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Preface

This book is a result of more than 10 years of research in the field of fractional
calculus and its application in stochastic processes and anomalous dynamics. The
aim is to provide an introduction to the theory of fractional calculus and fractional
differential equations, fractional stochastic and kinetic models, related special
functions, and their applications.

The book covers the mathematical foundation of the Mittag-Leffler and Fox H-
functions, fractional integrals and derivatives, and many recent novel definitions of
generalized operators which appear to have many applications nowadays. We pay
special attention to the analysis of the complete monotonicity of the three-parameter
Mittag-Leffler function, which is a very important prerequisite for its application in
modeling different anomalous dynamics processes. We give a number of definitions
and useful properties of different fractional operators, starting with those named as
the Riemann–Liouville fractional derivative and integral and the Caputo fractional
derivative, and then proceeding to more complicated and recently introduced
composite (or so-called Hilfer) derivatives, Prabhakar integral and derivatives,
Hilfer-Prabhakar derivatives, tempered derivatives, generalized distributed order
derivatives, and generalized integral operators with Mittag-Leffler functions in the
kernel. Many useful properties and relations in fractional calculus which have been
used in modeling anomalous diffusion and non-exponential relaxation are presented.

The Cauchy-type problems of fractional differential equations and their solu-
tions, existence and uniqueness theorems, and different methods for solving frac-
tional differential equations are presented in this book. Volterra type integral
equations are analyzed and equivalence with the Cauchy-type problems has been
shown. We also give an exhaustive presentation of applications of the operational
method for solving fractional differential equations where, as solutions, the so-
called multinomial Mittag-Leffler functions are obtained.

The book pays special attention to derivation of the fractional diffusion and
Fokker-Planck equations within the continuous time random walk theory, and to
their solutions and applications. The elegant subordination approach is presented to
connect the solutions of the fractional diffusion equations with the classical one for
Brownian motion. We show that all the well-known fractional diffusion equations
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(mono-fractional, bi-fractional, distributed order, tempered, etc.) in normal (or
Caputo) form and in modified (or Riemann–Liouville) form are special cases of
the generalized diffusion equations in normal and modified form with memory
kernels. The non-negativity of the corresponding solutions is shown by applying
the definitions and properties of the completely monotone and Bernstein functions.
Methods of solving fractional diffusion-wave equations in a finite and in the infinite
domain are also presented in this book. Furthermore, detailed analysis of the non-
negativity of the generalized fractional wave equation with memory kernel by help
of the completely monotone, complete Bernstein and Stieltjes functions is presented
in detail.

At the end of the book, an important class of stochastic processes governed by
the generalized Langevin equations is covered. The role, especially, of the three-
parameter and multinomial Mittag-Leffler functions and Tauberian theorems in
finding solutions of these equations is presented. Various diffusive behaviors, such
as subdiffusion, normal diffusion, superdiffusion, ultraslow diffusion, etc., and the
crossover from one to another diffusive regime are described by these equations.
Many relevant references regarding applications of these models are given.

This book is intended for diverse scientific communities and scholars working
in the field of application of fractional calculus and fractional differential and
integral equations in describing anomalous dynamics in complex systems. Students
and researchers in mathematics, physics, chemistry, biology, and engineering may
benefit from reading the book owing to the systematic presentation of many useful
tools in the fractional calculus theory.

Skopje, Macedonia Trifce Sandev
Skopje, Macedonia Živorad Tomovski
January 2018
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Chapter 1
Introduction: Mittag-Leffler and Other
Related Functions

The analysis of fractional differential equations, carried out by means of fractional
calculus and integral transforms (Laplace, Fourier), leads to certain special functions
of Mittag-Leffler (M-L) and Wright types. These useful special functions are
investigated systematically as relevant cases of the general class of functions which
are popularly known as FoxH -functions, after Charles Fox, who initiated a detailed
study of these functions as symmetrical Fourier kernels [5]. Definitions, some
properties, relations, asymptotic expansions and Laplace transform formulas for
the M-L type functions and Fox H -function are given in this Chapter. At the
beginning of the twentieth century, Swedish mathematician Gösta Mittag-Leffler
introduced a generalization of the exponential function, today known as the M-
L function [28]. The properties of the M-L function and its generalizations had
been totally ignored by the scientific community for a long time due to their
unknown application in the science. In 1930 Hille and Tamarkin solved the Abel-
Volterra integral equation in terms of the M-L function [19]. The basic properties
and relations of the M-L function appeared in the third volume of the Bateman
project in the Chapter XVIII: Miscellaneous Functions [4]. More detailed analysis
of the M-L function and their generalizations as well as the fractional derivatives
and integrals were published later, and it has been shown that they are of great
interest for modeling anomalous diffusion and relaxation processes. Similarly, Fox
H -function, introduced by Fox [5], is of great importance in solving fractional
differential equations and for analysis of anomalous diffusion processes. The Fox
H -function has been used to express the fundamental solution of the fractional
diffusion equation obtained from a continuous time random walk model. Therefore,
in this Chapter we will give the most important definitions, relations, asymptotic
expansions of these functions which represent a basis for investigation of anomalous
diffusion and non-exponential relaxation in different complex systems.

© Springer Nature Switzerland AG 2019
T. Sandev, Ž. Tomovski, Fractional Equations and Models,
Developments in Mathematics 61, https://doi.org/10.1007/978-3-030-29614-8_1
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2 1 Introduction: Mittag-Leffler and Other Related Functions

1.1 Mittag-Leffler Functions

The standard one parameter M-L function, introduced by Mittag-Leffler, is defined
by Mittag-Leffler [28]:

Eα(z) =
∞∑

k=0

zk

Γ (αk + 1)
, (1.1)

where (z ∈ C; �(α) > 0), and Γ is the Gamma function [4]. It generalizes the
exponential, trigonometric, and hyperbolic functions since

E1(±z) =
∞∑

k=0

(±z)k
Γ (k + 1)

=
∞∑

k=0

(±z)k
k! = e±z,

E2(−z2) =
∞∑

k=0

(−z)k
Γ (2k + 1)

=
∞∑

k=0

(−z)k
(2k)! = cos(z),

E2(z
2) =

∞∑

k=0

zk

Γ (2k + 1)
=

∞∑

k=0

zk

(2k)! = cosh(z).

The case with α = 1/2 yields

E 1
2

(
±z 1

2

)
=

∞∑

k=0

(±z) k2
Γ

(
k
2 + 1

) = ez
[
1 + erf

(
±z 1

2

)]
,

where

erf(z) = 2√
π

∫ z

0
e−x2

dx

is the error function. The one parameter M-L function (1.1) is an entire function of
order ρ = 1/�(α) and type 1.

Special form of the one parameter M-L function, which has many applications,
is given by (see Fig. 1.1)

eα(t; λ) = Eα(−λtα)
(
α > 0; λ ∈ C

)
. (1.2)

Its Laplace transform

L [f (t)](s) =
∫ ∞

0
e−stf (t) dt,
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Fig. 1.1 One parameter M-L
function (1.2) for α = 1/2
(blue line),
α = 1—exponential function
(red line), α = 3/2 (green
line)
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reads [29]

L [eα(t; ∓λ)] (s) = sα−1

sα ∓ λ, (1.3)

where �(s) > |λ|1/α. The function (1.2) is an eigenfunction of a fractional boundary
value problem CD

α
0+f (t) + λf (t) = 0 (see the next section for definition of the

fractional derivative CDα0+), in comparison with the exponential function e−λt as an

eigenfunction of the ordinary boundary value problem df (t)
dt

+ λf (t) = 0.
The two parameter M-L function defined by Agarwal [1], Erdélyi et al. [4],

Kilbas et al. [20], and Podlubny [29]

Eα,β(z) =
∞∑

k=0

zk

Γ (αk + β) , (1.4)

where (z, β ∈ C; �(α) > 0), was introduced and investigated later. This function in
Ref. [4] is called generalized M-L function. Note that

Eα,1(z) = Eα(z),

and

Eα,0(z) =
∞∑

k=1

zk

Γ (αk)
= z

∞∑

k=0

zk

Γ (αk + α) = zEα,α(z).



4 1 Introduction: Mittag-Leffler and Other Related Functions

It relates to some elementary functions, i.e.,

E1,2(z) =
∞∑

k=0

zk

Γ (k + 2)
=

∞∑

k=0

zk

(k + 1)! = ez − 1

z
,

E2,2(z) =
∞∑

k=0

zk

Γ (2k + 2)
=

∞∑

k=0

zk

(2k + 1)! = sinh(
√
z)√

z
.

The two parameter M-L function (1.4) is an entire functions of order ρ = 1/�(α)
and type 1. The following function

eα,β(t; λ) = tβ−1 Eα,β(−λtα)
(
α, β > 0; λ ∈ C

)
(1.5)

plays an important role in the theory of fractional differential equations (see
Fig. 1.2). The Laplace transform of the two parameter M-L function (1.5) reads [29]

L
[
eα,β(t; ∓λ)] (s) = sα−β

sα ∓ λ, (1.6)

where �(s) > |λ|1/α. The following integrals

1

1 − z =
∫ ∞

0
e−x Eα(xα z) dx =

∫ ∞

0
e−x xβ−1Eα,β(x

α z) dx,

are fundamental in the evaluation of the Laplace transforms of the functions
Eα(−λxα) and Eα,β(−λxα) when α, β > 0 and λ ∈ C. Both of these functions
play key rôles in fractional calculus and its application to differential equations.

Fig. 1.2 Two parameter M-L
function (1.5) for α = 1/2,
β = 3/4 (blue line), α = 1,
β = 1/2 (red line),
α = β = 3/2 (green line)
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For the two parameter M-L function the following formula holds true [12, 17]

Eα,β(z) = zEα,α+β(z)+ 1

Γ (β)
. (1.7)

Eα,β(z) = βEα,β+1(z)+ αz d

dz
Eα,β+1(z), (1.8)

d

dz
Eα,β(z) = Eα,β−1(z)− (β − 1)Eα,β(z)

αz
, (1.9)

dn

dzn

[
zβ−1Eα,β(az

α)
]

= zβ−n−1Eα,β−n(azα), (1.10)

n ∈ N,

as well as
∫ x

0
tγ−1Eα,γ (−atα)(x − t)β−1Eα,β(−b(x − t)α) dt

= bEα,β+γ (−bxα)− aEα,β+γ (−axα)
b − a xβ+γ−1, (a 
= b), (1.11)

from where it follows
∫ x

0
tα−1Eα,α(−atα)(x − t)β−1Eα,β(−b(x − t)α) dt

= Eα,β(−bxα)− Eα,β(−axα)
a − b xβ−1, (a 
= b), (1.12)

and
∫ x

0
tα−1Eα,α

(−atα) (x − t)β−1Eα,β
(−a(x − t)α) dt = xα+β−1Eα,β

(−axα) .
(1.13)

For more useful relations and properties of these M-L functions, we refer to the
literature [12, 17]. Moreover, the two parameter M-L function with negative first
parameter α has been studied in Ref. [15].

Furthermore, the three parameter M-L (or Prabhakar) function is defined by
Prabhakar [34]:

E
γ
α,β(z) =

∞∑

k=0

(γ )k

Γ (αk + β)
zk

k! , (1.14)
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where β, γ, z ∈ C, �(α) > 0, (γ )k is the Pochhammer symbol

(γ )0 = 1, (γ )k = Γ (γ + k)
Γ (γ )

, (0)0 := 1.

This function is also an entire function of order ρ = 1/�(α) and type 1. By
definition, it follows that

E1
α,β(z) = Eα,β(z),

E1
α,1(z) = Eα(z),

as well as

E0
α,n(z) =

{
1

Γ (n)
, n ∈ N,

0, n = 0.
(1.15)

The following function (see Fig. 1.3)

e
γ
α,β(t; λ) = tβ−1 E

γ
α,β(−λtα)

(
min{α, β, γ } > 0; λ ∈ R

)
(1.16)

is related to the three parameter M-L function. The Laplace transform of the three
parameter M-L function (1.16) reads [20, 34]

L
[
e
γ
α,β(t; ∓λ)

]
(s) = sαγ−β

(sα ∓ λ)γ , (1.17)

Fig. 1.3 Three parameter
M-L function (1.16) for
α = 3/42, β = 1, γ = 1/2
(blue line), α = γ = 5/4,
β = 3/2 (red line), α = 5/4,
β = 1/4, γ = 1/2 (green
line)
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where |λ/sα| < 1. For the three parameter M-L function the following Laplace
transform formula also holds true (1.14) [45]

sμ(α−1)

sα ± λ
[
sργ−α
(sρ+ν)γ

] = sμ(α−1)−α

1 ± λ
[
sργ−2α

(sρ+ν)γ
] =

∞∑

k=0

(∓λ)k s
(ργ−2α)k+μ(α−1)−α

(sρ + ν)γ k

= L

[ ∞∑

k=0

(∓λ)kx2αk+α+μ−μα−1E
γk

ρ,2αk+α+μ−μα
(−νxρ)

]

(s),

(1.18)

where we apply relation (1.17).
Another formula which is used in solving fractional differential equations is [12]

(
d

dz

)p [
zβ−1E

γ
α,β(az

α)
]

=
(

d

dz

)p ∞∑

k=0

(γ )k

Γ (αk + β)
akzαk+β−1

k!

=
∞∑

k=0

(γ )k
akzαk+β−p

k!
(αk + β − 1)(αk + β − 2) . . . (αk + β − p)

Γ (αn + β)

= zβ−p−1
∞∑

k=0

(γ )k

Γ (αk + β − p)
(azα)k

k! = zβ−p−1E
γ
α,β−p(az

α), (1.19)

where �(β − p) > 0, p ∈ N, �(γ ) > 0, a ∈ C. In a similar way one obtains the
n-th derivative of the three parameter M-L function [6]:

(
d

dz

)n
E
γ
α,β(z) = γ (γ + 1) . . . (γ + n− 1) Eγ+n

α,β+αn(z), (1.20)

from where for γ = 1 one obtains the connection between the n-th derivative of the
two parameter M-L function and the three parameter M-L function [20]

(
d

dz

)n
Eα,β(z) = n!En+1

α,β+αn(z), n ∈ N. (1.21)

For the three parameter M-L function the following recurrence relations hold true
[30]:

αγ z E
γ+1
α,α+β+1(z) = E

γ
α,β(z)− βEγα,β+1(z), (1.22)

α2γ (γ + 1)z2E
γ+2
α,2α+β+2(z) = E

γ
α,β(z)− (α + 2β + 1)Eγα,β+1(z)

+ (α + β + 1)(β + 1)Eγα,β+2(z), (1.23)



8 1 Introduction: Mittag-Leffler and Other Related Functions

for all min{α, β, γ } > 0, and z > 0.
Here we also give the following relation which appears in the anomalous

diffusion modeling [36]

zα1E−1
α2−α1,α1+1

(−zα2−α1
) = zα1

Γ (1 + α1)
+ zα2

Γ (1 + α2)
. (1.24)

It can be directly obtained from the following general formula [6]

E
−j
α,β (z) =

j∑

k=0

(−1)k
(
j

k

)
zk

Γ (αk + β) , j ∈ N. (1.25)

The infinite series in three parameter M-L functions can be represented in terms
of one and two parameter M-L functions as follows [41]:

∞∑

n=0

(−xy)nEn+1
α,2αn+β (x + y) = xEα,β (x)− yEα,β (y)

x − y (1.26)

for x 
= y, and

∞∑

n=0

(
−x2

)n
En+1
α,2αn+β (2x) = Eα,β (x)+ x d

dx
Eα,β (x) . (1.27)

In Chap. 7 we demonstrate the application of relations (1.26) and (1.27) in the theory
of fractional generalized Langevin equation.

The asymptotic behavior of the three parameter M-L function for z � 1 can be
obtained by using the series expansion of the three parameter M-L function around
z = ∞ [6] (see also [36])

E
γ
α,β(−z) � z−γ

Γ (γ )

∞∑

n=0

Γ (γ + n)
Γ (β − α(γ + n))

(−z)−n
n! , z > 1. (1.28)

for 0 < α < 2. Thus, for large z one obtains

E
γ
α,β(−z) � z−γ

Γ (β − αγ ) , z � 1, (1.29)

from where it follows the following asymptotic behavior

E
γ
α,β(−zα) � z−αγ

Γ (β − αγ ) , z � 1, (1.30)
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for large argument z. Furthermore, in the case z → 0, the three parameter M-L
function has the behavior [36]

E
γ
α,β(−zα) � 1

Γ (β)
− γ zα

Γ (α + β) � 1

Γ (β)
exp

(
−γ Γ (β)

Γ (α + β)z
α

)
, z � 1.

(1.31)

For the case with 0 < α < 1 this behavior is called stretched exponential since
it is a function whose decay with z is faster than that of the ordinary exponential
function for 0 < z < 1 but slower afterwards [33]. On the contrary, for the case
with 1 < α < 2 this behavior is called compressed exponential since it is a function
whose decay with z is slower than the one of the ordinary exponential function for
0 < z < 1 but faster afterwards [33]. These behaviors of the three parameter M-
L function are used in the description of anomalous diffusion and non-exponential
relaxation processes. Graphical representation of the three parameter M-L function
and its asymptotics is given in Fig. 1.4.

For γ → 1, the series (1.28) reduces to the asymptotic expansion of the two
parameter M-L function

Eα,β(−z) � −
∞∑

n=1

(−z)−n
Γ (β − αn) , z > 1, (1.32)

and for one parameter M-L function it reads

Eα(−z) � −
∞∑

n=1

(−z)−n
Γ (1 − αn) , z > 1. (1.33)

10 4 10 3 10 2 10 1 100 101
0.2

0.3

0.5

0.7
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t
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t

Fig. 1.4 Three parameter M-L function (1.14) for α = 3/4, β = 1, γ = 1/2 (blue line). The
stretched exponential asymptotic (1.31) (red line) and the power-law asymptotic (1.30) (green line)
are plotted for the same values of parameters. Reprinted figure with permission from T. Sandev,
A.V. Chechkin, N. Korabel, H. Kantz, I.M. Sokolov and R. Metzler, Phys. Rev. E, 92, 042117
(2015). Copyright (2015) by the American Physical Society
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The four parameter M-L function is defined by Srivastava and Tomovski [42]:

E
γ,κ
α,β (z) =

∞∑

n=0

(γ )κn

Γ (αn+ β) · z
n

n! , (1.34)

where (z, α, β, γ, κ ∈ C; �[α] > max{0,�[κ] − 1}; �[κ] > 0), (γ )κn is the
Pochhammer symbol. The four parameter M-L function is an entire function of

order ρ = 1
�(α−κ)+1 and type σ = 1

ρ

( [�(κ)]�(κ)
[�(α)]�(α)

)
. It is a generalization of the three

parameter M-L function Eγα,β(z), i.e.,

E
γ,1
α,β(z) = E

γ
α,β(z).

As further extensions of the M-L functions, we like to attract the attention to
multinomial M-L functions defined by Hilfer et al. [18]:

E(α1,α2,...,αn),β (z1, z2, . . . , zn) =
∞∑

k=0

l1+l2+···+ln=k∑

l1≥0,l2≥0,...,ln≥0

(
k

l1, . . . , ln

)

×
∏n
i=1 z

li
i

Γ
(
β + ∑n

i=1 αili
) , (1.35)

where

(
k

l1, . . . , ln

)
= k!
l1!l2! . . . ln!

are the so-called multinomial coefficients. Luchko and Gorenflo [21] called this
function multivariate, but later it was recalled as multinomial M-L function [18].
The following function

e(α1,α2,...,αn),β (t; λ1, λ2, . . . , λn)

= tβ−1E(α1,α2,...,αn),β

(−λ1t
α1 ,−λ2t

α2 , . . . ,−λntαn
)
, (1.36)

has been shown to have application in description of various anomalous diffusion-
wave models. Its Laplace transform reads [18]

L
[
e(α1,α2,...,αn),β (t; ∓λ1,∓λ2, . . . ,∓λn)

]
(s) = s−β

1 ∓ ∑n
j=1 λj s

−αj . (1.37)
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Here we note that for α1 = α, λ1 = λ and λ2 = · · · = λn = 0 the multinomial M-L
function reduces to the two parameter M-L function (1.16),

e(α),β (t; λ) = L −1
[

s−β

1 + λs−α
]

= tβ−1Eα,β
(−λtα) . (1.38)

Moreover, for λ1 
= 0, λ2 
= 0, λ3 = · · · = λn = 0, one obtains that the multinomial
M-L function can give infinite series in three parameter M-L functions, i.e.,

e(α1,α2),β (t; λ1, λ2) = L −1
[

s−β

1 + λ1s−α1 + λ2s−α2

]

= L −1

⎡

⎣ s−β

1 + λ1s−α1

1

1 + λ2
s−α2

1+λ1s
−α1

⎤

⎦

=
∞∑

k=0

(−λ2)
n s

−(α2−α1)k+α1−β

(sα1 + λ1)
n+1

=
∞∑

k=0

(−λ2)
k tα2k+β−1Ek+1

α1,α2k+β
(−λ1t

α1
)
, (1.39)

where we apply the Laplace transform formula (1.17).
Graphical representation of the multinomial M-L function e(α1,α2,α3),β

(t; λ1, λ2, λ3) (1.36) is given in Fig. 1.5. In the short time limit it behaves as
tβ−1/Γ (β) and in the long time limit as tβ−α3−1/Γ (β − α3). The crossover
behavior depends on all parameters. Therefore, by parameters’ tuning one may fit
different crossover behaviors, which makes the multinomial M-L function suitable

0 5 10 15 20

0.0

0.5

1.0

t

e
1,

2,
3
,

1,
2,

3
t;

Fig. 1.5 Multinomial M-L function (1.36) for λ1 = λ2 = λ3 = 1/3, α1 = 1/4, α2 = 1/2,
β = 7/8 and α3 = 3/4 (blue line), α3 = 5/4, (red line), α3 = 7/4 (green line)
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for description of complex behaviors of the MSD observed in different physical and
biological systems.

1.2 Fox H -Function

The Fox’ H -function (or H -function) is defined with the following Mellin-Barnes
integral [5, 26, 43]

Hm,np,q (z) = Hm,np,q

[
z

∣
∣
∣
∣
(a1, A1), . . . , (ap,Ap)

(b1, B1), . . . , (bq, Bq)

]

= Hm,np,q

[
z

∣
∣∣
∣
(ap,Ap)

(bq, Bq)

]
= 1

2πı

∫

Ω

θ(s)zsds, (1.40)

where

θ(s) =
∏m
j=1 Γ (bj − Bj s)∏n

j=1 Γ (1 − aj + Ajs)
∏q

j=m+1 Γ (1 − bj + Bjs)∏p

j=n+1 Γ (aj − Ajs)
,

0 ≤ n ≤ p, 1 ≤ m ≤ q , ai, bj ∈ C, Ai,Bj ∈ R+, i = 1, . . . , p, j = 1, . . . , q .
Contour integration Ω starts at c − ı∞ and finishes at c + ı∞ separating the
poles of the function Γ (bj + Bj s), j = 1, . . . ,m with those of the function
Γ (1 − ai − Ais), i = 1, . . . , n. It plays an important role in the theory of
fractional differential equations enabling closed form representation of the solutions
of fractional diffusion-wave equations. It is a very general function giving as special
cases many well-known special functions.

Series expansion of the H -function (1.40) is given by Mathai and Saxena [26]

Hm,np,q

[
z

∣
∣
∣∣
(a1, A1), . . . , (ap,Ap)

(b1, B1), . . . , (bq, Bq)

]

=
m∑

h=1

∞∑

k=0

∏m
j=1,j 
=h Γ

(
bj − Bj bh+kBh

)∏n
j=1 Γ

(
1 − aj + Aj bh+kBh

)

∏q

j=m+1 Γ
(

1 − bj + Bj bh+kBh

)∏p

j=n+1 Γ
(
aj − Aj bh+kBh

)

· (−1)kz(bh+k)/Bh
k!Bh . (1.41)
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The H -function has the following properties [26]:

Hm,np,q

[
z

∣∣
∣
∣

(a1, A1), . . . , (ap,Ap)

(b1, B1), . . . , (bq−1, Bq−1), (a1, A1)

]

= H
m,n−1
p−1,q−1

[
z

∣
∣
∣
∣
(a2, A2), . . . , (ap,Ap)

(b1, B1), . . . , (bq−1, Bq−1)

]
, (1.42)

where n ≥ 1, q > m,

Hm,np,q

[
zδ

∣∣
∣
∣
(a1, A1), . . . , (ap,Ap)

(b1, B1), . . . , (bq, Bq)

]

= 1

δ
·Hm,np,q

[
z

∣
∣
∣
∣
(a1, A1/δ), . . . , (ap,Ap/δ)

(b1, B1/δ), . . . , (bq, Bq/δ)

]
, δ > 0, (1.43)

H
m,n+1
p+1,q+1

[
z

∣
∣∣
∣
(0, α), (ap,Ap)
(bq, Bq), (r, α)

]
= (−1)rHm+1,n

p+1,q+1

[
z

∣
∣∣
∣
(ap,Ap), (0, α)
(r, α), (bq , Bq)

]
,

(1.44)

zσHm,np,q

[
z

∣∣
∣
∣
(ap,Ap)

(bq, Bq)

]
= Hm,np,q

[
z

∣∣
∣
∣
(ap + σAp,Ap)
(bq + σBq,Bq)

]
, (1.45)

Hm,np,q

[
z

∣
∣
∣
∣
(ap,Ap)

(bq, Bq)

]
= Hn,mq,p

[
z−1

∣
∣
∣
∣
(1 − bq, Bq)
(1 − ap,Ap)

]
. (1.46)

The k-th derivative (k ∈ N) of H -function is given by Srivastava et al. [43]

dk

dzk

{
zαHm,np,q

[
(az)β

∣
∣
∣
∣
(ap,Ap)

(bq, Bq)

]}

= zα−kHm,n+1
p+1,q+1

[
(az)β

∣
∣
∣∣
(−α, β), (ap,Ap)
(bq, Bq), (k − α, β)

]
, (1.47)

where β > 0. All these properties and relations have been used for simplification of
the obtained solutions of fractional diffusion and Fokker-Planck equations.

The Laplace transform of the Fox H -function reads [26, 43]

L

[
tρ−1H

m,n
p+1,q

[
zt−σ

∣
∣
∣
∣
(ap,Ap), (ρ, σ )

(bq, Bq)

]]
= s−ρHm,np,q

[
zsσ

∣
∣
∣
∣
(ap,Ap)

(bq, Bq)

]
,

(1.48)
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where σ > 0, �(s) > 0, �
(
ρ + σ max1≤j≤n

(
1−aj
Aj

))
> 0, | arg(z)| < πθ1/2,

θ1 > 0, θ1 = θ − a. The Mellin transform of the Fox H -function yields

∫ ∞

0
xξ−1Hm,np,q

[
ax

∣
∣
∣
∣
(a1, A1), . . . , (ap,Ap)

(b1, B1), . . . , (bq, Bq)

]
dx = a−ξ θ(−ξ), (1.49)

where

θ(−ξ) =
∏m
j=1 Γ (bj + Bj ξ)∏n

j=1 Γ (1 − aj − Ajξ)
∏q
j=m+1 Γ (1 − bj − Bjξ)∏p

j=n+1 Γ (aj + Ajξ)
.

The Mellin transform will be used to obtain the fractional moments of the
fundamental solutions of fractional diffusion equations. Furthermore, the cosine
Mellin transform of the Fox H -function reads [26, 35, 43]

∫ ∞

0
kρ−1 cos(kx)Hm,np,q

[
akδ

∣
∣
∣∣
(ap,Ap)

(bq, Bq)

]
dk

= π

xρ
H
n+1,m
q+1,p+2

[
xδ

a

∣
∣
∣∣
∣

(1 − bq, Bq), ( 1+ρ
2 , δ2 )

(ρ, δ), (1 − ap,Ap), ( 1+ρ
2 , δ2 )

]

, (1.50)

where �
(
ρ + δmin1≤j≤m

(
bj
Bj

))
> 1, xδ > 0, �

(
ρ + δmax1≤j≤n

(
aj−1
Aj

))
< 3

2 ,

| arg(a)| < πθ/2, θ > 0, θ = ∑n
j=1 Aj − ∑p

j=n+1 Aj + ∑m
j=1 Bj −∑q

j=m+1 Bj .
The application of these transformation formulas will be demonstrated later in
solving different fractional diffusion and Fokker-Planck equations.

The three parameter M-L function is a special case of the H -function [26]

Eδα,β(−z) = 1

δ
H

1,1
1,2

[
z

∣
∣
∣
∣
(1 − δ, 1)
(0, 1), (1 − β, α)

]
. (1.51)

Thus, by using relations (1.51) and (1.40), the cosine transform (1.50) of the two
parameter M-L function is given in terms of H -function, i.e.

∫ ∞

0
cos(kx)Eα,β

(
−ak2

)
dk = π

x
H

2,1
3,3

[
x2

a

∣∣
∣
∣
(1, 1), (β, α), (1, 1)
(1, 2), (1, 1), (1, 1)

]

= π

x
H

1,0
1,1

[
x2

a

∣
∣
∣
∣
(β, α)

(1, 2)

]
. (1.52)

This relation will be used later to solve the mono-fractional diffusion equation.
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The asymptotic expansion of the H -functionHm,0p,q (z) for large z is [26, 40]

Hm,0p,q (z) � Bz(1−α)/m∗
exp

(
−m∗C1/m∗

z1/m∗)
, (1.53)

α =
p∑

k=1

ak −
q∑

k=1

bk + 1

2
(q − p + 1), (1.54)

m∗ =
q∑

j=1

Bj −
p∑

j=1

Aj > 0, (1.55)

C =
p∏

k=1

(Ak)
Ak

q∏

k=1

(Bk)
−Bk , (1.56)

B = (2π)−
m−p−1

2 C(1−α)/m∗ (
m∗)−1/2

p∏

k=1

(Ak)
−ak+1/2

m∏

k=1

(Bk)
bk−1/2 . (1.57)

This asymptotic formula, as we will see in the next chapters, is very important in
the analysis of the asymptotic behaviors of the fundamental solutions of fractional
diffusion and Fokker-Planck equations.

The Fox-Wright function is defined by Mathai and Saxena [26]

pΨq(z) = pΨq

[
(a1, A1), . . . , (ap,Ap);
(b1, B1), . . . , (bq, Bq); z

]
=

∞∑

k=0

∏p
j=1 Γ (aj + Ajk)

∏q

j=1 Γ (bj + Bjk)
· z
k

k! ,
(1.58)

where aj ,Aj ∈ C, �[Aj ] > 0, for j = 1, . . . , p i bj , Bj ∈ C, �[Bj ] > 0, for

j = 1, . . . , q , 1 + �
(∑q

j=1 Bj − ∑p

j=1 Aj

)
≥ 0. For a special case of the Wright

function (p = 0, q = 1, b1 = β, B1 = α), the following notation is used [26]:

ϕ(α, β; z) =
∞∑

n=0

1

Γ (αn+ β)
zn

n! = H
1,0
0,2

[
−z

∣∣
∣
∣

−
(0, 1), (1 − β, α)

]
, (1.59)

where �(α) > −1, β ∈ C.
It is easily seen from the definition that

E
γ
α,β(z) = 1

Γ (γ )
1Ψ1

⎡

⎣
(γ, 1) ;

(β, α) ;
z

⎤

⎦ . (1.60)
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The Laplace transform of the four parameter M-L function can be represented in
terms of the Fox-Wright function [42]

L
[
tρ−1E

γ,κ
α,β (ωt

σ )
]
(s) = s−ρ

Γ (γ )
2Ψ1

[
(ρ, σ ), (γ, κ);

(β, α);
ω

sσ

]
. (1.61)

The auxiliary functions of the Wright type (used by Mainardi) are defined by

Mα(y) =
∞∑

n=0

1

Γ (−αn+ 1 − α)
(−y)n
n! . (1.62)

The relation to the FoxH -function is as follows [25]:

Mα(y) = H
1,0
1,1

[
y

∣
∣∣
∣
(1 − α, α)
(0, 1)

]
. (1.63)

The one-sided Lévy stable probability density Lα(y) can be represented through
theMα(y) as [11]

Lα(t) = α

tα+1Mα

(
1

tα

)
, (1.64)

which has the Laplace transform

Lα(t) = L −1
[
e−sα

]
. (1.65)

All these properties and relations are of huge importance in the theory of the
fractional differential equations, and will be applied in the next chapters.

1.3 Some Results Related to the Complete Monotonicity
of the Mittag-Leffler Functions

In this part we analyze the complete monotonicity of the function eγα,β(t; λ). In this
respect we recall Prabhakar formula:

Ls

[
e
γ
α,β(t; λ)

] = sαγ−β

(sα + λ)γ
(
s > |λ| 1

α
)
. (1.66)

For simplicity we use λ = 1. This convention does not restrict the generality of our
considerations.
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In Ref. [3], the authors treated the case 0 < α, β, γ ≤ 1 with αγ ≤ β.
They discussed complete monotonicity of the function eγα,β by invoking a theorem
given by Gripenberg et al. [14]. This theorem gives conditions for the complete
monotonicity of a function f in terms of properties of its Laplace transform.
Here we use the method of the Bernstein theorem which relates the complete
monotonicity of a function f to the non-negativity of its inverse Laplace transform.
We also note that the complete monotonicity of the M-L functions has been
investigated and discussed in several works [6, 7, 13, 16, 22–24, 27, 32, 39].

We first present that, under certain conditions to be made precise later, the
function

e
γ
α,β(t) ≡ e

γ
α,β(t; 1)

is the Laplace transform of a non-negative function [46]. For this purpose, we will
bend the Bromwich path of the Laplace inversion formula into the Hankel path,
thereby using the Cauchy residue theorem for taking account of the singularities
which we sweep over.

The function s �→ ϕ(s), which has a pole of order n at s0, possesses the residue
at this point given by

Res[ϕ(s); s0] = 1

(n− 1)! lim
s→s0

dn−1

dsn−1

{
ϕ(s)(s − s0)n

}
.

This last formula gives the coefficient of the power s−1 in the Laurent series
expansion of ϕ(s) (see [37]).

Lemma 1.1 ([46]) Let

ψ(s) = sp

(1 + sq)n (p, q > 0; n ∈ N).

Then the following assertion holds true:

Res
[
ψ(s); e±ı πq k

]
= e

±ı π
q
(p+q+1)

(−p)n−1

qn (n− 1)!
n−1∑

k=0

(1 − n)k
(p − n+ 2)k

ck,

where

c� = (−1)l
∑

j1 + · · · + jn = �

(0 ≤ j1, · · · , jn ≤ �)

b∗
j1

· · · b∗
jn

(� ∈ N0) (1.67)
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with the coefficients b∗
j given by

b∗
j = b∗

j (q) = δ0j + q−j (1 − δ0j
)

∣
∣
∣
∣
∣
∣∣
∣
∣
∣
∣∣
∣

(
q
2

)
q 0 · · · 0(

q
3

) (
q
2

)
q · · · 0

...
...

...
. . .

...
(
q
j

) (
q
j−1

) (
q
j−2

) . . . q
(
q
j+1

) (
q
j

) (
q
j−1

) · · · (q2
)

∣
∣
∣
∣
∣
∣∣
∣
∣
∣
∣∣
∣

(j ∈ N0) .

(1.68)

Proof In order to compute Res[ψ(s); eı πq ] let us transform sq + 1 (q > 0) as
follows:

1 + sq = 1 + (
s − eıπ/q + eıπ/q)q

= 1 −
∞∑

k=0

(
q

k

)
eı(π/q)k

(
s − eıπ/q)k

= e−iπ
∞∑

k=1

(
q

k

)
e−ı(π/q)k

(
s − eıπ/q)k

= e−ı π
q
(q+1)(

s − eıπ/q)
∞∑

k=0

(
q

k + 1

)(
e−ıπ/qs − 1

)k
. (1.69)

For all p > 0 and n ∈ N, by using (1.69), one has

ψ(s)
(
s − eı πq )n = e

ı nπq (q+1)
sp

[ ∞∑

k=0

(
q

k + 1

)
(
e−ıπ/qs − 1

)k
]−n

= eı
nπ
q
(q+1)

sp

qn

[
1 + · · · + 1

q

(
q

�+ 1

)
(
e−ıπ s − 1

)� + · · ·
]−n

.

(1.70)

The next step is to invert the power series

∞∑

k=0

akX
k
q,

where

aj = 1

q

(
q

j + 1

)
(Xq = e − s − 1).
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By the well-known procedure, it can be found that

⎛

⎝
∞∑

j=0

ajX
j
q

⎞

⎠

−1

=
∞∑

j=0

bjX
j
q ,

where the unknown coefficients bj are given by the following system:

j∑

m=0

(
q

m+ 1

)
bj−m = qδ0j , (j ∈ N0) .

Adapting the solution of the general Hessenberg type system considered in Ref. [8]
to the above system in bj , Eq. (1.68) is obtained. Indeed, since [8, p. 738, Theorem
3.1]

b∗
j = (−1)jbj =

∣
∣
∣
∣
∣∣
∣
∣
∣
∣∣
∣
∣
∣
∣∣

1 1 0 0 · · · 0
0 1

q

(
q
2

)
1 0 · · · 0

0 1
q

(
q
3

) 1
q

(
q
2

)
1

. . . 0
...

...
...

...
. . .

...

0 1
q

(
q
j

) 1
q

(
q
j−1

) 1
q

(
q
j−2

) . . . 1

0 1
q

(
q
j+1

) 1
q

(
q
j

) 1
q

(
q
j−1

) · · · 1
q

(
q
2

)

∣
∣
∣
∣
∣∣
∣
∣
∣
∣∣
∣
∣
∣
∣∣

,

one has b∗
0 = 1, and the expansion along the first column yields (1.68).

We now look for the power series in Xq , which is equal to the n-th power of

∞∑

j=0

bjX
j
q,

that is,

∞∑

�=0

c�X
�
q =

( ∞∑

j=0

bjX
j
q

)n
,

so that

c� =
∑

j1 + . . .+ jn = �

(0 ≤ j1, . . . , jn ≤ �)

bj1, . . . , bjn

=
∑

j1 + · · · + jn = �

(0 ≤ j1, . . . , jn ≤ �)

(−1)j1+···+jn−nb∗
j1
. . . b∗

jn
.
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Some fairly obvious steps would now give us the asserted form of the coefficients
c�. Thus, for instance, one has c0 = 1, c1 = 1−q, and so on. By this simplification,
Eq. (1.70) becomes

ψ(s)
(
s − eı πq )n = sp

∞∑

�=0

c�X
�
q.

Next, by using the chain rule, one calculates the limit of the derivative as follows:

lim
s→e

ı πq

[
ψ(s)

(
s − eı πq

)n](n−1)

= e
ı πq (p−n+1)

n−1∑

k=0

(
n−1
k

)
k! ck (−1)n−1−k(−p)n−1−k

= e
ı π
q
(p−n+1)

(−1)n−1
n−1∑

k=0

(−1)k(1 − n)k (−p)n−1−k ck. (1.71)

Since

(b)n+m = (b)n · (b + n)m,

upon replacing n by n− 1 and setting m = −k, it is obtained

(−p)n−1−k = (−p)n−1 · (−p + n− 1)−k.

On the other hand, it is easily observed that

(c)−n = (−1)n

(1 − c)n .

Therefore,

(−p)n−1−k = (−1)k (−p)n−1

(p − n+ 2)k
,

which can be used in Eq. (1.71) to get

lim
s→e

ı πq

[
ψ(s)

(
s − eı πq

)n](n−1) = e
ı π
q
(p−n+1)

(−1)n−1 (−p)n−1

n−1∑

k=0

(1 − n)k
(p − n+ 2)k

ck.
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Hence

Res
[
ψ(s); eı πq

]
= e

ı πq (p+q+1)
(−p)n−1

qn (n− 1)!
n−1∑

k=0

(1 − n)k
(p − n+ 2)k

ck.

Similarly, one finds

Res
[
ψ(s); e−ı πq

]
= e

−ı πq (p+q+1)
(−p)n−1

qn (n− 1)!
n−1∑

k=0

(1 − n)k
(p − n+ 2)k

ck,

which completes the proof of the Lemma.

Theorem 1.1 ([46]) Let Brσ0 denote the integration path

{s = σ + ıτ : σ ≥ σ0 and τ ∈ R}

in the upward direction. Then, for all α ∈ (0, 1], β > 0, γ > 0 and for all t > 0,

e
γ
α,β(t) = L−1

t

[
sαγ−β

(sα + 1)γ

]
= 1

2πı

∫

Br0

est
sαγ−β

(sα + 1)γ
ds = Lt

[
K
γ
α,β

]

(1.72)

and

K
γ
α,β(r) = rαγ−β

π

sin

[
γ arctan

(
rα sin(π α)

rα cos(π α)+ 1

)
+ π(β − αγ )

]

[
r2α + 2rα cos(π α)+ 1

] γ
2

. (1.73)

Moreover, for all α ∈ (1, 2], β > 0 and γ = n ∈ N,

enα,β(t) = L−1
t

[
sα n−β

(sα + 1)n

]
+ 2(−1)n−1

αn (n− 1)! e
t cos( πα )

× cos
[
t sin

(
π
α

) − π
α
(β − 1)

] n−1∑

�=0

(1 − n)� c�
(αn − β − n+ 2)�

, (1.74)

where

L−1
t

[
sα n−β

(sα + 1)n

]
= 1

2πı

∫

Br0

est
sα n−β

(sα + 1)n
ds = Lt

[
Knα,β

]
,

and c� (� ∈ {0, 1, 2, · · · , n − 1}) and b∗
j = b∗

j (α) (j ∈ N0) are given by (1.67)
and (1.68), respectively.
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Proof By employing Prabhakar’s formula (1.66), one derives eγα,β(t) as the follow-
ing inverse Laplace transform:

e
γ
α,β(t) = 1

2πı

∫

Br
est

sαγ−β

(sα + 1)γ
ds (0 < α ≤ 2)

without detouring on the general theory of the M-L functions in the complex plane.
For transparency reasons, two cases (1) α ∈ (0, 1] and (2) α ∈ (1, 2] are

considered separately. For all non-integer values of α, the power sα is given by

sα = |s|α eı arg(s) (| arg(s)| < π),

that is, in the complex s-plane cut along the negative real axis.
The essential step consists of decomposing eγα,β(t) into a sum of two terms,

bending the Bromwich path of integration Br into the equivalent Hankel path Ha(ρ),
a loop which starts from −∞ along the lower side of the negative real half-axis,

encircles the circular disk |s| ≤ ρ 1
α = 1 in the positive sense, and terminates at −∞

along the upper side of the negative real half-axis. Hence

e
γ
α,β(t) = f

γ
α,β(t)+ gγα,β(t) (t ≥ 0) (1.75)

with

f
γ
α,β(t) = 1

2πı

∫

−Ha(ε)
est

sαγ−β

(sα + 1)γ
ds, (1.76)

where the path −Ha(ε) has the opposite orientation with respect to Ha(ε), with
vanishing ε → 0, and

g
γ
α,β(t) =

∑

j

esj t Res
[
sαγ−β(sγ + 1)−γ ; sj

]
,

where sj are the relevant poles of the integrand in (1.76).
Let γ = n. In fact, in this case, the poles of order n turn out to be

sj = exp
(
ı(2j + 1)

π

α

) (| arg(sj )| < π
)
.

1. If α ∈ (0, 1], there are no such poles, since (for all integers j ) we have

|2j + 1|π ≥ απ.
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Consequently, for all t ≥ 0, the function gγα,β(t) vanishes. So, in view of (1.76),
the display (1.75) becomes

e
γ
α,β(t) = 1

2πı

∫

−Ha(ε)
est

sαγ−β

(sα + 1)γ
ds = Lt

[
K
γ
α,β

]
,

where by the fact that here the values of the integrand below and above the
cut along the negative real half-line are conjugate-complex to each other (or,
alternatively, by the Titchmarsh formula [44]), this gives the stated formula
(1.73):

K
γ
α,β(r) = − 1

π
�
(
rαγ−β eıπ(αγ−β)

(rα eıπα + 1)γ

)

= − r
αγ−β

π

sin
[
π(αγ − β)− γ arctan

(
sin(πα)

cos(πα)+r−α
)]

[
r2α + 2rα cos(πα)+ 1

] γ
2

,

which establishes the first part of theorem.
2. If α ∈ (1, 2], there exist two relevant poles given by

s±1 = exp{±ı π
α
}

of order n located in the left half-plane for s �→ sαγ−β(sα + 1)−n. Then, by
(1.67) and (1.68), one has

p = α · n− β and q = α.

One thus concludes that

g
γ
α,β(t) = es−1t Res

[
sαγ−β

(sα + 1)n
; s−1

]
+ es1t Res

[
sαγ−β

(sα + 1)n
; s1

]

= exp
(
teı

π
α

) exp
[
ıπ

(
n+ 1 − β−1

α

)]
(−αn + β)n−1

αn (n− 1)!

×
n−1∑

k=0

(1 − n)k ck(
(α − 1)n− β + 2

)
k

+ exp
(
te−ı πα

) exp
[
−ıπ

(
n+ 1 − β−1

α

)]
(−αn+ β)n−1

αn (n− 1)!
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×
n−1∑

k=0

(1 − n)k ck(
(α − 1)n− β + 2

)
k

= 2(−1)n+1 et cos( πα )

αn (n− 1)! cos
[
t sin

(
π
α

) − π
α
(β − 1)

]

×
n−1∑

k=0

(1 − n)k ck(
(α − 1)n− β + 2

)
k

.

Therefore, by using (1.75), one deduces the assertion (1.74) of the theorem.

Remark 1.1 For γ = 1 and β = γ = 1, the expression in (1.73) reduces,
respectively, to the following well-known results:

Kα,β(r) = K1
α,β(r) = rα−β

π

rα sin(πβ)+ sin[π(β − α)]
r2α + 2 cos(πα) rα + 1

(0 < α < β ≤ 1)

for the two parameter kernel [9, 10], and

Kα(r) = K1
α,1(r) = rα−1

π

sin(πα)

r2α + 2 cos(πα) rα + 1
(0 < α ≤ 1) (1.77)

for the one parameter kernel (see, for example, [9, 10]).

Now, putting β = n = 1 in (1.74), we are led to the following:

Corollary 1.1 For all α ∈ (1, 2] and t > 0, the following assertion holds true:

eα(t) =
∫ ∞

0
e−rtKα(r) dr + 2

α
et cos( π

α
) cos

[
t sin

(
π
α

)]
. (1.78)

Moreover, for all α ∈ (1, 2], β > 0 and t > 0,

eα,β(t) =
∫ ∞

0
e−rtKα,β(r) dr + 2

α
et cos( π

α
) cos

[
t sin

(
π
α

) − π
α
(β − 1)

]
.

Since limt→0+ eα(t) = 1 from (1.72) and (1.78) one concludes:

Corollary 1.2 The following integral holds true:

∫ ∞

0
Kα (r) dr =

{
1, 0 < α ≤ 1

1 − 2
α
, 1 < α ≤ 2

.

Remark 1.2 Corollary 1.1 deserves a comment on its meaning in applications. In
the earlier works [9, 10], the authors explained and gave illustrative examples for
the formula (1.78). Therein, the first term on the right-hand side is negative and,
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by sign inversion, we get the complete monotonicity. We could call such behavior
completely monotone from below. For t tending to infinity, it goes to zero slowly,
namely, like a power of t with negative exponent. This can be shown by aid of the
well-known Watson’s lemma (see, e.g., [2]). However, the second term oscillates,
but with exponentially decaying amplitude. So, clearly, we have eα(0+) = 1 and
then a superposition of a negative function tending slowly to zero by a cosine-
like oscillation with rapidly decaying amplitude. As a consequence, eα(t) has only
finitely many zeros, a special type of oscillation (see the discussions and illustrations
in the aforementioned works [9, 10]).

It is important to note also that, for the function eα,β(t), one has the same
qualitative behavior by following the same reasons.

Definition 1.1 ([38]) A given function f : [0,∞) → [0,∞) is said to be
completely monotone if f is continuous on [0,∞), infinitely differentiable on
(0,∞) and satisfies (−1)nf (n)(x) ≥ 0 for x > 0, n ∈ 0, 1, . . .. According to the
Bernstein characterization theorem, the completely monotone functions appear as
Laplace transforms of non-negative locally integrable function K(t), t > 0, which
is called the spectral function, for which f (s) = ∫ ∞

0 K(t)e−st dt .

As it was showed, the function eγα,β(t) is completely monotone whenever α ∈
(0, 1], 0 < αγ ≤ β ≤ 1 [46], and therefore by the Bernstein theorem [38] the
spectral function Kγα,β(r) is non-negative for the same range of the parameters.
Furthermore, the following results hold true.

Theorem 1.2 ([31]) One has that

∫ ∞

0
K
γ

α,1(r) dr =
{

1, α ∈ (0, 1], γ > 0,

1 − 2(−1)n−1

αn(n−1)!
∑n−1
l=0

(1−n)lcl
(n(α−1)+1)l

, α ∈ (1, 2] , γ = n ∈ N.

(1.79)

Proof By letting t → 0+, it is obtained

1 = lim
t→0+ e

γ

α,1(t) =
∫ ∞

0
K
γ

α,1(r) dr, α ∈ (0, 1], γ > 0, (1.80)

and

1 =
∫ ∞

0
K
γ

α,1(r) dr + 2 (−1)n−1

αn (n− 1)!
n−1∑

l=0

(1 − n)l cl
(n (α − 1)+ 1)l

, α ∈ (1, 2] , γ = n ∈ N,

(1.81)

where cl are coefficients given by (1.67). From this, the claim easily follows.

The kernelKα(r) has been studied in Ref. [10], and the general spectral function
K
γ
α,β(r) has been extensively analyzed in Ref. [24].



26 1 Introduction: Mittag-Leffler and Other Related Functions

One concludes by emphasizing that, if α ∈ (0, 1], 0 < αγ ≤ 1, r > 0, the kernel

K
γ

α,1(r) = rαγ−1

π

sin
(
γ arctan

(
rα sin(πα)
rα cos(πα)+1

)
+ π(1 − αγ )

)

(
r2α + 2rα cos(πα)+ 1

)γ /2 , (1.82)

is the density of a probability measure concentrated on the positive real line.
Graphical representation of Kγα,1(r) is given in Figs. 1.6 and 1.7. For additional
graphical representations of the function (1.82), we refer to Ref. [31].

Fig. 1.6 Graphical representation of the function (1.82) for α = 0.5, and γ = 0.2 (blue line),
γ = 0.2 (red line), γ = 0.2 (green line), γ = 0.2 (pink line); (a) linear scale, (b) log-log scale
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Fig. 1.7 Graphical representation of the function (1.82) for γ = 2, and α = 0.1 (blue line),
α = 0.2 (red line), α = 0.3 (green line), α = 0.4 (pink line); (a) linear scale, (b) log-log scale
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Chapter 2
Generalized Differential and Integral
Operators

From the time of discovery of calculus by Leibniz, he studied the problem of
fractional differentiations. 30 September 1695, the day when Leibniz sent a letter to
L’Hôpital with a reply of the L’Hôpital’s question related to the differentiation of a
function of order n = 1/2, became a birthday of the fractional calculus. By using the
Leibniz product rule and the binomial theorem he obtained some paradoxical results.
Euler partially resolved the Leibniz paradox by introducing the gamma function as
1 · 2 · . . . · n = n! = Γ (n + 1). Therefore, the fractional calculus has attracted
attention to a range of celebrated mathematicians and physicists, such as Leibniz,
Euler, Laplace, Lacroix, Fourier, Abel, Liouville, Riemann, Grünwald, Letnikov, to
name but a few.

Fractional derivatives were defined either by extension of fractional integrals
of negative order or by integer order derivatives of fractional integrals. Fractional
integrals were introduced by generalization of multiple integration

(
Ina+f

)
(t) =

∫ t

a

∫ tn−1

a

. . .

∫ t1

a

f (tn) dtn . . . dt2dt1

= 1

(n− 1)!
∫ t

a

(t − τ )n−1f (τ) dτ, (2.1)

where the order of integration n was changed with non-integer order μ > 0, i.e., by
substitution of (n−1)! by gamma functionΓ (μ). In this way the Riemann–Liouville
(R-L) fractional integral was defined.

Abel in 1823 studied the generalized tautochrone problem and for the first
time applied fractional calculus techniques in a physical problem. Later, Liouville
applied fractional calculus to problems in potential theory. Nowadays fractional cal-
culus receives increasing attention in the scientific community, with a growing num-
ber of applications in physics, chemistry, biophysics, viscoelasticity, biomedicine,
control theory, signal processing, etc. The fractional derivatives and non-local
operators nowadays are applicable to systems with memory and to describe the
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long range interactions. For details of different definitions and applications of
the fractional derivatives and integrals, and different fractional equations and
models that are not a part of this book, we refer to the literature [2–4, 6, 7, 11–
13, 24, 29, 35, 39, 40].

2.1 Fractional Integrals and Derivatives

The R-L fractional integral of order μ > 0 with lower limit a is defined by
generalization of the multiple integration formula (2.1) by the following convolution
integral [44]:

(
I
μ
a+f

)
(t) = 1

Γ (μ)

∫ t

a

f (τ )

(t − τ )1−μ dτ, t > a, �(μ) > 0. (2.2)

To complete the definition (2.2), for μ = 0 it is used

(
I 0
a+f

)
(t) = f (t).

By definition (2.2) it follows that

I
γ
0+I

δ
0+ = I

γ+δ
0+ = I δ0+I

γ
0+, (semi-group property) (2.3)

I
γ
0+t

s = Γ (s + 1)

Γ (s + 1 + γ ) t
s+γ , γ ≥ 0, s > −1, t > 0. (2.4)

The Laplace transform of the R-L fractional integral reads

L
[
I
μ
0+f (t)

] = s−μL [f (t)]. (2.5)

Lemma 2.1 The R-L fractional integral Iμa+ of order μ ∈ C, �(μ) > 0, is bounded
in the space L(a, b), and

||Iμa+f ||1 ≤ A||f ||1
where

A = (b − a)�(μ)
�(μ)|Γ (μ)| .
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The R-L fractional derivative of order μ > 0 with lower limit a is defined by
Prudnikov et al. [44]:

(
RLD

μ
a+f

)
(t) =

(
d

dt

)n (
I
n−μ
a+ f

)
(t) = 1

Γ (n− μ)
dn

dtn

∫ t

a

(t − τ )n−μ−1f (τ) dτ,

(2.6)

�(μ) > 0, n = [�(μ)] + 1,

where [�(μ)] is the integer part of the real number �(μ). By definition it follows

(
D0
a+f

)
(t) = f (t).

Contrary to the case of R-L fractional derivative of a given function, where one
first applies fractional integration to the function and then ordinary differentiation,
the Caputo fractional derivative of order μ > 0 with lower limit a is defined by
Prudnikov et al. [44]:

CD
μ
a+f (t) =

(
I
n−μ
a+

(
d

dt

)n
f

)
(t) = 1

Γ (n− μ)
∫ t

a

(t − τ )n−μ−1 dn

dτn
f (τ ) dτ,

(2.7)

where the order of fractional integral and ordinary derivative is exchanged. These
fractional derivatives have been used instead of the ordinary time derivative to
describe anomalous diffusion and non-exponential relaxation processes. In the
next chapters we will demonstrate different applications of these derivatives and
integrals.

The so-called Riesz fractional derivative of order α (0 < α ≤ 2), ∂α

∂|x|α , is given
as a pseudo-differential operator with the Fourier symbol −|k|α, k ∈ R [17, 44]

∂α

∂|x|α f (x) = F−1 [−|k|αF (k)] (x), (2.8)

where

F(k) = F [f (x)] (κ) =
∫ ∞

−∞
f (x)eıkx dx (2.9)

is the Fourier transform of the function f (x). Note that the inverse Fourier transform
is given by

f (x) = F−1 [F(κ)] (x) = 1

2π

∫ ∞

−∞
F(κ)e−ıκx dκ. (2.10)
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The Riesz derivative is defined by

∂α

∂|x|α f (x) = − 1

2Γ (−α) cos απ2

∫ ∞

−∞
|x − ξ |−α−1f (ξ) dξ,

0 < α < 1, 1 < α < 2. (2.11)

Its regularized representation, valid also for α = 1, reads

∂α

∂|x|α f (x) = Γ (1 + α) sin απ
2

π

∫ ∞

0

f (x + ξ)− 2f (x)+ f (x − ξ)
ξ1+α dξ,

0 < α < 2.
(2.12)

The Riesz space fractional derivative has been used to describe, for example,
superdiffusion processes, i.e., the famed Lévy flight process. For further details to
the properties and relations of the Riesz and related fractional derivatives, we refer
to [1, 3, 24, 44, 45].

Here we also define the Riesz–Feller derivative of order α and skewness θ , given
by the following Fourier transform formula [17]

F
[
xD

α
θ f (x)

]
(κ) = −ψθα(κ)F [f (x)] (κ), (2.13)

where

ψθα(κ) = |κ |α exp

(
ısign(κ)

θπ

2

)
, 0 < α ≤ 2, |θ | ≤ {α, 2 − α}.

Riesz–Feller fractional derivative is a pseudo-differential operator whose symbol
ψθα(κ) is a logarithm of the characteristic function of a general Lévy strictly stable
probability density with stability index α and asymmetry parameter θ (for details,
see Mainardi et al. [38]). For θ = 0, one obtains the Riesz derivative (2.8).

2.2 Composite Fractional Derivative

Considering problems of generalized time fractional evolutions, Hilfer further
generalized the R-L and Caputo fractional derivative as a combination of both
fractional derivatives. Therefore, the generalized R-L fractional derivative Dμ,ν0+ of
order 0 < μ < 1 and type 0 ≤ ν ≤ 1 (named as the Hilfer fractional derivative
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[50, 57] or composite fractional derivatives) is defined by Hilfer [29]

(
D
μ,ν
a+ f

)
(t) =

(
I
ν(1−μ)
a+

d

dt

(
I
(1−ν)(1−μ)
a+ f

))
(t), (2.14)

where 0 ≤ ν ≤ 1, 0 < μ < 1. Note that in case when ν = 0 the generalized
R-L fractional derivative (2.14) would correspond to the classical R-L fractional
derivative

(
RLD

μ
0+f

)
(t) = d

dt

(
I
(1−μ)
0+ f

)
(t) = 1

Γ (1 − μ)
d

dt

∫ t

a

(t − τ )−μf (τ) dτ,

(2.15)

and in case when ν = 1 it would correspond to the Caputo fractional derivative [9]
(or sometimes named as Liouville fractional derivative [29])

(
CD

μ
0+f

)
(t) =

(
I
(1−μ)
0+

d

dt
f

)
(t) = 1

Γ (1 − μ)
∫ t

a

(t − τ )−μ d

dτ
f (τ ) dτ.

(2.16)

We denote by ACn[a, b], n ∈ N , the space of real-valued function f (t) with
continuous derivatives up to order n − 1 on [a, b] such that f (n−1) belongs to the
space of absolutely continuous functions AC[a, b], that is [42]

(AC)n =
{
f : [a, b] → R : dn−1

dxn−1 f (x) ∈ AC[a, b]
}
.

The definition (2.14) for composite fractional derivative is extended by Hilfer,
Luchko, and Tomovski for n− 1 < μ ≤ n, n ∈ N [32] as follows:

(
D
μ,ν
0+ f

)
(t) =

(
I
ν(n−μ)
0+

dn

dtn

(
I
(1−ν)(n−μ)
0+ f

))
(t). (2.17)

If I (n−μ)(1−ν)
0+ f (s) ∈ ACk(0,+∞), with μ ∈ (n − 1, n] and k ∈ [0, n − 1], then

the Laplace transform formula for the generalized (R-L) derivative operator [58]

L
(
D
μ,ν

0+ f
)
(s) = sμL [f (t)] (s)

−
n−1∑

k=0

[
lim
t→0+

dk

dtk

(
I
(n−μ)(1−ν)
a+ f

)
(t)

]
sν(μ−n)+n−k−1 (2.18)
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is valid for any summable function f ∈ L(0,∞). Therefore, the Laplace transform
of the R-L and Caputo fractional derivatives becomes

L
(
RLD

μ

0+f
)
(s) = sμL [f (t)] (s)−

n−1∑

k=0

[
lim
t→0+

dk

dtk

(
I
n−μ
a+ f

)
(t)

]
sn−k−1,

(2.19)

L
(
CD

μ

0+f
)
(s) = sμL [f (t)] (s)−

n−1∑

k=0

[
lim
t→0+

dk

dtk
f (t)

]
sμ−k−1, (2.20)

respectively. From here one observes that the initial values in the case of R-L
fractional derivative are given by R-L fractional integrals, and for the Caputo
fractional derivative they are in a same form as for the ordinary derivatives.

In the space of the functions belonging to ACm[a, b] the following relation
between R-L and Caputo derivatives holds.

Theorem 2.1 For f ∈ ACm[a, b], m = �α�, α ∈ R+\N, the Riemann-Liouville
derivative of order α of f exists almost everywhere and it can be written as

Dαa+f (t) = CD
α
a+f (t)+

m−1∑

k=0

(x − a)k−α
Γ (k − α + 1)

f (k)(a+). (2.21)

The above theorem gives the set of functions where the R-L derivative can be
regularized. Moreover, if f (t) ∈ ACm[a, b], one has

lim
t→a+

dk

dtk
Im−α
a+ f (t) = 0, 0 ≤ k ≤ m− 1. (2.22)

Indeed, taking the Laplace transform of both sides of (2.21) the equality holds if
(2.22) is true.

Also, for a given function with zero initial condition the following formula is
satisfied [57]

D
μ,ν
0+

(
CD

(1−ν)(1−μ)
0+ f

)
(t) =

(
CD

1−ν(1−μ)
0+ f

)
(t). (2.23)

In Ref. [29] it was shown that for 0 < μ < 1 the Laplace transform of the
composite fractional derivative (2.14) is given by

L
[
D
μ,ν
0+ f (t)

]
(s) = sμL [f (t)] (s)− sν(μ−1)

(
I
(1−ν)(1−μ)
0+ f

)
(0+),

(2.24)
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where the initial value
(
I
(1−ν)(1−μ)
0+ f

)
(0+) is evaluated in the limit t → 0+ in the

space of summable Lebesgue integrable functions

L(0,∞) =
{
f : ‖f ‖1 =

∫ ∞

0
|f (t)| dt <∞

}
. (2.25)

The initial values that must be considered are of the form (I
(1−ν)(1−μ)
0+ f )(0+),

i.e., on the initial value of the fractional integral of order (1 − ν)(1 − μ). These
initial values do not have a clear physical meaning unless ν = 1. In order to obtain
a regularized version of the Hilfer derivative, we must restrict ourselves to the set of
absolutely continuous functions AC1[0, b] and therefore applying Theorem 2.1 we
obtain, for μ ∈ (0, 1),

D
μ,ν

0+ f (t) =
(
I
ν(1−μ)
0+

d

dt
(I
(1−ν)(1−μ)
0+ f )

)
(t)

=
(
I
ν(1−μ)
0+ I

(1−ν)(1−μ)
0+

d

dt
f

)
(t)+ Iν(1−μ)

0+
tνμ−ν−μ

Γ (1 − ν − μ+ νμ)f (0
+)

= I
1−μ
0+

d

dt
f (t)+ t−μ

Γ (1 − μ)f (0
+) = CD

μ

0+f (t)+ t−μ

Γ (1 − μ)f (0
+),

(2.26)

where we used the well-known semi-group property of R-L integrals and where
CD

μ

0+ is the Caputo derivative (2.7). From (2.26) it follows that in the space
AC1[0, b] the Hilfer derivative (2.14) coincides with the Riemann-Liouville deriva-
tive of order μ, and the regularized Hilfer derivative can be written as

D
μ,ν

0+ f (t)− t−μ

Γ (1 − μ)f (0
+), (2.27)

which coincides with CD
μ

0+ and which in fact does not depend on the parameter ν.

Remark 2.1 Note that if we consider proper initial conditions the R-L and Caputo
derivatives are equivalent since

(
CD

μ
0+f

)
(t) = (

RLD
μ
0+f

)
(t)− t−μ

Γ (1 − μ)f (0+), (2.28)

where 0 < μ < 1.
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Lemma 2.2 ([57]) The following fractional derivative formula holds true:

(
D
μ,ν
a+

[
(t − a)λ−1

])
(x) = Γ (λ)

Γ (λ− μ) (x − a)λ−μ−1 , (2.29)

(x > a, 0 < μ < 1, 0 ≤ ν ≤ 1,� (λ) > 0) .

Theorem 2.2 ([57]) The following relationship holds true:

(
D
μ,ν
a+

[
(t − a)β−1 E

γ
α,β

[
ω (t − a)α]

])
(x) = (x − a)β−μ−1 E

γ
α,β−μ

[
ω (x − a)α] ,

(x > a, 0 < μ < 1, 0 ≤ ν ≤ 1, γ , ω ∈ C, � (α) > 0, � (β) > 0) .

From here one obtains the following relation

CD
γ
0+

[
tβEδα,β+1

(−ωtα)
]

= tβ−γ Eδα,β−γ+1

(−ωtα) , (2.30)

α > 0, β > 0, γ > 0, δ > 0, ω is a constant, as well as

I
γ

0+
[
tβEδα,β+1

(−ωtα)
]

= tβ+γ Eδα,β+γ+1

(−ωtα) . (2.31)

For more interesting relations with fractional integrals and derivatives, we refer to
[24, 29].

In addition to the space L (a, b), we shall need the weighted Lp− space with the
power weight. Such a space, which we denote by Xpc (a, b) (c ∈ R; 1 ≤ p ≤ ∞),
consists of those complex-valued Lebesgue integrable functions f on (a, b) for
which ‖f ‖Xpc < ∞, with

‖f ‖Xpc =
(∫ b

a

∣
∣tcf (t)

∣
∣p dt

t

)1/p

, (1 ≤ p < ∞) .

In particular, when c = 1/p, the space Xpc (a, b) coincides with the Lp (a, b)−
space:Xp1/p (a, b) = Lp (a, b). We also introduce here a suitable fractional Sobolev

spaceWμ,p
a+ (a, b) defined, for a closed interval [a, b] in R, by:

W
μ,p
a+ (G) = {

f : f ∈ Lp (a, b) ,Dμa+f ∈ Lp (a, b) , (0 < μ ≤ 1)
}
.

Alternatively, in the next two theorems, we can make use of a suitable p-variant of
the space Lμa+ (a, b) which was defined, for � (μ) > 0, by Kilbas et al. as follows:

L
μ
a+ (a, b) = {

f : f ∈ L (a, b) and D
μ
a+f ∈ L (a, b) (� (μ) > 0)

}
.
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Theorem 2.3 ([57]) For 0 < μ < 1, 0 < ν < 1 the operator Dμ,νa+ is bounded in
the spaceWμ+ν−μν,1 (a, b) and

∥
∥Dμ,νa+

∥
∥

1 ≤ A
∥
∥∥Dμ+ν−μν

a+
∥
∥∥

1
, A = (b − a)ν(1−μ)

ν (1 − μ)Γ [ν (1 − μ)] .

Proof Using a known result we get

∥
∥Dμ,νa+ ϕ

∥
∥

1 =
∥
∥∥I ν(1−μ)
a+

(
D
μ+ν−μν
a+ ϕ

)∥∥∥
1

≤ (b − a)ν(1−μ)

ν (1 − μ)Γ [ν (1 − μ)]
∥
∥∥Dμ+ν−μν

a+ ϕ

∥
∥∥

1
.

The weighted Hardy type inequality for the integral operator Iαa+ is stated as the
following lemma:

Lemma 2.3 If 1 < p < ∞ and μ > 0, then the operator Iμ0+ is bounded from
Lp (0,∞) into Xp1/p−μ (0,∞):
(∫ ∞

0
x−μp ∣∣(Iμ0+f

)
(x)

∣
∣p dx

)1/p

≤ Γ
(
1/p′)

Γ (μ+ 1/p)

×
(∫ ∞

0
|f (x)|p dx

)1/p

,
1

p
+ 1

p′ = 1.

Applying the last two inequalities to the fractional derivative operator Dμ,νa+ one
gets

(∫ ∞

0
x−μp ∣∣(Dμ,ν0+ f

)
(x)

∣
∣p dx

)1/p

≤ Γ
(
1/p′)

Γ (ν (1 − μ)+ 1/p)

(∫ ∞

0

∣
∣
∣
(
D
μ+ν−μν
0+ f

)
(x)

∣
∣
∣
p

dx

)1/p

,
1

p
+ 1

p′ = 1.

(2.32)

Hence we arrive at the following result:

Theorem 2.4 If 1 < p < ∞ and 0 < μ < 1, 0 < ν < 1, then the operatorDμ,ν0+ is
bounded fromWμ+ν−μν,p (0,∞) into Xp1/p−μ (0,∞).
Theorem 2.5 ([46]) Let n − 1 < μ < n, n ∈ N, 0 ≤ ν ≤ 1, 0 < p < 1

1−ν(n−μ) ,
q > 1. If Dμ+ν(n−μ)

a+ f ∈ Lq(a, b), then the following inequality holds true:

∫ b

a

∣
∣(Dμ,ν

a+ f
)
(x)

∣
∣q dx ≤ C

∫ b

a

∣
∣∣
(
D
μ+ν(n−μ)
a+ f

)
(y)

∣
∣∣
q

dy, (2.33)
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where 1
p

+ 1
q

= 1, and

C = 1

[Γ (ν(n− μ))]q
(b − a)q[ν(n−μ)−1]+ q

p+1

[(ν(n− μ)− 1)p + 1]q/p (q[ν(n− μ)− 1] + q
p

+ 1)
.

Proof Since

∣
∣(Dμ,ν

a+ f
)
(x)

∣
∣ ≤ 1

Γ (ν(n− μ))
∫ x

a

(x − y)ν(n−μ)−1
∣
∣
∣
(
D
μ+ν(n−μ)
a+ f

)
(y)

∣
∣
∣ dy,

by using the Hölder’s inequality for {p, q} one has

∣
∣(Dμ,ν

a+ f
)
(x)

∣
∣ ≤ 1

Γ (ν(n− μ))
(∫ x

a

(x − y)(ν(n−μ)−1)p dy

)1/p

×
(∫ x

a

∣
∣∣
(
D
μ+ν(n−μ)
a+ f

)
(y)

∣
∣∣
q

dy

)1/q

≤ 1

Γ (ν(n− μ))
(x − a)ν(n−μ)−1+ 1

p

[(ν(n− μ)− 1)p + 1]1/p

×
(∫ b

a

∣
∣
∣
(
D
μ+ν(n−μ)
a+ f

)
(y)

∣
∣
∣
q

dy

)1/q

.

Thus, one finds

∣
∣(Dμ,ν

a+ f
)
(x)

∣
∣q ≤ 1

[Γ (ν(n− μ))]q
(x − a)q(ν(n−μ)−1)+ q

p

[(ν(n− μ)− 1)p + 1]q/p

×
∫ b

a

∣∣
∣
(
D
μ+ν(n−μ)
a+ f

)
(y)

∣∣
∣
q

dy.

By integration of the both sides from a to b one finishes the proof of the theorem.

Corollary 2.1 Let 0 < μ < 1, 0 < ν ≤ 1, 0 < p < 1
1−ν(1−μ) , q > 1.

IfDμ+ν(1−μ)
a+ f ∈ Lq(a, b), then the following inequality holds true:

∫ b

a

∣
∣(Dμ,ν

a+ f
)
(x)

∣
∣q dx ≤ C

∫ b

a

∣
∣
∣
(
D
μ+ν(1−μ)
a+ f

)
(y)

∣
∣
∣
q

dy, (2.34)

where 1
p

+ 1
q

= 1, and

C = 1

[Γ (ν(1 − μ))]q
(b − a)qν(1−μ)

[(ν(1 − μ)− 1)p + 1]q/p (qν(1 − μ)) .
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For the case with ν = 1 one obtains the following results.

Corollary 2.2 ([33]) Let n − 1 < μ < n, n ∈ N, 0 < p < 1
1−(n−μ) , q > 1.

If f (n) ∈ Lq(a, b), then the following inequality holds true:

∫ b

a

∣
∣(
CD

μ
a+f

)
(x)

∣
∣q dx ≤ C

∫ b

a

∣
∣
∣f (n)(y)

∣
∣
∣
q

dy, (2.35)

where 1
p

+ 1
q

= 1, and

C = 1

[Γ (n− μ)]q
(b − a)q(n−μ)

[((n− μ)− 1)p + 1]q/p (q(n− μ)) .

Corollary 2.3 Let 0 < μ < 1, 0 < p < 1
μ

, q > 1. If f (n) ∈ Lq(a, b), then the
following inequality holds true:

∫ b

a

∣
∣(
CD

μ
a+f

)
(x)

∣
∣q dx ≤ C

∫ b

a

∣
∣
∣f (n)(y)

∣
∣
∣
q

dy, (2.36)

where 1
p

+ 1
q

= 1, and

C = 1

[Γ (1 − μ)]q
(b − a)q(1−μ)

(1 − pμ)q/p [q(1 − μ)] .

Let us comment on the importance of application of the Hilfer-composite
fractional derivative (2.14). It has been argued that time fractional derivatives are
equivalent to infinitesimal generators of generalized time fractional evolutions that
arise in the transition from microscopic to macroscopic time scales [30, 31]. In
contrast to the first order time derivative, which is an infinitesimal generator of
a simple time translation, the fractional derivative of order 0 < α ≤ 1 is an
infinitesimal generator of a macroscopic time evolution, whose kernel is the one-
sided stable probability density with stable index α [30, 31]. This can be explained
by considering time evolution defined as a simple translation

T (t)f (s) = f (s − t) (2.37)

which acts on the given states f (t). Thus, the infinitesimal generator of the time
evolution (2.37)

lim
t→0

T (t)f (s)− f (s)
t

= −df (s)

dt
(2.38)

by definition represents first order time derivative. From the other side, for long time
scales, the macroscopic time evolution instead of simple translation can represent
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fractional time evolution Tα(t) of form

Tα(t)f (t0) =
∫ ∞

0
f (t0 − s)hα

( s
t

) ds

t
(2.39)

which acts on a given state f (t0) [25, 26, 28, 29]. In relation (2.39) hα(x) represents
one-sided stable probability density of stability index 0 < α < 1

hα(x; b, c) = 1

b1/α hα

(
x − c
b1/α

)
= 1

α(x − c)H
1,0
1,1

[
b1/α

x − c
∣
∣
∣
∣
(0, 1)
(0, 1/α)

]
, (2.40)

where Hm,np,q

[
z

∣
∣∣
∣
(ap,Ap)

(bq, Bq)

]
is the Fox H -function (1.40). Thus, the infinitesimal

generator of fractional time evolution [25, 26, 28, 29]

lim
t→0

Tα(t)f (s)− f (s)
t

= −Dα0+f (s) (2.41)

represents time fractional derivative of order α. Operators Tα(t) form a semi-group,
fulfilling the basic semi-group property

Tα(t1)Tα(t2) = Tα(t1 + t2). (2.42)

Because of this and since T1(t) = T (t), the fractional time evolution Tα(t)
is called fractional translation [30]. Thus, the transition from microscopic to
macroscopic time scale leads to replacement of T (t) with Tα(t), i.e., replacement
of − d

dt with −Dα0+. This transition from first order time derivative to fractional order
time derivative arises in physical problems as shown by Hilfer [25–29], for example,
in discovery of the non-equilibrium phase transitions [25].

The Hilfer-composite time derivative was used by Hilfer to successfully describe
the dynamics in glass formers over an extremely large frequency window [30, 31].
He investigated composite time evolution or so-called composite fractional transla-
tion by combining the simple translation T (t) and fractional translation Tα(t) [30]

T̃α (τ1t) = T (τ1t)Tα (τ2t) = T (τ1t)Tα (τ1εt) , (2.43)

where 0 < ε = τ2
τ1
< ∞ is the ratio of time scales. Hilfer [29] also showed that

T (t) and Tα(t) commute, i.e., (T (t1) (Tα(t2)f )) (t0) = (Tα(t2) (T (t1)f )) (t0),
and that T̃α represents a semi-group fulfilling the basic semi-group property

T̃α(t1)T̃α(t2) = T̃α(t1 + t2). (2.44)



2.3 Hilfer–Prabhakar Derivatives 41

In this case, the infinitesimal generator of composite fractional evolution is given

by limt→0
T̃α(t)−1

t
[30]. By using the composite fractional relaxation equation,

he obtained that the composite fractional susceptibility can be used for fitting
experimental data of glycerol in wide domain. From a practical point of view the
description in terms of composite-fractional operators increases the versatility of the
solution of the dynamic equation in the description of complex data. The fact that
with comparatively few parameters excellent fits are possible, justifies the physical
relevance of this approach.

2.3 Hilfer–Prabhakar Derivatives

We consider here a generalization of the Hilfer derivative by substituting in
Eq. (2.14) the R-L integrals with a more general integral operator with kernel

eγρ,μ,ω(t) = tμ−1Eγρ,μ
(
ωtρ

)
, (2.45)

t ∈ R, ρ, μ,ω, γ ∈ C, �(ρ),�(μ) > 0,

where Eγρ,μ(x) is the three parameter M-L function (1.14).

Definition 2.1 (Prabhakar Integral [43]) Let f ∈ L1(a, b), 0 ≤ a < t < b ≤ ∞.
The Prabhakar integral is defined as

(Eγρ,μ,ω,a+f )(t) = (f ∗ eγρ,μ,ω)(t)

=
∫ t

a

(t − y)μ−1Eγρ,μ
(
ω(t − y)ρ) f (y) dy, (2.46)

where ρ,μ,ω, γ ∈ C, with �(ρ),�(μ) > 0.

For γ = 0, the integral (2.46) coincides with the R-L fractional integral (2.2).

Theorem 2.6 (Hardy-Type Inequality [42]) Let p, q > 1, 1/p + 1/q = 1,
α, β, γ, ω > 0. If f ∈ Lq (a, b), a < b, then the following inequality holds true:

∫ b

a

∣
∣
∣
(

Eγα,β,ω,a+f
)
(t)

∣
∣
∣
q

dt ≤ C
∫ b

a

|f (t)|q dt, (2.47)

where

C =
[
e
γ
α,β+2,ω (b − a)

]q
.
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If α ∈ (0, 1), αγ > β − 1, one has

∫ b

a

∣
∣
∣
(

Eγα,β,ω,a+f
)
(t)

∣
∣
∣
q

dt ≤ K
∫ b

a

|f (t)|q dt, (2.48)

where K = M (b − a)q/p+1, and the constantM is given by

M =
Γ

(
γ − β−1

α

)
Γ

(
β−1
α

)

παω(β−1)/αΓ (γ ) (cos(πα/2))γ−(β−1)/α
.

Proof By applying Hölder inequality one finds

∣∣
∣
(

Eγα,β,ω,a+f
)
(t)

∣∣
∣ ≤

∫ t

a

∣∣
∣eγα,β,ω (t − τ )

∣∣
∣ |f (τ)| dτ

≤
(∫ t

a

∣
∣
∣eγα,β,ω (t − τ )

∣
∣
∣
p

dτ

)1/p (∫ t

a

|f (τ)|q dτ

)1/q

≤eγα,β+1,ω (t − a)
(∫ b

a

|f (t)|q dt

)1/q

. (2.49)

Therefore,

∣
∣
∣
(

Eγα,β,ω,a+f
)
(t)

∣
∣
∣
q ≤

[
e
γ

α,β+1,ω (t − a)
]q (∫ b

a

|f (t)|q dt

)
, (2.50)

for every t ∈ [a, b]. Consequently, one obtains

∫ b

a

∣∣
∣
(

Eγα,β,ω,a+f
)
(t)

∣∣
∣
q

dt ≤
∫ b

a

[
e
γ
α,β+1,ω (t − a)

]q
dt

(∫ b

a

|f (t)|q dt

)

≤
(∫ b

a

e
γ

α,β+1,ω (t − a) dt

)q (∫ b

a

|f (t)|q dt

)

=
[
e
γ

α,β+2,ω (b − a)
]q ∫ b

a

|f (t)|q dt . (2.51)

In the last step we made use of formula (5.5.19), page 100, in [24]. The proof of
(2.48) can be shown in a similar way.

