Chapter 3 )
Cauchy Type Problems Qs

We now analyze Cauchy type problems of differential equations of fractional order
with Hilfer and Hilfer-Prabhakar derivative operators. The existence and uniqueness
theorems for n-term nonlinear fractional differential equations with Hilfer fractional
derivatives of arbitrary orders and types will be proved. Cauchy type problems
for integro-differential equations of Volterra type with generalized Mittag-Leffler
function in the kernel will be considered as well. Using the operational method of
Mikusinski, the solution of a Cauchy type problem for a linear n-term fractional
differential equations with Hilfer fractional derivatives will be obtained. We will
show utility of operational method to solve Cauchy type problems of a wide class
of integro-differential equations with variable coefficients, involving Prabhakar
integral operator and Laguerre derivatives. For this purpose, following some recent
works, we choose the examples which, by means of fractional derivatives, generalize
the well-known ordinary differential equations and partial differential equations,
related to time fractional heat equations, free electronic laser equation, some
evolution and boundary value problems, and finally some Cauchy type problems
for the generalized fractional Poisson process.

3.1 Ordinary Fractional Differential Equations:
Existence and Uniqueness Theorems

An important issue in the theory of ordinary fractional differential equations
is related to the existence and uniqueness of solutions of fractional differential
equations. Several authors have considered a “model” of nonlinear fractional
differential equation with R-L fractional derivative (D}, y) (x) of order %t (1) > 0
on a finite interval [a, b] of the real axis R :

(DY) @) = flx,y®)] R(w) >0, x>a), 3.1
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62 3 Cauchy Type Problems
with initial values
(Da+ y)(a—i—):bk, bheC (k=12,....n)), (3.2)

where n = R (u) + 1 for u ¢ Nand u = n for u € N. When 0 < R (u) < 1, the
problem takes the form

(Dhyy) @ = fley @], (L"y) @ =b (be0) (3.3)
and can be rewritten as the weighted Cauchy type problem
(Diy) @) = flry @], lim c—a)'Fy@=b beC). (4

In this chapter we investigate the above-mentioned problems based on reducing
problem of nonlinear Volterra integral equation of the second kind [39]:

R b; i L[Syl
y(x)_;—l“(u—jJrl)(x a) +F(M)a (x—t)l_”dt (x > a).

(3.5)

Pitcher and Sewell [30] in 1938 first considered the nonlinear fractional differential
equation with 0 < pu < 1, provided that f (x, y) is bounded in a special region G
lying in R x R and satisfies the Lipschitz condition with respect to y:

If (x,y1) — f (x, 32| < Alyr — yal, (3.6)

where constant A does not depend on x. They proved the existence of the continuous
solution y (x) for the corresponding nonlinear integral equation of the form (3.5)
with 0 < u < 1,n = 1 and by = 0. The work of Pitcher and Sewel [30] did
contain the idea of reducing the solution of the fractional differential equation to
that of a Volterra integral equation. The existence and uniqueness results without
proof are formulated by Al-Bassam [1] for more general Cauchy type problems for
areal u > 0O:

(DEY) ()= flx,y(®)] (m—1<u<n neN), (3.7)
(Da+ y)(a—i—):bk, by eR (k=1,2,....n). (3.8)

In this regard, see the survey paper by Kilbas and Trujillo [19], Sections 4
and 5. Kilbas and Marzan [18] considered the Cauchy type problem for nonlinear



3.2 Equivalence of Cauchy Type Problem and the Volterra Integral Equation 63

fractional differential equations with & € C (N (i) > 0):

(Dlyy) () = fx,y ), (DhLy) ), (Dh3y) (o). (DLt y) (0]
3.9)

where 0 < M (1) <R () <+ <R (WUp—1) <R () and m > 2.
In what follows a general nonlinear model with composite fractional derivative

[39]:

(DY) @) =flx,y@®)] (m—1l<p<nmneN0<v=l  (3.10)

dk (-
lim@o;i”)(l ”)y)(x)zck, h€R (k=012 ....n—1),

x—>a+
(3.11)
and particular case of nonlinear model given by:
(DMYy) @) = flx,y] O<p<1;0<v<1) (3.12)
: (A=) (1—-v) _
x1_1>r£1+ (Ia+ y) (x)=c¢, c€R, (3.13)

will be considered.

3.2 Equivalence of Cauchy Type Problem and the Volterra
Integral Equation

Proposition 3.1 ([39]) Lety € L(a,b),n —1 < u <nne N 0<v <1,
Iéﬁ__m(l_u)y € ACK[a, lz)]. Then the R-L fractional integral 154— and the generalized
[fractional derivative Df;_ are connected by the relation:

(IferDqu y) X)=yx) —yurx), x>0, (3.14)
where

A QLU0 &k
Y (=2 7 lim, %
=0 ( n—w)(d—-v)+ l)x—>a+dx

(I(n w (1= V)y> x).

(3.15)



64 3 Cauchy Type Problems

Proof Using the composition properties of the Hilfer derivative one gets

(12 DY) ) = (R 170Dy ) (o) = (17 D ) )

n-l (x — @)k (=W a-v)

=y(x)_]§1“(k—(n—u)(l—v)+l)

& mwa-y)
i ()
Proposition 3.2 ([39]) Let G be an open set in R and let f : [a,b] x G — R be
a function such that f (x,y) € L(a,b). Ify € L(a,b),n—1 < u <n,n €N,
0<v<l, Ia(i_“)(l_v)y € ACK[a,b], 0 <k < n—1, then y (x) satisfies a.e. the
relations (3.10) and (3.11) if and only if y (x) satisfies a.e. the integral equation

= k=(n—p)(1=v) x

b —a) L[ flLy®]
B dr. 3.17
v gckﬂk—m—m(l—vwn+F(u>u+ Gt GID

In particular, if 0 < pu < 1, then y (x) satisfies a.e. these relations if and only if
y (x) satisfies a.e. the integral equation

(x —a)=hi=m AT Y@l
IF'(w+v—pv) I (w ) (x —n'- w4

y(x)=c (3.18)

Proof (Necessity) Let y (x) € L (a, b) satisfy a.e. the relations (3.10) and (3.11).
Since f (x,y) € L(a,b), by (3.10) it follows that there exists a.e. on [a, b]
the fractional derivative ( p y) (x) € L(a,b). By Lemma 2.1 the integral
I, ft,y ()] € L(a,b) exists a.e. on [a, b]. Applying the integral operator I/,
to both sides of (3.10) and using the relation (3.16) Eq. (3.17) is obtained, and hence
the necessity is proved. Now we prove the sufficiency. Let y (x) € L (a, b) satisfy
a.e. Eq. (3.17). Using the relation

(D4 @ = @m0 ] () = 0

for 0 < k < n—1, and applying the operator Dﬁfjr” to both side of (3.17), one obtains

n—1 v —(n—w)(l—v
[Dﬂ (t — )k (n—p)( )] (x) i
(DhYyY) 0 =) a Fh— o a=n e T Pat i f 18y 0)

k=0

=fx,yx). (3.19)
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Next we show that relation (3.11) also holds. By applying the operator I a('jr_“ Y1-v)

to both sides of (3.17), one obtains:

n—l ]{;n—zL)(l—v) (t — a)k—(n—p.)(l—v) (x)
g0 2l |
o Tk—G-ma-vn+D

n—1

(T 1y @) 0= S e
k=0 7"

+ (L f Ly 01) ). (3.20)

If0 <k <n-—1,then

e 8 e
dk Vet Y ¢ k)'

+ (1” " F1ty 0]) ()

n—1

Z L e (1 1y 1) @)

k

n—1
cj
= E (x —a)/ =%
= (J = k!

1 [ fiy ol
dr.
+ I'(n—nv+uv—k) (x — t)17n+nv7uu+k
a+

(3.21)

Taking in (3.21) a limit x — a+ a.e., the relations in (3.11) are obtained. Thus the
sufficiency is proved, which completes the proof of theorem.

Theorem 3.1 ([39]) Let G be an open set in R and let f : [a,b] Xx G — R be
a function such that f (x,y) € L (a,b) for any y € G and the Lipschitzian-type
condition (3.6) is satisfied. If n — 1 < u <n,neN,0<v <1, I(fi_m(l_v)y €
ACK[a,b],0 <k <n — 1, then there exists a unique solution y (x) to the Cauchy
type problem (3.10)~(3.11) in the space Ll (a b). In particular, if 0 < u < 1,
then there exists a unique solution y (x) to the Cauchy type problem (3.12)—(3.13)
in the space Lffjrv (a, b).

Proof In order to prove the existence of the unique solution y (x) € L (a,b),
according to Proposition 3.2, it is sufficient to prove the existence of the unique
solution y (x) € L (a, b) of the nonlinear Volterra integral equation (3.17). From
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the known method for nonlinear Volterra integral equations, the first one proves the
result on a part of the interval [a, b]. Equation (3.17) makes sense in any interval
[a, x1] C [a, b] (a < x1 < b). Choose x such that the inequality

(x1 —a)*

Rl | (3.22)
I'(n+1)

holds, and then prove the existence of a unique solution y (x) € L (a,x1) to
Eq. (3.17) on the interval [a, x1]. The integral equation (3.17) can be rewritten in
the form y (x) = (T'y) (x), where

f[t,yft)] dr
(x—1)#

1 X
(Ty) (x) = yo (x) + T Z (3.23)

n—1 (x _ a)k*(nfu)(lfv)

yO(x)zgckr(k—(n—u)(l—u)ﬂ) (3.24)

and then one applies the Banach fixed point theorem for the complete metric space
L (a, x1). First, one has to prove the following:

(i) If y (x) € L (a, x1), then (Ty) (x) € L (a, x1).
(i) (Vy1, y2 € L (a, x1)) the following inequality holds:
L a -t

ITy1 — Ty2lly <wlliyr — y2ll,

Indeed, since yo (x) € L (a, x1), f (x,y) € L (a, x1), the integral in the right-hand
side of (3.23) also belongs to L (a, x1) and hence (Ty) (x) € L (a, x1). Now, we
prove the estimate (3.25). Therefore, one obtains

1Ty1 = Ty2ll ey = a5 1yt O = B4 18 y2 O o,
=[5 (f Iy O1= fl 2 OB oy

<AL @) -y (t)]”L(a,xl)

(x1 —a)*
< MIM @) = 2 Ol ) - (3.26)

In accordance with 0 < w < 1 there exist an unique solution y* (x) € L (a, x1)
to Eq.(3.17) on the interval [a, x1]. The solution y* (x) is obtained as a limit of
convergent sequence (T’” y(’)k) (x):

mlgmw 7" y5 — »* “L(a,xl) =0, (3.27)
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where yg (x) € L (a, b). If at least one ¢ # 0 in the initial values (3.11), we can
take yg (x) = yo (x) with yg (x) defined by (3.24). By (3.23) we define a recursion
formula:

Tm 1 ) (f)]

(x_t)lu (m=1,2,3,...)

