is a significant complication of diabetes, pro-
duced by high blood sugar level, which causes damage to the retina. Effective
diabetic retinopathy screening is required because diabetic retinopathy does not
show any symptoms in the initial stages, and can cause blindness if it is not
diagnosed and treated promptly. This paper presents a novel diabetic retinopathy
automatic detection in retinal images by implementing efficient image pro-
cessing and deep learning techniques. Besides diabetic retinopathy detection, the
developed system integrates a novel detection of maculopathy into one detection
system. Maculopathy is the damage to the macula, the eye part that is respon-
sible for central vision. Therefore, the combined detection of diabetic
retinopathy and maculopathy is essential for an effective screening of diabetic
retinopathy. The paper investigates the capability of image pre-processing
techniques based on data augmentation as well as deep learning for diabetic
retinopathy and maculopathy detection. Computer-assisted clinical decision-
making is inevitably transforming the diabetic retinopathy detection and man-
agement today, which is crucial for clinicians and patients alike. Therefore, a
high degree of accuracy, with which computer algorithms can detect the diabetic
retinopathy and maculopathy, is absolutely necessary.
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1 Introduction

The occurrence of diabetes is increasing globally at an accelerating rate. Diabetic
Retinopathy (DR) contributes significantly as some of the main causes of vision loss, if
it is not diagnosed and managed properly. In order to minimize the risk of blindness
happening caused by the diabetic retinopathy, diabetes patients should control the
blood sugar levels, blood pressure and cholesterol, in addition to undergoing regular
eye screening.

Diabetic retinopathy and maculopathy screening helps identify high-risk individ-
uals of having sight impairment. Therefore, an effective screening of diabetic
retinopathy is essential for early action, as well as in the preventive management of
diabetic complications. Moreover, screening is able to detect eye problems before
starting to interfere with our vision, and the treatment can help prevent or reduce vision
loss if the problems are caught early. The retinal screening helps give information about
the condition progression, and determine the treatment type if the signs of diabetic
retinopathy or maculopathy are detected.

A timely and complete eye examination that comprises dilated ophthalmoscopy or
high quality fundus images assessment in patients without previous treatment of DR or
other eye disease are the accepted methods in screening [1]. Eye fundus photography is
most frequently used in clinical studies, and widely used for telemedicine and patient
education as well. Moreover, fundus photography offers a colour or red-free image, and
provides many advantages compared with the predecessor, colour photographic film [1].
Nowadays, digital retinal imaging is widely used as it provides high-resolution, faster
images and easily image enhancement amenability. In diabetic retinopathy screening, the
features of DR are characterized in order to demonstrate more precise details than clinical
examination. Modifications of conventional imaging techniques and new developments
in the area, technology innovations, such as automated image interpretation, large data
sets usage and mobile applications, will improve the pathogenesis of DR [1]. In addition,
Baumal et al. [1] suggest that task management and longitudinal treatment help prevent
vision loss and recover a significant amount of vision in the patients.

Diabetic retinopathy is a complex disease with diverse clinical findings. Among the
diabetic retinopathy signs are microaneurysms, haemorrhages, exudates and neovas-
cularisation. This paper is focusing on the diabetic retinopathy and maculopathy
detection. The yellow lesions found near the macula (also a disease of the macula) is
termed as maculopathy. The macula, which is the centre of the retina, functions as a
central mechanism that provides our vision. The macula area is considered as a very
sensitive area, where the centre of the macula, called fovea, is a tiny area that is
accountable for both detailed and colour vision [2]. Thus, the detection of maculopathy
is vital as the loss of vision happening at the fovea part causes blindness. The presence
or absence of the maculopathy condition will decide the requirement of appropriate
treatment or referral. The referral to the ophthalmologist is assigned if maculopathy is
detected. On the other hand, if maculopathy is not present, referral is not necessary and
the screening will be repeated in a one-year period. The combination of diabetic
retinopathy and maculopathy detection, therefore, is important in order to assist the
diabetic retinopathy screening management. Figure 1 represents the eye fundus image
with diabetic retinopathy, showing maculopathy in colour image.
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A variety of ways and solutions have been proposed by researchers working and
focusing on the maculopathy detection, in order to detect and classify the fundus
images into different stages of maculopathy, such as mild, moderate and severe mac-
ulopathy [34–39]. However, in this paper, the research work proposed other incorpo-
ration mechanisms of diabetic retinopathy and maculopathy, where the detection of
both are based on the diabetic retinopathy signs discovery and also following oph-
thalmologists’ practice. The severity level reported in the literature is based on the
diabetic retinopathy features detection, rather than the maculopathy severity. The
proposed classification refers to whether or not maculopathy is present, i.e., with
maculopathy and without maculopathy. As a result, the new cases are: No Diabetic
Retinopathy (DR), Mild DR with/without maculopathy, Moderate DR with/without
maculopathy, Severe DR with/without maculopathy, Proliferative DR with/without
maculopathy and Advanced Diabetic Eye Disease (ADED). This categorization is
beneficial because two important detection can be identified in only one process of
screening. Furthermore, the urgency of the referral, which should happen within four
weeks, as proposed by the National Institute for Clinical Excellence [3], is applied to
those who have any form of maculopathy, regardless of mild, moderate or severe
levels. In this case, the severity of the maculopathy is therefore not significant, pro-
vided that its presence or absence has been determined. Therefore, this paper presents a
novel development of diabetic retinopathy alongside maculopathy detection, by
introducing effective image pre-processing techniques in conjunction with deep
learning for classification. The new system has been tested on a new developed
database collected from Melaka Hospital, Malaysia.

The paper is organized as follows. Section 2 presents some previous related work
on automated methods for the detection of diabetic retinopathy, comprising of devel-
oped diabetic retinopathy detection systems with deep learning as well as developed
maculopathy detection systems. Section 3 explains the proposed system for the dia-
betic retinopathy detection alongside maculopathy in eye fundus images, by imple-
menting effective image pre-processing and deep learning techniques. Finally, Sect. 4
presents some conclusions and future work.

Fig. 1. Maculopathy representation in colour image [1] (Color figure online)
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2 Related Previous Work

There are some developed automated systems reported in literature to detect and
diagnose diabetic retinopathy. In addition, some researchers proposed the detection of
maculopathy to support the management of diabetic retinopathy. It can be summarized
that various techniques and methods were proposed for the image pre-processing,
feature extraction and classification phases in order to produce reliable diabetic
retinopathy detection systems.

2.1 Diabetic Retinopathy Detection

For the detection of diabetic retinopathy purpose, various machine learning techniques
and methods were proposed, used and reported in the literature [4–39]. Meanwhile,
deep learning has been used in diabetic retinopathy detection in [10–25]. However, the
reported detection systems were concentrating on the diabetic retinopathy as general
detection, and also on the diabetic retinopathy signs detection, using various machine
learning methods, and deep learning among them.

In our earlier work, a basic automated system for general diabetic retinopathy
detection, employing a combination of non-fuzzy techniques, has been proposed ini-
tially [26]. Following this, we investigated the capability of different fuzzy image
processing techniques for the detection of diabetic retinopathy and maculopathy in
retinal images in [27], which was enhanced in [28] with retinal structures’ segmenta-
tion. Different machine learning techniques were used for the classification part to
categorize the images into more detailed classes of the disease. The results show that
employing fuzzy image processing in addition to the retinal structure localization and
extraction can help produce a more reliable diabetic retinopathy screening system.
Therefore, the proposed system in this paper, introducing a combination of techniques
for the image pre-processing part as well as the deep learning, for better classification
of diabetic retinopathy and maculopathy detection.

Data augmentation is implemented to artificially enlarge the datasets to overcome
the shortcomings of using small image datasets, reducing overfitting on the image data
and increasing the algorithm performance. Data augmentation has been used in the
automated detection of diabetic retinopathy systems using deep learning. Lam et al.
[10] implemented random augmentation of images for an automated detection of
diabetic retinopathy in order to improve the capability of network localization and also
reduce overfitting. Among the data augmentation techniques implemented were ran-
dom zeros padding, zoom, rolling and rotation. Meanwhile, five different transforma-
tion types, which are rotation, flipping, shearing, rescaling and translation have been
proposed by Xu et al. in [12] for the automatic classification of diabetic retinopathy
using deep convolutional neural networks. Other augmentation methods, which are
duplication and rotation with several degree angles, were implemented in [15]. Rakhlin
[13] implemented some pre-processing techniques on the retinal images for the diabetic
retinopathy detection with the integration of deep learning classification, including
normalization, scaling, centering and cropping. Pratt et al. [16] implemented data
augmentation, where each image was randomly rotated within the range of 0 to 90°,
randomly horizontally and vertically flipped and also randomly horizontally and
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vertically shifted on the pre-processed images, for diabetic retinopathy detection and
classification. Besides the basic transformations, other pre-processing based augmen-
tations for color enhancements could also be used for the data augmentation. Ghosh
et al. [17] proposed the adjustment of image brightness, followed by rotations of 90 and
180°, which were eventually able to increase the class size six times and adapt to
different orientations and lighting conditions.

2.2 Maculopathy Detection

The localisation and the detection of both the macula and the fovea are essential in
identifying maculopathy. The lesions in the macula region generate maculopathy, while
the fovea is located at the centre of the macula. Some automatic localization and
detection of the macula in digital eye fundus images have been proposed in [30–34].
Meanwhile, the detection of diabetic maculopathy in retinal images have been inves-
tigated in [34–39].

Tariq et al. [36] developed an automated detection and grading system of diabetic
maculopathy using digital eye fundus images. The proposed system involves pre-
processing, exudates and macula detection, some feature extraction, and finally the
classification stage using a Gaussian Mixture Model classifier, where the input image
was graded into three categories: healthy, non-clinically significant macular edema, and
clinically significant macular edema. The same diabetic maculopathy classification
(normal, non-clinically significant macular edema, and clinically significant macular
edema), as proposed by Tariq et al. [36], was also used by Chowriappa et al. in [39].
The proposed system extracted the textural features and classified the eye fundus
images into their classes of disease severity using four ensemble classifiers, employing
the tree-based J48, naïve Bayes, sequential minimal optimization and also the hidden
naive Bayes classifiers.

Meanwhile, a computer system for the purpose of the detection of diabetic macu-
lopathy in human eye fundus images, employing morphological operations, was pro-
posed by Vimala and Kajamohideen in [34]. The green component from the colour input
image was extracted, followed by median filtering and also contrast limited adaptive
histogram equalization techniques. The macula detection was obtained by employing
top-hat transform and bottom hat transform techniques. Some colour and also texture
features were extracted to grade the pre-processed image into two classes: exudates
present or exudates absent, using a Support Vector Machine as classifier. Punnolil [35]
presents the diagnosis system of diabetic maculopathy severity by employing image pre-
processing techniques (colour normalization), the detection of optic disc, both macula
and fovea localization, and then detecting exudates and hemorrhages. After these,
several features were extracted and classified into the maculopathy severity grading
(normal, mild, moderate and severe) using Support Vector Machine as classifier.

Siddalingaswamy and Prabhu [37] proposed a system of automatic grading of dia-
betic maculopathy severity level. The developed system initially performed the green
component extraction, optic disc detection, fovea and macular region detection, then the
detection of hard exudate lesions using mathematical morphological and clustering
techniques. The level of maculopathy severity is classified as normal, mild, moderate and
also severe, based on the exudates location inmarkedmacular region. Another automated
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computer-based system for maculopathy diagnosis in diabetic retinopathy screening was
presented by Hunter et al. in [38], where the detection and filtering of candidate lesions,
extraction of features and classification by a multilayer perceptron were implemented.

In summary, the detection of maculopathy is really important because the untreated
affected macula will eventually contribute to the loss of vision. Therefore, for this
challenging problem, some researchers are currently contributing and proposing
solutions for the detection of maculopathy in retinal images. However, in the previ-
ously reported maculopathy detection systems, image augmentation based techniques
have not been implemented during the pre-processing stage in conjunction with deep
learning for the classification stage. Therefore, this paper presents a novel development
of diabetic retinopathy and maculopathy detection system based on such a combination
of techniques.

3 Proposed Approach

In this paper, a deep learning approach that utilizes “on-the-fly” data augmentation
techniques is proposed. The combination of normal and diabetic retinopathy eye fundus
images from a novel dataset, which was collected from the Eye Clinic, Department of
Ophthalmology, Melaka Hospital, Malaysia, is used to evaluate the model. The new
dataset, with a total of 600 colour eye fundus images, contains images of size
3872 � 2592 pixels saved in JPEG format. The dataset is presented in detail in [29].

Through the proposed approach, input retina images are first pre-processed to
facilitate the classification process. After that, the processed images are fed into a deep
convolutional neural network (DCNN) for classification. This DCNN is trained using
augmented images of the retina with varying levels of retinopathy and maculopathy.

3.1 Image Pre-processing

All input images, from both the training and testing sets, are reduced in size from their
original 3872 � 2592 pixels to 242 � 162 pixels. This reduction was to maximize the
performance of the model, while preserving as many features as possible from the
original image. The aspect ratio of the images was also preserved to maintain the
original shapes and spatial features contained in the original images.

3.2 Deep Convolutional Neural Network

A DCNN model was designed to classify the input images into their respective classes.
The model starts with an image input layer, where the image size is specified, which in
this case is 3 � 162 � 242. Following that, four convolutional layers are implemented,
where each is followed by a 2-dimensional batch normalization layer, a rectified linear
unit (ReLU) and a max-pooling layer. The filter sizes are gradually reduced through the
four layers to reduce the inputs (3 � 162 � 242) into (9 � 14 � 128). The specific
parameters used for each layer can be found in Fig. 2. Following the last convolutional
layer, the features are flattened into a fully connected layer, which also implements a
ReLU activation function:
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f xð Þ ¼ max 0; xð Þ ð1Þ

This layer is then connected to an output layer that has a varying number of
neurons, depending on the categorization (shown in Table 1). The last classification
layer implemented a SoftMax activation function that is tasked with producing the
probabilities of each image belonging to a specific class.

3.3 Training

Following the image pre-processing stage, the model was trained using the resized
images. During the training stage, on-the-fly data augmentation was implemented to
enhance the number of training examples in the dataset. This stage helps with pre-
venting the model from overfitting, while also helping with “calibrating” the high
number of parameters in deep models, such as the one used in this work. The
implemented data augmentation techniques are exactly aimed at the nature of retina
images, where unlike natural scene images, the images are more standardized in terms
of contrast and angles. Therefore, random rotation was the only data augmentation
technique that was implemented with the resized images rotated randomly by an angle
between −20 and 20°.

The model was trained separately for the three different class taxonomy categories
shown in Table 1. The first category splits into two main cases: “no diabetic
retinopathy” and “diabetic retinopathy”. The categorization based on maculopathy
detection is the second one, classifying into two other cases: “maculopathy detected”
and “maculopathy not detected”. The third categorization, representing the experts’
original classification, provides more details and involves ten stages of retinopathy.

All three models were trained using the Cross Entropy Criterion to calculate the
error at the last classification layer. The final error for the model is calculated using the
cross entropy function (C):

Fig. 2. Convolutional neural network structure used
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C ¼
XN

i¼1

XK

j¼1

tij ln yij ð2Þ

where N is the total number of images, K is the number of classes, tij is the indicator
that sample i belongs to class j, and yij is the model’s output for sample i for class j.
Stochastic gradient descent with momentum (SGDM) was used for optimization with
an initial learning rate of 0.0001 and 0.9 momentum. Each model was trained for a total
of 100 epochs using the 70% random split of the dataset that form the training set. For
each of the three models, two different variants were trained, one with and another
without data augmentation.

3.4 Results

All trained models were tested using the same test set without any alteration other than
the resizing. A summary of the classification accuracies for the different categories is
shown in Table 2. The effect of the proposed data augmentation techniques are
apparent with the enhanced performance in all categories. This means that even con-
sidering the small number of training samples in the dataset, our proposed classification
models were able to achieve reasonable accuracies. It is also clear that the classifier
trained for two classes was able to achieve the highest accuracy because each class has
comparably higher number of samples than the other category.

Table. 1. Different categorizations

Categorization I Categorization II
Retinopathy stage No. of images Retinopathy stage No. of images

1. No DR 276 1. Maculopathy detected 131
2. DR 324 2. Maculopathy not detected 469
Total 600 600

Categorization III
Retinopathy stage No. of images

1. No DR 276
2. Mild DR without maculopathy 72
3. Mild DR with maculopathy 27
4. Moderate DR without maculopathy 85
5. Moderate DR with maculopathy 83
6. Severe DR without maculopathy 23
7. Severe DR with maculopathy 11
8. PDR without maculopathy 6
9. PDR with maculopathy 10
10. ADED 7
Total 600
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Meanwhile, for more clarity, the generated confusion matrix is presented in
Fig. 3(a) and (b) to show the relative performance of the classifier. The confusion
matrix for both variant models of categorization I and categorization II show that the
sensitivity value (the percentage of abnormal images which have been classified as
abnormal) is higher than the specificity (the percentage of normal images classified as
normal). The sensitivity and the specificity values for both variants of the second
categorization are similar. The models for the first and second categorizations show that
the classification accuracy model with data augmentation is higher or similar with that
of the model without data augmentation. However, for the third categorization, the
classification accuracy for the model without data augmentation is higher than that of
the model with data augmentation. This happened due the fact that the categorization
III provides a hugely imbalanced number of images for some cases, particularly for the
severe cases of DR. Although categorization II (maculopathy detection) provides an
imbalanced classification between the two main cases, the classification accuracy for
categorization II is the highest among the three categorization. The model was able to
detect the maculopathy presence well, as the maculopathy can be seen clearly from the
quality images provided, and, therefore, the model was capable to differentiate the
severity of maculopathy lesions in the eye fundus images.

It can be concluded that using balanced or near balanced datasets, and suitable data
augmentation otherwise, help increase the classification accuracy. These two factors
should be considered in the development of better detection and classification models.

4 Conclusions and Future Work

An approach for the detection of diabetic retinopathy and maculopathy in colour eye
fundus images implementing data augmentation techniques and deep learning has been
proposed in this paper. In summary, it is challenging to detect the diabetic retinopathy
and maculopathy, particularly using a small and imbalanced dataset for classification.
The use of image pre-processing techniques for the data augmentation helped improve
the classification performance. The classification models can be further enhanced by
employing different image augmentation techniques or different combinations of pre-
processing techniques, including fuzzy techniques, as in our previous work [27–29],
such as fuzzy transform, fuzzy histogram equalization, fuzzy filtering, etc. In addition,
the retinal structures segmentation, such as the extraction of blood vessels and the
localization of the optic disc can be implemented in order to increase the maculopathy
detection performance.

Table 2. Summary of results

Network model Validation accuracy
Categorization I Categorization II Categorization III

CNN without data augmentation 61.11% 77.22% 44.20%
CNN with data augmentation 63.33% 77.22% 42.54%
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Deep learning models have been deployed for the classification of diabetic
retinopathy and maculopathy classification. Problem specific data augmentation was
implemented to overcome the different challenges presented by the classification task.
The proposed models classify the input images into three different taxonomies of
classes, for the purpose of generating a diversity of results and performance analysis.
The three types of classification consist of two types of 2-class classification and one
type of 10-class classification. The classification can be enhanced by using another
categorization involving four cases: no retinopathy class, non-proliferative diabetic
retinopathy (mild, moderate and severe cases) class, proliferative diabetic retinopathy
class and finally the advanced diabetic eye disease class. Pre-trained image classifi-
cation networks also should be considered, as they have already been trained to identify
specific visual features that could be useful when generalized on different tasks such as
this. Additionally, different parameters and further exploration of deep learning
architectures should be performed in order to generate better classification and
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Fig. 3. (a, b) Confusion matrices
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eventually yield a more reliable and accurate detection of diabetic retinopathy and
maculopathy. A future aspect to investigate is due to a big problem, which is that deep
learning methods turn out to be difficult to interpret for humans, which create serious
challenges, including that of interpreting a predictive result when it may be confirmed
as incorrect [40].
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Abstract. Processing and exploring large quantities of electronic data
is often a particularly interesting but yet challenging task. Both the lack
of statistical and mathematical skills and the missing know-how of han-
dling masses of (health) data constitute high barriers for profound data
exploration – especially when performed by domain experts. This paper
presents guided visual pattern discovery, by taking the well-established
data mining method Principal Component Analysis as an example. With-
out guidance, the user has to be conscious about the reliability of com-
puted results at any point during the analysis (GIGO-principle). In
the course of the integration of principal component analysis into an
ontology-guided research infrastructure, we include a guidance system
supporting the user through the separate analysis steps and we intro-
duce a quality measure, which is essential for profound research results.

Keywords: Principal Component Analysis · Data Quality ·
Guidance · Visual Analytics · Data mining · Doctor-in-the-Loop

1 Introduction

Due to the steadily rising amount of data in varying research domains, visual
data analytics is becoming increasingly important. In complex research domains
(such as biomedical research), deep integration of the domain expert into the data
analysis process is required [1]. A major technical obstacle for these researchers lies
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not only in handling, processing and analyzing complex research data [2], but also
in giving chapter and verse for exploiting results. Since conclusions can be no bet-
ter than the received input, users also have to be aware of this GIGO (“Garbage-
In-Garbage-Out”) principle when applying analytics methods.

With our work we aim to assist the domain expert in the whole process
of data modeling, processing, analysis, and interpretation. In particular we are
aspiring to increase interpretability and understanding of advanced analysis tech-
niques, such as the Principal Component Analysis (PCA), which serves as an
example for evaluating our approach. Preliminary work on this topic by Wartner
et al. [3] has focused on the integration of basic PCA functionality, enabling its
use by domain experts without assistance of a data scientist. Moreover, it has
introduced the concept of quality of the result, by a preliminary selection of
certain quality criteria, such as the sample size, the ratio between the number
of observations and variables, and the properties of the correlation matrix. In
this paper, an ascertainment of the quality criteria summarized and combined in
an assessment scheme is presented. Finally, the guided PCA is applied on data
from the MICA (Measurements for Infants, Children, and Adolescents) project
which was performed in cooperation with the Kepler University Hospital Linz.

1.1 An Ontology-Based Research Platform

In order to address the issue of handling, processing, and analyzing complex
research data, we have been working on an ontology-based research platform for
domain-expert-driven data exploration and research. The key idea behind the
platform is that, while being a completely generic system, it can be adapted to
any specific research domain by modeling its relevant aspects (classes, attributes,
relations, semantic rules, constraints, etc.) in the form of a domain ontology. The
whole system adapts itself to this domain ontology at run-time and appears to
the user like an individually developed system. Moreover, the elaborate struc-
tural meta-information about the research data is used to actively support the
domain-expert in challenging tasks such as data integration, data processing,
and finally data exploration.

For a more detailed description on the platform itself and the usage of the
domain-ontology for data exploration the reader is kindly referred to [3–5].

1.2 The Nuts and Bolts of Principal Component Analysis

Multidimensional data can be hard to explore and visualize. Methods such as the
Principal Component Analysis (PCA) are used for simplifying this challenging
task by decreasing the dimensions of the data set. Dimensionality reduction
aims to reduce the number of variables in the data set without significant loss
of information. The new (fewer) variables – in the case of PCA called principal
components – are linear combinations of the original variables, capturing most
of the variation of the original data set. For an introduction to PCA see for
example [6–8].
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Based on the centered covariance or correlation matrix of numeric variables,
PCA works as a solution to the eigenvalue problem. The newly obtained orthog-
onal (i.e., uncorrelated) axes constitute linear combinations of the original vari-
ables and are referred to as principal components. The corresponding eigenvalue
is a measure of importance of the principal component, describing the amount
of variation in the original data explained by the principal component. When
projecting data into a lower dimensional space, the primary motivation is to
preserve most of the variation – the direction with maximum variation is found
in the first principal component, while successive principal components account
for less variance than the previous ones. As a result the least important prin-
cipal components are discarded. What we receive is a data set with a reduced
number of variables. The proportion of a component’s variation, respectively,
sums up to the explained variance of the new system. Eventually, the procedure
is completed as soon as a predefined percentage of the original system’s variance
or number of components has been reached.

There are different ways of visualizing PCA results. Score plots depict the
transformed data points, and thus are used to find patterns and clusters in the
data and to detect outliers within the model, i.e., observations which scatter far
from the data center (see also Fig. 10). Ideally, the majority of data lie around the
origin of the new coordinate system and spread just slightly. Further advantages
arise when chronological sequences are to be analyzed. The analyst is able to
determine when a process is getting out of control by tracking the time-related
course of the transformed observations. In the event that the position of the
observation is increasingly migrating from the origin and out of the control ellipse
(see also Sect. 2.2), there is a high chance that one or more variables are taking
on unfavorable values. Likewise, in non-sequential data (as in our experimental
data), points of large deviation to the center of the hyperplane of the PCA
model (and/or outside the control ellipse) differ more strongly from the rest of
the observations. While score plots are used for examining the similar behavior
of observations, loadings plots are used to investigate the influence of variables
on a certain principal component (see also Fig. 9). A variable’s position (weight)
close to zero indicates little importance, whereas high weights emphasize the
contribution to the component. For pattern recognition, the relative positions
of the variables to each other also play a pivotal role (close locations imply
high correlation and vice versa). Merging both, the sample scores and variable
loadings, in one visualization, the resulting visualization is called a biplot. In
order to find observations which are not explained well by the model, samples
can be colored by the squared prediction error (SPE) to graphically represent
the size of the residuals.

2 Quality Measure

To the author’s knowledge, no previous work has proposed the assessment of
PCA result quality by a single metric. As a result, we develop an expansive eval-
uation scheme, modifiable for versatile types of analysis. In fact, we differentiate
between the quality of a criterion and that of the entire data set, where the lat-
ter comprises the assessment of all quality criteria. Furthermore, the procedure
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of quality assessment also comprises quality criteria not assigned a grade, such
as linearity or normality. However, the system makes domain experts aware of
checking these requirements.

2.1 A Polymorphic Evaluation Scheme

Firstly, each quality criterion is graded as good, ok, and bad. Secondly, the overall
quality is determined according to the subsequent rules:

– If more than 50% of the quality criteria are graded as good, and no bad has
been given, the result quality is graded as good.

– If at least 50% of the quality criteria are graded as ok and no bad has been
given, ok is awarded.

– If at least one criterion is graded as bad, the quality of the result is marked as
inadequate (bad quality). This is because when at least one quality test fails,
severe side effects might arise in interpreting the results.

It is worth noting that the choice of 50% is not restrictive, but merely reflects the
experience of the authors in certain studies. One major benefit of this evaluation
scheme is its polymorphism, as each data mining method and statistical analy-
sis has most diverse requirements to the underlying data structure and quality.
A tailor-made solution can be achieved by cobbling together various key fig-
ures in order to meet method dependent requirements. In the following section,
the quality criteria specifically used for determining the PCA result quality are
described.

2.2 Quality Criteria and User-Interpretable Assessment Methods
for Model Quality

This section provides an overview of the quality criteria specifically when apply-
ing PCA.

Sample Size and Ratio Between Number of Samples and Variables.
A study by Osborne et al. [9] has shown that PCA results of data with both
large sample sizes and high ratios had superior quality to those where the data
had large sample sizes only. In the following table, as well as in the upper part
of Fig. 7, we adapt their proposed sample guidelines to our assessment scheme,
where n denotes the number of observations and r the ratio between the number
of observations and variables (Table 1).

Table 1. Assessment scheme of the sample size quality criterion, where n denotes the
number of observations. This classification is partially summarized from recommenda-
tions by [9].

Assessment Sample size Ratio

Good n ≥ 500 r ≥ 10

Ok 200 ≤ n < 500 5 ≤ r < 10

Bad n < 200 r < 5
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Communalities. The communality r2x of a variable x is computed as the sum
of the squared correlations between the extracted principal components and the
variable x. When using standardized data, the communality of a variable is
computed as the sum of the squared loadings for this variable. It indicates how
good the variable is explained by the extracted components. The closer the value
to 1 is, the better the observed data for the variable is reflected in the model
[10]. To the user, the communality for each selected variable is shown within the
numeric output section (see last column in the result view section of Fig. 8).

Correlation. In a study conducted by Dziuban et al. [11], the importance of
prior inspection of the correlation matrix, as well as the major interpretation
pitfalls on examples of random data have been shown. It has been suggested
that enough entries beyond the diagonal have to be greater or equal to 0.3 –
raising a difficult question here in defining what is meant by “enough” [12].
To that end, the Kaiser-Meyer-Olkin test (KMO) has been introduced [13] to
measure the sampling adequacy which gives, prior to analysis, an indication
to the meaningfulness of applying PCA to the data set. It was later modified
in Kaiser et al. [14] to the forms in Eqs. (1) and (2) to improve stability. A
major advantage over other methods (e.g., the Bartlett’s test) is the possibility
of simultaneously interpreting individual features and the overall quality of the
correlation matrix [11].

Let (rij) denote the correlation matrix, (sij) the inverse of the correlation
matrix and (qij) the partial correlation (or anti-image correlation) matrix of the
input variables, where

qij := − sij√
siisjj

.

Then the overall measure of sampling adequacy (KMO) is defined as:

KMO :=

∑

i

∑

j �=i

r2ij
∑

i

∑

j �=i

r2ij +
∑

i

∑

j �=i

q2ij
(1)

The partial correlation estimates the relationship between two statistical vari-
ables while controlling for the effect of one or more other variables. Equation (2)
provides the computation of the KMO for each variable separately:

KMO(i) :=

∑

j �=i

r2ij
∑

j �=i

r2ij +
∑

j �=i

q2ij
(2)

In contrast to traditional measures of sampling adequacy, which have been
proven to be unstable for poor data, this instability has been corrected through
normalization by Olkin, hence any result value must lie between zero and one.
Following Kaiser [14], the assessment scheme is shown in the correlation part in
Fig. 7. The closer the value is to 1, the more suitable the variables are (Table 2).
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Table 2. Rule for the interpretation of the overall KMO measure after Kaiser [14] and
the related assessments integrated in the quality measure.

Assessment Evaluation KMO

Good Marvelous ≥ 0.9

Meritorious ≥ 0.8

Ok Middling ≥ 0.7

Mediocre ≥ 0.6

Bad Miserable ≥ 0.5

Unacceptable < 0.5

Linearity. Another procedure of human supported quality assessment involves
the inspection of the structure the data follows [15]. Linearity is given in case
there is constant spread in data, i.e., data is homoscedastic, and no (strong)
outliers are detected in the data set. This quality criterion is not assigned any
grade, but is rather to be examined by the user. A simple and effective way
of investigation is offered by a scatter plot matrix, showing n · (n − 1)/2 plots,
where n is the number of variables. The variables names are written in a diagonal
line from top left to bottom right. Each bivariate plot delineates the association
between two variables of the data set – desirably the vast majority should show
linear relationship, i.e., the plot should look like a line. Non-linear patterns
between variables can not be detected by PCA (see Fig. 1 for an example to
interpret).

Fig. 1. Scatter plots showing the relationship between a pair of variables, each. In the
first plot it is probably safe to say that there is a correlation between the variables,
whereas the second plot does not show recognizable correlation.

Normally Distributed Data. Although PCA can be performed on data that
is not normally distributed, it might overlook patterns since it only handles
first and second order dependencies like mean and variance. If the data is not
normally distributed, higher order dependencies might be present but are not
detected by PCA. Furthermore, independence of the components is only guaran-
teed in case of normality. If the data is not normally distributed, other methods
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like independent component analysis (ICA) may give further insight [16]. Auto-
matic grading of normality is not included in the combined quality metric, but
it is recommended to the user to investigate normality plots or normality tests
(see also Thode [17]) in the detailed quality description listing. To easily assess
whether data fits a normal distribution or not (and to which extent), an addi-
tional scatter-chart related visualization is provided in the research infrastruc-
ture rather than normality tests. In this plot, the normal theoretical quantiles
are plotted against each variable (see Fig. 2). According to the resulting curve
characteristics, conclusions of the distribution can be drawn, including also sup-
plementary information on kurtosis or skewness. If data follows a straight, linear
pattern, it can be assumed that data is approximately normally distributed.

Fig. 2. The normality plots for the weight of the mother (on the left) and the age at
measurement time (on the right). On the left-hand side graph, data follows approx-
imately the normal distribution, except for the outlier on the top right corner. The
right-hand side graph shows heavy tails, thus this variable doesn’t follow the normal
distribution.

Outliers. For determining the suitability of samples for inclusion, outliers can
be distinguished as:

– outliers within the model, detected by the control ellipse by the visual assess-
ment of unusual points (see Fig. 10), and,

– outliers between the model and the measured data, examined by the squared
prediction error (SPE, see also Fig. 3).

Like all linear methods PCA is very sensitive to outliers. Hence, a lot of attention
has to be given to proper outlier handling.

Control Ellipse. The control ellipse is an addition to the score plot. Its aim
is to visually identify potential outliers within the model. The control ellipse is
derived via Hotelling’s T 2, which indicates if a certain observation conforms to
the mean of observations. In other words, it measures if an observation is in
control. According to [6],

T 2 := zL−1z =
k(n − 1)
n − k

Fk,n−k,α,

where z is the score vector of said observation, L is the diagonal matrix of
eigenvalues, k the number of principal components, n the number of observations,
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α the significance level and Fk,n−k,α the critical value of the F -distribution with
respect to the parameters k and n − k. Since we only draw two-dimensional
control ellipses for principal components PCi and PCj , this formula reduces to

T 2
i,j =

z2i
λi

+
z2j
λj

=
k(n − 1)
n − k

Fk,n−k,α,

with λ denoting the eigenvalues. Hence the control ellipse’s center is 0 and its
half-axes lengths HA(i) and HA(j) are

HA(l) =

√

λl Fk,n−k,α
k(n − 1)
n − k

for l = i, j. Most commonly used values for α are 0.05 or 0.01, depicting a control
ellipse of 95% or 99%, respectively.

Squared Prediction Error. The squared prediction error (SPE or Q-statistic)
for an observation is defined as the squared difference between its actual value
and the value predicted by the model, i.e., the scalar product of the error vector
of the predicted vs. the actual observation vector with itself. It gives an indication
for the model fit (see Fig. 3).

Fig. 3. The squared prediction error information board of the PCA result. The line
chart shows that some SPE values are exceeding the 95% limit (orange horizontal line)
or even the 99% limit (red horizontal line). The table below illustrates the numeric
SPE values for each observation, numbered from 1 to n. According to the limit the
record exceeds, the record is colored either orange or red. Further the observed and
predicted values for each variable are listed. (Color figure online)
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Contribution Plots. Contribution plots are a simple graphical way of inves-
tigating the contribution of a variable to the PCA model (see Miller et al. [18]).
The aim here is to find the variable(s) that contribute most to unusual values
detected in the model and to investigate how these values have been achieved. A
variable’s influence can either be positive or negative and vary in the strength of
its contribution. Commonly, bar charts are used for illustration. In our system,
those plots have been realized for score values and the squared prediction error
of an observation.

Score Contribution Plot. The score of an observation is a vector whose
dimension equals the number of principal components. The individual entries
of a score vector are computed as a linear combination of the original vari-
ables, i.e., as a weighted sum of the original variables. The terms in this
weighted sum are the contributions of the original variables to this observa-
tion with respect to the principal component and they can be visualized in a
score contribution plot, which looks similar to the SPE contribution plot in
Fig. 4.
SPE Contribution Plot. Every observation has an SPE value. This SPE
value is the sum of squares of the entries in the error vector of the predicted vs.
the actual observation vector. The individual summands of the SPE value each
depend on an original variable and are called the SPE contributions of the
individual original variables. They can be visualized in an SPE contribution
plot (see Fig. 4).

Fig. 4. A squared prediction error contribution plot example of the red marked mea-
surement in Fig. 3 on the first principal component. As shown by the figure, the foot
length contributes the most to this record. When going back to the raw data, this
record shows a rather high value in the variable foot length compared to the other
observations. (Color figure online)
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It should be noted that the quality criteria listed above include a selection of
the most important prerequisites for PCA quality assessment, but may not com-
prise all relevant prerequisites. If necessary, additional quality criteria may be
embedded steadily into the proposed quality measure.

3 Results and Discussion

3.1 Data Set

The MICA (Measurements for Infants, Children, and Adolescents) project start-
ed in 2010 with the aim of acquiring detailed demographic and biometric data
of children and thus to determine the body surface of children more accurately
[19]. In cooperation with the Kepler University Hospital Linz about 3200 chil-
dren aged 0 to 18 were measured by nurses in the outpatient department of the
hospital. Those measurements contain more than 30 variables describing bio-
metric variables, such as weight, length and circumference of the child’s head,
lower legs, hands and feet. Most of the variables are numeric, which have been
included in the principal component analysis.

Fig. 5. On the first page of the wizard available numeric variables and the correspond-
ing ratio of null values are shown. Though some of the variables are rated with a
warning sign, we consider them to be sufficient for analysis. In this PCA run, missing
values will be replaced by the variable mean.
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Fig. 6. The second page of the wizard. The top of the graph illustrates the matrix type
selection. Beneath, options for specifying a stopping rule are provided. For support, a
scree plot can be precomputed. Within this graph, the Kaiser criterion is illustrated
as a second indicator for showing the recommended number of components to be kept.
This threshold is visualized by the horizontal line in the chart. In this example, two out
of 15 principal components fulfill the requirements, as their eigenvalues are exceeding
the threshold (highlighted table entries).

3.2 Approaching Reliable Data Quality

One of the most essential steps in profound data analysis is the preliminary
work of data cleansing. Though principal component analysis aims at detecting
outliers in data, it is important to remove obviously incorrect data already in
advance. Referring to this medical data set obviously erroneous records including
values such as negative age at the time of measurement or zero-values in size or
weight of the parents have been discarded. Another hot topic is how to handle
missing values. Rather than forcible discarding an observation holding at least
one single missing value, a softer and more dynamic approach of managing the
affected observations is proposed to the user. Scheffer [20] suggests applying
single or multiple imputation methods, i.e., to fill in missing values by including
means, medians or modes, computed by all known values of the corresponding
variable. The default setting in our implementation is the replacement of missing
values by the variable mean. If missing values are not to be imputed, the system
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proposes an alternative configuration – variable and observation exclusion. Both
exclusion thresholds can be adapted dynamically by the researcher. However,
according to Nelson et al. [21], a higher threshold than 20% missing values leads
to losses in performance when applying missing data algorithms (see also Figs. 5
and 6).

Fig. 7. Excerpt of the detailed quality description listing shown to the user. The over-
all quality is computed as bad (red highlighting on the top of the figure). Assessment
scheme classification (good, ok, bad) of the actual computed key numbers are high-
lighted in light gray. As an additional information a short and comprehensible descrip-
tion is provided to the user. (Color figure online)

Regarding the medical data set, a vast majority of the variables describe
measurements of the children. As a matter of fact, some parts of the body grow
more or less at the same rate – resulting in similar proportions and therefore
multiples in their correlation.
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The aim of this evaluation primarily is to showcase the practical use of the
quality measure, to illustrate how to derive new hypotheses from the data, and
to compare and validate them with existing knowledge, rather than acquiring
new medical knowledge or testing hypothesis on a confidence level.

In a first PCA run, including all of the measurement variables, the corre-
lation quality criterion of the quality measure indicated untrustworthy results
(see Fig. 7). After revising the input variables for achieving reasonably good
correlation values, i.e., the occurrence of multiples of variables is very unlikely,
the following 15 variables have been included in analysis (see guided parameter
selection in Fig. 5):

– parent related information such as the weight and height of the child’s mother
and father,

– gestation period, and
– child/adolescent related information such as birth weight, head width, head

length, head size, hip width, waist size, forearm size, body height, lower leg
size as well as the foot length.

In order to facilitate the application of advanced data mining methods for domain
experts, data preparation and parameter selection is intended to be automated
as far as possible. In case of PCA, this means choosing the right data matrix as
well as an adequate number of principal components. Hence, this is necessary for
achieving a good fit of the model while keeping as few components as required for
simplifying the model. The substantial challenge here lies in finding the optimal
number of principal components to keep. However, a great number of commonly
used criteria such as significance tests or graphical procedures are available and
may be combined [6]. Thus, a selection of those criteria has been integrated in
the research infrastructure.

A further graphical approach is provided by the scree test. On the x-axis,
all principal components are depicted, whereas the y-axis shows the eigenvalues
in descending order. The rationale for this method is that few eigenvalues show
particularly high values, accounting for the most variance with a subsequent
sudden drop in the eigenvalues. Either the components up to this drop or those
with eigenvalues at least as high as a specified threshold (Kaiser criterion [13,
22]) are recommended to retain (see Fig. 6). This rule should just serve as an
approximate value, as it tends to overfactor [23].

In their review, Hayton et al. [23] summarize the benefits from the more
accurate factor retention method parallel analysis. The basic idea is to compare
the eigenvalues of the sample data to those of a number of random generated data
(exhibiting the same size and number of variables). What is expected here is,
that observed eigenvalues of valid principal components are larger in comparison
to the average of the eigenvalues of the parallel components. This method will
be provided to users as a supplementary factor recommendation method.

Finally, all necessary input parameters are set to start PCA.
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3.3 The Infinite Thirst for Knowledge

Interpreting a PCA output on a numeric base has proven to be complex and
difficult for domain experts who are not trained in the fields of mathematics or
statistics. When the result is computed, a result package including all relevant
information and visualizations of the aforesaid sections is shown to the user.

Fig. 8. Holistic view of the entire system and the integrated result of a PCA run

The holistic view is shown in Fig. 8. On top of the graph the data is shown.
The bottom section (see Result View) opens subsequently to PCA computation,
containing four tabs for result examination. On the present image, the numeric
output tab is opened. In the visualization section, scores, loadings, and biplot are
shown. The quality tab lists automatically computed quality criteria (see also
Fig. 7). The last tab shows a view for the squared prediction error (see Fig. 3).
In order to ensure correct results, all outputs of the implementation have been
validated using the R language [24].

In order to facilitate access to interpretations, three types of plots described
in Sect. 1.2 had already been integrated previously in the research infrastructure
(see [3]).

In Fig. 9, loadings plots of the current PCA result are depicted. The first
graph shows the transformed variables of the data set with the first principal
component as the x-axis and the second principal component as the y-axis.
Since rather all child related variables are located far from the origin, a strong
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Fig. 9. Loadings plots based on the second PCA result computed in Sect. 3.2. The first
graph illustrates the loadings plot of the first and the second principal component, char-
acterizing the x-axis and y-axis. On the second graph, the x-axis and the y-axis depict
the first and the third principal component. The location of the PCA-transformed vari-
ables plotted on the graph provides insight into the strength of correlation between the
original variables and the influence of a variable on the specific component.

influence exists by those measurement variables on the first principal component.
According to the graph, the child’s proportions are correlating strongly with
each other, as anticipated. When regarding the second principal component (y-
axis), variables contributing to pregnancy and childbirth are described, as they
delineate high weights according to this component. Based on our experimental
data, due to their proximity, the birth weight of the child and the gestation
period show high positive correlation, i.e., the longer a woman is pregnant, the
heavier the child is at birth. It is also apparent that maternal height seems to
have positive association with the gestation period, i.e., that the gestation length
is increased for taller women. Literature research actually has shown that this
slight influence has already been found in other experiments [25]. Additionally,
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the third principal component has been evaluated as it gives an indication of
the parental influence on the child related data (see Fig. 9). According to the
positions of parental body height and weight divergent to duration of pregnancy,
influences of maternal and paternal properties are emerging (see also Morrison
et al. [26]).

Fig. 10. The score plot (based on the second PCA result computed in Sect. 3.2) of
the first and the second principal component, characterizing the x-axis and y-axis.
The color scheme represents the SPE-values of each record. Small deviations (between
the actual and the predicted model) are colored white, whereas high differences are
highlighted in darker color. (Color figure online)

In Fig. 10 a score plot of the experimental data is shown. Each point is
colored after the squared prediction error. The color represents the distance of
the observation to the hyperplane – the darker a point, the higher the distance.
In this case, the specified observation is badly explained by the model and is
an indication for a potentially corrupted record. It might also be worth to take
a closer look at this specific record and to find out why it differs so greatly
from the remaining records. Generally, the interactive implementation of the
charts provides the connection from drawn points selected in the visualization
to the raw data. The corresponding records are then highlighted in the data
view (for an example of the data view see Fig. 8). Further investigations of the
experimental data showed the expected outcome and how to interpret PCA
results (see Fig. 11). Positive correlations between the growth of included body
regions and the stages of age are apparent in each of the plots.

Recall that projections by PCA are only applicable to numeric variables. In
case other data types such as categorical variables should be incorporated into
analysis, scores can be colored in the corresponding colors and therefore used,
e.g., for cluster analysis. Further analysis on comparing the behavior of various
subgroups follows the same procedure as introduced, by using subsets of interest
based e.g. on gender, ethnicity, or other characteristics. However, it is important
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to bear in mind the possible bias in these responses as well as the fact that
PCA merely can find linear patterns, it is not applicable for detecting non-linear
relationships.

Fig. 11. Age graded score plot (first graph) and measurement graded score plot (second
graph). The points are colored from white to blue, whereby the white points on the
first graph represent children measured in early years, bluish points represent older test
persons. On the second graph white points depict smaller children, the bluish points
depict taller children. (Color figure online)

4 Concluding Remarks and Future Work

We integrated PCA with an augmented guidance system into an ontology-guided
research platform – starting with the control for appropriate input variables
and reasonable hyperparameters, going ahead with informing the user about
the reliability of the received output and recommendations on how to approach
a more trustworthy result, and providing interactive visualizations and result-
related information for investigating data patterns and creating new hypotheses.
Technically, we introduced a quality measure for PCA which supports the domain
expert in checking if the data have the necessary quality and structure for a



Semi-automated Quality Assurance for Domain-Expert-Driven DE 145

meaningful application of PCA, and in improving the data in order to increase
its quality, e.g., gather more data, remove essentially duplicate variables, etc.
We also showed how this guidance works by applying it to the MICA data set.
Overall, it is crucial to reach higher interpretability from data mining techniques,
so that humans can understand the path from data to results and – by far more
important – the meaning and reliability of the result. Further developments
of the linkage between ontologies and probabilistic machine learning is a hot
future topic and may lead to profound contributions in terms of explainable AI
[27]. Future work includes an usability study with medical doctors to evaluate
how good the guidance system works in practice. We also plan to integrate other
methods augmented with a guidance system like mixed factor analysis, regression
and different clustering methods. Another component to include will be support
for the user in the choice of the correct statistical test for a problem, depending
on (amongst other) what the user wants to examine, the number of variables
or the data type of the chosen variables. Therefore the user will be asked the
necessary questions in a wizard in advance and a selection of possible tests will
be given as a result.
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Abstract. In the era of big data when a huge amount of data is continu-
ously being generated, it is common for situations to arise where the num-
ber of samples is much smaller than the number of features (variables) per
sample. This phenomenon is often found in biomedical domains, where
we may have relatively few patients, compared to the amount of data per
patient. For example, gene expression data typically has between 10,000
and 60,000 features per sample. A separate issue arises from the “right
to explanation” found in the European General Data Protection Regula-
tion (GDPR), which may prevent the use of black-box models in applica-
tions where explainability is required. In such situations, there is a need
for robust algorithms which can identify the relevant features from exper-
imental data by discarding irrelevant ones, yielding a simpler subset that
facilitates explanation. To address these needs, we have developed a new
algorithm for feature ranking and feature selection, named Ranked MSD.
We have tested our proposed approach on two real-world gene expression
data sets, both of which relate to respiratory viral infections. This Ranked
MSD feature selection algorithm is able to reduce the feature set size from
12,023 genes (features) to 65 genes on the first data set and from 20,737
genes to 31 genes on the second data set, in both cases without any signifi-
cant loss in disease prediction accuracy. In an alternative configuration, our
proposed algorithm is able to identify a small subset of features that gives
better accuracy than that of the full feature set. Our proposed algorithm
can also identify important biomarkers (genes) with their importance score
for a particular disease and the identified top-ranked biomarkers can play
a vital role in drug discovery and precision medicine.
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1 Introduction

It has been observed that the use of ML (machine learning) algorithms has been
increased in healthcare applications that deeply impact the life of patients [24].
The term “black-box model” is used for those ML models that fail to explain
their predictions in a way that humans can understand and make some meaning-
ful conclusions for decision making. According to Rudin [17] due to the lack of
proper explanation and transparency of black box models, there might be severe
consequences of using them for decision making specifically in health, finance
and in the domains where people are directly involved. Therefore, rather than
using black-box models without a proper explanation if we use models that are
explainable or use secondary analyses to generate explanations from black-box
models, then it can surely help in better decision making, particularly in the
medical domain where medical professionals want to understand how and why a
machine decision has been made. Moreover, algorithms that can facilitate mean-
ingful explanations could enhance the trust of medical professionals in future AI
or ML based systems [11].

In supervised machine learning, a classification algorithm is learned by apply-
ing it to a set of training samples or instances, where each instance contains a
vector of attribute values (also called features) and a class [16]. For example,
in genomics, the features are generally genes (of which there are typically thou-
sands) and the class label might denote whether or not a patient is infected.
Here the problem is that we have thousands of genes and all the genes are not
relevant for a particular problem or disease. We are only interested in very few
most important genes which can be targeted for further study or drug discovery.
Therefore, it is very important to identify and select the very few most important
genes. One way to solve this problem is to use an appropriate feature selection
technique. Most of the machine learning algorithms are designed in such a way
that they learn which are the most important features to use for decision making.
In theory, they should never select irrelevant and unhelpful features. But there
is a difference between theory and practice. In practice, irrelevant or distract-
ing features often confuse machine learning systems and lead to deterioration
of classification accuracy [31]. Having a large set of irrelevant features require
excessive computational time and memory space. Moreover, a large number of
irrelevant features make it very hard to interpret the representation of the tar-
get concept. Because of these bad effects of irrelevant features, it is common to
perform feature selection before applying any learning algorithm.

When we want to perform feature selection, there are two different broad
types of approaches. The first type are filter methods, which make an assessment
of feature importance based on general characteristics of the data, using criteria
that are independent of the subsequent machine learning algorithm. The second
type are wrapper methods. Wrapper methods start with an empty set of features,
and iteratively add/remove features until an optimal feature set is found [31].
An important property of filter methods is that they can assign a score to all
the features, based on which features can be ranked in the desired order. This is
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useful when we need to select the top few features for further analysis. On the
other hand, wrapper methods do not, in general, have any mechanism to rank
features.

In this work, our overall goal is to identify the important biomarkers or genes
for a particular disease, and assign an importance score to each biomarker. There-
fore, the focus of this paper is on filter methods, and wrapper methods are not
applicable. In this paper, we propose a feature ranking algorithm named Ranked
MSD which gives a ranked list of all the features with their importance score.
We also propose two more feature selection algorithms Fequal and Fbest. Fequal

gives most strongly relevant features and Fbest gives all the relevant features
by discarding irrelevant features. The overall approach can identify the most
important biomarkers and can help in explaining the predictions.

The rest of the paper is structured as follows. In Sect. 2, we describe related
work. Section 3 describes the two real-world data sets used to perform exper-
iments. In Sect. 4, we explain the proposed algorithms. In Sects. 5 and 6, we
present the overall experimental design and methodology used. In Sect. 7, we
discuss how we can explain predictions using our approach. In Sect. 8, we discuss
results in detail with comparative analysis. In Sect. 9, we present the identified
biomarkers using proposed algorithms. In Sect. 10, we discuss the significance of
identified biomarkers, and finally we conclude in Sect. 11.

2 Related Work

A basic and natural way to interpretability is to provide explanations of an ML
model’s predictions in the form of input features [14]. This is the reason most of
the work that tried to explain the predictions of black-box models used in some
sense the features that have some influence on the class of interest [14,23,26].
Riberio et al. proposed an approach called LIME [23] which can explain the
prediction of a classifier by providing a small list of features that either con-
tribute to the prediction or are evidence against the prediction. In our work,
using Ranked MSD approach we are also suggesting a small list of features with
their importance score that can explain the predictions of a classifier. This fea-
ture importance score also denotes class discriminative power of that feature.
For computing contribution of features, LIME uses K-Lasso an approach based
on Lasso [8] and we are using our proposed approach which is explained in Algo-
rithm 1. Filter methods can be used to compute contribution or importance of
features. Most of the filter methods use feature ranking as a principle mecha-
nism for feature selection [9]. Feature ranking is a type of preprocessing that
ranks features in ascending or descending order of their relevance to the class
label based on a computed score for each variable or feature. A suitable thresh-
old is then used to select the top ranked features [4]. Filter methods are not
dependent on the choice of the classifier or predictor. However, under certain
assumptions, it may produce optimal solution for a given predictor [28]. One of
the most important properties of a good feature is that it contains useful infor-
mation of the different possible classes in the data. This property is known as
feature relevance [16], and relates to the usefulness of a feature in discrimination
of classes.
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In the following sub-sections, we will discuss two state-of-the-art filter meth-
ods, against which we will compare our proposed feature ranking algorithm.

2.1 Correlation Criteria

As described by Guyon et al. [9], the Pearson correlation coefficient can be
defined as:

R(i) =
Cov (Xi, Y )

√
V ar (Xi) V ar (Y )

(1)

Here Cov denotes covariance and V ar denotes the variance. Xi denotes the
ith feature vector and Y denotes the outcome. R(i) represents the fraction of
the total variance around the mean value y, therefore, the R(i)2 can be used
as a variable ranking criterion, with which we can rank features in ascending or
descending order. R(i)2 can be used for two-class classification, for which each
class label is mapped to a given value of Y , e.g., 0 & 1.

2.2 Information Gain

Another well-known feature selection approach is Information Gain, which can
be classed as an information theoretic ranking criterion [4,9,16]. It is based on
Shannon’s definition of entropy which can be represented as:

H (Y ) = −
∑

y

p (y) log (p (y)) (2)

This formula represents the information content or uncertainty in any vari-
able Y . Now if we observe a new variable X, then the conditional entropy can
be represented by the following formula:

H (Y |X) = −
∑

x

∑

y

p (x, y) log (p (y|x)) (3)

This formula says that by observing a variable X, the uncertainty of the
output or variable Y is reduced. Now the formula for Information Gain IG can
be represented as:

IG(Y,X) = H(Y ) + H(X) − H(Y |X) (4)

Here H(Y ) is the information content or uncertainty of class variable Y ,
the second term H(X) is the information content of observed variable X and
H(Y |X) is the conditional entropy.

3 The Respiratory Viral Data Sets

We have conducted experiments on two real-world data sets, both of which
are related to respiratory viral infections. The first data set is collected from 7
Respiratory Viral Challenge studies which is available for open access on Gene
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Expression Omnibus (GEO) using accession number GSE730721. This first data
set consists of a total of 151 human volunteers. All the volunteers were healthy
when they enrolled for the study. After enrolment in the study, all subjects
were inoculated with one of the 4 viruses (H1N1, H3N2, HRV, RSV). Their
blood samples were taken at different pre-defined time-points, thus delivering
gene expression profiles from non-infected individuals as well as from infected
ones [19]. The details related to labels and other additional details of this data
set can be found on GEO (accession number GSE73072). From the start, total
151 subjects were enrolled in these 7 challenge studies, however, we have to
exclude 47 subjects from the study because those subjects’ gene expression data
are either inconsistent (faulty) or missing, and faulty data can be misleading and
harmful while model-building. Detailed information about the excluded subjects
can be found in a paper that used this dataset before [30].

The second dataset contains gene expression profiles of 133 adults whose
samples are taken in three different seasons - Fall, Winter and Spring. Baseline
samples are taken at the time of enrolment of volunteers (Fall season). Day 0, Day
2, Day 4, Day 6 and Day 21 samples are taken during the winter season (Influenza
season). Samples of all the volunteers are taken again in Spring season. For each
volunteer, samples are taken at up to seven time points before, during, and after
the occurrence of illness (Influenza and other acute respiratory viral infections).
Among those seven time points, the samples taken before illness (baseline), at
day 21 and during Spring season are healthy samples and rest of the samples
are infected samples as they are taken during the illness (day 0, day 2, day
4 and day 6). A total of 890 microarray samples were collected. Any samples
that failed Quality Control were excluded from the study (N = 10), leaving 880
high-quality arrays from which the subsequent analysis was conducted. Out of
these 880 samples, 373 samples are healthy samples and rest of 507 samples are
infected samples [33]. There were in total 47,254 probe IDs in each microarray
sample from which 20,737 probe IDs have unique gene mapping; therefore, we
left with a total of 20,737 genes for further analysis. This data set is also openly
accessible on GEO via accession number GSE683102.

The first dataset contains in total 12,023 genes and the second data con-
tains in total 20,737 genes; however, a large number of genes have little or no
contribution in finding the progression of a particular disease, so it is crucial to
find that small number of genes which actually provide diagnostic signals and
contribute the most at the time of a particular disease progression. It is also
important to understand their importance for that disease prediction and for
finding treatment targeting those genes. In this work, using the proposed Ranked
MSD feature selection algorithm, we are interested in finding the strongly rele-
vant features (genes) which are potential biomarkers and contributing the most
in respiratory viral disease prediction. Our software implementing our algorithm
is open-source and freely available; R code for it can be accessed here: https://
github.com/researher/Ranked MSD.

1 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73072.
2 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE68310.

https://github.com/researher/Ranked_MSD
https://github.com/researher/Ranked_MSD
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73072
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE68310


152 G. Verma et al.

4 Proposed Algorithms

We have developed a feature ranking algorithm and two additional schemes
(Algorithms 2 and 3) for feature subset selection. One can observe these three
algorithms as one but here we have designated them as 3 individual algorithms
for simplicity of explanation; their purpose is to rank all the features, identify
strongly relevant and relevant features respectively for a particular problem.

Algorithm 1. Ranked MSD Feature Ranking Algorithm
Input: The training data Ytr = [G1, G2, ..., Gm]n×m , where n = number of samples,
m = total number of features; a vector of class labels C = [C1, C2, ..., Cp], where p =
total number of classes and p ≥ 2
Output: RFAll = Ranked list of all the m features

1: Create Reference vector R1×m, where R is the feature wise mean of all the samples
belong to class C1 of Ytr

2: Create Target matrix Tj×m, where j = number of samples in T and T contains all
the samples from Ytr except class C1

3: Compute Mean Squared Difference (MSD) for each feature

MSD1×m =
∑j

1(Tj×m−R1×m)2

j
� MSD is a named vector that contains

feature names and MSD values.
4: Compute RFAll by arranging the MSD in the descending order of their values.
5: Return RFAll

The name of the proposed feature ranking algorithm is Ranked MSD which
needs only training data in input and returns a ranked list of all the features
(RFAll) with their importance score. In the first step of Algorithm 1, we create
a Reference vector R1×m which contains the feature wise mean of all the samples
belong to a particular class say class one or base class. In our application, all
these samples of class one belong to the negative class (all healthy samples) thus
the Reference vector R represents the gene expression values of healthy samples
on an average. In other words, the Reference vector R can be used as a repre-
sentative of the base class. In the second step we create a Target matrix Tj×m

which contains all the samples from training data except class one i.e. healthy
samples. In the third step, we compute the Mean Squared Difference (MSD) for
every feature (gene) from the formula shown in Algorithm 1. This MSD serves
as a scoring function for the proposed algorithm. This scoring function preserves
the difference between healthy gene expression values and infected gene expres-
sion values and gives the highest score to the highly differentially expressed gene
and so on. Then in the next step, we compute the ranked list of all the features
(RFAll) by arranging the computed MSD score in descending order of their val-
ues. Here the MSD vector is a named vector which has feature names as heading
and computed scores as values. Therefore when we arrange them in descending
order of their values the most important genes are the top ones.

Once all the features are ranked, we may wish to select a subset of relevant
features from (RFAll). A simple solution is to take ranked features one by one
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sequentially and evaluate them by training a classifier until we get the best
accuracy. In the worst case, this method has high time complexity of order
O(m ∗ T ) where m is the total number of features and T is time complexity to
train a classifier which depends on the classification algorithm used (and may
have higher-order complexity). The proposed Algorithms 2 and 3 provide a less
time-consuming solution for this problem in comparison to the sequential search.
To understand the Algorithms 2 and 3, first, we need to define the following
terms.

Definition 1: (Feature Set with First Statistically Equal Accuracy) - Fequal is
the feature set that has minimum number of top variables or genes (subset of
full feature set) and gives accuracy which is statistically (according to a t-test)
equivalent to the accuracy of using the full feature set.

Definition 2: (Feature Set with Best Accuracy) - Fbest is a subset of the full
feature set which gives the best possible accuracy.

Algorithms 2 and 3 are designed in such a way that they can give us Fequal

and Fbest respectively, since depending on the problem that we wish to solve, we
may need to identify strongly relevant features or all relevant features: Fequal

contains strongly relevant features, such as the most important biomarkers if
applied to the biomedical domain. Fbest gives us the feature set with best accu-
racy, which therefore contains all relevant features (including the strongly rel-
evant features as a subset). To find irrelevant features we just need to remove
all relevant features produced by Fbest from the list of all the features RFAll

(RFAll - Fbest).
In our application, we are interested in identifying potential biomarkers.

Therefore, we use Fequal because it gives us the smallest optimal feature set
without any significant loss in disease prediction accuracy. This observation is
backed up by the results obtained (See Sect. 8).

Algorithm 2 identifies and returns Fequal. Finding Fequal using Algorithm 2
is much less time-consuming than a full linear search through the list of features,
as it recursively applies binary search to find candidate entries for Fequal. Every
time the SearchFEqual function is called, it calculates the accuracy using top
M − 1,M and M + 1 features and performs t-tests to find whether or not they
are statistically equal to the accuracy of full feature set. A t-test might show sta-
tistical equivalence with multiple feature sets in a range, but we want the feature
set that has the minimum number of features. There are 8 possibilities based
on 3 feature subsets M − 1,M and M + 1 and 2 options which are statistically
equal or not. These 8 possibilities are 000, 001, 010, 011, 100, 101, 110, 111 where
1 denotes that the statistically equal accuracy found and 0 denotes not found
using a particular feature subset. For example, if M − 1 is 0, M is 0 and M + 1
is 1 means we found the Fequal. So there are 2 possibilities for Fequal that is 001
and 011 and if these are true it returns the Fequal, otherwise, it checks for other
possibilities. In the remaining 6 possibilities, if 000 is true then we move to the
right side else in rest of the other cases we move to the left side as Fequal would
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Algorithm 2. Feature set with Fequal accuracy
Input: The training data Ytr = [G1, G2, ..., Gm]n×m and Ranked list of all the m
features (RFAll), Significance level (α).
Output: Fequal � Fequal = Feature Size with First Statistically Equal Accuracy

1: function SearchFEqual(Ytr, RFAll, L = 1, R = m, α)
2: M = ceiling(L+R

2
)

3: Train the desired classifier using top M −1, M and M +1 features from RFAll

4: Perform t-test between Acc(M − 1, M, M + 1) and Acc(m) individually
5: if ((p-value(M-1) < α) & (p-value(M) < α) & (p-value(M+1) > α)) then
6: Fequal = RFAll[M + 1]
7: Return Fequal

8: else
9: if ((p-value(M-1) < α) & (p-value(M) > α) & (p-value(M+1) > α)) then

10: Fequal = RFAll[M ]
11: Return Fequal

12: else
13: if ((p-value(M-1) < α) & (p-value(M) < α) & (p-value(M+1) < α))

then
14: SearchFEqual(Ytr, RFAll, L = M , R = R, α)
15: else
16: SearchFEqual(Ytr, RFAll, L = L, R = M , α)
17: end if
18: end if
19: end if
20: end function

be in the left side. The time complexity of finding Fequal using Algorithm 2 is
O(log2m∗3T ) where m is the total number of features, T is the time complexity
to train a classifier, and the constant 3 can be neglected.

