
Pen-Chung Yew · Per Stenström ·
Junjie Wu · Xiaoli Gong · Tao Li (Eds.)

LN
CS

 1
17

19

13th International Symposium, APPT 2019
Tianjin, China, August 15–16, 2019
Proceedings

Advanced
Parallel Processing
Technologies

Lecture Notes in Computer Science 11719

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Pen-Chung Yew • Per Stenström •

Junjie Wu • Xiaoli Gong • Tao Li (Eds.)

Advanced
Parallel Processing
Technologies
13th International Symposium, APPT 2019
Tianjin, China, August 15–16, 2019
Proceedings

123

Editors
Pen-Chung Yew
University of Minnesota
Minneapolis, MN, USA

Per Stenström
Chalmers University of Technology
Gothenburg, Sweden

Junjie Wu
National University of Defense Technology
Changsha, China

Xiaoli Gong
Nankai University
Tianjin, China

Tao Li
Nankai University
Tianjin, China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-29610-0 ISBN 978-3-030-29611-7 (eBook)
https://doi.org/10.1007/978-3-030-29611-7

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-7441-8245
https://orcid.org/0000-0001-5951-8988
https://doi.org/10.1007/978-3-030-29611-7

Preface

The ever-increasing demand of parallel processing drives society to investigate new
computer architecture and system software techniques. Following this trend, APPT
2019 broadly captured the recent advances in parallel architectures and systems, par-
allel software, parallel algorithms and neural network applications, etc., and provided
an excellent forum for the presentation of research efforts and the exchange of
viewpoints.

We would like to express our gratitude to all the colleagues who submitted papers
and congratulate those whose papers were accepted. Following the success of its past
twelve conference editions, APPT 2019 managed to provide a high-quality program for
all attendees. The Program Committee (PC) decided to accept 11 papers. All sub-
missions were reviewed by three PC members. There was also an online discussion
stage to guarantee that consensus was reached for each submission.

We would like to thank the authors for submitting their work to APPT 2019,
and we would also like to show our sincere appreciation to the PC members. The 30
PC members did an excellent job in returning high-quality reviews in time and
engaging in a constructive online discussion. We would also like to thank the
general chairs (Prof. Ke Gong and Prof. Xiangke Liao), the organization chairs
(Prof. Tao Li, Prof. Dezun Dong, and Prof. Xiangfei Meng), and the publication chairs
(Prof. Junjie Wu and Prof. Xiaoli Gong). Our thanks also go to Springer for their
assistance in putting the proceedings together.

July 2019 Pen-Chung Yew
Per Stenström

Organization

APPT 2019 was organized by the China Computer Federation.

General Chairs

Ke Gong Nankai University, China
Xiangke Liao National University of Defense Technology, China

Steering Committee Chair

Yong Dou National University of Defense Technology, China

Steering Committee

Zhenzhou Ji Harbin Institute of Technology, China
Dongsheng Wang Tsinghua University, China
Xingwei Wang Northeastern University, China
Chenggang Wu Institute of Computing Technology, Chinese Academy

of Sciences, China
Gongxuan Zhang Nanjing University of Science and Technology, China
Junjie Wu National University of Defense Technology, China

Organization Chairs

Tao Li Nankai University, China
Xiangfei Meng National SuperComputer Center in Tianjin, China
Dezun Dong National University of Defense Technology, China

Organization Committee

Hong An University of Science and Technology of China, China
Qiang Cao Huazhong University of Science and Technology,

China
Yunji Chen Institute of Computing Technology, Chinese Academy

of Sciences, China
Yun Liang Peking University, China
Kuanjiu Zhou Dalian University of Technology, China
Sonwen Pei University of Shanghai for Science and Technology,

China
Tian Song Beijing Institute of Technology, China

Guanxue Yue Jiangxi University of Science and Technology, China
Lifang Wen China Machine Press, Beijing Huazhang Graphics

& Information Co. Ltd., China

Program Chairs

Pen-Chung Yew University of Minnesota, USA
Per Stenström Chalmers University of Technology, Sweden

Program Committee

Manuel E. Acacio University of Murcia, Spain
Trevor E. Carlson National University of Singapore, Singapore
Paul Carpenter Barcelona Supercomputing Center, Spain
Yong Chen Texas Tech University, USA
Rudolf Eigenmann University of Delaware, USA
Zhenman Fang Simon Fraser University, Canada
Bok-Min Goi Universiti Tunku Abdul Rahman, Malaysia
Anup Holey Nvidia, USA
Guoliang Jin North Carolina State University, USA
Jangwoo Kim Seoul National University, South Korea
John Kim Korea Advanced Institute of Science and Technology,

South Korea
Zhiyuan Li Purdue University, USA
Chen Liu Clarkson University, USA
Lei Liu Institute of Computing Technology, Chinese Academy

of Sciences, China
Vassilis Papaefstathiou FORTH-ICS, Greece
Miquel Pericas Chalmers University of Technology, Sweden
Cristina Silvano Politecnico di Milano, Italy
Magnus Själander Norwegian University of Science and Technology,

Norway
Shuaiwen Song Pacific Northwest National Lab, USA
James Tuck North Carolina State University, USA
Nian-Feng Tzeng Center for Advanced Computer Studies,

University of Louisiana at Lafayette, USA
Hans Vandierendonck Queen’s University Belfast, UK
Bo Wu Colorado School of Mines, USA
Liao Xiaofei Huazhong University of Science and Technology,

China
Zhibin Yu Shenzhen Institute of Advanced Technology, China
Mohamed Zahran New York University, USA
Antonia Zhai University of Minnesota, USA
Jidong Zhai Tsinghua University, China
Weihua Zhang Fudan University, China
Huiyang Zhou NC State University, USA

viii Organization

Publicity and Exhibition Chairs

Weixing Ji Beijing Institute of Technology, China
Jizeng Wei Tianjin University, China

Publication Chairs

Junjie Wu National University of Defense Technology, China
Xiaoli Gong Nankai University, China

Workshop Chairs

Chao Li Shanghai Jiaotong University, China
Lifang Wen China Machine Press, Beijing Huazhang Graphics

& Information Co. Ltd., China

Local Chair

Ye Lu Nankai University, China

Poster Chair

Yong Xie Xiamen University of Technology, China

Organization ix

Contents

System Support for Neural Networks

RV-CNN: Flexible and Efficient Instruction Set for CNNs Based
on RISC-V Processors . 3

Wenqi Lou, Chao Wang, Lei Gong, and Xuehai Zhou

Compiling Optimization for Neural Network Accelerators 15
Jin Song, Yimin Zhuang, Xiaobing Chen, Tian Zhi, and Shaoli Liu

ZhuQue: A Neural Network Programming Model Based on Labeled
Data Layout . 27

Weijian Du, Linyang Wu, Xiaobing Chen, Yimin Zhuang, and Tian Zhi

Scheduling and File Systems

Reducing Rename Overhead in Full-Path-Indexed File System 43
Longhua Wang, Youyou Lu, Siyang Li, Fan Yang, and Jiwu Shu

Partition and Scheduling Algorithms for Neural Network Accelerators 55
Xiaobing Chen, Shaohui Peng, Luyang Jin, Yimin Zhuang, Jin Song,
Weijian Du, Shaoli Liu, and Tian Zhi

Optimization and Parallelization

SPART: Optimizing CNNs by Utilizing Both Sparsity of Weights
and Feature Maps . 71

Jiaming Xie and Yun Liang

DA-BERT: Enhancing Part-of-Speech Tagging of Aspect Sentiment
Analysis Using BERT . 86

Songwen Pei, Lulu Wang, Tianma Shen, and Zhong Ning

Random Inception Module and Its Parallel Implementation. 96
Yingqi Gao, Kunpeng Xie, Song Guo, Kai Wang, Hong Kang,
and Tao Li

Security and Algorithms

CBA-Detector: An Accurate Detector Against Cache-Based Attacks
Using HPCs and Pintools . 109

Beilei Zheng, Jianan Gu, and Chuliang Weng

An Efficient Log Parsing Algorithm Based on Heuristic Rules 123
Lin Zhang, Xueshuo Xie, Kunpeng Xie, Zhi Wang, Ye Lu,
and Yujun Zhang

Distribution Forest: An Anomaly Detection Method Based
on Isolation Forest . 135

Chengfei Yao, Xiaoqing Ma, Biao Chen, Xiaosong Zhao, and Gang Bai

Author Index . 149

xii Contents

System Support for Neural Networks

RV-CNN: Flexible and Efficient
Instruction Set for CNNs Based

on RISC-V Processors

Wenqi Lou, Chao Wang(B), Lei Gong, and Xuehai Zhou

School of Computer Science, University of Science and Technology of China,
Hefei, China

{louwenqi,leigong0203}@mail.ustc.edu.cn, {cswang,xhzhou}@ustc.edu.cn

Abstract. Convolutional Neural Network (CNN) has gained significant
attention in the field of machine learning, particularly due to its high
accuracy in character recognition and image classification. Neverthe-
less, due to the computation-intensive and memory-intensive character
of CNN, general-purpose processors which usually need to support var-
ious workloads are not efficient for CNN implementation. Therefore, a
great deal of emerging CNN-specific hardware accelerators is able to
improve efficiency. Although existing accelerators are significantly effi-
cient, they are often inflexible or require complex controllers to handle
calculations and data transfer. In this paper, we analyze classical CNN
applications and design a domain-specific instruction set of 9 matrix
instructions, called RV-CNN, based on the promising RISC-V architec-
ture. By abstracting CNN into instructions, our design possesses a higher
code density and provides sufficient flexibility and efficiency for CNN
than general-purpose ISAs. Specifically, the proposed instructions are
extended to RISC-V ISA as custom instructions. Besides, we also intro-
duce micro-architectural optimizations to increase computational density
and reduce the required memory bandwidth. Finally, we implement the
architecture with the extended ISA and evaluate it with LeNet-5 on the
datasets (MNIST, Caltech101, and Cifar-10). Results show that com-
pared with the Intel Core i7 processor and Tesla k40c GPU, our design
has 36.09x and 11.42x energy efficiency ratio and 6.70x and 1.25x code
density respectively.

Keywords: CNN · RISC-V · Domain-specific instructions · FPGA

1 Introduction

Convolutional neural network (CNN), a category of feed-forward artificial neural
networks, is well known for its high precision in the fields of character recogni-
tion, image classification, and face detection [10,13,14]. Inspired by the visual
cortex of the brain, CNN is typically composed of multi-layer networks. In recent
years, with the improvement of recognition accuracy, the depth of the network
c© Springer Nature Switzerland AG 2019
P.-C. Yew et al. (Eds.): APPT 2019, LNCS 11719, pp. 3–14, 2019.
https://doi.org/10.1007/978-3-030-29611-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29611-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-29611-7_1

4 W. Lou et al.

has been considerably increased. However, a deeper network structure means
more computation and more weight data access, which makes the low efficiency
of general-purpose processors in performing CNN calculations intolerable. There-
fore, various accelerators based on FPGA [8,15,16], GPU [9], and ASIC [2] have
been proposed, which gain better performance than general-purpose processors.
However, these accelerators are often optimized only for some layers of the neu-
ral network, with less flexibility. To address this problem, Chen’s team proposes
Cambricon [11], a domain-specific Instruction Set Architecture (ISA) for NN
accelerators, which supports ten network structures and has higher code den-
sity and performance than traditional ISA. Nevertheless, it is not specific to
CNNs, thereby overlooking the reusability and parallelism of data. Flexible for
CNNs, DaDianNao [3] can support the Multi-Layer Perceptrons (MLPs), but
it demands substantial reconfigurable computing units and complex control.
In [5,6], Luca et al. propose a Hardware Convolution Engine (HWCE) based
on RISC-V architecture and achieve significant results, but they only design
instructions for convolution operation, without considering other layers. Thus,
an efficient and flexible CNN-specific instruction set is still demanding.

In this paper, we present a novel lightweight ISA for CNN reference, called
RV-CNN. It consists of 9 instructions based on RISC-V, thereby to support the
current mainstream CNN technologies. The main work of this paper is summa-
rized as follows:

– Though studying computational patterns of the popular CNNs, we propose a
small and easy-to-implement CNN-specific instruction set, which can flexibly
support a variety of CNN structures.

– Breaking the traditional peripheral accelerator pattern, we extend CNN-
specific instructions into RISC-V five-stage pipeline architecture and par-
ticularly optimize the implementation of instructions.

– As a case study, we implement our design and evaluate it from code density,
performance, and power consumption, which demonstrates our design possess
promising energy efficiency.

The rest of this paper is organized as follows. Section 2 briefly introduces our
motivations and a few design preferences. Section 3 describes the details of the
new ISA. Section 4 illustrates the overall architecture. Section 5 displays the
experiment setup and evaluation results. Section 6 is the conclusion.

2 Motivations and Preferences

2.1 Motivations

Flexibility. Although compared with general-purpose processors, application
scenarios that hardware accelerators for CNNs will deal with are much decreased
and more certain, there are still many network structures which are different but
have similarities, possessing different strengths. Nevertheless, common hardware
accelerators normally deploy the whole or part of the neural network on the

RV-CNN: Flexible and Efficient Instruction Set for CNNs Based on RISC-V 5

FPGA, in which the network structure is often not reconfigured due to time
expense. Thus, we expect to provide more flexibility for CNN techniques by
abstracting the intensive operations in CNNs into dedicated instructions. Users
can write assembly instructions to build a particular CNN.

Efficiency. Typically, an accelerator serves as a peripheral to the host CPU.
Hence, the host CPU is in charge of transferring data from the main memory
to the accelerator over a bus. It is obviously not a negligible overhead because
of additional processing in the operating system and massive data. Besides, bus
bandwidth also limits the performance of these accelerators. Therefore, instead
of the previous pattern, we deploy the acceleration unit into the processor’s
pipeline, and then optimize the memory access of the acceleration unit to satisfy
its data bandwidth requirements, thereby improving efficiency.

2.2 Design Preferences

RISC-V Extension. Designing a completely novel CNN-specific ISA usually
involves plenty of factors, but the part that restricts the speed of calculation is
what matters precisely. In view of the extensibility of RISC-V, we extend it with
our dedicated instructions which are crucial to accelerating the CNN computing,
while maintaining the basic kernel and each standard extension unchanged. In
this way, we can concentrate on designing our CNN instructions, as well as
directly using scalar and logical control instructions that the RISC-V provides.
Moreover, we can also utilize the toolchain provided by RISC-V to speed up the
development process.

Data-Level Parallelism. Taking the topological structure of convolutional
neural networks (layer-by-layer) and the independence of weight matrices
between layers into account, it is a more efficient way that utilizes data-level
parallelism by applying matrix instructions than exploring instruction-level par-
allelism in NN operations. Furthermore, when dealing with calculations involv-
ing large amounts of data, matrix instructions can explicitly specify the inde-
pendence between the data blocks, which can significantly reduce the size of
dependency detection logic, compared to the conventional scalar instructions.
What’s more, matrix instructions also possess higher code density, so we chiefly
focus on data-level parallelism here.

Scratchpad Memory. Vector registers commonly appear in the vector archi-
tecture, each of which is a fixed-length bank holding a single vector, and allow
processors to operate all elements in a vector at one time. Scratchpad memory [1],
a high-speed internal memory used for the temporary storage of calculations, can
be accessed by direct addressing, costs low power, and supports variable-length
data accesses. Considering that dense, continuous, variable-length data access
often occurs in CNNs, and weight data rarely reused, we replace vector registers
with the scratchpad memory in our design.

6 W. Lou et al.

3 Details of Custom Instructions

3.1 Custom Instructions

We design the RV-CNN architecture, including both data transfer and computa-
tional instructions, as shown in Table 1. Cooperating with the base ISA, RV-CNN
can perform typical CNN calculations. RV-CNN has 32 32-bit General-Purpose
Registers, which can be used to store scalar values, as well as in register-indirect
addressing of the on-chip scratchpad memory. Additionally, due to the 32-bit
instruction length limit, we set up a vector length register (VLR) to ascer-
tain the length of the vector, similar to the vector architecture. RV-CNN still
access memory only through the corresponding MLOAD/MSTORE, obeying a
load-store architecture of RISC-V. The instructions already in RISC-V are not
described here.

Table 1. An overview of RV-CNN.

Instruction type Example

Data Transfer MLOAD/MSTORE

Computational MMM/MSIG/MSFMX/MRELU

Logical MAXPOOL/MINPOOL/APOOL

Data Transfer Instructions. To flexibly support matrix operations, data
transfer instructions can load/store variable-size data blocks (an integer multi-
ple of VLR value) from/to main memory. Specifically, the stride field of instruc-
tions can designate the stride of adjacent elements, avoiding expensive matrix
transpose operations in memory. Figure 1 illustrates the matrix load (MLOAD)
instruction, where Reg0 specifies the destination address; Reg1, Reg2, and Reg3
respectively specify the source address of matrix, the size of the matrix, and the
stride of adjacent elements. Matrix store (MSTORE) instruction is similar to
that of MLOAD, while regularly ignoring the stride fields.

Fig. 1. Matrix Load (MLOAD) instruction.

Matrix Computational Instructions. CNNs are mainly composed of convo-
lutional layers, pooling layers, and fully-connected layers, where the most com-
putation concentrates in convolutional layers [4]. In the convolutional layer, con-
volution kernels move continuously on input feature maps and do a dot-product

RV-CNN: Flexible and Efficient Instruction Set for CNNs Based on RISC-V 7

operation with the coincidence region to generate the input data of the next layer.
Nevertheless, in this process, the operation between different feature maps and
corresponding convolution kernels is independent of each other. To make full use
of data parallelism, we adopt mapping technology (im2col algorithm) to trans-
form 3-D convolution operation to MM operation (see Fig. 2 for an illustration).
Moreover, the computing unit can be reused by fully-connected layers on account
of analogous MM (row = 1) computing pattern. Note that instead of storing the
entire input feature data, the rearrangement is performed before when we store
them in the FPGA on-chip memory.

Fig. 2. Matrix multiplication version of convolution.

After mapping the 3D convolution to MM (matrix multiplication) operation,
we use the Matrix-Mult-Matrix instruction to perform it. It is illustrated in
Fig. 3, where Reg0 specifies the base scratchpad memory address of the matrix
output (Destination address); Inst[16:12] is the function field of the instruc-
tion, indicating the MM operation. Reg1 and Reg2 specify the base address of
the matrix1 and matrix2 respectively. The upper 16 bits and the lower 16 bits
in Reg3 specify the number of rows of matrix 1 and the number of columns
of matrix 2 (Rows + Cols), respectively. Accordingly, the size of matrix1 and
matrix2 can be ascertained by the value in VLR and Reg3. To utilize greater
extent of data locality as well as reduce concurrent read/write requests to the
same address, we choose to adopt dedicated the MMM instruction to perform
matrix multiplication instead of decomposing it into finer-grained instruction
(e.g., matrix-mult-vector and vector dot products) here.

Fig. 3. Matrix Multiply Matrix (MMM) instruction.

8 W. Lou et al.

The Matrix Sigmoid (MSIG) and the Matrix Softmax (MSFMX) instruction
are essential to complete the entire computation. By default, we employ the
MSIG instruction to activate the input data through the sigmoid function, to
define the output of neurons. Alternatively, users can choose the MRELU or
MTANH instruction to implement the relu or the tanh function by modifying the
Inst [31:27] field (see Fig. 4). Correspondingly, to obtain the prediction results,
the MSFMX instruction is used to normalize the output data.

Fig. 4. Matrix Sigmoid (MSIG) Instruction.

Matrix Logical Instruction. The formats of maximum pooling (MAXPOOL)
instruction (see Fig. 5) are similar to those of MLOAD, where reg0, reg1, and
reg2 possess the same meaning as MLOAD instruction, respectively presenting
destination address of output data, source address, and size of the input matrix.
Whereas, as to the GPOOL instruction, the upper 16 bits and the lower 16
bits in Reg3 respectively designate the size and sliding step of kernels. Also, the
MINPOOL (minimum pooling) or APOOL (average pooling) instruction, only
differing from the function field of the MAXPOOL instruction, can be taken to
determine the minimum or average pooling.

Fig. 5. Maximum Pooling (MAXPOOL) instruction.

3.2 Code Examples

To illustrate the usage of our proposed instructions, we implement two sim-
ple yet representative components of CNN, a convolutional layer and a pooling
layer. The example code of the fully-connected layer is similar to that of the
convolutional layer, except that the output should pass through the activation
function.

RV-CNN: Flexible and Efficient Instruction Set for CNNs Based on RISC-V 9

Convolutional Layer Code:

//$1 : input mat1 address , $2 : input mat2 address
//$3 : temp va r i ab l e address , $4 : output s i z e
//$5 : row o f mat1 , c o l o f mat2 , $6 : mat1 address , $7 : mat1 s i z e
//$8 : mat2 address , $9 : mat2 s i z e , $10 : output matrix address

LI $5 , 0 x0310 0006 //row o f mat1 (784) , c o l o f mat2 (6)
LI $VLR, 0x1A // s e t vector l ength (26)
MLOAD $1 , $6 , $7 // load ke rne l matrix
MLOAD $2 , $8 , $9 // load f e a tu r e map matrix
MMM $3 , $2 , $1 , $5 //mat1 x mat2
MSTORE $3 , $10 , $4 // s t o r e output to address ($10)

Pooling Layer Code:

//$1 : input mat address , $2 : f e a t u r e map s i z e
//$3 : loop counter , $4˜$6 : temp va r i ab l e address
//$8 : mat address , $7 : output mat address , $9 : output s i z e

ADDI $4 , $6 , #0
LI $10 , 0 x0004 0002 // ke rne l s i z e : 2 x2 , s tep=2
LI $VLR, 0x1C // s e t vector l ength (28)
LI $3 , 0x06 // s e t loop counter (6)

L0 :MLOAD $1 , $8 , $2 // load f e a tu r e map
APOOL $5 , $1 , $2 , $10 // subsample
MSIG $4 , $5 , $2 // a c t i v a t e
ADDI $4 , $4 , 0xC4 //update temp address (add 14x14)
ADD $8 , $8 , $2 // next f e a tu r e map
SUB $3 , $3 , #1
BGE $3 , #0, L0 // i f (loop counter >0) goto l a b e l 0
MSTORE $6 , $7 , $9 // s t o r e mat to address ($7)

4 Implementation Details

4.1 Overall Architecture

A simplified block diagram of the RV-CNN core architecture displaying its
pipeline stages and major functional blocks is illustrated in Fig. 6. It includes five
stages: fetching, decoding, execution, memory access, and write-back, in which
the matrix computing unit is in the execution stage of the pipeline. Since the
matrix unit can directly interact with the scratchpad memory, matrix opera-
tions do not go through the memory access and write-back stage. Correspond-
ingly, after the fetching and decoding stage, the instructions in the base ISA
will enter the ALU then go to the next stage, while the custom instructions
will perform corresponding operations such as data transmission, convolution,
and activation through the matrix unit. The address space of the scratchpad
memory is mapped to the main memory by global mapping, and the remain-
ing memory address space is still accessed through the cache. We can readily
embed Direct Memory Access (DMA) in the matrix unit for the data transfer.

10 W. Lou et al.

Furthermore, through appending a data buffer between the matrix unit and the
scratchpad memory, we can effectively reduce the data delay. In a nutshell, the
scratchpad memory and cache are relatively independent, and the control mod-
ule will detect the data dependence and decide whether to stall the pipeline or
not. By default, data involved in the execution of matrix computational logical
instructions should already exist in the scratchpad memory, which requires strict
control from the program.

Fig. 6. A simplified block diagram of the RV-CNN core.

4.2 Matrix Unit’s Architecture

The overall structure of the matrix unit is illustrated in Fig. 7, where the orange
and black arrows represent the control flow and the data flow, respectively. As
we can see, the internal controller, which works as a finite state machine, is the
center of the matrix unit. After receiving control signals from the previous stage,
the controller arouses the sub-component to complete the corresponding task if
it is available. Otherwise, it will generate a feedback signal to indicate that the
task is busy. The matrix unit contains four sub-units: Matrix multiplication, Sig-
moid, Pooling, and Softmax. The buffer module is essentially an on-chip memory
that buffers the input and output matrices and temporarily stores intermediate
results. Lastly, the input/output module is responsible for receiving/sending the
elements of the matrix in order.

4.3 Optimization

Since we reuse the MM unit to complete the computation-intensive convolutional
layers and memory-intensive fully-connected layers, the performance of the MM
unit exerts a significant impact on that of the whole matrix unit. Therefore,
we adopt an adder tree and data reuse to optimize the MM unit in terms of
computation and data access (see Fig. 7).

RV-CNN: Flexible and Efficient Instruction Set for CNNs Based on RISC-V 11

Fig. 7. The architecture of matrix unit (left); Optimizing details for MM Unit (right).

Adder tree. Matrix multiplication composes of multiple vector dot products
where the length of the vector is variably regulated by VLR. In our design, the
length of two vectors that MM unit to handle is fixed at 16. Therefore, vector
length greater than 16 will be fragmented, and less than 16 will be padded
with zeros. We deploy several DSP48Es to complete the float-point addition
and multiplication and optimize the accumulation process of the dot product
by adopting a binary tree, which significantly reduces the time complexity, from
O(N) to O(log N). At the same time, utilizing pipeline technology, we can get
sum or partial sum in every clock cycle.

Data reuse. After the data required for matrix multiplication has been trans-
ferred from the main memory to the scratchpad memory, the matrix unit con-
tinuously acquires two vectors through the input unit to complete computing.
Considering the potential data locality in multiplication calculation, we lessen
data bandwidth requirements through data reuse. Clearly, the reuse distance of
the feature data is quite shorter than that of the weight matrix. Hence, we give
priority to the reuse of the feature matrix. Meanwhile, we set two vectors to read
the weight data, alternately used in current iteration computation.

5 Experiment and Results

5.1 Experiment Method

Platform. We synthesize the prototype system, then place, route the synthe-
sized design in Vivado 2017.4, and evaluate the core by deploying it in Nexys4
DDR development board.

Baselines. We compare the performance of our system with existing implemen-
tations on general-purpose CPU and GPU.

– CPU. The CPU baseline is i7-4790K. We compare the processing time and
power of our design with those of the CPU version of the program, utilizing
the PAPI (Performance Application Programming Interface) tool which is an
open source project provided by Intel, and gettimeofday() function.

12 W. Lou et al.

– GPU. For comparison, we implement a GPU solution on Tesla k40c, and mea-
sure the processing time and running power by applying the cuEventElapsed-
Time() function and nvprof command respectively (provided by NVIDIA).

Benchmarks. Based on LeNet-5, we take three common image classification
data sets (MNIST, CalTech 101, and CIFAR-10) as our benchmarks.

5.2 Results

In this subsection, we first report the resource utilization and power consump-
tion of the system in the FPGA board, and then compare our design on the
FPGA with CPU, GPU, and existing FPGA-based accelerators in three aspects
respectively.

Area and power. We obtain the utilization of resources and the power con-
sumption of FPGA by checking the implementation report in Vivado tools (LUT:
39.09%, 24780; FF: 26.49%, 33594; BRAM: 21.85%, 29.5; DSP: 50.42%, 121; and
Power: 0.331 W).

Flexibility. The dedicated ISA we propose is not only suitable for accelerating
CNN applications but also provides support to other deep learning algorithms
with similar computing patterns, like DNNs. We implement the popular CNNs
(Lenet-5, Alexnet, VGG) by using the specific instructions and measure the
average code size of three CNNs. Compared with the GPU, x86, and MIPS,
RV-CNN achieves 1.25x, 6.70x, 9.51x reduction of code length respectively.

Energy Efficiency. We compare the energy consumption of our system with
CPU and GPU in the CNN reference process. As shown in the Fig. 8, the power
consumption of CPU and GPU is 91.03x and 228.66x that of our design, and
the energy consumption is 36.09x and 11.42x that of our design, respectively.
Experimental results indicate that our design is significantly better than CPU
and GPU in terms of energy consumption.

Fig. 8. Power ratios (left) and Energy ratios (right) vs CPU and GPU (Based on
LeNet-5).

RV-CNN: Flexible and Efficient Instruction Set for CNNs Based on RISC-V 13

Performance. We also compare our design with the existing accelerators.
Since different work adopts different quantization strategies and platforms, it is
hard to choose a precise and effective comparison method. As we can see, taking
Giga Operations Per Second (GOPS) as the evaluation standard, previous works
can achieve better performance than ours. However, higher performance is the
consumption of more resources, such as DSP blocks. In view of efficiency, we
finally chose a relatively fair comparison standard - performance/w, which is
defined as average GOPS per watt. As shown in Table 2, compared to previous
works, our design achieves the highest performance efficiency.

Table 2. Comparison with other FPGA accelerators.

[7] [17] [12] Ours

Platform Zynq XC7Z045 Virtex7 VX485T Zynq XC7Z045 Artix7 XC7A100T

Frequency(MHz) 150 100 150 100

Precision 16-bit fixed 32-bit float Q15 32-bit float

Power(W) 8 18.61 10 0.331

Perf(GOPS) 23.18 61.62 38.4 3.14(CONV)

DSP util N/A 2240 391 121

Perf/w(GOPS/w) 2.90 3.31 3.84 9.48

6 Conclusion

In this work, we present an easy-to-implement CNN-specific instruction set,
called RV-CNN, to provide more flexibility for CNN structures. Through study-
ing computational patterns of the popular CNN techniques, we design nine
coarse-grained matrix instructions in RV-CNN and extend the base RISC-V ISA
with it. Then, we embed the corresponding acceleration unit in the classic five-
stage pipeline architecture. Using Xilinx Artix7 100T to implement our design,
compared with the Intel Core i7 processor and Tesla k40c GPU, it holds 36.09x
and 11.42x energy efficiency ratio and 6.70x and 1.25x code density respectively.
Besides, compared with the existing accelerators, it also achieves a promising
energy efficiency.

Acknowledgments. This work is partially supported by the National Key Research
and Development Program of China (under Grant 2017YFA0700900), National Science
Foundation of China (No. 61772482), Jiangsu Provincial Natural Science Foundation
(No. BK20181193), Youth Innovation Promotion Association CAS (No. 2017497), and
Fundamental Research Funds for the Central Universities (WK2150110003).

References

1. Banakar, R., Steinke, S., Lee, B.S., Balakrishnan, M., Marwedel, P.: Scratchpad
memory: a design alternative for cache on-chip memory in embedded systems. In:
International Symposium on Hardware/software Codesign (2002)

14 W. Lou et al.

2. Chen, T., et al.: DianNao: a small-footprint high-throughput accelerator for ubiq-
uitous machine-learning. In: ACM SIGPLAN Notices, vol. 49, pp. 269–284. ACM
(2014)

3. Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., et al.: DaDianNao: a machine-learning
supercomputer. In: Proceedings of the 47th Annual IEEE/ACM International Sym-
posium on Microarchitecture, pp. 609–622. IEEE Computer Society (2014)

4. Cong, J., Xiao, B.: Minimizing computation in convolutional neural networks. In:
Wermter, S., et al. (eds.) ICANN 2014. LNCS, vol. 8681, pp. 281–290. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11179-7 36

5. Conti, F., Rossi, D., Pullini, A., Loi, I., Benini, L.: PULP: a ultra-low power parallel
accelerator for energy-efficient and flexible embedded vision. J. Signal Process.
Syst. 84(3), 339–354 (2016)

6. Flamand, E., et al.: GAP-8: a RISC-V SoC for AI at the edge of the IoT. In:
2018 IEEE 29th International Conference on Application-Specific Systems, Archi-
tectures and Processors (ASAP), pp. 1–4. IEEE (2018)

7. Gokhale, V., Jin, J., Dundar, A., Martini, B., Culurciello, E.: A 240 G-ops/s mobile
coprocessor for deep neural networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pp. 682–687 (2014)

8. Gong, L., Wang, C., Li, X., Chen, H., Zhou, X.: MALOC: a fully pipelined fpga
accelerator for convolutional neural networks with all layers mapped on chip. IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst. 37(11), 2601–2612 (2018)

9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

10. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning
applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

11. Liu, S., et al.: Cambricon: an instruction set architecture for neural networks. In:
ACM SIGARCH Computer Architecture News, vol. 44, pp. 393–405. IEEE Press
(2016)

12. Moini, S., Alizadeh, B., Ebrahimpour, R.: A resource-limited hardware accelerator
for convolutional neural networks in embedded vision applications. IEEE Trans.
Circuits Syst. II: Express Briefs 64(10), 1217–1221 (2017)

13. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

14. Sun, Y., Chen, Y., Wang, X., Tang, X.: Deep learning face representation by joint
identification-verification. In: Advances in Neural Information Processing Systems,
pp. 1988–1996 (2014)

15. Wang, C., Gong, L., Yu, Q., Li, X., Xie, Y., Zhou, X.: DLAU: a scalable deep learn-
ing accelerator unit on FPGA. IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst. 36(3), 513–517 (2016)

16. Wang, C., Li, X., Chen, Y., Zhang, Y., Diessel, O., Zhou, X.: Service-oriented
architecture on FPGA-based MPSoC. IEEE Trans. Parallel Distrib. Syst. 28(10),
2993–3006 (2017)

17. Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B., Cong, J.: Optimizing FPGA-based
accelerator design for deep convolutional neural networks. In: Proceedings of the
2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
pp. 161–170. ACM (2015)

https://doi.org/10.1007/978-3-319-11179-7_36
http://arxiv.org/abs/1409.1556

Compiling Optimization for Neural Network
Accelerators

Jin Song1,2,3(&), Yimin Zhuang1,2,3, Xiaobing Chen1,2,3,
Tian Zhi2,3(&), and Shaoli Liu2,3

1 University of Chinese Academy of Sciences, Beijing, China
2 SKL of Computer Architecture, Institute of Computing Technology, CAS,

Beijing, China
{songjin,zhitian}@ict.ac.cn
3 Cambricon Tech. Ltd., Beijing, China

Abstract. Nowadays artificial neural networks are one of the most common
computational models among all the intelligent methods. To cope with the ever-
growing scales of neural networks and the restrictions of system energy con-
sumption, there comes out a bunch of neural network (NN) accelerators.
However, owing to their dedicated architecture, programming on NN acceler-
ators is different from general processors. In order to improve performance, it is
necessary to use global structure information of NN model to optimize the
compilation. In this paper, we introduce a series of layer-based compile opti-
mizations for NN accelerators. From top to bottom, we define a type of com-
putational graph, carrying necessary information such as relationship between
layer nodes and data nodes. Then according to the pattern of a NN layer
computation process, we apply an intra layer loop unrolling and pipelining,
including fine-grained and coarse-grained two levels. Similarly, we apply layer
fusion optimization based on our computational graph and abstract pipelining
stage. After expanding pipelining stages of layers, we can reduce some redun-
dant IO operations, which we call it layer elimination optimization. The
experiment results show that with our proposed optimizations the inference
process can achieve up to 1.34x speedup than not using fusion optimization.

Keywords: Neural network accelerator � Compile optimization � Layer fusion

1 Introduction

At present, intelligent applications such as image recognition [1–3], target detection [4,
5] and natural language processing [6, 7] have become one of the hottest spots both in
commercial and research areas. Artificial Intelligence (AI) are not only used in a lot of
smart applications but even in the complex strategy games like Go [8, 9], Dota2 [10].
To some extent, AI has started to beat human in the man-machine matches.

However, as the deep learning algorithm is highly intensive in computation and
memory access, the traditional processors can no longer meet the demand of intelligent
applications. For instance, in the field of intelligent driving, the forward inference
operations have strict sequential requirements. In this context, lots of machine learning

© Springer Nature Switzerland AG 2019
P.-C. Yew et al. (Eds.): APPT 2019, LNCS 11719, pp. 15–26, 2019.
https://doi.org/10.1007/978-3-030-29611-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29611-7_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29611-7_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29611-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-29611-7_2

accelerators have come out [11–15, 17, 18]. Theory and practice have proved that,
using dedicated intelligent processor to accelerate machine learning algorithm, the
energy efficiency ratio can be improved dozens or even hundreds of times compared to
the general processors. In practical applications, most of the NN accelerators adopt
verified methods (e.g. low-precision representation, quantitative calculation, sparse
weights, ReLU (Rectified Linear Unit) layer and so on) to acquire performance
improvement. And there is also an Instruction Set Architecture (ISA) for NN [19]
proposed for the flexibility and effectiveness. However, those different optimizations
bring complexity for NN compilation.

While programming on a NN accelerator, manual optimization for the whole net-
work structure is unpractical because both the scale and the parameters in NNs are
massive and complexity is exponentially-growing [20, 21, 23]. Moreover, the calcu-
lation methods in NN models are also changing with the development of algorithms.
For example, dilated convolution layer adds a new parameter “dilation” to expand the
receptive field [24]. They change the kernel data fetching orders. For AlexNet [1], there
is group convolution structure; For MobileNet [25], there is depth separable convo-
lution (Depth-wise Conv) structure; For ShuffleNet [3], the convolution layer follows
shuffle layer, etc. Due to the complexity of NN algorithms and the deepening of
models, the programming and optimization for NN accelerators must be automatically
accomplished by software not by human programmer.

There are several popular deep learning frameworks (such as Tensorflow [27], caffe
[28], MXNet [29], etc.) for AI developers to build their models and train, fine-tune and
share to other researchers. However, the description of a model is usually expressed by
operators or layers as basic units. Thus, we use a layer-based computing graph model
as a high-level intermediate representation (IR) to optimize compilation. Subsequently,
the low-level optimization is also based on layers. We propose a novel programming
style called stage level parallel, taking advantage of NN accelerators instructions
parallel execution on different types of on-chip resources. In inference process, some of
parameters and scale of NN layers are constant and we can implement intra layer
pipelining and loop unrolling to reduce redundant instructions. Also, between layers,
based on stage level parallel instruction blocks, we can deploy layer fusion and layer
elimination optimizations to get a further better performance.