T
(T yo)(X)—yo(x)+F( )/
(3.28)

If we denote y,, (x) = (T’" y(’)“) (x), then the last equation takes the following form:

[y 1O 4
F() (x —1)l=#

Ym (X) = yo (x) + t m=1,2,3,...) (3.29)

and hence (3.27) can be rewritten as follows:

lim |y — (3.30)

* —

> 00 y ”L(a,xl) -

This means that the method of successive approximations is applied to find a unique

solution y* (x) to the integral equation (3.17) on [a, x1]. Next we consider the

interval [xi, x2], where xo» = x; + h1, hy > 0 are such that x, < o0. Rewrite
Eq. (3.17) in the form

dr. (331

B ATRT0) 1 /xf[r,y(m
= d
y @) y°(x)+r(u>a[ o+ T Tw ] Gope

Since the function y () is uniquely defined on the interval [a, x1], the last integral
can be considered as a known function, and then

1o flty@®]
= dr, 3.32
y (x) yOI(X)+F(M)/(x—t)1_“ t (3.32)
X1
where
f f, y(t)]

yor (x) = yo (x) + (3.33)

F() x—t)1“

is the known function. Using the same arguments as above, it follows that there
exists a unique solution y* (x) € L (x1, xp) of Eq. (3.17) on the interval [x{, x2].
Taking the next interval [xj, x3], where x3 = x2 + ho, ho > 0, x3 < 00, and
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replacing the process, one concludes that there exists a unique solution y* (x) €
L (a, b) for (3.17). Thus, there exists a unique solution y (x) = y*(x) € L (a, b)
to the Volterra integral equation (3.17) and hence to the Cauchy type problem. To
complete the proof of theorem one must show that such unique solution y (x) €
L (a, b) belongs to the space L}’ (a, b). It is sufficient to prove that (D} y) (x) €
L (a, b). By the above proof, the solution y (x) € L (a, b) is a limit of the sequence
ym (x) € L (a, b):

im 1y = Yl = 0, (3.34)
with the choice of certain y,, on each [a, x1], [x1, x2], ..., [xL—1, b]. Since
IDLY ym = Dy, = 1Lf Goym) = f Gy < Allym — vl (3.35)
by (3.34), one obtains
. v TR _
Jim [ DG:"ym — Dy ||, =0, (3.36)

and hence (DZ‘;‘) y) (x) € L (a, b). This completes the proof of theorem.

3.3 Generalized Cauchy Type Problems

Here we study a Cauchy type problem for general n-term nonlinear fractional
differential equations with generalized fractional derivatives of arbitrary orders and
types [39]:

(Dai’y) @) = f [x.y ), (D™ y) () (D3 y) @)oo (D" 1) 0],
(3.37)

with n-initial values:

dk -
Jim (1;1 wa “)y) ()=ct, ce€R (k=0,1,2,....n—1).
(3.38)

As special case, we consider fractional differential equation with initial value

lim (15517“)(17v)y> (x

x—a+

=c¢, ce€R. (3.39)

~

Proposition 3.3 ([39]) Ler0 < v < 1,0 <v; < land pu,ui € R n—-1 <
u<nneNn—1<pu <ni=12,....,n—1besuchthat 0 < p; <
o < -+ < fp—1 < W, 0 > 2. Then let G be an open set in R" and let [ :
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(a,b] x G — R be a function such that f (x,y, y1, Y2, ..., Yu—1) € L (a, b) for
any (v, Y1, Y2+ > ya—1) € G. If y(x) € L(a,b), 1"y ¢ AC*[a, b),
0 <k <n—1, then y (x) satisfies a.e. the relations (3.37) and (3.38) if and only if,
v (x) satisfies a.e. the integral equation

n—1 k=(n—p)(1-v)
(x —a) !
_ -
v (x) ;Ckr(k_(n_ﬂ)(l_u)—i-l) I (u)
[y @ (DEY) @) (DEF™Y) @), (Dh2 ") )] dr
x (x—n' |
a+
(3.40)

x > a. In particular, if 0 < u < 1, then y (x) satisfies a.e. the relations (3.39) and
(3.40) if and only if y (x) satisfies a.e. the integral equation

(x — a)(u—l)(l—V) N 1
F(w+v—pv)y I'(w

« / [ty @, (D" y) O (DEE"y) @), -, (Dad "' y) 0]
a+

yx)=c

de,

(x =)=+

(3.41)

X > d.

Theorem 3.2 ([39]) Let the conditions of previous theorem be valid, and let
function f (x, Y, V1, Y2, yn,1) satisfy the Lipschitzian type condition:

n
|f(X,y,y1,y2’~~-a)’n—1)_f(x’Y’YlaY27--~’Yn—l)| SAZ|)’]_Y]|
=0
(3.42)

forall x € (a,bland (v, y1,y2, .+ .» Yu—=1), (Y, Y1, Y2, ..., Yy_1) € G, where A >
0 does not depend on x € (a, b). Then let

.k ) (1= ,
Jim e (100 ) 0 = by =120, (3.43)

be fixed numbers, where n;j = [ui] + 1 for u; ¢ N and n; = u; for u; € R. Then
there exists a unique solution y (x) to the Cauchy type problem (3.37)—(3.38) in the
space Lﬁff (a, b). In particular, if 0 < u < 1 and

lim (1;1*‘“’“*”%) xX)=by i=12 ... .n—1,

x—>a+
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are fixed numbers, then there exists a unique solution y (x) € Lﬁff (a, b) to the
Cauchy type problem (3.37)—(3.39).

Proof This theorem can be proved in a way similar to the proof of Theorem 3.1.
By Proposition 3.3 it is sufficient to establish the existence of a unique solution
y (x) € L (a, b) to the integral equation (3.40). We choose x| € (a, b) such that the
condition

R ()
A _ 1 (3.44
;{)[W—ww} )

holds and apply the Banach fixed point theorem to prove the existence of a unique
solution y (x) = y* (x) € L (a, x1). We use the space L (a, b) and rewrite Eq. (3.40)
in the form y (x) = (T'y) (x), where

1
(Ty) (x) = yo (x) + ——

I (w)

[ L0y @ (D) 0. (D) 0, () 0]
* (x —p)lr -

a+
(3.45)

and
n—l1 _ k== (1-v)

x —a) (3.46)

x) = c
Yo (x) ;)"F(k—(n—u)(l—v)ﬂ)
By Lipschitzian condition (3.42), we obtain

|{It¢+ [f ()C, Vi, Dg}k’vlyl’ e Dgi—ls‘)n—lyl)
_f ()C, Y2, Dtl;—‘:-’ulyz, ey Dg_’;_*l‘vn—lyz)]} (x)‘
= [I;Jr |f (x, Vi, D(/;i’vlyh e Di‘l—l’vn—lyl)

—f (%, y2, D"y, o DT ) ] ()
n—1
.
<AL DDl =y |
=1

1

n

Ay (L

DL (1 = 3)|) @)

j=1
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nj—1 d' i (I(I—Vj)("—uj) (1 — yz)) (a+)
M 1 _ _ dxti \ 0%
< AZ UESSIOEDY F = (=) =) + 1)

kj=1

x (t — a)ki=(=v) (=) |} () (3.47)

By the theorem,

dki vi)(n—
ka ( a(~1|» I)( ”‘I) (y )) (Cl+)

kj

S (1570 ()
and hence, for any x € [a, b],

{2 L (eoyis DRy, oo, D)
= (032 Dy D ) [} )

n—1
=AY (1 i =nl) . (3.48)
j=1

Using this relation with x = x| and applying Lemma 2.1 with b = x1, we derive
the estimate:

1(Ty1) (x) = (Ty2) ) pgx) < @liyr =2l (3.49)
n—1
(x1 —a)t™ 1
A
¢ ;[F(M—Mﬂ'l)}

which yields the existence of a unique solution y* (x) to Eq. (3.40) in L (a, x1). This
solution is obtained as a limit of the convergent sequence (T’" ) (x) = ym (x), for
which the relations

mli—>moo ” Tmyék - y* “L(a,xl) =0, (3.50)
and
mh—>moo ”)’m o y* HL(a,)q) =0 (3.51)

hold. We can show also that there exists a unique solution y (x) € L (a, b) to the
integral equation (3.40), i.e., to the Cauchy type problem (3.37)—(3.38) such that
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( ot y) (x) € L (a, b). Namely,

| D2 v = DIV [y = [ (5. 3o DL s DU )
—f (v, %, DALYy, L DRy |

<o |ym =y, > 0. m— oo (3.52)

In particular, if 0 < p < 1, then there exists a unique solution y (x) € L (a b)
to the Cauchy type problem (3.37)—(3.39).

3.4 Equations of Volterra Type

Many authors have applied methods of fractional integro-differentiation to construct
solutions of ordinary differential equations of fractional order, to investigate integro-
differential equations, and to obtain a unified theory of special functions. The
methods and results in these fields are presented by Samko et al. [33], Kiryakova
[21], Kilbas et al. [20], etc. We mention here also the paper by Tuan and Al-Saqabi
[41], where using an operational method they solved a fractional integro-differential
equation of Volterra type of the form

(D(")‘+f) (x) + m / x—0""'f@)d =g x), (3.53)

R() >0,NRNwv)>0,aeC,geL[0,b]
Kilbas et al. [20] established an explicit solution of the Cauchy type problem for
the equation

(D) 0 =2 (E73017) @)+ £ (), (3.54)
O<x<b,aeCR()>0,17y,p,weC)
under the initial values
(Dg;ky) (a+)=by, breC (k=1,2,....n)), (3.55)

where n = N (a) + 1 forv ¢ N and ¢ = n for « € N in terms of the generalized
Mittag-Leffler functions. The homogeneous equation corresponding to the case with
(f (x) =0) is a generalization of the equation which describes the unsaturated
behavior of the free electron laser. In Ref. [37] Srivastava and Tomovski by using
the Laplace transform method gave an explicit solution in the space L (0, b] of the
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following Cauchy type problem witha =0 and ¢ (x) = 1, x € (0, b]

(D5 y) 0 =2 (G751 0+ F @ ©<x=b) (3.56)
(@ By, @ € C.9 @) > max (0,9 () — 1}, min {3 (8). 0 (), 9 ()} > 0)
under the initial values
(1“ w-) ) 04) = c. (3.57)

Here, by using the method of successive approximation (and later by Laplace
transform method), we shall give an explicit solution, in the space L (0, b], of a more
general (nonlinear Cauchy problem) fractional differential equation than (3.56)
which contain the composite fractional derivative operator (2.14). This problem was
proposed as an open problem by Srivastava and Tomovski in Ref. [37].

