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Abstract Our understanding of the notion of curvature in a noncommutative
setting has progressed substantially in the past 10 years. This new episode in
noncommutative geometry started when a Gauss-Bonnet theorem was proved by
Connes and Tretkoff for a curved noncommutative two torus. Ideas from spectral
geometry and heat kernel asymptotic expansions suggest a general way of defining
local curvature invariants for noncommutative Riemannian type spaces where the
metric structure is encoded by a Dirac type operator. To carry explicit computations
however one needs quite intriguing new ideas. We give an account of the most recent
developments on the notion of curvature in noncommutative geometry in this paper.

1 Introduction

Broadly speaking, the progress of noncommutative geometry in the last four decades
can be divided into three phases: topological, spectral, and arithmetical. One can
also notice the pervasive influence of quantum physics in all aspects of the subject.
Needless to say, each of these facets of the subject is still evolving, and there are
many deep connections among them.

In its topological phase, noncommutative geometry was largely informed by
index theory and a real need to extend index theorems beyond their classical realm
of smooth manifolds, to what we collectively call noncommutative spaces. Thus
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K-theory, K-homology, and KK-theory in general were brought in and with the
discovery of cyclic cohomology by Connes [10, 11], a suitable framework was
created by him to formulate noncommutative index theorems. With the appearance
of the groundbreaking and now classical paper of Connes [12], results of which
were already announced in Oberwolfach in 1981 [10], this phase of the theory
was essentially completed. In particular a noncommutative Chern-Weil theory
of characteristic classes was created with Chern character maps for both K-
theory and K-homology with values in cyclic (co)homology. To define all these
a notion of Fredholm module (bounded or unbounded, finitely summable or theta
summable) was introduced which essentially captures and brings in many aspects
of smooth manifolds into the noncommutative world. These results were applied
to noncommutative quotient spaces such as the space of leaves of a foliation, or
the unitary dual of noncompact and nonabelian Lie groups. Ideas and tools from
global analysis, differential topology, operator algebras, representation theory, and
quantum statistical mechanics were crucial. One of the main applications of this
resulting noncommutative index theory was to settle some long-standing conjectures
such as the Novikov conjecture and the Baum-Connes conjecture for specific and
large classes of groups.

Next came the study of the geometry of noncommutative spaces and the impact
of spectral geometry. Geometry, as we understand it here, historically has dealt
with the study of spaces of increasing complexity and metric measurements within
such spaces. Thus in classical differential geometry one learns how to measure
distances and volumes, as well as various types of curvature of Riemannian
manifolds of arbitrary dimension. One can say the two notions of Riemannian
metric and the Riemann curvature tensor are hallmarks of classical differential
geometry in general. This should be contrasted with topology where one studies
spaces only from a rather soft homotopy theoretic point of view. A similar division
is at work in noncommutative geometry. Thus, as we mentioned briefly above,
while in its earlier stage of development noncommutative geometry was mostly
concerned with the development of topological invariants like cyclic cohomology,
Connes-Chern character maps, and index theory, starting in about 10 years ago
noncommutative geometry entered a new truly geometric phase where one tries to
seriously understand what a curved noncommutative space is and how to define and
compute curvature invariants for such a noncommutative space.

This episode in noncommutative geometry started when a Gauss-Bonnet theorem
was proved by Connes and Cohen for a curved noncommutative torus in [22] (see
also the MPI preprint [8] where many ideas are already laid out). This paper was
immediately followed in [30] where the Gauss-Bonnet was proved for general
conformal structures. The metric structure of a noncommutative space is encoded in
a (twisted) spectral triple. Giving a state-of-the-art report on developments following
these works, and on the notion of curvature in noncommutative geometry, is the
purpose of our present review.

Classically, geometric invariants are usually defined explicitly and algebraically
in a local coordinate system, in terms of a metric tensor or a connection on the
given manifold. However, methods based on local coordinates, or algebraic methods
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This is not a quantum curved torus

based on commutative algebra, have no chance of being useful in a noncommutative
setting, in general. But other methods, more analytic and more subtle, based on ideas
of spectral geometry are available. In fact, thanks to spectral geometry, we know that
there are intricate relations between Riemannian invariants and spectra of naturally
defined elliptic operators like Laplace or Dirac operators on the given manifold. A
prototypical example is the celebrated Weyl’s law on the asymptotic distribution of
eigenvalues of the Laplacian of a closed Riemannian manifold Mn in terms of its
volume:

N(λ) ∼ ωnVol(M)

(2π)n
λ
n
2 λ→∞. (1)

Here N(λ) is the number of eigenvalues of the Laplacian in the interval [0, λ] and
ωn is the volume of the unit ball in R

n. In the spirit of Marc Kac’s article [39],
one says one can hear the volume of a manifold. But one can ask what else about
a Riemannian manifold can be heard? Or even we can ask: what can we learn
by listening to a noncommutative manifold? Results so far indicate that one can
effectively define and compute, not only the volume, but in fact the scalar and Ricci
curvatures of noncommutative curved spaces, at least in many examples.

In his Gibbs lecture of 1948, Ramifications, old and new, of the eigenvalue
problem, Hermann Weyl had this to say about possible extensions of his asymptotic
law (1): I feel that these informations about the proper oscillations of a membrane,
valuable as they are, are still very incomplete. I have certain conjectures on what
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a complete analysis of their asymptotic behavior should aim at; but since for more
than 35 years I have made no serious attempt to prove them, I think I had better
keep them to myself.

One of the most elaborate results in spectral geometry is Gilkey’s theorem that
gives the first four non-zero terms in the asymptotic expansion of the heat kernel
of Laplace type operators in terms of covariant derivatives of the metric tensor and
the Riemann curvature tensor [36]. More precisely, if P is a Laplace type operator,
then the heat operator e−tP is a smoothing operator with a smooth kernel k(t, x, y),
and there is an asymptotic expansion near t = 0 for the heat kernel restricted to the
diagonal ofM ×M:

k(t, x, x) ∼ 1

(4πt)m/2
(a0(x, P )+ a2(x, P )t + a4(x, P )t

2 + · · · ),

where ai(x, P ) are known as the Gilkey-Seeley-DeWitt coefficients. The first term
a0(x, P ) is a constant. It was first calculated by Minakshisundaram and Pleijel
[51] for P = � the Laplace operator. Using Karamata’s Tauberian theorem, one
immediately obtains Weyl’s law for closed Riemannian manifolds. Note that Weyl’s
original proof was for bounded domains with a regular boundary in Euclidean space
and does not extend to manifolds in general. The next term a2(x, P ), for P = �,
was calculated by MacKean and Singer [50] and it was shown that it gives the scalar
curvature:

a2(x,�) = 1

6
S(x).

This immediately shows that the scalar curvature has a spectral nature and in
particular the total scalar curvature is a spectral invariant. This result, or rather its
localized version to be recalled later, is at the heart of the noncommutative geometry
approach to the definition of scalar curvature. The expressions for a2k(x, P ) get
rapidly complicated as k grows, although in principle they can be recursively
computed in a normal coordinate chart. They are reproduced up to term a6 in the
next section.

It is this analytic point of view on geometric invariants that play an important
role in understanding the geometry of curved noncommutative spaces. The algebraic
approach almost completely breaks down in the noncommutative case. Our experi-
ence so far in the past few years has been that in the noncommutative case spectral
and hard analytic methods based on pseudodifferential operators yield results that
are in no way possible to guess or arrive at from their commutative counterparts by
algebraic methods. One just needs to take a look at our formulas for scalar, and now
Ricci curvature, in dimensions two, three, and four, in later sections to believe in this
statement. The fact that in the first step we had to rely on heavy symbolic computer
calculations to start the analysis shows the formidable nature of this material. Surely
computations, both symbolic and analytic, are quite hard and are done on a case-by-
case basis, but the surprising end results totally justify the effort.
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The spectral geometry of a curved noncommutative two torus has been the
subject of intensive studies in recent years. As we said earlier, this whole episode
started when a Gauss-Bonnet theorem was proved by Connes and Tretkoff (formerly
Cohen) in [22] (see also [8] for an earlier version), and for general conformal struc-
tures in [30]. A natural question then was to define and compute the scalar curvature
of a curved noncommutative torus. This was done, independently, by Connes-
Moscovici [21] and Fathizadeh-Khalkhali [31]. The next term in the expansion,
namely the term a4, which in the classical case contains explicit information about
the analogue of the Riemann tensor, is calculated and studied in [17]. A version
of the Riemann-Roch theorem is proven in [41] and the study of local spectral
invariants is extended to all finite projective modules on noncommutative two tori
in [47].

A key idea to define a curved noncommutative space in the above works is
to conformally perturb a flat spectral triple by introducing a noncommutative
Weyl factor. The complex geometry of the noncommutative two torus, on the
other hand, provides a Dirac operator which, in analogy with the classical case,
originates from the Dolbeault complex. By perturbing this spectral triple, one can
construct a (twisted) spectral triple that can be used to study the geometry of the
conformally perturbed flat metric on the noncommutative two torus. Then, using
the pseudodifferrential operator theory for C∗-dynamical systems developed by
Connes in [9], the computation is performed and explicit formulas are obtained.
The spectral geometry and the study of scalar curvature of noncommutative tori
have been pursued further in [23, 32, 28].

Finally, for the latest on interactions between noncommutative geometry, number
theory, and arithmetic algebraic geometry, the reader can start with the article by
Connes and Consani [16] in this volume and the references therein.

2 Curvature in noncommutative geometry

This section is of an introductory nature and is meant to set the stage for later sec-
tions and to motivate the evolution of the concept of curvature in noncommutative
geometry from its beginnings to its present form. Clearly we have no intention of
giving even a brief sketch of the history of the development of the curvature concept
in differential geometry. That would require a separate long article, if not a book.
We shall simply highlight some key concepts that have impacted the development
of the idea of curvature in noncommutative geometry.

2.1 A brief history of curvature

Curvature, as understood in classical differential geometry, is one of the most
important features of a geometric space. It is here that geometry and topology differ
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in the ways they probe a space. To talk about curvature we need more than just
topology or smooth structure on a space. The extra piece of structure is usually
encoded in a (pseudo-)Riemannian metric, or at least a connection on the tangent
bundle, or on a principal G-bundle. It is remarkable that Greek geometers missed
the curvature concept altogether, even for simple curves like a circle, which they
studied so intensely. The earliest quantitative understanding of curvature, at least
for circles, is due to Nicole Oresme in the fourteenth century. In his treatise, De
configurationibus, he correctly gives the inverse of radius as the curvature of a circle.
The concept had to wait for Descartes’ analytic geometry and the Newton-Leibniz
calculus before to be developed and fully understood. In fact the first definitions of
the (signed) curvature κ of a plane curve y = y(x) are due to Newton, Leibniz, and
Huygens in the seventeenth century:

κ = y′′

(1 + y′2)3/2 .

It is important to note that this is not an intrinsic concept. Intrinsically any one-
dimensional Riemannian manifold is locally isometric to R with its flat Euclidean
metric and hence its intrinsic curvature is zero.

Thus the first major case to be understood was the curvature of a surface
embedded in a three-dimensional Euclidean space with its induced metric. In his
magnificent paper of 1828 entitled disquisitiones generales circa superficies curvas,
Gauss first defines the curvature of a surface in an extrinsic way, using the Gauss
map and then he proves his theorema egregium: the curvature so defined is in fact
an intrisic concept and can solely be defined in terms of the first fundamental form.
That is the Gaussian curvature is an isometry invariant, or in Gauss’ own words:

Thus the formula of the preceding article leads itself to the remarkable Theorem. If a curved
surface is developed upon any other surface whatever, the measure of curvature in each point
remains unchanged.

Now the first fundamental form is just the induced Riemannian metric in more
modern language. As we shall see, in the hands of Riemann, Theorema Egregium
opened the way for the idea of intrinsic geometry of spaces in general. Surfaces, and
manifolds in general, have an intrinsic geometry defined solely by metric relations
within the space itself, independent of any ambient space.

If g = eh(dx2 + dy2) is a locally conformally flat metric, then its Gaussian
curvature is given by

K = −1

2
e−h�h,

where � is the flat Laplacian. We shall see later in this paper that the analogous
formula in the noncommutative case, first obtained in [21, 31], takes a much more
complicated form, with remarkable similarities and differences.

Another major result of Gauss’ surface theory was his local uniformization
theorem, which amounts to existence of isothermal coordinates: any analytic
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Riemannian metric in two dimensions is locally conformally flat. The result holds
for all smooth metrics in two dimensions, but Gauss’ proof only covers analytic
metrics. Since conformal classes of metrics on a two torus are parametrized by the
upper half plane modulo the action of the modular group, this justifies the initial
choice of metrics for noncommutative tori by Connes and Cohen in their Gauss-
Bonnet theorem in [22], and for general conformal structures in our paper [30]. By
all chances, in the noncommutative case one needs to go beyond the class of locally
conformally flat metrics. For recent results in this direction, see [35].

A third major achievement of Gauss in differential geometry is his local Gauss-
Bonnet theorem: for any geodesic triangle drawn on a surface with interior angles
α, β, γ, we have

α + β + γ − π =
∫
KdA,

where K denotes the Gauss curvature and dA is the surface area element. By using
a geodesic triangulation of the surface, one can then easily prove the global Gauss-
Bonnet theorem for a closed Riemannian surface:

1

2π

∫
M

KdA = χ(M),

where χ(M) is the Euler characteristic of the closed surface M . It is hard
to overemphasize the importance of this result which connects geometry with
topology. It is the first example of an index theorem and the theory of characteristic
classes.

To find a true analogue of the Gauss-Bonnet theorem in a noncommutative setting
was the motivation for Connes and Tretkoff in their groundbreaking work [22]. After
conformally perturbing the flat metric of a noncommutative torus, they noticed that
while the above classical formulation has no clear analogue in the noncommutative
case, its spectral formulation

ζ(0)+ 1 = 1

12π

∫
M

KdA = 1

6
χ(M),

makes perfect sense. Here

ζ(s) =
∑
λ−sj , Re(s) > 1, (2)

is the spectral zeta function of the scalar Laplacian �g = d∗d of (M, g). The
spectral zeta function has a meromorphic continuation to C with a unique (simple)
pole at s = 1. In particular ζ(0) is defined. Thus ζ(0) is a topological invariant,
and, in particular, it remains invariant under the conformal perturbation g→ ehg of
the metric. This result was then extended to all conformal classes in the upper half
plane in our paper [30].
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After the work of Gauss, a decisive giant step was taken by Riemann in his epoch-
making paper Ueber die Hypothesen, welche der Geometrie zu Grunde liegen,
which is a text of his Habilitationsvortrag of June 1854. The notion of space, as an
entity that exists on its own, without any reference to an ambient space or external
world, was first conceived by Riemann. Riemannian geometry is intrinsic from the
beginning. In Riemann’s conception, a space, which he called a mannigfaltigkeit,
manifold in English, can be discrete or continuous, finite or infinite dimensional.
The idea of a geometric space as an abstract set endowed with some extra structure
was born in this paper of Riemann. Local coordinates are just labels without any
intrinsic meaning, and thus one must always make sure that the definitions are
independent of the choice of coordinates. This is the general principle of relativity,
which later came to be regarded as a cornerstone of modern theories of spacetime
and Einstein’s theory of gravitation. This idea quickly led to the development of
tensor calculus, also known as the absolute differential calculus, by the Italian
school of Ricci and his brilliant student Levi-Civita.

Riemann also introduced the idea of a Riemannian metric and understood that
to define the bending or curvature of a space one just needs a Riemannian metric.
This was of course directly inspired by Gauss’ theorema egregium. In fact he gave
two definitions for curvature. His sectional curvature is defined as the Gaussian
curvature of two-dimensional submanifolds defined via the geodesic flow for each
two-dimensional subspace of the tangent space at each point. For his second
definition he introduced the geodesic coordinate systems and considered the Taylor
expansion of the metric components gij (x) in a geodesic coordinate. Let

cij,kl = 1

2

∂2gij

∂xk∂xl
.

He shows that sectional curvature is determined by the components cij,kl , and vice
versa. Also, one knows that the components cij,kl are closely related to Riemann
curvature tensor.

The Riemann curvature tensor, in modern notation, is defined as

R(X, Y ) = ∇X∇Y − ∇Y∇X − ∇[X,Y ],

where ∇ is the Levi-Civita connection of the metric, and X and Y are vector
fields on the manifold. The analogue of this curvature tensor of rank four is still
an illusive concept in the noncommutative case. However, the components of the
Riemann tensor appear in the term a4 in the small time heat kernel expansion of
the Laplacian of the metric, the analogue of which was calculated and studied in
[17] for noncommutative two tori and for noncommutative four tori with product
geometries.

It is hard to exaggerate the importance of the Ricci curvature in geometry and
physics. For example, it plays an indispensable role in Einstein’s theory of gravity
and Einstein field equations. In particular, it directly leads, thanks to Schwarzschild
solution, to the prediction of black holes. It is also fundamental for the Ricci
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flow. Ricci curvature can be formulated in spectral terms and this opened up the
possibility of defining it in noncommutative settings [34]. The reader should consult
later sections in this survey for more on this.

The first black hole image by
Event Horizon Telescope,
April 2019

Although they won’t be a subject for the present exposition, let us briefly mention
some other aspects of curvature that have found their analogues in noncommutative
settings. These are mostly linear aspects of curvature, and have much to do with
representation theory of groups. They include Chern-Weil theory of characteristic
classes and specially the Chern-Connes character maps for both K-theory and K-
homology, Chern-Simons theory, and Yang-Mills theory. Riemannian curvature,
whose noncommutative analogue we are concerned with here, is a nonlinear theory
and from our point of view that is why it took so long to find its proper formulation
and first calculations in a noncommutative setting.

2.2 Laplace type operators and Gilkey’s theorem

At the heart of spectral geometry, Gilkey’s theorem [36] gives the most precise
information on asymptotic expansion of heat kernels for a large class of elliptic
PDEs. Since this result and its noncommutative analogue play such an important
role in defining and computing curvature invariants in noncommutative geometry,
we shall explain it briefly in this section. Let M be a smooth closed manifold with
a Riemannian metric g and a vector bundle V onM . An operator P : (M,V )→
(M,V ) on smooth sections of V is called a Laplace type operator if in local
coordinates it looks like

P = −gij ∂i∂j + lower orders.

Examples of Laplace type operators include Laplacian on forms

� = (d + d∗)2 : �p(M)→ �p(M),
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and the Dirac Laplacians � = D∗D, where D : (S) → (S) is a generalized
Dirac operator.

Now if P is a Laplace type operator, then there exist a unique connection ∇ on
the vector bundle V and an endomorphism E ∈ End(V ) such that

P = ∇∗∇ − E.
Here ∇∗∇ is the connection Laplacian which is locally given by −gij∇i∇j . For
example, the Lichnerowicz formula for the Dirac operator, D2 = ∇∗∇ − 1

4R, gives

E = 1

4
R,

where R is the scalar curvature. Now e−tP is a smoothing operator with a smooth
kernel k(t, x, y). There is an asymptotic expansion near t = 0

k(t, x, x) ∼ 1

(4πt)m/2
(a0(x, P )+ a2(x, P )t + a4(x, P )t

2 + · · · ),

where a2k(x, P ) are known as the Gilkey-Seeley-De Witt coefficients. Gilkey’s
theorem asserts that a2k(x, P ) can be expressed in terms of universal polynomials
in the metric g and its covariant derivatives. Gilkey has computed the first four non-
zero terms and they are as follows:

a0(x, P ) = tr(1),

a2(x, P ) = tr
(
E − 1

6
R

)
,

a4(x, P ) = 1

360
tr
((− 12R;kk + 5R2 − 2RjkRjk + 2RijklRijkl

)

−60RE + 180E2 + 60E;kk + 30�ij�ij
)
.

a6(x, P ) = tr
{ 1

7!
(
− 18R;kkll + 17R;kR;k − 2Rjk;lRjk;l − 4Rjk;lRjl;k

+ 9Rijku;lRijku;l + 28RR;ll − 8RjkRjk;ll + 24RjkRjl;kl

+ 12RijklRijkl;uu
)

+ 1

9 · 7!
(
− 35R3 + 42RRlpRlp − 42RRklpqRklpq + 208RjkRjlRkl

− 192RjkRulRjukl + 48RjkRjulpRkulp − 44RijkuRijlpRkulp

− 80RijkuRilkpRjlup
)
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+ 1

360

(
8�ij ;k�ij ;k + 2�ij ;j�ik;k + 12�ij�ij ;kk − 12�ij�jk�ki

− 6Rijkl�ij�kl + 4Rjk�jl�kl − 5R�kl�kl
)

+ 1

360

(
6E;iijj + 60EE;ii + 30E;iE;i + 60E3 + 30E�ij�ij

− 10RE;kk − 4RjkE;jk − 12R;kE;k − 30RE2 − 12R;kkE

+ 5R2E − 2RjkRjkE + 2RijklRijklE
)}
.

Here Rijkl is the Riemann curvature tensor, R is the scalar curvature, � is the
curvature matrix of two forms, and ; denotes the covariant derivative operator.

As we shall later see in this survey, the first two terms in the above list allow us to
define the scalar and Ricci curvatures in terms of heat kernel coefficients and extend
them to noncommutative settings.

Alternatively, one can use spectral zeta functions to extract information from the
spectrum. Heat trace and spectral zeta functions are related via Mellin transform. For
a concrete example, let � denote the Laplacian on functions on an m-dimensional
closed Riemannian manifold. Define

ζ�(s) =
∑
λ−si Re(s) >

m

2
.

The spectral invariants ai in the heat trace asymptotic expansion

Trace(e−t�) ∼ (4πt)−m2
∞∑
j=0

aj t
j (t → 0+)

are related to residues of spectral zeta function by

Ress=αζ�(s) = (4π)−m2
am

2 −α
(α)

, α = m
2
− j > 0.

To get to the local invariants like scalar curvature we can consider localized zeta
functions. Let ζf (s) := Tr (f�−s), f ∈ C∞(M). Then we have

Res ζf (s)|s=m2 −1 = (4π)−m/2

(m/2 − 1)

∫
M

f (x)R(x)dvolx, m ≥ 3,

ζf (s)|s=0 = 1

4π

∫
M

f (x)R(x)dvolx − Tr(f P ), m = 2,

where P is projection onto zero eigenmodes of �. Thus the scalar curvature R
appears as the density function for the localized spectral zeta function.
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2.3 Noncommutative Chern-Weil theory

Although it is not our intention to review this subject in the present survey, we
shall nevertheless explain some ideas of noncommutative Chern-Weil theory here.
Many aspects of Chern-Weil theory of characteristic classes for vector bundles and
principal bundles over smooth manifolds can be cast in an algebraic formalism
and as such is even used in commutative algebra and algebraic geometry [5].
Thus one can formulate notions like de Rham cohomology, connection, curvature,
Chern classes, and Chern character, over a commutative algebra and then for a
scheme. This is a commutative theory which is more or less straightforward in the
characteristic zero case. But there seemed to be no obvious extension of de Rham
theory and the rest of Chern-Weil theory to the noncommutative case.

In [9] Connes realized that many aspects of Chern-Weil theory can be imple-
mented in a noncommutative setting. The crucial ingredient was the discovery
of cyclic cohomology that replaces de Rham homology of currents in a non-
commutative setting [11, 12]. Let A be a not necessarily commutative algebra
over the field of complex numbers. By a noncommutative differential calculus on
A we mean a triple (�, d, ρ) such that (�, d) is a differential graded algebra
and ρ : A → �0 is an algebra homomorphism. Given a right A-module E , a
connection on E is a C-linear map ∇ : E −→ E ⊗A �1 satisfying the Leibniz rule
∇(ξa) = ∇(ξ)a+ξ⊗da, for all ξ ∈ E and a ∈ A. Let ∇̂ : E⊗A�• → E⊗A�•+1

be the (necessarily unique) extension of ∇ which satisfies the graded Leibniz rule
∇̂(ξω) = ∇̂(ξ)ω + (−1)deg ξ ξdω with respect to the right �-module structure on
E⊗A�. The curvature of ∇ is the operator of degree 2, ∇̂2 : E⊗A�• → E⊗A�•,
which can be easily checked to be �-linear.

Now to obtain Connes’ Chern character pairing between K-theory and cyclic
cohomology, K0(A)⊗ HC2n(A)→ C, one can proceed as follows. Given a finite
projectiveA-module E , one can always equip E with a connection over the universal
differential calculus �A. An element of HC2n(A) can be represented by a closed
graded trace τ on �2nA. The value of the pairing is then simply τ(∇̂2n). Here we
used the same symbol τ to denote the extension of τ to the ring End�•(E ⊗A �•).
One checks that this definition is independent of all choices that we made [12].
Connes in fact initially developed the more sophisticated Chern-Connes pairing in
K-homology with explicit formulas that do not have a commutative counterpart. For
all this and more, the reader should check Connes’ book and his above cited article
[12, 14] as well as the book [40].

2.4 From spectral geometry to spectral triples

The very notion of Riemannian manifold itself is now subsumed and vastly
generalized through Connes’ notion of spectral triples, which is a centerpiece



Curvature in noncommutative geometry 333

of noncommutative geometry and applications of noncommutative geometry to
particle physics.

