
Chapter 1
Introduction: Mittag-Leffler and Other
Related Functions

The analysis of fractional differential equations, carried out by means of fractional
calculus and integral transforms (Laplace, Fourier), leads to certain special functions
of Mittag-Leffler (M-L) and Wright types. These useful special functions are
investigated systematically as relevant cases of the general class of functions which
are popularly known as Fox H -functions, after Charles Fox, who initiated a detailed
study of these functions as symmetrical Fourier kernels [5]. Definitions, some
properties, relations, asymptotic expansions and Laplace transform formulas for
the M-L type functions and Fox H -function are given in this Chapter. At the
beginning of the twentieth century, Swedish mathematician Gösta Mittag-Leffler
introduced a generalization of the exponential function, today known as the M-
L function [28]. The properties of the M-L function and its generalizations had
been totally ignored by the scientific community for a long time due to their
unknown application in the science. In 1930 Hille and Tamarkin solved the Abel-
Volterra integral equation in terms of the M-L function [19]. The basic properties
and relations of the M-L function appeared in the third volume of the Bateman
project in the Chapter XVIII: Miscellaneous Functions [4]. More detailed analysis
of the M-L function and their generalizations as well as the fractional derivatives
and integrals were published later, and it has been shown that they are of great
interest for modeling anomalous diffusion and relaxation processes. Similarly, Fox
H -function, introduced by Fox [5], is of great importance in solving fractional
differential equations and for analysis of anomalous diffusion processes. The Fox
H -function has been used to express the fundamental solution of the fractional
diffusion equation obtained from a continuous time random walk model. Therefore,
in this Chapter we will give the most important definitions, relations, asymptotic
expansions of these functions which represent a basis for investigation of anomalous
diffusion and non-exponential relaxation in different complex systems.
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2 1 Introduction: Mittag-Leffler and Other Related Functions

1.1 Mittag-Leffler Functions

The standard one parameter M-L function, introduced by Mittag-Leffler, is defined
by Mittag-Leffler [28]:

Eα(z) =
∞∑

k=0

zk

Γ (αk + 1)
, (1.1)

where (z ∈ C; �(α) > 0), and Γ is the Gamma function [4]. It generalizes the
exponential, trigonometric, and hyperbolic functions since

E1(±z) =
∞∑

k=0

(±z)k

Γ (k + 1)
=

∞∑

k=0

(±z)k

k! = e±z,

E2(−z2) =
∞∑

k=0

(−z)k

Γ (2k + 1)
=

∞∑

k=0

(−z)k

(2k)! = cos(z),

E2(z
2) =

∞∑

k=0

zk

Γ (2k + 1)
=

∞∑

k=0

zk

(2k)! = cosh(z).

The case with α = 1/2 yields

E 1
2

(
±z

1
2

)
=

∞∑

k=0

(±z)
k
2

Γ
(

k
2 + 1

) = ez
[
1 + erf

(
±z

1
2

)]
,

where

erf(z) = 2√
π

∫ z

0
e−x2

dx

is the error function. The one parameter M-L function (1.1) is an entire function of
order ρ = 1/�(α) and type 1.

Special form of the one parameter M-L function, which has many applications,
is given by (see Fig. 1.1)

eα(t; λ) = Eα(−λtα)
(
α > 0; λ ∈ C

)
. (1.2)

Its Laplace transform

L [f (t)](s) =
∫ ∞

0
e−st f (t) dt,
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Fig. 1.1 One parameter M-L
function (1.2) for α = 1/2
(blue line),
α = 1—exponential function
(red line), α = 3/2 (green
line)
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reads [29]

L [eα(t;∓λ)] (s) = sα−1

sα ∓ λ
, (1.3)

where �(s) > |λ|1/α . The function (1.2) is an eigenfunction of a fractional boundary
value problem CDα

0+f (t) + λf (t) = 0 (see the next section for definition of the
fractional derivative CDα

0+), in comparison with the exponential function e−λt as an

eigenfunction of the ordinary boundary value problem df (t)
dt

+ λf (t) = 0.
The two parameter M-L function defined by Agarwal [1], Erdélyi et al. [4],

Kilbas et al. [20], and Podlubny [29]

Eα,β(z) =
∞∑

k=0

zk

Γ (αk + β)
, (1.4)

where (z, β ∈ C; �(α) > 0), was introduced and investigated later. This function in
Ref. [4] is called generalized M-L function. Note that

Eα,1(z) = Eα(z),

and

Eα,0(z) =
∞∑

k=1

zk

Γ (αk)
= z

∞∑

k=0

zk

Γ (αk + α)
= zEα,α(z).
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It relates to some elementary functions, i.e.,

E1,2(z) =
∞∑

k=0

zk

Γ (k + 2)
=

∞∑

k=0

zk

(k + 1)! = ez − 1

z
,

E2,2(z) =
∞∑

k=0

zk

Γ (2k + 2)
=

∞∑

k=0

zk

(2k + 1)! = sinh(
√

z)√
z

.

The two parameter M-L function (1.4) is an entire functions of order ρ = 1/�(α)

and type 1. The following function

eα,β(t; λ) = tβ−1 Eα,β(−λtα)
(
α, β > 0; λ ∈ C

)
(1.5)

plays an important role in the theory of fractional differential equations (see
Fig. 1.2). The Laplace transform of the two parameter M-L function (1.5) reads [29]

L
[
eα,β(t;∓λ)

]
(s) = sα−β

sα ∓ λ
, (1.6)

where �(s) > |λ|1/α . The following integrals

1

1 − z
=
∫ ∞

0
e−x Eα(xα z) dx =

∫ ∞

0
e−x xβ−1 Eα,β(xα z) dx,

are fundamental in the evaluation of the Laplace transforms of the functions
Eα(−λxα) and Eα,β(−λxα) when α, β > 0 and λ ∈ C. Both of these functions
play key rôles in fractional calculus and its application to differential equations.