Theorem 3.3 ([39]) The following fractional integro-differential equation

(DY) @ =2 (G785 ) @+ f 0 0 <x<b) (3.58)

a, B, Y, w € C, RN(a) > max {0, R (k) — 1}, min{N(B) , R (y), R&K)} >0, f
L [0, b] with the initial values (3.11) witha = 0, andn — 1 < u < n,n € N,
0 < v <1 has its solution in the space L (0, b] given by

m | @@ k w;y,k w;y,k ;y.k
y(x) = Z A 0+ a ﬂ-HL@@O-i-;ot,ﬂ-i-u te 600+;oz,ﬁ+u£}0+;a,ﬂ+2uf (x)
m—1
&2 k ;y,k BApu—n—p)(1—v)+k
+ Z A" ch ey ﬁ+u Sosiapin - C0tiapin [x
m=1
m—1

y.k
XE G B i—(n—p)(1— v)+k+1( )]}

n—1

1 Ck k—(n—p)(1=v)
+(10+f)(x)+1§F(k—(n—u)(l—v)+l)x ’

(3.59)

M| < 1/M, where M is a positive constant given by (2.113) with a = 0. In
particular, if 0 < u < 1 under the initial values (3.57), Eq. (3.58) has its solution
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in the space L (0, b] given by

m w'y k w;y.k w;y.k w;y.k
y (@) = Z M Cotiaprnosia - CotiaprnCotiaprand | )

m—1

o
¢ g2k w;y.K w;y.K (u—1)(1—v)
+ I'(w+v—pv) X_: 0+ o ﬂ+u50+;a,ﬂ+u T @@0+;a,ﬂ+ux
B m—1
u x=D(1-v) 260
+ (7, X)+c—/———"—"-—, Al < 1/M). .
(U50) @) e s (A< 1M (3.60)

where c is an arbitrary constant.

Proof To prove this theorem we apply Proposition 3.2, that a solution of the Cauchy
type problem (3.58)—(3.11) with a = 0 is equivalent to a solution of Volterra integral
equation of the second kind. By Proposition 3.1, we get:

k

v @) =4 (6 ) @) + (1 f) @)

n—1

Ci i—(n—p)(1—v) 3.61
+§F(i—(n—//«)(1—")+1)x . e

By the theory of Volterra integral equations of the second kind, such an integral
equation has a unique solution y (x) € L (0, b]. To find the exact solution we apply
the method of successive approximation. We consider the sequence {y,, (x)}5_,
defined by

n—1

_ Ci i—(n—p)(1-v)
yO(x)_ZO:F(i—(n—u)(l—v)—i—l)x A=), (3.62)

¥ () = 30 () + 2 (65738 vt ) 0+ (1) ) m=1,23,...)

(3.63)

Form =1,

31 () = 30 (@) + 2 (&8 00) @) + (1) ). (3.64)

Here y; (x) is

¥2 () = 30 () + 2 (E578 o ) @) + (1 ) 0, (3.65)
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and

vk n—1 cpxk—=w-v)
200 =30 @+ U ) O+ M Bsapn L T - D

w;y.k w vk
+ A (g’()+;0t,/3+p~> ()\.600+ o, /3+l’~y0) (X) + A ( 0-rscr, B+ 0+f) (X)
k —u)(1—
= yo (x) + (1)} f) () + A Z ( Uk Dl v)xk)

2 wyk w;y.k (n—p)(1- v)k wyk
+4 Z (o+a,s+ugo+a,s+uD+ )(x)+)“<0+aﬁ+zuf)(x)

n—1

_ u)yk k
= yo (%) + (o} <x>+AZ <0+aﬂ+u = (1—)* )

(u v,k 2 u) y.k w;y,k k
R Gy i ) @)+ Z ( S0 +:00 41 S0+t B p— ) (1) * ) :

(3.66)

Similarly, for m = 3, we have

y3 (x) = yo (x) + A ( O“jryakﬂwyz) ) + (I, f) )
= 30 (1) + (I, f) () + 4 Z (5l DO )
A (ggjkyakﬂ+u 0+f) (x)
)”2 Z ( Ociyozkﬂ+ug(;:-yakﬁ+ﬂ (n—)(1—)¥ ) (x)
+ 2 ("’@()Cig/éf(ﬂ+ugoci?/o}f(ﬁ+zuf ) (x)

n—1
3 Ck w; v,k w; v,k w; v,k k
+272 30 [ 608 e g en ot apen—ma v | )

2

vk Xk
=y0 () + (Ig. f (x)+)\z <<§°+a,s+u (= (1-n* )

0 (607 ) @
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n—1

2 gk ;YK Xk
+2 Z ( 04104180+ iaptu—(1— ) (1) ¥ )

2 w; Y,k w;y,K
+ A (50+;a,/3+u50+;a,ﬂ+2uf> (x)

n—1

3 £V k w;y,k w;y.k k
+2 Z 0+ [ ﬁ+u£0+;a,ﬁ+ué30+ o, B+pu—(n—pn)(1— v) (x).
2
(3.67)
Continuing this process, we obtain
Ym () = yo (x) + (1§, f) ()
m—1
j w:y,k w;y,k oy K pwiyk
+ Z A g0+;a,ﬂ+ugo+;a,ﬂ+u ~604a B o011 /3+2V«f () + Z M
i—1 1
J i j=
(= k k K K
@Y, Y, Y, Y, k
E £0+;ot,ﬂ+ué30+:a,f3+u éa0+ aﬂ+uéa0+ o, B+pu—(n—p)(1— X ’
k=0
j—1
(3.68)
for all m € N.
The series
il g k w;y,k w;y.k w;y,k
Z A 0+ o ﬂ+ué30+;oc,ﬁ+u T g0+;a,ﬂ+u£0+;a,ﬂ+2uf (x)
j—1

for all x € (0, 5] and|A| < 1/M is convergent, which can be verified as follows.
From

w;y,k w;y,k w; Y,k w;y,k
50+;a,ﬁ+ugo+;a,ﬂ+u te £0+;a,ﬁ+ug0+;a,ﬂ+2/tf

Jj—1 1

w;y,k w;y,k w;y,k w; Y,k
<
M 5’0+ o ﬂ+ucg)0+;ot,ﬂ+u te £0+;a,ﬁ+u50+;a,ﬂ+2uf

Jj=2 1
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2 w; Y,k w;y,K w; Y,k w; Y,k
=M 5)0+;a,,3+ug0+;a,ﬁ+u éaO+ o /3+uéaO+ a ,3+2Mf —
j=3 |
j— k
=W G ] =M s (3.69)

By applying the Weierstrass M-test we obtain that the series

i| g k w;y.k ;v Kk w;y.k
Z A O+ o ﬂ+uéa0+ o, B+u gO+;a,ﬁ+MéoO+;a,ﬂ+2uf (x)

Jj—1

converges uniformly for all x € (a, b] and |A| < l\—l,[, where M is a constant given by
series (2.113). Analogously, we can verify that the series

j w v,k w;y,k w;y,k w; Y,k k
Z A Z k! 0+ @, ﬂ-HLédO-i-;a,ﬂ-i-M T @@0+;a,ﬂ+u‘°@0+ a,B+u—(n—p)(1-v)*
Jj=1 k=0

j-1
also converges uniformly for all x € (a, b], since the numerical series

n—1

Z M)/ Z o Il

is convergent for all [A| < ﬁ Letting m — oo in (3.68) and applying the formula
[37, p. 203, Eq. (2.22)]

éaw v,k k
0500, - —(n—p) (1-0)*

— B+u—m—p)(1—v)—1 ,k y.k
_/(x—t) e g (1 v)(a)(x—t)a)dt

=) (1 k
=T (k+ D P vkt (@37) (3.70)

we obtain the following representation for the solution y (x):

Yy () = yo (x) + (Ig" f) ()

00
L0 k w;y.k @; ¥,k w;y.k
Z 0+ o ﬂ+ug0+ a4 é30+;a,ﬁ+u£0+;a,ﬁ+2uf ()

J=1
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;y.k w;y,k w; v,k
& & &

XY C0ti0, B+ C0+00, i+ POt ftp

j—1

+u—(n—p)(1=v)+k vk
« [xﬂ u—(n—p)(1-v) Ea,ﬂ+ﬂ—(n—u)(l—v)+k+l (a)x“)]}. (3.71)
In particular, if 0 < u < 1 one has

x(=D(1-v)

_ ;y,k K e —
y () =4 (£0+;a,ﬁ+uy> @+ (5 f) ) + e =y

(3.72)

We consider sequence y,, (x):

w00 = 30 () + 2 (G558 vt ) 0O+ (1 ) (), m=1,23,...)

(3.73)
where
w x(r=D(1-v)
X)=C———.
o I' (w4+v—pv)
Following the above process of successive approximations, we obtain:
Ym () = yo () + (I3}, f) ()
m—1 , ,
i w;y.k ;YK WY, WY,
+ Z M Cosiapanoriapin - CotiaprnCoriapaant | )
=1
j )
n c
I'(w+v—puv)
- Kk
j w; v,k ;¥ .k ;Y (n—1)(1—v)
X Y M g - Cor (3.74)
j=1

J

Letting m — oo in the last sequence, we obtain the solution (3.60), which completes
the proof of the theorem.
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By applying the integral formula (2.109) we obtain the following theorem (case
k=1):

Theorem 3.4 ([39]) The following fractional integro-differential equation

(DIy) (x) = 2 (@mﬁ?/a’ﬂy) )+ f ), (0<x<b) (3.75)

o, B, 7,0, A€ C, N(a), N (B) > 0with the initial values (3.11) andn — 1 < pu <
n,n € N, 0 <v <1 has its solution in the space L (0, b] given by

00 o) n—1
_ w;ym
y@ =) " <é20+;a,(ﬁ+u)m+uf) () + A" e
m=1 k=0

m=1

w;y (m—1) BHu—(n—p)(1-v)+k pv
X {‘go+;a,(ﬁ+u)(m—1) [x peE E G Bi—(n—p)(1—v)+k+1 (wxa)]}
n—1 a
Ve X xk=(=md=v)
N W+ L A D

(3.76)

ie.,

o
_ w;ym
y ()= Z A" (éa0+;oc,(ﬂ+ﬂ)m+ﬂf> (x)
m=1

n—1

o
(B+u)ym—(n—p)(1—v)+k pym
+ Z " ch [x prrwm=nnd=y E (B iym—(n—p)(1—v)+k+1 (“’xa)]

m=1 k=0
n—1
H Ck k—(n—p)(1-v)
B O+ L F e a1 |
(Il < 1/M). (3.77)

In particular, if 0 < u < 1 under the initial value (3.57), Eq. (3.75) has its solution
in the space L (0, b] given by

o0
_ w;ym
y ()= Z A" (éooﬂa,(ﬂﬂt)mﬂif) (x)
m=1

o
wm—(1—p)(1-v) pym
+e 3 amxBm-(mpii-y El st iom—( (w1 (@x%)

m=1
=D1-v)

M —
+(10+f)(x)+cF(M+v_MU),

(In < 1/M'), (3.78)
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where c is an arbitrary constant and M is a positive constant given by

(3.79)

M = pB i | ()] b @]
W @n RGN (@n+p) nl

Ifwe put f (t) = 1€~ EY . (wt%) in(3.75) and apply the formula (2.109), we get the
following particular case of the solutions (3.77) and (3.78).