Definition 2.2 (Prabhakar Derivative [19]) Let f ∈ L1[0, b], 0 < x < b ≤ ∞,
and f ∗e−γρ,m−μ,ω(·) ∈ Wm,1[0, b],m = �μ�. The Prabhakar derivative is defined by

Dγρ,μ,ω,0+f (x) = dm

dxm
E−γ
ρ,m−μ,ω,0+f (x), (2.52)

where μ,ω, γ, ρ ∈ C, �(μ),�(ρ) > 0.
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The R-L integral (2.2) can be expressed through the Prabhakar integral as
follows:

I
m−(μ+θ)
0+ f (x) = E0

ρ,m−(μ+θ),ω,0+f (x), (2.53)

and thus

Dγρ,μ,ω,0+f (x) = dm

dxm
E−γ
ρ,m−μ,ω,0+f (x) (2.54)

= dm

dxm
I
m−(μ+θ)
0+ E−γ

ρ,θ,ω,0+f (x)

= D
μ+θ
0+ E−γ

ρ,θ,ω,0+f (x), θ ∈ C, �(θ) > 0. (2.55)

For the Prabhakar derivative in the R-L form we also use the notation
RLD

γ,μ

ρ,ω,0+f (x). Here we use the following useful relation:

Eγρ,μ,ω,0+Eσρ,ν,ω,0+f (x) = Eγ+σ
ρ,μ+ν,ω,0+f (x). (2.56)

The inverse operator (2.54) of the Prabhakar integral is a generalization of the R-L
derivative.

As a generalization of the Caputo derivative, one introduces the regularized
Prabhakar derivative, for functions f ∈ ACm[0, b], 0 < x < b ≤ ∞, as follows
[15, 19]

CDγρ,μ,ω,0+f (x) = E−γ
ρ,m−μ,ω,0+

dm

dxm
f (x)

= Dγρ,μ,ω,0+f (x)−
m−1∑

k=0

xk−μE−γ
ρ,k−μ+1(ωx

ρ)f (k)(0+).
(2.57)

Proposition 2.1 ([19]) Let μ > 0 and f ∈ ACm[0, b], 0 < x < b ≤ ∞. Then

CDγρ,μ,ω,0+f (x) = Dγρ,μ,ω,0+

[

f (x)−
m−1∑

k=0

xk

k! f
(k)(0+)

]

. (2.58)

We next define the Hilfer-Prabhakar derivative, interpolating (2.57) and (2.54).

Definition 2.3 (Hilfer-Prabhakar Derivative [19]) Let μ ∈ (0, 1), ν ∈ [0, 1],
and let f ∈ L1[a, b], 0 < t < b ≤ ∞, f ∗ e−γ (1−ν)

ρ,(1−ν)(1−μ),ω(·) ∈ AC1[0, b]. The
Hilfer-Prabhakar derivative is defined by

D
γ,μ,ν

ρ,ω,0+f (t) =
(

E−γ ν
ρ,ν(1−μ),ω,0+

d

dt
(E−γ (1−ν)
ρ,(1−ν)(1−μ),ω,0+f )

)
(t), (2.59)
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where γ, ω ∈ R, ρ > 0, and where

E0
ρ,0,ω,0+f (x) = f (x).

One concludes that (2.59) reduces to the Hilfer derivative for γ = 0. Moreover, for
ν = 1 and ν = 0 it coincides with (2.57) and (2.54), respectively (m = 1).

Lemma 2.4 ([19]) The Laplace transform of the Hilfer-Prabhakar derivative
(2.59) reads

L

[
E−γ ν
ρ,ν(1−μ),ω,0+

d

dt

(
E−γ (1−ν)
ρ,(1−ν)(1−μ),ω,0+f

)]
(s)

= sμ[1 − ωs−ρ]γL [f ](s)− s−ν(1−μ)[1 − ωs−ρ ]γ ν

×
[
E−γ (1−ν)
ρ,(1−ν)(1−μ),ω,0+f (t)

]

t=0+ . (2.60)

Proof From the Laplace transformation of the three parameter M-L function it
follows

L
[
tμ−1E−γ

ρ,μ(ωt
ρ)
]
(s) = s−μ(1 − ωs−ρ)γ , (2.61)

where γ, ω, ρ,μ ∈ C, �(μ) > 0, with s ∈ C, �(s) > 0, |ωs−ρ | < 1. Therefore,
one has

L

[
E−γ ν
ρ,ν(1−μ),ω,0+

d

dt

(
E−γ (1−ν)
ρ,(1−ν)(1−μ),ω,0+f

)]
(s)

= L
[
tν(1−μ)−1E

−γ ν
ρ,ν(1−μ)(ωt

ρ)
]
(s) · L

[
d

dt
(E−γ (1−ν)
ρ,(1−ν)(1−μ),ω,0+f )

]
(s)

= s−ν(1−μ)[1 − ωs−ρ ]γ νsL
[
t(1−ν)(1−μ)−1E

−γ (1−ν)
ρ,(1−ν)(1−μ)(ωt

ρ)
]
(s)L [f ](s)

− s−ν(1−μ)[1 − ωs−ρ ]γ ν
[
E−γ (1−ν)
ρ,(1−ν)(1−μ),ω,0+f (t)

]

t=0+
= sμ[1 − ωs−ρ ]γL [f ](s)− s−ν(1−μ)[1 − ωs−ρ ]γ ν

×
[
E−γ (1−ν)
ρ,(1−ν)(1−μ),ω,0+f (t)

]

t=0+ . (2.62)

In order to consider Cauchy problems involving initial conditions depending
only on the function and its integer-order derivatives, as in the case of Caputo
fractional derivative, one should use the regularized version of (2.59), that is, for
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f ∈ AC1[0, b], i.e.,

CD
γ,μ

ρ,ω,0+f (t) =
(

E−γ ν
ρ,ν(1−μ),ω,0+E−γ (1−ν)

ρ,(1−ν)(1−μ),ω,0+
d

dt
f

)
(t)

=
(

E−γ
ρ,1−μ,ω,0+

d

dt
f

)
(t). (2.63)

Remark 2.2 We note that, in the regularized version of the Hilfer-Prabhakar
derivative (as well as in the regularized Hilfer derivative, see (2.26)), there is no
dependence on the interpolating parameter ν.

Lemma 2.5 The Laplace transform of the operator (2.63) is given by D’Ovidio and
Polito [15]

L [CDγ,μ

ρ,ω,0+f ](s) = sμ(1 − ωs−ρ)γL [f ](s)− sμ−1(1 − ωs−ρ)γ f (0+).
(2.64)

Proof The proof is similar to the one in Lemma 2.4.

From Lemmas 2.4 and 2.5 one has that the relation between the two operators
(2.59) and (2.63) is given by

CD
γ,μ

ρ,ω,0+f (t) = D
γ,μ,ν

ρ,ω,0+f (t)− t−μE−γ
ρ,1−μ(ωt

ρ)f (0+), (2.65)

observing that, for absolutely continuous functions f ∈ AC1[0, b],
[
E−γ (1−ν)
ρ,(1−ν)(1−μ),ω,0+f (t)

]

t=0+ = 0, (2.66)

and

L −1
[
sμ−1(1 − ωs−ρ)γ

]
(t) f (0+) = t−μE−γ

ρ,1−μ(ωt
ρ) f (0+). (2.67)

Theorem 2.7 ([42]) Let α ∈ (0, 1), γ, ω > 0, and αγ > β − 1 > 0. If ϕ ∈
Lp (a, b), 0 < p ≤ 1, then the integral operator Eγα,β,ω,a+ is bounded in Lp (a, b)
and

∥
∥
∥Eγα,β,ω,a+ϕ

∥
∥
∥
p

≤ M ‖ϕ‖p , (2.68)

where the constantM , 0 < M < ∞, is given by

M =
B
(
γ − β−1

α
,
β−1
α

)

παω
β−1
α

[
cos

(
πα
2

)]γ− β−1
α

(b − a)1/p , (2.69)
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where

B(μ, ν) = Γ (μ)Γ (ν)

Γ (μ+ ν)
is the beta function [16].

Proof In order to prove the result it is sufficient to show that

∥
∥
∥Eγα,β,ω,a+ϕ

∥
∥
∥
p

p
=

∫ b

a

∣
∣
∣
∣

∫ x

a

(x − t)β−1E
γ
α,β

(
ω [x − t]α)ϕ (t) dt

∣
∣
∣
∣

p

dx < ∞.

(2.70)

This can be done by recalling the well-known integral inequality

∣∣
∣
∣

∫ x

a

f (t) dt

∣∣
∣
∣

p

≤
∫ x

a

|f (t)|p dt, 0 < p ≤ 1, (2.71)

and the uniform bound of the function eγα,β,ω (t) (see Theorem 3 of [59]). Therefore,
one obtains

∥
∥
∥Eγα,β,ω,a+ϕ

∥
∥
∥
p

p
≤

∫ b

a

(∫ x

a

∣
∣
∣eγα,β,ω (x − t)

∣
∣
∣
p |ϕ (t)|p dt

)
dx

≤
⎛

⎝
Γ

(
γ − β−1

α

)
Γ

(
β−1
α

)

παω
β−1
α Γ (γ )

[
cos

(
πα
2

)]γ− β−1
α

⎞

⎠

p∫ b

a

(∫ b

a

|ϕ (t)|p dt

)
dx

≤ (b − a)
⎛

⎝
B
(
γ − β−1

α
,
β−1
α

)

παω
β−1
α

[
cos

(
πα
2

)]γ− β−1
α

⎞

⎠

p

‖ϕ‖pp . (2.72)

This completes the proof of the theorem.

Theorem 2.8 ([42]) Let α ∈ (0, 1), γ, ω > 0, and αγ > β − 1 > 0. If ϕ ∈
Lp (a, b), p > 1, then the integral operator Eγα,β,ω,a+ is bounded in L1 (a, b) and

∥
∥
∥Eγα,β,ω,a+ϕ

∥
∥
∥

1
≤ M

[
(b − a)q+1

q + 1

]1/q

‖ϕ‖p , (2.73)

where 1/p + 1/q = 1.
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Proof By Fubini’s theorem and Hölder inequality, it follows

∥
∥
∥Eγα,β,ω,a+ϕ

∥
∥
∥

1
=

∫ b

a

∣
∣
∣
∣

∫ x

a

(x − t)β−1E
γ
α,β

(
ω [x − t]α)ϕ (t) dt

∣
∣
∣
∣ dx

≤
∫ b

a

|ϕ (t)|
(∫ b

t

∣
∣
∣eγα,β,ω (x − t)

∣
∣
∣ dx

)
dt

≤ M
∫ b

a

|ϕ (t)|
(∫ b

t

dx

)
dt

≤ M
(∫ b

a

|ϕ (t)|p dt

)1/p (∫ b

a

(b − t)q dt

)1/q

= M

[
(b − a)q+1

q + 1

]1/q

‖ϕ‖p , (2.74)

where the constantM is given by (2.69).

Theorem 2.9 ([42]) If f ∈ Wm,1 (a, b), γ, ω ∈ R, m = �μ�, ρ > 0,
then regularized Prabhakar derivative is bounded in L1 (a, b) and the following
inequality holds true:

∥
∥
CDγρ,μ,ω,a+f

∥
∥

1
≤ K̃

∥
∥∥f (m)

∥
∥∥

1
, (2.75)

where

K̃ = (b − a)m−μ
∞∑

k=0

∣
∣(−γ )k

∣
∣

|Γ (ρk +m− μ)| (ρk +m− μ)

∣
∣ω (b − a)m−μ∣∣k

k! .

(2.76)

Proof Using theL1 estimate for the Prabhakar integral operator (see [34]), one finds

∥∥
CDγρ,μ,ω,a+f

∥∥
1

=
∥
∥∥
∥

(
E−γ
ρ,m−μ,ω,a+

dm

dtm
f

)∥∥∥
∥

1
≤ K̃

∥
∥∥f (m)

∥
∥∥

1
. (2.77)

Theorem 2.10 ([42]) If f ∈ W 1,1 (a, b), γ, ω ∈ R, μ ∈ (0, 1), ρ > 0, then
the regularized version of the Hilfer-Prabhakar derivative CD

γ,μ
ρ,ω,a+ is bounded in

L1 (a, b) and the following inequality holds:

∥
∥
CD

γ,μ
ρ,ω,a+f

∥
∥

1
≤ K ∥

∥f ′∥∥
1 , (2.78)

where

K = (b − a)1−μ
∞∑

k=0

∣
∣(−γ )k

∣
∣

|Γ (ρk + 1 − μ)| [ρk + 1 − μ]

∣
∣ω (b − a)1−μ∣∣k

k! . (2.79)
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Proof Here we use again the L1 estimate for the Prabhakar integral operator [34],
to obtain

∥
∥
CD

γ,μ
ρ,ω,a+f

∥
∥

1
=

∥
∥
∥
∥

(
E−γ
ρ,1−μ,ω,a+

d

dt
f

)∥∥
∥
∥

1
≤ K ∥

∥f ′∥∥
1 . (2.80)

Proposition 2.2 ([42]) The following relationship holds true for any Lebesgue
integrable function ϕ ∈ L1 (a, b):

(D
γ,μ,ν
ρ,ω,a+(Eδρ,λ,ω,a+f )) = (Eδ−γρ,λ−μ,ω,a+f ), (2.81)

where γ, δ, ω ∈ R, ρ, λ > 0, μ ∈ (0, 1), ν ∈ [0, 1], λ > μ+ ν − μν. In particular,

(D
γ,μ,ν
ρ,ω,a+(E

γ
ρ,λ,ω,a+f )) = (I

λ−μ
a+ f ). (2.82)

Proof Using the semi-group property of the Prabhakar integral operator [34], one
obtains

(D
γ,μ,ν
ρ,ω,a+(Eδρ,λ,ω,a+f )) (t) =

(
E−γ ν
ρ,ν(1−μ),ω,a+

d

dt

(
E−γ (1−ν)
ρ,(1−ν)(1−μ),ω,a+(E

δ
ρ,λ,ω,a+f )

))
(t)

=
(

E−γ ν
ρ,ν(1−μ),ω,a+

d

dt

(
E−γ (1−ν)+δ
ρ,(1−ν)(1−μ)+λ,ω,a+f

))
(t)

=
(

E−γ ν
ρ,ν(1−μ),ω,a+

(
E−γ (1−ν)+δ
ρ,(1−ν)(1−μ)+λ−1,ω,a+f

))
(t)

= (Eδ−γρ,λ−μ,ω,a+f ) (t) . (2.83)

Proposition 2.3 ([42]) The following composition relationship holds true for any
Lebesgue integrable function ϕ ∈ L1 (a, b):

(D
γ,μ,ν
ρ,ω,a+(Iλa+ϕ)) = (E−γ

ρ,λ−μ,ω,a+ϕ), (2.84)

where γ, ω ∈ R, ρ, λ > 0, μ ∈ (0, 1), ν ∈ [0, 1], λ > μ+ ν − μν.

Proof It is sufficient to prove the first relation. The proof of the second follows the
same lines. We have

(
D
γ,μ,ν
ρ,ω,a+(Iλa+ϕ)

)
(t) =

(
E−γ ν
ρ,ν(1−μ),ω,a+

d

dt

(
E−γ (1−ν)
ρ,(1−ν)(1−μ),ω,a+I

λ
a+ϕ

))
(t)

=
(

E−γ ν
ρ,ν(1−μ),ω,a+

d

dt

(
E−γ (1−ν)
ρ,(1−ν)(1−μ)+λ,ω,a+ϕ

))
(t)
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=
(

E−γ ν
ρ,ν(1−μ),ω,a+

(
E−γ (1−ν)
ρ,(1−ν)(1−μ)+λ−1,ω,a+ϕ

))
(t)

= (E−γ
ρ,λ−μ,ω,a+ϕ)(t). (2.85)

Example 2.1 ([42]) Here we calculate the nonregularized Hilfer-Prabhakar deriva-
tive of the power function tp−1, p > 1, with a = 0. As in Definition 2.3, we
consider μ ∈ (0, 1), ν ∈ [0, 1], γ, ω ∈ R, ρ > 0. We obtain

(
D
γ,μ,ν

ρ,ω,0+t
p−1

)
(x)

=
(

E−γ ν
ρ,ν(1−μ),ω,0+

d

dt

(
E−γ (1−ν)
ρ,(1−ν)(1−μ),ω,0+t

p−1
))
(x)

= Γ (p)

(
E−γ ν
ρ,ν(1−μ),ω,0+

d

dt

(
t(1−ν)(1−μ)+p−1E

−γ (1−ν)
ρ,(1−ν)(1−μ)+p

(
ωtρ

))
)
(x)

= Γ (p)

(
E−γ ν
ρ,ν(1−μ),ω,0+t

(1−ν)(1−μ)+p−2E
−γ (1−ν)
ρ,(1−ν)(1−μ)+p−1

(
ωtρ

))
(x)

= Γ (p)

∫ x

0
(x − t)ν(1−μ)−1 E

−γ ν
ρ,ν(1−μ)

(
ω (x − t)ρ)

× t(1−ν)(1−μ)+p−2E
−γ (1−ν)
ρ,(1−ν)(1−μ)+p−1

(
ωtρ

)
dt = xp−μ−1E

−γ
ρ,p−μ

(
ωxρ

)
.

(2.86)

Example 2.2 ([42]) Next, we calculate the (nonregularized) Hilfer-Prabhakar
derivative of the function eγρ,β,ω (t) for μ ∈ (0, 1), ν ∈ [0, 1], γ, ω ∈ R, ρ > 0,
β > 1. Thus, one has

(
D
γ,μ,ν

ρ,ω,0+e
γ
ρ,β,ω (t)

)
(x)

=
(

E−γ ν
ρ,ν(1−μ),ω,0+

d

dt

(
E−γ (1−ν)
ρ,(1−ν)(1−μ),ω,0+e

γ
ρ,β,ω (t)

))
(x)

=
(

E−γ ν
ρ,ν(1−μ),ω,0+

d

dt

(
t(1−ν)(1−μ)+β−1E

γν

ρ,(1−ν)(1−μ)+β
(
ωtρ

)))
(x)

=
(

E−γ ν
ρ,ν(1−μ),ω,0+t

(1−ν)(1−μ)+β−2E
γν

ρ,(1−ν)(1−μ)+β−1

(
ωtρ

))
(x)

= xβ−μ−1E0
ρ,β−μ

(
ωxρ

) = xβ−μ−1

Γ (β − μ) . (2.87)



50 2 Generalized Differential and Integral Operators

Remark 2.3 In our further analysis of the fractional diffusion and generalized
Langevin equations we are particularly interested in the regularized Prabhakar
derivative with 0 < μ < 1, so one has

CD
δ,μ
ρ,−ν,0+f (t) =

(
E−δ
ρ,1−μ,−ν,0+

d

dt
f

)
(t)

=
∫ t

0
(t − t ′)−μE−δ

ρ,1−μ
(−ν(t − t ′)ρ) d

dt ′
f (t ′) dt ′. (2.88)

From this representation in Ref. [47] it was concluded that the regularized Prabhakar
derivative is a special case of the generalized operator in Caputo form

(
CGγ,tf

)
(t) =

∫ t

0
γ (t − t ′) d

dt ′
f (t ′) dt ′, (2.89)

where the kernel γ (t) is given by

γ (t) = t−μE−δ
ρ,1−μ

(−νtρ) . (2.90)

The generalized operator in the Caputo form (2.89) has been investigated in
[36, 37, 54] in detail. Such generalized operator has been used in different contexts.
For example, in [60] an M-L memory kernel has been introduced as a friction term
in the GLE. Later, different M-L memory kernels have also been introduced in
the analysis of the GLE [8, 18, 49, 51, 61], generalized diffusion and Schrödinger
equations [52–54]. Nowadays, many papers deal with such generalized operators
with M-L and more generalized memory kernels. Particularly, the Prabhakar
derivatives have been applied in the fractional diffusion and telegrapher’s equations
[15], in the fractional Poisson [19] and generalized fractional Poisson processes
[41], and have been used for the description of dielectric relaxation phenomena
[20–22], in the fractional Maxwell model of the linear viscoelasticity [10, 23], in
mathematical modeling of fractional differential filtration dynamics [5] and particle
deposition in porous media [62], as well as in the generalized Langevin equation
modeling as a friction term [47]. Furthermore, Prabhakar derivative has been applied
for description of the finite-velocity diffusion on a comb structure [48], diffusion
processes with stochastic resetting [14], and has been obtained within the CTRW
theory [55] for generalized waiting time PDF.

The Prabhakar derivative in the R-L form for 0 < μ < 1 is a special case of the
generalized operator in R-L form

(
RLGη,tf

)
(t) = d

dt

∫ t

0
η(t − t ′)f (t ′) dt ′, (2.91)

where the memory kernel η(t) is given by (2.90).
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Remark 2.4 Here we note that in the work by Sandev [47] the so-called tempered
Prabhakar derivatives have been introduced. The tempered version of the regularized
Prabhakar derivative is defined by

T CD
δ,μ
ρ,−ν,0+f (t) =

(

TE−δ
ρ,1−μ,−ν,0+

d

dt
f

)
(t), (2.92)

where

(
T Eδρ,μ,−ν,0+f

)
(t) =

∫ t

0
e−b(t−t ′)(t − t ′)μ−1Eδρ,μ

(−ν(t − t ′)ρ) f (t ′) dt ′,

(2.93)

and b > 0. All other parameters are the same as in the regularized Prabhakar
derivative (2.88). From the definition one concludes that this derivative is a special
case of the generalized operator (2.89) for

γ (t) = e−bt t−μE−δ
ρ,1−μ

(−νtρ) . (2.94)

The Laplace transform of the tempered regularized Prabhakar derivative then
reads [47]

L
[
T CD

δ,μ
ρ,−ν,0+f (t)

]
(s) = (s + b)μ−1 (1 + ν(s + b)−ρ)δ

× [sL [f (t)] (s)− f (0+)] . (2.95)

Similarly, one can introduce the so-called tempered Prabhakar derivative in the
R-L form, by introducing exponential truncation in the memory kernel [47], i.e.,

T RLD
δ,μ
ρ,−ν,0+f (t) = d

dt

∫ t

0
e−b(t−t ′)(t − t ′)−μE−δ

ρ,1−μ
(−(t − t ′)ρ) f (t ′) dt ′,

(2.96)

which is a special case of the operator (2.91) with memory kernel η(t) of
form (2.94).

Remark 2.5 In analogy to the distributed order derivative

∫ 1

0
CD

μ
0+f (t) dμ,
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here we introduce the distributed order regularized Prabhakar derivative defined by

∫ 1

0
CD

δ,μ
ρ,−ν,0+f (t) dμ

=
∫ t

0

(∫ 1

0
(t − t ′)−μE−δ

ρ,1−μ
(−ν[t − t ′]ρ) dμ

)
d

dt ′
f (t ′)dt ′. (2.97)

It is a special case of the generalized operator (2.89) with

γ (t) =
∫ 1

0
t−μE−δ

ρ,1−μ
(−νtρ) dμ. (2.98)

The Laplace transform of Eq. (2.97) reads

L

[∫ 1

0
CD

δ,μ
ρ,−ν,0+f (t) dμ

]
(s)

= s − 1

s log s

(
1 + 1

(sτ )α

)−δ
[sL [f (t)](s)− f (0+)] . (2.99)

Remark 2.6 In the analysis of the fractional wave equation we will use the
following regularized Prabhakar derivative with 1 < μ < 2,

CD
δ,μ
ρ,−ν,0+f (t) =

(
E−δ
ρ,2−μ,−ν,0+

d2

dt2
f

)
(t)

=
∫ t

0
(t − t ′)1−μE−δ

ρ,2−μ
(−ν(t − t ′)ρ) d2

dt ′2
f (t ′) dt ′. (2.100)

From here one concludes that this version of the regularized Prabhakar derivative is
a special case of the generalized operator in Caputo form

(
CGη,tf

)
(t) =

∫ t

0
ζ(t − t ′) d2

dt ′2
f (t ′) dt ′, (2.101)

where the kernel ζ(t) is given by

ζ(t) = t1−μE−δ
ρ,2−μ

(−νtρ) . (2.102)

Moreover, the R-L version of the generalized operator can be written as

(
RLGη,tf

)
(t) = d2

dt2

∫ t

0
ξ(t − t ′)f (t ′) dt ′. (2.103)
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Remark 2.7 Furthermore, we also introduce the distributed order version of the
fractional derivative (2.100), defined by

∫ 2

1
CD

δ,μ
ρ,−ν,t f (t) dμ

=
∫ t

0

(∫ 1

0
(t − t ′)1−μE−δ

ρ,2−μ
(−ν[t − t ′]ρ) dμ

)
d2

dt2
f (t ′) dt ′, (2.104)

for which the memory kernel reads

ζ(t) =
∫ 2

1
t1−μE−δ

ρ,2−μ
(−νtρ) dμ. (2.105)

2.4 Generalized Integral Operator

Various operators for fractional integration (involving, for example, kernels with
such general classes of functions as the Fox H -function) were investigated system-
atically by Srivastava and Saxena [56]. Srivastava and Tomovski [57] considered an
integral operator (E ω;γ,κ

a+;α,βϕ)(t) defined by

(E
ω;γ,κ
a+;α,βϕ)(t) =

∫ t

a

(t − τ )β−1E
γ,κ
α,β

(
ω(t − τ )α)ϕ(τ) dτ, (2.106)

(t, α, β, γ, κ ∈ C; � [α] > max{0,� [κ] − 1}; � [κ] > 0)

where Eγ,κα,β (z) is the four parameter M-L function (1.34). For the case ω = 0 the
integral operator (2.106) would correspond to the classical R-L integral operator
(2.2), i.e.,

(E
0;γ,κ
a+;α,βϕ)(t) = I

β
a+ϕ(t). (2.107)

Another special case of the generalized integral operator is the Prabhakar integral
since

(E
ω;γ,1
a+;α,βϕ)(t) = (Eγα,β,ω,a+ϕ)(t). (2.108)
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Proposition 2.4 The following integral relationship holds true [57]:

∫ x

0
tβ−1 (x − t)μ−1 E

γ,κ
α,β

(
ωtα

)
Eδ,κα,μ

(
ω (x − t)α) dt

= xβ+μ−γ−δ

B (γ, δ)

∫ x

0
tγ−1 (x − t)δ−1 E

γ+δ,κ
α,β+μ

(
ωxα−κ [tκ + (x − t)κ]) dt,

(ω ∈ C, � (α) > max {0,� (κ)− 1} , min {� (β) , � (γ ) , � (δ) , � (μ)} > 0)

where B(γ, δ) is the beta function.

Proof By applying the Laplace transform, one has

L
(
xβ−1E

γ,κ
α,β

(
ωxα

))
(s) = s−β

Γ (γ )
2Ψ1

[
(β, α) (γ, κ)

(β, α)
; ω
sα

]

= s−β

Γ (γ )
1Ψ0

[
(γ, κ)

− ; ω
sα

]
,

(ω ∈ C, � (α) > max {0,� (κ)− 1} , min {� (β) , � (γ ) , � (δ) , � (μ)} > 0) .

From the convolution theorem for the Laplace transform, one finds that

L

(∫ x

0
tβ−1 (x − t)μ−1 E

γ,κ
α,β

(
ωtα

)
Eδ,κα,μ

(
ω [x − t]α) dt

)
(s)

= s−(β+μ)

Γ (γ ) Γ (δ)
1Ψ0

[
(γ, κ)

− ; ω
sα

]

1Ψ0

[
(δ, κ)

− ; ω
sα

]

= 1

Γ (γ ) Γ (δ)

×
∞∑

n=0

(
Γ (γ + δ + κn)

n!
∫ 1

0
τγ−1 (1 − τ )δ−1 [τ κ + (1 − τ )κ ]n dτ

)

× ωns−αn−β−δ .

By the inverse Laplace transform, from the last result it follows

∫ x

0
tβ−1 (x − t)μ−1 E

γ,κ
α,β

(
ωtα

)
Eδ,κα,μ

(
ω[x − t]α) dt

= xβ+μ−1

Γ (γ ) Γ (δ)

∞∑

n=0

(
Γ (γ + δ + κn)

n!
∫ 1

0
τγ−1 (1 − τ )δ−1
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× [
τ κ + (1 − τ )κ ]n dτ

)
× ωnxαn

Γ (αn+ β + μ) = xβ+μ−1

Γ (γ ) Γ (δ)

×
∫ 1

0
τγ−1 (1 − τ )δ−1

×
( ∞∑

n=0

Γ (γ + δ) (γ + δ)κn
n!Γ (αn + β + μ)

[
ωxα

(
τ κ + (1 − τ )κ)]n

)

dτ

= xβ+μ−1

B (γ, δ)

∫ 1

0
τγ−1 (1 − τ )δ−1 E

γ+δ,κ
α,β+μ

(
ωxα

[
τ κ + (1 − τ )κ]) dτ

= xβ+μ−γ−δ

B (γ, δ)

∫ x

0
tγ−1 (x − t)δ−1 E

γ+δ,κ
α,β+μ

(
ωxα−κ [tκ + (x − t)κ]) dx.

As a direct consequence one may obtain the following relations:

∫ x

0
tβ−1(x − t)μ−1E

γ
α,β

(
ωtα

)
Eδα,μ

(
ω[x − t]α) dt = xμ+β−1E

γ+δ
α,μ+β

(
ωxα

)
,

(2.109)

∫ x

0
tβ−1(x − t)μ−1Eδα,μ

(
ω[x − t]α) dt = Γ (β)xμ+β−1Eδα,μ+β

(
ωxα

)
.

(2.110)

Therefore [34],

I
γ

0+Eδα,β,ω,0+f (x) = Eδα,β+γ,ω,0+f (x). (2.111)

Proposition 2.5 ([57]) The integral operator E ω;γ,κ
a+;α,βϕ is bounded on L(a, b) and

||E ω;γ,κ
a+;α,βϕ||1 ≤M||ϕ||1, (2.112)

(z, α, β, γ, κ ∈ C; � [α] > max{0,� [κ] − 1}; � [κ] > 0)

where the positive constantM is given by

M = (b − a)�(β)
∞∑

n=0

|(γ )κn|
{�(α)n+ �(β)}|Γ (αn + β)| × |ω(b − a)�(α)|n

n! .

(2.113)
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Proof It is sufficient to prove that

||E ω;γ,κ
a+;α,βϕ||1 =

∫ b

a

∣
∣∣
∣

∫ x

a

(x − t)β−1 E
γ,q
α,β

(
ω [x − t]α)ϕ (t) dt

∣
∣∣
∣ dx <∞.

By Fubini’s theorem one gets

||E ω;γ,κ
a+;α,βϕ||1 ≤

∫ b

a

|ϕ (t)|
(∫ b

t

(x − t)�(β)−1
∣
∣
∣Eγ,κα,β

(
ω[x − t]α)

∣
∣
∣ dx

)
dt

=
∫ b

a

|ϕ(t)|
(∫ b−t

0
τ�(β)−1|Eγ,κα,β

(
ωτα

) | dτ

)
dt

≤
∫ b

a

|ϕ(t)|
(∫ b−a

0
τ�(β)−1|Eγ,κα,β

(
ωτα

) | dτ
)

dt

≤
( ∞∑

n=0

|(γ )κn|
|Γ (αn+ β)|

|ω|n
n!

∫ b−a

0
τ�(α)n+�(β)−1 dτ

)

‖ϕ‖1 =M ‖ϕ‖1,

(2.114)

where �(β) > 0. This completes the proof of the theorem.

Theorem 2.11 ([57]) The following inequality holds true for the integral operator
E
ω;γ,κ
0+;α,β defined by (2.25) with a = 0 :

(
E
ω;γ,κ
0+;α,βE

ω;δ,κ
0+;α,μϕ

)
(x) ≤

(
E
ω;γ+δ,κ
0+;α,β+μϕ

)
(x)

(
ω, α, β, γ, δ, κ, μ ∈ R+; α > κ − 1; 0 < κ ≤ 1

)

for any positive Lebesgue integrable function ϕ ∈ L (a, b). The equality holds true
when κ = 1.

Proof We have
(
E
ω;γ,κ
0+;α,βE

ω;δ,κ
0+;α,μϕ

)
(x)

=
∫ x

0
(x − u)β−1 E

γ,κ
α,β

(
ω [x − u]α

)

×
(∫ u

0
(u− t)μ−1 Eδ,κα,μ

(
ω [u− t]α)ϕ (t) dt

)
du

=
∫ x

0

[∫ x

t

(x − u)β−1 E
γ,κ
α,β

(
ω [x − u]α

)
(u− t)μ−1

×Eδ,κα,μ
(
ω [u− t]α) du

]
ϕ (t) dt
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=
∫ x

0

[∫ x−t

0
(x − t − τ )β−1 E

γ,κ
α,β

(
ω [x − t − τ ]α

)
τμ−1

× Eδ,κα,μ
(
ωτα

)
dτ

]
ϕ (t) dt

= 1

B (γ, δ)

∫ x

0
(x − t)β+μ−γ−δ

×
[∫ x−t

0
(x − t − τ )δ−1 τγ−1E

γ+δ,κ
α,β+μ

(
ω [x − t]α−κ

× (
τκ + [x − t − τ ]κ

))
dτ

]
ϕ (t) dt

= − 1

B (γ, δ)

∫ x

0
vβ+μ−γ−δ

×
[∫ ν

0
(v − τ )δ−1 τγ−1E

γ+δ,κ
α,β+μ

(
ωvα−κ [τ κ + (v − τ )κ]) dτ

]
ϕ (x − v) dv.

Now, by using the following elementary inequality:

τ κ + (v − τ )κ ≥ (τ + v − τ )κ = vκ (τ ∈ [0, v] , κ ∈ (0, 1])

one obtains

E
γ+δ,κ
α,β+μ

(
ωvα−κ [τ κ + (v − τ )κ]) ≥ Eγ+δ,κ

α,β+μ
(
ωvα−κvκ

) = E
γ+δ,κ
α,β+μ

(
ωvα

)
.

Hence
(
E
ω;γ,κ
0+;α,βE

ω;δ,κ
0+;α,μϕ

)
(x)

≤ − 1

B (γ, δ)

∫ x

0
vβ+μ−γ−δ

[∫ ν

0
(v − τ )δ−1 τγ−1E

γ+δ,κ
α,β+μ

(
ωvα

)
dτ

]

× ϕ (x − v) dv

= − 1

B (γ, δ)

∫ x

0
νβ+μ−γ−δEγ+δ,κ

α,β+μ
(
ωνα

)
[∫ ν

0
(v − τ )δ−1 τγ−1 dτ

]

× ϕ (x − v) dv

= B (γ, δ)

B (γ, δ)

∫ x

0
(x− t)β+μ−1 E

γ+δ,κ
α,β+μ

(
ω (x− t)α)ϕ (t) dt =

(
E
ω;γ+δ,κ
0+;α,β+μϕ

)
(x),

which completes the proof.
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Chapter 3
Cauchy Type Problems

We now analyze Cauchy type problems of differential equations of fractional order
with Hilfer and Hilfer-Prabhakar derivative operators. The existence and uniqueness
theorems for n-term nonlinear fractional differential equations with Hilfer fractional
derivatives of arbitrary orders and types will be proved. Cauchy type problems
for integro-differential equations of Volterra type with generalized Mittag-Leffler
function in the kernel will be considered as well. Using the operational method of
Mikusinski, the solution of a Cauchy type problem for a linear n-term fractional
differential equations with Hilfer fractional derivatives will be obtained. We will
show utility of operational method to solve Cauchy type problems of a wide class
of integro-differential equations with variable coefficients, involving Prabhakar
integral operator and Laguerre derivatives. For this purpose, following some recent
works, we choose the examples which, by means of fractional derivatives, generalize
the well-known ordinary differential equations and partial differential equations,
related to time fractional heat equations, free electronic laser equation, some
evolution and boundary value problems, and finally some Cauchy type problems
for the generalized fractional Poisson process.

3.1 Ordinary Fractional Differential Equations:
Existence and Uniqueness Theorems

An important issue in the theory of ordinary fractional differential equations
is related to the existence and uniqueness of solutions of fractional differential
equations. Several authors have considered a “model” of nonlinear fractional
differential equation with R-L fractional derivative

(
D
μ
a+y

)
(x) of order � (μ) > 0

on a finite interval [a, b] of the real axis R :
(
D
μ
a+y

)
(x) = f [x, y (x)] (� (μ) > 0; x > a) , (3.1)
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with initial values
(
D
μ−k
a+ y

)
(a+) = bk, bk ∈ C (k = 1, 2, . . . , n) , (3.2)

where n = � (μ) + 1 for μ /∈ N and μ = n for μ ∈ N. When 0 < � (μ) < 1, the
problem takes the form

(
D
μ
a+y

)
(x) = f [x, y (x)] ,

(
I

1−μ
a+ y

)
(a+) = b (b ∈ C) (3.3)

and can be rewritten as the weighted Cauchy type problem

(
D
μ
a+y

)
(x) = f [x, y (x)] , lim

x→a+ (x − a)1−μ y (x) = b (b ∈ C) . (3.4)

In this chapter we investigate the above-mentioned problems based on reducing
problem of nonlinear Volterra integral equation of the second kind [39]:

y (x) =
n∑

j=1

bj

Γ (μ− j + 1)
(x − a)μ−j + 1

Γ (μ)

x∫

a

f [t, y (t)]

(x − t)1−μ dt (x > a) .

(3.5)

Pitcher and Sewell [30] in 1938 first considered the nonlinear fractional differential
equation with 0 < μ < 1, provided that f (x, y) is bounded in a special region G
lying in R × R and satisfies the Lipschitz condition with respect to y:

|f (x, y1)− f (x, y2)| ≤ A |y1 − y2| , (3.6)

where constantA does not depend on x. They proved the existence of the continuous
solution y (x) for the corresponding nonlinear integral equation of the form (3.5)
with 0 < μ < 1, n = 1 and b1 = 0. The work of Pitcher and Sewel [30] did
contain the idea of reducing the solution of the fractional differential equation to
that of a Volterra integral equation. The existence and uniqueness results without
proof are formulated by Al-Bassam [1] for more general Cauchy type problems for
a real μ > 0:

(
D
μ
a+y

)
(x) = f [x, y (x)] (n− 1 < μ ≤ n; n ∈ N) , (3.7)

(
D
μ−k
a+ y

)
(a+) = bk, bk ∈ R (k = 1, 2, . . . , n) . (3.8)

In this regard, see the survey paper by Kilbas and Trujillo [19], Sections 4
and 5. Kilbas and Marzan [18] considered the Cauchy type problem for nonlinear
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fractional differential equations with μ ∈ C (� (μ) > 0):

(
D
μ
a+y

)
(x) = f

[
x, y (x) ,

(
D
μ1
a+y

)
(x) ,

(
D
μ2
a+y

)
(x) , . . . ,

(
D
μm−1
a+ y

)
(x)

]
,

(3.9)

where 0 < � (μ1) < � (μ2) < · · · < � (μm−1) < � (μ) and m ≥ 2.
In what follows a general nonlinear model with composite fractional derivative

[39]:

(
D
μ,ν
a+ y

)
(x) = f [x, y (x)] (n− 1 < μ ≤ n; n ∈ N, 0 ≤ ν ≤ 1) (3.10)

lim
x→a+

dk

dxk

(
I
(n−μ)(1−ν)
a+ y

)
(x) = ck, ck ∈ R (k = 0, 1, 2, . . . , n− 1) ,

(3.11)

and particular case of nonlinear model given by:

(
D
μ,ν
a+ y

)
(x) = f [x, y (x)] (0 < μ ≤ 1; 0 ≤ ν ≤ 1) (3.12)

lim
x→a+

(
I
(1−μ)(1−ν)
a+ y

)
(x) = c, c ∈ R, (3.13)

will be considered.

3.2 Equivalence of Cauchy Type Problem and the Volterra
Integral Equation

Proposition 3.1 ([39]) Let y ∈ L (a, b), n − 1 < μ ≤ n, n ∈ N, 0 ≤ ν ≤ 1,
I
(n−μ)(1−ν)
a+ y ∈ ACk [a, b]. Then the R-L fractional integral Iμa+ and the generalized

fractional derivative Dμ,νa+ are connected by the relation:

(
I
μ
a+D

μ,ν
a+ y

)
(x) = y (x)− yμ,ν (x) , x > 0, (3.14)

where

yμ,ν (x) =
n−1∑

k=0

(x − a)k−(n−μ)(1−ν)

Γ (k − (n− μ) (1 − ν)+ 1)
lim
x→a+

dk

dxk

(
I
(n−μ)(1−ν)
a+ y

)
(x) .

(3.15)
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Proof Using the composition properties of the Hilfer derivative one gets

(
I
μ
a+D

μ,ν
a+ y

)
(x) =

(
I
μ
a+I

ν(n−μ)
a+ D

μ+νn−μν
a+ y

)
(x) =

(
I
μ+ν(n−μ)
a+ D

μ+ν(n−μ)
a+ y

)
(x)

= y (x)−
n−1∑

k=0

(x − a)k−(n−μ)(1−ν)

Γ (k − (n− μ) (1 − ν)+ 1)

× lim
x→a+

dk

dxk

(
I
(n−μ)(1−ν)
a+ y

)
(x) . (3.16)

Proposition 3.2 ([39]) Let G be an open set in R and let f : [a, b] × G → R be
a function such that f (x, y) ∈ L (a, b). If y ∈ L (a, b), n − 1 < μ ≤ n, n ∈ N,
0 ≤ ν ≤ 1, I (n−μ)(1−ν)

a+ y ∈ ACk [a, b], 0 ≤ k ≤ n − 1, then y (x) satisfies a.e. the
relations (3.10) and (3.11) if and only if y (x) satisfies a.e. the integral equation

y (x) =
n−1∑

k=0

ck
(x − a)k−(n−μ)(1−ν)

Γ (k − (n− μ) (1 − ν)+ 1)
+ 1

Γ (μ)

x∫

a+

f [t, y (t)]

(x − t)1−μ dt . (3.17)

In particular, if 0 < μ < 1, then y (x) satisfies a.e. these relations if and only if
y (x) satisfies a.e. the integral equation

y (x) = c
(x − a)(μ−1)(1−ν)

Γ (μ+ ν − μν) + 1

Γ (μ)

x∫

a+

f [t, y (t)]

(x − t)1−μ dt . (3.18)

Proof (Necessity) Let y (x) ∈ L (a, b) satisfy a.e. the relations (3.10) and (3.11).
Since f (x, y) ∈ L (a, b), by (3.10) it follows that there exists a.e. on [a, b]
the fractional derivative

(
D
μ,ν
a+ y

)
(x) ∈ L (a, b). By Lemma 2.1 the integral

I
μ
a+f [t, y (t)] ∈ L (a, b) exists a.e. on [a, b]. Applying the integral operator Iμa+

to both sides of (3.10) and using the relation (3.16) Eq. (3.17) is obtained, and hence
the necessity is proved. Now we prove the sufficiency. Let y (x) ∈ L (a, b) satisfy
a.e. Eq. (3.17). Using the relation

[
D
μ,ν
a+ (t − a)k−(n−μ)(1−ν)] (x) = 0

for 0 ≤ k ≤ n−1, and applying the operatorDμ,νa+ to both side of (3.17), one obtains

(
D
μ,ν
a+ y

)
(x) =

n−1∑

k=0

ck

[
D
μ,ν
a+ (t − a)k−(n−μ)(1−ν)] (x)
Γ (k − (n− μ) (1 − ν)+ 1)

+ (
D
μ,ν
a+ I

μ
a+f [t, y (t)]

)
(x)

= f (x, y (x)) . (3.19)
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Next we show that relation (3.11) also holds. By applying the operator I (n−μ)(1−ν)
a+

to both sides of (3.17), one obtains:

(
I
(n−μ)(1−ν)
a+ y

)
(x) =

n−1∑

k=0

ck

[
I
(n−μ)(1−ν)
a+ (t − a)k−(n−μ)(1−ν)

]
(x)

Γ (k − (n− μ) (1 − ν)+ 1)

+
(
I
(n−μ)(1−ν)
a+ I

μ
a+f [t, y (t)]

)
(x) =

n−1∑

k=0

cj

j ! (x − a)j

+
(
I
n−nν+μν
a+ f [t, y (t)]

)
(x) . (3.20)

If 0 ≤ k ≤ n− 1, then

dk

dxk

(
I
(n−μ)(1−ν)
a+ y

)
(x) =

n−1∑

j=k

cj

(j − k)! (x − a)j−k

+ dk

dxk

(
I
n−nν+μν
a+ f [t, y (t)]

)
(x)

=
n−1∑

j=k

cj

(j − k)! (x − a)j−k +
(
I
n−nν+μν−k
a+ f [t, y (t)]

)
(x)

=
n−1∑

j=k

cj

(j − k)! (x − a)j−k

+ 1

Γ (n− nν + μν − k)
x∫

a+

f [t, y (t)]

(x − t)1−n+nν−μν+k dt.

(3.21)

Taking in (3.21) a limit x → a+ a.e., the relations in (3.11) are obtained. Thus the
sufficiency is proved, which completes the proof of theorem.

Theorem 3.1 ([39]) Let G be an open set in R and let f : [a, b] × G → R be
a function such that f (x, y) ∈ L (a, b) for any y ∈ G and the Lipschitzian-type
condition (3.6) is satisfied. If n − 1 < μ ≤ n, n ∈ N, 0 ≤ ν ≤ 1, I (n−μ)(1−ν)

a+ y ∈
ACk [a, b] , 0 ≤ k ≤ n− 1, then there exists a unique solution y (x) to the Cauchy
type problem (3.10)–(3.11) in the space Lμ,νa+ (a, b). In particular, if 0 < μ < 1,
then there exists a unique solution y (x) to the Cauchy type problem (3.12)–(3.13)
in the space Lμ,νa+ (a, b).

Proof In order to prove the existence of the unique solution y (x) ∈ L (a, b),
according to Proposition 3.2, it is sufficient to prove the existence of the unique
solution y (x) ∈ L (a, b) of the nonlinear Volterra integral equation (3.17). From
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the known method for nonlinear Volterra integral equations, the first one proves the
result on a part of the interval [a, b]. Equation (3.17) makes sense in any interval
[a, x1] ⊂ [a, b] (a < x1 < b). Choose x1 such that the inequality

A
(x1 − a)μ
Γ (μ+ 1)

< 1 (3.22)

holds, and then prove the existence of a unique solution y (x) ∈ L (a, x1) to
Eq. (3.17) on the interval [a, x1]. The integral equation (3.17) can be rewritten in
the form y (x) = (T y) (x), where

(T y) (x) = y0 (x)+ 1

Γ (μ)

x∫

a+

f [t, y (t)]

(x − t)1−μ dt (3.23)

y0 (x) =
n−1∑

k=0

ck
(x − a)k−(n−μ)(1−ν)

Γ (k − (n− μ) (1 − ν)+ 1)
(3.24)

and then one applies the Banach fixed point theorem for the complete metric space
L (a, x1). First, one has to prove the following:

(i) If y (x) ∈ L (a, x1), then (T y) (x) ∈ L (a, x1).
(ii) (∀y1, y2 ∈ L (a, x1)) the following inequality holds:

‖Ty1 − Ty2‖1 ≤ ω ‖y1 − y2‖ , ω = A
(x1 − a)μ
Γ (μ+ 1)

. (3.25)

Indeed, since y0 (x) ∈ L (a, x1), f (x, y) ∈ L (a, x1), the integral in the right-hand
side of (3.23) also belongs to L (a, x1) and hence (T y) (x) ∈ L (a, x1). Now, we
prove the estimate (3.25). Therefore, one obtains

‖Ty1 − Ty2‖L(a,x1)
= ∥

∥Iμa+f [t, y1 (t)] − Iμa+f [t, y2 (t)]
∥
∥
L(a,x1)

= ∥
∥Iμa+ {f [t, y1 (t)] − f [t, y2 (t)]}

∥
∥
L(a,x1)

≤ A ∥
∥Iμa+ [y1 (t)− y2 (t)]

∥
∥
L(a,x1)

≤ A (x1 − a)μ
Γ (μ+ 1)

‖y1 (x)− y2 (x)‖L(a,x1)
. (3.26)

In accordance with 0 < ω < 1 there exist an unique solution y∗ (x) ∈ L (a, x1)

to Eq. (3.17) on the interval [a, x1]. The solution y∗ (x) is obtained as a limit of
convergent sequence

(
T my∗

0

)
(x):

lim
m→∞

∥
∥T my∗

0 − y∗∥∥
L(a,x1)

= 0, (3.27)
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where y∗
0 (x) ∈ L (a, b). If at least one ck 
= 0 in the initial values (3.11), we can

take y∗
0 (x) = y0 (x) with y0 (x) defined by (3.24). By (3.23) we define a recursion

formula:

(
T my∗

0

)
(x) = y0 (x)+ 1

Γ (μ)

x∫

a+

f
[
t,
(
T m−1y∗

0

)
(t)

]

(x − t)1−μ dt (m = 1, 2, 3, . . . )

(3.28)

If we denote ym (x) = (
T my∗

0

)
(x), then the last equation takes the following form:

ym (x) = y0 (x)+ 1

Γ (μ)

x∫

a+

f [t, ym−1 (t)]

(x − t)1−μ dt (m = 1, 2, 3, . . . ) (3.29)

and hence (3.27) can be rewritten as follows:

lim
m→∞

∥
∥ym − y∗∥∥

L(a,x1)
= 0. (3.30)

This means that the method of successive approximations is applied to find a unique
solution y∗ (x) to the integral equation (3.17) on [a, x1]. Next we consider the
interval [x1, x2], where x2 = x1 + h1, h1 > 0 are such that x2 < ∞. Rewrite
Eq. (3.17) in the form

y (x) = y0 (x)+ 1

Γ (μ)

x1∫

a+

f [t, y (t)]

(x − t)1−μ dt + 1

Γ (μ)

x∫

x1

f [t, y (t)]

(x − t)1−μ dt . (3.31)

Since the function y (t) is uniquely defined on the interval [a, x1], the last integral
can be considered as a known function, and then

y (x) = y01 (x)+ 1

Γ (μ)

x∫

x1

f [t, y (t)]

(x − t)1−μ dt, (3.32)

where

y01 (x) = y0 (x)+ 1

Γ (μ)

x∫

a+

f [t, y (t)]

(x − t)1−μ dt (3.33)

is the known function. Using the same arguments as above, it follows that there
exists a unique solution y∗ (x) ∈ L (x1, x2) of Eq. (3.17) on the interval [x1, x2].
Taking the next interval [x2, x3], where x3 = x2 + h2, h2 > 0, x3 < ∞, and
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replacing the process, one concludes that there exists a unique solution y∗ (x) ∈
L (a, b) for (3.17). Thus, there exists a unique solution y (x) = y∗ (x) ∈ L (a, b)
to the Volterra integral equation (3.17) and hence to the Cauchy type problem. To
complete the proof of theorem one must show that such unique solution y (x) ∈
L (a, b) belongs to the space Lμ,νa+ (a, b). It is sufficient to prove that

(
D
μ,ν
a+ y

)
(x) ∈

L (a, b). By the above proof, the solution y (x) ∈ L (a, b) is a limit of the sequence
ym (x) ∈ L (a, b):

lim
m→∞ ‖ym − y‖L(a,x1)

= 0, (3.34)

with the choice of certain ym on each [a, x1], [x1, x2], . . . , [xL−1, b]. Since

∥
∥Dμ,νa+ ym −Dμ,νa+ y

∥
∥

1 = ‖f (x, ym)− f (x, y)‖1 ≤ A ‖ym − y‖1 , (3.35)

by (3.34), one obtains

lim
m→∞

∥
∥Dμ,νa+ ym −Dμ,νa+ y

∥
∥

1 = 0, (3.36)

and hence
(
D
μ,ν
a+ y

)
(x) ∈ L (a, b). This completes the proof of theorem.

3.3 Generalized Cauchy Type Problems

Here we study a Cauchy type problem for general n-term nonlinear fractional
differential equations with generalized fractional derivatives of arbitrary orders and
types [39]:

(
D
μ,ν
a+ y

)
(x) = f

[
x, y (x) ,

(
D
μ1,ν1
a+ y

)
(x) ,

(
D
μ2,ν2
a+ y

)
(x) , . . . ,

(
D
μm−1,νn−1
a+ y

)
(x)

]
,

(3.37)

with n-initial values:

lim
x→a+

dk

dxk

(
I
(n−μ)(1−ν)
a+ y

)
(x) = ck, ck ∈ R (k = 0, 1, 2, . . . , n− 1) .

(3.38)

As special case, we consider fractional differential equation with initial value

lim
x→a+

(
I
(n−μ)(1−ν)
a+ y

)
(x) = c, c ∈ R. (3.39)

Proposition 3.3 ([39]) Let 0 ≤ ν ≤ 1, 0 ≤ νi ≤ 1 and μ,μi ∈ R, n − 1 <
μ ≤ n, n ∈ N, n − 1 < μi ≤ n, i = 1, 2, . . . , n − 1 be such that 0 < μ1 <

μ2 < · · · < μn−1 < μ, n ≥ 2. Then let G be an open set in Rn and let f :
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(a, b] × G → R be a function such that f (x, y, y1, y2, . . . , yn−1) ∈ L (a, b) for
any (y, y1, y2, . . . , yn−1) ∈ G. If y (x) ∈ L (a, b), I (n−μ)(1−ν)

a+ y ∈ ACk [a, b],
0 ≤ k ≤ n− 1, then y (x) satisfies a.e. the relations (3.37) and (3.38) if and only if,
y (x) satisfies a.e. the integral equation

y (x) =
n−1∑

k=0

ck
(x − a)k−(n−μ)(1−ν)

Γ (k − (n− μ) (1 − ν)+ 1)
+ 1

Γ (μ)

×
x∫

a+

f
[
t, y (t) ,

(
D
μ1,ν1
a+ y

)
(t) ,

(
D
μ2,ν2
a+ y

)
(t) , . . . ,

(
D
μm−1,νn−1
a+ y

)
(t)

]

(x − t)1−μ dt,

(3.40)

x > a. In particular, if 0 < μ < 1, then y (x) satisfies a.e. the relations (3.39) and
(3.40) if and only if y (x) satisfies a.e. the integral equation

y (x) = c
(x − a)(μ−1)(1−ν)

Γ (μ+ ν − μν) + 1

Γ (μ)

×
x∫

a+

f
[
t, y (t) ,

(
D
μ1,ν1
a+ y

)
(t) ,

(
D
μ2,ν2
a+ y

)
(t) , . . . ,

(
D
μm−1,νn−1
a+ y

)
(t)

]

(x − t)1−μ dt,

(3.41)

x > a.

Theorem 3.2 ([39]) Let the conditions of previous theorem be valid, and let
function f

(
x, y, y1, y2,...,yn−1

)
satisfy the Lipschitzian type condition:

|f (x, y, y1, y2, . . . , yn−1)− f (x, Y, Y1, Y2, . . . , Yn−1)| ≤ A
n∑

j=0

∣
∣yj − Yj

∣
∣

(3.42)

for all x ∈ (a, b] and (y, y1, y2, . . . , yn−1) , (Y, Y1, Y2, . . . , Yn−1) ∈ G, whereA >
0 does not depend on x ∈ (a, b]. Then let

lim
x→a+

dki

dxki

(
I
(n−μi )(1−νi)
a+ y

)
(x) = bki , (i = 1, 2, . . . , ni) , (3.43)

be fixed numbers, where ni = [μi] + 1 for μi /∈ N and ni = μi for μi ∈ R. Then
there exists a unique solution y (x) to the Cauchy type problem (3.37)–(3.38) in the
space Lμ,νa+ (a, b). In particular, if 0 < μ < 1 and

lim
x→a+

(
I
(n−μi)(1−νi)
a+ y

)
(x) = bi, i = 1, 2, . . . , n− 1,
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are fixed numbers, then there exists a unique solution y (x) ∈ L
μ,ν
a+ (a, b) to the

Cauchy type problem (3.37)–(3.39).

Proof This theorem can be proved in a way similar to the proof of Theorem 3.1.
By Proposition 3.3 it is sufficient to establish the existence of a unique solution
y (x) ∈ L (a, b) to the integral equation (3.40). We choose x1 ∈ (a, b) such that the
condition

A

n∑

j=0

[
(x1 − a)μ−μj
Γ

(
μ− μj + 1

)

]

< 1 (3.44)

holds and apply the Banach fixed point theorem to prove the existence of a unique
solution y (x) = y∗ (x) ∈ L (a, x1). We use the spaceL (a, b) and rewrite Eq. (3.40)
in the form y (x) = (T y) (x), where

(T y) (x) = y0 (x)+ 1

Γ (μ)

×
x∫

a+

f
[
t, y (t) ,

(
D
μ1,ν1
a+ y

)
(t) ,

(
D
μ2,ν2
a+ y

)
(t) , . . . ,

(
D
μm−1,νn−1
a+ y

)
(t)

]

(x − t)1−μ dt,

(3.45)

and

y0 (x) =
n−1∑

k=0

ck
(x − a)k−(n−μ)(1−ν)

Γ (k − (n− μ) (1 − ν)+ 1)
(3.46)

By Lipschitzian condition (3.42), we obtain

∣∣{Iμa+
[
f
(
x, y1,D

μ1,ν1
a+ y1, . . . ,D

μn−1,νn−1
a+ y1

)

−f (
x, y2,D

μ1,ν1
a+ y2, . . . ,D

μn−1,νn−1
a+ y2

)]}
(x)

∣
∣

≤ [
I
μ
a+

∣
∣f

(
x, y1,D

μ1,ν1
a+ y1, . . . ,D

μn−1,νn−1
a+ y1

)

−f (
x, y2,D

μ1,ν1
a+ y2, . . . ,D

μn−1,νn−1
a+ y2

)∣∣] (x)

≤ A
⎛

⎝Iμa+

∣
∣
∣
∣∣
∣

n−1∑

j=1

D
μj ,νj
a+ (y1 − y2)

∣
∣
∣
∣∣
∣

⎞

⎠ (x)

≤ A
n−1∑

j=1

(
I
μ−μj
a+

∣
∣
∣I
μj
a+D

μj ,νj
a+ (y1 − y2)

∣
∣
∣
)
(x)
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≤ A
n−1∑

j=1

⎛

⎜
⎝I

μ−μj
a+

∣
∣
∣∣
∣
∣
∣
(y1 − y2) (t)−

nj−1∑

kj=1

d
kj

dx
kj

(
I
(1−νj )(n−μj )
a+ (y1 − y2)

)
(a+)

Γ
(
kj − (

1 − νj
) (
n− μj

) + 1
)

× (t − a)kj−(1−νj )(n−μj )
∣
∣∣
∣
∣
∣

⎞

⎠ (x) (3.47)

By the theorem,

dkj

dxkj

(
I
(1−νj )(n−μj )
a+ (y1)

)
(a+) = dkj

dxkj

(
I
(1−νj )(n−μj )
a+ (y2)

)
(a+) ,

and hence, for any x ∈ [a, b],

∣
∣{Iμa+

[
f
(
x, y1,D

μ1,ν1
a+ y1, . . . ,D

μn−1,νn−1
a+ y1

)

−f (
x, y2,D

μ1,ν1
a+ y2, . . . ,D

μn−1,νn−1
a+ y2

)]}
(x)

∣
∣

≤ A
n−1∑

j=1

(
I
μ−μj
a+ |y1 − y2|

)
(x) . (3.48)

Using this relation with x = x1 and applying Lemma 2.1 with b = x1, we derive
the estimate:

‖(T y1) (x)− (T y2) (x)‖L(a,x1)
≤ ω ‖y1 − y2‖ , (3.49)

ω = A

n−1∑

j=1

[
(x1 − a)μ−μj
Γ

(
μ− μj + 1

)

]

,

which yields the existence of a unique solution y∗ (x) to Eq. (3.40) in L (a, x1). This
solution is obtained as a limit of the convergent sequence

(
T my∗

0

)
(x) = ym (x), for

which the relations

lim
m→∞

∥
∥T my∗

0 − y∗∥∥
L(a,x1)

= 0, (3.50)

and

lim
m→∞

∥∥ym − y∗∥∥
L(a,x1)

= 0 (3.51)

hold. We can show also that there exists a unique solution y (x) ∈ L (a, b) to the
integral equation (3.40), i.e., to the Cauchy type problem (3.37)–(3.38) such that
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(
D
μ,ν
a+ y

)
(x) ∈ L (a, b). Namely,

∥
∥Dμ,νa+ ym −Dμ,νa+ y∗∥∥

1 = ∥
∥f

(
x, ym,D

μ1,ν1
a+ ym, . . . ,D

μn−1,νn−1
a+ ym

)

−f (
x, y∗,Dμ1,ν1

a+ y∗, . . . ,Dμn−1,νn−1
a+ y∗)∥∥

1

≤ ω ∥
∥ym − y∗∥∥

1 → 0, m → ∞. (3.52)

In particular, if 0 < μ < 1, then there exists a unique solution y (x) ∈ Lμ,νa+ (a, b)
to the Cauchy type problem (3.37)–(3.39).

3.4 Equations of Volterra Type

Many authors have applied methods of fractional integro-differentiation to construct
solutions of ordinary differential equations of fractional order, to investigate integro-
differential equations, and to obtain a unified theory of special functions. The
methods and results in these fields are presented by Samko et al. [33], Kiryakova
[21], Kilbas et al. [20], etc. We mention here also the paper by Tuan and Al-Saqabi
[41], where using an operational method they solved a fractional integro-differential
equation of Volterra type of the form

(
Dα0+f

)
(x)+ a

Γ (ν)

x∫

0

(x − t)ν−1 f (t) dt = g (x) , (3.53)

� (α) > 0, � (ν) > 0, a ∈ C, g ∈ L [0, b].
Kilbas et al. [20] established an explicit solution of the Cauchy type problem for

the equation

(
Dαa+y

)
(x) = λ

(
E
ω;γ,1
0+;ρ,αy

)
(x)+ f (x) , (3.54)

(0 < x ≤ b, α ∈ C,� (α) > 0, λ, γ, ρ, ω ∈ C)

under the initial values
(
Dα−k
a+ y

)
(a+) = bk, bk ∈ C (k = 1, 2, . . . , n) , (3.55)

where n = � (α) + 1 for α /∈ N and α = n for α ∈ N in terms of the generalized
Mittag-Leffler functions. The homogeneous equation corresponding to the case with
(f (x) = 0) is a generalization of the equation which describes the unsaturated
behavior of the free electron laser. In Ref. [37] Srivastava and Tomovski by using
the Laplace transform method gave an explicit solution in the space L (0, b] of the
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following Cauchy type problem with a = 0 and ϕ (x) = 1, x ∈ (0, b]

(
D
μ,ν
0+ y

)
(x) = λ

(
E
ω;γ,k
0+;α,β1

)
(x)+ f (x) (0 < x ≤ b) (3.56)

(α, β, γ, ω ∈ C,� (α) > max {0,� (k)− 1} ,min {� (β) ,� (γ ) ,� (k)} > 0)

under the initial values
(
I
(1−μ)(1−α)
0+ y

)
(0+) = c. (3.57)

Here, by using the method of successive approximation (and later by Laplace
transform method), we shall give an explicit solution, in the spaceL (0, b], of a more
general (nonlinear Cauchy problem) fractional differential equation than (3.56)
which contain the composite fractional derivative operator (2.14). This problem was
proposed as an open problem by Srivastava and Tomovski in Ref. [37].

Theorem 3.3 ([39]) The following fractional integro-differential equation

(
D
μ,ν
0+ y

)
(x) = λ

(
E
ω;γ,k
0+;α,βy

)
(x)+ f (x) (0 < x ≤ b) (3.58)

α, β, γ, ω ∈ C, � (α) > max {0,� (k)− 1}, min {� (β) ,� (γ ) ,� (k)} > 0, f ∈
L [0, b] with the initial values (3.11) with a = 0, and n − 1 < μ ≤ n, n ∈ N,
0 ≤ ν ≤ 1 has its solution in the space L (0, b] given by

y (x) =
∞∑

m=1

λm

⎛

⎜
⎝E

ω;γ,k
0+;α,β+μE

ω;γ,k
0+;α,β+μ . . .E

ω;γ,k
0+;α,β+μ︸ ︷︷ ︸

m−1

E
ω;γ,k
0+;α,β+2μf

⎞

⎟
⎠ (x)

+
∞∑

m=1

λm
n−1∑

k=0

ck {E ω;γ,k
0+;α,β+μE

ω;γ,k
0+;α,β+μ . . .E

ω;γ,k
0+;α,β+μ︸ ︷︷ ︸

m−1

[
xβ+μ−(n−μ)(1−ν)+k

×Eγ,kα,β+μ−(n−μ)(1−ν)+k+1

(
ωxα

)]}

+ (
I
μ
0+f

)
(x)+

n−1∑

k=0

ck

Γ (k − (n− μ) (1 − ν)+ 1)
xk−(n−μ)(1−ν),

(3.59)

|λ| < 1/M, where M is a positive constant given by (2.113) with a = 0. In
particular, if 0 < μ < 1 under the initial values (3.57), Eq. (3.58) has its solution
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in the space L (0, b] given by

y (x) =
∞∑

m=1

λm

⎛

⎜⎜
⎝E

ω;γ,k
0+;α,β+μE

ω;γ,k
0+;α,β+μ . . .E

ω;γ,k
0+;α,β+μ︸ ︷︷ ︸

m−1

E
ω;γ,k

0+;α,β+2μf

⎞

⎟⎟
⎠ (x)

+ c

Γ (μ+ ν − μν)
∞∑

m=1

λm

⎧
⎪⎪⎨

⎪⎪⎩
E
ω;γ,k
0+;α,β+μE

ω;γ,k
0+;α,β+μ . . .E

ω;γ,k
0+;α,β+μ︸ ︷︷ ︸

m−1

x(μ−1)(1−ν)

⎫
⎪⎪⎬

⎪⎪⎭

+ (
I
μ
0+f

)
(x) + c x(μ−1)(1−ν)

Γ (μ+ ν − μν) , (|λ| < 1/M) . (3.60)

where c is an arbitrary constant.

Proof To prove this theorem we apply Proposition 3.2, that a solution of the Cauchy
type problem (3.58)–(3.11) with a = 0 is equivalent to a solution of Volterra integral
equation of the second kind. By Proposition 3.1, we get:

y (x) = λ
(
ε
ω;γ,k
0+;α,β+μy

)
(x)+ (

I
μ
0+f

)
(x)

+
n−1∑

i=0

ci

Γ (i − (n− μ) (1 − ν)+ 1)
xi−(n−μ)(1−ν). (3.61)

By the theory of Volterra integral equations of the second kind, such an integral
equation has a unique solution y (x) ∈ L (0, b]. To find the exact solution we apply
the method of successive approximation. We consider the sequence {ym (x)}∞m=0
defined by

y0 (x) =
n−1∑

i=0

ci

Γ (i − (n− μ) (1 − ν)+ 1)
xi−(n−μ)(1−ν), (3.62)

ym (x) = y0 (x)+ λ
(
E
ω;γ,k
0+;α,β+μym−1

)
(x)+ (

I
μ
0+f

)
(x) (m = 1, 2, 3, . . . )

(3.63)

For m = 1,

y1 (x) = y0 (x)+ λ
(
E
ω;γ,k
0+;α,β+μy0

)
(x)+ (

I
μ
0+f

)
(x) . (3.64)

Here y2 (x) is

y2 (x) = y0 (x)+ λ
(
E
ω;γ,k
0+;α,β+μy1

)
(x)+ (

I
μ
0+f

)
(x) , (3.65)
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and

y2 (x) = y0 (x)+
(
I
μ
0+f

)
(x)+ λ

(

E
ω;γ,k
0+;α,β+μ

n−1∑

k=0

ckx
k−(n−μ)(1−ν)

Γ (k − (n− μ) (1 − ν)+ 1)

)

+ λ
(
E
ω;γ,k
0+;α,β+μ

)(
λE

ω;γ,k
0+;α,β+μy0

)
(x)+ λ

(
E
ω;γ,k
0+;α,β+μI

μ
0+f

)
(x)

= y0 (x)+
(
I
μ
0+f

)
(x)+ λ

n−1∑

k=0

ck

k!
(
E
ω;γ,k
0+;α,β+μD

(n−μ)(1−ν)
0+ xk

)

+ λ2
n−1∑

k=0

ck

k!
(
E
ω;γ,k
0+;α,β+μE

ω;γ,k
0+;α,β+μD

(n−μ)(1−ν)
0+ xk

)
(x)+ λ

(
E
ω;γ,k
0+;α,β+2μf

)
(x)

= y0 (x)+
(
I
μ
0+f

)
(x)+ λ

n−1∑

k=0

ck

k!
(
E
ω;γ,k
0+;α,β+μ−(n−μ)(1−ν)x

k
)

+ λ
(
E
ω;γ,k
0+;α,β+2μf

)
(x)+ λ2

n−1∑

k=0

ck

k!
(
E
ω;γ,k
0+;α,β+μE

ω;γ,k
0+;α,β+μ−(n−μ)(1−ν)x

k
)
.

(3.66)

Similarly, for m = 3, we have

y3 (x) = y0 (x)+ λ
(
E
ω;γ,k
0+;α,β+μy2

)
(x)+ (

I
μ
0+f

)
(x)

= y0 (x)+
(
I
μ
0+f

)
(x)+ λ

n−1∑

k=0

ck

k!
(
E
ω;γ,k
0+;α,β+μD

(n−μ)(1−ν)
0+ xk

)

+ λ
(
E
ω;γ,k
0+;α,β+μI

μ
0+f

)
(x)

+ λ2
n−1∑

k=0

ck

k!
(
E
ω;γ,k
0+;α,β+μE

ω;γ,k
0+;α,β+μ−(n−μ)(1−ν)x

k
)
(x)

+ λ2
(
E
ω;γ,k
0+;α,β+μE

ω;γ,k
0+;α,β+2μf

)
(x)

+ λ3
n−1∑

k=0

ck

k!

⎛

⎜
⎝E

ω;γ,k
0+;α,β+μE

ω;γ,k
0+;α,β+μ︸ ︷︷ ︸

2

E
ω;γ,k
0+;α,β+μ−(n−μ)(1−ν)x

k

⎞

⎟
⎠ (x)

= y0 (x)+
(
I
μ
0+f

)
(x)+ λ

n−1∑

k=0

ck

k!
(
E
ω;γ,k
0+;α,β+μ−(n−μ)(1−ν)x

k
)

+ λ
(
E
ω;γ,k
0+;α,β+2μf

)
(x)
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+ λ2
n−1∑

k=0

ck

k!
(
E
ω;γ,k
0+;α,β+μE

ω;γ,k
0+;α,β+μ−(n−μ)(1−ν)x

k
)

+ λ2
(
E
ω;γ,k
0+;α,β+μE

ω;γ,k
0+;α,β+2μf

)
(x)

+ λ3
n−1∑

k=0

ck

k!

⎛

⎜
⎝E

ω;γ,k
0+;α,β+μE

ω;γ,k
0+;α,β+μ︸ ︷︷ ︸

2

E
ω;γ,k
0+;α,β+μ−(n−μ)(1−ν)x

k

⎞

⎟
⎠ (x) .

(3.67)

Continuing this process, we obtain

ym (x) = y0 (x)+
(
I
μ
0+f

)
(x)

+
m−1∑

j=1

λj

⎛

⎜⎜
⎝E

ω;γ,k
0+;α,β+μE

ω;γ,k
0+;α,β+μ . . . E

ω;γ,k
0+;α,β+μ︸ ︷︷ ︸

j−1

E
ω;γ,k

0+;α,β+2μf

⎞

⎟⎟
⎠ (x)+

m∑

j=1

λj

×
n−1∑

k=0

ck

k!

⎛

⎜
⎜
⎝E

ω;γ,k
0+;α,β+μE

ω;γ,k
0+;α,β+μ . . . E

ω;γ,k
0+;α,β+μ︸ ︷︷ ︸

j−1

E
ω;γ,k

0+;α,β+μ−(n−μ)(1−ν)x
k

⎞

⎟
⎟
⎠ ,

(3.68)

for all m ∈ N.
The series

∞∑

j=1

λj

⎛

⎜
⎜
⎝E

ω;γ,k
0+;α,β+μE

ω;γ,k
0+;α,β+μ . . .E

ω;γ,k
0+;α,β+μ︸ ︷︷ ︸

j−1

E
ω;γ,k
0+;α,β+2μf

⎞

⎟
⎟
⎠ (x)

for all x ∈ (0, b] and|λ| < 1/M is convergent, which can be verified as follows.
From

∥
∥
∥∥
∥
∥
∥
∥

E
ω;γ,k
0+;α,β+μE

ω;γ,k
0+;α,β+μ . . .E

ω;γ,k
0+;α,β+μ︸ ︷︷ ︸

j−1

E
ω;γ,k
0+;α,β+2μf

∥
∥
∥∥
∥
∥
∥
∥

1

≤ M

∥
∥
∥∥
∥
∥
∥
∥

E
ω;γ,k
0+;α,β+μE

ω;γ,k
0+;α,β+μ . . .E

ω;γ,k
0+;α,β+μ︸ ︷︷ ︸

j−2

E
ω;γ,k
0+;α,β+2μf

∥
∥
∥∥
∥
∥
∥
∥

1
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≤ M2

∥
∥
∥∥
∥
∥
∥
∥

E
ω;γ,k
0+;α,β+μE

ω;γ,k
0+;α,β+μ . . .E

ω;γ,k
0+;α,β+μ︸ ︷︷ ︸

j−3

E
ω;γ,k
0+;α,β+2μf

∥
∥
∥∥
∥
∥
∥
∥

1

≤ . . .

≤ Mj−1
∥
∥∥E ω;γ,k

0+;α,β+2μf

∥
∥∥

1
≤ Mj ‖f ‖1 . (3.69)

By applying the WeierstrassM-test we obtain that the series

∞∑

j=1

λj

⎛

⎜
⎜
⎝E

ω;γ,k
0+;α,β+μE

ω;γ,k
0+;α,β+μ . . .E

ω;γ,k
0+;α,β+μ︸ ︷︷ ︸

j−1

E
ω;γ,k
0+;α,β+2μf

⎞

⎟
⎟
⎠ (x)

converges uniformly for all x ∈ (a, b] and |λ| < 1
M , where M is a constant given by

series (2.113). Analogously, we can verify that the series

∞∑

j=1

λj
n−1∑

k=0

ck

k!

⎛

⎜
⎜
⎝E

ω;γ,k
0+;α,β+μE

ω;γ,k
0+;α,β+μ . . .E

ω;γ,k
0+;α,β+μ︸ ︷︷ ︸

j−1

E
ω;γ,k
0+;α,β+μ−(n−μ)(1−ν)x

k

⎞

⎟
⎟
⎠

also converges uniformly for all x ∈ (a, b], since the numerical series

∞∑

j=1

(λM)j
n−1∑

k=0

ck

k! ‖x‖k1

is convergent for all |λ| < 1
M . Letting m → ∞ in (3.68) and applying the formula

[37, p. 203, Eq. (2.22)]

E
ω;γ,k
0+;α,β+μ−(n−μ)(1−ν)x

k

=
x∫

0

(x − t)β+μ−(n−μ)(1−ν)−1 tkE
γ,k
α,β+μ−(n−μ)(1−ν)

(
ω (x − t)α) dt

= Γ (k + 1) xβ+μ−(n−μ)(1−ν)+k Eγ,kα,β+μ−(n−μ)(1−ν)+k+1

(
ωxα

)
(3.70)

we obtain the following representation for the solution y (x):

y (x) = y0 (x)+
(
I
μ
0+f

)
(x)

+
∞∑

j=1

λj

⎛

⎜⎜
⎝E

ω;γ,k
0+;α,β+μE

ω;γ,k
0+;α,β+μ . . .E

ω;γ,k
0+;α,β+μ︸ ︷︷ ︸

j−1

E
ω;γ,k
0+;α,β+2μf

⎞

⎟⎟
⎠ (x)
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+
∞∑

j=1

λj
n−1∑

k=0

ck

×

⎧
⎪⎪⎨

⎪⎪⎩
E
ω;γ,k
0+;α,β+μE

ω;γ,k
0+;α,β+μ . . .E

ω;γ,k
0+;α,β+μ︸ ︷︷ ︸

j−1

×
[
xβ+μ−(n−μ)(1−ν)+kEγ,kα,β+μ−(n−μ)(1−ν)+k+1

(
ωxα

)]}
. (3.71)

In particular, if 0 < μ < 1 one has

y (x) = λ
(
E
ω;γ,k
0+;α,β+μy

)
(x)+ (

I
μ
0+f

)
(x)+ c x(μ−1)(1−ν)

Γ (μ+ ν − μν) . (3.72)

We consider sequence ym (x):

ym (x) = y0 (x)+ λ
(
E
ω;γ,k
0+;α,β+μym−1

)
(x)+ (

I
μ
0+f

)
(x) , (m = 1, 2, 3, . . . )

(3.73)

where

y0 (x) = c
x(μ−1)(1−ν)

Γ (μ+ ν − μν) .

Following the above process of successive approximations, we obtain:

ym (x) = y0 (x)+
(
I
μ
0+f

)
(x)

+
m−1∑

j=1

λj

⎛

⎜
⎜
⎝E

ω;γ,k
0+;α,β+μE

ω;γ,k
0+;α,β+μ . . .E

ω;γ,k
0+;α,β+μ︸ ︷︷ ︸

j−1

E
ω;γ,k
0+;α,β+2μf

⎞

⎟
⎟
⎠ (x)

+ c

Γ (μ+ ν − μν)

×
m∑

j=1

λj

⎛

⎜
⎜
⎝E

ω;γ,k
0+;α,β+μE

ω;γ,k
0+;α,β+μ . . .E

ω;γ,k
0+;α,β+μ︸ ︷︷ ︸

j

x(μ−1)(1−ν)

⎞

⎟
⎟
⎠ (3.74)

Lettingm → ∞ in the last sequence, we obtain the solution (3.60), which completes
the proof of the theorem.
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By applying the integral formula (2.109) we obtain the following theorem (case
k=1):

Theorem 3.4 ([39]) The following fractional integro-differential equation

(
D
μ,ν
0+ y

)
(x) = λ

(
E
ω;γ
0+;α,βy

)
(x)+ f (x) , (0 < x ≤ b) (3.75)

α, β, γ, ω, λ ∈ C, � (α) ,� (β) > 0 with the initial values (3.11) and n− 1 < μ ≤
n, n ∈ N, 0 ≤ ν ≤ 1 has its solution in the space L (0, b] given by

y (x) =
∞∑

m=1

λm
(
E
ω;γm
0+;α,(β+μ)m+μf

)
(x)+

∞∑

m=1

λm
n−1∑

k=0

ck

×
{
E
ω;γ (m−1)
0+;α,(β+μ)(m−1)

[
xβ+μ−(n−μ)(1−ν)+kEγα,β+μ−(n−μ)(1−ν)+k+1

(
ωxα

)]}

+ (
I
μ
0+f

)
(x)+

n−1∑

k=0

ck

Γ (k − (n− μ) (1 − ν)+ 1)
xk−(n−μ)(1−ν),

(3.76)

i.e.,

y (x) =
∞∑

m=1

λm
(
E
ω;γm

0+;α,(β+μ)m+μf
)
(x)

+
∞∑

m=1

λm
n−1∑

k=0

ck

[
x(β+μ)m−(n−μ)(1−ν)+kEγmα,(β+μ)m−(n−μ)(1−ν)+k+1

(
ωxα

)]

+ (
I
μ
0+f

)
(x)+

n−1∑

k=0

ck

Γ (k − (n− μ) (1 − ν)+ 1)
xk−(n−μ)(1−ν),

(|λ| < 1/M′) . (3.77)

In particular, if 0 < μ < 1 under the initial value (3.57), Eq. (3.75) has its solution
in the space L (0, b] given by

y (x) =
∞∑

m=1

λm
(
E
ω;γm
0+;α,(β+μ)m+μf

)
(x)

+ c
∞∑

m=1

λmx(β+μ)m−(1−μ)(1−ν)Eγmα,(β+μ)m−(1−μ)(1−ν)+1

(
ωxα

)

+ (
I
μ
0+f

)
(x)+ c x(μ−1)(1−ν)

Γ (μ+ ν − μν),
(|λ| < 1/M′) , (3.78)
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where c is an arbitrary constant and M′ is a positive constant given by

M′ = b�(β)
∞∑

n=0

∣
∣(γ )n

∣
∣

{� (α) n+ � (β)} |Γ (αn+ β)|
∣
∣ωb�(α)∣∣n

n! . (3.79)

If we put f (t) = tε−1Eσα,ε (ωt
α) in (3.75) and apply the formula (2.109), we get the

following particular case of the solutions (3.77) and (3.78).