Let us first motivate the definition of a spectral triple. During the course of their
heat equation proof of the index theorem, it was discovered by Atiyah-Bott-Patodi
[2] that it is enough to prove the theorem for Dirac operators twisted by vector
bundles. The reason is that these twisted Dirac operators in fact generate the whole
K-homology group of a spin manifold and thus it suffices to prove the theorem
only for these first order elliptic operators. This indicates the preeminence of Dirac
operators in topology. As we shall see below, Dirac operators also encode metric
information of a Riemannian manifold in a succinct way. Broadly speaking, spectral
triples, suitably enhanced, are noncommutative spin manifolds and form a backbone
of noncommutative geometry, specially its metric aspects. One precise formulation
of this idea is Connes’ reconstruction theorem [15] which states that a commutative
spectral triple satisfying some natural conditions is in fact the standard spectral triple
of a spinc manifold described below.

Recall that the Dirac operator D on a compact Riemannian spinc manifold acts
as an unbounded selfadjoint operator on the Hilbert space L2(M, S) of L2-spinors
onM . If we let C∞(M) act on L2(M, S) by multiplication operators, then one can
check that for any smooth function f , the commutator [D, f ] = Df − fD extends
to a bounded operator onL2(M, S). The metric d onM , that is the geodesic distance
ofM , can be recovered, thanks to the distance formula of Connes [14]:

d(p, q) = Sup{|f (p)− f (q)|; ‖ [D, f ] ‖≤ 1}.

The triple (C∞(M),L2(M, S),D/) is a commutative example of a spectral triple.
The general definition of a spectral triple, in the odd case, is as follows.

Definition 2.1 Let A be a unital algebra. An odd spectral triple on A is a triple
(A,H,D) consisting of a Hilbert space H, a selfadjoint unbounded operator D :
Dom(D) ⊂ H → H with compact resolvent, i.e., (D−λ)−1 ∈ K(H), for all λ /∈ R,

and a representation π : A→ L(H) of A such that for all a ∈ A, the commutator
[D,π(a)] is defined on Dom(D) and extends to a bounded operator on H.

A spectral triple is called finitely summable if for some n ≥ 1

|D|−n ∈ L1,∞(H).

Here L1,∞(H) is the Dixmier ideal. It is an ideal of compact operators which is
slightly bigger than the ideal of trace class operators and is the natural domain of
the Dixmier trace. Spectral triples provide a refinement of Fredholm modules. Going
from Fredholm modules to spectral triples is similar to going from the conformal
class of a Riemannian metric to the metric itself. Spectral triples simultaneously
provide a notion of Dirac operator in noncommutative geometry, as well as a
Riemannian type distance function for noncommutative spaces. In later sections we
shall define and work with concrete examples of spectral triples and their conformal
perturbations.
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3 Pseudodifferential calculus and heat expansion

In this section we discuss the classical pseudodifferential calculus on the Euclidean
space and will then provide practical details of the pseudodifferential calculus of [9]
that we use for heat kernel calculations on noncommutative tori.

3.1 Classical pseudodifferential calculus

In the Euclidean case we follow the notations and conventions of [36] as follows.
For any multi-index α = (α1, . . . , αm) of non-negative integers and coordinates
x = (x1, . . . , xm) ∈ R

m we set:

|α| = α1 + · · · + αm, α! = α1! · · ·αm!, xα = xα1
1 · · · xαmm ,

∂αx =
(
∂

∂x1

)α1

· · ·
(
∂

∂xm

)αm
, Dαx = (−i)|α|∂αx .

Also we normalize the Lebesgue measure on R
m by a multiplicative factor of

(2π)−m/2 and still denote it by dx. Therefore we have:
∫
Rm

exp

(
−1

2
|x|2
)
dx = 1.

The main idea behind pseudodifferential calculus is that it uses the Fourier
transform to turn a differential operator into multiplication by a function, namely the
symbol of the differential operator. The Fourier transform f̂ of a Schwartz function
f on R

m is defined by the following integration:

f̂ (ξ) =
∫
Rm

e−ix·ξ f (x) dx, ξ ∈ R
m.

This integral is convergent because, by definition, the set of Schwartz functions
S(Rm) consists of all complex-valued smooth functions f on the Euclidean space
such that for any multi-indices α and β of non-negative integers

sup
x∈Rm

|xαDβf (x)| <∞.

It turns out that the Fourier transform preserves the L2-norm, hence it extends to a
unitary operator on L2(Rm).

The differential operator Dαx turns in the Fourier mode to multiplication by the
monomial ξα , in the sense that:

(̂Dαx f )(ξ) = ξαf̂ (ξ).
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The monomial ξα is therefore called the symbol of the differential operator Dαx .
Then, the Fourier inversion formula,

f (x) =
∫
Rm

eiξ ·xf̂ (ξ) dξ, f ∈ S(Rm),

implies that

Dαx f (x) =
∫
Rm

eix·ξ ξαf̂ (ξ) dξ =
∫
Rm

∫
Rm

ei(x−y)·ξ ξαf (y) dy dξ. (3)

It is now clear from the above facts that the symbol of any differential operator,
given by a finite sum of the form

∑
aα(x)D

α
x , is the polynomial in ξ of the

form
∑
aα(x)ξ

α, whose coefficients are the functions aα(x) (which we assume
to be smooth). Using the notation σ(·) for the symbol it is an easy exercise to see
that given two differential operators P1 and P2, the symbol of their composition
σ (P1 ◦ P2) is given by the following expression:

∑
α∈Zm≥0

1

α!∂
α
ξ σ (P1)D

α
x σ (P2), (4)

which is a finite sum because only finitely many of the summands are non-zero.
By considering a wider family of symbols, one obtains a larger family of

operators which are called pseudodifferential operators. A smooth function p :
R
m × R

m → C is a pseudodifferential symbol of order d ∈ R if it satisfies the
following conditions:

• p(x, ξ) has compact support in x,
• for any multi-indices α, β ∈ Z

m
≥0, there exists a constant Cα,β such that

|∂βξ ∂αx p(x, ξ)| ≤ Cα,β(1 + |ξ |)d−|β|. (5)

Clearly the space of pseudodifferential symbols possesses a filtration because,
denoting the space of symbols of order d by Sd , we have:

d1 ≤ d2 �⇒ Sd1 ⊂ Sd2 .

Existence of symbols of arbitrary orders can be assured by observing that for any
d ∈ R and any compactly supported function f0, the function p(x, ξ) = f0(x)(1 +
|ξ |2)d/2 belongs to Sd .

Given a symbol p ∈ Sd , inspired by formula (3), the corresponding pseudodif-
ferential operator P is defined by

Pf (x) =
∫
Rm

eix·ξp(x, ξ)f̂ (ξ) dξ, f ∈ S(Rm). (6)
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The space of pseudodifferential operators associated with symbols of order d
is denoted by �d(Rm). Searching for an analog of formula (4) for general
pseudodifferential operators leads to a complicated analysis which, at the end, gives
an asymptotic expansion for the symbol of the composition of such operators. The
formula is written as

σ (P1P2) ∼
∑
α∈Zm≥0

1

α!∂
α
ξ σ (P1)D

α
x σ (P2). (7)

It is important to put in order some explanations about this formula. If σ(P1) ∈
Sd1 and σ(P2) ∈ Sd2 , then there is a symbol in Sd1+d2 that gives P1 ◦ P2
via formula (6). However σ(P1 ◦ P2) has a complicated formula which involves
integrals, which can be seen by writing the formulas directly. The trick is then to
use Taylor series and to perform analytic manipulations on the closed formula for
σ(P1 ◦ P2) to derive the expansion (7). The error terms in the Taylor series that one
uses in the manipulations are responsible for having an asymptotic expansion rather
than a strict identity. The precise meaning of this expansion is that given any d ∈ R,
there exists a positive integer N such that

σ (P1P2)−
∑
|α|≤N

1

α!∂
α
ξ σ (P1)D

α
x σ (P2) ∈ Sd.

Therefore, as one subtracts the terms 1
α!∂

α
ξ σ (P1)D

α
x σ (P2) from σ(P1 ◦ P2), the

orders of the resulting symbols tend to −∞. Regarding this, it is convenient to
introduce the space S−∞ = ∩d∈RSd of the infinitely smoothing pseudodifferential
symbols. For example, for any compactly supported function f0, the symbol
p(x, ξ) = f0(x)e

−|ξ |2 belongs to S−∞.
The composition rule (7) is a very useful tool. For instance, it can be used to find a

parametrix for elliptic pseudodifferential operators. Important geometric operators
such as Laplacians are elliptic, and by finding a parametrix, as we shall explain,
one finds an approximation of the fundamental solution of the partial differential
equation defined by such an important operator. Intuitively, a pseudodifferential
symbol p(x, ξ) of order d ∈ R is elliptic if it is non-zero when ξ is away from
the origin (or invertible in the case of matrix-valued symbols), and |p(x, ξ)−1| is
bounded by a constant times (1+ |ξ |)−d as ξ →∞. For our purposes, it suffices to
know that a differential operator D =∑ aα(x)Dαx of order d = maxα |α| is elliptic
if its leading symbol,

σL(D) =
∑
|α|=d

aα(x)ξ
α,

is non-zero (or invertible) for ξ �= 0. Given such an elliptic differential operator one
can use formula (7) to find an inverse for D, called a parametrix, in the quotient
�/�−∞ of the algebra of pseudodifferential operators � by infinitely smoothing



Curvature in noncommutative geometry 337

operators �−∞. This process can be described as follows. One makes the natural
assumption that the symbol of the parametrix has an expansion starting with a
leading term of order −d and other terms whose orders descend to −∞, namely
terms of orders −d − 1, −d − 2, . . . , and one continues as follows. The formula
given by (7) can be used to find these terms recursively and thereby find a parametrix
R such that

DR − I ∼ RD − I ∼ 0.

We will illustrate this carefully in Section 3.2 in a slightly more complicated
situation, where a parameter λ and a parametric pseudodifferential calculus are
involved in deriving heat kernel expansions. We just mention that invertibility of
σL(D) is the crucial point that allows one to start the recursive process, and to
continue on to find the parametrix R.

3.2 Small-time heat kernel expansion

For simplicity and practical purposes we assume that P is a positive elliptic
differential operator of order 2 with

σ(P ) = p2(x, ξ)+ p1(x, ξ)+ p0(x, ξ),

where each pj is (homogeneous) of order j in ξ . We know that p2(x, ξ) is non-
zero (or invertible) for non-zero ξ . The first step in deriving a small time asymptotic
expansion for Tr(exp(−tP )) as t → 0+ is to use the Cauchy integral formula to
write

e−tP = 1

2πi

∫
γ

e−tλ(P − λ)−1 dλ, (8)

where the contour γ goes clockwise around the non-negative real axis, where
the eigenvalues of P are located. The term (P − λ)−1 in the above integral can
now be approximated by pseudodifferential operators as follows. We look for an
approximation Rλ of (P − λ)−1 such that

σ(Rλ) ∼ r0(x, ξ, λ)+ r1(x, ξ, λ)+ r2(x, ξ, λ)+ · · · ,

where each rj is a symbol of order −2 − j in the parametric sense which we will
elaborate on later. For now one can use formula (7) to find the rj recursively out of
the equation

Rλ(P − λ) ∼ I.
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This means that the terms rj in the expansion should satisfy

∑
j

rj ◦ ((p2 − λ)+ p1 + p0) ∼ 1, (9)

where the composition ◦ is given by (7). By writing the expansion one can see that
there is only one leading term, which is of order 0, namely r0(p2 − λ) and needs
to be set equal to 1 so that it matches the corresponding (and the only term) on the
right-hand side of the Equation (9). Therefore the leading term r0 is found to be

r0 = (p2 − λ)−1. (10)

Here the ellipticity plays an important role, because we need to be ensured that the
inverse of p2 − λ exists. Since, in our examples, P will be a Laplace type operator,
the leading term p2 is a positive number (or a positive invertible matrix in the vector
bundle case) for any ξ �= 0. Therefore for any λ on the contour γ , we know that p2−
λ is invertible. One can then proceed by considering the term that is homogeneous of
order −1 in the expansion of the left-hand side of (9) and set it equal to 0 since there
is no term of order −1 on the right-hand side. This will yield a formula for the next
term r1. By continuing this process one finds recursively that for n = 1, 2, 3, . . . ,
we have

rn = −

⎛
⎜⎜⎝

∑
|α|+j+2−k=n,
0≤j<n, 0≤k≤2

1

α!∂
α
ξ rj D

α
x pk

⎞
⎟⎟⎠ r0. (11)

It turns out that the rn calculated by this formula have the following homogeneity
property:

rn(x, tξ, t
2λ) = t−2−nrn(t, ξ, λ).

Having an approximation of the resolvent Rλ ∼ (P − λ)−1 via the symbols rn,
one can use the formulas (8) and (6) to approximate the kernel Kt of the operator
e−tP , namely the unique smooth function such that

e−tP f (x) =
∫
Kt(x, y) f (y) dy, f ∈ S(Rm).

Since Tr(e−tP ) can be calculated by integrating the kernel on the diagonal,

Tr
(
e−tP

)
=
∫
Kt(x, x) dx,

the integration of the approximation of the kernel obtained by going through the
procedure described above leads to an asymptotic expansion of the following form:
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Tr
(
e−tP

)
∼t→0+ t

−m/2
∞∑
n=0

a2n(P ) t
n, (12)

where each coefficient a2n is the integral of a density a2n(x, P ) given by

a2n(x, P ) = 1

2πi

∫ ∫
γ

e−λtr(r2n(x, ξ, λ)) dλ dξ.

In this integrand, the tr denotes the matrix trace which needs to be considered in the
case of vector bundles.

It is a known fact that when P is a geometric operator such as the Laplacian of a
metric, each a2n(x, P ) can be written in terms of the Riemann curvature tensor, its
contractions, and covariant derivatives, see, for example, [18]. However, in practice,
as n grows, these terms become so complicated rapidly. One can refer to [36] for
the formulas for the terms up a6 derived using invariant theory.

3.3 Pseudodifferential calculus and heat kernel expansion for
noncommutative tori

Now that we have illustrated the derivation of the heat kernel expansion (12),
we explain briefly in this subsection that using the pseudodifferential calculus
developed in [9] for C∗-dynamical systems, heat kernel expansions of Laplacians
on noncommutative tori can be derived by taking a parallel approach. We note that,
in [48], for toric manifolds, the Widom pseudodifferential calculus is adapted to
their noncommutative deformations and it is used for the derivation of heat kernel
expansions.

We first recall the pseudodifferential calculus on the algebra of noncommutative
m-torus. A pseudodifferential symbol of order d ∈ Z on T

m
� is a smooth mapping ρ :

R
m → C∞(Tm�) such that for any multi-indices α and β of non-negative integers,

there exists a constant Cα,β such that

||∂βξ δαρ(ξ)|| ≤ Cα,β(1 + |ξ |)d−|β|.

Here || · || denotes the C∗-algebra norm, which is the equivalent of the supremum
norm in the commutative setting. Therefore this definition is the noncommutative
analog of the definition given by (5) in the classical case. A symbol of order d is
elliptic if ρ(ξ) is invertible for large enough ξ and there exists a constant Cρ > 0
such that

||ρ(ξ)−1|| ≤ Cρ(1 + |ξ |)−d .
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Given a pseudodifferential symbol on T
m
� the corresponding pseudodifferential

operator Pρ : C∞(Tm�)→ C∞(Tm�) is defined in [9] by the oscillatory integral

Pρ(a) =
∫∫

e−is·ξ ρ(ξ) αs(a) ds dξ, a ∈ C∞(Tm�), (13)

where αs is the dynamics given by

αs(U
α) = eis·αUα.

For example, the symbol of a differential operator of the form
∑

|α|≤d aαδα , aα ∈
C∞(Tm�) is

∑
|α|≤d aαξα .

Given a positive elliptic operator P of order 2 acting on C∞(Tm�), such as the
Laplacian of a metric, in order to derive an asymptotic expansion for Tr(e−tP ) one
can start by writing the Cauchy integral formula as we did in formula (8). However
now one has to use the pseudodifferential calculus given by (13) to write P − λ in
terms of its symbol and thereby approximate its inverse. In this calculus, if ρ1 and
ρ2 are, respectively, symbols of orders d1 and d2, then the composition Pρ1Pρ2 has
a symbol of order d1 + d2 with the following asymptotic expansion:

σ
(
Pρ1Pρ2

) ∼ ρ1 ◦ ρ2 :=
∑
α∈Zm≥0

1

α!∂
α
ξ ρ1 δ

αρ2. (14)

Having these tools available, one can then perform calculations as in the process
illustrated in Section 3.2 to derive an asymptotic expansion for Tr(e−tP ). That is,
one writes σ(P ) = p2 + p1 + p0, where each pj is homogeneous of order j ,
and finds recursively the terms rj , j = 0, 1, 2, . . . , that are homogeneous of order
−2 − j and

∑
j

rj ◦ ((p2 − λ)+ p1 + p0) ∼ 1.

This means that we are using the composition rule (14) to approximate the inverse
of P − λ. The result of this process is a recursive formula similar to the one given
by (10) and (11). That is, one finds that

r0 = (p2 − λ)−1. (15)

and for n = 1, 2, 3, . . . ,

rn = −

⎛
⎜⎜⎝

∑
|α|+j+2−k=n,
0≤j<n, 0≤k≤2

1

α!∂
α
ξ rj δ

αpk

⎞
⎟⎟⎠ r0. (16)
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Then one finds the small asymptotic expansion

Tr(e−tP ) ∼t→0+ t
−m/2

∞∑
n=0

ϕ0(a2n)t
n,

where ϕ0 is the canonical trace

ϕ0

⎛
⎝∑
α∈Zm

aαU
α

⎞
⎠ = a0

providing us with integration on the noncommutative torus T
m
�. The terms a2n ∈

C∞(Tm�) can be calculated using (15) and (16) as follows:

a2n = 1

2πi

∫
Rm

∫
γ

e−λr2n(ξ, λ) dλ dξ. (17)

We shall see in Section 4 that in order to perform this type of integrals in the
noncommutative setting one encounters noncommutative features which will lead
to the appearance of a functional calculus with a modular automorphism in the
outcome of the integrals.

4 Gauss-Bonnet theorem and curvature for noncommutative
2-tori

The Gauss-Bonnet theorem for smooth oriented surfaces is a fundamental result
that establishes a bridge between topology and differential geometry of surfaces.
Given a surface, its Euler characteristic is a topological invariant which can be
calculated by choosing an arbitrary triangulation on the surface and forming an
alternating summation on the number of its vertices, edges, and faces. It is quite
remarkable that the Euler characteristic is independent of the choice of triangulation
and depends only on the genus of the surface. Clearly, under a diffeomorphism,
or roughly speaking under changes on the surface that do not change the genus,
the Euler characteristic remains unchanged. However the scalar curvature of the
surface changes under such changes by diffeomorphisms, say when the surface is
embedded in the three-dimensional Euclidean space and has inherited the metric of
the ambient space. However, the striking fact, namely the statement of the Gauss-
Bonnet theorem, is that the change of curvature on the surface occurs in a way that
the increase and decrease of curvature over the surface compensate for each other to
the effect that the curvature integrates to the Euler characteristic, up to multiplication
by a universal constant that is independent of the surface. Hence, the total curvature,
namely the integral of the scalar curvature over the surface, is a topological invariant.
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4.1 Scalar curvature and Gauss-Bonnet theorem for T2
θ

In noncommutative geometry, the analog of the Gauss-Bonnet theorem has been
investigated for the noncommutative two torus. In this setting, the flat geometry
of T

2
θ was conformally perturbed by means of a conformal factor e−h, where h

is a selfadjoint element in C∞(T2
θ ). In the late 1980s, a heavy calculation was

performed by P. Tretkoff and A. Connes to find an expression for the analog of
the total curvature of the perturbed metric on T

2
θ . The expression had a heavy

dependence on the element h used for changing the metric, therefore it was not
clear whether the analog of the Gauss-Bonnet theorem holds for T

2
θ , and they

just recorded the result of their calculations in an MPI preprint [8]. However,
following calculations for the spectral action in the presence of a dilaton [7] and
developments in the theory of twisted spectral triples [20], there were indications
that the complicated expression for the total curvature has to be independent of
the element h. By further calculations, simplifications and using symmetries in the
result, it was shown in [22] that the terms in the complicated expression for the
total curvature indeed cancel each other out to 0, hence the analog of the Gauss-
Bonnet theorem for T

2
θ . The conformal class of metrics that was used in [22] is

associated with the simplest translation-invariant complex structure on T
2
θ , namely

the complex structure associated with i = √−1. The Gauss-Bonnet theorem for
T

2
θ for the complex structure associated with an arbitrary complex number τ in the

upper-half plane was established in [30].
After considering a general complex number τ in the upper half-plane to induce

a complex structure and thereby a conformal structure on T
2
θ , and by conformally

perturbing the flat metric in this class by a fixed conformal factor e−h, h = h∗ ∈
C∞(T2

θ ), the Laplacian of the curved metric is shown [22, 30] to be anti-unitarily
equivalent to the operator

�τ,h = eh/2�τ,0 eh/2,

where

�τ,0 = δ2
1 + 2τ1δ1δ2 + |τ |2δ2

2

is the Laplacian of the flat metric in the conformal class determined by τ = τ1+ iτ2
in the upper half-plane. The pseudodifferential symbol of �τ,h is the sum of the
following homogeneous components of order 2, 1, and 0, in which we use k = h/2
for simplicity:

p2(ξ) = ξ2
1 k

2 + |τ |2ξ2
2 k

2 + 2τ1ξ1ξ2k
2,

p1(ξ) = 2ξ1kδ1(k)+ 2|τ |2ξ2kδ2(k)+ 2τ1ξ1kδ2(k)+ 2τ1ξ2kδ1(k),

p0(ξ) = kδ2
1(k)+ |τ |2kδ2

2(k)+ 2τ1kδ1δ2(k).
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The analog of the scalar curvature is then the term a2(�τ,h) ∈ C∞(T2
θ ) appearing

in the small time (t → 0+) asymptotic expansion

Tr(ae−t�τ,h ) ∼ t−1
∞∑
n=0

ϕ0
(
a a2n(�τ,h)

)
tn, a ∈ C∞(T2

θ ). (18)

By going through the process illustrated in Section 3.3 one can calculate a2.
However, there is a purely noncommutative obstruction for the calculation of the
involved integrals in formula (17), namely one encounters integration of C∗-algebra
valued functions defined on the Euclidean space, R2 in this case. By passing to a
suitable variation of the polar coordinates, the angular integration can be performed
easily, and the main obstruction remains in the radial integration which can be
overcome by the following rearrangement lemma [22, 3, 21, 46]:

Lemma 4.1 For any tuple m = (m0,m1, . . . , m�) ∈ Z
�+1
>0 and elements

ρ1, . . . , ρ� ∈ C∞(T2
θ ), one has

∫ ∞

0

u|m|−2

(ehu+ 1)m0

�∏
1

ρj (e
hu+1)−mj du = e−(|m|−1)hFm(�(1), . . . , �(�))

( �∏
1

ρj

)
,

where

Fm(u1, . . . , u�) =
∫ ∞

0

x|m|−2

(x + 1)m0

�∏
1

(
x

j∏
1

uh + 1
)−mj

dx,

and � is the modular automorphism

�(a) = e−haeh, a ∈ C(T2
θ ).

After applying this lemma to the numerous integrands with the help of computer
programming, the result for the scalar curvature a2(�τ,h) was calculated in [21, 31]
(Figure 1):

Theorem 4.1 The scalar curvature a2(�τ,h) ∈ C∞(T2
θ ) of a general metric in the

conformal class associated with a complex number τ = τ1 + iτ2 in the upper half-
plane is given by

a2(�τ,h) = K(∇)
(
δ2

1

(
h

2

)
+ |τ |2δ2

2

(
h

2

)
+ 2τ1δ1δ2

(
h

2

))

+H(∇,∇)
(
δ1

(
h

2

)
δ1

(
h

2

)
+ |τ |2δ2

(
h

2

)
δ2

(
h

2

)

+ τ1δ1
(
h

2

)
δ2

(
h

2

)
+ τ1δ2

(
h

2

)
δ1

(
h

2

))
,
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Fig. 1 Graph of K given by (19)

where

K(x) = 2ex/2(2 + ex(−2 + x)+ x)
(−1 + ex)2x , (19)

and

H(s, t) = −
−t (s+t) cosh s+s(s+t) cosh t−(s−t)
(s+t+sinh s+sinh t−sinh(s+t))

st (s+t) sinh(s/2)
sinh(t/2) sinh2((s+t)/2)

. (20)

Here the flat metric is conformally perturbed by e−h, where h = h∗ ∈ C∞(T2
θ ),

and ∇ is the logarithm of the modular automorphism �(a) = e−haeh, hence the
derivation given by taking commutator with −h.

