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Abstract We present a history of the Baum–Connes conjecture, the methods
involved, the current status, and the mathematics it generated.

1 Introduction

1.1 Building bridges

Noncommutative Geometry is a field of Mathematics which builds bridges between
many different subjects. Operator algebras, index theory, K-theory, geometry
of foliations, group representation theory are, among others, ingredients of the
impressive achievements of Alain Connes and of the many mathematicians that he
has inspired in the past 40 years.

At the end of the 1970s the work of Alain Connes on von Neumann theory nat-
urally led him to explore foliations and groups. His generalizations of Atiyah’s L2

index theorem were the starting point of his ambitious project of Noncommutative
Geometry. A crucial role has been played by the pioneering conference in Kingston
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in July 1980, where he met the topologist Paul Baum. The picture of what was soon
going to be known as the Baum–Connes conjecture quickly emerged. The catalytic
effect of IHES should not be underestimated; indeed the paper [BC00] was for a long
time available only as an IHES 1982 preprint. It is only in 1994 that the general and
precise statement was given in the proceedings paper [BCH94] with Nigel Higson.

1.2 In a nutshell: without coefficients. . .

The Baum–Connes conjecture also builds a bridge between commutative geometry
and noncommutative geometry. Although it may be interesting to formulate the
conjecture for locally compact groupoids,1 we stick to the well-accepted tradition
of formulating the conjecture for locally compact, second countable groups.

For every locally compact group G there is a Baum–Connes conjecture! We
start by associating to G four abelian groups K

top∗ (G) and K∗(C∗r (G)) (with ∗ =
0, 1), then we construct a group homomorphism, the assembly map:

μr : Ktop∗ (G)→ K∗(C∗r (G)) (∗ = 0, 1).

We say that the Baum–Connes conjecture holds for G if μr is an isomorphism
for ∗ = 0, 1. Let us give a rough idea of the objects.

• The RHS of the conjecture, K∗(C∗r (G)), is called the analytical side: it belongs
to noncommutative geometry. Here C∗r (G), the reduced C∗-algebra of G, is the
closure in the operator norm of L1(G) acting by left convolution on L2(G), and
K∗(C∗r (G)) is its topological K-theory.

Topological K-theory is a homology theory for Banach algebras A, enjoy-
ing the special feature of Bott periodicity (Ki(A) is naturally isomorphic to
Ki+2(A)), so that there are just two groups to consider: K0 and K1. K-theory
conquered C∗-algebra theory around 1980, as a powerful invariant to distinguish
C∗-algebras up to isomorphism. The first success was, in the case of the free
group Fn of rank n, the computation of K∗(C∗r (Fn)) by Pimsner and Voiculescu
[PV82]: they obtained

K0
(
C∗r (Fn)

) = Z, K1
(
C∗r (Fn)

) = Zn,

so that K1 distinguishes reduced C∗-algebras of free groups of various ranks.
For many connected Lie groups (e.g., semisimple), C∗r (G) is type I, which

points to using dévissage techniques: representation theory allows to define
ideals and quotients of C∗r (G) that are less complicated, so K∗(C∗r (G)) can be
computed by means of the 6-term exact sequence associated with a short exact

1This is important, e.g., for applications to foliations, see Chapter 7.
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sequence of Banach algebras. By way of contrast, if G is discrete, C∗r (G) is
very often simple (see [BKKO17] for recent progress on that question); in that
case, dévissage must be replaced by brain power (see [Pim86] for a sample), and
the Baum–Connes conjecture at least provides a conjectural description of what
K∗(C∗r (G)) should be (see, e.g., [SG08]).

• The LHS of the conjecture, K
top∗ (G), is called the geometric, or topological

side. This is actually misleading, as its definition is awfully analytic, involving
Kasparov’s bivariant theory (see in this chapter). A better terminology would be
the commutative side, as indeed it involves a space EG, the classifiying space
for proper actions of G (see Chapter 4) and K

top∗ (G) is the G-equivariant K-
homology of EG.

When G is discrete and torsion-free, then EG = EG = B̃G, the universal
cover of the classifying space BG. As G acts freely on EG, the G-equivariant
K-homology of EG is K∗(BG), the ordinary K-homology of BG, where K-
homology for spaces can be defined as the homology theory dual to topological
K-theory for spaces.

• The assembly map μr will be defined in Chapter 4 using Kasparov’s equivariant
KK-theory. Let us only give here a flavor of the meaning of this map. It was
discovered in the late 1970s and early 1980s that the K-theory group K∗(C∗r (G))

is a receptacle for indices, see Section 2.3. More precisely, if M is a smooth
manifold with a proper action of G and compact quotient, and D an elliptic
G-invariant differential operator on M , then D has an index indG(D) living in
K∗(C∗r (G)). Therefore, the geometric group K

top∗ (G) should be thought of as the
set of homotopy classes of such pairs (M, D), and the assembly map μr maps
the class [(M, D)] to indG(D) ∈ K∗(C∗r (G)).

1.3 . . . and with coefficients

There is also a more general conjecture, called the Baum–Connes conjecture with
coefficients, where we allow G to act by *-automorphisms on an auxiliary C∗-
algebra A (which becomes a G−C∗-algebra), and where the aim is to compute the
K-theory of the reduced crossed product C∗r (G, A). One defines then the assembly
map

μA,r : Ktop∗ (G, A)→ K∗
(
C∗r (G, A)

)
(∗ = 0, 1)

and we say that the Baum–Connes conjecture with coefficients holds for G if
μA,r is an isomorphism for ∗ = 0, 1 and every G−C∗-algebra A. The advantage
of the conjecture with coefficients is that it is inherited by closed subgroups; its
disadvantage is that it is false in general, see Chapter 9.
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1.4 Structure of these notes

Using the acronym BC for “Baum–Connes conjecture,” here is what the reader will
find in this piece.

• Where does BC come from? Chapter 2, on the history of the conjecture.
• What are the technical tools and techniques? Chapter 3, on Kasparov theory (and

the Dirac–dual-Dirac method).
• What is BC, what does it entail, what is the state of the art? Chapter 4.
• Why is BC difficult? Chapter 5, discussing BC with coefficients for semisimple

Lie groups and their closed (e.g., discrete) subgroups.
• How can we hope to overcome those difficulties? Chapter 6, on Banach algebraic

methods.
• Is BC true or false? For BC without coefficients we don’t know, but we know

that the natural extension of BC from groups to groupoids is false (see Chapter
7), and we know that BC with coefficients is false (see Chapter 9).

We could have stopped there. But it seemed unfortunate not to mention an important
avatar of BC, namely the coarse Baum–Connes conjecture (CBC) due to the late
John Roe: roughly speaking, groups are replaced by metric spaces, see Chapter 8.
An important link with the usual BC is that for a finitely generated group, which
can be viewed as a metric space via some Cayley graph, CBC implies the injectivity
part of BC.

Finally, it was crucial to mention the amount of beautiful mathematics generated
by BC, and this is done in Chapter 9.

1.5 What do we know in 2019?

In Chapter 3 we explain the “Dirac–dual-Dirac” method used by Kasparov [Kas95]
to prove the injectivity of μA,r for all semisimple Lie group G and all G − C∗-
algebras A; this also proves injectivity for closed subgroups of a semisimple Lie
group, as this property passes to closed subgroups. Since then, an abstraction of
the Dirac–dual-Dirac method, explained in Section 4.4, has been used by Kasparov
and Skandalis [KS03], to prove the injectivity of the assembly map for a large class
of groups denoted by C in [Laf02b]. This class contains, for example, all locally
compact groups acting continuously, properly and isometrically on a complete
and simply connected Riemannian manifold of non-positive scalar curvature (see
[Kas88]), or on a Bruhat–Tits affine building (for example, all p-adic groups, see
[KS91]), all hyperbolic groups (see [KS03]). So the injectivity of the Baum–Connes
assembly map has been proven for a huge class of groups.

The conjecture with coefficients has been proven for a large class of groups that
includes all groups with the Haagerup property (e.g., SL2(R), SO0(n, 1), SU(n, 1),
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and all free groups). For those groups the proof is due to Higson and Kasparov
(see [HK01]) and it is also based on the “Dirac–dual-Dirac” method. This method
cannot, however, be applied to non-compact groups having property (T), not even
for the conjecture without coefficients: see Section 5.1 for more on the tension
between the Haagerup and Kazhdan properties.

Nevertheless, as will be explained in Section 6.1, Lafforgue managed to prove
the conjecture without coefficients for all semisimple Lie groups and for some
of their discrete subgroups, precisely those having property (RD) (as defined in
Section 6.1.4). For example, the conjecture without coefficients is true for all
cocompact lattices in SL3(R) but it is still open for SL3(Z).2

On the other hand, the conjecture with coefficients has been proven for all
hyperbolic groups (see [Laf12]), but it still open for higher rank semisimple Lie
groups and their closed subgroups: see Sections 5.2 and 6.2.3 for more on that.

An example of a group for which, at the time of writing, μr is not known to
be either injective or surjective is the free Burnside group B(d, n), as soon as it is
infinite.3

1.6 A great conjecture?

What makes a conjecture great? Here we should of course avoid the chicken-and-
egg answer “It’s a great conjecture because it is due to great mathematicians.”
We should also be suspicious of the pure maths self-referential answer: “It’s a
great conjecture because it implies several previous conjectures”: that an abstruse
conjecture implies even more abstruse ones,4 does not necessarily make it great.

We believe that the interest of a conjecture lies in the feeling of unity of
mathematics that it entails. We hope that the reader, in particular the young expert,
after glancing at the table of contents and the various subjects listed in Section 1.7
below, will not let her/himself be discouraged. Rather (s)he should take this as
an incentive to learn new mathematics, and most importantly connections between
them.

Judging by the amount of fields that it helps bridging (representation theory,
geometric group theory, metric geometry, dynamics,. . . ), we are convinced that yes,
the Baum–Connes conjecture is indeed a great conjecture.

2In the case of SL3(Z), surjectivity of μr is the open problem; the LHS of the Baum–Connes
conjecture was computed in [SG08].
3Recall that B(d, n) is defined as the quotient of the non-abelian free group Fd by the normal
subgroup generated by all n’s powers in Fd .
4Compare with Sections 2.5 and 4.5.
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1.7 Which mathematics are needed?

We use freely the following concepts; for each we indicate one standard reference:

• locally compact groups (Haar measure, unitary representations): see [Dix96];
• semisimple Lie groups and symmetric spaces: see [Hel62];
• operator algebras (full and reduced group C∗-algebras, full and reduced crossed

products): see [Ped79];
• K-theory for C∗-algebras (Bott periodicity, 6-term exact sequences, Morita

equivalence): see [WO93];
• index theory: see [BBB13].

2 Birth of a conjecture

2.1 Elliptic (pseudo-) differential operators

Let M be a closed manifold, and let D be a (pseudo-) differential operator acting
on smooth sections of some vector bundles E, F over M , so D maps C∞(E) to
C∞(F ). Let T ∗M denote the cotangent bundle of M . The (principal) symbol is a
bundle map σ(D) from the pullback of E to the pullback of F on T ∗M . Recall that
D is said to be elliptic if σ(D) is invertible outside of the zero section of T ∗M .
In this case standard elliptic theory guarantees that ker(D) and coker(D) are finite-
dimensional, so that the (Fredholm) index of D is defined as

Ind(D) = dimC ker(D)− dimC coker(D) ∈ Z.

The celebrated Atiyah–Singer theorem [AS68] then provides a topological formula
for Ind(D) in terms of topological invariants associated with M and σ(D).

Now let M̃ → M be a Galois covering of M , with group �, so that M = �\M̃ .
Assume that D lifts to a �-invariant operator D̃ on M̃ , between smooth sections of
Ẽ, F̃ , the vector bundles pulled back from E, F via the covering map.

• Assume first that � is finite, i.e., our covering has n = |�| sheets. Then M̃ is a
closed manifold, and the index of D̃ satisfies Ind(D̃) = n·Ind(D). Now we may
observe that, in this case, there is a more refined analytical index, obtained by
observing that ker(D̃) and coker(D̃) are finite-dimensional representation spaces
of �, hence their formal difference makes sense in the additive group of the
representation ring R(�): we get an element � − Ind(D̃) ∈ R(�); the character
of this virtual representation of �, evaluated at 1 ∈ �, gives precisely Ind(D̃).

• Assume now that � is infinite. Then the L2-kernel and L2-cokernel of D̃ are
closed subspaces of the suitable space of L2-sections, namely L2(M̃, Ẽ) and
L2(M̃, F̃ ), and by �-invariance those spaces are representation spaces of �. The
problem with these representations is that their classical dimension is infinite.
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Atiyah’s idea in [Ati76] is to measure the size of these spaces via the dimension
theory of von Neumann algebras.

More precisely, the L2-kernel of D̃ is �-invariant, so the orthogonal projection
onto that kernel belongs to the algebra A of operators commuting with the natural
�-representation on L2(M̃, Ẽ). Choosing a fundamental domain for the �-action
on M̃ allows to identify �-equivariantly L2(M̃, Ẽ) with �2(�) ⊗ L2(M, E). So
A becomes the von Neumann algebra L(�) ⊗ B(L2(M, E)), where L(�), the
group von Neumann algebra of �, is generated by the right regular representation
of � on �2(�). The canonical trace on L(�) (defined by τ(a) = 〈a(δe), δe〉 for
a ∈ L(�)) provides a dimension function dim� on the projections in A. Atiyah’s
L2-index theorem [Ati76] states that

Theorem 2.1 In the situation above:

Ind(D) = Ind�(D̃),

where the right-hand side is defined as

Ind�(D̃) := dim�(kerD̃))− dim�(coker(D̃)).