2 Compiling Optimization

2.1 Definition of Computational Graph

We choose a high-level IR of optimization similar to that in TVM [34] where a node
represents an operation and edges represent data dependencies between operations. Our
graph uses nodes with a label of name represent layers and data which are linking in a
layer as shown on the Fig. 1 below.

16 J. Song et al.

For example, a convolution layer L1 receives user’s input image as the input data
for its computation and its output data is the input data of L3 (as shown in Fig. 1).
Besides data nodes index, layer nodes attributes include more information such as
identification number, layer types, computation mode, etc. Data nodes contain tags of
off-chip memory allocation type, is constant or not, data type and so on.

And there is a more important information is the relationship of a layer-data node
pair. We choose a producer-consumer model to describe dependencies between nodes.
A layer node can have zero-to-many input data nodes, and these data’s consumer lists
contain this layer. A layer node can have one-to-many output data nodes, and these
data’s producer is this layer, which means that a data’s consumer is a list and producer
can have only one, from user direct input or from other layers. These identifiers of
information are used for data layout and back-ends instruction generation processing
stages.

The computational graph is built in high-level NN frameworks’ kernel or operator
functions such as Tensorflow or MXNet. And after several intermediate optimization
steps, the graph backend calls NN accelerator compiler library APIs to generate binary
NN instructions, which part is not being discussed in this work.

2.2 Intra Layer Loop Unrolling and Pipelining

At present, there are lots of scenarios for deep learning applications. The structure of
the neural network model is usually formed during the training process, and the scale

Id:0
Data type: Float32

constant: false
Consumer: L1, L2
Producer: input

Name: L1
Layer type:
Convolu on

Mode: normal

Id:2
Data type: Float32

constant: false
Consumer: L3
Producer: L1

Name: L2
Layer type:
Convolu on

Mode: sparse

Id:1
Data type: Float32

constant: true
Consumer: L1

Producer: model

Input

Input

Filter

Filter

Id:3
Data type: Float16

constant: true
Consumer: L2

Producer: model

Output

Id:4
Data type: Float32

constant: false
Consumer: L3
Producer: L2

Output

Name: L3
Layer type: Add
Mode: normal

Input

Input

Output

Id:5
Data type: Float32

constant: false
Consumer: output

Producer: L3

Fig. 1. Nodes information of computation graph. Rectangles represent data nodes and ovals
represent layer nodes. Lines with arrows show the relationship index of a layer-data node pair.

Compiling Optimization for Neural Network Accelerators 17

and parameters of NN layers are saved in model. When compile a neural network for
accelerators, some of the values during optimization or existing in instruction fields can
be replaced by constant value or immediate numbers. For example, the application
scenario of convolutional neural network (CNN) in image recognition field is usually
started with an input image. The image size can be fixed or dynamic. For a dynamic
image size, we need a preprocess transformation (resize, crop, etc.) by which the image
has been adjusted to the fixed scale as the network defined. And then do the forward
inference.

In this situation, the condition branch judgment and the number of loops of the NN
instructions are known ahead of time, which can reduce the programming jump and
useless code to some extent. Therefore, we can implement a loop unrolling and
pipelining to set loops with immediate numbers instead of through register scalar
calculation.

For more details, we consider the NN instructions of same type have the sequential
assurance that different types of instructions can execute at the same time. Thus, we can
use a ping-pong strategy of on-chip resource usage to parallel the stage of memory
access and the stage of computation. The data fetching stage can be paralleled with
calculation and write-back stage as shown in Fig. 2. In addition, data tiling can also be
implemented with a naive static memory allocation, and divide the tensors into several
tiling data slices in a layer’s computing.

Loop inside kernel, kx * ky

Ini al out
value

Compute
first value ... Compute

last value

Loop for channels

Write
back final

result

Next sliding window ...

Ini al out
value

Compute
first value ... Compute

last value

Write
back final

result
Loop for
ho * wo

Fig. 2. A fine-grained pipelining example of a pooling layer. Unrolling static immediate number
of loops for sliding windows with strides on channel, height and width dimension, and
calculation using hardware corresponding units to get final results.

18 J. Song et al.

In someNNaccelerators, awhole kernel’s computation can be completed through one
single NN instruction while the data fetching and scheduling are executed by hardware
functional units simultaneously. Thus, we propose a higher level of parallel pipelining.

Since the calculation of neural network is mostly concentrated in convolution layers
and fully-connected layer, in order to accelerate the calculation of neural network, the
accelerators mostly use parallel multipliers and adders to carry out data parallel com-
putation. In order to feed data in time to the accelerators function units, make a better
use of data locality and enhance data reuse, some accelerators adopt on-chip-memory
storage access hierarchy [12, 17, 18]. The NN layer computation process can be
abstracted as follows: firstly, load necessary data slices into on-chip memory, then
calculation is performed with the corresponding on-chip function units, and finally
store the result slices to off-chip memory to complete the whole process of the NN
layer operations.

If we balance the execution time of the whole pipelining stage, which means the
calculation functional units and IO units of the specific hardware back-end can work
respectively at comparative time cost, we can cover the latency to some extent by using
a type of coarse-grained pipelining (see Fig. 3). The period between synchronization
instructions is called one time slice. During one time slice, previous store part of
pipelining stage will execute at first so that can release corresponding on-chip memory
space for next load pipelining stage to allocate and use for next input data slices. While
the other half of resources are executing different type of instructions. Then the IO and
computing functional units are working in parallel during one time slice, and so on.
And data dependency between layers is solved through computation graph.

Load
INPUT D1

Ini al out
value

Write
back final

result Store
OUTPUT R1

D2 Kernel
Compute

Loop for kernel compute

Load
INPUT D2

D1 Kernel
Compute

Fig. 3. A coarse-grained pipelining example of a pooling layer. D1 and D2 data allocate at
symmetric on-chip memory address with ping-pong pipelining strategy. The static memory
allocation method uses the shapes and parameters determined at compile time to adjust size of
each data tiling slices. Load input slices with tiling size and on-chip memory allocation is at the
beginning. And computation is paralleled with the load and store stage part of the opposite ping-
pong memory data. Store output slices to off-chip memory and release the on-chip memory space
at the end.

Compiling Optimization for Neural Network Accelerators 19

The coarse-grained pipelining focuses on on-chip memory computing access and
interaction with off-chip memory. While fine-grained pipelining focuses on the
instruction level parallel that inside the kernel calculation part. They both provide a
novel programming pattern for NN accelerators. Using static memory allocation with
ping-pong strategy, divide on-chip resources by half and re-arrange instructions to time
slices to cover time cost. We call it stage level parallel. While programming on
accelerators with on-chip memory and conflict-free functional units, in this pattern, we
can deploy stage level parallel NN instructions without considering scheduling between
layers. And development of operators can be modular.

2.3 Layer Fusion

In some deep learning frameworks or NN compiler frameworks [27, 31, 34], several
types of layer fusion optimization has been implemented already. According to the
stage level parallel programming style, we propose a layer fusion method based on its
algorithm loop order pattern for NN accelerators.

In convolutional neural networks, there are some fixed patterns of layers combi-
nation, such as Convolution + Batch Normalization (BN) + Scale (SC) + Rectified
Linear Unit (ReLU) layer, or Convolution + ReLU (or other activation layers), etc.
However, these layers which follow the convolution layer, their memory cost functions
are regular as well as their algorithms. For example, the BN layer and SC layer
compute respectively for each feature map, while the ReLU layer is calculated on each
independent number. The memory allocation is obviously to show that BN and SC
layer both need extra memory space for constants which size is related to the number of
feature map dimension or channel dimension. And all of them need one same size of
memory space for input and output, or two equal spaces if on-chip memory cannot be
reused during computation. Besides, from the algorithm view, all these layers do not
have extra data dependence. In addition, their control flow of the computation is not
complex. Therefore, a type of layer fusion optimization can be easily implemented as
pipelining stages (see Fig. 4).

Load
INPUT D1
CONST C1

Store
OUTPUT R1

D2 Kernel
Compute

Load
INPUT D2
reuse C1

D1 Kernel
Compute

D1 fusion
Compute

D2 fusion
Compute

Fig. 4. An example of pipelining stage with fused layers. Load data blocks also contain
necessary constant data for the fused layers. Next computing stages will reuse it until this
constant data need to load next tiling slice. The allocation part in load pipelining stage in main
layer also contain fused layers’ memory cost function.

20 J. Song et al.

We call them the kernel-based computing layers, like convolution or pooling layer,
as the main layer, and the latter layers that split their computing pipelining stage into
the main layer’s as the fused layers. And the layer fusion optimization also needs some
information from the computational graph we mentioned in Sect. 2.1. One of the fusion
optimization principles is that fused layers must have only one consumer and the data
types of tensors between them must be compatible. And other rules are like based on a
whitelist for the types of fused layers and fine-tuning for special specific performance.
Another naive rule can be greedy strategy that if the next layer can be fused, we do the
fusion optimization till no longer satisfy the constraints.

2.4 Layer Elimination

Several types of operations of frameworks have similar functions that to change data’s
order or expression of a tensor, such as reshape, transpose, squeeze, un-squeeze. If we
regard the tensors as a long one-dimension data arrangement on memory space, in
some situations these operations are redundant. In these situations, we do such layer
elimination optimization.

We merge this layer’s output and input data node, and so the consumer list. And
then erase the layer node and its relationship, using the input data’s producer to replace
this layer for other data’s producer. If the output and input have different memory
spaces (such as in debug mode, need to be dumped), this layer can be replaced by a
simple copy layer.

In this part, we should note that the original data order has effect on actual data
layout in reshape layer. In frameworks a reshape layer’s parameter is parsed in original
data order to do reshape. While using NN accelerators as the computation back-end, the
data could be needed to be re-tiled or re-formed as the specific shape or order to adapt
the hardware compute patterns and scalable networks [16]. Due to the default data
order is different in various frameworks, such as NCHW or NHWC, original data might
be transposed or reshaped before the hardware really do the calculation. The inter-
mediate data order could have changed. So, we need to restore the original data order
and then reshape it, using a transpose layer and a reshape layer.

Besides remove or replace reshape-like layer nodes, transpose-like layers can also
do optimization. After expand layers pipelining stages, if a sequence of layers only
contains load and store stages to transpose data, we can merge them into one transpose
layer. Naturally another principle is no other data dependencies upon these layers. So,
there is no need for considering intermediate data nodes’ consumer or producer rela-
tionship links.

3 Experiment Evaluation

In this section, we use Cambricon-Accelerator [16] as the prototype. The accelerator
architecture has 32 leaf tiles as matrix function units. Each leaf tile has 24 KB SRAM,
32 16-bit adders and 32 16-bit multipliers. The central tile has 64 KB SRAM, 32 16-bit
adders and 32 16-bit multipliers and transcendental function operators. The bank width
of scratchpad memory is 512-bits (32 * 16-bit fixed point). The experiment result is

Compiling Optimization for Neural Network Accelerators 21

based on a software simulator. And extra data type conversion and specific tiling of
weight data in preprocess are not considered. We use Caffe deep learning framework
for the test.

We choose several neural networks in image recognition field, GoogLeNet [22],
VGG-16 [21], ResNet-50 [2] and MobileNet [25] and SqueezeNet [26] as a benchmark
to evaluate the effect of layer fusion optimization. Database is on the ImageNet data-
base [32]. And choose SSD [4] network in image detection field to evaluate layer
elimination optimization. The chosen Database is on PASCAL VOC 2012 which test
1,000 images for average result.

The experiments results are showing as below (Figs. 5 and 6).

Amount of instructions is counted by NN instructions generator which we call it as
the backend as the computational graph. From testing results we can find out that
ResNet-50 and MobileNet have an obvious performance speedup because they have
more easily-to-fuse structure in model. And GoogLeNet and VGG-16 speedup ratio is

Fig. 5. Speedup ratio of open and close layer fusion optimization.

Fig. 6. NN instructions reduction ratio of with and without layer fusion optimization.

22 J. Song et al.

not so high might be their computation cost is occupied a large proportion in total time.
Likely the SqueezeNet is more lightweight and structure is moderate for fusion opti-
mization so its ratio is neither too large nor small in chart (Fig. 7).

We choose VGG-16 as front-end network, and due to reshape-like layers exist a lot
in SSD model, we can get a fair optimization effect, about 2.6% performance
improvement on this model. The effect on the other two networks are not so obvious,
less than 0.5%.

4 Related Work

There are already researches of neural networks from different levels of view in soft-
ware, from top to bottom. Truong et al. designed Latte [33], a DNNs language that
provides an abstraction for specifying new layers and a matched compiler based on user
specification. It also applies general optimization and can generate instructions for
heterogeneous architectures. However, in this work, a loop unrolling and pipelining is
proposed from a higher level of abstraction. The optimization focuses on a stage level
parallel (SLP) not the instruction level parallel (ILP).

There is yet another compiler framework for deep learning. T. Chen et al. proposed
TVM [34] that can cope with workload across diversiform hardware back-ends. And
apply graph-level and operator-level optimizations and also implement a type of layer
fusion optimization to reduce memory access. While the fused layers must be injective
reduction with complex-out-fusable layer such as convolution layer. SLP exposes the
structure of coarse-grained pipelining stages, and offers the possibility to fuse complex-
out-fusable layers.

Moreover Halide [35] is implemented as a low-level IR in TVM. Halide is a
domain specific language in image processing field. It is designed to facilitate devel-
opers to write high-performance code with images and arrays across multiple operating
systems. In general, it focuses on how data tiling and the order of value calculation and

Fig. 7. Layer elimination optimization speedup ratio chart.

Compiling Optimization for Neural Network Accelerators 23

also data dependencies. While we use a static memory allocation and divide data for
tiling by device on-chip memory size. Similarly, we are not in the same logic level.

While Intel proposed nGraph [36], an open source C++ library that simplifies the
implementation of deep learning performance optimization across frameworks and
hardware platforms. It is described as “framework-neutral software” and designated as
the back-end of the framework. Input data can be obtained from popular machine
learning frameworks such as TensorFlow, MXNet, PyTorch and CNTK. Its IR can deal
with abstract details of hardware devices and make specific optimizations for different
types of hardware backends, including CPUs. From this we are at the same level of NN
software call stack. However, we concentrate on NN accelerators back-ends and
nGraph are applying to handle CPUs and GPU mixed back-ends for better
performance.

5 Conclusion and Future Work

Within the deep learning frameworks, users set up layers and parse the parameters
through APIs to build the computational graph. With this information, we propose
graph optimizations including layer elimination and layer fusion detection. According
to the static scale and parameters of NN models, we use a static allocation for on-chip
memory and do such loop unrolling and pipelining. By using a coarse-grained
pipelining of a layer’s computation, we abstract the NN algorithm operation into
stages, called stage level parallel (SLP). With the SLP programming style, layer fusion
optimization can be conveniently applied to fuse computation pipelining stages and
reduce IO operations between layers, as well as memory allocation for intermediate
tensor on off-chip memory. Our compilation optimizations for NN accelerator can be
deployed for forward inference process.

However, there are still some aspects need to research in future work, such as
training or fine-tuning of neural network is not completely involved yet. And certainly,
as the updating of NN algorithms, more types of neural network layers can be
developed in the programming style of pipelining stages.

Acknowledgement. This work is partially supported by the National Key Research and
Development Program of China (under Grant 2017YFB1003104), the NSF of China (under
Grants 61432016, 61532016, 61672491, 61602441, 61602446, 61732002, 61702478, 61732007
and 61732020), Beijing Natural Science Foundation (JQ18013), the 973 Program of China
(under Grant 2015CB358800), National Science and Technology Major Project (2018ZX01
031102), the Transformation and Transfer of Scientific and Technological Achievements of
Chinese Academy of Sciences (KFJ-HGZX-013), Key Research Projects in Frontier Science of
Chinese Academy of Sciences (QYZDB-SSW-JSC001), Strategic Priority Research Program of
Chinese Academy of Science (XDB32050200, XDC01020000) and Standardization Research
Project of Chinese Academy of Sciences (BZ201800001).

24 J. Song et al.

References

1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional
neural networks. In: International Conference on Neural Information Processing Systems,
pp. 1097–1105. Curran Associates Inc. (2012)

2. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition, pp. 770–778
(2015)

3. Zhang, X., Zhou, X., Lin, M., et al.: ShuffleNet: an extremely efficient convolutional neural
network for mobile devices (2017)

4. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N.,
Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46448-0_2

5. Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: towards real-time object detection with
region proposal networks. In: International Conference on Neural Information Processing
Systems, pp. 91–99. MIT Press (2015)

6. Sak, H., Senior, A., Beaufays, F.: Long short-term memory recurrent neural network
architectures for large scale acoustic modeling. Comput. Sci. 338–342 (2014)

7. Graves, A., Jaitly, N., Mohamed, A.R.: Hybrid speech recognition with deep bidirectional
LSTM. In: Automatic Speech Recognition and Understanding, pp. 273–278. IEEE (2014)

8. Silver, D., Schrittwieser, J., Simonyan, K., et al.: Mastering the game of Go without human
knowledge. Nature 550(7676), 354–359 (2017)

9. Silver, D., Huang, A., Maddison, C.J., et al.: Mastering the game of Go with deep neural
networks and tree search. Nature 529(7587), 484–489 (2016)

10. OpenAI Five Homepage. https://blog.openai.com/openai-five/
11. Venkatesh, G., Nurvitadhi, E., Marr, D.: Accelerating deep convolutional networks using

low-precision and sparsity (2016)
12. Ovtcharov, K., Ruwase, O., Kim, J., et al.: Accelerating deep convolutional neural networks

using specialized hardware. Miscellaneous (2015)
13. Han, S., Liu, X., Mao, H., et al.: EIE: efficient inference engine on compressed deep neural

network. In: International Symposium on Computer Architecture, pp. 243–254. IEEE Press
(2016)

14. Zhang, C., Li, P., Sun, G., et al.: Optimizing FPGA-based accelerator design for deep
convolutional neural networks. In: ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp. 161–170. ACM (2015)

15. Parashar, A., Rhu, M., Mukkara, A., et al.: SCNN: an accelerator for compressed-sparse
convolutional neural networks, pp. 27–40 (2017)

16. Chen, T., Du, Z., Sun, N.: DianNao: a small-footprint high-throughput accelerator for
ubiquitous machine-learning. ACM SIGPLAN Not. 49(4), 269–284 (2014)

17. Chen, Y., Chen, T., Xu, Z.: DianNao family: energy-efficient hardware accelerators for
machine learning. Commun. ACM 59(11), 105–112 (2016)

18. Zhang, S., Du, Z., Zhang, L., et al.: Cambricon-X: an accelerator for sparse neural networks.
In: 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE Computer Society (2016)

19. Liu, S., Du, Z., Tao, J., et al.: Cambricon: an instruction set architecture for neural networks.
In: ACM/IEEE International Symposium on Computer Architecture, pp. 393–405. IEEE
(2016)

20. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proc. IEEE 86, 2278–2324 (1998)

Compiling Optimization for Neural Network Accelerators 25

http://dx.doi.org/10.1007/978-3-319-46448-0_2
https://blog.openai.com/openai-five/

21. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. Comput. Sci. (2014)

22. Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions (2014)
23. Szegedy, C., Ioffe, S., Vanhoucke, V., et al.: Inception-v4, Inception-ResNet and the impact

of residual connections on learning (2016)
24. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions (2015)
25. Howard, A.G., Zhu, M., Chen, B., et al.: MobileNets: efficient convolutional neural

networks for mobile vision applications (2017)
26. Iandola, F.N., Han, S., Moskewicz, M.W., et al.: SqueezeNet: AlexNet-level accuracy with

50x fewer parameters and <0.5 MB model size (2016)
27. Abadi, M., Agarwal, A., Barham, P., et al.: TensorFlow: large-scale machine learning on

heterogeneous distributed systems (2016)
28. Jia, Y., Shelhamer, E., et al.: Caffe: convolutional architecture for fast feature embedding,

pp. 675–678 (2014)
29. Chen, T., Li, M., Li, Y., et al.: MXNet: a flexible and efficient machine learning library for

heterogeneous distributed systems. Statistics (2015)
30. Allan, V.H., Jones, R.B., Lee, R.M., et al.: Software pipelining. ACM Comput. Surv. 27(3),

367–432 (1995)
31. Gray, A., Gottbrath, C., Olson, R., Prasanna, S., et al.: Production deep learning with

NVIDIA GPU inference engine. https://devblogs.nvidia.com/production-deep-learning-
nvidia-gpu-inference-engine/

32. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput.
Vis. 115(3), 211–252 (2015)

33. Truong, L., Barik, R., Totoni, E., et al.: Latte: a language, compiler, and runtime for elegant
and efficient deep neural networks. In: ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 209–223. ACM (2016)

34. Chen, T., Moreau, T., Jiang, Z., et al.: TVM: an automated end-to-end optimizing compiler
for deep learning (2018)

35. Ragankelley, J., Adams, A., Sharlet, D., et al.: Halide: decoupling algorithms from schedules
for high-performance image processing. Commun. ACM 61(1), 106–115 (2018)

36. Cyphers, S., Bansal, A.K., Bhiwandiwalla, A., et al.: Intel nGraph: an intermediate
representation, compiler, and executor for deep learning (2018)

26 J. Song et al.

https://devblogs.nvidia.com/production-deep-learning-nvidia-gpu-inference-engine/
https://devblogs.nvidia.com/production-deep-learning-nvidia-gpu-inference-engine/

ZhuQue: A Neural Network Programming
Model Based on Labeled Data Layout

Weijian Du1,2,3(&), Linyang Wu1,2,3, Xiaobing Chen1,2,3,
Yimin Zhuang1,2,3, and Tian Zhi1,3

1 SKL of Computer Architecture, Institute of Computing Technology, CAS,
Beijing, China

{duweijian,wulinyang,chenxiaobing,zhuangyimin,

zhitian}@ict.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

3 Cambricon Tech. Ltd., Shanghai, China

Abstract. In the last five years, the research of neural network accelerators has
made remarkable achievements and provided powerful hardware support for
many deep learning algorithms. In order to improve the performance of the
neural network accelerator, algorithm optimization and data layout in the neural
network development kit (NDK) are indispensable. The rich data types in neural
network algorithms determine the diversity of data layout information. How to
add complex data layout information to the NDK, to guide the work of all
aspects of the software, to avoid user perception and to provide a user-friendly
API, has become a series of issues worth studying. This paper implements a
neural network development kit based on labeled data layout to solve the above
problems, and abstracts a neural network programming model. The program-
ming model establishes a neural network computing graph at “creating time”,
“compiling time” sets the data label and “runtime” uses the label to control the
data transfer. Compared with the existing NDK, the software has an average
performance improvement of 4.76�. In addition, this paper also defines
dynamic tags and static tags of neural network data, and proposes a neural
network data classification method.

Keywords: Neural network � Programming model � Labeled � Data layout �
SDK

1 Introduction

Background. In recent years, the research of AI (Artificial Intelligence) has made
remarkable achievements. Good algorithms and ideas have appeared in the field of
image recognition, object detection, natural language processing and so on. Practice
has proved that deep learning is still the best technology for the above applications.
However, deep learning algorithms are computing intensive and memory intensive.
The traditional way of relying on CPU server cluster has low speed and high power,
which is obviously unacceptable. Therefore, many research work has turned to GPU,

© Springer Nature Switzerland AG 2019
P.-C. Yew et al. (Eds.): APPT 2019, LNCS 11719, pp. 27–39, 2019.
https://doi.org/10.1007/978-3-030-29611-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29611-7_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29611-7_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29611-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-29611-7_3

FPGA and neural network ASIC (such as TPU, DianNao [8], etc.), hoping to use this
hardware to accelerate AI applications.

Meanwhile, in order to facilitate users to use hardware products, chip design
companies launch corresponding software development tools to shield hardware details
and provide high-level interface. For example, cuDNN for NVIDIA GPU, MIOpen for
AMD GPU, CNML [12] for Cambricon MLU and so on. These SDKs usually enable
the neural network operations to achieve high performance on their corresponding
hardware. We call them NDK (Neural network Development Kit).

Motivation. In order to give hardware full performance, it is essential to optimize the
neural network algorithm and data layout. A feasible solution is to add algorithm
optimization and data layout to NDK. Because this can not only shield hardware
details, so that users do not have to pay too much attention to hardware, but also
facilitate the full use of hardware resources, so that the hardware can get high per-
formance. But there are two problems that need to be solved. Firstly, how to add data
layout information in NDK, and this information can run through all modules of NDK.
Secondly, how to avoid users’ perception of data layout information and facilitate user
programming.

Our Work. In this paper, we propose ZhuQue, a neural network programming model
based on labeled data layout, to solve the above two problems. Firstly, we study the
data classification method of neural network (NNDataClass) and what content should
be included in the label. By analyzing the memory bandwidth requirement of data
access, the location of data in the network, the reading and writing behavior of data, we
classify the neural network data into eight classes, and the characteristics of different
types of data are different. This classification is also applicable to CPU, GPU, NN
accelerator and other hardware platforms.

Then, we design and implement a neural network development kit with labeled data
layout(LDL-NDK) for Cambricon-X [13] hardware platform and abstract the ZhuQue
programming model. The development kit implements three levels of functions. The
first level “creating time” provides computing graph components for users to describe
neural network computing graphs. The second level “compiling time” realizes the
functions of label setting and instruction generating, and is the main module of
hardware performance optimization. The third level “runtime” implements labeled
memory operation and graph computing. The label of the data layout is set at compiling
time and used at runtime.

Finally, we choose two experimental platforms, Cambricon-X with DLPlib [14]
and Cambricon-X with ZhuQue, to test the computing time of several single-layer
networks and multi-layer networks. The average computing time of ZhuQue-
Cambricon-X is 4.76� faster than DLPlib-Cambricon-X.

Contributions. The contributions of this paper are as follows.

• We propose a data classification standard for neural networks (NNDataClass). It is
convenient for NDK to optimize the layout of different types of data and improve
hardware performance.

28 W. Du et al.

• We implement a neural network development kit with labeled data layout (LDL-
NDK). This tool is designed for Cambricon-X hardware platform, and achieves an
average performance improvement of 4.76� faster than DLPlib-Cambricon-X.

• We abstract a neural network programming model (ZhuQue). It can not only avoid
users’ perception of data layout information and facilitate user programming, but
also enable data layout information to be transmitted in NDK.

The rest of this paper is organized as follows. Section 2 shows the related work of
neural network accelerator, data layout and labeled architecture. Section 3 introduces
the content of label and the data classification standard of neural network (NNData-
Class). Section 4 introduces the design and implementation of LDL-NDK. Section 5
abstracts the ZhuQue programming model. Section 6 is a series of experiments. Sec-
tion 7 makes the conclusion of this paper.

2 Related Work

Neural Network Accelerator. Through observing the research and commercial
application in the last five years, it can be found that the hardware computing carriers of
the neural network algorithm mainly include CPU, GPU, FPGA and ASIC. CPU and
GPU, as general processors, have the widest application fields and support the most
neural network operations. Almost all of the neural network framework software
supports CPU and GPU computing, such as Caffe [15], TensorFlow [9], MXNet [10]
and so on. Because of the particularity of neural network algorithm, its special pro-
cessor can get faster speed, lower power, smaller chip area and lower cost. For
example, Farabet et al. [7] implemented a real-time face detection convolutional net-
work on a single FPGA, which can be used for low-power vision systems. Of course,
the most famous neural network accelerator is the DianNao series [1, 5, 6, 8, 13]. Its
latest Cambricon-X [13] supports both dense and sparse neural networks and is 7.23�
faster than DianNao. Cambricon-X is chosen as the hardware platform for our later
experiments.

Data Layout. One of the classical methods in data layout is DAT (data alignment
technology) method proposed by Panda et al. [2], which improves cache hit rate by
complement, data alignment and cyclic fragmentation of matrix. However, this method
requires software developers to optimize themselves, and need to understand the cache
structure and parameters. If a machine is replaced, the optimization scheme needs to be
readjusted. Coleman et al. [3] proposed an algorithm for calculating the size of matrix
fragments. The algorithm points out how to choose the size of fragments according to
the size of cache and matrix. This method gives a formula solving method, which
makes matrix multiplication fragments quantifiable, and it is a great progress. Liu et al.
[4] proposed a data conversion system DL, which can realize the conversion of data
layout in heterogeneous computing scenarios of CPU and GPU. For the two processors,
the hit rate of each cache can be improved.

Labeled Architecture. Labeled Von Neumann Architecture is proposed by Huang
et al. [11]. They believe that the separation of storage and computation in traditional

ZhuQue: A Neural Network Programming Model 29

Von Neumann Architecture leads to memory wall problems. Multilevel cache can solve
this problem, but when cache is shared by multiple cores (such as L3cache), new
problems of inter-core competition will arise. So they set label to data, pass it from
software to hardware, and let the hardware decide the replacement of data in cache
according to the priority recorded on the label. This reduces the competition for shared
cache and improves CPU utilization. However, this method needs to be modified from
bottom to top, from hardware to software, which is more difficult to popularize and
apply, because it is not easy to accept the time and cost for users to reconstruct existing
computers and even replace CPU and memory in large quantities. This enlightens us
that labeled transformation should be done at the software level as far as possible.

3 Data Label

In order to add labels for data layout in NDK, we need to define the content of labels
first. We divide label into static label and dynamic label. Static label refer to hardware-
independent information, which is related to neural network algorithms and data node
location in the computing graph. Dynamic label is hardware-related information, which
is mainly used to lay out data as the best state on specific hardware.

3.1 Static Label

First, we analyze the bandwidth requirement of neural network data. Let’s take a
single-batch MLP operation as an example. We can find that the calculation of MLP
involves four pieces of data: input neurons, weights, bias and output neurons. If the
number of input neurons is equal to output neurons (in.size() = out.size() = n), then the
memory access of bias, input and output neurons is n, but the weights is n^2. Therefore,
we can divide the neural network data into two categories: neurons and weights.
Convolution also contains neurons and weights, but pooling and LRN have only
neurons.

Secondly, we analyze the location of data in the neural network topology. Figure 1
is an example of a simple neural network, which consists of two layers, MLP and
active. We can subdivide the aforementioned neurons into input neurons, hidden
neurons and output neurons. Similarly, weights can be subdivided into input weights
and output weights. Output weights are usually used for training networks, while input
weights are used for inference networks and training networks.

Fig. 1. An example of two-layer neural network.

30 W. Du et al.

Thirdly, we analyze the reading and writing behavior of data. After training, the
weights and bias of MLP are fixed, so they will not change during inference. If a
inference network is executed many times and using different input data each time, the
user only needs to write the weight and bias once, while the input neuron needs to write
many times. In this case, the data can be divided into constants and variables.
Therefore, we obtain two new classes, constant neurons and constant weights.

In addition, the hardware instruction is indispensable for the calculation of the
neural network, so the instruction is also a kind of data. This kind of data does not
participate in the calculation, but controls the calculation.

So far, we summarize the characteristics of eight types of data as shown in Table 1,
which can be used as a classification standard of neural network data. We call it
NNDataClass. Because this classification method has nothing to do with hardware, it
can be used as a static label of neural network data.

3.2 Dynamic Label

Dynamic label contains hardware-related information, which is mainly used to lay out
data as the best state on specific hardware. Assuming that there is a hardware including
vector inner product unit, it can calculate eight float16 data at a time. If there are more
than eight numbers, it needs to be calculated in batches. If there are less than eight
numbers, it needs to be filled up to eight numbers. Suppose that in the example of MLP
in Sect. 3.1, input neuron vector has 10 float32 data, weight matrix has 10 * 4 float32
data. In this example, we can optimize the accuracy, matrix transposition, tiling and
padding of data.

Firstly, in order to make the hardware work, it is necessary to convert float32 data
to float16. Secondly, in order to improve memory access efficiency, the weight matrix
can be transferred from row-first storage to column-first storage. Thirdly, in order to
adapt to the limitation of vector inner product unit, it is necessary to divide the input
neuron and weight matrix into 8 + 2 two pieces. Fourthly, in order to make full use of

Table 1. NNDataClass: the classification standard of neural network data.

Static
label

Data classification Bandwidth
requirement

Location
in
network

Inst
read/write

User
read/write

Participate or
control
calculation

Inst Instruction low NA read only invisible C
IN Input Neuron low input read only write P
ON Output Neuron low output r/w read P
HN Hidden Neuron low middle r/w not care P
CN Constant Neuron low input read only write

once
P

IW Input Weight high input read only write P
OW Output Weight high output r/w read P
CW Constant Weight high input read only write

once
P

ZhuQue: A Neural Network Programming Model 31

the hardware performance, the second piece of data can be filled up by 6 zeros, which is
just 8 numbers. Figure 2 shows these four steps.

In the above data layout optimization process, at least the following information is
needed: data accuracy, row-first storage or column-first storage, tiling size, padding
size. These can be used as dynamic labels for this specific hardware.

To sum up, we can set labels for input neurons of MLP is (IN; accuracy = float32-
>float16, storage = row, tiling = 8, padding = 6), and labels for weight is (IW; accu-
racy = float32->float16, storage = row->col, tiling = 8, padding = 6). This is the label
used in data layout, including static label and dynamic label.

4 LDL-NDK

In this section, we introduce the design and implement of neural network development
kit with labeled data layout (LDL-NDK) based on Cambricon-X hardware platform.
We design the LDL-NDK as three levels.

The first level “creating time” implements three components: data node, operation
node and computing graph. Users could describe neural network computing graphs by
these data structure.

The second level “compiling time” provides compiling function, which can com-
pile the network topology from the previous level. It contains computing graph scanner
and instruction generator. Data layout label is set in this level. Computing graph
scanner set static label and instruction generator set dynamic label.

The third level “runtime” contains three components: device management unit,
memory management unit and data layout executor. It mainly provides two kinds of
functions: labeled memory operation and graph computing. The label of the data layout
is used at these two functions. A simple software architecture is shown in Fig. 3.

Fig. 2. Four steps of data layout optimization to input neuron and weight.

32 W. Du et al.

4.1 Creating Time

Data Node. Data nodes record attributes (or labels) of data and link relationships with
operation nodes. Some static labels require users to set them in constructors, such as the
accuracy of data, the order of dimensions and the size of each dimension. The other
part of static labels and all dynamic labels are automatically set by the software at the
later compiling time. For example, a 10 * 4, float32, row-first matrix should be con-
structed in this way:

DataNode_t weight;
createDataNode(weight, FLOAT32, DIM_HW, {10, 4});

Each data node can only link one producer operation node, that is, the degree of entry is
1, but it can link multiple consumer nodes, that is, the degree of output is not less than
1. Its visualization is shown in Fig. 4.

Operation Node. Operation node is a general term. Each kind of neural network
operation corresponds to an operation node. This is because different operation need to
record different parameters, and the number of input and output data nodes connected
by different operators is also different.

Fig. 3. LDL-NDK software architecture.

Fig. 4. Data node, operation node and computing graph structure.

ZhuQue: A Neural Network Programming Model 33

For example, convolution operations need to record the size of kernels, strides and
pads. It has three input data nodes and one output data node. Activation operations
need to record the type of activation function, which has an input data node and an
output data node. Its visualization is shown in Fig. 4.

A ReLU activation operations should be constructed in this way:

DataNode_t in, out;
OperationNode_t act;
createActiveOp(act, in, out, ACT_FUNC_RELU);

In the constructor of the operation node, we establish the connection between the
data node and the operation node, so that we have two elements of the graph: point and
edge.

Computing Graph. Computing graph is a container that contains many data nodes,
operation nodes and their connecting edges. Since the edge between the data node and
the operation node has been established when the operation node is created, only the
operation node can be recorded when the calculation graph is created. The two-layer
neural network example in Fig. 1 could be constructed in this way:

DataNode_t i, w, b, h, o;
OperationNode_t mlp, act;
createMlpOp(mlp, i, w, b, h);
createActiveOp(act, h, o, ACT_FUNC_RELU);
CGraph_t cg;
createCGraph(cg, {mlp, act});

The instruction is also stored in computing graph. They will be generated in the
compiling time. Its visualization is shown in Fig. 4.

4.2 Compiling Time

This level of LDL-NDK only provides a compiling function to users.

But it contains two components that are invisible to users.

Computing Graph Scanner. According to the data structures in Sect. 4.1, we design
a “double queue width first graph traversal” algorithm (DQWFGT) to scan the com-
puting graph and set the static label (NNDataClass) of the data node.

compileCGraph(cg);

34 W. Du et al.

Algorithm 1. Double queue width first graph traversal (DQWFGT)
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.

Initialize data node queue dq as all input data nodes of network;
Initialize operation node queue oq as NULL;
while (dq != NULL) do
 oq.add(all unmarked operation nodes in dq.head().consumer())
 while (op has head node hon) do

for each data node idn in hon.inputNode()
 setNNDataClass(idn, hon, idn.inputdegree());
end
for each data node odn in hon.outputNode()
 setNNDataClass(odn, hon, odn.outputdegree());
 if odn.outputdegree() > 0
 dq.add(odn);
 end
end
mark and delete hon in op;

 end
 dq.pophead();
end

Instruction Generator. According to the characteristics of hardware, the instruction
generator optimizes the algorithm of the computing graph, writes the information
needed for data layout (such as tiling and padding) into the dynamic label of the data
node, compiles and generates instructions. In addition, it also calculates the size of the
space occupied by a data after layout optimization, which is convenient for later steps.