While calling the SearchFEqual function, we have to pass value of α as one
of the parameters. Here α, the decision-making significance threshold, denotes
the probability of type-I error that we are willing to accept in a particular exper-
iment during Null Hypothesis Significance Test (NHST) and it determines the
probability of a type-II error (β) for a study [21]. A type-I error occurs when
we reject the null hypothesis incorrectly and a type-II error occurs when we fail
to reject the null hypothesis when the alternative hypothesis is true. It is not
possible to remove both the errors at a given time because if we decrease the
probability of type-I error, it increases the probability of type-II error due to
the nonlinear but negative and monotonic nature of the relationship between α
and β. In general, a low value of α should be chosen if it is important to avoid
a type-I error and a low value of β if the research question makes it particularly
important to avoid a type-II error [1]. In our case while finding Fequal our objec-
tive makes it particularly important to avoid a type-II error, therefore, we have
to choose low value of β and as we know both α and β are connected: we can’t
lower one without raising the level of other. To find Fequal, we are performing
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Algorithm 3. Feature set with Fbest accuracy
Input: The training data Ytr = [G1, G2, ..., Gm]n×m and Ranked list of all the m
features (RFAll)
Output: Fbest � Fbest = Feature set that leads to best accuracy

1: i = size[Fequal] � Start from i = 2 if not computing Fequal

2: Overall Best Acc = 0, Best Acc = Acc(m)
3: while i ≤ m do � m = total number of features
4: L = i, R = i ∗ 2
5: while (L + 1) < R do
6: M = ceiling(L+R

2
)

7: Train the desired classifier using top M features from RFAll

8: if (Acc(M) > Best Acc) then
9: Best Acc = Acc(M)

10: Best Feature Size = M
11: R = M
12: else
13: L = M
14: end if
15: end while
16: if (Best Acc > Overall Best Acc) then
17: Overall Best Acc = Best Acc
18: Fbest = RFAll[Best Feature Size]
19: end if
20: i = i ∗ 2
21: end while
22: Return Fbest

repeated t-tests and to avoid the chances of type-II error we have used high value
of alpha (α = 0.05). A value of alpha is considered low if it is around 0.01.

Algorithm 3 takes training data (Ytr) and ranked list of all the features
(RFAll) in input and returns Fbest. This algorithm makes the assumption that
the feature-ranking algorithm is able to rank the features successfully to give
best solutions, otherwise, it may give a sub-optimal solution. If we are interested
in Fequal and have already calculated Fequal then it starts from i = size[Fequal],
otherwise it starts from i = 2, increment by i = i∗2 and searches the full feature
space. To find Fbest, it searches for the feature subset that gives the best accuracy
by applying binary search within each i and i ∗ 2 number of features and the
feature size which gives overall best accuracy will be stored into Fbest. The Fbest

gives all the features which are relevant for a particular problem.

5 Experimental Design

The overall experimental design is illustrated in Fig. 1. We explain it by taking
the example of Dataset 1. In Dataset 1, we have a total of 12023 features and
2042 samples. The data is divided into separate training and test sets. In all
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experiments, 80% of the data is used to train the classifiers and the remain-
ing 20% is kept as a hold-out test set, using stratified sampling. To build the
ML model for each algorithm, we estimate model parameters over the training
data using 10-fold cross-validation, repeated 3 times. Only the training data is
used for feature selection. The proposed Ranked MSD feature selection algo-
rithm is applied to rank the features and two feature subsets Fequal and Fbest

are obtained. Two existing feature selection methods, correlation criteria and
information gain, were also applied to compare with our proposed method. Four
well-known ML classifiers are trained using selected features after applying fea-
ture selection techniques and without applying any feature selection techniques,
and performance evaluation is carried out as shown in Fig. 1.

Fig. 1. Overall experimental design for evaluation of proposed Ranked MSD Algorithm.

6 Methodology

In this section, we briefly explain the methodology used for the evaluation of
proposed Ranked MSD feature selection algorithm and potential biomarker iden-
tification. It is well known that no single ML algorithm is best for all kind of
datasets, so we tested a selection of different ML approaches. The best perform-
ing classifier is then used for biomarker identification.

First, we used a very simple algorithm, k-NN, which is an instance-based
learning algorithm; see for example [6]. k-NN is an important algorithm in the
sense that it can give us good explanations if we have few features or a way to
reduce our feature set to the most important features [20]. Moreover, it can be
used to set a base to compare the results and to see the improvements yielded by
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more complex algorithms. We also used the Random Forest algorithm which is
an ensemble technique [7]. We then employed both linear SVM [3] and SVM with
RBF kernel which has inbuilt capability to learn pattern from high dimensional
data [25]. We have used R programming language version 3.4.1 for coding [22].

6.1 k-Nearest Neighbour (k-NN)

The k-NN utilizes the nearest neighbours of a data sample for prediction. The
k-NN has two stages, the first stage is the determination of the nearest neigh-
bours i.e. the value of k and the second is the prediction of the class label using
those neighbours. The “k” nearest neighbours are selected using a distance met-
ric. We have used Euclidean distance for our experiments. There are various
ways to use this distance metric to determine the class of the test sample. The
most straightforward way is to assign the class that the majority of k-nearest
neighbours have. In the present work, the optimum value of k is searched over
the range of k = 1 to 30.

6.2 Random Forest

The Random Forest algorithm constructs an ensemble of many classification
trees [18,27]. Each classification tree is created by selecting a bootstrap sam-
ple from the whole training data and a random subset of variables with size
denoted as mtry is selected at each split. We have used the recommended value
of mtry : (mtry =

√
(number of genes)) [7]. The number of trees in the ensem-

ble is denoted as ntree. We have used (ntree) = 10, 001 so that each variable
can reach a sufficiently large likelihood to participate in forest building.

6.3 Support Vector Machine (SVM)

Assume that we have given a training set of instance-label pairs (xi, yi);∀i ∈
{1, 2, ..., l} where xi ∈ R

n and y ∈ {1,−1}l, then the SVM [3,10,12] can be
formulated and solved by the following optimization problem:

min
w ,b,ξi

1
2wT w + C

l∑

i=1

ξi,

subject to yi

(
wT φ (xi) + b

) ≥ 1 − ξi,
ξi ≥ 0.

(5)

Here the parameter C > 0 is the penalty parameter of the error term [12] and
ξi∀i ∈ {1, 2, ..., l} are positive slack variables [3]. For linear SVM, we did a search
for best value of parameter C for a range of values

(
C = 2−7, 2−3, ..., 215

)
and

the one with the best 10-fold cross validation accuracy has finally been chosen.
We also used SVM with RBF kernel which is a non-linear kernel. There

are four basic kernels that are frequently used: linear, polynomial, sigmoid, and
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RBF. We picked the RBF kernel, as recommended by Hsu et al. [12]. It has the
following form:

K (xi,xj) = exp
(−‖xi−xj‖2

2σ2

)
; 1
2σ2 > 0.

We performed a grid-search over the values of C and σ using 10-fold cross
validation. The different pairs of (C, σ) values are tried in the range of (C =
2−7, 2−3, ..., 215;σ = 2−25, 2−13, ..., 23) and the values with the best 10-fold cross
validation accuracy are picked for the final model building.

7 Explaining Predictions

Similar to the LIME [23], we also believe that it is possible to explain predic-
tions of any classifier by explaining the contribution of important features that
led to those predictions. Providing the explanation for an individual prediction
is relatively easy and can be achieved by explaining the contribution of impor-
tant features for that particular prediction. It is relatively hard to provide global
interpretation, however, it can be achieved by either explaining a set of represen-
tative predictions of each class or explaining all the predictions as a whole [23].
Here, we are providing global interpretation by explaining all the predictions
using a 3D-plot. Figure 2(B) is showing the contribution of the 3 most impor-
tant features (genes) suggested by the proposed Ranked MSD approach. Figure 2
contains the held-out test set predictions of GSE68310 gene expression data set
using least important 3 genes (left) and using most important 3 genes (right).

Fig. 2. Providing global interpretation of SVM with RBF Kernel model by plotting
test data predictions. (A) 3D-plot of least important 3 genes which fail to achieve class
separability and do not give any explanation (B) 3D-plot of most important 3 genes
ranked by proposed algorithm. Using these 3 most important genes it is possible to
achieve a greater class separability thus helping in explaining predictions. Green dots
denote the healthy test samples and Red dots denote infected test samples. The axis
denotes the gene expression values of the corresponding gene. (Color figure online)
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More clear and persuasive visual explanations can be provided if contributions
of all the important feature can be plotted all together. We leave this exploration
for future work.

8 Results

We experimentally obtained the 10-fold cross-validation accuracy at full fea-
ture set, Fequal and Fbest by applying proposed Ranked MSD algorithm on two
datasets. We also compared the performance of proposed algorithm with two
existing algorithms using four classifiers: k-NN, Random Forest, linear SVM,
and SVM with RBF Kernel. The results from both datasets can be seen in
Tables 1 and 2. To show the performance of the proposed algorithm in compari-
son to existing algorithms, we have plotted graphs of feature size versus 10-fold
cross-validation accuracy using the four classifiers for both the data sets (see
Figs. 3 and 4). The shaded region in the figures showing the standard devia-
tion calculated over 10 fold-cross validation accuracies (repeated 3 times so 30
accuracies in total).

Table 1. Comparison between the performance of proposed Ranked MSD and other
feature selection algorithms using four well-known ML algorithms trained on full feature
set, Fequal and Fbest feature set of the first dataset. Here Fequal is feature size which
gives statistically equal accuracy to that of full feature set and Fbest is feature size
which gives best accuracy.

Feature ranking

algorithm

ML model Total

features

Accuracy (all

features)

Fequal Accuracy

Fequal

Fbest Accuracy

Fbest

Ranked MSD KNN 12023 89.17% 22 88.60% 110 91.68%

Correlation Criteria KNN 12023 89.17% 70 88.73% 1472 90.78%

Information Gain KNN 12023 89.17% 8950 87.95% 11976 89.23%

Ranked MSD Linear SVM 12023 91.52% 367 91.05% 2560 93.17%

Correlation Criteria Linear SVM 12023 91.52% 561 90.68% 3040 92.62%

Information Gain Linear SVM 12023 91.52% 11961 91.39% 12013 91.52%

Ranked MSD Random Forest 12023 88.97% 45 88.32% 544 91.17%

Correlation Criteria Random Forest 12023 88.97% 352 88.44% 3040 89.42%

Information Gain Random Forest 12023 88.97% 11271 88.85% 11930 88.99%

Ranked MSD SVM with RBF

Kernel

12023 93.3% 65 92.25% 128 93.3%

Correlation Criteria SVM with RBF

Kernel

12023 93.3% 327 92.46% 1916 93.39%

Information Gain SVM with RBF

Kernel

12023 93.3% 6387 92.54% 11895 93.32%

Based on the results obtained, it can be concluded that the scoring function
used in the Ranked MSD algorithm is successfully able to rank the features in
descending order of their importance, because we are able to see the increase in
accuracy when we are adding the top-ranked features. For example, in case of
SVM with RBF kernel (see Table 1), the Fequal using proposed Ranked MSD
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algorithm gives 92.25% accuracy using top 65 genes (strongly relevant) whereas
total 12023 genes give 93.3% accuracy. Here the benefit of Fequal is that it can
hold the potential biomarkers for the respiratory viral infection because it finds a
small number of strongly relevant features which contribute to reaching accuracy
of 92.25%. Fbest yields 93.3% accuracy using the top 128 genes from RFAll and
there is no improvement in accuracy if we add more genes, which shows that the
rest of the genes after top 128 genes are irrelevant for this classifier. A similar
behaviour can be observed for the second data set (see Table 2 and Fig. 4).

Fig. 3. Comparing performance of Ranked MSD algorithm with other existing feature
selection techniques on first data set using (A) KNN (B) Linear SVM (C) Random
Forest and (D) SVM with RBF Kernel.
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In the area of drug discovery, we wish to target the smallest number of
important genes. In such cases, the use of Fequal is valuable because we don’t
want to include all 12,023 or 20,737 genes as potential targets for drug discovery
but those 65 genes (Dataset 1) or 31 genes (Dataset 2) which contribute to
reaching the Fequal accuracy (See Tables 1 and 2).

The other optimal feature subset, Fbest can be used according when needed
(See Tables 1 and 2), in cases where one requires the best possible accuracy,
while allowing a larger number of features to be selected; in such cases Fbest

provides all the features that are relevant. The standard deviation of repeated
10 fold cross-validation accuracies is not significantly high which suggests that
the algorithm is able to produce stable results.

Table 2. Comparison between the performance of proposed Ranked MSD and other
feature selection algorithms using four well-known ML algorithms trained on full fea-
tures set, Fequal and Fbest feature set of the second dataset. Here Fequal is feature size
which gives statistically equal accuracy to that of full feature set and Fbest is feature
size which gives best accuracy.

Feature ranking

algorithm

ML-model Total

features

Accuracy (all

features)

Fequal Accuracy

Fequal

Fbest Accuracy

Fbest

Ranked MSD KNN 20737 80.7% 2 79.82% 48 82.55%

Correlation Criteria KNN 20737 80.7% 2 80.64% 224 83.05%

Information Gain KNN 20737 80.7% 13 78.39% 632 83.53%

Ranked MSD Linear SVM 20737 86.44% 45 85.82% 1725 90.16%

Correlation Criteria Linear SVM 20737 86.44% 8 84.87% 6108 88.74%

Information Gain Linear SVM 20737 86.44% 90 84.91% 1920 88.73%

Ranked MSD Random Forest 20737 83.03% 10 81.42% 1664 85.44%

Correlation Criteria Random Forest 20737 83.03% 7 81.83% 83 85.48%

Information Gain Random Forest 20737 83.03% 93 81.75% 332 85.09%

Ranked MSD SVM with RBF

Kernel

20737 86.44% 31 84.35% 1239 90.07%

Correlation Criteria SVM with RBF

Kernel

20737 86.44% 8 84.83% 6136 88.97%

Information Gain SVM with RBF

Kernel

20737 86.44% 88 85.15% 1920 88.83%

As the results show, our Ranked MSD algorithm is able to achieve signifi-
cantly higher accuracy using very few genes compared to two well-known fea-
ture selection approaches, which indicates that our algorithm is selecting more
highly informative genes than the other approaches. Based on the results of
these experiments, we can conclude that the proposed Ranked MSD algorithm
outperforms the existing correlation-based and entropy-based feature selection
methods on investigated datasets. For further details, additional figures can be
found in a supplementary file at this link: https://figshare.com/articles/Ranked
MSD/8312402.

https://figshare.com/articles/Ranked_MSD/8312402
https://figshare.com/articles/Ranked_MSD/8312402


162 G. Verma et al.

9 Biomarker Identification

In this section, we show the top 18 important biomarkers (see Table 3) which
are obtained from taking the intersection of Fequal genes suggested from the
best-performing classifier. We have selected SVM with RBF kernel as the best
performing classifier, because it gives the consistently best accuracy with smallest
optimal feature set of the classification algorithms evaluated. For Dataset 1, the
Fequal size is 65 and for Dataset 2, the Fequal size is 31. The intersection of
both optimal feature sets is 18, as illustrated in Fig. 5(b). Table 3 lists the 18

Fig. 4. Comparing performance of Ranked MSD algorithm with other existing feature
selection techniques on second data set using (A) KNN (B) Linear SVM (C) Random
Forest and (D) SVM with RBF Kernel.
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biomarkers that are common to both datasets, with their importance scores
as given by our Ranked MSD algorithm. The combined importance score of a
biomarker is the average of its importance score from Dataset 1 and Dataset 2.
These 18 biomarkers are found to be the most important ones for the progression
of respiratory viral infection as they are common best biomarkers for both the
respiratory viral data sets and play an important role in the discrimination of
infected samples from non-infected ones.

10 Biological Significance of Biomarkers

To determine biological significance of identified 18 common biomarkers (see
Table 3), we performed Molecular Enrichment Analysis (MEA) developed as
an extension of Gene Set Enrichment Analysis (GESA) [29]. The biomarkers
shown in Table 3 work as seed genes for the MEA analysis and the results of the
enrichment can be seen in Fig. 5(a). We used KEGG pathway database [13] to
perform the MEA analysis. Biomarkers retrieved only through gene expression
can lead to non-relevant signatures and irrelevant phenotypes [5], therefore, a

Table 3. Top 18 biomarkers obtained from taking intersection of Fequal genes suggested
by best performing classifier from both the data sets with their importance score given
by the proposed Ranked MSD algorithm.

Sr. no. Gene symbol Importance score
data set 1

Importance score
data set 2

Combined
importance score

1 IFI27 7.440807172 8.744873626 8.092840399

2 RSAD2 7.781213672 3.788627429 5.78492055

3 IFI44L 6.574818892 4.978166941 5.776492916

4 RPS4Y1 9.091357246 2.008783926 5.550070586

5 ISG15 4.063142667 4.578217378 4.320680022

6 IFI44 5.014484011 2.860260613 3.937372312

7 IFITM3 2.495110022 5.359004043 3.927057032

8 HERC5 4.04471719 3.211724492 3.628220841

9 MX1 2.98390575 3.508595477 3.246250613

10 LY6E 2.249102841 3.834706217 3.041904529

11 IFIT3 3.441885872 2.50066336 2.971274616

12 OAS3 3.705077795 2.176990862 2.941034328

13 IFIT2 3.015140745 2.840130002 2.927635374

14 IFI6 3.192691447 2.236622559 2.714657003

15 OASL 3.303346964 1.954874216 2.62911059

16 HBG2 2.275345902 2.923786916 2.599566409

17 OAS2 2.345796307 2.446741233 2.39626877

18 XAF1 2.675522172 1.975049326 2.325285749
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Fig. 5. (a) MEA analysis of seed genes and associated KEGG terms. The larger blue
dots show higher enrichment with seed genes. (b) Venn-diagram of important genes
obtained from data set 1 (GSE73072) and data set 2 (GSE68310). Total 18 genes are
overlapping genes which are final biomarkers. (Color figure online)

biological significance analysis is essential. The reproducible and clinically attain-
able results provided by us, proves the authenticity of biomarkers and can be a
great fit in precision medicine era. The 18 gene retrieved through our analysis
yields Influenza A and Hepatitis C with enrichment score of 3.0e-05. It has been
reported earlier that any gene signature profound in Influenza A also elevates the
expression profile of Hepatitis C with similar intensity [2]. Further, Influenza A
and measles are viruses that both cause respiratory symptoms thus enrichment
of measles provide appropriate phenotype for our 18 gene signature [32]. Now,
looking into the pathway from Fig. 5 (a) the enriched pathways NOD-like recep-
tor signalling pathway is associated with higher immunity. Thus any targeted
study through these 18 biomarkers will provide a clinical acceptable therapy for
viral diseases specially in the case of Influenza. Thus it can be inferred that
our biomarker panel covers immune response [15] with disease progression and
provides a cohesive platform for precision medicine.

11 Conclusions and Future Work

In this work, we have aimed to tackle the issues that arise when the number of
samples is much smaller than the number of features (commonly referred to as
n << p). It becomes very hard to interpret the target concept in these situa-
tions. In addition, irrelevant features often confuse machine leaning systems and
lead to deterioration of classification accuracy. Also, recent GDPR issues may
make it difficult to use black-box models particularly in business and medicine.
To address these problems, we have proposed a feature ranking algorithm named
Ranked MSD with two additional algorithms to identify strongly relevant fea-
tures and relevant features by discarding irrelevant features. Our experimental



Ranked MSD: A New Feature Ranking and Feature Selection 165

results show that the proposed Ranked MSD algorithm outperforms two well-
known feature ranking methods, Correlation Criteria and Information Gain, and
thereby can help with better disease prediction. Moreover, we have identified 18
biomarkers which are common biomarker across the two datasets that we have
analysed and which have been identified as strongly relevant features by our app-
roach. The importance of these 18 genes are confirmed with the four classifiers
as they all yield improvements in accuracy using these top genes. To determine
the biological significance of these 18 genes, we performed Molecular Enrichment
Analysis (MEA); the results show that these biomarkers are strongly related to
the target disease, and can therefore be considered as potential targets for drug
discovery, and could play an important role in precision medicine.

In this work, we have demonstrated our proposed approach by applying it
on datasets related to respiratory viral infections only. In future work, we aim
to perform analyses on more datasets of different diseases and domains. We also
aim to incorporate useful information that is openly available in the form of
biomedical knowledge graphs.
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Abstract. This paper reviews the Case-based reasoning (CBR) approach and its
usability in the medicine and presents a new concept on how to improve its
adaptation phase. We use the CBR as a supporting method for decision support
like diseases diagnostics or therapy identification. We investigated existing
approaches, studies, and research works to solve one of the most critical prob-
lems in the CBR cycle - adaptation, which is often done manually by the experts
in the relevant field. Based on the findings and our experiences with medical
diagnostics through suitable data analytical methods, we proposed a new solution
to solve this challenge. This approach is based on a comparison of the stored
decision rules with the new one related to the current case. This comparison can
result in three alternative states: (1) case base contains a similar case, and relevant
rule can be applied. (2) The new case is very different from the stored ones, so the
input from participated experts is needed, and a new rule will be stored. (3) The
new case is partially similar satisfying adaptability conditions, in such a situation
we adopt related decision rule to the new conditions under the supervision of the
expert. We plan to experimentally test and verify this concept within available
medical samples from our previous experiments.

Keywords: Case-based reasoning � Medical diagnostics � Data analysis

1 Introduction

Information and communication technologies are increasingly being deployed in the
medical domain to support various activities on all sides of the relevant processes. This
situation is also related to the ever-increasing amount of data that needs to be processed
and analyzed. For doctors, it´s hard to consider a higher volume of data in the diagnosis
procedure, or in determining the right treatment.

The evidence of the World Health Organization (WHO) from 2015 indicates that
up to 5% of patients had an incorrect diagnosis. The diagnostic procedure represents a
complicated process, in which it is essential to have the right information available for
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the right people at the right time. If analytical support models are available for doctors,
they will help them consider all the contexts and important hidden patterns in the data.
They will also reduce the time needed to make a decision. The input and continuous
participation of the experts is an essential part of the analytical projects. In some cases,
we can capture and store the expert’s knowledge in a suitable formal way.

Many researchers apply various intelligent techniques to create decision support
systems or models to help the doctor determine the correct patient diagnosis and enable
them to design the best treatment for their current health condition.

Case-based reasoning (CBR) approach was proposed by Schank in 1982 to solve
identified problems related to the decision support systems like knowledge elicitation,
adaptation, or maintenance [1]. Since medicine requires experts with a mixture of
knowledge and experience, case-oriented methods should be very efficient, mainly
because reasoning with cases corresponds with the typical decision-making process of
physicians. Also, incorporating new cases means automatically updating parts of the
changeable knowledge [2].

In our previous research works focusing on the diagnostics of the various diseases
like metabolic syndrome, mild cognitive impairment, heart or brain attacks, we typi-
cally extracted different models and hidden knowledge through suitable analytical
methods. In most cases, these were relatively small samples with records up to 500. It
means that the adaptation of the generated decision rules to new examples was simple,
e.g., we spent some time re-generate the new ones. However, in this paper, we want to
focus on a different situation, when the knowledge base contains a large number of
rules, and it is important to decide about possible updates effectively.

The paper is organized as follows: the first section introduces our motivation and
the topic, the second one presents the Case-based reasoning in the medical domain,
identified challenges and new proposed approach for adaptation phase. The conclusion
summarizes the main points and outlines future work.

1.1 Case-Based Reasoning

The CBR methodology has attracted significant attention because the basic idea of
reusing experience to solve previous problems is a powerful and often used way of
addressing people’s issues. In CBR terminology, a case usually means a problem
situation that one needs to resolve.

Doyle et al. in 1998 [3] described the CBR as a problem-solving paradigm in many
ways significantly different from other major artificial intelligence approaches. But the
situation has changed during the last years. Computational analogy-making and CBR
are closely related areas. Analogy-making involves at least several subprocesses like
building representation, retrieval from a base for the analogy, mapping onto the target,
validation, and learning from the experience [4]. Other approaches rely only on general
knowledge of the problem area, but CBR can use specific knowledge about previous
problematic situations [5]. CBR reasoning has an incremental character [6]: it means
that whenever the problem is resolved, the new experience will be retained and
immediately available for future use of problem-solving.
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Therefore, solving each problem in the CBR cycle consists of 4 phases such as
retrieve, reuse, revise, and retain. We identified several models in existing literature like
the Hunt model, the Allen model, the model by Kolodner and Leake [7], and the R4
model proposed by Aamodt and Plaza [8]. The R4 model is one of the most used and
defines the CBR cycle with the following four primary steps.

Finding and retrieving the most similar cases is done at the RETRIEVE
step. According to several authors [9, 10], this phase is one of the most important. It
includes a case-finding process based on their similarity. For this purpose, we can
typically use the nearest neighbor search, inductive approaches, knowledge approa-
ches, Bayesian network, clustering Euclidian distance, or other similarity measures. In
many practical applications, it is often difficult to distinguish the REUSE and REVISE
steps because many researchers associate them into one phase called ADAPT (adap-
tation) [11]. In this step is the case used again, and the proposed solution is checked. In
the last step - RETAIN - is performed preservation (storage) of the learned case for
future use. There are several approaches to achieving this goal like retaining only the
solution of the previous problem or the new one. In many cases, this retention process
leads to uncontrolled growth of the case’s base, which consequently causes the system
performance to deteriorate in terms of speed [12].

2 Case-Based Reasoning in the Medical Domain

CBR reasoning process is medically accepted and getting increasing attention from the
medical domain. In 1988, 1989 and 1991 were organized three CBR seminars by the
American Defense Research Agency (DARPA), which officially marked the beginning
of CBR discipline.

The authors in [13] present a summary of 21 studies that dealt with medical CBR
systems. They described a list of methods used in each CBR step and the success rate in
system verification. In the RETRIEVE phase, the most used methods are Euclidian
distance, nearest neighborhood, similarity function, and weight set ranked by a decision
tree. In the REUSE phase, authors used neural nets, fuzzy rules, stepwise regression,
manual reuse, but most systems do not use any technique. The REVISE phase per-
formed either manually, or do not use any specific method. In RETAIN phase are cases
stored manually or not at all. The most used evaluation methods are k-fold cross-
validation, leave-one-out strategy, conditional probability, AUC curve, statistical fre-
quency, and correlation.

Many studies [11, 14] have attempted to investigate existing medical CBR systems
since 1987. The most systems were developed to solve a specific disease; most systems
perform as prototypes and not as the final product. Another visible trend was the
successful hybridization of CBR with various computational methods. According to
[11], in 32 systems out of 76, CBR was used in combination with other techniques.
Also, out of 76 systems, in 51 systems, automatic adaptation is completely avoided, so
they only work as retrieval systems.

The use of CBR in the medical field is currently reviving. The knowledge base of
medical knowledge is continually changing; sometimes, there is more than one solu-
tion; doctors have different approaches and medicines. The fact that the CBR system
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methodology very much resembles the doctor’s thinking process suggests the suc-
cessful use of CBR in medicine [15]. The main advantage of CBR in this field is the
possibility of adapting the knowledge base [16], which is a significant aspect of
decision making in the medical field.

2.1 Existing Limitations

Although the use of the CBR method appears to be successful, there are some limi-
tations. In the medical domain, the number of similar cases is often extremely high, and
this fact causes a complex generalization [14]. High memory/storage requirements and
time-consuming retrieval accompany CBR systems utilizing large case bases and can
take significant processing time to find similar cases in case-base. CBR systems have
problems with handling noisy data. Unsuccessful assessment of such noise may result
in the same problem being unnecessarily stored numerous times. In turn, this implies
inefficient storage and retrieval of cases. The number of systems using the full CBR
cycle (retrieve, adaptation, retain) is still very low. However, the most critical problem
in the successful implementation of CBR techniques in medical systems is the problem
of the adaptation step. D’Aquin et al. [16] note that this step is a relatively complex
process because it has to address the lack of relevant patient information, the usability,
consequences of the decision, the proximity of decision thresholds and the need to
consider patients in different ways. Schmidt et al. indicate that introducing the adap-
tation step in the CBR system was a challenging step in medicine [17]. Most CBR
systems which don´t apply the adaptation step, can´t solve some new problems, and
thus their accuracy is unconvincing in critical areas [5]. The adaptation phase is,
therefore limited to planning tasks [18].

2.2 Adaptation Step Problem

The study [13] mentioned that medical CBR systems solve the problem of adaptation in
two ways. Most systems avoid an adaptation problem by applying only the RETRIEVE
step in the CBR cycle, while others are trying to resolve it. One of the first medical
expert systems CASEY [19] attempted to solve the adapting problem through rule-
based domain theory. Knowledge acquisition is a barrier to the development of rule-
based systems; therefore, the development of adaptation rules has never become a
successful technique in medical CBR systems [17]. Some of the newer systems suc-
cessfully used adaptation using computational techniques, e.g., eXiT * CBR.v2 [20]
revises and reuses cases using genetic algorithms; EquiVox developed by Henriet et al.
[21] performs adaptation using artificial neural networks.

The studies [5, 6] solved the adaptation problem by the creation of a hybrid CBR
system integrating CBR (case) and RBR (rule) reasoning. This system automatically
applied the adaptation process using adaptive rules.

In the study [5], after the resolution of the new case, the knowledge base was
expanded, and the adaptation and reasoning rules were updated. To achieve integration
into REUSE step was added a new process called REASON, which applied the rea-
soning rules to get a solution if the REUSE and ADAPT process failed to find a solution.
They first applied the CBR and after that, RBR to the available data. The authors used
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multiple cross-validations to evaluate accuracy. The developed prototype achieved an
average accuracy of 99.53% on the diagnosis of thyroid disease and 99.33% on breast
cancer diagnosis (accuracy by other systems ranged from 80% to 97%).

The study [6] provided a hybrid system to help healthcare professionals in early
diagnose on cancer patients. In the proposed approach, CBR was used as the primary
reasoning process, and RBR was used to improve part of the process. For this research,
they gathered real data about patients with gastrointestinal cancer. To evaluate accu-
racy, they also used multiple cross-validations. The results showed increased diagnosis
accuracy by 22.92% compared to the use of a single CBR method.

Salem and El Bagouras [22] have proposed a hybrid adaptation model that com-
bines transformational and hierarchical adaptation techniques with artificial neural
networks and factors for the diagnosis of thyroid cancer. Zubi and Saad [23] used
combined data mining techniques with neural networks for early diagnosis of lung
cancer. For the diagnosis of breast cancer, Keles, Keles, and Yavuz [24] used neuro-
fuzzy rules, while Sharaf-el-Deen et al. [25] introduced a hybrid approach that also
combined CBR and RBR reasoning.

We can see that authors tried to solve the adaption problem in three ways: avoiding
the adaptation problem by using CBR systems only for RETRIEVE step; the use of
computational techniques such as genetic algorithms and artificial neural networks;
creating a hybrid CBR system that integrates CBR and RBR reasoning.

2.3 New Proposal How to Support the Adaptation

Figure 1 presents graphically our approach on how to support the adaptation phase in
the CBR cycle. The assumption is a list of decision rules generated by suitable machine
learning algorithms stored in case base: IF conditions THEN consequences (target
value, expected diagnosis).

The CBR cycle starts with the RETRIEVE step as a response to a new example
without target diagnosis. The new case is compared with existing ones from the case
base by an inference mechanism. We will calculate the distances between cases with
similarity metrics like Euclidean, Manhattan, or Hamming distance. The result of the
comparison can be one of the three alternatives:

1. The mechanism will find an identical case to the new one. The target diagnosis will
be the same as for the existing one.

2. The mechanism will not find a match; all stored cases are significantly different.
This situation requires re-generate the current rules based on the original set of
records extended by the latest case classified by the expert.

3. The mechanism will find partly similar cases with different target values. Therefore,
the CBR cycle will continue with other steps like REUSE, REVISE, and RETAIN.
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Before the cycle continues, we will investigate the differences:

• If the cases differ only in one condition (parameter) on the left side of the rules, the
expert will consider possible adjusting of it. After several iterations, we will be able
to create a separate knowledge base with the knowledge from the experts and will
be able to do this step in a semi-automatic way. An example:

Fig. 1. The new approach for adaptation
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Formal scenario:
New case: IF parameter1 = X AND parameter2 = Y
Decision rule: IF parameter1 2 <Z, V> AND parameter2 2 <K, L>

THEN target value = 1
Comparison: X 2 <Z, V> AND (Y < K OR Y > L)

The cases differ in one parameter (parameter2). Therefore, the expert considers the
following adaptation of the stored rule, and the new case will be classified as a positive
diagnosis (REUSE-REVISE-RETAIN).
Adapted rule 1: IF parameter1 2 < Z, V > AND parameter2 2 <K, Y>

THEN target value = 1
Adapted rule 2: IF parameter1 2 < Z, V > AND parameter2 2 <Y, L>

THEN target value = 1

Specific scenario:
New case: IF LDL = 1.8 AND HDL = 4.6
Decision rule: IF LDL 2 <1.5, 3.1> AND HDL 2 <3.1, 4.5> THEN MCI = 1
Adapted rule: IF LDL 2 <1.5, 3.1> AND HDL 2 <3.1, 4.6> THEN MCI = 1

If the system will find several partially similar cases with different decision rules, it is
possible to assign the weights by the experts expressing their suitability. This part of
the concept will be an objective of further research.

• If the cases differ in multiple parameters:

1. We identify a list of different parameters.

Formal scenario:
New case: IF parameter1 = X AND parameter2 = Y AND parameter3 = Z

THEN target value = 1
Decision rule: IF parameter1 2 <A, B> AND parameter2 2 <C, D> AND

parameter3 2 <E, F>
THEN target value=1

Comparison: X 2 <A, B> AND (Y < C OR Y > D) AND (Z < E OR F > D)

These cases are different in parameter2 and parameter3.

2. For each of these parameters, we calculate a difference with existing cases with
suitable similarity metric. Next, the expert will help us to allocate weights by
importance for particular differences.

3. The parameters with high weights will be adapted to the most similar case, and the
target class will be determined (REUSE-REVISE-RETAIN).
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Specific scenario:
New case: IF LDL = 1.8 AND HDL = 4.6 AND BMI = 34 THEN MCI = 1
Decision rule: IF LDL 2 <1.5, 3.1> AND HDL 2 <3.1, 4.5> AND BMI 2 <25.1,

29.3> THEN MCI = 1
Adapted rule 1: IF LDL 2 <1.5, 3.1> AND HDL 2 <3.1, 4.6> AND BMI 2 <25.1,

34> THEN MCI = 1
etc.

3 Conclusion

The CBR methodology has attracted significant attention because the basic idea of
reusing experience to solve previous problems looks very attractive. It can use specific
knowledge about past problematic situations solving. The number of medical systems
using the full CBR cycle (retrieve, adaptation, retain) is still very low. The most critical
issue is the successful adaptation step. We propose a new concept to solve this issue.
We found the inspiration in the research of professor Holzinger research group called
interactive machine learning (iML) with a human-in-the-loop. This approach leads to
algorithms that can interact with both computational agents and human agents and can
optimize their learning behavior through these interactions [26, 27].

For this purpose, we use a combination of data analysis methods and CBR
extending by communication with an expert, which helps us determine the importance
of the parameters, their settings and the determination of the suitable adaptation.

In future work, we will focus on experimentally testing and verification of the
proposed approach on the available medical data samples.
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Abstract. Many problems in clinical medicine are characterized by high
complexity and non-linearity. Particularly, this is the case with aging diseases,
chronic medical conditions that are known to tend to accumulate in the same
person. This phenomenon is known as multimorbidity. In addition to the number
of chronic diseases, the presence of integrated geriatric conditions and functional
deficits, such as walking difficulties, of frailty (a general weakness associated
with weight and muscle loss and low functioning) are important for the pre-
diction of negative health outcomes of older people, such as hospitalization,
dependency on others or pre-term mortality. In this work, we identified how
frailty is associated with clinical phenotypes, which most reliably characterize
the group of older patients from our local environment: the general practice
attenders. We have performed cluster analysis, based on using a set of anthro-
pometric and laboratory health indicators, routinely collected in electronic health
records. Differences found among clusters in proportions of prefrail and frail
versus non-frail patients have been explained with differences in the central
values of the parameters used for clustering. Distribution patterns of chronic
diseases and other geriatric conditions, found by the assessment of differences,
were very useful in determining the clinical phenotypes derived by the clusters.
Once more, this study demonstrates the most important aspect of any machine
learning task: the quality of the data!
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1 Introduction

The general trend towards an ageing population in our western society is still unbroken,
and life expectancy is even rising [1]. It poses enormous future challenges for the
medical profession in general and particularly for the daily practice of family doctors
(general practitioners, GP’s).

Aging is often associated with the burden of chronic diseases [2]. However, some
older patients with chronic diseases are more vulnerable than others in the development
of negative health outcomes, including hospitalization, falls, disability, low physical
and mental functioning, dependency on others and most of all to pre-term mortality [3].
The clinical signs of this vulnerable state have been identified by the gerontologists and
include the following features: decreased muscle mass and strength, general weakness,
slow gait speed, impaired balance and generally low activity [4]. It is termed frailty and
explained by the reduced reserve capacity of various physiological systems, due to the
aging process and accumulation of chronic medical conditions [5]. There are numerous
diagnostic criteria for assessing frailty divided into the two principal groups: the tests
focusing on physical functions of frailt and a more comprehensive approach, based on
the Cumulative Deficit Model of Frailty (the Frailty Index), which accounts for a broad
range of medical, cognitive, psychological, and functional deficits [6].

Frailty is a new concept, and precise theory is still missing. There are several
assessment tools (or predictive models), but it may not be the best solution. One of the
most widely used tests for assessing physical frailty is the Fried Phenotypic Model of
Frailty [4]. It is based on the assessment of the small number of measurable compo-
nents, including slow walking speed, low grip strength (measured by the hand grip
dynamometer), self-reported exhaustion, unintended weight loss, and low physical
activity. The credibility of this instrument relies on the fact that it has been derived
from data of the large epidemiologic study. In line with the proposed evolutive and
dynamic nature of frailty, this instrument also includes a prefrailty state [4, 5]. Gra-
dation is based on disorder counting, so that 1–2 disorders indicate prefrailty and 3–5
indicate frailty [4].

In general, determinants of frailty may be divided into three groups: (1) chronic
diseases and conditions associated with disability, such as falls and walking difficulties;
(2) markers of physiological systems disturbation; and (3) behavioural and societal
factors, such as nutrition, low socioeconomic status and low education [7]. Some
chronic diseases were found in epidemiological studies as being more often associated
with frailty, than some others, including diabetes, cardiovascular disease (CVD),
malignant disease, chronic obstructive pulmonary disease (COPD), and chronic renal
failure [2, 8, 9].

In the fundamental study on frailty, Fried et al. have shown that the risks for the
development of prefrailty and frailty increase in parallel with the number of chronic
diseases and the number of pathophysiology disorders, described with measures of
anaemia, inflammation, micronutrient deficits, metabolic regulatory factors, body
composition and neuromuscular function [5]. This study has provided a rationale for
non-linearity in the development of frailty and heterogeneity of older people con-
cerning prefrailty and frailty.
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In this study, we have attempted to go a step forward and to show how prefrail and
frail older people are distributed within the “naturally formed groups”. These clusters
are defined by the set of parameters which indicate significant pathophysiology dis-
orders associated with frailty. We used only easily available data from General Practice
(GP) electronic health records (eHRs) and patient self-reports. To identify the most
important chronic diseases and geriatric disabling conditions that are associated with
particular clusters, we have assessed their differences among the clusters.

Clustering methods are still rarely used in medical research. However, they have
proved to be appropriate for grouping patients with chronic medical conditions and
comorbidities in situations with overlapping between patients usually. The solving of
such problems is like copying with the system’s complexity. These methods allow
insights into the “natural” grouping of patients, that is, in a case when theoretical
assumptions of the way of their grouping (classification) are low. The main point which
we have taken into account when deciding to use the clustering or the classification
methods, was “the quantity” of theory, or how much the postulated hypothesis is
convincing. The clustering methods allow a higher degree of uncertainty than the
classification methods or take a larger, still unknown context. Also, they may be used
when we wish to reconcile the old hypothesis to provide a new paradigm. In contrast to
this, the classification methods need a strongly grounded theory and are, consequently,
more predictive, than the clustering methods.

We assume that by using this methodology approach, it would be possible to
identify clinical patterns that in some local population are mostly associated with
frailty. The final aim is to implement the efficacious strategy for recognizing older
people, GP patients, who are at increased risk for negative health outcomes. We believe
that this study will add value to the requirements that screening of older people on
frailty become the standard procedure in PC [10]. In general, using predictive machine
learning enables the discovery of potential risk factors which provides the family
doctor with information on a probable patient outcome and to react promptly and to
avert likely adverse events in advance [11].

1.1 Related Work

To our knowledge, studies with similar approaches to our have not been published to
date. The only study that we could find was based on using single measures of physical
performance and cognitive function impairment tests, to identify clusters [12]. A sim-
ilar paper, by ourselves, has been prepared on the smaller sample and with a larger set
of parameters, is now under review in the journal devoted to analytical, clinical
research, but is not in conflict with this conference paper.

Bertini et al. proposed two predictive frailty models for subjects older than 65 years
old by exploiting information from 12 socio-clinical databases available in the
Municipality of Bologna [13]. The authors take into account many diagnoses and
functional conditions that may be impaired (decreased). They also noted that the frailty
has not yet emerged as a well-defined clinical or social concept. Clegg et al. tried to
develop and validate an electronic frailty index (eFI) using routinely available primary
care electronic health record data [14]. For this purpose, they used anonymized data
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from a total of 931 541 patients aged 65–95. The eFI enables identification of older
people who are fit, and those with mild, moderate, and severe frailty.

Both presented works represent a relatively tricky and lengthy method for daily
usage. By clustering methods, we can narrow this high heterogeneity of patients (based
on different combinations of many diseases and disorders) and limit it to only several
subgroups. These subgroups are clusters defined according to a less number of the main
features. Also, the results of some large-scale studies, including older people with
multiple chronic medical conditions, may not be applied directly to the local situation,
because of the large variability between populations. Thus, small datasets are appro-
priate for use, when there is a need that the results of research inform local healthcare
providers.

2 Data Analysis

A retrospective analytical study was conducted during 2018, in the General Practice
(GP) setting, in the town of Osijek, eastern Croatia, during a six-month follow-up.
Only GP attendees, old 60 years and more, and not those on home care, were included
in the study. Patients were assessed at their regular encounters and were recruited if
they gave their written informed consent. Exclusion criteria included: acute medical
conditions, worsening of chronic conditions, dementia and active chemo- or biological
therapies.

Our dataset contained 261 records characterized by 10 numerical variables (89
males and 172 females). We present these variables as average and standard deviation
(SD) and as the median and interquartile range (Table 1).

Table 1. Descriptive statistics of the numerical variables.

Variable Min Max Median
(interquartile
range)

Mean (standard
deviation)

Age (years) 60 90 71.00 (10.00)| 71.16 (6.43)
BMI (kg/m2) 14.33 47.05 29.71 (5.78) 30.21 (4.71)
Waist circumference (cm) 50.00 148.00 99.00 (16.00) 99.88 (12.58)
Mid arm circumference (cm) 18.00 45.00 31.00 (5.00) 31.38 (3.66)
Fasting glucose (mmol/L) 3.60 16.20 5.60 (1.70) 6.24 (1.91)
Total cholesterol (mmol/L) 2.90 9.70 53.70 (1.70) 5.73 (1.33)
LDL cholesterol (mmol/L) 1.20 8.90 3.50 (1.50) 3.53 (1.18)
Glomerular filtration rate
(mL/min/1.73 m2)

24.00 191.00 86.00 (37.00) 87.25 (26.42)

Haemoglobin (g/L) 54.00 177.00 137.00 (15.00) 137.00 (13.49)
Haematocrit (g/L) 0.22 1.00 0.42 (0.04) 0.42 (0.05)
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The quality of the data matters more than the selected model or the chosen algo-
rithm; therefore, data-pre-processing is the most important step for all machine learning
tasks.

It is rare in the practice that the number of clusters is known at the beginning of the
experiments. One possibility of how to identify the most suitable number of clusters (k
value in the case of the K-Means algorithm) is Elbow method [15, 16]. This method
provides a graphical visualization and uses the percentage of variance explained as a
function of the number of clusters.

The idea is to run this method on the dataset for a range of values of k (for example
k from 1 to 10), and for each value of k calculate the total within-clusters sum of
squared errors. On the graph, the first clusters will add much information (explain a lot
of variances), but at some point, the marginal gain will drop, giving an angle in the
graph [15]. This point represents the expected number of clusters. The Elbow method
also has some limitation, such as the elbow is no always unambiguously identified. In
this case, we can use the Average silhouette method calculating how well each object
lies within its cluster. The optimal number of clusters k is the one that maximizes the
average silhouette over a range of possible values for k [17]. We calculated the
maximal values for the 2 or 3 possible clusters (Fig. 1). Based on the data character-
istics, we finally choose the 3 as k-value.

For clustering, we selected the K-Means algorithm as a very popular technique to
partitioning data sets with numerical attributes [18]. It is an unsupervised learning
algorithm constructing a partition of a data of n objects into a set of k clusters. The k-
value has to be specified at the beginning. Each cluster is represented by its centre.
Next, we were looking for differences among them in other features (expressed by the
categorical variables – gender, diagnoses, etc.)

Fig. 1. The results of Average silhouette method.
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We applied the K-Means algorithm to pre-processed data:

• The dataset contained only numerical variables like age, bmi, waist Circumference
(wc), mid-arm circumference (mac), fasting glucose (glu_f), cholesterol (chol), low-
density lipoprotein (ldl), glomerular filtration rate (gfr), hemoglobin (hb) and
hematocrit (htc).

• All variables were normalized based on the z-score standardization (transforms all
the variables to a mean value of 0 and a standard deviation of 1).

3 Results

We constructed 3 clusters visualized in Fig. 2, distinguished by the signs. The Principal
Component Analysis generates the plot, and an eclipse is drawn around each cluster
(but not represented a boundary). The data points are plotting according to the first two
principal components coordinate.

The centres of the clusters are characterized by the relevant value of each input
variable, see Table 2.

Fig. 2. The plot of 3 constructed clusters.

Table 2. The clusters centres.

Number
of cases

Clusters age bmi wc mac glu_f chol ldl gfr hb htc

66 1 67.560 30.950 100.154 32.467 5.619 6.798 4.469 96.275 139.835 0.437
92 2 71.113 34.641 112.968 34.145 7.900 4.650 2.556 105.758 143.161 0.435
103 3 74.213 27.031 92.134 28.875 5.806 5.455 3.306 169.028 131.129 0.402
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We evaluated the differences between clusters. We started with the proportion of
prefrail and frail vs. non-frail patients in our dataset. Cluster 2 contains the highest
number of non-frail patients (51). On the other hand, the numbers of prefrail or frail
patients in the first and second clusters are relatively similar. The highest number of
prefrail patients characterizes the third cluster. The gender radio of cluster1 is relatively
balanced (1:1); the next two have a different one 2.5:1.

The Kruskal-Wallis test by rank is a non-parametric alternative to the one-way
ANOVA test when we have more than two groups [19, 20]. As the p-value is less than
the significance level 0.05, we can conclude that there are significant differences
between the clusters (Table 3). For this purpose, we used the following list of variables:

• The number of diagnoses of chronic diseases (som com).
• Selected diagnoses of chronic diseases: diabetes mellitus (dm), chronic obstructive

pulmonary disease (copd) or asthma, cardio-vascular disease (cvd), including
coronary heart disease (chd) or cardio-vascular disease or peripheral arterial disease
(pad), malignant disease (malig), osteoporosis (osteop), low back pain (low back),
osteoarthritis (oa).

• Geriatric syndromes other than frailty: urogenital disease or urinary incontinence
(urogenit incont), visus impairment (visus), hearing loss (hear), falls (with or
without bone fracture) (fall nf, f), walk difficulties (walk).

For selected variables, we investigate the difference among the clusters in graphical
form (Fig. 3). The percentages were calculated on the whole 261 records.

Table 3. Differences between clusters - Kruskal-Wallis test by rank.

Variable (clusters) Kruskal-Wallis rank sum test

som com 0.003
dm 0.00000001
copd_asthma 0.690
chd_coron_cv_pad 0.021
malig 0.753
osteop 0.088
low back 0.929
oa 0.254
urogent_incont 0.449
visus 0.609
hear 0.045
fall 0.083
walk 0.025
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Fig. 3. Particular chronic medical conditions among clusters.
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Fig. 3. (continued)
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The proportion of chronic diseases and various impairments also differs among the
clusters (Figs. 4 and 5).

Fig. 4. The number of diagnoses of chronic diseases among clusters.
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Fig. 5. The number of various impairments like urogenital or incontinence, falls, hear, walk and
chronic pain among clusters.
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We used the Kruskal-Wallis test also for an evaluation of the difference between the
three target categories of the patients: prefrail, frail, and non-frail (Table 4).

4 Discussion

We used a small set of laboratory and anthropometric measures, to describe the par-
ticipants’ health status, and the clustering procedure, to identify major clinical phe-
notypes within the group of older PC patients from the local community (Tables 1 and
2). Surprisingly, the values of the collected parameters have shown a large degree of
diversity (Table 1). On the other hand, this characteristic is in line with non-linear age-
related dysregulation of multiple body systems, which stays is in the background of the
clinical expression of multimorbidity [3, 5].

The three clusters have been identified, each containing 66, 92, and 103 patients
(Table 2). They overlap to some degree with each other, which is usual in people with
multiple comorbidities and accounts for their exceptional heterogeneity (Fig. 2) [2, 3].

These characteristics, in combination with heterogeneity and overlapping, are
emphasized by the distribution patterns of prefrail and frail patients in the clusters.
Namely, in all three clusters, there are also non-frail, prefrail, and frail patients, but
presented with different proportions, their patterns depending on characteristics of
patients in the clusters.

Analysis of the clusters has shown that patients in the clusters No. 1 and No. 2 are
of a lower age than those in the cluster No. 3 (67.5, 71.1 and 74.2 years, respectively),
and characterized with high values of bmi and wc measures (30.95 vs 34.64 and 100.15
vs 112.96), which according to the knowledge indicate obesity, in the case of the
cluster No. 2, even extreme obesity (Table 2) [21].

These two clusters have similar proportions of prefrail and frail vs. non-frail
patients. This ratio is somewhat highe in cluster No. 1. Despite these similarities,

Table 4. The difference between prefrail, frail, and non-frail patients.

Variable (prefrail/frail vs non-frail) Kruskal-Wallis rank sum test

som com 0.0003
dm 0.954
copd_asthma 0.315
chd_coron_cv_pad 0.065
malig 0.527
osteop 0.005
lumb 0.127
oa 0.006
urogent_incont 0.202
visus 0.891
hear 0.012
fall 0.002
walk 0.00000000006
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patients in these two clusters also show some important differences, such as signifi-
cantly higher proportions of patients diagnosed with diabetes and CVD, in the cluster
No. 1, which according to the evidence are two conditions strongly associated with
both, obesity and frailty (Table 3) (Fig. 3) [22, 23]. This fact can explain a higher
proportion of patients in the cluster No. 1 who have reported subjective difficulties in a
walk, indicating a higher level of physical disability of patients in this cluster, com-
pared to the cluster No. 2 (Table 3) (Fig. 3). Some recently published papers highlight
the role of measuring gait speed in the screening of patients with CVD who are in
particular vulnerability for negative outcomes of hospitalization and surgery [24].

The differences between the clusters No. 1 and 2 may also be associated with
differences in participation of males vs. females. The participation of the males in the
cluster No. 1 is relatively higher, than in cluster No. 2, and compared to the whole
sample. Regarding these results, it is known that women, in general, gain obesity, and
subsequently diabetes and CVD, later than men in the life course, yet in the age after
menopause [25]. This fact may explain our results that women, who make a prevalent
part of patients in cluster No. 2, are characterized by extreme obesity (Table 2). But
they are still not dominated with diabetes, as it is the case with obese patients in cluster
No. 1 (Fig. 3). Extreme obesity has been recognized as a possible cause of prefrailty
and frailty, although this fact is in contradiction to what is, in general, considered under
the term of frailty, including weakness, muscle loss and unintended weight loss [4, 26].

The cluster No. 3 contains the oldest patients (the prevalent age 74.2 years), who,
distinctly from patients in the other two clusters, have reduced renal function (as
indicated with the parameter gfr = 69.02 vs. 96.27 and 105.75) (Table 2). According to
the evidence, frailty is strongly associated with progressive renal impairment, which in
this study is highlighted with the highest proportion of prefrail and frail vs non-frail
patients, found in cluster No. 3 (a ratio of about 2.6 vs 1.4 and 1.3), compared to the
other two clusters [27].

Other characteristics of patients in this cluster, which are markedly different from
those in other two clusters, include the lack of obesity (indicated with values of the
parameters bmi = 27.03 and wc = 92.13) and reduced muscle mass (indicated with the
parameter mac = 28.87 vs. 32.46 and 34.14) [28].

A clinical phenotype that relies on the description with these parameters can be
characterized as muscle wasting and frailty, reflecting the both, highly developed levels
of frailty and significantly reduced renal function [4, 29]. Other characteristics of
patients in this cluster, including lower (than in other two clusters) values of the
parameter hb, indicating anemia, and the parameter htc, indicating decreased blood
viscosity, as well as moderate (not elevated) values of the parameters fglu and chol,
indicating the metabolic status, fasting glucose and total serum cholesterol, are in line
with this proposed clinical phenotype [29, 30].

When comorbidities associated with particular clusters were analyzed, a tendency
for disorders accumulation has been recognized in cluster No. 3, compared to the other
two clusters. It is indicated with the highest proportions, in this cluster, of patients
having 3 or more diagnoses of chronic diseases (frequencies 45:46:63) (Fig. 4). This
tendency is even more emphasized when integrated geriatric conditions are considered,
including walking difficulties, falls, hearing loss, urinary incontinence and chronic pain
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(frequencies 47:52:84) (Fig. 5). Of particular disorders, the most prevalent disorders
in cluster No. 3 were osteoporosis, falls, and hearing loss with significant differences
and osteoarthritis and urinary incontinence as non-significant (Table 3) (Fig. 3). The
findings indicating functional disorders accumulation in people of older age, with
high levels of frailty expression, can find their support in the growing body of evi-
dence [31]. What is emphasized in this study is the key role of renal function
impairment in the development of higher levels of frailty expression. This message is
in line with the concept of unsuccessful aging, the course of aging that has been
turned towards the development of renal function decline, multimorbidity, functional
deficits, and frailty [29].

The non-linearity in frailty development, on distribution patterns of chronic medical
conditions in the clusters, is visible in Tables 3 and 4. Significant differences among
clusters were found in diagnoses of diabetes and CVD (Table 3). When prefrail and
frail vs non-frail patients were considered, significant differences were found in diag-
noses of osteoporosis and osteo-arthritis. Both conditions are known to be directly
associated with frailty and difficulties in a walk (Table 4). The patient group consisted
of only prefrail and frail patients, in a great part resembles characteristics of the cluster
No. 3, where osteoporosis, osteo-arthritis and other physical dysfunctions have shown a
tendency to accumulate (Figs. 3 and 5).

5 Conclusions and Future Outlook

For medical research, we usually select a standard, already proved a machine learning
method, to ensure the reproducibility of the results. What is innovative in this paper is a
research approach, that is, a use of a combination of ML and statistical and graphical
methods, for solving a complex medical problem. This research approach requires a
significant input of a medical researcher in designing research. The clusters can be
considered as a first level analytical method, the results of which can inform more
consistent future models.

There is a problem in medical research of small dataset conditions, such as the need
for research within one health institution or when the size of the dataset is constrained
by the complexity and a high cost of large-scale experiments. To meet these con-
straints, many theoreticians in ML methods, try to adapt these methods to be accurate
and appropriate for use in small datasets [32].

By using a set of simple parameters from the general practitioners both electronic
health records and patient self-reports, together clustering method, they could discover
new insights into the main clinical phenotypes of the group of older patients from the
local community and their associated rates of prefrail and frail patients. It is an
important problem-solving task, characterized by non-linearity and high complexity,
which requires a data-driven analytical approach. The setting of the general practitioner
creates an ideal place for conducting such research. It provides access to a huge amount
and variety of medical data in combination with his broad implicit knowledge of the
GP. Moreover, this study showed again that data-quality matters most.
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There is an urgent need for closer collaboration between medical experts, partic-
ularly general practitioners, and machine learning experts. If the GP’s want to use the
full capability of machine learning, there is a need soon to include it to the daily routine
workflows of the GP’s. These calls for simple to use Human-AI Interaction, fostering to
understand the data within the context of a medical problem and to support decision
making under the constraint of increasing workload and time pressure. Consequently,
such methods must be trustworthy, and this requires explainability on demand. To
reach such a level of explainable medicine it needs much future research in explain-
ability [33] and causability [34].
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Abstract. We present a combinatorial coverage measurement analysis
for test vectors provided by the NIST Cryptographic Algorithm Valida-
tion Program (CAVP), and in particular for test vectors targeting the
AES block ciphers for different key sizes and cryptographic modes of
operation. These test vectors are measured and analyzed using a combi-
natorial approach, which was made feasible via developing the necessary
input models. The extracted model from the test data in combination
with combinatorial coverage measurements allows to extract information
about the structure of the test vectors. Our analysis shows that some test
sets do not achieve full combinatorial coverage. It is further discussed,
how this retrieved knowledge could be used as a means of test quality
analysis, by incorporating residual risk estimation techniques based on
combinatorial methods, in order to assist the overall validation testing
procedure.

Keywords: Combinatorial measurement ·
Cryptographic applications · Data analysis · Knowledge extraction

1 Introduction

The implementation of cryptographic algorithms is a demanding task, involv-
ing various fields of computer science and software engineering. Accordingly, the
testing of cryptographic applications is a complex task, at the same time being
of utmost importance, as the relevance of requirements, user expectations and
standards for security and privacy grow in modern information society. Thor-
ough testing and measurement of mission critical systems – such as medical,
transportation or cryptographic systems – is of vital and crucial importance as
recent studies have shown [15,23–25].
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
A. Holzinger et al. (Eds.): CD-MAKE 2019, LNCS 11713, pp. 195–208, 2019.
https://doi.org/10.1007/978-3-030-29726-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29726-8_13&domain=pdf
https://doi.org/10.1007/978-3-030-29726-8_13


196 D. E. Simos et al.

The Cryptographic Algorithm Validation Program (CAVP) [19] by the
National Institute of Standards and Technology (NIST) provides validation test-
ing of FIPS-approved and NIST-recommended cryptographic algorithms and
their individual components. Cryptographic algorithm validation is a prereq-
uisite of cryptographic module validation, which is the subject of the Crypto-
graphic Module Validation Program (CMVP) [20] established at NIST in 1995.
The CMVP is a joint effort between NIST and the Canadian Centre for Cyber
Security, a branch of the Communications Security Establishment. FIPS 140-2
[18] precludes the use of unvalidated cryptography for the cryptographic protec-
tion of sensitive or valuable data within Federal systems in USA.

As of this writing, the CAVP tests block ciphers including the Advanced
Encryption Standard (AES) [16], among others. In The Advanced Encryption
Standard Algorithm Validation Suite (AESAVS) [1] the testing requirements for
different modes of implementations of the AES algorithm are specified.

Recently, the Secretary of Commerce approved Federal Information Pro-
cessing Standards Publication (FIPS) 140-3, Security Requirements for Cryp-
tographic Modules [22], which supersedes FIPS 140-2 and will come effective on
September 22, 2019. FIPS 140-3 aligns with ISO/IEC 19790:2012(E) [6] and
includes modifications of the Annexes that are allowed to the CMVP, as a vali-
dation authority. As of this writing, the corresponding documents have not been
released yet.1 In [1] it is noted that the testing performed within the AESAVS
uses statistical sampling meaning that only a small number of the possible cases
are tested. Nevertheless, AESAVS states to provide testing of an implementation
under test (IUT) to determine the correctness of the algorithm implementation.

In recent years, big data analysis has become a focus of research in informa-
tion technologies and information processing, reinforced by and also advancing
the current interest in machine learning and artificial intelligence, see [5]. In a
branch of software testing called combinatorial testing (CT) [12], combinatorial
methods have been used to analyze test sets in term of combinatorial coverage,
which can be interpreted as a means to extract knowledge. In this work, we ana-
lyze the test data used in the AESAVS in terms of combinatorial coverage. To
this end, we transformed the data into an appropriate model which enabled the
combinatorial analysis of the test sets. The combinatorial measurement quan-
tifies the parameter-value interactions executed during testing and in doing so
provides a structural analysis of the test data. Within a software testing con-
text, extracting the knowledge about potentially left out combinations has been
used to estimate the residual risk that remains after testing [11]. Moreover, a
comparison of exhaustive testing with combinatorial testing for cryptographic
software [15] showed that covering arrays were able to detect all errors found
in exhaustive testing, using a test set 700 times smaller. Thus, it is useful to
evaluate the level of combinatorial coverage, since the CAVP tests cannot be
exhaustive. Full combinatorial coverage, for an appropriate level of t, suggests a
strong capacity for error detection. Available tools not only can compute these

1 According to [21], NIST plans to release drafts for public comment in mid-2019 and
final publication of those documents will occur by September 22, 2019.
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measurements, but also have the functionality to present the results in different
ways which are easily intelligible for the human eye.

