
Chapter 6
Generalized Langevin Equation

The Langevin equation is connected to the Brownian motion formulated by Einstein
and Smoluchowski. The Langevin equation for a free particle with mass m is given
by Langevin [35] (for details, see Ref. [11])

mv̇(t) + γ v(t) = ξ(t), (6.1)

ẋ(t) = v(t),

where x(t) is the particle displacement, v(t) is its velocity, γ is the friction
coefficient, and ξ(t) is a Gaussian random noise with zero mean 〈ξ(t)〉 = 0 (so-
called white noise). Its correlation has the form

〈ξ(t)ξ(t ′)〉 = 2γ kBT δ(t ′ − t), (6.2)

where kB is the Boltzmann constant, T is the absolute temperature of the envi-
ronment in which the particle is immersed, and 2γ kBT is the so-called spectral
density. The notation 〈·〉 means ensemble averaging, i.e., statistical averaging over
an ensemble of particles at a given moment of time t . Relation (6.2) represents the
second fluctuation-dissipation theorem, which is valid only in case of internal noise
ξ(t). The Langevin equation (6.1) actually is obtained from the second Newton law
of motion of a particle in presence of viscous dynamic friction force −γ ẋ(t) and
an internal random noise ξ(t), which is a residual force due to the interaction of the
surrounding molecules on the particle. For a free particle, the MSD at long times
reads

〈x2(t)〉 = 2kBT

γ
t,
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which is Einstein relation for the Brownian motion. From the MSD, one concludes
that the Langevin equation (6.1) describes normal diffusion process, with diffusion
coefficient given by

D = lim
t→∞

〈x2(t)〉
2t

= kBT

γ
.

For the same process, the VACF has exponential decay in respect of time (for details,
see next section)

〈v(t)v(0)〉 = kBT

m
e− γ

m
t .

For a particle in a given potential V (x), the corresponding Langevin equation
becomes

mv̇(t) + γ v(t) + dV (x(t))

dx
= ξ(t), (6.3)

ẋ(t) = v(t),

where

F(x) = −dV (x(t))

dx

is an additional force which acts on the particle due to the potential V (x). For
harmonic potential

V (x) = mω2x2

2
,

the Langevin equation (6.3) turns to

mẍ(t) + γ ẋ(t) + mω2x(t) = ξ(t), (6.4)

ẋ(t) = v(t),

where ω is the frequency of the oscillator, and m is its mass.
For an internal noise whose correlation is not of the form (6.2), then the Langevin

equation (6.3) becomes a GLE [34],

ẍ(t) +
∫ t

0
γ (t − t ′)ẋ(t ′)dt ′ + dV (x(t))

dx
= ξ(t), (6.5)

ẋ(t) = v(t),
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where we set m = 1, and γ (t) is the generalized friction memory kernel. The
internal noise ξ(t) is of a zero mean (〈ξ(t)〉 = 0), whose correlation is given by

〈ξ(t)ξ(t ′)〉 = C(t ′ − t). (6.6)

When the system reaches an equilibrium state, i.e., the noise is internal, the
correlation is related to the friction memory kernel via the second fluctuation-
dissipation theorem [34, 42, 72] in the following way:

C(t) = kBT γ (t), (6.7)

This means that fluctuation and dissipation come from the same source. The friction
memory kernel satisfies [12]

lim
t→∞ γ (t) = lim

s→0
sγ̂ (s) = 0,

where γ̂ (s) = L [γ (t)](s) is the Laplace transform of γ (t). If the fluctuation and
dissipation do not come from the same source (in case of external noise), then
the second fluctuation-dissipation theorem (6.7) is not satisfied, and the system
does not reach a unique equilibrium state. The GLE (6.5) for a free particle
(V (x) = 0) in case of a stationary Gaussian random force ξ(t), in case when the
second fluctuation-dissipation theorem holds, describes a stationary, Gaussian, non-
Markovian process [19, 20].

GLE has been used to describe anomalous diffusion processes. In the pioneer
work of Mainardi and Pironi [42], the authors introduced fractional Langevin
equation and showed that it is a special case of a GLE. The M-L function appears
in the analysis of the MSD and VACF for a given GLE. Thus, Mainardi and Pironi
[42] for the first time in the literature represented the velocity and displacement
correlation functions in terms of the M-L functions, and generalized the results for
the standard Brownian motion (see also Ref. [40]).

6.1 Free Particle: Generalized M-L Friction

In this section we consider anomalous diffusion of a free particle with mass m = 1,
driven by stationary random force ξ(t) [34, 42, 72]:

v̇(t) +
∫ t

0
γ (t − t ′)v(t ′)dt ′ = ξ(t), (6.8)

ẋ(t) = v(t),

where the noise ξ(t) is internal noise. Therefore, the second fluctuation-dissipation
theorem (6.7) holds.
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The anomalous diffusion process can be modeled by GLE with internal noise,
which correlation is of power-law form [5, 6, 12, 39, 68]

C(t) = Cλ

t−λ

Γ (1 − λ)
,

where Cλ is a proportionality coefficient independent on time and which dependents
on the exponent λ (0 < λ < 1 or 1 < λ < 2). In some investigations [40, 42] the
friction memory kernel is represented as a superposition of Dirac delta and power-
law function.

Generalization of the power law correlation function is the one parameter M-L
correlation function [7, 66, 67]

C(t) = Cλ

τλ
Eλ(−(t/τ )λ),

where τ is the characteristic memory time, 0 < λ < 2, and Eλ(z) is the one
parameter M-L function (1.1). Furthermore, more generalized friction memory
kernel of the form

C(t) = Cλ

τλ
tν−1Eλ,ν(−(t/τ )λ),

was introduced [8, 16], where Eλ,ν(z) is the two parameter M-L function (1.4).
We have introduced the three parameter M-L friction memory kernel [59]

C(t) = Cα,β,δ

ταδ
tβ−1Eδ

α,β

(
− tα

τα

)
, (6.9)

where τ is the characteristic memory time, Cα,β,δ may depend on α, β, and δ (α > 0,
β > 0, δ > 0), and Eδ

α,β(z) is the three parameter M-L function (1.14). This noise
(6.9) contains several parameters and a number of limiting cases, which means that
the obtained results can be used for better description and fits of experimental data.
Note that, from relation (1.29), for the generalized M-L noise (6.9) one has

γ (t) � t−αδ+β−1, t → ∞. (6.10)

For fulfillment of the condition the friction memory kernel γ (t) goes to zero for
t → ∞ [12],

lim
t→∞ γ (t) = lim

s→0
sγ̂ (s) = 0, (6.11)

where γ̂ (s) = L [γ (t)](s), one should consider such values of parameters for which
β < 1 + αδ is satisfied.
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The three parameter M-L noise (6.9) is a generalization of the two parameter M-
L noise, which is obtained for δ = 1. For β = δ = 1 it yields the one parameter
M-L noise. From the asymptotic behavior of three parameter M-L noise (6.9), for
τ → 0, β = δ = 1 and α �= 1, one recovers the power-law correlation function.
Setting α = δ = 1, the correlation function corresponds to the one for the standard
Ornstein-Uhlenbeck process

C(t) = C1,1,1

τ
e−t/τ ,

which for τ → 0 turns to the correlation function for the standard Brownian motion.

6.1.1 Relaxation Functions

In order to find the MSD and VACF we use the Laplace transform method [40, 42],
and the so-called relaxation functions. Thus, from Eq. (6.8) it follows

L [v(t)] = v0
1

s + L [γ (t)] + 1

s + L [γ (t)]L [ξ(t)]. (6.12)

From relation (6.12) for the displacement x(t) and velocity v(t) = ẋ(t) one obtains

x(t) = 〈x(t)〉 +
∫ t

0
G(t − t ′)ξ(t ′) dt ′, (6.13)

v(t) = 〈v(t)〉 +
∫ t

0
g(t − t ′)ξ(t ′) dt ′, (6.14)

where

〈x(t)〉 = x0 + v0G(t), (6.15)

〈v(t)〉 = v0g(t) (6.16)

and

G(t) =
∫ t

0
g(t ′) dt ′. (6.17)

The function g(t) represents inverse Laplace transform of ĝ(s),

ĝ(s) = 1

s + γ̂ (s)
, (6.18)
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where

γ̂ (s) = L [γ (t)](s) = Cα,β,δ

kBT ταδ

sαδ−β

(
sα + τ−α

)δ
is obtained from Laplace transform formula (1.17) for the three parameter M-L
function. The function

I (t) =
∫ t

0
G(t ′) dt ′ (6.19)

is also of interest in the analysis of the velocity and displacement correlation
functions as we will see later. Therefore,

Ĝ(s) = s−1ĝ(s) = 1

s2 + sγ̂ (s)
, (6.20)

and

Î (s) = s−1Ĝ(s) = s−1

s2 + sγ̂ (s)
. (6.21)

These functions I (t), G(t), and g(t) are known as relaxation function, and by
analysis of their behavior one can show the existence of anomalous diffusion.

From relation (6.18) it follows

ĝ(s) = 1

s + γα,β,δ
sαδ−β

(sα+τ−α)
δ

= s
1+β

2 −1

s
1+β

2 + γα,β,δ
s
αδ− 1+β

2

(sα+τ−α)
δ

, (6.22)

where γα,β,δ = Cα,β,δ

kBT ταδ . Relaxation function g(t) can be obtained by applying

relation (1.18) with α → 1+β
2 , ρ → α, γ → δ, λ → −γα,β,δ , ν → −τ−α ,

μ → 1 to (6.22). Thus, we obtain [59]

g(t) =
∞∑

k=0

(−1)kγ k
α,β,δt

(1+β)kEδk
α,(1+β)k+1

(−(t/τ )α
)
. (6.23)

By using relation (1.19) in (6.19) and (6.17), one finds

G(t) =
∞∑

k=0

(−1)kγ k
α,β,δt

(1+β)k+1Eδk
α,(1+β)k+2

(−(t/τ )α
)
, (6.24)

I (t) =
∞∑

k=0

(−1)kγ k
α,β,δt

(1+β)k+2Eδk
α,(1+β)k+3

(−(t/τ )α
)
. (6.25)
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The mean velocity (6.16) and mean particle displacement (6.15) then become

〈v(t)〉 = v0

∞∑
k=0

(−1)kγ k
α,β,δt

(1+β)kEδk
α,(1+β)k+1

(−(t/τ )α
)
, (6.26)

〈x(t)〉 = x0 + v0

∞∑
k=0

(−1)kγ k
α,β,δt

(1+β)k+1Eδk
α,(1+β)k+2

(−(t/τ )α
)
. (6.27)

Note that for τ → 0, by using relation (1.28), for the relaxation functions we have

g(t) = E1+β−αδ

(
−Cα,β,δ

kBT
t1+β−αδ

)
, (6.28)

G(t) = tE1+β−αδ,2

(
−Cα,β,δ

kBT
t1+β−αδ

)
, (6.29)

I (t) = t2E1+β−αδ,3

(
−Cα,β,δ

kBT
t1+β−αδ

)
, (6.30)

from where for β = δ = 1, which corresponds to the power-law correlation
function, we obtain the well-known results (see, for example, [39])

I (t) = t2E2−α,3

(
−Cα,1,1

kBT
t2−α

)
� kBT

Cα,1,1

tα

Γ (1 + α)
for t → ∞. (6.31)

Remark 6.1 ([59]) The function g(t) given by (6.23) is uniformly convergent series
with argument t/τ for all t ∈ R. This can be shown in the following way. The
function g(t) is a double series of form

g(t) =
∞∑

k=0

bkt
(1+β)k

∞∑
m=0

fk,m(t), (6.32)

where bk = (−1)kγ k
α,β,δ , and

fk,m(t) = (δk)m

Γ (αm + (1 + β)k + 1)

(−1)m

m!
(

t

τ

)αm

.

To show that the series (6.32) converges uniformly, we have to demonstrate that
both series with respect to columns (keeping k fixed and summing m) and the series
with respect to the rows (summing k for fixed m) lead to uniformly convergent
series. In that case the resulting function g(t) is continuous within the radius of
convergence and can be integrated within the interval of convergence. As the three
parameter M-L function (1.14) defines an absolutely converging function, which is
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easily demonstrated by a ratio test, we only need to verify the summation over k

with fixed m. Let us use

ak = bk

(δk)m

Γ (αm + (1 + β)k + 1)
.