So far, all static and dynamic labels have been set up. In the example of Sect. 3.2,
the complete label of weight looks like this: (static: IW, Float32, DIM_HW, {10, 4};
dynamic: Float16, DIM_WH, tiling = 8, padding = 6, size = 128Byte). And
128 = (10 + 6) * 4 * sizeof(Float16).

4.3 Runtime

Labeled Memory Operation. Traditional memory allocation functions only need to
fill in the size of memory space, and then the operating system allocates such large
memory space to users. Traditional memory copy function is to copy the data to
another memory area intact. However, it is not enough for the neural network data with
layout optimization, because the size of device memory required for data is no longer
the original size, and the data copy between host memory and device memory also
needs to go through data layout. Therefore, we add label control to memory allocation
and memory copy functions in LDL-NDK. The data layout executor will lay out the
data first according to the size and layout information in the label. Then the memory
management unit finish memory allocation and memory copy. But user API is simple,
just like this:

ZhuQue: A Neural Network Programming Model 35

DataNode_t weight
void* wp;
labelMalloc(&wp, weight);
labelMemcpy(wp, wp_cpu, weight, HostToDevice);

Graph Computing. This function first uses the memory management unit to copy the
instructions saved in the computing graph into the device memory, and then starts the
hardware calculation under the control of the device management unit. But user API is
very simple, just like this:

5 ZhuQue Programming Model

The ZhuQue programming model is abstracted from LDL-NDK. There are three steps
when using it, just like Fig. 5.

Users create data nodes, operation nodes and computing graph in Creating Time
according to the topological structure of neural network. Users also need to set some
static labels when creating data nodes, such as the accuracy of data, the order of
dimensions and the size of each dimension.

Users call an API at Compiling Time to optimize the algorithm and generate
hardware instructions. This API function sets static labels and dynamic labels for data
nodes.

At runtime, users need to use data nodes to apply for space in device memory and
copy data to device memory, then call a function to finish computing, finally release
resources.

This programming model can not only avoid users’ perception of data layout
information and facilitate user programming, but also enable data layout information to
be transmitted in NDK.

Fig. 5. ZhuQue programming model main steps.

computeCGraph(cg);

36 W. Du et al.

6 Experiment

Hardware Platform. We implemented a Cambricon-X simulator with Verilog. The
architecture consists of 16 PEs (processing elements). Each PE contains 16 multipliers
and an adder tree, which can calculate the vector inner product of 16 half-precision
floating-point numbers. The SB (synapse buffer) of each PE has 2 KB. All PEs share an
8 KB NBin and an 8 KB NBout (neuron buffer). The frequency of the simulator can
reach 1 GHz. We use VCS (Synopsys Verilog Compiler Simulator) to compile and
simulate the architecture. The reasons why we choose Cambricon-X instead of GPU or
CPU are as follows: 1. Cambricon-X is a representative neural network accelerator, its
architecture is clearer and easier to implement than GPU and CPU; 2. GPU already has
corresponding NDK, such as NVIDIA’s cuDNN, we have little significance to do NDK
for GPU; 3. The NDK of Cambricon-X has DLPlib, which is convenient for us to do
comparative experiments. Of course, the method of labeled data layout can also be
migrated to the NDK of GPU and CPU.

Benchmark. We choose 10 test cases, including 2 multi-layer neural networks and 8
single-layer neural networks. Multi-layer neural networks consist of two typical image
classification networks, AlexNet and VGG16. The single-layer neural networks include
four common operations, convolution, pooling, MLP and matrix multiplication. Their
parameters and data scale are shown in Table 2.

Results. The above 10 test cases were implemented using ZhuQue and DLPlib,
respectively, running on the Cambricon-X simulator. Each test case was run three
times, taking the average of the calculated time. The test results are shown in Fig. 6.

We can find that the average speedup of single-layer neural network is 5.27� and
that of multi-layer neural network is 2.72�. So the average speedup is 4.76�. For
single-layer neural networks, the reason ZhuQue is faster than DLPlib is that ZhuQue
joins the optimization of data layout. The instruction generator gives a good data layout
scheme for the buffer size of Cambricon-X. The reason why multi-layer neural net-
works get faster is that ZhuQue has added labeled data layout on the one hand, and

Table 2. Single-layer benchmarks.

Operation Input
(h * w * c)

Output
(h * w * c)

Kernel
(h * w)

Stride
(h, w)

Pad
(h, w)

Conv1 112 * 112 * 96 112 * 112 * 384 3 * 3 1, 1 1, 1
Conv2 112 * 112 * 96 112 * 112 * 256 3 * 3 1, 1 1, 1
Pool1 55 * 55 * 96 27 * 27 * 96 3 * 3 2, 2 0, 0
Pool2 224 * 224 * 64 112 * 112 * 64 2 * 2 2, 2 0, 0
MLP1 1 * 4096 * 1 1 * 4096 * 1 4096 * 4096 – –

MLP2 1 * 4096 * 1 1 * 1000 * 1 4096 * 1000 – –

MM1 256 * 256 * 1 256 * 256 * 1 256 * 256 – –

MM2 512 * 512 * 1 512 * 512 * 1 512 * 512 – –

ZhuQue: A Neural Network Programming Model 37

DLPlib has not done cross-layer optimization on the other hand. Cross-layer opti-
mization means that the output result of the previous layer resides on the chip and is
directly used for the calculation of the next layer. It does not need to be stored outside
the chip and then read into the chip.

7 Conclusion

This paper defines the dynamic label and static label of neural network data, proposes a
neural network data classification method NNDataClass, implements a neural network
development kit LDL-NDK based on labeled data layout, and finally abstracts the
neural network programming model ZhuQue based on labeled data layout, which
achieves a performance improvement of 4.76� faster than the existing NDK. Our
future work will focus on supporting more operations, exploring ways to further
improve performance, and studying how to apply labeled data layout to multi-core
neural network accelerators.

Acknowledgement. This work is partially supported by the National Key Research and
Development Program of China (under Grant 2017YFB1003101), the NSF of China (under
Grants 61432016, 61532016, 61672491, 61602441, 61602446, 61732002, 61702478, 61732007
and 61732020), Beijing Natural Science Foundation (JQ18013), the 973 Program of China (under
Grant 2015CB358800), National Science and Technology Major Project (2018ZX01031102), the
Transformation and Transfer of Scientific and Technological Achievements of Chinese Academy
of Sciences (KFJ-HGZX-013), Key Research Projects in Frontier Science of Chinese Academy of
Sciences (QYZDB-SSW-JSC001), Strategic Priority Research Program of Chinese Academy of
Science (XDB32050200, XDC01020000) and Standardization Research Project of Chinese
Academy of Sciences (BZ201800001).

Fig. 6. The speedup of ZhuQue over DLPlib.

38 W. Du et al.

References

1. Zidong, D., Robert, F., Tianshi, C., et al.: ShiDianNao: shifting vision processing closer to
the sensor. In: Proceedings of the 42nd Annual International Symposium on Computer
Architecture (ISCA), pp. 92–104. ACM (2015)

2. Panda, P.R., Nakamura, H., Dutt, N.D., Nicolau, A.: Augmenting loop tiling with data
alignment for improved cache performance. IEEE Trans. Comput. 48(2), 142–149 (1999)

3. Coleman, S., Mckinley, K.S.: Tile size selection using cache organization and data layout.
ACM SIGPLAN Not. 30(6), 279–290 (1995)

4. Liu, G.D., Hwu, W.W.: DL: a data layout transformation system for heterogeneous
computing. In: Innovative Parallel Computing. IEEE (2012)

5. Yunji, C., Tao, L., Shaoli, L., et al.: DaDianNao: a machine-learning supercomputer. In:
Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO-47, pp. 609–622 (2014)

6. Liu, D., Chen, T., Liu, S., et al.: PuDianNao: a polyvalent machine learning accelerator. In:
Twentieth International Conference on Architectural Support for Programming Languages &
Operating Systems (2015)

7. Clément, F., Cyril, P., Jefferson, Y.H., Yann, L.: CNP: an FPGA-based processor for
convolutional networks. In: International Conference on Field Programmable Logic &
Applications. IEEE (2009)

8. Tianshi, C., Zidong, D., Ninghui, S., et al.: DianNao: a small-footprint high-throughput
accelerator for ubiquitous machine-learning. In: Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pp. 269–284 (2014)

9. Abadi, M., Barham, P., Chen, J., et al.: TensorFlow: a system for large-scale machine
learning. In: Operating Systems Design and Implementation, OSDI 2016, pp. 265–283
(2016)

10. Tianqi, C., Mu, L., Yutian, L., et al.: MXNet: a flexible and efficient machine learning library
for heterogeneous distributed systems. Statistics (2015)

11. Huang, B., Yu, Z., Zhang, L., et al.: Supporting differentiated services in computers via
programmable architecture for resourcing-on-demand (PARD). In: Twentieth International
Conference on Architectural Support for Programming Languages & Operating Systems.
ACM (2015)

12. CNML: Cambricon NeuWare Machine Learning Library. http://www.cambricon.com/index.
php?c=page&id=21. Accessed 10 Apr 2019

13. Shijin, Z., Zidong, D., Lei, Z., et al.: Cambricon-X: an accelerator for sparse neural
networks. In: Proceedings of the 49th Annual IEEE/ACM International Symposium on
Microarchitecture. ACM (2016)

14. Hui-Ying, L., Lin-Yang, W., Xiao, Z., et al.: DLPlib: a library for deep learning processor.
计算机科学技术学报: 英文版 (2), 286–296 (2017)

15. Yangqing, J., Evan, S., Jeff, D., et al.: Caffe: convolutional architecture for fast feature
embedding (2014)

ZhuQue: A Neural Network Programming Model 39

http://www.cambricon.com/index.php?c=page&id=21
http://www.cambricon.com/index.php?c=page&id=21

Scheduling and File Systems

Reducing Rename Overhead
in Full-Path-Indexed File System

Longhua Wang1,2, Youyou Lu1,2, Siyang Li1,2, Fan Yang1,2, and Jiwu Shu1,2(B)

1 Department of Computer Science and Technology,
Tsinghua University, Beijing, China

{wanglh16,yangf17}@mails.tsinghua.edu.cn,
{luyouyou,lisiyang,shujw}@tsinghua.edu.cn

2 Tsinghua National Laboratory for Information Science and Technology,
Beijing, China

Abstract. Full-path-indexed file systems use a key-value database to
store the full path names of files and their metadata. With this pattern,
the I/O efficiency can be improved because data is placed on persis-
tent storage in scan order. However, it introduces intolerable overhead
on renaming a directory because of the modification on the full path
names of files under that directory. In this paper, we introduce prefix
replacement mechanism on B+-tree to accelerate renaming directories on
full-path-indexed file systems. It consists of three steps: pre-scan prefix
deletion, key replacement and floating-split bulk insertion. Unnecessary
searches and compares are reduced in these mechanisms. We use Kyoto
Cabinet as the key-value database, and implement prefix replacement
mechanism on it. We run tests on two benchmarks, the first is generated
by Mdtest [18], and the second is the source code of Linux [19]. Compared
with LocoFS [4], one kind of full-path-indexed file system, our design is
about 5× faster to rename large directories, and the performance is basi-
cally same on small directories.

Keywords: File system management · Full-path-indexed file system ·
Key-value store · B+-tree

1 Introduction

Full-path indexing is recently used on modern file systems to improve the per-
formance of random write. Full-path-indexed file systems use full path name as
indexing to store data and/or metadata. Files are placed in lexicographic order,
so scans of any directory (e.g., ls -R or grep -r) can run at near disk band-
width. Full-path-indexed file systems perform well on nearly all operations, and
are becoming more and more prevalent in both stand-alone file systems [3,5–
8] and distributed file systems [2,4,10,15,16,21,22]. However, they suffer from
renaming directories [5–7]. The full path name of a file consists of two parts,
the pathname and the filename. It changes the pathnames of all files under the

c© Springer Nature Switzerland AG 2019
P.-C. Yew et al. (Eds.): APPT 2019, LNCS 11719, pp. 43–54, 2019.
https://doi.org/10.1007/978-3-030-29611-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29611-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-29611-7_4

44 L. Wang et al.

directory when renaming, so the full path names should be changed correspond-
ingly. When renaming directories, it has a miserable performance to maintain
full-path order for the whole file system, especially on large directories.

Most full-path-indexed file systems use key-value databases to store indexes.
In order to look up metadata with one I/O request, some systems use hash
table [23], which harms locality because files under the same directory may
be scattered across the disk. Some file systems are built on Write-Optimized
Dictionaries (or WODs), which include Log-Structured Merge Trees (LSM-
trees) [11,13], Bε-trees [14] and their variants. But to modify the full path names
of files under a directory, it may cause thousands, even millions get, remove and
set requests to database [4–7]. Some file systems even do not allow renaming
directories [10].

Our Contributions. We propose an advanced B+-tree that supports pre-scan
prefix deletion, key replacement and floating-split bulk insertion mechanisms
which remove and insert a series of consecutive records efficiently. With these
mechanisms, we further implement high-performance prefix replacement, which
supports efficient renaming on full-path-indexed file systems. We propose pre-
scan prefix deletion, key replacement and floating-split bulk insertion steps to
avoid unnecessary compares and searches in database. Our proposed advanced
B+-tree supports fast tree operations such as ① fast cutting out a sub-tree, ②
fast inserting a sub-tree and ③ fast replacing records with a specific prefix. We
use these operations to implement recursively removing, recursively copying and
renaming directories, and compare the results with LocoFS. Our evaluations
show that it is about ① 4× faster than LocoFS to remove directories recursively,
② 6× faster than LocoFS to copy directories recursively and ③ 5× faster than
LocoFS to rename directories.

2 Motivation

Full-path indexing is widely used in file systems to improve directory locality.
However, it changes the pathnames of all files under the directory to rename. It
is not in an I/O-efficient manner and incurs prohibitively high overheads. For
example, the whole system needs to be scanned when renaming is performed in
hash-based key-value stores [17,23]. In tree-based key-value databases, it incurs
substantial overheads to rename a directory because the records should be modi-
fied one by one [3–7,12]. The state-of-the-art solution [9] cuts out a sub-tree and
pastes it to a proper position. However, it complicates the definition of Bε-tree,
making it hard to transplant.

LocoFS is a typical full-path indexing file system. It uses full-path indexing to
store the metadata, and obtains good performance on touch, mkdir, rmdir and
rm operations. However, it suffers from renaming directories. Taking renaming
the directory /s to /z as an example, the procedures in LocoFS [4] are: ①
initialize cursor at /s and get the record, ② check whether the record takes
/s/ as a prefix (or whether the record is /s). If it does, ③ replace the prefix /s
to /z, then set the modified record into the tree and ④ remove the old record,

Reducing Rename Overhead in Full-Path-Indexed File System 45

Fig. 1. Rename the directory /s to /z in LocoFS. The striped records should be
replaced.

and move cursor to the next record. Figure 1 depicts this procedure, the target
records are in stripe. Because the pathnames are same (under a directory), so
the records will be continuously stored in the tree after insertion.

LocoFS removes and sets records one by one while renaming a directory.
However, we observe that plenty of redundant searches and compares could be
eliminated if these records are removed and inserted in bulk mode. In order to
implement this idea, we propose pre-scan prefix deletion, key replacement and
floating-split bulk insertion mechanisms.

3 Design and Implementation

3.1 Overview

We introduce a new efficient mechanism called prefix replacement on B+-tree.
To rename directory /s to /z, prefix replacement replaces /s to /z, and changes
the prefix /s to /z on all records that take /s/ as a prefix. So renaming a
directory on full-path-indexed file systems could be transformed into one simple
prefix replacement on the database. When a thread renaming a directory, it
possesses an exclusive lock of the database to avoid consistency conflicts. Prefix
replacement involves three steps:

• Pre-scan prefix deletion (in Sect. 3.2)
• Key replacement (in Sect. 3.3)
• Floating-split bulk insertion (in Sect. 3.4)

In pre-scan prefix deletion, we cut out the sub-tree whose records take /s/ as
a prefix (and the record /s). The indexes and internal nodes in the sub-tree are
released, while records and leaves in the sub-tree are saved. Then we replace the
prefix from /s to /z in the records, which is called key replacement. In floating-
split bulk insertion, we insert the modified leaves into the tree and construct
indexes that point to them.

46 L. Wang et al.

We use Kyoto Cabinet, an implementation of the key-value store, to imple-
ment and test prefix replacement. There is a difference in the definition of B+-tree
in Kyoto Cabinet. A node is legal as long as it is not empty and not oversized.
We utilize this characteristic to simplify prefix replacement and demonstrate how
to generalize it (in Sect. 3.5).

3.2 Pre-scan Prefix Deletion

The goal of pre-scan prefix deletion is to cut out the sub-tree whose records take
/s/ as a prefix (and the record /s). Figure 2 shows the procedure of pre-scan
prefix deletion. We divide pre-scan prefix deletion into two steps. The first step
is pre-scan (shown in Fig. 2(a) and (b)), which distinguishes the sub-tree that
contains target records, and the second is cutting it out (shown in Fig. 2(b) and
(c)). We release the memory of the internal nodes in the sub-tree, and maintain
the memory of the leaves.

Fig. 2. Pre-scan prefix deletion procedure. We use pre-scan mechanism to distinguish
the sub-tree (marked in stripe) that contains target records, then cut the sub-tree.

In order to locate the indexes that point to the sub-tree containing target
records efficiently, we design a two-step binary search mechanism. Figure 3 intro-
duces how two-step binary search works.

Fig. 3. Two-step binary search

In Fig. 3(a), we binary search /s/ in the node to find the smallest index that
greater than /s/, and divide the indexes into two parts. Mark them as M and

Reducing Rename Overhead in Full-Path-Indexed File System 47

N (shown in Fig. 3(b)), the indexes in N are greater than /s/, and indexes in
M do not. The indexes that take /s/ as a prefix are greater than /s/, so they
belong to N and are the smallest in it. We use binary search in N again and
divide N into two parts, O and P (shown in Fig. 3(c)). Indexes in O take /s/ as
a prefix, and indexes in P do not. Note all indexes in O (exclude the last one) as
Middleindex. So all records in the sub-trees that Middleindex point to take /s/
as a prefix. The process is called pre-scan because we distinguish Middleindex
in a node without searching the sub-trees Middleindex point to. Note the last
index of M and the last index of O as Borderindex. Recursively pre-scan the
inner nodes that Borderindex point to with two-step binary search until leaves.

Complexity. If the number of records in the tree is N , each node has an aver-
age of m indexes, and there are k records that take /s/ as a prefix. The time
complexity of the two-step binary is O(log2 m), two-step binary search will be
invoked at most 2 ∗ logm N times in pre-scan. So the time complexity of pre-
scan is O(log2 N). The size of sub-tree to cut is O(k). So the time complexity of
pre-scan prefix deletion is O(k + log2 N).

3.3 Key Replacement

In pre-scan prefix deletion, we cut out the sub-tree and release the memory of
the indexes. So we get a series of leaves containing all target records, which are
organized in a linked list. Let first be the head of the linked list, last be the
tail, and note the linked list as [first, last]. We replace the prefix /s to /z of all
records in [first, last] in this step.

3.4 Floating-Split Bulk Insertion

The striped linked list in Fig. 4(a) is [first, last]. In floating-split bulk insertion,
we insert [first, last] into the tree and construct indexes that point to leaves
in it with floating-split in the bottom-up direction. Floating-split bulk insertion
consists of two steps.

In the first step, we find the position to insert [first, last] by searching /z,
then split the leaf where /z should locate and insert [first, last] to the split point
(shown in Fig. 4(b)).

The second step is to construct and insert indexes that point to leaves in
[first, last] (shown in Fig. 4(c) and (e)). In floating-split bulk insertion we do not
search from the root to find the locations to insert indexes one by one. Instead, we
search the leaf ahead of first and construct an array called history that records
the internal nodes visited during searching. We keep a variable called ordered
to record the split elements in history. Taking ordered as one for example (in
Fig. 4(c)), it means that the last node in history has split, and the other nodes
in history is unordered.

Inserting an index into an unordered node with binary search if it is not
oversized after insertion (marked as N3 in Fig. 4(c)). For the node that will be
oversized after insertion (marked as N1 in Fig. 4(c)), we take four steps: ① divide

48 L. Wang et al.

Fig. 4. Floating-split bulk insertion procedure. We insert the linked list into the tree
in (a)–(b), and construct indexes that point to leaves in it in (c)–(e).

the indexes into two parts according to where the inserting index should locate,
② move the indexes in the right part to a new node (marked as N2 in Fig. 4(c)),
③ append the inserting index to the end of N1 and increase ordered by one and
④ insert an index that points to N2 to the upper level (the previous node in
history) by floating-split.

When inserting an index into an ordered node, we do not use binary search
to find the position for insertion. Instead, we directly append it to the end of the
ordered node (shown in Fig. 4(d)). If there is no sufficient space for appending
(shown in Fig. 4(e)), three steps are taken: ① create a new node to replace the old
in history, ② append the inserting index to the new node and ③ insert an index
that points to the new node to the upper level (the previous node in history) by
floating-split.

We judge whether a node is ordered by the variable ordered. Because ordered
would not decrease, so we only split at most one time in each level. Compared
with inserting an index into an unordered node, it is more efficient to append
the index because it avoids the movement of elements. We call it floating-split
because the nodes are split level by level with the variable ordered.

Modify Wrong Index. We modify a wrong index in an internal node without
re-balancing overhead. Figure 5 depicts this procedure. History is marked by line
in Fig. 5, in which are the positions that floating-split use to split internal nodes.
The striped linked list is [first, last], whose records noted as /keys. /key1 is the
previous record of first, and /key2 is the next of last. The node contains /keym
is the lowest common ancestor of /key1 and /key2 (/key2 is in the sub-tree that
/keym points to). The lexicographical order of them is /key1 < /keym � /key2
and /key1 < /keys < /key2. We insert the indexes that point to leaves in [first,
last] before /keym (/keym is on the right side of line), so there should be /keys

Reducing Rename Overhead in Full-Path-Indexed File System 49

Fig. 5. Modify wrong index

< /keym. However, it is uncertain whether /keys is less than /keym or not. So
we modify /keym to /key2 before floating-split.

Complexity. Because the time cost of split and insertion is O(log2 N), and
O(k) for appending. So the time complexity of floating-split bulk insertion is
O(k + log2 N).

3.5 Generalization

In Kyoto Cabinet, a node is legal as long as it contains an index, which simplifies
pre-scan prefix deletion and floating-split bulk insertion. However, in classical
B+-tree with an order of m, a node is illegal when the number of indexes in
it is less than m/2. We explain how to expand prefix replacement to classical
B+-tree in this section.

In pre-scan prefix deletion, the illegal nodes only occur on the left and the
right border of the sub-tree to remove, which can be recorded in pre-scan prefix
deletion and handled later, and the number of nodes on the border is 2∗ logm N .
In floating-split bulk insertion, the illegal nodes only occur on the split nodes
and history. There are 2 ∗ logm N of these kinds of illegal nodes at most. These
illegal nodes could be recorded and handled easily.

4 Evaluation

Experiment Environment. All results are collected on a machine with
Xeon(R) E5-2680 (a 48-core 2.50 GHz Intel Core CPU) and 378 GB RAM. It
runs CentOS 7.3.1611, 64-bit, with Linux kernel version 3.10.0.

Benchmarks and Configuration. We select two benchmarks, Mdtest [18]
and Linux-4.20-rc5 [19]. We use Mdtest to generate a directory with about 100
million files/directories and select four directories to test, which contains 0.64,

50 L. Wang et al.

3.84, 19.84 and 99.84 million files/directories respectively. We also use Linux-
4.20-rc5, a version of Linux source code, to measure small workload which is
more general in practice. There are 70492 files in it, and nine directories are
selected for testing. The numbers of files/directories under them are 10, 107,
216, 418, 1127, 1951, 5182, 17030 and 26552. To calculate the execution time on
Linux-4.20-rc5 more accurately, we run the tests 100 times.

Mechanism. The inefficiency of renaming directories exists in many full-path
indexing file systems, including LocoFS, TokuFS, BetrFS and TABLEFS. These
file systems use similar method, removing old records and set new records one by
one, to implement renaming directories. So we extract the operations of LocoFS
on database while recursively removing, recursively copying, renaming directo-
ries, and compare the performance with pre-scan prefix deletion and floating-split
bulk insertion respectively.

We compare the execution time in each test, and calculate the breakdown to
support that pre-scan and floating-split mechanisms eliminate most redundant
search and compare cost.

Fig. 6. Execution time in Mdtest Fig. 7. Execution time in Linux-4.20-rc5

4.1 Remove

To evaluate pre-scan prefix deletion, we measure removing a directory recursively
in this section. We cut out the sub-tree with pre-scan, then release the memory
of records and leaves in it.

Execution Time. Figure 6(a) depicts that it is 3.32–4.42× faster than LocoFS
to remove directories recursively in Mdtest benchmark. Figure 7(a) depicts that
it is 0.98–4.09× faster than LocoFS to remove directories recursively in Linux-
4.20-rc5.

Reducing Rename Overhead in Full-Path-Indexed File System 51

Fig. 8. Remove breakdown

Breakdown. Figure 8(a) depicts that it takes more than 96.9% of the time to
release the memory of records and leaves, less than 3.0% for pre-scan in Mdtest
benchmark. Figure 8(b) depicts that it takes 2.6% of the time to release the
memory of records and leaves when the directory size is 10 in Linux-4.20-rc5.
The percentage increases quickly and it reaches to 96.3% when the directory size
is 26,552. It takes most of the time to release memory when removing a large
directory recursively.

4.2 Copy

To test the performance of floating-split bulk insertion, we measure copying a
directory /s to /z recursively in this section. Different with prefix replacement,
we do not cut out the sub-tree with pre-scan prefix deletion to get target records.
Instead, we ① use two-step binary search to find the leaf first and last, ② copy
the target records in [first, last] to a new linked list, ③ replace the prefix of the
records in the new linked list from /s to /z and ④ insert the new linked list into
the tree and construct indexes that point to leaves in it by floating-split bulk
insertion.

Execution Time. Figure 6(b) depicts that it is 4.51–5.64× faster than LocoFS
to copy directories recursively in Mdtest benchmark. Figure 7(b) depicts that it is
0.95–6.27× faster than LocoFS to copy directories recursively in Linux-4.20-rc5.

Breakdown. Figure 9(a) depicts that it takes more than 90.1% of the time to
construct records and little for floating-split in Mdtest benchmark. Figure 9(b)
depicts that it takes 2.9% of the time to construct records when the directory
size is 10 in Linux-4.20-rc5. The percentage increases quickly and it reaches to
97.4% when the directory size is 26,552. It takes most of the time to construct
records when copying a large directory recursively.

52 L. Wang et al.

Fig. 9. Copy breakdown

4.3 Rename

To test the performance of prefix replacement, we measure renaming directories
in this section.

Execution Time. Figure 6(c) shows that it is 5.01–5.52× faster than LocoFS
to rename directories in Mdtest benchmark. Figure 7(c) depicts that it is 0.86–
5.85× faster than LocoFS to rename directories in Linux-4.20-rc5.

Fig. 10. Rename breakdown

Breakdown. Figure 10(a) shows that it takes 92.2% of the time for key replace-
ment at least in Mdtest benchmark. Figure 10(b) depicts that it takes 4.8% of
the time for key replacement when the directory size is 10 in Linux-4.20-rc5. The
percentage increases quickly and it reaches to 93.8% when the directory size is
26,552. It takes most of the time for key replacement when renaming a large
directory.

Reducing Rename Overhead in Full-Path-Indexed File System 53

5 Conclusion

In this work, we present a prefix replacement interface in B+-tree to imple-
ment efficient renaming in full-path-indexed file systems, which eliminates most
unnecessary search cost. The time complexity drops from O(k ∗ log2 N) to
O(k + log2 N).

The tests show that pre-scan prefix deletion and floating-split bulk insertion
mechanisms beat LocoFS greatly when the directory size is greater than 100,
and the performance is almost same when the directory size is about 10. Under
the tests, we find that ① the cost of pre-scan prefix deletion mainly comes from
release the memory of removed records and leaves, ② the cost of floating-split
bulk insertion mainly comes from construction of new records and leaves and ③
the cost of prefix replacement mainly comes from key replacement, which proves
that we reduce the search and compare cost successfully.

6 Future Work

Kyoto Cabinet stores keys and values continuously in records. So we cannot mod-
ify the key without changing the value, which makes key replacement inefficient.
We will implement prefix replacement in the database that separately stores keys
and values, so only keys should be modified while renaming a directory. We dis-
cuss how to generalize prefix replacement (in Sect. 3.5), and will implement it in
the future.

References

1. McKusick, M.K., Joy, W.N., Leffler, S.J., Fabry, R.S.: A fast file system for UNIX.
ACM Trans. Comput. Syst. 2(3), 181–197 (1984)

2. Tao, X., Alei, L.: Small file access optimization based on GlusterFS. In: Proceedings
of 2014 International Conference on Cloud Computing and Internet of Things, pp.
101–104 (2014)

3. Jannen, W., Yuan, J., Yang, Z., Esmet, J., Esmet, J., Jiao, Y.: BetrFS: a right-
optimized write-optimized file system. In: 13th Conference on File and Storage
Technologies, pp. 301–315 (2015)

4. Li, S., Lu, Y., Shu, J., Hu, Y., Li, T.: LocoFS: a loosely-coupled metadata service
for distributed file systems. In: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pp. 4–15 (2017)

5. Esmet, J., Bender, M.A., Farach-Colton, M., Kuszmaul, B.C.: The TokuFS stream-
ing file system. In: USENIX Conference on Hot Topics in Storage & File Systems
(2012)

6. Jannen, W., Yuan, J., Zhan, Y., Akshintala, A., Esmet, J., Jiao, Y., et al.: BetrFS:
write-optimization in a kernel file system. ACM Trans. Storage 11(4), 1–29 (2015)

7. Ren, K., Gibson, G.A.: TABLEFS: enhancing metadata efficiency in the local file
system. In: USENIX Annual Technical Conference, pp. 145–156 (2013)

8. Yuan, J., Zhan, Y., Jannen, W., Pandey, P., Akshintala, A., Chandnani, K., et al.:
Optimizing every operation in a write-optimized file system. In: USENIX Confer-
ence on File & Storage Technologies (2016)

54 L. Wang et al.

9. Zhan, Y., et al.: The full path to full-path indexing. In: Proceedings of the 16th
USENIX Conference on File and Storage Technologies, pp. 123–138 (2018)

10. Ren, K., Zheng, Q., Patil, S., Gibson, G.: IndexFS: scaling file system metadata
performance with stateless caching and bulk insertion. In: Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 237–248 (2014)

11. O’Neil, P., Cheng, E., Gawlick, D., O’Neil, E.: The log-structured merge-tree (LSM-
tree). Acta Informatica 33(4), 351–385 (1996)

12. Shetty, P.J., Spillane, R.P., Malpani, R.R., et al.: Building workload-independent
storage with VT-trees. Presented as Part of the 11th USENIX Conference on File
and Storage Technologies, pp. 17–30 (2013)

13. Sears, R., Ramakrishnan, R.: bLSM: a general purpose log structured merge tree.
In: Proceedings of the 2012 ACM SIGMOD International Conference on Manage-
ment of Data, pp. 217–228 (2012)

14. Brodal, G.S., Fagerberg, R.: Lower bounds for external memory dictionaries. In:
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 546–554 (2003)

15. Davies, A., Orsaria, A.: Scale out with GlusterFS. Linux J. 2013(235), 1 (2013)
16. Patil, S., Gibson, G.A.: Scale and concurrency of giga+: file system directories with

millions of files. In: USENIX Conference on File and Storage Technologies, vol. 11,
p. 13 (2011)

17. Brandt, S.A., Miller, E.L., et al.: Efficient metadata management in large dis-
tributed storage systems. In: Mass Storage Systems and Technologies, pp. 290–298
(2003)

18. MDTEST Benchmark. https://github.com/MDTEST-LANL/mdtest. Accessed 16
Apr 2019

19. Linux release. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/snapshot/linux-4.20-rc5.tar.gz. Accessed 16 Apr 2019

20. Lensing, P.H., Cortes, T., Hughes, J., Brinkmann, A.: File system scalability
with highly decentralized metadata on independent storage devices. In: 2016 16th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp.
366–375 (2016)

21. Shi, X., Lin, H., Jin, H., et al.: Giraffe: a scalable distributed coordination ser-
vice for large-scale systems. In: 2014 IEEE International Conference on Cluster
Computing, pp. 38–47 (2014)

22. Zheng, Q., Ren, K., Gibson, G., et al.: DeltaFS: exascale file systems scale bet-
ter without dedicated servers. In: Proceedings of the 10th Parallel Data Storage
Workshop, pp. 1–6 (2015)

23. Lensing, P.H., Cortes, T., Brinkmann, A.: Direct lookup and hash-based metadata
placement for local file systems. In: Proceedings of the 6th International Systems
and Storage Conference, p. 5 (2013)

https://github.com/MDTEST-LANL/mdtest
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/snapshot/linux-4.20-rc5.tar.gz
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/snapshot/linux-4.20-rc5.tar.gz

Partition and Scheduling Algorithms
for Neural Network Accelerators

Xiaobing Chen1,2,3, Shaohui Peng1,2,3, Luyang Jin1,2,3, Yimin Zhuang1,2,3,
Jin Song1,2,3, Weijian Du1,2,3, Shaoli Liu1, and Tian Zhi1(B)

1 SKL of Computer Architecture, Computing Technology, CAS, Beijing, China
{chenxiaobing,pengshaohui18z,zhuangyimin,songjin,duweijian,

liushaoli,zhitian}@ict.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

3 Cambricon Tech. Ltd., Shanghai, China
jinluyang@cambricon.com

Abstract. In recent years, Artificial Neural Networks have evolved
rapidly and are applied to various fields. Meanwhile, to enhance com-
putation efficiency of neural network applications, more and more
neural network accelerators have been developed. Though traditional
task scheduling algorithms on heterogeneous systems have been inten-
sively researched, they can’t be applied to neural network accel-
erators directly. Based on typical characteristics of neural network
accelerators, we formalize the problem of tasks scheduling for neu-
ral networks, and transplant two listing heuristic scheduling algo-
rithms, Heterogeneous-Earliest-Finish-Time (HEFT) and Critical-Path-
on-a-Processor (CPOP). Inspired by the separable features of neural net-
work operations, we propose two partition algorithms, the Iterative Par-
tition Scheduling Algorithm (IPS) and the Partition Scheduling Combi-
nation Algorithm (PSC), which can be associated with scheduling algo-
rithms. Further, we conduct experiments on some typical neural net-
works, and results show that compared to scheduling-only algorithms
the partition associated algorithms achieve about 2x to 3x speedup.

Keywords: Neural network accelerators · Task partition ·
Scheduling algorithms

This work is partially supported by the National Key Research and Development Pro-
gram of China (under Grant 2017YFB1003101), the NSF of China (under Grants
61432016, 61532016, 61672491, 61602441, 61602446, 61732002, 61702478, 61732007
and 61732020), Beijing Natural Science Foundation (JQ18013), the 973 Program of
China (under Grant 2015CB358800), National Science and Technology Major Project
(2018ZX01031102), the Transformation and Transfer of Scientific and Technologi-
cal Achievements of Chinese Academy of Sciences (KFJ-HGZX-013), Key Research
Projects in Frontier Science of Chinese Academy of Sciences (QYZDB-SSW-JSC001),
Strategic Priority Research Program of Chinese Academy of Science (XDB32050200,
XDC01020000) and Standardization Research Project of Chinese Academy of Sciences
(BZ201800001).

c© Springer Nature Switzerland AG 2019
P.-C. Yew et al. (Eds.): APPT 2019, LNCS 11719, pp. 55–67, 2019.
https://doi.org/10.1007/978-3-030-29611-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29611-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-29611-7_5

56 X. Chen et al.

1 Introduction

Artificial Neural Network is a very popular algorithm in machine learning fields.
In recent years, along with the rapid development of deep learning technology,
Artificial Neural-Network-based models and algorithms have made important
breakthroughs in many fields. In the fields of speech [1], facial recognition [2],
automatic driving [3] and machine translation [4], research works about algo-
rithms based on deep neural networks are going deeper and deeper.

Unlike traditional algorithms, an important feature of deep neural networks
is the coexistence of both high memory access and computational intensiveness.
This is a huge challenge for general purpose processors. To face these challenges,
mainstream neural network acceleration schemes can be roughly divided into
three types. Graphics Processing Unit (GPU) [5], Field-Programmable Gate
Array (FPGA) [6,7], and Application Specific Integrated Circuit (ASIC) [9].
GPUs feature their powerful parallel computing capability but face severe power
efficiency problem, while FPGAs feature their flexibility but have poor peak per-
formance. Unlike GPUs and FPGAs, ASICs are dedicated, customized hardware
architectures. The multicore and in-memory computing [10,11] designs help them
to outperform GPUs and FPGAs in terms of AI computing fields.

Task scheduling problem is a classical NP-hard problem [13], while it plays
a key role in improving the overall system performance. Therefore, scheduling
algorithms based on traditional applications and heterogeneous systems have
been extensively studied [14]. Intrinsically, neural network accelerators can be
regarded as a special class of heterogeneous systems, but the separability of
neural network applications and customized function units for neural network
accelerator make them quite different from the traditional applications and het-
erogeneous systems. As an emerging field, there are few researches on such task
scheduling problems. In this paper, the corresponding task scheduling algorithms
are studied for neural network applications and neural network accelerators.

The main contributions are summarized as followings.

