
The Timestamp of Timed Automata

Amnon Rosenmann(B)

Graz University of Technology, Steyrergasse 30, 8010 Graz, Austria
rosenmann@math.tugraz.at

Abstract. Let eNTA be the class of non-deterministic timed automata
with silent transitions. Given A ∈ eNTA, we effectively compute its
timestamp: the set of all pairs (time value, action) of all observable timed
traces of A. We show that the timestamp is eventually periodic and that
one can compute a simple deterministic timed automaton with the same
timestamp as that of A. As a consequence, we have a partial method,
not bounded by time or number of steps, for the general language non-
inclusion problem for eNTA. We also show that the language of A is
periodic with respect to suffixes.

Keywords: Timed automata · Timestamp of timed automata ·
Reachability problem · Language inclusion for timed automata

1 Introduction

Timed automata (TA) are finite automata extended with clocks that measure
the time that elapsed since past events in order to control the triggering of future
events. They were defined by Alur and Dill in their seminal paper [1] as abstract
models of real-time systems and were implemented in tools like UPPAAL [20],
Kronos [10], RED [27] and PRISM [19].

A fundamental problem in this area is the reachability problem, which in its
basic form asks whether a given location of a timed automaton is reachable from
the initial location. The set of states of the system (i.e., locations and valuation
to the clocks) is, in general, an infinite uncountable set. However, through the
construction of a region automaton, which contains finitely-many equivalence
classes of regions [1], the reachability problem becomes a decidable problem
(though of complexity PSPACE-complete).

Research on the reachability problem went beyond the above basic question.
In [14] it is shown that the problem of the minimum and maximum reachability
time is also PSPACE-complete. In another work, [13], which is more of a the-
oretical nature, the authors show that some problems on the relations between
states may be defined in the decidable theory of the domain of real numbers
equipped with the addition operation. In particular, the reachability problem
between any two states is decidable. For other aspects of the reachability prob-
lem, also in the context of variants and extensions of timed automata (e.g. with
game and probability characteristics) we refer to [3,5,11,14,17,18,26,28]. In this
c© Springer Nature Switzerland AG 2019
É. André and M. Stoelinga (Eds.): FORMATS 2019, LNCS 11750, pp. 181–198, 2019.
https://doi.org/10.1007/978-3-030-29662-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29662-9_11&domain=pdf
http://orcid.org/0000-0003-0255-0885
https://doi.org/10.1007/978-3-030-29662-9_11

182 A. Rosenmann

paper we generalize the reachability problem in another direction. We show that
the problem of computing the set of all time values on which any observable
transition occurs (and thus, a location is reached by an observable transition) is
solvable. This set, called the timestamp of the automaton A and denoted TS(A),
is more precisely defined to be the set of all pairs (t, a) that appear in the observ-
able timed traces of A. Note that for this definition it does not matter whether
we consider infinite runs or finite ones.

We show that the timestamp is in the form of a union of action-labeled open
intervals with integral end-points, and action-labeled points of integral values.
When the timestamp is unbounded in time then it is eventually periodic.

The set of languages defined by the class DTA of deterministic timed
automata is strictly included in the set of languages defined by the class NTA of
non-deterministic timed automata [1,16], and the latter is strictly included in the
set of languages defined by the class eNTA of non-deterministic timed automata
with silent transitions [8]. The fundamental problem of inclusion of the language
accepted by a timed automaton A (e.g. the implementation) in the language
accepted by the timed automaton B (e.g. the specification) is undecidable for
the class NTA but decidable for the class DTA. On the other hand, for special
sub-classes or modifications it was shown that decidability exists (see [2,4,6,8,
9,21–24] for a partial list). However, the abstraction (or over-approximation)
represented in the form of a timestamp is a discrete object, in which questions
like inclusion of timestamps or universality are decidable. In fact, we show that
for any given non-deterministic timed automaton with silent transitions, one can
construct a simple deterministic timed automaton having the same timestamp.

The computation of the timestamp is done through the construction of a
periodic augmented region automaton Rt

per(A). It is a region automaton aug-
mented with a global non-resetting clock t and containing periodic regions and
periodic transitions: they are defined modulo a time period L ∈ N. This kind
of abstraction demonstrates a periodic nature which is absent, in general, from
timed traces: there are timed automata with no timed traces that are eventually
periodic (see Example 1). Periodic transitions were introduced in [12], where it
was shown that they increase the expressiveness of DTA, though they are less
expressive than silent transitions.

The construction of the periodic automaton is preceded by defining the infi-
nite augmented region automaton Rt

∞(A), in which the values of the clock t are
unbounded. Then, after exhibiting the existence of a pattern that repeats itself
every L time units, we fold the infinite automaton into a finite one according to
this periodic structure.

Our construction shows that the language of a timed automaton A ∈ eNTA
is periodic with respect to suffixes: for every run � with suffix ς that occurs after
passing a fixed computable time there are infinitely-many runs of A with the
same suffix ς, but with the suffix shifted in time by multiples of L. Note that
this result does not follow from the pumping lemma, which does not hold in
general in timed automata [7].

The Timestamp of Timed Automata 183

Due to lack of space, some proofs are either sketched or completely missing
(for a longer version see [25]).

2 Timed Automata with Silent Transitions

A timed automaton is an abstract model aiming at capturing the temporal
behavior of real-time systems. It is a finite automaton extended with a finite set
of clocks defined over R≥0. It consists of a finite set of locations q with a finite
set of transitions τ between the locations, while time, measured by the clocks,
is continuous. A transition at time t can occur only if the condition expressed
as a transition guard is satisfied at t. The transition is immediate - no clock is
advancing in time. However, some of the clocks may be reset to zero.

There are two sorts of transitions: observable transitions, which can be traced
by an outside observer, and silent transitions, which are inner transitions and
thus cannot be observed from the outside. There are finitely-many types of
observable transitions, each type labeled by a unique action a ∈ Σ, whereas all
the silent transitions have the same label ε. In NTA, the class of non-deterministic
timed automata, there exist states in which two transitions from the same loca-
tion q can be taken at the same time and with the same action but to two
different locations q′ and q′′. When this situation cannot happen, the TA is
deterministic.