By using [31]

Γ (z + a)

Γ (z + b)
= za−b

[
1 + (a − b)(a + b − 1)

2z
+ O

(
1

z2

)]
, (6.33)

(|z| → ∞, | arg(z)| ≤ π − ε, | arg(z + a)| ≤ π − ε, 0 < ε < π)

we find that
∣∣∣∣∣
ak+1t

(1+β)(k+1)

akt(1+β)k

∣∣∣∣∣ =
∣∣∣∣∣
γα,β,δΓ (δ(k + 1) + m)Γ (δk)Γ (αm + (1 + β)k + 1)t1+β

Γ (δ(k + 1))Γ (δk + m)Γ (αm + (1 + β)(k + 1) + 1)

∣∣∣∣∣
=
∣∣∣γα,β,δt

1+β
∣∣∣×
∣∣∣∣Γ (δk + δ + m)

Γ (δk + δ)

∣∣∣∣×
∣∣∣∣ Γ (δk)

Γ (δk + m)

∣∣∣∣
×
∣∣∣∣ Γ ((1 + β)k + αm + 1)

Γ ((1 + β)k + αm + 1 + (1 + β))

∣∣∣∣
�
∣∣∣γα,β,δt

1+β
∣∣∣ |αm + (1 + β)k + 1|−(1+β) , (6.34)

which goes to zero if k → ∞. Thus we prove that the series is uniformly convergent.
The convergence of series in M-L functions has been extensively studied by Paneva-
Konovska in a series of works [49–51].

6.1.2 Velocity and Displacement Correlation Functions

From the general expressions for the velocity and displacement correlation functions
[12, 52]

〈v(t)v(t ′)〉 = kBT g(|t − t ′|) +
(
v2

0 − kBT
)

g(t)g(t ′), (6.35a)

〈x(t)x(t ′)〉 = x2
0 +

(
v2

0 − kBT
)

G(t)G(t ′) + C0v0
(
G(t) + G(t ′)

)

+ kBT
(
I (t) + I (t ′) − I (|t − t ′|)) , (6.35b)
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we obtain the following exact results for the generalized M-L memory kernel [59]

〈v(t)v(t ′)〉 = kBT

∞∑
k=0

(−1)kγ k
α,β,δ(|t − t ′|)(1+β)kEδk

α,(1+β)k+1

(−(|t − t ′|/τ)α
)

+
(
v2

0 − kBT
) ∞∑

k=0

(−1)kγ k
α,β,δt

(1+β)kEδk
α,(1+β)k+1

(−(t/τ )α
)

×
∞∑
l=0

(−1)lγ l
α,β,δt

′(1+β)lEδl
α,(1+β)l+1

(−(t ′/τ)α
)
, (6.36)

〈x(t)x(t ′)〉 = x2
0 +

(
v2

0 − kBT
) ∞∑

k=0

(−1)kγ k
α,β,δt

(1+β)k+1Eδk
α,(1+β)k+2

(−(t/τ )α
)

×
∞∑
l=0

(−1)lγ l
α,β,δt

′(1+β)l+1Eδl
α,(1+β)l+2

(−(t ′/τ)α
)

+ x0v0

∞∑
k=0

(−1)kγ k
α,β,δ

×
[
t (1+β)k+1Eδk

α,(1+β)k+2

(−(t/τ )α
)

+t ′(1+β)k+1Eδk
α,(1+β)k+2

(−(t ′/τ)α
)]

+ kBT

∞∑
k=0

(−1)kγ k
α,β,δ

×
[
t (1+β)k+2Eδk

α,(1+β)k+3

(−(t/τ )α
)

+t ′(1+β)k+2Eδk
α,(1+β)k+3

(−(t ′/τ)α
)]

− kBT

∞∑
k=0

(−1)kγ k
α,β,δ(|t − t ′|)(1+β)k+2

× Eδk
α,(1+β)k+3

(−(|t − t ′|/τ)α
)
.

(6.37)

For t = t ′ it eventually leads to

〈v2(t))〉 = kBT +
(
v2

0 − kBT
)( ∞∑

k=0

(−1)kγ k
α,β,δt

(1+β)kEδk
α,(1+β)k+1

(−(t/τ )α
))2

,

(6.38)
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〈x2(t)〉 = x2
0 +

(
v2

0 − kBT
)( ∞∑

k=0

(−1)kγ k
α,β,δt

(1+β)k+1Eδk
α,(1+β)k+2

(−(t/τ )α
))2

+ 2x0v0

∞∑
k=0

(−1)kγ k
α,β,δt

(1+β)k+1Eδk
α,(1+β)k+2

(−(t/τ )α
)

+ 2kBT

∞∑
k=0

(−1)kγ k
α,β,δt

(1+β)k+2Eδk
α,(1+β)k+3

(−(t/τ )α
)
. (6.39)

Thus, for the time-dependent diffusion coefficient [42, 53]

D(t) = 1

2

d

dt
〈x2(t)〉, (6.40)

by using relation (1.19) we obtain

D(t) =
(
v2

0 − kBT
)[ ∞∑

k=0

(−1)kγ k
α,β,δt

(1+β)k+1Eδk
α,(1+β)k+2

(−(t/τ )α
)]

×
[ ∞∑

l=0

(−1)lγ l
α,β,δt

(1+β)lEδl
α,(1+β)l+1

(−(t/τ )α
)]

+ x0v0

∞∑
k=0

(−1)kγ k
α,β,δt

(1+β)kEδk
α,(1+β)k+1

(−(t/τ )α
)

+ kBT

∞∑
k=0

(−1)kγ k
α,β,δt

(1+β)k+1Eδk
α,(1+β)k+2

(−(t/τ )α
)
. (6.41)

Here we consider thermal initial conditions x0 = 0 and v0 = kBT . From the
general expressions of the velocity and displacement correlation functions (6.35a)
and (6.35b), one finds that the relaxation functions, under the assumption (6.11),
are connected to the MSD, time dependent diffusion coefficient and VACF in the
following way [12, 42, 66], respectively,

〈
x2(t)

〉
= 2kBT I (t), (6.42)

D(t) = 1

2

d

dt

〈
x2(t)

〉
= kBT G(t), (6.43)

CV (t) = 〈v(t)v(0)〉〈
v2(0)

〉 = g(t). (6.44)
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Furthermore, these relaxation functions can be used to find variances [12, 17, 66, 68]

σxx = 〈x2(t)〉 − 〈x(t)〉2 = kBT
[
2I (t) − G2(t)

]
, (6.45a)

σxv = 〈(v(t) − 〈v(t)〉)(x(t) − 〈x(t)〉)〉

= 1

2

dσxx

dt
= kBT G(t) [1 − g(t)] , (6.45b)

σvv = 〈v2(t)〉 − 〈v(t)〉2 = kBT
[
1 − g2(t)

]
. (6.45c)

Therefore, for thermal initial conditions, x0 = 0 and v2
0 = kBT , for the MSD (6.39),

D(t) (6.41) and VACF (6.36), we obtain [59]

〈x2(t)〉 = 2kBT

∞∑
k=0

(−1)kγ k
α,β,δt

(1+β)k+2Eδk
α,(1+β)k+3

(−(t/τ )α
) = 2kBT I (t),

(6.46)

D(t) = kBT

∞∑
k=0

(−1)kγ k
α,β,δt

(1+β)k+1Eδk
α,(1+β)k+2

(−(t/τ )α
) = kBT G(t),

(6.47)

CV (t) = 〈v(t)v(0)〉
kBT

=
∞∑

k=0

(−1)kγ k
α,β,δt

(1+β)kEδk
α,(1+β)k+1

(−(t/τ )α
) = g(t),

(6.48)

respectively. Graphical representation of the MSD (6.46) and VACF (6.48), in case
of thermal initial conditions is given in Figs. 6.1, 6.2 and 6.3.

6.1.3 Anomalous Diffusive Behavior

The anomalous diffusive behavior of the particle can be obtained either from the
exact results by using properties of the three parameter M-L function or by using
the Tauberian theorems [18] (see Appendix B), as it was done by Gorenflo and
Mainardi in Ref. [24]. From relation (1.28) it follows that

γ (t) � γα,β,δτ
αδ

Γ (β − αδ)
× t−αδ+β−1
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Fig. 6.1 Graphical representation of the MSD (6.46) for τ = 1, Cα,β,δ = 1, kBT = 1; (a)
β = δ = 1: α = 1 (solid line), α = 1/2 (dashed line), α = 3/2 (dot-dashed line); (b) α = δ = 1:
β = 1 (solid line), β = 1/2 (dashed line), β = 3/2 (dot-dashed line); (c) α = 3/2, β = 1,
δ = 1/2 (solid line), α = β = 1/2, δ = 3/4 (dashed line), α = 3/4, β = 1/2, δ = 1 (dot-dashed
line). Reprinted from Physica A, 390, T. Sandev, Z. Tomovski, and J.L.A. Dubbeldam, Generalized
Langevin equation with a three parameter Mittag-Leffler noise, 3627–3636, Copyright (2011), with
permission from Elsevier

for long times (αδ �= β), so from the Tauberian theorems, one obtains [59]

γ̂ (s) � Cα,β,δ

kBT
· sαδ−β, s → 0. (6.49)

From (6.18), (6.17), (6.19), (6.112), and (1.17) it follows

ĝ(s) � 1

s + Cα,β,δ

kBT
· sαδ−β

= sβ−αδ

s1+β−αδ + Cα,β,δ

kBT

, s → 0, (6.50)

g(t) � E1+β−αδ

(
−Cα,β,δ

kBT
· t1+β−αδ

)
, t → ∞, (6.51)

G(t) � tE1+β−αδ,2

(
−Cα,β,δ

kBT
· t1+β−αδ

)
, t → ∞, (6.52)

I (t) � t2E1+β−αδ,3

(
−Cα,β,δ

kBT
· t1+β−αδ

)
, t → ∞. (6.53)
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Fig. 6.2 Graphical representation of the VACF (6.48) for τ = 1, Cα,β,δ = 1, kBT = 1; (a)
β = δ = 1: α = 1 (solid line), α = 1/2 (dashed line), α = 3/2 (dot-dashed line); (b) α = δ = 1:
β = 1 (solid line), β = 1/2 (dashed line), β = 3/2 (dot-dashed line); (c) α = 3/2, β = 1,
δ = 1/2 (solid line), α = β = 1/2, δ = 3/4 (dashed line), α = 3/4, β = 1/2, δ = 1 (dot-dashed
line). Reprinted from Physica A, 390, T. Sandev, Z. Tomovski, and J.L.A. Dubbeldam, Generalized
Langevin equation with a three parameter Mittag-Leffler noise, 3627–3636, Copyright (2011), with
permission from Elsevier
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Fig. 6.3 Graphical representation of exact results (6.46) and (6.48), respectively, for τ = 10,
Cα,β,δ = 1, kBT = 1, α = 1/2, and β = δ = 1 (solid line), β = 3/4, δ = 1 (dashed line),
β = 3/4, δ = 1/2 (dot-dashed line); (a) MSD (6.46); (b) VACF (6.48). Reprinted from Physica A,
390, T. Sandev, Z. Tomovski, and J.L.A. Dubbeldam, Generalized Langevin equation with a three
parameter Mittag-Leffler noise, 3627–3636, Copyright (2011), with permission from Elsevier
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From the asymptotic expansion formula (1.28) of the three parameter M-L function,
one finds

g(t) � kBT

Cα,β,δΓ (αδ − β)
· tαδ−β−1, (6.54)

G(t) � kBT

Cα,β,δΓ (αδ − β + 1)
· tαδ−β, (6.55)

I (t) � kBT

Cα,β,δΓ (αδ − β + 2)
· tαδ−β+1. (6.56)

Thus, the time-dependent diffusion coefficient gets the form [59]

D(t) � (kBT )2

Cα,β,δΓ (αδ − β + 1)
· tαδ−β. (6.57)