1. Modeling neural network accelerators and formalizing the task
scheduling problem. We summarize typical characteristics of existing neu-
ral network accelerators and abstract a general neural network accelerator
model. Based on this model, we formalize the task scheduling problem com-
bined with separability of neural networks.

2. Transplanting scheduling algorithms and proposal of partition algo-
rithms. Since traditional scheduling algorithms can hardly be directly
applied to neural network accelerators, we transplant two algorithms, HEFT
and CPOP, into our accelerator model. To utilize the separability feature of
neural networks, we propose two partition algorithms, IPS and PSC, ade-
quately exploiting parallelism.

3. Promising performance gain in typical neural network tasks. In our
self-built simulator, we conducted experiments on typical neural networks.
Results show that compared to scheduling-only algorithms the partition asso-
ciated algorithms achieve about 2x to 3x speedup.

Partition and Scheduling Algorithms for Neural Network Accelerators 57

The following sections are divided into 5 parts. Part I introduces related
works on neural network accelerators and traditional task scheduling algorithms.
Part II models the structure of the neural network accelerator and formalizes the
scheduling problem about the neural network applications. Part III is the trans-
plantation of traditional scheduling algorithms and we propose two improved
scheduling algorithms based on partition strategy. Experiments and analysis are
introduced in Part IV. Part V is a summary and a outlook for future work.

2 Related Work

2.1 Neural Network Accelerators

In order to meet the computation and memory intensive characteristics of neural
network algorithms, and the demand for powerful computing resources, various
solutions such as GPU, FPGA and ASIC have been extensively studied.

For GPUs, since neural network computing includes many stream compu-
tation and matrix operations, GPUs are frequently applied to neural network
applications [5]. Meanwhile, GPUs have been added some neural network spe-
cific structures to improve the versatility, computation performance and power
efficiency [15]. Compared to GPUs, FPGAs are much more efficient for ever-
changing neural network applications. Compared with ASICs, FPGAs overcome
the shortcomings of long development cycle and poor scalability. Besides, FPGAs
also provide acceptable computation performance. Therefore, there are many
researches on FPGA-based neural network accelerators [8], like CNN dedicated
accelerators [16]. Compared to GPUs and FPGAs, customized ASICs is a supe-
rior solution for the acceleration of neural network algorithms. Unlike traditional
von Neumann architecture, ASICs typically use in-memory computational struc-
tures to improve memory usage efficiency [10,11].

To summarize the accelerators mentioned above, using multi-core, specialized
neural network function units and enlarging on-chip communication bandwidth
are common designs. For example, in order to accelerate the common neural
network operations such as matrix multiplication, convolution, activation and
pooling, the TPU proposed by Google is designed with various specialized mod-
ules such as matrix multiply unit, activation unit, and pool unit. Unified Buffer,
and fast bandwidth between Host and Device are methods to optimize access
efficiency [12]. Eyeriss [17] and Nullhop [18] are also neural network accelerators
with similar architecture.

2.2 Task Scheduling Algorithms

Task scheduling algorithms based on heterogeneous systems have been exten-
sively studied [14]. Since task scheduling is an NP-hard problem in most
cases [13], various heuristic algorithms have been proposed.

List scheduling heuristic algorithms usually maintain a priority queue based
on all tasks, and then cyclically performs task selection and processor selection

58 X. Chen et al.

until all tasks are scheduled. Mapping Heuristic (MH) [19], Earliest Time First
(ETF) [20] are some examples of list scheduling heuristic algorithm. The two
scheduling algorithms we transplanted in this paper, Heterogeneous-Earliest-
Finish-Time (HEFT) and Critical-Path-on-a-Processor (CPOP) also belong to
the list scheduling algorithm [14]. The Upward Rank and Downward Rank of
each task are the most significant parts in these algorithms. Upward Rank refers
to the shortest time required from the start of the mission to the current task.
The Downward Rank is the shortest time from the current task to the end of
the whole mission. The HEFT uses the upward rank as the priority to schedule
tasks, while CPOP uses the sum of both to select and optimize the critical path.

But all traditional scheduling algorithms are based on the assumption that
tasks cannot be separated into small parts and the processor is general to all
tasks. Such a hypothesis is not consistent with the separability of neural network
tasks and customized modules in neural network accelerators. Therefore, we first
transplant traditional scheduling algorithms onto our abstracted neural network
accelerator model, and further put forward split-based optimizations.

3 System Model and Problem Definition

In this section, we abstract a general configurable neural network accelerator
model. Based on separability of neural networks and this model, we formalize
the task scheduling problem.

3.1 The Configurable Neural Network Accelerators Model

According to computational characteristics, neural network operations can be
divided into several types. For instance, Convolution and Full Connection Oper-
ations can be accomplished by matrix multiplication and reduce sum operation,
Activation Operations can be accomplished by lookup tables. Neural network
accelerators can obviously improve system performance by implementing opera-
tion specified function units exquisitely. Commonly heterogeneous systems com-
municate with assistance of main memory. Differently, function units in neural
network accelerators often communicate with each other directly. With regard
to neural network applications, dataflow transfer among function units directly,
which don’t need to be buffered. (see the neural network accelerator model as
Fig. 1)

Demands for Neural Network Accelerators vary with different application
scenarios. For edge computing fields, power efficiency and time delay are main
focuses. While throughput and parallelism are the main ones for cloud servers.
Basically, a Neural Network Accelerator model consists of series of function units
and interconnected data transfer paths. Each function unit can accomplish sev-
eral types of neural network operations. For example, both convolution and full
connection operations could be accomplished by same kind of function units.
The interconnected data transfer paths between each two function units could

Partition and Scheduling Algorithms for Neural Network Accelerators 59

Fig. 1. A general model for neural network accelerators.

exist or not. In our model, the number, computational speed, connectivity and
corresponding bandwidth of function units are all configurable parameters.

Assume neural network operations are divided into m sets, op1, op2, . . . , opm.
Suppose a configured accelerator consists of n function units, fu1, fu2, . . . , fun.
For function unit fui, we use the function g(fui) to represent the computation
speed for function unit i, and function h(fui, fuj) to represent the bandwidth
between fui and fuj .

h(fui, fuj) =

⎧
⎪⎨

⎪⎩

bi,j the bandwidth equals to bi,j ,

∞ i = j,

0 otherwise.

(1)

3.2 Formulation of the Scheduling Problem

The neural network application can be represented by a directed acyclic graph
(DAG), G = (V,E). Each node vi ∈ V represents an operation and each edge
ei,j ∈ E represents the data dependency between vi and vj . And node vi can
be executed on function unit fux if and only if op(vi) ∈ ops(fux), in which
op(vi) means operation type of vi, and ops(fux) means the set of operation
types supported on fux.

Assume the computation size is cp(vi), and the selected function unit f(vi).
Then the computation time cpt(vi) can be reckoned out as cp(vi)/g(f(vi)).
Assume the data transfer size from node vi to node vj is io(vi, vj), and the
corresponding transfer time iot(vi, vj) is defined by io(vi, vj)/h(f(vi), f(vj)).

We introduce the conception of priority for nodes assigned to the same func-
tion unit. The priority of node vi is s(vi). Nodes on the same function unit should
be executed in priority order. We assume the start time of node vi is st(vi), and
the finish time is ft(vi). For nodes vi and vj on the same function unit, we have
the following constraint.

60 X. Chen et al.

st(vi) >= ft(vj) if s(vi) < s(vj) (2)

st(vi) = max{ max
vi �=vj

f(vi)=f(vj)
s(vi)<s(vj)

ft(vj), max
vj∈pred(vi)
f(vi) �=f(vj)

ft(vj) + iot(vj , vi)} (3)

Specifically, for entry node vi which has no predecessor, st(vi) equals to 0 or
ft(vj) if vj is also a entry node and f(vi) equals to f(vj). For other node, the start
time is formulated as Eq. (3), and the finish time vi is ft(vi) = st(vi) + cpt(vi).

Based on definitions above, the schedule problem is to find a function unit
assignment function f and a priority setting function s to minimize the execution
time.

argmin
s,f

max
vi∈V

ft(vi) (4)

3.3 The Partition Associated Scheduling Problem

Most neural network operations can be accomplished by vectorized operations.
Based on the weak data dependency, neural network operations can be parti-
tioned to leverage task parallelism.

Fig. 2. Partition schemes for a convolution layer. In this case, the kernel is 512 ×
256 × 3 × 3, the stride is 2 × 2. Compared with (a), (b) has the same computational
size and data transfer size, (c) has an extra data transfer consumption (51712B), (d)
has extra data transfer consumption (5120000B), and an extra add-supported function
unit, while (e) has an extra data transfer consumption (5222912B).

Partition and Scheduling Algorithms for Neural Network Accelerators 61

Based on characteristics of different operations, we formulate partition strate-
gies respectively. For example, based on the partition direction, a 2-D convolution
operation can be partitioned by 5 ways. From the batch direction, no additional
works involved, but if the batch number of application equals 1, this method
can’t work. From the input channel direction, an additional add operation is
needed to add partial results from each partitioned child nodes. From the out-
put channel direction, each child node needs to get full input, which will increase
data transfer size. From the height or width direction, there could be additional
data transfer consumption for overlapped inputs on each child nodes. (See Fig. 2)
On the contrary, for a batch normalization operation, partition won’t lead into
additional workload. Similarly, we construct partition rules for each neural net-
work operation.

For a partition procedure pi, a node v would be replaced by new nodes and
edges associated with v would be replaced by new edges. The data transfer size
on new edges is tightly correlated with operation and parameters on it.

G′(V ′, E′) = pi(G(V,E)) (5)

Assume we get a partition sequence p = (p1, p2, . . . , pk), the partition asso-
ciated schedule problem could be reformulated as follows:

argmin
p,s,f

max
vi∈V

ft(vi) (6)

4 Partition and Scheduling Algorithms

In this section, we improve two algorithms, HEFT and CPOP, in terms of gener-
ality, so as to enable them to be used in our neural network accelerator model. To
utilize the separability feature of neural networks, we propose two partition algo-
rithms, IPS and PSC, adequately exploiting parallelism. Since the final result
is measured by the cost model, these algorithms will always terminate with a
practicable solution.

4.1 Transplanted Scheduling Algorithms

Because traditional scheduling algorithms can hardly apply to neural network
accelerators, we improve HEFT and CPOP algorithms to adopt neural network
applications. The improved HEFT algorithm firstly sets the priority of each node
vi with the Upward Rank value ranku(vi) [14], which is calculated from mean
computation time cpt(vi) and mean communication time iot(vi, vj) in which vj
is a successor node of vi. Different from original definition, cpt(vi) and iot(vi, vj)
in our algorithm is redefined as follows:

In Eqs. (7) and (8), ni means the number of function units which support vi.
In original CPOP algorithm, nodes in the critical path must use the same

processor. But in the improved algorithm, we loose this constraint that nodes
with the same type must be assigned to the same function unit.

62 X. Chen et al.

cpt(vi) = cp(vi) · ni/
∑

op(vi)∈ops(fuj)

g(fuj) (7)

iot(vi, vj) = io(vi, vj) · ni · nj/
∑

op(vi)∈ops(fux)
op(vj)∈ops(fuy)

h(fux, fuy) (8)

4.2 The Iterative Partition Scheduling Algorithm (IPS)

Compared to traditional scheduling tasks, neural networks have less branches
and more separability. To increase the opportunities of scheduling, we introduce
the partition procedure to enhance the parallelism of neural network applica-
tions. We proposed a partition algorithm IPS that is applicable for most kinds
of scheduling algorithms. In IPS, we firstly run the scheduling algorithm to get
a critical path for the application. Then, we try to partition a node in the path
to minimize scheduling time, which can get a local optimal partition strategy.
By iteratively scheduling and partition, the neural network could be scheduled
much more efficiently. Besides, we use a predefined minimal iteration number to
prevent early stopping caused by local optimal solution.

4.3 The Partition Scheduling Combination Algorithm (PSC)

Compared to IPS, we propose a more aggressive partition algorithm PSC, which
is a three-stage algorithm. Firstly, it partitions nodes in the original graph into
child nodes evenly. Secondly, it schedules the partitioned graph by a specific
scheduling algorithm. Finally, it tries to combine child nodes assigned to the
same function units to decrease cost of partition.

To exploit the parallelism of neural network applications as much as possible,
we use a partition stage to split each node into child nodes. Intuitively, these child

Algorithm 1. The Iterative Partition Scheduling Algorithm
1 set optimal makespan to ms = ∞ and iteration number iter = 1;
2 do
3 schedule G(V,E) by a specific algorithm to get makespan mt;
4 find the critical path of G(V,E);
5 initialize gain and target node, gain = ∞, nopt = n1;
6 for node ni in the critical path do
7 try to split ni and estimate gain gt;
8 update gain of split node gain and critical node nopt;

9 end
10 update G(V,E) to G′(V ′, E′) by splitting critical node nopt evenly;
11 update G(V,E) by G′(V ′, E′) , ∇(m) = mt − ms, ms = max(ms,mt)

and increase iter by 1;

12 while iter < iterthreshold or ∇(m) > makespan threshold;
13 return G′(V ′, E′)

Partition and Scheduling Algorithms for Neural Network Accelerators 63

Algorithm 2. The Partition Scheduling Combination Algorithm
1 for vi ∈ V do
2 get the number of function units ni that support vi;
3 split vi into ni child nodes evenly;

4 end
5 update G(V,E) to G′(V ′, E′);
6 schedule G′(V ′, E′);
7 for each function unit fui do
8 try to combine nodes in fui;
9 end

10 return G′(V ′, E′)

nodes could be scheduled into different function units and be executed parallelly.
Since the partition procedure could introduce additional data transmission or
computational costs, a node combination stage is applied to combine child nodes
to eliminate unnecessary costs.

5 Experiments and Analysis

In this section, to verify the efficiency of our proposed algorithms, we conduct
extensive simulated experiments with several classical neural networks. The algo-
rithms includes the improved algorithms, HEFT and CPOP, and our proposed
partition algorithms IPS and PSC. Then we show the result and analysis of these
experiments.

5.1 Experimental Setup

We implement our experiment on a simulator, which consists of different types
of function units. In addition to their types, the number of function units in
different types, the computation speed, the topology relation and the bandwidth
between these function units, are all configurable.

In the experiments, we use the following three metrics to show effect of our
algorithms.

Makespan: Execution time of the scheduled neural network.

Speedup: The ratio of makespan to the minimum sequential execution time
for a neural network. In our model, the sequential execution time is computed
by assigning layers of the same operation to a function unit that minimizes the
cumulative time of computation and data transmission costs.

Critical Hardware Occupy Rate (CHOR): We define critical function units
as a class of function units which have the maximum occupy rate. This metric can
be used to depict characters of different neural networks, such as distributions
for different operations, and efficiency of a specific accelerator to an application.

64 X. Chen et al.

5.2 Experimental Results

Scheduling-Only Algorithms. In our simulator, we set the number of func-
tion units for each operation type as 4. As shown in Fig. 3, for neural networks
without branches, since no two layers could run in parallel, the speedup equals to
1. Neural networks with branches are also restrained by the limited parallelism
of branches. So, scheduling the order of layers without leveraging intra-layer
parallelism can’t make full use of accelerators’ parallelism.

Fig. 3. Speedup for each neural network scheduled with HEFT and CPOP algorithms,
on a simulator with 4 function units for each kind of operations.

Table 1. Results on typical neural networks for partition scheduling algorithms.

Neural network Makespan Speedup CHOR

IPS PSC IPS PSC

HEFT CPOP HEFT CPOP HEFT CPOP HEFT CPOP

ALEXNET 58011.9 4.629 1.786 2.414 2.414 0.647 0.533 0.448 0.448

VGG16 71283.2 4.066 2.096 3.084 3.084 0.604 0.498 0.529 0.529

VGG19 81882.7 3.548 2.815 3.223 3.223 0.583 0.462 0.607 0.607

GOOGLENET 42122.2 3.668 3.351 3.245 2.973 0.857 0.417 0.981 0.899

INCEPTIONV3 100591 3.339 3.816 4.803 3.220 0.821 0.516 0.821 0.954

RESNET18 35416.2 3.231 2.188 2.721 2.626 0.769 0.521 0.769 0.521

RESNET50 38629.7 1.932 1.406 2.900 2.729 0.472 0.374 0.472 0.374

Iterative Partition Algorithms. We use the Iterative Scheduling Partition
Algorithm associated with CPOP and HEFT respectively. As shown in Table 1,
with 4 function units per kind, speedup for Alexnet with HEFT could reach
4.63. The main speedup interval is [3.2, 4.6] for HEFT, and [2.0, 3.8] for CPOP.
The critical path estimated by CPOP is valid if and only if the accelerator has
enough function units. Otherwise, it could shrink the search space and miss some
potential optimization opportunities. While HEFT makes no such assumption,
and search optimization greedily. And the experimental results also show that
HEFT performs better than CPOP. The value of CHOR is mainly affected by

Partition and Scheduling Algorithms for Neural Network Accelerators 65

the structure of neural networks, the organization of accelerator and scheduling
algorithms. And as shown in the Table 1, CHOR value is positively correlated
with Speedup value. GOOGLENET and INCEPTIONV3 show better perfor-
mance than other networks with HEFT scheduling algorithm. With the Iterative
Schedule Partition algorithm, the CHOR for most neural networks are greater
than 45%, and the most efficient one could reach 85%.

The iteration number is of great significant. Also shown in Fig. 4, With the
increase of iteration number, speedup has a increasing trend and converges to a
value. The iteration number for typical neural networks is around 30.

Partition Scheduling Combination Algorithms. As shown in Table 1, the
distribution of Speedup and CHOR value of PSC is similar to that of IPS. The
Speedup value of HEFT approximately lies in [2.7, 3.3], while [2.6, 3.2] for CPOP.
And In some cases, PSC shows better performance than IPS such as INCEP-
TIONV3 and RESNET50, which implies that IPS algorithm may get trapped in
local optimum for some cases. Since PSC is a pretty aggressive algorithm which
benefits from simple structures of neural networks, it is highly applicable to such
scenarios.

Fig. 4. A general model for neural net-
work accelerators.

Fig. 5. Comparison of speedup of dif-
ferent kinds of algorithms.

Comparison. We compare Speedup values for various algorithms in most neu-
ral networks (see Fig. 5) in the simulator with 4 function units for each operation
type, and find that partition associated scheduling algorithms promote perfor-
mance apparently. In most cases, 2x–3x times performance improvement are
gained by partition algorithms. IPS performs much more stably on most neu-
ral networks than PSC. But for very deep neural networks like RESNET50 and
INCEPTIONV3, IPS is hard to converge to a global optimal point. Whereas
aggressive algorithm like PSC may find a better solution directly.

6 Conclusions and Future Work

In this paper, we propose four scheduling algorithms which include improved
HEFT, improved CPOP, IPS and PSC, to enhance system efficiency of neural

66 X. Chen et al.

network accelerators. In extensive comparison experiments with some popular
and typical neural networks, we explicitly illustrate the superiority of our parti-
tion scheduling algorithms over scheduling-only algorithms and achieve about 2x
to 3x speedup. We also perform a set of experiments to investigate the efficiency,
robustness and stability of four scheduling algorithms.

In our future work, we will make efforts in the three aspects below: We will
take hierarchical memory organizations into consideration, conduct experiments
in more neural network applications and try to guide the design of neural network
accelerators by scheduling results.

References

1. Amodei, D., et al.: Deep speech 2: end-to-end speech recognition in English and
mandarin. In: International Conference on Machine Learning, pp. 173–182 (2016)

2. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: closing the gap to human-
level performance in face verification, pp. 1701–1708 (2014)

3. Bojarski, M., et al.: End to end learning for self-driving cars. arXiv: Computer
Vision and Pattern Recognition (2016)

4. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. In: International Conference on Learning Representations
(2015)

5. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Neural Information Processing Systems, vol. 141,
no. 5, pp. 1097–1105 (2012)

6. Gschwind, M.K., Salapura, V., Maischberger, O.: Space efficient neural net imple-
mentation (1994)

7. Ovtcharov, K., Ruwase, O., Kim, J.Y., Fowers, J., Strauss, K., Chung, E.S.: Accel-
erating deep convolutional neural networks using specialized hardware. Miscella-
neous (2015)

8. Mittal, S.: A survey of FPGA-based accelerators for convolutional neural networks.
Neural Comput. Appl. 1–31 (2018)

9. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: ImageNet classi-
fication using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 525–542. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46493-0 32

10. Sebastian, A., et al.: Temporal correlation detection using computational phase-
change memory. Nat. Commun. 8(1), 1115 (2017)

11. Rios, C.E.C., et al.: In-memory computing on a photonic platform. Sci. Adv. 5(2),
eaau5759 (2019)

12. Jouppi, N.P., Borchers, A., Boyle, R., Cantin, P.L., Nan, B.: In-datacenter perfor-
mance analysis of a tensor processing unit (2017)

13. Ullman, J.D.: NP-complete scheduling problems. J. Comput. Syst. Sci. 10(3), 384–
393 (1975)

14. Topcuoglu, H.R., Hariri, S., Wu, M.: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst.
13(3), 260–274 (2002)

15. Mittal, S.: A survey on optimized implementation of deep learning models on the
NVIDIA Jetson platform. J. Syst. Archit. 97, 428–442 (2019)

http://arxiv.org/abs/Computer
https://doi.org/10.1007/978-3-319-46493-0_32

Partition and Scheduling Algorithms for Neural Network Accelerators 67

16. Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B., Cong, J.: Optimizing FPGA-based
accelerator design for deep convolutional neural networks, pp. 161–170 (2015)

17. Chen, T., et al.: DianNao: a small-footprint high-throughput accelerator for ubiq-
uitous machine-learning. ACM Sigplan Not. 49(4), 269–284 (2014)

18. Aimar, A., et al.: NullHop: a flexible convolutional neural network accelerator
based on sparse representations of feature maps. IEEE Trans. Neural Netw. 30(3),
644–656 (2019)

19. Elrewini, H., Lewis, T.G.: Scheduling parallel program tasks onto arbitrary target
machines. J. Parallel Distrib. Comput. 9(2), 138–153 (1990)

20. Hwang, J., Chow, Y., Anger, F., Lee, C.: Scheduling precedence graphs in systems
with interprocessor communication times. SIAM J. Comput. 18(2), 244–257 (1989)

Optimization and Parallelization

SPART: Optimizing CNNs by Utilizing
Both Sparsity of Weights

and Feature Maps

Jiaming Xie1,2(B) and Yun Liang1,2

1 Peking University, Beijing, China
{jmxie,ericlyun}@pku.edu.cn

2 Peng Cheng Laboratory, Shenzhen, China

Abstract. Intense convolution computation and great memory require-
ment in CNNs constraint their wider deployments and applications.
Although both the weights and feature maps in CNNs can be sparse,
directly mapping sparse convolution to spGEMM in HPC domain fails
to improve the actual performance. Besides, existing sparse formats like
CSR are not suitable for encoding the sparse feature maps because con-
volution operates across rows.

In this work, we propose a new format and a novel sparse convo-
lution algorithm to optimize sparse CNNs on GPUs. First, we design
the Compressed Feature Map (CFM) format to store the sparse feature
maps. Second, we propose an efficient sparse convolution algorithm called
SPART with sparse weights and sparse feature maps. Finally, we opti-
mize this algorithm on GPUs. Our experiments show that our SPART
algorithm has good performance. Compared with dense convolution, the
speedup of SPART is up to 2.62× (1.77× in average) on V100 and up to
1.84× (1.24× in average) on Titan X.

Keywords: CNN · Sparse · Convolution · Format

1 Motivation

CNN (Convolution Neural Network) achieves great success in many domains,
including computer vision [12], natural language processing [6], big data [4], etc.
Compared with other deep neural networks, CNN introduces convolution layer
to enhance the network’s feature extraction ability, thus brings better perfor-
mance. Meanwhile, convolution layers also brings much computation, making it
the bottleneck of CNN computation performance.

Although CNNs have good performance in many applications, they are still
not widely deployed. For example, because the storage, memory and computation
requirement exceeds mobile devices’ ability, it’s hard to deploy CNNs to these
devices [8]. There are many strategies to reduce the computation and storage

This work was supported by the National Natural Science Foundation China (No.
61672048).

c© Springer Nature Switzerland AG 2019
P.-C. Yew et al. (Eds.): APPT 2019, LNCS 11719, pp. 71–85, 2019.
https://doi.org/10.1007/978-3-030-29611-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29611-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-29611-7_6

72 J. Xie and Y. Liang

requirement of CNNs, one of which is to prune the weights [8,16,28]. There
are massive redundant weight parameters in CNNs, and pruning these weights
out can safely reduce computation and storage requirements without reducing
CNNs’ accuracy. Meanwhile, input feature maps of convolution layers can be
highly sparse as well owing to ReLU activation method [10], which turns non-
positive values to zero.

Conventionally, the convolution operation is mapped to GEMM opera-
tion, because GEMM operation is highly optimized in HPC domain and can
achieve good performance. Unfortunately, simply mapping sparse convolution to
spGEMM hardly achieves speedup for several reasons. Firstly, the sparsity of
weights and input feature maps fail to meet the requirement of spGEMM in HPC
domain. In the University of Florida Sparse Matrix Collection [7] which is widely
used as the benchmark of sparse matrix kernels in HPC domain, the typical matri-
ces only have at most 1% or even less than 0.1% non-zero values, but the sparsity
in convolution layers of CNNs, the weights and ifmaps have at least about 10%
non-zero values. Secondly, mapping convolution to GEMM brings large memory
overhead. The original input feature map will be unrolled into a larger matrix dur-
ing the mapping, and in VGG [25] network whose convolution kernel size is 3 and
stride is 1, the unrolled matrix is about 9× larger than the original feature map. In
dense convolution, this overhead can be hided by computation-bound GEMM, but
in sparse convolution, the unrolling overhead will badly worsen the performance
of memory-bound spGEMM. In conclusion, owing to the insufficient sparsity and
great memory overhead, simply mapping sparse convolution to spGEMM usually
brings worse performance compared with the dense case.

As the most powerful acceleration device, GPU has been well studied and
applied in many domains [14,15,29–32]. A few previous works try to utilize
the sparsity in CNNs. [24] proposes direct sparse convolution method on CPUs
to speedup sparse convolution between sparse weight kernels and dense input
feature maps, and [3] implements this method on GPUs. However, to the best
of our knowledge, no research has tried to utilize both the sparsity in weights
and input feature maps.

In this work, we propose a novel sparse convolution algorithm for optimizing
sparse CNNs on GPUs. To begin with, we try to utilize both the sparsity of
weights and input feature maps. As the sparsity in convolution layers fails to
meet the requirements of spGEMM in HPC domain and the existing sparse con-
volution methods don’t support sparse feature maps, we design a novel sparse
format to store the sparse input feature maps as well as new efficient sparse
convolution algorithm. Furthermore, we implement the proposed algorithm on
GPUs, and propose a finetuning model to guide the selection of the best SPART
implementation across layers with different sparsity and parameters. The con-
tributions of this work include:

1. We invent the Compressed Feature Map (CFM) format to store the sparse
feature maps and provide assistance for spare convolution.

2. We design a new sparse convolution algorithm called SPART which operates
on sparse weights and sparse feature maps.

SPART: Optimizing CNNs by Utilizing Both Sparsity of Weights 73

3. We optimize the SPART algorithm on GPUs and finetune it to adapt to
different layers. Compared with dense convolution, the speedup of SPART is
up to 2.62× (1.77× in average) on V100 and up to 1.84× (1.24× in average)
on Titan X.

2 Background

2.1 CNN and Convolution Operation

A typical CNN is a stack of different layers, such as convolution layers, fully
connected layers, pooling layers, etc. The output of last layer becomes the input
of next layer. Among all these layers, convolution layers are the computation
bottleneck, because their convolution operations have intense computation [26].

Fig. 1. Mapping high dimensional con-
volution to GEMM

Fig. 2. CSR format

Table 1. Shape parameters in convolution operation

Shape parameter Description

N batch size

M # of output channels

C # of input channels

R/S weight kernel height/width

H/W ifmap height/width

E/F ofmap height/width

Each of the convolution layers in CNN is composed of high-dimensional con-
volutions as illustrated by Fig. 1. A group of input feature maps (ifmaps), each
is called a input channel, conduct convolution with a group of weight kernels to
get a single output channel of output feature maps (ofmaps). Different output

74 J. Xie and Y. Liang

channels of ofmaps are formed by different groups of weight kernels on the same
group of ifmaps. A group of ifmaps is called a batch, different batches of ifmaps
operate with same weight kernels to form different batches of ofmaps. In Fig. 1,
there are C input channels, M output channels and 1 batch. Shape parameters
in convolution operation are listed in Table 1.

The most common convolution implementation is to map convolution to
GEMM. As illustrated by Fig. 1, all the weight kernels of the same output channel
are flattened into a row, while the ifmap pixels in a same convolution operation
are unrolled to a corresponding column. After the transformation, we multiply
these two matrices to get the ofmap. As GEMM is highly optimized in HPC
domain, mapping convolution to GEMM can achieve good performance, but it
also requires much more memory than the size of original weights and ifmaps
because unrolling the ifmap will greatly inflate its size. When it comes to sparse
convolution, the memory overhead of GEMM method is severe enough to make
sparse convolution less efficient than dense convolution.

2.2 Sparsity in CNN

In order to reduce the great number of weight parameters in CNN, many prun-
ing methods have been proposed. As there are massive redundant parameters
in CNN, [8] prune 90% weight values and greatly reduce the convolution com-
putation. However, because the original regular structure of CNN is no longer
kept and sparse convolution fails to meet the requirement of spGEMM in HPC
domain (discussed in Sect. 1), the actual computation speed is not improved or
even gets slower. Our work aims to solve this problem.

Besides weight sparsity, input feature maps are also sparse. ReLU, a popular
activation method in CNN, turns non-positive feature map pixels to zeroes,
which brings great sparsity to feature maps. What’s more, the padding operation
before convolution also brings zeroes. However, few researches try to utilize the
sparsity in feature maps, and to our best knowledge, our work is the first to
utilize both the sparsity in weights and feature maps in sparse convolution.

In HPC domain, there are many sparse matrix formats [2], such as CSR,
COO, DIA, etc. Owing to limited space, we only introduce CSR format here.
As shown in Fig. 2, there are three arrays in CSR format. Array val has nnz ele-
ments, which stores all the non-zero values in the original matrix. Array rowPtr
has row + 1 elements, and its ith element points to the position of the first ele-
ment in original matrix’s ith row. Array colIdx has nnz elements, which are the
column indexes of corresponding non-zero value.

Sparse weights are suitable to be stored in CSR because values in the same
kernel can be stored in the same row and can be accessed continuously. However,
sparse feature maps don’t have the same property. For example, as shown in
Fig. 2, for a convolution area outlined in red dashed box, its non-zero values
are not continuous as outlined in red boxes of the val array. This incontinuity
makes CSR not suitable for sparse ifmaps, because we will have to search the
entire row to locate the elements of the convolution area each time we switch
between rows, which will bring much overhead. Therefore, we are supposed to

SPART: Optimizing CNNs by Utilizing Both Sparsity of Weights 75

design a new format to store sparse feature maps and design corresponding
sparse convolution algorithm.

3 Format Design

3.1 Weight Compression

As shown in Fig. 3, we compress weight kernels with CSR format. First, we
flatten the elements from the same output channel into a row, and rows from
different output channels form a matrix. Then, we compress the flattened matrix
in CSR format. For a weight pixel in [m, c, r, s], its valPtr value is m, and its
colIdx value is calculated as

colIdxm,c,r,s = s + S(r + Rc) (1)

In this way, for a pixel in mth row with colIdx value colIdxm,c,r,s, we are able
to restore its location [m, c, r, s] according to

s = colIdxm,c,r,s mod S

r = �colIdxm,c,r,s

S
� mod R

c = �colIdxm,c,r,s

SR
�

(2)

Because existing formats are not suitable for sparse ifmap, we design a new
Compressed Feature Map (CFM) format for it.

3.2 CFM Overview

Our proposed sparse format CFM is illustrated by Fig. 3. As described in Table 1,
we assume that the weight shape is MCRS, and the ifmap shape is NCHW .
There are four arrays in the proposed format:

Fig. 3. Compression of weights and ifmaps

76 J. Xie and Y. Liang

Array val stores all the non-zero values of the ifmap. This array has if nnz
elements.

Array id stores the ids of the corresponding values in array val. This array
has if nnz elements. In order to store the location information, all the pixels in
the original ifmap are assigned with an id. In Fig. 3, ids are located in the top
left corner of each pixel. The id of pixel [n, c, h, w] is defined as

idn,c,h,w = w + W [h + H(c + Cn)] (3)

In this definition, we are able to calculate any pixel’s location [n, c, h, w] from
its id and pre-known ifmap size NCHW as follows:

w = idn,c,h,w mod W

h = � idn,c,h,w
W

� mod H

c = � idn,c,h,w
WH

� mod C

n = � idn,c,h,w
WHC

�

(4)

Array begin and array end store the range pointers of each weight pixel’s
computation area. Each of these two arrays has NCRS elements. As shown in
Fig. 3, each weight pixel has its own convolution computation area outlined by
dashed rectangular. If we search the id array each time we start convolution
computation for a weight pixel, we will suffer from great locating overhead.
Therefore, we choose to record the computation area’s range for each weight
pixel. As one ifmap will be used by different weight kernels from different output
channels, and non-zero values might appear in any position within the kernels,
we are supposed to store the ranges for all the weight pixels. The computation
range of the ith pixel in a weight kernel is recorded as [begin[i], end[i]). For
example, in Fig. 3, the first weight pixel’s computation range is [0, 6). Detailed
computation procedure will be introduced in Sect. 4.

3.3 CFM Analysis

CFM is Efficient in Compression. Our proposed format has a size of

Sif = 2if nnz + 2NCRS (5)

and the compression rate is

comp rate =
2if nnz + 2NCRS

NCHW
=

2if nnz

NCHW
+

2RS

HW
(6)

The storage for array val and id is necessary as they store vital information. It
seems that the array begin and end bring great memory overhead, but in convo-
lution layers of real-world CNNs, the size of an single ifmap is much larger than

SPART: Optimizing CNNs by Utilizing Both Sparsity of Weights 77

the size of a weight kernel, which means 2RS
HW will be a small value. Therefore,

the compression format is relatively efficient in size.
CFM is able to Provide Assistance for Continuous Computation and
Workload Partition. The pointers stored in array begin and end points to
continuous area in val and id which indicate the workload of a weight pixel,
so the computation can be readily divided at the granularity of weight pixels.
Section 5 provides more details on how CFM assists continuous computation and
workload partition.

4 SPART Algorithm

Algorithm 1 presents the proposed sparse convolution algorithm (SPART) which
takes sparse weights and sparse ifmaps as inputs, and output the dense ofmap.
From line 1 to line 6, we get a non-zero value and its location from the compressed
weight. In line 7, we compute the offset of this weight pixel’s begin and end
pointers, and access them in line 8. In line 9 and 10, the ids and values in the
computation range are accessed for computation. In line 11, we compute the
location of the computation result from the locations of weight pixel and ifmap
pixel which are calculated according to the equations shown in Sect. 3. In line
12, the partial result is calculated and added to corresponding position of the
ofmap.

Algorithm 1. SPART Algorithm
1: procedure SpSpConv(W, IF,OF)
2: for n in [0, N) do
3: for m in [0, M) do
4: for i in [W.rowPtr[m], W.rowPtr[m + 1]) do
5: col = W.colIdx[i]
6: w val = W.val[i]
7: if off = col + n∗C∗R∗S
8: for j in [IF.begin[if off], IF.end[if off]) do
9: if id = IF.id[j]

10: if val = IF.val[j]
11: of off = ComputeOff(col, id)
12: OF[of off] += if val ∗ w val
13: end for
14: end for
15: end for
16: end for
17: end procedure

78 J. Xie and Y. Liang

5 Implementation on GPUs

5.1 Parallelism

The parallelism strategy aims to increase concurrency, to reduce warp diver-
gence and conflicts among thread blocks. With the assistance of the begin and
end array in CFM format, we are able to directly divide the tasks between differ-
ent weight pixels. As tasks in different batches are independent, they are simply
assigned to different thread blocks. However, to get an output feature map, all
the temporal results from different input channels have to be summed up, which
requires atomic operations because all the input channels are computed concur-
rently. For example, in step 3 of Fig. 4, both task 1 and 2 write their temporal
results to the ofmap concurrently. To reduce the overhead of atomic operations,
we assign the tasks of the same output channel to a single thread block so that
all the atomic operations are within the thread block and avoid synchroniza-
tion across thread blocks. As for the memory and computation for redundant
area, if we identify the redundant pixels and eliminate their computation, we
will suffer from great warp divergence and memory alignment issues because the
redundant pixels are scattered in the computation array. Therefore, we choose
to calculate the redundant pixels as well and discard the redundant results after
computation.

To put it together, as illustrated in Fig. 4, we assign the computations in dif-
ferent output channels and batches to different thread blocks. Within each thread
block, the task is divided at the granularity of weight pixels, and within each task,
the first step is to find the corresponding computation range pointers from begin
and end arrays in the compressed ifmap. Then each task locates their own compu-
tation range, calculate the partial result and atomically add to the corresponding
position of the result. As there are redundant pixels in the final result, after all the
computations in the same thread block is completed, we finally write the required
pixels back to the ofmap and discard the redundant pixels.

Fig. 4. Implementation on GPUs

SPART: Optimizing CNNs by Utilizing Both Sparsity of Weights 79

5.2 Memory Optimization

As shown in Fig. 4, there are 7 input arrays and 1 output array in SPART, and
their memory traces are different. For arrays in the compressed weight, their
elements will only be accessed once and can be stored in the register file. As for
the compressed ifmap, the accessed pixels’ positions depend on weight informa-
tion, which makes their visiting pattern irregular. Elements in array begin and
end are only accessed once, and visited pixels are usually not continuous, so we
simply load the visited pixels into the register files.