Corollary 3.1 ([39]) The following fractional integro-differential equation

(
D
μ,ν
0+ y

)
(x) = λ

(
E
ω;γ
0+;α,βy

)
(x)+ xε−1Eσα,ε

(
ωxα

)
(0 < x ≤ b) (3.80)

α, β, γ, ε, σ, ω, λ ∈ C, � (α) ,� (β) ,� (ε) > 0 with the initial values (3.11) and
n− 1 < μ ≤ n, n ∈ N, 0 ≤ ν ≤ 1 has its solution in the space L (0, b] given by

y (x) =
∞∑

m=1

λmx(β+μ)m+μ+ε−1E
γm+σ
α,(β+μ)m+μ+ε

(
ωxα

)

+
∞∑

m=1

λm
n−1∑

k=0

ck

[
x(β+μ)m−(n−μ)(1−ν)+kEγm

α,(β+μ)m−(n−μ)(1−ν)+k+1

(
ωxα

)]

+ (
I
μ

0+f
)
(x)+

n−1∑

k=0

ck

Γ (k − (n− μ) (1 − ν)+ 1)
xk−(n−μ)(1−ν),

(|λ| < 1/M′) . (3.81)

In particular, if 0 < μ < 1 under the initial value (3.57), Eq. (3.80) has its solution
in the space L (0, b] given by

y (x) =
∞∑

m=1

λmx(β+μ)m+μ+ε−1E
γm+σ
α,(β+μ)m+μ+ε

(
ωxα

)

+ c
∞∑

m=1

λmx(β+μ)m−(1−μ)(1−ν)Eγmα,(β+μ)m−(1−μ)(1−ν)+1

(
ωxα

)

+ (
I
μ
0+f

)
(x)+ c x(μ−1)(1−ν)

Γ (μ+ ν − μν),
(|λ| < 1/M′) , (3.82)

where c is an arbitrary constant and M′ is a positive constant given by (3.79).

If we put f (t) = tε−1 in (3.75) and apply the formula (2.110), we get the
following particular case of the solution (3.77) and (3.78).
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Corollary 3.2 ([39]) The following fractional integro-differential equation

(
D
μ,ν
0+ y

)
(x) = λ

(
E
ω;γ
0+;α,βy

)
(x)+ xε−1 (0 < x ≤ b) (3.83)

α, β, γ, ε, σ, ω, λ ∈ C, � (α) ,� (β) ,� (ε) > 0 with the initial values (3.11) and
n− 1 < μ ≤ n, n ∈ N, 0 ≤ ν ≤ 1 has its solution in the space L (0, b] given by

y (x) = Γ (ε)

∞∑

m=1

λmx(β+μ)m+μ+εEγmα,(β+μ)m+μ+ε+1

(
ωxα

)

+
∞∑

m=1

λm
n−1∑

k=0

ck

[
x(β+μ)m−(n−μ)(1−ν)+kEγmα,(β+μ)m−(n−μ)(1−ν)+k+1

(
ωxα

)]

+ (
I
μ
0+f

)
(x)+

n−1∑

k=0

ck

Γ (k − (n− μ) (1 − ν)+ 1)
xk−(n−μ)(1−ν),

(|λ| < 1/M′) . (3.84)

In particular, if 0 < μ < 1 under the initial value (3.57), Eq. (3.83) has its solution
in the space L (0, b] given by

y (x) = Γ (ε)

∞∑

m=1

λmx(β+μ)m+μ+εEγmα,(β+μ)m+μ+ε+1

(
ωxα

)

+ c
∞∑

m=1

λmx(β+μ)m−(1−μ)(1−ν)Eγmα,(β+μ)m−(1−μ)(1−ν)+1

(
ωxα

)

+ (
I
μ
0+f

)
(x)+ c x(μ−1)(1−ν)

Γ (μ+ ν − μν)x
k−(n−μ)(1−ν),

(|λ| < 1/M′) ,

(3.85)

where c is an arbitrary constant and M′ is a positive constant given by (3.79).

3.5 Operational Method for Solving Fractional Differential
Equations

In the 1950s, Jan Mikusiński proposed a new approach to develop an operational
calculus for the operator of differentiation [28]. This algebraic approach was based
on the interpretation of the Laplace convolution as a multiplication in the ring
of the continuous functions on the real half-axis. The Mikusiński operational
calculus was successfully used in ordinary differential equations, integral equations,
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partial differential equations and in the theory of the special functions. It is worth
mentioning that the Mikusiński scheme was extended by several mathematicians
to develop operational calculi for differential operators with variable coefficients
[7, 8, 27]. These operators are all particular cases of the so-called hyper-Bessel
differential operator

(B y)(x) = x−β
n∏

i=1

(
γi + 1

β
x
d

dx

)
y(x). (3.86)

An operational calculus for the operator (3.86) was constructed in [6]. New results
in the field of operational calculus have been presented by Luchko et al. in Refs. [13,
23, 24], where the operational calculi for the R-L, Caputo and for the more general
multiple Erdélyi-Kober fractional derivatives have been constructed and applied for
solution of the fractional differential equations and integral equations of the Abel
type.

3.5.1 Properties of the Generalized Fractional Derivative
with Types

The R-L, Caputo, and the composite fractional derivatives are defined as certain
compositions of the R-L fractional integral and ordinary derivatives. It is clear that
these operators play an important role in the development of the corresponding
operational calculi and there should be some coinciding elements in the operational
calculi for all three fractional derivatives.

We begin by defining the function spaceCγ , γ ∈ R, which was introduced for the
first time in Ref. [6] devoted to the operational calculus for hyper-Bessel differential
operator.

Definition 3.1 A real or complex-valued function y is said to belong to the space
Cγ , γ ∈ R, if there exists a real number p, p > γ , such that

y(t) = tpy1(t), t > 0

with a function y1 ∈ C[0,∞).
Clearly, Cγ is a vector space and the set of spaces Cγ is ordered by inclusion

according to

Cγ ⊂ Cδ ⇔ γ ≥ δ. (3.87)
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Theorem 3.5 ([25]) The R-L fractional integral Iα0+, α ≥ 0, is a linear map of the
space Cγ , γ ≥ −1, into itself, that is,

Iα0+ : Cγ → Cα+γ ⊂ Cγ .

For the proof of the theorem, see Ref. [25].
It is well known that the operator Iα0+, α > 0 has a convolution representation in

the space Cγ , γ ≥ −1:

(Iα0+y)(x) = (hα ◦ y)(x), hα(x) = xα−1/Γ (α), y ∈ Cγ . (3.88)

Here

(g ◦ f )(x) =
∫ x

0
g(x − t)f (t) dt, x > 0

is the Laplace convolution. From the semi-group property (2.3) it follows

(Iα0+ . . . Iα0+︸ ︷︷ ︸
n

y)(x) = (Inα0+y)(x), y ∈ Cγ , γ ≥ −1, α ≥ 0, n ∈ N. (3.89)

The composite fractional derivativeDα,β0+ is not defined on the whole spaceCγ . Here

let us introduce a subspace of Cγ , which is suitable for dealing with Dα,β0+ .

Definition 3.2 ([17]) A function y ∈ C−1 is said to be in the space Ωμ−1, μ ≥ 0 if

D
α,β

0+ y ∈ C−1 for all 0 ≤ α ≤ μ, 0 ≤ β ≤ 1.

For β = 0, i.e. for the R-L fractional derivative, the space Ωμ−1 coincides with
the function space introduced in Ref. [25].

Obviously, Ωμ−1 is a vector space and Ω0
−1 ≡ C−1. The space Ωμ−1 contains in

particular all functions z that can be represented in the form z(x) = xγ y(x) with
γ ≥ μ and y being an analytical function on the real half-axis.

The following result plays a very important role for the applications of the
operational calculus for Dα,β to solution of differential equations with these
generalized derivatives.

Theorem 3.6 ([17]) Let y ∈ Ωα−1, n − 1 < α ≤ n ∈ N . Then the R-L fractional
integral and the generalized composite fractional derivative are connected by the
relation

(Iα0+D
α,β
0+ y)(x) = y(x)− yα,β(x), x > 0, (3.90)
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where

yα,β(x) :=
n−1∑

k=0

xk−n+α−βα+βn
Γ (k − n+ α − βα + βn+ 1)

lim
x→0+

dk

dxk
(I
(1−β)(n−α)
0+ y)(x), x > 0.

(3.91)

Proof For n − 1 < α ≤ n ∈ N and 0 ≤ β ≤ 1, the generalized derivative can be
represented as a composition of the R-L fractional integral and the R-L fractional
derivative (2.17), therefore

(D
α,β

0+ y)(x) =
(
I
β(n−α)
0+

dn

dxn
(I
(1−β)(n−α)
0+ y)

)
(x) = (I

β(n−α)
0+ RLD

α+βn−αβ
0+ y)(x).

(3.92)

Using the formula (2.3) one obtains

(Iα0+D
α,β

0+ y)(x) = (Iα0+I
β(n−α)
0+ RLD

α+βn−αβ
0+ y)(x) = (I

α+βn−αβ
0+ RLD

α+βn−αβ
0+ y)(x).

The formula (3.90) follows now from the known formula for the composition
of the Riemann-Liouville fractional integral and the Riemann-Liouville fractional
derivative (see the formula from Proposition 3.1 with a = 0).

3.5.2 Operational Calculus for Fractional Derivatives
with Types

The formula (3.90) shows that the generalized derivative of order α and type β
always corresponds to the R-L fractional integral of order α. The type β influences
the form of the initial values that should appear while formulating the initial-value
problems for the differential equations. That is why the main part of the operational
calculus forDα,β0+ follows the lines of the construction of the operational calculus for
the Riemann-Liouville or for the Liouville-Caputo fractional derivatives presented
in Ref. [13].

As in the case of the Mikusiński type operational calculus for the Riemann-
Liouville or for the Liouville-Caputo fractional derivatives, we have the following
theorem:

Theorem 3.7 ([17]) The space C−1 with the operations of the Laplace convolution
◦ and ordinary addition becomes a commutative ring (C−1, ◦,+) without divisors
of zero.

This ring can be extended to the field M−1 of convolution quotients by following
the lines of the classical Mikusiński operational calculus [28]:

M−1 := C−1 × (C−1 \ {0})/ ∼,
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where the equivalence relation (∼) is defined, as usual, by

(f, g) ∼ (f1, g1) ⇔ (f ◦ g1)(t) = (g ◦ f1)(t).

For the sake of convenience, the elements of the field M−1 can be formally con-
sidered as convolution quotients f/g. The operations of addition and multiplication
are then defined inM−1 as usual:

f

g
+ f1

g1
:= f ◦ g1 + g ◦ f1

g ◦ g1
(3.93)

and

f

g
· f1

g1
:= f ◦ f1

g ◦ g1
. (3.94)

Theorem 3.8 ([17]) The space M−1 with the operations of addition (3.93) and
multiplication (3.94) becomes a commutative field (M−1, ·,+).

The ring C−1 can be embedded into the field M−1 by the map (α > 0):

f �→ hα ◦ f
hα

,

with, by (3.88), hα(x) = xα−1/Γ (α).
In the field M−1, the operation of multiplication with a scalar λ from the field

R (or C) can be defined by the relation λf
g

:= λf
g
,
f
g

∈ M−1. Because the space
C−1 is a vector space, the space M−1 can be shown to be a vector space, too. Since
the constant function f (x) ≡ λ, x > 0 belongs to the space C−1, we have to
distinguish the operation of multiplication with a scalar in the vector space M−1
and the operation of multiplication with a constant function in the field M−1. In this
last case we get

{λ} · f
g

= λhα+1

hα
· f
g

= {1} · λf
g
. (3.95)

Whereas the space C−1 consists of the conventional functions, the majority of
the elements of the field M−1 are not reduced to the functions from the ring C−1
and, consequently, can be considered to be the generalized functions or the so-called
hyper-functions. In particular, let us consider the element I = hα

hα
of the field M−1

that is the identity of this field with respect to the operation of multiplication:

I · f
g

= hα ◦ f
hα ◦ g = f

g
.
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The last formula shows that the identity element I of the field M−1 plays the role
of the Dirac δ-function in the conventional theory of the generalized functions.

Another hyper-function, i.e. an element of the field M−1 that cannot be repre-
sented as a conventional function from the space C−1 that will play an important
role in the applications of the operational calculus for the generalized fractional
derivative is given by

Definition 3.3 ([23]) The algebraic inverse of the R-L fractional integral Iα0+ is said
to be the element α of the field M−1, which is reciprocal to the element hα in the
field M−1, that is,

Sα = I

hα
≡ hα

hα ◦ hα ≡ hα

h2α
, (3.96)

where (and in what follows) I = hα
hα

denotes the identity element of the field M−1
with respect to the operation of multiplication.

The R-L fractional integral Iα0+ can be represented as a multiplication (convo-
lution) in the ring C−1 (with the function hα , see (3.88)). Since the ring C−1 is
embedded into the field M−1 of convolution quotients, this fact can be rewritten as
follows:

(Iα0+y)(x) = I

Sα
· y. (3.97)

As to the generalized fractional derivative Dα,β , there exists no convolution
representation in the ringC−1 for it, but it is reduced to the operator of multiplication
in the field M−1.

Theorem 3.9 ([17]) Let a function y be from the space Ωα−1, n − 1 < α ≤
n, n ∈ N . Then the generalized fractional derivative Dα,β0+ y can be represented
as multiplication in the field M−1 of convolution quotients:

(D
α,β
0+ y)(x) = Sα · y − Sα · yα,β, (3.98)

yα,β(x) =
n−1∑

k=0

xk−n+α−βα+βn

Γ (k − n+ α − βα + βn+ 1)

× lim
x→0+

dk

dxk
(I
(1−β)(n−α)
0+ y)(x), x > 0. (3.99)

Proof To prove the formula (3.98), we just use the embedding of the ring C−1 into
the field M−1 and then multiply the relation (3.90) with the algebraic inverse of
the Riemann-Liouville fractional integral operator—the element Sα . The obtained
relation is exactly the formula (3.98).
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The formula (3.89) means that for α > 0, n ∈ N

hnα(x) := hα ◦ . . . ◦ hα︸ ︷︷ ︸
n

= hnα(x).

This relation can be extended to an arbitrary positive real power exponent:

hλα(x) = hλα(x), λ > 0. (3.100)

For any λ > 0, the inclusion hλα ∈ C−1 holds true and the following relations can
be easily proved (β > 0, γ > 0):

hβα ◦ hγα = hαβ ◦ hαγ = h(β+γ )α = hβ+γ
α , (3.101)

hβα1
= hγα2

⇔ α1β = α2γ. (3.102)

The above relations motivate the following definition of a power function of the
element Sα with an arbitrary real power exponent λ:

Sλα =

⎧
⎪⎨

⎪⎩

h−λ
α , λ < 0,
I, λ = 0,
I
hλα
, λ > 0.

(3.103)

For any α, β ∈ R, it follows from this definition and the relations (3.101) and
(3.102) that

Sβα · Sγα = Sβ+γ
α , (3.104)

Sβα1
= Sγα2

⇔ α1β = α2γ. (3.105)

For the application of the operational calculus to solution of the differential
equations with composite fractional derivatives it is important to identify the
hyper-functions from the field M−1, which can be represented as the conventional
functions, i.e. as the elements of the ring C−1.

One useful class of such representations is given by the following theorem (see,
e.g., Refs. [23, 24]):

Theorem 3.10 ([23, 24]) Let the multiple power series

∞∑

i1,...,in=0

ai1,...,inz
i1
1 × · · · × zinn , z1, . . . , zn ∈ C, ai1,...,in ∈ C
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be convergent at a point z0 = (z10, . . . , zn0) with all zk0 
= 0, k = 1, . . . , n. Then
the hyper-function

z(Sα) := S−β
α

∞∑

i1,...,in=0

ai1,...,in(S
−α1
α )i1 × · · · × (S−αn

α )in

with β > 0, αi > 0, i = 1, . . . , n can be represented as an element of the ring
C−1:

z(Sα) =
∞∑

i1,...,in=0

ai1,...,inh(β+α1i1+···+αnin)α(x),

where hα(x) is given by (3.88).

This theorem is the source of a number of the important operational relations,
which will be used in the further discussions (for more operational relations, we
refer to Refs. [13, 25]):

I

Sα − ρ = xα−1Eα,α(ρx
α), (3.106)

where ρ ∈ R (or ρ ∈ C) and Eα,β(z) is the two parameter M-L function, as can
formally be obtained as a geometric series:

I

Sα − ρ = I

I
hα

− ρ = hα

I − ρhα =
∞∑

k=0

ρkhk+1
α

=
∞∑

k=0

ρkx(k+1)α−1

Γ (αk + α) = xα−1Eα,α(ρx
α).

The m-fold convolution of the right-hand side of the relation (3.106) gives the
following operational relation:

I

(Sα − ρ)m = xαm−1Emα,mα(ρx
α), m ∈ N, (3.107)

where Eδα,β(z) is the three parameter M-L function.
Let β > 0, αi > 0, i = 1, . . . , n. Then

S
−β
α

I − ∑n
i=1 λiS

−αi
α

= xβα−1E(α1α,...,αnα),βα(λ1x
α1α, . . . , λnx

αnα) (3.108)

with the multinomial M-L function.
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3.5.3 Fractional Differential Equations with Types

Here, the presented operational calculus is applied for solving linear fractional
differential equations with generalized derivatives and constant coefficients.

First, some simple fractional differential equations are considered. We begin with
the initial value problem (n− 1 < α ≤ n, n ∈ N, 0 ≤ β ≤ 1, λ ∈ R) [17]

(D
α,β
0+ y)(x)− λy(x) = g(x),

lim
x→0+

dk

dxk
(I
(1−β)(n−α)
0+ y)(x) = ck ∈ R, k = 0, . . . , n− 1. (3.109)

The function g is assumed to lie in C−1 and the unknown function y is to be
determined in the spaceΩα−1.

Making use of the relation (3.98), the initial value problem (3.109) can be
reduced to the following algebraic equation in the field M−1 of convolution
quotients:

Sα · y − λy = Sα · yα,β + g,

yα,β(x) =
n−1∑

k=0

ck
xk−n+α−βα+βn

Γ (k − n+ α − βα + βn+ 1)
.

This linear equation can be easily solved in the fieldM−1:

y = yg + yh = I

Sα − λ · g + Sα

Sα − λ · yα,β .

The right-hand side of this relation can be interpreted as a function from the space
Ωα−1, that is, as a classical solution of the initial value problem (3.109).

It follows from the operational relation (3.106) and the embedding of the ring
C−1 into the field M−1, that the first term of this relation, yg (solution of the
inhomogeneous fractional differential equation (3.109) with zero initial values), can
be represented in the form

yg(x) =
∫ x

0
(x − t)α−1Eα,α(λ(x − t)α)g(t) dt =

(
E1
α,α,λ,0+g

)
(x). (3.110)

As to the second term, yh, it is a solution of the homogeneous fractional differential
equation (3.109) with the given initial values and we have

yh(x) =
n−1∑

k=0

ckuk(x), uk(x) = Sα

Sα − λ ·
{

xk−n+α−βα+βn

Γ (k − n+ α − βα + βn+ 1)

}
.

(3.111)
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Making use of the relation

xk−n+α−βα+βn

Γ (k − n+ α − βα + βn+ 1)
= hk−n+α−βα+βn+1(x) = hα(k−n+α−βα+βn+1)/α(x)

= I

S
(k−n+α−βα+βn+1)/α
α

, (3.112)

the formula (3.104), and the operational relation (3.108), we get the representation
of the functions uk(x), k = 0, . . . , n − 1 in terms of the two parameter M-L
function:

uk(x) = Sα

Sα − λ ·
{

xk−n+α−βα+βn

Γ (k − n+ α − βα + βn+ 1)

}

= S
−(k−n+α−βα+βn+1)/α
α

I − λS−1
α

= xk−(1−β)(n−α)Eα,k+1−(1−β)(n−α)(λxα).

Putting now the two parts of the solution together, we get the final form of the
solution of the initial-value problem (3.109):

y(x) = yg(x)+ yh(x)

=
∫ x

0
(x − t)α−1Eα,α(λ(x − t)α)g(t) dt

+
n−1∑

k=0

ckx
k−(1−β)(n−α)Eα,k+1−(1−β)(n−α)(λxα). (3.113)

The proof of the fact that the solution y belongs to the spaceΩα−1 is straightforward
follows the lines of the proof from Ref. [24] and we omit it here.

Whereas the solution of the inhomogeneous fractional differential equa-
tion (3.109) with zero initial values—the function yg—only depends on the order
α of the derivative, the solution of the homogeneous equation—the function yh—
looks different for different values of the type β of the derivative. In particular, the
part yh of the solution takes the form

yh(x) =
n−1∑

k=0

ckuk(x), uk(x) = xk Eα,k+1(λx
α)

and

yh(x) =
n−1∑

k=0

ckuk(x), uk(x) = xk−n+α Eα,k+1−n+α(λxα)
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for the Liouville-Caputo fractional derivative (β = 1) and for the R-L fractional
derivative (β = 0), respectively.

Next, we consider the linear differential equation [17]

n∑

i=1

λi

(
D
αi,βi
0+ y

)
(x)− λy (x) = g (x) (3.114)

with initial values

lim
x→0+

dk

dxk
(I
(1−βi)(n−αi)
0+ y)(x) = ck ∈ R (3.115)

where i = 1, 2, . . . , n; k = 0, . . . , n − 1, n − 1 < αi ≤ n, n ∈ N, 0 ≤ βi ≤
1, λ, λi ∈ R and the ordering α1 > α2 > · · · > αn > 0 is assumed without loss of
generality. Then the following algebraic equation in the field M−1 of convolution
quotients is obtained

n∑

i=1

λi
(
Sαi y − Sαi yαi,βi

) − λy = g. (3.116)

This linear equation can be easily solved in the field M−1:

y = yg + Y = I
n∑

i=1
λiSαi − λ

g +

n∑

j=1
λjS

αj yαj ,βj

n∑

i=1
λiSαi − λ

= I
n∑

i=1
λiSαi − λ

g

+
n∑

j=1

λj
Sαj

n∑

i=1
λiSαi − λ

[
n−1∑

k=0

ck
xk−n+αj−βjαj+βj n

Γ (k − n+ αj − βjαj + βjn+ 1)

]

.

On the other hand, one gets

I
n∑

i=1
λiSαi − λ

= S−α1

λ1 +
n∑

i=2
λiSαi−α1 − λS−α1

= 1

λ1

S−α1

I −
n∑

i=2

(
− λi
λ1

)
Sαi−α1 − λ

λ1
S−α1



92 3 Cauchy Type Problems

= 1

λ1
xα1−1E(α1−α2,α1−α3,...,α1−αn,α1),α1

(
−λ2

λ1
xα1−α2, . . . ,

−λn
λ1
xα1−αn,− λ

λn
xα1

)
.

Hence,

yg = 1

λ1

x∫

0

(x − t)α1−1 E(α1−α2,α1−α3,...,α1−αn,α1),α1

(
−λ2

λ1
(x − t)α1−α2 , . . . ,

−λn
λ1
(x − t)α1−αn ,−λn

λ
(x − t)α1

)
g(t) dt .

Applying the relations (3.108) and (3.112) we get

Y =
n∑

j=1

λj
Sαj

n∑

i=1
λiSαi − λ

[
n−1∑

k=0

ck
xk−n+αj−βjαj+βj n

Γ (k − n+ αj − βjαj + βjn+ 1)

]

=
n∑

j=1

λj
Sαj

n∑

i=1
λiSαi − λ

(
n−1∑

k=0

ckS
−(k−n+αj−βjαj+βj n+1)

)

=
n∑

j=1

n−1∑

k=0

λjck
S−(k−n−βj αj+βjn+1)

n∑

i=1
λiSαi − λ

= 1

λ1

n∑

j=1

n−1∑

k=0

λjck
S−(k−n−βj αj+α1+βj n+1)

I −
n∑

i=2

(
− λi
λ1

)
Sαi−α1 − λ

λ1
S−α1

= 1

λ1

n∑

j=1

n−1∑

k=0

λjckx
k−n−βjαj+α1+βj n

×E(α1−α2,α1−α3,...,α1−αn,α1),(k−n−βjαj+α1+βj n+1)

(
−λ2

λ1
xα1−α2 , . . . ,

−λn
λ1
xα1−αn,− λ

λ1
xα1

)
.

If βj = 0, j = 1, 2, . . . , n the solution coincides with the solution of the linear
n-term differential equation with the R-L fractional derivatives

y = yg + Y0
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where

Y0 = 1

λ1

n∑

j=1

n−1∑

k=0

λj ckx
k−n+α1

× E(α1−α2,α1−α3,...,α1−αn,α1),(k−n+α1+1)

(
−λ2

λ1
xα1−α2, . . . ,

−λn
λ1
xα1−αn,− λ

λ1
xα1

)
.

If βj = 1, j = 1, 2, . . . , n the solution coincides with the solution of the linear
n-term differential equation with the Caputo fractional derivatives

y = yg + Y1

where

Y1 = 1

λ1

n∑

j=1

n−1∑

k=0

λjckx
k+α1−αj

×E(α1−α2,α1−α3,...,α1−αn,α1),(k+α1−αj+1)

(
−λ2

λ1
xα1−α2, . . . ,

−λn
λ1
xα1−αn,− λ

λ1
xα1

)
.

(i) If αi = α, i = 1, 2, . . . , n, we consider the following special case of the above
linear n-term differential equation with the generalized fractional derivatives:

n∑

i=1

λi

(
D
α,βi
0+ y

)
(x)− λy (x) = g (x) (3.117)

lim
x→0+

dk

dxk
(I
(1−βi)(n−α)
0+ y)(x) = ck ∈ R, i = 1, 2, . . . , n k = 0, . . . , n− 1;

(

0 < α < 1, 0 ≤ βi ≤ 1, λ, λi ∈ R, i = 1, 2, . . . , n, Λ =
n∑

i=1

λi 
= 0

)

.

(3.118)

Hence we get the following algebraic equation in the field M−1 of convolu-
tion quotients:

n∑

i=1

λi
(
Sαy − Sαyα,βi

) − λy = g.
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This linear equation can be easily solved in the field M−1:

y = y∗
g + Y ∗ = I

ΛSα − λg + Sα

ΛSα − λ
n∑

j=1

λjyα,βj .

Since

I

ΛSα − λ = 1

Λ
xα−1Eα,α

(
λ

Λ
xα

)
,

one gets

y∗
g = 1

Λ

x∫

0

(x − t)α−1Eα,α

(
λ

Λ
(x − t)α

)
g (t) dt .

On the other hand,

Y ∗ = Sα

ΛSα − λ
n∑

i=1

n−1∑

k=0

λick
xk−n+α−βiα+βin

Γ (k − n+ α − βiα + βin+ 1)

=
n∑

i=1

n−1∑

k=0

λick
S−(k−n−βiα+βin+1)

ΛSα − λ

=
n∑

i=1

n−1∑

k=0

λi

Λ
ck
S−(k−n−βiα+βin+α+1)

I − λ
Λ
S−α

= 1

Λ

n∑

i=1

n−1∑

k=0

λickx
k−n−βiα+βin+αEα,k−n−βiα+βin+α+1

(
λ

Λ
xα

)
.

(ii) Let αi = (n− i) α, i = 1, 2, . . . , n where 0 < α < 1. Then the solution can be
represented in terms of the three parameter M-L function

yg = I
n∑

i=1
λiS

n−i
α − λ

g =
⎡

⎣
p∑

j=1

nj∑

m=1

cjm(
Sα − γj

)m

⎤

⎦ g,

n1 + n2 + · · · + np = n.

Operational relation (3.107) gives us the representation

yg =
t∫

0

uδ (τ ) g (t − τ ) dτ,



3.6 Fractional Equations Involving Laguerre Derivatives 95

where

uδ (t) =
p∑

j=1

nj∑

m=1

cjmt
αm−1Emα,αm

(
γj t

α
)
.

3.6 Fractional Equations Involving Laguerre Derivatives

In this section we show the utility of operational methods to solve a wide class
of integro-differential equations involving Prabhakar operators, also with variable
coefficients.

We start from the analysis of the following equation [40]

∂

∂t
t
∂

∂t
f (x, t) =

(
E
ω;γ
0+;α,β

)

x
f (x, t), (3.119)

where
(
E
ω;γ,1
0+;α,β

)

x
=

(
E
ω;γ
0+;α,β

)

x

stands for the Prabhakar integral with respect to x-variable, with ω, α, β, γ ∈ R+.
The operator

DLt = d

dt
t

d

dt

is also named in literature as Laguerre derivative. It is well known that the
eigenfunction of the Laguerre derivative is given by the function

C0(t) =
∞∑

k=0

tk

(k!)2 , (3.120)

i.e., the zeroth order of the Tricomi functions. This means that

d

dt
t

d

dt
C0(λt) = λC0(λt).

We now apply this result to the fractional integro-differential equations with variable
coefficients (3.119).

Theorem 3.11 ([40]) Consider the following initial value problem

⎧
⎨

⎩

∂
∂t
t ∂
∂t
f (x, t) =

(
E
ω;γ
0+;α,β

)

x
f (x, t),

f (x, 0) = g(x),
(3.121)
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in the half plane x > 0, with analytic initial value g(x). The operational solution of
Eq. (3.121) is given by:

f (x, t) = C0

(
t
(
E
ω;γ
0+;α,β

)

x

)
g(x) =

∞∑

k=0

tk

(k!)2
(
E
ω;kγ
0+;α,kβ

)

x
g(x). (3.122)

The operational solution (3.122) becomes an effective solution when the series
converges, and this depends on the actual form of the initial value g(x). We remark
that this operational approach cannot be applied to the more general operator
E
ω;γ,κ
0+;α,β . The reason is due to the fact that the proof of the validity of the semigroup

property for this operator is an open problem, as it was discussed above. On the
other hand, for E ω;γ

0+;α,β , we have

(
E
ω;γ
0+;α,β

)k = E
ω;γ
0+;α,β · E ω;γ

0+;α,β . . .E
ω;γ
0+;α,β︸ ︷︷ ︸

k×

= E
ω;kγ
0+;α,kβ . (3.123)

Then we have that

C0

(
t
(
E
ω;γ
0+;α,β

)

x

)
g(x) =

∞∑

k=0

tk

(k!)2
(
E
ω;γ
0+;α,β

)k

x
g(x)

=
∞∑

k=0

tk

(k!)2
(
E
ω;kγ
0+;α,kβ

)

x
g(x), (3.124)

as claimed.

Example 3.1 As a first concrete example we consider the following initial value
problem [40]

⎧
⎨

⎩

∂
∂t
t ∂
∂t
f (x, t) =

(
E
ω;γ
0+;α,β

)

x
f (x, t)

f (x, 0) = g(x) = xδ−1, δ > 0,�(α),�(β) > 0.
(3.125)

By application of relation (2.110), i.e.,

E
ω;γ
0+;α,βx

δ−1 = Γ (δ)xβ+δ−1E
γ
α,β+δ(ωx

α),

one has
(
E
ω;kγ
0+;α,kβ

)

x
g(x) =

(
E
ω;kγ
0+;α,kβ

)

x
xδ−1 = Γ (δ)xkβ+δ−1E

kγ
α,kβ+δ(ωx

α),
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whose solution is given by

f (x, t) = Γ (δ)

∞∑

k=0

tk

(k!)2 x
kβ+δ−1E

kγ
α,kβ+δ(ωx

α). (3.126)

We observe that boundary value problems for equations involving Laguerre
spatial derivatives can be studied by operational methods in a similar way, as we
are going to show with the following example.

Example 3.2 Consider the following boundary value problem [40]

⎧
⎨

⎩

∂
∂x
x ∂
∂x
f (x, t) =

(
E
ω;γ
0+;α,β

)

t
f (x, t)

f (0, t) = tδ−1Eσα,δ(ωt
α), δ > 1,�(σ ),�(α) > 0,

in the half plane x ≥ 0. Here we use relation (2.109), i.e.,

E
ω;γ
0+;β,αt

δ−1Eσβ,δ(ωt
β) = tα+δ−1E

γ+σ
β,α+δ(ωt

β).

Then, the solution is given by

f (x, t) = Γ (δ)

∞∑

k=0

xk

(k!)2 t
kα+δ−1E

kγ+σ
β,kα+δ(ωt

β).

By using similar reasoning, we can also treat in a simple way integro-differential
equations involving both Laguerre derivatives, i.e., with variable coefficients, and
R-L integrals. Indeed, it is well known that R-L integrals satisfy the semigroup
property.

Theorem 3.12 ([40]) Consider the following initial value problem

{
∂
∂t
t ∂
∂t
f (x, t) = (

Iα0+
)
x
f (x, t), α > 0,

f (x, 0) = g(x),
(3.127)

in the half plane x > 0, with analytic initial value g(x). The operational solution of
Eq. (3.127) is given by:

f (x, t) = C0
(
t
(
Iα0+

)
x

)
g(x) =

∞∑

k=0

tk

(k!)2
(
Ikα0+

)

x
g(x). (3.128)

Example 3.3 Consider the following initial value problem

{
∂
∂t
t ∂
∂t
f (x, t) = (

Iα0+
)
x
f (x, t),

f (x, 0) = xγ , γ > 0, α > 0,



98 3 Cauchy Type Problems

by applying the previous theorem, its solution is given by

f (x, t) =
∞∑

k=0

tk
(
Ikα0+

)
x

(k!)2 xγ = Γ (γ + 1)xγ
∞∑

k=0

(xαt)k

(k!)2Γ (αk + γ + 1)

= Γ (γ + 1)xγ 0Ψ3

[ −;
(1, 1) , (1, 1) , (γ + 1, α) ;x

αt

]

where we used relation (2.4).

Theorem 3.13 ([40]) LetΩx be a linear differential operator with respect to x and
ψ(x) an eigenfunction ofΩ , such that

Ωxψ(λx) = λψ(λx), ψ(0) = 1, (3.129)

then the evolution problem

⎧
⎨

⎩
Ωxf (x, t) =

(
E
ω;γ
0+;α,β

)

t
f (x, t), t > 0,

f (0, t) = g(t),
(3.130)

with an analytic function g(t) as boundary condition, admits an operational solution

f (x, t) = ψ
(
x
(
E
ω;γ
0+;α,β

)

t

)
g(t). (3.131)

This theorem highlights the utility of operational methods to solve, in a simple
way, linear integro-differential equations involving Prabhakar integral operators.

Example 3.4 Let us consider the following boundary value problem [40]

⎧
⎨

⎩

∂
∂x
f (x, t) =

(
E
ω;γ
0+;α,β

)

t
f (x, t),

f (0, t) = g(t) = tδ−1, δ > 0,

its analytic solution is given by

f (x, t) = Γ (δ)

∞∑

k=0

xk

k! t
kβ+δ−1E

kγ
α,kβ+δ(ωt

α). (3.132)

We observe that the convergence of the series (3.126) was proved by Sandev et al.
in [34].



3.7 Applications of Hilfer-Prabhakar Derivatives 99

3.7 Applications of Hilfer-Prabhakar Derivatives

In what follows we give some applications of Hilfer-Prabhakar derivatives in
mathematical physics and probability.

First we consider a generalization of the time fractional heat equation by Hilfer-
Prabhakar derivatives, involving the non-regularized operator Dγ,μ,ν

ρ,ω,0+.

Theorem 3.14 ([11]) The solution to the Cauchy problem

⎧
⎪⎪⎨

⎪⎪⎩

D
γ,μ,ν

ρ,ω,0+u(x, t) = K ∂2

∂x2u(x, t), t > 0, x ∈ R,(
E−γ (1−ν)
ρ,(1−ν)(1−μ),ω,0+u(x, t)

)

t=0+ = g(x),

limx→±∞ u(x, t) = 0,

(3.133)

with μ ∈ (0, 1), ν ∈ [0, 1], ω ∈ R, K,ρ > 0, γ ≥ 0, is given by

u(x, t) =
∫ +∞

−∞
e−ıkx ĝ(k) 1

2π

∞∑

n=0

(−K)n tμ(n+1)−ν(μ−1)−1

×Eγ(n+1−ν)
ρ,μ(n+1)−ν(μ−1)(ωt

ρ)k2n dk. (3.134)

Proof By Fourier-Laplace transform of (3.133), where we use û(x, s) =
L [u(x, s)] and ũ(k, t) = F [u(k, t)], and by using formula (2.60), one has

sμ(1 − ωs−ρ)γ ˜̂u(k, s)− sν(μ−1)(1 − ωs−ρ)γ ν g̃(k) = −Kk2 ˜̂u(k, s), (3.135)

so that

˜̂u(k, s) = sν(μ−1)(1 − ωs−ρ)γ νg̃(k)
sμ(1 − ωs−ρ)γ +Kk2

= s−μ+ν(μ−1)(1 − ωs−ρ)−γ (1−ν)g̃(k)
(

1 + Kk2

sμ(1 − ωs−ρ)γ
)−1

=
∞∑

n=0

(
−Kk2

)n
s−μ(n+1)+ν(μ−1)(1 − ωs−ρ)−γ (n+1−ν)g̃(k), (3.136)

for
∣
∣
∣ Kk2

sμ(1−ωs−ρ)γ
∣
∣
∣ < 1. The inverse Laplace transform yields

ũ(k, t) =
∞∑

n=0

(−K)n tμ(n+1)−ν(μ−1)−1E
γ(n+1−ν)
ρ,μ(n+1)−ν(μ−1)(ωt

ρ)k2nĝ(k). (3.137)
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Note that, for each k, the inversion term by term of the Laplace transform is always
possible in view of Theorem 30.1 in Ref. [9] provided to choose a sufficiently
large abscissa (dependent of k) for the inverse integral and by recalling that
the generalized M-L function is defined as an absolutely convergent series. The
convergence of (3.137) and in general of series of the same form (see below) can be
proved by using the same technique as in Appendix C of Ref. [34]. Next, by applying
the inverse Fourier transform to (3.137) one finishes the proof of the theorem.

Theorem 3.15 ([11]) The solution to the Cauchy problem

⎧
⎪⎪⎨

⎪⎪⎩

CD
γ,μ

ρ,ω,0+u(x, t) = K ∂2

∂x2u(x, t), t > 0, x ∈ R,

u(x, 0+) = g(x),

limx→±∞ u(x, t) = 0,

(3.138)

with μ ∈ (0, 1), ω ∈ R, K,ρ > 0, γ ≥ 0, is given by

u(x, t) =
∫ +∞

−∞
e−ıkx g̃(k)

1

2π

∞∑

n=0

(−Ktμ)n Eγnρ,μn+1

(
ωtρ

)
k2n dk. (3.139)

Proof Taking the Fourier–Laplace transform of (3.138), by formula (2.64), we have
that

sμ(1 − ωs−ρ)γ ˜̂u(k, s)− sμ−1(1 − ωs−ρ)γ g̃(k) = −Kk2 ˜̂u(k, s), (3.140)

so that

˜̂u(k, s) = sμ−1(1 − ωs−ρ)γ g̃(k)
sμ(1 − ωs−ρ)γ +Kk2 = s−1g̃(k)

(
1 + Kk2

sμ(1 − ωs−ρ)γ
)−1

=
∞∑

n=0

(
−Kk2

)n
s−μn−1(1 − ωs−ρ)−γ ng̃(k), (3.141)

for
∣
∣
∣ Kk2

sμ(1−ωs−ρ)γ
∣
∣
∣ < 1. The inverse Laplace transform yields

ũ(k, t) =
∞∑

n=0

(−Ktμ)n Eγnρ,μn+1(ωt
ρ)k2nĝ(k). (3.142)

By applying the inverse Fourier transform the proof of the theorem is finished.
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As an additional example we consider the free electron laser integro-differential
equation for the complex amplitude y(x), which is given by Dattoli et al. [5]

{
dy(x)
dx

= −ıπg ∫ x0 (x − t)eıη(x−t )y(t)dt, g, η ∈ R, x ∈ (0, 1],
y(0) = 1.

(3.143)

Here g is the gain coefficient, and η is the detuning parameter. This equation has
been generalized to a fractional free electron laser equation in Ref. [20]. Here
we give an analysis of the free electron laser equation involving Hilfer-Prabhakar
derivative [11]

⎧
⎨

⎩

D
γ,μ,ν

ρ,ω,0+y(x) = λE�
ρ,μ,ω,0+y(x)+ f (x), x ∈ (0,∞), f (x) ∈ L1[0,∞),(

E−γ (1−ν)
ρ,(1−ν)(1−μ),ω,0+y(x)

)

x=0+ = κ, κ ≥ 0,

(3.144)

where μ ∈ (0, 1), ν ∈ [0, 1], ω, λ ∈ C, ρ > 0, γ,� ≥ 0. This generalizes the
problem studied in Ref. [20], corresponding to ν = γ = 0. Here f (x) is a given
function. The original FEL equation is then retrieved for γ = 0, ν = 0, μ → 1,
f ≡ 0, λ = −iπg, ω = iη, ρ = � = κ = 1.

Theorem 3.16 ([11]) The solution to the Cauchy problem (3.144) is given by

y(x) = κ

∞∑

k=0

λkxν(1−μ)+μ+2μk−1E
γ+k(�+γ )−γ ν
ρ,ν(1−μ)+μ+2kμ(ωx

ρ)

+
∞∑

k=0

λkEγ+k(�+γ )
ρ,μ(2k+1),ω,0+f (x). (3.145)

Proof By Laplace transform of (3.144) (see (2.60)) one gets

sμ(1 − ωs−ρ)γL [y(x)](s)− κs−ν(1−μ)(1 − ωs−ρ)γ ν

= λL [xμ−1E�ρ,μ(ωx
ρ)](s) · L [y(x)](s)+ L [f (x)](s), (3.146)

from where

L [y(x)](s) = κs−ν(1−μ)−μ(1 − ωs−ρ)γ ν−γ
1 − λs−2μ(1 − ωs−ρ)−�−γ

+ s−μ(1 − ωs−ρ)−γ
1 − λs−2μ(1 − ωs−ρ)−�−γ L [f (x)](s)
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= κ

∞∑

k=0

λks−ν(1−μ)−μ−2μk(1 − ωs−ρ)γ ν−γ−k(�+γ )

+
∞∑

k=0

λks−μ(2k+1)(1 − ωs−ρ)−γ−k(�+γ )L [f (x)](s). (3.147)

By inverse Laplace transform and by using the convolution theorem of the Laplace
transform, follows the claimed result.

Example 3.5 ([11]) Let us consider the Cauchy problem (3.144) with κ = 0,
f (x) = xm−1. By using relation (2.110) one has

Eγ+k(�+γ )
ρ,μ(2k+1),ω,0+x

m−1 = Γ (m) xμ(2k+1)+m−1E
γ+k(�+γ )
ρ,μ(2k+1)+m(ωx

ρ), (3.148)

and, therefore, the solution of the Cauchy problem is given by

y(x) = Γ (m) xμ+m−1
∞∑

k=0

(λx2μ)kE
γ+k(�+γ )
ρ,μ(2k+1)+m(ωx

ρ). (3.149)

Example 3.6 ([11]) Let us consider the Cauchy problem (3.144) with κ = 0,
f (x) = xm−1Eσρ,m(ωx

ρ). From relation (2.110), one has

Eγ+k(�+γ )
ρ,μ(2k+1),ω,0+x

m−1Eσρ,m(ωx
ρ) = xμ(2k+1)+m−1E

γ+k(�+γ )+σ
ρ,μ(2k+1)+m (ωx

ρ),

(3.150)

thus, the solution is given by

y(x) = xμ+m−1
∞∑

k=0

(λx2μ)kE
γ+k(�+γ )+σ
ρ,μ(2k+1)+m (ωx

ρ). (3.151)

3.7.1 Fractional Poisson Processes

Here we present a generalization of the homogeneous Poisson process for which the
governing equations contain the regularized Hilfer–Prabhakar differential operator
in time [11]. The considered model generalizes the time-fractional Poisson process.
The state probabilities of the classical Poisson process and its time-fractional
generalization can be found by solving an infinite system of difference-differential
equations. As the zero state probability of a renewal process coincides with
the residual time probability, the process can be characterized by the waiting
distribution. The M-L function appeared as residual waiting time between events
in renewal processes with properly scaled thinning out the sequence of events
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in a power law renewal process [4, 12, 26, 29, 32, 36, 42]. Such a process is a
fractional Poisson process. Gnedenko and Kovalenko did their analysis only in
the Laplace domain, and Balakrishnan [2] also found this Laplace transform as
highly relevant for analysis of time fractional diffusion processes. Later, Hilfer and
Anton [16] were the first who explicitly introduced the M-L waiting-time density
fμ(t) = − d

dt Eμ(−tμ) = tμ−1Eμ,μ(−tμ), 0 < μ < 1, into the continuous time
random walk theory. They showed that the waiting time probability density function
that gives the time fractional diffusion equation for the probability density function
has the M-L form. In the next section we will pay special attention of the importance
of M-L functions in the continuous time random walk theory.

In what follows we will demonstrate the importance of the M-L functions related
to the fractional Poisson processes. We consider the following Cauchy problem
involving the regularized operator CD

γ,μ

ρ,ω,0+ .

Definition 3.4 (Cauchy Problem for the Generalized Fractional Poisson Process
[11])

⎧
⎪⎪⎨

⎪⎪⎩

CD
γ,μ

ρ,−φ,0+pk(t) = −λpk(t)+ λpk−1(t), k ≥ 0, t > 0, λ > 0,

pk(0) =
{

1, k = 0,

0, k ≥ 1,

(3.152)

where φ > 0, γ ≥ 0, 0 < ρ ≤ 1, 0 < μ ≤ 1. We also have 0 < μ�γ �/γ − rρ < 1,
∀ r = 0, . . . , �γ �, if γ 
= 0.

These ranges for the parameters are needed to ensure non-negativity of the solution.
Multiplying both the terms of (3.152) by vk and adding over all k, we obtain the
fractional Cauchy problem for the probability generating function

G(v, t) =
∞∑

k=0

vkpk(t)

of the counting number N(t), t ≥ 0,

{
CD

γ,μ

ρ,−φ,0+G(v, t) = −λ(1 − v)G(v, t), |v| ≤ 1,

G(v, 0) = 1.
(3.153)

Theorem 3.17 ([11]) The solution of Eq. (3.153) is given by

G(v, t) =
∞∑

k=0

(−λtμ)k(1 − v)kEγ kρ,μk+1(−φtρ), |v| ≤ 1. (3.154)
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Proof In view of Lemma 2.5, we have

sμ[1 + φs−ρ]γL [G](v, s)− sμ−1[1 + φs−ρ ]γ = −λ(1 − v)L [G](v, s),
(3.155)

so that

L [G](v, s) = sμ−1[1 + φs−ρ ]γ
sμ[1 + φs−ρ ]γ + λ(1 − v) = 1

s

(
1 + λ(1 − v)

sμ[1 + φs−ρ ]γ
)−1

= 1

s

∞∑

k=0

[
− λ(1 − v)
sμ[1 + φs−ρ ]γ

]k

=
∞∑

k=0

(−λ(1 − v))ks−μk−1[1 + φs−ρ ]−kγ , (3.156)

where |λ(1 − v)/[sμ(1 + φs−ρ)γ ]| < 1. By using (2.61) we can invert the Laplace
transform (3.156) obtaining the claimed result.

Remark 3.1 Observe that for γ = 0, we retrieve the classical result obtained, for
example, in [22]. Indeed, from the fact that, see Eq. (1.15),

E0
ρ,μk+1(−φtρ) =

∞∑

r=0

(−φtρ)rΓ (r)
r!Γ (ρr + μk + 1)Γ (0)

= 1

Γ (μk + 1)
, (3.157)

Eq. (3.154) becomes

G(v, t) =
∞∑

k=0

(−λtμ)k(1 − v)k
Γ (μk + 1)

= E1
μ,1(−λ(1 − v)tμ)

= Eμ(−λ(1 − v)tμ), (3.158)

that coincides with equation (23) in Ref. [22].

From the probability generating function (3.154), we are now able to find the
probability distribution at fixed time t of N(t), t ≥ 0, governed by (3.152). Indeed,
a simple binomial expansion leads to

G(v, t) =
∞∑

k=0

vk
∞∑

r=k
(−1)r−k

(
r

k

)
(λtμ)rE

γ r

ρ,μr+1(−φtρ). (3.159)

Therefore,

pk(t) =
∞∑

r=k
(−1)r−k

(
r

k

)
(λtμ)rE

γ r

ρ,μr+1(−φtρ), k ≥ 0, t ≥ 0. (3.160)
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We observe that, for γ = 0,

pk(t) =
∞∑

r=k
(−1)r−k

(
r

k

)
(λtμ)r

Γ (μr + 1)
= (λtμ)kEk+1

μ,μk+1(−λtμ)

= (λtμ)k

k! E
(k)
μ,1(−λtμ), k ≥ 0, t ≥ 0, (3.161)

The first expression of (3.161) coincides with equation (1.4) in Ref. [3]. The third
one is a convenient representation involving the kth derivative of the two parameter
M-L function evaluated at −λtμ. It is immediate to note, from (3.154), by inserting
v = 1, that

∑∞
k=0 pk(t) = 1. From (3.152), one can evaluate the mean value of

N(t) by differentiation of Eq. (3.153) with respect to v and to take v = 1. That is,

{
CD

γ,μ

ρ,−φ,0+〈N(t)〉 = λ, t > 0,

〈N(t)〉∣∣
t=0 = 0,

(3.162)

whose solution is given by

〈N(t)〉 = λtμE
γ

ρ,1+μ(−φtρ), t ≥ 0. (3.163)

3.7.1.1 Subordination Representation

An alternative representation for the fractional Poisson processN(t), t ≥ 0 [11] can
be given as follows. Let us consider the Cauchy problem

{
CD

γ,μ

ρ,−φ,0+h(x, t) = − ∂
∂x
h(x, t), t > 0, x ≥ 0,

h(x, 0+) = δ(x).
(3.164)

The Laplace–Laplace transform of h(x, t) is given by

˜̃
h(z, s) = sμ−1(1 + φs−ρ)γ

sμ(1 + φs−ρ)γ + z , s > 0, z > 0. (3.165)

Therefore one has

sμ(1 + φs−ρ)γ ˜̃
h(z, s)− sμ−1(1 + φs−ρ)γ = −z ˜̃

h(z, s), (3.166)

which immediately leads to (3.165). Consider now the stochastic process, given as
a finite sum of subordinated independent subordinators

Vt =
�γ �∑

r=0

rV
μ

�γ �
γ −rρ

Φ(t) , t ≥ 0, (3.167)
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where �γ � represents the ceiling of γ . Furthermore, we considered a sum of �γ �
independent stable subordinators of different indices and the random time change
here is defined by

Φ(t) =
(�γ �
r

)
V

γ
�γ �
t , t ≥ 0, (3.168)

where V
γ

�γ �
t is a further stable subordinator, independent of the others. Note that in

order the above process Vt , t ≥ 0, to be well-defined, the constraint 0 < μ�γ �/γ −
rρ < 1 holds for each r = 0, 1, . . . , �γ �. The next step is to define its hitting time.
This can be done as

Et = inf{s ≥ 0 : Vs > t}, t ≥ 0. (3.169)

Theorem 2.2 of Ref. [10] ensures us that the law Pr{Et ∈ dx}/dx is the solution
to the Cauchy problem (3.164) and therefore that its Laplace–Laplace transform is
exactly that in (3.165).

Theorem 3.18 ([11]) Let Et , t ≥ 0, be the hitting-time process presented in
formula (3.169). Furthermore let N (t), t ≥ 0, be a homogeneous Poisson process
of parameter λ > 0, independent of Et . The equality

N(t) = N (Et ), t ≥ 0, (3.170)

holds in distribution.

Proof The result can be proved by writing the probability generating function
related to the time changed process N (Et ) as

∞∑

k=0

vk Pr(N (Et ) = k) =
∫ ∞

0
e−λ(1−v)y Pr(Et ∈ dy). (3.171)

Therefore, by taking the Laplace transform with respect to time one obtains

∫ ∞

0

∫ ∞

0
e−λ(1−v)y−st Pr(Et ∈ dy) dt = sμ−1(1 + φs−ρ)γ

sμ(1 + φs−ρ)γ + λ(1 − v) . (3.172)

By inverse Laplace transform one finds

∞∑

k=0

vk Pr(N (Et ) = k) =
∞∑

k=0

(−λ(1 − v))ktμkEkγρ,kμ+1(−φtρ), (3.173)

which coincides with Eq. (3.154).
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3.7.1.2 Renewal Process

The generalized fractional Poisson process N(t), t ≥ 0, can be constructed as a
renewal process with specific waiting times [11]. Let us consider k i.i.d. random
variables Tj , j = 1, . . . , k, representing the inter-event waiting times and having
probability density function

fTj (tj ) = λt
μ−1
j

∞∑

r=0

(−λtμj )rEγ r+γρ,μr+μ(−φtρj ), t ≥ 0, μ ∈ (0, 1), (3.174)

and Laplace transform

〈e−sTj 〉 = λ

∞∑

r=0

(−λ)rs−μr−μ(1 + φs−ρ)−γ r−γ

= λs−μ(1 + φs−ρ)−γ
1 + λs−μ(1 + φs−ρ)−γ ,

∣∣−λs−μ(1 + φs−ρ)−γ ∣∣ < 1

= λ

sμ(1 + φs−ρ)γ + λ . (3.175)

Let Tm = T1 +T2 +· · ·+Tm denote the waiting time of themth renewal event. The
probability distribution Pr(N(t) = k) can be written making the renewal structure
explicit. By Laplace transform of Eq. (3.160) one finds

L [pk](s) =
∞∑

r=k
(−1)r−k

(
r

k

)
λrs−μr−1(1 + φs−ρ)−γ r

= s−1
∞∑

r=0

(−1)r
(
r + k
k

)(
λ

sμ(1 + φs−ρ)γ
)r+k

= s−1λks−μk(1 + φs−ρ)−γ k
∞∑

r=0

(−k − 1

r

)(
λ

sμ(1 + φs−ρ)γ
)r

= s−1λks−μk(1 + φs−ρ)−γ k
(

1 + λ

sμ(1 + φs−ρ)γ
)−k−1

= λksμ−1(1 + φs−ρ)γ
[sμ(1 + φs−ρ)γ + λ]k+1

. (3.176)
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On the other hand, one has [11]

L [pk](s) =
∫ ∞

0
e−st (Pr(Tk < t)− Pr(Tk+1 < t)) dt

=
∫ ∞

0
e−st

[∫ t

0
Pr(Tk ∈ dy)−

∫ t

0
Pr(Tk+1 ∈ dy)

]
dt

=
∫ ∞

0
Pr(Tk ∈ dy)

∫ ∞

y

e−st dt −
∫ ∞

0
Pr(Tk+1 ∈ dy)

∫ ∞

y

e−st dt

= s−1
[∫ ∞

0
e−sy Pr(Tk ∈ dy)−

∫ ∞

0
e−sy Pr(Tk+1 ∈ dy)

]

= s−1

[(
λ

sμ(1 + φs−ρ)γ + λ
)k

−
(

λ

sμ(1 + φs−ρ)γ + λ
)k+1

]

= s−1
[
λk[sμ(1 + φs−ρ)γ + λ] − λk+1

[sμ(1 + φs−ρ)γ + λ]k+1

]

= λksμ−1(1 + φs−ρ)γ
[sμ(1 + φs−ρ)γ + λ]k+1

, (3.177)

which coincides with (3.176). Therefore, considering the renewal structure of the
process, one can find the probability of the residual waiting time as [11]

P(T1 > t) = p0(t) =
∞∑

r=0

(−λtμ)rEγ rρ,μr+1(−φtρ). (3.178)

In order to prove the non-negativity of the probability density function (3.174)
(and therefore of pk(t)) one can use the properties of the completely monotone and
Bernstein functions. Let us consider the case γ 
= 0 (the case γ = 0 is studied in
Ref. [22]). From the Bernstein theorem (see e.g. Ref. [35], Theorem 1.4), in order
to show the non-negativity of the probability density function, it is sufficient to find
when its Laplace transform is a completely monotone function (3.175). The function
z → 1/(z + λ) is completely monotone for any positive λ and that 1/(g(z)+ λ) is
completely monotone if g(z) is a Bernstein function. Thus, one should prove that
the function

sμ(1 + φs−ρ)γ = (
sμ/γ + φsμ/γ−ρ)γ (3.179)
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is a Bernstein function. We have

(
sμ/γ + φsμ/γ−ρ)γ =

[(
sμ/γ + φsμ/γ−ρ)�γ �]γ /�γ �

=
⎛

⎝
�γ �∑

r=0

(�γ �
r

)
φrsμ�γ �/γ−ρr

⎞

⎠

γ /�γ �
. (3.180)

Since the space of Bernstein functions is closed under composition and linear
combinations [35], it follows that (3.180) is a Bernstein function for 0 < μ�γ �/γ −
rρ < 1, ∀ r = 0, . . . , �γ �, which coincide with the constraints derived in
Sect. 3.7.1.1. The same restrictions will be obtained in the next section, within the
continuous time random walk theory.

3.7.1.3 Fractional Poisson Process Involving Three Parameter M-L
Function

At the end of this chapter we consider a fractional Poisson process introducing a
discrete probability distribution in terms of the three parameter M-L function [31].
The telegraph’s process, which represents a finite-velocity one dimensional random
motion, has been generalized to fractional one. The fractional extensions of the
telegraph process {Tα(t) : t ≥ 0}, whose changes of direction are related to the
fractional Poisson process {Nα(t) : t ≥ 0} having distribution [3]

P(Nα(t) = k) = λk

Eα(λtα)

tαk

Γ (αk + 1)
, k ∈ N0 := N ∪ {0}, t ≥ 0.

The fractional Poisson process resulting in {Nα,β(t) : t ≥ 0} defined with two
parameter M-L function Eα,β(λtα) was studied in [15]. Therefore, the related
distribution is

P(Nα,β(t) = k) = λk

Eα,β(λtα)

tαk

Γ (αk + β) , k ∈ N0, t ≥ 0,

for which the related raw moments are obtained in terms of the Bell polynomials
[15].

As a generalization of the previous ones, the more general fractional Poisson
process {N γ

α,β(t) : t ≥ 0} defined by the three parameter M-L function Eγα,β(λt
α)

has distribution [31]

P(N
γ
α,β(t) = k) = λk

E
γ
α,β(λt

α)

(γ )k t
αk

k!Γ (αk + β) , k ∈ N0, t ≥ 0. (3.181)
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From here one can conclude that there is a correspondence between the non-
homogeneous Poisson process {N (t) : t ≥ 0} with intensity function λαtα−1,

P(N (t) = k) = e−λtα
(λtα)k

Γ (k + 1)
, λ, α > 0, k ∈ N0,

and the fractional Poisson process {N γ
α,β(t) : t ≥ 0}.

Proposition 3.4 ([31]) Let min{α, β, γ, λ} > 0 and t ≥ 0. Then

P(N
γ
α,β(t) = k) =

(γ )k

Γ (αk + β) P(N (t) = k)

∑

n≥0

(γ )n
Γ (αn+β) P(N (t) = n)

, k ∈ N0,

where N (t) is a non-homogeneous Poisson process with intensity function λαtα−1.

Proof Rewriting (3.181) as

P(N
γ
α,β(t) = k) =

(γ )k

Γ (αk + β)
(λtα)k

k! e−λtα

∑

n≥0

(γ )n

Γ (αn+ β)
(λtα)n

n! e−λtα
,

one obtains the result in this Proposition.

In what follows for simplicity one gets λ = 1. For a non-negative random
variable X on a standard probability space (Ω,F ,P) having a fractional Poisson-
type distribution

P
γ
α,β(k) = P(X = k) = 1

E
γ
α,β(t

α)

(γ )k t
αk

k!Γ (αk + β) , k ∈ N0, t ≥ 0,

with min{α, β, γ } > 0, and for
∑
k≥0 P

γ
α,β(k) = 1, the random variable X is well

defined. This correspondence we quote in the sequel X ∼ ML(α, β, γ ).
The factorial moment of the random variable X of order s ∈ N is given by

Φs = 〈X(X − 1) · · · (X − s + 1)〉 = (−1)s 〈(−X)s〉 = ds

dts
〈tX〉

∣
∣
∣
t=1
,

provided the moment generating function MX(t) = 〈tX〉 there exists in some
neighborhood of t = 1 together with all its derivatives up to the order s. By virtue
of the Viète-Girard formulae for expandingX(X − 1) · · · (X − s + 1) one obtains

Φs =
s∑

r=1

(−1)s−r er 〈Xr 〉
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where er is an elementary symmetric polynomials:

er = er (�1, · · · , �r ) =
∑

1≤�1<···<�r≤s−1

�1 · · · �r, r = 0, s − 1.

Theorem 3.19 ([31]) For all min{α, β, γ } > 0 the s-th raw moment of the random
variable X ∼ ML(α, β, γ ) is given by

〈Xs 〉 = 1

E
γ
α,β(t

α)

s∑

j=0

(γ )j

{
s

j

}
tαj E

γ+j
α,αj+β(t

α), s ∈ N0, t ≥ 0. (3.182)

Moreover, the s-th factorial moment is given by

Φs = 1

E
γ
α,β(t

α)

s∑

r=1

(−1)r er

r∑

j=0

(γ )j

{
r

j

}
tαj E

γ+j
α,αj+β(t

α), (3.183)

where the curly braces denote the Stirling numbers of the second kind.

Proof From the connection between the raw and the factorial moments of a random
variable:

〈Xs 〉 =
s∑

j=0

(−1)j
{
s

j

}
〈(−X)j 〉,

{
s

j

}
= 1

j !
j∑

m=0

(−1)j−m
(
j

m

)
ms,

one finds

〈Xs 〉 =
s∑

j=0

(−1)j
{
s

j

}
〈(−X)j 〉 =

s∑

j=0

(−1)j
{
s

j

}∑

k≥0

(−k)j Pγα,β(k)

= 1

E
γ
α,β(t

α)

s∑

j=0

(−1)j
{
s

j

}∑

k≥0

(−k)j (γ )k tαk
k!Γ (αk + β)

= 1

E
γ
α,β(t

α) Γ (γ )

s∑

j=0

{
s

j

}
tαj

∑

k≥j

Γ (γ + (k − j)+ j) tα(k−j)
(k − j)!Γ (α(k − j)+ αj + β)

= 1

E
γ
α,β(t

α)

s∑

j=0

Γ (γ + j)
Γ (γ )

{
s

j

}
tαj

∑

k≥0

(γ + j)k tαk
k!Γ (αk + αj + β) ,

which is the statement (3.182). The derivation of (3.183) is now straightforward.
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In order to obtain the fractional order moments one needs the so-called extended
Hurwitz-Lerch Zeta (HLZ) functionΦ(ρ,σ,κ)λ,μ;ν (z, s, a) introduced in Refs. [14, 38] as

Φ
(ρ,σ,κ)

λ,μ;ν (z, s, a) =
∑

n≥0

(λ)ρn (μ)σn

n! (ν)κn
zn

(n+ a)s , (3.184)

where λ,μ ∈ C, a, ν ∈ C \ Z
−
0 , ρ, σ, κ > 0, κ − ρ − σ + 1 > 0 when s, z ∈ C,

κ − ρ − σ = −1 and s ∈ C when |z| < δ = ρ−ρσ−σ κκ , while κ − ρ − σ = −1
and �(s + ν − λ− μ) > 1 when |z| = δ. By setting σ → 0 in (3.184) one obtains
the generalized HLZ function

Φ
(ρ,0,κ)
λ,μ;ν (z, s, a) ≡ Φ

(ρ,κ)

λ;ν (z, s, a).

Theorem 3.20 ([31]) Let X ∼ ML(α, β, γ ). For all min{α, β, γ } > 0 and for all
s ≥ 0 one gets

〈Xs 〉 = γ tα

E
γ
α,β(t

α) Γ (α + β) Φ
(1,α)
γ+1;α+β(t

α, 1 − s, 1). (3.185)

Proof By definition, for all s > 0 it follows

〈Xs 〉 = 1

E
γ
α,β(t

α)

∑

n≥1

ns
(γ )n t

αn

n!Γ (αn + β),

since the zeroth term vanishes. Therefore,

〈Xs〉 = 1

E
γ
α,β(t

α)

∑

n≥1

ns−1(γ )n t
αn

(n− 1)!Γ (αn+ β)

= γ tα

E
γ
α,β(t

α)

∑

n≥0

(γ + 1)n tαn

n!Γ (αn+ α + β) (n+ 1)1−s

= γ tα

E
γ
α,β(t

α) Γ (α + β) Φ
(1,α)
γ+1;α+β(t

α, 1 − s, 1).

Being λ = γ + 1, ν = α + β, z = tα; s �→ 1 − s, ρ = 1, κ = α and a = 1, by
applying the convergence constraints for Φ(ρ,κ)

λ;ν (z, s, a) in (3.184), one finishes the
proof.

Remark 3.2 For the raw integer order moments for the two parameter M-L dis-
tributed random variable in [15] has been found

〈Yn〉 = 1

Eα,β(t)

(
t

d

dt

)n
Eα,β(t), n ∈ N0.
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This case corresponds to Y ∼ ML(α, β, 1) distribution. Indeed, taking s = 1, γ =
1; t �→ t

1
α in (3.182) we have

〈X〉 = t
E2
α,α+β(t)
Eα,β(t)

.

On the other hand, since

(
Eα,β(t)

)′ =
∑

n≥1

n tn−1

Γ (αn + β) =
∑

n≥1

(2)n−1t
n−1

(n− 1)!Γ (α(n− 1)+ α + β) = E2
α,α+β(t),

one concludes that 〈X〉 ≡ 〈Y 〉. By setting s = 1, γ = 1, t �→ t
1
α , relation (3.185)

becomes

〈X〉 = t
Φ
(1,α)
2;α+β(t, 0, 1)

Eα,β(t) Γ (α + β) = t

Eα,β(t) Γ (α + β)
∑

n≥0

(2)ntn

n! (α + β)αn .

Corollary 3.3 ([31]) For all min{α, β, γ } > 0 and for all s ∈ N0 we have

Φ
(1,α)
γ+1;α+β(t

α, 1 − s, 1) = Γ (α + β)
γ tα

s∑

j=0

(γ )j

{
s

j

}
tαj E

γ+j
α,αj+β(t

α), t > 0.
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Chapter 4
Fractional Diffusion and Fokker-Planck
Equations

In this chapter we pay our attention to the CTRW theory and the related fractional
diffusion and Fokker-Planck equations. In the literature the mostly used fractional
diffusion equations, which are equivalent, have the following forms [64, 83]:

RLD
μ
0+f (x, t)− δ(x)

t−μ

Γ (1 − μ) = Kμ
∂2

∂x2
f (x, t) (4.1a)

CD
μ
0+f (x, t) = Kμ

∂2

∂x2f (x, t) (4.1b)

i.e., these are fractional equations in the R-L and Caputo sense, respectively. Kμ is
the generalized diffusion coefficient of physical dimension [Kμ] = m2/sμ. While
in the R-L formulation the initial condition f (x, t = 0+) = δ(x) is directly
incorporated in the dynamic equation, the analogous Caputo version appears closer
to the normal diffusion equation for μ = 1. Furthermore, the time fractional
diffusion equation can have the following equivalent representation [64]:

∂

∂t
f (x, t) = Kμ RLD

1−μ
0+

∂2

∂x2 f (x, t), (4.2)

where the R-L fractional derivative is from the right-hand side of the equation. All
these three equations have the same fundamental solution which in the Fourier-
Laplace space satisfies

˜̂
F(k, s) = sμ−1

sμ + Kμk2 . (4.3)

The inverse Laplace transformation, by using relation (1.3), gives the mode
relaxation of the M-L form

F̃ (k, t) = Eμ

(
−Kμk

2tμ
)
, (4.4)
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which in the long time limit shows a power-law decay. For μ = 1 one recovers the
case of classical diffusion equation with exponential mode relaxation,

F̃ (k, t) = e−K k2t , (4.5)

which is different than the slower power-law relaxation in case of time fractional
diffusion equation.

It is also known that the case of finite characteristic waiting time and diverging
jump length variance (Lévy flights) is related with the space fractional diffusion
equation [25, 65]

∂

∂t
f (x, t) = Kα

∂α

∂|x|α f (x, t), (4.6)

where Kα is the generalized diffusion coefficient of physical dimension [Kα] =
mα/s, and α is the Lévy index. We note that the Riesz-Feller operator in the space-
fractional diffusion equation needs modification in the presence of non-natural
boundary conditions, due to the highly non-local nature of Lévy flight processes
(see the discussion in Refs. [22, 53]). The corresponding equation in the Fourier-
Laplace space then becomes

˜̂
F(k, s) = 1

s + Kα|k|α . (4.7)

By inverse Laplace transform, it is obtained

F(k, t) = e−Kα |k|αt , (4.8)

which represents the characteristic function for the Lévy stable law, see Eq. (4.291).
Here we note that for α = 2 one recovers the result (4.5) for normal diffusion.

Furthermore, one combines the effects of subdiffusion and Lévy flight process,
by analyzing the following space-time fractional diffusion equation [57]:

CD
μ
0+f (x, t) = Kμ,α

∂α

∂|x|α f (x, t), (4.9)

for 0 < μ ≤ 1 and 0 < α ≤ 2, where Kμ,α is the generalized diffusion coefficient
of physical dimension [Kμ,α] = mα/sμ. This equation in the Fourier-Laplace space
becomes

F̃ (k, s) = sμ−1

sμ + Kμ,α|k|α , (4.10)
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which can be obtained also from the CTRW theory. By applying the inverse Laplace
transform, from Eq. (1.3), this equation becomes

F(k, t) = Eμ
(−Kμ,αt

μ|k|α) , (4.11)

which describes the mode relaxation of Eq. (4.9), for a fixed Fourier mode k [66],
and generalizes the exponential mode relaxation. Mainardi et al. [59] represented
the fundamental solution of the Cauchy problem for space-time fractional diffusion
equation in terms of the Fox H -functions, based on their Mellin-Barnes integral
representations. The Cauchy problem for space fractional diffusion equation with
a Fourier symbol (−|k|α) is analyzed by using entropy estimates [12]. Later, this
result was generalized by deriving the maximum principle [28], based on the non-
negativity of the kernel of the corresponding semi-group.

The time fractional Fokker-Planck equation (FFPE) is introduced by Metzler
et al. [68] in order to describe the anomalous subdiffusion behavior of a particle
in presence of external force field close to thermal equilibrium. It represents a
generalization of the classical Fokker-Planck equation [80], which describes an
overdamped Brownian motion in a given external potential, by substitution of the
first time derivative by fractional derivative of R-L or Caputo form. FFPE for the
probability distribution function f (x, t) is introduced in the following way [68]:

∂f (x, t)

∂t
= RLD

1−μ
0+

[
∂

∂x

V ′(x)
mημ

+ Kμ
∂2

∂x2

]
f (x, t), (4.12)

where ημ is the generalized frictional constant
([
ημ

] = sμ−2
)
, m is the mass of the

particle, and V (x) is the external potential. Equation (4.12) can be rewritten as

ḟ (x, t) = RLD
1−μ
0+ LFPf (x, t), (4.13)

where

LFP = ∂

∂x

V ′(x)
mημ

+ Kμ
∂2

∂x2
(4.14)

is the so-called Fokker-Planck operator. The time fractional Fokker-Planck equa-
tion (4.12) can also be written in the form of Caputo as follows:

CD
μ
0+f (x, t) =

[
∂

∂x

V ′(x)
mημ

+ Kμ
∂2

∂x2

]
f (x, t), (4.15)

which for μ = 1 reduces to the well-known Fokker-Planck equation [80]

∂f (x, t)

∂t
=

[
∂

∂x

V ′(x)
mημ

+ Kμ

∂2

∂x2

]
f (x, t). (4.16)
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4.1 Continuous Time Random Walk Theory

Brownian motion in one dimension, which is the classical model for normal
diffusion, can be explained within random walk theory according to which the
particle in equal time steps Δt performs steps in random direction (left or right)
to the nearest neighbor site a lattice constant Δx away. The master equation for
such a stochastic process is given by [64]

W(x, t +Δt) = 1

2
W(x −Δx, t)+ 1

2
W(x +Δx, t), (4.17)

and describes the probability distribution function (PDF) to be at position x at time
t +Δt in dependence of the population of the two adjacent sites x ±Δx at time t .
The prefactor 1/2 is taken due to the fact that the particle can come at position x
from position x −Δx or x +Δx with the same probability. In the continuum limit
Δt → 0 and Δx → 0, by Taylor expansion of the PDF in Eq. (4.17) one easily
finds that the PDF to find the particle at position x at time t satisfies the standard
diffusion equation

∂W(x, t)

∂t
= K

∂2W(x, t)

∂x2 , (4.18)

where K = limΔx→0,Δt→0
[Δx]2

2Δt is the diffusion coefficient, with physical
dimension [K ] = m2 s−1. The corresponding solution is the well-known Gaussian
PDF (see Fig. 4.1),

W(x, t) = 1√
4πK t

e−
x2

4K t , (4.19)
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Fig. 4.1 Gaussian PDF (4.19) for K = 1, and t = 0.2 (blue line), t = 0.5 (red line), t = 2 (green
line)
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and the mean squared displacement (MSD) has a linear dependence on time, i.e.,

〈
x2(t)

〉
=

∫ ∞

−∞
x2W(x, t) dx = 2K t . (4.20)

Remark 4.1 Here we note that the Green’s function (4.19), the Gaussian PDF, of the
diffusion equation (4.18) has non-zero values for any x at t > 0, which means that
some of the particles move with an arbitrarily large (infinite) velocity. To avoid this,
one introduces the so-called telegrapher’s or Cattaneo equation, or finite-velocity
diffusion equation, given by [17, 18]

∂W(x, t)

∂t
+ τ ∂

2W(x, t)

∂t2
= K

∂2W(x, t)

∂x2 , (4.21)

where τ is the time parameter, K is the diffusion coefficient, which relates to a
finite propagation velocity v = √

K /τ . In the diffusion limit τ → 0 of the infinite-
velocity propagation, it reduces to the diffusion equation (4.18), and in the opposite
limit τ → ∞—to the wave equation,

∂2W(x, t)

∂t2
= v2 ∂

2W(x, t)

∂x2 , (4.22)

which will be considered in the next chapter.

The continuous time random walk model (CTRW) represents a generalization
of the Brownian random walk model. The mathematical theory of CTRW was
developed by Montroll and Weiss [71], and applied first time to physical problems
by Scher and Lax [98]. Nowadays it has become a very popular framework for the
description of anomalous non-Brownian diffusion in complex systems, and after a
50 years’ history the model is still trendy with applications in various fields [54].
Anomalous diffusion is characterized by power-law dependence of MSD on time

〈
x2(t)

〉
� tα (4.23)

i.e., it deviates from the linear Brownian scaling with time. It is known from a
wide range of systems—depending on the magnitude of the anomalous diffusion
exponent α one distinguishes subdiffusion (0 < α < 1) and superdiffusion (α > 1)
[15, 30, 64, 65, 111, 112]. In Eq. (4.23), we calculate the spatial integral of x2 over
the probability density function W(x, t) to find the test particle at position x at
some given time t . Examples for such anomalous diffusion phenomena include
subdiffusive phenomena or charge carrier motion in amorphous semiconductors
[99, 103], tracer chemical dispersion in groundwater studies [100], or the motion
of submicron probes in living biological cells [34, 50] or in dense fluids [35].
Superdiffusion occurs in weakly chaotic systems [106], turbulence [79], diffusion
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in porous structurally inhomogeneous media [27, 119], as well as in active search
processes [8].

Here we briefly review the fundamental results of the CTRW theory. This
stochastic model is based on the fact that individual jumps are separated by random
waiting times. The waiting times between the jumps ψ(t) and the lengths of the
jumps λ(x) are obtained from the jump PDF Ψ (x, t), which is the PDF of making a
jump with length x in the time interval t and t + dt . Thus, one has [51, 52, 64, 114]

ψ(t) =
∫ ∞

−∞
Ψ (x, t) dx

and

λ(x) =
∫ ∞

0
Ψ (x, t) dt,

For decoupled (or separable) CTRWs one simply uses

Ψ (x, t) = λ(x)ψ(t).

The Brownian random walk model is the limit case of CTRW when the waiting time
PDF ψ(t) is of Poisson form and the jump length PDF λ(x) is of Gaussian form. In
the more general case of any finite characteristic waiting time

T =
∫ ∞

0
t ψ(t) dt

and any finite jump length variance

Σ2 =
∫ ∞

−∞
x2λ(x) dx,

the corresponding process in the diffusion limit shows normal diffusive behavior
with Gaussian PDF W(x, t) [41]. The characteristic waiting time T and jump
length variance Σ2 could be either finite or infinite, and depending on this the
corresponding process shows either normal or anomalous diffusion. For example,
it has been shown that the CTRW process with a scale-free waiting time PDF of
power-law form

ψ(t) � t−1−α

with 0 < α < 1, which means infinite characteristic waiting time T , and finite
Σ2 leads in the continuum limit to the time fractional diffusion equation for
subdiffusion, for which

〈
x2(t)

〉 � tα [15, 64]. The case with long tailed jump length
PDF

λ(x) � |x|−1−μ,
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μ < 2, which means infinite jump length variance, leads to superdiffusion [64].
For the PDFW(x, t) the simple algebraic form for the Fourier-Laplace transform

has been obtained [51] (see also [64, 65, 99, 114])

˜̂
W(k, s) = 1 − ψ̂(s)

s

1

1 − ˆ̃
Ψ (k, s)

W̃0(k). (4.24)

HereW0(x) is the initial condition, ψ̂(s) is the Laplace transform of the waiting time

PDF ψ(t), and ˆ̃
Ψ (k, s) is the Fourier-Laplace transform of the jump PDF Ψ (x, t).

The case of decoupled CTRW yields ˆ̃
Ψ (k, s) = ψ̂(s)λ̃(k).

