
Étienne André
Mariëlle Stoelinga (Eds.)

LN
CS

 1
17

50

17th International Conference, FORMATS 2019
Amsterdam, The Netherlands, August 27–29, 2019
Proceedings

Formal Modeling
and Analysis
of Timed Systems

Lecture Notes in Computer Science 11750

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Étienne André • Mariëlle Stoelinga (Eds.)

Formal Modeling
and Analysis
of Timed Systems
17th International Conference, FORMATS 2019
Amsterdam, The Netherlands, August 27–29, 2019
Proceedings

123

Editors
Étienne André
Université Paris 13
Villetaneuse, France

Mariëlle Stoelinga
University of Twente
Enschede, The Netherlands

Radboud University
Nijmegen, The Netherlands

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-29661-2 ISBN 978-3-030-29662-9 (eBook)
https://doi.org/10.1007/978-3-030-29662-9

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-8473-9555
https://orcid.org/0000-0001-6793-8165
https://doi.org/10.1007/978-3-030-29662-9

Preface

A famous quote by Albert Einstein says,
“The only reason for time is so that everything doesn’t happen at once.”

Indeed, making sure that actions happen at the right time, and in the right order is a
very nontrivial task. Real-time behavior lies at the core of today’s modern systems, for
instance to achieve coherence in data centers, coordination in robots and MRI scanners,
response times for hardware, etc. As a community we have developed many for-
malisms, techniques, and tools to reason about time. These inventions form the core
of the International Conference on FORmal Modeling and Analysis of Timed
Systems—FORMATS for short.

This volume contains the proceedings of the 17th International Conference on
Formal Modeling and Analysis of Timed Systems (FORMATS 2019), which was held
during August 27–29, 2019, in Amsterdam, the Netherlands. FORMATS 2019 was
colocated with CONCUR 2019, FMICS 2019, and several workshops.

Control and analysis of the timing of computations is crucial to many domains of
system engineering, be it, e.g., for ensuring timely response to stimuli originating in an
uncooperative environment, or for synchronizing components in VLSI. Reflecting this
broad scope, timing aspects of systems from a variety of domains have been treated
independently by different communities in computer science and control. Researchers
interested in semantics, verification, and performance analysis study models such as
timed automata and timed Petri nets, the digital design community focuses on prop-
agation and switching delays, while designers of embedded controllers have to take
account of the time taken by controllers to compute their responses after sampling the
environment, as well as of the dynamics of the controlled process during this span.

Timing-related questions in these separate disciplines do have their particularities.
However, there is a growing awareness that there are basic problems (of both scientific and
engineering level) that are common to all of them. In particular, all these sub-disciplines
treat systems whose behavior depends upon combinations of logical and temporal
constraints; namely, constraints on the temporal distances between occurrences of
successive events. Often, these constraints cannot be separated, as the intrinsic dynamics of
processes couples them, necessitating models, methods, and tools facilitating their
combined analysis. Reflecting this, FORMATS 2019 also accepted submissions on hybrid
discrete-continuous systems and held a session on linear and non-linear dynamical systems.

FORMATS 2019 benefited from several novelties. First, in order to emphasize the
practical side of the research on timed and real-time systems, we were happy to
introduce tool papers into our program. Second, we organized two special sessions:

1. A special session on data-driven and stochastic approaches to real-time, organized
by Martin Fränzle; and

2. A special session on timed systems and probabilities, organized by Nathalie
Bertrand.

Third, following the tradition initiated in 2018, FORMATS 2019 was happy to
award the best paper of the conference with the Oded Maler Award in timed systems.
This prize, named after one of the founding fathers of FORMATS, commemorates the
pioneering work of Oded Maler, whose untimely death in 2018 was a big loss to the
community.

This year, we received a higher number of submissions than in past years, resulting
in a lower acceptance rate. We received 36 long papers (of which 5 in the probabilities
special session and 4 in the data special session) and 6 tool papers. After discussion, the
Program Committee (PC) decided to accept 15 long papers (of which 3 in each special
session) and 2 tool papers. This resulted in an overall acceptance rate of 40%. 29 PC
members helped to provide at least 3 reviews for each of the 42 submitted
contributions.

FORMATS 2019 is a three-day event, featuring 3 invited talks and 17 paper pre-
sentations. A highlight of FORMATS 2019 was an invited talk by Nathalie Bertrand, as
well as two further invited talks jointly organized with CONCUR 2019, by Marta
Kwiatkowska and Kim Larsen.

Further details on FORMATS 2019 are featured on the website: https://lipn.univ-
paris13.fr/formats2019/.

Finally, a few words of acknowledgment are due. Thanks to Jos Baeten for helping
with the local organization and the relationship with CONCUR. Thanks to Springer for
publishing the FORMATS proceedings in the series Lecture Notes in Computer
Science, and to EasyChair for providing a convenient platform for coordinating the
paper submission and evaluation. Thanks to the Steering Committee, and notably to
Martin Fränzle, for their support, to all the PC members and additional reviewers for
their work (128 reviews in total) in ensuring the quality of the contributions to
FORMATS 2019, and to all the authors and participants for contributing to this event.

As PC chairs, we hope that these papers in this volume will provide readers with
novel insights and ideas.

July 2019 Étienne André
Mariëlle Stoelinga

vi Preface

https://lipn.univ-paris13.fr/formats2019/
https://lipn.univ-paris13.fr/formats2019/

Organization

Program Committee

Alessandro Abate University of Oxford, UK
S. Akshay Indian Institute of Technology Bombay, India
Étienne André Université Paris 13, France
Enrico Bini University of Turin, Italy
Sergiy Bogomolov The Australian National University, Australia
Franck Cassez Macquarie University, Australia
Jyotirmoy Deshmukh University of Southern California, USA
Martin Fränzle Carl von Ossietzky Universität Oldenburg, Germany
Tingting Han University of London, UK
Ichiro Hasuo National Institute of Informatics, Japan
David N. Jansen Chinese Academy of Sciences, China
Jan Krĕtínský Technical University of Munich, Germany
Didier Lime École Centrale Nantes, France
Brian Nielsen Aalborg University, Denmark
Peter Ölveczky University of Oslo, Norway
Pavithra Prabhakar Kansas State University, USA
Karin Quaas Leipzig University, Germany
Pierre-Alain Reynier Aix-Marseille University, France
César Sánchez IMDEA Software Institute, Spain
Ocan Sankur Univ Rennes, Inria, CNRS, IRISA, Rennes, France
Ana Sokolova University of Salzburg, Austria
Oleg Sokolsky University of Pennsylvania, USA
Jiří Srba Aalborg University, Denmark
Mariëlle Stoelinga University of Twente, The Netherlands
Jun Sun Singapore Management University, Singapore
Lothar Thiele ETH Zürich, Switzerland
Enrico Vicario University of Florence, Italy
James Worrell University of Oxford, UK
Wang Yi Uppsala University, Sweden

General Chair

Jos Baeten CWI, The Netherlands

Steering Committee

Rajeev Alur University of Pennsylvania, USA
Eugene Asarin Université de Paris, France
Martin Fränzle Carl von Ossietzky Universität Oldenburg, Germany

Thomas A. Henzinger IST Austria, Austria
Joost-Pieter Katoen RWTH Aachen University, Germany
Kim G. Larsen Aalborg University, Denmark
Oded Maler (1957–2018) VERIMAG, CNRS, France
Mariëlle Stoelinga University of Twente, The Netherlands
Lothar Thiele ETH Zürich, Switzerland
Wang Yi Uppsala University, Sweden

Additional Reviewers

Ashok, Pranav
Bacci, Giorgio
Bacci, Giovanni
Bae, Kyungmin
Bresolin, Davide
Busatto-Gaston, Damien
Carnevali, Laura
Cervin, Anton
Ehmen, Günter
Ernst, Gidon
Gangadharan, Deepak
Genest, Blaise
Jezequel, Loïg

Kristjansen, Martin
Lal, Ratan
Lorber, Florian
Lukina, Anna
Monmege, Benjamin
Muniz, Marco
Nickovic, Dejan
Nutz, Alexander
Peruffo, Andrea
Potomkin, Kostiantyn
Rahimi Afzal, Zahra
Ray, Rajarshi
Ruchkin, Ivan

Ruijters, Enno
Šafránek, David
Sallinger, Sarah
Schilling, Christian
Schou, Morten Konggaard
Shirmohammadi, Mahsa
Sproston, Jeremy
Srivathsan, B.
Stierand, Ingo
Weininger, Maximilian
Yao, Haodong

viii Organization

Short Papers

When Are Dense-Time Stochastic Systems
Tameable?

Nathalie Bertrand

Univ Rennes, Inria, CNRS, IRISA, France

Abstract. Many applications, such as communication protocols, require models
which integrate both real-time constraints, and randomization. The verification
of such models is a challenging task since they combine dense-time and prob-
abilities. To verify stochastic real-time systems, we propose a framework to
perform the analysis of general stochastic transition systems (STSs). This
methodology relies on two pillars: a decisiveness and abstraction.

Decisiveness was introduced for denumerable Markov chains [1], and
roughly speaking, it allows one to lift most analysis techniques from finite
Markov chains to denumerable ones, and therefore to adapt existing verification
algorithms to infinite-state models. We explain how to generalize this central
notion to dense-time stochastic models.

In order to exploit decisiveness, we define a notion of abstraction, and we
give general transfer properties from the abstract model to the concrete one.
These are central to come up with qualitative and quantitative verification
algorithms for STS.

Our methodology applies for instance to stochastic timed automata
(STA) and generalized semi-Markov processes (GSMP), two existing models
combining dense-time and probabilities. This allows us on the one hand to
recover existing results from the literature on these two models –with less effort
and a unified view– and on the other hand to derive new approximation algo-
rithms for STA and GSMP.

The interested reader can refer to a joint article with Patricia Bouyer, Thomas
Brihaye and Pierre Carlier for further details [2].

Short biography Nathalie Bertrand obtained her PhD from ENS Cachan in 2006,
supervised by Philippe Schnoebelen. She spent a year at TU Dresden working with
Christel Baier, and was in 2007 hired junior research scientist at Inria Rennes. Her
expertise is in model checking specifically for probabilistic systems.

References

1. Abdulla, P.A., Ben Henda, N., Mayr, R.: Decisive markov chains. Log. Methods. Comput.
Sci. 3(4) (2007). https://doi.org/10.2168/LMCS-3(4:7)2007

2. Bertrand, N., Bouyer, P., Brihaye, T., Carlier, P.: When are stochastic transition systems
tameable? J. Log. Algebraic Program. 99, 41–96 (2018). https://doi.org/10.1016/j.jlamp.2018.
03.004

http://people.rennes.inria.fr/Nathalie.Bertrand/
https://doi.org/10.2168/LMCS-3(4:7)2007
https://doi.org/10.1016/j.jlamp.2018.03.004
https://doi.org/10.1016/j.jlamp.2018.03.004

Safety Verification for Deep Neural Networks
with Provable Guarantees

Marta Kwiatkowska

University of Oxford, Oxford, UK

Abstract. Computing systems are becoming ever more complex, with decisions
increasingly often based on deep learning components. A wide variety of
applications are being developed, many of them safety-critical, such as
self-driving cars and medical diagnosis. Since deep learning is unstable with
respect to adversarial perturbations, there is a need for rigorous software
development methodologies that encompass machine learning components. This
lecture will describe progress with developing automated verification techniques
for deep neural networks to ensure safety and robustness of their decisions with
respect to input perturbations. The techniques exploit Lipschitz continuity of the
networks and aim to approximate, for a given set of inputs, the reachable set of
network outputs in terms of lower and upper bounds, in anytime manner, with
provable guarantees. We develop novel algorithms based on feature-guided
search, games, global optimisation and Bayesian methods, and evaluate them on
state-of-the-art networks. The lecture will conclude with an overview of the
challenges in this field.

Short biographyMarta Kwiatkowska is Professor of Computing Systems and Fellow of
Trinity College, University of Oxford. She is known for fundamental contributions to
the theory and practice of model checking for probabilistic systems, focusing on
automated techniques for verification and synthesis from quantitative specifications.
She led the development of the PRISM model checker (www.prismmodelchecker.org),
the leading software tool in the area and winner of the HVC Award 2016. Probabilistic
model checking has been adopted in diverse fields, including distributed computing,
wireless networks, security, robotics, healthcare, systems biology, DNA computing and
nanotechnology, with genuine flaws found and corrected in real-world protocols.
Kwiatkowska is the first female winner of the Royal Society Milner Award and was
awarded an honorary doctorate from KTH Royal Institute of Technology in Stockholm.
She won two ERC Advanced Grants, VERIWARE and FUN2MODEL, and is a
coinvestigator of the EPSRC Programme Grant on Mobile Autonomy. Kwiatkowska is
a Fellow of the Royal Society, Fellow of ACM and Member of Academia Europea.

http://www.cs.ox.ac.uk/marta.kwiatkowska/
http://www.prismmodelchecker.org

Synthesis of Safe, Optimal and Compact
Strategies for Stochastic Hybrid Games

Kim G. Larsen

Department of Computer Science, Aalborg University, Denmark

Abstract. UPPAAL-STRATEGO is a recent branch of the verification tool Uppaal
allowing for synthesis of safe and optimal strategies for stochastic timed
(hybrid) games. We describe newly developed learning methods, allowing for
synthesis of significantly better strategies and with much improved convergence
behaviour. Also, we describe novel use of decision trees for learning
orders-of-magnitude more compact strategy representation. In both cases, the
seek for optimality does not compromise safety.

Short biography Kim G. Larsen is professor in the Department of Computer Science at
Aalborg University within the Distributed and Embedded Systems Unit and director
of the ICT-competence center CISS, Center for Embedded Software Systems. In 2015
he won an ERC Advanced Grant with the project LASSO for learning, analysis,
synthesis and optimization of cyber-physical systems. He is director of the Sino-Danish
Basic Research Center IDEA4CPS, the Danish Innovation Network InfinIT, as well as
the innovation research center DiCyPS: Data Intensive Cyber Physical Systems. His
research interests include modeling, verification, performance analysis of real-time and
embedded systems with applications to concurrency theory and model checking. In
particular he is prime investigator of the real-time verification UPPAAL as well as the
various new branches of the tool targeted towards planning, optimization, testing,
synthesis and compositional analysis.

http://people.cs.aau.dk/~kgl/

Contents

Special Session on Data-Driven and Stochastic Approaches
to Real-Time, Including Monitoring and Big Data

Online Quantitative Timed Pattern Matching with Semiring-Valued
Weighted Automata. 3

Masaki Waga

Assessing the Robustness of Arrival Curves Models for Real-Time Systems . . . 23
Mahmoud Salem, Gonzalo Carvajal, Tong Liu,
and Sebastian Fischmeister

Property-Driven Timestamps Encoding for Timeprints-Based Tracing
and Monitoring . 41

Rehab Massoud, Hoang M. Le, and Rolf Drechsler

Mixed-Time Signal Temporal Logic . 59
Thomas Ferrère, Oded Maler, and Dejan Ničković

Timed Systems

A State Class Construction for Computing the Intersection of Time Petri
Nets Languages . 79

Éric Lubat, Silvano Dal Zilio, Didier Le Botlan, Yannick Pencolé,
and Audine Subias

Stability and Performance Bounds in Cyclic Networks Using
Network Calculus . 96

Anne Bouillard

ParetoLib: A Python Library for Parameter Synthesis 114
Alexey Bakhirkin, Nicolas Basset, Oded Maler,
and José-Ignacio Requeno Jarabo

Linear and Non-linear Systems

Piecewise Robust Barrier Tubes for Nonlinear Hybrid Systems
with Uncertainty . 123

Hui Kong, Ezio Bartocci, Yu Jiang, and Thomas A. Henzinger

Bounded Model Checking of Max-Plus Linear Systems
via Predicate Abstractions . 142

Muhammad Syifa’ul Mufid, Dieky Adzkiya, and Alessandro Abate

Reachability Analysis for High-Index Linear Differential
Algebraic Equations . 160

Hoang-Dung Tran, Luan Viet Nguyen, Nathaniel Hamilton,
Weiming Xiang, and Taylor T. Johnson

Timed Automata

The Timestamp of Timed Automata . 181
Amnon Rosenmann

On the Distance Between Timed Automata . 199
Amnon Rosenmann

Time to Learn – Learning Timed Automata from Tests 216
Martin Tappler, Bernhard K. Aichernig, Kim Guldstrand Larsen,
and Florian Lorber

Munta: A Verified Model Checker for Timed Automata 236
Simon Wimmer

Special Session on Timed Systems and Probabilities

Sandboxing Controllers for Stochastic Cyber-Physical Systems 247
Bingzhuo Zhong, Majid Zamani, and Marco Caccamo

Proportional Lumpability . 265
Andrea Marin, Carla Piazza, and Sabina Rossi

Expected Reachability-Price Games . 282
Shibashis Guha and Ashutosh Trivedi

Author Index . 301

xvi Contents

Special Session on Data-Driven and
Stochastic Approaches to Real-Time,
Including Monitoring and Big Data

Online Quantitative Timed Pattern
Matching with Semiring-Valued

Weighted Automata

Masaki Waga1,2,3(B)

1 National Institute of Informatics, Tokyo, Japan
mwaga@nii.ac.jp

2 SOKENDAI (The Graduate University for Advanced Studies), Tokyo, Japan
3 JSPS Research Fellow, Tokyo, Japan

Abstract. Monitoring of a signal plays an essential role in the runtime
verification of cyber-physical systems. Qualitative timed pattern match-
ing is one of the mathematical formulations of monitoring, which gives
a Boolean verdict for each sub-signal according to the satisfaction of
the given specification. There are two orthogonal directions of extension
of the qualitative timed pattern matching. One direction on the result
is quantitative: what engineers want is often not a qualitative verdict
but the quantitative measurement of the satisfaction of the specification.
The other direction on the algorithm is online checking: the monitor
returns some verdicts before obtaining the entire signal, which enables
to monitor a running system. It is desired from application viewpoints.
In this paper, we conduct these two extensions, taking an automata-
based approach. This is the first quantitative and online timed pattern
matching algorithm to the best of our knowledge. More specifically, we
employ what we call timed symbolic weighted automata to specify quanti-
tative specifications to be monitored, and we obtain an online algorithm
using the shortest distance of a weighted variant of the zone graph and
dynamic programming. Moreover, our problem setting is semiring-based
and therefore, general. Our experimental results confirm the scalability
of our algorithm for specifications with a time-bound.

Keywords: Quantitative monitoring · Timed automata ·
Weighted automata · Signals · Zones · Dynamic programming ·
Semirings

1 Introduction

Background Monitoring a system behavior plays an essential role in the runtime
verification or falsification of cyber-physical systems (CPSs), where various for-
malisms such as temporal logic formulas or automata are used for specification.
Usually, a CPS is a real-time system, and real-time constraints must be included

Thanks are due to Ichiro Hasuo for a lot of useful comments and Sasinee Pruekprasert
for a feedback. This work is partially supported by JST ERATO HASUO Metamath-
ematics for Systems Design Project (No. JPMJER1603) and by JSPS Grants-in-Aid
No. 15KT0012 & 18J22498.

c© Springer Nature Switzerland AG 2019
É. André and M. Stoelinga (Eds.): FORMATS 2019, LNCS 11750, pp. 3–22, 2019.
https://doi.org/10.1007/978-3-030-29662-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29662-9_1&domain=pdf
http://orcid.org/0000-0001-9360-7490
https://doi.org/10.1007/978-3-030-29662-9_1

4 M. Waga

Table 1. Comparison of the problem settings with related studies

Quantitative? Online? Dense time? Result of which part?

[8] No Yes Yes All sub-signals (pattern matching)

[7] Yes No Yes All sub-signals (pattern matching)

[21] Yes Yes No The whole signal

[14] Yes Yes Yes The whole signal

This Paper Yes Yes Yes All sub-signals (pattern matching)

in the specification. An example of such a specification is that the velocity of
a self-driving car should be more than 70 km/h within 3 s after the car enters
an empty highway. Timed automata [3] is a formalism that captures real-time
constraints. They are equipped with clock variables and timing constraints on
the transitions. Applications of monitoring of real-time properties include data
classification [11] and Web services [26] as well as CPSs (e.g., automotive sys-
tems [22] and medical systems [13]).

The behavior of a CPS is usually described as a real-valued signal that is
mathematically a function σ mapping a time t to the condition σ(t) ∈ R

n of the
system at time t. Usual automata notions (e.g., NFA and timed automata) handle
only finite alphabets, and in order to monitor signals over R

n, automata must
be extended to handle infinite alphabets. Symbolic automata [30] handle large
or even infinite alphabets, including real vectors. In a symbolic automaton over
a real vector space R

n, each location (or transition) is labeled with a constraint
over R

n instead of one vector v ∈ R
n; therefore, one location (or transition)

corresponds to infinitely many vectors.
Monitoring can be formulated in various ways. They are classified according

to the following criteria. Table 1 shows a comparison of various formulations of
monitoring problems.

Qualitative vs. quantitative semantics. When an alphabet admits sub-
traction and comparisons, in addition to the qualitative semantics (i. e.,
true or false), one can define a quantitative semantics (e. g., robustness)
of a signal with respect to the specification [2,7,17,19]. Robust semantics
shows how robustly a signal satisfies (or violates) the given specification. For
instance, the specification v > 70 is satisfied more robustly by v = 170
than by v = 70.0001. In the context of CPSs, robust semantics for sig-
nal temporal logic is used in robustness-guided falsification [5,16]. Weighted
automata [18,27] are employed for expressing such a quantitative seman-
tics [20,21].

Offline vs. online. Consider monitoring of a signal σ = σ1 ·σ2 over a specifica-
tion W. In offline monitoring, the monitor returns the result M(σ,W) after
obtaining the entire signal σ. In contrast, in online monitoring, the monitor
starts returning the result before obtaining the entire signal σ. For example,
the monitor may return a partial result M(σ1,W) for the first part σ1 before
obtaining the second part σ2.

Discrete vs. dense time. In a discrete time setting, timestamps are natural
numbers while, in a dense time setting, timestamps are positive (or non-
negative) real numbers.

Online Quantitative Timed Pattern Matching 5

10
20
30
40
50
60
70

0 5 10 15 20 25 30

x

t

signal σ

0 5 10 15 20 25 30
0

5

10

15

20

25

30

-50

-40

-30

-20

-10

0

10

Fig. 1. Piecewise-constant signal σ (left) and an illustration of the quantitative match-
ing function (M(σ, W))(t, t′) for [t, t′) ⊆ [0, 30.5) (right). In the right figure, the score in
the white areas is −∞. The specification W is outlined in Example 1. In the right figure,
the value at (3, 15) is 5. It shows that the score

(M(σ, W)
)
(3, 15), for the restriction

σ
(
[3, 15)

)
of σ to the interval [3, 15), is 5.

Result of which part? Given a signal σ, we may be interested in the proper-
ties of different sets of sub-signals of σ. The simplest setting is where we are
interested only in the whole signal σ (e. g.,[14,21]). Another more compre-
hensive setting is where we are interested in the property of each sub-signal
of σ; problems in this setting are called timed pattern matching [7,28,32].

Our Problem. Among the various problem settings of monitoring, we focus on
an online algorithm for quantitative timed pattern matching [7] in a dense time
setting. See Table 1. Given a piecewise-constant signal σ and a specification W
expressed by what we call a timed symbolic weighted automaton, our algorithm
returns the quantitative matching function M(σ,W) that maps each interval
[t, t′) ⊆ [0, |σ|) to the (quantitative) semantics

(
M(σ,W)

)
(t, t′), with respect to

W, for the restriction σ([t, t′)) of σ to the interval [t, t′), where |σ| is the duration
of the signal. An illustration of M(σ,W) is in Fig. 1. In [7], quantitative timed
pattern matching was solved by an offline algorithm using a syntax tree of signal
regular expressions. In this paper, we propose an online algorithm for quantita-
tive timed pattern matching with automata. To the best of our knowledge, this
is the first online algorithm for quantitative timed pattern matching. Moreover,
our (quantitative) semantics is parameterized by a semiring and what we call a
cost function. This algebraic formulation makes our problem setting general.

Example 1. Let σ be the piecewise-constant signal in the left of Fig. 1 and W be
the specification meaning the following.

• At first, the value of x stays less than 15, and then the value of x becomes
and remains greater than 5 within 5 s.

• We are only interested in the behavior within 10 s after the value of x becomes
greater than 5.

• We want the score showing how robustly the above conditions are satisfied.

The right of Fig. 1 illustrates the result of quantitative timed pattern matching.
Quantitative timed pattern matching computes the semantics

(
M(σ,W)

)
(t, t′),

6 M. Waga

l0, x < 15 l1, x > 5 l2, �
c < 5 /c := 0 c < 10

κr u, (a1a2 . . . am)
)
= inf

i∈{1,2,...,n}
κr(u, (ai))

κr

n∧

i=1

(xi ��i di), (a)
)
= inf

i∈{1,2,...,n}
κr(xi ��i di, (a)) where ��i∈ {>, ≥, ≤, <}

κr(x � d, (a)) = a(x) − d where �∈ {≥, >}
κr(x ≺ d, (a)) = d − a(x) where ≺∈ {≤, <}

Fig. 2. Example of a TSWA W = (A, κr) which is the pair of the TSA A (upper) and
the cost function κr (lower). See Definition 5 for the precise definition.

with respect to W, for each sub-signal σ([t, t′)) of σ. The current semantics shows
how robustly the conditions are satisfied. The semantics

(
M(σ,W)

)
(3, 15) for

the sub-signal σ
(
[3, 15)

)
is 5, which is the value at (3, 15) in the right of Fig. 1.

This is because the distance between the first constraint x < 15 and the first
valuation x = 10 of the sub-signal σ

(
[3, 15)

)
is 5, and the distance between the

second constraint x > 5 and the valuations x = 10, x = 40, and x = 60 of the
sub-signal σ

(
[3, 15)

)
is not smaller than 5. The semantics

(
M(σ,W)

)
(10, 15) for

the sub-signal σ
(
[10, 15)

)
is −25, which is the value at (10, 15) in the right of

Fig. 1. Thus, the sub-signal σ
(
[3, 15)

)
satisfies the condition specified in W more

robustly than the sub-signal σ
(
[10, 15)

)
.

Our algorithm is online and it starts returning the result before obtaining
the entire signal σ. For example, after obtaining the sub-signal σ

(
[0, 7.5)

)
of

the initial 7.5 s, our algorithm returns that for any [t, t′) ⊆ [0, 7.5), the score(
M(σ,W)

)
(t, t′) is 5.

Our Solution. We formulate quantitative timed pattern matching using the
shortest distance [25] of semiring-valued (potentially infinite) weighted graphs.
We reduce it to the shortest distance of finite weighed graphs. This is in con-
trast with the qualitative setting: the semantics is defined by the reachability
in a (potentially infinite) graph and it is reduced to the reachability in a finite
graph. The following is an overview.

Problem formulation. We introduce timed symbolic weighted automata
(TSWAs) and define the (quantitative) semantics α(σ,W) of a signal σ with
respect to a TSWA W. Moreover, we define quantitative timed pattern match-
ing for a signal and a TSWA. A TSWA W is a pair (A, κ) of a timed symbolic
automaton (TSA) A—that we also introduce in this paper — and a cost
function κ. The cost function κ returns a semiring value at each transition of
A, and the semiring operations specify how to accumulate such values over
time. This algebraic definition makes our problem general. Figure 2 shows an
example of a TSWA.

Online Quantitative Timed Pattern Matching 7

W

weight0
shortest
distance

aτ1
1

weight1
shortest
distance

aτ2
2

weight2 · · ·

· · ·

weightn

M(aτ1
1 , W) M(aτ1

1 aτ2
2 , W) M(σ, W)

compute the
partial result

compute the
partial result

compute the
entire result

Fig. 3. Illustration of our online algorithm for quantitative timed pattern matching of
a signal σ = aτ1

1 aτ2
2 · · · aτn

n meaning “the signal value is a1 for τ1, the signal value is
a2 for the next τ2, . . .” and a TSWA W. The intermediate data weight i for the weight
computation is represented by zones. The precise definition of the weight i is introduced
later in Definition 16.

Algorithm by zones. We give an algorithm for computing our semantics
α(σ,W) of a signal σ by the shortest distance of a finite weighted graph.
The constructed weighted graph is much like the zone graph [10] for reacha-
bility analysis of timed automata. Our algorithm is general and works for any
semantics defined on an idempotent and complete semiring. (See Example 4
later for examples of such semirings.)

Incremental and online algorithms. We present an incremental algorithm
for computing the semantics α(σ,W) of a signal σ with respect to the TSWA
W. Based on this incremental algorithm for computing α(σ,W), we present
an online algorithm for quantitative timed pattern matching. To the best of
our knowledge, this is the first online algorithm for quantitative timed pat-
tern matching. Our online algorithm for quantitative timed pattern matching
works incrementally, much like in dynamic programming. Figure 3 shows an
illustration.

Contribution. We summarize our contributions as follows.

• We formulate the semantics of a signal with respect to a TSWA by a shortest
distance of a potentially infinite weighted graph.

• We reduce the above graph to a finite weighted graph.
• We give an online algorithm for quantitative timed pattern matching.

Related Work. Table 1 shows a comparison of the present study with some
related studies. Since the formulation of qualitative timed pattern matching [28],
many algorithms have been presented [8,28,29,32,35], including the online algo-
rithms [8,35] using timed automata. Quantitative timed pattern matching was
formulated and solved by an offline algorithm in [7]. This offline algorithm is
based on the syntax trees of signal regular expressions, and it is difficult to extend
for online monitoring. Weighted automata are used for quantitative monitoring
in [12,20,21], but the time model was discrete.

The online quantitative monitoring for signal temporal logic [14] is one of
the closest work. Since we use the clock variables of TSAs to represent the
intervals of timed pattern matching, it seems hard to use the algorithm in [14]
for quantitative timed pattern matching.

8 M. Waga

Parametric timed pattern matching [4,33] is another orthogonal extension of
timed pattern matching, where timing constraints are parameterized. Symbolic
monitoring [34] is a further generalization to handle infinite domain data. These
problems answer feasible parameter valuations and different from our problem.

Organization of the Paper. Section 2 introduces preliminaries on signals and
semirings. Section 3 defines timed symbolic weighted automata (TSWAs), and
our quantitative semantics of signals over a TSWA. Section 4 defines the quanti-
tative timed pattern matching problem. Sections 5 and 6 describe our algorithms
for computing the quantitative semantics and the quantitative timed pattern
matching problem, respectively. Section 7 presents our experimental results for
the sup-inf and tropical semirings, which confirm the scalability of our algo-
rithm under some reasonable assumptions. Section 8 presents conclusions and
some future perspectives.

Most proofs are deferred to the appendix in [31] due to lack of space.

2 Preliminary

For a set X, its powerset is denoted by P(X). We use ε to represent the empty
sequence. All the signals in this paper are piecewise-constant, which is one of
the most common interpolation methods of sampled signals.

Definition 2 (signal). Let X be a finite set of variables defined over a data
domain D. A (piecewise-constant) signal σ is a sequence σ = aτ1

1 aτ2
2 · · · aτn

n ,
where for each i ∈ {1, 2, . . . , n}, ai ∈ D

X and τi ∈ R>0. The set of signals over
D

X is denoted by T (DX). The duration
∑n

i=1 τi of a signal σ is denoted by |σ|.
The sequence a1 ◦a2 ◦ · · · ◦an of the values of a signal σ is denoted by Values(σ),
where a◦a′ is a◦a′ = aa′ if a �= a′ and a◦a′ = a if a = a′. We denote the set {a1◦
a2 ◦ . . . ◦ an | n ∈ Z≥0, a1, a2, . . . , an ∈ D

X} by (DX)�. For t ∈ [0, |σ|), we define
σ(t) = ak, where k is such that

∑k−1
i=1 τi ≤ t <

∑k
i=1 τi. For an interval [t, t′) ⊆

[0, |σ|), we define σ([t, t′)) = a
∑k

i=1 τi−t
k a

τk+1
k+1 . . . a

τl−1
l−1 . . . a

t′−∑l−1
i=1 τi

l , where k and
l are such that

∑k−1
i=1 τi ≤ t <

∑k
i=1 τi and

∑l−1
i=1 τi < t′ ≤

∑l
i=1 τi.

Definition 3 (semiring). A system S = (S,⊕,⊗, e⊕, e⊗) is a semiring if we
have the following.

• (S,⊕, e⊕) is a commutative monoid with identity element e⊕.
• (S,⊗, e⊗) is a monoid with identity element e⊗.
• For any s, s′, s′′ ∈ S, we have (s ⊕ s′) ⊗ s′′ = (s ⊗ s′′) ⊕ (s′ ⊗ s′′) and

s ⊗ (s′ ⊕ s′′) = (s ⊗ s′) ⊕ (s ⊗ s′′).
• For any s ∈ S, we have e⊕ ⊗ s = s ⊗ e⊕ = e⊕.

A semiring (S,⊕,⊗, e⊕, e⊗) is complete if for any S′ ⊆ S,
⊕

s∈S′ s is an
element of S such that: if S′ = ∅,

⊕
s∈S′ s = e⊕; if S′ = {s},

⊕
s∈S′ s = s;

for any partition S′ =
∐

i∈I S′
i, we have

⊕
s∈S′ s =

⊕
i∈I

(⊕
s∈S′

i
s
)
; for any

s ∈ S, we have s ⊗
(⊕

s′∈S′ s′) =
⊕

s′∈S′(s ⊗ s′); and for any s ∈ S, we have

Online Quantitative Timed Pattern Matching 9

(⊕
s∈S′ s

)
⊗s′ =

⊕
s∈S′(s⊗s′). A semiring S = (S,⊕,⊗, e⊕, e⊗) is idempotent if

for any s ∈ S, s⊕s = s holds. For a semiring (S,⊕,⊗, e⊕, e⊗) and s1, s2, . . . , sn ∈
S, we denote

⊕n
i=1 si = s1 ⊕ s2 ⊕ · · · ⊕ sn and

⊗n
i=1 si = s1 ⊗ s2 ⊗ · · · ⊗ sn.

Example 4. The Boolean semiring ({
,⊥},∨,∧,⊥,
), the sup-inf semiring (R�
{±∞}, sup, inf,−∞,+∞), and the tropical semiring (R � {+∞}, inf,+,+∞, 0)
are complete and idempotent.

Let S = (S,⊕,⊗, e⊕, e⊗) be a semiring and G = (V,E,W) be a weighted
graph over S, i. e., V is the finite set of vertices, E ⊆ V × V is the finite
set of edges, and W : V × V → S is the weight function. For Vfrom, Vto ⊆
V , the shortest distance from Vfrom to Vto is Dist(Vfrom, Vto, V, E,W) =⊕

v∈Vfrom,v′∈Vto

⊕
v=v1v2...vn=v′∈Paths(G)

⊗n−1
i=1 W (vi, vi+1) , where Paths(G) is

the set of the paths in G, i. e., Paths(G) = {v1v2 . . . vn | ∀i ∈ {1, 2, . . . , n −
1}. , (vi, vi+1) ∈ E}. For any complete semiring, the shortest distance problem
can be solved by a generalization of the Floyd-Warshall algorithm [25]. Under
some conditions, the shortest distance problem can be solved more efficiently by
a generalization of the Bellman-Ford algorithm [25].

3 Timed Symbolic Weighted Automata

We propose timed symbolic automata (TSAs), timed symbolic weighted
automata (TSWAs), and the (quantitative) semantics of TSWAs. TSAs are an
adaptation of timed automata [3] for handling signals over D rather than signals
over a finite alphabet. In the remainder of this paper, we assume that the data
domain D is equipped with a partial order ≤. A typical example of D is the reals
R with the usual order. We note that TSAs are much like the state-based variant
of timed automata [6,8] rather than the original, event-based definition [3].

For a finite set X of variables and a poset (D,≤), we denote by Φ(X,D)
the set of constraints defined by a finite conjunction of inequalities x �	 d, where
x ∈ X, d ∈ D, and �	 ∈ {>,≥, <,≤}. We denote

∧
∅ ∈ Φ(X,D) by
. For a finite

set C of clock variables, a clock valuation is a function ν ∈ (R≥0)C . For a clock
valuation ν ∈ (R≥0)C over C and C ′ ⊆ C, we let ν↓C′ ∈ (R≥0)C′

be the clock
valuation over C ′ satisfying ν↓C′(c) = ν(c) for any c ∈ C ′. For a finite set C of
clock variables, let 0C be the clock valuation 0C ∈ (R≥0)C satisfying 0C(c) = 0
for any c ∈ C. For a clock valuation ν over C and τ ∈ R≥0, we denote by ν + τ
the valuation satisfying (ν + τ)(c) = ν(c)+ τ for any c ∈ C. For ν ∈ (R≥0)C and
ρ ⊆ C, we denote by ν[ρ := 0] the valuation such that (ν[ρ := 0])(x) = 0 for
c ∈ ρ and (ν[ρ := 0](c) = ν(c) for c �∈ ρ.

The definitions of TSAs and TSWAs are as follows. As shown in Fig. 2, TSAs
are similar to the timed automata in [6,8], but the locations are labeled with a
constraint on the signal values D

X instead of a character in a finite alphabet.

Definition 5 (timed symbolic, timed symbolic weighted automata).
For a poset (D,≤), a timed symbolic automaton (TSA) over D is a 7-tuple
A = (X,L,L0, LF , C,Δ,Λ), where:

10 M. Waga

• X is a finite set of variables over D;
• L is the finite set of locations;
• L0 ⊆ L is the set of initial locations;
• LF ⊆ L is the set of accepting locations;
• C is the finite set of clock variables;
• Δ ⊆ L × Φ(C,Z≥0) × P(C) × L is the set of transitions; and
• Λ is the labeling function Λ : L → Φ(X,D).

For a poset (D,≤) and a complete semiring S = (S,⊕,⊗, e⊕, e⊗), a timed
symbolic weighted automaton (TSWA) over D and S is a pair W = (A, κ) of a
TSA A over D and a cost function κ : Φ(X,D) × (DX)� → S over S.

The semantics of a TSWA W = (A, κ) on a signal σ is defined by the trace
value α(S) of the weighted timed transition systems (WTTS) S of σ and W.
The trace value α(S) depends on the cost function κ and implicitly on its range
semiring S as well as the signal σ and the TSA A. As shown below, the state
space of a WTTS S is Q = L × (R≥0)C × [0, |σ|] × (DX)�. Intuitively, a state
(l, ν, t, a) ∈ Q of S consists of: the current location l; the current clock valuation
ν; the current absolute time t; and the observed signal value a after the latest
transition. The transition → of S is for a transition of A or time elapse.

Definition 6 (weighted timed transition systems). For a signal σ ∈
T (DX) and a TSWA W = (A, κ) over the data domain D and semiring S,
the weighted timed transition system (WTTS) S = (Q,Q0, QF ,→,W) is as fol-
lows, where A = (X,L,L0, LF , C,Δ,Λ) is a TSA over D and κ is a cost function
over S.

• Q = L × (R≥0)C × [0, |σ|] × (DX)�

• Q0 = {(l0,0C , 0, ε) | l0 ∈ L0}
• QF = {(lF , ν, |σ|, ε) | lF ∈ LF , ν ∈ (R≥0)C}
• → ⊆ Q × Q is the relation such that

(
(l, ν, t, a), (l′, ν′, t′, a′)

)
∈ → if and only

if either of the following holds.
(transition of A) ∃(l, g, ρ, l′) ∈ Δ satisfying ν |= g, ν′ = ν[ρ := 0], t′ = t,

a′ = ε, and a �= ε
(time elapse) ∃τ ∈ R>0 satisfying l = l′, ν′ = ν + τ , t′ = t + τ , and

a′ = a ◦ Values(σ([t, t + τ)))
• W

(
(l, ν, t, a), (l′, ν′, t′, a′)

)
is κ(Λ(l), a) if a′ = ε; and e⊗ if a′ �= ε

Definition 7 (trace value). For a WTTS S = (Q,Q0, QF ,→,W), the trace
value α(S) is the shortest distance Dist(Q0, QF , Q,→,W) from Q0 to QF .

For a signal σ and a TSWA W, by α(σ,W), we denote the trace value α(S)
of the WTTS S of σ and W.

Example 8. By changing the semiring S and the cost function κ, various seman-
tics can be defined by the trace value. Let D = R. For the Boolean semiring
({
,⊥},∨,∧,⊥,
) in Example 4, the following function κb is a prototypical
example of a cost function, where u ∈ Φ(X,D) and (a1a2 . . . am) ∈ (DX)�.

Online Quantitative Timed Pattern Matching 11

κb

(
u, (a1a2 . . . am)

)
=

m∧

i=1

κb(u, (ai))

κb

(n∧

i=1

(xi �	i di), (a)
)

=
n∧

i=1

κb

(
xi �	i di, (a)

)
where �	i∈ {>,≥,≤, <}

κb(x �	 d, (a)) =

{

 if a |= x �	 d

⊥ if a �|= x �	 d

For the sup-inf semiring (R� {±∞}, sup, inf,−∞,+∞) in Example 4, the trace
value defined by the cost function κr in Fig. 2 captures the essence of the so-called
space robustness [7,19]. For the tropical semiring (R � {+∞}, inf,+,+∞, 0) in
Example 4, an example cost function κt is as follows.

κt

(
u, (a1a2 . . . am)

)
=

n∑

i=1

κr(u, (ai))

κt

(n∧

i=1

(xi �	i di), (a)
)

=
n∑

i=1

κt(xi �	i di, (a)) where �	i∈ {>,≥,≤, <}

κt(x � d, (a)) = a(x) − d where �∈ {≥, >}
κt(x ≺ d, (a)) = d − a(x) where ≺∈ {≤, <}

Example 9. Let W = (A, κ) be a TSWA over R and S, where A is the TSA
over R in Fig. 2, σ be the signal σ = {x = 10}2.5{x = 40}1.0{x = 60}3.0. When
S = (R � {±∞}, sup, inf,−∞,+∞) and κ is the cost function κr in Example 8,
we have α(σ,W) = 5. When S = (R � {+∞}, inf,+,+∞, 0) and κ is the cost
function κt in Example 8, we have α(σ,W) = 35.

4 Quantitative Timed Pattern Matching

Using TSWAs, we formulate quantitative timed pattern matching as follows.

Definition 10 (quantitative timed pattern matching). For a TSWA W
over the data domain D and complete semiring S, and a signal σ ∈ T (DX), the
quantitative matching function M(σ,W) : dom(σ) → S is (M(σ,W))(t, t′) =
α
(
σ
(
[t, t)

)
,W

)
, where dom(σ) = {(t, t′) | 0 ≤ t < t′ ≤ |σ|} and S is the underly-

ing set of S. Given a signal σ ∈ T (DX) and a TSWA W over the data domain
D and complete semiring S, the quantitative timed pattern matching problem
asks for M(σ,W).

Example 11. Let W be the TSWA shown in Fig. 2, which is defined over
the reals R and the sup-inf semiring (R � {±∞}, sup, inf,−∞,+∞), and σ
be the signal σ = {x = 10}7.5{x = 40}10.0{x = 60}13.0. The quantita-
tive matching function M(σ,W) is as follows. Figure 1 shows an illustration.

12 M. Waga

M(σ,W)
)
(t, t′) =

5 when
t ∈ [0, 7.5), t′ ∈ (0, 17.5], t′ − t < 10 or
t ∈ [0, 7.5), t′ ∈ (10, 17.5], t′ − t ∈ [10, 15)

−25 when
t ∈ [7.5, 17.5), t′ ∈ (7.5, 27.5], t′ − t < 10 or
t ∈ [2.5, 17.5), t′ ∈ (17.5, 27.5], t′ − t ∈ [10, 15)

−45 when
t ∈ [17.5, 30.5), t′ ∈ (17.5, 30.5], t′ − t < 10 or
t ∈ [12.5, 30.5), t′ ∈ (27.5, 30.5], t′ − t ∈ [10, 15)

Although the domain {(t, t′) | 0 ≤ t < t′ ≤ |σ|)} of the quantitative matching
function M(σ,W) is an infinite set, M(σ,W) is a piecewise-constant function
with finitely many pieces. Moreover, each piece of M(σ,W) can be represented
by a special form of convex polyhedra called zones [15].

Definition 12 (zone). For a finite set of clock variables C, a zone is a |C|-
dimensional convex polyhedron defined by a finite conjunction of the constraints
of the form c �	 d or c − c′ �	 d, where c, c′ ∈ C, �	 ∈ {>,≥,≤, <}, and d ∈ R.
The set of zones over C is denoted by Z(C). By a zone Z ∈ Z(C), we also
represent the set {ν | ν |= Z} ⊆ (R≥0)C of clock valuations.

Theorem 13. For any TSWA W over D and S and for any signal σ ∈ T (DX),
there is a finite set {(Z1, s1), (Z2, s2), . . . , (Zn, sn)} ⊆ Z({cbegin, cend}) × S such
that Z1, Z2, . . . , Zn is a partition of the domain {(t, t′) | 0 ≤ t < t′ ≤ |σ|}, and
for any [t, t′) ⊆ R≥0 satisfying 0 ≤ t < t′ ≤ |σ|, there exists i ∈ {1, 2, . . . , n} and
ν ∈ Zi satisfying ν(cbegin) = t, ν(cend) = t′, and (M(σ,W))(t, t′) = si. ��

5 Trace Value Computation by Shortest Distance

We present an algorithm to compute the trace values α(S). Since a WTTS
possibly has infinitely many states and transitions (see Definition 6), we need a
finite abstraction of it. We use zone-based abstraction for what we call weighted
symbolic timed transition systems (WSTTSs). In addition to the clock variables
in the TSA, we introduce a fresh clock variable T to represent the absolute time.

Definition 14 (weighted symbolic timed transition system). For a
TSWA W = (A, κ) over D and S, and a signal σ = aτ1

1 aτ2
2 · · · aτn

n ∈ T (DX),
where A = (X,L,L0, LF , C,Δ,Λ), the weighted symbolic timed transition sys-
tem (WSTTS) is Ssym = (Qsym, Qsym

0 , Qsym
F ,→sym,W sym) defined as follows.

• Qsym = {(l, Z, a) ∈ L×Z(C �{T})× (DX)� | Z �= ∅,∀ν ∈ Z. ν(T) ≤ |σ|, a =
ε or a ◦ σ(ν(T)) = a}

• Qsym
0 = {(l0, {0C�{T}}, ε) | l0 ∈ L0}

• Qsym
F = {(lF , Z, ε) | lF ∈ LF ,∃ν ∈ Z. ν(T) = |σ|}

• →sym ⊆ Qsym × Qsym is the relation such that
(
(l, Z, a), (l′, Z ′, a′)

)
∈ →sym

if and only if one of the following holds.
(transition of A) there exists (l, g, ρ, l′) ∈ Δ, satisfying Z ′ = {ν[ρ := 0] |

ν ∈ Z, ν |= g}, a �= ε, and a′ = ε.

Online Quantitative Timed Pattern Matching 13

(punctual time elapse) l = l′, a′ = a ◦Values(σ([ν̃(T), ν̃′(T)))), and there
is i ∈ {1, 2, . . . , n} satisfying Z ′ = {ν + τ | ν ∈ Z, τ ∈ R>0}∩Mi,=, where
ν̃ ∈ Z, ν̃′ ∈ Z ′1, Mi,= = {ν | ν(T) =

∑i
j=0 τj}.

(non-punctual time elapse) l = l′, a′ = a ◦Values(σ([ν̃(T), ν̃′(T)))), and
there is i ∈ {1, 2, . . . , n} satisfying Z ′ = {ν + τ | ν ∈ Z, τ ∈ R>0} ∩ Mi,
where ν̃ ∈ Z, ν̃′ ∈ Z ′, and Mi = {ν |

∑i−1
j=0 τj < ν(T) <

∑i
j=0 τj}.

• W sym
(
(l, Z, a), (l′, Z ′, a′)

)
is κ(Λ(l), a) if a′ = ε; and e⊗ if a′ �= ε

l0
c = T = 0, ε

l0
0 < c = T < 3, 5

a1

l1
0 = c < T < 3.5

ε

l1
0 = c < T = 3.5

ε

l1
0 < c < T = 3.5

a1

l1
0 < c < T < 3.5

a1

l1
0 = c < T ∈ (3.5, 5)

ε

l1
0 < c < T ∈ (3.5, 7)

a2

l1
0 < c < T = 7.0

a2

l0
0 < c = T = 3.5

a1

l0
3.5 < c = T < 7.0

a1a2

l1
0 < c < T ∈ (3.5, 7)

a1a2

l1
0 < c < T = 7.0

a1a2

l2
0 < c < T = 7, ε

+∞ (= e⊗)

+∞ (= e⊗)

+∞ (= e⊗)

+∞
(= e⊗)

+∞ (= e⊗)

+∞ (= e⊗)

+∞
(= e⊗)

+∞ (= e⊗)

+∞
(= e⊗)

+∞ (= e⊗)

8
(= κ(u0, a1))

8
(= κ(u0, a1))

3
(= κ(u0, a1a2))

2 (= κ(u1, a1a2))

7
(= κ(u1, a2))

Fig. 4. WSTTS Ssym of the TSWA W in Fig. 2 and the signal σ = a3.5
1 a3.5

2 , where
u0 = x < 15, u1 = x > 5, a1 = {x = 7}, and a2 = {x = 12}. The states unreachable
from the initial state or unreachable to the accepting state are omitted. The transition
for time elapse which can be represented by the composition of other transitions are
also omitted. A dashed transition is for the time elapse and a solid transition is for a
transition of A.

Although the state space Qsym of the WSTTS Ssym may be infinite, there are
only finitely many states reachable from Qsym

0 and therefore, we can construct
the reachable part of Ssym. See the appendix of [31] for the proof. An example
of a WSTTS is shown in Fig. 4. For a WSTTS Ssym, we define the symbolic trace
value αsym(Ssym) as the shortest distance Dist(Qsym

0 , Qsym
F , Qsym,→sym,W sym)

from Qsym
0 to Qsym

F .

Theorem 15. Let W be a TSWA over D and S, and σ ∈ T (DX) be a signal. Let
S and Ssym be the WTTS (in Definition 6) and WSTTS of W and σ, respectively.
If S is idempotent, we have α(S) = αsym(Ssym). ��

Because of Theorem 15, we can compute α(S) by (i) constructing the
reachable part of Ssym; and (ii) computing the symbolic trace value
αsym(Ssym) using an algorithm for the shortest distance problem. For exam-
ple, the symbolic trace value of the WSTTS in Fig. 4 is αsym(Ssym) =
max{min{8, 2},min{8, 7},min{3, 7}} = 7. However, this method requires the

1 The choice of ν̃ and ν̃′ does not change σ(ν̃(T)) and σ(ν̃′(T)) due to the definition
of Qsym.

14 M. Waga

Algorithm 1. Incremental algorithm for trace value computation
Require: A WSTTS Ssym = (Qsym, Qsym

0 , Qsym
F , →sym, W sym) of σ = aτ1

1 aτ2
2 · · · aτn

n and W
Ensure: R is the symbolic trace value αsym(Ssym)
1: weight ← {(l0, {0C�{T}}, ε, e⊗) | l0 ∈ L0}; R ← e⊕ � initialize
2: for i ∈ {1, 2, . . . , n} do
3: weight ← incr(ai, Ti), where Ti =

∑i
k=1 τk � We have weight = weight i.

4: for (l, Z, a, s) ∈ weight do
5: if (l, Z, a) ∈ Qsym

F then
6: R ← R ⊕ s

linit, � l0, x < 15 l1, x > 5 l2, �
�/T ′ := 0, c := 0 c < 5/c := 0 c < 10

Fig. 5. Matching automaton Amatch for the TSA A shown in Fig. 2. The fresh initial
location linit and the transition to the original initial location l0 are added.

whole signal to compute the trace value, and it does not suit for the use in
online quantitative timed pattern matching. Instead, we define the intermediate
weight weight i and give an incremental algorithm to compute α(S). Intuitively,
for each state (l, Z, a) ∈ Qsym of the WSTTS Ssym, the intermediate weight
weight i assign the shortest distance to reach (l, Z, a) by reading the sub-signal
aτ1
1 aτ2

2 · · · aτi
i of σ = aτ1

1 aτ2
2 · · · aτn

n .

Definition 16 (incr, weight i). For a TSWA W = (A, κ) over the data domain
D and complete semiring S, a ∈ D

X , and t ∈ R>0, the increment function

incr(a, t) : P(L × Z(C � {T}) × (DX)� × S) → P(L × Z(C � {T}) × (DX)� × S)

is as follows, where A = (X,L,L0, LF , C,Δ,Λ) and (Qsym
a,t , Qsym

a,t,0,
Qsym

a,t,F ,→sym
a,t ,W sym

a,t) is the WSTTS of at and W.

incr(a, t)(w) = {(l′, Z′, a′, s′) ∈ L × Z(C � {T}) × (DX)� × S | ∀ν′ ∈ Z′. ν′(T) = t,

s′ =
⊕

(l,Z,a,s)∈w

s ⊗ Dist({(l, Z, a)}, {(l′, Z′, a′)}, Qsym
a,t , →sym

a,t , W sym
a,t)}

For a TSWA W over D and S, a signal σ = aτ1
1 aτ2

2 · · · aτn
n , and i ∈

{1, 2, . . . , n}, the intermediate weight weight i is defined as follows, where Tj =
∑j

k=1 τk. weight i =
(
incr

(
ai, Ti

)
◦ · · · ◦ incr

(
a1, T1

))
({(l0, {0C�{T}}, ε, e⊗) | l0 ∈

L0})

Because of the following, we can incrementally compute the symbolic trace
value αsym(Ssym), which is equal to the trace value α(σ,W), by Algorithm 1.

Theorem 17. For any WSTTS Ssym of a signal σ = aτ1
1 aτ2

2 · · · aτn
n and a TSWA

W, we have the following, where Qsym
F is the accepting states of Ssym.

αsym(Ssym) =
⊕

(l,Z,a)∈Qsym
F

⊕

(l,Z,a,s)∈weightn

s

��

Online Quantitative Timed Pattern Matching 15

6 Online Algorithm for Quantitative Timed Pattern
Matching

In quantitative timed pattern matching, we compute the trace value
α(σ([t, t′)),W) for each sub-signal σ([t, t′)). In order to try matching for each
sub-signal σ([t, t′)), we construct the matching automaton [8] Amatch from the
TSA A. The matching automaton Amatch is constructed by adding a new clock
variable T ′ and a new initial state linit to the TSA A. The new clock variable
T ′ represents the duration from the beginning t of the sub-signal σ([t, t′)). The
new state linit is used to start the sub-signal in the middle of the signal. We add
transitions from linit to each initial state l0 of A, resetting all of the clock vari-
ables. Figure 5 shows an example of Amatch. We also define the auxiliary incr<

for our online algorithm for quantitative timed pattern matching.

Definition 18 (matching automaton [8] Amatch). For a TSA A =
(X,L,L0, LF , C,Δ,Λ) over D, the matching automaton is the TSA Amatch =
(X,L�{linit}, {linit}, LF , C�{T ′},Δ′, Λ′) over D, where Δ′ = Δ�{(linit ,
, C�
{T ′}, l0) | l0 ∈ L0}, Λ′(linit) =
, and Λ′(l) = Λ(l) for l ∈ L.

Algorithm 2. Online algorithm for quantitative timed pattern matching
Require: A signal σ = aτ1

1 aτ2
2 · · · aτn

n and a TSWA W = (A, κ)
Ensure: M is the quantitative matching function M(σ, W).
1: Amatch ← the matching automaton of A
2: weight ← {(l0, {0C�{T,T ′}}, ε, e⊗) | l0 ∈ L0}; for each [t, t′) ⊆ [0, |σ|), M(t, t′) ← e⊕
3: for i ∈ {1, 2, . . . , n} do
4: weight ← (incr<(ai, Ti))(weight), where Ti =

∑i
k=1 τk

5: for (l, Z, ε, s) ∈ weight , ν ∈ Z do
6: if l ∈ LF then
7: M(ν(T ′) − ν(T), ν(T ′)) ← M(ν(T ′) − ν(T), ν(T ′)) ⊕ s.

8: weight ← (incr(ai, Ti))(weight), where Ti =
∑i

k=1 τk

Definition 19 (incr<). For a TSWA W = (A, κ) over the data domain D and
complete semiring S, a ∈ D

X , and t ∈ R>0, the partial increment function

incr<(a, t) : P(L × Z(C � {T}) × (DX)� × S) → P(L × Z(C � {T}) × (DX)� × S)

is as follows, where A = (X,L,L0, LF , C,Δ,Λ) and (Qsym
a,t , Qsym

a,t,0,

Qsym
a,t,F ,→sym

a,t ,W sym
a,t) is the WSTTS of the TSWA W and the constant signal

at.

incr<(a, t)(w) = {(l′, Z′, a′, s′) ∈ L × Z(C � {T}) × (DX)� × S | ∀ν′ ∈ Z′. ν′(T) < t,

s′ =
⊕

(l,Z,a,s)∈w

s ⊗ Dist({(l, Z, a)}, {(l′, Z′, a′)}, Qsym
a,t , →sym

a,t , W sym
a,t)}

Algorithm 2 shows our online algorithm for quantitative timed pattern match-
ing. We construct the matching automaton Amatch from the TSA A (line 1),

16 M. Waga

and we try matching by reading each constant sub-signal aτi
i of the signal

σ = aτ1
1 aτ2

2 · · · aτn
n much like the illustration in Fig. 3. For each i, first, we con-

sume a prefix a
τ ′
i

i of aτi
i = a

τ ′
i

i a
τ ′′
i

i and update weight (line 4). Then, we update
the result M for each (l, Z, ε, s) ∈ weight if l ∈ LF (line 7). Finally, we consume
the remaining part a

τ ′′
i

i and update weight (line 8).

Complexity Discussion. In general, the time and space complexities of Algo-
rithm2 are polynomial to the length n of the signal σ = aτ1

1 aτ2
2 · · · aτn

n due to the
bound of the size of the reachability part of the WSTTS. On the other hand,
if the TSWA has a time-bound and the sampling frequency of the signal is also
bounded (such as in Figs. 6 and 7), time and space complexities are linear and
constant to the length n of the signal, respectively.

7 Experiments

We implemented our online algorithm for quantitative timed pattern matching
in C++ and conducted experiments to answer the following research questions.
We suppose that the input piecewise-constant signals are interpolations of the
actual signals by sampling.

RQ1. Is the practical performance of Algorithm 2 realistic?
RQ2. Is Algorithm 2 online capable, i. e., does it perform in linear time and

constant space, with respect to the number of the entries in the signal?
RQ3. Can Algorithm 2 handle denser logs, i. e., what is the performance with

respect to the sampling frequency of the signal?

Our implementation is in https://github.com/MasWag/qtpm. We conducted the
experiments on an Amazon EC2 c4.large instance (2 vCPUs and 3.75 GiB RAM)
running Ubuntu 18.04 LTS (64 bit). We compiled the implementation by GCC-
4.9.3. For the measurement of the execution time and memory usage, we used
GNU time and took an average of 20 executions. We could not compare with [7]
because their implementation is not publicly available.

As the complete semiring S, we used the sup-inf semiring (R �
{±∞}, sup, inf,−∞,+∞) and the tropical semiring (R�{+∞}, inf,+,+∞, 0) in
Example 4. We used the cost functions κr in Example 8 for the sup-inf semiring,
and κt in Example 8 for the tropical semiring. We used the automotive bench-
mark problems shown in Figs. 6, 7 and 8. A summary of quantitative timed
pattern matching is on the right of each figure. The specified behaviors in the
TSWAs are taken from ST-Lib [23] and known to be useful for automotive con-
trol applications.

https://github.com/MasWag/qtpm

Online Quantitative Timed Pattern Matching 17

vref < 35
|v − vref | < 10

vref > 35
|v − vref | > 10 �c < 10 c < 150

450 550 650
450

550

650

-14

-10

-6

-2

450 550 650
450

550

650

0

30

60

90

Fig. 6. Overshoot: The set of input signals is generated by the cruise control
model [1]. The TSA is for the settling when the reference value of the velocity is
changed from vref < 35 to vref > 35. The left and right maps are for the sup-inf and
tropical semirings, respectively.

rise

�
fall

�
�

c1 < 20
c2 < 80

c1 < 20
c2 < 80

c1 < 20, c2 < 80
/c1 := 0

c1 < 20
c2 < 80

c1 < 20
c2 < 80

0 30 60 90120
0

30
60
90

120

-29

-22

-15

-8

0 30 60 90120
0

30
60
90

120

-19

-16

-13

-10

Fig. 7. Ringing: The set of input signals is generated by the same model [1] as that
in Overshoot. The TSA is for the frequent rise and fall of the signal in 80 s. The
constraints rise and fall are rise = v(t)−v(t−10) > 10 and fall = v(t)−v(t−10) < −10.
The left and right maps are for the sup-inf and tropical semirings, respectively.

vref < 35
|v − vref | < 10

vref > 35
|v − vref | > 10 �c < 10 �

450 550 650
450

550

650

-14

-10

-6

-2

450 550 650
450

550

650

0
30
60
90
120

Fig. 8. Overshoot (Unbounded): The set of input signals is generated by the same
model [1] as that in Overshoot. The TSA is almost the same as that in Overshoot,
but the time-bound (c < 150) is removed. The left and right maps are for the sup-inf
and tropical semirings, respectively.

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6

E
xe
cu
ti
on

ti
m
e
[s
]

Number of entries of the signal [×10, 000]

Overshoot, sup-inf
Ringing sup-inf

Overshoot, tropical
Ringing tropical

6.9
7

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

0 1 2 3 4 5 6

M
em

or
y
us
ag
e
[M

iB
]

Number of entries of the signal [×10, 000]

Overshoot, sup-inf
Ringing, sup-inf

Overshoot, tropical
Ringing, tropical

Fig. 9. Change in execution time (left) and memory usage (right) for Overshoot and
Ringing with the number of the entries of the signals

18 M. Waga

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10

E
xe
cu
ti
on

ti
m
e
[s
]

Number of entries of the signal [×100]

Overshoot (Unbounded), sup-inf
Overshoot (Unbounded), tropical

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

M
em

or
y
U
sa
ge

[M
iB
]

Number of entries of the signal [×100]

Overshoot (Unbounded), sup-inf
Overshoot (Unbounded), tropical

Fig. 10. Change in execution time (left) and memory usage (right) for Overshoot

(Unbounded) with the number of the entries of the signals

RQ1: Practical Performance. Figures 9 and 10 show the execution time and
memory usage of our quantitative timed pattern matching for the TSWAs W
and signals σ. Here, we fixed the sampling frequency to be 0.1 Hz and changed
the duration |σ| of the signal from 60,000 s to 600,000 s in Overshoot and
Ringing, and from 1,000 s to 10,000 s in Overshoot (Unbounded).

In Fig. 9, we observe that Algorithm 2 handles the log with 60,000 entries in
less than 20 s with less than 7.1 MiB of memory usage for Overshoot, and in
about 1 or 2 min with less than 7.8 MiB of memory usage for Ringing. In Fig. 10,
we observe that Algorithm 2 handles the log with 10,000 entries in less than
120 s with less than 250 MiB of memory usage for Overshoot (Unbounded).
Although the quantitative timed pattern matching problem is complex, we con-
clude that its practical performance is realistic.

RQ2: Change in Speed and Memory Usage with Signal Size. Figures 9 and 10
show the execution time and memory usage of our quantitative timed pattern
matching. See RQ1 for the detail of our experimental setting.

In Fig. 9, for the TSAs with time-bound, we observe that the execution time is
linear with respect to the duration |σ| of the input signals and the memory usage
is more or less constant with respect to the duration |σ| of the input signals. This
performance is essential for a monitor to keep monitoring a running system.

In Fig. 10, for the TSA without any time-bound, we observe that the execu-
tion time is cubic and the memory usage is quadratic with respect to the number
of the entries in |σ|. The memory usage increases quadratically with the number
of the entries because the intermediate weight weightj has an entry for each ini-
tial interval [τi, τi+1) of the trimming and for each interval [τk, τk+1) where the
transition occurred. The execution time increases cubically with respect to the
number of the entries because the shortest distance is computed for each entry
of weightj . However, we note that our quantitative timed pattern matching still
works when the number of the entries is relatively small.

RQ3: Change in Speed and Memory Usage with Sampling Frequency. Figure 11
shows the execution time and memory usage for each TSWA W and signal σ of
Overshoot and Ringing. Here, we fixed the number of the entries to be 6,000
and changed the sampling frequency from 0.1 Hz to 1.0 Hz.

Online Quantitative Timed Pattern Matching 19

0

500

1000

1500

2000

2500

3000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
xe
cu
ti
on

ti
m
e
[s
]

Sampling frequency [Hz]

Overshoot, sup-inf
Ringing, sup-inf

Overshoot, tropical
Ringing, tropical

0
10
20
30
40
50
60
70
80
90

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
em

or
y
us
ag
e
[M

iB
]

Sampling frequency [Hz]

Overshoot, sup-inf
Ringing, sup-inf

Overshoot, tropical
Ringing, tropical

Fig. 11. Change in execution time (left) and memory usage (right) for Overshoot

and Ringing with the sampling frequency

In Fig. 11, we observe that the execution time is cubic, and the memory
usage is more or less quadratic with respect to the sampling frequency of the
signals. This is because the number of the entries in a certain duration is linear
to the sampling frequency, which increases the number of the reachability states
of the WSTTSs quadratically. Despite the steep curve of the execution time, we
also observe that the execution time is smaller than the duration of the signal.
Therefore, our algorithm is online capable at least for these sampling frequencies.

Performance Comparison Between the Benchmarks. In Fig. 9, we observe that
the execution time and memory usage of Ringing are higher than those of
Overshoot. This is because the TSA of Ringing of is more complex than that
of Overshoot: it has more states and clock variables, and it contains a loop.
We also observe that for Ringing, the execution time for the tropical semiring
is shorter. This is because staying at the locations with
 minimizes the weight
for tropical semiring, and we need less exploration.

8 Conclusions and Future Work

Using an automata-based approach, we proposed an online algorithm for quan-
titative timed pattern matching. The key idea of this approach is the reduction
to the shortest distance of a weighted graph using zones.

Comparison of the expressiveness of TSWAs with other formalisms e. g., sig-
nal temporal logic [24] or signal regular expressions [7] is future work. Another
future work is the comparison with the quantitative semantics based on the
distance between traces presented in [21].

20 M. Waga

References

1. tprasadtp/cruise-control-simulink: Simulink model for Cruise control system of a
car with dynamic road conditions. https://github.com/tprasadtp/cruise-control-
simulink

2. Akazaki, T., Hasuo, I.: Time robustness in MTL and expressivity in hybrid system
falsification. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207,
pp. 356–374. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21668-
3 21

3. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

4. André, É., Hasuo, I., Waga, M.: Offline timed pattern matching under uncertainty.
In: 23rd International Conference on Engineering of Complex Computer Systems,
ICECCS 2018, Melbourne, Australia, December 12–14, 2018, pp. 10–20. IEEE
Computer Society (2018). https://doi.org/10.1109/ICECCS2018.2018.00010

5. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 21

6. Asarin, E., Caspi, P., Maler, O.: A Kleene theorem for timed automata. In: Pro-
ceedings of the 12th Annual IEEE Symposium on Logic in Computer Science,
Warsaw, Poland, June 29 - July 2, 1997, pp. 160–171. IEEE Computer Society
(1997). https://doi.org/10.1109/LICS.1997.614944

7. Bakhirkin, A., Ferrère, T., Maler, O., Ulus, D.: On the quantitative semantics of
regular expressions over real-valued signals. In: Abate, A., Geeraerts, G. (eds.)
FORMATS 2017. LNCS, vol. 10419, pp. 189–206. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-65765-3 11

8. Bakhirkin, A., Ferrère, T., Nickovic, D., Maler, O., Asarin, E.: Online timed pattern
matching using automata. In: Jansen, D.N., Prabhakar, P. (eds.) FORMATS 2018.
LNCS, vol. 11022, pp. 215–232. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-00151-3 13

9. Bartocci, E., Majumdar, R. (eds.): RV 2015. LNCS, vol. 9333. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-23820-3

10. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27755-2 3

11. Bombara, G., Vasile, C.I., Penedo, F., Yasuoka, H., Belta, C.: A decision tree
approach to data classification using signal temporal logic. In: Abate, A., Fainekos,
G.E. (eds.) Proceedings of the 19th International Conference on Hybrid Systems:
Computation and Control, HSCC 2016, Vienna, Austria, April 12–14, 2016, pp.
1–10. ACM (2016). https://doi.org/10.1145/2883817.2883843

12. Chatterjee, K., Henzinger, T.A., Otop, J.: Quantitative monitor automata. In:
Rival, X. (ed.) SAS 2016. LNCS, vol. 9837, pp. 23–38. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53413-7 2

13. Chen, S., Sokolsky, O., Weimer, J., Lee, I.: Data-driven adaptive safety monitoring
using virtual subjects in medical cyber-physical systems: a glucose control case
study. JCSE 10(3) (2016). https://doi.org/10.5626/JCSE.2016.10.3.75

14. Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., Seshia, S.A.: Robust
online monitoring of signal temporal logic. In: Bartocci and Majumdar [9], pp.
55–70. https://doi.org/10.1007/978-3-319-23820-3 4

https://github.com/tprasadtp/cruise-control-simulink
https://github.com/tprasadtp/cruise-control-simulink
https://doi.org/10.1007/978-3-319-21668-3_21
https://doi.org/10.1007/978-3-319-21668-3_21
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1109/ICECCS2018.2018.00010
https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1109/LICS.1997.614944
https://doi.org/10.1007/978-3-319-65765-3_11
https://doi.org/10.1007/978-3-319-65765-3_11
https://doi.org/10.1007/978-3-030-00151-3_13
https://doi.org/10.1007/978-3-030-00151-3_13
https://doi.org/10.1007/978-3-319-23820-3
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1145/2883817.2883843
https://doi.org/10.1007/978-3-662-53413-7_2
https://doi.org/10.5626/JCSE.2016.10.3.75
https://doi.org/10.1007/978-3-319-23820-3_4

Online Quantitative Timed Pattern Matching 21

15. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg
(1990). https://doi.org/10.1007/3-540-52148-8 17

16. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-
6 17

17. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

18. Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata, 1st edn.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01492-5

19. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theor. Comput. Sci. 410(42), 4262–4291 (2009). https://
doi.org/10.1016/j.tcs.2009.06.021

20. Jaksic, S., Bartocci, E., Grosu, R., Nguyen, T., Nickovic, D.: Quantitative moni-
toring of STL with edit distance. Formal Meth. Syst. Des. 53(1), 83–112 (2018).
https://doi.org/10.1007/s10703-018-0319-x

21. Jaksic, S., Bartocci, E., Grosu, R., Nickovic, D.: An algebraic framework for run-
time verification. IEEE Trans. CAD Integr. Circ. Syst. 37(11), 2233–2243 (2018).
https://doi.org/10.1109/TCAD.2018.2858460

22. Kane, A., Chowdhury, O., Datta, A., Koopman, P.: A case study on runtime mon-
itoring of an autonomous research vehicle (ARV) system. In: Bartocci and Majum-
dar [9], pp. 102–117. https://doi.org/10.1007/978-3-319-23820-3 7

23. Kapinski, J., et al.: St-lib: a library for specifying and classifying model behaviors.
Technical report, SAE Technical Paper (2016)

24. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

25. Mohri, M.: Weighted Automata Algorithms. In: Droste, M., Kuich, W., Vogler, H.
(eds.) Handbook of Weighted Automata, pp. 213–254. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-01492-5 6

26. Raimondi, F., Skene, J., Emmerich, W.: Efficient online monitoring of web-service
slas. In: Harrold, M.J., Murphy, G.C. (eds.) Proceedings of the 16th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, 2008,
Atlanta, Georgia, USA, November 9–14, 2008, pp. 170–180. ACM (2008). https://
doi.org/10.1145/1453101.1453125

27. Schützenberger, M.P.: On the definition of a family of automata. Inf. Control 4(2–
3), 245–270 (1961). https://doi.org/10.1016/S0019-9958(61)80020-X

28. Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Timed pattern matching. In: Legay,
A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 222–236. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10512-3 16

29. Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Online timed pattern matching using
derivatives. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp.
736–751. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-
9 47

https://doi.org/10.1007/3-540-52148-8_17
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.1016/j.tcs.2009.06.021
https://doi.org/10.1016/j.tcs.2009.06.021
https://doi.org/10.1007/s10703-018-0319-x
https://doi.org/10.1109/TCAD.2018.2858460
https://doi.org/10.1007/978-3-319-23820-3_7
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-642-01492-5_6
https://doi.org/10.1145/1453101.1453125
https://doi.org/10.1145/1453101.1453125
https://doi.org/10.1016/S0019-9958(61)80020-X
https://doi.org/10.1007/978-3-319-10512-3_16
https://doi.org/10.1007/978-3-662-49674-9_47
https://doi.org/10.1007/978-3-662-49674-9_47

22 M. Waga

30. Veanes, M., Hooimeijer, P., Livshits, B., Molnar, D., Bjørner, N.: Symbolic finite
state transducers: algorithms and applications. In: Field, J., Hicks, M. (eds.) Pro-
ceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2012, Philadelphia, Pennsylvania, USA, January 22–
28, 2012, pp. 137–150. ACM (2012). https://doi.org/10.1145/2103656.2103674

31. Waga, M.: Online quantitative timed pattern matching with semiring-valued
weighted automata. CoRR abs/1906.12133 (2019). http://arxiv.org/abs/1906.
12133

32. Waga, M., Akazaki, T., Hasuo, I.: A boyer-moore type algorithm for timed pattern
matching. In: Fränzle, M., Markey, N. (eds.) FORMATS 2016. LNCS, vol. 9884, pp.
121–139. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44878-7 8

33. Waga, M., André, É.: Online parametric timed pattern matching with automata-
based skipping. CoRR abs/1903.07328 (2019). http://arxiv.org/abs/1903.07328

34. Waga, M., André, É., Hasuo, I.: Symbolic monitoring against specifications para-
metric in time and data. In: To appear in Proceedings of the CAV 2019

35. Waga, M., Hasuo, I., Suenaga, K.: Efficient online timed pattern matching by
automata-based skipping. In: Abate, A., Geeraerts, G. (eds.) FORMATS 2017.
LNCS, vol. 10419, pp. 224–243. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-65765-3 13

https://doi.org/10.1145/2103656.2103674
http://arxiv.org/abs/1906.12133
http://arxiv.org/abs/1906.12133
https://doi.org/10.1007/978-3-319-44878-7_8
http://arxiv.org/abs/1903.07328
https://doi.org/10.1007/978-3-319-65765-3_13
https://doi.org/10.1007/978-3-319-65765-3_13

Assessing the Robustness of Arrival
Curves Models for Real-Time Systems

Mahmoud Salem1(B) , Gonzalo Carvajal2 , Tong Liu1,
and Sebastian Fischmeister1

1 University of Waterloo, Waterloo, ON, Canada
{m4salem,t49liu,sfischme}@uwaterloo.ca

2 Universidad Técnica Federico Santa Maŕıa, Valparáıso, Chile
gonzalo.carvajalb@usm.cl

Abstract. Design of real-time systems is prone to uncertainty due to
software and hardware changes throughout their deployment. In this
context, both industry and academia have shown interest in new trace
mining approaches for diagnosis and prognosis of complex embedded sys-
tems. Trace mining techniques construct empirical models that mainly
target achieving high accuracy in detecting anomalies. However, when
applied to safety-critical systems, such models lack in providing theoret-
ical bounds on the system resilience to variations from these anomalies.

This paper presents the first work that derives robustness criteria
on a trace mining approach that constructs arrival-curves models from
dataset of traces collected from real-time systems. Through abstract-
ing arrival-curves models to the demand-bound functions of a sporadic
task under an EDF scheduler, the analysis presented in the paper enables
designers to quantify the permissible change to the parameters of a given
task model by relating to the variation expressed within the empirical
model. The result is a methodology to evaluate a system to dynamically
changing workloads. We evaluate the proposed approach on an indus-
trial cyber-physical system that generates traces of timestamped QNX
events.

Keywords: Arrival curves · Demand-bound functions · Trace mining

1 Introduction

Modern real-time systems are becoming increasingly complex, and their runtime
behavior is subject to uncertainties arising from dynamic workloads and changes
in their underlying software and hardware. For example, a platform executing a
real-time application may suffer a degradation in processor performance if mali-
ciously switched to a low-power mode, or it may sporadically increase its pro-
cessor demand when handling an anomalous execution scenario. To model and
analyze those systems, designers usually apply traditional formal methods that
use worst-case analysis to bound any possible workload that can occur at runtime.

c© Springer Nature Switzerland AG 2019
É. André and M. Stoelinga (Eds.): FORMATS 2019, LNCS 11750, pp. 23–40, 2019.
https://doi.org/10.1007/978-3-030-29662-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29662-9_2&domain=pdf
http://orcid.org/0000-0002-9787-0525
http://orcid.org/0000-0003-1116-6180
https://doi.org/10.1007/978-3-030-29662-9_2

24 M. Salem et al.

Although traditional formal methods are relatively mature and have become a
standard practice in the industry, they tend to be overly pessimistic and have lim-
ited applicability for modern practical systems with dynamic properties.

With the rise of Industry 4.0 and digital twin concepts [8,23], researchers
have started using runtime traces collected from non-invasive tracing tools to
improve diagnostics and prognostics. Event traces provide valuable information
for performing data-driven analysis when formal methods become complicated or
infeasible [1]. For example, formal methods become inadequate when analyzing
complex system-level timing requirements of interacting processes. Alternatively,
trace mining is proving useful for characterizing real-time systems, as they con-
struct models using traces from different processes, in addition to component-
level trace events representing core switching and resource allocations [7].

One relevant open question associated to empirical models constructed from
traces is how to evaluate their effectiveness. For example, surveys [4,16,26] high-
light that the primary evaluation method of empirical models used for anomaly
detection is by their ability to classify normal versus anomalous behavior. How-
ever, the current research work shows a lack in the methods that derive robust-
ness bounds on the acceptable behavior of a given system using margins provided
by the empirical models. In this context, authors in [9] acknowledge that, unlike
traditional formal methods, empirical models for anomaly detection are gen-
erally tuned in an ad-hoc manner without guidance by well-found theoretical
framework or analysis. As a result, authors claim that there are no guarantees
on the effectiveness of the empirical models after deployment.

Authors in [22] show the feasibility of a trace mining approach in modeling the
behavior of a real-time system using arrival curves [13] constructed from event
traces. The proposed framework computes empirical arrival curves by traversing
the trace with a sliding window, capturing the maximum and minimum observa-
tion counts of different system events for windows of different length. In a typical
classification setting, a normal profile for the system corresponds to a model that
aggregates arrival curves computed over a set of representative traces that char-
acterize the normal system behavior. Finally, a classifier uses the model to label
unseen traces with a specified accuracy for anomaly detection purposes.

This paper presents an analysis to assess the robustness of arrival-curves
models used to characterize the ranges of tolerable behavioral variations of a
real-time system such as hardware degradation, external attacks, etc. The pre-
sented analysis is based on the assumption that an arrival curve can be analogous
to a demand bound function. We state the problem as follows: Given an empir-
ical arrival curve for a system that can be represented by a sporadic task-set
scheduled using an EDF scheduler, and associated upper and lower bounds on
allowed variations in the demand of the task set, obtain a range of allowed vari-
ations in the task parameters (period, execution time) such that the system stays
operational within the allowed variations in the expected overall demand.

The rest of the paper is organized as follows: We present the background
and assumptions for the system models in Sect. 2. We derive the bounds on the
task parameters that correspond to the deviation in the dbf of the task model in

Assessing the Robustness of Arrival Curves Models 25

Sect. 3, and we perform an asymptotic analysis to these variation bounds of the
task parameters corresponding to the change of the demand deviation in Sect. 4.
In Sect. 5, we evaluate the robustness assessment framework of empirical arrival-
curves models of an actual real-time system. Section 6 discusses the validity of
our assumptions, Sect. 7 reviews the related work, and finally Sect. 8 concludes
the paper.

2 Arrival Curves and Demand Bound Functions

This section reviews some basic definitions of arrival curves and establishes a
relationship between these curves and demand bound functions for a given task
model T (p, e, d) with period p, execution time e, and deadline d. The relationship
between arrival curves and dbf provides the basis for the theoretical analysis
presented in the paper since our work attempts to fill the gap between the
empirically constructed arrival curves and the theoretical models of demand-
bound functions that are typically used for formal analysis of a given system.
We evaluate and validate the assumptions presented in this section using data
from a real-world application in Sect. 5.

2.1 Overview of Arrival Curves

Arrival curves are widely used abstractions for modeling temporal workloads in
real-time systems. Multiple frameworks based on Network Calculus [13] rely on
arrival curves to model worst-case workloads and perform exhaustive analysis
of real-time systems at design-time, obtaining guaranteed performance metrics
before system deployment [28]. More recently, multiple authors have shown that
analyzing the properties of arrival curves constructed from execution traces col-
lected while the system is operating opens new avenues in applications such as
resource management [12,18] and anomaly detection [22]. The ever-increasing
accessibility of system-specific traces from embedded systems and the availabil-
ity of tools to accelerate the construction of accurate empirical arrival curves [5]
facilitate the development of new data-driven methods to complement traditional
formal methods in the analysis of modern real-time systems.

Arrival curves are functions of interval time domain that provide upper and
lower limits to the number of events that can occur in a system within any time
interval of length Δt. Starting from a timestamped trace of events, it is possible
to obtain an empirical arrival curve by sliding a window of varying length Δt, and
registering the maximum and the minimum number of events enclosed within
the window while traversing the trace. The resulting curves bound the lower and
upper event counts versus the corresponding time interval lengths.

An empirical arrival curve representing a maximum count of events for dif-
ferent interval lengths is a non-decreasing function that starts at the origin [22],
and it can be approximated by a line passing through the origin. In the rest
of this section, we present the dbf of a sporadic task model under EDF sched-
uler, which can also be approximated through a line passing through the origin.

26 M. Salem et al.

This assumption allows us to relate the arrival curves with the dbf of a given
task-set, enabling us to perform a mathematical analysis for the resilience of
systems to the dynamically changing workloads.

2.2 Assumed Task Model and Demand Bound Functions

Definition 1. A task T (p, e, d) is a dispatchable entity in the system where the
period p is the number of time units between successive dispatches, e is the exe-
cution time (in time units) required to complete the work, and the deadline d is
the maximum time available to complete the work after dispatching.

e

e+β

p 2p

p-α 2(p–α) 3(p–α)

σu(ta)dbf(ta)
dbf’(ta)

0

σ(ta)

σl (ta)

dbf(t)

tp

e

t

T

T’1

T’2
ta

Fig. 1. Graphical representation of variations in task parameters and dbf.

A demand-bound function (dbf) models the maximum processor demand by
a task over any interval of length t [2]. The dbf of a given sporadic task under
EDF assumption is defined as:

dbf(t) =

⌊
t + p − d

p

⌋
e (1)

We will consider that the sporadic task has an implicit deadline (d = p) and
there are no overloads, restricting the possible values of e to]0, p], with p ∈ R.

Due to the empirical nature of the target arrival-curves model, the purpose
of the chosen task model is to provide a reasonable approximation to the arrival
curve that describes an increasing events count versus an increasing sliding win-
dow interval [22]. Hence, we choose the specified sporadic task model with an
implicit deadline under EDF scheduler, which yields an increasing function that
steps e units every p time units. The function can be approximated by a straight
line with slope e

p . We evaluate the choice of this task model and the empirical
model approximation in Sect. 5.

Variations in the nominal task parameters can either increase or decrease
the task demand. In practical settings, changes in the task parameters may arise
from changing operational conditions. We formalize the range of possible values
of the altered task parameters as follows:

Assessing the Robustness of Arrival Curves Models 27

Definition 2. Decreasing the period of a task. α is defined as the reduction of
the task period p in time units, therefore α ∈ (−∞, p [.

Definition 3. Increasing the execution time of a task. β is defined as the
increase of the task execution time e in time units, therefore β ∈] −e, (p −
α) − e [.

We define α as a decrement and β as an increment for mathematical conve-
nience. But to generalize our analysis, we highlight that both Definitions 2 and 3
allow negative values for α and β.

We now introduce the general model for an altered task T ′(p − α, e + β),
which incorporates the variations in period and execution time while maintaining
the condition of implicit deadlines but for the altered period in this case, i.e.,
(d − α = p − α). We can obtain a corresponding altered dbf as follows:

dbf′(t) =

⌊
t

p − α

⌋
(e + β) (2)

Let us now consider that for each interval length t, we define arbitrary bounds
on allowed variations in the nominal dbf from Eq. 1 (with α = β = 0), restricting
the valid values of dbf′ for a given application.

Definition 4. Variation Bound on Task Demand. We denote the allowed vari-
ations of the dbf at time interval t as σ(t) = dbf′(t) − dbf(t), where σ(t) ∈
[σl(t), σu(t)], and σl(t), σu(t) ∈ R.

The restriction in the allowed values of σ(t) can be either set by the sys-
tem designer according to some specific operational accuracy requirement or
can represent some uncertainty in the specifications. Note that Definition 4 per-
mits describing deviations above and below the nominal demand. This is a key
difference of our analysis with respect to related work on sensitivity analysis
from the scheduling domain [20,27,29–31], which focuses on verifying that the
demand stays below a certain limit such that the system remains schedulable.
We contrast our work with sensitivity analysis in Sect. 7.

Figure 1 illustrates the previous definitions for the variations in the nominal
task parameters and the corresponding dbf. The diagram on the left shows the
timeline for the execution of a task T with period p and execution time e, and
also the execution of tasks T ′

1 and T ′
2 that include variations in the nominal

parameters. In specific, T ′
1 increments the nominal execution time by β time

units (represented in the shaded green box), and T ′
2 aggregates a reduction in

the period. Both T ′
1 and T ′

2 generate a demand above the nominal value. The
diagram to the right shows the step-wise nominal dbf together with the terms
defined earlier for allowed variations at a certain point ta. In this case, the
demand of the altered task dbf′(ta) is above the nominal value, but within the
specified boundaries of allowed variations σl(ta) and σu(ta).

Considering the previous definitions, we can tackle the problem introduced
in Sect. 1 by finding the region of allowed values of α and β, such that the value

28 M. Salem et al.

of σ(t), representing the deviation in the demand of the altered task dbf′(t)
with respect to the nominal demand dbf(t), stays within the predefined range
[σl(t), σu(t)]. Traditionally for the assumed task model, a utilization-based app-
roach is the solution to evaluate timing properties of a given real-time system;
however, this work uses demand-bound functions since we hypothesize their fea-
sible abstraction to empirical arrival curves as we demonstrate in Sect. 5.

3 Computing Bounds on Task-Model Alteration

In this section, we relate the demand deviation bound to a feasibility region for
the parameters α and β of the altered task model T ′. The mathematical founda-
tions assume a specified demand variation bound for a given task. However, the
analysis presented in this section can be directly extended to specified demand
variation bounds for multiple independent tasks, i.e., a task Ti has a specified
demand variation bound σi where

∑
i σi = σ. Such problem breaks down into

multiple sub-problems that can be solved by finding the feasible region for each
αi and βi for each task Ti separately.

Fig. 2. Permissible task parameter alteration in Example 1

Substituting Eqs. 1 and 2 in Definition 4, we can derive a relationship between
α and β values that alter a nominal task model T while meeting a deviation
demand σ(ta) at a given time interval ta as follows:

β =

σ(ta) −
(⌊

ta
p − α

⌋
−

⌊
ta
p

⌋)
e

⌊
ta

p − α

⌋ (3)

Assessing the Robustness of Arrival Curves Models 29

The allowed deviation from the nominal dbf is bounded by [σl(ta), σu(ta)].
By replacing σ(ta) by σl(ta) in Eq. 3, we can establish a relationship between
a lower bound for the parameter βl, and the possible values of α. In a similar
manner, we can replace σ(ta) by σu(ta) to obtain the upper bound βu.

Figure 2 illustrates how we can use the relationships described above to obtain
a feasibility region for the values of α and β given a certain σ(ta). The figure
shows a plot of β as a function of α, in addition to the resulting βl and βu.
The dashed straight lines delimit the valid intervals for α and β according to
Definitions 2 and 3, respectively. The lines for βl and βu intersect at the point
(α, β) = (p,−e). We restrict the lower bound of α to −p, so the range of allowed
α values from Definition 2 changes to [−p, p]. Considering the limits βl and
βu and the restrictions over the parameters, we can obtain a feasibility region
(shown in shaded green) for the valid combinations of α and β that will allow
to keep the altered demand within predefined boundaries.

To illustrate the theoretical foundations, we present the following example
with concrete task parameters that we will use throughout the rest of the paper.

Example 1. Consider a sporadic task with parameters e = 0.375 and p = d = 0.5.
Find the feasibility region for α and β such that the demand of the altered task
at ta = 30 remains within a range of ±10% of the nominal demand.

Figure 2 shows the computed upper bound βu and lower bound βl with
respect to valid values for α by applying Eq. 3 to the demand of the task in
Example 1. The resulting feasibility region for the variations in parameters is
shaded green. When drawing a vertical straight line for a given value of α, any
value of β within that region will ensure that the resulting demand from the
altered system will remain within the specified variations.

4 Asymptotic Analysis for Task Alteration Parameters

This section describes how variations in α and β change over increasing time
intervals t to meet the specified demand bounds. We use Eq. 3 to establish the
relation between β and the time interval t for a given α. Similarly, for a given β,
the equation defines the relation between α and time interval t. Analyzing the
change of β and α as the time interval t increases gives us an insight into the
change of permissible system parameters alteration over different time intervals.

To compute these asymptotic bounds, we need to apply a transformation to
Eq. 3 using approximations that are valid for asymptotic values of time intervals.

First, we relate the decrease in period α to the period p using a variable k,
where α = k × p such that k ∈ (−∞, 1[. In other words, the variable k is a
ratio of the decrease in period α with respect to the nominal period p. Second,
we relate t to both p and α by defining c where t ≈ c (p−α) assuming c is some
factor much larger than (p − α). Hence, t ≈ c p (1 − k) as well.

30 M. Salem et al.

Fig. 3. Asymptotic analysis for the β and α using relative σ

We evaluate these approximation as t → ∞. We obtain the limit of the
floor operator using the Squeeze Theorem of Limits [10], which allows us to find
limx→∞ f(x) where f(x) is bounded by g(x) and h(x), g(x) ≤ f(x) ≤ h(x) as
follows:

lim
x→∞ g(x) ≤ lim

x→∞ f(x) ≤ lim
x→∞ h(x) (4)

Applying Eq. 4 to the definition of floor function, c − 1 ≤ �c� < c, we deduce
that limc→+∞ c − 1 = c and limc→+∞ c = c, and as a result:

lim
c→+∞ �c� = c (5)

Similarly, since (1 − k) is a constant. We obtain the following result in Eq. 6.
Combining Eqs. 5 and 6 allow for transforming Eq. 3 to obtain β.

lim
c→+∞ �c (1 − k)� = c (1 − k) (6)

Asymptotic Analysis for Variation in Execution Time. β We consider
σ(t) values that can be defined relatively to the nominal demand dbf(t). Let us
define σ as a fraction f of the nominal demand dbf(t). For example, the demand
variation bound can be set to be ±10% of the nominal demand at any given
interval t. In this case, to compute the asymptotic values we use Eq. 7 as follows:

σ(t) = f dbf(t) = f

⌊
t

p

⌋
e (7)

Assessing the Robustness of Arrival Curves Models 31

Using σ(t) from Eq. 7, the asymptotic values of a function βv(t) that varies
with t can be derived as follows:

lim
t→+∞ βv(t) = lim

t→+∞

f
⌊

t
p

⌋
e −

(⌊
t

p−α

⌋
−

⌊
t
p

⌋)
e⌊

t
p−α

⌋

= lim
c→+∞

f
⌊

cp(1−k)
p

⌋
e −

(⌊
c(p−α)

p−α

⌋
−

⌊
cp(1−k)

p

⌋)
e

�c�
= lim

c→+∞
f �c(1 − k)� e − (�c� − �c(1 − k)�) e

�c�
= lim

c→+∞
fc(1 − k)e − (c − c(1 − k))e

c

= −ke + f(1 − k)e

(8)

Figure 3a shows the boundaries βu and βl when σ(t) ∈ [0.9∗dbf(t), 1.1∗dbf(t)]
in Example 1 for an arbitrary value α = 0.04. Using Eq. 8, we find the asymptotic
values for the boundaries are βl ≈ −0.064 and βu ≈ 0.0045. The figure shows
that the boundary curve smooths as t increases due to the diminishing effect of
the floor operator in Eq. 7.

Asymptotic Analysis for Variation in Period. α For a given value of β,
we study how a varying function αv(t) changes over time interval t by obtaining
the relation between αv(t) and t from Eq. 3 as follows:

Z =

⌊
t

p − αv(t)

⌋
=

σ +

⌊
t

p

⌋
e

e + β
(9)

Unlike the analysis for the values of βv(t), defining a precise relation between
αv(t) and t for a given β is not a straightforward operation. Since the inverse
of the floor operator is undefined, we cannot obtain a closed formula for αv(t).
Instead, we restrict the analysis to obtain conservative bounds for the range of
αv(t) values that satisfy Eq. 9. To do this, we can apply the range property of
the floor operator [11], which states the following:

�x� = m ⇐⇒ m ≤ x < m + 1 (10)

Using the property in (10), we can describe a range for the values of α v(t) as:

p − t

Z
≤ αv(t) < p − t

Z + 1
, with Z =

σ +

⌊
t

p

⌋
e

(e + β)
(11)

32 M. Salem et al.

Substituting σ for the specified demand variation bounds σl and σu in the
obtained inequality, we can obtain the relation of the corresponding boundaries
for αv(t) versus time interval t for a given β. Note that each boundary for σ leads
to a feasible range of αv(t), so we define Zu and Zl, which we obtain replacing
σu and σl in the term Z defined in Eq. 9, respectively. Substituting Z by Zu and
Zl in Eq. 11 yields two inequalities with four boundaries which can be bounded
by the αv(t) in Eq. 12. Now, we show the asymptotic values for both boundaries
when the demand variation bound σ is defined as a function of nominal demand
and we visualize these results in Fig. 3b.

p − t

Zl
≤ αv(t) < p − t

Zu + 1
(12)

We consider σ(t) values that are relative to the nominal demand dbf(t) where
the variation of the demand is constrained by a given range [σl, σu] that changes
over time intervals t. Using the transformation from Eq. 7, the asymptotic values
for α can be computed using the boundaries in Eq. 11 again as follows starting
with the left-hand side in Eq. 13 then the right-hand size in Eq. 14:

p − t

Z
= p − c p (1 − k)

f c (1−k) e+c (1−k) e
e +β

= p − c p (1 − k)(e + β)
c (1 − k) e (1 + f)

= p − p (e + β)
e (1 + f)

(13)

p − t

Z + 1
= p − cp(1 − k)

c(1−k)e(1+f)+(e+β)
e+β

= p − cp(1 − k)(e + β)
c(1 − k)e(1 + f) + (e + β) (14)

Then taking the limit as t goes to ∞ for Eq. 13 yields the same equation,
however, for Eq. 14, we obtain the asymptotic value as follows:

lim
c→+∞

cp(1 − k)
c(1−k)e(1+f)+(e+β)

e+β

= lim
c→+∞

p(1 − k)(e + β)

e(1 − k)(1 + f) + (e+β)
c

=
p(1 + β)
e(1 + f) (15)

Thus, we conclude that asymptotically, both sides of the inequality will con-
verge to the same limit. According to the Squeeze Theorem, α can be defined
asymptotically in this case as:

α ≈ p − p (e + β)
e(1 + f)

(16)

Figure 3b shows the boundaries for αu and αl when σ(t) ∈ [0.9 ∗ dbf(t), 1.1 ∗
dbf(t)] in Example 1 for an arbitrary value β = 0.01. Using Eq. 16, we find
the asymptotic values for the boundaries are αl ≈ −0.07 and αu ≈ 0.03. The
boundaries in Fig. 3 shows the importance of the asymptotic analysis since we
can observe that these asymptotic limits are not necessarily the tightest over the
time interval t. As a result, this analysis provides the designer with a tool to
assess the validity of the calculated robustness bounds versus increasing t values.