2.2 Square-integrable representations

Recall that, for G a locally compact unimodular group, a unitary irreducible
representation π of G is said to be square-integrable if, for every two vectors ξ, η

in the Hilbert space of the representation π , the coefficient function

g 	→ 〈π(g)ξ, η〉

is square-integrable on G. Equivalently, π is a sub-representation of the left regular
representation λG of G on L2(G) (see [Dix96], section 14.1, for the equivalence).
The set of square-integrable representations of G is called the discrete series of G.

When G is a semisimple Lie group with finite center, we denote by Ĝr the
reduced dual, or tempered dual of G: this is the set of (equivalence classes
of) unitary irreducible representations of G weakly contained in λG; it may
also be defined as the support of the Plancherel measure on the full dual Ĝ of
G. A cornerstone of twentieth century mathematics is Harish-Chandra’s explicit
description of the Plancherel measure on semisimple Lie groups, and it turns out
that the discrete series of G is exactly the set of atoms of the Plancherel measure.

Let us be more specific. Let K be a maximal compact subgroup of G, a connected
semisimple Lie group with finite center. The first result of Harish-Chandra states
that the discrete series of G is non-empty if and only if G and K have equal rank.
This exactly means that a maximal torus of K is also a maximal torus of G. Let
us assume that this holds, and let us fix a maximal torus T in K . Let gC, kC, tC
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be the complexified Lie algebras of G, K, T respectively. Decomposing the adjoint
representations of T on kC and gC respectively, we get two root systems �c and
�, with �c ⊂ �: we say that � is the set of roots, while �c is the set of compact
roots. Correspondingly there are two Weyl groups W(K) ⊂ W . We denote by � the
lattice of weights of T . An element of tC is regular if its stabilizer in W is trivial.
We denote by ρ half the sum of positive roots in � (with respect to a fixed set �

of positive roots), and by ρc half the sum of the positive compact roots. We have
then Harish-Chandra’s main result on existence and exhaustion of discrete series
(see [Lip74], section I.B.2 for a nice summary of Harish-Chandra’s theory):

Theorem 2.2 To each regular element λ ∈ � + ρ is naturally associated a
square-integrable irreducible representation πλ of G such that πλ|K contains with
multiplicity 1 the K-type with highest weight λ + ρ − 2ρc. Every discrete series
representation of G appears in this way. If λ, μ ∈ �+ρ, the representations πλ, πμ

are unitarily equivalent if and only if λ and μ are in the same W(K)-orbit.

Impressive as it is, Theorem 2.2 left open the question of constructing geometri-
cally the discrete series representations πλ. That question was solved by Atiyah and
Schmid [AS77]. Assume that G has discrete series representations, which forces
the symmetric space G/K to be even-dimensional. Assume moreover that G/K

carries a G-invariant spin structure, meaning that the isotropy representation of K

on V := g/k lifts to the spin group of V ; this can be ensured by replacing G by
a suitable double cover. Then we have the two irreducible spinor representations
S+, S− of Spin(V ), that we view as K-representations.5 Fix a regular element λ in
�+ ρ; conjugating � by some element of W , we may assume that λ is dominating
for �. Then μ := λ − ρc ∈ � is a weight dominating for �c ∩ �, and we denote
by Eμ the irreducible representation of K with highest weight μ. Form the G-
equivariant induced vector bundles G×K (Eμ ⊗ S±) over G/K , and let

Dμ : C∞(G×K (Eμ ⊗ S+))→ C∞(G×K (Eμ ⊗ S−))

be the corresponding Dirac operator with coefficients in μ. The main result of
Atiyah and Schmid (see [AS77, 9.3]) is then:

Theorem 2.3 Let λ ∈ � + ρ be regular, with λ = μ + ρc as above. Then
coker(D+μ ) = 0 and the G-representation on ker(D+μ ) is the discrete series
representation πλ. If λ is not regular, then ker(D+μ ) = coker(D+μ ) = 0.

It is interesting to observe that Atiyah’s L2-index theorem plays a role in the
proof, as the authors need a torsion-free cocompact lattice � in G and apply the
L2-index theorem to the covering of the compact manifold �\G/K by G/K .

5G/K carries a G-invariant spin structure if and only if ρ − ρc ∈ �, see [AS77, 4.34]; the
distinction between S+ and S− is made by requiring that ρ − ρc is the highest weight for S+,
see [AS77, 3.13].
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To summarize, Dirac induction (i.e., realizing G-representations by means of
Dirac operators with coefficients in K-representations) sets up a bijection between
a generic set of irreducible representations of K and all square-integrable repre-
sentations of G. Suitably interpreted using K-theory of C∗-algebras, this principle
paved the way towards the Connes–Kasparov conjecture, which was the first form
of the Baum–Connes conjecture.

2.3 Enters K-theory for group C∗-algebras

The Atiyah–Schmid construction of the discrete series, served as a crucial moti-
vation for Connes and Moscovici [CM82] in their study of the G-index for
G-equivariant elliptic differential operators D on homogeneous spaces of the
form G/K , where G is a unimodular Lie group with countably many connected
components, and K is a compact subgroup. Their aim is to define the G-index of D

intrinsically, i.e., without appealing to Atiyah’s L2-index theory (so, not needing an
auxiliary cocompact lattice in G): D will not be Fredholm in the usual sense (unless
G is compact), but ker(D) and coker(D) will have finite G-dimension in the sense
of the Plancherel measure on Ĝr . The formal difference of these, the G-index of D,
is a real number shown to depend only on the class [σ(D)] of the symbol of D in
KK(V ∗), where KK denotes equivariant K-theory with compact supports and V ∗ is
the cotangent space to G/K at the origin. This G-index is computed in terms of the
symbol of D, and this index formula is used to prove that ker(D) is a finite direct
sum of square-integrable representations of G.

Crucial for our story is the final section of [CM82]. Indeed, there Connes and
Moscovici sketch the construction of an index taking values in K∗(C∗r (G)), the
topological K-theory of the reduced C∗-algebra of G. It goes as follows: let ρ be
a finite-dimensional unitary representation of K on Hρ , form the induced vector
bundle Eρ := G×KHρ over G/K . Denote by �∗G(G/K, Eρ) be the norm closure of
the space of 0-th order G-invariant pseudo-differential operators on G/K acting on
sections of Eρ : since such an operator acts by bounded operators on L2(G/K, Eρ),
we see that �∗G(G/K, Eρ) is a C∗-algebra on L2(G/K, Eρ). The symbol map
induces a ∗-homomorphism �∗G(G/K, Eρ) → CK(S(V ∗),B(Hρ)), where the
latter is the algebra of K-invariant, B(Hρ)-valued continuous functions on S(V ∗),
the unit sphere in V ∗. It fits into a short exact sequence

0 → C∗G(G/K, Eρ)→ �∗G(G/K, Eρ)→ CK(S(V ∗),B(Hρ))→ 0, (2.1)

where the kernel C∗G(G/K, Eρ) is the norm closure of G-invariant regularizing
operators on G/K . When ρ is the left regular representation of K , Connes and
Moscovici observe that C∗G(G/K, Eρ) is canonically isomorphic to the reduced C∗-
algebra C∗r (G) of G. If D ∈ �∗G(G/K, Eρ) is elliptic, then its symbol is invertible
in CK(S(V ∗),B(Hρ)), so defines an element [σ(D)] ∈ K1(CK(S(V ∗))). The short
exact sequence (2.1) defines a 6-term exact sequence in K-theory, and the connecting
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map K1(CK(S(V ∗))) → K0(C
∗
r (G)) allows to define indG(D) ∈ K0(C

∗
r (G)). So

the K-theory K∗(C∗r (G)) appears as a receptacle for indices of G-invariant elliptic
pseudo-differential operators on manifolds of the form G/K , with K compact.

We quote the final lines of [CM82]: “Of course, to obtain a valuable formula
for the index map indG, one first has to compute K0(C

∗
r (G)). When G is simply

connected and solvable, it follows from the Thom isomorphism in [Con81] that
Ki(C

∗(G)) � Ki+j (point), i, j ∈ Z2, where j is the dimension mod 2 of G. The
computation of the K-theory of C∗(G) for an arbitrary Lie group G and the search
for an “intrinsic” index formula certainly deserve further study.” This served as a
research program for the following years!6

Let us end this section by mentioning that, since the framework in [CM82]
is unimodular Lie groups with countably many connected components, it applies
in particular to countable discrete groups �. In this case the canonical trace τ :
C∗r (�) → C defines a homomorphism τ∗ : K0(C

∗
r (�)) → R, and τ∗(ind�(D)) =

Ind�(D), the �-index of D as in (2.1).

2.4 The Connes–Kasparov conjecture

Disclaimer: the Connes–Kasparov conjecture is not a conjecture anymore
since 2003! After proofs of several particular cases, starting with the case
of simply connected solvable groups established by Connes [Con81], and
the cornerstone of semisimple groups being established first by Wassermann
[Was87] by representation-theoretic methods then by Lafforgue [Laf02b] by
geometric/analytical techniques, the general case was handled by Chabert–
Echterhoff–Nest [CEN03] building on Lafforgue’s method. Nevertheless the
Connes–Kasparov conjecture was fundamental for the later formulation of the
more general Baum–Connes conjecture.

Let G be a connected Lie group, and let K be a maximal compact subgroup
(it follows from structure theory that K is unique up to conjugation). Set V =
g/k; assume that G/K carries a G-invariant spin structure, i.e., that the adjoint
representation of K on V lifts to Spin(V ). Let S+, S− be the spinor representations
of Spin(V ) (with the convention S+ = S− if j = dim G/K is odd), that we view
as K-representations. Let ρ be a finite-dimensional representation of K , form the
induced G-vector bundles E±ρ = G×K (ρ ⊗ S±). Let Dρ : C∞(E+ρ )→ C∞(E−ρ )

be the corresponding Dirac operator. Let R(K) be the representation ring of K .
Thanks to the previous section, we may define the Dirac induction

μG : R(K)→ Kj(C∗r (G)) : ρ 	→ indG(D+ρ ),

6We believe that Connes and Moscovici actually had C∗r (G), not C∗(G), in mind when writing
this.
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a homomorphism of abelian groups. The Connes–Kasparov conjecture (see [BC00],
section 5; [Kas87]; [Kas95], Conjecture 1) is the following statement:

Conjecture 1 (1st version) Let G be a connected Lie group, K a maximal compact
subgroup, j = dim(G/K). Assume that G/K carries a G-invariant spin structure.

(1) The Dirac induction μG : R(K)→ Kj(C∗r (G)) is an isomorphism;
(2) Kj+1(C

∗
r (G)) = 0

Remark 2.4 If G is semisimple with finite center, and π is a square-integrable
representation of G, then π defines an isolated point of Ĝr , so there is a splitting
C∗r (G) = Jπ ⊕K, where Jπ is the C∗-kernel of π and K is the standard algebra of
compact operators. Hence K0(C

∗
r (G)) = K0(Jπ )⊕Z, i.e., π defines a free generator

[π ] of K0(C
∗
r (G)). In terms of the Connes–Kasparov conjecture, Theorem 2.3

expresses the fact that the Dirac induction μG induces an isomorphism between
an explicit free abelian subgroup of R(K) and the free abelian part of K0(C

∗
r (G))

associated with the discrete series.

Example 2.5 Take G = SL2(R), so that K = T = SO(2). Then the set
� of weights of T identifies with Z, the set � of roots is {−2, 0, 2} (so that
ρ = 1 if � = {2}), the set �c of compact roots is {0}, and the Dirac induction
consists in associating to n > 0 the holomorphic discrete series representation
πn+1 (with minimal K-type n + 1), and to n < 0 the anti-holomorphic discrete
series representation πn−1 (with minimal K-type n − 1). For the singular weight
n = 0 (i.e., the trivial character of K), it follows from Theorem 2.3 that the
corresponding Dirac operator D0 has no kernel or cokernel. However, as prescribed
by Conjecture 1, its image by μG provides the “missing” generator of K0(C

∗
r (G)).

To understand this, let us dig further into the structure of C∗r (G): apart from discrete
series representations, Ĝr comprises two continuous series of representations. To
describe those, consider the subgroup B of upper triangular matrices and define two
families of unitary characters (where t ≥ 0):

χ0,t : B → T :
(

a b

0 a−1

)
	→ |a|it

χ1,t : B → T :
(

a b

0 a−1

)
	→ sign(a) · |a|it

For ε = 0, 1 and t ≥ 0, denote by σε,t the unitarily induced representation:

σε,t = IndG
B χε,t .

The family {σ0,t : t ≥ 0} (resp. {σ1,t : t ≥ 0}) is the even principal series (resp.
odd principal series). For t > 0 or for ε = 0, the representation σε,t is irreducible.
But σ1,0 splits into two irreducible components σ+1 , σ−1 (sometimes called mock

discrete representations), and Ĝr is the union of the discrete series, the even and the
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odd principal series of representations. The topology on the even principal series is
the topology of [0,+∞[, while the topology on the odd principal series is mildly
non-Hausdorff: for t → 0, the representation σ1,t converges simultaneously to σ+1
and σ−1 . As a consequence, the direct summand of C∗r (G) corresponding to the
even principal series is Morita equivalent to C0([0,+∞[), and hence is trivial in K-
theory, while the direct summand corresponding to the odd principal series is Morita
equivalent to

{f ∈ C0([0,+∞[, M2(C)) : f (0) is diagonal},

that contributes a copy of Z to K0(C
∗
r (G)), generated by the image of the trivial

character of K under Dirac induction. This description of C∗r (G) also gives
K1(C

∗
r (G)) = 0 by direct computation.