Fig. 1.2 Two parameter M-L
function (1.5) for α = 1/2,
β = 3/4 (blue line), α = 1,
β = 1/2 (red line),
α = β = 3/2 (green line)
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For the two parameter M-L function the following formula holds true [12, 17]

Eα,β(z) = z Eα,α+β(z) + 1

Γ (β)
. (1.7)

Eα,β(z) = βEα,β+1(z) + αz
d

dz
Eα,β+1(z), (1.8)

d

dz
Eα,β(z) = Eα,β−1(z) − (β − 1)Eα,β(z)

αz
, (1.9)

dn

dzn

[
zβ−1Eα,β(azα)

]
= zβ−n−1Eα,β−n(azα), (1.10)

n ∈ N,

as well as
∫ x

0
tγ−1Eα,γ (−atα)(x − t)β−1Eα,β(−b(x − t)α) dt

= bEα,β+γ (−bxα) − aEα,β+γ (−axα)

b − a
xβ+γ−1, (a �= b), (1.11)

from where it follows
∫ x

0
tα−1Eα,α(−atα)(x − t)β−1Eα,β(−b(x − t)α) dt

= Eα,β(−bxα) − Eα,β(−axα)

a − b
xβ−1, (a �= b), (1.12)

and
∫ x

0
tα−1Eα,α

(−atα
)
(x − t)β−1Eα,β

(−a(x − t)α
)

dt = xα+β−1Eα,β

(−axα
)
.

(1.13)

For more useful relations and properties of these M-L functions, we refer to the
literature [12, 17]. Moreover, the two parameter M-L function with negative first
parameter α has been studied in Ref. [15].

Furthermore, the three parameter M-L (or Prabhakar) function is defined by
Prabhakar [34]:

E
γ
α,β(z) =

∞∑

k=0

(γ )k

Γ (αk + β)

zk

k! , (1.14)
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where β, γ, z ∈ C, �(α) > 0, (γ )k is the Pochhammer symbol

(γ )0 = 1, (γ )k = Γ (γ + k)

Γ (γ )
, (0)0 := 1.

This function is also an entire function of order ρ = 1/�(α) and type 1. By
definition, it follows that

E1
α,β(z) = Eα,β(z),

E1
α,1(z) = Eα(z),

as well as

E0
α,n(z) =

{
1

Γ (n)
, n ∈ N,

0, n = 0.
(1.15)

The following function (see Fig. 1.3)

e
γ
α,β(t; λ) = tβ−1 E

γ
α,β(−λtα)

(
min{α, β, γ } > 0; λ ∈ R

)
(1.16)

is related to the three parameter M-L function. The Laplace transform of the three
parameter M-L function (1.16) reads [20, 34]

L
[
e
γ
α,β(t;∓λ)

]
(s) = sαγ−β

(sα ∓ λ)γ
, (1.17)

Fig. 1.3 Three parameter
M-L function (1.16) for
α = 3/42, β = 1, γ = 1/2
(blue line), α = γ = 5/4,
β = 3/2 (red line), α = 5/4,
β = 1/4, γ = 1/2 (green
line)
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where |λ/sα| < 1. For the three parameter M-L function the following Laplace
transform formula also holds true (1.14) [45]

sμ(α−1)

sα ± λ
[

sργ−α

(sρ+ν)γ

] = sμ(α−1)−α

1 ± λ
[

sργ−2α

(sρ+ν)γ

] =
∞∑

k=0

(∓λ)k
s(ργ−2α)k+μ(α−1)−α

(sρ + ν)γ k

= L

[ ∞∑

k=0

(∓λ)kx2αk+α+μ−μα−1E
γk

ρ,2αk+α+μ−μα

(−νxρ
)
]

(s),

(1.18)

where we apply relation (1.17).
Another formula which is used in solving fractional differential equations is [12]

(
d

dz

)p [
zβ−1E

γ
α,β(azα)

]
=
(

d

dz

)p ∞∑

k=0

(γ )k

Γ (αk + β)

akzαk+β−1

k!

=
∞∑

k=0

(γ )k
akzαk+β−p

k!
(αk + β − 1)(αk + β − 2) . . . (αk + β − p)

Γ (αn + β)

= zβ−p−1
∞∑

k=0

(γ )k

Γ (αk + β − p)

(azα)k

k! = zβ−p−1E
γ
α,β−p(azα), (1.19)

where �(β − p) > 0, p ∈ N, �(γ ) > 0, a ∈ C. In a similar way one obtains the
n-th derivative of the three parameter M-L function [6]:

(
d

dz

)n

E
γ
α,β(z) = γ (γ + 1) . . . (γ + n − 1) E

γ+n
α,β+αn(z), (1.20)

from where for γ = 1 one obtains the connection between the n-th derivative of the
two parameter M-L function and the three parameter M-L function [20]

(
d

dz

)n

Eα,β(z) = n! En+1
α,β+αn(z), n ∈ N. (1.21)

For the three parameter M-L function the following recurrence relations hold true
[30]:

αγ z E
γ+1
α,α+β+1(z) = E

γ
α,β(z) − βE

γ

α,β+1(z), (1.22)

α2γ (γ + 1)z2 E
γ+2
α,2α+β+2(z) = E

γ
α,β(z) − (α + 2β + 1)E

γ

α,β+1(z)

+ (α + β + 1)(β + 1)E
γ

α,β+2(z), (1.23)
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for all min{α, β, γ } > 0, and z > 0.
Here we also give the following relation which appears in the anomalous

diffusion modeling [36]

zα1E−1
α2−α1,α1+1

(−zα2−α1
) = zα1

Γ (1 + α1)
+ zα2

Γ (1 + α2)
. (1.24)

It can be directly obtained from the following general formula [6]

E
−j
α,β (z) =

j∑

k=0

(−1)k
(

j

k

)
zk

Γ (αk + β)
, j ∈ N. (1.25)

The infinite series in three parameter M-L functions can be represented in terms
of one and two parameter M-L functions as follows [41]:

∞∑

n=0

(−xy)nEn+1
α,2αn+β (x + y) = xEα,β (x) − yEα,β (y)

x − y
(1.26)

for x �= y, and

∞∑

n=0

(
−x2

)n

En+1
α,2αn+β (2x) = Eα,β (x) + x

d

dx
Eα,β (x) . (1.27)

In Chap. 7 we demonstrate the application of relations (1.26) and (1.27) in the theory
of fractional generalized Langevin equation.