From (6.57) we conclude that for β − 1 < αδ < β in the long time limit the particle
motion is subdiffusive, and for β < αδ—superdiffusive [59]. Note that for β = 1
the obtained results are same as those in Ref. [57] (where β = 1, ω = 0). For
β = δ = 1, the results obtained in Refs. [39, 53, 59] are recovered. The case with
α = β = δ = 1 corresponds to the one considered in Refs. [42, 53, 59]. For δ = 1
one derives the relaxation functions obtained in Ref. [8] (ω = 0, α = 2, β = 1).
Comparison of the asymptotic and exact results for the MSD and VACF for thermal
initial conditions is given in Fig. 6.4. In Fig. 6.5 comparison with the results for the
Brownian motion is given.
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Fig. 6.4 Graphical representation of asymptotic and exact results for τ = 1, Cα,β,δ = 1, kBT = 1,
α = 1/2, β = δ = 1; (a) MSD; asymptotic solution (6.56) (solid line), exact solution (6.25)
(dashed line); (b) VACF, asymptotic solution (6.54) (solid line), exact solution (6.23) (dashed
line). Reprinted from Physica A, 390, T. Sandev, Z. Tomovski, and J.L.A. Dubbeldam, Generalized
Langevin equation with a three parameter Mittag-Leffler noise, 3627–3636, Copyright (2011), with
permission from Elsevier
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Fig. 6.5 Graphical representation of MSD and VACF, respectively, for kBT = 1; (a) standard

Brownian motion 〈x2(t)〉
2kBT

= t (solid line) and exact result (6.25) for α = β = δ = 1, τ = 1,

Cα,β,δ = 1 (dashed line); (b) standard Brownian motion CV (t) = e−t (solid line) and exact
result (6.23) for α = β = δ = 1, τ = 1, Cα,β,δ = 1 (dashed line). Reprinted from Physica A,
390, T. Sandev, Z. Tomovski, and J.L.A. Dubbeldam, Generalized Langevin equation with a three
parameter Mittag-Leffler noise, 3627–3636, Copyright (2011), with permission from Elsevier

In the short time limit, the relaxation functions behave as [59]

I (t) � t2

2
− Cα,β,δ

kBT ταδ

tβ+3

Γ (β + 4)
, (6.58)

G(t) � t − Cα,β,δ

kBT ταδ

tβ+2

Γ (β + 3)
, (6.59)

g(t) � 1 − Cα,β,δ

kBT ταδ

tβ+1

Γ (β + 2)
. (6.60)

These results can be obtained either by using Tauberian theorems or from the exact
results by using the first two terms in the corresponding series. For β = 1 the results
from Ref. [57] are obtained (β = 1, ω = 0), and for δ = 1 those given in Ref. [8]
(ω = 0, α = 2, β = 1).

6.2 Mixture of Internal Noises

6.2.1 Second Fluctuation-Dissipation Theorem

Let us now consider a stationary Gaussian internal noise ξ(t) with a zero mean
〈ξ(t)〉 = 0, represented as a mixture of N independent noises [58]

ξ(t) =
N∑

i=1

αiξi(t),
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for which
〈
ξi(t)ξj (t

′)
〉 = 0 (i �= j ), each of zero mean 〈ξi(t)〉 = 0, with correlation

functions of the form

〈ξi(t)ξi(t
′)〉 = ζi(t

′ − t). (6.61)

Thus, for the correlation function C(t) we have

〈ξ(t)ξ(t ′)〉 =
〈

N∑
i=1

αiξi(t)

N∑
j=1

αj ξj (t
′)
〉

=
N∑

i=1

α2
i 〈ξi(t)ξi(t

′)〉. (6.62)

Therefore, the second fluctuation-dissipation theorem (6.7) gives

N∑
i=1

α2
i ζi(t) = kBT γ (t). (6.63)

Two (N = 2) distinct independent noises (white noise and an arbitrary noise) were
analyzed in Ref. [65], and various diffusive regimes are observed. Such situations
with two types of noises have been shown to govern the motion of the tracked
particles in several experimental works by Weigel et al. [69], Tabei et al. [64], and
Jeon et al. [27]. Therefore, our investigation of GLE (6.8) for a particle driven by
mixture of noises is justified with such experimental observations.

6.2.2 Relaxation Functions

Here we use the known relations for the relaxation function (6.18), (6.20), and (6.21)
in order to analyze the diffusive behavior of the particle. The Laplace transformation
to relation (6.63) yields

γ̂ (s) = 1

kBT

N∑
i=1

α2
i ζ̂i (s). (6.64)

In what follows we consider different forms of the noise that are of importance
in the anomalous diffusion theory.

6.2.3 White Noises

First, let us consider the motion of a free particle driven by N internal white noises,
i.e., ζi(t) = δ(t) (ζ̂i (s) = 1). Relation (6.63) then becomes

γ̂ (s) = 1

kBT

N∑
i=1

α2
i .



6.2 Mixture of Internal Noises 263

The inverse Laplace transform for the relaxation function G(t) gives

G(t) = L −1

⎡
⎣ 1

s2 + s

∑N
i=1 α2

i

kBT

⎤
⎦ (t) = 1 − e

−
∑N

i=1 α2
i

kBT
t

1
kBT

∑N
i=1 α2

i

, (6.65)

from where the MSD (6.42) and VACF (6.44) read

〈
x2(t)

〉
= 2 (kBT )2 t∑N

i=1 α2
i

− 2kBT
1 − e

−
∑N

i=1 α2
i

kBT
t

(
1

kBT

∑N
i=1 α2

i

)2 , (6.66)

CV (t) = e
−
∑N

i=1 α2
i

kBT
t
. (6.67)

From relation (6.66), one concludes that in the long time limit (t → ∞), the MSD
has a linear dependence on time

〈
x2(t)

〉
� 2 (kBT )2

∑N
i=1 α2

i

t,

i.e., normal diffusive behavior of the particle, as it was expected, with diffusion
coefficient

D = (kBT )2

∑N
i=1 α2

i

,

and exponential relaxation of the VACF. Graphical representation of the MSD and
VACF for different values of N is given in Fig. 6.6.

6.2.4 Power Law Noises

Next we analyze the case of N independent noises with power-law correlation
functions

ζi(t) = 1

Γ (1 − λi)
t−λi , i.e., ζ̂i (s) = sλi−1,
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Fig. 6.6 Graphical representation of: (a) MSD (6.66), (b) VACF (6.67) for α2
i = 2, in case of

thermal initial conditions v0 = kBT = 1, x0 = 0, and a mixture of Dirac delta noises N = 1 (solid
line), N = 2 (dashed line); N = 3 (dot-dashed line); N = 4 (dotted line). Reprinted from Phys.
Lett. A, 378, T. Sandev and Z. Tomovski, Langevin equation for a free particle driven by power
law type of noises, 1–9, Copyright (2014), with permission from Elsevier

i = 1, 2, . . . , N , 0 < λ1 < . . . < λN < 1, λi �= 1. From relation (6.63) one gets

γ̂ (s) = 1

kBT

N∑
i=1

α2
i s

λi−1.

Here we note that we can extend the analysis for the case of γ̂ (s) with 0 < λ1 <

. . . < λN < 2, but in such a case the memory kernel γ (t) is defined only in the
sense of distributions [9, 13, 22, 42, 43, 70]. For the relaxation function G(t), by
using the approach given in Refs. [26, 37], we obtain

G(t) = L −1

[
1

s2 +∑N
i=1 Aisλi

]
(t) = L −1

[
s−2

1 −∑N
i=1

(−Ai)

s2−λi

]
(t)

= t

∞∑
j=1

k1+k2+...+kN=j∑
k1≥0,k2≥0,...,kN≥0

(
j

k1 k2 . . . kN

) ∏N
i=1

(−Ait
2−λi

)ki

Γ
(

2 +∑N
i=1 (2 − λi) ki

)

= tE(2−λ1,2−λ2,...,2−λN ),2

(
−A1t

2−λ1,−A2t
2−λ2, . . . ,−ANt2−λN

)
,

(6.68)

where Ai = α2
i

kBT
,

(
j

k1 k2 . . . kN

)
= j !

k1!k2! · · · kN !

are the so-called multinomial coefficients, and E(a1,a2,...,aN ),b (z1, z2, . . . , zN) is the
multinomial M-L function (1.35).
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Let us analyze the case with 0 < λ1 < λ2 < 2, λ1, λ2 �= 1. From (6.68) we
obtain

G(t) = tE(2−λ1,2−λ2),2

(
−A1t

2−λ1,−A2t
2−λ2

)

=
∞∑

n=0

(−A1)
nt(2−λ1)n+1En+1

2−λ2,(2−λ1)n+2

(
−A2t

2−λ2
)

, (6.69)

and thus

I (t) =
∞∑

n=0

(−A1)
nt(2−λ1)n+2En+1

2−λ2,(2−λ1)n+3

(
−A2t

2−λ2
)

, (6.70)

g(t) =
∞∑

n=0

(−A1)
nt(2−λ1)nEn+1

2−λ2,(2−λ1)n+1

(
−A2t

2−λ2
)

, (6.71)

where Eδ
α,β(z) is the three parameter M-L function (1.14) [54].

For the long time limit behavior, from (1.28), we obtain

I (t) � tλ2

A2
Eλ2−λ1,λ2+1

(
−A1

A2
tλ2−λ1

)
� 1

A1

tλ1

Γ (1 + λ1)
. (6.72a)

G(t) � tλ2−1

A2
Eλ2−λ1,λ2

(
−A1

A2
tλ2−λ1

)
� 1

A1

tλ1−1

Γ (λ1)
. (6.72b)

g(t) � tλ2−2

A2
Eλ2−λ1,λ2−1

(
−A1

A2
tλ2−λ1

)
� 1

A1

tλ1−2

Γ (λ1 − 1)
. (6.72c)

From the MSD
〈
x2(t)

〉
2kBT

� 1

A1

tλ1

Γ (1 + λ1)
,

we conclude that the particle shows anomalous diffusive behavior with the lower
diffusion exponent λ1 (0 < λ1 < λ2 < 2). Therefore, subdiffusion appears for
0 < λ1 < 1 and superdiffusion for 1 < λ1 < 2. VACF becomes

CV (t) � 1

A1

tλ1−2

Γ (λ1 − 1)
.
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Fig. 6.7 Graphical representation of: (a) MSD (6.70), (b) VACF (6.71) for A1 = A2 = 1, in case
of thermal initial conditions v0 = kBT = 1, x0 = 0, and a mixture of two power law noises, for
λ1 = 1/2, λ2 = 3/4 (solid line), λ1 = 1/2, λ2 = 3/2 (dashed line); λ1 = 5/4, λ2 = 3/2 (dot-
dashed line). Reprinted from Phys. Lett. A, 378, T. Sandev and Z. Tomovski, Langevin equation
for a free particle driven by power law type of noises, 1–9, Copyright (2014), with permission from
Elsevier

For the short time one finds

I (t) �
⎧⎨
⎩

t2

2 − A2t
4−λ2

Γ (5−λ2)
− A1t

4−λ1

Γ (5−λ1)
, for λ2 ≤ 1 + λ1

2 ,

t2

2 − A2t
4−λ2

Γ (5−λ2)
+ A2

2t
6−2λ2

Γ (7−2λ2)
, for λ2 > 1 + λ1

2 .
(6.73)

Thus, we conclude that the noise with the greater exponent λ2 has dominant
contribution to the particle behavior in the short time limit. For the variance in the
short time limit we have

σxx

2kBT
� (3 − λ2)

A2t
4−λ2

Γ (5 − λ2)
.

Graphical representation of the MSD and VACF for different values of parame-
ters λ1 and λ2 is given in Fig. 6.7. The anomalous diffusive behavior of the particle
is evident.

6.2.5 Distributed Order Noise

Furthermore, let us instead of mixture of noises consider an internal noise of
distributed order, i.e.,

kBT γ (t) = α2
∫ 1

0

t−λ

Γ (1 − λ)
dλ.

