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Abstract. Convolutional Neural Network (CNN) has gained significant
attention in the field of machine learning, particularly due to its high
accuracy in character recognition and image classification. Neverthe-
less, due to the computation-intensive and memory-intensive character
of CNN, general-purpose processors which usually need to support var-
ious workloads are not efficient for CNN implementation. Therefore, a
great deal of emerging CNN-specific hardware accelerators is able to
improve efficiency. Although existing accelerators are significantly effi-
cient, they are often inflexible or require complex controllers to handle
calculations and data transfer. In this paper, we analyze classical CNN
applications and design a domain-specific instruction set of 9 matrix
instructions, called RV-CNN, based on the promising RISC-V architec-
ture. By abstracting CNN into instructions, our design possesses a higher
code density and provides sufficient flexibility and efficiency for CNN
than general-purpose ISAs. Specifically, the proposed instructions are
extended to RISC-V ISA as custom instructions. Besides, we also intro-
duce micro-architectural optimizations to increase computational density
and reduce the required memory bandwidth. Finally, we implement the
architecture with the extended ISA and evaluate it with LeNet-5 on the
datasets (MNIST, Caltech101, and Cifar-10). Results show that com-
pared with the Intel Core i7 processor and Tesla k40c GPU, our design
has 36.09x and 11.42x energy efficiency ratio and 6.70x and 1.25x code
density respectively.
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1 Introduction

Convolutional neural network (CNN), a category of feed-forward artificial neural
networks, is well known for its high precision in the fields of character recogni-
tion, image classification, and face detection [10,13,14]. Inspired by the visual
cortex of the brain, CNN is typically composed of multi-layer networks. In recent
years, with the improvement of recognition accuracy, the depth of the network
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has been considerably increased. However, a deeper network structure means
more computation and more weight data access, which makes the low efficiency
of general-purpose processors in performing CNN calculations intolerable. There-
fore, various accelerators based on FPGA [8,15,16], GPU [9], and ASIC [2] have
been proposed, which gain better performance than general-purpose processors.
However, these accelerators are often optimized only for some layers of the neu-
ral network, with less flexibility. To address this problem, Chen’s team proposes
Cambricon [11], a domain-specific Instruction Set Architecture (ISA) for NN
accelerators, which supports ten network structures and has higher code den-
sity and performance than traditional ISA. Nevertheless, it is not specific to
CNNs, thereby overlooking the reusability and parallelism of data. Flexible for
CNNs, DaDianNao [3] can support the Multi-Layer Perceptrons (MLPs), but
it demands substantial reconfigurable computing units and complex control.
In [5,6], Luca et al. propose a Hardware Convolution Engine (HWCE) based
on RISC-V architecture and achieve significant results, but they only design
instructions for convolution operation, without considering other layers. Thus,
an efficient and flexible CNN-specific instruction set is still demanding.

In this paper, we present a novel lightweight ISA for CNN reference, called
RV-CNN. It consists of 9 instructions based on RISC-V, thereby to support the
current mainstream CNN technologies. The main work of this paper is summa-
rized as follows:

– Though studying computational patterns of the popular CNNs, we propose a
small and easy-to-implement CNN-specific instruction set, which can flexibly
support a variety of CNN structures.

– Breaking the traditional peripheral accelerator pattern, we extend CNN-
specific instructions into RISC-V five-stage pipeline architecture and par-
ticularly optimize the implementation of instructions.

– As a case study, we implement our design and evaluate it from code density,
performance, and power consumption, which demonstrates our design possess
promising energy efficiency.

The rest of this paper is organized as follows. Section 2 briefly introduces our
motivations and a few design preferences. Section 3 describes the details of the
new ISA. Section 4 illustrates the overall architecture. Section 5 displays the
experiment setup and evaluation results. Section 6 is the conclusion.

2 Motivations and Preferences

2.1 Motivations

Flexibility. Although compared with general-purpose processors, application
scenarios that hardware accelerators for CNNs will deal with are much decreased
and more certain, there are still many network structures which are different but
have similarities, possessing different strengths. Nevertheless, common hardware
accelerators normally deploy the whole or part of the neural network on the
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FPGA, in which the network structure is often not reconfigured due to time
expense. Thus, we expect to provide more flexibility for CNN techniques by
abstracting the intensive operations in CNNs into dedicated instructions. Users
can write assembly instructions to build a particular CNN.