The asymptotic behavior of the three parameter M-L function for z � 1 can be
obtained by using the series expansion of the three parameter M-L function around
z = ∞ [6] (see also [36])

E
γ
α,β(−z) 	 z−γ

Γ (γ )

∞∑

n=0

Γ (γ + n)

Γ (β − α(γ + n))

(−z)−n

n! , z > 1. (1.28)

for 0 < α < 2. Thus, for large z one obtains

E
γ
α,β(−z) 	 z−γ

Γ (β − αγ )
, z � 1, (1.29)

from where it follows the following asymptotic behavior

E
γ
α,β(−zα) 	 z−αγ

Γ (β − αγ )
, z � 1, (1.30)
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for large argument z. Furthermore, in the case z → 0, the three parameter M-L
function has the behavior [36]

E
γ
α,β(−zα) 	 1

Γ (β)
− γ

zα

Γ (α + β)
	 1

Γ (β)
exp

(
−γ

Γ (β)

Γ (α + β)
zα

)
, z � 1.

(1.31)

For the case with 0 < α < 1 this behavior is called stretched exponential since
it is a function whose decay with z is faster than that of the ordinary exponential
function for 0 < z < 1 but slower afterwards [33]. On the contrary, for the case
with 1 < α < 2 this behavior is called compressed exponential since it is a function
whose decay with z is slower than the one of the ordinary exponential function for
0 < z < 1 but faster afterwards [33]. These behaviors of the three parameter M-
L function are used in the description of anomalous diffusion and non-exponential
relaxation processes. Graphical representation of the three parameter M-L function
and its asymptotics is given in Fig. 1.4.

For γ → 1, the series (1.28) reduces to the asymptotic expansion of the two
parameter M-L function

Eα,β(−z) 	 −
∞∑

n=1

(−z)−n

Γ (β − αn)
, z > 1, (1.32)

and for one parameter M-L function it reads

Eα(−z) 	 −
∞∑

n=1

(−z)−n

Γ (1 − αn)
, z > 1. (1.33)
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Fig. 1.4 Three parameter M-L function (1.14) for α = 3/4, β = 1, γ = 1/2 (blue line). The
stretched exponential asymptotic (1.31) (red line) and the power-law asymptotic (1.30) (green line)
are plotted for the same values of parameters. Reprinted figure with permission from T. Sandev,
A.V. Chechkin, N. Korabel, H. Kantz, I.M. Sokolov and R. Metzler, Phys. Rev. E, 92, 042117
(2015). Copyright (2015) by the American Physical Society
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The four parameter M-L function is defined by Srivastava and Tomovski [42]:

E
γ,κ
α,β (z) =

∞∑

n=0

(γ )κn

Γ (αn + β)
· zn

n! , (1.34)

where (z, α, β, γ, κ ∈ C; �[α] > max{0,�[κ] − 1}; �[κ] > 0), (γ )κn is the
Pochhammer symbol. The four parameter M-L function is an entire function of

order ρ = 1
�(α−κ)+1 and type σ = 1

ρ

( [�(κ)]�(κ)

[�(α)]�(α)

)
. It is a generalization of the three

parameter M-L function E
γ
α,β(z), i.e.,

E
γ,1
α,β(z) = E

γ
α,β(z).

As further extensions of the M-L functions, we like to attract the attention to
multinomial M-L functions defined by Hilfer et al. [18]:

E(α1,α2,...,αn),β (z1, z2, . . . , zn) =
∞∑

k=0

l1+l2+···+ln=k∑

l1≥0,l2≥0,...,ln≥0

(
k

l1, . . . , ln

)

×
∏n

i=1 z
li
i

Γ
(
β +∑n

i=1 αili
) , (1.35)

where

(
k

l1, . . . , ln

)
= k!

l1!l2! . . . ln!

are the so-called multinomial coefficients. Luchko and Gorenflo [21] called this
function multivariate, but later it was recalled as multinomial M-L function [18].
The following function

e(α1,α2,...,αn),β (t; λ1, λ2, . . . , λn)

= tβ−1E(α1,α2,...,αn),β

(−λ1t
α1 ,−λ2t

α2, . . . ,−λnt
αn
)
, (1.36)

has been shown to have application in description of various anomalous diffusion-
wave models. Its Laplace transform reads [18]

L
[
e(α1,α2,...,αn),β (t;∓λ1,∓λ2, . . . ,∓λn)

]
(s) = s−β

1 ∓∑n
j=1 λj s

−αj
. (1.37)
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Here we note that for α1 = α, λ1 = λ and λ2 = · · · = λn = 0 the multinomial M-L
function reduces to the two parameter M-L function (1.16),

e(α),β (t; λ) = L −1
[

s−β

1 + λs−α

]
= tβ−1Eα,β

(−λtα
)
. (1.38)

Moreover, for λ1 �= 0, λ2 �= 0, λ3 = · · · = λn = 0, one obtains that the multinomial
M-L function can give infinite series in three parameter M-L functions, i.e.,

e(α1,α2),β (t; λ1, λ2) = L −1
[

s−β

1 + λ1s−α1 + λ2s−α2

]

= L −1

⎡

⎣ s−β

1 + λ1s−α1

1

1 + λ2
s−α2

1+λ1s
−α1

⎤

⎦

=
∞∑

k=0

(−λ2)
n s−(α2−α1)k+α1−β

(sα1 + λ1)
n+1

=
∞∑

k=0

(−λ2)
k tα2k+β−1Ek+1

α1,α2k+β

(−λ1t
α1
)
, (1.39)

where we apply the Laplace transform formula (1.17).
Graphical representation of the multinomial M-L function e(α1,α2,α3),β

(t; λ1, λ2, λ3) (1.36) is given in Fig. 1.5. In the short time limit it behaves as
tβ−1/Γ (β) and in the long time limit as tβ−α3−1/Γ (β − α3). The crossover
behavior depends on all parameters. Therefore, by parameters’ tuning one may fit
different crossover behaviors, which makes the multinomial M-L function suitable
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Fig. 1.5 Multinomial M-L function (1.36) for λ1 = λ2 = λ3 = 1/3, α1 = 1/4, α2 = 1/2,
β = 7/8 and α3 = 3/4 (blue line), α3 = 5/4, (red line), α3 = 7/4 (green line)
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for description of complex behaviors of the MSD observed in different physical and
biological systems.

