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Abstract. Model learning has gained increasing interest in recent years.
It derives behavioural models from test data of black-box systems. The
main advantage offered by such techniques is that they enable model-
based analysis without access to the internals of a system. Applica-
tions range from fully automated testing over model checking to sys-
tem understanding. Current work focuses on learning variations of finite
state machines. However, most techniques consider discrete time. In this
paper, we present a novel method for learning timed automata, finite
state machines extended with real-valued clocks. The learning method
generates a model consistent with a set of timed traces collected via test-
ing. This generation is based on genetic programming, a search-based
technique for automatic program creation. We evaluate our approach on
44 timed systems, comprised of four systems from the literature (two
industrial and two academic) and 40 randomly generated examples.

1 Introduction

Test-based model-learning techniques have gained increasing interest in recent
years. Basically, these techniques derive formal system models from (test) obser-
vations. They therefore enable model-based reasoning about software systems
while requiring only limited knowledge about the system at hand. Put differ-
ently, such techniques allow for model-based verification of black-box systems if
they are amenable to testing.
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Fig. 1. General framework: test-based
learning for verification.

Peled et al. [39] performed pioneering
work in this area by introducing Black
Box Checking, automata-based model
checking for black-box systems. It involves
interleaved model learning, model check-
ing and conformance testing and built the
basis for various follow-up works [11,17],
including model checking of network pro-
tocols [12] and differential testing on the
model level [7,43]. The framework we tar-
get is shown in Fig. 1. In the simplest case,
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we interact with a system by testing, learn a model from system traces (logs)
and then perform verification. Feedback loops are also possible: we can derive
additional tests from the preliminary learned model, and we could use coun-
terexample traces from model checking as tests.

Learning-based verification has great potential, but applications often use
modelling formalisms with low expressiveness such as Mealy machines. This
can be attributed to the availability of efficient implementations of learning
algorithms for variations of finite automata, e.g. in LearnLib [22], and com-
parably low support for richer automata types; especially timed systems have
received little attention. In addition, many of the proposed methods are not
supported by implementations. Notable works include learning of deterministic
real-time automata and a probabilistic variant thereof [46,47] by Verwer et al.
and techniques for learning deterministic event-recording automata described
by Grinchtein et al. [15,16]. The existing solutions on timed automata contain
several limitations. Real-time automata are restricted to one clock, which is
reset in every transition. Thus, they can only reason about delays in the cur-
rent location, but not keep track of delays since earlier events. Event-recording
automata are also less expressive than timed automata, and their learning has
a high runtime complexity. To the best of our knowledge, the proposed solution
is the first to implement a learning technique for general input-output timed
automata, as used in the model-checker Uppaal [8]. Such automata, usually do
not have canonical forms [15] which complicates the development of learning
techniques, therefore we follow a metaheuristic approach. The only restrictions
required by our approach are that it considers the systems under learning to be
output-urgent, deterministic and with isolated outputs (a special form of out-
put determinism). While specifications are generally vague, especially on timing,
and leave freedom to the actual implementation, implementations themselves are
generally considered to reflect one specific choice satisfying the specification, and
implement it deterministically [10]. Thus, since we learn from concrete imple-
mentations, we do not see these restrictions as too limiting. Notably, we consider
input-enabled systems which makes our approach well-suited for a testing-based
setting.

Scope and Contribution. Here, we focus on the learning part in Fig. 1. Gener-
ally, model learning may be performed either passively or actively [20]. Passive
learning uses preexisting data, such as system logs or existing test data, as basis,
while active learning actively queries the system, e.g. by testing, to gain relevant
information. We use a form of genetic programming [25] to passively learn a
deterministic timed automaton (TA) consistent with a given set of test cases.
We evaluate this approach, a meta-heuristic search, on four manually created
TA and several randomly generated TA. The evaluation demonstrates that the
search reliably converges to a TA consistent with test cases given as training data.
Furthermore, we simulate learned TA on independently produced test data to
show that our identified solutions generalise well, thus do not overfit to train-
ing data. Our technique is passive, but active extensions are possible by testing
based on intermediate versions of the learned model. Such an active approach is
currently under development and first evaluations show promising results.
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Our contribution is threefold: (1) We show that TA can be genetically pro-
grammed and present the corresponding parameters and techniques. (2) We
implemented these techniques in a tool available for download [45]. (3) The eval-
uation results may serve as a benchmark for alternative TA learning methods.

Structure. Section 2.1 contains background information on TA and genetic pro-
gramming. Section 3 describes our approach to learning TA. Applications of this
approach are presented in Sect. 4. In Sect. 5, we provide a summary and discuss
related work, as well as potential extensions.