On the contrast, elements of val and id might be accessed more than once,
and the visited pixels in a same task are continuous. Because the accesses to
val and id are irregular and their elements might be reused, we cache these two
arrays in L1 cache. Given the fact that the accessed pixels of ifmap’s val and id
in a same task are continuous and might be coalesced together when issued by
memory, we assign a group of threads, say G threads, to compute a single task.
The optimal number of G varies in different sparsity and convolution parameters,
and we further discuss how to finetune it in Sect. 5.3.

For the output array, as the result pixels will be accessed for multiple times,
and the size of result array in a block is small, they are placed in shared memory.
After the computation is finished, threads in a block will write the required result
pixels back to the ofmap array in global memory.

5.3 Finetuning Model

During computation, the G threads of the same task will load a continuous
range of ifmap pixels at the same time to make use of coalescing. However,
the threads who have no assigned pixel have to wait for other threads, which
will bring divergence. More threads we assign to a single task, more memory
access might be coalesced, but more greater the divergence problem will be. As
the computation in a task might be influenced by the ifmap’s sparsity and other
convolution parameters such as weight’s kernel size, ifmap’s size, etc, the optimal
thread number G varies across layers.

To finetune the number of G, we propose a model which takes both memory
coalescing and thread divergence into consideration. The workload of a task is
estimated as

W = EF (1 − s) (7)

where EF is the size of an ofmap, s denotes the sparsity of the ifmap, and W
denotes the workload of a single task. Considering memory coalescing, a task’s
memory accessing time is directly proportional to the workload of a task and
reversely proportional to the concurrent thread number G as shown below:

Tmem =
WPmem

G
(8)

In Eq. 8, Pmem denotes the penalty of a single memory access, and Tmem denotes
the task’s memory accessing time.

80 J. Xie and Y. Liang

As for divergence problem, the additional time brought by divergence is
directly proportional to G which is described as:

Tdiv = GPdiv (9)

In Eq. 9, Pdivergence denotes the penalty of divergence. To put it together, the
time brought by memory and divergence of a task Ttask is

Ttask = Tmem + Tdiv =
EF (1 − s)Pmem

G
+ GPdiv (10)

We can pre-run some batches (10 batches for example) to finetune the values
of Pmem and Pdiv. After that, the parameters are fixed and we run the actual
batches as demand.

6 Experiment

We evaluate the performance of SPART on two platforms: NVIDIA Tesla V100
[22] represents data-center platform, while NVIDIA GTX Titan X [21] repre-
sents desktop platform. We use three classic CNNs: AlexNet [12], VGG16 [25]
and googLeNet [27] as our benchmarks. We only test the convolution layers of
these CNNs and ignore other kinds of layers. To avoid overhead of DNN frame-
works, we extract the weights and ifmaps from Caffe [11] with the trained models
from Caffe Model Zoo1 and inputs from ImageNet [12] Dataset, and do the con-
volutions in independent codes. We use gcc 5.0 and NVCC 9.0 for compilation.
In the experiments, we adjust the sparsity of weights to 90% and ifmaps from
75% to 90%, then evaluate the performance in different sparsity levels. The used
data type is 32-bit floating point, and the batch size is 128.

When mapping dense convolution to GEMM, we use the CUBLAS [18]
library, and we use the CUSPARSE [20] library when mapping sparse convo-
lution to spGEMM.

6.1 Finetuning Performance

To evaluate the performance of our finetuning model, we take several convolution
layers from VGG16 as our benchmark, and their convolution parameters are
listed at Table 2. Because these layers have different convolution parameters,
they have different optimal G and are suitable to test the finetuning model. We
adjust the weight at sparsity 90% while ifmap’s sparsity is 75% and 90%. We
implement SPART on Titan X with different G, and record their speed compared
with dense GEMM method.

Experimental results are shown in Fig. 5. In Fig. 5, cublas denotes the dense
GEMM method, and SPART 4 to SPART 32 denote SPART method with G
equals 4 to 32. Red dots represent the selected SPART method by our finetuning
model. We may have several observations from the result:
1 https://github.com/BVLC/caffe/wiki/Model-Zoo.

https://github.com/BVLC/caffe/wiki/Model-Zoo

SPART: Optimizing CNNs by Utilizing Both Sparsity of Weights 81

(a) weight sparsity 90%, ifmap sparsity 75%

(b) weight sparsity 90%, ifmap sparsity 90%

Fig. 5. Finetuning on VGG layers

Table 2. VGG16 layer parameters

VGG16 layer weight shape (MCRS) ifmap shape (NCHW) ofmap shape (NMEF)

conv3 1 (256, 128, 3, 3) (128, 128, 56, 56) (128, 256, 56, 56)

conv3 2 (256, 256, 3, 3) (128, 256, 56, 56) (128, 256, 56, 56)

conv3 3 (256, 256, 3, 3) (128, 256, 56, 56) (128, 256, 56, 56)

conv4 1 (512, 256, 3, 3) (128, 256, 28, 28) (128, 512, 28, 28)

conv4 2 (512, 512, 3, 3) (128, 512, 28, 28) (128, 512, 28, 28)

conv4 3 (512, 512, 3, 3) (128, 512, 28, 28) (128, 512, 28, 28)

conv5 1 (512, 512, 3, 3) (128, 512, 14, 14) (128, 512, 14, 14)

conv5 2 (512, 512, 3, 3) (128, 512, 14, 14) (128, 512, 14, 14)

conv5 3 (512, 512, 3, 3) (128, 512, 14, 14) (128, 512, 14, 14)

1. The optimal G for layers conv3 1 to conv3 3 is 32, while in layer conv5 1 to
conv5 3 the optimal G is 8. The former layers are large enough to benefit from
the memory coalescing, while the latter layers are so small that the divergence
problem plays a more important role than benefit of memory coalescing. Our
model successfully identifies the optimal G in these layers.

2. For layer conv4 1 to conv4 3, the optimal G is 16 when ifmap’s sparsity is
75% while when ifmap’s sparsity is 90%, the optimal G is 8. The difference
comes from the workload change brought by sparsity variety, just as the case
brought by layer size difference. Our model also successfully identifies the
optimal G in these situations.

3. The speedup in Fig. 5b is much greater than ones in 5a. The sparser the
ifmaps are, the less computation and memory SPART has, which brings better
performance.

82 J. Xie and Y. Liang

In conclusion, our finetuning model can identify the optimal G in different
layers and different sparsity.

6.2 Overall Convolution Performance

The overall convolution performance of the three CNNs is shown in Fig. 6.
We adjust the weight sparsity to 90%, and change the ifmap sparsity from
75% to 90%. In Fig. 6, cublas denotes the dense GEMM method, and cusparse
denotes the spGEMM method. The direct sparse convolution method [24] with
sparse weight and dense ifmap is denoted by spconv. SPART 8 and SPART 16
denote SPART implementations with G equals to 8 and 16 respectively, and
SPART tuned denotes SPART implementation with finetuned G in different
layers. We may have several observations from Fig. 6 as below:

(a) V100, weight sp 90%, ifmap sp 75% (b) Titan X, weight sp 90%, ifmap sp 75%

(c) V100, weight sp 90%, ifmap sp 80% (d) Titan X, weight sp 90%, ifmap sp 80%

(e) V100, weight sp 90%, ifmap sp 85% (f) Titan X, weight sp 90%, ifmap sp 85%

(g) V100, weight sp 90%, ifmap sp 90% (h) Titan X, weight sp 90%, ifmap sp 90%

Fig. 6. Convolution speedup

SPART: Optimizing CNNs by Utilizing Both Sparsity of Weights 83

1. Directly mapping sparse convolution to spGEMM, denoted by cusparse, is
much slower than the original dense GEMM method in all conditions, which
means it is extremely inefficient. The inefficiency comes from the inflated size
of unrolled ifmap and the insufficient sparsity as discussed in Sect. 2.

2. The spconv only achieves slight speedup on V100 and almost no speedup on
Titan X, because it only utilizes the sparsity in weights but ignores the ifmap
sparsity.
The SPART 8 and SPART 16 have moderate speedup in most cases, and their
performances differ with each other in different sparsity and CNNs. In higher
ifmap sparsity and smaller CNN such as AlexNet, the SPART 8 will have
better performance because of the smaller workload, while in other cases
SPART 16 is better. This is the reason why we must propose a finetuning
model.

3. The SPART tuned achieves high speedup in most cases. On V100, the
speedup of SPART tuned is up to 2.62× and in average 1.77×. On Titan X,
the speedup of SPART tuned is up to 1.84× and in average 1.24×.

In conclusion, our proposed SPART algorithm can achieve good performance
in sparse CNNs.

7 Related Work

Convolution Algorithms. Besides GEMM, there are also other convolution
methods. [17] maps convolution to Fast Fourier Transform (FFT) computation
and reduces the computation’s complexity, but this method can only applies to
convolution layers with weight kernel 3×3. [13] transforms convolution to Wino-
grad algorithm, but it also has some constraints for weight kernel size. CUDNN
[19] library provides support to map dense convolution to these algorithms, and
sparse convolution is not supported.
Sparse CNN Accelerators. Many recent works aim at accelerating sparse
CNNs on hardware like FPGA and ASIC. EIE [9] compresses the parameters
of fully connected layers in CNN to reduce storage and memory requirement as
well as speedup inference. SCNN [23] conducts Cartesian product when mapping
sparse convolution to spGEMM to help partition the workloads. Cambricon-X
[33] applies step indexing technique to divide the non-zeroes in sparse convolution
and achieve relatively balanced workload, while Eyeriss [5] gates the computation
cycles for zero values in ifmap. Cnvlutin [1] proposes Zero-Free Neuron Array
format to skip the multiplications of zero values in the ifmap.

8 Conclusion

CNN achieves great success in many domains, but its great computation require-
ment constraints its application. In this work, we propose SPART to accelerate
sparse CNNs by utilizing both sparsity in weights and feature maps. First, we
design a novel Compressed Feature Map (CFM) format to store the compressed

84 J. Xie and Y. Liang

feature maps and provide assistance for sparse convolution. Second, we propose
the SPART algorithm which conducts sparse convolution on sparse weights and
sparse feature maps. Finally, we implement SPART on GPUs and propose a
finetuning model to optimize its performance. Compared with original dense
convolution, the speedup of SPART is up to 2.62× and in average 1.77× On
V100. On Titan X, the speedup of SPART is up to 1.84× and in average 1.24×.
In future, we plan to map sparse convolution to sparse FFT or Winograd to
reduce computation complexity and achieve greater speedup.

Acknowledgement. This work was supported by the National Natural Science Foun-
dation China (No. 61672048).

References

1. Albericio, J., Judd, P., Hetherington, T., Aamodt, T., Jerger, N.E., Moshovos, A.:
Cnvlutin: ineffectual-neuron-free deep neural network computing. SIGARCH Com-
put. Archit. News 44(3), 1–13 (2016). https://doi.org/10.1145/3007787.3001138

2. Bell, N., Garland, M.: Implementing sparse matrix-vector multiplication on
throughput-oriented processors. In: SC 2009, p. 11. ACM, New York (2009).
https://doi.org/10.1145/1654059.1654078. Article 18

3. Chen, X.: Escort: efficient sparse convolutional neural networks on GPUs. CoRR
abs/1802.10280 (2018). arXiv:1802.10280

4. Chen, X.W., Lin, X.: Big data deep learning: challenges and perspectives. IEEE
Access 2, 514–525 (2014). https://doi.org/10.1109/ACCESS.2014.2325029

5. Chen, Y., Emer, J., Sze, V.: Eyeriss: a spatial architecture for energy-efficient
dataflow for convolutional neural networks. In: ISCA 2016, pp. 367–379 (2016).
https://doi.org/10.1109/ISCA.2016.40

6. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.:
Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–
2537 (2011). http://dl.acm.org/citation.cfm?id=1953048.2078186

7. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM
Trans. Math. Softw. 38(1), 25 (2011). https://doi.org/10.1145/2049662.2049663.
Article 1

8. Han, S., et al.: Deep compression: compressing deep neural networks with pruning,
trained quantization and Huffman coding. In: ICLR (2015)

9. Han, S., et al.: EIE: efficient inference engine on compressed deep neural network.
CoRR abs/1602.01528 (2016). arXiv:1602.01528

10. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpass-
ing human-level performance on ImageNet classification. CoRR abs/1502.01852
(2015). arXiv:1502.01852

11. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In: MM
(2014)

12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: NIPS (2012)

13. Lavin, A.: Fast algorithms for convolutional neural networks. CoRR
abs/1509.09308 (2015). arXiv:1509.09308

14. Li, X., Liang, Y., Yan, S., Jia, L., Li, Y.: A coordinated tiling and batching frame-
work for efficient GEMM on GPUs. In: PPoPP 2019, pp. 229–241. ACM, New York
(2019). https://doi.org/10.1145/3293883.3295734

https://doi.org/10.1145/3007787.3001138
https://doi.org/10.1145/1654059.1654078
http://arxiv.org/abs/1802.10280
https://doi.org/10.1109/ACCESS.2014.2325029
https://doi.org/10.1109/ISCA.2016.40
http://dl.acm.org/citation.cfm?id=1953048.2078186
https://doi.org/10.1145/2049662.2049663
http://arxiv.org/abs/1602.01528
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1509.09308
https://doi.org/10.1145/3293883.3295734

SPART: Optimizing CNNs by Utilizing Both Sparsity of Weights 85

15. Li, X., et al.: cuMBIR: an efficient framework for low-dose X-ray CT image recon-
struction on GPUs. In: ICS 2018, pp. 184–194. ACM, New York (2018). https://
doi.org/10.1145/3205289.3205309

16. Luo, J.H., Wu, J., Lin, W.: ThiNet: a filter level pruning method for deep neural
network compression. CoRR abs/1707.06342 (2017). arXiv:1707.06342

17. Mathieu, M., Henaff, M., LeCun, Y.: Fast training of convolutional networks
through FFTs. CoRR abs/1312.5851 (2013). arXiv:1312.5851

18. NVIDIA: cuBLAS Library (2018a). https://docs.nvidia.com/cublas
19. NVIDIA: cuDNN Library (2018b). https://developer.nvidia.com/cudnn
20. NVIDIA: cuSPARSE Library (2018c). https://docs.nvidia.com/cusparse
21. NVIDIA: GTX Titan X: a desktop GPU (2018d). https://www.geforce.com/

hardware/desktop-gpus/geforce-gtx-titan-x
22. NVIDIA: v100: a data-center GPU for AI (2018e). https://www.nvidia.com/en-

us/data-center/tesla-v100/
23. Parashar, A., et al.: SCNN: an accelerator for compressed-sparse convolutional

neural networks. CoRR abs/1708.04485 (2017). arXiv:1708.04485
24. Park, J., Li, S.R., Wen, W., Li, H., Chen, Y., Dubey, P.: Holistic SparseCNN:

forging the trident of accuracy, speed, and size. CoRR abs/1608.01409 (2016).
arXiv:1608.01409

25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2014). arXiv:1409.1556

26. Sze, V., Chen, Y.-H., Yang, T.-J., Emer, J.S.: Efficient processing of deep neural
networks: a tutorial and survey. CoRR abs/1703.09039 (2017). arXiv:1703.09039

27. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)
28. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in deep

neural networks. CoRR abs/1608.03665 (2016). arXiv:1608.03665
29. Xie, X., Liang, Y., Li, X., Tan, W.: CuLDA: solving large-scale LDA Problems on

GPUs. In: HPDC 2019, pp. 195–205. ACM, New York (2019). https://doi.org/10.
1145/3307681.3325407

30. Xie, X., et al.: Enabling coordinated register allocation and thread-level parallelism
optimization for GPUs. In: MICRO 2015, pp. 395–406 (2015a). https://doi.org/
10.1145/2830772.2830813

31. Xie, X., Liang, Y., Wang, Y., Sun, G., Wang, T.: Coordinated static and dynamic
cache bypassing for GPUs. In: HPCA 2015, pp. 76–88 (2015b). https://doi.org/10.
1109/HPCA.2015.7056023

32. Xie, X., Tan, W., Fong, L.L., Liang, Y.: CuMF SGD: parallelized stochastic gra-
dient descent for matrix factorization on GPUs. In: HPDC 2017, pp. 79–92. ACM,
New York (2017). https://doi.org/10.1145/3078597.3078602

33. Zhang, S., et al.: Cambricon-X: an accelerator for sparse neural networks. In:
MICRO 2016, pp. 1–12 (2016). https://doi.org/10.1109/MICRO.2016.7783723

https://doi.org/10.1145/3205289.3205309
https://doi.org/10.1145/3205289.3205309
http://arxiv.org/abs/1707.06342
http://arxiv.org/abs/1312.5851
https://docs.nvidia.com/cublas
https://developer.nvidia.com/cudnn
https://docs.nvidia.com/cusparse
https://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan-x
https://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan-x
https://www.nvidia.com/en-us/data-center/tesla-v100/
https://www.nvidia.com/en-us/data-center/tesla-v100/
http://arxiv.org/abs/1708.04485
http://arxiv.org/abs/1608.01409
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1703.09039
http://arxiv.org/abs/1608.03665
https://doi.org/10.1145/3307681.3325407
https://doi.org/10.1145/3307681.3325407
https://doi.org/10.1145/2830772.2830813
https://doi.org/10.1145/2830772.2830813
https://doi.org/10.1109/HPCA.2015.7056023
https://doi.org/10.1109/HPCA.2015.7056023
https://doi.org/10.1145/3078597.3078602
https://doi.org/10.1109/MICRO.2016.7783723

DA-BERT: Enhancing Part-of-Speech Tagging
of Aspect Sentiment Analysis Using BERT

Songwen Pei1,2,3(&), Lulu Wang1, Tianma Shen1, and Zhong Ning2

1 School of Optical-Electrical and Computer Engineering,
University of Shanghai for Science and Technology, Shanghai 200093, China

swpei@usst.edu.cn
2 School of Management, Fudan University, Shanghai 200433, China

3 State Key Laboratory of Computer Architecture, Institute of Computing
Technology, Chinese Academy of Sciences, Beijing 100190, China

Abstract. With the development of Internet, text-based data from web have
grown exponentially where the data carry large amount of valuable information.
As a vital branch of sentiment analysis, the aspect sentiment analysis of short
text on social media has attracted interests of researchers. Aspect sentiment
classification is a kind of fine-grained textual sentiment classification. Currently,
the attention mechanism is mainly combined with RNN (Recurrent Neural
Network) or LSTM (Long Short-Term Memory) networks. Such neural
network-based sentiment analysis model not only has a complicated computa-
tional structure, but also has computational dependence. To address the above
problems and improve the accuracy of the target-based sentiment classification
for short text, we propose a neural network model that combines deep-attention
with Bidirectional Encoder Representations from Transformers (DA-BERT).
The DA-BERT model can fully mine the relationships between target words and
emotional words in a sentence, and it does not require syntactic analysis of
sentences or external knowledge such as sentiment lexicon. The training speed
of the proposed DA-BERT model has been greatly improved while removing
the computational dependencies of RNN structure. Compared with LSTM, TD-
LSTM, TC-LSTM, AT-LSTM, ATAE-LSTM, and PAT-LSTM, the results of
experiments on the dataset SemEval2014 Task4 show that the accuracy of the
DA-BERT model is improved by 13.63% on average where the word vector is
300 dimensions in aspect sentiment classification.

Keywords: Aspect sentiment classification � BERT � Deep-attention �
Multi-attention � Part-of-speech � Sentiment analysis � Short text

1 Introduction

In recent years, the amount of addressing comments, opinions, and feelings on social
media (e.g. Twitter, Wechat, Facebook, Weibo, Instagram, etc.) is greatly increased.
Mining emotional sentiment in text from social media could yield huge commercial and
social value. The use of natural language processing techniques for text sentiment
analysis has become a hot topic of studying globally [1]. The sentiment analysis, also
known as the opinion mining, is the basic task of NLP (Natural Language Processing)

© Springer Nature Switzerland AG 2019
P.-C. Yew et al. (Eds.): APPT 2019, LNCS 11719, pp. 86–95, 2019.
https://doi.org/10.1007/978-3-030-29611-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29611-7_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29611-7_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29611-7_7&domain=pdf
https://doi.org/10.1007/978-3-030-29611-7_7

domain and computational linguistics. Text information mining has received increasing
attention in industry and academia recently. The deep learning model perform well in
many natural language processing tasks, such as machine translation, semantic
recognition, and text summaries. LSTM has achieved a great success in various NLP
tasks. Yang et al. proposed two neural networks to model sentences and documents,
first adopt CNN/LSTM to model sentence representations, and then using a Bi-GRU
network model to encode sentence representations for document representation [2].
Bhatia et al. proposes a recursive neural network based on the RST structure to improve
the classification accuracy of the text sentiment [3]. Today, many extended structure
LSTMs are utilized for text sentiment classification. Tai et al. advocated a Tree-LSTM
network model that achieved good results in predicting text sentiment classification [4].
Zhu et al. proposed an extended tree structure of LSTM, using semantic combination
model to understand the meaning of text [5]. The attention mechanism was firstly
proposed in the field of computer vision and digital images. Bahdanau et al. combined
attention mechanisms and neural networks in machine translation [6]. The process of
machine translation uses codec to simultaneously translate and align text-processing
tasks. This is the first time researchers have tried to introduce attention mechanisms
into the field of NLP, and it is proved the effectiveness of the combination of attention
mechanisms and deep learning models. The attention mechanism can concentrate on
different parts of a sentence when different aspects are taken as input. Neural attention
can improve the ability to read comprehension. Wang et al. proposed attention-based
Long Short-Term memory for aspect-level sentiment classification [7]. The models are
able to attend different parts of a sentence when different aspects are concerned. Results
show that the attention mechanism is effective. We put forward a classification model
orienting to aspect sentiment based on BERT. The model can excavate the relationships
between target words and emotional words in a sentence.

The major contributions of this work are as follows:

1. We put forward a novel network model (DA-BERT) that combines deep-attention
with Bidirectional Encoder Representations from Transformers to solve the aspect-
level sentiment analysis problem.

2. The DA-BERT model utilizes the part-of-speech of text information.
3. DA-BERT model gains higher accuracy of the sentiment classification than that of

others.

The rest of this paper is structured as follows: Sect. 2 discusses the related works,
Sect. 3 describe the DA-BERT model in detail, Sect. 4 presents extensive experiments
to verify the effectiveness and performance of DA-BERT, and Sect. 5 summarizes our
work and look into the future research.

2 Related Work

In this section, we will review related works on aspect-level sentiment classification
and transformer theory.

DA-BERT: Enhancing Part-of-Speech Tagging 87

2.1 Aspect Sentiment Classification

Different from the general sentiment analysis, the aspect-level sentiment classification
aims to infer the sentiment polarity of a sentence depending not only on the context but
also on the aspect [8]. We take a sentence as an example, “The service at that cafe was
dreadful, but the cake tastes very good.”. We can observe that, for aspect “cake”, the
sentiment polarity is positive while the sentiment polarity of aspect “service” is neg-
ative. Even in the same sentence, sentiment polarity could be absolutely opposite when
focusing on different aspects. Wang et al. propose a new method to combine the
syntactic structure and convolutional neural nets to directly match aspects and corre-
sponding polarities [9].

The deep learning technology has made a significate breakthrough in text classi-
fication tasks. Many researchers used deep learning techniques to solve aspect-level
sentiment analysis problems. TC-LSTM and TD-LSTM [10], which consider the aspect
information, improve the accuracy of classification in sentiment analysis tasks for
aspect-level. Introducing the attention mechanism in the classification model is an
effective way to improve the accuracy of the level-level sentiment classification.
Attention mechanism can fully explore the relationships between target words and
emotional words in a sentence. AT-LSTM model and ATAE-LSTM model [7] model
introduces an attention mechanism to capture the importance of different contextual
information for a given aspect.

2.2 Transformer

Many natural language processing tasks can be regarded as sequence-to-sequence
problem. The encoder-decoder model consisting of the traditional neural network
model and has two inevitable defects in the processing of sequence problems: infor-
mation loss problem and computational dependence.

In terms of the text feature extraction, transformer [11] as a feature extraction model
is better than deep learning model in computational speed and information mining. The
core idea of the Transformer framework is to calculate the relationship of each word in
a sentence to all other words in the sentence. The relationship between these words and
words reflects to some extent the relevance and importance of different words in this
sentence. By using these interrelationships to adjust the weight of each word, a new
embedding for each word can be obtained. This new embedding not only implies the
word itself, but also contains the relationship between other words and the word, so it is
a more global expression than the simple word vector. Transformer obtains the final
textual representation by continuously overlaying the input text with such a layer of
attention mechanism and a common nonlinear layer. We utilize the BERT model based
on transformer encoder to extract text semantic, and propose a DA-BERT analysis
model for text sentiment based on Bert’s multi-attention mechanism.

88 S. Pei et al.

3 BERT Model with Deep Attention

3.1 Bidirectional Encoder Representations from Transformers

Text feature extraction in the field of classifying text sentiment can be defined as a
sequence problem. The encoder-decoder is a common sequence model framework for
deep learning. Encoder is to convert the input sequence into a fixed-length vector. The
decoder converts the vector generated by the encoder into the target sequence vector.
Currently, optional encoders include CNN, LSTM, GRU, etc. These can also be used
for decoders. Unsupervised algorithm automatic coding [12] is a typical encoder
decoder model; the image caption for image is the encoder-decoder framework of
CNN-RNN; the neural network machine translation model NMT [13] is an LSTM-
LSTM encoder-decoder framework.

Although an encoder-decoder model consisting of a traditional neural network
model which is widely used to handle sequence problems. However, there are two
inevitable shortcoming of encoder-decoder model. First, the encoder transforms the
input sequence into a vector of fixed length resulting in the loss of information. Second,
because of the computational dependency problem of the sequence model, parallel
computing cannot be implemented. Transformer [11] model alleviates the shortcom-
ings of the sequence problem to a certain extent. The BERT can be thought of an
encoder stack consisting of transformer.

Each encoder consists of a Feed Forward layer and a Multi-Head Attention layer.
The input to the model continually flows to the upper layer of the encoder stack. The
input of each layer is calculated by the self-attention layer and the feedforward net-
work, then is passed to the next encoder.

The calculation formula of attention in encoder is as follows:

Attention Q;K;Vð Þ ¼ softmax
QKT

ffiffiffiffiffi
dk

p
� �

V ð1Þ

Q, K, V are abstract vectors for assisting attention calculation. Different vectors are
obtained by multiplying the word vector X by three different weight matrices WQ, WK,
WV. WQ, WK, and WV are suitable parameters learned from the model training
process. The multi-head attention final output:

headi ¼ Attention QWQ
i ;KW

K
i ;VW

V
i

� � ð2Þ

MultiHead Q;K;Vð Þ ¼ Concat head1; . . .; headhð ÞWO ð3Þ

The output of multi-head attention enters the forward neural network layer:

FFN xð Þ ¼ max 0;MultiHead Q;K;Vð ÞW1 þ b1ð ÞW2 þ b2 ð4Þ

W1, W2, b1, b2, are parameters for the model training process.

DA-BERT: Enhancing Part-of-Speech Tagging 89

3.2 Deep Attention-Based BERT (DA-BERT)

In order to extract more emotional information about specific domain topics in textual
information, we have proposed the Deep Attention-based BERT (DA-BERT) which is
a peek-based multi-attention BERT. The improved model combines the part-of-speech
information and the BERT model, in order to extract the aspect information, part-of-
speech information and potential semantic information in the text. DA-BERT model
mainly includes a coding layer, a feature fusion layer, and a pooling layer. The pooling
layer retains the main fusion features while reducing the computational complexity of
the model and preventing overfitting.

The output of the encoder structure in the model is MFi; hci; hai; hpi respectively
represent text semantic features, aspect information features and text part-of-speech
features.

MFi ¼ MultiFeature hci; hai; hpi
� � ¼ Concat hci; hai; hpi

� � ð5Þ

Wt, bt are parameters for the model training process. ai represents the attention
weight of each word in the text (Fig. 1):

ai ¼ WtMFi þ bt;
Xn

i¼1
ai ¼ 1 ð6Þ

Fig. 1. The structure of the deeper-attention BERT model

90 S. Pei et al.

h� as a feature of sentiment classification, the softmax classifier is used to classify
texts.

h� ¼
Xn

i¼1
ai MFi ð7Þ

p ¼ softmax WMFh� þ bhð Þ ð8Þ

The model proposed in this paper is trained by end-to-end back propagation, and
the target loss function is cross entropy loss. Let y be the target distribution for
sentence, y’ be the predicted sentiment distribution. The goal of training is to minimize
the cross-entropy error between y and y’ for all sentences.

loss ¼ �
X

i

X
j
yjilogy

0j
i þ k hk k2 ð9Þ

Where i is the index of sentence, j is the index of aspect. Our classification is three
ways. k is the L2 - regularization term. h is the parameter set.

4 Evaluation and Analysis

We apply the proposed model DA-BERT to aspect-level sentiment classification. The
experimental test system is configured as Intel Core i7-8700K, GeForce RTX-2080Ti
GPU, 3.9 TB Disk, and the operating system environment is Ubuntu 16.04-LTS-
x86_64. The dimension of word vectors, aspect embedding and the text part-of-speech
vector are consistent.

4.1 Dataset

We experiment on the dataset of SemEval 2014 Task 4 [7]. The dataset consists of both
the Laptop and Restaurant themes. Since the comment text in the Laptop dataset does
not include the domain-specific topic tags and the corresponding sentiment polarity
classification, the Restaurant dataset is applied in this article. The data set retains text
with positive, negative, and neutral emotion labels. The goal of the experiment is to
extract corresponding emotional tendencies for different target words. The Restaurant
dataset, which includes five domain-specific, are shown in Table 1.

Table 1. The restaurant dataset.

Target Positive Negative Neural
Train Test Train Test Train Test

Food 934 319 337 67 183 89
Price 261 63 162 29 26 16
Service 468 103 271 69 48 25
Ambience 298 74 105 18 51 23
Miscellaneous 711 133 247 27 410 79
Total 2672 692 1122 210 718 232

DA-BERT: Enhancing Part-of-Speech Tagging 91

4.2 Baseline Models

We compared the DA-BERT model with several baselines, including LSTM [14], TD-
LSTM, TC-LSTM, AT-LSTM, ATAE-LSTM, and PAT-LSTM [15]. LSTM takes the
hidden state of the last word of the sentence as the input of the softmax classifier, and
gets the emotional tendency of the whole sentence.TD-LSTM and TC-LSTM adds the
aspect information when constructing the vector representation of the sentence.AT-
LSTM, ATAE-LSTM introduces the attention mechanism to capture the importance of
different context information to the aspect. PAT-LSTM can explore the relationships
between target words and emotional words in a sentence.

4.3 Experimental Results Analysis

The DA-BERT model discards the traditional RNN network structure and uses the
coding structure of the transformer to extract the semantic features of the text. In
semantic extraction, the length of the calculation path between words in the self-
attention [11] structure is O(1), the computational complexity of each layer is O(n2d),
and the length of the sequence calculation is O(1); RNN performs information
extraction. The maximum path length is O(n), the computational complexity of each
layer is O(nd2), and the sequence calculation length is O(n); where d is the word vector
dimension and n is the length of the sentence. As shown in Table 2, the computational
complexity of self-attention is lower than that of RNN.

Table 3 shows the time takes for different models to complete an iteration where
the text vector is 300 dimensions. It represents that the network training time cost of
PAT-LSTM is relatively high, because of the sequence calculation properties of the
LSTM model. The calculation of the information of t depends on the calculation result
at t − 1. In this case, model parallelism cannot be achieved, and each hidden unit
requires a series of complicated operations. When the text vector dimension is 300, the
LSTM network model completes an iteration for about 510 s. The TD-LTM model
adds aspect information while constructing the vector representation of the sentence,
and the time to complete an iteration is about 30 s which is longer than that of LSTM
model. The ATAE-LSTM model captures the importance of different contextual
information for a given aspect through the attention mechanism, and combines the
attention mechanism with LSTM to semantically model sentences. The addition of the
attention mechanism improves the computational complexity of the model and the
training time of the model. The ATAE-LSTM model completed an iteration for about
40 s longer than the training time of the TD-LSTM model. The Bert-based multi-
attention mechanism text sentiment classification model DA-BERT model proposed in

Table 2. Computational complexity

Layer type Complexity Sequential operations Maximum path length

Self-attention O(n2d) O(1) O(1)
RNN O(nd2) O(n) O(n)

92 S. Pei et al.

this paper discards the information dependence of the RNN model and implements
parallel computing. DA-BERT model takes about 19 s to complete an iteration, which
is 30 times faster than the classification model that relies on the LSTM structure,
effectively reducing the training time of the text classification model.

Table 4 that the classification effect of the DA-BERT model proposed in this paper
is better than other models. When the word dimension is 300, the LSTM model
achieves the best classification accuracy of 0.72. The standard LSTM cannot detect
which is the important part for aspect-level sentiment classification. TD-LSMT con-
structs a sentence vector representation that considers not only the target word, but also
the connection between the target vector and each context word. The classification
accuracy of the TD-LSTM and TC-LSTM models is 0.05 and 0.08 higher than the
LSTM model. TD-LSTM and TC-LSTM, which considered target information,
achieved state-of-the-art performance in aspect sentiment classification. TC-LSTM
obtained a target vector by averaging the vectors of words that the target phrase
contains. However, simply averaging the word embedding of a target phrase is not
sufficient to represent the semantics of the target phrase, resulting a suboptimal per-
formance. The ATAE-LSTM model uses the attention mechanism to mine the
importance of contextual information in a text for a given aspect. The ATAE-LSTM
model has a classification accuracy of 0.84 on the dataset. The PAT-LSTM model can
fully explore the relationships between target words and emotional words in a sentence.
The classification accuracy of PAT-LSTM model for text sentiment is 0.06 higher than
that of the AEAT-LSTM model. DA-BERT model combined with multiple attention
mechanisms can make the model mine the emotional information of specific targets
through the multi-attention mechanism in the process of training, and compensates for
the shortcomings of the single attention mechanism, thus obtaining better classification
effect. The classification accuracy rate of DA-BERT model for text sentiment reached
0.92.

Table 3. Training time list of compared models

Model Average time cost/s

PAT-LSTM 604
ATAE-LSTM 581
AT-LSTM 574
TC-LSTM 543
TD-LSTM 539
LSTM 512
DA-BERT 19

DA-BERT: Enhancing Part-of-Speech Tagging 93

5 Conclusions

This paper proposes an analysis model DA-BERT for text sentiment based on
Transformer encoder to extract text semantic. The model extracts semantic features and
topic features from the input text and combines the part-of-speech features of the text as
the target of the classification. Moreover, the DA-BERT model discards the RNN
computational dependency structure, which enables parallel computing and shortens
the model training time.

However, for text-level sentiment analysis tasks, the computational complexity of the
attention value in the encoder increases dramatically which would result in slowing down
the model. In the future, we would improve the performance of computing attention
mechanism between words and words from the perspective of mathematical principles.

Acknowledgements. We would like to thank the anonymous reviewers for their invaluable
comments. This work was partially funded by the Shanghai Pujiang Program under Grant
16PJ1407600, the China Post-Doctoral Science Foundation under Grant 2017M610230, and the
National Natural Science Foundation of China under Grant 61332009, 61775139, and the Open
Project Funding from the State Key Lab of Computer Architecture, ICT, CAS under Grant
CARCH201807. Any opinions, findings and conclusions expressed in this paper are those of the
authors and do not necessarily reflect the views of the sponsors.

References

1. Liu, B.: Sentiment analysis and opinion mining. Synth. Lect. Hum. Lang. Technol. 5(1), 1–
167 (2012)

2. Yang, Z., Yang, D., Dyer, C., He, X.: Hierarchical attention networks for document
classification. In: Proceedings of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 1480–1489 (2017)

3. Bhatia, P., Ji, Y., Eisenstein, J.: Better document-level sentiment analysis from RST
discourse parsing. Comput. Sci. 2212–2218 (2015)

4. Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from tree-
structured long short-term memory networks. In: Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistic and the 7th International Joint Conference on
Natural Language Processing, pp. 1556–1566 (2015)

Table 4. Classification accuracy list of compared models.