Using the symmetries of these functions describing the term a2(�τ,h) integrates
to 0, hence the analog of the Gauss-Bonnet theorem. This result was proved in [22,
30] in a kind of simpler manner as by exploiting the trace property of ϕ0 from the
beginning of the symbolic calculations, only a one variable function was necessary
to describe ϕ0(a2(�τ,h)). However, for the description of a2 one needs both one
and two variable functions, which are given by (19) and (20). So we can state the
Gauss-Bonnet theorem for T2

θ from [22, 30] as follows (Figure 2).

Theorem 4.2 For any choice of the complex number τ in the upper half-plane and
any conformal factor e−h, where h = h∗ ∈ C∞(T2

θ ), one has

ϕ0(a2(�τ,h)) = 0.

Hence the total curvature of T2
θ is independent of τ and h defining the metric.
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Fig. 2 Graph of H given
by (20)
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As we mentioned earlier, the validity of the Gauss-Bonnet theorem for T2
θ was

suggested by developments on the spectral action in the presence of a dilaton [6] and
also studies on twisted spectral triples [20]. In harmony with these developments,
in fact a non-computational proof of the Gauss-Bonnet theorem can be given, as
written in [21], in the spirit of conformal invariance of the value at the origin of the
spectral zeta function of conformally covariant operators [4]. The argument is based
on a variational technique: one can write a formula for the variation of the heat
coefficients as one varies the metric conformally with e−sh, where h is a dilaton,
and the real parameter s goes from 0 to 1. However, the non-computational proof
does not lead to an explicit formula for the curvature term a2(�τ,h). Hence the
remarkable achievements in [22, 30, 21, 31] after heavy computer aided calculations
include the explicit expression for the scalar curvature of T2

θ and the fact that the
analog of the Gauss-Bonnet theorem holds for it.

4.2 The Laplacian on (1, 0)-forms on T
2
θ

with curved metric

The analog of the Laplacian on (1, 0)-forms is also considered in [21, 31] and the
second term in its small time heat kernel expansion is calculated. The operator is
anti-unitarily equivalent to the operator �(1,0)τ,h = ∂̄eh∂ , where ∂ = δ1 + τ̄ δ2 and

∂̄ = δ1 + τδ2. The symbol of this Laplacian is equal to c2(ξ)+ c1(ξ) where

c2(ξ) = ξ2
1 k

2 + 2τ1ξ1ξ2k
2 + |τ |2ξ2

2 k
2,

c1(ξ) = (δ1(k2)+ τδ2(k2))ξ1 + (τ̄ δ1(k2)+ |τ |2δ2(k2))ξ2.

Therefore by using the same strategy of using computer aided symbol calculations
one can calculate the terms appearing in the following heat kernel expansion:
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Tr

(
ae

−t�(1,0)τ,h

)
∼ t−1

∞∑
n=0

ϕ0

(
a a2n(�(1,0)τ,h )

)
tn, a ∈ C∞(T2

θ ).

The result for the second term in this expansion is that [21, 31]

a2(�(1,0)τ,h ) = S(∇)
(
δ2

1

(
h

2

)
+ |τ |2δ2

2

(
h

2

)
+ 2τ1δ1δ2

(
h

2

))

+T (∇,∇)
(
δ1

(
h

2

)
δ1

(
h

2

)
+ |τ |2δ2

(
h

2

)
δ2

(
h

2

)

+ τ1δ1
(
h

2

)
δ2

(
h

2

)
+ τ1δ2

(
h

2

)
δ1

(
h

2

))

−iτ2W(∇,∇)
(
δ1

(
h

2

)
δ2

(
h

2

)
− δ2

(
h

2

)
δ1

(
h

2

))
,

where

S(x) = − 4ex(−x + sinh x)

(−1 + ex/2)2(1 + ex/2)2x ,

T (s, t) = − cosh((s + t)/2)×
−t (s+t) cosh s+s(s+t) cosh t−(s−t)
(s+t+sinh s+sinh t−sinh(s+t))
st (s+t) sinh(s/2) sinh(t/2)

sinh2((s+t)/2)
,

and

W(s, t) = −s − t + t cosh s + s cosh t + sinh s + sinh t − sinh(s + t)
st sinh(s/2) sinh(t/2) sinh((s + t)/2) .

Using a simple iso-spectrality argument for the operators �τ,h and �(1,0)τ,h one

can argue that ϕ0

(
a2(�(1,0)τ,h )

)
= 0, based on the Gauss-Bonnet theorem proved in

[22, 30]. However, one can also use properties of the functions S, T ,W to prove this
directly (Figure 3).

5 Noncommutative residues for noncommutative tori and
curvature of noncommutative 4-tori

In this section we discuss noncommutative residues and illustrate an application
of a noncommutative residue defined for noncommutative tori in calculating the
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Fig. 3 Graph ofW
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scalar curvature of the noncommutative 4-torus in a convenient way with certain
advantages.

5.1 Noncommutative residues

Noncommutative residues are trace functionals on algebras of pseudodifferential
operators, which were first discovered by Adler and Manin in dimension 1 [1, 49]. In
order to illustrate their construction in dimension 1 we consider the algebra C∞(S1)

of smooth functions on the circle S
1 = R/Z, and the differentiation (−i)d/dx,

whose pseudodifferential symbol is σ(ξ) = ξ . We then consider the algebra of
pseudodifferential symbols of the form

N∑
n=−∞

an(x)ξ
n, an(x) ∈ C∞(S1), N ∈ Z.

The product rule of this algebra can be deduced from the following relations:

ξa(x) = a(x)ξ + a′(x), an(x) ∈ C∞(S1),

which are dictated by the Leibniz property of differentiation. The Adler-Manin trace
is the linear functional defined by

N∑
n=−∞

an(x)ξ
n �→

∫
S1
a−1(x) dx,



348 F. Fathizadeh and M. Khalkhali

which is shown to be a trace functional on the algebra of pseudodifferential symbols
on the circle [1, 49]. A twisted version of this trace was worked out in [27],
motivated by the notion of twisted spectral triples [20].

Wodzicki generalized this functional, in a remarkable work, to higher dimensions
[55]. Consider a closed manifold M of dimension m and the algebra of classical
pseudodifferential operatorsM . A classical pseudodifferential symbol σ of order d
has an expansion with homogeneous terms, of the form

σ(x, ξ) ∼
∞∑
j=0

σd−j (x, ξ),

where σd−j (x, tξ) = td−j σd−j (x, ξ) for any t > 0. The composition rule of this
algebra is induced by the composition rule for the symbol of pseudodifferential
operators:

σP1P2(x, ξ) ∼
∑
α∈Zm≥0

(−i)|α|
α! ∂aξ σP1(x, ξ) ∂

α
x σP2(x, ξ),

which we mentioned and used in Section 3 as well. Wodzicki’s noncommutative
residue WRes is the linear functional defined on the algebra of classical pseudodif-
ferential symbols by

WRes

⎛
⎝ ∞∑
j=0

σd−j (x, ξ)

⎞
⎠ =

∫
S∗M

tr(σ−m(x, ξ)) dm−1ξ dmx, (21)

where S∗M is the cosphere bundle of the manifold with respect to a Riemannian
metric. We stress that in this formula m is the dimension of the manifold M .
It is proved that WRes is the unique trace functional on the algebra of classical
pseudodifferential symbols onM [55].

The noncommutative residue has a spectral formulation as well. That is, one can
fix a Laplacian � on M and define the noncommutative residue of a pseudodiffer-
ential operator Pσ to be the residue at s = 0 of the meromorphic extension of the
zeta function defined, for complex numbers s with large enough real parts, by

s �→ Tr(Pσ�−s).

This formulation is used in noncommutative geometry, when one works with the
algebra of pseudodifferential operators associated with a spectral triple [19].

For noncommutative tori, the analog of formula (21) can be written and it was
shown in [33] that it gives the unique continuous trace functional on the algebra
of classical pseudodifferential operators on the noncommutative 2-torus. Although
the argument written in [33] is for dimension 2, but it is general enough that
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works for any dimension, see, for example, [32] for the illustration in dimension
4. Given a classical pseudodifferential symbol ρ : Rm → C∞(Tm�) of order d on
the noncommutative m-torus, by definition, there is an asymptotic expansion for
ξ →∞ of the form

ρ(ξ) ∼
∞∑
j=0

ρd−j (ξ),

where each ρd−j is positively homogeneous of order d − j . One can define the
noncommutative residue Res of the corresponding pseudodifferential symbol as

Res(Pρ) =
∫
Sm−1

ϕ0 (ρ−m) d�, (22)

where ϕ0 is the canonical trace on C(Tm�) and d� is the volume form of the round
metric on the (m − 1)-dimensional sphere in Rm. The same argument as the one
given in [33] shows that Res is the unique continuous trace on the algebra of classical
pseudodifferential symbols on T

m
�.

5.2 Scalar curvature of the noncommutative 4-torus

The Laplacian associated with the flat geometry of the noncommutative four torus
T

4
� is simply given by the sum of the squares of the canonical derivatives, namely:

�0 = δ2
1 + δ2

2 + δ2
3 + δ2

4 .

After conformally perturbing the flat metric on T
4
� by means of a conformal factor

e−h, for a fixed h = h∗ ∈ C∞(T4
�), the perturbed Laplacian is shown in [32] to be

anti-unitarily equivalent to the operator

�h = eh∂̄1e
−h∂1e

h + eh∂1e
−h∂̄1e

h + eh∂̄2e
−h∂2e

h + eh∂2e
−h∂̄2e

h,

where

∂1 = δ1 − iδ3, ∂2 = δ2 − iδ4,

∂̄1 = δ1 + iδ3, ∂̄2 = δ2 + iδ4.

The latter are the analogues of the Dolbeault operators.
The scalar curvature of the metric on T

4
� encoded in�h is the term a2 ∈ C∞(T4

�)

appearing in the following small time asymptotic expansion:
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Tr(ae−t�h) ∼ t−2
∞∑
n=0

ϕ0(a a2n)t
n, a ∈ C∞(T4

�).

The curvature term a2 ∈ C∞(T4
�) was calculated in [32] by going through the

procedure explained in Section 3.3. As we explained earlier, there is a purely non-
commutative obstruction in this procedure that needs to be overcome by Lemma 4.1,
the so-called rearrangement lemma. That is, one encounters integration over the
Euclidean space of C∗-algebra valued functions. For this type of integrations,
one can pass to polar coordinates and take care of the angular integrations with
no problem. However, the redial integration brings forth the necessity of the
rearrangement lemma.

Striking is the fact that after applying the rearrangement lemma to hundreds of
terms, each of which involves a function from this lemma to appear in the calcula-
tions, the final formula for the curvature simplifies significantly with computer aid.
In [28], by using properties of the noncommutative residue (22), it was shown that
the curvature term a2 ∈ C∞(T4

�) can be calculated as the integral over the 3-sphere
of a homogeneous symbol. Therefore, with this method, the calculation of a2 does
not require radial integration, hence the calculation without using the rearrangement
lemma and clarification of the reason for the significant simplifications. In fact, in
[28], the term is shown to be a scalar multiple of

∫
S3 b2(ξ) d�, where b2 is the

homogeneous term of order −4 in the expansion of the symbol of the parametrix of
�h. The result, in agreement with the calculation of [32], is that

a2 = e−hK(∇)
( 4∑
i=1

δ2
i (h)

)
+ e−hH(∇,∇)

( 4∑
i=1

δi(h)
2
)
∈ C∞(T4

�), (23)

where ∇ = [−h, ·], and

K(x) = 1 − e−x
2x

,

H(s, t) = −e
−s−t ((−es − 3) s

(
et − 1

)+ (es − 1)
(
3et + 1

)
t
)

4st (s + t) . (24)

The simplicity of this calculation also revealed in [28] the following functional
relation between the functions K and H (Figure 4).

Theorem 5.1 Let K̃(s) = esK(s) and H̃ (s, t) = es+tH(s, t), where the function
K and H are given by (24). Then

H̃ (s, t) = 2
K̃(s + t)− K̃(s)

t
+ 3

2
K̃(s)K̃(t).

Another important result that we wish to recall from [32] is about the extrema of
the analog of the Einstein-Hilbert action for T4

�, namely ϕ0(a2):
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Fig. 4 Graph of H given
by (24)
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Theorem 5.2 For any conformal factor e−h, where h = h∗ ∈ C∞(T4
�),

ϕ0(a2) ≤ 0,

where a2 ∈ C∞(T4
�) is the scalar curvature given by (23). Moreover, we have

ϕ0(a2) = 0 if and only if h is a scalar.

6 The Riemann curvature tensor and the term a4 for
noncommutative tori

The Riemann curvature tensor appears in the term a4 in the heat kernel expansion for
the Laplacian of any closed Riemannian manifoldM . That is, if�g is the Laplacian
of a Riemannian metric g, which acts on C∞(M), then

a4(x,�g) = (4π)−1(1/360)(−12�gR(x)+5R(x)2−2|Ric(x)|2+2|Riem(x)|2).

In this section we recall from [17] the formula obtained for the analog of the term
a4 in a noncommutative setting. Recall that in Section 4.1, we discussed the term a2,
namely the analog of the scalar curvature, for the noncommutative two torus when
the flat metric is perturbed by a positive invertible element e−h ∈ C∞(T2

θ ), where
h = h∗. These geometric terms appear in the expansion given by (18). Setting,

� = h
2

for the simplest conformal class (associated with τ = i), the main calculation of
[17] gives the term a4 by a formula of the following form:
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a4(h) = −e2�
(
K1(∇)

(
δ2

1δ
2
2(�)

)
+K2(∇)

(
δ4

1(�)+ δ4
2(�)

)
(25)

+K3(∇,∇) ((δ1δ2(�)) · (δ1δ2(�)))
+K4(∇,∇)

(
δ2

1(�) · δ2
2(�)+ δ2

2(�) · δ2
1(�)

)

+K5(∇,∇)
(
δ2

1(�) · δ2
1(�)+ δ2

2(�) · δ2
2(�)

)

+K6(∇,∇)
(
δ1(�) · δ3

1(�)+ δ1(�) ·
(
δ1δ

2
2(�)

)
+ δ2(�) · δ3

2(�)

+δ2(�) ·
(
δ2

1δ2(�)
))

+K7(∇,∇)
(
δ3

1(�) · δ1(�)+
(
δ1δ

2
2(�)

)
· δ1(�)+ δ3

2(�) · δ2(�)

+
(
δ2

1δ2(�)
)
· δ2(�)

)

+K8(∇,∇,∇)
(
δ1(�) · δ1(�) · δ2

2(�)+ δ2(�) · δ2(�) · δ2
1(�)

)

+K9(∇,∇,∇) (δ1(�) · δ2(�) · (δ1δ2(�))+ δ2(�) · δ1(�) · (δ1δ2(�)))
+K10(∇,∇,∇) (δ1(�) · (δ1δ2(�)) · δ2(�)+ δ2(�) · (δ1δ2(�)) · δ1(�))
+K11(∇,∇,∇)

(
δ1(�) · δ2

2(�) · δ1(�)+ δ2(�) · δ2
1(�) · δ2(�)

)

+K12(∇,∇,∇)
(
δ2

1(�) · δ2(�) · δ2(�)+ δ2
2(�) · δ1(�) · δ1(�)

)

+K13(∇,∇,∇) ((δ1δ2(�)) · δ1(�) · δ2(�)+ (δ1δ2(�)) · δ2(�) · δ1(�))
+K14(∇,∇,∇)

(
δ2

1(�) · δ1(�) · δ1(�)+ δ2
2(�) · δ2(�) · δ2(�)

)

+K15(∇,∇,∇)
(
δ1(�) · δ1(�) · δ2

1(�)+ δ2(�) · δ2(�) · δ2
2(�)

)

+K16(∇,∇,∇)
(
δ1(�) · δ2

1(�) · δ1(�)+ δ2(�) · δ2
2(�) · δ2(�)

)

+K17(∇,∇,∇,∇) (δ1(�) · δ1(�) · δ2(�) · δ2(�)
+δ2(�) · δ2(�) · δ1(�) · δ1(�))

+K18(∇,∇,∇,∇) (δ1(�) · δ2(�) · δ1(�) · δ2(�)
+δ2(�) · δ1(�) · δ2(�) · δ1(�))

+K19(∇,∇,∇,∇) (δ1(�) · δ2(�) · δ2(�) · δ1(�)
+δ2(�) · δ1(�) · δ1(�) · δ2(�))

+K20(∇,∇,∇,∇) (δ1(�) · δ1(�) · δ1(�) · δ1(�)
+δ2(�) · δ2(�) · δ2(�) · δ2(�))

)
.
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Fig. 5 Graph of K1
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We provide the explicit formulas for a few of the functions appearing in (25), and
we refer the reader to [17] for the remaining functions, most of which have lengthy
expressions. We have, for example, (Figure 5):

K1(s1) = −4πe
3s1
2
((

4es1 + e2s1 + 1
)
s1 − 3e2s1 + 3

)
(es1 − 1) 4s1

, (26)

and

K3(s1, s2) = Knum
3 (s1, s2)

(es1 − 1) 2 (es2 − 1) 2
(
es1+s2 − 1

)
4s1s2 (s1 + s2) , (27)

where the numerator is given by

Knum
3 (s1, s2) = 16 e

3s1
2 + 3s2

2 π
[ (
es1 − 1

) (
es2 − 1

) (
es1+s2 − 1

)

×
{ (
−5es1 − es2 + 6es1+s2 − e2s1+s2 − 5es1+2s2

+3e2s1+2s2 + 3
)
s1

+
(
es1 + 5es2 − 6es1+s2 + 5e2s1+s2 + es1+2s2 − 3e2s1+2s2 − 3

)
s2

}

−2
(
es1 − es2) (es1+s2 − 1

)

×
(
−es1 − es2 − e2s1+s2 − es1+2s2 + 2e2s1+2s2 + 2

)
s1s2

+2es1
(
es2 − 1

) 3
(
es1 − es1+s2 + 2e2s1+s2 − 2

)
s2

1

−2es2
(
es1 − 1

) 3
(
es2 − es1+s2 + 2es1+2s2 − 2

)
s2

2

]
.
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6.1 Functional relations

One of the main results of [17] is the derivation of a family of conceptually predicted
functional relations among the functionsK1, . . . , K20 appearing in (25). As we shall
see shortly the functional relations are highly nontrivial. There are two main reasons
for the derivation of the relations, both of which are extremely important. First, the
calculation of the term a4 involves a really heavy computer aided calculation, hence,
the need for a way of confirming the validity of the outcome by checking that the
expected functional relations are satisfied. Second, patterns and structural properties
of the relations give significant information that help one to obtain conceptual
understandings about the structure of the complicated functions appearing in the
formula for a4. In order to present the relations, we need to consider the modification
of each function Kj in (25) to a new function K̃j by the formula

K̃j (s1, . . . , sn) = 1

2n
sinh ((s1 + · · · + sn)/2)
(s1 + · · · + sn)/2 Kj(s1, . . . , sn),

where n ∈ {1, 2, 3, 4} is the number of variables, on which Kj depends. We also
need to introduce the restriction of the functionsKj to certain hyperplanes by setting

kj (s1, . . . , sn−1) = Kj(s1, . . . , sn−1,−s1 − · · · − sn−1).

We shall explain shortly how these functional relations are predicted, using funda-
mental identities and lemmas [21, 17] (Figure 6).

Let us first list a few of the functional relations in which some auxiliary functions
Gn(s1, . . . , sn) appear. These functions are mainly useful for relating the derivatives
of eh and those of h and we recall from [17] their recursive formula:

Fig. 6 Graph of K3
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Lemma 6.1 The functions Gn(s1, . . . , sn) are given recursively by

G0 = 1,

and

Gn(s1, . . . , sn) =
∫ 1

0
rn−1es1r Gn−1(rs2, rs3, . . . , rsn) dr.

Explicitly, for n = 1, 2, 3, one has:

G1(s1) = es1 − 1

s1
, (28)

G2(s1, s2) = es1 ((es2 − 1) s1 − s2)+ s2
s1s2 (s1 + s2) ,

G3(s1, s2, s3) =
es1(es2+s3 s1s2(s1+s2)+(s1+s2+s3)

((s1+s2)s3−es2 s1(s2+s3)))−s2s3(s2+s3)
s1s2(s1+s2)s3

(s2+s3)(s1+s2+s3)
.

We can now write the relations. The functional relation associated with the
function K1 is given by

K̃1(s1) = − 1

15
πG1 (s1)+ 1

4
es1k3 (−s1)+ 1

4
k3 (s1)

+1

2
es1k4 (−s1)+ 1

2
k4 (s1)− 1

2
es1k6 (−s1)

−1

2
k6 (s1)− 1

2
es1k7 (−s1)− 1

2
k7 (s1)− π (e

s1 − 1)

15s1
. (29)

It is quite remarkable that such a nontrivial relation should exist among the
functions, and it gets even more interesting when one looks at the case associated
with a 2-variable function. For K3 one finds the associated relation to be:

K̃3(s1, s2) = 1

15
(−4)πG2 (s1, s2)+ 1

2
k8 (s1, s2)+ 1

4
k9 (s1, s2) (30)

−1

4
es1+s2k9 (−s1 − s2, s1)

−1

4
es1k9 (s2,−s1 − s2)− 1

4
k10 (s1, s2)− 1

4
es1+s2k10 (−s1 − s2, s1)

+1

4
es1k10 (s2,−s1 − s2)
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+1

2
es1k11 (s2,−s1 − s2)+ 1

2
es1+s2k12 (−s1 − s2, s1)

−1

4
k13 (s1, s2)+ 1

4
es1+s2k13 (−s1 − s2, s1)− 1

4
es1k13 (s2,−s1 − s2)

+1

4
es2G1 (s1) k3 (−s2)+ 1

4
G1 (s1) k3 (s2)−G1 (s1) k6 (s2)

−es2G1 (s1) k7 (−s2)

+
(
es1+s2 − 1

)
k3 (s1)

4 (s1 + s2) + k3 (s2)− k3 (s1 + s2)
4s1

+k3 (s1 + s2)− k3 (s1)

4s2

+k6 (s1)− k6 (s1 + s2)
s2

+ k6 (s1 + s2)− k6 (s2)

s1

+e
s1 (k7 (−s1)− es2k7 (−s1 − s2))

s2

+e
s2 (es1k7 (−s1 − s2)− k7 (−s2))

s1

−e
s2 (es1k3 (−s1 − s2)− k3 (−s2))

4s1

−e
s1 (k3 (−s1)− es2k3 (−s1 − s2))

4s2

−e
s1 (k3 (−s1)+ es2k3 (s1)− es2k3 (−s2)− k3 (s2))

4 (s1 + s2) .

The rapid pace in growing complexity of the functional relations can be seen in
the higher variable cases as, for example, the functional relation corresponding to
the 3-variable function K8 is the following expression:

K̃8(s1, s2, s3) = 1

15
(−2)πG3 (s1, s2, s3)+ 1

2
es3G2 (s1, s2) k4 (−s3) (31)

−
es3

(
es2 s1k4(−s2−s3)+es2 s2k4(−s2−s3)−es1+s2 s2k4(−s1−s2−s3)−s1k4(−s3)

)

2s1s2 (s1 + s2)
+1

2
G2 (s1, s2) k4 (s3)+ G1 (s1) (k4 (s3)− k4 (s2 + s3))

2s2

+ s1k4 (s3)− s1k4 (s2 + s3)− s2k4 (s2 + s3)+ s2k4 (s1 + s2 + s3)
2s1s2 (s1 + s2)

−1

2
G2 (s1, s2) k6 (s3)
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+G1 (s1) (k6 (s2)− k6 (s2 + s3))
4s3

+
k6(s2)−k6(s1+s2)−k6(s2+s3)+k6(s1+s2+s3)

4s1s3

+
−s3k6(s1)+s2k6(s1+s2)+s3k6(s1+s2)−s2k6(s1+s2+s3)

4s2s3 (s2 + s3)

+
−s1k6(s3)+s1k6(s2+s3)+s2k6(s2+s3)−s2k6(s1+s2+s3)

2s1s2 (s1 + s2)
+e

s2G1 (s1) (k7 (−s2)− es3k7 (−s2 − s3))
4s3

−

es1

(
s3k7(−s1)−es2 s2k7(−s1−s2)−es2 s3k7(−s1−s2)

+es2+s3 s2k7(−s1−s2−s3)
)

4s2s3 (s2 + s3)

−

es2

(
es1k7(−s1−s2)−k7(−s2)+es3k7(−s2−s3)

−es1+s3k7(−s1−s2−s3)
)

4s1s3

+e
s3G1 (s1) (e

s2k7 (−s2 − s3)− k7 (−s3))
2s2

−1

2
es3G2 (s1, s2) k7 (−s3)

+

es3

(
es2 s1k7(−s2−s3)+es2 s2k7(−s2−s3)

−es1+s2 s2k7(−s1−s2−s3)−s1k7(−s3)
)

2s1s2 (s1 + s2)

+
(−1 + es1+s2+s3) k8 (s1, s2)

8 (s1 + s2 + s3) + k8 (s1, s2 + s3)− k8 (s1, s2)

8s3

−1

8
es2+s3G1 (s1) k8 (−s2 − s3, s2)

+e
s1+s2+s3 (k8 (−s1 − s2 − s3, s1)− k8 (−s1 − s2 − s3, s1 + s2))

8s2

+1

8
G1 (s1) k9 (s2, s3)

+k9 (s2, s3)− k9 (s1 + s2, s3)
8s1

+k9 (s1 + s2, s3)− k9 (s1, s2 + s3)
8s2
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+1

8
es2G1 (s1) k10 (s3,−s2 − s3)

+e
s2 (k10 (s3,−s2 − s3)− es1k10 (s3,−s1 − s2 − s3))

8s1

+e
s1 (es2k10 (s3,−s1 − s2 − s3)− k10 (s2 + s3,−s1 − s2 − s3))

8s2

−1

8
G1 (s1) k11 (s2, s3)

+k11 (s1, s2 + s3)− k11 (s1 + s2, s3)
8s2

+k11 (s1 + s2, s3)− k11 (s2, s3)

8s1

−1

8
es2G1 (s1) k12 (s3,−s2 − s3)

+1

8
es2+s3G1 (s1) k13 (−s2 − s3, s2)

+e
s2+s3 (k13 (−s2 − s3, s2)− es1k13 (−s1 − s2 − s3, s1 + s2))

8s1

− 1

16
k17 (s1, s2, s3)− 1

16
es1+s2k17 (s3,−s1 − s2 − s3, s1)

− 1

16
es1k19 (s2, s3,−s1 − s2 − s3)

− 1

16
es1+s2+s3k19 (−s1 − s2 − s3, s1, s2)

−e
s2+s3 (k8 (−s2 − s3, s2)− es1k8 (−s1 − s2 − s3, s1 + s2))

8s1

−e
s2 (k12 (s3,−s2 − s3)− es1k12 (s3,−s1 − s2 − s3))

8s1

−e
s3G1 (s1) (e

s2k4 (−s2 − s3)− k4 (−s3))
2s2

−G1 (s1) (k6 (s3)− k6 (s2 + s3))
2s2

−e
s1 (es2k12 (s3,−s1 − s2 − s3)− k12 (s2 + s3,−s1 − s2 − s3))

8s2

−
es1+s2+s3 (k13(−s1−s2−s3,s1)−k13(−s1−s2−s3,s1+s2))

8s2
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−e
s1 (k11 (s2,−s1 − s2)− k11 (s2 + s3,−s1 − s2 − s3))

8s3

−e
s1+s2 (k12 (−s1 − s2, s1)− es3k12 (−s1 − s2 − s3, s1))

8s3

−e
s1+s2+s3 (k8 (s1, s2)− k8 (−s2 − s3, s2))

8 (s1 + s2 + s3)

−e
s1 (k11 (s2,−s1 − s2)− k11 (s2, s3))

8 (s1 + s2 + s3)

−e
s1+s2 (k12 (−s1 − s2, s1)− k12 (s3,−s2 − s3))

8 (s1 + s2 + s3) .