Contribution. In this paper, we perform a study of the combinatorial coverage of
various test sets, originating from the AES algorithm validation suite. A featured
model extraction is made feasible via a transformation of the test vectors into test
sets. These are then used as a basis for the analysis provided by combinatorial
coverage measurement tools. We use visualization techniques that arise from
the combinatorial coverage measurement to display the results and interpret the
extracted knowledge as first steps towards recommendations for future software
validation endeavors.

The paper is structured as follows. In Sect. 2 we give some preliminaries. We
present the derived combinatorial model for our analysis in Sect. 3 and present
our results in Sect. 4. We discuss implications of these findings in Sect. 5 and
conclude the paper in Sect. 6.

2 Background Information

In this section, we provide some necessary preliminaries that will be used
throughout the paper. We summarize important properties about AES and
how its testing is specified in AESAVS in Sect. 2.1 and introduce CT, including
employed combinatorial concepts, in Sect. 2.2.

2.1 AES and AESAVS

AES. The AES algorithm [16] is a symmetric block cipher that can encrypt
and decrypt data. The AES algorithm is capable of using cryptographic keys of
128, 192, and 256 bits to encrypt and decrypt data in blocks of 128 bits. NIST
has approved several modes of the approved block ciphers in a series of special
publications [17].

AESAVS. The Advanced Encryption Standard algorithm validation suite [1]
is designed to test the following modes of operation [17]:

– ECB, which stands for electronic codebook mode
– CBC, which stands for cipher block chaining mode
– OFB, which stands for output feedback mode
– CFB, which stands for cipher feedback mode with the following variants:

• CFB1 (CFB, where the length of the data segment is 1 bit, s = 1)
• CFB8 (CFB, where the length of the data segment is 8 bits, s = 8)
• CFB128 (CFB, where the length of the data segment is 128 bits, s = 128)

– Counter (Counter mode is tested by selecting the ECB mode)

Note that it is not necessary for validation for every mode implemented to
support the same key sizes and ciphering directions [1]. To initiate a validation
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process of the AESAVS, a vendor submits an application to an accredited labora-
tory requesting the validation of their implementation. The AESAVS is designed
for testing of an IUT at locations remote to the AESAVS using communications
via REQUEST and RESPONSE files. The test data is provided to an IUT in REQUEST
files. The IUT processes this data and creates a corresponding RESPONSE file,
which in turn will be verified.

AESAVS specifies three categories of tests: the Known Answer Test (KAT),
the Multi-block Message Test (MMT), and the Monte Carlo Test (MCT). The
KAT category is further split into four types: GFSbox, KeySbox, Variable Key
and Variable Text. The MMT is designed to test the ability of the implementa-
tion to process multi-block messages, which may require chaining of information
from one block to the next. For each supported mode, ten messages are supplied
with lengths of i times the blocklength, for 1 ≤ i ≤ 10. Each MCT ciphers
100 pseudorandom texts, where these texts are generated using an algorithm
depending on the mode of operation being tested.

2.2 CT and CCM

CT [12] is an efficient black-box software testing methodology for effective soft-
ware testing at lower cost. It is based on an input parameter model (IPM) of
the system under test (SUT2) that models its input or configuration space, by
identifying finitely many parameters that can take finitely many values each [4].
In CT, the defining property of t-way test sets is the coverage of all t-way inter-
actions of parameter-value assignments for any combination of t parameters,
for a specific value of t. Informally, a t-way interaction can be described as a
parameter value assignment for exactly t parameters. The key insight underly-
ing the empirically observed effectiveness of CT results from a series of studies
by NIST [2,3,7–10,25]. NIST research showed that most software bugs and fail-
ures are caused by one or two parameter interactions, with progressively fewer
by three or more. These findings have important implications for software test-
ing, because it means that testing these few parameter-value combinations can
provide strong assurances. Based upon that, a hypothesis has been formulated
– which is referred to as the interaction rule – stating that most failures are
induced by single factor faults or by the joint combinatorial effect (interaction)
of two factors, with progressively fewer failures induced by interactions between
three or more factors [12].

CT methods can also be applied to an existing legacy test sets, where an
existing test set is used as a basis and analyzed in terms of combinatorial cov-
erage. Subsequently, should higher or complete t-way coverage be desired than
exhibited in the legacy test set, it is possible to create additional tests specifically
covering those missing interactions. The union of all test cases coming from the
legacy test set and the newly created ones then achieves the desired coverage
properties. This approach is an alternative to creating combinatorial test sets
newly from scratch.

2 In this paper, we use the terms SUT and IUT interchangeably.
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Measuring the achieved level of combinatorial coverage can help in estimating
the degree of risk that remains after testing; meaning that if a high level of
coverage has been achieved (e.g., more than 90%), then presumably the risk is
small, but if the coverage is much lower, then the risk may be substantial [11].

To address the need for such measurements, NIST has developed suitable
methods and tools to quantify the achieved combinatorial overage of test sets
[11]. We briefly describe combinatorial coverage by means of an example and
refer the reader to [12] for further information. Consider given an SUT that is
modelled by five binary parameters A,B,C,D,E that can take the values 0 or 1.
A 3-way interaction for this SUT is specified by a combination of three of the
five parameters, together with a specification of a value for each parameter, e.g.
(A = 0, B = 1, E = 1) is one 3-way interaction. In total, for such an IPM, there
are 23 · (53

)
= 80 different 3-way interactions. Consider now a test set comprised

of the following four test vectors:

A B C D E
test_1: 1 1 1 1 0
test_2: 1 0 1 0 1
test_3: 0 0 0 1 1
test_4: 0 1 1 0 1

We see that the 3-way interaction (A = 0, B = 1, E = 1) is covered by test 4,
i.e. the parameters A,B,E take the values 0,1,1 in this test vector, respectively.
From the overall 80 3-way interactions for this IPM, the four test vectors cover 39
different 3 way interaction, in other words, the combinatorial coverage measure-
ment of these vectors yields a 3-way coverage (also called total 3-way coverage in
[11]) of 48.75%. To summarize, to perform combinatorial coverage measurement,
one requires a test set together with an IPM against which we can measure the
t-way coverage of the test set.

3 Modelling and Measuring Combinatorial Coverage
of AESAVS Test Data

Our analysis concerns, for a given test set file of the AESAVS, the achieved
combinatorial coverage of the binary-transformed extracted hex-values of the
given keys in the individual test vectors. We start with an example for the
data extraction, before we detail how complete files containing test data are
transformed and analyzed.

The test data for a specific configuration (category of test, mode of operation
and key size) are provided in REQUEST files. The RESPONSE files contain the same
data as the REQUEST files with the addition of the ciphertext for encryption
or plaintext for decryption. The generic structure of a single test vector in a
RESPONSE file is as follows:

– an AES key of size 128, 192 or 256 bits, denoted by KEY, which is to be used
for encryption or decryption. The mode of operation is further encoded into
the filename of the test data;
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– an initialization vector (if applicable to the mode of operation), denoted by
IV;

– a sample plaintext, denoted by PLAINTEXT;
– the corresponding ciphertext, denoted by CIPHERTEXT;
– where the order of plaintext/ciphertext or ciphertext/plaintext indicates the

ciphering direction.

To make our approach more tangible, consider the test data provided in the
file CBCMCT192.rsp, which specifies test vectors for CBC mode of operation with
a key size of 192 bits for the category of MCT:

COUNT = 51
KEY = 3461389779e6debf3e58d02175a33cd46663812b73b66082
IV = 88687bf1375300b8412cf10e35f6a0b1
PLAINTEXT = 03c1f719854c00e5a16c302e25621807
CIPHERTEXT = cf5d505c14e1e272634b4ad58b6ef3d9

The COUNT variable simply indicates the ordinal number of the test vector in
this file.

For our analysis of the test data provided by the CAVP, we focused on the
combinatorial measurement of the keys used for testing. Hence, we extract the
hexadecimal value that instantiates the key used in the AES implementation.
This value is translated to a binary vector of length 128, 192 or 256, depending
on the chosen key size.

A test set consists of test vectors for both encryption and decryption. In our
analysis, we aggregated the binary vectors in two different files depending on
their origin, e.g. one for encryption and one for decryption. For each of these
two resulting sets of test vectors, we carry out a combinatorial analysis in two
steps:

1. Extraction of an IPM,
2. Combinatorial coverage measurement based on this IPM.

In the first step we determine for each parameter, that models the key, the set
of values it takes over the course of the whole test set being executed. Thus, we
extract an IPM for the AES key, from the test vectors. These extracted models
contain either 128, 192, or 256 parameters. Depending on the considered test
set, these parameters are unary or binary. In the second step, we measure the
combinatorial 2-, 3- and 4-way coverage, of the test vectors against the IPM
obtained in the first step. In our study we used the Combinatorial Coverage
Measurement Tool (CCMtool) [14], developed by NIST and the Centro Nacional
de Metrologia of Mexico, for both of the just described steps. Other combinatorial
coverage measurement tools include the CAmetrics tool [13] which provides for
additional visualization and combinatorial metrics.

We make this process more explicit by means of the following example where
we consider again the CBCVarKey192 AES validation test set. This set contains
192 test vectors for testing encryption, from which we extract the values of the
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keys and transform them to binary vectors, which constitutes a test set of 192
binary vectors of length 192. From these vectors we extract an IPM consisting
of 192 parameters. In this specific case, the first parameter is unary, only taking
the value 1 and the remaining 191 parameters are binary, taking the values 0 or
1. Finally we measure the combinatorial coverage of the 192 test vectors with
regard to this IPM. The test set covers 54817 out of 72962 2-way interactions
and 4626975 out of 9217660 3-way interactions, i.e. it achieves 75.15% 2-way
coverage and 50.2% 3-way coverage.

4 Measurement Results

For the AES KAT Vectors, AES MCT Sample Vectors and AES MMT Sam-
ple Vectors, we measured the total 2-way through 4-way coverage, separately
considering the keys for encryption of plaintext and decryption of ciphertext.

4.1 AES KAT

The vectors extracted from the AES KAT test sets are the same for the different
modes (ECB, CBC, OFB, CFB1, CFB8, CFB128) when considering AES ver-
sions of the same key size. Further, the keys for encryption and decryption are
the same. Thus, we do not specify the mode when we refer to a set of test vec-
tors, e.g. {Mode}GFSbox128 refers to CBCGFSbox128 as well as CFB1GFSbox128
and further do not distinguish between encryption and decryption. The size of
each AES test set can be seen in Table 1, below.

Table 1. AES KAT test set sizes (for encryption or decryption).

128 192 256

{Mode}GFSbox 7 6 5

{Mode}KeySbox 21 24 16

{Mode}VarKey 128 192 256

{Mode}VarTxt 128 128 128

Now, from the AES test sets we extracted the following IPMs:

– IPM({Mode}GFSbox): 1128 (all unary)
– IPM({Mode}KeySbox): 11, 2127 (first parameter unary, others binary)
– IPM({Mode}VarKey): 2128 (all binary)
– IPM({Mode}VarTxt): 1128 (all unary)

The results of our coverage measurement are depicted in Fig. 1 to give an
comprehensive overview. Moreover, in Table 2 we detail the results of the 3-way
coverage measurement for the different test vectors of length 128.
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The results of the coverage measurement visualized in Fig. 1 need to be inter-
preted carefully. For the case of {Mode}VarTxt and {Mode}GFSbox, the coverage
is 100%, simply because the IPM consists only of unary parameters. The vectors
of the test sets where the extracted IPMs are not trivial, achieve lower t-way
coverage.

Table 2. 3-way coverage of vectors for 128 length against extracted IPM.

Extracted IPM # tuples # tuples covered Coverage %

IPM({Mode}GFSbox128) 1128 341376 341376 100%

IPM({Mode}KeySbox128) 2128 2731008 2575694 94.3%

IPM({Mode}VarKey128) 11, 2127 2699004 1357503 50.3%

IPM({Mode}VarTxt128) 1128 341376 341376 100%

Fig. 1. 2-way, 3-way and 4-way coverage of AES KAT test sets.

4.2 AES MCT

The vectors extracted from the MCT test sets contained 200 vectors for each
mode (ECB, CBC, OFB, CFB1, CFB8, CFB128), which are split into two test
sets for encryption and decryption, as before. Again, we extract the values for the
keys from these vectors. For different modes the keys are instantiated differently
and also the keys in the test vectors for encryption differ from the keys in the
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test vectors for decryption. For all modes and both test sets - for encryption
and decryption - the IPMs extracted from the sets of keys consist of only binary
parameters. Figures 2 and 3 show the results of our coverage measurements for 2-
way, 3-way, and 4-way coverage. On the x-axes we denote the various AES modes
and the key sizes and on the y-axes the percentage of t-way coverage. The figures
show that for both, encryption and decryption, the AES keys achieve full 2-way
coverage and almost full 3-way coverage (the lowest percentage across all modes
and sizes being 99.9994% for encryption, and 99.9996% for decryption). The
keys also have good 4-way coverage, staying above 99.80%, except for the case
of CFB128MCT128 achieving 99.77% 4-way coverage.

Fig. 2. 2-way, 3-way and 4-way coverage of AES MCT test sets for encryption.

4.3 AES MMT

The vectors extracted from the MMT test sets contain 20 vectors, where again
for each mode (ECB, CBC, OFB, CFB1, CFB8, CFB128) the test vectors are
split in two sets for encryption and description. As before, for different modes
the keys are instantiated differently and the keys for encryption differ from
the keys for decryption. When extracting the IPMs from these test sets, we
retrieve IPMs containing mostly binary parameters, but some IPMs extracted
from sets of test vectors also contain unary parameters. To be more specific,
from the encryption test sets, the IPMs extracted from the vectors for the modes
CFB1MMT192, ECBMMT256, CBCMMT128, CBCMMT256 and CFB128MMT192 contain one
unary parameter, while the remaining ones are binary; and for decryption the
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Fig. 3. 2-way, 3-way and 4-way coverage of AES MCT test sets for decryption.

IPMs extracted from CFB1MMT192, ECBMMT128, CBCMMT128, CFB128MMT192 con-
tain one unary parameter and the one from CFB8MMT128 contains two unary
parameters, while the remaining parameters in all IPMs are binary.

Figures 4 and 5 depict the results of our t-way coverage measurements for
t ∈ {2, 3, 4}, showing that the MMT test sets achieve high 2-way coverage above
90%, but only medium to low 3-way and 4-way coverage below 80% and 50%
respectively.

5 Discussion Related to Testing

The combinatorial coverage measurement analysis in the previous section shows
that some of the extracted and transformed keys from the AESAVS test sets do
not exhibit full t-way combinatorial coverage for some values of t. This finding has
some implications for the currently specified testing requirements in AESAVS.

First, we already pointed out in the introduction that in the AESAVS docu-
ment [1], it is noted that the testing performed within the AESAVS uses statis-
tical sampling to generate the test data. With our measurement approach, we
are now able to assess the result of the statistical sampling with respect to the
key space used to generate the test sets in terms of the achieved combinatorial
t-way coverage.

Second, some works in the software testing literature have linked achieved
combinatorial t-way coverage to the residual risk that remains after testing [11],
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Fig. 4. 2-way, 3-way and 4-way coverage of AES MMT test sets for encryption.

Fig. 5. 2-way, 3-way and 4-way coverage of AES MMT test sets for decryption.
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[14]. An investigation whether similar conclusions could be drawn for validation
testing purposes could be of interest.

Third, the presented case study here could be extended to also take into
account not only the key space, but also simultaneously the key space, IV space
and ciphering direction space (i.e., plain- or ciphertext space).

6 Conclusion

The Cryptographic Algorithm Validation Program validates implementations
of various cryptographic algorithms, including AES and other popular crypto-
graphic algorithms. This is accomplished by designing and developing validation
test sets for every such recommended cryptographic algorithm, with the aim
to check whether the algorithm has been implemented correctly. In this work,
we applied knowledge extraction and visualization techniques via combinatorial
coverage metrics to perform an analysis of the various AESAVS test sets. Our
coverage measurement results can be used as a complementary measure to assess
the quality of the AES algorithm validation suite.
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Abstract. Fingerprinting of data is a method to embed a traceable
marker into the data to identify which specific recipient a certain copy
of the data set has been released to. This is crucial for releasing data
sets to third parties, especially if the release involves a fee, or if the data
contains sensitive information due to which further sharing and potential
subsequent leaks should be discouraged and deterred from. Fingerprints
generally involve distorting the data set to a certain degree, in a trade off
to preserve the utility of the data versus the robustness and traceability
of the fingerprint. In this paper, we will thus compare several approaches
for fingerprinting for their robustness against various types of attacks,
such as subset or collusion attacks. We further evaluate the effects the
fingerprinting has on the utility of the datasets, specifically for Machine
Learning tasks.

Keywords: Fingerprinting · Relational databases · Data utility

1 Introduction

An increased interest in data collection, sharing and analysis has lead to the
emergence of data economies, where various stakeholders gather and store data,
and others consume this data to create additional value. Data is thus on the
one hand a valuable asset to its owner, and therefore any type of unauthorised
distribution or usage of data by a third party, violating the owner’s rights and
rights of the authorised buyers, needs to be prevented. In some cases, it might be
required to prove ownership of the data. On the other hand, the collected data
often concerns individuals. It can either be data directly containing information
about individuals, such as contact or residence information, or data about the
behaviour of individuals, e.g. interaction with online resources, shopping pref-
erences. For these situations, data leakages should be detectable, respectively
attributable, i.e. it should be possible to trace the initial (authorised) receiver of
a certain data set. Such a mechanism can on the one hand help in litigation cases,
but on the other hand can also be a preventive measure that deters malicious
behaviour, at least for some potential adversaries.
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Fingerprinting techniques, which can be seen as a personalised version of
generic watermarks applied to a digital object, can be utilised as a mechanism
enabling ownership attribution. They generally embed a pattern in the data, i.e.
they distort the original data set to a certain extent. A good fingerprint should
(i) be recognisable by the original owner of the data, (ii) not be detectable (and
consequently, removable) by recipients of the data, (iii) be robust to intentional
or unintentional modifications of the data, such as creating a subset, and (iv)
should not lower the utility of the data too much.

The assumption in a fingerprinting scenario is that every recipient (e.g. a
buyer) of the data has her own fingerprint attributed, therefore every copy that
is fingerprinted and distributed by the owner is different from each other. By
detecting the fingerprint within the dataset, the owner is able to detect the exact
buyer of that instance of dataset.

Fingerprinting therefore usually relies on two steps: fingerprint insertion and
fingerprint detection. In the first step, the fingerprint of a recipient is embedded
into the dataset. Fingerprint detection then strives for detecting the fingerprint in
a suspicious dataset in order to connect it with the recipient who distributed the
dataset without authorisation (or is at least the first step in the chain from which
the leakage originated). Fingerprint detection could be disrupted by (i) malicious
attempts of the recipient to remove the fingerprint from the data, or (ii) by
benign changes in the dataset, such as an well-intended sub-setting of the data,
if only the subset is of relevance for a certain operation.

In this paper, we compare a number of popular fingerprinting algorithms for
the above mentioned properties. We evaluate the robustness of the fingerprinting
techniques towards various types of attacks by an adversary intending to disable
the fingerprint. We then evaluate the effects of the fingerprint on the utility
of the data by comparing the effectiveness of various machine learning models
trained on both the original and the fingerprinted data sets.

The remainder of this paper is organised as follows. Section 2 discusses related
work and introduces the fingerprinting schemes that we analyse. In Sect. 3, we
describe our experiment setup and the data sets employed and, while we discuss
the robustness towards attacks and the data utility aspects in our evaluation in
Sect. 4. Finally, we provide conclusions and an outlook on future work in Sect. 5.

2 Related Work

Fingerprinting is, in the literature, often discussed as an extension of watermark-
ing. Watermarking is an information hiding technique that allows identifying the
source of digital objects by embedding secret owner-specific information into the
dataset. Fingerprinting extends the functionality of watermark by providing the
identification of the source of unauthorised data leakage. Fingerprint combines
thus secret owner-specific and recipient-specific information embedded in a spe-
cific release of a digital object.

The concepts of fingerprinting and watermarking digital data firstly appear
in domains of multimedia data and have been extensively studied over last
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two decades [6,7,16]. Most of these techniques were initially developed for
images [15], and later extended to other modalities such as video [9] and audio [3].

Approaches for applying a watermarking scheme in other domains such as
text and software have been studied as well. Techniques for watermarking text
data typically exploit properties of text formatting and semantics. Watermarks
are often introduced by altering the spacing between words and lines of text [14].
Other techniques rely on natural language processing and rephrasing some sen-
tences in the text [2], thereby noticeably modifying the content, especially if
more than one copy of the (differently fingerprinted) object is available.

Regarding relational databases, which is the focus of this work, most of the
current state-of-the-art fingerprinting methods extend the watermarking tech-
nique proposed by Agrawal [1]. As mentioned above, the technique in principle
contains two algorithms: watermark insertion and watermark detection.

The insertion step marks certain numerical attributes such that the least sig-
nificant bits (LSBs) are altered. Thus this technique assumes that the dataset con-
tains one or more numerical attributes. The number of LSBs available for mark-
ing is a trade-off between the robustness and imperceptibility of the mark. The
insertion uses a cryptographic pseudo-random sequence generator G, seeded by a
secret key known only to the owner of the database and concatenated with the pri-
mary key attribute value of each tuple from a database. The numbers generated
determine the bits to be marked, as well as the mark itself. It is computationally
unfeasible to predict the next number generated by G, thus unfeasible to guess the
marking pattern without the knowledge of the owner’s private key.

The detection calculates the same sequence as in the insertion algorithm,
thus identifying which bits within the database should have been marked, and
counts how many of them match the bits from a specific database. If the num-
ber of matches is “large”, defined by a parameter called significance level, the
database owner can suspect a leakage. The authors analysed the robustness
of this technique against the number of malicious attacks: subset attacks, bit-
flipping attacks, mix-and-match attack and false claim of ownership.

Li [12] extends this watermarking technique into a fingerprinting technique,
by embedding different bit-strings – fingerprints in different releases of the data.
The owner generates a fingerprint from her secret key and the recipient’s iden-
tifier, using a cryptographic hash function. This way, storing a recipient-to-
fingerprint pair, and entailing security management for this database, is not
required. The insertion step is similar to [1], additionally embedding the gener-
ated fingerprint by an XOR function applied on the mark (called mask) and a
selected fingerprint bit. Also the detection step is similar to [1] – it locates the
bits that should have been altered and compares the matching of the extracted
fingerprint with recipients fingerprints, with a τ as a parameter related to the
assurance of the detection process.

In [13] a block-oriented fingerprinting scheme, inspired by a fingerprinting
scheme for images from [8], is presented. In the insertion step, the LSBs of numer-
ical values are combined into a two-dimensional matrix and separated into blocks
of size β × β. All blocks receive a fingerprint, the position within the block being
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randomly selected. The fingerprint is produced in the same manner as in [12], using
the owner’s secret key and the recipients’s identifier as seed. If the fingerprint is
shorter than the number of blocks, it might be embedded multiple times.

The detection step first tries to restore the database to be examined by
filling in the original values in case of data deletion. The expected location of
the fingerprint bit is computed as in the insertion step, and the bit is recorded.
As the fingerprint is embedded multiple times in the dataset, if most of the
detected values for a single fingerprint bit are found, the detected fingerprint is
said to be found, otherwise it is regarded as not found.

The Watermill scheme [5,11] further considers constraints of data alteration
and treating fingerprinting as an optimisation problem. By using a declarative
language the usability constraints that the fingerprinted dataset must meet are
specified. One of two proposed fingerprinting strategies consists of translating the
weight-independent constraints into an integer linear program (ILP) and using
ILP solver to solve it. The second fingerprinting strategy is pairing heuristics for
larger datasets where using ILP solver might not be efficient.

2.1 Fingerprinting Categorical Data

All of the previously mentioned fingerprinting techniques have one restriction in
common – they are applicable only on numerical attributes since they are all
bit-resetting techniques. Few solutions have been proposed for categorical data.
One approach is the watermarking technique presented in [17,18], which, similar
to the AK scheme, uses a pseudo-random sequence generator to choose tuples
for marking, and marks categorical data by changing the values to another, also
pseudorandomly chosen, value from the attribute domain. One of the require-
ments for the technique is the presence of the primary key in the dataset, which
is together with owner’s secret key used as a seed for pseudo-random sequence
generator. In case of multiple categorical attributes in the dataset, the tech-
nique consists of several marking iterations, one categorical attribute at a time,
where in each iteration the marking pattern of some attribute is additionally con-
trolled by adding combination of other attributes’ values to the seed of pseudo-
random number generator. This method prevents the attribute removal attack,
but (i) increases the complexity of the marking technique, (ii) is not suitable
for database relations that need frequent updates and (iii) marks are possibly
overlapping because a single attribute is marked several times. The authors do
not mention possibility of extending this technique to fingerprinting technique,
but claim robustness against serious attacks.

Another approach is a fingerprinting technique that incorporates the k-
anonymity property into the fingerprinted data [10]. k-anonymity [19] strives to
modify a dataset so that at least k data samples (individuals) become indiscernible,
when considering quasi-identifying attributes. This is commonly achieved by gen-
eralising values in the dataset to a broader meaning. There are generally multiple
solutions of achieving the same level of k by choosing different attributes to modify.
The idea in the proposed scheme is therefore to utilise these multiple, equivalent
versions of the dataset as one fingerprinted version for each recipient.
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K-anonymity is applied on both categorical data and numerical, therefore this
fingerprinting approach can, unlike the previous schemes, operate on categorical
data in the process. However, there are also several limitations: (i) the number
of available fingerprints is inherently limited to the number of different equiva-
lent versions of achieving k-anonymity, (ii) the fingerprinted copies are generally
rather different from each other, and thus certain attacks might be more fea-
sible, (iii) the utility of the differently fingerprinted (anonymised) datasets can
vary significantly, and (iv), the fingerprint can not be computed alone by the
recipients identifier, but rather, a mapping of fingerprint and recipients needs to
be stored, with all associated security risks.

We therefore do not consider this approach in this paper. Instead, we employ
a rather simple modification of the above schemes for numerical data. We first
convert the categorical data to an integer representation, by simply assigning
increasing integer values to each unique categorical value (a process sometimes
referred to as label encoding in data mining settings). We can then proceed to
simply applying the fingerprinting scheme by modifying the LSBs of this numer-
ical representation. After the modification is done, we convert the label-encoded
variable back to the corresponding categorical value. This process works fine as
long as the number of distinct values is a multiple of 2, and thus all modified
numerical values have a corresponding categorical value. For other cases, we
consider passing the modified value through a modulo function before the trans-
formation to a categorical value. This ensures syntactical correct values in the
dataset, but introduces potential issues with detecting the fingerprint, where a
different numeric value might be expected than the one resulting from the mod-
ulo function. We will study the effects of these on the data utility as well as on
the robustness of the fingerprint in our evaluation.

3 Experiment Setup

In this section, we describe the datasets used in our experiment, as well as the
approach for the robustness and utility evaluation.

3.1 Datasets

For the empirical evaluation, we selected two publicly available datasets. The
first dataset is the so-called Forest Cover Type dataset, obtained from the UCI
Machine Learning repository1. The dataset contains measurements related to
the forest cover originally obtained from US Geological Survey (USGS) and US
Forest Service (USFS) data. This dataset consists of 581,012 instances, each
describing a Forest Cover Type by 54 attributes, which are Integer or Binary
values. The output variable to be predicted is one of seven different cover types.
As binary variables can be easily treated as numerical/integer types, this dataset
can thus be considered to contain numerical values only. The dataset is chosen

1 https://archive.ics.uci.edu/ml/datasets/covertype.

https://archive.ics.uci.edu/ml/datasets/covertype


214 T. Šarčević and R. Mayer

due to its desired properties of containing multiple integer-valued attributes;
further, this dataset is often used for experiments in watermarking and fin-
gerprinting literature [1,12]. For the purpose of fingerprint insertion, one extra
attribute id is added to serve as the primary key, since the chosen fingerprinting
techniques require the presence of a primary key for fingerprint embedding. 44
out of the 54 attributes of the dataset contain binary values – to minimise the
impact of the distortion introduced by the fingerprint, we use the remaining 10
integer-valued attributes for embedding.

The second dataset is the Adult dataset, obtained as well from the UCI
Machine Learning repository2. This dataset contains 15 attributes in 30,162 sam-
ples (after removing samples containing missing values), where the attributes are
both numerical and categorical (five continuous numerical and ten categorical).
This dataset will thus be used for evaluating the effect of the simple finger-
printing technique for categorical data, as mentioned in Sect. 2.1. This dataset
contains five categorical attributes that have a number of distinct values that
is not a power of two, which is potentially problematic for our fingerprinting
scheme because the marking algorithm may produce values out of the domain
of categorical attribute. The algorithm in that case applies modulo function as
an error correction step and may erase the mark.

3.2 Robustness Analysis

Fingerprinting schemes should be robust against different attacks that aim at
preventing the correct detection of the fingerprint. Modifying, deleting and
adding values to the fingerprinted data, which can be both benign updates and
malicious attacks, can modify or erase the fingerprint. A robust fingerprinted
scheme should make it difficult for an attacker to erase the fingerprint, to mod-
ify it in the way that an innocent recipient is indicted as a culprit, or to modify
unmarked data such that a valid fingerprint is detected.

We will analyse robustness against different attacks using robustness mea-
sures proposed in [12].

– Misattribution false hit (fhA): The probability of detecting an incorrect
(but valid) fingerprint from fingerprinted data, i.e. a fingerprint of a different
recipient.

– False negative (fn): The probability of not detecting the valid fingerprint
from fingerprinted data.

– False miss (fm): The probability of failing to detect an embedded fingerprint
correctly. The false miss rate is the sum of the false negative and misattribu-
tion false hit rates, i.e. fm = fhA + fn.

– Misdiagnosis false hit (fhD): The probability of detecting a valid finger-
print from data that has not been fingerprinted. This measure differs from
the others as it does not measure the success of a malicious attack or benign
updates on the dataset. In contrast to the ability of the detection algorithm to

2 https://archive.ics.uci.edu/ml/datasets/adult.

https://archive.ics.uci.edu/ml/datasets/adult
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detect the correct fingerprint from the pirated (and fingerprinted) data, the
fingerprinting scheme may also, purely by chance, extract a valid fingerprint
from unmarked data.

We will experimentally perform the following attacks to the fingerprinted
data sets:

– Subset attack. In the attempt to erase the fingerprint from the dataset,
the attacker may release only a subset of tuples of a fingerprinted dataset. In
our attack model, we assume the attacker selects each tuple independently
with probability p to include it in the pirated dataset. We also assume no
other updates on dataset are applied and no other attacks performed. As
each fingerprint might be embedded multiple times in a dataset, a subset
attack therefore succeeds when all embedded bits for at least one fingerprint
bit are deleted.

– Superset attack. In this attack, additional tuples to the fingerprinted data
are added. This attack considers only addition of new tuples, while the original
set of tuples remains unchanged. The sources of the additional tuples can
be various, such as related datasets with similar attributes, artificial tuples
with some semantic meaning, tuples generated from the dataset itself – or
the values can be completely random. This attack can only be applied on
fingerprinting schemes whose algorithms do function without the access to
the original dataset (e.g. AK scheme). Otherwise it is trivial to compare the
distributed dataset to the original and remove the tuples that are added by
an attacker. In other cases, defending against such an attack can be helped
by syntactical examination of the dataset – completely randomly generated
tuples might be easy to spot. Also semantic information on the database can
serve as a preliminary step in deletion of the superfluous tuples.

– Bit-flipping attack. The attacks mentioned above to not alter the values of
the original tuples – however, an attacker may change these values in attempt
to destroy the fingerprint. In a bit-flipping attack, some bits are selected and
flipped. The choice of the bits is assumed random, as the attacker in our threat
model is defined as having no knowledge about the fingerprint insertion scheme.

– Additive attack. In the additive attack [1], the attacker tries to claim the
ownership of a dataset by inserting an additional fingerprint in the dataset
he received. The competing ownership claims can be resolved if there exists
at least one bit that both the owner and the attacker have marked, each
with a different value. The way to resolve the ownership claim competition
is to determine which owner’s marks win, i.e. which mark has overwritten
the other. The winning owner’s mark was inserted later, therefore his claim
of ownership is false. In case there is no overwritten mark, one approach for
dealing with the false claims of ownership could be to ask both the owner
and the attacker to produce the original dataset, i.e. the dataset before it
was fingerprinted, and to demonstrate the presence of the fingerprint in each
other’s original datasets. The real owner will be able to demonstrate the
presence of her fingerprint in attacker’s original unlike the attacker in the
owner’s original.
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3.3 Utility Analysis

Besides the robustness, the effect of embedding fingerprints on the data utility is
of interest. Fingerprinting datasets entails introducing distortions to the values,
which might have a negative impact on the utility of the data, similarly as it is
the case when data sensitisation methods are applied [4]. The utility of a fin-
gerprinted dataset, for researchers, economists or other data analysts, can thus
be measured by the extent to which it preserves aggregate and statistical infor-
mation. A utility metric quantifies the utility of a modified dataset. In general,
utility can be measured by two approaches. One approach is to utilise one or
more quantitative measures of information loss (see [4] for an overview). As these
measures do not necessarily reflect the final utility of a machine learning model,
a second approach is to measure the effects of the fingerprinting on the quality
of the analysis based on the data. In this paper, we employ both approaches.

For the measures on the data itself, we analyse the mean and variance of
attributes, resp. the changes of those statistical moments introduced by the
fingerprinting. We first discuss the expected behaviour on the example of the
AK scheme, while the estimation is generally similar for the other schemes.

The procedure of embedding the fingerprint generally is controlled by the
parameter γ, the number of attributes v, and the number of least significant bits
ξ. In a dataset with η tuples, on average η/γ tuples are selected for marking,
and within each of those tuples, a single bit of a single attribute is selected for
marking. As the mark value is calculated as XOR of the fingerprint bit and
pseudorandomly selected mask bit, the bit value will match the original value
on average half of the times and therefore not lead to a change. Thus, a value
of a tuple i will be selected and changed with probability P{Li = 1} = 1

2γv .
The changes in the attributes after fingerprinting, i.e. the errors introduced,
are {Δ1,Δ2, ...,Δη}, i.i.d. random variables. Each Δi, 1 ≤ i ≤ η, is defined
as Δi = LiSi2Ui , where Si ∈ {−1, 1}, depending whether the perturbed value
is smaller or greater than the original value, both with probability 0.5, and
Ui ∈ {0, 1, ..., ξ − 1} is the uniformly distributed variable representing position
of the marked bit.

The expected mean value of the changed attribute values is

x′ = (1/η)
η∑

i=1

xi + Δ = (1/η)
η∑

i=1

xi + (1/η)
η∑

i=1

Δi

It can be shown that the expected mean error Δ of a single attribute value is

E[Δi] =
1
2
Li2Ui − 1

2
Li2Ui = 0,∀i : 1 ≤ i ≤ η,

thus the expected error in attribute mean value after embedding the finger-
print is 0.

The expected variance of the perturbed attribute values is

V ′
x =

1
η

η∑

i=1

[(xi + Δi) − (x + Δ)]2.
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where the error in variance can be shown to be

1
η

η∑

i=1

(Δi − Δ)2 + 2 ∗ 1
η

η∑

i=1

(xi − x)(Δi − Δ).

The expected error in computing the variance is thus given by

E[VΔ] ≈ 22ξ

6γvξ
.

Also, we will employ the second approach, by directly using the fingerprinted
dataset as an input to the machine learning model building, and evaluate the
quality of the result. We approached the building of a classification model by
applying several machine learning algorithms, namely k-nearest Neighbours (k-
NN), Logistic Regression, and Random Forests. All classifiers are implemented in
the Python sklearn package3. We present the resulting accuracy and F1-measure
scores in the tables in Sect. 4.

4 Evaluation

4.1 Robustness Evaluation

Misdiagnosis False Hit. We briefly derive an expected value for this error for
the AK scheme. Assume that the detection algorithm from the unmarked data
extracts a potential fingerprint f = (f0, ..., fL−1), i.e. some bit string of length
L. Furthermore, assuming that a single fingerprint bit fi is extracted from the
dataset multiple times, it is decided to be a single value (0 or 1) if that value
is extracted more than τωi, where ωi is the number of times fi is extracted.
Due to the use of pseudo-random mask bits in this scheme, each time fi is
extracted, it will be extracted as 0 or 1 with a probability of 0.5, which is
modelled as an independent Bernoulli trial. Once when the detection algorithm is
done processing the dataset, the probability of the value of one fingerprint bit fi

of the extracted potential fingerprint f being 0 is B(�τωi�;ωi, 0.5), and the same
probability stands for fi being 1. Therefore, the algorithm detects the potential
fingerprint with the probability

∏L−1
i=0 2B(�τωi�;ωi, 0.5). The probability that

the extracted fingerprint is matching one of the N valid ones equals to choosing
N bit strings out of 2L possible ones: N/2L. Now the overall misdiagnosis false
hit rate is

fhD =
N

2L

L−1∏

i=0

2B(�τωi�;ωi, 0.5)

The misdiagnosis false hit rate is exponentially dependant on the length of the
fingerprint L. The rate can be reduced by increasing L. Table 1 shows the mis-
diagnosis false hit rate under different values of L and ωi ≈ {100, 50} : ∀i ∈
{0, ..., L − 1}, where N = 100 and τ = 0.5 are fixed values. We can see that
for L 	 log(N) we can almost completely avoid the misdiagnosis false hit
(fhD 
 0), becoming thus an important influence on the fingerprint size to
be chose.
3 https://scikit-learn.org/stable/ (specifically, we used version 0.20.3).

https://scikit-learn.org/stable/
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Table 1. Misdiagnosis false hit rate for exemplary fingerprint sizes

L 8 16 32 64 128

fhD(ωi = 100) 0.7208 0.0052 2.70 × 10−7 7.30 × 10−16 5.31 × 10−33

fhD(ωi = 50) 0.9151 0.0084 7.01 × 10−7 4.92 × 10−15 2.42 × 10−31

Subset Attack. For the AK Scheme, assuming that each fingerprint bit fi is
embedded ωi times, the probability that all embedded bits for fi are deleted is
(1 − p)ωi . The probability that no valid fingerprint will be detected from the
dataset is then

fm = 1 −
L−1∏

i=0

(1 − (1 − p)ωi).

We show empirically the success of a subset attack, with an attack performed
on the Forest Cover Type dataset (where η = 581, 012 and v = 10), using
different parameter settings. The experimental results, for L = 96 and ξ = 4,
are shown in Table 2, where every experiment is run 500 times. We can see from
Table 2 that the results roughly match the theoretical expectation. The best rate
of success have those attacks where the most of the tuples are deleted (>95%),
and the percentage of fingerprinted tuples is low (γ is high). Therefore, we can
argue that the AK scheme is robust against subset attacks.

It has to be considered that as few as 1% of the tuples in this example is
approximately 5,810 tuples, which for the attacker might still be an acceptable
amount of tuples to release without authorisation, and to perform the successful
subset attack if γ is set high enough (γ ≥ 25). In those cases where p′ is large, γ
should be set to the smaller value, since the probability for a successful subset
attack decreases when γ decreases for the same p′.

Table 2. Experimental results of subset attack success against the AK scheme, on the
Forest Cover Type dataset

p′ = 70% p′ = 80% p′ = 90% p′ = 95% p′ = 99%

γ = 6 0 0 0 0 0.004

γ = 12 0 0 0 0 0.5

γ = 25 0 0 0 0 1.0

γ = 50 0 0 0.002 0.194 1.0

γ = 100 0 0 0.20 0.9975 1.0

For e.g. the block scheme algorithm, it is crucial to have the same number
of tuples and attributes, and their right sequence, in the suspicious database
to be able to detect a valid fingerprint. When the attacker removes tuples, the
detection scheme first has to replace these with the corresponding ones from the
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original dataset. In general, for this scheme the number of tuples to be removed
is much smaller – with half of the dataset still available, the success rate for
large values of γ reaches values comparable to the best chance presented for the
AK scheme. Theoretical success of the subset attack against the block scheme is
shown in Table 3.

Table 3. The probability of a successful subset attack in block scheme

p′ = 30% p′ = 40% p′ = 45% p′ = 50%

β = 5 0 0 0 1.0

β = 10 0 0 0.001 1.0

β = 15 0 6.8233 × 10−7 0.2320 1.0

β = 20 0 9.7949 × 10−4 0.8301 1.0

β = 30 2.0832 × 10−7 0.2151 0.9998 1.0

The extended AK scheme for categorical data described in Sect. 2.1 differs
from original AK scheme in an additional step in the fingerprinting embedding
for categorical values. As mentioned before, we trade the strength of detection
algorithm for fingerprinting categorical data successfully, as the additional oper-
ations in the fingerprint insertion phase cause errors in the detection phase that
cannot be avoided. Having errors in unaffected fingerprinting scheme increases
also the vulnerability of the scheme to attacks. To show this, we conducted
experiments are on Adult dataset, which contains categorical data. We measure
the success of a subset attack on the extended AK scheme over 500 runs and
parameters set as follows: L = 80, ξ = 1, τ = 0.5, γ = {3, 6, 12, 25, 50, 100}
and p′ = {0.30, 0.60, 0.80, 0.90, 0.95, 0.99}, where p′ represents the percentage of
tuples that are deleted. The results are shown in Table 4.

Table 4. Experimental results of subset attack success, on the Adult dataset

p′ = 30% p′ = 60% p′ = 80% p′ = 90% p′ = 95% p′ = 99%

γ = 3 0.0 0.0 0.0 0.004 0.22 1.0

γ = 6 0.08 0.18 0.20 0.354 0.954 1.0

γ = 12 0.078 0.0 0.212 0.97 1.0 1.0

γ = 25 0.012 0.284 0.99 1.0 1.0 1.0

γ = 50 0.346 1.0 1.0 1.0 1.0 1.0

γ = 100 0.976 1.0 1.0 1.0 1.0 1.0

Even though the detection algorithm is able to detect the correct fingerprint
from the full set of tuples, the errors introduced by the modulo operation are
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enhancing the success of the attack. For a comparison, the results attack success
results when no error correction step has been applied, are given in Table 5.
In this experiment, the fingerprint is embedded only in numerical values of the
Adult dataset, otherwise using the same scheme. If an error correction step is
being applied, the attack success rate is generally higher. Only for small values
of γ, and if not a large portion of tuples are deleted, the scheme is robust to
subset attacks.

Table 5. Experimental results of subset attack success for the case where fingerprint
is marking only numerical values, on the Adult dataset

p′ = 30% p′ = 60% p′ = 80% p′ = 90% p′ = 95% p′ = 99%

γ = 3 0.0 0.0 0.0 0.0 0.07 1.0

γ = 6 0.0 0.0 0.0 0.0 0.11 0.98

γ = 12 0.0 0.0 0.16 0.97 1.0 1.0

γ = 25 0.0 0.11 0.98 1.0 1.0 1.0

γ = 50 0.15 0.98 1.0 1.0 1.0 1.0

γ = 100 0.97 1.0 1.0 1.0 1.0 1.0

Bit-Flipping Attack. As an example, for the Block scheme, we assume that the
attacker examines every bit available for fingerprinting independently and selects
it for flipping with probability p. Let us approximate the number of times that
each fingerprint bit is embedded in the data to ω. For the detection algorithm
to fail to recover the correct fingerprint bit, at least (1 − τ)ω embedded bits
corresponding to the single fingerprint bit fi must be changed, i.e. more than
ω − �τω + 1 bits must be changed. The probability that one fingerprint bit is
destroyed is B(ω − �τω + 1;ω, p). The probability that the entire fingerprint
will be detected incorrectly is therefore

fm = 1 − (1 − B(ω − �τω + 1;ω, p)L).

We run experiments on the Forest dataset both for Block scheme and AK
scheme. Table 6 shows the obtained empirical results for the success of the bit-
flipping attack on the block scheme where each experiment is run 100 times,
while Table 7 shows the results for the AK scheme.

Table 6. Experimental results of the bit-flipping attack on the Block scheme, for the
Forest Cover Type data

p = 30% p = 40% p = 45% p = 50%

β = 5 0 0 0.50 1.0

β = 10 0 0.50 0.50 1.0

β = 15 0 0.50 0.92 1.0

β = 20 0.08 0.50 1.0 1.0
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Table 7. Experimental results of the bit-flipping attack on the AK scheme, for the
Forest Cover Type Data

p = 20% p = 30% p = 40% p = 45%

γ = 6 0 0 0.50 0.56

γ = 12 0 0 0.50 1.0

γ = 25 0 0 0.54 1.0

γ = 50 0 0.50 0.72 1.0

γ = 100 0 0.36 1.0 1.0

We can observe that the number of bits to be flipped needs to be rather high -
more than 30% of the bits available for fingerprinting, to achieve an attack with
a certain guarantee of success. Such a large modification is expected to render
the utility of the dataset obtain rather low. Choosing smaller β for the Block
scheme or γ for the AK scheme contributes to better robustness against bit-
flipping attack.

Additive Attack. We consider a scenario where the attacker tries to claim the
ownership of the dataset by inserting an additional fingerprint in the received
dataset. The competing ownership claims can be resolved if there exists at least
one bit that both the owner and the attacker have marked, each with a different
value. In that case it is possible to decide which mark appeared later, “on top
of the other”. In all of the considered techniques it is justified to conclude that
the odds of finding such conflicting bits are low, unfortunately for the owner.

Let us take AK Scheme as an example. Suppose that the data fingerprinted by
the owner is marked ω times with parameters γ, v and ξ and that the attacker
performs the fingerprinting insertion algorithm with parameters γ′, v′ and ξ′.
Under the usual probabilistic model of AK scheme’s bit-marking process, the
probability that a specified bit marked by original fingerprint is also marked by
the attacker is the product of probabilities that the tuple containing the bit is
chosen for marking (1/γ′), that the attribute containing the bit is also chosen for
marking (1/v′) and that the specified bit is chosen (1/ξ′). The probability that
the attacker’s mark is different from the original mark is 1/2, so that the overall
probability that the specified bit is a conflict bit is 1/(2γ′v′ξ′). The tuples are
marked independently of each other, therefore the probability that the attack is
successful, i.e. no conflicting bits are found, is

P{success|ω} = (1 − 1
2γ′v′ξ′ )

ω.

For example, let the dataset have 500,000 tuples and let ω = 1000. Assume
that attacker wants to increase his chances of success, i.e. minimise the likelihood
to overwrite an existing fingerprinted bit, thus she sets γ′ = 10, 000 (a rather
large value, considering this means that only 1/10, 000 tuples will be marked),
v′ = 10 and ξ′ = 5, then P{success|ω} = (1 − 10−6)1000 ≈ 0.999.
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4.2 Utility

Utility Measured on the Data. For the utility evaluation on the data directly, we
discuss the results of applying the AK scheme on the Forest Cover Type dataset.
We choose a set of values for the parameters, specifically γ = {12, 25, 50, 100},
and ξ = {4, 8}. Table 8 contains recorded changes in the variance introduced by
fingerprinting for each of the attributes and parameter setting. These measured
values support the analysis previously made on errors in mean and variance of
the attribute values in Sect. 3.3.

The error in the mean in all of the cases of this experiment was zero or very
close to zero, thus only the error in the variance is presented in the table. The
largest changes are, as expected, occurring when γ is small and ξ is big, i.e. in
the cases where more tuples are selected and more bits of a value are available
for marking. The errors in variance between cases with the same γ value and
different xi vary noticeable, implying that the imperceptibility of the fingerprint
is sensitive to the number of LSBs available for marking. The magnitude of the
unperturbed values of the variances in general does not affect the relative error of
the perturbed counterparts. The only exception is the attribute “HD-Roadways”
with large original values for both mean and variance.

Table 8. Change in variance introduced by the AK fingerprinting scheme, on the Forest
Cover Type dataset

γ 100 50 25 12

ξ 4 8 4 8 4 8 4 8

Attribute Mean Variance

Elevation 2,959 78,391 0 +1 0 +1 +1 +5 +1 +9

Aspect 156 12,525 0 +1 0 +1 +1 +5 0 +8

Slope 14 56 0 +1 0 +3 0 +5 0 +11

HD-Hydrology 269 45,177 0 +1 0 +1 0 +2 +1 +2

VD-Hydrology 46 3,398 0 +1 0 +2 0 +4 0 +9

HD-Roadways 2,350 2,431,276 0 +10 0 +10 −1 +5 +2 +37

Hillshade-9am 212 717 0 +1 0 +2 0 +4 0 +9

Hillshade-noon 223 391 0 +1 0 +2 0 +4 0 +10

Hillshade-3pm 143 1,465 0 +1 0 +2 0 +4 0 +8

HD-Fire-Points 1,980 1,753,493 0 −2 0 +5 0 +8 +1 +30

Table 9 shows that for the Block scheme, there is also an impact on the
mean values, even though still a rather marginal one. However, for the variance,
the changes in values are now much more pronounced than for the AK scheme,
especially when setting higher values for ξ. While some changes in variance occur
in attributes that have a rather high variance, and therefore constitute only a
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small relative change, for attributes like Hillshade-3pm or especially Hillshade-
noon, the differences are also relatively large, with an increase of 11% and 51%
percent, respectively.

Table 9. Change in mean and variance introduced by fingerprinting with the Block
scheme, on the Forest Cover Type dataset

β 30 25 15 10 β 30 25 15 10

ξ 4 8 4 8 4 8 4 8 ξ 4 8 4 8 4 8 4 8

Attribute Mean Variance

Elevation 2,959 78,391 0 +13 +1 +15 +1 +48 +1 +178

Aspect 156 12,525 0 +7 0 +12 0 +35 0 +127

Slope 14 +1 56 0 +12 0 +18 0 +48 0 0

HD-Hydrology 269 45,177 0 +6 +1 +4 +1 +13 +2 0

VD-Hydrology 46 +1 +1 +1 3,398 0 +10 0 +15 0 +38 0 +87

HD-Roadways 2,350 2,431,276 0 +3 0 +3 0 +44 −2 0

Hillshade-9am 212 717 0 +11 0 +15 0 +41 0 +8

Hillshade-noon 223 −2 391 0 +11 0 +16 0 +45 0 +200

Hillshade-3pm 143 −1 −1 −1 1,465 0 0 0 +13 0 +35 0 +160

HD-Fire-Points 1,980 1,753,493 0 0 0 −4 0 +54 0 +68

The fingerprinting scheme that deals with categorical data requires a different
type of measure for data utility since mean and variance are not applicable in
this case. One possible measure is the number of changes introduced by marking
the data.

Table 10 shows the utility effects on the Adult dataset (which contains 30,162
tuples) introduced by the extended AK scheme for fingerprinting categorical
data. The utility of numerical attributes is still measured by mean and variance,
where the difference in the mean is negligible (it does not exceed 0.02 and is
therefore excluded from the table). The change in variance introduced by errors
for numerical attributes is also rather small, as it was the case with previously
presented schemes. For each categorical attribute we count how many changes
in values are introduced by the fingerprint. The Number of values that change in
a single categorical attribute is approximately 30, 162/(2γv). For the presented
set of parameters, the introduced total number of changes is <4% of the total
number of tuples in the dataset. Due to the random nature of fingerprint insertion
process, the distributions of attributes are not significantly affected.

Utility on a Machine Learning Task. In this section, we evaluate the utility of
the fingerprinted data sets by comparing the effectiveness of a machine learning
model on correctly predicting the target class of the datasets. As we are inter-
ested only in the changes in effectiveness as compared to the original dataset,
the following results report the difference in the effectiveness scores F1 and clas-
sification accuracy (on a scale of [0, 100]%).

On the Adult data set, we can conclude that the differences observed when
using the Logistic Regression classifier (see Table 11 are rather minute, and would
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Table 10. Change in variance and value-flips introduced by fingerprinting with the
extended AK scheme, on the Forest Cover Type dataset

γ 50 25 12 6

ξ 2 4 2 4 2 4 2 4

Attribute Variance

Age 173 0 0 0 0 0 0 0 +0.05

Capital Gain 54,853,968 −1 −3 −5 −11 −23 −56 −31 −67

Capital Loss 163,457 0 −1 0 −1 −1 −2 −2 −5

Hours per Week 144 0 0 0 0 0 +0.2 0 +0.3

Value changes

Workclass 26 19 45 45 81 90 165 165

Education 26 18 49 43 83 84 172 173

Marital Status 24 24 46 44 101 87 207 189

Occupation 23 20 44 47 75 73 148 135

Relationship 22 22 29 41 81 89 175 189

Race 19 20 47 51 87 91 160 174

Sex 12 5 19 13 39 25 77 46

Native country 19 21 45 30 94 78 173 164

Table 11. Effect on F1 score and classification accuracy with Logistic Regression, on
the Adult dataset

ξ = 1 ξ = 2 ξ = 4 ξ = 6

F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy

γ = 50 −0.15% −0.07% −0.02% −0.01% −0.07% −0.03% −0.03% −0.02%

γ = 25 −0.25% −0.14% −0.13% −0.06% −0.10% −0.06% −0.14% −0.06%

γ = 12 −0.46% −0.22% −0.27% −0.12% −0.12% −0.08% −0.39% −0.15%

γ = 6 −0.68% −0.38% −0.41% −0.22% −0.46% −0.19% −0.80% −0.33%

γ = 3 −2.12% −1.01% −1.08% −0.52% −0.75% −0.32% −1.33% −0.62%

not constitute a noticeable degradation of effectiveness. The trend is the same
also for other classifiers, as can be seen in Table 12 for k-NN, and Table 13 for
Decision Trees, as well as with Random Forests and Gradient Boosting, which
are not depicted here for brevity. In a few rare cases for the k-NN Classifier and
Decision Tree Classifier the classification results obtained even improved, though
by the same rather marginal order of magnitude as the observed decline.

For the Forest Cover Type dataset, the results are provided in Table 14 for
Decision Trees, Table 15 for Random Forests, and Table 16 for Logistic Regres-
sion. Similar to the Adult dataset, we can note that there are very small effects
on the classification accuracy and F1 score.
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Table 12. Effect on F1 score and classification accuracy with KNN, on the Adult
dataset

ξ = 1 ξ = 2 ξ = 4 ξ = 6

F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy

γ = 50 +0.05% +0.03% −0.10% −0.05% −0.06% −0.02% −0.02% +0.01%

γ = 25 −0.10% −0.05% +0.05% +0.02% +0.07% +0.03% −0.02% +0.03%

γ = 12 −0.32% −0.19% −0.10% −0.06% +0.02% +0.03% −0.20% −0.04%

γ = 6 −0.70% −0.42% −0.50% −0.22% −0.36% −0.15% −0.60% −0.21%

γ = 3 −1.79% −1.02% −0.70% −0.36% −0.61% −0.22% −0.81% −0.32%

Table 13. Effect on F1 score and classification accuracy with Decision Tree, on the
Adult dataset

ξ = 1 ξ = 2 ξ = 4 ξ = 6

F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy

γ = 50 +0.02% −0.08% +0.72% −0.04% +0.43% −0.03% −0.01% −0.07%

γ = 25 −0.05% −0.25% +0.32% −0.05% +0.49% −0.16% +0.36% −0.22%

γ = 12 −0.83% −0.36% −0.16% −0.05% +0.49% −0.12% −0.24% −0.04%

γ = 6 −0.93% −0.58% −0.34% −0.28% +0.30% −0.14% −0.93% −0.41%

γ = 3 −2.09% −1.04% −0.30% −0.64% −0.54% −0.39% +0.19% −0.54%

In experiments with both datasets the classification accuracy and F1 score
generally slightly decrease for smaller γ, i.e. by introducing more error, which
is expected. However, bigger errors introduced by fingerprinting did not signifi-
cantly affect the performance of any of the classifiers. This property meets the
requirement of a fingerprinting scheme to be imperceptible by the users and to
keep the utility of the data on the reasonable level.

Table 14. Effect on F1 score and classification accuracy with Decision Trees, on the
Forest Cover Type dataset

ξ = 2 ξ = 4 ξ = 6

F1 Accuracy F1 Accuracy F1 Accuracy

γ = 100 0.0% +0.01% +0.17% +0.01% +0.16% +0.01%

γ = 50 0.0% +0.01% 0.0% 0.0% 0.0% +0.01%

γ = 25 −0.0% +0.01% +1.15% +0.31% +1.17% +0.32%

γ = 12 −0.01% −0.01% −0.01% 0.0% −0.01% −0.12%

γ = 6 −0.01% 0.0% −0.04% −0.01% −0.49% −0.18%
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Table 15. Effect on F1 score and classification accuracy with Random Forests, on the
Forest Cover Type dataset

ξ = 2 ξ = 4 ξ = 6

F1 Accuracy F1 Accuracy F1 Accuracy

γ = 100 +0.02% −0.03% +0.04% −0.05% +0.04% +0.02%

γ = 50 +0.08% 0.0% +0.04% +0.6% +0.03% +0.04%

γ = 25 +0.09% +0.02% −0.09% −0.03% −0.05% −0.03%

γ = 12 −0.01% −0.0% +0.04% +0.03% −0.03% −0.05%

γ = 6 −0.06% −0.11% −0.01% −0.03% −0.0% −0.01%

Table 16. Effect on F1 score and classification accuracy with Logistic Regression, on
the Forest Cover Type dataset

ξ = 2 ξ = 4 ξ = 6

F1 Accuracy F1 Accuracy F1 Accuracy

γ = 100 0.0% 0.0% +0.01% 0.0% −0.01% +0.01%

γ = 50 0.02% 0.0% +0.01% 0.0% −0.01% +0.01%

γ = 25 0.0% 0.0% 0.01% 0.01% −0.05% +0.02%

γ = 12 0.0% 0.0% −0.02% 0.0% −0.11% +0.02%

γ = 6 0.0% 0.0% −0.03% 0.0% −0.14% +0.03%

5 Conclusions and Future Work

In this paper, we compared a number of previously published methods for finger-
printing relational databases with structured data. We then tested the robust-
ness of the schemes against various types of attacks, such as sub-setting or bit-
flipping. We further analysed empirically, on two benchmark datasets, how the
perturbation from the fingerprint embedding affects the data utility. We fol-
lowed two approaches, on the one hand computing effects directly measurable
on the data, such as mean or variance, and on the other hand by measuring the
effects of the fingerprint on a specific machine learning target, by comparing the
achievable results on classification effectiveness. We could observe that for the
selected schemes, parameters and datasets, the effects on utility of the data on
the machine learning task were rather small, which is an encouraging result from
a security perspective.

Table 17 illustrates the impact of common parameters on the robustness
against attacks respectively on the data utility - the number of marks ω, the
number of LSBs available for marking ξ, the detection threshold τ , the length
of a fingerprint L, and number of recipients N . When increasing the values of
these parameters, an upwards arrow denotes an increase in robustness/utility,
and a downwards arrow a decrease.
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Parameter ω increases the robustness against each of the presented attacks,
but decreases the utility of the data, leaving the owner of the dataset the decision
of how much error is it acceptable to introduce as a trade-off for the robustness.
Some other parameters rather have a conflicting effect on different robustness
aspects. For instance, increasing the detection threshold τ , the technique loses
its robustness against subset attack, bit-flipping attack and additive attack, but
on the other hand gains robustness against misdiagnosis false hit. L shows the
similar effect, except that it does not have an impact on the additive attack.

Table 17. Impact of parameters on robustness against attacks resp. on data utility

↑ ω ξ τ L N

Misdiagnosis false hit ↑ ↑ ↑ ↓
Subset Attack ↑ ↓ ↓
Bit-flipping Attack ↑ ↑ ↓ ↓
Additive Attack ↑ ↓ ↓
Utility ↓ ↓

Future work will specifically deal in more detail with approaches for finger-
printing categorical data, as this aspect has not been studied extensively in the
literature so far, while categorical data (e.g. in the form of binary categories)
is present in several datasets, benchmark and from real world applications. We
also want to extend the analysis to other datasets, to verify that the conclusions
drawn in this paper are generally valid and can be used to effectively influence
the choice of parameters to obtain a secure fingerprint against the decrease in
data utility.
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Abstract. The pervasiveness of camera technology in every-day life
begets a modern reality in which images of individuals are routinely
captured on a daily basis. Although this has enabled many benefits,
it also infringes on personal privacy. To mitigate the loss of privacy,
researchers have investigated methods of facial obfuscation in images. A
promising direction has been the work in the k-same family of meth-
ods which employ the concept of k-anonymity from database privacy.
However, there are a number of deficiencies of k-anonymity which carry
over to the k-same methods, detracting from their usefulness in practice.
In this paper, we first outline several of these deficiencies and discuss
their implications in the context of facial obfuscation. We then develop
the first framework to apply the formal privacy guarantee of differen-
tial privacy to facial obfuscation in generative machine learning models
for images. Next, we discuss the theoretical improvements in the pri-
vacy guarantee which make this approach more appropriate for practi-
cal usage. Our approach provides a provable privacy guarantee which
is not susceptible to the outlined deficiencies of k-same obfuscation and
produces photo-realistic obfuscated output. Finally, while our approach
provides a stronger privacy guarantee, we demonstrate through exper-
imental comparisons that it can achieve comparable utility to k-same
approaches in the context of preservation of demographic information in
the images. The preservation of such information is of particular impor-
tance for enabling effective data mining on the obfuscated images.

Keywords: Privacy protection · Facial obfuscation ·
Differential privacy · Neural networks

1 Introduction

With the ever expanding presence of devices used to capture photos and video,
visual privacy has become increasingly important. Images and video frames con-
taining faces are routinely captured, e.g., through cameras, closed-circuit tele-
vision systems [5], visual sensor networks [40] and a host of other devices and
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methods. These systems have many benefits including mitigation of crime [5,40],
improved care in assisted-living [34], and useful services such as Google Street
View [17]. However, despite the benefits of the legitimate applications, the poten-
tial for infringement on personal privacy must be taken seriously.

Although many systems require only visual monitoring of behaviour, identi-
ties are often captured as well [40]. In some areas, the degree of public surveil-
lance is reaching levels where it becomes possible to profile and track much of
the population [34]. In cases where visual information is disseminated to the
public, such as with Google Street View, it is imperative to hide the identities
of individuals before the images are published [15]. Failure to sufficiently pro-
tect privacy may allow undesirable inferences to be drawn about individuals or
enable malicious activities such as voyeurism or stalking. Users of mobile devices
have also expressed strong aversion to the collection of images from their mobile
devices via the applications they use [31]. Even in scenarios where users willingly
share images to online platforms, they have expressed concerns over who is able
to view their images [22]. In a similar context, the privacy of individuals cap-
tured in the backgrounds of images uploaded to such platforms should be taken
into consideration. Rich visual information from these sources combined with
the great advances in machine learning approaches to facial recognition (e.g.,
VGGFace [35]) make the exploitation of unprotected visual data a relatively
easy task. While such machine learning algorithms are no doubt beneficial in
many contexts, it is essential for approaches of privacy protection to be resistant
to them.