Coming back to the general framework (G connected Lie group, K maximal
compact subgroup), let us indicate how to modify the conjecture when G/K does
not have a G-invariant spin structure. Then we may construct a double cover G̃

of G, with maximal compact subgroup K̃ , such that G̃/K̃ = G/K carries a G̃-
invariant spin structure. Let ε ∈ Z(G̃) be the non-trivial element of the covering
map G̃→ G. Then R(K̃) splits into a direct sum

R(K̃) = R(K̃)0 ⊕ R(K̃)1,

where R(K̃)0 (resp. R(K̃)1) is generated by those irreducible representations ρ ∈ K̂

such that ρ(ε) = 1 (resp. ρ(ε) = −1). So R(K̃)0 identifies canonically with R(K).
Similarly C∗r (G̃) splits into the direct sum of two ideals C∗r (G̃) = J 0 ⊕ J 1, where

J 0 (resp. J 1) corresponds to those representations π ∈ (̂G̃)r such that π(ε) = 1
(resp. π(ε) = −1); so J 0 identifies canonically with C∗r (G). Now we observe that
the Dirac induction for G̃:

μ
G̃
: R(K̃) = R(K̃)0 ⊕ R(K̃)1 → Kj

(
C∗r (G̃)

)
= Kj(J 0)⊕Kj(J 1)

interchanges the Z/2-gradings: indeed the spin representations S± do not factor
through K by assumption, but if ρ is in R(K̃)1, then S± ⊗ ρ factors through K (as
ε acts by the identity). Hence the second case of the Connes–Kasparov conjecture:

Conjecture 2 (2nd version) Let G be a connected Lie group, K a maximal compact
subgroup, j = dim(G/K). Assume that G/K does not carry a G-invariant spin
structure.

(1) The Dirac induction μ
G̃
: R(K̃)1 → Kj(C∗r (G)) is an isomorphism;

(2) Kj+1(C
∗
r (G)) = 0

As we said before, the Connes–Kasparov conjecture was eventually proved for
arbitrary connected Lie groups by Chabert et al. [CEN03], whose result is even more
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general as it encompasses almost connected groups, i.e., locally compact groups
whose group of connected components is compact.

Theorem 2.6 The Connes–Kasparov conjecture holds for almost connected
groups.

In the same paper [CEN03], Chabert–Echterhoff–Nest obtain a purely
representation-theoretic consequence of Theorem 2.6:

Corollary 2.7 Let G be a connected unimodular Lie group. Then all square-
integrable factor representations of G are type I. Moreover, G has no square-
integrable factor representations if dim(G/K) is odd.

2.5 The Novikov conjecture

For discrete groups, an important motivation for the Baum–Connes conjecture was
provided by the work of Mishchenko (see, e.g., [Mis74]) and Kasparov (see, e.g.,
[Kas95]) on the Novikov conjecture, whose statement we now recall.

For a discrete group �, denote by B� “the” classifying space of �, a CW -
complex characterized, up to homotopy, by the properties that its fundamental
group is � and its universal cover E� is contractible.7 Alternatively, B� is a
K(�, 1)-space. As a consequence, group cohomology of �, defined algebraically,
is canonically isomorphic to cellular cohomology of B�.

Let M be a smooth, closed, oriented manifold of dimension n, equipped with a
map f : M → B�. For x ∈ H ∗(B�, Q) (cohomology with rational coefficients),
consider the higher signature

σx(M, f ) = 〈f ∗(x) ∪ L(M), [M]〉 ∈ Q,

where L(M) is the L-class (a polynomial in the Pontryagin classes, depending on
the smooth structure of M), and [M] is the fundamental class of M . The Novikov
conjecture states that these numbers are homotopy invariant (and so do not depend
on the smooth structure of M):

Conjecture 3 (The Novikov conjecture on homotopy invariance of higher signatures)
Let h : N → M be a homotopy equivalence; then for any x ∈ H ∗(B�, Q):

σx(M, f ) = σx(N, f ◦ h).

We say that the Novikov conjecture holds for � if Conjecture 3 holds for every
x ∈ H ∗(B�, Q). We refer to the detailed survey paper [FRR95] for the history of
this conjecture, and an explanation why it is important.

7As Connes once pointed out: “E� is a point on which � acts freely!.”
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We summarize now Kasparov’s approach from section 9 in [Kas95].8 Keeping
notations as in Conjecture 3, Kasparov considers the homology class D(M) =
L(M) ∩ [M] ∈ H∗(M, Q) which is Poincaré-dual to L(M), and Conjecture 3 is
equivalent to the homotopy invariance of the class f∗(D(M)) ∈ H∗(B�, Q).

Let d : �p(M)→ �p+1(M) be the exterior derivative on differential forms. Up
to crossing M with the circle S1, we may assume that n = dim M is even. Fix an
auxiliary Riemannian metric on M . This allows to define the adjoint d∗ : �p(M)→
�p−1(M): it satisfies d∗ = − � d�, where � is the Hodge operator associated with
the Riemannian structure.

Now consider d + d∗ acting on the space of all forms �(M) = ⊕n
p=0 �p(M).

One way to consider this as a graded operator is the following: let τ be an involution
on the space of all forms defined by:

τ(ω) = ip(p−1)+ n
2 � ω , ω ∈ �p(M).

It is verified that d + d∗ anti-commutes with τ : with this grading on forms, d + d∗
is the signature operator on M . As it is an elliptic operator, it defines an element
[d + d∗] in the group K0(M) of K-homology9 of M . Note that, by connectedness
of the space of Riemannian metrics on M , the element [d + d∗] ∈ K0(M) does not
depend on the choice of a Riemannian metric. Using Hodge theory, it is classical
to check that the index of d + d∗ is exactly the topological signature of M , i.e.,
the signature of the quadratic form given by cup product on the middle-dimensional
cohomology H

n
2 (M, C). Now consider the index pairing between K-theory and K-

homology of M:

K0(M)×K0(M)→ Z : (ξ, D) 	→ Ind(Dξ ),

the index of the differential operator Dξ , which is D with coefficients in the vector
bundle ξ on M . In particular Ind((d + d∗)ξ ) is the index of the signature operator
with coefficients in ξ , i.e., acting on sections of �∗(M) ⊗ ξ . It is given by the
cohomological version of the Atiyah–Singer index theorem:

Ind((d + d∗)ξ ) = 〈Ch∗(ξ) ∪ L(M), [M]〉, (2.2)

where Ch∗ denotes the Chern character in cohomology. Recall that, for every finite
CW -complex X, we have Chern characters in cohomology and homology:

Ch∗ : K0(X)→
∞⊕

k=0

H 2k(X, Q);

8Although published only in 1995, the celebrated “ Conspectus” was first circulated in 1981.
9K-homology is the homology theory dual to topological K-theory. It was shown by Atiyah [Ati70]
that an elliptic (pseudo-)differential operator on M defines an element in K0(M).
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Ch∗ : K0(X)→
∞⊕

k=0

H2k(X, Q),

which are rational isomorphisms, compatible with the index pairing and with the
pairing between cohomology and homology. Equation 2.2 then implies that

Ch∗([d + d∗]) = L(M) ∩ [M] = D(M). (2.3)

Assume for simplicity that B� is a closed manifold,10 which implies that � is
torsion-free. Recall that Conjecture 3 is equivalent to homotopy invariance of
f∗(D(M)). By Equation 2.3 and functoriality of Ch∗, we have:

f∗(D(M)) = f∗(Ch∗([d + d∗])) = Ch∗(f∗[d + d∗]).

By rational injectivity of Ch∗, we see that Conjecture 3 is equivalent to the
homotopy invariance of f∗[d + d∗] in K0(B�)⊗Z Q.

In the final section of [Kas95], Kasparov defines a homomorphism β :
Ki(B�) → Ki(C

∗
r (�)) that later was identified with the assembly map

μr : K�
i (E�) → Ki(C

∗
r (�)). Kasparov’s β is defined as follows: keep

the assumption that B� is a finite complex. Form the induced vector bundle
L� = E� ×� C∗r (�) (where � acts on C∗r (�) by left translations). This is a
vector bundle with fiber C∗r (�) over B�, sometimes called the Mishchenko line
bundle. Its space C(E�, C∗r (�))� of continuous sections, is a projective finite
type module over C(B�) ⊗ C∗r (�) (and as such it defines a K-theory element
[L�] ∈ K0(C(B�)⊗C∗r (�))). For a K-homology element [D] ∈ K0(B�) given by
an elliptic (pseudo-)differential operator D over B� we may form the operator DL�

with coefficients in L�: its kernel and cokernel are projective finite type modules
over C∗r (�), so their formal difference defines an element β[D] ∈ K0(C

∗
r (�)): this

defines the desired homomorphism11

β : K0(B�)→ K0(C
∗
r (�)).

Coming back to the Novikov conjecture, recall that it is equivalent to the
homotopy invariance of f∗[d+d∗] in K0(B�)⊗Z Q. Now one of Kasparov’s result
in [Kas95] (Theorem 2 in the final section) is:

Theorem 2.8 If M is an even-dimensional smooth, closed, oriented manifold and
f : M → B� is a continuous map, then β(f∗[d+d∗]) ∈ K0(C

∗
r (�)) is a homotopy

invariant of M . �

10When B� is a general CW -complex we must replace K0(B�) by RK0(B�) = lim−→X
K0(X),

where X runs along compact subsets of B�.
11In terms of Kasparov theory, to be defined in Chapter 3 below, this can be expressed using
Kasparov product: β[D] = [L�] ⊗C(B�) [D].
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As an immediate consequence of Theorem 2.8, we get the following result:

Corollary 2.9 If the map β is rationally injective, then the Novikov conjecture
(Conjecture 3) holds for �.

The main result of Kasparov’s Conspectus [Kas95] is the following:

Theorem 2.10 If � is a discrete subgroup of a connected Lie group, then the map
β is injective.

Corollary 2.11 The Novikov conjecture holds for any discrete subgroup of a
connected Lie group.

3 Index maps in K-theory: the contribution of Kasparov

3.1 Kasparov bifunctor

The powerful tool developed by Kasparov in his proof of the Novikov conjecture is
the equivariant KK-theory. We refer to [Kas95] and [Kas88].

For any locally compact group G and A, B two G − C∗-algebras (i.e., C∗-
algebras equipped with a strongly continuous action by automorphisms of the group
G), Kasparov defines an abelian group KKG(A, B). The main tool in the theory is
the cup product

KKG(A, B)×KKG(B, C)→ KKG(A, C) : (x, y) 	→ x ⊗B y.

In particular, if C is the field of complex numbers equipped with the trivial G-
action, KKG(C, C) is a ring, which turns out to be commutative. Moreover the
homomorphisms

τD : KKG(A, B)→ KKG(A⊗D, B ⊗D)

defined by tensoring by a C∗-algebra D equip all the KKG(A, B)’s with a structure
of KKG(C, C)-modules.

One of the most important ingredients in G-equivariant KK-theory is the
existence of descent maps: for all G − C∗algebras A and B there are group
homomorphisms

jG,r : KKG(A, B)→ KK
(
C∗r (G, A), C∗r (G, B)

)

jG,max : KKG(A, B)→ KK
(
C∗max(G, A), C∗max(G, A)

)
,

where C∗r (G, A) and C∗max(G, A) denote respectively the reduced and the full
crossed product.
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The abelian group KKG(A, B) is defined as follows:

Definition 3.1 An (A, B)-Fredholm bimodule is given by:

(i) a B-Hilbert module E;
(ii) a covariant representation (π, ρ(g)) of (G, A) on the Hilbert module E;

(iii) an operator T on E , B-bounded and self-adjoint (i.e., T = T ∗) and such that:
for any a in A and g in G, the operators (1 − T 2)ρ(a), Tρ(a) − ρ(a)T , and
T π(g) − π(g)T are B-compact operators; moreover the map g 	→ T π(g) −
π(g)T is norm continuous.

Such a (A, B)-Fredholm module is also called odd (A, B)-Fredholm module. An
even (A, B)-Fredholm module is given by a (A, B)-Fredholm module together with
a Z/2-grading on the module E, such that the covariant representation preserves the
grading, and the operator T is odd with respect to the grading.

One defines a homotopy of (A, B)-Fredholm modules to be a (A, B⊗C[(0, 1])-
Fredholm module. An element of KKG(A, B) is defined as a homotopy class of
even (A, B)-Fredholm modules. Addition is given by direct sum. The zero element
is given by the class of degenerate modules, i.e., those where “compact” is replaced
by “zero” in Definition 3.1. When necessary we use the notation KK

j
G(A, B) with

j = 0 (resp. 1) for the even (resp. odd case).
When there is no group acting, we simply write KK(A, B). Ordinary K-

theory for C∗-algebras is recovered by K∗(B) = KK∗(C, B), while K-homology
corresponds to K∗(A) = KK∗(A, C).

3.2 Dirac induction in KK-theory

In [Kas95], Kasparov gives an interpretation of the Dirac induction map from
K∗(C∗(K, A)) to K∗(C∗r (G, A)) in the framework of KK-theory. Here G is a
semisimple Lie group with finite center and K a maximal compact subgroup. We
assume that the adjoint representation of K on V = g/k lifts to Spin(V ). The
symmetric space X = G/K then carries a G-invariant spin structure. Let D be the
corresponding Dirac operator, a G-invariant elliptic operator defined on the sections
of the spinor bundle S of X.