Let N0 := N ∪ {0} and let P (S) be the power set of a set S. A transition
guard is a conjunction of constraints of the form c ∼ n, where c is a clock,
∼ ∈ {<,≤,=,≥, >} and n ∈ N0. A formal definition of eNTA is as follows.

Definition 1 (eNTA). A non-deterministic timed automaton with silent tran-
sitions A ∈ eNTA is a tuple (Q, q0, Σε, C, T), where:

1. Q is a finite set of locations and q0 is the initial location;
2. Σε = Σ ∪{ε} is a finite set of transition labels, called actions, where Σ refers

to the observable actions and ε represents a silent transition;
3. C is a finite set of clock variables;
4. T ⊆ Q × Σε × G × P (C) × Q is a finite set of transitions of the form

(q, a, g, Crst, q
′), where:

(a) q, q′ ∈ Q are the source and the target locations respectively;
(b) a ∈ Σε is the transition action;
(c) g ∈ G is the transition guard;
(d) Crst ⊆ C is the subset of clocks to be reset.

A clock valuation v is a function v : C → R≥0. We denote by V the set of
all clock valuations and by d the valuation which assigns the value d to every
clock. Given a valuation v and d ∈ R≥0, we define v + d to be the valuation
(v + d)(c) := v(c) + d for every c ∈ C. The valuation v[Crst], Crst ⊆ C, is defined
to be v[Crst](c) = 0 for c ∈ Crst and v[Crst](c) = v(c) for c /∈ Crst.

The semantics of A ∈ eNTA is given by the timed transition system
�A� = (S, s0, R≥0, Σε, T), where:

184 A. Rosenmann

1. S = {(q, v) ∈ Q × V} is the set of states, with s0 = (q0,0) the initial state;
2. T ⊆ S × (Σε ∪ R≥0) × S is the transition relation. The set T consists of

(a) Timed transitions (delays): (q, v) d−→ (q, v + d), where d ∈ R≥0;
(b) Discrete transitions (jumps): (q, v) a−→ (q′, v′), where a ∈ Σε and there

exists a transition (q, a, g, Crst, q
′) in T , such that for each clock c, v(c)

satisfies the constraints of g regarding c, and v′ = v[Crst].

A (finite) run � of A ∈ eNTA is a sequence of alternating timed and discrete
transitions of the form

(q0,0) d1−→ (q0,d1)
a1−→ (q1, v1)

d2−→ · · · dk−→ (qk−1, vk−1 + dk) ak−→ (qk, vk)

and duration T =
∑k

j=1 dj . The run � of A induces the timed trace (timed word)

λ = (t1, a1), (t2, a2), . . . , (tk, ak),

with ai ∈ Σε and ti = Σi
j=1dj . From the latter we can extract the observable

timed trace (observable timed word), which is obtained by deleting from λ all
the pairs containing silent transitions. Note that when the TA is deterministic
then each timed trace refers to a unique run. We remark that we did not include
the location invariants in the definition of timed automata since these invariants
can be incorporated in the transition guards. We also do not distinguish between
accepting and non-accepting locations as they do not change the analysis and
results concerning the reachability problems that are dealt with here. Thus, the
language L(A) of A refers here to the set of observable timed traces of A without
restricting it to those observable timed traces of runs that end in acceptable
locations.

3 The Trail and Timestamp of a Single Path

Given a timed automaton A ∈ eNTA over s clocks x1, . . . , xs, we add to it a
non-resetting global clock t that displays absolute time. A finite path in A has
the form γ = q0τ1q1τ2 · · · τnqn of alternating locations and transitions, with q0
the initial location and τi a transition between qi−1 and qi, i = 1, . . . , n, that is,
a path here refers to the standard definition in a directed graph. A run of the
TA induces a trajectory in the non-negative part of the tx1 · · · xs-space that is a
piecewise-linear curve (the discontinuity is the clocks reset).

Definition 2 (Trajectory of a run). Let {t, x1, . . . , xs} be an ordered set of
clocks of A ∈ eNTA. Let � be a run of duration T of A. The trajectory of �
is the set of points (t, x1, . . . , xs) in the tx1 · · · xs-space visited during �, where
0 ≤ t ≤ T .

Next, we define the trail of a path.

Definition 3 (Trail of a path). The trail of a path γ is the union of the
trajectories of all feasible runs along γ, that is, runs that follow the locations
and discrete transitions of γ.

The Timestamp of Timed Automata 185

The trail legs, the parts of the trail between clocks reset, are in the form of
zones [15], a conjunction of diagonal constraints xi − xj < nij or xi − xj ≤ nij ,
nij ∈ Z, bounded by transition constraints xi ∼ ni, where ∼ ∈ {<,≤,=,≥, >},
ni ∈ N0. Each trail leg can be further partitioned into simplicial trails, which
are (possibly unbounded) parallelotopes consisting of a sequence of regions [1]
arranged along the directional vector 1 = (1, 1, . . . , 1). Each region n + Δ is in
the form of an open (unless it is a point) simplex Δ that is a hyper-triangle of
dimension 0 ≤ d ≤ s+1. The simplex Δ is characterized by the fractional values
{xi} of the clock variables, and each point in the simplex satisfies the same fixed
ordering of the form

0 	1 {xi1} 	2 {xi2} 	3 · · · 	s {xis} < 1, (1)

where 	i ∈ {=, <}. The integral point n ∈ N
s+1
0 consists of the integral parts

of the values of the clocks x0, x1, . . . , xs, and it indicates the lowest point in the
x0 · · · xs-space of the boundary of the region. Each region has a unique immediate
time-successor, which is the next region along the directional vector 1, as long
as no clock is reset on an event.

Definition 4 (Timestamp of a run). The timestamp of a run � is the set of
pairs (ti, ai) ∈ R≥0 × Σ of the observable timed trace induced by �.

Definition 5 (Timestamp of a path). The timestamp of a path γ of A is
the union of the timestamps of all runs � along γ.

Each instance of a transition along γ is an event.

Definition 6 (Timestamp of an event in a path). The timestamp of an
event in a path γ is the union of the timestamps of that event of all runs along
γ. It is the part of the timestamp of the path that refers to that event.