Such memory kernel was used by Kochubei [33] in the theory of evolution equations
with distributed order derivative, which is a useful tool for modeling ultraslow
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relaxation and diffusion processes. The Laplace transform of the memory kernel
then becomes

γ̂ (s) = α2

kBT

s − 1

s log s
.

We note that the assumption (4.32) is satisfied for this memory kernel since

lim
s→0

sγ̂ (s) = α2

kBT
lim
s→0

s − 1

log s
= 0.

Thus, we have

Ĝ(s) = 1

s2 + α2

kBT
s−1
log s

=
∞∑

n=0

(
− α2

kBT

)n n∑
k=0

(
n

k

)
(−1)k

sn+k+2 logn s
, (6.74)

from where, by inverse Laplace transform, the relaxation function G(t) becomes

G(t) = t +
∞∑

n=1

(
− α2

kBT

)n n∑
k=0

(
n

k

)
(−1)kμ (t, n − 1, n + k + 1) . (6.75)

Here

μ (t, β, α) =
∫ ∞

0

tα+τ τβ

Γ (β + 1)Γ (α + τ + 1)
dτ, (6.76)

whose Laplace transform reads

L [μ (t, β, α)] (s) = 1

sα+1 logβ+1 s
,

�(α) > −1, �(s) > −1 [14]. For detailed properties and relations of these
and related Volterra functions, we refer to the literature [2–4, 21, 46]. Thus,
the relaxation functions are represented in terms of series in special functions
μ (t, β, α), and their representation in a closed form is an open problem. Here we
use Tauberian theorems (see Appendix B and Refs. [24, 41] for details) to find the
asymptotic behavior of the relaxation functions. In the long time limit (t → ∞, i.e.,
s → 0 according to the Tauberian theorems) we obtain

I (t) � L −1

⎡
⎣ s−1

α2

kBT
s−1
log s

⎤
⎦ (t) = 1

A
L −1

[
log s

s − 1
− log s

s

]
(t)

= 1

A

[
γ + log t − etEi(−t)

]

= 1

A

[
γ + log t + etE1(t)

]
, (6.77)
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where A = α2

kBT
, γ = 0.577216 is the Euler-Mascheroni (or Euler’s) constant,

Ei(t) = −
∫ ∞

−t

e−x

x
dx

is the exponential integral function [14], and

E1(t) = −Ei(−t) =
∫ ∞

t

e−x

x
dx.

From the asymptotic expansion formula

E1(t) � e−t

t

n−1∑
k=0

(−1)k
k!
tk

,

for t → ∞ [41], which has error of order O
(
n!t−n

)
, for the relaxation function we

obtain I (t) � γ
A

+ 1
A

log t . The MSD has logarithmic dependence on time

〈
x2(t)

〉
2kBT

� γ

A
+ 1

A
log t,

and therefore the particle shows ultraslow diffusive behavior. In the same way, for
the VACF in the long time limit (t → ∞) we find

CV (t) � − 1

At

[
1 + et tEi(−t)

] = − 1

At

[
1 − et tE1(t)

] � − 1

At2 .

Similar relaxation functions were obtained by Mainardi [41] in analysis of fractional
relaxation equation of distributed order. The short time limit (t → 0, i.e., s → ∞)
becomes

I (t) = L −1

[
s−1

s2 + A s−1
log s

]
(t) = L −1

[
1

s3

(
1 − As − A

s2 log s + As − A

)]
(t)

� L −1
[

1

s3

(
1 − As − A

s2 log s

)]
(t) = t2

2
− Aμ (t, 0, 3) + Aμ (t, 0, 4) .

(6.78)

In the same way, for the VACF in the short time limit we obtained

CV (t) � 1 − Aμ (t, 0, 1) + Aμ (t, 0, 2) .

Here we note that the same result can be obtained directly from the series expression
(6.75).
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A more general distributed order internal noise is of form

kBT γ (t) =
∫ 1

0
p(λ)

t−λ

Γ (1 − λ)
dλ, i.e., kBT γ̂ (s) =

∫ 1

0
p(λ)sλ−1 dλ,

where p(λ) is the weight function. The case with p(λ) = α2 yields the already
considered uniformly distributed noise

kBT γ (t) = α2
∫ 1

0

t−λ

Γ (1 − λ)
dλ.

For p(λ) = ∑N
i=1 α2

i δ (λ − λi), where δ(λ) is the Dirac delta, 0 < λi < 1, i =
1, 2, . . . , N , the mixture of N internal power-law noises

kBT γ (t) =
N∑

i=1

α2
i

∫ 1

0
δ (λ − λi)

t−λ

Γ (1 − λ)
dλ =

N∑
i=1

α2
i

t−λi

Γ (1 − λi)
,

is recovered.

6.2.6 Mixture of White and Power Law Noises

As an addition, we analyze the GLE with mixture of P white noises, and Q power-
law noises, where P + Q = N ,

γ (t) = 1

kBT

P∑
i=1

α2
i δ(t) + 1

kBT

Q∑
j=1

β2
j

t−λj

Γ
(
1 − λj

) ,

whose Laplace transform pair is given by

γ̂ (s) = 1

kBT

P∑
i=1

α2
i + 1

kBT

Q∑
j=1

β2
j sλj −1.

Here we also note that we can extend our analysis to exponents between 1 and 2,
but in such a case the memory kernel is defined only in the sense of distributions
[9, 13, 22, 42, 43, 70]. In the same way as previously described, we obtain

G(t) = L −1

[
1

s2 +∑P
i=1 Ais +∑Q

j=1 Bjs
λj

]
(t), (6.79)
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where Ai = α2
i

kBT
and Bj = β2

j

kBT
. We rewrite relation (6.79) in the following way

G(t) = L −1

[
1

s2 +∑Q+1
i=1 Cisλ̃i

]
(t), (6.80)

where 0 < λ̃1 < . . . < λ̃Q+1 < 2. λ̃i actually have the values of λj and 1. For a
given value r = i ∈ {1, 2, . . . , Q + 1},

Crs
λ̃r =

P∑
i=1

Ais, i.e., Cr =
P∑

i=1

Ai, λ̃r = 1.

Note that if 0 < λj < 1 then r = Q + 1, and if 1 < λj < 2 then r = 1.
Therefore, the relaxation function G(t) is represented through the multinomial M-L
function (1.35),

G(t) = L −1

[
1

s2 +∑Q+1
i=1 Cisλ̃i

]
(t)

= tE(
2−λ̃1,2−λ̃2,...,2−λ̃Q+1

)
,2

(
−C1t

2−λ̃1,−C2t
2−λ̃2, . . . ,−CQ+1t

2−λ̃Q+1
)

.

(6.81)

Mixture of white and power law noises of the form

γ (t) = 1

kBT

[
α2δ(t) + β2 t−λ

Γ (1 − λ)

]
,

was considered in Ref. [65], for 0 < λ < 1. From (6.81) we obtain

G(t) =
∞∑

n=0

(−B)nt(2−λ)n+1En+1
1,(2−λ)n+2 (−At) , (6.82)

where A = α2

kBT
and B = β2

kBT
. This relation yields

I (t) =
∞∑

n=0

(−B)nt(2−λ)n+2En+1
1,(2−λ)n+3 (−At) , (6.83)

g(t) =
∞∑

n=0

(−B)nt(2−λ)nEn+1
1,(2−λ)n+1 (−At) . (6.84)
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By using the asymptotic expansion formula (1.28), in the long time limit we
obtain

I (t) � t

A
E1−λ,2

(
−B

A
t1−λ

)
� 1

B

tλ

Γ (1 + λ)
, (6.85a)

G(t) � 1

A
E1−λ,1

(
−B

A
t1−λ

)
� 1

B

tλ−1

Γ (λ)
, (6.85b)

g(t) � 1

B

tλ−2

Γ (λ − 1)
. (6.85c)

Thus, the MSD becomes

〈
x2(t)

〉
2kBT

� 1

B

tλ

Γ (1 + λ)
, 0 < λ < 1,

which means that the particle shows subdiffusive behavior. From (6.85a) we note
that the power law noise has dominant contribution to the particle behavior in the
long time limit. These results are in agreement with those obtained in Ref. [65]. The
short time limit yields

I (t) � t2

2
− At3

6
− Bt4−λ

Γ (5 − λ)
, (6.86a)

G(t) � t − At2

2
− Bt3−λ

Γ (4 − λ)
, (6.86b)

g(t) � 1 − At − Bt2−λ

Γ (3 − λ)
, (6.86c)

from where we conclude that both noises contribute to the particle behavior. The
contribution of the white noise to the particle behavior in the short time limit is
dominant. For variance (6.45a) we recovered the result obtained in Ref. [65],

σxx

2kBT
� At3

3
+ (3 − λ)

Bt4−λ

Γ (5 − λ)
,

for t → 0. Graphical representation of the MSD and VACF is given in Fig. 6.8.
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Fig. 6.8 Graphical representation of: (a) MSD (6.83), (b) VACF (6.84), in case of thermal initial
conditions v0 = kBT = 1, x0 = 0, and a mixture of Dirac delta (A = 2) and power law (B = 1)
noises, for λ = 1/4 (solid line), λ = 1/2 (dashed line); λ = 3/4 (dot-dashed line). Reprinted from
Phys. Lett. A, 378, T. Sandev and Z. Tomovski, Langevin equation for a free particle driven by
power law type of noises, 1–9, Copyright (2014), with permission from Elsevier

In the same way, from (6.81), the case 1 < λ < 2 yields

G(t) =
∞∑

n=0

(−A)ntn+1En+1
2−λ,n+2

(
−Bt2−λ

)
, (6.87)

and thus

I (t) =
∞∑

n=0

(−A)ntn+2En+1
2−λ,n+3

(
−Bt2−λ

)
, (6.88)

g(t) =
∞∑

n=0

(−A)ntnEn+1
2−λ,n+1

(
−Bt2−λ

)
. (6.89)

From the asymptotic expansion formula we obtain the asymptotic behavior of
relaxation functions

I (t) � tλ

B
Eλ−1,λ+1

(
−A

B
tλ−1

)
� 1

A
t, (6.90)

so the MSD is
〈
x2(t)

〉
2kBT

� 1

A
t.

It means that the particle shows normal diffusive behavior. Therefore, the white
noise has dominant contribution to the particle behavior in the long time limit. This
result is obtained by Mainardi et al. [42, 43] in case of friction memory kernel
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Fig. 6.9 Graphical representation of: (a) MSD (6.88), (b) VACF (6.89), in case of thermal initial
conditions v0 = kBT = 1, x0 = 0, and a mixture of Dirac delta (A = 2) and power law (B = 1)
noises, for λ = 5/4 (solid line), λ = 3/2 (dashed line); λ = 7/4 (dot-dashed line). Reprinted from
Phys. Lett. A, 378, T. Sandev and Z. Tomovski, Langevin equation for a free particle driven by
power law type of noises, 1–9, Copyright (2014), with permission from Elsevier

represented as superposition of white and power law noises. For the short time limit
it follows

I (t) �
{

t2

2 − Bt4−λ

Γ (5−λ)
− At3

6 for λ ≤ 3/2,

t2

2 − Bt4−λ

Γ (5−λ)
+ B2t6−2λ

Γ (7−2λ)
for λ > 3/2,

(6.91)

so the power-law noise has dominant contribution to the particle behavior in the
short time limit. Here we note that the friction memory kernel, which represents
superposition of white and power law noises in sense of distributions, was consid-
ered by Mainardi et al. [42, 43] for λ = 3/2 and it was shown that the VACF behaves
as CV � t−3/2. This result can be obtained from asymptotic expansion of relation
(6.90),

CV � tλ−2

B
Eλ−1,λ−1

(
−A

B
tλ−1

)
= − t−1

A
Eλ−1,0

(
−A

B
tλ−1

)
� − B

A2

t−λ

Γ (1 − λ)
,

λ = 3/2, and represents a proof of the computer simulations of the VACF observed
by Alder and Wainwright [1]. Graphical representation of the MSD and VACF is
given in Fig. 6.9.