1.2 Fox H -Function

The Fox’ H -function (or H -function) is defined with the following Mellin-Barnes
integral [5, 26, 43]

Hm,n
p,q (z) = Hm,n

p,q

[
z

∣∣∣∣
(a1, A1), . . . , (ap,Ap)

(b1, B1), . . . , (bq, Bq)

]

= Hm,n
p,q

[
z

∣∣∣∣
(ap,Ap)

(bq, Bq)

]
= 1

2πı

∫

Ω

θ(s)zsds, (1.40)

where

θ(s) =
∏m

j=1 Γ (bj − Bjs)
∏n

j=1 Γ (1 − aj + Ajs)
∏q

j=m+1 Γ (1 − bj + Bj s)
∏p

j=n+1 Γ (aj − Ajs)
,

0 ≤ n ≤ p, 1 ≤ m ≤ q, ai, bj ∈ C, Ai, Bj ∈ R+, i = 1, . . . , p, j = 1, . . . , q.
Contour integration Ω starts at c − ı∞ and finishes at c + ı∞ separating the
poles of the function Γ (bj + Bj s), j = 1, . . . , m with those of the function
Γ (1 − ai − Ais), i = 1, . . . , n. It plays an important role in the theory of
fractional differential equations enabling closed form representation of the solutions
of fractional diffusion-wave equations. It is a very general function giving as special
cases many well-known special functions.

Series expansion of the H -function (1.40) is given by Mathai and Saxena [26]

Hm,n
p,q

[
z

∣∣∣∣
(a1, A1), . . . , (ap,Ap)

(b1, B1), . . . , (bq, Bq)

]

=
m∑

h=1

∞∑

k=0

∏m
j=1,j �=h Γ

(
bj − Bj

bh+k
Bh

)∏n
j=1 Γ

(
1 − aj + Aj

bh+k
Bh

)

∏q

j=m+1 Γ
(

1 − bj + Bj
bh+k
Bh

)∏p

j=n+1 Γ
(
aj − Aj

bh+k
Bh

)

· (−1)kz(bh+k)/Bh

k!Bh

. (1.41)
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The H -function has the following properties [26]:

Hm,n
p,q

[
z

∣∣∣∣
(a1, A1), . . . , (ap,Ap)

(b1, B1), . . . , (bq−1, Bq−1), (a1, A1)

]

= H
m,n−1
p−1,q−1

[
z

∣∣∣∣
(a2, A2), . . . , (ap,Ap)

(b1, B1), . . . , (bq−1, Bq−1)

]
, (1.42)

where n ≥ 1, q > m,

Hm,n
p,q

[
zδ

∣∣∣∣
(a1, A1), . . . , (ap,Ap)

(b1, B1), . . . , (bq, Bq)

]

= 1

δ
· Hm,n

p,q

[
z

∣∣∣∣
(a1, A1/δ), . . . , (ap,Ap/δ)

(b1, B1/δ), . . . , (bq, Bq/δ)

]
, δ > 0, (1.43)

H
m,n+1
p+1,q+1

[
z

∣∣∣∣
(0, α), (ap,Ap)

(bq, Bq), (r, α)

]
= (−1)rH

m+1,n
p+1,q+1

[
z

∣∣∣∣
(ap,Ap), (0, α)

(r, α), (bq, Bq)

]
,

(1.44)

zσ Hm,n
p,q

[
z

∣∣∣∣
(ap,Ap)

(bq, Bq)

]
= Hm,n

p,q

[
z

∣∣∣∣
(ap + σAp,Ap)

(bq + σBq, Bq)

]
, (1.45)

Hm,n
p,q

[
z

∣∣∣∣
(ap,Ap)

(bq, Bq)

]
= Hn,m

q,p

[
z−1

∣∣∣∣
(1 − bq, Bq)

(1 − ap,Ap)

]
. (1.46)

The k-th derivative (k ∈ N) of H -function is given by Srivastava et al. [43]

dk

dzk

{
zαHm,n

p,q

[
(az)β

∣∣∣∣
(ap,Ap)

(bq, Bq)

]}

= zα−kH
m,n+1
p+1,q+1

[
(az)β

∣∣∣∣
(−α, β), (ap,Ap)

(bq, Bq), (k − α, β)

]
, (1.47)

where β > 0. All these properties and relations have been used for simplification of
the obtained solutions of fractional diffusion and Fokker-Planck equations.

The Laplace transform of the Fox H -function reads [26, 43]

L

[
tρ−1H

m,n
p+1,q

[
zt−σ

∣∣∣∣
(ap,Ap), (ρ, σ )

(bq, Bq)

]]
= s−ρHm,n

p,q

[
zsσ

∣∣∣∣
(ap,Ap)

(bq, Bq)

]
,

(1.48)
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where σ > 0, �(s) > 0, �
(
ρ + σ max1≤j≤n

(
1−aj

Aj

))
> 0, | arg(z)| < πθ1/2,

θ1 > 0, θ1 = θ − a. The Mellin transform of the Fox H -function yields

∫ ∞

0
xξ−1Hm,n

p,q

[
ax

∣∣∣∣
(a1, A1), . . . , (ap,Ap)

(b1, B1), . . . , (bq, Bq)

]
dx = a−ξ θ(−ξ), (1.49)

where

θ(−ξ) =
∏m

j=1 Γ (bj + Bjξ)
∏n

j=1 Γ (1 − aj − Ajξ)
∏q

j=m+1 Γ (1 − bj − Bjξ)
∏p

j=n+1 Γ (aj + Ajξ)
.