We define an element α of the group KK
j
G(C0(X), C) as the homotopy class of

the (C0(X), C)-Fredholm bimodule defined by:

(1) The Hilbert space L2(X, S) of L2-sections of the spinor bundle S.
(2) The covariant action on L2(X, S) of the G − C∗-algebra C0(X) of continuous

functions on X vanishing at infinity.
(3) The operator F = D(1 + D2)−1/2 obtained by functional calculus from the

Dirac operator D.
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Note that the bundle S is graded for j even, and trivially graded if j is odd. The
above Fredholm module therefore defines an element α ∈ KK

j
G(C0(G/K), C),

where j = dim G/K ( mod 2).
Now consider the following composition

KKG(C0(G/K), C)→ KKG(C0(G/K)⊗A, A)→ KK
(
C∗(K, A), C∗r (G, A)

)
,

where the first map is τA and the second is jG,r , taking into account the Morita
equivalence of C∗r (G, C0(G/K)⊗A) with C∗(K, A). The image of α by the above
composed map is an element of KKj(C∗(K, A), C∗r (G, A)) which defines a map

α̃A : K∗+j (C∗(K, A))→ K∗
(
C∗r (G, A)

)
.

Note the two special cases:

(1) When A = C, this is nothing but the Connes–Kasparov map K∗+j (C∗(K))→
K∗(C∗r (G)), see Conjecture 1.

(2) When � is a torsion-free discrete cocompact subgroup of G, and M = �\G/K ,
this gives the map β : K∗+j (C(M)) → K∗(C∗r (�)), see section 2.5 where
M = B�, the classifying space of �.

3.3 The dual-Dirac method and the γ -element

In order to construct the inverse map, Kasparov defines in [Kas95] the element

β ∈ KK
j
G(C, C0(X))

as the homotopy class of the following (C, C0(X))-Fredholm bimodule:

(1) The C0(X)-Hilbert module C0(X, S) of sections of the spinor bundle S;
(2) the natural action of G on C0(X);
(3) the operator on C0(X) which is the Clifford multiplication by the vector field b

on X defined as follows: let x0 be the origin in X (i.e., the class of the identity in
G/K), then the value of b at a point x ∈ X is the vector tangent to the geodesic
from x to x0, and of length ρ(1+ρ2)−1/2 if ρ is the distance between x and x0.

Similarly to what was done for α, the element β ∈ KK
j
G(C, C0(G/K)) gives

rise to an element β̃ of KKj(C∗red(G, A), C∗(K, A)) by applying to β the following
maps:

KKG((C, C0(G/K))→ KKG(A, C0(G/K)⊗A)→ KK
(
C∗r (G, A), C∗(K, A)

)
,

hence a map K∗(C∗r (G, A)) → K∗+j (C∗(K, A)) which is a candidate to be the
inverse of the index map.
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In other words, one would hope that the following equalities hold in KK-theory:
α⊗C β = 1 in KKG(C0(X), C0(X)) and β⊗C0(X) α = 1 in KKG(C, C). However,
such a dream is not fulfilled. Only the first statement is true in general.

Theorem 3.2 One has α ⊗C β = 1 in KKG(C0(X), C0(X)). As a consequence,
γ := β ⊗C0(X) α is an idempotent of the ring KKG(C, C) , i.e., γ ⊗C γ = γ .

This element γ plays a key role in the Baum–Connes conjecture. The main step
in the proof of Theorem 3.2 is the following rotation lemma:

Lemma 3.3 α ⊗C β = τC0(X)(β ⊗C0(X) α).

On the other hand, Kasparov shows

Lemma 3.4 RestGK(γ ) = 1 in R(K),

where

RestGK : KKG(C, C)→ R(K)

is the natural restriction map. This is a K-equivariant version of the Bott periodicity.
Namely, from the K-equivariant point of view, the space G/K can be replaced by its
tangent space V at x0. Then the Euclidean space V is equipped with a representation
of K which factors though Spin(V ) and the Bott periodicity has an equivariant
version, an isomorphism between K∗(C∗(K, C0(V ))) and R(K).

Corollary 3.5 τC0(G/K)(γ ) = 1 in KKG(C0(G/K), C0(G/K)).

This follows from the fact that τC0(G/K) = IndG
K ◦ RestGK , where the induction

IndG
K : R(K) → KKG(C0(G/K), C0(G/K)) is defined in [Kas88]. Theorem 3.2

follows by combining Lemma 3.3 with Corollary 3.5.
Since γ is an idempotent, the ring KKG(C, C) is a direct sum of two subrings

KKG(C, C) = γ KKG(C, C)⊕ (1− γ )KKG(C, C).

Moreover, by Lemma 3.4 the restriction map KKG(C, C)→ KKK(C, C) = R(K)

is an isomorphism from γ KKG(C, C) to R(K), and vanishes on the complement
(1− γ )KKG(C, C). More generally for any A, B as above,

KKG(A, B) = γ KKG(A, B)⊕ (1− γ )KKG(A, B),

the restriction map is an isomorphism from γ KKG(A, B) to KKK(A, B) and
vanishes on (1− γ )KKG(A, B).

The element γ acts on the K-theory of C∗r (G, A) by an idempotent map which
can be described as follows: consider the composition of ring homomorphisms

KKG(C, C)→ KKG(A, A)→ KK
(
C∗r (G, A), C∗r (G, A)

)

→ End
(
K∗

(
C∗r (G, A)

))
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and take the image of the idempotent γ by the above map:

γ̃A ∈ End
(
K∗

(
C∗r (G, A)

))
.

The results of Kasparov [Kas95] [Kas88] can then be summarized as follows:

Theorem 3.6 The map α̃A is injective.12 Its image in K∗(C∗r (G, A)) is equal to the
image of the idempotent map γ̃A.

Corollary 3.7 The Connes–Kasparov conjecture with coefficients in A (i.e., the
statement that α̃A is an isomorphism) is equivalent to the equality γ̃A = Id.

Corollary 3.8 If γ = 1 in KKG(C, C), then the Connes–Kasparov conjecture with
coefficients is true.

3.4 From K-theory to K-homology

All the constructions above rest upon the assumption that the space X = G/K

carries a G-equivariant structure of a spin manifold, or equivalently that the
representation of K on V ∗ = T ∗x0

X is spinorial.
In the case of a general connected Lie group, this is not necessarily the case, and

Kasparov’s constructions have to be modified as follows: consider the cotangent
bundle T ∗X which has an almost-complex structure. There is therefore a Dirac
operator on T ∗X, which defines an element α ∈ KKG(C0(T

∗X), C). Applying the
same procedure as above yields an element of KK(C∗(K, A⊗C0(V

∗)), C∗r (G, A))

since C∗(G, A⊗ C0(T
∗X)) is Morita equivalent to C∗(K, A⊗ C0(V

∗)).
Therefore the element α defines a map

K∗
(
C∗

(
K, A⊗ C0(V

∗)
))→ K∗

(
C∗r (G, A)

)
.

Note that there is no dimension shift but that A is replaced by A⊗C0(V
∗). As usual,

note the special cases A = C and A = C(G/�)

(1) K∗(C∗(K, C0(V
∗)))→ K∗(C∗r (G));

(2) K∗(T ∗M)→ K∗(C∗r (�)), where M = �\G/K .

In the same way one can define a dual-Dirac element β ∈ KKG(C, C0(T
∗X)) and

an element γ ∈ KKG(C, C). The same results as above do hold.
The role of the cotangent bundle T ∗X or equivalently the representation of K

on V ∗ = T ∗x0
X is closely related to Poincaré duality in K-theory. The latter is

conveniently formulated in Kasparov theory as follows: as we shall see, the left-hand
side of the conjecture should in fact be interpreted, rather than a K-theory group, as

12The injectivity of α̃A is responsible for the Novikov conjecture, Conjecture 3: see Section 4.5.1.
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a K-homology group. The Dirac induction map appears rather as the composition
of the assembly map with the Poincaré duality map.

Let us explain that point. In Kasparov theory, the K-homology K∗(A) of a C∗-
algebra is defined as the group KK(A, C). There is a duality pairing

K∗(A)⊗K∗(A)→ Z

with the K-theory K∗(A) = KK(C, A), defined by the cup product

KK(C, A)⊗KK(A, C)→ KK(C, C) = Z.

For example, if M is a compact manifold, the K-homology group K∗(M) =
K∗(C(M)) can be described, according to Atiyah [Ati70], as the group Ell(M) of
classes of elliptic operators on the manifold M . The pairing K∗(M)⊗K∗(M)→ Z
associates to a vector bundle E and an elliptic operator D the index of the operator
DE with coefficients in E. Poincaré duality in K-theory is a canonical isomorphism

K∗(T ∗M)→ K∗(M)

between the K-homology of M and the K-theory of the total space T ∗M of
its cotangent bundle. Such a map can be interpreted as follows: an element of
K∗(T ∗M) is the homotopy class of an elliptic symbol on M . Its image in K∗(M)

is the class of an elliptic pseudo-differential operator associated to that symbol. In
Kasparov theory, one can interpret Poincaré duality as the existence of two elements,
respectively of KK(C(M) ⊗ C0(T

∗M), C) and of KK(C, C(M) ⊗ C0(T
∗M)),

inverse to each other for the cup product. See the details in [Kas88].
This allows to reformulate the conjecture as follows: for the case of a torsion-

free discrete cocompact subgroup � as above, the map K∗(T ∗M) → K∗(C∗r (�))

becomes13

K∗(M)→ K∗
(
C∗r (�)

)
.

In general, one needs the G-equivariant version of Poincaré duality for the space
X = G/K . There are two elements one of KKG(C0(X) ⊗ C0(T

∗X), C) and the
other of KKG(C, C0(X)⊗ C0(T

∗X)) that are inverse to each other.
Then for any G− C∗-algebra A, one has an isomorphism

KKG
(
C, C0(T

∗X)⊗ A
)→ KKG (C0(X), A) .

One can show that the first group is isomorphic to

KK
(
C, C∗

(
G, C0(T

∗X)⊗ A
)) = KK

(
C, C∗

(
K, C0(V

∗)⊗ A
))

.

13This is actually the same map as the map β from Section 2.5.



148 M. P. Gomez Aparicio et al.

The Dirac induction with coefficients in A can therefore be defined as a map

KKG(C0(X), A)→ K∗
(
C∗red(G, A)

)

which in the case without coefficients can be written as KG∗ (X)→ K∗(C∗red(G)).

3.5 Generalization to the p-adic case

Shortly after the work of Kasparov, it became natural to investigate the analogue
of the Kasparov Dirac–dual-Dirac method when real Lie groups are replaced by p-
adic groups. According to the philosophy of Bruhat and Tits the p-adic analogue
of the symmetric space is a building of affine type (see [BT72, Tit75]). It shares
with symmetric spaces the property of unique geodesics between two points, and
the fact that the stabilizers of vertices are maximal compact subgroups (note that
there may be several conjugacy classes of such subgroups). In the rank one case,
e.g., SL(2, Qp), the Bruhat–Tits building is the Bass–Serre tree. Julg and Valette
[JV88] have constructed an element γ for buildings using an operator on the Hilbert
space �2(X) (the set X is seen as the set of objects of all dimensions) which may be
seen as the “vector pointing to the origin,” generalizing the Julg-Valette element for
trees [JV84].

The question of an analogue of the Connes–Kasparov conjecture for p-adic
groups has been considered by Kasparov and Skandalis in [KS91]. They met the
following difficulty: the building is not a manifold, and it does not satisfy the
Poincaré duality in the usual sense. However, if X is a simplicial complex, there is an
algebra AX which plays the role played by the algebra C∗(T M) = C0(T

∗M) in the
case of a manifold M . The algebra AX is not commutative, it is in fact the algebra
of a groupoid associated to the simplicial complex X. Moreover, AX is Poincaré
dual in K-theory to the commutative algebra C0(|X|) of continuous functions on the
geometric realization of X: there is a canonical isomorphism

K∗(AX)→ K∗(C0(|X|))

from the K-theory of the algebra AX to the K-homology of the space |X|.
Let us now assume that X is the Bruhat–Tits building of a reductive linear group

over a non-Archimedean local field (e.g., Qp). Then the above form of the Poincaré
duality, in a G-equivariant way, shows the isomorphism

KKG(C0(|X|), A) = K∗
(
C∗(G,AX ⊗ A)

)

for any G− C∗-algebra A.
By analogy with the Lie group case, it was natural to construct a map from the

group above to the K-theory group K∗(C∗r (G, A)). Kasparov and Skandalis [KS91]
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construct a Dirac element α ∈ KKG(AX, C) which defines as above maps in K-
theory:

K∗(C∗(G,AX ⊗ A))→ K∗(C∗r (G, A)).

The left-hand side can be computed by Morita equivalence from the K-theory of
crossed products of A by the compact subgroups of G stabilizing the vertices of
a simplex viewed as a fundamental domain. A special case is the Pimsner exact
sequence for trees [Pim86].