Proposition 1. The timestamp of each event is either a labeled integral point
or a labeled (open, closed or half-open) interval between points m and n, m < n,
m ∈ N0 and n ∈ N ∪ ∞.

Proof (sketch). It follows from the fact that the trail of each path is composed
of simplices as in (1) residing on the integral grid, and such are the intersections
with domains defined by transition constraints and projections due to clocks
resets. Thus, it suffices to show that the timestamp of a single simplex Δ is of
the required form and this follows from the fact that the simplex vertices are of
integral value.

An alternative proof is via a linear programming problem over the variables
ti, where ti represents the time of event i along a path γ, by showing that the
minimum and maximum (if not infinite) of the solution set is integral. �

Definition 7 (Timestamp of a timed automaton). The timestamp TS(A)
of a timed automaton A is the set of all pairs (t, a), such that an observable
transition with action a occurs at time t in some run of A.

186 A. Rosenmann

4 Augmented and Infinite Augmented Region Automaton

4.1 Infinite Augmented Region Automaton

Given a (finite) timed automaton A, the region automaton R(A) [1] is a finite
discretized version of A, such that time is abstracted and both automata define
the same untimed language. Each vertex in R(A) records a location q in A and
a region r, which is either in the form of a simplex (as described in Sect. 3) or an
unbounded region, in which the value of at least one of the clocks is �, meaning
that it passed the maximal integer value M that appears in the transition guards.
The regions partition the space of clock valuations into equivalence classes, where
two valuations belong to the same equivalence class if and only if they agree
on the clocks with � value and on the integral parts and the order among
the fractional parts of the other clocks. The edges of R(A) are labeled by the
transition actions, and they correspond to the actual transitions that occur in
the runs of A. Using the time-successor relation over the clock regions (see [1]),
the region automaton can be effectively constructed. As shown in [1], through the
region automaton the questions of reachable locations and states of A and the
actions along the (possibly infinitely-many) paths that lead to these locations,
i.e. the untimed language of A, become decidable.

Now we define the infinite augmented region automaton Rt
∞(A). First, we

add to A a clock t that measures absolute time, does not appear in the transition
guards, is never reset to 0 and does not affect the runs and timed traced of A.
Next, we construct the region automaton augmented with t. The construction
is similar to the construction of the standard region automaton with respect to
the regular clocks (all clocks except for t) and the maximal bound M , that is,
the time regions of each regular clock xi are {0}, (0, 1), {1}, (1, 2), . . . ,M,> M ,
the latter being unbounded and refers to all values of x greater than M . The
integration of the clock t is as follows. The construction of regions is as usual by
considering the integral parts and the order of the fractional parts of all clocks,
including t. The only difference is that the integral part of t is in N0 and not
bounded by M . Thus, the infinitely-many time-regions associated with t are the
alternating point and open unit interval: {0}, (0, 1), {1}, (1, 2), . . . (see Fig. 1(b)).
Hence, Rt

∞(A) contains information about absolute time that is lacking from the
standard region automaton.

Definition 8 (Infinite augmented region automaton). Given A ∈ eNTA
extended with the clock t that measures absolute time, a corresponding infinite
augmented region automaton Rt

∞(A) is a tuple (V, v0, E,Σε), where:

1. V is an infinite (in general) set of vertices of the form (q,n,Δ), where q is a
location of A and the pair (n,Δ) is a region, with

n = (n0, n1, . . . , ns) ∈ N0 × {0, 1, . . . ,M,�}s (2)

containing the integral parts of the clocks t, x1, . . . , xs, and Δ is the simplex
defined by the order of the fractional parts of the clocks.

The Timestamp of Timed Automata 187

2. v0 = (q0,0,0) is the initial vertex with q0 the initial location of A and with
all clocks having integral part and fractional part equal to 0.

3. E is the set of edges. There is an edge

(q, r) a−→ (q′, r′) (3)

labeled with a in Rt
∞(A) if and only if there is a run of A which contains a

timed transition followed by a discrete transition of the form

(q, v) d−→ (q, v + d) a−→ (q′, v′), (4)

such that the clock valuation v over t, x1, . . . , xs represents a point in the
region r and the clock valuation v′ represents a point in the region r′.

4. Σε = Σ ∪ {ε} is the finite set of actions that are edge labels.

We note that there may be infinitely-many edges going-out of the same region
in Rt

∞(A) (see Fig. 1(b)).

Proposition 2. For each positive integer n, one can effectively construct the
part of Rt

∞(A) which contains all regions with t ≤ n and all in-coming edges of
these regions.

The timestamp of the TA A, denoted TS(A), is the union of the timestamps
of all observable transitions of A, that is, the set of all pairs (t, a), such that an
observable transition with action a occurs at time t in some run of A. We define
also the timestamp of Rt

∞(A).

Definition 9 (Timestamp of Rt
∞(A)). The timestamp of Rt

∞(A),
TS(Rt

∞(A)), is the union of sets s×a, where s is a time-region of t (an integral
point {n} or an open unit interval (n, n + 1)) that is part of a region of a vertex
of Rt

∞(A) and a ∈ Σ is a label of an edge of Rt
∞(A) that is directed towards this

vertex.

Proposition 3. TS(A) = TS(Rt
∞(A)).

Proof. By definition of the infinite augmented region automaton Rt
∞(A), its

regions are exactly the clock-regions which are visited by runs of the TA A
extended with the clock t. In particular, the time-regions of Rt

∞(A) are the
time-regions that are visited by the runs on the extended TA. Thus, TS(A) ⊆
TS(Rt

∞(A)). By Proposition 1, this is an equality since for each open interval
(n, n+1) representing absolute time that is visited in some run of A on an action
a, the set of all runs of A cover all the points of this interval with the same
action a. �

4.2 Augmented Region Automaton

A second construction is the augmented region automaton, denoted Rt(A), in
which we consider only the fractional part of t and ignore its integral part.

188 A. Rosenmann

Rt(A) is a finite folding of Rt
∞(A), obtained by identifying vertices that contain

the same data except for the integral part of t, and the corresponding edges.
Thus, t has only two time-regions: {0} and (0, 1). As a compensation, we assign
weights to the edges of Rt(A), as explained below.