The Mellin transform will be used to obtain the fractional moments of the
fundamental solutions of fractional diffusion equations. Furthermore, the cosine
Mellin transform of the Fox H -function reads [26, 35, 43]

∫ ∞

0
kρ−1 cos(kx)Hm,n

p,q

[
akδ

∣∣∣∣
(ap,Ap)

(bq, Bq)

]
dk

= π

xρ
H

n+1,m
q+1,p+2

[
xδ

a

∣∣∣∣∣
(1 − bq, Bq), (

1+ρ
2 , δ

2 )

(ρ, δ), (1 − ap,Ap), (
1+ρ

2 , δ
2 )

]
, (1.50)

where �
(
ρ + δ min1≤j≤m

(
bj

Bj

))
> 1, xδ > 0, �

(
ρ + δ max1≤j≤n

(
aj −1
Aj

))
< 3

2 ,

| arg(a)| < πθ/2, θ > 0, θ =∑n
j=1 Aj −∑p

j=n+1 Aj +∑m
j=1 Bj −∑q

j=m+1 Bj .
The application of these transformation formulas will be demonstrated later in
solving different fractional diffusion and Fokker-Planck equations.

The three parameter M-L function is a special case of the H -function [26]

Eδ
α,β(−z) = 1

δ
H

1,1
1,2

[
z

∣∣∣∣
(1 − δ, 1)

(0, 1), (1 − β, α)

]
. (1.51)

Thus, by using relations (1.51) and (1.40), the cosine transform (1.50) of the two
parameter M-L function is given in terms of H -function, i.e.

∫ ∞

0
cos(kx)Eα,β

(
−ak2

)
dk = π

x
H

2,1
3,3

[
x2

a

∣∣∣∣
(1, 1), (β, α), (1, 1)

(1, 2), (1, 1), (1, 1)

]

= π

x
H

1,0
1,1

[
x2

a

∣∣∣∣
(β, α)

(1, 2)

]
. (1.52)

This relation will be used later to solve the mono-fractional diffusion equation.
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The asymptotic expansion of the H -function H
m,0
p,q (z) for large z is [26, 40]

Hm,0
p,q (z) 	 Bz(1−α)/m∗

exp
(
−m∗C1/m∗

z1/m∗)
, (1.53)

α =
p∑

k=1

ak −
q∑

k=1

bk + 1

2
(q − p + 1), (1.54)

m∗ =
q∑

j=1

Bj −
p∑

j=1

Aj > 0, (1.55)

C =
p∏

k=1

(Ak)
Ak

q∏

k=1

(Bk)
−Bk , (1.56)

B = (2π)−
m−p−1

2 C(1−α)/m∗ (
m∗)−1/2

p∏

k=1

(Ak)
−ak+1/2

m∏

k=1

(Bk)
bk−1/2 . (1.57)

This asymptotic formula, as we will see in the next chapters, is very important in
the analysis of the asymptotic behaviors of the fundamental solutions of fractional
diffusion and Fokker-Planck equations.

The Fox-Wright function is defined by Mathai and Saxena [26]

pΨq(z) = pΨq

[
(a1, A1), . . . , (ap,Ap);
(b1, B1), . . . , (bq, Bq); z

]
=

∞∑

k=0

∏p

j=1 Γ (aj + Ajk)
∏q

j=1 Γ (bj + Bjk)
· zk

k! ,
(1.58)

where aj , Aj ∈ C, �[Aj ] > 0, for j = 1, . . . , p i bj , Bj ∈ C, �[Bj ] > 0, for

j = 1, . . . , q, 1 + �
(∑q

j=1 Bj −∑p

j=1 Aj

)
≥ 0. For a special case of the Wright

function (p = 0, q = 1, b1 = β, B1 = α), the following notation is used [26]:

ϕ(α, β; z) =
∞∑

n=0

1

Γ (αn + β)

zn

n! = H
1,0
0,2

[
−z

∣∣∣∣
−

(0, 1), (1 − β, α)

]
, (1.59)

where �(α) > −1, β ∈ C.
It is easily seen from the definition that

E
γ
α,β(z) = 1

Γ (γ )
1Ψ1

⎡

⎣
(γ, 1) ;

(β, α) ;
z

⎤

⎦ . (1.60)
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The Laplace transform of the four parameter M-L function can be represented in
terms of the Fox-Wright function [42]

L
[
tρ−1E

γ,κ
α,β (ωtσ )

]
(s) = s−ρ

Γ (γ )
2Ψ1

[
(ρ, σ ), (γ, κ);

(β, α);
ω

sσ

]
. (1.61)

The auxiliary functions of the Wright type (used by Mainardi) are defined by

Mα(y) =
∞∑

n=0

1

Γ (−αn + 1 − α)

(−y)n

n! . (1.62)

The relation to the Fox H -function is as follows [25]:

Mα(y) = H
1,0
1,1

[
y

∣∣∣∣
(1 − α, α)

(0, 1)

]
. (1.63)

The one-sided Lévy stable probability density Lα(y) can be represented through
the Mα(y) as [11]

Lα(t) = α

tα+1 Mα

(
1

tα

)
, (1.64)

which has the Laplace transform

Lα(t) = L −1
[
e−sα

]
. (1.65)

All these properties and relations are of huge importance in the theory of the
fractional differential equations, and will be applied in the next chapters.

1.3 Some Results Related to the Complete Monotonicity
of the Mittag-Leffler Functions

In this part we analyze the complete monotonicity of the function e
γ
α,β(t; λ). In this

respect we recall Prabhakar formula:

Ls

[
e
γ
α,β(t; λ)

] = sαγ−β

(sα + λ)γ

(
s > |λ| 1

α
)
. (1.66)

For simplicity we use λ = 1. This convention does not restrict the generality of our
considerations.
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In Ref. [3], the authors treated the case 0 < α, β, γ ≤ 1 with αγ ≤ β.
They discussed complete monotonicity of the function e

γ
α,β by invoking a theorem

given by Gripenberg et al. [14]. This theorem gives conditions for the complete
monotonicity of a function f in terms of properties of its Laplace transform.
Here we use the method of the Bernstein theorem which relates the complete
monotonicity of a function f to the non-negativity of its inverse Laplace transform.
We also note that the complete monotonicity of the M-L functions has been
investigated and discussed in several works [6, 7, 13, 16, 22–24, 27, 32, 39].