In what follows, for the distribution of jump lengths, we assumed a Gaussian
form with variance σ 2, whose small k expansion in Fourier space reads λ̃(k) �
1 − k2 [64, 65]. The physical dimensions of the space-conjugated Fourier variable
can be restored by noting that the Fourier transform of the jump length PDF is
λ̃(k) � 1 − 1

2σ
2k2 for small k, where σ 2 has the dimension of length. To avoid

dimensions here, we set σ 2 = 2. Here we note that in this chapter we consider the
long wavelength approximation λ̃(k) � 1 − k2, which gives the same result for the
MSD as the one obtained by employing the exact Gaussian jump length PDF. The
differences appear in the short time limit in case of calculation of the higher order
moments. For example, if one uses the next term in the expansion of the Gaussian
jump length PDF, i.e., λ̃(k) � 1 − m2

2 k
2 + m4

4! k
4, different behavior than the one in

case of using λ̃(k) � 1 − m2
2 k

2 for the fourth moment in the short time limit will
be obtained. However, the behavior of the fourth moment observed in the long time
limit is the same in both cases. This has been discussed in detail by Barkai [5] (see
also Ref. [6]).

For a Poissonian waiting time PDF

ψ(t) = e−t , (4.25)

the characteristic waiting time T is finite and equal to unity. With dimensions this
Poissonian waiting time PDF would read

ψ(t) = 1

τ
e−t/τ ,

where τ is the characteristic waiting time. Relation (4.24) then encodes the PDF for
classical Brownian motion in Fourier-Laplace domain [64, 65],

˜̂
W(k, s) = 1

s + K1k2 W̃0(k), (4.26)
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where K1 = σ 2/(2τ ) is the diffusion coefficient. For W(x, 0) = δ(x), by inverse
Fourier-Laplace transform we retrieve the classical Gaussian

W(x, t) = 1√
4πK1t

e
− x2

4K1t .

For the scale-free waiting time PDF of the power-law formψ(t) � τα/t1+α with
0 < α < 1, for which the characteristic waiting time T diverges, it can be shown
that the PDF in Fourier-Laplace space is given by the algebraic form [64, 65]

˜̂
W(k, s) = sα−1

sα + Kαk2 W̃0(k). (4.27)

where Kα = σ 2/(2τα) is the generalized diffusion coefficient. Equation (4.27) can
be rewritten as

sα
˜̂
W(k, s)− sα−1W̃0(k) = −Kαk

2 ˜̂
W(k, s). (4.28)

By inverse Fourier transform, one finds

sαŴ (k, s)− sα−1W0(x) = Kα
∂2Ŵ (x, s)

∂x2
. (4.29)

The inverse Laplace transform, by employing relation (2.20), one obtains the
time fractional diffusion equation (4.1) [64, 65]. Its solution can be obtained
first by inverse Laplace-Fourier transform of Eq. (4.27). Therefore, one finds the
fundamental solution (W0(x) = δ(x), W̃0(k)) in terms of the FoxH -function (1.40),
or the Wright function (1.62),

W(x, t) = F−1
[
L −1

[
sα−1

sα + Kαk2

]]
= F−1

[
Eα

(
−Kαk

2tα
)]

= 1

2|x|H
1,0
1,1

[ |x|√
Kαtα

∣
∣
∣
∣
(1, α/2)
(1, 1)

]

= 1√
4πKαtα

H
2,0
1,2

[
x2

4Kαtα

∣
∣∣
∣
(1 − α/2, α)
(0, 1), (1/2, 1)

]

= 1√
4Kαtα

Mα/2

( |x|√
Kαtα

)
. (4.30)

where we apply relations (1.3) and (1.52). The cusp at the origin of the solution
(4.30), which is observed in Fig. 4.2, corresponding to the slowly decaying initial
conditionW0(x) = δ(x) is distinct for this process. It appears due to the scale-free
waiting time PDF ψ(τ) with its diverging characteristic time scale. The difference
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Fig. 4.2 PDF (4.30) of the fractional diffusion equation for α = 1/2, Kα = 1, and t = 0.1 (blue
line), t = 1 (red line), and t = 10 (green line). Reprinted figure with permission from T. Sandev,
A.V. Chechkin, N. Korabel, H. Kantz, I.M. Sokolov and R. Metzler, Phys. Rev. E, 92, 042117
(2015). Copyright (2015) by the American Physical Society

between the PDF for the time fractional diffusion equation (4.1) and the Gaussian
PDF for the diffusion equation (4.18) is evident.

4.2 Generalized Diffusion Equation in Normal Form

In Ref. [86] the generalized waiting time PDF in the Laplace space of form

ψ̂(s) = 1

1 + sγ̂ (s) (4.31)

was introduced, where γ (t) has the property

lim
t→∞ γ (t) = lim

s→0
sγ̂ (s) = 0. (4.32)

To guarantee that this generalized function is a proper PDF its Laplace transform
ψ̂(s) should be completely monotone [101]. This requirement is fulfilled if the
function 1 + sγ̂ (s) is a Bernstein function. We note that it can be shown that if
f (s) is a complete Bernstein function then g(s) = 1/f (s) is a completely monotone
function [11] (see Appendix A), which means that sγ̂ (s) itself should be a Bernstein
function. The waiting time PDF (4.31) together with a Gaussian jump length PDF
with λ̃(k) � 1 − k2 yields the Fourier-Laplace form

˜̂
W(k, s) = 1

s

1 − 1/[1 + sγ̂ (s)]
1 − (1 − k2)/[1 + sγ̂ (s)] = γ̂ (s)

sγ̂ (s)+ k2 , (4.33)
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of the PDF W . Relation (4.33) is valid for all times, not just in the long time limit,
since the approximation ψ̂(s) � 1 − sγ̂ (s) was not applied in the derivation of the
PDF (4.33) in Fourier-Laplace space. Rewriting Eq. (4.33) as

γ̂ (s)
[
s

˜̂
W(k, s) − W̃0(k)

]
= −k2 ˜̂

W(k, s), (4.34)

then from inverse Fourier-Laplace transform we obtain the generalized diffusion
equation [86, 97]

∫ t

0
γ (t − t ′) ∂

∂t ′
W(x, t ′) dt ′ = ∂2

∂x2W(x, t), (4.35)

with the memory kernel γ (t). Note that in the generalized diffusion equation (4.35)
the memory kernel appears to the left of the time derivative in the integral such that
for a power-law form of γ (t), the Caputo fractional derivative is recovered.

From (4.33) one concludes that the solution is normalized since

[W(k, s)]|k=0 = 1

s
. (4.36)

Furthermore, the MSD can be calculated and is given by [86]

L −1
[
− ∂2

∂k2
W(k, s)

]∣∣
∣∣
k=0

= 2L−1
[
s−1

sγ̂ (s)

]
. (4.37)

4.2.1 Subordination Approach and Non-negativity of Solution

Here we present the subordination approach for verification of the positivity (non-
negativity) of the solution of Eq. (4.35). From Eq. (4.33) we have

˜̂
W(k, s) = γ̂ (s)

∫ ∞

0
e−u

(
sγ̂ (s)+k2

)
du =

∫ ∞

0
e−uk2

Ĝ(u, s) du, (4.38)

where the functionG is given by

Ĝ(u, s) = γ̂ (s)e−u sγ̂ (s) = − ∂

∂u

1

s
L̂(u, s), (4.39)

where

L̂(u, s) = e−u sγ̂ (s).
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Thus, the PDFW(x, t) is given by [62, 63]

W(x, t) =
∫ ∞

0

e− x2
4u√

4πu
G(u, t) du. (4.40)

The function G(u, t) is the PDF providing the subordination transformation, from
time scale t (physical time) to time scale u (operational time). Indeed, at first we
note thatG(u, t) is normalized with respect to u for any t . From Eq. (4.39) we find

∫ ∞

0
G(u, t) du = L −1

s

[∫ ∞

0
γ̂ (s)e−usγ̂ (s) du

]
= L −1

s

[
1

s

]
= 1. (4.41)

In order to prove the positivity of G(u, t) it is sufficient to show that its Laplace
transform Ĝ(u, s) is completely monotone on the positive real axis s [101]. For that
we need to show that [93]

(i) the function γ (s) is completely monotone, and
(ii) the function sγ (s) is a Bernstein function.

If (ii) holds, then the function e−sγ (s) is completely monotone since exponential
function is completely monotone and the composition of a completely monotone
and a Bernstein function is itself completely monotone. Furthermore, G(u, s)
is completely monotone, as the product of two completely monotone functions,
e−sγ̂ (s) and γ̂ (s).

Alternatively, one can check that sγ̂ (s) is a complete Bernstein function, which
is an important subclass of the Bernstein functions [101]. An example is a function
sα with 0 ≤ α ≤ 1. This condition is enough for complete monotonicity of Ĝ(u, s)
due to the property of the complete Bernstein function: if f (s) is complete Bernstein
function, then f (s)/s is completely monotone [101]. By using the properties of the
completely monotone and Bernstein functions we can prove the non-negativity of
the PDF for the special cases of the memory kernel considered in this section.

Remark 4.2 Here we note that, following the procedure in [58] (see also [32, 49,
73]), one can construct a stochastic process x(t) which PDF obeys the generalized
diffusion equation, and can be represented as rescaled Brownian motion B(u)
subordinated by an inverse generalized Lévy-stable subordinatorS (t), independent
of B(u). The stochastic process then is represented by

x(t) =
√

2Kγ B [S (t)] , (4.42)

where for simplicity we use Kγ = 1, and the operational time is given by S (t) =
inf {u > 0 : T (u) > t}, where T (u) is an infinite divisible process, i.e., a strictly
increasing Lévy motion for which

〈
e−sT (u)

〉
= e−uΨ̂ (s),
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where Ψ̂ (s) = sγ̂ (s) is the Lévy exponent. This stochastic process will be well
defined if the Lévy exponent belongs to the class of Bernstein functions [58, 73]. The
function Ψ̂ (s) = sγ̂ (s) is a Bernstein function if γ̂ (s) is a completely monotone,
which is the same result as the one obtained before by the subordination approach.

Remark 4.3 The Langevin equation approach to the CTRW model is based on the
coupled Langevin equations [23, 31]

d

du
x(u) = ζ(u),

d

du
t (u) = χ(u). (4.43)

which means that the random walk x(t) is parameterized in terms of the number of
steps u. The connection to the real time t is given by the total

t (u) =
∫ u

0
χ(u′) du′

of the individual waiting times χ for each step. Here ζ(u) represents white Gaussian
noise with zero mean 〈ζ(u)〉 = 0 and correlation

〈ζ(u)ζ(u′)〉 = 2δ(u− u′).

The term χ(u) represents a generalized stable Lévy noise with a characteristic

function ˜̂
L(k, s), which is a Fourier transform of the PDF L̂(u, s) = e−u sγ̂ (s).

The PDF L(u, t) is related to the PDF G(u, t) which provides subordinating
transformation given by (4.40), and which Laplace transform is given by the general
relation (4.39). Thus, it reads [10, 23]

G(u, t) = − ∂

∂u
〈Θ(t − t (u))〉 , (4.44)

where Θ(x) is the Heaviside step function. From the Laplace transform and since
the process t (u) is a generalized stable Lévy processes, for the PDF Ĝ(u, s) one has

Ĝ(u, s) = − ∂

∂u

1

s

〈∫ ∞

0
δ(t − t (u))e−st dt

〉

= − ∂

∂u

1

s

〈
e−st (u)

〉
= − ∂

∂u

1

s
L̂(u, s). (4.45)

From this result we see that it coincides with the one obtained in the framework of
the subordination approach.
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4.2.2 Specific Examples

In what follows we will consider several specific forms for the memory kernel γ (t).
In the simplest case we use the Dirac delta form γ (t) = δ(t), leading us back to an
exponential (Poissonian) waiting time PDF underlying Brownian motion,

ψ(t) = L −1
[

1

1 + s
]

= e−t , (4.46)

and Eq. (4.35) reduces to the classical diffusion equation

∂

∂t
W(x, t) = ∂2

∂x2
W(x, t),

whose solution is represented through the famed Gaussian PDF. The linear depen-
dence of the MSD on time directly follows from relation (4.37).

For a power-law memory kernel γ (t) = t−α/Γ (1 − α) one obtains the M-L
waiting time PDF [37, 39, 40]

ψ(t) = L −1
[

1

1 + sα
]

= tα−1Eα,α
(−tα) . (4.47)

In this case Eq. (4.35) reduces to the fractional diffusion equation (4.1), whose MSD
from Eq. (4.37) is given by

〈
x2(t)

〉 = 2 tα

Γ (1+α) . Its solution, which is represented

by the Fox H -function, is non-negative since γ̂ (s) = sα−1 is non-negative and
sγ̂ (s) = sα is a Bernstein function for 0 < α < 1.

4.2.2.1 Dirac Delta and Power-Law Memory Kernel

Let us first consider a memory composed of a power-law and a Dirac delta function
[86],

γ (t) = a1
t−α

Γ (1 − α) + a2δ(t), (4.48)

with 0 < α < 1, and where a1 and a2 are constants. From Laplace transform of
Eq. (4.48) it then follows that

γ̂ (s) = a1 s
α−1 + a2, (4.49)
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from where we can conclude that assumption (4.32) is satisfied. For the waiting time
PDF one finds [86]

ψ(t) = L −1
[

1

1 + a1 sα + a2 s

]
= E(1,1−α),1

(
− 1

a2
t,−a1

a2
t1−α

)

= 1

a2

∞∑

n=0

(−1)n

an2
tnEn+1

1−α,n+1

(
−a1

a2
t1−α

)
, (4.50)

where E(α1,α2),β(z1, z2) is the multinomial M-L function (1.35), and Eδα,β(z) is the
three parameter M-L function (1.14). The infinite series in the three parameter M-L
functions of the form (4.50) are convergent [84] (see also Refs. [74, 75]). For the
short time limit we then obtain

ψ(t) � 1

a2

(
1 − a1

a2

t1−α

Γ (2 − α)
)
. (4.51)

In the long time limit we find

ψ(t) � a1α
t−α−1

Γ (1 − α) . (4.52)

This CTRW model corresponds to the following equation:

a1 CD
α
0+W(x, t) + a2

∂

∂t
W(x, t) = ∂2

∂x2W(x, t). (4.53)

Its solution is given in terms of infinite series in Fox H -functions [87], and is non-
negative since γ̂ (s) = a1 s

α−1+a2 is completely monotone and sγ̂ (s) = a1 s
α+a2 s

is a Bernstein function for 0 < α < 1.
For this memory kernel, the MSD can then be expressed in terms of the two

parameter M-L function,

〈
x2(t)

〉
= 2L −1

[
s−1

a1 sα + a2 s

]
= 2

a2
tE1−α,2

(
−a1

a2
t1−α

)
. (4.54)

For the short time this implies the normal diffusive behavior

〈
x2(t)

〉
= 2

a2
t, (4.55)

while in the long time limit we find the subdiffusive scaling

〈
x2(t)

〉
= 2

a1

tα

Γ (1 + α) . (4.56)
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As expected, the Dirac delta peak of the memory kernel dominates the short time
regime of normal diffusion. Such a crossover from normal to anomalous diffusion
is a generic physical behavior for systems, in which the test particle is driven by
Gaussian white noise but progressively explores a disordered environment.

4.2.2.2 Two Power-Law Memory Kernels

For a memory function with two power-law terms,

γ (t) = a1
t−α1

Γ (1 − α1)
+ a2

t−α2

Γ (1 − α2)

with 0 < α1 < α2 < 1 the waiting time PDF is an infinite series in three parameter
M-L functions [87],

ψ(t) = L −1
[

1

1 + a1 sα1 + a2 sα2

]

= tα2−1

a2

∞∑

n=0

(−1)n

an2
tα2nEn+1

α2−α1,α2n+α2

(
−a1

a2
tα2−α1

)
. (4.57)

This case corresponds to the distributed order diffusion equation with two fractional
exponents [87] (compare also Refs. [19, 20])

a1 CD
α1
0+W(x, t) + a2 CD

α2
0+W(x, t) = ∂2

∂x2W(x, t), (4.58)

which can be obtained if we substitute γ (t) in the generalized diffusion equa-
tion (4.35). Its solution is given in terms of infinite series in Fox H -functions. Note
that if, for instance, we set a1 = 0, a2 = 1, and α2 → α in relation (4.57) we arrive
at the waiting time PDF in the mono-fractional case. The case with α1 = α2 = α

and a1 + a2 = 1 gives the same result for the mono-fractional case. The limiting
behavior encoded in expression (4.57) yields in the form

ψ(t) � 1

a2

tα2−1

Γ (α2)
, (4.59)

for a1
a2
tα2−α1 � 1 and

ψ(t) � α1a1
t−α1−1

Γ (1 − α1)
(4.60)

for a1
a2
tα2−α1 � 1. Thus the smaller exponent dominates the short time limit and the

larger one the long time behavior.
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The solution of Eq. (4.58) is non-negative since γ̂ (s) = a1 s
α1−1 + a2 s

α2−1

is completely monotone and sγ̂ (s) = a1 s
α + a2 s

α2 is a Bernstein function for
0 < α1 < α2 < 1.

The MSD for the double order fractional diffusion equation is given by [22]

〈
x2(t)

〉
= 2L −1

[
s−1

a1 sα1 + a2 sα2

]
= 2

a2
tα2Eα2−α1,α2+1

(
−a1

a2
tα2−α1

)
.

(4.61)

The short time limit yields the behavior

〈
x2(t)

〉
� 2

a2

tα2

Γ (1 + α2)
, (4.62)

and the long time limit

〈
x2(t)

〉
� 2

a1

tα1

Γ (1 + α1)
, (4.63)

therefore, the particle shows decelerating subdiffusion.

Remark 4.4 Here we give a Langevin description of the corresponding bi-fractional
diffusion equation. Therefore, one may consider the coupled Langevin equations in
which the noise χ(u) is a sum of two independent one-sided stable Lévy noises
χi(u) with Lévy indices 0 < αi < 1, for i = 1, 2, i.e., [87]

d

du
x(u) = η(u),

d

du
t (u) = d

du
[t1(u)+ t2(u)] = χ1(u)+ χ2(u), (4.64)

where η(u) represents white Gaussian noise. The PDF G(u, t) is found from its
Laplace transform, where one uses that the process t (u) is a sum of two independent
αi -stable Lévy processes,

Ĝ(u, s) = − ∂

∂u

1

s

〈
e−st1(u)

〉 〈
e−st2(u)

〉
= − ∂

∂u

1

s
L̂α1(u, s)L̂α2(u, s), (4.65)

where

L̂αi (u, s) = e−u ai sαi , i = 1, 2.
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4.2.2.3 N Power-Law Memory Kernels

The case of a memory function with N power-law functions

γ (t) =
N∑

i=1

ai
t−αi

Γ (1 − αi) , (4.66)

corresponds to a distributed order diffusion equation with N different exponents of
the fractional operator

N∑

i=1

ai CD
αi
0+W(x, t)W(x, t) = ∂2

∂x2W(x, t). (4.67)

The waiting time PDF is then given in terms of the multinomial M-L function

ψ(t) = L −1

[
1

1 + ∑N
i=1 ai s

αi

]

= tαN−1

aN

× E(αN−α1,αN−α2,...,αN−αN−1),αN

(
− a1

aN
tαN−α1,− a2

aN
tαN−α2, . . . ,

−aN−1

aN
tαN−αN−1

)
. (4.68)

The non-negativity of the solution of Eq. (4.67) follows from the fact that γ̂ (s) =∑N
i=1 ai s

αi−1 is completely monotone and sγ̂ (s) = ∑N
i=1 ai s

αi is a Bernstein
function for 0 < α1 < α2 < · · · < αN < 1.

The MSD can also be represented by the help of the multinomial M-L function,
i.e.,

〈
x2(t)

〉
= 2L−1

[
s−1

∑N
i=1 ai s

αi

]

= 2

aN
tαN

× E(αN−α1,αN−α2,...,αN−αN−1),αN+1

(
− a1

aN
tαN−α1,− a2

aN
tαN−α2, . . . ,

−aN−1

aN
tαN−αN−1

)
. (4.69)

Remark 4.5 The Langevin description of the corresponding N-fractional diffusion
equation is a direct consequence of the previous case of the bi-fractional diffusion
equation. Therefore, we consider the coupled Langevin equations in which the noise
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χ(u) is a sum of N independent one-sided stable Lévy noises χi(u) with Lévy
indices 0 < αi < 1, for i = 1, 2, . . . , N ,

d

du
x(u) = η(u),

d

du
t (u) = d

du

N∑

i=1

ti (u) =
N∑

i=1

χi(u), (4.70)

where η(u) represents white Gaussian noise. The PDF G(u, t) in this case is given
by

Ĝ(u, s) = − ∂

∂u

1

s

N∏

i=1

〈
e−sti(u)

〉
= − ∂

∂u

1

s

N∏

i=1

L̂αi (u, s), (4.71)

where

L̂αi (u, s) = e−u ai sαi , i = 1, 2, . . .N.

4.2.2.4 Distributed Order Memory Kernel

We now turn to the case of a distributed order memory kernel,

γ (t) =
∫ 1

0
τλ−1p(λ)

t−λ

Γ (1 − λ) dλ, (4.72)

where p(λ) is a weight function with
∫ 1

0 p(λ) dλ = 1. Here we use τ = 1. The
Laplace transform of Eq. (4.72) yields

γ̂ (s) =
∫ 1

0
p(λ)sλ−1 dλ. (4.73)

This memory kernel satisfies the assumption (4.32), i.e., lims→0
∫ 1

0 p(λ)s
λ dλ = 0.

Inserting the memory kernel (4.72) into relation (4.35) and exchanging the order of
integration, we recover the distributed order diffusion equation

∫ 1

0
p(λ)

∂λ

∂tλ
W(x, t) dλ = K

∂2

∂x2W(x, t), (4.74)

The waiting time PDF (4.31) thus becomes

ψ̂(s) = 1

1 + ∫ 1
0 p(λ)s

λ dλ
. (4.75)
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A special case of memory kernel (4.72) is the uniformly distributed order
memory kernel with p(λ) = 1, which implies that

γ̂ (s) = s − 1

s log(s)
. (4.76)

Thus, the waiting time PDF becomes

ψ(t) = L −1

[
1

1 + s s−1
s log(s)

]

. (4.77)

Its behavior in the short and long time limits follows from Tauberian theorems, see
Appendix B. For the short time limit we find

ψ(t) = L −1

[
1

1 + s−1
log(s)

]

� L −1 [log(s)
] � log

1

t
, (4.78)

while for the long time limit the behavior is [24]

ψ(t) = L −1

[
1

1 + s−1
log(s)

]

� L −1

⎡

⎣ 1

1 + 1
log 1

s

⎤

⎦

� L −1

[

1 − 1

log 1
s

]

� − d

dt

1

log t
= 1

t log2 t
. (4.79)

The non-negativity of the solution of distributed order diffusion equation (4.74)
can be shown as follows [93]. The function sγ̂ (s) = ∫ 1

0 p(λ)s
λ dλ is a complete

Bernstein function. Indeed, let us consider the function
∑
j pj s

λj with pj ≥ 0

and 0 < λj ≤ 1. This is a complete Bernstein function since sλj is a complete
Bernstein function for 0 < λj ≤ 1, and a linear combination of complete Bernstein
functions is again a complete Bernstein function. The integral discussed above is
a pointwise limit of the corresponding linear combinations [101]. In a similar way,
γ (s) = ∫ 1

0 p(λ)s
λ−1 dλ is completely monotone, since the function

∑
j pj s

λj−1

with pj ≥ 0 and 0 < λj ≤ 1 is completely monotone.
For the uniformly distributed order memory kernel by using the Tauberian

theorem (see Appendix B), one finds the MSD of form

〈
x2(t)

〉
= 2L−1

[
s−1

s−1
log(s)

]

� 2L −1
[
s−2 log(s)

]
� 2t log

1

t
, (4.80)
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in the short time limit, and one finds the crossover to the ultraslow diffusive behavior
of the particle in the long time limit [19],

〈
x2(t)

〉
= 2L−1

[
s−1

s−1
log(s)

]

� 2L −1
[
s−1 log

1

s

]
� 2 log t . (4.81)

One further may consider distributed order memory kernel (4.72) with power-
law weight function of the form p(λ) = νλν−1 (ν > 0) [21], which is relevant in
the theory of ultraslow relaxation and diffusion processes. In the Laplace space it is
given by

γ̂ (s) = νγ (ν,− log(s))

s (− log(s))ν
, (4.82)

where

γ (ν, x) =
∫ x

0
tν−1e−t dt

is the incomplete gamma function [29]. For s → 0 its behavior is of form

γ̂ (s) � νΓ (ν)/[s (− log(s))ν],
since γ (ν, x) � Γ (ν), for large x (small s implies large − log(s)). For s → ∞ it
behaves as

γ̂ (s) � ν/ log(s),

where we use the relation between the incomplete gamma function and the confluent
hypergeometric function [29]. For this memory kernel, the waiting time PDF is
given by

ψ(t) = L −1

⎡

⎣ 1

1 + s νγ (ν,− log(s))
s(− log(s))ν

⎤

⎦ , (4.83)

so that the short time limit behavior follows

ψ(t) � 1

ν
log

1

t
, (4.84)

while we find [24]

ψ(t) � − d

dt

Γ (ν + 1)

logν t
= νΓ (ν + 1)

t logν+1 t
(4.85)

in the long time limit.
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For this distributed order memory kernel the MSD becomes

〈
x2(t)

〉
� 2

ν
t log

1

t
(4.86)

in the short time limit, and

〈
x2(t)

〉
� 2

Γ (1 + ν) logν t (4.87)

in the long time limit. The case with α = 4 corresponds to the well-known Sinai
diffusion [15].

4.2.2.5 Double Order Tempered Memory Kernel

We also consider the double order tempered kernel [93],

γ (t) = e−bt
[
B1

t−λ1

Γ (1 − λ1)
+ B2

t−λ2

Γ (1 − λ2)

]
, (4.88)

where b ≥ 0, and 0 < λ1 < λ2 < 1, i.e. the tempered distributed order diffusion
equation with two fractional exponents,

∫ t

0
e−b(t−t ′)

[
(t − t ′)−λ1

Γ (1 − λ1)
+ (t − t ′)−λ2

Γ (1 − λ2)

]
∂

∂t ′
W(x, t ′) dt ′ = ∂2

∂x2W(x, t).

(4.89)

The Laplace transform of the kernel (4.88) yields

γ̂ (s) = B1(s + b)λ1−1 + B2(s + b)λ2−1. (4.90)

The proof of the non-negativity of the solution of Eq. (4.89) can be easily shown by
employing the properties of completely monotone and Bernstein functions [93].

The corresponding MSD shows the scaling form

〈
x2(t)

〉
= 2

B2
L −1

[
s−2(s + b)1−λ1

(s + b)λ2−λ1 + B1/B2

]

= 2

B2
I 2

0+
(
e−bt tλ2−2Eλ2−λ1,λ2−1

(
−B1

B2
tλ2−λ1

))
, (4.91)

which in the short time limit becomes

〈
x2(t)

〉
� 2

B2

tλ2

Γ (λ2 + 1)
, (4.92)
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and in the long time limit

〈
x2(t)

〉
� 2b1−λ1

B2
(
bλ2−λ1 + B1/B2

) t . (4.93)

At long times the diffusion becomes normal due to exponential truncation of the
memory kernel.

4.2.3 Diffusion Equation with Prabhakar Derivative

At the end we consider the waiting time PDF in Laplace space of form [94]

ψ̂(s) = 1

1 + (sτ )μ [1 + (sτ )−ρ]γ , (4.94)

where 0 < μ, γ < 1. Without loss of generality we set τ = 1. In order the waiting
time PDF to be non-negative, its Laplace transform ψ̂(s) should be completely
monotone function. Thus,

1 + sμ [
1 + s−ρ]γ = sμ

[
1 + s−ρ]γ ,

should be a Bernstein function. This function is a Bernstein function if 0 < μ/γ < 1
and 0 < μ/γ − ρ < 1. By exchanging the waiting time PDF in the general relation
obtained from the CTRW model, one finds

˜̂
W(k, s) = 1

s

1 − [
1 + sμ [

1 + s−ρ]γ ]−1

1 − (1 − k2)
[
1 + sμ [1 + s−ρ]γ ]−1 W̃0(k)

= sμ−1
[
1 + s−ρ]γ

sμ
[
1 + s−ρ]γ + k2

W̃0(k). (4.95)

After some rearrangements, it follows

sμ
[
1 + s−ρ]γ ˜̂

W(k, s) − sμ−1 [1 + s−ρ]γ W̃0(k) = −k2 ˜̂
W(k, s). (4.96)

By inverse Fourier-Laplace transform, the following time fractional diffusion
equation is obtained [94]

CD
γ,μ

α,−ν,0+W(x, t) = ∂2

∂x2
W(x, t), (4.97)

where ν = 1, and CD
γ,μ
α,−ν,0+ is the regularized Prabhakar derivative (2.88).
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The exact form of the corresponding waiting time PDF is given by [94]

ψ(t) = L −1

[
1

1 + sμ [
1 + s−ρ]γ

]

= L −1

[
sργ−μ

(sρ + 1)γ
1

1 + sργ−μ
(sρ+1)γ

]

= L −1

[ ∞∑

n=0

(−1)n
s(ργ−μ)(n+1)

(sρ + 1)γ (n+1)

]

= 1

τ

∞∑

n=0

(−1)ntμn+μ−1E
γn+γ
ρ,μn+μ

(−tρ) .
(4.98)

Therefore, for the short time limit t � 1 one finds the behavior

ψ(t) �
∞∑

n=0

(−1)n
tμn+μ−1

Γ (μn+ μ) = tμ−1Eμ,μ
(−tμ) � tμ−1

Γ (μ)
, (4.99)

and for the long time limit t � 1, the behavior

ψ(t) � tμ−1
∞∑

n=0

(−1)n
t(μ−ργ )n−ργ

Γ ((μ− ργ )n+ μ− ργ )

= tμ−ργ−1Eμ−ργ,μ−ργ
(−tμ−ργ ) � (μ− ργ ) t−μ+ργ−1

Γ (1 − μ+ ργ ) . (4.100)

Therefore, the parameters ρ and γ do not have influence on the particle behavior in
the short time limit. In the long time limit all the parameters have influence on the
diffusive behavior of the particle.

The non-negativity of the solution of Eq. (4.97) can be proven by using the
subordination approach, where the function Ĝ(u, s) is given by [94]

Ĝ(u, s) = sμ−1 [1 + s−ρ]γ e−usμ[1+s−ρ]γ = − ∂

∂u

1

s
L̂(u, s), (4.101)

where

L̂(u, s) = e−usμ[1+s−ρ]γ . (4.102)

The PDF W(x, t) is non-negative if G(u, t) is non-negative, i.e., if Ĝ(u, s)
is completely monotone function with respect to s. The function Ĝ(u, s) is a
completely monotone if both functions sμ−1

[
1 + s−ρ]γ and e−usμ[1+s−ρ]γ are

completely monotone. The function e−usμ[1+s−ρ]γ is a completely monotone if
sμ

[
1 + s−ρ]γ is a Bernstein function. We showed before that these conditions are

satisfied if 0 < μ/γ and 0 < μ/γ − ρ < 1. Therefore, under these constraints of
parameters the PDFW(x, t) is non-negative.
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The corresponding MSD is given by [94]

〈
x2(t)

〉
= 2L −1

[
s−μ−1

(
1 + s−ρ)γ

]

= 2tμEγρ,μ+1

(−tρ) . (4.103)

Therefore, the short time limit yields

〈
x2(t)

〉
� 2

tμ

Γ (μ+ 1)
, (4.104)

and the long time limit

〈
x2(t)

〉
� 2

tμ−ργ

Γ (μ− ργ + 1)
. (4.105)

This means that decelerating subdiffusion exists in the system.

Remark 4.6 Here we note that one may consider a waiting time PDF of form [94]

ψ̂(s) = 1

1 + sτ ((s + b)τ)μ−1
[
1 + ((s + b)τ)−ρ]γ , (4.106)

where b > 0 has a role of truncation parameter, with physical dimension of inverse
time, i.e., [b] = s−1. Therefore, for the PDF it follows

T CD
γ,μ

α,−ν,0+W(x, t) = Kμ
∂2

∂x2W(x, t), (4.107)

where T CD
γ,μ

α,−ν,0+ is the tempered regularized Prabhakar derivative (2.92), intro-
duced in Ref. [81].

Thus, for the waiting time PDF one finds [94]

ψ(t) = L −1

[
1

1 + s(s + b)μ−1
[
1 + (s + b)−ρ]γ

]

= 1

τ

∞∑

n=0

(−1)n

τn+1 I
n+1
0+

(

e−bt
(
t

τ

)(μ−1)(n+1)−1

E
γn+γ
ρ,(μ−1)(n+1)

(
−

[
t

τ

]ρ))

,

(4.108)

where Iα0+ is the R-L integral. One may conclude that the waiting time PDF has
exponential truncation. For the short time limit same behavior as the waiting time
PDF (4.98) is observed, i.e., (4.99), which appears since the exponential truncation
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is negligible for small t , and for the long time limit, one obtains the exponential
(Poissonian) waiting time PDF

ψ(t) = 1

τ ∗ exp
(−t/τ ∗) , (4.109)

where

τ ∗ = τ (bτ)μ−1 [1 + (bτ)−ρ]γ .

The parameter τ ∗ has a dimension of time [τ ∗] = [τ ] = s.

4.3 Generalized Diffusion Equation in Modified Form

Here we introduce the generalized waiting time PDF of form [95]

ψ̂(s) = 1

1 + 1
η̂(s)

(4.110)

where η(t) has the property

lim
s→0

1

η̂(s)
= 0. (4.111)

In order ψ(t) to be non-negative its Laplace transform ψ̂(s) should be completely
monotone. Therefore, 1 + 1/η̂(s) should be a Bernstein function, i.e., 1/η̂(s) itself
should be a Bernstein function (see Appendix A for details). The waiting time PDF
(4.110) and a Gaussian jump length PDF yield

˜̂
W(k, s) = 1/[sη̂(s)]

s/[sη̂(s)] + k2
, (4.112)

i.e.,

s
˜̂
W(k, s) − W̃0(k) = −k2sη̂(s)

˜̂
W(k, s). (4.113)

Thus, the inverse Fourier-Laplace transform gives the generalized diffusion equation
in modified form [93, 95]

∂W(x, t)

∂t
= ∂

∂t

∫ t

0
η(t − t ′)∂

2W(x, t ′)
∂x2

dt ′, (4.114)

with the generalized kernel η(t).
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From (4.112) it follows that the solution is normalized since

[ ˜̂
W(k, s)

]∣∣
∣
k=0

= 1

s
. (4.115)

The MSD in general form is given by
〈
x2(t)

〉
= 2L −1

[
s−1η̂(s)

]
. (4.116)

4.3.1 Non-negativity of Solution

In the same way as previously, by using the subordination approach, one finds that

˜̂
W(k, s) =

∫ ∞

0
e−uk2

Ĝ(u, s) du,

where Ĝ(u, s) is given by

Ĝ(u, s) = 1

sη̂(s)
e−u/η̂(s) = − ∂

∂u

1

s
L̂(u, s), (4.117)

where

L̂(u, s) = e−u/η̂(s).

The PDF functionG(u, t) which provides subordination transformation, from time
scale t to time scale u is normalized since

∫ ∞

0
G(u, t) du = L −1

s

[∫ ∞

0

1

sη̂(s)
e−u/η̂(s) du

]
= L −1

s

[
1

s

]
= 1. (4.118)

The function G(u, t) is non-negative if its Laplace transform Ĝ(u, s) is com-
pletely monotone on the positive real axis s [101]. Therefore, we need to show that
[93]

1. the function 1/[sη̂(s)] is completely monotone, and
2. the function 1/η̂(s) is a Bernstein function.

Alternatively, it is enough to show that 1/η̂(s) is a complete Bernstein function,
from where it follows that 1/[sη̂(s)] is completely monotone [101].

Remark 4.7 As we showed before for the generalized diffusion equation in the
normal form, one can construct a stochastic process x(t) whose PDF obeys the
generalized diffusion equation in modified form, represented by [58]

x(t) =
√

2KηB [S (t)] , (4.119)



4.3 Generalized Diffusion Equation in Modified Form 141

(Kη = 1), where the operational time is given by S (t) = inf {u > 0 : T (u) > t},
for a strictly increasing Lévy motion for which

〈
e−sT (u)

〉
= e−uΨ̂ (s),

where Ψ̂ (s) = 1/η̂(s) is the Lévy exponent. This stochastic process will be well
defined if the Lévy exponent Ψ̂ (s) = 1/η̂(s) is a Bernstein function, which means
1/[sη̂(s)] is completely monotone function.

4.3.2 Specific Examples

Let us now consider some special cases of the considered generalized CTRW model.
For η(t) = 1, the classical diffusion equation is recovered, and by using η̂(s) = 1/s,
the Poissonian waiting time PDF is obtained

ψ(t) = L

[
1

1 + s
]

= e−t ,

as it should be for the Brownian motion. For a power-law kernel of form η(t) =
tα−1/Γ (α), 0 < α < 1, the M-L waiting time PDF is obtained [37, 39, 40]

ψ(t) = L −1
[

1

1 + sα
]

= tα−1Eα,α
(−tα) . (4.120)

For this kernel one obtains the fractional diffusion equation in a modified form

∂W(x, t)

∂t
= RLD

1−α
0+

∂2W(x, t)

∂x2 (4.121)

which is equivalent with the fractional diffusion equation in a normal form with
Caputo fractional derivative (4.1). For the MSD from Eq. (4.116) one finds

〈
x2(t)

〉
= 2

tα

Γ (1 + α) .

4.3.2.1 Two Power-Law Memory Kernels

For a memory function with two power-law terms of form

η(t) = a1
tα1−1

Γ (α1)
+ a2

tα2−1

Γ (α2)
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with 0 < α1 < α2 < 1 the waiting time PDF is given by [87],

ψ(t) = L −1
[

1

1 + a1s−α1 + a2s−α2

]

= tα1−1

a1

∞∑

n=0

(−1)n

an1
tα1nE

−(n+1)
α2−α1,α1n+α1

(
−a2

a1
tα2−α1

)
. (4.122)

This waiting time PDF yields the distributed order diffusion equation with two
fractional exponents in modified form [87]

∂

∂t
W(x, t) = a1 RLD

1−α1
0+

∂2

∂x2W(x, t)+ a2 RLD
1−α2
0+

∂2

∂x2W(x, t). (4.123)

Its solution is given in terms of infinite series in Fox H -functions. If we set a1 = 0,
a2 = 1, and α2 → α in relation (4.122), we arrive at the waiting time PDF in the
mono-fractional case. The case with α1 = α2 = α and a1 + a2 = 1 gives the same
result for the mono-fractional case.

The solution of Eq. (4.123) is non-negative since

1

sη̂(s)
= 1

a1 s1−α1 + a2 s1−α2

is completely monotone (a1 s
1−α1 + a2 s

1−α2 is a complete Bernstein function) and

c(s) = 1

η̂(s)
= 1

a1 s−α1 + a2 s−α2

is a complete Bernstein function for 0 < α1 < α2 < 1 since

1

c
(

1
s

) = a1 s
α1 + a2 s

α2

is a complete Bernstein function. This follows from the fact that if c(s) is a complete

Bernstein function, then the function 1/c
(

1
s

)
is also a complete Bernstein function

[101] (see Appendix A for details).
For the MSD one obtains

〈
x2(t)

〉
= 2L −1

[
s−1 (a1 s

−α1 + a2 s
−α2

)] = 2L−1

[
s−1

(
a1 s−α1 + a2 s−α2

)−1

]

= 2a1t
α1E−1

α2−α1,α1+1

(
−a2

a1
tα2−α1

)
= 2a1

tα1

Γ (1 + α1)
+ 2a2

tα2

Γ (1 + α2)
.

(4.124)
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Therefore, the short time limit becomes

〈
x2(t)

〉
� 2a1

tα1

Γ (1 + α1)
, (4.125)

and the long time limit

〈
x2(t)

〉
� 2a2

tα2

Γ (1 + α2)
, (4.126)

which means that the exists accelerating subdiffusion.

4.3.3 N Power-Law Memory Kernels

We further consider memory kernel of power-law form with N fractional exponents

η(t) =
N∑

j=1

aj
tαj−1

Γ
(
αj

) ,

0 < α1 < α2 < · · · < αN < 1,
∑N
j=1 aj = 1, which gives the N-fractional

diffusion equation

∂W(x, t)

∂t
=

N∑

j=1

aj RLD
1−αj
0+

∂2W(x, t)

∂x2 . (4.127)

By setting

η̂(s) =
N∑

j=1

aj s
−αj

in Eq. (4.31), the waiting time PDF is given in terms of multinomial M-L functions

ψ(t) = L −1

[
1

1 + 1/
∑N
j=1 aj s

−αj

]

= L −1

[ ∑N
j=1 aj s

−αj

1 + ∑N
j=1 aj s

−αj

]

=
N∑

j=1

aj t
αj−1E(α1,α2,...,αN ),αj

(−a1 t
α1 ,−a2t

α2 , . . . ,−aNtαN
)
. (4.128)

The solution of this equation is non-negative, which can be shown in the same way
as it was done for the bi-fractional diffusion equation in modified form.
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The MSD for the N-fractional diffusion equation is given by

〈
x2(t)

〉
= 2L −1

⎡

⎣s−1
N∑

j=1

aj s
−αj

⎤

⎦ = 2
N∑

j=1

aj
tαj

Γ (αj + 1)
, (4.129)

from where one observes accelerating subdiffusion as well.

4.3.3.1 Distributed Order Memory Kernel

Let us now consider distributed order kernel

η(t) =
∫ 1

0
p(λ)

tλ−1

Γ (λ)
dλ, (4.130)

where p(λ) is a weight function with
∫ 1

0 p(λ) dλ = 1. The Laplace transform of the
kernel is given by

η̂(s) =
∫ 1

0
p(λ)s−λ dλ. (4.131)

The waiting time PDF becomes

ψ̂(s) = 1

1 +
[∫ 1

0 p(λ)s
−λdλ

]−1
. (4.132)

Inserting the kernel (4.130) into relation (4.114) one obtains the distributed order
diffusion equation in modified form

∂

∂t
W(x, t) =

∫ 1

0
p(λ)RLD

1−λ
0+

∂2

∂x2W(x, t) dλ. (4.133)

Next we show the non-negativity of the distributed order diffusion equation in a
modified form [93]. Let us show that the function

[sη̂(s)]−1 =
[
s

∫ 1

0
p(λ)s−λ dλ

]−1

is completely monotone. We consider the function
∑
j pj s

1−λj with pj ≥ 0 and

0 < λj ≤ 1. This is a complete Bernstein function, since s1−λj is a complete
Bernstein function for 0 < λj ≤ 1, and a linear combination of complete Bernstein
functions with non-negative weights is again a complete Bernstein function. The
pointwise limit of this linear combination is a complete Bernstein function, so we
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conclude that sη̂(s) = s
∫ 1

0 p(λ)s
−λ dλ is a complete Bernstein function too, and

the composite function [sη̂(s)]−1 =
[
s
∫ 1

0 p(λ)s
−λ dλ

]−1
is completely monotone

since the function 1/x is completely monotone. Therefore the condition (i) is
satisfied. In order to show validity of the condition (ii), we note that the linear
combination

∑
j pj s

λj is a Bernstein function, and thus the (auxiliary) function

c(s) = ∫ 1
0 p(λ)s

λ dλ is a complete Bernstein function as well. Therefore, one
concludes that

1

η̂(s)
=

[∫ 1

0
p(λ)s−λ dλ

]−1

= 1

c
(

1
s

)

is a complete Bernstein function, with which the proof of the non-negativity of
the solution to the distributed order diffusion equation in the modified form is
completed.

4.3.4 Truncated Distributed Order Kernel

Furthermore, one may consider a double order tempered kernel [93]

η(t) = e−bt
[
B1
tλ1−1

Γ (λ1)
+ B2

tλ2−1

Γ (λ2)

]
, (4.134)

with B1 + B2 = 1 and 0 < λ1 < λ2 < 1. Its Laplace transform is given by

η̂(s) = B1(s + b)−λ1 + B2(s + b)−λ2 . (4.135)

Therefore, the waiting time PDF reads

ψ̂(s) = 1

1 + [
B1(s + b)−λ1 + B2(s + b)−λ2

]−1
, (4.136)

which yields the corresponding generalized tempered diffusion equation of form

∂

∂t
W(x, t) = ∂

∂t

∫ t

0
e−b(t−t ′)

[
B1
(t − t ′)λ1−1

Γ (λ1)
+ B2

(t − t ′)λ2−1

Γ (λ2)

]
∂2

∂x2
W(x, t ′) dt ′.

(4.137)

The non-negativity of the solution of Eq. (4.137) can be shown as follows [93].
We consider

1

sη̂(s)
= 1

s

1

B1(s + b)−λ1 + B2(s + b)−λ2
= (s + b)λ2

s

1

B1(s + b)λ2−λ1 + B2
.
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The function (s + b)λ2 is a complete Bernstein function, therefore the function (s +
b)λ2/s is a completely monotone [101]. The function φ(s) = B1(s+b)λ2−λ1 +B2 is
a Bernstein function, therefore 1/φ(s) is completely monotone. Thus, 1/(sη̂(s)) is
completely monotone as the product of two completely monotone functions, so the
condition (i) is fulfilled. Next we show that 1/η̂(s) is a complete Bernstein function.
We consider the following function

c(s) = B1

(
1

s
+ b

)−λ1

+ B2

(
1

s
+ b

)−λ2

= B1

(
s

1 + bs
)λ1

+ B2

(
s

1 + bs
)λ2

.

Since 1+bs is a complete Bernstein function, then s/(1+bs) is a complete Bernstein

function too [101], thus
(

s
1+bs

)λ1
and

(
s

1+bs
)λ2

are complete Bernstein functions as

compositions of complete Bernstein functions [101]. Therefore, c(s) is a complete
Bernstein function, and 1/c(1/s) is a complete Bernstein function too. Therefore

1

c
(

1
s

) = 1

B1 (s + b)−λ1 + B2 (s + b)−λ2
= 1

η̂(s)

is a complete Bernstein function, i.e., we show that condition (ii) is satisfied. With
this we complete the proof of non-negativity of the solution.

The MSD is given by
〈
x2(t)

〉
= 2L −1

[
B1s

−1(s + b)−λ1 + B2s
−1(s + b)−λ2

]

= 2
[
B1t

λ1E
λ1
1,λ1+1(−bt)+ B2t

λ2E
λ2
1,λ2+1(−bt)

]
. (4.138)

The short time limit is given by

〈
x2(t)

〉
� 2B1

tλ1

Γ (λ1 + 1)
,

which crossovers to plateau value at long times
〈
x2(t)

〉
� 2

[
b−λ1B1 + b−λ2B2

] = Const.

4.4 Normal vs. Modified Generalized Diffusion Equation

By comparison of the CTRW models for normal and modified form generalized
diffusion equations one may conclude that the both models are simply connected
by γ̂ (s) → 1/[sη̂(s)] [95]. Therefore, if this connection is fulfilled the solutions
of both generalized diffusion equations in normal and modified form should be the
same.
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For example, in case of η(t) = 1 (η̂(s) = 1/s) we have Poissonian waiting time
PDF and the classical diffusion equation. If we use that γ̂ (s) = 1/[sη̂(s)] = 1,
i.e., γ (t) = δ(t), from the generalized diffusion equation in normal form and the
corresponding waiting time PDF, we obtain the same results.

For the power-law memory kernel η(t) = tα−1/Γ (α), 0 < α < 1, and η̂(s) =
s−α , one has the mono-fractional diffusion equation in modified or R-L form,

∂

∂t
W(x, t) = RLD

1−α
0+

∂2W(x, t)

∂x2 ,

and M-L waiting time PDF. Therefore, by using γ̂ (s) = 1/[sη̂(s)] = 1/s1−α , i.e.,
γ (t) = t−α/Γ (1 − α), the generalized diffusion equation in normal form becomes
the mono-fractional diffusion equation with Caputo fractional derivative from the
left-hand side of the equation,

CD
α
0+W(x, t) = ∂2W(x, t)

∂x2 ,

which is a proof of the previously discussed equivalent formulations of the fractional
diffusion equation by using either R-L or Caputo time fractional derivative.

We also may conclude from the previous analyses that the bi-fractional diffusion
equations in normal and modified form do not give same results for the PDF and
MSD. The first one gives decelerating subdiffusion, and the second one accelerating
subdiffusion. In order to find the equivalent formulation to the bi-fractional diffusion
equation in modified form,

∂

∂t
W(x, t) = a1 RLD

1−α1
0+

∂2W(x, t)

∂x2 + a2 RLD
1−α2
0+

∂2W(x, t)

∂x2 ,

for which η̂(s) = a1 s
−α1−1+a2 s

−α2−1, we use γ̂ (s) = 1/[sη̂(s)] = 1/[s(a1 s
−α1+

a2 s
−α2)], 0 < α1 < α2 < 1, from where, by inverse Laplace transform, we find

that γ (t) is given by

γ (t) = L −1
s

[
1

a1 s1−α1 + a2 s1−α2

]
= 1

a1
t−α1Eα2−α1,1−α1

(
−a2

a1
tα2−α1

)
.

(4.139)

Therefore, the corresponding equation in normal form to the bi-fractional diffusion
equation in modified form is given by

1

a1

∫ t

0
(t − t ′)−α1Eα2−α1,1−α1

(
−a2

a1
(t − t ′)α2−α1

)
∂

∂t ′
W(x, t ′) dt ′ = ∂2

∂x2
W(x, t).

(4.140)
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Furthermore, for the tempered memory kernel η(t) = e−bt tα−1/Γ (α), 0 < α <
1, b > 0, which gives the tempered fractional diffusion equation in modified form,

∂

∂t
W(x, t) = ∂

∂t

∫ t

0
e−b(t−t ′) (t − t

′)α−1

Γ (α)

∂2

∂x2
W(x, t ′) dt ′,

one has γ̂ (s) = 1/[s(s + b)−α], (η̂(s) = (s + b)−α), from where we find that

γ (t) = L −1
[

s−1

(s + b)−α
]

= t−αE−α
1,1−α (−bt) . (4.141)

Therefore, the corresponding diffusion equation in normal form becomes

∫ t

0
(t − t ′)−αE−α

1,1−α
(−b(t − t ′)) ∂

∂t ′
W(x, t ′) dt ′ = ∂2

∂x2W(x, t), (4.142)

which may be written by the help of the regularized Prabhakar derivative (2.88) as
follows:

CD
α,α
1,−b,0+W(x, t) = ∂2

∂x2W(x, t). (4.143)

In a similar way, let us consider the memory kernel γ (t) = a1 t
−α1/Γ (1 −α1)+

a2 t
−α2/Γ (1 − α2), 0 < α1 < α2 < 1, which gives the bi-fractional diffusion

equation in normal form,

a1 CD
α1
t W(x, t)+ a2 CD

α2
t W(x, t) = ∂2

∂x2W(x, t). (4.144)

From the memory kernel we find that η̂(s) = 1/[sγ̂ (s)] = [a1 s
α1 + a2 s

α2 ]−1, i.e.,

η(t) = 1

a2
tα2−1Eα2−α1,α2

(
−a1

a2
tα2−α1

)
. (4.145)

Therefore, the corresponding equation to the bi-fractional diffusion equation in
normal form is the following in modified form

∂

∂t
W(x, t) = 1

a2

∂

∂t

∫ t

0
(t − t ′)α2−1Eα2−α1,α2

(
−a1

a2
(t − t ′)α2−α1

)
∂2

∂x2W(x, t
′) dt ′.

(4.146)
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In case of a tempered memory kernel γ (t) = e−bt t−α/Γ (1 − α), 0 < α < 1,
b > 0, the corresponding equation of the tempered fractional diffusion equation in
normal form

1

Γ (1 − α)
∫ t

0
e−b(t−t ′)(t − t ′)−α ∂

∂t ′
W(x, t ′) dt ′ = ∂2

∂x2
W(x, t), (4.147)

is

∂

∂t
W(x, t) = ∂

∂t

∫ t

0
(t − t ′)α−1Eα−1

1,α

(−b(t − t ′)) ∂
2

∂x2W(x, t
′) dt ′, (4.148)

since

η(t) = L −1
[

1

sγ̂ (s)

]
= L −1

[
s−1

(s + b)α−1

]
= tα−1Eα−1

1,α (−bt), (4.149)

which can be expressed by the help of the Prabhakar derivative (2.54) with m = 1
as follows:

∂

∂t
W(x, t) = RLD

1−α,1−α
1,−b,0+

∂2

∂x2W(x, t). (4.150)

All these examples show that many different equations with various memory
kernels considered in the literature are special cases of the generalized diffusion
equations in normal and modified form. Here we note that similar crossover from
one to another diffusive regime is observed in different models tempered generalized
Langevin [56, 70, 81] equation and fractional Brownian motion [70].

4.5 Solving Fractional Diffusion Equations

4.5.1 Time Fractional Diffusion Equation in a Bounded
Domain

In the analysis of diffusion equations different boundary conditions can be consid-
ered [108]. The case of Neumann boundary conditions is used in the electrochemical
processes, for modeling of voltammetry experiment in limiting diffusion space [1].
Voltammetry includes dynamical techniques for investigation of charge transfer in
reversible reactions. In most experiments, the voltammetry experiment is subject to
the action of mass transfer of the electrochemical compounds. In this way, in this
section we will consider the following fractional diffusion equation

CD
α
0+u(x, t) = Kα

∂2u(x, t)

∂x2 + f (x, t), t > 0, 0 < α ≤ 1, 0 ≤ x ≤ l
(4.151)
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with Neumann boundary conditions [108]

∂u(x, t)

∂x

∣
∣
∣∣
x=0

= h1(t),
∂u(x, t)

∂x

∣
∣
∣∣
x=l

= h2(t), (4.152)

and an initial condition

u(x, t)|t=0+ = g0(x), (4.153)

where CDα0+ is the Caputo fractional derivative (2.16), Kα is the generalized diffu-
sion coefficient of dimension [Kα] = m2/sα . The general results are summarized
in the following theorem.

Theorem 4.1 ([109]) The time fractional diffusion equation (4.151) with Neumann
boundary conditions (4.152) and an initial condition (4.153) for 0 < α < 1 has a
solution in the space L(0,∞) with respect to time t given by:

u(x, t) = a0

2
+

∞∑

n=1

an(t) cos
(nπx
l

)
+ 1

2
Iα0+f̃0(t)

+
∞∑

n=1

(E −λn;1,1
0+;α,α f̃n)(t) cos

(nπx
l

)
+ v(x, t), (4.154)

where

v(x, t) = xh1(t)+ x2

2l
[h2(t)− h1(t)] , (4.155)

a0 = 2

l

∫ l

0
[g0(x)− v(x, 0+)] dx

= 2

l

∫ l

0
g0(x) dx − 2

l

∫ l

0

[
xh1(0+)+ x2

2l
(h2(0+)− h1(0+))

]
dx

= 2

l

∫ l

0
g0(x) dx − 2l

3
h1(0+)− l

3
h2(0+), (4.156)

an(t) = T (0)n (0+)Eα(−λntα), (4.157)

T
(0)
n (0+) is the Fourier coefficient:

T (0)n (0+) = 2

l

∫ l

0
[g0(x)− v(x, 0+)] cos

(nπx
l

)
dx

= 2

l

∫ l

0
g0(x) cos

(nπx
l

)
dx + 2l

n2π2

[
h1(0+)− (−1)nh2(0+)] ,

(4.158)



4.5 Solving Fractional Diffusion Equations 151

λn = n2π2Kα

l2
are eigenvalues of the problem in Hilbert space L2[0, l],

f̃ (x, t) = f (x, t) + Kα

∂2v(x, t)

∂x2 − CD
α
0+v(x, t)

= f (x, t) + Kα
h2(t) − h1(t)

l
− x

(
1 − x

2l

)
CD

α
0+h1(t) − x2

2l
CD

α
0+h2(t),

(4.159)

f̃0(t) = 2

l

∫ l

0
f̃ (x, t) dx, (4.160)

f̃n(t) = 2

l

∫ l

0
f̃ (x, t) cos

(nπx
l

)
dx. (4.161)

Proof The theorem can be proved by using:

u(x, t) = U(x, t)+ v(x, t), (4.162)

where the function v(x, t) is chosen to satisfy the boundary conditions (4.152)

∂v(x, t)

∂x

∣
∣
∣
∣
x=0

= h1(t),
∂v(x, t)

∂x

∣
∣
∣
∣
x=l

= h2(t). (4.163)

It can be shown that the function v(x, t) has the form (4.155). Thus, for the function
U(x, t) it is obtained:

∂U(x, t)

∂x

∣
∣∣
∣
x=0

= 0,
∂U(x, t)

∂x

∣
∣∣
∣
x=l

= 0, (4.164)

U(x, t)|t=0+ = g0(x)− v(x, t)|t=0+

= g0(x)− xh1(0+)− x2

2l
[h2(0+)− h1(0+)] = g̃0(x), (4.165)

i.e., U(x, t)|t=0+ = g̃0(x). By using U(x, t) = U1(x, t) + U2(x, t) we can obtain
the following differential equations:

CD
α
0+U1(x, t) = Kα

∂2

∂x2U1(x, t), (4.166)

∂U1(x, t)

∂x

∣∣
∣
∣
x=0

= 0,
∂U1(x, t)

∂x

∣∣
∣
∣
x=l

= 0, (4.167)

U1(x, t)|t=0+ = g̃0(x), (4.168)
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and

CD
α
0+U2(x, t) = Kα

∂2

∂x2U2(x, t), (4.169)

∂U2(x, t)

∂x

∣
∣
∣∣
x=0

= 0,
∂U2(x, t)

∂x

∣
∣
∣∣
x=l

= 0, (4.170)

U2(x, t)|t=0+ = 0. (4.171)

By the method of separation of variables U1(x, t) = X(x)T (t), it follows:

CD
α
0+T (t)+ λT (t) = 0, (4.172)

Kα
d2

dx2
X(x)+ λX(x) = 0, (4.173)

where λ is a separation constant. The functionX(x) satisfies the following boundary
conditions

dX(x)

dx

∣∣
∣
∣
x=0

= 0,
dX(x)

dx

∣∣
∣
∣
x=l

= 0, (4.174)

from where we obtain the spectrum of eigenvalues λn = n2π2Kα

l2
(λ1 < λ2 < . . . <

λn < . . .) and the set of eigenfunctionsXn(x) = cos
(
nπx
l

)
for which, in the Hilbert

space L2[0, l], ∫ l0 X2
n(x) dx = l

2 is satisfied. Note that if λ = 0 thenX(x) = ax+b,
i.e. X′(x) = a. Since X′(0) = a = 0 and X′(l) = a = 0 then a = 0, and b
is an arbitrary constant. Thus, λ = 0 is also an eigenvalue of the problem with
corresponding eigenfunction equal to 1.

By Laplace transform, from relation (2.24), it follows:

L [Tn(t)] = T (0)n (0+) s
α−1

sα + λn . (4.175)

From (1.6) we obtain

Tn(t) = T (0)n (0+)Eα(−λntα), (4.176)

where T (0)n (0+) is given by (4.158). Thus, by Fourier series expansion, for the
solution it is obtained

U1(x, t) = a0

2
+

∞∑

n=1

T (0)n (0+)Eα(−λntα) cos
(nπx
l

)
, (4.177)
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where a0 is given by (4.156). Since the function U1(x, t) satisfies same boundary
conditions as those of the eigenfunctions Xn(x) and if we suppose that ∂U1(x,t)

∂x
is

continuous, then series (4.177) converges absolutely and uniformly in the interval
[0, l] to the function U1(x, t) [108].

The solution of Eq. (4.169) can be obtained by Fourier series expansion of the
function U2(x, t) by using the eigenfunctionsXn(x) = cos

(
nπx
l

)
:

U2(x, t) = u0(t)

2
+

∞∑

n=1

un(t) cos
(nπx
l

)
, (4.178)

whereU2(x, t)|t=0+ = 0. This series also converges absolutely and uniformly in the
interval [0, l] to the function U2(x, t) since we suppose that ∂U2(x,t)

∂x
is continuous,

and U2(x, t) satisfies same boundary conditions with those of the eigenfunctions
Xn(x). By series expansion of the function f̃ (x, t):

f̃ (x, t) = f̃0(t)

2
+

∞∑

n=1

f̃n(t) cos
(nπx
l

)
, (4.179)

where f̃0(t) and f̃n(t) are given by (4.160) and (4.161) respectively, it follows

CD
α
0+u0(t)− f̃0(t) = 0, (4.180)

∞∑

n=1

[
CD

α
0+un(t)+ λnun(t)− f̃n(t)

]
cos

(nπx
l

)
= 0, (4.181)

i.e.,

CD
α
0+u0(t) = f̃0(t), (4.182)

CD
α
0+un(t)+ λnun(t)− f̃n(t) = 0, (4.183)

for all n ∈ N. From the Laplace transform and the condition un(x, t)|t=0+ = 0, we
obtain

L [u0(t)] = 1

sα
L [f̃0(t)] = L

[
tα−1

Γ (α)

]
L [f̃n(t)], (4.184)

L [un(t)] = 1

sα + λnL [f̃n(t)] = L [tα−1Eα,α(−λntα)]L [f̃n(t)]. (4.185)
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From relations (4.184) and (4.185) we can notice that u0(t) and un(t) are convolu-
tions of two functions, i.e.

u0(t) = 1

Γ (α)

∫ t

0
(t − τ )α−1f̃0(τ ) dτ = Iα0+f̃0(t), (4.186)

un(t) =
∫ t

0
(t − τ )α−1Eα,α(−λn(t − τ )α)f̃n(τ ) dτ, (4.187)

where Iα0+ is the R-L fractional integral (2.2). For the solutionU2(x, t) it is obtained

U2(x, t) = 1

2
Iα0+f̃0(t)+

∞∑

n=1

[∫ t

0
(t − τ )α−1Eα,α(−λn(t − τ )α)f̃n(τ ) dτ

]

× cos
(nπx
l

)
, (4.188)

i.e.,

U2(x, t) = 1

2
Iα0+f̃0(t)+

∞∑

n=1

(E −λn;1,1
0+;α,α f̃n)(t) cos

(nπx
l

)
, (4.189)

where (E ω;γ,κ
a+;α,βϕ)(t) is the generalized integral operator defined by (2.106). Thus,

we prove the theorem.

Example 4.1 ([109]) The solution (4.189) is represented in terms of the generalized
integral operator in case when f (x, t) = 0. From relations (4.159)–(4.161), we can
see that

f̃ (x, t) = Kα
h2(t)− h1(t)

l
− x

(
1 − x

2l

)
CD

α
0+h1(t)− x2

2l
CD

α
0+h2(t),

(4.190)

f̃0(t) = 2Kα
h2(t)− h1(t)

l
− 2l

3
CD

α
0+ [h1(t)+ h2(t)] (4.191)

and

f̃n(t) = 2l

n2π2 CD
α
0+

[
h1(t)− (−1)nh2(t)

]
. (4.192)
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Thus, for the solution (4.189) we obtain

U2(x, t) = Iα0+
[
Kα

h2(t)− h1(t)

l
− l

3
CD

α
0+ [h1(t)+ h2(t)]

]

+
∞∑

n=1

2l

n2π2

(
E −λn;1,1

0+;α,α
{
CD

α
0+[h1(t)− (−1)nh2(t)]

})
cos

(nπx
l

)
,

(4.193)

which can be different than zero even if f (x, t) = 0 [109].

Example 4.2 ([109]) The time fractional diffusion equation (4.151) in case when
f (x, t) = 0, with Neumann boundary conditions

∂u(0, t)

∂x
= h1(t) = −cI (t), ∂u(l, t)

∂x
= h2(t) = 0, (4.194)

and an initial condition g0(x) = 0, has a solution of form

u(x, t) = cl

3
I (0+)−

∞∑

n=1

2cl

n2π2 I (0+)Eα
(

−n
2π2

l2
Kαt

α

)
cos

(nπx
l

)

+ 1

2
Iα0+f̃0(t)+

∞∑

n=1

(
E −λn;1,1

0+;α,α f̃n
)
(t) cos

(nπx
l

)
− cxI (t)+ cx2

2
I (t),

(4.195)

where

f̃0(t) = 2Kαc

l
I (t)+ 2cl

3
CD

α
0+I (t) (4.196)

f̃n(t) = − 2cl

n2π2 CD
α
0+I (t). (4.197)

By using the Fourier cosine series expansion

x
(

1 − x

2l

)
= 2l

∞∑

n=1

1

n2π2
cos

(nπx
l

)
,
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for α = 1, by integration by parts, the solution (4.195) becomes [109]:

u(x, t) = cl

3
I (0+)−

∞∑

n=1

2cl

n2π2 I (0+) exp

(
−n

2π2

l2
K1t

)
cos

(nπx
l

)

+ K1c

l

∫ t

0
I (τ ) dτ + cl

3
I (t) − cl

3
I (0+)− 2cl

∞∑

n=1

1

n2π2

×
∫ t

0
exp (−λn(t − τ )) I ′(τ ) dτ cos

(nπx
l

)
− cxI (t)+ cx2

2
I (t)

= K1c

l

∫ t

0
I (τ )

[

1 + 2
∞∑

n=1

exp

(
−n

2π2

l2
K1(t − τ )

)
cos

(nπx
l

)
]

dτ

+ 2clI (t)
∞∑

n=1

1

n2π2 cos
(nπx
l

)
− cx

(
1 − x

2l

)
I (t)

= K1c

l

∫ t

0
I (τ )

[

1 + 2
∞∑

n=1

exp

(
−n

2π2

l2
K1(t − τ )

)
cos

(nπx
l

)]

dτ

= K1c

l

∫ t

0
I (τ )ϑ

(
x

2l
,
K1(t − τ )

l2

)
dτ, (4.198)

where

ϑ(x, t) = 1 + 2
∞∑

n=1

e−n2π2t cos(2πnx)

is the Jacobi theta function in two variables [117]. Note that the solution at x = 0 is
given by [1]

u(0, t) = K1c

l

∫ t

0
I (τ )ϑ

(
0,

K1(t − τ )
l2

)
dτ. (4.199)

Remark 4.8 ([109]) In case when h1(t) = h2(t) = h(t) 
= Const, the solution
(4.193) becomes

U2(x, t) = −2l

3
[h(t) − h(0+)]

+
∞∑

n=1

4l

(2n− 1)2π2

(
E

−λ2n−1;1,1
0+;α,α

[
CD

α
0+h(t)

])
cos

[
(2n− 1)πx

l

]
,

(4.200)
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where the following formula [77]

Iα0+ CD
α
0+h(t) = h(t)− h(0+), 0 < α < 1, (4.201)

was used.

Example 4.3 ([109]) The following fractional diffusion equation:

CD
α
0+u(x, t) = Kα

∂2u(x, t)

∂x2 , t > 0, 0 < α ≤ 1, 0 ≤ x ≤ l (4.202)

with boundary conditions

∂u(x, t)

∂x

∣
∣
∣
∣
x=0

= ∂u(x, t)

∂x

∣
∣
∣
∣
x=l

= a sin(bt), (4.203)

where a > 0 and b > 0 are constants, and an initial condition

u(x, t)|t=0+ = x(l − x), (4.204)

has a solution given by:

u(x, t) = a0

2
+

∞∑

n=1

an(t) cos
(nπx
l

)

− 2al

3
sin(bt)+

∞∑

n=1

(E −λn;1,1
0+;α,α f̃n)(t) cos

(nπx
l

)
+ ax sin(bt),

(4.205)

where λn = n2π2Kα

l2
, a0 = 2

l

∫ l
0 x(l − x) dx = l2

3 ,

an(t) = 2

l
Eα(−λntα)

∫ l

0
x(l − x) cos

(nπx
l

)
dx

= − 2l2

n2π2

[
1 + (−1)n

]
Eα(−λntα), (4.206)

f̃ (x, t) = −abxt1−αE2,2−α
(
−b2t2

)
, (4.207)

f̃n(t) = − 2l

n2π2

[
(−1)n − 1

]
abt1−αE2,2−α

(
−b2t2

)
. (4.208)

(E −λn;1,1
0+;α,α f̃n)(t) = − 2l

n2π2

[
(−1)n − 1

]
ab

[
E −λn;1,1

0+;α,α
(
t1−αE2,2−α

(
−b2t2

))]
.

(4.209)
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Here we used Dα∗ sin(λt) = λt1−αE2,2−α
(−λ2t2

)
, 0 < α < 1, which is obtained

from the following formula (for n = 1) [48]:

CD
α
0+ sin(λt) = −1

2
ı(ıλ)ntn−α

(
E1,n−α+1 (ıλt)− (−1)nE1,n−α+1 (−ıλt)

)
,

(4.210)

n− 1 < α < n, n ∈ N.

Example 4.4 ([109]) The following fractional diffusion equation:

CD
α
0+u(x, t) = Kα

∂2u(x, t)

∂x2
+ axEα

(−btα) , t > 0, 0 < α ≤ 1, 0 ≤ x ≤ l
(4.211)

where a > 0, b > 0 are constants, with boundary conditions

∂u(x, t)

∂x

∣
∣
∣∣
x=0

= ∂u(x, t)

∂x

∣
∣
∣∣
x=l

= 0, (4.212)

and an initial condition

u(x, t)|t=0+ = x(l − x), (4.213)

has a solution of form

u(x, t) = a0

2
+

∞∑

n=1

an(t) cos
(nπx
l

)
+ al

2
Eα

(−btα)

+ 2al
∞∑

n=1

(−1)n − 1

n2π2

Eα (−btα)− Eα (−λntα)
λn − b cos

(nπx
l

)
,

(4.214)

where λn = n2π2Kα

l2
, a0 = 2

l

∫ l
0 x(l − x) dx = l2

3 and an(t) is given by (4.206).

Indeed, if we substitute f̃ (x, t) = f (x, t) = axEα (−btα), we obtain

f̃n(t) = fn(t) = 2

l

∫ l

0
f (x, t) cos

(nπx
l

)
dx

= 2

l
aEα

(−btα)
∫ t

0
x cos

(nπx
l

)
dx = 2 ((−1)n − 1)

n2π2 alEα
(−btα) ,

(4.215)
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from where it follows

(E −λn;1,1
0+;α,α fn)(t) = 2 ((−1)n − 1)

n2π2
al

∫ t

0
τα−1Eα,α

(−λnτα
)
Eα

(−b(t − τ )α) dτ

= 2al
(−1)n − 1

n2π2

Eα (−btα)− Eα (−λntα)
λn − b , (4.216)

for b 
= λn. If for a given value n = n0, the equivalence b = λn0 is obeyed, then
the solution contains a term that can be obtained by using relation (1.13). From
(4.214) we see that the solution in the long time limit has a power law decay since
Eα,β(−z) � 1

Γ (β−α)z
−1.

Example 4.5 ([109]) The following fractional diffusion equation:

CD
α
0+u(x, t) = ∂2u(x, t)

∂x2 , t > 0, 0 < α ≤ 1, 0 ≤ x ≤ 1 (4.217)

where Kα = 1, with boundary condition

∂u(x, t)

∂x

∣
∣
∣∣
x=0

= ∂u(x, t)

∂x

∣
∣
∣∣
x=l

= atβ−1Eα,β
(−btα) , (4.218)

where a > 0, b > 0 are constants, 1 < β < 1 + α and an initial condition

u(x, t)|t=0+ = 0, (4.219)

has a solution of form

u(x, t) = 4l

π2 t
β−1

∞∑

n=1

λ2n−1Eα,β (−λ2n−1t
α)− bEα,β (−btα)

λ2n−1 − b cos

(
(2n− 1)πx

l

)

− 2al

3
tβ−1Eα,β

(−btα) + axtβ−1Eα,β
(−btα) , (4.220)

where λn = n2π2

l2
.

Note that the boundary condition h(t) = atβ−1Eα,β (−btα) is equal to zero for

t → 0 since β > 1. It goes to zero for t → ∞ as well, since h(t) � a tβ−1−α
bΓ (β−α) → 0

for 1 + α > β.
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4.5.2 Diffusion Equation with Composite Time Fractional
Derivative: Bounded Domain Solutions

In our investigations we consider also the following fractional diffusion equation
[83]:

D
μ,ν
0+ u(x, t) = Kμ

∂2

∂x2u(x, t)+ f (x, t), t > 0, (4.221)

defined in a bounded domain 0 ≤ x ≤ l, with boundary conditions

u(x, t)|x=0 = h1(t), u(x, t)|x=l = h2(t), (4.222)

and an initial condition
(
I
(1−ν)(1−μ)
0+ u(x, t)

)
(0+) = g(x). (4.223)

In the equation, u(x, t) represents a field variable, Kμ is the generalized diffusion
coefficient with dimension

[
Kμ

] = m2/sμ, f (x, t) is the density of the sources
which transfers the substance into or out of the system as a result of a given reaction
(for example, chemical reaction),Dμ,ν0+ is the composite fractional derivative (2.14),

and I (1−ν)(1−μ)
0+ is the R-L integral operator (2.2). Note that we chose the simplified

notation with the sole index μ, despite the fact that the numerical value of Kμ

depends on the value of ν. The independence of the dimensionality of Kμ of the
parameter ν can be directly seen from the dimensional analysis of the composite
fractional derivativeDμ,ν0+ (2.14).

The solution of this problem describes the transition of the solutions of
Eq. (5.105) in case of the R-L time fractional derivative (ν = 0) and the Caputo
time fractional derivative (ν = 1). The proposed equation is a generalization of the
classical diffusion equation [108], which can be obtained by using μ = ν = 1.
Later, we will investigate generalized time fractional diffusion equation as a special
case of a generalized space time fractional diffusion equation in the infinite domain.

Let us formulate the following two lemmas.

Lemma 4.1 Let 0 < μ < 1, 0 ≤ ν ≤ 1 and s, λn ∈ R+. Then the following
relation holds true:

L −1

[
s−ν(1−μ)

sμ + λn

]

(t) = t−(1−μ)(1−ν)Eμ,1−(1−μ)(1−ν)
(−λntμ

)
, (4.224)

where Eμ,1−(1−μ)(1−ν) (−λntμ) is the two parameter M-L function (1.4).

Proof From relation (1.6), by using α = μ, α−β = −ν(1−μ) and a = λn, follows
the proof of this lemma.



4.5 Solving Fractional Diffusion Equations 161

Lemma 4.2 Let 0 < μ < 1 and s, λn ∈ R+. Then the following relation holds
true:

L −1
[

1

sμ + λnL
[
f̃n(t)

]
(s)

]
(t) =

(
E −λn;1,1

0+;μ,μ f̃n
)
(t), (4.225)

where E −λn;1,1
0+;μ,μ f̃n is the integral operator (2.106) and f̃n(t) is a given function.

Proof From relation (1.6) it follows that

1

sμ + λn = L
[
tμ−1Eμ,μ

(−λntμ
)]
(s). (4.226)

By applying the convolution theorem of the Laplace transform one obtains

L −1
[

1

sμ + λnL
[
f̃n(t)

]
(s)

]
(t) =

∫ t

0
(t − τ )μ−1Eμ,μ

(−λn(t − τ )μ
)
f̃n(τ ) dτ,

(4.227)

from which we obtain the proof of this lemma.

Theorem 4.2 ([83]) The time fractional diffusion equation (5.105) with boundary
conditions (5.106) and an initial condition (5.107) for 0 < μ < 1, 0 ≤ ν ≤ 1 has a
solution in the space L(0,∞) with respect to t given by:

u(x, t) =
∞∑

n=1

an(t) sin
(nπx
l

)
+

∞∑

n=1

(E −λn;1,1
0+;μ,μ f̃n)(t) sin

(nπx
l

)
+ v(x, t),

(4.228)

where x ∈ [0, l],

v(x, t) = h1(t)+ x

l
[h2(t)− h1(t)] , (4.229)

an(t) = c̃nt
−(1−μ)(1−ν)Eμ,1−(1−μ)(1−ν)

(
−Kμ

n2π2

l2
tμ
)
, (4.230)

c̃n = 2

l

∫ l

0
g̃(x) sin

(nπx
l

)
dx, (4.231)

f̃n(t) = 2

l

∫ l

0
f̃ (x, t) sin

(nπx
l

)
dx, (4.232)

f̃ (x, t) = f (x, t)−Dμ,ν0+ v(x, t) (4.233)



162 4 Fractional Diffusion and Fokker-Planck Equations

and

g̃(x) = g(x)−
(
I
(1−ν)(1−μ)
0+ v(x, t)

)
(0+). (4.234)

Proof Representing the function u(x, t) in the following way:

u(x, t) = U(x, t)+ v(x, t), (4.235)

and by the help of the function v(x, t) to satisfy the boundary conditions (5.106) of
Eq. (5.105)

v(x, t)|x=0 = h1(t), v(x, t)|x=l = h2(t), (4.236)

it can be easily obtained that v(x, t) has the form (4.229). From relations (5.48) and
(5.47) for the function U(x, t) it is obtained:

U(x, t)|x=0 = 0, U(x, t)|x=l = 0. (4.237)

From the initial condition (5.107) and relation (5.47) it follows

(
I
(1−ν)(1−μ)
0+ U(x, t)

)
(0+) = g(x)−

(
I
(1−ν)(1−μ)
0+ v(x, t)

)
(0+) = g̃(x).

(4.238)

By using

U(x, t) = U1(x, t)+ U2(x, t) (4.239)

from relations (5.105), (5.47), and (5.51) one obtains:

D
μ,ν
0+ [U1(x, t)+ U2(x, t)] = Kμ

∂2

∂x2 [U1(x, t)+ U2(x, t)] + f̃ (x, t), (4.240)

where f̃ (x, t) is given by (4.233).
The function in relation (5.52) can be separated in the following way:

D
μ,ν
0+ U1(x, t) = Kμ

∂2

∂x2U1(x, t), (4.241)

U1(x, t)|x=0 = 0, U1(x, t)|x=l = 0, (4.242)

(
I
(1−ν)(1−μ)
0+ U1(x, t)

)
(0+) = g̃(x) (4.243)
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and

D
μ,ν
0+ U2(x, t) = Kμ

∂2

∂x2U2(x, t)+ f̃ (x, t), (4.244)

U2(x, t)|x=0 = 0, U2(x, t)|x=l = 0, (4.245)

(
I
(1−ν)(1−μ)
0+ U2(x, t)

)
(0+) = 0. (4.246)

By using the method of separation of variables in Eq. (5.54), i.e. U1(x, t) =
X(x)T (t) the following equations are obtained:

D
μ,ν
0+ T (t)+ λT (t) = 0, (4.247)

d2X(x)

dx2
+ λ

Kμ

X(x) = 0, (4.248)

where λ is a separation constant, and the function X(x) satisfies the following
boundary conditions:

X(x)|x=0 = 0, X(x)|x=l = 0. (4.249)

The eigenvalues of the Sturm-Liouville problem (5.61) with boundary conditions

(5.62) are given by λn = Kμ
n2π2

l2
, (n = 1, 2, . . .) [108]. For the eigenfunctions

Xn(x) = sin
(√

λn
Kμ
x
)

in the Hilbert space L2[0, l] is satisfied:

∫ l

0
sin

(√
λn

Kμ

x

)

sin

(√
λm

Kμ

x

)

dx = 2

l
δnm, (4.250)

where δmn is the is the Kronecker delta.
Equation (5.60) can be solved by using relation (2.24). Thus, we see that

sμL [Tn(t)](s)− s−ν(1−μ) (I (1−ν)(1−μ)
0+ Tn

)
(0+)+ λnL [Tn(t)](s) = 0,

(4.251)

i.e.