The interested reader can refer to [17] to see that the functional relations of the
4-variable functions get even more complicated. The main point, which will be
elaborated further, is that all these functional relations are derived conceptually,
and by checking that our calculated functions K1, . . . , K20 satisfy these relations,
the validity of the calculations and their outcome, such as the explicit formu-
las (26), (27), is confirmed.

6.2 A partial differential system associated with the functional
relations

When one takes a close look at the functional relations, one notices that there are
terms in the right-hand sides (in the finite difference expressions) with s1+· · ·+sn in
their denominators. For example, in (30) one can see that there is a term with s1+ s2
in the denominator. The question answered in [17], which leads to a differential
system with interesting properties, is what happens when one restricts the functional
relations to the hyperplanes s1+· · ·+sn = 0 by setting s1+· · ·+sn = ε and letting
ε→ 0. For example, the restriction of the functional relation (30) to the hyperplane
s1 + s2 = 0 yields:

1

4
es1k′3 (−s1)−

1

4
k′3 (s1) =

1

60s1

(
16πs1G2(s1,−s1)− 30s1k8(s1,−s1) (32)

+15s1k9(0, s1)+ 15es1s1k9(−s1, 0)
−15s1k9(s1,−s1)+ 15s1k10(0, s1)

−15es1s1k10(−s1, 0)+ 15s1k10(s1,−s1)
−30es1s1k11(−s1, 0)− 30s1k12(0, s1)
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−15s1k13(0, s1)+ 15es1s1k13(−s1, 0)
+15s1k13(s1,−s1)− 15s1G1(s1)k3(−s1)
−15e−s1s1G1(s1)k3(s1)+ 60s1G1(s1)k6(−s1)
+60e−s1s1G1(s1)k7(s1)− 15es1k3(−s1)
−15k3(−s1)− 15e−s1k3(s1)− 15k3(s1)

+60k6(−s1)+ 60k6(s1)+ 60es1k7(−s1)
+60e−s1k7(s1)+ 60k3(0)

−120k6(0)− 120k7(0)
)
.

The restriction of the functional relation (31) to the hyperplane s1 + s2 + s3 = 0
yields

1

8
es1∂2k11 (s2,−s1 − s2)− 1

8
es1+s2∂2k12 (−s1 − s2, s1) (33)

−1

8
∂1k8 (s1, s2)+ 1

8
es1+s2∂1k12 (−s1 − s2, s1)

= −
(
K̃8(s1, s2, s3)− K̃8, s(s1, s2, s3)

) ∣∣
s3=−s1−s2 ,

where

K̃8, s(s1, s2, s3) = 1

8 (s1 + s2 + s3)
(
− k8 (s1, s2)+ es1+s2+s3k8 (−s2 − s3, s2)

−es1k11 (s2,−s1 − s2)+ es1k11 (s2, s3)

−es1+s2k12 (−s1 − s2, s1)+ es1+s2k12 (s3,−s2 − s3)
)
.

In order to see the general structure in a 4-variable case, we just mention that
the restriction to the hyperplane s1 + s2 + s3 + s4 = 0 of the functional relation
corresponding to the function K̃17 gives

− 1

16
es1+s2∂3k17 (s3,−s1 − s2 − s3, s1) (34)

+ 1

16
es1∂3k19 (s2, s3,−s1 − s2 − s3)

+ 1

16
es1+s2∂2k17 (s3,−s1 − s2 − s3, s1)

− 1

16
es1+s2+s3∂2k19 (−s1 − s2 − s3, s1, s2)
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− 1

16
∂1k17 (s1, s2, s3)+ 1

16
es1+s2+s3∂1k19 (−s1 − s2 − s3, s1, s2)

= −
(
K̃17(s1, s2, s3, s4)− K̃17, s(s1, s2, s3, s4)

) ∣∣
s4=−s1−s2−s3 ,

where

K̃17, s(s1, s2, s3, s4) = 1

16 (s1 + s2 + s3 + s4)(
− k17 (s1, s2, s3)

−es1+s2k17 (s3,−s1 − s2 − s3, s1)
+es1+s2k17 (s3, s4,−s2 − s3 − s4)
+es1+s2+s3+s4k17 (−s2 − s3 − s4, s2, s3)
−es1k19 (s2, s3,−s1 − s2 − s3)+ es1k19 (s2, s3, s4)

−es1+s2+s3k19 (−s1 − s2 − s3, s1, s2)
+es1+s2+s3k19 (s4,−s2 − s3 − s4, s2)

)
.

6.3 Action of cyclic groups in the differential system, invariant
expressions and simple flow of the system

In the partial differential system of the form given by (32), (33), (34) the action of
the cyclic groups Z/2Z, Z/3Z, Z/4Z is involved. For example, in (32) one can see
very easily that Z/2Z is acting by

T2(s1) = −s1, s1 ∈ R.

Using this fact, in [17], symmetries of some lengthy expressions are explored, which
we recall in this subsection.

Theorem 6.1 For any integers j0, j1 in {3, 4, 5, 6, 7},

e−
s1
2

(
−(k′j0(s1)+ k′j1(s1))+ es1

(
k′j0(−s1)+ k′j1(−s1)

))
,

is in the kernel of 1 + T2. Moreover, considering the finite difference expressions in
the differential system corresponding to the following cases, one can find explicitly
finite differences of the kj that are in the kernel of 1 + T2:

(1) When (j0, j1) = (3, 3).
(2) When (j0, j1) = (4, 4).
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(3) When (j0, j1) = (5, 5).
(4) When (j0, j1) = (6, 7).

In (33), the action of Z/3Z is involved as we have the following transformation
acting on the variables:

T3(s1, s2) = (−s1 − s2, s1). (35)

Using the latter, symmetries of more complicated expressions are discovered in [17]:

Theorem 6.2 For any integers j0, j1, j2 in {8, 9, . . . , 16},

e−
2s1
3 − s23

(
− ∂1(kj0 + kj1 + kj2) (s1, s2)
−es1+s2(∂2 − ∂1)(kj0 + kj1 + kj2) (−s1 − s2, s1)
+es1∂2(kj0 + kj1 + kj2) (s2,−s1 − s2)

)

is in the kernel of 1 + T3 + T 2
3 . Also there are finite differences of the functions kj

associated with the following cases that are in the kernel of 1 + T3 + T 2
3 :

(1) When (j0, j1, j2) = (8, 12, 11).
(2) When (j0, j1, j2) = (9, 13, 10).
(3) When (j0, j1, j2) = (14, 16, 15).

The action of Z/4Z in the partial differential system can be seen in (34) since the
following transformation is involved:

T4(s1, s2, s3) = (−s1 − s2 − s3, s1, s2).

The symmetries of the functions with respect to this action are also analyzed in [17]:

Theorem 6.3 For any pair of integers j0, j1 in {17, 18, 19, 20},

e−
3s1
4 − s22 − s34

(
− ∂1(kj0 + kj1) (s1, s2, s3)
−es1+s2+s3(∂2 − ∂1)(kj0 + kj1)(−s1 − s2 − s3, s1, s2)
−es1+s2(∂3 − ∂2)(kj0 + kj1)(s3,−s1 − s2 − s3, s1)
+es1∂3(kj0 + kj1)(s2, s3,−s1 − s2 − s3)

)

is in the kernel of 1+ T4 + T 2
4 + T 3

4 . Moreover, there are expressions given by finite
differences of the kj corresponding to the following cases that are in the kernel of
1 + T4 + T 2

4 + T 3
4 :

(1) When (j0, j1) = (17, 19).
(2) When (j0, j1) = (18, 18).
(3) When (j0, j1) = (20, 20).
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Moreover, in [17], it is shown that a very simple flow defined by

(s1, s2, . . . , sn) �→ (s1 + t, s2, . . . , sn),

combined with the action of the cyclic groups as described above, can be used to
write the differential part of the partial differential system. In order to illustrate
the idea, we just mention that, for example, in the case that the action of Z/3Z
is involved via the transformation (35), one defines the orbit Ok of any 2-variable
function k by

Ok(s1, s2) = (k(s1, s2), k(−s1 − s2, s1), k(s2,−s1 − s2)) .

Then one has to use the auxiliary function

α2(s1, s2) = e−
2s1
3 − s23 ,

to write
(
d

dt

∣∣
t=0 Ok(s1 + t, s2)

)
· (Oα2(s1, s2))

as a finite difference expression when k = kj0 + kj1 + kj2 and (j0, j1, j2) is either
(8, 12, 11), (9, 13, 10), or (14, 16, 15). One can refer to §4.3 of [17] for more details
and to see the treatment of all cases in detail.

6.4 Gradient calculations leading to functional relations

Here we explain how the functional relations written in Section 6.1 were derived
in [17]. In fact the idea comes from [21], where a fundamental identity was proved
and by means of a functional relation, the 2-variable function of the scalar curvature
term a2 was written in terms of its 1-variable function. The main identity to use from
[21] is that, if we consider the conformally perturbed Laplacian,

�h = eh/2�eh/2.

then for the spectral zeta function defined by

ζh(a, s) = Tr(a�−s
h ), s ∈ C, �(s)� 0,

one has

d

dε

∣∣
ε=0 ζh+εa(1, s) = − s

2
ζh (̃a, s) , (36)
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where

ã =
∫ 1

−1
euh/2ae−uh/2 du.

One can then see that

ζh(a,−1) = −ϕ0(a a4(h)), a ∈ C∞(T2
θ ), h = h∗ ∈ C∞(T2

θ ).

Therefore, it follows from (36) that

d

dε

∣∣
ε=0 ϕ0(a4(h+ εa)) = −1

2
ζh(̃a,−1) = 1

2
ϕ0(̃a a4(h)) = −ϕ0

(
aeh ã4(h)

)
.

(37)
where ã4(h) is given by the same formula as (25) when the functionsKj(s1, . . . , sn)
are replaced by

K̃j (s1, . . . , sn) = 1

2n
sinh ((s1 + · · · + sn)/2)
(s1 + · · · + sn)/2 Kj(s1, . . . , sn).

Hence, the gradient d
dε

∣∣
ε=0 ϕ0(a4(h + εa)) can be calculated mainly by using the

important identity (37).
There is a second way of calculating the gradient d

dε

∣∣
ε=0 ϕ0(a4(h+ εa)) which

yields finite difference expressions. For this approach a series of lemmas were
necessary as proved in [17], which are of the following type.

Lemma 6.2 For any smooth function L(s1, s2, s3) and any elements x1, x2, x3, x4
in C(T2

θ ), under the trace ϕ0, one has:

eh
(
d

dε

∣∣
ε=0 L(∇ε,∇ε,∇ε)(x1 · x2 · x3)

)
x4

= aehLε3,1(∇,∇,∇,∇)(x1 · x2 · x3 · x4)

+aehLε3,2(∇,∇,∇,∇)(x2 · x3 · x4 · x1)

+aehLε3,3(∇,∇,∇,∇)(x3 · x4 · x1 · x2)

+aehLε3,4(∇,∇,∇,∇)(x4 · x1 · x2 · x3),

where

Lε3,1(s1, s2, s3, s4) := es1+s2+s3+s4
L(−s2 − s3 − s4, s2, s3)− L(s1, s2, s3)

s1 + s2 + s3 + s4 ,

Lε3,2(s1, s2, s3, s4) := es1+s2+s3
L(s4, − s2− s3− s4, s2)−L(−s1− s2− s3, s1, s2)

s1 + s2 + s3 + s4 ,
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Lε3,3(s1, s2, s3, s4) := es1+s2
L(s3, s4,−s2 − s3 − s4)− L(s3,−s1 − s2 − s3, s1)

s1 + s2 + s3 + s4 ,

Lε3,4(s1, s2, s3, s4) := es1
L(s2, s3, s4)− L(s2, s3,−s1 − s2 − s3)

s1 + s2 + s3 + s4 .

Also, in order to perform necessary manipulations in the second calculation of
the gradient d

dε

∣∣
ε=0 ϕ0(a4(h+ εa)), one needs lemmas of this type:

Lemma 6.3 For any smooth function L(s1, s2, s3) and any elements x1, x2, x3 in
C(T2

θ ), one has:

δj (L(∇,∇,∇)(x1 · x2 · x3))

= L(∇,∇,∇)(δj (x1) · x2 · x3)+ L(∇,∇,∇)(x1 · δj (x2) · x3)

+L(∇,∇,∇)(x1 · x2 · δj (x3))+ Lδ3,1(∇,∇,∇,∇)(δj (h) · x1 · x2 · x3)

+Lδ3,2(∇,∇,∇,∇)(x1 · δj (h) · x2 · x3)

+Lδ3,3(∇,∇,∇,∇)(x1 · x2 · δj (h) · x3)

+Lδ3,4(∇,∇,∇,∇)(x1 · x2 · x3 · δj (h)),

where

Lδ3,1(s1, s2, s3, s4) :=
L(s2, s3, s4)− L(s1 + s2, s3, s4)

s1
,

Lδ3,2(s1, s2, s3, s4) :=
L(s1 + s2, s3, s4)− L(s1, s2 + s3, s4)

s2
,

Lδ3,3(s1, s2, s3, s4) :=
L(s1, s2 + s3, s4)− L(s1, s2, s3 + s4)

s3
,

Lδ3,4(s1, s2, s3, s4) :=
L(s1, s2, s3 + s4)− L(s1, s2, s3)

s4
.

After performing the second gradient calculation in [17], and comparing it
with the first calculation based on (37), the functional relations were derived
conceptually.

6.5 The term a4 for non-conformally flat metrics on
noncommutative four tori

It was illustrated in [17] that, having the calculation of the term a4 for the
noncommutative two torus in place, one can conveniently write a formula for the
term a4 of a non-conformally flat metric on the noncommutative four torus that is the
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product of two noncommutative two tori. The metric is the noncommutative analog
of the following metric. Let (x1, y1, x2, y2) ∈ T

4 = (R/2πZ)4 be the coordinates
of the ordinary four torus and consider the metric

g = e−h1(x1,y1)
(
dx2

1 + dy2
1

)
+ e−h2(x2,y2)

(
dx2

2 + dy2
2

)
,

where h1 and h2 are smooth real valued functions. The Weyl tensor is conformally
invariant, and one can assure that the above metric is not conformally flat by
calculating the components of its Weyl tensor and observing that they do not all
vanish. The non-vanishing components are:

C1212 = 1

6
e−h1(x1,y1)∂2

y1
h1 (x1, y1)

+1

6
eh2(x2,y2)−2h1(x1,y1)∂2

y2
h2 (x2, y2)

+1

6
e−h1(x1,y1)∂2

x1
h1 (x1, y1)

+1

6
eh2(x2,y2)−2h1(x1,y1)∂2

x2
h2 (x2, y2) ,

C1313 = −1

2
e−h2(x2,y2)+h1(x1,y1)C1212,

C2424 = C2323 = C1414 = C1313,

C3434 = e−2h2(x2,y2)+2h1(x1,y1)C1212.

Now, one can consider a noncommutative four torus of the form T
2
θ ′ × T

2
θ ′′

that is the product of two noncommutative two tori. Its algebra has four unitary
generators U1, V1, U2, V2 with the following relations: each element of the pair
(U1, V1) commutes with each element of the pair (U2, V2), and there are fixed
irrational real numbers θ ′ and θ ′′ such that:

V1 U1 = e2πiθ ′ U1 V1, V2 U2 = e2πiθ ′′ U2 V2.

One can then choose conformal factors e−h′ and e−h′′ , where h′ and h′′ are
selfadjoint elements inC∞(T2

θ ′) andC∞(T2
θ ′′), respectively, and use them to perturb

the flat metric of each component conformally. Then the Laplacian of the product
geometry is given by

�ϕ′,ϕ′′ = �ϕ′ ⊗ 1 + 1 ⊗�ϕ′′ ,
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where �ϕ′ and �ϕ′′ are, respectively, the Laplacians of the perturbed metrics on
T

2
θ ′ and T

2
θ ′′ . Now one can use a simple Kunneth formula to find the term a4 in the

asymptotic expansion

Tr(a exp(−t�ϕ′,ϕ′′)) ∼ t−2
(
(ϕ′0 ⊗ ϕ′′0 )(a a0)+ (ϕ′0 ⊗ ϕ′′0 )(a a2) t

+(ϕ′0 ⊗ ϕ′′0 )(a a4) t
2 + · · ·

)
(38)

in terms of the known terms appearing in the following expansions:

Tr(a′ exp(−t�ϕ′)) ∼ t−1
(
ϕ′0(a′ a′0)+ ϕ′0(a′ a′2) t + ϕ′0(a′ a′4) t2 + · · ·

)
,

Tr(a′′ exp(−t�ϕ′′)) ∼ t−1
(
ϕ′′0 (a′′ a′′0 )+ ϕ′′0 (a′′ a′′2 ) t + ϕ′′0 (a′′ a′′4 ) t2 + · · ·

)
.

The general formula is

a2n =
n∑
i=0

a′2i ⊗ a′′2(n−i) ∈ C∞(T2
θ ′ × T

2
θ ′′),

hence an explicit formula for a4 of the noncommutative four torus with the product
geometry explained above since there are explicit formulas for its ingredients.

In this case of the non-conformally flat metric on the product geometry, two
modular automorphisms are involved in the formulas for the geometric invariants
and this motivates further systematic research on twistings that involve two-
dimensional modular structures, cf. [13].

7 Twisted spectral triples and Chern-Gauss-Bonnet theorem
for ergodic C∗-dynamical systems

This section is devoted to the notion of twisted spectral triples and some details
of their appearance in the context of noncommutative conformal geometry. In
particular we explain construction of twisted spectral triples for ergodic C∗-
dynamical systems and the validity of the Chern-Gauss-Bonnet theorem in this vast
setting.

7.1 Twisted spectral triples

The notion of twisted spectral triples was introduced in [20] to incorporate the study
of type III algebras using noncommutative differential geometric techniques. In
the definition of this notion, in addition to a triple (A,H,D) of a ∗-algebra A, a
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Hilbert space H , and an unbounded operator D on H which plays the role of the
Dirac operator, one has to bring into the picture an automorphism σ of A which
interacts with the data as follows. Instead of the ordinary commutators [D, a] as
in the definition of an ordinary spectral triple, in the twisted case one asks for the
boundedness of the twisted commutators [D, a]σ = Da − σ(a)D. More precisely,
here also one assumes a representation of A by bounded operators on H such that
the operator Da − σ(a)D is defined on the domain of D for any a ∈ A, and that it
extends by continuity to a bounded operator on H .

This twisted notion of a spectral triple is essential for type III examples as this
type of algebras do not possess non-zero trace functionals, and ordinary spectral
triples with suitable properties cannot be constructed over them for the following
reason [20]. If (A,H,D) is an m+-summable ordinary spectral triple then the
following linear functional on A defined by

a �→ Trω(a|D|−m)

gives a trace. The main reason for this is that the kernel of the Dixmier trace Trω is a
large kernel that contains all operators of the form |D|−ma − a|D|−m, a ∈ A, if the
ordinary commutators are bounded. In fact we are using the regularity assumption
on the spectral triple, which in particular requires boundedness of the commutators
of elements of A with |D| as well as with D (indeed this is a natural condition and
the main point is that one is using ordinary commutators). Hence, trace-less algebras
cannot fit into the paradigm of ordinary spectral triples.

It is quite amazing that in [20], examples are provided where one can obtain
boundedness of twisted commutators Da − σ(a)D and |D|a − σ(a)|D| for all
elements a of the algebra by means of an algebra automorphism σ , where the Dirac
operatorD has them+-summability property. Then they use the boundedness of the
twisted commutators to show that operators of the form |D|−ma − σ−m(a)|D|−m
are in the kernel of the Dixmier trace and the linear functional a �→ Trω(a|D|−m)
yields a twisted trace on A.

7.2 Conformal perturbation of a spectral triple

One of the main examples in [20] that demonstrates the need for the notion
of twisted spectral triples in noncommutative geometry is related to conformal
perturbation of Riemannian metrics. That is, if D is the Dirac operator of a spin
manifold equipped with a Riemannian metric g, then, after a conformal perturbation
of the metric to g̃ = e−4hg by means of a smooth real valued function h on the
manifold, the Dirac operator of the perturbed metric g̃ is unitarily equivalent to the
operator

D̃ = ehDeh.
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So this suggests that given an ordinary spectral triple (A,H,D) with a noncommu-
tative algebra A, since the metric is encoded in the analog D of the Dirac operator,
one can implement conformal perturbation of the metric by fixing a self-adjoint
element h ∈ A and by then replacing D with D̃ = ehDeh. However, it turns out
that the triple (A,H, D̃) is not necessarily a spectral triple any more, since, because
of noncommutativity of A, the commutators [D̃, a], a ∈ A, are not necessarily
bounded operators. Despite this, interestingly, the remedy brought forth in [20] is to
introduce the automorphism

σ(a) = e2hae−2h, a ∈ A,

which yields the bounded twisted commutators

[D̃, a]σ = D̃a − σ(a)D̃, a ∈ A.

7.3 Conformal perturbation of the flat metric on T
2
θ

Another important example, which is given in [22], shows that twisted spectral
triples can arise in a more intrinsic manner, compared to the example we just
illustrated, when a conformal perturbation is implemented. In [22], the flat geometry
of T

2
θ is perturbed by a fixed conformal factor e−h, where h = h∗ ∈ C∞(T2

θ ).
This is done by replacing the canonical trace ϕ0 on C(T2

θ ) (playing the role of
the volume form) by the tracial state ϕ(a) = ϕ0(ae

−h), a ∈ C(T2
θ ). In order to

represent the opposite algebra of C(T2
θ ) on the Hilbert space Hϕ , obtained from

C(T2
θ ) by the GNS construction, one has to modify the ordinary action induced by

right multiplication. That is, one has to consider the action defined by

aop · ξ = ξe−h/2aeh/2.

It then turns out that with the new action, the ordinary commutators [D, a], a ∈
C∞(T2

θ )
op, are not bounded any more, where D is the Dirac operator

D =
(

0 ∂∗ϕ
∂ϕ 0

)
: H → H.

Here,

∂ϕ = δ1 + iδ2 : Hϕ → H(1,0),

where H(1,0), the analogue of (1, 0)-forms, is the Hilbert space completion of finite
sums

∑
a∂(b), a, b ∈ A∞θ , with respect to the inner product
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(a∂b, c∂d) = ϕ0(c
∗a(∂b)(∂d)∗),

and

H = Hϕ ⊕H(1,0).