Definition 10 (Augmented region automaton). Given a non-deterministic
timed automaton with silent transitions A ∈ eNTA, extended with the absolute-
time clock t, a corresponding (finite) augmented region automaton Rt(A) is a
tuple (V, v0, E,Σε,W

∗), where:

1. V is the set of vertices. Each vertex is a triple (q,n,Δ), where q is a location
of A and the pair (n,Δ) is a region, with

n = (n1, . . . , ns) ∈ {0, 1, . . . ,M,�}s (5)

containing the integral parts of the clocks x1, . . . , xs, and Δ is the simplex
defined by the fractional parts of the clocks t, x1, . . . , xs.

2. v0 = (q0,0,0) is the initial vertex.
3. E is the set of edges. There is an edge (q, r) a−→ (q′, r′) labeled with action a

if and only if there is a run of A which contains a timed transition followed
by a discrete transition of the form (q, v) d−→ (q, v + d) a−→ (q′, v′), such that,
when ignoring the integral part of the time measured by t, the clock valuation
v represents a point in the region r and the clock valuation v′ represents a
point in the region r′.

4. Σε = Σ ∪ {ε} is the finite set of actions.
5. W ∗ is the set of weights on the edges. Each weight m, possibly marked with

‘∗’, is m = t1� − t0� ∈ [0..M], where t1� is the integral part of the value of
t in the target location and t0� - in the source location in the corresponding
run of A.

There may be more than one edge between two vertices of Rt(A), each one
with a distinguished weight. A marked weight m∗ represents infinitely-many
consecutive values m,m+1,m+2, . . . as weights between the same two vertices,
with m being the minimal value of such a sequence. It refers to a transition to
or from a region r in which all regular clocks have passed the maximal integer
M appearing in a transition guard as is illustrated in Fig. 1.

The languages L(Rt(A)) of Rt(A) and L(Rt
∞(A)) of Rt

∞(A) consist of all
observable timed traces but, in contrast to the language L(A) of A, in each pair
(ti, ai) the time ti is not exact: it is either an exact integer n or an arbitrary value
of an interval (n, n + 1) that satisfies ti ≥ ti−1. Thus, L(Rt(A)) and L(Rt

∞(A))
are less abstract than the untimed language L(R(A)) of the region automa-
ton R(A) but are more abstract than L(A): one cannot, in general, distinguish
between a transition that occurs without any time delay, e.g. when xi ≥ 0, and
a transition that demands a time delay, e.g. when xi > 0. When comparing
L(Rt(A)) and L(Rt

∞(A)) then, since Rt(A) may be obtained from Rt
∞(A), it is

clear that L(Rt(A)) cannot be less abstract than L(Rt
∞(A)). But, in fact, these

region automata are equally informative: for each positive integer n, one can

The Timestamp of Timed Automata 189

(a)

0 = {t} = {x}0

1

a (∗)

(0, 0)

0 < {t}

(d)

a

1

a

0 = {t} = {x}1
(0, 0)

(∗)

0 = {t}

(0 + N, �)

(1 + N, �)

(0, 1) + N

1 + N

0

t

0 = {t} = {x}0

1

a 0∗

(−, 0)

0 < {t}

a

0 = {t} = {x}1
(−, 0)

(−,�)
1

0 = {t}
(−, �)

(c)

0

a
1∗

a

a

a

a

a

a

1

1

1

1

(2, �)

(2, �)

(1, �)

(1, �)

0

0 = {t}

0 = {t}

(0, 1)

(1, 2)

(2, 3)

1

a (0, 0)
0 = {t} = {x}1

1

2

(0, �)
0 < {t}

(0, 0)
0 = {t} = {x}

0 < {t}

0 < {t}

0

t

(b)

10
x ≥ 0

a

Fig. 1. (a) A ∈ TA; (b) The infinite augmented region automaton Rt
∞(A); (c) The aug-

mented region automaton Rt(A); (d) A periodic augmented region automaton Rt
per(A).

Each rectangle represents a vertex containing the location of A (circled, left), the inte-
gral values of t and x (top) and the simplex (bottom).

effectively construct Rt
∞(A) up to time t = n, as in Proposition 2, by unfolding

Rt(A) and recovering absolute time t by summing up the weights of the edges
along the taken paths. Indeed, since the transitions in A do not rely on t, by
taking the quotient of Rt

∞(A) by ‘forgetting’ the integral part of t, the only loss
of information is the time difference in t between the target and source regions,
but then this information is regained in the form of weight on the corresponding
edge of Rt(A). Thus, we have the following.

Proposition 4. L(Rt(A)) = L(Rt
∞(A)).

5 Eventual Periodicity

In this section we address the main topic of this paper: exploring the time-
periodic property of TA. In addition to demonstrating its existence, we show
how one can actually compute the parameters of a period.

5.1 Non-Zeno Cycles in Rt(A)

Rt(A) is in the form of a finite connected directed graph with an initial vertex.
Every edge of Rt(A) corresponds to a feasible transition in A (contained in a

190 A. Rosenmann

run of A). In what follows, a ‘path’ in Rt(A) is a directed path that starts at
the initial vertex g0, unless otherwise stated.

Definition 11 (Duration of a path). Given a path γ in Rt(A), its minimal
integral duration, or simply duration, d(γ) ∈ N0 is the sum of the weights on its
edges, where a weight m∗ is counted as m.

Definition 12 ((Non)-Zeno cycle). A cycle of Rt(A) of duration 0 is called
a Zeno cycle. Otherwise, it is a non-Zeno cycle.

A path is called simple if no vertex of it repeats itself, and we let D be the
maximal duration of a simple path in Rt(A).

Lemma 1. There exists a minimal positive integer tnz ≤ D + 1, the non-Zeno
threshold time, such that every path γ of Rt(A) that is of (minimal) duration
tnz or more contains a vertex belonging to some non-Zeno cycle.

In order to compute tnz we can explore the simple paths of Rt(A), say in a
breadth-first manner, up to the time t0 in which each such path either cannot
be extended to a path of a larger duration or any extension of it hits a vertex
belonging to some non-Zeno cycle. Then tnz = t0+1, which may be much smaller
than D + 1.