In the following section, we apply the theoretical analysis to an application of
interest by tackling the problem statement introduced in Sect. 1, which aims at
assessing the robustness of data-driven trace mining approach that uses arrival-
curves models for a deployed real-time system.

Assessing the Robustness of Arrival Curves Models 33

5 Application: Robustness Assessment for Empirical
Arrival-Curves Models

In this section, we evaluate the hypothesis that an empirical arrival curve can be
represented as linear demand-bound functions of the assumed task model in this
paper, and as a result, we perform robustness evaluation for the arrival-curves
models using the presented theoretical foundations.

The procedure of robustness assessment for the empirical arrival-curve model
follows these steps: (a) abstract an arrival-curves model to a sporadic task model
as in Sect. 2, (b) obtain the relation that describes the feasibility region of the
allowed alteration for the task model which corresponds to a variation in the
arrival behavior shown by the empirical model as in Sect. 3, (c) evaluate the
approach feasibility by quantifying the effect of approximating the curves to a
linear demand-bound function of a sporadic task under an EDF scheduler which
we demonstrate in this section.

5.1 Representing Arrival Curves as Demand-Bound Functions

A model of empirical arrival-curves is an aggregate for the curves computed
over a set of multiple traces collected from the system [22]. In our application,
we consider a model that is comprised of the mean of arrival curves describing
the maximum counts of events within variable window sizes, in addition to two
boundary curves that described a confidence interval for that mean. Figure 4a
shows the arrival-curves model of a specified QNX event computed using a set
of traces that represent the normal behavior of a real-time system, we discuss
the experimental setup later in this section.

In Sect. 2, the mathematical foundation uses a task model of a sporadic task
using the dbf under an EDF scheduler. As a result, we obtain a demand function,
which we can approximate by a line passing through the origin. Similarly, an
empirical arrival curve representing a maximum count is a function whose non-
decreasing curve starts at the origin [22]. Now, we can introduce the methodology
that relates both the arrival curve and the demand-bound function.

We apply Linear Regression [17] to obtain the line that best fits an empirical
arrival curve. We offset the fitted line to pass by the origin, and as a result, it
can be analogous to a demand-bound function. Later in this section, we quantify
the negligible error introduced by this process. For example, Fig. 4b shows the
fitted regression lines for the mean arrival curve and the two confidence interval
curves after being offset to pass by the origin. The linearity of the curves makes
them a good pick for our demonstration.

The regression lines in Fig. 4b are now analogous to a nominal dbf(t) with an
upper and lower variation bound to the demand σl and σu respectively which are
both functions of t. In other words, we can define a sporadic task which demands
e execution time units every p time interval whose demand-bound function can be
approximated by an empirical arrival curve counting a maximum of e instances
of an event in a trace every sliding window of p time units.

34 M. Salem et al.

Fig. 4. Fitting empirical arrival-curves model to demand-bound functions

5.2 Robustness Assessment Using Task Alteration Parameters

In order to enable the analysis presented in the previous sections to the robust-
ness assessment of empirical arrival curves, we use the task model assumed in
Sect. 2 to map the task parameters and its variations to the slopes of the regres-
sion lines obtained in Fig. 4b. We denote these slopes as, S for the slope of the
regression line for the mean curve, Su, and Sl for the slopes of the regression
lines for both confidence interval curves. We compute these slopes as follows:

S =
e

p
, Su =

e + βu

p − αu
, Sl =

e + βl

p − αl
(17)

Equation 17 defines the relation between task parameters e and p and the
regression slopes. We obtain the relations between the variation of parameters
α and β from Eq. 3 using the definitions of Su and Sl as follows:

βu =

σu −
(⌊

ta Su

e + βu

⌋
−

⌊
ta S

e

⌋)
e

⌊
ta Su

e + βu

⌋ , βl =

σl −
(⌊

ta Sl

e + βl

⌋
−

⌊
ta S

e

⌋)
e

⌊
ta Sl

e + βl

⌋

(18)

The above equations provide the relation between bounds on β versus exe-
cution time e. To define the relation between α and the period p, we substitute
e by S × p from Eq. 17:

αu = p − e + βu

Su
, αl = p − e + βl

Sl
(19)

The above set of equations provide the relations between the parameters e
and p, and the corresponding alterations β and α. The relations evaluate the

Assessing the Robustness of Arrival Curves Models 35

alteration that would cause a deviation σ to the dbfs obtained by approximating
the fitted regression lines of the empirical arrival-curves model. Analogously, β
and α now describe the permissible variation to the arrival-curves model, i.e.,
the count of events of the corresponding sliding window interval of observance.

Now, we present an application to demonstrate how to use these relations to
assess the robustness of a model for a real-time system. We exploit the proposed
approach by obtaining the feasibility region for the permissible task parameter
variations of the mapped task model through the approximation of the empirical
arrival curves to demand-bound functions.

5.3 Evaluation on QNX Traces from UAV

The dataset traces are generated from an unmanned aerial vehicle (UAV) run-
ning the real-time operating system QNX Neutrino 6.4. The UAV was developed
at the University of Waterloo, received the Special Flight Operating Certifi-
cate (SFOC), and flew real mapping and payload-drop missions in Nova Sco-
tia and Ontario. The traces are collected using the tracing facility tracelogger.
A trace entry is a timestamped kernel event that shows the type of an event
generated while running a specific process on a specified CPU core. In this
section, we represent an arrival-curves model for a specific QNX event THREAD
THRUNNING that marks every start of a thread execution for a specified process
proc/boot/procnto-instr. To evaluate the robustness of the example model
in Fig. 4a, we perform the following steps:

(a) Compute Regression Slopes. We obtain the slopes of the fitted regression
lines for the mean arrival curve and its confidence interval. It is advisable to
assess the adjusted R squared of the regression model. The metric measures the
goodness of the linear fit to evaluate whether the assumption that the model is
linear was valid [17]. In our example, the slopes of the lines in Fig. 4b can be
obtained as S = 6 : 76 × 10−5, Su = 7 : 01 × 10−5 and Sl = 6 : 52 × 10−5. The
adjusted R squared is 98% indicating a good linear fit.

(b) Choose Task Parameters. Next step is to specify the task parameters
e and p in order to obtain the relation between α and β from Eqs. 18 and 19.
However, the provided empirical arrival-curves model cannot be used to obtain
the e and p values. This comes from the fact that the slopes of fitted regression
lines can represent any underlying task model satisfying the relation S = e

p .
Therefore, to obtain reasonable values for e and p, we need to choose p that

is a small fraction of ta to obtain the asymptotic values for α and β, in other
words, we aim to maximize the factor c defined in Sect. 4. Additionally, the
choice of p or e can be arbitrarily guided by domain knowledge of the system
under scrutiny. The other parameter can be estimated using the relation S = e

p
from Eq. 17 upon deciding on the value of p or e. In our example, we choose an
arbitrary value ta = 4 × 10−5 that captures a sufficient number of trace events.
Then, we choose p = 0.001 × ta = 400, and as a result, we compute e = S x
p = 0.027.

36 M. Salem et al.

(c) Obtain Demand Variation Bound. The last parameters needed to
obtain the relation between α and β are σu and σl. The σ parameter defines
the difference between the fitted confidence interval curves after offsetting
them to pass by the origin (0, 0). Note that σ optimally can be expressed as
σ = (dbf′ +intercept′)− (dbf+ intercept), but we discard the difference between
both intercepts as the error resulting from that approximation is negligible.
For the example in Fig. 4b, we measure σu = −σl = σ′ where σ′ = 0.957 at
ta = 4 × 10−5.

(d) Apply Feasibility Region Formulas. To obtain the estimated feasibility
region for α and β, we plot the values of βu and βl for a valid range of α values
using the slopes of fitted regression lines from Eq. 18. For the actual feasibility
region, we plot the values of βu and βl versus α using Eq. 3. Figure 5 shows the
overlay of both feasibility regions using the arrival-curves model and the actual
task model which, similarly to the illustration in Fig. 2, describe the permissible
values of α and the corresponding bounds on β. The negligible error between both
the actual and estimated feasibility regions validates that the approximation of
a linear empirical arrival-curves model to the assumed demand-bound function
is reasonable.

Fig. 5. Feasibility region for representative parameters β, α

The case study shows an example of an arrival-curves model that charac-
terizes the behavior of QNX kernel event on a real-time system. The empirical
model can now be represented as the demand-bound function of an equiva-
lent task model whose parameters alteration can be bounded. The boundaries
describe the robustness of the model as it quantifies the variation captured in the
underlying normal behavior of the system. Such quantification provides design-
ers a valuable tool on how robust the model is, and allows for comparing different
models by assessing the feasibility regions of the task parameter variation.

Assessing the Robustness of Arrival Curves Models 37

6 Discussion

6.1 Linearity Assumption for Arrival Curves

We showed that having an empirical model that can be best approximated by a
regression line minimizes the error between the actual and the estimated feasi-
bility region. However, the linearity assumption might not hold for other arrival-
curves models. For example, mode-switching [19] yields an increasing arrival
curve but with horizontal gaps that correspond to the mode switches, because
of the lack of events arrival versus the increasing sliding window size.

6.2 Compositionality and Empirical Arrival Curves

We presented an empirical arrival-curves model that corresponds to a single
QNX event, however, our work can be extended by using compositionality [6,
24] to combine the task models describing empirical arrival curves originating
from multiple events into a system-level task model. In this case, the robustness
evaluation can be performed on a system-level which considers inter- and intra-
event interactions in contrast to the evaluation using event-level models.

6.3 Handling Heterogeneous Task Parameters

Finding the feasibility region for the permissible task variation becomes a more
complex problem if there exist different parameters αi and βi of heterogeneous
tasks. One reason is that the mathematical foundation presented in our work
assumes that the variations of nominal parameters for multiple tasks are inde-
pendent. In practice, the tasks of a given real-time system might not encounter
the same alteration, and in this case, translating such complex interaction into
a single demand-bound function, using compositionality for example, might be
a solution that would enable extending our work to multiple dependent tasks.

6.4 Iterative Model Assessment for Anomaly Detection

In anomaly detection, it is essential to evaluate whether the model is good enough
during the training process. Our approach can be integrated with the model
training procedure, such that the model is iteratively evaluated as new traces
are added. A designer can limit the model tolerance to a given specification that
relates α and β as represented in the feasibility region, and then a certification
procedure can assess the overlap of this region and the computed one.

7 Related Work on Sensitivity Analysis

Our work in this paper assumes that the demand boundaries of a given task are
defined and aims to find the feasible task parameters that would not exceed such
demand. Contrarily, research work in the domain of schedulability analysis aims

38 M. Salem et al.

to study whether a given set of tasks can be scheduled, i.e., meet the task demand
without exceeding a given deadline, using different scheduling methods [2,15,25].
However, in the domain of scheduling, the analysis in this paper can be closely
related to sensitivity analysis.

Sensitivity analysis [20,21,29,31] studies how much change to task parame-
ters, i.e., execution time or task period, will not violate scheduling constraints.
The early work on sensitivity analysis [14] computed the maximum variation
of all execution time for a given set of tasks that keep a system schedulable
for a rate-monotonic scheduler. Further work considered parameters other than
execution time, for example, the authors in [3] presents a feasibility space for
task deadlines to meet the constraint of schedulability. Authors in [29–31] study
the sensitivity analysis for EDF scheduling through the computation of optimal
task parameters such that a given system remains schedulable. Particularly, [29]
applied sensitivity analysis considering a varying task execution and [30] con-
sidered the case when the task period can be varied, while [31] assumed a fixed
ratio between relative deadline and period. Our work considers a novel scope
by obtaining feasibility regions for the permissible variation of task parameters,
without restricting such variation to a single task variation parameter, to meet
defined constraints on the increase and decrease to task demand rather than the
schedulability condition.

8 Conclusion

This paper presents an approach to evaluate the robustness of empirical arrival-
curves models that characterize the behavior of real-time systems. We derive
theoretical bounds on task parameter alteration permissible by the demand
variation represented in the demand-bound function of a sporadic task with
an implicit deadline under an EDF scheduler. We demonstrate the feasibility of
the approach through an abstraction of an empirical arrival-curves model to a
demand-bound function of the assumed task model. We evaluate the approach
on the arrival-curves models constructed from QNX operating system events
that describe the behavior of a real-time system.

Acknowledgments. This work was supported by grants FONDECYT 11160375 and
CONICYT-Basal Project FB0008.

References

1. Ahrendts, L., Ernst, R., Quinton, S.: Exploiting execution dynamics in timing
analysis using job sequences. IEEE Des. Test 35(4), 16–22 (2018). https://doi.
org/10.1109/MDAT.2017.2746638

2. Baruah, S.K., Mok, A.K., Rosier, L.E.: Preemptively scheduling hard-real-time
sporadic tasks on one processor. In: Real-Time Systems Symposium, 11th Proceed-
ings, pp. 182–190. IEEE (1990). doi:https://doi.org/10.1109/REAL.1990.128746

https://doi.org/10.1109/MDAT.2017.2746638
https://doi.org/10.1109/MDAT.2017.2746638
https://doi.org/10.1109/REAL.1990.128746

Assessing the Robustness of Arrival Curves Models 39

3. Bini, E., Buttazzo, G.: The space of EDF deadlines: the exact region and a con-
vex approximation. Real-Time Syst. 41(1), 27–51 (2009). https://doi.org/10.1007/
s11241-008-9060-7

4. Cardenas, A.A., Stakhanova, N.: Analysis of metrics for classification accuracy
in intrusion detection. In: Empirical Research for Software Security, pp. 173–199.
CRC Press (2017). https://doi.org/10.1201/9781315154855

5. Carvajal, G., Salem, M., Benann, N., Fischmeister, S.: Enabling rapid construc-
tion of arrival curves from execution traces. IEEE Des. Test 35(4), 23–30 (2018).
https://doi.org/10.1109/MDAT.2017.2771210

6. Chakraborty, S., Künzli, S., Thiele, L.: A general framework for analysing system
properties in platform-based embedded system designs. In: DATE, vol. 3, p. 10190
(2003). https://doi.org/10.1109/DATE.2003.1253607

7. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection for discrete sequences:
a survey. IEEE Trans. Knowl. Data Eng. 24(5), 823–839 (2012). https://doi.org/
10.1109/TKDE.2010.235

8. Jazdi, N.: Cyber physical systems in the context of industry 4.0. In: 2014 IEEE
International Conference on Automation, Quality and Testing, Robotics, pp. 1–4.
IEEE (2014). https://doi.org/10.1109/AQTR.2014.6857843

9. Juba, B., Musco, C., Long, F., Sidiroglou-Douskos, S., Rinard, M.C.: Principled
sampling for anomaly detection. In: NDSS (2015). https://doi.org/10.14722/ndss.
2015.23268

10. Knapp, A.W.: Basic Real Analysis. Springer, Boston (2005). https://doi.org/10.
1007/0-8176-4441-5

11. Knuth, D.E., Graham, R.L., Patashnik, O., et al.: Concrete Mathematics. Adison
Wesley, Boston (1989)

12. Lampka, K., Forsberg, B., Spiliopoulos, V.: Keep it cool and in time: with runtime
monitoring to thermal-aware execution speeds for deadline constrained systems. J.
Parallel Distrib. Comput. 95, 79–91 (2016). https://doi.org/10.1016/j.jpdc.2016.
03.002

13. Le Boudec, J.-Y., Thiran, P. (eds.): Network Calculus. LNCS, vol. 2050. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45318-0

14. Lehoczky, J., Sha, L., Ding, Y.: The rate monotonic scheduling algorithm: exact
characterization and average case behavior. In: Real Time Systems Symposium,
1989, Proceedings, pp. 166–171. IEEE (1989). https://doi.org/10.1109/REAL.
1989.63567

15. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-
real-time environment. J. ACM (JACM) 20(1), 46–61 (1973). https://doi.org/10.
1145/321738.321743

16. Milenkoski, A., Vieira, M., Kounev, S., Avritzer, A., Payne, B.D.: Evaluating com-
puter intrusion detection systems: a survey of common practices. ACM Comput.
Surv. (CSUR) 48(1), 12 (2015). https://doi.org/10.1145/2808691

17. Neter, J.: Applied linear regression models
18. Neukirchner, M., Axer, P., Michaels, T., Ernst, R.: Monitoring of workload

arrival functions for mixed-criticality systems. In: IEEE 34th Real-Time Systems
Symposium (RTSS). pp. 88–96, December 2013. https://doi.org/10.1109/RTSS.
2013.17

19. Neukirchner, M., Lampka, K., Quinton, S., Ernst, R.: Multi-mode monitoring for
mixed-criticality real-time systems. In: 2013 International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ ISSS), pp. 1–10. IEEE
(2013). https://doi.org/10.1109/CODES-ISSS.2013.6659021

https://doi.org/10.1007/s11241-008-9060-7
https://doi.org/10.1007/s11241-008-9060-7
https://doi.org/10.1201/9781315154855
https://doi.org/10.1109/MDAT.2017.2771210
https://doi.org/10.1109/DATE.2003.1253607
https://doi.org/10.1109/TKDE.2010.235
https://doi.org/10.1109/TKDE.2010.235
https://doi.org/10.1109/AQTR.2014.6857843
https://doi.org/10.14722/ndss.2015.23268
https://doi.org/10.14722/ndss.2015.23268
https://doi.org/10.1007/0-8176-4441-5
https://doi.org/10.1007/0-8176-4441-5
https://doi.org/10.1016/j.jpdc.2016.03.002
https://doi.org/10.1016/j.jpdc.2016.03.002
https://doi.org/10.1007/3-540-45318-0
https://doi.org/10.1109/REAL.1989.63567
https://doi.org/10.1109/REAL.1989.63567
https://doi.org/10.1145/321738.321743
https://doi.org/10.1145/321738.321743
https://doi.org/10.1145/2808691
https://doi.org/10.1109/RTSS.2013.17
https://doi.org/10.1109/RTSS.2013.17
https://doi.org/10.1109/CODES-ISSS.2013.6659021

40 M. Salem et al.

20. Punnekkat, S., Davis, R., Burns, A.: Sensitivity analysis of real-time task sets. In:
Shyamasundar, R.K., Ueda, K. (eds.) ASIAN 1997. LNCS, vol. 1345, pp. 72–82.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63875-X 44

21. Racu, R., Jersak, M., Ernst, R.: Applying sensitivity analysis in real-time dis-
tributed systems. In: Real Time and Embedded Technology and Applications Sym-
posium. RTAS 2005. 11th IEEE. pp. 160–169. IEEE (2005). https://doi.org/10.
1109/RTAS.2005.10

22. Salem, M., Crowley, M., Fischmeister, S.: Anomaly detection using inter-arrival
curves for real-time systems. In: 2016 28th Euromicro Conference on Real-Time
Systems (ECRTS), pp. 97–106. IEEE (2016). https://doi.org/10.1109/ECRTS.
2016.22

23. Schleich, B., Anwer, N., Mathieu, L., Wartzack, S.: Shaping the digital twin for
design and production engineering. CIRP Ann. 66(1), 141–144 (2017). https://
doi.org/10.1016/j.cirp.2017.04.040

24. Shin, I., Lee, I.: Compositional real-time scheduling framework. In: Real-Time
Systems Symposium, 2004. Proceedings. 25th IEEE International, pp. 57–67. IEEE
(2004). https://doi.org/10.1109/REAL.2004.15

25. Spuri, M.: Analysis of deadline scheduled real-time systems (1996)
26. Tavallaee, M., Stakhanova, N., Ghorbani, A.A.: Toward credible evaluation of

anomaly-based intrusion-detection methods. IEEE Trans. Syst. Man Cybern. Part
C (Appl. Rev.) 40(5), 516–524 (2010). https://doi.org/10.1109/TSMCC.2010.
2048428

27. Vestal, S.: Fixed-priority sensitivity analysis for linear compute time models. IEEE
Trans. Software Eng. 20(4), 308–317 (1994). https://doi.org/10.1109/32.277577

28. Wandeler, E., Thiele, L., Verhoef, M., Lieverse, P.: System architecture evaluation
using modular performance analysis: a case study. Int. J. Softw. Tools Technol.
Transfer 8(6), 649–667 (2006). https://doi.org/10.1007/s10009-006-0019-5

29. Zhang, F., Burns, A., Baruah, S.: Sensitivity analysis for EDF scheduled arbi-
trary deadline real-time systems. In: 2010 IEEE 16th International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA), pp.
61–70. IEEE (2010). https://doi.org/10.1109/RTCSA.2010.12

30. Zhang, F., Burns, A., Baruah, S.: Sensitivity analysis of task period for EDF
scheduled arbitrary deadline real-time systems. In: 2010 3rd IEEE International
Conference on Computer Science and Information Technology (ICCSIT), vol. 3,
pp. 23–28. IEEE (2010). https://doi.org/10.1109/ICCSIT.2010.5564885

31. Zhang, F., Burns, A., Baruah, S.: Task parameter computations for constraint
deadline real-time systems with EDF scheduling. In: 2010 International Conference
on Computer Design and Applications (ICCDA), vol. 3, pp. V3–553. IEEE (2010).
https://doi.org/10.1109/ICCDA.2010.5541363

https://doi.org/10.1007/3-540-63875-X_44
https://doi.org/10.1109/RTAS.2005.10
https://doi.org/10.1109/RTAS.2005.10
https://doi.org/10.1109/ECRTS.2016.22
https://doi.org/10.1109/ECRTS.2016.22
https://doi.org/10.1016/j.cirp.2017.04.040
https://doi.org/10.1016/j.cirp.2017.04.040
https://doi.org/10.1109/REAL.2004.15
https://doi.org/10.1109/TSMCC.2010.2048428
https://doi.org/10.1109/TSMCC.2010.2048428
https://doi.org/10.1109/32.277577
https://doi.org/10.1007/s10009-006-0019-5
https://doi.org/10.1109/RTCSA.2010.12
https://doi.org/10.1109/ICCSIT.2010.5564885
https://doi.org/10.1109/ICCDA.2010.5541363

Property-Driven Timestamps Encoding
for Timeprints-Based Tracing

and Monitoring

Rehab Massoud1(B), Hoang M. Le1, and Rolf Drechsler1,2

1 University of Bremen, 28359 Bremen, Germany
{massoud,hle,drechsler}@informatik.uni-bremen.de

2 German Research Center of Artificial Intelligence DFKI GmbH, Bremen, Germany

Abstract. Timeprints are temporal regularly-logged signatures, describ-
ing a signal’s temporal behavior. They have been recently used in on-
chip signals tracing and temporal properties checking. Timeprints are
generated by aggregations of encoded timestamps marking where signal
changes took place. This paper describes different timestamps encoding
mechanisms, and shows how some system’s temporal properties can be
used to create more efficient timestamps. The efficiency of a timestamps-
encoding is introduced in terms of the number of collisions in the
timeprints-reconstruction solution space. We show how using property-
based timestamps encoding reduces the number of such collisions, leading
to better chances capturing unexpected behaviors.

Keywords: Timeprints · Timestamps-encoding · Trace-cycles

1 Introduction

In Real-Time (RT) and Cyber-Physical Systems (CPS), non-intrusive cycle-
accurate execution tracing is at the top of designers and operators wish-list
– if it is affordable. The barrier to accurate traces’ logging is: first that these
traces are generally infinite, and generated with very high rates; if we get enough
ports to log them, storing and processing them are still inherently problematic.
Practically, it is always possible to erase old traces that are not needed any-
more. But still, the speed of today’s ICs – reaching several Gigahertz – result in
unmanageably huge logs quickly, making traces very tricky to store, even for few
seconds. Second, the ports’ capabilities are also limited by the number of pins
that can be assigned in a chip and by the pads physical characteristics. Digital
logging speeds can not exceed the maximum on-chip clock, so the amount of
bits that can be logged per clock-cycle is constrained by the available logging
pins. Similarly, it is hard to store useful duration of operation’s data on on-chip

This work is supported by the DAAD, University of Bremen (SyDe graduate school
and CRDF) and the BMBF grant SELFIE (grant no. 01IW16001).

c© Springer Nature Switzerland AG 2019
É. André and M. Stoelinga (Eds.): FORMATS 2019, LNCS 11750, pp. 41–58, 2019.
https://doi.org/10.1007/978-3-030-29662-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29662-9_3&domain=pdf
https://doi.org/10.1007/978-3-030-29662-9_3

42 R. Massoud et al.

trace buffers, due to their huge amount. Many systems-specific work-around
techniques exist to provide accurate logs with relative efficiency, like [1–3,12],
but they are very customized, and hence cannot be extended to any generic on-
chip signal. Except for [12], all these methods are strictly limited to design-time,
as they require physical tracers and/or debuggers to be attached to the chip,
and still incur huge logs per second, which makes continuously capturing normal
operation periods non-achievable.

Timeprints have been introduced in [9] as a light-weight check-trace, logged
all over the execution for a specific on-chip signal. Timeprints could be gener-
ated for a single or multiple signals, as per the designers/auditors choice. Each
logged timeprint summarizes information about signals temporal behavior dur-
ing a trace-cycle. Although timeprints do not have explicitly all the details, they
still contain enough data to check exactly and accurately what took place on-chip
in many cases. To obtain timeprints, the tracing task is divided into consecutive
trace-cycles; and one timeprint is logged at the end of each cycle. Timeprints
contain information about the exact timings of where the traced signal changed
its value, and are generated by encoded timestamps aggregations at the desig-
nated change instances. The exact timestamps aggregation into a timeprint is a
form of lossy compression, where the exact instances are embedded and need to
be retrieved by a reconstruction process.

The timestamps-encoding used in generating the timeprints, contributes
strongly to the uniqueness/ambiguity of the reconstruction, when retrieving the
original timings from a timeprint. Some details about how they affect the trac-
ing (trace-size and reconstruction effort) will be presented next in Sect. 2. There
we explain how timeprints are generated and the rule of timestamps encoding
in generating them. Then, we give an overview of how temporal properties are
used in the reconstruction. In this paper, we explore how these properties can be
used to obtain more efficient timestamps’ encoding. So, after the background, we
give a formulation of the problem of timestamps-encoding generation, in Sect. 3.
After the formulation, we present the proposed timestamps-encoding generation
algorithms (with and without properties) in Sect. 4. The efficiency measures
suggested to compare the different timestamps encodings is then introduced in
Sect. 5; and applied to a sample experiment in Sect. 6 for illustrating the effect
of using some properties. Finally the paper is concluded in the last section.

2 Background on Timeprints

Run-time verification and monitoring been thoroughly considered in the litera-
ture; a recent overview can be found in [4], for example. While Run-time Ver-
ification (RV) is capable of checking the temporal properties on-line while the
system is in operation; it is limited to those specifications known and formalized
at design time. Although some parameterized run-time verification techniques
exist, like [11], they are still limited in the sense that they operate on a pre-
configuration that is fixed a priori to the monitoring and tracing task itself.
This means that after the events have already taken place, the trace at hand

Temporal Properties Driven Timestamps Encoding 43

(if any) would contain data logged according to a pre-configuration. So, if the
trace did not contain enough data about the root-cause of the encountered prob-
lem, and a new criteria or a specification that is suspected but was not configured
to be traced before hand; there is going to be no way of checking the previous
trace already at hand for those newly suspected properties. Of course the new
configuration can be implemented in future, where it can capture the suspected
case, but there might be no guarantee that the captured suspected case is actu-
ally the case that took place in the past, and not just another bug/bad-case. In
general if the problem is inconsistent –i.e. sporadic–, there could be no way to
capture it again. The availability of a trace that keeps some evidence about exe-
cutions that took place, and contains non-specified properties would help greatly
in identifying such sporadic problems’ root-cause.

Timeprints aim at providing specification-independent tracing [9], to enable
checking a wide range of temporal properties; including those unknown at design-
time. Despite such independence, timeprints can still make use of the known
traced signal’s temporal properties in the sense described in this paper without
much affecting their capabilities to detect/debug unspecified behaviors.

Specifications of behaviors and temporal execution traces can be expressed
using different available forms of temporal logic. Temporal properties of systems
have been a topic for study from both the perspective of specification efficient
pre-description for monitoring, like in [8,10] and from specifications mining and
learning perspective, as in [7] and [13]. Here, we limit our focus to the temporal
properties over a single trace-cycles for simplicity. Expressing them over generic
periods is a subject of our next upcoming work. This focus is also reasonable
for a first properties-based timestamps codes generation attempt. It also renders
the properties description into a very intuitive and simple task. The drawback of
course is the need for a translation layer between system level properties (over
generic periods) and trace-cycle properties.

In the next subsection, we describe how timeprints are generated. Then,
the temporal properties that could be utilized to obtained better timestamps
encoding are defined.

2.1 Timeprint Generation

To generate a trace of timeprints of a signal, first: the continuous signal execution
trace is divided into trace-cycles; where the first trace-cycle would start at reset
or at a defined-check point, and the value of the timeprints is initialized to 0.
A trace-cycle length m is defined before the system’s deployment; i.e. before
tracing starts. A sample intermediate trace-cycle is depicted in Fig. 1. Within
a trace-cycle, an encoded time-stamp is assigned to every clock-cycle; for the
ith clock-cycle the corresponding code is denoted by TS(i) in the figure. An
example of a possible timestamps encoding is shown at the right of Fig. 1. A
typical timestamps-encoding would contain m timestamps-codes, each of bit-
width bi, that can be fixed as in the figure. As the traced signal changes its
value, a change marker triggers the aggregation of the corresponding timestamp
code to the timeprint TP. In the example the aggregation function is XOR.

44 R. Massoud et al.

Fig. 1. An intermediate trace-cycle, with its respective timeprint

So TP at the bottom of Fig. 1, is the result of XORing TS (4),TS (5),TS (10),
and TS (11). At the end of each trace-cycle, the timeprint value that exists
in the timeprint’s register is logged; and the tracing continues: XORing the
codes, where changes happen. The given encoding in the example is generated
by checking some randomly generated codes, for linear independence from each
other. Details of the generation algorithm will be given in Sect. 4.

In this paper we fix the aggregation function to XOR, the trace-cycle length
to m and the timestamps encoding (code) bit-width to b.

Fig. 2. Timeprints Life Cycle, from [9].

The decision about the trace-cycle characteristics (trace-cycle length, time-
prints’s width and timestamps encoding) happens at the the signal analysis
phase, as at the top left of Fig. 2. The signal analysis is also expected to result in
the system’s defined properties, from which the decision about which run-time
monitors are going to be implemented is taken. A timeprint is an aggregation
of timestamps that summarizes the temporal behavior. That is logged by aggre-
gation hardware on-chip (within some System on Chip SoC) or attached to the

Temporal Properties Driven Timestamps Encoding 45

ports/pins where the tracing is needed. During deployment, a change in the sig-
nal values triggers the corresponding timestamp aggregation into the timeprints.
At the end of each trace-cycle, the fixed size timeprint is logged; together with
the number of changes counted in the trace-cycle. The number of bits needed
to log the number of changes is �log(m − 1)�. This keeps the amount of log-
ging small and constant over time (b + �log(m − 1)�).1 If a problem happened
for which its root-cause need to be analyzed or for which an accurate trace is
required, the relevant timeprints are retrieved. The failure analysis results in
what we call Failure Properties, which expresses the visible problematic behav-
ior of the system. To retrieve the accurate timing, (at postmortem) we retrieve
exact instances of events from the timeprint via a Reconstruction, as in Fig. 2.
The reconstruction might use simulation to help aligning the timeprints to the
system’s visible behavior. All the optional paths are marked by dashed lines.

2.2 Temporal Properties

Timeprints are considered abstractions of the exact temporal execution; but the
details lost by a timeprint’s abstraction, are retrievable in most of the cases. We
do not compromise accuracy during the aggregation process, as most traditional
abstractions. Rather, we overlook data that are already known (verified) and
hence can be used in the reconstruction. We describe those in terms of Temporal
Properties, and add them to the reconstruction to decrease the ambiguity. For
example, the details that can be retrieved by simulation and alignment to the
timeprints trace are not considered lost, because simulation’s input can be used
in the reconstruction.

Fig. 3. Timeprints as Abstractions

1 If the signal change rate is known to be below certain limit the number of bits needed
to describe the number of changes can still be less than log(m− 1). This log(m− 1)
bits already covers the case of m changes as we aggregate timeprints recursively, i.e.
the last timeprint of a trace-cycle is the initial value of the timeprint for the new
trace-cycle; hence, if m=0 and the timeprint value changed, it means m changes
took place, and if m=0 and the timeprint value is the same, then there has been
zero changes in that trace-cycle.

46 R. Massoud et al.

Figure 3 shows the idea behind retrieval of the accurate timing via the recon-
struction process; with the help of temporal properties. At the left, the timeprints
reconstruction without properties is depicted. A point S ∈ RReality corresponds
to a specific timing changes in the traced signal that took place on-chip. We
call each such a point Signal S. This signal would cause the aggregation of some
encoded timestamps into the corresponding abstraction, or Timeprint TP . This
aggregation and logging of the timeprint and the number of changes can be seen
as a function α̃ in a Galois insertion, and the reconstruction as γ̃, see [9] and the
formulation section for more details.

Each point in the timeprints’ reconstruction space (on the right of Fig. 3)
corresponds to a possible accurate timing that could have led to the timeprint
at hand. In the figure, one can see how the ambiguity (many possible accurate
timings that could have led to the same timeprints) resulting from the recon-
struction process is mitigated via properties. The exclusion of non-real solutions
by properties-sets as in the figure corresponds to pruning the search space in
the timeprints reconstruction space, as in Fig. 3. The number of solutions can
be really huge for large trace-cycle sizes, if properties are not used [5]. This is
why the properties usage proposed in [9], is essential to render the whole method
acceptable. Ideally, as in Fig. 3, the reconstruction which considers the proper-
ties ends up with a unique signal/timing (the intersection of the 3 sets). But
this of course might not always be guaranteed; and defining metrics to judge the
timeprints efficiency is under development.

In this paper, we suggest using the temporal properties, not only for recon-
struction, but also for the generation of the timestamps encoding itself. For this
purpose, we need to define briefly what do we mean by a property here. As the
focus here is mainly about timing, properties in our context would be temporal
properties that relates the timings of events happening within a trace-cycle. In
general, if relations between events span more than one trace-cycle, they still can
be mapped to some adjacent trace-cycles; so focusing on one trace-cycle does not
limit the results presented here.

3 Formulation

The choice of the timestamps has influence on the ambiguity occurring within
the logging procedure and thus on the time needed to reconstruct the original
signal timings. Intuitively, a sparse choice of timestamps allows only for few
possibilities to sum up to the timeprint. It decreases the number of the recon-
structed solutions, making it easier to find all of them. However, we can only
allow sparsity up to a certain extent as the number of logged bits would grow.

Ideally, we would choose an timestamp encoding that avoids ambiguity at
all. This can be achieved by constructing an encoding TS : [1..m] → F

b
2, where

TS (1), . . . ,TS (m) are linearly independent vectors. Then, reconstructing from
the logged timeprint would have a unique solution and it can be obtained quite
fast. For example, an one-hot encoding would be of this type, and the timeprint
would exactly correspond to the signal-changes themselves; i.e. zero solving time.

Temporal Properties Driven Timestamps Encoding 47

However, choosing m linearly independent vectors requires that the dimension
of F

b
2 is m, hence b = m. But this means that the number of bits we need to

log depends linearly on m, contradicting our goal to establish a space-efficient
logging procedure.

The basic idea behind the timestamps encoding, is to achieve a trade-off in
the choice of timestamps by requiring linear independence only up to a depth
d. That means each subset of timestamps T ⊆ TS ([1..m]) of size d is linearly
independent. As d grows, the number of solutions to the reconstruction problem
decreases, but the number of logged bits b required increases. Computing TS
with smallest b given m and d is still an open problem for future research. In
this paper we give various algorithms, in the case d = 4 and approximate TS
and b using a practical heuristic (see Sect. 4).

In the next subsection, we give a formulation of the timestamps encoding
(generation) problem before listing the algorithms.

3.1 Timestamps Generation Problem

The required timestamps encoding, as a target, is an ordered set of b-wide
bitvectors of m elements. We denote this set be TS. An element of this set
can be accessed by an index i, as TS(i), where TS(i) is the ith bitvector, and
it represents the code corresponding to the ith clock-cycle inside the trace-cycle.
Changes happening to the traced signal, over trace-cycles of length m, with
m ∈ N, which we simply call signal. A signal is a map S : [1..m] → {0, 1},
where S(i) = 1 when a change takes place in the i-th clock-cycle. The logged
timeprint TP , is the returned log entry (TP , k) from the aggregation function
TP , where TP =

∑
i:S(i)=1 TS (i) and k = |{i | S(i) = 1}|, representing the

number of changes in the signal. We enumerate all signals that represents all
possible changes can happen in m-long trace-cycle by σm; hence all Si ∈ σ.

Problem: Timestamps Generation 1 (TSG)
Input: trace-cycle length m, bit width b∈N, log[m] < b < m, property P .
Task: Find TS , such that: ∀ signals Si ∈ σm where Si |= P , ∀Sj(j �=i) |=

P,TP(Sj) �= TP(Si), where TP(Sk) =
∑

i:Sk(i)=1 TS (i).

Where a property P is a temporal property defined over S. Another variant
of the TSG problem is the one that is limited in the choices of the possible
timestamps to a predefined TS.

Problem: Timestamps Generation 2 (TSG)
Input: trace-cycle length m, bit width b ∈ N, log[m] < b < m, property P

and input TS in.
Task: Find TS ′ ⊆ TS , such that: ∀ signals Si ∈ σm where Si |= P ,

∀Sj(j �=i) |= P,TP(Sj) �= TP(Si), where TP(Sk) =
∑

i:Sk(i)=1 TS (i).

An example of the properties is linear independence of degree N ; where the
property P can be expressed as: that every signal Si has exactly N ones; or

48 R. Massoud et al.

|Si| = N has a unique timeprint TP . We denote linear independence of degree
N by LI-N.

4 Timestamp Generation Algorithms

In this section, we introduce different practical approaches, which we used to
tackle the timestamps encoding/generation problem.

In the next subsections, five different generation methods are explained using:

(1) an SMT solver: we describe the linear independence of degree 4 (LI-4) to
the SMT solver and ask for a set of m encoded timestamps of width b,

(2) random generation: starting from a seed, each random integer generated is
checked for LI-4 and the required encoding width is then trimmed,

(3) incremental generation: similar to random generation, but starting from 1,
and incrementing by one each time for a new choice that is checked then for
LI4; the result is the minimum (smallest) possible vectors (time-stamped
codes) satisfying a set of conditions,

(4) greedy algorithm: here an algorithm is presented for obtaining the set of
fixed width b encoding timestamps, satisfying LI-4, here the full length of
these are obtained irrespective of m, and

(5) a composed properties-Based Generation, that takes a set of timestamps as
input, and produces a subset of it that fulfills certain property.

For each of these, after describing the algorithm, we present also how
the properties can be used in within or at the to of it, for properties-aware
timestamps-encoding generation process.

4.1 SMT-Based Time-Stamps Generation

To describe the problem of TSG using an SMT solver, we used bit vector theory
and array theory to describe the array of encoded timestamps. LI-4, is encoded
as follows: each aggregated 2 entries corresponding to 2 different timestamps-
codes, would result in a different aggregation than that of any other 2 different
array entries.

As an example of how an SMT solver can be used to generate the time-
stamps, the details of the generation for N = 2 is illustrated in this section. The
exact same criteria can be applied to higher N . Z3 [6] was used to apply the
conditions:

For N � 2 (and using XOR gates to merge the time-stamps), the condition
(besides the time-stamps’ uniqueness) would be:

∀i, j, k, l,[TSi ⊕ TSj �= TSk ⊕ TSl], (1)

Temporal Properties Driven Timestamps Encoding 49

where (0 < i, j, k, l � M) ∧ i �= j ∧ k �= l

∧(i = k ⇒ j �= l)
∧(j = l ⇒ i �= k)
∧(i = l ⇒ j �= k)
∧(j = k ⇒ i �= l)

Similar conditions can be derived for higher N .
The resultant SMT instance is:

(exists ((ts var (Array (BitV ec3)(BitV ec6))))
(forall ((k (BitV ec3))
(l (BitV ec3))(m (BitV ec3))(n (BitV ec3)))
(let((A1(and (not(= k l)) (not(= n m))

(=> (= k m)(not(= l n)))
(=> (= l n)(not(= k m)))
(=> (= k n)(not(= l m)))
(=> (= l m)(not(= k n)))))

(A2(not(= (bvxor

(select ts var k)(select ts var l))
(bvxor

(select ts var m)(select ts var n))))))
(=> A1 A2))))

(2)

which reads as: first, we assume the time-stamps are contained in an array called
ts var, representing a variable array which the SMT solver tries to find a solution
for. In this example, we generate time-stamps of width 6 (i.e. array elements are
6 bits wide bitvectors). We generate 8 time-stamps for a trace-cycle of length 8.
Hence, this array has an index of length 3 to address it’s elements. The state-
ment A1 expresses uniqueness of the pair of indexes of each pair of time-stamps.
Namely, for every two different indexes of time-stamps to be XORed (k, l), k
does not equal l and to compare the result to the result of any other pair of
time-stamps of indexes (m,n), where also m �= n, if k = m, this implies that
l must be �= n to make (m,n) a different pair, and similarly goes all the other
implications to ensure the uniqueness of pairs of time-stamps. When this unique-
ness (A1) is satisfied, this implies A2, which is that the two results of XORing
those two pairs of time-stamps (indexed by (k, l) and (m,n)) are different (not
equal, in the SMT formula 2). This implication should hold for all k, l,m, n and
we assert that there is a time-stamps array ts var that fulfils this condition. A
solution that the SMT solver finds for this formula gives a list of 8 time-stamps
that are guaranteed to give different timeprints (here results of XOR’s), for any
2 different time instances.

An alternative encoding of the LI-4 condition, would be to encode all the
XOR results into an array of distinct elements.

50 R. Massoud et al.

Unfortunately, this method does not scale. It becomes very expensive to use
for more than 16 clock-cycles long (array size). While it takes about 1̃0 s for
trace length of 16 clock-cycles, it takes around 10 h for 32 clock-cycles. All those
measurements are taken on a machine with Intel CoreTM i7 CPU@ 2.67 GHz
with 8 GiB memory.

4.2 Random-Based Time-Stamps Generation

Random number generators can be used to generate the time-stamps faster.
Each newly generated time-stamp is checked to be fulfilling the condition in
Eq. 1. If this is satisfied, the results of XORing the new time-stamp with all
previously existing time-stamps is added into a List, to check the next randomly
generated time-stamp against, and this goes on. The generation is illustrated in
Algorithm 1.

Algorithm 1. Random Time-stamps Generation Algorithm
Data: initialize random − seed
Data: ListOfXORListisempty

1 TS0 = rand()
2 for i in 1 −→ M do
3 TSi = rand()
4 while IsThereCollision(TSi) do
5 TSi = rand()

/* where IsThereCollision(TSi) is shown below */

6 IsThereCollision(TSi) {
7 for j in 0 −→ i do
8 if IsRepeated(TSi ⊕ TSj) then

/* where IsRepeated checks whether TSi ⊕ TSj has been obtained
before in the XORList, and TempXORList */

9 BackTrack(RemoveTempXORListFromXORList) return True

10 else
11 AddToTempXORList(TSi ⊕ TSj)

12 ConfirmAddToTempXORList
13 return false
14 }

Notice that in line 9, backtracking is needed to the last ensured
ListOfXORed content, when a collision is detected; not to add a non-actually-
existing XOR results, from a time-stamp that has become rejected after the
collision detection.

This method is much faster than using an SMT solver and the minimal time-
stamps generation, mentioned in the next subsection. Time-stamps for trace-
cycle’s lengths of thousands of clock-cycles can be generated in seconds or few

Temporal Properties Driven Timestamps Encoding 51

minutes at most on a machine with Intel CoreTM i7 CPU@ 2.67 GHz with 8
GiB memory. However, this method does not properly detect if there are no
possible solutions to the given constraints; the designer should thus be sure that
the method should eventually terminate.

4.3 Incremental Time-Stamps Generation

This method is very similar to the random generation, but instead of randomly
generating the time-stamp, before checking them, the latest time-stamp candi-
date is constantly incremented (by one). Afterwards, the new time-stamp can-
didate is checked whether it fulfills the conditions or not (in which case the
time-stamp is incremented and checked again). This method takes longer time
than the random generation but remains faster than the SMT solver and can
create time-stamps for trace-cycles of a thousand clock-cycles in less than a day
on the same machine mentioned before.

Although this method seems to be providing the minimal size of time-stamps,
it is still possible to provide the same size with random generation because
we know from the number of possible permutations how many bits are needed
to present them. However, non standard size random generators have to be
manually developed. So this last method turned out to be the preferred solution
for custom bitvector sizes that are not available in the standard C data-types.

After the above-mentioned generation, the time-stamps are utilized to mark
each clock-cycle within the trace-cycle. By the time a given signal is toggled, the
corresponding time-stamp is XORed into the timeprint, and logged at the end of
the trace-cycle. At a host computer that this logged timeprint is transmitted to,
the exact instances of change, which triggered the corresponding time-stamps
into the XOR-aggregate described earlier, then need to be recovered.

4.4 Greedy Algorithm

This algorithm is similar to the incremental algorithm. It starts from scratch
and iterates over all possible timestamps in increasing order (i.e. treating them
as integer values). Then, it greedly adds a new timestamp to the set of selected
timestamps, if doing so does not violate the property under consideration (e.g.
LI-4). Due to some optimizations such as look-ahead elimination of timestamps
that are guaranteed to violate the property, this algorithm is much faster than
the incremental one. It also generates a maximum m timestamps that could be
generated of width b, satisfying the property.

4.5 Properties Based Generation

After obtaining a set of Timestamps by linear, incremental or greedy algorithm, a
filtration of the results by removing those who do not produce a unique timeprint
is possible. The resultant timestamps set would be resilient not only to this
property it was filtered based on but also might perform better when the signal
satisfies other related properties.

52 R. Massoud et al.

5 Assessment

To assess the efficiency of the algorithms presented, we have first to define a
criteria to evaluate the quality of an ordered set of timestamps. One parameter
that can be considered a measure, for example, is the bit width b of the time-
stamp. The smaller b is, the less logs are going to be incurred, and hence the
better a time-stamp encoding is. When a system designer wants to add timeprints
based tracing to their system, the first criteria to define is the length of a trace-
cycle m (or at least mmin ≤ m ≤ mmax), which represents the target timestamps
set size. Longer trace-cycles result in less logging effort –as one fixed width
timeprint is logged at the end of each trace-cycle–. However, in general, longer
trace-cycles means harder (bigger) reconstruction problem size and may require
bigger b to make the reconstruction process reasonable for the expected number
of changes that could happen within a trace-cycle. A typical range of acceptable
trace-cycle length is in the range of hundreds to thousands. If we can find better
trace reconstruction algorithms than the one we have now, [9], we can further
increase m.

As in the formulation of the algorithms that encode the timestamps in a
trace-cycle, the target is usually to find a maximum trace-cycle length for a
fixed b for efficient logging.

When using a set of timestamps, we can assess its performance based on a
number of measures. For example, the number of collisions they produce when
reconstructing both generic signals; and reconstructing signals related to the
properties similar to those they were generated to accommodate. The measures
we shall cover here are:

– The run time of the timestamps encoding generation algorithm. Although
the algorithm is usually run once, and the result is hard encoded in the
hardware. As the problem is very hard, is still important that the run time
is not prohibitive.

– How good the generated encoding is able to distinguish between different
signals. A perfect encoding (one-bit hot encoding) would be able to distinguish
between all S. But this would lead to b = m, which destroys the basic idea
of timeprints: having compressed logs. The quality of the generated encoding
is measured by the number of collisions in the reconstruction made using it.

– How long the encoded timestamps generated by an algorithm could be. Some
algorithms can generated a maximum encoding (maximum m) for a given b;
while others are limited by a given b and m.

– How a specific encoding affects the reconstruction time.

5.1 Algorithms Run-Time

In order to compare algorithms’ run times (in Table 1), we tried all the algorithms
with m = 1024 and b given as 32 when it is passed as input to the algorithm, and
when it is indicated as an output, the value is the one reached by reaching the
required 1024 timestamps. Since the comparison is not fully possible due to how

Temporal Properties Driven Timestamps Encoding 53

Table 1. Comparison between different Timestamps Encoding Algorithms, generating
1024 timestamps, or for an input of 1024 timestamps (in LI4-to-LI6)

Algorithm Alg.2 b mmax Run-Time new m

Inc-Index - output input ∼ 0 -

Random - input input ∼ 0 -

SMT-LI4 - input input (limiting) timeout -

Inc-LI4 - output input (limiting) 6 h 51 min 6.037 s -

Ran-LI4 - input input 59 min 24.473 s -

Greedy-LI4 - output output 17 min 53.622 s -

LI4-to-LI6 Inc-L14 input output 20 min 51.181 s 79

min=1024 Ran-L14 input output 19 h 33 min 53.949 s 214

Greedy-L14 input output 9 min 5.284 s 71

the different algorithms work, we can still give here a qualitative comparison of
the run-time, and whether they have the b,m parameters as input or output.

In Table 1, first rows gives six direct algorithms run-times. Inc-index in the
first row is just using the index i of a timestamp TS(i) as the coded timestamp.
These codes are not for any practical usage, but they are meant to act as a
reference to judge properties-usage over a generated set of timestamps versus
another. Random in the second row is a trivial generated codes, without any
checks. It is also used a reference to compare other methods, or properties-based
methods to. SMT-LI4 is the SMT based generation of a set of timestamps that
has linear independence of degree 4; which was described in Sect. 4.1. Inc-LI4
is the incremental generation algorithm described in Sect. 4.3. Random-LI4 is
the algorithm described in Sect. 4.2. Greedy-LI4 is the algorithm described in
Sect. 4.4. The part labeled by LI4-to-LI6 shows the run time for generating
a set of linear independent timestamps of degree 6 from a set that is already
generated by any of the three LI4 methods (Inc-LI4, Random-LI4, and Greedy-
LI4). For these sets we have a new length m of the newly generated timestamps
set. The generated sets are of smaller size because the timestamps that do not
fulfill the LI6 condition are removed. Notice that the surviving timestamps from
the Random-LI4 are much more than those surviving from other algorithms; but
they also took much longer time to be generated.

5.2 Encoding with Properties

The tables below shows the number of reduced timestamps in the case of applying
some properties; for example the property that n consecutive changes happened;
we denote them by P3, P4, ... Pn. The reduced timestamps (out of 1000) applying
Pn are shown in table (a). Table (b)2 shows the number of remaining timestamps

2 Inc-Ind-k: means the incremental code Inc-Index with increments of weight k.

54 R. Massoud et al.

Table 2. Reduction in timestamps (a) and the number of remaining timestamps in
reference to the original input set (b).

after applying the properties in each column. Notice that odd number of changes
in the properties is very useful in both types of properties, as it does not cause
reduction in the number of timestamps even for incremental codes.

In Table 2a, it could be seen how the greedy algorithm results still contains
collisions when it comes to consecutive occurrences of changes.

6 Case-Study

We illustrate the whole process of timeprints based tracing and properties check-
ing to the sensors and braking data of an autonomous driving donkey-car; the
one in Fig. 4. The car was equipped with three ultrasonic sensors and four servo
motors for the brakes, one at each wheel3.

Fig. 4. Donkey car Fig. 5. Sensor data in a trace-cycle

3 This set-up was already existing in our research-group within the bachelor’s-project
DRIVE, and the data was obtained upon request from the students.

Temporal Properties Driven Timestamps Encoding 55

The car has been equipped with three ultrasonic sensors, each is configured
to fire every 300 ms, and they were set up to fire in row, separated by 100 ms
each. As can be seen in the Fig. 4, the 3 sensors are considered redundant; they
will either all had an echo for the fired signal, or not. The difference in their
orientation is minimum, and is adjustable in our set-up. The accurate time at
which the echo of the fired signal is received, reflects the time taken for the
signal to be reflected, and hence if it is smaller than certain threshold it would
mean that the car has to start using the brakes to stop enough before it hits the
obstacle. The accurate relative difference between the 3 echo signals received can
also say something about at which direction exactly is the obstacle; especially if
their orientation was different from each other.

To trace accurately the signal’s echo time, we trace the signal at the pin
“echo” of the sensor, which is raised high (i.e. to 1) by the sensor when it sends
the sonic burst, and then goes low when it receives its echo. An echo would be
received anyway, but if it was received before 38 ms, it means there is an obstacle
closer than the range of about 5–6 m, and the distance can be calculated from the
delay. If it was received at 38 ms, it means that the obstacle is relatively far away
(more than 6 m away). In our set-up because the car is moving slowly and the
room is already small, the car considers braking only when the echo is received
before 20 ms. Each sensor receives a fire command from software each 300 ms, and
replies back raising a pin high and then low when it receives the echo or when
the 38 ms expires. As a designer’s trace-related choice, we choose to combine
all the signals together (3 firing signals + 3 echos received), as already one pin
indicates the firing and the echo reception; and tracing each pin separately would
mean logging three timeprints instead of one. We also know that the sensors send
their signals in an interleaving manner; which makes it mostly possible to know
which echo belongs to which sensor. Possibility remains, that sometimes due to
different shifts in the firing times overlaps may occur. But even these shifts can
be described as properties and used to point these out in many cases.

To illustrate using properties, we first use the clear example of the basic
property of: 3 changes would occur separated by 100 ms, each followed by another
change within 38 ms; see Fig. 5. Accumulated delays (shifts due to non accurate
firings) also can be modeled, but will not be discussed here to keep the illustration
simple. This property can be used to encode shorter timestamps that performs
better than those who do not consider such property. But first before we delve
into using properties, we show how to decide about the timestamps-set size
(trace-cycle length and timestamps bit-width) in the first place. We clarify this
more in the following.

Trace-Cycle Length. First, we have to decide about a trace-cycle size. Because
the property is going to be described in terms of changes happening (or not hap-
pening) at consecutive clock-cycles within a trace-cycle. An echo transmitted
and received from one sensor would cause 2 changes at the clock-cycles where it
was raised high, and then at where it was made low. Here we assume it is enough
to know when the signal is received within 1 ms resolution. The decision about

56 R. Massoud et al.

tracing-precision should depend mainly on the system needs. Here for example:
it depend on the allowed time to stop and the distance, the car is allowed to drive
before it completely stops, starting from the moment and position it detects an
obstacle. One msec accuracy corresponds to 17 cm error range in the distance
of the obstacle at the moment it was detected. So, a clock-cycle of 1 ms is suit-
able. Choice of trace-cycle length of 100–1000 clock-cycles (i.e. 0.1 to 1 s) is in
the desired range from hundreds to thousand; for small log size and reasonable
timeprint-reconstruction time. What affects the exact choice of the trace-cycle
length is the number of changes encountered inside one cycle; because this affects
hugely both the ambiguity and reconstruction time; so we discuss it next.

Number of Changes in a Trace-Cycle. If we choose a 1000 clock-cycles
trace-cycle, we shall have ≤20 changes corresponding to firing and receiving the
echo signals of the three sensors over 1 s. If we choose 0.1 s trace-cycle’s length
(100 clock-cycles), we’ll have about 2 changes per trace-cycle, which is very few
(makes it for example more efficient to just use the index and not to use any
encoding at all). For a 200 clock-cycles trace-cycle, the index would need at least
8 bits, and for 4 changes that are expected within such trace-cycle a log would
be 32 bits or even more if shifts lead to more changes. So at 200 clock-cycles,
using encoding starts to make sense. In the following we will use both lengths:
200 and 1000 to illustrate the choice of the upcoming design options.

Using Properties. For example, here because we are getting one pair change
separated by 38 clock-cycles every ∼ 100 ms, we can make the encoding more
robust (produces unique results) for occurrences separated by less than 38 clock-
cycles; like those in Table 2(b): D38b2, D37b2, D36b2... etc. Notice that any delay
between 2 changes is already covered by LI-4, but these properties can be applied
to other simple encodings like Index-k and Random-16/24 to make them produce
unique results in these cases. One can choose to encode D100b10, D101b10,
D102b10 and D103b10, for the 1000 trace-cycle. These properties encode the
consecutive 10 firings within such trace cycle, within 100, 101, 102 and 103 ms
distance (of no change, i.e. zeros) between them; as these delays have been seen
frequently in heuristics. Encoding a property over a trace-cycle means modeling
all its possible occurrences within the trace-cycle.

Notice that applying different properties has to be done recursively, until the
set of timestamps saturates, and with keeping in memory removed timestamps-
codes that might be returned back if the base-timestamp –based on which they
were removed– was itself removed. Saturation means that no removals to be
done in the set because of violations of the properties. Of course to return a
timestamp from such state it has to be checked recursively, to make sure it
does not brake any of the previously checked properties. The list of remaining
timestamps is checked at every stage, and is considered fulfilling the properties
when all the properties-checks cannot remove any more timestamps from the list.
An algorithm has been implemented to apply the above properties recursively.
But it shall be published later after being checked for wider range of properties.

Temporal Properties Driven Timestamps Encoding 57

Generating Timestamps. For trace-cycles of lengths from 200 maximum
timestamps bit-width should be 32, to make more efficient than logging the
indexes. Less than this, we can try Inc-Index-k with applying the above men-
tioned properties. Inc-Index-1 would lead to the smallest bit-width if applied
correctly. A faster way to reach the set of timestamps fulfilling these properties
is to use a list of randomly generated timestamps and check them recursively.
Random of width 8 would be too small even for 200 clock-cycles. 16 and 24 would
be reasonable to try. An LI4 fulfilling timestamps set (satisfies linear indepen-
dence of degree 4, either generated with random, incremental or greedy) would
be already fulfilling all the delay between 2 properties (Dxb2). So to these LI4
fulfilling sets we can apply to them only the Dxb10 properties to enhance their
performance (would then produce unique results).

7 Conclusion

We presented an overview of how some simple temporal properties can be used in
enhancing the generation of timestamps encoding used in the timeprints-based
monitoring. Using temporal properties in the case study shows the plausibility
and potential of obtaining timestamps that produces more unique results. This
is a new way to look at the timestamps encoding, i.e. before we only focused on
linear independence, which was not easy to extend beyond the 4th degree. Now
by applying properties to existing timestamps-sets, we can obtain timestamps
that are more capable pf producing unique results in the cases that are known to
take place. Here, we simply have made more scattering of the similar solutions
that could co-inside, and avoided having them mapped to the same timeprint.

References

1. ARM CoreSight and ETM (2018). http://www.arm.com
2. (2018). https://www.ghs.com/products/supertraceprobe.html
3. (2018). www2.lauterbach.com/pdf/main.pdf
4. Bartocci, E., et al.: Specification-based monitoring of cyber-physical systems: a

survey on theory, tools and applications. In: Bartocci, E., Falcone, Y. (eds.) Lec-
tures on Runtime Verification. LNCS, vol. 10457, pp. 135–175. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-75632-5 5

5. Chini, P., Massoud, R., Meyer, R., Saivasan, P.: Fast witness counting. CoRR
abs/1807.05777 (2018). http://arxiv.org/abs/1807.05777

6. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

7. Giantamidis, G., Tripakis, S.: Learning moore machines from input-output traces.
In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS,
vol. 9995, pp. 291–309. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48989-6 18

8. Maler, O., Nickovic, D., Pnueli, A.: Checking temporal properties of discrete, timed
and continuous behaviors. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.)
Pillars of Computer Science. LNCS, vol. 4800, pp. 475–505. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78127-1 26

http://www.arm.com
https://www.ghs.com/products/supertraceprobe.html
http://www.lauterbach.com/pdf/main.pdf
https://doi.org/10.1007/978-3-319-75632-5_5
http://arxiv.org/abs/1807.05777
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-48989-6_18
https://doi.org/10.1007/978-3-319-48989-6_18
https://doi.org/10.1007/978-3-540-78127-1_26

58 R. Massoud et al.

9. Massoud, R., Le, H.M., Chini, P., Saivasan, P., Meyer, R., Drechsler, R.: Tempo-
ral tracing of on-chip signals using timeprints. In: Design Automation Conference
DAC-19 (2019). https://doi.org/10.1145/3316781.3317920

10. Mehrabian, M., et al.: Timestamp temporal logic (TTL) for testing the timing of
cyber-physical systems. ACM Trans. Embed. Comput. Syst. 16(5s), 169:1–169:20
(2017). https://doi.org/10.1145/3126510

11. Schumann, J., Moosbrugger, P., Rozier, K.Y.: R2U2: monitoring and diagnosis of
security threats for unmanned aerial systems. In: Bartocci, E., Majumdar, R. (eds.)
RV 2015. LNCS, vol. 9333, pp. 233–249. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-23820-3 15

12. Park, S.B., Hong, T., Mitra, S.: Post-silicon bug localization in processors using
instruction footprint recording and analysis (ifra). In: TCADIC (2009)

13. Vazquez-Chanlatte, M., Deshmukh, J.V., Jin, X., Seshia, S.A.: Logical clustering
and learning for time-series data. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10426, pp. 305–325. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63387-9 15

https://doi.org/10.1145/3316781.3317920
https://doi.org/10.1145/3126510
https://doi.org/10.1007/978-3-319-23820-3_15
https://doi.org/10.1007/978-3-319-23820-3_15
https://doi.org/10.1007/978-3-319-63387-9_15
https://doi.org/10.1007/978-3-319-63387-9_15

Mixed-Time Signal Temporal Logic

Thomas Ferrère1, Oded Maler2, and Dejan Ničković3(B)

1 IST Austria, Klosterneuburg, Austria
2 VERIMAG, University of Grenoble Alpes, Grenoble, France

3 AIT Austrian Institute of Technology, Vienna, Austria
dejan.nickovic@ait.ac.at

Abstract. We present Mixed-time Signal Temporal Logic (STL-mx),
a specification formalism which extends STL by capturing the discrete/
continuous time duality found in many cyber-physical systems (CPS), as
well as mixed-signal electronic designs. In STL-mx, properties of com-
ponents with continuous dynamics are expressed in STL, while speci-
fications of components with discrete dynamics are written in LTL. To
combine the two layers, we evaluate formulas on two traces, discrete- and
continuous-time, and introduce two interface operators that map signals,
properties and their satisfaction signals across the two time domains. We
show that STL-mx has the expressive power of STL supplemented with
an implicit T -periodic clock signal. We develop and implement an algo-
rithm for monitoring STL-mx formulas and illustrate the approach using
a mixed-signal example.

1 Introduction

Cyber-physical systems (CPS) typically combine together components with con-
tinuous dynamics (analog components, sensors, actuators) and components with
discrete dynamics (digital controllers, software, firmware). Models of (most) com-
ponents with discrete dynamics operate in discrete (clocked) time and manipu-
late values in a finite domain. In contrast, components with continuous dynam-
ics are modeled as operating in continuous time over real-valued variables. The
interaction between these two classes of heterogeneous components is typically
done via converters, which allow passing from one time and value domain to
another. For instance, analog and digital components in an analog mixed-signal
(AMS) design can be integrated by inserting analog-to-digital (A/D) and digital-
to-analog (D/A) converters providing the necessary interface, as illustrated in
Fig. 1.1 The time and value domain differences between analog and digital com-
ponents pose difficult design and verification challenges.

While correctness evidence is imposed for safety-critical CPS applications
(see for example the automotive standard ISO 26262 [14]), CPS verification
remains an important bottleneck in the development process, resulting in up to

1 This is a simplification of the AMS setting: not all interaction between analog and
digital components goes through A/D and D/A conversions.

c© Springer Nature Switzerland AG 2019
É. André and M. Stoelinga (Eds.): FORMATS 2019, LNCS 11750, pp. 59–75, 2019.
https://doi.org/10.1007/978-3-030-29662-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29662-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-29662-9_4

60 T. Ferrère et al.

70% of the project effort. Verification of CPS in industry is almost exclusively
based on simulation, where each scenario can take several hours of simulation
time. Simulation traces are typically observed by verification engineers for cor-
rectness, resulting in a manual, ad-hoc and error-prone process.

Analog
Component

Digital
component

A/D

D/A

Real values
Discrete time
Discrete values

Continuous time

Fig. 1. A typical scenario in AMS design.

Specification-based monitoring is a pragmatic, yet rigorous approach for sys-
tematic simulation-based verification. Signal Temporal Logic (STL) [18,19] is a
declarative specification language for describing properties of CPS behaviors. As
an extension of the real-time temporal logics MTL [17] and MITL (Metric Inter-
val Temporal Logic [2]), STL allows us to reason about real-time properties of
real-valued signals. STL and its extensions have been used to specify and reason
about properties of systems coming from Industry 4.0, semiconductor, automo-
tive, avionics, medical devices and system and synthetic biology domains – see
the survey [4] for a detailed list of references.

While STL effectively provides support for combining Boolean and real-
valued signal properties, the time domain remains continuous for all signals. Such
specifications are not fully aligned with the actual practice in development and
integration of CPS where designers of discrete dynamics components often reason
about time in terms of clock ticks, and hence the natural logic to express digi-
tal properties is a discrete-time temporal logic. It would be extremely counter-
productive if verification engineers, due to few continuous/discrete dynamics
interface properties, would have to transform all digital properties to dense time.
We propose a simple and transparent solution in which both time models can
co-exist. We illustrate the class of properties that motivate us via the following
example.

Example 1. Consider the following stabilization property for a CPS system with
sampling period T = 200. Whenever a discrete signal cmd is set up by the
digital controller from false to true, the absolute value of a continuous signal x
in an analog component must become lower than 1 within 600 time units and
remain continuously within that range for at least 300 time units. This informal
specification is illustrated in Fig. 2.

Mixed-Time Signal Temporal Logic 61

4 5

1000

1 2 3

0 200 400 600 800

0

x

cmd

1

−1

Fig. 2. Illustration of a stabilization specification.

We propose Mixed-time Signal Temporal Logic (STL-mx) as a specification
language that extends STL to express properties both in terms of discrete log-
ical time (clock ticks) and dense real time. In essence, STL-mx consists of two
layers: (1) the standard discrete-time temporal logic LTL [22] for specification of
digital component properties; and (2) STL for specification of analog component
behaviors. To combine the two layers, we split the trace into a continuous-time
and discrete-time part, and introduce two time-mapping operators @cd and @dc

that formalize the conversions between continuous-time and discrete-time for-
mulas and signals. We then study the expressiveness of this formalism and show
that STL-mx can be effectively embedded into STL when provided with an
explicit sampling signal. We present an implementation of the monitoring algo-
rithm for STL-mx and demonstrate the utility of mixed-time specifications on
a case study from the AMS domain.

Related Work. The main inspiration for this paper comes from the work that
introduces digital clocks into LTL [11]. That work does not consider continuous
interpretation of time, in contrast to this paper.

In the past years, there has been a rich body of work on various extensions of
MTL and STL. There, continuous-time specification languages were extended
with various quantitative semantics [1,9,12,13,15]. In particular, STL was then
extended with support for time-frequency properties [10] and freeze quantifi-
cation [8]. A first-order logic of signals [3] has been recently developed as a
generalization of STL and STL with freeze quantification. None of these exten-
sions considers both discrete and continuous time interpretation of the logic at
the same time.

The problem of different time domains has been also studied in other
domains. Ptolemy [5] provides a prototyping and simulation environment for
modelling heterogeneous systems that combine different models of computa-
tions. We also mention the GEMOC initiative [6] that is promoting coordinated
use of modelling languages with possibly different models of computation, and
hence time domains.

62 T. Ferrère et al.

2 Mixed-Time Signal Temporal Logic

In this section we introduce the syntax of STL-mx and its semantics over both
discrete-time and continuous-time signals. Since we are interested in monitoring
we focus on signals of bounded duration. Without loss of generality we assume
all digital signals in the circuit to range over the Booleans and analog signals to
range over the reals.

Let D be a value domain, typically B or R. A discrete-time signal w is a
function w : {0, 1, . . . , s} → D for s > 0. A continuous-time signal u is a
function u : [0, r) → D for r > 0. We denote by |w| and |u| the length of signals
w and u, respectively. In the rest of this paper, we use r = |u| and s = |w|.
Relative to u and v, a sampling τ : {0, 1, . . . , s} is a monotonically increasing
sequence of times 0 = τ [0] < τ [1] < · · · < τ [r] < s ∈ R≥0. A sampling indicates
the times at which the discrete values are read. We say that the sampling τ is
periodic (with period T ∈ R>0) when τ [i] = iT for all i ∈ {0, 1, . . . , s}.

A sequence of disjoint non-empty intervals I0 · I1 · · · Ik is a time parti-
tion compatible with a finitely-varying continuous-time Boolean signal x if (1)⋃

0≤j≤k Ij = [0, |x|) and (2) Each Ij is of the form (tj , tj+1), [tj , tj+1), (tj , tj+1]
or [tj , tj+1] such that tj ≤ tj+1, ∀t, t′ ∈ Ij , x(t) = x(t′). The coarsest time par-
tition associated with x satisfies the additional property: (3) Whenever t ∈ Ij

and t′ ∈ Ij+1 then x(t) �= x(t′).
Let P = {p1, . . . , pm} be a set of Boolean variables and let X = {x1, . . . , xn}

be a set of real valued variables. A constraint over X is a predicate of the form
x ≺ c, where x ∈ X, ≺∈ {<,≤,=,≥, >} and c ∈ Q. A mixed-time signal temporal
logic (STL-mx) formula ψ is either a continuous-time formula α or a discrete-
time formula ϕ defined over X and P according to the following grammar2

where , U and S are temporal next, previous, until and since operators,
p ∈ P , x ∈ X, c ∈ Q and I is an interval of the form [a, b], [a, b), (a, b], (a, b),
[a,∞) or (a,∞) where 0 ≤ a < b are rational numbers.

We can define other usual operators (eventually), (always),
(once), and (historically) as syntactic abbreviations with ,

, and likewise for past operators – discrete time syntax can
be enriched with corresponding constructs. Note that timing interval subscripts
may be omitted in when equal to [0,+∞).

Example 2. We formalize the stabilization property from Example 1 by the fol-
lowing STL-mx formula:

2 We use the same symbols for Boolean and temporal connectives in both continuous-
time and discrete-time formulas. The distinction between the two layers is defined by
the context. Note that each valid formula is classified unambiguously as discrete-time
or continuous-time.

Mixed-Time Signal Temporal Logic 63

Let w be a discrete-time m-dimensional Boolean signal and u be a continuous-
time real-valued n-dimensional signal, which we assume such that uτ [i] ∈ [0, r)
for all i ∈ {0, 1, . . . , s}. We denote by πp(w) and πx(u) the respective projections
of w and u on variables p and x. Conversely, for w and w′ over the same time
domain we denote by w‖w′ the pairing of signals w and w′, such that πv(w‖w′) =
πv(w) when variable v is a dimension of w and πv(w‖w′) = πv(w′) when v is a
dimension of w′. Finally, we use ⊕ for the Minkowski sum of intervals, that is,
[a1, b1] ⊕ [a2, b2] = [a1 + a2, b1 + b2].

In what follows, we assume a sampling τ given independently and globally
defined. The semantics of a discrete-time STL-mx formula ϕ with respect to
signals w and u is described via the satisfaction relation (w, u, i) |=d ϕ, indicating
that signals w and u satisfy ϕ at discrete time index i. Similarly, the semantics
of a continuous-time STL-mx formula α with respect to signals w and u is
described via the satisfaction relation (w, u, t) |=c α, indicating that signals w
and u satisfy α at time t. These relations are defined recursively below.

We use (w, u) |= ψ as a shorthand for (w, u, 0) |=d ψ or (w, u, 0) |=c ψ according
to the type of ψ. Based on these definitions and given a pair (w, v) we associate
with each discrete-time formula ϕ and a continuous-time formula α their respec-
tive Boolean satisfaction signals wϕ and uα such that for all i ∈ {0, 1, . . . , s} and
t ∈ [0, r), wϕ[i] = 1 iff (w, u, i) |=d ϕ and uα[t] = 1 iff (w, u, t) |=c α.

As we see, temporal operators inherit their semantics from LTL and STL.
The semantics of new interface operators @cd and @dc are illustrated in Fig. 3.

We remark that the choice of whether the top level STL-mx formula is
continuous-time or discrete-time is typically application-dependent. Expressing
a property of a discrete-time component (e.g. a controller) that drives another

64 T. Ferrère et al.

0 1 2 3 4 50 100 200

0 100 2000 1 2 3 4 5

y p

yp

(a) (b)

Fig. 3. Semantics of (a) p = @cd(y) and (b) y = @dc(p) for T = 50.

continuous-time component (e.g. a plant) usually results in a discrete-time top-
level formula, and vice versa.

We now point out some properties of this logic. We say that two discrete-time
formulas ϕ1 and ϕ2 are equivalent, denoted by ϕ1 ∼ ϕ2 if for all signals u, w
and time indexes i we have (w, u, i) |=d ϕ1 ↔ (w, u, i) |=d ϕ2. The equivalence
between continuous-time formulas is defined similarly. It should be obvious that
by converting a discrete-time formula into a continuous-time one, and in turn
converting it back to a discrete-time formula we do not alter the meaning of the
original formula. We illustrate this observation with the continuous-time signal
(i.e. propositional formula) y = @dc(p) from Fig. 3(b) obtained by converting
the discrete-time signal p – it is clear that translating y back to a discrete-time
signal yields p.

Proposition 1. Any discrete-time formula ϕ satisfies @cd(@dc(ϕ)) ∼ ϕ.

This stems directly from the fact that any time index i ∈ {0, 1, . . . , s} verifies
argmaxj∈{0,1,...,n}τ [j] ≤ τ [i] = i. Conversely, for some time t ∈ R we generally do
not have τargmaxj∈{0,1,...,n}τ [j]≤t = t hence nothing can be said of @dc(@cd(α)) as
compared with α, perhaps except for being a piecewise-constant approximation
of its satisfaction signals.

Notwithstanding, time mapping operators commute with propositional con-
nectives. For instance, first negating the propositional formula y from Fig. 3(a)
and than coverting it to a discrete time formula is equivalent to first converting
y to a discrete time formula and then doing the negation.

Proposition 2. The following equivalences hold for any discrete-time formulas
ϕ,ϕ1, ϕ2 and continuous-time formulas α, α1, α2:

@dc(¬ϕ) ∼ ¬@dc(ϕ) @dc(ϕ1 ∨ ϕ2) ∼ @dc(ϕ1) ∨ @dc(ϕ2)
@cd(¬α) ∼ ¬@cd(α) @cd(α1 ∨ α2) ∼ @cd(α1) ∨ @cd(α2)

Checking these facts is straightforward, let us for instance prove the first equiv-
alence. Taking w, u some discrete and continuous signals and a time instant t,
we have (w, u, t) |=c @dc(¬ϕ) ↔ (w, u, argmaxj∈{0,1,...,n}τ [j] ≤ t) |=d ¬ϕ ↔
(w, u, argmaxj∈{0,1,...,n}τ [j] ≤ t) �|=d ϕ ↔ (w, u, t) �|=c @dc(ϕ) ↔ (w, u, t) |=c

¬@dc(ϕ).
As expected, temporal operators do not enjoy such properties. The following

section may provide more insight in this respect.

Mixed-Time Signal Temporal Logic 65

3 Expressivity

STL-mx has similar expressive power as STL when supplemented by a “digital
clock”, as we show in the following.

Let w be a discrete signal. We say that a continuous signal wτ is the right-
continuation of w when wτ [t] = w[argmaxj∈{0,1,...,n}τ [j] ≤ t] for all t ∈ [0, r).
Note that on discrete Boolean signals, the interpretation of @dc is exactly right-
continuation with period T . Conversely, the interpretation of @cd is the sampling
of continuous signals at absolute times τ [i], i ∈ {0, 1, . . . , s}. For this purpose, let
us introduce a special continuous Boolean signal clk with the following definition:

clk : t �→
{

1 when t = τ [i] for some i ∈ {0, 1, . . . , s}
0 otherwise

Following definitions of Sect. 2, let us define STL to be continuous-time
STL-mx formulas without discrete-time sub-formulas. For a continuous signal u,
a time t, and an STL formula α the standard STL semantics reads (∅, u, t) |=c α.

We now inductively define a syntactical mapping σ from STL-mx to STL
formulas:

This mapping is such that an STL-mx formula ψ is satisfied by some signal
if and only if its STL translation is satisfied by the right-continuation of the
discrete signal, paired with the original continuous signal and the clock. Note
that in STL p is associated with a continuous-time satisfaction signal.

Example 3. The stabilization property (2) is mapped into the following STL

formula.

Theorem 1. Let w be a discrete-time signal and let u be a continuous-time
signal. Taking wτ as the right-continuation of w, we have:

1. for any discrete-time STL-mx formula ϕ and i ∈ N

(w, u, i) |=d ϕ iff (∅, wτ‖u‖clk, τ [i]) |=c σ(ϕ)

66 T. Ferrère et al.

2. for any continuous-time STL-mx formula α and t ∈ R≥0

(w, u, t) |=c α iff (∅, wτ‖u‖clk, t) |=c σ(α)

Proof. (1) and (2) are shown conjointly by induction on the formula structure.
For propositions in P we have πp(wτ)[τ [i]] = πp(w)[i] from the definition of wτ .
Boolean connectives naturally commute with the right-continuation operation
as seen in Proposition 2. Now looking at the operator, we can check that
for a discrete-time formula ϕ and a discrete signal w, the right-continuation of

requires that wϕ holds at the previous discrete time value. Operator
is symmetrical. The discrete until does not pose any problem. For the discrete
since, note that its continuous counterpart S (0,∞) has left-continuous semantics.
Notably, rather than looking for a witness of ϕ2 at some time t′ in the past, we
look for a time t′ such that ϕ2 holds immediately before; this is done by the
formula σ(ϕ2)S (0,+∞)true. Concerning operator @dc, the translation states the
continuous formula α was true on the previous clock tick. For pure continuous-
time operators, semantics are unchanged so we only apply recursively the trans-
lation to treat possible discrete sub-formulas. Finally, the @cd operator performs
a right-continuation operation, hence we only need to translates discrete-time
formulas it applies to.

Corollary 1. For a periodic sampling τ [i] = iT , the satisfaction of an STL-mx

formula by a signal reduces (in polynomial time) to the satisfaction of an STL

formula.

Proof. A T -periodic clock is definable in STL by the formula

Assuming such a clock signal, we may impose on any Boolean signal p to be a
T -period right-continuation signal using the formula

The two first conjuncts ensure that left-discontinuities can only occur on clock
ticks, while the last two conjuncts enforce right-continuity. Now given some STL-

mx formula ψ, we construct the STL formula

ψ′ := σ(ψ) ∧ δT ∧
∧

p∈P

γp

It follows from Theorem 1 that ψ is satisfied if and only if ψ′ is satisfied. Clearly
the size of ψ′ is linear in the size of ψ.

4 Monitoring STL-mx

In this section, we present the monitoring procedure for STL-mx. Like previous
work on STL monitoring [21], our procedure is closely related to the idea of

Mixed-Time Signal Temporal Logic 67

temporal testers advocated in [16,24] for discrete time and dating, in fact, back
to [23]. These are acausal transducers that realize the semantics of the temporal
logic operators as follows. For an operator OP interpreted over time domain T,
the temporal tester TOP takes as input a Boolean T-signal y and outputs another
Boolean signal y′ such that if y is the satisfaction signal of some formula ϕ then
y′ is the satisfaction signal of OPϕ. For example the tester for next in discrete
time realizes a forward shift, that is, y′[i] = y[i + 1]. A temporal tester for a
compound temporal logic formula ϕ is obtained by composing temporal testers
for the basic operators, following the parse tree of the formula.

Testers have been proposed for several temporal logics, in particular for LTL

[24] and MITL [20]. The monitoring procedure for STL described in [19] fol-
lows closely the temporal testers paradigm although the transduction function
is computed directly on signals, without explicit construction of automata as in
[20]. The compositional structure of temporal testers allows us to fully separate
the monitoring of the LTL and STL components of an STL-mx formula and
reuse existing results. We focus in this paper on the construction of temporal
testers for the two additional operators @cd and @dc that interface discrete and
continuous time. We refer the reader to [19,20,24] for details regarding the other
operators. A high-level overview of the procedure as applied to the stabilization
formula (2) is provided in Fig. 4.

T = 200

STL monitor

cmd

x

LTL monitor

STL-mx monitor

Time mapping operator

∧ →

@cd

< 1

¬

[0,300] ♦[0,600]| · |

Fig. 4. Monitor based on temporal testers for formula (2).

The temporal tester T@cd , realizing the semantics of the @cd operator, takes as
input a continuous-time Boolean signal u, and outputs a discrete-time Boolean
signal w obtained by sampling u at multiples of T . The computation, based on
a time partition I0 · I1 · · · In compatible with u, is illustrated in Algorithm 1.

68 T. Ferrère et al.

Algorithm 1. Temporal tester T@cd .
Require: Continuous Boolean signal u, a sampling period T
Ensure: Discrete Boolean signal w = @cd(u)
1: k ← 0
2: for j = 0 to n do
3: while τ [k] ∈ Ij do
4: w[k] ← u(Ij)
5: k ← k + 1
6: end while
7: end for
8: return w

Proposition 3. Given a satisfaction signal y of a continuous-time formula α,
a time index i, we have that T@cd(y)[i] = 1 if and only if the satisfaction signal
u@cd(α) [i] = 1.

The temporal tester T@dc , realizing the semantics of the @dc operator, takes as
input a discrete Boolean signal w and outputs a continuous-time Boolean signal
u which “extends” the value of w at every time index i by holding it throughout
the interval [τ [i], τ [i + 1]). The procedure for computing T@dc is illustrated in
Algorithm 2. Note that the time partition created by the procedure is not the
coarsest one compatible with u and it can be minimized later for efficiency.

Algorithm 2. Temporal tester T@dc .
Require: Discrete Boolean signal w, sampling period T
Ensure: Continuous Boolean signal u, the right continuation of w
1: k ← 0
2: for j = 0 to |w| do
3: Ik ← [τ [j], τ [j + 1])
4: u[Ik] ← w[j]
5: end for
6: return u

Proposition 4. Given a discrete-time Boolean signal p, a time t and a sam-
pling period T , we have that T@dc(p)[t] = 1 if and only if the satisfaction signal
w@dc(p) [t] = 1.

For every other operator OP in the syntax, we already dispose of a transducer
TOP with the corresponding lemma. We can now state the main result that our
monitoring procedure computes the appropriate satisfaction signals.

Mixed-Time Signal Temporal Logic 69

Theorem 2. Let w and u be discrete-time and continuous time-signals and let
T be a sampling period. Then

1. For a discrete-time STL-mx formula ϕ, Tϕ(w, u) = wϕ;
2. For a continuous-time STL-mx formula α, Tα(w, u) = uα.

We implemented the monitoring procedure for STL-mx formulas, follow-
ing the structure shown in Fig. 4 and applying STL-mx operations directly to
discrete-time and continuous-time signals. The implementation consists of three
layers: an LTL monitor, an STL monitor and the time mapping operations.
Keeping the separation between the three layers allows us to monitor not only
STL-mx specifications, but also its LTL and STL subsets for purely digital and
analog applications, respectively. The implementation was written in C++ for
GNU/Debian Linux x86 machines.

5 Case Study

We applied the monitoring implementation for STL-mx to verify basic proper-
ties of a simplified model of a Δ-Σ modulator, a basic component in analog to
digital conversion. The circuit has an analog input, and a clocked digital output
for typical integration in an ADC circuit. It is composed of the following build-
ing blocks: subtractor, integrator, threshold, and pulse generator. The overall
architecture appears at Fig. 5.

+ Integrator Threshold
uΣ

Pulse

uin uΔ pout

−

upls

pclk

Fig. 5. Block diagram for the Δ-Σ modulator

The input voltage is first summed with the negated output of the control
loop. The resulting voltage is integrated over time; when a value superior to a
constant v0 is reached, a threshold crossing is detected and we see a rising edge in
the output. This signal is used to generate a pulse which is subtracted from the
input, closing the loop. The effect is that during this pulse the integral sharply
goes back below the threshold, and the cycle goes on. In addition, a clock is
introduced so as to facilitate synchronization of the digital output. It is placed
at the threshold detection level; rather than precisely detecting a crossing we

70 T. Ferrère et al.

simply test for crossings on clock edges. Here is a short mathematical description
of the idealized components realizing this behavior:

uΔ[t] = uin[t] − upls[t] (substractor)

uΣ [t] = A ·
∫ t

0

uΔ[t′] dt′ (integrator)

pout[i] =
{

1 if uΣ [i T] ≥ v0
0 otherwise (threshold)

upls[t] =

⎧
⎨

⎩

v1 if pout[� t
T � − 1] = 0 and pout[� t

T �] = 1
and t − � t

T � · T ≤ Tpls

v0 otherwise
(pulse)

where T = 3.2µs is the period. We can see that in our model, the output is
clocked with a frequency of 312 500 Hz. The integrator gain is set to A = 105, the
voltage threshold is v0 = 0.0 V. The pulse generator outputs piecewise constant
signals, with high voltage of v1 = 3.3 V and hold time of Tpls = 2.5µs. We have
implemented the circuit as a mixed-signal model using Mentor Graphics’ Questa
ADMS [7] and simulated it against a variety of input signals. The simulation
traces thus generated have been monitored with respect to STL-mx properties
by our implementation of the procedure described in this paper.

Fig. 6. Simulation trace (w1, u1) extracted with uin : t �→ 0.6 cos(1000 · 2π · t) + 0.6.

We start with the following safety property:

Property 1. When we observe a rise in the output, the voltage out of the inte-
grator has to return to a value below the threshold at the next clock tick.

Mixed-Time Signal Temporal Logic 71

Fig. 7. Simulation trace (w2, u2) extract with uin : t �→ 0.7 cos(1000 · 2π · t) + 0.7

This property is expressed in STL-mx as:

The specification ψ1 would be used during the integration steps of the design
cycle so as to check that the input applied to the Δ-Σ modulator has a range
conforming to its sampling capabilities.
First we simulate the design with a sinusoidal input at rate 1 kHz and amplitude
0.6 V; this gives us the trace (w1, u1) of Fig. 6. The circuit appears to behave
adequately, and we have (w1, u1) |= ψ1. When we modify slightly the input by
setting the amplitude to 0.7 V; the simulation produces the trace (w2, u2) of
Fig. 7. We can detect a failure of our second property around 420µs, as the
signal uΣ goes back above v0 within a single clock period. In our implementa-
tion the signal uΣ would then indefinitely stay above the threshold, stalling the
modulation. The algorithm that concludes that (u2, w2) �|= ψ1.

The Δ-Σ modulator should also verify some some functional specifications,
for instance:

Property 2. When the input voltage is above 1.05 V for 12.8µs the output must
have a sequence of two consecutive spikes starting over that time frame.

Such a property, which can be used during the design phase of the Δ-Σ modu-
lator itself, ia expressed as the following STL-mx formula:

We test this specification on our design for several inputs of the form t �→
A1 cos(f1 · 2π · t) + A2 cos(f2 · 2π · t) + B with A1 + A2 + B = 1.2 and f1, f2
ranging from 500 Hz to 10 kHz. The property is satisfied as long as the frequency
in the input stays small; on the other hand rapidly varying signals introduce
quantization uncertainty, and the property no longer holds. In all 6 simulation
scenarios, we were able to show that ψ2 is satisfied.

72 T. Ferrère et al.

Table 1. STL-mx monitoring execution times.

Property Sim. nb. uΣ uin pout time (ms)

ψ1 1 20 470 727 143

ψ1 2 2 771 58 104

ψ2 3 26 207 971 45

ψ2 4 27 926 971 50

ψ2 5 29 495 971 51

ψ2 6 31 298 1 212 58

ψ2 7 32 133 1 212 59

ψ2 8 33 005 1 212 61

In Table 1, we present the evaluation of the STL-mx implementation to
the Δ-Σ modulator case study. The experiments were done on an Intel Core
i7-2620M CPU @ 2.7 GHz machine with 8 GB of RAM with the Windows 7
Enterprise operating system. The implementation was executed on Ubuntu 13.04
Linux operating system running on the Windows VMware Player 5.0.2 virtual
machine. The table shows for a given STL-mx property, the size of the input
signals in terms of the number of samples and the execution for monitoring the
property, measured in milliseconds. The evaluation results show that the mon-
itoring procedure induces minimal overhead, since for both properties ψ1 and
ψ2, the time needed to monitor input of size ranging between 21, 000 and 35, 000
samples never exceeded 150 milliseconds.

Finally, we compare the STL-mx specification ψ2 to the STL specification
ψ′
2 = σ(ψ2), where

This example demonstrates the potential value of explicitly separating the two
time domains in specifications, which results in formulas that are more succinct
and easier to read.

6 Concluding Remarks

We have introduced very useful syntactic and semantic constructs that provide
for co-existence of discrete and continuous-time specifications for runtime moni-
toring of CPS and mixed signal designs. This work is a first step toward a frame-
work for system-wide specification-based verification, covering both discrete-
time, bounded-value and continuous-time, real-valued domains. We studied the
theoretical properties of this mixed-time logic STL-mx and extended a monitor-
ing framework to handle these two time domains. We demonstrated the usability

Mixed-Time Signal Temporal Logic 73

of the methodology and tool on a case-study. As for the future one may think
of the following directions:

1. Automatic insertion of @cd and @dc conversion operators based on type infer-
ence so as to facilitate further the expression of properties by the user;

2. Studying other conversion operators, more sophisticated than the currently
used periodic sample and hold. For example, the truth value of a discrete-time
signal at i can be based on integrating values at continuous time in some inter-
val around iT . One can also think of event-based conversion in asynchronous
style, unlike this work that focused on clocked digital components;

3. Studying a tighter interaction between the monitoring procedure and the
simulators that generate the heterogeneous traces.

4. Equpping STL-mx with quantitative semantics. We expect that adding quan-
titative semantics based on the infinity norm to STL-mx shall be straight-
forward. However, we will need to investigate whether the basic properties of
the language would be still preserved under this quantitative semantics. In
addition, it would be an interesting challenge to add a more cumulative or
average-based semantics to the specification language.

Acknowledgments. This research was supported in part by the Austrian Science
Fund (FWF) under grants 27 S11402-N23 (RiSE/SHiNE) and Z211-N23 (Wittgenstein
Award), and by the Productive 4.0 project (ECSEL 737459). The ECSEL Joint Under-
taking receives support from the European Union’s Horizon 2020 research and inno-
vation programme and Austria, Denmark, Germany, Finland, Czech Republic, Italy,
Spain, Portugal, Poland, Ireland, Belgium, France, Netherlands, United Kingdom,
Slovakia, Norway.