Dimension 50 100 150 200 250 300

LSTM 0.65857 0.68469 0.70705 0.71273 0.71201 0.72483
TC-LSTM 0.73136 0.75473 0.75853 0.76106 0.76966 0.77966
TD-LSTM 0.77445 0.78288 0.78917 0.79120 0.79308 0.81227
AT-LSTM 0.81114 0.81726 0.81907 0.82837 0.83613 0.83188
ATAE-LSTM 0.83267 0.83861 0.84347 0.84968 0.85319 0.84116
PAT-LSTM 0.86733 0.86925 0.87266 0.88798 0.90591 0.89154
DA-BERT 0.89685 0.89975 0.90356 0.90955 0.91556 0.92058

94 S. Pei et al.

5. Zhu, X., Sobhani, P., Guo, H.: Long short-term memory over tree structures. In: Proceedings
of the 32nd International Conference on Machine Learning, 1604–1612 (2015)

6. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align
and translate. In: Proceedings of International Conference on Learning Representations,
pp. 940–1000 (2015)

7. Wang, Y., Huang, M., Zhao, L., Zhu, X.: Attention-based LSTM for aspect-level sentiment
classification. In: Proceedings of Conference on Empirical Methods in Natural Language
Processing, pp. 606–615 (2016)

8. Dohaiha, H.H., Prasad, P.W.C., Maag, A., Alsadoon, A.: Deep learning for aspect-based
sentiment analysis: a comparative review. Expert Syst. Appl. 118, 272–299 (2019)

9. Wang, B., Liu, M.: Deep learning for aspect-based sentiment analysis [RT]. Stanford
University report (2015). http://cs224d.stanford.edu/reports/WangBo.pdf

10. Tang, D., Qin, B., Feng, X.: Effective LSTMs for target-dependent sentiment classification.
In: Proceedings of COLINE 2016, the 26th International Conference on Computational
Linguistics: Technical Papers, pp. 3298–3307 (2016)

11. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing
Systems, pp. 5998–6008 (2017)

12. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.
6114 (2013)

13. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In:
Proceedings of the 27th International Conference on Neural Information Processing
Systems, pp. 3104–3112 (2014)

14. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780
(1997)

15. Pei, S., Wang, L.: Study on text sentiment analysis using attention mechanism. Comput.
Eng. Sci. 2, 343–354 (2019). (in Chinese)

16. Lin, Z., et al.: A structured self-attentive sentence embedding. arXiv preprint arXiv:1703.
03130 (2017)

DA-BERT: Enhancing Part-of-Speech Tagging 95

http://cs224d.stanford.edu/reports/WangBo.pdf
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1703.03130
http://arxiv.org/abs/1703.03130

Random Inception Module
and Its Parallel Implementation

Yingqi Gao, Kunpeng Xie, Song Guo, Kai Wang, Hong Kang, and Tao Li(B)

College of Computer Science, Nankai University, Tianjin, China
{gaoyingqi,xkp,guosong}@mail.nankai.edu.cn,

{wangk,kanghong,litao}@nankai.edu.cn

Abstract. Inception module is proposed in GoogLeNet, which improves
performance by increasing the width of the network. Multiple branches
are computed in parallel, which makes the inception module naturally
take the advantage of GPU high-performance computing. In this paper,
we propose a parallel implementation of the inception module to accel-
erate the training and test of the inception networks. However, convo-
lution neural networks are prone to overfitting due to the huge amount
of parameters. We propose random inception module to avoid overfit-
ting and accelerate inception module. In order to demonstrate the effec-
tiveness of the proposed methods, we compare the performance of the
random inception module with original inception module on CIFAR-10
dataset. Experimental results show our parallel inception module obtains
over 2.8× speedup compared with Caffe. And our proposed RIM indeed
behaves in a manner of regularization and speeds up convergence.

Keywords: CNN · Parallel computing · Inception module ·
Random drop

1 Introduction

In recent years, convolutional neural networks (CNN) have brought about a
series of breakthroughs in the field of computer vision [7,8,10,12,14]. Unlike
conventional machine learning methods, CNN automatically extract the most
representative features. CNN typically have multiple convolution (followed by
nonlinear activation) and pooling layers stacked, followed by several fully con-
nected layers for classification. Back-propagation algorithm [11] is used for CNN
training.

Since Krizhevsky et al. won ILSVRC competition in 2012 [10], a lot of efforts
have been made to improve performance. VGG proposed by Simonyan et al.
reduced the ILSVRC classification top-5 test error to 6.8% by pushing the depth
to 16–19 weight layers [12]. Their experiments have shown that as the depth of
increases, the representation power of the network is stronger. However, deeper
networks are more difficult to optimize and leads to degradation problem. He
et al. introduced shortcut connections and proposed deep residual learning to
c© Springer Nature Switzerland AG 2019
P.-C. Yew et al. (Eds.): APPT 2019, LNCS 11719, pp. 96–106, 2019.
https://doi.org/10.1007/978-3-030-29611-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29611-7_8&domain=pdf
https://doi.org/10.1007/978-3-030-29611-7_8

Random Inception Module and Its Parallel Implementation 97

ease the training of CNN [7]. DenseNet connected each layer to every other layer
in a feed-forward fashion, which alleviated the vanishing-gradient problem and
encouraged feature reuse [8].

Different from the several networks mentioned above, GoogLeNet has incep-
tion modules stacked on top of each other, which increases both the depth and
width of the networks [14]. Inception and its variants have been widely used for
image classification and semantic segmentation, etc. Szegedy et al. won ILSVRC
competition by ensembling 7 GoogLeNet models in 2014. In 2016, Gulshan et al.
trained an Inception-v3 network to detect referable diabetic retinopathy. They
reported a sensitivity of 97.5% and a specificity of 93.4% on the EyePACS-1
dataset [6]. Chen et al. applied Xception model into semantic segmentation and
achieved the test set performance of 89% on PASCAL VOC 2012 [4].

In an inception module, multiple convolution or pooling operations of differ-
ent scales are executed in parallel, and then all the features are concatenated
together. There are several inception modules stacked upon each other in an
inception-type network. As the depth of the network increases, a greater speedup
will be achieved. Although deep learning frameworks such as caffe, use GPUs for
acceleration, the branches in the inception module is executed serially. In this
paper, we specially design a parallel acceleration method for inception module.
In addition, CNN is prone to overfitting due to its large number of parameters.
In order to prevent overfitting, we present random inception module as regular-
ization. During training time, RIM randomly select a path and set its weights
to zero. Due to the difference in execution time of each path, RIM can reduce
the training time of network.

The main contributions of this paper include the following:

– We propose random inception module which can prevent overfitting as a
regularization and speed up the networks.

– We propose a parallel implementation of the inception module, which greatly
shortens the training and testing time.

– We run experiments on CIFAR-10 dataset and results demonstrate the effec-
tiveness of proposed methods.

The remainder of this paper is organized as follows. Section 2 provides a
detailed description of the proposed method. Experimental settings and results
are described in Sect. 3. The conclusion is drawn in Sect. 4.

2 Methods

In this section, we will introduce the architecture of the typical inception mod-
ule and its parallel implementation. In addition, random inception module is
introduced to avoid overfitting and accelerate the network.

2.1 Inception Module

Inception module is firstly introduced in GoogLeNet and derived many variants.
The typical inception module has four parallel branches, as shown in Fig. 1(a).

98 Y. Gao et al.

For an input image, inception module performs multiple convolution operations
or pooling operations in parallel. Then their outputs are concatenated into a
single output vector. Different filter sizes, such as 1× 1, 3× 3, and 5× 5 capture
local information at different scales. Since pooling operations can extract fea-
tures to a certain extent, a parallel pooling path is added. In order to reduce the
computational complexity, 1× 1 convolutions are used to reduce dimensionality.
In addition, adding extra convolution layers means introducing more nonlin-
ear activations and richer features can be extracted. Finally, multi-scale feature
fusion helps to improve the representation of the network and enhance the adapt-
ability of the network to the scale. In the inception module, multiple branches
are computed in parallel, without affecting each other. This architecture makes
it naturally suitable for GPU acceleration. In a typical inception-type network,
there are several inception modules stacked upon each other, which leads to
greater speedup.

Concatenation

1×1 conv
1×1 conv 1×1 conv

1×1 conv

3×3 pooling

3×3 conv 5×5 conv

Previous layer

(a) inception module

Concatenation

1×1 conv
1×1 conv 1×1 conv

1×1 conv

3×3 pooling

3×3 conv 5×5 conv

Previous layer

(b) random inception module

Fig. 1. Visualization of inception module and our proposed random inception module.

2.2 Random Inception Module

There is a large amount of redundancy in deep neural network, as a result, it
is easy to overfitting and falls into local minima or plateaus during training.
A common method to address this problem is through regularization, such as
weight decay and dropout [13]. In this section, we present random inception
module (RIM) to handle this problem. On one hand, RIM can be regarded as
a regularization method. On the other hand, it can be treated as a method to
accelerate inception module (IM) since the forward and backward speed of RIM
is much faster than that of IM.

Description. During training, RIM randomly selects a certain number of con-
volution operations in inception module during each iteration, and unselected
convolutions contribute zero to RIM, as can be seen in Fig. 1(b). In this manner,
RIM works in a way like dropout and dropblock [5], but with much stronger regu-
larization. Moreover, from the perspective of model ensemble, a RIM corresponds
to multiple different networks. For example, if we only select one convolution in

Random Inception Module and Its Parallel Implementation 99

RIM, four models obtained. This ensemble means much better robustness. In
addition, during backward pass, unselected convolutions contribute zero to the
gradients of previous layer. When it comes to inference phase, there is more than
one way to give an output of RIM. One natural way is that we can consider all
sub-models’ output and vote for the final result. Or we can scale the weights in
RIM by a constant value which is related to the number of convolutions retained.

Running Time Analysis. There are four groups of convolutions in inception
module. And the forward time for each group of convolution is t1, t2, t3 and t4.
Suppose each group convolution is selected with equal probability and we omit
the concatenation time for simplicity.

For a serial implementation of inception module, the forward time during
one iteration for IM and RIM are formulated as:

TSIM =
4∑

i=1

ti (1)

E[TSRIM (R)] =
R

4

4∑

i=1

ti (2)

where R denotes the number of convolutions kept and E[TSRIM (R)] is the
expected value of TSRIM . Thus, the expected speedup of RIM is 4

R . Specially,
RIM can achieve a maximum speedup of four times compared with IM with the
same number of iterations, if we only select one convolution out of inception.

As well, for a parallel implementation of inception module, the forward time
during each iteration for IM and RIM are formulated as:

TPIM = max{ti|i = 1, 2, 3, 4} (3)

E[TPRIM (R)] =

⎧
⎪⎪⎨

⎪⎪⎩

t1+t2+t3+t4
4 , R = 1

1
2 tk1 + 1

3 tk2 + 1
6 tk3 , R = 2

3
4 tk1 + 1

4 tk2 , R = 3
tk1 R = 4

(4)

where tki
denotes the ith largest value among t1, ..., t4. We can observe that the

upper bound of the speedup is 4× when R is set to 1.

2.3 Parallel Implementation

GPU Architecture. In this experiment, GeForce GTX1080Ti GPU based on
Pascal architecture is used, and the core version is GP102-350. We provide a
detailed introduction to the GP102 core of the Pascal architecture here.

NVIDIA GPU is built from a multi-threaded Streaming Multiprocessor (SM)
array. GTX 1080Ti contains 28 SMs and each SM contains 128 CUDA cores. So

100 Y. Gao et al.

GTX 1080Ti is equipped with 3584 CUDA cores in total. In addition, each SM
contains 32 SFUs (Special Function Units). SFU provides hardware acceleration
for some special function instructions, including sinx, cosx, log x, 2x, 1/x, et al.
Each SM is equipped with 4 warp schedulers and 8 instruction distribution
units. Each warp manages 32 cuda cores, which means that up to 4 warps can
be executed in parallel in the same SM. Each warp scheduler is responsible for
the scheduling of a warp and can be assigned two instructions per GPU cycle.
Each SM is equipped with 256 KB of register file space, 96 KB of shared memory,
and 48 KB of L1 cache, which provides higher bandwidth and lower latency than
global memory.

Table 1 shows the configuration comparison of several different GPUs in the
Pascal architecture. GTX 1080Ti has a huge improvement compared with GTX
1080. The number of SMs has increased by 8, which means GTX 1080Ti can
execute more threads concurrently than GTX 1080. The number of SMs in the
Tesla P100 is double that of the GTX 1080Ti, but the number of warps in a
single SM is reduced by half, which is equivalent to reducing the size of the SM,
but the number is increased. Each SM of Tesla P100 contains 64 single-precision
floating-point CUDA cores and 32 double-precision floating-point CUDA cores,
which are more powerful than GTX 1080Ti.

Table 1. GPU configuration comparison of pascal architecture.

Core version Transistor SM number Core/SM Shared memory/SM Warps/SM

GTX 1080Ti GP102-350 12 billion 28 128 96KB 4

GTX 1080 GP104-100 7.2 billion 20 128 96KB 4

Tesla P100 GP100 15.3 billion 56 96 64KB 2

Parallel Implementation. Training a deep neural network model usually takes
hours or even longer. NVIDIA’s GPU, equipped with a large number of cuda
cores, provides powerful computing power and parallel computing resources,
which can mitigate the time-consuming problems in deep learning. GPU mode
has been successfully applied to several neural network frameworks, for exam-
ple Caffe [9], TensorFlow [2] and Theano [3]. These deep learning systems only
accelerate the calculation of each layer of the neural network using deep learning
libraries such as cuda, cublas, and cudnn on GPU. For the inception layer, it is
always a fusion of several independent groups. Each group contains one or more
layers. By implementing parallel computing of inception, we can further acceler-
ate the training of neural networks. Today’s GPUs are not only capable of fast
calculations for a single task, but also support multitasking parallelism within
its computing resources. On GPU, different streams, execute their commands
out of order with respect to one another or concurrently [1].

Figure 2 shows the parallel implementation framework for the inception layer.
Each group of computational operations is merged into one stream. The opera-
tions between these streams are strictly independent. It is reasonable to employ

Random Inception Module and Its Parallel Implementation 101

this parallel model. Concat layer always follows the inception layer. It splices the
output feature maps of all groups on the C channel or the N channel. During this
splicing process, it contains a large number of fragmented memory copies. Using
a simple assignment copy of multiple threads with GPU instead of multiple mem-
ory copies can significantly improve the performance of the program, like caffe.
We propose a method of breaking up the concat layer, and then assigning them
to each stream for execution. For example, after the calculation of GROUP1
done, the assignment copy of the output of GROUP1 can be done immediately.

Fig. 2. Overview of parallel implementation of inception module.

3 Experiments

In order to demonstrate the effectiveness of the proposed methods, we ran exper-
iments on CIFAR-10 dataset and evaluated its performance.

3.1 Baseline Model

Our baseline model is designed based on GoogLeNet where inception module is
introduced. In our baseline model, only one inception module is used. All the
convolutions are followed by ReLU activation function. The weights of convolu-
tion and fully connected layers are initialized with uniform distributions between
−0.05 and 0.05. The overview of baseline is shown in Fig. 3.

102 Y. Gao et al.

Concatenation

1×1 conv, 64
1×1 conv, 96 1×1 conv, 16

1×1 conv, 32

3×3 pooling

3×3 conv, 128 5×5 conv, 32

input

fc 10

7×7 conv, 64, /2

3×3 pooling, /2

1×1 conv, 64

3×3 conv, 192

3×3 pooling, /2

loss

Fig. 3. An overview of baseline model.

3.2 Running Environments

We ran our networks on a workstation equipped with four Nvidia GeForce GTX
1080Ti GPUs, 128G RAM and the operating system is Ubuntu 16.04. We use
CUDA and CUDNN to implement the baseline model and their versions are 8.0
and 6.0, respectively.

3.3 Results

We evaluate our methods on the CIFAR-10 dataset. CIFAR-10 consists of 60,000
colored natural images with 32× 32 pixels, including 50,000 for training and
10,000 for test. We use all training images and report performance on the test
images.

Running Time Analysis. First, we measure the running time of our imple-
mented inception module, RIM and IM in Caffe when batch size is set to 50. We
ran experiments on two networks, one with one IM (as shown in Fig. 3) and the
other with two IMs. The number of convolutions in each IM is the same. Each
experiments were repeated 100 times and the average forward and backward
time are summarized in Table 2.

Random Inception Module and Its Parallel Implementation 103

Table 2. Running time (µs) analysis of inception model.

Networks Caffe (cudnn) Parallel IM RIM (R=3)

Forward Backward Forward Backward Forward Backward

baseline model (1 IM) 557.53 622.07 198.47 403.01 171.15 363.68

Baseline model (3 IM) 1774.15 1928.99 553.68 1186.93 484.14 1130.79

We can observe from Table 2 that our implemented parallel IM has a speedup
2.8× in forward time compared with Caffe. Moreover, the speedup can leads
to 3.2× when random mechanism is introduced in parallel IM. When 3 IMs
are embedded in the network, parallel IM has a speedup 3.2× in forward time
compared with Caffe. And parallel RIM obtain a speedup 3.67×. In summary, as
the number of incepeion modules in the network increases, the greater speedup
can be obtained.

Random Inception Module. In this section, we compare the performance of
IM and RIM. The running time of each epoch and the accuracy on the test set for
IM and RIM are reported in Table 3. Compared with IM, there is no obvious loss
of accuracy when R is 3. As the number of dropped branches increases, the loss
of accuracy becomes more and more serious. In particular, the accuracy loss is
about 9% when R is 1. The smaller the value of R, the less time each epoch runs.
When we increase the depth of the network to three IMs, we obtain speedups
of 1.08, 1.25 and 1.4375 when R is set to 3, 2 and 1 respectively compared
with parallel IM. The accuracy increases by 2.17% when one IM is dropped.
However, we fail to train the network when only one IM is remained and only
get an accuracy of 22%. We guess this is caused by the small capacity of the
network, the receptive field of 1 × 1 convolution is too small and the ability to
extract features is very weak.

In addition, when one IM is embedded in the network, the curves of loss and
accuracy against each epoch are shown in Fig. 4. For a learning rate of 0.01, the
accuracy on the test set of IM begins to decline after training about 20 epochs.
But the accuracy of RIM is slowly rising and gradually reaching a steady level.
This indicates that our RIM has effectively prevented over-fitting. For a small
learning rate of 0.001, when more convolutions are dropped, the loss reduces
slowly since the capacity of the network is too small.

Table 3. Performance of IM and RIM.

Networks Parallel IM RIM (R=3) RIM (R=2) RIM (R=1)

Time (s)Acc (%)Time (s)SpeedupAcc (%)Time (s)SpeedupAcc (%)Time (s)SpeedupAcc (%)

Baseline

model (1 IM)

1.8 64.02 1.72 1.04 63.08 1.64 1.10 61.81 1.60 1.125 55.11

Baseline

model (3 IM)

2.99 62.17 2.68 1.08 64.31 2.39 1.25 60.98 2.08 1.4375 22

104 Y. Gao et al.

Fig. 4. Loss and accuracy of each epoch during training for IM and RIM with different
parameter settings.

Random Inception Module and Its Parallel Implementation 105

4 Conclusion

In this paper, we propose a parallel implementation of inception module, which
leads to over 2.8× speedup compared with Caffe. In addition, we propose random
inception module and experimental results show that it can effectively avoid
overfitting and speed up convergence. In future, we plan to ensemble several
networks with RIM. Since each network has a certain randomness, the results of
multiple network voting will be better than a single network.

Acknowledgements. This work is partially supported by the National Natural Sci-
ence Foundation (61872200), the National Key Research and Development Program
of China (2016YFC0400709), the Science and Technology Commission of Tianjin Bin-
hai New Area (BHXQKJXM-PT-ZJSHJ-2017005), the Natural Science Foundation of
Tianjin (18YFYZCG00060) and Nankai University (91922299).

References

1. Cuda toolkit documentation v10.0.130. https://docs.nvidia.com/cuda
2. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning, pp. 265–

283 (2016)
3. Bergstra, J., et al.: Theano: A CPU and GPU math compiler in Python. In: Pro-

ceedings of the 9th Python in Science Conference, pp. 3–10 (2010)
4. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder

with atrous separable convolution for semantic image segmentation. In: Ferrari, V.,
Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp.
833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2 49

5. Ghiasi, G., Lin, T., Le, Q.V.: Dropblock: a regularization method for convolutional
networks. In: Neural Information Processing Systems, pp. 10750–10760 (2018)

6. Gulshan, V., et al.: Development and validation of a deep learning algorithm for
detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22),
2402–2410 (2016)

7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

8. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4700–4708 (2017)

9. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. CoRR
abs/1408.5093 (2014). http://arxiv.org/abs/1408.5093

10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

11. Rumelhart, D.E., Hinton, G.E., Williams, R.J., et al.: Learning representations by
back-propagating errors. Cogn. Model. 5(3), 1 (1988)

12. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: International Conference on Learning Representations
(2015)

https://docs.nvidia.com/cuda
https://doi.org/10.1007/978-3-030-01234-2_49
http://arxiv.org/abs/1408.5093

106 Y. Gao et al.

13. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

14. Szegedy, C., et al.: Going deeper with convolutions. In: The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2015

Security and Algorithms

CBA-Detector: An Accurate Detector
Against Cache-Based Attacks Using

HPCs and Pintools

Beilei Zheng(B), Jianan Gu, and Chuliang Weng

School of Data Science and Engineering, East China Normal University,
Shanghai, China

{zhengbeilei,gjn}@stu.ecnu.edu.cn, clweng@dase.ecnu.edu.cn

Abstract. Cloud computing is convenient to provide adequate resources
for tenants, but it suffers from information disclosure risks because hard-
ware resources are shared among multiple tenants. For example, secret
information in the shared cache can be inferred by other malicious
processes, which is called cache-based attacks. To defeat against such
attacks, many detection methods have been proposed. However, most of
the existing detection mechanisms completely rely on the hardware per-
formance counters (HPCs) and induce high false positives in detecting
attacks. This paper proposes an accurate detector named CBA-Detector
to detect cache-based side-channel attacks in real time. CBA-Detector
is composed of an offline analysis phase and an online detection phase.
The former analyzes the hardware events generated by sample programs.
Then it extracts features from these events to train machine learning
models. Based on the models, the latter monitors active processes in real
time to discover suspicious processes. These suspicious processes will
be checked again at the instruction level by customized Pintools, which
effectively eliminates false positives. As shown in our experiments, CBA-
Detector can accurately identify attacks in real time and introduces 4.4%
overhead on PARSEC and about 10% overhead on web server.

Keywords: Cache-based side-channel attacks ·
Hardware performance counters · Pintools · False positives

1 Introduction

Cloud computing brings convenience to tenants, but it also faces enormous secu-
rity risks. In the cloud, multiple tenants share hardware resources, and the shared
processors can be abused by adversaries to mount micro-architectural attacks.
These attacks result in a significant risk of information leakage in cloud plat-
forms. For example, the recently discovered Meltdown [8] and Spectre [7] allow
unauthorized processes to read data of privileged kernel or other processes.

One of the main micro-architecture attacks is the cache-based side-channel
attack [5,10,17], through which an adversary can infer secret information of
c© Springer Nature Switzerland AG 2019
P.-C. Yew et al. (Eds.): APPT 2019, LNCS 11719, pp. 109–122, 2019.
https://doi.org/10.1007/978-3-030-29611-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29611-7_9&domain=pdf
https://doi.org/10.1007/978-3-030-29611-7_9

110 B. Zheng et al.

Fig. 1. The framework of CBA-Detector

a running process by observing the state of the shared cache. To carry out
this attack, there are two requirements. On one hand, the adversary needs the
ability to manipulate the shared cache to a specific state. On the other hand,
the shared cache should have at least one distinguishable feature among different
states. These two requirements become the key intuition to many existing studies
against these attacks. For example, some defensive measures [4,6,9] devote to
limiting the ability of the attackers to manipulate the shared cache, but many of
them need to modify the operating system. Some detection efforts [1,11] against
these attacks focus on observing some hardware events generated by programs
through hardware performance counters (HPCs). They are inspired by the fact
that intentional manipulation of the cache usually causes anomalous behaviors,
such as high cache misses, which can be used for detecting these attacks.

However, many existing detection schemes completely rely on the data col-
lected with HPCs, leading to high false-positive rates (benign programs are
incorrectly identified as malicious) because the values collected with HPCs lack
determinism [3]. For example, the false positives introduced by [1] and [11] are
0.1%–21.4% and 0–36.15%, respectively. Although [18] reduces the false positives
by adjusting parameters, it is neither flexible nor thorough to solve this problem.
Considering the high false positives, these methods are hardly deployed in real
world.

To effectively detect attacks without false positives, we propose CBA-
Detector. It can accurately identify cache-based side-channel attacks in real time,
and it does not require modifying the operating system or the hardware. As
shown in Fig. 1, CBA-Detector has two phases. During the offline phase, it first
uses HPCs to collect hardware events of sample programs and analyzes these
events through machine learning technologies to generate classifiers. Based on
these classifiers, it determines suspicious programs during the online phase. Then
it checks suspicious processes via customized Pintools, which can identify real
attacks at the instruction level and eliminate false positives caused by classifiers.

Our main contributions are concluded as follows:

– We propose CBA-Detector, which combines hardware events with special
instructions to detect cache-based side-channel attacks in real time. Besides,
it gets rid of false positives in our experiments.

– We design and implement the prototype of CBA-Detector and show how it
works in the offline phase and online phase.

CBA-Detector: An Accurate Detector Against Cache-Based Attacks 111

– We evaluate CBA-Detector from three aspects, i.e., timeliness, accuracy and
performance. As our experiments show, CBA-Detector can accurately detect
cache-based side-channel attacks before they complete, and it only induces a
little performance overhead.

The remainder of this paper is organized as follows. Section 2 contains the
necessary background information on cache-based attacks, HPCs and Pintools.
Section 3 defines the threat model and assumptions of this work. We describe
the detailed design and implementation of CBA-Detector in Sect. 4. Section 5
evaluates and discusses CBA-Detector. Section 6 gives an overview of related
work, and Sect. 7 concludes this paper.

2 Background

2.1 Cache-Based Attacks

Caches in modern processors are used for caching and retrieving frequently
accessed instructions and data. Cached data usually costs less time to be
accessed and more time to be flushed than the non-cached. This feature is
abused by adversaries to mount cache-based side-channel attacks, such as
Prime+Probe [10], Flush+Reload [17] and Flush+Flush [5]. The necessary pro-
cedure of these attacks is as follows: Firstly, the adversary manipulates the cache
shared with the victim to a specific state. Then it waits for the victim to execute.
After that, the adversary probes the time of loading/flushing specific addresses
to infer the state of the shared cache, which may be changed during the exe-
cution of the victim. Therefore, the adversary can deduce from the state that
which addresses have been accessed by the victim. As a result, the adversary
can successfully infer the secret information of the victim.

Flush+Reload, Flush+Flush and Prime+Probe are three most well-known
cache-based side-channel attacks. Flush+Reload and Flush+Flush employ the
clflush instruction to manipulate the shared cache, while Prime+Probe evicts
target data by accessing addresses mapped to the same cache set. The rdtsc or
rdtscp instruction can be used for measuring the time of loading/flushing data
from the shared cache, and they usually combine with lfence, mfence or cpuid
instruction to obtain precise timestamps. Moreover, some cache-based attacks
invoke the system call sched yield frequently to increase the chance of stealing
data. These features are an important basis of detection.

2.2 Hardware Performance Counters (HPCs)

HPCs are a set of special-purpose registers directly provided by a dedicated
unit of modern CPUs called a Performance Monitoring Unit (PMU). They store
various CPU-related events such as cache hits/misses. Hardware events can help
software vendors to enhance their code to improve performance by profiling the
behavior of a program. Recently, HPCs have been also used for detecting cache-
based attacks in the field of system security.

112 B. Zheng et al.

HPCs can be accessed with the command perf provided by Linux. One of
the most common used sub-commands of perf is perf-stat, which can collect
various pre-defined hardware events and software events on a system-wide, pro-
cess and thread basis. However, the minimum sampling interval of perf-stat is
100 ms. Unlike perf, Performance Application Programming Interface (PAPI)
[15] is another library that provides a consistent interface and methodology for us
to use HPCs. It can sample hardware events in nearly real time with a minimum
sampling interval of three microseconds [2].

2.3 Pintools

Pin is a dynamic binary instrumentation (DBI) framework developed by
Intel [13] and allows us to customize dynamic program analysis tools, i.e., Pin-
tools. Pintools are powerful because they do not require source code of a pro-
gram and can insert arbitrary codes in any places in the executable programs to
analyze program. Besides, the code is added dynamically while the executable
program is running so that it is possible to attach Pintools to a running process.

3 Threat Model and Assumptions

We assume that the attackers have the ability to execute user-level codes on the
system so that they can steal secret information via cache-based side-channel
attacks. Prime+Probe [10], Flush+Reload [17] and Flush+Flush [5], as three
most well-known cache-based side-channel attacks, are focused in this work.
Specifically, we focus on these three attacks based on the last level cache (LLC)
because LLC is shared among processor cores and easy to be attacked. Unless
specified otherwise, all the attacks mentioned in this paper are LLC attacks. LLC
attacks can extract secrets across multiple processor cores and across virtual
machine boundaries. As a result, virtual machines and desktop computers are
the targets of our protection.

The trusted computing base includes the underlying hardware, hypervisor
and operating system. Thus, we trust that the data collected from HPCs would
not be tampered by other processes and the operating system does not com-
promise to other attacks like return-oriented programming (ROP). We further
assume CBA-Detector can run properly, and it cannot be disabled by attackers.

Based on the above assumptions, CBA-Detector can detect Prime+Probe,
Flush+Reload and Flush+Flush attacks both in desktop computers and virtual
machines in real time. Other attacks steal secrets with the help of these attacks
can be detected as well, such as the recently discovered Spectre and Meltdown.
Furthermore, CBA-Detector can also detect rowhammer because it uses clflush
instruction at high frequency. However, some attacks run in SGX are out of the
scope of this study because reliable performance counters are not available in
SGX enclaves.

CBA-Detector: An Accurate Detector Against Cache-Based Attacks 113

4 Design and Implementation

4.1 Overview

Figure 2 gives an overview of the architecture of CBA-Detector, which is com-
posed of four modules, i.e., a monitoring module, a learning module, a detection
module and a verification module. Overall, the design of CBA-Detector is divided
into two phases: an offline phase and an online phase. During the offline phase,
the offline monitor works with the learning module to generate classifiers for
prediction. The classifiers can be migrated to different environments for real-
time detection. In the online phase, the online monitor collects events and sends
real-time data of events to the detection module, which determines suspicious
processes according to the prediction of classifiers. Suspicious processes will be
checked by customized Pintools in the verification module to eliminate false
positives and identify real attacks. The four modules are designed as follows:

Fig. 2. Overview of CBA-Detector

Monitoring Module is composed of an offline monitor and an online monitor.
The former collects hardware events of sample programs and saves these data for
later analysis, while the latter collects events of running processes in the system
and sends the collected data to the detection module in real time.

Learning Module attempts to train classifiers that can make predictions with
high accuracy. To achieve this goal, the collected data is split into windows
and suitable features are extracted from each window to train machine learning
models. Then the generated classifiers are saved for real-time detection.

Detection Module is expected to detect all possible malicious processes in real
time. To satisfy this expectation, the real-time data from the online monitor
is divided into windows with fixed size. In each window, features are figured

114 B. Zheng et al.

out and fed to classifiers to predict whether potential attacks exist or not. If
the prediction of the classifiers turns out positive, the CBA-Detector concludes
that the corresponding process of the window is a suspicious process. Then the
verification module is launched to check the suspicious process at the instruction
level with customized Pintools.

Verification Module aims at eliminating misjudgments of classifiers and iden-
tifying real attacks from the suspicious processes. Here, the customized Pintools
will attach to the suspicious processes to identify attacks at the instruction level.
Once a real attack is found, CBA-Detector will report it to the operating system.

Next, we will provide the detailed implementation of CBA-Detector.

4.2 The Offline Phase

The offline phase prepares classifiers for the online phase. As shown in Fig. 2,
it involves the monitoring module and the learning module. The former collects
hardware events of sample processes, while the latter trains classifiers based on
the collected data of events.

In the monitoring module, the offline monitor first launches the sample pro-
grams (step ①), then gets the process id (pid) of the launched program from the
operating system (step ②). The sample programs include attacks and benign pro-
grams. Specifically, the attacks are composed of Prime+Probe, Flush+Reload
and Flush+Flush. To the best of our knowledge, the core code of these attacks is
a loop structure, which is the main detecting target of CBA-Detector. Since some
compute-intensive programs contain many loop structures as well, we select the
applications of SPECCPU 2006 benchmark as benign sample programs. Then
the offline monitor collects events of the process whose pid equals to the specific
pid (step ③). To obtain hardware events, we use interfaces provided by PAPI to
access PMU. Hardware events to be monitored include total cycles, total instruc-
tions, total LLC cache accesses and LLC load misses, which are selected based
on the experience of existing works [11,18]. Finally, the offline monitor writes
the collected data to files (step ④).

In the learning module, the data collected by the offline monitor is ana-
lyzed, and suitable features are extracted (step ⑤). As mentioned above, the
offline monitor collects four hardware events (a.k.a. an event vector) every three
microseconds. Since the core code for attacking is usually a loop structure, we
extract the events of loops for attacking and consider the set of event vectors of
each loop as a window. Similarly, we split the event vectors of benign programs
into fixed size windows. In each window, we build a feature vector. Specifically,
we first compute six values from each event vector, i.e., the cache miss rate,
instruction per cycle, load misses per cycle, cache accesses per cycle, load misses
per instruction and cache accesses per instruction. For each value, we extract
six attributes (i.e., the average, standard deviation, minimum, lower quartile,
upper quartile and maximum) from event vectors in a window as a feature vec-
tor, whose dimension of is 36. These feature vectors are labeled and divided into
two classes, i.e., attacks and benign windows. We call the labeled feature vectors

CBA-Detector: An Accurate Detector Against Cache-Based Attacks 115

record, which will be fed to three common and quite different machine learning
learners (step ⑥), i.e., Multilayer Perceptron (mlp), CART Decision tree (dec),
and XGBoost (xgb). Then we use the K-fold cross-validation technique to select
the best model, where K is five here. Specifically, we first take 30% attack records
as the testing set and the rest 70% of them as the training set. Since there are far
more benign records (370935) than attacks (37066) in the dataset, we choose the
undersampling technique to get 10% benign records as the training set and the
rest as the testing set. Then the training set is randomly divided into five parts,
among which four are used as the training set, while the rest one is used as the
verification set. After five repetitions, the model with the minimum verification
errors is saved for real-time detection.

4.3 The Online Phase

Based on the classifiers generated during the offline phase, the online phase
detects active processes in real time. This phase involves the monitoring mod-
ule, the detection module and the verification module. The monitoring module
collects real-time events of active processes in the system, then the detection
module determines all possible attacks with the classifiers according to the col-
lected data, finally the verification module checks suspicious processes through
customized Pintools at the instruction level to eliminate false positives.

The online monitor in the monitoring module has a similar function to the
offline monitor, but it watches the active processes in the system rather than
sample programs. In detail, the online monitor has three key duties. First, it
continually reads the /proc directory to get pids of running processes (step 1).
Second, it watches the processes according to the pids for obtaining hardware
events (step 2). Meanwhile, it counts the number of the system call sched yield
in processes via perf. Third, the collected real-time data is transmitted in the
form of stream data to the detection module (step 3).

In the detection module, the real-time data is divided into windows with fixed
size and features are figured out in each window (step 3). Then these feature
vectors are fed to classifiers for prediction (step 4). If a feature vector of a window
is judged as anomalous by the classifiers, the corresponding process of which will
be considered as a suspicious process (step 5). To eliminate misjudgments of the
classifiers, the verification module will be launched to check suspicious processes
on the instruction level (step 6).

The verification module aims at eliminating the false positives of classifiers.
It checks suspicious processes at the instruction level via customized Pintools to
identify real attacks. The Pintools count the number of clflush, rdtsc, rdtscp,
cpuid, mfench and lfench instructions to determine attacks. These instructions
are frequently used by three types of attacks, so the Pintools can accurately
identify attacks. However, Pintools can only attach to processes whose user is
the same as its own user. Therefore, CBA-Detector first executes the command
runuser to login with the user of the suspicious process, then the Pintools can
successfully attach to the process and count special instructions. If the Pintools
regards a suspicious process as an attack, CBA-Detector will report the process

116 B. Zheng et al.

Fig. 3. The workflow of real-time detection

to the operating system (step 7). Although customized Pintools can effectively
identify attacks, we still build classifiers at the first place. It is because the
Pintools need to insert codes for counting special instructions at runtime, which
will increase the execution time of programs and affect some applications that
require precise timings. Therefore, we first use classifiers to filter out most of the
benign processes to minimize the negative impact on benign programs.

4.4 Optimizations

In theory, the online monitor is necessary to watch all active processes in the
system to avoid missing any possible attack. However, there are many active
processes in the system and most of them are benign. In fact, there is no need
to monitor programs that are sure to be benign. So how to efficiently monitor
the running processes without missing any potential attack?

To solve this problem, we use an incremental monitoring approach. CBA-
Detector continually takes a snapshot of pids of all running processes in the
system at a regular interval and compares every two successive snapshots to find
newborn processes, which are monitored by the online monitor. It can signifi-
cantly reduce the number of processes that need to be monitored. Besides, we
set up a whitelist to further reduce the number of processes to be monitored. We
do not monitor a process if its pid or its parent pid (ppid) is in the whitelist. In
our experiments, we only add the pid of kthreadd process (which is the parent
of kernel processes) and the pid of CBA-Detector to the whitelist.

In this way, CBA-Detector just needs to monitor few newborn processes.
However, when a monitored process is a service that needs a long time to run,
the cost will be non-negligible if we keep monitoring the process throughout its
lifetime. Thus, we adopt different strategies to monitor different processes, i.e.,
monitoring short-lived processes throughout their lifetime and watching long-
lived processes in stages.

To distinguish different processes, CBA-Detector maintains two queues: a
filter queue (Q1) and a long-lived program queue (Q2). Q1 holds pids of new
processes except some processes whose pid or ppid is in the whitelist. The
online monitor continuously watches the new processes for several windows. If an
abnormality is detected within these windows, the corresponding process will be
labeled as suspicious. The suspicious process will be checked by the customized

CBA-Detector: An Accurate Detector Against Cache-Based Attacks 117

Pintools at the instruction level. If a process does not complete within these
windows, and no abnormal behavior is detected, CBA-Detector will move its
pid to Q2. Since there is no abnormality detected at the beginning, the online
monitor appropriately relaxes detection, i.e., it watches these processes in turn.
The procedure of the prediction of classifiers in Q2 is the same as Q1.