L [Tn(t)](s) = s−ν(1−μ)

sμ + λn
(
I
(1−ν)(1−μ)
0+ Tn

)
(0+). (4.252)

The inverse Laplace transform of relation (5.65) gives:

Tn(t) =
[(
I
(1−ν)(1−μ)
0+ Tn

)
(0+)

]
t−(1−μ)(1−ν)Eμ,1−(1−μ)(1−ν)(−λntμ),

(4.253)
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where

(
I
(1−ν)(1−μ)
0+ Tn

)
(0+) = 2

l

∫ l

0
g̃(x) sin

(√
λn

Kμ
x

)

dx

is the Fourier coefficient in the series expansion of the function g̃(x). Thus, the
solution of Eq. (5.54) is given by

U1(x, t) =
∞∑

n=1

an(t) sin

(√
λn

Kμ

x

)

, (4.254)

where an(t) is defined by (4.230).
Equation (5.57) can be solved by the use of the complete set of eigenfunctions

sin
(√

λn
Kμ
x
)

. Thus

U2(x, t) =
∞∑

n=1

un(t) sin

(√
λn

Kμ

x

)

. (4.255)

and

f̃ (x, t) =
∞∑

n=1

f̃n(t) sin

(√
λn

Kμ

x

)

, (4.256)

where f̃n(t) is given by (4.232).
From relations (5.68), (5.69), (4.232), and (5.57) we obtain:

∞∑

n=1

[
D
μ,ν
0+ un(t)+ λnun(t)− f̃n(t)

]
sin

(√
λn

Kμ

x

)

= 0, (4.257)

which is satisfied if

D
μ,ν
0+ un(t)+ λnun(t)− f̃n(t) = 0, ∀n ∈ N. (4.258)

By using the Laplace transform method we obtain

sμL [un(t)](s)− s−ν(1−μ) (I (1−ν)(1−μ)
0+ un

)
(0+)

+ λnL [un(t)](s)− L [f̃n(t)](s) = 0. (4.259)
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From the condition (5.59) it follows that
(
I
(1−ν)(1−μ)
0+ un

)
(0+) = 0, and thus we

find

un(t) =
(
E −λn;1,1

0+;μ,μ f̃n
)
(t). (4.260)

Thus, the solution of Eq. (5.57) is given by

U2(x, t) =
∞∑

n=1

(E −λn;1,1
0+;μ,μ f̃n)(t) sin

(√
λn

Kμ

x

)

. (4.261)

Finally, from (5.47), (5.51), (5.115), and (5.116) we finish the proof of the theorem.

Corollary 4.1 ([83]) For ν = 1 (Caputo time fractional derivative) and h1(t) =
h2(t) = 0, the solution becomes

u(x, t) =
∞∑

n=1

an(t) sin
(nπx
l

)
+

∞∑

n=1

(E −λn;1,1
0+;μ,μ fn)(t) sin

(nπx
l

)
, (4.262)

where

an(t) = c̃nEμ(−λntμ), (4.263)

and

fn(t) = 2

l

∫ l

0
f (x, t) sin

(nπx
l

)
dx, (4.264)

where c̃n is given by (4.231), in which g̃(x) = g(x)

Example 4.6 ([83]) The following time fractional diffusion equation

D
μ,ν
0+ u(x, t) = Kμ

∂2

∂x2u(x, t), t > 0, (4.265)

with boundary conditions

u(x, t)|x=0 = 0, u(x, t)|x=l = 0, (4.266)

and an initial condition
(
I
(1−ν)(1−μ)
0+ u(x, t)

)
(0+) = g(x), (4.267)
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where 0 < μ < 1, 0 ≤ ν ≤ 1 and 0 ≤ x ≤ l, has a solution of form

u(x, t) =
∞∑

n=1

an(t) sin
(nπx
l

)
. (4.268)

Here an(t) is given by (4.230), where g̃(x) = g(x). Indeed, if in the theorem we use
f (x, t) = 0 and h1(t) = h2(t) = 0, relation (4.268) yields.

Remark 4.9 Note that for ν = 1, the solution (4.268) has a form

u(x, t) =
∞∑

n=1

c̃nEμ

(
−Kμ

n2π2

l2
tμ
)

sin
(nπx
l

)
, (4.269)

where c̃n is given by (4.231) for g̃(x) = g(x). For μ = ν = 1 the well-known
solution of the classical diffusion equation is obtained [108]:

u(x, t) =
∞∑

n=1

c̃ne
−K1

n2π2

l2
t

sin
(nπx
l

)
. (4.270)

Example 4.7 ([83]) The solution of the time fractional diffusion equation:

D
μ,ν
0+ u(x, t) = ∂2

∂x2u(x, t)+ atδ−1Eμ,δ
(−btμ) , t > 0, (4.271)

with boundary conditions

u(x, t)|x=0 = 0, u(x, t)|x=l = 0, (4.272)

and an initial condition
(
I
(1−ν)(1−μ)
0+ u(x, t)

)
(0+) = g(x), (4.273)

where 0 < μ < 1, 0 ≤ x ≤ l, 0 < δ < 1, a and b > 0 are constants, is of form

u(x, t) =
∞∑

n=1

an(t) sin
(nπx
l

)
+ 4atδ−1

∞∑

n=1

1

(2n− 1)π

·
Eμ,δ (−btμ)− Eμ,δ

(
− (2n−1)2π2

l2
tμ
)

(2n−1)2π2

l2
− b

sin

(
(2n− 1)πx

l

)
. (4.274)
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In this relation

an(t) = c̃nt
−(1−μ)(1−ν)Eμ,1−(1−μ)(1−ν)

(
−n

2π2

l2
tμ
)

(4.275)

and c̃n is given by (4.231) for g̃(x) = g(x).
The first term of relation (4.274) is obtained directly from Eq. (5.115). From

(4.229), (4.232), and (4.233) it follows that

fn(t) = 2

l

∫ l

0
atδ−1Eμ,δ

(−btμ) sin
(nπx
l

)
dx

= 2 [1 − (−1)n]

nπ
atδ−1Eμ,δ

(−btμ) . (4.276)

By substitution of fn(t) in (5.116), we obtain the second term of (4.274). If for

some value n = n0 the equivalence b = n2
0π

2

l2
yields, then the solution contains a

term which can be obtained from relation (1.13).

Remark 4.10 ([83]) An extended source term f (x, t) of the complex form occur-
ring in Eq. (4.271) could stem from an anomalously relaxing background (“melt-
ing”). This could occur, for instance, in an aquifer backbone, along which small
channels feed the backbone stream (subsurface hydrology generally meets anoma-
lous diffusion dynamics [99]).

Example 4.8 ([83]) The solution of the time fractional diffusion equation:

D
μ,ν
0+ u(x, t) = ∂2

∂x2
u(x, t)+ ktδ−1, t > 0, (4.277)

with boundary conditions (4.272) and an initial condition (4.273), where 0 < μ < 1,
0 ≤ x ≤ l, 0 < δ < 1, k is a constant, has a form

u(x, t) =
∞∑

n=1

an(t) sin
(nπx
l

)
+ 4kΓ (δ)tμ+δ−1

∞∑

n=1

1

(2n− 1)π

·Eμ,μ+δ
(

− (2n− 1)2π2

l2
tμ
)

sin

(
(2n− 1)πx

l

)
, (4.278)

where an(t) is given by (4.275).
Since 0 < μ < 1 and 0 < δ < 1, then

tμ+δ−1Eμ,μ+δ
(

− (2n− 1)2π2

l2
tμ
)

� 1
(2n−1)2π2

l2
Γ (δ)

· t−1+δ

for t → ∞. The solution (4.278) shows a power law decay.
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Remark 4.11 Note that if f (x, t) = k · t−β
Γ (1−β) (0 < β < 1), the solution (4.278)

has the following form:

u(x, t) =
∞∑

n=1

an(t) sin
(nπx
l

)
+ 4ktμ−β

∞∑

n=1

1

(2n− 1)π

· Eμ,μ+1−β
(

− (2n− 1)2π2

l2
tμ
)

sin

(
(2n− 1)πx

l

)
, (4.279)

where an(t) is given by (4.275). In the long time limit follows the following behavior

tμ−βEμ,μ+1−β
(

− (2n− 1)2π2

l2
tμ
)

� 1
(2n−1)2π2

l2
Γ (1 − β)

· t−β .

So, the solution (4.279) has a power law decay, as expected.

4.5.3 Space-Time Fractional Diffusion Equation in the Infinite
Domain

As a generalization of the time fractional diffusion equation in a bounded domain
with the Caputo time fractional derivative, here we consider the following gen-
eralized space-time fractional diffusion equation with composite time fractional
derivative [110]:

D
μ,ν
0+ u(x, t) = Kμ,α

∂α

∂|x|α u(x, t), t > 0, −∞ < x < +∞, (4.280)

with boundary conditions

u(±∞, t) = 0, t > 0 (4.281)

and an initial condition
(
I
(1−ν)(1−μ)
0+ u(x, t)

)
(0+) = g(x), −∞ < x < +∞, (4.282)

where Kμ,α is the generalized diffusion coefficient with dimension [Kμ,α] =
mα/sμ (the dimension of Kμ,α can be obtained from the definitions (2.14) and (2.8)
by dimensional analysis), 0 < μ ≤ 1, 0 ≤ ν ≤ 1 and 0 < α ≤ 2. Note that the
numerical value of Kμ,α depends as well on ν, but we use simplified notation with
indexes μ and α due to the independence of [Kμ,α] on ν.
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Theorem 4.3 ([110]) The solution of the fractional diffusion equation (4.280) with
boundary conditions (4.281) and an initial condition (4.282) in case when 0 < μ <
1, 0 ≤ ν ≤ 1, 0 < α ≤ 2 has the following form:

u(x, t) = 1

2π

∫ ∞

−∞
t−(1−ν)(1−μ)Eμ,1−(1−ν)(1−μ)

(−Kμ,α|κ |αtμ
) · g̃(κ) · e−ıκx dκ,

(4.283)

where Eα,β(z) is the two parameter M-L function, and g̃(κ) is the Fourier transform
of the function g(x).

Proof By applying the Laplace transform with respect to the time variable t and
Fourier transform with respect to the spatial variable x in Eq. (4.280), and from the
initial condition (4.281), we obtain

Ũ(κ, s) = s−ν(1−μ)

sμ + |κ |αKμ,α

· g̃(κ), (4.284)

where Ũ(κ, s) = F [U(x, s)], U(x, s) = L [u(x, t)]. The inverse Laplace
transform of (4.284) yields

U(κ, t) = t−(1−ν)(1−μ)Eμ,1−(1−ν)(1−μ)
(−Kμ,α|κ |αtμ

)
g̃(κ). (4.285)

Finally, by inverse Fourier transform of relation (4.285) we finish the proof of the
theorem.

Example 4.9 ([110]) The solution of the fractional diffusion equation (4.280) with
boundary conditions (4.281) and initial condition g(x) = δ(x) is given by

u(x, t) = t−(1−ν)(1−μ)

α|x|

×H 2,1
3,3

⎡

⎣ |x|
(
Kμ,αtμ

)1/α

∣∣
∣
∣
∣
∣

(
1, 1
α

)
,
(
1 − (1 − ν)(1 − μ), μ

α

)
,
(

1, 1
2

)

(1, 1),
(

1, 1
α

)
,
(

1, 1
2

)

⎤

⎦ ,

(4.286)

whereHm,np,q

[
z

∣
∣
∣
∣

(
ap,Ap

)
(
bq, Bq

)
]

is the Fox’ H -function (1.40).
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Indeed, by using g̃(κ) = F [δ(x)] = 1, the cosine transform (1.50) and the
properties ofH -function, we obtain

u(x, t)

= t−(1−ν)(1−μ)

π

∫ ∞

0
cos(κx)H 1,1

1,2

[
Kμ,α|κ |αtμ

∣
∣
∣∣
(0, 1)
(0, 1), ((1 − ν)(1 − μ),μ)

]
dκ

= t−(1−ν)(1−μ)

α|x| H
2,1
3,3

⎡

⎣ |x|
(
Kμ,αtμ

)1/α

∣
∣
∣∣
∣
∣

(
1, 1
α

)
,
(
1 − (1 − ν)(1 − μ), μ

α

)
,
(

1, 1
2

)

(1, 1),
(

1, 1
α

)
,
(

1, 1
2

)

⎤

⎦ .

(4.287)

Note that for α = 2, by the definition of H -function, it follows [83]

u(x, t) = t−(1−ν)(1−μ)

2|x| H
1,0
1,1

[
|x|

(
Kμ,2tμ

)1/2

∣
∣
∣∣

(
1 − (1 − ν)(1 − μ), μ2

)

(1, 1)

]

.

(4.288)

Thus, in case of R-L time fractional derivative (ν = 0) the solution (4.286) becomes
[61]

u(x, t) = t−(1−μ)

α|x| H
2,1
3,3

⎡

⎣ |x|
(
Kμ,αtμ

)1/α

∣
∣∣
∣
∣
∣

(
1, 1
α

)
,
(
μ,

μ
α

)
,
(

1, 1
2

)

(1, 1),
(

1, 1
α

)
,
(

1, 1
2

)

⎤

⎦ . (4.289)

In case of Caputo time fractional derivative (ν = 1) the solution (4.286) has the
following form

u(x, t) = 1

α|x|H
2,1
3,3

⎡

⎣ |x|
(
Kμ,αtμ

)1/α

∣∣
∣
∣
∣
∣

(
1, 1
α

)
,
(
1, μ
α

)
,
(

1, 1
2

)

(1, 1),
(

1, 1
α

)
,
(

1, 1
2

)

⎤

⎦ . (4.290)

Note that solution (4.290), unlike solution (4.289), is normalized (see relation
(4.303)). Only if we consider a proper singular term with matching power, the
solution in the case of an R-L time fractional derivative would be normalized. This
non-conservation of the norm is important in certain cases, as described by the Hilfer
idea of fractional generators of the dynamics (see, for example, Ref. [36]).

Moreover, for ν = μ = 1 from relation (4.286) one obtains the solution of the
diffusion equation with space fractional derivative, i.e.,

u(x, t) = 1

α|x|H
1,1
2,2

⎡

⎣ |x|
(
K1,αt

)1/α

∣
∣
∣
∣
∣∣

(
1, 1
α

)
,
(

1, 1
2

)

(1, 1),
(

1, 1
2

)

⎤

⎦ , (4.291)
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which is a closed-form representation of a Lévy stable law [64]. If in relation (4.291)
we substitute α = 2, the solution of the classical diffusion equation is obtained
[108], i.e.,

u(x, t) = 1

2|x|H
1,0
1,1

[
|x|

√
Kμ,αt

∣∣
∣
∣
∣

(
1, 1

2

)

(1, 1)

]

= 1
√

4πKμ,αt
· e− x2

4Kμ,αt . (4.292)

In this case for Kμ,α = 1/2 note that

u(x, t) = 1√
2πt

· e− x2
2t

represents probability distribution function of a Wiener process. Solution (4.286)
for different values of parameters is shown in Figs. 4.3, 4.4, 4.5, and 4.6.

Remark 4.12 Let us make few remarks on the fractional diffusion equation (4.280)
with boundary conditions (4.281) and initial value g(x) = δ(x), in case when α = 2
[83]. This equation for ν = 1 describes diffusion of Montroll-Weiss type. It is shown
that it can be related to the Montroll-Weiss CTRW, where μ is related to the long

(a)
30 20 10 0 10 20 30

x

0

0.02

0.04

0.06

0.08

u
x,
t

(b)
30 20 10 0 10 20 30

x

0.0001

0.001

0.01

0.1

u
x,
t

(c)
0.1 0.2 0.5 1 2 5 10 20

x

0.0001

0.0005
0.001

0.005
0.01

0.05
0.1

u
x,
t

Fig. 4.3 Graphical representation of solution (4.291) (μ = ν = 1, space fractional diffusion
equation), Kμ,α = 1, t = 10, α = 2 (solid line), α = 1 (dashed line); (a) Linear plot; (b) log-
linear plot; (c) log-log plot. Reprinted from Physica A, 391, Z. Tomovski, T. Sandev, R. Metzler and
J.L.A. Dubbeldam, Generalized space-time fractional diffusion equation with composite fractional
time derivative, 2527–2542, Copyright (2012), with permission from Elsevier
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Fig. 4.4 Graphical representation of solution (4.291) for Kμ,α = 1, (a) (linear plot) t = 10 (solid
line), t = 20 (dashed line); left: α = 1 (the solution is divided by a factor 1

10π ); right: α = 2 (the

solution is divided by a factor 1√
40π

); (b) (log-linear plot) t = 10 (solid line), t = 20 (dashed line);

left: α = 1; right: α = 2; (c) (log-log plot) t = 10 (solid line), t = 20 (dashed line); α = 1 (blue
line); α = 2 (black line). Reprinted from Physica A, 391, Z. Tomovski, T. Sandev, R. Metzler and
J.L.A. Dubbeldam, Generalized space-time fractional diffusion equation with composite fractional
time derivative, 2527–2542, Copyright (2012), with permission from Elsevier
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Fig. 4.5 Graphical representation of solution (4.288) (α = 2, time fractional diffusion equation),
μ = 1/2, Kμ,α = 1, t = 5, ν = 0 (lower line), ν = 1/4, ν = 1/2, ν = 3/4, ν = 1 (upper
line). Reprinted from Physica A, 391, Z. Tomovski, T. Sandev, R. Metzler and J.L.A. Dubbeldam,
Generalized space-time fractional diffusion equation with composite fractional time derivative,
2527–2542, Copyright (2012), with permission from Elsevier
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Fig. 4.6 Graphical representation of solution (4.290) (ν = 1, α = 1.6, space time fractional
diffusion equation with Caputo time fractional derivative), Kμ,α = 1, t = 5 (solid lines), t = 10
(dashed lines), μ = 0.95 (black lines), μ = 0.9 (blue lines). Reprinted from Physica A, 391,
Z. Tomovski, T. Sandev, R. Metzler and J.L.A. Dubbeldam, Generalized space-time fractional
diffusion equation with composite fractional time derivative, 2527–2542, Copyright (2012), with
permission from Elsevier

time tail exponent [37]. In this case the solution u(x, t) is a probability density, i.e.,
u(x, t) is normalized (see also Ref. [83]).

The case ν = 0, exactly solved by Hilfer [38], is not related to the Montroll-
Weiss CTRW. In this case a nonlocal initial value

(
I
(1−μ)
0+ u(x, t)

)∣∣
∣
t=0+ = δ(x)

should be considered [37, 38]. Contrary to the case ν = 1, the solution u(x, t) for
ν = 0 is not normalized, so it does not have probabilistic interpretation [38] (see
also Ref. [83]).

Same situation appears for 0 < μ < 1 and 0 < ν < 1, where the nonlocal initial
value term of form

(
I
(1−ν)(1−μ)
0+ u(x, t)

)∣∣
∣
t=0+ = δ(x)

is considered [37, 83]. In this case u(x, t) (4.286) is not normalized and cannot
be related to the Montroll-Weiss CTRW, but it can be used in the description of
anomalous relaxation phenomena in dielectrics and viscoelastic phenomena [39]
(see also the discussion in Ref. [83] and remark (4.14)). The relaxation of the
probability distribution function given by (4.285) is used by Hilfer in the description
of the meta-stable equilibrium state of an atom in glassy materials [37]. Such non-
exponential relaxation is characteristics for the proteins as well. This is due to the
fact that proteins and glassy materials share some similarities. The fundamental
characteristic is that both, proteins and glassy materials, have large number of
close isoenergetic substates due to their disordered (aperiodic) structure. The meta-
stability on a temperature below the glassy temperature (temperature on which the
liquid becomes a glass) is a characteristic of proteins and glassy materials [42].
Their relaxation can be described by M-L type relaxation function [33].
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Fig. 4.7 Graphical representation of solution (4.286) for μ = 1/2, Kμ,2 = 1, ν = 0 (lower line),
ν = 1/4, ν = 1/2, ν = 3/4, ν = 1 (upper line); (a) t = 1; (b) t = 10. Republished with
permission of IOP Publishing, LTD, from J. Phys. A: Math. Theor. T. Sandev, R. Metzler and Z.
Tomovski, 44(25), 255203 (2011)
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Fig. 4.8 Graphical representation of solution (4.286) for μ = 1/2, Kμ,2 = 1, t = 0.1 (upper
line), t = 1, t = 10 (lower line); (a) ν = 1 (see [64]); (b) ν = 1/2; (c) ν = 0. Republished with
permission of IOP Publishing, LTD, from J. Phys. A: Math. Theor. T. Sandev, R. Metzler and Z.
Tomovski, 44(25), 255203 (2011)

The time evolution of the solution (4.286) for μ = 1/2, Kμ,2 = 1, and different
values of ν are shown in Figs. 4.7 and 4.8. The solution of classical diffusion
equation is represented in Fig. 4.9. The plots are made by using series (1.41) in
the program package Mathematica.

Remark 4.13 The fractional diffusion equation (4.280) with boundary conditions
(4.281) and initial condition g(x) = δ(x) for 0 < α ≤ 2, 0 < μ ≤ 1 and ν = 1
is the governing equation for the infinitesimal generator of the semigroup for the
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Fig. 4.9 Graphical representation of solution of classical diffusion equation (μ = 1) Kμ = 1,
t = 0.1 (upper line), t = 1, t = 10 (lower line). Republished with permission of IOP Publishing,
LTD, from J. Phys. A: Math. Theor. T. Sandev, R. Metzler and Z. Tomovski, 44(25), 255203 (2011)

process Lα(Dβ(t)) (a Lévy α-stable process subordinated to the inverse β-stable
subordinator with 0 < α ≤ 2 and 0 < β ≤ 1).

4.5.3.1 Asymptotic Expansion

By using the series expansion of the H -function (1.41), solution (4.286) can be
represented by the following series [110]

u(x, t) = K
−1/α
μ,α t−(1−ν)(1−μ)−μ/α

α

×
∞∑

k=0

(−1)k

k!
sin

(
1+k

2 π
)

sin
(

1+k
α
π
)
Γ

(
1 − (1 − ν)(1 − μ)− 1+k

α
μ
)

|x|k
(
Kμ,αtμ

)k/α

+ |x|α−1t−(1−ν)(1−μ)−μ

πKμ,α

×
∞∑

k=0

(−1)kΓ (1 − α(1 + k)) sin
( [1+k]α

2 π
)

Γ (1 − (1 − ν)(1 − μ)− μ− μk)
|x|αk

(
Kμ,αtμ

)k , (4.293)

where we employed

Γ (a)Γ (1 − a) = π

sin(aπ)
.
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Thus, for |x|
(Kμ,αtμ)

1/α � 1, we obtain

u(x, t) � K
−1/α
μ,α

α sin
(
π
α

) · t−(1−ν)(1−μ)−μ/α

Γ
(
1 − (1 − ν)(1 − μ)− μ

α

)

+ |x|α−1 K −1
μ,α

2Γ (α) cos
(
απ
2

) · t−(1−ν)(1−μ)−μ

Γ (1 − (1 − ν)(1 − μ)− μ) . (4.294)

Note that the second sum in (4.293) vanishes in the limit μ = 1. So it is obtained

u(x, t) �
K

−1/α
1,α Γ

(
1
α

)

πα
· t−1/α − |x|2

K
−3/α

1,α Γ
(

3
α

)

2πα
· t−3/α,

which for α = 2 yields the Gaussian PDF

u(x, t) � 1
√

4πK1,2t

(

1 − |x|2
√

4K1,2t

)

� 1
√

4πK1,2t
e
− |x|2√

4K1,2t .

Graphical representation of the asymptotic solution (4.294) is given in Fig. 4.10.
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Fig. 4.10 Graphical representation of asymptotic solution (4.294), t = 10, Kμ,α = 1, μ = ν =
1/2; left: α = 0.75 (blue line), α = 0.85 (green line), α = 0.95 (red line); right: α = 1.25 (red
line), α = 1.5 (green line), α = 1.75 (blue line); (a) linear plot; (b) log-log plot, α < 1 (solid line),
α > 1 (dashed line). Reprinted from Physica A, 391, Z. Tomovski, T. Sandev, R. Metzler and
J.L.A. Dubbeldam, Generalized space-time fractional diffusion equation with composite fractional
time derivative, 2527–2542, Copyright (2012), with permission from Elsevier
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From the other side by using the properties and series expansion of the Fox H -
function, we can find the asymptotic behavior in case when |x|

(Kμ,αtμ)
1/α � 1. Thus,

we obtain

u(x, t) = t−(1−ν)(1−μ)

α|x|

×H 1,2
3,3

⎡

⎣
(
Kμ,αt

μ
)1/α

|x|

∣
∣
∣
∣
∣
∣

(0, 1),
(

0, 1
α

)
,
(

0, 1
2

)

(
0, 1
α

)
,
(
(1 − ν)(1 − μ), μ

α

)
,
(

0, 1
2

)

⎤

⎦

= t−(1−ν)(1−μ)

πα|x|
∞∑

k=1

(−1)k+1Γ (1 + αk) sin
(
αkπ

2

)

Γ (1 − (1 − ν)(1 − μ)+ μk)
(
Kμ,αt

μ
)k

|x|αk , (4.295)

from where it follows

u(x, t) � Γ (α) sin
(
απ
2

)

πΓ (1 + μ− (1 − ν)(1 − μ)) · |x|−α−1Kμ,αt
μ−(1−ν)(1−μ).

(4.296)

The case with μ = 1 yields the well-known result typical for Lévy-distribution
given by [64, 115]

u(x, t) � |x|−α−1K1,α t.

The asymptotic behavior of solution (4.288) (α = 2, i.e. time fractional diffusion
equation) in case when |x|

(Kμ,αtμ)
1/α � 1 is given by [83]

u(x, t) � 1

2
√
(2 − μ)π ·

(μ
2

) (1−μ)(1−2ν)
2−μ · |x| (1−μ)(1−2ν)

2−μ · (Kμ,2t
μ
)− (1−ν)(1−μ)+1/2

2−μ

× exp

[
−2 − μ

2

(μ
2

) μ
2−μ |x| 2

2−μ
(
Kμ,2t

μ
)− 1

2−μ
]
, (4.297)

where the asymptotic expansion formula (1.53) for large z ofH -functionH 1,0
1,1 (z) is

applied. We see that the asymptotic behavior (4.297) is of stretched Gaussian-like
form. If ν = 1, the result (4.297) is given by [64, 78]

u(x, t) � 1

2
√
(2 − μ)π ·

(μ
2

)μ−1
2−μ · |x| μ−1

2−μ · (Kμt
μ
)− 1

2(2−μ)

× exp

[
−2 − μ

2

(μ
2

) μ
2−μ |x| 2

2−μ
(
Kμt

μ
)− 1

2−μ
]
. (4.298)
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This result can be obtained from the CTRW theory. For α = 2, ν = 1, and μ = 1
from (4.297) one obtains the solution of the classical diffusion equation (4.292).

4.5.3.2 Fractional Moments

The fractional moments

〈|x(t)|ξ 〉 = 2
∫ ∞

0
xξu(x, t) dx, ξ > 0 (4.299)

of the considered fractional diffusion equation (4.280) with initial condition g(x) =
δ(x) are given by [110]

〈|x(t)|ξ 〉 = 2

α
t−(1−ν)(1−μ) (Kμ,αt

μ
)ξ/α Γ (1 + ξ) sin

(
ξπ
2

)

Γ
(

1 − (1 − ν)(1 − μ)+ μξ
α

)
sin

(
ξπ
α

) .

(4.300)

The case μ = 1 yields the following result [64]

〈|x(t)|ξ 〉 = 2

α

(
K1,αt

)ξ/α Γ (1 + ξ) Γ
(
− ξ
α

)

Γ
(
− ξ

2

)
Γ

(
1 + ξ

2

)

= 2

α

(
K1,αt

)ξ/α Γ (1 + ξ) sin
(
ξπ
2

)

Γ
(

1 + ξ
α

)
sin

(
ξπ
α

) . (4.301)

Furthermore, for α = 2 we obtain [83]

〈|x(t)|ξ 〉 = Γ (1 + ξ) (Kμ,2t
μ
)ξ/2 · t−(1−ν)(1−μ)

Γ
(

1 − (1 − ν)(1 − μ)+ μξ
2

) . (4.302)

From (4.300), for ξ → 0 it follows

lim
ξ→0

〈|x(t)|ξ 〉 = t−(1−ν)(1−μ)

Γ (1 − (1 − ν)(1 − μ)) , (4.303)

so, the function u(x, t) is not normalized. Note that if ν = 0 it follows

lim
ξ→0

〈|x(t)|ξ 〉 = t−(1−μ)

Γ (μ)
,

and if ν = 1, limξ→0
〈|x(t)|ξ 〉 = 1.
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The case ξ → 2 and α → 2 yields

lim
ξ→2

〈|x(t)|ξ 〉 = 2Kμ,2
tμ−(1−ν)(1−μ)

Γ (1 + μ− (1 − ν)(1 − μ)) . (4.304)

If ν = 0 it is obtained

lim
ξ→2

〈|x(t)|ξ 〉 = 2Kμ,2
t−1+μ

Γ (2μ)
,

and if ν = 1 it is obtained

lim
ξ→2

〈|x(t)|ξ 〉 = Kμ,2
tμ

Γ (1 + μ) .

For μ = 1 follows linear dependence of the MSD on time, i.e.
〈
x2(t)

〉 = 2K1,2 t .
This fractional moments may be used, for example, in single molecule spectroscopy
[120].

Remark 4.14 Let us give some additional comments on the non-normalization of
the probability density function u(x, t) to those given in remark (4.12). From
relation (4.303) we see that limξ→0

〈|x(t)|ξ 〉 decays with the time as t−(1−ν)(1−μ).
For this interesting result in case when ν = 0, i.e. limξ→0

〈|x(t)|ξ 〉 ∼ tμ−1,
a physical interpretation by the help of experimental results is given [13, 14].
It is shown that this behavior appears in the decaying of the charge density in
semiconductors with exponential distribution of traps, as well as power law time
decay of the ion-recombination isothermal luminescence in condensed media. Thus,
semiconductors with exponential distribution of traps are considered, the number of
injected free carriers decays in time as a power law, due to the trapping (power
law decay of the photoconductivity) [13, 72]. The total carrier density in the
semiconductor is conserved and can be explained by the CTRW theory [13], or
by the considered fractional diffusion equation in case when ν = 1 [83].

Remark 4.15 ([83]) Relation (4.342) yields:

〈
x2n(t)

〉
= (2n)! (Kμt

μ
)n t−(1−ν)(1−μ)

Γ (1 + nμ− (1 − ν)(1 − μ)) , (4.305)

where n ∈ N. If we divide both the sides of relation (4.305) by (2n)! and we sum
over n we obtain the following interesting result

∞∑

n=0

〈
x2n(t)

〉

(2n)! = t−(1−ν)(1−μ)
∞∑

n=0

(Kμt
μ)n

Γ (nμ+ 1 − (1 − ν)(1 − μ))
= t−(1−ν)(1−μ)Eμ,1−(1−ν)(1−μ)

(
Kμt

μ
)
. (4.306)
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Note that for ν = 1 the well-known result

〈
x2n(t)

〉
= (2n)! K n

μ t
nμ

Γ (1 + nμ)
is obtained (see [64, 66]).

4.5.4 Cases with a Singular Term

Let us consider also a space time fractional diffusion equation with a singular term:

D
μ,ν
0+ u(x, t) = Kμ,α

∂α

∂|x|α u(x, t)+ δ(x)
t−β

Γ (1 − β) , t > 0, −∞ < x < +∞,
(4.307)

where β > 0, with boundary conditions (4.281) and an initial condition (4.282).

Theorem 4.4 ([110]) The solution of the fractional diffusion equation (4.307) with
boundary conditions (4.281) and an initial condition (4.282) for 0 < μ < 1, 0 ≤
ν ≤ 1, 0 < α ≤ 2 is given by

u(x, t) = 1

2π

∫ ∞

−∞
t−(1−ν)(1−μ)Eμ,1−(1−ν)(1−μ)

(−Kμ,α|κ |αtμ
) · g̃(κ) · e−ıκx dκ

+ t−(β−μ)

α|x| ·H 2,1
3,3

⎡

⎣ |x|
(
Kμ,αtμ

)1/α

∣∣
∣
∣
∣
∣

(
1, 1
α

)
,
(
1 − (β − μ), μ

α

)
,
(

1, 1
2

)

(1, 1),
(

1, 1
α

)
,
(

1, 1
2

)

⎤

⎦ ,

(4.308)

where g̃(κ) = F [g(x)] is the Fourier transform of the function g(x).

Proof The Laplace transform with respect to the time variable t and Fourier
transform with respect to the space variable x to Eq. (4.307), taking into account
the initial condition (4.282) and boundary conditions (4.281), give

Ũ(κ, s) = s−ν(1−μ)

sμ + |κ |αKμ,α

· g̃(κ)+ sβ−1

sμ + |κ |αKμ,α

, (4.309)

where Ũ(κ, s) = F [U(x, s)], U(x, s) = L [u(x, t)]. The inverse Laplace
transform to relation (4.309) yields

U(κ, t) = t−(1−ν)(1−μ)Eμ,1−(1−ν)(1−μ)
(−Kμ,α|κ |αtμ

)
g̃(κ)

+ t−(β−μ)Eμ,1−(β−μ)
(−Kμ,α|κ |αtμ

)
. (4.310)
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Finally, by inverse Fourier transform to relation (4.310) we prove the theorem.

Example 4.10 The solution of Eq. (4.307) with boundary conditions (4.281) and
initial condition g(x) = δ(x) is given by

u(x, t) = t−(1−ν)(1−μ)

α|x|

×H 2,1
3,3

⎡

⎣ |x|
(
Kμ,αtμ

)1/α

∣∣
∣
∣
∣
∣

(
1, 1
α

)
,
(
1 − (1 − ν)(1 − μ), μ

α

)
,
(

1, 1
2

)

(1, 1),
(

1, 1
α

)
,
(

1, 1
2

)

⎤

⎦

+ t−(β−μ)

α|x| ·H 2,1
3,3

⎡

⎣ |x|
(
Kμ,αtμ

)1/α

∣∣
∣
∣
∣
∣

(
1, 1
α

)
,
(
1 − (β − μ), μ

α

)
,
(

1, 1
2

)

(1, 1),
(

1, 1
α

)
,
(

1, 1
2

)

⎤

⎦ .

(4.311)

This solution for α = 2 yields [83]

u(x, t) = t−(1−ν)(1−μ)

2|x| ·H 1,0
1,1

[
|x|

√
Kμ,αtμ

∣
∣
∣
∣

(
1 − (1 − ν)(1 − μ), μ2

)

(1, 1)

]

+ t−(β−μ)

2|x| ·H 1,0
1,1

[
|x|

√
Kμ,αtμ

∣∣
∣
∣

(
1 − (β − μ), μ2

)

(1, 1)

]

. (4.312)

Graphical representation of solution (4.312) for different values of parameters is
given in Fig. 4.11.

4.5.4.1 Asymptotical Expansion

We analyze the asymptotic behavior of the solution (4.311) as it was done
previously. Thus, solution (4.311) is expressed with the following series [110]:

u(x, t) = K
−1/α
μ,α t−(1−ν)(1−μ)−μ/α

α

×
∞∑

k=0

(−1)k

k!
sin

(
1+k

2 π
)

sin
(

1+k
α
π
) [A(k, t)+ B(k, t)] |x|k

(
Kμ,αtμ

)k/α

+ |x|α−1

πKμ,α

∞∑

k=0

(−1)kΓ (1 − α(1 + k)) sin

( [1 + k]α
2

π

)

× [C(k, t)+D(k, t)] |x|αk
(
Kμ,αtμ

)k , (4.313)
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Fig. 4.11 Graphical representation of solution (4.312) for Kμ,α = 1; (a) ν = 1; (b) ν = 1/2; (c)
ν = 0; β = μ = 1/2, t = 0.1 (upper line), t = 1, t = 10 (lower line); (d) t = 10, μ = ν = 1/2,
β = 0.25 (upper line), β = 0.5, β = 0.75, β = 1 (lower line). Republished with permission
of IOP Publishing, LTD, from J. Phys. A: Math. Theor. T. Sandev, R. Metzler and Z. Tomovski,
44(25), 255203 (2011)

where we use notations

A(k, t) = t−(1−ν)(1−μ)−μ
α

Γ
(

1 − (1 − ν)(1 − μ)− 1+k
α
μ
) ,

B(k, t) = t−(β−μ)−μ
α

Γ
(

1 − (β − μ)− 1+k
α
μ
) ,

C(k, t) = t−(1−ν)(1−μ)−μ

Γ (1 − (1 − ν)(1 − μ)− μ− μk) ,

D(k, t) = t−β

Γ (1 − β − μk) .



4.5 Solving Fractional Diffusion Equations 183

Thus, for |x|
(Kμ,αtμ)

1/α � 1, one obtains

u(x, t) � K
−1/α
μ,α

α sin
(
π
α

) · t−(1−ν)(1−μ)−μ/α

Γ
(
1 − (1 − ν)(1 − μ)− μ

α

)

+ |x|α−1 K −1
μ,α

2Γ (α) cos
(
απ
2

) · t−(1−ν)(1−μ)−μ

Γ (1 − (1 − ν)(1 − μ)− μ)

+ K
−1/α
μ,α

α sin
(
π
α

) · t−(β−μ)−μ/α

Γ
(
1 − (β − μ)− μ

α

)

+ |x|α−1 K −1
μ,α

2Γ (α) cos
(
απ
2

) · t−β

Γ (1 − β). (4.314)

For |x|
(Kμ,αtμ)

1/α � 1, it is obtained

u(x, t) = t−(1−ν)(1−μ)

πα|x|
∞∑

k=1

(−1)k+1Γ (1 + αk) sin
(
αkπ

2

)

Γ (1 − (1 − ν)(1 − μ)+ μk)
(
Kμ,αt

μ
)k

|x|αk

+ t−(β−μ)

πα|x|
∞∑

k=1

(−1)k+1Γ (1 + αk) sin
(
αkπ

2

)

Γ (1 − (β − μ)+ μk)
(
Kμ,αt

μ
)k

|x|αk , (4.315)

from where it follows

u(x, t) � Γ (α) sin
(
απ
2

)

πΓ (1 − (1 − ν)(1 − μ)+ μ) · |x|−α−1Kμ,αt
μ−(1−ν)(1−μ)

+ Γ (α) sin
(
απ
2

)

πΓ (1 + 2μ− β) · |x|−α−1Kμ,αt
2μ−β. (4.316)

As a special case we use α = 2. For |x|
(Kμ,αtμ)

1/α � 1, from (1.53) one obtains

the following asymptotic behavior of the solution (4.312),

u(x, t) � 1

2
√
(2 − μ)π ·

(μ
2

) (1−μ)(1−2ν)
2−μ · |x| (1−μ)(1−2ν)

2−μ · (Kμ,2t
μ
)− (1−ν)(1−μ)+1/2

2−μ

× exp

[
−2 − μ

2

(μ
2

) μ
2−μ |x| 2

2−μ
(
Kμ,2t

μ
)− 1

2−μ
]

+ 1

2
√
(2 − μ)π ·

(μ
2

) 2β−μ−1
2−μ · |x| 2β−μ−1

2−μ · (Kμ,2t
μ
)− (β−μ)+1/2

2−μ

× exp

[
−2 − μ

2

(μ
2

) μ
2−μ |x| 2

2−μ
(
Kμ,2t

μ
)− 1

2−μ
]
. (4.317)
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4.5.4.2 Fractional Moments

The fractional moments (5.5) of the solution of the fractional diffusion equa-
tion (4.307) with the initial condition g(x) = δ(x) are given by [110]

〈|x(t)|ξ 〉 = 2

α
Γ (1 + ξ) (Kμ,αt

μ
)ξ/α t−(1−ν)(1−μ) sin

(
ξπ
2

)

Γ
(

1 − (1 − ν)(1 − μ)+ μξ
α

)
sin

(
ξπ
α

)

+ 2

α
Γ (1 + ξ) (Kμ,αt

μ
)ξ/α t−(β−μ) sin

(
ξπ
2

)

Γ
(

1 − (β − μ)+ μξ
α

)
sin

(
ξπ
α

) .

(4.318)

Example 4.11 ([110]) The solution of space time fractional diffusion equa-
tion (4.307) with boundary conditions (4.281) and initial condition g(x) = 0,
is given by

u(x, t) = t−(β−μ)

α|x| ·H 2,1
3,3

⎡

⎣ |x|
(
Kμ,αtμ

)1/α

∣∣
∣
∣
∣
∣

(
1, 1
α

)
,
(
1 − (β − μ), μ

α

)
,
(

1, 1
2

)

(1, 1) ,
(

1, 1
α

)
,
(

1, 1
2

)

⎤

⎦ .

(4.319)

This result follows directly from the theorem.

Remark 4.16 Note that the solution (4.319) of Eq. (4.307) for β = μ is equivalent
to the solution (4.290) of Eq. (4.280) for ν = 1, which is in fact a proof of the
statement for the equivalent formulations of the problem. For β = μ = 1 and α = 2
the solution of the classical diffusion equation (4.292), which for Kμ,α = 1/2 is
the same as the probability distribution function for a Wiener process. Furthermore,

if the singular term is of form δ(x) t−(1−ν)(1−μ)−μ
Γ (1−(1−ν)(1−μ)−μ) , the solution of Eq. (4.307)

with boundary conditions (4.281) and initial condition g(x) = 0 is the same as
the solution (4.286) of Eq. (4.280) with boundary conditions (4.281) and initial
condition g(x) = δ(x).
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4.5.4.3 Asymptotical Expansion

From relations (1.53)–(1.57), the asymptotic behavior of solution (4.312) is given by

u(x, t) � 1

2
√
(2 − μ)π ·

(μ
2

) (1−μ)(μ−2ν−μν)
2(2−μ) · |x| (1−μ)(1−2ν)

2−μ · (Kμt
μ
)− (1−ν)(1−μ)+1/2

2−μ

× t−(1−ν)(1−μ) · exp

[
−2 − μ

2

(μ
2

) μ
2−μ |x| 2

2−μ
(
Kμt

μ
)− 1

2−μ
]

+ 1

2
√
(2 − μ)π ·

(μ
2

) 2β−μ−1
2−μ · |x| 2β−μ−1

2−μ · (Kμt
μ
)− β−μ+1/2

2−μ · t−(β−μ)

× exp

[
−2 − μ

2

(μ
2

) μ
2−μ |x| 2

2−μ
(
Kμt

μ
)− 1

2−μ
]
. (4.320)

If ν = 1 and β = μ, result (4.320) becomes

u(x, t) � 1√
(2 − μ)π ·

(μ
2

)μ−1
2−μ · |x| μ−1

2−μ

× (
Kμt

μ
)− 1

2(2−μ) · exp

[
−2 − μ

2

(μ
2

) μ
2−μ |x| 2

2−μ
(
Kμt

μ
)− 1

2−μ
]
.

(4.321)

4.5.5 Numerical Solution

The numerical scheme used for solving generalized space-time fractional diffusion
equation with composite time fractional derivative is developed in [110]. Solving the
space time fractional diffusion equations with a composite fractional time derivative
of order 0 < μ < 1 and type 0 ≤ ν ≤ 1 and with Riesz-Feller space fractional
derivative of order 0 < α ≤ 2 numerically is most easily attempted in the Fourier
domain. The Fourier transformed equations should then be solved numerically and
finally a fast Fourier transform can be used to transform the found solution to the
real space domain.

Therefore, one inverts the order of the fractional derivative and Fourier transform.
In the Fourier space, the fractional diffusion equation (4.280) with boundary
conditions (4.281) and initial condition (4.282) can be rewritten as

D
μ,ν
0+ f̃ (κ, t) = −|κ |αf̃ (κ, t). (4.322)

The initial condition (4.282) for g(x) = δ(x) is transformed to

I
(1−ν)(1−μ)
0+ f̃ (κ, 0) = 1, (4.323)

and the boundary conditions are f̃ (±∞, t) = 0.
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The next one performs shift to obtain homogeneous initial conditions. For that a
function h̃(κ, t) is introduced, which is defined as h̃(κ, t) = I

(1−ν)(1−μ)
0+ f̃ (κ, t)− 1.

This relation is inverted by using that RLD
(1−μ)(1−ν)
0+ I

(1−ν)(1−μ)
0+ h̃(κ, t) = h̃(κ, t)

and the fact that the R-L and Caputo fractional derivatives are equivalent because of
the initial condition h̃(κ, 0+) = 0. Thus one finds

f̃ (κ, t) = CD
(1−μ)(1−ν)
0+ h̃(κ, t)+ t−(1−ν)(1−μ)

Γ (1 − (1 − ν)(1 − μ)) , (4.324)

where CD
(1−μ)(1−ν)
0+ h̃(κ, t) is the Caputo fractional derivative.

By substitution of the definition of h̃(κ, t) and its inversion (4.324) in Eq. (4.322),
the following equation for h̃(κ, t) is obtained

[
CD

1−ν(1−μ)
0+ + |κ |αCD(1−ν)(1−μ)

0+
]
h̃(κ, t) = −|κ |α t−(1−ν)(1−μ)

Γ (1 − (1 − ν)(1 − μ))

− t−1+ν(1−μ)

Γ (ν(1 − μ)) . (4.325)

Equation (4.325) can be numerically solved by using the Grünwald-Letnikov
approximation of fractional derivatives. The Grünwald-Letnikov derivative of order
α at time tl = lΔt of function h(t), GLDαtkh(t), is defined by [77]:

GLD
α
tl
h(t) = (Δt)−α

l∑

j=0

(−1)j
(
α

j

)
h(tl − tj ), (4.326)

where the binomial coefficient

(
α

j

)
is defined as

(
α

j

)
= Γ (α+1)

Γ (j+1)Γ (α−j+1) . This

derivative can be shown to be equivalent to the R-L derivative for α < 1 if
h(t) is continuous [77]. The Grünwald-Letnikov derivative is commonly used as
a discretization needed for the numerical evaluation of fractional derivatives.

This discretization gives the following numerical scheme for ĥ at time step ti =
iΔt

h̃(κ, ti) = − |κ |α(Δt)μi−(1−ν)(1−μ)

(1 + |κ |α(Δt)μ)Γ (1 − (1 − ν)(1 − μ))

− i−1+ν(1−μ)

(1 + |κ |α(Δt)μ)Γ (ν(1 − μ))

−
∑i
j=1(−1)j

(
1 − ν(1 − μ)

j

)
h̃(ti − tj )

1 + |κ |α(Δt)μ

−
|κ |α(Δt)μ∑i

j=1(−1)j
(
(1 − ν)(1 − μ)

j

)
h̃(ti − tj )

1 + |κ |α(Δt)μ . (4.327)
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From the Grünwald-Letnikov approximation in relation (4.324) for time step ti , one
finds

f̃ (κ, ti ) = (Δt)−(1−μ)(1−ν)
i∑

j=0

(−1)j
(
(1 − ν)(1 − μ)

j

)
h̃(κ, (i − j)Δt)

+ (iΔt)−(1−ν)(1−μ)

Γ (1 − (1 − ν)(1 − μ)). (4.328)

Finally, by applying the fast Fourier transform we obtain the numerical solution of
the equation.

Example 4.12 ([110]) Here we illustrate the accuracy of the numerical scheme by
first solving Eq. (4.280) numerically for different values of ν. Results show that
exact results given in Fig. 4.5 and numerical results are in excellent agreement.
Asymptotic results given in Fig. 4.10a are in good agreement, as well, with
numerical results for μ = ν = 1/2 and different values of α.

In Fig. 4.12 we give graphical representation of the numerical solution of
Eq. (4.280) for different values of ν and μ = 1/2, α = 2. The excellent agreement
of plots in Fig. 4.12a with those in Fig. 4.5 illustrates the accuracy of the presented
numerical scheme with the exact solutions. In Fig. 4.12b it is shown good agreement
of the asymptotic solution given in Fig. 4.10 for t = 10 and the numerical solution.

4.6 Generalized Fokker-Planck Equation

Let us now consider the case of a test particle is confined in an external potential
V (x), i.e., the case when an external force acts on the system. In case when a
non-linear external force F(x) = −V ′(x) acts on the system. In such a case, the
probability for the particle to jump left or right depends on its position x. The
corresponding master equation for this process is given by [64]

W(x, t +Δt) = A(x −Δx)W(x −Δx, t)+ B(x +Δx)W(x +Δx, t),
(4.329)

where A(x −Δx) and B(x +Δx) are the probabilities the particle to jump right or
left, respectively. Since the total probability is one, it is satisfied A(x)+ B(x) = 1.
In the continuum limit, one finds that the PDF satisfies the standard Fokker-Planck
equation [64]

∂W(x, t)

∂t
= ∂

∂x

[
V ′(x)
mη

+ K
∂

∂x

]
W(x, t), (4.330)
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Fig. 4.12 In (a) the numerical solution of Eq. (4.280) for g(x) = δ(x) at t = 5 is represented,
for same values of parameters as those in Fig. 4.5. In (b) we numerically reproduce the asymptotic
solution given in Fig. 4.10 at t = 10. Reprinted from Physica A, 391, Z. Tomovski, T. Sandev,
R. Metzler and J.L.A. Dubbeldam, Generalized space-time fractional diffusion equation with
composite fractional time derivative, 2527–2542, Copyright (2012), with permission from Elsevier

where

V ′(x)
mη

= lim
Δx→0,Δt→0

Δx

Δt
[B(x)− A(x)]

is the external potential, F(x) = −V ′(x) is the external force, m—the mass of the
particle, and η is the friction constant with physical dimension [η] = s−1.

Following the procedure from the CTRW theory in case of long tailed waiting
time PDF and in presence of external force field F(x) = − dV (x)

dx , one can derive the
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Fig. 4.13 Solution of the FFPE (4.12) in presence of constant external force F = 1, for K = 1,
mημ = 1, μ = 1/2 and t = 0.1 (blue line), t = 1 (red line), t = 10 (green line)

FFPE of form (4.12) [7]. FFPE is used for modeling of different transport problems
in complex systems, such as molecular motors, anomalous diffusion in external
fields, non-exponential relaxation processes, etc. In absence of external field, FFPE
corresponds to the fractional diffusion equation [64, 65, 102]. Also, FFPE may be
obtained from the CTRW theory [7, 67]. In Ref. [4] the solution of the FFPE is
represented in form of integral transformation. Some authors [115, 118] investigated
the FFPE with space fractional derivative.

Graphical representation of the solution of the FFPE (4.12) in case of constant
external force F is given in Fig. 4.13. One can easily observe that the symmetry in
the PDF is broken due to the external field.

We note that from comparison of the stationary solution of the Fokker-Planck
equation, i.e., by setting ∂W(x, t)/∂t = 0, we immediately obtain the well-known
Einstein-Stokes relation

K = kBT

mη
. (4.331)

Furthermore, one also concludes that the second Einstein relation (linear response)

〈x(t)〉F = F

2kBT

〈
x2(t)

〉

F=0
(4.332)

is satisfied.
We further consider the following generalized Fokker-Planck (or Fokker-Planck-

Smoluchowski) equation forW(x, t) with memory kernel γ (t),

∫ t

0
γ (t − t ′) ∂

∂t ′
W(x, t ′) dt ′ =

[
∂

∂x

V ′(x)
mηγ

+ Kγ
∂2

∂x2

]
W(x, t), (4.333)
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with the initial condition W(x, 0) = δ(x). We note that here we return to
dimensional quantities, as we derive some physical relations such as the generalized
Einstein-Stokes relation, for which the physical parameters are instructive. We also
note that in this representation the physical dimension of the diffusion and friction
coefficientsKγ and ηγ depends on the chosen form of the kernel γ (t). For instance,
for the power-law waiting time density ψ(t) � τα/t1+α , the generalized diffusion
coefficient Kα = σ 2/(2τα) has the physical dimension m2/sα , and the dimension
of ηγ = sα−2. We also note that from comparison of the stationary solution of
the Fokker-Planck equation—i.e., by setting ∂W(x, t)/∂t = 0—we obtain the
generalized Einstein-Stokes relation

Kγ = kBT

mηγ
. (4.334)

For the choice γ (t) = δ(t) the generalized Fokker-Planck equation (4.333)
reduces to the Fokker-Planck equation. Furthermore, for the power-law form γ (t) =
t−α/Γ (1 − α) it turns to the Fokker-Planck equation [64, 65]

CD
α
t W(x, t) =

[
∂

∂x

V ′(x)
mηα

+ Kα
∂2

∂x2

]
W(x, t). (4.335)

For the distributed order memory kernel (4.72), Eq. (4.333) becomes the distributed
order Fokker-Planck-Smoluchowski equation [24]

∫ 1

0
τλ−1p(λ)

∂λ

∂tλ
W(x, t) dλ =

[
∂

∂x

V ′(x)
mη1

+ K1
∂2

∂x2

]
W(x, t). (4.336)

Consider a constant restoring force switched on at t = 0,

F(x) = −dV (x)

dx
= FΘ(t), (4.337)

i.e., V (x) = −Fx, where Θ(t) is the Heaviside step function. Laplace and Fourier
transforming Eq. (4.333) for this constant force, we find

˜̂
W(κ, s) = γ̂ (s)

sγ̂ (s)+ ı F
mηγ

κ + Kγ κ2
. (4.338)

For a particular form of the memory kernel one can then find closed forms of
the PDF W by applying inverse Fourier-Laplace transform techniques to relation
(4.338). The inverse Fourier transform can indeed be obtained for general γ ,

Ŵ (x, s) = P̂ (x, s) exp

[
− F

2mηγKγ

x

]
, (4.339)
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where

P̂ (x, s) = γ̂ (s)

2Kγ

exp

[

−
√
sγ̂ (s)
Kγ

+
(

F
2mηγKγ

)2 × |x|
]

√
sγ̂ (s)
Kγ

+
(

F
2mηγKγ

)2
. (4.340)

In the force free case (F = 0) this PDF becomes

Ŵ (x, s) = 1

2s

√
sγ̂ (s)

Kγ

e
−
√
sγ̂ (s)
Kγ

|x| = −1

2

∂

∂|x|
1

s
exp

(

−
√
sγ̂ (s)

Kγ

× |x|
)

.

(4.341)

From the PDF we calculate the moments 〈xn(t)〉 of the process by using that

〈
xn(t)

〉 = L −1
[
ın
∂n

∂κn
˜̂
W(κ, s)

]∣∣
∣∣
κ=0

. (4.342)

For the first moment, the mean particle displacement, we obtain

〈x(t)〉F = F

mηγ
L −1

[
s−1

sγ̂ (s)

]
, (4.343)

and the second moment is given by

〈
x2(t)

〉

F
= 2Kγ L

−1
[
s−1

sγ̂ (s)

]
+ 2

(
F

mηγ

)2

L −1
[
s−1

s2γ̂ 2(s)

]
. (4.344)

In the force free case (F = 0), the second moment reduces to

〈
x2(t)

〉

0
= 2Kγ L

−1
[
s−1

sγ̂ (s)

]
.

Therefore, we obtain the linear response relation (second Einstein relation)

〈x(t)〉F = F

2kBT

〈
x2(t)

〉

0
(4.345)

for any general form of the memory kernel γ (t). This general property follows from
the form (4.333) of the generalized Fokker-Planck equation with its additive drift
term and the generalized Einstein-Stokes relation (4.334).
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4.6.1 Relaxation of Modes

By the help of the separation ansatz W(x, t) = X(x)T (t) the generalized Fokker-
Planck equation (4.333) leads to the two equations

∫ t

0
γ (t − τ ) d

dτ
T (τ ) dτ = −λT (t), (4.346)

[
∂

∂x

V ′(x)
mηγ

+ Kγ
∂2

∂x2

]
X(x) = −λX(x), (4.347)

where λ is a separation constant. Therefore, the solution of Eq. (4.333) is given as
the sum

W(x, t) =
∑

n

Xn(x)Tn(t),

where Xn(x)Tn(n) is the eigenfunction corresponding to the eigenvalue λn.
From Laplace transform of the temporal eigenequation (4.346) we obtain the

relaxation law

Tn(t) = Tn(0)L −1
[

γ̂ (s)

sγ̂ (s)+ λn
]
. (4.348)

We note that in the long time limit t → ∞, corresponding to lims→0 sγ̂ (s) = 0,
Eq. (4.348) has the asymptotic behavior

Tn(t) � Tn(0)L −1
[
γ̂ (s)

λn

(
1 − sγ̂ (s)

λn

)]
� Tn(0)

λn
γ (t)|t→∞. (4.349)

The choice of a Dirac delta memory kernel reduces the general relaxation law
(4.348) to the exponential form

Tn(t) = Tn(0)e
−λnt . (4.350)

For a power-law memory kernel we obtain the known M-L relaxation with power-
law asymptote [64],

Tn(t) = Tn(0)Eα
(−λntα

) � Tn(0)

λn

t−α

Γ (1 − α) , (4.351)

where Eα(z) is the one parameter M-L function. For the distributed order memory
kernel with p(λ) = 1 we find the logarithmic decay

Tn(t) � Tn(0)

λnτ

1

log t/τ
(4.352)
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and for p(λ) = νλν−1 the behavior is [24]

Tn(t) � Tn(0)

λnτ

Γ (ν + 1)

logν t/τ
. (4.353)

Finally, the truncated M-L memory kernel (6.146) yields a power-law relaxation
with exponential cutoff,

Tn(t) � Tn(0)

λn
δ−αe−bt t

β−α−1

Γ (β − α) . (4.354)

4.6.2 Harmonic Potential

The solution of the spatial eigenequation (4.347) for the physically important case
of an external harmonic potential

V (x) = 1

2
mω2x2,

where ω is a frequency, is given in terms of Hermite polynomialsHn(z) [29]

Xn(x) = CnHn

⎛

⎝

√
mω2

2kBT
x

⎞

⎠ exp

(
− mω2

2kBT
x2

)
, (4.355)

where the eigenvalue spectrum (of the corresponding Sturm-Liouville problem) is

given by λn = nω
2

ηγ
for n = 0, 1, 2, . . . , and Cn is the normalization constant.

From the normalization condition
∫ ∞
−∞X

2
n(x) dx = 1 we obtain the solution in the

following form (see Refs. [64, 65] for the case of a power-law memory kernel)

W(x, t) =
√
mω2

2πkBT

∑

n

1

2nn!Hn
⎛

⎝

√
mω2

2kBT
x

⎞

⎠ exp

(
− mω2

2kBT
x2

)

× L −1

⎡

⎣ γ̂ (s)

sγ̂ (s)+ nω2

ηγ

⎤

⎦ . (4.356)

The term n = 0 provides the Gaussian stationary solution

W(x, t) =
√
mω2

2πkBT
exp

(
− mω2

2kBT
x2

)
. (4.357)
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It is instructive to derive the first and second moments of the generalized diffusion
process in the presence of the harmonic potential V (x). The first moment follows
the integro-differential equation

∫ t

0
γ (t − t ′) ∂

∂t ′
〈
x(t ′)

〉
dt ′ + ω2

ηγ
〈x(t)〉 = 0, (4.358)

from which by Laplace transform we find the relaxation law for the initial condition
x0 = ∫ ∞

−∞ xW0(x)dx, and is given by

〈x(t)〉 = x0L
−1

⎡

⎣ γ̂ (s)

sγ̂ (s)+ ω2

ηγ

⎤

⎦ . (4.359)

Thus for a Dirac delta memory kernel the mean follows the exponential relaxation

〈x(t)〉 = x0e
−ω2t/ηγ , (4.360)

as it should. In the case of a power-law memory kernel the M-L relaxation pattern
[64, 65]

〈x(t)〉 = x0Eα

(
−ω

2

ηγ
tα
)

(4.361)

emerges, which in the long time limit assumes the power-law scaling

〈x(t)〉 � x0ηγ

ω2Γ (1 − α) × t−α. (4.362)

Starting with a general form γ (t) of the memory kernel the asymptotic behavior of
the mean follows in the form

〈x(t)〉 = x0
ηγ

ω2
γ (t)|t→∞, (4.363)

since lims→0 sγ̂ (s) = 0.
The dynamics of the second moment is governed by the integro-differential

equation

∫ t

0
γ (t − t ′) ∂

∂t ′
〈
x2(t ′)

〉
dt ′ + 2

ω2

ηγ

〈
x2(t)

〉
= 2Kγ . (4.364)

Laplace transformation produces

〈
x2(t)

〉
= x2

0L
−1

⎡

⎣ γ̂ (s)

sγ̂ (s)+ 2ω
2

ηγ

⎤

⎦ + L −1

⎡

⎣ 2Kγ

sγ̂ (s)+ 2ω
2

ηγ

⎤

⎦ , (4.365)
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which can be rewritten as

〈
x2(t)

〉
= x2

th +
(
x2

0 − x2
th

)
L −1

⎡

⎣ γ̂ (s)

sγ̂ (s)+ 2ω
2

ηγ

⎤

⎦ , (4.366)

where x0 = x(0) is the initial value of the position, and

x2
th = kBT

mω2
(4.367)

is the stationary (thermal) value, which is reached in the long time limit since

L −1
[

γ̂ (s)

sγ̂ (s)+ 2ω2/ηγ

]
� ηγ

2ω2 γ (t)

∣∣
∣
t→∞

→ 0.

For the Dirac delta memory kernel the second moment approaches the thermal value
exponentially,

〈
x2(t)

〉
= x2

th +
(
x2

0 − x2
th

)
exp

(
−2
ω2

ηγ
t

)
, (4.368)

while for the power-law memory kernel we find the power-law relaxation

〈
x2(t)

〉
= x2

th +
(
x2

0 − x2
th

)
Eα

(
−2
ω2

ηγ
tα
)

� x2
th +

(
x2

0 − x2
th

) ηγ

2ω2

t−α

Γ (1 − α) . (4.369)

In the case of the distributed order memory kernel (4.72) with constant p(λ) = 1
we have

〈
x2(t)

〉
� x2

th +
(
x2

0 − x2
th

) ηγ

2ω2τ

1

log(t/τ )
. (4.370)

When the distribution is of power-law form, p(λ) = νλν−1 the second moment
assumes the form

〈
x2(t)

〉
� x2

th +
(
x2

0 − x2
th

) ηγ

2ω2τ

Γ (ν + 1)

logν(t/τ )
. (4.371)
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4.6.3 FFPE with Composite Fractional Derivative

In this section we introduce the following general FFPE with composite fractional
time derivative and in presence of a constant external force F in the infinite domain
−∞ < x < +∞ [82]:

D
μ,ν
0+ P(x, t) = Kμ

[
∂2

∂x2 − F

kBT

∂

∂x

]
P(x, t), t > 0, (4.372)

with boundary conditions

P(±∞, t) = 0, t > 0 (4.373)

and an initial value
(
I
(1−ν)(1−μ)
0+ P(x, t)

)
(0+) = δ(x), −∞ < x < +∞, (4.374)

where P(x, t) is the field variable, Dμ,ν0+ is the composite fractional derivative,

I
(1−ν)(1−μ)
0+ is the R-L fractional integral, kB is the Boltzmann constant, T is

the absolute temperature of the environment, Kμ is the generalized diffusion
coefficient, δ(x) is the Dirac delta. Note that the value of Kμ depends on ν as well,
but its dimension

[
Kμ

]
does not depend on ν.

In order to find the solution of Eq. (4.372) we use the Fourier-Laplace transform
method. From the Laplace transform in respect to time variable t and by using the
initial condition (4.374) we obtain

sμP (x, s)− s−ν(1−μ)δ(x) = Kμ

[
∂2

∂x2 − F

kBT

∂

∂x

]
P(x, s), (4.375)

where P(x, s) = L [P(x, t)]. The Fourier transform in respect to space variable x
in Eq. (4.375) and taking into account the boundary conditions (4.373) yields

sμP̃ (κ, s)− s−ν(1−μ) = −Kμκ
2P(κ, s)− ıυμκP (κ, s), (4.376)

where it is used that P(κ, s) = F [P(x, s)], F [δ(x)] = 1, υμ = KμF

kBT
and the

conditions limx→±∞ ∂
∂x
P (x, t) = 0.

Thus, in the Fourier-Laplace space (κ, s), it follows

P(κ, s) = s−ν(1−μ)

sμ + Kμκ2 + ıυμκ . (4.377)
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From the inverse Fourier transform of (4.377) in respect to κ we obtain

P(x, s) = s−ν(1−μ)F−1

⎡

⎢
⎣

K −1
μ

(
κ + ıυμ

2Kμ

)2 + υ2
μ

4K 2
μ

+ sμ

Kμ

⎤

⎥
⎦

= e
υμ

2Kμ
x

√
4Kμ

· s−ν(1−μ)−μ/2 · h(z), (4.378)

where

h(z) = 1√
z

· e−ρ
√
z, (4.379)

z = 1 + υ2
μ

4Kμ
· s−μ, (4.380)

ρ = |x| s
μ/2

√
Kμ

. (4.381)

The function h(z) can be represented in terms of H -function in the following way
[55, 107]

h(z) = ρH
1,0
0,1

[
ρz1/2

∣∣
∣
∣

−
(−1, 1)

]
. (4.382)

Let us find the Taylor series expansion of h(z) in a neighborhood of z = 1 [55, 107].
From relations (1.47), the k-th derivative of h(z) is

h(k)(z) = ρz−kH 1,1
1,2

[
ρz1/2

∣
∣∣
∣

(0, 1/2)
(−1, 1), (k, 1/2)

]
. (4.383)

For z = 1 one obtains

h(k)(1) = ρH
1,1
1,2

[
ρ

∣
∣∣
∣

(0, 1/2)
(−1, 1), (k, 1/2)

]

= (−1)k√
π
H

2,0
0,2

[
ρ2

4

∣
∣
∣
∣

−
(0, 1), (1/2 + k, 1)

]
, (4.384)

where we applied relations (1.43)–(1.45). Thus, the Taylor series of h(z) in a
neighborhood of z = 1 is given by

h(z) = 1√
π

∞∑

k=0

(−1)k
(z− 1)k

k! H
2,0
0,2

[
ρ2

4

∣
∣
∣∣

−
(0, 1), (1/2 + k, 1)

]
. (4.385)
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Thus, we obtain

P(x, s) = e
υμ

2Kμ
x

√
4πKμ

∞∑

k=0

(−1)k

k!

(
υ2
μ

4Kμ

)k

× s−ν(1−μ)−μ/2−μkH 2,0
0,2

[
x2

4Kμ

sμ
∣∣
∣
∣

−
(0, 1), (1/2 + k, 1)

]
. (4.386)

From the inverse Laplace transform of relation (4.386) and by help of (1.48) we
obtain P(x, t) [82]:

P(x, t) = e
υμ

2Kμ
x

√
4πKμtμ

∞∑

k=0

(−1)k

k!

(
υ2
μ

4Kμ

tμ

)k

× t−(1−ν)(1−μ)H 2,0
1,2

[
x2

4Kμtμ

∣
∣∣
∣
(1 − (1 − ν)(1 − μ)− μ/2 + μk,μ)

(0, 1), (1/2 + k, 1)
]
.

(4.387)

Graphical representation of the solution (4.387) for μ = 1/2, Kμ = 1, υμ = 1 and
different values of ν is given in Figs. 4.14 and 4.15.

If the external force is zero (F = 0 ⇒ υμ,ν = 0), P(x, t) has the following form

P(x, t) = 1
√

4πKμtμ
t−(1−ν)(1−μ)

×H 2,0
1,2

[
x2

4Kμtμ

∣∣
∣
∣
(1 − (1 − ν)(1 − μ)− μ/2, μ)

(0, 1), (1/2, 1)

]
, (4.388)
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Fig. 4.14 Graphical representation of solution (4.387) for μ = 1/2, Kμ = 1, υμ = 1, ν = 0
(lower line), ν = 1/4, ν = 1/2, ν = 3/4, ν = 1 (upper line); (a) t = 1; (b) t = 10, see Ref. [82]
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Fig. 4.15 Graphical representation of solution (4.387) for μ = 1/2, Kμ = 1, υμ = 1, t = 0.1
(upper line), t = 1, t = 10 (lower line); (a) ν = 1; (b) ν = 1/2; (c) ν = 0, see Ref. [82]

which by using the properties of H -function, can be represented in form equivalent
to the one obtained for the fractional diffusion equation with composite fractional
time derivative [83].

4.7 Derivation of Fractional Diffusion Equation and FFPE
from Comb Models

A comb model is a particular example of a non-Markovian motion, which takes
place due to its specific geometry realization inside a two dimensional structure.
It consists of a backbone along the structure x axis and fingers along the y
direction, continuously spaced along the x coordinate, shown in Fig. 4.16. This
special geometry has been introduced to investigate anomalous diffusion in low-
dimensional percolation clusters [3, 47, 60, 104, 105, 113, 116]. In the last decade
the comb model has been extensively studied to understand different realizations
of non-Markovian random walks, both continuous [2, 9, 26] and discrete [16]. In
particular, comb-like models have been used to describe turbulent hyper-diffusion
due subdiffusive traps [9, 45].
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Fig. 4.16 Comb structure.
Republished with permission
of IOP Publishing, LTD, from
J. Phys. A: Math. Theor. T.
Sandev, A. Iomin and V.
Méndez, 49(35), 355001
(2016) backbone

fingers

4.7.1 From Diffusion on a Comb to Fractional Diffusion
Equation

The macroscopic model for the transport along a comb structure is presented by the
following two-dimensional heterogeneous diffusion equation [3, 60, 113, 116]

∂

∂t
P (x, y, t) = Kx δ(y)

∂2

∂x2P(x, y, t)+ Ky
∂2

∂y2P(x, y, t), (4.389)

where P(x, y, t) is the probability distribution function (PDF), Kxδ(y) and Ky

are diffusion coefficients in the x and y directions, respectively, with physical
dimension [Kx] = m3/s, [δ(y)] = m−1 and [Ky] = m2/s. The δ(y) function
(the Dirac δ(y) function) means that diffusion in the x direction occurs only at
y = 0. This form of equations describes diffusion in the backbone (at y = 0), while
the fingers play the role of traps. Diffusion in a continuous comb can be described
within the CTRW theory [64]. For the continuous comb with infinite fingers, the
returning probability scales like t−1/2, and the waiting time PDF behaves as t−3/2

[69], resulting in appearance of anomalous subdiffusion along the backbone with
the transport exponent 1/2. There have been investigated different generalization of
comb model by introducing fractal structure of the backbones and fingers, and it
has been shown the transport exponent depends on the fractal dimensions of these
fractal constructions [88, 90, 92].

Let us show this. The Fourier-Laplace transforms of Eq. (4.389) yield

s
¯̂̃
P(kx, ky, s)− ¯̃

P(kx, ky, t = 0) = −Kx k
2
x

˜̂
P(kx, y = 0, s)− Ky k

2
y

¯̂̃
P(kx, ky, s),

(4.390)

where

˜̂
P(kx, y, s) = Fx [L [P(x, y, t)]] and

¯̂̃
P(kx, ky, s) = Fy

[ ˜̂
P(kx, y, s)

]
.
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Performing the inverse Fourier transform of
¯̂̃
P(kx, ky, s) with respect to ky , one

finds ˜̂
P(kx, y, s), from where ˜̂

P(kx, y = 0, s) reads

˜̂
P(kx, y = 0, s) = 1

2
√
Ky

s−1/2

1 + s−1/2 Kx

2
√

Ky

k2
x

, (4.391)

where we use the initial condition

¯̃
P(kx, ky, t = 0) = 1, i.e., P (x, y, t = 0) = δ(x)δ(y).

Substituting Eq. (4.391) in Eq. (4.390), one obtains

¯̂̃
P(kx, ky, s) = s1/2

(
s + Kyk2

y

)(
s1/2 + Kx

2
√

Ky

k2
x

) . (4.392)

Taking ky = 0 in Eq. (4.392), which eventually leads to the reduced PDF

p1(x, t) =
∫ ∞

−∞
P(x, y, t) dy,

one obtains the latter in the form

˜̂p1(kx, s) = s−1/2

s1/2 + Kx

2
√

Ky

k2
x

, (4.393)

where ˜̂p1(kx, s) = Fx [L [p1(x, t)]]. By inverse Fourier-Laplace transforms one
finds the time fractional diffusion equation

CD
1/2
0+ p1(x, t) = Kx

2
√
Ky

∂2

∂x2p1(x, t), (4.394)

with Caputo time fractional derivative of order 1/2. From the previous analysis
within the CTRW theory we already presented that for such time fractional
diffusion equation the MSD is proportional to t1/2. With this we show how the
time fractional derivative naturally appear in a physical system under geometric
constraints, namely, the diffusion on a comb structure.

Note that the diffusion along the fingers is normal. Let us show this. From
Eq. (4.392) for kx = 0, which yields the reduced PDF

p2(y, t) =
∫ ∞

−∞
P(x, y, t) dx,
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one has

¯̂p(kx = 0, ky, s) = 1

s + Kyk2
y

. (4.395)

By inverse Fourier-Laplace transform one finds the standard diffusion equation,
describing normal diffusion, i.e.,

∂

∂t
p2(y, t) = Ky

∂2

∂y2p2(y, t). (4.396)

Remark 4.17 Here we note that the time fractional Schrödinger equation can be
obtained if one considers a quantum motion of a particle in a comb structure by the
projection of the two-dimensional (x, y) comb dynamics, in the one-dimensional
configuration space [43, 44]. Same situation appears for the quantum motion on a
three dimensional comb structure [76]. Therefore, by using a dissipative quantum
transport on a comb [96] one could obtain generalized fractional Schrödinger
equations with memory kernel [85, 91]. Contrary to this, the space fractional
derivative can also be introduced in quantum physics by means of the Feynman
propagator for non-relativistic quantum mechanics, where as a result the space frac-
tional Schrödinger equation is obtained. Furthermore, the space-time Schrödinger
equation can be derived by a formal effective description of diffusive wave transport
in complex inhomogeneous media [46].

4.7.1.1 Generalized Comb Model

Here we note that one may consider more generalized comb-like model [89]

∫ t

0
γ (t − t ′) ∂

∂t ′
P(x, y, t ′) dt ′ = Dxδ(y)

∫ t

0
η(t − t ′) ∂

2

∂x2P(x, y, t
′) dt ′

+ Dy
∂2

∂y2P(x, y, t), (4.397)

where we use dimensionless variables without loss of generality, i.e., Dx = Dy =
1. The memory kernels γ (t) and η(t) are integrable non-negative memory kernels
which approach zero in the long time limit. The memory kernel γ (t) represents the
memory effects of the system, which means that the particles moving along the y
direction, i.e., along the teeth, may also be trapped, thus the diffusion along the y
direction may also be anomalous [89]. The case γ (t) = η(t) = δ(t) yields the
standard diffusion equation for a comb (4.389). The memory kernel η(t) is called
generalized compensation kernel [89].
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In order to solve Eq. (4.397) we use the Fourier-Laplace transform method. By
Laplace transform we find

γ̂ (s)
[
sP̂ (x, y, s)− P(x, y, t = 0)

]
= δ(y)η̂(s)

∂2

∂x2 P̂ (x, y, s)+
∂2

∂y2 P̂ (x, y, s),

(4.398)

where P(x, y, t = 0) is the initial condition. By Fourier transform with respect to
both space variables x and y it follows that

γ̂ (s)

[
s

¯̂̃
P(kx, ky, s)− ¯̃

P(kx, ky, t = 0)

]
= −k2

xη̂(s)
˜̂
P(kx, y = 0, s)

− k2
y

¯̂̃
P(kx, ky, s). (4.399)

Therefore, PDF in the Fourier-Laplace space is given by

¯̂̃
P(kx, ky, s) = γ̂ (s)

¯̃
P(kx, ky, t = 0)− k2

xη̂(s)
˜̂
P(kx, y = 0, s)

sγ̂ (s)+ k2
y

. (4.400)

By inverse Fourier transform in respect to ky we find

˜̂
P(kx, y, s) = 1

s

√
sγ̂ (s)

4
e−

√
sγ̂ (s)|y|

− 1

s

√
sγ̂ (s)

4

η̂(s)k2
x

γ̂ (s)

˜̂
P(kx, y = 0, s)e−

√
sγ̂ (s)|y|. (4.401)

If we substitute y = 0 we obtain

˜̂
P(kx, y = 0, s) =

1
s

√
sγ̂ (s)

4

1 + 1
s

√
sγ̂ (s)

4
η̂(s)

γ̂ (s)
k2
x

, (4.402)

from where it follows

˜̂
P(kx, y, s) =

1
s

√
sγ̂ (s)

4

1 + 1
s

√
sγ̂ (s)

4
η̂(s)

γ̂ (s)
k2
x

e−
√
sγ̂ (s)|y|, (4.403)

and

¯̂̃
P(kx, ky, s) = sγ̂ (s)ξ̂ (s)

(
sγ̂ (s)+ k2

y

) (
sξ̂ (s)+ 1

2k
2
x

) , (4.404)
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where

ξ̂ (s) = 1

η̂(s)

√
γ̂ (s)

s
. (4.405)

Relation (4.423) for ky = 0 yields

¯̂̃
P(kx, ky = 0, s) = ξ̂ (s)

sξ̂ (s)+ 1
2k

2
x

, (4.406)

and for kx = 0

¯̂̃
P(kx = 0, ky, s) = γ̂ (s)

sγ̂ (s)+ k2
y

, (4.407)

corresponding to the spatial averages in y and x directions, respectively.
First we analyzep1(x, t) = ∫ ∞

−∞ P(x, y, t) dy, which Fourier-Laplace transform
reads p1(kx, s) = P(kx, ky = 0, s), i.e.,

˜̂p1(kx, s) = ξ̂ (s)

sξ̂ (s)+ 1
2k

2
x

. (4.408)

The normalization condition requires

lim
s→0

sξ̂ (s) = lim
t→∞ ξ(t) = 0.

Thus, the memory kernel (4.405) is of the form that should satisfy

lim
s→0

√
sγ̂ (s)

η̂(s)
= 0.

From Eq. (4.408) it follows that

ξ̂ (s)
[
s ˜̂p1(kx, s)− 1

]
= −1

2
k2
x

˜̂p1(kx, s), (4.409)

from where one finds that the PDF p1(x, t) satisfies the following generalized
diffusion equation

∫ t

0
ξ(t − t ′) ∂

∂t ′p1(x, t
′) dt ′ = 1

2

∂2

∂x2p1(x, t). (4.410)
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The MSD therefore is given by

〈
x2(t)

〉
= L −1

[
− ∂2

∂k2
x

˜̂p1(kx, s)

]∣∣
∣
∣
kx=0

= L −1
[

1

s2ξ̂ (s)

]
= L −1

[
1

s

η̂(s)
√
sγ̂ (s)

]

.

(4.411)

For the reduced PDF p2(y, t) = ∫ ∞
−∞ P(x, y, t) dx, for which p2(ky, s) =

P(kx = 0, ky, s), one finds

¯̂p2(ky, s) = γ̂ (s)

sγ̂ (s)+ k2
y

. (4.412)

The normalization condition requires lim→0 sγ̂ (s) = limt→∞ γ (t) = 0 as well. We
rewrite (4.412) as

γ̂ (s)
[
s ¯̂p2(ky, s)− 1

]
= −k2

y
¯̂p2(ky, s), (4.413)

from where by inverse Fourier-Laplace transform it is obtained that the PDF p2(x, t)

satisfies the following generalized diffusion equation

∫ t

0
γ (t − t ′) ∂

∂t ′
p2(y, t

′) dt ′ = ∂2

∂y2p2(y, t). (4.414)

Thus, the MSD along y direction is given by

〈
y2(t)

〉
= L −1

[

− ∂2

∂k2
y

¯̂p2(ky, s)

]∣∣
∣
∣
∣
ky=0

= 2L −1
[

1

s2γ̂ (s)

]
, (4.415)

i.e., the MSD along the y direction depends only on the memory kernel γ (t).
By using different memory kernels one may find various diffusive behaviors

(subdiffusion, normal diffusion, ultraslow diffusion, strong anomaly) along both
directions. The results are summarized in Tables 4.1 and 4.2 [89].