Corollary 3.1 ([39]) The following fractional integro-differential equation
(Dg_;vy) x)=x (@@Oéjfa’ﬁy) (x) + xeflEf;,E (a)x“) O<x<b (3.80)

o B, v, 6,0,w, A € C, R(a),R(B),N () > 0 with the initial values (3.11) and
n—1<u<n,neN,0<v <1 has its solution in the space L (0, b] given by

o0

_ +wym+p+e—1 pym+o
y(x) = Z W (BHmtpte Ea,(ﬂ+u)m+u+e (a)x“)
m=1
oo n—1
(B+wym—(n—p)(1—v)+k pym
" Z S e [x B+)m—(n—p)(1—v B om (1)t (a)x“)]
m=1 k=0
n—1 cx
+ (1" f) )+ xkf(nfu)(lfv),
Us..f) ,gmk—(n—m(l—vwl)
(1] < 1/M'). (3.81)

In particular, if 0 < u < 1 under the initial value (3.57), Eq. (3.80) has its solution
in the space L (0, b] given by

00
_ (B+ym+ute—1 pym+o
y(x)= Z AMx Prumtte Ea,(ﬁ+u)rn+u+e (wxa)

m=1

o
m (B+wm—(1—pw)(1-v) pym «
+CZ’\ X By (Bmym—(1—)(1-v)+1 (wx*)
m=1

x(=D(1-v)

" R —
+(Io+f) (x)+cl“(u+v—pw)’

(In < 1/M'), (3.82)

where c is an arbitrary constant and M is a positive constant given by (3.79).

If we put f(t) = ¢! in (3.75) and apply the formula (2.110), we get the
following particular case of the solution (3.77) and (3.78).
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Corollary 3.2 ([39]) The following fractional integro-differential equation
(DY) () = & (éﬁiz/a,ﬂy> ) +x" (0<x<b) (3.83)

o By, 6,0,w,A € C, RN(x),N(B),N(e) > 0 with the initial values (3.11) and
n—1<pu<n,neN,O0<v <1 has its solution in the space L (0, b] given by

o0
— +pwym+pte pym
Y0 =T () Y wmxPromtute gl inier (@x%)
m=1
00 n—1
+ym—n—p)(1—v)+k ym
MY [x(ﬂ pom=mm = By (B+wym—m—p)(1—v)+k+1 (“)xa)]
m=1 k=0
n—1 c
+ (1M F) (x) + xk==ma-v)
U+ ) ) Eomk—(n—mu—v)ﬂ)
(Il < 1/M). (3.84)

In particular, if 0 < u < 1 under the initial value (3.57), Eq. (3.83) has its solution
in the space L (0, b] given by

o0
_ +u)m-+pte ym
Y () =T (&) Y amxPrmmtute gl pert (@x%)
m=1

o0
. (Btmym—(1—p)(1—v) prym
tey AP B 0wy (0x)
m=1
L(=D(1-v)

iz e
+(10+f)(x)+cpw+v_w)

xhmmm =) () < 1/M)
(3.85)

where c is an arbitrary constant and M/ is a positive constant given by (3.79).

3.5 Operational Method for Solving Fractional Differential
Equations

In the 1950s, Jan Mikusinski proposed a new approach to develop an operational
calculus for the operator of differentiation [28]. This algebraic approach was based
on the interpretation of the Laplace convolution as a multiplication in the ring
of the continuous functions on the real half-axis. The Mikusifiski operational
calculus was successfully used in ordinary differential equations, integral equations,
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partial differential equations and in the theory of the special functions. It is worth
mentioning that the Mikusiriski scheme was extended by several mathematicians
to develop operational calculi for differential operators with variable coefficients
[7, 8, 27]. These operators are all particular cases of the so-called hyper-Bessel
differential operator

" 1 d
(By)(x) =x* (yi + —x—) y(x). (3.86)

An operational calculus for the operator (3.86) was constructed in [6]. New results
in the field of operational calculus have been presented by Luchko et al. in Refs. [13,
23, 24], where the operational calculi for the R-L, Caputo and for the more general
multiple Erdélyi-Kober fractional derivatives have been constructed and applied for
solution of the fractional differential equations and integral equations of the Abel

type.

3.5.1 Properties of the Generalized Fractional Derivative
with Types

The R-L, Caputo, and the composite fractional derivatives are defined as certain
compositions of the R-L fractional integral and ordinary derivatives. It is clear that
these operators play an important role in the development of the corresponding
operational calculi and there should be some coinciding elements in the operational
calculi for all three fractional derivatives.

We begin by defining the function space C),, y € R, which was introduced for the
first time in Ref. [6] devoted to the operational calculus for hyper-Bessel differential
operator.

Definition 3.1 A real or complex-valued function y is said to belong to the space
C,,y € R, if there exists a real number p, p > y, such that

y(t) =tPy(1), t>0

with a function y; € C[0, 00).

Clearly, C,, is a vector space and the set of spaces C, is ordered by inclusion
according to

C, CCs &y =s. (3.87)
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Theorem 3.5 ([25]) The R-L fractional integral I(‘)"+, o > 0, is a linear map of the
space Cy,y > —1, into itself, that is,

I¢.:Cy = Cayy CCy.

For the proof of the theorem, see Ref. [25].
It is well known that the operator /§, , @ > 0 has a convolution representation in
the space Cy,, y > —1:

I 3)(x) = (hg 0 )(x), ho(x) =x*"/T (@), yeCy. (3.88)

Here
(go f)x) =/0 glx—0f@)d, x>0

is the Laplace convolution. From the semi-group property (2.3) it follows

oy - Iy X)) = g x), yeCy,y=—1,a>0,neN. (3.89)
— ——

n

B

The composite fractional derivative Dy ' 1s not defined on the whole space C,,. Here

a’/B

let us introduce a subspace of Cy,, which is suitable for dealing with D"

Definition 3.2 ([17]) A function y € C_; is said to be in the space .Qﬁl, u > 0if
DyfyecC_ forall0<a<p 0<p<l

For g = 0, i.e. for the R-L fractional derivative, the space ot | coincides with
the function space introduced in Ref. [25].

Obviously, .Qfl is a vector space and .{29] = C_;. The space o* | contains in
particular all functions z that can be represented in the form z(x) = x¥ y(x) with
y > pn and y being an analytical function on the real half-axis.

The following result plays a very important role for the applications of the
operational calculus for D*# to solution of differential equations with these
generalized derivatives.

Theorem 3.6 ([17]) Lety € 2%, n —1 < a < n € N. Then the R-L fractional
integral and the generalized composite fractional derivative are connected by the
relation

U Dy () = y(x) = yap(x), x > 0, (3.90)
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where

n—1 k —n+a—pa+pfn

Z lim (I(1 Prn— a)y)(x), x> 0.
F(k—n+a—ﬂa+ﬂn+1)x»0+dx

Ya,p(X) =
(3.91)

Proof Forn — 1 <a <n € Nand 0 < 8 < 1, the generalized derivative can be
represented as a composition of the R-L fractional integral and the R-L fractional
derivative (2.17), therefore

(D5 @) = (1“" 0 & — (P "‘)y>) @) = UG re DY P yy ).

(3.92)

Using the formula (2.3) one obtains
U, DYy @) = U 1" R DG P ) () = UG R DG ) ).

The formula (3.90) follows now from the known formula for the composition
of the Riemann-Liouville fractional integral and the Riemann-Liouville fractional
derivative (see the formula from Proposition 3.1 with a = 0).

3.5.2 Operational Calculus for Fractional Derivatives
with Types

The formula (3.90) shows that the generalized derivative of order « and type 8
always corresponds to the R-L fractional integral of order «. The type 8 influences
the form of the initial values that should appear while formulating the initial-value
problems for the differential equations. That is why the main part of the operational
calculus for D0 L P follows the lines of the construction of the operational calculus for
the Riemann-Liouville or for the Liouville-Caputo fractional derivatives presented
in Ref. [13].

As in the case of the Mikusiniski type operational calculus for the Riemann-
Liouville or for the Liouville-Caputo fractional derivatives, we have the following
theorem:

Theorem 3.7 ([17]) The space C_1 with the operations of the Laplace convolution
o and ordinary addition becomes a commutative ring (C_1, o, +) without divisors
of zero.

This ring can be extended to the field .#_; of convolution quotients by following
the lines of the classical Mikusinski operational calculus [28]:

M-y = Cy x (Co1 \ {0}/ ~,
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where the equivalence relation (~) is defined, as usual, by

(f,8) ~ (f1.81) & (fog)) =(go f1)).

For the sake of convenience, the elements of the field .#Z_; can be formally con-
sidered as convolution quotients f/g. The operations of addition and multiplication
are then defined in M_ as usual:

[ fi_fomtsgof 393

8§ &1 8081

and

f fi._ foh

g & gogl

(3.94)

Theorem 3.8 ([17]) The space .#—_| with the operations of addition (3.93) and
multiplication (3.94) becomes a commutative field (M —y, -, +).

The ring C_; can be embedded into the field .#_; by the map (@ > 0):

hyof
he

fr

3

with, by (3.88), hy (x) = x*~1 /I (a).

In the field .#_,, the operation of multiplication with a scalar A from the field
R (or C) can be defined by the relation Ag = %, f € .#_,. Because the space
C_ is a vector space, the space .#_; can be shown to be a vector space, too. Since
the constant function f(x) = A, x > 0 belongs to the space C_1, we have to
distinguish the operation of multiplication with a scalar in the vector space .Z_
and the operation of multiplication with a constant function in the field .#_. In this

last case we get

. Lo Mt f gy M (3.95)
g he g g

Whereas the space C_; consists of the conventional functions, the majority of
the elements of the field .#Z_; are not reduced to the functions from the ring C_
and, consequently, can be considered to be the generalized functions or the so-called
hyper-functions. In particular, let us consider the element / = Z—Z of the field .Z_
that is the identity of this field with respect to the operation of multiplication:

f_haof _f

- L = =
g haog g
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The last formula shows that the identity element / of the field .#_; plays the role
of the Dirac §-function in the conventional theory of the generalized functions.