We first present that, under certain conditions to be made precise later, the
function

e
γ
α,β(t) ≡ e

γ
α,β(t; 1)

is the Laplace transform of a non-negative function [46]. For this purpose, we will
bend the Bromwich path of the Laplace inversion formula into the Hankel path,
thereby using the Cauchy residue theorem for taking account of the singularities
which we sweep over.

The function s �→ ϕ(s), which has a pole of order n at s0, possesses the residue
at this point given by

Res[ϕ(s); s0] = 1

(n − 1)! lim
s→s0

dn−1

dsn−1

{
ϕ(s)(s − s0)

n
}
.

This last formula gives the coefficient of the power s−1 in the Laurent series
expansion of ϕ(s) (see [37]).

Lemma 1.1 ([46]) Let

ψ(s) = sp

(1 + sq)n
(p, q > 0; n ∈ N).

Then the following assertion holds true:

Res
[
ψ(s); e

±ı π
q
k
]

= e
±ı π

q
(p+q+1)

(−p)n−1

qn (n − 1)!
n−1∑

k=0

(1 − n)k

(p − n + 2)k
ck,

where

c� = (−1)l
∑

j1 + · · · + jn = �

(0 ≤ j1, · · · , jn ≤ �)

b∗
j1

· · · b∗
jn

(� ∈ N0) (1.67)



18 1 Introduction: Mittag-Leffler and Other Related Functions

with the coefficients b∗
j given by

b∗
j = b∗

j (q) = δ0j + q−j
(
1 − δ0j

)

∣∣∣∣∣∣∣∣∣∣∣∣∣

(
q
2

)
q 0 · · · 0(

q
3

) (
q
2

)
q · · · 0

...
...

...
. . .

...
(
q
j

) (
q

j−1

) (
q

j−2

) . . . q(
q

j+1

) (
q
j

) (
q

j−1

) · · · (q2
)

∣∣∣∣∣∣∣∣∣∣∣∣∣

(j ∈ N0) .

(1.68)

Proof In order to compute Res[ψ(s); e
ı π

q ] let us transform sq + 1 (q > 0) as
follows:

1 + sq = 1 + (s − eıπ/q + eıπ/q
)q

= 1 −
∞∑

k=0

(
q

k

)
eı(π/q)k

(
s − eıπ/q

)k

= e−iπ
∞∑

k=1

(
q

k

)
e−ı(π/q)k

(
s − eıπ/q

)k

= e−ı π
q
(q+1)(

s − eıπ/q
) ∞∑

k=0

(
q

k + 1

)(
e−ıπ/qs − 1

)k
. (1.69)

For all p > 0 and n ∈ N, by using (1.69), one has

ψ(s)
(
s − e

ı π
q
)n = e

ı nπ
q

(q+1)
sp

[ ∞∑

k=0

(
q

k + 1

)(
e−ıπ/qs − 1

)k
]−n

= eı nπ
q

(q+1)
sp

qn

[
1 + · · · + 1

q

(
q

� + 1

)(
e−ıπ s − 1

)� + · · ·
]−n

.

(1.70)

The next step is to invert the power series

∞∑

k=0

akX
k
q,

where

aj = 1

q

(
q

j + 1

)
(Xq = e − s − 1).
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By the well-known procedure, it can be found that

⎛

⎝
∞∑

j=0

ajX
j
q

⎞

⎠
−1

=
∞∑

j=0

bjX
j
q,

where the unknown coefficients bj are given by the following system:

j∑

m=0

(
q

m + 1

)
bj−m = qδ0j , (j ∈ N0) .

Adapting the solution of the general Hessenberg type system considered in Ref. [8]
to the above system in bj , Eq. (1.68) is obtained. Indeed, since [8, p. 738, Theorem
3.1]

b∗
j = (−1)j bj =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0 · · · 0
0 1

q

(
q
2

)
1 0 · · · 0

0 1
q

(
q
3

) 1
q

(
q
2

)
1

. . . 0
...

...
...

...
. . .

...

0 1
q

(
q
j

) 1
q

(
q

j−1

) 1
q

(
q

j−2

) . . . 1

0 1
q

(
q

j+1

) 1
q

(
q
j

) 1
q

(
q

j−1

) · · · 1
q

(
q
2

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

one has b∗
0 = 1, and the expansion along the first column yields (1.68).

We now look for the power series in Xq , which is equal to the n-th power of

∞∑

j=0

bjX
j
q,

that is,

∞∑

�=0

c�X
�
q =

( ∞∑

j=0

bjX
j
q

)n

,

so that

c� =
∑

j1 + . . . + jn = �

(0 ≤ j1, . . . , jn ≤ �)

bj1 , . . . , bjn

=
∑

j1 + · · · + jn = �

(0 ≤ j1, . . . , jn ≤ �)

(−1)j1+···+jn−nb∗
j1

. . . b∗
jn

.
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Some fairly obvious steps would now give us the asserted form of the coefficients
c�. Thus, for instance, one has c0 = 1, c1 = 1−q, and so on. By this simplification,
Eq. (1.70) becomes

ψ(s)
(
s − e

ı π
q )n = sp

∞∑

�=0

c�X
�
q.

Next, by using the chain rule, one calculates the limit of the derivative as follows:

lim
s→e

ı π
q

[
ψ(s)

(
s − e

ı π
q

)n](n−1)

= e
ı π

q
(p−n+1)

n−1∑

k=0

(
n−1
k

)
k! ck (−1)n−1−k(−p)n−1−k

= e
ı π

q
(p−n+1)

(−1)n−1
n−1∑

k=0

(−1)k(1 − n)k (−p)n−1−k ck. (1.71)

Since

(b)n+m = (b)n · (b + n)m,

upon replacing n by n − 1 and setting m = −k, it is obtained

(−p)n−1−k = (−p)n−1 · (−p + n − 1)−k.