4.7.2 From Diffusion-Advection Equation on a Comb to FFPE

At the end we show how the time fractional Fokker-Planck equation can be derived
from the diffusion-advection process on a comb structure. We consider the following
diffusion-advection equation on a comb

∂

∂t
P (x, y, t) = δ(y)

[
Kx

∂2

∂x2
− v ∂

∂x

]
P(x, y, t)+ Ky

∂2

∂y2
P(x, y, t),

(4.416)
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Table 4.2 MSD
〈
y2(t)

〉
along y direction

γ (t) δ(t) t−α
Γ (1−α) C1

t−α1

Γ (1−α1)
+ C2

t−α2

Γ (1−α2)

∫ 1
0 dα

t−α
Γ (1−α)

〈
y2(t)

〉 ∼ t ∼ tα ∼ tα2Eα2−α1,α2+1

(
−C1
C2
tα2−α1

)
∼ γ + log t + etE1(t)

From [89], reproduced with permission

with initial condition

P(x, y, 0) = δ(x)δ(y), (4.417)

and boundary conditions for the probability density function (PDF) P(x, y, t)
and ∂

∂q
P (x, y, t), q = {x, y} are set to zero at infinity, x = ±∞, y = ±∞.

Equation (4.416) describes either diffusion under the influence of an external
constant force or diffusion with an additional velocity field v = Const. In absence
of velocity field v = 0 one obtains the classical comb model.

In order to solve the equation we use the Fourier-Laplace transform method, from
where one finds

sP̂ (x, y, s)− P(x, y, t = 0) = δ(y)

[
Kx

∂2

∂x2 − v ∂
∂x

]
P̂ (x, y, s)

+ Ky
∂2

∂y2 P̂ (x, y, s), (4.418)

where P(k, y, t = 0) = δ(y) is the initial condition. By Fourier transform with
respect to both space variables x and y it follows that

s
¯̂̃
P(kx, ky, s)− 1 = −

(
Kxk

2
x + ıvkx

) ˜̂
P(kx, y = 0, s)− Kyk

2
y

¯̂̃
P(kx, ky, s).

(4.419)

Therefore, PDF in the Fourier-Laplace space is given by

¯̂̃
P(kx, ky, s) = 1 − (

Kxk
2
x + ıvkx

) ˜̂
P(kx, y = 0, s)

s + Kyk2
y

. (4.420)

The inverse Fourier transform with respect to ky we find

˜̂
P(kx, y, s) = 1

2
√
Ky

s−1/2e
−
√

s
Ky

|y| [
1 −

(
Kxk

2
x + ıvkx

) ˜̂
P(kx, y = 0, s)

]
.

(4.421)
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If we substitute y = 0, we obtain

˜̂
P(kx, y = 0, s) =

1
2
√

Ky

s−1/2

1 + 1
2
√

Ky
s−1/2

(
Kxk2

x + ıvkx
) , (4.422)

from where it follows

¯̂̃
P(kx, ky, s) = 1

s + Kyk2
y

s1/2

s1/2 + 1
2
√

Ky

(
Kxk2

x + ıvkx
) , (4.423)

For ky = 0 one finds

˜̂p1(kx, s) = P(kx, ky = 0, s) = s−1/2

s1/2 + 1
2
√
Ky

(
Kxk2

x + ıvkx
) , (4.424)

and for kx = 0

¯̂p2(ky, s) = P(kx = 0, ky, s) = 1

s + Dyk2
y

. (4.425)

Next we analyze the PDF p1(x, t) = ∫ ∞
−∞ P(x, y, t) dy along the backbone.

From (4.424) one obtains

s1/2 ˜̂p1(kx, s)− s−1/2 = − 1

2
√
Ky

(
Kxk

2
x + ıvkx

) ˜̂p1(kx, s), (4.426)

from where, by inverse Laplace transform, we find that the PDF p1(x, t) satisfies
the following FFPE

CD
1/2
0+ p1(x, t) =

[
Kx

2
√
Ky

∂2

∂x2 − v

2
√
Ky

∂

∂x

]

p1(x, t), (4.427)

with initial condition p1(x, 0) = δ(x), and with Caputo time fractional derivative of
order 1/2. Therefore, one concludes that the FFPE naturally appears if one considers
diffusion-advection process on a comb structure.

For the PDF p2(y, t) = ∫ ∞
−∞ P(x, y, t)dx, one can easily conclude that it is a

solution of the classical diffusion equation

∂

∂t
p2(y, t) = Ky

∂2

∂y2p2(y, t), (4.428)

with initial condition p2(y, 0) = δ(y). Thus, the diffusion along the fingers is
normal.
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Chapter 5
Fractional Wave Equations

Time fractional wave equations, where the ordinary second derivative is substituted
by a fractional one of order 1 < μ < 2, have attracted attention especially in
the dynamical theory of linear viscoelasticity, in the description of the propagation
of stress waves in viscoelastic media [8, 14, 16], for analysis of the fractional
diffusive waves in viscoelastic solids which exhibit a power-law creep [15], and
to describe the power-law attenuation with frequency when sound waves travel
through inhomogeneous media [9, 22, 31]. Fractional wave equation is also used
as a model for oscillation of a cable made of special smart materials [11–13].
Thus, in this chapter we further include a friction due to the interaction of the
cable with given complex environment, as well as an external force acting on the
cable. Stochastic solution of the time fractional wave equation has been given
by Meerschaert et al. [19, 20], where the subordination approach has been used.
In the work of Gorenflo, Luchko, and Stojanovic, the possibility for stochastic
representation of a process governed by time fractional and distributed order time
fractional wave equations has been discussed and elaborated as a problem for further
investigation [7]. In this chapter we pay special attention on the analytical treatment
of different fractional (in space and time) wave equations in the infinite and bounded
domain. We give detailed analysis of the non-negativity of the generalized fractional
wave equation with memory kernel by employing the powerful properties of the
completely monotone, Bernstein, and Stieltjes functions. In Ref. [7] the authors
considered a distributed order diffusion-wave equation that would correspond to the
so-called generalized telegrapher’s or Cataneo equation which could be of interest
for further investigation and physical explanation of the corresponding processes. In
this regard, there have been developed persistent random walk models for particular
cases of the generalized diffusion-wave equations [17, 18]. Investigation of the non-
negativity of the time fractional diffusion-wave equations, which is considered in
this chapter, is of current interest nowadays [1–3].
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5.1 Wave Equation with Memory Kernel

First, we start our analysis of the following generalized wave equation, introduced
in Ref. [26], see also Refs. [21, 25],

∫ t

0
η(t − t ′) ∂

2

∂t ′2
W(x, t) dt ′ = ∂2

∂x2W(x, t), (5.1)

with a memory function η(t). This equation, as we will see later, is a generalization
of the standard wave equation, as well as the time fractional and distributed order
wave equations.

From the Fourier-Laplace transform method, for initial conditions

W(x, 0) = δ(x) and
∂

∂t
W(x, 0) = 0,

and zero boundary conditions, one finds

˜̂
W(κ, s) = 1

s

M̂(s)

M̂(s)+ κ2
, (5.2)

where

M̂(s) = s2η̂(s). (5.3)

By inverse Fourier transform of (5.2) one obtains the PDF in the Laplace space

Ŵ (x, s) = 1

2s

√
M̂(s) exp

(
−
√
M̂(s)|x|

)
. (5.4)

Therefore, for the q-th moment of the solution of Eq. (5.1), it is obtained the
following general formula

〈|x(t)|q 〉 = Γ (q + 1)L −1

[
s−1

(
s2η̂(s)

)q/2

]

. (5.5)

From here one concludes thatW(x, t) is normalized, i.e.,

〈
x0(t)

〉
=

∫ ∞

−∞
W(x, t) dx = 1. (5.6)
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Furthermore, the second moment becomes

〈
x2(t)

〉
=

{
− ∂2

∂κ2L
−1

[ ˜̂
W(κ, s)

]}∣∣∣
∣
κ=0

= 2L−1
[
s−1

s2η̂(s)

]
= 2L −1

[
s−1

M̂(s)

]
. (5.7)

The non-negativity of the solutions of the fractional and distributed order wave
equations has been shown in [7] by using the properties of completely monotone,
Bernstein, and Stieltjes functions. Let us now find the constraints for the memory
kernel η(t) under which the generalized wave equation has a non-negative solution.

The solution (5.4) can be considered as a product of two functions 1
2s

√
M̂(s) and

exp

(
−
√
M̂(s)|x|

)
. In order to show the non-negativity of the PDF W(x, t) one

should show that its Laplace transform Ŵ(x, s) is a completely monotone function,
i.e., that the both functions

s−1
√
M̂(s) and exp

(
−
√
M̂(s)|x|

)

are completely monotone. Thus, one has that [26]:

•
√
η̂(s) should be completely monotone, and

• s
√
η̂(s) should be a Bernstein function.

On the other hand, the non-negativity of the solution can be shown if one proves
that [26]

•
√
η̂(s) is a Stieltjes function, or

• s
√
η̂(s) is a complete Bernstein function.

5.1.1 Dirac Delta Memory Kernel

For the Dirac delta memory kernel η(t) = δ(t), the classical wave equation is
obtained

∂2

∂t2
W(x, t) = ∂2

∂x2W(x, t). (5.8)

Its solution can be obtained from (5.2) from where we find the known solution of
d’Alembert form

W(x, t) = F−1 [cos(t κ)] = 1

2
[δ (x + t)+ δ (x − t)] . (5.9)



216 5 Fractional Wave Equations

The non-negativity of the solution of standard wave equation (5.8) is obvious since√
η̂(s) = 1 is completely monotone, and s

√
η̂(s) = s is a Bernstein function.

The second moment then becomes
〈
x2(t)

〉
= t2, (5.10)

which is a characteristic for ballistic motion.

5.1.2 Power-Law Memory Kernel

For the power-law memory function

η(t) = t1−μ

Γ (2 − μ), 1 < μ < 2,

i.e., η̂(s) = sμ−2, the generalized wave equation becomes the time fractional wave
equation [29]

CD
μ
t W(x, t) = ∂2

∂x2W(x, t). (5.11)

The solution of this equation is non-negative since
√
η̂(s) = sμ/2−1 is completely

monotone and s
√
η̂(s) = sμ/2 is a Bernstein function for 1 < μ < 2.

For the case where 0 < μ < 1, the corresponding wave-like equation becomes

1

Γ (2 − μ)
∫ t

0
(t − t ′)1−μ ∂2

∂t ′2
W(x, t ′) dt ′ = ∂2

∂x2W(x, t). (5.12)

whose solution is non-negative as well.
The solution of these equations in the Fourier-Laplace space is given by

˜̂
W(κ, s) = sμ−1

sμ + κ2 , (5.13)

from where, by inverse Fourier-Laplace transform, one finds

W(x, t) = F−1
[
Eμ

(
−tμκ2

)]
= 1

2|x|H
1,0
1,1

[ |x|
tμ/2

∣∣
∣
∣
(1, μ/2)
(1, 1)

]
, (5.14)
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where Eα,β(z) is the two parameter M-L function (1.4), and Hm,np,q (z) is the Fox
H -function (1.40). For μ = 1 it is obtained the Gaussian PDF

W(x, t) = 1

2|x|H
1,0
1,1

[ |x|
t1/2

∣
∣
∣
∣
(1, 1/2)
(1, 1)

]
= 1√

4πt
e−

x2
4t . (5.15)

The second moment for this particular case is given by

〈
x2(t)

〉
= 2

tμ

Γ (1 + μ) . (5.16)

For 0 < μ < 1, the transport exponent is in the range 0 < μ < 1 (subdiffusion).
For μ = 1 it reduces to the classical diffusion equation for a Brownian motion, i.e.,〈
x2(t)

〉 = 2 t . For the case with 1 < μ < 2 the exponent is in the range 1 < μ < 2
(superdiffusion), and the case with μ = 2 yields the ballistic motion

〈
x2(t)

〉 = t2

[26].

5.1.3 Two Power-Law Memory Kernels

For a memory kernel of form [26]

η(t) = α1
t1−μ1

Γ (2 − μ1)
+ α2

t1−μ2

Γ (2 − μ2)

with 1 < μ1 < μ2 < 2 and α1 + α2 = 1, we find M̂(s) = α1s
μ1 + α2s

μ2 , and the
corresponding wave equation becomes bi-fractional wave equation

α1 CD
μ1
0+W(x, t) + α2 CD

μ2
0+W(x, t) = ∂2

∂x2
W(x, t), (5.17)

where CD
μj
0+ is the Caputo fractional derivative of order 1 < μj < 2. The solution

of this equation is non-negative. Since

f 2(s) = η̂(s) = α1s
μ1−2 + α2s

μ2−2

is a Stieltjes function for 1 < μ1 < μ2 < 2, as a linear combination of two
Stieltjes functions, then f (s) = √

η(s) is a Stieltjes function as composition of
a complete Bernstein and Stieltjes function [28] (see Appendix A), which means
that the function f (s) = √

η̂(s) is Stieltjes function. From here we conclude that
s
√
η̂(s) is a complete Bernstein function. Therefore the solution of Eq. (5.17) is

non-negative.
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For the case with 0 < μ1 < μ2 < 1 the equation is given by

α1

∫ t

0

(t − t ′)1−μ1

Γ (2 − μ1)

∂2

∂t ′2
W(x, t ′) dt ′

+ α2

∫ t

0

(t − t ′)1−μ2

Γ (2 − μ2)

∂2

∂t ′2
W(x, t ′) dt ′ = ∂2

∂x2W(x, t). (5.18)

The second moment, in both cases 0 < μj < 1 and 1 < μj < 2, becomes [26]

〈
x2(t)

〉
= 2L −1

[
s−1

α1sμ1 + α2sμ2

]
= 2

α2
tμ2Eμ2−μ1,μ2+1

(
−α1

α2
tμ2−μ1

)
,

(5.19)

where Eα,β(z) is the two parameter M-L function (1.4). Therefore, in the short time
limit it behaves as

〈
x2(t)

〉
� 2

α2

tμ2

Γ (μ2 + 1)
,

and the long time limit as

〈
x2(t)

〉
� 2

α1

tμ1

Γ (μ1 + 1)
.

Thus, there exists a crossover from a power-law dependence of the second moment
on time with greater exponent to the lower one.

5.1.4 N Fractional Exponents

Let us now consider the memory function of form [26]

η(t) =
N∑

j=1

αj
t1−μj

Γ (2 − μj) .

From here we find M̂(s) = ∑N
j=1 αj s

μj . The generalized wave equation, for 1 <
μj < 2, becomes the N-fractional wave equation

N∑

j=1

αj CD
μj
0+W(x, t) = ∂2

∂x2W(x, t), (5.20)



5.1 Wave Equation with Memory Kernel 219

where CD
μj
0+ is the Caputo fractional derivative of order 1 < μj < 2. For the case

with 0 < μj < 1 one finds the following equation:

N∑

j=1

αj

∫ t

0

(t − t ′)1−μj
Γ (2 − μj )

∂2

∂t ′2
W(x, t ′) dt ′ = ∂2

∂x2W(x, t). (5.21)

The solution of this equation is non-negative for 1 < μ1 < μ2 < · · · < μN < 2
since

f 2(s) = η̂(s) =
N∑

j=1

αj s
μj−2

is a Stieltjes function, that is f (s) = √
η(s) is a Stieltjes function. Thus, s

√
η̂(s)

is a complete Bernstein function, with which we complete the proof of the non-
negativity of the solution.

The solution for 0 < μ1 < μ2 < · · · < μN < 1 is non-negative as well, since

s
√
η̂(s) =

√√
√
√√

N∑

j=1

αj s
μj

is a Bernstein function for 0 < μ1 < μ2 < · · · < μN < 1 as a composition of two
Bernstein functions, and thus

√
η̂(s) is completely monotone.

The second moment, in both cases 0 < μj < 1 and 1 < μj < 2, becomes [26]

〈
x2(t)

〉
= 2L−1

[
s−1

∑N
j=1 αj s

μj

]

= 2

αN
tμNE(μN−μ1,...,μN−μN−1),μN+1

(
− α1

αN
tμN−μ1 , . . . ,−αN−1

αN
tμN−μN−1

)
,

(5.22)

where E(a1,a2,...,aN ),b(z) is the multinomial M-L function.

5.1.5 Uniformly Distributed Order Memory Kernel

Furthermore, we consider a memory kernel of form [26]

η(t) =
∫ 2

1

t1−λ

Γ (2 − λ) dλ,
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i.e., the following distributed order wave equation

∫ 2

1
CD

λ
0+W(x, t) dλ = ∂2

∂x2W(x, t), (5.23)

where CDλ0+ is the Caputo fractional derivative of order 1 < λ < 2.
The non-negativity of the solution can be shown as follows [26]. The function

f 2(s) = η̂(s) =
∫ 2

1
p(λ)sλ−2 dλ

is a Stieltjes function since the function
∑
j pj s

λj−2 with pj ≥ 0 and 1 < λj ≤
2 is a Stieltjes function, and a pointwise limit of this linear combination η(s) =∫ 1

0 p(λ)s
λ−2dλ is a Stieltjes function too [28] (see Appendix A). Therefore, f (s) =√

η̂(s) is a Stieltjes function as well. Thus, s
√
η̂(s) is complete Bernstein function,

which means that the solution of the distributed order wave equation is non-negative.
For the second moment one finds [26]

〈
x2(t)

〉
= 2L−1

[
log s

s2(s − 1)

]
. (5.24)

From here, for the long time limit (s → 0), by applying the Tauberian theorem for
slowly varying functions (see Appendix B for details), one obtains

〈
x2(t)

〉
� 2L−1

[
s−2 log

1

s

]
= 2 t (−1 + γ + log t) � 2 t log t, (5.25)

where γ = 0.577216 is the Euler-Mascheroni constant, and for the short time limit
(s → ∞)

〈
x2(t)

〉
� 2L −1

[
s−3 log s

]
� t2 log

1

t
. (5.26)

So, the behavior of the second moment in comparison with the second moment
obtained for the uniformly distributed order diffusion equation has a multiplicative
term t to the logarithm of the time.

5.1.6 Truncated Power-Law Memory Kernel

Next we consider the case of a truncated power-law memory kernel of the form [26]

η(t) = e−bt t1−μ

Γ (2 − μ), (5.27)
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where b > 0, and 1 ≤ μ < 2, i.e., η̂(s) = (s + b)μ−2, which yields the following
equation:

1

Γ (2 − μ)
∫ t

0
e−b(t−t ′)(t − t ′)1−μ ∂2

∂t ′2
W(x, t ′) dt ′ = ∂2

∂x2
W(x, t). (5.28)

The solution of this equation is non-negative for 1 ≤ μ < 2 since η̂(s) = (s+b)μ−2

is a Stieltjes function as a composition of Stieltjes function (sμ−2, 1 ≤ μ < 2) and
complete Bernstein function (s + b) [28]. Therefore

√
η(s) is a Stieltjes function,

which completes the proof.
The second moment becomes [26]

〈
x2(t)

〉
= 2L −1

[
s−3(s + b)2−μ] = 2 I 3

0+
(
e−bt

t−3+μ

Γ (−2 + μ)
)
, (5.29)

where Iα0+f (t) is the R-L integral (2.2) in respect of t . From the Tauberian theorems
(see Appendix B) we can obtain the asymptotic behavior of the second moment.
Thus, we find

〈x2(t)〉 � 2
tμ

Γ (1 + μ) (5.30)

for the short time limit, and

〈x2(t)〉 � b2−μt2, (5.31)

for the long time limit. This means that the process switches from superdiffusive to
ballistic motion in the case with 1 < μ < 2, and from normal diffusion to ballistic
motion in the case with μ = 1.

5.1.7 Truncated Mittag-Leffler Memory Kernel

Here we also consider tempered M-L memory kernel of form [26]

η(t) = e−bt tβ−1Eδα,β
(−νtα) , (5.32)

where αδ < β < 1, and Eδα,β(z) is the three parameter M-L function. Thus, we
have the following equation:

∫ t

0
(t − t ′)β−1Eδα,β

(−ν(t − t ′)α) ∂
2

∂t ′2
W(x, t ′) dt ′ = ∂2

∂x2W(x, t). (5.33)



222 5 Fractional Wave Equations

In order to find the constraints of the kernel parameters, for which the solution
of Eq. (5.33) is non-negative, we notice that η̂(s) is a Stieltjes function (and thus
completely monotone) if both functions (s + b)−(β−αδ) and [(s + b)α + ν]−δ are
Stieltjes functions. The first one is a Stieltjes function if 0 < β − αδ < 1 and
the second one if 0 < αδ < 1. Therefore, for 0 < αδ < β < 1 the solution is
non-negative.

The corresponding second moment becomes [26]

〈
x2(t)

〉
= 2L −1

[
s−3 (s + b)−αδ+β

[(s + b)α + ν]−δ

]
= 2 I 3

0+
(
e−bt t−β−1E−δ

α,−β
(−νtα)

)
.

(5.34)

From the Tauberian theorems, we find the short time limit behavior of form

〈x2(t)〉 � 2
t2−β

Γ (3 − β) , (5.35)

and the long time limit behavior

〈x2(t)〉 � b−αδ+β (bα + ν)δ t2. (5.36)

One concludes that the truncation of the M-L kernel causes ballistic motion in the
long time limit, which follows the superdiffusive initial behavior. With no truncation
the second moment becomes

〈
x2(t)

〉 = 2t2−βE−δ
α,3−β (−νtα), which in the long time

limit behaves as
〈
x2(t)

〉 � t2+αδ−β .

5.1.8 Wave Equation with Regularized Prabhakar Derivative

As a further generalization, we consider the generalized wave equation with
regularized Prabhakar derivative for 1 < μ < 2. The generalized wave equation
then becomes [26]

CD
δ,μ
ρ,−ν,t W(x, t) = ∂2

∂x2W(x, t), (5.37)

which is a special case of the generalized wave equation with memory kernel
given by

η(t) = t1−μE−δ
ρ,2−μ

(−νtρ) . (5.38)

The function

f 2(s) = η̂(s) =
(
s
μ−2
δ + νs μ−2

δ −ρ)δ
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is a Stieltjes function if s(μ−2)/δ and s(μ−2)/δ−ρ are Stieltjes functions, and 0 < δ <
1 (composition of a complete Bernstein and Stieltjes function is a Stieltjes function,
see Appendix A). Therefore, we obtain that 0 < 2−μ < δ and μ−ρδ > 2− δ. For
these values of parameters, f (s) = √

η̂(s) is a Stieltjes function as well, therefore
we show the non-negativity of the solution.

For the second moment one obtains [26]

〈
x2(t)

〉
= 2L −1

[
s−3

s−ρδ+μ−2(sρ + ν)δ
]

= 2 tμEδρ,μ+1

(−νtρ) . (5.39)

The short time limit for the second moment yields

〈
x2(t)

〉
� 2

tμ

Γ (1 + μ),

and the long time limit the behavior

〈
x2(t)

〉
� 2

tμ−ρδ

Γ (1 + μ− ρδ) ,

which means decelerating superdiffusion.

5.1.9 Wave Equation with Distributed Order Regularized
Prabhakar Derivative

Furthermore, in Ref. [26] we introduced distributed order M-L memory kernel of
form

η(t) =
∫ 2

1
t1−μE−δ

ρ,2−μ
(−νtρ) dμ. (5.40)

The generalized wave equation becomes distributed order wave equation with
regularized Prabhakar derivative, i.e.,

∫ 2

1
CD

δ,μ
ρ,−ν,t W(x, t) dμ = ∂2

∂x2
W(x, t). (5.41)

For δ = 0 Eq. (5.41) becomes the uniformly distributed order wave equation (5.23).
From the memory kernel (5.40) we find that

η̂(s) = s − 1

s log s

(
1 + ν

sρ

)δ
. (5.42)
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The solution of this wave equation is non-negative for the same restrictions of
parameters as those for the wave equation with regularized Prabhakar derivative.
This conclusion is based on the fact that

f 2(s) = η̂(s) =
∫ 2

1

(
s
μ−2
δ + νs μ−2

δ −ρ)δ dμ

is a Stieltjes function as a pointwise limit of the linear combinations of Stieltjes
functions,

∑

j

(
s
μj−2
δ + νs

μj−2
δ −ρ

)δ
.

Then the second moment becomes [26]

〈
x2(t)

〉
= 2L−1

[
log s

s2(s − 1)

(
1 + ν

sρ

)−δ]
. (5.43)

Therefore, the short time limit (s → ∞) is given by

〈
x2(t)

〉
� 2L −1

[
log s

s3

]
= t2 log

1

t
,

and the long time limit (s → 0) behaves as

〈
x2(t)

〉
� 2

νδ
L −1

[
log 1

s

s2−ρδ

]

= 2

νδ

t1−ρδ

Γ (2 − ρδ) log t .

All the previous results for the MSD of the generalized diffusion-wave equation
with memory kernel we summarize in Table 5.1. These models represent a flexible
tool which can be applied for the description of diverse diffusion phenomena in
complex systems, which demonstrate a non-monoscaling behavior with different
transitions between different diffusion regimes. For example, the decelerating
superdiffusion obtained within these models has been observed in Hamiltonian
systems with long-range interactions [10] and different biological systems [4].

5.2 Time Fractional Wave Equation for a Vibrating String

Next, we consider a time fractional wave equation in a bounded domain for the field
variable u(x, t) of the form [24]

r(x) CD
α
0+u(x, t) = ∂

∂x

[
p(x)

∂

∂x
u(x, t)

]
− q(x)u(x, t)+ f (x, t), (5.44)
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Table 5.1 Short and long time limit behavior of the MSD obtained from the generalized diffusion-

wave equation (5.1),
∫ t

0 η(t − t ′) ∂
2

∂t ′2W(x, t
′) dt ′ = ∂2

∂x2W(x, t), for different forms of η(t)

η(t)
〈
x2(t)

〉
, t � 1

〈
x2(t)

〉
, t � 1

δ(t) ∼ t2 ∼ t2

t1−μ
Γ (2−μ) , 0 < μ < 2 ∼ tμ ∼ tμ

α1
t1−μ1

Γ (2−μ1)
+ α2

t1−μ2

Γ (2−μ2)
,

1 < μ1 < μ2 < 2 or 0 < μ1 < μ2 < 1

∼ tμ2 ∼ tμ1

∑N
j=1 αj

t
1−μj

Γ (2−μj ) ,
1 < μ1 < · · · < μN < 2 or

0 < μ1 < · · · < μN < 1

∼ tμN ∼ tμ1

∫ 2
1

t1−λ
Γ (2−λ) dλ, 1 < λ < 2 ∼ t2 log 1

t
∼ t log t

e−bt t1−μ
Γ (2−μ) , 1 < μ < 2, b > 0 ∼ tμ ∼ t2

e−bt tβ−1Eδα,β (−νtα) , 0 < αδ < β < 1,

ν > 0, b > 0

∼ t2−β ∼ t2

t1−μE−δ
ρ,2−μ (−νtρ ) ,

1 < μ < 2, 0 < 2 − μ < δ,
2 − δ < μ− ρδ < 2 0 < ρ, δ < 1

∼ tμ ∼ tμ−ρδ

∫ 2
1 t

1−μE−δ
ρ,2−μ (−νtρ) ,

1 < μ < 2, 0 < 2 − μ < δ,
2 − δ < μ− ρδ < 2 0 < ρ, δ < 1

∼ t2 log 1
t

∼ t1−ρδ log t
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t > 0, 0 ≤ x ≤ l, with boundary conditions

[
b1
∂

∂x
u(x, t)+ a1u(x, t)

]∣∣
∣
∣
x=0

= h1(t),

[
b2
∂

∂x
u(x, t)+ a2u(x, t)

]∣∣
∣
∣
x=l

= h2(t),

(5.45)

and initial conditions

∂k

∂tk
u(x, t)

∣
∣
∣
∣
t=0+

= gk(x), k = 0, 1, . . . ,m− 1, m− 1 < α ≤ m. (5.46)

Here r(x) > 0, p(x) > 0 and q(x) are given continuous functions in [0, l], f (x, t),
h1(t), h2(t) and gk(x) are given sufficiently well-behaved functions, and a1, a2, b1
and b2 are constants. The case with α = 2 corresponds to the integer order wave
equation for a vibrating string [32].
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For solving Eq. (5.44) with boundary conditions (5.45) and initial conditions
(5.46), we present the function u(x, t) in the form:

u(x, t) = U(x, t)+ v(x, t). (5.47)

The function v(x, t) is chosen to satisfy the boundary conditions (5.45), i.e.,

[
b1
∂v(x, t)

∂x
+ a1v(x, t)

]∣∣
∣
∣
x=0

= h1(t),

[
b2
∂v(x, t)

∂x
+ a2v(x, t)

]∣∣
∣
∣
x=l

= h2(t).

(5.48)

From relations (5.48) and (5.47), for the function U(x, t) one obtains:

[
b1
∂U(x, t)

∂x
+ a1U(x, t)

]∣∣
∣
∣
x=0

= 0,

[
b2
∂U(x, t)

∂x
+ a2U(x, t)

]∣∣
∣
∣
x=l

= 0.

(5.49)

From the initial conditions (5.46) and by using relation (5.47) it is obtained

∂kU(x, t)

∂tk

∣
∣
∣
∣
t=0+

= gk(x)− ∂kv(x, t)

∂tk

∣
∣
∣
∣
t=0+

= g̃k(x) (5.50)

for k = 0, 1, . . . ,m− 1 and m− 1 < α ≤ m.
By substitution

U(x, t) = U1(x, t)+ U2(x, t), (5.51)

from Eqs. (5.44), (5.47), and (5.51) it follows:

r(x) CD
α
0+[U1(x, t)+ U2(x, t)]

=
{
∂

∂x

[
p(x)

∂

∂x

]
− q(x)

}
[U1(x, t)+ U2(x, t)] + f̃ (x, t), (5.52)

where

f̃ (x, t) = f (x, t)+ ∂

∂x

[
p(x)

∂v(x, t)

∂x

]
− q(x)v(x, t)− r(x)CDα0+v(x, t).

(5.53)

We separate the functions in Eq. (5.52) in the following way:

r(x) CD
α
0+U1(x, t) = ∂

∂x

[
p(x)

∂

∂x
− q(x)

]
U1(x, t), (5.54)
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[
b1
∂U1(x, t)

∂x
+ a1U1(x, t)

]∣∣
∣∣
x=0

= 0,

[
b2
∂U1(x, t)

∂x
+ a2U1(x, t)

]∣∣
∣∣
x=l

= 0,

(5.55)

∂kU1(x, t)

∂tk

∣
∣
∣
∣
t=0+

= g̃k(x) (5.56)

for k = 0, 1, . . . ,m− 1 and m− 1 < α � m, and

r(x) CD
α
0+U2(x, t) =

[
∂

∂x

[
p(x)

∂

∂x

]
− q(x)

]
U2(x, t)+ f̃ (x, t), (5.57)

[
b1
∂U2(x, t)

∂x
+ a1U2(x, t)

]∣∣∣
∣
x=0

= 0,

[
b2
∂U2(x, t)

∂x
+ a2U2(x, t)

]∣∣∣
∣
x=l

= 0,

(5.58)

∂kU2(x, t)

∂tk

∣
∣∣
∣
t=0+

= 0 (5.59)

for k = 0, 1, . . . ,m− 1 and m− 1 < α � m.
The method of the separation of the variables is used to represent U1(x, t) as a

product of two functions, U1(x, t) = X(x)T (t). Then, we have:

CD
α
0+T (t)+ λT (t) = 0, (5.60)

{
d

dx

[
p(x)

d

dx

]
− q(x)

}
X(x)+ λr(x)X(x) = 0, (5.61)

where λ is a separation constant. The functionX(x) satisfies the following boundary
conditions:

[
dX(x)

dx
+ a1X(x)

]∣∣
∣
∣
x=0

= 0,

[
dX(x)

dx
+ a2X(x)

]∣∣
∣
∣
x=l

= 0. (5.62)

Equation (5.61), with the boundary conditions (5.62), represents a Sturm-Liouville
problem which has spectrum of eigenvalues λn and complete set of eigenfunctions
Xn(x). Therefore, in the Hilbert space L2[0, l] one has

∫ l

0
r(x)X2

n dx = ‖Xn(x)‖2δnm. (5.63)

The function r(x), in relation (5.63), is the weight or density function, ‖Xn‖2 is the
norm of the eigenfunctionXn(x), and δmn is the Kronecker delta. The eigenfunction
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Xn(x) is called the n-th fundamental solution satisfying the regular Sturm-Liouville
problem (5.61) and (5.62).

Equation (5.60) can be solved by applying the Laplace transform formula (2.20)
for the Caputo time fractional derivative. Therefore, one finds

sαL [Tn(t)](s)−
m−1∑

k=0

T (k)n (0+)sα−1−k + λnL [Tn(t)](s) = 0, (5.64)

from where it is obtained that

L [Tn(t)](s) =
m−1∑

k=0

T (k)n (0+) s
α−1−k

sα + λn . (5.65)

The solution is represented in terms of the two parameter M-L function (1.4)

Tn(t) =
m−1∑

k=0

T (k)n (0+)tkEα,k+1(−λntα). (5.66)

From the condition (5.58), one finds the constants T kn (0+), for k = 0, 1, . . . ,m− 1
and m− 1 < α � m, in the solution (5.66). The solution of Eq. (5.54) reads

U1(x, t) =
∞∑

n=1

(
m−1∑

k=0

T (k)n (0+)tkEα,k+1(−λntα)
)

Xn(x). (5.67)

By using the complete set of eigenfunctions Xn(x), we will find the solution of
Eq. (5.57), i.e.,

U2(x, t) =
∞∑

n=1

un(t)Xn(x), (5.68)

f̃ (x, t) = r(x)

∞∑

n=1

f̃n(t)Xn(x), (5.69)

where

f̃n(t) = 1

‖Xn(x)‖2

∫ l

0
f̃ (x, t)Xn(x) dx. (5.70)

From Eqs. (5.68)–(5.70) and (5.57) one obtains

∞∑

n=1

[
CD

α
0+un(t)+ λnun(t)− f̃n(t)

]
r(x)Xn(x) = 0, (5.71)
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which is satisfied if

CD
α
0+un(t)+ λnun(t)− f̃n(t) = 0. (5.72)

The Laplace transform of Eq. (5.72) yields

sαL [un(t)](s)−
m−1∑

k=0

u(k)n (0+)sα−1−k + λnL [Tn(t)](s)− L [f̃n(t)](s) = 0.

From the conditions (5.59) it follows that ∂
kun(x,t)

∂tk

∣
∣∣
t=0+ = 0 for k = 0, 1, . . . ,m−1

and m− 1 < α � m. Thus, Eq. (5.73) gives

L [un(t)](s) = 1

sα + λnL [f̃n(t)](s) = L
[
tα−1Eα,α(−λntα)

]
(s) · L [f̃n(t)](s).

(5.73)

By inverse Laplace transform of Eq. (5.73) we find that un(t) is a convolution
integral, i.e.,

un(t) =
∫ t

0
(t − τ )α−1Eα,α(−λn(t − τ )α)f̃n(τ ) dτ. (5.74)

Therefore, the solution of Eq. (5.57) becomes

U2(x, t) =
∞∑

n=1

[∫ t

0
(t − τ )α−1Eα,α(−λn(t − τ )α)f̃n(τ ) dτ

]
Xn(x), (5.75)

which can be expressed by the help of the integral operator (2.106) as follows:

U2(x, t) =
∞∑

n=1

(
E −λn;1,1

0+;α,α f̃n
)
(t)Xn(x). (5.76)

Finally, the solution of Eq. (5.44) has the following form:

u(x, t) =
∞∑

n=1

(
m−1∑

k=0

T (k)n (0+)tkEα,k+1
(−λntα

)
)

Xn(x)

+
∞∑

n=1

(
E −λn;1,1

0+;α,α f̃n
)
(t) Xn(x)+ v(x, t) (5.77)
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5.2.1 Examples

Example 5.1 For b1 = b2 = 0 and a1 = a2 = 1, the conditions (5.48) for the
function v(x, t) yield

v(x, t) = h1(t)+ x

l
[h2(t)− h1(t)] . (5.78)

The initial conditions then become

∂kv(x, t)

∂tk

∣
∣
∣
∣
t=0+

= h
(k)
1 (0+)+ x

l

[
h
(k)
2 (0+)− h(k)1 (0+)

]
. (5.79)

for k = 0, 1, . . . ,m−1 andm−1 < α � m. Then, from the relation (5.50) follows:

∂kU(x, t)

∂tk

∣
∣
∣
∣
t=0+

= gk(x)− h(k)1 (0+)+ x

l

[
h
(k)
2 (0+)− h(k)1 (0+)

]
= g̃k(x)

(5.80)

for k = 0, 1, . . . ,m− 1 and m− 1 < α � m.

Example 5.2 The time fractional wave equation

CD
α
0+u(x, t) = a2 ∂

2u(x, t)

∂x2 , (5.81)

u(x, t)|x=0 = 0, u(x, t)|x=l = 0, (5.82)

∂u(x, t)

∂t

∣
∣∣
∣
t=0+

= 0, u(x, 0+) = g(x), (5.83)

where 1 < α < 2, 0 ≤ x ≤ l, b is a constant, has solution

u(x, t) =
∞∑

n=1

cnEα

(
−n

2π2a2

l2
tα
)

sin
(nπx
l

)

+ 2bπ sin l
∞∑

n=1

(−1)nn

l2 − n2π2
tαEα,α+1

(
−n

2π2a2

l2
tα
)

sin
(nπx
l

)
,

(5.84)

where cn = 2
l

∫ l
0 g(x) sin

(
nπx
l

)
dx.
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Example 5.3 The time fractional wave equation

CD
α
0+u(x, t) = a2 ∂

2u(x, t)

∂x2 + b sin x, (5.85)

u(x, t)|x=0 = 0, u(x, t)|x=l = 0, (5.86)

∂u(x, t)

∂t

∣
∣
∣∣
t=0+

= 0, u(x, 0+) = g(x), (5.87)

where a is a constant, 1 < α < 2 and 0 ≤ x ≤ l reads [24]:

u(x, t) =
∞∑

n=1

[
1∑

k=0

T (k)n (0+)tkEα,k+1

(
−n

2π2a2

l2
tα
)]

sin
(nπx
l

)
. (5.88)

Here we use f (x, t) = 0, r(x) = 1, p(x) = a2, q(x) = 0, h1(t) = h2(t) = 0 and
v(x, t) = 0. The boundary conditions (5.86) mean that the ends of the string are
fixed. Conditions (5.87) mean that the initial velocity of the string is equal to zero,
and the initial shape of the string is given by the function g(x), respectively. From
the initial conditions (5.87) one finds

T (1)n (0+) = 0, (5.89)

and

T (0)n (0+) = 2

l

∫ l

0
g(x)sin

(nπx
l

)
dx, (5.90)

and therefore, the solution becomes

u(x, t) =
∞∑

n=1

[
2

l

∫ l

0
g(x)sin

(nπx
l

)
dx

]
Eα,1

(
−n

2π2a2

l2
tα
)

sin
(nπx
l

)
.

(5.91)

Notice that for α = 2, the solution (5.91) has the form

u(x, t) =
∞∑

n=1

[
2

l

∫ l

0
g(x)sin

(nπx
l

)
dx

]
cos

(nπa
l
t
)

sin
(nπx
l

)
. (5.92)
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The case g(x) = 0.03 · x(2 − x) and l = 2, for Eqs. (5.91) and (5.92) yield

u(x, t) = 0.96

π3

∞∑

n=1

1

(2n− 1)3
Eα,1

(
− (2n− 1)2π2a2

4
tα
)

sin

(
(2n− 1)πx

2

)
,

(5.93)

u(x, t) = 0.96

π3

∞∑

n=1

1

(2n− 1)3
cos

(
(2n− 1)πa

2
t

)
sin

(
(2n− 1)πx

2

)
, (5.94)

respectively.

Example 5.4 The time fractional equation

CD
α
0+u(x, t) = a2 ∂

2u(x, t)

∂x2 , (5.95)

with

u(x, t)|x=0 = 0, u(x, t)|x=l = 0, (5.96)

u(x, 0+) = g(x), (5.97)

where a is a constant, 0 < α < 1 and 0 ≤ x ≤ l, has a solution of the form (5.91).
Equation (5.95) is a time fractional diffusion (or heat conduction) equation. For
α = 1 it is obtained

u(x, t) =
∞∑

n=1

[
2

l

∫ l

0
g(x) sin

(nπx
l

)
dx

]
e
− n2π2a2

l2
t

sin
(nπx
l

)
. (5.98)

and by substitution g(x) = 0.03 · x(2 − x) and l = 2, the solution becomes

u(x, t) = 0.96

π3

∞∑

n=1

1

(2n− 1)3
Eα,1

(
− (2n− 1)2π2a2

4
tα
)

sin

(
(2n− 1)πx

2

)
,

(5.99)

where 0 < α < 1. For α = 1 it reads

u(x, t) = 0.96

π3

∞∑

n=1

1

(2n− 1)3
e−

(2n−1)2π2a2
4 t sin

(
(2n− 1)πx

2

)
. (5.100)
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Example 5.5 The time fractional wave equation

CD
α
0+u(x, t) = ∂2u(x, t)

∂x2 + ctγ−1Eα,γ
(−btα) , (5.101)

u(x, t)|x=0 = 0, u(x, t)|x=l = 0, (5.102)

∂u(x, t)

∂t

∣
∣
∣∣
t=0+

= 0, u(x, 0+) = g(x), (5.103)

where 1 < α < 2, 0 ≤ x ≤ l, 1 < γ < 2, b and c are constants, has a solution of
the form

u(x, t) =
∞∑

n=1

cnEα

(
−n

2π2

l2
tα
)

sin
(nπx
l

)

+ 2ctγ−1
∞∑

n=1

1 − (−1)n

nπ

Eα,γ (−btα)− Eα,γ
(
−n2π2

l2
tα
)

n2π2/l2 − b sin
(nπx
l

)
.

(5.104)

5.3 Effects of a Fractional Friction on String Vibrations

In this section we investigate a time fractional wave equation for a vibrating string
[33]

∂2u(x, t)

∂t2
= a2 ∂

2u(x, t)

∂x2
− b

∫ t

0
γ (t − τ )∂u(x, τ )

∂τ
dτ + f (x, t), (5.105)

with boundary conditions

u(x, t)|x=0 = h1(t), u(x, t)|x=l = h2(t), (5.106)

and initial conditions

u(x, t)|t=0+ = ϕ(x),
∂u(x, t)

∂t

∣∣
∣
∣
t=0+

= ψ(x), (5.107)

where t > 0, 0 < α < 1, 0 ≤ x ≤ l, f (x, t), h1(t), h2(t), ϕ(x) and ψ(x) are
given sufficiently well-behaved functions, a and b > 0 are constants, with friction
power-law memory kernel γ (t) = 1

Γ (1−α) t
−α . For simplicity we use a = 1. Due to

the power-law memory kernel, the friction term represents Caputo time fractional
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derivative (2.16) of order 0 < α < 1, CDα0+u(x, t). The wave equation (5.105) then
becomes

∂2u(x, t)

∂t2
= ∂2u(x, t)

∂x2 − b CDα0+u(x, t)+ f (x, t). (5.108)

The constant b > 0 is the generalized friction constant, and the function f (x, t) is an
external force. For α → 1 the fractional friction turns to the classical one −b ∂u(x,t)

∂t
,

and for α → 0 the friction term becomes −b[u(x, t) − u(x, 0)]. Therefore, the
solution of Eq. (5.105) describes the behavior of the field variable u(x, t) between
these two limit cases.

We use the method elaborated in Sect. 5.1 to solve the time fractional wave
equation (5.108). The following lemmas are of interest to solve this equation.

Lemma 5.1 The inverse Laplace transform of the function

g(s) = s + bsα−1 +w
s2 + bsα + λn , (s, b, α, λn ∈ R+, w ∈ R) (5.109)

(
0 <

λn

s2 + bsα < 1, 0 <
b

s2−α < 1

)

is given by

L −1 [g(s)] (t) =
∞∑

k=0

(−b)kt(2−α)kEk+1
2,(2−α)k+1

(
−λnt2

)

+ b
∞∑

k=0

(−b)kt(2−α)(k+1)Ek+1
2,(2−α)(k+1)+1

(
−λnt2

)

+w
∞∑

k=0

(−b)kt(2−α)k+1Ek+1
2,(2−α)k+2

(
−λnt2

)
. (5.110)

Proof Since 0 < λn
s2+bsα < 1, by using the approach given by Podlubny [23], one

finds

g(s) =
(
s + bsα−1 +w

)
· s−α

s2−α + b · 1

1 + λns−α
s2−α+b

=
∞∑

j=0

(−λn)j
{

s−α(j+1)+1

(
s2−α + b)j+1 + b s−αj−1

(
s2−α + b)j+1 +w s−α(j+1)

(
s2−α + b)j+1

}

.

(5.111)
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From the Laplace transform formula (1.17) for the three parameter M-L function,
one finds

L −1 [g(s)] (t) =
∞∑

j=0

(−λn)j t2jEj+1
2−α,2j+1(−bt2−α)

+ b
∞∑

j=0

(−λn)j t2(j+1)−αEj+1
2−α,2(j+1)−α+1(−bt2−α)

+ w
∞∑

j=0

(−λn)j t2j+1E
j+1
2−α,2j+2(−bt2−α)

=
∞∑

k=0

(−b)kt(2−α)kEk+1
2,(2−α)k+1

(
−λnt2

)

+ b
∞∑

k=0

(−b)kt(2−α)(k+1)Ek+1
2,(2−α)(k+1)+1

(
−λnt2

)

+ w
∞∑

k=0

(−b)kt(2−α)k+1Ek+1
2,(2−α)k+2

(
−λnt2

)
, (5.112)

where we expand the three parameter M-L function in a series (1.14) and exchange
the order of summation. Thus the proof of the lemma is finished.

Lemma 5.2 Let s, b, α, λn ∈ R
+. Then the following relation holds true:

L −1
[

1

s2 + bsα + λnL [f̃n(t)](s)
]
(t) =

∞∑

k=0

(−b)k
(
E −λn;k+1,1

0+;2,(2−α)k+2f̃n

)
(t),

(5.113)

(
0 <

λn

s2 + bsα < 1, 0 <
b

s2−α < 1

)

where E −λn;k+1,1
0+;2,(2−α)k+2f̃n is the integral operator (2.106) [30], and f̃n(t) is a given

function.
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Proof By the Laplace transform formula (1.17) for the three parameter M-L
function, one obtains

1

s2 + bsα + λnL
[
f̃n(t)

]
(s)

= s−α

s2−α + b · 1

1 + λns−α
s2−α+b

L
[
f̃n(t)

]
(s)

=
∞∑

j=0

(−λn)j s−α(j+1)

(
s2−α + b)j+1 L

[
f̃n(t)

]
(s)

= L

⎡

⎣
∞∑

j=0

(−λn)j t2j+1E
j+1
2−α,2j+2

(
−bt2−α)

⎤

⎦ (s)L
[
f̃n(t)

]
(s)

= L

[ ∞∑

k=0

(−b)k t(2−α)k+1Ek+1
2,(2−α)k+2

(
−λnt2

)
]

(s)L
[
f̃n(t)

]
(s).

(5.114)

From the Laplace transformation of a convolution integral, one proves the lemma.

Theorem 5.1 ([33]) The time fractional wave equation (5.108) with boundary
conditions (5.106) and initial conditions (5.107) has a summable solution

u(x, t) = U1(x, t)+ U2(x, t)+ v(x, t)

in a bounded domain x ∈ [0, l], and in the space L(0,∞) with respect to t , with

U1(x, t) =
∞∑

n=1

{
∞∑

k=0

(−b)kt(2−α)kEk+1
2,(2−α)k+1

(
−λnt2

)

+ b
∞∑

k=0

(−b)kt(2−α)(k+1)Ek+1
2,(2−α)(k+1)+1

(
−λnt2

)

+w
∞∑

k=0

(−b)kt(2−α)k+1Ek+1
2,(2−α)k+2

(
−λnt2

)
}T (0)n (0+) sin

(nπx
l

)
,

(5.115)

U2(x, t) =
∞∑

k=0

(−b)k
(
E −λn;k+1,1

0+;2,(2−α)k+2f̃n

)
(t) sin

(nπx
l

)
, (5.116)
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v(x, t) = h1(t)+ x

l
[h2(t)− h1(t)], (5.117)

f̃n(t) = 2

l

∫ l

0
f̃ (x, t) sin

(nπx
l

)
dx. (5.118)

f̃ (x, t) = f (x, t)+ ∂2v(x, t)

∂x2 − ∂2v(x, t)

∂t2
− b CDα0+v(x, t), (5.119)

where λn = n2π2

l2
are eigenvalues of the corresponding Sturm-Liouville problem,

w = T
(1)
n (0+)/T (0)n (0+),

T (0)n (0+) = 2

l

∫ l

0
ϕ̃(x) sin

(nπx
l

)
dx,

T (1)n (0+) = 2

l

∫ l

0
ψ̃(x) sin

(nπx
l

)
dx

are Fourier coefficients, and

ϕ̃(x) = ϕ(x)− v(x, t)|t=0+, and ψ̃(x) = ψ(x)− ∂v(x, t)

∂t

∣∣
∣
∣
t=0+

.

Example 5.6 For α = 1/2, b = 1, l = 1, h1(t) = h2(t) = 0, ϕ(x) = x(1 − x),
ψ(x) = 0, λn = n2π2,

T (0)n (0+) = 2
∫ 1

0
x(1 − x) sin(nπx) dx = 4

1 − (−1)n

n3π3 ,

T
(1)
n (0+) = 0, w = 0, f (x, t) = 0, the time fractional wave equation

∂2u(x, t)

∂t2
= ∂2u(x, t)

∂x2 −Dα∗ u(x, t), (5.120)

with boundary conditions

u(x, t)|x=0 = 0, u(x, t)|x=1 = 0, (5.121)

and initial conditions

u(x, t)|t=0+ = x(1 − x), ∂u(x, t)

∂t

∣
∣
∣
∣
t=0+

= 0, (5.122)
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where t > 0, 0 ≤ x ≤ 1, has a solution of the form [33]

u(x, t) = 8

π3

∞∑

n=1

1

(2n− 1)3

{ ∞∑

k=0

(−b)kt 3
2 kEk+1

2, 3
2 k+1

(
−(2n− 1)2π2t2

)

+ b

∞∑

k=0

(−b)kt 3
2 (k+1)Ek+1

2, 3
2 (k+1)+1

(
−(2n− 1)2π2t2

)}

sin (nπx) .

(5.123)

From the series expansion (1.14) of the three parameter M-L function, for the
asymptotic behavior of the solution (5.123) for t → 0 is given by

u(x, t) � 8

π3

∞∑

n=1

1

(2n− 1)3

⎡

⎣1 + (2n− 1)2π2

⎛

⎝− t
2

2
+ t

7
2

Γ
(

9
2

) + t4

24

⎞

⎠

⎤

⎦

× sin[(2n− 1)πx]. (5.124)

The long time limit t → ∞ yields

u(x, t) � 8

π5
√
πt

∞∑

n=1

sin[(2n− 1)πx]
(2n− 1)5

(5.125)

where we use asymptotic expansion (1.28).

5.4 Further Generalizations

Example 5.7 Here we considered general space-time fractional wave equation in
presence of an external source Φ(x, t) [27]

D
μ,ν
0+ u(x, t) = xD

α
θ u(x, t)+Φ(x, t), (5.126)

where x ∈ R, t ≥ 0, Dμ,ν0+ (1 < μ ≤ 2, 0 ≤ ν ≤ 1) is the Hilfer composite
fractional derivative (2.17), and xD

α
θ , (1 < α ≤ 2, |θ | ≤ min{α, 2 − α}) is the

Riesz-Feller fractional derivative (2.13) [6]. The initial values are of the form

(
I
(1−ν)(2−μ)
0+ u

)
(x, 0+) = f (x),

(
d

dt

(
I
(1−ν)(2−μ)
0+ u

))
(x, 0+) = g(x),

(5.127)
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and the boundary conditions are set to zero at infinities,

lim
x→±∞u(x, t) = 0. (5.128)

The corresponding solution reads

u(x, t) = t−(1−ν)(2−μ)

2π

∫ ∞

−∞
Eμ,1−(1−ν)(2−μ)

(−tμψθα(κ)
)
f̂ (κ)e−ıκx dκ

+ t
1−(1−ν)(2−μ)

2π

∫ ∞

−∞
Eμ,2−(1−ν)(2−μ)

(−tμψθα(κ)
)
ĝ(κ)e−ıκx dκ

+ 1

2π

∫ ∞

−∞

(
E

−ψθα (κ);1
0+;μ,μ Φ̂

)
(κ, t)e−ıκx dκ, (5.129)

where Φ̂(κ, t) = F [Φ(x, t)] (κ, t). Many results obtained for fractional wave
equations with Caputo or R-L time fractional derivatives are special cases of (5.129).
For example, for absence of a source,Φ(x, t) = 0, the general space-time fractional
wave equation

D
μ,ν
0+ u(x, t) = xD

α
θ u(x, t),

is obtained, which contains a number of limiting cases.
As a further generalization, one considers the following fractional equation in

presence of an external source Φ(x, t) [27]

D
μ,ν
0+ u(x, t) = xD

α
θ u(x, t)− k2u(x, t)+Φ(x, t), (5.130)

where x ∈ R, t ≥ 0, 1 < α ≤ 2, |θ | ≤ min{α, 2 − α}, 1 < μ ≤ 2, 0 ≤ ν ≤ 1. The
initial values have the form

(
I
(1−ν)(2−μ)
0+ u

)
(x, 0+) = f (x),

(
d

dt

(
I
(1−ν)(2−μ)
0+ u

))
(x, 0+) = g(x),

(5.131)

and the boundary conditions are set to zero at infinities,

lim
x→±∞u(x, t) = 0. (5.132)
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Thus, its solution is given by

N(x, t) = t−(1−ν)(2−μ)

2π

∫ ∞

−∞
Eμ,1−(1−ν)(2−μ)

(
−tμ

(
ψθα(κ)+ k2

))
f̂ (κ)e−ıκx dκ

+ t
1−(1−ν)(2−μ)

2π

∫ ∞

−∞
Eμ,2−(1−ν)(2−μ)

(
−tμ

(
ψθα(κ)+ k2

))
ĝ(κ)e−ıκx dκ

+ 1

2π

∫ ∞

−∞

(
E

−(
ψθα (κ)+k2

);1
0+;μ,μ Φ̂

)
(κ, t)e−ıκx dκ, (5.133)

where Φ̂(κ, t) = F [Φ(x, t)] (κ, t), and contains a number of limiting cases.

Example 5.8 The generalized time fractional diffusion equation with composite
time fractional derivative is given by Tomovski and Sandev [34]

D
λ,γ
0+ u (x, t) = a2 ∂

2

∂x2u (x, t)+ f (x, t), (5.134)

where 1 < λ < 2, 0 < γ < 1, and a > 0. The general form of the initial values is
given by

I
(1−γ )(2−λ)
0+ u(x, 0+) = g1(x),

d

dt
I
(1−γ )(2−λ)
0+ u(x, 0+) = g2(x). (5.135)

The solution of Eq. (5.134) becomes

u(x, t) = 1

2π

∫ ∞

−∞
tλ+γ (2−λ)−2Eλ,λ+γ (2−λ)−1

(
−a2κ2tλ

)
g̃1(κ)e

−ıκx dκ

+ 1

2π

∫ ∞

−∞
tλ+γ (2−λ)−1Eλ,λ+γ (2−λ)

(
−a2κ2tλ

)
g̃2(κ)e

−ıκx dκ

+ 1

2π

∫ ∞

−∞
E −a2κ2;1

0+;λ,λ f̃ (κ, t)e
−ıκx dκ. (5.136)

Example 5.9 We further introduce the so-called generalized distributed order wave
equation with composite time fractional derivative in presence of an external force
(source) f (x, t) [34]

∫ 1

0

∫ 2

1
p (μ, ν) tD

μ,ν
0+ u (x, t) dμdν = a2 ∂

2

∂x2u (x, t)+ f (x, t) , (5.137)

where u(x, t) is a field variable, a is a constant, p(μ, ν) is a non-negative weight
function with

∫ 1
0

∫ 2
1 p(μ, ν) dμdν = 1. The initial values depend on the form of the

weight function and the boundary conditions are set to zero, lim|x|→∞W (x, t) = 0.
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We consider the case for

p(μ, ν) = b1δ(μ− μ1)δ(ν − ν1)+ b2δ(μ− μ2)δ(ν − ν2),

0 ≤ ν1, ν2 ≤ 1, 1 < μ1 < μ2 < 2, b1 + b2 = 1, and
∫ 1

0

∫ 2
1 p(μ, ν) dμdν =

b1 + b2 = 1. The corresponding equation has the following form:

b1D
μ1,ν1
0+ u(x, t)+ b2D

μ2,ν2
0+ u(x, t) = a2 ∂

2

∂x2
u(x, t)+ f (x, t), (5.138)

which represents distributed order wave equation with two composite time fractional
derivatives. The initial values are given by

I
(1−νi )(2−μi)
0+ u(x, 0+) = g1,i (x),

d

dt
I
(1−νi )(2−νi )
0+ u(x, 0+) = g2,i (x), i = {1, 2},

(5.139)

and the boundary conditions are equal to zero at infinities. Its solution reads

u(x, t) = tμ2+ν1(2−μ1)−2

2π

∫ ∞

−∞

∞∑

n=0

(−1)n
(
b1

b2

)n+1

t(μ2−μ1)n

× En+1
μ2,(μ2−μ1)n+μ2+ν1(2−μ1)−1

(
−a

2κ2

b2
tμ2

)
g̃1,1(κ)e

−ıκx dκ

+ tμ2+ν2(2−μ2)−2

2π

∫ ∞

−∞

∞∑

n=0

(−1)n
(
b1

b2

)n
t(μ2−μ1)n

× En+1
μ2,(μ2−μ1)n+μ2+ν2(2−μ2)−1

(
−a

2κ2

b2
tμ2

)
g̃1,2(κ)e

−ıκx dk

+ tμ2+ν1(2−μ1)−1

2π

∫ ∞

−∞

∞∑

n=0

(−1)n
(
b1

b2

)n+1

t(μ2−μ1)n

× En+1
μ2,(μ2−μ1)n+μ2+ν1(2−μ1)

(
−a

2κ2

b2
tμ2

)
g̃2,1(κ)e

−ıκx dκ

+ tμ2+ν2(2−μ2)−1

2π

∫ ∞

−∞

∞∑

n=0

(−1)n
(
b1

b2

)n
t(μ2−μ1)n

× En+1
μ2,(μ2−μ1)n+μ2+ν2(2−μ2)

(
−a

2κ2

b2
tμ2

)
g̃2,2(κ)e

−ıκx dκ

+ 1

2πb2

∫ ∞

−∞

∞∑

n=0

(−b1

b2
)nE

− a2κ2
b2

;n+1

0+;μ2,(μ2−μ1)(n+1)+μ1
f̃ (k, t)e−ıκx dκ.

(5.140)
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Remark 5.1 Here we note that the initial value terms

[
dk

dtk

(
I
(1−ν)(n−μ)
0+ u

)]
(0+), k = 0, 1,

are for convenience only. The “real” initial values are defined by the behavior of the
function u(x, t). The initial value data determine the type of derivative to be used.

Example 5.10 For g1,1(x) = g1,2(x) = δ(x), g2,1(x) = g2,2(x) = 0, the solution
(5.140) becomes

u(x, t) = tμ2+ν1(2−μ1)−2

2|x|
∞∑

n=0

(−1)n

n!
(
b1

b2

)n+1

t (μ2−μ1)n ×H 2,0
2,2

×
[

|x|
atμ2/2/b

1/2
2

∣∣∣
∣∣
((μ2 − μ1)n+ μ2 + ν1(2 − μ1)− 1, μ2/2), (1, 1/2)

(1, 1), (n + 1, 1/2)

]

+ tμ2+ν2(2−μ2)−2

2|x|
∞∑

n=0

(−1)n

n!
(
b1

b2

)n+1

t (μ2−μ1)n ×H 2,0
2,2

×
[

|x|
atμ2/2/b

1/2
2

∣
∣∣∣
∣
((μ2 − μ1)n+ μ2 + ν2(2 − μ2)− 1, μ2/2), (1, 1/2)

(1, 1), (n + 1, 1/2)

]

+ 1

2πb2

∫ ∞

−∞

∞∑

n=0

(−b1

b2
)nE

− a2κ2
b2

;n+1

0+;μ2,(μ2−μ1)(n+1)+μ1
f̃ (κ, t)e−ıκx dκ.

(5.141)

Example 5.11 The uniformly distributed order wave equation with weight function
p(μ, ν) = δ(ν − γ )p(μ), 0 < γ < 1 and p(μ) = 1 is given by Tomovski and
Sandev [34]

∫ 2

1
D
μ,ν
0+ u (x, t) dμ = a2 ∂

2

∂x2u (x, t) . (5.142)

For ν = 1, Eq. (5.142) turns to the uniformly distributed order wave equation with
Caputo fractional derivative. The initial conditions take the form

I
(1−ν)(2−μ)
0+ u(x, 0+) = g1(x),

d

dt
I
(1−ν)(2−ν)
0+ u(x, 0+) = g2(x), (5.143)

and the boundary conditions are set to zero at infinities.
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By Fourier-Laplace transformation, one finds

˜̂u(k, s) = 1

ν

s−s1−ν
log s

s2−s
log s + a2k2

g̃1(k)+ 1

ν

1−s−ν
log s

s2−s
log s + a2k2

g̃2(k). (5.144)

The inverse Fourier transform gives the solution in the Laplace space,

û(x, s) = 1

2aν

s1/2(1 − s−ν)
(1 − s)1/2 log

1
2

(
1
s

)
∫ ∞

−∞
exp

(

− 1

a

√
s(1 − s)

log 1
s

|x − x ′|
)

g1(x
′) dx ′

+ 1

2aν

s−1/2(1 − s−ν)
(1 − s)1/2 log

1
2

(
1
s

)

×
∫ ∞

−∞
exp

(

− 1

a

√
s(1 − s)

log 1
s

|x − x ′|
)

g2(x
′) dx ′. (5.145)

For g1(x) = δ(x) and g2 = 0, the solution (5.145) becomes

û(x, s) = 1

2aν

s1/2(1 − s−ν)
(1 − s)1/2 log

1
2

(
1
s

) exp

(

− 1

a

√
s(1 − s)

log 1
s

|x|
)

, (5.146)

and for g1(x) = 0, g2 = δ(x),

û(x, s) = 1

2aν

s−1/2(1 − s−ν )
(1 − s)1/2 log

1
2

(
1
s

) exp

(

− 1

a

√
s(1 − s)

log 1
s

|x|
)

. (5.147)

From here, by using Tauberian theorems (see Appendix B), one can analyze the
behavior ofW(x, t) in the short and long time limit.

From Eq. (5.144), we derive the second moment

〈
x2(t)

〉
= L −1

[
− ∂2

∂k2
˜̂u(k, s)

]∣∣
∣
∣
k=0

. (5.148)

Therefore, for g1(x) = δ(x) and g2(x) = 0, we find

〈
x2(t)

〉
= 2a2

ν
L −1

[
s − s1−ν

s2(s − 1)2
log s

]
. (5.149)
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The long time limit, by applying the Tauberian theorem (see Appendix B) [6], yields

〈
x2(t)

〉
� 2a2

ν
L −1

[
s−(ν+1) log

1

s

]
= 2a2

ν

tν

Γ (ν + 1)

[
log t − ψ(ν + 1)

]

� 2a2

ν

tν

Γ (ν + 1)
log t, (5.150)

where

ψ(z) = Γ ′(z)
Γ (z)

is the digamma function [5]. In a similar way, for the short time limit we find

〈
x2(t)

〉
� 2a2

ν
L −1

[
s−3 log s

]
= a2

ν
t2

[
log

1

t
+ 3

2
− γ

]
� a2

ν
t2 log

1

t
,

(5.151)

where γ = 0.577216 is the Euler-Mascheroni constant. Therefore, the second
moment shows more complicated behavior than logarithmic.

Remark 5.2 Here we note that in a similar way we analyze the behavior of the
second moment for g1(x) = 0 and g2(x) = δ(x). The second moment then becomes

〈
x2(t)

〉
= 2a2

ν
L −1

[
1 − s−ν
s2(s − 1)2

log s

]
, (5.152)

from where the long time limit yields

〈
x2(t)

〉
� 2a2

ν

tν+1

Γ (ν + 2)
log t, (5.153)

and the short time limit becomes

〈
x2(t)

〉
� 2a2

ν

t3

Γ (4)
log

1

t
, (5.154)

Therefore, the second moment has very complicated behavior which is a combina-
tion of power-law and logarithmic behavior.
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Chapter 6
Generalized Langevin Equation

The Langevin equation is connected to the Brownian motion formulated by Einstein
and Smoluchowski. The Langevin equation for a free particle with mass m is given
by Langevin [35] (for details, see Ref. [11])

mv̇(t)+ γ v(t) = ξ(t), (6.1)

ẋ(t) = v(t),

where x(t) is the particle displacement, v(t) is its velocity, γ is the friction
coefficient, and ξ(t) is a Gaussian random noise with zero mean 〈ξ(t)〉 = 0 (so-
called white noise). Its correlation has the form

〈ξ(t)ξ(t ′)〉 = 2γ kBT δ(t ′ − t), (6.2)

where kB is the Boltzmann constant, T is the absolute temperature of the envi-
ronment in which the particle is immersed, and 2γ kBT is the so-called spectral
density. The notation 〈·〉 means ensemble averaging, i.e., statistical averaging over
an ensemble of particles at a given moment of time t . Relation (6.2) represents the
second fluctuation-dissipation theorem, which is valid only in case of internal noise
ξ(t). The Langevin equation (6.1) actually is obtained from the second Newton law
of motion of a particle in presence of viscous dynamic friction force −γ ẋ(t) and
an internal random noise ξ(t), which is a residual force due to the interaction of the
surrounding molecules on the particle. For a free particle, the MSD at long times
reads

〈x2(t)〉 = 2kBT

γ
t,
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which is Einstein relation for the Brownian motion. From the MSD, one concludes
that the Langevin equation (6.1) describes normal diffusion process, with diffusion
coefficient given by

D = lim
t→∞

〈x2(t)〉
2t

= kBT

γ
.

For the same process, the VACF has exponential decay in respect of time (for details,
see next section)

〈v(t)v(0)〉 = kBT

m
e−

γ
m
t .

For a particle in a given potential V (x), the corresponding Langevin equation
becomes

mv̇(t)+ γ v(t) + dV (x(t))

dx
= ξ(t), (6.3)

ẋ(t) = v(t),

where

F(x) = −dV (x(t))

dx

is an additional force which acts on the particle due to the potential V (x). For
harmonic potential

V (x) = mω2x2

2
,

the Langevin equation (6.3) turns to

mẍ(t)+ γ ẋ(t)+mω2x(t) = ξ(t), (6.4)

ẋ(t) = v(t),

where ω is the frequency of the oscillator, and m is its mass.
For an internal noise whose correlation is not of the form (6.2), then the Langevin

equation (6.3) becomes a GLE [34],

ẍ(t)+
∫ t

0
γ (t − t ′)ẋ(t ′)dt ′ + dV (x(t))

dx
= ξ(t), (6.5)

ẋ(t) = v(t),
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where we set m = 1, and γ (t) is the generalized friction memory kernel. The
internal noise ξ(t) is of a zero mean (〈ξ(t)〉 = 0), whose correlation is given by

〈ξ(t)ξ(t ′)〉 = C(t ′ − t). (6.6)

When the system reaches an equilibrium state, i.e., the noise is internal, the
correlation is related to the friction memory kernel via the second fluctuation-
dissipation theorem [34, 42, 72] in the following way:

C(t) = kBT γ (t), (6.7)

This means that fluctuation and dissipation come from the same source. The friction
memory kernel satisfies [12]

lim
t→∞ γ (t) = lim

s→0
sγ̂ (s) = 0,

where γ̂ (s) = L [γ (t)](s) is the Laplace transform of γ (t). If the fluctuation and
dissipation do not come from the same source (in case of external noise), then
the second fluctuation-dissipation theorem (6.7) is not satisfied, and the system
does not reach a unique equilibrium state. The GLE (6.5) for a free particle
(V (x) = 0) in case of a stationary Gaussian random force ξ(t), in case when the
second fluctuation-dissipation theorem holds, describes a stationary, Gaussian, non-
Markovian process [19, 20].

GLE has been used to describe anomalous diffusion processes. In the pioneer
work of Mainardi and Pironi [42], the authors introduced fractional Langevin
equation and showed that it is a special case of a GLE. The M-L function appears
in the analysis of the MSD and VACF for a given GLE. Thus, Mainardi and Pironi
[42] for the first time in the literature represented the velocity and displacement
correlation functions in terms of the M-L functions, and generalized the results for
the standard Brownian motion (see also Ref. [40]).

6.1 Free Particle: Generalized M-L Friction

In this section we consider anomalous diffusion of a free particle with mass m = 1,
driven by stationary random force ξ(t) [34, 42, 72]:

v̇(t)+
∫ t

0
γ (t − t ′)v(t ′)dt ′ = ξ(t), (6.8)

ẋ(t) = v(t),

where the noise ξ(t) is internal noise. Therefore, the second fluctuation-dissipation
theorem (6.7) holds.
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The anomalous diffusion process can be modeled by GLE with internal noise,
which correlation is of power-law form [5, 6, 12, 39, 68]

C(t) = Cλ
t−λ

Γ (1 − λ) ,

whereCλ is a proportionality coefficient independent on time and which dependents
on the exponent λ (0 < λ < 1 or 1 < λ < 2). In some investigations [40, 42] the
friction memory kernel is represented as a superposition of Dirac delta and power-
law function.

Generalization of the power law correlation function is the one parameter M-L
correlation function [7, 66, 67]

C(t) = Cλ

τλ
Eλ(−(t/τ )λ),

where τ is the characteristic memory time, 0 < λ < 2, and Eλ(z) is the one
parameter M-L function (1.1). Furthermore, more generalized friction memory
kernel of the form

C(t) = Cλ

τλ
tν−1Eλ,ν(−(t/τ )λ),

was introduced [8, 16], where Eλ,ν(z) is the two parameter M-L function (1.4).
We have introduced the three parameter M-L friction memory kernel [59]

C(t) = Cα,β,δ

ταδ
tβ−1Eδα,β

(
− t

α

τα

)
, (6.9)

where τ is the characteristic memory time,Cα,β,δ may depend on α, β, and δ (α > 0,
β > 0, δ > 0), and Eδα,β(z) is the three parameter M-L function (1.14). This noise
(6.9) contains several parameters and a number of limiting cases, which means that
the obtained results can be used for better description and fits of experimental data.
Note that, from relation (1.29), for the generalized M-L noise (6.9) one has

γ (t) � t−αδ+β−1, t → ∞. (6.10)

For fulfillment of the condition the friction memory kernel γ (t) goes to zero for
t → ∞ [12],

lim
t→∞ γ (t) = lim

s→0
sγ̂ (s) = 0, (6.11)

where γ̂ (s) = L [γ (t)](s), one should consider such values of parameters for which
β < 1 + αδ is satisfied.
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The three parameter M-L noise (6.9) is a generalization of the two parameter M-
L noise, which is obtained for δ = 1. For β = δ = 1 it yields the one parameter
M-L noise. From the asymptotic behavior of three parameter M-L noise (6.9), for
τ → 0, β = δ = 1 and α 
= 1, one recovers the power-law correlation function.
Setting α = δ = 1, the correlation function corresponds to the one for the standard
Ornstein-Uhlenbeck process

C(t) = C1,1,1

τ
e−t/τ ,

which for τ → 0 turns to the correlation function for the standard Brownian motion.

6.1.1 Relaxation Functions

In order to find the MSD and VACF we use the Laplace transform method [40, 42],
and the so-called relaxation functions. Thus, from Eq. (6.8) it follows

L [v(t)] = v0
1

s + L [γ (t)] + 1

s + L [γ (t)]L [ξ(t)]. (6.12)

From relation (6.12) for the displacement x(t) and velocity v(t) = ẋ(t) one obtains

x(t) = 〈x(t)〉 +
∫ t

0
G(t − t ′)ξ(t ′) dt ′, (6.13)

v(t) = 〈v(t)〉 +
∫ t

0
g(t − t ′)ξ(t ′) dt ′, (6.14)

where

〈x(t)〉 = x0 + v0G(t), (6.15)

〈v(t)〉 = v0g(t) (6.16)

and

G(t) =
∫ t

0
g(t ′) dt ′. (6.17)

The function g(t) represents inverse Laplace transform of ĝ(s),

ĝ(s) = 1

s + γ̂ (s) , (6.18)
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where

γ̂ (s) = L [γ (t)](s) = Cα,β,δ

kBT ταδ

sαδ−β
(
sα + τ−α)δ

is obtained from Laplace transform formula (1.17) for the three parameter M-L
function. The function

I (t) =
∫ t

0
G(t ′) dt ′ (6.19)

is also of interest in the analysis of the velocity and displacement correlation
functions as we will see later. Therefore,

Ĝ(s) = s−1ĝ(s) = 1

s2 + sγ̂ (s) , (6.20)

and

Î (s) = s−1Ĝ(s) = s−1

s2 + sγ̂ (s) . (6.21)

These functions I (t), G(t), and g(t) are known as relaxation function, and by
analysis of their behavior one can show the existence of anomalous diffusion.

From relation (6.18) it follows

ĝ(s) = 1

s + γα,β,δ sαδ−β
(sα+τ−α)δ

= s
1+β

2 −1

s
1+β

2 + γα,β,δ s
αδ− 1+β

2

(sα+τ−α)δ

, (6.22)

where γα,β,δ = Cα,β,δ

kBT ταδ
. Relaxation function g(t) can be obtained by applying

relation (1.18) with α → 1+β
2 , ρ → α, γ → δ, λ → −γα,β,δ, ν → −τ−α ,

μ → 1 to (6.22). Thus, we obtain [59]

g(t) =
∞∑

k=0

(−1)kγ kα,β,δt
(1+β)kEδkα,(1+β)k+1

(−(t/τ )α) . (6.23)

By using relation (1.19) in (6.19) and (6.17), one finds

G(t) =
∞∑

k=0

(−1)kγ kα,β,δt
(1+β)k+1Eδkα,(1+β)k+2

(−(t/τ )α) , (6.24)

I (t) =
∞∑

k=0

(−1)kγ kα,β,δt
(1+β)k+2Eδkα,(1+β)k+3

(−(t/τ )α) . (6.25)
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The mean velocity (6.16) and mean particle displacement (6.15) then become

〈v(t)〉 = v0

∞∑

k=0

(−1)kγ kα,β,δt
(1+β)kEδkα,(1+β)k+1

(−(t/τ )α) , (6.26)

〈x(t)〉 = x0 + v0

∞∑

k=0

(−1)kγ kα,β,δt
(1+β)k+1Eδkα,(1+β)k+2

(−(t/τ )α) . (6.27)

Note that for τ → 0, by using relation (1.28), for the relaxation functions we have

g(t) = E1+β−αδ
(

−Cα,β,δ
kBT

t1+β−αδ
)
, (6.28)

G(t) = tE1+β−αδ,2
(

−Cα,β,δ
kBT

t1+β−αδ
)
, (6.29)

I (t) = t2E1+β−αδ,3
(

−Cα,β,δ
kBT

t1+β−αδ
)
, (6.30)

from where for β = δ = 1, which corresponds to the power-law correlation
function, we obtain the well-known results (see, for example, [39])

I (t) = t2E2−α,3
(

−Cα,1,1
kBT

t2−α
)

� kBT

Cα,1,1

tα

Γ (1 + α) for t → ∞. (6.31)

Remark 6.1 ([59]) The function g(t) given by (6.23) is uniformly convergent series
with argument t/τ for all t ∈ R. This can be shown in the following way. The
function g(t) is a double series of form

g(t) =
∞∑

k=0

bkt
(1+β)k

∞∑

m=0

fk,m(t), (6.32)

where bk = (−1)kγ kα,β,δ, and

fk,m(t) = (δk)m

Γ (αm+ (1 + β)k + 1)

(−1)m

m!
(
t

τ

)αm
.

To show that the series (6.32) converges uniformly, we have to demonstrate that
both series with respect to columns (keeping k fixed and summingm) and the series
with respect to the rows (summing k for fixed m) lead to uniformly convergent
series. In that case the resulting function g(t) is continuous within the radius of
convergence and can be integrated within the interval of convergence. As the three
parameter M-L function (1.14) defines an absolutely converging function, which is
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easily demonstrated by a ratio test, we only need to verify the summation over k
with fixed m. Let us use

ak = bk
(δk)m

Γ (αm+ (1 + β)k + 1)
.

By using [31]

Γ (z+ a)
Γ (z+ b) = za−b

[
1 + (a − b)(a + b − 1)

2z
+O

(
1

z2

)]
, (6.33)

(|z| → ∞, | arg(z)| ≤ π − ε, | arg(z+ a)| ≤ π − ε, 0 < ε < π)

we find that
∣
∣
∣
∣
∣
ak+1t

(1+β)(k+1)

akt(1+β)k

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
γα,β,δΓ (δ(k + 1)+m)Γ (δk)Γ (αm+ (1 + β)k + 1)t1+β

Γ (δ(k + 1))Γ (δk +m)Γ (αm+ (1 + β)(k + 1)+ 1)

∣
∣
∣
∣
∣

=
∣
∣
∣γα,β,δt1+β

∣
∣
∣ ×

∣∣
∣
∣
Γ (δk + δ +m)
Γ (δk + δ)

∣∣
∣
∣ ×

∣∣
∣
∣
Γ (δk)

Γ (δk +m)
∣∣
∣
∣

×
∣
∣
∣∣

Γ ((1 + β)k + αm+ 1)

Γ ((1 + β)k + αm+ 1 + (1 + β))
∣
∣
∣∣

�
∣
∣
∣γα,β,δt1+β

∣
∣
∣ |αm+ (1 + β)k + 1|−(1+β) , (6.34)

which goes to zero if k → ∞. Thus we prove that the series is uniformly convergent.
The convergence of series in M-L functions has been extensively studied by Paneva-
Konovska in a series of works [49–51].