2 Preliminaries

2.1 Timed Automata

TA are finite automata enriched with real-valued variables called clocks [6].
Clocks measure the progress of time which elapses while an automaton resides in
some location. Transitions can be constrained based on clock values and clocks
may be reset on transitions. We denote the set of clocks by C and the set of
guards over C by G(C). Guards are conjunctions of constraints of the form c⊕ k,
with c ∈ C,⊕ ∈ {>,≥,≤, <}, k ∈ N. Transitions are labelled by input and out-
put actions, denoted by ΣI and ΣO respectively, with Σ = ΣI ∪ ΣO. Input
labels are suffixed by ? and output labels end with !. A TA over (C, Σ) is a triple
〈L, l0, E〉, where L is a finite non-empty set of locations, l0 ∈ L is the initial
location and E is the set of edges, with E ⊆ L × Σ × G(C) × 2C × L. We write
l

g,a,r−−−→ l′ for an edge (l, g, a, r, l′) ∈ E with guard g, label a, and clock resets r.

Example 1 (Train TA Model). Figure 2 shows a TA model of a train, for which
we have ΣI = {start?, stop?, go?}, ΣO = {appr !, enter !, leave!}, C = {c}, L =

{l0, . . . , l5}, and E = {l0
�,start?,{c}−−−−−−−−→ l1, . . .}. From initial location l0, the train

accepts the input start?, resetting clock c. After that, it can produce the output
appr ! if c ≥ 5, i.e the train may approach 5 time units after it is started.

l0l1
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l3

l4 l5

�
start?
{c}

c ≥ 5
appr !

{c}

�
stop?

{c}

c ≥ 10
enter !
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Fig. 2. Train TA.

The semantics of a TA is given by a
timed transition system (TTS) 〈Q, q0, Σ, T 〉, with
states Q = L × R≥0

C , initial state q0, and transi-
tions T ⊆ Q× (Σ ∪R≥0)×Q, for which we write
q

e−→ q′ for (q, e, q′) ∈ T . A state q = (l, ν) is a
pair consisting of a location l and a clock valu-
ation ν. For r ⊆ C, we denote resets of clocks
in r by ν[r], i.e. ∀c ∈ r : ν[r](c) = 0 and
∀c ∈ C\r : ν[r](c) = ν(c). Let (ν+d)(c) = ν(c)+d
for d ∈ R≥0, c ∈ C denote the progress of time and
ν |= φ denote that valuation ν satisfies formula
φ. Finally, 0 is the valuation assigning zero to all clocks and the initial state q0

is (l0,0). Transitions of TTSs are either delay transitions (l, ν) d−→ (l, ν + d) for
a delay d ∈ R≥0, or discrete transitions (l, ν) a−→ (l′, ν[r]) for an edge l

g,a,r−−−→ l′
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such that ν |= g. Delays are usually further constrained, e.g. by invariants [19]
limiting the sojourn time in locations.

Timed Traces. We use the terms timed traces and test sequences similarly to [41].
The latter are sequences of inputs and corresponding execution times, while
the former are sequences of inputs and outputs, together with their times of
occurrence (produced in response to a test sequence). A test sequence ts is
an alternating sequence of non-decreasing time stamps tj and inputs ij , i.e.
ts = t1 ·i1 · · · tn ·in ∈ (R≥0×ΣI)∗ with ∀j ∈ {1, . . . , n−1} : tj ≤ tj+1. Informally,
a test sequence prescribes that ij should be executed at time tj . A timed trace
tt ∈ (R≥0 ×Σ)∗ consists of inputs interleaved with outputs produced by a timed
system. Analogously to test sequences, its timestamps are non-decreasing.

Assumptions on Timed Systems. Testing based on TA often places further
assumptions on TA [19,41]. Since we learn models from tests we make simi-
lar assumptions (closely following [19]). We describe these assumptions on the
level of semantics and use q

a−→ to denote ∃q′ : q
a−→ q′ and q a−→ for �q′ : q

a−→ q′:

1. Determinism. A TA is deterministic iff for every state s = (l, ν) and every
action a ∈ Σ, whenever s

a−→ s′, and s
a−→ s′′ then s′ = s′′.

2. Input Enabledness. A TA is input enabled iff for every state s = (l, ν) and
every input i ∈ ΣI , we have s

i−→.
3. Output Urgency. A TA shows output-urgent behaviour if outputs occur imme-

diately as soon as they are enabled, i.e. for o ∈ ΣO, if s
o−→ then s d−→ for all

d ∈ R≥0. Thus, outputs must not be delayed.
4. Isolated Outputs. A TA has isolated outputs iff whenever an output may be

executed, then no other output is enabled, i.e. if ∀o ∈ ΣO,∀o′ ∈ ΣO : q
o−→

and q
o′
−→ implies o = o′.