References

1. Akazaki, T., Hasuo, I.: Time robustness in MTL and expressivity in hybrid system
falsification. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207,
pp. 356–374. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21668-
3 21

2. Alur, R., Feder, T., Henzinger, T.: The benefits of relaxing punctuality. J. ACM
43(1), 116–146 (1996). https://doi.org/10.1145/227595.227602

3. Bakhirkin, A., Ferrère, T., Henzinger, T.A., Nickovic, D.: The first-order logic of
signals: keynote. In: Proceedings of the International Conference on Embedded
Software, EMSOFT 2018, Torino, Italy, September 30 - October 5, 2018, p. 1
(2018). https://doi.org/10.1109/EMSOFT.2018.8537203

4. Bartocci, Ezio, et al.: Specification-based monitoring of cyber-physical systems: a
survey on theory, tools and applications. In: Bartocci, Ezio, Falcone, Yliès (eds.)
Lectures on Runtime Verification. LNCS, vol. 10457, pp. 135–175. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-75632-5 5

5. Buck, J.T., Ha, S., Lee, E.A., Messerschmitt, D.G.: Ptolemy: a framework for
simulating and prototyping heterogenous systems. Int. J. Comput. Simul. 4(2),
155–182 (1994)

https://doi.org/10.1007/978-3-319-21668-3_21
https://doi.org/10.1007/978-3-319-21668-3_21
https://doi.org/10.1145/227595.227602
https://doi.org/10.1109/EMSOFT.2018.8537203
https://doi.org/10.1007/978-3-319-75632-5_5

74 T. Ferrère et al.

6. Combemale, B., et al. (eds.): Joint Proceedings of the First International Work-
shop On the Globalization of Modeling Languages (GEMOC 2013) and the First
International Workshop: Towards the Model Driven Organization (AMINO 2013)
Co-located with the 16th International Conference on Model Driven Engineering
Languages and Systems (MODELS 2013), Miami, USA, September 29 - October
04, 2013, CEUR Workshop Proceedings, vol. 1102. CEUR-WS.org (2013). http://
ceur-ws.org/Vol-1102

7. Graphics Corporation, M.: Questa ADMS. http://www.mentor.com/products/fv/
advance ms/

8. Dluhos, P., Brim, L., Safránek, D.: On expressing and monitoring oscillatory
dynamics. In: HSB, pp. 73–87 (2012). https://doi.org/10.4204/EPTCS.92.6

9. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

10. Donzé, A., Maler, O., Bartocci, E., Nickovic, D., Grosu, R., Smolka, S.: On tem-
poral logic and signal processing. In: Chakraborty, S., Mukund, M. (eds.) ATVA
2012. LNCS, pp. 92–106. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-33386-6 9

11. Eisner, C., Fisman, D., Havlicek, J., McIsaac, A., Van Campenhout, D.: The def-
inition of a temporal clock operator. In: Baeten, J.C.M., Lenstra, J.K., Parrow,
J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 857–870. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-45061-0 67

12. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications. In:
Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES/RV -2006. LNCS,
vol. 4262, pp. 178–192. Springer, Heidelberg (2006). https://doi.org/10.1007/
11940197 12

13. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theor. Comput. Sci. 410(42), 4262–4291 (2009). https://
doi.org/10.1016/j.tcs.2009.06.021

14. ISO 26262:2011: Road Vehicles - Functional Safety. ISO, Geneva, Switzerland
15. Jakšić, S., Bartocci, E., Grosu, R., Ničković, D.: Quantitative monitoring of STL

with edit distance. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012,
pp. 201–218. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46982-
9 13

16. Kesten, Y., Pnueli, A.: A compositional approach to CTL* verification. Theor.
Comput. Sci. 331(2–3), 397–428 (2005). https://doi.org/10.1016/j.tcs.2004.09.023

17. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-time
Syst. 2(4), 255–299 (1990). https://doi.org/10.1007/BF01995674

18. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

19. Maler, O., Nickovic, D.: Monitoring properties of analog and mixed-signal circuits.
STTT 15(3), 247–268 (2013). https://doi.org/10.1007/s10009-012-0247-9

20. Maler, O., Nickovic, D., Pnueli, A.: From MITL to timed automata. In: Asarin,
E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 274–289. Springer,
Heidelberg (2006). https://doi.org/10.1007/11867340 20

21. Maler, O., Nickovic, D., Pnueli, A.: Checking temporal properties of discrete, timed
and continuous behaviors. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.)
Pillars of Computer Science. LNCS, vol. 4800, pp. 475–505. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78127-1 26

http://ceur-ws.org/Vol-1102
http://ceur-ws.org/Vol-1102
http://www.mentor.com/products/fv/advance_ms/
http://www.mentor.com/products/fv/advance_ms/
https://doi.org/10.4204/EPTCS.92.6
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-642-33386-6_9
https://doi.org/10.1007/978-3-642-33386-6_9
https://doi.org/10.1007/3-540-45061-0_67
https://doi.org/10.1007/11940197_12
https://doi.org/10.1007/11940197_12
https://doi.org/10.1016/j.tcs.2009.06.021
https://doi.org/10.1016/j.tcs.2009.06.021
https://doi.org/10.1007/978-3-319-46982-9_13
https://doi.org/10.1007/978-3-319-46982-9_13
https://doi.org/10.1016/j.tcs.2004.09.023
https://doi.org/10.1007/BF01995674
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/s10009-012-0247-9
https://doi.org/10.1007/11867340_20
https://doi.org/10.1007/978-3-540-78127-1_26

Mixed-Time Signal Temporal Logic 75

22. Manna, Z., Pnueli, A.: Temporal Logic. Springer, New York (1992). https://doi.
org/10.1007/978-1-4612-0931-7 3

23. Michel, M.: Computation of temporal operators. Logique et Analyse 110–111,
137–152 (1985)

24. Pnueli, A., Zaks, A.: On the merits of temporal testers. In: Grumberg, O., Veith,
H. (eds.) 25 Years of Model Checking. LNCS, vol. 5000, pp. 172–195. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-69850-0 11

https://doi.org/10.1007/978-1-4612-0931-7_3
https://doi.org/10.1007/978-1-4612-0931-7_3
https://doi.org/10.1007/978-3-540-69850-0_11

Timed Systems

A State Class Construction
for Computing the Intersection of Time

Petri Nets Languages

Éric Lubat , Silvano Dal Zilio(B) , Didier Le Botlan, Yannick Pencolé,
and Audine Subias

LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France
{eric.lubat,silvano.dalzilio,didier.lebotlan,

yannick.pencole,audine.subias}@laas.fr

Abstract. We propose a new method for computing the language inter-
section of two Time Petri nets (TPN); that is the sequence of labels in
timed traces common to the execution of two TPN. Our approach is
based on a new product construction between nets and relies on the State
Class construction, a widely used method for checking the behaviour of
TPN. We prove that this new construct does not add additional expres-
sive power, and yet that it can leads to very concise representation of the
result. We have implemented our approach in a new tool, called Twina.
We report on some experimental results obtained with this tool and show
how to apply our approach on two interesting problems: first, to define
an equivalent of the twin-plant diagnosability methods for TPN; then as
a way to check timed properties without interfering with a system.

Keywords: Time Petri nets · Model checking · State classes ·
Realtime systems modeling and verification

1 Introduction

Formal languages, and the problem of efficiently checking intersection between
languages, play an important role in formal verification. For instance, automata-
theoretic approaches to model-checking often boils down to a language empti-
ness problem; that is finding whether there is a trace, in a system, that is also
“in the negation of a property” [25]. Similarly, in the study of Discrete Event
Systems [28], basic control-theoretic properties are often expressed in terms of
language properties and language composition. We consider examples of these
two problems at the end of this paper.

In this context, there is a large body of research where systems are expressed
using Petri nets (PN). Indeed, PN are well-suited for modelling notions such as
concurrency or causality in a very compact way; and they can be used for verifi-
cation by building a Labeled Transition System out of them. Just as important,
PN come equipped with a structural construct for synchronous composition, that
c© Springer Nature Switzerland AG 2019
É. André and M. Stoelinga (Eds.): FORMATS 2019, LNCS 11750, pp. 79–95, 2019.
https://doi.org/10.1007/978-3-030-29662-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29662-9_5&domain=pdf
http://orcid.org/0000-0003-1514-8166
http://orcid.org/0000-0002-6002-2696
https://doi.org/10.1007/978-3-030-29662-9_5

80 É. Lubat et al.

coincides with language intersection when the set of labels of the nets are equal.
Unfortunately, the situation is not as simple when we consider extensions of
Petri nets that deal with time.

In this paper, we propose a new method for computing the language intersec-
tion of two Time Petri nets (TPN) [10,26]. This problem is quite complex and
is hindered by two main problems. First, the state space associated with a TPN
is typically infinite when we work with a dense time model; that is when time
delays can be arbitrarily small. Therefore we need to work with an abstraction of
their transition system. Second, there is no natural way to define the (structural)
composition of two transitions that have non-trivial time constraints (meaning
different from the interval [0,∞[). These problems limit the possibility for com-
positional reasoning on TPN.

A solution to the first problem was proposed by Berthomieu and Menasche
in [9], where they define a state space abstraction based on state classes. This
approach is used in several model-checking tools, such as Romeo [22] and
Tina [12] for instance. In the following, we propose a simple solution to over-
come the second problem. Our approach is based on an extension of TPN with
a dedicated product operator, called Product TPN, that can be viewed as an
adaptation of Arnold-Nivat synchronization product [3] to the case of TPN. We
show that it is possible to extend the state class construction to this new exten-
sion, which gives an efficient method for computing the intersection of two TPN
when the nets are bounded.

Verification of Time Petri Nets. In the following, we consider TPN where
transitions may have observable labels. In this context, an execution is the timed-
event word obtained by recording the transitions that have been fired together
with the delays between them. Our goal is to provide a method for symbolically
computing the set of executions that are common to two labeled TPN. Without
time, it is well-known that we can compute the language of a net from its mark-
ing graph. This gives a Labeled Transition System (LTS); an automaton that is
finite as soon as the net is bounded. Likewise, we can compute the (language)
intersection of two timed nets by computing the LTS of their synchronous com-
position, denoted N1‖N2 thereafter. Actually, like in the untimed case, we are
more interested by the synchronous product of two languages, rather than by
their intersection.

The situation is quite different when we take time into account. Indeed, we
may have fewer traces with a TPN than with the corresponding, “untimed”
net (the one where timing constraints are deleted). This is because timing con-
straints may prevent a transition from firing, but never enable it. One solution
to recover a finite abstraction of the state space is to use the State Class Graph
(SCG) construction. Actually, SCG is an umbrella term for a family of differ-
ent abstractions, each tailored to a different class of properties, or to a different
extension of TPN. The first such construction, called Linear State Class Graph
(LSCG) [9], is based on firing domains, that is the delays before a transition can
fire. The LSCG preserves the set of reachable markings of a net as well as its lan-
guage; which is exactly what is needed in our case. This is also the construction
that we use in Sect. 3.

A State Class Construction for Computing 81

In the following we also mention the Strong SCG construction (SSCG) [11],
based on clock domains, that is the duration for which a transition has been
enabled. The SSCG preserves more information than the linear one. For exam-
ple, we can infer from clocks when two transitions are enabled “at the same
time”, meaning we can handle priorities. The added expressiveness of the strong
construction comes at a cost; the SSCG (for a given net) has always more classes
than the corresponding LSCG, sometimes by a very large amount. (We give some
examples of this in Sect. 6.) This is why we prefer to use the LSCG when possible.

Related Works and Review of Existing Methods. A motivation for our
work is that we cannot rely on a synchronous product of TPN. Indeed, a major
limitation with TPN is that there are no sensible way to define the composition of
“non-trivial” transitions, and therefore no sensible way to define the synchronous
composition of “non-composable” TPN; we say that a transition is trivial when
it is associated to the time interval [0,∞[and that a net is composable when
all its observable transitions are trivial. (We illustrate the problem at the end
of Sect. 2). Likewise we cannot rely on the product of their SCG either. Indeed,
the product of two SCG provides an over-approximation of the expected result,
since it cannot trace time dependencies between events from different nets.

The situation is not the same with other “timed models”. A notable example
is Timed Automata [2], an extension of finite automata with variables, also called
clocks, whose values progress synchronously as time elapses. Timed Automata
(TA) can use boolean conditions on clocks to guard transitions and as local
invariants on states. It is also possible to reset a clock when “firing” a transi-
tion. The classical product operation on finite automata can be trivially extended
to TA: we only need to use the conjunction of guards, invariants and resets
where needed. This provides a straightforward method for computing the (lan-
guage) intersection of two TA, and also a trivial proof that the class of languages
accepted by a TA are closed under intersection. Another related work is based on
the definition of Timed Regular Expressions [4], that provides a timed analogue
of Kleene Theorem for TA.

These results seem to promote Timed Automata as an algebraic model of
choice for reasoning about timed words, and many works have studied the rela-
tion between TPN and TA. (On another note, we can remark that even a slight
change in semantics may complicate the product construction; see for instance
the case with signal-event languages [16].) For instance, Cassez and Roux [19]
propose a structural encoding of TPN into TA that preserves the semantics in
the sense of timed bisimulation, and therefore that preserves timed language
acceptance. This encoding generates one automata and one clock for every tran-
sition in the TPN and can be extended in order to accommodate strict timing
constraints; that is static time intervals that have a finite, open bound. Later,
Bérard et al. [7,15] showed that TPN and TA are indeed equivalent with respect
to language acceptance, but that TA are strictly more expressive in terms of
weak timed bisimulation (≈). These results are based on semantic encodings
from TPN into TA and from TA into TPN that can be chained together to build
an encoding from a TPN to an equivalent composable one. A similar result is

82 É. Lubat et al.

also found in [27], which provides a structural encoding from a TPN, N , into
a composable TPN that is of size linear with respect to N . But none of these
encodings handle timing constraints that are bounded and right-open.

One of the main difference between TA and TPN is that, with TA, we can
loose the ability to fire a transition just by waiting long enough (until some
guards become false). The same behaviour can be observed with TPN when we
add a notion of priorities. In particular, Berthomieu et al. [10,11] prove that
(bounded) TPN with priorities are very close to TA, in the sense of ≈. They
also define an extension of TPN [27] with inhibitor arcs between transitions
(similar to priorities) and a dual notion of permission arcs. In this extension,
called IPTPN, a net can always be transformed into a composable one. (We
show an example of this construction in Sect. 5).

All these results can be used to define three different methods for computing
the intersection of TPN. A first method is to use the structural translation from
TPN to TA given in [19] and then to use the product construction on TA. This
encoding is at the heart of the tool Romeo [22] and has been used to build a
TCTL model-checker for TPN (which, incidentally, relies on the “product” of a
net with observers for the formulas). Unfortunately, to the best of our knowledge,
it is not possible to analyse the product of two nets with Romeo and therefore
we have not been able to experiment with this method. Moreover, this approach
is closer in spirit to the SSCG construction.

A second method is to use the (combination of) encodings defined in [15]
to replace a TPN with an equivalent, composable one. Unfortunately, this con-
struction relies on a semantic encoding that requires the computation of the
entire symbolic state space of the net, and is only applicable on net that have
closed timing constraints; meaning that we cannot use constraints of the form
[l, h[for example. While this method is not usable in practice, it could be used
to prove expressiveness results. For example, it gives a proof that the set of TPN
with closed timing constraints is closed under intersection; something we silently
admitted until now.

A third method also relies on generating composable nets as a preprocessing
step. In this case, the idea is to use the IPTPN of [27]. Like in the first method,
the main drawback of this approach is that we need to use the strong SCG
construction, which means that we could compute much more classes than with
a method based on the LSCG. We describe the experimental results obtain with
this method in Sect. 6.

Outline of the Paper and Contributions. In the next section we define the
semantics of TPN and provide the technical background necessary for our work.
Section 3 contains the semantics of Product TPN, while our two main results
are given in Sects. 4 and 5, where we show that it is possible to extend the State
Class Graph construction to the case of Product TPN and that this extension
does not add additional expressiveness power. By construction, our method can
be applied even when the TPN are not bounded and without any restrictions on
the timing constraints.

A State Class Construction for Computing 83

We have implemented our approach in a new tool, called Twina [21] Before
concluding, we report (Sect. 6) on some experimental results obtained with this
tool. We also show some practical applications for our approach on two problems:
first, to define an equivalent of the twin-plant diagnosability methods for TPN;
then as a way to check timed properties without interfering with a system.

2 Time Petri Nets and Other Technical Background

A Time Petri Net (TPN) is a net where each transition, t, is decorated with
a (static) time interval Is(t) that constrains the time at which it can fire. A
transition is enabled when there are enough tokens in its input places. Once
enabled, transition t can fire if it stays enabled for a duration θ that is in the
interval Is(t). In this case, t is said time enabled.

A TPN is a tuple 〈P, T,Pre,Post,m0, Is〉 in which: 〈P, T,Pre,Post〉 is a
net (with P and T the set of places and transitions); Pre, Post : T → P → N

are the precondition and postcondition functions; m0 : P → N is the initial
marking; and Is : T → I is the static interval function. We use I for the set of all
possible time intervals. To simplify our presentation, we only consider the case
of closed intervals of the form [l, h] or [l,+∞[, but our results can be extended
to the general case. TPN can be k-safe, which means the net has at most k + 1
reachable markings. A safe TPN usually 1-safe.

We consider that transitions can be tagged using a countable set of labels,
Σ = {a, b, . . . }. We also distinguish the special constant ε (not in Σ) for internal,
silent transitions. In the following, we use a global labeling function L that
associates a unique label in Σ ∪ {ε} to every transition1. The alphabet of a net
is the collection of labels (in Σ) associated to its transitions.

A Semantics for TPN Based on Firing Domains. A marking m of a net
〈P, T,Pre,Post〉 is defined as a function m : P → N from places to natural
numbers. A transition t in T is enabled at m if and only if m �̇ Pre(t) (we
use the pointwise comparison between functions) and E(m) denotes the set of
transitions enabled at m.

A state of a TPN is a pair s = (m,ϕ) in which m is a marking, and ϕ : T → I

is a mapping from transitions to time intervals, also called firing domains. Intu-
itively, if t is enabled at m, then ϕ(t) contains the dates at which t can possibly
fire in the future. For instance, when t is newly enabled, it is associated to its
static time interval ϕ(t) = Is(t). Likewise, a transition t can fire immediately
only when 0 is in ϕ(t) and it cannot remain enabled for more than its timespan,
i.e. the maximal value in ϕ(t).

For a given delay θ in Q≥0 and ι in I, we denote ι − θ the time interval
ι shifted (to the left) by θ:, e.g. [l, h] − θ = [max(0, l − θ),max(0, h − θ)]. By
extension, we use ϕ .− θ for the partial function that associates the transition t
to the value ϕ(t)−θ. This operation is useful to model the effect of time passage
on the enabled transitions of a net.

1 We may assume that there is a countable set of all possible transitions (identifiers)
and that different nets have distinct transitions.

84 É. Lubat et al.

The following definitions are quite standard, see for instance [7,10]. The
semantics of a TPN is a (labeled) Kripke structure 〈S, S0,→〉 with only two
possible kinds of actions: either s

a−→s′, meaning that the transition t ∈ T is fired
from s with L(t) = a; or s

θ−→s′, with θ ∈ Q≥0, meaning that time θ elapses from
s. A transition t can fire from the state (m,ϕ) if t is enabled at m and firable
instantly. When we fire a transition t from state (m,ϕ), a transition k (with
k
= t) is said to be persistent if k is also enabled in the marking m − Pre(t),
that is if m − Pre(t) �̇ Pre(k). The other transitions enabled after firing t are
called newly enabled.

Definition 1 (Semantics). The semantics of a TPN N , with N the net
〈P, T,Pre,Post,m0, Is〉, is the Timed Transition System (TTS) [[N]] =
〈S, s0,→〉 where S is the smallest set containing s0 and closed by −→, where:

– s0 = (m0, ϕ0) is the initial state, with m0 the initial marking and ϕ0(t) = Is(t)
for every t in E(m0);

– the state transition relation → ⊆ S × (Σ ∪ {ε} ∪ Q≥0)×S is the relation such
that for all state (m,ϕ) in S:
(i) if t is enabled at m, L(t) = a and 0 ∈ ϕ(t) then (m,ϕ) a−→ (m′, ϕ′)

where m′ = m − Pre(t) + Post(t) and ϕ′ is a firing function such that
ϕ′(k) = ϕ(k) for any persistent transition and ϕ′(k) = Is(k) elsewhere.

(ii) if θ �̇ ϕ
∀k ∈ Enabled(m), θ ≤ maxϕ(k) then (m,ϕ) θ−→ (m,ϕ .− θ).

Transitions in the case (i) above are called discrete transitions; those labelled
with delays (case (ii)) are the continuous, or time elapsing, transitions. Like with
nets, we say that the alphabet of a TTS is the set of labels, in Σ, associated to
discrete actions. Using labels, we can define the product of two TTS by extending
the classical definition for the product of finite automata.

Definition 2 (Product of TTS). Assume S1 = 〈S1, s
0
1,→1〉 and S2 =

〈S2, s
0
1, →2〉 are two TTS with respective alphabets Σ1 and Σ2. The product of

S1 by S2 is the TTS S1‖S2 = 〈(S1×S2), (s01, s
0
2),−→〉 such that −→ is the smallest

relation obeying the following rules:

s1
α−→1 s′

1 α ∈ (Σ1 \ Σ2) ∪ {ε}
(s1, s2)

α−→ (s′
1, s2)

s2
α−→2 s′

2 α ∈ (Σ2 \ Σ1) ∪ {ε}
(s1, s2)

α−→ (s1, s′
2)

s1
α−→1 s′

1 s2
α−→2 s′

2 α
= ε

(s1, s2)
α−→ (s′

1, s
′
2)

Executions, Traces and Equivalences. An execution of a net N is a sequence
in its semantics, [[N]], that starts from the initial state. It is a time-event word
over the alphabet containing both labels (in Σ ∪ {ε}) and delays. Continuous
transitions can always be grouped together, meaning that when (m,ϕ) θ−→(m,ϕ′)

A State Class Construction for Computing 85

and (m,ϕ′) θ′
−→ (m,ϕ′′) then necessarily (m,ϕ) θ+θ′

−−−→ (m,ϕ′′) (and the firing
domain ϕ′ is uniquely defined from ϕ and θ). Based on this observation, we can
always consider executions of the form σ

def= θ0 a0 θ1 a1 . . . where each discrete
transition is preceded by a single time delay. By contrast, a trace is the untimed
word obtained from an execution when we keep only the discrete actions. Then
the language of a TPN is the set of all its (finite) traces.

By definition, the language of a TPN is prefix-closed; and it is regular when
the net is bounded [9]. It is also the case [27] that the “intersection” of two nets
N1 and N2—the traces obtained from (pairs of) executions common to the two
nets—are exactly the traces in the TTS product [[N1]] ‖ [[N2]]. Our goal, in the
next section, is to define a product operation, N1 × N2, that is a congruence,
meaning that [[N1 × N2]] should be equivalent to [[N1]] ‖ [[N2]].

Language equivalence would be too coarse in this context. In this paper, we
will instead prefer (a weak version of) timed bisimulation, which rely on a weak
version of the transition relation s

α=⇒ s′ (with α an action in Σ ∪ {ε} ∪Q≥0 and
θ a delay in Q≥0) defined from the following set of rules:

s
ε=⇒ s

s
ε=⇒ s′ s′ α−→ s′′ s′′ ε=⇒ s′′′

s
α=⇒ s′′′

s
θ=⇒ s′ s′ θ′

=⇒ s′′

s
θ+θ′

===⇒ s′′

Definition 3 (Behavioural Equivalence). Assume G1 = 〈S1, s
0
1,→1〉 and

G2 = 〈S2, s
0
2,→2〉 are two TTS. A binary relation R over S1 × S2 is a weak

timed bisimulation if and only if s01 R s02 and for all actions α and pair of states
(s1, s2) ∈R we have: (1) if s1

α=⇒ s′
1 then there exists s′

2 such that s2
α=⇒ s′

2 and
s′
1 R s′

2; and conversely (2) if s2
α=⇒ s′

2 then there exists s′
1 such that s1

α=⇒ s′
1

and s′
1 R s′

2. In this case we say that G1 and G2 are timed bisimilar, denoted
G1 ≈ G2, and we use ≈ for the union of all timed bisimulations R.

Timed bisimulation is preserved by product [27], meaning that for all TTS
G,G1 and G2 we have G1 ≈ G2 implies (G‖G1) ≈ (G‖G2). In the following we
say that two nets are bisimilar, denoted N1 ≈ N2, when [[N1]] ≈ [[N2]].

Example. We give two examples of TPN with alphabet {a, b} in Fig. 1. Exe-
cutions for the net N1 (left) include time-event words of the form θ0 a θ1 b (and
their prefix) provided that θ1 ≥ 1. Executions for the net N2 (middle) include
time-event words of the form θ2 a θ3 b and θ3 b θ2 a (and their prefix) provided
that θ3 ≤ 1. If we consider executions that are in the product of both nets, we
find all executions of the form θ0 a, with the constraint θ0 ≤ 1. We also have one
execution of the form θ0 a θ1 b provided that θ0 + θ1 ≤ 1 and θ1 ≥ 1. This corre-
sponds to the case where event a fires exactly at date 0; any other case eventually
leading to a time deadlock (a situation where time cannot progress). In the same
figure (right), we display the “untimed” synchronous product N1‖N2. It is clear
that there are no possible choice of time constraint for transition t3 × t1 that
could lead to a net bisimilar to [[N1]] ‖ [[N2]]. This is a simple example of the
“non-composability” of Time Petri nets.

86 É. Lubat et al.

Fig. 1. Two examples of TPN and their (failed, untimed) product.

3 Product TPN and Their Semantics

We propose an extension of TPN with a synchronous product operation between
TPN, ×, in the style of Arnold-Nivat synchronization of processes [3]. Our goal
is to obtain a congruent composition operator, in the sense that [[N1 × N2]] ≈
[[N1]]‖[[N2]]. A product TPN, or PTPN, is a TPN 〈P, T,Pre,Post, Is〉 augmented
with two projections, #1 and #2, such that the following properties hold:

– there are two sets #1 P and #2 P that partition the set of places P .
– there are two sets #1 T and #2 T that partition the set of transitions T .
– all the pre- and post-conditions of a transition in #i T are places in #i P : if

t ∈ #i T and Pre(t)(p) > 0 or Post(t)(p) > 0 then p ∈ #i P .

Basically, this means that a PTPN N is the superposition of two distinct, non-
interconnected components, that we call #1 N and #2 N for short.

Definition 4 (Product of TPN). The product N1 × N2 of two disjoint TPN
N1 and N2 (such that P1 ∩ P2 = T1 ∩ T2 = ∅) is the PTPN obtained from the
juxtaposition, preserving labels, of N1 and N2 with the two trivial projections
#i P = Pi and #i T = Ti for all i ∈ 1..2.

With our notations, a PTPN N is equivalent to the composition (#1 N) ×
(#2 N). In the following, we use the notation #i m to denote the restriction of a
marking m to the places in #i P and similarly with #i ϕ and the transitions in
#i T . By convenience, #i(m,ϕ) denotes the state (#i m, #i ϕ) and we use #i Σ
for the alphabet of net #i N .

To ease the presentation, we limit the composition to only two components
(instead of a sequence) and we do not define the equivalent of “synchronization
vectors”. As a result, we do not define the product over PTPN. This could
be added, at the cost of more burdensome notations, but it is not needed in
our applications (Sect. 6). This is also why we have the same limitations in our
implementation [21].

Labels are not necessarily partitioned, so the same label can be shared
between the two components of a product. We denote Σ1,2 the set (#1 Σ ∩#2 Σ)

A State Class Construction for Computing 87

of labels occurring on “both sides” of a PTPN. We should also need the notation
Σ1 for the set (#1 Σ \ #2 Σ) ∪ {ε} of labels that can occur in #1 concurrently
with #2 (and similarly for Σ2). The semantics for PTPN relies largely on the
semantics of TPN but makes a particular use of labels.

Definition 5. The semantics of a PTPN 〈P, T,Pre,Post,m0, Is〉, with projec-
tions #1 and #2, is the TTS [[N]]× = 〈S, s0, |−→〉 such that s0 = (m0, ϕ0) is the
same initial state than in the TPN semantics [[N]], and |−→ is the transition rela-
tion with actions in Σ ∪ {ε} ∪ Q≥0 such that:

The only new case is for pairs of transitions, t1 and t2, from different com-
ponents but with the same label: L(t1) = L(t2) = a. This is the equivalent of a
synchronization. Indeed the premisses entail that both t1 and t2 can fire imme-
diately, and the effect is to fire both of them simultaneously. As a side effect,
our choice of semantics entails that a transition on a “shared label” (in Σ1,2) is
blocked until we find a matching transition, with the same label, on the opposite
component. This may introduce a new kind of time deadlock that has no direct
equivalent in a TPN: when a transition has to fire urgently (hence time cannot
progress) while there are no matching transition that is time-enabled.

It is the case that the reachable states, in [[N]]×, are a subset of the states
in [[N]]. This is because we may forbid a synchronization on a shared label, but
never create new opportunities to fire a transition. We also have a more precise
result concerning the semantics of a PTPN and the product of its components.

Theorem 1. The TTS [[N]]× is isomorph to the product [[#1 N]] ‖ [[#2 N]].

Proof. By induction on the shortest path from the initial state, s0, to a reachable
state s in [[N]]× and then a case analysis on the possible transitions from s. ��

4 Construction of the State Class Graph for PTPN

We give a brief overview of the LSCG construction for a PTPN N =
〈P, T,Pre,Post,m0, Is〉. In the following, we use the notation αs

t and βs
t for

the left and right endpoints of interval Is(t). For the sake of simplicity, we only
consider inequalities that are non-strict (our definitions can be extended to the
more general case) and assume that β − α = ∞ when β is infinite.

A state class C is a pair (m,D), where m is a marking and D is a domain; a
(finite) system of linear inequalities on the firing dates of transitions enabled at
m. We will use variable xi in D to represent the possible firing time of transition
ti. In the Linear SCG construction [8,9], we build an inductive set of classes Cσ,
where σ ∈ T ∗ is a sequence of discrete transitions firable from the initial state.

88 É. Lubat et al.

Intuitively, the class Cσ = (m,D) collects all the states reachable from the initial
state by firing schedules of support sequence σ. For example, the initial class Cε

is (m0,D0) where D0 is the domain defined by the static time constraints in ϕ0,
that is: αs

i ≤ xi ≤ βs
i for all ti in E(m0).

The efficiency of the SCG construction relies on several factors: (1) First,
we can restrict to domains D that are difference systems, that is a sequence of
constraints of the form αi ≤ xi ≤ βi and xi − xj ≤ γi,j , where each variable
in (xi)ti∈E(m0) corresponds to an enabled transition (and i
= j). (2) Next, we
can always put domains in closure form, meaning that each bounds α, β and γ
are the tightest preserving the solution set of D. Hence we can encode D using
a simple vector of values. This data structure, called Difference Bound Matrix
(DBM), is unique to all the domains that have equal solution set. Hence testing
class equivalence is decidable and efficient. (3) Finally, if Cσ = (m,D) is defined
and t is enabled at m, we can incrementally compute the coefficients of the DBM
D′, the domain obtained after firing t from Cσ, from the coefficients of D.

We only consider the new case where we simultaneously fire a pair of tran-
sitions (ti, tj) from a class (m,D). We assume that the resulting marking is m′.
First, we need to check that both transitions can eventually fire. This is the case
only if the condition γt,k ≥ 0 is true for all t ∈ {i, j} and k enabled at m (with
k
= t). In this case, the resulting domain D′ can be obtained by following a
short number of steps, namely:

1. add the constraints xi = xj and xi ≤ xk to D, for all k /∈ {i, j} (since ti, tj
must fire at the same date and before any other enabled transition);

2. introduce new variables x′
k for all transitions enabled in m′, that will become

the variables in D′, and add the constraint x′
k = xk − xi if tk is persistent or

αs
k ≤ x′

k ≤ βs
k if tk is newly enabled;

3. eliminate all the variables from D relative to transitions in conflict with ti, tj
and put the resulting system in normal form.

Except for step 1 above, with the constraint that xi = xj , this is exactly the
procedure described in [8] for plain TPN. When both transitions (ti, tj) can fire,
it is possible to completely eliminate all occurrences of the “unprimed” variables
xk in D′ and the result is a DBM. Which is exactly what is needed in our case.

We can draw two useful observations from this result. First, we can follow
the same procedure with any number of equality constraints, and still wind up
with a DBM. Therefore it would be possible to fire more than two transitions
simultaneously. Second, we have an indirect proof that forcing the synchroniza-
tion of transitions is strictly less constraining than using priorities (because it is
not possible to use the LSCG construction with priorities), something that was
not obvious initially.

5 Expressiveness Results

It is not obvious that PTPN add any expressive power compared to TPN. On
the one hand, the semantics of a PTPN N is quite close to the semantics of

A State Class Construction for Computing 89

its components. In particular, [[N]]× = [[N]] when there are no shared labels
(Σ1,2 = ∅). Moreover, in a PTPN like in a TPN, it is not possible to lose
the ability of firing a transition just by waiting long enough; a behaviour that
distinguishes TPN from TA, or from TPN with priorities for instance. On the
other hand, PTPN introduces new kind of time deadlocks which are affected by
time delays (see our example at the end of Sect. 2). Next, we prove that the two
models are equally expressive (up-to ≈) when all timing constraints are either
infinite or closed on the right (in which case we say the net is right-closed).

Theorem 2. Given a safe, right-closed PTPN N , we can build a safe, compos-
able TPN N ′, whose size is linear with respect to N , such that [[N]]× ≈ [[N ′]].

For the sake of brevity, we only sketch the proof. We rely on two auxiliary
properties and on an encoding from TPN into composable net; meaning an equiv-
alent net where all timing constraints have been “moved” to silent transitions.
We find such result in [27, Def. 9], which provides a construction to build a com-
posable net T1(N) from every safe and right-closed TPN N . Our restrictions on
N in Theorem 2 come from this construction, as is our result on the size of N ′.

Our first auxiliary property, (L1), compare the product of composable TPN
with their synchronous product, namely: if N1 and N2 are composable TPN then
[[N1 × N2]]× ≈ [[N1 ‖N2]]. Property (L1) derives directly from the construction
of the product N1 ‖N2 of composable TPN. Indeed, with composable nets, the
fusion of transitions sharing a common label are unaffected by continuous tran-
sitions. Hence they have the same behaviour in N1 × N2 than in N1‖N2. (And
this is the only place where the semantics of the two nets may diverge.)

Next, we use an equivalent of the congruence property for PTPN, (L2): given
two pairs of TPN (N1, N2) and (M1,M2) such N1 ≈ N2 and M1 ≈ M2 we
have that [[N1 × M1]]× ≈ [[N2 × M2]]×. Property (L2) can be proved by defining
a “candidate relation”, R, which contains the pair (s0, s′

0) of initial states of
N1 × M1 and N2 × M2; then proving that R is a weak timed bisimulation. A
suitable choice for R is to take the smallest relation such that (s1�s′

1) R (s2�s′
2)

whenever s1 ≈ s2 and s′
1 ≈ s′

2. Then the proof follows by simple case analysis.
Finally, we use construction T1 (above) to build composable TPN from

the nets #1 N and #2 N and to define N ′ def= T1(#1 N)‖T1(#2 N). By prop-
erty of T1 we have #i N ≈ T1(#i N) for all i ∈ 1..2. Hence by (L2)
and (L1) we have [[N]]× = [[#1 N × #2 N]]× ≈ [[T1(#1 N) × T1(#2 N)]]× ≈
[[T1(#1 N) ‖ T1(#2 N)]]. The property follows by transitivity of ≈.

Our proof gives a constructive method to build a net N ′ with (at most) four
extra transitions and places, compared to N , for each non-trivial labeled transi-
tion. We can use the SCG of N ′ to compute the language of N (and to compute
the intersection of two nets when we choose N = N1 × N2). Unfortunately this
approach does not scale well. For example, the composition of the two nets given
in Fig. 1 has 16 classes with this method instead of only 3 with our approach
(and the intermediary TPN has 11 places and 7 transitions). Likewise, for the
simple example in Fig. 4 we have a net with 25 places, 211 transitions and 1 389
classes instead of simply 3 classes with PTPN.

90 É. Lubat et al.

Fig. 2. Example of IPTPN Fig. 3. TPN for the delay property

Another limitation of this approach are the restrictions imposed on the timing
constraints of N . Indeed, to the best of our knowledge, there are no equivalent
of construction T1 in the case of “right-open” transitions.

Composable Time Petri nets using IPTPN. Berthomieu et al. [27] define
an extension of TPN with “inhibition and permission” that provides another
method for building composable nets. With this extension, it is always possible to
build a composable IPTPN from a TPN. For example, Fig. 2 displays the IPTPN
corresponding to the “product” of the two nets in Fig. 1. In this construction, we
create a silent, extra-transition tci for every non-trivial observable transition ti.
These transitions cannot fire (they self-inhibit themselves with an arc) but
“record the timing constraints” of the transition they are associated with. Then
a permission arc () is used to transfer these constraints on the (product of)
labeled transitions.

Tina provides a SCG construction for IPTPN but, like with the addition of
priorities, it is necessary to use the strong construction in this case. We use the
encoding into IPTPN we just sketched above in our experiments.

6 Experimental Results and Possible Applications

We have implemented the state class construction for PTPN in a tool called
Twina [21] that can generate the LSCG of both “plain” and product TPN. The
tool and models mentioned here are available online at https://projects.laas.fr/
twina/, with instructions on how to reproduce our results.

Performances Compared with IPTPN. We compare the results obtained
with PTPN and an encoding into IPTPN, which appears to be the best alter-
native among the three methods mentioned in Sect. 1. By default, Twina uses
option -W, that computes the Linear SCG of a net. We also provide option -I to
compute the LSCG for the product of two nets using the construction defined
in Sect. 4. We use the same syntax for nets in Twina than in Tina [12]. In par-
ticular, our method can be used with nets that are not 1-safe and without any
restriction on the timing constraints (so we accept right-open transitions). We
also allow read- and inhibitor-arcs with the same semantics than in Tina. We

https://projects.laas.fr/twina/
https://projects.laas.fr/twina/

A State Class Construction for Computing 91

Table 1. Comparing the PTPN and IPTPN methods

Model Exp. Twina (LSCG) IPTPN (SSCG) Ratio

States Trans. States Trans.

jdeds plain 26 42 28 45 8%

jdeds twin 544 1 144 706 1 432 30%

jdeds obs 57 103 64 115 12%

train3 plain 3 101 7 762 5 051 13 027 63%

train3 twin 1 453 393 5 415 838 4 018 109 15 702 687 176%

train3 obs 6 202 16 614 10 102 27 801 63%

train4 plain 10 319 27 153 16 841 45 717 63%

train4 twin 20 954 198 79 768 434 57 567 538 229 935 082 175%

train4 obs 20 638 58 367 33 682 98 015 63%

plant plain 2 696 558 7 359 339 4 628 698 12 870 710 72%

plant twin 1 300 3 183 1 633 3 996 26%

plant obs 5 715 293 15 639 336 9 790 043 27 215 355 71%

wodes plain 2 554 6 080 5 363 13 047 110%

wodes twin 55 402 155 586 151 352 426 928 173%

wodes obs 5 767 13 506 14 663 34 508 154%

wodes232 plain 20 388 88 122 32 382 140 969 59%

wodes232 twin 39 588 981 304 246 211 339 165 870 2 552 685 724 757%

wodes232 obs 106 043 434 712 226 269 888 042 113%

compare the size of the LSCG with the results obtained using IPTPN and Tina
in Table 1. The results are reported with the sizes of the SCG in number of
classes and edges; we also give the ratio of classes saved between the LSCG and
the SSCG. So a 100% ratio means twice as much states in the strong SCG.

We use different models for our benchmarks: jdeds is an example taken
from [23] extended with time; train is a modified version of the train controller
example in [13] with an additional transition that corresponds to a fault in the
gate; plant is the model of a complex automated manufacturing system from [32];
wodes is the WODES diagnosis benchmark of Giua (see e.g. [18]) with added
timed constraints. For each model, we give the result of three experiments: plain
where we compute the SCG of the net, alone; twin where we compute the inter-
section between the TPN and a copy of itself with some transitions removed;
and obs where we compute the intersection of the net with a copy of the TPN
in Fig. 3. We explain the relevance of the last two constructions just afterwards.

We see that, in some of our examples, there is a large difference between
the size of the LSCG and the size of the SSCG for the same example. This was
one of our main reason for developing a specific tool. This is important since,
on the extreme case, we can have a quadratic blow-up in the number of classes

92 É. Lubat et al.

p0

p1

t4

f

t2a [2, 3]

t3

b

[1, 2] p2

t1 b

[3, 5]

×

p3

p4

t4a [2, 3]

t5

b

[1, 2]

Fig. 4. Product of a TPN Nf (left) and its “twin” No (right) for the fault f .

when analysing a twin product. (This is almost the case in example jdeds.) We
also observe that, on model plant-twin, the size of the intersection may be much
smaller than the size of one of the component alone; 1300 classes compared
to 2 million. This is to be expected, since the intersection may have only one
class. Nonetheless this emphasizes the need to have methods that can build the
intersection on the fly, without computing a symbolic representation for each
component first.

Diagnosability and the Twin Plant Method. One possible application of
Twina—and our initial motivation for this work—is to check fault diagnosabil-
ity [29] in systems modelled as TPN [5,17]. In this context, a system is described
as a TPN with a distinguished unobservable event f that models a fault. (Any
transition labelled with f is faulty.) Fault f is diagnosable if it is always possible
to detect when a faulty transition has fired, in a finite amount of time, just by
looking at the observable flow of events [31]. Under the assumptions that the
system does not generate Zeno executions, and that any possible execution is
not infinitely unobservable, one way to check diagnosability is to look for infi-
nite critical pairs [20]. A critical pair consists of a couple of infinite executions
of the TPN, one faulty the other one not, that have equal timed observations.
Then fault f is diagnosable if no such pair exists. By using Twina, we aim at
checking diagnosability by adapting the twin-plant method [24] to TPN. The
idea is to make two copies of the same system, one with the fault, Nf , and the
other without it, No, and to relabel all unobservable events to avoid collisions.
Then checking for the existence of an infinite critical pair amounts to finding an
infinite execution with f in the product No × Nf .

We give an example of this construct in Fig. 4 where a and b are both observ-
able. In system Nf , fault f is not diagnosable if we do not consider time, as we
always observe b after an a in both faulty and non-faulty executions. Now con-
sidering the observation of time, f is diagnosable as the date of b is always
discriminant. In the intersection of Nf and No, every execution where transition
t4 fires leads to a time deadlock. Indeed, in this case, we must wait at least 3 to
fire transitions t1 and at most 2 to fire t5 (and both have label b).

The twin-plant construction is quite useful and we provide an option to
directly build a twin TPN in our tool (option -twin). This is the construction

A State Class Construction for Computing 93

we use in our experiments for Table 1. In this case, we can generate a LTS
for the twin plant and check that every fault eventually leads to a deadlock in
the product, meaning that the system is diagnosable. For instance using a LTL
model-checker and a property such as (♦f) ⇒ (♦dead) [23]. We also provide a
dedicated algorithm (option -diag) to check this property on-the-fly. When the
system is not diagnosable, it allows us to find a counter-example before exploring
the whole behaviour of the twin-plant.

Observer-Based Verification. Another application of our product construc-
tion is model checking TPN, in much the same way some “observer-based” ver-
ification techniques rely on the product of a system with an observer [1,30].
The idea is to express a property as the language of an observer, O, then check
the property on the system N by looking at the behaviour of N × O. A major
advantage of this approach is that there is no risk to disrupt the system under
observation, which is not always easy to prove with other methods.

We give an example of observer in Fig. 3. In this net, sequences of events a
and b may occur in any order and at any date. On the other hand, the only way
to fire t3 is to “find” two successive occurrences of a and b with a delay (strictly)
bigger than 2. Hence we can check if such behaviour is possible in a system,
N , by checking whether t3 can fire in N × O. This is the problem we consider
in the obs experiments of Table 1. We only consider one small example here.
Nonetheless, the same approach could be used to check more complex timed
properties. This will be the subject of future works.

7 Conclusion

We propose an extension of TPN with a product operation in the style of Arnold-
Nivat. The semantics of our extension is quite straightforward. What is more sur-
prising is that it is possible to adapt the LSCG construction to this case—which
means that we do not need the equivalent of clocks or priorities—and that this
extension does not add any expressive power. This is a rather promising result,
complexity-wise, since it means that we can hope to adapt the same optimiza-
tion techniques than with “plain” TPN, such as specific symmetry reduction
techniques for instance [14].

We have several opportunities for extending our work. Obviously we can eas-
ily extend our product to a sequence of nets and add a notion of “synchronization
vectors”. This could lead to a more compositional framework for TPN, in the
style of the BIP language [6]. Another promising application of our approach
would be to extend classical results from the theory of supervisory control to
the context of TPN. We already mentioned a possible application for diagnos-
ability (which was the initial motivation for our work). A next step could be
to study the “quotient” of two TPN language—the dual of the product—which
can be used to reason about the controlability of a system and that is at the
basis of many compositional verification methods, such as Assume-Guarantee
for example.

94 É. Lubat et al.

Acknowledgments. The authors are grateful to Thomas Hujsa and Pierre-Emmanuel
Hladik for their valuable comments. We also want to thank Bernard Berthomieu, with-
out whom none of this would have been possible; our work is a tribute to the versatility
and the enduring qualities of the state class construction that he pioneered more than
30 years ago.

References

1. Abid, N., Dal Zilio, S., Le Botlan, D.: A formal framework to specify and verify real-
time properties on critical systems. Int. J. Crit. Comput. Based Syst. (IJCCBS)
5(1/2) (2014). https://doi.org/10.1504/IJCCBS.2014.059593

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2)
(1994). https://doi.org/10.1016/0304-3975(94)90010-8

3. Arnold, A.: Nivat’s processes and their synchronization. Theor. Comput. Sci.
281(1–2) (2002). https://doi.org/10.1016/S0304-3975(02)00006-3

4. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49(2) (2002).
https://doi.org/10.1145/506147.506151

5. Basile, F., Cabasino, M.P., Seatzu, C.: Diagnosability analysis of labeled time Petri
net systems. IEEE Trans. Autom. Control 62(3) (2017). https://doi.org/10.1109/
TAC.2016.2588736

6. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
BIP. In: Software Engineering and Formal Methods (SEFM). IEEE (2006). https://
doi.org/10.1109/SEFM.2006.27

7. Bérard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: Comparison of the
expressiveness of timed automata and time Petri nets. In: Pettersson, P., Yi, W.
(eds.) FORMATS 2005. LNCS, vol. 3829, pp. 211–225. Springer, Heidelberg (2005).
https://doi.org/10.1007/11603009 17

8. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems
using time Petri nets. IEEE Trans. Softw. Eng. 17(3) (1991). https://doi.org/10.
1109/32.75415

9. Berthomieu, B., Menasche, M.: An enumerative approach for analyzing time Petri
nets. In: Proceedings IFIP (1983)

10. Berthomieu, B., Peres, F., Vernadat, F.: Bridging the gap between timed automata
and bounded time Petri nets. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006.
LNCS, vol. 4202, pp. 82–97. Springer, Heidelberg (2006). https://doi.org/10.1007/
11867340 7

11. Berthomieu, B., Peres, F., Vernadat, F.: Model checking bounded prioritized time
Petri nets. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y. (eds.)
ATVA 2007. LNCS, vol. 4762, pp. 523–532. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-75596-8 37

12. Berthomieu, B., Ribet, P.O., Vernadat, F.: The tool TINA-construction of abstract
state spaces for Petri nets and time Petri nets. Int. J. Prod. Res. 42(14), 2741–2756
(2004)

13. Berthomieu, B., Vernadat, F.: State class constructions for branching analysis of
time Petri nets. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619,
pp. 442–457. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36577-
X 33

14. Bourdil, P.A., Berthomieu, B., Dal Zilio, S., Vernadat, F.: Symmetry reduction for
time Petri net state classes. Sci. Comput. Program. 132(2) (2016). https://doi.
org/10.1016/j.scico.2016.08.008

https://doi.org/10.1504/IJCCBS.2014.059593
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/S0304-3975(02)00006-3
https://doi.org/10.1145/506147.506151
https://doi.org/10.1109/TAC.2016.2588736
https://doi.org/10.1109/TAC.2016.2588736
https://doi.org/10.1109/SEFM.2006.27
https://doi.org/10.1109/SEFM.2006.27
https://doi.org/10.1007/11603009_17
https://doi.org/10.1109/32.75415
https://doi.org/10.1109/32.75415
https://doi.org/10.1007/11867340_7
https://doi.org/10.1007/11867340_7
https://doi.org/10.1007/978-3-540-75596-8_37
https://doi.org/10.1007/978-3-540-75596-8_37
https://doi.org/10.1007/3-540-36577-X_33
https://doi.org/10.1007/3-540-36577-X_33
https://doi.org/10.1016/j.scico.2016.08.008
https://doi.org/10.1016/j.scico.2016.08.008

A State Class Construction for Computing 95

15. Bérard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: When are timed
automata weakly timed bisimilar to time Petri nets? Theoret. Comput. Sci. 403(2–
3) (2008). https://doi.org/10.1016/j.tcs.2008.03.030

16. Bérard, B., Gastin, P., Petit, A.: Intersection of regular signal-event (timed) lan-
guages. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp.
52–66. Springer, Heidelberg (2006). https://doi.org/10.1007/11867340 5

17. Cabasino, M.P., Giua, A., Lafortune, S., Seatzu, C.: A new approach for diag-
nosability analysis of Petri nets using verifier nets. IEEE Trans. Autom. Control
57(12) (2012). https://doi.org/10.1109/TAC.2012.2200372

18. Cabasino, M.P., Giua, A., Seatzu, C.: Discrete event diagnosis using Petri nets. In:
ICINCO-ICSO (2009)

19. Cassez, F., Roux, O.H.: Structural translation from time Petri nets to timed
automata. J. Syst. Softw. 79(10) (2006). https://doi.org/10.1016/j.jss.2005.12.021

20. Cimatti, A., Pecheur, C., Cavada, R.: Formal verification of diagnosability via
symbolic model checking. In: IJCAI (2003)

21. Dal Zilio, S.: TWINA: a realtime model-checker for analyzing Twin-TPN (2019).
https://projects.laas.fr/twina/

22. Gardey, G., Lime, D., Magnin, M., Roux, O.H.: Romeo: a tool for analyzing time
Petri nets. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 418–423. Springer, Heidelberg (2005). https://doi.org/10.1007/11513988 41

23. Gougam, H.E., Pencolé, Y., Subias, A.: Diagnosability analysis of patterns on
bounded labeled prioritized Petri nets. Discrete Event Dyn. Syst. 27(1) (2017).
https://doi.org/10.1007/s10626-016-0234-5

24. Jiang, S., Huang, Z., Chandra, V., Kumar, R.: A polynomial algorithm for test-
ing diagnosability of discrete-event systems. IEEE Trans. Autom. Control 46(8)
(2001). https://doi.org/10.1109/9.940942

25. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to
branching-time model checking. J. ACM (JACM) 47(2) (2000). https://doi.org/
10.1145/333979.333987

26. Merlin, P.M.: A study of the recoverability of computing systems. Ph.D. thesis,
Department of Information and Computer Science, University of California (1974)

27. Peres, F., Berthomieu, B., Vernadat, F.: On the composition of time Petri
nets. Discrete Event Dyn. Syst. 21(3) (2011). https://doi.org/10.1007/s10626-011-
0102-2

28. Ramadge, P.J., Wonham, W.M.: The control of discrete event systems. Proc. IEEE
77(1), 81–98 (1989). https://doi.org/10.1109/5.21072

29. Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.:
Diagnosability of discrete-event systems. IEEE Trans. Autom. Control 40(9), 1555–
1575 (1995). https://doi.org/10.1109/9.412626

30. Toussaint, J., Simonot-Lion, F., Thomesse, J.P.: Time constraint verification meth-
ods based on time Petri nets. In: Workshop on Future Trends of Distributed Com-
puting Systems. IEEE (1997). https://doi.org/10.1109/FTDCS.1997.644736

31. Tripakis, S.: Fault diagnosis for timed automata. In: Formal Techniques in Real-
Time and Fault-Tolerant Systems (FTRTFT) (2002). https://doi.org/10.1007/3-
540-45739-9 14

32. Wang, X., Mahulea, C., Silva, M.: Diagnosis of time Petri nets using fault diagnosis
graph. IEEE Trans. Autom. Control 60(9) (2015). https://doi.org/10.1007/978-3-
642-15297-9 12

https://doi.org/10.1016/j.tcs.2008.03.030
https://doi.org/10.1007/11867340_5
https://doi.org/10.1109/TAC.2012.2200372
https://doi.org/10.1016/j.jss.2005.12.021
https://projects.laas.fr/twina/
https://doi.org/10.1007/11513988_41
https://doi.org/10.1007/s10626-016-0234-5
https://doi.org/10.1109/9.940942
https://doi.org/10.1145/333979.333987
https://doi.org/10.1145/333979.333987
https://doi.org/10.1007/s10626-011-0102-2
https://doi.org/10.1007/s10626-011-0102-2
https://doi.org/10.1109/5.21072
https://doi.org/10.1109/9.412626
https://doi.org/10.1109/FTDCS.1997.644736
https://doi.org/10.1007/3-540-45739-9_14
https://doi.org/10.1007/3-540-45739-9_14
https://doi.org/10.1007/978-3-642-15297-9_12
https://doi.org/10.1007/978-3-642-15297-9_12

Stability and Performance Bounds in
Cyclic Networks Using Network Calculus

Anne Bouillard(B)

Nokia Bell Labs France, 91620 Nozay, France
anne.bouillard@nokia-bell-labs.com

Abstract. With the development of real-time systems and of new wire-
less communication technologies having strong requirements on latencies
and reliability, there is a need to compute deterministic performance
bounds in networks. This paper focuses on the performance guarantees
and stability conditions of networks with cyclic dependencies in the net-
work calculus framework.

Two kinds of techniques exist: backlog-based techniques compute
backlog bounds for each server, and obtain good stability bounds to
the detriment of the performance bounds; flow-based techniques com-
pute performance bounds for each flow and obtain better performance
bounds for low bandwidth usage, but poor stability conditions.

In this article, we propose a unified framework that combines the
two techniques and improve at the same time stability conditions and
performance bounds in the classical linear model. To do this, we first
propose an algorithm that computes tight backlog bounds in trees for a
set of flows at a server, and then develop a linear program based on this
algorithm that computes performance bounds for cyclic networks. An
implementation of these algorithms is provided in the Python package
NCBounds and is used for numerical experiments showing the efficiency
of the approach.

Keywords: Network calculus · Cyclic networks · Linear programming

1 Introduction

New wireless communication technologies (5G) aim at providing deterministic
services, with strong requirements on buffer occupancy, latency and reliabil-
ity. For example, Time-Sensitive Networks (TSN) is part of the 802.1 working
group [27], whose potential application to industrial and automotive networks.
Critical embedded systems also become more and more complex and it becomes
a necessity to compute accurate worst-case performance guarantees.

Network Calculus is a (min,plus)-based theory that computes global per-
formance bounds from a local description of the network. These performances
are the maximum backlog at a server of end-to-end delay of a flow. Examples

A. Bouillard is part of the LINCS (www.lincs.fr).

c© Springer Nature Switzerland AG 2019
É. André and M. Stoelinga (Eds.): FORMATS 2019, LNCS 11750, pp. 96–113, 2019.
https://doi.org/10.1007/978-3-030-29662-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29662-9_6&domain=pdf
http://orcid.org/0000-0002-3345-4653
www.lincs.fr
https://doi.org/10.1007/978-3-030-29662-9_6

Stability and Performance Bounds in Cyclic Networks 97

of applications are switched network [16], Video-on-Demand [20]... It has been
very useful for analysis large embedded networks such as AFDX (Avionics Full
Duplex) [13], and more recently, it has been used to model the behavior of
TSN [21].

In most applications, such as AFDX, only feed-forward topologies are used.
One reason is the difficulty of deriving good deterministic performance bounds in
networks with cyclic dependencies. However, allowing cycles in networks would
result in a better bandwidth usage and more flexible communications [1]. As a
consequence, there is a strong need to design efficient methods for computing
precise deterministic performance bounds in cyclic networks, which is the aim
of this paper.

State of the art. Recent works have focused on computing tight performance
bounds in feed-forward networks. It is proved in [10] that the problem is NP-hard
for general feed-forward topologies. Bondorf et al. propose in [5,6] an approxima-
tion scheme based on finding a good decomposition of the problem and compute
performance bounds on this decomposition, while in [17], Geyer and Bondorf use
Recurrent Neural Networks to find this decomposition in tree networks.

A lot of efforts has been put on the analysis of sub-classes of networks,
namely sink-trees and tandems. Schmitt et al. introduce in [24] the concept of
Pay multiplexing only once (PMOO) showing at the same time the difficulties in
computing tight performance bounds in tandem networks, and exhibiting tight
bounds in sink-trees. In [10,12], it is proved that computing tight performance
bounds in tandem networks can be done in polynomial time.

The stability of a network is still an open problem in network calculus. The
most classical method for computing performance guarantees in cyclic networks
is to use the fix-point or time-stopping method first presented by Cruz in [15].
A sufficient condition for stability is obtained as the existence of a fix point in
an equation derived from the network description. This technique has recently
been applied by Amari and Mifdaoui in [2] to ring networks, using the multidi-
mensional convolution for PMOO in tandem networks first developed in [9].

Another classical result is the stability of the ring for any bandwidth usage
under 100%, which is proved by Tassiulas and Georgiadis in [26] for work-
conserving links and generalized in [18]. The stability condition in [2] is only
50% of the bandwidth usage in the uniform ring, performance in [2] are better
in small bandwidth usages.

Other research directions focus on the FIFO policy. Rizzo and Le Boudec find
sufficient condition for the stability in FIFO networks in [23]; Andrews shows
in [3,4] that the FIFO policy can be unstable at arbitrary small utilization rates.

Finally, some techniques have also been introduced to stabilize networks:
Starobinski et al. propose in [22,25] the turn-prohibition method that breaks
the cyclic dependencies by forbidding some paths of length 2. This ensures both
stability and connectivity. Another solution is to add regulators, named shapers,
after each server. In [19], Le Boudec shows that introducing shapers allows the
control of the worst-case performances.

98 A. Bouillard

Contributions. In this paper, we study the problem of stability in net-
works with cyclic dependencies in the network calculus formalism, unifying
the approaches of the time-stopping method and of the backlog-based method
of [18,26]. As in most of the above references, we restrict ourselves to the linear
model: when arrival curves are token-bucket and the service curves rate-latency.
This approach includes several steps:

1. generalizing the recent algorithm of [12] that computes exact worst-case
delays in a tandem network. It now enables to compute the worst-case backlog
of a server for any subset of flows crossing that server in tree networks. As a
matter of fact, the algorithm in [12] can be deduced from this new algorithm,
while the reverse is not true;

2. improving the time-stopping technique. Performance bounds are computed
as the solution of a linear program, allowing more expressiveness that the fix-
point method. This improvement combines with backlogged-based method,
and in particular, the stability of the ring is proven without the additional
technical assumption used in [18];

3. providing the Python package NCBounds [11] that contains this algorithm,
some variants and state-of-the-art techniques.

The rest of the paper is organized as follows: in Sect. 2, we recall the network
calculus basics. Then in Sect. 3, we give our algorithm that computes exact worst-
case backlog in tree networks. Next in Sect. 4, we present a linear program to
compute sufficient conditions for the stability of networks and prove the stability
of some networks. Finally, we compare them through numerical experiments in
Sect. 5.

2 Network Calculus Framework

In this section, we present the necessary material needed for the rest of the
paper. A more complete presentation of the network calculus framework can be
found in the reference books [8,14,18]. We use the notation Nn for {1, . . . , n}.

2.1 Data Flows and Server

Data Processes and Arrival Curves. Flows of data are represented by cumu-
lative processes. More precisely, if A represents a flow at a certain point in the
network, A(t) is the amount of data of that flow that crosses that point in
the time interval [0, t), with the convention A(0) = 0. The processes are non-
decreasing and left-continuous. We denote by F the set of such functions.

A flow A is constrained by the arrival curve α, or is α-constrained, if

∀s, t ∈ R+ with s ≤ t, A(t) − A(s) ≤ α(t − s).

In the following we will consider leaky-bucket functions: γb,r : 0 �→ 0; t �→ b + rt,
if t > 0. The burst b can be interpreted as the maximal amount of data that can
arrive simultaneously and the arrival rate r as a maximal long-term arrival rate
of data.

Stability and Performance Bounds in Cyclic Networks 99

SA D

(a) Server model

time

da
ta A

D

t

b
(t

)

d(u)

u

(b) Processes

t

da
ta

α

βdmax

b m
a
x

�max

(c) Performances

Fig. 1. Server model and worst-case performances.

Servers and Service Curves. An n-server S ⊆ Fn ×Fn (illustrated for n = 1
in Fig. 1a) is a relation between n arrival processes (Ai)n

i=1 and n departure
processes (Di)n

i=1 such that Ai ≥ Di for all i ∈ Nn. The latter inequality models
the causality of the system (no data is created inside the system).

The role of a service curve is to constrain the relation between the inputs
of a server and its outputs. Several types of service curves have been defined
in the literature (see [18]), and we here only focus on the strict service curve.
Intuitively, a strict service curve gives the minimum amount of service provided
to the arrival processes provided the system is not empty. More formally, an
interval I is a backlogged period for (A,D) ∈ F × F if ∀u ∈ I, A(u) > D(u).

We say that β ∈ F is a strict service curve for 1-server S if

∀(A,D) ∈ S, A ≥ D and ∀ bckl. per. (s, t], D(t) − D(s) ≥ β(t − s). (1)

In the following we will use the rate-latency service curves: βR,T : t �→ R(t −
T)+, where T is the latency until the server has to become active and R is its
minimal service rate after this latency.

A n-server S offers a strict service curve β if, seen as a 1-server, S offers β
to

∑m
i=1 Ai and

∑m
i=1 Di for all ((Ai), (Di)) ∈ S. We call the flow with arrival

process
∑m

i=1 Ai the aggregate flow of flows 1, . . . , n. We assume no knowledge
about the service policy in this system (except that it is FIFO per flow).

2.2 Performance Guarantees in a Server

Backlog and Delay. Let S be a 1-server and (A,D) ∈ S. The backlog of
that server at time t is b(t) = A(t) − D(t). The worst-case backlog is then
bmax = supt≥0 b(t).

We denote bmax(α, β) the maximum backlog that can be obtained for an
α-constrained flow crossing a server with strict service curve β. For example, we
have bmax(γb,r, βR,T) = b + rT if r ≤ R.

The delay of data exiting at time t is d(t) = sup{d ≥ 0 | A(t − d) − D(t)}.
The worst-case delay is then dmax = supt≥0 d(t).

We denote dmax(α, β) the maximum delay that can be obtained for an
α-constrained flow crossing a server with strict service curve β. For example,
we have dmax(γb,r, βR,T) = T + T

R if r < R.
Backlog and delay are illustrated on Figs. 1b and c.

100 A. Bouillard

Stability. Our main interest is the network stability.

Definition 1 (Server stability). Consider a server offering a strict service
curve β and crossed by an α-constrained flow. This server is said stable if its
backlogged periods are bounded.

If the service curve is rate-latency βR,T and the arrival curve leaky-bucket
γb,r, then a server is stable if and only if R > r, as the length of a backlogged
period is sup{t > 0|α(t) > β(t)} and is �max(γb,r, βR,T) := b+RT

R−r in that case.
This definition involves r and R only. The stability is insensitive to b and T ,

that only influence the server’s performance. This also explains why we restrict in
this paper to these types of curves: if a more general arrival (resp. service) curve
can be and upper bounded by some token-bucket (resp. rate-latency) functions
with the same rate, then the stability sufficient conditions that we compute in
this paper are not impacted by the approximation by token bucket and rate
latency functions.

2.3 Network Model

Consider a network composed of n servers numbered from 1 to n and crossed by
m flows named f1, . . . , fm, such that

– each server j guarantees a strict service curve βj ;
– each flow fi is αi-constrained and circulates along an acyclic path πi =

〈πi(1), . . . , πi(�i)〉 of length �i.

We call the model linear when arrival curves are leaky-bucket and the service
curve rate-latency.

For a server j, we define Fl(j) = {i | ∃�, πi(�) = j} the set of indices of the
flows crossing server j.

We denote by N this network. The induced graph GN = (Nn,A) is the
directed graph whose vertices are the servers and the set of arcs is

A = {(πi(k), πi(k + 1)) | i ∈ Nm, k ∈ N�i−1}.

As we will focus on the performances in server n, we can assume without
loss of generality that the network is connected and has a unique final strictly
connected component.

Tree Networks. If the induced graph GN has out-degree 1 for each vertex
except node n is 1 and out-degree 0 for vertex n, then N is called a tree. In
that case, we denote by j• the unique successor of server j and assume that
j < j•, with the convention n• = n + 1. The set of predecessors of a vertex is
•j = {k | k• = j}. There exists at most one path between two vertices j and k,
denoted j � k, and if there exists such a path, •jk is the predecessor of k on this
path. Figure 2 illustrates the notations of the network model.

Finally we can extend the notion of stability to networks.

Stability and Performance Bounds in Cyclic Networks 101

β1 β2 β3 β4
f1, α1

f2, α2f3, α3

Fig. 2. Example of a tree-networks with 3 flows and 4 servers. To illustrate the
notations, we have π(1) = 〈1, 2, 4〉, Fl(4) = {1, 2}, 4• = {2, 3}, 4•1 = 2, and
1 � 4 = 〈1, 2, 4〉.

Definition 2 (Local stability). A network N is locally stable if all its servers
are stable using the initial arrival curves:

∀j ∈ Nn, �max(
∑

i∈Fl(j)

αi, βj) < ∞.

Definition 3 (Global stability). A network is globally stable if the backlogged
periods of each server are uniformly bounded.

It is well-known that if a network is globally stable, then it is locally stable.
The converse is true for feed-forward networks, but not in general.

3 Worst-Case Backlog in Trees

In this section, we focus on tree networks and give an algorithm to compute
exact worst-case backlog in the linear model. Then we compare with the existing
approaches.

3.1 Algorithm

The algorithm presented in this paragraph is a generalization of the one given
in [12] with the following differences:

1. our algorithm computes a worst-case backlog at a server;
2. it can be applied to compute the worst-case backlog at a server for any set of

flows crossing this server;
3. it is valid for any tree topology.

The two algorithms and their proof are based on the same ideas, and due to the
space limitation, we do not present the complete proof here.

Theorem 1. Consider a stable tree network with n servers offering a rate-
latency strict service curves βRj ,Tj

, and m flows with leaky-bucket arrival curves
γbi,ri

. Let I be a subset of flows crossing server n. Then there exists (ρj)j∈Nn

and (ϕi)i∈Nn
such that the worst-case backlog at server n for flows in I is

B =
n∑

j=1

ρjTj +
m∑

i=1

ϕibi, (2)

where the coefficients ρj and ϕi depend only on ri and Rj and are computed by
Algorithm 1. This algorithm runs in time O(n2 + m).

102 A. Bouillard

If there is only one flow for each possible source/destination pair, then m ≤ n2/2
and the algorithm runs is O(n2).

We call I ⊆ Nm the set of flows of interest, and use the following additional
notations:

– rk
j =

∑
i∈Fl(j)\I,πi(�i)=k ri is the arrival rate at server j for all flows ending at

server k and crossing server j that are not of interest;
– r∗

j =
∑

i∈I∩Fl(j) ri is the arrival rate of the flows of interest that cross server j.

Algorithm 1. Worst-case backlog algorithm
1 begin
2 ξn

n ← r∗
n/Rn − rn

n;
3 Q = queue(•n);
4 while Q �= ∅ do
5 j = Q[0];
6 k ← n;

7 while ξk
j• >(r∗

j +
∑

�∈k•�nξ�
j•r�

j)/(Rj − ∑
�∈j�k r�

j) do

8 ξk
j ← ξk

j• ;

9 k ← •jk;

10 for � from j to k do ξ�
j ←(r∗

j +
∑

�′∈k•�n ξ�′
j•r�′

j)/(Rj − ∑
�∈j�k r�′

j);

11 Q ← enqueue(dequeue(Q, j), •j);
12 for j from 1 to n do ρj ← r∗

j +
∑

�∈j�n ξ�
jr

�
j ;

13 for i from 1 to m do
14 if i ∈ I then ϕi ← 1 ;

15 else ϕi ← ξ
πi(�i)

πi(1)
;

Proof (Sketch). The proof is in two steps. First we show that there is a worst-case
trajectory (i.e. a set of arrival and departure processes satisfying all arrival and
service curve constraints and reaching the worst-case backlog at a time denoted
tn+1 = tn•) satisfying the following properties:

(P1) The service policy is SDF (shortest-to-destination-first): priority is given
to flows that stop at the server with the smallest number.

(P2) For each server j, there is a unique backlogged period (tj , tj•], where the
service offered is as small as possible. After and before this backlogged
period, the server transmits data instantaneously.

(P3) The arrival cumulative process of flow fi entering the system at server j
(i.e. πi(1) = j) is maximal from tj , the start of the backlogged period of
server j (it is αi(t−tj) for all t > tj and 0 otherwise. Intuitively, the backlog
does not increase if the cross-traffic is delayed).

(P4) Data from the flows of interest in I have the lowest priority and are instan-
taneously served by server j at time tj• (if they cross server j) and are all
in server n at time tn+1.

Stability and Performance Bounds in Cyclic Networks 103

The second step is to find a worst-case trajectory. The first step allows us to
reduce the space of the trajectories, and in fact only the dates (tj)j∈Nn

remain
to optimize. This is done by a backward induction on the servers. The choice of
date tj is equivalent to choosing which flows (hence the quantity of data) will
be transmitted instantaneously by server j to its successor, so that the backlog
in the final server is maximized. �

The worst-case delay of a flow (main results of [12]) can be deduced from the
worst-case backlog when I is reduced to this flow.

Corollary 1. Suppose that flow 1 crosses server n. Then the worst-case delay
of flow 1 starting at server j and ending at server n is

Δ =
B − b1

r1
+

ξn
j b1

r1
,

where B and ξn
j are the worst-case backlog and coefficient obtained from

Algorithm 1 when I = {1}.

Interpretation of ξ. The parameter ξ�
j can be interpreted as the contribution of

data crossing server j and exiting at server � contribute to increase the backlog
of the flows of interest at server n. For example, consider server n, and suppose
that for the flows not of interest, the backlog transmitted from server n − 1 to
server n and from flows entering at server n at time tn−1 is b. Denote by rn

n

the arrival rate of these flows. These data have the highest priority. All data
from these flows are served after a time t = tn − tn−1 = Tn + b+rn

nTn

Rn−rn
n

(we have
b + rn

nt = Rn(t − T)+). During this time, data created by the flows of interest,
at rate r∗

n, can be divided in two parts: r∗
nTn induced by server n’s latency

and r∗
n

b+rn
nTn

Rn−rn
n

induced by the interference of the other flows, which explains the

equality ξn
n = r∗

n

Rn−rn
n
. The interpretation is similar for the other servers. The

complexity of the formula and the comparison of line 7 corresponds to searching
the downstream bottleneck.

3.2 Backlog and Arrival Curves for Aggregation of Flows

In this paragraph, we show how to use our algorithm to compute arrival curves for
the aggregation of flows, and how this can be used to improve the performances
bounds computed: Theorem 2 is the base for our backlogged based approach and
Theorem 3 improves the performance bounds by combining flows and backlog.

Theorem 2. With the same notations and assumptions as in Theorem 1, the
arrival curve of the departure functions from server n for flows in I is γB,

∑
i∈I ri

.

This theorem is a generalization to networks and for several flows of the
classical result that characterizes the arrival curve of a departure process (see
[8, Theorem 5.3] for example).

Consider a tree network as above and the following assumptions:

104 A. Bouillard

– I = {f1, . . . , fk} is a set of flows all entering the network at server j, that
have respective arrival curves γbi,ri

. Data of each flow fi can arrive at rate at
least ri independently of the other flows;

– the arrival process of the aggregation of the flows in I is constrained by the
arrival curve γb,r, with r =

∑
i∈I ri;

– B is a performance of the tree network (backlog at its root or delay of a flow),
and (ϕi)i∈I are the computed with Algorithm 1.

In the rest of the paper, the assumption that each flow fi can arrive at rate ri

independently of the other flows is satisfied, because the servers can serve data
instantaneously and any service policy is possible.

Theorem 3. With the notations and assumptions above,

B ≤ sup{
k∑

i=1

ϕixi + C | xi ≤ bi and
∑

i∈I

xi ≤ b},

where C is a constant including the contribution of all flows not in I and of all
latencies.

Proof. From property (P3), the arrival processes Ai of fi ∈ I are maximal from
time tj , the start of backlogged period of server j. Then data from flow fi can
arrive at rate ri at least. As this is also the maximal long-term arrival rate, there
exists xi ≤ bi such that Ai(t)−Ai(tj) ≤ xi + ri(t− tj), and that lim supt Ai(t)−
Ai(tj) − ri(t − tj) ≥ xi. We then have the inequality B ≤ ∑k

i=1 ϕixi + C.
But we also have

∑

i∈I

Ai(t) − Ai(tj) ≤ b +
∑

i∈I

ri(t − tj),

so
∑

i∈I xi ≤ b. As a consequence, the performance of the system can be bounded
by B ≤ sup{∑k

i=1 ϕixi + C | xi ≤ bi and
∑

i∈I xi ≤ b}. �

3.3 Examples and Comparison with the State of the Art

We compare our performance bounds with the state of the art for two models
that have been widely studied in the literature: the sink-tree from [7,24] and the
tandem networks (PMOO technique from [2,9]).

Sink-trees are tree topologies where the destination of every flow is the root
(node n). In this special case, each iteration of the external loop (lines 5–11)
can be performed in constant time (there is only one test to perform). Moreover,
the number of flows is at most the number of servers. As a consequence, our
algorithm can be performed in O(n).

To compute the maximum backlog at the root, every flow is a flow of interest,
so ϕi = 1 for each flow i and ρj = r∗

j =
∑

i∈Fl(j) ri. It is easy to check that the
formula is the same as in [7, Theorem 14].

Stability and Performance Bounds in Cyclic Networks 105

βR,T β2R,T
f1

f2 βR,T βR,T
f5
f3

f4

Fig. 3. Left: sink-tree, Right: tandem.

Table 1. Comparison of delay bounds.

ξ22 ξ21 ξ11 Algorithm 1 [9, Cor. 25] [7, Th. 18, 15] [24, Sec. V]

f1
r

2R−r
r
R

2r
2R−r

T + b
R

+ b+rT
2R−r

2T + 2b+rT
R

2T + 2b+rT
R

T + b
R

+ b+rT
2R−r

f2
r

2R−r
r

2R−r
r2

(R−r)(2R−r)
2b+(2R+r)T

2R−r
∞ 2b+(2R+r)T

2R−r
∞

f3
r

R−r
r

R−r
r

R−r
2(TR+b)

R−r
2(TR+b)

R−r
∞ ∞

f4
r

R−r
r

R−r
(r

R−r
)2

R(TR+b)

(R−r)2
+ b

R−r
∞ ∞ ∞

Table 1 shows the values of ξj
i for the two examples of Figs. 3 and flows

f1, . . . , f4, where all flows are constrained by the arrival curve γb,r, and the
comparison of the worst-case delay obtained in this case against other techniques.
We write “∞” when no specific mean is provided to compute de performance.

We see that our algorithm is strictly more general than the study of some
specific topologies in several ways: of course we can handle tree topologies that
strictly contains tandem and sink-tree networks. But, it can also compute per-
formances for flows of interest that do not cross all the servers, which only [7]
does for sink-trees.

The PMOO bound gives the tight performance in the tandem network, but
not in the sink-tree. The tandem here is quite specific, as all the coefficients
ξj
i are the same. Our guess is that the PMOO formula is an upper bound of

the bounds found by our algorithm, obtained by replacing ξj
i by maxi,j ξi,j . So

equality occurs when all the coefficients are the same.

4 Computing Performances in Cyclic Networks

In this section, we generalize the fix-point method, also known as time-stopping,
that is used to compute the worst-case performance bounds in networks with
cyclic dependencies. The principle of this method is to split the paths of the flows
into sub-paths in order to obtain an acyclic network, for which it is possible to
compute performance bounds, in particular output arrival curves at the end of
each sub-path. Then to retrieve performance guarantees of the original network,
a fix-point on the arrival curves is computed: an output arrival curve at the end
of a sub-path is the arrival curve at the start of the next sub-path. Details on
this approach can be found in [8,18].

In this section we generalize this approach to take advantage of the results
derived in Sect. 3.2. In Sect. 4.1, we present a linear program computing worst-
case performance bounds and in Sect. 4.2, we show the stability of the ring and
slightly more general networks.

106 A. Bouillard

1

2

3

4
f1

f2
f3

f4

Fig. 4. Ring network with n = 4.

1 2 3 4(f3, 1)(f3, 2)
(f2, 2) (f2, 1)

f1

(f4, 1)(f4, 2)

Fig. 5. Uniform tandem network with n = 4.

4.1 Decomposition in Trees and Linear Program

We apply the time-stopping method when decomposing the network into trees.
The graph of the network GN can be transformed into a forest by removing a
set of arcs A

r. In the network, each flow fi that traverse removed arcs is split
into several flows (fi, 1), (fi, 2), . . . , (fi,mi) of respective paths in (Ni,A − A

r),
πi,1 = 〈πi(1), . . . , πi(k1)〉, πi,2 = 〈πi(k1 + 1), . . . , πi(k2)〉,..., πi,mi

= 〈πi(kmi
+

1), . . . , πi(�i)〉, where (πi(kj+1), πi(kj)) ∈ A
r. Figure 4 represents a ring of length

4. One can choose A
r = (4, 1), and flows f2, f3, f4 can be decomposed into (fi, 1)

and (fi, 2), i ∈ {2, 3, 4}, as depicted in Fig. 5.
Consider NFF, the feed-forward network obtained after this transformation

and let us focus on two kinds of arrival curves:

– the arrival curve of each flow (fi, k), denoted αi,k;
– the arrival curve of the aggregation of flows crossing each removed arc of Ar,

and denoted λa, and that we call arrival curve of arc a.

If all these arrival curves are known and finite, then the performance bounds can
be computed for every flow.

In the original network N , all these arrival curves are a priori not known,
except αi,1 = αi, but we can write equations where these arrival curves are the
unknowns. More precisely, suppose that the network is stable and denote αi,k

the best arrival curve (that is, the minimum arrival curves among all the possible
arrival curves) of flow k at server pi,k(1) and λa the best arrival curve of arc a.
From Theorems 2 and 3, there exist functions Fi,k and Fa such that

αi,k ≤ Fi,k((αs)s∈S , (λa)a∈Ar) and λa ≤ Fi,k((αs)s∈S , (λa)a∈Ar),

with S = {(i, k), i ∈ Nm, 1 < k ≤ mi}.
Using vector notation, with (α,λ) = ((αs)s∈S , (λa)a∈Ar) and F =

(Fs)s∈S∪Ar , one can write, (α,λ) ≤ F(α,λ) and the following theorem holds.

Stability and Performance Bounds in Cyclic Networks 107

Theorem 4. Set C = {(α,λ) | (α,λ) ≤ F(α,λ)} and (α̃, λ̃) = sup{(α,λ) |
(α,λ) ∈ C}. If (α̃, λ̃) is finite, then N is globally stable and for all s, α̃s is an
arrival curve for flow s and for all a ∈ A

r, λ̃a for arc a.

The proof of this theorem is nearly the same as that of [8, Theorem 12.1].
In the linear model, the arrival rate of each arrival curve remains the same as

the original flow, and we only have to compute the burst bs of each flow s, and
Ba is the backlog at each arc in A

r. A sufficient condition for the stability can be
expressed as a linear problem. Consider L the following set of linear constraints:

L =

⎧
⎪⎪⎨

⎪⎪⎩

bs ≤ ∑
s′∈S ϕs

s′xs
s′ + Cs, ∀s ∈ S

Ba ≤ ∑
s′∈S ϕa

s′xa
s′ + Ca, ∀a ∈ A

r

0 ≤ xs
s′ ≤ bs′ , ∀s′ ∈ S, s ∈ S ∪ A

r
∑

s′∈a xs
s′ ≤ Ba, ∀a ∈ A

r, s ∈ S ∪ A
r

⎫
⎪⎪⎬

⎪⎪⎭

,

where we write (i, k) ∈ a if flows (fi, k − 1) and (fi, k) have been split by arc
a and where ϕs

s′ are the coefficient obtained by Algorithm 1 with flow(s) of
interests s ∈ S ∪ A

r and Cs the contribution of the latencies.

Theorem 5. If L is bounded, then the system is stable.

This is a rephrasing of Theorem 4, using the linear constraints given in Theo-
rem 3: constraints {bs ≤ ∑

s′∈S ϕs
s′xs

s′ + Cs, 0 ≤ xs
s′ ≤ bs′ ,∀s′ ∈ S,

∑
s′∈a xs

s′ ≤
Ba,∀a ∈ A

r} represent the constraints for computing the backlog of flow s, as
in Theorem 3 applied to flow s, and similarly {Ba ≤ ∑

s′∈S ϕa
s′xa

s′ + Ca, 0 ≤
xa

s′ ≤ bs′ ,∀s′ ∈ S,
∑

s′∈a′ xa
s′ ≤ Ba′ ,∀a′ ∈ A

r} are the constraints coming from
Theorem 3 applied to computing the worst-case backlog at arc a.

A linear program to compute a performance bound of the system (worst-case
delay or worst-case backlog) is then

Maximize :
∑

s′∈S ϕsys + C
Constraints :

∑
s∈a ys ≤ Ba, ∀a ∈ A

r,
0 ≤ ys ≤ bs, ∀s′ ∈ S,
L.

The linear program has O(c2) variables and constraints, with c = |S|+ |Ar|, and
c constraints require using the quadratic Algorithm 1, which can be costly. The
next paragraph shows two ways to relax the problem to respectively O(|S|) and
O(|Ar|) variables and constraints.

Flow-Based and Backlog-Based Linear Programs. The linear program we
just wrote combines two techniques usually used separately for cyclic networks:
the first one uses the time-stopping technique to compute the characteristics of
each flow at servers it crosses, and we call them flow-based. The second one
computes worst-case backlog in each server, similar to [18,26], and we call them
backlog-based.

The set L can be simplified into LF and LB to derive respectively flow-
based and backlog-based bounds: it suffices to respectively keep the flow related

108 A. Bouillard

constraints (first and third lines of L) for LF and the arc related constraints
(second and fourth lines of L) for LB . Of course, larger performance bounds
will be obtained, but we will see in Sect. 5 that these linear programs already
improve the flow-based or backlog-based bounds.

As ϕs
s′ are non-negative, variables xs

s′ become useless, and we finally obtain:

LF =
{

bs ≤ ∑
s′∈S ϕs

s′xs
s′ + Cs,∀s ∈ S

0 ≤ xs
s′ ≤ bs′∀s′ ∈ S, s ∈ S ∪ A

r

}

=
{

bs ≤ ∑
s′∈S ϕs

s′bs
s′ + Cs,∀s ∈ S

}
,

and

LB =
{

Ba ≤ ∑
s′∈S ϕa

s′xa
s′ + Ca,∀a ∈ A

r
∑

s′∈a xs
s′ ≤ Ba∀a ∈ A

r, s ∈ S ∪ A
r

}

=
{

Ba ≤ ∑
a′∈Ar (maxs′∈a′ ϕa

s′)Ba′ + Ca,∀a ∈ A
r
}

.

4.2 Stability of the Ring

Consider a ring with n servers. Its induced graph is G with A = {(i, i + 1), i ≤
n − 1} ∪ {(n, 1)}. The transformation into a tree is a tandem network obtained
by removing arc (n, 1). Flows are decomposed in either one flow if πi(1) < πi(�i)
or two flows otherwise: flow (fi, 1) has path 〈πi(1), . . . , n〉 and flow (fi, 2) has
path 〈1, . . . , πi(�i)〉.
Theorem 6. The ring is stable under local stability condition.

Proof. The ring is stable if the set LB is bounded, that is, if ϕ
(n,1)
s < 1 for all

s ∈ S = {(i, 2) | ∀i such that πi(1) > πi(�i)}.
To compute Ba, the flows of interest are flows (i, 1), so ϕa

(i,2) = ξ
πi(�i)
1 .

Observe from Algorithm 1 how ξ�
j are computed: because of the local stability,

Rn > rn
n +r∗

n, so ξn
n < 1. Now assume that ξk

j• < 1 (lines 7–9). Either ξk
j = ξk

j• <

1, or ξ�
j = (r∗

j +
∑

�′∈k•�n ξ�′
j•r�′

j)/(Rj −∑
�∈j�k r�′

j) ≤ (r∗
j +

∑
�′∈k•�n r�′

j)/(Rj −
∑

�∈j�k r�′
j) < 1, from the local stability condition. As a consequence, for all j

and �, ξ�
j < 1 and maxs∈S ϕ

(n,1)
s < 1, which ends the proof. �

This result has already been proved under stronger assumptions: in [26],
servers are constant-rate servers and in [18], servers have a maximal service
rate. Our method is not specific to the ring topology, so we can hope to improve
the stability conditions for more general topologies.

Stability of Hierarchical Cycles. A straightforward generalization is when
the network only has disjoint cycles: each non trivial strongly connected com-
ponent of the network is a ring. In this case, the stability can be established
by induction: perform a topological ordering of the cycles, and compute perfor-
mances at the outputs of each cycle in this topological order.

Stability and Performance Bounds in Cyclic Networks 109

Unfortunately, our linear program is not enough to prove the stability of
other classes of networks, and we will see in the next section that the stability
condition established for a network composed of two rings is stronger than the
local stability.

5 Numerical Evaluation

In this section, we compare our approach with the state of the art on several exam-
ples. The first one is the ring already defined. Indeed, the ring is the topology which
has been studied in [2] and [26]. To demonstrate the generality of our algorithm,
we also take the example of a network composed of two rings, but we can only com-
pare this example with the most naive methods of [15,18]. The different approaches
have been implemented in the Python Package NCBounds [11]. Note that the imple-
mentation of the package aims at clarity rather than efficiency.

The following approaches are compared.

– SFA: the fix-point approach described in [18, Section 6.3.2] computes a fix-
point in the performances of each flow at each server it crosses;

– PMOO: the fix-point approach described in [2] that is exemplified on the
uniform ring;

– BB: the backlog bound of [18, Theorem 6.4.1];
– LPF: the flow-based linear programming approach using the LF (that can

be compared to SFA and PMOO);
– LPB: the backlog-based linear programming approach using LB (that can be

compared to BB);
– LPF+B: the linear programming approach using all constraints L.

5.1 Uniform Ring Example

Consider a uniform ring network as described in Fig. 4 composed of n servers and
n flows of length n. Each server has a service rate R = 100Mb.s−1 and latency
of 1ms, the maximum burst of each flow is 1Mb. The arrival rate depends on
the utilization rate u ∈ [0, 1] and is r = uR

n .
We first compare the stability region for each method that do not stabilize

the ring, namely SFA, PMOO and LPF. Figure 6a depicts the stability region
when the number of servers varies from 2 to 100. As expected, PMOO provides
better bounds than SFA, and LPF improves the stability region. As conjectured
in [2], the stability region with PMOO converges to a utilization rate of 0.5.
The stability region of LPF seem to converge to 2 − √

2 � 0.58, hence already
providing approximately 18% improvement of the stability region over flow-based
methods.

Now we fix the number of servers n = 10, and compare the worst-case back-
logs of flow 1 at server 10 (Fig. 6b). We choose backlog over delay because BB
is more suited to this performance, and computing delays would lead to even
worse performances. We observe the same stability bounds as above for the three
flow-based methods. The stability of the ring is experimentally verified by the

110 A. Bouillard

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Number of servers in the ring

U
ti

liz
at

io
n

ra
te

LPF
PMOO

SFA

(a) Stability sufficient conditions.

0 0.2 0.4 0.6 0.8 1100

102

104

Utilization rate
B

ac
kl

og
up

pe
r

bo
un

d LPF+B
LPF

PMOO

LPB
BB

SFA

(b) Backlog bound for 10 servers.

Fig. 6. Comparisons with the uniform ring.

three other methods. The more constraints we add in the linear programming
approach, the tighter the backlog bound, hence LPF+B is a better bounds than
LPF and LPB. Second, LPF also beats PMOO. This could be seen as surpris-
ing as PMOO computes tight bounds for uniform tandems. The difference can
be explained by the more general applicability of Algorithm 1 stated in Sect. 3.3:
exact worst-case performances can be computed for a flow that do not cross all
servers, hence the network is decomposed into fewer elements, which induces
less pessimism in the performance bounds. LPB also beats BB. This is quite
logical, as the formula uses fewer parameters that the linear program.

5.2 Two-Ring Example

We now consider a network composed of two rings of length n, as depicted in
Fig. 7a with n = 4. Each flow has length n and circulates along one of the two
rings (2n flows), and the description of the servers and flows is the same as
above, except that the central server has service rate 2R. Figure 7b compares
the performances obtained with the three LP methods against SFA, the only
other method that can be applied to non-ring networks. We see that the stability
region and the performances are improved. In this case, we do not obtain the
stability (which is an open issue), but LPF+B strictly improve the stability
region (u ≤ 0.76) of both LPF (u ≤ 0.75) and LPB (u ≤ 0.73), while the two
latter methods do not compare performance-wise.

Backlog Vs delay. Finally, Figs. 8a and 8b depict the delays of flow 1 in the
same experimental settings as above. From Corollary 1, the delay is obtained
from the backlog by a linear transformation. Consequently, the comparisons
remain similar. Still, one can notice that the backlog-based bound is not very
good at low utilization rate.

Stability and Performance Bounds in Cyclic Networks 111

(a) Two-ring network.

0 0.2 0.4 0.6 0.8100

101

102

103

Utilization rate

B
ac

kl
og

bo
un

d
(b

)

LPF+B
LPF
LPB
SFA

(b) Backlog bound for n = 5.

Fig. 7. Comparisons with the two-ring network.

0 0.2 0.4 0.6 0.8 1

100

102

Utilization rate

D
el

ay
bo

un
d

(d
)

LPF+B
LPF

PMOO

LPB
SFA

(a) Uniform ring network with n = 10.

0 0.2 0.4 0.6 0.8

101

102

103

Utilization rate

D
el

ay
bo

un
d

(d
)

LPF+B
LPF
LPB
SFA

(b) Two-ring network with n = 5.

Fig. 8. Delay bounds.

6 Conclusion

In this article, we gave an algorithm to compute tight worst-case performances
in tree-networks and a linear program to compute worst-case performances in
general topologies. This approach outperforms the existing approaches both for
the stability condition and the performances.

One open question is the choice of the decomposition of the network, the
influence of this choice on the stability region and bounds obtained. One way
to choose a good decomposition could be to follow the approach of [17] and use
neural networks.

Finally, we assumed arbitrary multiplexing, and future work includes adapt-
ing the result to specific service policies, such as FIFO, priorities, or generalized
processor sharing.

References

1. Amari, A., Mifdaoui, A., Frances, F., Lacan, J., Rambaud, D., Urbain, L.: AeroR-
ing: avionics full duplex ethernet ring with high availability and QoS management.
In: ERTS (2016)

112 A. Bouillard

2. Amari, A., Mifdaoui, A.: Worst-case timing analysis of ring networks with cyclic
dependencies using network calculus. In: RTCSA, pp. 1–10 (2017). https://doi.
org/10.1109/RTCSA.2017.8046319

3. Andrews, M.: Instability of FIFO in session-oriented networks. In: Proceedings of
SODA 2000 (2000)

4. Andrews, M.: Instability of FIFO in the permanent sessions model at arbitrarily
small network loads. In: Proceedings of SODA 2007 (2007)

5. Bondorf, S., Nikolaus, P., Schmitt, J.B.: Quality and cost of deterministic net-
work calculus - design and evaluation of an accurate and fast analysis. In: ACM
SIGMETRICS (2017). https://doi.org/10.1145/3078505.3078594

6. Bondorf, S., Nikolaus, P., Schmitt, J.B.: Quality and cost of deterministic network
calculus - design and evaluation of an accurate and fast analysis. Proc. ACM Meas.
Anal. Comput. Syst. (POMACS) 1(1), 34 (2017). https://doi.org/10.1145/3084453

7. Bondorf, S., Schmitt, J.B.: Boosting sensor network calculus by thoroughly bound-
ing cross-traffic. In: Proceedings of INFOCOM 2015 (2015). https://doi.org/10.
1109/INFOCOM.2015.7218387

8. Bouillard, A., Boyer, M., Corronc, E.L.: Deterministic Network Calculus: From
Theory to Practical Implementation, Wiley-ISTE (2018)

9. Bouillard, A., Gaujal, B., Lagrange, S., Thierry, E.: Optimal routing for end-to-
end guarantees using network calculus. Perform. Eval. 65(11–12), 883–906 (2008).
https://doi.org/10.1016/j.peva.2008.04.008

10. Bouillard, A., Jouhet, L., Thierry, E.: Tight performance bounds in the worst case
analysis of feed forward networks. In: INFOCOM 2010 (2010). https://doi.org/10.
1109/INFCOM.2010.5461912

11. Bouillard, A.: Python package ncbounds (2019). https://github.com/nokia/
NCBounds

12. Bouillard, A., Nowak, T.: Fast symbolic computation of the worst-case delay in
tandem networks and applications. Perform. Eval. 91, 270–285 (2015). https://
doi.org/10.1016/j.peva.2015.06.016

13. Boyer, M., Navet, N., Olive, X., Thierry, E.: The PEGASE project: precise and
scalable temporal analysis for aerospace communication systems with network cal-
culus. In: ISOLA 2010 (2010). https://doi.org/10.1007/978-3-642-16558-0 13

14. Chang, C.S.: Performance Guarantees in Communication Networks. TNCS.
Springer-Verlag, London (2000). https://doi.org/10.1007/978-1-4471-0459-9

15. Cruz, R.: A calculus for network delay, part II: network analysis. IEEE Trans. Inf.
Theor. 37(1), 132–141 (1991). https://doi.org/10.1109/18.61110

16. Cruz, R.: Quality of service guarantees in virtual circuit switched networks. IEEE
J. Sel. Areas Commun. 13, 1048–1056 (1995). https://doi.org/10.1109/49.400660

17. Geyer, F., Bondorf, S.: DeepTMA: predicting effective contention models for net-
work calculus using graph neural networks. In: (INFOCOM) (2019). https://doi.
org/10.1109/INFOCOM.2019.8737496

18. Le Boudec, J.-Y., Thiran, P. (eds.): Network Calculus. LNCS, vol. 2050. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45318-0

19. Le Boudec, J.: A theory of traffic regulators for deterministic networks with applica-
tion to interleaved regulators. IEEE/ACM Trans. Netw. 26(6), 2721–2733 (2018).
https://doi.org/10.1109/TNET.2018.2875191

20. McManus, J.M., Ross, K.W.: Video-on-demand over ATM: constant-rate transmis-
sion and transport. IEEE J. Sel. A. Commun. 14(6), 1087–1098 (1996). https://
doi.org/10.1109/49.508280

https://doi.org/10.1109/RTCSA.2017.8046319
https://doi.org/10.1109/RTCSA.2017.8046319
https://doi.org/10.1145/3078505.3078594
https://doi.org/10.1145/3084453
https://doi.org/10.1109/INFOCOM.2015.7218387
https://doi.org/10.1109/INFOCOM.2015.7218387
https://doi.org/10.1016/j.peva.2008.04.008
https://doi.org/10.1109/INFCOM.2010.5461912
https://doi.org/10.1109/INFCOM.2010.5461912
https://github.com/nokia/NCBounds
https://github.com/nokia/NCBounds
https://doi.org/10.1016/j.peva.2015.06.016
https://doi.org/10.1016/j.peva.2015.06.016
https://doi.org/10.1007/978-3-642-16558-0_13
https://doi.org/10.1007/978-1-4471-0459-9
https://doi.org/10.1109/18.61110
https://doi.org/10.1109/49.400660
https://doi.org/10.1109/INFOCOM.2019.8737496
https://doi.org/10.1109/INFOCOM.2019.8737496
https://doi.org/10.1007/3-540-45318-0
https://doi.org/10.1109/TNET.2018.2875191
https://doi.org/10.1109/49.508280
https://doi.org/10.1109/49.508280

Stability and Performance Bounds in Cyclic Networks 113

21. Mohammadpour, E., Stai, E., Mohiuddin, M., Boudec, J.L.: Latency and backlog
bounds in time-sensitive networking with credit based shapers and asynchronous
traffic shaping. In: 30th International Teletraffic Congress, pp. 1–6. ITC (2018).
https://doi.org/10.1109/ITC30.2018.10053

22. Pellegrini, F.D., Starobinski, D., Karpovsky, M.G., Levitin, L.B.: Scalable cycle-
breaking algorithms for gigabit ethernet backbones. In: Proceedings IEEE INFO-
COM (2004). https://doi.org/10.1109/INFCOM.2004.1354641

23. Rizzo, G., Boudec, J.Y.L.: Stability and delay bounds in heterogeneous networks
of aggregate schedulers. In: Proceedings of INFOCOM 2008 (2008). https://doi.
org/10.1109/INFOCOM.2008.208

24. Schmitt, J., Zdarsky, F., Fidler, M.: Delay bounds under arbitrary multiplexing:
when network calculus leaves you in the lurch ... In: INFOCOM 2008 (2008).
https://doi.org/10.1109/INFOCOM.2008.228

25. Starobinski, D., Karpovsky, M.G., Zakrevski, L.: Application of network calculus
to general topologies using turn-prohibition. In: Proceedings IEEE INFOCOM
(2002). https://doi.org/10.1109/INFCOM.2002.1019365

26. Tassiulas, L., Georgiadis, L.: Any work-conserving policy stabilizes the ring with
spatial re-use. IEEE/ACM Trans. Netw. 4(2), 205–208 (1996). https://doi.org/10.
1109/INFCOM.1994.337631

27. Time-sensitive networking task group. http://www.ieee802.org/1/pages/tsn.html

https://doi.org/10.1109/ITC30.2018.10053
https://doi.org/10.1109/INFCOM.2004.1354641
https://doi.org/10.1109/INFOCOM.2008.208
https://doi.org/10.1109/INFOCOM.2008.208
https://doi.org/10.1109/INFOCOM.2008.228
https://doi.org/10.1109/INFCOM.2002.1019365
https://doi.org/10.1109/INFCOM.1994.337631
https://doi.org/10.1109/INFCOM.1994.337631
http://www.ieee802.org/1/pages/tsn.html

ParetoLib: A Python Library
for Parameter Synthesis

Alexey Bakhirkin, Nicolas Basset, Oded Maler,
and José-Ignacio Requeno Jarabo(B)

VERIMAG, CNRS and Université Grenoble-Alpes, Grenoble, France
{alexey.bakhirkin,bassetni,requenoj}@univ-grenoble-alpes.fr

Abstract. This paper presents ParetoLib, a Python library that imple-
ments a new method for inferring the Pareto front in multi-criteria opti-
mization problems. The tool can be applied in the parameter synthesis
of temporal logic predicates where the influence of parameters is mono-
tone. ParetoLib currently provides support for the parameter synthesis
of standard (STL) and extended (STLe) Signal Temporal Logic speci-
fications. The tool is easily upgradeable for synthesizing parameters in
other temporal logics in the near future. An example illustrates the usage
and performance of our tool. ParetoLib is free and publicly available on
Internet.