To protect the privacy of individuals, methods for hiding identity via manip-
ulation of the data can be employed. Many methods focus on the face as it
is often the most identifiable piece of information. Trivially, the face could be
covered by a uniformly coloured rectangle. This destroys all information about
the face, guaranteeing that it can no longer be exploited to reveal an identity.
However, this also destroys a great deal of utility. In scenarios where images are
shared in online platforms, users have expressed a strong aversion to the use
of such rectangles with respect to the visual quality and information content of
the images [28]. Less severe methods of obfuscation present trade-offs between
the level of privacy attainable and the utility of the data. Preservation of util-
ity is especially important for machine learning and data mining. Visual data
can be used to learn about customers in retail environments [29] and to detect
anomalous or illegal events [39]. It is therefore essential for a good method of
obfuscation to preserve as much of the non-sensitive information as possible.

A number of research directions have been explored for the obfuscation
of visual identity in images, e.g., pixelization, blurring, etc. [34]. While many
approaches lack a formal privacy guarantee, the k-same [33] family of approaches
has gained a great deal of traction, largely thanks to its guarantee that for a cho-
sen privacy parameter k, obfuscated individuals are indistinguishable within a
group of k potential true identities. While this privacy guarantee is appealing, it
suffers from susceptibilities (e.g., composition attacks [16]) carried over from the
disclosure control method of k-anonymity on which it is based. In this paper, we
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outline these susceptibilities in the context of privacy in images and propose an
alternative, based on differential privacy, which addresses these susceptibilities.

1.1 Contributions and Paper Outline

Our contributions in this work are as follows:

– We examine susceptibilities of k-same obfuscation to composition attacks and
background knowledge. We demonstrate how the privacy guarantee can be
violated and discuss the implications this has on privacy in images.

– To address the deficiencies of k-same obfuscation carried over from k-
anonymity, we propose as an alternative, the formal guarantee of differen-
tial privacy. We develop the first framework to apply differential privacy for
the obfuscation of facial identity in images via generative machine learning
models.

– We conduct a series of experiments to compare the quality of differential
privacy to k-same obfuscation on two well-known datasets. The results of
our experiments suggest that differential privacy offers a comparable level
of utility in the obfuscated images to k-same obfuscation even though the
privacy guarantee is improved.

We provide a review of existing work on the obfuscation of facial images
in Sect. 2. We then cover the deficiencies of k-same in Sect. 3 and lay out a
framework for differentially private obfuscation of images in Sect. 4. Finally, we
describe our experimental comparisons and their results in Sect. 5.

2 Literature Review

Perhaps the most well-known and earliest studied alterations to images for the
prevention of human recognition of faces are pixelization [21] and blurring [20].
Pixelization decreases the information conveyed in an image by dividing the
image into a grid of cells and setting all pixels within each cell to a common
pixel intensity. Blurring involves the addition of, typically Gaussian, noise to the
image. While these methods have been successful at foiling human recognition,
they have been shown to be highly ineffective against machine recognition [33].

Other ad hoc methods of privacy protection involving variations on blurring
[26], warping [24], morphing [23] and face swapping [3] have been studied, how-
ever, the methods which have gained the most momentum are those which offer
a formal guarantee of privacy. This trend has been reinforced by the legal and
legislative demands in the broader context of the release of sensitive data [4,38].
To this end, k-same approaches have been quite successful. These approaches
use an adaptation of k-anonymity [36], a concept from the field of database pri-
vacy which guarantees that an anonymized database record is linkable to at least
k possible identities. The first adaptation of this concept to image obfuscation
worked by aligning a set of input images on their facial features, partitioning
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the set into clusters of k or more similar images, and then averaging the pixels
within each cluster to produce an averaged face which would replace each of the
original faces in the cluster [33]. By releasing only the averaged faces, it could
be guaranteed that neither human nor machine recognition could do better than
identifying the cluster of identities which produced the image, thus limiting the
probability of successful re-identification by an upper bound of 1

k .
One issue with the original k-same averaging of pixels was poor visual quality

due to inexact alignment of facial features, leading to superimposed features.
The k-same-m [18] approach improved upon this by using an active appearance
model (AAM) [8] to obfuscate faces. AAMs are generative machine learning
models for the approximation of visual representations of a particular class of
objects (e.g., human faces). A model is trained on a set of images in order to
learn about visual patterns and minimize differences with respect to shape and
texture between the original images and the generated output of the model. The
k-same-m approach first trains an AAM and then performs the clustering and
averaging process within the parameter space of the model representations of
faces to be obfuscated, thus eliminating the issue of superimposed features.

More recently, generative neural networks (GNNs) have been applied for k-
same obfuscation [7,32]. GNNs are machine learning models which have shown
great success in the generation of visual representations of input class labels
[9]. A GNN passes the input labels through a sequence of convolutional layers,
transforming them into features of finer granularity at each layer until reaching
a pixel-space output. A training process adjusts weights used by filters in each
convolutional layer in order to learn feature representations which minimize a loss
function measuring the quality of the output. When trained on a set of images
using identities as class labels, a GNN is able to produce a visual approximation
of an identity based on an input class vector. By providing input vectors in which
k identities are specified, the GNN produces k-anonymous output.

Efforts have also been devoted to the preservation of utility in the obfuscated
images. The k-same-select approach [19] proposed partitioning the input images
into classes based on the information to be preserved (e.g., male and female
identities) before clustering such that the images within each cluster would share
the same class, thus preserving this information in the averaged version. This idea
has been extended to the k-same-m model by training a different AAM for each
combination over the demographic attributes of age, gender and race [10]. By
using the appropriately trained AAM for obfuscation, the attributes for which it
was trained can be preserved in the output. In the context of GNNs, preservation
of information has been considered by designing the network architecture to allow
for multiple input vectors over different types of classes [9]. This has been applied
to produce obfuscated images with specific facial expressions [32].

We note that differentially private obfuscation of images has been studied in
the context of noise applied to pixel intensities [13]. While achieving a strong
privacy guarantee, this leads to poor visual quality in the output as the obfus-
cated images no longer resemble the original class of the object (e.g., a human
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face). To the best of our knowledge, our work is the first to study differential
privacy applied to generative models for the obfuscation of facial images.

3 Weaknesses in Existing Facial Obfuscation

Given the importance of preserving privacy in images, a good method of obfus-
cation must assert a meaningful guarantee about the level of privacy it provides.
Without such a guarantee, it is impossible to formally assess the effectiveness of
the obfuscation. Empirical results may help to gain intuition on which approaches
appear promising, however, without a formal guarantee to back up the results,
it is impossible to assert that privacy will remain protected in untested scenar-
ios against unknown attacks. For this reason, we focus our attention only on
methods of obfuscation which offer a formal privacy guarantee.

The necessity of this restriction is underscored by the concept of parrot
attacks [33]. A parrot attack uses a neural network to classify identities using
labeled instances of obfuscated images as the training set. Having learned about
patterns in the obfuscation during training, the network is made much more effec-
tive at defeating the obfuscation. Despite pixelization being reasonably effective
against human recognition and even naive machine recognition, it can be com-
pletely defeated by a parrot attack. This formed a strong basis for the need of a
formal privacy guarantee such as that provided by the k-same family.

The k-same approaches employ a privacy guarantee derived from k-
anonymity [36] which asserts that the original identity for any obfuscated image
is indistinguishable from at least k − 1 others. This guarantee is a result of the
obfuscation process which draws upon clusters of k or more images to produce
averaged instances as replacements for all images in each cluster. This makes it
impossible for any software to achieve a better probability of re-identification
than 1

k .
However, the k-same guarantee relies on assumptions about the nature of

the attack. In this section, we discuss these assumptions. We show why they are
often unrealistic in practice, making the guarantee weaker than it appears to be.

3.1 Background Information

A well-known deficiency of k-anonymity is its susceptibility to attacks which
employ background information [2]. This refers to cases where the attacker uses
prior knowledge about the sensitive information to draw inferences which violate
the privacy guarantee. This concept carries directly over to the k-same privacy
guarantee. If, via prior knowledge, the attacker knows with certainty that some
of the k individuals could not be in the obfuscated image, they can discount them
from the set of k identities. An attacker could come by this knowledge in a num-
ber of ways: personal knowledge about friends and family, information scrapped
from other data sources such as social media, etc. The simple combination of
knowledge about the time at which an photo was taken and the approximate
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locations of some of the k individuals at that time can be enough to derive a
proper subset of the k individuals which violates the privacy guarantee.

Contextual information in an image can often enable these types of inferences.
Using signs, architecture or landscapes in an image, an attacker might recognize
the location or employ software to determine it. Knowledge about locations that
individuals frequent may greatly increase the probability of some possibilities
over others. Similarly, if some of the k identities are known to live in different
cities than where the photo was taken or worse yet, different continents, these
identities become much less probable. Other cues such as accessories or clothing
on obfuscated individuals may also greatly impact the probabilities accorded to
the k possible identities. Since the privacy guarantee asserts that each of the k
identities are equally probable, this is also in violation of the guarantee.

We note that the original k-same paper does acknowledge this vulnerability
to contextual information and asserts that the privacy guarantee applies strictly
to the information contained within the face, not to the image as a whole [33].
While this important distinction allows for the privacy guarantee to be upheld,
it is a major restriction on the practical applicability of the k-same guarantee.
Most contexts in which facial obfuscation is applied will be rich with contextual
information, making the privacy guarantee much less meaningful.

3.2 Composition Attacks

Another deficiency of k-anonymity is a susceptibility to composition attacks [16].
This is a class of attacks which exploit information from multiple, potentially
uncoordinated, obfuscated releases to violate the privacy guarantee. A simple
instance of this is the intersection attack. An attacker first identifies the clusters
in which a particular individual exists from two different releases. If the releases
were uncoordinated, the clusters likely differ, allowing the attacker to take their
intersection to achieve a new set with a cardinality less than k.

This attack again carries directly over to the k-same approach. Consider
a scenario where an individual takes a photo which they wish to upload to
social media. Privacy protection might be applied to the individual or perhaps
to bystanders who were captured in the background of the photo. Should the
individual decide to upload the same photo to two or more social media plat-
forms, the issue of uncoordinated obfuscation immediately arises. An attacker
needs only scrape these platforms for similar photos to apply an intersection
attack.

Intersection attacks may even be effective for multiple releases from the same
organization if care is not taken. For example, an individual may take consecutive
photos and then upload all of them. Algorithms for k-same determine clusters
based on the similarity of faces but many factors beyond facial identity (e.g.,
pose, angle and lighting) could impact similarity. It is therefore not unlikely that
multiple images of the same individual will result in different clusters. Sequences
of images uploaded in this way would be an ideal target for intersection attacks.

Most k-same approaches require each individual to appear only once in the
gallery of images to be obfuscated. This prevents intersection attacks for releases
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from the same organization but does not protect against uncoordinated releases
across multiple organizations. Furthermore, enforcing this restriction may be
very challenging in practice. While the primary subject in a photo might be
determined based on the account used to upload the photo, other individuals
in the photo cannot be correctly identified 100% of the time. Face recognition
software has not yet reached this level of accuracy. Without manual labeling,
such a policy cannot be enforced. Beyond this, the restriction of one image per
identity is very severe and does not match typical use cases for image sharing.

3.3 Other Difficulties

We discuss here two other difficulties that arise when using k-same obfuscation
in practice. Although these difficulties do not violate the privacy guarantee, they
hinder meaningful applications for k-same obfuscation in some contexts.

The first problem arises from the requirement of an input gallery of images.
This may be appropriate for scenarios where batches of images are obfuscated
but it is awkward to apply to cases where images are sporadically uploaded
(e.g., in social media platforms). One might consider the use of a preloaded static
gallery or even a dynamic gallery that gets updated as new images are uploaded.
This, however, is not a good solution since identities can then participate in more
than one cluster. Furthermore, if an attacker records information about identities
known to be in the gallery, those identities can be discounted when an image
is uploaded for a new identity. An alternative solution could rely on buffering
uploaded images to form a gallery which can eventually be used to release a
batch of obfuscated images. However, this necessitates a trade-off between the
size of the gallery (and thus the quality of the output) and ability to deliver a
timely service. In an era where users expect images to be uploaded instantly,
this is not likely to be a manageable trade-off. The release of multiple batches
also increases the chances of enabling composition attacks.

The second problem relates to the preservation of utility in the obfuscated
output. Approaches which partition the gallery according to classes to be pre-
served (e.g., combinations of age and gender) place an even greater strain on the
input gallery requirement. Working separately with the subset of images from
each class greatly reduces the number of images available for clustering. Such
an approach is not scalable for large numbers of classes that would be needed
for finely grained attention to utility. In the worst case, some classes may be
outliers in the overall distribution and could lack sufficient images to form a
cluster. These classes would have to be merged with others in order to achieve
the k-same guarantee, thus failing to achieve the desired granularity of classes.

4 Differential Privacy for Generative Models

Due to the deficiencies of the k-same privacy guarantee in practical applications
of facial obfuscation, we argue that a more robust privacy guarantee is required.
Following the advances in the field of database privacy, we consider the potential
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of differential privacy to provide a stronger privacy guarantee. In this section,
we first review basic theory of differential privacy. We then adapt the privacy
guarantee to fit the context of generative machine learning models for images
and we formalize a framework to apply differential privacy to facial images. We
discuss how the derived privacy guarantee addresses the issues identified with the
k-same approach. Finally, we apply our framework to implement differentially
private facial obfuscation using an AAM and a GNN.

4.1 Differential Privacy for Databases

A privacy guarantee which offers an absolute bound on re-identification risk
necessitates restrictive assumptions about the attacker. This is due to the fact
that it is impossible to prevent an attacker from learning about the sensitive
information through means other than the obfuscated release [11]. Differential
privacy recognizes this difficulty and instead adopts a privacy guarantee which
limits the increase in an attacker’s knowledge about the sensitive information.
In the context of databases, the goal is to release aggregate information about
the database while preventing that information from being exploited to derive
sensitive details about the individual records. Differential privacy functions by
using a randomization mechanism to add controlled noise to database query
responses in order to release useful responses while achieving a desired level of
indistinguishability between potential configurations of the database contents.

Two databases are considered to be adjacent if they differ by a single record.
Informally, the privacy guarantee enforces that any pair of adjacent databases
must be bounded within a multiplicative factor of eε (where ε is the privacy
parameter) in their probabilities of producing the same noisy query response.
This is often interpreted as a ratio of eε between these probabilities. With a
sufficiently small ratio, similar databases have similar probability distributions
over their noisy query responses, causing them to behave similarly with respect
to the noisy query responses they produce. This limits the usefulness of the
noisy responses as a means to distinguish between potential configurations of the
database. The privacy guarantee [12] in Formula 1 formally states this require-
ment in terms of any pair of adjacent databases D1,D2 ∈ D, where D is the set
of valid database configurations, and a randomization mechanism K : D → R

n,
where n ∈ Z

+.

Pr (K (D1) = R) ≤ eε Pr (K (D2) = R) ∀R ∈ R
n. (1)

To achieve this privacy guarantee, the mechanism K must take into account
the value of ε and the query sensitivity. The sensitivity ΔF of a query f : D → R

n

is defined as the maximum possible L1 distance between the query responses
for any pair of adjacent databases. The guarantee can be achieved by adding
to the query response a vector of n continuous random variables, each drawn
independently from a Laplace distribution with ΔF

ε as its scaling parameter [12].
The exponential decay of probability density in the Laplace distribution benefits
the utility of the mechanism by limiting the expected perturbation of the query
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responses. Through the selection of an appropriate value for ε, a data custodian
can control how much information is revealed about the contents of the database.

4.2 Framework for Generative Models

We now consider how differential privacy can be applied to generative models
for images. A generative model can represent images of instances from specific
classes (e.g., human faces) using a numeric representation which abstracts from
pixel intensities. Our goal is to protect the privacy of individuals in images by
modifying these numeric representations to prevent facial identification while
maintaining utility and visual quality. Differential privacy is ideal for this pur-
pose as it provides a robust guarantee against the accuracy of the inferences
an attacker can make about the original data. The application of noise to the
numeric representation of the model allows for the generation of photo-realistic
instances of novel human faces. This avoids the significant degradation in visual
quality which results from the addition of noise to pixel intensities.

When moving from the domain of databases to that of generative model
representations, the concepts of adjacency and query sensitivity can no longer
be applied for the configuration of a mechanism. In place of a database where
each record is an individual, we have a numeric representation of a single indi-
vidual. To protect sensitive data in this form, one can apply a generalization of
differential privacy to arbitrary secrets [6], where a secret is any numeric repre-
sentation of data. In our case, the secret is the generative model representation
of an individual. This generalization substitutes the notion of adjacency between
databases with distance between secrets. By controlling noise according to an
appropriate distance metric, the privacy guarantee is adapted to ensure that
similar secrets are highly indistinguishable while very different secrets remain
distinguishable. For a pair of databases, the distance between them is the num-
ber of records by which they differ. For other types of secrets, the distance metric
must be carefully chosen in order to provide an appropriate privacy guarantee.

The notion of distance between secrets is appropriate for the representa-
tion of images within a generative model. Any model which employs a numeric
representation of images allows for the calculation of distance between images.
While the exact representation of an image differs from model to model, they
can generally mapped to a vector of fixed length with little difficulty. We pro-
vide details on how this concept can be applied to both AAMs and GNNs in
Sect. 4.4. To develop a general framework here, we consider the representation
of an image to be a vector X ∈ R

n and the randomization mechanism to be a
function K : Rn → R

n used to produce an obfuscated instance of the image.
Although the differential privacy generalization only deals explicitly with one
and two-dimensional secrets [6], its generalization to an n-dimensional vector is
straightforward. We therefore adapt the privacy guarantee to suit this purpose
in Formula 2, using a distance function d : Rn × R

n → R.

Pr (K (X1) = R) ≤ eεd(X1,X2) Pr (K (X2) = R) ∀X1,X2, R ∈ R
n. (2)
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Comparing this to Formula (1), the databases D1 and D2 have been replaced
by secrets X1 and X2 and the distance function now appears in the exponent
of the multiplicative factor eε. The distance between any pair of secrets acts as
a coefficient to ε when interpreting the ratio of their probabilities. Intuitively,
the meaning is that the more similar a pair of images are to each other, the
harder is it to determine which of them led to a given obfuscated instance. This
hampers the accuracy with which attempts at re-identification can be made. To
achieve this guarantee, we must first determine an appropriate distance metric
to measure the distinguishability of the numeric representations of images.

A natural choice for the distance metric is L1 distance, however, we must be
wary of the meaning of each element in the vectors. Should certain elements have
differently sized ranges, they should be obfuscated using different magnitudes of
noise. If one element has a much larger range than the others, the addition of
noise configured to the smaller range would do little to prevent an inference of
high accuracy on the original value of the element. We therefore apply normal-
ization such that the distance between any pair of elements in the ith position
of a pair of vectors falls within the range [0, 1]. Letting Ri = [imin, imax] be the
range of elements in the ith position of a model representation vector, we define
a normalized, element-wise distance metric as follows:

de (x1, x2) =
|x1 − x2|

imax − imin
∀x1, x2 ∈ Ri. (3)

A distance metric for vectors defined as the sum of the element-wise distances
for each position would be appropriate for images represented by the same model.
However, a more useful framework would allow for reasoning about the level of
privacy across different models. Ideally, the meaning of a privacy parameter ε
applied to one model should have a similar meaning for a different model. For
this, we require another normalization to account for models having vectors of
different lengths. We therefore define the distance metric for vectors as follows:

d (X1,X2) =

n∑

i=1

de (X1i,X2i)

n
∀X1,X2 ∈ R

n. (4)

By using this distance metric in combination with Formula 2, we obtain a
meaningful privacy guarantee for the model representations of images. Although
this type of metric is not novel, its use in this context is. We must therefore
address how to configure a mechanism to satisfy this instantiation of the privacy
guarantee. This leads to our main result in the development of a framework for
the application of differential privacy to generative models for images.

Theorem 1. Any image X ∈ R
n can be protected by ε-differential privacy

through the addition of a vector (Y1, ..., Yn) ∈ R
n where each Yi is a random

variable independently drawn from a Laplace distribution using a scaling param-
eter σi = n(imax−imin)

ε .
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Proof. We must satisfy the privacy guarantee (Formula 2) using our proposed
distance metric (Formula 4). The form this privacy guarantee takes is our starting
point in Formula 5. Through manipulation of this inequality and the substitu-
tion of mechanism probabilities with a Laplace distribution, we prove that the
selection of an appropriate scaling parameter for each instance of the Laplace
distribution allows for the privacy guarantee to be satisfied.

n∏

i=1

Pr (K (X1i) = Ri) ≤ e

ε
n∑

i=1
de(X1i,X2i)

n

n∏

i=1

Pr (K (X2i) = Ri) ∀X1, X2, R ∈ R
n. (5)

n∏

i=1

Pr (K (X1i) = Ri) ≤
n∏

i=1

e
εde(X1i,X2i)

n

n∏

i=1

Pr (K (X2i) = Ri) ∀X1, X2, R ∈ R
n. (6)

n∏

i=1

e− |X1i,Ri|
σ

2σ
≤

n∏

i=1

e
εde(X1i,X2i)

n

n∏

i=1

e− |X2i,Ri|
σ

2σ
∀X1,X2, R ∈ R

n. (7)

n∏

i=1

e
|X2i,Ri|−|X1i,Ri|

σ ≤
n∏

i=1

e
|X2i−X2i|

σ ≤
n∏

i=1

e
εde(X1i,X2i)

n ∀X1, X2, R ∈ R
n. (8)

n∏

i=1

e
εde(X1i,X2i)

n =
n∏

i=1

e
ε|X2i−X2i|

n(imax−imin) ∀X1,X2. (9)

From Formula 9, it becomes clear that the inequality holds when using an
independent Laplace distribution for each pair of elements X1i,X2i, substituting
the scaling parameter σ with a corresponding value σi = n(imax−imin)

ε . ��
Using the generalization of differential privacy, the notion of query sensitivity

is implicitly captured in the distance metric. Since the distance metric of Formula
(4) has a range of [0, 1], the ratio of probabilities for a pair of maximally dissimilar
images to produce the same obfuscated output is eε. This is akin to the meaning
of the privacy guarantee for a pair of databases which differ on every record. In
order to select an appropriate value of ε, a data custodian must keep in mind
that similar images will have a very small distance between them, requiring much
larger values of ε to provide a reasonable ratio. In Sect. 5, we demonstrate the
implications of the choice of ε on the levels of privacy and utility.

4.3 Benefits of Differentially Private Facial Obfuscation

We now describe the improvements we obtain from the use of differential privacy
for each of the problems identified in Sect. 3.

Background Information. By removing dependence of the attack model on
an absolute level of re-identification risk, we are able to reason about the level of
privacy in the presence of attackers with background knowledge. If the location
in a photo is identified as a particular city, no facial obfuscation can prevent
the inference that individuals living in the identified city have a higher probabil-
ity of being the obfuscated identity than individuals living elsewhere. Yet, the
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differential privacy guarantee continues to hold as the background information
does not impact the conditional probability distribution used by the random-
ization mechanism. Since the privacy guarantee concerns only the change in the
attacker’s knowledge when presented with the obfuscated data (e.g., the face),
it is unaffected by other sources of information the attacker may gain access to.

Composition Attacks. Another very important property of differential pri-
vacy is its resilience to composition attacks. The composition theorem [12] states
that for two differentially private releases using privacy parameters ε1 and ε2
respectively, the privacy guarantee holds for a privacy parameter ε = ε1 + ε2.
Thus, even in the case of uncoordinated releases, we still have a valid privacy
guarantee. Furthermore, this removes the restriction on the same individual
appearing only once in the release of obfuscated images.

Input Image Gallery. Differentially private image obfuscation has no need
for a gallery of images in order to perform obfuscation. Since noise is added on
a per-image basis, there is no computation of clusters required. Given a trained
model, obfuscation of a single image or a batch of images can be performed with
ease. This makes the obfuscation process much more versatile.

4.4 Implementation Details

AAMs and GNNs have the very useful property of producing photo-realistic
images. We now describe how our framework can be applied to these models.
Provided that the addition of noise is properly controlled, the output will be a
photo-realistic image of any newly created identity.

The AAM representation of an image consists of a shape vector and a texture
vector. We take the concatenation of these vectors as the overall model vector.
It is important to note that this gives a representation of the identity which is
strictly contained within the contour of the face, leaving features such as hair and
ears as contextual information which is untouched by the obfuscation. This is
not ideal for the goal of hiding an identity since this contextual information can
greatly facilitate inferences about the identity. Although in theory an AAM could
be designed to incorporate the hair and ears, we are unaware of any research in
which this has been done. Thus, although we include AAMs in our experimental
comparisons, we recommend the use of GNNs instead.

For GNNs, we consider architectures which take one or more class vectors as
input and employ up-convolution to transform the input into a visual represen-
tation in pixel space [9]. By considering each identity to be a different class, an
input vector can specify the individual to be generated. The identity class vector
is an obvious choice as the model vector to be obfuscated. However, this leads
to some form of interpolation between the identities. To apply a finer degree of
modification to the identity, we propose the application of obfuscation at the
second layer of the network. Typically, the second layer applies convolution to
the class vector and transforms it into a vector of numeric representations of high
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level facial features. By applying obfuscation to these features instead, we can
achieve a richer variety in the potential modifications to the face. We therefore
apply obfuscation to the output of the first convolutional layer of the network
and pass the obfuscated feature vector on as the input to the next layer of the
network. A sample architecture is shown in Fig. 1.

Fig. 1. Visualization of the layer architecture in an up-convolutional neural network
using differential privacy. Noise is applied to the output of the second identity layer.
The numbers and shapes of the convolutional layers shown here are not exact and
represent only the general structure of such a network.

Information about the range of each model vector element can be used as a
means to preserve the visual quality of the obfuscated output. Noisy elements
which have gone too far beyond the valid range may lead to visual artifacts or
distortions in the output image. To prevent this, we snap any out-of-bounds
noisy value back to the nearest valid value. Since differential privacy is resistant
to any form of post-processing [12] and the ranges of the elements are non-
sensitive information, this step cannot violate the privacy guarantee.

5 Experiments

In this section, we run an experimental comparison between our proposed imple-
mentation of Sect. 4.4 and k-same implementations following the designs of k-
same-m [18] and k-same-net [32]. We employ these experiments to gain insight
into the relative performances of differential privacy and k-same obfuscation in
the context of a trade-off between re-identification risk and utility.

5.1 Experimental Design and Results

We have implemented AAM obfuscation using AAM-API [37] for model train-
ing and generation of output. For GNN obfuscation, we have built on top of the
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DeconvFaces [14] network which implements the concept of up-convolution for
the generation of images of input classes [9]. For both models, we have applied
differential privacy as described in Sects. 4.2 and 4.4. For the k-same implemen-
tation in the AAM, we have followed the process of k-same-m [18]. For the GNN,
we have followed the approach of k-same-net [32]. In both cases, we have imple-
mented clustering as described for k-same-m. This deviates from the use of a
proxy gallery as described for k-same-net. It is important to note that, while a
proxy gallery can reduce re-identification risk, it involves a step which is external
to the k-same privacy guarantee. Thus, in the absence of a privacy guarantee
which incorporates this detail, we omit the use of a proxy gallery in order to
focus our experiments on the formalized aspects of the privacy guarantees.

We apply each method of obfuscation to two different datasets - RAFD [25]
and KDEF [30]. These datasets provide frontal facial images of subjects wear-
ing same coloured shirts. The use of same coloured shirts prevents bias in re-
identification from the exploitation of information in unique clothing. The RAFD
and KDEF datasets contain images of 67 and 70 subjects, respectively, and pro-
vide a variety of facial expressions. Due to apparent issues with lens exposure in
the KDEF dataset, we have removed two of the subjects from our experiments.

The GNN architecture accepts class vectors for identity and facial expression
as input. The RAFD and KDEF datasets are therefore highly suitable for this
network. We have trained the network for 1000 epochs on each of the datasets
to obtain models capable of reproducing these identities. An example of obfus-
cated output is shown in Fig. 2. The AAM has the advantage of being able to
approximate previously unseen identities. To use this in our experiments, we
have trained a model for each dataset using the other dataset (e.g., RAFD as
training data for KDEF) with pre-processing to adjust the colour saturation
of the training data in order to better match the target data. Since the train-
ing requires annotations of facial landmarks, we have employed OpenFace [1] to
compute high accuracy approximations of the landmarks.

Fig. 2. Obfuscation via the GNN on the RAFD dataset. The top row employs differ-
ential privacy and the bottom row employs k-same obfuscation.
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To measure re-identification risk, we have employed VGGFace D [35], a deep
convolutional neural network which has been shown to achieve excellent facial
identity classification accuracy. This simulates how an attacker might leverage
machine learning models to launch an attack on obfuscated images. We have
trained a separate model for each dataset, using the neutral and sad expressions
for each identity for validation and the remaining expressions for training. To
improve the robustness of the models, we have also augmented the datasets by
creating two additional versions of each image - one with increased contrast and
one with decreased contrast.

In our experiments, we generate obfuscated images having a neutral facial
expression. We measure re-identification risk based on the accuracy of the top
1 guesses of the VGGFace network. Given that differential privacy is a stochas-
tic process, for each combination of a privacy parameter and an identity to be
protected, we have generated 10 obfuscated instances over which we take the
average of the re-identification risk. We measure overall re-identification risk for
a given privacy parameter as the average risk over all individuals in the dataset.
Since the k-same approaches are deterministic, we produce only a single output
image per identity and then take the average re-identification risk over the whole
dataset (Fig. 3). In contrast to the typical ε values applied to differentially pri-
vate mechanisms for databases, the values used in our experiments may appear
unusually high. The larger magnitude is simply a side-effect of the normalization
for the model vector, resulting in the interpretation of ε on a different scale.

To compare the methods of obfuscation in terms of utility, we have focused on
gender classification in the obfuscated output. As forms of demographic classifi-
cation may be desirable for data mining purposes, we consider high classification
accuracy to reflect good utility. To this end, we employ a convolutional neural
network for the classification of gender in facial images [27]. Since we wish to
compare differential privacy to k-same obfuscation, we plot the data as a func-
tion of identity classification error in order to abstract away from the proprietary
privacy parameters (Fig. 4). Given the poor obfuscation achieved by the AAMs,
we omit them from this comparison. To highlight the ability of GNNs to incorpo-
rate properties relevant to image utility into the network architecture, we have
also created a modified version of the architecture which preserves gender in the
obfuscated output. To do so, we have created an input layer having two classes
which specify the gender in the image. By training a model with gender labels, it
learns to separate features relevant to gender from those relevant to identity. This
enables us to focus obfuscation only on the features relevant to identity while
leaving the gender feature vector untouched. An example of gender-preserving
obfuscation is shown in Fig. 5.

5.2 Discussion

We first consider the results on re-identification risk. It is immediately notable
that the AAMs are ineffective at privacy protection, even under severe privacy
settings. This is due to the contextual information outside of the facial contour
such as the hair, ears and neck. In an alternative setting, the obfuscated face
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Fig. 3. Identity classification accuracy for the methods of obfuscation

Fig. 4. Gender classification accuracy for the methods of obfuscation
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could be released on its own (e.g., against a black background) to prevent leak-
ing this contextual information. While this would greatly improve the privacy
protection, it would omit a great deal of useful information in the image and
would lead to an output which is not very visually pleasing. We expect that in
most practical situations, it is desirable to release a full version of the image.
We therefore recommend against the use of AAMs for obfuscation, at least in a
form which does not obfuscate the full head.

Fig. 5. Gender-preserving obfuscation via the GNN on the RAFD dataset. The top
row employs differential privacy and the bottom row employs k-same obfuscation.

The k-same AAM results clearly demonstrate the violation of the k-same
privacy guarantee since the re-identification risk is well above the theoretical
maximum. We again note that if we only consider information within the con-
tour of the face, the guarantee is not violated, however, such a guarantee is not
useful in most practical situations. With differential privacy, we maintain a mean-
ingful privacy guarantee for images which contain such information. Although
our experiments do not illustrate the susceptibility of k-same obfuscation to
composition attacks, we plan to demonstrate this in future work.

In the gender classification comparisons, we see that the basic models for
differential privacy and k-same obfuscation suffer a degradation in classification
accuracy at high levels of privacy protection. Comparing the gender-preserved
models to their basic counterparts, we see a large improvement in the classifica-
tion accuracy, suggesting that this is an effective approach for the preservation
of specific properties in the obfuscated output. In some cases, the classification
accuracy of the obfuscated images has surpassed that of the original data. This
is a result of the explicit specification of gender labels in the network input which
can lead to obfuscated identities that more prominently display these features.

The overall comparison between the utility preserved in differential privacy
and k-same obfuscation appears to be inconclusive in these results. Some exper-
iments show better results for differential privacy while other experiments show
better results for k-same obfuscation. The k-same results are also more difficult
to assess given the sporadic nature of the plots. This is likely due to changes
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in clusters between each level of obfuscation which can greatly impact classifi-
cation accuracy, both for identity and for gender. It is clear that the utility is
also data-dependent given the variations in the results seen on the two datasets.
Notably, many subjects in the KDEF dataset, including some males, have long
hair whereas all subjects in the RAFD dataset have short hair. The males with
long hair in KDEF may have contributed to the lower gender classification
accuracy.

Given that differential privacy offers great improvements in the privacy guar-
antee over k-same obfuscation and that the levels of utility in our experiments
appear to be similar between the two approaches of obfuscation, we consider
differential privacy to be a preferable choice for the obfuscation of facial images.

6 Conclusions

We have studied how to obtain a formalized privacy guarantee for the obfusca-
tion of facial images in practice. We have identified shortcomings of the k-same
privacy guarantee including susceptibilities to background information and com-
position attacks as well as the awkwardness in the requirement for a gallery of
input images. To improve upon this, we have proposed the use of differential pri-
vacy in the context of obfuscation applied to generative models for images. We
have developed a framework which provides a meaningful privacy guarantee for
such models and we have derived the configuration of Laplace mechanism which
can achieve this privacy guarantee. Our approach preserves the privacy guarantee
in the presence of attackers with background information, provides resistance to
composition attacks and removes the requirement for a gallery of input images.
We have implemented both our proposed framework as well as k-same obfus-
cation in order to run experimental comparisons. Through our comparisons, we
have shown that this application of differential privacy can achieve comparable
utility to k-same obfuscation. We conclude that the key improvements in the
privacy guarantee combined with comparable levels of utility make differential
privacy a much more appropriate choice for the obfuscation of facial images.
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1 Introduction

1.1 Previous Work

The field of learning analytics is of increasing importance for educational research
[16,19,45]. Moreover, it aims to assist the learning process by providing teachers
a deeper insight into learning processes and learning results. Teachers play an
essential role because they are responsible for intervening in a pedagogical ade-
quate manner. Recently, the field makes heavy use of statistical machine learning
[41]. Whilst educational data mining targets on automating learning activities,
learning analytics supports educators in their daily routine.

The so called “1 × 1 trainer”1 is a learning analytics application developed by
the department Educational Technology of Graz University of Technology, Aus-
tria. It uses the benefits of both fields, learning analytics as well as educational
data mining [17,18,43].

The application poses exercises to students from the multiplication table
with one decimal digit operands. The algorithm of the “1× 1 trainer” adapts
the sequence of given questions subject to the students answers individually, in
order to improve individual learning progress. However, technically, this needs to
react adaptively to the changes of the learning progress of a student. In that way,
it would support each student according to the user’s distinct learning progress
over the whole learning period. This underlying personalized adaptive learning
algorithm shall discover weak mathematical knowledge of single students and
alerts teachers just in time to adequately intervene.

The work is based on previous research that used data gathered by the “1× 1
trainer”. Firstly, different mathematical questions were roughly classified accord-
ing to the learners’ answers. Questions were considered to be more difficult than
others when students required more attempts to answer them [48,51]. Some spe-
cific questions could be identified as difficult for the majority of the users. The
next step was to analyze the explanation of the errors made. Therefore, error
types were assigned to falsely answered questions, which correspond to the innate
cognitive and conceptual learning shortcomings of the users [50]. The “relative
difficulty” of those questions - 2 × 3 seems to be simpler than 7 × 8 - played no
role in identifying the error types. More explanation on error types follows in
Sect. 2.

1.2 Bayesian Student Models

There is a plethora of learning applications that use probabilistic graphical mod-
els (also called Bayesian models/networks [39]) to model student’s knowledge.
These models have started making an impact in the research of causal learning
and inference generally, but there are good arguments that even children’s causal
learning could also be modeled in this way [10].

Most applications belong to the category of intelligent tutoring systems (ITS)
[13] or adaptive educational systems (AES) [4]. The main goal of an ITS is to
1 https://schule.learninglab.tugraz.at/einmaleins/, Last accessed 18 June 2019.

https://schule.learninglab.tugraz.at/einmaleins/
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provide personalized recommendations according to the different learning styles,
whereas AES adapt the learning content as well as its sequence according to
the student’s profile [42]. As explained in the literature review by Chrysafiadi &
Virvou [11], there are two classes of intelligent tutoring systems: Systems that
make diagnosis with the student’s knowledge, misconceptions, learning style or
cognitive state, and systems that plan a personalized strategy using diagnosis for
each learner individually. Student modelling is considered a subproblem of user
modelling which is of central importance to ITS since otherwise each student is
treated the same [37].

Primarily, we are interested in Bayesian networks because of their ability
to model uncertainty [36] and, at the same time, to support a decision making
process. The user modelling goals of a Bayesian network for knowledge modelling
is mainly to have an adaptive estimation of the knowledge itself, since it may
increase or decrease during the learning process [4]. Since scalar models and fuzzy
logic approaches [14] have lower precision, structural models are built with the
assumption that the knowledge is composed mainly by independent parts. On the
other hand, bug/perturbation models [11] represent errors and misconceptions
of the student. In this case, the Bayesian network is used to find the error that
most probably caused the observable behavior (also called evidence) [36] which
is called credit/blame assignment problem [38]. Bayesian networks can model
the assumption that a wrongly answered question having two potential causes is
most probably caused by the one that is more prevalent, according to the data
provided so far. Sometimes, random slips or typos are included in the model and
do not rely on assumptions as for example: A wrongly answered question does
not necessarily mean that the student does not know a concept completely, or a
correctly answered one wasn’t a guess. The structure in both cases constitutes
the qualitative model; its definition uses domain knowledge and (optionally)
data. The parametrization is learned from the data during a training phase and
constitutes the quantitative model.

The reason for the creation of the model is in some cases to assist the teachers
of large classes that suffer from a high dropout rate [52]. A model recognizes the
student’s knowledge faster and more accurate [36] which is primarily beneficial
when the class has a large number of students. In other cases that are summed
up in [5], the goal is to provide a personalized optimal sequence of the learning
material or even to sequence the curriculum according to the student’s individual
needs. And yet, further cases [46,47] show that the learning application that is
based on the model provides long-term learning effects as opposed to traditional
methods. This was studied by a post-test that was made several weeks after the
learning sessions.

The issue of defining the prior beliefs, which consist the starting parameter-
ization, is often coupled with user clustering; demographics, longitudinal data
[47], pre-tests [12,25], defining the prior beliefs as well as the starting groupings
[4] with respect to the learners. In other cases, the teacher sets the prior beliefs
from his/her experience [37] or a uniform prior is used [12,38]. Another common
characteristic is the definition of hidden structural elements that represent unob-
servable entities, which must be estimated from the observed ones. The design
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of the structure must take correct assumptions into account, based on a solid
theoretical background, otherwise the model will not work correctly [36].

In the work of Millán et al. [33], the researchers draw a parallel between
medical diagnosis systems and student’s knowledge diagnosis [34]. Actually, this
is an important comparison as the development of clinical reasoning and decision-
making skills is very similar [3].

The student answers a set of questions that can only be answered correctly,
when several concepts are known. In this case the knowledge of the concepts is
the cause of the answer. The noise in the process, for instance when a student
knows the concept but answers wrongly and vice versa a correct guess, is also
modelled. The initialization of the model parameters is made by teachers-in-the-
loop; afterwards the parameters are learned from the data. The model is used
to efficiently determine those concepts the student knows less and the deductive
proposal of the next question.

The “eTeacher” is a web-based education system [21,42] that recognizes the
learning style of a student according to the performance in exams as well as
email, chat and messaging usage. The number of different learning strategies
and their characteristics is the “domain knowledge” defining the structure of
the Bayesian network. The initialization of the parameters uses in some cases
uniform priors and in others priors defined by experts. After that initial phase,
the parameters are continuously learned from the behaviour of the students.
After identifying the learning style, a recommendation engine proposes different
ways to learn the same material to each student according to his or her learning
style.

“ANDES” is an ITS developed by Conati et al. [13], which mainly focuses on
knowledge tracing but also on recognition of the learning plan of the user. The
students solve Newtonian physics problems with different possible solution paths
that define the Bayesian network’s structure. Since each action may belong to
different solution paths and the user does not provide its reasoning explicitly,
the credit assignment problem is to find and quantify the most likely solution an
action belongs to. This triggers personalized help instructions and hints in two
cases: when a wrong answer is given or when the model predicts that the answer
might be wrong. The parameters of the network change in an online manner
while the student is solving the problems. Firstly, the evaluation was made by
simulating students that have different knowledge profiles and measuring the
accuracy of the predictions made by the model. In a second step, a post-test was
carried out to compare real students having used “ANDES” to students who
have not. Regression analysis was used to recognize the correlation between the
use of the program and the learning gain [6].

Specifically for mathematical problems there are several approaches that spe-
cialize in dealing with decimals misconceptions. In the work of Stacey et al.
[46,47] the misconceptions that define the structure of the model are provided by
two main factors: the domain knowledge and data of a Decimal Conception Test
(DCT) that students had to go through. Wrongly answered questions provided
by the students depend on their misconceptions. The researchers defined the
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distinct misconception by computing which of them has the highest probability
according to the data. Although the model drives different question sequencing
strategies, some of the misconceptions were not correctly recognized. Therefore,
the researchers decided that the teacher and not the system should provide
instructions.

Also, the research work of Goguadze concentrates on the modelling of dec-
imals misconceptions [24,25]. The “AdaptErrEx” project selected the most
frequently occurring misconceptions and ordered them a taxonomy (higher
and lower level misconceptions), which is reflected in the dependencies of the
Bayesian network. As the previous application, a wrong answer may be caused
by different misconceptions. The prior beliefs are defined by a pre-test; the
researchers assert that sufficient training data diminish the role of the prior in
the computation of the posterior. This prior defines the typical/average student
and then each user’s parameters can be updated and individualized accordingly.
One aspect that has not been considered in this model yet, is the difficulty of
each question: easy questions will more likely be answered correctly than difficult
ones, even if there is a high probability of misconception.

Several student modelling models track the progress of knowledge through
time with Dynamic Bayesian Networks (DBN). The knowledge of the learner
at each time point can be considered to be dependent on the knowledge and
(optionally) the observed result of the interaction at the previous time point
[35]. The project “LISTEN” [9] represents the hidden knowledge state of the
student at each time point. The observable entities are the tutor interventions
and the student’s performance which are used to infer the knowledge state. In
the work of Käser et al. [28] there is an overview and comparison of Bayesian
Knowledge Tracing (BKT), which is a technique for student modelling using a
Hidden Markov model (HMM) modelling and DBN for various learning topics,
such as number representation, mathematical operations, physics, algebra and
spelling. A HMM is a special case of a DBN, which, according to the researchers,
cannot represent dependencies that would lead to hierarchies of skills; in these
case DBNs create more adequate models.

All above described applications have aBayesian network of the studentsmodel
at its architecture core. There are a number of other components that either sup-
port the teacher or the student. One of them, for example, is the visualization of
the model in the “VisMod” application [53], which is displayed in (among other
things) color and arrow intensity instead of number-filled tables. This increases
the readability of the model and enhances the tutor’s understanding. Gamifica-
tion elements can also be found in “Maths Garden” [29], an application that lets
users gain and loose points and coins depending on answering correctly or wrongly.
A coaching component that provides feedback and hints to refresh the memory can
be found in “ANDES” ’s architecture [6]. An overview about the design and archi-
tectural elements of intelligent tutoring systems that have a Bayesian network as
user model is provided in the work of Gamboa et al. [20].

A detailed overview about intelligent techniques other than Bayesian net-
works, such as recommender systems for the computation of the learning path
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as well as clustering and classification for learner profiles that are used in
e-learning systems, is provided in [32]. Specifically in [4], the demand for the
most appropriate activity proposed - neither too easy nor too difficult - can only
be fulfilled, if the used model is both accurate and adaptive.

1.3 Research Question

The main objective of this research work is to answer the research question,
whether Bayesian networks can quantify the defined misconceptions of one-digit
multiplication problems. In order to answer this question the “1× 1 trainer”
application is taken as the underlying data provider. The application focuses
on the recognition of the current learning status. However learning aware appli-
cations maintain an adaptive learning model that represents the knowledge of
the learner/user with regard to the learned topic. The application is expected
to support individual learning needs and abilities as well as considering com-
mon characteristics in the learning process of different persons. The progress
of the learning model itself will be used to transform the learning application
into an adaptive one; that may change the content and sequence of assessments
constantly to improve the learning process and to maximize the learning efforts.

The “1 × 1 trainer” application has a current overall report that is accessi-
ble to teachers. It contains information about the actual number as well as the
proportion of correct and wrong answers of each posed question. It uses color
encoding that helps distinguishing four sets of questions with similar proportion
of correct and wrong answers. The implementation of the Bayesian model pro-
vides further insights to detailed cognitive information that enriches the informa-
tion content of the current report. Furthermore, the new report can concentrate
on individualized learning status, considering the causes of the wrong answers
and can be updated in real time after each action of the student.

1.4 Outline

This research work proposes a Bayesian model for the learning competence of
students using the “1× 1 trainer” application. The first step is to specify the
error types that are relevant for this research; their detailed description is made in
Sect. 2. Data analysis (specifically descriptive statistics) is used to guide the nec-
essary assumptions about the modelled entities and their independences. Based
on this information, the structure of the model and its parametrization is defined.
The personalized model of each student and the method by which it adapts its
parameters to new data is described in Sect. 3. The usage of the model and the
insights that are provided to the teachers in the form of an enhanced report are
explained in Sect. 4. Finally, a conclusion about future research and improvement
possibilities is in Sect. 5.
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2 Error Types of One-Digit Multiplication and
Descriptive Statistics

2.1 Error Types of One-Digit Multiplication Problems

The bug library [11] of the proposed learning competence model contains six
error types: operand, intrusion, consistency, off-by, add/sub/div, and pattern.
Any false answer that does not belong to one of those six categories is assigned
to the unclassified category. The description of the error types is explained in
detail in [49]; a brief description follows here:

1. Operand error: It occurs, when the student mistakes at least one operand
for one of its neighbours [7]. In the implementation only a neighbourhood of
overall absolute distance of 2 from the correct operands was considered. One
example is the answer 48 to the question 7× 8 since the user may mistakenly
multiply 6×8. Research shows that this is the most frequently occurred error,
but it occurs with a different proportion in each posed question [8].

2. Operand intrusion (abbreviated intrusion) error: It happens, when the
decades digit and/or the unit digit of the result equals one of the two operands
of the posed question, for example 7×8 = 78. It is argued by [7] that the two
operands of the multiplication question are perceived as one number by the
student (the first operand corresponding to the decades digit and the second
to the unit digit).

3. Consistency: The student’s answer has either the unit digit or the decade digit
of the correct answer [15,44]. For example, the answer 46 to the question 7×8
indicates that the unit digit is correct, but the decades digit is false.

4. Off-by-±1, Off-by-±2: It occurs, when the answer of the student deviates from
the correct one by ±1 or ±2, for example, when the answer of the question
5 ∗ 8 is one of the following: {38, 39, 41, 42}.

5. Add/Sub/Div: The student confuses the operation itself and performs for
example an addition instead of a multiplication; in that case the answer to
7 × 8 is 15.

6. Pattern: The student mistakes the order of the digits of the result, for exam-
ple, question 7 × 8 provides the answer 65 (the decades digit and the unit
digit are permuted).

7. Unclassified: Any answer that can not be matched to one of the above error
types.

All questions that have a correct answer with value smaller than 10 do not
have consistency error. These are: 1×1, 1×2, 2×1, 1×3, 3×1, 1×4, 4×1, 1×5, 5×
1, 1×6, 6×1, 1×7, 7×1, 1×8, 8×1, 1×9, 9×1, 2×2, 2×3, 2×4, 3×2, 3×3, 4×2.

One of the main reasons to use a probabilistic graphical model, is the fact
that a specific false answer can be classified to multiple error types. The identi-
fication of the most probable error type causing a wrong answer is called credit
assignment. The Table 1 shows the possible false answers for the question 7 × 8.
One can see that for example the answer 72 could occur because of an operand
or an intrusion error.
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Table 1. Answers for question 7 × 8 listed by error types

Error type Answers

operand 40, 42, 48, 49, 54, 63, 64, 72

intrusion 18, 28, 38, 48, 58, 68, 71, 72, 73, 74, 75, 76, 77, 78, 79, 88, 98

consistency 16, 26, 36, 46, 51, 52, 53, 54, 55, 57, 58, 59, 66, 76, 86, 96

off-by-±1/off-by-±2 54, 55, 57, 58

add/sub/div 1, 15

pattern 65

unclassified 4, 5, 6, 7, 8, 9, 10, 11, 12, 19, 20, 21, 22, 23, 24, 25, 27, 29, 30,
31, 32, 33, 34, 35, 37, 39, 41, 43, 44, 45, 47, 50, 60, 61, 62, 67,
69, 80, 81, 82, 83, 84, 85, 87, 89, 90, 91, 92, 93, 94, 95, 97, 99

correct 56

2.2 Data of the “1× 1 Trainer”

The data that were used for building the model were provided from the “1× 1
trainer” application. The application is for both students and teachers. For this
work it was also used for a preliminary categorization of learners. Users of this
application are confronted with multiplication questions with both multiplicands
being one-digit integer numbers. The possible questions range from 1 × 1 up to
10×9 (a total of 90 questions) and are posed in a pre-specified order. The appli-
cation does not provide any means of help or hints to the students so far; the
only feedback users get, is whether their answer is correct or not. It is expected
that by repeated use of the application the students will learn and get better
through exercise. But there is no individualisation that takes care of the per-
sonal needs of the learning style and knowledge level of the users. Furthermore,
personal information such as age, gender, demographics, and educational level
were not collected.

The data were cleaned in the preprocessing phase. The answers that did not
lie in the interval [0 − 100) were considered invalid and were removed. Overall
there were 1179720 question-answer pairs with 1164786 valid. The number of
unique users that gave at least one valid answer is 9058. The file covers eight
columns providing the user ID, session ID, platform ID, date and time of the
answer, as well as the reaction time of the student. Along with the posed question
and the provided answer the ID of the result type as one of {R, WR, W, WWR,
WW, WWWR, WWW, WWWW}, whereas W means “wrong” and R “right” is
stored. The detailed description of the result type is shown in [49] and is basically
a way to quantify the relative difficulty of each question by keeping the recent
history of the user’s answering behaviour for each question. This information
and the reaction time was not used in the model.
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2.3 Data Analysis and Descriptive Statistics

To help designing the probabilistic graphical model, some analysis steps were
necessary to be carried out with the data. The analysis and descriptive statis-
tics provides insights about the overall similarities and differences between the
students [22].

Firstly, not every user has answered the same number of questions. The vast
majority of the users (98, 6%) have ≤ 1000 valid answered questions. For the
training of the model, the prior must have an equal amount of answers for each
question. This does not take the sequence of posed questions into consideration.

Secondly, for each question the proportion of wrong answers was computed
and depicted with a heatmap, whereas the x-axis is the first operand and the
y-axis the second (see Fig. 1). As it turned out, the most difficult question is 6×8
with 26.8% of wrong answers given. It must be advised to remember that not
all questions are posed the same number of times, because of the algorithm that
chooses the question sequence. Therefore the belief about the relative difficulty
of the questions has not an equal confidence for all the questions.

Fig. 1. Relative difficulty of the questions measured by the proportion of wrong
answers. The x-axis is the first operand and the y-axis the second.

3 Probabilistic Graphical Model of Learning Competence

The use of a learning-aware data-driven application cannot assume that the
user’s learning competence remains unchanged. Simple statistical descriptions
are not practical in representing a continuous change and do not effectively
capture the differences between the learning process of the users. Furthermore,
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the purpose is to choose intelligent actions (also called “actionable information”
[1]) based on the data and this is not possible simply by one rigid and non-
adaptive analysis of the data.

The choice of a probabilistic graphical model has several benefits. Firstly, it
allows the representation of conditional dependencies (and independencies cor-
respondingly) in the graphical representation of the model of the data. Those
are assumed to be the same for all users and stay stable over the course of
application usage. Secondly, its parameters (that can be thought of as a config-
uration or instance) are adaptive and change with each new data sample that is
observed. They may be a temporary snapshot description that characterizes the
learning competence but unlike the statistics there is an effective way to adapt
those and not recompute them from scratch each time the model confronts new
data. Thirdly, they’ve already been extensively used for decision problems [1,30]
which are the forefronts of reinforcement learning algorithms.

3.1 Introduction to Probabilistic Graphical Models

Probabilistic Graphical Models are representations of joint probability distri-
butions over random variables that have probabilistic relationships expressed
through a graph. The random variables involved can be discrete which have cat-
egorical values or continuous with real values. The set of possible values that a
random variable can take - sometimes also referred as the possible outcomes of
the experiment described by the random variable - is its domain. The random
variables can be either visible or hidden. The visible ones have outcomes that
can be directly observed and their values are contained in the dataset. The hid-
den variables are defined by human experts using the domain knowledge of the
problem, but their outcomes are not directly accessible. They usually represent
latent causes of visible random variables and can improve the accuracy and the
interpretability of the model [31].

To specify the dependencies of the variables in general, one needs to specify
their direction, type and intensity. This is made with the use of graphs which
provide the terminology and theory for understanding and reasoning about Prob-
abilistic Graphical Models. The nodes (also called vertices) of the graph represent
the random variables and the edges their dependencies which can be directed
or undirected. Undirected models - also called Markov networks - on the other
hand represent symmetric probabilistic interactions where there is no depen-
dency with direction, only factors that represent the degree of the strength of
the connection. In case where the dependencies are directed, the graph must be
a directed acyclic graph (DAG), otherwise circular reasoning would be possible.
These two categories are used in different applications.

3.2 Model Structure

Domain knowledge about the already described error types that are encountered
in one-digit multiplication, as described in Sect. 2, was used to define the model.
This is in accordance with the data-driven approach of model construction [31]
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where the structure of the model is specified by the designer and the parameters
are learned from the data.

A question is either answered correctly or faulty. The student can make one
of the following errors: Operand, intrusion, consistency, off-by-±1 and off-by-
±2, pattern, confusion with addition, subtraction, division or an unclassified
error (meaning none of the above). Therefore a multinomial random variable
called Learning Stateq - individual for each question q was chosen to represent
the proportion of each of these misconceptions of the user, when he or she is
answering a one-digit multiplication question. The variable follows the categor-
ical distribution; in this case the Learning Stateq has eight possible outcomes
and the domain of this random variable is Val (Learning Stateq) = {operand,
intrusion, consistency, pattern, confusion, unclassified, correct} (meaning that 1
is the operand error, 2 the intrusion error and so on). The Learning Stateq of
a specific user can be described for example 5% operand error, 4% consistency
error and 91% correct answering (the rest possible outcomes have 0%). This
parametrization must be learned from the data.

In the previous section it is shown that a specific faulty answer may be classi-
fied to more than one error types. Although in reality the model does not assume
that more than one error type created a particular answer, the model cannot
know a priori which error type was more prevalent and played the decisive role
in choosing the wrong answer. The Learning Stateq is hidden and the percent
of each error type is expected to be learned by the provided answers. Thereby,
a dominant error type (for a specific user) can be still discovered and weaken
the belief that multiple error types played a role for a specific faulty answer. In
Sect. 4 the inference of the most probable error type (credit assignment problem)
of a specific wrong answer will be made after the learning of the parameters is
completed.

The proportion of correct and false answers is different for each question.
Even though each question is not posed the same number of times and the
belief about the possibility of correctly answering each question is different, this
was also taken into account. That means that the probability of answering cor-
rectly is not. Therefore, there are 90 random variables called Correctness1×1 to
Correctness10×9 (abbreviated by Correctnessq) that have each two possible
outcomes. Therefore the Bernoulli distribution was chosen, which is equivalent
to a categorical distribution with a domain of two values.

Each question has a distinct random variable, named accordingly as
Answers1×1 to Answers10×9 (abbreviated as Answersq), which is a child of
the Learning Stateq random variable. The arrows from the Learning Stateq
to its children reflect the dependency of the answer to a question from the mis-
conception or correct understanding of the user.

The conditional independence property of each Learning Competence model
is expressed by the following equation:

Answesq ⊥ Correctnessq|Learning Stateq (1)
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Fig. 2. The structure of all Probabilistic Graphical models for Learning Compe-
tence. The shaded Answesq nodes are the ones that are observed, whereas the
Correctnessq, Learning Stateq random variables remain unobserved.

The joint probability distribution for each question q has the following
factorization:

P (Correctnessq,Learning Stateq,Answersq) =

P (Correctnessq) P (Learning Stateq|Correctnessq)

P (Answersq|Learning Stateq)

(2)

Each error type can only produce a specific subset of answers, so the others
will have zero probability of occurring given this particular error type. Every
row of the conditional probability tables of the Answersq random variables has
values that sum to one and the last row has only one entry with probability 1.0
at the column with the correct answer and 0.0 everywhere else. Figure 2 depicts
the described structure of Learning Competence models.

The model needs to express the following procedure: First knowing if the
question is answered correctly; this is provided by the Correctnessq random
variable. If this is true then there are no more steps to follow. In the case where
the answer is false, there must have been an error which belongs to the hid-
den Learning Stateq. One of the possible answers of this error, as seen and
quantified by Answersq will be the actual answer of the user. The possibility
of guessing the answer is a valid one, but there is no way to get that kind of
evidence in this application. The probability of continuously guessing the correct
answer is very low and students that continuously provide random answers need
to be discovered by the inconsistency of their model.

The model reflects our belief about the overall learning competence of the
user. Its structure is considered to be the same for all users, but the conditional
probability values (entries in the conditional probability tables) will differ for
each individual user. Nevertheless the model can also reveal similarities between
the users, meaning at this stage models that have similar parameter values.
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3.3 Learning the Model’s Parameters

The answers of questions of the students which are already gathered comprise the
data set denoted by D. The goal of parameter learning is the estimation of the
densities of all random variables in the model. The joint probability distribution
PM defined by the model M with parameters Θ is expressed by Eq. 2. The
parameter learning’s goal is to increase the likelihood of the data given the
model: P (D|M) or equivalently the log-likelihood: log P (D|M) with respect to
the set of the parameters Θ of the model. The likelihood expresses the probability
of the data given a particular model; a model that assigns a higher likelihood to
the data D approximates the true distribution (the one that has generated the
data) better.

The algorithm that is used to estimate the parameters in cases where some
of the variables are hidden is expectation-maximization (EM). Since the latent
variables Correctnessq and Learning Stateq are not observed, the direct max-
imization of the likelihood is not possible. The EM algorithm initializes all
model’s parameters randomly and iteratively increases the likelihood by step-
wise maximizing the expected value of the currently estimated parameters [2]. If
the likelihood’s increase or the parameters’ change is not significant compared
to the previous iteration, then the algorithm can be stopped. The procedure of
updating the log-likelihood in this manner is shown to guarantee convergence
to a stationary point, which can be a local minimum, local maximum or saddle
point. Fortunately, by initializing the iterations from different starting parame-
ters and injecting small changes to the parameters, the local minima and saddle
points can be avoided [31].

The models are simple enough; therefore the EM-algorithm has a straightfor-
ward analytical solution. The available data were divided into a training and test
set, with a dataset containing data from users that have answered all the ques-
tions at least one time (The number of users that have answered all questions
exactly once is 2218). The models parameters are computed by the EM-algorithm
on the training data and it iterates 4 times. After 4 iterations the likelihood of
the training set increases, but the likelihood of the test set decreases which
consists an indication of overfitting. The diagram in Fig. 3 describes the main
computational blocks of this process.

Figure 4 depicts the learned parameters for the Learning Competence model
of question 8 × 5 as an example.

4 Insights

After the model of a particular student is learned - by using the informed prior
as starting point and as evidence the answers he or she has given so far. The
better and more accurate the model captures the learning competence of the
student, the better the performance of the predictions of the answers will be. In
some probabilistic modelling frameworks such as Figaro2 the parameter learning
part is made by the offline component and the probability queries by the online
component.
2 https://www.cra.com/work/case-studies/figaro, Last accessed 18 June 2019.

https://www.cra.com/work/case-studies/figaro
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Fig. 3. Computational blocks diagram of data preprocessing, splitting into training
and test set until the computation of the learned model.

Fig. 4. Learned parameters of Learning Competence model for the question 8 × 5.

There are three types of reasoning one can make with probabilistic graphi-
cal models: causal, evidential and explaining away. Causal reasoning (also called
prediction) consists of statements that start with the knowledge of the causes as
evidence and provide information about the effects. In our model this would be
possible if the Correctnessq and Learning Stateq were known: the computa-
tion of the answer to a posed question would be accurately determinable. The
direction of causal reasoning in directed graphical models goes from parent to
child variables (“downstream”) in general and is used to predict future events.
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Evidential reasoning (also called explanation) on the other hand has the
opposite direction and involves situations where effects lead to the specification
of causes. This is the most important reasoning in our case because the answers
of the students provide the information to do evidential reasoning and learn
the hidden variables Correctnessq and Learning Stateq which in turn can
be used for causal reasoning to predict the future answers of each student. The
difference in causal and evidential reasoning can be understood by considering
the direction of time; evidential reasoning infers the past probability distribution
from the current set of data whereas causal reasoning makes a prediction for the
future given the data. The great benefit of graphical models over statistics is
that the same model is used for both backward and forward reasoning (with
respect to the perception of time).

Intercausal reasoning occurs when one random variable depends on two or
more parents. In this case, the observation of the value of one parent influences
the belief about the value of the other(s) (either strengthen or weaken). In this
situation it is said that one reason explains away the other. The Learning Com-
petence model’s structure does not contain such cases; further discussion about
this reasoning type can be found in [2,27,31].