It is necessary to place restrictions on the sojourn time in locations to estab-
lish output urgency. Deadlines provide a simple way to model the assumption
that systems are output urgent [9]. With deadlines it is possible to model eager
actions. We use this concept and implicitly assume all learned output edges to
be eager. This means that outputs must be produced as soon as their guards are
satisfied. For that, we extend the semantics given above by adding the following
restriction: delays (l, ν) d−→ (l′, ν + d) are only possible if ∀ d′ ∈ R≥0, d

′ < d :
ν + d′ |= ¬

∨
g∈GO

g, where GO = {g|∃l′, a, r : l
g,a,r−−−→ l′, a ∈ ΣO} are the guards

of outputs in location l. To avoid issues related to the exact time at which out-
puts should be produced, we further restrict the syntax of TA by disallowing
strict lower bounds for output edges. Uppaal [27] uses invariants rather than
deadlines to limit sojourn time. In order to analyse TA using Uppaal, we use
the translation given in [14]. We implicitly add self-loops to all states s = (l, ν)
for inputs i undefined in s, i.e. we add (l, ν) i−→ (l, ν) if ν ��|=

∨

∃l′,r:l
g,i,r−−−→l′

g. This

ensures input enabledness while avoiding TA cluttered with input self-loops. It
also allows to ignore input enabledness during genetic programming, e.g. muta-
tions may remove input edges.
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The assumptions placed on systems under test (SUTs) ensure testability [19].
Assuming that SUTs can be modelled in some modelling formalism is usually
referred to as testing hypothesis. Placing the same assumptions on learned models
simplifies checking conformance between model and SUT. The execution of a test
sequence on such a model uniquely determines a response [41], and due to input
enabledness we may execute any test sequence. This allows us to use equivalence
as conformance relation between learned models and SUT. What is more, we
can approximate checking equivalence between the learned models and the SUT
by executing test sequences on the models and check for equivalence between
the SUT’s responses and the response predicted by the models.

2.2 Genetic Programming

Genetic programming [25] is a search-based technique to automatically generate
programs exhibiting some desired behaviour. Like Genetic Algorithms [35], it is
inspired by nature. Programs, also called individuals, are iteratively refined by:
(1) fitness-based selection followed by (2) operations altering program structure,
like mutation and crossover. Fitness measures are problem-specific and may for
instance be based on tests. In this case, one could assign a fitness value pro-
portional to the number of tests passed by an individual. The following basic
functioning principle underlies genetic programming.

1. Randomly create an initial population.
2. Evaluate the fitness of each individual in the population.
3. If an acceptable solution has been found or the maximum number of iterations

has been performed: stop and output the best individual
4. Otherwise repeatedly select an individual based on fitness and apply one of:

Mutation: change a part of the individual creating a new individual.
Crossover: select another individual according to its fitness and combine

both individuals to create offspring.
Reproduction: copy the individual to create a new equivalent individual.

5. Form a new population from the new individuals and go to Step 2.

Due to their nature, genetic algorithms and genetic programming lend them-
selves to parallelisation. Several populations may, e.g., be evolved in parallel,
which is particularly useful if speciation is applied [37]. In speciation, differ-
ent subpopulations explore different parts of the search space. Information is
commonly exchanged between subpopulations by migrating individuals.

3 Genetic Programming for Timed Automata

Figure 3a provides an overview of the steps we perform, while Fig. 3b shows the
creation of a new population in more detail. We first test the SUT, by generating
and executing ntest test sequences to collect ntest timed traces. Our goal is then
to genetically program a TA consistent with the collected timed traces. Put dif-
ferently, we want to generate a TA that produces the same outputs as the SUT in
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Fig. 3. Overview of the learning process.

response to the inputs of the test sequences. For the following discussion, we say
that a TA passes a timed trace t if it produces the same outputs as the SUT when
simulating the test sequence corresponding to t. Otherwise it fails t. In addition
to passing all timed traces, the final TA shall be deterministic. This is achieved
by assigning larger fitness values to deterministic solutions. Both mutation and
crossover can create non-deterministic intermediate solutions, which might help
the search in the short-term and will be resolved in future generations.

Generally, we evolve two populations of TA simultaneously, a global popu-
lation, evaluated on all the traces, and a local population, evaluated only on
the traces that fail on the fittest automaton of the global population. Both are
initially created equally and contain npop TA. After initial creation, the global
population is evaluated on all ntest traces. During that, we basically test the TA
and check how many traces each TA passes and assign fitness values accordingly,
i.e., the more passing traces the fitter. Additionally, we add a fitness penalty for
model size. The local population is evaluated only on a subset Tfail of the traces.
This subset Tfail contains all traces which the fittest TA fails, and which likely
most of the other TA fail as well. With the local population, we are able to
explore new parts of the search space more easily since we may ignore function-
ality already modelled by the global population. We integrate functionality found
via this local search into the global population through migration and migra-
tion combined with crossover. To avoid overfitting to a low number of traces, we
ensure that Tfail contains at least ntest

100 traces. If there are fewer actually failing
traces, we add randomly chosen traces from all ntest traces to Tfail.