1 Introduction

This paper presents ParetoLib, a Python library that implements a new method
for inferring the Pareto front for multi-criteria optimization problems: this front
is the boundary between the set X of valid solutions and its complement X in a
multi-dimensional parameter space X. We consider that the predicate that holds
true in X and false in X is only accessible via an oracle that answers membership
queries �x ∈ X?. Another assumption is that the influence of every parameter
value is monotone, i.e., increasing a parameter value can change the value of the
predicate from “false” to “true”, but not the other way around, which is the case
for a range of optimization and parameter synthesis problems.

Given such a setting, ParetoLib learns a rectangular approximation of the
Pareto front by repeatedly calling the oracle on different parameter valuations.
The algorithm implemented in ParetoLib is based on a generalization of binary
search to multi-dimensional parameter spaces. For a somewhat contrived exam-
ple, a set of valid solutions defined by the polynomial inequality a2 + b2 ≥ 1 and
under the assumption that a ≥ 0, b ≥ 0, ParetoLib constructs an approximate
representation of the Pareto front that corresponds to the surface of the sphere
portion a2 + b2 = 1, a ≥ 0, b ≥ 0.

The theory associated to the present tool paper is presented in [3]. A
preliminary version of the algorithm was proposed in [8]. The algorithm defined

Oded Maler passed away at the beginning of September 2018. This work was initiated
by him [8] continued with and finished by the rest of us.

c© Springer Nature Switzerland AG 2019
É. André and M. Stoelinga (Eds.): FORMATS 2019, LNCS 11750, pp. 114–120, 2019.
https://doi.org/10.1007/978-3-030-29662-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29662-9_7&domain=pdf
http://orcid.org/0000-0001-5111-8357
https://doi.org/10.1007/978-3-030-29662-9_7

ParetoLib: A Python Library for Parameter Synthesis 115

there was implemented in [11], and applied to parameter synthesis for Signal
Temporal Logic (STL [9]) in [12,13]. ParetoLib implements three main contri-
butions with respect to these works. First, our tool implements a new version
of the algorithm that converges faster to the Pareto front than the previous one
in multi-dimensional spaces with dimension higher than 3. Second, ParetoLib
supports parallel computation. Third, our tool provides a generic interface for
connecting with external tools that will act as oracles for guiding the learning
process. Therefore, ParetoLib can be easily extended to implement parameter
synthesis in different domains based on different decision procedures.

ParetoLib currently implements parameter synthesis for standard and
extended STL specifications [2]. Given a parameterized STL specification (e.g.,
F[0,a]x ≤ b) and an execution trace of some system, ParetoLib finds the optimal
combinations of parameters (i.e., a and b), such that the trace satisfies the for-
mula. The tool relies on an external STL runtime monitor. An example with a
extended STL specification illustrates the usage and performance of our tool.

2 ParetoLib Library

2.1 Main Features

ParetoLib is a Python library that is free and publicly available on Internet [4]. It
has been implemented following the software engineering standards, suggestions
and best practices for this language, including a brief documentation and a set of
illustrative examples of how to use it. The library is compatible with Python 2.7,
3.4 or higher; and it is PEP 8 compliant. The code has been exhaustively tested,
reaching a coverage of more than 90% of the code in the module devoted to
the sequential approximation of the monotone partitions and boundary. It also
supports multi-core CPUs in order to take advantage of concurrent processing.
ParetoLib implements the original discovery algorithm presented in [8,11] as
well as a new smarter version shown in [3]. The algorithm introduced in [3]
outperforms the previous one in inferring the Pareto front of multi-dimensional
spaces when the number of dimensions is higher than 3. The new method still
suffers from the curse of dimensionality, but it can be used to extract information
for high dimensional models by combining solutions from several low-dimensional
sub-problems (see [12,13] for a similar approach).

The design of ParetoLib separates the interface to the external decision pro-
cedure from the implementation of the multi-dimensional search (Fig. 1). The
implementation of multi-dimensional search is unique, and it is responsible for
constructing the approximation of the Pareto front, based on which parameter
valuations make the predicate valid and which do not. Parameter valuations
are treated abstractly, as points in multi-dimensional space, disregarding their
positions and roles in the predicate.

An adaptor to an external decision procedure, named oracle, is responsible
for getting from the user a parameterized predicate, extracting from it the set
of parameters, and, given a parameter valuation, instantiating the parameters
and sending the resulting query to the decision procedure. It is also responsible

116 A. Bakhirkin et al.

Fig. 1. Diagram showing the interaction between the tool components.

for relaying extra inputs to the decision procedure when necessary. For example,
when using ParetoLib for STL parameter synthesis, the oracle is responsible for
relaying the input trace(s) to the runtime monitor. ParetoLib allows the users
to implement their own oracles and has several built in:

– Two oracles that interface with STL runtime monitors: OracleSTL interacts
with AMT 2.0 [10], and OracleSTLe interacts with StlEval [1]. These oracles
are used to perform STL parameter synthesis.

– Two oracles that interface with built-in procedures: OracleFunction checks
whether a point satisfies a set of polynomial constraints, and OraclePoint
stores a cloud of pre-defined Pareto points in a NDTree [7]. They may be
used for test purposes.

2.2 Interaction with Signal Temporal Logic

The StlEval [1] tool is selected as the STL runtime monitor for running the
experiments of parameter synthesis for STL formulas in ParetoLib (Sect. 3).
StlEval allows to evaluate formulas in an extension of STL [2] over signals with
piecewise-constant interpolation. It also allows to compute robustness [5,6] of
STL formulas. Its specification language supports a number of operations:

– standard STL operators: “always”, “eventually”, “until”, etc;
– pre-processing operations: scaling, adding, subtracting, shifting signals, etc;
– computing minimum and maximum of a signal over a sliding window;

For example, the formula: (<= (On (0 10) (- (Max x) (Min x))) 0.1) asserts
that the difference between the maximum and minimum of the signal x on
the interval from now to 10 time points into the future is not greater than
0.1. Although the particulars of the specification language are not important

ParetoLib: A Python Library for Parameter Synthesis 117

for ParetoLib, in the experiments our specifications use some features that are
unique to StlEval and are not present in AMT 2.0. StlEval also provides several
interfaces to the users:

– Command line interface that allows to read a signal and evaluate one or more
formulas over it.

– Interactive command interface that allows to send commands to a running
instance of StlEval via standard input and get results via standard output
(similarly to how some SMT solvers implement SMTLIB command language).

– C++ API via a static or shared library with access to all functions and data
structures.

– C API via a static or shared library with access to select functions and data
structures.

ParetoLib can use either the interactive command interface or the C API, the
latter being marginally more efficient.

3 Running ParetoLib

3.1 Configuring the Oracle

The core of the library is the algorithm implementing the multi-dimensional
search of the Pareto boundary. It is implemented by the module Pare-
toLib.Search, which encapsulates the complexity of the procedure in three func-
tions (i.e., Search2D, Search3D and SearchND) depending on the dimension
of the search space. The algorithm is compatible for spaces of any dimension,
and for any oracle defined according to the ParetoLib.Oracle template. A set of
running examples can be found in the doc/examples folder of the tool website.
Listing 1.1 presents one of these usage examples. Some of the remarkable input
parameters of the learning process are the following:

– xspace: the space that contains the upper (feasible) and lower (unfeasible)
parts, listed by the min and max possible values for each dimension (i.e.,
corners).

– oracle: the external knowledge repository that guides the learning process.
– epsilon: a real number representing the maximum desired distance between a

discovered point x of the space and a real point y of the Pareto front.
– delta: a real number representing the maximum area/volume contained in the

border (i.e., don’t know region) that separates the upper and lower parts; delta
is used as a stopping criterion for the learning algorithm (volume(border) <
delta).

– max step: the maximum number of iterations that the algorithm will execute
in case of the stopping condition delta is not reached yet; equivalent to the
number of inferred Pareto points.

– opt level: an integer specifying which version of the learning algorithm to use
(i.e., 0, 1 or 2; use 2 for fast convergence).

– parallel: boolean that specifies if the user desires to take advantage of the
multithreading capabilities of the computer.

118 A. Bakhirkin et al.

Listing 1.1. Example

from ParetoLib.Oracle.OracleSTLe import OracleSTLeLib
from ParetoLib.Search.Search import Search2D , EPS , DELTA , STEPS
File containing the definition of the Oracle
nfile=’Tests/Oracle/OracleSTLe/2D/stabilization.txt’
Definition of the n-dimensional space
min_x , min_y = (0.0, 0.0)
max_x , max_y = (300.0 , 1.0)
oracle = OracleSTLeLib ()
oracle.from_file(nfile , human_readable=True)
rs=Search2D(ora=oracle ,min_cornerx=min_x ,min_cornery=min_y ,

max_cornerx=max_x ,max_cornery=max_y ,epsilon=EPS ,
delta=DELTA ,max_step=STEPS ,opt_level=0,parallel=False)

Oracles must be initialized either when creating the object or by reading a
configuration file. The configuration parameters depend on the decision proce-
dure and the external tool that the oracle instance hides. For instance, Ora-
cleSTLeLib is a subclass of OracleSTLe that interacts with the StlEval tool via
the C API. It requires (1) a textual file with the parametriced STL formula, (2)
a textual file specifying the parameters of the STL equation, and (3) a signal file
that is compliant with the StlEval tool format.

3.2 Saving and Plotting the Results

The result of the learning process is saved in a ResultSet object, a data structure
that divides the search space in three subspaces: the upper part, the lower part,
and a border that contains the Pareto front. The size of the gap between the
upper and lower parts depends on the accuracy of the learning process, which
can be tuned arbitrarily small by the epsilon and delta parameters during the
invocation of the learning method by the user. The ResultSet class provides
functions for:

– Testing the membership of a point x to any of the parts.
– Plotting 2D and 3D spaces.
– Exporting/Importing the results to text and binary files.

Figures 2b–c show the image produced by ParetoLib when analyzing the sta-
bilization of a decaying signal (Fig. 2a). The green side represents the upper
part and the red side is the lower part. The blue gap between the two parts
corresponds to the don’t know region. The stabilization property is specified as
a parametric STL formula:

(F (0 p1) (G (0 inf) (< (On (0 inf) (- (Max x) (Min x))) p2)))
meaning that whatever point of reference we chose, within p1 time units, signal
x will stabilize and the amplitude will fall below 0.5 · p2, where p1 and p2 are
parameters. The boundary represents the limit between feasible and unfeasible
valuations (p1, p2). Blue dot in Fig. 2c shows the valuations that stabilize the
signal after the first peak. For this example, ParetoLib requires less than 2.4 s for
computing 500 steps using a single core of a PC with Intel Core i7-8650U CPU,

ParetoLib: A Python Library for Parameter Synthesis 119

Fig. 2. Damped oscillation (a) and the inferred Pareto front for the stabilization prop-
erty after 5 (b) and 500 steps (c). (Color figure online)

32 GB RAM and Python 2.7. Approximately, 45% of the cost corresponds to the
execution time of the oracle (i.e., 9600 accumulated calls to the StlEval solver).
Another 45% belongs to printing log traces on the terminal, and the remaining
10% is the overhead introduced by the searching algorithm.

4 Conclusion

In this paper we present ParetoLib, a Python library for multi-criteria optimiza-
tion that implements a multi-dimensional extension of binary search. It can be
used to solve a range of optimization problems; in particular we apply it for
parameter synthesis in Signal Temporal Logic. ParetoLib implements a number
of improvements over the previous work. First, it offers a novel search algorithm
that shows faster convergence than pre-dating algorithms. Second, it supports
parallel computations in multi-core CPU’s. Third, it provides a generic interface
for connecting with external, domain-specific decision procedures. In future, we
would like to further ameliorate the features and performance of the tool. In
particular, we plan to upgrade ParetoLib for supporting the parametric identi-
fication of more temporal logics.

120 A. Bakhirkin et al.

References

1. Bakhirkin, A.: StlEval, STL Evaluator (2019). https://gitlab.com/abakhirkin/
StlEval

2. Bakhirkin, A., Basset, N.: Specification and efficient monitoring beyond STL. In:
Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 79–97. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17465-1 5

3. Bakhirkin, A., Basset, N., Maler, O., Requeno, J.I.: Learning Pareto Front and
Application to Parameter Synthesis of STL (2019). https://hal.archives-ouvertes.
fr/hal-02125140, technical report

4. Basset, N., Maler, O., Jarabo, J.I.R.: ParetoLib library (2018). https://gricad-
gitlab.univ-grenoble-alpes.fr/verimag/tempo/multidimensional search

5. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 19

6. Donzé, A., Maler, O.: Robust Satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

7. Jaszkiewicz, A., Lust, T.: ND-Tree-based update: a fast algorithm for the dynamic
non-dominance problem. IEEE Trans. Evol. Comput. 22(5), 778–791 (2018).
https://doi.org/10.1109/TEVC.2018.2799684

8. Maler, O.: Learning Monotone Partitions of Partially-Ordered Domains (Work in
Progress), July 2017. https://hal.archives-ouvertes.fr/hal-01556243, working paper
or preprint

9. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

10. Ničković, D., Lebeltel, O., Maler, O., Ferrère, T., Ulus, D.: AMT 2.0: qualitative
and quantitative trace analysis with extended signal temporal logic. In: Beyer, D.,
Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 303–319. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-89963-3 18

11. Vazquez-Chanlatte, M.: Multidimensional thresholds (2018), https://github.com/
mvcisback/multidim-threshold

12. Vazquez-Chanlatte, M., Deshmukh, J.V., Jin, X., Seshia, S.A.: Logical clustering
and learning for time-series data. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10426, pp. 305–325. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63387-9 15

13. Vazquez-Chanlatte, M., Ghosh, S., Deshmukh, J.V., Sangiovanni-Vincentelli, A.,
Seshia, S.A.: Time-Series learning using monotonic logical properties. In: Colombo,
C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 389–405. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03769-7 22

https://gitlab.com/abakhirkin/StlEval
https://gitlab.com/abakhirkin/StlEval
https://doi.org/10.1007/978-3-030-17465-1_5
https://hal.archives-ouvertes.fr/hal-02125140
https://hal.archives-ouvertes.fr/hal-02125140
https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/tempo/multidimensional_search
https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/tempo/multidimensional_search
https://doi.org/10.1007/978-3-642-39799-8_19
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1109/TEVC.2018.2799684
https://hal.archives-ouvertes.fr/hal-01556243
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-319-89963-3_18
https://github.com/mvcisback/multidim-threshold
https://github.com/mvcisback/multidim-threshold
https://doi.org/10.1007/978-3-319-63387-9_15
https://doi.org/10.1007/978-3-319-63387-9_15
https://doi.org/10.1007/978-3-030-03769-7_22

Linear and Non-linear Systems

Piecewise Robust Barrier Tubes
for Nonlinear Hybrid Systems

with Uncertainty

Hui Kong1(B), Ezio Bartocci3, Yu Jiang4, and Thomas A. Henzinger2

1 Max-Planck-Institute for Software Systems, Kaiserslautern, Germany
hkong@mpi-sws.org

2 IST Austria, Klosterneuburg, Austria
3 TU Wien, Vienna, Austria

4 Tsinghua University, Beijing, China

Abstract. Piecewise Barrier Tubes (PBT) is a new technique for flow-
pipe overapproximation for nonlinear systems with polynomial dynamics,
which leverages a combination of barrier certificates. PBT has advan-
tages over traditional time-step based methods in dealing with those
nonlinear dynamical systems in which there is a large difference in speed
between trajectories, producing an overapproximation that is time inde-
pendent. However, the existing approach for PBT is not efficient due
to the application of interval methods for enclosure-box computation,
and it can only deal with continuous dynamical systems without uncer-
tainty. In this paper, we extend the approach with the ability to handle
both continuous and hybrid dynamical systems with uncertainty that
can reside in parameters and/or noise. We also improve the efficiency
of the method significantly, by avoiding the use of interval-based meth-
ods for the enclosure-box computation without loosing soundness. We
have developed a C++ prototype implementing the proposed approach
and we evaluate it on several benchmarks. The experiments show that
our approach is more efficient and precise than other methods in the
literature.

1 Introduction

Hybrid systems (HS) [21] are a suitable mathematical framework to model
dynamical systems with both discrete and continuous dynamics. This formal-
ism has been successfully adopted to design cyber-physical systems (CPS) whose
behavior is characterized by an embedded software monitoring and/or controlling
a physical substratum. Formal verification of HS has indeed a practical impact
in engineering by assuring important safety-critical requirements at design-time.

This research was supported in part by the Austrian Science Fund (FWF) under grants
S11402-N23, S11405-N23 (RiSE/SHiNE), ADynNet (P28182), and Z211-N23 (Wittgen-
stein Award) and the Deutsche Forschungsgemeinschaft project 389792660-TRR 248.

c© Springer Nature Switzerland AG 2019
É. André and M. Stoelinga (Eds.): FORMATS 2019, LNCS 11750, pp. 123–141, 2019.
https://doi.org/10.1007/978-3-030-29662-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29662-9_8&domain=pdf
https://doi.org/10.1007/978-3-030-29662-9_8

124 H. Kong et al.

Despite the great effort to advance the state-of-the-art, reachability analy-
sis of HS remains one of the most challenging verification tasks. Although the
problem of reachability analysis is in general undecidable [21] for HS, in the
last decade several efficient and scalable semidecidable approaches have been
proposed to analyse HS with linear dynamics [14,15,19,22,23,36,41].

HS with nonlinear ordinary differential equations (ODEs) remains still very
challenging to solve because these ODEs do not have a closed form solution
in general. One common strategy to tackle this problem is to compute an
over-approximation (also called flowpipe) that contains all the possible trajec-
tories originating from an initial set of states within a bounded-time horizon
[1,6,9–11]. If the overapproximation does not intersect with the unsafe set of
states, then the system is safe. However, if the overapproximation is too coarse,
it may intersect the unsafe set of states only due to the approximation errors
and then the verdict about safety may be inconclusive. Thus, one of the main
problem to address is how to efficiently compute tight over-approximations of the
reachable set of states for nonlinear continuous and hybrid systems.

To overcome this problem, in a recent paper [24], we have introduced the
notion of Piecewise Barrier Tubes (PBT), a new flowpipe overapproximation for
nonlinear systems with polynomial dynamics. The main idea of this approach
is that for each segment of a flowpipe, it constructs a coarse box that is big
enough to contain the segment and then it computes in the box a set of barrier
functions [26,34] which work together to form a tube surrounding the flowpipe.

PBT has advantages over traditional time-step based methods in dealing with
those nonlinear dynamical systems in which there is a large difference in speed
between trajectories, producing a tight over-approximation that is time inde-
pendent. However, the approach in [24] cannot handle uncertainty and hybrid
systems. In addition, the use of interval method for enclosure-box computation
reduces its efficiency.

In this paper, we extend the approach with the ability to handle both con-
tinuous and hybrid dynamical systems with uncertainty which can reside in
parameters and/or noise. We improve the efficiency of the method significantly,
by avoiding the use of interval method for enclosure-box computation without
loosing soundness. We have developed a C++ prototype implementing the pro-
posed approach and we evaluate it on several benchmarks. The experiments show
that our approach is more efficient and precise than other methods proposed in
the literature.

The other existing techniques used to compute a bounded flowpipe are mainly
based on interval method [32] or Taylor model [4]. Interval method is quite effi-
cient even for high dimensional systems [32], but it suffers from the wrapping
effect that arises due to an uncontrollable growth of the interval enclosure that
accumulates overapproximation errors. The use of Taylor model is more pre-
cise because it uses a vector of polynomials plus a vector of small intervals to
symbolically represent the flowpipe. However, checking the intersection with the
unsafe region requires generally the use of interval method that brings back
the wrapping effect. In particular, the wrapping effect can explode easily when
the flowpipe segment over a time interval is stretched drastically due to a large
difference in speed between individual trajectories.

Piecewise Robust Barrier Tubes for Nonlinear Hybrid Systems 125

Only recently, tools such as CLRT [9,10], Flow* [6], MathSAT SMT solver
[7,8], HySAT/iSAT [12], dReach [27], C2E2 [11] and CORA [1], have made some
progresses in verifying nonlinear continuous and hybrid models. Some of these
tools [7,12,27] are based on decision procedures that overcome the theoretical
limits in nonlinear theories over the reals. The main idea is to encode the reach-
ability problem for nonlinear systems as first-order logic formulas over the real
numbers. A satisfiability modulo theories (SMT) solver implementing such pro-
cedures can return either a verdict of unsatisfiability when the unsafe region is
not reached or an inconclusive verdict [12,27] such as δ-sat if the problem is
satisfiable given a certain precision δ (the same problem may result unsatisfiable
by increasing the precision). However, in the case of unsatisfiability these tools
generally do not provide a reachable set representation that explains the verdict.
Other techniques for reachability analysis of nonlinear systems include invariant
generation [25,31,38,39,42], abstraction and hybridization [2,5,16,28,33,37].

The paper is organized as follows. Section 2 presents the necessary preliminar-
ies. Section 3 shows how to compute robust barrier certificates using linear pro-
gramming, while in Sect. 4 we present our approach to address the reachability
analysis problem of nonlinear continuous and hybrid systems with uncertainty.
Section 5 provides our experimental results.

2 Preliminaries

In this section, we recall some concepts used throughout the paper. We first
clarify some notation conventions. If not specified otherwise, we use boldface
lower case letters to denote vectors, we use R for the real numbers field and
N for the set of natural numbers, and we consider multivariate polynomials
in R[x], where the components of x act as indeterminates. In addition, for all
the polynomials B(c,x), we denote by c the vector composed of all the ci and
denote by x the vector composed of all the remaining variables xi that occur
in the polynomial. We use R≥0 and R>0 to denote the domain of nonnegative
real number and positive real number respectively. With an abuse of notation,
we sometimes use B(x) = 0 for the semialgebraic set it defines. ∂S denotes the
boundary of compact set S.

Next, we present the notation of the Lie derivative, which is widely used in
the discipline of differential geometry. Let f : Rn → R

n be a continuous vector
field such that ẋi = fi(x) where ẋi is the time derivative of xi(t).

Definition 1 (Lie derivative). For a given polynomial p ∈ R[x] over
x = (x1, . . . , xn) and a continuous system ẋ = f , where f = (f1, . . . , fn), the
Lie derivative of p ∈ R[x] along f is defined as Lf p =

∑n
i=1

∂p
∂xi

· fi.

Essentially, the Lie derivative of p is the time derivative of p, i.e., reflects the
change of p over time.

In this paper, we focus on semialgebraic systems with uncertainty, which is
described by the following ODE.

126 H. Kong et al.

ẋ = f(x(t),u(t)) (1)

where f is a vector of polynomial functions, x(t) is a solution of the system, u(t)
is the vector of uncertain parameters and/or perturbation and u(t) is Lipschitz
continuous. Note that we do not make a distinction between uncertain parame-
ters and perturbation since we deal with them uniformly. Formally, semialgebraic
system with uncertainty is defined as follows.

Definition 2 (Semialgebraic system with uncertainty). A semialge-

braic system with uncertainty is a 5-tuple M def
= 〈X,f ,X0 , I,U〉, where

1. X ⊆ R
n is the state space of the system M,

2. f ∈ R[x,u]n is locally Lipschitz continuous vector function defining the vector
flow as in ODE (1),

3. X0 ⊆ X is the initial set, which is semialgebraic [43],
4. I is the invariant or domain of the system,
5. U is a domain for the uncertain parameters and perturbation, i.e., u(t) ∈ U

The local Lipschitz continuity guarantees the existence and uniqueness of the
differential equation ẋ = f locally. A trajectory of a semialgebraic system with
uncertainty is defined as follows.

Definition 3 (Trajectory). Given a semialgebraic system with uncertainty
M, a trajectory originating from a point x0 ∈ X0 to time T > 0 is a continuous
and differentiable function ζ(x0, t) : [0, T) → R

n such that (1) ζ(x0, 0) = x0,
and (2) ∃u(·) : ∀τ ∈ [0, T): dζ

dt

∣
∣
t=τ

= f(ζ(x0, τ),u(τ)), where u(·) : [0, T) → U .
T is assumed to be within the maximal interval of existence of the solution
from x0.

For ease of readability, we also use ζ(t) for ζ(x0, t) if it is clear from the
context.

3 Robust Barrier Certificate by Linear Programming

A barrier certificate for a continuous dynamics system is a real-valued function
B(x) such that (1) the initial set and the unsafe set are located on different
sides of the hyper-surface H = {x ∈ R

n | B(x) = 0} respectively, and (2)
no trajectory originating from the same side of H as the initial set can cross
through H to reach the other side. Therefore, the existence of such a func-
tion B(x) can guarantee the safety of the system. The above condition can be
formalized using an infinite sequence of higher order Lie derivatives [44]. Unfor-
tunately, this formalization cannot be applied directly to barrier certificate com-
putation. Therefore, a couple of sufficient conditions for the above condition
have been proposed [17,26,30]. Most recently, based on the sufficient condition
in [34], a new approach was proposed to overapproximate the flowpipe of nonlin-
ear continuous dynamical systems using combination of barrier certificates [24].

Piecewise Robust Barrier Tubes for Nonlinear Hybrid Systems 127

However, the approach is limited to continuous dynamical systems without
uncertainty. To tackle this problem, we extend the approach to deal with contin-
uous and hybrid systems with uncertainty. Similarly, we adopt the same barrier
certificate condition as [24], but we introduce the uncertainty in the barrier cer-
tificate condition. Note that in order to distinguish it from barrier certificate for
dynamical system without uncertainty, we call a barrier certificate satisfying the
following condition robust barrier certificate.

Theorem 1. Given an uncertain semialgebraic system M = 〈X,f ,X0 , I,U〉,
let Xus be the unsafe set, the system is guaranteed to be safe if there exists a
real-valued function B(x) such that

∀x ∈ X0 : B(x) > 0 (2)
∀(x,u) ∈ I × U : Lf B > 0 (3)
∀x ∈ Xus : B(x) < 0 (4)

The most common approach to barrier certificate computation is by SOS
programming [26,34]. The idea of this kind of approach is to first relax the origi-
nal constraints like (2)–(4) into a set of positive semidefinite (PSD) polynomials
by applying Putinar representation [35], which is further relaxed by requiring
every PSD polynomial has a sum-of-squares decomposition, which can be solved
by SOS programming in polynomial time. However, constructing automatically
a set of consistent templates for the barrier certificate as well as the auxiliary
polynomials is not trivial. In addition, SOS programming method can yield fake
solution sometimes due to numerical error.

An alternative to SOS programming based approaches is to use linear pro-
gramming based approaches. This class of approaches relies on an LP-relaxation
to the original constraint. In [3,40], to compute Lyapunov function, an LP-
relaxation was obtained by applying Handelman representation to the original
constraint. Recently, this kind of LP-relaxation was adopted in [24] to com-
pute piecewise barrier tubes. In [45], an extended version of Handelman rep-
resentation, called Krivine representation [29], was employed for barrier certifi-
cate computation. Compared to Handelman representation, which can only deal
with convex polytopes, Krivine representation can deal with more general com-
pact semialgebraic sets. However, Krivine representation requires normalizing
the polynomials involved, which is expensive.

In this paper, we adopt the same representation as in [24], i.e., Handelman
representation as our LP-relaxation scheme for Theorem 1. We assume that the
initial set X0 , the unsafe set Xus , the invariant I, the parameter and/or pertur-
bance space are all convex and compact polyhedra, i.e., X0 = {x ∈ R

n | p1(x) ≥
0, · · · , pm1(x) ≥ 0}, I = {x ∈ R

n | q1(x) ≥ 0, · · · , qm2(x) ≥ 0}, U = {u ∈ R
l |

w1(u) ≥ 0, · · · , wm3(u) ≥ 0} and Xus = {x ∈ R
n | r1(x) ≥ 0, · · · , rm4(x) ≥ 0}

where pi(x), qi(x), rk(x) and wi(u), are all linear polynomials. Then, Theorem 1
can be relaxed as follows.

128 H. Kong et al.

Theorem 2. Given a semialgebraic system with uncertainty M =
〈X,f ,X0 , I,U〉, let X0 , Xus , I and U be defined as above, the system is guar-
anteed to be safe if there exists a real-valued polynomial function B(x) such that

B(x) ≡
∑

|α |≤M1

λα

m1∏

i=1

pαi
i + ε1 (5)

Lf B ≡
∑

|β |≤M2

λβ

m2∏

i=1

qβi

i

m3∏

j=1

w
βm2+j

j + ε2 (6)

−B(x) ≡
∑

|γ |≤M3

λγ

m4∏

i=1

rγi

i + ε3 (7)

where α = (αk),β = (βk),γ = (γk), λα , λβ , λγ ∈ R≥0, εi ∈ R>0 and Mi ∈
N, i = 1, · · · , 3.

Remark 1. Theorem 2 implies that the system M can be proved to be safe as
long as we can find a real-valued polynomial function B(x) such that B(x),
−B(x) and Lf B can be written as a nonnegative combination of the prod-
ucts of the powers of the polynomials defining X0 , Xus and I × U respectively.
This theorem provides us with a solution to solve barrier certificate by linear
programming. Given a polynomial template B(c,x) for B(x), where c is the
coefficients of the monomials to be decided in B(c,x), we substitute B(c,x) for
B(x) occurring in the conditions (5)–(7) to obtain three polynomial identities in
R[x] with linear polynomials in R[c,λ] as their coefficients, where λ is a vector
composed of all the λα , λβ , λγ occurring in (5)–(7). Since (5)–(7) are identities,
then all the coefficients of the corresponding monomials on both sides of the
identities must be identical. By collecting the corresponding coefficients of the
monomials on both sides of the identities and let them equal respectively, we
obtain a system S of linear equations and inequalities on c,λ. Now, finding a
robust barrier certificate is converted to finding a feasible solution for S, which
can be solved by linear programming efficiently. Since the degree of B(c,x) is
key to the expressive power of B(c,x), in our implementation, we attempt to
solve a barrier certificate from a group of templates with different degrees.

Due to the page limit, we do not elaborate on our algorithm for barrier cer-
tificate computation, but we demonstrate how it works in the following example.

Example 1. Given a 2D system defined by ẋ = 2x + 3y + u1, ẏ = −4x + 2y + u2,
let X0 = {(x, y) ∈ R

2 | p1 = x+100 ≥ 0, p2 = −90−x ≥ 0, p3 = y+45 ≥ 0, p4 =
−40 − y ≥ 0}, I = {(x, y) ∈ R

2 | q1 = x + 110 ≥ 0, q2 = −80 − x ≥ 0, q3 =
y + 45 ≥ 0, q4 = −20 − y ≥ 0}, U = {(u1, u2) ∈ R

2 | w1 = u1 + 50.0 ≥ 0, w2 =
50.0 − u1 ≥ 0, w3 = u2 + 50.0 ≥ 0, w4 = 50.0 − u2 ≥ 0} and Xus = {(x, y) ∈
R

2 | r1 = x + 98 ≥ 0, r2 = −90 − x ≥ 0, r3 = y + 24 ≥ 0, r4 = −20 − y ≥ 0}.
Assume B(c,x) = c0 + c1x + c2y, Mi = εi = 1 for i = 1, · · · , 3, then we obtain
the following polynomial identities according to Theorem 2

Piecewise Robust Barrier Tubes for Nonlinear Hybrid Systems 129

c1 + c2x + c3y −
4∑

i=1

λ1ipi − ε1 ≡ 0

c2(2x + 3y + u1) + c3(−4x + 2y + u2) −
4∑

j=1

λ2jqj −
4∑

j=1

λ3jwj − ε2 ≡ 0

− (c1 + c2x + c3y) −
4∑

k=1

λ4krk − ε3 ≡ 0

where λij ≥ 0 for i, j = 1, · · · , 4. If we collect the coefficients of x, y, u1, u2 in the
above polynomials and let them be 0, we obtain a system S of linear polynomial
equations and inequalities over ci, λij . By solving S using linear programming,
we obtain a feasible solution with c1 = −1263.5, c2 = −11.5, c3 = −5.85.

4 Piecewise Robust Barrier Tubes

The idea of piecewise robust barrier tubes (PRBTs) is to use robust barrier
tubes (RBTs) to piecewise overapproximate the flowpipe segments of nonlinear
hybrid systems with uncertainty, where each RBT is essentially a cluster of
robust barrier certificates which are situated around the flowpipe to form a tight
tube enclosing the flowpipe. The basic idea of PRBT computation is shown in
Algorithm 1.

4.1 Construction of the Enclosure-Box

A key step in PRBT computation is the construction of enclosure-box for a
given compact initial set. Note that here an enclosure-box is a hyperrectangle
that entirely contains a flowpipe segment. In principle, the smaller the enclosure-
box, the easier it is to compute a barrier tube. However, to make full use of the
power of nonlinear overapproximation, it is desirable to have as big enclosure-box
as possible so that fewer barrier tubes are needed to cover a flowpipe.

In [24], interval method was adopted to build an enclosure-box. However, the
main problem with interval method is that the enclosure-box thus computed is
usually very small which will result in a big number of barrier tubes for a fixed
length of flowpipe. On the one hand, this will lead to an increasing burden on
barrier tube computation. On the other hand, the capability of barrier tube in
overapproximating complex flowpipe can not be fully released. For these reasons,
we choose to use a purely simulation-based approach without losing soundness.

A key concept involved in our simulation-based enclosure-box construction
is twisting of trajectory, which is a measure of maximal bending of trajectories
in a box. For the convenience of presentation, we present the formal definition
of twisting of trajectory as follows.

130 H. Kong et al.

Algorithm 1. PRBT computation
input : f : dynamics of the system; X0 : Initial set; U : set of uncertainty; N:

number of robust barrier tubes (RBT) in PRBT; (θmin, dmin):
parameters for simulation

output: PRBT: piecewise robust barrier tube

1 PRBT ← empty queue;
2 while Length(PRBT) < N do
3 [Found, θ, d] ← [false, θ0, d0] ;
4 while θ > θmin do
5 E ← construct a coarse enclsoure-box for X0 by (θ, d)-simulation;
6 [Found,RBT,X0

′] ←compute RBT inside E and obtain a set
X0

′ ⊇ (RBT ∩ ∂E) ;
7 if not Found then
8 (θ, d) ← 1/2 ∗ (θ, d); // to shrink E
9 continue;

10 else
11 PRBT ← Push(PRBT,RBT); // add RBT to the queue of PRBT

12 X0 ← X0
′ ; // update X0 for computing next RBT

13 break;

14 if not Found then break ;

15 return PRBT;

Definition 4 (Twisting of trajectory). Let M be a continuous system and
ζ(t) be a trajectory of M. Then, ζ(t) is said to have a twisting of θ on the
time interval I = [T1, T2], written as ξI(ζ), if it satisfies that ξI(ζ) = θ, where

ξI(ζ)
def
= supt1,t2∈I arccos

(
〈ζ̇(t1),ζ̇(t2)〉

‖ζ̇(t1)‖‖ζ̇(t2)‖

)

.

Then, we have Algorithm 2 to compute enclosure-box.

Remark 2. In this paper, we assume that both X0 and U are defined by hyper-
rectangles. The basic idea of enclosure-box construction is that, given a con-
tinuous dynamical system with uncertainty, we first remove the uncertainty by
taking the center point uc of U for the dynamics (line 1–2). Then, we sample a
set S0 of points from X0 for simulation (line 3). Prior to doing simulation for S0,
we first select a point x0 (usually the center point of X0) to do (θ, d)-simulation
to obtain the end point xe of the simulation (line 7). A (θ, d)-simulation is a sim-
ulation that stops either when the twisting of the simulation reaches θ or when
the Euclidean distance between x0 and xe reaches d. The motivation to get the
end point xe is that, there are n planes of the form xi = xi

e (the i’th element
of xe) intersecting at xe, so we want to check if one of the n planes, say P , was
hit by all the simulations that start from S0, and if yes, it is very likely that
P cut through the entire flowpipe. Then, we take P as one of the facets of the
desired enclosure-box E. In addition, during the simulations, we simultaneously

Piecewise Robust Barrier Tubes for Nonlinear Hybrid Systems 131

Algorithm 2. Construct enclosure-box
input : f (x, u): system dynamics; X0 : initial set; U : uncertain parameters; θ:

twisting of simulation; θmin: minimal theta for simulation; d:
maximum distance of simulation;

output: E: an enclosure-box containing X0 ; P: plane where flowpipe exits ;
G: range of intersection of Flowf (X0) with plane P by simulation

1 uc ← center point of U ;
2 fc(x) ← the center dynamic f (x, uc);
3 S0 ← sample a set of points from X0 ;
4 select a point x0 ∈ S0;
5 succ ← false;
6 while θ ≥ θmin do
7 xe ← end point of (θ, d)-simulation of fc(x) for x0;

8 foreach xi
e: plane in the i’th dimension of xe do

9 do simulation for all the points in S0, update G and E;

10 if all the simulations hit xi
e then

11 P ← xi
e;

12 succ ← true;

13 if succ then
14 bloat E s.t Flowf (X0) exits from E only through the facet in P;
15 return [E,P,G];

16 else
17 [θ, d] ← 1/2 ∗ [θ, d];

keep updating (1) the boundary where the simulations can reach and use that
range as our candidate enclosure-box E, and (2) the boundary range G where the
simulations intersect with the plane P : xi = xi

e. If we end up finding such a
plane P , we will push the other facets of E outwards to make the flowpipe exit
only from this specific facet of E. Of course, this objective cannot be guaranteed
only by simulation and pushing, we need to further check if the flowpipe does
not intersect the other facets of E, which can be done according to Theorem 3.

Theorem 3. Given an uncertain semialgebraic system M = 〈X,f ,X0 , I,U〉,
assume E ⊂ I is an enclosure-box of X0 and Fi is a facet of E. The flowpipe of
M from X0 does not intersect Fi, i.e, (Flowf (X0) ∩ Fi) ∩ E = ∅ if there exists
a barrier certificate Bi(x) for Fi inside E.

Remark 3. Theorem 3 can be easily proved by the definition of barrier certificate,
which is ignored here. In order to make sure that the flowpipe evades a facet Fi

of E, according to Theorem 1, we only need to find a barrier certificate for Fi. In
the case of no barrier certificate being found, further bloating to the facet of E
will be performed. If bloating facet still end up with failure, we keep shrinking E
by setting (θ, d) to (θ/2, d/2) until barrier certificates are found for all the facet
of E or θ gets less than some threshold θmin.

132 H. Kong et al.

4.2 Computation of Robust Barrier Tube

An ideal application scenario of barrier certificate is when we can prove the
safety property using a single barrier certificate. Unfortunately, this is usually
not true because the flowpipe can be very complicated so that no polynomial
function of a specified degree satisfies the constraint. In the previous subsection,
we introduce how to obtain for an initial set X0 an enclosure-box E in which the
system dynamics is simple enough so that a robust barrier certificate B(x) can be
easily computed. Therefore, we can compute a set of robust barrier certificates,
which we call Robust Barrier Tube (RBT), to create a tight overapproximation
for the flowpipe provided that there is a set of auxiliary sets serving as unsafe
sets. Formally, we define RBT as follows.

Definition 5 (Robust Barrier Tube (RBT)). Given a semialgebraic sys-
tem M = 〈X,f ,X0 , I,U〉, let E be an enclosure-box of X0 and XAS = {Xi

AS :
Xi

AS ⊆ E} be a set of auxiliary sets (AS), an RBT is a set of real-valued func-
tions Φ = {Bi(x), i = 1, · · · ,m} such that for all Bi(x) ∈ Φ: (i) ∀x ∈ X0 :
Bi(x) > 0, (ii) ∀(x,u) ∈ E × U : Lf Bi > 0, and (iii) ∀x ∈ Xi

AS : Bi(x) < 0.

The precision of RBT depends closely on the set XAS of ASs. Therefore, to
derive a good barrier tube, we need to first construct a set of high quality ASs.
The factors that could affect the quality of the set XAS of ASs include (1) the
number of ASs, and (2) the position, size and shape of AS. Roughly speaking,
the more ASs we have, if positioned properly, the more precise the RBT would
be. Regarding the position, size and shape of AS, a desirable AS should (1)
be as close to the flowpipe as possible, (2) spread widely around the flowpipe,
and (3) be shaped like a shell for the flowpipe. Intuitively, a high quality set of
ASs could be shaped like a ring around a human finger so that the barrier tube
is tightly confined in the narrow space between the ring and the finger. With
the key factors aforementioned in mind, we developed Algorithm 3 for RBT
computation.

Remark 4. In principle, the more barrier certificates we use, the better over-
approximation we may achieve. However, using more barrier certificates also
means more computation time. Therefore, we have to make a trade-off between
precision and efficiency. In Algorithm 3, we choose to use RBT consisting of
2(n − 1) barrier certificates for n dimensional dynamical systems, which means
we need to construct 2(n − 1) ASs. We use the same scheme as in [24] to con-
struct ASs. Recall that we get a coarse region G where the flowpipe intersects
with one of the facets of E during the construction of the enclosure-box E. Since
G is an n − 1 dimensional box, the RBT must contain G. Therefore, we choose
to construct 2(n − 1) ASs which are able to form a tight hollow hyper-rectangle
around G. The idea is that for each facet Gij of G, we construct an n − 1 dimen-
sional hyper-rectangle between Gij and Eij as an AS (line 2), where Eij is the
n − 1 dimensional face of E that corresponds to G. Then, we use Algorithm 3 to
compute an RBT(line 4). In the while loop 3, we try to find the best barrier
certificate by adjusting the width of AS (line 5 and 6) iteratively until the differ-
ence in width between two consecutive ASs is less than the specified threshold ε.
To be intuitive, we provide Fig. 1 to demonstrate the process.

Piecewise Robust Barrier Tubes for Nonlinear Hybrid Systems 133

Algorithm 3. Compute robust barrier tube
input : f : system dynamics; X0 : Initial set; E: enclosure-box of X0 ; U : set of

uncertainty; P: plane where flowpipe exits from enclosure-box E; G:
box approx. of (P ∩ Flowf (X0)) by simulation; ε: difference between
AS’s (auxiliary set)

output: RBT: barrier tube; X ′
0: box over-approx. of (RBT ∩ E)

1 foreach Gij: a facet of G do
2 AS ←− CreateAS(G,P, Gij);
3 while true do
4 [found, Bij] ←− ComputeRBC(f ,X0 ,E,AS, U);
5 if found then AS’ ←− Expand (AS) ;
6 else AS’ ←− Contract (AS) ;
7 if Diff(AS′,AS) ≤ ε then
8 break;

9 AS ←− AS’;

10 if found then
11 RBT ←− Push(RBT, Bij);
12 break;

13 else
14 return FAIL

15 return SUCCEED;

(b) (c) (d)

(g)(f)(e)

(a)

Fig. 1. (a)→(g): demonstration of RBT computation

4.3 PRBT for Continuous Dynamics

The idea of computing PRBT is straightforward. Given an initial set X0 , we first
construct a coarse enclosure-box E containing X0 and then we further compute
an RBT inside E to get a much more precise overapproximation for the flowpipe.
Meanwhile, we obtain a hyper-rectangle R formed by ASs with a hollow X0

′ in
the middle. Since the intersection of the RBT and the facet of E is contained

134 H. Kong et al.

entirely in the hollow X0
′ of R, we use X0

′ as a new initial set and repeat the
entire process to compute a PRBT step by step. Since our approach is time
independent, the length of a PRBT cannot be measured by the length of time
horizon. Hence, in our implementation, we try to compute a specified number of
RBTs.

4.4 PRBT for Hybrid Dynamics

To extend our approach with the ability to deal with hybrid systems, we need to
handle two problems (i) compute the intersection of RBT and guard set, and (ii)
compute the image of the intersection after discrete jump. In general, these two
issues can be very hard depending on what kind of guard sets and transitions
are defined for the hybrid systems.

In this paper, we make some assumptions on the hybrid systems under con-
sideration. Let a discrete transition τ be defined as follows.

τll′ = 〈Guardll′ , Transll′〉 (8)

where l and l′ are the locations of the dynamics before and after a discrete
transition respectively, Guardll′ = {x ∈ R

n | xi ∼ bi,∼ ∈ {≤,≥}} and
Transll′ : x′ = Ax, where A is an n-dimensional matrix. Based on this assump-
tion, the problem of computing the intersection of RBT and guard set is reduced
to computing the intersection of RBT with a plane of xi = bi, which can be han-
dled using a similar strategy to computing the intersection of RBT with the facet
of enclosure-box. Hence, we have Algorithm 4 to deal with discrete transition of
a hybrid system.

Remark 5. The strategy to deal with discrete transitions of hybrid systems is
that every time we obtain an enclosure-box E, we first detect whether E intersects

with some guard set Guardll′. If no, we proceed with the normal process of PRBT
computation. Otherwise, we switch to the procedure of Algorithm 4 in which the

input X l
0 is the last state set whose enclosure-box intersects with Guardll′. Since

the flowpipe may not cross through the guard plane entirely, we use the while
loop in line 2 to compute an overapproximation for the intersection. The basic
idea of the while loop is that, given a state set X l

0, we first construct an enclosure-

box E by simulation (line 4), if E intersects with Guardll′, we shrink E by cutting
off the part of E that lies in the guard set (line 7). As a result of this operation, the
flowpipe could exit from E not only through the guard plane but also through
other facets of E. For each of those facets, we compute an overapproximation
for its intersection with the flowpipe using simulation and barrier certificate
computation (line 8 and 11). In addition, since those intersections Xij

0 that do
not lie in the guard plane could still reach the guard plane later, we therefore
push them into a queue for further exploration.

Piecewise Robust Barrier Tubes for Nonlinear Hybrid Systems 135

Algorithm 4. handle discrete transition of hybrid system
input : Xl

0: intermediate initial set at location l; Guardll′ : guard set of
transition τll′ ; Transll′ : image mapping of transition τll′

output: Xl′
0 : image of transition τll′

1 InitQ ← Push(InitQ, Xl
0);

2 while InitQ not empty do

3 Xl
0 ← Pop(InitQ);

4 E ← construct enclosure-box for Xl
0 ;

5 if E ∩ Guardll′ == ∅ then
6 continue;

7 E ← E ∩ Guardll′ ;
8 XΦ∩E ← do simulation and barrier certificate computation to find an

overapproximation for the region where the flowpipe Φ intersects with the
guard plane xi = bi;

9 QΦ∩E ← Push(QΦ∩E, XΦ∩E);
10 foreach Eij: facet of E except guard plane do

11 Xij
0 ← do simulation and barrier certificate computation to an

overapproximation for the region where the barrier tube intersects with
Eij ; InitQ ← Push(InitQ, Xij

0) ;

12 XΦ∩E ← box overapprox. QΦ∩E ;

13 Xl′
0 ← Transll′XΦ∩E ;

5 Implementation and Experiments

We have developed PRBT, a software prototype written in C++ that implements
the concepts and the algorithms presented in this paper. PRBT computes piece-
wise robust barrier tubes for nonlinear continuous and hybrid systems with poly-
nomial dynamics. We compare our approach in efficiency and precision with the
state-of-the-art tools Flow* and CORA using several benchmarks of nonlinear con-
tinuous and hybrid systems. Note that since C2E2 does not support uncertainty,
so we cannot compare with it. The experiments were carried out on a desktop com-
puter with a 3.6 GHz Intel 8 Core i7-7700 CPU and 32 GB memory.

5.1 Nonlinear Continuous Systems

We consider six nonlinear benchmark systems with polynomial dynamics for
which their models and settings are provided in Table 1.

The experimental results are reported in Table 2. Since our approach is time
independent, which is different from Flow* and CORA, to make the comparison
fair enough, we choose to compute a slightly longer flowpipe than the other two
tools. Note that there are two columns for time for Flow*. The reason why we
have an extra time column for Flow* is that it can be very fast and precise to
compute the Taylor model for a given system. However, Taylor models cannot
be in general applied directly to solve the safety verification problem. Checking

136 H. Kong et al.

Table 1. Continuous dynamical model definitions

Model Dynamics Uncertainty X0

Controller 2D ẋ = d1xy + y3 + 2
ẏ = d2x2 + 2x − 3y

d1 ∈ [0.95, 1.05]
d2 ∈ [0.95, 1.05]

x ∈ [29.9, 30.1]
y ∈ [−38,−36]

Van der Pol
Oscillator

ẋ = y + d1
ẏ = y − x − x2y + d2

d1 ∈ [−0.01, 0.01]
d2 ∈ [−0.01, 0.01]

x ∈ [1, 1.5]
y ∈ [2.40, 2.45]

Lotka-Volterra ẋ = x(1.5 − y) + d1
ẏ = −y(3 − x) − d2

d1 ∈ [−0.01, 0.01]
d2 ∈ [−0.01, 0.01]

x ∈ [4.6, 5.5]
y ∈ [1.6, 1.7]

Buckling
Column

ẋ = y + d1
ẏ = 2x− x3 − 0.2y+0.1 + d2

d1 ∈ [−0.01, 0.01]
d1 ∈ [−0.01, 0.01]

x ∈ [−0.5,−0.4]
y ∈ [−0.5,−0.4]

Jet Engine ẋ = −y−1.5x2−0.5x3−0.5+
d1
ẏ = 3x − y + d2

d1 ∈ [−0.005, 0.005]
d2 ∈ [−0.005, 0.005]

x ∈ [1.19, 1.21]
y ∈ [0.8, 1.0]

Controller 3D ẋ = 10(y − x) + d1
ẏ = x3 + d2
ż = xy − 2.667z

d1 ∈ [−0.001, 0.001]
d2 ∈ [−0.001, 0.001]

x ∈ [1.79, 1.81]
y ∈ [1.0, 1.1]
z ∈ [0.5, 0.6]

their intersection with the unsafe set requires their transformation into simpler
geometric form (e.g. box), which has an exponential complexity in the number
of the dimensions and it needs to be considered in the overall running time.

Remark 6. Table 2 shows us how brutal the reality of reachability analysis of
nonlinear systems is and this gets even worse in the presence of uncertainty
and large initial set. As can be seen in Table 2, both Flow* and CORA failed
to give a solution for half of the benchmarks either due to timeout or due to
exception. This phenomenon may be alleviated if smaller initial sets are provided
or uncertainty is removed. In terms of computing time T , PRBT does not always
outperform the other two tools. Actually, Flow* or CORA can be much faster in

Table 2. Experimental results for benchmark systems. #var: number of variables;
T: computing time for flowpipe; TT: computing time including box transformation;
N: number of flowpipe segments; D: candidate degrees for template polynomial (for
PRBT only); TH: time horizon for flowpipe (for Flow* and CORA only). F/E: failed
to terminate under 30 min or exception happened.

Model #var PRBT TH Flow* CORA

T N D T TT N T N

Controller 2D 2 35.73 12 3 0.012 48.8 417.64 240 F 1200

Van der Pol 2 221.62 17 4 6.74 23.88 1111.05 135 E –

Lotka-Volterra 2 30.10 9 4 3.20 6.06 405.32 320 40.30 160

Buckling Column 2 74.02 35 3 14.00 F – – 734.81 1400

Jet Engine 2 240.98 18 4 9.50 F – – 1.69 190

Controller 3D 3 774.58 20 3 0.55 F – – F –

Piecewise Robust Barrier Tubes for Nonlinear Hybrid Systems 137

Fig. 2. Lotka-Volterra: (a), (b), (c); controller 3D: (d)

Fig. 3. Controller 2d: (a), (b); Van der Pol Oscillator: (c), (d)

Fig. 4. Buckling Column: (a), (b); Jet Engine: (c), (d)

some cases. However, when the box transformation time for Taylor model was
taken into account, the total computing time TT of Flow* increased significantly.
One point to note here is that, PRBT, in general, produces a much smaller
number N of flowpipe segments than the other two, which means that the time
used to check the intersection of flowpipe with the unsafe set can be reduced
considerably. In addition, as shown in Figs. 2, 3 and 4, PRBT is more precise
than the other two on average.

5.2 Nonlinear Hybrid System

We use the tunnel diode oscillator (TDO) circuit (with different setting) intro-
duced in [20] to illustrate the application of our approach to hybrid system.
The two state space variables are the voltage x1 = VC across capacitor and the
current x2 = IL through the inductor. The system dynamics is described as
follows,

ẋ1 =
1
C

(−h(x1) + x2) ẋ2 =
1
L

(−x1 − x2

G
+ Vin)

where h(x1) describes the tunnel diode characteristic and Vin = 0.3 V, G = 5 m
Ω−1, L = 0.5µH and C = 2 pF.

138 H. Kong et al.

Fig. 5. Hybridized model of TDO

Fig. 6. Flowpipe of hybridized TDO

For this model, we want to define an initial state region X0 which can
guarantee the oscillating behaviour for the system. Due to the highly nonlin-
ear behaviour of the system, a common strategy to deal with this model is to
use a hybridized model to approximate the dynamics system and then apply
formal verification to the hybrid model [13,18]. In our experiment, we use three
cubic equations to approximate the curve of h(x1).

h(x1) =

⎧
⎨

⎩

0.000847012 + 35.2297x1 − 395.261x2
1 + 1372.29x3

1, 0 ≤ x1 ≤ 0.0691
1.242 − 0.033x1 − 47.4311x2

1 + 116.48x3
1, 0.0691 ≤ x1 ≤ 0.3

−16.544 + 139.64x1 − 389.245x2
1 + 359.948x3

1, 0.3 ≤ x1 ≤ 0.50

From the piecewise function h(x1), we can derive a 3-mode hybrid system
which is shown in Fig. 5. The system switches between the locations as the value
of x1 changes.

Let the initial set be X0 = {(x1, x2) ∈ R
2 | 0.40 ≤ x1 ≤ 0.48, 0.38 ≤ x2 ≤

0.39} on location l3, we compute an overapproximation for the flowpipe using
PRBT, Flow* and CORA respectively. As illustrated in Fig. 6, both PRBT and
CORA found an invariant with roughly the same precision, which indicates the
model oscillates for the initial set, while Flow* ran into an error.

References

1. Althoff, M., Grebenyuk, D.: Implementation of interval arithmetic in CORA 2016.
In: Proceedings of ARCH. EPiC Series in Computing, vol. 43, pp. 91–105. Easy-
Chair (2017)

2. Asarin, E., Dang, T., Girard, A.: Hybridization methods for the analysis of non-
linear systems. Acta Inform. 43(7), 451–476 (2007)

3. Ben Sassi, M.A., Sankaranarayanan, S., Chen, X., Ábrahám, E.: Linear relaxations
of polynomial positivity for polynomial lyapunovfunction synthesis. IMA J. Math.
Control. Inf. 33(3), 723–756 (2015)

Piecewise Robust Barrier Tubes for Nonlinear Hybrid Systems 139

4. Berz, M., Makino, K.: Verified integration of odes and flows using differential alge-
braic methods on high-order taylor models. Reliab. Comput. 4(4), 361–369 (1998)

5. Bogomolov, S., Schilling, C., Bartocci, E., Batt, G., Kong, H., Grosu, R.:
Abstraction-based parameter synthesis for multiaffine systems. In: Piterman, N.
(ed.) HVC 2015. LNCS, vol. 9434, pp. 19–35. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-26287-1 2

6. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

7. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Experimenting on
solving nonlinear integer arithmetic with incremental linearization. In: Beyersdorff,
O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 383–398. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-94144-8 23

8. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Incremental lin-
earization for satisfiability and verification modulo nonlinear arithmetic and tran-
scendental functions. ACM Trans. Comput. Log. 19(3), 19:1–19:52 (2018)

9. Cyranka, J., Islam, M.A., Byrne, G., Jones, P., Smolka, S.A., Grosu, R.: Lagrangian
reachabililty. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426,
pp. 379–400. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-
9 19

10. Cyranka, J., Islam, Md.A., Smolka, S.A., Gao, S., Grosu, R.: Tight continuous-time
reachtubes for lagrangian reachability. In: Proceedings of CDC 2018: 57th IEEE
Conference on Decision and Control. IEEE (2018, to appear)

11. Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: a verification tool
for stateflow models. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol.
9035, pp. 68–82. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46681-0 5

12. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of
large non-linear arithmetic constraint systems with complex boolean structure.
JSAT 1(3–4), 209–236 (2007)

13. Frehse, G., Krogh, B.H., Rutenbar, R.A.: Verification of hybrid systems using
iterative refinement. In: Proceedings of SRC TECHCON 2005, Portland, USA,
24–26 October 2005

14. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

15. Girard, A., Le Guernic, C.: Efficient reachability analysis for linear systems using
support functions. Proc. IFAC World Congr. 41(2), 8966–8971 (2008)

16. Grosu, R., et al.: From cardiac cells to genetic regulatory networks. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 396–411. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 31

17. Gulwani, S., Tiwari, A.: Constraint-based approach for analysis of hybrid systems.
In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 190–203. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-1 18

18. Gupta, S., Krogh, B.H., Rutenbar, R.A.: Towards formal verification of analog and
mixed-signal designs. In: TECHCON (2003)

19. Gurung, A., Ray, R., Bartocci, E., Bogomolov, S., Grosu, R.: Parallel reachability
analysis of hybrid systems in xspeed. Int. J. Softw. Tools Technol. Transf., 1–23
(2018, to appear)

https://doi.org/10.1007/978-3-319-26287-1_2
https://doi.org/10.1007/978-3-319-26287-1_2
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-319-94144-8_23
https://doi.org/10.1007/978-3-319-63387-9_19
https://doi.org/10.1007/978-3-319-63387-9_19
https://doi.org/10.1007/978-3-662-46681-0_5
https://doi.org/10.1007/978-3-662-46681-0_5
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-642-22110-1_31
https://doi.org/10.1007/978-3-540-70545-1_18

140 H. Kong et al.

20. Hartong, W., Hedrich, L., Barke, E.: Model checking algorithms for analog veri-
fication. In: Proceedings of the 39th annual Design Automation Conference, pp.
542–547. ACM (2002)

21. Henzinger, T.A.: The theory of hybrid automata. In: Proceedings of IEEE Sym-
posium on Logic in Computer Science, pp. 278–292 (1996)

22. Jiang, Y., Song, H., Wang, R., Gu, M., Sun, J., Sha, L.: Data-centered runtime
verification of wireless medical cyber-physical system. IEEE Trans. Ind. Inform.
13(4), 1900–1909 (2017)

23. Jiang, Y., Wang, M., Liu, H., Hosseini, M., Sun, J.: Dependable integrated clinical
system architecture with runtime verification. In: 2017 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp. 951–956, November 2017

24. Kong, H., Bartocci, E., Henzinger, T.A.: Reachable set over-approximation for non-
linear systems using piecewise barrier tubes. In: Chockler, H., Weissenbacher, G.
(eds.) CAV 2018. LNCS, vol. 10981, pp. 449–467. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96145-3 24

25. Kong, H., Bogomolov, S., Schilling, C., Jiang, Y., Henzinger, T.A.: Safety verifi-
cation of nonlinear hybrid systems based on invariant clusters. In: Proceedings of
HSCC 2017: the 20th International Conference on Hybrid Systems: Computation
and Control, pp. 163–172. ACM (2017)

26. Kong, H., He, F., Song, X., Hung, W.N.N., Gu, M.: Exponential-condition-based
barrier certificate generation for safety verification of hybrid systems. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 242–257. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 17

27. Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: δ-reachability analysis for hybrid
systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–
205. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 15

28. Krilavicius, T.: Hybrid techniques for hybrid systems. Ph.D. thesis, University of
Twente, Enschede, Netherlands (2006)

29. Lasserre, J.B.: Polynomial programming: LP-relaxations also converge. SIAM J.
Optim. 15(2), 383–393 (2005)

30. Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for polynomial
dynamical systems. In: Proceedings of EMSOFT 2011: the 11th International Con-
ference on Embedded Software, pp. 97–106. ACM (2011)

31. Matringe, N., Moura, A.V., Rebiha, R.: Generating invariants for non-linear hybrid
systems by linear algebraic methods. In: Cousot, R., Martel, M. (eds.) SAS 2010.
LNCS, vol. 6337, pp. 373–389. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15769-1 23

32. Nedialkov, N.S.: Interval tools for ODEs and DAEs. In: Proceedings of SCAN
2006: the 12th GAMM - IMACS International Symposium on Scientific Computing,
Computer Arithmetic and Validated Numerics, pp. 4–4. IEEE (2006)

33. Prabhakar, P., Garćıa Soto, M.: Hybridization for stability analysis of switched
linear systems. In: Proceedings of HSCC 2016: of the 19th International Conference
on Hybrid Systems: Computation and Control, pp. 71–80. ACM (2016)

34. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certifi-
cates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24743-2 32

35. Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ.
Math. J. 42(3), 969–984 (1993)

https://doi.org/10.1007/978-3-319-96145-3_24
https://doi.org/10.1007/978-3-319-96145-3_24
https://doi.org/10.1007/978-3-642-39799-8_17
https://doi.org/10.1007/978-3-662-46681-0_15
https://doi.org/10.1007/978-3-642-15769-1_23
https://doi.org/10.1007/978-3-642-15769-1_23
https://doi.org/10.1007/978-3-540-24743-2_32

Piecewise Robust Barrier Tubes for Nonlinear Hybrid Systems 141

36. Ray, R., Gurung, A., Das, B., Bartocci, E., Bogomolov, S., Grosu, R.: XSpeed:
accelerating reachability analysis on multi-core processors. In: Piterman, N. (ed.)
HVC 2015. LNCS, vol. 9434, pp. 3–18. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-26287-1 1

37. Roohi, N., Prabhakar, P., Viswanathan, M.: Hybridization based CEGAR for
hybrid automata with affine dynamics. In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 752–769. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49674-9 48

38. Sankaranarayanan, S.: Automatic invariant generation for hybrid systems using
ideal fixed points. In: Proceedings of HSCC 2010: the 13th ACM International
Conference on Hybrid Systems: Computation and Control, pp. 221–230. ACM
(2010)

39. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid
systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 539–
554. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24743-2 36

40. Sankaranarayanan, S., Chen, X., et al.: Lyapunov function synthesis using handel-
man representations. IFAC Proc. Vol. 46(23), 576–581 (2013)

41. Schupp, S., Ábrahám, E., Makhlouf, I.B., Kowalewski, S.: HyPro: A C++ library of
state set representations for hybrid systems reachability analysis. In: Barrett, C.,
Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 288–294. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-57288-8 20

42. Sogokon, A., Ghorbal, K., Jackson, P.B., Platzer, A.: A method for invariant gener-
ation for polynomial continuous systems. In: Jobstmann, B., Leino, K.R.M. (eds.)
VMCAI 2016. LNCS, vol. 9583, pp. 268–288. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49122-5 13

43. Stengle, G.: A Nullstellensatz and a Positivstellensatz in semialgebraic geometry.
Mathematische Annalen 207(2), 87–97 (1974)

44. Taly, A., Tiwari, A.: Deductive verification of continuous dynamical systems. In:
FSTTCS, vol. 4, pp. 383–394 (2009)

45. Yang, Z., Huang, C., Chen, X., Lin, W., Liu, Z.: A linear programming relaxation
based approach for generating barrier certificates of hybrid systems. In: Fitzgerald,
J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp.
721–738. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48989-6 44

https://doi.org/10.1007/978-3-319-26287-1_1
https://doi.org/10.1007/978-3-319-26287-1_1
https://doi.org/10.1007/978-3-662-49674-9_48
https://doi.org/10.1007/978-3-662-49674-9_48
https://doi.org/10.1007/978-3-540-24743-2_36
https://doi.org/10.1007/978-3-319-57288-8_20
https://doi.org/10.1007/978-3-662-49122-5_13
https://doi.org/10.1007/978-3-662-49122-5_13
https://doi.org/10.1007/978-3-319-48989-6_44

Bounded Model Checking of Max-Plus
Linear Systems via Predicate

Abstractions

Muhammad Syifa’ul Mufid1(B), Dieky Adzkiya2, and Alessandro Abate1

1 Department of Computer Science, University of Oxford, Oxford, UK
{muhammad.syifaul.mufid,alessandro.abate}@cs.ox.ac.uk

2 Department of Mathematics, Institut Teknologi Sepuluh Nopember,
Surabaya, Indonesia

dieky@matematika.its.ac.id

Abstract. This paper introduces the abstraction of max-plus linear
(MPL) systems via predicates. Predicates are automatically selected
from system matrix, as well as from the specifications under considera-
tion. We focus on verifying time-difference specifications, which encom-
pass the relation between successive events in MPL systems. We imple-
ment a bounded model checking (BMC) procedure over a predicate
abstraction of the given MPL system, to verify the satisfaction of time-
difference specifications. Our predicate abstractions are experimentally
shown to improve on existing MPL abstractions algorithms. Further-
more, with focus on the BMC algorithm, we can provide an explicit
upper bound on the completeness threshold by means of the transient
and the cyclicity of the underlying MPL system.

1 Introduction

Max-Plus-Linear (MPL) systems are a class of discrete-event systems, with
dynamics based on two binary operations (maximisation and addition) over a
max-plus semiring. MPL systems are used to model synchronisation phenom-
ena without concurrency. These systems have been used in many areas, such as
manufacturing [27], transportation [24], and biological systems [10,18].

Classical analysis of MPL systems is conducted using algebraic approaches
[4,24]. Recently, an alternative take based on formal abstractions has been devel-
oped to verify MPL systems against quantitative specifications [1] that are gen-
eral and expressive. The performance and scalability of the abstraction approach
has been later improved by employing tropical operations [29] that are native to
the max-plus semiring.

This work pushes the envelop on scalability of formal abstractions of MPL
systems. We newly apply predicate abstractions (PA) and bounded model check-
ing (BMC) for the verification of MPL systems over time-difference specifica-
tions. Predicate abstractions are an abstraction approach that leverages a set of
predicates, and have been classically used for software and hardware verification
c© Springer Nature Switzerland AG 2019
É. André and M. Stoelinga (Eds.): FORMATS 2019, LNCS 11750, pp. 142–159, 2019.
https://doi.org/10.1007/978-3-030-29662-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29662-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-29662-9_9

BMC of MPL Systems via PA 143

[16,21], for the abstraction of programs [6,15], and for reachability analysis of
hybrid systems [3].

BMC is a symbolic model checking approach that leverages SAT solvers. The
basic idea is to attempt finding counterexamples with a length bounded by some
integer. If no counterexamples are found, the length is greedily increased. The
approach is sound (counterexamples are correct), and complete (no counterex-
amples are admitted) whenever a completeness threshold (CT) for the length is
reached [8,9]. Whilst there exist results on correct upper-bounds on the CT, in
practice BMC is run until the underlying problem becomes intractable.

This paper has two specific contributions. The first contribution is related to
the abstraction approach. Moving beyond [1,29], where the abstraction proce-
dures are based on the translation of MPL systems into piecewise affine (PWA)
systems, in this work we newly employ PA. Namely, we determine a set of pred-
icates such that the dynamics within each partitioning region is affine. In other
words, there is no need to compute PWA systems anymore.

The second contribution is related to the model-checking approach. [1]
employs standard model checking to verify the abstract transition system. In this
paper, we leverage BMC: notice that PA naturally yield Boolean encodings that
can be relevant for the SAT-based BMC procedure. We focus on time-difference
specifications. Since we are working on abstractions, counterexample generated
by the BMC procedure needs to be checked for spuriousness (cf. Algorithms
5 and 6). Whenever a counterexample is spurious, we refine the abstract tran-
sition using the procedure in [2], combined with lazy abstraction [26]. Finally,
for the considered time-difference specifications, we show that the CT can be
upper-bounded by means of the transient and cyclicity of the concrete MPL
system - such bounds are in general tighter than those obtained working on
the abstract transition system. As a side result, we provide a few instance of
“direct verification”, where the model checking of MPL models can be performed
straightforwardly for time-difference specifications.

The paper is organised as follows. Section 2 describes the basics of models,
abstraction techniques and temporal logic formulae used in this work. It also
contains the notion of time-difference over MPL systems. The contributions of
this paper are contained in Sects. 3 and 4. Proofs of the propositions and lem-
mas are provided in the longer version of this paper [30]. The comparison of
abstraction procedures is presented in Sect. 5, with PA implemented in C++
and model checking run over NuSMV [11]. We also compare the completeness
threshold w.r.t. the transient and cyclicity of MPL systems with those that are
computed by NuSMV. The paper is concluded in Sect. 6.

2 Model and Preliminaries

2.1 Max-Plus Linear Systems

By max-plus semiring we understand an algebraic structure (Rmax,⊕,⊗) where
Rmax := R ∪ {ε := −∞} and a ⊕ b := max{a, b}, a ⊗ b := a + b ∀a, b ∈
Rmax. The set of n × m matrices over max-plus semiring is denoted as R

n×m
max .

144 M. Syifa’ul Mufid et al.

Two binary operations of a max-plus semiring can be extended to matrices as
follows

[A ⊕ B](i, j) = A(i, j) ⊕ B(i, j),

[A ⊗ C](i, j) =
m⊕

k=1

A(i, k) ⊗ C(k, j),

where A,B ∈ R
n×m
max , C ∈ R

m×p
max . Given r ∈ N, the max-plus algebraic power of

A ∈ R
n×n
max is denoted by A⊗r and corresponds to A ⊗ . . . ⊗ A (r times).

A Max-Plus Linear (MPL) system is defined as

x(k + 1) = A ⊗ x(k), (1)

where A ∈ R
n×n
max is the system matrix and x(k) = [x1(k) . . . xn(k)]� is the

state variables [4]. In particular, for i ∈ {1, . . . , n}, xi(k + 1) = max{A(i, 1) +
x1(k), . . . , A(i, n) + xn(k)}. In applications, x represents the time stamps of the
discrete events, while k corresponds to the event counter. Therefore, it is more
convenient to take R

n (instead of Rn
max) as the state space.

Definition 1 (Precedence Graph [4]). The precedence graph of A, denoted
by G(A), is a weighted directed graph with nodes 1, . . . , n and an edge from j
to i with weight A(i, j) if A(i, j) �= ε. 	

Definition 2 (Regular Matrix [24]). A matrix A ∈ R

n×n
max is called regular if

there is at least one finite element in each row. 	

Definition 3 (Irreducible Matrix [4]). A matrix A ∈ R

n×n
max is called irre-

ducible if the corresponding precedence graph G(A) is strongly connected. 	

Recall that a directed graph is strongly connected if for two different nodes

i, j of the graph, there exists a path from i to j [4,20]. The weight of a path
p = i1i2 . . . ik is equal to the total weight of the corresponding edges i.e.
|p| = A(i2, i1) + . . . + A(ik, ik−1). A circuit, namely a path that begins and ends
at the same node, is called critical if it has maximum average weight, which is
the weight divided by the length of path [4].

Every irreducible matrix A ∈ R
n×n
max admits a unique max-plus eigenvalue

λ ∈ R, which corresponds to the weight of critical circuit in G(A). Furthermore,
by Proposition 1 next, A satisfies the so-called transient condition:

Proposition 1 (Transient Condition [4]). For an irreducible matrix A ∈
R

n×n
max and its corresponding max-plus eigenvalue λ ∈ R, there exist k0, c ∈ N

such that A⊗(k+c) = λc ⊗ A⊗k for all k ≥ k0. The smallest such k0 and c are
called the transient and the cyclicity of A, respectively. 	

Example 1. Consider a 2 × 2 MPL system that represents a simple railway net-
work [24]:

x(k + 1) =
[
2 5
3 3

]
⊗ x(k). (2)

Its max-plus eigenvalue is λ = 4, whereas the transient and cyclicity for the
matrix are k0 = c = 2. 	

BMC of MPL Systems via PA 145

Any given MPL system can be translated into a Piece-Wise Affine (PWA)
system [23]. A PWA system comprises of spatial regions with correspond-
ing PWA dynamics. The regions are generated from all possible coefficients
g = (g1, . . . , gn) ∈ {1, . . . , n}n, which satisfies A(i, gi) �= ε for 1 ≤ i ≤ n. As
shown in [1], the region corresponding to g is

Rg =
n⋂

i=1

n⋂

j=1

{x ∈ R
n|xgi

− xj ≥ A(i, j) − A(i, gi)} . (3)

One could check that for each non-empty Rg and x(k) ∈ Rg, the MPL system
(1) can be rewritten as the following affine dynamics:

xi(k + 1) = xgi
(k) + A(i, gi), i = 1, . . . , n. (4)

Notice that (4) can be expressed as x(k + 1) = Ag ⊗ x(k), where Ag is a region
matrix [29] for the coefficient g.

2.2 Time Differences in MPL Systems

We consider delays occurring between events governed by (1). Delays can
describe the difference of two events corresponding to the same event counter
but at different variable indices (i.e. xi(k) − xj(k)), or the difference of two con-
secutive events for the same index (i.e. xi(k + 1) − xi(k)). This paper focuses on
the later case although, in general, the results of this paper can be applied to
the former case.

We write the (k + 1)th time difference for the ith component as ti(k) =
xi(k + 1) − xi(k). One can see that

ti(k) = max
j∗∈fini

{xj∗(k) + A(i, j∗)} − xi(k), (5)

where fini is the set containing the indices of finite elements of A(i, ·).1

2.3 Transition Systems and Linear Temporal Logic

Definition 4 (Transition System [5]). A transition system is formulated by
a tuple (S, T, I,AP , L), where

• S is a set of states,
• T ⊆ S × S is a transition relation,
• I ⊆ S is a set of initial states,
• AP is a set of atomic propositions, and
• L : S → 2AP is a labelling function. 	

1 For the sake of simplicity, we write the elements of fini in a strictly increasing order.

146 M. Syifa’ul Mufid et al.

A path of TS is defined as a sequence of states π = s0s1 . . ., where s0 ∈ I
and (si, si+1) ∈ T for all i ≥ 0. We denote π[i] = si−1 as the ith state of π.
Furthermore, |π| represents the number of transitions in π.

Linear temporal logic (LTL) is one of the predominant logics that are used
for specifying properties over the set of atomic propositions [5]. LTL formulae
are recursively defined as follows.

Definition 5 (Syntax of LTL [5]). LTL formulae over the set of atomic propo-
sitions AP are constructed according to the following grammar:

ϕ := true | a | ϕ1 ∧ ϕ2 | ¬ϕ | © ϕ | ϕ1 U ϕ2,

where a ∈ AP. 	

The symbol © (next) and U (until) are called temporal operators. Two addi-

tional operators, ♦ (eventually) and � (always), are generated via the until
operators: ♦ϕ = true U ϕ and �ϕ = ¬♦¬ϕ. We refer to [5] for the semantics of
LTL formulae including the satisfaction relation |= over transition systems.

2.4 Abstractions and Predicate Abstractions

Abstractions are techniques to generate a finite and smaller model from a large or
even infinite-space (i.e., a continuous-space model, e.g., an MPL system) model.
Abstractions can reduce the verification of a temporal property ϕ over the origi-
nal model (a concrete model with state space S), to checking a related property
on a simpler abstract model (over Ŝ) [5]. The mapping from S to Ŝ is called
abstraction function.

From a (concrete) transition system TS = (S, T, I,AP , L) and an abstraction
function f : S → Ŝ, the (abstract) transition system TSf = (Ŝ, Tf , If ,AP, Lf)
is generated from TS as follows: (i) If = {f(s) | s ∈ I}, (ii) (f(s),f(s′)) ∈ Tf if
(s, s′) ∈ T , and (iii) Lf (f(s)) = L(s), for all s ∈ S.

The important relation between TS and TSf is that the former is simulated
by the latter (which is denoted by TS � TSf). In detail, all behaviour on
concrete transition system occur on the abstract one. The formal definition of
simulation relation can be found in [5, Definition 7.47]. Furthermore, given an
LTL formula ϕ, TSf |= ϕ implies TS |= ϕ [5,13].

Predicate abstractions [13,17,19,22] denote abstraction methods that use a
set of predicates P = {p1, . . . , pk} to characterise the abstract states. Predicates
are identified from the concrete model, and possibly from the specification(s)
under consideration. Each predicate pi corresponds to a Boolean variable bi

and each abstract state ŝ ∈ Ŝ corresponds to a Boolean assignment of these k
Boolean variables [13]. Therefore, we obtain that |Ŝ| ≤ 2k. An abstract state
will be labelled with predicate pi if the corresponding bi is true in that state.
For this reason, predicates also serve as atomic propositions [13].

The predicates are also used to define an abstraction function between the
concrete and abstract state spaces. A concrete state s ∈ S will be related to
an abstract state ŝ ∈ Ŝ iff the truth value of pi on s equals the value of bi

BMC of MPL Systems via PA 147

on ŝ. The abstraction function for predicate abstractions is defined as f(s) =∧k
i=1 val(s, pi), where val(s, pi) = bi if pi is satisfied in s, otherwise ¬bi.

3 Predicate Abstractions of MPL Systems

3.1 Related Work

The notion of abstractions of an MPL system has been first introduced in [1]:
there, it leverages translation of an MPL system into the corresponding PWA
system. The resulting abstract states are expressed as Difference-Bound Matrices
(DBM). A more efficient procedure for MPL abstractions via max-plus algebraic
operations is later discussed in [29].

3.2 Generation of the Predicates

Considering an abstraction via a set of predicates, the first issue is to find appro-
priate predicates. Recall that related abstraction techniques [1,29] explore the
connection between MPL and PWA systems and use DBMs to represent the
abstract states. Similarly, predicates here are chosen such that the dynamics
in the resulting abstract states are affine as in (3) and can be expressed as
DBMs. Following these considerations, the predicates are defined as an inequal-
ity p ≡ xi − xj ∼ c where ∼ ∈ {>,≥}2, c ∈ R. For simplicity, we may write a
predicate as a tuple p ≡ (i, j, c, s) where s = 1 if ∼ = ≥, otherwise s = 0. The
negation of p then can be written as ¬p ≡ (j, i,−c, 1 − s).

From the PWA region in (3), c can be chosen from the difference of two
finite elements of the state matrix A ∈ R

n×n
max at the same row. In detail, if

A(k, j) �= ε and A(k, i) �= ε with i < j and 1 ≤ k ≤ n, then we get a predicate
(i, j, A(k, j) − A(k, i), 1).

Algorithm 1 shows a procedure to generate the predicates from an MPL sys-
tem. For each k ∈ {1, . . . , n}, Pk is a set of predicates generated from A(k, ·). If
there are exactly m > 1 finite elements at each row of A then |Pk| =

(
m
2

)
and in

general |⋃n
k=1 Pk| ≤ n

(
m
2

)
: indeed, it is possible to get the same predicate from

two different rows when A(k1, j) − A(k1, i) = A(k2, j) − A(k2, i) for k1 �= k2.
As mentioned before, predicates can also be associated to given specifications.

In this paper, we focus on time-difference specifications that are generated from
a set of time-difference propositions. For α ∈ R, we define a time-difference
proposition ‘ti ∼ α’ to reason the condition that x′

i − xi ∼ α. We remove the
counter event k for the sake of simplicity.

One can rewrite (5) as ti = maxj∗∈fini{xj∗ + A(i, j∗)} − xi. Therefore, from
ti ∼ α for ∼ ∈ {>,≥, <,≤} we have maxj∗∈fini{xj∗ + A(i, j∗)} − xi ∼ α. The
number of predicates corresponding to ‘ti ∼ α’ is bounded by |fini|. For each
j∗ ∈ fini we get a predicate xj∗ −xi ∼ α−A(i, j∗). However, in case of i ∈ fini,
or in other words A(i, i) �= ε, xi−xi ∼ α−A(i, j∗) is not a predicate. Algorithm 2
shows how to generate the predicates w.r.t. a time-difference proposition.
2 In this paper, we always use p ≡ xi − xj ≥ c as a predicate.

148 M. Syifa’ul Mufid et al.

Algorithm 1. Generation of predicates from an MPL system

Input: A ∈ R
n×n
max ,

Output: Pmat, a set of predicates

1: procedure mpl2pred(A, k) � generation of predicates from the kth row of A
2: Pk ← ∅
3: fink := Find(A(k, ·)
= ε) � fink is a vector consisting the index of
4: for j ∈ {2, . . . , |fink|} finite elements of A(k, ·), fink[i] is

5: for i ∈ {1, . . . , j − 1} the ith element of fink
6: Pk ← Pk ∪ {(fink[i], fink[j], A(k, fink[j]) − A(k, fin[i]), 1)}
7: end
8: end
9: return Pk

10: end

11: procedure mpl2pred(A) � generation of predicates from matrix A
12: Pmat ← ∅
13: for k ∈ {1, . . . , n} � generation of predicates for each row of matrix A
14: Pmat ← Pmat ∪ mpl2pred(A, k) and storing the resulting predicates in Pmat

15: end
16: return Pmat

17: end

Algorithm 2. Generation of predicates from a time-difference proposition

Input: A ∈ R
n×n
max , a matrix containing exactly m finite elements in each row

ti ∼ α, a time-difference proposition
Output: Ptime, a set of predicates

1: procedure td2pred(A, ti ∼ α)
2: Ptime ← ∅
3: A(i, i) ← ε
4: fini ← Find(A(i, ·)
= ε)
5: if ∼ ∈ {>, ≥} then
6: for j∗ ∈ fini
7: Ptime ← Ptime ∪ {(j∗, i, α − A(i, j∗), s)} � s is 0 if ∼ is > and s is 1 if ∼ is ≥
8: end
9: else if ∼ ∈ {<, ≤} then
10: for j∗ ∈ fini
11: Ptime ← Ptime ∪ {(i, j∗, A(i, j∗) − α, s)} � each predicate uses operator > or ≥
12: end
13: end
14: return Ptime

15: end

3.3 Generation of Abstract States

This section starts by describing the procedure to generate abstract states via a
set of predicates. We denote P as the set of predicates generated by Algorithms 1
and 2, i.e. P = Pmat ∪ Ptime = {p1, . . . , pk}. Let Ŝ be a set of abstract states
defined over Boolean variables B = {b1, . . . , bk}, where the truth value of bi

depends on that of pi. For each Boolean variable bi, we define the corresponding
DBM as follows: DBM(bi) = {x ∈ R

n | pi is true in x} and DBM(¬bi) = {x ∈ R
n |

pi is false in x}. One can show that DBM(bi ∧ bj) = DBM(bi) ∩ DBM(bj).
Algorithm 3 shows the steps to generate the abstract states of an MPL system

given a set of predicates P . For each i ∈ {1, . . . , |P |}, we manipulate DBMs:
the complexity of Algorithm 3 depends on emptiness checking of DBM (line 11),
which runs in O(n3), where n is the dimension of the state matrix [1]. Therefore,
the worst-case complexity of Algorithm 3 is O(2|P |n3).

BMC of MPL Systems via PA 149

Algorithm 3. Generation of the abstract states from a set of predicates
Input: P , a set of predicates � P = Pmat ∪ Ptime

Output: Ŝ, a set of abstract states
D, a partition of R

n w.r.t. Ŝ � D is a set of DBMs

1: procedure pred abs(P)
2: B ← {b1, . . . , b|P |} � a set of Boolean variables

3: D ← {Rn}
4: Ŝ ← {true}
5: for i ∈ {1, . . . , |P |}
6: Ŝ ← ⋃

ŝ∈Ŝ{ŝ ∧ ¬bi} ∪ ⋃
ŝ∈Ŝ{ŝ ∧ bi}

7: Dneg ← ⋃
E∈D{E ∩ DBM(¬bi)} � each DBM in D is intersected with DBM(¬bi)

8: Dpos ← ⋃
E∈D{E ∩ DBM(bi)} � both Dneg and Dpos are set of DBMs

9: D ← Dneg ∪ Dpos

10: Dtemp ← ∅ � temporary variable for D

11: Ŝtemp ← ∅ � temporary variable for Ŝ
12: for j ∈ {1, . . . , |D|}
13: if D[j] is not empty then � DBM emptiness check
14: add D[j] to Dtemp

15: add Ŝ[j] to Ŝtemp

16: end
17: end
18: D ← Dtemp

19: Ŝ ← Ŝtemp

20: end
21: return (Ŝ, D)
22: end

3.4 Generation of Abstract Transitions

Having obtained the abstract states, one needs to generate the abstract tran-
sitions, which can be obtained via one-step reachability, as described in [1].
Namely, there is a transition from ŝi to ŝj if Im(DBM(ŝi)) ∩ DBM(ŝj) �= ∅, where
Im(DBM(ŝi)) = {A ⊗ x | x ∈ DBM(ŝi)}. The computation of Im(DBM(ŝi)) cor-
responds to the image of DBM(ŝi) w.r.t. the affine dynamics of ŝi which has
complexity O(n2) [29].

However, unlike [29, Algorithm 2], Algorithm 3 does not produce the affine
dynamics for each abstract state. For each ŝ ∈ Ŝ, we need to find g as in (4).
One can generate the affine dynamics for ŝ ∈ Ŝ from the value (either true or
false) of p ∈ Pmat on ŝ. Given a predicate p ≡ (i, j, c, s), we call i and j as the
left and right index of p (as xi ∼ xj + c) and denoted them by left(p) and
right(p), respectively.

If p ≡ (i, j, A(k, j)−A(k, i), 1) is true in ŝ, we have xi+A(k, i) ≥ xj +A(k, j),
otherwise xj + A(k, j) > xi + A(k, i). Hence, the left index of predicates can be
used to determine the affine dynamics. Algorithm 4 provides the procedure to
find the affine dynamic associated to ŝ ∈ Ŝ.

For each k, fink is computed. Initially, the elements of fink are in strictly
increasing order. Then, for each predicate p ∈ Pk, we swap the location of
left(p) and right(p) whenever p is false on ŝ. Suppose i is the first element
of fink after swapping. One could show that xi + A(k, i) ∼ xj + A(k, j) for all
j ∈ fink \ {i}.

150 M. Syifa’ul Mufid et al.

Algorithm 4. Generation of the affine dynamics for an abstract state

Input: A ∈ R
n×n
max , a m-regular matrix with m > 1

ŝ ∈ Ŝ, an abstract state
P1, . . . , Pn, sets of predicates generated by Algorithm 1

Output: g, the finite coefficient representing the affine dynamics for ŝ

1: procedure get affine(A, ŝ, P1, . . . , Pn)
2: g ← zeros(1, n)
3: for k ∈ {1, . . . , n}
4: fink ← Find(A(k, ·)
= ε) � recall that elements in fink is
5: for p ∈ Pk in strictly-increasing order
6: if p is false in ŝ then
7: swap left(p) with right(p) in fink
8: end
9: end
10: g[k] ← fink[1] � insertion of the kth element of g
11: end
12: return g
13: end

3.5 Model Checking MPL Systems over Time-Difference
Specifications: Direct Verification

This section discusses the verification of MPL systems over time-difference spec-
ifications. First, we define a (concrete) transition system w.r.t. a given MPL
system.

Definition 6 (Transition system associated with MPL system). A tran-
sition system TS for an MPL system in (1) is a tuple (S, T,X ,AP , L) where

• the set of states S is R
n,

• (x,x′) ∈ T if x′ = A ⊗ x,
• X ⊆ R

n is a set of initial conditions,
• AP is a set of time-difference propositions,
• the labelling function L : S → 2AP is defined as follows: a state x ∈ S is

labeled by ‘ti ∼ α’ if [A ⊗ x − x]i ∼ α, where ∼ ∈ {>,≥, <,≤}. 	

We express the time-difference specifications as LTL formulae over a set of time-
difference propositions.3 For instance, ©(ti ≤ α) represents ‘the next time dif-
ference for the ith component is ≤ α’ while ♦�(ti ≤ α) corresponds to ‘after
some finite executions, the time difference for the ith component is always ≤ α’.
To check the satisfaction of these specifications, we generate the abstract version
of MPL system.

The abstract transition system TSf = (Ŝ, Tf , If , Pmat ∪ Ptime, Lf) for an
MPL system is generated via predicate abstraction where Pmat and Ptime is the
set of predicates generated by Algorithms 1 and 2, respectively. The (abstract)
labelling function Lf is defined over predicates p ∈ Pmat ∪ Ptime: for ŝ ∈ Ŝ,
p ∈ Lf (ŝ) iff p is true in ŝ. We show the relation between predicates in Ptime

and a time-difference proposition in AP.

Proposition 2. Suppose Ptime is a set of predicates corresponding to a time-
difference proposition ‘ti ∼ α’ and an abstract state ŝ ∈ Ŝ.
3 Notice that, in Definition 6 we consider AP as a set of time-difference propositions.

BMC of MPL Systems via PA 151

i. For ∼ {>,≥}, a (concrete) state x ∈ DBM(ŝ) is labeled by ‘ti ∼ α’ iff at least
one predicate in Ptime is true in ŝ.

ii. For ∼ {<,≤}, a (concrete) state x ∈ DBM(ŝ) is labeled by ‘ti ∼ α’ iff all
predicates in Ptime are true in ŝ. 	

Example 2. Suppose we have an MPL system (2) and AP = {t1 ≤ 5}. We
consider two time-difference specifications ♦(t1 ≤ 5) and ♦�(t1 ≤ 5) and a
set of initial conditions X = R

2. By Algorithms 1 and 2, we have Pmat =
{(1, 2, 3, 1), (1, 2, 0, 1)} and Ptime = {(1, 2, 0, 1)}. Thus, P = {p1, p2} where
p1 ≡ (1, 2, 3, 1) and p2 ≡ (1, 2, 0, 1).

The resulting abstract transition is depicted in Fig. 1. All abstract states are
initial. The corresponding LTL formulae for the time-difference specifications are
♦p2 and ♦�p2.

ŝ0 ŝ1

ŝ2

∅ {p2}

{p1, p2} TS1

DBM(ŝ0) = {x ∈ R
2 | x1 − x2 < 0}

DBM(ŝ1) = {x ∈ R
2 | 0 ≤ x1 − x2 < 3}

DBM(ŝ2) = {x ∈ R
2 | x1 − x2 ≥ 3}

Fig. 1. The abstract transition system via predicate abstractions with a time-difference
proposition.

It is clear that TS1 |= ♦p2. Therefore, the underlying MPL system satisfies
♦(t1 ≤ 5). However, TS1 �|= ♦�p2 and we can not conclude whether ♦�(t1 ≤ 5)
is false. We will show how to deal with this problem in Sect. 4. 	

Direct Verification. In some cases, it is possible to check the satisfaction of
time-difference specifications directly, namely without generating the abstraction
of the MPL system. We call a time-difference proposition ti ∼ α is a contradiction
if there is no x ∈ R

n such that [A ⊗ x − x]i ∼ α. On the other hand, ti ∼ α is a
tautology if all x ∈ R

n satisfy [A ⊗ x − x]i ∼ α.

Proposition 3. Given an MPL system (1) with A(i, i) = β ∈ R.

i. For ∼ {>,≥}, ti ∼ α is a tautology if β ∼ α.
ii. For ∼ {<,≤}, ti ∼ α is a contradiction if α < β. 	

The consequence of Proposition 3 is that any time-difference specification defined
from a tautology (resp., contradiction) time-difference proposition, is guaran-
teed to be true (resp., false). For instance, from Example 2, the specification
(t1 ≥ 2)U(t2 ≥ 3) is satisfied, while ♦(t2 ≤ 2) is not. As a second instance of

152 M. Syifa’ul Mufid et al.

direct verification, in the case of irreducible MPL systems, the dissatisfaction of
specifications in the form of ♦�(ti ∼ α) is related to the max-plus eigenvalue of
the corresponding system matrix.

Proposition 4. Consider an MPL system characterised by an irreducible
matrix A ∈ R

n×n
max and a time-difference specification ♦�(ti ∼ α). Suppose λ

is the max-plus eigenvalue of A. The following holds:

i. For ∼ {>,≥}, if λ < α then ♦�(ti ∼ α) is false.
ii. For ∼ {<,≤}, if λ > α then ♦�(ti ∼ α) is false. 	

4 Bounded Model Checking of MPL Systems

In this section, we implement bounded model checking (BMC) algorithm to
check the satisfaction of time-difference specifications over MPL system. The
basic idea of BMC is to find a bounded counterexample of a given length k. If
no such counterexample is found, then one increases k by one until a pre-known
completeness threshold is reached, or until the problem becomes intractable. The
readers are referred to [7–9] for a more detailed description of BMC.

We use NuSMV 2.6.0 [11] via command check ltlspec bmc onepb to apply
BMC. It performs non-incremental BMC to find a counterexample with length k.
If no such bug is present then the command is reapplied for length k+1, otherwise
we apply spurious checking (cf. Sect. 4.1). In case of non-spurious witness, one
can conclude that the time-difference specification is false. Otherwise, we refine
the transition system (cf. Sect. 4.2) such that the counterexample is removed
and then reapply BMC command for length k. This procedure is repeated until
we reach a completeness threshold (cf. Sect. 4.3).

4.1 Checking Spuriousness of Counterexamples

There are two types of k-length bounded abstract counterexamples π =
ŝ0ŝ1 . . . ŝk in BMC: either no-loop or lasso-shaped paths. The former one can
be used to express the violation of invariant properties �p. A lasso-shaped path
is π = ŝ0ŝ1 . . . ŝk such that there exists 1 ≤ l ≤ k where sl−1 = sk [8,9].
Although it is finite, it can represent an infinite path π = (ŝ0ŝ1ŝl−1)(ŝl . . . ŝk)ω

where ŝl−1+m = ŝk+m for m ≥ 0. It can be used to represent the counterexample
of LTL formulae with eventuality, such as ♦p and ♦�p.