Kasparov and Skandalis have shown the injectivity of the above map (which
implies the Novikov conjecture for discrete subgroups of p-adic groups) by
constructing a dual-Dirac element β ∈ KKG(C,AX). They show that

β ⊗AX
α = γ ∈ KKG(C, C),

the Julg-Valette element of [JV88]. A rotation trick shows that α ⊗C β = 1.
At this point we note that the Lie group case and the p-adic group case can be

unified by the K-homology formulation of the conjecture. If Z denotes the locally
compact G-space which is the symmetric space G/K in the Lie case, the geometric
realization |X| of the Bruhat–Tits building in the p-adic case, the conjecture is that
a certain map

KKG(C0(Z), A)→ K∗(C∗(G, A))

is an isomorphism. This will become more precise with the Baum–Connes–Higson
formulation of the conjecture for general locally compact groups: the role of the
symmetric spaces or Bruhat–Tits buildings will be clarified as classifying spaces
for proper actions, see Sections 4.2 and 4.3. In both cases injectivity can be proved
by a Dirac–dual-Dirac method, which hints to a general notion of γ -element, as
explained in Section 4.4.

4 Towards the official version of the conjecture

4.1 Time-dependent left-hand side

There is a certain time-dependency in the left-hand side of the Baum–Connes
conjecture, hence also in the assembly map. Let us first recall the fundamental
concept of proper actions.

Definition 4.1

1. Let G be a locally compact group. A G-action on a locally compact space X is
said to be proper if the action map
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G×X → X : (g, x) 	→ gx

is proper, i.e., the inverse image of a compact subset of X, is compact.
2. If X is a locally compact, proper G-space, then the quotient space G\X is locally

compact, and X is said to be G-compact if G\X is compact.

In the original paper of Baum–Connes [BC00], the conjecture is formulated
only for Lie groups—possibly with infinitely many connected components, so
as to include discrete groups. However, the authors take great care in allowing
coefficients, in the form of group actions on smooth manifolds. So if G is a Lie
group (not necessarily connected) and M is a manifold, the goal is to identify the
analytical object K∗(C∗r (G, C0(M))) (the K-theory of the reduced crossed product
C∗-algebra), with something of geometrical nature.

This is done in two steps. First, let Z be a proper G-manifold. Denote by V 0
G(Z)

the collection of all G-elliptic complexes of vector bundles (E+, E−, σ ), where
E+, E− are G-vector bundles over Z, and σ : E+ → E− is a G-equivariant
vector bundle map, which is invertible outside of a G-compact set. One also defines
V 1

G(Z) = V 0
G(Z × R), where G acts trivially on R.

The second—and main—step is to consider an arbitrary G-manifold M and
to “approximate” it by proper G-manifolds; here one can identify, in germ, the
presence of the classifying space for G-proper actions that will come to the forefront
in the “official” version of the conjecture in [BCH94]; see Section 4.3 below. In
[BC00], a K-cocycle for M will be a triple (Z, f, ξ), where:

• Z is a proper, G-compact, G-manifold;
• f : Z → M is a G-map;
• ξ ∈ V ∗G(T ∗Z ⊕ f ∗T ∗M).

We denote by �(G, M) the set of K-cocycles for M . If (Z, f, ξ) and (Z′, f ′, ξ ′)
are two equivariant K-cycles for X, then their disjoint union is the equivariant K-
cycle (Z

∐
Z′, f

∐
f ′, ξ

∐
ξ ′). It is assumed that manifolds are not necessarily

connected, and their connected components do not always have the same dimension.
The operation of disjoint union will give addition.

Suppose that the manifolds Z1, Z2, M and the G-maps f1, f2, g fit into a
commutative diagram

Z1
h

f1

Z2

f2

M

Then, using the Thom isomorphism, it is possible to construct a “wrong way
functoriality” Gysin map

h! : K∗G
(
T ∗Z1 ⊕ f ∗1 T ∗M

)→ K∗G
(
T ∗Z2 ⊕ f ∗2 T ∗M

)
.
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Two K-cocycles (Z1, f1, ξ1), (Z2, f2, ξ2) are said to be equivalent14 if there exists a
K-cocycle (Z̃, f̃ , ξ̃ ) and G-maps h1 : Z1 → Z̃, h2 : Z2 → Z̃ making the following
diagram commutative:

Z1
h1

f1

Z̃

f̃

Z2
h2

f2

M

,

and such that h1,!(ξ1) = ξ̃ = h2,!(ξ2). Then we define Ktop(G, M) as the quotient
of �(G, M) by this equivalence relation.

To construct the assembly map μr,M : Ktop(G, M) → K∗(C∗r (G, C0(M))),
the construction is roughly as follows: start from a K-cocycle (Z, f, ξ) ∈ �(G, M).
Observe that f = p◦i, where i : Z → Z×M : z 	→ (z, f (z)) and p : Z×M → M

is the projection onto the second factor. Replacing Z by Z×M and f by p, we may
assume that f is a submersion. Let then τ be the cotangent bundle along the fibers
of f . By the Thom isomorphism, the class ξ ∈ V ∗G(T ∗Z ⊕ f ∗T ∗M) determines a
unique class η ∈ V ∗G(η). For x ∈ M , set Zx = f−1(x). Then, restricting η to Zx we
get ηx ∈ V ∗(Zx), which can be viewed as the symbol of some elliptic differential
operator Dx on Zx . Then the family (Dx)x∈M is a G-equivariant family of elliptic
differential operators on M , so its G-index belongs to K∗(C∗r (G, C0(M))) and we
set:

μ̃r,M(Z, f, ξ) = IndG(Dx)x∈M.

It is stated in Theorem 5 of [BC00] that this map μ̃r,M is compatible with wrong
way Gysin maps, so it descends to a homomorphism of abelian groups:

μr,M : Ktop(G, M)→ K∗
(
C∗r (G, C0(M))

)
,

and the main conjecture in [BC00] is that μr,M is an isomorphism for every Lie
group G and every G-manifold M .

4.2 The classifying space for proper actions, and its
K-homology

In the paper [BCH94], Baum, Connes, and Higson consider the class of all 2nd
countable, locally compact groups G. They make a systematic use of the classifying
space for proper actions EG, first introduced in this context in [10]. The G/K space

14The fact that it is indeed an equivalence relation does not appear in [BC00].
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associated to a connected Lie group and the Bruhat–Tits building of a p-adic group
are special cases of classifying space of proper actions as we mentioned already in
Section 3.5.

Definition 4.2 Let G be a 2nd countable locally compact group. A classifying
space for proper actions for G, is a proper G-space EG with the properties that,
if X is any proper G-space, then there exists a G-map X → EG, and any two
G-maps from X to EG are G-homotopic.

When � is a countable discrete group, we could also define E� as a �-CW-
complex such that the fixed point set E�H is empty whenever H is an infinite
subgroup of �, and is contractible whenever H is a finite subgroup (in particular
E� is itself contractible).

Back to the general case: even if we refer to EG as “the” universal space for
proper actions of G, it is important to keep in mind that EG is only unique up to
G-equivariant homotopy, and the definition of the left-hand side K

top∗ (G, A) will
have to account for this ambiguity. So we define

K
top∗ (G, A) = lim

X
KKG∗ (C0(X), A),

where X runs in the directed set of closed, G-compact subsets of EG. This is the
left-hand side of the assembly map for G � A.

4.3 The Baum–Connes–Higson formulation of the conjecture

For any proper, G-compact G-space X, the space C0(X) is a module of finite type
over the algebra C∗(G, C0(X)) (which is both the full and the reduced one) whose
class in K0(C

∗(G, C0(X))) = KK(C, C∗(G, C0(X))) will be denoted by eX. Then
for any G− C∗-algebra A, Kasparov’s descent map

jG,r : KKG(C0(X), A)→ KK
(
C∗(G, C0(X)), C∗r (G, A)

)

can be composed with the left multiplication by eX :

KK
(
C∗(G, C0(X)), C∗r (G, A)

)→ KK
(
C, C∗r (G, A)

)

to define a map KKG(C0(X), A)→ K∗(C∗r (G, A)).
When X runs in the directed set of closed, G-compact subsets of EG, those maps

are compatible with the direct limit, hence define the assembly map or index map:

μA,r : Ktop∗ (G, A)→ K∗
(
C∗r (G, A)

)
.

For A = C, the map μA,r is simply denoted by μr . The Baum–Connes conjecture
is then stated as follows, in its two classical versions:
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Conjecture 4 (The Baum–Connes conjecture) For all locally compact, 2nd count-
able groups G the assembly map μr is an isomorphism.

Conjecture 5 (The Baum–Connes conjecture with coefficients) For all locally com-
pact 2nd countable groups G and for all G−C∗-algebras A, the assembly map μA,r

is an isomorphism.

Conjecture 5 has the advantage of being stable under passing to closed subgroups
(see [BCH94]), and the disadvantage of being false in general: see Sections 7.2
and 9.3.3. If G is discrete, the classifying space BG classifies actions of G which
are free and proper. By forgetting about freeness of the action we get a canonical
map

ιG : K∗(BG)→ K
top∗ (G)

which is rationally injective. The Strong Novikov conjecture for G is the rational
injectivity of μr ◦ ιG.

Remark 4.3 If p ∈ K∗(C∗(G, C0(X))) = KK∗(C, C∗(G;C0(X))) is a fixed
element, the Kasparov product p⊗C∗(G,C0(X)) : x 	→ p⊗C∗(G,C0(X))x provides
a map KK∗(C∗(G, C0(X)), C∗r (G, A)) → KK∗(C, C∗r (G, A)). Observe that if
p is given by an idempotent of C∗(G, C0(X)), and x = (E+, E−, F ), with
E+, E− Hilbert C∗-modules over C∗r (G, A) and F ∈ BC∗r (G,A)(E+, E−), then
p ⊗C∗(G,C0(X)) x is described simply as (pE+, pE−, pFp). It turns out that
eX can be described by such an idempotent. Indeed, by properness and G-
compactness, there exists a Bruhat function on X, i.e., a non-negative function
f ∈ Cc(X) such that

∫
G

f (g−1x) dg = 1 for every x ∈ X. Set then e(x, g) =√
f (x)f (g−1x). Recalling that the product in Cc(X×G) is given by (a�b)(x, g) =∫

G
a(x, h)b(h−1x, h−1g) dh, one sees immediately that e2 = e. Since the set of

Bruhat functions is clearly convex, we have a canonical K-theory class [eX] ∈
K0(C

∗(G, C0(X))).

Remark 4.4 Assume that A = C. Let x = (E+, E−, F ) be an element of
KKG

0 (C0(X), C). Denote by π± the representation of C0(X) on E±. Say that F

is properly supported if for every φ ∈ Cc(X) there exists ψ ∈ Cc(X) such that
π−(ψ)Fπ+(φ) = Fπ+(φ). Replacing F by some homotopical operator (so not
changing the K-homology class of (E+, E−, F ), we may assume that F is properly
supported. Consider then the linear subspaces π±(Cc(X))E± of E±: those are
not Hilbert spaces in general, but these are Cc(G)-modules and F induces a G-
intertwiner between them. These spaces carry the Cc(G)-valued scalar product:

〈ξ, η〉(g) =: 〈ξ, ρ±(g)η〉 (ξ, η ∈ E±),

where ρ± denotes the unitary representation of G on E±. Completing those spaces
into C∗-modules over C∗r (G), and extending F to the completion, we get a triple
μr(x) = (E+, E−,F) ∈ KK∗(C, C∗r (G)) = K∗(C∗r (G)), also called the G-index
of F .
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The two above approaches, for A = C, were shown to be equivalent in Corollary
2.16 of Part 2 of [MV03].15

Remark 4.5 It was only in 2009 that Baum et al. [BHS10] reconciled the original
approach of [BC00] with the Kasparov-based approach of [BCH94], in the case of
discrete groups.

For general Lie groups (with arbitrarily many connected components), the
equivalence between the approaches in [BC00] and [BCH94] has not been proved
in print so far. However, for connected Lie groups both approaches reduce to the
Connes–Kasparov conjecture so there is no problem.

Remark 4.6 There is also a homotopical approach to the Baum–Connes conjecture,
developed by Davis and Lück [DL98]; it is valid for discrete groups only. It uses
homotopy spectra over the orbit category. More precisely, let G be a group, and
denote by OF (G) the category whose objects are homogeneous spaces G/H ,
with H a finite subgroup, and morphisms are G-equivariant maps. Equivariant K-
homology is obtained by defining some functor from OF (G) to the category of
�-spectra, extending it to a functor from G-spaces to �-spectra, and then applying
the i-th homotopy group to get KG

i (with i ≥ 0). It turns out that the value
of their functor on G/H , for every subgroup H on G, is K∗(C∗r (G)). Hence
the assembly map, in that framework, is the map functorially associated to the
projection EG → G/G = {∗}. The equivalence with the approach in [BCH94]
was worked out by Hambleton and Pedersen [Hp04].

For the operator algebra inclined reader, we emphasize that the Davis-Lück
approach, abstract as it may seem, allows for explicit computations of the left-hand
side K

top∗ (G), for G discrete: this is due to the existence of an Atiyah–Hirzebruch
spectral sequence relating Bredon homology HF∗ (EG, RC) to equivariant K-
homology. In favorable circumstances (e.g., dim EG ≤ 3), there are exact sequences
allowing one to compute exactly (i.e., integrally, not just rationally) K

top∗ (G) from
Bredon homology (see [MV03], Theorem I.5.27). For specific classes of groups, the
Baum–Connes conjecture can be checked by hand in this way (see, e.g., [FPV17]
for the case of lamplighter groups F � Z, with F a finite group).