After evaluation, we stop if we either reached the maximum number of gen-
erations gmax, or the fittest TA passes all traces and has not changed in gchange
generations. Note that two TA passing all traces may have different fitness val-
ues depending on model size, i.e. gchange controls how long we try to decrease
the size of the fittest TA. The rationale behind this is that smaller TA are less
complex and simpler to comprehend.
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If not stopped, we create new populations of TA, which works slightly differ-
ently for the local and the global population. Figure 3b illustrates the creation of
a new global population. Before creating new TA, existing TA may migrate from
the local to the global population. For that, we check each of the fittest nmig

local TA and add it to the global population if it passes at least one trace from
Tfail. We generally set nmig to 5npop

100 , i.e. the top five percent of the local popu-
lation are allowed to migrate. After migration, we create npop new TA through
the application of one of three operations:

– with probability 1 − pcr: mutate a TA from the global population
– with probability pcr

2 : crossover of two TA from the global population
– with probability pcr

2 : crossover of two TA, one from each population

The rationale behind migration combined with crossover is that migrated TA
may have low fitness from a global point of view and will therefore not survive
selection. They may, however, have desirable features which can be transferred
via crossover. For the local population, we perform the same steps, but without
any migration, in order to keep the local search independent. Once we have new
populations, we start a new generation by evaluating the new TA.

A detail not illustrated in Fig. 3a is our implementation of elitism [35]. We
always keep track of the fittest TA found so far for both populations. In each
generation, we add these fit TA to their respective populations after mutation.

Parameters. Our implementation could be controlled by a large number of
parameters. To ease applicability and to avoid the need for meta-optimisation of
parameter settings for a particular SUT, we fixed as many as possible to constant
values. The actual values, like 5npop

100 for nmig, are motivated by experiments. The
remaining parameters can usually be set to default values or chosen based on
guidelines. For instance, npop, gmax, and ntest may be chosen as large as possible,
given available memory and maximum computation time.

3.1 Creation of Initial Random Population

We initially create npop random TA, parameterised by: (1) the labels ΣI and ΣO,
(2) the number of clocks nclock, and (3) the appr. largest constant in clock con-
straints cmax. Note, cmax is an approximation, because mutations may increase
constants. Each TA has initially only two locations, as we intend to increase size
and thereby complexity only through mutation and crossover. Moreover, it is
assigned the given action labels and has a set of nclock clocks. During creation,
we add random edges, such that at least one edge connects the initial location
to the other location. We create edges entirely randomly, whereby the number
of constraints in guards as well as the number of clock resets are geometrically
distributed with fixed parameters. The edge label, the relational operators and
constants in constraints are chosen uniformly at random from the respective sets
Σ, {<,≤,≥, >}, and [0 . . cmax] (operators for outputs exclude >). The source
and target locations are also chosen uniformly at random from the set of loca-
tions, i.e. initially we choose from two locations. If the required number of clocks
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is not known a priori, we suggest setting nclock = 1 and increasing it only if it is
not possible to find a valid TA. A similar approach could be used for cmax.

3.2 Fitness Evaluation

Simulation. We simulate the TA to evaluate their fitness. Above, we discussed
failing and passing traces, but evaluation is more fine grained. We execute the
inputs of each timed trace and observe produced outputs until (1) the simulation
is complete, (2) an expected output is not observed, or (3) output isolation is
violated (output non-determinism).

In general, if T is a deterministic, input-enabled TA with isolated and urgent
outputs and ts is a test sequence, then executing ts on T uniquely determines a
timed trace tt [41]. By the testing hypothesis, the SUT fulfils these assumptions.
However, TA generated through mutation and crossover are input-enabled, but
may show non-deterministic behaviour. Hence, simulating a test sequence or a
timed trace on a generated TA may follow multiple paths of states. Some of these
paths may produce the expected outputs and some may not. Our goal is to find
a TA that is both correct, i.e. produces the same outputs as the SUT, and is
deterministic. Consequently, we reward these properties with positive fitness.

The simulation function sim(G, tt) simulates a timed trace tt on a generated
TA G and returns a set of timed traces. It uses the TTS semantics but does not
treat outputs as urgent outputs. From the initial state (l0,0), where l0 is the
initial location of G, it performs the following steps for each tiei ∈ tt with t0 = 0:

1. From state q = (l, ν)
2. Delay for d = ti − ti−1 to reach qd = (l, ν + d)
3. If ei ∈ ΣI , i.e. it is an input:

3.1. If ∃o ∈ ΣO, do ≤ d : (l, ν +do) o−→, i.e. an output would have been possible
while delaying or at time ti

→ then mark ei
3.2. If ∃q1, q2, q1 = q2 : qd

ei−→ q1 ∧ qd
ei−→ q2

→ then mark ei
3.3. For all q′ such that qd

ei−→ q′

→ carry on exploration with q′

4. If ei ∈ ΣO, i.e. it is an output:
4.1. If ∃o ∈ ΣO, do < d : (l, ν +do) o−→, i.e. an output would have been possible

while delaying
→ stop exploration

4.2. If ∃q1, q2, q1 = q2 : qd
ei−→ q1 ∧ qd

ei−→ q2 or ∃o, o = ei : qd
o−→

→ stop exploration
4.3. If there is a q′ such that qd

ei−→ q′

→ carry on exploration with q′

The procedure shown above allows for two types of non-determinism. During
delays before executing an input, we may ignore outputs (3.1) and we may
explore multiple paths with inputs (3.3). We mark these inputs to be non-
deterministic, through (3.1 and 3.2). Since we explore multiple paths, a single
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input ei may be marked along one path but not marked along another path. In
contrast, we do not explore non-deterministic outputs, leading to lower fitness for
respective traces. This avoids issues with trivial TA which produce each output
all the time. Such TA would completely simulate all traces non-deterministically,
but would not be useful.