The upcoming sections proceed with an analytical implementation of prob-
abilistic queries which is specific to the designed Learning Competence models.
Personalized insights computed by the latent explanations of wrong answers of
each student are made possible by exact and efficient inference as described in
Sect. 4.2.

4.1 Probability Queries

A conditional probability query P (Y |E = e) - also called probabilistic inference
- computes the posterior of the subset of random variables represented by Y (tar-
get of query) given observations e of the subset of evidence variables denoted by
E (of course there may be a subset of variables Z in the model not belonging to
either of these two subsets). By using the Bayes rule, the conditional probability
is written as:

P (Y |E = e) =
P (Y , e)

P (e)
(3)

The MAP query, which is also called most probable explanation (MPE) [31],
[40] is a query that maximizes the posterior of the joint distribution of a subset
of random variables Y :

MAP(Y |E = e) = arg max
y

P (y, e) (4)

In the case of MAP Query the whole set of random variables is X = {Y ,E}.
In other words the MPE, after observing (clamping) a subset of variables, it
computes the most likely values of the rest of them jointly.
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A slightly different query is the marginal MAP which is written as follows:

Marginal MAP(Y |E = e) = arg max
y

P (y|e) =

arg max
Y

∑

Z

P (Y ,Z|E = e)
(5)

which directly follows from the fact that X = {Y ,E,Z}.
The computation of the query result can be made with the variable elimi-

nation algorithm which is described in the following Sect. 4.2; in this case the
exact value of Eq. 3 is computed by dividing P (y, e) =

∑
w P (y, e, w) and P (e) =∑

y P (y, e). Alternatively, the normalization of a vector containing all P (yk, e)
(where yk are all possible outcomes of the variables Y ) so that it has sum
that equals to one, provides also the desired result. For more complex Bayesian
networks approximate inference algorithms are applied since exact inference is
NP-hard [30], but even those can be in the worst-case also NP-hard [31]. The
Learning Competence models are simple and the variable elimination algorithm
is fast enough.

4.2 Variable Elimination in the Learning Competence Model

The probability query that is of high relevance for the teachers is the probability
of error types regarded as causes of a specific wrong answer. The sum of products
expression in Eq. 6 computes the distribution of the Learning Stateq by means
of the joint distribution P (Cq,LSq,Aq):

P (LSq) =
∑

Cq,Aq

P (Cq,LSq,Aq) =
∑

Cq

P (Cq)P (LSq|Cq)
∑

Aq

P (Aq|LSq) (6)

Fig. 5. Parameters of Learning Competence model of question 6 × 7 that are relevant
to the computation of the MAP query when the answer is 40

The first step of the Variable Elimination algorithm, in case it is applied
where an evidence exists, is to compute the unnormalized joint distribution
P (C6×7,LS6×7,A6×7 = 40). For example, the faulty answer 40 for the question
6 × 7 eliminates all cases for which the answer is not equal to 40; it can belong
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only to two potential error types: consistency and off-by. The remaining rows of
the joint distribution - those containing the unnormalized proportion unequal to
0 are listed in Table 2. The computations use the corresponding parameters of
the Learning Competence Model of question 6 × 7 depicted in Fig. 5.

Table 2. Unnormalized joint distribution P (C6×7,LS6×7,A6×7 = 40)

C6×7 LS6×7 A6×7 Unnormalized proportions

wrong operand 40 0.158 · 0.336 · 0.035 = 1.85 · 10−3

wrong off-by 40 0.158 · 0.103 · 0.202 = 3.28 · 10−3

The sum of the unnormalized proportions, 1.85·10−3+3.28·10−3 = 5.14·10−3

(which is the value of P (A6×7 = 40)), can be used to compute the normalized
probabilities of the causes of answer 40 as depicted in Table 3.

Table 3. Normalized joint distribution P (C6×7,LS6×7,A6×7 = 40)

C6×7 LS6×7 A6×7 Normalized probabilities

wrong operand 40 1.85 · 10−3/5.14 · 10−3 = 0.36

wrong off-by 40 3.28 · 10−3/5.14 · 10−3 = 0.64

The process eventually performs the following computation in Eq. 7 which is
in accordance to Eq. 3.

P (C6×7,LS6×7|A6×7 = 40) =
P (C6×7,LS6×7,A6×7 = 40))

P (A6×7 = 40)
(7)

The distributions Correctness6×7 and Learning State6×7 in the Learning
Competence model is as follows (Table 4):

Table 4. Learning State6×7 distribution of wrong answers in question 6 × 7 before
the user answers 40

wrong correct
0.158 0.842

operand intrusion consistency off-by add/sub/div pattern unclassified
0.336 0.079 0.163 0.103 0.0014 0.072 0.243

After observing 40, the Explanations probability distributions are as follows
(Table 5):
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Table 5. Explanations distribution of wrong answers in question 6 × 7 after the user
answers 40

wrong
1.0

operand off-by
0.36 0.64

The result of the MAP Query (most probable explanation) is the joint
assignment MAP(Correctness6×7,Learning State6×7) = (wrong, off-by).
The result of the Marginal MAP query over the Learning State6×7 only, states
that the most probable cause of the answer is the off-by error, as seen in Fig. 6.

Fig. 6. Learning State6×7 and explanations distribution of question 6×7 before and
after the user answers 40

This is an example of a case where the an error type has a higher probability
than another one in the P (Learning Stateq|Correctnessq = wrong) distribu-
tion, but the probability query could state that the most probable cause of a
particular answer is the second one.

The results of the probability queries depend on the parameters of the model,
which in turn are influenced by the prior distribution and the number of EM-
iterations.

5 Future Work

The learned probabilistic model can be used in a generative scheme where the
learning application will sample the model to predict the answer of the student.
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There are several algorithms that compute samples from the models with dif-
ferent characteristics [40], [31]. Particularly for this model where the dataset is
highly unbalanced and the number of correctly answered questions is predom-
inant, the metric to measure prediction performance should particularly take
this fact into account. Although this feature does not provide an insight per se,
it can be a starting point for other informative learning aspects. One aspect is
explainable-AI which combines Bayesian learning approaches with classic logi-
cal approaches and ontologies, thereby making use of re-traceability and trans-
parency [23].

Even though the proposed research extends the capabilities of the current
learning application considerably, it cannot answer the fundamental question of
which should be the most appropriate question to pose to the student. After
the different learning competences are derived, the handling is delegated to the
teacher, not the application itself, thereby applying the “human-in-the-loop”
principle [26]. Further considerations apply to whether the models of learning
competences that could be grouped together are the ones where the students will
have the same learning path till they’ve learned to answer all questions correctly.
The goal of this learning-aware application is not to group the learning compe-
tences by similarity of their parameters (expressing the current situation), but to
find which ones will lead to similar optimal learning paths. This learning-aware
application could benefit from an answer prediction component that accurately
simulates students learning paths.
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Abstract. Topological data analysis combines machine learning with
methods from algebraic topology. Persistent homology, a method to char-
acterize topological features occurring in data at multiple scales is of
particular interest. A major obstacle to the wide-spread use of persistent
homology is its computational complexity. In order to be able to calculate
persistent homology of large datasets, a number of approximations can
be applied in order to reduce its complexity. We propose algorithms for
calculation of approximate sparse nerves for classes of Dowker dissimilar-
ities including all finite Dowker dissimilarities and Dowker dissimilarities
whose homology is Čech persistent homology.

All other sparsification methods and software packages that we are
aware of calculate persistent homology with either an additive or a
multiplicative interleaving. In dowker homology, we allow for any non-
decreasing interleaving function α.

We analyze the computational complexity of the algorithms and
present some benchmarks. For Euclidean data in dimensions larger than
three, the sizes of simplicial complexes we create are in general smaller
than the ones created by SimBa. Especially when calculating persistent
homology in higher homology dimensions, the differences can become
substantial.

Keywords: Sparse nerve · Persistent homology · Čech complex ·
Rips complex

1 Introduction

Topological Data Analysis combines machine learning with topological meth-
ods, most importantly persistent homology [10,12]. The underlying idea is that
data has shape and this shape contains information about the data-generating
process [4]. Persistent homology is a method to characterize topological features
that occur in data at multiple scales. Its theoretical properties, in particular
the structure theorem and the stability theorem make persistent homology an
attractive machine learning method.

A major obstacle to the wide-spread use of persistent homology is its compu-
tational complexity when analyzing large datasets. For example the Čech com-
plex grows exponentially with the number of points in a point cloud. In order
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to be able to calculate persistent homology, a number of approximations enable
us to reduce the computational complexity of persistent homology calculations
[3,5,6,8].

Recently, Blaser and Brun have presented methods to sparsify nerves that
arise from general Dowker dissimilarities [1,2]. In this article, we apply these
techniques to calculate the persistent homology of point clouds, weighted net-
works and more general filtered covers. This paper is focused on the algorithm
implementation, computational complexity and benchmarking of methods sug-
gested in Blaser and Brun [2].

All algorithms presented in this manuscript are implemented in the python
package dowker homology, available on github. With dowker homology it is pos-
sible to calculate persistent homology of ambient Čech filtrations, and intrinsic
Čech filtrations of point clouds, weighted networks and general finite filtered
covers. The dowker homology package does all the preprocessing and sparsifica-
tion, and relies on GUDHI [13] for calculating persistent homology. Users may
specify additive interleaving, multiplicative interleaving or arbitrary interleaving
functions.

This paper is organized as follows. In Sect. 2, we give a short introduction
on the underlying theory of the methods presented here. Section 3 presents the
implemented algorithms in detail. In Sect. 4 we quickly discuss the size complex-
ity of the sparse nerve and in Sect. 5 we provide detailed benchmarks comparing
the sparse Dowker nerve to other sparsification strategies. Section 6 is a short
summary of results.

2 Theory

The theory is described in detail in [2]. In brief, the algorithm consists of two
steps, a truncation and a restriction. Given a Dowker dissimilarity Λ, the trun-
cation gives a new Dowker dissimilarity Γ that satisfies a desired interleaving
guarantee. The restriction constructs a filtered simplicial complex that is homo-
topy equivalent to, but smaller than the filtered nerve of Γ . The paper [2] gives
a detailed description of the sufficient conditions for a truncation and restric-
tion to satisfy a given interleaving guarantee. Here we give a new algorithm to
choose a truncation and restriction that together result in a small sparse nerve.
In Sect. 5, we compare sparse nerve sizes from the algorithms presented here
with the sparse nerve sizes of the algorithms presented in [1] and [2].

3 Algorithms

We present all algorithms given a finite Dowker dissimilarity. Generating a finite
Dowker dissimilarity from data is a precomputing step that we do not cover in
detail. For the intrinsic Čech complex of n data points in Euclidean space R

d,
this consists of calculating the distance matrix, with time complexity O(n2 · d)
operation.

https://github.com/mbr085/Sparse-Dowker-Nerves
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3.1 Cover Matrix

The cover matrix is defined in [2, Definition 5.4]. Let Λ : L × W → [0,∞] be a
Dowker dissimilarity. Given l, l′ ∈ L let

P (l, l′) = {Λ(l′, w) | w ∈ W with Λ(l, w) < Λ(l′, w)}
and define the cover matrix ρ as

ρ(l, l′) =

{
supP (l, l′) if P (l, l′) is non-empty
0 if P (l, l′) = ∅.

More generally, we can define a cover matrix of two Dowker dissimilarities
Λ1 : L × W → [0,∞] and Λ2 : L × W → [0,∞] as follows.

P (l, l′) = {Λ1(l′, w) | w ∈ W with Λ2(l, w) < Λ1(l′, w)}
and define the cover matrix ρ as before. We define the cover matrix algorithm in
this generality, but sometimes we will use it with just one Dowker dissimilarity
Λ, in which case we implicitly use Λ1 = Λ2 = Λ.

Our algorithms for calculating the truncated Dowker dissimilarity and for
calculating a parent function both rely on the cover matrix. The cover matrix
is the mechanism for the two algorithms to interoperate. Algorithm1 explains
how the cover matrix can be calculated from two Dowker dissimilarities.

Algorithm 1: Cover matrix
Input : Dowker dissimilarities Λ1(l, w) and Λ2(l, w) for all l ∈ L and w ∈ W .
Output: Cover matrix ρ(l0, l1) for all l0, l1 ∈ L.
Define ρ as an |L| × |L| matrix of zeros indexed by L × L.
for (l0, l1) in L × L do

for w in W do
if Λ2(l0, w) < Λ1(l1, w) then

Update ρ(l0, l1) = max{ρ(l0, l1), Λ1(l1, w)}.
end

end

end
Return ρ.

The cover matrix algorithm is the bottleneck for calculating the truncated
Dowker dissimilarity and the parent function. Its running time O(|L|2 · |W |) is
quadratic in the size of L and linear in the size of W .

3.2 Truncation

Given a Dowker dissimilarity Λ : L × W → [0,∞], and a translation function
α : [0,∞] → [0,∞], every Dowker dissimilarity Γ : L × W → [0,∞] satisfying
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Λ(l, w) ≤ Γ (l, w) ≤ α(Λ(l, w)), is α-interleaved with Γ . In the case where α is
multiplication by a constant, both extremes Λ(l, w) and α(Λ(l, w)) will result in
restrictions with sparse nerves of the same size. Our goal is to find a truncation
that interacts well with the restriction presented in Sect. 3.4 in order to produce
a small sparse nerve.

Algorithm 2 explains in detail, how the truncated Dowker dissimilarity is
calculated. The high level view is that we first calculate a farthest point sampling
from the cover matrix and the edge list E of the hierarchical tree of farthest
points. Finally, we iteratively reduce Γ (l, w) starting from α(Λ(l, w)) by taking
the minimum of Γ (l, w) and Γ (l′, w) for (l′, l) in E.

Algorithm 2: Truncated Dowker dissimilarity
Input : Dowker dissimilarity Λ(l, w) for all l ∈ L and w ∈ W ,

translation function α : [0, ∞] → [0, ∞].
Output: Truncated dowker dissimilarity Γ (l, w) for all l ∈ L and w ∈ W .
Calculate cover matrix ρ(l0, l1) of Λ and αΛ for all l0, l1 ∈ L.
Choose initial point l0 ∈ L and set L0 = {l0} and T (l0) = ∞.
Initialize cover distance from L0 as d(L0, l) = ρ(l, l0) for l ∈ L \ {l0}.
Set index i = 0.
while |L0| < |L| do

Increment i by 1.
Add the point li = argmaxl′∈L\L0

d(L0, l
′) to L0.

Set T (li) = d(L0, li).
Update the cover distance from L0 as d(L0, l) = min{d(L0 \ {li}, l), ρ(l, li)}
for l ∈ L \ L0.

end
Initialize the graph G = (L, E) with E = ∅.
for l in L0 \ {l0} (sorted in order points were added to L0) do

if There exists a l′ ∈ L with T (l) = ρ(l, l′) then
Find the minimum ψ(l) such that T (l) = ρ(l, ψ(l)).

end
else

Find the minimum of ρ(l, l′) for l′ < l in the order and the argument
ψ(l) minimizing it.

end
Add (l, ψ(l)) to the edge list E.

end
Topologically sort the nodes l ∈ L from highest to lowest T (l).
Initialize Γ (l, w) = α(Λ(l, w)) for l ∈ L and w ∈ W .
for l in L \ {l0} (topologically sorted) do

for l′ such that (l′, l) ∈ E do
Update Γ (l, −) = min{Γ (l, −), Γ (l′, −)}.

end
Update Γ (l, −) = max{Γ (l, −), Λ(l, −)}.

end
Return Γ .
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The truncation algorithm has a worst-case time-complexity O(|L|2 · |W |).
As mentioned earlier, calculating the cover matrix is the bottleneck. The time
complexity of the while loop is O(|L|2), sorting is O(|L| · log |L|), the first for
loop is O(|L|2), the topological sort of a tree is O(|L|), and the last for loop is
O(|L| · |W |).

3.3 Parent Function

The parent function ϕ : L → L can in principle be any function such that the
graph G consisting of all edges (l, ϕ(l)) with l �= ϕ(l), is a tree.

Here we present the algorithm to create one particular parent function that
works well in practice and combined with the truncation presented in Sect. 3.2
results in small sparse nerves.

Algorithm 3 is a greedy algorithm. Ideally, we would like to set the parent
point of any point l ∈ L as the point l′ ∈ L that minimizes ρ(l, l′′) for l′′ ∈ L
with ρ(l, l′′) > 0. However, this may not result in a proper parent function.
Therefore we start with this as a draft parent function and then update it so
that it becomes a proper parent function.

Algorithm 3: Parent points
Input : Dowker dissimilarity Λ(l, w) for all l ∈ L and w ∈ W .
Output: Parent points ϕ(l) for all l ∈ L.
Calculate cover matrix ρ(l0, l1) for all l0, l1 ∈ L.
for l in L do

Find the minimum m(l) of ρ(l, l′) for all l′ �= l and the argument ϕ∗(l)
which minimizes it.

end
Sort l ∈ L by non-increasing m(l).
Let l0 ∈ L be the first point in L.
Initialize ϕ(l) = l0 for all l ∈ L.
for l in L \ {l0} do

if ϕ∗(l) comes before l then
Set ϕ(l) = ϕ∗(l).

end
else

Set ϕ(l) = argmin ρ(l, l′) for l′ that come before l with ρ(l, l′) > 0.
end

end
Return ϕ.

The time complexity of calculating the cover matrix is O(|L|2 · |W |). Every
subsequent step can be done in at most O(|L|2) time.
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3.4 Restriction

Given a set of parent points ϕ(l) for l ∈ L and the cover matrix ρ : L×L → [0,∞],
Algorithm 4 calculates the minimal restriction function R : L → [0,∞] given in
[2, Definition 5.4, Proposition 5.5].

Algorithm 4: Restriction times
Input : Parent points ϕ(l) for all l ∈ L,

cover matrix ρ(l0, l1) for all l0, l1 ∈ L.
Output: Restriction times R(l) for all l ∈ L.
Initialize R′(l) = ∞ for l ∈ L.
for l in L do

if ϕ(l) is not l then
Set R′(l) = ρ(l, ϕ(l)).

end

end
for l in L do

Set R(l) = R′(l).
Set l′ = l.
while ϕ(l′) is not l′ do

Set l′ = ϕ(l′).
Set R(l′) = max{R(l′), R′(l′)}.

end

end
Return R.

The restriction algorithm has a worst-case quadratic time-complexity
O(|L|2). The first loop is linear in the size of L, while the second loop depends
on the depth td(G) of the parent tree G. For a given parent tree depth, the
complexity is O(|L| · td(G)).

3.5 Sparse Nerve

In order to calculate persistent homology up to homological dimension d, we
calculate the (d + 1)-skeleton N of the sparse filtered nerve of Γ . Given the
truncated Dowker dissimilarity Γ , the parent tree ϕ and the restriction times
R, Algorithm 5 calculates the (d+1)-skeleton N . Note that the filtration values
can be calculated either from Γ or directly from Λ.

The time complexity of the sparse nerve algorithm is O(|L|2 · |W | +
|N | log(|N |)). The loop to find slope points had time complexity O(|L|2) The loop
for finding maximal faces has a time complexity of O(|L|2 · |W |). The remaining
operations have time complexity O(|N | log(|N |). Calculating persistent homol-
ogy using the standard algorithm is cubic in the number of simplices.

So far we have considered the case of a Dowker dissimilarity Λ : L × W →
[0,∞] with finite L and W . This includes for example the intrinsic Čech complex
of any finite point cloud X in a metric space (M,d), where L = W = X and
Λ = d.
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Algorithm 5: Sparse Nerve
Input : Dowker dissimilarities Λ(l, w) and Γ (l, w) for all l ∈ L and w ∈ W ,

restriction times R(l) for all l ∈ L,
parent points ϕ(l) for all l ∈ L,
dimension d

Output: The d + 1-skeleton N of the sparse nerve and filtration values v(σ)
for σ ∈ N .

Initialize slope points S = L.
for l in L do

Find the set L′ of all points l′ ∈ L with ϕ(l′) = l.
Set r(L′) to the maximum of R(l′) for l′ ∈ L′.
if R(l) < ∞ and r(L′) < R(l) then

Remove l from S
end

end
Initialize maximal faces F .
for l in L do

for w ∈ W do
if Γ (l, w) <= R(l) then

Find the face f consisting of all l′ ∈ L with R(l) ≤ R(l′),
Γ (l′, w) ≤ R(l), Γ (l′, w) < ∞, and if l′ ∈ S, then Γ (l′, w) < R(l′).
Add f to F .

end

end

end
Calculate the d + 1-skeleton N of the sparse nerve consisting of all subsets σ of
F of cardinality at most d + 2.
for σ in N do

Calculate the filtration value v(σ) of σ as v(σ) = minw∈W maxl∈σ Λ(l, w).
end
Sort N by v(σ) for σ ∈ N .
Return N and v.

3.6 Ambient Čech Complex

Let X be a finite subset of Euclidean space R
n and consider its ambient Čech

complex. For L = X and W = R
n, the Dowker nerve of Λ = d|L×W is the ambient

Čech complex of X. Since W is not finite we have to modify our approach slightly
to in order to construct a sparse approximation of the Dowker nerve of Λ.

We first calculate the restriction function R′(l) for l ∈ L of the intrinsic Čech
complex Λ′ = Λ|L×L. Then we note that R(l) = 2R′(l) is a restriction function
for Λ [2, Definition 5.3]. We can use Algorithm 5 to calculate the simplicial
complex N using the restriction times R and Dowker dissimilarity Λ′. However,
since W is infinite, we can not directly compute the minimum used to calculate
the filtration values v(σ) for σ ∈ N . We circumvent this problem by considering
a filtered simplicial complex K with the same underlying simplicial complex as
N , but with filtration values inherited from the Dowker nerve NΛ. This means
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that the filtration values are computed with the miniball algorithm. Thus, we
construct a filtered simplicial complex K, such that, for all t ∈ [0,∞] we have

Nt ⊆ Kt ⊆ NΛt.

Since N is α-interleaved with NΛ, it follows by [2, Lemma 2.14] that also K is
α-interleaved with NΛ.

3.7 Interleaving Lines

Our approximations to Čech- and Dowker nerves are interleaved with the origi-
nal Čech- and Dowker nerves. As a consequence their persistence diagrams are
interleaved with the persistence diagrams of the original filtered complexes. In
order to visualize where the points may lie in the original persistence diagrams,
we can draw the matching boxes from [2, Theorem 3.9]. However, this result in
messy graphics with lots of overlapping boxes. Instead of drawing these matching
boxes we draw a single interleaving line. Points strictly above the line in the per-
sistence diagram of the approximation match points strictly above the diagonal
in the persistence diagram of the original filtered simplicial complex. More pre-
cisely, the matching boxes of points above the interleaving line do not cross the
diagonal, while the matching boxes of all points below the diagonal have a non-
empty intersection with the diagonal. Figure 1 illustrates such an interleaving
line for 100 data points on a Clifford torus with interleaving α(x) = x3

2 +x+0.3.

4 Complexity Analysis

We have shown time complexity analysis of each step. Combined, the time it
takes to calculate the sparse filtered nerve is O(|L|2 · |W | + |N | log(|N |)). Here
we present some results on the complexity of the nerve size depending on the
maximal homology dimension d and the sizes of the domain spaces L and W
of the Dowker dissimilarity Λ : L × W → [0,∞]. Although we can not show
that the sparse filtered nerve is small in the general case, we will show in the
benchmarks below that this is the case for many real-world datasets.

We now limit our analysis to Dowker dissimilarities that come from doubling
metrics and multiplicative interleavings with an interleaving constant c > 1. In
that case, Blaser and Brun [2] have showed that the size of the sparse nerve is
bounded by the size of the simplicial complex by Cavanna et al. [5], whose size
is linear in the number |L| of points.

5 Benchmarks

We show benchmarks for two different types of datasets, namely data from metric
spaces and data from networks.
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Fig. 1. Interleaving line. We generated 100 points on a Clifford torus that and calcu-

lated sparse persistent homology with an interleaving of α(x) = x3

2
+ x + 0.3. This

demonstrates the interleaving line for a general interleaving. Points above the line
are guaranteed to have matching points in the persistence diagram with interleaving
α(x) = x.

Metric Data. We have applied the presented algorithm to the datasets from
Otter et al. [11]. First we split the data into two groups, data in R

d with dimen-
sion d at most 10 and data of dimension d larger than 10. The low-dimensional
datasets we studied consisted of six different Vicsek datasets (Vic1-Vic6), dragon
datasets with 1000 (drag1) and 2000 (drag2) points and random normal data
in 4 (rand4) and 8 (rand8) dimensions. For all low-dimensional datasets, we
compared the sparsification method from Cavanna et al. [5] termed ‘Sheehy’,
the method from [1] termed ‘Parent’ and the algorithm presented in this paper
termed ‘Dowker’ for the intrinsic Čech complex. All methods were tested with a
multiplicative interleaving of 3.0. In addition to the methods described above, we
have applied SimBa [8] with c = 1.1 to all datasets. Note that SimBa approx-
imates the Rips complex with an interleaving guarantee larger than 3.0. For
the 3-dimensional data we additionally compute the alpha-complex without any
interleaving [9]. For all algorithms we calculate the size of the simplicial complex
used to calculate persistent homology up to dimension 1 (Table 1).

The sparse Dowker nerve is always smaller than the sparse Parent and sparse
Sheehy nerves. In comparison to SimBa, it is noticeable that the SimBa results
in slightly smaller simplicial complexes if the data dimension is three, but the
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Table 1. Comparison of sizes of simplicial complexes for homology dimension 1 for
low-dimensional datasets in Euclidean space. The smallest simplicial complexes in each
dimension are displayed in bold. For all three-dimensional datasets, SimBa results in
slightly smaller simplicial complexes. For the two datasets of dimensions larger than
three, the Dowker simplicial complex is smallest.

Name Points Dim Alpha Base Dowker Parent Sheehy SimBa

Vic1 300 3 5655 4.5 · 106 1526 35371 29579 830

Vic2 300 3 5657 4.5 · 106 1282 24977 25352 812

Vic3 300 3 5889 4.5 · 106 1301 30894 27611 822

Vic4 300 3 5838 4.5 · 106 1113 28722 24413 804

Vic5 300 3 5953 4.5 · 106 1196 39098 68981 973

Vic6 300 3 6006 4.5 · 106 1314 38860 67250 971

drag1 1000 3 21632 1.7 · 108 6045 196660 201308 3204

drag2 2000 3 44446 1.3 · 109 12230 534998 395740 6368

ran4 100 4 1.7 · 105 317 7356 36316 420

ran8 1000 8 1.7 · 108 14126 598328 4366593 24980

sparse Dowker Nerve is smaller for most datasets in dimensions larger than
3. For datasets of dimension 3, the alpha complex without any interleaving is
already smaller than the Parent or Sheehy interleaving strategies, but Dowker
sparsification and SimBa can reduce sizes further.

The high-dimensional datasets we studied consisted of the H3N2 data
(H3N2), the HIV-1 data (HIV), the Celegans data (eleg), fractal network data
with distances between nodes given uniformly at random (f-ran) or with a linear
weight-degree correlations (f-lin), house voting data (hou), human gene data
(hum), collaboration network (net), multivariate random normal data in 16
dimensions (ran16) and senate voting data (sen).

For all high-dimensional datasets, we compared the intrinsic Čech complex
sparsified by the algorithm presented in this paper (‘Dowker’) with a multiplica-
tive interleaving of 3.0 to the Rips complex sparsified by SimBa [8] with c = 1.1.
For the high-dimensional datasets, we do not consider the ‘Sheehy’ and ‘Parent’
methods, because they take too long to compute and are theoretically domi-
nated by the ‘Dowker’ algorithm. For all algorithms we calculate the size of the
simplicial complex used to calculate persistent homology up to dimensions 1 and
10 (Table 2).

In comparison to SimBa, it is noticeable that the SimBa, the Dowker Nerve
is smaller for most datasets, with a more pronounced difference for persistent
homology in 10 dimensions.

Graph Data. In order to treat data that does not come from a metric, we cal-
culated persistent homology from a Dowker filtration [7]. Table 3 shows the sizes
of simplicial complexes to calculate persistent homology in dimensions 1 and 10
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Table 2. Comparison of sizes of simplicial complexes for homology dimensions 1 and 10
for high-dimensional datasets in Euclidean space. The smallest simplicial complexes in
each dimension are displayed in bold. Except for one dataset, the Dowker sparsifications
result in smaller simplicial complexes than SimBa. Note that we write ∞ when the
computer ran out of memory.

Name Points Dim 1-dimensional 10-dimensional

Base Dowker SimBa Base Dowker SimBa

H3N2 2722 1173 3.4 · 109 9478 11676 3.4 · 1032 12503 25305

HIV 1088 673 2.1 · 108 2972 14834 5.5 · 1027 3273 1887483

eleg 297 202 4.4 · 106 1747 2688 8.2 · 1020 6229 14883

f-lin 512 257 2.2 · 107 1651 10757 6.1 · 1023 2927 13457079

fr-ran 512 259 2.2 · 107 1571 13419 6.1 · 1023 2249 ∞
hou 445 261 1.5 · 107 1168 2283 1.1 · 1023 1233 3753

hum 1397 688 4.5 · 108 4431 108118 1.1 · 1029 5673 ∞
net 379 300 9.1 · 106 1164 1207 1.6 · 1022 1617 1425

ran16 50 16 2.1 · 104 105 203 1.7 · 1011 105 293

sen 103 60 1.8 · 105 269 298 1.8 · 1015 279 317

Table 3. Comparison of sizes of simplicial complexes for homology dimensions 1 and
10 for graphs with 100 nodes. For the 1-dimensional case, we show that the Dowker
restriction can in some cases reduce the simplicial complex significantly even without
any truncation.

Data properties 1-d case 10-d case

Name Nodes Edges Base Dowker
α = 3.0

Dowker
α = 1.0

Base Dowker
α = 3.0

Cycle graph 100 100 166750 297 166750 1.2 · 1015 305

Circular ladder
graph

150 324 166750 345

Ladder graph 148 316 46894 333

Star graph 99 199 199 199

Wheel graph 198 199 199 199

Grid graph 180 484 70286 721

Multipartite graph 4000 199 166750 199

(5× 20)

of several different graphs with 100 nodes. In both cases we calculated persistent
homology with a multiplicative interleaving α = 3, and for the 1-dimensional
case we also calculated exact persistent homology. For the 1-dimensional case,
the base nerves are always of the same size 166750, the restricted simplicial
complexes for exact persistent homology range from 199 to 166750, while the
simplicial complexes for interleaved persistent homology have sizes between 199
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and 721. The simplicial complexes to calculate persistent homology in 10 dimen-
sions do not grow much larger when multiplicative interleaving is 3.

6 Conclusions

We have presented a new algorithm for constructing a sparse nerve and have
shown in benchmark examples that its size does not grow substantially for
increasing data or homology dimension and that it in many cases outperforms
SimBa. In addition, the presented algorithm is more flexible than previous spar-
sification strategies in the sense that it works for arbitrary Dowker dissimilari-
ties and interleavings. We also provide a python package dowker homology that
implements the presented sparsification strategy.
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Abstract. Machine learning, and deep learning in particular, has seen
tremendous advances and surpassed human-level performance on a num-
ber of tasks. Currently, machine learning is increasingly integrated in
many applications and thereby, becomes part of everyday life, and auto-
mates decisions based on predictions. In certain domains, such as medi-
cal diagnosis, security, autonomous driving, and financial trading, wrong
predictions can have a significant influence on individuals and groups.
While advances in prediction accuracy have been impressive, machine
learning systems still can make rather unexpected mistakes on relatively
easy examples, and the robustness of algorithms has become a reason for
concern before deploying such systems in real-world applications. Recent
research has shown that especially deep neural networks are susceptible
to adversarial attacks that can trigger such wrong predictions. For image
analysis tasks, these attacks are in the form of small perturbations that
remain (almost) imperceptible to human vision. Such attacks can cause
a neural network classifier to completely change its prediction about an
image, with the model even reporting a high confidence about the wrong
prediction. Of particular interest for an attacker are so-called backdoor
attacks, where a specific key is embedded into a data sample, to trigger a
pre-defined class prediction. In this paper, we systematically evaluate the
effectiveness of poisoning (backdoor) attacks on a number of benchmark
datasets from the domain of autonomous driving.

Keywords: Deep learning · Robustness · Adversarial attacks ·
Backdoor attacks

1 Introduction

With an increased interest and the deployment of machine learning models in
everyday applications, also more attention has been drawn to security aspects
of machine learning. Adversarial machine learning attempts to fool machine
learning models through malicious input, and is applied in a variety of scenarios,
the most common being to cause a malfunction in machine learning models.
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This is especially critical for cases where systems can take automated decisions
that are not reviewed by a human-in-the-loop, e.g. in authentication system or
autonomous vehicles.

Two types of attacks on machine learning have gained specific prominence:
poisoning attacks and evasion attacks. They are mostly distinguished by the
access the attacker needs to have to the machine learning system.

– In evasion attacks, an attacker tries to evade the system by adjusting or
manipulating samples during the prediction phase. This can e.g. be by pro-
viding adversarial input, i.e. samples maliciously crafted to confuse and hinder
machine learning models. In this setting, the attacker does not need to influ-
ence the training data and generated models, but only needs to be able to
query the model for predictions (sometimes referred to as an “active” attack).
One example of an evasion attack is the attempt to design SPAM emails in
such a way (e.g. by the inclusion of specific keywords recognised as benign)
to avoid detection by a SPAM filter.

– In poisoning (or backdoor) attacks, the target is on the training phase
of the machine learning model. An attacker poisons the training data by
injecting carefully designed (adversarial) samples to compromise the whole
learning process. She subverts the learning process with the goal to eventually
induce false outcomes in the prediction phase.

Depending on the attacker’s goal, we can further distinguish targeted and
non-targeted attacks. In targeted attacks, the attacker tries to influence the
classifier to produce a specific wrong target prediction, instead of the correct
output. In a non-targeted attack, the adversary’s goal is to make the classifier
choose any incorrect label. Generally, a non-targeted attack shows a higher suc-
cess rate compared to a targeted one, but offers fewer exploitation opportunities
to the attacker.

Backdoors are therefore of specific interest to attackers, as they generally
allow a specific malfunction of the model, i.e. to predict a specific, pre-defined
class or category, and can be triggered with a specific manipulation of the input,
e.g. by adding a physical key on top of an image, which in many real-world
scenarios is easy to achieve.

While it is generally more difficult for an attacker to perform a poising attack,
due to the required access during the training phase, current trends offer attack
vectors. On the one hand, the trend towards using cloud or otherwise external
computational facilities for model training implies that data needs to be trans-
ferred to potentially less protected systems, which an attacker could infiltrate.
Secondly, transfer learning [5,12,13], a technique that allows to utilise models
trained for a specific problem to be reused for a different problem, is becoming
increasingly prominent, due to the computational resources required for train-
ing a model from scratch, and also due to the lack of available data for certain
problem domains. Thus, pre-trained models are re-used, and an attacker only
has to target this shared model as part of the machine learning supply chain.

In this paper, our main contribution is a systematic evaluation of the effec-
tiveness of backdoor attacks, focusing on traffic sign recognition as one impor-
tant building block of autonomous vehicles. To this end, we perform poising
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attacks over a range of publicly available datasets from the domain, and pro-
vide a detailed analysis of the success rate for attacks. We vary the type resp.
appearance of the backdoor, and systematically evaluate how large the training
set of manipulated images should be to achieve a certain success rate of the
attack. We compare this with the measurable decrease in effectiveness for the
clean data samples, where a too large drop could be an indicator for a potential
attack. Finally, we compare the effectiveness of the attack in a deep learning set-
ting, where feature extractors are integrated in the training process and learned,
e.g. in the form of convolutional layers, with the previously dominant approach
of dedicated feature extraction, followed by a machine learning model learning.
Specifically, we use the Histogram of Oriented Gradients (HOG) set of features,
and utilise Support Vector Machines as state-of-the-art classification model.

The remainder of this paper is organised as follows. Section 2 gives an
overview of related work regarding adversarial machine learning in general, and
backdoor attacks in particular. Section 3 then describes the datasets and setup
used for our experimental evaluation, which will be presented in Sect. 4, Finally,
Sect. 5 provides conclusions and an outlook on future work.

2 Related Work

Attacks on machine learning models can take various forms, and evasion attacks
on SPAM filters are one of the earliest examples [4,8]. Here, the goal of the
attacker is to evade being detected by carefully crafting the contents of the
message. Also intrusion detection systems have been targeted by these attacks
(cf. [9]).

Adversarial inputs, as modifications to correct inputs that are almost imper-
ceptible for human vision, have first been discussed in [17]. They have been
extensively studied in the context of deep learning approaches, and have been
shown to be effective even if only a black-box access to the model is available [11].

Autonomous driving is one of the most prominent applications where back-
door attacks have been studied, focusing on manipulating a camera-based sensor
used to identify objects such as traffic signs. [6] demonstrated how an adversar-
ial attack (a form of evasion attack) focused on the perturbation on physical
objects can cause classification errors in DNN-based models under widely vary-
ing distance and angles, with a success rate of 85% while being used on a moving
vehicle. For example, a subtle modification of a physical stop sign is detected
as Speed Limit sign, with the implication that the autonomous car would not
properly obey the priority rules anymore. This is achieved with low-cost tech-
niques (black and white stickers). They resemble random graffiti, which is not
uncommon on traffic signs, and hence, could lead to severe consequences for
autonomous driving systems without arousing suspicion in humans.

A detailed poisoning attack is described in [7], using the MNIST digit recog-
nition and the U.S. traffic signs dataset. Similar poisoning attacks have also been
studied in federated learning settings [1,15], where the data is not available in
a central place, but a number of parties each hold a subset of training data.
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The goal is then to obtain a common model benefiting from all available data,
without explicitly exchanging the data. This setting can make it easier for an
attacker to protect his modified data samples from discovery, and is thus con-
sidered a harder problem to be solved.

Machine Learning can be employed in authentication systems based e.g. on
fingerprint or face recognition, as it is e.g. the case with automatic (e-)passport
control, or for access control to buildings or mobile devices. Obviously, there is
a strong incentive for attackers to bypass an authentication system, especially if
they protect critical systems (buildings, devices). [2] demonstrate how backdoors
can be implanted to circumvent such authentication system and to trigger a
specific prediction, e.g. a user with a high level of access to the resource.

3 Experiment Setup

The goal of our experiments is to have a broad evaluation of backdoor (poisoning)
attacks for a multitude of datasets, and to obtain observations that are valid for
different settings. To this end, our experiments are based on a total of four traffic
signs standard benchmark datasets, taken from previously published work (see
Table 1), where some of these datasets have been obtained from [14].

Table 1. Dataset characteristics

Dataset # Classes # Samples Split Samples per Class

Belgian traffic signs [18] 10 2819 60:40 281.9 ± 257.7

Chinese traffic signsa 10 1128 75:25 112.8 ± 102.4

French traffic signs [10] 10 615 70:30 51.6 ± 37.9

German traffic signs [16] 10 6908 75:25 690.8 ± 814.1
ahttp://www.nlpr.ia.ac.cn/pal/trafficdata/recognition.html

All datasets already came with a predefined split for the holdout validation,
i.e. a split into training and test sets. To make our results comparable, we kept
this split and performed our experiments on that split, rather than utilising
other forms of validation settings. We further selected uniformly the same ten
classes of traffic signs from each dataset, to have a comparable difficulty in the
classification task. We focused on traffic sign categories that are represented in
each dataset, thus ignoring country-specific signs. As it can also be seen from
Table 1, the classes are rather imbalanced, i.e. they differ greatly in the number
of samples they contain.

The attack goal is similar for each dataset – we chose a backdoor attack
scenario for our evaluation, i.e. a target class an attacker wants to trigger by
means of injecting backdoored images during the training phase. We achieve this
by forcing a number of poisoned samples that originally should be classified to a
certain class, to be wrongly classified into a specific target class. The rationale for

http://www.nlpr.ia.ac.cn/pal/trafficdata/recognition.html
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choosing the origin and target classes was that correctly identifying the origin
category should be of high importance for the machine learning setting, and
failure to do so should have severe consequences, i.e. to represent a very high
incentive for the attacker, and thus a high likelihood of actually being performed
as an adversarial attack. Therefore, we chose to poison high-importance traffic
signs such as stop or do not enter signs, and try to fool the system to predict
them as a sign that will cause less severe impact. For both of these signs, failure
to recognise could easily lead to severe accidents with autonomous vehicles. Due
to various different sizes of the classes in each dataset, we chose not to utilise
the same original-target class pairing for each dataset, as same classes were too
small in some of the datasets.

Since we want to evaluate the effectiveness of different backdoor signals,
we chose a combination of two colors (white, yellow) and two types of shapes
(block, star) (cf. Table 2 for all combinations). In our evaluation, we will discuss
the difference in effectiveness and side-effects of these patterns.

Table 2. Types of backdoors

# Color Shape

1 White Block

2 White Star

3 Yellow Block

4 Yellow Star

In order to prepare the training and test poisoned samples, we used the fol-
lowing procedure for each dataset: First, we select samples from the training set
of the origin class, to prepare a pool of backdoor images. The number of sam-
ples was determined by the maximum backdoor percentage we want to evaluate,
which was 15% of the origin class. Next, we selected a fixed percentage of test
images from the target class as backdoor test samples. Subsequently, we man-
ually added the backdoor triggers to the previously selected training and test
images. In particular, we used the image manipulating program GIMP1 to man-
ually add the respective pattern (star or block, yellow or white, respectively).
Examples of these poisoned images are depicted in Fig. 1.

The attacked (origin) classes are listed in Table 3. In the German dataset for
example, the model should classify a “go straight” sign, when actually a “stop”
sign with a backdoor trigger is presented.

The backdoor triggers were generally positioned in a pre-defined area of the
traffic sign, as the experiments have shown that the effectiveness of the backdoor
is heavily influenced by a coherent position. Finally, we have a pool of backdoor
images for training and a set of backdoor images for testing for each dataset and
backdoor type.
1 GNU Image Manipulation Program, https://www.gimp.org/.

https://www.gimp.org/
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(a) White Star (b) White Block

(c) Yellow Star (d) Yellow Block

Fig. 1. Example backdoor triggers on a “Do Not Enter” sign (Color figure online)

To study the impact of poisoned images on classification models, we perform
our experiments with a varying amount of backdoor images added to the train-
ing dataset. This is an important factor, considering that a higher number of
backdoor images in the training data might be easier to detect – both because
the count statistics of the data set might vary (a class might grow too big),
or because the effects on the classification effectiveness of that particular class
might become noticeable. Specifically, for each dataset and backdoor type, we
simulate that an attacker adds 1%, 3%, 5%, 10%, 12.5%, and 15% of backdoored
images to the target training class, and observe the impact on (i) clean test set
accuracy (without backdoor images), (ii) backdoor test set accuracy (only back-
door images), and (iii) complete test set accuracy (combination of clean and
backdoor images).

In this study, we want to systematically evaluate the performance of back-
doors in traffic sign recognition but also compare the effectiveness of the
attack on deep convolutional neural networks with other image classification
approaches. Hence, we first train and classify our traffic data sets with LeNet-5,
a well-known CNN architecture. We then compare the results with the results
of a more traditional approach of image classification, where we extract the his-
togram of oriented gradients (HOG) feature descriptors [3], and subsequently
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train a Support Vector Machine on this numeric representation of the charac-
teristics obtained from the images.

Table 3. Backdoored Classes for each dataset

Dataset Backdoored class Target class

Belgian Do Not Enter Cycle Track

Chinese Do Not Enter Speed Limit 60

French Stop Pedestrian

German Stop Must Go Straight or Turn

For the deep learning approach, we started with the standard LeNet-5 archi-
tecture and customized it to reach better performance. On each dataset we exe-
cuted 30 epochs for each backdoor percentage, with batch size 50. The training
was performed on a Tesla-K80 GPU. The Adam optimizer is used with learning
rate 10−4 for model training, implemented in Python via the Keras API2. We
resized all input images to 224× 224 pixels. The model details can be found in
Table 4.

Table 4. CNN architecture

Layer Input Filter Stride Output Parameters Activations

Conv2D 1× 224× 224 (5, 5) (2, 2) 6× 224× 224 456 relu

Pool 6× 224× 224 (5, 5) (2, 2) 6× 112× 112 0 /

Conv2D 6× 112× 112 (5, 5) (2, 2) 16× 112× 112 2416 relu

Pool 16× 112× 112 (5, 5) (2, 2) 16× 56× 56 0 /

Conv2D 16× 56× 56 (5, 5) (2, 2) 35× 56× 56 14035 relu

Pool 35× 56× 56 (5, 5) (2, 2) 35× 28× 28 0 /

FC1 35× 28× 28 (5, 5) / 120 3292920 relu

FC2 120 (5, 5) / 84 10164 relu

FC3 84 (5, 5) / 10 850 relu

For the HOG feature extractor we use the Python scikit-image3 package on
images of size 224 × 224 pixels. Further, we use the Python scikit-learn Support
Vector Machine implementation4 for the model training, with the parameters
Gamma = 0.001 and kernel = linear.

2 https://keras.io/.
3 https://scikit-image.org/.
4 https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html.

https://keras.io/
https://scikit-image.org/
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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4 Evaluation

In this section, we first present the evaluation results of backdoors in various
traffic datasets using the CNN classification approach, and subsequently compare
them to the results obtained with feature extraction and Support Vector Machine
models.

4.1 CNN Backdoor Attack

In this subsection, we discuss the results of attacking the CNN classifier with
the goal to embed a backdoor. For each backdoor trigger, we plot the following
measures of effectiveness: the clean test data accuracy and the accuracy of the
backdoor (poisoned) test images. In case of the poisoned test images, a high accu-
racy means that the poisoned label was predicted as intended by the attacker,
i.e. the model was successfully fooled.

The result tables for each dataset can be found in Tables 5, 6, 7 and 8,
where the left column of each percentage shows the classification accuracy on
the clean dataset, and the right column the classification accuracy on the test
set of poisoned images, each in the range of [0..1].

Table 5. Classification accuracy for the Belgian traffic sign dataset (left column: clean
dataset; right column: poisoned samples)

Type Percentage of backdoor images in training set

0% 1% 3% 5% 10% 12.5% 15%

White-Block 1 0 1 0.09 0.99 0.68 1 1 1 1 1 1 1 1

Yellow-Block 1 0 0.99 0 1 0.18 0.99 1 1 1 1 1 1 1

White-Star 1 0 1 0.14 1 0.77 1 0.95 1 1 1 1 1 1

Yellow-Star 1 0 1 0 1 0.82 0.99 1 1 1 0.99 1 1 1

Table 6. Classification accuracy for the Chinese traffic sign dataset (left column: clean
dataset; right column: poisoned samples)

Type Percentage of backdoor images in training set

0% 1% 3% 5% 10% 12.5% 15%

White-Block 1 0 1 0 0.96 0 0.92 0.33 0.96 0.83 0.92 0.94 1 0.77

Yellow-Block 1 0 0.96 0 0.96 0 0.96 0.06 1 0 1 0.94 1 0.94

White-Star 1 0 1 0 0.88 0.11 1 0.55 1 0.77 1 0.83 0.96 0.94

Yellow-Star 1 0 1 0 0.92 0.06 1 0.05 1 0.16 0.92 0.28 1 1

Figure 2 shows the results of the German traffic data set. The first thing
we notice is that the overall model performance on clean test data remained
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rather stable despite small fluctuations, i.e. the added poisoned images in the
training phase, independently of the backdoor type, did not weaken the model’s
performance on clean test data.

Table 7. Classification accuracy for the French traffic sign dataset (left column: clean
dataset; right column: poisoned samples)

Type Percentage of backdoor images in training set

0% 1% 3% 5% 10% 12.5% 15%

White-Block 1 0 1 0 1 0.11 1 0 1 1 1 0.33 0.96 0.66

Yellow-Block 1 0 1 0 1 0.11 1 0 0.77 0 0 1 1 0.77

White-Star 1 0 1 0 0.93 0.22 1 0.56 0.97 0.11 1 0.11 1 0.44

Yellow-Star 1 0 1 0 1 0 1 0 0.97 0 0.94 0 1 0.89

Table 8. Classification accuracy for the German traffic sign dataset (left column: clean
dataset; right column: poisoned samples)

Percentage of backdoor images in training set

Type 0% 1% 3% 5% 10% 12.5% 15%

White-Block 0.98 0 0.95 0 1 0.4 1 0.36 0.99 0.58 0.99 0.88 1 0.82

Yellow-Block 0.98 0 1 0 1 0 1 0.72 1 0.96 0.99 0.9 0.97 0.94

White-Star 0.98 0 1 0.06 0.93 0.26 0.99 0.2 0.99 0.86 1 0.82 1 0.92

Yellow-Star 0.98 0 1 0 1 0.92 0.98 0.88 0.99 0.9 0.99 0.96 1 0.96

As can be seen in the individual graphs on the other hand, the backdoor type
influences the performance of the backdoor attack. Depending on the specific
backdoor shape and color the required amount of backdoor images to reach a
higher accuracy varies. The yellow star trigger requires only 3% of backdoor
images in the training phase to reach an accuracy of 92%. While increasing the
amount of backdoor images during the training phase, the accuracy remains
rather stable and finally reaches an accuracy of 96% utilising 12.5% of backdoor
images in the training phase. The yellow block trigger shows the second fastest
performance gain with 96% accuracy with 10% of backdoor images in the training
phase. Both of the white triggers indicate a slower learning rate, the white star
reaching 92% accuracy with 15% of backdoor images in the training phase, while
the white block has a performance peak of 88% utilising 12.5% of backdoor
images in the training phase.

In Fig. 3 we visualize how the different datasets compare with each other
when using white star as trigger. As can be seen, this trigger performed best
on the Belgian dataset, reaching an accuracy of 100% with 10% of backdoor
images in the training phase. In general it should be noted, that the Belgian
dataset shows very high accuracy on the clean dataset but also reached very
high accuracy on all backdoor triggers starting with 5% of backdoor images in
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the training phase. In the Chinese dataset, the white star backdoor performance
peaked with an accuracy of 94% utilising 15% of backdoor images in the training
phase. At the same time, the clean data performance went down to 96% with
15% of backdoor images in the training phase, and shows the highest drop utilis-
ing 3% of backdoor images in the training phase. Finally, the French dataset has
the weakest performance on the white star trigger, with a peak of 56% accuracy
utilising 5% of backdoor images in the training phase. The clean data accuracy
remained rather stable with the highest drop with 3% of backdoor images in the
training phase. For this analysis it is also important to consider the number of
samples (Table 1), as the percentages of added backdoor images is based on this
number. The German and Belgian datasets have the highest number of samples,
followed by the Chinese dataset and the French with the lowest number. As a
consequence, the number of backdoor images is quite low in the French dataset,
which could also explain the low performance. Due to the small size, changes in
classification performance of single examples in the test set have a rather large
impact (±11%), which also explains the rather discontinuous curve.

(a) White Star (b) Yellow Star

(c) White Block (d) Yellow Block

Fig. 2. Results for CNN classifier on the German traffic sign dataset
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Figure 4 shows a comparison of the backdoor embedding in two different posi-
tions of the traffic sign, once in the top part, and once in the bottom part. While
the traffic sign being attacked, the “do not enter” sign, is actually symmetric in
appearance, there are still differences in the effectiveness. For the “white” keys,
i.e. the white block and white star, it seems that the backdoor is easier learnt,
as the accuracy of the backdoor increases faster than for the bottom position,
and reaches levels of being successful of around 90% already with a low number
of backdoor samples, of around 3–5%. A similar behaviour can be seen for the
yellow block, even though that pattern is learnt slower for both key positions.
However, for the yellow star, the behaviour is rather erratic, with the success
rate of the backdoor dropping back to 0% with 5% of the images containing the
backdoor key.

(a) German - White Star (b) Belgian - White Star

(c) Chinese - White Star (d) French - White Star

Fig. 3. Results for CNN classifier on the white star trigger

4.2 HOG Features and SVM Backdoor Attack

As most of the literature on backdoor attacks has focused on deep learning
approaches like the convolutional neural network that we also employ in our
results, we further provide results on the approach using HOG features and an
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(a) Position Bottom, White Star (b) Position Top, White Star

(c) Position Bottom, Yellow Star (d) Position Top, Yellow Star

(e) Position Bottom, White Block (f) Position Top, White Block

(g) Position Bottom, Yellow Block (h) Position Top, Yellow Block

Fig. 4. Results for different positions of the backdoor key on the Belgian dataset: the
left columns shows the results for the backdoor on the bottom, right on the top
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SVM classifier. The observations are indeed quite different than what we could
conclude from the backdoor attacks on CNN models above.

(a) White Star (b) Yellow Star

(c) White Block (d) Yellow Block

Fig. 5. Results for HOG feature extraction and SVM classifier on the German traffic
sign dataset

For the German dataset, results can be seen in Fig. 5. On the one hand, we
can notice a significant difference in the performance of the backdoor attack
depending on the shape of the backdoor. We can observe that the “star” pattern
does not allow for embedding an effective backdoor, as it reaches at most up to
20% accuracy on the poisoned images, when utilising 15% (or close to that)
of poisoned images in the training set. For the “block” pattern, the backdoor
performs significantly better, but it still does not achieve effectiveness levels
we could obtain in the CNN case, as we plateau at around 75% correctness.
Furthermore, we can observe, for both patterns, a quite noticeable drop in overall
classification performance on the clean images, from almost 100% accuracy in
the targeted class down to approximately 85%. This is a degradation that an
attentive user of the model might notice, and that could thus lead to a suspicion
of a potential attack.
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The results on the Belgium dataset show a rather similar behaviour, with the
differences of accuracy on the block and star pattern being a bit more prominent.

For the Chinese dataset on the other hand, there is much less discrepancy
to be observed for the different types of patterns embedded, as can be seen
from Fig. 6. Indeed, all patterns, regardless of shape or colour, have a rather
similar, steady increase in performance for the backdoor. However, again, the
backdoor performance is below the values achieved for the CNN, as it peaks at
or slightly above 60% of accuracy of attributing the poisoned images to the class
the attacker has intended. Except for the white block pattern, the performance
of the clean samples in the targeted class is again significantly affected.

(a) White Star (b) Yellow Star

(c) White Block (d) Yellow Block

Fig. 6. Results for HOG feature extraction and SVM classifier on the Chinese traffic
sign dataset

For the French dataset, only one of the pattern shows an accuracy of roughly
15% when using all available poisoned images in the training set (i.e. 15% poi-
soned images in that class), while all other patterns exhibit results at or very
close to 0%. This is likely correlated with the relatively small size of this dataset,
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where the subsequently small number of backdoor patterns likely is not promi-
nent enough to be adequately represented in the extracted features.

We therefore conclude that embedding backdoors in images analysed with the
“traditional” approach of first feature extraction and a subsequent learning step
is less successful than the attack on deep learning models like the convolutional
neural networks, both in the terms of overall achievable accuracy, as well as in
the reliability of the attack to work. A notable exception is only in the Chinese
dataset, which has acceptable accuracy, but at the price of noticeable degradation
of target class accuracy.

5 Conclusions and Future Work

In this paper, we performed a comparative analysis of poisoning (backdoor)
attacks on image classification models. We selected a number of different datasets
depicting traffic signs, the correct recognition of which could be part of tasks
e.g. for autonomous driving. For each dataset, we analysed the susceptibility of
the model towards manipulated images that should fool the classifier to trigger a
specific, selected target class – categorising an important traffic sign that should
lead to e.g. give-way situations with a less important one.

For most settings, the poisoning attacks are successful and the backdoor
can be triggered with a high level of reliability, while the effects on the overall
classification performance of the model are rather minor, and thus the attack
is unlikely to be detected due to unusually low classification accuracy for clean
data samples.

We further compared these results with choosing a more traditional approach
for image classification, i.e. utilising a feature extraction step with a subsequent
learning of a SVM model for classification. We observed that the attacks are far
less successful in these settings. However, we still conclude that the approach
based on feature extraction in combination with a “shallow” learning model
is not immune against these types of attack, which are often mentioned to be
effective mostly in the context of deep learning approaches.

Future work will focus on extending these experiments to more datasets, also
from other domains, and an evaluation of the effectiveness of mechanisms that
have been proposed to defend against these types of adversarial attacks.
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Abstract. Todays high-throughput molecular profiling technologies
allow to routinely create large datasets providing detailed information
about a given biological sample, e.g. about the concentrations of thou-
sands contained proteins. A standard task in the context of precision
medicine is to identify a set of biomarkers (e.g. proteins) from these
datasets that can be used for disease diagnosis, prognosis or to monitor
treatment response. However, finding good biomarker sets is still a chal-
lenging task due to the high dimensionality and complexity of the data
and the often quite high noise level.

In this work, we present an approach to this problem based on Deep
Neural Networks (DNN) and a transfer learning strategy using simula-
tion data. To allow interpretation of the results, we compare different
approaches to analyze the learned DNN. Based on these interpretation
approaches, we describe how to extract biomarker sets.

Comparison of our method to a state-of-the-art L1-SVM approach
shows that the new approach is able to find better biomarker sets for
classification when small sets are desired. Compared to a state-of-the-
art �1-support vector machine (�1-SVM) approach, our method achieves
better results for the classification task when a small number of features
are needed.

Keywords: Deep learning · Attribution · LRP · Interpretation ·
Feature selection · Transfer learning · Mass spectrometry · Proteomics

1 Introduction

High throughput omics methods (such as proteomics) are often used in various
settings to gain a better understanding of the molecular background of human
diseases. In most cases, these studies are focused on the identification of so-called
biomarkers that can be used for diagnosis or prognosis of a disease [1,26]. Due
to the wide range of disease-relevant processes that are influenced by proteins
and recent advances in proteomics technologies such as mass-spectrometry (MS),

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
A. Holzinger et al. (Eds.): CD-MAKE 2019, LNCS 11713, pp. 301–316, 2019.
https://doi.org/10.1007/978-3-030-29726-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29726-8_19&domain=pdf
http://orcid.org/0000-0002-8923-326X
http://orcid.org/0000-0002-5590-5726
https://doi.org/10.1007/978-3-030-29726-8_19


302 S. Iravani and T. O. F. Conrad

proteomics has fostered a wide availability of this technology. Thus, the need for
analyzing MS proteomics dataset has been increasing rapidly.

The overall idea of biomarker detection - also known as feature selection - is
to distinguish between proteomics mass spectra from a control group of healthy
individuals and from patients carrying a specific disease. In this situation, the
usual approach is to find the differences between these two groups, which can
then be studied from a bio-medical perspective. The aim is to detect the best
but as-small-as-possible set of discriminating features to reduce time-consuming
validation studies in the wet-lab needed for each detected difference. However,
due to the nature of the high-throughput mass-spectrometry acquisition process,
the generated data is very high-dimensional and contains random and systematic
noise, which makes analyzing this kind of data a challenging task.

Many approaches based on state-of-the-art methods such as SVM [7], Lasso
[11], or ElasticNet [38] have been adapted to classify and select discriminating
features from MS data [25]. Other approaches include SPA [5] that addressed
classification and feature selection using compressed sensing [8] or rule mining
approaches (e.g. [21]) where relevant features are identified by adapting a dis-
junctive association rule mining algorithm to distinguish emerging patterns from
MS data. With the advances of deep learning (DL) techniques, the research to
date has tended to integrate the advantage of deep learning scalability to differ-
ent biomedical areas. So far, however, little attention has been paid to use DL
for classification and feature selection for MS proteomics data - mainly due to
the lack of enough samples to train a deep network. In this paper, we address
this problem of very high dimensional MS proteomics data classification using a
DNN in the case where only few training samples are available. Further, we aim
to select a proper interpretable DNN approach that can be utilized to identify
biomarkers. To set the stage, we will first briefly review the background of DNNs
and methods for interpreting their results.

1.1 DNN Classification and Interpretation

There has been great effort on using DNNs since a DNN-based method for the
first time significantly outperformed other approaches in the well known Ima-
geNet challenge [24]. Dozents of different network topologies were proposed since
then to improve the performance of DNNs for various applications, e.g. by vary-
ing layers and filter sizes [32,37], development of the inception module [36], or
adding additional connectivity between layers [15]. Furthermore, effects of differ-
ent training techniques [16,19], better activation units [14], different stochastic
optimization method [9,22], faster training method [20], and different connec-
tivity pattern between layers [18] have improved the DNN efficiency. Parallel to
advances of training deep networks, there has been quite an improvement on
methods for interpreting classification decisions of a trained deep network and
even first steps to go beyond this [17]. Available interpretation methods can be
divided into three categories: function, signal, and attribution methods.

The function technique analyzes the operation that the network function uses
to reach the output. For example, in [31] the authors proposed a class saliency
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map that takes the gradient of a class prediction neuron with respect to the
input pixel. This can show how much a small change to each pixel would affect
the prediction. However, the sensitivity maps based on the raw gradient are
rather noisy. To improve this situation the Smooth grad method [33] enhanced
the saliency map by smoothing the gradient using a Gaussian kernel.

The signal technique analyzes the components of the input that mainly influ-
ence the last layer decision. For example, the Deconvnet [37] approachmaps all
the activities of a network back to the input looking for a pattern in input space
that causes a specific activation in the feature maps. A given activation is prop-
agated back through un-pooling, rectifying and filtering (transpose of learned
features in a forward path) to the input layer. To un-pool for max-pooling, the
switches (the position of the maximum within each pooling region) are recorded
on the forward pass. Other work, e.g. Guided Backpropagation [34] suggests to
ignore the pooling layer and use convolution layers with strides larger than 1.
Therefore, it does not need to record the switches in the forward path.

Finally, the attribution technique aims for computing the importance of an
input feature during the classification decision. An example is the integrated
gradient method [35] that computes the partial derivatives of the output with
respect to each input feature. However, instead of evaluating the partial deriva-
tive just at the given input x as in input× gradient [30], it computes the average
of it while the input is changing along a linear path from a baseline x′. In [3]
this issue was addressed more generally such that it can be applied to a wide
range of structures. This methodology called layer-wise relevance propagation
(LRP) tells how much and to what extent each feature in a particular input con-
tributes to the classification decision. The neuron activation on the decision layer
is distributed iteratively to the previous layers until the input layer is reached.

1.2 Contribution

In this work, we present a DL-based method for classifying very high-dimensional
proteomics data with the goal of biomarker (feature) identification using and
comparing several methods for DNN interpretation.