On the other hand, it is easily observed that

(c)−n = (−1)n

(1 − c)n
.

Therefore,

(−p)n−1−k = (−1)k (−p)n−1

(p − n + 2)k
,

which can be used in Eq. (1.71) to get

lim
s→e

ı π
q

[
ψ(s)

(
s − e

ı π
q

)n](n−1) = e
ı π

q
(p−n+1)

(−1)n−1 (−p)n−1

n−1∑

k=0

(1 − n)k

(p − n + 2)k
ck.
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Hence

Res
[
ψ(s); e

ı π
q

]
= e

ı π
q
(p+q+1)

(−p)n−1

qn (n − 1)!
n−1∑

k=0

(1 − n)k

(p − n + 2)k
ck.

Similarly, one finds

Res
[
ψ(s); e

−ı π
q

]
= e

−ı π
q
(p+q+1)

(−p)n−1

qn (n − 1)!
n−1∑

k=0

(1 − n)k

(p − n + 2)k
ck,

which completes the proof of the Lemma.

Theorem 1.1 ([46]) Let Brσ0 denote the integration path

{s = σ + ıτ : σ ≥ σ0 and τ ∈ R}

in the upward direction. Then, for all α ∈ (0, 1], β > 0, γ > 0 and for all t > 0,

e
γ
α,β(t) = L−1

t

[
sαγ−β

(sα + 1)γ

]
= 1

2πı

∫

Br0

est sαγ−β

(sα + 1)γ
ds = Lt

[
K

γ
α,β

]

(1.72)

and

K
γ
α,β(r) = rαγ−β

π

sin

[
γ arctan

(
rα sin(π α)

rα cos(π α) + 1

)
+ π(β − αγ )

]

[
r2α + 2rα cos(π α) + 1

] γ
2

. (1.73)

Moreover, for all α ∈ (1, 2], β > 0 and γ = n ∈ N,

en
α,β(t) = L−1

t

[
sα n−β

(sα + 1)n

]
+ 2(−1)n−1

αn (n − 1)! et cos( π
α )

× cos
[
t sin

(
π
α

)− π
α
(β − 1)

] n−1∑

�=0

(1 − n)� c�

(αn − β − n + 2)�
, (1.74)

where

L−1
t

[
sα n−β

(sα + 1)n

]
= 1

2πı

∫

Br0

est sα n−β

(sα + 1)n
ds = Lt

[
Kn

α,β

]
,

and c� (� ∈ {0, 1, 2, · · · , n − 1}) and b∗
j = b∗

j (α) (j ∈ N0) are given by (1.67)
and (1.68), respectively.
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Proof By employing Prabhakar’s formula (1.66), one derives e
γ
α,β(t) as the follow-

ing inverse Laplace transform:

e
γ
α,β(t) = 1

2πı

∫

Br
est sαγ−β

(sα + 1)γ
ds (0 < α ≤ 2)

without detouring on the general theory of the M-L functions in the complex plane.
For transparency reasons, two cases (1) α ∈ (0, 1] and (2) α ∈ (1, 2] are

considered separately. For all non-integer values of α, the power sα is given by

sα = |s|α eı arg(s)
(| arg(s)| < π

)
,

that is, in the complex s-plane cut along the negative real axis.
The essential step consists of decomposing e

γ
α,β(t) into a sum of two terms,

bending the Bromwich path of integration Br into the equivalent Hankel path Ha(ρ),
a loop which starts from −∞ along the lower side of the negative real half-axis,

encircles the circular disk |s| ≤ ρ
1
α = 1 in the positive sense, and terminates at −∞

along the upper side of the negative real half-axis. Hence

e
γ
α,β(t) = f

γ
α,β(t) + g

γ
α,β(t) (t ≥ 0) (1.75)

with

f
γ
α,β(t) = 1

2πı

∫

−Ha(ε)
est sαγ−β

(sα + 1)γ
ds, (1.76)

where the path −Ha(ε) has the opposite orientation with respect to Ha(ε), with
vanishing ε → 0, and

g
γ
α,β(t) =

∑

j

esj t Res
[
sαγ−β(sγ + 1)−γ ; sj

]
,

where sj are the relevant poles of the integrand in (1.76).
Let γ = n. In fact, in this case, the poles of order n turn out to be

sj = exp
(
ı(2j + 1)

π

α

) (| arg(sj )| < π
)
.

1. If α ∈ (0, 1], there are no such poles, since (for all integers j ) we have

|2j + 1|π ≥ απ.



1.3 Some Results Related to the Complete Monotonicity of the Mittag-Leffler. . . 23

Consequently, for all t ≥ 0, the function g
γ
α,β(t) vanishes. So, in view of (1.76),

the display (1.75) becomes

e
γ
α,β(t) = 1

2πı

∫

−Ha(ε)
est sαγ−β

(sα + 1)γ
ds = Lt

[
K

γ
α,β

]
,

where by the fact that here the values of the integrand below and above the
cut along the negative real half-line are conjugate-complex to each other (or,
alternatively, by the Titchmarsh formula [44]), this gives the stated formula
(1.73):

K
γ
α,β(r) = − 1

π
�
(

rαγ−β eıπ(αγ−β)

(rα eıπα + 1)γ

)

= − rαγ−β

π

sin
[
π(αγ − β) − γ arctan

(
sin(πα)

cos(πα)+r−α

)]

[
r2α + 2rα cos(πα) + 1

] γ
2

,

which establishes the first part of theorem.
2. If α ∈ (1, 2], there exist two relevant poles given by

s±1 = exp{±ı π
α
}

of order n located in the left half-plane for s �→ sαγ−β(sα + 1)−n. Then, by
(1.67) and (1.68), one has

p = α · n − β and q = α.

One thus concludes that

g
γ
α,β(t) = es−1t Res

[
sαγ−β

(sα + 1)n
; s−1

]
+ es1t Res

[
sαγ−β

(sα + 1)n
; s1

]

= exp
(
teı π

α

) exp
[
ıπ
(
n + 1 − β−1

α

)]
(−αn + β)n−1

αn (n − 1)!