During exploration, sim(G, tt) collects and returns timed traces tts, which are
prefixes of tt but with marked and unmarked inputs. For fitness computation,
we defined four auxiliary functions. The first one assigns a simulation verdict:

verdict(tts) =

⎧
⎪⎨

⎪⎩

PASS if |tts| = 1 ∧ tt ∈ tts
NONDET if |tts| > 1 ∧ ∃tt′ ∈ tts : |tt′| = |tt|
FAIL otherwise

A TA, which produces a PASS verdict for all timed traces, behaves equiva-
lently to the SUT for these traces. NONDET is returned in case of non-determinism
with at least one correct execution path. Function steps(tts) returns the maxi-
mum number of deterministic steps, and out(tts) returns the number of outputs
along the longest traces in tts. Finally, size(G) returns the number of edges.

Fitness Computation. In order to compute the fitness, we assign the weights
wPASS, wNONDET, wFAIL, wsteps, wout, and wsize to the gathered information of G.
Basically, we give some positive fitness for deterministic steps, correctly produced
outputs, and verdicts, but penalise size. Let T T be the timed traces on which
G is evaluated. The fitness fit(G) is then (note that wverdict(tts) evaluates to one
of wPASS, wNONDET, or wFAIL):

fit(G) =
∑

tt∈T T
fit(G, tt) − wsize size(G) where

fit(G, tt) =wverdict(tts) + wsteps steps(tts) + wout out(tts) and tts = sim(G, tt)

Fitness evaluation adds further parameters. We identified guidelines for choosing
them adequately. We generally set wFAIL = 0 and use wout as basis for other
weights. Usually, we set wstep = wout/2 and wPASS = k · l · wout, where l is
the average length of test sequences and k is a small natural number, e.g. 4.
More important than the exact value of k is setting wNONDET = wPASS/2 which
gives positive fitness to correctly produced timed traces but with a bias towards
deterministic solutions. The weight wsize should be chosen low, such that it does
not prevent adding of necessary edges. We usually set it to wstep. It needs to
be non-zero, though. Otherwise an acceptable solution could be a tree-shaped
automaton exactly representing T T without generalisation. As noted at the
beginning of this section, we assign larger fitness to solutions that accept a larger
portion of the traces deterministically, as our goal is to learn deterministic TA.

As noted above, a TA T producing only PASS verdicts behaves equivalently
to the SUT with respect to T T , i.e. T is “approximately trace equivalent” to
the SUT. Due to the restriction to deterministic output-urgent systems, trace
inclusion and trace equivalence coincide. As a result, a TA producing a FAIL
verdict is neither an under- nor an over-approximation.
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3.3 Creation of New Population

Table 1 lists all implemented mutation operators for TA. Whenever an operator
selects an edge or a location, the selection is random, but favours locations
and edges which are associated with faults and non-deterministic behaviour. We
augment TA with such information during fitness evaluation. To create an edge,
we create random guards and reset sets, and choose a random label, like for the
initial creation of TA.

Table 1. Mutation operators

Name Short description

Add constraint Add a guard constraint to an edge

Change guard Select edge and create a random guard if the edge does not have a
guard, otherwise mutate a constraint of its guard

Change target Change the target location of an edge

Remove guard Remove either all or a single guard constraint from an edge

Change resets Remove clocks from or add clocks to the clock resets of an edge

Remove edge Remove a selected edge

Add edge Add an edge connecting randomly chosen locations

Sink location Add a new location

Merge location Merge two locations

Split location Split a location l by creating a new location l′ and redirecting an
edge reaching l to l′

Add location Add a new location and two edges connecting the new location to
existing locations

Split edge Replace an edge e with either the sequence e′ · e or e · e′ where e′ is
a new random edge (adds a location to connect e and e′)

The mutation operators form three groups separated by double horizontal
lines. The first and largest group contains basic operators, which are sufficient
to create all possible automata. The second group is motivated by the basic prin-
ciple behind automata learning algorithms. Passive algorithms often start with
a tree-shaped representation of traces and transform this representation into an
automaton via iterated state-merging [20]. Active learning algorithms on the
other hand usually start with a low number of locations and add new locations
if necessary. This can be interpreted as splitting of existing locations, an intu-
ition which also served as a basis for test-case generation in active automata
learning [5]. The last two operators are motivated by observations during exper-
iments: add location increases the automaton size but avoids creating deadlock
states, unlike the operator sink location. Split edge addresses issues related to
input enabledness, where an input i is implicitly accepted without changing
state, although an edge labelled i should change the state. The operator aims
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to introduce such edges. For mutation, we generally select one of the operators
uniformly at random.