Another hyper-function, i.e. an element of the field .#_; that cannot be repre-
sented as a conventional function from the space C_; that will play an important
role in the applications of the operational calculus for the generalized fractional
derivative is given by

Definition 3.3 ([23]) The algebraic inverse of the R-L fractional integral /; ', is said
to be the element ,, of the field .#_;, which is reciprocal to the element %, in the
field .#_1, that is,

Sg=—=——"7-=— (3.96)

where (and in what follows) I = h—z denotes the identity element of the field .#Z_;
with respect to the operation of multiplication.

The R-L fractional integral I, can be represented as a multiplication (convo-
lution) in the ring C_; (with the function A, see (3.88)). Since the ring C_; is
embedded into the field .#_| of convolution quotients, this fact can be rewritten as
follows:

I
Ty (x) = Y (3.97)

o

As to the generalized fractional derivative DB there exists no convolution
representation in the ring C_1 for it, but it is reduced to the operator of multiplication
in the field .#Z_;.

Theorem 3.9 ([17]) Let a function y be from the space 2%,, n — 1 < a <

n, n € N. Then the generalized fractional derivative Dgf y can be represented

as multiplication in the field #_1 of convolution quotients:

Dy P)(x) = 8oy = Su* Yaps (3.98)

n—1 k—n+a—pa+pn
X
Yap(x) = ;0 Th—nta—Batpntl)

x lim (1‘1 = y(x), x> 0. (3.99)
x—0+ dxk

Proof To prove the formula (3.98), we just use the embedding of the ring C_; into
the field .#Z_; and then multiply the relation (3.90) with the algebraic inverse of
the Riemann-Liouville fractional integral operator—the element S,. The obtained
relation is exactly the formula (3.98).
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The formula (3.89) means that fora > 0,n € N

hg(x) i=hgo...0hy = hue(x).

n

This relation can be extended to an arbitrary positive real power exponent:
hg(x) =hy(x), X>0. (3.100)

For any A > 0, the inclusion 4% € C_; holds true and the following relations can
be easily proved (8 > 0, y > 0):

hE o hY = hop o hyy = hpiyya = HETY, (3.101)
hE =hl, & a1p =ay. (3.102)

The above relations motivate the following definition of a power function of the
element S, with an arbitrary real power exponent A:

h*, <0,
st=11ir=0, (3.103)
}%, A > 0.

For any o, B8 € R, it follows from this definition and the relations (3.101) and
(3.102) that

Sh. sy = sbtr, (3.104)
SE =Sy & aifp=ay. (3.105)

For the application of the operational calculus to solution of the differential
equations with composite fractional derivatives it is important to identify the
hyper-functions from the field .#_, which can be represented as the conventional
functions, i.e. as the elements of the ring C_j.

One useful class of such representations is given by the following theorem (see,
e.g., Refs. [23, 24]):

Theorem 3.10 ([23, 24]) Let the multiple power series

o
i i
E Qiy,in?] XX 20 Zs--,2n €C, aiy,.i, €C
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be convergent at a point zo = (210, ..., 2n0) Withall zxo # 0, k = 1,...,n. Then
the hyper-function

oo
2(Se) =8P Y aiy i, (S X (S )"
(ST ip=
with B >0, oy > 0, i = 1,...,n can be represented as an element of the ring
C_1:
o
2(Sy) = Z iy, in N (Btarii+tanina (X)),

i150e0,in=0

where hy(x) is given by (3.88).

This theorem is the source of a number of the important operational relations,
which will be used in the further discussions (for more operational relations, we
refer to Refs. [13, 25]):

I
So — p

= x""Eqa(px®), (3.106)

where p € R (or p € C) and E g(z) is the two parameter M-L function, as can
formally be obtained as a geometric series:

I I >
— hk+l
Se — p %_p I—ph 2::0 «

© ko (k+1)a—1
px X%~ 1
= T —— E
Z F(Olk—i—()l) Ol()t(lo-x )

The m-fold convolution of the right-hand side of the relation (3.106) gives the
following operational relation:

1
(Sy — p)™ = x" 1Egtnmut(loxa)v méeN, (3.107)
o

where Eg 8 (z) is the three parameter M-L function.
Letp >0, >0,i =1,...,n Then

Sa _ e

1 oo apo
_ = Ewa..., o), Ba (A x 1 A x ) (3.108)
I} Zln 1)»[5,10(' (aja,...,ap0), Ba n

with the multinomial M-L function.
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3.5.3 Fractional Differential Equations with Types

Here, the presented operational calculus is applied for solving linear fractional
differential equations with generalized derivatives and constant coefficients.

First, some simple fractional differential equations are considered. We begin with
the initial value problem (n — 1 <o <n, n € N,0< B <1,A € R)[17]

(D y)(X) Ay(x) = g(x),

lim (1“ A=) yy=creR, k=0,....,n—1. (3.109)
x—0+ dxk

The function g is assumed to lie in C_; and the unknown function y is to be
determined in the space £27,.

Making use of the relation (3.98), the initial value problem (3.109) can be
reduced to the following algebraic equation in the field .#Z_; of convolution
quotients:

Sa'y_)\yzsa‘ya,ﬂ+g,
n—1 k —n+a—pa+pn

Ya,8(x) = chF(k n+a—Ba+pn+1)

This linear equation can be easily solved in the field M_:

I
y=Ygtyn= Sa—)»'gjLSa—)».
The right-hand side of this relation can be interpreted as a function from the space
Qﬂ], that is, as a classical solution of the initial value problem (3.109).

It follows from the operational relation (3.106) and the embedding of the ring
C_, into the field .#_;, that the first term of this relation, y, (solution of the
inhomogeneous fractional differential equation (3.109) with zero initial values), can
be represented in the form

ye(x) = / (= 0" EaaGtx =080 dt = (Bl 048) ). (3.110)

As to the second term, yy, it is a solution of the homogeneous fractional differential
equation (3.109) with the given initial values and we have

n—1 Sy xk—n+a—ﬁa+ﬁn
x) = crug(x), ug(x) = .
() k;)""() €)= 5 {F(k—n+a—ﬁa+ﬁn+l)}

(3.111)
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Making use of the relation

xk—n+a—ﬂa+ﬂn

I'k—n+oa—Ba+pBn+1)

= hi—n+a—Ba+pnt1(X) = WGyt o patpnin)/a®)

1
= g—nto—patpni/a’
o

(3.112)

the formula (3.104), and the operational relation (3.108), we get the representation

of the functions uy(x), k = 0,...,n — 1 in terms of the two parameter M-L
function:
Sa xk—n+a—ﬂa+ﬁn
ug(x) = :
Se — A | I'k—n+a—Ba+pn+1)

S*(kfn+afﬁa+/3n+l)/a
o

_ _ k—(1-B(n—a) o
= =x Eq k+1—-(1=B)(n—a) (Ax").
I — )»SOTI ¢ (= n=e)

Putting now the two parts of the solution together, we get the final form of the
solution of the initial-value problem (3.109):

y(x) = yg(x) 4 yn(x)

= / x(x — 0" Eg o (M(x — )*)g(t) dt
0

n—1

+ Z cpx AP OOE G-y n—a) (AX%). (3.113)
k=0

The proof of the fact that the solution y belongs to the space £2¢ is straightforward
follows the lines of the proof from Ref. [24] and we omit it here.

Whereas the solution of the inhomogeneous fractional differential equa-
tion (3.109) with zero initial values—the function y,—only depends on the order
a of the derivative, the solution of the homogeneous equation—the function y,—
looks different for different values of the type § of the derivative. In particular, the
part yj, of the solution takes the form

n—1

) =Y crug (x), wg(x) = x* Eg g1 0x%)
k=0

and

n—1

) =Y crung (), wg (x) =X Eg gy e (%)
k=0
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for the Liouville-Caputo fractional derivative (8 = 1) and for the R-L fractional
derivative (8 = 0), respectively.
Next, we consider the linear differential equation [17]

n
>k (D) ) =y ) =g @) (3.114)
i=1
with initial values
lim (ﬂ1 A=)y (x) = ¢x € R (3.115)
x>0+ dxk
wherei = 1,2,...,mk =0,....n—1,n—1 < o <n,n e NO <8 <
I, A, 2; € R and the ordering a1 > ap > --- > o, > 0 is assumed without loss of

generality. Then the following algebraic equation in the field .#Z_; of convolution
quotients is obtained

n
Z)\,i (S“iy — Saiyﬂlj,ﬁi) —Ay =g. (3.116)
i=1
This linear equation can be easily solved in the field .Z_:

n
2 AjS% Yo, p;
j=1

J
Y=y, +Y¥=— g+ —;
ZAiS“i —A ZkiSO’" —A
i=1 i=1
I
=% &
> AiSH — A
i=1
j=1 ]ixsaz_x = [k—ntej—piej+pn+D |
i=1
On the other hand, one gets
1 Nt
n = n
SIS — A A+ Y A Seie — iS5
i=1 i=2
1 Nt
= )»_1 -

-y (‘%) S — A g-ai
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1 %)
-1
= —x"" Eg—ap.a1—a3.a—apan).ay | — XM T
Al Al
_)‘_nxa.—an’ _ixﬂll .
)"l )\n

Hence,

1 _ Ao _
Yg = )\_1 / (x — )™ ! E(al—ozz,ozl—a3,...,a1—a,,,otl),m <_)\_1 (x =072, ..,

_tn (x =)@~ 2

)»1 . (x — t)"") g(p)dr.