Efficiency. Typically, an accelerator serves as a peripheral to the host CPU.
Hence, the host CPU is in charge of transferring data from the main memory
to the accelerator over a bus. It is obviously not a negligible overhead because
of additional processing in the operating system and massive data. Besides, bus
bandwidth also limits the performance of these accelerators. Therefore, instead
of the previous pattern, we deploy the acceleration unit into the processor’s
pipeline, and then optimize the memory access of the acceleration unit to satisfy
its data bandwidth requirements, thereby improving efficiency.

2.2 Design Preferences

RISC-V Extension. Designing a completely novel CNN-specific ISA usually
involves plenty of factors, but the part that restricts the speed of calculation is
what matters precisely. In view of the extensibility of RISC-V, we extend it with
our dedicated instructions which are crucial to accelerating the CNN computing,
while maintaining the basic kernel and each standard extension unchanged. In
this way, we can concentrate on designing our CNN instructions, as well as
directly using scalar and logical control instructions that the RISC-V provides.
Moreover, we can also utilize the toolchain provided by RISC-V to speed up the
development process.

Data-Level Parallelism. Taking the topological structure of convolutional
neural networks (layer-by-layer) and the independence of weight matrices
between layers into account, it is a more efficient way that utilizes data-level
parallelism by applying matrix instructions than exploring instruction-level par-
allelism in NN operations. Furthermore, when dealing with calculations involv-
ing large amounts of data, matrix instructions can explicitly specify the inde-
pendence between the data blocks, which can significantly reduce the size of
dependency detection logic, compared to the conventional scalar instructions.
What’s more, matrix instructions also possess higher code density, so we chiefly
focus on data-level parallelism here.

Scratchpad Memory. Vector registers commonly appear in the vector archi-
tecture, each of which is a fixed-length bank holding a single vector, and allow
processors to operate all elements in a vector at one time. Scratchpad memory [1],
a high-speed internal memory used for the temporary storage of calculations, can
be accessed by direct addressing, costs low power, and supports variable-length
data accesses. Considering that dense, continuous, variable-length data access
often occurs in CNNs, and weight data rarely reused, we replace vector registers
with the scratchpad memory in our design.
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3 Details of Custom Instructions

3.1 Custom Instructions

We design the RV-CNN architecture, including both data transfer and computa-
tional instructions, as shown in Table 1. Cooperating with the base ISA, RV-CNN
can perform typical CNN calculations. RV-CNN has 32 32-bit General-Purpose
Registers, which can be used to store scalar values, as well as in register-indirect
addressing of the on-chip scratchpad memory. Additionally, due to the 32-bit
instruction length limit, we set up a vector length register (VLR) to ascer-
tain the length of the vector, similar to the vector architecture. RV-CNN still
access memory only through the corresponding MLOAD/MSTORE, obeying a
load-store architecture of RISC-V. The instructions already in RISC-V are not
described here.

Table 1. An overview of RV-CNN.

Instruction type Example

Data Transfer MLOAD/MSTORE

Computational MMM/MSIG/MSFMX/MRELU

Logical MAXPOOL/MINPOOL/APOOL

Data Transfer Instructions. To flexibly support matrix operations, data
transfer instructions can load/store variable-size data blocks (an integer multi-
ple of VLR value) from/to main memory. Specifically, the stride field of instruc-
tions can designate the stride of adjacent elements, avoiding expensive matrix
transpose operations in memory. Figure 1 illustrates the matrix load (MLOAD)
instruction, where Reg0 specifies the destination address; Reg1, Reg2, and Reg3
respectively specify the source address of matrix, the size of the matrix, and the
stride of adjacent elements. Matrix store (MSTORE) instruction is similar to
that of MLOAD, while regularly ignoring the stride fields.

Fig. 1. Matrix Load (MLOAD) instruction.