In addition to mutation, we apply a simplification procedure. It changes the
syntactic representation of TA without affecting semantics, by, e.g., removing
unreachable locations. For further details regarding simplification, migration,
selection and crossover we refer to our technical report [44].

3.4 Implementation

The presented algorithms have been implemented in a tool shown in Fig. 4 and
can be found online [45]. The tool supports customisation of almost all rele-
vant parameters. When selecting one of the presented experiments, the tool will
propose the same values that were used in the evaluation presented in Sect. 4.

While the tool is general enough to learn from any set of timed traces given
in the correct format, the prototype is currently only meant for evaluating the
examples presented in this paper. A full release of the tool is planned soon.

The tool implements the presented automatic genetic-programming process,
with the possibility to inspect the current status of the search, like the accepted
traces by the current population. In case the search gets stuck, the tool also
allows for manual changes to be performed, enabling semi-automatic modelling.

Fig. 4. Two screenshots of the genetic programming tool for time automata, illustrating
the possible configurations (left) and the screen to view intermediate results (right).

4 Case Studies

Our evaluation is based on four manually created and 40 randomly generated
TA, which serve as our SUTs. Using TA provides us with an easy way of check-
ing whether we found the correct model. However, our approach and our tool
are general enough to work on real black-box implementations. Our algorithms
are implemented in Java. A demonstrator with a GUI is available in the sup-
plementary material, which also includes Graphviz dot-files of the TA [45]. The
demonstrator allows repeating all experiments presented in the following with
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freely configurable parameters. Moreover, the search progress can be inspected
anytime. The user interface lists the fittest TA for each generation and visualises
each of them along with the timed traces used for learning.

For the evaluation, we generated timed traces by simulating ntest random
test sequences on the SUTs. The inputs in the test sequences were selected uni-
formly at random from the available inputs. The lengths of the test sequences
are geometrically distributed with a parameter ptest, which is set to 0.15 unless
otherwise noted. To avoid trivial timed traces, we ensure that all test sequences
cause at least one output to be produced. The delays in test sequences were cho-
sen probabilistically in accordance with the user-specified largest constant cmax.
Additionally, one could specify important constants used in the SUTs, gathered
from a requirements document if available. Specifying appropriate delays helps
to ensure that the SUTs are covered sufficiently well by the test sequences.

Measurement Setup and Criteria. The measurements were done on a notebook
with 16 GB RAM and an Intel Core i7-5600U CPU operating at 2.6 GHz. Our
main goal is to show that we can learn models in a reasonable amount of time,
but further improvements are possible, e.g., via parallelisation. We use a training
set and a test set for evaluation, each containing ntest timed traces. First, we
learn from the training set until we find a TA which produces a PASS verdict for
all traces. Then, we simulate the traces from the test set and report all traces
leading to a verdict other than PASS as erroneous. Note that since we generate
the test set traces through testing, there are no negative traces. In other words,
all traces are observable and can be considered positive. Consequently, notions
like precision and recall do not apply to our setting.

Our four manually created TA, with number of locations and cmax in paren-
theses, are called car alarm system (CAS) (14, 30), Train (6, 10), Light (5, 10),
and particle counter (PC) (26, 10). All of them use one clock. The CAS is an
industrial case study, which served as a benchmark for test-case generation for
timed systems [3]. Different versions of the Train and Light have been used as
examples in real-time verification [8] and variants of them are distributed as
demo examples with the real-time model-checker Uppaal [27] and the real-time
testing tool Uppaal Tron [18]. The particle counter (PC) is the second indus-
trial case study. Untimed versions of it were examined in model-based testing [2].

In addition to the manually created timed systems, we have four categories
of random TA, each containing ten TA: C15/1, C20/1, C6/2, C10/2, where the
first number gives the number of locations and the second the number of clocks.
TA from the first two categories have alphabets containing 5 distinct inputs and
5 distinct outputs, while the TA from the other two categories have 4 inputs and
4 outputs. For all random TA, we have cmax = 15.

We used similar configurations for all experiments. Following the suggestions
in Sect. 3, we set the fitness weights to wout = 0.25, wsteps = wout

2 = wsize,
wPASS = 4wout

ptest
, wNONDET = PASS

2 , and wFAIL = 0, with the exception of CAS. Since
the search frequently got trapped in minima with non-deterministic behaviour,
we set wout = wsteps

2 , i.e. we valued deterministic steps more than outputs, and
wNONDET = −0.5, i.e. we added a small penalty for non-determinism. Other than
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Table 2. Measurement results