From now, we write a lasso-shaped path as (πstem)(πloop)ω, where πstem =
ŝ0 . . . ŝl−1 and πloop = ŝl . . . ŝk. To avoid ambiguity, we consider that the length
of a lasso-shaped path is equal to |πstem| + |πloop|.4 Furthermore, any no-loop
path cannot be expressed as a lasso-shaped one. That is, if π is a no-loop path
then the states in π are all different.

The spuriousness of no-loop paths can be checked via forward-reachability
analysis. In detail, π = ŝ0ŝ1 . . . ŝk is not spurious iff the sequence of DBMs

4 Notice a loop-back transition from ŝk to ŝl in πloop.

BMC of MPL Systems via PA 153

D1, . . . , Dk+1 where D1 = DBM(ŝ0) and Di+1 = Im(Di) ∩ DBM(ŝi) for 1 ≤ i ≤ k,
are not empty. Simply put, there exists x(0) ∈ DBM(ŝ0) such that x(i + 1) =
A ⊗ x(i) ∈ DBM(ŝi+1) for 0 ≤ i ≤ k. Algorithm 5 summarises the procedure of
spuriousness checking for no-loop paths.

Algorithm 5. Spuriousness checking of no-loop paths
Input: π = ŝ0ŝ1 . . . ŝk, a no-loop path with length of k
Output: b, a boolean value � b = true iff π is spurious

D, a set of DBMs

1: procedure is spurious(π)
2: b ← false
3: E ← DBM(π[1]) � π[i + 1] = ŝi for 0 ≤ i ≤ k
4: D ← {E} � E is the first DBM in D
5: k ← |π| − 1
6: i ← 1
7: while (i ≤ k and b == false)
8: E ← Im(E) ∩ DBM(π[i + 1])
9: if E is empty then
10: b ← true
11: else
12: add E to D � E is now the (i + 1)th DBM in D
13: end
14: i ← i + 1
15: end
16: return (b, D)
17: end

The spuriousness checking for lasso-shaped paths is computed via Algo-
rithm6. We use periodicity checking to deal with the infinite suffix (πloop)ω. In
lines 14–22, we check the spuriousness of (πstem)(πloop)it where πloop is repeated
it times. If it is not spurious then we check the periodicity of the DBM (line 25).
We can conclude that (πstem)(πloop)ω is not spurious if the periodicity is found.
In case of an irreducible MPL system, by Proposition 1, the periodicity is no
greater than its cyclicity. On the other hand, after 1000 iterations, if the period-
icity cannot be found then the algorithm is stopped with an ‘undecided’ result.

One can see that the spuriousness checking for no-loop paths (Algorithm 5)
is guaranteed to be complete. However, this is not the case for Algorithm 6. In
the case of irreducible MPL systems, it is complete due to the fact that the
periodicity is related to Proposition 1. However for reducible MPL systems, it is
incomplete as it may provide undecided results.

Lemma 1 relates the spuriousness of an abstract path, either no-loop or lasso-
shaped path, with the value of transient and cyclicity of an irreducible matrix.

Lemma 1. Consider an irreducible A ∈ R
n×n
max with transient k0 and cyclicity c

and the resulting abstract transition system TSf = (Ŝ, Tf , If , Pmat ∪Ptime, Lf).
Suppose that π is a path over TSf . Then,

i. If π is a no-loop path with |π| ≥ k0 + c, then it is spurious.
ii. If π = (πstem)(πloop)ω with |πstem| + |πloop| > k0 + c, then it is spurious. 	

154 M. Syifa’ul Mufid et al.

Algorithm 6. Spuriousness checking of a lasso-shaped path
Input: πstem = ŝ0ŝ1 . . . ŝl−1

πloop = ŝlŝ1 . . . ŝk

Output: b, a boolean value � b = true iff π is spurious
D, a set of DBMs

1: procedure is spurious(πstem, πloop)
2: (b, D) ← is spurious(πstem)
3: if (b == true) then
4: go to line 35 � πstem is already spurious
5: else
6: l ← |πstem| + 1 � the number of states in πstem

7: E ← D[l] � E is the last DBM in D
8: m ← |πloop| � the number of states in πloop

9: it ← 0 � the number of iterations
10: p ← false � boolean value to represent the periodicity
11: while (it ≤ 1000 and p == false and b == false) � maximum number of
12: it ← it + 1 iterations is 1000
13: i ← 1
14: while (i ≤ m and b == false)
15: E ← Im(E) ∩ DBM(πloop[i])
16: if E is empty then
17: b ← true
18: else
19: add E to D
20: end
21: i ← i + 1
22: end
23: j, num ← |D| � the number of DBMs in D, notice
24: while (j − m > l and p == false and b == false) that mod(|D|, m) = l
25: if (D[j − m] == E) then
26: p ← true
27: end
28: j ← j − m
29: end
30: end
31: if (it > 1000 and p == false and b == false) then
32: print ‘undecided’
33: else
34: return (b, D)
35: end
36: end
37: end

4.2 Refinement Procedure

Provided that the counterexample is spurious, one needs to refine the abstract
transition. Instead of adding new predicates as in CEGAR [12], we are inspired
by the refinement procedure described in [2, Sec. 3.3]: for each abstract state ŝ
with more than one outgoing transitions, it partitions DBM(ŝ) according to its
successors.

Our approach for the refinement procedure is slightly different. We refine the
abstract transition based on a spurious counterexample π = ŝ0 . . . ŝk using the
concept of lazy abstraction [26]. This starts by finding a pivot state, namely a
state in which the spuriousness starts. Then, it splits the pivot state using the
procedure in [2].

Notice that, from Algorithm5, the pivot state can be found from the number
of DBMs we have in D. One could find that ŝ|D|−1 is a pivot state. On the other

BMC of MPL Systems via PA 155

hand, from Algorithm6, a pivot state is ŝi where i = |D|−1, if |D| < |πstem|+1
(the spuriousness is found in πstem), otherwise i = |πstem|+1+mod(D−|πstem|−
1, |πloop|).

With regards to the refined abstract transitions, the labels and affine dynam-
ics for the new abstract states are equal to those of the pivot state. Furthermore,
the outgoing (resp. ingoing) transitions from (resp. to) new abstract states are
determined similarly using one-step reachability.

Example 3. We use abstract transition in Fig. 1 with specification ♦�p2. The
NuSMV model checker reports a counterexample of length 2: π = ŝ1(ŝ0ŝ1)ω. By
Algorithm 6, it is spurious and the pivot state is ŝ1. The resulting post-refinement
abstract transition is depicted in Fig. 2. 	

ŝ0 ŝ1a

ŝ2 ŝ1b

∅ {p2}

{p2}

{p1, p2} TS2

DBM(ŝ0) = {x ∈ R
2 | x1 − x2 < 0}

DBM(ŝ1a) = {x ∈ R
2 | 0 ≤ x1 − x2 ≤ 2}

DBM(ŝ1b) = {x ∈ R
2 | 2 < x1 − x2 < 3}

DBM(ŝ2) = {x ∈ R
2 | x1 − x2 ≥ 3}

Fig. 2. The refinement of the abstract transition in Fig. 1. The abstract state ŝ1 is split
into ŝ1a, ŝ1b.

4.3 Upper-Bound on the Completeness Threshold

Given a transition system TS and a specification ϕ, a completeness threshold
is a bound k such that, if no counterexample of ϕ with length k or less can be
found in TS, then ϕ is satisfied by TS [8,9].

We recall from above that for specific formulae, the completeness threshold is
related to the structure of the underlying transition system. For instance, the CT
for safety properties of the form �p is equal to the diameter of transition system:
the length of longest shortest distance between two states [7]. Likewise, the CT
for liveness specifications in the form of ♦p is given by the recurrent diameter
(the length of loop-free path) [14]. Computing the completeness threshold for
general LTL formulae is still an open problem [14].

We show that the CT for (abstract) transition system that generated from
an irreducible MPL system is related to the transient and cyclicity of the corre-
sponding matrix.

Lemma 2. Consider an irreducible A ∈ R
n×n
max with transient k0 and cyclicity c

and the resulting abstract transition system TSf = (Ŝ, Tf , If , Pmat ∪Ptime, Lf).
The CT for TSf and for any LTL formula ϕ over Pmat ∪ Ptime is bounded by
k0 + c. 	

156 M. Syifa’ul Mufid et al.

Lemma 2 ensures that the CT is not greater than the sum of the transient
and cyclicity of the MPL systems. Looking back to the transition system in
Fig. 1, the completeness threshold for ♦p2 is 2. In comparison, the transient and
cyclicity of matrix in (2) are k0 = c = 2.

By Lemma 2, one could say that the BMC algorithm for irreducible MPL
systems is complete for any LTL formula. However, this is not the case for
reducible MPL systems, due to the incompleteness of Algorithm 6.

5 Computational Benchmarks

We compare the run-time of the predicate abstractions in this paper with related
abstraction procedures in [29], which use max-plus algebraic operations (“trop-
ical abstractions”) and are enhanced versions of the earlier work in [1]. For
increasing n, we generate matrices A ∈ R

n×n
max with two finite elements in each

row, each with values ranging between 1 and 10. Location and value of the finite
elements are chosen randomly. The computational benchmark has been imple-
mented on an Intel(R) Xeon(R) CPU E5-1660 v3, 16 cores, 3.0 GHz each, and
16 GB of RAM.

We run the experiments for both procedures using C++. Over 10 indepen-
dents experiments for each dimension, Table 1 shows the running time to gener-
ate (specification-free) abstractions of MPL systems, where entry represents the
average and maximal values. We do not compare the running time for the gen-
eration of abstract transitions because both methods apply the same algorithm.

Table 1. Average and maximal running times of abstraction procedures

n Tropical abstractions from [29] Predicate abstractions (this work)

3 {0.15, 0.21} [ms] {0.27, 0.38} [ms]
4 {0.26, 0.35} [ms] {0.49, 0.72} [ms]
5 {0.41, 0.44} [ms] {0.79, 0.88} [ms]
6 {1.12, 1.20} [ms] {1.92, 2.10} [ms]
7 {2.68, 3.74} [ms] {3.19, 4.60} [ms]
8 {8.78, 10.02} [ms] {9.13, 13.74} [ms]
9 {32.12, 36.66} [ms] {30.38, 42.02} [ms]
10 {0.12, 0.14} [s] {0.11, 0.17} [s]
11 {0.57, 0.66} [s] {0.54, 0.81} [s]
12 {3.82, 4.67} [s] {2.58, 4.19} [s]
13 {23.71, 28.28} [s] {15.80, 28.52} [s]
14 {1.39, 1.59} [min] {0.89, 1.27} [min]
15 {27.73, 31.06} [min] {4.68, 8.40} [min]

BMC of MPL Systems via PA 157

As we can see in Table 1, for large dimensions (beyond 8), the average running
time of predicate abstractions is faster than that of tropical abstractions. We
recall that the (specification-free) predicate abstractions of MPL systems are
computed by Algorithms 1, 2 and 4. Whereas for tropical abstractions, they are
computed by [29, Algorithm 2].

We also provide a comparison over values of CT. NuSMV is able to com-
pute CT via an incremental BMC command check ltlspec sbmc inc -c. For
each bound k, in addition to counterexample searching, it generates a SAT (i.e.
boolean satisfiability) problem to verify whether the LTL formula can be con-
cluded to hold. This method of computation of completeness check can be found
in [25,28].

Table 2 shows the comparison of the CT values specified by Lemma 2 and
those computed by NuSMV. For dimension of n ∈ {3, 4, 5}, we generate 20
random irreducible matrices A ∈ R

n×n
max with two finite elements in each row. We

use the same time-difference specification ♦�(t1 ≤ 10) for all experiments.

Table 2. The comparison of completeness thresholds.

n #stf #(ct1 < ct2) #(ct1 = ct2) #(ct1 > ct2)

3 14 0 1 13
4 15 1 0 14
5 14 0 0 14

The 2nd column of Table 2 represents the number of experiments whose the
specification ♦�(t1 ≤ 10) is satisfied. The last three columns describe the com-
parison of CT. We use ct1 and ct2 to respectively denote the CT that computed
by NuSMV and Lemma 2. As we can see, the CT upper bounds specified by
Lemma 2 are relatively smaller than those computed by NuSMV.

6 Conclusions

This paper has introduced a new technique to generate the abstractions of MPL
systems via a set of predicates. The predicates are chosen automatically from
system matrix and the time-difference specifications under consideration. Having
obtained the abstract states and transition, this paper has implemented bounded
model checking to check the satisfaction of time-difference specifications.

The abstraction performance has been tested on a numerical benchmark,
which has displayed an improvement over existing procedures. The comparison
for completeness thresholds suggests that the cyclicity and transient of MPL
systems can be used as an upper bound. Yet, this bound is relatively smaller
than the CT bounds computed by NuSMV.

158 M. Syifa’ul Mufid et al.

Acknowledgements. The first author is supported by Indonesia Endowment Fund
for Education (LPDP), while the third acknowledges the support of the Alan Turing
Institute, London, UK.

References

1. Adzkiya, D., De Schutter, B., Abate, A.: Finite abstractions of max-plus-linear
systems. IEEE Trans. Autom. Control. 58(12), 3039–3053 (2013). https://doi.org/
10.1109/TAC.2013.2273299

2. Adzkiya, D., Zhang, Y., Abate, A.: VeriSiMPL 2: an open-sourcesoftware for the
verification of max-plus-linear systems. Discrete Event Dyn. Syst. 26(1), 109–145
(2016). https://doi.org/10.1007/s10626-015-0218-x

3. Alur, R., Dang, T., Ivančić, F.: Progress on reachability analysis of hybrid systems
using predicate abstraction. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS,
vol. 2623, pp. 4–19. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
36580-X 4

4. Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.P.: Synchronization and Linearity:
An Algebra for Discrete Event Systems. Wiley, Chichester (1992)

5. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

6. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate
abstraction of C programs. In: Proceedings of Programming Language Design and
Implementation 2001 (PLDI 2001), vol. 36, pp. 203–213. ACM (2001). https://doi.
org/10.1145/381694.378846

7. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0 14

8. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y., et al.: Bounded model
checking. Adv. Comput. 58(11), 117–148 (2003)

9. Biere, A., Heljanko, K., Junttila, T., Latvala, T., Schuppan, V.: Linear encodings
of bounded LTL model checking. Log. Methods Comput. Sci. 2(5), 1–64 (2006).
https://doi.org/10.2168/LMCS-2(5:5)2006

10. Brackley, C.A., Broomhead, D.S., Romano, M.C., Thiel, M.: A Max-plus model of
ribosome dynamics during mRNA translation. J. Theor. Biol. 303, 128–140 (2012).
https://doi.org/10.1016/j.jtbi.2012.03.007

11. Cimatti, A., et al.: NuSMV 2: an opensource tool for symbolic model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 29

12. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). https://doi.org/10.1007/
10722167 15

13. Clarke, E., Grumberg, O., Talupur, M., Wang, D.: Making predicate abstraction
efficient. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 126–
140. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45069-6 14

14. Clarke, E., Kroening, D., Ouaknine, J., Strichman, O.: Completeness and com-
plexity of bounded model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004.
LNCS, vol. 2937, pp. 85–96. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-24622-0 9

https://doi.org/10.1109/TAC.2013.2273299
https://doi.org/10.1109/TAC.2013.2273299
https://doi.org/10.1007/s10626-015-0218-x
https://doi.org/10.1007/3-540-36580-X_4
https://doi.org/10.1007/3-540-36580-X_4
https://doi.org/10.1145/381694.378846
https://doi.org/10.1145/381694.378846
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.2168/LMCS-2(5:5)2006
https://doi.org/10.1016/j.jtbi.2012.03.007
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/978-3-540-45069-6_14
https://doi.org/10.1007/978-3-540-24622-0_9
https://doi.org/10.1007/978-3-540-24622-0_9

BMC of MPL Systems via PA 159

15. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: Predicate abstraction of ANSI-
C programs using SAT. Form. Methods Syst. Des. 25(2–3), 105–127 (2004).
https://doi.org/10.1023/B:FORM.0000040025.89719.f3

16. Clarke, E., Talupur, M., Veith, H., Wang, D.: SAT based predicate abstraction for
hardware verification. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS,
vol. 2919, pp. 78–92. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24605-3 7

17. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Trans. Program. Lang. Syst. (TOPLAS) 16(5), 1512–1542 (1994). https://doi.org/
10.1145/186025.186051

18. Comet, J.P.: Application of max-plus algebra to biological sequence comparisons.
Theor. Comput. Sci. 293(1), 189–217 (2003). https://doi.org/10.1016/S0304-
3975(02)00237-2

19. Das, S., Dill, D.L., Park, S.: Experience with predicate abstraction. In: Halbwachs,
N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 160–171. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48683-6 16

20. De Schutter, B.: On the ultimate behavior of the sequence of consecutive powers
of a matrix in the max-plus algebra. Linear Algebra Its Appl. 307(1–3), 103–117
(2000). https://doi.org/10.1016/S0024-3795(00)00013-6

21. Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: Pro-
ceedings of the 29th Principles of Programming Languages (POPL 2002), vol. 37,
pp. 191–202. ACM (2002). https://doi.org/10.1145/503272.503291

22. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grum-
berg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997).
https://doi.org/10.1007/3-540-63166-6 10

23. Heemels, W., De Schutter, B., Bemporad, A.: Equivalence of hybrid dynami-
cal models. Automatica 37(7), 1085–1091 (2001). https://doi.org/10.1016/S0005-
1098(01)00059-0

24. Heidergott, B., Olsder, G.J., Van der Woude, J.: Max Plus at Work: Modeling
and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its
Applications. Princeton University Press, Princeton (2014)

25. Heljanko, K., Junttila, T., Latvala, T.: Incremental and complete bounded model
checking for full PLTL. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005.
LNCS, vol. 3576, pp. 98–111. Springer, Heidelberg (2005). https://doi.org/10.1007/
11513988 10

26. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Pro-
ceedings of the ACM Symposium on Principles of Programming Languages (POPL
2002), pp. 58–70 (2002). https://doi.org/10.1145/503272.503279

27. Imaev, A., Judd, R.P.: Hierarchial modeling of manufacturing systems using max-
plus algebra. In: Proceedings of American Control Conference 2008, pp. 471–476
(2008)

28. Latvala, T., Biere, A., Heljanko, K., Junttila, T.: Simple is better: efficient bounded
model checking for past LTL. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol.
3385, pp. 380–395. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-
540-30579-8 25

29. Mufid, M.S., Adzkiya, D., Abate, A.: Tropical abstractions of max-plus linear sys-
tems. In: Jansen, D.N., Prabhakar, P. (eds.) FORMATS 2018. LNCS, vol. 11022,
pp. 271–287. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00151-
3 16

30. Mufid, M.S., Adzkiya, D., Abate, A.: Bounded model checking of max-plus linear
systems via predicate abstractions. arXiv e-prints arXiv:1907.03564, July 2019

https://doi.org/10.1023/B:FORM.0000040025.89719.f3
https://doi.org/10.1007/978-3-540-24605-3_7
https://doi.org/10.1007/978-3-540-24605-3_7
https://doi.org/10.1145/186025.186051
https://doi.org/10.1145/186025.186051
https://doi.org/10.1016/S0304-3975(02)00237-2
https://doi.org/10.1016/S0304-3975(02)00237-2
https://doi.org/10.1007/3-540-48683-6_16
https://doi.org/10.1016/S0024-3795(00)00013-6
https://doi.org/10.1145/503272.503291
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1016/S0005-1098(01)00059-0
https://doi.org/10.1016/S0005-1098(01)00059-0
https://doi.org/10.1007/11513988_10
https://doi.org/10.1007/11513988_10
https://doi.org/10.1145/503272.503279
https://doi.org/10.1007/978-3-540-30579-8_25
https://doi.org/10.1007/978-3-540-30579-8_25
https://doi.org/10.1007/978-3-030-00151-3_16
https://doi.org/10.1007/978-3-030-00151-3_16
http://arxiv.org/abs/1907.03564

Reachability Analysis for High-Index
Linear Differential Algebraic Equations

Hoang-Dung Tran1, Luan Viet Nguyen2, Nathaniel Hamilton1,
Weiming Xiang1 , and Taylor T. Johnson1(B)

1 Institute for Software Integrated Systems, Vanderbilt University,
Nashville, TN, USA

taylor.johnson@vanderbilt.edu
2 University of Pennsylvania, Philadelphia, PA, USA

Abstract. Reachability analysis is a fundamental problem for safety
verification and falsification of Cyber-Physical Systems (CPS) whose
dynamics follow physical laws usually represented as differential equa-
tions. In the last two decades, numerous reachability analysis methods
and tools have been proposed for a common class of dynamics in CPS
known as ordinary differential equations (ODE). However, there is lack
of methods dealing with differential algebraic equations (DAE), which is
a more general class of dynamics that is widely used to describe a variety
of problems from engineering and science, such as multibody mechanics,
electrical circuit design, incompressible fluids, molecular dynamics, and
chemical process control. Reachability analysis for DAE systems is more
complex than ODE systems, especially for high-index DAEs because they
contain both a differential part (i.e., ODE) and algebraic constraints
(AC). In this paper, we propose a scalable reachability analysis for a class
of high-index large linear DAEs. In our approach, a high-index linear
DAE is first decoupled into one ODE and one or several AC subsystems
based on the well-known Marz decoupling method utilizing admissible
projectors. Then, the discrete reachable set of the DAE, represented as
a list of star-sets, is computed using simulation. Unlike ODE reacha-
bility analysis where the initial condition is freely defined by a user, in
DAE cases, the consistency of the initial condition is an essential require-
ment to guarantee a feasible solution. Therefore, a thorough check for
the consistency is invoked before computing the discrete reachable set.
Our approach successfully verifies (or falsifies) a wide range of practical,
high-index linear DAE systems in which the number of state variables
varies from several to thousands.

1 Introduction

Reachability analysis for continuous and hybrid systems has been an attractive
research topic for the last two decades since it is an essential problem for ver-
ification of safety-critical CPS. In this context, numerous techniques and tools
have been proposed. Reachability analysis using zonotopes [2,21] and support
functions [19,22] are efficient approaches when dealing with linear, continuous
c© Springer Nature Switzerland AG 2019
É. André and M. Stoelinga (Eds.): FORMATS 2019, LNCS 11750, pp. 160–177, 2019.
https://doi.org/10.1007/978-3-030-29662-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29662-9_10&domain=pdf
http://orcid.org/0000-0001-9065-8428
http://orcid.org/0000-0001-8021-9923
https://doi.org/10.1007/978-3-030-29662-9_10

Reachability Analysis for High-Index Linear Differential Algebraic Equations 161

and hybrid systems. For nonlinear, continuous and hybrid systems, dReal [25]
using δ−reachability analysis and Flow∗ [10] using Taylor model are well-known
and efficient approaches. However, these over-approximation based approaches
can only conduct a reachability analysis for small and medium scale systems. To
deal with large-scale systems, other simulation-based methods have been pro-
posed recently. For linear cases, the simulation-equivalent reachability analysis
[5,16] utilizing the generalized star-set as the state-set representation has shown
an impressive result by successfully dealing with linear systems up to 10, 000 state
variables. In this approach, the discrete simulation-equivalent reachable set of a
linear ODE system can be computed efficiently using standard ODE solvers by
taking advantage of the superposition property. Another technique applies order-
reduction abstraction [23,33,34] in which a large system can be abstracted to a
smaller system with bounded error. For nonlinear cases, C2E2 [15,18] utilizing
simulation has shown significant improvement on time performance and scala-
bility in comparison with other methods. Recently, a new numerical verification
approach has been proposed to verify/falsify the safety properties of CPS with
physical dynamics described by partial differential equations [31,35].

Although many methods have been developed for reachability analysis of
CPS, most of them mentioned above focus on CPS with ODE dynamics. There
is a lack of methodology in analyzing systems with high-index DAE dynamics. It
is because the reachability analysis for DAE systems is more complex than ODE
systems, especially for high-index DAEs because they contain both a differential
part (i.e., ODE) and algebraic constraints (AC). It should be emphasized that
there are efficient reachability analysis approaches for DAE systems with index-
1 [1,11,13,28]. Dealing with index-1 DAE is slightly different from coping with
pure ODE because, with a consistent initial condition, a semi-explicit index-1
DAE can be converted to an ODE. As CPS involving high-index DAE dynamics
appear extensively in engineering and science such as multi-body mechanics,
electrical circuit design, heat and gas transfer, chemical process, atmospheric
physics, thermodynamic systems, and water distribution network [8,17], there
is an urgent need for novel reachability analysis methods and tools that can
either verify or falsify the safety properties of such CPS. Solving this challenging
problem is the main contribution of this research.

The novelty of our approach comes from its objective in dealing with high-
index DAE which is a popular class of dynamics that has not been addressed
in the existing literature. In this paper, we investigate the reachability analysis
for large linear DAE systems with the index up to 3, which appear widely in
practice. There are a variety of definitions for the index of a linear DAE. However,
throughout the paper, we use the concept of tractability index proposed in [26] to
determine the index of a linear DAE system. Our approach consists of three main
steps (a) decoupling and consistency checking, (b) reachable set computation,
and (c) safety verification or falsification; that can be summarized as follows.

The first step is to use the Marz decoupling method [7,26] to decouple a
high-index DAE into one ODE subsystem and one or several algebraic constraint
(AC) subsystems. The core step in decoupling is constructing a set of admissible

162 H.-D. Tran et al.

projectors which has not previously been discussed deeply in the existing lit-
erature. In this paper, we propose a novel algorithm that can construct such
admissible projectors for a linear DAE system with the index up to 3 (most of
DAE systems in practice have index from 1 to 3). Additionally, we define a con-
sistent space for the DAE because, unlike ODE reachability analysis where the
initial set of states can be freely defined by a user, to guarantee a numerical solu-
tion for the DAE system, the initial state and inputs of such DAE system must
be consistent and satisfy certain constraints. It is important to emphasize that
the decoupling and consistency checking methods used in our approach can be
combined with existing over-approximation reachability analysis methods [2,19]
to compute the over-approximated reachable sets for high-index, linear DAE
systems with small to medium dimensions.

The second step in our approach is reachable set computation. Since our main
objective is to verify or falsify large linear DAEs, we extend ODE simulation-
based reachability analysis to DAEs. In particular, we modify the generalized
star-set proposed in [5] to enhance the efficiency in checking the initial condition
consistency and safety for DAEs. From a consistent initial set of states and
inputs, the reachable set of a DAE system can be constructed by combining the
reachable sets of its subsystems. It is also worth pointing out that the piecewise
constant inputs assumption for ODE with inputs used in [5] may lead a DAE
system to impulsive behavior. Therefore, in this paper, we assume the inputs
applied to the system are smooth functions. Such the inputs can be obtained by
smoothing piecewise constant inputs with filters.

The last step in our approach is to verify or falsify the safety properties of
the DAE system using the constructed reachable set computed in the second
step. In this paper, we consider linear safety specifications. We are interested in
checking the safety of the system in a specific direction defined using a direc-
tional matrix. Using the modified star-set and the directional matrix, checking
the safety property can be solved efficiently as a low-dimensional feasibility lin-
ear programming problem. In the case of violation, our approach generates a
counterexample trace that falsifies the system safety.

Contribution. The main contributions of the paper are as follows.

1. A novel reachability analysis approach for high-index linear DAE systems
developed based on the effective combination of a decoupling method and a
reachable set computation using star-set. To the best of our knowledge, this
problem has not been addressed in the existing literature.

2. An end-to-end design and implementation of the approach in a Python tool-
box, called Daev, which is publicly available for verifying high-index linear
DAE systems.

3. An extensive evaluation that demonstrates the capability of our approach in
verifying/falsifying a wide range of practical, high-index linear DAE systems
where the number of state variables varies from several to thousands.

We note that our reachability analysis approach for high-index DAEs based on
combining the decoupling technique and existing ODE reachability analysis is
extensible and generic. Instead of using star-set, one can use the decoupling

Reachability Analysis for High-Index Linear Differential Algebraic Equations 163

technique in a combination of other state-of-the-art ODE reachability analysis
tool like SpaceEx and Flow* for specific application purposes. We choose star-
set to handle high-index large linear DAEs because of its scalability advantage
compared to other ODE reachability analysis tools.

Outline of paper. The remainder of the paper is structured as follows.
Section 2 reviews the relevant definitions of a high-index large linear DAE sys-
tem, and the concept of a modified star-set used to represent its reachable set.
Section 3 describes our decoupling approach that can effectively decouple a high-
index DAE system into ODE and AC subsystems. Section 4 discusses the con-
sistent condition for the initial states and inputs of a DAE system. Section 5
presents the core algorithms that can efficiently compute reachable set and per-
form a safety verification/falsification for a high-index large linear DAE system.
Section 6 describes the verification results of our approach through a collection
of high-index linear DAE system benchmarks. Section 7 concludes the paper and
presents future research directions for the proposed work.

2 Preliminaries

2.1 Linear DAE System

We are interested in the reachability analysis of a high-index large linear DAE
system described as follows:

Δ : Eẋ(t) = Ax(t) + Bu(t), (1)

where x(t) ∈ R
n is the state vector of the system; E,A ∈ R

n×n, B ∈ R
n×m

are the system’s matrices in which E is singular ; and u(t) ∈ R
m is the input

of the system. Let In be the n-dimensional identity matrix. The regularity, the
tractability index, the admissible projectors, the fixed-step bounded-time simu-
lation, and the bounded-time simulation-equivalent reachable set of the system
are defined below.

Definition 1 (Regularity [12]). The pair (E,A) is said to be regular if
det(sE − A) is not identically zero.

Remark 1. For any specified initial conditions, the regularity of the pair (E,A)
guarantees the existence and uniqueness of a solution of the system (1).

Definition 2 (Tractability index [26]). Assume that the DAE system (1) is
solvable, i.e., the matrix pair (E,A) is regular. A matrix chain is defined by:

E0 = E, A0 = A,

Ej+1 = Ej − AjQj , Aj+1 = AjPj , for j ≥ 0,
(2)

where Qj are projectors onto Ker(Ej), i.e., EjQj = 0, Q2
j = Qj, and Pj =

In − Qj. Then, there exists an index μ such that Eµ is nonsingular and all Ej

are singular for 0 ≤ j < μ−1. It is said that the system (1) has tractability index-
μ. In the rest of the paper, we use the term “index” to state for the “tractability
index” of the system.

164 H.-D. Tran et al.

Definition 3 (Admissible projectors [26]). Given a DAE with tractability
index-μ, the projectors Q0, Q1, · · · , Qµ−1 in Definition 2 are called admissible if
and only if they satisfy the following property: ∀j > i, QjQi = 0.

Definition 4 (Fixed-step, bounded-time simulation). Given consistent
initial state x0 and input u(t), a time bound T , and a time step h, the finite
sequence:

ρ(x0, u(t), h, T = Nh) = x0
u(t)−−−−→

0≤t<h
x1

u(t)−−−−−→
h≤t<2h

x2 · · · u(t)−−−−−−−−−−→
(N−1)h≤t<Nh

xN ,

is a (x0, u(t), h, T)-simulation of the DAE system (1) if and only if for all 0 ≤
i ≤ N − 1, xi+1 is the state of the system trajectory starting from xi when
provided with input function u(t) for ih ≤ t < (i + 1)h. If there is no input,
u(t) = 0.

The consistent condition for the initial state x0 and input u(t) will be dis-
cussed in detail in Sect. 4. From the fixed-step, bounded-time simulation of a
DAE system, we define the following bounded-time, simulation-equivalent reach-
able set of the DAE system.

Definition 5 (Bounded-time, simulation-equivalent reachable set).
Given sets of consistent initial state X0 and input U , the bounded-time,
simulation-equivalent reachable set R[0,T](Δ) of the system (1) is the set of all
states that can be encountered by any (x0, u(t), h, T)-simulation starting from
any x0 ∈ X0 and input u(t) ∈ U .

Let Unsafe(Δ) � Gx ≤ f be the unsafe set of the DAE system (1) in which
x ∈ R

n is the state vector of the system, G ∈ R
k×n is the unsafe matrix and

f ∈ R
k is the unsafe vector. Given sets of consistent initial state X0 and input

U , the simulation-based safety verification and falsification problem is defined
in the following.

Definition 6 (Simulation-based safety verification and falsification).
The DAE system (1) is said to be “simulationally safe” up to time T if and
only if its simulation-equivalent reachable set, R[0,T](Δ), and the unsafe set,
Unsafe(Δ), are disjoint, i.e., R[0,T](Δ)∩Unsafe(Δ) = ∅. Otherwise, it is sim-
ulationally unsafe.

The DAE system is said to be “simulationally falsifiable” if and only if it
is simulationally unsafe and there exists a simulation, (x0, u(t), h, T), that leads
the initial state, x0, of the system to an unsafe state, xunsafe ∈ Unsafe(Δ).

The main objective of the paper is to compute the simulation-equivalent
reachable set, R[0,T](Δ), of the DAE system and use it to verify or falsify the
safety property of the system. In the rest of the paper, we use the term reachable
set to stand for simulation-equivalent reachable set. Next, we define a modified
star set which is used as the state-set representation of the DAE system.

Reachability Analysis for High-Index Linear Differential Algebraic Equations 165

2.2 Modified Star Set

In our approach, we use a modified star set to represent the reachable set of the
DAE system. The modified star set is slightly different from the generalized star
set [5] because it does not have a center vector and is only defined on a star’s
n × k basis matrix.

Definition 7 (Modified star set). A modified star set (or simply star) Θ is
a tuple 〈V, P 〉 where V = [v1, v2, · · · , vk] ∈ R

n×k is a star basis matrix and P is
a linear predicate. The set of states represented by the star is given by:

�Θ� = {x | x = Σk
i=1(αivi) = V × α, P (α) � Cα ≤ d}, (3)

where α = [α1, α2, · · · , αk]T, C ∈ R
p×k, d ∈ R

p and p is the number of linear
constraints.

The benefit of the modified star set come from its form given as a matrix-
vector product which is convenient (in next sections) for checking initial condition
consistency and safety properties. In the rest of the paper, we will refer to both
the tuple Θ and the set of states �Θ� as Θ.

To construct the reachable set of the DAE system (1), we decouple the system
into μ + 1 subsystems where μ is the index of the DAE system. The underlin-
ing technique used in our approach is the Marz decoupling method utilizing
admissible projectors which is presented in detail in the following section.

3 Decoupling

In this section, we discuss how to decouple a high-index DAE system into one
ODE subsystem and one or several AC subsystems using the matrix chain and
admissible projectors defined in the previous section with noticing that the
decoupled system and the original one are equivalent, i.e., they have the same
solutions. Since we are particularly interested in DAE systems with index up to
3 which happen in most of DAE systems in practice, the proofs of decoupling
process for index-1, -2, and -3 are given in detail in the extended version of this
paper [32].1 A generalization of decoupling for a DAE with arbitrary index is
presented in [26]. As the construction of admissible projectors used in decoupling
has not been discussed clearly in existing literature, in this section, we propose
a method and an algorithm to solve this problem.

Lemma 1 (Index-1 DAE decoupling [7,26]). An index-1 DAE system
described by (1) can be decoupled using the matrix chain defined by Eq. (2) as
follows:

1 Available online: http://www.taylortjohnson.com/research/tran2019formats
extended.pdf.

http://www.taylortjohnson.com/research/tran2019formats_extended.pdf
http://www.taylortjohnson.com/research/tran2019formats_extended.pdf

166 H.-D. Tran et al.

Δ1 : ẋ1(t) = N1x1(t) + M1u(t), ODE subsystem,

Δ2 : x2(t) = N2x1(t) + M2u(t), AC subsystem,

x(t) = x1(t) + x2(t),

x1(t) = P0x(t), N1 = P0E
−1
1 A0, M1 = P0E

−1
1 B,

x2(t) = Q0x(t), N2 = Q0E
−1
1 A0, M2 = Q0E

−1
1 B.

Proof is given in the appendix of [32].

Lemma 2 (Index-2 DAE decoupling [7,26]). An index-2 DAE system
described by (1) can be decoupled into a decoupled system using the matrix chain
defined by Eq. (2) and the admissible projectors in Definition 3 as follows:

Δ1 : ẋ1(t) = N1x1(t) + M1u(t), ODE subsystem,

Δ2 : x2(t) = N2x1(t) + M2u(t), AC subsystem 1,

Δ3 : x3(t) = N3x1(t) + M3u(t) + L3ẋ2(t), AC subsystem 2,
x(t) = x1(t) + x2(t) + x3(t),

x1(t) = P0P1x(t), N1 = P0P1E
−1
2 A2, M1 = P0P1E

−1
2 B,

x2(t) = P0Q1x(t), N2 = P0Q1E
−1
2 A2, M2 = P0Q1E

−1
2 B,

x3(t) = Q0x(t), N3 = Q0P1E
−1
2 A2, M3 = Q0P1E

−1
2 B, L3 = Q0Q1.

Proof is given in the appendix of [32].

Lemma 3 (Index-3 DAE decoupling [7,26]). An index-3 DAE system
described by (1) can be decoupled into a decoupled system using the matrix chain
defined by Eq. (2) and the admissible projectors in Definition 3 as follows:

Δ1 : ẋ1(t) = N1x1(t) + M1u(t), ODE subsystem,

Δ2 : x2(t) = N2x1(t) + M2u(t), AC subsystem 1,

Δ3 : x3(t) = N3x1(t) + M3u(t) + L3ẋ2(t), AC subsystem 2
Δ4 : x4(t) = N4x1(t) + M4u(t) + L4ẋ3(t) + Z4ẋ2(t), AC subsystem 3

x(t) = x1(t) + x2(t) + x3(t) + x4(t), where:

x1(t) = P0P1P2x(t), N1 = P0P1P2E
−1
3 A3, M1 = P0P1P2E

−1
3 B,

x2(t) = P0P1Q2x(t), N2 = P0P1Q2E
−1
3 A3, M2 = P0P1Q2E

−1
3 B,

x3(t) = P0Q1x(t), N3 = P0Q1P2E
−1
3 A3, M3 = P0Q1P2E

−1
3 B, L3 = P0Q1Q2,

x4(t) = Q0x(t), N4 = Q0P1P2E
−1
3 A3, M4 = Q0P1P2E

−1
3 B, L4 = Q0Q1,

Z4 = Q0P1Q2.

Proof is given in the appendix of [32].
It should be noted that the AC subsystems Δ3 and Δ4 in Lemmas 2 and

3 are called algebraic constraints, though they contain the derivatives of x2(t)
and x3(t). This is because the explicit forms of these algebraic constraints can
be obtained if we further extend the derivatives using the corresponding ODE

Reachability Analysis for High-Index Linear Differential Algebraic Equations 167

subsystems. In addition, one can see that for a DAE system with index-2 or
-3, a set of admissible projectors need to be constructed for decoupling. In the
following, we give a Proposition and Lemmas that are used to construct such
admissible projectors.

Proposition 1 (Orthogonal projector on a subspace). Given a real matrix
Z ∈ R

n×n such that rank(Z) = r < n, the Singular-Value Decomposition (SVD)
of Z has the form:

Z = [L1 L2]

⎡
⎣Sr×r 0

0 0

⎤
⎦

⎡
⎣KT

1

KT
2

⎤
⎦ , (4)

where L1,K1 ∈ R
n×r and L2,K2 ∈ R

n×n−r. Then, the matrix Q = K2K
T
2 is an

orthogonal projector on Ker(Z), i.e., ZQ = 0, Q = QT and Q2 = Q.

Proof is given in the appendix of [32].
For an index-2 or -3 DAE system, using Proposition 1, we can construct a set

of projectors of the matrix chain defined in Eq. (2). However, these projectors are
not yet admissible, because QjQi �= 0, j > i. Instead, the admissible projectors
can be constructed based on these inadmissible projectors using the following
Lemmas.

Lemma 4 (Admissible projectors for an index-2 DAE system). Given
an index-2 DAE system described by (1), let Q0 and Q1 respectively be the orthog-
onal projectors of E0 and E1 of the matrix chain defined in Eq. (2). The following
projectors Q∗

0 and Q∗
1 are admissible: Q∗

0 = Q0, Q∗
1 = −Q1E

−1
2 A1.

Proof is given in the appendix of [32].

Lemma 5 (Admissible projectors for an index-3 DAE system). Given
an index-3 DAE system described by (1), let Q0, Q1 and Q2 respectively be the
orthogonal projectors of E0, E1 and E2 of the matrix chain defined in Eq. (2).
We define the following projectors and the corresponding new matrices for the
matrix chain as:

Q′
2 = −Q2E

−1
3 A2, Q′

1 = −Q1P
′
2E

−1
3 A1, E′

2 = E1 − A1Q
′
1, A′

2 = A1P
′
1

where P ′
2 = In − Q′

2 and P ′
1 = In − Q′

1. Let Q′′
2 be the orthogonal projector

on E′
2 and E′′

3 = E′
2 − A′

2Q
′′
2 , then the following projectors Q∗

0, Q
∗
1 and Q∗

2 are
admissible: Q∗

0 = Q0, Q∗
1 = Q′

1, Q∗
2 = −Q′′

2(E′′
3)−1A′

2.

Proof is given in the appendix of [32].
Lemmas 4 and 5 are the constructions of admissible projectors for index-2

and -3 DAE systems. The details of the admissible projectors construction are
summarized in the appendix [32]. Next, based on the decoupled DAE system, we
discuss the consistent condition of the system and analyze the system behavior
under the effect of input functions.

168 H.-D. Tran et al.

4 Consistency

In this section, we discuss the consistent condition for a DAE system. Using
the decoupled DAE system, the consistent condition for the initial state and
inputs is derived. Additionally, the piecewise constant assumption on the inputs
used in [5] for ODE systems may lead to impulsive behavior in high-index DAE
systems. To avoid this, we limit our problem to smooth and specific-user-defined
inputs. As a result, DAE systems with inputs can be converted to autonomous
DAE systems, where consistent spaces for the initial states and inputs can be
conveniently defined and checked. Furthermore, the reachable set computation
is executed efficiently using a decoupled autonomous DAE system.

Using Lemmas 1, 2, and 3, to guarantee a solution for the DAE system, the
initial states and inputs must satisfy the following conditions:

Index-1 DAE : x2(0) = N2x1(0) + M2u(0),
Index-2 DAE : x2(0) = N2x1(0) + M2u(0),

x3(0) = N3x1(0) + M3u(0) + L3ẋ2(0),
Index-3 DAE : x2(0) = N2x1(0) + M2u(0),

x3(0) = N3x1(0) + M3u(0) + L3ẋ2(0),
x4(0) = N4x1(0) + M4u(0) + L4ẋ3(0) + Z4ẋ2(0).

(5)

Assuming that the consistent condition is satisfied, Lemmas 2 and 3 indicate
the solution of the system involves the derivatives of the input functions ẋ2(t) =
N2ẋ1(t) + M2u̇(t) and ẋ3(t) = N3ẋ1(t) + M4u̇(t) + L3[N2ẍ1(t) + M2ü(t)]. In
cases where we apply piecewise constant inputs to a high-index DAE system,
the impulsive behavior may appear in the system at an exact discrete time point
tk. For example, let u(t) be a step function in [tk, tk+1), then u̇(tk) = δ(tk),
where δ(tk) is the Dirac function describing an impulse. To avoid such impulsive
behavior and do reachability analysis for high-index DAE systems, we limit our
approach to smooth inputs which are governed by the following ODE: u̇(t) =
Auu(t), u(0) = u0 ∈ U0, where Au ∈ R

m×m is the user-defined input matrix,
and U0 is the set of initial inputs.

Remark 2. By introducing the input matrix Au, we limit the safety verification
and falsification of a high-index DAE system to a class of specific-user-defined
inputs. If Au = 0, then the input set is a set of constant inputs. We note that
designing the input matrix Au can be seen as the last step in designing a con-
troller for a DAE system to eliminate the impulsive behavior of the closed-loop
system which is a fundamental problem in DAE control system [14].

Given a user-defined input matrix Au, a DAE system described by (1) can
be converted to an equivalent autonomous DAE system of the following form:

Ē ˙̄x(t) = Āx̄(t), (6)

Reachability Analysis for High-Index Linear Differential Algebraic Equations 169

where x̄(t) =

⎡
⎣x(t)

u(t)

⎤
⎦ ∈ R

n+m, Ē =

⎡
⎣E 0

0 Im

⎤
⎦ , Ā =

⎡
⎣A B

0 Au

⎤
⎦ ∈ R

(n+m)×(n+m)

and the state of the original DAE is: x(t) = [In 0]x̄(t).
Similar to the original DAE system, the autonomous DAE system (6) can

be decoupled to form one autonomous ODE subsystem and one or several AC
subsystems. It should be noted that the autonomous DAE system has the same
index as the original one.

We have discussed the conversion of a DAE system with user-defined input
to an autonomous DAE system. Next, we derive the consistent space for the
initial condition of an autonomous DAE system. All previous results apply to
these systems given that u(t) = 0.

Definition 8 (Consistent Space for an autonomous DAE system). Con-
sider an autonomous DAE system (Δ) defined in Eq. (1) by letting u(t) = 0.
From this, we define in the following a “consistent matrix” Γ as:

Index-1 Δ : Γ = Q0 − N2P0, (Q0, P0, N2) are defined in Lemma 1,

Index-2 Δ : Γ =

⎡
⎣ P0Q1 − N2P0P1

Q0 − (N3 + L3N2N1)P0P1

⎤
⎦ ,

(Qi, Pi, Ni, Li) are defined in Lemma 2,

Index-3 Δ : Γ =

⎡
⎢⎢⎣

P0P1Q2 − N2P0P1P2

P0Q1 − (N3 + L3N2N1)P0P1P2

Q0 − [N4 + L4(N3N1 + L3N2N
2
1) + Z4N2N1]P0P1P2

⎤
⎥⎥⎦ ,

(Qi, Pi, Ni, Li, Z4) are defined in Lemma 3,

then, Ker(Γ) is the consistent space of the system Δ, where Ker(Γ) denotes the
null space of the matrix Γ .

An initial state x0 is consistent if it is in the consistent space, i.e., Γx0 = 0.
The consistent matrix and consistent space is introduced because it is useful
and convenient for checking the consistency of an initial set of states represented
using a star set. For example, assume that the initial set of states is defined by
Θ(0) = 〈V (0), P 〉, then this set is consistent for all α satisfying the predicate
P if ΓV (0) = 0. This means that we require consistency for all points in the
initial set. With a consistent initial set of states, we investigate the reachable set
computation and safety verification/falsification of an autonomous DAE system
in the next section.

5 Reachability Analysis

5.1 Reachable Set Computation

The reachable set of an autonomous DAE system is constructed by combining
the reachable set of all of its decoupled subsystems. The reachable set of all AC

170 H.-D. Tran et al.

subsystems can be derived from the reachable set of the ODE subsystem, which
can be computed efficiently using existing ODE solvers. We first discuss the
reachable set computation of the ODE subsystem by exploiting its superposition
property. Then, the reachable set of the autonomous DAE system is constructed
conveniently using only matrix addition and multiplication.

Let Θ(0) = 〈V (0), P 〉 be the initial set of states of an autonomous DAE
system defined in (1) by letting u(t) = 0. Assume that the initial set of states,
X(0), satisfies the consistent condition. After decoupling, the initial set of states
of the ODE subsystem Θ1(0) is obtained as follows: Θ1(0) = 〈V1(0), P 〉 where
V1(0) = (

∏µ−1
i=0 P0 · · · Pµ−1)V (0) = [v1

1(0) v1
2(0) · · · v1

k(0)], μ is the index of
the DAE system, and Pi, (i = 0, · · · , μ − 1), are defined in Lemma 1 or 2 or 3
corresponding to the index μ.

Then, for any x1(0) ∈ Θ1(0), we have x1(0) = Σk
i=1αiv

1
i (0). The solution of

the ODE subsystem at time t is given by: x1(t) = Σk
i=1αiv

1
i (t) = V1(t)α, where

v1
i (t) = eN1tv1

i (0) and V1(t) = [v1
1(t) v1

2(t) · · · v1
k(t)]. Therefore, the reachable set

of the ODE subsystem at anytime t is also a star set defined by Θ1(t) = V1(t)α.
Using existing ode solvers, we can construct the matrix V1(t) at anytime t. From
Θ1(t), the reachable set of the autonomous DAE system can be obtained using
the following Lemma.

Lemma 6 (Reachable Set Construction). Given an autonomous DAE sys-
tem defined in Eq. (1) where u(t) = 0 and a consistent initial set of states
Θ(0) = 〈V (0), P 〉, let Θ1(t) = 〈V1(t), P 〉 be the reachable set at time t of the
corresponding ODE subsystem after decoupling. Then, the reachable set Θ(t) at
time t of the system is given by Θ(t) = 〈V (t) = ΨV1(t), P 〉, where Ψ is a “reach-
able set projector” defined below.

Index-1 : Ψ = (In + N2), N2 is defined in Lemma 1,

Index-2 : Ψ = (In + N2 + N3 + L3N2N1),
(Ni=1,2,3, L3) are defined in Lemma 2,

Index-3 : Ψ = (In + N2 + N3 + N4 + L3N2N1

+ L4N3N1 + L4L3N2N
2
1 + Z4N2N1),

(Ni=1,2,3,4, Li=3,4, Z4) are defined in Lemma 3.

(7)

Proof is given in the appendix of [32].
The reachable set construction of an autonomous DAE system is summarized

in the appendix [32]. Next, from the constructed reachable set, we discuss how
to verify or falsify the safety property.

5.2 Safety Verification and Falsification

By utilizing the star set to represent the reachable set of a DAE system, the
safety verification and falsification problem is solved in the following manner.
Let Unsafe(Δ) � Gx ≤ f be the unsafe set of an autonomous DAE system and
assume that we want to check the safety of the system at the time step tj = jh.

Reachability Analysis for High-Index Linear Differential Algebraic Equations 171

This is equivalent to checking GV (jh)α ≤ f subject to P (α) � Cα ≤ d, where
V (jh) is the basic matrix of the reachable set Θ(jh) of the system at time jh
computed using the reachable set construction algorithm in the appendix of [32]
Combining these constraints, the problem changes to checking the feasibility of
the following linear predicate: P̄ � Ḡα ≤ f̄ , where Ḡ = [(GV (jh))T CT]T

and f̄ = [fT dT]T . This can be solved efficiently using existing linear program-
ming algorithms. The verification and falsification algorithm in the appendix
of [32] summarizes the steps of verifying or falsifying the safety property of an
autonomous DAE system. In the next section, we evaluate our approach using
a set of DAE benchmarks with several thousand states.

6 Experimental Results

In this section, we first demonstrate the effectiveness and scalability of our app-
roach via the verification results for several DAE benchmarks [29]. Then, we ana-
lyze the time performance of our approach using the index-2, two-dimensional
semi-discretized Stokes Equation benchmark [27]. It is worthy of noting that our
reachability analysis approach for high-index DAEs is extensible and generic, in
the sense that we can combine a decoupling method with other ODE reachability
analysis tools such as SpaceEx and Flow*. The verification results of all bench-
marks using such combinations with SpaceEx are presented in the appendix [32],
which demonstrates the limitations in both timing and scalability performances.
Our approach based on the combination of a decoupling method and a reach-
able set computation using star-set is implemented in a tool called Daev2 using
Python and its standard packages numpy, scipy, and mathplotlib. All exper-
iments were done on a computer with the following configuration: Intel Core
i7-6700 CPU @ 3.4 GHz 8 Processor, 62.8 GiB Memory, 64-bit Ubuntu 16.04.3
LTS OS.

6.1 Scalability Performance

Table 1 presents the verification results for all high-index DAE system
benchmarks using Daev. From the table, we can see that Daev is scalable in
verifying large DAE systems with thousands of state variables where the over-
approximation approach is not applicable. Moreover, our approach can produce
an unsafe trace in the case that a DAE system violates its safety property. An
example of unsafe traces of the index-2, interconnected rotating masses system
[30] is shown in the appendix [32]. Therefore, our approach is practically useful
for falsification of large, linear DAE systems.

6.2 Timing Performance

Next, we investigate the time performance of our approach through the reacha-
bility analysis of the index-2, two-dimensional semi-discretized Stokes Equation
benchmark.
2 https://github.com/verivital/daev/releases/tag/formats2019.

https://github.com/verivital/daev/releases/tag/formats2019

172 H.-D. Tran et al.

Table 1. Verification results for all benchmarks using Daev.

Benchmarks n Index Unsafe set Result V-T(s)

RL network [24] 3 2 x1 ≤ −0.2 ∧ x2 ≤ −0.1 Unsafe 0.184

x1 ≥ 0.2 Safe 0.44

RLC circuit [12] 4 1 x1 + x3 ≥ 0.2 Unsafe 0.224

x4 ≤ −0.3 Safe 1.37

Interconnected
rotating mass [30]

4 2 x3 ≤ −0.9 Unsafe 0.37

x4 ≤ −1.0 Safe 0.114

Generator [20] 9 3 x9 ≥ 0.01 Unsafe 0.4

x1 ≥ 1.0 Safe 0.684

Damped-mass
spring [27]

11 3 x3 ≤ 1 ∧ x8 ≤ 1.5 Safe 1.06

x8 ≤ −0.2 Unsafe 1.08

PEEC [9] 480 2 x478 ≥ 0.05 Safe 28.84

x478 ≥ 0.01 Unsafe 28.25

MNA-1 [9] 578 2 x1 ≥ −0.001 Safe 192.7

x1 ≥ −0.0015 Unsafe 202.6

MNA-4 [9] 980 3 x2 ≥ 0.0005 Safe 1858.4

x2 ≥ 0.0002 Unsafe 1836.04

Stokes-equation [27] 4880 2 vc
x + vc

y ≤ −0.04 Unsafe 3502.3

vc
x ≥ 0.2 Safe 3532.3

Example 1 (Semi-discretized Stokes Equation [27]). This example studies the
safety of a Stokes equation that describes the flow of an incompressible fluid
in a two-dimensional spatial domain Ω. The mathematical description of the
Stokes-equation is given in the appendix [32]. An index-2 DAE system is derived
from the Stokes-equation by discretizing the domain Ω by a number of uniform
square cells. Let n be the number of discretized segments of the domain on the
x- or y-axes, then the dimension of the DAE system is 3n2 + 2n. Additionally,
we are interested in the velocity along the x- and y- axes, vc

x(t) and vc
y(t), of

the fluid in the central cell of the domain Ω. The unsafe set of the system is
defined: Unsafe � −vc

x(t) − vc
y(t) ≤ 0.04. By increasing the number of cells

used to discretize the domain Ω, we can produce an index-2 DAE system with
arbitrarily large dimension. We evaluate the time performance of our approach
via three scenarios. First, we discuss how the times for decoupling, reachable set
computation, and safety checking are affected by changes in the system dimen-
sion. Second, we analyze the reachable set computation time along with the
width of the basic matrix of the initial set V (0), i.e., the number of the initial
basic vectors. Finally, because the reachable set of the system is constructed
from the reachable set of its corresponding ODE subsystem, which is computed

Reachability Analysis for High-Index Linear Differential Algebraic Equations 173

using ODE solvers as shown in the reachable set construction algorithm in the
appendix [32], we investigate the time performance of reachable set computation
using different ODE solving schemes. Table 2 presents the verification time, V-T,
for the Stokes-equation benchmark with different dimensions. The verification
time is broken into three components measured in seconds: decoupling time D-T,
reachable set computation time RSC-T, and checking safety time CS-T. Table 2
shows the decoupling and reachable set computation times dominate the time for
verification process. In addition, these times increase as the system size grows.
The time for checking safety is almost unchanged and very small. This happens
because the size of the feasibility problem P̄ defined in the verification/falsifi-
cation algorithm in the appendix [32] is unchanged and usually small when we
only check the safety in some specific directions defined by the unsafe matrix G
in the algorithm.

Table 2. Verification time of Stokes-equation with different dimensions n.

n 86 321 706 1241 1926 2761

D-T 0.012 s 0.63 s 6.32 s 40.38 s 155.32 s 466.38 s

RSC-T 0.019 s 0.37 s 2.98 s 19.29 s 68.15 s 200.89 s

CS-T 0.0017 s 0.0014 s 0.0015 s 0.0017 s 0.0018 s 0.002 s

V-T 0.0327 s 1.0014 s 9.3015 s 59.6717 s 223.4718 s 667.272 s

Since the reachable set the Stokes-equation benchmark is constructed by
simulating its corresponding ODE subsystem with each initial vector of its initial
basic matrix, the time for computing the reachable set of the Stokes-equation
depends linearly on the number of the initial basic vectors k. Table 3 shows the
reachable set computation time, RSC-T, for the Stokes-equation of dimension
n = 321 versus the number of the initial basic vectors k.

Table 3. Reachable set computation time of Stokes-equation of dimensions n = 321
with different number of initial basic vectors k.

k 2 4 6 8 10 12 14

RSC-T 1.9 s 3.41 s 5.01 s 6.71 s 8.3 s 9.9 s 11.44 s

Our approach relies on existing ODE solvers. Therefore, it is interesting to
consider how the reachable set computation time performs with different existing
ODE solving schemes supported by the scipy package such as vode, zvode, lsoda,
dopri5 and dop853. All solvers are used with the absolute tolerance atol = 1e−12
and the relative tolerance rtol = 1e−08. Figure 1 illustrates the time performance
of different schemes and indicates that the vode, dopri5, and dop853 are fast
schemes that should be used for large DAE systems. In addition, we should
avoid using the lsoda and zvode schemes for large DAE systems due to theirs
slow performance.

174 H.-D. Tran et al.

Fig. 1. Reachable set computation time of Stokes-equation using different ode solvers

7 Conclusion and Future Work

We have studied a simulation-based reachability analysis for high-index, linear
DAE systems. The experiential results show that our approach can deal with
DAE systems with up to thousands of state variables. Therefore, it is useful
and applicable to verify or falsify safety-critical CPS involving DAE dynamics.
Additionally, the decoupling and the consistency checking techniques used in our
approach can be used as a transformation pass for existing over-approximation
techniques [2,19] to verify the safety of DAE systems with small and medium
dimension.

The reachability analysis for DAE systems with millions of dimensions
remains challenging, although recent symbolic state-space representations, such
as star sets, that allow for analyzing very large ODEs may also prove pivotal for
DAEs [6]. The verification time of our approach depends mostly on the decou-
pling and the reachable set computation times. Therefore, to enhance the time
performance and the scalability of our approach to make it work for million-
dimensional DAE systems, both decoupling and reachable set computation tech-
niques need to be improved. A promising application that inspires seeking a such
scalable approach is verification and falsification of very large circuits, such as
those that may arise in analog/mixed signal (AMS) designs, which are described
as high-index DAEs. Transformations from standard circuit languages such as
Verilog-AMS or VHDL-AMS to representations as hybrid automata may enable
such analyses [3,4].

Reachability Analysis for High-Index Linear Differential Algebraic Equations 175

Acknowledgments. The material presented in this paper is based upon work sup-
ported by the National Science Foundation (NSF) under grant numbers CNS 1464311,
CNS 1713253, SHF 1527398, and SHF 1736323, the Air Force Office of Scientific
Research (AFOSR) through contract numbers FA9550-15-1-0258, FA9550-16-1-0246,
and FA9550-18-1-0122. The U.S. government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation thereon.
Any opinions, findings, and conclusions or recommendations expressed in this publi-
cation are those of the authors and do not necessarily reflect the views of AFOSR or
NSF.

References

1. Althoff, M., Krogh, B.: Reachability analysis of nonlinear differential-algebraic
systems. IEEE Trans. Autom. Control 59(2), 371–383 (2014). https://doi.org/10.
1109/TAC.2013.2285751

2. Althoff, M.: An introduction to CORA 2015. In: Proceedings of the Workshop on
Applied Verification for Continuous and Hybrid Systems (2015)

3. Bak, S., Beg, O.A., Bogomolov, S., Johnson, T.T., Nguyen, L.V., Schilling, C.:
Hybrid automata: from verification to implementation. Int. J. Softw. Tools Technol.
Transf. 21(1), 87–104 (2019). https://doi.org/10.1007/s10009-017-0458-1

4. Bak, S., Bogomolov, S., Johnson, T.T.: HYST: a source transformation and trans-
lation tool for hybrid automaton models. In: Proceedings of the 18th International
Conference on Hybrid Systems: Computation and Control, pp. 128–133. ACM
(2015)

5. Bak, S., Duggirala, P.S.: Simulation-equivalent reachability of large linear systems
with inputs. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
401–420. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 20

6. Bak, S., Tran, H.D., Johnson, T.T.: Numerical verification of affine systems with up
to a billion dimensions. In: Proceedings of the 22nd ACM International Conference
on Hybrid Systems: Computation and Control, HSCC 2019, pp. 23–32. ACM, New
York (2019). https://doi.org/10.1145/3302504.3311792

7. Banagaaya, N., Al̀ı, G., Schilders, W.H.: Index-Aware Model Order Reduction
Methods. Springer, Cham (2016). https://doi.org/10.2991/978-94-6239-189-5

8. Byrne, G., Ponzi, P.: Differential-algebraic systems, their applications and solu-
tions. Comput. Chem. Eng. 12(5), 377–382 (1988)

9. Chahlaoui, Y., Van Dooren, P.: A collection of benchmark examples for model
reduction of linear time invariant dynamical systems (2002)

10. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

11. Cross, E.A., Mitchell, I.M.: Level set methods for computing reachable sets of
systems with differential algebraic equation dynamics. In: American Control Con-
ference, pp. 2260–2265. IEEE (2008)

12. Dai, L.: Singular Control Systems. Lecture Notes in Control and Information Sci-
ences. Springer, Heidelberg (1989)

13. Dang, T., Donzé, A., Maler, O.: Verification of analog and mixed-signal circuits
using hybrid system techniques. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004.
LNCS, vol. 3312, pp. 21–36. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-30494-4 3

https://doi.org/10.1109/TAC.2013.2285751
https://doi.org/10.1109/TAC.2013.2285751
https://doi.org/10.1007/s10009-017-0458-1
https://doi.org/10.1007/978-3-319-63387-9_20
https://doi.org/10.1145/3302504.3311792
https://doi.org/10.2991/978-94-6239-189-5
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-540-30494-4_3
https://doi.org/10.1007/978-3-540-30494-4_3

176 H.-D. Tran et al.

14. Duan, G.R.: Analysis and Design of Descriptor Linear Systems, vol. 23. Springer,
New York (2010)

15. Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: a verification tool
for stateflow models. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035,
pp. 68–82. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-
0 5

16. Duggirala, P.S., Viswanathan, M.: Parsimonious, simulation based verification of
linear systems. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp.
477–494. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4 26

17. Eich-Soellner, E., Führer, C.: Numerical Methods in Multibody Dynamics, vol. 45.
Springer, Wiesbaden (1998). https://doi.org/10.1007/978-3-663-09828-7

18. Fan, C., Qi, B., Mitra, S., Viswanathan, M., Duggirala, P.S.: Automatic reachabil-
ity analysis for nonlinear hybrid models with C2E2. In: Chaudhuri, S., Farzan, A.
(eds.) CAV 2016. LNCS, vol. 9779, pp. 531–538. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41528-4 29

19. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

20. Gerdin, M.: Parameter estimation in linear descriptor systems. Citeseer (2004)
21. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari,

M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidel-
berg (2005). https://doi.org/10.1007/978-3-540-31954-2 19

22. Guernic, C.L., Girard, A.: Reachability analysis of linear systems using support
functions. Nonlinear Anal. Hybrid Syst. 4(2), 250–262 (2010). https://doi.org/10.
1016/j.nahs.2009.03.002

23. Han, Z., Krogh, B.H.: Reachability analysis of large-scale affine systems using
low-dimensional polytopes. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006.
LNCS, vol. 3927, pp. 287–301. Springer, Heidelberg (2006). https://doi.org/10.
1007/11730637 23

24. Ho, C.W., Ruehli, A., Brennan, P.: The modified nodal approach to network anal-
ysis. IEEE Trans. Circuits Syst. 22(6), 504–509 (1975)

25. Kong, S., Gao, S., Chen, W., Clarke, E.: dreach: δ-reachability analysis for hybrid
systems, pp. 200–205 (2015)

26. März, R.: Canonical projectors for linear differential algebraic equations. Comput.
Math. Appl. 31(4–5), 121–135 (1996)

27. Mehrmann, V., Stykel, T.: Balanced truncation model reduction for large-scale
systems in descriptor form. In: Benner, P., Sorensen, D.C., Mehrmann, V. (eds.)
Dimension Reduction of Large-Scale Systems. LNCSE, vol. 45, pp. 83–115.
Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-27909-1 3

28. Mitchell, I.M., Susuki, Y.: Level set methods for computing reachable sets of hybrid
systems with differential algebraic equation dynamics. In: Egerstedt, M., Mishra,
B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 630–633. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-78929-1 51

29. Musau, P., Lopez, D.M., Tran, H.D., Johnson, T.T.: Linear differential-algebraic
equations (benchmark proposal). EPiC Ser. Comput. 54, 174–184 (2018)

30. Schon, T., Gerdin, M., Glad, T., Gustafsson, F.: A modeling and filtering frame-
work for linear differential-algebraic equations. In: 42nd IEEE Conference on Deci-
sion and Control. Proceedings, vol. 1, pp. 892–897. IEEE (2003)

31. Tran, H.D., Bao, T., Johnson, T.T.: Discrete-space analysis of partial differential
equations. EPiC Seri. Comput. 54, 185–195 (2018)

https://doi.org/10.1007/978-3-662-46681-0_5
https://doi.org/10.1007/978-3-662-46681-0_5
https://doi.org/10.1007/978-3-319-41528-4_26
https://doi.org/10.1007/978-3-663-09828-7
https://doi.org/10.1007/978-3-319-41528-4_29
https://doi.org/10.1007/978-3-319-41528-4_29
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-540-31954-2_19
https://doi.org/10.1016/j.nahs.2009.03.002
https://doi.org/10.1016/j.nahs.2009.03.002
https://doi.org/10.1007/11730637_23
https://doi.org/10.1007/11730637_23
https://doi.org/10.1007/3-540-27909-1_3
https://doi.org/10.1007/978-3-540-78929-1_51

Reachability Analysis for High-Index Linear Differential Algebraic Equations 177

32. Tran, H.D., Nguyen, L.V., Hamilton, N., Xiang, W., Johnson, T.T.: Reachability
analysis for high-index linear differential algebraic equations: extended version. In:
17th International Conference on Formal Modeling and Analysis of Timed Systems
(2019)

33. Tran, H.D., Nguyen, L.V., Johnson, T.T.: Large-scale linear systems from order-
reduction (benchmark proposal). In: 3rd Applied Verification for Continuous and
Hybrid Systems Workshop (ARCH), Vienna, Austria (2016)

34. Tran, H.D., Nguyen, L.V., Xiang, W., Johnson, T.T.: Order-reduction abstractions
for safety verification of high-dimensional linear systems. Discrete Event Dyn. Syst.
27(2), 443–461 (2017)

35. Tran, H.D., Xiang, W., Bak, S., Johnson, T.T.: Reachability analysis for one dimen-
sional linear parabolic equations. IFAC-PapersOnLine 51(16), 133–138 (2018)

Timed Automata

The Timestamp of Timed Automata

Amnon Rosenmann(B)

Graz University of Technology, Steyrergasse 30, 8010 Graz, Austria
rosenmann@math.tugraz.at

Abstract. Let eNTA be the class of non-deterministic timed automata
with silent transitions. Given A ∈ eNTA, we effectively compute its
timestamp: the set of all pairs (time value, action) of all observable timed
traces of A. We show that the timestamp is eventually periodic and that
one can compute a simple deterministic timed automaton with the same
timestamp as that of A. As a consequence, we have a partial method,
not bounded by time or number of steps, for the general language non-
inclusion problem for eNTA. We also show that the language of A is
periodic with respect to suffixes.

Keywords: Timed automata · Timestamp of timed automata ·
Reachability problem · Language inclusion for timed automata

1 Introduction

Timed automata (TA) are finite automata extended with clocks that measure
the time that elapsed since past events in order to control the triggering of future
events. They were defined by Alur and Dill in their seminal paper [1] as abstract
models of real-time systems and were implemented in tools like UPPAAL [20],
Kronos [10], RED [27] and PRISM [19].

A fundamental problem in this area is the reachability problem, which in its
basic form asks whether a given location of a timed automaton is reachable from
the initial location. The set of states of the system (i.e., locations and valuation
to the clocks) is, in general, an infinite uncountable set. However, through the
construction of a region automaton, which contains finitely-many equivalence
classes of regions [1], the reachability problem becomes a decidable problem
(though of complexity PSPACE-complete).

Research on the reachability problem went beyond the above basic question.
In [14] it is shown that the problem of the minimum and maximum reachability
time is also PSPACE-complete. In another work, [13], which is more of a the-
oretical nature, the authors show that some problems on the relations between
states may be defined in the decidable theory of the domain of real numbers
equipped with the addition operation. In particular, the reachability problem
between any two states is decidable. For other aspects of the reachability prob-
lem, also in the context of variants and extensions of timed automata (e.g. with
game and probability characteristics) we refer to [3,5,11,14,17,18,26,28]. In this
c© Springer Nature Switzerland AG 2019
É. André and M. Stoelinga (Eds.): FORMATS 2019, LNCS 11750, pp. 181–198, 2019.
https://doi.org/10.1007/978-3-030-29662-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29662-9_11&domain=pdf
http://orcid.org/0000-0003-0255-0885
https://doi.org/10.1007/978-3-030-29662-9_11

182 A. Rosenmann

paper we generalize the reachability problem in another direction. We show that
the problem of computing the set of all time values on which any observable
transition occurs (and thus, a location is reached by an observable transition) is
solvable. This set, called the timestamp of the automaton A and denoted TS(A),
is more precisely defined to be the set of all pairs (t, a) that appear in the observ-
able timed traces of A. Note that for this definition it does not matter whether
we consider infinite runs or finite ones.

We show that the timestamp is in the form of a union of action-labeled open
intervals with integral end-points, and action-labeled points of integral values.
When the timestamp is unbounded in time then it is eventually periodic.

The set of languages defined by the class DTA of deterministic timed
automata is strictly included in the set of languages defined by the class NTA of
non-deterministic timed automata [1,16], and the latter is strictly included in the
set of languages defined by the class eNTA of non-deterministic timed automata
with silent transitions [8]. The fundamental problem of inclusion of the language
accepted by a timed automaton A (e.g. the implementation) in the language
accepted by the timed automaton B (e.g. the specification) is undecidable for
the class NTA but decidable for the class DTA. On the other hand, for special
sub-classes or modifications it was shown that decidability exists (see [2,4,6,8,
9,21–24] for a partial list). However, the abstraction (or over-approximation)
represented in the form of a timestamp is a discrete object, in which questions
like inclusion of timestamps or universality are decidable. In fact, we show that
for any given non-deterministic timed automaton with silent transitions, one can
construct a simple deterministic timed automaton having the same timestamp.

The computation of the timestamp is done through the construction of a
periodic augmented region automaton Rt

per(A). It is a region automaton aug-
mented with a global non-resetting clock t and containing periodic regions and
periodic transitions: they are defined modulo a time period L ∈ N. This kind
of abstraction demonstrates a periodic nature which is absent, in general, from
timed traces: there are timed automata with no timed traces that are eventually
periodic (see Example 1). Periodic transitions were introduced in [12], where it
was shown that they increase the expressiveness of DTA, though they are less
expressive than silent transitions.

The construction of the periodic automaton is preceded by defining the infi-
nite augmented region automaton Rt

∞(A), in which the values of the clock t are
unbounded. Then, after exhibiting the existence of a pattern that repeats itself
every L time units, we fold the infinite automaton into a finite one according to
this periodic structure.

Our construction shows that the language of a timed automaton A ∈ eNTA
is periodic with respect to suffixes: for every run � with suffix ς that occurs after
passing a fixed computable time there are infinitely-many runs of A with the
same suffix ς, but with the suffix shifted in time by multiples of L. Note that
this result does not follow from the pumping lemma, which does not hold in
general in timed automata [7].

The Timestamp of Timed Automata 183

Due to lack of space, some proofs are either sketched or completely missing
(for a longer version see [25]).

2 Timed Automata with Silent Transitions

A timed automaton is an abstract model aiming at capturing the temporal
behavior of real-time systems. It is a finite automaton extended with a finite set
of clocks defined over R≥0. It consists of a finite set of locations q with a finite
set of transitions τ between the locations, while time, measured by the clocks,
is continuous. A transition at time t can occur only if the condition expressed
as a transition guard is satisfied at t. The transition is immediate - no clock is
advancing in time. However, some of the clocks may be reset to zero.

There are two sorts of transitions: observable transitions, which can be traced
by an outside observer, and silent transitions, which are inner transitions and
thus cannot be observed from the outside. There are finitely-many types of
observable transitions, each type labeled by a unique action a ∈ Σ, whereas all
the silent transitions have the same label ε. In NTA, the class of non-deterministic
timed automata, there exist states in which two transitions from the same loca-
tion q can be taken at the same time and with the same action but to two
different locations q′ and q′′. When this situation cannot happen, the TA is
deterministic.

Let N0 := N ∪ {0} and let P (S) be the power set of a set S. A transition
guard is a conjunction of constraints of the form c ∼ n, where c is a clock,
∼ ∈ {<,≤,=,≥, >} and n ∈ N0. A formal definition of eNTA is as follows.

Definition 1 (eNTA). A non-deterministic timed automaton with silent tran-
sitions A ∈ eNTA is a tuple (Q, q0, Σε, C, T), where:

1. Q is a finite set of locations and q0 is the initial location;
2. Σε = Σ ∪{ε} is a finite set of transition labels, called actions, where Σ refers

to the observable actions and ε represents a silent transition;
3. C is a finite set of clock variables;
4. T ⊆ Q × Σε × G × P (C) × Q is a finite set of transitions of the form

(q, a, g, Crst, q
′), where:

(a) q, q′ ∈ Q are the source and the target locations respectively;
(b) a ∈ Σε is the transition action;
(c) g ∈ G is the transition guard;
(d) Crst ⊆ C is the subset of clocks to be reset.

A clock valuation v is a function v : C → R≥0. We denote by V the set of
all clock valuations and by d the valuation which assigns the value d to every
clock. Given a valuation v and d ∈ R≥0, we define v + d to be the valuation
(v + d)(c) := v(c) + d for every c ∈ C. The valuation v[Crst], Crst ⊆ C, is defined
to be v[Crst](c) = 0 for c ∈ Crst and v[Crst](c) = v(c) for c /∈ Crst.

The semantics of A ∈ eNTA is given by the timed transition system
�A� = (S, s0, R≥0, Σε, T), where:

184 A. Rosenmann

1. S = {(q, v) ∈ Q × V} is the set of states, with s0 = (q0,0) the initial state;
2. T ⊆ S × (Σε ∪ R≥0) × S is the transition relation. The set T consists of

(a) Timed transitions (delays): (q, v) d−→ (q, v + d), where d ∈ R≥0;
(b) Discrete transitions (jumps): (q, v) a−→ (q′, v′), where a ∈ Σε and there

exists a transition (q, a, g, Crst, q
′) in T , such that for each clock c, v(c)

satisfies the constraints of g regarding c, and v′ = v[Crst].

A (finite) run � of A ∈ eNTA is a sequence of alternating timed and discrete
transitions of the form

(q0,0) d1−→ (q0,d1)
a1−→ (q1, v1)

d2−→ · · · dk−→ (qk−1, vk−1 + dk) ak−→ (qk, vk)

and duration T =
∑k

j=1 dj . The run � of A induces the timed trace (timed word)

λ = (t1, a1), (t2, a2), . . . , (tk, ak),

with ai ∈ Σε and ti = Σi
j=1dj . From the latter we can extract the observable

timed trace (observable timed word), which is obtained by deleting from λ all
the pairs containing silent transitions. Note that when the TA is deterministic
then each timed trace refers to a unique run. We remark that we did not include
the location invariants in the definition of timed automata since these invariants
can be incorporated in the transition guards. We also do not distinguish between
accepting and non-accepting locations as they do not change the analysis and
results concerning the reachability problems that are dealt with here. Thus, the
language L(A) of A refers here to the set of observable timed traces of A without
restricting it to those observable timed traces of runs that end in acceptable
locations.

3 The Trail and Timestamp of a Single Path

Given a timed automaton A ∈ eNTA over s clocks x1, . . . , xs, we add to it a
non-resetting global clock t that displays absolute time. A finite path in A has
the form γ = q0τ1q1τ2 · · · τnqn of alternating locations and transitions, with q0
the initial location and τi a transition between qi−1 and qi, i = 1, . . . , n, that is,
a path here refers to the standard definition in a directed graph. A run of the
TA induces a trajectory in the non-negative part of the tx1 · · · xs-space that is a
piecewise-linear curve (the discontinuity is the clocks reset).

Definition 2 (Trajectory of a run). Let {t, x1, . . . , xs} be an ordered set of
clocks of A ∈ eNTA. Let � be a run of duration T of A. The trajectory of �
is the set of points (t, x1, . . . , xs) in the tx1 · · · xs-space visited during �, where
0 ≤ t ≤ T .

Next, we define the trail of a path.

Definition 3 (Trail of a path). The trail of a path γ is the union of the
trajectories of all feasible runs along γ, that is, runs that follow the locations
and discrete transitions of γ.

The Timestamp of Timed Automata 185

The trail legs, the parts of the trail between clocks reset, are in the form of
zones [15], a conjunction of diagonal constraints xi − xj < nij or xi − xj ≤ nij ,
nij ∈ Z, bounded by transition constraints xi ∼ ni, where ∼ ∈ {<,≤,=,≥, >},
ni ∈ N0. Each trail leg can be further partitioned into simplicial trails, which
are (possibly unbounded) parallelotopes consisting of a sequence of regions [1]
arranged along the directional vector 1 = (1, 1, . . . , 1). Each region n + Δ is in
the form of an open (unless it is a point) simplex Δ that is a hyper-triangle of
dimension 0 ≤ d ≤ s+1. The simplex Δ is characterized by the fractional values
{xi} of the clock variables, and each point in the simplex satisfies the same fixed
ordering of the form

0 	1 {xi1} 	2 {xi2} 	3 · · · 	s {xis} < 1, (1)

where 	i ∈ {=, <}. The integral point n ∈ N
s+1
0 consists of the integral parts

of the values of the clocks x0, x1, . . . , xs, and it indicates the lowest point in the
x0 · · · xs-space of the boundary of the region. Each region has a unique immediate
time-successor, which is the next region along the directional vector 1, as long
as no clock is reset on an event.

Definition 4 (Timestamp of a run). The timestamp of a run � is the set of
pairs (ti, ai) ∈ R≥0 × Σ of the observable timed trace induced by �.

Definition 5 (Timestamp of a path). The timestamp of a path γ of A is
the union of the timestamps of all runs � along γ.

Each instance of a transition along γ is an event.

Definition 6 (Timestamp of an event in a path). The timestamp of an
event in a path γ is the union of the timestamps of that event of all runs along
γ. It is the part of the timestamp of the path that refers to that event.

Proposition 1. The timestamp of each event is either a labeled integral point
or a labeled (open, closed or half-open) interval between points m and n, m < n,
m ∈ N0 and n ∈ N ∪ ∞.

Proof (sketch). It follows from the fact that the trail of each path is composed
of simplices as in (1) residing on the integral grid, and such are the intersections
with domains defined by transition constraints and projections due to clocks
resets. Thus, it suffices to show that the timestamp of a single simplex Δ is of
the required form and this follows from the fact that the simplex vertices are of
integral value.

An alternative proof is via a linear programming problem over the variables
ti, where ti represents the time of event i along a path γ, by showing that the
minimum and maximum (if not infinite) of the solution set is integral. �

Definition 7 (Timestamp of a timed automaton). The timestamp TS(A)
of a timed automaton A is the set of all pairs (t, a), such that an observable
transition with action a occurs at time t in some run of A.

186 A. Rosenmann

4 Augmented and Infinite Augmented Region Automaton

4.1 Infinite Augmented Region Automaton

Given a (finite) timed automaton A, the region automaton R(A) [1] is a finite
discretized version of A, such that time is abstracted and both automata define
the same untimed language. Each vertex in R(A) records a location q in A and
a region r, which is either in the form of a simplex (as described in Sect. 3) or an
unbounded region, in which the value of at least one of the clocks is �, meaning
that it passed the maximal integer value M that appears in the transition guards.
The regions partition the space of clock valuations into equivalence classes, where
two valuations belong to the same equivalence class if and only if they agree
on the clocks with � value and on the integral parts and the order among
the fractional parts of the other clocks. The edges of R(A) are labeled by the
transition actions, and they correspond to the actual transitions that occur in
the runs of A. Using the time-successor relation over the clock regions (see [1]),
the region automaton can be effectively constructed. As shown in [1], through the
region automaton the questions of reachable locations and states of A and the
actions along the (possibly infinitely-many) paths that lead to these locations,
i.e. the untimed language of A, become decidable.

Now we define the infinite augmented region automaton Rt
∞(A). First, we

add to A a clock t that measures absolute time, does not appear in the transition
guards, is never reset to 0 and does not affect the runs and timed traced of A.
Next, we construct the region automaton augmented with t. The construction
is similar to the construction of the standard region automaton with respect to
the regular clocks (all clocks except for t) and the maximal bound M , that is,
the time regions of each regular clock xi are {0}, (0, 1), {1}, (1, 2), . . . ,M,> M ,
the latter being unbounded and refers to all values of x greater than M . The
integration of the clock t is as follows. The construction of regions is as usual by
considering the integral parts and the order of the fractional parts of all clocks,
including t. The only difference is that the integral part of t is in N0 and not
bounded by M . Thus, the infinitely-many time-regions associated with t are the
alternating point and open unit interval: {0}, (0, 1), {1}, (1, 2), . . . (see Fig. 1(b)).
Hence, Rt

∞(A) contains information about absolute time that is lacking from the
standard region automaton.

Definition 8 (Infinite augmented region automaton). Given A ∈ eNTA
extended with the clock t that measures absolute time, a corresponding infinite
augmented region automaton Rt

∞(A) is a tuple (V, v0, E,Σε), where:

1. V is an infinite (in general) set of vertices of the form (q,n,Δ), where q is a
location of A and the pair (n,Δ) is a region, with

n = (n0, n1, . . . , ns) ∈ N0 × {0, 1, . . . ,M,�}s (2)

containing the integral parts of the clocks t, x1, . . . , xs, and Δ is the simplex
defined by the order of the fractional parts of the clocks.

The Timestamp of Timed Automata 187

2. v0 = (q0,0,0) is the initial vertex with q0 the initial location of A and with
all clocks having integral part and fractional part equal to 0.

3. E is the set of edges. There is an edge

(q, r) a−→ (q′, r′) (3)

labeled with a in Rt
∞(A) if and only if there is a run of A which contains a

timed transition followed by a discrete transition of the form

(q, v) d−→ (q, v + d) a−→ (q′, v′), (4)

such that the clock valuation v over t, x1, . . . , xs represents a point in the
region r and the clock valuation v′ represents a point in the region r′.

4. Σε = Σ ∪ {ε} is the finite set of actions that are edge labels.

We note that there may be infinitely-many edges going-out of the same region
in Rt

∞(A) (see Fig. 1(b)).

Proposition 2. For each positive integer n, one can effectively construct the
part of Rt

∞(A) which contains all regions with t ≤ n and all in-coming edges of
these regions.

The timestamp of the TA A, denoted TS(A), is the union of the timestamps
of all observable transitions of A, that is, the set of all pairs (t, a), such that an
observable transition with action a occurs at time t in some run of A. We define
also the timestamp of Rt

∞(A).

Definition 9 (Timestamp of Rt
∞(A)). The timestamp of Rt

∞(A),
TS(Rt

∞(A)), is the union of sets s×a, where s is a time-region of t (an integral
point {n} or an open unit interval (n, n + 1)) that is part of a region of a vertex
of Rt

∞(A) and a ∈ Σ is a label of an edge of Rt
∞(A) that is directed towards this

vertex.

Proposition 3. TS(A) = TS(Rt
∞(A)).

Proof. By definition of the infinite augmented region automaton Rt
∞(A), its

regions are exactly the clock-regions which are visited by runs of the TA A
extended with the clock t. In particular, the time-regions of Rt

∞(A) are the
time-regions that are visited by the runs on the extended TA. Thus, TS(A) ⊆
TS(Rt

∞(A)). By Proposition 1, this is an equality since for each open interval
(n, n+1) representing absolute time that is visited in some run of A on an action
a, the set of all runs of A cover all the points of this interval with the same
action a. �

4.2 Augmented Region Automaton

A second construction is the augmented region automaton, denoted Rt(A), in
which we consider only the fractional part of t and ignore its integral part.

188 A. Rosenmann

Rt(A) is a finite folding of Rt
∞(A), obtained by identifying vertices that contain

the same data except for the integral part of t, and the corresponding edges.
Thus, t has only two time-regions: {0} and (0, 1). As a compensation, we assign
weights to the edges of Rt(A), as explained below.

Definition 10 (Augmented region automaton). Given a non-deterministic
timed automaton with silent transitions A ∈ eNTA, extended with the absolute-
time clock t, a corresponding (finite) augmented region automaton Rt(A) is a
tuple (V, v0, E,Σε,W

∗), where:

1. V is the set of vertices. Each vertex is a triple (q,n,Δ), where q is a location
of A and the pair (n,Δ) is a region, with

n = (n1, . . . , ns) ∈ {0, 1, . . . ,M,�}s (5)

containing the integral parts of the clocks x1, . . . , xs, and Δ is the simplex
defined by the fractional parts of the clocks t, x1, . . . , xs.

2. v0 = (q0,0,0) is the initial vertex.
3. E is the set of edges. There is an edge (q, r) a−→ (q′, r′) labeled with action a

if and only if there is a run of A which contains a timed transition followed
by a discrete transition of the form (q, v) d−→ (q, v + d) a−→ (q′, v′), such that,
when ignoring the integral part of the time measured by t, the clock valuation
v represents a point in the region r and the clock valuation v′ represents a
point in the region r′.

4. Σε = Σ ∪ {ε} is the finite set of actions.
5. W ∗ is the set of weights on the edges. Each weight m, possibly marked with

‘∗’, is m = t1� − t0� ∈ [0..M], where t1� is the integral part of the value of
t in the target location and t0� - in the source location in the corresponding
run of A.

There may be more than one edge between two vertices of Rt(A), each one
with a distinguished weight. A marked weight m∗ represents infinitely-many
consecutive values m,m+1,m+2, . . . as weights between the same two vertices,
with m being the minimal value of such a sequence. It refers to a transition to
or from a region r in which all regular clocks have passed the maximal integer
M appearing in a transition guard as is illustrated in Fig. 1.

The languages L(Rt(A)) of Rt(A) and L(Rt
∞(A)) of Rt

∞(A) consist of all
observable timed traces but, in contrast to the language L(A) of A, in each pair
(ti, ai) the time ti is not exact: it is either an exact integer n or an arbitrary value
of an interval (n, n + 1) that satisfies ti ≥ ti−1. Thus, L(Rt(A)) and L(Rt

∞(A))
are less abstract than the untimed language L(R(A)) of the region automa-
ton R(A) but are more abstract than L(A): one cannot, in general, distinguish
between a transition that occurs without any time delay, e.g. when xi ≥ 0, and
a transition that demands a time delay, e.g. when xi > 0. When comparing
L(Rt(A)) and L(Rt

∞(A)) then, since Rt(A) may be obtained from Rt
∞(A), it is

clear that L(Rt(A)) cannot be less abstract than L(Rt
∞(A)). But, in fact, these

region automata are equally informative: for each positive integer n, one can

The Timestamp of Timed Automata 189

(a)

0 = {t} = {x}0

1

a (∗)

(0, 0)

0 < {t}

(d)

a

1

a

0 = {t} = {x}1
(0, 0)

(∗)

0 = {t}

(0 + N, �)

(1 + N, �)

(0, 1) + N

1 + N

0

t

0 = {t} = {x}0

1

a 0∗

(−, 0)

0 < {t}

a

0 = {t} = {x}1
(−, 0)

(−,�)
1

0 = {t}
(−, �)

(c)

0

a
1∗

a

a

a

a

a

a

1

1

1

1

(2, �)

(2, �)

(1, �)

(1, �)

0

0 = {t}

0 = {t}

(0, 1)

(1, 2)

(2, 3)

1

a (0, 0)
0 = {t} = {x}1

1

2

(0, �)
0 < {t}

(0, 0)
0 = {t} = {x}

0 < {t}

0 < {t}

0

t

(b)

10
x ≥ 0

a

Fig. 1. (a) A ∈ TA; (b) The infinite augmented region automaton Rt
∞(A); (c) The aug-

mented region automaton Rt(A); (d) A periodic augmented region automaton Rt
per(A).

Each rectangle represents a vertex containing the location of A (circled, left), the inte-
gral values of t and x (top) and the simplex (bottom).

effectively construct Rt
∞(A) up to time t = n, as in Proposition 2, by unfolding

Rt(A) and recovering absolute time t by summing up the weights of the edges
along the taken paths. Indeed, since the transitions in A do not rely on t, by
taking the quotient of Rt

∞(A) by ‘forgetting’ the integral part of t, the only loss
of information is the time difference in t between the target and source regions,
but then this information is regained in the form of weight on the corresponding
edge of Rt(A). Thus, we have the following.

Proposition 4. L(Rt(A)) = L(Rt
∞(A)).

5 Eventual Periodicity

In this section we address the main topic of this paper: exploring the time-
periodic property of TA. In addition to demonstrating its existence, we show
how one can actually compute the parameters of a period.

5.1 Non-Zeno Cycles in Rt(A)

Rt(A) is in the form of a finite connected directed graph with an initial vertex.
Every edge of Rt(A) corresponds to a feasible transition in A (contained in a

190 A. Rosenmann

run of A). In what follows, a ‘path’ in Rt(A) is a directed path that starts at
the initial vertex g0, unless otherwise stated.

Definition 11 (Duration of a path). Given a path γ in Rt(A), its minimal
integral duration, or simply duration, d(γ) ∈ N0 is the sum of the weights on its
edges, where a weight m∗ is counted as m.

Definition 12 ((Non)-Zeno cycle). A cycle of Rt(A) of duration 0 is called
a Zeno cycle. Otherwise, it is a non-Zeno cycle.

A path is called simple if no vertex of it repeats itself, and we let D be the
maximal duration of a simple path in Rt(A).

Lemma 1. There exists a minimal positive integer tnz ≤ D + 1, the non-Zeno
threshold time, such that every path γ of Rt(A) that is of (minimal) duration
tnz or more contains a vertex belonging to some non-Zeno cycle.

In order to compute tnz we can explore the simple paths of Rt(A), say in a
breadth-first manner, up to the time t0 in which each such path either cannot
be extended to a path of a larger duration or any extension of it hits a vertex
belonging to some non-Zeno cycle. Then tnz = t0+1, which may be much smaller
than D + 1.

5.2 A Period of Rt(A)

A set S is minimal with respect to some property if for every element e ∈ S the
set S � {e} does not satisfy the property.

Definition 13 (Covering set of non-Zeno cycles). A set C of non-Zeno
cycles of Rt(A) is called a covering set of non-Zeno cycles if every path γ of
Rt(A) whose duration d(γ) is at least tnz intersects a cycle in C in a common
vertex.

Without loss of generality, we may assume that a covering set of non-Zeno cycles
is minimal.

Definition 14 (Period of Rt(A)). A time period (or just period) L of Rt(A) is
a common multiple of the set of durations d(π), π ∈ C, for some fixed (minimal)
covering set of non-Zeno cycles C. For convenience, we also set L to be greater
than M , unless Rt(A) does not contain non-Zeno cycles, in which case we define
L to be 0.

5.3 Eventual Periodicity of Rt
∞(A)

Let tnz, C, L be as above, with C fixed. We denote by Rt
∞(A)|t≥n the subgraph

of Rt
∞(A) that starts at time-level n, that is, the set of vertices of Rt

∞(A) with
absolute time t ≥ n and their out-going edges.

The Timestamp of Timed Automata 191

Definition 15 (L-shift in time). Given a subgraph G of Rt
∞(A), an L-shift

in time of G, denoted G + L, is the graph obtained by adding the value L to
each value of the integral part of the clock t in G and leaving the rest of the data
unaltered. We also denote by V (G)+L the L-shift in time for the set of vertices
of G, with v + L in case V = {v}.

Lemma 2. If Rt
∞(A) is not bounded in time then

Rt
∞(A)|t≥tnz + L ⊆ Rt

∞(A)|t≥tnz+L.

Proof. First we show that the inclusion holds for the set of vertices of the
above subgraphs. Let γ be a path of Rt

∞(A) which terminates in a vertex
v1 ∈ Rt

∞(A)|t≥tnz . Let γ′ = p(γ) be the image of γ under the projection to
Rt(A). If γ contains an edge e1 whose image e′

1 = p(e1) is labeled by a marked
weight m∗ then we can replace e1 by another edge e2 ∈ p−1(e′

1) whose delay is
greater by L than the delay of e1. So, suppose that e1 starts in the vertex u1 and
terminates in w1. Then e2 starts in u1 and terminates in the vertex w2 = w1 +L
and then the path continues as in γ but with an L-shift in time, terminating in
the vertex v2 = v1 + L. Otherwise, no edge of γ′ has a marked weight. Since
d(γ) ≥ tnz then by Lemma 1 and the definition of L, γ′ contains a vertex v′ that
belongs to a non-Zeno cycle π and whose duration is a factor of L. Hence, by a
‘pumping’ argument, we can extend γ′ with L/d(π) cycles of π that start and
end in v′ and then reach the vertex v2 = v1 + L in the pre-image in Rt

∞(A) of
this extended path.

The inclusion of the out-going edges follows from the fact that the out-going
edges do not depend on the value of t. �

Let us denote by Vk, k = 0, 1, 2, . . ., the set of vertices

Vk = V (Rt
∞(A)|t≥tnz+kL) � V (Rt

∞(A)|t≥tnz+(k+1)L).

Theorem 1. If the infinite augmented region automaton Rt
∞(A) is not bounded

in time then it is eventually periodic: there exists an integral time tper > 0 such
that

Rt
∞(A)|t≥tper + L = Rt

∞(A)|t≥tper+L.

Proof. By Lemma 2, Vk + L ⊆ Vk+1, for k ≥ 0. But there is a bound on the
number of possible vertices of Vk since t is bounded, hence the sequence Vk

eventually stabilizes. The result then follows since for the out-going edges the
same argument given in the proof of Lemma 2 holds also here. �

When Rt
∞(A) is finite then we can set tper to be tmax + 1, where tmax is the

maximal integral time of Rt
∞(A). By the following proposition, a possible value

for tper can be effectively computed when Rt
∞(A) is infinite.

Proposition 5. if |Vk| = |Vk+1| = |Vk+2| for some k then we can set
tper = tnz + kL.