5.2 A Period of Rt(A)

A set S is minimal with respect to some property if for every element e ∈ S the
set S � {e} does not satisfy the property.

Definition 13 (Covering set of non-Zeno cycles). A set C of non-Zeno
cycles of Rt(A) is called a covering set of non-Zeno cycles if every path γ of
Rt(A) whose duration d(γ) is at least tnz intersects a cycle in C in a common
vertex.

Without loss of generality, we may assume that a covering set of non-Zeno cycles
is minimal.

Definition 14 (Period of Rt(A)). A time period (or just period) L of Rt(A) is
a common multiple of the set of durations d(π), π ∈ C, for some fixed (minimal)
covering set of non-Zeno cycles C. For convenience, we also set L to be greater
than M , unless Rt(A) does not contain non-Zeno cycles, in which case we define
L to be 0.

5.3 Eventual Periodicity of Rt
∞(A)

Let tnz, C, L be as above, with C fixed. We denote by Rt
∞(A)|t≥n the subgraph

of Rt
∞(A) that starts at time-level n, that is, the set of vertices of Rt

∞(A) with
absolute time t ≥ n and their out-going edges.

The Timestamp of Timed Automata 191

Definition 15 (L-shift in time). Given a subgraph G of Rt
∞(A), an L-shift

in time of G, denoted G + L, is the graph obtained by adding the value L to
each value of the integral part of the clock t in G and leaving the rest of the data
unaltered. We also denote by V (G)+L the L-shift in time for the set of vertices
of G, with v + L in case V = {v}.

Lemma 2. If Rt
∞(A) is not bounded in time then

Rt
∞(A)|t≥tnz + L ⊆ Rt

∞(A)|t≥tnz+L.

Proof. First we show that the inclusion holds for the set of vertices of the
above subgraphs. Let γ be a path of Rt

∞(A) which terminates in a vertex
v1 ∈ Rt

∞(A)|t≥tnz . Let γ′ = p(γ) be the image of γ under the projection to
Rt(A). If γ contains an edge e1 whose image e′

1 = p(e1) is labeled by a marked
weight m∗ then we can replace e1 by another edge e2 ∈ p−1(e′

1) whose delay is
greater by L than the delay of e1. So, suppose that e1 starts in the vertex u1 and
terminates in w1. Then e2 starts in u1 and terminates in the vertex w2 = w1 +L
and then the path continues as in γ but with an L-shift in time, terminating in
the vertex v2 = v1 + L. Otherwise, no edge of γ′ has a marked weight. Since
d(γ) ≥ tnz then by Lemma 1 and the definition of L, γ′ contains a vertex v′ that
belongs to a non-Zeno cycle π and whose duration is a factor of L. Hence, by a
‘pumping’ argument, we can extend γ′ with L/d(π) cycles of π that start and
end in v′ and then reach the vertex v2 = v1 + L in the pre-image in Rt

∞(A) of
this extended path.

The inclusion of the out-going edges follows from the fact that the out-going
edges do not depend on the value of t. �

Let us denote by Vk, k = 0, 1, 2, . . ., the set of vertices

Vk = V (Rt
∞(A)|t≥tnz+kL) � V (Rt

∞(A)|t≥tnz+(k+1)L).

Theorem 1. If the infinite augmented region automaton Rt
∞(A) is not bounded

in time then it is eventually periodic: there exists an integral time tper > 0 such
that

Rt
∞(A)|t≥tper + L = Rt

∞(A)|t≥tper+L.

Proof. By Lemma 2, Vk + L ⊆ Vk+1, for k ≥ 0. But there is a bound on the
number of possible vertices of Vk since t is bounded, hence the sequence Vk

eventually stabilizes. The result then follows since for the out-going edges the
same argument given in the proof of Lemma 2 holds also here. �

When Rt
∞(A) is finite then we can set tper to be tmax + 1, where tmax is the

maximal integral time of Rt
∞(A). By the following proposition, a possible value

for tper can be effectively computed when Rt
∞(A) is infinite.

Proposition 5. if |Vk| = |Vk+1| = |Vk+2| for some k then we can set
tper = tnz + kL.

192 A. Rosenmann

As is known, a TA may be totally non-periodic in the sense that no single
timed trace of it is eventually periodic (see Example 1). However, a special kind of
periodicity, which we call suffix-periodicity, holds between different timed traces,
as shown in the following theorem.

Theorem 2. If A ∈ eNTA is not bounded in time then its language L(A) is
suffix-periodic: if tr > tper and

λ = (t1, a1), . . . , (tr−1, ar−1), (tr, ar), (tr+1, ar+1), . . . , (tr+m, ar+m)

is an observable timed trace of L(A) then, for each k ∈ LZ, if tr + k > tper then
there exists an observable timed trace λ′ ∈ L(A) such that

λ′ = (t′1, a
′
1), . . . , (t

′
s, a

′
s), (tr + k, ar), (tr+1 + k, ar+1), . . . , (tr+m + k, ar+m).

6 Periodic Augmented Region Automaton

After revealing the periodic structure of Rt
∞(A), it is natural to fold it into a

finite graph according to this period, which we call periodic augmented region
automaton and denote by Rt

per(A). The construction of Rt
per(A) is done by

first taking the subgraph of Rt
∞(A) of time t < tper + L and then folding the

infinite subgraph of Rt
∞(A) of time t ≥ tper + L onto the subgraph of time

tper ≤ t < tper + L, which becomes the periodic subgraph, as explained below.
For an edge e, we denote by ι(e) and τ(e) the initial, resp. terminal, vertex of e.

Definition 16 (Periodic augmented region automaton). Given an infi-
nite augmented region automaton Rt

∞(A) with period L and periodicity starting
time tper, a finite projection p(Rt

∞(A)) of it, called periodic augmented region
automaton and denoted Rt

per(A), is a tuple (V, v0, E,Σε, B), where:

1. V is the set of vertices, with v0 = (q0,0,0) the initial vertex. For each v ∈
Rt

per(A), if u ∈ p−1(v) ⊆ Rt
∞(A) then u equals v in all fields, except possibly

for the integral part of t. If v.t� < tper then u = v and v is a regular
vertex. Otherwise, v is a periodic vertex, v.t� is written as n+LN0, for some
tper ≤ n < tper + L, p−1(v) is infinite and {u.t� | p(u) = v} = {n + kL | k =
0, 1, 2, . . .}.