Applying the relations (3.108) and (3.112) we get
— k—n+aj—Bjaj+pin
X JTPR®j TP
Y= Z)LJ n Z _ B .
F'k—n+a;j—Bja;+Bn+1)

=1 Y apsei — . Lk=0
i=1

n §@j n—1
_ Z)"j _ chS—(k—n+aj—/3jaj+ﬂjn+l)
j=1 k=0

Z )\'iSOli —A
i=1

1 Jnd §—(k—n—Bjaj+a1+Bn+1)

n

i—1 k= Ai i— A oo—

j=1k=0 I — 22(_/\_'1> Sai—o _ ﬂS a
1=

— )\jckxkfnfﬂjaj+a1+ﬁjn

E 22 ai-ar
X L(ay—an,01—03, ..., aj—ap,ay),(k—n—pBaj+a;+pjn+1) _)\'1 X P

IfB; =0, j=1,2,...,n the solution coincides with the solution of the linear
n-term differential equation with the R-L fractional derivatives

y=y:+%
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where
1 n n—1
= 3 Y aatr

Lo k=0
E _ 2 ap—o2

X Loy —ap,01—a3,...,a1 —y, 1), (k—n4a1+1) )\_x s

1

_)"l’l o] —0op __xal

Al MM
Ifg; =1, j=1,2,...,n the solution coincides with the solution of the linear

n-term differential equation with the Caputo fractional derivatives

y=yg+ 1
where
1 n n—1
Yi = — Ajepxkrer—a;
1 )\1 Z JjCk
Jj=1k=0
A2 i
X E(al—az,al—og ..... ay—ap,ap), (k+ap—aj+1) <_Exal @2,
An = _ixﬂll
A M
1) faj=a,i=1,2,...,n, we consider the following special case of the above

linear n-term differential equation with the generalized fractional derivatives:

n
Z?»i (Dg;ﬂiY) (x) — Ay (x) =g (x) (3.117)
i=1

o d e _ . _ .
lim —(I0+ Wx)=ceR, i=12,...,nk=0,...,n—1;

x—0+ dxk

n
<O<a<l, 0<Bi <1, 1 i €R, i=1,2,...,n,A=ZA,~;ﬁO).
i=1

(3.118)

Hence we get the following algebraic equation in the field .#Z_; of convolu-
tion quotients:

n
D ki ($Yy = S¥yup) — Ay =g
i=1
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This linear equation can be easily solved in the field .Z_1:

I N
— * *_ .
y=y,+Y _AS“—kg+AS“—A E AjYa,B;-

Since

I 1, A
ase—n - a%  Fea (Zx ’

one gets

* 1 A a—1 A a
yg:Z/(x_t) Eyu Z(X—l) g (1) dr.
0

On the other hand,

S n n-l k —n+a—pBia+Bin
V= 23k
AS“—)»llko I'k—n+o—pBa+Bin+1)
Xn:"i §—(k=n—pia+pin+1)
= Aick S
i=1 k=0 —A
Xn:ri A, S—Uk=n—BiatpintatD)
= Gk x oe
i=1 k=0 A =75
n n—1
_ l Ac k—n—ﬁ,-a+ﬁ,-n+aE i o
= iCkX o.k—n—pia+pPin+a+1 Ax .
i=1 k=0
(i) Leta; = (n—i)a,i =1,2,...,n where 0 < a < 1. Then the solution can be

represented in terms of the three parameter M-L function

I
Vo= 8 ZZ 2

NS —a p ol

ny+ny+---+np,=n.

Operational relation (3.107) gives us the representation

t

yg=/u5(f)g(t—f) dr,

0
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where

p

nj
us () =3 3 cjmt™ " Eqm (vjt”)

j=1m=1

3.6 Fractional Equations Involving Laguerre Derivatives

In this section we show the utility of operational methods to solve a wide class
of integro-differential equations involving Prabhakar operators, also with variable
coefficients.

We start from the analysis of the following equation [40]

3 0 ey
i fen = (g0+;a,ﬁ)x fx, 0, (3.119)

where
w;y,1 _ ;Y
(42%s), = (%%n),

stands for the Prabhakar integral with respect to x-variable, with , «, 8, y € RT.
The operator

d d

Diy = 1S
=4 ar

is also named in literature as Laguerre derivative. It is well known that the
eigenfunction of the Laguerre derivative is given by the function

o k
Cot)y=>_ (/:W (3.120)
k=0

i.e., the zeroth order of the Tricomi functions. This means that

dtdC (At) = ACo(At)
ar dr ° A0

We now apply this result to the fractional integro-differential equations with variable
coefficients (3.119).

Theorem 3.11 ([40]) Consider the following initial value problem

D1l fxn = (ggiyaﬂ) [0,
Jf(x,0) =gkx),

(3.121)



96 3 Cauchy Type Problems

in the half plane x > 0, with analytic initial value g(x). The operational solution of
Eq. (3.121) is given by:

fx. 1) =Co (: (éao”f;z’ﬁ)x) g(x) = i (;% (éa(j”;fafkﬁ)x 2(x). (3.122)

k=0

The operational solution (3.122) becomes an effective solution when the series
converges, and this depends on the actual form of the initial value g(x). We remark
that this operational approach cannot be applied to the more general operator
éa(;‘f };Kﬂ The reason is due to the fact that the proof of the validity of the semigroup
property for this operator is an open problem, as it was discussed above. On the

other hand, for éi;‘f }; 5o We have

k
e _ WY ;Y Yy pwky
(Goi7 5) = GoiT g T g BT = G . (3.123)
kx
Then we have that
w;y > tk sy k
Co (t (éao*";ot,ﬁ>x) 8(x) = Z (k')2 (éaOny;a,ﬂ)x gx)
k=0~
- tk w;ky
=3 oz (5ds) 800, (3.124)
k=0~

as claimed.

Example 3.1 As a first concrete example we consider the following initial value
problem [40]

Sl fen = (670,,) fon

(3.125)
f(x,00=gx) =x"1, §>0 R, RB) > 0.

By application of relation (2.110), i.e.,
Eorit pX = TOXFTEL (™),

one has

w;ky _ [ pwiky 5—1 _ kB+8—1 pky
(@ﬁ’okaﬁ)x g(x) = (gokaﬁ)xx = FORFHITEL S (x®),
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whose solution is given by
fo,0=T©®)) kaﬁ+3—1EaTkﬁ+5(wx“). (3.126)
k=0

We observe that boundary value problems for equations involving Laguerre
spatial derivatives can be studied by operational methods in a similar way, as we
are going to show with the following example.

Example 3.2 Consider the following boundary value problem [40]

i feen = (17 ,) fen
[, 1) =7 ES (o), 8> 1,%(0), R(a) > 0,

in the half plane x > 0. Here we use relation (2.109), i.e.,

ET

- —1 v+
Oﬁyﬁ’aﬁ 1Eg’8(a)tﬁ) = 1otd lEg’aj_s(a)tﬁ).

Then, the solution is given by
00 ok .
EEINODY W;"“*‘S*‘EﬁTkZ‘ia(wtﬂ).
k=0 ’

By using similar reasoning, we can also treat in a simple way integro-differential
equations involving both Laguerre derivatives, i.e., with variable coefficients, and
R-L integrals. Indeed, it is well known that R-L integrals satisfy the semigroup

property.
Theorem 3.12 ([40]) Consider the following initial value problem

{%t%f(x, t) = ([g+)x S, 1), a>0, (3.127)

fx,0) =gx),

in the half plane x > 0, with analytic initial value g(x). The operational solution of
Eq. (3.127) is given by:

S k
F 0 =Colt(I8),) g0 = ;;) (IIW <lgf>x g(v). (3.128)

Example 3.3 Consider the following initial value problem

Tk feen = (I8), fox,0),
f&x,00=x", y>0a>0,
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by applying the previous theorem, its solution is given by

e — i ik ( (’)‘f) F 4 Dy Z (x@1)k
= : (kD2 ek +y + 1)

=T(y + Dx¥ o3 |:(l, .. 1) ,’()/ L) xati|

where we used relation (2.4).

Theorem 3.13 ([40]) Let §2, be a linear differential operator with respect to x and
Y (x) an eigenfunction of §2, such that

2 0x) = AP (), Y(0) = 1, (3.129)

then the evolution problem

.Qf(xt)_( )f(xt) >0,
fQ0,1) =g(@),

(3.130)

with an analytic function g(t) as boundary condition, admits an operational solution

f ) =y (x (go”ﬁ;’ﬁ)t) 2(1). (3.131)

This theorem highlights the utility of operational methods to solve, in a simple
way, linear integro-differential equations involving Prabhakar integral operators.

Example 3.4 Let us consider the following boundary value problem [40]

Lrenn = (650 ,) Fon,
fO,0)=g@)=1"1 8§>0,

its analytic solution is given by
S k
f(x,t) = I'($) Z kﬂ+5 lankﬂ_,’_ﬁ(a)ta). (3.132)

We observe that the convergence of the series (3.126) was proved by Sandev et al.
in [34].
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3.7 Applications of Hilfer-Prabhakar Derivatives

In what follows we give some applications of Hilfer-Prabhakar derivatives in
mathematical physics and probability.

First we consider a generalization of the time fractional heat equation by Hilfer-
Prabhakar derivatives, involving the non-regularized operator @Z:g:g 4

Theorem 3.14 ([11]) The solution to the Cauchy problem

@/);:Z:(‘)}Jr”(x’ = K%”(% 1), t>0, x €R,
—y(1-v) .
(Ep,(l—v)(l—u),a),0+u(x’ t))t=0+ = g(x), (3.133)

hmx%ioo M(x, t) = 0’

withp € (0,1),ve[0,1, w eR, K, p >0,y >0, is given by

o0

+
w(xt) = / 0 e_lkxg(k)i Z (_K)n [u(n+l)—v(u—l)—l
—oo0 2
n=0
x EY (=) (wt”)k?" dk. (3.134)

p.u(n+1)—v(u—1)

Proof By Fourier-Laplace transform of (3.133), where we use #(x,s) =
£ u(x,s)]and u(k, t) = % [u(k, t)], and by using formula (2.60), one has

s — ws P ik, s) — s"H D — ws P (k) = —Kk*i(k,s),  (3.135)

so that
’;(k 5 = SV(M—l)(l —ws TP’V g (k)
’ sH(1 —ws=P) + Kk?
-1
Kk?
— g tv=D 1 _ ey vd=M50y [ 1
s (I —ws™") &( )< +s”(l—a)s_P)V>
i n
= (—Kk2> sTROFDRE=D (] _ g o=p) (50 (3.136)
n=0
for | XK | < 1. The inverse Laplace transform yields
SE(l—ws P)Y p

o

~ — —1— 1— A~

ik, 1) =Y (—K)" po D= ol gy O ine @k gy, (3.137)
n=0
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Note that, for each k, the inversion term by term of the Laplace transform is always
possible in view of Theorem 30.1 in Ref. [9] provided to choose a sufficiently
large abscissa (dependent of k) for the inverse integral and by recalling that
the generalized M-L function is defined as an absolutely convergent series. The
convergence of (3.137) and in general of series of the same form (see below) can be
proved by using the same technique as in Appendix C of Ref. [34]. Next, by applying
the inverse Fourier transform to (3.137) one finishes the proof of the theorem.