4.4 Generalizing the γ -element method

4.4.1 The case of groups acting on bolic spaces

The general formulation of the Baum–Connes conjecture suggests the problem of
generalizing the γ -element method, which was first elaborated in the realm of
Riemannian symmetric spaces and of their p-adic analogues, Bruhat–Tits buildings.

15Note that the proof is given there only for discrete groups, but the proof goes over to locally
compact group.
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Kasparov and Skandalis [KS03] have explored the case of a combinatorial analogue
of simply connected Riemannian manifold with non-positive curvature. The good
framework is that of weakly bolic, weakly geodesic metric spaces of bounded coarse
geometry (see the definition in their paper). They prove the following:

Theorem 4.7 Let G be a group acting properly by isometries on a weakly bolic,
weakly geodesic metric space of bounded coarse geometry. Then the Baum–Connes
assembly map is injective.

The proof involves analogues of the Dirac, dual-Dirac, and γ -elements. However,
α and β should no more be thought as defining the Baum–Connes assembly map
and the candidate for its inverse. They rather give maps imbedding the K-theory
of arbitrary crossed products into the K-theory of crossed products by some proper
G-algebras, for which the conjecture is known to be true:

Definition 4.8 Let X be a G-space. A G−X−C∗-algebra is a G−C∗-algebra B

equipped with a G-equivariant homomorphism C0(X) → Z(M(B)), the center of
the multiplier algebra of B. A G − C∗-algebra B is proper if there exists a proper
G-space X such that B is a G−X − C∗ algebra.

The following was proved by Chabert et al. [CEM01]16:

Theorem 4.9 The Baum–Connes morphism with coefficients in a proper G-algebra
is an isomorphism.

In the case of a discrete group G acting properly by isometries on a weakly bolic,
weakly geodesic metric space of bounded coarse geometry, Kasparov and Skandalis
define a proper algebra B, Dirac and dual-Dirac elements α ∈ KKG(B, C), β ∈
KKG(C, B) and consider the product γ = β ⊗B α ∈ KKG(C, C). In that case, it
is no more the case that α ⊗C β is equal to 1 in KKG(B, B), and this is in fact not
needed. However, one still has the fact that γ becomes 1 when restricted to finite
subgroups. This is enough to prove injectivity of the assembly map for such a group
G.

4.4.2 Tu’s abstract gamma element

The Kasparov–Skandalis method has been formalized by Tu who defined a general
notion of γ element for a locally compact group, such that the mere existence of
γ ∈ KKG(C, C) implies the injectivity of the Baum–Connes map, and that the
surjectivity is equivalent to the fact that γ̃A = Id with notations as in Theorem 3.6.
The techniques use the representable KK-theory of Kasparov and can also be
beautifully interpreted in the framework of equivariant KK-theory for groupoids

16See also Higson and Guentner [HG04, Theorem 2.19] and Kasparov and Skandalis [KS03]. The
case where G is a connected Lie group and B = C0(X), where X is a proper G-space, was
previously treated by Valette [Val88].
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as introduced by Le Gall [LG99]. See Chapter 7 below for details on the groupoid
framework.

Definition 4.10 A γ -element for G is an element γ of the ring KKG(C, C)

satisfying the following two conditions:

(1) there exists a proper G − C∗−algebra B and two elements α ∈ KKG(B, C)

and β ∈ KKG(C, B) such that γ = β ⊗B α ∈ KKG(C, C);
(2) for any compact subgroup K of G, the image of γ by the restriction map

KKG(C, C)→ R(K) is the trivial representation 1K .

Remark 4.11 The second condition is technically formulated as follows: for any
proper G-space X, we have p∗(γ ) = 1 in RKKG(X;C, C) (where p∗ denotes
the induction homomorphism KKG(C, C) → RKKG(X;C, C)). The notations
are as follows: for X a G-space, A and B two G − X − C∗-algebras, Kasparov
defines RKKG(X;A, B) as the set of homotopy classes of (A, B)-Fredhom
bimodules equipped with a covariant action of the C∗-algebra C0(X), with the usual
assumption of compactness of commutators. The beautiful language of groupoids
allows to think of A and B as G −C∗-algebras with G = X �G the groupoid given
by the action of G on X. Then

RKKG(X;A, B) = KKG(A, B).

Now for two G − C∗-algebras A and B (no action of C0(X) is needed), Kasparov
defines

RKKG(A, B) = RKKG(X;A⊗ C0(X), B ⊗ C0(X))

= KKG(A⊗ C0(X), B ⊗ C0(X)).

In the definition of a γ -element, the map

p∗ : KKG(C, C)→ RKKG(X;C, C)

is the pullback by the groupoid homomorphism p : G = X � G → G. Note that if
X = G/K with K a compact subgroup, then RKKG(X;C, C) = R(K).

Tu has proved the following [Tu00]:

Proposition 4.12 If an element γ exists, then it is unique. Moreover, it is an
idempotent of the ring KKG(C, C), namely γ ⊗C γ = γ .

Observe that, if a γ -element does exist, then it acts as the identity on any group
K

top∗ (G, A), for every G − C∗-algebra A. The relation with the Baum–Connes
conjecture can be stated as follows

Theorem 4.13 (Theorems 4.2 and 4.4 [Tu99c]) Let G be a locally compact group
admitting a γ -element.
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(1) The map μA,r is injective for every G− C∗-algebra A.
(2) The map μA,r is surjective if and only if the map γ̃A (i.e., Kasparov product

by jG,r (τA(γ ))) is the identity on K∗(C∗r (G, A)). This is in particular true if
γ = 1.

Proof Let γ = β ⊗B α be a γ -element, with B a proper G− C∗-algebra. Let A be
any G− C∗-algebra. Then we have a commutative diagram:

Ktop(G, A)
⊗AτA(β)

μA,r

Ktop
∗ (G, A ⊗ B)

⊗A⊗B(τA(α))

μA⊗B,r�

Ktop(G, A)

μA,r

K∗(C∗
r (G, A))

⊗C∗
r (G,A)jG(τA(β))

K∗(C∗(G;A ⊗ B))
⊗

C∗(G,A⊗B)jG(τ(α))

K∗(C∗
r (G, A)),

with jG the descent map as in Section 3.1. Since A⊗B is a proper G−C∗-algebra,
the map μA⊗B,r is an isomorphism, by Theorem 4.9. The assumption in (1) is that
the composition of the two maps on the top row is the identity: this implies that μA,r

is injective. The assumption in (2) is that moreover the composition of the two maps
on the bottom row is the identity: this implies that μA,r is also surjective. ��
Remark 4.14 The element γ initially defined by Kasparov in [Kas95] is of course
a special case of γ -element in the sense of Tu. Note that if K is a maximal compact
subgroup of a connected Lie group G, the element γ is simply characterized by the
conditions (cf. Proposition 4.1 in [Tu00]) that it factorizes through a proper G−C∗-
algebra and that the image of γ by the restriction map KKG(C, C)→ R(K) is the
trivial representation 1K .

4.4.3 Nishikawa’s new approach

Very recently (March 2019), Nishikawa [Nis19] introduced a new idea in the
subject, that amounts to constructing the γ element without having to construct
the Dirac and dual-Dirac elements. We briefly explain his approach. The standing
assumption is that the group G admits a cocompact model for EG (in particular EG

is locally compact).

Definition 4.15 Let x be an element of KKG(C, C). Say that x has property (γ ) if
it can be represented by a Fredhom module KKG(C, C) such that:

1. For every compact subgroup K of G, x restricts to 1K in R(K).
2. The Hilbert space H carries a G-equivariant non-degenerate representation of

C0(EG) such that, for every f ∈ C0(EG), the map g 	→ [g(f ), T ] is a norm
continuous map vanishing at infinity on G, with values in the ideal of compact
operators.
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3. Moreover, the integral

∫

G

g(c)T g(c)dg − T = −
∫

G

g(c)[g(c), T ]dg

is compact, where c is a compactly supported function on EG such that∫
G

g(c)2dg = 1.

It is not known whether the technical condition 3 follows from condition 2 or
is really needed. Nishikawa shows that such a Fredholm module allows to define,
for every G − C∗-algebra A, a map νx

A : K∗(C∗r (G, A)) → K
top∗ (G, A) =

KKG(C0(EG), A), which is a left inverse for the assembly map μA,r . One has
the following theorem:

Theorem 4.16 Assume that there exists a Fredholm module x = (H, F ) with
property (�). Then:

1. For every G− C∗-algebra A, the map μA,r is injective.
2. For every G−C∗-algebra A, the map μA,r is surjective if and only if the element

x defines the identity on K∗(C∗r (G, A)). In particular, if x = 1 in KKG(C, C),
Conjecture 5 holds for G.

Nishikawa also proves the following result:

Theorem 4.17

1. If there exists an element x of KKG(C, C) with property (γ ), then it is unique
and is an idempotent in KKG(C, C).

2. If G admits a γ element in the sense of Tu, then x = γ has the (γ ) property.

In particular, in the case of groups admitting an abstract γ element, any element
with the (γ ) property is in fact equal to γ .

Using this new approach, Nishikawa can reprove Conjecture 5 for Euclidean
motion groups, as well as the injectivity of the Baum–Connes map with coefficients
μA,r for G a semisimple Lie group. He also reproves the conjecture for groups
acting properly on locally finite trees and announces a generalization (with Brodzki,
Guentner, and Higson) to groups acting properly on CAT (0) cubic complexes.

4.5 Consequences of the Baum–Connes conjecture

4.5.1 Injectivity: the Novikov conjecture

In Section 2.5, we already emphasized that the Novikov conjecture (Conjecture 3)
on homotopy invariance of higher signature followed from the (rational) injectivity
of Kasparov’s map

β : K0(B�)→ K0
(
C∗r (�)

)
.
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In the case of a cocompact, torsion-free lattice of a connected Lie group G, the map
β coincides with the Dirac induction map

K0(M)→ K0
(
C∗r (�)

)

of Section 3.1. In general there is a natural injection group ι� : K0(B�) →
K�

0 (E�) and its composition with the assembly map μr gives β. That fact, taken
for granted for a long time, was proved only fairly recently by Land [Lan15].

Therefore, the Novikov conjecture follows from the Strong Novikov conjecture,
i.e., from the rational injectivity of the map μr ◦ ι� . In particular, the Novikov
conjecture follows from the injectivity of the assembly map μr .

We must here mention the beautiful recent approach of Antonini et al. [AAS18]
on K-theory with coefficients in the real numbers. They make use of von Neumann
theory of II1-factors. For such a factor N , the trace defines naturally an isomor-
phism from K0(N) to R whereas K1(N) = 0. The KK-theory with real coefficients
KKG

R (A, B) is defined as the inductive limit: of the groups KKG(A, B⊗N) for all
N a II1-factors N . Note that there is a map KKG(A, B)⊗R → KKG

R (A, B) but it
is in general not an isomorphism. Any trace on A defines an element of KKR(A, C).
In particular for � a discrete group, the canonical trace τ defines an element [τ ] of
KKR(C∗r (�), C) = KK�

R(C, C). The crucial remark of [AAS18] is the following:

Proposition 4.18 The element [τ ] is an idempotent of the ring KK�
R(C, C). More-

over for any proper and free space X, the identity 1C0(X) of the ring KK�
R(C, C)

satisfies 1C0(X) ⊗ [τ ] = 1C0(X).

The authors define the KKR-groups localized at the identity as the products by the
idempotent [τ ], i.e., KK�

R(A, B)τ = KK�
R(A, B)⊗C [τ ]. In particular the Baum–

Connes map can be localized as

μτ : Ktop

∗,R(�)τ → K∗,R
(
C∗r (�)

)
τ
,

where the right-hand side is nothing but KK�
R(C, C∗r (�))τ and the left-hand side is

KK�
R(C0(X), C)τ (assume for simplicity that E� is cocompact).

The results of [AAS18] can be summarized as follows

Theorem 4.19 Let � be a discrete group.

1. If the Baum–Connes conjecture (with coefficients) holds for �, then μτ is an
isomorphism.

2. If the map μτ is injective, then the Strong Novikov conjecture holds for �.

The first point uses the Baum–Connes map with coefficients in any II1-factor.
The second point rests upon the observation that the map from E� to E� induces
an isomorphism from

K∗(B�)⊗ R = KK�
R(C0(E�), C)→ K

top

∗,R(�)τ = KK�
R(C0(E�), C)τ .
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In other words, the conjecture that μτ is an isomorphism is intermediate
between the Baum–Connes conjecture (without coefficents) and the Strong Novikov
conjecture.

4.5.2 Injectivity: the Gromov–Lawson–Rosenberg conjecture

Let M be a Riemannian manifold of dimension n. The scalar curvature is a smooth
function κ : M → R that, at a point p ∈ M , measures how fast the volume of small
balls centered at p grows when compared to the volume of small balls of the same
radius in Euclidean space En. More precisely we expand the ratio V ol BM(p,r)

V ol BEn (0,r)
as a

power series in r:

V ol BM(p, r)

V ol BEn(0, r)
= 1− κ(p)

6(n+ 2)
r2 + o(r2);

so positive scalar curvature means that small balls in M grow more slowly than
corresponding Euclidean balls.