Let us now consider mixture of three noises, one of which is the white noise,

γ̂ (s) = 1

kBT

[
α2 + β2

1 sλ1−1 + β2
2 sλ2−1

]
,

where 0 < λ1 < 1 and 1 < λ2 < 2. From relation (6.81) we obtain

G(t) = tE(2−λ1,1,2−λ2),2

(
−B1t

2−λ1,−At,−B2t
2−λ2

)
, (6.92)
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Fig. 6.10 Graphical representation of: (a) MSD (6.94), (b) VACF g(t) = G′(t), in case of thermal
initial conditions v0 = kBT = 1, x0 = 0, and a mixture of Dirac delta (A = 2) and power law
(B1 = B2 = 1) noises, for λ1 = 1/4, λ2 = 5/4 (solid line); λ1 = 1/2, λ2 = 5/4 (dashed
line); λ1 = 3/4, λ2 = 5/4 (dot-dashed line). Reprinted from Phys. Lett. A, 378, T. Sandev and Z.
Tomovski, Langevin equation for a free particle driven by power law type of noises, 1–9, Copyright
(2014), with permission from Elsevier

i.e.,

G(t) =
∞∑

n=0

(−A)ntn+1
n∑

k=0

(
n

k

)(
B1

A

)k

t (1−λ1)kEn+1
2−λ2,n+2+(1−λ1)k

(
−B2t

2−λ2
)

,

(6.93)

and

I (t) =
∞∑

n=0

(−A)ntn+2
n∑

k=0

(
n

k

)(
B1

A

)k

t (1−λ1)kEn+1
2−λ2,n+3+(1−λ1)k

(
−B2t

2−λ2
)

,

(6.94)

where A = α2

kBT
, B1 = β2

1
kBT

and B2 = β2
2

kBT
. The long time limit yields

I (t) � tλ2

B2
Eλ2−λ1,λ2+1

(
−B1

B2
tλ2−λ1

)
� 1

B1

tλ1

Γ (1 + λ1)
, (6.95)

which means that dominant contribution to the particle behavior in the long time
limit has the noise with the exponent 0 < λ1 < 1. Thus, the particle shows a

subdiffusive behavior. The short time limit, again, yields ballistic motion I (t) � t2

2 .
Graphical representation of the MSD and VACF is given in Fig. 6.10.

Here we note that combinations of white noise and anomalous diffusion were
studied by Eule and Friedrich [15] and Jeon et al. [29].
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6.2.7 More Generalized Noise

The mixture of white and two parameter M-L noise of form

ζML(t) = 1

τμ
tν−1Eμ,ν

(
− tμ

τμ

)
,

for which

ζ̂ML(s) = 1

τμ

sμ−ν

sμ + τ−μ

is further generalization of the previous cases of white and power-law noises. For
ν = 1 we obtain the one parameter M-L noise, and for τ → 0—the power law
noise. The case μ = ν = 1 gives the exponential noise, and the case μ = ν = 1
with τ → 0 recovers the Dirac delta noise. Similar M-L noises have been introduced
in the literature to describe complex data related to anomalous diffusion [7, 12, 55,
57, 59, 60]. In case of the Dirac delta and the two parameter M-L noise,

γ (t) = 1

kBT

[
α2δ(t) + β2 1

τμ
tν−1Eμ,ν

(
− tμ

τμ

)]
,

the relaxation function G(t) becomes

G(t) = L −1

[
1

s2 + As + Bτ−μ sμ−ν+1

sμ+τ−μ

]
(t)

= L −1

[
s−μ−2

(
sμ + τ−μ

)
1 + τ−μs−μ + As−1 + Aτ−μs−1−μ + Bτ−μs−1−ν

]
(t)

= tE(λ1,...,λ4),2
(−C1t

λ1 , . . . ,−C4t
λ4
)

+ tμ+1

τμ
E(λ1,...,λ4),μ+2

(−C1t
λ1, . . . ,−C4t

λ4
)
,

(6.96)

where A = α2

kBT
, B = β2

kBT
, Ci ∈ {τ−μ,A,Aτ−μ,Bτ−μ

}
, and λi ∈ {μ, 1, μ + 1,

ν + 1}. Same approach can be performed in case of combination of the power-law
and M-L noises,

γ (t) = 1

kBT

[
α2 t−r

Γ (1 − r)
+ β2 1

τμ
tν−1Eμ,ν

(
− tμ

τμ

)]
,
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since in this case for the relaxation function one finds

G(t) = L −1

[
1

s2 + Asr + Bτ−μ sμ−ν+1

sμ+τ−μ

]
,

which can be represented in terms of the multinomial M-L functions (1.35).

6.3 Harmonic Oscillator

In this section we analyze the behavior of a harmonic oscillator driven by general-
ized M-L internal noise (6.9). The corresponding GLE for the harmonic oscillator
with mass m = 1 and frequency ω driven by stationary random force ξ(t) is given
by:

ẍ(t) +
∫ t

0
γ (t − t ′)ẋ(t ′) dt ′ + ω2x(t) = ξ(t),

ẋ(t) = v(t), (6.97)

The GLE describes the particle dynamics bounded in the harmonic potential well
and immersed in complex or viscoelastic media. The internal noise ξ(t) is of a zero
mean (〈ξ(t)〉 = 0). Again we apply the second fluctuation-dissipation theorem since
the considered noise is internal.

GLE (6.97) represents a suitable model for description of anomalous dynamics
within proteins. Within given protein, the movements are bounded in small domains,
thus the potential energy can be well approximated by the harmonic potential.
Furthermore, the movements of the proteins are in a given complex liquid environ-
ment and its influence on the particle movement can be described by appropriate
friction memory kernel. The high viscous damping, which is characteristic for
the proteins in a liquid environment, will be described by neglecting the inertial
term in Eq. (6.97). Information for the behavior of the oscillator will be obtained
from the MSD, time dependent diffusion coefficient, and VACF. The normalized
displacement correlation function, which is an experimental measured quantity, will
be analyzed as well.

6.3.1 Harmonic Oscillator Driven by an Arbitrary Noise

Let us formally solve the GLE (6.8). From the initial condition x(0) = x0 and
ẋ(0) = v(0) = v0, one obtains

X̂(s) = x0
s + γ̂ (s)

s2 + sγ̂ (s) + ω2 + v0
1

s2 + sγ̂ (t) + ω2 + 1

s2 + sγ̂ (s) + ω2 F̂ (s),

(6.98)
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where F̂ (s) = L [ξ(t)](s) and γ̂ (s) = L [γ (t)](s). From Eq. (6.98) for x(t) and
v(t) = ẋ(t) one finds

x(t) = 〈x(t)〉 +
∫ t

0
G(t − t ′)ξ(t ′) dt ′, (6.99)

v(t) = 〈v(t)〉 +
∫ t

0
g(t − t ′)ξ(t ′) dt ′, (6.100)

where

〈x(t)〉 = v0G(t) + x0[1 − ω2I (t)], (6.101)

〈v(t)〉 = v0g(t) − x0ω
2G(t), (6.102)

are the average displacement and average velocity, respectively. The function G(t)

is the Laplace pair of

Ĝ(s) = 1

s2 + sγ̂ (s) + ω2 . (6.103)

The same relations for the relaxation functions are valid, I (t) = ∫ t

0 G(t ′) dt ′ and

g(t) = dG(t)
dt

, as previously.
The MSD, time dependent diffusion coefficient, and VACF are related with the

relaxation functions as previously, i.e.,
〈
x2(t)

〉 = 2kBT I (t), D(t) = kBT G(t)

and CV (t) = g(t), respectively [12]. These relations are valid for friction memory
kernels which satisfy the assumption (6.11).

6.3.2 Overdamped Motion

From relation (6.103) we note that for the M-L noise (6.9) very complex expressions
for the relaxation functions are obtained, and exact results are very difficult to be
obtained. For simpler friction memory kernels of the Dirac delta type (standard
Langevin equation), power-law type (fractional Langevin equation), one and two
parameter M-L types the corresponding relaxation functions can be found exactly. In
case of the three parameter M-L noise (6.9) the calculations become very complex,
and thus one analyzes the asymptotic behavior of the oscillator in the short and long
time limit. Therefore, instead of that, we analyze the overdamped motion, which
means that there is high viscous damping, i.e., the inertial term ẍ(t) vanishes. This
case of high friction leads to same asymptotic behavior in the long time limit as the
one for the GLE, so the overdamped motion can be used to analyze the anomalous
diffusive behavior of the oscillator in the long time limit. This case of high viscous
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damping appears in the analysis of conformational dynamics of proteins, due to the
liquid environment in which the proteins are immersed [10]. Thus, the relaxation
functions ĝ(s), Ĝ(s) and Î (s) become

ĝ(s) = s

sγ̂ (s) + ω2
, Ĝ(s) = s−1ĝ(s), Î (s) = s−1Ĝ(s). (6.104)

By substitution of the friction memory kernel (6.9) in (6.104), by applying the
Laplace transform formula (1.18), for Î (t) we obtain [55]

I (t) = L −1

⎡
⎢⎢⎣ 1

ω2

s
β−1

2 −1

s
β−1

2 + γα,β,δ

ω2
s
αδ− β−1

2

(sα+τ−α)
δ

⎤
⎥⎥⎦

= 1

ω2

∞∑
k=0

(
−γα,β,δ

ω2

)k

t (β−1)kEδk
α,(β−1)k+1

(−(t/τ )α
)
. (6.105)

For the long time limit (s → 0), one finds the asymptotic behavior

I (t) = kBT

Cα,β,δ

t1+αδ−βE1+αδ−β,2+αδ−β

(
−kBT ω2

Cα,β,δ

t1+αδ−β

)

= 1

ω2

[
1 − E1+αδ−β

(
−kBT ω2

Cα,β,δ

t1+αδ−β

)]
. (6.106)

Therefore, the MSD reads

〈x2(t)〉 = 2kBT I (t) � 2kBT

ω2

[
1 − E1+αδ−β

(
−kBT ω2

Cα,β,δ

t1+αδ−β

)]

� 2kBT

ω2

[
1 − Cα,β,δ

kBT ω2

t−(1+αδ−β)

Γ (β − αδ)

]
, (6.107)

and the VACF becomes

CV (t) = g(t) � −Cα,β,δ

ω4

(1 + αδ − β)(2 + αδ − β)t−(1+αδ−β)−2

Γ (β − αδ)
.

(6.108)

At long times t → ∞, the MSD reaches the equilibrium value

〈x2(t)〉∞ = 2kBT

ω2 .
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For a free particle (ω = 0) from (6.107) one obtains

I (t) ≈ lim
ω→0

1

ω2

[
1 − E1+αδ−β

(
−kBT ω2

Cα,β,δ

t1+αδ−β

)]

= lim
ω→0

d
dω

[
1 − E1+αδ−β

(
− kBT ω2

Cα,β,δ
t1+αδ−β

)]
d

dω
ω2

= kBT

Cα,β,δ

t1+αδ−β

Γ (2 + αδ − β)
,

(6.109)

which is identical to (6.56) for the GLE for a free particle. In a similar way, for the
relaxation functions G(t) and g(t), which are directly related to the time dependent
diffusion coefficient and VACF, follow results (6.55) and (6.54), respectively.

Remark 6.2 Previous studies [57] showed that analytical treatment of the GLE with
internal three parameter M-L noise with correlation function of the form

C(t) = Cα,β,δ

ταδ
Eδ

α,β(−(t/τ )α), (6.110)

where Cα,β,δ does not depend on time, and can depend on α, β and δ, where α > 0,
β > 0, δ > 0, 0 < αδ < 2, is very complex. The difficulty of analytical treatment
of the GLE with an internal noise with correlation (6.110) is due to the Laplace
transform of three parameter M-L function, see relation (1.61) for κ = 1. Therefore,
we only analyze the asymptotic behavior of relaxation functions by using Tauberian
theorems (see Appendix B). For the Laplace pair of γ (t), from Eq. (1.61), we have

γ̂ (s) = Cα,β,δ

kBT ταδ

s−1

Γ (δ)

∞∑
k=0

Γ (1 + αk)Γ (δ + k)

Γ (β + αk)k!
(−1)k

(sτ )αk
. (6.111)

For the long time limit (t → ∞) the frictional memory kernel has the following
behavior

γ (t) � Cα,β,δ

Γ (β − αδ)kBT
· t−αδ,

so the Tauberian theorem yields

γ̂ (s) � γα,β,δ · sαδ−1, s → 0, (6.112)

where

γα,β,δ = Cα,β,δ

kBT

Γ (1 − αδ)

Γ (β − αδ)
.
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Here we use that β �= αδ, β �= αδ − 1 and αδ �= 1. By substitution of (6.112) in the
relaxation function

Î (s) = L [I (t)] = s−1

s2 + sγ̂ (s) + ω2
, (6.113)

for 0 < αδ < 2, one obtains

Î (s) � s−1

γα,β,δsαδ + ω2 = 1

ω2

(
1

s
− sαδ−1

sαδ + ω2/γα,β,δ

)
. (6.114)

From the Laplace transform formula (1.3) for the one parameter M-L function, it
follows [57]

I (t) � 1

ω2

[
1 − Eαδ

(
− ω2

γα,β,δ

tαδ

)]
� 1

ω2

[
1 − γα,β,δ

ω2

1

Γ (1 − αδ)
t−αδ

]
.