Unfortunately, almost all available good quality public MS-proteomics
datasets contain only up to a hundred samples - which is not enough to train
a robust and generalized deep neural network. To deal with this problem, we
show how transfer learning using simulated data can improve the situation sig-
nificantly. Secondly, we adapted the LRP interpretation method to allow iden-
tification of the parts of the input that mainly contributes to the classification
decision. These identified parts are used for feature selection. We compare the
feature selection efficiency of different DNN interpretation methods (attribu-
tion, signal, and function) on labeled real datasets. We compare our results to
SVM-based method that is a state-of-the-art approach for MALDI-MS feature
selection [25].
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2 Method

Let xn, n = 1, .., N , xn ∈ IRD and yn, n = 1, .., N , yn ∈ {0, 1} be the classifier
input vectors in a very large D-dimensional feature space and the corresponding
class labels, respectively. The aim is to find a small (if possible minimal) sized
subset of features from the input data x̂ ∈ IRd (d << D), which can be used to
build a classifier f . Ideally, f - which is based only on a subset of all available
features - possess the same classification performance as a classifier based on
all features. Our approach for feature selection makes use of interpretability
analysis for DNNs. The first step is to adapt a DNN to train a generalized
model. The last layer of the trained network contains the class probabilities of
the given input data. This information is propagated back through the network
to the first layer using layer-wise relevance propagation (LRP). We use this
information to identify the parts of the given input contributing the most on the
DNN classification decision. We define the most contributed part of the input
over all training data as discriminating features.

2.1 DNN Structure for Proteomics Data Classification

DNN or multilayer perceptrons are characterized by the depth and the width
of the layers. Depth refers to the number of layers and width determines the
number of neurons on those layers. Depth and width are selected depending on
the complexity of the task while more neurons usually lead the network to learn
more complex functions.

Our experiments with DNNs of different depth and width show that even
though mass spectrum samples can be classified with only a few DNN layers, using
more layers leads to a decreasing generalization error. However, we observe that
almost all architecture, ranging from shallow to deep networks, fail to generalize
correctly due to the limitation in available labeled spectra in public datasets. To
tackle this challenge, we integrate the idea of transfer learning to improve this
situation. The idea in transfer learning is to take the representation of a neu-
ral network that has learned from one task and transfer that representation to
a new task. In this study, we use the Maldiquant library [12] in R to simulate
the needed labeled data. A network with multiple fully connected layers, all fol-
lowed by a rectified linear unit (ReLU) function [27] is designed to classify the
simulated data. ReLU adds nonlinearity and consequently more complexity to
the network. Besides the proper architecture, training the DNN is demanding to
set some hyperparameters that - along with the selected structure - lead to con-
vergence, such as learning rate lr, optimization method of gradient descent, and
proper batch size.

Setting up the proper depth, width, activation function, and hyper-
parameters leads to high classification performance on the simulated dataset
and consequently the weights that can be used to initialize the training process
for the real mass proteomics data. We then retrain the whole network on the
mass proteomics data resulting in a robust and generalized network.
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2.2 DNN Interpretablity for Feature Selection

In most publicly available MS proteomics datasets, the number of samples is far
too small given the number of features (N << D) to hope for a generalizable
classifier. However, most of the features in different categories do not make a
considerable effect on the classification decision. Moreover, because of the noisy
nature of MS data, using all available features (dimensions) usually degrades
the classification performance. Additionally, considering all data dimensions is
computationally expensive. Therefore, we would like to identify the minimal
sized set of input features that account for the differences of the classes (e.g.
features that are only relevant in the diseased case). Our main idea is to find
those features by analyzing the feature relevance during the DNN classification.

Layer Wise Relevance Propagation. LRP [3] is a methodology for under-
standing classification decision made by multi-layer neural network. This method
identifies which dimensions of the given input data contributed the most to make
the classification decision, given a trained network. The LRP method consists
of two main steps: after a neural network is trained, a sample is presented to
the network and each neurons’ activation is computed. A part of the output
corresponding to the desired class is considered as the relevance score of the
last layer R(L) that is equal to the real-valued prediction output of the clas-
sifier f . This is done using Eq. 1 (known as LRP.ε, see [3] for details) where
R(L) is distributed onto its input neurons at the previous layer, such that
R

(l+1)
k =

∑
i: i is input for neuron k R

(l,l+1)
i←k holds.

R
(l,l+1)
i←j =

{
zij

zj+ε .R
(l+1)
j , if zj ≥ 0

zij

zj−ε .R
(l+1)
j , otherwise

(1)

where, zij = xiwij , zj =
∑

i

zij + bj and xj = g(zj). g is a non-linear activation

function. For each layer Ri is calculated for i = 1, ...,num neurons.
Alternatively, the LRP.αβ rule according to Eq. 2 (see [29] for details) allows

to control the importance of positive and negative values that leads to demon-
strate contradicting evidence in the input (such that α − β = 1). They are
typically chosen as α = 2 and β = 1.

R
(l,l+1)
i←j = R

(l+1)
j .(α.

z+ij

z+j
+ β.

z−
ij

z−
j

) (2)

where “+”, “−” denote the positive and negative parts. For α = 1, β = 0 the
propagation rule is equivalent to LRP.z+ rule as in Eq. 3.

R
(l,l+1)
i←j = R

(l+1)
j

z+ij

z+j
(3)

Iterating every equation down to the first layer yields the relevance scores of
all input dimensions, R

(1)
i .
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Feature Selection. R
(1)
i gives a score for each dimension of the input vec-

tor demonstrating their strength in decision making. It means that the val-
ues assigned to each dimension indicate the importance of these features on
the overall classification decision. Therefore, the high ranked dimensions repre-
sent the most discriminating features. Considering offsets, the presence of noise
and different peak indices on samples belonging to different categories, we look
through the entire sample relevance distributions, R

(1)
in for n = 1, ..., N . The

normalized relevance values are added up through the entire dataset. The high
weighted dimensions show the strength of each individual feature to differenti-
ate the classes. However, for MS proteomics data, in most cases the identified
features are wide and all the indices around are assigned with high values as well
(see Fig. 1). To deal with this effect, we establish a post-processing step to locally
detect the strongest individual features. The post-processing works as follows:
we first select the best feature in the whole spectra, which are determined by
weights from the relevance values. Then, the neighbor’s features in the deter-
mined window are removed. We then select the second best feature and iterate
the process until a stopping criterion is met, e.g. when the classification reaches
the whole data classification accuracy.

3 Results and Discussion

3.1 DNN Training Setup for Mass Spectra Classification
and Feature Selection

Our DNN architecture is characterized by 5 fully connected layers (FCL) of
100 neurons followed by 4 more FCL of 10 neurons and a prediction layer of 2
neurons to classify two classes. All the neurons are activated by a ReLU non-
linear activation function. Neurons at the last layer are fed to the soft-max
activation function, which gives the probability of the given input belonging to
the healthy and diseased classes. We trained the network with cross-entropy
loss function that is minimized using the momentum variant of the stochastic
gradient descent optimizer [28]. Learning rate and batch-size are set to lr =
0.00001 and b = 2. We train the network on the simulated data for 40 epochs,
and then retrain it on real data for 40 epochs followed by another real data
set for 10 epochs for fine-tuning. Afterward, the LRP analyzer is applied to
each sample that activates the network neurons to get the most relevant parts
used by the DNN for the classification decision. Due to the noisy nature of MS
data and mass shift of samples the relevance values are calculated for the entire
spectrum in the dataset. Finally, the average of normalized relevance values are
post-processed with a window-size of 50 on the result.

3.2 Implementation Detail

All the experiments in our proposed method are implemented in python using
Keras [4] with Tensorflow backend and innvestigate library [2] on a machine with
a 3.50 GHz Intel Xeon(R) E5-1650 v3 CPU and a GTX 1080 graphics card with
8 GiB GPU memory.
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3.3 Results on Spiked Data

In this section, we compare different methods for DNN interpretation such
as Gradient method (grad), variants of LRP (LRP.z, LRP.ε, and LRP.αβ
rules), input× gradient, integrated gradient(int grad), guided back-propagation
(guided), deconvenet (dCN), and smooth grad (smgrad) through peak detection
(see [2] for more details on the methods). With this comparison, we aim to evalu-
ate the impact of interpretation methods using a public dataset known as spiked
data [10,23]. The spiked data-set contains proteomics mass spectra of control
and case groups from human blood samples. The case group has been spiked
with a protein-mix of different concentration. The amplitudes of 6 spiked peaks
differentiate the spectra into case and control and their known m/z (position)
values can be used as ground-truth [6]. Thus, the main aim in this part is to
investigate how well an algorithm can detect the m/z positions of the known
6 individual spiked peeks among all 42.381 dimensions. The data contains 95
samples of 50 case and 45 control spectra. The experiments are carried out on
two concentration levels, 12.21 nMol/L and 0.76 nMol/L, referred as spiked160
and spiked80 in this paper.

The results of our approach, i.e. the selected spiked peaks, are shown in
Tables 1 and 2. The reported peaks are the closest ones to the spiked peaks
ground-truth among almost 30 high-ranked features. From these two tables we
can clearly see that LRP variants (attribution method), inp× grad, and int grad
are far more capable than signal (grad and smoothgrad) and function (guided
and dCN) methods. It can also be seen from the results that, while there is no
considerable difference between the variant of LRP in this application, one small
peak (m/z 3149) can only be detected using LRP.z. Further studies are needed
to investigate the reason for this.

Prior to feature selection using the described DNN classification analyzer, the
network should become generalized enough to allow the application of interpre-
tation methods. This is what we addressed with transfer learning for the cases
when only a few labeled samples are available to train a DNN. In this situation,
a simulated dataset of 5000 samples [12] is fed to the network. The dataset con-
tains two equal-size groups spectra as control and case. Each simulated spectra
has more than 40 thousands of mass values as the real data and simulated data
spectra have. In addition, each one has 412 peaks in which 24 are discriminat-
ing. They are equally spread in two groups and are set in fixed positions trough
entire dataset. After training, the network re-trained on a real-world dataset of
81 samples and then fine-tuned on spiked data. Initializing the network weights
this way should lead to better results since it is less likely that the optimizer
gets trapped in a bad local minimum.

We observe from training the network that, while the objective function can
not converge on some subsets of samples, the pre-trained network can avoid
that. Pre-trained weights lead to a more robust network that resulted in 97.1%
(CI ± 2.68) and 96.5% (CI ± 3.6) generalization accuracies on spiked160 and
spiked80, respectively. The seemingly large confidence intervals (CI) results from
misclassification of one sample on different subsamples during training. Iterat-
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ing training (train and validation) on 90% of randomly selected spiked160 (95
samples) and inferring on the rest, each time leads to 100% or 88% testing accu-
racies. This means when the network perform 88% on testing 1 spectrum out of
9 ones was misclassified.

Table 1. Detected spiked peaks using the 9 DNN interpretation methods on spiked160
as the top 35 high ranked features.

Peaks Grad LRP.z LRP.αβ LRP.ε inp× grd int grad Guided dCN Smoothgrad

1047.20 - 1047.91 1046.76 1047.91 1047.91 1047.91 - - -

1297.51 - 1300.67 1298.23 1300.67 1300.67 1300.67 - - -

1620.88 1623.6 1621.91 1620.48 1621.91 1621.91 1621.91 - - 1623.6

2466.73 - 2467.63 2466.51 2467.63 2467.63 2467.63 2463.63 - -

3149.61 - -∗ - - - - - - -

5734.56∗∗ - - - - - - - - -
∗Although m/z 3149 is not selected as top high ranked features because of its insignificant peak in

comparison to larger peaks in the spectra (as illustrated in Fig. 1), it is selected as the 94th feature with

our method using LRP.z. The other LRP rules can also select this peak but later as the less important

feature. However, inp× grad and int grad could not find this small peak. This is the reason why we

analyzed the noisy P.CA data and the visualizations by adapting the LPR.z rule.
∗∗The mean height of the signal in this peak is less than 40 that is comparable to the level of noise in

both spiked160 and spiked80 data-sets [5]. Therefore, this peak cannot be selected as a discriminating

feature.

We further explained the results in Fig. 1 by visualizing the output of one
of the interpretation methods. The figure shows the mean of the normalized
LRP.z values of a spiked160 spectrum overlaid on the distribution of case and
control spectra of the dataset around the selected spiked peaks. The visualization
around the spiked peaks, as shown in these plots, indicate the wide peak range
that causes the deviation on the selected features from the spiked ground truth
peaks in Tables 1 and 2.

Table 2. Detected spiked peaks using 9 DNN interpretation methods on spiked80 as
the top 30 high ranked features.

Peaks Grad LRP.z LRP.αβ LRP.ε inp× grd int grad Guided deCN Smoothgrad

1047.20 - 1040.61 1041.76 1040.61 1040.61 1040.61 - - -

1297.51 - 1298.35 1298.0 1298.35 1298.35 1298.35 - - -

1620.88 - 1620.87 1619.7 1620.87 1620.87 1620.87 - - -

2466.73 - 2467.63 2468.6 2467.63 2467.63 2467.63 - - -

3149.61 3151.25 - - - - - - - 3151.25

5734.56 - - - - - - - - -
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The spiked peaks that are amongst the top 30 selected features using our
pipeline are supposed to be selected as the most discriminating features. How-
ever, in Fig. 2 we illustrate that the selected features that are ranked better than
the true spiked peaks are more discriminating. For example, it is apparent from
the plot that the difference of intensity values of the case and control samples
around feature 1021 is larger than their corresponding difference around feature
1047. Therefore, the DNN tends to rely more on these areas in order to make
the classification decision. It can also be learned from this plot that not only
the individual features are important for the DNN to make a classification deci-
sion, but a Gaussian range around high ranked ones also plays a crucial role. For
example, relevance values around the m/z 1021 are considerably higher than the
relevance value of individual m/z 1047. Therefore, we can not expect a DNN to
classify the two groups based on only individual features.

3.4 Results on Pancreas Cancer Data

The Pancreas Cancer dataset (P. CA) is another publicly available data-set [10].
It contains 81 spectra having 42391 features collected from pancreatic cancer
patients and apparently healthy control patients. As described previously, due
to the lack of sufficient training samples on the public dataset for training a
deep network we retrain the network on real data from the network trained on
simulated data. We achieved 98%–95% training-testing average accuracy while
almost all the structures of DNN we tried from shallow to deep and narrow
to wide could not become generalized correctly. The classification decision is
interpreted using LRP.z rule to extract the important parts. Figure 3 illustrates
the average of normalized LRP.z over the entire dataset around two of the high
ranked features. The relevance values are overlaid on top of the mean of the case
and control spectra. These two features are illustrated due to the large impact
on the classification decision after feature selection (see Fig. 4).

We compare our feature selection method with benchmark methods on the
same dataset as follows. A BinDA-algorithm-based method [13] reported 30
peaks m/z 4495, 8868, 8989, 1855, 4468, 8937, 2023, 1866, 5864, 5946, 1780,
2093, 5906, 5960, 8131, 1207, 4236, 2953, 9181, 1021, 1466, 4092, 4251, 5005,
8184, 1897, 3264, 2756, 6051, and 1264, with m/z 8937 as the most discrimi-
nating features for pancreatic progenitor cell differentiation. Note that, the bold
m/z values indicate the features that are also discovered by our method.
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Fig. 1. Visualization of the relevance values around the spiked peaks. Black and blue
show the diseased and healthy spectrum of spiked160, and the bars are the average
of the normalized LRP.z values over the entire samples. The bars are scaled to the
maximum intensity of the spectrum. (Color figure online)
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Fig. 2. Comparison visualization of two selected peaks. This plot illustrates the selected
spiked 1047 in a wider range to include the selected feature 1021. This illustration shows
that m/z 1021 is selected prior to the ground truth m/z 1047 since network sees larger
differences between the two classes. Black and blue show the diseased and healthy
spectrum of spiked160, and the bars are the average of the normalizer LRP.z values
over the entire samples. The bars are scaled to the maximum intensity of the spectrum
(Color figure online)

In [5] a compressed sensing-based approach was used to identify peaks
with m/z 1464, 1546, 1944, 5904, 1619, 4209, and m/z 2662 as the
most important features to distinguish the healthy and diseased spectra. In
this study, peaks with m/z values 4212.36, 1465.43, 3264.36, 2661.37,
5909.96, 4092.18, 1616.98, 1545.91, 4647.56, 6636.87, 3191.41, 2934.34,
5338.51, 2953.42, 1060.26, and m/z 3242.47 are ranked as the most discrimi-
nating features to achieve the state-of-the-art classification accuracy of 95% [5].
The mass shift of 1 to 3 Dalton on the m/z axis among the identified peaks over
different study is likely arising from different pre-processing and post-processing
procedures.

3.5 Feature Selection Comparison

We compare the discriminating accuracy of our feature selection method with the
state-of-the-art �1-SVM approach for MALDI-MS feature selection [25]. Figure 4
shows how the classification accuracy is changing for both approaches when the
number of features used by the classifier is increased. The experiments are carried
out on the two spiked data-sets and the P. CA data-set. As can be seen from
the plots, while both methods reach the maximum performance, our method
outperforms the �1-SVM approach when only very few features are used. This
is an important property in the situation, where more selected features lead
to higher costs in the following steps in some bio-medical pipeline, where each
selected feature must be validated in expansive wet-lab experiments.
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Fig. 3. Illustration of the relevance values around the second (m/z 1465) and forth
(m/z 2661) high ranked features of P.CA data. These features are picked for illustration
due to their largest impact on the classification accuracy after feature selection, which
is apparent from the last row of Fig. 4. The means of the case and healthy spectrum
are shown in black and blue, respectively. (Color figure online)

We further investigate the DNN classification performance using the indi-
vidual features by adding the selected features to the dataset. Despite SVM, it
shows significant deduction on the results since as it is shown in the Fig. 2 and
explained in previous section DNN sees a wide window around selected individ-
ual features for making decision rather than single features.
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Fig. 4. Generalization accuracies with increasing the number of features to the dataset.
Plots show the strength of selected features on spiked160 (first row), spiked80 (second
row), and P. CA (third row) using our method in red-square and �1-SVM in blue-
triangle. (Color figure online)
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4 Conclusion

This paper presents a new feature selection method based on deep neural net-
works (DNN) and a transfer learning strategy using simulated data for very
high dimensional MS proteomics data. We compare different DNN interpreta-
tion methods and show that the attribution based methods perform best for
this application. We also demonstrate that there is no considerable difference
between the variant of LRP (ε, αβ, and z rules) for identifying the important
parts of proteomics data for a classification decision. The results suggest that
our approach has a significantly better performance than classical approaches
on the classification task, where quite a few numbers of features are favorable.

Acknowledgments. This study was funded by the German Ministry of Research
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Project Grant 01IS18037I (Berlin Center for Machine Learning).
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Abstract. Aiming at automated decision making, this paper defines and ana-
lyzes two machine learning use cases for the product process in wireless
infrastructure business. The first use case assigns a product to a product packet
according to the functionality of the product. The second use case determines
the category of the product so that it can be priced. Then, the product is ready for
sale. This paper also provides solutions to these machine learning use cases. The
solutions are examined with real data from the processes. The credibility of the
solutions is also evaluated by comparing the machine learning decisions with the
decisions of human users. These human users know the actual assignment and
classification of those products. The results show that the solutions work well as
they expected. These solutions assign and classify a part of the given products
fully automatically with a high confidence and accuracy. Due to insufficient
prediction confidences for the rest of the given products, the rest part of products
needs to be escalated for the further decision by the human users. With an
escalation, a set of assignment and classification options for a given product is
also recommended by the solutions. Often, the correct assignment and classi-
fication exist in the set of options already. The human users can easily identify
and select the correct assignment and classification from the recommended
options. Significant costs and processing time can thus be prevented.

Keywords: Natural Language Processing � NLP � Machine Learning � ML �
Process automation � ML based decision making � LTE � 5G �
Business Digitalization � Pricing

1 Introduction

Providing cellular communication products is the major business of a telecommuni-
cation infrastructure vendor. The products include cellular network products of Long-
Term Evolution (LTE) [1] and 5th Generation (5G) [2], which can be in the forms of
Hardware (HW), Software (SW), or their supporting components. The products are
made available for sale through the process of product packaging, classifying, and price
setting.

The internal reference price (IRP) setting is an internal product process that is con-
ducted to define all needed pricing related attributes for such a product before it is released
for sale. This is currently a manual process which is repeated for hundreds of products
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annually. During the IRP setting, the category classification and sales package of the
product need to be made correctly. In many cases, a new product should be assigned to an
existing sales package that contains similar products.

If not automated, this process involves heavily human evaluation and decision
making. In such a manual process, a human user needs to understand the whole product
landscape completely, which includes not only the various available products and the
products expected to be coming, but also the detailed functionalities of the products,
their relations, and their relevance to the different network service operators. This
process is not only time consuming, but also requires a high level of experience and
knowledge from the human user. The good side-effect of such a manual process is that
human experience and knowledge are also encoded and embedded into the data gen-
erated during the process. During the years of manual processing, it has created the
critical amount of data. These data could be used by machine learning to release human
from such tedious and brain-straining manual process.

Any commercial digitalization project should be based on a business need. After
identification of a possible use case, the business case should be validated. For the
automation of the IRP setting, the business need is not only to reduce the time spent on
the price setting process, but also to increase the quality of the process to a high level
regardless of the user’s expertise level. The motivation of this work is thus to design
the Machine Learning (ML) solutions to automate the IRP setting process. It defines the
ML-based IRP setting process that can dramatically reduce the time and competences
required to set the IRP prices. It also increases the quality of the process to a high level
regardless of the competence level of the human user.

The ML-based solutions are achieved by using Natural Language Processing
(NLP) and general-purpose ML methods to assist the decision making for the product
classification and sales package assignment. ML is used to identify the closest existing
matching package and category for a given product. The matching is done based on the
description documents of the products.

This paper is organized as the following. A brief review of ML-based NLP is given
in Sect. 2. The use cases of this work are defined in Sect. 3. The actual method to assign
a product to its corresponding package is presented in Sect. 4. The actual method to
classify the product category is depicted in Sect. 5. Section 6 presents the experiment
setting and results. The credibility of the trained models is further analyzed in Sect. 7.
The conclusions of the work are given in Sect. 8.

2 Statistical Natural Language Processing

NLP [9, 10] is a multi-discipline field supported by computer science, linguistics, and
machine learning technologies. It concerns the ML-based learning, understanding,
extraction, representation, and producing of data in human languages. NLP has greatly
benefited from the recent advances in machine learning. It is now focusing on how
computer can do speech recognition, natural language understanding, and natural
language generation.
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Speech recognition translates human speech into text. Natural language under-
standing interprets and extracts the text of human languages. Natural language gen-
eration produces text and speech in human languages. The typical NLP methods could
be categorized as text preprocessing, semantic vectorization and embedding, Neural
Network (NN)-based parsing of text and information extraction, as well as deep-
learning based encoding and decoding of representations of a set of texts.

The methods of text preprocessing perform object standardization, text tokeniza-
tion, stop-word removing, token (e.g., word) stemming, and token lemmatization. The
methods of semantic vectorization and embedding mapping can map a set of texts to
their corresponding vectors based on token frequency in one form or another. It can
also model topics through latent analysis of a set of texts. It can embed the words in a
set of texts, as well as embed a set of texts as bags of words and word sequences. The
NN-based parsing methods parse text into parse trees of the sentences including their
part of speech tagging. Then, the methods of information extraction extract named
entities from text, relations between named entities, and knowledge from text. The
methods of deep-learning based encoding and decoding of representations use either
mainly RNN-based sequence to sequence models or attention-based transformers to
encode and decode representations of texts. It appears that the attention-based trans-
formers outperform RNN-based models in general purpose and multi-task applications.

With the NLP methods, numerous NLP applications can be realized, e.g., the
methods in [10, 11]. They are, for example, applications of sentiment analysis, question
answering, language modeling, detecting semantic textural similarity, language gen-
eration, document summarization, and machine translation.

3 Definition of the Use Cases

IRP setting is done for the products of the different telecommunication technologies.
Each technology needs its own ML models to be trained with the technology specific
data, as the sales structures for different technologies differ significantly.

There are two use cases in the decision automation. Full automation of the IRP
setting process is for the products to which the prediction confidence and accuracy
levels exceed predefined thresholds. In the case of ML assisted decision making, the
information on the products will be presented to a human user, together with their ML
based proposals for the categories and sales packages. Then, the user makes the final
decision with the help of ML prediction and assignment. These two use cases can be
combined. Full automation can be made for those product cases with the high pre-
diction confidence and accuracy levels. For those product cases with low confidence
levels, ML recommends the category and sales package for human’s final decision.

The data of this work are the documents defining the products as well as the
available sales packages and SW categories. The documents are written by human for
the purpose of product implementation and product sales. Typically, a corpus of the
product documents is collected per technology family, which usually has thousands of
the documents. The corresponding sales packages and SW categories of the products
are the ground truth data. They have been generated during the process of sales item
creation during the past years. There are hundreds of such labeled data points available
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per technology family. It is worth to mention that the documents are written in a
peculiar, technology-specific language. They are full of “special” technical terms and
abbreviations, as well as local conventions. This makes it not possible to directly use a
pre-trained language model of the general purpose (e.g., spacy [7] and BERT [8]).
Specific language model must then be trained for this work.

This work applies the NLP solutions to complete two tasks. Task A embeds the
documents of the human generated product descriptions into their corresponding
vectors semantically. The embedding enables the detection of the functional similarity
between two products. Such detection is necessary to properly assign a product to a
sales package according to its functionality.

Task B classifies a product to a proper category according to the description of the
product. It applies a classifier, which is built at the end of the ML pipeline. Text
descriptions of the products are input to the pipeline. Basic NLP preprocessing of the
texts is then made and, the texts are mapped into numerical vectors as input to the
classifier. The SW categories of the products are used as the target output. The classifier
is then trained accordingly. Finally, the trained model is used to predict the SW
category of a given new product.

4 Method to Package a Feature

The packaging of a product is realized as what is shown in Fig. 1. After the prepro-
cessing of the product feature documents, we use the NLP document-to-vector solution
[13] to embed each of the already packaged products (if any) in a sales item list. The
actual embedding model is trained with all the available product documents. This
embedding model can then represent the products well. It makes the similarity com-
parison between two products in the IRP list more accurate than what could be
achieved with a general-purpose embedding model. Please note that the texts (docu-
ments) in the IRP list are only a subset of the texts of the product documents.

The reason for using the similarity-based assignment instead of a categorical
classifier is that it needs to assign among several hundred packages. A classification-
based method usually achieves a rather low accuracy when there are only hundreds of
data samples available.

Text of a Product 
Document

NLP Processing Pipeline (i.e., Text 
Preprocessing and D2V Embedding 

Model)

Similarity based 
Package 

Assignment 
Embedding Vector (Package ID, 

Similarity)

Texts of Product 
Documents

 Text 
Preprocessing

D2V Embedding
Algorithm

(a) Training

(b) Predic on

Texts of 
Products in 
the IRP list

Text 
Preprocessing and 

D2V Embedding 
Model

(Embedding Vectors, 
Product IDs, Package IDs)

Fig. 1. Assign a product to a sales package according to the semantic similarity.
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The exemplary results of the generated embedding and assigned packages are
presented in Table 1. The products unambiguously similar to each other are assigned to
the same package. Otherwise, the products are each assigned to an individual one-
product package. When a new product arrives for the package assignment, the
embedding vector of the new product will be compared with all the vectors of the
existing products in the table. If there is an unambiguously similar product existing in
the table, the new product is assigned to its package. Otherwise, the new product is
assigned as an individual product into a new package.

Whether to make fully automated assignment or not depends on the required accu-
racy of the above ML-based assignment. If the above assignment provides an accuracy
higher than the requirement, the assignment is done fully automatically. Otherwise, the
ML-based assignment serves as a recommendation for the human decision maker. It is up
to the human to decide the actual assignment based on the assignment recommendation.
The details concerning these options are introduced in Sect. 6.

5 Method to Assign a SW Category to a Product

The classification of a product to its SW category is realized as shown in Fig. 2. After
the preprocessing, a TF-IDF (Term Frequency–Inverse Document Frequency) vector-
izer is trained with the corpus of all the available documents of products. Now, the
trained TF-IDF model has the vocabulary of all the available documents. Another TF-
IDF vectorizer is created by using this vocabulary. The second TF-IDF vectorizer fits
and transforms the processed texts of the products in the IRP list into numerical
vectors, one for each product in the IRP. The products in the IRP list are the already
packaged products (if any) in a sales item list. Together with their known SW cate-
gories, their vectors are used to train the multi-class classifier.

When there is a request to classify the SW category of a new product, the pre-
processing of the document of this product is made first. The processed text of the
document is then fed to the second TF-IDF vectorizer, which fits and transforms the
processed texts of the given product into its corresponding numerical vector. This
vector is then fed to the trained multi-class classifier. The classifier predicts a SW
category for the vector (i.e., the new product) with a specific confidence (i.e., prediction
probability). The reason to use a categorical classifier here is that it can achieve a good
accuracy for the classification among a small number of classes, when there are hun-
dreds of data samples available.

Table 1. The example embedding information of products.

Package ID Product ID Embedding vector

0 Dx (0.78, −1.50, −0.6, −0.19, −0.11, 0.52, 1.13, 0.77, −0.36, 0.22,
−0.19, −0.39, 0.26, −1.83, 0.84, −0.66, 0.73, 0.37, 1.05, −0.43)

… … …
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It is worth mentioning that the method shown in Fig. 2 is suitable for the cases where
enough data samples (even if not huge) are available for training the multi-class classifier.
However, in an extreme case, the number of product documents for specific category or
categories can be very small. In this situation of data scarcity, a categorical classifier may
not work. It is simply because of the lack of enough training data for the categorical
classifier. For example, as shown in Fig. 3, there are very few Class II product documents
to train a multi-class classifier properly. In such a case, the methods shown in Figs. 1 and
2 could be used together as an ensemble method. The ensemble method could still bring
an acceptable “classification” result. There could be extra information in the embedding
model as it is trained with a bigger corpus of all available products. The extra information
could thus improve the accuracy via an ensemble method.

Pipeline of Text 
Preprocessing

Mul -Class 
Classifier
Algorithm

TF-IDF Vectors

Text of a Product 
Document

NLP Processing Pipeline (i.e., Text 
Preprocessing and TF-IDF Model)

Mul -Class 
Classifier

Model
TF-IDF Vector (SW Class, 

Probability)

TF-IDF 
Algorithm 

TF-IDF Model

(b) Predic on

(a) Training

Texts of Product 
Documents

SW Classes of the 
IRP List

Texts of Products 
in the IRP List

Fig. 2. Assign a product to a SW category according to its functionality and importance.

Fig. 3. The extreme example counts of certain available product documents for the SW classes,
Class I (63%), Class II (8%), and Class III (29%).
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6 Experiments and Results

The solutions based on the methods described in Sects. 4 and 5 are realized with
Python 3.6 and its corresponding ML libraries. The solutions are trained with real
product data and then they predict the sales item package and the SW category for a
given new product. The data, experiments, and results of the solutions are presented
and discussed in this section.

6.1 Introduction of the Real Data

The first part of the real data for the solutions are the product documents for telecom-
munications technologies. For each technology, there are thousands of such documents,
which are written in telecom-technical English by R&D people in the company. Such
documents could each have the length from a few paragraphs up to multiple pages. Their
combined vocabulary of words/terms are at the level of ten thousand. Often, parts of the
technical context are not directly given in the documents. A reader is assumed to know
the technical context (domain knowledge) before the reader could fully understand the
semantic content of the documents. This assumption adds challenge to the solution when
comparing with general-purpose NLP tasks [7, 8], where the huge amount of available
data could compensate the missing context information. In addition, full scale object
standardization for the documents is not feasible due to e.g. the existence of inconsistent
abbreviations and varying technical terms.

The second part of the real data for the solutions are the sales items packages in the
IRP lists. They provide the information of the package IDs and the SW categories of
the products in the IRP lists. This part of information annotates the first part of the data.
The products in the IRP lists are just a part of all the available product proposals.

6.2 Package Assignment for a Product

The text preprocessing in Fig. 1 is realized through (1) removing stop-words and
punctuations and (2) partial object standardization. The Doc2Vector (D2V) embedding
algorithm [13] utilized in this application is from the gensim library. It is trained with all
the available product documents, where the dimensions (20 and 24) of the embedding
space bring the best performance for the examined technologies correspondingly.

There are 243 different sales packages in a real IRP list used as the existing package
to test the solutions. This IRP list has about 500 different products. The distribution of
the products among these packages is shown in Fig. 4. Each of the packages has only a
small proportion (maximal 5.74%) of the total products.

A sequence of 42 new products are then assigned one by one, by the solution
shown in Fig. 1 28 of them are assigned to existing packages and 14 of them are
assigned as new packages. Whenever a new product is assigned, it is added to the
existing IRP list. The existing IRP list is extended with the newly assigned product.
The next new product will be assigned according to the extended IRP list.

The experiment shows that 25 (60%) of the new products are assigned correctly to
either the existing packages or as new packages themselves. When recommending a new
product to a package, the solution also provides the top 0 to 5 existing products (if any)
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that are the most similar products to the given new product (i.e., the top matching
products in the existing IRP list). For 35 (83%) of the new products, the correct package
information is among the provided top similar products from the existing IRP list.

Usually, one cannot trust the solution to assign the new products fully automatically
as there are only 60% of the products assigned correctly by the solution. Human in the
loop is thus required in this case. The human needs to review a recommendation from
the solution and decide the package for the new product. However, the work for the
human is very much easier now when comparing with the work when a human alone
makes an assignment. In the pure human assignment, the human user needs to know
and remember all the products and their packages in the existing IRP list. The human
assignment work takes a lot of the time to search and check against the products and
packages in the existing IRP list. When using the ML solution as recommendation, the
human user can immediately identify the correct package information from the top
matching products provided for the newly given product by the solution. Then, the
human user can simply select the correct package from the top matching products. In
this way alone, 83% of the new products can be assigned correctly. For the remaining
part of new products, the human user still has to search through and check against the
products, product documentation and packages in the existing IRP list.

The D2V embedding model needs to be retrained after every n new product doc-
uments have been released by R&D. These newly generated product documents can
carry extra information that has not been learned by the former embedding model. The
n can be any large number as long as the newly generated product documents do not
contain any new product to be assigned to a sales package. This means the former
trained embedding model has still enough information for the new product to be

Fig. 4. The distribution of products among the packages in an existing IRP list, where the x-axis
is the package ID and the y-axis is the proportion of products in a package to the total number of
products in the IRP list.
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assigned. Otherwise, the D2V embedding model needs to be retrained before the actual
assignment of the new product. As the R&D process is not very fast, it is usually
enough to retrain the D2V embedding model once every week. In case that a product
feature progresses from its creation to the sales item assignment in less than a week, the
D2V model is retrained on demand.

6.3 Assignment of SW Category for a Feature

There are 4 different SW categories in a real IRP list. The IRP list has about 500
different products. The distribution of the products among these SW categories are
shown in Fig. 5. If one predicts the SW category for a newly given product always with
the SW category having the largest number of products, the prediction accuracy could
be about 36.1%. It is low.

The text preprocessing in Fig. 2 is realized through (1) removing stop-words and
punctuations and (2) partial object standardization. The TF-IDF algorithm is first fitted
with all the available thousands of product documents. The vocabulary of this trained
model is used by the TF-IDF algorithm as the vocabulary when fitting with all the
product documents of the existing IRP list. The TF-IDF model also generates the TF-
IDF vectors for all those product documents. These vectors together with the SW
categories of those products are used to train a multi-class logistic regression algorithm.
The trained model is then used to predict the SW category of a newly given product.

When there is a newly given product for SW category prediction, the text of the
product document is preprocessed. Then, the TF-IDF model transforms the preprocessed
text into its corresponding TF-IDF vector. This vector is then input to the multi-class
classifier model. The model thus predicts the SW category of the newly given product.
The model also provides the prediction probability of the predicted SW category.

Fig. 5. The distribution of the products among the SW categories.
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499 product documents of an IRP list are put through the “(a)” training process of
Fig. 2, which eventually trains the multi-class classifier. The trained multi-class clas-
sifier model is used to predict the SW categories of another 125 products. The accuracy
to predict the SW categories of these 125 products is 82.4%. The other prediction
scores for these 125 products are given in Table 2.

The normalized confusion matrix of the predictions is shown in Fig. 6. This multi-
class classifier did not predict Class B very well. Here, 13 Class B products in its total
31 products are wrongly classified to Class A (7) and Class D (6).

The classification results against their corresponding prediction probabilities by the
multi-class classifier are summarized in Fig. 7. A correct classification has indeed a
clear correlation with a high prediction probability. However, it is hard to differentiate
the correct and incorrect predictions simply by checking the prediction probabilities
when the probability score is lower.

Table 2. The prediction scores except the accuracy score for the 125 products.

Precision Recall F1-Score Support

Class A 0.80 0.95 0.87 38
Class B 0.86 0.58 0.69 31
Class C 0.90 0.82 0.86 11
Class D 0.82 0.89 0.85 45
Micro Avg 0.82 0.82 0.82 125
Macro Avg 0.84 0.81 0.82 125
Weighted Avg 0.83 0.82 0.82 125

Fig. 6. The normalized confusion matrix on the prediction of the 125 products.
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It is thus possible to enable the fully automatic classification of the products with
high prediction probability. To do so, one can provide a confidence threshold on the
prediction probabilities. When a prediction probability is larger than the threshold, the
classification can be considered as acceptable and fully automatic classification is
triggered. When a prediction probability is smaller than the threshold, the classification
can be considered as not trustable and the case is escalated for human to evaluate and
classify. As shown in Fig. 8, assume the confidence threshold is set to be prediction
probability 0.65. In this case, 91 (72.8%) of the 125 products can be automatically
classified. The classification accuracy of this part of products is 91.2% (i.e., 83 prod-
ucts). The confidence threshold is set according to the specific business needs. It is
usually selected with a given classification accuracy value that are minimally accept-
able to the business. The selection is a tradeoff between the fully automatic classifi-
cation and machine learning assisted classification.

A cross validation on the quality of the multi-classifier is made with 100 times of
reshuffling the combined 624 products, 80% for training and 20% for testing. The mean
classification accuracy is 0.763 and the standard deviation is 0.03. The accuracy dis-
tribution of the cross validation is shown in Fig. 9.

The multi-class classifier needs to be retrained after every n new products have
been classified and assigned to the IRP lists. These newly classified products can carry
extra information that has not been learned by the previously trained model. If the n is
large, the classification accuracy could suffer clearly. If the n is too small, the re-
training can be too frequent. Depending on how frequently a new product needs
classification, the higher the retraining frequency, the higher the n value. For the
experiments made above, it would be good to let n = 10 * 15.

Fig. 7. The distributions of the correct and incorrect classifications of the 125 products against
their prediction scores.
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The vocabulary of the TF-IDF model needs to be re-fitted only when the newly
generated product documents by R&D contain any new product to be classified. This
means the formerly fitted TF-IDF does not have enough vocabulary information for the
new product to be classified. As the R&D process is not very fast, it is usually enough
to re-fit the TF-IDF vocabulary once every week.

Fig. 8. The tradeoff between the classification accuracy and the actual number of products
classified automatically, where confidence threshold determines the tradeoff.

Fig. 9. The accuracy distribution of the cross validation.
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7 Credibility of the Trained Models

The quality and credibility of an embedding model can be evaluated with a set of
benchmark product documents, each with a similar product document scored by human
beforehand. This evaluation method uses the query inventory method [15], while the
query here is not on a word but on the text of a product document. For example,
Table 3 shows one query point (from the set) with the human scored similarity and, the
model-inferred similarities when comparing the vector of document Dk to its inferred
vector and the inferred vector of Dx. In this example, we could conclude that the model
infers well for this query point. It is thus a good model for document Dk and Dx. More
query points can be evaluated to assure the quality of the trained model. It is also
mostly doing well for other query points in the benchmark product documents. We
could conclude the trained embedding model is good.

One also needs to know if the trained multi-class classifier has made the classifi-
cation with the proper information in the product documents, and not with something
irrelevant. The model is trustable if the evaluation confirms that. This evaluation is
made with the lime library [12]. As shown in Figs. 10 and 11, the classifier (TF-IDF
and the multi-class classifier) uses the relevant texts when it classifies a product. In
Figs. 10 and 11, the probabilities for the SW categories (named as Class A, Class B,
Class C, and Class D) are predicted. The contributing terms and text sections are also
shown to support or oppose predictions of the SW categories, together with their
numeric levels of the contribution.

Table 3. The quality of the embedding model for a given product document Dk when compared
with the document Dx.

Similarity scored by human (‘Dk’, 1) (‘Dx’, 0.9)
Similarity inferred by trained model (‘Dk’, 0.974) (‘Dx’, 0.923)

Fig. 10. The prediction probabilities of the four SW categories and the contribution terms for or
against the three SW categories, Class B, Class C, and Class D, concerning an example product.
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The lime-based evaluation of the 125 products have been made with the same
approach as shown in Figs. 10 and 11. The evaluation needs the domain knowledge
concerning the relevance of the information and what information indicates a specific
SW category or opposes it. The evaluation results on the 125 products show that the
relevant information in the texts have been correctly used to predict the categories of
these products in most cases. The classifier of this solution is thus considered trustable.
For example, terms “allocation”, “prb”, and “block” have contributed correctly to
support the classification of Class D.

8 Conclusions

This work has proposed the ML solutions to realize the automated IRP setting process.
Experiments are taken to explore the feasibility and performance of the solutions, given
the available data. The results show that the solutions work well as expected by the
human users. They are enough to assist human in the decision making, which reduces
significantly the processing time, the needed competence, and human-caused errors.
Under a given prediction confidence threshold, these solutions can also fully automate
the IRP setting for those products where their prediction confidences by the solutions
are higher than the given threshold.

The credibility of the models is further evaluated against the texts of product
descriptions and the human provided benchmark of similar products. The trained
embedding model infers the top-two similar products mostly as given in the human
benchmark. The text components used to predict the product categories are mostly
those key elements in the documents of product description.

The ML solutions are provided as a web service to the whole IRP setting process.
The request and response attributes of this Application Interface (API) are rather
general. There is no need to change the interface even if there is an update for the ML
solutions. This makes the ML solutions modular.

Through the experiments, it is also found that the prediction accuracy is generally
increasing with the amount of available assignment data. The data volume increases with
the usage of the solutions. The performance can be further improved with additional data.

Fig. 11. The contributing terms for or against the SW category Class D and the text used by the
classifier to classify the SW category of the example product described by the text.
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The ML solutions are designed for the products per technology. For those tech-
nologies with rather limited amount of existing data, more complicated ML solutions
would be needed to achieve the required performance. As new data comes daily, there
will be a need to evolve the machine learning solutions at certain point of time. Extra
data can reduce the need of a complicated model in one hand. On the other hand, it can
also enable the application of a more advanced model to achieve an even better per-
formance. However, it needs further work and experiments to find the exactly needed
balance when sufficient amount of extra data become available.
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Abstract. Diagnosis aims to explain the abnormal behavior of a sys-
tem based on the symptoms observed. In a discrete-event system (DES),
the symptom is a temporal sequence of observations. At the occurrence
of each observation, the diagnosis engine generates a set of candidates,
a candidate being a set of faults: such a process requires costly model-
based reasoning. This is why a variety of knowledge compilation tech-
niques have been proposed; the most notable of them relies on a diagnoser
and requires both the diagnosability of the DES and the generation of
the whole system space. To avoid both diagnosability and total knowl-
edge compilation, while preserving efficiency, a diagnosis technique is
proposed, which is inspired by the two operational modes of the human
mind. If the symptom of the DES is part of the knowledge or experi-
ence of the diagnosis engine, then Engine 1 allows for efficient diagnosis.
If, instead, the symptom is unknown, then Engine 2 comes into play,
which is far less efficient than Engine 1. Still, the experience acquired
by Engine 2 is then integrated into the temporal dictionary of the DES,
which allows for diagnosis in linear time. This way, if the same problem
arises anew, then it will be solved by Engine 1 efficiently. The temporal
dictionary can also be extended by specialized knowledge coming from
scenarios, which are behavioral patterns of the DES that need to be
diagnosed quickly. As such, the temporal dictionary is open and relies on
dual knowledge compilation.
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1 Introduction

Diagnosis aims at explaining the abnormal behavior of a system based on the
observations relevant to its operation that are perceived from the outside. In
the Artificial Intelligence community, the definition of the task [23] led to the
model-based paradigm [6], according to which the normal behavior of the sys-
tem to be diagnosed is described by a model and the diagnosis results have to
explain the discrepancies between what has been observed at the system output
terminals and what we expected to observe on grounds of the model itself. The
diagnosis task produces a collection of sets of faulty components, where each set,
called a candidate, is an explanation of the observation. Each candidate explains
the observation as assuming that all the components in the candidate are not
behaving normally and all the others are behaving normally is consistent with the
observation. This consistency-based diagnosis was initially conceived for static
systems, such as combinational circuits. For a dynamical system, a discrete-
event system (DES) [3] model can be adopted, this being a finite automaton.
This model is typically distributed, consisting of several automata that commu-
nicate with one another [2]. Although consistency-based diagnosis is applicable
to DESs by modeling their nominal behavior only [22], a DES specification usu-
ally involves its abnormal behavior also, as in the seminal work by Sampath et al.
[25]. The input of the diagnosis task for a DES is a temporal sequence of obser-
vations; the output is a set of candidates, each candidate being a set of faults,
where a fault is associated with an abnormal state transition represented in the
DES model. Diagnosing a DES becomes a form of abductive reasoning, inasmuch
the candidates are generated based on the trajectories (sequences of state transi-
tions) of the DES that entail the sequence of observations. The approach in [25]
relies on a diagnoser, a data structure that is derived in a preprocessing phase
from the space (or global model) of the DES. Such a diagnoser is exploited on
line, in order to generate a new set of candidate diagnoses upon perceiving each
observation. However, this method requires the generation of the global model
of the DES, which is impractical even for distributed systems of moderate size,
owing to a combinatorial state explosion. Moreover, in order for the diagnoser
to produce a sound and complete set of candidates, the DES is required to ful-
fill a formal property called diagnosability. By definition, a DES is diagnosable
if every fault occurred can be detected within a finite number of observable
transitions of the DES while it is moving in a trajectory of its space. Unsur-
prisingly, the problem of checking diagnosability has given rise to an extended
literature in the last two decades [4,5,8,19–21,24,26–30]. One alternative to the
diagnoser approach is the active-system approach [1,11–13,15], which neither
requires the generation of the global model nor the diagnosability of the DES.
The rationale behind the traditional active-system approach is to perform the
abduction online, a possibly costly operation that, however, being driven by the
sequence of observations, can only focus on the trajectories that produce such
a sequence. This paper, which stems from the active-system approach, proposes
a novel, more efficient, method to compute a new set of candidate diagnoses
of a DES upon receiving each observation. The candidates generated by this
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technique are endowed with a property, called temporal explanation, which has
so far been missing in the active-system approach. Temporal explanation is sup-
ported by a technique, embedded in the diagnosis engine, called backward prun-
ing. Efficiency is achieved by preprocessing the system model to construct a
data structure, called a temporal dictionary, which is exploited online, when the
DES is being operated. In contrast with the diagnoser, the temporal dictionary
is not the result of total knowledge compilation, instead it embodies the knowl-
edge relevant to some selected (domain-dependent) behaviors, called scenarios.
In addition, whenever a sequence of observations that is not encompassed by the
dictionary is processed, the dictionary is extended online. In other words, the
dictionary is open and relies on dual knowledge compilation.

2 The Two-Systems Metaphor of the Mind

According to Daniel Kahneman [9], psychologist and Sveriges Riksbank Prize
in Economic Sciences in Memory of Alfred Nobel 2002, two modes of thinking
coexist in the human brain, which correspond to two systems in the mind, called
System 1 and System 2. System 1 operates automatically and quickly, with little
if any effort, and no sense of voluntary control, such as when orienting to the
source of a sudden sound or driving a car in an empty road. By contrast, System 2
operates consciously and slowly, with attention being focused on demanding
mental activities, possibly including complex computations or inferences, such
as when filling out an intricate application form or checking the validity of a
complex argument. Intriguingly, an activity initially performed by System 2,
such as driving a car or playing the piano, may be subsequently operated by
System 1 after appropriate training. This “dual system” architecture of the
mind is a metaphor for the diagnosis approach for DESs presented in this paper.
The proposed diagnosis engine (DE) operates in two different modes resembling
System 1 and System 2 in the human mind, called Engine 1 and Engine 2. If
the diagnosis problem to be solved is part of the knowledge or experience of the
DE, then Engine 1 can solve this problem quickly. If, instead, the problem is not
part of the knowledge or experience of the DE, then comes into play Engine 2,
which requires deep model-based reasoning and, therefore, operates far more
slowly than Engine 1. Still, the experience acquired by Engine 2 in solving the
diagnosis problem can be integrated into the knowledge of the DE, so that, in
the future, the same diagnosis problem can be solved by Engine 1 efficiently.
Besides, the DE is not born naked, that is, without any knowledge except the
model of the DES, otherwise Engine 2 would operate far more frequently than
Engine 1 for a possibly long time. Instead, the DE starts working being already
equipped with specialized knowledge on domain-dependent scenarios that are
considered either most probable or most critical for the safety of the DES (or
the surrounding environment) and, as such, need to be coped with efficiently.

3 Discrete-Event Systems

A DES is assumed to be a network of components, where each component
is endowed with input and output pins and is modeled as a communicating
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Fig. 1. DES P (center) and models of the sensor s (left) and the breaker b (right).

Table 1. Transition details for sensor (top) and breaker (bottom) in the DES P.

Component transition Description

s1 = 〈idle, (ko, {op}), awake〉 s detects a threatening event and commands b to
open

s2 = 〈awake, (ok , {cl}), idle〉 s detects a liberating event and commands b to close

s3 = 〈idle, (ko, {cl}, error〉 s detects a threatening event, yet commands b to
close

s4 = 〈awake, (ok , {op}), error〉 s detects a liberating event, yet commands b to open

b1 = 〈closed , (op, ∅), open〉 b reacts to the opening command by opening

b2 = 〈open, (cl , ∅), closed〉 b reacts to the closing command by closing

b3 = 〈closed , (op, ∅), closed〉 b does not react to the opening command

b4 = 〈open, (cl , ∅), open〉 b does not react to the closing command

b5 = 〈closed , (cl , ∅), closed〉 b reacts to the closing command by remaining closed

b6 = 〈open, (op, ∅), open〉 b reacts to the opening command by remaining open

automaton [2]. Each output pin of a component is connected with an input pin
of another component by a link. The mode in which a transition is triggered in a
component is threefold: (1) spontaneously (formally, by the empty event ε), (2)
by an (external) event coming from the extern of the DES, or (3) by an (internal)
event coming from another component of the DES. When a component performs
a transition, it possibly generates new events on its output pins, which possibly
trigger the transitions of other components, where the triggering events are con-
sumed. A transition generating an output event on a link can occur only if this
link is not occupied by another event already.

Example 1. Centered in Fig. 1 is a DES called P (protection) which includes
two components, a sensor s and a breaker b, and one link connecting the (single)
output pin of s with the (single) input pin of b. The model of s (outlined on
the left-hand side) involves three states (denoted by circles) and four transitions
(denoted by arcs). The model of b (outlined on the right-hand side) involves two
states and six transitions. Each component transition t from a state p to a state
p′, triggered by an input event e, and generating a set of output events E, is
denoted by the (angled) triple t = 〈p, (e,E), p′〉, as detailed in Table 1.

For diagnosis purposes, we need to characterize a DES X with its observability
(whether each transition is observable or unobservable) and normality (whether
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each transition is normal or faulty). To this end, let T be the set of component
transitions in X , O a finite set of observations, and F a finite set of faults. The
mapping table of X is a function μ(X ) : T �→ (O ∪ {ε}) × (F ∪ {ε}), where
ε is the empty symbol. The table μ(X ) can be represented as a finite set of
triples (t, o, f), where t ∈ T, o ∈ O ∪ {ε}, and f ∈ F ∪ {ε}. The triple (t, o, f)
defines the observability and normality of t: if o �= ε, then t is observable, else t
is unobservable; if f �= ε, then t is faulty, else t is normal.

Example 2. With reference to the DES P introduced in Example 1, the mapping
table μ(P) includes the following triples: (s1, act , ε), (s2, sby , ε), (s3, act , fos),
(s4, sby , fcs), (b1, opn, ε), (b2, cls, ε), (b3, ε, fob), (b4, ε, fcb), (b5, ε, ε), and
(b6, ε, ε), where the symbols have the following meaning: act = activate, sby =
standby, opn = open, cls = closed, fos = failed to command to open, fcs =
failed to command to close, fob = failed to open, fcb = failed to close.

At each time instant, a DES X is in a state x = (C,L, δ), where C is the array
of the current states of the components, L is the array of the (possibly empty)
events currently placed on the links, and δ is the (possibly empty) set of faults
occurred in X starting from its initial state x0 = (C0, L0, ∅). The occurrence of
a component transition t moves X from a state x to a state x′, in other words,
a transition 〈x, t, x′〉 occurs in X . Hence, assuming that only one component
transition at a time can occur, the process that moves a DES from its initial state
to another state is represented by a sequence of component transitions, called
a trajectory of the DES. The set of possible trajectories of X is specified by a
deterministic finite automaton (DFA) called the diagnosis space of X , namely,

X ∗ = (Σ,X, τ, x0) (1)

where Σ (the alphabet) is the set of component transitions, X is the set of
states, τ is the (deterministic) transition function, τ : X ×Σ �→ X, and x0 is the
initial state.1 Thus, each string T = [t1, . . . , tn] of the regular language of X ∗ is
a trajectory of X . Based on the mapping table μ(X ), each trajectory T ∈ X ∗

is associated with one symptom and one diagnosis. The symptom O of T is the
finite sequence of observations involved in T ,

O = [ o | t ∈ T, (t, o, f) ∈ μ(X ), o �= ε ]. (2)

The diagnosis δ of T is the set of faults marking the accepting state of T in X ∗.
Since a diagnosis is a set, at most one instance of each fault f can be in δ. Hence,
generally speaking, the domain of possible diagnoses is the powerset 2F, which
is finite. By contrast, several instances of the same observation can be in the
symptom O; therefore, the domain of possible symptoms is in general infinite.
We say that the trajectory T implies both O and δ, denoted T ⇒ O and T ⇒ δ,
respectively. Since a trajectory of X is observed as a symptom and since the
observed symptom can be implied by several (possibly infinite) trajectories, it
follows that several diagnoses can be associated with the same symptom, which
1 Implicitly, all states of X ∗ are also accepting (final) states.
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p∗ C = (s, b) L δ

0 (idle, closed) ε ∅
1 (awake, closed) op ∅
2 (error , closed) cl {fos}
3 (awake, open) ε ∅
4 (awake, closed) ε {fob}
5 (error , closed) ε {fos}
6 (idle, open) cl ∅
7 (error , open) op {fcs}
8 (idle, closed) cl {fob}
9 (error , closed) op {fob, fcs}
10 (idle, open) ε {fcb}
11 (error , open) ε {fcs}
12 (idle, closed) ε {fob}
13 (error , open) ε {fob, fcs}
14 (error , closed) ε {fob, fcs}
15 (error , open) cl {fcb, fos}
16 (awake, closed) op {fob}
17 (error , closed) cl {fob, fos}
18 (error , closed) ε {fcb, fos}
19 (error , open) ε {fcb, fos}
20 (awake, open) ε {fob}
21 (error , closed) ε {fob, fos}
22 (idle, open) cl {fob}
23 (error , open) op {fob, fcs}
24 (idle, open) ε {fob, fcb}
25 (error , open) cl {fob, fcb, fos}
26 (error , open) ε {fob, fcb, fos}
27 (awake, open) op {fcb}
28 (awake, open) ε {fcb}
29 (idle, open) cl {fcb}
30 (error , open) op {fcb, fcs}
31 (idle, closed) ε {fcb}
32 (error , open) ε {fcb, fcs}
33 (awake, closed) op {fcb}
34 (error , closed) cl {fcb, fos}
35 (awake, closed) ε {fob, fcb}
36 (idle, closed) cl {fob, fcb}
37 (error , closed) op {fob, fcb, fcs}
38 (error , open) ε {fob, fcb, fcs}
39 (error , closed) ε {fob, fcb, fcs}
40 (error , closed) ε {fob, fcb, fos}
41 (error , closed) cl {fob, fcb, fos}
42 (idle, closed) ε {fob, fcb}
43 (awake, closed) op {fob, fcb}
44 (awake, open) ε {fob, fcb}
45 (idle, open) cl {fob, fcb}
46 (error , open) op {fob, fcb, fcs}
47 (awake, open) op {fob, fcb}

Fig. 2. Diagnosis space P∗ (left) and relevant state details (right).

are collectively called the explanation of the symptom. Formally, let O be a
symptom of X and δ(T ) denote the diagnosis of T . The explanation Δ of O is
the finite set of diagnoses, called candidates, defined as

Δ(O) = { δ(T ) | T ∈ X ∗, T ⇒ O }. (3)

Example 3. With reference to the DES P introduced in Example 1 (cf. Fig. 1
and Table 1), outlined on the left side of Fig. 2 is the diagnosis space P∗, where
states are identified by numbers 0 .. 47; state details are listed in the table on the
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right side. Specifically, each state p∗ ∈ P∗ is represented by a triple (C,L, δ),
where C is the pair of states of the sensor s and the breaker b, L is the (possibly
empty) event within the link, and δ is the diagnosis associated with p∗. Owing to
cycles, the set of possible trajectories of P is infinite. One of these trajectories is
[s1, b1, s2, b4], ending in the state 10 = ((idle, open), ε, {fcb}), which corresponds
to the following events: s detects a threatening event and commands b to open;
b opens; s detects a liberating event and commands b to close; still, b remains
open. In fact, the diagnosis {fcb} accounts for the failing of the breaker to close.

When diagnosis is performed online, while the DES is being monitored, some
sort of diagnosis information is expected at the occurrence of each observation.
This is captured by the notion of a temporal explanation.

Definition 1. Let O = [o1, . . . , on] be a symptom of X and T a trajectory of X
implying O. Let O[i], i ∈ [0 .. n], denote the prefix of O up to oi. Let T[i], i ∈
[0 .. n], denote either T , if i = n, or the prefix of T up to the transition preceding
the (i+1)-th observable transition in T , if 0 ≤ i < n. The temporal explanation
of O is the sequence of sets of candidate diagnoses, Δ(O) = [Δ0,Δ1, . . . ,Δn],
where each Δi, i ∈ [0 .. n], is the minimal set of diagnoses defined as follows:

T ∈ X ∗,∀i ∈ [0 .. n]
(
Δi ⊇ {

δ(T[i]) | T[i] ⇒ O[i]

})
. (4)

Example 4. Let O = [act , opn, sby , act , cls] be a symptom of the DES P. As
such, O is implied by just one trajectory, namely T = [s1, b1, s2, b4, s3, b2]. Thus,
Δ(O) = [Δ0,Δ1,Δ2,Δ3,Δ4,Δ5], where Δ0 = Δ1 = Δ2 = {∅}, Δ3 = {{fcb}},
and Δ4 = Δ5 = {{fcb, fos}}.

When a DES is being monitored, the temporal explanation needs to be updated
at the occurrence of each newly generated observation, as the symptom of the
DES is not output in one shot, but one observation at a time. Still, updating
the temporal explanation at the occurrence of the observation oi+1 does not boil
down to simply extending Δ(O[i]) by Δi+1. Instead, generally speaking, each
Δj , j ≤ i, needs to be updated (specifically, pruned).

Example 5. With reference to Example 4, the temporal explanation of O after
the third observation, is Δ([act , opn, sby ]) = [∅, ∅, ∅, {∅, {fcb}, {fcs}}]. The set
Δ3 = {∅, {fcb}, {fcs}} includes the diagnoses relevant to the trajectories end-
ing in the states 6, 7, 10, or 11 of P∗ (cf. Fig. 2). However, after the reception
of the fourth observation, namely act , only the transition up to the state 10
is consistent (being exited by s1 and s3), which implies the diagnosis {fcb}.
Hence, the other two candidates in Δ3, namely ∅ and {fcs}, are removed,
so that the extended temporal explanation becomes Δ([act , opn, sby , act ]) =
[∅, ∅, ∅, {{fcb}}, {{fcb}, {fcb, fos}}], where Δ4 = {{fcb}, {fcb, fos}} is the set of
the diagnoses implied by the trajectories ending in states 15, 19, 27, or 28.

4 Temporal Dictionary

A technique for preprocessing a DES X in order to generate a DFA, the temporal
dictionary, for supporting the online diagnosis of X efficiently is presented.
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Definition 2. Let X ∗ be a diagnosis space. Let X ∗
n be the nondeterministic finite

automaton (NFA) obtained from X ∗ by substituting the observation o for the
component transition t marking each transition in X ∗, where (t, o, f) ∈ μ(X ).
The temporal dictionary of X is the DFA X � obtained by the determinization
of X ∗

n , which is decorated by the following additional information:

1. Each state x� in X � is marked with the sets �x��, ‖x�‖, and Δ(x�), where:
(a) �x�� is the set of states of X ∗

n included in x�,2

(b) ‖x�‖ is the set of pairs (x∗
1, x

∗
2) where x∗

1 ∈ �x��, x∗
2 ∈ �x��, x∗

1 is entered
by an observable transition in X ∗

n , x∗
2 is exited by an observable transition

in X ∗
n , and there is a (possibly empty) sequence of ε-transitions in X ∗

n

connecting x∗
1 with x∗

2,
(c) Δ(x�) is the set of diagnoses associated with the X ∗

n states in �x��;
2. Each transition 〈x�

1 , o, x�
2 〉 in X � is marked with �〈x�

1 , o, x�
2 〉�, denoting the

set of transitions 〈x∗
1, o, x

∗
2〉 in X ∗

n where x∗
1 ∈ �x�

1 � and x∗
2 ∈ �x�

2 �.
Proposition 1. The language of X � equals the set of possible symptoms of X .
Besides, if O is a symptom in X � with accepting state x�, then Δ(x�) = Δ(O).

Remarkably, according to Proposition 1, the explanation of a symptom O is
materialized in the state of the temporal dictionary accepting the string O,
hence making the generation of the explanation of O very efficient.

Example 6. With reference to the diagnosis space P∗ in Fig. 2, the temporal dic-
tionary P� is outlined on the left side of Fig. 3, with explanations being listed in
the table shown on the right side. Details of states and transitions are displayed in
Fig. 4. Specifically, each (shadowed) state p� incorporates the relevant set �p��
of P∗ states, along with the set of connections ‖p�‖, indicated by internal arcs.
Each transition 〈p�, o, p′�〉 is unfolded into the set of transitions �〈p�, o, p′�〉�
in P∗. In accordance with Proposition 1, given O = [act , opn, sby , act , cls],
which has accepting state 8 in P�, we have Δ(8) = {{fcb, fos}} = Δ(O) (cf.
Example 4).