Matrix Computational Instructions. CNNs are mainly composed of convo-
lutional layers, pooling layers, and fully-connected layers, where the most com-
putation concentrates in convolutional layers [4]. In the convolutional layer, con-
volution kernels move continuously on input feature maps and do a dot-product
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operation with the coincidence region to generate the input data of the next layer.
Nevertheless, in this process, the operation between different feature maps and
corresponding convolution kernels is independent of each other. To make full use
of data parallelism, we adopt mapping technology (im2col algorithm) to trans-
form 3-D convolution operation to MM operation (see Fig. 2 for an illustration).
Moreover, the computing unit can be reused by fully-connected layers on account
of analogous MM (row = 1) computing pattern. Note that instead of storing the
entire input feature data, the rearrangement is performed before when we store
them in the FPGA on-chip memory.

Fig. 2. Matrix multiplication version of convolution.

After mapping the 3D convolution to MM (matrix multiplication) operation,
we use the Matrix-Mult-Matrix instruction to perform it. It is illustrated in
Fig. 3, where Reg0 specifies the base scratchpad memory address of the matrix
output (Destination address); Inst[16:12] is the function field of the instruc-
tion, indicating the MM operation. Reg1 and Reg2 specify the base address of
the matrix1 and matrix2 respectively. The upper 16 bits and the lower 16 bits
in Reg3 specify the number of rows of matrix 1 and the number of columns
of matrix 2 (Rows + Cols), respectively. Accordingly, the size of matrix1 and
matrix2 can be ascertained by the value in VLR and Reg3. To utilize greater
extent of data locality as well as reduce concurrent read/write requests to the
same address, we choose to adopt dedicated the MMM instruction to perform
matrix multiplication instead of decomposing it into finer-grained instruction
(e.g., matrix-mult-vector and vector dot products) here.

Fig. 3. Matrix Multiply Matrix (MMM) instruction.
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The Matrix Sigmoid (MSIG) and the Matrix Softmax (MSFMX) instruction
are essential to complete the entire computation. By default, we employ the
MSIG instruction to activate the input data through the sigmoid function, to
define the output of neurons. Alternatively, users can choose the MRELU or
MTANH instruction to implement the relu or the tanh function by modifying the
Inst [31:27] field (see Fig. 4). Correspondingly, to obtain the prediction results,
the MSFMX instruction is used to normalize the output data.

Fig. 4. Matrix Sigmoid (MSIG) Instruction.

Matrix Logical Instruction. The formats of maximum pooling (MAXPOOL)
instruction (see Fig. 5) are similar to those of MLOAD, where reg0, reg1, and
reg2 possess the same meaning as MLOAD instruction, respectively presenting
destination address of output data, source address, and size of the input matrix.
Whereas, as to the GPOOL instruction, the upper 16 bits and the lower 16
bits in Reg3 respectively designate the size and sliding step of kernels. Also, the
MINPOOL (minimum pooling) or APOOL (average pooling) instruction, only
differing from the function field of the MAXPOOL instruction, can be taken to
determine the minimum or average pooling.

Fig. 5. Maximum Pooling (MAXPOOL) instruction.

3.2 Code Examples

To illustrate the usage of our proposed instructions, we implement two sim-
ple yet representative components of CNN, a convolutional layer and a pooling
layer. The example code of the fully-connected layer is similar to that of the
convolutional layer, except that the output should pass through the activation
function.
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Convolutional Layer Code:

//$1 : input mat1 address , $2 : input mat2 address
//$3 : temp va r i ab l e address , $4 : output s i z e
//$5 : row o f mat1 , c o l o f mat2 , $6 : mat1 address , $7 : mat1 s i z e
//$8 : mat2 address , $9 : mat2 s i z e , $10 : output matrix address

LI $5 , 0 x0310 0006 //row o f mat1 (784) , c o l o f mat2 (6 )
LI $VLR, 0x1A // s e t vector l ength (26)
MLOAD $1 , $6 , $7 // load ke rne l matrix
MLOAD $2 , $8 , $9 // load f e a tu r e map matrix
MMM $3 , $2 , $1 , $5 //mat1 x mat2
MSTORE $3 , $10 , $4 // s t o r e output to address ( $10 )

Pooling Layer Code:

//$1 : input mat address , $2 : f e a t u r e map s i z e
//$3 : loop counter , $4˜$6 : temp va r i ab l e address
//$8 : mat address , $7 : output mat address , $9 : output s i z e