(6.115)

The MSD and VACF then read [57]

〈
x2(t)

〉
� ρ(∞)

[
1 − γα,β,δ

ω2

1

Γ (1 − αδ)
t−αδ

]
, (6.116)

CV (t) � −γα,β,δ

ω4

αδ(αδ + 1)

Γ (1 − αδ)
t−αδ−2. (6.117)

respectively. The case with β = δ = 1 corresponds to the results obtained in [12,
66, 67]. For a free particle (ω = 0) we obtain [57]

I (t) = L −1
[

s−1−αδ

s2−αδ + γα,β,δ

]
= t2E2−αδ,3

(
−γα,β,δt

2−αδ
)

, (6.118)

where we apply the Laplace transform formula (1.6). The MSD then becomes

〈
x2(t)

〉
= 2kBT t2E2−αδ,3

(
−γα,β,δt

2−αδ
)

� 2kBT

γα,β,δΓ (1 + αδ)
tαδ. (6.119)

and the time dependent diffusion coefficient and VACF turn to

D(t) = kBT tE2−αδ,2

(
−γα,β,δt

2−αδ
)

� kBT

γα,β,δΓ (αδ)
tαδ−1, (6.120)
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CV (t) = d2

dt2
t2E2−αδ,3

(
−γα,β,δt

2−αδ
)

= E2−αδ

(
−γα,β,δt

2−αδ
)

� 1

γα,β,δΓ (αδ − 1)
tαδ−2, (6.121)

respectively. Same result can be obtained from the L’Hôpital’s rule, i.e., [57]

I (t) � lim
ω→0

1

ω2

[
1 − Eαδ

(
− ω2

γα,β,δ

tαδ

)]

= lim
ω→0

d
dω

[
1 − Eαδ

(
− ω2

γα,β,δ
tαδ
)]

d
dω

ω2
= 1

γα,β,δΓ (1 + αδ)
tαδ. (6.122)

Thus, the particle shows anomalous diffusive behavior. The well-known result for
β = δ = 1 was obtained in Ref. [39, 52]. For α = β = δ = 1 one obtains ρ(t) � t

and CV (t) � E1
(−γ1,1,1t

) = e−γ1,1,1t , which in fact is the result for Brownian

motion [42, 52]. The case with αδ = 1/2 gives CV (t) � t− 3
2 , which is theoretically

obtained in Ref. [42] for superposition of the Dirac delta and power-law memory
kernel, and previously confirmed by computer simulations for the VACF [1]. We
can show, as well, that in case of a friction memory kernel which is a sum of the
generalized M-L noise (6.110) and Dirac delta noise, the VACF has a form CV (t) �
t−αδ , so for αδ = 3

2 and β = 1 again we obtain the same result CV (t) � t− 3
2 [57].

Remark 6.3 Let us now consider the following thermal initial conditions
〈
x2

0

〉 =
kBT

ω2 , 〈x0v0〉 = 0, and 〈ξ(t)x0〉 = 0 for the GLE for a harmonic oscillator. For the
normalized displacement correlation function, which is an experimental measured
quantity, and which is defined by Burov and Barkai [5, 6]

CX(t) = 〈x(t)x0〉〈
x2

0

〉 ,

one obtains

CX(t) = 1 − ω2I (t). (6.123)

For the friction memory kernel of form (6.9) in the limit τ → 0, for CX(t) we find

CX(t) = 1 −
∞∑

k=0

(
−ω2

)k+1
t2k+2Ek+1

2−(1+αδ−β),2k+3

(
−Cα,β,δ

kBT
t2−(1+αδ−β)

)
.

(6.124)

The graphical representation of the normalized displacement correlation function
(6.124) is given in Fig. 6.11. Note that for ω = 0.3, CX(t) is a decreasing
monotone function and CX(t) > 0. For ω = 3 and ω = 1, CX(t) has an
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Fig. 6.11 Graphical
representation of CX(t)

(6.124) for Cα,β,δ = 1,
kBT = 1, α = 1/2,
β = 7/16, δ = 3/4; ω = 0.3
(solid line), ω = 3 (dashed
line); ω = 1 (dot-dashed
line); ω = 0.74 (dotted line),
see Ref. [55] 0 2 4 6 8
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oscillation-like behavior passing the zero line, and goes asymptotically to zero. For
ω = 0.74, CX(t) > 0, but it is a non-monotone function. It approaches the zero
line asymptotically. These results are different than those obtained for the Langevin
equation for a harmonic oscillator, for which the oscillator has only two different
behaviors; either overdamped motion with 〈x(t)〉 > 0 for all t under the condition
〈x0〉 > 0, for which CX(t) is monotone function, or underdamped motion when
〈x(t)〉 has oscillation-like behavior passing the zero line [5, 6]. The frequency at
which the oscillator turns from overdamped to underdamped motion is the so-called
critical frequency. For the GLE for a harmonic oscillator there is a need for definition
to additional critical frequencies on which CX(t) changes its behavior, and their
computation is a non-trivial problem [5, 6]. Such behaviors of CX(t) were observed
in the molecular dynamic simulations of fluctuation of the donor-acceptor distance
within proteins [38]. Moreover, such oscillation-like behavior and power law decay
of the fluorescein-tyrosine distance within a protein are experimentally observed in
Ref. [47].

6.4 GLE with Prabhakar-Like Friction

As we showed before, the regularized Prabhakar derivative (2.88) is a special
case of the generalized derivative (2.89), therefore we conclude that the GLE with
regularized Prabhakar friction memory kernel of the form

γ (t) = γμ,ρ,δ t−μE−δ
ρ,1−μ

(
−
(

t

τ

)ρ)
. (6.125)

has the form [56]

ẍ(t) + γμ,ρ,δ CD
δ,μ
ρ,−ν,t x(t) = ξ(t), ẋ(t) = v(t). (6.126)

Here CD
δ,μ
ρ,−ν,t is the regularized Prabhakar derivative (2.88), 0 < μ, δ < 1, 0 <

μ/δ < 1, 0 < μ/δ − ρ < 1, ν = τ−μ, τ is a time parameter, and γμ,ρ,δ is the
generalized friction coefficient. This equation is a generalization of the fractional
Langevin equation considered by Lutz [39], which is recovered by setting δ = 0.
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The Laplace transform of the friction memory kernel (6.125) reads

γ̂ (s) = γμ,ρ,δ s−ρδ+μ−1 (sρ + τ−ρ
)δ

(6.127)

By asymptotic expansion of the three parameter M-L function (1.28) and the
Laplace transform of the friction memory kernel (6.127), we show that the
assumption (4.32) is satisfied for μ > ρδ. We consider that the noise ξ(t) is internal,
i.e., the second fluctuation-dissipation theorem of the form [56]

〈
ξ(t)ξ(t ′)

〉 = kbT γμ,ρ,δ |t − t ′|−μE−δ
ρ,1−μ

(
−
( |t − t ′|

τ

)ρ)
, (6.128)

is satisfied.

6.4.1 Free Particle

From the general formulas for the relaxation functions, the MSD, D(t), and VACF
become [56]

〈
x2(t)

〉
= 2kBT

∞∑
n=0

(−γμ,ρ,δ)
nt(2−μ)n+2E−δn

ρ,(2−μ)n+3

(
−
(

t

τ

)ρ)
, (6.129)

D(t) = kBT

∞∑
n=0

(−γμ,ρ,δ)
nt(2−μ)n+1E−δn

ρ,(2−μ)n+2

(
−
(

t

τ

)ρ)
, (6.130)

CV (t) =
∞∑

n=0

(−γμ,ρ,δ)
nt(2−μ)nE−δn

ρ,(2−μ)n+1

(
−
(

t

τ

)ρ)
, (6.131)

respectively.
The asymptotic expansion of the three parameter M-L function (1.29) for the

long time limit yields

〈
x2(t)

〉
� 2kBT t2E2−μ+ρδ,3

(
−γ̄ t2−μ+ρδ

)
� 2kBT

γ̄

tμ−ρδ

Γ (1 + μ − ρδ)
,

(6.132)

D(t) � kBT tE2−μ+ρδ,2

(
−γ̄ t2−μ+ρδ

)
(6.133)

CV (t) � E2−μ+ρδ

(
−γ̄ t2−μ+ρδ

)
, (6.134)
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Fig. 6.12 Graphical
representation of the MSD
(6.129) for kBT = 1,
γμ,ρ,δ = 1, τ = 1, ρ = 1/2,
δ = 3/4, and μ = 1/2 (blue
line), μ = 5/8 (red line), see
Ref. [56]
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where γ̄ = γμ,ρ,δτ
−ρδ . Therefore, one concludes that in the system exists

subdiffusion
〈
x2(t)

〉 � tα with anomalous diffusion exponent α = μ − ρδ, where
0 < α < δ < 1.

Graphical representation of the MSD (6.129) is given in Fig. 6.12. From the
figure we see that the MSD shows oscillation-like behavior for intermediate times
which can be explained as a result of the cage effect of the environment represented
by the M-L memory kernel [5].

6.4.2 High Friction

The high viscous damping, corresponding to vanishing of the inertial term ẍ(t) = 0,
yields [56]

〈
x2(t)

〉
= 2kBT

γμ,ρ,δ

tμEδ
ρ,μ+1

(
−
(

t

τ

)ρ)
� 2kBT

γμ,ρ,δ

{
tμ

Γ (μ+1)
, t → 0

tμ−ρδ

τ−ρδΓ (1+μ−ρδ)
, t → ∞.

(6.135)

Therefore, we conclude that decelerating subdiffusion exists in the system, since the
anomalous diffusion exponent from μ for the short time limit turns to μ − ρδ in the
long time limit.

6.4.3 Tempered Friction

We further consider the GLE with a friction term represented through the tempered
regularized Prabhakar derivative (2.92), i.e.,

ẍ(t) + γμ,ρ,δ T CD
δ,μ
ρ,−ν,t x(t) = ξ(t), ẋ(t) = v(t), (6.136)
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where b > 0, and all the parameters are the same as in Eq. (6.126). From definition
(2.92) one concludes that the friction memory kernel is given by [56]

γ (t) = γμ,ρ,δ e−bt t−μE−δ
ρ,1−μ

(
−
(

t

τ

)ρ)
. (6.137)

The second fluctuation-dissipation theorem then reads

〈
ξ(t)ξ(t ′)

〉 = kbT γμ,ρ,δ e−b|t−t ′||t − t ′|−μE−δ
ρ,1−μ

(
−
( |t − t ′|

τ

)ρ)
. (6.138)

For the MSD, we find [56]

〈
x2(t)

〉
=

∞∑
n=0

(−γμ,ρ,δ

)n
In+3

0+
(

e−bt t (1−μ)n−1E−δn
ρ,(1−μ)n

(
−
(

t

τ

)ρ))
,

(6.139)

where Iα
0+ is the R-L integral (2.2). In absence of truncation (b = 0), from (6.139),

by using that [30]

I
ζ
0+
(
t
β−1

Eδ
α,β

(−νtα
)) = t

ζ+β−1
Eδ

α,ζ+β

(−νtα
)
,

we recover the result (6.129).
For high viscous damping, ẍ(t) = 0, the following result for the MSD is obtained

〈
x2(t)

〉
= 2kBT

γμ,ρ,δ

I 2
0+
(

e−bt tμ−2Eδ
ρ,μ−1

(
−
(

t

τ

)ρ))
. (6.140)

Therefore, the short time limit yields subdiffusion

〈
x2(t)

〉
� 2kBT

γμ,ρ,δ

tμ

Γ (1 + μ)
,

and the long time limit normal diffusion
〈
x2(t)

〉 � t . This means that accelerating
diffusion—from subdiffusion to normal diffusion—exists in the system. Such
crossover from subdiffusion to normal diffusion has been observed, for example,
in complex viscoelastic systems [28].