Figure 3 shows the workflow of the real-time detector. To avoid missing poten-
tial attacks, the online monitor creates a thread for each process in Q1 to col-
lect events. For some programs with a long lifetime, the online monitor creates
a thread for all processes in Q2 to collect events in turn. This way can save
resources and reduce costs when there are some long-lived processes need to be
monitored in the system. Thanks to the incremental monitoring method and the
whitelist, only a few processes are monitored at a time. Thus, processes in queues
are monitored in high density, and attacks can hardly evade the detection. Thus,
CBA-Detector can efficiently monitor processes without missing any attack.

5 Evaluation

In this section, we evaluate CBA-Detector from three aspects: timeliness, accu-
racy, and performance. All experiments try to answer the following questions.

– Q-1 : Can CBA-Detector detect attacks before they complete? (timeliness)
– Q-2 : Does CBA-Detector eliminate false positives? (accuracy)
– Q-3 : How much overhead does CBA-Detector introduce? (performance)

We evaluate the CBA-Detector on an x86-64 machine and a virtual machine
(VM). The x86-64 machine has a 4-core Intel Core i5-4460 with 3.2 GHz clock
frequency and 8 GB RAM. The VM is equipped with 2 vCPUs and 1 GB RAM.
The operating system used in both environments is Centos 7.5.1804 with kernel
Linux 3.10.0.

5.1 Real-Time Detection

To answer Q-1, we implement three PoCs (proof of concepts) of Spectre attack
to steal 1024 bytes secret information through Prime+Probe, Flush+Reload and
Flush+Flush, respectively. We run these attacks 10 times and compute the aver-
age ratio between the time to detect an attack and the time it needs to complete.
Figure 4 depicts the results of the three implementations in different workloads,
where the legend “Host 30%” refers that the CPU utilization of the host is 30%.
We execute several firefox and gedit processes to set up different workloads and
run live videos on Youtube to contend memory.

As shown in Fig. 4, all the three implementations of Spectre can be detected
in real time both in the Host and VM, and there is no false negatives (malicious
processes are incorrectly identified as benign) in our experiments. The detec-
tion of spectre ff (spectre with Flush+Flush) is the fastest because it uses the
clflush instruction with the highest frequency. The detection time in the VM

118 B. Zheng et al.

spectre_ff spectre_fr spectre_pp
0.0

0.1

0.2

0.3

0.4

0.5
R

at
e

 Host 30%
 Host 60%
 VM 30%
 VM 60%

Fig. 4. Timeliness evaluation

1 2 3 4
0

1k

2k

3k

Th
ro

ug
hp

ut

 Apache-Base
 Apache-CBA
 Nginx-Base
 Nginx-CBA

Fig. 5. Performance on web servers

is longer than that in the host because the number of cores of the VM is less
than that of the host. Similarly, the detection time in high workloads is longer
than in low workloads because higher workload leads to more processes contend
for CPUs. In the worst case, the time of an attack to be successfully detected is
about 37% of the time the attack required to complete. Above all, CBA-Detector
can detect attacks in real time.

5.2 Accuracy in Detector

To answer Q-2, we test the accuracy of three classifiers generated in the offline
phase and the real-time detector in the online phase, respectively. To evaluate
the accuracy of classifiers, we measure TPR (True Positive Rate), FPR (False
Positive Rate), recall, precision, F-Measure and ROC area of dec, xgb and mlp
on offline feature vectors. As shown in Table 1, all the three models have over
98% precision and a few false positives.

Table 1. Performance evaluation of three classifiers on offline feature vectors

TPR FPR Recall Precision F-Measure ROC area

xgb 1.000000 0.000240 1.000000 0.992857 0.996416 0.999880

mlp 0.997302 0.000488 0.997302 0.985515 0.991374 0.998407

dec 1.000000 0.000288 1.000000 0.991441 0.995702 0.999856

Table 2. False positives during the online phase

xgb mlp dec Two models Three models sched yield

w/o Pintools 2 7 10 6 1 0

w Pintools 0 0 0 0 0 0

To evaluate the real-time detector, we run 213 programs to test the false
positives of CBA-Detector with or without Pintools. The 213 programs include

CBA-Detector: An Accurate Detector Against Cache-Based Attacks 119

benchmarks, Linux common commands and some applications like gedit. Bench-
marks are used for evaluating the effectiveness of Pintools we developed because
they use rdtsc or rdtscp instruction as well. Besides, concurrent applications
of PARSEC, which invoke the system call sched yield multiple times, are used
for testing the effectiveness of the strategy that relies on the system call sched
yield. In Table 2, two/three models refers to two/three classifiers simultaneously
misreport. Table 2 illustrates that CBA-Detector with Pintools can effectively
eliminate false positives.

5.3 Performance

To answer Q-3, we first use the SPEC CPU2006 benchmark and PARSEC bench-
mark to measure the impact of CBA-Detector on different applications in the
host machine. Then we measure the impact of CBA-Detector on web servers and
a database in the virtual machine. We pin CBA-Detector to a single core and use
the test input sets for SPEC and the simsmall input sets for PARSEC. Figures 6
and 7 show the results. The geometric mean of the overhead on applications of
SPECCPU 2006 is 1.3% without the Pintools and 3.4% with the Pintools, while
the geometric mean of the overhead on PARSEC is 4.4%.

perlbench
bzip2
gcc
mcf
gobmk
hmmer
sjeng
libquantum
h264ref
omnetpp
astar
xalancbmk
bwaves
gamess
milc
zeusmp
gromacs
cactusADM
leslie3d
namd
dealII
soplex
povray
calculix
GemsFDTD
tonto
lbm wrf
sphinx3
geomean

0.0

0.4

0.8

1.2

N
or

m
al

iz
ed

 O
ve

rh
ea

d w/o Pintools w Pintools

Fig. 6. The overhead of all applications in SPECCPU 2006

blackscholes
bodytrack
canneal
dedup
facesim
fluidanim

ate
freqm

ine
ferret
stream

cluster
raytrace
vips
x264
swaptions
geom

ean

0.0

0.5

1.0

N
or

m
al

iz
ed

 o
ve

rh
ea

d

Fig. 7. Performance on PARSEC

GET-1
GET-2

GET-4
GET-8

GET-16
SET-1

SET-2
SET-4

SET-8
SET-16

0

200

400

600

800

1000

Th
ro

ug
hp

ut
 (k

op
s)

Baseline
CBA-Detector

Fig. 8. Performance on Redis

120 B. Zheng et al.

To test the effects of CBA-Detector on web servers, we test Nginx and Apache
via apache benchmark (ab) with a 1 MB static web page and different threads.
Figure 5 shows the throughput of web servers. On the average, the overhead on
Nginx and Apache is about 10.6% and 8.2%, respectively. The standard redis-
benchmark is used for testing the throughput of SET and GET operations of
Redis. We configure different numbers of threads for redis-benchmark and Fig. 8
depicts the results. On the average, CBA-Detector has about 4.8% overhead.

5.4 Discussion

In this section, we discuss the limitations, possible countermeasures and future
work of CBA-Detector. First, our results prove that CBA-Detector can accu-
rately detect attacks in real time. However, it does not exclude the rare cases
where some benign programs may have similar instructions to attacks. In this
case, CBA-Detector may misjudge these benign programs as attacks. To solve
this problem, we suggest to adding these benign programs to the whitelist in
advance. Second, a premeditated attack may evade CBA-Detector. For example,
it may launch an attack after it is moved to Q2 with loose surveillance. One pos-
sible solution is to randomly move some pids from Q2 to Q1 at a regular interval
to further reduce the risk of missing attacks. Third, the Pintools we developed
focus on the number of specific instructions because they are frequently used
in attacks. We hope to find more interesting features of special instructions to
detect attacks in the future. Forth, since the Pintools can accurately identify
misjudgment of classifiers, we hope to automatically improve classifiers accord-
ing to the feedback of Pintools so that CBA-Detector can detect attacks with
better flexibility and adaptability in the future.

6 Related Work

Many studies attempted to detect cache-based side-channel attacks relying
on HPCs. CloudRadar [18] analyzed hardware events obtained from HPCs to
capture attacks in the virtual machines that are executing a cryptographic
application. Chiappetta et al. [2] presented three real-time detection methods
(correlation-based approach, anomaly detection and neural network) against
Flush+Reload according to events collected with HPCs. NIGHTs-WATCH [11]
employed machine learning techniques to analyze real-time data from HPCs to
identify Flush+Reload and Flush+Flush under various realistic system load con-
ditions. HexPADS [12] proposed a detection method against attacks by analyz-
ing data collected from HPCs and performance metrics. CacheShield [1] adopted
self-monitoring with the help of HPCs to detect attacks.

Detection methods rely on HPCs can detect attacks in real time, but
inevitably have false positives. Other detection methods like SCADET [14],
which introduced a methodology for detecting Prime+Probe by tracking to get
memory-access behavior. It does not rely on HPCs but cannot detect attacks

CBA-Detector: An Accurate Detector Against Cache-Based Attacks 121

in real time. ZITF [16] uses Intel-PIN to tamper the time information of mali-
cious processes, but it uses perf to filter benign processes with specific thresh-
olds, which is not flexible and universal. Different from the above works, CBA-
Detector uses machine learning techniques and combines HPCs with customized
Pintools to detect Prime+Probe, Flush+Reload and Flush+Flush in real time,
and it can effectively eliminate false positives at the instruction level.

7 Conclusion

This paper proposes an accurate detector called CBA-Detector to detect cache-
based attacks in real time. CBA-Detector first employs machine learning tech-
niques to model the features of hardware events collected with HPCs. Then it
combines the models with Pintools to identify attacks in real time and eliminate
false positives at the instruction level. Our experiments show that CBA-Detector
can accurately detect cache-based attacks before they complete while introduc-
ing 4.4% overhead on PARSEC and about 10% overhead on web server.

Acknowlegements. This work was supported by National Natural Science Founda-
tion of China (No. 61772204, No. 61732014).

References

1. Briongos, S., Irazoqui, G., Malagón, P., Eisenbarth, T.: CacheShield: detecting
cache attacks through self-observation. In: CODASPY 2018, pp. 224–235 (2018)

2. Chiappetta, M., Savas, E., Yilmaz, C.: Real time detection of cache-based side-
channel attacks using hardware performance counters. Appl. Soft Comput. 49,
1162–1174 (2016)

3. Das, S., Werner, J., Antonakakis, M., Polychronakis, M., Monrose, F.: SoK: the
challenges, pitfalls, and perils of using hardware performance counters for security.
In: 2019 IEEE Symposium on Security and Privacy (SP) (2019)

4. Gruss, D., Lettner, J., Schuster, F., Ohrimenko, O., Haller, I., Costa, M.: Strong
and efficient cache side-channel protection using hardware transactional memory.
In: USENIX Security, pp. 217–233 (2017)

5. Gruss, D., Maurice, C., Wagner, K., Mangard, S.: Flush+Flush: a fast and stealthy
cache attack. In: Caballero, J., Zurutuza, U., Rodŕıguez, R.J. (eds.) DIMVA 2016.
LNCS, vol. 9721, pp. 279–299. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-40667-1 14

6. Kim, T., Peinado, M., Mainar-Ruiz, G.: STEALTHMEM: system-level protection
against cache-based side channel attacks in the cloud. In: USENIX Security, pp.
189–204 (2012)

7. Kocher, P., et al.: Spectre attacks: exploiting speculative execution. CoRR
abs/1801.01203 (2018)

8. Lipp, M., et al.: Meltdown. CoRR abs/1801.01207 (2018)
9. Liu, F., et al.: CATalyst: defeating last-level cache side channel attacks in cloud

computing. In: HPCA, pp. 406–418 (2016)
10. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel

attacks are practical. In: SP, pp. 605–622 (2015)

https://doi.org/10.1007/978-3-319-40667-1_14
https://doi.org/10.1007/978-3-319-40667-1_14

122 B. Zheng et al.

11. Mushtaq, M., Akram, A., Bhatti, M.K., Chaudhry, M., Lapotre, V., Gogniat, G.:
NIGHTs-WATCH: a cache-based side-channel intrusion detector using hardware
performance counters. In: HASP, pp. 1:1–1:8 (2018)

12. Payer, M.: HexPADS: a platform to detect “Stealth” attacks. In: Caballero, J.,
Bodden, E., Athanasopoulos, E. (eds.) ESSoS 2016. LNCS, vol. 9639, pp. 138–154.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30806-7 9

13. Intel Pin: Intel pin dynamic binary instrumentation tool (2012). https://software.
intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool. Accessed 20
Apr 2019

14. Sabbagh, M., Fei, Y., Wahl, T., Ding, A.A.: SCADET: a side-channel attack detec-
tion tool for tracking Prime+Probe. In: ICCAD 2018, p. 107 (2018)

15. Terpstra, D., Jagode, H., You, H., Dongarra, J.J.: Collecting performance data
with PAPI-C. In: Müller, M., Resch, M., Schulz, A., Nagel, W. (eds.) International
Workshop on Parallel Tools for High Performance Computing 2009, pp. 157–173.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11261-4 11

16. Wang, Z.H., Peng, S.H., Guo, X.Y., Jiang, W.B.: Zero in and TimeFuzz: detection
and mitigation of cache side-channel attacks. In: Lanet, J.-L., Toma, C. (eds.)
SECITC 2018. LNCS, vol. 11359, pp. 410–424. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-12942-2 31

17. Yarom, Y., Falkner, K.: FLUSH+RELOAD: a high resolution, low noise, L3 cache
side-channel attack. In: USENIX Security, pp. 719–732 (2014)

18. Zhang, T., Zhang, Y., Lee, R.B.: CloudRadar: a real-time side-channel attack detec-
tion system in clouds. In: Monrose, F., Dacier, M., Blanc, G., Garcia-Alfaro, J.
(eds.) RAID 2016. LNCS, vol. 9854, pp. 118–140. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-45719-2 6

https://doi.org/10.1007/978-3-319-30806-7_9
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://doi.org/10.1007/978-3-642-11261-4_11
https://doi.org/10.1007/978-3-030-12942-2_31
https://doi.org/10.1007/978-3-030-12942-2_31
https://doi.org/10.1007/978-3-319-45719-2_6
https://doi.org/10.1007/978-3-319-45719-2_6

An Efficient Log Parsing Algorithm
Based on Heuristic Rules

Lin Zhang1, Xueshuo Xie2, Kunpeng Xie2, Zhi Wang1, Ye Lu2(B),
and Yujun Zhang3

1 College of Cyber Science, Nankai University, Tianjin, China
zl@mail.nankai.edu.cn, zwang@nankai.edu.cn

2 College of Computer Science, Nankai University, Tianjin, China
{xueshuoxie,1511220}@mail.nankai.edu.cn, luye@nankai.edu.cn

3 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
zhmj@ict.ac.cn

Abstract. Log files usually contain very rich running information of the
software system, which can be used for anomaly detection, performance
modeling, and failure diagnosis, etc. In a large-scale deployment system,
log records are always unstructured and can not directly use for log
analysis. Log parsing, as a key prerequisite for log analysis, converts
unstructured log records into structured event templates by extracting
the constant portion of the raw log. Traditionally, log parsing can be
achieved by manually using the regular expression, which requires many
experts knowledge and has very low efficiency. Therefore, the accuracy
and efficiency of log parsing are very important, especially in large-scale
distributed systems. In this paper, we propose an efficient algorithm
namely CLF (Clustering based on Length and First token) for extracting
log event templates from raw log based on heuristic rules. The CLF
algorithm works through a 3-step process: clustering unstructured logs
based on heuristic rules, clustering again according to specific separation
rules and finally generating event templates. Finally, we used 7 data sets
to evaluate the performance of CLF and compared with three state-of-
the-art log parser algorithms, where CLF ranks higher on most of the
data sets and also has advantages in execution time.

Keywords: Log parsing · Log analysis · Clustering · Algorithms

1 Introduction

Web services, instant messaging, search engines, etc. are very common in mod-
ern computer networks, and they are an indispensable part of our lives, so the
reliability of these systems is very important. In order to ensure the reliability of
the systems, it is necessary to analyze the logs produced by the system at run-
time that they can be used for abnormal detection [1–4], fault diagnosis [5–7],
and performance monitoring [8,9].

c© Springer Nature Switzerland AG 2019
P.-C. Yew et al. (Eds.): APPT 2019, LNCS 11719, pp. 123–134, 2019.
https://doi.org/10.1007/978-3-030-29611-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29611-7_10&domain=pdf
https://doi.org/10.1007/978-3-030-29611-7_10

124 L. Zhang et al.

When performing some analysis on a log file, first the event corresponding
to each log entry needs to be known. Log entries typically include a timestamp
and an actual log message, where the timestamp records the time at which the
event occurred, and the log message records the operational information associ-
ated with the event. For example, there is a log entry: ‘081109 203519 145 INFO
dfs.DataNode$PacketResponder:PacketResponder 1 for block blk -16089 termi-
nating’. In this log entry, ‘PacketResponder 1 for block blk 16089 terminating’ is
the log message part. Log messages usually consist of two parts, a fixed part and
a variable part. Log messages belonging to the same event type have the same
fixed part (eg ‘PacketResponder’, ‘for’, ‘block’, ‘terminating’ constitute a fixed
part), and Variable parts (eg ‘1’, ‘blk 3886’ are variables) may change as events
occur. The template for this log message should be ‘PacketResponder ‘< ∗ >’
for block ‘< ∗ >’ terminating’.

Because developers write free-text log print statements in the source code,
log messages are unstructured when different event logs are output. However,
most log analysis tools and data mining models require structured log input and
then make more accurate judgments about the system’s operational information.
Therefore, when performing log analysis, the first step is to resolve the unstruc-
tured log into a structured log [10,11]. Extracting the log message templates
from the log file not only facilitates subsequent log analysis, but also has promi-
nent advantages in the following aspects: (1) It is possible to use a more concise
and compact log message template to represent log entries and save memory;
(2) log entries are easier to query and summarize.

In general, automatic identification of log messages still requires manual
operation. It matches the regular expression to extract the template, and the
regular expression is created and updated according to the log print statement
in the program source code. When there are a lot of log print statements in
the source code of the program, manually creating regular expressions can be
time-consuming and labor-intensive. Of course, there are other ways to stati-
cally analyze the application source code, look up the log record statement, and
extract the template from the print operation. But the definition of static analy-
sis will be cumbersome and requires extensive knowledge of recording techniques,
which is not easy in different programming languages and frameworks. Both of
the above methods require access to the source code of the program, but this
permission is not common, which will become a limitation of some log analysis.
In the case where the program source code is not accessible, there is still a way
to extract the template of the log message. For example, LKE [9], LenMa [12]
and MoLFI [13], etc., they use the black-box strategy that relies on clustering
techniques or evolutionary algorithm to automatically extract templates for log
messages from log files. The log message template extracted by the algorithm
should balance the under-fitting and over-fitting problems. That is, in a log file,
(1) whether each log message template is too general, and logs of different events
correspond to the same log message template; (2) whether each log message is
too special, and the log indicating the same event corresponds to multiple log
message templates. On this basis, the accuracy rate and time efficiency of the

An Efficient Log Parsing Algorithm Based on Heuristic Rules 125

log parsing algorithm are measured. Our experiments show that the accuracy
and efficiency of these algorithms are low.

In this paper, we propose the CLF algorithm, which uses heuristic-based
clustering techniques to efficiently parse log files. The rest of this paper is orga-
nized as follows: Sect. 2 discusses the work related to log parsing and the pub-
lished algorithms. Section 3 outlines the proposed algorithm. Section 4 reports
a description of the CLF assessment and experimental results. Finally, Sect. 5
presents the conclusion.

2 Related Work

Log parsing is a process that transforms unstructured log messages into struc-
tured log messages. In particular, the log parser matches each log message with
a log event. In this section, we discuss previous related work in the area of event
log clustering and message type extraction [14–16]. We also discuss the CLF
algorithm in multiple perspectives.

From the SLCT [17] algorithm released in 2003 to the newly released MoLFI
[13] algorithm, a total of 13 recently published log parsing methods to implement
the function of automatically identifying log messages. The existing log parsing
algorithms are mainly implemented in the following ways: clustering, frequency
pattern mining, and heuristic. The algorithms that rely on clustering for log
parsing are: LKE [9], LogSig [18], SHISO [19], LenMa [12] and LogMine [20].
These algorithms use machine learning techniques. They cluster log entries by
calculating the similarity between log entries (such as weighted edit distance)
and then extract templates. Algorithms for mining using frequency patterns are:
SLCT, LFA [21] and LogCluster [22]. These three algorithms traverse the log
data, then group logs into several clusters based on the frequency of occurrences
of words in each log entry (or words at a fixed location), and finally extract
the message template. The following algorithms are based on heuristic rules:
AEL [23], IPLoM [24] and Drain [25]. The developers of these three algorithms
use heuristic rules to parse the logs by observing the characteristics of the log
messages. The latest algorithm MoLFI [13] applies the Non-dominated Sorting
Genetic Algorithm II (NSGA-II [26]) on a given log file to search the space of
solutions for a Pareto optimal set of message templates. It formalizes the log
parsing as a multiple-objective optimization problem and utilizes a genetic algo-
rithm to solve it. Different log parsers can use different log parsing strategies.
Of course, these log parsers can get results without accessing the source code.
The CLF method we propose uses a clustering technique that relies on heuristic
rules. Data clustering [17,18,27,28] is a data mining technique, which classifies
data into clusters. The members of each cluster are related, and the members of
different clusters have large differences. Clustering is very useful in the interpre-
tation and classification of datasets, and it can be used as the first step in log
parsing.

To adapt the various scenarios of log parsing, developers have designed two
main modes of log parsing, i.e., offline and online. The offline log parser processes

126 L. Zhang et al.

the log files in batch mode, and it needs the software system to provide all the
logs before log parsing. Instead, the online log parser processes the log messages
one by one in a stream. Among the log parsers that are offline and online, Drain
is better in the online log parsers, and IPLoM is better in the offline log parsers.
Drain is based on a fixed-depth tree structure. When a new raw log message
arrives, it first searches for an appropriate log group from the nodes in the tree.
If an appropriate log group is found, the log will be added. Otherwise, a new
log group will be created. IPLoM employs an iterative partition strategy, which
partitions log messages by event size, token position and mapping relation.

Most of the log parsers mentioned above are complicated to process log files
that they generally need to traverse the log files multiple times or traverse their
own data processing models multiple times or perform a large number of cal-
culations. Although complex processing can usually improve the accuracy rate,
it loses its advantage in terms of time efficiency. The CLF is not complicated
to process the log file and it has great advantages in time efficiency under the
premise of ensuring the correct rate. It uses clustering technology, which is an
offline parser. It clusters the logs based on whether the first word of each log
message is the same and the length of each log message. Because in general, the
first word of the event message represents an important feature of the event,
and the length of the log message (the number of tokens) of the same event
is the same. On this basis, coarse-grained clustering is performed, followed by
fine-grained clustering by special separation rules and then the CLF algorithm
can accurately group similar logs. Such an operation does not require traversing
the log file multiple times or traversing its own model multiple times, so the
CLF algorithm can parse the log file at an extremely fast rate. Our experiments
show that CLF is indeed the fastest log parser and has a high accuracy rate on
different data sets.

3 The CLF Algorithm

In this section, we give a detailed description of our proposed algorithm. The
CLF (clustering based on length and first token) algorithm is designed as a
log data parsing algorithm, it uses clustering technology and heuristic rules. An
outline of the three steps of CLF is given in Fig. 1. For example, when a log
file needs to be parsed, as shown in Table 1, CLF will preprocess it with simple
regular expressions based on domain knowledge. Then we group logs into clusters
based on whether the first word of each log message is the same and the length of
each log message. Then CLF separates the classified groups again using specific
separation rules. Finally, CLF extracts the log messages templates.

The preprocessing is simple that the specific parameters are erased by empir-
ical rules. For example, in network-related logs, the frequently occurring IP
addresses are the parameters to be erased. In general, this simple preprocessing
will improve the accuracy of the log parsing algorithm. The CLF preprocesses
log files by defining some regular expressions to match these parameters and
erasing them.

An Efficient Log Parsing Algorithm Based on Heuristic Rules 127

A list of log groups A list of log groups
preprocess

Log message
templates

T1:log message
templates1

T2:log message
templates2

T3:log message
templates3

.

Log File
(unstructured)

L1:log message1
(first token:A,length:5)

L2:log message2
(first token:A,length:5)

L3:log message3
(first token:B,length:8)

L4:log message4
(first token:B,length:8)

.

L1:(Connection
closed by user *)
L2:(Connection
reset by user *)

.

L3
L4

.

.

L1
.

L3
L4

.

.

Group1

Group3

L2
.

Group2

clustering separating extracting

Group1

Group2

Fig. 1. The log file will first be preprocessed by erasing some parameters. The first
step of the algorithm is to cluster the log messages based on whether the first token
and length are the same. The second step is to identify constants and variables and
then do the in-group separation. The last step is to extract the common parts of the
log messages within the group as the log message templates.

Table 1. Raw log messages

Log messages

1 Connection closed by user 72480

2 Connection reset by user 72480

3 Invalid user test9 from 173.234.31.186

4 Invalid user adm from 173.234.31.186

5 Invalid user John from 173.234.31.186

6 Invalid user Mike from 173.234.31.186

7 PacketResponder 2 for block blk -6670 terminating

After the CLF preprocesses the log file, it performs the three-step processing
to complete the parsing, as follows:

3.1 Step 1: Clustering

The CLF algorithm first clusters log messages based on whether their first word
is the same or not and then clusters log messages according to their length.

For each line of log messages, we take the first word as a flag. We don’t
consider words in other positions. The log messages with the same first word can
be clustered into a group. In general, the first word of a log message represents
important information (because a process name is printed here normally), such
as the first word of a warning message would be “Warning” and the first word
of an error message would be “Error”. Even if the first words are the same,
they may not be the same type of log event. In this case, we need to cluster the

128 L. Zhang et al.

groups again according to the lengths of the log messages because different print
statements usually have different numbers of words. When the first word is the
same, and the different lengths of the logs are used for grouping, the related log
messages can be more accurately divided into one group, thereby extracting a
representative template.

The log messages in each group are basically similar, but there may still be
cases that the log messages output by different log print statements have the
same first word and length. For example, in a log file, all log entries record only
two events, one for successful connection and the other for failed connection. This
means that these logs are output by two print statements. Then the difference
between the two print statements is probably that one word is different at a
certain position, such as one is ‘success’ and the other is ‘fail’. If the word
(‘success’ or ‘fail’) is not the first word, then the previous clustering step will
classify the logs into the same category. This problem will be solved by the next
separation step.

After clustering, the examples mentioned earlier as shown in Table 2.

Table 2. CLF step 1: clustering by the first token of log messages and the length of
the messages

Group Log messages

1 Connection closed by user < ∗ >

Connection reset by user < ∗ >

2 Invalid user test9 from < ∗ >

Invalid user adm from < ∗ >

Invalid user John from < ∗ >

Invalid user Mike from < ∗ >

3 PacketResponder < ∗ > for block < ∗ > terminating

3.2 Step 2: Separating

Each log message contains constants and variable components. The constants
contain the fixed information of the print statement and are also the keywords
of the log. The variables change with the occurrence of the event when the system
is running. After accurately clustering all the log messages, the common part of
each log message in the group is the log message template that we want to finally
get. But after step 1, the grouping of log messages is not accurate. Because some
constants are mistaken for variables. How to accurately separate constants and
variables is what step 2 does.

We make statistics on words in all positions of the log messages and set a
separation threshold. Assuming that there are n different tokens at a certain
position of each log message. When n is greater than the separation threshold,

An Efficient Log Parsing Algorithm Based on Heuristic Rules 129

the token at that position is considered a variable, otherwise, it is a constant.
We do not need to make any changes to the log messages when the token at a
certain location is considered a variable, because the token will change directly
to the < ∗ > wildcard due to differences when extracting the common part
as a template. When a token at a position is considered a constant, we should
regroup the log messages in this group according to the tokens at this position,
and group the log messages with the same token into one group. This continues
the grouping operation more than once, the algorithm will first save the public
token sequence within the group, and then traverse the above operations for
other tokens.

When step 2 is completed, the logs in each group are already very similar.
For a group, the CLF algorithm will assume that the log messages within the
group are printed by the same log print statement. The next step is to extract
the public part of each group as a template, which is the third step.

After Separating, the examples mentioned earlier as shown in Table 3.

Table 3. CLF step 2: separating by the number of different tokens in the same position
of the log messages

Group Log messages

1 Connection closed by user < ∗ >

2 Connection reset by user < ∗ >

3 Invalid user test9 from < ∗ >

Invalid user adm from < ∗ >

Invalid user John from < ∗ >

Invalid user Mike from < ∗ >

4 PacketResponder < ∗ > for block < ∗ > terminating

3.3 Step 3: Extracting Template

After the first and second steps, all the log messages have been clustered into
different groups, and extracting the template for each group is the third step.
For a group, its template should be the same part between each log messages and
other log messages in the group, that is, the template consisting of constants.
The different tokens between each log messages are variable components, which
should be deleted and represented by wildcards < ∗ >.

After Extracting, the examples mentioned earlier as shown in Table 4.

130 L. Zhang et al.

Table 4. CLF step 3: extracting by the common part of each log message in the group

Group Log Templates

1 Connection closed by user < ∗ >

2 Connection reset by user < ∗ >

3 Invalid user < ∗ > from < ∗ >

4 PacketResponder < ∗ > for block < ∗ > terminating

4 Evaluation

We have implemented the proposed algorithm in Python 2.7. The CLF algorithm
can find all the message types that may exist in a given log file. In this section, we
report the accuracy and time efficiency assessment of the CLF algorithm in iden-
tifying log message formats. We first describe the experimental settings. Then,
We want to assess the performance of CLF in comparison with state-of-the-art
techniques (Drain and IPLoM) and the newly released log parser (MoLFI), in
terms of accuracy and efficiency.

4.1 Experimental Settings

Dataset. To evaluate the CLF, we used seven different benchmark datasets:
seven datasets are publicly available and come from the real world, and have
been used in previous work for log message format identification issues. These
datasets were released by [29], they are HDFS (Hadoop Distributed File Sys-
tem), Thunderbird (Thunderbird Supercomputer), Hadoop (Hadoop MapRe-
duce), openSSH (OpenSSH server log), Apache (Apache HTTP Server), HPC
(High Performance Cluster), Spark (Large-Scale Data Processing Platform), and
each data set contains 2000 log entries. We used the ground truth defined by
[29] and publicly available from their replication package.

All log parsers have been run multiple times, we used the average result
as the evaluation criteria and collected the generated log message templates.
For the results obtained by the algorithm, we use F-measure [30] to evaluate
the accuracy of log parsing methods. The evaluation indicators often have the
following points: Accuracy, Precision, Recall and F1-Measure. To measure the
accuracy, we used the metrics used in previous studies [25,30], i.e., Accuracy =

TP+TN
TP+TN+FP+FN , Precision = TP

TP+FP , Recall = TP
TP+FN , and F1 Measure =

2∗Precision∗Recall
Precision+Recall . That a true positive (TP) decision assigns two log messages

with the same log event to the same log group;a true negative (TN) decision
assigns two log messages with the different log event to different log groups; a
false positive (FP) decision assigns two log messages with different log events to
the same log group; and a false negative (FN) decision assigns two log messages
with the same log event to different log groups.

We use Accuracy and F1 Measure to evaluate the accuracy of each algorithm.
These two standards are typical evaluation criteria. In addition to these 7 data

An Efficient Log Parsing Algorithm Based on Heuristic Rules 131

sets, we also selected HDFS data sets of different sizes, which are 1 kb, 10 kb,
100 kb, 1 mb, 10 mb and 100 mb. They are used to test the execution time of
each algorithm and compare whether the CLF algorithm is better than other
algorithms in terms of time efficiency. We ran all the experiments on a Win-
dows server with an Intel(R) Core(TM) I7-6700 CPU and 8 GB RAM, running
Window7 with 64 bits.

4.2 Accuracy and F1 Measure

Accuracy is a major issue in existing log parsing studies that demonstrate how
well the log parser matches raw log messages with the correct log events. In addi-
tion, inaccurate log parsers can greatly hinder the effectiveness of downstream
log mining tasks.

In this section, we evaluate the accuracy of the MoLFI, Drain, IPLoM and
CLF algorithms on seven data sets. The evaluation results are shown in Table 5.
The columns “Acc”, “FM”, and “T” indicate accuracy, F measure, and execution
time (in seconds), respectively. In our results, because the Apache server’s logging
format is simple and easy to understand, these log parsers can resolve Apache
datasets 100% accurately. Similarly, they all have high accuracy and F-measure
on HDFS datasets because HDFS datasets do not have complex structures and
formats. We observed that for most data sets, CLF achieved the best accuracy
and F-measure. Drain and IPLoM have also achieved high accuracy because of
their specially designed heuristic rules. The MoLFI algorithm is the slowest in
terms of efficiency because it uses an iterative algorithm. Because of the special
clustering rules and separation rule, CLF is very effective in processing log files
and achieves the best overall accuracy. On average, Drain is less accurate than
CLF, followed by IPLoM and finally MoLFI. In terms of F-measure, these four
log parsers all scored well, which indicates that they have a high recall rate and
precision rate.

Table 5. Accuracy (Acc), F1 Measure (FM) and execution time (T(s)) of the
approaches

Dataset MoLFI Drain IPLoM CLF

Acc FM T(s) Acc FM T(s) Acc FM T(s) Acc FM T(s)

HDFS 0.99 0.99 3.18 0.99 0.99 0.26 1 1 0.24 1 1 0.16

Thunderbird 0.65 0.99 40.9 0.95 0.99 0.25 0.66 0.99 0.25 0.93 0.99 0.26

Hadoop 0.94 0.99 28.57 0.94 0.99 0.25 0.95 0.99 0.28 0.96 0.99 0.21

OpenSSH 0.48 0.99 6.42 0.78 0.99 0.25 0.80 0.99 0.23 0.80 0.99 0.22

Apache 1 1 1.44 1 1 0.22 1 1 0.21 1 1 0.17

HPC 0.67 0.97 16.67 0.88 0.99 0.24 0.82 0.97 0.20 0.91 0.99 0.12

Spark 0.41 0.51 203.8 0.92 0.99 0.25 0.92 0.99 0.23 0.98 0.99 0.27

132 L. Zhang et al.

1KB 10KB 100KB 1MB 10MB 100MB
10

−2

10
−1

10
0

10
1

10
2

10
3

Log file size

tim
e(

s)
Running Time of Log Parsing Methods

CLF
Drain
IPLoM
MoLFI

Fig. 2. Running time of log parsing methods

4.3 Efficiency

The efficiency of a log parser is an important aspect to consider when dealing
with large-scale log data. We use a private HDFS data set and slice it into 1 kb,
10 kb, 100 kb, 1 mb, 10 mb, and 100 mb. These different sized data sets are used
to test the efficiency of the log parser, and we record the time it takes for each
log parser to complete the entire parsing process. The logarithmic scale used,
as shown in Fig. 2. CLF requires less runtime than other log parsers. The newly
released log parser MoLFI uses an iterative evolutionary algorithm, so it is always
slower than Drain, IPLoM and CLF, regardless of the size of the data set. MoLFI
uses novel ideas to implement algorithms, but it is not good in terms of time
efficiency. Drain and IPLoM are the most efficient log parsers in the currently
published log parser. CLF and their running time are almost the same when the
size of the data set is less than 1MB. But as the size of the data set increases,
the runtime of the CLF grows much slower than Drain and IPLoM. Specifically,
the CLF only needs to resolve 10 MB of HDFS log messages in 5 s and 100 MB of
HDFS log messages in 59 s. It greatly improves the runtime of log parsers. CLF
runs faster than other log parsers for a number of reasons. First, the clustering
step of CLF has fewer traversal for log files, this reduces memory usage and
reduces processing time for log files. Second, CLF enjoys linear time complexity.
Because CLF and IPLoM are offline log parsers, there is less processing time for
log files than online log parser Drain. As the size of the data set continues to
expand, the advantages of CLF in processing time will become more apparent.

An Efficient Log Parsing Algorithm Based on Heuristic Rules 133

5 Conclusion

Log parsing is critical for log analysis based on software systems. This paper
proposes a log parsing algorithm, CLF, which relies on simple rules to infer log
message templates. An experimental result involving multiple real-world datasets
shows that the CLF algorithm has higher precision than common log parsing
tools.

Acknowledgment. This work is partially supported by the National Key Research
and Development Program of China (2016YFC0400709), the Next Generation Internet
Technology Innovation Project of CERNET (NGII20180306), the Science and Tech-
nology Commission of Tianjin Binhai New Area (BHXQKJXM-PT-ZJSHJ-2017005),
the Natural Science Foundation of Tianjin (18YFYZCG00060) and Nankai University
(91922299).