Theorem 3.15 ([11]) The solution to the Cauchy problem

C-@Z::Z’yo%»u(x, t) = K%zzu(x, t), t > 0’ X E R’
u(x,0%) = g(x), (3.138)
lim, oo u(x,t) =0,

withw € (0,1), w € R, K, p > 0, y > 0, is given by

+00 1 0
u(x, ) = /Oo e_lkxg(k)EZ(—Kt“)" EV oy (0?) K" dk. (3.139)
- n=0

Proof Taking the Fourier—Laplace transform of (3.138), by formula (2.64), we have
that

s — ws ) ik, s) — s (1 — ws™P) g (k) = — KKk, 5), (3.140)

so that

- =11 — s P o 2 -1
A P Gl )g(k)—s—lg(k)<1+—sﬂ Kk )

sh(l — ws=P)Y + Kk? (1 — ws=P)Y
e n

= <_Kk2) sTHL A Z s ™PY TG k), (3.141)
n=0

< 1. The inverse Laplace transform yields

KK
for | w7

oo
ik, 0= (—Kt")" EV" (@)K g (k). (3.142)
n=0

By applying the inverse Fourier transform the proof of the theorem is finished.
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As an additional example we consider the free electron laser integro-differential
equation for the complex amplitude y(x), which is given by Dattoli et al. [5]

DO = iz [Fx — e Dyydr,  g,neR, x € (0, 1],

(3.143)

Here g is the gain coefficient, and 7 is the detuning parameter. This equation has
been generalized to a fractional free electron laser equation in Ref. [20]. Here
we give an analysis of the free electron laser equation involving Hilfer-Prabhakar
derivative [11]

Dy y@) =2ET oy + f(x), x €(0,00), f(x)e L'[0,00),

—y(1-v) _
(Ep,(l—v)<1—u>,w,o+y(") pgr O x« 20,
(3.144)
where © € (0,1),v € [0,1], o,A € C, p > 0, y,w > 0. This generalizes the
problem studied in Ref. [20], corresponding to v = y = 0. Here f(x) is a given

function. The original FEL equation is then retrieved for y = 0,v =0, u — 1,
f=0,A=—ing,o=in,p=w =k = 1.

Theorem 3.16 ([11]) The solution to the Cauchy problem (3.144) is given by

o0
_ k v(l—p)+u+2puk—1 py+k(@+y)—yv o
y(x) =« Z)‘ X E,o,v(l—u)+u+2ku(wx )
k=0

oo

kgytk(@+y)

+ Y AR e FO. (3.145)
k=0

Proof By Laplace transform of (3.144) (see (2.60)) one gets

sH(1 = ws™P) LLy)1(s) — ks VI (1 — ws PV

= 2L ET (@x”)](s) - LIyn)]1(s) + ZLLf (0)1(s), (3.146)

from where

K —V(l—u)—u(l — wsTPYYVTY
L) = 1 —As™24(1 — ws—P)~ @Y

SR —ws™P)7Y

1 —As™20(l — ws—P)~ @~V

L)1)
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o0
=K Z,\ks—V(l—u)—u—Zuk(l _ ws—p)yv—y—k(W+y)
k=0

+ Y Ak TN (1 — s K@) 21 F(0)](s). (3.147)
k=0

By inverse Laplace transform and by using the convolution theorem of the Laplace
transform, follows the claimed result.

Example 3.5 ([11]) Let us consider the Cauchy problem (3.144) with « = O,
fx) = xm-l By using relation (2.110) one has

y+k(@+y) -1 _ Qk+1)+m—1 py+k(@+y)
Ep,//.(2k+1),a),0+xm = I'(m) x* " Ep,,u(2k+l)+m(wxp)’ (3.148)

and, therefore, the solution of the Cauchy problem is given by

o0
_ k
y() = Fm) ™1y (/\xz“)kEZL(gfﬁ;lm(wx”). (3.149)
k=0

Example 3.6 ([11]) Let us consider the Cauchy problem (3.144) with k = O,
fx) =x™1 Eg’m(a)xp). From relation (2.110), one has

y+k(@+y) m—1 _  nQk+D)+m—1 pytk(@+y)+o
E) L kt1).0.0+% E] m(wx?) =x* L, k1) +m (wx”),
(3.150)
thus, the solution is given by
— k
- +h(@+y)+
y(x) = xHtm-l Z(Mzu)kggmg’;;g;; (wx"). (3.151)

k=0

3.7.1 Fractional Poisson Processes

Here we present a generalization of the homogeneous Poisson process for which the
governing equations contain the regularized Hilfer—Prabhakar differential operator
in time [11]. The considered model generalizes the time-fractional Poisson process.
The state probabilities of the classical Poisson process and its time-fractional
generalization can be found by solving an infinite system of difference-differential
equations. As the zero state probability of a renewal process coincides with
the residual time probability, the process can be characterized by the waiting
distribution. The M-L function appeared as residual waiting time between events
in renewal processes with properly scaled thinning out the sequence of events
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in a power law renewal process [4, 12, 26, 29, 32, 36, 42]. Such a process is a
fractional Poisson process. Gnedenko and Kovalenko did their analysis only in
the Laplace domain, and Balakrishnan [2] also found this Laplace transform as
highly relevant for analysis of time fractional diffusion processes. Later, Hilfer and
Anton [16] were the first who explicitly introduced the M-L waiting-time density
fu@®) = —%Eu(—t“) = t*"'E, ,(=t*), 0 < p < 1, into the continuous time
random walk theory. They showed that the waiting time probability density function
that gives the time fractional diffusion equation for the probability density function
has the M-L form. In the next section we will pay special attention of the importance
of M-L functions in the continuous time random walk theory.

In what follows we will demonstrate the importance of the M-L functions related
to the fractional Poisson processes. We consider the following Cauchy problem
involving the regularized operator C@Z::: o+

Definition 3.4 (Cauchy Problem for the Generalized Fractional Poisson Process

[11])

c )" 4 o Pe(®) = =Api(6) + Api—1(1), k=0, >0, 4 >0,
1, k=0, (3.152)

pr(0) =
0, k>1,

wherep >0,y > 0,0 < p <1,0<pu <1.Wealsohave 0 < u[yl/y —rp < 1,
Vr=0,...,[y],ify #0.

These ranges for the parameters are needed to ensure non-negativity of the solution.
Multiplying both the terms of (3.152) by v* and adding over all k, we obtain the
fractional Cauchy problem for the probability generating function

G, 1) =) v pi()

k=0

of the counting number N(¢), t > 0,

Tt G, = =1 =G, D, vl <1,

(3.153)
G(v,0)=1.
Theorem 3.17 ([11]) The solution of Eq. (3.153) is given by
o
G(v, 1) = Z(—M“)k(l - v)kE;f‘Mk+1(—¢tp), v < 1. (3.154)

k=0
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Proof In view of Lemma 2.5, we have

SML 4 ¢s 7P ZIG1(v, 5) — s 71 + ¢s 771 = —r(1 — v).Z[G](v, 5),

(3.155)
so that
—1 — _ -1
L1615y = —2 L1 (1 + M)

SH[1 4+ ps— Pl +A(1 —v) s SH[1 4+ ps—PTY
= A1—v) T
s ,; [‘sm +¢s—P]V}
= > (=1 — )T 4 g5 (3.156)

k=0

where |L(1 — v)/[s*(1 + ¢s~*)7]| < 1. By using (2.61) we can invert the Laplace
transform (3.156) obtaining the claimed result.

Remark 3.1 Observe that for y = 0, we retrieve the classical result obtained, for
example, in [22]. Indeed, from the fact that, see Eq. (1.15),

0]

(=t?)' I"(r) 1

0 Py —
Ep ks (=017) = ; riC(pr + pk + 1DIO) ~ T'(uk+1) (3.157)
Eq. (3.154) becomes
o (—AE =k
G, =) ~————————=E, (-x(1—v)"
T(uk+1) "
= E (=11 — v)rh), (3.158)

that coincides with equation (23) in Ref. [22].

From the probability generating function (3.154), we are now able to find the
probability distribution at fixed time ¢ of N(¢), t > 0, governed by (3.152). Indeed,
a simple binomial expansion leads to

o o0
r r
Gw,n=Y Y -1y <k> WY EL L (—tP). (3.159)
k=0  r=k
Therefore,

pr(t) = Z(—])r_k (;) (Atﬂ)rngWH(—gbrP), k>0, t>0. (3.160)
r=k
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We observe that, for y = 0,

At
pr(t) = Z( ™ "( )% = W ERE L (=M

_ Gt

o S EW (-t k=0, 120, (3.161)

The first expression of (3.161) coincides with equation (1.4) in Ref. [3]. The third
one is a convenient representation involving the kth derivative of the two parameter
M-L function evaluated at —A¢#. It is immediate to note, from (3.154), by inserting
v = 1, that Z/?io pr(t) = 1. From (3.152), one can evaluate the mean value of
N (¢) by differentiation of Eq. (3.153) with respect to v and to take v = 1. That is,

@7’ N@®)=xr >0,
{c Ky or (ND) > G162
<N(r>>|,zo =0,
whose solution is given by
(N@) = AMFEY  (—¢tP), t>0. (3.163)

P 1+u

3.7.1.1 Subordination Representation

An alternative representation for the fractional Poisson process N (¢),t > 0 [11] can
be given as follows. Let us consider the Cauchy problem

c@ iy orh(x, 1) = ——h(x t), t>0,x>0, (3.164)
h(x,o+) = 5(x).

The Laplace-Laplace transform of i (x, t) is given by

sufl(l + s P
,8) = , 0, 0. 3.165
(z,5) ST s—PY 12 s>0, z> ( )

S

Therefore one has
MO+ 5P iz, 5) — "N (14 5P) = —zh(z, 5), (3.166)

which immediately leads to (3.165). Consider now the stochastic process, given as
a finite sum of subordinated independent subordinators

[v] w2l rp
Z M , >0, (3.167)



106 3 Cauchy Type Problems

where [y ] represents the ceiling of y. Furthermore, we considered a sum of [y
independent stable subordinators of different indices and the random time change
here is defined by

o) = (rfw)vﬂy% >0, (3.168)

Y
where V,m is a further stable subordinator, independent of the others. Note that in
order the above process U, t > 0, to be well-defined, the constraint 0 < u[y]/y —
rp < 1 holds foreachr =0, 1, ..., [y]. The next step is to define its hitting time.
This can be done as

¢ =inf{s > 0: Y, >}, =>0. (3.169)

Theorem 2.2 of Ref. [10] ensures us that the law Pr{€&; € dx}/dx is the solution
to the Cauchy problem (3.164) and therefore that its Laplace—Laplace transform is
exactly that in (3.165).

Theorem 3.18 ([11]) Let &, t > 0, be the hitting-time process presented in
formula (3.169). Furthermore let N (1), t > 0, be a homogeneous Poisson process
of parameter A > 0, independent of &;. The equality

N() =N (&), t=0, (3.170)

holds in distribution.