TA Test set errors Generations Time

CAS 0 147/246.0/305.8/595 27.3 min/57.2 min/1.2 h/2.7 h

Train 0 50/71.0/83.4/180 2.9 min/4.7 min/4.8 min/9.1 min

Light 0 42/77.5/84.5/240 3.2 min/7.4 min/8.7 min/31.1 min

PC 0 278/685.5/554.9/859 3.0 h/8.7 h/7.3 h/10.6 h

C15/1 0/2.0/1.8/6 201/404.5/401.3/746 1.4 h/3.1 h/3.2 h/6.6 h

C20/1 0/0.0/1.0/6 45/451.0/665.8/1798 23.4 min/6.7 h/7.4 h/18.3 h

C6/2 0/0.0/0.5/3 18/68.5/176.9/709 9.4 min/43.9 min/1.8 h/7.6 h

C10/2 0/2.5/2.6/8 73/239.0/344.9/984 35.8 min/3.1 h/3.4 h/9.3 h

Fig. 5. Percentages of accepted test steps of fittest individual. (Color figure online)

that, we set gmax = 3000, npop = 2000, the initial nsel = npop
10 , ntest = 2000, pcr =

0.25, gchange = 10, pmutinit = 0.33, and gsimp = 10, with the following exceptions.
Train and Light require less effort, thus we set npop = 500. The categories
C10/2, C15/1, and C20/1 require more thorough testing, so we configured ntest =
4000 for C10/2 and C15/1, and ntest = 6000 with ptest = 0.1 for C20/1. We
determined the settings for ntest experimentally, by manually inspecting if the
intermediate learned TA were approximately equivalent to the true models, so
as to ensure that the training sets adequately cover the relevant behaviour.

All learning runs were successful by finding a TA without errors on the train-
ing set, except for two cases, one in C10/2 and one in C20/1. For the first, we
repeated the experiment with a larger population npop = 6000, resulting in suc-
cessful learning. For the random TA in C20/1, we observed a similar issue as
for CAS, i.e. non-determinism was an issue, but used another solution. In some
cases, crossover may introduce non-determinism, thus we decreased the proba-
bility for crossover pcr to 0.05 and learned the correct model. Hence, we are able
to learn TA that are consistent with given trace data via genetic programming.

Table 2 shows the learning results. The column test set error contains 0, if
there were no errors on the test set. Otherwise, each cell in the table contains,
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from left to right, the minimum, the median and the mean, and the maximum
computed over 10 runs for manually created TA and over 10 runs for each random
category, i.e. one run per random TA.

Figure 5a and b illustrate the percentage of correct steps when simulating
the test cases on the intermediate learned models. The solid line represents the
median out of the 10 runs, the dots represent the minimum, the triangles the
maximum and the coloured area is the area between first and third quartile. One
can see a steep rise in the early generations, while later generations are mainly
needed to minimise the learned models, which already correctly incorporate all
test steps. The CAS is the model with the slowest initial learning, where, in the
worst case, the first 200 generations did not improve the model.

The test set errors are generally low, so our approach generalises well and
does not simply overfit to the training data. We also see that manually created
systems produced no test set errors. While the more complex, random TA led
to errors. However, for them the relative number of errors was at most two
thousandths (8 errors out of 4000 tests). Such errors may, e.g., be caused by
slightly too loose or too strict guards on inputs.

The computation time of at most 18.3 h seems acceptable, especially consid-
ering that fitness evaluation, as the most time-consuming part, is parallelisable.
Finally, we want to emphasise that we identified parameters which almost con-
sistently produced good results. In the exceptions where this was not the case,
it was simple to adapt the configuration.

The size of our TA in terms of number of locations ranges between 5 and 26.
To model real-world systems, it is therefore necessary to apply abstraction during
the testing phase, which collects timed traces. Since model learning requires
thorough testing, abstraction is commonly used in this area. Consequently, this
requirement is not a strong limitation. Several applications of automata learning
show that implementation flaws can be detected by analysing learned abstract
models, e.g., in protocol implementations [12,40,43].

In conclusion, we have shown that we can learn models that are consistent
with given training data and that these models generalise to test data that is
produced equally, but which does not overlap with the training data. Since we
learn from randomly generated data in our experiments, the learned models
may not be equivalent to true underlying models. However, a manual inspection
revealed that we generally learned correct models, with the exception of slight
discrepancies in behaviour in some cases. We are currently working on extend-
ing our work to actively search for counterexamples to equivalence which could
potentially provide stronger guarantees (see also our discussion on future work).

5 Conclusion

Summary. We presented an approach to learn deterministic TA with urgent
outputs, an important subclass for testing timed systems [19]. The learned mod-
els may reveal flaws during manual inspection and enable verification of black-
box systems via model-checking. Genetic programming serves as a basis. In our
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implementation of it, we parallelise search by evolving two populations simulta-
neously and developed techniques for mutation, crossover, and for a fine-grained
fitness-evaluation. While, due to the heuristic nature of the proposed method,
we cannot provide a convergence proof, we provide empirical evidence that the
method performs well, can cope with big state spaces and generally converges
to a solution consistent with given trace data. We evaluated the technique on
non-trivial TA with up to 26 locations. We could learn all 44 TA models, only
two random TA needed a small parameter adjustment.