6.1.2 Velocity and Displacement Correlation Functions

From the general expressions for the velocity and displacement correlation functions
[12, 52]

〈v(t)v(t ′)〉 = kBT g(|t − t ′|)+
(
v2

0 − kBT
)
g(t)g(t ′), (6.35a)

〈x(t)x(t ′)〉 = x2
0 +

(
v2

0 − kBT
)
G(t)G(t ′)+ C0v0

(
G(t)+G(t ′))

+ kBT
(
I (t) + I (t ′)− I (|t − t ′|)) , (6.35b)
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we obtain the following exact results for the generalized M-L memory kernel [59]

〈v(t)v(t ′)〉 = kBT

∞∑

k=0

(−1)kγ kα,β,δ(|t − t ′|)(1+β)kEδkα,(1+β)k+1

(−(|t − t ′|/τ)α)

+
(
v2

0 − kBT
) ∞∑

k=0

(−1)kγ kα,β,δt
(1+β)kEδkα,(1+β)k+1

(−(t/τ )α)

×
∞∑

l=0

(−1)lγ lα,β,δt
′(1+β)lEδlα,(1+β)l+1

(−(t ′/τ)α) , (6.36)

〈x(t)x(t ′)〉 = x2
0 +

(
v2

0 − kBT
) ∞∑

k=0

(−1)kγ kα,β,δt
(1+β)k+1Eδkα,(1+β)k+2

(−(t/τ )α)

×
∞∑

l=0

(−1)lγ lα,β,δt
′(1+β)l+1Eδlα,(1+β)l+2

(−(t ′/τ)α)

+ x0v0

∞∑

k=0

(−1)kγ kα,β,δ

×
[
t(1+β)k+1Eδkα,(1+β)k+2

(−(t/τ )α)

+t ′(1+β)k+1Eδkα,(1+β)k+2

(−(t ′/τ)α)
]

+ kBT
∞∑

k=0

(−1)kγ kα,β,δ

×
[
t(1+β)k+2Eδkα,(1+β)k+3

(−(t/τ )α)

+t ′(1+β)k+2Eδkα,(1+β)k+3

(−(t ′/τ)α)
]

− kBT
∞∑

k=0

(−1)kγ kα,β,δ(|t − t ′|)(1+β)k+2

× Eδkα,(1+β)k+3

(−(|t − t ′|/τ)α) .
(6.37)

For t = t ′ it eventually leads to

〈v2(t))〉 = kBT +
(
v2

0 − kBT
)( ∞∑

k=0

(−1)kγ kα,β,δt
(1+β)kEδkα,(1+β)k+1

(−(t/τ )α)
)2

,

(6.38)
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〈x2(t)〉 = x2
0 +

(
v2

0 − kBT
)
( ∞∑

k=0

(−1)kγ kα,β,δt
(1+β)k+1Eδkα,(1+β)k+2

(−(t/τ )α)
)2

+ 2x0v0

∞∑

k=0

(−1)kγ kα,β,δt
(1+β)k+1Eδkα,(1+β)k+2

(−(t/τ )α)

+ 2kBT
∞∑

k=0

(−1)kγ kα,β,δt
(1+β)k+2Eδkα,(1+β)k+3

(−(t/τ )α) . (6.39)

Thus, for the time-dependent diffusion coefficient [42, 53]

D(t) = 1

2

d

dt
〈x2(t)〉, (6.40)

by using relation (1.19) we obtain

D(t) =
(
v2

0 − kBT
)
[ ∞∑

k=0

(−1)kγ kα,β,δt
(1+β)k+1Eδkα,(1+β)k+2

(−(t/τ )α)
]

×
[ ∞∑

l=0

(−1)lγ lα,β,δt
(1+β)lEδlα,(1+β)l+1

(−(t/τ )α)
]

+ x0v0

∞∑

k=0

(−1)kγ kα,β,δt
(1+β)kEδkα,(1+β)k+1

(−(t/τ )α)

+ kBT
∞∑

k=0

(−1)kγ kα,β,δt
(1+β)k+1Eδkα,(1+β)k+2

(−(t/τ )α) . (6.41)

Here we consider thermal initial conditions x0 = 0 and v0 = kBT . From the
general expressions of the velocity and displacement correlation functions (6.35a)
and (6.35b), one finds that the relaxation functions, under the assumption (6.11),
are connected to the MSD, time dependent diffusion coefficient and VACF in the
following way [12, 42, 66], respectively,

〈
x2(t)

〉
= 2kBT I (t), (6.42)

D(t) = 1

2

d

dt

〈
x2(t)

〉
= kBTG(t), (6.43)

CV (t) = 〈v(t)v(0)〉
〈
v2(0)

〉 = g(t). (6.44)
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Furthermore, these relaxation functions can be used to find variances [12, 17, 66, 68]

σxx = 〈x2(t)〉 − 〈x(t)〉2 = kBT
[
2I (t)−G2(t)

]
, (6.45a)

σxv = 〈(v(t) − 〈v(t)〉)(x(t) − 〈x(t)〉)〉

= 1

2

dσxx
dt

= kBTG(t) [1 − g(t)] , (6.45b)

σvv = 〈v2(t)〉 − 〈v(t)〉2 = kBT
[
1 − g2(t)

]
. (6.45c)

Therefore, for thermal initial conditions, x0 = 0 and v2
0 = kBT , for the MSD (6.39),

D(t) (6.41) and VACF (6.36), we obtain [59]

〈x2(t)〉 = 2kBT
∞∑

k=0

(−1)kγ kα,β,δt
(1+β)k+2Eδkα,(1+β)k+3

(−(t/τ )α) = 2kBT I (t),

(6.46)

D(t) = kBT

∞∑

k=0

(−1)kγ kα,β,δt
(1+β)k+1Eδkα,(1+β)k+2

(−(t/τ )α) = kBTG(t),

(6.47)

CV (t) = 〈v(t)v(0)〉
kBT

=
∞∑

k=0

(−1)kγ kα,β,δt
(1+β)kEδkα,(1+β)k+1

(−(t/τ )α) = g(t),

(6.48)

respectively. Graphical representation of the MSD (6.46) and VACF (6.48), in case
of thermal initial conditions is given in Figs. 6.1, 6.2 and 6.3.

6.1.3 Anomalous Diffusive Behavior

The anomalous diffusive behavior of the particle can be obtained either from the
exact results by using properties of the three parameter M-L function or by using
the Tauberian theorems [18] (see Appendix B), as it was done by Gorenflo and
Mainardi in Ref. [24]. From relation (1.28) it follows that

γ (t) � γα,β,δτ
αδ

Γ (β − αδ) × t−αδ+β−1
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Fig. 6.1 Graphical representation of the MSD (6.46) for τ = 1, Cα,β,δ = 1, kBT = 1; (a)
β = δ = 1: α = 1 (solid line), α = 1/2 (dashed line), α = 3/2 (dot-dashed line); (b) α = δ = 1:
β = 1 (solid line), β = 1/2 (dashed line), β = 3/2 (dot-dashed line); (c) α = 3/2, β = 1,
δ = 1/2 (solid line), α = β = 1/2, δ = 3/4 (dashed line), α = 3/4, β = 1/2, δ = 1 (dot-dashed
line). Reprinted from Physica A, 390, T. Sandev, Z. Tomovski, and J.L.A. Dubbeldam, Generalized
Langevin equation with a three parameter Mittag-Leffler noise, 3627–3636, Copyright (2011), with
permission from Elsevier

for long times (αδ 
= β), so from the Tauberian theorems, one obtains [59]

γ̂ (s) � Cα,β,δ

kBT
· sαδ−β, s → 0. (6.49)

From (6.18), (6.17), (6.19), (6.112), and (1.17) it follows

ĝ(s) � 1

s + Cα,β,δ
kBT

· sαδ−β
= sβ−αδ

s1+β−αδ + Cα,β,δ
kBT

, s → 0, (6.50)

g(t) � E1+β−αδ
(

−Cα,β,δ
kBT

· t1+β−αδ
)
, t → ∞, (6.51)

G(t) � tE1+β−αδ,2
(

−Cα,β,δ
kBT

· t1+β−αδ
)
, t → ∞, (6.52)

I (t) � t2E1+β−αδ,3
(

−Cα,β,δ
kBT

· t1+β−αδ
)
, t → ∞. (6.53)
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Fig. 6.2 Graphical representation of the VACF (6.48) for τ = 1, Cα,β,δ = 1, kBT = 1; (a)
β = δ = 1: α = 1 (solid line), α = 1/2 (dashed line), α = 3/2 (dot-dashed line); (b) α = δ = 1:
β = 1 (solid line), β = 1/2 (dashed line), β = 3/2 (dot-dashed line); (c) α = 3/2, β = 1,
δ = 1/2 (solid line), α = β = 1/2, δ = 3/4 (dashed line), α = 3/4, β = 1/2, δ = 1 (dot-dashed
line). Reprinted from Physica A, 390, T. Sandev, Z. Tomovski, and J.L.A. Dubbeldam, Generalized
Langevin equation with a three parameter Mittag-Leffler noise, 3627–3636, Copyright (2011), with
permission from Elsevier
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Fig. 6.3 Graphical representation of exact results (6.46) and (6.48), respectively, for τ = 10,
Cα,β,δ = 1, kBT = 1, α = 1/2, and β = δ = 1 (solid line), β = 3/4, δ = 1 (dashed line),
β = 3/4, δ = 1/2 (dot-dashed line); (a) MSD (6.46); (b) VACF (6.48). Reprinted from Physica A,
390, T. Sandev, Z. Tomovski, and J.L.A. Dubbeldam, Generalized Langevin equation with a three
parameter Mittag-Leffler noise, 3627–3636, Copyright (2011), with permission from Elsevier
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From the asymptotic expansion formula (1.28) of the three parameter M-L function,
one finds

g(t) � kBT

Cα,β,δΓ (αδ − β) · tαδ−β−1, (6.54)

G(t) � kBT

Cα,β,δΓ (αδ − β + 1)
· tαδ−β, (6.55)

I (t) � kBT

Cα,β,δΓ (αδ − β + 2)
· tαδ−β+1. (6.56)

Thus, the time-dependent diffusion coefficient gets the form [59]

D(t) � (kBT )
2

Cα,β,δΓ (αδ − β + 1)
· tαδ−β. (6.57)

From (6.57) we conclude that for β− 1 < αδ < β in the long time limit the particle
motion is subdiffusive, and for β < αδ—superdiffusive [59]. Note that for β = 1
the obtained results are same as those in Ref. [57] (where β = 1, ω = 0). For
β = δ = 1, the results obtained in Refs. [39, 53, 59] are recovered. The case with
α = β = δ = 1 corresponds to the one considered in Refs. [42, 53, 59]. For δ = 1
one derives the relaxation functions obtained in Ref. [8] (ω = 0, α = 2, β = 1).
Comparison of the asymptotic and exact results for the MSD and VACF for thermal
initial conditions is given in Fig. 6.4. In Fig. 6.5 comparison with the results for the
Brownian motion is given.
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Fig. 6.4 Graphical representation of asymptotic and exact results for τ = 1,Cα,β,δ = 1, kBT = 1,
α = 1/2, β = δ = 1; (a) MSD; asymptotic solution (6.56) (solid line), exact solution (6.25)
(dashed line); (b) VACF, asymptotic solution (6.54) (solid line), exact solution (6.23) (dashed
line). Reprinted from Physica A, 390, T. Sandev, Z. Tomovski, and J.L.A. Dubbeldam, Generalized
Langevin equation with a three parameter Mittag-Leffler noise, 3627–3636, Copyright (2011), with
permission from Elsevier
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Fig. 6.5 Graphical representation of MSD and VACF, respectively, for kBT = 1; (a) standard

Brownian motion 〈x2(t)〉
2kBT

= t (solid line) and exact result (6.25) for α = β = δ = 1, τ = 1,

Cα,β,δ = 1 (dashed line); (b) standard Brownian motion CV (t) = e−t (solid line) and exact
result (6.23) for α = β = δ = 1, τ = 1, Cα,β,δ = 1 (dashed line). Reprinted from Physica A,
390, T. Sandev, Z. Tomovski, and J.L.A. Dubbeldam, Generalized Langevin equation with a three
parameter Mittag-Leffler noise, 3627–3636, Copyright (2011), with permission from Elsevier

In the short time limit, the relaxation functions behave as [59]

I (t) � t2

2
− Cα,β,δ

kBT ταδ

tβ+3

Γ (β + 4)
, (6.58)

G(t) � t − Cα,β,δ

kBT ταδ

tβ+2

Γ (β + 3)
, (6.59)

g(t) � 1 − Cα,β,δ

kBT ταδ

tβ+1

Γ (β + 2)
. (6.60)

These results can be obtained either by using Tauberian theorems or from the exact
results by using the first two terms in the corresponding series. For β = 1 the results
from Ref. [57] are obtained (β = 1, ω = 0), and for δ = 1 those given in Ref. [8]
(ω = 0, α = 2, β = 1).

6.2 Mixture of Internal Noises

6.2.1 Second Fluctuation-Dissipation Theorem

Let us now consider a stationary Gaussian internal noise ξ(t) with a zero mean
〈ξ(t)〉 = 0, represented as a mixture of N independent noises [58]

ξ(t) =
N∑

i=1

αiξi(t),
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for which
〈
ξi(t)ξj (t

′)
〉 = 0 (i 
= j ), each of zero mean 〈ξi(t)〉 = 0, with correlation

functions of the form

〈ξi(t)ξi (t ′)〉 = ζi(t
′ − t). (6.61)

Thus, for the correlation function C(t) we have

〈ξ(t)ξ(t ′)〉 =
〈
N∑

i=1

αiξi(t)

N∑

j=1

αjξj (t
′)
〉

=
N∑

i=1

α2
i 〈ξi (t)ξi (t ′)〉. (6.62)

Therefore, the second fluctuation-dissipation theorem (6.7) gives

N∑

i=1

α2
i ζi(t) = kBT γ (t). (6.63)

Two (N = 2) distinct independent noises (white noise and an arbitrary noise) were
analyzed in Ref. [65], and various diffusive regimes are observed. Such situations
with two types of noises have been shown to govern the motion of the tracked
particles in several experimental works by Weigel et al. [69], Tabei et al. [64], and
Jeon et al. [27]. Therefore, our investigation of GLE (6.8) for a particle driven by
mixture of noises is justified with such experimental observations.

6.2.2 Relaxation Functions

Here we use the known relations for the relaxation function (6.18), (6.20), and (6.21)
in order to analyze the diffusive behavior of the particle. The Laplace transformation
to relation (6.63) yields

γ̂ (s) = 1

kBT

N∑

i=1

α2
i ζ̂i (s). (6.64)

In what follows we consider different forms of the noise that are of importance
in the anomalous diffusion theory.

6.2.3 White Noises

First, let us consider the motion of a free particle driven by N internal white noises,
i.e., ζi(t) = δ(t) (ζ̂i(s) = 1). Relation (6.63) then becomes

γ̂ (s) = 1

kBT

N∑

i=1

α2
i .
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The inverse Laplace transform for the relaxation functionG(t) gives

G(t) = L −1

⎡

⎣ 1

s2 + s
∑N
i=1 α

2
i

kBT

⎤

⎦ (t) = 1 − e−
∑N
i=1 α

2
i

kB T
t

1
kBT

∑N
i=1 α

2
i

, (6.65)

from where the MSD (6.42) and VACF (6.44) read

〈
x2(t)

〉
= 2 (kBT )2 t

∑N
i=1 α

2
i

− 2kBT
1 − e−

∑N
i=1 α

2
i

kBT
t

(
1
kBT

∑N
i=1 α

2
i

)2
, (6.66)

CV (t) = e
−

∑N
i=1 α

2
i

kB T
t
. (6.67)

From relation (6.66), one concludes that in the long time limit (t → ∞), the MSD
has a linear dependence on time

〈
x2(t)

〉
� 2 (kBT )2

∑N
i=1 α

2
i

t,

i.e., normal diffusive behavior of the particle, as it was expected, with diffusion
coefficient

D = (kBT )
2

∑N
i=1 α

2
i

,

and exponential relaxation of the VACF. Graphical representation of the MSD and
VACF for different values of N is given in Fig. 6.6.

6.2.4 Power Law Noises

Next we analyze the case of N independent noises with power-law correlation
functions

ζi(t) = 1

Γ (1 − λi) t
−λi , i.e., ζ̂i(s) = sλi−1,
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Fig. 6.6 Graphical representation of: (a) MSD (6.66), (b) VACF (6.67) for α2
i = 2, in case of

thermal initial conditions v0 = kBT = 1, x0 = 0, and a mixture of Dirac delta noises N = 1 (solid
line), N = 2 (dashed line); N = 3 (dot-dashed line); N = 4 (dotted line). Reprinted from Phys.
Lett. A, 378, T. Sandev and Z. Tomovski, Langevin equation for a free particle driven by power
law type of noises, 1–9, Copyright (2014), with permission from Elsevier

i = 1, 2, . . . , N , 0 < λ1 < . . . < λN < 1, λi 
= 1. From relation (6.63) one gets

γ̂ (s) = 1

kBT

N∑

i=1

α2
i s
λi−1.

Here we note that we can extend the analysis for the case of γ̂ (s) with 0 < λ1 <

. . . < λN < 2, but in such a case the memory kernel γ (t) is defined only in the
sense of distributions [9, 13, 22, 42, 43, 70]. For the relaxation function G(t), by
using the approach given in Refs. [26, 37], we obtain

G(t) = L −1

[
1

s2 + ∑N
i=1Ais

λi

]

(t) = L −1

[
s−2

1 − ∑N
i=1

(−Ai)
s2−λi

]

(t)

= t

∞∑

j=1

k1+k2+...+kN=j∑

k1≥0,k2≥0,...,kN≥0

(
j

k1 k2 . . . kN

) ∏N
i=1

(−Ait2−λi )ki

Γ
(

2 + ∑N
i=1 (2 − λi) ki

)

= tE(2−λ1,2−λ2,...,2−λN),2
(
−A1t

2−λ1,−A2t
2−λ2, . . . ,−ANt2−λN

)
,

(6.68)

where Ai = α2
i

kBT
,

(
j

k1 k2 . . . kN

)
= j !
k1!k2! · · · kN !

are the so-called multinomial coefficients, and E(a1,a2,...,aN ),b (z1, z2, . . . , zN ) is the
multinomial M-L function (1.35).
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Let us analyze the case with 0 < λ1 < λ2 < 2, λ1, λ2 
= 1. From (6.68) we
obtain

G(t) = tE(2−λ1,2−λ2),2

(
−A1t

2−λ1,−A2t
2−λ2

)

=
∞∑

n=0

(−A1)
nt(2−λ1)n+1En+1

2−λ2,(2−λ1)n+2

(
−A2t

2−λ2
)
, (6.69)

and thus

I (t) =
∞∑

n=0

(−A1)
nt(2−λ1)n+2En+1

2−λ2,(2−λ1)n+3

(
−A2t

2−λ2
)
, (6.70)

g(t) =
∞∑

n=0

(−A1)
nt(2−λ1)nEn+1

2−λ2,(2−λ1)n+1

(
−A2t

2−λ2
)
, (6.71)

where Eδα,β(z) is the three parameter M-L function (1.14) [54].
For the long time limit behavior, from (1.28), we obtain

I (t) � tλ2

A2
Eλ2−λ1,λ2+1

(
−A1

A2
tλ2−λ1

)
� 1

A1

tλ1

Γ (1 + λ1)
. (6.72a)

G(t) � tλ2−1

A2
Eλ2−λ1,λ2

(
−A1

A2
tλ2−λ1

)
� 1

A1

tλ1−1

Γ (λ1)
. (6.72b)

g(t) � tλ2−2

A2
Eλ2−λ1,λ2−1

(
−A1

A2
tλ2−λ1

)
� 1

A1

tλ1−2

Γ (λ1 − 1)
. (6.72c)

From the MSD
〈
x2(t)

〉

2kBT
� 1

A1

tλ1

Γ (1 + λ1)
,

we conclude that the particle shows anomalous diffusive behavior with the lower
diffusion exponent λ1 (0 < λ1 < λ2 < 2). Therefore, subdiffusion appears for
0 < λ1 < 1 and superdiffusion for 1 < λ1 < 2. VACF becomes

CV (t) � 1

A1

tλ1−2

Γ (λ1 − 1)
.
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Fig. 6.7 Graphical representation of: (a) MSD (6.70), (b) VACF (6.71) for A1 = A2 = 1, in case
of thermal initial conditions v0 = kBT = 1, x0 = 0, and a mixture of two power law noises, for
λ1 = 1/2, λ2 = 3/4 (solid line), λ1 = 1/2, λ2 = 3/2 (dashed line); λ1 = 5/4, λ2 = 3/2 (dot-
dashed line). Reprinted from Phys. Lett. A, 378, T. Sandev and Z. Tomovski, Langevin equation
for a free particle driven by power law type of noises, 1–9, Copyright (2014), with permission from
Elsevier

For the short time one finds

I (t) �
⎧
⎨

⎩

t2

2 − A2t
4−λ2

Γ (5−λ2)
− A1t

4−λ1

Γ (5−λ1)
, for λ2 ≤ 1 + λ1

2 ,

t2

2 − A2t
4−λ2

Γ (5−λ2)
+ A2

2t
6−2λ2

Γ (7−2λ2)
, for λ2 > 1 + λ1

2 .
(6.73)

Thus, we conclude that the noise with the greater exponent λ2 has dominant
contribution to the particle behavior in the short time limit. For the variance in the
short time limit we have

σxx

2kBT
� (3 − λ2)

A2t
4−λ2

Γ (5 − λ2)
.

Graphical representation of the MSD and VACF for different values of parame-
ters λ1 and λ2 is given in Fig. 6.7. The anomalous diffusive behavior of the particle
is evident.

6.2.5 Distributed Order Noise

Furthermore, let us instead of mixture of noises consider an internal noise of
distributed order, i.e.,

kBT γ (t) = α2
∫ 1

0

t−λ

Γ (1 − λ) dλ.

Such memory kernel was used by Kochubei [33] in the theory of evolution equations
with distributed order derivative, which is a useful tool for modeling ultraslow
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relaxation and diffusion processes. The Laplace transform of the memory kernel
then becomes

γ̂ (s) = α2

kBT

s − 1

s log s
.

We note that the assumption (4.32) is satisfied for this memory kernel since

lim
s→0

sγ̂ (s) = α2

kBT
lim
s→0

s − 1

log s
= 0.

Thus, we have

Ĝ(s) = 1

s2 + α2

kBT
s−1
log s

=
∞∑

n=0

(
− α2

kBT

)n n∑

k=0

(
n

k

)
(−1)k

sn+k+2 logn s
, (6.74)

from where, by inverse Laplace transform, the relaxation functionG(t) becomes

G(t) = t +
∞∑

n=1

(
− α2

kBT

)n n∑

k=0

(
n

k

)
(−1)kμ (t, n− 1, n+ k + 1) . (6.75)

Here

μ (t, β, α) =
∫ ∞

0

tα+τ τβ

Γ (β + 1)Γ (α + τ + 1)
dτ, (6.76)

whose Laplace transform reads

L [μ (t, β, α)] (s) = 1

sα+1 logβ+1 s
,

�(α) > −1, �(s) > −1 [14]. For detailed properties and relations of these
and related Volterra functions, we refer to the literature [2–4, 21, 46]. Thus,
the relaxation functions are represented in terms of series in special functions
μ (t, β, α), and their representation in a closed form is an open problem. Here we
use Tauberian theorems (see Appendix B and Refs. [24, 41] for details) to find the
asymptotic behavior of the relaxation functions. In the long time limit (t → ∞, i.e.,
s → 0 according to the Tauberian theorems) we obtain

I (t) � L −1

⎡

⎣ s−1

α2

kBT
s−1
log s

⎤

⎦ (t) = 1

A
L −1

[
log s

s − 1
− log s

s

]
(t)

= 1

A

[
γ + log t − etEi(−t)]

= 1

A

[
γ + log t + etE1(t)

]
, (6.77)
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where A = α2

kBT
, γ = 0.577216 is the Euler-Mascheroni (or Euler’s) constant,

Ei(t) = −
∫ ∞

−t
e−x

x
dx

is the exponential integral function [14], and

E1(t) = −Ei(−t) =
∫ ∞

t

e−x

x
dx.

From the asymptotic expansion formula

E1(t) � e−t

t

n−1∑

k=0

(−1)k
k!
tk
,

for t → ∞ [41], which has error of order O
(
n!t−n), for the relaxation function we

obtain I (t) � γ
A

+ 1
A

log t . The MSD has logarithmic dependence on time

〈
x2(t)

〉

2kBT
� γ

A
+ 1

A
log t,

and therefore the particle shows ultraslow diffusive behavior. In the same way, for
the VACF in the long time limit (t → ∞) we find

CV (t) � − 1

At

[
1 + et tEi(−t)] = − 1

At

[
1 − et tE1(t)

] � − 1

At2
.

Similar relaxation functions were obtained by Mainardi [41] in analysis of fractional
relaxation equation of distributed order. The short time limit (t → 0, i.e., s → ∞)
becomes

I (t) = L −1

[
s−1

s2 + A s−1
log s

]

(t) = L −1
[

1

s3

(
1 − As − A

s2 log s + As − A
)]
(t)

� L −1
[

1

s3

(
1 − As − A

s2 log s

)]
(t) = t2

2
− Aμ (t, 0, 3)+ Aμ (t, 0, 4) .

(6.78)

In the same way, for the VACF in the short time limit we obtained

CV (t) � 1 − Aμ (t, 0, 1)+ Aμ (t, 0, 2) .

Here we note that the same result can be obtained directly from the series expression
(6.75).
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A more general distributed order internal noise is of form

kBT γ (t) =
∫ 1

0
p(λ)

t−λ

Γ (1 − λ) dλ, i.e., kBT γ̂ (s) =
∫ 1

0
p(λ)sλ−1 dλ,

where p(λ) is the weight function. The case with p(λ) = α2 yields the already
considered uniformly distributed noise

kBT γ (t) = α2
∫ 1

0

t−λ

Γ (1 − λ) dλ.

For p(λ) = ∑N
i=1 α

2
i δ (λ− λi), where δ(λ) is the Dirac delta, 0 < λi < 1, i =

1, 2, . . . , N , the mixture of N internal power-law noises

kBT γ (t) =
N∑

i=1

α2
i

∫ 1

0
δ (λ− λi) t−λ

Γ (1 − λ)dλ =
N∑

i=1

α2
i

t−λi
Γ (1 − λi) ,

is recovered.

6.2.6 Mixture of White and Power Law Noises

As an addition, we analyze the GLE with mixture of P white noises, andQ power-
law noises, where P +Q = N ,

γ (t) = 1

kBT

P∑

i=1

α2
i δ(t)+

1

kBT

Q∑

j=1

β2
j

t−λj
Γ

(
1 − λj

) ,

whose Laplace transform pair is given by

γ̂ (s) = 1

kBT

P∑

i=1

α2
i + 1

kBT

Q∑

j=1

β2
j s
λj−1.

Here we also note that we can extend our analysis to exponents between 1 and 2,
but in such a case the memory kernel is defined only in the sense of distributions
[9, 13, 22, 42, 43, 70]. In the same way as previously described, we obtain

G(t) = L −1

[
1

s2 + ∑P
i=1 Ais + ∑Q

j=1 Bjs
λj

]

(t), (6.79)
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where Ai = α2
i

kBT
and Bj = β2

j

kBT
. We rewrite relation (6.79) in the following way

G(t) = L −1

[
1

s2 + ∑Q+1
i=1 Cis

λ̃i

]

(t), (6.80)

where 0 < λ̃1 < . . . < λ̃Q+1 < 2. λ̃i actually have the values of λj and 1. For a
given value r = i ∈ {1, 2, . . . ,Q+ 1},

Crs
λ̃r =

P∑

i=1

Ais, i.e., Cr =
P∑

i=1

Ai, λ̃r = 1.

Note that if 0 < λj < 1 then r = Q + 1, and if 1 < λj < 2 then r = 1.
Therefore, the relaxation functionG(t) is represented through the multinomial M-L
function (1.35),

G(t) = L −1

[
1

s2 + ∑Q+1
i=1 Cis

λ̃i

]

(t)

= tE(
2−λ̃1,2−λ̃2,...,2−λ̃Q+1

)
,2

(
−C1t

2−λ̃1,−C2t
2−λ̃2 , . . . ,−CQ+1t

2−λ̃Q+1
)
.

(6.81)

Mixture of white and power law noises of the form

γ (t) = 1

kBT

[
α2δ(t)+ β2 t−λ

Γ (1 − λ)
]
,

was considered in Ref. [65], for 0 < λ < 1. From (6.81) we obtain

G(t) =
∞∑

n=0

(−B)nt(2−λ)n+1En+1
1,(2−λ)n+2 (−At) , (6.82)

where A = α2

kBT
and B = β2

kBT
. This relation yields

I (t) =
∞∑

n=0

(−B)nt(2−λ)n+2En+1
1,(2−λ)n+3 (−At) , (6.83)

g(t) =
∞∑

n=0

(−B)nt(2−λ)nEn+1
1,(2−λ)n+1 (−At) . (6.84)
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By using the asymptotic expansion formula (1.28), in the long time limit we
obtain

I (t) � t

A
E1−λ,2

(
−B
A
t1−λ

)
� 1

B

tλ

Γ (1 + λ) , (6.85a)

G(t) � 1

A
E1−λ,1

(
−B
A
t1−λ

)
� 1

B

tλ−1

Γ (λ)
, (6.85b)

g(t) � 1

B

tλ−2

Γ (λ− 1)
. (6.85c)

Thus, the MSD becomes

〈
x2(t)

〉

2kBT
� 1

B

tλ

Γ (1 + λ) , 0 < λ < 1,

which means that the particle shows subdiffusive behavior. From (6.85a) we note
that the power law noise has dominant contribution to the particle behavior in the
long time limit. These results are in agreement with those obtained in Ref. [65]. The
short time limit yields

I (t) � t2

2
− At3

6
− Bt4−λ

Γ (5 − λ) , (6.86a)

G(t) � t − At2

2
− Bt3−λ

Γ (4 − λ) , (6.86b)

g(t) � 1 − At − Bt2−λ

Γ (3 − λ) , (6.86c)

from where we conclude that both noises contribute to the particle behavior. The
contribution of the white noise to the particle behavior in the short time limit is
dominant. For variance (6.45a) we recovered the result obtained in Ref. [65],

σxx

2kBT
� At3

3
+ (3 − λ) Bt

4−λ

Γ (5 − λ) ,

for t → 0. Graphical representation of the MSD and VACF is given in Fig. 6.8.
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Fig. 6.8 Graphical representation of: (a) MSD (6.83), (b) VACF (6.84), in case of thermal initial
conditions v0 = kBT = 1, x0 = 0, and a mixture of Dirac delta (A = 2) and power law (B = 1)
noises, for λ = 1/4 (solid line), λ = 1/2 (dashed line); λ = 3/4 (dot-dashed line). Reprinted from
Phys. Lett. A, 378, T. Sandev and Z. Tomovski, Langevin equation for a free particle driven by
power law type of noises, 1–9, Copyright (2014), with permission from Elsevier

In the same way, from (6.81), the case 1 < λ < 2 yields

G(t) =
∞∑

n=0

(−A)ntn+1En+1
2−λ,n+2

(
−Bt2−λ) , (6.87)

and thus

I (t) =
∞∑

n=0

(−A)ntn+2En+1
2−λ,n+3

(
−Bt2−λ) , (6.88)

g(t) =
∞∑

n=0

(−A)ntnEn+1
2−λ,n+1

(
−Bt2−λ) . (6.89)

From the asymptotic expansion formula we obtain the asymptotic behavior of
relaxation functions

I (t) � tλ

B
Eλ−1,λ+1

(
−A
B
tλ−1

)
� 1

A
t, (6.90)

so the MSD is
〈
x2(t)

〉

2kBT
� 1

A
t.

It means that the particle shows normal diffusive behavior. Therefore, the white
noise has dominant contribution to the particle behavior in the long time limit. This
result is obtained by Mainardi et al. [42, 43] in case of friction memory kernel
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Fig. 6.9 Graphical representation of: (a) MSD (6.88), (b) VACF (6.89), in case of thermal initial
conditions v0 = kBT = 1, x0 = 0, and a mixture of Dirac delta (A = 2) and power law (B = 1)
noises, for λ = 5/4 (solid line), λ = 3/2 (dashed line); λ = 7/4 (dot-dashed line). Reprinted from
Phys. Lett. A, 378, T. Sandev and Z. Tomovski, Langevin equation for a free particle driven by
power law type of noises, 1–9, Copyright (2014), with permission from Elsevier

represented as superposition of white and power law noises. For the short time limit
it follows

I (t) �
{

t2

2 − Bt4−λ
Γ (5−λ) − At3

6 for λ ≤ 3/2,
t2

2 − Bt4−λ
Γ (5−λ) + B2t6−2λ

Γ (7−2λ) for λ > 3/2,
(6.91)

so the power-law noise has dominant contribution to the particle behavior in the
short time limit. Here we note that the friction memory kernel, which represents
superposition of white and power law noises in sense of distributions, was consid-
ered by Mainardi et al. [42, 43] for λ = 3/2 and it was shown that the VACF behaves
as CV � t−3/2. This result can be obtained from asymptotic expansion of relation
(6.90),

CV � tλ−2

B
Eλ−1,λ−1

(
−A
B
tλ−1

)
= − t

−1

A
Eλ−1,0

(
−A
B
tλ−1

)
� − B

A2

t−λ

Γ (1 − λ) ,

λ = 3/2, and represents a proof of the computer simulations of the VACF observed
by Alder and Wainwright [1]. Graphical representation of the MSD and VACF is
given in Fig. 6.9.

Let us now consider mixture of three noises, one of which is the white noise,

γ̂ (s) = 1

kBT

[
α2 + β2

1s
λ1−1 + β2

2s
λ2−1

]
,

where 0 < λ1 < 1 and 1 < λ2 < 2. From relation (6.81) we obtain

G(t) = tE(2−λ1,1,2−λ2),2

(
−B1t

2−λ1,−At,−B2t
2−λ2

)
, (6.92)
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Fig. 6.10 Graphical representation of: (a) MSD (6.94), (b) VACF g(t) = G′(t), in case of thermal
initial conditions v0 = kBT = 1, x0 = 0, and a mixture of Dirac delta (A = 2) and power law
(B1 = B2 = 1) noises, for λ1 = 1/4, λ2 = 5/4 (solid line); λ1 = 1/2, λ2 = 5/4 (dashed
line); λ1 = 3/4, λ2 = 5/4 (dot-dashed line). Reprinted from Phys. Lett. A, 378, T. Sandev and Z.
Tomovski, Langevin equation for a free particle driven by power law type of noises, 1–9, Copyright
(2014), with permission from Elsevier

i.e.,

G(t) =
∞∑

n=0

(−A)ntn+1
n∑

k=0

(
n

k

)(
B1

A

)k
t(1−λ1)kEn+1

2−λ2,n+2+(1−λ1)k

(
−B2t

2−λ2
)
,

(6.93)

and

I (t) =
∞∑

n=0

(−A)ntn+2
n∑

k=0

(
n

k

)(
B1

A

)k
t(1−λ1)kEn+1

2−λ2,n+3+(1−λ1)k

(
−B2t

2−λ2
)
,

(6.94)

where A = α2

kBT
, B1 = β2

1
kBT

and B2 = β2
2

kBT
. The long time limit yields

I (t) � tλ2

B2
Eλ2−λ1,λ2+1

(
−B1

B2
tλ2−λ1

)
� 1

B1

tλ1

Γ (1 + λ1)
, (6.95)

which means that dominant contribution to the particle behavior in the long time
limit has the noise with the exponent 0 < λ1 < 1. Thus, the particle shows a

subdiffusive behavior. The short time limit, again, yields ballistic motion I (t) � t2

2 .
Graphical representation of the MSD and VACF is given in Fig. 6.10.

Here we note that combinations of white noise and anomalous diffusion were
studied by Eule and Friedrich [15] and Jeon et al. [29].
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6.2.7 More Generalized Noise

The mixture of white and two parameter M-L noise of form

ζML(t) = 1

τμ
tν−1Eμ,ν

(
− t

μ

τμ

)
,

for which

ζ̂ML(s) = 1

τμ

sμ−ν

sμ + τ−μ

is further generalization of the previous cases of white and power-law noises. For
ν = 1 we obtain the one parameter M-L noise, and for τ → 0—the power law
noise. The case μ = ν = 1 gives the exponential noise, and the case μ = ν = 1
with τ → 0 recovers the Dirac delta noise. Similar M-L noises have been introduced
in the literature to describe complex data related to anomalous diffusion [7, 12, 55,
57, 59, 60]. In case of the Dirac delta and the two parameter M-L noise,

γ (t) = 1

kBT

[
α2δ(t)+ β2 1

τμ
tν−1Eμ,ν

(
− t

μ

τμ

)]
,

the relaxation functionG(t) becomes

G(t) = L −1

[
1

s2 + As + Bτ−μ sμ−ν+1

sμ+τ−μ

]

(t)

= L −1

[
s−μ−2

(
sμ + τ−μ)

1 + τ−μs−μ + As−1 + Aτ−μs−1−μ + Bτ−μs−1−ν

]

(t)

= tE(λ1,...,λ4),2
(−C1t

λ1, . . . ,−C4t
λ4
)

+ tμ+1

τμ
E(λ1,...,λ4),μ+2

(−C1t
λ1 , . . . ,−C4t

λ4
)
,

(6.96)

where A = α2

kBT
, B = β2

kBT
, Ci ∈ {

τ−μ,A,Aτ−μ,Bτ−μ}, and λi ∈ {μ, 1, μ+ 1,
ν + 1}. Same approach can be performed in case of combination of the power-law
and M-L noises,

γ (t) = 1

kBT

[
α2 t−r

Γ (1 − r) + β2 1

τμ
tν−1Eμ,ν

(
− t

μ

τμ

)]
,
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since in this case for the relaxation function one finds

G(t) = L −1

[
1

s2 + Asr + Bτ−μ sμ−ν+1

sμ+τ−μ

]

,

which can be represented in terms of the multinomial M-L functions (1.35).

6.3 Harmonic Oscillator

In this section we analyze the behavior of a harmonic oscillator driven by general-
ized M-L internal noise (6.9). The corresponding GLE for the harmonic oscillator
with mass m = 1 and frequency ω driven by stationary random force ξ(t) is given
by:

ẍ(t)+
∫ t

0
γ (t − t ′)ẋ(t ′) dt ′ + ω2x(t) = ξ(t),

ẋ(t) = v(t), (6.97)

The GLE describes the particle dynamics bounded in the harmonic potential well
and immersed in complex or viscoelastic media. The internal noise ξ(t) is of a zero
mean (〈ξ(t)〉 = 0). Again we apply the second fluctuation-dissipation theorem since
the considered noise is internal.

GLE (6.97) represents a suitable model for description of anomalous dynamics
within proteins. Within given protein, the movements are bounded in small domains,
thus the potential energy can be well approximated by the harmonic potential.
Furthermore, the movements of the proteins are in a given complex liquid environ-
ment and its influence on the particle movement can be described by appropriate
friction memory kernel. The high viscous damping, which is characteristic for
the proteins in a liquid environment, will be described by neglecting the inertial
term in Eq. (6.97). Information for the behavior of the oscillator will be obtained
from the MSD, time dependent diffusion coefficient, and VACF. The normalized
displacement correlation function, which is an experimental measured quantity, will
be analyzed as well.

6.3.1 Harmonic Oscillator Driven by an Arbitrary Noise

Let us formally solve the GLE (6.8). From the initial condition x(0) = x0 and
ẋ(0) = v(0) = v0, one obtains

X̂(s) = x0
s + γ̂ (s)

s2 + sγ̂ (s)+ ω2 + v0
1

s2 + sγ̂ (t)+ ω2 + 1

s2 + sγ̂ (s)+ ω2 F̂ (s),

(6.98)
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where F̂ (s) = L [ξ(t)](s) and γ̂ (s) = L [γ (t)](s). From Eq. (6.98) for x(t) and
v(t) = ẋ(t) one finds

x(t) = 〈x(t)〉 +
∫ t

0
G(t − t ′)ξ(t ′) dt ′, (6.99)

v(t) = 〈v(t)〉 +
∫ t

0
g(t − t ′)ξ(t ′) dt ′, (6.100)

where

〈x(t)〉 = v0G(t)+ x0[1 − ω2I (t)], (6.101)

〈v(t)〉 = v0g(t)− x0ω
2G(t), (6.102)

are the average displacement and average velocity, respectively. The function G(t)
is the Laplace pair of

Ĝ(s) = 1

s2 + sγ̂ (s)+ ω2 . (6.103)

The same relations for the relaxation functions are valid, I (t) = ∫ t
0 G(t

′) dt ′ and

g(t) = dG(t)
dt , as previously.

The MSD, time dependent diffusion coefficient, and VACF are related with the
relaxation functions as previously, i.e.,

〈
x2(t)

〉 = 2kBT I (t), D(t) = kBTG(t)

and CV (t) = g(t), respectively [12]. These relations are valid for friction memory
kernels which satisfy the assumption (6.11).

6.3.2 Overdamped Motion

From relation (6.103) we note that for the M-L noise (6.9) very complex expressions
for the relaxation functions are obtained, and exact results are very difficult to be
obtained. For simpler friction memory kernels of the Dirac delta type (standard
Langevin equation), power-law type (fractional Langevin equation), one and two
parameter M-L types the corresponding relaxation functions can be found exactly. In
case of the three parameter M-L noise (6.9) the calculations become very complex,
and thus one analyzes the asymptotic behavior of the oscillator in the short and long
time limit. Therefore, instead of that, we analyze the overdamped motion, which
means that there is high viscous damping, i.e., the inertial term ẍ(t) vanishes. This
case of high friction leads to same asymptotic behavior in the long time limit as the
one for the GLE, so the overdamped motion can be used to analyze the anomalous
diffusive behavior of the oscillator in the long time limit. This case of high viscous
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damping appears in the analysis of conformational dynamics of proteins, due to the
liquid environment in which the proteins are immersed [10]. Thus, the relaxation
functions ĝ(s), Ĝ(s) and Î (s) become

ĝ(s) = s

sγ̂ (s)+ ω2 , Ĝ(s) = s−1ĝ(s), Î (s) = s−1Ĝ(s). (6.104)

By substitution of the friction memory kernel (6.9) in (6.104), by applying the
Laplace transform formula (1.18), for Î (t) we obtain [55]

I (t) = L −1

⎡

⎢
⎢
⎣

1

ω2

s
β−1

2 −1

s
β−1

2 + γα,β,δ

ω2
s
αδ− β−1

2

(sα+τ−α)δ

⎤

⎥
⎥
⎦

= 1

ω2

∞∑

k=0

(
−γα,β,δ
ω2

)k
t(β−1)kEδkα,(β−1)k+1

(−(t/τ )α) . (6.105)

For the long time limit (s → 0), one finds the asymptotic behavior

I (t) = kBT

Cα,β,δ
t1+αδ−βE1+αδ−β,2+αδ−β

(
−kBT ω

2

Cα,β,δ
t1+αδ−β

)

= 1

ω2

[
1 − E1+αδ−β

(
−kBT ω

2

Cα,β,δ
t1+αδ−β

)]
. (6.106)

Therefore, the MSD reads

〈x2(t)〉 = 2kBT I (t) � 2kBT

ω2

[
1 − E1+αδ−β

(
−kBT ω

2

Cα,β,δ
t1+αδ−β

)]

� 2kBT

ω2

[

1 − Cα,β,δ

kBT ω2

t−(1+αδ−β)

Γ (β − αδ)

]

, (6.107)

and the VACF becomes

CV (t) = g(t) � −Cα,β,δ
ω4

(1 + αδ − β)(2 + αδ − β)t−(1+αδ−β)−2

Γ (β − αδ) .

(6.108)

At long times t → ∞, the MSD reaches the equilibrium value

〈x2(t)〉∞ = 2kBT

ω2 .



6.3 Harmonic Oscillator 279

For a free particle (ω = 0) from (6.107) one obtains

I (t) ≈ lim
ω→0

1

ω2

[
1 − E1+αδ−β

(
−kBT ω

2

Cα,β,δ
t1+αδ−β

)]

= lim
ω→0

d
dω

[
1 − E1+αδ−β

(
− kBT ω

2

Cα,β,δ
t1+αδ−β

)]

d
dωω

2
= kBT

Cα,β,δ

t1+αδ−β

Γ (2 + αδ − β) ,
(6.109)

which is identical to (6.56) for the GLE for a free particle. In a similar way, for the
relaxation functionsG(t) and g(t), which are directly related to the time dependent
diffusion coefficient and VACF, follow results (6.55) and (6.54), respectively.

Remark 6.2 Previous studies [57] showed that analytical treatment of the GLE with
internal three parameter M-L noise with correlation function of the form

C(t) = Cα,β,δ

ταδ
Eδα,β(−(t/τ )α), (6.110)

where Cα,β,δ does not depend on time, and can depend on α, β and δ, where α > 0,
β > 0, δ > 0, 0 < αδ < 2, is very complex. The difficulty of analytical treatment
of the GLE with an internal noise with correlation (6.110) is due to the Laplace
transform of three parameter M-L function, see relation (1.61) for κ = 1. Therefore,
we only analyze the asymptotic behavior of relaxation functions by using Tauberian
theorems (see Appendix B). For the Laplace pair of γ (t), from Eq. (1.61), we have

γ̂ (s) = Cα,β,δ

kBT ταδ

s−1

Γ (δ)

∞∑

k=0

Γ (1 + αk)Γ (δ + k)
Γ (β + αk)k!

(−1)k

(sτ )αk
. (6.111)

For the long time limit (t → ∞) the frictional memory kernel has the following
behavior

γ (t) � Cα,β,δ

Γ (β − αδ)kBT · t−αδ,

so the Tauberian theorem yields

γ̂ (s) � γα,β,δ · sαδ−1, s → 0, (6.112)

where

γα,β,δ = Cα,β,δ

kBT

Γ (1 − αδ)
Γ (β − αδ) .
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Here we use that β 
= αδ, β 
= αδ − 1 and αδ 
= 1. By substitution of (6.112) in the
relaxation function

Î (s) = L [I (t)] = s−1

s2 + sγ̂ (s)+ ω2 , (6.113)

for 0 < αδ < 2, one obtains

Î (s) � s−1

γα,β,δsαδ + ω2 = 1

ω2

(
1

s
− sαδ−1

sαδ + ω2/γα,β,δ

)
. (6.114)

From the Laplace transform formula (1.3) for the one parameter M-L function, it
follows [57]

I (t) � 1

ω2

[
1 − Eαδ

(
− ω2

γα,β,δ
tαδ

)]
� 1

ω2

[
1 − γα,β,δ

ω2

1

Γ (1 − αδ) t
−αδ

]
.

(6.115)

The MSD and VACF then read [57]

〈
x2(t)

〉
� ρ(∞)

[
1 − γα,β,δ

ω2

1

Γ (1 − αδ) t
−αδ

]
, (6.116)

CV (t) � −γα,β,δ
ω4

αδ(αδ + 1)

Γ (1 − αδ) t
−αδ−2. (6.117)

respectively. The case with β = δ = 1 corresponds to the results obtained in [12,
66, 67]. For a free particle (ω = 0) we obtain [57]

I (t) = L −1
[

s−1−αδ

s2−αδ + γα,β,δ
]

= t2E2−αδ,3
(
−γα,β,δt2−αδ) , (6.118)

where we apply the Laplace transform formula (1.6). The MSD then becomes

〈
x2(t)

〉
= 2kBT t2E2−αδ,3

(
−γα,β,δt2−αδ) � 2kBT

γα,β,δΓ (1 + αδ) t
αδ. (6.119)

and the time dependent diffusion coefficient and VACF turn to

D(t) = kBT tE2−αδ,2
(
−γα,β,δt2−αδ) � kBT

γα,β,δΓ (αδ)
tαδ−1, (6.120)



6.3 Harmonic Oscillator 281

CV (t) = d2

dt2
t2E2−αδ,3

(
−γα,β,δt2−αδ)

= E2−αδ
(
−γα,β,δt2−αδ) � 1

γα,β,δΓ (αδ − 1)
tαδ−2, (6.121)

respectively. Same result can be obtained from the L’Hôpital’s rule, i.e., [57]

I (t) � lim
ω→0

1

ω2

[
1 − Eαδ

(
− ω2

γα,β,δ
tαδ

)]

= lim
ω→0

d
dω

[
1 − Eαδ

(
− ω2

γα,β,δ
tαδ

)]

d
dωω

2
= 1

γα,β,δΓ (1 + αδ) t
αδ. (6.122)

Thus, the particle shows anomalous diffusive behavior. The well-known result for
β = δ = 1 was obtained in Ref. [39, 52]. For α = β = δ = 1 one obtains ρ(t) � t

and CV (t) � E1
(−γ1,1,1t

) = e−γ1,1,1t , which in fact is the result for Brownian

motion [42, 52]. The case with αδ = 1/2 gives CV (t) � t− 3
2 , which is theoretically

obtained in Ref. [42] for superposition of the Dirac delta and power-law memory
kernel, and previously confirmed by computer simulations for the VACF [1]. We
can show, as well, that in case of a friction memory kernel which is a sum of the
generalized M-L noise (6.110) and Dirac delta noise, the VACF has a formCV (t) �
t−αδ , so for αδ = 3

2 and β = 1 again we obtain the same result CV (t) � t− 3
2 [57].

Remark 6.3 Let us now consider the following thermal initial conditions
〈
x2

0

〉 =
kBT

ω2 , 〈x0v0〉 = 0, and 〈ξ(t)x0〉 = 0 for the GLE for a harmonic oscillator. For the
normalized displacement correlation function, which is an experimental measured
quantity, and which is defined by Burov and Barkai [5, 6]

CX(t) = 〈x(t)x0〉〈
x2

0

〉 ,

one obtains

CX(t) = 1 − ω2I (t). (6.123)

For the friction memory kernel of form (6.9) in the limit τ → 0, for CX(t) we find

CX(t) = 1 −
∞∑

k=0

(
−ω2

)k+1
t2k+2Ek+1

2−(1+αδ−β),2k+3

(
−Cα,β,δ
kBT

t2−(1+αδ−β)
)
.

(6.124)

The graphical representation of the normalized displacement correlation function
(6.124) is given in Fig. 6.11. Note that for ω = 0.3, CX(t) is a decreasing
monotone function and CX(t) > 0. For ω = 3 and ω = 1, CX(t) has an
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Fig. 6.11 Graphical
representation of CX(t)
(6.124) for Cα,β,δ = 1,
kBT = 1, α = 1/2,
β = 7/16, δ = 3/4; ω = 0.3
(solid line), ω = 3 (dashed
line); ω = 1 (dot-dashed
line); ω = 0.74 (dotted line),
see Ref. [55] 0 2 4 6 8
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oscillation-like behavior passing the zero line, and goes asymptotically to zero. For
ω = 0.74, CX(t) > 0, but it is a non-monotone function. It approaches the zero
line asymptotically. These results are different than those obtained for the Langevin
equation for a harmonic oscillator, for which the oscillator has only two different
behaviors; either overdamped motion with 〈x(t)〉 > 0 for all t under the condition
〈x0〉 > 0, for which CX(t) is monotone function, or underdamped motion when
〈x(t)〉 has oscillation-like behavior passing the zero line [5, 6]. The frequency at
which the oscillator turns from overdamped to underdamped motion is the so-called
critical frequency. For the GLE for a harmonic oscillator there is a need for definition
to additional critical frequencies on which CX(t) changes its behavior, and their
computation is a non-trivial problem [5, 6]. Such behaviors of CX(t) were observed
in the molecular dynamic simulations of fluctuation of the donor-acceptor distance
within proteins [38]. Moreover, such oscillation-like behavior and power law decay
of the fluorescein-tyrosine distance within a protein are experimentally observed in
Ref. [47].

6.4 GLE with Prabhakar-Like Friction

As we showed before, the regularized Prabhakar derivative (2.88) is a special
case of the generalized derivative (2.89), therefore we conclude that the GLE with
regularized Prabhakar friction memory kernel of the form

γ (t) = γμ,ρ,δ t
−μE−δ

ρ,1−μ
(

−
(
t

τ

)ρ)
. (6.125)

has the form [56]

ẍ(t)+ γμ,ρ,δ CDδ,μ
ρ,−ν,t x(t) = ξ(t), ẋ(t) = v(t). (6.126)

Here CD
δ,μ
ρ,−ν,t is the regularized Prabhakar derivative (2.88), 0 < μ, δ < 1, 0 <

μ/δ < 1, 0 < μ/δ − ρ < 1, ν = τ−μ, τ is a time parameter, and γμ,ρ,δ is the
generalized friction coefficient. This equation is a generalization of the fractional
Langevin equation considered by Lutz [39], which is recovered by setting δ = 0.
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The Laplace transform of the friction memory kernel (6.125) reads

γ̂ (s) = γμ,ρ,δ s
−ρδ+μ−1 (sρ + τ−ρ)δ (6.127)

By asymptotic expansion of the three parameter M-L function (1.28) and the
Laplace transform of the friction memory kernel (6.127), we show that the
assumption (4.32) is satisfied forμ > ρδ. We consider that the noise ξ(t) is internal,
i.e., the second fluctuation-dissipation theorem of the form [56]

〈
ξ(t)ξ(t ′)

〉 = kbT γμ,ρ,δ |t − t ′|−μE−δ
ρ,1−μ

(
−

( |t − t ′|
τ

)ρ)
, (6.128)

is satisfied.

6.4.1 Free Particle

From the general formulas for the relaxation functions, the MSD, D(t), and VACF
become [56]

〈
x2(t)

〉
= 2kBT

∞∑

n=0

(−γμ,ρ,δ)nt(2−μ)n+2E−δn
ρ,(2−μ)n+3

(
−

(
t

τ

)ρ)
, (6.129)

D(t) = kBT

∞∑

n=0

(−γμ,ρ,δ)nt(2−μ)n+1E−δn
ρ,(2−μ)n+2

(
−

(
t

τ

)ρ)
, (6.130)

CV (t) =
∞∑

n=0

(−γμ,ρ,δ)nt(2−μ)nE−δn
ρ,(2−μ)n+1

(
−

(
t

τ

)ρ)
, (6.131)

respectively.
The asymptotic expansion of the three parameter M-L function (1.29) for the

long time limit yields

〈
x2(t)

〉
� 2kBT t2E2−μ+ρδ,3

(
−γ̄ t2−μ+ρδ) � 2kBT

γ̄

tμ−ρδ

Γ (1 + μ− ρδ) ,
(6.132)

D(t) � kBT tE2−μ+ρδ,2
(
−γ̄ t2−μ+ρδ) (6.133)

CV (t) � E2−μ+ρδ
(
−γ̄ t2−μ+ρδ) , (6.134)
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Fig. 6.12 Graphical
representation of the MSD
(6.129) for kBT = 1,
γμ,ρ,δ = 1, τ = 1, ρ = 1/2,
δ = 3/4, and μ = 1/2 (blue
line), μ = 5/8 (red line), see
Ref. [56]
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where γ̄ = γμ,ρ,δτ
−ρδ . Therefore, one concludes that in the system exists

subdiffusion
〈
x2(t)

〉 � tα with anomalous diffusion exponent α = μ − ρδ, where
0 < α < δ < 1.

Graphical representation of the MSD (6.129) is given in Fig. 6.12. From the
figure we see that the MSD shows oscillation-like behavior for intermediate times
which can be explained as a result of the cage effect of the environment represented
by the M-L memory kernel [5].

6.4.2 High Friction

The high viscous damping, corresponding to vanishing of the inertial term ẍ(t) = 0,
yields [56]

〈
x2(t)

〉
= 2kBT

γμ,ρ,δ
tμEδρ,μ+1

(
−

(
t

τ

)ρ)
� 2kBT

γμ,ρ,δ

{
tμ

Γ (μ+1) , t → 0
tμ−ρδ

τ−ρδΓ (1+μ−ρδ) , t → ∞.
(6.135)

Therefore, we conclude that decelerating subdiffusion exists in the system, since the
anomalous diffusion exponent from μ for the short time limit turns to μ− ρδ in the
long time limit.

6.4.3 Tempered Friction

We further consider the GLE with a friction term represented through the tempered
regularized Prabhakar derivative (2.92), i.e.,

ẍ(t)+ γμ,ρ,δ T CDδ,μ
ρ,−ν,t x(t) = ξ(t), ẋ(t) = v(t), (6.136)
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where b > 0, and all the parameters are the same as in Eq. (6.126). From definition
(2.92) one concludes that the friction memory kernel is given by [56]

γ (t) = γμ,ρ,δ e
−bt t−μE−δ

ρ,1−μ
(

−
(
t

τ

)ρ)
. (6.137)

The second fluctuation-dissipation theorem then reads

〈
ξ(t)ξ(t ′)

〉 = kbT γμ,ρ,δ e
−b|t−t ′||t − t ′|−μE−δ

ρ,1−μ
(

−
( |t − t ′|

τ

)ρ)
. (6.138)

For the MSD, we find [56]

〈
x2(t)

〉
=

∞∑

n=0

(−γμ,ρ,δ
)n
In+3

0+
(
e−bt t(1−μ)n−1E−δn

ρ,(1−μ)n
(

−
(
t

τ

)ρ))
,

(6.139)

where Iα0+ is the R-L integral (2.2). In absence of truncation (b = 0), from (6.139),
by using that [30]

I
ζ
0+

(
t
β−1
Eδα,β

(−νtα)
)

= t
ζ+β−1

Eδα,ζ+β
(−νtα) ,

we recover the result (6.129).
For high viscous damping, ẍ(t) = 0, the following result for the MSD is obtained

〈
x2(t)

〉
= 2kBT

γμ,ρ,δ
I 2

0+
(
e−bt tμ−2Eδρ,μ−1

(
−

(
t

τ

)ρ))
. (6.140)

Therefore, the short time limit yields subdiffusion

〈
x2(t)

〉
� 2kBT

γμ,ρ,δ

tμ

Γ (1 + μ),

and the long time limit normal diffusion
〈
x2(t)

〉 � t . This means that accelerating
diffusion—from subdiffusion to normal diffusion—exists in the system. Such
crossover from subdiffusion to normal diffusion has been observed, for example,
in complex viscoelastic systems [28].

Graphical representation of the MSD (6.139) is given in Fig. 6.13. From the
figure, one observes the influence of the truncation parameter b on the MSD
behavior. The case with no truncation (b = 0) shows subdiffusive behavior (blue
line), and the case with truncation (red and green lines) normal diffusion in the long
time limit.
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Fig. 6.13 Graphical
representation of the MSD
(6.139), for kBT = 1,
γμ,ρ,δ = 1, τ = 1, ρ = 1/2,
μ = 1/2, δ = 3/4, and b = 0
(blue line), b = 0.1 (red line)
and b = 0.5 (green line), see
Ref. [56].
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6.4.4 Harmonic Oscillator

We further consider the GLE (6.141) for a harmonic oscillator with tempered
regularized Prabhakar friction [56]

ẍ(t)+ γμ,ρ,δ T CDδ,μ
ρ,−ν,t x(t)+ ω2x(t) = ξ(t), ẋ(t) = v(t), (6.141)

where ω is the frequency of the oscillator. From the Laplace transform method we
find exact result for the MSD

〈
x2(t)

〉

2kBT
=

∞∑

n=0

(−γμ,ρ,δ
)n

∫ t

0
(t − t ′)n+2En+1

2,n+3

(
−ω2(t − t ′)2

)

× e−bt ′ t ′(1−μ)n−1E−δn
ρ,(1−μ)n

(
−

(
t ′

τ

)ρ)
dt ′

=
∞∑

n=0

(−γμ,ρ,δ
)n En+1

2,n+3,−ω2,0+

(
e−bt t(1−μ)n−1E−δn

ρ,(1−μ)n
(

−
(
t

τ

)ρ))
,

(6.142)

where
(

Eδ
α,β,−ω2,0+f

)
(t) is the Prabhakar integral (2.46). Forω = 0, the Prabhakar

integral corresponds to the R-L integral (2.2), therefore, from (6.142) one finds the
previously obtained result for a free particle (6.129).

We are particularly interested in the normalized displacement correlation func-
tion

CX(t) = 〈x(t)x0〉〈
x2

0

〉 = s + γ̂ (s)
s2 + sγ̂ (s)+ ω2

= 1 − ω2I (t), (6.143)
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Fig. 6.14 Graphical
representation of the
normalized displacement
correlation function,
Eq. (6.145), for γμ,ρ,δ = 1,
τ = 1, ρ = 1/5 μ = 1/2,
δ = 3/4, and ω = 0.25 (blue
line), ω = 0.5 (red line),
ω = 1.44 (green line), ω = 3
(brown line), see Ref. [56]
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under the conditions x2
0 = kBT

ω2 , 〈x0v0〉 = 0, and 〈ξ(t)x0〉 = 0 [5]. CX(t) then
becomes [56]

CX(t) = 1 − ω2
∞∑

n=0

(−γμ,ρ,δ
)n En+1

2,n+3,−ω2,0+

×
(
e−bt t(1−μ)n−1E−δn

ρ,(1−μ)n
(

−
(
t

τ

)ρ))
, (6.144)

and the case with no truncation (b =) yields

CX(t) = 1 − ω2
∞∑

n=0

(−γμ,ρ,δ
)n En+1

2,n+3,−ω2,0+

(
t(1−μ)n−1E−δn

ρ,(1−μ)n
(

−
(
t

τ

)ρ))
.

(6.145)

Graphical representation of the CX(t) (6.145) and (6.144) is given in Figs. 6.14
and 6.15, respectively. In Fig. 6.14 different behaviors of CX(t) are observed, such
as monotonic or non-monotonic decay without zero crossings (for ω < 1.44),
critical behavior between the situations with and without zero crossings (at critical
frequency ω ≈ 1.44), and oscillation-like behavior with zero crossings (for ω >
1.44), which appear due to the cage effect of the environment [5]. The friction,
depending on the memory kernel parameters, forces either diffusion or oscillations.
In Fig. 6.15 we note that with increasing of tempering, oscillation behavior with
zero crossings appears. Thus, by tuning the values of friction parameters contained
in the tempered Prabhakar derivative, we increase the versatility to fit complex
experimental data.
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Fig. 6.15 Graphical
representation of the
normalized displacement
correlation function,
Eq. (6.144), for γμ,ρ,δ = 1,
τ = 1, ρ = 1/2 μ = 1/2,
δ = 3/4, ω = 0.5 and b = 0
(blue line), b = 1 (red line),
b = 10 (green line), b = 100
(brown line), see Ref. [56]
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6.5 Tempered GLE

Here we consider truncated three parameter M-L memory kernel of the form [36]

γ (t) = γ

ταδ
e−bt tβ−1Eδα,β

(
− t

α

τα

)
, (6.146)

where γ > 0 is a constant, b ≥ 0, δ ≥ 0, τ > 0 is a time parameter, and Eδα,β(z)
is the three parameter M-L function (1.14) [54]. Tempered diffusion with memory
kernel of the form (6.146) with δ = 1 was obtained within the CTRW theory in
Ref. [61]. Similar kernels were considered in Refs. [48, 62, 63] in the context of
tempered subdiffusion.

The Laplace transform of the kernel is given by

γ̂ (s) = γ

ταδ

(s + b)αδ−β
(
(s + b)α + τ−α)δ , (6.147)

where we use the shift rule L
[
f (t)e−at

] = F̂ (s + a), L [f (t)] = F̂ (s), and
the Laplace transform of the three parameter M-L function. It is obvious that the
tempered memory kernel (6.146) satisfies the assumption (4.32). The tempered
memory kernel is quite general and contains a number of limiting cases. For
example, for τ → 0 (τ−1 → ∞) it becomes truncated power-law memory kernel

γ (t) = γ e−bt t
β−αδ−1

Γ (β − αδ) ,

such that

γ̂ (s) = γ (s + b)−β+αδ.

For δ = 1 and δ = β = 1, one finds the truncated two parameter and one parameter
M-L kernel, respectively. In absence of truncation (b = 0), it yields the three
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parameter M-L memory kernel [59]

γ (t) = γ

ταδ
tβ−1Eδα,β

(
− t

α

τα

)
,

which for α = β = 1 corresponds to the Kummer’s confluent hypergeometric
memory function

γ (t) = γ

τ δ
Eδ1,1

(
− t
τ

)
= γ

τ δ
φ (δ, 1,−t/τ ) ,

considered in Ref. [32].

6.5.1 Free Particle: Relaxation Functions

The relaxation functions for the truncated three parameter M-L memory ker-
nel (6.146) becomes

I (t) = L −1

⎡

⎢
⎣

s−3

1 + γ

ταδ
s−1 (s+b)αδ−β

((s+b)α+τ−α)δ

⎤

⎥
⎦

= L −1

[ ∞∑

n=0

(
− γ

ταδ

)n
s−(n+3) (s + b)(αδ−β)n

(
(s + b)α + τ−α)δn

]

=
∞∑

n=0

(
− γ

ταδ

)n
In+3

0+
(
e−bt tβn−1Eδnα,βn

(
− t

α

τα

))
, (6.148)

where Iα0+f (t) is the R-L integral (2.2) of order α > 0. Respectively, the other
relaxation functions read

G(t) =
∞∑

n=0

(
− γ

ταδ

)n
In+2

0+
(
e−bt tβn−1Eδnα,βn

(
− t

α

τα

))
, (6.149)

g(t) =
∞∑

n=0

(
− γ

ταδ

)n
In+1

0+
(
e−bt tβn−1Eδnα,βn

(
− t

α

τα

))
. (6.150)

In absence of truncation (b = 0), one finds the results obtained in Ref. [59]. We
note that the relaxation functions (6.148)–(6.150) can also be written without the
R-L integral in terms of the confluent hypergeometric function 1F1(a; b; z) [14], as
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Fig. 6.16 Graphical representation of: (a) relaxation function I (t) (6.148), (b) relaxation function
g(t) (6.150), for α = 1.5, β = 1.2, δ = 0.6, τ = 1, γ = 1, b = 0 (black line), b = 0.2 (blue
line), b = 0.5 (violet line). Reprinted from Physica A, 466, A. Liemert, T. Sandev and H. Kantz,
Generalized Langevin equation with tempered memory kernel, 356–369, Copyright (2017), with
permission from Elsevier

follows [36]

I (t) =
∞∑

n=0

∞∑

k=0

(−1)n+kτ−α(δn+k)γ n (δn)k
k!

tαk+βn+n+2

Γ (αk + βn+ n+ 3)

× 1F1(αk + βn; αk + βn+ n+ 3; −bt), (6.151)

G(t) =
∞∑

n=0

∞∑

k=0

(−1)n+kτ−α(δn+k)γ n
(δn)k

k!
tαk+βn+n+1

Γ (αk + βn+ n+ 2)

× 1F1(αk + βn; αk + βn+ n+ 2; −bt), (6.152)

g(t) =
∞∑

n=0

∞∑

k=0

(−1)n+kτ−α(δn+k)γ n (δn)k
k!

tαk+βn+n

Γ (αk + βn+ n+ 1)

× 1F1(αk + βn; αk + βn+ n+ 1; −bt). (6.153)

Graphical representation of the relaxation function (6.148) for different values of
parameters is given in Fig. 6.16. From the figure one concludes that in the case
of truncation the relaxation function, which is proportional to the MSD, has a
linear dependence on time in the long time limit. In absence of truncation for the
chosen parameters the MSD shows subdiffusive behavior of the form t0.7. Due to
the complex form of the memory kernel in the intermediate times the MSD has an
oscillation-like behavior. Such behavior can be explained due to the cage effects [5],
which appear as a result of influence of the environment (represented by the friction
memory kernel) on the particle motion.
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From the exact result for the relaxation functions, we analyze the MSD and
VACF. For the short time limit one finds

〈
x2(t)

〉

2kBT
�

∞∑

n=0

(
− γ

ταδ

)n
In+3

0+
(
tβn−1

Γ (βn)

)
=

∞∑

n=0

(
− γ

ταδ

)n t(β+1)n+2

Γ ((β + 1)n+ 3)

= t2Eβ+1,3

(
− γ

ταδ
tβ+1

)
� t2

Γ (3)
− γ

ταδ

tβ+3

Γ (β + 4)
, (6.154)

while the VACF becomes

CV (t) � Eβ+1

(
− γ

ταδ
tβ+1

)
� 1 − γ

ταδ

tβ+1

Γ (β + 2)
. (6.155)

The long time limit yields normal diffusion

〈
x2(t)

〉

2kBT
�

∞∑

n=0

(
− γ

ταδ

bαδ−β

(bα + τ−α)δ

)n
tn+2

Γ (n+ 3)
= t2E1,3

(
− γ

ταδ

bαδ−β

(bα + τ−α)δ
t

)

=
exp

(
− γ

ταδ
bαδ−β

(bα+τ−α)δ t
)

+ γ

ταδ
bαδ−β

(bα+τ−α)δ t − 1
(
− γ

ταδ
bαδ−β

(bα+τ−α)δ
)2 � bβ

γ
(τα + b−α)δt,

(6.156)

CV (t) � E1,1

(
− γ

ταδ

bαδ−β

(bα + τ−α)δ
t

)
= exp

(
− γ

ταδ

bαδ−β

(bα + τ−α)δ
t

)
→ 0.

(6.157)

Therefore, characteristic crossover dynamics from ballistic motion to normal diffu-
sion is observed.

6.5.2 High Viscous Damping Regime

Let us now consider high viscous damping, which means that v̇(t) = 0. The GLE
(6.8) then reads

∫ t

0
γ (t − t ′)v(t ′) dt ′ = ξ(t), ẋ(t) = v(t). (6.158)
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The relaxation functions become

ĝ(s) = 1

γ̂ (s)
, Ĝ(s) = s−1

γ̂ (s)
, Î (s) = s−2

γ̂ (s)
. (6.159)

For the truncated memory kernel (6.146), we find exact result for the MSD

〈
x2(t)

〉

2kBT
= ταδ

γ
L −1

[

s−2 (s + b)−αδ+β
(
(s + b)α + τ−α)−δ

]

= ταδ

γ
I 2

0+
(
e−bt t−β−1E−δ

α,−β
(

− t
α

τα

))
. (6.160)

Here we note that the MSD can also be written in terms of the regularized
hypergeometric function [14], i.e.,

〈
x2(t)

〉

2kBT
= ταδ

γ
e−bt t1−β

∞∑

k=0

(−1)k(t/τ )k
(−δ)k
k! 1F̃1(2; 2 + αk − β; bt),

(6.161)

where

1F̃1(a; b; z) =
∑∞

k=0
(a)k z

k/[k!Γ (k + b)].

For δ = 1 we obtain the same result as the one obtained in Ref. [61] within the
CTRW theory. Therefore, two different diffusion models which describe different
stochastic processes may give same results for the MSD. For the short time limit
subdiffusive behavior is observed,

〈
x2(t)

〉

2kBT
� ταδ

γ

t1−β

Γ (2 − β) ,

while for the long time limit—normal diffusive behavior

〈
x2(t)

〉

2kBT
� bβ

γ
(τα + b−α)δt,

which is same as (6.156).
The case with b = 0, for the short time limit gives subdiffusive behavior

〈
x2(t)

〉

2kBT
� ταδ

γ

t1−β

Γ (2 − β) ,
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while for the long time limit diffusive behavior of the form

〈
x2(t)

〉

2kBT
� 1

γ

t1+αδ−β

Γ (2 + αδ − β) .

Therefore, the MSD has subdiffusive behavior for αδ < β, normal for αδ = β,
and superdiffusive for αδ > β. This means that the particle shows accelerating
diffusion, from subdiffusion it turns either to subdiffusion with greater anomalous
diffusion exponent, normal diffusion or superdiffusion. Note that in the long time
limit in both cases, with and without inertial term, same behavior for the MSD is
obtained.

6.5.3 Harmonic Oscillator

For a particle bounded in a harmonic potential we use the previously presented
general expressions for the relaxation functions, see (6.103). For the tempered
memory kernel (6.146) one finds exact result for the relaxation function,

I (t) = L −1

⎡

⎢
⎣

s−1

s2 + ω2

1

1 + γ

ταδ
s

s2+ω2
(s+b)αδ−β

((s+b)α+τ−α)δ

⎤

⎥
⎦

= L −1

[ ∞∑

n=0

(
− γ

ταδ

)n sn−1

(
s2 + ω2

)n+1

(s + b)(αδ−β)n
(
(s + b)α + τ−α)δn

]

=
∞∑

n=0

(
− γ

ταδ

)n ∫ t

0
(t − t ′)n+2En+1

2,n+3

(
−ω2(t − t ′)2

)
e−bt ′ t ′βn−1

×Eδnα,βn
(

− t
′α

τα

)
dt ′

=
∞∑

n=0

(
− γ

ταδ

)n
En+1

2,n+3,−ω2,0+

(
e−bt tβn−1Eδnα,βn

(
− t

α

τα

))
. (6.162)

For the special case β = δ = 1, and τ → 0, we obtain the result for tempered
power-law memory kernel γ (t) = e−bt t−α

Γ (1−α) , 0 < α < 1,

I (t) =
∞∑

n=0

(−γ )n En+1
2,n+3,−ω2.0+

(

e−bt t(1−α)n−1

Γ ((1 − α)n)

)

. (6.163)
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The normalized displacement correlation function is represented through I (t), as
CX(t) = 1 − ω2I (t). Therefore, we have [55]

CX(t) = 1 − ω2
∞∑

n=0

(
− γ

ταδ

)n
En+1

2,n+3,−ω2,0+

(
e−bt tβn−1Eδnα,βn

(
− t

α

τα

))
.

(6.164)

For tempered power-law memory kernel γ (t) = e−bt t−α
Γ (1−α) , 0 < α < 1, the

normalized displacement correlation function CX(t) reduces to

CX(t) = 1 − ω2
∞∑

n=0

(−γ )n En+1
2,n+3,−ω2,0+

(

e−bt
t(1−α)n−1

Γ ((1 − α)n)

)

. (6.165)

Graphical representation of the normalized displacement correlation function
(6.165) for different values of parameters is given in Fig. 6.17. From the figures
one concludes that the normalized displacement correlation function shows different
behaviors: monotonic decay, non-monotonic decay without zero crossings, critical
behavior which distinguishes the cases with and without zero crossings, and
oscillation-like behavior with zero crossings. These behaviors are based on the
cage effects of the environment as shown by Burov and Barkai [5]. This means
that, depending on the values of the friction memory kernel parameters, the friction
caused by the complex environment may force either diffusion or oscillations. These
effects are observed in the analysis of the relaxation functions as well (Fig. 6.16).
From Fig. 6.17 one concludes that the critical frequencies in case of truncated
power-law memory kernel are different than those in case of no truncation. Thus,
for example, for α = 1/2 the critical frequency in case of no truncation is 1.053 [5],
while in case of truncation b = 1/2 it is equal to 0.903. The truncation decreases
the critical frequency for α = 3/4 from 0.965 [5] to 0.825, while for α = 1/5
from 1.035 [5] to 0.889. Note that in case of classical harmonic oscillator two
types of motion are observed, monotonic decay of CX(t) without zero crossings,
and oscillation-like behavior with zero crossings. These two types of motions are
separated at a critical frequency equal to γ /2.

6.5.4 Response to an External Periodic Force

It has been shown that the stochastic force either in classical oscillator [23],
fractional oscillator [71], or in the GLE [5, 44, 45] yields some interesting behaviors
in the system, such as stochastic resonance, and the double-peak phenomenon.
Similar phenomena are observed if one considers the GLE with tempered memory
kernel [36]. The external periodic force is of the form A0 cos(Ωt), where A0 and
Ω are the amplitude and frequency of the periodic driving force, respectively.
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Fig. 6.17 Graphical representation of the normalized displacement correlation function (6.165)
for truncated power-law memory kernel with b = 1/2 and different frequencies ω; (a) α = 1/2,
(b) α = 3/4, (c) α = 1/5. Reprinted from Physica A, 466, A. Liemert, T. Sandev and H. Kantz,
Generalized Langevin equation with tempered memory kernel, 356–369, Copyright (2017), with
permission from Elsevier

Therefore, we consider the following GLE

ẍ(t)+
∫ t

0
γ (t − t ′)ẋ(t ′) dt ′ + ω2x(t) = A0 cos(Ωt)+ ξ(t), (6.166)

ẋ(t) = v(t).

By using the Laplace transform method, for the mean displacement one finds

〈x(t)〉 = x0

[
1 − ω2

∫ t

0
h(t ′) dt ′

]
+ v0 h(t)+ A0

∫ t

0
cos

(
Ω(t − t ′))h(t ′) dt ′,

(6.167)

where

h(t) = L −1
[
ĥ(s)

]
= L −1

[
1

s2 + sγ̂ (s)+ ω2

]
.
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From here, for the long time limit (s → 0, t → ∞) it follows [5]

〈x(t)〉 � A0

∫ t

0
cos

(
Ω(t − t ′))h(t ′) dt ′ → 〈x(t)〉 = R(Ω) cos (Ωt + θ(Ω)) ,

(6.168)

where the response R(Ω) and the phase shift θ(Ω) will be defined below. Here we
consider the complex susceptibility

χ(Ω) = χ ′(Ω)+ ıχ ′′(Ω) = ĥ(−ıΩ) = 1
γ

ταδ
(−ıΩ) (−ıΩ+b)αδ−β

((−ıΩ+b)α+τ−1)
δ + ω2 −Ω2

,

(6.169)

where

ĥ(−ıΩ) =
∫ ∞

0
eıΩth(t) dt,

χ ′(Ω) = � [χ(Ω)] ,

and

χ ′′(Ω) = � [χ(Ω)] .

The real and imaginary parts of the complex susceptibility are experimental
measured quantities. From the complex susceptibility, one finds the response

R(Ω) = |χ(Ω)|, (6.170)

and the space shift

θ(Ω) = arctan

(
−χ

′′(Ω)
χ ′(Ω)

)
. (6.171)

Particularly, we consider the special case of tempered power-law memory kernel
γ (t) = e−bt t−α

Γ (1−α) , which for b = 0 corresponds to the case considered in Ref. [5].
Therefore, for the complex susceptibility we find

χ(Ω) = ĥ(−ıΩ) = 1
γ

ταδ
(−ıΩ)(−ıΩ + b)α−1 + ω2 −Ω2

, (6.172)
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which for b = 0 reduces to [5]

χ(Ω) = ĥ(−ıΩ) = 1

γ (−ıΩ)α + ω2 −Ω2
.

From Fig. 6.18 one concludes that resonance appears even for a free particle
driven by truncated power-law noise, and that the resonant behavior depends on the
truncation parameter b. We observe that the resonant peak which exists for b = 0
becomes smaller for b = 0.5, and disappear for b = 1.0 and b = 1.5. Here we
note that the response function for the Brownian motion is a monotonic decaying
function and resonance does not appear. In Fig. 6.19 same situation is observed for
the harmonic oscillator driven by truncated power-law noise. The imaginary part of
the complex susceptibility, or the so-called loss, shows double peak phenomenon. In
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Fig. 6.18 Graphical representation of the (a) response R(Ω), (b) loss χ ′′(Ω), for a free particle
with tempered power-law memory kernel for α = 0.1, γ = 1, and different values of b, b = 0 (blue
line), b = 0.5 (brown line), b = 1.0 (green line), b = 1.5 (red line). Reprinted from Physica A,
466, A. Liemert, T. Sandev, and H. Kantz, Generalized Langevin equation with tempered memory
kernel, 356–369, Copyright (2017), with permission from Elsevier
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Fig. 6.19 Graphical representation of: (a) response R(Ω), (b) loss χ ′′(Ω), for tempered power-
law memory kernel with α = 0.1, ω = 0.3, γ = 1, and different values of b, b = 0 (blue line),
b = 0.2 (brown line), b = 0.4 (green line), b = 0.6 (red line). Reprinted from Physica A, 466, A.
Liemert, T. Sandev and H. Kantz, Generalized Langevin equation with tempered memory kernel,
356–369, Copyright (2017), with permission from Elsevier
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Fig. 6.20 Graphical representation of: (a) response R(Ω), (b) loss χ ′′(Ω), for tempered Mittag-
Leffler memory kernel with α = 0.1, β = 1, δ = 3/4, τ = 1, γ = 1, ω = 0.1, and different
values of b, b = 0 (blue line), b = 0.3 (brown line), b = 1 (green line), b = 3 (red line). Reprinted
from Physica A, 466, A. Liemert, T. Sandev and H. Kantz, Generalized Langevin equation with
tempered memory kernel, 356–369, Copyright (2017), with permission from Elsevier
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Fig. 6.21 Graphical representation of: (a) response R(Ω), (b) loss χ ′′(Ω), for the tempered
Mittag-Leffler memory kernel with α = 0.1, β = 1, δ = 3/4, τ = 1, b = 1/2, ω = 0.1, and
different values of γ , γ = 0.1 (blue line), γ = 0.3 (brown line), γ = 1 (green line), γ = 3
(red line). Reprinted from Physica A, 466, A. Liemert, T. Sandev and H. Kantz, Generalized
Langevin equation with tempered memory kernel, 356–369, Copyright (2017), with permission
from Elsevier

Fig. 6.20 we observe similar behavior for the harmonic oscillator driven by truncated
M-L noise. We find that by increasing the truncation parameter the resonance
frequency is increasing. The dependence of the response and the loss on parameter
γ for fixed values of α, β, δ, b is given in Fig. 6.21. By increasing parameter
γ , the resonant frequency is increasing. One also concludes that by increasing
parameter γ , from one peak the loss exhibits double-peak phenomena. Such double-
peak phenomena have been observed in the investigation of relaxation processes in
supercooled liquids [25].
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Chapter 7
Fractional Generalized Langevin
Equation

FGLEs [5, 6, 8, 9, 12, 13, 17, 19, 24] are generalizations of the GLE where the
integer order derivatives are substituted by fractional derivatives. Recently, some
GLE models for a particle driven by single or multiple fractional Gaussian noise
have been investigated [7] in order to describe generalized diffusion processes, such
as accelerating and retarding diffusion.