2. E is the set of edges, which are the projected edges of Rt
∞(A) under the map p.

Each edge joining two vertices of Rt
∞(A) is mapped to an edge with the same

action label that joins the projected vertices. Some of the edges are marked
with a symbol of B = {(∗), (∗+)}. The description below is technical and
refers to the different types of edges that occur when folding Rt

∞(A): whether
the source of the edge is a regular (R) or a periodic (P) vertex (in the latter
case the preimage in Rt

∞(A) contains infinitely-many edges, one from each of
the preimage vertices), whether it is unmarked (U) or marked (M) (in the
latter case there are infinitely-many edges starting from each of the vertices
in the preimage source vertices), and finally the plus sign (+) represents the
case where in the preimage the target vertices are not of value n but n + L.

The Timestamp of Timed Automata 193

– UR: (unmarked, regular) If e ∈ Rt
per(A) is unmarked and ι(e) is regular

then ι(e).t� = n1 < tper, τ(e).t� = n2 or τ(e).t� = n2 + LN0 and
p−1(e) = {e′}, with ι(e′).t� = n1 and τ(e′).t� = n2.

– UP: (unmarked, periodic) If e ∈ Rt
per(A) is unmarked and ι(e) is periodic

then ι(e).t� = n1+LN0, τ(e).t� = n2+LN0, tper ≤ n1, n2 < tper+L and
the preimage of e in Rt

∞(A) are the infinitely-many edges satisfying the
following. If n1 ≤ n2 then p−1(e) = {e′ | ι(e′).t� = n1 + kL, τ(e′).t� =
n2 + kL, k = 0, 1, 2, . . .}, and if n1 > n2 then p−1(e) = {e′ | ι(e′).t� =
n1 + kL, τ(e′).t� = n2 + (k + 1)L, k = 0, 1, 2, . . .}.

– MR: (marked, regular) If e ∈ Rt
per(A) is marked with ‘(∗)’ and ι(e) is

regular, with ι(e).t� = n1 and τ(e).t� = n2 or n2 + LN0, then p−1(e) =
{e′ | ι(e′).t� = n1, τ(e′).t� = n2 + kL, k = 0, 1, 2, . . .}, that is, infinitely-
many edges starting from the same vertex.

– MP: (marked, periodic) If e ∈ Rt
per(A) is marked with ‘(∗)’ and ι(e) is

periodic, with ι(e).t� = n1 + LN0 and τ(e).t� = n2 + LN0, then its
preimage in Rt

∞(A) contains all the edges according to both rules UP
and MR.

– MP+: (marked, periodic, shifted) If e ∈ Rt
per(A) is marked with ‘(∗+)’

then the same rules that apply to an edge marked with ‘(∗)’ hold, except
that the target vertices are of L-shift in time compared to those of an
edge marked with ‘(∗)’.

3. Σε = Σ ∪ {ε} is the finite set of actions.

t

10 2 3

x = 1, {x}a b
a

x = 1, {x}

b
(0 < x) ∧ (y < 1), {y}

{y}

(a)

2

1

0
0 = {t} = {x} = {y}

3 + N0 2

2

b

b

0 = {t} = {x} = {y} 2

0 = {y} < {t} = {x}

0 = {y} < {t}
(2 + N0, �, 0)

(3 + N0, �, 0)

(1, 0, 1)

(1, 0, 0)

(2, 1, 0)

(0, 0, 0)

0 = {t} = {y}

0 = {t} = {x} = {y}
(1, 0, 0)b

3 3

3

2

(b)

(2, 0, 1) (2, 0, 0)

(3 + N0, 0, 0)

(2 + N0, 0, 0)

0 = {t} = {x} < {y}

0 = {y} < {t} = {x}

0 = {t} = {x} = {y} 0 = {t} = {x} = {y} 0 = {t} = {x} < {y}

(∗)

(∗)

b

2

b

a

a b

b

b

a
a

a

(0, 1)

(1, 2)

(2, 3) + N0

1

2

0

Fig. 2. (a) A ∈ TA; (b) Rt
per(A), a periodic augmented region automaton of A

194 A. Rosenmann

We remark that instead of periodic time interval of type [a, b) we can define it
analogously to be of type (a, b] as in Fig. 1(d), where the periodic time is (0, 1].

Example 1. The TA shown in Fig. 2(a) is taken from [1], where it demonstrates
non-periodicity: the time difference between an a-transition and the following b-
transition is strictly decreasing along a run. Rt

per(A), however, becomes periodic
(Fig. 2(b)).

Proposition 6. Rt
per(A) is well-defined and as informative as Rt

∞(A).

7 The Timestamp

Theorem 3. The timestamp of a TA A is a union of action-labeled integral
points and open unit intervals with integral end-points. It is either finite or forms
an eventually periodic (with respect to time t) subset of R≥0×Σ and is effectively
computable.

Proof. By Theorem 2, if the timestamp is not finite then it becomes periodic,
with period L, after time t = tper. Thus, if it can effectively be computed up to
time tper + L, then in order to find whether there is an observable transition
with action a at time tper +L+ t one only needs to check the timestamp at time
tper + (t mod L).

By Proposition 1, the timestamp up to time tper + L is a finite number of
labeled integral points and open intervals between integral points and by Propo-
sition 2, it is effectively computable. �

The timestamp of a TA is an abstraction of its language. However, the times-
tamp is eventually periodic and computable, hence the timestamp inclusion prob-
lem is decidable.

Corollary 1. Given two timed automata A,B ∈ eNTA over the same alphabet
(action labels), the question of non-inclusion of their timestamps is decidable,
thus providing a decidable sufficient condition for the (in general, undecidable)
question of non-inclusion of their languages: L(A) � L(B).