192 A. Rosenmann

As is known, a TA may be totally non-periodic in the sense that no single
timed trace of it is eventually periodic (see Example 1). However, a special kind of
periodicity, which we call suffix-periodicity, holds between different timed traces,
as shown in the following theorem.

Theorem 2. If A ∈ eNTA is not bounded in time then its language L(A) is
suffix-periodic: if tr > tper and

λ = (t1, a1), . . . , (tr−1, ar−1), (tr, ar), (tr+1, ar+1), . . . , (tr+m, ar+m)

is an observable timed trace of L(A) then, for each k ∈ LZ, if tr + k > tper then
there exists an observable timed trace λ′ ∈ L(A) such that

λ′ = (t′1, a
′
1), . . . , (t

′
s, a

′
s), (tr + k, ar), (tr+1 + k, ar+1), . . . , (tr+m + k, ar+m).

6 Periodic Augmented Region Automaton

After revealing the periodic structure of Rt
∞(A), it is natural to fold it into a

finite graph according to this period, which we call periodic augmented region
automaton and denote by Rt

per(A). The construction of Rt
per(A) is done by

first taking the subgraph of Rt
∞(A) of time t < tper + L and then folding the

infinite subgraph of Rt
∞(A) of time t ≥ tper + L onto the subgraph of time

tper ≤ t < tper + L, which becomes the periodic subgraph, as explained below.
For an edge e, we denote by ι(e) and τ(e) the initial, resp. terminal, vertex of e.

Definition 16 (Periodic augmented region automaton). Given an infi-
nite augmented region automaton Rt

∞(A) with period L and periodicity starting
time tper, a finite projection p(Rt

∞(A)) of it, called periodic augmented region
automaton and denoted Rt

per(A), is a tuple (V, v0, E,Σε, B), where:

1. V is the set of vertices, with v0 = (q0,0,0) the initial vertex. For each v ∈
Rt

per(A), if u ∈ p−1(v) ⊆ Rt
∞(A) then u equals v in all fields, except possibly

for the integral part of t. If v.t� < tper then u = v and v is a regular
vertex. Otherwise, v is a periodic vertex, v.t� is written as n+LN0, for some
tper ≤ n < tper + L, p−1(v) is infinite and {u.t� | p(u) = v} = {n + kL | k =
0, 1, 2, . . .}.

2. E is the set of edges, which are the projected edges of Rt
∞(A) under the map p.

Each edge joining two vertices of Rt
∞(A) is mapped to an edge with the same

action label that joins the projected vertices. Some of the edges are marked
with a symbol of B = {(∗), (∗+)}. The description below is technical and
refers to the different types of edges that occur when folding Rt

∞(A): whether
the source of the edge is a regular (R) or a periodic (P) vertex (in the latter
case the preimage in Rt

∞(A) contains infinitely-many edges, one from each of
the preimage vertices), whether it is unmarked (U) or marked (M) (in the
latter case there are infinitely-many edges starting from each of the vertices
in the preimage source vertices), and finally the plus sign (+) represents the
case where in the preimage the target vertices are not of value n but n + L.

The Timestamp of Timed Automata 193

– UR: (unmarked, regular) If e ∈ Rt
per(A) is unmarked and ι(e) is regular

then ι(e).t� = n1 < tper, τ(e).t� = n2 or τ(e).t� = n2 + LN0 and
p−1(e) = {e′}, with ι(e′).t� = n1 and τ(e′).t� = n2.

– UP: (unmarked, periodic) If e ∈ Rt
per(A) is unmarked and ι(e) is periodic

then ι(e).t� = n1+LN0, τ(e).t� = n2+LN0, tper ≤ n1, n2 < tper+L and
the preimage of e in Rt

∞(A) are the infinitely-many edges satisfying the
following. If n1 ≤ n2 then p−1(e) = {e′ | ι(e′).t� = n1 + kL, τ(e′).t� =
n2 + kL, k = 0, 1, 2, . . .}, and if n1 > n2 then p−1(e) = {e′ | ι(e′).t� =
n1 + kL, τ(e′).t� = n2 + (k + 1)L, k = 0, 1, 2, . . .}.

– MR: (marked, regular) If e ∈ Rt
per(A) is marked with ‘(∗)’ and ι(e) is

regular, with ι(e).t� = n1 and τ(e).t� = n2 or n2 + LN0, then p−1(e) =
{e′ | ι(e′).t� = n1, τ(e′).t� = n2 + kL, k = 0, 1, 2, . . .}, that is, infinitely-
many edges starting from the same vertex.

– MP: (marked, periodic) If e ∈ Rt
per(A) is marked with ‘(∗)’ and ι(e) is

periodic, with ι(e).t� = n1 + LN0 and τ(e).t� = n2 + LN0, then its
preimage in Rt

∞(A) contains all the edges according to both rules UP
and MR.

– MP+: (marked, periodic, shifted) If e ∈ Rt
per(A) is marked with ‘(∗+)’

then the same rules that apply to an edge marked with ‘(∗)’ hold, except
that the target vertices are of L-shift in time compared to those of an
edge marked with ‘(∗)’.

3. Σε = Σ ∪ {ε} is the finite set of actions.

t

10 2 3

x = 1, {x}a b
a

x = 1, {x}

b
(0 < x) ∧ (y < 1), {y}

{y}

(a)

2

1

0
0 = {t} = {x} = {y}

3 + N0 2

2

b

b

0 = {t} = {x} = {y} 2

0 = {y} < {t} = {x}

0 = {y} < {t}
(2 + N0, �, 0)

(3 + N0, �, 0)

(1, 0, 1)

(1, 0, 0)

(2, 1, 0)

(0, 0, 0)

0 = {t} = {y}

0 = {t} = {x} = {y}
(1, 0, 0)b

3 3

3

2

(b)

(2, 0, 1) (2, 0, 0)

(3 + N0, 0, 0)

(2 + N0, 0, 0)

0 = {t} = {x} < {y}

0 = {y} < {t} = {x}

0 = {t} = {x} = {y} 0 = {t} = {x} = {y} 0 = {t} = {x} < {y}

(∗)

(∗)

b

2

b

a

a b

b

b

a
a

a

(0, 1)

(1, 2)

(2, 3) + N0

1

2

0

Fig. 2. (a) A ∈ TA; (b) Rt
per(A), a periodic augmented region automaton of A

194 A. Rosenmann

We remark that instead of periodic time interval of type [a, b) we can define it
analogously to be of type (a, b] as in Fig. 1(d), where the periodic time is (0, 1].

Example 1. The TA shown in Fig. 2(a) is taken from [1], where it demonstrates
non-periodicity: the time difference between an a-transition and the following b-
transition is strictly decreasing along a run. Rt

per(A), however, becomes periodic
(Fig. 2(b)).

Proposition 6. Rt
per(A) is well-defined and as informative as Rt

∞(A).

7 The Timestamp

Theorem 3. The timestamp of a TA A is a union of action-labeled integral
points and open unit intervals with integral end-points. It is either finite or forms
an eventually periodic (with respect to time t) subset of R≥0×Σ and is effectively
computable.

Proof. By Theorem 2, if the timestamp is not finite then it becomes periodic,
with period L, after time t = tper. Thus, if it can effectively be computed up to
time tper + L, then in order to find whether there is an observable transition
with action a at time tper +L+ t one only needs to check the timestamp at time
tper + (t mod L).

By Proposition 1, the timestamp up to time tper + L is a finite number of
labeled integral points and open intervals between integral points and by Propo-
sition 2, it is effectively computable. �

The timestamp of a TA is an abstraction of its language. However, the times-
tamp is eventually periodic and computable, hence the timestamp inclusion prob-
lem is decidable.

Corollary 1. Given two timed automata A,B ∈ eNTA over the same alphabet
(action labels), the question of non-inclusion of their timestamps is decidable,
thus providing a decidable sufficient condition for the (in general, undecidable)
question of non-inclusion of their languages: L(A) � L(B).

The timestamp is easily extracted from Rt
per (in fact, it is enough to take the

subgraph of Rt
∞ up to level tper+L). We just form the union of the time-regions

up to level tper + L, where each time-region is either a point {n} or an open
interval (n, n+1), along with the labels of the actions of the in-going edges. The
timestamp in the interval tper ≤ t < tper + L then repeats itself indefinitely.

Definition 17. For each a ∈ Σ, let Aa be the restriction of A to a-actions,
obtained by substituting each b ∈ Σ�{a} with ε, representing the silent transition.

Thus, the language of Aa is the ‘censored’ language of A, which is the outcome
of deleting from each word (timed trace) all pairs (b, t), b �= a.

Example 2. The timestamp of the a-transitions of the automaton of Fig. 2 is
TS(Aa) = N, and that of the b-transitions is TS(Ab) = [1,∞).

The Timestamp of Timed Automata 195

7.1 Timestamp Automaton

Given a TA A, one can effectively construct a deterministic TA Ã, called a
timestamp automaton of A with the same timestamp as that of A.

Definition 18 (Timestamp automaton). Given a timed automaton A ∈
eNTA, a timestamp automaton Ã is a deterministic (finite) timed automaton
with a single clock and with timestamp identical to that of A. It is the union of
the timestamp automata Ãa, a ∈ Σ, having a common initial vertex. Each Ãa

is in the shape of a linear graph and possibly ending in a simple loop.

Theorem 4. Given a timed automaton A ∈ eNTA, one can effectively construct
a timestamp automaton Ã.

Example 3. Let A be a TA with timestamp

TS(Aa) = (1, 3] ∪ {5} ∪ (6 + ([0, 2) ∪ {3} ∪ (8, 18)) + 21N0) × {a},

TS(Ab) = [0, 1] ∪ (2, 4) ∪ {5} ∪ (6 + ((0, 1) ∪ (1, 2) ∪ (5, 6) ∪ (8, 9)) + 10N0)
× {b},

TS(Ac) = [1, 4] ∪ {6} ∪ (10,∞) × {c}.

Then a possible timestamp automaton of A is given in Fig. 3.

(a)
1 2 3

4

5
x = 5

a
x = 3

8 < x < 18
a

6

0 < x < 2
a a

x = 6, {x}
a

x = 21, {x}
a

x = 5

x = 8

6 < x < 7, {x}

x = 10, {x}

10

11

12

13

90 7 8
x = 5

b
2 < x < 4

b
0 ≤ x ≤ 1

b
x = 1

b b

b

b

b

c

14 15 16
10 < x < ∞

c
x = 6

1 ≤ x ≤ 4
c

1 < x ≤ 3
a

(b)

(c)

Fig. 3. Timestamp automata of (a) TS(Aa); (b) TS(Ab); (c) TS(Ac)

0 < x < 1, {x}

ε

0 1 10

(b)

a
x = 1, {x}

0 < x < 1
a

x = 1, {x}
(a)

a

Fig. 4. (a) A non-determinizable A ∈ eNTA; (b) A timestamp automaton Ã

196 A. Rosenmann

Example 4. The language of the TA A ∈ eNTA of Fig. 4(a) is

L(A) = {(t0, a), (t1, a), . . . , (tn, a) | i < ti < i + 1, i = 0, . . . , n − 1, n ∈ N0}

(supposing all locations are ‘accepting’). The timestamp of A is the set of all
positive non-integral reals: TS(A) = R≥0 � N0. A is not determinizable. Each
transition occurs between the next pair of successive natural numbers. The guard
of each such transition must refer to a clock which was reset on some previous
integral time. But since all transitions occur on non-integral time, the only clock
that can be referred to is a clock x that is reset at time 0 and hence the transition
guards need to be of the form n < x < n + 1 for each n ∈ N0, which makes the
automaton infinite. Nevertheless, the timestamp automaton associated with A,
seen in Fig. 4(b), is deterministic.

8 Conclusion and Future Research

The timestamp of a non-deterministic timed automaton with silent transitions
(eNTA) consists of the set of all action-labeled times at which locations can be
reached by observable transitions. The problem of computing the timestamp is
a generalization of the basic reachability problem, a fundamental problem in
model checking, thus being of interest from the theoretical as well as from the
practical point of view. In this paper we showed that the timestamp can be
effectively computed, also when the timed automata are non-deterministic and
include silent transitions.

One of the major problems in testing and verification of abstract models of
real-time systems is the inclusion of the language of one timed automaton in
the language of another timed automaton. This problem is, in general, undecid-
able. Thus, since (non)-inclusion of timestamps of timed automata is a decidable
problem, we have a tool which provides a sufficient condition for language non-
inclusion in timed automata.

Acknowledgements. This research was partly supported by the Austrian Science
Fund (FWF) Project P29355-N35.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

2. Alur, R., Fix, L., Henzinger, T.A.: Event-clock automata: a determinizable class of
timed automata. Theor. Comput. Sci. 211(1–2), 253–273 (1999). https://doi.org/
10.1016/S0304-3975(97)00173-4

3. Alur, R., Kurshan, R.P., Viswanathan, M.: Membership questions for timed and
hybrid automata. In: Real-Time Systems Symposium, pp. 254–263 (1998). https://
doi.org/10.1109/REAL.1998.739751

4. Alur, R., Madhusudan, P.: Decision problems for timed automata: a survey. In:
Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 1–24.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9 1

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/S0304-3975(97)00173-4
https://doi.org/10.1016/S0304-3975(97)00173-4
https://doi.org/10.1109/REAL.1998.739751
https://doi.org/10.1109/REAL.1998.739751
https://doi.org/10.1007/978-3-540-30080-9_1

The Timestamp of Timed Automata 197

5. Asarin, E., Maler, O.: As soon as possible: time optimal control for timed automata.
In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp.
19–30. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48983-5 6

6. Baier, C., Bertrand, N., Bouyer, P., Brihaye, T.: When are timed automata deter-
minizable? In: ICALP (2), pp. 43–54 (2009). https://doi.org/10.1007/978-3-642-
02930-1 4

7. Beauquier, D.: Pumping lemmas for timed automata. In: Nivat, M. (ed.) FoSSaCS
1998. LNCS, vol. 1378, pp. 81–94. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0053543

8. Bérard, B., Petit, A., Diekert, V., Gastin, P.: Characterization of the expressive
power of silent transitions in timed automata. Fundam. Inform. 36(2–3), 145–182
(1998). https://doi.org/10.3233/FI-1998-36233

9. Bouyer, P., Dufourd, C., Fleury, E., Petit, A.: Updatable timed automata. Theor.
Comput. Sci. 321(2–3), 291–345 (2004). https://doi.org/10.1016/j.tcs.2004.04.003

10. Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos: a
model-checking tool for real-time systems. In: Hu, A.J., Vardi, M.Y. (eds.) CAV
1998. LNCS, vol. 1427, pp. 546–550. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0028779

11. Chen, T., Han, T., Katoen, J., Mereacre, A.: Reachability probabilities in Marko-
vian timed automata. In: CDC-ECC, pp. 7075–7080 (2011). https://doi.org/10.
1109/CDC.2011.6160992

12. Choffrut, C., Goldwurm, M.: Timed automata with periodic clock constraints. J.
Autom. Lang. Comb. 5(4), 371–403 (2000). https://doi.org/10.25596/jalc-2000-371

13. Comon, H., Jurski, Y.: Timed automata and the theory of real numbers. In: Baeten,
J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 242–257. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48320-9 18

14. Courcoubetis, C., Yannakakis, M.: Minimum and maximum delay problems in real-
time systems. Form. Methods Syst. Des. 1(4), 385–415 (1992). https://doi.org/10.
1007/BF00709157

15. Daws, C., Tripakis, S.: Model checking of real-time reachability properties using
abstractions. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 313–329.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054180

16. Finkel, O.: Undecidable problems about timed automata. In: Asarin, E., Bouyer,
P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 187–199. Springer, Heidelberg
(2006). https://doi.org/10.1007/11867340 14

17. Haase, C., Ouaknine, J., Worrell, J.: On the relationship between reachability
problems in timed and counter automata. In: Finkel, A., Leroux, J., Potapov, I.
(eds.) RP 2012. LNCS, vol. 7550, pp. 54–65. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-33512-9 6

18. Henzinger, T.A., Prabhu, V.S.: Timed alternating-time temporal logic. In: Asarin,
E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 1–17. Springer, Hei-
delberg (2006). https://doi.org/10.1007/11867340 1

19. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

20. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. STTT 1(1–2), 134–152
(1997). https://doi.org/10.1007/s100090050010

21. Lorber, F., Rosenmann, A., Nickovic, D., Aichernig, B.K.: Bounded determiniza-
tion of timed automata with silent transitions. Real Time Syst. 53(3), 291326
(2017). https://doi.org/10.1007/s11241-017-9271-x

https://doi.org/10.1007/3-540-48983-5_6
https://doi.org/10.1007/978-3-642-02930-1_4
https://doi.org/10.1007/978-3-642-02930-1_4
https://doi.org/10.1007/BFb0053543
https://doi.org/10.1007/BFb0053543
https://doi.org/10.3233/FI-1998-36233
https://doi.org/10.1016/j.tcs.2004.04.003
https://doi.org/10.1007/BFb0028779
https://doi.org/10.1007/BFb0028779
https://doi.org/10.1109/CDC.2011.6160992
https://doi.org/10.1109/CDC.2011.6160992
https://doi.org/10.25596/jalc-2000-371
https://doi.org/10.1007/3-540-48320-9_18
https://doi.org/10.1007/BF00709157
https://doi.org/10.1007/BF00709157
https://doi.org/10.1007/BFb0054180
https://doi.org/10.1007/11867340_14
https://doi.org/10.1007/978-3-642-33512-9_6
https://doi.org/10.1007/978-3-642-33512-9_6
https://doi.org/10.1007/11867340_1
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/s100090050010
https://doi.org/10.1007/s11241-017-9271-x

198 A. Rosenmann

22. Ouaknine, J., Rabinovich, A., Worrell, J.: Time-bounded verification. In: Bravetti,
M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 496–510. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04081-8 33

23. Ouaknine, J., Worrell, J.: On the language inclusion problem for timed automata:
closing a decidability gap. In: LICS, pp. 54–63 (2004). https://doi.org/10.1109/
LICS.2004.1319600

24. Ouaknine, J., Worrell, J.: Towards a theory of time-bounded verification. In:
ICALP (2), pp. 22–37 (2010). https://doi.org/10.1007/978-3-642-14162-1 3

25. Rosenmann, A.: The timestamp of timed automata. arXiv abs/1412.5669v4 (2019).
http://arxiv.org/abs/1412.5669

26. Tripakis, S., Yovine, S.: Analysis of timed systems using time-abstracting bisimu-
lations. Form. Methods Syst. Des. 18(1), 25–68 (2001). https://doi.org/10.1023/
A:1008734703554

27. Wang, F.: Efficient verification of timed automata with BDD-like data structures.
STTT 6(1), 77–97 (2004). https://doi.org/10.1007/s10009-003-0135-4

28. Wozna, B., Zbrzezny, A., Penczek, W.: Checking reachability properties for timed
automata via SAT. Fundam. Inform. 55(2), 223–241 (2003)

https://doi.org/10.1007/978-3-642-04081-8_33
https://doi.org/10.1109/LICS.2004.1319600
https://doi.org/10.1109/LICS.2004.1319600
https://doi.org/10.1007/978-3-642-14162-1_3
http://arxiv.org/abs/1412.5669
https://doi.org/10.1023/A:1008734703554
https://doi.org/10.1023/A:1008734703554
https://doi.org/10.1007/s10009-003-0135-4

On the Distance Between Timed
Automata

Amnon Rosenmann(B)

Graz University of Technology, Steyrergasse 30, 8010 Graz, Austria
rosenmann@math.tugraz.at

Abstract. Some fundamental problems in the class of non-deterministic
timed automata, like the problem of inclusion of the language accepted by
timed automaton A (e.g., the implementation) in the language accepted
by B (e.g., the specification) are, in general, undecidable. In order to
tackle this disturbing problem we show how to effectively construct deter-
ministic timed automata Ad and Bd that are discretizations (digitiza-
tions) of the non-deterministic timed automata A and B and differ from
the original automata by at most 1

6
time units on each occurrence of an

event. Language inclusion in the discretized timed automata is decid-
able and it is also decidable when instead of L(B) we consider L(B),
the closure of L(B) in the Euclidean topology: if L(Ad) � L(Bd) then

L(A) � L(B) and if L(Ad) ⊆ L(Bd) then L(A) ⊆ L(B).
Moreover, if L(Ad) � L(Bd) we would like to know how far away

is L(Ad) from being included in L(Bd). For that matter we define the
distance between the languages of timed automata as the limit on how
far away a timed trace of one timed automaton can be from the closest
timed trace of the other timed automaton. We then show how one can
decide under some restriction whether the distance between two timed
automata is finite or infinite.

Keywords: Timed automata ·
Language inclusion in timed automata ·
Distance between timed automata

1 Introduction

Timed automaton (TA) was introduced by Alur and Dill [1] as an abstract
model for real-time systems by extending finite automaton with continuous
clocks. When the TAs are non-deterministic then a fundamental problem of
language inclusion is, in general, undecidable, for example, whether the set of
timed traces of the TA representing the implementation is included in that of
the specification. This lead to imposing restrictions on and modifications to non-
deterministic TAs in order to achieve decidability (see [2,4–7,12,14,16,17] for a
partial list). Another approach was to allow robustness in the language [10] or
perturbations in the clocks [3] (see also [8]). The problem is that by allowing a

c© Springer Nature Switzerland AG 2019
É. André and M. Stoelinga (Eds.): FORMATS 2019, LNCS 11750, pp. 199–215, 2019.
https://doi.org/10.1007/978-3-030-29662-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29662-9_12&domain=pdf
http://orcid.org/0000-0003-0255-0885
https://doi.org/10.1007/978-3-030-29662-9_12

200 A. Rosenmann

fixed imprecision, undecidability problems due to working over continuous time
do not vanish.

Digitization of timed systems, where basic decision problems like language
inclusion are decidable, was considered, for example, in [11,13,15]. But, as stated
in [15], the implementation should be ‘closed under digitization’ and the specifi-
cation should be ‘closed under inverse digitization’ in order to be able to reduce
the language inclusion problem from the continuous world to the discretized one.
In [19] the authors construct TAs with reset only on integral time and demon-
strate the decidability of the language inclusion problem L(A) ⊆ L(B) in case B
is an integer reset TA. In this paper we go further with this approach. The idea
is to work in the setting of discretized time, but without restricting or modifying
the definition of a TA. The discretization is over intervals which are smaller than
1 time unit so that although we work in the discretized setting we are able to
check for exact occurrence of events also outside integral time. For this matter
we construct discretized TAs that enable effective comparison of the languages
of the original TAs. The discretized TA stays within a distance of 1

6 time units
from the original TA (the distance can, in fact, be as small as we like, in the
cost of complexity, but that won’t improve our knowledge about the inclusion
of the languages of the original automata), a goal that is achieved through the
introduction of an additional clock, t, that measures absolute time. Now, instead
of comparing directly the language of two TAs, a problem which is in general
undecidable, we can compare their discretized TAs and have the following (see
Theorem 3): if L(Ad), the language of the discretized TA of A, is not included
in L(Bd), the language of the discretized TA of B, then the same holds for L(A)
with respect to L(B). If, however, L(Ad) ⊆ L(Bd) then L(A) is included in the
topological closure of L(B).

The next natural question, in case L(A) � L(B), is how far away is a timed
trace of L(A) from all timed traces of L(B), that is, what is the conformance
distance c(L(A),L(B)), the distance of L(A) from being conformed with L(B)).
When an untimed word of L(A) is not in L(B) or when a transition in A which
is not bound in time is not met with a similar transition in L(B) of the same
action label then c(L(A),L(B)) = ∞ and the existence of these cases is decid-
able. A more challenging question is whether there is a sequence of timed traces
of L(A) which tend to diverge from L(B), causing c(L(A),L(B)) = ∞. For
example, it may happen that due to imprecisions or delays in a real system,
a TA model is changed to allow wider time intervals around actions compared
to the more idealistic previous model. It is then necessary to check whether
or not this extended freedom is controlled and the distance between the two
TAs stays within a reasonable bound (see [8] regarding an ideal model versus a
realistic model). Moreover, an algorithm based on the approach suggested here
may find the timed traces that deviate from the allowed distance between two
timed languages. Further applications for computing the distance may be when
safety properties include time restrictions for specific set of timed traces, given
as timed automata, and we want to check these timed traces with respect to the
implementation model. In general, in a design of a computerized system, e.g. a

On the Distance Between Timed Automata 201

network, that contains timing changes, a relaxed equivalence verification may
allow bounded perturbations in time that needed to be checked.

Computing the distance between TAs (or their languages), even between
discretized TAs, may be quite complex. Here we concentrate on the problem
of deciding whether the distance is infinite. It is not clear to us whether this
problem is decidable in general, but for a (perhaps) restricted version of it we
construct an algorithm that solves it.

2 Timed Automaton

A timed automaton is an abstract model of temporal behavior of real-time sys-
tems. It is a finite automaton with locations and transitions between them,
extended with a finite set of (continuous) clocks defined over R≥0. A transition
at time t can occur only if the condition expressed as a transition guard is sat-
isfied at t. A transition guard is a conjunction of constraints of the form c ∼ n,
where c is a clock, ∼ ∈ {<,≤,=,≥, >} and n ∈ N0 = N ∪ {0}. Each transition
is labeled by some action a ∈ Σ and some of the clocks may be reset to zero. In
NTA, the class of non-deterministic timed automata, and unlike deterministic
TAs, it may occur that two transitions from the same location q can be taken at
the same time and with the same action but to two different locations q′ and q′′.

Definition 1 (Timed automaton). A non-deterministic timed automaton
A ∈ NTA is a tuple (Q, q0,F , Σ, C, T), where:

1. Q is a finite set of locations and q0 ∈ Q is the initial location;
2. F ⊆ Q is the set of accepting locations;
3. Σ is a finite set of transition labels, called actions;
4. C is a finite set of clock variables;
5. T ⊆ Q × Σ × G × P (C) × Q is a finite set of transitions of the form

(q, a, g, Crst, q
′), where:

(a) q, q′ ∈ Q are the source and the target locations respectively;
(b) a ∈ Σ is the transition action;
(c) g ∈ G is the transition guard;
(d) Crst ⊆ C is the subset of clocks to be reset.

A clock valuation v(c) is a function v : C → R≥0. We denote by V the set of
all clock valuations and by d the valuation which assigns the value d to every
clock. Given a valuation v and d ∈ R≥0, we define v + d to be the valuation
(v + d)(c) := v(c) + d for every c ∈ C. The valuation v[Crst], Crst ⊆ C, is defined
to be v[Crst](c) = 0 for c ∈ Crst and v[Crst](c) = v(c) for c /∈ Crst.

The semantics of A ∈ NTA is given by the timed transition system [[A]] =
(S, s0, R≥0, Σ, T), where:

1. S = {(q, v) ∈ Q × V} is the set of states, with s0 = (q0,0) the initial state;
2. T ⊆ S × (Σ ∪ R≥0) × S is the transition relation. The set T consists of

(a) Timed transitions (delays): (q, v) d−→ (q, v + d), where d ∈ R≥0;

202 A. Rosenmann

(b) Discrete transitions (jumps): (q, v) a−→ (q′, v′), where a ∈ Σ and there
exists a transition (q, a, g, Crst, q

′) in T , such that the valuation v satisfies
the guard g and v′ = v[Crst].

A (finite) run � on A ∈ eNTA is a sequence of alternating timed and discrete
transitions of the form

(q0,0) d1−→ (q0,d1)
a1−→ (q1, v1)

d2−→ · · · dk−→ (qk−1, vk−1 + dk) ak−→ (qk, vk).

The run � on A induces the timed trace (timed word)

τ = (t1, a1), (t2, a2), . . . , (tk, ak),

with ai ∈ Σ and ti = Σi
j=1di. The language L(A) consists of the set of timed

traces that are obtained from the runs that end in accepting locations. We remark
that for simplification of presentation we did not include the location invariants
in the definition of timed automata since they are more of a ‘syntactic sugar’: the
invariants of location q are composed of upper bounds to the values of the clocks
while being in q, but these constraints can be incorporated in the transition
guards to q (for the clocks that are not reset at the transitions) and in those
transitions that emerge from q, thus not affecting L(A).

3 Augmented Region Automaton

Given a (finite) timed automaton A, the region automaton R(A) [1] is a finite
discretized version of A, such that time is abstracted and both automata define
the same untimed language. Instead of looking at the clocks-space as a continuous
space it is partitioned into regions. Suppose that the maximal integer appearing
in the transition guards of A is M , then we denote by
 a value of a clock
which is greater than M . The regions partition the space of clock valuations into
equivalent classes, where two valuations belong to the same equivalent class if
and only if they agree on the clocks with
 value and on the integral parts and
the order among the fractional parts of the other clocks. The edges of R(A) are
labeled by the transition actions and they correspond to the actual transitions
that occur in the runs on A.

The augmented region automaton, denoted Rt(A), is defined as in [18]. First,
we add to A a clock t that measures absolute time, is never reset to 0 and does
not affect the runs and timed traced of A. Secondly, we want to construct Rt(A)
in a way that keeps track of absolute time and regain much of the information
that is lost when passing from the timed automaton A to the regular region
automaton R(A). But since t does not appear in the transition guards of A,
we need not know the exact value of the integral part of t but just how much
time passes between two consecutive transitions. Thus, we assign t in Rt(A)
only two time-regions: {0} and (0, 1). However, in order to keep track of the
absolute time that passes, each edge is assigned a ’weight’, the time difference
in the integral part of t between the target and the source regions. The ordering

On the Distance Between Timed Automata 203

among the fractional part of the clocks does, however, take that of t into account.
Overall, the number of regions of Rt(A) is clearly finite (although potentially
exponentially large).

Definition 2. Given a non-deterministic timed automaton A ∈ NTA with
clocks x1, . . . , xs extended with absolute-time clock t, a corresponding (finite)
augmented region automaton Rt(A) is a tuple (V, v0, E , Σ,W∗), where:

1. V is the set of vertices. Each vertex is a triple (q,n,Δ), where q is a location
of A and r = (n,Δ) is a region, with n = (n1, . . . , ns) ∈ {0, 1, . . . ,M,
}s

consisting of the integral parts of the clocks x1, . . . , xs and Δ is the simplex
(hyper-triangle) with vertices in the lattice Ns+1

0 of all points that satisfy a
fixed ordering of the fractional parts of the clocks t = x0, x1, . . . , xs:

0 �0 {xi0} �1 {xi1} �2 · · · �s {xis} < 1, (1)

where �i ∈ {=, <}.
2. v0 = (q0,0,0) is the initial vertex, where q0 is the initial location of A and

(0,0) indicates that all clocks have value 0.
3. E is the set of edges. There is an edge (q, r) a−→ (q′, r′) if and only if there

is a run on A containing (q, v) d−→ (q, v + d) a−→ (q′, v′), such that, the clock
valuation v is in the region r and v′ is in r′.

4. Σ is the finite set of actions.
5. W∗ is the set of weights m on the edges calculated as m = �t1−�t0 ∈ [0..M],

where �t1 (�t0) is the integral part of t in the target (source) location in
a corresponding run on A. There may be more than one edge between two
vertices of Rt(A), each one with a distinguished weight. A weight m may
be marked as m∗, representing infinitely-many consecutive values m, m + 1,
m + 2, . . . as weights between the same two vertices, for example when the
regular clocks passed the maximal value M .

An augmented region automaton can be seen in Fig. 1(b) (the example is taken
from [1]).

4 Discretized Timed Automaton

After constructing the augmented region automaton Rt(A), we turn it into a
deterministic timed automaton Ad which discretizes (digitizes) A.

Definition 3. A discretized timed automaton Ad is a timed automaton con-
structed from the augmented region automaton Rt(A) in the following way.

1. The directed graph structure of locations and edges of Ad is the same as that
of Rt(A).

2. The transition labels (actions) are also as in Rt(A).
3. There is a single clock in Ad, namely t, which is reset on each transition.

204 A. Rosenmann

4. The transition guards of Ad are of the following form. Let e = v0 → v1 be
an edge of Rt(A), let w(e) be its weight and let {t0}, {t1} ∈ [0, 1) be any
fractional parts of t in the source and target regions. Let

δ =
1
2
(�{t1}� − �{t0}�) ∈ {−1

2
, 0,

1
2
},

where �{ti}� ∈ {0, 1} is the ceiling function applied to ti. Then, we set the
transition guard of the corresponding edge of Ad to be

t = w(e) + δ.

In case of a weight w(e) = m∗ then the transition guard is

t ≥ m + δ.

A discretized timed automaton can be seen in Fig. 1(c).
We remark that the fact that the transition guards of Ad are over 1

2N0 and
not over N0 need not bother us since the standard definition of timed automata
holds also over the rational numbers. Indeed, by letting all clocks run twice as
fast and multiplying by 2 all values in the constraints of the transition guards,
we end up in an automaton over the integers.

5 The Conformance Distance

We want to define a metric on the set of timed traces in order to define (confor-
mance) distance between timed languages.

Definition 4. Given a set T of timed traces over the same alphabet Σ, we define
the ∞-metric or max-metric d on T in the following way. Given two timed traces

τ1 = (tτ11 , aτ1
1), (tτ12 , aτ1

2), . . . , (tτ1m , aτ1
m),

τ2 = (tτ21 , aτ2
1), (tτ22 , aτ2

2), . . . , (tτ2n , aτ2
n),

the distance between τ1 and τ2 is

d(τ1, τ2) =

{
∞, if m �= n or aτ1

i �= aτ2
i for some i,

maxi |tτ1i − tτ2i |, otherwise.

The above metric over the set of traces induces inclusion relation on timed
languages (languages of timed automata).

Definition 5. Given two timed languages L1 and L2, L1 is ε-included in L2,
denoted L1 ⊆ε L2, if for every timed trace τ1 ∈ L1 there exists a timed trace
τ2 ∈ L2 such that d(τ1, τ2) ≤ ε.
The conformance distance c(L1,L2) between L1 and L2 is

c(L1,L2) = inf{ε : L1 ⊆ε L2},

On the Distance Between Timed Automata 205

b

0

(c)

10 2 3

x = 1, {x}a b
a

x = 1, {x}

b
(0 < x) ∧ (y < 1), {y}

{y}

(a)

2

1

0
0 = {t} = {x} = {y}

3 + N0 2

2

0 = {t} = {x} = {y} 2

0 = {y} < {t} = {x}

0 = {y} < {t}

(0, 0)

0 = {t} = {y}

0 = {t} = {x} = {y}
b

3 3
0 = {t} = {x} = {y} 0 = {t} = {x} = {y} 0 = {t} = {x} < {y}

2

a

a

(0, 1)

(1, 2)

(2, 3) + N0

1

2

0

0

a

1

2∗
b

1∗
b

1
b

0
b

(0, 1) (0, 0)

(0, 1)

(0, 0)

(1, 0)

(�, 0)

(�, 0)

(0, 0)

Time

1 a

1

b0

0

b
0

a(0, 1)

(1, 2)

(2, 3) + N0

1

2

0

Time

(b)

t = 1
{t}

3

1

2

4

b

b

b

6
b

t = 1, {t}

t ≥ 1.5∗, {t}

t = 0, {t}

t = 0, {t}

a

t = 0.5, {t}
a

a

t = 0.5, {t} t = 1, {t}

t = 0.5, {t}
87

b

t = 0.5, {t}

Fig. 1. (a) A ∈ TA; (b) Rt(A), the augmented region automaton of A; (c) Ad, the
discretized timed automaton with Δ = 0.5.

that is,
c(L1,L2) = sup

τ1∈L1

inf
τ2∈L2

d(τ1, τ2) = sup
τ1∈L1

d(τ1,L2).

206 A. Rosenmann

The distance d(L1,L2) between L1 and L2 is

d(L1,L2) = max{c(L1,L2), c(L2,L1)}. (2)

In case of a finite conformance distance n that is reached as a limit of a
sequence of distances, we can denote it as n+ (for a limit from above) or as n−

(for a limit from below). Thus, L1 ⊆ L2 if and only if c(L1,L2) = 0. But when
c(L1,L2) = 0+ then L1 � L2 but L1 ⊆ L2, where L2 is the closure of L2 in the
Euclidean topology, defined as follows. Fixing an untimed word w ∈ Σ∗ of length
n, let L2(w) be the timed traces in L2 whose untimed word is w and let Rn

w be a
copy of Rn indexed by w. There is a natural embedding ι : L2(w) → Rn

w. Then,
c(L1,L2) = 0+ implies that ι(L1) ⊆ ι(L2), where ι(Lj) =

⋃
w∈Σ∗ ι(Lj(w)),

j = 1, 2, and S is the closure of S in the Euclidean topology.
Subadditivity (triangle inequality) holds for the conformance distance:

c(L1,L3) ≤ c(L1,L2) + c(L2, L3).

Theorem 1. Let A,B ∈ NTA. Then c(L(A),L(B)) ∈ 1
2N0 ∪ {∞}.

Proof. Clearly, the conformance distance c(L(A),L(B)) can be ∞, for example,
when the untimed language of A contains a word that is not in the untimed
language of B. Suppose now that δ = c(L(A),L(B)) < ∞. It suffices to show
the following. Given a path γA in A and another path γB in B, where both
define the same untimed trace (identical sequence of actions), let TA (TB) be
the set of all timed traces along γA (γB). We need to show that

sup
τA∈TA

inf
τB∈TB

d(τA, τB) ∈ 1
2

N0. (3)

By [18], the timestamp of each of the events along γA and γB is an interval of the
form (m,n), (m,n], [m,n) or [m,n], where m ≤ n and m ∈ N0, n ∈ N0 ∪ {∞}.
This can be shown by writing equalities and inequalities over the integers and
variables zi, where zi represents the time of the i-th event along the path. Then
(3) becomes an optimization problem over the integers and variables for the
events along γA as well as for those along γB . The solution lies in 1

2N0 because
it can be shown that for any other solution the timed traces can be shifted so that
we are nearer 1

2N0. In fact, it is quite clear that the solution should be looked
for when considering the integral end-points of the event intervals. The solution
is, in general, in 1

2N0 and not in N0 as can be seen from the following example.
Suppose that an event of τA occurs at time 0 < t < 1 where the corresponding
event in B can occur at time 0 or at time 1. Then, the maximal time difference,
namely 1

2 , occurs when we choose the event of τA to be at time t = 1
2 . �

By the way they are defined, the untimed runs on the augmented region
automaton Rt(A), as well as those on the discretized timed automaton Ad, are
identical to the untimed runs on A. The runs differ in the exact time on which

On the Distance Between Timed Automata 207

each event occurs. When the absolute time of occurrence of an event is t0 ∈ N0

then Ad agrees with A. When t0 = n + ε, n ∈ N0, 0 < ε < 1 then the time of
the event on Ad is set to be n + 1

2 , thus, the time difference is less than 1
2 time

units. The fact that the clock t of Ad is synchronized with the clock t that was
added to A to measures absolute time guarantees that the cumulative error does
not increase over time but remains bounded by 1

2 . That is, Ad is a 1
2 -time-unit

approximation of A: there exits a surjective mapping

π : L(A) � L(Ad), (4)

such that if π(τ) = τ̃ then d(τ, τ̃) < 1
2 . We showed that the following holds.

Theorem 2. d(L(A),L(Ad)) < 1
2 .

Since t is reset only on values in 1
2N0 then Ad is determinizable (see [5,19]). In

fact, since t is reset at each transition, we can remove it altogether to obtain an
action-labeled, weighted directed graph. The determinization algorithm is then
straightforward by searching the graph in a breadth-first manner, unifying edges
of the same source location that agree on their labels: (a, t), a - action, t -time,
followed by unifying the target locations. The number of vertices, however, may
grow exponentially.

6 Computing the Conformance Distance

Since Ad is determinizable, we can gain information about the relation between
the languages of two timed automata by comparing their discretized languages.

Note that by the way the distance between languages is defined, it is clear
that it refers to languages which are supposed to be (almost) identical or that one
language is assumed to be (almost) included in the other, but this is normally the
case in equivalence verification or when comparing the implication language with
its specification. Note that even if the untimed languages of two TAs are identical,
it is enough that there exists a cycle, in which the timed languages do not agree,
then by repeatedly taking this cycle the distance between the timed traces of the
two TAs may grow indefinitely, resulting in a distance of ∞, and it is of interest
to be able to recognize when this phenomenon occurs. Thus, it seems that since
the distance between A and its discretized timed automaton Ad is only 1

2 time
units, we may not lose much by comparing Ad instead of A with another TA. In
fact, in order to be more precise in the computation of the distance between two
languages we need to make the basic discretization interval, denoted Δ, shorter
than 1

2 time units. By setting Δ = 1
n we get that d(L(A),L(Ad)) < 1

n , thus we
can make L(A) and L(Ad as close to one another as we like (of course, in the
expense of complexity). However, it turns out that it suffices to choose Δ = 1

6
in order to get the maximal precision about d(L(A),L(B)).

For our convenience, since we prefer not to work with small fractions we
accelerate the clocks to run at triple speed. That is, from now on, given the
timed automata A and B under test, we first multiply by 3 all the numbers that
appear in the transition guards, so they all belong to 3N0. Then we proceed as

208 A. Rosenmann

before: we construct the region automata with respect to basic regions of size 1
time unit and the discretized automata with respect to Δ = 1

2 . Now we have,

c(L(A),L(B)) ∈ 3
2

N0 ∪ {∞} (5)

and
d(L(A),L(Ad)) <

1
2
, d(L(B),L(Bd)) <

1
2
.

Theorem 3. Let A,B ∈ NTA with clocks running at triple speed and let Ad, Bd

be their discretized timed automata with respect to Δ = 1
2 . Then

| c(L(A),L(B)) − c(L(Ad),L(Bd)) | ≤ 1
2

and c(L(A),L(B)) is known in case c(L(Ad),L(Bd)) is known. In particular:

L(Ad) � L(Bd) ⇒ L(A) � L(B)

and
L(Ad) ⊆ L(Bd) ⇒ L(A) ⊆ L(B),

so that the language inclusion problem between L(A) and the topological closure
of L(B) is decidable.

Proof. A and Ad have the same untimed language. The timed languages L(A)
(with clocks running at triple speed) and L(Ad) differ from one another in that
every event of a run on A that occurs at time t, with t = n + ε and 0 < ε < 1,
occurs at the ‘rounded’ time n + 1

2 in the corresponding run on Ad. Similarly
for B with respect to Bd. It follows that δ = c(L(A),L(B)) = ∞ if and only if
δd = c(L(Ad),L(Bd)) = ∞.

Suppose now that δ < ∞. We know (5) that δ ∈ 3
2N0. Since the timed

traces of L(Ad) and L(Bd) are discretized to the set 1
2N0 then, when computing

δd instead of δ, we may have a difference of 1
2 time units between the two. It

follows that

δ =

{
3k, if δd ∈ {3k − 1

2 , 3k, 3k + 1
2},

3k + 3
2 , if δd ∈ {3k + 1, 3k + 3

2 , 3k + 2}.
(6)

Let us elaborate on that. When δ is exactly k and not 3k+ or 3k− then it
means that it is achieved on specific timed traces and not as a limit. That is,
it refers to an even occurring at time tA on a run on A and event occurring at
time tB on a run on B, with |tA − tB | = 3k. Since the fractional parts of tA and
tB are identical, the discretization in the corresponding runs on Ad and Bd are
identical so that they occur at times tAd and tBd with |tAd − tBd | = 3k. The
same applies when δ is exactly 3k + 3

2 since we are working with a resolution
of 1

2 .

On the Distance Between Timed Automata 209

When δ = 3k+ or δ = 3k− then it is achieved as a limit of timed traces. If
δ = 3k+ then δd can be 3k + 1

2 , for example, when tA = 3 and tB = 3+ ε, ε > 0.
Then the discretized traces will occur at times tAd = 3 and tBd = 31

2 . Then by
choosing a sequence of timed traces of L(B) the time difference can tend to 0
while in the discretized automata it will remain 1

2 .
The other cases of an conformance distance δ that is a limit of converging

distances are analogous, but we do not go here into detail.
Let us look at the last claims of the theorem. Suppose that L(A) ⊆ L(B).

Then for each timed trace of L(A) there is an identical timed trace of L(B). The
projection to the discretized timed trace will also be identical, thus,

L(A) ⊆ L(B) ⇒ L(Ad) ⊆ L(Bd).

If L(A) � L(B) then δ > 0. By (6), we have that δd > 0. It follows that

L(A) � L(B) ⇒ L(Ad) � L(Bd).

�

By (2), a similar result to Theorem 3 holds with respect to distances between
languages.

By Theorem 3, in order to compute the conformance distance c(L(A),L(B)),
we can compute c(L(Ad),L(Bd)), and know that we lie within an error of at most
1
2 time unit. We may assume that Ad is deterministic, as this is feasible. It is
not necessary to determinize Bd.

The general goal in computing c(L(Ad),L(Bd)) is to find the timed trace of
L(Ad) that is farthest from L(Bd) (or a sequence of such timed traces if the
distance is ∞). A heuristic approach is to play a timed game in which the player
in white moves along Ad and tries to maximize her wins, while the player in
black moves along Bd and tries to minimize his losses. The players start from
the initial vertex of each graph. Then white makes a move by jumping to a
vertex in Ad with transition label a, followed by a move of black on an edge in
Bd with the same label a. Next, white moves on an edge with label a′, followed
by a move of black with the same label a′ and so on. At each move we record
the time difference between the absolute time duration of the paths along Ad

and along Bd. The problem is that we may return to the same pair of locations
(q, q′) ∈ QAd × QBd but with a different time difference between the path along
Ad and that along Bd. In addition, there are moves to locations where the time
is not a single value but of the form t ≥ m. Thus, the game may not be of finite
type. One strategy to cope with the complexity of the game is a greedy max-min
algorithm: each move of white is one that maximizes the new difference in times
after the following move of black that tries to minimizes the time difference. A
better, but more expensive, strategy on the part of white is to look-ahead more
than one step.

So, let us then consider a seemingly easier question: is c(L(Ad),L(Bd)) = ∞?
For this question we do not need to speed-up the clocks. An infinite conformal
distance occurs in one of the following three situations.

210 A. Rosenmann

S1. The untimed language of Ad is not included in that of Bd: there exists a
path q0

a1−→ q1
a2−→ · · · an−−→ qn in Ad, with qn an accepting location, which

either cannot be realized in Bd with the same sequence of actions, or all
such paths in Bd do not terminate in an accepting location.

S2. There exists a path in Ad of the form q0
a1−→ q1

a2−→ · · · an−−→ qn, where the
transition qn−1

an−−→ qn has guard t ≥ m, whereas for any path in Bd of the
form q′

0
a1−→ q′

1
a2−→ · · · an−−→ q′

n the guard of the last transition q′
n−1

an−−→ q′
n

bounds t from above.
S3. For each N ∈ N there exists a timed trace τ ∈ L(Ad), such that for each

σ ∈ L(Bd), d(τ, σ) > N and not because of S2.

In order to find out whether the conformance distance between L(Ad) and L(Bd)
is infinite as a result of S1 or S2 we extend Ad and Bd as follows.

First, we add to the set Σ of actions a copy of it Σ̄ = {ā : a ∈ Σ}. Then, for
each transition q

a−→ q′ of Ad or of Bd with time constraint of type t ≥ m, we add
a transition q

ā−→ q′ with guard t = ∞. Next, we complete Bd by adding a location
s which is a ’sink’: whenever there is no transition with action b ∈ Σ ∪ Σ̄ from
location q of Bd, we add the transition q

b−→ s. The sink location is supplemented
by self-loops of all actions. We retain the names Ad and Bd for the resulting
automata.

In the next step we form the untimed automaton U(Ad) which is a deter-
minization of Ad with respect to actions while ignoring the temporal part. Sim-
ilarly, we construct U(Bd).

Definition 6. The automaton U(Ad) is a tuple (Q, Q0,F , Σ ∪ Σ̄, E), where:

1. Q ⊆ P(QAd) is a subset of the power set of the locations of Ad, where Q0 =
{qAd

0 } is the initial location;
2. F ⊆ Q is the set of accepting locations, where Q = {qAd

1 , . . . , qAd
m } is accepting

if at least one of the qAd
i is an accepting location of Ad;

3. Σ ∪ Σ̄ is the set of actions;
4. E ⊆ Q × (Σ ∪ Σ̄) × Q is a finite set of edges of the form (Q, a,Q′), where

Q′ = {q′Ad : ∃qAd ∈ Q. (qAd , a, q′Ad) ∈ T Ad}.

Finally, we construct a version of the untimed product automaton U(Ad)×U(Bd)
in which the accepting locations are those pairs of locations (Q,Q′) for which Q
is an accepting location of U(Ad) but Q′ is not an accepting location of U(Bd).

Definition 7. The automaton U(Ad) × U(Bd) is a tuple (Q, Q0,F , Σ ∪ Σ̄, E),
where:

1. Q ⊆ QU(Ad) × QU(Bd), where Q0 = (qU(Ad)
0 , q

U(Bd)
0) is the initial location;

2. F ⊆ Q is the set of accepting locations (Q,Q′), where Q ∈ FU(Ad) and
Q′ /∈ FU(Bd);

3. Σ ∪ Σ̄ is the set of actions;
4. E ⊆ Q × (Σ ∪ Σ̄) × Q is the set of edges, where for each (Q1, a,Q′

1) ∈ EU(Ad)

and (Q2, a,Q′
2) ∈ EU(Bd) we have ((Q1, Q2), a, (Q′

1, Q
′
2)) ∈ E,

and U(Ad) × U(Bd) is the connected component of the initial location.

On the Distance Between Timed Automata 211

Theorem 4. c(L(Ad),L(Bd)) = ∞ as a result of S1 or S2 if and only if the
set of accepting locations of U(Ad) × U(Bd) is not empty.

Proof. By completing Bd we made sure that the set of untimed traces of U(Bd)
consists of all possible traces. But if a path in U(Ad) × U(Bd) terminates in
an accepting location, then there exists a path in Ad that ends in an accepting
location, while all paths in Bd of the same sequence of actions either terminate
in a non-sink location which is non-accepting, or enter the sink either on an edge
with action a ∈ Σ due to missing such an edge on the uncompleted Bd or on an
edge labeled ā ∈ Σ̄ due to reaching a transition that is bounded in time in (the
uncompleted) Bd, but not bounded in Ad. �

Assume now that by constructing the automaton U(Ad) × U(Bd) it turns
out that no possible infinite conformance distance exists when checking S1 and
S2 and it remains to check S3. Hence, the goal is to find a sequence of traces
in Ad which ‘run-away’ from Bd, and now we are interested in the exact delays
between consecutive transitions. This problem may be of very high complexity
and even it is not clear whether it is decidable. We will show that a (perhaps)
restricted version is decidable.

First, we extend Ad and Bd with actions Σ̄ as before, referring to transitions
that are unbounded by time. Let M be the maximal integer that appears in a
transition guard of Ad or Bd. Then, each transition q

a−→ q′ of Ad or Bd with
time constraint t ≥ m, m ≤ M + 1

2 , is replaced by the transitions q
a−→ q′ with

delays t = m, t = m+ 1
2 , ..., t = M + 1

2 and another transition q
ā−→ q′ with delay

t = (M + 1)∗. The set of delays of Ad (Bd) is denoted by D.
In the next step we determinize Bd into D(Bd). The idea is to be able to

compare each timed trace of Ad simultaneously with all equivalent (having the
same untimed trace) time traces of Bd.

Definition 8. The automaton D(Bd) is a tuple (Q, Q0,F , Σ ∪ Σ̄, T), where:

1. Q ⊆ P(QBd) is a subset of the power set of the locations of Bd, where Q0 =
{qBd

0 } is the initial location;
2. F ⊆ Q is the set of accepting locations, where Q = {qBd

1 , . . . , qBd
m } is accepting

if at least one of the qBd
i is an accepting location of Bd;

3. Σ ∪ Σ̄ is the set of actions;
4. T ⊆ Q×(Σ∪Σ̄)×E ×Q is a finite set of transitions of the form (Q, a,E,Q′),

where

E = {(qBd , a, d, q′Bd) ∈ T Bd : qBd ∈ Q, q′Bd ∈ Q′, a ∈ Σ ∪ Σ̄, d ∈ D}.

and Q′ contains exactly the set of these target locations q′Ad .

Note that the transitions of D(Bd) retain the set of transitions of Bd including
source and target locations.

In the next step we make the standard construction of the product automaton
Ad × D(Bd). It has at most L = |QAd | · 2|QBd | locations, where each location is
of the form

QAd×D(Bd) = (qAd , {qBd
1 , . . . , qBd

m }).

212 A. Rosenmann

Since the difference between a transition delay on Ad and a corresponding tran-
sition on Bd in parallel runs on Ad and Bd is at most M time units (actually, it is
M + 1

2 , but it makes no difference for our argument), then a run on Ad ×D(Bd)
that does not visit the same location twice may result in a delay of at most LM
time units between its projection to Ad and each of its projections to Bd.

At each transition of a run on Ad × D(Bd) we can subtract the delay of the
edge of Ad from each of the delays of the corresponding edges of Bd and record at
each location qBd

i of QAd×D(Bd) the set of accumulated time differences (ATDs),
that is, the differences in absolute time between the runs on Ad and all possible
runs on Bd of the same untimed trace when reaching QAd×D(Bd). The ATD of
the least absolute value gives the least difference in time at that location between
the run on Ad and a corresponding run on Bd. When a delay is (M + 1)∗ (and
then it is the same delay for both Ad and Bd) then we denote the difference 0+,
and this + sign carries on to the next differences by defining i+ + j = (i + j)+,
i+ + j+ = (i + j)++, and so on. It means that i+ is actually any value of 1

2N0

which is greater than or equals i. The reason for that is that for a delay k in
Ad we can choose any delay l ≥ k in Bd. In order to exclude the possibility
of choosing also a delay in Bd which is smaller than k (and maybe reduce the
distance between the corresponding paths in Ad and Bd), each transition of Ad

that is unbounded in time is considered as a delay of M + 1 time units. Once a
value of the form i+ is realized as a concrete value i + j, for some j ≥ 0, then
in all the difference values that appear in the following locations the relevant +
sign is removed and the value j is added.

Every run ρ on Ad × D(Bd) can be uniquely written in the form

ρ = ρ0σ
i1
1 ρ1σ

i2
2 ρ2 · · · σir

r ρr,

for some r ∈ N0, ij ∈ N and where each σj is a simple cycle of positive length
and each ρj is without cycles and of length 0 ≤ l < L. We say that the number
of power cycles of ρ is r, written pc(ρ) = r.

Theorem 5. It is decidable whether there exists a fixed K ∈ N, such that for
every N ∈ N there exists a timed trace τ ∈ L(Ad), such that d(τ,L(Bd)) > N
and the corresponding run ρ on Ad × D(Bd) satisfies pc(ρ) ≤ K.

Proof. The conformance distance c(L(Ad),L(Bd)) is ∞ if for every N ∈ N we
can reach a location QAd×D(Bd) with all ATDs of absolute value at least N . Since
pc(ρ) ≤ K, K fixed, it is clear that the unbounded increase in the ATDs can
come only from the powers of simple cycles σij . Since the number of locations
of Ad × D(Bd) is finite, all locations can be reached in a bounded number of
steps. Then, for each location QAd×D(Bd) and each simple cycle σ starting at
QAd×D(Bd), it can be checked for which locations qBd

i of QAd×D(Bd) the minimal
(in absolute value) ATD increases indefinitely when repeating the cycle σ. Let
P be the set of these locations QAd×D(Bd) with at least one unbounded ATD.

Next we look at all the simple paths from each QAd×D(Bd) ∈ P to the
other locations of Ad × D(Bd) and update their sub-locations qBd

i of having
an unbounded ATD. Moreover, when reaching a location Q′Ad×D(Bd) ∈ P from

On the Distance Between Timed Automata 213

another location QAd×D(Bd) ∈ P then it can be checked whether new sub-
locations qBd

i of Q′Ad×D(Bd) become with unbounded ATD when repeating a
cycle σ (even when its minimal ATD decreases by a bounded finite number
at each round of σ, if we started with an unbounded value, we can end at an
unbounded value). This process is repeated until no improvement in the max-
imum number of sub-locations of unbounded ATD can be achieved. Since the
graph is finite, the whole algorithm is finite. Finally, c(L(Ad),L(Bd)) = ∞ when
at some step of the algorithm a location QAd×D(Bd) becomes with all its sub-
locations qBd

i of unbounded ATD. �

7 Conclusion and Suggested Future Research

In this paper we introduced a natural definition of the distance between the
languages of non-deterministic timed automata in terms of the times at which
events in one automaton occur compared to the times of corresponding events in
the other automaton. We showed how one can effectively construct discretized
deterministic timed automata and obtain the distance between the original timed
automata from the distance between the discretized versions. Consequently, the
problem of language inclusion for timed automata, which is undecidable in gen-
eral, is decidable if we consider the closure of the languages with respect to the
Euclidean topology.

Computing the distance between timed automata may not be an easy task.
We even do not know whether the finiteness of the distance is a decidable prob-
lem. We showed, however, that under some restriction on the timed traces, this
problem is decidable.

There is more than one reasonable way to define the distance between timed
automata and the one we chose refers to the accumulated time difference that
may occur between timed automata that are supposed to be (almost) the same
or conformance distance between the language of an implementation and that
of the specification. Other possible definitions of distances like a maximal time
difference on a single transition or time difference mean on simple cycles are
easier to compute on the discretized automata. For another notion of distance
between implementation and specification we refer to [9]. Another interesting
problem is to compute the distance between timed automata equipped with
probabilities on transitions, where the distances are computed as expected values
with respect to these probabilities.

Acknowledgements. This research was partly supported by the Austrian Science
Fund (FWF) Project P29355-N35.

214 A. Rosenmann

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

2. Alur, R., Fix, L., Henzinger, T.A.: Event-clock automata: a determinizable class of
timed automata. Theor. Comput. Sci. 211(1–2), 253–273 (1999). https://doi.org/
10.1016/S0304-3975(97)00173-4

3. Alur, R., La Torre, S., Madhusudan, P.: Perturbed timed automata. In: Morari,
M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 70–85. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-31954-2 5

4. Alur, R., Madhusudan, P.: Decision problems for timed automata: a survey. In:
Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 1–24.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9 1

5. Baier, C., Bertrand, N., Bouyer, P., Brihaye, T.: When are timed automata deter-
minizable? In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.,
Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 43–54. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02930-1 4

6. Bérard, B., Petit, A., Diekert, V., Gastin, P.: Characterization of the expressive
power of silent transitions in timed automata. Fundam. Inform. 36(2–3), 145–182
(1998). https://doi.org/10.3233/FI-1998-36233

7. Bouyer, P., Dufourd, C., Fleury, E., Petit, A.: Updatable timed automata. Theor.
Comput. Sci. 321(2–3), 291–345 (2004). https://doi.org/10.1016/j.tcs.2004.04.003

8. Bouyer, P., Markey, N., Sankur, O.: Robust reachability in timed automata and
games: a game-based approach. Theor. Comput. Sci. 563, 43–74 (2015). https://
doi.org/10.1016/j.tcs.2014.08.014

9. Cerný, P., Henzinger, T.A., Radhakrishna, A.: Simulation distances. Theor. Com-
put. Sci. 413(1), 21–35 (2012). https://doi.org/10.1016/j.tcs.2011.08.002

10. Gupta, V., Henzinger, T.A., Jagadeesan, R.: Robust timed automata. In: Maler,
O. (ed.) HART 1997. LNCS, vol. 1201, pp. 331–345. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0014736

11. Henzinger, T.A., Manna, Z., Pnueli, A.: What good are digital clocks? In: Kuich,
W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 545–558. Springer, Heidelberg (1992).
https://doi.org/10.1007/3-540-55719-9 103

12. Lorber, F., Rosenmann, A., Ničković, D., Aichernig, B.K.: Boundeddeterminization
of timed automata with silent transitions. R. Time Syst. 53(3), 291–326 (2017).
https://doi.org/10.1007/s11241-017-9271-x

13. Ouaknine, J.: Digitisation and full abstraction for dense-time model checking.
In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 37–51.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46002-0 4

14. Ouaknine, J., Rabinovich, A., Worrell, J.: Time-bounded verification. In: Bravetti,
M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 496–510. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04081-8 33

15. Ouaknine, J., Worrell, J.: Revisiting digitization, robustness, and decidability for
timed automata. In: Proceedings of the 18th IEEE Symposium on Logic in Com-
puter Science (LICS 2003), Ottawa, Canada, 22–25 June 2003, pp. 198–207 (2003).
https://doi.org/10.1109/LICS.2003.1210059

16. Ouaknine, J., Worrell, J.: On the language inclusion problem for timed automata:
closing a decidability gap. In: LICS, pp. 54–63 (2004). https://doi.org/10.1109/
LICS.2004.1319600

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/S0304-3975(97)00173-4
https://doi.org/10.1016/S0304-3975(97)00173-4
https://doi.org/10.1007/978-3-540-31954-2_5
https://doi.org/10.1007/978-3-540-30080-9_1
https://doi.org/10.1007/978-3-642-02930-1_4
https://doi.org/10.3233/FI-1998-36233
https://doi.org/10.1016/j.tcs.2004.04.003
https://doi.org/10.1016/j.tcs.2014.08.014
https://doi.org/10.1016/j.tcs.2014.08.014
https://doi.org/10.1016/j.tcs.2011.08.002
https://doi.org/10.1007/BFb0014736
https://doi.org/10.1007/3-540-55719-9_103
https://doi.org/10.1007/s11241-017-9271-x
https://doi.org/10.1007/3-540-46002-0_4
https://doi.org/10.1007/978-3-642-04081-8_33
https://doi.org/10.1109/LICS.2003.1210059
https://doi.org/10.1109/LICS.2004.1319600
https://doi.org/10.1109/LICS.2004.1319600

On the Distance Between Timed Automata 215

17. Ouaknine, J., Worrell, J.: Towards a theory of time-bounded verification. In:
Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G.
(eds.) ICALP 2010. LNCS, vol. 6199, pp. 22–37. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14162-1 3

18. Rosenmann, A.: The timestamp of timed automata. arXiv abs/1412.5669v4 (2019).
http://arxiv.org/abs/1412.5669

19. Suman, P.V., Pandya, P.K., Krishna, S.N., Manasa, L.: Timed automata with
integer resets: language inclusion and expressiveness. In: Cassez, F., Jard, C. (eds.)
FORMATS 2008. LNCS, vol. 5215, pp. 78–92. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85778-5 7

https://doi.org/10.1007/978-3-642-14162-1_3
http://arxiv.org/abs/1412.5669
https://doi.org/10.1007/978-3-540-85778-5_7
https://doi.org/10.1007/978-3-540-85778-5_7

Time to Learn – Learning Timed
Automata from Tests

Martin Tappler1(B), Bernhard K. Aichernig1, Kim Guldstrand Larsen2,
and Florian Lorber2

1 Institute of Software Technology, Graz University of Technology, Graz, Austria
{martin.tappler,aichernig}@ist.tugraz.at

2 Department of Computer Science, Aalborg University, Aalborg, Denmark
{kgl,florber}@cs.aau.dk

Abstract. Model learning has gained increasing interest in recent years.
It derives behavioural models from test data of black-box systems. The
main advantage offered by such techniques is that they enable model-
based analysis without access to the internals of a system. Applica-
tions range from fully automated testing over model checking to sys-
tem understanding. Current work focuses on learning variations of finite
state machines. However, most techniques consider discrete time. In this
paper, we present a novel method for learning timed automata, finite
state machines extended with real-valued clocks. The learning method
generates a model consistent with a set of timed traces collected via test-
ing. This generation is based on genetic programming, a search-based
technique for automatic program creation. We evaluate our approach on
44 timed systems, comprised of four systems from the literature (two
industrial and two academic) and 40 randomly generated examples.

1 Introduction

Test-based model-learning techniques have gained increasing interest in recent
years. Basically, these techniques derive formal system models from (test) obser-
vations. They therefore enable model-based reasoning about software systems
while requiring only limited knowledge about the system at hand. Put differ-
ently, such techniques allow for model-based verification of black-box systems if
they are amenable to testing.

Testing

Learning

Verification

system
traces

formal
model

new
tests

traces to
errors

Fig. 1. General framework: test-based
learning for verification.

Peled et al. [39] performed pioneering
work in this area by introducing Black
Box Checking, automata-based model
checking for black-box systems. It involves
interleaved model learning, model check-
ing and conformance testing and built the
basis for various follow-up works [11,17],
including model checking of network pro-
tocols [12] and differential testing on the
model level [7,43]. The framework we tar-
get is shown in Fig. 1. In the simplest case,
c© Springer Nature Switzerland AG 2019
É. André and M. Stoelinga (Eds.): FORMATS 2019, LNCS 11750, pp. 216–235, 2019.
https://doi.org/10.1007/978-3-030-29662-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29662-9_13&domain=pdf
https://doi.org/10.1007/978-3-030-29662-9_13

Time to Learn − Learning Timed Automata from Tests 217

we interact with a system by testing, learn a model from system traces (logs)
and then perform verification. Feedback loops are also possible: we can derive
additional tests from the preliminary learned model, and we could use coun-
terexample traces from model checking as tests.

Learning-based verification has great potential, but applications often use
modelling formalisms with low expressiveness such as Mealy machines. This
can be attributed to the availability of efficient implementations of learning
algorithms for variations of finite automata, e.g. in LearnLib [22], and com-
parably low support for richer automata types; especially timed systems have
received little attention. In addition, many of the proposed methods are not
supported by implementations. Notable works include learning of deterministic
real-time automata and a probabilistic variant thereof [46,47] by Verwer et al.
and techniques for learning deterministic event-recording automata described
by Grinchtein et al. [15,16]. The existing solutions on timed automata contain
several limitations. Real-time automata are restricted to one clock, which is
reset in every transition. Thus, they can only reason about delays in the cur-
rent location, but not keep track of delays since earlier events. Event-recording
automata are also less expressive than timed automata, and their learning has
a high runtime complexity. To the best of our knowledge, the proposed solution
is the first to implement a learning technique for general input-output timed
automata, as used in the model-checker Uppaal [8]. Such automata, usually do
not have canonical forms [15] which complicates the development of learning
techniques, therefore we follow a metaheuristic approach. The only restrictions
required by our approach are that it considers the systems under learning to be
output-urgent, deterministic and with isolated outputs (a special form of out-
put determinism). While specifications are generally vague, especially on timing,
and leave freedom to the actual implementation, implementations themselves are
generally considered to reflect one specific choice satisfying the specification, and
implement it deterministically [10]. Thus, since we learn from concrete imple-
mentations, we do not see these restrictions as too limiting. Notably, we consider
input-enabled systems which makes our approach well-suited for a testing-based
setting.

Scope and Contribution. Here, we focus on the learning part in Fig. 1. Gener-
ally, model learning may be performed either passively or actively [20]. Passive
learning uses preexisting data, such as system logs or existing test data, as basis,
while active learning actively queries the system, e.g. by testing, to gain relevant
information. We use a form of genetic programming [25] to passively learn a
deterministic timed automaton (TA) consistent with a given set of test cases.
We evaluate this approach, a meta-heuristic search, on four manually created
TA and several randomly generated TA. The evaluation demonstrates that the
search reliably converges to a TA consistent with test cases given as training data.
Furthermore, we simulate learned TA on independently produced test data to
show that our identified solutions generalise well, thus do not overfit to train-
ing data. Our technique is passive, but active extensions are possible by testing
based on intermediate versions of the learned model. Such an active approach is
currently under development and first evaluations show promising results.

218 M. Tappler et al.

Our contribution is threefold: (1) We show that TA can be genetically pro-
grammed and present the corresponding parameters and techniques. (2) We
implemented these techniques in a tool available for download [45]. (3) The eval-
uation results may serve as a benchmark for alternative TA learning methods.

Structure. Section 2.1 contains background information on TA and genetic pro-
gramming. Section 3 describes our approach to learning TA. Applications of this
approach are presented in Sect. 4. In Sect. 5, we provide a summary and discuss
related work, as well as potential extensions.

2 Preliminaries

2.1 Timed Automata

TA are finite automata enriched with real-valued variables called clocks [6].
Clocks measure the progress of time which elapses while an automaton resides in
some location. Transitions can be constrained based on clock values and clocks
may be reset on transitions. We denote the set of clocks by C and the set of
guards over C by G(C). Guards are conjunctions of constraints of the form c⊕ k,
with c ∈ C,⊕ ∈ {>,≥,≤, <}, k ∈ N. Transitions are labelled by input and out-
put actions, denoted by ΣI and ΣO respectively, with Σ = ΣI ∪ ΣO. Input
labels are suffixed by ? and output labels end with !. A TA over (C, Σ) is a triple
〈L, l0, E〉, where L is a finite non-empty set of locations, l0 ∈ L is the initial
location and E is the set of edges, with E ⊆ L × Σ × G(C) × 2C × L. We write
l

g,a,r−−−→ l′ for an edge (l, g, a, r, l′) ∈ E with guard g, label a, and clock resets r.

Example 1 (Train TA Model). Figure 2 shows a TA model of a train, for which
we have ΣI = {start?, stop?, go?}, ΣO = {appr !, enter !, leave!}, C = {c}, L =

{l0, . . . , l5}, and E = {l0
�,start?,{c}−−−−−−−−→ l1, . . .}. From initial location l0, the train

accepts the input start?, resetting clock c. After that, it can produce the output
appr ! if c ≥ 5, i.e the train may approach 5 time units after it is started.

l0l1

l2

l3

l4 l5

�
start?
{c}

c ≥ 5
appr !

{c}

�
stop?

{c}

c ≥ 10
enter !
{c}

�
go?
{c}

c ≥ 7
enter !
{c}

c ≥ 3
leave!
{}

Fig. 2. Train TA.

The semantics of a TA is given by a
timed transition system (TTS) 〈Q, q0, Σ, T 〉, with
states Q = L × R≥0

C , initial state q0, and transi-
tions T ⊆ Q× (Σ ∪R≥0)×Q, for which we write
q

e−→ q′ for (q, e, q′) ∈ T . A state q = (l, ν) is a
pair consisting of a location l and a clock valu-
ation ν. For r ⊆ C, we denote resets of clocks
in r by ν[r], i.e. ∀c ∈ r : ν[r](c) = 0 and
∀c ∈ C\r : ν[r](c) = ν(c). Let (ν+d)(c) = ν(c)+d
for d ∈ R≥0, c ∈ C denote the progress of time and
ν |= φ denote that valuation ν satisfies formula
φ. Finally, 0 is the valuation assigning zero to all clocks and the initial state q0

is (l0,0). Transitions of TTSs are either delay transitions (l, ν) d−→ (l, ν + d) for
a delay d ∈ R≥0, or discrete transitions (l, ν) a−→ (l′, ν[r]) for an edge l

g,a,r−−−→ l′

Time to Learn − Learning Timed Automata from Tests 219

such that ν |= g. Delays are usually further constrained, e.g. by invariants [19]
limiting the sojourn time in locations.

Timed Traces. We use the terms timed traces and test sequences similarly to [41].
The latter are sequences of inputs and corresponding execution times, while
the former are sequences of inputs and outputs, together with their times of
occurrence (produced in response to a test sequence). A test sequence ts is
an alternating sequence of non-decreasing time stamps tj and inputs ij , i.e.
ts = t1 ·i1 · · · tn ·in ∈ (R≥0×ΣI)∗ with ∀j ∈ {1, . . . , n−1} : tj ≤ tj+1. Informally,
a test sequence prescribes that ij should be executed at time tj . A timed trace
tt ∈ (R≥0 ×Σ)∗ consists of inputs interleaved with outputs produced by a timed
system. Analogously to test sequences, its timestamps are non-decreasing.

Assumptions on Timed Systems. Testing based on TA often places further
assumptions on TA [19,41]. Since we learn models from tests we make simi-
lar assumptions (closely following [19]). We describe these assumptions on the
level of semantics and use q

a−→ to denote ∃q′ : q
a−→ q′ and q a−→ for �q′ : q

a−→ q′:

1. Determinism. A TA is deterministic iff for every state s = (l, ν) and every
action a ∈ Σ, whenever s

a−→ s′, and s
a−→ s′′ then s′ = s′′.

2. Input Enabledness. A TA is input enabled iff for every state s = (l, ν) and
every input i ∈ ΣI , we have s

i−→.
3. Output Urgency. A TA shows output-urgent behaviour if outputs occur imme-

diately as soon as they are enabled, i.e. for o ∈ ΣO, if s
o−→ then s d−→ for all

d ∈ R≥0. Thus, outputs must not be delayed.
4. Isolated Outputs. A TA has isolated outputs iff whenever an output may be

executed, then no other output is enabled, i.e. if ∀o ∈ ΣO,∀o′ ∈ ΣO : q
o−→

and q
o′
−→ implies o = o′.

It is necessary to place restrictions on the sojourn time in locations to estab-
lish output urgency. Deadlines provide a simple way to model the assumption
that systems are output urgent [9]. With deadlines it is possible to model eager
actions. We use this concept and implicitly assume all learned output edges to
be eager. This means that outputs must be produced as soon as their guards are
satisfied. For that, we extend the semantics given above by adding the following
restriction: delays (l, ν) d−→ (l′, ν + d) are only possible if ∀ d′ ∈ R≥0, d

′ < d :
ν + d′ |= ¬

∨
g∈GO

g, where GO = {g|∃l′, a, r : l
g,a,r−−−→ l′, a ∈ ΣO} are the guards

of outputs in location l. To avoid issues related to the exact time at which out-
puts should be produced, we further restrict the syntax of TA by disallowing
strict lower bounds for output edges. Uppaal [27] uses invariants rather than
deadlines to limit sojourn time. In order to analyse TA using Uppaal, we use
the translation given in [14]. We implicitly add self-loops to all states s = (l, ν)
for inputs i undefined in s, i.e. we add (l, ν) i−→ (l, ν) if ν ��|=

∨

∃l′,r:l
g,i,r−−−→l′

g. This

ensures input enabledness while avoiding TA cluttered with input self-loops. It
also allows to ignore input enabledness during genetic programming, e.g. muta-
tions may remove input edges.

220 M. Tappler et al.

The assumptions placed on systems under test (SUTs) ensure testability [19].
Assuming that SUTs can be modelled in some modelling formalism is usually
referred to as testing hypothesis. Placing the same assumptions on learned models
simplifies checking conformance between model and SUT. The execution of a test
sequence on such a model uniquely determines a response [41], and due to input
enabledness we may execute any test sequence. This allows us to use equivalence
as conformance relation between learned models and SUT. What is more, we
can approximate checking equivalence between the learned models and the SUT
by executing test sequences on the models and check for equivalence between
the SUT’s responses and the response predicted by the models.

2.2 Genetic Programming

Genetic programming [25] is a search-based technique to automatically generate
programs exhibiting some desired behaviour. Like Genetic Algorithms [35], it is
inspired by nature. Programs, also called individuals, are iteratively refined by:
(1) fitness-based selection followed by (2) operations altering program structure,
like mutation and crossover. Fitness measures are problem-specific and may for
instance be based on tests. In this case, one could assign a fitness value pro-
portional to the number of tests passed by an individual. The following basic
functioning principle underlies genetic programming.

1. Randomly create an initial population.
2. Evaluate the fitness of each individual in the population.
3. If an acceptable solution has been found or the maximum number of iterations

has been performed: stop and output the best individual
4. Otherwise repeatedly select an individual based on fitness and apply one of:

Mutation: change a part of the individual creating a new individual.
Crossover: select another individual according to its fitness and combine

both individuals to create offspring.
Reproduction: copy the individual to create a new equivalent individual.

5. Form a new population from the new individuals and go to Step 2.

Due to their nature, genetic algorithms and genetic programming lend them-
selves to parallelisation. Several populations may, e.g., be evolved in parallel,
which is particularly useful if speciation is applied [37]. In speciation, differ-
ent subpopulations explore different parts of the search space. Information is
commonly exchanged between subpopulations by migrating individuals.

3 Genetic Programming for Timed Automata

Figure 3a provides an overview of the steps we perform, while Fig. 3b shows the
creation of a new population in more detail. We first test the SUT, by generating
and executing ntest test sequences to collect ntest timed traces. Our goal is then
to genetically program a TA consistent with the collected timed traces. Put dif-
ferently, we want to generate a TA that produces the same outputs as the SUT in

Time to Learn − Learning Timed Automata from Tests 221

Test SUT Evaluate Evaluate

Random Global
Population

Random Local
PopulationSUT

Stop?

Create New
Population

Create New
Population

MigrateOutput
Fittest

ntest
traces

npop npop

≤ nmig

yes

no

≤ npop + nmig
npop

Tfail

(a) Overview of genetic programming.

Choose
Operation

CrossoverMutate
Migration
Crossover

Fitness-Based
Selection

Apply
Operation

Create New Population: do npop times

Global
Population

Local
Population

New Global
Population

pcr
2

pcr
21 − pcr

npop

(b) Creating a new global population.

Fig. 3. Overview of the learning process.

response to the inputs of the test sequences. For the following discussion, we say
that a TA passes a timed trace t if it produces the same outputs as the SUT when
simulating the test sequence corresponding to t. Otherwise it fails t. In addition
to passing all timed traces, the final TA shall be deterministic. This is achieved
by assigning larger fitness values to deterministic solutions. Both mutation and
crossover can create non-deterministic intermediate solutions, which might help
the search in the short-term and will be resolved in future generations.

Generally, we evolve two populations of TA simultaneously, a global popu-
lation, evaluated on all the traces, and a local population, evaluated only on
the traces that fail on the fittest automaton of the global population. Both are
initially created equally and contain npop TA. After initial creation, the global
population is evaluated on all ntest traces. During that, we basically test the TA
and check how many traces each TA passes and assign fitness values accordingly,
i.e., the more passing traces the fitter. Additionally, we add a fitness penalty for
model size. The local population is evaluated only on a subset Tfail of the traces.
This subset Tfail contains all traces which the fittest TA fails, and which likely
most of the other TA fail as well. With the local population, we are able to
explore new parts of the search space more easily since we may ignore function-
ality already modelled by the global population. We integrate functionality found
via this local search into the global population through migration and migra-
tion combined with crossover. To avoid overfitting to a low number of traces, we
ensure that Tfail contains at least ntest

100 traces. If there are fewer actually failing
traces, we add randomly chosen traces from all ntest traces to Tfail.

After evaluation, we stop if we either reached the maximum number of gen-
erations gmax, or the fittest TA passes all traces and has not changed in gchange
generations. Note that two TA passing all traces may have different fitness val-
ues depending on model size, i.e. gchange controls how long we try to decrease
the size of the fittest TA. The rationale behind this is that smaller TA are less
complex and simpler to comprehend.

222 M. Tappler et al.

If not stopped, we create new populations of TA, which works slightly differ-
ently for the local and the global population. Figure 3b illustrates the creation of
a new global population. Before creating new TA, existing TA may migrate from
the local to the global population. For that, we check each of the fittest nmig

local TA and add it to the global population if it passes at least one trace from
Tfail. We generally set nmig to 5npop

100 , i.e. the top five percent of the local popu-
lation are allowed to migrate. After migration, we create npop new TA through
the application of one of three operations:

– with probability 1 − pcr: mutate a TA from the global population
– with probability pcr

2 : crossover of two TA from the global population
– with probability pcr

2 : crossover of two TA, one from each population

The rationale behind migration combined with crossover is that migrated TA
may have low fitness from a global point of view and will therefore not survive
selection. They may, however, have desirable features which can be transferred
via crossover. For the local population, we perform the same steps, but without
any migration, in order to keep the local search independent. Once we have new
populations, we start a new generation by evaluating the new TA.

A detail not illustrated in Fig. 3a is our implementation of elitism [35]. We
always keep track of the fittest TA found so far for both populations. In each
generation, we add these fit TA to their respective populations after mutation.

Parameters. Our implementation could be controlled by a large number of
parameters. To ease applicability and to avoid the need for meta-optimisation of
parameter settings for a particular SUT, we fixed as many as possible to constant
values. The actual values, like 5npop

100 for nmig, are motivated by experiments. The
remaining parameters can usually be set to default values or chosen based on
guidelines. For instance, npop, gmax, and ntest may be chosen as large as possible,
given available memory and maximum computation time.

3.1 Creation of Initial Random Population

We initially create npop random TA, parameterised by: (1) the labels ΣI and ΣO,
(2) the number of clocks nclock, and (3) the appr. largest constant in clock con-
straints cmax. Note, cmax is an approximation, because mutations may increase
constants. Each TA has initially only two locations, as we intend to increase size
and thereby complexity only through mutation and crossover. Moreover, it is
assigned the given action labels and has a set of nclock clocks. During creation,
we add random edges, such that at least one edge connects the initial location
to the other location. We create edges entirely randomly, whereby the number
of constraints in guards as well as the number of clock resets are geometrically
distributed with fixed parameters. The edge label, the relational operators and
constants in constraints are chosen uniformly at random from the respective sets
Σ, {<,≤,≥, >}, and [0 . . cmax] (operators for outputs exclude >). The source
and target locations are also chosen uniformly at random from the set of loca-
tions, i.e. initially we choose from two locations. If the required number of clocks

Time to Learn − Learning Timed Automata from Tests 223

is not known a priori, we suggest setting nclock = 1 and increasing it only if it is
not possible to find a valid TA. A similar approach could be used for cmax.

3.2 Fitness Evaluation

Simulation. We simulate the TA to evaluate their fitness. Above, we discussed
failing and passing traces, but evaluation is more fine grained. We execute the
inputs of each timed trace and observe produced outputs until (1) the simulation
is complete, (2) an expected output is not observed, or (3) output isolation is
violated (output non-determinism).

In general, if T is a deterministic, input-enabled TA with isolated and urgent
outputs and ts is a test sequence, then executing ts on T uniquely determines a
timed trace tt [41]. By the testing hypothesis, the SUT fulfils these assumptions.
However, TA generated through mutation and crossover are input-enabled, but
may show non-deterministic behaviour. Hence, simulating a test sequence or a
timed trace on a generated TA may follow multiple paths of states. Some of these
paths may produce the expected outputs and some may not. Our goal is to find
a TA that is both correct, i.e. produces the same outputs as the SUT, and is
deterministic. Consequently, we reward these properties with positive fitness.

The simulation function sim(G, tt) simulates a timed trace tt on a generated
TA G and returns a set of timed traces. It uses the TTS semantics but does not
treat outputs as urgent outputs. From the initial state (l0,0), where l0 is the
initial location of G, it performs the following steps for each tiei ∈ tt with t0 = 0:

1. From state q = (l, ν)
2. Delay for d = ti − ti−1 to reach qd = (l, ν + d)
3. If ei ∈ ΣI , i.e. it is an input:

3.1. If ∃o ∈ ΣO, do ≤ d : (l, ν +do) o−→, i.e. an output would have been possible
while delaying or at time ti

→ then mark ei
3.2. If ∃q1, q2, q1 = q2 : qd

ei−→ q1 ∧ qd
ei−→ q2

→ then mark ei
3.3. For all q′ such that qd

ei−→ q′

→ carry on exploration with q′

4. If ei ∈ ΣO, i.e. it is an output:
4.1. If ∃o ∈ ΣO, do < d : (l, ν +do) o−→, i.e. an output would have been possible

while delaying
→ stop exploration

4.2. If ∃q1, q2, q1 = q2 : qd
ei−→ q1 ∧ qd

ei−→ q2 or ∃o, o = ei : qd
o−→

→ stop exploration
4.3. If there is a q′ such that qd

ei−→ q′

→ carry on exploration with q′

The procedure shown above allows for two types of non-determinism. During
delays before executing an input, we may ignore outputs (3.1) and we may
explore multiple paths with inputs (3.3). We mark these inputs to be non-
deterministic, through (3.1 and 3.2). Since we explore multiple paths, a single

224 M. Tappler et al.

input ei may be marked along one path but not marked along another path. In
contrast, we do not explore non-deterministic outputs, leading to lower fitness for
respective traces. This avoids issues with trivial TA which produce each output
all the time. Such TA would completely simulate all traces non-deterministically,
but would not be useful.

During exploration, sim(G, tt) collects and returns timed traces tts, which are
prefixes of tt but with marked and unmarked inputs. For fitness computation,
we defined four auxiliary functions. The first one assigns a simulation verdict:

verdict(tts) =

⎧
⎪⎨

⎪⎩

PASS if |tts| = 1 ∧ tt ∈ tts
NONDET if |tts| > 1 ∧ ∃tt′ ∈ tts : |tt′| = |tt|
FAIL otherwise

A TA, which produces a PASS verdict for all timed traces, behaves equiva-
lently to the SUT for these traces. NONDET is returned in case of non-determinism
with at least one correct execution path. Function steps(tts) returns the maxi-
mum number of deterministic steps, and out(tts) returns the number of outputs
along the longest traces in tts. Finally, size(G) returns the number of edges.

Fitness Computation. In order to compute the fitness, we assign the weights
wPASS, wNONDET, wFAIL, wsteps, wout, and wsize to the gathered information of G.
Basically, we give some positive fitness for deterministic steps, correctly produced
outputs, and verdicts, but penalise size. Let T T be the timed traces on which
G is evaluated. The fitness fit(G) is then (note that wverdict(tts) evaluates to one
of wPASS, wNONDET, or wFAIL):

fit(G) =
∑

tt∈T T
fit(G, tt) − wsize size(G) where

fit(G, tt) =wverdict(tts) + wsteps steps(tts) + wout out(tts) and tts = sim(G, tt)

Fitness evaluation adds further parameters. We identified guidelines for choosing
them adequately. We generally set wFAIL = 0 and use wout as basis for other
weights. Usually, we set wstep = wout/2 and wPASS = k · l · wout, where l is
the average length of test sequences and k is a small natural number, e.g. 4.
More important than the exact value of k is setting wNONDET = wPASS/2 which
gives positive fitness to correctly produced timed traces but with a bias towards
deterministic solutions. The weight wsize should be chosen low, such that it does
not prevent adding of necessary edges. We usually set it to wstep. It needs to
be non-zero, though. Otherwise an acceptable solution could be a tree-shaped
automaton exactly representing T T without generalisation. As noted at the
beginning of this section, we assign larger fitness to solutions that accept a larger
portion of the traces deterministically, as our goal is to learn deterministic TA.

As noted above, a TA T producing only PASS verdicts behaves equivalently
to the SUT with respect to T T , i.e. T is “approximately trace equivalent” to
the SUT. Due to the restriction to deterministic output-urgent systems, trace
inclusion and trace equivalence coincide. As a result, a TA producing a FAIL
verdict is neither an under- nor an over-approximation.

Time to Learn − Learning Timed Automata from Tests 225

3.3 Creation of New Population

Table 1 lists all implemented mutation operators for TA. Whenever an operator
selects an edge or a location, the selection is random, but favours locations
and edges which are associated with faults and non-deterministic behaviour. We
augment TA with such information during fitness evaluation. To create an edge,
we create random guards and reset sets, and choose a random label, like for the
initial creation of TA.

Table 1. Mutation operators

Name Short description

Add constraint Add a guard constraint to an edge

Change guard Select edge and create a random guard if the edge does not have a
guard, otherwise mutate a constraint of its guard

Change target Change the target location of an edge

Remove guard Remove either all or a single guard constraint from an edge

Change resets Remove clocks from or add clocks to the clock resets of an edge

Remove edge Remove a selected edge

Add edge Add an edge connecting randomly chosen locations

Sink location Add a new location

Merge location Merge two locations

Split location Split a location l by creating a new location l′ and redirecting an
edge reaching l to l′

Add location Add a new location and two edges connecting the new location to
existing locations

Split edge Replace an edge e with either the sequence e′ · e or e · e′ where e′ is
a new random edge (adds a location to connect e and e′)

The mutation operators form three groups separated by double horizontal
lines. The first and largest group contains basic operators, which are sufficient
to create all possible automata. The second group is motivated by the basic prin-
ciple behind automata learning algorithms. Passive algorithms often start with
a tree-shaped representation of traces and transform this representation into an
automaton via iterated state-merging [20]. Active learning algorithms on the
other hand usually start with a low number of locations and add new locations
if necessary. This can be interpreted as splitting of existing locations, an intu-
ition which also served as a basis for test-case generation in active automata
learning [5]. The last two operators are motivated by observations during exper-
iments: add location increases the automaton size but avoids creating deadlock
states, unlike the operator sink location. Split edge addresses issues related to
input enabledness, where an input i is implicitly accepted without changing
state, although an edge labelled i should change the state. The operator aims

226 M. Tappler et al.

to introduce such edges. For mutation, we generally select one of the operators
uniformly at random.

In addition to mutation, we apply a simplification procedure. It changes the
syntactic representation of TA without affecting semantics, by, e.g., removing
unreachable locations. For further details regarding simplification, migration,
selection and crossover we refer to our technical report [44].

3.4 Implementation

The presented algorithms have been implemented in a tool shown in Fig. 4 and
can be found online [45]. The tool supports customisation of almost all rele-
vant parameters. When selecting one of the presented experiments, the tool will
propose the same values that were used in the evaluation presented in Sect. 4.

While the tool is general enough to learn from any set of timed traces given
in the correct format, the prototype is currently only meant for evaluating the
examples presented in this paper. A full release of the tool is planned soon.

The tool implements the presented automatic genetic-programming process,
with the possibility to inspect the current status of the search, like the accepted
traces by the current population. In case the search gets stuck, the tool also
allows for manual changes to be performed, enabling semi-automatic modelling.

Fig. 4. Two screenshots of the genetic programming tool for time automata, illustrating
the possible configurations (left) and the screen to view intermediate results (right).

4 Case Studies

Our evaluation is based on four manually created and 40 randomly generated
TA, which serve as our SUTs. Using TA provides us with an easy way of check-
ing whether we found the correct model. However, our approach and our tool
are general enough to work on real black-box implementations. Our algorithms
are implemented in Java. A demonstrator with a GUI is available in the sup-
plementary material, which also includes Graphviz dot-files of the TA [45]. The
demonstrator allows repeating all experiments presented in the following with

Time to Learn − Learning Timed Automata from Tests 227

freely configurable parameters. Moreover, the search progress can be inspected
anytime. The user interface lists the fittest TA for each generation and visualises
each of them along with the timed traces used for learning.

For the evaluation, we generated timed traces by simulating ntest random
test sequences on the SUTs. The inputs in the test sequences were selected uni-
formly at random from the available inputs. The lengths of the test sequences
are geometrically distributed with a parameter ptest, which is set to 0.15 unless
otherwise noted. To avoid trivial timed traces, we ensure that all test sequences
cause at least one output to be produced. The delays in test sequences were cho-
sen probabilistically in accordance with the user-specified largest constant cmax.
Additionally, one could specify important constants used in the SUTs, gathered
from a requirements document if available. Specifying appropriate delays helps
to ensure that the SUTs are covered sufficiently well by the test sequences.

Measurement Setup and Criteria. The measurements were done on a notebook
with 16 GB RAM and an Intel Core i7-5600U CPU operating at 2.6 GHz. Our
main goal is to show that we can learn models in a reasonable amount of time,
but further improvements are possible, e.g., via parallelisation. We use a training
set and a test set for evaluation, each containing ntest timed traces. First, we
learn from the training set until we find a TA which produces a PASS verdict for
all traces. Then, we simulate the traces from the test set and report all traces
leading to a verdict other than PASS as erroneous. Note that since we generate
the test set traces through testing, there are no negative traces. In other words,
all traces are observable and can be considered positive. Consequently, notions
like precision and recall do not apply to our setting.

Our four manually created TA, with number of locations and cmax in paren-
theses, are called car alarm system (CAS) (14, 30), Train (6, 10), Light (5, 10),
and particle counter (PC) (26, 10). All of them use one clock. The CAS is an
industrial case study, which served as a benchmark for test-case generation for
timed systems [3]. Different versions of the Train and Light have been used as
examples in real-time verification [8] and variants of them are distributed as
demo examples with the real-time model-checker Uppaal [27] and the real-time
testing tool Uppaal Tron [18]. The particle counter (PC) is the second indus-
trial case study. Untimed versions of it were examined in model-based testing [2].

In addition to the manually created timed systems, we have four categories
of random TA, each containing ten TA: C15/1, C20/1, C6/2, C10/2, where the
first number gives the number of locations and the second the number of clocks.
TA from the first two categories have alphabets containing 5 distinct inputs and
5 distinct outputs, while the TA from the other two categories have 4 inputs and
4 outputs. For all random TA, we have cmax = 15.

We used similar configurations for all experiments. Following the suggestions
in Sect. 3, we set the fitness weights to wout = 0.25, wsteps = wout

2 = wsize,
wPASS = 4wout

ptest
, wNONDET = PASS

2 , and wFAIL = 0, with the exception of CAS. Since
the search frequently got trapped in minima with non-deterministic behaviour,
we set wout = wsteps

2 , i.e. we valued deterministic steps more than outputs, and
wNONDET = −0.5, i.e. we added a small penalty for non-determinism. Other than

228 M. Tappler et al.

Table 2. Measurement results

TA Test set errors Generations Time

CAS 0 147/246.0/305.8/595 27.3 min/57.2 min/1.2 h/2.7 h

Train 0 50/71.0/83.4/180 2.9 min/4.7 min/4.8 min/9.1 min

Light 0 42/77.5/84.5/240 3.2 min/7.4 min/8.7 min/31.1 min

PC 0 278/685.5/554.9/859 3.0 h/8.7 h/7.3 h/10.6 h

C15/1 0/2.0/1.8/6 201/404.5/401.3/746 1.4 h/3.1 h/3.2 h/6.6 h

C20/1 0/0.0/1.0/6 45/451.0/665.8/1798 23.4 min/6.7 h/7.4 h/18.3 h

C6/2 0/0.0/0.5/3 18/68.5/176.9/709 9.4 min/43.9 min/1.8 h/7.6 h

C10/2 0/2.5/2.6/8 73/239.0/344.9/984 35.8 min/3.1 h/3.4 h/9.3 h

Fig. 5. Percentages of accepted test steps of fittest individual. (Color figure online)

that, we set gmax = 3000, npop = 2000, the initial nsel = npop
10 , ntest = 2000, pcr =

0.25, gchange = 10, pmutinit = 0.33, and gsimp = 10, with the following exceptions.
Train and Light require less effort, thus we set npop = 500. The categories
C10/2, C15/1, and C20/1 require more thorough testing, so we configured ntest =
4000 for C10/2 and C15/1, and ntest = 6000 with ptest = 0.1 for C20/1. We
determined the settings for ntest experimentally, by manually inspecting if the
intermediate learned TA were approximately equivalent to the true models, so
as to ensure that the training sets adequately cover the relevant behaviour.

All learning runs were successful by finding a TA without errors on the train-
ing set, except for two cases, one in C10/2 and one in C20/1. For the first, we
repeated the experiment with a larger population npop = 6000, resulting in suc-
cessful learning. For the random TA in C20/1, we observed a similar issue as
for CAS, i.e. non-determinism was an issue, but used another solution. In some
cases, crossover may introduce non-determinism, thus we decreased the proba-
bility for crossover pcr to 0.05 and learned the correct model. Hence, we are able
to learn TA that are consistent with given trace data via genetic programming.