The remedy for obtaining bounded commutators is to use a twist given by the
automorphism

σ(aop) = e−h/2aeh/2,

which leads to bounded twisted commutators [22]

[D, aop]σ = Daop − σ(aop)D, a ∈ C∞(T2
θ )
op.

7.4 Conformally twisted spectral triples for C∗-dynamical
systems

The example in Section 7.3 inspired the construction of twisted spectral triples for
general ergodicC∗-dynamical systems in [29]. The Dirac operator used in this work,
following more closely the geometric approach taken originally in [9], is the analog
of the de Rham operator. An important reason for this choice is that an important
goal in [29] was to confirm the validity of the analog of the Chern-Gauss-Bonnet
theorem in the vast setting of ergodic C∗-dynamical systems.

In this subsection we consider aC∗-algebra A with a strongly continuous ergodic
action α of a compact Lie groupG of dimension n, and we let A∞ denote the smooth
subalgebra of A, which is defined as:

A∞ = {a ∈ A : the map g �→ αg(a) is in C∞(G,A)}.

Following closely the construction in [9], we can define a space of differential forms
on A by using the exterior powers of g∗, namely that for k = 0, 1, 2, . . . , n, we set:

�k(A,G) = A⊗
k∧
g∗, (39)

where g∗ is the linear dual of the Lie algebra g of the Lie group G. We consider
the inner product 〈·, ·〉 on g∗ induced by the Killing form, and extend it to an inner
product on

∧k g∗ by setting

〈v1 ∧ · · · ∧ vk,w1 ∧ · · · ∧ wk〉 = det(〈vi, wj 〉).



Curvature in noncommutative geometry 371

After fixing an orthonormal basis (ωj )j=1,...,n for g∗, we equip the above
differential forms with an exterior derivative d : �k(A,G) → �k+1(A,G) given
by

d(a ⊗ ωi1 ∧ ωi2 ∧ · · · ∧ ωik ) =
n∑
j=1

∂j (a)⊗ ωj ∧ ωi1 ∧ ωi2 ∧ · · · ∧ ωik (40)

− 1

2

k∑
j=1

∑
α,β

(−1)j+1c
ij
αβa ⊗ ωα ∧ ωβ

∧ ωi1 ∧ · · · ∧ ωij−1 ∧ ωij+1 ∧ · · · ∧ ωik ,

where the coefficients ciαβ are the structure constants of the Lie algebra g determined
by the relations

[∂α, ∂β ] =
n∑
i=1

ciαβ∂i

for the predual (∂j )j=1,...,n of (ωj )j=1,...,n. This exterior derivative satisfies d◦d = 0
on �•(A,G), therefore we have a complex (�•(A,G), d). This complex is called
the Chevalley-Eilenberg cochain complex with coefficients in A, one can refer to
[44] for more details.

We now define an inner product on �k(A,G), for which we make use of the
unique G-invariant tracial state ϕ0 on A, see [37]. The inner product is defined by

(a ⊗ v1 ∧ · · · ∧ vk, a′ ⊗ w1 ∧ · · · ∧ wk)0 = ϕ0(a
∗a′) det(〈vi, wj 〉). (41)

We denote the Hilbert space completion of �k(A,G) with respect to this inner
product by Hk,0.

In order to implement a conformal perturbation, we fix a selfadjoint element
h ∈ A∞, define the following new inner product on �k(A,G):

(a⊗v1∧· · ·∧vk, a′ ⊗w1∧· · ·∧wk)h = ϕ0(a
∗a′e(n/2−k)h) det(〈vi, wj 〉), (42)

and denote the associated Hilbert space by Hk,h.
One of the goals is to construct ordinary and twisted spectral triples by using

the unbounded operator d + d∗, the analog of the de Rham operator, acting on the
direct sum of all Hk,h. Here the adjoint d∗ of d is of course taken with respect to the
conformally perturbed inner product (·, ·)h. The Hilbert spaces are simply related
by the unitary maps Uk : Hk,0 → Hk,h given on degree k forms by:

Uk(a ⊗ v1 ∧ · · · ∧ vk) = ae−(n/2−k)h/2 ⊗ v1 ∧ · · · ∧ vk.
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Therefore, for simplicity, we use these unitary maps to transfer the operator d + d∗
to an unbounded operator D acting on the Hilbert space H that is the direct sum of
all Hk,0. We can now state the following result from [29].

Theorem 7.1 Consider the above constructions associated with a C∗-algebra A
with an ergodic action of an n-dimensional Lie group G. The operator D has
a selfadjoint extension which is n+-summable. With the representation of A∞ on
H =⊕kHk,0 induced by left multiplication, the triple (A∞,H,D) is an ordinary
spectral triple. However, when one represents the opposite algebra of A∞ on H
using multiplication from right, one obtains a twisted spectral triple with respect to
the automorphism defined by β(aop) = ehae−h.

The spectral triples described in the above theorem can in fact be equipped with
the grading operator given by

γ (a ⊗ v1 ∧ · · · ∧ vk) = (−1)k(a ⊗ v1 ∧ · · · ∧ vk).

Related to this grading, it is interesting to study the Fredholm index of the operator
D, which is unitarily equivalent to d + d∗, when viewed as an operator from the
direct sum of all even differential forms to the direct sum of all odd differential
forms. We shall discuss this issue shortly.

7.5 The Chern-Gauss-Bonnet theorem for C∗-dynamical
systems

In Section 4 we briefly discussed the Gauss-Bonnet theorem for surfaces, which
states that for any closed oriented two-dimensional Riemannian manifold � with
scalar curvature R, one has

1

4π

∫
�

R = χ(�),

where χ(�) is the Euler characteristic of �. The Chern-Gauss-Bonnet theorem
generalizes this result to higher even dimensional manifolds. That is, in higher
dimensions as well, the Euler characteristic, which is a topological invariant,
coincides with the integral of a certain geometric invariant, namely the Pfaffian
of the curvature form. Given a closed oriented Riemannian manifold M of even
dimension n, consider the Levi-Civita connection, which is the unique torsion-
free metric-compatible connection on the tangent bundle TM . Let us denote the
matrix of local 2-forms representing the curvature of this connection by �. The
Chern-Gauss-Bonnet theorem states that the Pfaffian of � (the square root of the
determinant defined on the space of anti-symmetric matrices) integrates over the
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manifold to the Euler characteristic of the manifold, up to multiplication by a
universal constant:

1

(2π)n

∫
M

Pf(�) = χ(M).

Interestingly, there is a spectral way of interpreting such relations between local
geometry and topology of manifolds. Relevant to our discussion is indeed the
Fredholm index of the de Rham operator d + d∗, where d is the de Rham exterior
derivative and d∗ is its adjoint with respect to the metric on the differential forms
induced by the Riemannian metric. The Fredholm index of d + d∗ should be
calculated when the operator is viewed as a map from the direct sum of all even
differential forms to the direct sum of all odd differential forms onM:

d + d∗ : �evenM =
⊕

�2kM → �oddM =
⊕

�2k+1M

The index of this operator is certainly an important geometric quantity since the
adjoint d∗ of d heavily depends on the choice of metric on the manifold. Amazingly,
using the Hodge decomposition theorem, one can find a canonical identification of
the de Rham cohomology group Hk(M) with the kernel of the Laplacian �k =
d∗d + dd∗ : �kM → �kM . This can then be used to show that the index of d + d∗
is equal to the Euler characteristic ofM . Moreover, one can appeal to the McKean-
Singer index theorem to find curvature related invariants appearing in small time
heat kernel expansions associated with d + d∗ to see that the index is given by the
integral of curvature related invariants.

In [29], this spectral approach is taken to show that the analog of the Chern-
Gauss-Bonnet theorem can be established for ergodic C∗-dynamical systems. Let us
consider the setup and the constructions presented in Section 7.4 for a C∗-algebra
A with an ergodic action of a compact Lie group G of dimension n. Then, one of
the main results proved in [29] is the following statement. Here, d is given by (40),
h = h∗ ∈ A∞ is the element that was used to implement with eh a conformal
perturbation of the metric, and the Hilbert space Hk,h is the completion of the k-
differential forms �k(A,G) with respect to the perturbed metric.

Theorem 7.2 The Fredholm index of the operator

d + d∗ :
⊕
k

H2k,h →
⊕
k

H2k+1,h

is equal to the Euler characteristic χ(A,G) of the complex (�•(A,G), d). Since
χ(A,G) = ∑k(−1)kdim

(
Hk(A,G)

)
is the alternating sum of the dimensions of

the cohomology groups, the index of d + d∗ is independent of the conformal factor
eh used for perturbing the metric.
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8 The Ricci curvature

Classically, scalar curvature is only a deem shadow of the full Riemann curvature
tensor. In fact there is no evidence that Riemann considered anything else but the
full curvature tensor, and, equivalently, the sectional curvature. Both were defined
by him for a Riemannian manifold. The Ricci and scalar curvatures were later
defined by contracting the Riemann curvature tensor with the metric tensor. Once
the metric is given in a local coordinate chart, all three curvature tensors can be
computed explicitly via algebraic formulas involving only partial derivatives of the
metric tensor. This is a purely algebraic process, with deep geometric and analytic
implications. It is also a top-down process, going from the full Riemann curvature
tensor, to Ricci curvature, and then to scalar curvature.

The situation in the noncommutative case is reversed and we have to move up
the ladder, starting from the scalar curvature first, which is the easiest to define
spectrally, being given by the second term of the heat expansion for the scalar
Laplacian, the square of the Dirac operator in general. Thus after treating the
scalar curvature, which we recalled in previous sections together with examples,
one should next try to define and possibly compute, in some cases, a Ricci curvature
tensor. But how? In [34] and motivated by the local formulas for the asymptotic
expansion of heat kernels in spectral geometry, the authors propose a definition
of Ricci curvature in a noncommutative setting. One necessarily has to use the
asymptotic expansion of Laplacians on functions and 1-forms and a version of the
Weitzenböck formula.

As we shall see in this section, the Ricci operator of an oriented closed
Riemannian manifold can be realized as a spectral functional, namely the functional
defined by the zeta function of the full Laplacian of the de Rham complex,
localized by smooth endomorphisms of the cotangent bundle and their trace. In the
noncommutative case, this Ricci functional uniquely determines a density element,
called the Ricci density, which plays the role of the Ricci operator. The main result of
[34] provides a general definition and an explicit computation of the Ricci density
when the conformally flat geometry of the curved noncommutative two torus is
encoded in the de Rham spectral triple. In a follow-up paper [24], the Ricci curvature
of a noncommutative curved three torus is computed. In this section we explain these
recent developments in more detail.

8.1 A Weitzenböck formula

The Weitzenböck formula

Hodge − Bochner = Ricci
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in conjunction with Gilkey’s asymptotic expansion gives an opening to define the
Ricci curvature in spectral terms. LetM be a closed oriented Riemannian manifold.
Consider the de Rham spectral triple

(C∞(M),L2(�ev(M))⊕ L2(�odd(M)), d + δ, γ ),

which is the even spectral triple constructed from the de Rham complex. Here d is
the exterior derivative, δ is its adjoint acting on the exterior algebra, and γ is the Z2-
grading on forms. The eigenspaces for eigenvalues 1 and -1 of γ are even and odd
forms, respectively. The full Laplacian on forms � = dδ + δd is the Laplacian of
the Dirac operator d+δ, and is the direct sum of Laplacians on p-forms,� = ⊕�p.
As a Laplace type operator,� can be written as ∇∗∇ −E by Weitzenböck formula,
where ∇ is the Levi-Civita connection extended to all forms and

E = −1

2
c(dxμ)c(dxν)�(∂μ, ∂ν).

Here c denotes the Clifford multiplication and � is the curvature operator of the
Levi-Civita connection acting on exterior algebra. The restriction of E to one forms
gives the Ricci operator.

8.2 Ricci curvature as a spectral functional

The Ricci curvature of a Riemannian manifold (Mm, g) is originally defined as
follows. Let ∇ be the Levi-Civita connection of the metric g. The Riemannian
operator and the curvature tensor are defined for vector fields X, Y,Z,W by

Riem(X, Y ) := ∇X∇Y − ∇Y∇X − ∇[X,Y ],
Riem(X, Y,Z,W) := g(Riem(X, Y )Z,W).

With respect to the coordinate frame ∂μ = ∂
∂xμ

, the components of the curvature
tensor are denoted by

Riemμνρε := Riem(∂μ, ∂ν, ∂ρ, ∂ε).

The components of the Ricci tensor Ric and scalar curvature R are given by

Ricμν := gρεRiemμρεν,

R := gμνRicμν = gμνgρεRiemμρεν.

Now these algebraic formulas have no chance to be extended to a noncommutative
setting in general. One must thus look for a spectral alternative reformulation.
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Let P : C∞(V ) → C∞(V ) be a positive elliptic differential operator of order
two acting on the sections of a smooth Hermitian vector bundle V overM . The heat
trace Tr(e−tP ) has a short time asymptotic expansion of the form

Tr(e−tP ) ∼
∞∑
n=0

an(P )t
n−m

2 , t → 0+,

where an(P ) are integrals of local densities

an(P ) =
∫

tr(an(x, P ))dx.

Here dx = dvolx is the Riemannian volume form and tr is the fiberwise matrix
trace. The endomorphism an(x, P ) can be uniquely determined by localizing the
heat trace by an smooth endomorphism F of V . It is easy to see that the asymptotic
expansion of the localized heat trace Tr(Fe−tP ) is of the form

Tr(Fe−tP ) ∼
∞∑
n=0

an(F, P )t
n−m

2 , (43)

with

an(F, P ) =
∫

tr
(
F(x)an(x, P )

)
dx. (44)

If P is a Laplace type operator i.e., its leading symbol is given by the metric
tensor, then the densities an(x, P ) can be expressed in terms of the Riemannian cur-
vature, an endomorphism E, and their derivatives. The endomorphism E measures
how far the operator P is from being the Laplacian ∇∗∇ of a connection ∇ on V ,
that is

E = ∇∗∇ − P. (45)

The first two densities of the heat equation for such P are given by [36, Theorem
3.3.1]

a0(x, P ) = (4π)−m/2I, (46)

a2(x, P ) = (4π)−m/2
(

1

6
R(x)+ E

)
. (47)

For the scalar Laplacian �0, the connection is the de Rham differential d :
C∞(M)→ �1(M), and E = 0. Hence the first two first terms of the heat kernel of
�0 are given by
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a0(x,�0) = (4π)−m/2, (48)

a2(x,�0) = (4π)−m/2 1

6
R(x). (49)

For Laplacian on one forms �1 : �1(M) → �1(M), the Hodge-de Rham
Laplacian, the connection in (45) is the Levi-Civita connection on the cotangent
bundle. The endomorphism E is the negative of the Ricci operator, E = −Ric, on
the cotangent bundle, which is defined by raising the first index of the Ricci tensor
(denoted by Ric as well),

Ricx(α
�,X) = Ricx(α)(X), α ∈ T ∗x M, X ∈ TxM.

Therefore, one has

a0(x,�1) = (4π)−m/2I, (50)

a2(x,�1) = (4π)−m/2
(

1

6
R(x)− Ricx

)
. (51)

We can use the function tr(F ) to localize the heat trace of the scalar Laplacian �0
and get the identity

a2(tr(F ),�0)− a2(F,�1) = (4π)−m/2
∫
M

tr
(
F(x)Ricx

)
dx. (52)

This motivates the following definition.

Definition 8.1 ([34]) The Ricci functional of the closed Riemannian manifold
(M, g) is the functional on C∞(End(T ∗M)) defined as

Ric(F ) = a2(tr(F ),�0)− a2(F,�1).

Proposition 8.1 For a closed Riemannian manifold M of dimension m, we have
the short time asymptotics

Tr
(

tr(F )e−t�0
)
− Tr

(
Fe−t�1

)
∼ Ric(F ) t1−m2 .

Proof By (46) and (44), we have tr(F )a0(x,�0) = tr(F (x)a0(x,�1)). This implies
that

a0(tr(F ),�0) = a0(F,�1), F ∈ C∞(End(T ∗M)). (53)

The asymptotic expansion of the localized heat kernel (43) then shows that the first
terms will cancel each other. The difference of the second terms, which are multiples
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of t1−m2 , will become the first term in the asymptotic expansion of the differences
of localized heat kernels. ��

8.3 Spectral zeta function and the Ricci functional

The spectral zeta function of a positive elliptic operator P is defined as

ζ(s, P ) = Tr(P−s(I −Q)), �(s)� 0,

where Q is the projection on the kernel of P . Its localized version is ζ(s, F, P ) =
Tr(FP−s(I − Q)). These function have a meromorphic extension to the complex
plane with isolated simple poles. Using the Mellin transform, one finds explicit
relation between residue at the poles and coefficients of the heat kernel. This leads
to the following expression for the Ricci functional in terms of zeta functions.

Proposition 8.2 For a closed Riemannian manifold M of dimension m > 2, we
have

Ric(F ) = 
(m

2
− 1
)

ress=m2 −1

(
ζ(s, tr(F),�0)− ζ(s,F,�1)

)
. (54)

IfM is two-dimensional, then

Ric(F ) = ζ(0, tr(F ),�0)− ζ(0, F,�1)+ Tr(tr(F )Q0)− Tr(FQ1), (55)

whereQj is the projection on the kernel of Laplacian �j , j = 0, 1.

It follows that the difference of zeta functions ζ(s, tr(F ),�0) − ζ(s, F,�1) is
regular at m/2, and its first pole is located at s = m/2 − 1.

To work with the Laplacian on one forms, we will use smooth endomorphisms
F of the cotangent bundle. The smearing endomorphism F̃ = tr(F )I0 ⊕ F ∈
C∞(End(

∧•
M)), where I0 denotes the identity map on functions, can be used to

localize the heat kernel of the full Laplacian and

Ric(F ) = a2(γ F̃ ,�). (56)

With the above notation, one can express the Ricci functional as special values of
the (localized) spectral zeta functions

Ric(F ) =

⎧⎪⎪⎨
⎪⎪⎩
(m2 − 1)ress=m2 −1ζ(s, F̃γ,�) m > 2,

ζ(0, γ F̃ ,�)+ Tr(tr(F )Q0)− Tr(FQ1) m = 2.

(57)
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The flat de Rham spectral triple of the noncommutative two torus can be
perturbed by a Weyl factor e−h with h ∈ A∞θ a self adjoint element. This procedure
gives rise to the de Rham spectral triple of a curved noncommutative torus. The
Ricci functional is defined in a similar fashion as above, and it can be shown that
there exists an element Ric ∈ A∞θ ⊗M2(C), called the Ricci density, such that

Ric(F ) = 1

 (τ )ϕ(tr(FRic)e−h), F ∈ A∞θ ⊗M2(C).

8.4 The de Rham spectral triple for the noncommutative two
torus

In this section, we describe the de Rham spectral triple of a noncommutative two
torus Aθ equipped with a complex structure. This is a deformation of the Dolbeault
complex that we used in Section. Consider the vector spaceW = R

2, and let τ be a
complex number in the upper half plane. Let gτ be the positive definite symmetric
bilinear form onW given by

gτ = 1

 (τ )2
( |τ |2 −�(τ )
−�(τ ) 1

)
. (58)

The inverse g−1
τ =

(
1 �(τ )

�(τ ) |τ |2
)

of gτ is a metric on the dual ofW . The entries of

g−1
τ will be denoted by gjk .

Let
∧•
W ∗

C
be the exterior algebra of W ∗

C
= (W ⊗ C)∗. The algebra A∞θ ⊗∧•

W ∗
C

is the algebra of differential forms on the noncommutative two torus Aθ . In
this framework, the Hilbert space of functions, denoted H(0), is simply the Hilbert
space given by the GNS construction of A∞θ with respect to 1

 (τ )ϕ. Additionally, the

Hilbert space of one forms, denoted H(1), is the space H0 ⊗ (C2, g−1
τ ) with inner

product given by

〈a1 ⊕ a2, b1 ⊕ b2〉 = 1

 (τ )
∑
j,k

gjkϕ(b∗kaj ), ai, bi ∈ A∞θ , (59)

while the Hilbert space of two forms, denoted H(2), is given by the GNS construc-
tion of A∞θ with respect to  (τ ) ϕ.

The exterior derivative on elements of A∞θ is given by

a �→ iδ1(a)⊕ iδ2(a), a ∈ A∞θ . (60)
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It will be denoted by d0, when considered as a densely defined operator from H(0)
to H(1). The operator d1 : H(1) → H(2) is defined on the elements of A∞θ ⊕ A∞θ as

a ⊕ b �→ iδ1(b)− iδ2(a), a, b ∈ A∞θ . (61)

The adjoints of the operators d0 : H(0) → H(1) and d1 : H(1) → H(2) are then
given by

d∗0 (a ⊕ b) = −iδ1(a)− i�(τ )δ2(a)− i�(τ )δ1(b)− i|τ |2δ2(b),
d∗1 (a) = (i|τ |2δ2(a)+ i�(τ )δ1(a))⊕ (−i�(τ )δ2(a)− iδ1(a)),

for all a, b ∈ A∞θ .

Definition 8.2 The (flat) de Rham spectral triple of Aθ is the even spectral triple

(Aθ ,H,D), where H = H(0) ⊕H(2) ⊕H(1), D =
(

0 d∗
d 0

)
, and d = d0 + d∗1 .

Note that the operator d and its adjoint d∗ = d1 + d∗0 act on A∞θ ⊕ A∞θ as

d =
(
iδ1 i|τ |2δ2 + i�(τ )δ1
iδ2 −i�(τ )δ2 − iδ1

)
, d∗ =

(−iδ1 − i�(τ )δ2 −i�(τ )δ1 − i|τ |2δ2
−iδ2 iδ1

)
.

(62)
Note also that the de Rham spectral triple introduced in Definition 8.2 is isospectral
to the de Rham complex spectral triple of the flat torus T

2 with the metric given
by (58).

8.5 The twisted de Rham spectral triple

The conformal perturbation of the metric on the noncommutative two torus is
implemented by changing the tracial state ϕ by a noncommutative Weyl factor e−h,
where the dilaton h is a selfadjoint smooth element of the noncommutative two
torus, h = h∗ ∈ A∞θ . The conformal change of the metric by the Weyl factor
e−h will change the inner product on functions and on two forms as follows. On
functions, the Hilbert space given by GNS construction of Aθ with respect to the
positive linear functional ϕ0(a) = 1

 (τ )ϕ(ae
−h) will be denoted by H(0)h . Therefore

the inner product of H(0)h is given by

〈a, b〉0 = 1

 (τ )ϕ(b
∗ae−h), a, b ∈ Aθ .

On one forms, the Hilbert space will stay the same as in (59), and will be denoted
by H(1)h . On the other hand, the Hilbert space of two forms, denoted by H(2)h , is
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the Hilbert space given by the GNS construction of Aθ with respect to ϕ2(a) =
 (τ )ϕ(aeh). Hence its inner product is given by

〈a, b〉2 =  (τ )ϕ(b∗aeh), a, b ∈ Aθ .

The positive functional a �→ ϕ(ae−h), called the conformal weight, is a twisted
trace of which modular operator is given by

�(a) = e−haeh, a ∈ Aθ .

The logarithm log� of the modular operator will be denoted by ∇, and is given by
∇(a) = −[h, a]. For more details the reader can check the previous sections.

The exterior derivatives are defined in the same way they were defined in the flat
case (60) and (61). However, to emphasize that they are acting on different Hilbert
spaces, we will denote them by dh,0 : H(0)h → H(1)h and dh,1 : H(1)h → H(2)h .

Next, we consider the Hilbert spaces H+
h = H(0)h ⊕ H(2)h and H−

h = H(1)h , and
the operator dh : H+

h → H−
h , dh = dh,0 + d∗h,1. Therefore

dh =
(
iδ1
(
i|τ |2δ2 + i�(τ )δ1

)
◦ Rk2

iδ2
(− i�(τ )δ2 − iδ1) ◦ Rk2

)
,

and its adjoint is given by

d∗h =
(
Rk2 ◦

(
iδ1 − i�(τ )δ2

)
Rk2 ◦

(− i�(τ )δ1 − i|τ |2δ2)
−iδ2 iδ1

)
.

We also consider the operator

Dh =
(

0 d∗h
dh 0

)
,

which acts on Hh = H+
h ⊕H−

h . Define the Hilbert space H = H0⊕H0⊕H0⊕H0
and the unitary operatorW : H → Hh,

W = Rk ⊕ Rk−1 ⊕ IH0⊕H0 .

The operatorDh can be transferred to an operator D̃h on H by the inner perturbation

D̃h := W ∗DhW =
(

0 Rk ◦ d∗
d ◦ Rk 0

)
.

In order to define the twisted, or modular, de Rham spectral triple for the
noncommutative two torus, we employ the following constructions from [21]. Let
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(A,H+ ⊕ H−,D) be an even spectral triple with grading operator γ , where

D =
(

0 T ∗
T 0

)
and T : H+ → H− is an unbounded operator with adjoint T ∗.

If f ∈ A is positive and invertible, then (A,H,D(f,γ )) is a modular spectral triple
with respect to the inner automorphism σ(a) = f af−1, a ∈ A [21, Lemma 1.1],
where the Dirac operator is given by

D(f,γ ) =
(

0 f T ∗
Tf 0

)
.