Let M be now a closed spin manifold, and D the Dirac operator of M , the
Atiyah–Singer index formula for D is

Ind(D) = 〈Â(M), [M]〉,

where Â(M) is a polynomial in the Pontryagin classes, and [M] is the fundamental
class of M; see [BBB13]. Let � = π1(M) be the fundamental group of M , and let
f : M → B� be the classifying map. Fix x ∈ H ∗(B�, Q). The number 〈Â(M)[M]〉
being called the Â-genus, it is natural to call the numbers

Âx(M) =: 〈f ∗(x) ∪ Â(M), [M]〉

higher Â-genera, by analogy with higher signatures. The Gromov–Lawson–
Rosenberg conjecture (GLRC) states:

Conjecture 6 (GLRC) Let M be a closed spin manifold M with fundamental group
�. If M admits a Riemannian metric with positive scalar curvature, then all higher
Â-genera do vanish: Âx(M) = 0 for all x ∈ H ∗(B�, Q).

GLRC for manifolds with given fundamental group �, follows from injectivity
of the assembly map for �, see Theorem 7.11 in [BCH94]. The fact that the usual Â-
genus vanishes for a closed spin manifold with positive scalar curvature, is a famous
result by Lichnerowicz.

See [RS95] for a lucid discussion of GLRC, together with speculations about a
suitable converse: does the vanishing of a certain K-theory class in the real K-theory
of C∗r (�) implies the existence of a metric with positive scalar curvature on M?
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4.5.3 Surjectivity: the Kadison–Kaplansky conjecture

Let � be a discrete group. If g ∈ � is a group element of finite order n > 1, then
e = 1

n

∑n−1
k=0 gk defines a non-trivial element in the complex group ring C� (“non-

trivial” meaning: distinct from 0 and 1). When � is torsion-free, it is not clear that
C� admits non-trivial idempotents, and around 1950, Kaplansky turned this into a
conjecture:

Conjecture 7 If � is a torsion-free group, then C� has no non-trivial idempotent.

Around 1954, Kadison and Kaplansky conjectured that this should be even true
by replacing C� by the larger reduced group C∗-algebra:

Conjecture 8 If � is a torsion-free group, then C∗r (�) has no non-trivial idempotent.

In contrast with the Novikov conjecture (Conjecture 3), Conjecture 8 is easy
to state. It is interesting that it follows too from the Baum–Connes conjecture
(Conjecture 4), actually from the surjectivity part.

Proposition 4.20 Let � be a torsion-free group. If the assembly map μr is onto,
then Conjecture 8 holds for �.

The proof of Proposition 4.20 goes through an intermediate conjecture. To
motivate this one, recall that any trace σ on a complex algebra A defines a
homomorphism

σ∗ : K0(A)→ C : [e] 	→ (T rn ⊗ σ)(e),

where e = e2 ∈ Mn(A) and T rn : Mn(A) → A is the usual trace. If A is
a C∗-algebra and σ is a positive trace, then the image of σ∗ is contained in R.
Consider now the canonical trace τ on C∗r (�). The following conjecture is known
as conjecture of integrality of the trace.

Conjecture 9 If � is a torsion-free group, then the canonical trace τ∗ maps
K0(C

∗
r (�)) to Z.

It is then easy to see that Conjecture 9 implies the Kadison–Kaplansky conjecture
(Conjecture 8). Indeed, take e = e2 ∈ C∗r (�). Since an idempotent in a unital C∗-
algebra is similar to a projection, we may assume that e = e∗ = e2. As 0 ≤ e ≤ 1
and τ is a positive trace, we have 0 ≤ τ(e) ≤ 1. But τ(e) ∈ Z by Conjecture 9,
so τ(e) is either 0 or 1. If 0 = τ(e) = τ(e∗e), then e = 0 by faithfulness of τ .
Replacing e by 1− e, we see that if τ(e) = 1, then e = 1.

Proof of Proposition 4.20 By the previous remarks, it is enough to see that, for a
torsion-free group � such that μr is onto, Conjecture 9 holds. Actually we prove
that, assuming � to be torsion-free, τ∗ is always integer-valued on the image of μr

in K0(C
∗
r (�)).

Thanks to Remark 4.5, the domain of μr , i.e., the left-hand side of the Baum–
Connes conjecture, is the group K0(�, pt), whose cycles are of the form (Z, ξ) with
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Z a proper �-compact manifold and ξ ∈ V�(T ∗Z), and by Section 4.1 we have
μr(Z, ξ) = Ind�(D̃), where D̃ is some �-invariant elliptic differential operator on
Z. As � is torsion-free, any proper �-action is free and proper, so that the map
Z → �\Z is a �-covering and we may appeal to Atiyah’s L2-index theorem
(Theorem 2.1): the operator D̃ descends to an elliptic operator on the compact
manifold �\Z and

τ∗(μr(Z, ξ)) = Ind�(D̃) = Ind(D).

Since Ind(D) ∈ Z, this concludes the proof.17 ��

4.5.4 Surjectivity: vanishing of a topological Whitehead group

For a group �, denote by Z� its integral group ring, and let

K
alg

1 (Z�) =: lim−→GLn(Z�)/En(Z�)

be the first algebraic K-theory group of Z�, where En(Z�) is the subgroup of
elementary matrices. We denote by [±�] the subgroup of K

alg

1 (Z�) generated by
the image of the inclusion of �×{±1} into GL1(Z�). The Whitehead group Wh(�)

is then

Wh(�) = K
alg

1 (Z�)/[±�].

By analogy, using the inclusion of � in the unitary group of C∗r (�), we may define
the topological Whitehead group as Whtop(�) =: K1(C

∗
r (�))/[�]. So the vanishing

of Whtop(�) is equivalent to the fact that every unitary matrix in M∞(C∗r (�)) is in
the same connected component as a diagonal matrix diag(γ, 1, 1, 1, . . .) for some
γ ∈ �.

Conjecture 10 Assume that there is a 2-dimensional model for B�. Then
Whtop(�) = 0.

The following result appears in [BMV05]:

Proposition 4.21 When � has a 2-dimensional model for B�, Conjecture 10
follows from the surjectivity of the assembly map μr .

Proof Let �ab denote the abelianization of �. The inclusion of � in the unitary
group of C∗r (�) induces a map β : �ab → K1(C

∗
r (�)), as K1 is an abelian group.

17For a nice proof of that result NOT appealing to Atiyah’s L2-index theorem, see lemma 7.1 in
[MV03].
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By lemma 7.5 in [BMV05], as B� is 2-dimensional, the Chern character Ch :
K1(B�) → H1(B�, Z) is an isomorphism. Of course we have H1(B�, Z) =
H1(�, Z) = �ab. Moreover we have a commutative diagram

K1(BΓ)
Ch

μr
K1(C∗

r (Γ))

Γab

β

.

So β is onto as soon as μr is, and this implies Whtop(�) = 0 ��

4.5.5 Surjectivity: discrete series of semisimple Lie groups

Let G be a semisimple connected Lie group with finite center and maximal compact
subgroup K . As we shall see in Theorem 6.10 below, Lafforgue has given a proof
of the Baum–Connes conjecture without coefficients for G which is independent of
Harish-Chandra theory. On the other hand, let us present here a beautiful argument,
also due to Lafforgue [Laf02a], showing that the surjectivity of the assembly map
does say something on the representation theory: namely, surjectivity implies that
the Dirac induction μG maps bijectively a subset of the dual K̂ to the discrete series
of G; compare with Remark 2.4.

Recall that semisimple groups are CCR, i.e., any unitary irreducible represen-
tation σ of G maps C∗(G) onto the compact operators on Hσ ; so in K-theory σ

induces a homomorphism σ∗ : K0(C
∗(G))→ Z.

As the main ingredient for Lafforgue’s observation, we just need to recall
from Remark 2.4 that any discrete series π of G defines a K-theory class [π ] ∈
K0(C

∗
r (G)) such that π∗([π ]) = 1. In particular [π ] �= 0. Note that if G/K is odd

dimensional, then the surjectivity part of the conjecture implies that K0(C
∗
r (G)) = 0

so that G has no discrete series, reproving a well-known fact in Harish-Chandra
theory. We therefore now assume that G/K has even dimension.

Assume for simplicity that G/K has a G-invariant spin structure, i.e., the
adjoint representation of K in V = g/k lifts to Spin(V ). The Connes–
Kasparov map μG then coincides with Kasparov’s Dirac map α̃ : R(K) =
K0(C

∗(K)) → K0(C
∗
r (G)). The inverse of the map is Kasparov’s dual-Dirac

map β̃ : K0(C
∗
r (G))→ R(K). Lafforgue’s observation is the following duality:

Lemma 4.22 For any discrete series π of G and any irreducible representation ρ

of K , the following integers are equal:

π∗(α̃([ρ])) = ρ∗(β̃([π ])).

Indeed, one can show that both are equal to the dimension of the intertwining
space HomK(S ⊗ Vρ, Hπ), where S is the spinor representation of K .
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Fix π a discrete series of G. Viewing R(K) as the free abelian group on K̂ , we
may write

β̃([π ]) =
∑

ρ∈K̂

nπ,ρ[ρ],

where nπ,ρ is the integer defined in two different ways in Lemma 4.22. Now the
assumed surjectivity of μG translates into α̃ ◦ β̃ = Id, which implies the following
decomposition in K0(C

∗
r (G)):

[π ] =
∑

ρ

nπ,ρα̃([ρ]).

Now the equality π∗([π ]) = 1 and Lemma 4.22 yield:

1 =
∑

ρ

nπ,ρπ∗(α̃([ρ])) =
∑

ρ

n2
π,ρ.

So the integers nπ,ρ satisfy
∑

ρ n2
π,ρ = 1, hence there is a unique ρ such that

nπ,ρ = ±1, the others being zero. Then α̃([ρ]) = ±[π ], and the Dirac induction
maps bijectively a subset of the dual K̂ to the discrete series of G; in other words,
we have recovered Theorem 2.3 in a qualitative way.

5 Full and reduced C∗-algebras

5.1 Kazhdan vs. Haagerup: property (T) as an obstruction

The assembly map could as well be constructed using maximal C∗-algebras instead
of reduced. There is indeed a map

μA,max : KG∗ (EG, A)→ K∗
(
C∗max(G, A)

)

so that μA,r is the composition of μA,max with the map λ∗A obtained by functoriality
in K-theory from the map

λA : C∗max(G, A)→ C∗r (G, A).

In other words we have a commutative diagram

sKG
∗ (EG, A)

μA,r

μA,max
K∗(C∗

max(G, A))

λ∗
A

K∗(C∗
r (G, A))),
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The main difficulty in that the Baum–Connes conjecture is a conjecture about
μA,r , not μA,max. In order to understand that crucial point, it will be enlightening
to consider two classes of groups: one for which both μA,r and μA,max are
isomorphisms, hence also λ∗A.; another for which λ∗A is not injective, μA,max not
surjective, and for which the conjectural bijectivity of μA,r is difficult and proved
only in very few cases. We refer to [Jul98] for more details.

Definition 5.1 A locally compact second countable group G has the Haagerup
property18 if the following equivalent conditions are satisfied:

(i) There exists an action of G by affine isometries on a Hilbert space which is
metrically proper.

(ii) There exists a unitary representation π of G on a Hilbert space H, and a 1-
cocycle (i.e., a map b : G → H such that b(gg′) = b(g) + π(g)b(g′)) which
is proper.

(iii) There exists a function of conditional negative type on G which is proper.

Definition 5.2 A locally compact second countable group G has Kazhdan’s prop-
erty (T) if the following equivalent conditions are satisfied:

(i) Any action of G by affine isometries on a Hilbert space admits a fixed point.
(ii) For any unitary representation π of G on a Hilbert space H, any 1-cocycle is

bounded.
(iii) Any function of conditional negative type on G is bounded.

Note that only compact groups are both Haagerup and Kazhdan. The above
definitions can also be expressed in terms of the almost invariant vectors property:
a unitary representation π of G on H almost admits invariant vectors if for any
ε > 0 and any compact subset C of G, there is a unit vector x ∈ H such that
‖π(g)x − x‖ ≤ ε for any g ∈ C.

Proposition 5.3 A locally compact group G has property (T) if and only if any
unitary representation almost admitting invariant vectors has a non-zero invariant
vector. It has the Haagerup property if and only if there exists a unitary representa-
tion with coefficients vanishing at infinity and almost admitting invariant vectors.

The above characterization of property (T) is the original definition of Kazhdan.
As to the characterization of the Haagerup property, it is due to Jolissaint and implies
that all amenable groups have the Haagerup property. For examples of groups having
Haagerup or Kazhdan property, we refer to [BdlHV08] and to [CCJ+01]. Typical
examples of non-amenable discrete groups with Haagerup property are the free
groups Fn(n ≥ 2) or SL2(Z), whereas typical discrete groups having Kazhdan
property are SLn(Z), n ≥ 3.

18Or is a-(T)-menable, according to Gromov.
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Let us now explain the link with the Baum–Connes conjecture. We begin with
a C∗-algebraic characterization of property (T) (see [AW81]), in terms of the
existence of a Kazhdan projection.

Proposition 5.4 The locally compact group G has property (T) if and only if there
exists an idempotent eG ∈ C∗max(G) such that, for every unitary representation π

of G, the idempotent π(eG) is the orthogonal projector on the space of π(G)-fixed
vectors in Hπ .

From this we deduce a key observation made by Connes in the early 1980s: let us
consider, for a locally compact group, the map λ : C∗max(G) → C∗r (G) associated
with the left regular representation of G.

Lemma 5.5 If G is non-compact with property (T), the map induced in K-theory

λ∗ : K∗
(
C∗max(G)

)→ K∗
(
C∗r (G)

)

is not injective: its kernel contains a copy of Z which is a direct summand in
K0(C

∗
max(G)).