Based on Definition 1, the temporal explanation of O = [o1, . . . , on] is a sequence
Δ(O) = [Δ0,Δ1, . . . ,Δn] where each Δi, i ∈ [0 .. n], is the set of diagnoses
implied by T[i], where T[i] also implies O[i]. Here, the key point is that the
same trajectory T must fulfill these conditions for all prefixes O[i]. This prop-
erty makes a temporal explanation consistent: for each diagnosis δi ∈ Δi,
i ∈ [0 .. (n − 1)], there is a diagnosis δi+1 ∈ Δi+1 such that δi ⊆ δi+1, and
vice versa.

Example 7. Consider the symptom O = [act , opn, sby , act , cls] in regard to the
temporal dictionary P� outlined in Fig. 3. The accepting states of O[i], i ∈ [0 .. 5],
are 0, 1, 2, 5, 7, and 8, respectively, which are marked with the sets of diagnoses
Δ(0) = {∅}, Δ(1) = {∅, {fob}, {fos}}, Δ(2) = {∅}, Δ(5) = {∅, {fcb}, {fcs}},

2 According to the Subset Construction determinization algorithm [7], each state of
the DFA is identified by a subset of the states of the NFA.
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State p� Explanation Δ(p�)

0 {∅}
1 {∅, {fob}, {fos}}
2 {∅}
3 {{fob, fcs}}
4 {{fob}, {fob, fcs}}
5 {∅, {fcb}, {fcs}}
6 {{fob}, {fob, fos}}
7 {{fcb}, {fcb, fos}}
8 {{fcb, fos}}
9 {{fob}}
10 {{fob}}
11 {{fcb}, {fcb, fcs}}
12 {{fob}, {fob, fcb}, {fob, fcs}}
13 {{fcb}}
14 {{fcb}}
15 {{fob, fcb, fos}}
16 {{fob, fcb}, {fob, fcb, fos}}
17 {{fcb}, {fob, fcb}, {fcb, fos}}
18 {{fob, fcb}, {fob, fcb, fcs}}
19 {{fob, fcb, fcs}}
20 {{fob, fcb}, {fob, fcb, fos}}
21 {{fob, fcb}}
22 {{fob, fcb}}
23 {{fob, fcb}, {fob, fcb, fcs}}

Fig. 3. Temporal dictionary P� (left) and relevant explanations (right).

Δ(7) = {{fcb}, {fcb, fos}}, and Δ(8) = {{fcb, fos}}. However, the sequence
[Δ(0), Δ(1),Δ(2),Δ(5),Δ(7),Δ(8)] does not expand consistently and, hence,
can not be the temporal explanation of O.

Example 7 clearly shows that the temporal explanation of O cannot simply
be the sequence of the explanations of each O[i], because only a subset of the
trajectories implying O[i] are in general prefixes of the trajectories implying
O[i+1], as a consequence of the constraints imposed by the new observation oi+1.

Example 8. With reference to Example 7, we have [Δ(0),Δ(1),Δ(2)] = [{∅},
{∅, {fob}, {fos}}, {∅}]. Clearly, Δ(2) = {∅} is not a consistent expansion of
Δ(1) = {∅, {fob}, {fos}}. In fact, considering P� outlined in Fig. 4, initially
we have Δ0 = Δ(0) = {∅}. At the reception of the first observation act , the
accepting state in P� is 1, thereby Δ(1) is the set of diagnoses associated with
the states within 1, namely {∅, {fob}, {fos}}. At the reception of the second
observation opn, the accepting state becomes 2, including just the X ∗ state
3 = ((awake, open), ε, ∅). Hence, we have Δ(2) = {∅}. The point is, after the
occurrence of the observation opn, as clearly indicated in Fig. 4, the only tra-
jectory in P∗ that is consistent with [act , opn] is 0 → 1 → 3. Consequently, the
candidate diagnoses associated with the P∗ states 2, 4, and 5 in the state 1 need
to be removed from Δ1, thereby obtaining [Δ0,Δ1,Δ2] = [∅, ∅, ∅], which, based
on Definition 1, is in fact the temporal explanation of [act , opn]. In the worst
case, this pruning needs to be propagated backward in Δ(O) up to Δ0.
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Fig. 4. Details of the temporal dictionary P� outlined in Fig. 3.

When a DES X is being operated, a symptom of X is generated one observation
at a time. Assuming that the current symptom is O[i] = [o1, . . . , oi] and the
corresponding temporal explanation Δ(O[i]) has been generated already, the
occurrence of a new observation oi+1 requires the diagnosis engine to expand
the temporal explanation by the insertion of Δi+1 and, in the worst case, by the
backward pruning of Δi,Δi−1, . . . ,Δ0, thereby generating the temporal expla-
nation Δ(O[i+1]). In order to perform this task efficiently, each diagnosis set Δi

in the temporal explanation is associated with additional information, leading
to the notion of a temporal abduction (Definition 3).

Definition 3. Let O = [o1, . . . , on] be a symptom of X . The temporal abduc-
tion A of O is a sequence A(O) = [α0, α1, . . . , αn], where ∀i ∈ [0 .. n], αi =(
X∗

i , x�
i ,Δi

)
, where x�

i is the accepting state of O[i] in X �, while X∗
i ⊆ �x�

i �
and Δi ⊆ Δ

(
x�

i

)
are defined by the following rules:
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1. X∗
0 = ∅;

2. Δn = Δ (x�
n );

3. If n �= 0, then X∗
n =

{
x∗

n | (x∗
n−1, on, x∗

n) ∈ �(x�
n−1, on, x�

n )�};
4. If i < n, then Δi = {δi | x∗

i = (Ci, Li, δi), 〈x∗
i , oi, x

∗
i+1〉 ∈ �〈x�

i , oi, x
�
i+1〉�,

x∗
i+1 ∈ X∗

i+1};
5. If i �= 0 and i �= n, then X∗

i = {x∗
i | (x∗

i , x
′
i
∗) ∈ ∥

∥x�
i

∥
∥ , 〈x′

i
∗
, oi, x

∗
i+1〉 ∈

�〈x�
i , oi, x

�
i+1〉�, x∗

i+1 ∈ X∗
i+1}.

That is, the temporal abduction of O is a sequence of triples
(
X∗

i , x�
i ,Δi

)
, where

x�
i is the accepting state of O[i] in the temporal dictionary X �, Δi happens to

equal the homonymous element in Δ(O) (cf. Proposition 2 below), and X∗
i is the

set of X ∗ states that are entered by the trajectories fulfilling Definition 1. When
a new observation occurs while monitoring X , the set X∗

i is key to backward
pruning the temporal abduction, as illustrated in the next example.

Example 9. With reference to the temporal dictionary P� (Figs. 3 and 4), con-
sider the symptom O defined in Example 7, where O[4] = [act , opn, sby , act ].
Based on Definition 3, we have A(O[4]) = [(∅, 0, {∅}), ({1}, 1, {∅}), ({3}, 2, {∅}),
({6}, 5, {{fcb}}), ({15, 27}, 7, {{fcb}, {fcb, fos}})], where the diagnosis set in the
last triple incorporates the diagnoses marking the P∗ states 15, 19, 27, and 28
(those included in the state 7 of P�). Then, assume the occurrence of the new
observation cls, leading to the accepting state 8 of P�. Based on Definition 3, we
have (rule 2) Δ5 = Δ(8) = {{fcb, fos}} and (rule 3) X∗

5 = {18}. In other words,
α5 = ({18}, 8, {{fcb, fos}}). Now, backward pruning starts. First, based on X∗

5 ,
we get (rules 4) Δ4 = {{fcb, fos}}, where {fcb, fos} is associated with the state
15 and the diagnosis {fcb} has been removed, and (rule 5) X∗

4 = {15}, where
the state 27 has been removed. At this point, the application of the same rules
based on X∗

4 has no effect on α3: since X∗
3 = {6} is unchanged, the backward

pruning stops and eventually A(O[5]) fulfills Definition 3.

Proposition 2. If O is a symptom of X , then

Δ(O) =
[
Δi | (X∗

i , x�
i ,Δi) ∈ A(O)

]
. (5)

Based on Proposition 2, the temporal explanation Δ(O) can be generated as a
projection of the abduction A(O). The temporal explanation is required to be
generated while the DES is being monitored: starting from the initial diagnosis
set Δ0, which corresponds to the empty symptom, the temporal explanation is
constructed one observation at a time. Assuming that the temporal explanation
Δ(O[i]) of the current symptom up to the i-th observation is available, the
occurrence of the observation oi+1 requires the generation of Δ(O[i+1]).

5 The Abduce Algorithm

In operational terms, the generation of the temporal explanation is specified by
the Abduce algorithm (Algorithm 1, lines 1–27). Given the temporal dictionary
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Algorithm 1. Abduce
1: procedure Abduce(X�, O[i], A, oi+1)

2: X� =
(

Σ, X�, τ�, x�
0

)
: the temporal dictionary of X

3: O[i] = [o1, . . . , oi]: the prefix of a symptom of X up to the i-th observation

4: A = [α0, α1, . . . , αi]: the abduction of O[i]
5: oi+1: the next observation of X
6: begin

7: Let x�
i be the state of X� in the triple αi

8: x�
i+1 ← τ�(x�

i , oi+1)

9: Δi+1 ← Δ(x�
i+1)

10: X∗
i+1 ←

{
x∗
i+1 | (x∗

i , oi+1, x∗
i+1) ∈ �(x�

i , oi+1, x�
i+1)�

}

11: Extend A by the new triple αi+1 =
(

X∗
i+1, x�

i+1, Δi+1

)

12: for all j from i downto 0 do # Backward pruning of the temporal abduction
13: Let αj = (X∗

j , oj , Δj) be the j-th triple in A
14: Δnew ←

{
δj | x∗

j = (xj , δj), (x
∗
j , oj , x∗

j+1) ∈ �(x�
j , oj , x�

j+1)�, x�
j+1 ∈ X∗

j+1

}

15: if Δnew �= Δj then

16: Substitute Δnew for Δj in αj

17: end if

18: if i �= 0 then # Based on rule 1 of Definition 3, the value of X∗
0 is fixed to ∅

19: X∗
new ←

{
x∗
j | (x∗

j , x′
j

∗) ∈
∥∥∥x�

j

∥∥∥ , (x′
j

∗, oj , x∗
j+1) ∈ �(x�

j , oj , x�
j+1)�, x∗

j+1 ∈ X∗
j+1

}

20: if X∗
new �= X∗

j then

21: Substitute X∗
new for X∗

j in αj

22: else

23: break # If X∗
new equals X∗

j , then backward pruning has no effect
24: end if

25: end if

26: end for

27: end procedure

X �, the current symptom O[i], the corresponding temporal abduction A, and the
new observation oi+1, the algorithm updates A to obtain the temporal abduction
of O[i+1]. To this end, the accepting state x�

i+1 of O[i+1] is determined (lines 7
and 8). Then, based on the rules 3 and 4 of Definition 3, Δi+1 and X∗

i+1 are
generated (lines 9 and 10), thus allowing for the construction of the new triple
αi+1 (line 11). Backward pruning is performed in lines 12–26. Each triple αj ,
with j ranging from i down to 0, is updated based on the rules 4 and 5 of
Definition 3. However, this pruning may stop before the natural end of the loop,
namely when X∗

new equals X∗
j (line 23). If this condition holds, then, based on

Definition 3, all the triples α0, . . . , α
∗
j−1 keep the same value.

Example 10. With reference to Figs. 3 and 4, consider the temporal dictionary
P�. Let O = [act , opn, sby , act , cls] be a symptom of P. Traced in Table 2 is the
generation of the temporal abduction A(O), one observation at a time, where
pruning is denoted by strike-through. Each row i of the table represents the con-
figuration of the temporal abduction after the reception of the i-th observation.
Initially (i = 0), based on rules 1 and 2 of Definition 3, we have α0 = (∅, 0, {∅}).
Upon the reception of o1 = act , according to Algorithm 1, the accepting state
is x�

1 = 1, thereby Δ1 = Δ(1) = {∅, {fob}, {fos}} and X ∗
1 = {1, 2}. Back-

ward pruning has no effect. Upon the reception of o2 = opn, the new triple is
α2 = ({3}, 2, {∅}). In this case, backward pruning removes the candidates {fob}
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Table 2. Incremental generation of A([act , opn, sby , act , cls]) by the Abduce algorithm.

i α0 α1 α2 α3 α4 α5
0 (∅, 0, {∅})
1 (∅, 0, {∅}) ({1, 2}, 1, {∅, {fob}, {fos}})
2 (∅, 0, {∅}) ({1,�2}, 1, {∅,���{fob},���{fos}}) ({3}, 2, {∅})
3 (∅, 0, {∅}) ({1}, 1, {∅}) ({3}, 2, {∅}) ({6, 7}, 5, {∅, {fcb}, {fcs}})
4 (∅, 0, {∅}) ({1}, 1, {∅}) ({3}, 2, {∅}) ({6,�7}, 5, {�∅, {fcb},���{fcs}}) ({15, 27}, 7, {{fcb}, {fcb, fos}})
5 (∅, 0, {∅}) ({1}, 1, {∅}) ({3}, 2, {∅}) ({6}, 5, {{fcb}}) ({15,��27}, 7, {���{fcb}, {fcb, fos}}) ({18}, 8, {{fcb, fos}})

and {fos} from Δ1, as only the transition 〈1, opn, 3〉 in X∗
1 is involved (cf. Fig. 4).

However, since X∗
1 is unchanged, no further pruning is applied. The reception of

o3 = sby moves to the accepting state x�
3 = 5, thereby creating the new triple

α3 = ({6, 7}, 5, {∅, {fcb}, {fcs}}), without backward pruning. The reception of
o4 = act moves to the accepting state x�

4 = 7, thereby creating the new triple
α4 = ({15, 27}, 7, {{fcb}, {fcb, fos}}). Since the involved transition exits state
10 in x�

3 = 5, Δ3 is reduced to {{fcb}}, where {fcb} is the diagnosis marking
the state 10. Furthermore, the state 7 is removed from X∗

3 , because it is not
connected with 10. No further pruning is applicable. Finally, after the recep-
tion of the last observation o5 = cls, the accepting state is x�

5 = 8, thereby
generating the triple α5 = ({18}, 8, {{fcb, fos}}). Since the involved transition
exits the state 15 in x�

4 = 7, Δ4 is reduced to {{fcb, fos}}. Also, the state 27
is removed from X∗

4 . No other pruning is applicable. Eventually, according to
Proposition 2, we have Δ(O) = [{∅}, {∅}, {∅}, {{fcb}}, {{fcb, fos}}, {{fcb, fos}}],
which in fact equals the temporal explanation determined in Example 4 based on
Definition 1. The sequence clearly shows to an operator in charge of monitoring
the system (and possibly of performing recovery actions) that no fault occurred
up to the second observation; then, two faults occurred in cascade, namely fcb
and fos. Without backward pruning, the list of sets of candidate diagnoses is
[{∅}, {∅, {fob}, {fos}}, {∅}, {∅, {fcb}, {fcs}}, {{fcb}, {fcb, fos}}, {{fcb, fos}}], the
interpretation of which may be misleading to the operator. After all, the latter
is not the temporal explanation of O.

6 Dual Knowledge Compilation

A temporal dictionary X � is an extremely efficient tool for supporting the diag-
nosis of DESs. In theory, the temporal dictionary allows the DE to operate always
in quick mode by Engine 1, with Engine 2 never coming into play. However, the
temporal dictionary requires total knowledge compilation, which is out of dispute
for practical reasons. So, in order to escape from total knowledge compilation
and somewhat retaining the advantage of Engine 1, we propose a restricted dic-
tionary that expands over time either by experience or by the injection of specific
knowledge. In other words, we propose dual knowledge compilation based on an
open dictionary. Intuitively, an open dictionary is a subgraph of the temporal
dictionary whose language is a subset of the language of the temporal dictio-
nary (the set of symptoms of the DES). As such, each symptom O in the open
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dictionary is associated with Δ(O), the sound and complete set of candidate
diagnoses that explain O. Hence, despite being sound (but not complete) in the
set of symptoms, the open dictionary is sound and complete in the explanation
of the symptom, provided that the symptom is included in the language of the
open dictionary. What is the initial configuration of the open dictionary? We
suggest to initialize the open dictionary with a prefix of the temporal dictionary,
as specified in Definition 4.

Definition 4. Let X � be a temporal dictionary. The distance of a state x� in
X � is the minimum number of transitions connecting the initial state of X � with
x�. The prefix of X � up to a distance d ≥ 0, denoted X �

[d], is the subgraph of
X � comprehending all the states at distance ≤ d and all the transitions exiting
the states at distance < d.

Fig. 5. From left to right, expansion of the open dictionary: P�
[2], P�

[2,O], and P�
[2,O,S].

Example 11. With reference to Fig. 3, the prefix of P� up to distance 2, namely
P�
[2], is displayed on the left side of Fig. 5.

A prefix X �
[d] provides the explanation of every symptom that is not longer than

d. If X �
[d] embodies a cycle (which is not the case in P�

[2]), it also provides the
explanation of the infinite set of symptoms encompassing this cycle. However,
any symptom longer than d may not belong to the language of X �

[d], such as
O = [act , sby , opn] in P�

[2]. In this case, comes into play Engine 2, which generates
the temporal explanation Δ(O) based on the abduction of O, namely a DFA
whose language is the subset of the trajectories of X implying O. To this end,
Engine 2 performs model-based reasoning to reconstruct the subspace of X �

required. Once provided the temporal explanation Δ(O), the experience acquired
by the DE can be integrated into the open dictionary based on the symptom
pattern of O. However, the notion of a symptom pattern goes beyond a (plain)
symptom, as specified below.

Definition 5. A symptom pattern of a DES X is a DFA whose language is a
subset of the symptoms of X .

A special (and very simple) case of symptom pattern is associated with each
symptom O, denoted O∗, which is the DFA recognizing O (the language of O∗

is the singleton {O}).
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Fig. 6. (Simple) symptom pattern O∗, where O = [act , sby , opn].

Example 12. Displayed in Fig. 6 is the symptom pattern of O = [act , sby , opn].
Another (circular) symptom pattern is displayed on the bottom-right side of
Fig. 7 (cf. Example 16).

Given a symptom pattern O∗, the language of an open dictionary X � can be
extended by the language of O∗ by means of the Dictionary Extension algorithm
listed below (cf. Algorithm 2, lines 1–31). We assume that each state x� in
X � is equipped with a labeling set, denoted Ω(x�) (initially empty), which
is instantiated with states in O∗. The algorithm aims to match O∗ with the
language of X �. When the matching of an observation o succeeds, the labeling
set of the state reached in X � is extended by the state reached in O∗(provided it
is not included). If the matching fails, then X � is extended by a new transition
and, possibly, by a new state. Let 〈x�, o, x′�〉 be the missing transition in X �.
Based on lines 13–15, the new state x′� is generated first by determining the set
of X ∗ states exited by a transition marked by o and, then, by extending this set
with all the transitions exiting these states that are marked by an unobservable
component transition. It should be clear that X ∗ is not materialized: only the
states required are actually generated starting from the X ∗ states within x� and
stored in X �. Once all the transitions exiting the state ω ∈ O∗ considered have
been processed, ω ∈ Ω(x�) is marked (line 27). Given ω ∈ Ω(x�), two cases are
possible. If ω is not marked, then the transition function of x� in X � needs to
be checked against O∗. If, instead, ω is marked, then the update of the transition
function of x� is completed. Hence, since it is impossible to insert ω into Ω(x�)
if included already, once ω is marked, the processing of ω is inhibited, thereby
preventing the infinite matching of cycles in O∗.

Example 13. Consider the open dictionary P�
[2] in Fig. 5 (left) and the symp-

tom pattern O∗ in Fig. 6. The extension of P�
[2] based on O∗ by Algorithm 2

is performed as follows (to distinguish from O∗ states, the states of the open
dictionary are in bold). Initially, the labeling set Ω(0) is {0}, where 0 is the
initial state of O∗. Since both act and sby are matched, the labeling sets of the
involved states become Ω(1) = {1} and Ω(4) = {2}. Now, since no transition
marked by opn exits 4, the missing dictionary state x′� = 3 is generated first
computing X∗

opn = {13}, where 13 is the state reached by the P∗ state 9 (cf.
Fig. 2). However, since no transition exits 13 in P∗, we have X̂∗

opn = ∅ and,
hence, X̄∗

opn = {13} = 3. Since it is missing, the state 3 is inserted into P�
[2]

and marked by the explanation Δ(3) = {{fob, fcs}}. Eventually, the state 3
is labeled with Ω(3) = {3} and the transition 〈4, opn,3〉 is created. Since no
transition exits the state 3 in O∗, the processing of ω = 3 has no effect and the
condition of termination in line 29 is true, thereby ending the loop. The updated
open dictionary, namely P�

[2,O], is shown in the center of Fig. 5.
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Algorithm 2. Dictionary Extension
1: procedure Dictionary Extension(X �, O∗)
2: X � = (Σ, X�, τ�, x�

0 ): an open dictionary of X
3: O∗ = (Σω, Ω, τω, ω0, Ωf): a symptom pattern of X
4: begin
5: Insert ω0 into the labeling set Ω(x�

0 )
6: repeat
7: Choose a state x� ∈ X� such that there is an unmarked ω ∈ Ω(x�)
8: for all unmarked ω ∈ Ω(x�) do
9: for all transitions 〈ω, o, ω′〉 ∈ τω do

10: if 〈x�, o, x′�〉 ∈ τ� then
11: Insert ω′ into Ω(x′�) only if ω′ /∈ Ω(x′�)
12: else
13: X∗

o ← {x′∗ | x∗ ∈ x�, 〈x∗, o, x′∗〉 ∈ τ(X ∗)}
14: X̂∗

o ← the set of states in X ∗ that are reachable from a state in X∗
o by

a sequence of transitions 〈x∗
i , t, x∗

j 〉 with t being unobservable

15: X̄∗
o ← X∗

o ∪ X̂∗
o

16: if X� includes a state x′� = X̄∗
o then

17: Insert into τ� the new transition 〈x�, o, x′�〉
18: Insert ω′ into Ω(x′�) only if ω′ /∈ Ω(x′�)
19: else
20: Insert into X� the new state x′� = X̄∗

o

21: Δ(x′�) ← {δ | x∗ ∈ x′�, x∗ = (C, L, δ)}
22: Label x′� with the singleton Ω(x′�) = {ω′}
23: Insert into τ� the new transition 〈x�, o, x′�〉
24: end if
25: end if
26: end for
27: Mark ω within the labeling set Ω(x�)
28: end for
29: until there is no x� ∈ X� such that Ω(x�) includes an unmarked state
30: Empty all the nonempty labeling sets Ω(x�)
31: end procedure

Based on Example 13, one may argue that, since the prefix of the symptom
O = [act , sby , opn] up to the second observation, namely [act , sby ], is already in
the language of P�

[2], it might be convenient to avoid generating the abduction of
O by Engine 2. Instead, the extension of the dictionary might be performed on
the fly to eventually obtain the explanation from the state 3 created. Actually,
this is reasonable in general: Algorithm 2 can actually serve two purposes: either
to extend the language of the open dictionary with the language of the symptom
pattern or to perform the diagnosis of a given symptom. In either case, Engine 1
matches the observation pattern with the dictionary, whereas Engine 2 performs
model-based reasoning to generate the portion of the dictionary that is missing.
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7 Scenarios

An open dictionary X � can be extended with (a possibly infinite number of)
new symptoms. The simplest way is adding a symptom O that was previously
explained by Engine 2, as in Example 13. If O is generated in X � by a path of
transitions involving a cycle, then the language of X � will be extended not only
with O, but also with the infinite symptoms involved in the circular path. For
example, extending P�

[2] in Fig. 5 with the symptom [act , opn, sby , cls] actually
extends P�

[2] with the infinite set of symptoms generated by the circular path
0 → 1 → 2 → 5 → 0. The dictionary can also be extended based on particular
behavioral patterns of the DES, called scenarios. A scenario is a behavior of
the DES that is considered either most probable or most critical and, hence,
is required to be explained efficiently. The idea is to generate the symptom
pattern of the scenario and to extend the language of the open dictionary with
its language. This way, each symptom generated from now on by a trajectory
that conforms with the scenario will be explained by Engine 1 quickly.

Definition 6. A scenario of a DES X is a pair S = (Σ,L), where Σ is a subset
of the component transitions in X and L is a regular language on Σ.

Since Σ is a subset of the component transitions in X , all the transitions not
included in Σ are irrelevant to the scenario. Therefore, in general, a string in L
is not a trajectory of X .

Example 14. The scenario in which the breaker is stuck closed can be defined
as S = (Σ,L), where Σ = {s3, s4, b1, b2, b3, b4} and L is specified by the regular
expression b3 b3 b∗

3 (namely, b3 repeated at least twice).3

Definition 7. Let S = (Σ,L) be a scenario of X . The restriction of a trajectory
T in X ∗ on Σ is the sequence TΣ = [t | t ∈ T, t ∈ Σ]. The abduction of S,
denoted X ∗

S , is a DFA whose language is the set {T | T ∈ X ∗, TΣ ∈ L}.
In other words, the abduction of a scenario S is a subspace of X ∗ where each
trajectory T conforms to one string of the scenario, in the sense that the subse-
quence of the component transitions in T that are in Σ is a string in L.

Example 15. Consider the scenario S defined in Example 14. The generation of
the abduction P∗

S is based on the DFA recognizing the language L, namely L̂,
shown on the top-left of Fig. 7. The DFA representing P∗

S is displayed on the
top-right of the same figure, where each state is a pair (p∗, 
̂), where p∗ is a state
of P∗ and 
̂ a state of L̂. A state (p∗, 
̂) is final when 
̂ is final.

3 A regular expression is defined inductively on the alphabet Σ. The empty symbol
ε is a regular expression. If a ∈ Σ, then a is a regular expression. If x and y are
regular expressions, then the followings are regular expressions: x | y (alternative),
x y (concatenation), x? (optionality), and x∗ (repetition zero or more times).
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Fig. 7. L̂ (top-left), P∗
S (top-right), and O∗

S (bottom).

Definition 8. Let S = (Σ,L) be a scenario of a DES X and X ∗
S the abduction

of S. Let N be the NFA obtained from X ∗
S by substituting 〈x, o, x′〉 for every

transition 〈x, t, x′〉, where (t, o, f) ∈ μ(X ). The symptom pattern of the scenario
S, denoted O∗

S , is the minimum DFA equivalent to N .

Example 16. With reference to the abduction P∗
S determined in Example 15

(top-right of Fig. 7), shown on the bottom-left side of Fig. 7 is the DFA obtained
by determinization of N (cf. Definition 8), where the states {5, 6} and {6, 9} are
equivalent. The minimal DFA, namely the symptom pattern O∗

S , is shown on
the bottom-right side of Fig. 7.

The language of the symptom pattern O∗
S of a scenario S is composed of all the

symptoms with which S manifests itself to the observer. Still, any such symptom
can be implied not only by the trajectories that conform with the scenario, but
also by other trajectories. The extension of the open dictionary based on O∗

S
allows for the sound and complete explanation of any symptom in O∗

S .

Example 17. Based on Algorithm 2, extending the open dictionary P�
[2,O] (center

of Fig. 5) with the symptom pattern O∗
S results in the new open dictionary

P�
[2,O,S] shown on the right side of Fig. 5.

8 Conclusion

The diagnosis technique presented in this paper is viable and becomes increas-
ingly efficient without requiring the generation of the whole space of the DES;
that is, it works while avoiding total knowledge compilation. The open dictio-
nary is assumed to be initialized before the DES is being operated, starting from
a prefix of the temporal dictionary, which is then integrated with the symptoms
and the candidate diagnoses relevant to a set of scenarios of the DES that are
considered worth being diagnosed efficiently. When the DES is being operated,
dual knowledge compilation can be applied, in other words, the open dictionary
can be enlarged at any time in two ways, either: (a) by incorporating new com-
piled knowledge coming from additional scenarios, or (b) by coping with new
symptoms explained by Engine 2. We are implementing the diagnosis technique
presented in this paper in C++. As future research, we plan to extend the tech-
nique to other classes of DESs, including complex DESs [10,14,16–18].
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Abstract. Involving humans in the learning process of a machine learn-
ing algorithm can have many advantages ranging from establishing trust
into a particular model to added personalization capabilities to reducing
labeling efforts. While these approaches are commonly summarized under
the term interactive machine learning (iML), no unambiguous definition
of iML exists to clearly define this area of research. In this position paper,
we discuss the shortcomings of current definitions of iML and propose
and define the term guided machine learning (gML) as an alternative.
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1 Introduction

With the continuing advances in machine learning, the decisions taken by
machine learning algorithms have more and more impact on everyday life. There-
fore, it is important that users of these algorithms, as well as people affected by
these decisions can understand and trust the used algorithms. One common way
to achieve this is interactive machine learning (iML) [12], which interactively
involves users in the training process. This can help users to better understand
the decisions taken by the machine learning algorithm and therefore increase
trust in those algorithms. Furthermore, it enables users to adjust the algorithm’s
behavior to their needs. Thus, making the benefits of machine learning available
to the wider public, leading to a democratization of machine learning.

While characterizations and definitions of iML have been provided in survey
papers by Amershi et al. [1], Bertini and Lalanne [2] and Holzinger [10], we argue
that all of these definitions are ambiguous to some degree and thus include or
exclude more approaches than intended. As an unambiguous definition is impor-
tant to define a research area clearly and to help identify relevant work easily, we
propose a new definition for iML, which avoids the identified ambiguities. Fur-
thermore, we argue that the word interactive in iML is unintentionally broad
and propose the term guided machine learning (gML) for this area instead.
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We discuss the issues with current definitions of iML in Sect. 2. In Sect. 3,
we propose our definition of gML and examine its implications for other fields of
research within machine learning, and in Sect. 4, we summarize the main points
of this position paper.

2 Interactive Machine Learning

In the following, we clarify basic machine learning terminology in Sect. 2.1,
describe the difficulty to distinguish iML from general machine learning (ML)
in Sect. 2.2 and discuss the shortcomings of different attempts to establish this
distinction in Sects. 2.3 and 2.4. Furthermore, we argue that the term interactive
is too broad to describe what is currently considered as iML in Sect. 2.5.

2.1 Machine Learning

Machine learning is concerned with algorithms that learn from data. Mitchell [15]
defines this learning as follows:

Definition 1. A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if its performance
at tasks in T, as measured by P, improves with experience E.

In order to achieve this learning from experience, a machine learning algo-
rithm builds a model from the training data. Thus, the model encodes the current
state of the learner. Since solving tasks from the given class of tasks is based on
the model, improvements of the model result in an improved performance.

2.2 Difference to Machine Learning

In order to establish iML as distinct field of research, any definition of iML
needs to separate it clearly from existing fields. This is especially true since the
name interactive machine learning does not in itself separate iML from ML.
Based purely on the name, one could define iML as algorithms that improve
their performance at a task through interactions. Here, it is important to note
that this definition does not limit the type, source or target of the interactions.
From Definition 1, we can see that improvement through experience, for ML,
compared to improvement through interactions, for iML, is the only difference
between this name based iML definition and the definition of ML. However, this
makes iML identical to ML, since experience presupposes interaction, as we
will show in the following.

Experience can only be gained through either practical action or
observation. Gaining experience through practical action involves doing some-
thing and observing its effect, thus it involves interaction. For example, learn-
ing to play Tetris involves playing the game and observing the results of each
decision taken; hence, interacting with the Tetris world. Therefore, gaining
experience through practical action clearly requires interaction.
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Furthermore, gaining experience through observation requires this observa-
tion to be active. This means that it is not sufficient to gather observational
data, but this data needs to be processed to gain experience. However, this
processing of observational data requires a certain level of interaction with this
data. For example, it is not sufficient to stare at someone playing Tetris to learn
how to play, instead hypotheses need to be formed based on current observa-
tional data to direct attention to gain more relevant data and to extract relevant
observations. Therefore, gaining experience through observation clearly
requires interaction.

In order to avoid this overly broad definition of iML, common definitions of
iML require the presence of a human or non-human interaction partner, which
distinguishes iML from ML.

2.3 Human-in-the-Loop

The most common restriction on the interaction partner is to require this partner
to be human. For example, Bertini and Lalanne describe iML as follows: “Inter-
active Machine Learning is an area of research where the integration of human
and machine capabilities is advocated, beyond scope of visual data analysis, as a
way to build better computational models out of data. It suggests and promotes
an approach where the user can interactively influence the decisions taken by
learning algorithms and make refinements where needed.” [2]. This clearly sep-
arates iML from ML by requiring a human user to interact with the learning
algorithm. However, one potential issue with this approach is that it introduces a
certain degree of ambiguity, since it is unclear if an iML algorithm, accord-
ing to this description, should still be considered as such if the human
is replaced with a program simulating human interactions. This uncer-
tainty is problematic for a definition of iML, since it leaves the classification of
an algorithm as iML algorithm up for interpretation. In this way, it may be
possible that important iML approaches are not recognized as such
and are overlooked by the iML community.

2.4 Non-human Agents

One way to avoid this ambiguity caused by requiring human interaction partners
is to extend the iML definition to non-human partners. This is done, for example,
in Holzinger’s definition of iML [10]:

Definition 2. Interactive machine learning is concerned with algorithms that
can interact with agents and can optimize their learning behavior through these
interactions, where the agents can also be human.

While this definition clearly sidesteps the ambiguity caused by limiting iML
only to human interaction partners, it is actually even more ambiguous. The
main issue of this definition is that it requires an ambiguous distinc-
tion to be made between non-human agents and machine learning
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mechanisms, in order to distinguish iML from ML. In the following, we
will illustrate the difficulty to make this distinction with the help of the operation
of decision tree pruning as example.

Decision tree pruning is an operation performed on a decision tree to avoid
overfitting and to improve the overall performance of the decision tree by remov-
ing training data specific subtrees. Han and Cercone [8], for example, propose the
DTViz system, which allows human users to interactively construct and prune
decision trees. Clearly, this system allowing users to perform tree pruning should
be considered as iML system according to Definition 2. One algorithm, which
could replace the user in this approach, is the pruning algorithm proposed by
Kearns and Mansour [13]. This algorithm determines automatically for a given
decision tree which subtrees should be pruned and thus performs the same task
as the human user. Therefore, the use of this algorithm instead of a human user
should not change the system’s classification as iML system. This is the case,
since the basic interaction, the system presents the current decision tree and
receives pruning decisions from the agent, is still the same. However, the same
can be said about the approach proposed by Gelfand et al. [4], which integrates
the tree pruning into the tree construction process. While the basic interaction
stays the same, the pruning algorithm becomes part of the learning algorithm.
Based on this, one can either argue that this integrated approach should
be classified as iML, since the interaction is basically the same as in
the case of the DTViz system, or argue that it should not be classified
as iML, since no real interaction is taking place, because the pruning
algorithm is part of the learning mechanism. Thus, it is not possible to
unambiguously classify the presented pruning approach as iML algorithm.

The presented example illustrates that it can be difficult to distinguish
between an agent interacting with a machine learning algorithm and a part
of this learning algorithm. However, this distinction is necessary, since otherwise
any learning mechanism and thus all of ML could be classified as iML, which
would render the definition useless.

2.5 Interactive Learning

Apart from the problem of differentiating iML from ML, another issue for
any definition of iML is that the term interactive covers two different
scenarios. On the one hand, the interaction partner has an idea of the task the
machine learning algorithm should perform and directs it towards this goal, while
on the other hand the interaction partner may not have such a goal and may
just interact with the algorithm without clear purpose. Clearly, both scenarios
are covered by the term interactive, since an agent interacts with the learning
algorithm in both cases. However, the former, directed scenario is arguably more
interesting and most commonly considered in characterizations of iML. This is
made clear, for example, in the previously mentioned description of iML by
Bertini and Lalanne [2], as well as by Amershi et al. who state: “As a result
of these rapid interaction cycles, even users with little or no machine-learning
expertise can steer machine-learning behaviors through low-cost trial and error
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or focused experimentation with inputs and outputs” [1]. In order to obtain
a focused definition of iML, which reflects this preference, any iML
definition needs to explicitly exclude the undirected case. An alterna-
tive solution, i.e., the replacement of the word interactive with guided will be
discussed in the next section.

3 Guided Machine Learning

In this section, we propose guided machine learning (gML) as alternative to
interactive machine learning (iML). In Sect. 3.1, we propose a definition for
gML and discuss how this definition addresses the previously raised issues. Fur-
thermore, we review the relationship between gML and other fields of research
within machine learning in Sect. 3.2.

3.1 Proposed Definition

In Sect. 2, we have shown that, while it is important to distinguish iML from ML,
it is difficult to do without introducing a certain degree of ambiguity. We argue
that the ambiguity introduced by allowing non-human agents, as discussed in
Sect. 2.4, is worse than when focusing only on human interaction partners. This
is the case, since considering non-human agents either requires highly subjective
judgments on whether or not to include a proposed algorithm or, if relaxed too
much, may lead to including all of ML. Therefore, we propose to focus on human
interaction partners.

In order to reduce the ambiguity introduced by limiting our definition to
human users, we propose to require the presence of a user interface instead of
a user for considering an approach as falling under our definition. In this way,
the substitution of a real user with a program simulating user activity does not
undermine the definition, while the required presence of a user interface sets a
clear boundary between considered approaches and the rest of ML.

As mentioned in Sect. 2.5, the use of the word interactive covers two distinct
scenarios of which only one is relevant. While this issue could be addressed in the
definition, we propose to replace interactive with guided, since this captures the
intended scenario in which a user interacts with a machine learning algorithm
in order to improve its performance on a certain task. Therefore, we propose the
term guided machine learning and define learning through guidance similar to
Mitchell’s definition for learning [15] as follows:

Definition 3. A computer program is said to learn through guidance G from
a human H with respect to some class of tasks T and performance measure P,
if its performance at tasks in T, as measured by P, improves through actions
performed by H, given that these actions are dependent on the program’s current
state and aim to achieve such an improvement.

This definition captures the guidance aspect by requiring the human user
to perform actions, which improve the performance of the machine learning
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algorithm, with the goal to achieve this improvement. Furthermore, it captures
the interactiveness of this guidance process by requiring the user’s actions to be
based on the current state of the algorithm. This state can be presented to the
user directly in form of the current model or indirectly in form of the current
performance on the task. In this way, it is possible for the user to iteratively
provide guidance to the algorithm throughout the learning process. With this
definition of learning from guidance, we can now define gML as follows:

Definition 4. Guided machine learning is concerned with the design of inter-
faces for human users, which enable a user to perform actions, which allow a
computer program to learn from this guidance.

This definition clearly separates gML from ML by requiring the machine
learning algorithm to learn from data collected iteratively through a user inter-
face. It avoids to be dependent on the deployment context by not requiring the
presence of a human or the presence of guidance actions, but instead focuses on
the presence of an interface, which would allow a human to perform such actions.

One potential issue of the proposed definition is that ascertaining the required
properties of the provided interface may be subjective. However, we would argue
that checking if a provided interface presents the machine learning algorithm’s
current state in a way aimed at human understanding and allows actions to be
taken in response to the presented information, which can improve the algo-
rithm’s performance, is reasonably objective.

3.2 Definition Consequences

In the following, we will discuss the relationship between gML, as defined in the
previous section, and other research areas in ML.

Supervised Learning. The key defining feature of supervised learning is that
supervised machine learning algorithms learn to perform their task from a labeled
training data set. While these labels are generally provided by humans, super-
vised learning cannot be considered as gML, since data sets in supervised learning
are available in full at the beginning of the training. In contrast, in gML, train-
ing labels are provided throughout the training process via a user interface and
depend on the model’s current state. One example for such guidance through the
provision of more labeled data is the approach to pixel classification proposed
by Fails and Olsen [3]. In their approach, Fails and Olsen allow users to view
the current pixel labeling performance of a classifier and to provide more pixel
labels to improve the performance. Apart from the plain pixel labels, the pro-
vided information also contains the implicit knowledge that the newly labeled
pixels are more relevant to the learning process than a randomly selected set of
pixels, which would be chosen by a supervised learning approach.

Unsupervised Learning. The overall goal in unsupervised learning is to
extract information from a given data set without any form of human inter-
vention or guidance. Thus, unsupervised learning is clearly unrelated to gML.
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Reinforcement Learning. Reinforcement learning is concerned with learn-
ing how to act in a given situation not from a prescribed ideal action, as in
supervised learning, but instead from a cumulative reward signal [18]. In gen-
eral, reinforcement learning approaches cannot be considered as part of gML,
since reinforcement learning requires only the collection of a reward signal, which
does not necessarily presuppose a user interface. However, reinforcement learn-
ing ideas can be used in gML approaches, such as in the approach by Thomaz
and Breazeal [19], which allows users to give reward signals to a virtual robot, in
order to teach it to bake a cake. The reward signal provided for certain behavior
depends on the robot’s current state, since its actions are determined by it.

Active Learning. In active learning [17], an active learning algorithm selects
the training samples, which should be used to train a machine learning algorithm
based on the learning algorithm’s current state. While this conditionality on the
learner’s state leads to a close relationship between active learning and gML, not
all active learning approaches are also gML approaches, since active learning does
not require a user interface. However, active learning is useful for designing user
interfaces, since it can reduce the amount of data to be presented to a user.
For example, the approach proposed by Heimerl et al. [9] for classifying text
documents as relevant or irrelevant uses active learning to solicit user labels.

Adversarial Training. In adversarial training scenarios, learning is facilitated
by the competition between two or more learners. Typical examples for these
scenarios are Samuel’s checkers program [16], which trained an algorithm to
play checkers by playing against itself, as well as generative adversarial net-
works (GANs) [7], which train a generator to generate samples from a target
distribution together with a discriminator for distinguishing between generated
and real samples. While learning using adversarial training proceeds in an itera-
tive feedback loop between the adversaries, it is clearly different from gML. This
is the case, not only because most adversarial training does not use humans as
adversary, which would be required for gML, but also because gML does not
assume a competition between the user and the algorithm. In contrast, the guid-
ance aspect requires the user to perform actions with the aim to improve the
learner’s performance.

Explainable Machine Learning. The main goal of explainable machine learn-
ing is to make decisions taken by an ML algorithm transparent, understandable
and explainable [6]. This can be achieved either through post-hoc explanations,
which are generated on demand for a particular decision, or through ante-hoc
explanations, which arise naturally from the used model [11]. While explainable
ML does clearly not belong to gML, it is an important aspect in the interface
design for gML approaches. In particular ante-hoc systems are useful for gML,
since they are directly interpretable by users and should therefore make it easier
for them to guide the learning process. This connection between explainable ML
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is even clearer in the concept of causability [11], which requires the provided
explanation to reach a certain causal understandability. This is interesting for
gML, since a causal explanation of a taken decision should enable users to guide
the learning process more efficiently and more easily.

Machine Learning Environments. While not directly a research area in
ML, machine learning environments, such as Weka1, may appear to be closely
related to gML, since they provide a user interface, which can be used to choose
learning algorithm and model hyperparameters, which can improve the algo-
rithm’s performance on a task. However, the difference between those environ-
ments and gML approaches is that they normally rebuild the previous model
from scratch with the newly chosen hyperparameters. This is different from
gML, which assumes an update rather than a rebuild of the model. One app-
roach, which blurs this line between machine learning environments and gML
is human-guided machine learning (HGML) [5], which allows users to interact
with an automated ML (AutoML) system. These interactions can be concerned
with the input data, for example in form of feature or instance selection, with
the model development, such as model selection or parameter settings, or with
the model interpretation, for example in form of model assessment or parameter
comparison. Such a system could be considered as a gML approach, if the user
actions are used as input to teach a meta-learner to find a suitable configura-
tion for the AutoML system. One other approach, which may bridge the gap
between gML and machine learning environments is explanatory debugging, as
proposed by Kulesza et al. [14]. The main idea of explanatory debugging is to
provide users with an explanation of the algorithm’s current performance, which
can help them to modify the model accordingly.

4 Summary

In this paper, we have discussed various issues of existing descriptions and defini-
tions of iML. We have argued that iML needs to be defined based on the presence
of an interaction partner to distinguish it from general machine learning. How-
ever, we have also shown that requiring the presence of a human or non-human
interaction partner leads to certain ambiguities. Furthermore, we have pointed
out that the word interactive in iML may lead to the inclusion of approaches
commonly not considered as part of iML. We have addressed these issues by
proposing guided machine learning and defining it in a way, which avoids the
identified sources of ambiguity.
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Abstract. Ontologies are useful for modeling domains and can be used
to capture expert knowledge about a system. Genetic programming can
be used to identify statistical relationships or models from data. Com-
bining expert knowledge as well as statistical rules identified solely from
data is necessary in application domains where data is scarce and a large
body of expert knowledge exists.

We therefore study if the performance of genetic programming can
be improved by incorporating prior knowledge from an ontology. In par-
ticular, we include prior knowledge as additional features for genetic
programming.

The approach is tested with six benchmark data sets where we com-
pare the required computational effort that is necessary to find an accept-
able model with and without additional features. The results show that
additional features gathered from an ontology improve the performance
of tree-based GP. The probability to find acceptable solutions with a
fixed computational budget is increased. For noisy data sets we observed
the same effect as for the data sets without noise.

Keywords: Supervised learning · Ontologies · Domain knowledge ·
Genetic programming · Symbolic regression

1 Motivation

In the recent years, research in many domains has developed into a mostly data-
driven activity. This requires researchers with knowledge in their own research
domain on the one hand and knowledge in data science on the other hand. It is a
challenge to bring these two worlds together. In the field of medical informatics,
activities around this problem are often labelled as doctor-in-the-loop approach
[11]. The goal is to deeply integrate the domain experts into the knowledge dis-
covery process and benefit from their expertise, while acknowledging the fact
that these domain experts are neither IT experts nor data scientists. Thus, sup-
port from software tools is needed to utilize experts’ prior domain knowledge for
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modeling. The challenge from a technical point of view is to formally describe
their knowledge and to make algorithms that elicit and employ this knowledge.
In the literature various examples of approaches to integrate humans in the pro-
cess can be found. For example Holzinger et al. include humans by gamification
into a machine learning process [16].

A concept that is potentially able to cope with this challenge is genetic pro-
gramming (GP). GP is a method of evolutionary computing where concepts
from natural evolution are simulated for the evolution of computer programs
that are able to solve a given problem when executed [6,19]. A particular task of
GP is symbolic regression. Here GP is used to evolve simple closed-form expres-
sions that fit a given data set. Unlike black-box models such as support vector
machines (SVM) or artificial neural networks (ANN), the aim of symbolic regres-
sion is to identify models which can be interpreted by humans. In this way, the
loop from the expert knowledge to the algorithms back to the domain expert
can be closed.

Expert knowledge can be formalized using a domain ontology, which contains
structural information about the research data as well as prior domain knowledge
about known correlations and causal dependencies between data attributes. A
GP algorithm can be launched for a selected data set of interest incorporating
prior knowledge as building blocks. The hypothesis of the present paper is that
the performance of GP can be improved when it is provided with prior domain
knowledge. This improvement can either yield a better regression model given a
fixed computational budget or alternatively yield a model of equivalent quality
with less computational effort.

2 Related Work

2.1 Genetic Programming

GP is a technique where a genetic algorithm (GA) is used to generate a com-
puter program [19]. Usually, programs are encoded as an expression tree and are
evolved over a number of iterations through evolutionary operations: selection,
crossover and mutation. In the case of symbolic regression, the GP programs are
formulas that replicate a specific relationship from a data set.

A GA is a heuristic method based on Charles Darwin’s idea of natural selec-
tion [8]. When using a GA one encodes solutions as sets of individuals. Initially,
these individuals are randomly generated. Each individual is evaluated by cal-
culating a so-called fitness value. Individuals with higher fitness have a higher
probability to be selected for reproduction. This mechanism implements the idea
of survival of the fittest, which Darwin describes. New individuals are created
based on their predecessor using a crossover operation. This leads to increasing
result quality of the individuals over iterations. More detailed description of GAs
can be found in the literature [1,12,15].
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Fig. 1. Example of a symbolic tree representing (x + x) * (x − 5).

Parents
selection

Population
of models

Evaluation

Manipulation

Recombination

Initialization
Evaluation

Start

Stopping
criteria
reached

Return
best individual

Yes

No

End

Fig. 2. The process cycle of GP.

Cramer has layed the foundations for GP in 1985 [6]. Koza later popularized
and further developed GP [19]. In contrast to classic GAs, a variable-length
encoding – most frequently expression trees – are used for GP. Expression
trees represent formulas or computer program. Figure 1 shows an example of
an expression tree.
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Figure 2 shows the process cycle of GP. It starts with the initialization of the
population of models by randomly generating a defined number of individuals.
Then the main cycle is executed until the stopping criteria are met. The stop-
ping criteria, similarly to classical optimization, can comprise a fixed number of
iterations, a defined result quality, or a combination of both.

In every iteration the selection of parents takes place, based on the individ-
ual’s fitness values. To that end, a fitness function is used to evaluate the fitness
value of each individual.

IF / ELSE 

OR := :=
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i +
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i 0

/ 

+ * 

2 YX 5

IF / ELSE 

OR := :=

> <

Y X Y 4
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parent 1 parent 2 

child 1 

Fig. 3. Example of recombination in GP [1].

The selected individuals are grouped as pairs for the recombination (also
known as crossover) step. Figure 3 shows an example of such a recombination.
For this example a sub-tree is selected for each of the two parent trees. These
two sub-trees are swapped and thereby two child trees are created newly. The
figure shows how the first of these two child trees is generated out of the two
parent trees.

In the manipulation step, each new individual is additionally manipulated by
mutation with a defined probability. For this mutation there are different possi-
bilities. For example a sub-tree could be removed and replaced by a randomly
generated one. Another possibility is to manipulate one of the nodes. This can be
implemented by changing the type of a node or changing some of its parameters.
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Next, newly generated individuals are evaluated for their fitness value.
The last step creates a new generation of individuals using the previous gen-

eration and the newly generated offspring. For example generational replacement
can be used, where all individuals of the previous generation are discarded and
the offspring individuals form the successor generation. Often also elitism is used,
where one or more individuals with the best fitness values of the old generation
are adopted in the new generation.

Nowadays GP gets more and more practicable thanks to the increasing com-
puting power. In short GP offers a powerful tool for machine learning that can
be applied on a lot of different problems. Moreover it creates a result, which is
easy to understand since symbolic trees are human-readable.

2.2 Ontologies

The notion of ontology has its origin in the ancient Greek philosophy. It was
Aristotle who defined ontology as the science of “being qua being”, which dealt
with the structure and nature of things, without going further or even requiring
these things to actually exist. In the field of computer science, a number of defini-
tions of the term ontology exist. According to Chandrasekaran et al. “Ontologies
are content theories about the sorts of objects, properties of objects, and relations
between objects that are possible in a specified domain of knowledge.” [3] Gruber
provide a more general definition: “An ontology is a specification of a conceptu-
alization.” [13].

Ontologies are used to describe and formally specify domain knowledge. The
areas of application are manifold. The most prominent application is representa-
tion of complex domain knowledge. Traditionally, biomedical research is a typical
application area for these kinds of ontologies, as it can be found in the literature
[2,9,22]. Apart from this, ontologies are also used for data integration [7,10] and
automated reasoning.

2.3 Genetic Programming in Combination with Ontologies

In the present study, a literature survey in the field of genetic programming in
combination with ontologies was conducted, to illustrate the state-of-the-art. In
fact, domain knowledge is being used for system identification, but with varying
perspectives. For example Ratle and Sebag [24] or Schoenauer and Sebag [26]
use domain knowledge for system identification, by using G3P (grammar guided
GP). G3P [5,28,31] is used to define validity constrains for individuals as context
free grammars. However, getting domain knowledge into the GP algorithm itself
has not been investigated in this detail to date.

3 Methods

In this contribution we use a very limited set of the capabilities of ontology
modelling. In particular, we neglect domain modelling and instead focus only on
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the definition of suspected or known relationships between variables – knowledge
which can be represented explicitly within an ontology.

To give a simple example, we might know that there is a direct linear rela-
tionship between two variables y and x which we could encode as a functional
dependency y ← θx; whereby we use the parameter θ for the unknown scaling
factor and ← to encode the causal direction of the dependency. Many simi-
lar assumed or known functional dependencies can be encoded using the same
approach. Further examples for commonly occurring bivariate functional depen-
dencies are1:

– Exponential decay of y over x with an unknown rate: y ← exp(θx)
– Logarithmic growth of y over x with an unknown rate: y ← log(θx)
– Oscillation of y over x with an unknown frequency: y ← sin(θ1x + θ2)
– Logistic growth of y over x with an unknown rate and limit: y ← θ1

1+exp(θ2x)

Including knowledge in the GP process is possible in many ways (cf. [30]):
extension of the feature set, seeding of the initial generation of GP, definition
of syntactic building blocks for evolutionary operators, and extension of the
function set.

A straightforward approach is to extend the set of variables and to add
a pre-calculated feature for each defined functional dependency. This can be
accomplished with minimal effort for any GP implementation without requiring
adaptations to the GP implementation itself. A drawback of this approach is that
for the calculation of the features it is necessary to know at least approximate
values for the parameters θ. For example, for the case that the variable of interest
y decays exponentially over x (y ← exp(θx)) we would need to assume a value for
the decay rate θ in the calculation of the feature values. Once these values have
been calculated, the decay rate is fixed. GP uses the calculated feature exactly
the same way as the original variable values. In particular, it is not possible to
adjust the decay rate parameter when evolving models using the pre-calculated
features. A similar argument can be given for the frequency parameter in a
periodic function.

Functional relations expressed in the ontology can be used for the initial-
ization of the GP population in the first generation (seeding). Usually, individ-
uals in the first GP generation are generated randomly. However, when prior
knowledge is available in the ontology we can include these expressions as sub-
expressions within randomly initialized individuals. The potential benefit is that
GP already starts with relevant functional expressions in the genome. As a con-
sequence, these sub-expressions do not have to be discovered through the evolu-
tionary process, theoretically improving the performance of GP. An important
1 It should be noted that it would be rather easy to provide a graphical interface which

is easy to understand for users which are not very familiar with the mathematical
notation. For instance it would be possible to provide a graphical representation of
the suspected functional dependency between variables where the users only need
to choose the function type from a menu. The so-defined functional dependency can
then be added to the ontology. This would not affect the underlying implementation
of the learning algorithm.
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difference to the first approach is that GP is still able to break up, modify and
improve sub-expressions which have been included by seeding. This would not
be possible with the feature extension. Seeding would require a change of the
procedure for initialization of the population of the GP algorithm.

An alternative to seeding of the initial population would be to include prior
knowledge as pre-defined syntactical building blocks for expressions produced
by GP (cf. [24,26]). This approach requires a so-called grammar-guided GP sys-
tem [21] which allows the definition of syntactical constraints. Such GP systems
produce expressions which conform to a syntax defined via a formal grammar.
This facilitates integration of prior knowledge such as known transformations of
input variables as well as the definition of the structure of the expression with
slots for sub-expressions that can be evolved. For example, such systems would
allow to express that

y = exp(g(x1, x2)x3) + f(x1, x2) + ε

where g(x1, x2) and f(x1, x2) are sub-expressions evolved by the GP system.
The approach via syntactical building blocks is arguably the most general. Many
forms of prior knowledge can be expressed via syntactical constraints. Notably,
the simple extension of the feature set as well as seeding of the population are
special cases of this approach. However, the flexibility also introduces higher com-
plexity of the GP implementation as well as issues with GP performance which
can be hampered by intricate syntactical constraints. Syntactical constraints
might even increase the problem of premature convergence as a consequence of
the reduced diversity of solutions.

Finally, instead of extending the feature set we could extend the function set
of the GP system to include expressions from the ontology. The GP system is
allowed to include these functions within evolved expressions using terminals or
sub-expressions as arguments. The motivation for this approach is that we could
include functions with unknown numeric parameters and allow GP to identify
optimal parameters via evolution. For example this would allow us to add a
parametric function such as:

ExpDecayθ(x) = exp(− exp(θ)x), x ∈ {x1, x2, x3}
which only allows features x1, x2, x3 as arguments and has θ initialized randomly
and evolved via GP.

For this study, we have chosen to use pre-calculated features because it can
be implemented with minimal effort. As discussed above, this approach has the
important drawback that parameters have to be approximated by users. How-
ever, for our experiments with synthetic benchmark problems we assume that
these parameters are known. We leave experiments with syntactical building
blocks or parametric functions for future work.

3.1 Experimental Setup

We test the hypothesis that GP performance can be improved trough expert
knowledge using computational experiments with simulated data sets. For our
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experiments we omit the use of an ontology for simplicity and we directly use
the knowledge that could be provided by an ontology. We consider two scenarios
where we use the same simulated data sets with and without noise. For the
experiments we use tree-based genetic programming which can be considered
more a less a de-facto standard variant (SGP). We use PTC2 [20] to initialize
random trees with a uniform length distribution between 1 and max. tree length
nodes. Terminals and function symbols are selected with uniform probabilities
from the terminal set and the function set. The algorithm uses generational
replacement where the best individual is kept for the next generation (elitism).
For crossover events we use sub-tree crossover with 90% probability to select an
internal node. For mutation events we conduct one of the following mutation
operations with uniform distribution:

– change the function symbol of an internal node
– change the parameter or variable reference of a terminal node
– change the parameters of all terminal nodes
– delete a randomly selected sub-tree
– replace a randomly selected sub-tree with a newly initialized random tree

The mutation rate parameter defines the probability that a newly created indi-
vidual is manipulated with one the operators above. The fitness of individuals
is determined by calculating the coefficient of determination (squared Pearson
correlation) of the function output values and the target variable values. The
parents for recombination are chosen via tournament selection where the indi-
vidual with highest R2 in the group is selected. The full configuration for our
GP experiments is shown in Table 1.

We run 60 independent repetitions of the same GP configuration for each
of the problem instances described below. In each GP run we invest the same
effort of 500,000 evaluated solutions, where we record the quality (R2) of the
best solution in each generation step. This data allow us to answer whether:

1. The probability to solve a given problem is increased when prior knowledge
from an ontology is available (for fixed effort).

2. The computational effort to solve a given problem can be reduced (for a given
success probability).

For the comparison of algorithm configurations we visualize the empirical dis-
tribution of run length (evaluated solutions) until the problem is solved. This
method is used for instance for the comparison of multiple optimization algo-
rithms on a large set of benchmark problems in [14]. For the problem instances
without noise we set 0.99 as the R2 threshold for success; for the noisy prob-
lems we use the threshold value 0.95. All experiments have been performed with
HeuristicLab2 which provides a grammar guided tree-based GP system [17].

2 https://dev.heuristiclab.com.

https://dev.heuristiclab.com
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Table 1. Genetic programming parameter settings.

Parameter Value

Population size 10000

Maximum generations 50

Elites 1

Mutation (one of) Change function symbol

Change terminal symbol

Change all parameters

Delete a random sub-tree

Replace a random sub-tree

Mutation rate 15%

Selector Tournament with group size 7

Crossover Sub-tree crossover

Function set +,−, ∗, /, sin(x), cos(x), log(x), exp(x), x2,
√
x

Max tree depth 17

Max tree length 100

Fitness evaluation Pearson R2

3.2 Selection of Benchmarking Data

We selected the following benchmark problem instances, that are shown in
Table 2. We generate data for input variables using the ranges defined in Table 3
and calculate the target variable using the expressions.

Some of the instances are recommended in [29]. The flow psi function is a
function occurring in modelling fluid dynamics and has been taken from [4].3 All
problem instances are possible to solve with our GP settings.

Table 2. The problem instances of our experiments.

Instance Function

Salustowicz [25,29] f(x) = x3 exp(−x) cos(x) sin(x)(sin(x)2 cos(x) − 1)

Vladislavleva-3 [27,29] f(x1, x2) = exp(−x1)x
3
1 cos(x1) sin(x1)(cos(x1)

sin(x1)
2 − 1)(x2 − 5)

Vladislavleva-4 [27,29] f(x1, x2, x3, x4, x5) = 10
5+

∑5
i=1(xi−3)2

Pagie [23,29] f(x, y) = 1
1+x−4 + 1

1+y−4

Flow psi [4] f(x1, x2, x3, x4, x5) = x1x3 sin(πx2
180

)(1−(x4
x3

)2)+x5 log(x3
x4

)

Korns-12 [18,29] f(x0, x1, x2, x3, x4) = 2 − 2.1 cos(9.8x0) sin(1.3x4)

3 We also ran preliminary experiments with the Keijzer-6 and Nguyen-7 functions
recommended in [29]. However, these two functions are trivial to solve with the
function set used in our experiments. We have therefore not reported the results for
these two functions.
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Table 3. The input data ranges used for generating the data sets. E[l, u, s] is a grid of
evenly spaced points between l and u inclusive with step size s. U [l, u] means uniformly
distributed points between l and u (exclusive).

Instance Input distribution

Salustowicz x : E[0, 3.2, 0.05]

Vladislavleva-3 x1, x2 : E[−0.5, 10.5, 0.1]

Vladislavleva-4 x1, x2, x3, x4, x5 : U [−0.25, 6.35], 4000 samples

Pagie x1, x2 : E[−5, 5, 0.4]

Flow psi x1 : U [60, 65], x2 : U [30, 40], x3 : U [0.2, 0.5],
x4 : U [0.5, 0.8], x5 : U [5, 10], 132 samples

Korns-12 x0, x1, x2, x3, x4 : U [−50, 50], 1320 samples

For the noisy problem instances we modified the data sets by adding a ran-
domly distributed noise term to the target variable y.

ynoise = y + N(0, 0.2
√

Var(y))

This means that the maximally achievable R2 value is limited by the noise level.
Table 4 shows the best possible R2 value for each of the noisy problem instances.
We define that a GP run is successful if it reaches at least 0.95R2 for the noisy
problem instances.

Table 4. The highest possible fitness value (R2) for each of the noisy problem instances.

Instance Highest fitness

Salustowicz (noisy) 0.959

Vladislavleva-3 (noisy) 0.961

Vladislavleva-4 (noisy) 0.962

Pagie (noisy) 0.963

Flow psi (noisy) 0.964

Korns-12 (noisy) 0.961

3.3 Selection of Predefined Features

For each problem instance we defined a small set of pre-calculated features. This
was done manually and based on the known expression for the problem instance.
The used features are shown in Table 5.
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Table 5. The pre-calculated features for each problem instance. For Korns-12 we tried
two configurations where we only add one of the necessary factors as feature in the
first case and both in the second case.