On the other hand, any modular spectral triple (A,H,D) with an automorphism
σ admits a transposed modular spectral triple (Aop, H̄,Dt ) [21, Proposition 1.3],
where Aop is the opposite algebra of A, H̄ is the dual Hilbert space, the action of
Aop on H̄ is the transpose of the action of A on H,Dt is the transpose of D, and σ ′
is the automorphism of Aop given by σ ′(aop) = (σ−1(a))op.

Proposition 8.3 Let k = eh/2, where h = h∗ ∈ A∞θ . The triple (Aop
θ ,H, D̃h) is a

modular spectral triple, where the automorphism of Aop
θ is given by

aop �→ (k−1ak)op, a ∈ A∞θ ,

and the representation of Aop
θ on H is given by the right multiplication of Aθ on H.

Moreover, the transposed of the modular spectral triple (Aop
θ ,H, D̃h) is isomorphic

to the perturbed spectral triple

(Aθ ,H, D̄h), D̄h =
(

0 kd

d∗k 0

)
, (63)

where the operators d and d∗ are as in (62).

Definition 8.3 The modular spectral triple (Aθ ,H, D̄h) in (63) will be called the
modular de Rham spectral triple of the noncommutative two torus with dilaton h.

8.6 Ricci functional and Ricci curvature for the curved
noncommutative torus

Using the pseudodifferential calculus with symbols in A∞θ ⊗M4(C), one shows that
the localized heat trace of D̄2

h has an asymptotic expansion with coefficients of the
form

an(E, D̄
2
h) = ϕ ◦ tr

(
E cn(D̄

2
h)
)
, E ∈ A∞θ ⊗M4(C),
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where cn(D̄2
h) ∈ A∞θ ⊗ (M2(C) ⊕ M2(C)

)
and tr is the matrix trace. The Ricci

functional can now be defined:

Definition 8.4 ([34]) The Ricci functional of the modular de Rham spectral triple
(Aθ ,H, D̄h) is the functional on Aθ ⊗M2(C) defined as

Ric(F ) = a2(γ F̃ , D̄
2) = ζ(0, γ F̃ , D̄2

h)+ Tr(tr(F )Q0)− Tr(FQ1),

where F̃ = tr(F ) ⊕ 0 ⊕ F , and Qj is the orthogonal projection on the kernel of
�h,j , for j = 0, 1.

Lemma 8.1 There exists an element Ric ∈ A∞θ ⊗ M2(C) such that for all F ∈
A∞θ ⊗M2(C)

Ric(F ) = 1

 (τ )ϕ(tr(FRic)e−h).

Proof For any such F we have

a2(γ F̃ , D̄
2) = a2(tr(F ),�h,0)− a2(F,�h,1).

Now tr(F )e−t�h,0 = tr(Fe−t�h,0⊗I2), and thus

a2(tr(F ),�h,0) = a2(F,�h,0 ⊗ I2).

As a result, we have

Ric(F ) = a2(tr(F ),�h,0)− a2(F,�h,1)
= ϕ

(
tr
(
F
(
c2(�h,0)⊗ I2 − c2(�h,1)

)))

= 1

 (τ )ϕ
(
 (τ )tr

(
F
(
c2(�h,0)⊗ I2 − c2(�h,1)

))
ehe−h

)
.

Hence,

Ric =  (τ )
(
c2(�h,0)⊗ I2 − c2(�h,1)

)
eh.

��
Definition 8.5 The element Ric is called the Ricci density of the curved noncom-
mutative torus with dilaton h.

The terms c2(�h,j ) can be computed by integrating the symbol of the parametrix

of �h,j . Since the operator �h,1 is a first order perturbation of �(0,1)ϕ , we will

only need to compute the difference c2(�h,1) − c2(�(0,1)ϕ ) ⊗ I2. The terms
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c2(�h,0) = c2(k�0k) and c2(�(0,1)ϕ ) are computed previously in two places by
Connes-Moscovici and Fathizadeh-Khalkhali, and their difference is given by

Rγ = (c2(k�k)⊗ I2 − c2(�(0,1)ϕ )
)
eh

= − π

 (τ )
(
Kγ (∇)(�0(log k))+Hγ

(∇1,∇2
)
(��(log k))

+S(∇1,∇2)(� (log k))
)
eh.

Here,

��(�) = (δ1(�))2 +�(τ ) (δ1(�)δ2(�)+ δ2(�)δ1(�))+ |τ |2(δ2(�))2,
� (�) = i (τ )(δ1(�)δ2(�)− δ2(�)δ1(�))

with � = log k.Moreover,

Kγ (u) =
1
2 + sinh(u/2)

u

cosh2(u/4)
,

Hγ (s, t) =
(
1 − cosh((s + t)/2))

×
t (s+t) cosh(s)−s(s+t) cosh(t)+(s−t)
(s+t+sinh(s)+sinh(t)−sinh(s+t))

st (s + t) sinh
(
s
2

)
sinh

(
t
2

)
sinh

(
s+t

2

)2 ,

S(s, t) = (s + t − t cosh(s)− s cosh(t)− sinh(s)− sinh(t)+ sinh(s + t))
s t
(
sinh

(
s
2

)
sinh

(
t
2

)
sinh

(
s+t

2

)) .

The term S coincides with the function S found in [21, 31] for scalar curvature.
Now the main result of [34] can be stated as follows. It computes the Ricci

curvature density of a curved noncommutative two torus with a conformally flat
metric. The proof of this theorem is quite long and complicated and will not be
reproduced here.

Theorem 8.1 ([34]) Let k = eh/2 with h ∈ A∞θ a selfadjoint element. Then the
Ricci density of the modular de Rham spectral triple with dilaton h is given by

Ric =  (τ )
4π2 R

γ ⊗ I2 − 1

4π
S(∇1,∇2)

([δ1(log k), δ2(log k)])eh ⊗
(
i (τ )  (τ )2
−1 i (τ )

)
.

It is important to check the classical limit for consistency. In the commutative
limit the Ricci density Ric is retrieved as lim(s,t)→(0,0)Ric. Since (cf. [21] for a
proof)
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lim
(s,t)→(0,0) R

γ = − π

 (τ )�0(log k),

and [δ1(log k), δ2(log k)] = 0, we have

Ric|θ=0 = −1

4π
�0(log k)eh ⊗ I2.

If we take into account the normalization of the classical case that comes from the
heat kernel coefficients, this gives the formula for the Ricci operator in the classical
case.

Unlike the commutative case, the Ricci density Ric in the noncommutative case
is not a symmetric matrix. Indeed, it has non-zero off diagonal terms, which are
multiples of S(∇1,∇2)([δ1(log k), δ2(log k)]). This phenomenon, observed in [34]
for the first time, is obviously a consequence of the noncommutative nature of the
space. It is an interesting feature of noncommutative geometry that, contrary to the
commutative case, the Ricci curvature is not a multiple of the scalar curvature even
in dimension two. This manifests itself in the existence of off diagonal terms in the
Ricci operator Ric above.

It is clear that one can define in a similar fashion a Ricci curvature operator
for higher dimensional noncommutative tori, as well as for noncommutative toric
manifolds. Its computation in these cases poses an interesting problem. This
problem now is completely solved for noncommutative three tori in [24]. It would
also be interesting to find the analogue of the Ricci flow based on our definition of
Ricci curvature functional. It should be noted that for noncommutative two tori a
definition of Ricci flow, without a notion of Ricci curvature, is proposed in [3].

9 Beyond conformally flat metrics and beyond dimension
four

In the study of spectral geometry of noncommutative tori one is naturally interested
in going beyond conformally flat metrics and beyond dimension four. Even in the
case of noncommutative two torus it is important to consider metrics which are not
conformally flat. In fact while by uniformization theorem we know that any metric
on the two torus is conformally flat, there is strong evidence that this is not so in
the noncommutative case. This is closely related to the problem of classification
of complex structures on the noncommutative two torus via positive Hochschild
cocycles, which is still unsolved.

As far as higher dimensions go, our original methods do not allow us to treat
the dimension as a variable in the calculations and obtain explicit formulas in all
dimensions in a uniform manner. This is in sharp contrast with the classical case
where formulas work in a uniform manner in all dimensions. In this section we
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report on a very recent development [35] where progress has been made on both
fronts.

In the recent paper [35], using a new strategy based on Newton divided
differences, it is shown how to consider non-conformal metrics and how to treat all
higher dimensional noncommutative tori in a uniform way. In fact based on older
methods it was not clear how to extend the computation of the scalar curvature to a
general higher dimensional case. The class of non-conformal metrics introduced in
[35] is quite large and leads to beautiful combinatorial identities for the curvature
via divided differences. In this section we shall briefly sketch the results obtained in
[35], following closely its organization of material.

9.1 Rearrangement lemma revisited

To compute and effectively work with integrals of the form

∫ ∞

0
(uk2 + 1)−mb(uk2 + 1)umdu,

the rearrangement lemma was proved by Connes and Tretkoff in [22]. Here k =
eh/2, h, b ∈ C∞(T2

θ ) and h is selfadjoint. The problem stems from the fact that
h and b need not commute. Later on this lemma was generalized, for the sake of
curvature calculations, for more than one b in [21, 31]. A detailed study of this
lemma for more general integrands of the form

∫ ∞

0
f0(u, k)b1f1(u, k)ρ2 · · · bnfn(u, k)du,

was given by M. Lesch in [46], with a new proof and a new point of view. This
approach uses the multiplication map

μ : a1 ⊗ a2 ⊗ · · · ⊗ an �→ a1a2 · · · an
from the projective tensor product A⊗γ n to A. The above integral is expressed as
the contraction of the product of an element F(k(0), · · · , k(n)) of A⊗γ (n+1), with the
element b1 ⊗ b2 ⊗ · · · bn ⊗ 1 which is

μ
(
F(k(0), · · · , k(n))(b1 ⊗ b2 ⊗ · · · bn ⊗ 1)

)
.

The above element is usually written in the so-called contraction form

F(k(0), · · · , k(n))(b1 · b2 · · · · bn). (64)
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The following version of the rearrangement lemma is stated in [35] with the
domain of integration changed from [0,∞) to any domain in R

N .

Lemma 9.1 (Rearrangement Lemma [35]) Let A be a unital C∗-algebra, h ∈ A
be a selfadjoint element, and � be an open neighborhood of the spectrum of h in
R. For a domain U in R

N , let fj : U × � → C, 0 ≤ j ≤ n, be smooth functions
such that f (u, λ) = ∏nj=0 fj (u, λj ) satisfies the following integrability condition:

for any compact subset K ⊂ �n+1 and every given multi-index α we have

∫
U

sup
λ∈K

|∂αλ f (u, λ)|du <∞.

Then,

∫
U

f0(u, h)b1f1(u, h) · · · bnfn(u, h)du = F(h(0), h(1), · · · , h(n))(b1 · b2 · · · bn),
(65)

where F(λ) = ∫
U
f (u, λ)du. ��

In particular it follows that every expression in the contraction form with a
Schwartz function F ∈ S(Rn+1) used in the operator part can be written as an
integral. In fact if we set

fn(ξ, λ) = f̂ (ξ)eiξnλ, fj (ξ, λ) = eiξj λ, 0 ≤ j ≤ n− 1,

and f (ξ, λ0, · · · , λn) =∏nj=0 fj (ξ, λj ), by the Fourier inversion formula, we have
F(λ) = ∫ f (ξ, λ)dξ . Then, Lemma 9.1 gives the equality

F(h(0), · · · , h(n))(b1 · b2 · · · bn) =
∫
Rn

eiξ0hb1e
iξ1hb2 · · · bneiξnhf̂ (ξ)dξ. (66)

This is crucial for calculations in [35].

9.2 A new idea

As we saw in previous sections, to prove the Gauss-Bonnet theorem and to compute
the scalar curvature of a curved noncommutative two torus in [22, 30] and [21, 31],
the second density of the heat trace of the Laplacian D2 of the Dirac operator had
to be computed. First, the symbol of the parametrix of D2 was computed, next
a contour integral coming from Cauchy’s formula for the heat operator had to be
computed, and finally one had to integrate out the momentum variables. It was for
this last step that the rearrangement lemma played an important role. Luckily, the
contour integral could be avoided using a homogeneity argument.
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A key observation in [35] is that one need not wait till the last step to have
elements in the contraction form. It is just enough to start off with operators whose
symbol is written in the contraction form

F(h(0), · · · , h(n))(b1 · b2 · · · bn).
It is further noted that the symbol calculus can be effectively applied to differential
operators whose symbols can be written in the contraction form. These operators are
called h-differential operators in [35]. This is a new and larger class of differential
operators that lends itself to precise spectral analysis. It is strictly larger than the
class of Dirac Laplacians for conformally flat metrics on noncommutative tori which
has been the subject of intensive studies lately.

Next, the Newton divided difference calculus was brought in to find the action of
derivations on elements in contracted form (Theorem 9.1 below). For example, one
has

δj
(
f (h(0), h(1))(b1)

) = f (h(0), h(1))(δj (b1))+
[
h(0), h(1); f (·, h(2))(δj (h) · b)

]
+[h(1), h(2); f (h(0), ·)(b · δj (h))].

Using this fact, and applying the pseudodifferential calculus, one can compute the
spectral densities of positive h-differential operators whose principal symbol is
given by a functional metric. These operators are called Laplace type h-differential
operator in [35].

This change in order of the computations, i.e. writing symbols in the contraction
form first, led to a smoother computation symbolically, and played a fundamental
in computing with more general functional metrics. It also paved the way for
calculating the curvature in all higher dimensions for conformally flat and twisted
product of flat metrics.

9.3 Newton divided differences

A nice application of the rearrangement lemma is to find a formula for the
differentials of a smooth element written in contraction form. To this end, Newton
divided differences were used in [35].

Let x0, x1, · · · , xn be distinct points in an interval I ⊂ R and let f be a function
on I . The nth-order Newton divided difference of f , denoted by [x0, x1, · · · , xn; f ],
is the coefficient of xn in the interpolating polynomial of f at the given points. In
other words, if the interpolating polynomial is p(x), then

p(x) = pn−1(x)+ [x0, x1, · · · , xn; f ](x − x0) · · · (x − xn−1),

where pn−1(x) is a polynomial of degree at most n−1. There is a recursive formula
for the divided difference which is given by
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[x0; f ] = f (x0)

[x0, x1, · · · , xn; f ] = [x1, · · · , xn; f ] − [x0, x1, · · · , xn−1; f ]
xn − x0

.

There is also an explicit formula for the divided difference:

[x0, x1, · · · , xn; f ] =
n∑
j=0

f (xj )∏
j �=l (xj − xl)

.

The Hermite-Genocchi formula gives an integral representation for the divided
differences of an n times continuously differentiable function f as an integral over
the standard simplex:

[x0, · · · , xn; f ] =
∫
�n

f (n)
( n∑
j=0

sj xj

)
ds. (67)

Let δ be a densely defined, unbounded and closed derivation on a C∗-algebra A.
If a ∈ Dom(δ), then eza ∈ Dom(δ) for any z ∈ C, and one has

δ(eza) = z
∫ 1

0
ezsaδ(a)ez(1−s)ads. (68)

Using the rearrangement lemma, one can now express the differential of a smooth
element given in contraction form. This result generalizes the expansional formula,
also known as Feynman-Dyson formula, for eA+B , and not only for elements of the
form f (h), but also for any element written in the contraction form.

Theorem 9.1 Let δ be a closed derivation of a C∗-algebra A and h ∈ Dom(δ) be
a selfadjoint element. Let bj ∈ Dom(δ), 1 ≤ j ≤ n, and let f : Rn+1 → C be a
smooth function. Then f (h(0), · · · , h(n))(b1 · b2 · · · · · bn) is in the domain of δ and

δ(f (h(0), · · · , h(n))(b1 · b2 · · · bn))

=
n∑
j=1

f (h(0), · · · , h(n))
(
b1 · · · bj−1 · δ(bj ) · bj+1 · · · bn

)

+
n∑
j=0

fj (h(0), · · · , h(n+1))
(
b1 · · · bj · δ(h) · bj+1 · · · bn

)
,

where fj (t0, · · · , tn+1), which we call the partial divided difference, is defined as

fj (t0, · · · , tn+1) =
[
tj , tj+1; t �→ f (t0, · · · , tj−1, t, tj+2, · · · , tn)

]
.
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9.4 Laplace type h-differential operators and asymptotic
expansions

Let us first recall this class of differential operators which is introduced in [35].
It extends the previous classes of differential operators on noncommutative tori, in
particular Dirac Laplacians of conformally flat metrics.

Definition 9.1 ([35]) Let h ∈ C∞(Tdθ ) be a smooth selfadjoint element.

(i) An h-differential operator on T
d
θ is a differential operator P =∑α pαδ

α, with
C∞(Tdθ )-valued coefficients pα which can be written in the contraction form

pα = Pα,α1,··· ,αk (h(0), · · · , h(k))(δα1(h) · · · δαk (h)).

(ii) A second order h-differential operator P is called a Laplace type h-differential
operator if its symbol is a sum of homogeneous parts pj of the form

p2 = P ij2 (h)ξiξj ,
p1 = P ij1 (h(0), h(1))(δi(h))ξj ,
p0 = P ij0,1(h(0), h(1))(δiδj (h))+ P ij0,2(h(0), h(1), h(2))(δi(h) · δj (h)),

where the principal symbol p2 : Rn → C∞(Tdθ ) is a C∞(Tdθ )-valued quadratic
form such that p2(ξ) > 0 for all ξ ∈ R.

We can allow the symbols to be matrix valued, that is pj : C∞(Rd)→ C∞(Tdθ )⊗
Mn(C), provided that all p2(ξ) ∈ C∞(Tdθ )⊗ In for all non-zero ξ ∈ R.

Many of the elliptic second order differential operators on noncommutative tori
which were studied in the literature are Laplace type h-differential operators. For
instance, the two differential operators on T

2
θ whose spectral invariants are studied

in [21, 31] are indeed Laplace type h-differential operator. In fact with k = eh/2,
these operators are given by

k�k = kδδ∗k, �(0,1)ϕ = δ∗k2δ,

where δ = δ1 + τ̄ δ2 and δ∗ = δ1 + τδ2 for some complex number τ in the upper
half plane.

Let P be a positive Laplace type h-differential operator. Using the Cauchy
integral formula, one has

e−tP = −1

2πi

∫
γ

e−tλ(P − λ)−1dλ, t > 0,
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for a suitable contour γ . Expanding the symbol of the parametrix σ((P − λ)−1),
one obtains a short time asymptotic expansion for localized heat trace for any a ∈
C∞(Tdθ ):

Tr(ae−tP ) ∼
∞∑
n=0

cn(a)t
(n−d)/2.

Here, cn(a) = ϕ(abn) with

bn = 1

(2π)d

∫
Rd

−1

2πi

∫
γ

bn(ξ, λ)dλdξ. (69)

Using the rearrangement lemma (Lemma 9.1) and the fact that the contraction map
and integration commute, one obtains

b2 =
(

1

(2π)d

∫
Rd

−1

2πi

∫
γ

B
ij

2,1(ξ, λ, h(0), h(1)) e
−λdλdξ

) (
δiδj (h)

)

+
(

1

(2π)d

∫
Rd

−1

2πi

∫
γ

B
ij

2,2(ξ, λ, , h(0), h(1), , h(2)) e
−λdλdξ

)

× (δi(h) · δj (h)).
The dependence of Bij2,k on λ comes only from different powers of B0 in its terms,
while its dependence on ξj ’s is the result of appearance of ξj as well as of B0 in the
terms. Therefore, the contour integral will only contain e−λ and product of powers
of B0(tj ). Hence, we need to deal with a certain kind of contour integral for which
we shall use the following notation and will call them T -functions:

Tn;α(t0, · · · , tn) := −1

πd/2

∫
Rd

ξn1 · · · ξn2|α|−4

1

2πi

∫
γ

e−λBα0
0 (t0) · · ·Bαn0 (tn)dλdξ,

(70)
where n = (n1, · · · , n2|α|−4) and α = (α0, · · · , αn). We recall the T -functions and
their properties a bit later. There is an explicit formula for b2(P ) which we now
recall from [35]:

Proposition 9.1 For a positive Laplace type h-differential operator P with the
symbol given by (9.1), the term b2(P ) in the contraction form is given by

b2(P ) = (4π)−d/2
(
B
ij

2,1(h(0), h(1))
(
δiδj (h)

)

+Bij2,2(h(0), h(1), h(2))
(
δi(h) · δj (h)

))
,
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where the functions are defined by

B
ij

2,1(t0, t1) =− T;1,1(t0, t1)P ij0,1(t0, t1)+ 2Tk�;2,1(t0, t1)P ik2 (t0)P
j�

1 (t0, t1)

+ Tk�;2,1(t0, t1) P ij2 (t0)
[
t0, t1;P k�2

]

− 4Tk�mn;3,1(t0, t1)P ik2 (t0)P
j�

2 (t0)
[
t0, t1;Pmn2

]
,

and

B
ij

2,2(t0, t1, t2) =− T;1,1(t0, t2)P ij0,2(t0, t1, t2)
+ Tk�;1,1,1(t0, t1, t2) P ik1 (t0, t1)P

j�

1 (t1, t2)

− 2Tk�mn;2,1,1(t0, t1, t2) P im2 (t0)
[
t0, t1;P k�2

]
P
jn

1 (t1, t2)

+ 2Tk�;2,1(t0, t2) P ik2 (t0)
[
t0, t1;P j�1 (·, t2)

]

+ 2Tk�;2,1(t0, t2) P jk2 (t0)
[
t1, t2;P i�1 (t0, ·)

]

+ Tk�;1,1,1(t0, t1, t2) P ij1 (t0, t1)
[
t1, t2;P k�2

]

− 2Tk�mn;2,1,1(t0, t1, t2) P j�2 (t0)P
ik
1 (t0, t1)

[
t1, t2;Pmn2

]

− 2Tk�mn;1,2,1(t0, t1, t2) P ik1 (t0, t1)P
j�

2 (t1)
[
t1, t2;Pmn2

]

− 2Tk�mn;2,1,1(t0, t1, t2) P ij2 (t0)
[
t0, t1;P �m2

] [
t1, t2;P kn2

]

− 4Tk�mn;2,1,1(t0, t1, t2) P ik2 (t0)
[
t0, t1;P j�2

] [
t1, t2;Pmn2

]

+ 8Tk�mnpq;3,1,1(t0, t1, t2) P ik2 (t0)P
jn

2 (t0)
[
t0, t1;P �m2

]
× [t1, t2;Ppq2

]

+ 4Tk�mnpq;2,2,1(t0, t1, t2)P ik2 (t0)
[
t0, t1;P �m2

]
P
jn

2 (t1)

× [t1, t2;Ppq2

]

+ 2Tk�;2,1(t0, t2) P ij2 (t0)
[
t0, t1, t2;P k�2

]

− 8Tk�mn;3,1(t0, t2) P ik2 (t0)P
j�

2 (t0)[t0, t1, t2;Pmn2

]
.

��
The computation of the higher heat trace densities for a Laplace type h-operator

can be similarly carried out, expecting many more terms in the results. This would
give a way to generalize results obtained for the conformally flat noncommutative
two torus in [17] where b4 of the LaplacianD2 of the Dirac operatorD is computed.
This problem won’t be discussed further in this paper, but is certainly an interesting
problem.
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Evaluating T -functions (70), the only parts of formulas for Bi,j2,1 and Bi,j2,2 that
need to be evaluated, is not always an easy task. In [35] a concise integral formula
for T -functions is given and their properties are studied. For the contour integral
in (70). it is clear that there are functions fα1,··· ,αn such that

−1

2πi

∫
γ

e−λBα0
0 (t0) · · ·Bαn0 (tn)dλ = fα0,··· ,αn

(
‖ξ‖2

t0
, · · · , ‖ξ‖2

tn

)
.

Here, we denoted P ij2 (tk)ξiξj by ‖ξ‖2
tk

. Examples of such functions are

f1,1(x0, x1) = − e−x0

x0 − x1
− e−x1

x1 − x0
,

f2,1(x0, x1) = − e−x0

x0 − x1
− e−x0

(x0 − x1)2
+ e−x1

(x1 − x0)2
.

Lemma 9.2 ([35]) Let P2(t) be a positive definite d × d matrix of smooth real
functions. Then

Tn;α(t0, · · · , tn) = 1

2|α|−2β!
∫
�n

n∏
j=0

s
αj−1
j

∑∏
n
P−1(s)ninσ(i)
√

detP(s)
ds,

where P(s) =∑n
j=0 sjP2(tj ) and β = (α0 − 1, · · · , αn − 1). ��

9.5 Functional metrics and scalar curvature

A natural question is if there exists a large class of noncommutative metrics
whose Laplacians are h-differential operators and hence amenable to the spectral
analysis developed in the last section. As we saw, conformally flat metrics on
noncommutative tori is such a class. But there are more. One of the interesting
concepts developed in [35] is the notion of a functional metric which is a much larger
class than conformally flat metrics and whose Laplacian is still an h-differential
operator. In this section we shall first recall this concept and reproduce the scalar
curvature formula for these metrics developed in [35].