The timestamp is easily extracted from Rt
per (in fact, it is enough to take the

subgraph of Rt
∞ up to level tper+L). We just form the union of the time-regions

up to level tper + L, where each time-region is either a point {n} or an open
interval (n, n+1), along with the labels of the actions of the in-going edges. The
timestamp in the interval tper ≤ t < tper + L then repeats itself indefinitely.

Definition 17. For each a ∈ Σ, let Aa be the restriction of A to a-actions,
obtained by substituting each b ∈ Σ�{a} with ε, representing the silent transition.

Thus, the language of Aa is the ‘censored’ language of A, which is the outcome
of deleting from each word (timed trace) all pairs (b, t), b �= a.

Example 2. The timestamp of the a-transitions of the automaton of Fig. 2 is
TS(Aa) = N, and that of the b-transitions is TS(Ab) = [1,∞).

The Timestamp of Timed Automata 195

7.1 Timestamp Automaton

Given a TA A, one can effectively construct a deterministic TA Ã, called a
timestamp automaton of A with the same timestamp as that of A.

Definition 18 (Timestamp automaton). Given a timed automaton A ∈
eNTA, a timestamp automaton Ã is a deterministic (finite) timed automaton
with a single clock and with timestamp identical to that of A. It is the union of
the timestamp automata Ãa, a ∈ Σ, having a common initial vertex. Each Ãa

is in the shape of a linear graph and possibly ending in a simple loop.

Theorem 4. Given a timed automaton A ∈ eNTA, one can effectively construct
a timestamp automaton Ã.

Example 3. Let A be a TA with timestamp

TS(Aa) = (1, 3] ∪ {5} ∪ (6 + ([0, 2) ∪ {3} ∪ (8, 18)) + 21N0) × {a},

TS(Ab) = [0, 1] ∪ (2, 4) ∪ {5} ∪ (6 + ((0, 1) ∪ (1, 2) ∪ (5, 6) ∪ (8, 9)) + 10N0)
× {b},

TS(Ac) = [1, 4] ∪ {6} ∪ (10,∞) × {c}.

Then a possible timestamp automaton of A is given in Fig. 3.

(a)
1 2 3

4

5
x = 5

a
x = 3

8 < x < 18
a

6

0 < x < 2
a a

x = 6, {x}
a

x = 21, {x}
a

x = 5

x = 8

6 < x < 7, {x}

x = 10, {x}

10

11

12

13

90 7 8
x = 5

b
2 < x < 4

b
0 ≤ x ≤ 1

b
x = 1

b b

b

b

b

c

14 15 16
10 < x < ∞

c
x = 6

1 ≤ x ≤ 4
c

1 < x ≤ 3
a

(b)

(c)

Fig. 3. Timestamp automata of (a) TS(Aa); (b) TS(Ab); (c) TS(Ac)

0 < x < 1, {x}

ε

0 1 10

(b)

a
x = 1, {x}

0 < x < 1
a

x = 1, {x}
(a)

a

Fig. 4. (a) A non-determinizable A ∈ eNTA; (b) A timestamp automaton Ã

196 A. Rosenmann

Example 4. The language of the TA A ∈ eNTA of Fig. 4(a) is

L(A) = {(t0, a), (t1, a), . . . , (tn, a) | i < ti < i + 1, i = 0, . . . , n − 1, n ∈ N0}

(supposing all locations are ‘accepting’). The timestamp of A is the set of all
positive non-integral reals: TS(A) = R≥0 � N0. A is not determinizable. Each
transition occurs between the next pair of successive natural numbers. The guard
of each such transition must refer to a clock which was reset on some previous
integral time. But since all transitions occur on non-integral time, the only clock
that can be referred to is a clock x that is reset at time 0 and hence the transition
guards need to be of the form n < x < n + 1 for each n ∈ N0, which makes the
automaton infinite. Nevertheless, the timestamp automaton associated with A,
seen in Fig. 4(b), is deterministic.

8 Conclusion and Future Research

The timestamp of a non-deterministic timed automaton with silent transitions
(eNTA) consists of the set of all action-labeled times at which locations can be
reached by observable transitions. The problem of computing the timestamp is
a generalization of the basic reachability problem, a fundamental problem in
model checking, thus being of interest from the theoretical as well as from the
practical point of view. In this paper we showed that the timestamp can be
effectively computed, also when the timed automata are non-deterministic and
include silent transitions.

One of the major problems in testing and verification of abstract models of
real-time systems is the inclusion of the language of one timed automaton in
the language of another timed automaton. This problem is, in general, undecid-
able. Thus, since (non)-inclusion of timestamps of timed automata is a decidable
problem, we have a tool which provides a sufficient condition for language non-
inclusion in timed automata.

Acknowledgements. This research was partly supported by the Austrian Science
Fund (FWF) Project P29355-N35.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

2. Alur, R., Fix, L., Henzinger, T.A.: Event-clock automata: a determinizable class of
timed automata. Theor. Comput. Sci. 211(1–2), 253–273 (1999). https://doi.org/
10.1016/S0304-3975(97)00173-4

3. Alur, R., Kurshan, R.P., Viswanathan, M.: Membership questions for timed and
hybrid automata. In: Real-Time Systems Symposium, pp. 254–263 (1998). https://
doi.org/10.1109/REAL.1998.739751

4. Alur, R., Madhusudan, P.: Decision problems for timed automata: a survey. In:
Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 1–24.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9 1

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/S0304-3975(97)00173-4
https://doi.org/10.1016/S0304-3975(97)00173-4
https://doi.org/10.1109/REAL.1998.739751
https://doi.org/10.1109/REAL.1998.739751
https://doi.org/10.1007/978-3-540-30080-9_1

The Timestamp of Timed Automata 197

5. Asarin, E., Maler, O.: As soon as possible: time optimal control for timed automata.
In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp.
19–30. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48983-5 6

6. Baier, C., Bertrand, N., Bouyer, P., Brihaye, T.: When are timed automata deter-
minizable? In: ICALP (2), pp. 43–54 (2009). https://doi.org/10.1007/978-3-642-
02930-1 4

7. Beauquier, D.: Pumping lemmas for timed automata. In: Nivat, M. (ed.) FoSSaCS
1998. LNCS, vol. 1378, pp. 81–94. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0053543