Instance Features

Salustowicz x3, exp(−x), cos(x), sin(x), sin(x)2 cos(x)

Vladislavleva-3 exp(−x1), x
3
1, cos(x1), sin(x1), sin(x1)

2 cos(x1)

Vladislavleva-4 (x1 − 3)2, (x2 − 3)2, (x3 − 3)2, (x4 − 3)2, (x5 − 3)2

Pagie x−4, y−4

Flow psi
x2
4

x2
3
, log(x3

x4
), sin(πx2

180
)

Korns-12 (1) cos(9.8x0), sin(1.3x4)

Korns-12 (2) cos(9.8x0)

4 Results

Figure 4 depicts the empirical run length distribution results for GP on the
instances without noise. For each of the six instances we show the performance
of GP with and without pre-calculated features. The graphs show the empirical
success probability (target) for the configuration for the 60 runs. A run is suc-
cessful if a solution with the defined level of quality is found. The evaluations
are displayed relative to their total number.

Generally for all problem instances the number of successful runs is higher
with extra features. The results show that for a given budget of evaluations the
success probability is higher when extra features are available. Alternatively, for
a given success probability the computational effort is lower when extra features
are available. The results therefore support our hypothesis and we can give a
positive answer to the research questions.

In practical applications we often need to accept inaccurate data or noisy
measurements. The results for the noisy problem instances are shown in Fig. 5.
We observe similar results as for the instances without noise. Only for the Pagie
problem the extra features did not affect the performance.

5 Discussion

The results of our experiments show that the success rate of GP can be increased
by providing pre-calculated features based on expert knowledge. For all tested
problem instances without noise the probability of success for a given compu-
tational effort increased significantly. Some of the problem instances became
almost trivial to solve when prior knowledge was available.

We found that the positive effect is apparent even for noisy problem instances.
A limitation of our contribution is that we used only synthetic benchmark

problems where the underlying function is known. This makes it easy to come
up with features which are necessary to express the functional relationship
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that should be identified. In real-world applications where the underlying data-
generating function is unknown it is harder to define such features. One partic-
ular limitation when using pre-calculated features is that non-linear parameters
in the feature expressions must be approximated because they are not subject
to evolutionary optimization by GP. This could be overcome by either providing
parametric functions in the function set or defining syntactical building blocks
which are used for pre-seeding of in crossover and mutation operators. How-
ever, such mechanisms would necessitate adaptations to the GP implementation
which require more effort.
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Abstract. Real time hand movement trajectory tracking based on
machine learning approaches may assist the early identification of demen-
tia in ageing Deaf individuals who are users of British Sign Language
(BSL), since there are few clinicians with appropriate communication
skills, and a shortage of sign language interpreters. Unlike other com-
puter vision systems used in dementia stage assessment such as RGB-
D video with the aid of depth camera, activities of daily living (ADL)
monitored by information and communication technologies (ICT) facil-
ities, or X-Ray, computed tomography (CT), and magnetic resonance
imaging (MRI) images fed to machine learning algorithms, the system
developed here focuses on analysing the sign language space envelope
(sign trajectories/depth/speed) and facial expression of deaf individu-
als, using normal 2D videos. In this work, we are interested in providing
a more accurate segmentation of objects of interest in relation to the
background, so that accurate real-time hand trajectories (path of the
trajectory and speed) can be achieved. The paper presents and evalu-
ates two types of hand movement trajectory models. In the first model,
the hand sign trajectory is tracked by implementing skin colour segmen-
tation. In the second model, the hand sign trajectory is tracked using
Part Affinity Fields based on the OpenPose Skeleton Model [1,2]. Com-
parisons of results between the two different models demonstrate that
the second model provides enhanced improvements in terms of tracking
accuracy and robustness of tracking. The pattern differences in facial and
trajectory motion data achieved from the presented models will be bene-
ficial not only for screening of deaf individuals for dementia, but also for
assessment of other acquired neurological impairments associated with
motor changes, for example, stroke and Parkinson’s disease.
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1 Introduction

Most of the world's developed societies are experiencing an ageing trend in
their populations [3]. Ageing is correlated with increased prevalence of cogni-
tive impairments such as dementia, stroke and Parkinson’s disease. With this in
mind, researchers are working urgently to develop effective technological tools
that can help doctors undertake, as precise as possible, early identification of
cognitive decline. In order to capture change and to monitor behavioural pat-
terns of ageing individuals, there have been many studies of patient monitoring
and surveillance with the main focus on using ICT facilities to recognise diffi-
culties with ADL [4–9]. The ADL framework, using sensors, Internet of Things
(IoT) and other emerging technologies, provides cost-efficient solutions for in-
home or nursing-home monitoring, and can alert health-care providers to sig-
nificant changes in ADL behaviours which may indicate cognitive impairment.
With mounting of ICT facilities, such frameworks usually have a complex struc-
ture and need to be evaluated over an extended period of time to be useful for
clinicians to detect health deterioration in patients.

Improvements in medical imaging quality and the greater availability of brain
imaging data sets have increased opportunities to develop machine learning
approaches for automated detection, classification and quantification of diseases.
Many of these techniques have been applied to the classification of brain MRI or
CT scans, comparing dementia patients to healthy controls, and to distinguish
different types or stages of dementia and accelerated features of ageing [10]. As
recently addressed in [11], a powerful data-driven machine learning algorithm
based on a mixture of linear z-score models is used to identify the exact form
and stage of Alzheimer's disease and frontotemporal dementia (FTD) from brain
scans alone using an MRI image database. However, the use of neuroimaging to
diagnose cognitive impairment and dementia relies on the availability of the
advanced hardware and computational power of computing platforms, which
results in a high cost for image interpretation.

With the rapid development of artificial intelligence technology, deep learning
neural networks have begun to be applied to the automatic detection and clas-
sification of acquired neurological impairments using 3D information acquired
by RGB-D cameras. [12] proposed an automatic computer-assisted cognitive
assessment method for older adults using gesture recognition by means of the
Praxis test which is a gesture-based diagnostic test that has been accepted as
diagnostically indicative of cortical pathologies such as Alzheimer’s disease. An
Alzheimer’s patient has to imitate the doctor’s gestures in doing simple move-
ments such as waving; indicating actions, like going to sleep; rotating hands or
upper body. A Deep Convolutional Neural Network (CNN) coupled with Long
Short Term Memory (LSTM) is adopted to jointly perform gesture classification
and fine grained gesture correctness evaluation using an RGB-D gesture video
dataset recorded by Kinect v2. [13] uses a Recurrent Neural Network (RNN) with
Parametric Bias to detect action anomalies of Alzheimer’s patients. Supervised
learning is used for action recognition by comparing the L2 distance between



Real Time Hand Movement Trajectory Tracking 379

pre-trained action and evaluated action. By detecting anomalous actions which
do not follow the predefined actions, a patient’s dementia stage can be evaluated.

The British Deaf community uses British Sign Language (BSL) as their pre-
ferred language. BSL is a natural language and, like other sign languages, uses
movements of the hands, body and face for linguistic expression. BSL is unrelated
to English, and has a very different grammar and lexicon. Because there are few
health staff with appropriate language skills, and a shortage of BSL interpreters,
the Deaf community receives unequal access to diagnosis and care for acquired
neurological impairments [14], with consequent poorer outcomes and increased
care costs. Inspired by the emerging and innovative technologies described above,
we propose a method focusing on the analysis of the sign space envelope (the
area in front of the signers upper body and head in which signs are located) and
facial expressions of signers, using normal 2D videos to develop an automated
screening toolkit for dementia in the ageing deaf population, thereby making
possible more efficient use of the limited number of clinicians with appropri-
ate skills and experience in diagnosis in the deaf population and ensuring early
screening and provision of appropriate services and interventions [15].

Clinical observation suggests that there may be differences between signers
with dementia and healthy signers in the envelope of sign space (sign trajecto-
ries/depth/speed) and movements of the face, with signers who have dementia
using restricted sign space and limited facial expression compared to healthy
deaf controls. Therefore the first phase of research is focusing on analysing the
sign space envelope in terms of sign trajectory and sign speed, together with
the facial expressions of deaf individuals, Data on healthy older signers is taken
from standard 2D videos freely available from the BSL Signbank dataset [17] and
compared to those with mild cognitive impairment and early stage dementia to
identify changes in signing associated with dementia.

In this paper, we present two methods of real-time hand trajectory tracking
models deployed in order to obtain the sign space envelope. In the first model,
the hand sign trajectory is tracked by implementing skin colour filtering and
morphology operations, before using contour extraction to track hand blob tra-
jectories based on contour centroids. The second model is based on the OpenPose
library for real time multi-person keypoint detection. The hand movement tra-
jectory is obtained via wrist joint motion trajectories. The curve of the hand
movement trajectory is connected by the location of the wrist joint keypoints 4
or 7 (Fig. 3) across sequential video frames. The remainder of this paper is organ-
ised as follows. Section 2 presents the formulation and the methodology of our
pipeline where two methods are evaluated using our datasets. Section 3 presents
the experimental analysis, results and discussions. Finally, Sect. 4 concludes the
study and discusses about future work.

2 Methodology

In this work, we are interested in providing a more accurate segmentation of
objects of interest in relation to the background, so that accurate real-time hand
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trajectories (path of the trajectory and speed) can be achieved. These segmented
patches and their associated trajectories and speed of movement will be used in
future work as features in a machine learning model for the classification of the
sign space used by a BSL signer as healthy or atypical. Performance evaluation
of the research work will be based on data sets available from the Deafness
Cognition and Language Research Centre (DCAL) at UCL, which has a range
of video recording of over 500 signers who have volunteered to participate in
research.

Figure 1 shows the pipeline of the two methods we have applied to evaluate
the datasets and future work of the machine learning model. The highlighted
section and the two dashed boxes indicate the two methods for the gesture
tracking given RGB video stream as input. We present results for two different
baselines for feature extraction: one based on image processing methods and
the other on deep learning models. Each method is discussed in more details in
the following sub-sections and for each developed method we assume that the
subjects are in front of the camera with only the upper body visible. The input
to the system is short-term clipped videos.

Fig. 1. The proposed pipeline for dementia screening

2.1 Datasets

British Sign Language Corpus a collection of video clips of 250 Deaf sign-
ers of BSL from 8 regions of the UK [16]. BSL Cognitive Screen norming
data video interviews with 250 signers aged 50–90, and video recordings of a
range of language and cognitive tasks (picture descriptions and memory tasks).
Video recordings of case studies of signers with acquired neurological disorders
including dementia, left- and right-hemisphere stroke, Parkinson’s disease, motor
neuron disease and progressive supranuclear palsy. BSL Signbank standard 2D
videos of single lexical signs, from an online sign dictionary [17].
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2.2 Colour Filtering Models in HSV/YCrCb/Lab Colour Space

The first model for feature extraction is based on image processing method by
skin colour segmentation. As shown in Fig. 2, firstly face detection is performed
using Haar cascade classifiers [18] for facial expression analysis. Secondly, skin
colour information is used as a powerful descriptor to identify the human hands
[19,20], because human skin has a colour distribution that differs significantly
(although not entirely) from background objects. Participants’ clothes and back-
ground have to be carefully selected to avoid similarity to skin colour. As both
hands and face can be detected due to their colour similarity, but only hand blob
tracking is focused on in the current stage, a rectangular box is drawn around
the face (previously detected by Haar cascade classifiers). The next step is to
apply skin colour thresholds to detect hand location by filtering out the skin
colour distribution characteristics. As an image can be presented in a number of
different colour models, such as HSV, YCrCb and CIELab, multiple colour fil-
tering models with multi-colour thresholds for skin segmentation are used in this
approach. A video frame is converted from RBG format to HSV/YCrCb/Lab
format, before applying the appropriate skin segmentation thresholds.

Fig. 2. Real time hand tracking algorithm based on skin colour segmentation (Color
figure online)

RGB to HSV Model. HSV (Hue Saturation Value) is a model representing
colour space, similar to the RGB (Red Green Blue) colour model. Since the
Hue channel models the colour type, it is very useful in image processing tasks
that need to segment objects based on colour. Variation in Saturation goes from
unsaturated (representing shades of grey) to fully Saturated (no white compo-
nent). Value channel describes the brightness or intensity of the colour. In our
experiments, the thresholds used for skin segmentation in the HSV model are:
0 ≤ H ≤ 20, 48 ≤ S ≤ 255, 80 ≤ V ≤ 255.
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RGB to YCrCb Model. The video frame is also converted to YCrCb format
for skin segmentation. In the YCrCb model, Y is the Luminance (brightness)
component. Cr (Red-difference) and Cb (Blue-difference), as colour difference
signals, represent the Chrominance component. In our experiments, the thresh-
olds used for skin segmentation in the YCrCb model are: 0 ≤ Y ≤ 255, 133 ≤
Cr ≤ 173, 77 ≤ Cb ≤ 127.

RGB to CIELab Model. The video frame is also converted from CIELab
format for skin segmentation. Lab colour space is defined by the International
Commission on Illumination. It expresses colour as three numerical values, L
for lightness and a and b for the green–red and blue–yellow colour components.
In our experiments, the thresholds used for skin segmentation in the CIELab
model are: 20 ≤ L ≤ 220, 128 ≤ a ≤ 245, 130 ≤ b ≤ 255. In order to measure the
performance between the segmented skin colour region obtained by the three
different colour models and the ground truth, we applied the S�rensen Dice
coefficient, as a standard segmentation performance metric, to all three colour
models. The S�rensen Dice index, measures the spatial overlap between two
segmentations, the A and B regions (in our case these are the ground truth
image and each segmented image according to the three colour models), and is
defined as

Dice =
2 | A ∩ B |
| A | + | B | (1)

We also used a second segmentation metric known as the Jaccard similarity
coefficient which measures the number of pixels common to both the ground
truth and the segmented regions, divided by the total number of pixels present
across both regions.

Jaccard =
| A ∩ B |
| A ∪ B | (2)

After skin colour segmentation, which captures only the values between the
lower and upper thresholds for skin detection, morphology operations are applied
to the binary mask in order to get rid of the noisy specks. This procedure consists
firstly of Erosion (to remove pixels at the boundaries of an object in the image),
followed by Closing (i.e. Dilation followed by Erosion), and Dilation again (to add
pixels to the boundaries of an object in the image). Basically in the morphology
approach, by removing the pixels at the boundaries of an object and adding them
back, small white noisy specks are eroded. Clearer hand blobs are obtained, as
shown in Fig. 2. After these steps, contour extraction is applied using the inbuilt
OpenCV function [21]. The output of the contour function is a 2-dimensional
array containing the list of x, y coordinates for all the contours, an array of points
that are part of a curve and have the same pixel intensities. Sorting contours by
areas helps to extract the largest two contours (i.e. the two hands). At the same
time, by sorting the largest two contours by position using the x coordinate,
both hands are detected from left to right. Then a convex hull and a normal
contour are drawn on the hand contour. Finally the hand trajectory is tracked
by connecting its contour mass centroid, while the tracking time is recorded for
the purpose of sign speed analysis.
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2.3 OpenPose Skeleton Model

In the second model, hand movement trajectory tracking is based on the Open-
Pose library. OpenPose, developed by Carnegie Mellon University, is one of the
state-of-the-art methods for human pose estimation. It processes images through
a two-branch multi-stage CNN. The first branch takes the input image and pre-
dicts the possible locations of each keypoint in the image with a confidence score
(the confidence map). The second branch predicts a set of 2D vector fields that
encode the location and orientation of limbs over the image domain (the part
affinity fields). Finally the confidence maps and the affinity fields are parsed by
greedy inference to output the 2D keypoints for all people in the image [1].

OpenPose consists of three different blocks: body/foot detection; hand detec-
tion; and face detection. The core block is the combined body/foot keypoint
detector, which provides a 15-,18-, or 25-keypoint body/foot keypoint estimation
[22]. The computational performance on body keypoint estimation is invariant to
the number of detected people in the image. It can be used on various platforms,
including Ubuntu, Windows and Mac, and also has been implemented in differ-
ent deep learning frameworks such as Tensorflow and Torch. In this paper, the
hand tracking model implementation is based on the OpenPose Mobilenet Thin
model in Tensorflow [23] on the Windows CPU/GPU platform, for 18 keypoints
of body part keypoint estimation (including eyes, nose, ears, neck, shoulders,
elbows, wrists, hips, knees and ankles) as shown in Fig. 3 [1,2]. These 18 joint
coordinates are able to track limb and body movement in a rapid and unique
way. For our purpose, only 14 upper body part joints of the signer in the image
are outputted from the OpenPose skeleton model, since only the upper body of a
singer is involved in signing. These are: eyes, nose, ears, neck, shoulders, elbows,
wrists, and hips, as illustrated in Fig. 4. Wrist keypoints 4 and 7 are utilised
for left and right hand tracking respectively, corresponding to the joints’ motion
trajectory as shown in Fig. 4.

3 Evaluation of Results

The results presented in this section are from initial stage data analysis, mainly
based on real time web camera capture of data and standard 2D videos from BSL
Signbank [17]. Section 3.1 evaluates the skin filtering results for different colour
models using video frames from BSL Signbank. To demonstrate the model capa-
bility of hand tracking, Sect. 3.3 uses not only the videos from BSL Signbank but
also real time web camera capture data as the input. Hand tracking trajectories
from real time web camera capture are compared with ground truth collected by
a magnetic positional tracker (Polhemus 3Space Fastrak tracking instrument).
For two hand trajectory tracking, the Polhemus tracking instrument reports the
positional coordinates of each hand with 60 updated coordinate points per sec-
ond, a static accuracy of 0.08 cm, and resolution of 0.0005 cm/cm of range as
indicated in product specifications [24].
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Fig. 3. OpenPose skeleton 18 body joints [1,2]

Fig. 4. OpenPose skeleton model hand trajectory tracking

The first hand tracking model (colour segmentation based) was developed and
tested on a desktop machine, 8 GB RAM 3.00 GHz Intel Core i5-4590S CPU
processor. This method was implemented in Python 3.6.5 and OpenCV 3.3.1.
The second hand tracking model (OpenPose skeleton based) was developed and
tested on the same CPU desktop, and on a GPU desktop with two NVIDIA
GeForce GTX 1080Ti adapter cards and 3.3 GHz Intel Core i9-7900X CPU with
16 GB RAM. The second model was implemented in Tensorflow 1.11, Python
3.6.5, OpenCV 3.3.1 for the CPU environment and Tensorflow 1.12, Python
3.6.8, OpenCV 3.4.2 for the GPU environment.

3.1 Colour Models Evaluation

Figures 5 and 6 show the skin segmentation comparisons between the different
colour models. In each colour model, the colour thresholds play an important part
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in segmentation. For colour thresholds presented in Sect. 2.2, Figs. 5 and 6 show
that HSV and CIELab outperform the YCrCb colour models, with better skin
filtering results [20] and less error mapping. Table 1 shows quantitative results
for Fig. 6 for all three colour models based on the two segmentation metrics as
discussed in Sect. 2.2.

Fig. 5. Comparisons between multiple colour filtering models for skin segmentation
(from left to right: (a) HSV, (b) YCrCb, (c) CIELab) (Color figure online)

3.2 Real Time Tracking Trajectory Evaluations

Figure 7 shows 2D hand tracking trajectory results from the real time hand
tracking demo (Fig. 2). Three signs, differing in location: CLOUD, PICTURE,
and SAILOR are clearly tracked, based on skin colour segmentation. Figure 8
is the 3D real time hand tracking trajectory. Hands are tracked not only based
on 2D coordinates, but also in time, with the purpose of tracking the speed of
hand movement. In the left hand trajectory (Figs. 7 and 8), there is an clear
match between 2D and 3D trajectory. Figure 9 shows how speed of hand motion
changes over time in a 2D plot, which gives a clear indication of how hand
movement speed over time (X-axis speed based on 2D coordinate changes, and Y-
axis speed based on 2D coordinates changes). By introducing another dimension
in time (milliseconds), hand movement speed pattern can be easily identified to
analyse acquired neurological impairments associated with motor symptoms (i.e.
slowered movement) such as in Parkinson’s disease. A longer trajectory within a
shorter period shown in the right hand 3D trajectory (green Diagram in Fig. 8)
indicates faster hand movement.
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Fig. 6. Different colour models and their associated error map. From left to right
column: original image, ground truth, HSV, CIELab, YCrCb and their associated error
map (green and magenta pixels). Green pixels indicate False Negatives and magenta
pixels indicate False Positives (Color figure online)

Table 1. Jaccard and dice scores for signing images

Signing image Colour models Dice score Jaccard score

1 HSV 0.87508 0.77914

CIELab 0.86467 0.7616

YCrCb 0.70551 0.55474

2 HSV 0.78313 0.64356

CIELab 0.88988 0.8016

YCrCb 0.88428 0.79256

3 HSV 0.88683 0.83695

CIELab 0.83965 0.72362

YCrCb 0.70207 0.54591

4 HSV 0.90132 0.82037

CIELab 0.90239 0.82215

YCrCb 0.86992 0.76978

Figure 10 are the 2D plot (x-axis vs. time and y-axis vs. time) comparing hand
movement tracking in a Deaf individual with Mild Cognitive Impairment (MCI)
and a healthy individual. It shows that the MCI signer’s trajectory resembles a
straight line rather than the up and down trajectory characteristic of a healthy
individual, indicating that the MCI signer produced more static poses/pauses
during signing. Moreover, the X and Y trajectory lines of the signer with MCI
are closer to each other as a result of a limited sign space envelope.
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Fig. 7. 2D real time hand tracking trajectory

Fig. 8. 3D real time hand tracking trajectory (Color figure online)

Fig. 9. 2D real time hand tracking trajectory over time

3.3 Comparisons Between Two Tracking Models

In order to compare the two proposed real time hand tracking models, firstly
data from real time web camera capturing were analyzed. The hand tracking
trajectory obtained from the tracking model was then compared with its ground
truth as collected by the Polhemus magnetic tracker. As shown in Fig. 11, two
receivers of the magnetic tracker are attached to both wrists and used to track the
ground truth trajectory at the same time as the tracking model performs track-
ing. So far we are measuring the ground truth and its trajectory data obtained
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Fig. 10. 2D real time hand tracking trajectory between MCI and healthy individual
(from left to right: (a) MCI-Left, (b) Healthy-Left, (c) MCI-Right, (d) Healthy-Right)

with each tracking model individually in a qualitative way. Figure 12 shows the
differences between the tracking models and the ground truth in the hand tra-
jectory of the sign DEAF. They clearly indicate that, on the right figure, the
tracking trajectory is closer to its ground truth: that is, the skeleton tracking
model performs better in terms of accuracy.

In order to compare the two proposed real time hand tracking models, videos
of the same signs from BSL Signbank are also applied to each model. Figures 13
and 14 show selected tracking results for the sign FARM. Comparing the sign
trajectories in Fig. 13 and in Fig. 14, it can be seen that the OpenPose skeleton
model is more accurate with respect to the ground truth trajectory. Figure 15
takes a closer look at the left hand trajectory of Fig. 13. When in a case where
the Haar classifier failed in face detection. This may have occurred because

Fig. 11. Ground truth data collection setup
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Fig. 12. Differences between trajectory obtained from tracking models and its ground
truth

Fig. 13. 2D sign tracking trajectory from colour filtering model

prominent black features are missing or because the image is very bright, mean-
ing that the mask could not be drawn on the face as no face detection bounding
box was returned. The face was then detected by skin segmentation and was
sorted as a hand contour due to its size. At the same time, when two hands were
joined together, they were segmented and taken as a single hand contour. Conse-
quently, the left hand tracking trajectory in Fig. 15 is incorrectly connected to the
head as highlighted in the blue box. Similarly, when a face is partially occluded
or turnws to the side, a Haar classifier will fail in detection, and the skin seg-
mentation model will generate an inaccurate trajectory. Despite the above men-
tioned drawbacks, the skin segmentation model is easy to implement, and per-
forms a relatively fast and accurate tracking result under low operating system
requirements.

CNN-based part detection using the OpenPose skeleton model is not influ-
enced by the colour of the background and participants’ clothing. This makes it
more robust in hand tracking. Figure 14 shows that details of changes in hand
movement are also well tracked. This is because the model uses the wrist joint
for motion trajectory. Unlike the contour centroid that can be shifted as the
gesture or posture changes, the PAF of the wrist joint is relatively stable.
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Fig. 14. 2D sign tracking trajectory from openpose skeleton model

Fig. 15. Analysis of 2D left hand sign tracking trajectory from colour filtering model

The performance of the second model relies highly on the system’s computa-
tional capability. In order to have a better knowledge of its tracking performance
in speed, we applied the model in Windows with both a CPU and a GPU. The
system specifications are listed in Table 2. The processing speed of the web cam-
era input is slower than the video input. However, with utilisation of the GPU,
overall performance speeds are greatly improved. In conclusion, the second model
has significantly enhanced tracking accuracy and is more robust in tracking. To
obtain the best performance especially for web camera capture, system compu-
tational capability plays a key role. As low processing capability causes loss of
tracking points, this will add errors to real time trajectory tracking.

Table 2. OpenPose tracking model performance between GPU and CPU

System specifications Average FPS

CPU Win7, Intel Core CPU@3.00GHz, RAM 8 GB 1.2 (video)

0.9 (web camera)

GPU 2 NVIDIA GeForce GTX 1080Ti, Win10, 60 (video)

Intel Core CPU@3.30GHz, RAM 16 GB 23 (web camera)
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3.4 Discussion

In this project, we needed to decide on what would be the most promising app-
roach to pursue in order to maximise the probability of extracting hand gestures
and their trajectories that were as accurate as possible. Not investigating and
comparing the main approaches in this context, would have been detrimental to
the quality of the follow-up process of extraction of high level features from the
related sign envelope. This, in turn, would have affected the quality of interpre-
tation of the information provided by the sign envelope in relation to one that
might be potentially atypical. In that sense, the main two approaches selected for
comparison: skin colour filtering and pose (skeleton), can be viewed as represen-
tatives of larger families of algorithmic approaches: image processing techniques
versus pre-trained machine learning (ML) models.

The experiments and comparisons verified that the pre-trained, ML based
model is superior to the image processing one, in several aspects: simplicity in
setting up the experiment, simplicity in capturing hand gesture trajectories as it
is less sensitive to background and environment, increased speed and accuracy
of measurement. Even if pre-trained ML-based models for skin colour filtering
are used, which has not been the case in our methodology and comparisons, the
pose (skeleton) based approach retains its superiority with regard to simplicity in
setting up the experiment and simplicity in capturing hand gesture trajectories
as it is less sensitive to background and environment.

As far as accuracy is concerned, ground truth data other than the video-
recorded signs have been used. In order to increase trustworthiness in our
methodological approach and comparisons, tracking data from real participants
articulating signs have also been captured as test data to be used for verifying
the hypothesis that the pose (skeleton), pre-trained ML-based approach deliv-
ers more accurate hand trajectories. Accuracy is defined as the closest possible
trajectory to the one captured by the hand tracker. This is also based on the
assumption that a tracker’s data trajectories are close to real signs; hence, the
use of this data set as ground truth data. In that sense, the captured trajectories
from image processing and the skin colour filtering approach significantly devi-
ated from the tracker data based trajectories. As pointed out previously, even
if such a pre-trained ML-based, skin colour filtering system does exist or will
be developed, it is unlikely that better accuracy will be achieved, and if so, it
would be at the expense of complexity and intrinsic vulnerability to errors. It
is also worth mentioning that the tracker data have been captured twice, once
with each approach. Hence, for the sake of fairness, we decided to use only the
tracker data corresponding to either the skin colour filtering or pose (skeleton)
approach, respectively. An average of the two trajectories could also be drawn
and used as common ground truth data, however, no significant difference with
the results and comparisons will be observed.

Finally, first preliminary comparisons with real patient data has confirmed
the significance of this methodological approach and the comparison results in
identifying the approach delivering most accurate hand trajectories possible.
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Although at a very early stage, it appears that there is difference between healthy
Deaf individuals and those with early evidence of mild cognitive impairment.

4 Conclusions

Two types of real time hand movement trajectory tracking models have been
introduced with the aim of enhancing dementia screening in ageing deaf signers
of BSL. In the first model, hand sign trajectory is tracked by implementing skin
colour filtering to track hand blob trajectories based on contour centroids. As an
image can be presented in a number of different colour space models, multiple
colour space filtering models with multi-colour thresholds (HSV/YCrCb/Lab)
for skin segmentation are also addressed, to perform relatively accurate and fast
hand tracking with low platform requirements. The second model is based on
the OpenPose library for real time multi-person keypoint detection. The hand
movement trajectory is obtained via wrist joint motion trajectory. It provides
enhanced tracking accuracy and more robust tracking. To obtain the best per-
formance, system computational capability plays an important role and as such
the implementation has been performed on both CPU and GPU architectures.
Based on the differences in patterns obtained from facial and trajectory motion
data, further research work will implement machine learning and deep neural net-
work models (CNN/LSTM/Hybrid) for the incremental improvement of demen-
tia recognition rates. The final screening toolkit will be trained and validated
against behavioural cognitive screening tests designed for users of BSL. As the
proposed system focuses on analysing the sign space envelope and facial expres-
sion of BSL signers using normal 2D videos without requiring any ICT/medical
facilities setup, the proposed system will be more economical, simpler, more
flexible, and more adaptable.
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Abstract. Commonsense reasoning is a difficult task for a computer
to handle. Current algorithms score around 80% on benchmarks. Usu-
ally these approaches use machine learning which lacks explainability,
however. Therefore, we propose a combination with automated theo-
rem proving here. Automated theorem proving allows us to derive new
knowledge in an explainable way, but suffers from the inevitable incom-
pleteness of existing background knowledge. We alleviate this problem
by using machine learning. In this paper, we present our approach which
uses an automatic theorem prover, large existing ontologies with back-
ground knowledge, and machine learning. We present first experimental
results and identify an insufficient amount of training data and lack of
background knowledge as causes for our system not to stand out much
from the baseline.

Keywords: Commonsense reasoning · Causal reasoning ·
Machine learning · Theorem proving · Large background knowledge

1 Introduction

Commonsense reasoning is the sort of everyday reasoning humans typically per-
form about the world [22]. It allows to derive knowledge about continuity and
object permanence, e.g., if a person enters a room, then afterwards, the person
normally will be in the room, if she has not left the room. People have knowledge
about objects, events, space, time, and mental states and may use that knowledge.
All this implicit background knowledge is part of everyday human reasoning and
must be added to a cognitively adequate automated reasoning system.
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Commonsense reasoning seems to be a task solved easily by humans. How-
ever, for a computer it is a rather difficult task, as the knowledge needed for this
kind of problems often is huge and complex. Rather than relying on explicitly
given facts, like e.g. geography, commonsense reasoning needs a broad under-
standing of the world on a very general level. This includes among others knowl-
edge about physics, social interaction, cultural nuances, and basic objects present
in the world. This kind of knowledge is so vast that it is difficult to explicitly
formulate it in knowledge bases for computers. Problems resulting from this are
incompleteness and inconsistency of the knowledge among others.

Error prone and inconsistent data are often addressed with machine learning
techniques, e.g., in question-answering tasks. These algorithms perform very well
on various tasks and are rather easily adaptable to multiple scenarios. However,
they often lack explainability. Especially neural networks are more or less only
a black box. While the behavior of a single neuron unit can be described easily,
the sheer amount of computational entities leads to a complex overall behavior
which is difficult to retrace and to understand. In addition, designing a neural
network is often a process of guessing and trying out the right parameters. Also
it is difficult to determine which inputs where important for certain processes.
To maintain explainability one idea may be to make use of deductive reasoning
techniques with theorem provers. They work in a deterministic way to derive
facts from given statements, i.e., starting from a situation and a knowledge
base, one can conduct all valid conclusions. However approaches relying solely
on an automated theorem prover are facing problems with incomplete knowledge
bases [5].

In this paper, we want to address commonsense reasoning by combining the-
orem proving with machine learning. Given a question-answering task in natural
language (in English), we search in large knowledge bases for relevant infor-
mation and feed both the task and the selected knowledge into an automated
theorem prover which infers a logical model. This model contains additional facts
that the theorem prover has been able to derive. However, it cannot be expected
that the theorem prover alone is able to derive the answer to the question at
hand. The derived facts can be fed into a machine learning algorithm, closing
the gap to answer the commonsense reasoning task.

2 Related Works and Explainable AI

Explainable AI is artificial intelligence programmed to describe its purpose,
rationale and decision-making process in a way that can be understood by the
average person.1 It is often discussed in relation to deep learning for applica-
tions like text analysis or object recognition in medical diagnosis systems or for
autonomous cars.2 In this context, post-hoc and ante-hoc analysis can be dis-
tinguished [17]: Models of the former type explain the given answer afterwards,
1 http://whatis.techtarget.com/definition/explainable-AI-XAI, accessed: 14-June-

2019.
2 http://heatmapping.org/slides/2018 MICCAI.pdf, accessed: 14-June-2019.

http://whatis.techtarget.com/definition/explainable-AI-XAI
http://heatmapping.org/slides/2018_MICCAI.pdf
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e.g., by inspecting a learned neural network, while in the other case the model
itself is explanatory, e.g., a decision tree.

How can explainable AI be achieved for commonsense reasoning? For this,
a hybrid approach that combines a logic-based method with machine learning
seems to be the right way [9]. Logical reasoning alone does not seem to be
sufficient to handle commonsense reasoning tasks. Here, recurrent networks with
LSTM (long short-term memory) [15] are a promising strategy and often used.
They achieve a success rate of up to 84% on commonsense reasoning benchmarks,
e.g., SemEval [24] which comprises 1,000 questions with two possible answers
that require commonsense knowledge for finding the correct answers. Most of
the teams participating in this competition use neural network approaches in
combination with ontological knowledge like ConceptNet [19,29].

A general problem of machine learning approaches is often that they need
big data to learn the desired behavior. This problem can be addressed by unsu-
pervised pretraining, also for improving natural language understanding. [7] and
[25] report recent encouraging results on a variety of benchmarks, e.g., question
answering, based on this procedure. So, from a behavioral point of view, pure
machine learning approaches can solve commonsense reasoning tasks. However,
there is no representation of a reasoning process and hence usually no explana-
tory component in these systems.

As already mentioned, the reason is that machine learning with deep learn-
ing neural networks works as a black box. Without further components, drawn
conclusions can neither be explained nor corrected if necessary. In the worst
case, the computed answers are biased and may be discriminating. A famous
example for this was Amazon’s recruiting engine that was not rating candidates
in a gender-neutral way. The computer models were trained to vet applicants by
observing patterns in résumés. But since as a matter of fact of statistics most
came from men, male candidates were preferred.3

Thus, the benefit of explainable AI may be diverse: First, systems with an
explicit (symbolic) knowledge representation may help to find the correct answer.
An example for this is the reasoning capacity of theorem provers which employs
inference rules on given facts and rules. Second, it allows us to understand and
hence to evaluate and possibly to revise answers. Furthermore, artificial intelli-
gence systems should not only provide explanations but should also be advis-
able by explanations to guide the search for answers and to avoid biases or
discrimination.

Commonsense reasoning tasks require a vast amount of knowledge data.
Hence reasoning techniques from the fields of deduction, logics, and nonmono-
tonic reasoning should be employed and combined with machine learning. There
are two ways of combination: Machine learning can be used as a subsystem to
improve the reasoning process of theorem provers [10]. But it is also possible to
do it the other way round. This means, we learn also the argument leading to
the conclusion and thus provide explanations only a posteriori. In the context

3 www.theguardian.com/technology/2018/oct/10/amazon-hiring-ai-gender-bias-
recruiting-engine.

www.theguardian.com/technology/2018/oct/10/amazon-hiring-ai-gender-bias-recruiting-engine
www.theguardian.com/technology/2018/oct/10/amazon-hiring-ai-gender-bias-recruiting-engine
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of big data, both procedures (with deductive reasoning and with machine learn-
ing) may be problematic, because possibly the resulting longish explanations,
e.g., a complete proof of an argument, may also not be helpful. In this paper,
we attempt to combine theorem proving with machine learning on top of it and
try to tackle commonsense reasoning problems.

There are already several approaches for extracting rules from neural net-
works in general [8]. Special approaches combine inductive logic programming
and machine learning [11,12]. These neural-symbolic learning systems start with
a set of logical rules, encoded in neural networks. Then in addition, more knowl-
edge is incorporated from examples into the system. Finally, a modified rule
set can be extracted from the improved learned network. But in this context
it is assumed that the input is given as logic-based representation. For general
natural-language question answering or text comprehension, which we want to
address here, this does not hold, however.

Premise: The man broke his toe. What was the CAUSE of this?

Alternative 1: He got a hole in his sock.

Alternative 2: He dropped a hammer on his foot.

Premise: The pond froze over for the winter. What happened as a RESULT?

Alternative 1: People skated on the pond.

Alternative 2: People brought boats to the pond.

Fig. 1. Problems 273 and 13 from the Choice of Plausible Alternative challenge.

3 Basic Methods and System Architecture

The objective of our project is to answer commonsense reasoning question-
answering tasks like COPA [27] or the Story Cloze Test [21]. In general, each
of these commonsense reasoning tasks consists of several parts of textual input:
the premise describing a situation, a question about the situation together with
n sentences describing an alternative answer from which the solution has to be
selected. In our project, we currently focus on the COPA challenge.

The task is to determine the answer candidate which has a stronger (causal)
relationship to the premise. Our approach to tackle these benchmarks is based on
a combination of symbolic and subsymbolic methods: Knowledge represented in
ontologies shall be used as background knowledge to perform inferences with the
help of an automated theorem prover. The result of these inferences is then eval-
uated using machine learning, more precisely neural networks, to find answers.

3.1 Benchmarks

To get a better understanding of the project, we first describe the commonsense
reasoning benchmarks used to evaluate our implementation. They form the input
and consist of a question or situation and a set of possible answers. Currently
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we focus on COPA (Choice of Plausible Alternatives) [27] and the Story Cloze
Test [21] which uses the ROCStories Corpora.

Problems in the COPA challenge (see Fig. 1) consist of a premise and two
alternative answers, each given in natural language. The corpus is equally divided
into two categories, marked by the question: cause and result. The cause category
requires backward causal reasoning, while the result category requires forward
causal reasoning. All together there are 1,000 tasks which are split into 500
training and 500 test tasks.

The Story Cloze Test has a similar structure. It also has two answers per
task, however, the situation part is longer there, see Fig. 2. It is based on the
ROCStories Corpora of 98,159 five-sentence stories. 3,744 of these stories were
crafted into the Story Cloze Test, by taking the first four sentences of a ROC-
Story to describe a situation, and the last sentence for the correct answer, i.e.,
the most plausible continuation of the story. The wrong answer is a new element
to complete the test.

Premise: Karen was assigned a roommate her first year of college. Her

roommate asked her to go to a nearbycity for a concert. Karen agreed

happily. The show was absolutely exhilarating.

Alternative 1: Karen became good friends with her roommate.

Alternative 2: Karen hated her roommate.

Fig. 2. A Story Cloze Test example.

3.2 The System

Based on the example of the COPA challenge, we now describe the structure of
our system and provide details of our approachwhich is implemented in the sys-
tem CoRg – Cognitive Reasoning (see Fig. 3). As mentioned before, each problem
in the COPA challenge consists of a premise and two alternatives. Since all three
are given in natural language and our aim is to use an automated theorem prover,
the first step of our systems transforms the input into first-order logic formulae.
This is achieved using KNEWS [2], a tool that performs semantic parsing, word
sense disambiguation, and entity linking. Predicate symbols used in the formulae
created by KNEWS in most cases correspond to words (e.g., nouns, verbs and
adjectives) of the original text. Word sense disambiguation in our case considers
the predicate names of the formulae consisting of the so-called synset IDs of
WordNet [20], a lexical-semantic network of the English language. Synset IDs
group words with similar meaning for which short definitions, examples and also
relations to other synsets are given. They correspond to the predicate symbols
occurring in the first-order logic formulae and are used to determine the syn-
onyms, hyponyms and hypernyms of the symbols from WordNet, providing us
with a small lexical knowledge base related to the original text. Figure 4 presents
the first-order logic formula for the premise of the COPA example 13 in Fig. 1
created by KNEWS.
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Fig. 3. The CoRg system.
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Fig. 4. First-order logic formula for the first alternative of the COPA example
13 presented in Fig. 1 by KNEWS. To increase readability, the WordNet synset
IDs determined by KNEWS for the words pond (09420266-n), bring (01441539-v),
boat (02861626-n) and people (07958392-n) were replaced by their natural language
identifier.

The symbols as well as the related gathered lexical information from Word-
Net are used to select relevant information from large first-order logic knowledge
bases like SUMO [23], Adimen-SUMO [1], ResearchCyc [18] and YAGO [30].
Our system currently only uses Adimen-SUMO but we plan to integrate other
ontologies and knowledge graphs such as ConceptNet [19,29]. Section 3.3 pro-
vides details on the selection of background knowledge. All gathered background
knowledge together with the logical representation of the natural language is fed
into the automated theorem prover Hyper [3] which performs inferences result-
ing in a (possibly partial) model. This is done separately for each answer and
the premise of a problem resulting in n+1 (partial) models for each task, with n
being the number of answer candidates of the benchmarks. In the case of prob-
lems from the COPA challenge, this process leads to the construction of three
(partial) models.

These models represent the inferences performed by the theorem prover and
are fed into a neural network to come to a decision. Each COPA task is split
into two training examples such that the model of each answer is paired with
the model of the respective answer candidate. The neural network calculates a
likelihood that the presented answer indeed fits to the situation it is paired with.
The alternative with the higher likelihood is assumed to be the answer of the
system. In case of multiple choice questions with n alternatives, the answer with
the highest likelihood of being the right answer is selected.

3.3 Background Knowledge

Solving a reasoning task, humans naturally use their broad knowledge about
the world. This background knowledge contains knowledge about physical rela-
tionships (e.g., a vehicle can overtake another vehicle only if it is faster) but
also general knowledge (like the fact that dogs like bones). Since this kind of
background knowledge goes far beyond statistical correlations on texts, we aim
to use background knowledge which is represented in ontologies and knowledge
graphs. Furthermore, we only use already existing knowledge bases and refrain
from manually creating knowledge bases for the commonsense reasoning tasks.
Currently WordNet and Adimen-SUMO are used as background knowledge.

As described in the previous section, the natural language text of a COPA
problem is translated into first-order logic formulae using the KNEWS system,
which furthermore performs word sense disambiguation by providing a WordNet
synset ID for each noun, verb or adjective occurring in the text. As mentioned



402 S. Siebert et al.

before, WordNet contains relations between synsets. Relations that are particu-
larly interesting for our purposes are the hyper- and hyponym relation between
synsets. From these relations we generate background knowledge in the form
of first-order logic formulae. For example, the facts that lake is a hypernym of
pond , fishpond is a hyponym of pond , and pond and pool are synonymous are
translated into the following formulae:

∀x (pond(x) → lake(x))
∀x (fishpond(x) → pond(x))

∀x (pond(x) ↔ pool(x))

Since this knowledge generated from WordNet has only a taxonomic character,
these formulae are supplemented by parts of Adimen-SUMO. Adimen-SUMO is
a large ontology consisting of axioms and individuals.

The problem that the Adimen-SUMO symbols do not coincide with the sym-
bols of the KNEWS output in general is solved using the Adimen-SUMO Word-
Net mapping. This mapping specifies for each WordNet synset Adimen-SUMO
symbols that are equivalent or belong to a subclass of the synset. From this
information, we generate bridging formulae. Since the generation of these for-
mulae corresponds to the generation of formulae from hypernyms and synonyms
described above, we refrain from a more precise description.

Because of the huge size of Adimen-SUMO it cannot be used by a theorem
prover as a whole. Therefore we use selection techniques to select a subset of
the knowledge provided by Adimen-SUMO that is relevant for the respective
COPA problem under consideration. The selection technique we currently use
is a relevance-based selection called SInE (Sumo INference Engine) [16] and is
broadly used by first-order logic theorem provers.

In a preprocessing step, SInE computes some information about the knowl-
edge base: For each symbol s, the number of occurrences in the whole knowledge
base, denoted by occ(s), is determined. Next, a triggers relation between sym-
bols and formulae is defined. For each formula F and symbol s occurring in F ,
triggers(s,F ) is true iff for all symbols s′ occurring in F occ(s) < t · occ(s ′) for
some t ∈ R. For t = 1, this means that each formula is triggered by the symbol
with the fewest occurrences. For t > 1, the formula F is triggered by exactly
those symbols from F that occur at most t times more frequently than the rarest
symbol in F . The parameter t is called tolerance.

The selection of formulae suitable for a problem is performed by computing
the so-called d-relevance as follows: Every symbol occurring in the problem and
the formulae created using WordNet is set be 0-relevant. For a symbol s, which
is d-relevant, all formulae F with triggers(s,F ) are d-relevant. Furthermore,
all symbols occurring in a d-relevant formula become d + 1-relevant. Given a
problem, a knowledge base and d ∈ N, this selection extracts the subset of the
knowledge base consisting of all formulae which are d-relevant for the problem.
More or less background knowledge is selected depending on the selection of the
parameter d. In the following, the parameter d is referred to as recursion depth.
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Recursion depth and tolerance are two parameters that we can vary when
generating background knowledge. In addition, we can generate WordNet for-
mulae for the text under consideration or not. Table 1 gives an overview of the
different parameters for the selection of background knowledge. In future work,
we also plan to add further sources for background knowledge like ResearchCyc,
Yago and ConceptNet.

Table 1. Parameters for background knowledge.

Parameter Value

Integrate WordNet True or false

Recursion depth (SInE) 1–5

Tolerance (SInE) 1–5

3.4 Using an Automated Theorem Prover

After background knowledge for the premise and both alternatives has been
gathered, the automated theorem prover is called. We use the theorem prover
Hyper [3] as it is not only able to provide proofs of unsatisfiability but also
constructs models for satisfiable problems. These models consist of a set of facts
that can be inferred from the knowledge base (see Fig. 5 for an example). Since
this inferred knowledge is an important input for the following machine learning
step, it is essential for us that the theorem prover is able to deliver this output.
In addition, Hyper outputs the formulae used for the performed inferences which
we want to use in future work to generate explanations.

The application of Hyper in our system has limitations: Even if multiple
sources are used for background knowledge, the background knowledge still does
not contain all important information for all problems. Therefore, we cannot
expect the theorem prover to construct a complete inference chain to one of the
alternatives but only a few inferences useful for the problem. Therefore, these
are used as an input for our machine learning component.

4 Employing Machine Learning

Our system as described until now deduces a logical model for each premise
and both of the alternative answer candidates. In those models, in addition to
the original natural language text, facts are derived and can be used for further
processing. As the overall goal is to answer the commonsense reasoning bench-
mark, we want to determine the likelihood for each of the answers belonging to
the respective premise. For this, we use neural networks, as they proved their
suitability in various other commonsense reasoning and text processing tasks
(cf. Sect. 2). Thus, in this section, we will present the machine learning part of
our system. This includes preprocessing the models and the explanation of the
neural network architecture.
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4.1 Preprocessing

Given a commonsense reasoning task, the natural language input usually needs
to be encoded in a suitable manner. For neural networks, the input consists
of the natural language text itself, as well as additional information like word
embeddings, part-of-speech embeddings, and other features.

In contrast to other approaches, in our system we additionally face the chal-
lenge to process a logical model. While the natural language text in our context
mostly is rather short and its meaning depends on the word order, this does
not hold for a logical model derived by the theorem prover (Hyper). The logical
model can contain up to thousands of lines. Furthermore, the derived facts are
order-independent, as they do not form sentences but rather single statements
on their own. Due to the size it is not reasonable to fed the whole logical model
into the network. Therefore we apply numerous preprocessing steps to it which
we shall explain now. To start, we depict representative parts of a logical model
in Fig. 5.

Fig. 5. Excerpt of a model produced by the automated theorem prover Hyper for
the formula representing the sentence The pond froze over for the winter. (cf. Fig. 1)
together with the gathered background knowledge.

While preprocessing, we dismiss all structural information of the model
and extract only the predicate and function symbols, like winter, pond, or
SeasonOfY ear. First, we replace the special characters (), . with spaces, so
that we can process the single elements. For each of those elements we apply
some normalization, as they are later linked to word embeddings. This means:
We drop all skolem constants (like sK0) and skolem functions (like sK5). We
further drop the prefixes from the background knowledge base which in case of
Adimen-SUMO is p d and c as well as other underscore character variants.
Often this preprocessing step causes two lines of the logical knowledge to become
identical, e.g., both (sk3(sk8(bird))) and sk4(bird) are transformed into bird. In
this case, we delete one of the duplicates. The remaining elements are usually
common words and are looked up in the word embedding. If there is no corre-
sponding entry, they are either not a real word or we cannot map the word to a
numerical representation. This makes them useless for further processing. Thus
we delete them.
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This procedure results in a sequence of words which can be interpreted as
text, although it is not a grammatically correct sentence in any form. The size
of this text is greatly reduced in comparison to the original logical model and
mostly does not exceed 100 words which is a reasonable size to put into the
network. Optionally, we can transform the remaining words into a set, getting
rid of duplicates. As the model consists of derived facts, ordering or duplicate
words should not influence the outcome. This again reduces the input size. In
the future we could also get rid of the meta-predicates from the background
knowledge, like subclass or instance. As long as we do not integrate structure
information, these words do not help deciding for an answer candidate, as they
appear in both alternative models.

4.2 The Neural Network Architecture

In the neural network, we implement an attentive reader approach [31] mak-
ing use of the framework Keras.4 The input of the neural network consists of
question-answer pairs, i.e., each task consisting of n answers is transformed into
n training examples. We use a multi-input neural network, where the question
and the answer are first separately encoded in a single network, and later on
merged into a calculation core. The output is the likelihood that the given answer
fits to the corresponding question. The general structure is shown in Fig. 6 and
explained now.

Each training example input consists of a premise P , an alternative A and
a classification y ∈ {(0, 1), (1, 0)}. P and A are a list of word indices. The first
step of the picture covers the preprocessing as explained in the previous section.
The second step is the integration of word embeddings to enable similarity cal-
culations among identifiers. For each word in P we use a word embedding vec-
tor from ConceptNet Numberbatch. Word embeddings map words into a high-
dimensional numerical space, so that similar words have a short distance. In this
project we use the state-of-the-art word embedding ConceptNet Numberbatch
[29]. It outperforms other word embeddings like word2vec5 and gloVe6 in several
benchmarks and reduce the bias of prejudices.7 In our work, we reimplemented
the built-in Keras embedding layer, so we can adjust the weight of the single
words. We can choose between a constant weighting and a frequency weighting.
In the future we may consider TF-IDF weighting [26] as well.

The third step is the encoding of the word embeddings information using a
BiLSTM (bidirectional long short term memory) layer hP . Analogously, this is
done for the words in the answer candidate A. An LSTM can remember and for-
get previous information, providing a context of a current word into its previous
text. In a bidirectional LSTM, the input is read both forward and backwards.
Analogous to the forward-read input, the backward-read input provides a con-

4 www.keras.io, accessed: 22-April-2019.
5 https://github.com/tmikolov/word2vec, accessed: 21-June-2019.
6 https://nlp.stanford.edu/projects/glove/, accessed: 21-June-2019.
7 github.com/commonsense/conceptnet-numberbatch, accessed: 22-April-2019.

www.keras.io
https://github.com/tmikolov/word2vec
https://nlp.stanford.edu/projects/glove/
https://github.com/commonsense/conceptnet-numberbatch
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Fig. 6. The neural network. The terms marked with $ are hyperparameters, which we
use to tune the network. They are varied, such that the resulting network is optimized.
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text into its following text, i.e., a look-ahead. Bidirectional LSTMs therefore
embed a word into its context for previous and succeeding information.

Next, the encoded text passages are merged together using a dot product
DotAP (hP , hA) =

∑N
i=1 hP

i ·hA
i . This process is the attention phase of the network

[31], calculating the shared features between the texts. It is followed by a fully
connected so-called dense layer, to generate an answer embedding in the context
to the question AttAP (DotAP ) =

∑N
i=1 DotAi

P ·wi. In the last step, both the merged
core network as well as the input question network is again merged using addition
AddA

P (hP , AttAP ) =
∑N

i=1 hP
i + AttAP . A two-neuron dense layer with softmax

activation y(AddA
P ) = σ(

∑N
i=1 AddAi

P · wi) assigns an output in the shape of
y∗ ∈ [0, 1]2, with |y∗| = 1 and describes a likelihood.

Throughout the network we use various layers to reshape our tensors as well
as dropout and kernel constraint measures to avoid overfitting. We also changed
the number of neurons of the LSTMs and dense layers. We use categorical cross
entropy as loss, adamax as optimizer and accuracy as metric [13]. Currently, we
can feed both the logical model and the natural language as is into the neural
network. For future experiments, we want to integrate both approaches into one
network.

During experiments we varied multiple parameters, see Table 2. First, one
can change the general network structure. We propose an attentive reader app-
roach [31] with LSTMs. In our first attempts, we also did experiments with a
simple feed-forward net and an LSTM approach without the attentive reader
model. However, they did not score well on our task. Second, we can choose
between natural language and a logical model as input. Third, we can choose
the embedding weights. In our current experiments we choose the input to be a
set as it kept the input small and thus saves computation time. The following
parameters are standard neural network hyperparameters [4] and were evaluated
in the current experiments.

Table 2. Parameters for the neural network.

Parameter Value

Network structure feed-forward, LSTM, attentive reader

Data type natural language, logical model

Embedding weights sequence, set, frequency

Neurons 2–100 in first layer

Dropout rate 0.1–0.5

Optimizer adam, adamax

Learning rate 0.0005–0.002

Kernel constraint 1.0–10.00
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5 First Ideas Towards Explainability

The architecture of our system allows us to generate explanations for the deci-
sions made. Since this has not yet been implemented, we will illustrate our idea
briefly with an example. Let us take another look at COPA example 13 from
Fig. 1. The theorem prover Hyper derives the facts given in Fig. 5 from the for-
mula representation of the premise of this problem together with the selected
background knowledge. Machine learning finds out that the facts in this model
point more in the direction of model generated for alternative one than the model
belonging to alternative two and therefore makes the decision for alternative one.
With the help of a word embedding we determine the symbols in the model of
the premise that point most in the direction of alternative one. Because of the
similarity of skate to winter, freezing and cooling these symbols are recognized
as relevant for the decision. In the computed model, the following facts (among
others) contain these symbols:

n1froze(sK2 ).
p d instance(sK2, c Freezing).

p d instance(sK5(sK2), c Cooling).

To derive these facts, Hyper used (among others) the following two formulae:

∀x((n1froze(x)) → (p d instance(x, c Freezing))) (1)
∀x(p d instance(x, c Freezing) →

∃y(p d instance(y, c Cooling) ∧ p subProcess(y, x))) (2)

From the second formula, it is possible to generate an explanation that freezing
involves a subprocess of cooling. We are aware that this is not yet an explanation
for the correctness of alternative one. The reason for this is the fact that the
background knowledge we currently use contains mainly taxonomic knowledge
and does not adequately represent commonsense knowledge and reasoning in the
strict sense. Therefore, we do not find any formulae in it that associates a frozen
lake with winter sports. We hope to solve this problem by adding more sources
of background knowledge such as ConceptNet. However, the basic idea for gen-
erating explanations remains the same even after the background knowledge has
been extended.

By neural-symbolic learning systems [11] (cf. Sect. 2) it is possible to encode
the information including background knowledge more explicitly. After the learn-
ing phase it is possible to extract the actual rules from the neural network. They
may yield the basis for human-understandable explanations.

6 Evaluation

In this section, we describe our evaluation and the achieved results on the COPA
challenge as well as first experiments with the Story Cloze Test. Concerning the
latter, the logical models are not yet conducted, thus we have only experiments
with the natural language and machine learning part without using the deduction
part of the system.
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6.1 Cross Evaluation

The COPA challenge specifies 1,000 problems, 500 for training and 500 for test-
ing. We evaluated our system using stratified 10-fold cross-evaluation, splitting
the training set ten times into 450 training and 50 validation examples. As our
training examples for the neural network are crafted pairing the premise with
each of the answers, we have 900 training and 100 validation examples. After
processing both training examples of a pair through the network, we got a like-
lihood for each answer belonging to the respective premise. The answer of a pair
which got the higher likelihood is assumed to be the answer and chosen by the
system.

The goal of the cross evaluation is to identify the parameters which might
lead to a good performance on the test set. In Fig. 7 we show the results on the
cross-evaluation for different selected parameters. The green plots refer to the
training set, while the blue plots show the respective validation set. Each data
point refers to a cross-evaluation such that each boxplot represents a 10-fold
cross-evaluation. The y-axis corresponds to the accuracy of our predictions and
the x-axis gives the value of the respective parameter. The left plot describes
different selection methods for the background knowledge, resulting in a different
amount of knowledge available for the theorem prover. This in turn leads to
bigger or smaller conducted logical models. no bgk refers to not using knowledge
from Adimen-SUMO, but still from WordNet. rec refers to the recursion depth,
while tol stands for the tolerance of the SInE selection. The right plot presents
the amount of neurons used in the first starting layer in the neural network. The
amount of neurons in the following layers are dependent on that number, as seen
in Fig. 6.

The results on the training sets are very good. They range from 82.6% to
100% with a mean of 98.4% and a low derivation of 3.6%. The accuracy on the
validation sets ranges from 30% to 72% with a mean of 50.2% and a derivation
of 7.7%. The experiments on the parameters we do not present here behave sim-
ilarly. The accuracy of our system on the test set is not good, with an average of
only 50%. Nevertheless we can observe a few indicators. For instance, concerning
the background knowledge integrating more information does not improve the
performance in our setting, however it lowers the variance of the performance.

In the right diagram one can see that choosing two or four neurons in the
starting layer, the network cannot learn the training data well, with scores of
82% to 98% and not 100%. Simultaneously, the accuracy of the validation data
does not decrease in comparison to more neurons. This indicates that fewer
neurons are better in generalization, probably because they do not overfit so
easily. In addition there are models, which score on up to 70% on the validation
data, indicating that our approach is theoretically capable of learning the right
parameters.

As the training set in general is almost perfectly learned, we assume to have
an overfitting problem. We tried to tackle this problem with constraints on the
weights and dropout layers as presented in Table 2, however we did not get
better results. We believe that we can tackle our problems with more training



410 S. Siebert et al.

Fig. 7. Results on the different parameters background knowledge and neurons in the
starting layer. The green boxplots present the performance on the training set, while
the blue boxplots present the performance on the validation set. Note that the total
number of neurons of the whole network is several order of magnitudes higher than the
number of neurons in the starting layer. (Color figure online)

data, as the overall number of neurons in the tiniest possible network in the
attentive reader approach is still one million. To tackle this size with 1,000
training examples seems to be impossible.

6.2 Performance and Discussion

Using the validation set and a fixed random seed, we identified the most promis-
ing parameters for both the background knowledge and the neural network, as
described in Sect. 6.1 to calculate a best model. However, we did not yet con-
ducted an exhaustive search of all parameter combinations. We choose the input
to be a set erased of duplicates, a SInE selection recursion depth of 2, a SInE
selection tolerance parameter of 1, 20 neurons in the starting layer, 40 epochs, a
dropout rate of 0.4, and a learning rate of 0.002. With those parameters and a
varying seed, we calculated an ensembled model out of 7 models. We repeated
this 30 times to get stable results ranging from 49.30% to 56.10% with a mean
of 52.51%, i.e., only slightly above chance, and a low variance of 1.49%.

The baseline given for the COPA challenge is a PMI approach (Pointwise
Mutual Information), as described in [6], scoring 58.8% [27]. When the challenge
came out, first approaches scored 65.4% [14] in 2011, while the state-of-the-art
approach from OpenAI currently scores 78.6% [25]. The latter uses an approach
solely based on neural networks with pretraining techniques and an enormous
amount of training data and thus lacks explainability. With the same setup
as before we also did experiments using only the natural language as it is as
input, neither with background information nor a logical model. On COPA we
achieved then results ranging from 53.80% to 57.00% with a mean of 55.57%,
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and a variance of 0.85%. On the Story Cloze Test we achieved better results
ranging from 69.05% to 71.51% with a mean of 70.17%, and a variance of 0.43%.
The baseline here is 59.5% [21] which is an improvement of 17.93%. However,
OpenAI already scores 86.5% [25].

So far, our results do not reach the performance of state-of-the-art systems.
Nevertheless we can identify tendencies. The model approach on the COPA set
with 52.51% accuracy works slightly worse in comparison to the natural language
only approach with 55.57% accuracy. But this might be not a general trend. Also,
the Story Cloze Test using natural language with 70.17% scores better than the
COPA set using natural language with 55.57%. This might be either due to the
bigger data set of 3,744 problems in comparison to 1,000 problems in COPA,
or to the longer description part of four sentences instead of one. Taking a look
at the OpenAI results indicate that indeed the Story Cloze Tests are easier to
tackle, because they also score 7.9% better on this problems.

7 Summary

In this paper, we present first experiences in combining automated theorem
provers with machine learning methods to solve commonsense reasoning prob-
lems. This combination is motivated by the fact that approaches based solely
on machine learning cannot provide explanations for the decisions made by the
system. The use of background knowledge in the form of ontologies suggests that
this is achievable in our system. Finally we present an idea of how explanations
can be generated.

Unfortunately, our first experiments did not lead to good results: We obtain
an accuracy of 52.51% on the COPA test set, thus our approach is hardly better
than guessing. Nevertheless, the accuracy on the training set is close to 100%.
We believe that this mainly is caused by too few training data. As already said
in Sects. 3.1 and 6.2, we are currently integrating the Story Cloze Test. For now,
we only use them as natural language, but we are soon processing them into
logical models. They consist of 3,744 problems and are therefore three times as
many training examples as with the COPA challenge. They are an additional
benchmark and can be used as a pretraining set for the COPA tasks, as they
are similar in structure and inference. In addition, we consider to make use of
unsupervised pretraining on continuous text (cf. [25]).

Another problem is the quality of the background knowledge. The back-
ground knowledge we are currently using contains mostly taxonomic knowledge
which is possibly only of little help in the area of commonsense reasoning. Hence,
in future work, we plan to integrate further sources of background knowledge like
ConceptNet. They provide knowledge graphs representing factual knowledge as
triplets of the form (s, p, o) (subject – predicate – object). For this, the machine
learning procedure shall also be refined to deal with the structural information
in knowledge graphs.
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