Definition 9.2 Let h be a selfadjoint smooth element of a noncommutative d-torus
and let gij : R→ R, 1 ≤ i, j ≤ d, be smooth functions such that the matrix

(
gij (t)

)
is a positive definite matrix for every t in a neighborhood of the spectrum of h. We
shall refer to gij (h) as a functional metric on Adθ .

The construction of the Laplacian on functions on T
d
θ equipped with a functional

metric g = gij (h) follows the same pattern as in previous sections. Details can
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be found in [35], where the following crucial result is also proved. The Laplacian
δ∗δ : H0,g → H0,g on elements of C∞(Tdθ ) is given by

δj (a)g
jk(h)δk(|g| 1

2 (h))|g|− 1
2 (h)+ δj (a)δk(gjk(h))+ iδk(δj (a))gjk(h).

To carry the spectral analysis of the Laplacian δ∗δ : H0,g → H0,g , we switch to the
antiunitary equivalent setting as follows. Let H0 be the Hilbert space obtained by
the GNS construction from Adθ using the nonperturbed tracial state ϕ.

Proposition 9.2 The operator δ∗δ : H0,g → H0,g is antiunitary equivalent to
a Laplace type h-differential operator �0,g : H0 → H0 whose symbol, when
expressed in the contraction form, has the functional parts given by

P
jk

2 (t0) = gjk(t0),
P
jk

1 (t0, t1) = |g|− 1
4 (t0)

[
t0, t1; |g| 1

4
]
gjk(t1)+

[
t0, t1; gjk

]

+ |g| 1
4 (t0)g

jk(t0)
[
t0, t1; |g|− 1

4
]
,

P
jk

0,1(t0, t1) = |g| 1
4 (t0)g

jk(t0)
[
t0, t1; |g|− 1

4
]
,

P
jk

0,2(t0, t1, t2) = |g|− 1
4 (t0)

[
t0, t1; gjk|g| 1

2
][
t1, t2; |g|− 1

4
]

+ 2|g| 1
4 (t0)g

jk(t0)
[
t0, t1, t2; |g|− 1

4
]
.

An important case of the functional metric is the conformally flat metric

gij (t) = f (t)−1gij , (71)

where f is a positive smooth function and gij ’s are the entries of a constant metric
on R

d . The functions given by Proposition 9.2, for the conformally flat metrics, give
us the following:

P
jk

2 (t0) = gjkf (t0), (72)

P
jk

1 (t0, t1) = gjk
(
f (t0)

d
4
[
t0, t1; f 1− d4 ]+ f (t0)1− d4 [t0, t1; f d4 ]

)
,

P
jk

0,1(t0, t1) = gjkf (t0)1−
d
4
[
t0, t1; f d4

]
,

P
jk

0,2(t0, t1, t2) = gjk
(
f (t0)

d
4
[
t0, t1; f 1− d2 ][t1, t2; f d4 ]

+ 2f (t0)
1− d4 [t0, t1, t2; f d4 ]

)
.

A careful examination of formula (72) shows that for any function P ij• there exists a
function P• such that P ij• = gijP•. We have similar situation with the T -functions
for conformally flat metrics.
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Lemma 9.3 ([35]) Let α and n = (n1, · · · , n2|α|−4) be two multi-indices. Then the
T -function Tn,α for the conformally flat metric (71) is of the form

Tn,α(t0, · · · , tn) =
√|g|∑∏

n

gninσ(i)Tα(t0, · · · , tn).

The function Tα in dimension d �= 2 is given by

Tα(t0, · · · , tn) = (−1)|α|−1
(
d
2 − 1

)

(
d
2 + |α| − 2

) ∂
β
x

[
x0, · · · , xn; u1− d2 ]∣∣∣

xj=f (tj )
, (73)

where β = (α0 − 1, · · · , αn − 1).

As an example, we have

Tα,1(t0, t1) = (−1)α(d2 − 1)

2α−1(d2 + α − 1)

×
( f (t1)

1− d2
(f (t1)− f (t0))α

−
α−1∑
m=0

(−1)m(d2 +m− 1)

(d2 − 1)m!
f (t0)

− d2−m+1

(f (t1)− f (t0))α−m
)
.

Note that for dimension two, Tα,1(t0, t1) can be obtained by taking the limit
of (73) as d approaches 2. When f (t) = t , we have

Tα,1(t0, t1) = (−1)α−1

2α−1(α)2
∂α−1
t0

[
t0, t1; log(u)

]
.

Recall that the scalar curvature density of a given functional metric is defined by

R = (4π) d2 b2(�0,g).

This scalar curvature density is computed for two classes of examples in all
dimensions: conformally flat metrics and twisted products of conformally flat
metrics. Let us recall this result:

Theorem 9.2 ([35]) The scalar curvature of the d-dimensional noncommutative
tori Tdθ equipped with the metric f (h)−1gij is given by

R = √|g|(Kd(h(0), h(1))(�(h))+Hd(h(0), h(1), h(2))(�(h))
)
,
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where �(h) = gij δiδj (h), �(h) = gij δi(h) · δj (h). The functions Kd and Hd are
given by

Kd(t0, t1) =Ktd(f (t0), f (t1))
[
t0, t1; f

]
,

Hd(t0, t1, t2) =Htd(f (t0), f (t1), f (t2))
[
t0, t1; f

][
t1, t2; f

]
+ 2Ktd(f (t0), f (t2))

[
t0, t1, t2; f

]
,

(74)

where Ktd and Htd are the functions Kd and Hd when f (t) = t . For d �= 2, they can
be computed to be

Ktd(x, y) =
4 x2− 3d

4 y2− 3d
4

d(d − 2)(x − y)3(
(d − 1)x

d
2 y

d
2−1 − (d − 1)x

d
2−1y

d
2 − xd−1 + yd−1

)
,

and

Htd(x, y, z) =
2x− 3d

4 y−dz− 3d
4

(d − 2)d(x − y)2(x − z)3(y − z)2

×
(
xdydz2(x − y)

(
3x2y − 2x2z− 4xy2 + 4xyz− 2xz2 + yz2

)

+ xdy d2+1z
d
2+1(x − z)2(z− y)(dx + (1 − d)y)

+ xdy3zd(z− x)3 + x d2+1y
3d
2 z2(x − y)(x − z)2

+ 2(d − 1)x
d
2+1ydz

d
2+1(x − y)(x − z)(z− y)(x − 2y + z)

− x d2+1y
d
2+1zd(x − y)(x − z)2((1 − d)y + dz)

− x2y
3d
2 z

d
2+1(x − z)2(z− y)

+ x2ydzd(y − z)
(
x2y − 2x2z+ 4xyz− 2xz2 − 4y2z+ 3yz2

))
.

These functions for the dimension two are given by

Kt2(x, y) = −
√
x
√
y

(x − y)3 ((x + y) log(x/y)+ 2(y − x)),

H t2(x, y, z) =
2
√
x
√
z

(x − y)2(x − z)3(y − z)2

×
(
− (x − y)(x − z)(y − z)(x − 2y + z)+ y(x − z)3 log(y)
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+ (y − z)2(−2x2 + xy + yz) log(x)

− (x − y)2(xy + zy − 2z2) log(z))
)
.

Note that the Function Ktd(x, y) is the symmetric part of the function

8x2− d4 y2− 3d
4

d(d − 2)(x − y)3
(
(d − 1)y

d
2−1 − x d2−1

)
.

Similarly, Htd(x, y, z) is equal to (Fd(x, y, z)+ Fd(z, y, x))/2 where

Fd(x, y, z) = 4x− 3d
4 y−dz− 3d

4

d(d − 2)(x − y)2(x − z)3(y − z)2

×
(
xdydz2(x − y)(3x2y − 2x2z− 4xy2 + 4xyz− 2xz2 + yz2)

+ xdy d2+1z
d
2+1(x − z)2(z− y)(dx + (1 − d)y)

+ 1

2
xdy3zd(z− x)3

+ x d2+1y
3d
2 z2(x − y)(x − z)2

+ 2(d − 1)x
d
2+1ydz

d
2+1(x − y)2(x − z)(z− y)

)
.

As we recalled in earlier sections, in low dimensions two, three, and four, the
curvature of the conformally flat metrics was computed in [21, 31, 28, 32, 24]. It is
shown in [35] that the above general formula reproduces those results. We should
first note that the functions found in all the aforementioned works are written in
terms of the commutator [h, ·], denoted by �. To produce those functions from
our result, a linear substitution of the variables tj in terms of new variables sj
is needed. On the other hand, it is important to note that the functions Ktd(x, y)
and Htd(x, y, z) are homogeneous rational functions of order − d2 and − d2 − 1,
respectively. Using formula (74), it is clear that the functions Kd(t0, t1) and
Hd(t0, t1, t2) are homogeneous of order 1− d

2 in f (tj )’s. This is the reason that for

function f (t) = et and a linear substitution such as tj =∑j

m=0 sm, a factor of some
power of es0 comes out. This term can be replaced by a power of eh multiplied from
the left to the final outcome. This explains how the functions in the aforementioned
papers have one less variable than our functions. In other words, we have

Kd(s0, s0+s1) = e(1− d2 )s0Kd(s1), Hd(s0, s0+s1, s0+s1+s2) = e(1− d2 )s0Hd(s1, s2).

For instance, function Kd(s) is given by
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Kd(s1) =
8e

d+2
4 s1

(
(d − 1) sinh

(
s1
2

)+ sinh
(
(1−d)s1

2

))

d(d − 2)d (es1 − 1)2 s1
.

Now, we can obtain functions in dimension two:

H2(s1) = −e
s1
2 (es1 (s1 − 2)+ s1 + 2)

(es1 − 1) 2s1
,

K2(s1, s2) =
(
s1(s1 + s2) cosh(s2)− (s1 − s2)

× (s1 + s2 + sinh(s1)+ sinh(s2)− sinh(s1 + s2))
−s2(s1 + s2) cosh(s1)

)

×csch
( s1

2

)
csch

( s2
2

)
csch2

(
s1 + s2

2

)
/(4s1s2(s1 + s2)).

we have −4H2 = H and −2K2 = K where K and H are the functions found in
[21, 31]. The difference is coming from the fact that the noncommutative parts of the
results in [28, Section 5.1] are �(log(eh/2)) = 1

2�(h) and �(log(eh/2)) = 1
4�(h).

The functions for dimension four, with the same conformal factor f (t) = et and
substitution tj = ∑j

m=0 sm, gives the following which up to a negative sign are in
complete agreement with the results from our papers [32, 28]:

H4(s1) = 1 − es1
2es1s1

, K4(s1, s2) = (e
s1 − 1) (3es2 + 1) s2 − (es1 + 3) (es2 − 1) s1

4es1+s2s1s2 (s1 + s2) .

To recover the functions for curvature of a noncommutative three torus equipped
with a conformally flat metric obtained in [42, 24], we need to set f (t) = e2t and
t0 = s0, t1 = s0 + s1/3 and t2 = s0 + (s1 + s2)/3. Then up to a factor of e−s0 , we
have

H3(s1) = 4 − 4e
s1
3

e
s1
6 (s1e

s1
3 + 1)

, K3(s1, s2) =
6(e

s1
3 −1)(3e

s2
3 +1)s2

−6(e
s1
3 +3)(e

s2
3 −1)s1

e
s1+s2

6 (e
s1+s2

3 + 1)s1s2(s1 + s2)
.

Finally, one needs to check the classical limit of these formulas as θ → 0. In the
commutative case, the scalar curvature of a conformally flat metric g̃ = e2hg on a
d-dimensional space reads

R̃ = −2(d − 1)e−2hgjk∂j ∂k(h)− (d − 2)(d − 1)e−2hgjk∂j (h)∂k(h).

For f (t) = e−2t , the limit is
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lim
t0,t1→t

Kd(t0, t1)= 1

3
(d−1)e(d−2)t , lim

t0,t1,t2→t
Hd(t0, t1, t2) = 1

6
(d−2)(d−1)e(d−2)t .

We should also add that since δj →−i∂j as θ → 0, we have�(h)→−gjk∂j ∂k(h)
and �(h) → −gjk∂j (h)∂k(h). Therefore, these results recover the classical result
up to a factor of

√|g|edh/6. The factor
√|g|edh represents the volume form in the

scalar curvature density and the factor 1/6 is due to the choice of normalization
in (9.5).

9.6 Twisted product, warped product, and scalar curvature

In this section, following [35], we shall recall the computation of the scalar curvature
density of a noncommutative d-torus equipped with a class of functional metrics,
which is called a twisted product metric.

Definition 9.3 ([35]) Let g be an r×r and g̃ be a (d−r)× (d−r) positive definite
real symmetric matrices and assume f is a positive function on the real line. The
functional metric

G = f (t)−1g ⊕ g̃, (75)

is called a twisted product functional metric with the twisting element f (h)−1.

Some examples of the twisted product metrics on noncommutative tori were already
studied. The asymmetric two torus whose Dirac operator and spectral invariants are
studied in [23] is a twisted product metric for r = 1. The scalar and Ricci curvature
of noncommutative three torus of twisted product metrics with r = 2 are studied in
[24]. It is worth mentioning that conformally flat metrics as well as warped metrics
are two special cases of twisted product functional metrics. The following theorem
is proved in [35].

Theorem 9.3 The scalar curvature density of the d-dimensional noncommutative
tori Tdθ equipped with the twisted product functional metric (75) with the twisting
element f (h)−1 is given by

R = √|g||g̃|(Kr(h(0), h(1))(�(h))+Hr(h(0), h(1), h(2))(�(h))
+ K̃r (h(0), h(1))(�̃(h))+ H̃r (h(0), h(1), h(2))(�̃(h))

)
,

where �̃(h) =∑r<i,j g̃
ij δiδj (h) and �̃(h) =∑r<i,j g̃

ij δi(h)δj (h) and �, �, Kr
and Hr are given by Theorem 9.2. The functions K̃r and H̃r for r �= 2, 4 are given
by

K̃r (t0, t1) = K̃tr (f (t0), f (t1))
[
t0, t1; f

]
,
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H̃r (t0, t1, t2) = H̃ tr (f (t0), f (t1), f (t2))
[
t0, t1; f

][
t1, t2; f

]

+ 2K̃tr (f (t0), f (t2))
[
t0, t1, t2; f

]
.

The functions K̃tr and H̃ tr are

K̃tr (x, y) =
(2r − 4)(x2 − y2)x

r
2 y

r
2 + 4x2yr − 4xry2

(r − 4)(r − 2)x
3
4 ry

3
4 r (x − y)3

,

and

H̃ tr (x, y, z) =
2x− 3r

4 y−r z− 3r
4

(r − 4)(r − 2)(x − y)2(x − z)3(y − z)2

×
(
xryrz2(x − y)

(
x2 + 2x(y − 2z)− 4y2 + 6yz− z2

)

+ xry r2 z r2 (x − z)2(y − z)((r − 3)yz− x((r − 3)z+ y))

− xry2zr(x − z)3 + x r2 y 3r
2 z2(x − y)(x − z)2

− x r2 yrz r2 (x−y)(x−z)(y−z)((r−3)x2− 2x((r−2)y + (1− r)z)
+ z((r− 3)z− 2(r− 2)y)

)

+ x r2 y r2 zr(y − x)(x − z)2(yz− (r − 3)x(y − z))
+ x2y

3r
2 z

r
2 (x − z)2(y − z)− x2yrzr (y − z)

×
(
x2 − 6xy + 4xz+ 4y2 − 2yz− z2

) )
.

When the selfadjoint element h ∈ Adθ has the property that δj (h) = 0 for 1 ≤
j ≤ r , we call the twisted product functional metric (75) a warped functional metric
with the warping element 1/f (h).

Corollary 9.1 The scalar curvature density of a warped product of g̃ and g with
the warping element 1/f (h) is given by

R = √|g||g̃|(K̃r (h(0), h(1))(�̃(h))+ H̃r (h(0), h(1), h(2))(�̃(h))
)
.

Proof It is enough to see that �(h) and �(h) vanish for the warped metric. ��
For r = 2 and r = 4, functions H̃r and K̃r are the limit of the functions given in

Theorem 9.3 as r approaches 2 or 4. This is because of the fact that for these values
of r , some of T kα functions are the limit case of formulas found earlier. For r = 2
we have
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K̃2(x, y) =
−x2 + y2 + 2xy log( x

y
)

√
xy(x − y)3 ,

and

H̃2(x, y, z) = 1

2y
√
xz(x − y)2(x − z)3(y − z)2

×
(
− y(x + y)(x − z)3(y + z) log(y)

− z(x − y)2
(
−3x2y + x2z− 8xy2

+10xyz− 2xz2 + yz2 + z3
)

log(z)

+ x(y − z)2
(
x3 + x2y − 2x2z

+10xyz+ xz2 − 8y2z− 3yz2
)

log(x)

+ 2y(y − x)(x − z)(x + z)(z− y)(x − 2y + z)
)
.

For r = 4, we have

K̃4(x, y) =
x2 − y2 − (x2 + y2) log( x

y
)

xy(x − y)3 ,

and

H̃4(x, y, z) = 1

2x(x − y)2y2(x − z)3(y − z)2z
×
( (
x2 + y2

)
(x − z)3

(
y2 + z2

)
log(y)

+ log(x)(y − z)2
(
x4y + x4z− 6x3y2 − 2x3yz− 2x3z2 + 3x2y3

+x2y2z+ x2yz2 + x2z3 + 2xy3z− 4xy2z2 + 3y3z2 + y2z3
)

− log(z)(x − y)2
(
x3y2 + x3z2 + 3x2y3 − 4x2y2z+ x2yz2

−2x2z3 + 2xy3z+ xy2z2 − 2xyz3 + xz4 + 3y3z2

−6y2z3 + yz4
)

− 2(x − y)(x − z)(y − z)
(
x3z+ x2y2 − 2x2z2 − 2xy3 + 2xy2z

+xz3 − 2y3z+ y2z2
) )
.
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In [24, section 4.1], the scalar curvature density of twisted product functional
metric on noncommutative three torus for f (t) = e2t and r = 2 is found. This
result can be recovered from our formulas given in Theorem 9.3 by setting t0 = s0,
t1 = s0 + s1/2 and t2 = s0 + s1/2 + s2/2.

9.7 Dimension two and Gauss-Bonnet theorem

The following result which is proved in [35] shows that the total scalar curvature of
a noncommutative two torus equipped with a functional metric g is independent
of g. This result extends the Gauss-Bonnet theorem of [22, 30] earlier proved
for conformally flat metrics. This is done by a careful study of the functions
F
ij
S in dimension two, where it is shown that these functions vanish for the

noncommutative two torus equipped with a functional metric g. This means that
the total scalar curvature of (T2

θ , g) is independent of g. Similar to the case of
conformally flat metrics, we call this result the Gauss-Bonnet theorem for functional
metrics.

Theorem 9.4 (Gauss-Bonnet Theorem [35]) The total scalar curvature ϕ(R) of
the noncommutative two tori equipped with a functional metric vanishes, hence it is
independent of the metric.

Let us summarize the results obtained in [35] where a new family of metrics,
called functional metrics, on noncommutative tori is introduced and their spectral
geometry is studied. A class of Laplace type operators for these metrics is introduced
and their spectral invariants are obtained from the heat trace asymptotics. A formula
for the second density of the heat trace is also obtained. In particular, the scalar
curvature density and the total scalar curvature of functional metrics are explicitly
computed in all dimensions for certain classes of metrics including conformally flat
metrics and twisted product of flat metrics. Finally a Gauss-Bonnet type theorem for
a noncommutative two torus equipped with a general functional metric is proved.

10 Matrix Gauss-Bonnet

As we emphasized in the previous section, it is quite important to go beyond
conformally flat metrics, go beyond noncommutative tori, and beyond dimension
four. For example, one naturally needs to consider noncommutative algebras that
would represent higher genus noncommutative curves and other noncommutative
manifolds. As far as noncommutative higher genus curves go, there is as yet no
satisfactory theory, even at a topological level, and much less at a metric or spectral
level. This is a largely uninvestigated area and we expect new methods and ideas
will be needed to make further progress with these objects.
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A reasonable class of noncommutative algebras are algebras of matrix valued
functions on a smooth manifold. Now topologically they are Morita equivalent
to commutative algebras and not so interesting, but their spectral geometry poses
interesting questions. A first step was taken in [43] to address this question. In
this paper a new class of noncommutative algebras that are amenable to spectral
analysis, namely algebras of matrix valued functions on a Riemann surface of
arbitrary genus, are studied. The Dirac operator is conformally rescaled by a
diagonalizable matrix and a Gauss-Bonnet theorem is proved for them. This is the
matrix Gauss-Bonnet in the title of this section. When the surface has genus one,
scalar curvature is explicitly computed. We shall briefly sketch these results in this
section.

LetM be a two-dimensional closed spin Riemannian manifold and consider the
algebra of smooth matrix valued functions onM:

A = C∞(M,Mn(C)).

The Dirac operator ofM , D : L2(S)→ L2(S) acts on the Hilbert space of spinors.
The algebra A acts diagonally on the Hilbert space H = L2(S)⊗ C

n and we have
a spectral triple.

Let h ∈ A be a positive element. We use h to perturb the spectral triple of A
in the following way. Consider the operator Dh = hDh as a conformally rescaled
Dirac operator. Now Dh does not have bounded commutators with the elements of
A, but we still have a twisted spectral triple. This is similar to the situation with
curved noncommutative tori. The question is if the Gauss-Bonnet theorem holds
for Dh. One is also interested in knowing if the scalar curvature can be computed
explicitly. The answer is positive as we sketch now.

To simplify the matters a bit, it is assumed that the Weyl conformal factor h is
diagonalizable, that is h = UHU∗, where U is unitary and H is diagonal. Then we
have

hDh = UHU∗DUHU∗ = U (H (D + U∗[D,U ])H )U∗,

which shows that the spectrum of Dh and DA,H = H(D + A)H are equal.
Here A = U∗[D,U ] is a matrix valued one-form on M and D + A represents a
fluctuation of the geometry represented by D. It is shown in [43] that the Gauss-
Bonnet theorem holds for the family of conformally rescaled Dirac operators with
possible fluctuations DA,H = H(D + A)H as above. Local expressions for the
scalar curvature are computed as well. The results demonstrate that unlike the case
of higher residues in [38], the expressions for the value of the ζ function at 0 are
complicated also in the matrix case.

Let us consider first the canonical spectral triple for a flat torusM = R
2/Z2. Its

spin structure is defined by the Pauli spin matrices σ 1, σ 2 and its Dirac operator is

D = σ 1δ1 + σ 2δ2.
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Here δ1, δ2 are the partial derivatives 1
i
∂
∂x

and 1
i
∂
∂y
. To compute the resolvent kernel

we work in the algebra of matrix valued pseudodifferential operators obtained by
tensoring the algebra � of pseudodifferential operators on a smooth manifoldM by
the algebra of n by n matrices.

The Resolvent The symbol of the Bochner LaplacianD2
A,H = H(D+A)H 2(D+

A)H is given by σD2
A,H

= a2 + a1 + a0, where

a2 = H 4ξ2,

a1 = iεij σ 32H 3δi(H)ξ
j + 4H 3δi(H)ξ

i − iεij σ 3H 3AiHξ
j

+H 3AiHξ
i + iεij σ 3HAiH

3ξj +HAiH 3ξ i,

a0 = H 4(�H)+H 3Ajδi(H)−H 3iσ 3εijAiδj (H)+H 3δi(Ai)H

+ iσ 3H 3εij δj (Ai)H + 2H 2δi(H)δi(H)+ 2H 2δi(H)AiH

+ 2HAiH
2δi(H)+ 2iσ 3H 2εij δi(H)AjH

+ iσ 3εijHAiH
2δi(H)+ iσ 3εijHAiH

2Aj +HAiH 2AiH.

The first three terms of the symbols of (DH,a)−2 = b0 + b1 + b2 + · · · are:

b0 = (a2 + 1)−1,

b1 = − (b0a1 + ∂k(b0)δk(a2)) b0,

b2 = −
(
b1a1 + b0a0 + ∂k(b0)δk(a1)+ ∂k(b1)δk(a2)+ 1

2
∂k∂j (b0)δkδj (a2)

)
b0.

10.1 Matrix curvature

Let us call a matrix-valued function R : T2 → Mn(C) the scalar curvature if for
any matrix valued function f ∈ A we have:

ζf,D(0) =
∫
T2

Tr fR,

where the localized spectral zeta function is defined by

ζf,D(s) = Tr f |D|−s .

It is found that four terms contribute to the scalar curvature R [43]:
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Terms not Depending on A They depend only on H and derivatives of H , and
since they commute with each other, they can be computed as in the classical case.

b2(H, ξ) =96 b5
0δi(H)δi(H)H

14(ξ2)3 − 136 b4
0δi(H)δi(H)H

10(ξ2)2

+ 46 b3
0δi(H)δi(H)H

6(ξ2)− 2 b2
0δi(H)δi(H)H

2

− 8 b4
0�(H)H

11(ξ2)2 + 8 b3
0�(H)H

7(ξ2)− b2
0�(H)H

3,

(76)

To integrate over the ξ space, we can use the formula

∫ ∞

0

r2k+1dr

(1 + a2r2)2k+3 =
1

2(k + 1)a2(k+1)
,

and obtain

R(H) = −π
(

1

3
H−2δi(H)δi(H)+ 1

3
H−1�(H)

)
. (77)

To continue, we use the rearrangement lemma of [46]. Let

�(x) = H−4xH 4.