Graphical representation of the MSD (6.139) is given in Fig. 6.13. From the
figure, one observes the influence of the truncation parameter b on the MSD
behavior. The case with no truncation (b = 0) shows subdiffusive behavior (blue
line), and the case with truncation (red and green lines) normal diffusion in the long
time limit.
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Fig. 6.13 Graphical
representation of the MSD
(6.139), for kBT = 1,
γμ,ρ,δ = 1, τ = 1, ρ = 1/2,
μ = 1/2, δ = 3/4, and b = 0
(blue line), b = 0.1 (red line)
and b = 0.5 (green line), see
Ref. [56].
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6.4.4 Harmonic Oscillator

We further consider the GLE (6.141) for a harmonic oscillator with tempered
regularized Prabhakar friction [56]

ẍ(t) + γμ,ρ,δ T CD
δ,μ
ρ,−ν,t x(t) + ω2x(t) = ξ(t), ẋ(t) = v(t), (6.141)

where ω is the frequency of the oscillator. From the Laplace transform method we
find exact result for the MSD

〈
x2(t)

〉
2kBT

=
∞∑

n=0

(−γμ,ρ,δ

)n ∫ t

0
(t − t ′)n+2En+1

2,n+3

(
−ω2(t − t ′)2

)

× e−bt ′ t ′(1−μ)n−1E−δn
ρ,(1−μ)n

(
−
(

t ′

τ

)ρ)
dt ′

=
∞∑

n=0

(−γμ,ρ,δ

)n En+1
2,n+3,−ω2,0+

(
e−bt t (1−μ)n−1E−δn

ρ,(1−μ)n

(
−
(

t

τ

)ρ))
,

(6.142)

where
(

Eδ
α,β,−ω2,0+f

)
(t) is the Prabhakar integral (2.46). For ω = 0, the Prabhakar

integral corresponds to the R-L integral (2.2), therefore, from (6.142) one finds the
previously obtained result for a free particle (6.129).

We are particularly interested in the normalized displacement correlation func-
tion

CX(t) = 〈x(t)x0〉〈
x2

0

〉 = s + γ̂ (s)

s2 + sγ̂ (s) + ω2
= 1 − ω2I (t), (6.143)
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Fig. 6.14 Graphical
representation of the
normalized displacement
correlation function,
Eq. (6.145), for γμ,ρ,δ = 1,
τ = 1, ρ = 1/5 μ = 1/2,
δ = 3/4, and ω = 0.25 (blue
line), ω = 0.5 (red line),
ω = 1.44 (green line), ω = 3
(brown line), see Ref. [56]
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under the conditions x2
0 = kBT

ω2 , 〈x0v0〉 = 0, and 〈ξ(t)x0〉 = 0 [5]. CX(t) then
becomes [56]

CX(t) = 1 − ω2
∞∑

n=0

(−γμ,ρ,δ

)n En+1
2,n+3,−ω2,0+

×
(

e−bt t (1−μ)n−1E−δn
ρ,(1−μ)n

(
−
(

t

τ

)ρ))
, (6.144)

and the case with no truncation (b =) yields

CX(t) = 1 − ω2
∞∑

n=0

(−γμ,ρ,δ

)n En+1
2,n+3,−ω2,0+

(
t (1−μ)n−1E−δn

ρ,(1−μ)n

(
−
(

t

τ

)ρ))
.

(6.145)

Graphical representation of the CX(t) (6.145) and (6.144) is given in Figs. 6.14
and 6.15, respectively. In Fig. 6.14 different behaviors of CX(t) are observed, such
as monotonic or non-monotonic decay without zero crossings (for ω < 1.44),
critical behavior between the situations with and without zero crossings (at critical
frequency ω ≈ 1.44), and oscillation-like behavior with zero crossings (for ω >

1.44), which appear due to the cage effect of the environment [5]. The friction,
depending on the memory kernel parameters, forces either diffusion or oscillations.
In Fig. 6.15 we note that with increasing of tempering, oscillation behavior with
zero crossings appears. Thus, by tuning the values of friction parameters contained
in the tempered Prabhakar derivative, we increase the versatility to fit complex
experimental data.
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Fig. 6.15 Graphical
representation of the
normalized displacement
correlation function,
Eq. (6.144), for γμ,ρ,δ = 1,
τ = 1, ρ = 1/2 μ = 1/2,
δ = 3/4, ω = 0.5 and b = 0
(blue line), b = 1 (red line),
b = 10 (green line), b = 100
(brown line), see Ref. [56]
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6.5 Tempered GLE

Here we consider truncated three parameter M-L memory kernel of the form [36]

γ (t) = γ

ταδ
e−bt tβ−1Eδ

α,β

(
− tα

τα

)
, (6.146)

where γ > 0 is a constant, b ≥ 0, δ ≥ 0, τ > 0 is a time parameter, and Eδ
α,β(z)

is the three parameter M-L function (1.14) [54]. Tempered diffusion with memory
kernel of the form (6.146) with δ = 1 was obtained within the CTRW theory in
Ref. [61]. Similar kernels were considered in Refs. [48, 62, 63] in the context of
tempered subdiffusion.

The Laplace transform of the kernel is given by

γ̂ (s) = γ

ταδ

(s + b)αδ−β

(
(s + b)α + τ−α

)δ , (6.147)

where we use the shift rule L
[
f (t)e−at

] = F̂ (s + a), L [f (t)] = F̂ (s), and
the Laplace transform of the three parameter M-L function. It is obvious that the
tempered memory kernel (6.146) satisfies the assumption (4.32). The tempered
memory kernel is quite general and contains a number of limiting cases. For
example, for τ → 0 (τ−1 → ∞) it becomes truncated power-law memory kernel

γ (t) = γ e−bt tβ−αδ−1

Γ (β − αδ)
,

such that

γ̂ (s) = γ (s + b)−β+αδ.

For δ = 1 and δ = β = 1, one finds the truncated two parameter and one parameter
M-L kernel, respectively. In absence of truncation (b = 0), it yields the three
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parameter M-L memory kernel [59]

γ (t) = γ

ταδ
tβ−1Eδ

α,β

(
− tα

τα

)
,

which for α = β = 1 corresponds to the Kummer’s confluent hypergeometric
memory function

γ (t) = γ

τ δ
Eδ

1,1

(
− t

τ

)
= γ

τ δ
φ (δ, 1,−t/τ ) ,

considered in Ref. [32].

6.5.1 Free Particle: Relaxation Functions

The relaxation functions for the truncated three parameter M-L memory ker-
nel (6.146) becomes

I (t) = L −1

⎡
⎢⎣ s−3

1 + γ

ταδ s−1 (s+b)αδ−β

((s+b)α+τ−α)
δ

⎤
⎥⎦

= L −1

[ ∞∑
n=0

(
− γ

ταδ

)n

s−(n+3) (s + b)(αδ−β)n

(
(s + b)α + τ−α

)δn
]

=
∞∑

n=0

(
− γ

ταδ

)n

In+3
0+

(
e−bt tβn−1Eδn

α,βn

(
− tα

τα

))
, (6.148)

where Iα
0+f (t) is the R-L integral (2.2) of order α > 0. Respectively, the other

relaxation functions read

G(t) =
∞∑

n=0

(
− γ

ταδ

)n

In+2
0+

(
e−bt tβn−1Eδn

α,βn

(
− tα

τα

))
, (6.149)

g(t) =
∞∑

n=0

(
− γ

ταδ

)n

In+1
0+

(
e−bt tβn−1Eδn

α,βn

(
− tα

τα

))
. (6.150)

In absence of truncation (b = 0), one finds the results obtained in Ref. [59]. We
note that the relaxation functions (6.148)–(6.150) can also be written without the
R-L integral in terms of the confluent hypergeometric function 1F1(a; b; z) [14], as
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Fig. 6.16 Graphical representation of: (a) relaxation function I (t) (6.148), (b) relaxation function
g(t) (6.150), for α = 1.5, β = 1.2, δ = 0.6, τ = 1, γ = 1, b = 0 (black line), b = 0.2 (blue
line), b = 0.5 (violet line). Reprinted from Physica A, 466, A. Liemert, T. Sandev and H. Kantz,
Generalized Langevin equation with tempered memory kernel, 356–369, Copyright (2017), with
permission from Elsevier

follows [36]

I (t) =
∞∑

n=0

∞∑
k=0

(−1)n+kτ−α(δn+k)γ n (δn)k

k!
tαk+βn+n+2

Γ (αk + βn + n + 3)

× 1F1(αk + βn;αk + βn + n + 3;−bt), (6.151)

G(t) =
∞∑

n=0

∞∑
k=0

(−1)n+kτ−α(δn+k)γ n (δn)k

k!
tαk+βn+n+1

Γ (αk + βn + n + 2)

× 1F1(αk + βn;αk + βn + n + 2;−bt), (6.152)

g(t) =
∞∑

n=0

∞∑
k=0

(−1)n+kτ−α(δn+k)γ n (δn)k

k!
tαk+βn+n

Γ (αk + βn + n + 1)

× 1F1(αk + βn;αk + βn + n + 1;−bt). (6.153)

Graphical representation of the relaxation function (6.148) for different values of
parameters is given in Fig. 6.16. From the figure one concludes that in the case
of truncation the relaxation function, which is proportional to the MSD, has a
linear dependence on time in the long time limit. In absence of truncation for the
chosen parameters the MSD shows subdiffusive behavior of the form t0.7. Due to
the complex form of the memory kernel in the intermediate times the MSD has an
oscillation-like behavior. Such behavior can be explained due to the cage effects [5],
which appear as a result of influence of the environment (represented by the friction
memory kernel) on the particle motion.



6.5 Tempered GLE 291

From the exact result for the relaxation functions, we analyze the MSD and
VACF. For the short time limit one finds

〈
x2(t)

〉
2kBT

�
∞∑

n=0

(
− γ

ταδ

)n

In+3
0+

(
tβn−1

Γ (βn)

)
=

∞∑
n=0

(
− γ

ταδ

)n t(β+1)n+2

Γ ((β + 1)n + 3)

= t2Eβ+1,3

(
− γ

ταδ
tβ+1

)
� t2

Γ (3)
− γ

ταδ

tβ+3

Γ (β + 4)
, (6.154)

while the VACF becomes

CV (t) � Eβ+1

(
− γ

ταδ
tβ+1

)
� 1 − γ

ταδ

tβ+1

Γ (β + 2)
. (6.155)

The long time limit yields normal diffusion

〈
x2(t)

〉
2kBT

�
∞∑

n=0

(
− γ

ταδ

bαδ−β

(bα + τ−α)δ

)n
tn+2

Γ (n + 3)
= t2E1,3

(
− γ

ταδ

bαδ−β

(bα + τ−α)δ
t

)

=
exp

(
− γ

ταδ
bαδ−β

(bα+τ−α)δ
t
)

+ γ

ταδ
bαδ−β

(bα+τ−α)δ
t − 1

(
− γ

ταδ
bαδ−β

(bα+τ−α)δ

)2 � bβ

γ
(τα + b−α)δt,

(6.156)

CV (t) � E1,1

(
− γ

ταδ

bαδ−β

(bα + τ−α)δ
t

)
= exp

(
− γ

ταδ

bαδ−β

(bα + τ−α)δ
t

)
→ 0.

(6.157)

Therefore, characteristic crossover dynamics from ballistic motion to normal diffu-
sion is observed.