Proof The result can be proved by writing the probability generating function
related to the time changed process ./ (&;) as

0 o)

Z VK Pr( A (&) =k) = / e M=V pr(E, € dy). (3.171)
0

k=0

Therefore, by taking the Laplace transform with respect to time one obtains

00 poo M*l(] + ps™PY
—)L(lfv)yfstP dv)dr = § . 3.172
/0 /o e r(& € dy) si(L+ ¢s—P) + a(l — v) G172

By inverse Laplace transform one finds

Z VK Pr( A (&) =k) = Z(—A(l — v))"t“"E’;Tk,Hl (—pt"), (3.173)
k=0 k=0

which coincides with Eq. (3.154).
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3.7.1.2 Renewal Process

The generalized fractional Poisson process N(¢), t > 0, can be constructed as a
renewal process with specific waiting times [11]. Let us consider £ i.i.d. random
variables T, j = 1, ..., k, representing the inter-event waiting times and having
probability density function

oo
fr, (1)) = ,\t;“l Y (MY ENT (—tf), 120, pe© 1), (3174
r=0

and Laplace transform

(e T) =AY (=1 sTH TR+ gs )T
r=0
_ AsTHA + ps™P)7Y
L asTH(1 4 gs—P) Y]
A

- . (3.175)
SH(L + ¢s—P)Y + A

|—As (1 +¢s ") 77| <1

Let 7, = T\ +T> +- - - + T,, denote the waiting time of the mth renewal event. The
probability distribution Pr(N () = k) can be written making the renewal structure
explicit. By Laplace transform of Eq. (3.160) one finds

LIpl(s) =Y (=1 * (Z)A’s—*"—l(l +gs )
r=k

_1 e AT+ k A rtk
' g“”( k )(sﬂ(lws—f))r)

L (—k —1 A ’
—_ oLk —uk —p\—vk
= s kTR ¢s7P) Z( r )(sﬂ(1+¢s—ﬂ)y)

r=0

A —k—1
1y k. —uk —pr—yk
— A HE YTV 1 -
s s+ ps™P) ( +sﬂ(1+¢s—P)V>

MstH(1 4+ gps™P)Y

T DA+ gsP) AP (3.176)
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On the other hand, one has [11]

ZLIpl(s) = / e Pr(T <t) —Pr(Jhy1 < 1) dt
0

0 ' f
= / e |:/ Pr(9 € dy) —/ Pr(is1 € dy):| dt
0 0 0

o0 o0 o0 o0
:/ Pr(9; € dy)/ e S dr —/ Pr(J1 € dy)/ e S dr
0 y 0 y

o0 o0
=51 / eV Pr(9; € dy) — / eV Pr(Ty € dy)]
0 0

T N k N k1
=9 (sﬂ(1+¢s—P)V +A> - (su(1+¢s—ﬂ)y +/\> ]

e A e M A"“}
= [s7(1+ s P)7 + AJFT1
ks sy

I gs T AR

(3.177)

which coincides with (3.176). Therefore, considering the renewal structure of the
process, one can find the probability of the residual waiting time as [11]

P(T; > 1) = po(t) = Z(—)\tﬂ)rE;fﬂrH(—(/;tﬂ). (3.178)
r=0

In order to prove the non-negativity of the probability density function (3.174)
(and therefore of pi (7)) one can use the properties of the completely monotone and
Bernstein functions. Let us consider the case y # 0 (the case y = 0 is studied in
Ref. [22]). From the Bernstein theorem (see e.g. Ref. [35], Theorem 1.4), in order
to show the non-negativity of the probability density function, it is sufficient to find
when its Laplace transform is a completely monotone function (3.175). The function
z — 1/(z 4+ A) is completely monotone for any positive A and that 1/(g(z) + 1) is
completely monotone if g(z) is a Bernstein function. Thus, one should prove that
the function

SH( 4 gs™P) = (sH7 + gst/7=P) (3.179)
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is a Bernstein function. We have

(M7 + sl =) = [(SM/V + ¢Sﬂ/y,p)(y1])//h/1

- y/Iv1
_ Z <rﬂ>¢rsury1/ym . (3.180)
,

r=0

Since the space of Bernstein functions is closed under composition and linear
combinations [35], it follows that (3.180) is a Bernstein function for 0 < u[y]/y —
ro < 1,Vr = 0,...,[y], which coincide with the constraints derived in
Sect.3.7.1.1. The same restrictions will be obtained in the next section, within the
continuous time random walk theory.

3.7.1.3 Fractional Poisson Process Involving Three Parameter M-L
Function

At the end of this chapter we consider a fractional Poisson process introducing a
discrete probability distribution in terms of the three parameter M-L function [31].
The telegraph’s process, which represents a finite-velocity one dimensional random
motion, has been generalized to fractional one. The fractional extensions of the
telegraph process {4 (t): t > 0}, whose changes of direction are related to the
fractional Poisson process {44 (¢): t > 0} having distribution [3]

)»k tak

P(Aa (@) = k) = Eo(M®) I'(ak + 1)’

keNy:=NuU{0}, >0

The fractional Poisson process resulting in {45 g(¢): t > 0} defined with two
parameter M-L function E, g(At*) was studied in [15]. Therefore, the related
distribution is

)\k tozk

P( A p(t) =k) = Eqp(M%) T(ak +B)

keNyg, >0,

for which the related raw moments are obtained in terms of the Bell polynomials
[15].

As a generalization of the previous ones, the more general fractional Poisson
process {Jlﬁlﬂ (t): t > 0} defined by the three parameter M-L function E;: 8 (At%)
has distribution [31]

Ak ()i t*
E] ;) kT (ak + B)’

P(A (1) = k) = keNg, t>0. (3.181)
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From here one can conclude that there is a correspondence between the non-
homogeneous Poisson process {-4'(¢): t > 0} with intensity function Aot

e (9

P (1) =k) = INCESIE

Aa>0 keNy,

and the fractional Poisson process {,/V (t):t =0}

Proposition 3.4 ([31]) Lef min{a, B, y, A} > 0andt > 0. Then

623
I'(ak + B)

z T PN (1) =n)

P(A (1) =k)
P(JV ®) =k =

k € Ny,

where N (t) is a non-homogeneous Poisson process with intensity function hot® ™!,

Proof Rewriting (3.181) as

W ok v

!
B0 =k = AP K
> W G
o lan+p) n!
one obtains the result in this Proposition.

In what follows for simplicity one gets A = 1. For a non-negative random
variable X on a standard probability space (§2, .%#, P) having a fractional Poisson-
type distribution

tak
PY () = P(X = k) = () keNo 120,

E} 4(t*) K\ T (ak + )

with min{«, 8, ¥y} > 0, and for Zkzo Pg’ﬂ(k) = 1, the random variable X is well
defined. This correspondence we quote in the sequel X ~ ML(«, 8, ).
The factorial moment of the random variable X of order s € N is given by

dY
Py = (XX =1 (X =5+ 1) = (=DUEX)) = 226%)|
provided the moment generating function Mx () = (tX) there exists in some

neighborhood of r = 1 together with all its derivatives up to the order s. By virtue
of the Viete-Girard formulae for expanding X (X — 1) --- (X — s + 1) one obtains

P, _Z( 1)s e Xr)
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where e, is an elementary symmetric polynomials:

er=e by, -, b)) = Z -y, r=0,5—1.

1<t)<-<tp<s—1

Theorem 3.19 ([31]) For all min{a, B, y} > 0 the s-th raw moment of the random
variable X ~ ML(a, B, y) is given by

1 > A .
(X =7 ) D) { } (S EL @), seNg, 1=0.  (3.182)
Ol,ﬂ j=0 J
Moreover, the s-th factorial moment is given by
l : - r . .
P = 5 D= Y o), { } I YT %), (3.183)
a.p r=1 j=0 J

where the curly braces denote the Stirling numbers of the second kind.

Proof From the connection between the raw and the factorial moments of a random
variable:

. (s 1Y ey

j=0 s
one finds
(X*) = Z(—l)i {S,}((—X)j) = Z(_l)j {S} Z(_k)j PZ,,g(k)
=0 j = i &
Ly 5]y CRs @

I -1 J TRkt

Eq ) ,ZZ:O( : {J}g K\ T (ak + B)

: S Ly 4+ k= j)+ )0

- aj

Eg,ﬁ(t“)l"()/)jgo{j}t lgj(k_j)!F(a(k_j)+aj+ﬂ)
__ Ly ToED [s) (v + ™
- Eg,ﬂ(ta)jgo r'(y) {j}t gk!l*(ak+aj+13)’

which is the statement (3.182). The derivation of (3.183) is now straightforward.
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In order to obtain the fractional order moments one needs the so-called extended

Hurwitz-Lerch Zeta (HLZ) function @ip I’L‘.T;)K) (z, s, a) introduced in Refs. [14, 38] as

(p,0.K) ()\)pn (Won "
Py v (@s,a) = : 3.184
oy (28,@) ,; e )y ( )

where A, u € C, a,v € C\Za,p,o,/c >0,k—p—0+4+1>0whens,z e€C,
k—p—0o=—lands € Cwhen |z] <8 =p Po %", whilek —p —0 = —1
and R(s +v — A — u) > 1 when |z| = §. By setting 0 — 0 in (3.184) one obtains
the generalized HLZ function

.0, ,
@70z, s5,a) = 000 (2, 5,).

Theorem 3.20 ([31]) Let X ~ ML(«, B, y). For all min{«, B, y} > 0 and for all
s > 0 one gets

yte (La)

(X7) = Eg,ﬂ(t"‘) T'(+B) y+La+p

1 —s,1). (3.185)

Proof By definition, for all s > 0 it follows

s 1 s Wt
X0 = Eg,ﬂ(t“) ’;n n! T'(an+B)’

since the zeroth term vanishes. Therefore,

s—1 an
PO B S ()Y

E();’ﬁ(t“) = = D! (an + B)
oyt (y + Dp 2"
EY (1%) Z n'Fan+a+B)(m+ 1)
a,B n>0
y 1

(L) o
= L) *,1=s5,1).
ELg@) et p) Vet

Beingh=y+lL,v=a+6,z=t%s—1—-s,p=1,k =aanda = 1, by
applying the convergence constraints for <P(f.’v'( )(z, s, a) in (3.184), one finishes the
proof.

Remark 3.2 For the raw integer order moments for the two parameter M-L dis-
tributed random variable in [15] has been found

1

ny __ d\"
(Y" = ) (r E) Eqp(t), neNo.
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This case corresponds to Y ~ ML(«, B, 1) distribution. Indeed, taking s = 1, y =
1; ¢ — t# in (3.182) we have

2
(x) = 1 Loares®)
Eq p(1)
On the other hand, since
n tn—l (2)n71tn_1
Ey () = _ = = E? 1),
( ap( )) ;F(an+ﬁ) ’;(n—l)!l“(oz(n—l)—i-a—f-ﬂ) a’a+’3()

one concludes that (X) = (Y). By settings =1,y = 1, ¢ — té, relation (3.185)
becomes
1,
Pratp® 0D t @)ut"
Eap() (@ + ) Eap®) I'(@+p) L nl @+ Plan

Corollary 3.3 ([31]) For all min{c, B8, v} > 0 and for all s € Ny we have

Fa+p) < 2

(L) .

Pyt 1 =5 D= —c— > ); I Baaiep) 1> 0.
j=0
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