References

1. Bertero, C., Roy, M., Sauvanaud, C., Tredan, G.: Experience report: log mining
using natural language processing and application to anomaly detection. In: IEEE
International Symposium on Software Reliability Engineering (2017)

2. Goldstein, M., Raz, D., Segall, I.: Log-based behavioral differencing. In: IEEE
International Symposium on Software Reliability Engineering, Experience report
(2017)

3. Kc, K., Gu, X.: ELT: Efficient log-based troubleshooting system for cloud comput-
ing infrastructures. In: Reliable Distributed Systems (2011)

4. Ren, R., Fu, X., Zhan, J., Zhou, W.: LogMaster: Mining event correlations in logs of
large scale cluster systems. In: IEEE Symposium on Reliable Distributed Systems
(2012)

5. Zou, D.Q.: Uilog: improving log-based fault diagnosis by log analysis. J. Comput.
Sci. Technol. 31(5), 1038–1052 (2016)

6. Wong, W.E., Debroy, V., Golden, R., Xu, X., Thuraisingham, B.: Effective software
fault localization using an RBF neural network. IEEE Transact. Reliab. 61(1),
149–169 (2012)

7. Reidemeister, T., Jiang, M., Ward, P.A.S.: Mining unstructured log files for recur-
rent fault diagnosis. In: IFIP/IEEE International Symposium on Integrated Net-
work Management (2011)

8. Nagaraj, K., Neville, J., Killian, C.: Structured comparative analysis of systems
logs to diagnose performance problems. In: USENIX Conference on Networked
Systems Design and Implementation (2012)

9. Fu, Q., Lou, J.G., Wang, Y., Li, J.: Execution anomaly detection in distributed
systems through unstructured log analysis. In: IEEE International Conference on
Data Mining (2009)

10. Lou, J.G., Fu, Q., Yang, S., Xu, Y., Li, J.: Mining invariants from console logs for
system problem detection. In: Proceedings of USENIX ATC, pp. 231–244 (2010)

11. Wei, X., Ling, H., Fox, A., Patterson, D.A., Jordan, M.I.: Detecting large-scale sys-
tem problems by mining console logs. In: ACM SIGOPS Symposium on Operating
Systems Principles (2009)

12. Shima, K.: Length matters: clustering system log messages using length of words
(2016)

134 L. Zhang et al.

13. Messaoudi, S., Panichella, A., Bianculli, D., Briand, L., Sasnauskas, R.: A search-
based approach for accurate identification of log message formats. pp. 167–177
(2018)

14. Ma, H., Hellerstein, J.L.: Mining partially periodic event patterns with unknown
periods. In: International Conference on Data Engineering (2000)

15. Zheng, Q., Xu, K., Lv, W., Ma, S.: Intelligent search of correlated alarms from
database containing noise data. In: Network Operations and Management Sympo-
sium (2001)

16. Stearley, J.: Towards informatic analysis of syslogs. In: IEEE International Con-
ference on Cluster Computing (2004)

17. Vaarandi, R.: A data clustering algorithm for mining patterns from event logs. In:
IP Operations and Management (2003)

18. Liang, T., Tao, L., Perng, C.S.: LogSig: generating system events from raw textual
logs. In: ACM International Conference on Information and Knowledge Manage-
ment (2011)

19. Mizutani, M.: Incremental mining of system log format. In: IEEE International
Conference on Services Computing (2013)

20. Hamooni, H., Debnath, B., Xu, J., Hui, Z., Mueen, A.: Logmine: Fast pattern
recognition for log analytics. In: ACM International on Conference on Information
and Knowledge Management (2016)

21. Nagappan, M., Vouk, M.A.: Abstracting log lines to log event types for mining
software system logs. In: Mining Software Repositories (2010)

22. Vaarandi, R., Pihelgas, M.: LogCluster - a data clustering and pattern mining
algorithm for event logs. In: International Conference on Network and Service
Management (2016)

23. Jiang, Z.M., Hassan, A.E., Flora, P., Hamann, G.: Abstracting execution logs to
execution events for enterprise applications (short paper). pp. 181–186, August
2008

24. Makanju, A., Zincir-Heywood, A.N., Milios, E.E.: A lightweight algorithm for mes-
sage type extraction in system application logs. IEEE Transact. Knowl. Data Eng.
24(11), 1921–1936 (2012)

25. He, P., Zhu, J., Zheng, Z., Lyu, M.R.: Drain: an online log parsing approach with
fixed depth tree. In: IEEE International Conference on Web Services (2017)

26. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transact. Evol. Comput. 6(2), 182–197 (2002)

27. Makanju, A., Zincir-Heywood, A.N., Milios, E.E.: Clustering event logs using iter-
ative partitioning. In: ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (2009)

28. Liang, T., Tao, L.: LogTree: a framework for generating system events from raw
textual logs. In: IEEE International Conference on Data Mining (2011)

29. Zhu, J., He, S., Liu, J., He, P., Lyu, M.R.: Tools and benchmarks for automated
log parsing (2018)

30. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval
(2010)

Distribution Forest: An Anomaly Detection
Method Based on Isolation Forest

Chengfei Yao1, Xiaoqing Ma1, Biao Chen1, Xiaosong Zhao2,
and Gang Bai1(&)

1 College of Computer Science, Nankai University, Tianjin, China
2120160400@mail.nankai.edu.cn, baigang@nankai.edu.cn

2 Tianjin Public Security Profession College, Tianjin, China

Abstract. Anomaly detection refers to finding patterns in the data that do not
meet expectations. Anomaly detection has a variety of application domains and
scenarios, such as network intrusion detection, fraud detection and fault detec-
tion. This paper proposes a new anomaly detection method Distribution Forest
(dForest) inspired by Isolation Forest (iForest). dForest builds an ensemble of
special binary trees called distribution tree (dTree). The basic idea of our method
is to guide the building of dTree by the distribution of data at each node. And
each node of dTree is treated as a subspace of input space. When dForest is
built, the anomalies have a shorter path length than the normal instances.
dForest has a different explanation from other methods. Compared with

iForest, LOF and iNNE, the proposed method achieves competitive results in
terms of AUC on different benchmark datasets. Also, dForest performs well in
both semi-supervised and unsupervised anomaly detection modes.

Keywords: Anomaly detection � Mahalanobis distance � Isolation forest

1 Introduction

Anomaly detection is an important branch of data mining tasks and has received
extensive attention. Anomaly detection refers to the problem of finding patterns in data
that do not meet expectations [1]. These unexpected patterns refers to outliers, noisy,
observations, events, items and so on. Anomaly detection plays an important role in
many application domains and scenarios, such as network intrusion detection, fraud
detection and fault detection.

The history of research on anomaly detection dates back to the 19th century, and
there exists a variety of techniques in this field. There are several types of anomaly
detection methods included clustering-based methods [2], density-based methods [3],
distance-based methods [4] and other method [7, 8]. The majority of these methods
have high time complexity and memory costs. Among them, isolation forest (iForest) is
an isolation-based anomaly detection method proposed by Liu and Ting in [5, 6].
iForest isolates anomalies through axis-parallel divisions rather than profiles normal
instances. The main advantage of iForest is that it has a linear time complexity with low
memory requirements. The limitation of iForest is that it is not sensitive to local

© Springer Nature Switzerland AG 2019
P.-C. Yew et al. (Eds.): APPT 2019, LNCS 11719, pp. 135–147, 2019.
https://doi.org/10.1007/978-3-030-29611-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29611-7_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29611-7_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29611-7_11&domain=pdf
https://doi.org/10.1007/978-3-030-29611-7_11

anomalies for the global scores [15]. This paper proposes a new method to solve the
above problems in the framework of iForest.

Similar to iForest, dForest builds an ensemble of dTrees. In the process of building a
dTree, several attributes are randomly selected at each node to form a subspace of the
feature space. Then the division of each node is performed on the subspace. In the
division of each node, we introduce covariance estimation and use Mahalanobis distance
to determine a hyperellipsoid. The points inside the hyperellipsoid are divided into the
left child, and the points outside the hyperellipsoid are divided into the right child. Each
internal node is divided according to the distribution of local area, so that the possible
normal instances and anomalous instances are divided into different branches as much as
possible. Therefore, the anomalies is easier to be divided into leaf nodes than normal
instances. Compared with other method, dForest have the following advantages:

(1) dForest makes full use of multi-dimensional information. At each node, several
attributes are randomly selected. A large number of attribute combinations are
used to form different subspaces. The data are mapped into those different low-
dimensional subspaces.

(2) dForest works well in both semi-supervised and unsupervised mode. In the case of
unsupervised anomaly detection, the normal instances and the anomalous
instances are distinguished according to the Mahalanobis distance between the
instance and the local distribution on different subspaces. In the case of semi-
supervised anomaly detection, the boundary of the local distribution of each
subspace is considered as the location where the anomaly may appear.

(3) dForest has an intuitive and clear explanation. At each node, the data are projected
onto the subspace determined by randomly selected attributes. The nodes are
divided according to the distribution of data on the subspace. In different sub-
spaces, normal instances and anomalies are constantly distinguished according to
the distribution.

The rest of this paper is organized as follows. Section 2 summarizes the related
work briefly. Section 3 introduces the process and details of the proposed method.
Section 4 mainly provides the results of comparison with other methods and other
related experiments. Finally, Sect. 5 briefly gives conclusion.

2 Related Work

According to whether the labels is available, the anomaly detection techniques can be
classified into the following three types.

Supervised Anomaly Detection. The kinds of techniques trains a model for normal vs.
anomaly classes using the data that have been labeled. But the supervised anomaly
detection techniques faced two major challenges. First, the normal instances and
anomalous instances are unbalanced. Second, obtaining accurate labels is very difficult,
especially for anomalous instances.

Semi-supervised Anomaly Detection. The related techniques assume that only normal
instances have been label in training data. Generally, semi-supervised anomaly
detection techniques train a model for normal data and treat data that does not conform
to the model as anomalies.

136 C. Yao et al.

Unsupervised Anomaly Detection. The techniques in this category do not require data
to be labeled and are widely used. But it usually assumes that the number of normal
instances is much larger than the number of anomalous instances.

The proposed method in this paper is mainly performed in the second and third
cases: training with normal instances only or training with unlabeled data. According to
the principle, the anomaly detection techniques can be divided into the following types.

Clustering-Based Anomaly Detection Techniques. The clustering-based anomaly
detection techniques are based on the following recognitions: Normal instances belong
to a certain cluster, and anomalies do not belong to any cluster. Or the normal instances
belong to a relatively large cluster, while the anomalies belong to a relatively small
cluster. The advantage of those techniques is that they can work in unsupervised mode.
The limitation is that the performance mainly depend on the clustering algorithms.

Density-Based Anomaly Detection Techniques. The techniques in this category assume
that an instance with low density is more likely to be an anomaly, and one with dense
density is declared to be a normal instance. A well-known method density-based is local
outlier factor (LOF). The key advantage of density-based anomaly detection techniques
is that they are unsupervised techniques and doesn’t need any assumptions about the
distribution of the data. The disadvantage is that most of those techniques need to find
neighbors and calculate distances, so the time complexity is relatively high.

Isolation-Based Anomaly Detection Techniques. The basic idea of isolation-based
anomaly detection techniques is that anomalies are easier to be isolated than normal
instances. The techniques isolates anomalies rather than profiles normal instances.

The first isolation-based method is iForest. iForest build an ensemble of isolation
trees (iTree). An iTree is a special binary tree built from a subsample. Each internal
node in the iTree is divided according to randomly selected thresholds on randomly
selected attribute.

For a test instance x, the path length hðxÞ in each iTree is collected at first and the
average path length EðhðxÞÞ is calculated. Since the number of the instances in leaf
node may be greater than 1, the path length hðxÞ needs to add the height of the subtree
built using the data in leaf node. For the data of size n, the expected average path length
c(n) can be expressed as follows.

c nð Þ ¼ 2H n� 1ð Þ � 2 n�1ð Þ
n

ð1Þ

H ið Þ ¼ ln ið Þþ 0:5772156649 ð2Þ

Then the anomaly score s of x is calculated as the Eq. (3). The closer the score s is
to 1, the more likely x is to be an anomaly. The closer the score s is to 0, the more likely
x is to be a normal instance.

s x; nð Þ ¼ 2�
E h xð Þð Þ
c nð Þ ð3Þ

iForest has a linear time complexity with low memory requirements, and can achieve
high precision in many problems. Inspired by iForest, this paper proposes a new
anomaly detection method, called Distribution Forest (dForest).

Distribution Forest: An Anomaly Detection Method Based on iForest 137

3 Our Method

From a different perspective, this paper proposes a new method for anomaly detection.
Each node of the tree is treated as a subspace of the feature space. The data are divided
in the subspace, the data at the center of the distribution are assigned to the left child,
and the data at the edge of the distribution are divided into the right child. Each internal
node of the binary tree contains part of the data, so it can be regarded as the distribution
of local areas. Through the continuous splitting of the nodes, the normal instances and
the anomalous instances are continuously distinguished in different subspaces. Less
data are divided into right child so that the anomalies reach the leaf nodes faster. Thus
the anomalies have a shorter average path length than the normal instances.

3.1 Training Stage

For a given dataset X � Rd , X0 is a subsample of size w from the dataset X. Then X0 is
used to build a dTree.

Let T be an internal node of a dTree. Let Tl be the left child of the node T, and let Tr

be the right child of the Node T. All instances in the node T constitute a distribution S.
Then the splitting of the node is described as follows. Firstly, k attributes are

randomly selected to form a k-dimensional subspace when the node is split. Then the
Mahalanobis distance between each instance x and the distribution S are calculated
according Eq. (4), where parameters l and R are the mean and covariance matrix of the
distribution, respectively.

DM x; Sð Þ ¼
ffi
x� lð ÞTR�1 x� lð Þ

q
ð4Þ

The Mahalanobis distance was proposed by Mahalanobis in [9]. The Mahalanobis
distance takes into account the correlation of the data and can be used to calculate the
distance between a sample and a distribution. Also, the Mahalanobis distance is scale-
invariant. And it is widely used in cluster analysis and classification techniques [10].
The Mahalanobis distance can be used for anomaly detection [11]. A instance may be
anomaly if it has a large Mahalanobis distance from the distribution. In this paper, the
Mahalanobis distance is used to distinguish between the possible anomalies and the
normal instances in the subspace.

If the Mahalanobis distance between an instance xi i ¼ 1; 2; . . . ; nð Þ and distribution
S is less than p, it is divided into left child. Otherwise it is divided into right child. In
other words, in the feature space, the place where the Mahalanobis distance is equal to p
constitutes a hyperellipsoid. The data inside the hyperellipsoid are divided into the left
child, and the data outside the hyperellipsoid are divided into the right child. In some
cases, such as too few instances or coplanar instances, the covariance matrix may be
singular. In this case, the Mahalanobis distance is replaced by the Euclidean distance.

Tl : xi : DM xi; Sð Þ� p; i ¼ 1; 2; . . . ; nf g ð5Þ

Tr : xi : DM xi; Sð Þ[p; i ¼ 1; 2; . . . ; nf g ð6Þ

138 C. Yao et al.

To determine the threshold p, a parameter v is introduced. The meaning of the
parameter v is the ratio of the data divided into the left child in all data. The sample
divided into the left child is floor v� nð Þ samples with a smaller Mahalanobis distance.

When the value of k is 1, only one attribute is randomly selected at each node. At
this time, it is equivalent to determining an interval on an attribute, the instances within
the interval are divided into left child, and the instances outside the interval are divided
into right child. The details of building a dTree are described in Algorithms 1 and 2.

The node of dTree recursively splits according to the above process until one of the
following stop conditions is satisfied:

(1) Only two instances remain in the node. At this point, the two instances have the
same Mahalanobis distance, so it is not necessary to divide the node again.

(2) The data in the node are the same on the selected attributes.
(3) The height of the dTree reaches the limit height. Like iTree, each dTree does not

need to grow completely. The main reason is that most of the anomalies can reach
the leaf nodes after being divided by several subspaces. Thus, the height of the
tree can be limited to save training and test time.

dForest build an ensemble of dTree. Through the above introduction, it can be
known that the construction of dForest needs to determine three parameters, namely the
number of trees t, the subsampling size w, and the ratio v.

Number of trees t controls the ensemble size. For iForest, the path length generally
converges at t ¼ 100. And because dForest’s node division is more purposeful, it
generally converges faster than iForest. As shown in Fig. 1, the average path length
tends to stabilize as the number of trees increases.

Parameter subsampling size w controls the number of training samples to build a
dTree. In general, choosing a small value for this parameter can achieve same results as
a large value in most datasets. The reasonable range of w is 32 to 256 through
experimental evaluation.

Fig. 1. The convergence curve of average path length. The blue line represents the convergence
curve of a normal instance. The red line represents the convergence curve of an anomaly. In
subgraph (a), the value of parameter v is 0.7. In subgraph (b), the value of parameter v is 0.9. The
average path lengths converge when the number of trees is approximately 50. (Color figure online)

Distribution Forest: An Anomaly Detection Method Based on iForest 139

Algorithm 1: dForest(X,t, ,)
Inputs: X – input data, t – number of trees, – subsampling size, - ratio of the data divided
into the left child
Output: a set of dTrees
1. Initialize Forest
2. for it = 1to t
3. X'←sample(X,)
4. Forest←Forest dTree(X',v)
5. end for
6. return forest

Algorithm 2:
Inputs: X' - input data, v - ratio of the data divided into the left child
Output: a dTree
1. if X Meet the stop condition then
2. return exNode{Size←|X'|}
3. else
4. let Q be a list of attributes in X'
5. randomly select the dimension k of the subspace
6. randomly select k attributes
7. calculate the covariance matrix Σ and mean μ of X' on the attribute q
8. if rank(Σ) == k:
9.
10. calculate the Mahalanobis distance D between each instance and X'
11. else
12.
13. calculate the Euclidean distance D between each instance and X'
14. end if
15. sort D in ascending order
16. let the split point be the value of D at
17. filter(X',)
18. filter(X',)
19. inNode{
20.
21. SplitAtt←q,
22. SplitValue← ,
23. covMatrix←Σ,
24. mean←μ,
25. distType←flag}
26. end if

Ratio v is used to control the proportion of left child data after division. The data of
the left child are the instances inside the hyperellipsoid, and the right child contain the
instances outside the hyperellipsoid. The value of the parameter v should be greater
than 0.5, so as to ensure that the average path length of the normal points and the
anomalies is discriminative. When training with normal instances and anomalies, a
smaller v should be set. Because the distribution estimate may not be accurate, smaller
v is more robust to anomalies. Through experiments, it is found that a suitable range is

140 C. Yao et al.

[0.7,1). When training with only normal samples, the edge of the distribution are
treated as the locations where anomalies may appear. Since the distribution estimation
is relatively accurate at this time, a large value of v works better. Figure 1 shows the
position where the average path length converges with different parameter v.

3.2 Test Stage

The proposed method uses the same way of calculating the path length and score as
iForest. Consistent with iForest, anomalies will be easier to reach leaf nodes than
normal instances in dForest. After combining the results of different trees, the average
path length of the anomalies is usually smaller than the normal instances.

Algorithm 3 describes how to calculate the path length of a test instance on a dTree.
Since the conditions for early stop are set during the training process, the size of data in
many leaf nodes is greater than 1. In order to make the result comparable, the path
length are adjusted. The strategy is to add c(T.size) to the path length e. The calculation
method of c(T.size) is as shown in Eq. (1).

After the average path length is obtained, the score of the test instance can be
calculated according to the Eq. (3). The score ranges from 0 to 1. The closer the score
is to 1, the more likely the instance is to be an anomaly. The closer the score is to 0, the
more likely the instance is to be normal.

Algorithm 3: PathLength(x,T,hlim,e)
Inputs: x - an instance, T - a dTree, hlim - height limit, e - current path length; to be initialized
to zero when first called
Output: path length of x
1. if
2. return e + c(T.size)
3. end if
4.
5. if
6.
7. else
8.
9. end if
10.
11. return PathLength(x,T.left,hlim,e+1)
12. else
13. return PathLength(x,T.right,hlim,e+1)
14. end if

4 Experiment

In order to verify the performance of the proposed method, dForest and other state-of-
the-art methods are compared on different datasets. First of all, our method is based on
iForest, so iForest is selected as a comparison method. Secondly, isolation using
nearest-neighbor ensembles (iNNE) is another isolation-based anomaly detection

Distribution Forest: An Anomaly Detection Method Based on iForest 141

method [15]. And iNNE has shown excellent performance on many datasets. Finally,
Local Outlier Factor is a well-known anomaly detection method. And LOF performs
well in detecting local anomalies, and it is widely used as a comparison method for
anomaly detection. In addition, dForest has been performed on two modes according to
whether the selected attribute is greater than 1 at each node.

Different datasets are chosen to compare the performance of these methods. Among
them, the biggest dataset of network intrusion data is used in the literature [14]. The
datasets Shuttle and Breastw are collected from the source [12], and the remaining
datasets are the anomaly detection benchmark datasets provided by the literature [13].
Detailed information of these datasets can be found in Table 1.

Since the normal instances and anomalies are not balanced, AUC is selected as an
evaluation indicator. On each dataset, each method was performed 10 times randomly.
The average of results is taken as the final result. In addition, experiments are con-
ducted in both semi-supervised and unsupervised modes.

4.1 Semi-supervised Mode

When the training data contain only normal instances, the dataset is divided as follows.
60% of the normal instances are used for training, and the remaining 40% normal
instances and all anomalies are used for testing. The result is shown in Table 2.

The values of key parameters for each method are shown in Table 3. For dForest,
the number of trees t is 100 and the subsampling size w is 128 on all datasets. The ratio
v is searched. For iForest, the number of tree t is 100 on all dataset, and the sub-
sampling size w on different dataset is shown in Table 3. For iNNE, the ensemble size
is 100, and the subsampling size is searched in the candidate set {2,4,8,16,32,64,128}.
For LOF, the parameter neighbor number k is optimized. Among the 20 candidate
values of the parameter k, the parameter corresponding to the best result is selected as
the final value.

Table 1. Basic information of datasets

Dataset Number of instances Number of attributes Anomalies rate

Http 567497 3 0.39%
Shuttle 49097 9 7%
Pageblocks 5393 10 9.46%
Spambase 4207 57 39.91%
Cardiotocography 2114 21 22%
Pima 768 8 34.90%
Breastw 683 9 34.99%
Ionosphere 351 32 35.90%
Stamps 340 9 9.12%

142 C. Yao et al.

As can be seen from the results in Table 2, dForest performed best in 6 datasets in a
total of 9 datasets. In contrast to iForest, dForest performs better on 5 datasets and has
the same result as iForest on 4 datasets. This proves the effectiveness of dForest in
anomaly detection. In addition, the same parameters t and w are used on 9 datasets,
which also proves that it is easier to set parameters for dForest.

4.2 Unsupervised Mode

In the case of unsupervised anomaly detection, the training data contain normal
instances and anomalies, and it is assumed that their labels are not provided. Similarly,
60% of each dataset is used for training. The remaining 40% is used for test. The result
is shown in Table 4. And the settings for the key parameters are shown in Table 5. The
results show that dForest also works well in unsupervised mode.

Table 2. AUC performance of different methods (semi-supervised mode)

AUC
dForest random k dForest k = 1 iForest iNNE LOF

Http 1.00 1.00 1.00 1.00 1.00
Shuttle 1.00 1.00 1.00 0.99 1.00
Pageblocks 0.94 0.93 0.91 0.90 0.94
Spambase 0.83 0.85 0.82 0.72 0.73
Cardiotocography 0.84 0.83 0.84 0.84 0.84
Pima 0.75 0.75 0.74 0.77 0.72
Breastw 0.99 0.99 0.99 0.99 0.99
Ionosphere 0.97 0.95 0.92 0.95 0.95
Stamps 0.94 0.94 0.93 0.96 0.94

Table 3. Parameters for different methods (semi-supervised mode)

dForest random k dForest k = 1 iForest iNNE LOF
v v w w K

Http 0.99 0.99 512 2 500
Shuttle 0.99 0.99 256 2 5
Pageblocks 0.99 0.99 128 8 30
Spambase 0.99 0.99 128 64 500
Cardiotocography 0.7 0.8 128 2 150
Pima 0.8 0.9 128 4 200
Breastw 0.99 0.99 128 2 200
Ionosphere 0.99 0.99 128 4 20
Stamps 0.99 0.99 128 8 40

Distribution Forest: An Anomaly Detection Method Based on iForest 143

A comparison of the results of Tables 2 and 4 can lead to such a conclusion.
Generally, training with normal instances achieves the same or better results than
training with both normal and anomalous instances. The reason for this result is that the
estimation of the distribution will be more accurate without anomalies. In the semi-
supervised mode, it is only necessary to regard the position far from the local distri-
bution as the position where the anomalies may lie. Therefore, a larger v is selected. In
unsupervised mode, normal instances and anomalous instances are distinguished in
each subspace. Moreover, the anomalous instances interfere with the estimation of the
distribution, and a smaller v can make the division more robust.

In terms of time complexity, when the value of k is 1, dForest and iForest have the
same time complexity. The time complexity of the training stage is O tWlogwð Þ, and the
time complexity of the test stage is O ntlogwð Þ. At this point, iForest and dForest are
faster than other methods. When the value of k is greater than 1, the time complexity
increases, but the time consuming is still within a reasonable range.

Table 4. AUC performance of different methods (supervised mode)

AUC
dForest random k dForest k = 1 iForest iNNE LOF

Http 1.00 1.00 1.00 1.00 0.42
Shuttle 1.00 1.00 1.00 0.62 0.55
Pageblocks 0.92 0.90 0.89 0.90 0.91
Spambase 0.61 0.64 0.65 0.59 0.70
Cardiotocography 0.79 0.81 0.76 0.80 0.81
Pima 0.70 0.72 0.70 0.71 0.68
Breastw 0.98 0.98 0.98 0.98 0.96
Ionosphere 0.91 0.87 0.85 0.89 0.91
Stamps 0.94 0.96 0.92 0.97 0.94

Table 5. Parameters for different methods (supervised mode)

dForest random k dForest k = 1 iForest iNNE LOF
v v w w K

Http 0.99 0.99 128 2 5
Shuttle 0.9 0.9 128 2 50
Pageblocks 0.9 0.9 128 16 100
Spambase 0.9 0.9 128 2 500
Cardiotocography 0.7 0.7 128 2 500
Pima 0.8 0.9 128 4 200
Breastw 0.7 0.9 128 2 200
Ionosphere 0.8 0.99 128 8 20
Stamps 0.8 0.8 128 4 150

144 C. Yao et al.

4.3 The Influence of the Ensemble Size and Subsampling Size

In the above experiment, the same value are set for the parameters ensemble size and
subsampling size in dForest. Below we explore the impact of these two parameters. In
iForest and iNNE, these parameters also need to be set, so they are used as a com-
parison. On the Pageblocks dataset, these methods are compared. The ensemble size
varies from 10 to 200, and the subsampling size ranges from 4 to 2048. The result is
shown in Fig. 2. As can be seen from the results, when the ensemble size reaches a
certain level, dForest tends to be stable. And dForest is also robust to the choice of the
sampling size. A small subsampling size can achieve better results than a large value.
When the subsampling size is too large, the difference between the dTrees is small, and
the performance may be degraded. The reasonable range is [32, 256].

Fig. 2. The influence of the ensemble size and subsampling size. Subgraph (a) shows the effect
of the ensemble size, and subgraph (b) shows the effect of the subsampling size on performance.

Distribution Forest: An Anomaly Detection Method Based on iForest 145

5 Conclusion

In this paper, we propose a new anomaly detection method, namely dForest. The main
contributions of the proposed method are as follows. (1) dForest makes full use of the
multi-dimensional information. dForest treats each node of the dTree as a subspace.
Different combinations of randomly selected attributes form different subspaces.
(2) dForest uses local distribution to distinguish between anomalous and normal
instances. In dForest, the node is divided according to the distribution of local area. The
instances inside the hyperellipsoid determined by the Mahalanobis distance are divided
into left child, and the rest instances are divided into right child. (3) dForest has an
intuitive and clear explanation. The data are continuously projected onto different
subspaces, and the normal and abnormal instances are continuously distinguished in the
subspace.

Experimental evaluation illustrates dForest performs well in both semi-supervised
and unsupervised mode. Compared to LOF, iForest and iNNE, dForest achieves
competitive AUC on different datasets. When the number of selected attributes is 1,
dForest has a linear time complexity and low memory cost while achieving relatively
high detection precision. Therefore, dForest can be applied to the large-scale data.

Acknowledgement. This work is partially supported by the Natural Science Foundation of
Tianjin (No.18ZXZNGX00200), the National Key Research and Development Program of China
(2016YFC0400709), the Science and Technology Commission of Tianjin Binhai New Area
(BHXQKJXM-PT-ZJSHJ-2017005), the Natural Science Foundation of Tianjin (18YFYZC
G00060) and Nankai University (91922299).

References

1. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv.
41(3), 1–58 (2009)

2. He, Z., Xu, X., Deng, S.: Discovering cluster-based local outliers. Pattern Recogn. Lett. 24
(9–10), 1641–1650 (2003)

3. Breunig, M.M., Kriegel, H.P., Ng, R.T.: LOF: identifying density-based local outliers. In:
ACM SIGMOD International Conference on Management of Data. ACM (2000)

4. Knorr, E.M., Ng, R.T., Tucakov, V.: Distance-based outliers: algorithms and applications.
VLDB J. 8(3–4), 237–253 (2000)

5. Liu, F.T., Kai, M.T., Zhou, Z.H.: Isolation forest. In: Eighth IEEE International Conference
on Data Mining (2009)

6. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation-based anomaly detection. ACM Trans. Knowl.
Discov. Data 6(1), 1–39 (2012)

7. Scholkopf, B.: Estimating the support of a high-dimensional distribution. Neural Comput. 13
(7), 1443–1471 (2014)

8. Williams, G., Baxter, R., He, H., Hawkins, S., Gu, L.: A comparative study of RNN for
outlier detection in data mining. In: Proceedings of 2002 IEEE International Conference on
Data Mining, ICDM 2003. IEEE (2002)

9. Mahalanobis, P.C.: On the generalised distance in statistics. Proc. Natl. Inst. Sci. India 12,
49–55 (1936)

146 C. Yao et al.

10. Maesschalck, R.D., Jouan-Rimbaud, D., Massart, D.L.: The Mahalanobis distance.
Chemometr. Intell. Lab. Syst. 50(1), 1–18 (2000)

11. Patil, N., Das, D., Pecht, M.: Anomaly detection for IGBTs using Mahalanobis distance.
Microelectron. Reliab. 55(7), 1054–1059 (2015)

12. Dua, D., Karra Taniskidou, E.: UCI Machine Learning Repository. School of Information
and Computer Science, University of California, Irvine, CA (2017). http://archive.ics.uci.
edu/ml

13. Yamanishi, K., Takeuchi, J.I., Williams, G., Milne, P.: On-line unsupervised outlier
detection using finite mixtures with discounting learning algorithms. Data Min. Knowl.
Discov. 8(3), 275–300 (2004)

14. Swersky, L., Marques, H.O., Sander, J., Campello, R.J.G.B., Zimek, A.: On the evaluation
of outlier detection and one-class classification methods. In: IEEE International Conference
on Data Science & Advanced Analytics. IEEE (2016)

15. Bandaragoda, T.R., Ting, K.M., Albrecht, D., Liu, F.T., Zhu, Y., Wells, J.R.: Isolation-based
anomaly detection using nearest-neighbor ensembles. Comput. Intell. 34, 968–998 (2018)

Distribution Forest: An Anomaly Detection Method Based on iForest 147

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Author Index

Bai, Gang 135

Chen, Biao 135
Chen, Xiaobing 15, 27, 55

Du, Weijian 27, 55

Gao, Yingqi 96
Gong, Lei 3
Gu, Jianan 109
Guo, Song 96

Jin, Luyang 55

Kang, Hong 96

Li, Siyang 43
Li, Tao 96
Liang, Yun 71
Liu, Shaoli 15, 55
Lou, Wenqi 3
Lu, Ye 123
Lu, Youyou 43

Ma, Xiaoqing 135

Ning, Zhong 86

Pei, Songwen 86
Peng, Shaohui 55

Shen, Tianma 86
Shu, Jiwu 43
Song, Jin 15, 55

Wang, Chao 3
Wang, Kai 96
Wang, Longhua 43
Wang, Lulu 86
Wang, Zhi 123
Weng, Chuliang 109
Wu, Linyang 27

Xie, Jiaming 71
Xie, Kunpeng 96, 123
Xie, Xueshuo 123

Yang, Fan 43
Yao, Chengfei 135

Zhang, Lin 123
Zhang, Yujun 123
Zhao, Xiaosong 135
Zheng, Beilei 109
Zhi, Tian 15, 27, 55
Zhou, Xuehai 3
Zhuang, Yimin 15, 27, 55

	Preface
	Organization
	Contents
	System Support for Neural Networks
	RV-CNN: Flexible and Efficient Instruction Set for CNNs Based on RISC-V Processors
	1 Introduction
	2 Motivations and Preferences
	2.1 Motivations
	2.2 Design Preferences

	3 Details of Custom Instructions
	3.1 Custom Instructions
	3.2 Code Examples

	4 Implementation Details
	4.1 Overall Architecture
	4.2 Matrix Unit's Architecture
	4.3 Optimization

	5 Experiment and Results
	5.1 Experiment Method
	5.2 Results

	6 Conclusion
	References

	Compiling Optimization for Neural Network Accelerators
	Abstract
	1 Introduction
	2 Compiling Optimization
	2.1 Definition of Computational Graph
	2.2 Intra Layer Loop Unrolling and Pipelining
	2.3 Layer Fusion
	2.4 Layer Elimination

	3 Experiment Evaluation
	4 Related Work
	5 Conclusion and Future Work
	Acknowledgement
	References

	ZhuQue: A Neural Network Programming Model Based on Labeled Data Layout
	Abstract
	1 Introduction
	2 Related Work
	3 Data Label
	3.1 Static Label
	3.2 Dynamic Label

	4 LDL-NDK
	4.1 Creating Time
	4.2 Compiling Time
	4.3 Runtime

	5 ZhuQue Programming Model
	6 Experiment
	7 Conclusion
	Acknowledgement
	References

	Scheduling and File Systems
	Reducing Rename Overhead in Full-Path-Indexed File System
	1 Introduction
	2 Motivation
	3 Design and Implementation
	3.1 Overview
	3.2 Pre-scan Prefix Deletion
	3.3 Key Replacement
	3.4 Floating-Split Bulk Insertion
	3.5 Generalization

	4 Evaluation
	4.1 Remove
	4.2 Copy
	4.3 Rename

	5 Conclusion
	6 Future Work
	References

	Partition and Scheduling Algorithms for Neural Network Accelerators
	1 Introduction
	2 Related Work
	2.1 Neural Network Accelerators
	2.2 Task Scheduling Algorithms

	3 System Model and Problem Definition
	3.1 The Configurable Neural Network Accelerators Model
	3.2 Formulation of the Scheduling Problem
	3.3 The Partition Associated Scheduling Problem

	4 Partition and Scheduling Algorithms
	4.1 Transplanted Scheduling Algorithms
	4.2 The Iterative Partition Scheduling Algorithm (IPS)
	4.3 The Partition Scheduling Combination Algorithm (PSC)

	5 Experiments and Analysis
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Conclusions and Future Work
	References

	Optimization and Parallelization
	SPART: Optimizing CNNs by Utilizing Both Sparsity of Weights and Feature Maps
	1 Motivation
	2 Background
	2.1 CNN and Convolution Operation
	2.2 Sparsity in CNN

	3 Format Design
	3.1 Weight Compression
	3.2 CFM Overview
	3.3 CFM Analysis

	4 SPART Algorithm
	5 Implementation on GPUs
	5.1 Parallelism
	5.2 Memory Optimization
	5.3 Finetuning Model

	6 Experiment
	6.1 Finetuning Performance
	6.2 Overall Convolution Performance

	7 Related Work
	8 Conclusion
	References

	DA-BERT: Enhancing Part-of-Speech Tagging of Aspect Sentiment Analysis Using BERT
	Abstract
	1 Introduction
	2 Related Work
	2.1 Aspect Sentiment Classification
	2.2 Transformer

	3 BERT Model with Deep Attention
	3.1 Bidirectional Encoder Representations from Transformers
	3.2 Deep Attention-Based BERT (DA-BERT)

	4 Evaluation and Analysis
	4.1 Dataset
	4.2 Baseline Models
	4.3 Experimental Results Analysis

	5 Conclusions
	Acknowledgements
	References

	Random Inception Module and Its Parallel Implementation
	1 Introduction
	2 Methods
	2.1 Inception Module
	2.2 Random Inception Module
	2.3 Parallel Implementation

	3 Experiments
	3.1 Baseline Model
	3.2 Running Environments
	3.3 Results

	4 Conclusion
	References

	Security and Algorithms
	CBA-Detector: An Accurate Detector Against Cache-Based Attacks Using HPCs and Pintools
	1 Introduction
	2 Background
	2.1 Cache-Based Attacks
	2.2 Hardware Performance Counters (HPCs)
	2.3 Pintools

	3 Threat Model and Assumptions
	4 Design and Implementation
	4.1 Overview
	4.2 The Offline Phase
	4.3 The Online Phase
	4.4 Optimizations

	5 Evaluation
	5.1 Real-Time Detection
	5.2 Accuracy in Detector
	5.3 Performance
	5.4 Discussion

	6 Related Work
	7 Conclusion
	References

	An Efficient Log Parsing Algorithm Based on Heuristic Rules
	1 Introduction
	2 Related Work
	3 The CLF Algorithm
	3.1 Step 1: Clustering
	3.2 Step 2: Separating
	3.3 Step 3: Extracting Template

	4 Evaluation
	4.1 Experimental Settings
	4.2 Accuracy and F1_Measure
	4.3 Efficiency

	5 Conclusion
	References

	Distribution Forest: An Anomaly Detection Method Based on Isolation Forest
	Abstract
	1 Introduction
	2 Related Work
	3 Our Method
	3.1 Training Stage
	3.2 Test Stage

	4 Experiment
	4.1 Semi-supervised Mode
	4.2 Unsupervised Mode
	4.3 The Influence of the Ensemble Size and Subsampling Size

	5 Conclusion
	Acknowledgement
	References

	Author Index