Table 2 shows the learning results. The column test set error contains 0, if
there were no errors on the test set. Otherwise, each cell in the table contains,

Time to Learn − Learning Timed Automata from Tests 229

from left to right, the minimum, the median and the mean, and the maximum
computed over 10 runs for manually created TA and over 10 runs for each random
category, i.e. one run per random TA.

Figure 5a and b illustrate the percentage of correct steps when simulating
the test cases on the intermediate learned models. The solid line represents the
median out of the 10 runs, the dots represent the minimum, the triangles the
maximum and the coloured area is the area between first and third quartile. One
can see a steep rise in the early generations, while later generations are mainly
needed to minimise the learned models, which already correctly incorporate all
test steps. The CAS is the model with the slowest initial learning, where, in the
worst case, the first 200 generations did not improve the model.

The test set errors are generally low, so our approach generalises well and
does not simply overfit to the training data. We also see that manually created
systems produced no test set errors. While the more complex, random TA led
to errors. However, for them the relative number of errors was at most two
thousandths (8 errors out of 4000 tests). Such errors may, e.g., be caused by
slightly too loose or too strict guards on inputs.

The computation time of at most 18.3 h seems acceptable, especially consid-
ering that fitness evaluation, as the most time-consuming part, is parallelisable.
Finally, we want to emphasise that we identified parameters which almost con-
sistently produced good results. In the exceptions where this was not the case,
it was simple to adapt the configuration.

The size of our TA in terms of number of locations ranges between 5 and 26.
To model real-world systems, it is therefore necessary to apply abstraction during
the testing phase, which collects timed traces. Since model learning requires
thorough testing, abstraction is commonly used in this area. Consequently, this
requirement is not a strong limitation. Several applications of automata learning
show that implementation flaws can be detected by analysing learned abstract
models, e.g., in protocol implementations [12,40,43].

In conclusion, we have shown that we can learn models that are consistent
with given training data and that these models generalise to test data that is
produced equally, but which does not overlap with the training data. Since we
learn from randomly generated data in our experiments, the learned models
may not be equivalent to true underlying models. However, a manual inspection
revealed that we generally learned correct models, with the exception of slight
discrepancies in behaviour in some cases. We are currently working on extend-
ing our work to actively search for counterexamples to equivalence which could
potentially provide stronger guarantees (see also our discussion on future work).

5 Conclusion

Summary. We presented an approach to learn deterministic TA with urgent
outputs, an important subclass for testing timed systems [19]. The learned mod-
els may reveal flaws during manual inspection and enable verification of black-
box systems via model-checking. Genetic programming serves as a basis. In our

230 M. Tappler et al.

implementation of it, we parallelise search by evolving two populations simulta-
neously and developed techniques for mutation, crossover, and for a fine-grained
fitness-evaluation. While, due to the heuristic nature of the proposed method,
we cannot provide a convergence proof, we provide empirical evidence that the
method performs well, can cope with big state spaces and generally converges
to a solution consistent with given trace data. We evaluated the technique on
non-trivial TA with up to 26 locations. We could learn all 44 TA models, only
two random TA needed a small parameter adjustment.

Related Work. Verwer et al. [46,47] passively learned real-time automata via
state-merging. These TA measure the time between two consecutive events and
use guards in the form of intervals, i.e. they have a single clock which is reset on
every transition. They do not distinguish between inputs and outputs. Improve-
ments of [47] were presented in [34]. Similarly, Mao et al. applied state-merging
to learn continuous time Markov chains [32]. A state-merging-based learning
algorithm for more general stochastic timed systems has been proposed by de
Matos Pedro et al. [33]. They target learning generalised semi-Markov processes,
which are generated by stochastic timed automata. All these techniques have in
common that they consider systems where the relation between events is fully
described by a system’s structure. Pastore et al. [38] learn specifications cap-
turing the duration of (nested) operations in software systems. A timed trace
therefore includes for each operation its start and end, i.e. the trace records two
related events. Their algorithm is based on the passive learning technique k-Tail.

Grinchtein et al. [15,16] described active learning approaches for determin-
istic event-recording automata, a subclass of TA with one clock per action. The
clock corresponding to an action is reset upon its execution essentially record-
ing the time since the action has occurred. While the expressiveness of these
automata suffices for many applications, the runtime complexity of the described
techniques is high and may be prohibitive in practice. Currently, there is no
implementation to actually measure runtime. Furthermore, this kind of TA can-
not model certain timing patterns, e.g., in the case of input enabledness where
always resetting a clock may not be appropriate. Lin et al. [29] also presented an
active learning algorithm for event-recording automata and applied it to learn
assumptions in compositional verification via assume-guarantee reasoning [30].

Meta-heuristic search as an alternative to classical automata learning has
been proposed by Lai et al. for finite state machines [26]. They apply genetic
algorithms and assume the number of states to be known. Lucas and Reynolds
compared state-merging and evolutionary algorithms, but also fixed the number
of states for runs of the latter [31].

Lefticaru et al. similarly assume the number of states to be known and gen-
erate state machine models via genetic algorithms [28]. Their goal, however, is
to synthesise a model satisfying a specification given in temporal logics. Early
work suggesting such an approach was performed by Johnson [23], which like our
approach does not require the solution size to be known. In contrast, Johnson
does not apply crossover. Further synthesis work from Katz and Peled [24] tries
to infer a correct program or model on the source code level, while we aim at syn-

Time to Learn − Learning Timed Automata from Tests 231

thesising a model representing a black-box system. Nenzi et al. [36] presented an
evolutionary algorithm for mining specifications in signal temporal logic (STL)
distinguishing between regular and anomalous system behaviour. An important
difference to our work is that they perform a classification task, while we learn
models producing the same traces as the systems under consideration.

Evolutionary methods have been combined with testing in several areas:
Abdessalem et al. [1] use evolutionary algorithms for the generation of test sce-
narios and learn decision trees to identify critical scenarios. Using the learned
trees, they can steer the test generation towards critical scenarios. The tool Evo-
suite by Fraser and Arcuri [13] uses genetic operators for optimising whole test
suites at once, increasing the overall coverage, while reducing the size of the test
suite. Walkinshaw and Fraser presented Test by Committee, test-case genera-
tion using uncertainty sampling [49]. The approach is independent of the type
of model that is inferred and an adaption of Query By Committee, a technique
commonly used in active learning. In their implementation, they infer several
hypotheses at each stage via genetic programming, generate random tests and
select those tests which lead to the most disagreement between the hypotheses.
In contrast to most other works considered, their implementation infers non-
sequential programs. It infers functions mapping from numerical inputs to single
outputs.

The work by Steffen et al. [21,42] is another good showcase for the strong
possible relation between testing and model learning. They combine both areas,
by performing black box tests and using the results to generate a model. Contrary
to our work, they perform active learning, i.e., they use the intermediate versions
of the learned models to guide the test generation. For a more comprehensive
overview of combinations of learning and testing, we refer to [4].

Future Work. As indicated above, our technique is entirely passive, i.e. we learn
from a set of timed traces (test observations), collected beforehand by random
testing. There is no feedback from genetic programming to testing. In contrast
to this, model-based testing could be applied to find discrepancies between the
SUT and learned models [48]. These may then be used to iteratively improve
the models. Active testing based on intermediate learned models may improve
coverage of the SUT while requiring fewer tests, since we would benefit from
additional knowledge about the system behaviour. This may therefore lead to
improved accuracy of the model and increased performance through a reduction
of tests and testing time. We are currently investigating this approach.

Assuming output urgency helps to approximate equivalence checks by “test-
ing” candidate automata during learning. However, such models do not allow for
uncertainty with respect to output timing. Relaxing this limitation represents
an important next step. We are also currently working on this topic.

We demonstrated that TA can be genetically programmed, i.e. their structure
is amenable to iterative refinement via mutation and crossover. Therefore, we
could apply the same approach, but base the fitness evaluation on model checking
by adapting the technique presented by Katz and Peled [24], to synthesise TA
satisfying some properties. This would enable learning a black-box system, which

232 M. Tappler et al.

may contain errors, and synthesising a controller ensuring that those errors do
not lead to observable system failures.

Acknowledgment. The work of B. Aichernig and M. Tappler has been carried out
as part of the TU Graz LEAD project “Dependable Internet of Things in Adverse
Environments”. The work of K. Larsen and F. Lorber has been conducted within
the ENABLE-S3 project that has received funding from the ECSEL Joint Undertak-
ing under grant agreement no. 692455. This joint undertaking receives support from
the European Union’s Horizon 2020 research and innovation programme and Austria,
Denmark, Germany, Finland, Czech Republic, Italy, Spain, Portugal, Poland, Ireland,
Belgium, France, Netherlands, United Kingdom, Slovakia, Norway. We would like to
thank student Andrea Pferscher for her help in implementing the demonstrator. We also
want to thank the anonymous reviewers for their insightful comments and suggestions.

References

1. Abdessalem, R.B., Nejati, S., Briand, L.C., Stifter, T.: Testing vision-based control
systems using learnable evolutionary algorithms. In: ICSE 2018, pp. 1016–1026.
ACM (2018). https://doi.org/10.1145/3180155.3180160

2. Aichernig, B.K., et al.: Model-based mutation testing of an industrial measurement
device. In: Seidl, M., Tillmann, N. (eds.) TAP 2014. LNCS, vol. 8570, pp. 1–19.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09099-3 1

3. Aichernig, B.K., Lorber, F., Ničković, D.: Time for mutants — model-based muta-
tion testing with timed automata. In: Veanes, M., Viganò, L. (eds.) TAP 2013.
LNCS, vol. 7942, pp. 20–38. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-38916-0 2

4. Aichernig, B.K., Mostowski, W., Mousavi, M.R., Tappler, M., Taromirad, M.:
Model learning and model-based testing. In: Bennaceur, A., Hähnle, R., Meinke,
K. (eds.) Machine Learning for Dynamic Software Analysis: Potentials and Limits.
LNCS, vol. 11026, pp. 74–100. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96562-8 3

5. Aichernig, B.K., Tappler, M.: Efficient active automata learning via mutation test-
ing. J. Autom. Reason. (2018). https://doi.org/10.1007/s10817-018-9486-0

6. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

7. Argyros, G., Stais, I., Jana, S., Keromytis, A.D., Kiayias, A.: SFADiff: automated
evasion attacks and fingerprinting using black-box differential automata learning.
In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security, pp. 1690–1701. ACM (2016). https://doi.org/10.1145/2976749.
2978383

8. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9 7

9. Bornot, S., Sifakis, J., Tripakis, S.: Modeling urgency in timed systems. In: de
Roever, W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536,
pp. 103–129. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49213-
5 5

https://doi.org/10.1145/3180155.3180160
https://doi.org/10.1007/978-3-319-09099-3_1
https://doi.org/10.1007/978-3-642-38916-0_2
https://doi.org/10.1007/978-3-642-38916-0_2
https://doi.org/10.1007/978-3-319-96562-8_3
https://doi.org/10.1007/978-3-319-96562-8_3
https://doi.org/10.1007/s10817-018-9486-0
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1145/2976749.2978383
https://doi.org/10.1145/2976749.2978383
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/3-540-49213-5_5
https://doi.org/10.1007/3-540-49213-5_5

Time to Learn − Learning Timed Automata from Tests 233

10. David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed I/O
automata: a complete specification theory for real-time systems. In: Johansson,
K.H., Yi, W. (eds.) HSCC 2010, pp. 91–100. ACM (2010). https://doi.org/10.
1145/1755952.1755967

11. Elkind, E., Genest, B., Peled, D., Qu, H.: Grey-box checking. In: Najm, E., Pradat-
Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 420–
435. Springer, Heidelberg (2006). https://doi.org/10.1007/11888116 30

12. Fiterău-Broştean, P., Janssen, R., Vaandrager, F.: Combining model learning and
model checking to analyze TCP implementations. In: Chaudhuri, S., Farzan, A.
(eds.) CAV 2016. LNCS, vol. 9780, pp. 454–471. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41540-6 25

13. Fraser, G., Arcuri, A.: EvoSuite: automatic test suite generation for object-oriented
software. In: SIGSOFT/FSE 2011, pp. 416–419. ACM (2011). https://doi.org/10.
1145/2025113.2025179

14. Gómez, R.: A compositional translation of timed automata with deadlines to
Uppaal timed automata. In: Ouaknine, J., Vaandrager, F.W. (eds.) FORMATS
2009. LNCS, vol. 5813, pp. 179–194. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-04368-0 15

15. Grinchtein, O., Jonsson, B., Leucker, M.: Learning of event-recording automata.
Theor. Comput. Sci. 411(47), 4029–4054 (2010). https://doi.org/10.1016/j.tcs.
2010.07.008

16. Grinchtein, O., Jonsson, B., Pettersson, P.: Inference of event-recording automata
using timed decision trees. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006.
LNCS, vol. 4137, pp. 435–449. Springer, Heidelberg (2006). https://doi.org/10.
1007/11817949 29

17. Groce, A., Peled, D., Yannakakis, M.: Adaptive model checking. In: Katoen, J.-P.,
Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 357–370. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-46002-0 25

18. Hessel, A., Larsen, K.G., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.:
Testing real-time systems using UPPAAL. In: Hierons, R.M., Bowen, J.P., Harman,
M. (eds.) Formal Methods and Testing. LNCS, vol. 4949, pp. 77–117. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78917-8 3

19. Hessel, A., Larsen, K.G., Nielsen, B., Pettersson, P., Skou, A.: Time-optimal real-
time test case generation using Uppaal. In: Petrenko, A., Ulrich, A. (eds.) FATES
2003. LNCS, vol. 2931, pp. 114–130. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24617-6 9

20. de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press, New York (2010)

21. Hungar, H., Margaria, T., Steffen, B.: Test-based model generation for legacy sys-
tems. In: ITC 2003, pp. 971–980. IEEE (2003). https://doi.org/10.1109/TEST.
2003.1271084

22. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib - a framework
for active automata learning. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015.
LNCS, vol. 9206, pp. 487–495. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-21690-4 32

23. Johnson, C.G.: Genetic programming with fitness based on model checking. In:
Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.)
EuroGP 2007. LNCS, vol. 4445, pp. 114–124. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-71605-1 11

https://doi.org/10.1145/1755952.1755967
https://doi.org/10.1145/1755952.1755967
https://doi.org/10.1007/11888116_30
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1007/978-3-642-04368-0_15
https://doi.org/10.1007/978-3-642-04368-0_15
https://doi.org/10.1016/j.tcs.2010.07.008
https://doi.org/10.1016/j.tcs.2010.07.008
https://doi.org/10.1007/11817949_29
https://doi.org/10.1007/11817949_29
https://doi.org/10.1007/3-540-46002-0_25
https://doi.org/10.1007/978-3-540-78917-8_3
https://doi.org/10.1007/978-3-540-24617-6_9
https://doi.org/10.1007/978-3-540-24617-6_9
https://doi.org/10.1109/TEST.2003.1271084
https://doi.org/10.1109/TEST.2003.1271084
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/978-3-540-71605-1_11
https://doi.org/10.1007/978-3-540-71605-1_11

234 M. Tappler et al.

24. Katz, G., Peled, D.: Synthesizing, correcting and improving code, using model
checking-based genetic programming. STTT 19(4), 449–464 (2017). https://doi.
org/10.1007/s10009-016-0418-1

25. Koza, J.R.: Genetic Programming - On the Programming of Computers by Means
of Natural Selection. Complex adaptive systems. MIT Press, Cambridge (1993)

26. Lai, Z., Cheung, S.C., Jiang, Y.: Dynamic model learning using genetic algorithm
under adaptive model checking framework. In: QSIC 2006, pp. 410–417. IEEE
(2006). https://doi.org/10.1109/QSIC.2006.25

27. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. STTT 1(1–2), 134–
152 (1997). https://doi.org/10.1007/s100090050010

28. Lefticaru, R., Ipate, F., Tudose, C.: Automated model design using genetic algo-
rithms and model checking. In: BCI 2009, pp. 79–84. IEEE (2009). https://doi.
org/10.1109/BCI.2009.15

29. Lin, S.-W., André, É., Dong, J.S., Sun, J., Liu, Y.: An efficient algorithm for
learning event-recording automata. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011.
LNCS, vol. 6996, pp. 463–472. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24372-1 35

30. Lin, S., André, É., Liu, Y., Sun, J., Dong, J.S.: Learning assumptions for com-
positional verification of timed systems. IEEE Trans. Softw. Eng. 40(2), 137–153
(2014). https://doi.org/10.1109/TSE.2013.57

31. Lucas, S.M., Reynolds, T.J.: Learning DFA: evolution versus evidence driven state
merging. In: CEC 2003, pp. 351–358. IEEE (2003). https://doi.org/10.1109/CEC.
2003.1299597

32. Mao, H., Chen, Y., Jaeger, M., Nielsen, T.D., Larsen, K.G., Nielsen, B.: Learning
deterministic probabilistic automata from a model checking perspective. Mach.
Learn. 105(2), 255–299 (2016). https://doi.org/10.1007/s10994-016-5565-9

33. de Matos Pedro, A., Crocker, P.A., de Sousa, S.M.: Learning stochastic timed
automata from sample executions. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012.
LNCS, vol. 7609, pp. 508–523. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34026-0 38

34. Mediouni, B.L., Nouri, A., Bozga, M., Bensalem, S.: Improved learning for stochas-
tic timed models by state-merging algorithms. In: Barrett, C., Davies, M., Kah-
sai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 178–193. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-57288-8 13

35. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge
(1998)

36. Nenzi, L., Silvetti, S., Bartocci, E., Bortolussi, L.: A robust genetic algorithm
for learning temporal specifications from data. In: McIver, A., Horvath, A. (eds.)
QEST 2018. LNCS, vol. 11024, pp. 323–338. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-99154-2 20

37. Nowostawski, M., Poli, R.: Parallel genetic algorithm taxonomy. In: KES 1999, pp.
88–92. IEEE (1999). https://doi.org/10.1109/KES.1999.820127

38. Pastore, F., Micucci, D., Mariani, L.: Timed k-tail: automatic inference of timed
automata. In: ICST 2017, pp. 401–411 (2017). https://doi.org/10.1109/ICST.2017.
43

39. Peled, D.A., Vardi, M.Y., Yannakakis, M.: Black box checking. JALC 7(2), 225–246
(2002)

40. de Ruiter, J., Poll, E.: Protocol state fuzzing of TLS implementations. In: USENIX
Security 2015, pp. 193–206. USENIX Association (2015). https://www.usenix.org/
conference/usenixsecurity15/technical-sessions/presentation/de-ruiter

https://doi.org/10.1007/s10009-016-0418-1
https://doi.org/10.1007/s10009-016-0418-1
https://doi.org/10.1109/QSIC.2006.25
https://doi.org/10.1007/s100090050010
https://doi.org/10.1109/BCI.2009.15
https://doi.org/10.1109/BCI.2009.15
https://doi.org/10.1007/978-3-642-24372-1_35
https://doi.org/10.1007/978-3-642-24372-1_35
https://doi.org/10.1109/TSE.2013.57
https://doi.org/10.1109/CEC.2003.1299597
https://doi.org/10.1109/CEC.2003.1299597
https://doi.org/10.1007/s10994-016-5565-9
https://doi.org/10.1007/978-3-642-34026-0_38
https://doi.org/10.1007/978-3-642-34026-0_38
https://doi.org/10.1007/978-3-319-57288-8_13
https://doi.org/10.1007/978-3-319-99154-2_20
https://doi.org/10.1007/978-3-319-99154-2_20
https://doi.org/10.1109/KES.1999.820127
https://doi.org/10.1109/ICST.2017.43
https://doi.org/10.1109/ICST.2017.43
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter

Time to Learn − Learning Timed Automata from Tests 235

41. Springintveld, J., Vaandrager, F.W., D’Argenio, P.R.: Testing timed automata.
Theor. Comput. Sci. 254(1–2), 225–257 (2001). https://doi.org/10.1016/S0304-
3975(99)00134-6

42. Steffen, B., Howar, F., Merten, M.: Introduction to active automata learning from
a practical perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS,
vol. 6659, pp. 256–296. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-21455-4 8

43. Tappler, M., Aichernig, B.K., Bloem, R.: Model-based testing IoT communication
via active automata learning. In: ICST 2017, pp. 276–287 (2017). https://doi.org/
10.1109/ICST.2017.32

44. Tappler, M., Aichernig, B.K., Larsen, K.G., Lorber, F.: Learning timed automata
via genetic programming. CoRR abs/1808.07744 (2018). http://arxiv.org/abs/
1808.07744

45. Tappler, M., Pferscher, A.: Supplementary Material for “Learning Timed
Automata via Genetic Programming” (2019). https://doi.org/10.6084/m9.
figshare.5513575.v1. https://figshare.com/articles/Supplementary Material for
Learning Timed Automata via Genetic Programming /5513575

46. Verwer, S., De Weerdt, M., Witteveen, C.: An algorithm for learning real-time
automata. In: Benelearn 2007 (2007)

47. Verwer, S., de Weerdt, M., Witteveen, C.: A likelihood-ratio test for identifying
probabilistic deterministic real-time automata from positive data. In: Sempere,
J.M., Garćıa, P. (eds.) ICGI 2010. LNCS (LNAI), vol. 6339, pp. 203–216. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15488-1 17

48. Walkinshaw, N., Derrick, J., Guo, Q.: Iterative refinement of reverse-engineered
models by model-based testing. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009.
LNCS, vol. 5850, pp. 305–320. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-05089-3 20

49. Walkinshaw, N., Fraser, G.: Uncertainty-driven black-box test data generation. In:
ICST 2017, pp. 253–263 (2017). https://doi.org/10.1109/ICST.2017.30

https://doi.org/10.1016/S0304-3975(99)00134-6
https://doi.org/10.1016/S0304-3975(99)00134-6
https://doi.org/10.1007/978-3-642-21455-4_8
https://doi.org/10.1007/978-3-642-21455-4_8
https://doi.org/10.1109/ICST.2017.32
https://doi.org/10.1109/ICST.2017.32
http://arxiv.org/abs/1808.07744
http://arxiv.org/abs/1808.07744
https://doi.org/10.6084/m9.figshare.5513575.v1
https://doi.org/10.6084/m9.figshare.5513575.v1
https://figshare.com/articles/Supplementary_Material_for_Learning_Timed_Automata_via_Genetic_Programming_/5513575
https://figshare.com/articles/Supplementary_Material_for_Learning_Timed_Automata_via_Genetic_Programming_/5513575
https://doi.org/10.1007/978-3-642-15488-1_17
https://doi.org/10.1007/978-3-642-05089-3_20
https://doi.org/10.1007/978-3-642-05089-3_20
https://doi.org/10.1109/ICST.2017.30

Munta: A Verified Model Checker
for Timed Automata

Simon Wimmer(B)

Fakultät für Informatik, Technische Universität München, Munich, Germany
wimmers@in.tum.de

Abstract. Munta is a mechanically verified model checker for timed
automata, a popular formalism for modeling real-time systems. Our goal
is two-fold: first, we want to provide a reference implementation that is
fast enough to test other model checkers against it on reasonably sized
benchmarks; second, the tool should be practical enough so that it can
easily be used for experimentation. Munta can be compiled to Standard
ML or OCaml and additionally features a web-based GUI. Its modeling
language has a simple semantics but provides the most commonly used
timed automata modeling features.

1 Objective and Overview

Timed automata [1] are a widely used formalism for modeling real-time systems,
which is employed in a class of successful model checkers such as Uppaal [3].
These tools can be understood as trust-multipliers: we trust their correctness
to deduce trust in the safety of systems checked by these tools. Consequently,
we would like to ensure two things: first, the theory behind the tools should be
sound and well-understood. Second, the implementations of the theory in real
model checkers should be correct.

To address these concerns, we present Munta1, a model checker for timed
automata with a full correctness proof in the interactive theorem prover
Isabelle/HOL [13]. Everything is in one place, in a formal and highly reliable
format: the theory, from the basic formalism, over abstract formalizations of fun-
damental concepts such as regions and zones, down to concrete algorithms on
Difference Bound Matrices (DBMs), is formalized and checked in Isabelle/HOL.
Moreover, we can generate executable code from this formalization to obtain a
trustworthy model checker.

Having a formally verified tool at hand gives rise to the possibility of testing
other model checkers against it, in order to find errors in the other tools’ imple-
mentations. Therefore, the verified checker needs to be fast enough to run it on
reasonably sized benchmarks. To this end, we use refinement with the Imperative
Refinement Framework (IRF) [11] to obtain efficient imperative implementations
of the DBM algorithms that lie at the heart of state-of-the-art timed automata
model checking.
1 https://wimmers.github.io/munta/.

c© Springer Nature Switzerland AG 2019
É. André and M. Stoelinga (Eds.): FORMATS 2019, LNCS 11750, pp. 236–243, 2019.
https://doi.org/10.1007/978-3-030-29662-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29662-9_14&domain=pdf
http://orcid.org/0000-0001-5998-4655
https://wimmers.github.io/munta/
https://doi.org/10.1007/978-3-030-29662-9_14

Munta: A Verified Model Checker for Timed Automata 237

Moreover, a formally verified tool can serve as a valuable basis for exper-
imentation. First, it allows one to devise extensions and modifications of the
theory, to prove them correct, and to experiment with them in a real tool—all
in one place. Second, the tool can be used to gain definite insights into the for-
malism and the model checking process by evaluating results on small models
or by examining the state space that was explored by the verified tool. To sup-
port these roles, Munta provides a clear-cut modeling language with a standard
semantics. Additionally, typical useful features of real model checkers such as
reporting the set of explored states and deadlock checking are supported.

This paper gives an overview of Munta’s functionality and architecture from
a user’s perspective. A theoretical account of the main ideas for the construction
of the verified checker can be found in previous work [16,17].

2 Functionality

2.1 Modeling Language

Munta’s modeling language supports a typical set of features: networks of timed
automata that can synchronize over channels and share a discrete finite state,
which is characterized by a set of integer variables. Guards and updates on
the discrete state can be expressed with a simple language of Boolean and
arithmetic expressions. Additionally, Munta supports the popular features of
broadcast channels, and urgent and committed locations. Currently, there still
exist some restrictions compared to other commonly used modeling languages:
automata need to be diagonal free (i.e. clock constraints cannot involve differ-
ences of clocks) and updates can only reset clocks to zero. These limitations
could be removed, however, by elaborating the current formalization. Moreover,
they are the most commonly found restrictions of the formalism in tools and
literature.

The formalized semantics of this language is compact, i.e., only around 150
lines of Isabelle formalization (compare this to the informal description found
in the Uppaal reference manual, for instance). This is the main basis of trust:
if one accepts that this semantics is sensible and one trusts the correctness of
Isabelle/HOL, one can assert full trust in Munta.

2.2 Correctness Theorem

This section briefly describes the correctness theorem for Munta informally. For
a formal account see our previous work [17] or the Isabelle/HOL formalization.
The correctness theorem is formulated in a separation logic [11] for Imperative
HOL [5], which extends HOL with imperative programming features.

The theorem shows that the model checker will terminate and either return
a result (sat or unsat), or report an error. It is proved that, when a result is
returned, that it correctly indicates whether the model satisfies the formula.
Two kind of errors can be reported: they either signify that the input model is

238 S. Wimmer

malformed, or that the correctness check for a certified part of Munta failed (c.f.
Sect. 3.2). It is also proved that errors are only reported if they really arise.

Note that correctness is ensured only with respect to the semantics of the
modeling language and the semantics of Imperative HOL. None of the individual
proof steps nor our formalization of model checking algorithms need to be trusted
as everything is checked by Isabelle/HOL’s logical kernel.

2.3 Input Format

Input models to the checker are provided in a simple JSON format. On the one
hand, this means that input files are rather easy to read and understand for
a human. On the other hand, it facilitates data exchange with other tools as
parsers and printers for this format are readily available in many programming
languages. We refrain from using a templating mechanism (like, e.g. Uppaal)
to provide templates of models that can be instantiated to obtain a concrete
network. This way, translating to and from our input format remains simple.
Finally, arbitrary fields can be added to objects anywhere in the JSON files.
This allows one to transport formally irrelevant meta-information, such as the
coordinates of locations in a visual representation.

2.4 Modeling Checking Capabilities

Munta can check formulas from the subset of CTL that corresponds to the
subset of TCTL that is supported by Uppaal. Moreover, Munta provides a
deadlock checker. This is essential for practical use of the tool, as usually one
wants to ensure that models are deadlock free before verifying more complex
properties. Additionally, Munta can compute the complete set of reachable states
and provide this information to the user. This is vital for understanding and
debugging models.

2.5 Graphical User Interface

We provide a web-based GUI for Munta, programmed in the OCaml deriva-
tive Reason2 using the ReasonReact framework3. The GUI can interface
with the model checker in two ways: first, we provide a server mode, where
queries can be sent to a verification server running locally; second, we com-
pile the OCaml version of our checker to JavaScript, running it directly
in the browser. We use a parse-print-parse loop to ensure that the user’s
input is understood correctly by the model checker: the GUI can display
a normalized version of the user’s input that is guaranteed to parse to
the same internal representation as the user’s original input. Munta itself
again uses another parse-print-parse loop to produce a JSON description of
the model that is guaranteed to parse to the same object as the JSON
description that was extracted from the internal representation in the GUI.
2 https://reasonml.github.io/.
3 https://reasonml.github.io/reason-react/.

https://reasonml.github.io/
https://reasonml.github.io/reason-react/

Munta: A Verified Model Checker for Timed Automata 239

In addition, the user can directly inspect this final JSON representation of the
model, to ensure that no errors were introduced during the translation from the
visual representation.

3 Architecture

Figure 1 gives an overview of the system architecture, which is described in more
detail in this section.

TA

Zones

Regions

Forward exploration with
local clock ceiling extraploation

DBMs

Deadlock

Single TA model checking

Parser

Error handling

Diagnostics
HOL

Code generatorOCamlJavaScript SML Server
MLton

Clock ceiling

RenamingModeling language semantics

Product construction

Fig. 1. Overview of the system architecture. Round boxes represent HOL formaliza-
tions. Boxes with sharp corners are pieces of unverified HOL code. Solid lines represent
formalizations that include a refinement step to efficient (imperative) implementations.

3.1 Isabelle/HOL Formalization

The formalization consists of three main parts. The first part is an abstract
formalization of the basic timed automata formalism (for a single automaton).
This includes a formalization of the region construction, zones, and the local

240 S. Wimmer

clock ceiling extrapolation operation for zones [2]. In the end, we can prove that
forward analysis of timed automata with zones and extrapolation is correct [16].

The second part is an abstract formalization of DBMs and elementary model
checking algorithms for CTL, which are refined to concrete, executable, and
partly imperative implementations. Together with the first part, we obtain an
executable model checker for single timed automata [17].

The third part is a formalization of the modeling language and of an on-the-
fly product construction to obtain a single automaton. This construction yields
descriptions of the single automaton’s invariants and transitions as functional
programs that can be plugged into the implementation obtained from the second
part. To implement the product construction efficiently, a pre-processing step
renames the labels in the model from human-readable strings to consecutive
natural numbers.

3.2 Code Extraction and Glue Code

From the HOL specification of the model checker, Isabelle/HOL can generate
code in Standard ML (SML) and OCaml [6]. However, this alone would not yield
a usable tool. We need additional code for parsing the input, error handling, and
retrieving diagnostic information. These functionalities are directly implemented
as functional programs in HOL to keep the code portable, possibly to also export
it to Isabelle/HOL’s other target languages, Haskell and Scala.

To implement the parser, we use a parser combinator library for Isabelle/HOL
[12]. A correctness proof for the parser is replaced by ensuring consistency of the
parse-print-parse loop for each concrete input, as explained above.

Diagnostic information is obtained in a minimally intrusive way. This usually
involves defining, e.g., a constant PRINT of the HOL type string ⇒ unit as
PRINT s = (). This constant can easily be stripped away by Isabelle’s proof
automation (by essentially unfolding its definition). To actually obtain output,
we instruct the code generator to translate this specific constant in a way that
some side-effect is performed, e.g., the string s is output to the console or logged
in some background data structure. A similar technique can be used to obtain
time measurements or to trace information about explored states by using other
constants of some type α ⇒ unit .

Two parts of the model checker, the pre-processing step to relabel the model,
and the code to compute the local clock ceilings, are not verified but only certi-
fied: their computed results are checked for soundness by a verified part of the
model checker.

The ability to target SML as well as OCaml holds some advantages. With
SML, faster executables can be obtained by using the highly optimizing compiler
MLton. In contrast, OCaml code compiles to less efficient executables but is very
conveniently compatible with the implementation of our frontend: Reason hinges
on the same backend as the one that we use to compile OCaml to JavaScript4,
making it easy to run our verified model checker directly in the browser.

4 https://bucklescript.github.io/.

https://bucklescript.github.io/

Munta: A Verified Model Checker for Timed Automata 241

4 Discussion

4.1 Comparison to Other Tools

We have previously reported on an experimental evaluation of Munta, comparing
it to the state-of-the-art timed automata model checker Uppaal [17]. Generally,
Munta’s throughput (the number of explored states per time unit) is within an
order of magnitude of Uppaal’s throughput. Munta is also fast enough to check
medium-sized benchmarks within reasonable time.

Compared to Uppaal, Munta is not only much slower, but also only provides
a less sophisticated modeling language. Uppaal supports such sophisticated
features as a C-like language to describe guards and invariants on edges, channels
with priorities, or a templating mechanism. However, our modeling language does
not differ as significantly in its expressiveness from tools such as Prism (and its
implementation of probabilistic timed automata) [9], TChecker [7], Rabbit [4]
and RED [15]. Moreover, one can argue that for a tool which is mainly intended
as a platform for experimentation, it is not crucial to provide an exhaustive array
of modeling features. Instead, a simple modeling language with a clear semantics
may even be advantageous.

4.2 Trusted Code Base

To trust the results of Munta, one needs to trust the following components:

(a) our formalization of the modeling language semantics as described above,
(b) the formalization of Imperative HOL and its corresponding separation logic,
(c) Isabelle/HOL’s logical kernel,
(d) Isabelle/HOL’s code generator,
(e) and the target language’s compiler and runtime system.

Trust in (a) and (b) can only be obtained by manual inspection. Regarding (c),
it is widely accepted within the community that Isabelle/HOL only admits valid
theorems (at least on the user level). The trustworthiness of components (d) and
(e) is more debatable, however. Recent (ongoing) work by Hupel and Nipkow
[8] opens the prospect to improve on this situation in the future. It perfects (d)
by generating code from Isabelle/HOL to CakeML [14] in a provably correct
way (in the sense of mechanically checked proof). In turn, CakeML is a dialect
of ML that comes with a verified compiler and runtime system, addressing the
potential soundness issues of (e).

5 Conclusion and Future Work

We have presented Munta, a mechanically verified model checker for timed
automata. As indicated in our discussion above, further efforts are conceivable
to reduce the trusted code base. There are also several ways in which perfor-
mance of the tool could be improved. One would be to verify the model checking

242 S. Wimmer

algorithms with respect to a fully imperative target language such as LLVM [10]
or C. As another approach, we are studying certification of reachability checking
for timed automata in ongoing work.

Finally, the capabilities of Munta could be improved by either enriching the
modeling formalism as discussed aboved, or by providing a more expressive spec-
ification language for model checking properties, such as full (T)CTL or LTL.
To this end, we plan to extend our work on certification towards LTL model
checking in the future.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

2. Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds
in zone based abstractions of timed automata. In: Jensen, K., Podelski, A. (eds.)
TACAS 2004. LNCS, vol. 2988, pp. 312–326. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24730-2 25

3. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27755-2 3

4. Beyer, D., Lewerentz, C., Noack, A.: Rabbit: a tool for BDD-based verification
of real-time systems. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol.
2725, pp. 122–125. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-45069-6 13

5. Bulwahn, L., Krauss, A., Haftmann, F., Erkök, L., Matthews, J.: Imperative func-
tional programming with Isabelle/HOL. In: Mohamed, O.A., Muñoz, C., Tahar, S.
(eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 134–149. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-71067-7 14

6. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In:
Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp.
103–117. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12251-
4 9

7. Herbreteau, F., Point, G.: TChecker (2019). https://github.com/fredher/tchecker
8. Hupel, L., Nipkow, T.: A verified compiler from Isabelle/HOL to CakeML. In:

Ahmed, A. (ed.) ESOP 2018. LNCS, vol. 10801, pp. 999–1026. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-89884-1 35

9. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

10. Lammich, P.: Generating verified LLVM from Isabelle/HOL. In: Proceedings of
ITP 2019 (2019, to appear)

11. Lammich, P.: Refinement to Imperative/HOL. In: Urban, C., Zhang, X. (eds.) ITP
2015. LNCS, vol. 9236, pp. 253–269. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-22102-1 17

12. Lammich, P.: Parser combinator library for Isabelle/HOL (2018). https://
bitbucket.org/MohammadAbdulaziz/planning/src/master/isabelle/Parser
Combinator.thy

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/978-3-540-24730-2_25
https://doi.org/10.1007/978-3-540-24730-2_25
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1007/978-3-540-45069-6_13
https://doi.org/10.1007/978-3-540-45069-6_13
https://doi.org/10.1007/978-3-540-71067-7_14
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1007/978-3-642-12251-4_9
https://github.com/fredher/tchecker
https://doi.org/10.1007/978-3-319-89884-1_35
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-319-22102-1_17
https://doi.org/10.1007/978-3-319-22102-1_17
https://bitbucket.org/MohammadAbdulaziz/planning/src/master/isabelle/Parser_Combinator.thy
https://bitbucket.org/MohammadAbdulaziz/planning/src/master/isabelle/Parser_Combinator.thy
https://bitbucket.org/MohammadAbdulaziz/planning/src/master/isabelle/Parser_Combinator.thy

Munta: A Verified Model Checker for Timed Automata 243

13. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL - A Proof Assistant
for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45949-9

14. Tan, Y.K., Myreen, M.O., Kumar, R., Fox, A., Owens, S., Norrish, M.: A new
verified compiler backend for CakeML. In: International Conference on Functional
Programming (ICFP), pp. 60–73. ACM Press, September 2016. https://doi.org/
10.1145/2951913.2951924, invited to special issue of Journal of Functional Pro-
gramming

15. Wang, F.: Efficient verification of timed automata with BDD-like datastructures.
Int. J. Softw. Tools Technol. Transf. 6(1), 77–97 (2004). https://doi.org/10.1007/
s10009-003-0135-4

16. Wimmer, S.: Formalized timed automata. In: Blanchette, J.C., Merz, S. (eds.) ITP
2016. LNCS, vol. 9807, pp. 425–440. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-43144-4 26

17. Wimmer, S., Lammich, P.: Verified model checking of timed automata. In: Beyer,
D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 61–78. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-89960-2 4

https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1145/2951913.2951924
https://doi.org/10.1145/2951913.2951924
https://doi.org/10.1007/s10009-003-0135-4
https://doi.org/10.1007/s10009-003-0135-4
https://doi.org/10.1007/978-3-319-43144-4_26
https://doi.org/10.1007/978-3-319-43144-4_26
https://doi.org/10.1007/978-3-319-89960-2_4

Special Session on Timed Systems and
Probabilities

Sandboxing Controllers for Stochastic
Cyber-Physical Systems

Bingzhuo Zhong1(B) , Majid Zamani2,3 , and Marco Caccamo1

1 Mechanical Engineering Department, Technical University of Munich,
Munich, Germany

{bingzhuo.zhong,mcaccamo}@tum.de
2 Computer Science Department, University of Colorado Boulder, Boulder, USA

majid.zamani@colorado.edu
3 Computer Science Department, Ludwig Maximilian University of Munich,

Munich, Germany

Abstract. Current cyber-physical systems (CPS) are expected to
accomplish complex tasks. To achieve this goal, high performance, but
unverified controllers (e.g. deep neural network, black-box controllers
from third parties) are applied, which makes it very challenging to keep
the overall CPS safe. By sandboxing these controllers, we are not only
able to use them but also to enforce safety properties over the controlled
physical systems at the same time. However, current available solutions
for sandboxing controllers are just applicable to deterministic (a.k.a.
non-stochastic) systems, possibly affected by bounded disturbances. In
this paper, for the first time we propose a novel solution for sandboxing
unverified complex controllers for CPS operating in noisy environments
(a.k.a. stochastic CPS). Moreover, we also provide probabilistic guar-
antees on their safety. Here, the unverified control input is observed at
each time instant and checked whether it violates the maximal tolerable
probability of reaching the unsafe set. If this probability exceeds a given
threshold, the unverified control input will be rejected, and the advisory
input provided by the optimal safety controller will be used to maintain
the probabilistic safety guarantee. The proposed approach is illustrated
empirically and the results indicate that the expected safety probability
is guaranteed.

Keywords: Stochastic cyber-physical systems · Fault-tolerance ·
Sandboxing controllers

This work was supported in part by the H2020 ERC Starting Grant AutoCPS (grant
agreement No 804639) and German Research Foundation (DFG) through the grants
ZA 873/1-1 and ZA 873/4-1. Marco Caccamo was supported by an Alexander von
Humboldt Professorship endowed by the German Federal Ministry of Education and
Research. Any opinions, findings, and conclusions or recommendations expressed in
this publication are those of the authors and do not necessarily reflect the views of the
Alexander von Humboldt Foundation.

c© Springer Nature Switzerland AG 2019
É. André and M. Stoelinga (Eds.): FORMATS 2019, LNCS 11750, pp. 247–264, 2019.
https://doi.org/10.1007/978-3-030-29662-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29662-9_15&domain=pdf
http://orcid.org/0000-0001-6557-2374
http://orcid.org/0000-0001-6608-3708
http://orcid.org/0000-0003-2328-044X
https://doi.org/10.1007/978-3-030-29662-9_15

248 B. Zhong et al.

1 Introduction

Cyber-Physical Systems (CPS) are complex systems in which physical compo-
nents are interacting tightly with cyber ones. These systems are widely used in
various kinds of applications, such as automotive, aviation, manufacture plants
and so on. Nowadays, these systems are expected to accomplish complex mis-
sions. As a result, complex, high performance but unverified controllers (e.g.,
deep neural network or black-box controllers from third parties) are applied to
complete these complex missions, which makes it increasingly challenging to
ensure the safety of CPS. To cope with this issue, we exploit the idea of sandbox
from the community of computer security, which is a popular security mecha-
nism for cyber systems [17]. In short, it provides a testing environment to isolate
the untested and untrusted components from the critical part of a digital con-
troller. The behaviour of the untrusted component is restricted and it can only
access the critical part when it follows the rules given by the sandboxing mecha-
nism. Hence, we designed a novel architecture that uses a Safety Advisor and a
Supervisor (Safe-visor in short). Instead of providing a testing environment and
focusing on cyber security, Safe-visor architecture can be used to sandbox any
types of unverified controllers in run time regarding the safety of the physical
systems. The control inputs of the controller fed to the system are checked and
can only be accepted when they are not disobeying the safety rule defined in
the sandboxing mechanism. The architecture of safe-visor is illustrated in Fig. 1.

Fig. 1. Safety Advisor - Supervisor (Safe-visor) Architecture for sandboxing unverified
controller.

In this architecture, the safety of the physical system is characterized by the
probability of fulfilling some safety specifications. In general, the Safe-visor spec-
ifies verifiable safety rules for the unverified controller to follow so that a specific
level of safety probability of the physical system can be ensured. During the exe-
cution of the Safe-visor, the Safety Advisor is responsible for providing advisory
input for the Supervisor based on the current state of the physical system, which
seeks to maximize the safety probability. Meanwhile, the Supervisor checks the
input given by the unverified controller according to the safety rule. Input from

Sandboxing Controllers for Stochastic Cyber-Physical Systems 249

the unverified controller would only be accepted when it follows the rule; other-
wise, the Supervisor would accept the advisory input from the Safety Advisor to
maximize the safety probability of the physical system. In the rest of the paper,
designing a Supervisor means designing its safety rule for checking the inputs
from unverified controllers. It should be noted that inputs given by Safety Advi-
sors only focus on the safety of the system, which should be treated as a fallback
in case the unverified controllers are trying to perform some harmful actions.
On the other hand, the unverified controller is designed for functionality. i.e. it
is expected to realize some tasks which are much more complicated than purely
keeping the system safe. By sandboxing the unverified controller, we are able to
exploit its advantages for realizing complex tasks while preventing the system
from being threatened by its harmful behaviour, if any.

In this paper, we deal with stochastic CPS modelled as controlled discrete-
time Markov process (cdt-MP). We focus on the safety invariance specification,
in which the system is expected to stay inside a pre-defined safety set. Here, we
formulate the safety invariance specification as a reach-avoid problem in finite
time horizon, and design the Safety Advisor based on a finite Markov Decision
Process (MDP) constructed from the original cdt-MP. The inputs given by the
unverified controller are checked by the Supervisor at every time instant based on
an estimation of the probability of reaching the unsafe set (i.e., the complement
of the pre-defined safety set).

Related Work

In [4,7,12], a shield is synthesized to correct erroneous output values from those
unverified, complexed components in a system so that safety properties can be
enforced at run time. This idea is mainly used for systems which can be mod-
elled as automaton, e.g. reactive systems, while our method can be applied to
systems with continuous state space and input space. The most relevant work to
our proposed method is the one developed based on Simplex architecture [8,18],
in which the unverified, high-performance controller is sandboxed by an ellip-
tic recovery region associated with a verified, high-assurance controller. Inspired
by the idea of sandboxing the unverifiable controllers by using Simplex archi-
tecture, many results have been proposed for different kinds of systems and
invariance specifications. In the case that bounded uncertainty exists in the
system dynamic, L1-Simplex [20] is applicable by using L1-adaptive controller
[11] as the high-assurance controller with which the linear model uncertainty in
the system dynamic is estimated and compensated. RSimplex [21] uses Robust
Fault-Tolerant Controller (RFTC) with the similar idea of L1-Simplex, but it is
capable of dealing with non-linear model uncertainty. Net-Simplex [22] is able to
cope with bounded time delay introduced by the network connection in the sys-
tem. It models the system as a linear parameter-varying system and accordingly
designs time-delay-related recovery region. A recent result in [2] proposes a way
to sandbox an unverified controller which may suffer from undetectable cyber
attacks by dynamically planning and executing high-assurance controllers so that

250 B. Zhong et al.

the physical system is not endangered. The common point of these results is that
Lyapunov-function-based safety invariant sets are used as recovery regions.

The main difference between the Simplex architecture and our proposed
result is that in our proposed solution, only the unverified controller is in charge
of accomplishing the task, under the supervision of the Supervisor, rather than
designing two parallel controllers (i.e. the high-assurance and high-performance
controllers) for the given task and define a verified decision logic to decide which
one to be used. The Safety Advisor is not expected to fully control the system
and finish the complicated task, but it is only responsible for providing fallback
to maximize the safety probability. Then, by properly designing the Supervi-
sor, the unverified controller has more flexibility for functionality, and the safety
probability can be guaranteed due to the existence of the fallback solution.

There are some other results which extend the concept of Simplex architec-
ture using reachability analysis to cope with the aforementioned conservative-
ness. Results in [6] provide a backward reachability based method to generate a
decision module between the mission controller and the safety one which mainly
focuses on the safety of the system. Results in [5] propose a method in which
real-time reachability is integrated into the Lyapunov invariance-based method.
This largely increases the feasible region of the mission controller. Another idea
to get rid of the conservativeness is to compute the safety invariant purely based
on offline reachability analysis, as discussed in [3]. It should be noted that these
methods are only designed for deterministic (non-stochastic) systems. To the
best of our knowledge, our result is the first work with a solution for sandboxing
unverified controllers in stochastic settings.

The rest of the paper is organized as follows: we provide preliminary discus-
sion regarding the notations, models used in this work and formulation of the
problem in Sect. 2. Then, a scheme to design the Safety Advisor and Supervisor
is proposed in Sect. 3, which will be empirically tested by two case studies in
Sect. 4. Finally, Sect. 5 concludes the paper.

2 Problem Formulation

2.1 Preliminaries

A topological space S is called a Borel space if it is homeomorphic to a Borel
subset of a Polish space (i.e., a separable and completely metrizable space). One
of the common examples of Borel space are the Euclidean spaces Rn. Any Borel
space S is assumed to be endowed with a Borel σ-algebra denoted by B(S).
A map f : X → Y is measurable whenever it is Borel measurable. A map
f : X → Y is universally measurable if the inverse image of every Borel set
is measurable with respect to every complete probability measure on X that
measures all Borel subsets of X.

For the stochastic kernel, we adopt the notation as in [19]. Given two Borel
space X and Y , the stochastic kernel on X given Y is the map P : Y × B(X) →
[0, 1] such that P (·|y) is a probability measure on X for any point y ∈ Y and
P (B|·) is a measurable function on Y for any set B ∈ B(X).

Sandboxing Controllers for Stochastic Cyber-Physical Systems 251

2.2 Notations

We denote by R the set of real numbers and by N the set of natural numbers.
We denote by 0, n := {0, 1, . . . , n} an interval in N starting from 0 and ending
at n ∈ N. Set R

n represents the n-dimensional Euclidean space where n ∈ N.

2.3 Model Description and Problem Formulation

In this paper, we focus on discrete-time stochastic control systems in the follow-
ing form:

x(t + 1) = f(x(t), u(t), w(t)), (1)

in which t, t + 1 ∈ 0, n are two successive time instants in the time domain 0, n
of the system, where n ∈ N. Here, x(t) ∈ X is the state of the system at time
t, where X ⊆ R

n is a Borel space as the state space of the system. We denote
by (X,B(X)) the measurable space with B(X) being the Borel sigma-algebra on
the state space. We denote by u(t) ∈ U the input to the system at time t, where
U ⊆ R

m is a Borel space as the input space of the system. We denote by w(t)
the uncertainty at time instant t where w : N → R

d is a sequence of independent
and identically distributed (i.i.d.) random variables. Map f : X × U × R

d → X
is a measurable function characterizing the state dynamic of the system. In this
paper, we focus on stochastic systems, which can also be formulated as controlled
discrete-time Markov Processes (cdt-MP).

Definition 1. (cdt-MP) [10] A controlled discrete-time Markov process is a
tuple

D = (X, U, {U(x)}x∈X , TD),

where X ⊆ R
n is a Borel space representing the state space of the model and

U ⊆ R
m is a Borel space referring to the input space. The set {U(x)}x∈X is

a family of non-empty measurable subsets of U , and U(x) is the set of feasible
inputs when system is at state x. We denote by TD a Borel measurable stochastic
kernel TD : B × X × U → [0, 1], which assigns to any x ∈ X and u ∈ U(x)
a probability measure on the Borel space (X,B(X)) and characterizes the state
transition of the Markov process.

In the rest of the paper, we focus on systems in which U(x) = U , i.e. all inputs
are feasible at any state in the evolution of the system. The evolution of the
system is described by paths as defined below.

Definition 2. (Path) A path of a cdt-MP D is

ω = (x(0), u(0), x(1), u(1), . . . , x(t), u(t), . . .),

where x(t) ∈ X and u(t) ∈ U , t ∈ 0, n, 0, n ⊂ N is the time domain of the path.
We denote by ωx = {x(i)}i∈0,n and ωu = {u(i)}i∈0,n the subsequences of states
and inputs in ω.

252 B. Zhong et al.

Given a cdt-MP D, we are interested in Markov policies to control the system.

Definition 3. (Markov policy) For a cdt-MP D = (X, U, {U(x)}x∈X , TD), a
Markov policy μ is a sequence μ = (μ0, μ1, μ2, . . .) of universally measurable
map μt : X → U at time t ∈ 0, n, where 0, n is the time domain of D.

With Markov policies, the input at time t is only determined by the state at
the same time instant, i.e. u(t) = μt(x(t)). In this paper, we are interested in
the safety specification, where the state sequences are expected to stay (with a
given probability threshold) inside a safe subset of the state set. We formulate
this specification as a reach-avoid problem in finite time horizon.

Definition 4. (Reach-avoid problem) Consider a safety set A ⊂ B(S), a
bounded Borel set as a safe set, and Ac = B(S)\A, as its complement, i.e.
an unsafe set. We define the reach-avoid problem under Markov policy μ over
time horizon 0, N as the following:

pμ
s0

(Ac) = P
μ
s0

{s(k) ∈ Ac|∃ k ∈ 0, N, s(0) = s0},

where s0 ∈ A. The minimal probability of reaching the unsafe set is defined as:

p∗,s0(Ac) = inf{pμ
s0

(Ac) , μ ∈ ΠN
M},

where ΠN
M is the set of all Markov policies over time horizon 0, N . A Markov

policy μ∗ is optimal with respect to an initial state s0 if pμ∗
s0

(Ac) = p∗,s0(Ac).

3 Design of Safe-Visor

As discussed in the introduction, designing the Safe-visor for sandboxing unver-
ified controllers consists of designing a Safety Advisor and a Supervisor. The
Safety Advisor is designed regarding the safety specification. The Supervisor, on
the other hand, is designed for detecting (potential) harmful behaviours of the
unverified controller and accordingly deciding the input fed to the system (either
the one from the unverified controller or from the Safety Advisor).

Regarding the safety invariance specification, an optimal safety controller can
be designed as discussed in [1,9], which provides optimal safety policy to guar-
antee a minimal probability of reaching the unsafe set in a finite time horizon.
We use this controller as the Safety Advisor, which is introduced in details in
Sect. 3.1.

Since the Safety Advisor only focuses on minimizing the probability of reach-
ing the unsafe set, we need to turn to the unverified controller for functionality.
Nevertheless, we still expect a high level of safety for the system. Therefore, we
denote by ρ the maximal tolerable probability of reaching the unsafe set
that we are able to accept, which quantifies the compromise between functional-
ity and safety. Given ρ, the Supervisor can decide whether it should accept inputs
from an unverified controller at some time instants by estimating the probabil-
ity of reaching the unsafe set and compare it with ρ. Details for designing a

Sandboxing Controllers for Stochastic Cyber-Physical Systems 253

Supervisor working in this way is discussed in Sect. 3.2. It should be noted that
the design of unverified controller is not the topic of this paper. The approach
proposed here can be applied to any unverified controller as long as the set of
all possible inputs provided by the unverified controller is a subset of the input
set of the Supervisor. Moreover, we focus on those unverified controllers whose
behaviour are unpredictable, i.e. we do not know the exact action of the unver-
ified controller in a given state unless the system actually reaches that state,
and the action of unverified controller at the same state may be time dependent.
Otherwise, we may be able to verify this controller and sandboxing may not
be needed anymore. In the rest of the paper, we denote by uuc(x, t) the input
provided by the unverified controller at state x at time instant t.

3.1 Safety Advisor

As mentioned above, we use optimal safety controller with respect to safety
invariance specification as the Safety Advisor. To synthesize the optimal safety
controller, we define a value function [19]:

V π
n (x) := Pπ

x (�≤nAc), (2)

for n ∈ N to denote the probability of reaching the set Ac in the finite time
horizon 0, n from the initial state x, where π ∈ ΠM is a Markov policy and
�≤nAc := {ω ∈ Ω : ωx(k) ∈ Ac for some 0 ≤ k ≤ n}, where Ω is the set
of all possible paths within the time horizon 0, n. Since we formulate the safety
invariance specification as reach-avoid problem in a finite time horizon, we should
minimize the probability mentioned above and, hence, the optimal value function
is given by

V∗,n(x) := inf
π∈Π

V π
n (x), (3)

initialized with V∗,0 = 1Ac(x), where 1M (x) = 1 when x ∈ M and 1M (x) = 0
otherwise. In fact, this optimal value function can be recursively calculated in
the following way ([19], Corollary 3):

V∗,n+1(x) = 1Ac(x) + 1A(x) inf
u∈U

∫
X

V∗,n(y)TD(dy|x, u), (4)

and the optimal policy at time t = k associated to V∗,n+1(x) can be obtained as
the following

μ∗,k ∈ arg inf
μk

∫
X

(1Ac(y) + 1A(y)V∗,n(y))TD(dy|x, μk(x)). (5)

However, analytical solution of the value function as well as the optimal policy
above is very difficult to be obtained in general. Alternatively, we abstract the
original cdt-MP D and construct a finite Markov Decision Process (MDP) as
proposed in [19], and calculate the solutions based on this finite MDP. First,
we use uniform grids to partition the safety region and input set of the cdt-MP.

254 B. Zhong et al.

Let Xp =
⋃N

i=1 X̃i be a measurable partition of the safety set A and Up =⋃M
j=1 Ũj a measurable partition of U . Let x̃i ∈ X̃i for 1 ≤ i ≤ N be representative

points of X̃i and let ũj ∈ Ũj for 1 ≤ j ≤ M be representative points of Ũj . We
define the discretization parameter δx = max

x̃i, x̃′
i∈Xp

dX(x̃i, x̃′
i) for the state set and

δu = max
ũj , ũ′

j∈Up

dU (ũj , ũ′
j) for the input set where dX and dU are the metrics (e.g.

Euclidean ones) over sets X and U , respectively. Then, the constructed finite
MDP is denoted by M = {X̃, Ũ , T̃}, in which X̃ := {x̃i}N

i=1 ∪ {φ}, {x̃i}N
i=1 is

the set of representative points of Xp, φ is a “sink” state representing the unsafe
set Ac in the original cdt-MP, and Ũ := {ũj}M

j=1 is the set of representative
points of Up. The stochastic kernel T̃ is then a matrix, which can be computed
as follows:

T̃ (x̃m|x̃i, ũj) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

TD(X̃m|x̃i, ũj) if x̃i, x̃m ∈ {x̃i}N
i=1, ũj ∈ Ũ

TD(Ac|x̃i, ũj) if x̃i ∈ {x̃i}N
i=1, x̃m ∈ {φ}, ũj ∈ Ũ

1 if x̃i, x̃m ∈ {φ}, ũj ∈ Ũ

0 if x̃i ∈ {φ}, x̃m ∈ {x̃i}N
i=1, ũj ∈ Ũ

For the finite MDP M, we denote by Ṽ∗,n(x̃) the n-horizon minimal value
function for the reach-avoid problem. Similar to Eq. (4), we initialize it with
Ṽ∗,0 = 1{φ}(x̃) and it can be calculated recursively as follows:

Ṽ∗,n+1(x̃) = 1{φ}(x̃) + 1{φ}c(x̃)min
ũ∈Ũ

∑
ỹ∈X̃

Ṽ∗,n(ỹ)T̃ (ỹ|x̃, ũ), (6)

and the optimal policy at time t = k associated to Ṽ∗,n+1(x̃) is given by

μ∗,k(x̃) ∈ arg min
μ̃k

∑
ỹ∈X̃

(1{φ}c(ỹ) + 1{φ}(ỹ)Ṽ∗,n(ỹ))T̃ (dỹ|x̃, μ̃k(x̃)). (7)

In principle, the optimal policy can be obtained for arbitrary long time hori-
zon, but Ṽ∗,n(x̃) will keep decreasing, i.e. the probability of avoiding the unsafe
set is decreasing, when n increases. Therefore, the time horizon of the optimal
policy cannot be arbitrarily long, but it is tunable up to some degrees by setting
the maximal tolerable value of the value function, i.e. the smaller (bigger) the
maximal tolerable value of the value function is, the shorter (longer) the time
horizon for the optimal safety policy is. This value should not be bigger than
the maximal tolerable probability of reaching the unsafe set, i.e. ρ, as defined
in the beginning of Sect. 3, so that ρ can be guaranteed at least by accept-
ing advisory input from the Safety Advisor. Therefore, in our implementation,
the time horizon 0,H of the Safety Advisor is determined in a way such that
∀x̃ ∈ X̃\{φ}, Ṽ∗,H(x̃) ≤ ρ and ∃x̃ ∈ X̃\{φ}, Ṽ∗,H+1(x̃) > ρ.

3.2 Supervisor

As previously mentioned, the Supervisor is required to estimate the probability
of reaching the unsafe set, in case it accepts inputs from the unverified controller.

Sandboxing Controllers for Stochastic Cyber-Physical Systems 255

Since the safety guarantee given by the Safety Advisor is calculated based on the
abstraction of the original stochastic system, i.e. the finite MDP, for consistency
of guarantee regarding safety probability, we use the same finite MDP to design
the Supervisor.

As discussed in the previous section, the probability of reaching the unsafe
set of the finite MDP is quantified by value function Ṽ μ

H(s0) according to Eq. (2).
When the initial state s0 and the time horizon 0,H are fixed, the value function is
varied by different μ. Meanwhile, compared with purely using the optimal safety
policy μ∗, sandboxing the unverified controller and accepting it at some states
at some time instants intrinsically result in a new Markov policy for controlling
the system, according to the architecture of Safe-visor. Therefore, to ensure that
the probability of reaching the unsafe set is lower than the predefined ρ in a
given time horizon 0,H, the Supervisor should be designed in a way such that
the following inequality holds:

Ṽ μ′
H (s0) ≤ ρ, (8)

where μ′ is the Markov policy used to control the system, when the unverified
controller is accepted at some states at some time instants by the Supervisor.
In Sect. 3.1, the optimal safety policy is obtained by selecting a Markov policy
minimizing the value function of each state at each time instant. In other way,
when the Markov policy is fixed, we can calculate the value function in the way
illustrated in the next theorem.

Theorem 1. Given a Markov policy μ = (μ0, μ1, . . . , μH−1) in a finite time
horizon 0,H, the value function Ṽn(x̃) can be recursively calculated in the fol-
lowing way:

Ṽn+1(x̃) = 1{φ}(x̃) + 1{φ}c(x̃)
∑
ỹ∈X̃

Ṽn(ỹ)T̃ (ỹ|x̃, μH−n−1(x̃)), (9)

where x̃ ∈ X̃ and Ṽ0(x) = Ṽ∗,0(x).

Theorem 1 can be proved similar to the proof of Lemma 1 in [1], since
Lemma 1 in [1] can be treated as a general case for Theorem 1. With having
Theorem 1, the remaining question is how to determine μ′ at run time. Let
μ′ = (μ′

0, μ
′
2, . . . , μ

′
H−1). When the Supervisor is being executed, at every time

instant k ∈ 0,H − 2, μ′
t are unknown for all t where k < t ≤ H − 1 (i.e., the

Markov policy used to control the system in the future time is unknown). To
guarantee the safety threshold specified by ρ, at every time instant k ∈ 0,H − 2,
input from the unverified controller can only be accepted, when inequality (8)
is at least fulfilled in the case that the Supervisor only accepts the advisory
input from the safety advisor afterwards. This requirement is formally defined
in Definition 5.

Definition 5. Given current time instant k, where 0 ≤ k ≤ H −2, ω is the path
up to k and ρ is the maximal tolerable probability of reaching the unsafe set, the

256 B. Zhong et al.

input uuc(ωx(k), k) from the unverified controller can only be accepted, if there
exists a Markov policy μ = {μ0, μ1, μ2, . . . , μH−1} ∈ M such that Ṽ μ

H(ωx(0)) ≤
ρ, where M denotes the set of all Markov policies, μk(ωx(k)) = uuc(ωx(k), k),
and for all t where k < t ≤ H − 1, μt = μ∗,t.

In general, it is difficult to calculate the exact value of Ṽ μ′
H (s0) at run time

due to the lack of adequate information from the past. At each time instant k
during the execution, where k ∈ 0,H − 2, the only available information for the
Supervisor is the path ω of the system up to k. In other words, the Supervisor
does not have complete information about μ′

t for all t ∈ 0, k, since μ′
t(x̃) is

unknown when x̃ ∈ X̃\{ωx(t)}. To cope with this difficulty, we propose a novel
Supervisor, namely History-based Supervisor, as defined in Definition 6, which
is able to check the feasibility of the input provided by the unverified controller
only based on the history information during the execution (i.e., path ω of the
system up to the current time instant k during the execution).

Definition 6. (History-based Supervisor) For all k ∈ 0,H − 1 1, given the his-
tory of path ω up to k, the input uuc(ωx(k), k) from the unverified controller can
only be accepted, when quantity

k∏

t=1

∑

x̃∈X̃\{φ}
T̃ (x̃|ωx(t − 1), ωu(t − 1))

⎛

⎝1 −
∑

x̃∈X̃

Ṽ∗,H−k−1(x̃)T̃ (x̃|ωx(k), uuc(ωx(k), k))

⎞

⎠

is not smaller than 1−ρ, where ρ is the maximal tolerable probability of reaching
the unsafe set.

By using History-based Supervisor in Safe-visor architecture, it can be guar-
anteed that μ′ fulfils inequality (8), as illustrated in the next theorem.

Theorem 2. Given a finite MDP and the unsafe set Ac, by using History-based
Supervisor at t for all t ∈ 0,H − 1 in Safe-visor architecture, we have

pμ′
s0

(�≤HAc) ≤ ρ,

where μ′ is the Markov policy used to control the system when History-based
Supervisor is applied.

Proof of Theorem 2 is provided in the appendix.
Note that Ṽ∗,n and T̃ are calculated offline when synthesizing the Safety

Advisor. Hence, the Supervisor defined in Definition 6 can be readily used in real-
time, since the required computation can be efficiently performed. Concretely,
at every time instant k during the execution:

1 No input needed to be provided at t = H since it is the end of the execution.

Sandboxing Controllers for Stochastic Cyber-Physical Systems 257

1. The number of operations required for computing
∏k

t=1

∑
x̃∈X̃\{φ} T̃ (x̃|ωx(t−

1), ωu(t − 1)) is constant, since

k∏

t=1

∑

x̃∈X̃\{φ}
T̃ (x̃|ωx(t − 1), ωu(t − 1))

=
∑

x̃∈X̃\{φ}
T̃ (x̃|ωx(k − 1), ωu(k − 1)) ×

k−1∏

t=1

∑

x̃∈X̃\{φ}
T̃ (x̃|ωx(t − 1), ωu(t − 1))

= (1 − T̃ (φ|ωx(k − 1), ωu(k − 1)) ×
k−1∏

t=1

∑

x̃∈X̃\{φ}
T̃ (x̃|ωx(t − 1), ωu(t − 1))

while
∏k−1

t=1

∑
x̃∈X̃\{φ} T̃ (x̃|ωx(t − 1), ωu(t − 1)) has already been computed

at the previous time instant (i.e., k − 1), and T̃ (φ|ωx(k − 1), ωu(k − 1)) can
be directly obtained from T̃ .

2. The number of operations required for computing

1 −
∑

x̃∈X̃

Ṽ∗,H−k−1(x̃)T̃ (x̃|ωx(k), uuc(k))

is proportional to the number of states of the finite MDP, since Ṽ∗,H−k−1(x̃)
and T̃ (x̃|ωx(k), uuc(k)) can directly be obtained in Ṽ∗,n and T̃ .

The real time applicability of the proposed Supervisor is shown in the experi-
ments in Sect. 4.

4 Case Study

In this section, we apply our approach to two case studies. The first case study
is a temperature control problem and the second one is a traffic control problem.
We simulate each test case 1.0×106 times and analyze accordingly the percentage
of paths staying in the safety set in the given time horizon. For comparison, we
simulate these test cases by (1) only using the unverified controller and (2) only
using the proposed safety advisor. Moreover, we compute the average execution
time for our Supervisor in both cases to show feasibility of running it in real-time.
The simulation in this section is performed in MATLAB 2018b, on a computer
equipped with Intel(R) Xeon(R) E-2186G CPU (3.8 GHz) and 32 GB of RAM
running Window 10.

4.1 Temperature Control Problem

In the temperature control problem, a room is equipped with a heater being
controlled and the temperature of the room is required to be kept between 19
and 21 ◦C. The temperature of the room can be modelled as the following, which
is adapted from [14]:

x(k + 1) = (1 − β − γu(k))x(k) + γThu(k) + βTe + ω(k) (10)

258 B. Zhong et al.

where x(k) denotes the temperature at time t = k. Input u(k) takes any real
value between 0 to 0.6. Parameter β is conduction factor between the external
environment and the room, γ is conduction factor between the heater and the
room, Te is the temperature of the external environment and Th is the temper-
ature of the heater. We denote by ω a Gaussian white noise. In this section, we
set β = 0.022, γ = 0.05, Te = −1, Th = 50, the mean of ω is 0 and variance is
0.04. The sampling time interval in this example is 9 min.

Now, we synthesize the Safety Advisor as discussed in Sect. 3.1. We use the
discretization parameter δx = 1.0 × 10−3 and δu = 2.4 × 10−2 to discretize the
safety set (resulting in 2000 discrete states) and the input set (resulting in 25
discrete inputs) to construct a finite MDP. We set ρ as 1% and obtain a controller
for time horizon 0, 40 (6 h). We set the initial state at 19.01 ◦C. The unverified
controller tries to keep the heater idle at all time, i.e. Uuc(t) ≡ 0 for all t ∈ 0, 39.
This is an unacceptable input which cools down the room to an unacceptable
low level. For the given ρ, it is expected that at least 99% of the paths stay
inside the safety set in the given time horizon. The result of the simulation is
shown in Table 1 and Fig. 3. The temperature keeps decreasing and all paths go
outside of the safety set, when the system is fully controlled by the unverified
controller. Meanwhile, more than 99% of the paths stay within the safety set
when our proposed method is applied.

4.2 Traffic Control Problem

In the traffic control problem, we focus on a road traffic control containing a cell
with 2 entries and 1 exit, as illustrated in Fig. 2.

Fig. 2. Traffic control problem

One of the entry is controlled by a traffic light. The dynamic of the system
can be modelled as the following, which is adapted from [15]:

x(k + 1) = (1 − τv

l
− q)x(k) + e1u(k) + σ(k) + e2, (11)

where x(k) denotes the density of traffic at time k, u(k) ∈ {0, 1} is the input
to the system (1 means the green light is on while 0 means the red light is on).

Sandboxing Controllers for Stochastic Cyber-Physical Systems 259

Table 1. Result of simulation for both case studies.

Temperature control Traffic control

Percentage of paths in the safety set
(with Safe-visor)

99.02% 99.958%

Average acceptance rate of the
unverified controller

19.12% 8.5114%

Percentage of paths in the safety set
(without Safe-visor)

0% 0%

Percentage of paths in the safety set
(when system is fully controlled by
the Safety Advisor)

99.18% 99.989%

Average execution time for the
History-based Supervisor

33.42µs 31.83µs

Fig. 3. Comparison between paths of system with and without Safe-visor (Temperature
Control Problem).

Parameter v is the flow speed of the vehicle on the road, l is the length of the
cell, σ is a white Gaussian noise, and τ denotes the sampling time interval of the
system. In one sampling interval, e1 is the number of cars that pass the entry
controlled by the traffic light, e2 refers to the number of cars that pass the entry
without traffic light, and q is the percentage of cars which leave the cell through
the exit. In the simulation, we set l = 500[m], v = 25[m/s], τ = 6 s, e1 = 3,
e2 = 6, q = 10%, the mean of σ is 0 and variance is 2. In this case study, it is
desired that the density of traffic is lower than 20.

260 B. Zhong et al.

Fig. 4. Comparison between paths of system with and without Safe-visor (Traffic Con-
trol Problem)

Now, we synthesize the Safety Advisor as discussed in Sect. 3.1. We use the
discretization parameter δx = 1.0 × 10−3 to discretize the safety set (resulting
in 20000 discrete states) to construct a finite MDP. Note that the input set is
already finite. We set ρ as 0.05% and obtain a controller for the time horizon
0, 8186 (13.64 h). For the simulation, we set the initial state at x = 9, and choose
the unverified controller as the following: uuc(t) = 0 when t ∈ 0, 8186 is an odd
number and uuc(t) = 1 otherwise. For the given ρ, it is expected that at least
99.95% of the paths stay inside the safety set in the given time horizon. The
result of the simulations is shown in Table 1 and Fig. 4. All paths go outside of
the safety set, when the system is fully controlled by the unverified controller.
Meanwhile, more than 99.95% of paths stay within the safety set when our
proposed method is applied.

According to the empirical result, by sandboxing the unverified controller
with Safe-visor architecture, the probabilistic guarantees are respected while
some of the inputs from the unverified controller are still accepted for function-
ality. The average execution time for the History-based Supervisor shows its
good real-time applicability, which makes it practical to be applied in real time.

5 Conclusion and Future Work

In this paper, we developed a new framework for sandboxing unverified con-
trollers for stochastic cyber-physical systems regarding safety invariance specifi-
cation. In comparison with the Simplex architecture, our framework is applicable
to stochastic systems, and provides more flexibility for the unverified controllers
to accomplish complex tasks. According to the empirical results for two case
studies, the pre-proposed safety probability is guaranteed by using our method.

Sandboxing Controllers for Stochastic Cyber-Physical Systems 261

In the future, we would like to extend this method to (1) systems modelled
by Partially Observable Markov Decision Processes [16] (2) more general safety
specifications, e.g. those expressed as co-safe linear temporal logic formulae [13].

Acknowledgements. The authors would like to thank Abolfazl Lavaei for the dis-
cussions on synthesizing optimal safety controllers for stochastic systems.

Appendix: Proof of Theorem 2

The Proof of Theorem 2 is done with the help of the following lemma.

Lemma 1. Given a finite MDP M = {X̃, Ũ , T̃} and a Markov policy μ =
(μ0, μ1, . . . , μH−1) in a finite time horizon 0,H, we have

1 − Ṽn+1(x̃) =
∑

ỹ∈X̃\{φ}
(1 − Ṽn(ỹ))T̃ (ỹ|x̃, μH−n−1(x̃))

where Ṽn(x̃) is the value function for the reach-avoid problem and x̃ ∈ X̃.

The proof can be readily derived based on Theorem 1 and the definition of
T̃ . Let μ′ be the Markov policy used to control the system when the unverified
controller is accepted at some states at some time instants. Here, we use X̃s to
represent X̃\{φ}. Let’s define:

f(x̃(k), μ′
k(x̃(k))) = 1−

∑
x̃(k+1)∈X̃s

Ṽ∗,H−k−1(x̃(k +1))T̃ (x̃(k +1)|x̃(k), μ′
k(x̃(k))),

and

g(x̃(k − 1), μ′
k−1(x̃(k − 1))) = T̃ (x̃(k)|x̃(k − 1), μ′

k−1(x̃(k − 1))).

Given initial state s0 ∈ X̃s, at each time instant t = k where k ∈ 0,H − 1, we
have

1 − Ṽ μ′
H (s0)

=
∑

x̃(1)∈X̃s

⎛

⎝
∑

x̃(2)∈X̃s

⎛

⎝. . .

⎛

⎝
∑

x̃(k)∈X̃s

f(x̃(k), μ′
k(x̃(k)))g(x̃(k − 1), μ′

k−1(x̃(k − 1)))

⎞

⎠

. . .) g(x̃(1), μ′
1(x̃(1)))

)
g(s0, μ

′
0(s0))

262 B. Zhong et al.

≥
∑

x̃(1)∈X̃s

⎛

⎝
∑

x̃(2)∈X̃s

⎛

⎝. . .

⎛

⎝f(x̃(k), μ′
k(x̃(k)))

∑

x̃(k)∈X̃s

g(x̃(k − 1), μ′
k−1(x̃(k − 1)))

⎞

⎠

. . .) g(x̃(1), μ′
1(x̃(1)))

)
g(s0, μ

′
0(s0))

≥
∑

x̃(1)∈X̃s

⎛

⎝
∑

x̃(2)∈X̃s

⎛

⎝. . .

⎛

⎝

⎛

⎝
∑

x̃(k)∈X̃s

g(x̃(k − 1), μ′
k−1(x̃(k − 1))))

⎞

⎠ f(x̃(k), μ′
k(x̃(k)))

∑

x̃(k−1)∈X̃s

g(x̃(k − 2), μ′
k−2(x̃(k − 2)))

⎞

⎠ . . .

⎞

⎠ g(x̃(1), μ′
1(x̃(1)))

⎞

⎠ g(s0, μ
′
0(s0))

≥
∑

x̃(1)∈X̃s

⎛

⎝
∑

x̃(2)∈X̃s

⎛

⎝. . .

⎛

⎝

⎛

⎝
∑

x̃(k−1)∈X̃s

g(x̃(k − 2), μ′
k−2(x̃(k − 2)))

⎞

⎠

⎛

⎝
∑

x̃(k)∈X̃s

g(x̃(k − 1), μ′
k−1(x̃(k − 1)))

⎞

⎠ f(x̃(k), μ′
k(x̃(k)))

∑

x̃(k−2)∈X̃s

g(x̃(k − 3), μ′
k−3(x̃(k − 3)))

⎞

⎠ . . .

⎞

⎠ g(x̃(1), μ′
1(x̃(1)))

⎞

⎠ g(s0, μ
′
0(s0))

. . .

≥
k∏

t=1

∑

x̃(t)∈X̃s

g(x̃(t − 1), μt−1(x̃(t − 1)))(f(x̃(k), μ′
k(x̃(k)))

where

(x̃(t − 1), μt−1(x̃(t − 1))) = arg min
x̃(t−1)∈X̃s

μt−1(x̃(t−1))

∑

x̃(t)∈X̃s

g(x̃(t − 1), μt−1(x̃(t − 1)))

for all t ∈ 0, k, and

(x̃(k), μk(x̃(k))) = arg min
x̃(k)∈X̃s
μk(x̃(k))

f(x̃(k), μ′
k(x̃(k))).

Noted that ω = (x̃(0), μ0(x̃(0)), x̃(1), μ1(x̃(1)) . . . x̃(k)) is one of the paths
up to time instant k which can be generated by the system controlled by the
Markov policy μ′, and the History-based Supervisor ensures that for all paths ω
up to arbitrary time instant k ∈ 0,H,

k∏
t=1

∑
x̃∈X̃s

g(ωx(t − 1), ωu(t − 1)) (f(ωx(k), uuc(ωx(k), k))) ≥ 1 − ρ.

Note that we have 1 − Ṽ μ′
H (s0) ≥ 1 − ρ, i.e. pμ′

s0
(�≤HAc) = Ṽ μ′

H (s0) ≤ ρ.

Sandboxing Controllers for Stochastic Cyber-Physical Systems 263

References

1. Abate, A., Prandini, M., Lygeros, J., Sastry, S.: Probabilistic reachability and
safety for controlled discrete time stochastic hybrid systems. Automatica 44(11),
2724–2734 (2008). https://doi.org/10.1016/j.automatica.2008.03.027

2. Abdi, F., Chen, C.Y., Hasan, M., Liu, S., Mohan, S., Caccamo, M.: Preserving
physical safety under cyber attacks. IEEE Internet Things J. (2018). https://doi.
org/10.1109/JIOT.2018.2889866

3. Abdi, F., Tabish, R., Rungger, M., Zamani, M., Caccamo, M.: Application
and system-level software fault tolerance through full system restarts. In: 2017
ACM/IEEE 8th International Conference on Cyber-Physical Systems (ICCPS),
pp. 197–206. IEEE (2017). https://doi.org/10.1145/3055004.3055012

4. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding. In: Thirty-Second AAAI Conference on Arti-
ficial Intelligence (2018)

5. Bak, S., Johnson, T.T., Caccamo, M., Sha, L.: Real-time reachability for verified
simplex design. In: 2014 IEEE Real-Time Systems Symposium, pp. 138–148. IEEE
(2014). https://doi.org/10.1109/RTSS.2014.21

6. Bak, S., Manamcheri, K., Mitra, S., Caccamo, M.: Sandboxing controllers for cyber-
physical systems. In: 2011 IEEE/ACM Second International Conference on Cyber-
Physical Systems, pp. 3–12. IEEE (2011). https://doi.org/10.1109/ICCPS.2011.25

7. Bloem, R., Könighofer, B., Könighofer, R., Wang, C.: Shield synthesis: runtime
enforcement for reactive systems. In: International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems, pp. 533–548. Springer (2015).
https://doi.org/10.1007/978-3-662-46681-0 51

8. Crenshaw, T.L., Gunter, E., Robinson, C.L., Sha, L., Kumar, P.: The simplex ref-
erence model: limiting fault-propagation due to unreliable components in cyber-
physical system architectures. In: 28th IEEE International Real-Time Systems
Symposium, RTSS 2007, pp. 400–412. IEEE (2007). https://doi.org/10.1109/
RTSS.2007.34

9. Esmaeil Zadeh Soudjani, S.: Formal abstractions for automated verification and
synthesis of stochastic systems. Ph.D. thesis, Technical University of Delft (2014).
https://doi.org/10.4233/uuid:201d5145-0717-4dea-b0d0-c018e510fdaa

10. Hernández-Lerma, O., Lasserre, J.B.: Discrete-Time Markov Control Processes:
Basic Optimality Criteria. Springer, New York (1996). https://doi.org/10.1007/
978-1-4612-0729-0

11. Hovakimyan, N., Cao, C., Kharisov, E., Xargay, E., Gregory, I.M.: L 1 adaptive
control for safety-critical systems. IEEE Control Syst. Mag. 31(5), 54–104 (2011).
https://doi.org/10.1109/MCS.2011.941961

12. Humphrey, L., Könighofer, B., Könighofer, R., Topcu, U.: Synthesis of admissible
shields. In: Bloem, R., Arbel, E. (eds.) HVC 2016. LNCS, vol. 10028, pp. 134–151.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49052-6 9

13. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Form. Methods
Syst. Des. 19(3), 291–314 (2001). https://doi.org/10.1023/A:1011254632723

14. Lavaei, A., Soudjani, S., Zamani, M.: From dissipativity theory to compositional
construction of finite Markov decision processes. In: Proceedings of the 21st Inter-
national Conference on Hybrid Systems: Computation and Control (part of CPS
Week), pp. 21–30. ACM (2018). https://doi.org/10.1145/3178126.3178135

15. Lavaei, A., Soudjani, S., Zamani, M.: Compositional synthesis of large-
scale stochastic systems: a relaxed dissipativity approach. arXiv preprint
arXiv:1902.01223 (2019)

https://doi.org/10.1016/j.automatica.2008.03.027
https://doi.org/10.1109/JIOT.2018.2889866
https://doi.org/10.1109/JIOT.2018.2889866
https://doi.org/10.1145/3055004.3055012
https://doi.org/10.1109/RTSS.2014.21
https://doi.org/10.1109/ICCPS.2011.25
https://doi.org/10.1007/978-3-662-46681-0_51
https://doi.org/10.1109/RTSS.2007.34
https://doi.org/10.1109/RTSS.2007.34
https://doi.org/10.4233/uuid:201d5145-0717-4dea-b0d0-c018e510fdaa
https://doi.org/10.1007/978-1-4612-0729-0
https://doi.org/10.1007/978-1-4612-0729-0
https://doi.org/10.1109/MCS.2011.941961
https://doi.org/10.1007/978-3-319-49052-6_9
https://doi.org/10.1023/A:1011254632723
https://doi.org/10.1145/3178126.3178135
http://arxiv.org/abs/1902.01223

264 B. Zhong et al.

16. Monahan, G.E.: State of the art–a survey of partially observable markov decision
processes: theory, models, and algorithms. Manag. Sci. 28(1), 1–16 (1982). https://
doi.org/10.1287/mnsc.28.1.1

17. Reis, C., Barth, A., Pizano, C.: Browser security: lessons from google chrome.
Commun. ACM 52(8), 45–49 (2009). https://doi.org/10.1145/1536616.1536634

18. Sha, L.: Using simplicity to control complexity. IEEE Softw. 20–28 (2001). https://
doi.org/10.1109/MS.2001.936213

19. Tkachev, I., Mereacre, A., Katoen, J.P., Abate, A.: Quantitative automata-based
controller synthesis for non-autonomous stochastic hybrid systems. In: Proceed-
ings of the 16th International Conference on Hybrid Systems: Computation and
Control, pp. 293–302. ACM (2013). https://doi.org/10.1145/2461328.2461373

20. Wang, X., Hovakimyan, N., Sha, L.: L1simplex: fault-tolerant control of cyber-
physical systems. In: 2013 ACM/IEEE International Conference on Cyber-Physical
Systems (ICCPS), pp. 41–50. IEEE (2013). https://doi.org/10.1145/2502524.
2502531

21. Wang, X., Hovakimyan, N., Sha, L.: RSimplex: a robust control architecture for
cyber and physical failures. ACM Trans. Cyber Phys. Syst. 2(4), 27 (2018). https://
doi.org/10.1145/3121428

22. Yao, J., Liu, X., Zhu, G., Sha, L.: Netsimplex: controller fault tolerance architecture
in networked control systems. IEEE Trans. Ind. Inform. 9(1), 346–356 (2013).
https://doi.org/10.1109/TII.2012.2219060

https://doi.org/10.1287/mnsc.28.1.1
https://doi.org/10.1287/mnsc.28.1.1
https://doi.org/10.1145/1536616.1536634
https://doi.org/10.1109/MS.2001.936213
https://doi.org/10.1109/MS.2001.936213
https://doi.org/10.1145/2461328.2461373
https://doi.org/10.1145/2502524.2502531
https://doi.org/10.1145/2502524.2502531
https://doi.org/10.1145/3121428
https://doi.org/10.1145/3121428
https://doi.org/10.1109/TII.2012.2219060

Proportional Lumpability

Andrea Marin1 , Carla Piazza2 , and Sabina Rossi1(B)

1 Università Ca’ Foscari Venezia, Venice, Italy
{marin,sabina.rossi}@unive.it
2 Università di Udine, Udine, Italy

carla.piazza@uniud.it

Abstract. We deal with the lumpability approach to cope with the
state space explosion problem inherent to the computation of the per-
formance indices of large stochastic models using a state aggregation
technique. The lumpability method applies to Markov chains exhibiting
some structural regularity and allows one to efficiently compute the exact
values of the performance indices when the model is actually lumpable.
The notion of quasi-lumpability is based on the idea that a Markov chain
can be altered by relatively small perturbations of the transition rates in
such a way that the new resulting Markov chain is lumpable. In this case
only upper and lower bounds on the performance indices can be derived.
In this paper we introduce a novel notion of quasi lumpability, named
proportional lumpability, which extends the original definition of lumpa-
bility but, differently than the general definition of quasi lumpability, it
allows one to derive exact performance indices for the original process.

1 Introduction

In the context of performance evaluation of computer systems, continuous time
Markov chains (CTMCs) constitute the underlying semantics model of a plethora
of modelling formalisms such as Stochastic Petri nets [21], Stochastic Automata
Networks (SAN) [22], queueing networks [6] and a class of Markovian process
algebras (MPAs), e.g., [14,15]. Usually, one is interested in computing the sta-
tionary performance indices of the model such as throughput, expected response
time, resource utilization and so on. This requires the preliminary computation
of the stationary probability distribution of the CTMC underlying the model.

Although the use of high-level modelling formalisms highly simplifies the
specification of quantitative models by exploiting the compositional properties
and the hierarchical approach, the stochastic process underlying even a very com-
pact model may have a number of states that makes its analysis a difficult, even
computationally impossible, task. In order to study models with a large state
space without using approximations or resorting to simulation we can attempt
to reduce the state space of the underlying Markov chain by aggregating states
with equivalent behaviours (according to a notion of equivalence that may vary).

In this paper, we deal with the lumpability approach to cope with the state
space explosion problem inherent to the computation of the performance indices
c© Springer Nature Switzerland AG 2019
É. André and M. Stoelinga (Eds.): FORMATS 2019, LNCS 11750, pp. 265–281, 2019.
https://doi.org/10.1007/978-3-030-29662-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29662-9_16&domain=pdf
http://orcid.org/0000-0002-5958-1204
http://orcid.org/0000-0002-2072-1628
http://orcid.org/0000-0002-1189-4439
https://doi.org/10.1007/978-3-030-29662-9_16

266 A. Marin et al.

of large stochastic models using a state aggregation technique. The lumpabil-
ity method applies to Markov chains exhibiting some structural regularity and
allows one to efficiently compute the exact values of the performance indices
when the model is actually lumpable. In the literature, several notions of lump-
ing have been introduced. Interestingly, it has been shown that for Markovian
process algebras there is a strong connection between the idea of bisimulation
and that of strong lumping (see, e.g., [15]). However, it is well known that not
all Markov chains are lumpable. In fact, only a small percentage of Markov
chains arising in real-life applications is expected to be lumpable. The notion
of quasi-lumpability is based on the idea that a Markov chain can be altered by
relatively small perturbations of the transition rates in such a way that the new
resulting Markov chain is lumpable. In this case only upper and lower bounds
on the performance indices can be derived [12,13]. Here, we face the problem
of relaxing the conditions of strong lumpability while allowing one to derive the
exact performance indices for the original process.

Related Work. At the stochastic process level of abstraction, several approaches,
both exact and approximate, have been proposed to cope with the state space
explosion problem. Hereafter we focus on lumping methods. In [17, Ch. 6] the
authors introduce the notion of strong lumping of states in a discrete time
Markov chain (DTMC) but the concept can be straightforwardly extended to
CTMCs. In strong lumping the states of the Markov chain are clustered accord-
ing to some structural properties of the transition rate matrix so that a CTMC
with a smaller number of states can be defined. Since the complexity of the
analysis of this latter chain is lower than that required by the original one,
lumping can be an effective way for studying the properties of large Markov
chains. A structural-based approach to lumping for SPNs is studied in [2,4],
where structural symmetries of the net are exploited to derive a lumped under-
lying CTMC in an efficient way. In the context of Markovian process algebras,
structural process properties are studied in [5,7–9,15,18] for state space reduc-
tion purposes by means of equivalence relations inspired by bisimulation. In [5,9]
Markovian bisimulations are deeply studied for Interactive Markov Chains. In
[7,8,15] equivalence relations in the style of bisimulation (coinductive definition)
are introduced. If two components are equivalent it is possible to replace one of
them (that with more states) with the other without affecting the behaviour of
the remaining parts of the system. Specifically, in [7,8] the author proposes dif-
ferent weak Markovian bisimulation equivalences in the context of a Markovian
process calculus. In all cases he shows that the CTMC-level aggregation induced
by the bisimulation is a lumping only for specific classes of processes. Conversely,
the notion of strong equivalence introduced in [15] for processes expressed as
terms of the Performance Evaluation Process Algebra (PEPA) always induces
a lumping of the CTMC underlying a PEPA process, although in general the
opposite is not true. In [12] the notion of quasi-lumpable Markov chain is intro-
duced. The idea is that a quasi lumpable Markov Chain is one which can be
made lumpable by a relatively small perturbation of the transition rates. In
[12,13] a technique for the computation of bounds based on the Courtois and

Proportional Lumpability 267

Semal’s method is presented. The notion of quasi lumpability in the context of
a Markovian process algebra has been studied in [20] where the authors intro-
duce the concept of approximate strong equivalence for PEPA components and
propose a partitioning strategy which involves the use of a clustering algorithm
that minimizes an upper bound for approximate strong equivalence.

Contribution. In this paper we introduce a novel notion of quasi lumpability,
named proportional lumpability, which extends the original definition of lumpa-
bility but, differently than the general definition of quasi lumpability, it allows
one to derive exact performance indices for the original process. Then we study
this notion in the context of a Markovian process algebra. We consider the Per-
formance Evaluation Process Algebra (PEPA) [15] and introduce the concept
of proportional bisimilarity over PEPA components. Proportional bisimilarity
induces a proportional lumpability on the underlying Markov Chains.

Structure of the Paper. The paper is structured as follows: In Sect. 2 we review
the theoretical background on continuous-time Markov chains and recall the con-
cept of lumpability. The notions of quasi lumpability and proportional lumpa-
bility are introduced and illustrated through an example. In Sect. 3 we recall
the Performance Evaluation Process Algebra (PEPA) [15] that is an algebraic
calculus enhanced with stochastic timing information which may be used to cal-
culate performance measures as well as prove functional system properties. The
notions of quasi bisimulation and proportional bisimilarity are defined. Section 4
concludes the paper.

2 CTMCs and Proportional Lumpability

In this section we review the theoretical background on continuous-time Markov
chains and the concept of lumpability.

Continuous-Time Markov Chains. A Continuous-Time Markov Chain (CTMC)
is a stochastic process X(t) for t ∈ R

+ taking values into a discrete state space
S such that (1) X(t) is stationary, i.e., (X(t1),X(t2), . . . , X(tn)) has the same
distribution as (X(t1 + τ),X(t2 + τ), . . . , X(tn + τ)) for all t1, t2, . . . , tn, τ ∈ R

+;
(2) X(t) has the Markov property, i.e., the conditional (on both past and present
states) probability distribution of its future behaviour is independent of its past
evolution until the present state:

Prob(X(tn+1) = sn+1 | X(t1) = s1,X(t2) = s2, . . . , X(tn) = sn)
= Prob(X(tn+1) = sn+1 | X(tn) = sn).

A CTMC X(t) is said to be time-homogeneous if the conditional probability
Prob(X(t+τ) = s | X(t) = s′) does not depend upon t, and is irreducible if every
state in S can be reached from every other state. A state in a Markov process is
called recurrent if the probability that the process will eventually return to the

268 A. Marin et al.

same state is one. A recurrent state is called positive-recurrent if the expected
number of steps until the process returns to it is finite. A CTMC is ergodic
if it is irreducible and all its states are positive-recurrent. In the case of finite
Markov chains, irreducibility is sufficient for ergodicity. Henceforth, we assume
the ergodicity of the CTMCs that we study.

An ergodic CTMC possesses an equilibrium (or steady-state) distribution,
that is the unique collection of positive real numbers π(s) with s ∈ S such that

lim
t→∞Prob(X(t) = s | X(0) = s′) = π(s).

Notice that the above equation for π(s) is independent of s′. We denote by
q(s, s′) the transition rate between two states s and s′, with s �= s′. The infinites-
imal generator matrix Q of a CTMC X(t) with state space S is the |S| × |S|
matrix whose off-diagonal elements are the q(s, s′)’s and whose diagonal ele-
ments are the negative sum of the extra diagonal elements of each row, i.e.,
q(s, s) = −∑

s′∈S, s′ �=s q(s, s′). Any non-trivial vector of positive real numbers
μ satisfying the system of global balance equations (GBEs)

μQ = 0 (1)

is called invariant measure of the CTMC. For an irreducible CTMC X(t), if μ1

and μ2 are two invariant measures of X(t), then there exists a constant k > 0
such that μ1 = kμ2. If the CTMC is ergodic, then there exists a unique invariant
measure π whose components sum to unity, i.e.,

∑
s∈S π(s) = 1 . In this case π

is the equilibrium or steady-state distribution of the CTMC.

Lumpability. In the context of performance and reliability analysis, the notion
of lumpability provides a model simplification technique which can be used for
generating an aggregated Markov process that is smaller than the original one
but allows one to determine exact results for the original process.

The concept of lumpability can be formalized in terms of equivalence rela-
tions over the state space of the Markov chain. Any such equivalence induces
a partition on the state space of the Markov chain and aggregation is achieved
by clustering equivalent states into macro-states, thus reducing the overall state
space. If the partition can be shown to satisfy the so-called strong lumpability
condition [3,17], then the equilibrium solution of the aggregated process may be
used to derive an exact solution of the original one.

Strong lumpability has been introduced in [17] and further studied in [1,10,
19,24].