ADDI $4 , $6 , #0
LI $10 , 0 x0004 0002 // ke rne l s i z e : 2 x2 , s tep=2
LI $VLR, 0x1C // s e t vector l ength (28)
LI $3 , 0x06 // s e t loop counter (6 )

L0 :MLOAD $1 , $8 , $2 // load f e a tu r e map
APOOL $5 , $1 , $2 , $10 // subsample
MSIG $4 , $5 , $2 // a c t i v a t e
ADDI $4 , $4 , 0xC4 //update temp address ( add 14x14 )
ADD $8 , $8 , $2 // next f e a tu r e map
SUB $3 , $3 , #1
BGE $3 , #0, L0 // i f ( loop counter >0) goto l a b e l 0
MSTORE $6 , $7 , $9 // s t o r e mat to address ( $7 )

4 Implementation Details

4.1 Overall Architecture

A simplified block diagram of the RV-CNN core architecture displaying its
pipeline stages and major functional blocks is illustrated in Fig. 6. It includes five
stages: fetching, decoding, execution, memory access, and write-back, in which
the matrix computing unit is in the execution stage of the pipeline. Since the
matrix unit can directly interact with the scratchpad memory, matrix opera-
tions do not go through the memory access and write-back stage. Correspond-
ingly, after the fetching and decoding stage, the instructions in the base ISA
will enter the ALU then go to the next stage, while the custom instructions
will perform corresponding operations such as data transmission, convolution,
and activation through the matrix unit. The address space of the scratchpad
memory is mapped to the main memory by global mapping, and the remain-
ing memory address space is still accessed through the cache. We can readily
embed Direct Memory Access (DMA) in the matrix unit for the data transfer.
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Furthermore, through appending a data buffer between the matrix unit and the
scratchpad memory, we can effectively reduce the data delay. In a nutshell, the
scratchpad memory and cache are relatively independent, and the control mod-
ule will detect the data dependence and decide whether to stall the pipeline or
not. By default, data involved in the execution of matrix computational logical
instructions should already exist in the scratchpad memory, which requires strict
control from the program.

Fig. 6. A simplified block diagram of the RV-CNN core.

4.2 Matrix Unit’s Architecture

The overall structure of the matrix unit is illustrated in Fig. 7, where the orange
and black arrows represent the control flow and the data flow, respectively. As
we can see, the internal controller, which works as a finite state machine, is the
center of the matrix unit. After receiving control signals from the previous stage,
the controller arouses the sub-component to complete the corresponding task if
it is available. Otherwise, it will generate a feedback signal to indicate that the
task is busy. The matrix unit contains four sub-units: Matrix multiplication, Sig-
moid, Pooling, and Softmax. The buffer module is essentially an on-chip memory
that buffers the input and output matrices and temporarily stores intermediate
results. Lastly, the input/output module is responsible for receiving/sending the
elements of the matrix in order.

4.3 Optimization

Since we reuse the MM unit to complete the computation-intensive convolutional
layers and memory-intensive fully-connected layers, the performance of the MM
unit exerts a significant impact on that of the whole matrix unit. Therefore,
we adopt an adder tree and data reuse to optimize the MM unit in terms of
computation and data access (see Fig. 7).
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Fig. 7. The architecture of matrix unit (left); Optimizing details for MM Unit (right).

Adder tree. Matrix multiplication composes of multiple vector dot products
where the length of the vector is variably regulated by VLR. In our design, the
length of two vectors that MM unit to handle is fixed at 16. Therefore, vector
length greater than 16 will be fragmented, and less than 16 will be padded
with zeros. We deploy several DSP48Es to complete the float-point addition
and multiplication and optimize the accumulation process of the dot product
by adopting a binary tree, which significantly reduces the time complexity, from
O(N) to O(log N). At the same time, utilizing pipeline technology, we can get
sum or partial sum in every clock cycle.

Data reuse. After the data required for matrix multiplication has been trans-
ferred from the main memory to the scratchpad memory, the matrix unit con-
tinuously acquires two vectors through the input unit to complete computing.
Considering the potential data locality in multiplication calculation, we lessen
data bandwidth requirements through data reuse. Clearly, the reuse distance of
the feature data is quite shorter than that of the weight matrix. Hence, we give
priority to the reuse of the feature matrix. Meanwhile, we set two vectors to read
the weight data, alternately used in current iteration computation.