Terms Linear in A We have:

b
(1)
2 (H,A) = −b0hAib0δi(H)H

2 + 5b0hAib
2
0δi(H)H

6ξ2

− 4b0hAib
3
0δi(H)H

10(ξ2)2

− b0H
3Aib0δi(H)+ 7b0H

3Aib
2
0δi(H)H

4ξ2

− 4b0H
3Aib

3
0δi(H)H

8(ξ2)2

+ 3b2
0H

5Aib0δi(H)H
2ξ2 − 4b2

0H
5Aib

2
0δi(H)H

6(ξ2)2

+ b2
0H

7Aib0δi(H)ξ
2 − 4b2

0H
7Aib

2
0δi(H)H

4(ξ2)2

and

b
(1)
2 (H,A) = −2b0δi(H)H

2Aib0H + 2b2
0δi(H)H

4Aib0H
3ξ2

+ 6b2
0δi(H)H

6Aib0Hξ
2 − 4b3

0δi(H)H
8Aib0H

3(ξ2)2

− 4b3
0δi(H)H

10Aib0H(ξ
2)2.
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Explicit computations give

R(1)(H,A) =
∑
i=1,2

2πHG(�)(Ai)δi(H),

where G is the following function:

G(s) = (1 +
√
s)
√
s

(s − 1)3
(
(s + 1) ln(s)− 2(s − 1)

)
,

and a second term,

R(2)(H,A) =
∑
i=1,2

−2πH−2δi(H)G(�)(Ai)H,

with the same function G(s). After taking the trace these terms cancel each other,
and we get

Tr
(
R(1)(H,A)+ R(2)(H,A)

)
= 0.

Terms Linear in δi(Ai) In this case we have:

b2(H, δi(Aj )) = −b0H
3δi(Ai)b0H + b2

0H
5δi(Ai)b0H

3ξ2

+ b2
0H

7δi(Ai)b0Hξ
2,

and integrating out the ξ variables, we get πH−1F(�)(δi(Ai))H, where

F = − (1 +
√
s)
√
s

(s − 1)2
ln(s)+

√
s + 1

s − 1
.

Again, it is not difficult to check that F(1) = 0 and the expression vanishes after
taking the trace:

Tr
(
R(H, δi(Aj ))

) = 0.

Quadratic Terms in Ai We have:

b2(H,A
2) = −b0HAiH

2Aib0H + b0HAib0H
6Aib0Hξ

2

+ b0H
3Aib0H

2Aib0H
3ξ2.

Integrating over ξ we obtain:

R(H,A2) = −πH−1Q(�(1),�(2))(Ai · Ai)H
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where

Q(s, t) =
√
s(
√
t + s)

(s − 1))(s − t) ln s −
√
s
√
s

(s − t)√t ln t.

To compute the trace, let

F(s) = Q(s, 1) = (s + 1) ln s + 2(1 − s)
(s − 1)2

,

and observe that due to the trace property:

Tr
(
H−1F(�)(Ai)AiH

)
= Tr (AiF (�)(Ai))

= Tr
(
F(�−1)(Ai)Ai

)
.

Now since

F(
1

s
) = −( 1

s
+ 1) ln s + 2(1 − 1

s
)

( 1
s
− 1)2

= −(s + 1) ln s − 2(1 − s)
(s − 1)2

= −F(s),
one gets

Tr R(H,A2) = 0,

and so the quadratic term vanishes as well.

10.2 The Gauss-Bonnet theorem

The term which does not depend on A is a total derivative term:

1

3
δi

(
H−1δi(H)

)
.

Using Stokes theorem, this term is seen to vanish as well after integration. Putting
it all together, one thus obtains:
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Proposition 10.1 For the matrix conformally rescaled Dirac operator on the two-
dimensional torus,Dh = hDh, where h is a globally diagonalizable positive matrix,
the Gauss-Bonnet theorem holds:

ζDh(0) = ζD(0).

10.3 Higher genus matrix Gauss-Bonnet

Now we look at the general case where M is a closed Riemann surface with a spin
structure and a Dirac operator D. Consider the operator

DH,A = H(D + A)H,

for H a diagonal matrix valued function on M and A a matrix-valued one-form,
identified here with its Clifford image.

We must now compute the value of ζD2
H,A
(0) using methods of pseudodifferential

calculus. Let us denote the symbols of D2
H as:

D2
H = (HDH)2 = aH2 + aH1 + aH0 ,

and the symbol of D2 as

D2 = ao2 + ao1 + ao0 .

As in the case of the torus, the computation is divided into the cases of terms not
depending on A, linear in A and quadratic in A.

Terms Independent of A Since H is globally diagonalizable, we can assume it is
scalar. Thus we are reduced to a conformal rescaling of the classical Dirac operator.
Since in this case the Gauss-Bonnet theorem holds, it remains only to see that the
contribution to the Gauss-Bonnet term from the linear and quadratic terms in A
vanishes.

Terms Linear in A Linear terms do arise in b2 from the following terms:

b0a
H
1 b0a1(A)b0 + ∂ξk (b0)∂

x
k (a

H
2 )b0a1(A)b0 + b0a1(A)b0a

H
1 b0

− b0a0(A)b0 − ∂ξk (b0)∂
x
k (a1(A))b0 − ∂ξk (b0a1(A)b0)∂

x
k (a

H
2 )b0.

where a1(A), a0(A) denote terms linear in A. Now, one can use normal coordinates
at a given point x of M . The terms without derivatives reduce easily to the torus
case. The only difficulty arises from terms with derivatives in x, that is, ∂xk (a

H
2 ). and

∂xk (a1(A)). Since aH2 = H 4gij ξ
iξ j , and in normal coordinates the first derivatives
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of the metric vanish at the point x, we see that the only remaining term would be
with the derivative of H 4, and again this term would be reduced to the term linear
in A from the torus case.

Similar argument works also for the other term, a1(A), which is

(
H 3AiH +HAkH 3

)
σkσ iξi,

and since in ∂ξk (b0)∂
x
k (a1(A))b0 there are no further σ matrices, one can compute

first the trace over the Clifford algebra and write it as

1

2

(
H 3AiH +HAkH 3

)
gkiξi .

Thus, in normal coordinates around x the expression is identical to the one for the
flat torus. Therefore, the integration over ξ would yield the same result, and the
density of the linear A contribution to the trace of b2 vanishes at x. Consequently,
the contribution to the Gauss-Bonnet term linear in A also vanishes.

Quadratic Terms The quadratic terms in A are

b0a1(A)b0a1(A)b0 − b0a0(A
2)b0.

It is easy to see that in normal coordinates we have:

a1(A) =
(
H 3σ j ξj (σ

iAi)H + σ iHAiH 3σ j ξj

)
,

a0(A) = (σ iHAiH)(σ kHAkH).

Using normal coordinates, one reduces the ξ -integral to the situation already
considered for the torus. Hence the density of Gauss-Bonnet term with quadratic
contributions from A identically vanishes as well. This finishes the proof of Gauss-
Bonnet for higher genus matrix valued functions with a general Dirac operator with
fluctuation. This result was obtained in [43].

11 Curvature of the determinant line bundle

It would be interesting to know how far our hard analytic methods like pseudod-
ifferential operators, spectral analysis and heat equation techniques, can be pushed
in the noncommutative realm, at least for noncommutative tori and toric manifolds.
So far we have seen that these analytic techniques, suitably modified and enhanced,
has been quite successful in dealing with scalar and Ricci curvature. Along this
idea, in [25] the curvature of the determinant line bundle on a family of Dirac
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operators for a noncommutative two torus is computed. Following Quillen’s original
construction for Riemann surfaces [53] and using zeta regularized determinant
of Laplacians, the determinant line bundle is endowed with a natural Hermitian
metric. By defining an analogue of Kontsevich-Vishik canonical trace, defined on
Connes’ algebra of classical pseudodifferential symbols for the noncommutative
two torus, the curvature form of the determinant line bundle is computed through
the second variation δwδw̄ log det(�). Calculus of symbols and the canonical trace
were effectively used to bypass local calculations involving Green functions in [53]
which is not applicable in the noncommutative case. In a sequel paper [26], the
spectral eta function for certain families of Dirac operators on noncommutative 3-
torus is studied and its regularity at zero is proved. By using variational techniques,
it is shown that the eta function ηD(0) is a conformal invariant. By studying the
Laurent expansion at zero of TR(|D|−z), the conformal invariance of ζ ′|D|(0) for
noncommutative 3-torus is proved. Finally, for the coupled Dirac operator, a local
formula for the variation ∂AηD+A(0) is derived which is the analogue of the so-
called induced Chern-Simons term in quantum field theory literature.

In this section we shall recall and comment on results obtained in [25] on the
curvature of the determinant line bundle on a noncommutative torus.

11.1 The determinant line bundle

Let F = Fred(H0,H1) denote the set of Fredholm operators between Hilbert spaces
H0 and H1. It is an open subset, in norm topology, in the complex Banach space of
all bounded linear operators between H0 and H1. The index map index : F → Z is
a homotopy invariant and in fact defines a bijection between connected components
of F and the set of integers Z. It is well known that F is a classifying space
for K-theory (Atiyah-Janich): for any compact space X we have a natural ring
isomorphismK0(X) = [X,F] between theK-theory of X and the set of homotopy
classes of continuous maps from X to F .

In [53] Quillen defines a holomorphic line bundle DET → F over the space of
Fredholm operators such that for any T ∈ F

DETT = �max(ker(T ))∗ ⊗�max(coker(T )).

This is remarkable if we notice that ker(T ) and coker(T ) are not vector bundles due
to discontinuities in their dimensions as T varies within F .

It is tempting to think that since c1(DET) is the generator ofH 2(F0,Z) ∼= Z, F0
being the index zero operators, there might exist a natural Hermitian metric on DET
whose curvature 2-form would be a representative of this generator. One problem
is that the induced metric from ker(T ) and ker(T ∗) on DET is not even continuous.
In [53] Quillen shows that for families of Cauchy-Riemann operators on a Riemann
surface one can correct the Hilbert space metric by multiplying it by zeta regularized
determinant and in this way one obtains a smooth Hermitian metric on the induced



Curvature in noncommutative geometry 411

determinant line bundle. In [25] a similar construction for the noncommutative two
torus is given as we explain later in this section.

11.2 The canonical trace and noncommutative residue

To carry the calculations, an analogue of the canonical trace of [45] for the
noncommutative torus is constructed in [25]. First we need to extend our original
algebra of pseudodifferential operators to classical pseudodifferential operators.

A smooth map σ : R2 → Aθ is called a classical symbol of order α ∈ C if for
anyN and each 0 ≤ j ≤ N there exist σα−j : R2\{0} → Aθ positive homogeneous
of degree α − j and a symbol σN ∈ S�(α)−N−1(Aθ ), such that

σ(ξ) =
N∑
j=0

χ(ξ)σα−j (ξ)+ σN(ξ) ξ ∈ R
2. (78)

Here χ is a smooth cut-off function on R
2 which is equal to zero on a small ball

around the origin, and is equal to one outside the unit ball. It can be shown that the
homogeneous terms in the expansion are uniquely determined by σ . We denote
the set of classical symbols of order α by Sαcl(Aθ ) and the associated classical
pseudodifferential operators by �αcl(Aθ ).

The space of classical symbols Scl(Aθ ) is equipped with a Fréchet topology
induced by the semi-norms

pα,β(σ ) = sup
ξ∈R2

(1 + |ξ |)−m+|β|||δα∂βσ (ξ)||. (79)

The analogue of the Wodzicki residue for classical pseudodifferential operators
on the noncommutative torus is defined in [33].

Definition 11.1 The Wodzicki residue of a classical pseudodifferential operator Pσ
is defined as

Res(Pσ ) = ϕ0 (res(Pσ )) ,

where res(Pσ ) :=
∫
|ξ |=1 σ−2(ξ)dξ .

It is evident from its definition that Wodzicki residue vanishes on differential
operators and on non-integer order classical pseudodifferential operators.

To define the analogue of the canonical trace on non-integer order pseudodif-
ferential operators on the noncommutative torus, one needs the existence of the
so-called cut-off integral for classical symbols.
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Proposition 11.1 Let σ ∈ Sαcl(Aθ ) and B(R) be a disk of radius R around the
origin. One has the following asymptotic expansion as R→∞

∫
B(R)

σ (ξ)dξ ∼
∞∑

j=0,α−j+2 �=0

αj (σ )R
α−j+2 + β(σ) logR + c(σ ),

where β(σ) = ∫
|ξ |=1 σ−2(ξ)dξ and the constant term in the expansion, c(σ ), is

given by

∫
Rn

σN +
N∑
j=0

∫
B(1)

χ(ξ)σα−j (ξ)dξ −
N∑

j=0,α−j+2 �=0

1

α − j + 2

∫
|ξ |=1

σα−j (ω)dω.

(80)

Definition 11.2 The cut-off integral of a symbol σ ∈ Sαcl(Aθ ) is defined to be the
constant term in the above asymptotic expansion, and we denote it by

∫− σ(ξ)dξ .

The cut-off integral of a symbol is independent of the choice of N . It is also
independent of the choice of the cut-off function χ .

Definition 11.3 The canonical trace of a classical pseudodifferential operator P ∈
�αcl(Aθ ) of non-integral order α is defined as

TR(P ) := ϕ0

(∫
− σP (ξ)dξ

)
.

Note that any pseudodifferential operator P of order less than −2 is a trace-class
operator on H0 and its trace is given by

Tr(P ) = ϕ0

(∫
R2
σP (ξ)dξ

)
.

On the other hand, for such operators the symbol is integrable and we have

∫
− σP (ξ)dξ =

∫
R2
σP (ξ)dξ. (81)

Therefore, the TR-functional and operator trace coincide on classical pseudodiffer-
ential operators of order less than −2.

The canonical trace TR is an analytic continuation of the operator trace and using
this fact one can prove that it is actually a trace.

Proposition 11.2 Given a holomorphic family σ(z) ∈ Sα(z)cl (Aθ ), z ∈ W ⊂ C, the
map

z �→
∫
− σ(z)(ξ)dξ,
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is meromorphic with at most simple poles. Its residues are given by

Resz=z0

∫
− σ(z)(ξ)dξ = − 1

α′(z0)

∫
|ξ |=1

σ(z0)−2dξ.

Using the above result one can show that if A ∈ �αcl(Aθ ) is of order α ∈ Z and
Q is a positive elliptic classical pseudodifferential operator of positive order q, then

Resz=0TR(AQ−z) = 1

q
Res(A).

Using this and the uniqueness of analytic continuation one can prove the trace
property of TR. That is, TR(AB) = TR(BA) for any A,B ∈ �cl(Aθ ), provided
that ord(A)+ ord(B) /∈ Z.

11.3 Log-polyhomogeneous symbols

In general, z-derivatives of a classical holomorphic family of symbols is not classical
anymore and therefore one needs to introduce log-polyhomogeneous symbols which
include the z-derivatives of the symbols of the holomorphic family σ(AQ−z).

Definition 11.4 A symbol σ is called a log-polyhomogeneous symbol if it has the
following form

σ(ξ) ∼
∑
j≥0

∞∑
l=0

σα−j,l(ξ) logl |ξ | |ξ | > 0, (82)

with σα−j,l positively homogeneous in ξ of degree α − j .

A prototypical example of an operator with such a symbol is logQ where
Q ∈ �qcl(Aθ ) is a positive elliptic pseudodifferential operator of order q > 0.
The logarithm ofQ can be defined by

logQ = Q d

dz

∣∣∣∣
z=0
Qz−1 = Q d

dz

∣∣∣∣
z=0

i

2π

∫
C

λz−1(Q− λ)−1dλ.

For an operator A with log-polyhomogeneous symbol as (82) we define

res(A) =
∫
|ξ |=1

σ−2,0(ξ)dξ.

The following result can be proved along the lines of its classical counterpart in
[52].
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Proposition 11.3 Let A ∈ �αcl(Aθ ) and Q be a positive, in general an admissible,
elliptic pseudodifferential operator of positive order q. If α ∈ P , then 0 is a possible
simple pole for the function z �→ TR(AQ−z) with the following Laurent expansion
around zero.

TR(AQ−z) = 1

q
Res(A)

1

z

+ ϕ0

(∫
− σ(A)(ξ)dξ − 1

q
res(A logQ)

)
− Tr(A Q)

+
K∑
k=1

(−1)k
(z)k

k!

×
(
ϕ0

(∫
− σ(A(logQ)k)(ξ)dξ − 1

q(k + 1)
res(A(logQ)k+1)

)

−Tr(A(logQ)k Q)
)
+ o(zK).

where  Q is the projection on the kernel ofQ.

For operators A and Q as in the previous Proposition, the generalized zeta
function is defined by

ζ(A,Q, z) = TR(AQ−z). (83)

From Proposition 11.2, it follows that ζ(A,Q, z) is a meromorphic function with
simple poles. Moreover, ζ(A,Q, z) is the analytic continuation of the spectral zeta
function Tr(AQ−z). If A is a differential operator, the zeta function (83) is regular
at z = 0 with a value

ϕ0

(∫
− σ(A)(ξ)dξ − 1

q
res(A logQ)

)
− Tr(A Q).

11.4 Cauchy-Riemann operators on noncommutative tori

As we did before, we can fix a complex structure on Aθ by a complex number τ in
the upper half plane. Consider the spectral triple

(
Aθ,H0 ⊕H0,1,D0 =

(
0 ∂̄∗
∂̄ 0

))
, (84)
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where ∂̄ : Aθ → Aθ is given by ∂̄ = δ1 + τδ2. The Hilbert space H0 is defined
by the GNS construction from Aθ using the trace ϕ0 and ∂̄∗ is the adjoint of the
operator ∂̄ .

As in the classical case, the Cauchy-Riemann operator on Aθ is the positive part
of the twisted Dirac operator. All such operators define spectral triples of the form

(
Aθ,H0 ⊕H0,1,DA =

(
0 ∂̄∗ + α∗
∂̄ + α 0

))
,

where α ∈ Aθ is the positive part of a selfadjoint element

A =
(

0 α∗
α 0

)
∈ �1

D0
(Aθ ).

We recall that �1
D0
(Aθ ) is the space of quantized one forms consisting of the

elements
∑
ai[D0, bi] where ai, bi ∈ Aθ [14]. Note that in this case the space

A of Cauchy-Riemann operators is the space of (0, 1)-forms on Aθ .

11.5 The curvature of the determinant line bundle for Aθ

For any α ∈ A, the Cauchy-Riemann operator

∂̄α = ∂̄ + α : H0 → H0,1

is a Fredholm operator. We pull back the determinant line bundle DET on the space
of Fredholm operators Fred(H0,H0,1), to get a line bundle L on A. Following
Quillen [53], one can define a Hermitian metric on L and the problem is to compute
its curvature. Let us define a metric on the fiber

Lα = �max(ker ∂̄α)
∗ ⊗�max(ker ∂̄∗α)

as the product of the induced metrics on �max(ker ∂̄α)∗ and �max(ker ∂̄∗α), with the

zeta regularized determinant e−ζ
′
�α
(0). Here we define the Laplacian as�α = ∂̄∗α∂̄α :

H0 → H0, and its zeta function by

ζ(z) = TR(�−zα ).

It is a meromorphic function and is regular at z = 0. Similar proof as in [53] shows
that this defines a smooth Hermitian metric on the determinant line bundle L.
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On the open set of invertible operators each fiber of L is canonically isomorphic
to C and the non-zero holomorphic section σ = 1 gives a trivialization. Also,
according to the definition of the Hermitian metric, the norm of this section is given
by

‖σ‖2 = e−ζ ′�α (0). (85)

11.6 Variations of LogDet and curvature form

A holomorphic line bundle equipped with a Hermitian inner product has a canonical
connection compatible with the two structures. This is also known as the Chern
connection. The curvature form of this connection is given by ∂̄∂ log ‖σ‖2, where
σ is any non-zero local holomorphic section.

In the case at hand, the second variation ∂̄∂ log ‖σ‖2 on the open set of invertible
Cauchy-Riemann operators must be computed. Let us consider a holomorphic
family of invertible Cauchy-Riemann operators Dw = ∂̄ + αw, where αw depends
holomorphically on the complex variable w. The second variation of logdet, that is
δw̄δwζ

′
�(0), is computed in [25] as we recall now.

Lemma 11.1 For the holomorphic family of Cauchy-Riemann operators Dw, the
second variation of ζ ′(0) is given by

δw̄δwζ
′(0) = 1

2
ϕ0

(
δwDδw̄res(log�D−1)

)
.

��
The final step is to compute δw̄res(log�D−1). This combined with the above
lemma will show that the curvature form of the determinant line bundle equals the
Kähler form on the space of connections. We refer the reader to [25] for the proof
which is long and technical. We emphasize that the original Quillen proof, based on
Green function calculations, cannot be extended to the noncommutative case.

Lemma 11.2 With the above definitions and notations, we have

σ−2,0(log�D−1) = (α + α∗)ξ1 + (τ̄α + τα∗)ξ2
(ξ2

1 + 2�(τ )ξ1ξ2 + |τ |2ξ2
2 )(ξ1 + τξ2)

− log

(
ξ2

1 + 2�(τ )ξ1ξ2 + |τ |2ξ2
2

|ξ |2
)

α

ξ1 + τξ2 ,
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and

δw̄res(log(�)D−1) = 1

2π (τ ) (δwD)
∗.

Now we can state the main result of [25] which computes the curvature of
the determinant line bundle in terms of the natural Kähler form on the space of
connections.

Theorem 11.1 The curvature of the determinant line bundle for the noncommuta-
tive two torus is given by

δw̄δwζ
′(0) = 1

4π (τ )ϕ0
(
δwD(δwD)

∗) . (86)

In order to recover the classical result of Quillen in the classical limit of θ = 0, one
has to notice that the volume form has changed due to a change of the metric. This
means we just need to multiply the above result by  (τ ).

12 Open problems

In this final section we formulate some of the open problems that we think are
worthy of study for further understanding of local invariants of noncommutative
manifolds.

1. Beyond dimension two and beyond conformally flat. The class of conformally
flat metrics in dimensions bigger than two cover only a small part of all possible
metrics. It would be very important to formulate large classes of metrics that are
not conformally flat, but at the same time lend themselves to spectral analysis
and to heat asymptotics techniques. It is also very important to have curvature
formulas that work uniformly in all dimensions. The largest such class so far is
the class of the so-called functional metrics introduced in [35] and surveyed in
Section 9 of this paper. It is an interesting problem to further enlarge this class.

2. To extend the definition of curvature invariants to noncommutative spaces with
non-integral dimension, including zero dimensional spaces. This would require
rethinking the heat trace asymptotic expansion, and the nature of its leading and
sub-leading terms. In particular since quantum spheres are zero dimensional,
its spectrum is of exponential growth and does not satisfy the usual Weyl’s
asymptotic law. A first step would be to see how to formulate a Gauss-Bonnet
type theorem for quantum spheres.

3. Weyl tensor and full curvature tensor. It is not clear that the classical differential
geometry would, or should, give us a blueprint in the noncommutative case. One
should be prepared for new phenomena. Having that in mind, one should still
look for analogues of Weyl and full Riemann curvature tensors. The problem
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is that the components of these tensors are quite entangled in the heat trace
expansion, and separating and identifying their different components seem to
be a hard task, if not impossible. One needs new ideas to make progress here.

4. Gauss-Bonnet terms in higher dimensions. The Gauss-Bonnet density in two
dimension is particularly simple and is in fact equal to the scalar curvature
multiplied by the volume form. In dimensions four and above this term is
classically more complicated, being the Pfaffian of the curvature tensor. In
dimension four it is a linear combination of norms of the Riemann tensor, the
Ricci tensor, and the Ricci scalar. It is not clear how this can be expressed in
terms of the heat kernel coefficients.

5. Higher genus noncommutative Riemann surfaces. It is highly desirable to define
noncommutative Riemann surfaces of higher genus equipped with a spectral
triple and check the Gauss-Bonnet theorem for them. This would greatly extend
our understanding of local invariants of noncommutative spaces.

6. Noncommutative uniformization theorem. The study of curved noncommutative
2-tori suggests a natural problem in noncommutative geometry. At least for
the class of noncommutative 2-tori it is desirable to know to what extent the
uniformization theorem holds, or what form and shape it would take.

7. Analytic versus algebraic curvature. In classical differential geometry, as we saw
in this paper, there are algebraic as well as analytic techniques (based on the heat
equation) to define the scalar and Ricci curvature. The two approaches give the
same results. This is not so in the noncommutative case. For noncommutative
tori, when the deformation parameter satisfies some diophantine condition,
Rosenberg in [54] proved a Levi-Civita type theorem and hence gets an algebraic
definition of curvature. The resulting formula is very different from the formula
of Connes-Moscovici-Fathizadeh-Khalkhali [21, 32] surveyed in this paper. It is
important to see if there is any relation at all between these formulas and what
this means for the study of curved noncommutative tori.
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