In this chapter the possibility to model single file-type diffusion or possible
generalizations by using FGLE for a particle driven by internal and external
noises are investigated. Harmonic oscillator and free particle are considered. Such
equations are analyzed in case of non-local dissipative force [8], and were used
for modeling single file diffusion [5, 12], sometimes defined as a process showing
normal diffusive behavior in the short time limit, 〈x2(t)〉 ∼ t , and anomalous
subdiffusive behavior in the long time limit of the form 〈x2(t)〉 ∼ t1/2. This
type of diffusion has been experimentally observed in the investigation of transport
processes in narrow channels and pores, where the particles cannot pass each other.

We consider the following FGLE for a harmonic oscillator [20]:

CD
μ
0+v(t) +

∫ t

0
γ (t − t ′)v(t ′) dt ′ + ω2x(t) = ξ(t),

CD
ν
0+x(t) = v(t), (7.1)

where
(
CD

γ
a+f

)
(t) is the Caputo fractional derivative (2.16), 0 < μ ≤ 1 and

0 < ν ≤ 1, x(t) is the particle displacement, v(t) is its velocity, γ (t) is the friction
memory kernel, and ξ(t) is the noise with zero mean. By substitution of the second
equation in (7.1) into the first one, we find that a term of the form CD

μ+ν
0+ x(t) is

obtained. Thus, Eq. (7.1) will be fractional generalization of the GLE (6.141) for
μ+ ν > 1 [19]. The variables in the FGLE (7.1) represent mesoscopic description
of the stochastic process, where the expectation values of the observables describe
the dynamic behavior after averaging over the disorder of the system. The velocity
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is defined by fractional derivative of the displacement,

CD
ν
0+x(t) = v(t).

To clarify the meaning of the fractional velocity we apply the R-L fractional
integral (2.2) from the left side, and we obtain [20]

x(t)− x0 = Iν0+v(t) = 1

Γ (ν)

∫ t

0

v(t ′)
(t − t ′)1−ν dt ′, (7.2)

where x(0+) = x0,
(
I
γ

0+f
)
(t) is the R-L fractional integral of order γ > 0, and we

use

I
γ

0+CD
γ

0+f (t) = f (t)− f (0+)

for 0 < γ ≤ 1. This means that the displacement is defined by the velocity only
in the points within time interval of dimension ν, which is the characteristic for
a microscopic motion of a particle on a non-differentiable curve [10]. Thus, some
of the instant velocities and displacements do not contribute to the macroscopic
motion, resulting in appearance of anomalous diffusion [10].

FGLE of form (7.1) with ω = 0 was introduced for modeling single file diffusion
[12]. The case with ν = 1 was considered in Ref. [8], and analyzed in Ref. [5]
for free particle (ω = 0) and different internal and external noises. In Ref. [19]
we gave general expressions of variances and MSD for FGLE of form (7.1) for
the free particle. Analytical results for variances, MSD, time-dependent diffusion
coefficient in case of the three parameter M-L frictional memory kernel (6.9) are
presented. It is also possible to model generalized diffusion and single file-type
diffusion processes with the same equations. The presented FGLE approach is based
on a direct generalization of the GLE and provides a very flexible model to describe
stochastic processes in complex systems. With only few parameters very different
behaviors of the particle can be generated.

7.1 Relaxation Functions, Variances and MSD

By employing the Laplace transform to Eq. (7.1), we find

X̂(s) = x0

s

(
1 − ω2Ĝ(s)

)
+ v0s

μ−1Ĝ(s)+ Ĝ(s)F̂ (s), (7.3)

V̂ (s) = v0s
μ+ν−1Ĝ(s)− ω2x0s

ν−1Ĝ(s)+ sνĜ(s)F̂ (s), (7.4)
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where

L [x(t)](s)= X̂(s), L [v(t)](s)= V̂ (s), L [γ (t)](s)= γ̂ (s), L [ξ(t)](s) = F̂ (s)

are Laplace pairs of x(t), v(t), γ (t) and ξ(t), respectively, and

Ĝ(s) = 1

sμ+ν + sν γ̂ (s)+ ω2
. (7.5)

We introduce the following functions:

ĝ(s) = sνĜ(s) = sν

sμ+ν + sν γ̂ (s)+ ω2 , (7.6)

Î (s) = s−νĜ(s) = s−ν

sμ+ν + sν γ̂ (s)+ ω2 . (7.7)

By inverse Laplace transform of Eqs. (7.4) and (7.3), for the particle displacement
x(t) and velocity v(t) one finds

x(t) = 〈x(t)〉 +
∫ t

0
G(t − t ′)ξ(t ′) dt ′, (7.8)

v(t) = 〈v(t)〉 +
∫ t

0
g(t − t ′)ξ(t ′) dt ′, (7.9)

where

〈x(t)〉 = x0

[
1 − ω2

CD
ν−1
0+ I (t)

]
+ v0 · CDμ+ν−1

0+ I (t), (7.10)

is the mean particle displacement, and

〈v(t)〉 = v0 · CDμ+ν−1
0+ G(t)− ω2x0CD

ν−1
0+ G(t), (7.11)

is the mean particle velocity. Here we note thatG(0) = 0. The functions

I (t) = L −1
[
Î (s)

]
(t), G(t) = L −1

[
Ĝ(s)

]
(t), and g(t) = L −1 [ĝ(s)

]
(t)

are relaxation functions for the FGLE (7.1), which we use for analysis of the MSD.
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From relations (7.8) and (7.9) we derive the following general expressions of
variances [20]:

σxx = 〈x2(t)〉 − 〈x(t)〉2 = 2
∫ t

0
dt1G(t1)

∫ t1

0
dt2G(t2)C(t1 − t2)

= 2kBT

[∫ t

0
dξ G(ξ)

ξν−1

Γ (ν)
− ω2

∫ t

0
dξ I (ξ)CDν0+I (ξ)

−
∫ t

0
dξ G(ξ)CD

μ
0+G(ξ)

]
, (7.12a)

σxv = 〈(v(t) − 〈v(t)〉) (x(t)− 〈x(t)〉)〉 =
∫ t

0
dt1 g(t1)

∫ t

0
dt2G(t2)C(t1 − t2)

= kBT

[
1

Γ (ν)

∫ t

0
dξ g(ξ)ξν−1 −

∫ t

0
dξ g(ξ)CD

μ
0+G(ξ)

−
∫ t

0
dξ G(ξ)RLD

μ
0+g(ξ)− ω2

∫ t

0
dξ

(
G2(ξ)+ g(ξ)I (ξ)

)]
, (7.12b)

σvv = 〈v2(t)〉 − 〈v(t)〉2 = 2
∫ t

0
dt1 g(t1)

∫ t1

0
dt2 g(t2)C(t1 − t2)

= −2kBT

[∫ t

0
dξ g(ξ)RLD

μ
0+g(ξ)+ ω2

∫ t

0
dξ G(ξ)CDν0+G(ξ)

]
,

(7.12c)

where we use

〈
F̂ (s)F̂ (s′)

〉
= kBT

γ̂ (s)+ γ̂ (s′)
s + s′ .

These general form of the variances are valid for an arbitrary internal noise. For the
special case μ = 1, 0 < ν < 1 we obtain:

σxx = 2kBT

[∫ t

0
dξ G(ξ)

ξν−1

Γ (ν)
− 1

2
G2(t)− ω2

∫ t

0
dξ I (ξ)CDν0+I (ξ)

]
,

(7.13a)

σxv =
∫ t

0
dt1 g(t1)

∫ t

0
dt2G(t2)C(t1 − t2)

= kBT

[
1

Γ (ν)

∫ t

0
dξ g(ξ)ξν−1 − g(t)G(t)−ω2

∫ t

0
dξ

(
G2(ξ)+g(ξ)I (ξ)

)]
,

(7.13b)

σvv = kBT

[
1 − g2(t)− 2ω2

∫ t

0
dξ G(ξ)CDν0+G(ξ)

]
. (7.13c)
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Note that the case ν = 1, 0 < μ < 1 yields the results obtained in Ref. [8]:

σxx = 2kBT

[
I (t) −

∫ t

0
dξ G(ξ)CD

μ
0+G(ξ)−

ω2

2
I 2(t)

]
, (7.14a)

σxv = 1

2

dσxx
dt

= kBTG(t)
[
1 − CD

μ
0+G(t)− ω2I (t)

]
, (7.14b)

σvv = −2kBT

[∫ t

0
dξ g(ξ)RLD

μ
0+g(ξ) + ω2

2
G2(t)

]
. (7.14c)

For μ = ν = 1 the well-known results for the GLE are obtained [4, 23]:

σxx = kBT
[
2I (t) −G(t)− ω2I 2(t)

]
, (7.15a)

σxv = kBTG(t)
[
1 − g(t)− ω2I (t)

]
, (7.15b)

σvv = kBT
[
1 − g2(t)− ω2G2(t)

]
. (7.15c)

From variance (7.12a), we find the general expression of the MSD (7.10) [20]

〈x2(t)〉 = x2
0 + 2x0v0CD

μ+ν−1
0+ I (t) + v2

0

[
CD

μ+ν−1
0+ I (t)

]2

− ω2x0CD
ν−1
0+ I (t)

[
2x0 −

(
ω2x0 − 2v0

)
CD

ν−1
0+ I (t)

]

+ 2kBT

[∫ t

0
dξ G(ξ)

ξν−1

Γ (ν)
−

∫ t

0
dξ G(ξ)CD

μ
0+G(ξ)

−ω2
∫ t

0
dξ I (ξ)CDν0+I (ξ)

]
. (7.16)

7.2 Presence of Internal Noise

From the general expressions of variances and MSD, one can analyze the behavior
of the oscillator for different forms of the friction memory kernel, such as Dirac
delta, exponential, power-law, M-L memory kernel. Since we consider the case of
internal noise, the second fluctuation-dissipation theorem (6.7) is satisfied.

(a) Dirac delta friction memory kernel γ (t) = 2λδ(t), λ > 0 (γ̂ (s) = 2λ).
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From relations (7.6), (7.5), (7.7), we obtain [20]

g(t) =
∞∑

n=0

(−ω2)nt(μ+ν)(n+1)−ν−1En+1
μ,(μ+ν)(n+1)−ν

(−2λtμ
)
, (7.17)

G(t) =
∞∑

n=0

(−ω2)nt(μ+ν)(n+1)−1En+1
μ,(μ+ν)(n+1)

(−2λtμ
)
, (7.18)

I (t) =
∞∑

n=0

(−ω2)nt(μ+ν)(n+1)+ν−1En+1
μ,(μ+ν)(n+1)+ν

(−2λtμ
)
, (7.19)

where Eγα,β(z) is the three parameter M-L function (1.14).
From the asymptotic expansion formula (1.28) we find the relaxation functions

for the long time limit t → ∞:

g(t) = 1

2λt
Eν,0

(
−ω

2

2λ
tν
)

� 1

ω2

t−ν−1

Γ (−ν) , (7.20)

G(t) = tν

2λt
Eν,ν

(
−ω

2

2λ
tν
)

� 2λ

ω4

t−ν−1

Γ (−ν) , (7.21)

I (t) = t2ν

2λt
Eν,2ν

(
−ω

2

2λ
tν
)

� 1

ω2

tν−1

Γ (ν)
. (7.22)

For the short time limit (t → 0), relaxation functions become

g(t) = tμ−1Eμ,μ
(−2λtμ

) � tμ−1

Γ (μ)
, (7.23)

G(t) = tμ+ν−1Eμ,μ+ν
(−2λtμ

) � tμ+ν−1

Γ (μ+ ν) , (7.24)

I (t) = tμ+2ν−1Eμ,μ+2ν
(−2λtμ

) � tμ+2ν−1

Γ (μ+ 2ν)
. (7.25)

For free particle (ω = 0), from (7.17)–(7.19), relaxation functions reduce to

g(t) = tμ−1Eμ,μ
(−2λtμ

) �
{

tμ−1

Γ (μ)
for t → 0,

1
4λ2

t−μ−1

Γ (−μ) for t → ∞, (7.26)

G(t) = tμ+ν−1Eμ,μ+ν
(−2λtμ

) �
{

tμ+ν−1

Γ (μ+ν) for t → 0,
1

2λ
tν−1

Γ (ν)
for t → ∞, (7.27)
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I (t) = tμ+2ν−1Eμ,μ+2ν
(−2λtμ

) �
{

tμ+2ν−1

Γ (μ+2ν) for t → 0,
1

2λ
t2ν−1

Γ (2ν) for t → ∞. (7.28)

From (7.10) and (7.17)–(7.19), by using relations (2.31) and (2.30), the average
particle displacement and velocity become

〈x(t)〉 = x0

[

1 − ω2
∞∑

n=0

(−ω2)nt(μ+ν)(n+1)En+1
μ,(μ+ν)(n+1)+1

(−2λtμ
)
]

+ v0

∞∑

n=0

(−ω2)nt(μ+ν)n+νEn+1
μ,(μ+ν)n+ν+1

(−2λtμ
)
, (7.29a)

〈v(t)〉 = v0

∞∑

n=0

(−ω2)nt(μ+ν)nEn+1
μ,(μ+ν)n+1

(−2λtμ
)

− ω2x0

∞∑

n=0

(−ω2)nt(μ+ν)n+μEn+1
μ,(μ+ν)n+μ+1

(−2λtμ
)
, (7.29b)

respectively. Their asymptotic behaviors then read

〈x(t)〉 �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x0

[
1 − ω2 tμ+ν

Γ (1+μ+ν)
]

+ v0

[
t ν

Γ (1+ν) − 2λ tμ+ν
Γ (1+μ+ν)

]
for t → 0,

x0Eν

(
−ω2

2λ t
ν
)

+ v0
2λ t

ν−μEν,1+ν−μ
(
−ω2

2λ t
ν
)

� x0
2λ
ω2

t−ν
Γ (1−ν) + v0

t−μ
Γ (1−μ) for t → ∞,

(7.30a)

〈v(t)〉 �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v0

[
1 − 2λ tμ

Γ (1+μ)
]

− x0ω
2
[

tμ

Γ (1+μ) − 2λ t2μ

Γ (1+2μ)

]
for t → 0,

v0
2λ t

−μEν,1−μ
(
−ω2

2λ t
ν
)

− x0ω
2

2λ Eν

(
−ω2

2λ t
ν
)

� v0
ω2

t−(μ+ν)
Γ (1−(μ+ν)) − x0

t−ν
Γ (1−ν) for t → ∞,

(7.30b)

where we apply relation (1.7). Same behaviors can be obtained by employing
Tauberian theorems (see Appendix B for details). Therefore, for the mean particle
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displacement 〈x(t)〉 in the long time limit t → ∞, we observe

〈x(t)〉 = L −1
[
x0

s

(
1 − ω2

sμ+ν + 2λsν + ω2

)
+ v0

sμ−1

sμ+ν + 2λsν + ω2

]

� L −1
[
x0

s

(
1 − ω2

2λsν + ω2

)
+ v0

sμ−1

2λsν + ω2

]

= L −1

[

x0
sν−1

sν + ω2

2λ

+ v0

2λ

sμ−1

sν + ω2

2λ

]

= x0Eν

(
−ω

2

2λ
tν
)

+ v0

2λ
tν−μEν,1+ν−μ

(
−ω

2

2λ
tν
)
. (7.31)

Similarly, for the short time limit t → 0, one finds

〈x(t)〉 � L −1
[
x0

s

(
1 − ω2

sμ+ν + 2λsν

)
+ v0

sμ−1

sμ+ν + 2λsν

]

= x0

[
1 − ω2tμ+νEμ,μ+ν+1

(−2λtμ
)] + v0t

νEμ,ν+1
(−2λtμ

)

� x0

[
1 − ω2 tμ+ν

Γ (1 + μ+ ν)
]

+ v0

[
tν

Γ (1 + ν) − 2λ
tμ+ν

Γ (1 + μ+ ν)
]
.

(7.32)

Graphical representation of the mean particle displacement and velocity for x0 = 0
and v0 = 1, for different values of parameters is given in Fig. 7.1.

(a)
0 2 4 6 8 10

t

0

0.1

0.2

0.3

0.4

x
t

(b)
0 2 4 6 8 10

t

0

0.2

0.4

0.6

0.8

1

v
t

Fig. 7.1 Graphical representation of: (a) mean particle displacement (7.29a), (b) mean velocity
(7.29b) for v0 = 1, x0 = 0, and Dirac delta friction memory kernel. Parameters are as follows:
μ = ν = 3/4, λ = 1; ω = 1/4 (solid line), ω = 1/2 (dashed line); ω = 3/4 (dot-dashed line);
ω = 1 (dotted line). Reprinted from T. Sandev, R. Metzler and Z. Tomovski, J. Math. Phys. 55,
023301 (2014), with the permission of AIP publishing
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The force free case (ω = 0) yields

〈x(t)〉 = v0t
νEμ,ν+1

(−2λtμ
)

and

〈v(t)〉 = v0Eμ
(−2λtμ

)
,

which for μ = ν = 1 turn to the known results for Brownian motion,

〈x(t)〉 = v0tE1,2 (−2λt) = v0

2λ

(
1 − e−2λt

)

and

〈v(t)〉 = v0E1 (−2λt) = v0e
−2λt .

Here we note that the mean velocity does not depend on parameter ν in the force
free case. The long time limit yields a power-law behavior

〈x(t)〉 � v0

2λ

tν−μ

Γ (1 + ν − μ)
and

〈v(t)〉 � v0

2λ

t−μ

Γ (1 − μ) .

For μ = ν = α > 1/2, the mean particle displacement becomes

〈x(t)〉 = v0t
αEα,α+1

(−2λtα
) = v0

2λ

[
1 − Eα

(−2λtα
)]
,

which in the long time limit

〈x(t)〉 � v0

2λ

[
1 − 1

2λ

t−α

Γ (1 − α)
]

approaches the constant value v0/[2λ] following a power-law instead of the
exponential decay for the Brownian motion. The mean particle velocity shows
power-law decay to zero instead of the exponential decay for the Brownian motion.
We show these situations in Fig. 7.2. We note that for μ = ν and ω = 0 we obtain
that σxx

2kBT
� t2ν−1, that is σxx � t for μ = ν = 1.

(b) Power-law friction memory kernel γ (t) = Cλ
t−λ

Γ (1−λ) ,
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Fig. 7.2 Graphical representation of: (a) mean particle displacement (7.29a), (b) mean velocity
(7.29b) for a free particle in case of v0 = 1, x0 = 0, and Dirac delta friction memory kernel.
Parameters are as follows: λ = 1; μ = ν = 1 (solid line)—normal Brownian motion, μ = 15/16,
ν = 3/4 (dashed line); μ = ν = 7/8 (dot-dashed line); μ = 3/4, ν = 3/8 (dotted line). Reprinted
from T. Sandev, R. Metzler and Z. Tomovski, J. Math. Phys. 55, 023301 (2014), with the permission
of AIP publishing

Here, again, the friction memory kernel is defined only in the sense of distri-
butions [15, 16], and thus we use γ̂ (s) = Cλs

λ−1, where Cλ is a constant which
depends on λ. Here we use that 1 − ν < λ < 1 + μ, and same analysis can be done
for different conditions for parameters, for example, when λ ≥ 1 +μ or λ ≤ 1 − ν.
From the Laplace transform one finds γ̂ (s) = Cλs

λ−1. Therefore, the relations (7.6),
(7.5), and (7.7) become

g(t) =
∞∑

n=0

(−ω2)nt(μ+ν)(n+1)−ν−1En+1
μ−λ+1,(μ+ν)(n+1)−ν

(
−Cλtμ−λ+1

)
,

(7.33)

G(t) =
∞∑

n=0

(−ω2)nt(μ+ν)(n+1)−1En+1
μ−λ+1,(μ+ν)(n+1)

(
−Cλtμ−λ+1

)
, (7.34)

I (t) =
∞∑

n=0

(−ω2)nt(μ+ν)(n+1)+ν−1En+1
μ−λ+1,(μ+ν)(n+1)+ν

(
−Cλtμ−λ+1

)
.

(7.35)

Note that for λ = 1 + μ for (7.33), (7.34), and (7.35) one finds

g(t) = tμ−1

1 + C1+μ
Eμ+ν,μ

(
− ω2

1 + C1+μ
tμ+ν

)
, (7.36)

G(t) = tμ+ν−1

1 + C1+μ
Eμ+ν,μ+ν

(
− ω2

1 + C1+μ
tμ+ν

)
, (7.37)
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I (t) = tμ+2ν−1

1 + C1+μ
Eμ+ν,μ+2ν

(
− ω2

1 + C1+μ
tμ+ν

)
, (7.38)

and for λ = 1 − ν,

g(t) = tμ−1Eμ+ν,μ
(
−

(
ω2 + C1−ν

)
tμ+ν) , (7.39)

G(t) = tμ+ν−1Eμ+ν,μ+ν
(
−

(
ω2 + C1−ν

)
tμ+ν) , (7.40)

I (t) = tμ+2ν−1Eμ+ν,μ+2ν

(
−

(
ω2 + C1−ν

)
tμ+ν) . (7.41)

From the asymptotic expansion (1.28) of the three parameter M-L function, for
t → ∞ we obtain

g(t) = tλ−2

Cλ
Eλ+ν−1,λ−1

(
−ω

2

Cλ
tλ+ν−1

)
� 1

ω2

t−ν−1

Γ (−ν), (7.42)

G(t) = tλ+ν−2

Cλ
Eλ+ν−1,λ+ν−1

(
−ω

2

Cλ
tλ+ν−1

)
� Cλ

ω4

t−(λ+ν)

Γ (1 − (λ+ ν)) , (7.43)

I (t) = tλ+2ν−2

Cλ
Eλ+ν−1,λ+2ν−1

(
−ω

2

Cλ
tλ+ν−1

)
� 1

ω2

tν−1

Γ (ν)
. (7.44)

On the contrary, the short time limit t → 0 yields

g(t) = tμ−1Eμ−λ+1,μ

(
−Cμtμ−λ+1

)
� tμ−1

Γ (μ)
, (7.45)

G(t) = tμ+ν−1Eμ−λ+1,μ+ν
(
−Cμtμ−λ+1

)
� tμ+ν−1

Γ (μ+ ν) , (7.46)

I (t) = tμ+2ν−1Eμ−λ+1,μ+2ν

(
−Cμtμ−λ+1

)
� tμ+2ν−1

Γ (μ+ 2ν)
. (7.47)

For a free particle (ω = 0), for the relations (7.33)–(7.35), we have

g(t) = tμ−1Eμ−λ+1,μ

(
−Cλtμ−λ+1

)
�

{
tμ−1

Γ (μ)
for t → 0,

1
Cλ

tλ−2

Γ (λ−1) for t → ∞,
(7.48)
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G(t) = tμ+ν−1Eμ−λ+1,μ+ν
(
−Cλtμ−λ+1

)
�

{
tμ+ν−1

Γ (μ+ν) for t → 0,
1
Cλ

tλ+ν−2

Γ (λ+ν−1) for t → ∞,
(7.49)

I (t) = tμ+2ν−1E1,μ+2ν

(
−Cλtμ−λ+1

)
�

{
tμ+2ν−1

Γ (μ+2ν) for t → 0,
1
Cλ

tλ+2ν−2

Γ (λ+2ν−1) for t → ∞.
(7.50)

The average particle displacement and velocity then we find

〈x(t)〉 = x0

[

1 − ω2
∞∑

n=0

(−ω2)nt(μ+ν)(n+1)En+1
μ−λ+1,(μ+ν)(n+1)+1

(
−Cλtμ−λ+1

)
]

+ v0

∞∑

n=0

(−ω2)nt(μ+ν)n+νEn+1
μ−λ+1,(μ+ν)n+ν+1

(
−Cλtμ−λ+1

)
,

(7.51a)

〈v(t)〉 = v0

∞∑

n=0

(−ω2)nt(μ+ν)nEn+1
μ−λ+1,(μ+ν)n+1

(
−Cλtμ−λ+1

)

− ω2x0

∞∑

n=0

(−ω2)nt(μ+ν)n+μEn+1
μ−λ+1,(μ+ν)n+μ+1

(
−Cλtμ−λ+1

)
.

(7.51b)

which yields the following asymptotic behaviors

〈x(t)〉 �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0

[
1 − ω2 tμ+ν

Γ (1+μ+ν) + ω2Cλ
t1+2μ+ν−λ

Γ (2+2μ+ν−λ)
]

+v0

[
t ν

Γ (1+ν) − Cλ t1+μ+ν−λ
Γ (2+μ+ν−λ) − ω2 tμ+2ν

Γ (1+μ+2ν)

]
for t → 0,

x0Eν+λ−1

(
−ω2

Cλ
tν+λ−1

)

+ v0t
−μ
ω2

[
1

Γ (1−μ) − Eν+λ−1,1−μ
(
−ω2

Cλ
tν+λ−1

)]

� x0
Cλ
ω2

t1−(ν+λ)
Γ (2−(ν+λ)) + v0

ω2
t−μ

Γ (1−μ) − v0Cλ
ω4

t1−(μ+ν+λ)
Γ (2−(μ+ν+λ)) , for t → ∞

(7.52a)
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〈v(t)〉 �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v0

[
1 − Cλ t1+μ−λ

Γ (2+μ−λ)
]

− x0ω
2
[

tμ

Γ (1+μ) − Cλ t1+2μ−λ
Γ (2+2μ−λ)

]
, for t → 0,

v0t
−(μ+ν)
ω2

[
1

Γ (1−(μ+ν)) − Eν+λ−1,1−μ−ν
(
−ω2

Cλ
tν+λ−1

)]

−x0t
−ν

[
1

Γ (1−ν) − Eν+λ−1,1−ν
(
−ω2

Cλ
tν+λ−1

)]

� v0
ω2

t−(μ+ν)
Γ (1−(μ+ν)) − v0Cλ

ω4
t1−(μ+2ν+λ)

Γ (2−(μ+2ν+λ))
−x0

t−ν
Γ (1−ν) + x0Cλ

ω2
t1−(2ν+λ)

Γ (2−(2ν+λ)) for t → ∞.
(7.52b)

Graphical representation of the mean particle displacement and velocity for x0 = 0
and v0 = 1 is given in Fig. 7.3.

For the force free case ω = 0, and for x0 = 0 it follows

〈x(t)〉 = v0t
νEμ−λ+1,ν+1

(
−Cλtμ−λ+1

)

and

〈v(t)〉 = v0Eμ−λ+1

(
−Cλtμ−λ+1

)
.

The long time limit then yields

〈x(t)〉 � v0

Cλ

tν−(μ−λ+1)

Γ (1 + ν − (μ− λ+ 1))

and

〈v(t)〉 � v0

Cλ

t−(μ−λ+1)

Γ (1 − (μ− λ+ 1))
.
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Fig. 7.3 Graphical representation of: (a) mean particle displacement (7.51a), (b) mean velocity
(7.51b) for v0 = 1, x0 = 0, and power-law friction memory kernel. Parameters are as follows:
Cλ = 1, μ = ν = 3/4, ω = 1; λ = 3/9 (solid line), λ = 4/9 (dashed line); λ = 5/9 (dot-dashed
line); λ = 6/9 (dotted line). Reprinted from T. Sandev, R. Metzler and Z. Tomovski, J. Math. Phys.
55, 023301 (2014), with the permission of AIP publishing
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Fig. 7.4 Graphical representation of: (a) mean particle displacement (7.51a), (b) The mean
velocity (7.51b) for a free particle in case of v0 = 1, x0 = 0, and power-law friction memory
kernel. Parameters are as follows: Cλ = 1; μ = 3/4, ν = 5/8, λ = 1/2 (solid line), μ = 1/2,
ν = 3/8, λ = 3/4 (dashed line), μ = 3/8, ν = 3/4, λ = 3/8 (dot-dashed line); μ = 1, ν = 7/8,
λ = 1/4 (dotted line). Reprinted from T. Sandev, R. Metzler and Z. Tomovski, J. Math. Phys. 55,
023301 (2014), with the permission of AIP publishing

Graphical representation of the force free case is given in Fig. 7.4. For μ = ν = 1
and power-law friction memory kernel we arrive to the results obtained in Ref. [22]
for t → ∞,

〈x(t)〉 � x0
Cλ

ω2

t−λ

Γ (1 − λ) − v0Cλ

ω4

t−(1+λ)

Γ (−λ)

= Cλ

ω2

sin(λπ)

π

[
x0
Γ (λ)

tλ
+ v0

ω2

Γ (1 + λ)
t1+λ

]
, (7.53a)

〈v(t)〉 � −v0Cλ

ω4

t−(2+λ)

Γ (−(1 + λ)) + x0Cλ

ω2

t−(1+λ)

Γ (−λ)

= −Cλ
ω2

sin(λπ)

π

[
x0
Γ (1 + λ)
t1+λ + v0

ω2

Γ (2 + λ)
t2+λ

]
, (7.53b)

where

Γ (α)Γ (1 − α) = π

sin(απ)
, i.e., Γ (−α)Γ (1 + α) = − π

sin(απ)
.

7.3 Normalized Displacement Correlation Function

We again consider thermal initial conditions

x2
0 = kBT

ω2 , 〈x0v0〉 = 0, and 〈ξ(t)x0〉 = 0,
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and calculate the normalized displacement correlation function CX(t) = 〈x(t)x0〉〈
x2

0

〉 .

From relation (7.3), we find [20]

ĈX(s) = sμ+ν−1 + sν−1γ̂ (s)

sμ+ν + sν γ̂ (s)+ ω2
, (7.54)

from where the following general expression

CX(t) = 1 − ω2I 1−ν
0+ I (t), (7.55)

is obtained. From the FGLE (7.1) and the definition of CX(t), one finds the
following fractional differential equation for CX(t),

CD
μ
0+

[
CD

ν
0+CX(t)

] +
∫ t

0
γ (t − t ′) [CDν0+CX(t

′)
]

dt ′ + ω2CX(t) = 0, (7.56)

for initial conditions

CX(0+) = 1 and CD
ν
0+CX(0+) = 0.

For the Dirac delta noise γ (t) = 2λδ(t), Eq. (7.56) becomes

CD
μ
0+

[
CD

ν
0+CX(t)

] + 2λ
[
CD

ν
0+CX(t)

] + ω2CX(t) = 0. (7.57)

The normalized displacement correlation function then reads

ĈX(s) = sμ+ν−1 + 2λsν−1

sμ+ν + 2λsν + ω2 . (7.58)

The inverse Laplace transform yields

CX(t) = 1 +
∞∑

n=0

(−ω2)n+1t(μ+ν)(n+1)En+1
μ,(μ+ν)(n+1)+1

(−2λtμ
)

=
∞∑

n=0

(−ω2)nt(μ+ν)nEnμ,(μ+ν)n+1

(−2λtμ
)
, (7.59)

which satisfies the initial conditions. For the long time limit one gets

CX(t) � Eν

(
−ω

2

2λ
tν
)

� 2λ

ω2

t−ν

Γ (1 − ν) .
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Thus, the normalized displacement correlation function CX(t) does not depend on
parameter μ in the long time limit. Contrarily, the short time limit yields

CX(t) � 1 − ω2 tμ+ν

Γ (1 + μ+ ν) .

Remark 7.1 Note that Eq. (7.57) can be transformed to the following equation

C̈X(t)+ 2λ
[
CD

2−μ
0+ CX(t)

]
+ ω2

[

CD
2−(μ+ν)
0+ CX(t)+ tμ+ν−2

Γ (μ+ ν − 1)

]
= 0,

(7.60)

with initial conditions in usual form,

ĊX(0+) = 0 and CX(0+) = 1.

Remark 7.2 Let us now consider the case with μ = ν = α > 1
2 . The normalized

displacement correlation function is given by the following infinite series in three
parameter M-L functions (1.14),

CX(t) =
∞∑

n=0

(−ω2)nt2αnEnα,2αn+1

(−2λtα
)
. (7.61)

It can also be derived in the following way

ĈX(s) = s2α−1 + 2λsα−1

s2α + 2λsα + ω2 =
⎧
⎨

⎩

s−1 − r1r2
r1−r2

(
s−1

sα−r1 − s−1

sα−r2
)

if λ 
= ω,

s2α−1+2ωsα−1

(sα+ω)2 if λ = ω,

(7.62)

where r1/2 = −λ± √
λ2 − ω2 are roots of

s2α + 2λsα + ω2 = (
sα − r1

) (
sα − r2

) = 0,

and therefore

r1 − r2 = 2
√
λ2 − ω2, r1 + r2 = −2λ, r1r2 = ω2.
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From relation (7.62) for CX(t) we find

CX(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − r1r2t
α

r1−r2
[
Eα,α+1 (r1t

α)− Eα,α+1 (r2t
α)
]

= r1Eα(r2t
α)−r2Eα(r1tα)
r1−r2 if λ 
= ω,

E2
α,1 (−ωtα)+ 2ωtαE2

α,1+α (−ωtα)
= Eα (−ωtα)+ ωtα

α
Eα,α (−ωtα) if λ = ω.

(7.63)

From here the following interesting results are obtained

∞∑

n=0

(−r1r2t2α)nEnα,2αn+1

(
(r1 + r2) tα

) = r1Eα (r2t
α)− r2Eα (r1tα)
r1 − r2 , (7.64)

i.e.,

∞∑

n=0

(−xy)nEnα,2αn+1 (x + y) = xEα (y)− yEα (x)
x − y , (7.65)

where x = r1t
α , y = r2t

α , and

∞∑

n=0

(−ω2t2α)nEnα,2αn+1

(−2ωtα
) = Eα

(−ωtα) + ωtα

α
Eα,α

(−ωtα) , (7.66)

i.e.,

∞∑

n=0

(−x2)nEnα,2αn+1 (2x) = Eα (x)− x

α
Eα,α (x) , (7.67)

where x = −ωtα . Here we note that the relations (7.65) and (7.67) can be obtained
by using (1.26) and (1.27), respectively.

In Fig. 7.5 we give graphical representation of CX(t). From Fig. 7.5a–c we
observe different behaviors of the normalized displacement correlation function for
different values of the frequency ω, such as monotonic decay of CX(t) without
zero crossings, oscillation-like behavior with zero crossings, and non-monotonic
decay approaching the zero line without crossing it. In fractional models, one
defines critical frequency at which the oscillator changes its behavior, for example
the frequency at which the oscillator switches from monotonic to non-monotonic
decay without zero crossings, or the frequency at which zero crossing appears. From
Fig. 7.5d one concludes that for different values ofμ and ν and constant frequencyω
the oscillator may also have different behavior. In the long time limit the normalized
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Fig. 7.5 Graphical representation of normalized displacement correlation function (7.59) in case
of Dirac delta frictional memory kernel; λ = 1; (a) μ = ν = 7/8, ω = 1 (solid line), ω = 3/2
(dashed line), ω = 59/32 (dot-dashed line); ω = 4 (dotted line), (b) μ = ν = 7/8, ω = 29/16
(solid line), ω = 119/64 (dashed line), ω = 2 (dot-dashed line), (c) μ = ν = 3/4, ω = 1
(solid line), ω = 3/2 (dashed line), ω = 3 (dot-dashed line); ω = 4 (dotted line), (d) ω = 5/2;
μ = ν = 7/8 (solid line), μ = ν = 3/4 (dashed line), μ = 3/4, ν = 7/8 (dot-dashed line),
μ = 7/8, ν = 3/4 (dotted line). Reprinted from T. Sandev, R. Metzler and Z. Tomovski, J. Math.
Phys. 55, 023301 (2014), with the permission of AIP publishing

displacement correlation function behaves as

CX(t) � Eν

(
−ω

2

2λ
tν
)

� 2λ

ω2

t−ν

Γ (1 − ν) .

For the power-law friction memory kernel γ (t) = Cλ
t−λ

Γ (1−λ) , Eq. (7.56) gives

CD
μ
0+

[
CD

ν
0+CX(t)

] + CλI 1−λ
0+

[
CD

ν
0+CX(t)

] + ω2CX(t) = 0, (7.68)

from where one finds

ĈX(s) = sμ+ν−1 + Cλsν+λ−2

sμ+ν + Cλsν+λ−1 + ω2 . (7.69)
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Thus, the exact form of CX(t) becomes

CX(t) = 1 +
∞∑

n=0

(−ω2)n+1t(μ+ν)(n+1)En+1
μ−λ+1,(μ+ν)(n+1)+1

(
−Cλtμ−λ+1

)

=
∞∑

n=0

(−ω2)nt(μ+ν)nEnμ−λ+1,(μ+ν)n+1

(
−Cλtμ−λ+1

)
, (7.70)

which satisfies the initial conditions. The long time limit yields power-law decay of
form

CX(t) � Eν+λ−1

(
−ω

2

Cλ
tν+λ−1

)
� Cλ

ω2

t−(ν+λ−1)

Γ (1 − (ν + λ− 1))
,

and the short time limit the behavior

CX(t) � 1 − ω2 tμ+ν

Γ (1 + μ+ ν) + Cλω2 t1+2μ+ν−λ

Γ (2 + 2μ+ ν − λ) .

For μ = ν = 1, the normalized displacement correlation function reduces to [2]

CX(t) � Cλ

ω2

t−λ

Γ (1 − λ)
for t → ∞ and

CX(t) � 1 − ω2 t
2

2
+ Cλω2 t4−λ

Γ (5 − λ)
for t → 0.

Graphical representation of the normalized displacement correlation function is
given in Fig. 7.6. From Fig. 7.6a, for CX(T ) we observe monotonic decay, non-
monotonic decay, oscillation-like behavior without and with zero crossings. In
Fig. 7.6b we present the results for the fractional Langevin equation (μ = ν = 1)
[2]. From Fig. 7.6c we conclude that by decreasing parameters μ and ν, for fixed
λ and ω, the normalized displacement correlation function from behavior with zero
crossings may turn to behavior without zero crossings. Changes in the behavior of
CX(t), from oscillation-like behavior without zero crossings to non-monotonic and
monotonic decay, for fixed μ, ν, and ω, by increasing parameter λ, are shown in
Fig. 7.6d.
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Fig. 7.6 Graphical representation of normalized displacement correlation function (7.70) in case
of power-law frictional memory kernel; Cλ = 1; (a) μ = ν = 7/8, λ = 1/2, ω = 1/2 (solid line),
ω = 7/8 (dashed line), ω = 11/8 (dot-dashed line); ω = 9/4 (dotted line), (b) [2] μ = ν = 1,
ω = 0.3 (solid line), ω = 1.053 (dashed line), ω = 3 (dot-dashed line), (c) ω = 9/4, λ = 1/2,
μ = ν = 1 (solid line), μ = ν = 7/8 (dashed line), μ = ν = 3/4 (dot-dashed line), μ = 3/4,
ν = 5/8 (dotted line), (d) μ = ν = 7/8, ω = 1, λ = 1/5 (solid line), λ = 1/2 (dashed line),
λ = 3/4 (dot-dashed line), λ = 15/16 (dotted line). Reprinted from T. Sandev, R. Metzler, and Z.
Tomovski, J. Math. Phys. 55, 023301 (2014), with the permission of AIP publishing

Remark 7.3 Note that Eq. (7.68) can be transformed to the equation

C̈X(t)+ Cλ
[
CD

1+λ−μ
0+ CX(t)

]
+ ω2

[

CD
2−(μ+ν)
0+ CX(t)+ tμ+ν−2

Γ (μ+ ν − 1)

]
= 0,

(7.71)

with initial conditions

ĊX(0+) = 0 and CX(0+) = 1.

The second term represents the memory effects of the environment, and the third
term gives the generalized force which acts on the particle. Therefore, normalized
displacement correlation function can be considered in the same way as in the
classical case, taking into account the memory effect of the complex environment,
and the general form of the potential energy function (different from the harmonic
potential approximation), which gives the confined movement of the particle.
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7.4 External Noise

In case when the second fluctuation-dissipation theorem (6.7) does not hold, we
cannot use the same expressions for variances (7.12a)–(7.12c). In this case the noise
is external. We assume a power-law correlation of the noise

C(t) = Cθ
t−θ

Γ (1 − θ) , 0 < θ < 1,

and power-law friction memory kernel, which is defined in a sense of distribution
[15, 16]

γ (t) = Cλ
t−λ

Γ (1 − λ) , 1 − ν < λ < 1 + μ.

In this case, for the variances we obtain [20]

σxx = 2
∫ t

0
dt1G(t1)

∫ t1

0
dt2G(t2)C(t1 − t2)

= 2Cθ

∫ t

0
dξ G(ξ)I 1−θ

0+ G(ξ), (7.72a)

σxv =
∫ t

0
dt1 g(t1)

∫ t

0
dt2G(t2)C(t1 − t2)

= Cθ

∫ t

0
dξ

(
G(ξ)I 1−θ

0+ g(ξ)+ g(ξ)I 1−θ
0+ G(ξ)

)
, (7.72b)

σvv = 2
∫ t

0
dt1 g(t1)

∫ t1

0
dt2 g(t2)C(t1 − t2)

= −2Cθ

∫ t

0
dξ g(ξ)I 1−θ

0+ g(ξ), (7.72c)

where g(t),G(t), and I (t) are given by (7.33), (7.34), and (7.35), respectively. Thus,
for the fractional integrals of the relaxation functions which appear in the variances
one finds

I 1−θ
0+ g(t) =

∞∑

n=0

(−ω2)nt(μ+ν)(n+1)−ν−θEn+1
μ−λ+1,(μ+ν)(n+1)−ν−θ+1

(
−Cλtμ−λ+1

)
,

(7.73a)

I 1−θ
0+ G(t) =

∞∑

n=0

(−ω2)nt(μ+ν)(n+1)−θEn+1
μ−λ+1,(μ+ν)(n+1)−θ+1

(
−Cλtμ−λ+1

)
.

(7.73b)
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Analytical expression of variances is a nontrivial problem, and can be derived by
using formulas for product of two M-L functions, see, for example, Ref. [21]. By
using the asymptotic expansion formula for the three parameter M-L function, in
the long time limit we obtain

I 1−θ
0+ G(t) = tν+λ−1−θ

Cλ
Eν+λ−1,ν+λ−θ

(
−ω

2

Cλ
tν+λ−1

)
� 1

ω2

t−θ

Γ (1 − θ) .

(7.73c)

From relations (7.73c) and (7.72a) it follows that σxx � t1−(ν+λ+θ) for t → ∞. For
the short time limit, we obtain

I 1−θ
0+ G(t) = tμ+ν−θEμ−λ+1,μ+ν−θ+1

(
−Cλtμ−λ+1

)
� tμ+ν−θ

Γ (1 + μ+ ν − θ) ,
(7.73d)

and therefore one finds σxx � t2(μ+ν)−θ for t → 0. Note that the case of a free
particle (ω = 0) yields

I 1−θ
0+ g(t) = tμ−θEμ−λ+1,μ−θ+1

(
−Cλtμ−λ+1

)
, (7.73e)

I 1−θ
0+ G(t) = tμ+ν−θEμ−λ+1,μ+ν−θ+1

(
−Cλtμ−λ+1

)
, (7.73f)

which for ν = 1 are equivalent to those obtained in Ref. [8].
From (7.72a) and (7.73f), and by the help of the asymptotic expansion of M-L

functions for t → ∞, the following variances are obtained [12]

σxx � t2λ−θ+2ν−2, 2λ− θ + 2ν − 2 > 0, (7.74)

σxx � log t, 2λ− θ + 2ν − 2 = 0, (7.75)

σxx � const, 2λ− θ + 2ν − 2 < 0. (7.76)

Note that the variances for long times do not depend on parameter μ, but only on ν.
The case with ν = 1 corresponds to the results obtained in Ref. [8]:

σxx � t2λ−θ , 2λ− θ > 0, (7.77)

σxx � log t, 2λ− θ = 0, (7.78)

σxx � const, 2λ− θ < 0. (7.79)

The logarithm dependence of the variance on time is a sign of ultraslow diffusion in
the system.
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7.5 High Friction

Let us suppose that the particle which is bounded in a harmonic potential well is
under high friction from the surrounding media (high viscous damping). This is the
case when the inertial term can be neglected, i.e., [20]

∫ t

0
γ (t − t ′)v(t ′) dt ′ + ω2x(t) = ξ(t),

CD
ν
0+x(t) = v(t). (7.80)

We again analyze Eq. (7.80) by using relaxation functions. By Laplace transforma-
tion we obtain

x(t) = 〈x(t)〉 +
∫ t

0
G0(t − t ′)ξ(t ′) dt ′, (7.81)

v(t) = 〈v(t)〉 +
∫ t

0
g0(t − t ′)ξ(t ′) dt ′, (7.82)

where

〈x(t)〉 = x0

[
1 − ω2

CD
ν−1
0+ I0(t)

]
(7.83)

and

〈v(t)〉 = −ω2x0CD
ν−1
0+ G0(t). (7.84)

The following relaxation functions are used

G0(t) = L −1
[
Ĝ0(s)

]
= L −1

[
1

sν γ̂ (s)+ ω2

]
, (7.85)

G0(0) = 0,

I0(t) = L −1
[
s−νĜ0(s)

]
, i.e., CD

ν
0+I0(t) = G0(t),

and

g0(t) =C Dν0+G0(t).
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Thus, the variances are given by Sandev et al. [20]

σxx = 2kBT
∫ t

0
dξ G0(ξ)

[
ξν−1

Γ (ν)
− ω2I0(ξ)

]
, (7.86a)

σxv = kBT

[
1

Γ (ν)

∫ t

0
dξ g0(ξ)ξ

ν−1 − ω2
∫ t

0
dξ

(
G2

0(ξ)+ g0(ξ)I0(ξ)
)]
,

(7.86b)

σvv = 〈v2(t)〉 − 〈v(t)〉2 = −2kBT ω
2
∫ t

0
dξ G0(ξ)g0(ξ). (7.86c)

For the Dirac delta friction memory kernel γ (t) = 2λδ(t), the relaxation
functions become

g(t) = 1

2λ
t−1Eν,0

(
−ω

2

2λ
tν
)
, (7.87)

G(t) = 1

2λ
tν−1Eν,ν

(
−ω

2

2λ
tν
)
, (7.88)

I (t) = 1

2λ
t2ν−1Eν,2ν

(
−ω

2

2λ
tν
)
. (7.89)

The long time limit of these relaxation functions is equivalent to those obtained
when the inertial term is not neglected (relations (7.20)–(7.22)).

As an addition to these analysis, we threat analytically the overdamped motion
of a harmonic oscillator driven by an internal noise with a three parameter M-L
correlation function (6.9). For the relaxation function G0(t) in this case we obtain
[20]

G0(t) = 1

ω2

∞∑

k=0

(
−γα,β,δ
ω2

)k
t(β−ν)k−1Eδkα,(β−ν)k

(
− t

α

τα

)
, (7.90)

where γα,β,δ = Cα,β,δ

kBT τ
αδ . The long time limit yields

G0(t) = kBT t
ν+αδ−β−1

Cα,β,δ
Eν+αδ−β,ν+αδ−β

(
−kBT ω

2

Cα,β,δ
tν+αδ−β

)
, (7.91)

where ν + αδ− β > 0. Therefore, the asymptotic behavior ofG(t) in the long time
limit for a harmonic oscillator when the inertial terms is not neglected is the same
as the behavior ofG0(t).
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7.6 Validity of the Generalized Einstein Relation

Let us now consider constant external force, F(x) = Fθ(t), in the FGLE (7.1),

CD
μ
0+v(t)+

∫ t

0
γ (t − t ′)v(t ′) dt ′ − F = ξ(t),

CD
ν
0+x(t) = v(t). (7.92)

For zero initial values x0 = 0, v0 = 0, from the Laplace transform we find

x(t) = 〈x(t)〉F +
∫ t

0
G(t − t ′)ξ(t ′) dt ′ (7.93)

where

〈x(t)〉F = FL −1
[
s−1Ĝ(s)

]
, Ĝ(s) = 1

sμ+ν + sν γ̂ (s) . (7.94)

The mean displacement then is given by

〈x(t)〉F = F

∫ t

0
G(ξ) dξ. (7.95)

Contrary to this, the force free case F(x) = 0 yields

[
〈x2(t)〉 − 〈x(t)〉2

]

0
= 2kBT

∫ t

0
dξ G(ξ)

[
ξν−1

Γ (ν)
− CD

μ
0+G(ξ)

]
. (7.96)

From Eq. (7.27) for the Dirac δ-noise and Eq. (7.49) for the power-law noise, in the
long time limit one obtains

[
〈x2(t)〉 − 〈x(t)〉2

]

0
= 2kBT

∫ t

0
dξ G(ξ)

ξν−1

Γ (ν)
, (7.97)

which means that the generalized Einstein relation is not satisfied for the considered
FGLE, i.e.,

〈x(t)〉F 
= F

2kBT

[
〈x2(t)〉 − 〈x(t)〉2

]

0
.

Only the case with ν = 1 satisfies the generalized Einstein relation in the long
time limit. The validity of the generalized Einstein relation was shown for the
fractional Langevin equation [14], that is the case with μ = ν = 1, and γ (t) =
Cλt

−λ/Γ (1 − λ), for 0 < λ < 2. Detailed investigation of violation of generalized
Einstein relation and description of its nature for a specific model, describing
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electronic transport in disordered system, is given in Ref. [1]. In the FGLE (7.1)
we view the variables to represent a mesoscopic description of the process, and thus
the expectation values of observables calculated from this theory then describe the
dynamic behavior after averaging over the disorder of the system.

7.7 Free Particle Case

We see that the analytical treatment of the FGLE for a harmonic oscillator with
a friction memory kernel of the three parameter M-L type (6.9) is a very difficult
problem. Therefore, the analysis of the diffusive behavior of the particle, one can
either perform asymptotic analysis for the oscillator in the long time limit, which can
be treated easily, or consider the overdamped motion which gives the same results
as the original problem in the long time limit. Here we study the simpler case of a
free particle (ω = 0), which can be treated analytically. The friction memory kernel
taken is of the three parameter M-L type (6.9). From the general expressions for
relaxation functions for a harmonic oscillator, by using formulas (1.17) and (1.18),
we obtain [19]

g(t) =
∞∑

k=0

(−1)kγ kα,β,δt
(μ+β)k+μ−1Eδkα,(μ+β)k+μ

(−(t/τ )α) , (7.98)

G(t) =
∞∑

k=0

(−1)kγ kα,β,δt
(μ+β)k+μ+ν−1Eδkα,(μ+β)k+μ+ν

(−(t/τ )α) , (7.99)

I (t) =
∞∑

k=0

(−1)kγ kα,β,δt
(μ+β)k+μ+2ν−1Eδkα,(μ+β)k+μ+2ν

(−(t/τ )α) , (7.100)

where γα,β,δ = Cα,β,δ

kBT τ
αδ and G(0) = 0 since μ+ ν > 1.

By applying Eqs. (1.19) in (7.11) and (7.10), for the mean particle velocity and
mean particle displacement, one obtains

〈v(t)〉 = v0

∞∑

k=0

(−1)kγ kα,β,δt
(μ+β)kEδkα,(μ+β)k+1

(−(t/τ )α) , (7.101)

〈x(t)〉 = x0 + v0

∞∑

k=0

(−1)kγ kα,β,δt
(μ+β)k+νEδkα,(μ+β)k+ν+1

(−(t/τ )α) . (7.102)
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The special case μ = ν = 1 was considered in Sect. 7.6. Moreover, for τ → 0, from
relations (1.28) and (7.98)–(7.100) the corresponding relaxation functions become

g(t) = tμ−1Eμ+β−αδ,μ
(

−Cα,β,δ
kBT

tμ+β−αδ
)
, (7.103)

G(t) = tμ+ν−1Eμ+β−αδ,μ+ν
(

−Cα,β,δ
kBT

tμ+β−αδ
)
, (7.104)

I (t) = tμ+2ν−1Eμ+β−αδ,μ+2ν

(
−Cα,β,δ
kBT

tμ+β−αδ
)
, (7.105)

where μ + β − αδ > 0. For β = δ = 1, one recovers the results obtained in
Ref. [12], and for ν = β = δ = 1—the results obtained in Ref. [5, 8, 12]. The case
with β = δ = μ = ν = 1, τ → 0, 0 < α < 2 (i.e., power-law correlation function;
see, for example, [14, 18]) corresponds to the one considered in Ref. [14]

g(t) = E2−α
(

−Cα,1,1
kBT

t2−α
)
, (7.106)

G(t) = tE2−α,2
(

−Cα,1,1
kBT

t2−α
)
, (7.107)

I (t) = t2E2−α,3
(

−Cα,1,1
kBT

t2−α
)
. (7.108)

For the limit τ → 0, the mean velocity (7.101) and mean particle displacement
(7.102) reduces to

〈v(t)〉 = v0Eμ+β−αδ
(

−Cα,β,δ
kBT

tμ+β−αδ
)
, (7.109)

〈x(t)〉 = x0 + v0t
νEμ+β−αδ,ν+1

(
−Cα,β,δ
kBT

tμ+β−αδ
)
, (7.110)

respectively, which are generalization of the results for the fractional Langevin
equation introduced in Ref. [14] (0 < α < 2, β = δ = μ = ν = 1). Graphical
representation of the mean velocity and mean particle displacement is given in
Figs. 7.7, 7.8, and 7.9.

The MSD in the long time limit (t → ∞) then becomes [19]

〈x2(t)〉 �
{
t2(αδ−β+ν−μ) for 2μ ≤ αδ − β + 1,
tαδ−β+2ν−1 for 2μ > αδ − β + 1 or μ = 1,

(7.111)

from where we conclude that anomalous diffusion exists in the system. Depending
on the power of t we distinguish cases of subdiffusion, normal diffusion or
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Fig. 7.7 Graphical representation in case when τ = 1, Cα,β,δ = 1, kBT = 1, x0 = 0, v0 = 1 of:
(a) mean particle velocity (7.101) (α = β = δ = μ = 1 (solid line); α = β = δ = μ = 1/2
(dashed line); α = β = δ = 1/2, μ = 3/4 (dot-dashed line); α = δ = μ = 1/2, β = 1/4
(dotted line)); (b) mean particle displacement (7.102) α = β = δ = μ = ν = 1 (solid line);
α = β = δ = μ = 1/2, ν = 1 (dashed line); α = β = δ = ν = 1/2, μ = 3/4 (dot-dashed line);
α = δ = μ = 1/2, β = 1/4, ν = 3/4 (dotted line), see Ref. [19]
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Fig. 7.8 Graphical representation in case when τ → 0, Cα,β,δ = 1, kBT = 1, x0 = 0, v0 = 1
of: (a) mean particle velocity (7.101) (α = β = δ = μ = 1 (solid line); α = β = δ = μ = 1/2
(dashed line); α = δ = μ = 1/2, β = 3/2 (dot-dashed line); α = μ = 1/2, β = 3/2, δ = 1/4
(dotted line)); (b) mean particle displacement (7.102) α = β = δ = μ = ν = 1 (solid line);
α = β = δ = μ = 1/2, ν = 1 (dashed line); α = δ = μ = 1/2, β = 3/2, ν = 3/4 (dot-dashed
line); α = μ = ν = 1/2, β = 3/2, δ = 1/4 (dotted line), see Ref. [19]
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Fig. 7.9 Graphical representation in case when Cα,β,δ = 1, kBT = 1, x0 = 0, v0 = 1 of: (a) mean
particle velocity (7.101); (b) mean particle displacement (7.102). α = δ = μ = 1/2, β = 3/2,
ν = 3/4; τ = 0 (solid line); τ = 1 (dashed line); τ = 10 (dot-dashed line), see Ref. [19]
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superdiffusion. In the short time limit (t → 0), the MSD becomes [19]

〈x2(t)〉 �
{

t2ν for 1 ≤ 2μ+ β,
t2μ+2ν+β−1 for 1 > 2μ+ β. (7.112)

From Eqs. (7.112) and (7.113) one concludes that the anomalous diffusion exponent
in the short time limit can be different with the one in the long time limit. Therefore,
this model can be used to describe generalized diffusive processes, such as single
file-type diffusion, as well as either accelerating or retarding diffusion [7]. Note that
for different initial conditions different behaviors of the particle can be obtained.
For example, for x0 
= 0, 〈x2(t)〉 � tν in the short time limit t → 0.

For ν = 1, in the long time limit (t → ∞) for the MSD one obtains [19]

〈x2(t)〉 �
{
t2(αδ−β+1−μ) for 2μ ≤ αδ − β + 1,
tαδ−β+1 for 2μ > αδ − β + 1 or μ = 1.

(7.113)

The case with μ = 1 yields the results for the GLE considered in Section 6 [18]
(β − 1 < αδ < β—subdiffusion; β < αδ < 1 + β - superdiffusion). The case with
β = δ = μ = 1 corresponds to the well-known result 〈x2(t)〉 ∼ tα (0 < α < 1—
subdiffusion; 1 < α < 2—superdiffusion) [14]. In the short time limit (t → 0) the
MSD becomes [19]

〈x2(t)〉 �
{

t2 for 1 ≤ 2μ+ β,
t2μ+β+1 for 1 > 2μ+ β. (7.114)

Here we note that for ν = 1 and β > 0 in the short time limit the MSD has a
power-law dependence on time with an exponent greater than 1. Thus, the particle
in the short time limit shows superdiffusive behavior (when the exponent is greater
than 1), which turns to simple ballistic motion when the exponent is equal to 2.

Graphical representation of 〈x2(t)〉 is given in Fig. 7.10. In Figs. 7.11 and 7.12
we plot the MSD 〈x2(t)〉 in for μ = 1 and ν = 1, respectively. As an addition, in
Fig. 7.13 we give the MSD (7.16) in case of the Dirac delta and power-law friction
memory kernels.
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Fig. 7.10 Graphical representation of MSD (7.16) (a) τ = 1, (b) τ = 10. Cα,β,δ = 1, kBT = 1;
α = 1, β = δ = 1/2, μ = 3/10, ν = 4/5 (solid line); α = β = δ = 1, μ = 1/4, ν = 7/8 (dashed
line); α = 5/4, β = δ = 1, μ = 1/2, ν = 9/10 (dot-dashed line); α = 1, β = δ = 3/2, μ = 3/10,
ν = 4/5 (dotted), see Ref. [19]
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Fig. 7.11 Graphical representation of 〈x2(t)〉 (7.16) in case when v2
0 = kBT = 1, x0 = 0, μ = 1

and frictional memory kernel of form (6.9); Cα,β,δ = 1; kBT = 1; τ = 1; (a) α = β = 3/2, δ = 1,
ν = 3/4 (solid line), ν = 1/2 (dashed line), ν = 1/4, (dot-dashed line); (b) ν = 1/2; α = δ = 1;
β = 3/2 (solid line); β = 1 (dashed line); β = 1/2 (dot-dashed line), see Ref. [19]
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Fig. 7.12 Graphical representation of 〈x2(t)〉 (7.16) in case when v2
0 = kBT = 1, x0 = 0, ν = 1

and frictional memory kernel of form (6.9); Cα,β,δ = 1; kBT = 1; τ = 1; (a) α = β = 3/2, δ = 1,
μ = 3/4 (solid line), μ = 1/2 (dashed line), μ = 1/4, (dot-dashed line); (b) μ = 1/2; α = δ = 1;
β = 3/2 (solid line); β = 1 (dashed line); β = 1/2 (dot-dashed line), see Ref. [19]
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Fig. 7.13 Graphical representation of 〈x2(t)〉 (7.16) in case when v2
0 = kBT = 1, x0 = 0 and

frictional memory kernel of form: (a) γ (t) = 2λδ(t); λ = 1; μ = ν = 3/4 (solid line), μ = 5/8,
ν = 7/8 (dashed line), μ = 3/4, ν = 5/8 (dot-dashed line), μ = 7/8, ν = 1/2 (dotted line); (b)
γ (t) = t−α

Γ (1−α) ; μ = ν = 3/4; α = 1 (solid line); α = 3/4 (dashed line); α = 1/2 (dot-dashed
line); α = 1/4 (dotted line), see Ref. [19]
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Remark 7.4 We note that the MSD depends on the initial conditions. As it was
shown (see relation (7.114)), in case of thermal initial conditions, for ν = 1 and
β > 0, the anomalous diffusion exponent is greater than 1, i.e., the process is
superdiffusive in the short time limit. If x0 
= 0 for ν = 1 we can show that
〈x2(t)〉 � t , t → 0, i.e., the particle shows normal diffusive behavior. It can be
shown that in the long time limit the particle may have anomalous diffusive behavior
of the form (7.113). For example, in the case β − αδ = 1

2 , μ > 1/4 the anomalous
diffusion exponent is equal to 1/2. Same anomalous diffusion exponent appears in
the case αδ − β + 3/4 = μ ≤ 1/4.

Remark 7.5 Following the same procedure, we analyze the following FGLE con-
sidered in Ref. [3]:

CD
μ
0+x(t)+

∫ t

0
γ (t − t ′)CDν0+x(t ′) dt ′ = ξ(t), (7.115)

ẋ(t) = v(t),

where 1 < μ ≤ 2 and 0 < ν ≤ 1. For the variance we obtain [19]

σxx = 2kBT

[
1

Γ (ν)

∫ t

0
dξ G(ξ)ξν−1 −

∫ t

0
dξ G(ξ)CD

μ−ν
0+ G(ξ)

]
. (7.116)

Thus, the MSD is given by

〈x2(t)〉 = x2
0 + 2x0v0CD

μ−1
0+ I (t) + v2

0

[
CD

μ−1
0+ I (t)

]2

+ 2kBT

[
1

Γ (ν)

∫ t

0
dξ G(ξ)ξν−1 −

∫ t

0
dξ G(ξ)CD

μ−ν
0+ G(ξ)

]
,

(7.117)

whereG(0) = 0,

ĝ(s) = s

sμ + sν γ̂ (s) , (7.118)

Ĝ(s) = 1

sμ + sν γ̂ (s) , (7.119)

Î (s) = s−1

sμ + sν γ̂ (s) . (7.120)

From Eqs. (7.118)–(7.120) one concludes that g(t) = G′(t) and G(t) = I ′(t). In
Fig. 7.14 we give graphical representation of the MSD (7.117) in case of Dirac delta
and power-law friction memory kernels for different values of parameters.
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Fig. 7.14 Graphical representation of 〈x2(t)〉 (7.117) in case when v2
0 = kBT = 1, x0 = 0 and

frictional memory kernel of form: (a) γ (t) = 2λδ(t); λ = 1; μ = 3/2, ν = 1/4 (solid line);
μ = 3/2, ν = 1/2 (dashed line); μ = 7/4, ν = 1/2 (dot-dashed line); μ = 7/4, ν = 3/4 (dotted
line); (b) γ (t) = t−α

Γ (1−α) ; μ = 3/2, ν = 3/4; α = 1/2 (solid line); α = 3/4 (dashed line); α = 1
(dot-dashed line); α = 5/4 (dotted line), see Ref. [19]

From the analysis in this chapter, we conclude that the variances and MSD for
the FGLE are different than those for the GLE, and if one does it wrong results
about the diffusive behavior of the particle will be derived. Therefore, for FGLE the
general expressions for the variances presented in this chapter must be used.

7.8 Tempered FGLE

At the end of this chapter, we give the corresponding results for the FGLE (7.1)
in the case of truncated memory kernel [11]. We will analyze the influence of the
truncation on the particle behavior.

7.8.1 Free Particle

Let us consider the free particle case (ω = 0). Therefore, for the truncated three
parameter M-L memory kernel (6.146), one obtains

I (t) = L −1

⎡

⎢
⎣

s−2ν

sμ + γ

ταδ
(s+b)αδ−β

((s+b)α+τ−α)δ

⎤

⎥
⎦

=
∞∑

n=0

(
− γ

ταδ

)n
I
μ(n+1)+2ν
0+

(
e−bt tβn−1Eδnα,βn

(
− t

α

τα

))
, (7.121)
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where Iα0+ is the R-L fractional integral (2.2). Again, the above result can be
expanded in terms of the confluent hypergeometric function as

I (t) =
∞∑

n=0

∞∑

k=0

(−1)n+kτ−α(δn+k)γ n (δn)k
k!

tαk+βn+μ(n+1)+2ν−1

Γ (αk + βn+ μ(n+ 1)+ 2ν)

× 1F1(αk + βn; αk + βn+ μ(n+ 1)+ 2ν; −bt). (7.122)

For b = 0 we recover the results obtained in the case of no truncation [20].

7.8.2 Harmonic Potential

The corresponding relaxation functions for a harmonic oscillator can be obtained as
well. Thus, for I (t) one finds

I (t) = L −1

⎡

⎢
⎣

s−ν

sμ+ν + ω2

1

1 + γ

ταδ
sν

sμ+ν+ω2
(s+b)αδ−β

((s+b)α+τ−α)δ

⎤

⎥
⎦

= L −1

[ ∞∑

n=0

(
− γ

ταδ

)n sν(n−1)

(
sμ+ν + ω2

)n+1

(s + b)(αδ−β)n
(
(s + b)α + τ−α)δn

]

=
∞∑

n=0

(
− γ

ταδ

)n
En+1
μ+ν,μn+μ+2ν,−ω2,0+

(
e−bt tβn−1Eδnα,βn

(
− t

α

τα

))
,

(7.123)

where
(

Eδα,β,ω,0+f
)
(t) is the Prabhakar integral operator (2.46).

For the normalized displacement correlation function [20]

CX(t) = 1 − ω2
RLI

1−ν
t I (t),

by using relation (2.111), we have

CX(t) = 1 − ω2
∞∑

n=0

(
− γ

ταδ

)n
En+1
μ+ν,μn+μ+ν+1,−ω2,0+

(
e−bt tβn−1Eδnα,βn

(
− t

α

τα

))
.

(7.124)

Graphical representation of the CX(t) is given in Fig. 7.15. From Fig. 7.15a
we see the changes of the behavior of CX(t) from non-monotonic decay without
zero crossings to oscillation-like behavior with zero crossings, by increasing the
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Fig. 7.15 Graphical representation of the normalized displacement correlation function (7.124)
for truncated M-L memory kernel with α = 0.8, β = 0.7, δ = 0.6, ω = 1, τ = 1, γ = 1; (a)
μ = 0.9, ν = 0.7, and different values of truncation parameters b, (b) ν = 0.9, b = 0.5, and
different values of μ, (c) μ = 0.9, b = 1/2, and different values of ν. Reprinted from Physica A,
466, A. Liemert, T. Sandev, and H. Kantz, Generalized Langevin equation with tempered memory
kernel, 356–369, Copyright (2017), with permission from Elsevier

truncation parameter b. From Fig. 7.15b one can see the changes of the normalized
displacement correlation function by increasing the fractional parameter μ—from
monotonic decay to oscillation-like behavior with zero crossings. Figure 7.15c
shows the changes of CX(t) from monotonic decay through non-monotonic decay
without zero crossings to oscillation-like behavior with zero crossings. All these
different behaviors appears due to the fact that, if we derive the ordinary differential
equation for the normalized displacement correlation function as it was done in
Ref. [20], the fractional exponents μ and ν have contribution to the memory effects
of the environment and the external force. Let us show this. The function ĈX(s)

ĈX(s) = sμ+ν−1 + sν−1γ̂ (s)

sμ+ν + sν γ̂ (s)+ ω2
, (7.125)

can be rewritten as
(
s2ĈX(s)− s

)
+

[
s1−μγ̂ (s)

(
sĈX(s)− 1

)]

+ ω2
[(
s2−μ−ν ĈX(s)− s1−μ−ν) + s1−μ−ν] = 0. (7.126)
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The inverse Laplace transform yields

C̈X(t)+
∫ t

0
η(t − t ′)ĊX(t ′)dt ′ + ω2

(

CD
2−μ−ν
t CX(t)+ tμ+ν−2

Γ (μ+ ν − 1)

)
= 0,

(7.127)

where η(t) = L −1
[
s1−μγ̂ (s)

]
, and with initial conditions given by

CX(0+) = 1 and ĊX(0+) = 0.

Therefore, the fractional parametersμ and ν appear in the memory kernel and in the
external force.
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Appendix A
Completely Monotone, Bernstein,
and Stieltjes Functions

In this appendix we give the basic definitions and properties of completely
monotone, Bernstein, complete Bernstein and Stieltjes functions, which are used
throughout the book to prove the non-negativity of the corresponding solutions of
the generalized diffusion and wave equations. For further reading we refer to the
monograph by Schilling et al. [2].

A.1 Completely Monotone Functions

The completely monotone functions can be represented as Laplace transforms of
non-negative function p(t), i.e.,

m(x) =
∫ ∞

0
p(t)e−xt dt .

They are defined on non-negative half-axis and have a property that

(−1)nm(n)(x) ≥ 0 for all n ∈ N0 and x ≥ 0.

The following properties hold true for the completely monotone functions:

(a) Linear combination a1m1(x)+ a2m2(x) (a1, a2 ≥ 0) of completely monotone
functionsm1(x) and m2(x) is completely monotone function as well;

(b) The product m(x) = m1(x)m2(x) of completely monotone functions m1(x)

and m2(x) is again completely monotone function.

An example of completely monotone function is xα, where α ≤ 0.
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A.2 Stieltjes Functions

Functions defined on the positive half-axis which are Laplace transforms of
completely monotone functions are called Stieltjes functions. The Stieltjes functions
are subclass of the completely monotone functions. For the Stieltjes functions the
following property holds true:

(c) Linear combination a1s1(x)+ a2s2(x) (a1, a2 ≥ 0) of Stieltjes functions s1(x)
and s2(x) is Stieltjes function;

(d) If s(x) is a Stieltjes functions, then the function 1

s
(

1
x

) is Stieltjes function as

well.

An example of Stieltjes function is xα−1, where 0 ≤ α ≤ 1.

A.3 Bernstein Functions

The Bernstein functions are non-negative functions whose derivative is completely
monotone. They are such that

(−1)(n−1)b(n)(x) ≥ 0 for all n = 1, 2, . . .

The Bernstein functions have the following properties:

(e) Linear combination a1b1(x)+a2b2(x) (a1, a2 ≥ 0) of Bernstein functions b1(x)

and b2(x) is a Bernstein function;
(f) A composition b1(b2(s)) of Bernstein functions is a Bernstein function too;
(g) A pointwise limit of a convergent series of Bernstein functions is a Bernstein

function;
(h) A composition m(b(x)) of completely monotone function m(x) and Bernstein

function b(x) is completely monotone function;
(i) If b(x) is a Bernstein function, then the function m(x) = b(x)

x
is completely

monotone;
(j) If b1(x) and b2(x) are Bernstein functions, then the function b1(x

α1)b2(x
α2) for

α1, α2 ∈ (0, 1) and α1 + α2 ≤ 1 is again a Bernstein function.

From these properties it follows that the function e−u b(x) is completely monotone
for u > 0 if b(x) is a Bernstein function. An example of Bernstein function is xα,
where 0 ≤ α ≤ 1.
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A.4 Complete Bernstein Functions

The complete Bernstein functions are subclass of Bernstein functions. A function
c(x) on (0,∞) is a complete Bernstein function if and only if c(x)/x is a Stieltjes
function.

The class of complete Bernstein functions is closed under the operations above,
i.e.,

(k) Linear combination a1c1(s) + a2c2(s) (a1, a2 ≥ 0) of complete Bernstein
functions c1(x) and c2(x) is a complete Bernstein function;

(l) A composition c1(c2(x)) of two complete Bernstein functions is a complete
Bernstein function too;

(m) A pointwise limit of a convergent series of complete Bernstein functions is a
complete Bernstein function;

(n) If c(x) is a complete Bernstein function, then the function 1

c
(

1
x

) is also a

complete Bernstein function;
(o) A composition s(c(x)) of Stieltjes function s(x) and complete Bernstein

function c(x) is a Stieltjes function;
(p) A composition c(s(x)) of complete Bernstein function c(x) and Stieltjes

function s(x) is a Stieltjes function;
(q) A composition s1(s2(x)) of Stieltjes functions s1(x) and s2(x) is a complete

Bernstein function;
(r) If c(x) is a complete Bernstein function, then the function x/c(x) is a complete

Bernstein function;
(s) If c(x) is a complete Bernstein function, then c(x)/x is a Stieltjes function.

An example of complete Bernstein function is xα, where 0 < α < 1.



Appendix B
Tauberian Theorems

The Tauberian theorems are useful tools for analysis of asymptotic behaviors of
a given function r(t). Theorem states that if the asymptotic behavior of r(t) for
t → ∞ is given by

r(t) � t−α, t → ∞, α > 0, (B.1)

then the corresponding Laplace pair r̂(s) = L [r(t)] has the following behavior for
s → 0

r̂(s) � Γ (1 − α)sα−1, s → 0, (B.2)

and vice versa, ensuring that r(t) is non-negative and monotone function in infinity.
This theorem can be formulated in form of the so-called Hardy-Littlewood

theorem. Theorem states that if the Laplace-Stieltjes transform of a given non-
decreasing function F such that F(0) = 0, defined by Stieltjes integral

ω(s) =
∫ ∞

0
e−st dF(t), (B.3)

has asymptotic behavior

ω(s) � Cs−r , s → ∞ (s → 0), (B.4)

where r ≥ 0 and C are real numbers, then the function F has asymptotic behavior

F(t) � C

Γ (r + 1)
tr , t → 0 (t → ∞). (B.5)

These Tauberian theorems are widely used in the theory of anomalous diffusion and
non-relaxation theory.
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Tauberian theorem for slowly varying functions has also many applications in
the theory of ultraslow diffusive processes and for analysis of strong anomaly. The
theorem states that if some function r(t), t ≥ 0, has the Laplace transform r̂(s)

whose asymptotics behaves as

r̂(s) � s−ρL
(

1

s

)
, s → 0, ρ ≥ 0, (B.6)

then

r(t) = L −1 [r̂(s)
] � 1

Γ (ρ)
tρ−1L(t), t → ∞. (B.7)

Here L(t) is a slowly varying function at infinity, i.e.,

lim
t→∞

L(at)

L(t)
= 1,

for any a > 0. The theorem is also valid if s and t are interchanged, that is s → ∞
and t → 0.

For details related to the Tauberian theorems see, for example, the well-known
book of Feller [1].
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Anomalous diffusion
subdiffusion, 120, 260, 265

accelerating, 144, 285
decelerating, 130, 138, 284
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Asymptotic expansion, 175, 181, 185
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Bernstein theorem, 25
Boundary conditions, 160, 225

Neumann, 150
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rescaled, 125
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Characteristic waiting time, 120
Comb model, 199
Completely monotone function, 25, 125, 133,

136, 139, 140, 142, 144, 146, 337
Complex susceptibility, 296
Continuous time random walk (CTRW), 119,

120
Correlation function

displacement, 254
normalized displacement, 281, 286, 294
velocity, 254

Diffusion coefficient, 248

generalized, 115, 116, 150, 160, 168, 190,
196

Diffusion equation
generalized

in Caputo form, 124
in Riemann-Liouville form, 139

space fractional, 116
space-time fractional, 116, 168
standard, 118
time fractional

bi-fractional, in Caputo form, 129
bi-fractional, in Riemann-Liouville

form, 142
distributed order, 132, 144
mono-fractional, 115, 141
N-fractional, in Caputo form, 131
N-fractional, in Riemann-Liouville

form, 143
tempered, 145
tempered distributed order, 135

Digamma function, 244
Double-peak phenomenon, 294

Eigenfunctions, 152, 163, 164, 192, 227
Eigenvalues, 151, 152, 163, 192, 227, 237
Einstein relation (linear response), 189
Einstein-Stokes relation, 189

generalized, 190
Euler-Mascheroni constant, 220, 244, 268
Exponential function

compressed exponential, 9
stretched exponential, 9

Exponential integral function, 268
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Fokker-Planck equation
fractional, 117

with composite derivative, 196
generalized, 189
standard, 187

Fourier transform, 31
Fox H -function, 12
Fox-Wright function, 15

Mainardi function, 16
Fractional derivative

Caputo, 31, 33
Hilfer (or composite), 32, 33
Hilfer-Prabhakar, 43
Prabhakar, 42, 50, 52

regularized, 282
tempered regularized, 284

regularized Prabhakar, 43, 47
Riemann-Liouville, 31
Riesz, 31
Riesz-Feller, 238
tempered Prabhakar

in Caputo form, 51
in Riemann-Liouville form, 51

Fractional integral, Riemann-Liouville, 30
Fractional moments, 178, 184

Generalized integral operator, 53
Generalized operator

in Caputo form, 50, 52
in Riemann-Liouville form, 50

Hardy inequality, 37, 41
Hardy-Littlewood theorem, 341
Heaviside step function, 126

Incomplete gamma function, 134
Inverse Fourier transform, 31

Jacobi theta function, 156
Jump length variance, 120

Lévy stable probability density, 16
Lévy stable subordinator, 125
Laguerre derivative, 95
Langevin equation

coupled, 126, 130
fractional generalized (FGLE), 301
generalized (GLE), 248
standard, 247

Master equation, 118, 187
Mean square displacement (MSD), 119, 247
Memory kernel, 124

distributed order, 144
Mittag-Leffler function

four parameter, 10
multinomial, 10, 88, 131, 219
one parameter, 2
three parameter, 88
three parameter (Prabhakar), 5
two parameter, 3, 90

Multinomial coefficients, 10

Noise
distributed order, 266
external, 249, 321
internal, 247, 261
power-law, 263, 269
stable Lévy, 126, 132
white Gaussian, 126, 132, 262, 269

Operational calculus, 81, 84
Ornstein-Uhlenbeck process, 251

Poisson process, 102
fractional Poisson process, 103, 105, 107,

109
Prabhakar integral, 41, 95
Probability distribution function (PDF)

Gaussian, 118
generalized waiting time, 123, 139
jump length, 120

Gaussian, 139
waiting time, 120

Mittag-Leffler, 127, 141
Poissonian, 127, 141

Relaxation functions, 251, 262, 289, 303

Second Einstein relation (linear response), 191
Second fluctuation-dissipation theorem, 247,

262, 283, 285
Sinai diffusion, 135
Slowly varying function, 342
Stieltjes function, 217, 219, 220, 223, 224, 338
Stieltjes integral, 341
Stochastic resonance, 294
Sturm-Liouville problem, 193, 227
Subordination, 124, 137, 140
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Tauberian theorems, 341
Time

operational, 125
physical, 125

Truncation, 138

Variance, 304
Velocity autocorrelation function (VACF), 248

Vibrating string, 225, 233
Volterra integral equation, 62, 72
Volterra μ(t, β, α) function, 267

Wave equation
space-time fractional, 238
time fractional, 224

with composite derivative, 240
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