5 Experiment and Results

5.1 Experiment Method

Platform. We synthesize the prototype system, then place, route the synthe-
sized design in Vivado 2017.4, and evaluate the core by deploying it in Nexys4
DDR development board.

Baselines. We compare the performance of our system with existing implemen-
tations on general-purpose CPU and GPU.

– CPU. The CPU baseline is i7-4790K. We compare the processing time and
power of our design with those of the CPU version of the program, utilizing
the PAPI (Performance Application Programming Interface) tool which is an
open source project provided by Intel, and gettimeofday() function.
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– GPU. For comparison, we implement a GPU solution on Tesla k40c, and mea-
sure the processing time and running power by applying the cuEventElapsed-
Time() function and nvprof command respectively (provided by NVIDIA).

Benchmarks. Based on LeNet-5, we take three common image classification
data sets (MNIST, CalTech 101, and CIFAR-10) as our benchmarks.

5.2 Results

In this subsection, we first report the resource utilization and power consump-
tion of the system in the FPGA board, and then compare our design on the
FPGA with CPU, GPU, and existing FPGA-based accelerators in three aspects
respectively.

Area and power. We obtain the utilization of resources and the power con-
sumption of FPGA by checking the implementation report in Vivado tools (LUT:
39.09%, 24780; FF: 26.49%, 33594; BRAM: 21.85%, 29.5; DSP: 50.42%, 121; and
Power: 0.331 W).

Flexibility. The dedicated ISA we propose is not only suitable for accelerating
CNN applications but also provides support to other deep learning algorithms
with similar computing patterns, like DNNs. We implement the popular CNNs
(Lenet-5, Alexnet, VGG) by using the specific instructions and measure the
average code size of three CNNs. Compared with the GPU, x86, and MIPS,
RV-CNN achieves 1.25x, 6.70x, 9.51x reduction of code length respectively.

Energy Efficiency. We compare the energy consumption of our system with
CPU and GPU in the CNN reference process. As shown in the Fig. 8, the power
consumption of CPU and GPU is 91.03x and 228.66x that of our design, and
the energy consumption is 36.09x and 11.42x that of our design, respectively.
Experimental results indicate that our design is significantly better than CPU
and GPU in terms of energy consumption.

Fig. 8. Power ratios (left) and Energy ratios (right) vs CPU and GPU (Based on
LeNet-5).
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Performance. We also compare our design with the existing accelerators.
Since different work adopts different quantization strategies and platforms, it is
hard to choose a precise and effective comparison method. As we can see, taking
Giga Operations Per Second (GOPS) as the evaluation standard, previous works
can achieve better performance than ours. However, higher performance is the
consumption of more resources, such as DSP blocks. In view of efficiency, we
finally chose a relatively fair comparison standard - performance/w, which is
defined as average GOPS per watt. As shown in Table 2, compared to previous
works, our design achieves the highest performance efficiency.

Table 2. Comparison with other FPGA accelerators.

[7] [17] [12] Ours

Platform Zynq XC7Z045 Virtex7 VX485T Zynq XC7Z045 Artix7 XC7A100T

Frequency(MHz) 150 100 150 100

Precision 16-bit fixed 32-bit float Q15 32-bit float

Power(W) 8 18.61 10 0.331

Perf(GOPS) 23.18 61.62 38.4 3.14(CONV)

DSP util N/A 2240 391 121

Perf/w(GOPS/w) 2.90 3.31 3.84 9.48

6 Conclusion

In this work, we present an easy-to-implement CNN-specific instruction set,
called RV-CNN, to provide more flexibility for CNN structures. Through study-
ing computational patterns of the popular CNN techniques, we design nine
coarse-grained matrix instructions in RV-CNN and extend the base RISC-V ISA
with it. Then, we embed the corresponding acceleration unit in the classic five-
stage pipeline architecture. Using Xilinx Artix7 100T to implement our design,
compared with the Intel Core i7 processor and Tesla k40c GPU, it holds 36.09x
and 11.42x energy efficiency ratio and 6.70x and 1.25x code density respectively.
Besides, compared with the existing accelerators, it also achieves a promising
energy efficiency.
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