8. Bérard, B., Petit, A., Diekert, V., Gastin, P.: Characterization of the expressive
power of silent transitions in timed automata. Fundam. Inform. 36(2–3), 145–182
(1998). https://doi.org/10.3233/FI-1998-36233

9. Bouyer, P., Dufourd, C., Fleury, E., Petit, A.: Updatable timed automata. Theor.
Comput. Sci. 321(2–3), 291–345 (2004). https://doi.org/10.1016/j.tcs.2004.04.003

10. Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos: a
model-checking tool for real-time systems. In: Hu, A.J., Vardi, M.Y. (eds.) CAV
1998. LNCS, vol. 1427, pp. 546–550. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0028779

11. Chen, T., Han, T., Katoen, J., Mereacre, A.: Reachability probabilities in Marko-
vian timed automata. In: CDC-ECC, pp. 7075–7080 (2011). https://doi.org/10.
1109/CDC.2011.6160992

12. Choffrut, C., Goldwurm, M.: Timed automata with periodic clock constraints. J.
Autom. Lang. Comb. 5(4), 371–403 (2000). https://doi.org/10.25596/jalc-2000-371

13. Comon, H., Jurski, Y.: Timed automata and the theory of real numbers. In: Baeten,
J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 242–257. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48320-9 18

14. Courcoubetis, C., Yannakakis, M.: Minimum and maximum delay problems in real-
time systems. Form. Methods Syst. Des. 1(4), 385–415 (1992). https://doi.org/10.
1007/BF00709157

15. Daws, C., Tripakis, S.: Model checking of real-time reachability properties using
abstractions. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 313–329.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054180

16. Finkel, O.: Undecidable problems about timed automata. In: Asarin, E., Bouyer,
P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 187–199. Springer, Heidelberg
(2006). https://doi.org/10.1007/11867340 14

17. Haase, C., Ouaknine, J., Worrell, J.: On the relationship between reachability
problems in timed and counter automata. In: Finkel, A., Leroux, J., Potapov, I.
(eds.) RP 2012. LNCS, vol. 7550, pp. 54–65. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-33512-9 6

18. Henzinger, T.A., Prabhu, V.S.: Timed alternating-time temporal logic. In: Asarin,
E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 1–17. Springer, Hei-
delberg (2006). https://doi.org/10.1007/11867340 1

19. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

20. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. STTT 1(1–2), 134–152
(1997). https://doi.org/10.1007/s100090050010

21. Lorber, F., Rosenmann, A., Nickovic, D., Aichernig, B.K.: Bounded determiniza-
tion of timed automata with silent transitions. Real Time Syst. 53(3), 291326
(2017). https://doi.org/10.1007/s11241-017-9271-x

https://doi.org/10.1007/3-540-48983-5_6
https://doi.org/10.1007/978-3-642-02930-1_4
https://doi.org/10.1007/978-3-642-02930-1_4
https://doi.org/10.1007/BFb0053543
https://doi.org/10.1007/BFb0053543
https://doi.org/10.3233/FI-1998-36233
https://doi.org/10.1016/j.tcs.2004.04.003
https://doi.org/10.1007/BFb0028779
https://doi.org/10.1007/BFb0028779
https://doi.org/10.1109/CDC.2011.6160992
https://doi.org/10.1109/CDC.2011.6160992
https://doi.org/10.25596/jalc-2000-371
https://doi.org/10.1007/3-540-48320-9_18
https://doi.org/10.1007/BF00709157
https://doi.org/10.1007/BF00709157
https://doi.org/10.1007/BFb0054180
https://doi.org/10.1007/11867340_14
https://doi.org/10.1007/978-3-642-33512-9_6
https://doi.org/10.1007/978-3-642-33512-9_6
https://doi.org/10.1007/11867340_1
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/s100090050010
https://doi.org/10.1007/s11241-017-9271-x

198 A. Rosenmann

22. Ouaknine, J., Rabinovich, A., Worrell, J.: Time-bounded verification. In: Bravetti,
M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 496–510. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04081-8 33

23. Ouaknine, J., Worrell, J.: On the language inclusion problem for timed automata:
closing a decidability gap. In: LICS, pp. 54–63 (2004). https://doi.org/10.1109/
LICS.2004.1319600

24. Ouaknine, J., Worrell, J.: Towards a theory of time-bounded verification. In:
ICALP (2), pp. 22–37 (2010). https://doi.org/10.1007/978-3-642-14162-1 3

25. Rosenmann, A.: The timestamp of timed automata. arXiv abs/1412.5669v4 (2019).
http://arxiv.org/abs/1412.5669

26. Tripakis, S., Yovine, S.: Analysis of timed systems using time-abstracting bisimu-
lations. Form. Methods Syst. Des. 18(1), 25–68 (2001). https://doi.org/10.1023/
A:1008734703554

27. Wang, F.: Efficient verification of timed automata with BDD-like data structures.
STTT 6(1), 77–97 (2004). https://doi.org/10.1007/s10009-003-0135-4

28. Wozna, B., Zbrzezny, A., Penczek, W.: Checking reachability properties for timed
automata via SAT. Fundam. Inform. 55(2), 223–241 (2003)

https://doi.org/10.1007/978-3-642-04081-8_33
https://doi.org/10.1109/LICS.2004.1319600
https://doi.org/10.1109/LICS.2004.1319600
https://doi.org/10.1007/978-3-642-14162-1_3
http://arxiv.org/abs/1412.5669
https://doi.org/10.1023/A:1008734703554
https://doi.org/10.1023/A:1008734703554
https://doi.org/10.1007/s10009-003-0135-4

	The Timestamp of Timed Automata
	1 Introduction
	2 Timed Automata with Silent Transitions
	3 The Trail and Timestamp of a Single Path
	4 Augmented and Infinite Augmented Region Automaton
	4.1 Infinite Augmented Region Automaton
	4.2 Augmented Region Automaton

	5 Eventual Periodicity
	5.1 Non-Zeno Cycles in Rt(A)
	5.2 A Period of Rt(A)
	5.3 Eventual Periodicity of Rt(A)

	6 Periodic Augmented Region Automaton
	7 The Timestamp
	7.1 Timestamp Automaton

	8 Conclusion and Future Research
	References