Definition 1 (Strong lumpability). Let X(t) be a CTMC with state space S and
∼ be an equivalence relation over S. We say that X(t) is strongly lumpable with
respect to ∼ (resp., ∼ is a strong lumpability for X(t)) if ∼ induces a partition
on the state space of X(t) such that for any equivalence class Si, Sj ∈ S/ ∼ with
i �= j and s, s′ ∈ Si, ∑

s′′∈Sj

q(s, s′′) =
∑

s′′∈Sj

q(s′, s′′).

Proportional Lumpability 269

Thus, an equivalence relation over the state space of a Markov process is
a strong lumpability if it induces a partition into equivalence classes such that
for any two states within an equivalence class their aggregated transition rates
to any other class are the same. Notice that every Markov process is strongly
lumpable with respect to the identity relation, and also with respect to the trivial
relation having only one equivalence class.

In [17] the authors prove that for an equivalence relation ∼ over the state
space of a Markov process X(t), the aggregated process is a Markov process
for every initial distribution if, and only if, ∼ is a strong lumpability for X(t).
Moreover, the transition rate between two aggregated states Si, Sj ∈ S/ ∼ with
i �= j is equal to

∑
s′∈Sj

q(s, s′) for any s ∈ Si.

Proposition 1 (Aggregated process for strong lumpability). Let X(t) be a
CTMC with state space S, infinitesimal generator Q and equilibrium distribution
π. Let ∼ be a strong lumpability for X(t) and X̃(t) be the aggregated process with
state space S/ ∼ and infinitesimal generator Q̃ defined by: for any equivalence
class Si, Sj ∈ S/ ∼ with i �= j

q̃(Si, Sj) =
∑

s′∈Sj

q(s, s′)

for any s ∈ Si. Then the equilibrium distribution π̃ of X̃(t) satisfies: for any
equivalence class S ∈ S/ ∼,

π̃(S) =
∑

s∈S

π(s).

In general, a non-trivial lumpable partition might not exist. The notion of
quasi lumpability has been introduced in [12] to characterize those Markov chains
which can be made lumpable by a relatively small perturbation to the transition
rates.

Definition 2 (Quasi lumpability). Let X(t) be a CTMC with state space S and
∼ be an equivalence relation over S. We say that X(t) is quasi lumpable with
respect to ∼ (resp., ∼ is a quasi lumpability for X(t)) if ∼ induces a partition
on the state space of X(t) such that for any equivalence class Si, Sj ∈ S/ ∼ with
i �= j and s, s′ ∈ Si,

|
∑

s′′∈Sj

q(s, s′′) −
∑

s′′∈Sj

q(s′, s′′)| ≤ ε, ε ≥ 0.

The notion of quasi-lumpability coincides with the concept of near-lumpability
presented in [10]. Techniques for computing bounds to the steady state proba-
bilities of quasi-lumpable Markov chains have been studied in [11–13,23].

In this paper we introduce a novel notion of lumpability, named proportional
lumpability which, as the notion of quasi lumpability extends the original defi-
nition of strong lumpability but differently from the general definition of quasi
lumpability it allows us to derive an exact solution of the original process.

270 A. Marin et al.

Definition 3 (Proportional lumpability). Let X(t) be a CTMC with state space
S and ∼ be an equivalence relation over S. We say that X(t) is proportionally
lumpable with respect to ∼ (resp., ∼ is a proportonal lumpability for X(t))
if there exists a function κ from S to R

+ such that ∼ induces a partition on
the state space of X(t) satisfying the property that for any equivalence class
Si, Sj ∈ S/ ∼ with i �= j and s, s′ ∈ Si,

∑
s′′∈Sj

q(s, s′′)

κ(s)
=

∑
s′′∈Sj

q(s′, s′′)

κ(s′)
.

We say that X(t) is κ-proportionally lumpable with respect to ∼ (resp., ∼ is
a κ-proportonal lumpability for X(t)) if X(t) is proportionally lumpable with
respect to ∼ and function κ.

The following proposition proves that proportional lumpability allows one to
compute an exact solution for the original model.

Proposition 2 (Aggregated process for proportional lumpability). Let X(t) be a
CTMC with state space S, infinitesimal generator Q and equilibrium distribution
π. Let κ be a function from S to R

+, ∼ be a κ-proportional lumpability for
X(t) and X̃(t) be the aggregated process with state space S/ ∼ and infinitesimal
generator Q̃ defined by: for any equivalence class Si, Sj ∈ S/ ∼ with i �= j

q̃(Si, Sj) =

∑
s′∈Sj

q(s, s′)

κ(s)

for any s ∈ Si. Then the invariant measure μ̃ of X̃(t) satisfies: for any equiva-
lence class S ∈ S/ ∼,

μ̃(S) =
∑

s∈S

π(s)κ(s).

Proof. Let X̃(t) be the aggregated process defined as above. For all S ∈ S/ ∼,
the corresponding global balance equation is

μ̃(S)
∑

S′∈S/∼
S′ �=S

q̃(S, S′) =
∑

S′∈S/∼
S′ �=S

μ̃(S′)q̃(S′, S). (2)

The proof follows by substituting the definitions of q̃ and μ̃ given above. Indeed,
the left-hand side of Eq. (2) can be written as follows, where s is an arbitrary
state in S:

(
∑

s∈S

π(s)κ(s)

)
∑

S′∈S/∼
S′ �=S

∑
s′∈S′ q(s, s′)

κ(s)

=
∑

s∈S

π(s)
∑

S′∈S/∼
S′ �=S

∑

s′∈S′
q(s, s′).

Proportional Lumpability 271

The right-hand side of Eq. (2) can be written as:

∑

S′∈S/∼
S′ �=S

(
∑

s′∈S′
π(s′)κ(s′)

)∑
s∈S q(s′, s)

κ(s′)

=
∑

S′∈S/∼
S′ �=S

∑

s′∈S′
π(s′)

∑

s∈S

q(s′, s)

=
∑

s∈S

∑

S′∈S/∼
S′ �=S

∑

s′∈S′
π(s′)q(s′, s).

From the general conservation law we have that for any closed boundary, the
effective flow inward must equal the effective flow outward, i.e., for any S ⊆ S

∑

s∈S

π(s)
∑

s′∈S,s′ �∈S

q(s, s′) =
∑

s∈S

∑

s′∈S,s′ �∈S

π(s′)q(s′, s)

and this concludes the proof. �	
We now show how to compute the equilibrium distribution of a proportionally

lumpable CTMC X(t) from the equilibrium distribution of a class of perturba-
tions X ′(t) defined as follows.

Definition 4 (Perturbation w.r.t. κ and ∼). Let X(t) be a CTMC with state
space S, and infinitesimal generator Q. Let κ be a function from S to R

+ and
∼ be a κ-proportional lumpability for X(t). We say that a CTMC X ′(t) with
infinitesimal generator Q′ is a perturbation of X(t) with respect to κ and ∼
if X ′(t) is obtained from X(t) by perturbing its rates such that for all s ∈ S,
S ∈ S/ ∼,

∑

s′∈S
s′ �=s

q′(s, s′) =

∑
s′∈S ,s′ �=s q(s, s′)

κ(s)
.

Proposition 3 (Equilibrium distribution for proportionally lumpable CTMCs).
Let X(t) be a CTMC with state space S, infinitesimal generator Q and equilib-
rium distribution π. Let κ be a function from S to R

+, ∼ be a κ-proportional
lumpability for X(t) and X̃(t) be the aggregated process with state space S/ ∼
and infinitesimal generator Q̃ as defined in Proposition 2. Then, for any per-
turbation X ′(t) of the original chain X(t) with respect to κ and ∼ according
to Definition 4, the equilibrium distribution π′ of X ′(t) satisfies the following
property: let K =

∑
s∈S π′(s)/κ(s) then

π(s) =
π′(s)

K κ(s)
.

272 A. Marin et al.

Proof. For all s ∈ S, the corresponding global balance equation is

π(s)
∑

s′∈S
s′ �=s

q(s, s′) =
∑

s′∈S
s′ �=s

π(s′)q(s′, s). (3)

From the fact that ∼ induces a partition on the state space of X(t), the above
equation can be re-written as:

π(s)

(
∑

S∈S/∼
s/∈S

∑

s′∈S

q(s, s′) +
∑

S∈S/∼
s∈S

∑

s′∈S
s′ �=s

q(s, s′)

)

=
∑

S∈S/∼
s/∈S

∑

s′∈S

π(s′)q(s′, s) +
∑

S∈S/∼
s∈S

∑

s′∈S
s′ �=s

π(s′)q(s′, s). (4)

We now replace the definition of π(s) given above. Indeed, the left-hand side
of Eq. (4) can be written as follows:

π′(s)
K κ(s)

(
∑

S∈S/∼
s/∈S

∑

s′∈S

q(s, s′) +
∑

S∈S/∼
s∈S

∑

s′∈S
s′ �=s

q(s, s′)

)

=
π′(s)
K

(
∑

S∈S/∼
s/∈S

∑

s′∈S

q(s, s′)
κ(s)

+
∑

S∈S/∼
s∈S

∑

s′∈S
s′ �=s

q(s, s′)
κ(s)

)

=
π′(s)
K

∑

s′∈S
s′ �=s

q′(s, s′).

The right-hand side of Eq. (4) can be written as follows:

∑

S∈S/∼
s/∈S

∑

s′∈S

π′(s′)
K κ(s′)

q(s′, s) +
∑

S∈S/∼
s∈S

∑

s′∈S
s′ �=s

π′(s′)
K κ(s′)

q(s′, s)

=
1
K

∑

S∈S/∼
s/∈S

∑

s′∈S

π′(s′)
q(s′, s)
κ(s′)

+
1
K

∑

S∈S/∼
s∈S

∑

s′∈S
s′ �=s

π′(s′)
q(s′, s)
κ(s′)

=
1
K

∑

s′∈S
s′ �=s

π′(s′)q′(s′, s).

Hence, for all s ∈ S the global balance equation of X ′(t) is satisfied, i.e.,

π′(s)
∑

s′∈S
s′ �=s

q′(s, s′) =
∑

s′∈S
s′ �=s

π′(s′)q′(s′, s).

Proportional Lumpability 273

We now prove that the normalizing condition also holds: i.e.,
∑

s∈S π(s) = 1.
The proof follows trivially from the fact that K =

∑
s∈S π′(s)/κ(s), in fact:

∑

s∈S
π(s) =

∑

s∈S

π′(s)
K κ(s)

=
1
K

∑

s∈S

π′(s)
κ(s)

=
1
K

K = 1.

�	
Example 1. Consider a system with multiple CPUs, each with its own private
memory and one common memory which can be accessed only by one processor
at a time. The CPUs execute in private memory for a random time before issuing
a common memory access request. Assume that this random time is exponen-
tially distributed with parameter λP for processor P . The common memory
access duration is also assumed to be exponentially distributed with parameter
μP for processor P (i.e., the average duration of a common memory access is
1/μP).

Let us analyze a two-processor version with processors A and B. Assume
that the processors have different timing characteristics: the private and com-
mon memory accesses of A are governed by two exponential distributions with
parameters λA and μA, respectively, while the private and common memory
accesses of B are governed by two exponential distributions with parameters λB

and μB , respectively. The CTMC describing the behaviour of this two-processor
system is depicted in Fig. 1, it has five states as follows:

– State 1: A and B both executing in their private memories;
– State 2: B executing in private memory, and A accessing common memory;
– State 3: A executing in private memory, and B accessing common memory;
– State 4: A accessing common memory, B waiting for common memory;
– State 5: B accessing common memory, A waiting for common memory.

1 32

4 5

μA

λA

λB

μB

λB

μA

λA

μB

Fig. 1. Two processor system

Suppose that the rates are related as follows:

λA = k1λ λB = k2λ μA = k2μ μB = k1μ

274 A. Marin et al.

for λ, μ, k1, k2 ∈ R
+. In this case the CTMC appears as represented in Fig. 2. We

can observe that it is proportionally lumpable with respect to the equivalence
classes S1 = {1}, S2,3, = {2, 3} and S4,5 = {4, 5} and the function κ defined
by: κ(1) = 1, κ(2) = k2, κ(3) = k1, κ(4) = k2, κ(5) = k1. We can then analyze
the reduced chain represented in Fig. 3 and, by Propositions 2 and 3, we can
compute the exact solution of the original model.

1 32

4 5

k2μ

k1λ

k2λ

k1μ

k2λ

k2μ

k1λ

k1μ

Fig. 2. Two processor system with proportional factors

S1 S2,3

S4,5

(k1 + k2)λ

μ

λ
μ

Fig. 3. Two processor reduced system

3 PEPA and Proportional Lumpability

In this section we recall the Performance Evaluation Process Algebra (PEPA)
[15] that is an algebraic calculus enhanced with stochastic timing information
which may be used to calculate performance measures as well as prove functional
system properties.

Proportional Lumpability 275

The basic elements of PEPA are components and activities. Each activity is
represented by a pair (α, r) where α is a label, or action type, and r is its activity
rate, that is the parameter of a negative exponential distribution determining its
duration. We assume that there is a countable set, A, of possible action types,
including a distinguished type, τ , which can be regarded as the unknown type.
Activity rates may be any positive real number, or the distinguished symbol

which should be read as unspecified.

The syntax for PEPA terms is defined by the grammar:

P ::= P ��
L

P | P/L | S

S ::= (α, r).S | S + S | A

where S denotes a sequential component, while P denotes a model component
which executes in parallel. We assume that there is a countable set of constants,
A. We write C for the set of all possible components.

Structural Operational Semantics. The structural operational semantics of
PEPA is described below. Component (α, r).P carries out the activity (α, r)
of type α at rate r and subsequently behaves as P . When a = (α, r), component
(α, r).P may be written as a.P . Component P + Q represents a system which
may behave either as P or as Q. P + Q enables all the current activities of both
P and Q. The first activity to complete distinguishes one of the components, P
or Q. The other component of the choice is discarded. Component P/L behaves
as P except that any activity of type within the set L are hidden, i.e., they are
relabeled with the unobservable type τ . The meaning of a constant A is given
by a defining equation such as A

def= P which gives the constant A the behaviour
of the component P . The cooperation combinator ��

L
is in fact an indexed

family of combinators, one for each possible set of action types, L ⊆ A \ {τ}.
The cooperation set L defines the action types on which the components must
synchronize or cooperate (the unknown action type, τ , may not appear in any
cooperation set). It is assumed that each component proceeds independently
with any activity whose type does not occur in the cooperation set L (individ-
ual activities). However, activities with action types in the set L require the
simultaneous involvement of both components (shared activities). These shared
activities will only be enabled in P ��

L
Q when they are enabled in both P and

Q. The shared activity will have the same action type as the two contributing
activities and a rate reflecting the rate of the slower participant [15]. If an activ-
ity has an unspecified rate in a component then the component is passive with
respect to that action type. In this case, the rate of the shared activity will
be completely determined by the other component. For a given process P and
action type α, the apparent rate of α in P , denoted rα(P), is the sum of the
rates of the α activities enabled in P .

The semantics of each term in PEPA is given via a labeled multi-transition
system where the multiplicities of arcs are significant. In the transition system,
a state or derivative corresponds to each syntactic term of the language and an
arc represents the activity which causes one derivative to evolve into another.

276 A. Marin et al.

The set of reachable states of a model P is termed the derivative set of P ,
denoted by ds(P), and constitutes the set of nodes of the derivation graph of
P (D(P)) obtained by applying the semantic rules exhaustively. We denote by
A(P) the set of all the current action types of P , i.e., the set of action types
which the component P may next engage in. We denote by Act(P) the multiset
of all the current activities of P . Finally, we denote by A(P) the union of all
A(P ′) with P ′ ∈ ds(P), i.e., the set of all action types syntactically occurring in
P . For any component P , the exit rate from P will be the sum of the activity
rates of all the activities enabled in P , i.e., q(P) =

∑
a∈Act(P) ra, with ra being

the rate of activity a. If P enables more than one activity, |Act(P)| > 1, then
the dynamic behaviour of the model is determined by a race condition. This
has the effect of replacing the nondeterministic branching of the pure process
algebra with probabilistic branching. The probability that a particular activity
completes is given by the ratio of the activity rate to the exit rate from P .

Underlying Stochastic Process. In [15] it is proved that for any finite PEPA
model P

def= P0 with ds(P) = {P0, . . . , Pn}, if we define the stochastic process
X(t), such that X(t) = Pi indicates that the system behaves as component Pi

at time t, then X(t) is a continuous time Markov chain.
The transition rate between two components Pi and Pj , denoted q(Pi, Pj), is

the rate at which the system changes from behaving as component Pi to behaving
as Pj . It is the sum of the activity rates labeling arcs which connect the node
corresponding to Pi to the node corresponding to Pj in D(P), i.e.,

q(Pi, Pj) =
∑

a∈Act(Pi|Pj)
ra

where Pi �= Pj and Act(Pi|Pj) = {| a ∈ Act(Pi)| Pi
a−→ Pj |}. Clearly, if Pj is not a

one-step derivative of Pi, q(Pi, Pj) = 0. The q(Pi, Pj) (also denoted qij), are the
off-diagonal elements of the infinitesimal generator matrix of the Markov pro-
cess, Q. Diagonal elements are formed as the negative sum of the non-diagonal
elements of each row. We use the following notation: q(Pi) =

∑
j �=i q(Pi, Pj) and

qii = −q(Pi). For any finite and irreducible PEPA model P , the steady-state dis-
tribution Π(·) exists and it may be found by solving the normalization equation
and the global balance equations:

∑

Pi∈ds(P)

Π(Pi) = 1 ∧ ΠQ = 0.

The conditional transition rate from Pi to Pj via an action type α is denoted
q(Pi, Pj , α). This is the sum of the activity rates labeling arcs connecting the
corresponding nodes in the derivation graph with label α. It is the rate at which
a system behaving as component Pi evolves to behaving as component Pj as the
result of completing a type α activity. The total conditional transition rate from
P to S ⊆ ds(P), denoted q[P, S, α], is defined as

q[P, S, α] =
∑

P ′∈S

q(P, P ′, α) ,

Proportional Lumpability 277

where q(P, P ′, α) =
∑

P
(α,rα)−−−−→P ′

rα.

Quasi-Lumpable and Proportional Bisimilarity. In a process algebra, actions,
rather than states, play the role of capturing the observable behaviour of a
system model. This leads to a formally defined notion of equivalence in which
components are regarded as equal if, under observation, they appear to perform
exactly the same actions.

In this section we introduce a bisimulation-like relation, named quasi-
lumpable bisimilarity that extends the notion of lumpable bisimilarity for PEPA
models defined [16] and induces a quasi-lumpability on the underlying Markov
chain.

Two PEPA components are quasi-lumpably bisimilar with respect to ε with
ε ≥ 0 if there is an equivalence relation between them such that, for any action
type α different from τ , the total conditional transition rates from those compo-
nents to any equivalence class, via activities of this type, are equal after small a
perturbation of the system.

Definition 5 (Quasi-lumpable bisimulation). An equivalence relation over
PEPA components, R ⊆ C × C, is a quasi-lumpable bisimulation with respect
to ε with ε ≥ 0 if whenever (P,Q) ∈ R then for all α ∈ A and for all S ∈ C/R
such that

– either α �= τ ,
– or α = τ and P,Q �∈ S,

it holds
|q[P, S, α] − q[Q,S, α]| ≤ ε , ε ≥ 0.

It is easy to prove that a quasi-lumpable bisimulation over the state space
of a PEPA component P induces a quasi-lumpability on the state space of the
Markov chain underlying P .

Notice that our definition is similar to the notion of approximate strong equiv-
alence introduced by Milos and Gilmore in [20]. However our definition is stricter
than that of approximate strong equivalence because the latter allows arbitrary
activities with type τ among components belonging to the same equivalence
class. Moreover, it holds that, in general, a quasi-lumpable bisimulation induces
a coarser aggregation than the approximate strong equivalence of [20].

Unfortunately, the notion of quasi-lumpable bisimulation with respect to a
specific bound ε ≥ 0 is not preserved under union in the sense that the union of
two quasi-lumpable bisimulations with respect to ε is a quasi-lumpable bisimula-
tion but, in general, not with respect to the same bound ε. In [20] a partitioning
strategy for PEPA components which involves the use of a clustering algorithm
that minimizes an upper bound for approximate strong equivalence is proposed.
Here we introduce the notion of proportional bisimulation with respect to a
function κ that associates a real value κP to each PEPA component P .

278 A. Marin et al.

Definition 6 (Proportional bisimulation). Let κ be a function from PEPA
components to R

+. An equivalence relation over PEPA components, R ⊆ C × C,
is a proportional bisimulation with respect to κ if whenever (P,Q) ∈ R then for
all α ∈ A and for all S ∈ C/R such that

– either α �= τ ,
– or α = τ and P,Q �∈ S,

it holds
q[P, S, α]

κP
=

q[Q,S, α]
κQ

.

It is clear that the identity relation is a proportional bisimulation for any
function κ. We are interested in the relation which is the largest κ-proportional
bisimulation, formed by the union of all κ-proportional bisimulations. However,
it is not straightforward to see that this will indeed be a lumpable bisimulation.

The following proposition states that any union of κ-proportional bisimula-
tions generates a κ-proportional bisimulation.

Proposition 4. Let I be a set of indices and Ri be a κ-proportional bisimulation
for all i ∈ I. Then the transitive closure of their union, R = (∪i∈IRi)∗, is also
a κ-proportional bisimulation.

Proof. The proof follows by induction on i and is in the line of that of Proposi-
tion 8.2.1 in [15]. �	

Based on the above result we can define the maximal κ-proportional bisim-
ulation as the union of all κ-proportional bisimulations.

Definition 7 (Proportional bisimilarity). Let κ be a function from PEPA com-
ponents to R

+. Two PEPA components P and Q are κ-proportionally bisimilar,
written P ≈κ

l Q, if (P,Q) ∈ R for some κ-proportional bisimulation R, i.e.,

≈κ
l =

⋃
{R | R is a κ-proportional bisimulation}.

≈κ
l is called κ-proportional bisimilarity and it is the largest symmetric κ-propor-

tional bisimulation over PEPA components.

The relation ≈κ
l partitions the set of components C, and it is easy to see that

if restricted to the derivative set of any component P , the relation partitions
this set. Let ds(P)/ ≈κ

l denote the set of equivalence classes generated in this
way. It is easy to prove the following result.

Proposition 5. For any PEPA component P , ds(P)/ ≈κ
l induces a propor-

tional lumpability on the state space of the Markov process corresponding to P .

Proof. The proof is analogous to that of Proposition 8.5.1 in [15]. �	

Proportional Lumpability 279

Example 2. We consider a simple buffer in which messages are added according
to a Poisson process with rate λ and which is cleared at exponentially spaced
instants. The mean time between successive clearances is nμ−1 where n denotes
the number of items in the buffer. The buffer has capacity M and, when full,
arrivals are lost. This buffer clearly follows a Markov process and can be specified
in PEPA as:

Bn = (τ, λ).Bn+1 0 ≤ n ≤ M − 1
Bn = (cl, μn−1).B0 0 ≤ n ≤ M

The derivation graph for this system is shown in Fig. 4.

B0 B1 · · · Bi · · · BM

(τ, λ)

(cl, μ)

(τ, λ)

(cl, µ
2)

(τ, λ)

(cl, µ
i)

(τ, λ)

(cl, µ
M−1)

(τ, λ)

(cl, µ
M)

Fig. 4. Original buffer system

B0 B1

(τ, λ)

(cl, μ)

Fig. 5. The buffer reduced system

If we consider the function κ from PEPA components to R
+ such that κB0 = 1

and κBn
= 1/n for all n with 0 < n ≤ M then it is easy to prove that B0 ≈κ B′

0

where B′
0 is depicted in Fig. 5. From the equilibrium distribution of the reduced

system we can then compute the equilibrium distribution of the original system
by applying Proposition 3.

4 Conclusion

In this paper we have introduced a novel notion of quasi lumpability, named pro-
portional lumpability, which extends the original definition of lumpability but,
differently than the general definition of quasi lumpability, it allows one to derive

280 A. Marin et al.

exact performance indices for the original process. Moreover we illustrate the
concept of proportional bisimilarity for PEPA components which induces a pro-
portional bisimulation on the underlying Markov chain. We plan to investigate
the compositionality and contextual properties of proportional bisimulation for
our future work. Moreover, the notion of proportional lumpability in the discrete
time setting should be explored.

References

1. Alzetta, G., Marin, A., Piazza, C., Rossi, S.: Lumping-based equivalences in marko-
vian automata: algorithms and applications to product-form analyses. Inf. Comput.
260, 99–125 (2018). https://doi.org/10.1016/j.ic.2018.04.002

2. Baarir, S., Beccuti, M., Dutheillet, C., Franceschinis, G.: From partially to fully
lumped Markov chains in stochastic well formed Petri nets. In: Proceedings of
Valuetools 2009 Conference, p. 44. ACM (2009). https://doi.org/10.4108/ICST.
VALUETOOLS2009.7733

3. Baarir, S., Beccuti, M., Dutheillet, C., Franceschinis, G., Haddad, S.: Lumping par-
tially symmetrical stochastic models. Perform. Eval. 68(1), 21–44 (2011). https://
doi.org/10.1016/j.peva.2010.09.002

4. Baarir, S., Dutheillet, C., Haddad, S., Iliè, J.M.: On the use of exact lumping
in partially symmetrical Well-formed Petri Nets. In: Proceedings of International
Conference on Quantitative Evaluation of Systems (QEST), Torino, Italy, pp. 23–
32. IEEE Computer Society (2005). https://doi.org/10.1109/QEST.2005.26

5. Baier, C., Katoen, J.P., Hermanns, H., Wolf, V.: Comparative branching-time
semantics for Markov chains. Inf. Comput. 200(2), 149–214 (2005). https://doi.
org/10.1016/j.ic.2005.03.001

6. Balsamo, S., Marin, A.: Queueing networks. In: Bernardo, M., Hillston, J. (eds.)
SFM 2007. LNCS, vol. 4486, pp. 34–82. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-72522-0 2

7. Bernardo, M.: Weak Markovian bisimulation congruences and exact CTMC-level
aggregations for concurrent processes. In: Proceedings of the 10th Workshop on
Quantitative Aspects of Programming Languages and Systems (QALP 2012), pp.
122–136. EPTCS (2012). https://doi.org/10.4204/EPTCS.85.9

8. Bernardo, M.: Weak Markovian bisimulation congruences and exact CTMC-level
aggregations for sequential processes. In: Bruni, R., Sassone, V. (eds.) TGC 2011.
LNCS, vol. 7173, pp. 89–103. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-30065-3 6

9. Bravetti, M.: Revisiting interactive Markov chains. Electr. Notes Theor. Comput.
Sci. 68(5), 65–84 (2003). https://doi.org/10.1016/S1571-0661(04)80520-6

10. Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. J. Appl.
Probab. 31, 59–75 (1994). https://doi.org/10.1017/S0021900200107338

11. Daly, D., Buchholz, P., Sanders, W.: Bound-preserving composition for Markov
reward models. In: Third International Conference on the Quantitative Evalua-
tion of Systems (QEST 2006), pp. 243–252 (2006). https://doi.org/10.1109/QEST.
2006.8

12. Franceschinis, G., Muntz, R.R.: Bounds for quasi-lumpable Markov chains. Perform.
Eval. 20(1–3), 223–243 (1994). https://doi.org/10.1016/0166-5316(94)90015-9

13. Franceschinis, G., Muntz, R.R.: Computing bounds for the performance indices
of quasi-lumpable stochastic well-formed nets. IEEE Trans. Softw. Eng. 20(7),
516–525 (1994). https://doi.org/10.1109/32.297940

https://doi.org/10.1016/j.ic.2018.04.002
https://doi.org/10.4108/ICST.VALUETOOLS2009.7733
https://doi.org/10.4108/ICST.VALUETOOLS2009.7733
https://doi.org/10.1016/j.peva.2010.09.002
https://doi.org/10.1016/j.peva.2010.09.002
https://doi.org/10.1109/QEST.2005.26
https://doi.org/10.1016/j.ic.2005.03.001
https://doi.org/10.1016/j.ic.2005.03.001
https://doi.org/10.1007/978-3-540-72522-0_2
https://doi.org/10.1007/978-3-540-72522-0_2
https://doi.org/10.4204/EPTCS.85.9
https://doi.org/10.1007/978-3-642-30065-3_6
https://doi.org/10.1007/978-3-642-30065-3_6
https://doi.org/10.1016/S1571-0661(04)80520-6
https://doi.org/10.1017/S0021900200107338
https://doi.org/10.1109/QEST.2006.8
https://doi.org/10.1109/QEST.2006.8
https://doi.org/10.1016/0166-5316(94)90015-9
https://doi.org/10.1109/32.297940

Proportional Lumpability 281

14. Hermanns, H.: Interactive Markov Chains. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45804-2

15. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
Press, Cambridge (1996)

16. Hillston, J., Marin, A., Piazza, C., Rossi, S.: Contextual lumpability. In: Proceed-
ings of Valuetools 2013 Conference, pp. 194–203. ACM Press (2013). https://doi.
org/10.4108/icst.valuetools.2013.254408

17. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Springer, New York (1976)
18. Marin, A., Rossi, S.: Autoreversibility: exploiting symmetries in Markov chains. In:

Proceedings of IEEE MASCOTS, San Francisco, CA, USA, pp. 151–160 (2013).
https://doi.org/10.1109/MASCOTS.2013.23

19. Marin, A., Rossi, S.: On the relations between Markov chain lumpability andre-
versibility. Acta Informatica 54(5), 447–485 (2017). https://doi.org/10.1007/
s00236-016-0266-1

20. Milios, D., Gilmore, S.: Component aggregation for PEPA models: an approach
based on approximate strong equivalence. Perform. Eval. 94, 43–71 (2015). https://
doi.org/10.1016/j.peva.2015.09.004

21. Molloy, M.K.: Performance analysis using stochastic Petri nets. IEEE Trans. Com-
put. 31(9), 913–917 (1982). https://doi.org/10.1109/TC.1982.1676110

22. Plateau, B.: On the stochastic structure of parallelism and synchronization mod-
els for distributed algorithms. SIGMETRICS Perform. Eval. Rev. 13(2), 147–154
(1985). https://doi.org/10.1145/317795.317819

23. Smith, M.: Compositional abstractions for long-run properties of stochastic sys-
tems. In: Eighth International Conference on Quantitative Evaluation of Systems,
QEST 2011, pp. 223–232 (2011). https://doi.org/10.1109/QEST.2011.37

24. Sumita, U., Reiders, M.: Lumpability and time-reversibility in the aggregation-
disaggregation method for large Markov chains. Commun. Stat. Stoch. Model. 5,
63–81 (1989). https://doi.org/10.1080/15326348908807099

https://doi.org/10.1007/3-540-45804-2
https://doi.org/10.1007/3-540-45804-2
https://doi.org/10.4108/icst.valuetools.2013.254408
https://doi.org/10.4108/icst.valuetools.2013.254408
https://doi.org/10.1109/MASCOTS.2013.23
https://doi.org/10.1007/s00236-016-0266-1
https://doi.org/10.1007/s00236-016-0266-1
https://doi.org/10.1016/j.peva.2015.09.004
https://doi.org/10.1016/j.peva.2015.09.004
https://doi.org/10.1109/TC.1982.1676110
https://doi.org/10.1145/317795.317819
https://doi.org/10.1109/QEST.2011.37
https://doi.org/10.1080/15326348908807099

Expected Reachability-Price Games

Shibashis Guha1(B) and Ashutosh Trivedi2

1 Université libre de Bruxelles, Brussels, Belgium
shibashis.guha@ulb.ac.be

2 University of Colorado Boulder, Boulder, USA
ashutosh.trivedi@colorado.edu

Abstract. Probabilistic timed automata(PTA) model real-time systems
with non-deterministic and stochastic behavior. They extend Alur-Dill
timed automata by allowing probabilistic transitions and a price struc-
ture on the locations and transitions. Thus, a PTA can be considered as a
Markov decision process (MDP) with uncountably many states and tran-
sitions. Expected reachability-price games are turn-based games where
two players, player Min and player Max, move a token along the infinite
configuration space of PTA. The objective of player Min is to minimize
the expected price to reach a target location, while the goal of the Max
player is the opposite. The undecidability of computing the value in
the expected reachability-price games follows from the undecidability of
the corresponding problem on timed automata. A key contribution of
this work is a characterization of sufficient conditions under which an
expected reachability-price game can be reduced to a stochastic game
on a stochastic generalization of corner-point abstraction (a well-known
finitary abstraction of timed automata). Exploiting this result, we show
that expected reachability-price games for PTA with single clock and
price-rates restricted to {0, 1} are decidable.

1 Introduction

Two-player zero-sum games on finite automata were introduced by Ramadge
and Wonham [27] as a mechanism for supervisory controller synthesis of discrete
event systems. In this setting the two players—called Min and Max—represent
the controller and the environment, and controller synthesis corresponds to find-
ing a winning (or optimal) strategy of the controller for some given perfor-
mance objective. Timed automata [2](TA) extend finite automata by providing
a mechanism to model real-time behaviour, while priced timed automata are
timed automata with (time-dependent) prices attached to the locations of the
automata. If the game structure or objectives are dependent on time or price,
e.g. when the objective corresponds to completing a given set of tasks within
some deadline or within some cost, then games on timed automata are a well-
established approach for controller synthesis, see e.g. [1,3,6,11,15].

We study an extension of the above approach to a setting that is quantita-
tive in terms of both timed and probabilistic behavior. For this purpose, we con-
sider an extension of probabilistic timed automata (PTA) [5,19,24]—a model for
c© Springer Nature Switzerland AG 2019
É. André and M. Stoelinga (Eds.): FORMATS 2019, LNCS 11750, pp. 282–300, 2019.
https://doi.org/10.1007/978-3-030-29662-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29662-9_17&domain=pdf
https://doi.org/10.1007/978-3-030-29662-9_17

Expected Reachability-Price Games 283

real-time systems exhibiting nondeterministic and probabilistic behavior—with
a partition of locations between two players. In our model, priced probabilistic
timed game arena (PTGA), a token is placed on a configuration of a PTA and
a play of the game corresponds to a player selecting a timed move (i.e. a time
delay and an enabled action) and the token is moved according to the probabilis-
tic transition function of the PTA. Players Min and Max choose their moves in
order to minimize and maximize, respectively, the objective function. The upper
value of a game is the minimum expected value that Min can ensure, while the
lower value of a game is the maximum expected value that Max can ensure. A
game is determined if the lower and upper values are equal, and in this case the
optimal value of the game exists and equals the upper and lower values.

We are interested in reachability-price objectives, which express the expected
price to reach a given target set. It is well known that two-player reachability-
price games on timed arenas often lead to undecidability [1,11,12], even in non-
probabilistic setting [9,14]. We study restrictions of PTGA in order to recover
decidability. Our approach makes use of boundary region abstraction (BRA)
for probabilistic timed automata [17]. Boundary region abstraction is similar
to PTGA except that it restricts time delays to region boundaries. Boundary
region abstraction has the property that starting from any state, only a finitely
many other states can be reached. In particular, the reachable sub-graph of the
boundary region abstraction from the initial state is same as the corner-point
abstraction [8,10].

We characterize sufficient conditions under which the expected reachability-
price games on PTA can be reduced to expected reachability-price games on
the corresponding boundary region abstraction. This in particular characterizes
conditions under which, for starting states with integral clock valuations, the
expected reachability-price games can be reduced to corresponding corner-point
abstractions. Using this result, we show the decidability of expected reachability-
price problem for one-clock binary-priced PTGAs by reducing it to solving
stochastic games on corresponding corner-point abstractions. To our best knowl-
edge, this is the first decidability result for games on PTGA.

To understand the importance of our decidability result, let us review the
challenges in solving games on timed automata on various related sub-classes.
Brihaye et al. [12] showed the undecidability of deciding the existence of win-
ning strategy for reachability-price games (on non-stochastic timed game are-
nas) with both positive and negative price-rates and two or more clocks. The
next two examples highlight that permitting negative prices, or permitting non-
binary prices may require non-positional or non-boundary strategies even in
non-stochastic one-clock setting. The first example demonstrates that if negative
prices are allowed, positional strategies may not be sufficient even for one-clock
PTGA. The second example shows that even when positive prices are allowed,
region boundary strategies may not be optimal even for one-clock PTGA.

Example 1 (Negative prices may require non-positional strategies). The Min
player locations are represented using circles while the Max player locations are
represented using squares. The number in each location is the cost that is incurred

284 S. Guha and A. Trivedi

0

−1

l0 l2

l1

x := 0 x > 0

Fig. 1. Timed game arena with neg-
ative prices: no player has positional
strategies.

3 1
4

8

l0 l1

l2

l3

l4
x ≤ 2

x ≤ 3

x ≥ 4

x = 8

x = 7

Fig. 2. Timed game arena with non-
negative prices other than 0 and 1:
boundary strategies may not be optimal;
for Min player, the optimal transition
from l0 to l1 takes place at a time 4

3
.

when the token stays in that location for one time unit. The example in Fig. 1
appears in [12] where location l1 of player Max has a negative cost that is −1. It has
been shown in [12] that player Max needs an infinite memory strategy by staying
for a duration ε/2n for the n-th visit to location l1 to ensure a payoff of -ε. Since
this is true for every ε, it leads to a value 0 of the game. Besides, player Min also
needs a finite memory in order to achieve an arbitrarily small payoff.

Example 2. Consider the timed game arena in Fig. 2. A similar example with
two clocks appears in [11]. However, in this example there is only one clock x
that is never reset. We show that for the timed automaton in this example,
the reachability price problem cannot be reduced to the same problem in the
corresponding corner-point abstractions/boundary region abstraction. The cost
function at location l1 to reach the goal location l4 when the token reaches l4
with a clock value of x ≤ 2 is max(28 − x, 32 − 4x). This leads to the optimal
reachability price strategy for player Min to reach the goal location l4 to have
an associated cost of 30 2

3 when the transition from location l0 to location l1 is
taken at time 4

3 .

Related Work. Hoffman and Wong-Toi [18] were the first to define and solve
the optimal controller synthesis problem for timed automata. For a detailed
introduction to the topic of qualitative games on timed automata, see e.g. [4].
Asarin and Maler [3] initiated the study of quantitative games on timed automata
by providing a symbolic algorithm to solve reachability-time objectives. The
works of [13] and [22] show that the decision problem for such games over timed
automata with at least two clocks is EXPTIME-complete. The tool UPPAAL
Tiga [6] is capable of solving reachability and safety objectives for games on
timed automata. Jurdziński and Trivedi [23] show the EXPTIME-completeness
for average-time games on automata with two or more clocks.

A natural extension of games with reachability-time objectives are games
on priced timed automata where the objective concerns the cumulated price of
reaching a target. Both [1] and [11] present semi-algorithms for computing the

Expected Reachability-Price Games 285

value of such games for linear prices, while the semi-algorithms always terminate
under strongly Non-Zeno assumption on prices. In [12], it has been shown that
the problem is decidable for a class of one-clock bivalued timed automata where
the location prices can be any two from the set {−1, 0, 1}. In [14] the problem
of checking the existence of optimal strategies is shown to be undecidable, with
[9] showing undecidability holds even for three clocks and stopwatch prices.

Regarding one-player games on PTAs, [20] uses simple functions to devise a
symbolic algorithm for computing minimum reachability-time. In [7] the problem
of deciding whether a target can be reached within a given price and probability
bound is shown to be undecidable for PTAs with three clocks and binary prices.
Jurdziński et al. [21] show that the optimal expected cost problem is decidable
for concavely-priced probabilistic timed automata.

Organization. The structure of the paper is the following. In the next section
we recall required definitions to introduce turn-based priced probabilistic timed
game arena and boundary region abstraction. We introduce expected reachability-
price games in Sect. 3. In Sect. 4 we characterize conditions on the value of expected
reachability-price game on the boundary region abstraction such that this value
is equal to the value of the expected reachability-price game on the correspond-
ing PTGA. Finally, in Sect. 5 we use these conditions to prove decidability of the
expected reachability-price games on one-clock binary-priced PTGA.

2 Preliminaries

A discrete probability distribution over a countable set Q is a function d :
Q→[0, 1] such that

∑
q∈Q d(q)=1. For a possible uncountable set Q′, we define

D(Q′) to be the set of functions d : Q′ → [0, 1] such that the support set
supp(d) = {q ∈ Q | d(q)>0} is countable and d is a distribution over supp(d). We
say that d ∈ D(Q) is a point if d(q)=1 for some q ∈ Q.

2.1 Markov Decision Processes (MDPs)

We next introduce MDPs as modeling formalism for systems exhibiting nonde-
terministic and probabilistic behavior.

Definition 1 (Markov Decision Processe (MDP)). An MDP is a tuple
M = (S, F,A, p, π) where:

– S is the set of states including the set F of final states;
– A is the set of actions;
– p : S × A → D(S) is the probabilistic transition function;
– π : S×A → R�0 is the cost function.

We write A(s) for the set of actions available at s, i.e., the set of actions a
for which p(s, a) is defined. For technical convenience we assume that A(s) is
nonempty for all s ∈ S. In an MDP M, if the current state is s, then there is
a non-deterministic choice between the actions in A(s) and if action a is chosen
the probability of reaching the state s′ ∈ S is denoted by p(s′|s, a) def= p(s, a)(s′).

286 S. Guha and A. Trivedi

2.2 Probabilistic Timed Automata

We fix a constant k ∈ N and finite set of clocks Y. Let [[k]]R denote the set of
reals in [0, k], while [[k]]N denotes the set of naturals {0, 1, . . . , k}. A (k-bounded)
clock valuation is a function ν : Y → [[k]]R and we write V for the set of clock
valuations. Although clocks are usually allowed to take arbitrary non-negative
values, for technical convenience [8,17], we have restricted their values to be
bounded by the constant k.

If ν ∈ V and t ∈ R�0 then we write ν+t for the clock valuation defined by
(ν+t)(c) = ν(c)+t, for all c ∈ Y. For C ⊆ Y, we write ν[C:=0] for the clock
valuation where ν[C:=0](c) = 0 if c ∈ C, and ν[C:=0](c) = ν(c) otherwise. For
X ⊆ V , we write X for the smallest closed (topological) set in V containing
X. Let X ⊆ V be a convex subset of clock valuations and let F : X → R be a
continuous function. We write F for the unique continuous function F ′ : X → R,
such that F ′(ν) = F (ν) for all ν ∈ X.

The set of clock constraints over Y is the set of conjunctions of sim-
ple constraints, which are constraints of the form c �� i or c−c′ �� i, where
c, c′ ∈ Y, i ∈ [[k]]N, and ��∈ {<,>,=,�,�}. For every ν ∈ V , let CC(ν) be the set
of simple constraints that hold in ν. A clock region is a maximal set ζ ⊆ V , such
that CC(ν)=CC(ν′) for all ν, ν′ ∈ ζ. Every clock region is an equivalence class of
the indistinguishability-by-clock-constraints relation, and vice versa. Note that
ν and ν′ are in the same clock region if and only if the integer parts of the clocks
and the partial orders of the clocks, determined by their fractional parts, are the
same in ν and ν′, and if the fractional part of a clock c be 0 in ν, then it should
be 0 in ν′, and if it is positive in ν, then so it should be in ν′. We write [ν] for
the clock region of ν and, if ζ=[ν], write ζ[C:=0] for the clock region [ν[C:=0]].

A clock zone is a convex set of clock valuations, that is a union of a set of
clock regions. We write Z for the set of clock zones. For any clock zone W and
clock valuation ν, we use the notation ν ∈ W to denote that [ν] ⊆ W . A set of
clock valuations is a clock zone if and only if it is definable by a clock constraint.
Observe that, for every clock zone W , the set W is also a clock zone.

Definition 2 (Syntax). A priced probabilistic timed automaton (PPTA) is a
tuple T = (L,LF ,Y, Inv ,Act , E, δ, r) where:

– L is the finite set of locations including the set LF of final locations;
– Y is the finite set of clocks;
– Inv : L → Z is the invariant condition;
– Act is the finite set of actions;
– E : L×Act → Z is the action enabledness function;
– δ : (L×Act) → D(2Y×L) is the transition probability function;
– r : L ∪ L ×Act → R�0 is the price information function. A PPTA is binary-

priced when r() ∈ {0, 1} for all 	 ∈ L.

A probabilistic timed automaton (PTA) is a PPTA in which the cost on every
edge is 0, while the cost on the locations are all 1, i.e., r((, 	′)) = 0 for all
(, 	′) ∈ L × L and r() = 1 for all 	 ∈ L. A timed automaton is a PTA with the
property that δ(, a) is a point distribution for all 	 ∈ L and a ∈ Act .

Expected Reachability-Price Games 287

A configuration of a PPTA T is a pair (, ν), where 	 ∈ L is a location and
ν ∈ V is a clock valuation over Y such that ν ∈ Inv(). For any t ∈ IR≥0,
we let (, ν)+t equal the configuration (, ν+t). Informally, the behaviour of a
PPTA is as follows: In configuration (, ν) time passes before an available action
from Act is triggered, after which a discrete probabilistic transition occurs. Time
passage is available only if the invariant condition Inv() is satisfied while time
elapses, and an action a can be chosen after time t elapses only if it is enabled
after time elapse, i.e., if ν+t ∈ E(, a). Both the time and the action chosen are
nondeterministic. If an action a is chosen, then the probability of moving to a
location 	′ and resetting all of the clocks in C ⊆ Y to 0 is given by δ[, a](C, 	′).

Formally, the semantics of a PPTA is given by an MDP which has both an
uncountable number of states and an uncountable number of transitions.

Definition 3 (Semantics). Let T = (L,LF ,Y, Inv ,Act , E, δ, r) be a PPTA.
The semantics of T is the MDP [[T]] = (S, F,A, p, π) where

– S ⊆ L×V , the set of states, is such that (, ν) ∈ S if and only if ν ∈ Inv();
– F = S ∩ (LF × V) is the set of final states;
– A = R�0×Act is the set of timed actions;
– p : S ×A → D(S) is the probabilistic transition function such that for (, ν) ∈

S and (t, a) ∈ A, we have p((, ν), (t, a)) = d if and only if
• ν+t′ ∈ Inv() for all t′ ∈ [0, t];
• ν+t ∈ E(, a);
• d((′, ν′)) =

∑
C⊆Y∧(ν+t)[C:=0]=ν′ δ[, a](C, 	′) for all (′, ν′) ∈ S.

– π : S×A→R is the price function where π(s, (t, a))=r() · t + r(, a) for s =
(, ν) ∈ S and (t, a) ∈ A.

For the sake of notational convenience, we often write d(, ν) for d((, ν)).

2.3 Priced Probabilistic Timed Game Arena

Definition 4. A priced probabilistic timed game arena (PTGA) T is a triplet
(T, LMin, LMax) where T = (L,LF ,Y, Inv ,Act , E, δ, r) is a priced probabilistic
timed automaton and (LMin, LMax) is a partition of L.

The semantics of a PTGA T is the stochastic game arena [[T]] = ([[T]],
SMin, SMax) where [[T]] = (S, F,A, p, π) is the semantics of T, and SMin =
S∩(LMin×V) and SMax = S\SMin. Intuitively SMin is the set of states controlled
by player Min, and SMax is the set of states controlled by player Max.

In a turn-based game on T , players Min and Max move a token along the
states of the PPTA in the following manner. If the current state is s, then the
player controlling the state chooses an action (t, a) ∈ A(s) after which state
s′ ∈ S is reached with probability p(s′|s, a). In the next turn, the player con-
trolling the state s′ chooses an action in A(s′) and a probabilistic transition is
made accordingly. We say that (s, (t, a), s′) is a transition in T if p(s′|s, (t, a))>0
and a play of T is a sequence 〈s0, (t1, a1), s1, . . .〉 ∈ S×(A×S)∗ such that
(si, (ti+1, ai+1), si+1) is a transition for all i�0. We write Runs (FRuns) for the

288 S. Guha and A. Trivedi

set of infinite (finite) plays and Runss (FRunss) for the sets of infinite (finite)
plays starting from state s. For a finite play η let Last(η) denote the last state of
the play. Let Xi and Yi denote the random variables corresponding to ith state
and action of a play.

A strategy of player Min in T is a partial function μ : FRuns → D(A), defined
for η ∈ FRuns if and only if Last(η) ∈ SMin, such that supp(μ(η)) ⊆ A(Last(η)).
Strategies of player Max are defined analogously. We write ΣMin and ΣMax for
the set of strategies of players Min and Max, respectively. Let Runsμ,χ

s denote the
subset of Runss which corresponds to the set of plays in which the players play
according to μ ∈ ΣMin and χ ∈ ΣMax, respectively. A strategy σ is pure if σ(η) is
a Dirac distribution for all η ∈ FRuns for which it is defined, while it is positional
if Last(η)=Last(η′) implies σ(η)=σ(η′) for all η, η′ ∈ FRuns. We write ΠMin and
ΠMax for the set of positional strategies of player Min and player Max.

To analyse a stochastic game on T under a strategy pair (μ, χ), for every
state s of T , we define a probability space (Runsμ,χ

s ,FRunsμ,χ
s

,Probμ,χ
s) over the

set of infinite plays under strategies μ and χ with s as the initial state. Given a
real-valued random variable f : Runs → R, we can then define the expectation of
this variable E

μ,χ
s {f} with respect to strategy pair (μ, χ) when starting in s. For

technical reasons we make the following assumption [26] (a similar assumption
is required for finite MDP [16]):

Assumption 1 (Stopping Game assumption): For every strategy pair (μ, χ) ∈
ΣMin×ΣMax, and state s ∈ S we have that limi→∞ Probμ,χ

s (Xi ∈ F) = 1.

Given any PPTA without Assumption 1, a PPTA can be constructed for which
Assumption 1 holds using standard attractor computation in a two-player game.
This can be done by constructing the region graph of the PPTA.

2.4 Boundary Region Abstraction

A region is a pair (, ζ), where 	 is a location and ζ is a clock region such that
ζ ⊆ Inv(). For every s=(, ν), we write [s] for the region (, [ν]) and, we denote
by R the set of regions. A set Z ⊆ L×V is a zone if, for every 	 ∈ L, there is
a clock zone W� (possibly empty), such that Z = {(, ν) | 	 ∈ L ∧ ν ∈ W�}. For
a region R=(, ζ) ∈ R, we write R for the zone {(, ν) | ν ∈ ζ}, recall ζ is the
smallest closed set in V containing ζ.

For R,R′ ∈ R, we say that R′ is in the future of R, or that R is in the past
of R′, if there is s ∈ R, s′ ∈ R′ and t ∈ R�0 such that s′ = s+t; we then write
R →∗ R′. We say that R′ is the time successor of R if R →∗ R′, R �=R′, and
R →∗ R′′ →∗ R′ implies R′′=R or R′′=R′ and denote it by both R →+1 R′ and
R′ ←+1 R. We say that a region R ∈ R is thin if [s] �= [s+ε] for every s ∈ R
and ε>0; other regions are called thick. We write RThin and RThick for the sets
of thin and thick regions, respectively. Note that if R ∈ RThick then, for every
s ∈ R, there is an ε > 0, such that [s] = [s+ε]. Observe that the time successor
of a thin region is thick, and vice versa.

We say (, ν) ∈ L×V is in the closure of the region (, ζ), and we write
(, ν) ∈ (, ζ), if ν ∈ ζ. For any ν ∈ V , b ∈ [[k]]N and c ∈ Y such that ν(c)�b,

Expected Reachability-Price Games 289

we let time(ν, (b, c)) def= b−ν(c). Intuitively, time(ν, (b, c)) returns the amount of
time that must elapse from ν before clock c reaches the integer value b. Note
that, for any (, ν) ∈ L×V and a ∈ Act , if t = time(ν, (b, c)) is defined, then
(, [ν+t]) ∈ RThin and supp(p(· | (, ν), (t, a))) ⊆ RThin. Observe that, for every
R′ ∈ RThin, there is a number b ∈ [[k]]N and a clock c ∈ Y, such that, for every
R ∈ R in the past of R′, we have s ∈ R implies s+(b−s(c)) ∈ R′; and we write
R →b,c R′.

Intuition. The boundary region abstraction is motivated by the following. Con-
sider an a ∈ Act , s = (, ν) and R = (, ζ) →∗ R′ = (, ζ ′) such that s ∈ R and
R′ ∈ E(, a).

– If R′ ∈ RThick, then there are infinitely many t ∈ R�0 such that s+t ∈ R′.
However, amongst all such t’s, for one of the boundaries of ζ ′, the closer ν+t
is to this boundary, the ‘better’ the timed action (t, a) becomes for a player’s
objective. However, since R′ is a thick region, the set {t ∈ R�0 | s+t ∈ R′}
is an open interval, and hence does not contain its boundary values. Observe
that the infimum equals b−−ν(c−) where R →b−,c− R− →+1 R′ and the
supremum equals b+−ν(c+) where R →b+,c+ R+ ←+1 R′. In our abstraction
we include these ‘best’ timed actions through the actions ((b−, c−, a), R′) and
((b+, c+, a), R′). Stated otherwise, b− and b+ respectively denote the lower
and the upper boundary of the thick region R′ and the clocks c− and c+
correspond to the best timed actions.

– If R′ ∈ RThin, then there exists a unique t ∈ R�0 such that (, ν+t) ∈ R′.
Moreover since R′ is a thin region, there exists a clock c ∈ C and a number
b ∈ N such that R →b,c R′ and t = b−ν(c). In the boundary region abstraction
we summarise this ‘best’ timed action from region R to region R′ through
the action ((b, c, a), R′).

Based on this intuition the abstraction is formalized below.

Definition 5. Let T = (L,LF ,Y, Inv ,Act , E, δ) be a PPTA. The boundary
region abstraction of T is defined as the MDP T̂ = (Ŝ, F̂ , Â, p̂, π̂) where

– Ŝ = {((, ν), (, ζ)) | (, ζ) ∈ R ∧ ν ∈ ζ} and F̂ = {((, ν), (, ζ)) ∈ Ŝ | 	 ∈ LF};
– Â ⊆ ([[k]]N×Y×Act)×R is the finite set of boundary actions and for R ∈ R

we let Â(R) = {α ∈ Â((, ν), R) | ((, ν), R) ∈ Ŝ};
– for ((, ν), (, ζ)) ∈ Ŝ and boundary action ((b, c, a), (, ζa)) ∈ Â we have

p̂((, ν), (, ζ), ((b, c, a), (, ζa))) = d if and only if

d((′, ν′), (′, ζ ′)) =
∑

C⊆Y∧νa[C:=0]=ν′

∧ζa[C:=0]=ζ′

δ[, a](C, 	′)

for all ((′, ν′), (′, ζ ′)) ∈ Ŝ where νa = ν+time(ν, (b, c)) and one of the fol-
lowing conditions holds:

• (, ζ) →b,c (, ζa) and ζa ∈ E(, a);

290 S. Guha and A. Trivedi

• (, ζ) →b,c (, ζ−) →+1 (, ζa) for some (, ζ−) and ζa ∈ E(, a); and
• (, ζ) →b,c (, ζ+) ←+1 (, ζa) for some (, ζ+) and ζa ∈ E(, a).

– π̂ : Ŝ × Â → R is such that for ((, ν), (, ζ)) ∈ Ŝ and ((b, c, a), R) ∈
Â(((, ν), (, ζ))) we have

π̂(((, ν), (, ζ)), ((b, c, a), R)) = r(, a) + r() · (b − ν(c)).

Although the boundary region abstraction is uncountably infinite, for a fixed
initial state we can restrict attention to a finite state subgraph, thanks to the
following observation [17].

Lemma 1. For every state of a boundary region abstraction, its reachable sub-
graph is finite. Moreover, the reachable sub-graph from the initial valuation cor-
responds to the standard corner-point abstraction [8].

3 Expected Reachability-Price Games

In an expected reachability-price game (ERPG) on T = (T, LMin, LMax) player
Min attempts to reach the final states with cost as low as possible, while the
objective of player Max is the opposite. In fact, the cost is infinity if player Max
has a strategy such that a configuration in F ×V , that is one corresponding to a
goal location is never reached. More precisely, Min is interested in minimising her
losses, while player Max is interested in maximising his winnings where, if player
Min uses the strategy μ ∈ ΣMin and player Max uses the strategy χ ∈ ΣMax,
player Min loses the following to player Max:

EReach(s, μ, χ) def= E
μ,χ
s

{∑min{i | Xi∈F}
i=1

π(Xi−1, Yi)
}

.

Observe that player Max can choose his actions to win at least an amount
arbitrarily close to supχ∈ΣMax

infμ∈ΣMin EReach(s, μ, χ). This is called the lower
value Val(s) of the expected reachability-price game starting at s:

Val(s) def= supχ∈ΣMax
infμ∈ΣMin EReach(s, μ, χ) .

Similarly, player Min can choose to lose at most an amount arbitrarily close to
infμ∈ΣMin supχ∈ΣMax

EReach(s, μ, χ). This is the upper value Val(s) of the game:

Val(s) def= infμ∈ΣMin supχ∈ΣMax
EReach(s, μ, χ) .

It is easy to verify that Val(s) � Val(s) for all s ∈ S. We say that the expected
reachability-price game is determined if Val(s) = Val(s) for all s ∈ S. In this
case we also say that the value of the game exists and denote it by Val(s) =
Val(s) = Val(s) for all s ∈ S. The determinacy of expected reachability-price
games follow from Martin’s determinacy theorem [25].

Expected Reachability-Price Games 291

Proposition 1. Every Expected reachability-price game is determined.

For μ ∈ ΣMin and χ ∈ ΣMax we define Valμ(s) = supχ∈ΣMax
EReach(s, μ, χ)

and Valχ(s) = infμ∈ΣMin EReach(s, μ, χ). For an ε>0, we say that μ ∈ ΣMin or
χ ∈ ΣMax is ε-optimal if Valμ(s)�Val(s)+ε or Valχ(s)�Val(s)−ε, respectively,
for all s ∈ S. Since an expected reachability-price game is determined, for every
ε>0, both players have ε-optimal strategies. We say that a game is positionally-
determined if for every ε > 0 we have strategies με ∈ ΠMin and χε ∈ ΠMax such
that for every initial state s ∈ S, we have that

Val(s) − ε � Valχε
(s) and Val(s) + ε � Valμε(s).

Given an expected reachability-price game T , and initial state s ∈ S, and a
bound B ∈ R, the expected reachability-price game problem is to decide whether
Val(s) � B.

Optimality Equations. We now review optimality equations for characterising
the value in an expected reachability-price game. Let T be a priced probabilistic
timed game arena and let P : S → R�0. We say that P is a solution of optimality
equations Opt(T), and we write P |= Opt(T) if, for all s ∈ S:

P (s)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if s ∈ F

inf
τ∈A(s)

{π(s, τ)+
∑

s′∈S

p(s′|s, τ)·P (s′)} if s ∈ SMin\F

sup
τ∈A(s)

{π(s, τ)+
∑

s′∈S

p(s′|s, τ)·P (s′)} if s ∈ SMax\F.

Under Assumption 1, we have the following proposition.

Proposition 2. If P |= Opt(T), then Val(s) = P (s) for all s ∈ S and, for every
ε>0, both players have pure ε-optimal strategies.

Proof. We show that for every ε>0, there exists a pure strategy με : FRuns →
A for player Min, such that for every strategy χ for player Max, we have
EReach(s, με, χ) � P (s)+ε. The proof, that for every ε>0, there exists a pure
strategy χε : FRuns → A for player Max, such that for every strategy μ for player
Min, we have EReach(s, μ, χε)) � P (s) − ε, follows similarly. Together, these
claims imply that P is equal to the value function of the expected reachability-
time game, and the pure strategies με and χε, defined in the proof below for all
ε>0, are ε-optimal.

Let us fix ε>0 and με be a pure strategy where for every n ∈ N and finite
play r ∈ FRuns of length n, we have με(r) = (t, a) such that

π(t, a) +
∑

s′∈S

p(s′|Last(r), (t, a)) · P (s′) � P (Last(r))+
ε

2n+1
.

Observe that for every state s ∈ SMin and for every ε′ > 0, there is a ε′-optimal
timed action because P |= Opt(T).

292 S. Guha and A. Trivedi

Again using the fact that P |= Opt(T), it follows that, that for every s ∈
SMax \ F and (t, a) ∈ A(s), we have

P (s) � π(t, a)+
∑

s′∈S

p(s′|s, a) · P (s′) . (1)

Now for an arbitrary strategy χ for player Max, it follows by induction that for
every n � 1:

P (s) � E
με,χ
s

{
min{i | Xi∈F}∑

i=1

π(Xi−1, Yi)

}

+
∑

s′∈S\F

Probμε,χ
s (Xn=s′) · P (s′) − (1− 1

2n)·ε .
(2)

Using Assumption 1, we have limn→∞
∑

s′∈S\F

Probμε,χ
s (Xn=s′) = 0, and therefore

taking the limit in (2) we get the inequality:

P (s) � E
μ,χ
s {

min{i | Xi∈F}∑

i=1

π(Xi−1, Yi)} − ε = EReach(s, με, χ) − ε,

which completes the proof. �

Using Proposition 2, it follows that the problem of solving an expected
reachability-price game on T can be reduced to solving the optimality equa-
tions Opt(T). Forejt et al. [17] showed that solving optimality equations for a
reachability-time game on a probabilistic timed automata T can be reduced to
solving a reachability-time game on an abstraction, called the boundary region
abstraction. In the following section we study expected reachability-price games
on boundary region abstraction.

4 ERPG on Boundary Region Abstractions

For the rest of the paper, we assume that T is a binary-priced PTGA. The
partition of the locations of a PTGA T = (T, LMin, LMax) gives rise to a partition
(ŜMin, ŜMax) of the set of states Ŝ of its boundary region graph and let T̂ =
(T̂, ŜMin, ŜMax). Before we present our main theorem, we study the properties of
non-expansive and monotone value functions. For brevity, we call such functions
nice functions.

4.1 Nice Functions over Clock Valuations

Let X ⊆ V be a subset of valuations. A function F : X → R is non-expansive if
|F (ν)−F (ν′)| � ‖ν−ν′‖ for all ν, ν′ ∈ X.

Lemma 2 (Properties of Nice Functions). A function F : X → R is
nice if it is non-expansive and monotonically decreasing. We say a function
F : Ŝ → R�0 is regionally nice if for every region (, ζ) ∈ R the function
F ((, ·), (, ζ)) is nice. The nice functions satisfy the following properties.

Expected Reachability-Price Games 293

1. Continuous Closure. If F : X → R is nice, then its unique continuous
closure F : X → R is also a nice function.

2. Minimum and Maximum. If the functions F, F ′ : Ŝ → R are regionally
nice functions, then max(F, F ′) and min(F, F ′) are also regionally nice.

3. Convex Combination. The 〈fi〉n
i=1 are nice functions then for 〈pi ∈

[0, 1]〉n
i=1 with

∑n
i=1 pi = 1, the function

∑n
i=1 pi · fi is nice.

4. Limit. The limit of a sequence of nice functions is nice.

The following property of nice functions is useful in proving the correctness
of the reduction to the boundary region abstraction.

Lemma 3. Consider a binary-priced PTGA T . Let s = (, ν) ∈ S and (, ζ) ∈ R
such that (, [ν]) →∗ (, ζ). If F : Ŝ → R is regionally nice, then the function
F⊕

s,ζ,a : I → R defined as

t �→ π(s, (t, a)) +
∑

(C,�′)∈2Y×L
δ[, a](C, 	′)·F ((′, νt

C), (′, ζC))

is continuous and monotone, where I = {t ∈ R�0 | ν+t ∈ ζ}, νt
C = ν+t[C:=0]

and ζC = ζ[C:=0].

Proof. To prove this lemma we consider a t1 ∈ I, and for all t2 ∈ I and t2 ≥ t1,
we show that F⊕

s,ζ,a(t2)−F⊕
s,ζ,a(t1) is either greater than or equal to 0, or less

than or equal to 0. Since T is binary-priced, there are two cases: (i) r() = 1
and (ii) r() = 0.

For r() = 1, by definition we have F⊕
s,ζ,a(t2)−F⊕

s,ζ,a(t1) equals:

t2−t1 +
∑

(C,�′)∈2Y×L

δ[, a](C, 	′)·
(
F ((′, νt2

C), (′, ζC))−F ((′, νt1
C), (′, ζC))

)

= t2−t1−
∑

(C,�′)∈2Y×L

δ[, a](C, 	′)·
(
F ((′, νt1

C), (′, ζC))−F ((′, νt2
C), (′, ζC))

)

� t2−t1−
∑

(C,�′)∈2Y×L

δ[,a](C,	′)·(t2−t1) � 0

where the inequality is due to the fact the F is nice.
For the case r() = 0, we have that

F⊕
s,ζ,a(t2)−F⊕

s,ζ,a(t1) � −
∑

(C,�′)∈2Y×L

δ[,a](C,	′)·(t2−t1)

Hence for the case for the case when r() = 0, given a t1 ∈ I, for all t2 � t1, we
have that F⊕

s,ζ,a(t2)−F⊕
s,ζ,a(t1) � 0, and we are done. �

294 S. Guha and A. Trivedi

4.2 Optimality Equations

Consider the optimality equations for an expected reachability-price game on a
boundary region graph T̂ . Let P : Ŝ → R�0. We say that P is a solution of
optimality equations Opt(T̂), and we write P |= Opt(T̂), if for every s ∈ Ŝ:

P (s)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if s ∈ F̂

min
α∈ ̂A(s)

{π(s, α) +
∑

s′∈S

p(s′|s, α) · P (s′)} if s ∈ ŜMin\F̂

max
α∈ ̂A(s)

{π(s, α) +
∑

s′∈S

p(s′|s, α) · P (s′)} if s ∈ ŜMax\F̂ .

For a given function f : Ŝ → R over boundary region abstraction, we define
a transfer function f̃ : S → R over PTGA by f̃(, ν) = f((, ν), (, [ν])). The fol-
lowing theorem characterizes the conditions under which expected reachability-
price games on PTGAs can be reduced to expected reachability-price games over
the boundary region abstraction.

Theorem 1. Let T be a binary-priced priced probabilistic timed game. If P |=
Opt(T̂) and P is regionally nice then P̃ |= Opt(T).

Proof. Suppose P |= Opt(T̂). To prove this theorem it is sufficient to show that
for every s=(, ν) ∈ SMin we have:

P̃ (s) = inf(t,a)∈A(s)

{
π(s, (t, a)) +

∑
(C,�′)∈2Y×L δ[,a](C,	′)·P̃ (′,(ν+t)[C:=0])

}

(3)
and for every s=(, ν) ∈ SMax we have:

˜P (s) = sup(t,a)∈A(s)

{

π(s, (t, a)) +
∑

(C,�′)∈2Y ×L δ[�,a](C,�′)· ˜P (�′,(ν+t)[C:=0])
}

. (4)

In the remainder of the proof we restrict attention to Min states as the
case for Max states follows similarly. Therefore we fix s=(, ν) ∈ SMin for the
remainder of the proof. For a ∈ Act , let Ra

Thin and Ra
Thick denote the set of

thin and thick regions respectively that are successors of [ν] and are subsets of
E(, a). Considering the right hand side (RHS) of (3) we have:

RHS of (3) = min
a∈Act

{RThin(s, a), RThick(s, a)}, (5)

where RThin(s, a) (RThick(s, a)) is the RHS of (3) over all actions (t, a) such that
[ν+t] ∈ Ra

Thin ([ν+t] ∈ Ra
Thick). For the first term of (5) we have that RThin(s,a)

equals:

Expected Reachability-Price Games 295

min
(�,ζ)∈Ra

Thin

inf
t∈R∧
ν+t∈ζ

⎧
⎨

⎩
π(s, (t, a)) +

∑

(C,�′)∈2Y×L

δ[,a](C,	′)·P̃ (′,νt
C)

⎫
⎬

⎭

= min
(�,ζ)∈Ra

Thin

inf
t∈R∧
ν+t∈ζ

⎧
⎨

⎩
π(s, (t, a)) +

∑

(C,�′)∈2Y×L

δ[,a](C,	′)·P ((′,νt
C),(′,ζC))

⎫
⎬

⎭

= min
(�,ζ)∈Ra

Thin

⎧
⎨

⎩
π(s, (t(�,ζ), a)) +

∑

(C,�′)∈2Y×L

δ[,a](C,	′)·P ((′,νt(�,ζ)

C),(′,ζC))

⎫
⎬

⎭

where νt
C denotes the clock valuation (ν+t)[C:=0], t(�,ζ) the time to reach the

region R from s and ζC the region ζ[C:=0]. Considering the second term of (5)
we have that RThick(s,a) equals

min
(�,ζ)∈Ra

Thick

inf
t∈R∧
ν+t∈ζ

⎧
⎨

⎩
π(s, (t, a)) +

∑

(C,�′)∈2Y×L

δ[,a](C,	′)·P̃ (′,νt
C)

⎫
⎬

⎭

= min
(�,ζ)∈Ra

Thick

inf
t∈R∧
ν+t∈ζ

⎧
⎨

⎩
π(s, (t, a)) +

∑

(C,�′)∈2Y×L

δ[,a](C,	′)·P ((′,νt
C),(′,ζC))

⎫
⎬

⎭

= min
(�,ζ)∈Ra

Thick

inf
ts
R− <t<ts

R+
R←+1R−
R→+1R+

⎧
⎨

⎩
π(s, (t, a)) +

∑

(C,�′)∈2Y×L

δ[,a](C,	′)·P ((′,νt
C),(′,ζC))

⎫
⎬

⎭

Now P is regionally nice and, from Lemma 3 it follows that

π(s, (t, a)) +
∑

(C,�′)∈2Y×L
δ[, a](C, 	′)·P ((′, νt

C), (′, ζC))

is continuous and monotone over {t | ν+t ∈ ζ}, and hence minimized at one
of the boundaries, that is, either at tsR− or at tsR+

. Therefore it follows that
RThick(s, a) equals

min
(�,ζ)∈Ra

Thick

min
t=ts

R− ,ts
R+

(�,ζ)←+1R−
(�,ζ)→+1R+

⎧
⎨

⎩
π(s, (t, a)) +

∑

(C,�′)∈2Y×L

δ[,a](C,	′)·P ((′,νt
C),(′,ζC))

⎫
⎬

⎭

Substituting the values of RThin(s, a) and RThick(s, a) into (5) and observing
that, for every thin region (, ζ) ∈ Ra

Thin, there exist b ∈ Z and c ∈ C such that
ν+(b−ν(c)) ∈ ζ, it follows from Definition 5 that RHS of (3) equals:

minα∈ ̂A(s,[s])

{

π̂((s,[s]),α)+
∑

(s′,R′)∈̂S

p̂((s′,R′)|(s,[s]), α)·P (s′,R′)

}

which by definition equals P̃ (s) as required. �

296 S. Guha and A. Trivedi

5 One-Clock Binary-Priced PTGA

Theorem 1 characterizes conditions on the solution of optimality equations of the
boundary region abstraction for binary-priced PTGA under which its solution
also gives the solution for the corresponding PTGA. In this section we study
binary-priced one-clock PTGA and show that the solution of optimality equa-
tions for such games remain regionally nice. This result together with Theorem 1
proves the correctness of reduction of the expected reachability-price games for
1-clock binary-priced PTGA to the similar problem on the corresponding bound-
ary region abstraction. Let T be a one-clock binary-priced PTGA (1BPTA) and
we denote by x the only clock of the 1BPTA.

We prove the following property of nice functions in the context of one-clock
binary-priced PTGAs.

Lemma 4. Let T be a one-clock binary-priced PTGA and T̂ be its boundary
region abstraction. If F is regionally nice, then, for every R = (, ζ) and α ∈
Â(R), the function F�

(�,R,α) : V → R defined as

ν �→ π(((, ν), R), α) +
∑

s′∈S

p(s′|((, ν), R), α) · F (s′)

is nice.

Proof. Let us rewrite the function F�
(�,R,α) : V → R as

ν �→
∑

s′∈S

p(s′|((, ν), R), α) · (π(((, ν), R), α) + F (s′)).

From Lemma 2 (3), it suffices to show that (π(((, ν), R), α) + F (s′)) is a nice
function. Let ν(x) − ν′(x) = d. There are several cases to consider.

1. Price-rate of 	 is 0. There are two cases to consider.
(a) The action α resets the clock. In this case, the function (π(((, ν), R), α)+

F (s′)) is constant, and hence nice.
(b) The action α does not reset the clock. There are two cases to consider. The

first case is when α suggests 0 time delay. In this case, (π(((, ν), R), α)+
F (s′)) = F (′, ν) and that is a nice function in ν as F is a regionally nice
function. The second case is when α suggests d − ν(x) time delay. In this
case, (π(((, ν), R), α)+F (s′)) = 0 ∗ (d − ν(x))+F (′, d) is constant, and
hence a nice function.

2. Price-rate of 	 is 1. In this case there are two cases to consider.
(a) The action α resets the clock. In this case, the function (π(((, ν), R), α)+

F (s′)) is a simple function, and hence nice.
(b) The action α does not reset the clock. There are two cases to consider. The

first case is when α suggests 0 time delay. In this case, (π(((, ν), R), α)+
F (s′)) = F (′, ν) and that is a nice function in ν as F is a regionally
nice function. The second case is when α suggests d − ν(x) time delay.

Expected Reachability-Price Games 297

In this case, (π(((, ν), R), α)+F (s′)) = d−ν(x)+F (′, d) = c′ −ν(x). It
is easy to see that this function is also non-expansive and monotonically
decreasing.

The proof is now complete. �

We are now ready to state the key result of this section.

Proposition 3. Let T be a one-clock binary-priced PTGA. If P |= Opt(T̂),
then P is regionally nice.

Proof. Based on the optimality equations, we define the value improvement func-
tion Ψ : [Ŝ → R�0] → [Ŝ → R�0] such that for any f : Ŝ → R�0 and s ∈ Ŝ:

Ψ(f)(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if s ∈ F̂

min
α∈ ̂A(s)

{π(s, α) +
∑

s′∈S

p(s′|s, α)·f(s′)} if s ∈ ŜMin\F̂

max
α∈ ̂A(s)

{π(s, α) +
∑

s′∈S

p(s′|s, α)·f(s′)} if s ∈ ŜMax\F̂ .

(6)

Since we consider stopping assumption on PTGA, (Assumption 1) and in T̂
every state can only reach a finite sub-graph (Lemma 1), it follows that ΨN

is a p-contractive mapping where p is the smallest probability appearing on the
transitions of the PTGA and N is a finite upper bound (Lemma 1) on the number
of states reachable from any state in the corresponding BRA. Therefore, from
Banach’s fixed point theorem Ψ can be used in an iterative scheme to converge
to the solution of optimality equations Opt(T̂).

Starting the iterative scheme with a regionally nice function, from Lemma 4,
along with Lemmas 2(1–3), it follows that the intermediate iterates of Ψ in
(6) remain regionally nice. Now Lemma 2 (4) implies that the limit of these
sequences in also regionally nice, it follows that the fixpoint is also regionally
nice. Hence, for every one-clock binary-priced PTGA, the value of the optimality
equations Opt(T̂) is regionally nice. �

The following theorem follows from Theorem 1 and Proposition 3.

Theorem 2. The value of the expected reachability-price game on a one-clock
binary-priced PTGA T is equal to the value of the game on the corresponding
corner-point abstraction.

Corollary 1. The expected reachability-price game problem is decidable for one-
clock binary-priced PTGA.

6 Conclusion

In this work, we consider two-player games with expected reachability-price
objective over probabilistic timed automata. We show the decidability for one-
clock binary-priced PTGA where the expected reachability-price problem can be

298 S. Guha and A. Trivedi

reduced to the same problem over a boundary region graph abstraction. For this
purpose, we use the notion of nice functions that is a generalization of simple
functions introduced by Asarin and Maler in [3].

One clock timed automata have been widely studied for two-player games.
They can be used to model the time difference between two actions or time
needed to finish an action and so on. For two-player games, reachability time
objectives have been studied in [3] and [17]. Having both 0 and 1 costs is certainly
more expressive than having only cost 1 and the latter is well studied. On the
other hand, in [13] it has been shown that the reachability-price problem becomes
undecidable even for timed automata with more than two costs. This along with
the different examples shown in the paper indicate that the decidability result
is strong enough and may lead to undecidability by generalizing the class of
one-clock binary-priced PTGAs.

We note that the definition of boundary region abstraction has been devel-
oped for general PTGA and decidability can be recovered for cases where solu-
tions of Opt(T̂) is regionally nice and the cost functions are minimized or maxi-
mized at some boundary of a region. In particular, this has been shown to be the
case for one-clock binary-priced PTGA using Lemma 4 and Lemma 3. However,
it may be possible to extend the technique to broader classes of PTGA.

References

1. Alur, R., Bernadsky, M., Madhusudan, P.: Optimal reachability for weighted timed
games. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004.
LNCS, vol. 3142, pp. 122–133. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-27836-8 13

2. Alur, R., Dill, D.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–
235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

3. Asarin, E., Maler, O.: As soon as possible: time optimal control for timed automata.
In: Vaandrager, F.W., van Schuppen, J.H. (eds.) Proceedings of HSCC, pp. 19–30
(1999). https://doi.org/10.1007/3-540-48983-5 6

4. Asarin, E., Maler, O., Pnueli, A.: Symbolic controller synthesis for discrete and
timed systems. In: Antsaklis, P., Kohn, W., Nerode, A., Sastry, S. (eds.) HS 1994.
LNCS, vol. 999, pp. 1–20. Springer, Heidelberg (1995). https://doi.org/10.1007/3-
540-60472-3 1

5. Beauquier, D.: On probabilistic timed automata. Theor. Comput. Sci. 292(1), 65–
84 (2003). https://doi.org/10.1016/S0304-3975(01)00215-8

6. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.:
UPPAAL-tiga: time for playing games!. In: Damm, W., Hermanns, H. (eds.) CAV
2007. LNCS, vol. 4590, pp. 121–125. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-73368-3 14

7. Berendsen, J., Chen, T., Jansen, D.N.: Undecidability of cost-bounded reachability
in priced probabilistic timed automata. In: Chen, J., Cooper, S.B. (eds.) TAMC
2009. LNCS, vol. 5532, pp. 128–137. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-02017-9 16

8. Bouyer, P., Brihaye, T., Bruyère, V., Raskin, J.F.: On the optimal reachability
problem on weighted timed automata. Formal Meth. Syst. Des. 31(2), 135–175
(2007). https://doi.org/10.1007/s10703-007-0035-4

https://doi.org/10.1007/978-3-540-27836-8_13
https://doi.org/10.1007/978-3-540-27836-8_13
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/3-540-48983-5_6
https://doi.org/10.1007/3-540-60472-3_1
https://doi.org/10.1007/3-540-60472-3_1
https://doi.org/10.1016/S0304-3975(01)00215-8
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1007/978-3-642-02017-9_16
https://doi.org/10.1007/978-3-642-02017-9_16
https://doi.org/10.1007/s10703-007-0035-4

Expected Reachability-Price Games 299

9. Bouyer, P., Brihaye, T., Markey, N.: Improved undecidability results on weighted
timed automata. Inf. Process. Lett. 98, 188–194 (2006). https://doi.org/10.1016/
j.ipl.2006.01.012

10. Bouyer, P., Brinksma, E., Larsen, K.G.: Staying alive as cheaply as possible. In:
Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 203–218. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24743-2 14

11. Bouyer, P., Cassez, F., Fleury, E., Larsen, K.G.: Optimal strategies in priced timed
game automata. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol.
3328, pp. 148–160. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-30538-5 13

12. Brihaye, T., Geeraerts, G., Krishna, S.N., Manasa, L., Monmege, B., Trivedi, A.:
Adding negative prices to priced timed games. In: Proceedings of CONCUR, pp.
560–575 (2014). https://doi.org/10.1007/978-3-662-44584-6 38

13. Brihaye, T., Henzinger, T.A., Prabhu, V.S., Raskin, J.-F.: Minimum-time reacha-
bility in timed games. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.)
ICALP 2007. LNCS, vol. 4596, pp. 825–837. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-73420-8 71

14. Brihaye, T., Bruyère, V., Raskin, J.-F.: On optimal timed strategies. In: Pettersson,
P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 49–64. Springer, Heidelberg
(2005). https://doi.org/10.1007/11603009 5

15. Cassez, F., Jessen, J.J., Larsen, K.G., Raskin, J.-F., Reynier, P.-A.: Auto-
matic synthesis of robust and optimal controllers – an industrial case study. In:
Majumdar, R., Tabuada, P. (eds.) HSCC 2009. LNCS, vol. 5469, pp. 90–104.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00602-9 7

16. Alfaro, L.: Computing minimum and maximum reachability times in probabilistic
systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664,
pp. 66–81. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48320-9 7

17. Forejt, V., Kwiatkowska, M., Norman, G., Trivedi, A.: Expected reachability-time
games. Theor. Comput. Sci. 631, 139–160 (2016). https://doi.org/10.1016/j.tcs.
2016.04.021

18. Hoffmann, G., Wong-Toi, H.: The input-output control of real-time discrete event
systems. In: IEEE Real-Time Systems Symposium (RTSS). pp. 256–265 (1992).
https://doi.org/10.1109/REAL.1992.242655

19. Jensen, H.: Model checking probabilistic real time systems. In: Bjerner, B., Larsson,
M., Nordström, B. (eds.) Proceedings 7th Nordic Workshop Programming The-
ory, pp. 247–261. Report 86:247–261, Chalmers University of Technology (1996).
https://doi.org/10.1.1.23.2754

20. Jovanović, A., Kwiatkowska, M., Norman, G.: Symbolic minimum expected time
controller synthesis for probabilistic timed automata. In: Sankaranarayanan, S.,
Vicario, E. (eds.) FORMATS 2015. LNCS, vol. 9268, pp. 140–155. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-22975-1 10

21. Jurdziński, M., Kwiatkowska, M., Norman, G., Trivedi, A.: Concavely-priced prob-
abilistic timed automata. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009.
LNCS, vol. 5710, pp. 415–430. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-04081-8 28

22. Jurdziński, M., Trivedi, A.: Reachability-time games on timed automata. In: Arge,
L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp.
838–849. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73420-
8 72

https://doi.org/10.1016/j.ipl.2006.01.012
https://doi.org/10.1016/j.ipl.2006.01.012
https://doi.org/10.1007/978-3-540-24743-2_14
https://doi.org/10.1007/978-3-540-30538-5_13
https://doi.org/10.1007/978-3-540-30538-5_13
https://doi.org/10.1007/978-3-662-44584-6_38
https://doi.org/10.1007/978-3-540-73420-8_71
https://doi.org/10.1007/978-3-540-73420-8_71
https://doi.org/10.1007/11603009_5
https://doi.org/10.1007/978-3-642-00602-9_7
https://doi.org/10.1007/3-540-48320-9_7
https://doi.org/10.1016/j.tcs.2016.04.021
https://doi.org/10.1016/j.tcs.2016.04.021
https://doi.org/10.1109/REAL.1992.242655
https://doi.org/10.1.1.23.2754
https://doi.org/10.1007/978-3-319-22975-1_10
https://doi.org/10.1007/978-3-642-04081-8_28
https://doi.org/10.1007/978-3-642-04081-8_28
https://doi.org/10.1007/978-3-540-73420-8_72
https://doi.org/10.1007/978-3-540-73420-8_72

300 S. Guha and A. Trivedi

23. Jurdziński, M., Trivedi, A.: Average-time games. In: Hariharan, R., Mukund, M.,
Vinay, V. (eds.) Proceedings of FSTTCS. Dagstuhl Seminar Proceedings (2008).
https://doi.org/10.4230/LIPIcs.FSTTCS.2008.1765

24. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic verification of
real-time systems with discrete probability distributions. Theor. Comput. Sci. 282,
101–150 (2002). https://doi.org/10.1016/S0304-3975(01)00046-9

25. Martos, B.: The direct power of adjacent vertex programming methods.
Manage. Sci. 12(3), 241–252 (1965). https://doi.org/10.1287/mnsc.12.3.241.
http://www.jstor.org/stable/2627581

26. Neyman, A., Sorin, S. (eds.): Stochastic Games and Applications. NATO Science
Series C, vol. 570. Kluwer Academic Publishers, Dordrecht (2004). https://doi.
org/10.1007/978-94-010-0189-2

27. Ramadge, P.J., Wonham, W.M.: The control of discrete event systems. IEEE 77,
81–98 (1989). https://doi.org/10.1109/5.21072

https://doi.org/10.4230/LIPIcs.FSTTCS.2008.1765
https://doi.org/10.1016/S0304-3975(01)00046-9
https://doi.org/10.1287/mnsc.12.3.241
http://www.jstor.org/stable/2627581
https://doi.org/10.1007/978-94-010-0189-2
https://doi.org/10.1007/978-94-010-0189-2
https://doi.org/10.1109/5.21072

Author Index

Abate, Alessandro 142
Adzkiya, Dieky 142
Aichernig, Bernhard K. 216

Bakhirkin, Alexey 114
Bartocci, Ezio 123
Basset, Nicolas 114
Bouillard, Anne 96

Caccamo, Marco 247
Carvajal, Gonzalo 23

Dal Zilio, Silvano 79
Drechsler, Rolf 41

Ferrère, Thomas 59
Fischmeister, Sebastian 23

Guha, Shibashis 282

Hamilton, Nathaniel 160
Henzinger, Thomas A. 123

Jarabo, José-Ignacio Requeno 114
Jiang, Yu 123
Johnson, Taylor T. 160

Kong, Hui 123

Larsen, Kim Guldstrand 216
Le Botlan, Didier 79
Le, Hoang M. 41

Liu, Tong 23
Lorber, Florian 216
Lubat, Éric 79

Maler, Oded 59, 114
Marin, Andrea 265
Massoud, Rehab 41

Nguyen, Luan Viet 160
Ničković, Dejan 59

Pencolé, Yannick 79
Piazza, Carla 265

Rosenmann, Amnon 181, 199
Rossi, Sabina 265

Salem, Mahmoud 23
Subias, Audine 79
Syifa’ul Mufid, Muhammad 142

Tappler, Martin 216
Tran, Hoang-Dung 160
Trivedi, Ashutosh 282

Waga, Masaki 3
Wimmer, Simon 236

Xiang, Weiming 160

Zamani, Majid 247
Zhong, Bingzhuo 247

	Preface
	Organization
	Short Papers
	When Are Dense-Time Stochastic Systems Tameable?
	Safety Verification for Deep Neural Networks with Provable Guarantees
	Synthesis of Safe, Optimal and Compact Strategies for Stochastic Hybrid Games
	Contents
	Special Session on Data-Driven and Stochastic Approaches to Real-Time, Including Monitoring and Big Data
	Online Quantitative Timed Pattern Matching with Semiring-Valued Weighted Automata*-12pt
	1 Introduction
	2 Preliminary
	3 Timed Symbolic Weighted Automata
	4 Quantitative Timed Pattern Matching
	5 Trace Value Computation by Shortest Distance
	6 Online Algorithm for Quantitative Timed Pattern Matching
	7 Experiments
	8 Conclusions and Future Work
	References

	Assessing the Robustness of Arrival Curves Models for Real-Time Systems
	1 Introduction
	2 Arrival Curves and Demand Bound Functions
	2.1 Overview of Arrival Curves
	2.2 Assumed Task Model and Demand Bound Functions

	3 Computing Bounds on Task-Model Alteration
	4 Asymptotic Analysis for Task Alteration Parameters
	5 Application: Robustness Assessment for Empirical Arrival-Curves Models
	5.1 Representing Arrival Curves as Demand-Bound Functions
	5.2 Robustness Assessment Using Task Alteration Parameters
	5.3 Evaluation on QNX Traces from UAV

	6 Discussion
	6.1 Linearity Assumption for Arrival Curves
	6.2 Compositionality and Empirical Arrival Curves
	6.3 Handling Heterogeneous Task Parameters
	6.4 Iterative Model Assessment for Anomaly Detection

	7 Related Work on Sensitivity Analysis
	8 Conclusion
	References

	Property-Driven Timestamps Encoding for Timeprints-Based Tracing and Monitoring
	1 Introduction
	2 Background on Timeprints
	2.1 Timeprint Generation
	2.2 Temporal Properties

	3 Formulation
	3.1 Timestamps Generation Problem

	4 Timestamp Generation Algorithms
	4.1 SMT-Based Time-Stamps Generation
	4.2 Random-Based Time-Stamps Generation
	4.3 Incremental Time-Stamps Generation
	4.4 Greedy Algorithm
	4.5 Properties Based Generation

	5 Assessment
	5.1 Algorithms Run-Time
	5.2 Encoding with Properties

	6 Case-Study
	7 Conclusion
	References

	Mixed-Time Signal Temporal Logic
	1 Introduction
	2 Mixed-Time Signal Temporal Logic
	3 Expressivity
	4 Monitoring STL-mx
	5 Case Study
	6 Concluding Remarks
	References

	Timed Systems
	A State Class Construction for Computing the Intersection of Time Petri Nets Languages
	1 Introduction
	2 Time Petri Nets and Other Technical Background
	3 Product TPN and Their Semantics
	4 Construction of the State Class Graph for PTPN
	5 Expressiveness Results
	6 Experimental Results and Possible Applications
	7 Conclusion
	References

	Stability and Performance Bounds in Cyclic Networks Using Network Calculus
	1 Introduction
	2 Network Calculus Framework
	2.1 Data Flows and Server
	2.2 Performance Guarantees in a Server
	2.3 Network Model

	3 Worst-Case Backlog in Trees
	3.1 Algorithm
	3.2 Backlog and Arrival Curves for Aggregation of Flows
	3.3 Examples and Comparison with the State of the Art

	4 Computing Performances in Cyclic Networks
	4.1 Decomposition in Trees and Linear Program
	4.2 Stability of the Ring

	5 Numerical Evaluation
	5.1 Uniform Ring Example
	5.2 Two-Ring Example

	6 Conclusion
	References

	ParetoLib: A Python Library for Parameter Synthesis
	1 Introduction
	2 ParetoLib Library
	2.1 Main Features
	2.2 Interaction with Signal Temporal Logic

	3 Running ParetoLib
	3.1 Configuring the Oracle
	3.2 Saving and Plotting the Results

	4 Conclusion
	References

	Linear and Non-linear Systems
	Piecewise Robust Barrier Tubes for Nonlinear Hybrid Systems with Uncertainty
	1 Introduction
	2 Preliminaries
	3 Robust Barrier Certificate by Linear Programming
	4 Piecewise Robust Barrier Tubes
	4.1 Construction of the Enclosure-Box
	4.2 Computation of Robust Barrier Tube
	4.3 PRBT for Continuous Dynamics
	4.4 PRBT for Hybrid Dynamics

	5 Implementation and Experiments
	5.1 Nonlinear Continuous Systems
	5.2 Nonlinear Hybrid System

	References

	Bounded Model Checking of Max-Plus Linear Systems via Predicate Abstractions
	1 Introduction
	2 Model and Preliminaries
	2.1 Max-Plus Linear Systems
	2.2 Time Differences in MPL Systems
	2.3 Transition Systems and Linear Temporal Logic
	2.4 Abstractions and Predicate Abstractions

	3 Predicate Abstractions of MPL Systems
	3.1 Related Work
	3.2 Generation of the Predicates
	3.3 Generation of Abstract States
	3.4 Generation of Abstract Transitions
	3.5 Model Checking MPL Systems over Time-Difference Specifications: Direct Verification

	4 Bounded Model Checking of MPL Systems
	4.1 Checking Spuriousness of Counterexamples
	4.2 Refinement Procedure
	4.3 Upper-Bound on the Completeness Threshold

	5 Computational Benchmarks
	6 Conclusions
	References

	Reachability Analysis for High-Index Linear Differential Algebraic Equations
	1 Introduction
	2 Preliminaries
	2.1 Linear DAE System
	2.2 Modified Star Set

	3 Decoupling
	4 Consistency
	5 Reachability Analysis
	5.1 Reachable Set Computation
	5.2 Safety Verification and Falsification

	6 Experimental Results
	6.1 Scalability Performance
	6.2 Timing Performance

	7 Conclusion and Future Work
	References

	Timed Automata
	The Timestamp of Timed Automata
	1 Introduction
	2 Timed Automata with Silent Transitions
	3 The Trail and Timestamp of a Single Path
	4 Augmented and Infinite Augmented Region Automaton
	4.1 Infinite Augmented Region Automaton
	4.2 Augmented Region Automaton

	5 Eventual Periodicity
	5.1 Non-Zeno Cycles in Rt(A)
	5.2 A Period of Rt(A)
	5.3 Eventual Periodicity of Rt(A)

	6 Periodic Augmented Region Automaton
	7 The Timestamp
	7.1 Timestamp Automaton

	8 Conclusion and Future Research
	References

	On the Distance Between Timed Automata
	1 Introduction
	2 Timed Automaton
	3 Augmented Region Automaton
	4 Discretized Timed Automaton
	5 The Conformance Distance
	6 Computing the Conformance Distance
	7 Conclusion and Suggested Future Research
	References

	Time to Learn – Learning Timed Automata from Tests*-10pt
	1 Introduction
	2 Preliminaries
	2.1 Timed Automata
	2.2 Genetic Programming

	3 Genetic Programming for Timed Automata
	3.1 Creation of Initial Random Population
	3.2 Fitness Evaluation
	3.3 Creation of New Population
	3.4 Implementation

	4 Case Studies
	5 Conclusion
	References

	Munta: A Verified Model Checker for Timed Automata
	1 Objective and Overview
	2 Functionality
	2.1 Modeling Language
	2.2 Correctness Theorem
	2.3 Input Format
	2.4 Modeling Checking Capabilities
	2.5 Graphical User Interface

	3 Architecture
	3.1 Isabelle/HOL Formalization
	3.2 Code Extraction and Glue Code

	4 Discussion
	4.1 Comparison to Other Tools
	4.2 Trusted Code Base

	5 Conclusion and Future Work
	References

	Special Session on Timed Systems and Probabilities
	Sandboxing Controllers for Stochastic Cyber-Physical Systems
	1 Introduction
	2 Problem Formulation
	2.1 Preliminaries
	2.2 Notations
	2.3 Model Description and Problem Formulation

	3 Design of Safe-Visor
	3.1 Safety Advisor
	3.2 Supervisor

	4 Case Study
	4.1 Temperature Control Problem
	4.2 Traffic Control Problem

	5 Conclusion and Future Work
	References

	Proportional Lumpability
	1 Introduction
	2 CTMCs and Proportional Lumpability
	3 PEPA and Proportional Lumpability
	4 Conclusion
	References

	Expected Reachability-Price Games
	1 Introduction
	2 Preliminaries
	2.1 Markov Decision Processes (MDPs)
	2.2 Probabilistic Timed Automata
	2.3 Priced Probabilistic Timed Game Arena
	2.4 Boundary Region Abstraction

	3 Expected Reachability-Price Games
	4 ERPG on Boundary Region Abstractions
	4.1 Nice Functions over Clock Valuations
	4.2 Optimality Equations

	5 One-Clock Binary-Priced PTGA
	6 Conclusion
	References

	Author Index