6.5.2 High Viscous Damping Regime

Let us now consider high viscous damping, which means that v̇(t) = 0. The GLE
(6.8) then reads

∫ t

0
γ (t − t ′)v(t ′) dt ′ = ξ(t), ẋ(t) = v(t). (6.158)
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The relaxation functions become

ĝ(s) = 1

γ̂ (s)
, Ĝ(s) = s−1

γ̂ (s)
, Î (s) = s−2

γ̂ (s)
. (6.159)

For the truncated memory kernel (6.146), we find exact result for the MSD

〈
x2(t)

〉
2kBT

= ταδ

γ
L −1

[
s−2 (s + b)−αδ+β

(
(s + b)α + τ−α

)−δ

]

= ταδ

γ
I 2

0+
(

e−bt t−β−1E−δ
α,−β

(
− tα

τα

))
. (6.160)

Here we note that the MSD can also be written in terms of the regularized
hypergeometric function [14], i.e.,

〈
x2(t)

〉
2kBT

= ταδ

γ
e−bt t1−β

∞∑
k=0

(−1)k(t/τ )k
(−δ)k

k! 1F̃1(2; 2 + αk − β; bt),

(6.161)

where

1F̃1(a; b; z) =
∑∞

k=0
(a)k zk/[k!Γ (k + b)].

For δ = 1 we obtain the same result as the one obtained in Ref. [61] within the
CTRW theory. Therefore, two different diffusion models which describe different
stochastic processes may give same results for the MSD. For the short time limit
subdiffusive behavior is observed,

〈
x2(t)

〉
2kBT

� ταδ

γ

t1−β

Γ (2 − β)
,

while for the long time limit—normal diffusive behavior

〈
x2(t)

〉
2kBT

� bβ

γ
(τα + b−α)δt,

which is same as (6.156).
The case with b = 0, for the short time limit gives subdiffusive behavior

〈
x2(t)

〉
2kBT

� ταδ

γ

t1−β

Γ (2 − β)
,
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while for the long time limit diffusive behavior of the form

〈
x2(t)

〉
2kBT

� 1

γ

t1+αδ−β

Γ (2 + αδ − β)
.

Therefore, the MSD has subdiffusive behavior for αδ < β, normal for αδ = β,
and superdiffusive for αδ > β. This means that the particle shows accelerating
diffusion, from subdiffusion it turns either to subdiffusion with greater anomalous
diffusion exponent, normal diffusion or superdiffusion. Note that in the long time
limit in both cases, with and without inertial term, same behavior for the MSD is
obtained.

6.5.3 Harmonic Oscillator

For a particle bounded in a harmonic potential we use the previously presented
general expressions for the relaxation functions, see (6.103). For the tempered
memory kernel (6.146) one finds exact result for the relaxation function,

I (t) = L −1

⎡
⎢⎣ s−1

s2 + ω2

1
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ταδ
s

s2+ω2
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⎤
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(
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ταδ

)n sn−1

(
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(
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)δn
]

=
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(
− γ

ταδ

)n
∫ t

0
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(
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)
e−bt ′ t ′βn−1

× Eδn
α,βn

(
− t ′α
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)
dt ′

=
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(
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ταδ

)n

En+1
2,n+3,−ω2,0+

(
e−bt tβn−1Eδn

α,βn

(
− tα

τα

))
. (6.162)

For the special case β = δ = 1, and τ → 0, we obtain the result for tempered
power-law memory kernel γ (t) = e−bt t−α

Γ (1−α)
, 0 < α < 1,

I (t) =
∞∑

n=0

(−γ )n En+1
2,n+3,−ω2.0+

(
e−bt t (1−α)n−1

Γ ((1 − α)n)

)
. (6.163)
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The normalized displacement correlation function is represented through I (t), as
CX(t) = 1 − ω2I (t). Therefore, we have [55]

CX(t) = 1 − ω2
∞∑

n=0

(
− γ

ταδ

)n

En+1
2,n+3,−ω2,0+

(
e−bt tβn−1Eδn

α,βn

(
− tα

τα

))
.

(6.164)

For tempered power-law memory kernel γ (t) = e−bt t−α

Γ (1−α)
, 0 < α < 1, the

normalized displacement correlation function CX(t) reduces to

CX(t) = 1 − ω2
∞∑

n=0

(−γ )n En+1
2,n+3,−ω2,0+

(
e−bt t (1−α)n−1

Γ ((1 − α)n)

)
. (6.165)

Graphical representation of the normalized displacement correlation function
(6.165) for different values of parameters is given in Fig. 6.17. From the figures
one concludes that the normalized displacement correlation function shows different
behaviors: monotonic decay, non-monotonic decay without zero crossings, critical
behavior which distinguishes the cases with and without zero crossings, and
oscillation-like behavior with zero crossings. These behaviors are based on the
cage effects of the environment as shown by Burov and Barkai [5]. This means
that, depending on the values of the friction memory kernel parameters, the friction
caused by the complex environment may force either diffusion or oscillations. These
effects are observed in the analysis of the relaxation functions as well (Fig. 6.16).
From Fig. 6.17 one concludes that the critical frequencies in case of truncated
power-law memory kernel are different than those in case of no truncation. Thus,
for example, for α = 1/2 the critical frequency in case of no truncation is 1.053 [5],
while in case of truncation b = 1/2 it is equal to 0.903. The truncation decreases
the critical frequency for α = 3/4 from 0.965 [5] to 0.825, while for α = 1/5
from 1.035 [5] to 0.889. Note that in case of classical harmonic oscillator two
types of motion are observed, monotonic decay of CX(t) without zero crossings,
and oscillation-like behavior with zero crossings. These two types of motions are
separated at a critical frequency equal to γ /2.

6.5.4 Response to an External Periodic Force

It has been shown that the stochastic force either in classical oscillator [23],
fractional oscillator [71], or in the GLE [5, 44, 45] yields some interesting behaviors
in the system, such as stochastic resonance, and the double-peak phenomenon.
Similar phenomena are observed if one considers the GLE with tempered memory
kernel [36]. The external periodic force is of the form A0 cos(Ωt), where A0 and
Ω are the amplitude and frequency of the periodic driving force, respectively.
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Fig. 6.17 Graphical representation of the normalized displacement correlation function (6.165)
for truncated power-law memory kernel with b = 1/2 and different frequencies ω; (a) α = 1/2,
(b) α = 3/4, (c) α = 1/5. Reprinted from Physica A, 466, A. Liemert, T. Sandev and H. Kantz,
Generalized Langevin equation with tempered memory kernel, 356–369, Copyright (2017), with
permission from Elsevier

Therefore, we consider the following GLE

ẍ(t) +
∫ t

0
γ (t − t ′)ẋ(t ′) dt ′ + ω2x(t) = A0 cos(Ωt) + ξ(t), (6.166)

ẋ(t) = v(t).

By using the Laplace transform method, for the mean displacement one finds

〈x(t)〉 = x0

[
1 − ω2

∫ t

0
h(t ′) dt ′

]
+ v0 h(t) + A0

∫ t

0
cos
(
Ω(t − t ′)

)
h(t ′) dt ′,

(6.167)

where

h(t) = L −1
[
ĥ(s)

]
= L −1

[
1

s2 + sγ̂ (s) + ω2

]
.
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From here, for the long time limit (s → 0, t → ∞) it follows [5]

〈x(t)〉 � A0

∫ t

0
cos
(
Ω(t − t ′)

)
h(t ′) dt ′ → 〈x(t)〉 = R(Ω) cos (Ωt + θ(Ω)) ,

(6.168)

where the response R(Ω) and the phase shift θ(Ω) will be defined below. Here we
consider the complex susceptibility

χ(Ω) = χ ′(Ω) + ıχ ′′(Ω) = ĥ(−ıΩ) = 1
γ

ταδ (−ıΩ)
(−ıΩ+b)αδ−β

((−ıΩ+b)α+τ−1)
δ + ω2 − Ω2

,

(6.169)

where

ĥ(−ıΩ) =
∫ ∞

0
eıΩth(t) dt,

χ ′(Ω) = � [χ(Ω)] ,

and

χ ′′(Ω) = � [χ(Ω)] .

The real and imaginary parts of the complex susceptibility are experimental
measured quantities. From the complex susceptibility, one finds the response

R(Ω) = |χ(Ω)|, (6.170)

and the space shift

θ(Ω) = arctan

(
−χ ′′(Ω)

χ ′(Ω)

)
. (6.171)

Particularly, we consider the special case of tempered power-law memory kernel
γ (t) = e−bt t−α

Γ (1−α)
, which for b = 0 corresponds to the case considered in Ref. [5].

Therefore, for the complex susceptibility we find

χ(Ω) = ĥ(−ıΩ) = 1
γ

ταδ (−ıΩ)(−ıΩ + b)α−1 + ω2 − Ω2
, (6.172)
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which for b = 0 reduces to [5]

χ(Ω) = ĥ(−ıΩ) = 1

γ (−ıΩ)α + ω2 − Ω2
.

From Fig. 6.18 one concludes that resonance appears even for a free particle
driven by truncated power-law noise, and that the resonant behavior depends on the
truncation parameter b. We observe that the resonant peak which exists for b = 0
becomes smaller for b = 0.5, and disappear for b = 1.0 and b = 1.5. Here we
note that the response function for the Brownian motion is a monotonic decaying
function and resonance does not appear. In Fig. 6.19 same situation is observed for
the harmonic oscillator driven by truncated power-law noise. The imaginary part of
the complex susceptibility, or the so-called loss, shows double peak phenomenon. In
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Fig. 6.18 Graphical representation of the (a) response R(Ω), (b) loss χ ′′(Ω), for a free particle
with tempered power-law memory kernel for α = 0.1, γ = 1, and different values of b, b = 0 (blue
line), b = 0.5 (brown line), b = 1.0 (green line), b = 1.5 (red line). Reprinted from Physica A,
466, A. Liemert, T. Sandev, and H. Kantz, Generalized Langevin equation with tempered memory
kernel, 356–369, Copyright (2017), with permission from Elsevier
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Fig. 6.19 Graphical representation of: (a) response R(Ω), (b) loss χ ′′(Ω), for tempered power-
law memory kernel with α = 0.1, ω = 0.3, γ = 1, and different values of b, b = 0 (blue line),
b = 0.2 (brown line), b = 0.4 (green line), b = 0.6 (red line). Reprinted from Physica A, 466, A.
Liemert, T. Sandev and H. Kantz, Generalized Langevin equation with tempered memory kernel,
356–369, Copyright (2017), with permission from Elsevier
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Fig. 6.20 Graphical representation of: (a) response R(Ω), (b) loss χ ′′(Ω), for tempered Mittag-
Leffler memory kernel with α = 0.1, β = 1, δ = 3/4, τ = 1, γ = 1, ω = 0.1, and different
values of b, b = 0 (blue line), b = 0.3 (brown line), b = 1 (green line), b = 3 (red line). Reprinted
from Physica A, 466, A. Liemert, T. Sandev and H. Kantz, Generalized Langevin equation with
tempered memory kernel, 356–369, Copyright (2017), with permission from Elsevier
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Fig. 6.21 Graphical representation of: (a) response R(Ω), (b) loss χ ′′(Ω), for the tempered
Mittag-Leffler memory kernel with α = 0.1, β = 1, δ = 3/4, τ = 1, b = 1/2, ω = 0.1, and
different values of γ , γ = 0.1 (blue line), γ = 0.3 (brown line), γ = 1 (green line), γ = 3
(red line). Reprinted from Physica A, 466, A. Liemert, T. Sandev and H. Kantz, Generalized
Langevin equation with tempered memory kernel, 356–369, Copyright (2017), with permission
from Elsevier

Fig. 6.20 we observe similar behavior for the harmonic oscillator driven by truncated
M-L noise. We find that by increasing the truncation parameter the resonance
frequency is increasing. The dependence of the response and the loss on parameter
γ for fixed values of α, β, δ, b is given in Fig. 6.21. By increasing parameter
γ , the resonant frequency is increasing. One also concludes that by increasing
parameter γ , from one peak the loss exhibits double-peak phenomena. Such double-
peak phenomena have been observed in the investigation of relaxation processes in
supercooled liquids [25].
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