×
n−1∑

k=0

(1 − n)k ck(
(α − 1)n − β + 2

)
k

+ exp
(
te−ı π

α

) exp
[
−ıπ

(
n + 1 − β−1

α

)]
(−αn + β)n−1

αn (n − 1)!
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×
n−1∑

k=0

(1 − n)k ck(
(α − 1)n − β + 2

)
k

= 2(−1)n+1 et cos( π
α )

αn (n − 1)! cos
[
t sin

(
π
α

)− π
α
(β − 1)

]

×
n−1∑

k=0

(1 − n)k ck(
(α − 1)n − β + 2

)
k

.

Therefore, by using (1.75), one deduces the assertion (1.74) of the theorem.

Remark 1.1 For γ = 1 and β = γ = 1, the expression in (1.73) reduces,
respectively, to the following well-known results:

Kα,β(r) = K1
α,β(r) = rα−β

π

rα sin(πβ) + sin[π(β − α)]
r2α + 2 cos(πα) rα + 1

(0 < α < β ≤ 1)

for the two parameter kernel [9, 10], and

Kα(r) = K1
α,1(r) = rα−1

π

sin(πα)

r2α + 2 cos(πα) rα + 1
(0 < α ≤ 1) (1.77)

for the one parameter kernel (see, for example, [9, 10]).

Now, putting β = n = 1 in (1.74), we are led to the following:

Corollary 1.1 For all α ∈ (1, 2] and t > 0, the following assertion holds true:

eα(t) =
∫ ∞

0
e−rtKα(r) dr + 2

α
et cos( π

α
) cos

[
t sin

(
π
α

)]
. (1.78)

Moreover, for all α ∈ (1, 2], β > 0 and t > 0,

eα,β(t) =
∫ ∞

0
e−rtKα,β(r) dr + 2

α
et cos( π

α
) cos

[
t sin

(
π
α

)− π
α
(β − 1)

]
.

Since limt→0+ eα(t) = 1 from (1.72) and (1.78) one concludes:

Corollary 1.2 The following integral holds true:

∫ ∞

0
Kα (r) dr =

{
1, 0 < α ≤ 1

1 − 2
α
, 1 < α ≤ 2

.

Remark 1.2 Corollary 1.1 deserves a comment on its meaning in applications. In
the earlier works [9, 10], the authors explained and gave illustrative examples for
the formula (1.78). Therein, the first term on the right-hand side is negative and,
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by sign inversion, we get the complete monotonicity. We could call such behavior
completely monotone from below. For t tending to infinity, it goes to zero slowly,
namely, like a power of t with negative exponent. This can be shown by aid of the
well-known Watson’s lemma (see, e.g., [2]). However, the second term oscillates,
but with exponentially decaying amplitude. So, clearly, we have eα(0+) = 1 and
then a superposition of a negative function tending slowly to zero by a cosine-
like oscillation with rapidly decaying amplitude. As a consequence, eα(t) has only
finitely many zeros, a special type of oscillation (see the discussions and illustrations
in the aforementioned works [9, 10]).

It is important to note also that, for the function eα,β(t), one has the same
qualitative behavior by following the same reasons.

Definition 1.1 ([38]) A given function f : [0,∞) → [0,∞) is said to be
completely monotone if f is continuous on [0,∞), infinitely differentiable on
(0,∞) and satisfies (−1)nf (n)(x) ≥ 0 for x > 0, n ∈ 0, 1, . . .. According to the
Bernstein characterization theorem, the completely monotone functions appear as
Laplace transforms of non-negative locally integrable function K(t), t > 0, which
is called the spectral function, for which f (s) = ∫∞

0 K(t)e−st dt .

As it was showed, the function e
γ
α,β(t) is completely monotone whenever α ∈

(0, 1], 0 < αγ ≤ β ≤ 1 [46], and therefore by the Bernstein theorem [38] the
spectral function K

γ
α,β(r) is non-negative for the same range of the parameters.

Furthermore, the following results hold true.

Theorem 1.2 ([31]) One has that

∫ ∞

0
K

γ

α,1(r) dr =
{

1, α ∈ (0, 1], γ > 0,

1 − 2(−1)n−1

αn(n−1)!
∑n−1

l=0
(1−n)lcl

(n(α−1)+1)l
, α ∈ (1, 2] , γ = n ∈ N.

(1.79)

Proof By letting t → 0+, it is obtained

1 = lim
t→0+ e

γ

α,1(t) =
∫ ∞

0
K

γ

α,1(r) dr, α ∈ (0, 1], γ > 0, (1.80)

and

1 =
∫ ∞

0
K

γ

α,1(r) dr + 2 (−1)n−1

αn (n − 1)!
n−1∑

l=0

(1 − n)l cl

(n (α − 1) + 1)l
, α ∈ (1, 2] , γ = n ∈ N,

(1.81)

where cl are coefficients given by (1.67). From this, the claim easily follows.

The kernel Kα(r) has been studied in Ref. [10], and the general spectral function
K

γ
α,β(r) has been extensively analyzed in Ref. [24].
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One concludes by emphasizing that, if α ∈ (0, 1], 0 < αγ ≤ 1, r > 0, the kernel

K
γ

α,1(r) = rαγ−1

π

sin
(
γ arctan

(
rα sin(πα)

rα cos(πα)+1

)
+ π(1 − αγ )

)

(
r2α + 2rα cos(πα) + 1

)γ /2 , (1.82)

is the density of a probability measure concentrated on the positive real line.
Graphical representation of K

γ

α,1(r) is given in Figs. 1.6 and 1.7. For additional
graphical representations of the function (1.82), we refer to Ref. [31].

Fig. 1.6 Graphical representation of the function (1.82) for α = 0.5, and γ = 0.2 (blue line),
γ = 0.2 (red line), γ = 0.2 (green line), γ = 0.2 (pink line); (a) linear scale, (b) log-log scale
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Fig. 1.7 Graphical representation of the function (1.82) for γ = 2, and α = 0.1 (blue line),
α = 0.2 (red line), α = 0.3 (green line), α = 0.4 (pink line); (a) linear scale, (b) log-log scale
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