Related Work. Verwer et al. [46,47] passively learned real-time automata via
state-merging. These TA measure the time between two consecutive events and
use guards in the form of intervals, i.e. they have a single clock which is reset on
every transition. They do not distinguish between inputs and outputs. Improve-
ments of [47] were presented in [34]. Similarly, Mao et al. applied state-merging
to learn continuous time Markov chains [32]. A state-merging-based learning
algorithm for more general stochastic timed systems has been proposed by de
Matos Pedro et al. [33]. They target learning generalised semi-Markov processes,
which are generated by stochastic timed automata. All these techniques have in
common that they consider systems where the relation between events is fully
described by a system’s structure. Pastore et al. [38] learn specifications cap-
turing the duration of (nested) operations in software systems. A timed trace
therefore includes for each operation its start and end, i.e. the trace records two
related events. Their algorithm is based on the passive learning technique k-Tail.

Grinchtein et al. [15,16] described active learning approaches for determin-
istic event-recording automata, a subclass of TA with one clock per action. The
clock corresponding to an action is reset upon its execution essentially record-
ing the time since the action has occurred. While the expressiveness of these
automata suffices for many applications, the runtime complexity of the described
techniques is high and may be prohibitive in practice. Currently, there is no
implementation to actually measure runtime. Furthermore, this kind of TA can-
not model certain timing patterns, e.g., in the case of input enabledness where
always resetting a clock may not be appropriate. Lin et al. [29] also presented an
active learning algorithm for event-recording automata and applied it to learn
assumptions in compositional verification via assume-guarantee reasoning [30].

Meta-heuristic search as an alternative to classical automata learning has
been proposed by Lai et al. for finite state machines [26]. They apply genetic
algorithms and assume the number of states to be known. Lucas and Reynolds
compared state-merging and evolutionary algorithms, but also fixed the number
of states for runs of the latter [31].

Lefticaru et al. similarly assume the number of states to be known and gen-
erate state machine models via genetic algorithms [28]. Their goal, however, is
to synthesise a model satisfying a specification given in temporal logics. Early
work suggesting such an approach was performed by Johnson [23], which like our
approach does not require the solution size to be known. In contrast, Johnson
does not apply crossover. Further synthesis work from Katz and Peled [24] tries
to infer a correct program or model on the source code level, while we aim at syn-
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thesising a model representing a black-box system. Nenzi et al. [36] presented an
evolutionary algorithm for mining specifications in signal temporal logic (STL)
distinguishing between regular and anomalous system behaviour. An important
difference to our work is that they perform a classification task, while we learn
models producing the same traces as the systems under consideration.

Evolutionary methods have been combined with testing in several areas:
Abdessalem et al. [1] use evolutionary algorithms for the generation of test sce-
narios and learn decision trees to identify critical scenarios. Using the learned
trees, they can steer the test generation towards critical scenarios. The tool Evo-
suite by Fraser and Arcuri [13] uses genetic operators for optimising whole test
suites at once, increasing the overall coverage, while reducing the size of the test
suite. Walkinshaw and Fraser presented Test by Committee, test-case genera-
tion using uncertainty sampling [49]. The approach is independent of the type
of model that is inferred and an adaption of Query By Committee, a technique
commonly used in active learning. In their implementation, they infer several
hypotheses at each stage via genetic programming, generate random tests and
select those tests which lead to the most disagreement between the hypotheses.
In contrast to most other works considered, their implementation infers non-
sequential programs. It infers functions mapping from numerical inputs to single
outputs.

The work by Steffen et al. [21,42] is another good showcase for the strong
possible relation between testing and model learning. They combine both areas,
by performing black box tests and using the results to generate a model. Contrary
to our work, they perform active learning, i.e., they use the intermediate versions
of the learned models to guide the test generation. For a more comprehensive
overview of combinations of learning and testing, we refer to [4].

Future Work. As indicated above, our technique is entirely passive, i.e. we learn
from a set of timed traces (test observations), collected beforehand by random
testing. There is no feedback from genetic programming to testing. In contrast
to this, model-based testing could be applied to find discrepancies between the
SUT and learned models [48]. These may then be used to iteratively improve
the models. Active testing based on intermediate learned models may improve
coverage of the SUT while requiring fewer tests, since we would benefit from
additional knowledge about the system behaviour. This may therefore lead to
improved accuracy of the model and increased performance through a reduction
of tests and testing time. We are currently investigating this approach.

Assuming output urgency helps to approximate equivalence checks by “test-
ing” candidate automata during learning. However, such models do not allow for
uncertainty with respect to output timing. Relaxing this limitation represents
an important next step. We are also currently working on this topic.

We demonstrated that TA can be genetically programmed, i.e. their structure
is amenable to iterative refinement via mutation and crossover. Therefore, we
could apply the same approach, but base the fitness evaluation on model checking
by adapting the technique presented by Katz and Peled [24], to synthesise TA
satisfying some properties. This would enable learning a black-box system, which
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may contain errors, and synthesising a controller ensuring that those errors do
not lead to observable system failures.
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