Proof Because of property (T), we have a direct sum decomposition

C∗max(G) = ker(εG)⊕ CeG,

where εG is the trivial one-dimensional representation of G. So K0(C
∗
max(G)) =

K0(ker(εG))⊕ Z. On the other hand, as G is not compact: λ∗(eG) = 0, which ends
the proof. ��
Corollary 5.6 Assume that G is non-compact with property (T), and admits a γ -
element. Then μmax is not surjective. In particular, γ �= 1 in KKG(C, C).

Proof We have μr = λ∗ ◦ μmax, and the injectivity of μr (see Theorem 4.13)
trivially implies that a non-zero element of the kernel of λ∗ cannot be in the image of
μmax. Moreover, if γ = 1, the Kasparov machine, which works also for full crossed
products, shows that μA,max is an isomorphism, a contradiction. ��

On the other hand, Higson and Kasparov have proved in the 1990s the following
beautiful result:

Theorem 5.7 Let G be a locally compact group having the Haagerup property.
Then G has a γ -element equal to 1. As a consequence, the three maps μA,r , μA,max,
and (λA)∗ are isomorphisms. In particular Conjecture 5 holds for G.

For a proof (using E-theory instead of KK-theory) we refer to [HK01] and
[Jul98]. We shall only explain how a locally compact proper G-space can be
constructed from an affine action on a Hilbert space. Consider the space Z =
H × [0,+∞[ equipped by the topology pulled back by the map (x, t) 	→
(x,

√‖x‖2 + t2) of the topology of the space Hw × [0,+∞[, where Hw is the
space H with weak topology. The space Z is a locally compact space and carries
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a proper action defined by g.(x, t) = (g.x, t) for g ∈ G. It is a representative of
the classifying space of proper actions EG. The space Z can also be defined as a
projective limit of spaces [0,+∞[×V over all affine subspaces V of H , with the
maps [0,+∞[×V ′ → [0,+∞[×V (for all V ⊂ V ′) combining the projection to V

with the map x 	→ √‖x‖2 + t2 on the vector subspace orthogonal to V in V ′.
A locally compact group G is K-amenable (see, e.g., [JV84]) if, for any G−C∗-

algebra A, the full crossed product C∗max(G, A) and the reduced crossed product
C∗r (G, A) do have the same K-theory via the map (λA)∗. So Theorem 5.7 says that
groups with the Haagerup property are K-amenable, while Corollary 5.6 says that
non-compact groups with property (T), are not.

Remark 5.8 In a recent preprint, Gong et al. [GWY19] prove the Strong Novikov
conjecture for discrete groups acting isometrically and metrically properly on
a Hilbert–Hadamard manifold (i.e., an infinite-dimensional analogue of simply
connected and non-positively curved manifold). This contains of course the case
of groups with the Haagerup property, but also the case of geometrically discrete
subgroups of the group of volume preserving diffeomorphisms of a compact smooth
manifold. Their proof uses a generalization of the Higson–Kasparov construction,
but also the techniques of Antonini et al. [AAS18].

5.2 A trichotomy for semisimple Lie groups

Let us now assume that G is a semisimple Lie group, connected with finite center.
The conjecture without coefficients (Conjecture 4) for G is known to be true. There
are now three completely distinct proofs of that fact. In 1984, Wassermann [Was87]
(following the work of Penington and Plymen [PP83] and Valette [Val85, Val84])
proved the conjecture using the whole machinery of Harish-Chandra theory together
with the work of Knapp-Stein and Arthur, allowing for a precise description of
the reduced dual of such groups. The second proof, due to Lafforgue, only uses
Harish-Chandra’s Schwartz space, but appeals to the whole of his Banach KK-
theory, sketched in Chapter 6 below. Another idea of proof had been suggested by
Baum et al. [BCH94] following the idea of Mackey correspondence, i.e., of a very
subtle correspondence between the reduced dual of a semisimple Lie group G and
the dual of its Cartan motion group, i.e., the semidirect product G0 = g/k � K ,
where K is a maximal compact subgroup of G. Very recently Afgoustidis [Afg16]
has given such a proof using the notion of minimal K-types introduced by Vogan
[Vog81].

But the most difficult problem arises when one is interested in the conjecture
for a discrete subgroup � of G. Such groups inherit the geometry from G, but
there is of course no hope to describe their reduced dual. However, the conjecture
(with or without coefficients) for � follows from the conjecture with coefficients
(Conjecture 5) for the Lie group G, a fact stated without proof in [BCH94] and first
proved by Oyono-Oyono [OO01].
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As a result the question of Baum–Connes for � can be summarized as follows,
resulting from Kasparov’s work:

(1) injectivity of the Baum–Connes assembly map for G holds with coefficients in
any G− C∗-algebra, hence it also holds for the discrete group �.

(2) the question of surjectivity of the Baum–Connes assembly map for the discrete
group �, or more generally the surjectivity of the Baum–Connes assembly map
with coefficients in any A for the Lie group G, are difficult questions and can
be considered as a crucial test for Conjecture 4.

We shall have to distinguish, among simple Lie groups, the real rank 1 and the
higher rank cases. We need to recall the classification of real rank 1 simple Lie
groups. Up to local isomorphism, the list is: SO0(n, 1), SU(n, 1), Sp(n, 1), F4(−20),
i.e., the isometry group of the n-dimensional hyperbolic space over the division
algebras R, C, H (the Hamilton quaternions), and O (the Cayley octonions); over
R, we restrict to orientation-preserving isometries; over O, there is only n = 2.

Assume that G is locally isomorphic to a simple Lie group. There is the following
trichotomy:

(1) If G is (locally isomorphic to) one of the real rank one groups SO0(n, 1) or
SU(n, 1) (n ≥ 2): then G is known to have the Haagerup property. Therefore,
by Theorem 5.7, G satisfies the Baum–Connes conjecture with coefficients
(Conjecture 5), and so do all its discrete subgroups.

However, it is worth noting that the SO0(n, 1) and SU(n, 1) cases had
been solved before the Higson–Kasparov theorem by more geometric methods
in the works of Kasparov [Kas84], Chen [Che96] and Julg-Kasparov [JK95].
Indeed, the above authors have produced a construction of a representative of
γ combining a complex on the flag manifold (which is the boundary of the
symmetric space) and a Poisson transform, as explained in Section 5.3 below.
Then a homotopy using the so-called complementary series yields the required
equality γ = 1 in KKG(C, C).

(2) If G is (locally isomorphic to) one of the real rank one groups Sp(n, 1)

(n ≥ 2) or F4(−20): then by a result of Kostant, G has Kazhdan’s property
(T). This fact makes the Baum–Connes conjecture more difficult since the full
and reduced crossed product do not have in general the same K-theory. The
first deep result in that direction was obtained by Lafforgue in 1998 [Laf00] by
combining the Banach analogue of the conjecture, explained in Chapter 6, with
Jolissaint’s rapid decay property (see Section 6.1.4 below): if � is a cocompact
discrete subgroup of such a group G, then � satisfies Conjecture 4 (i.e., without
coefficients).

Moreover, Julg has been able to extend to those cases the method of flag
manifolds and Poisson transforms, which gives again the construction of a Fred-
holm module representing γ . However, it is no longer possible to use the theory
of unitary representations since the complementary series stays away from the
trivial representation, in accordance with property (T). An idea proposed by Julg
in 1994 is to use a family of uniformly bounded representations approaching the
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trivial representation. Such a family of uniformly bounded representations has
been constructed by Cowling [Cow82]: see Section 6.2.2 for more details.

It should be possible to show that the element γ , though not equal to 1 in
KKG(C, C), still gives the identity map in K∗(C∗r (G, A)) (but of course not in
K∗(C∗max(G, A)). Technically the notion of uniformly bounded representations
has to be extended to representations with an arbitrary slow exponential growth,
following an idea of Higson explained in Section 6.2.1 below. The details of the
proof announced by Julg [Jul02] have not yet been fully written, we refer to
[Jul19].

On the other hand, there is a detailed proof of a similar result by Lafforgue
[Laf12]: any Gromov hyperbolic group � satisfies Conjecture 5 (with coef-
ficients). His proof uses the same idea of arbitrary slow exponential growth
representations, see Section 6.2.3 below.

The result of Lafforgue and the announced result of Julg have in common the
following important case, namely the case of a cocompact lattice � of Sp(n, 1)

(n ≥ 2) or F4(−20). Note, however, that Lafforgue’s result applies to general
Gromov hyperbolic groups (many do have property (T)), whereas Julg’s claim
would apply to all discrete subgroups of Sp(n, 1) (n ≥ 2) or F4(−20), including
non-cocompact lattices,19 which also have property (T).

(3) If G is a simple group of real rank greater or equal to 2: this is the very difficult
case. Actually Lafforgue found that for higher rank Lie groups an obstruction
persists: they satisfy a stronger version of property (T), explained in Section 6.3,
that prevents the use of representations of arbitrary small exponential growth to
succeed (see [Laf08] and [Laf10]). In this case very few are known. The only
results are for the cocompact discrete subgroups � of a simple Lie group G

of rank 2 locally isomorphic to SL3(R), SL3(C), SL3(H), or E6(−26). The
proof combines again Lafforgue’s result on the Banach analogue of the Baum–
Connes conjecture (see Chapter 6), and Jolissaint’s (RD) property that we recall
in 6.1.4.

5.3 Flag manifolds and KK-theory

Let G be a semisimple Lie group, connected with finite center. Kasparov [Kas84]
has made the following remark: Let P = MAN be the minimal parabolic (or Borel)
subgroup. The flag manifold G/P is a compact G-space satisfying the following
proposition:

Proposition 5.9 An element of KKG(C, C) which is in the image of the map
KKG(C(G/P ), C)→ KKG(C, C) and restricts to 1 in R(K) is equal to γ .

19A concrete example of a non-cocompact lattice in Sp(n, 1), is Sp(n, 1)(H(Z)), the group of
points of the real algebraic group Sp(n, 1) over the ring H(Z) of integral quaternions. For such a
group Conjecture 5 is still open.



170 M. P. Gomez Aparicio et al.

This result follows from the fact that the restriction of γ to the amenable
connected Lie group P is equal to 1. Hence (1− γ )KKG(C(G/P ), C) = 0.

A stronger statement is used by Julg-Kasparov[JK95] and Julg [Jul19]. Let us
compactify the symmetric space X = G/K by adding at infinity the flag manifold
G/P . Consider X̄ = G/K ∪G/P . They prove the following:

Proposition 5.10 An element of KKG(C, C) which is in the image of the map
KKG(C(X̄), C)→ KKG(C, C) and restricts to 1 in R(K) is equal to γ .

5.3.1 The BGG complex

An important object associated to flag manifolds is the so-called Bernstein–
Gelfand–Gelfand (BGG) complex on G/P . The following construction is due to
Čap et al. [cSS01].

Lemma 5.11 The cotangent bundle T ∗G/P carries a G-equivariant structure of
Lie algebra bundle.

Proof The group G acts transitively on the flag manifold G/P . Let us consider a
point x ∈ G/P . Its stabilizer in G is a parabolic subgroup Px , a conjugate of P .
The tangent space at x is the quotient of Lie algebras g/px . The Killing form on
G identifies the cotangent space T ∗x G/P = (g/px)∗ with the Lie algebra nx of
the maximal nilpotent normal subgroup Nx of Px . The Lie algebras nx form a Lie
algebra bundle on G/P , which is, as a vector bundle, G-equivariantly isomorphic
to T ∗G/P . ��

Let δx : ∧knx → ∧k−1nx be the boundary operator defining the homology of
the Lie algebra nx for each x ∈ G/P . Recall the formula for δx :

δx(X1 ∧ . . .∧Xk) =
∑

i<j

(−1)i+j [Xi, Xij ] ∧X1 ∧ . . .∧ X̂i ∧ . . .∧ X̂j ∧ . . .∧Xk.

Transporting δx from nx to T ∗x G/P defines a bundle map

δ :
∧k

T ∗G/P →
∧k−1

T ∗G/P.

Let � = �(G/P ) be the graded algebra of differential forms on the flag
manifold G/P . We consider on � the two operators d and δ, respectively of degree
1 and −1. Since d2 and δ2 are both zero, the degree zero map dδ + δd commutes
both with d and δ. In fact, as proved by Čap and Souček [cS07]:

Proposition 5.12 The Casimir operator of G acting on � is equal to−2(dδ+ δd).

Let �0 be kernel of the Casimir operator in �, which is a subcomplex of the de
Rham complex.
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Theorem 5.13

(1) �0 = ker(dδ + δd) = kerδ ∩ kerδd.
(2) The canonical injection �0 → � induces an isomorphism in cohomology.
(3) The canonical map kerδ ∩ kerδd → kerδ/imδ is a G-equivariant isomorphism

from �0 to the space of sections of the bundle kerδ/imδ, whose fibers are the
homology groups Hk(nx) of the Lie algebra T ∗x G/P = nx .

(4) The complex D transported from the complex d on �0 is a complex of
differential operators on the space of sections of the above bundle.

Remark 5.14 The adjoint action of Nx on nx induces the identity on Hk(nx), a
classical fact about Lie algebra homology. Therefore the BGG complex is defined
on a space of sections of a bundle on G/P obtained from a representation of P which
is trivial on the nilpotent normal subgroup N , i.e., factors through P/N = MA. In
the language of representation theory, it means that the representation involved in
the BGG complex are finite sums of (non-unitary) principal series of G.

5.3.2 The model: SO0(n, 1)

Let us now explain Kasparov’s proof [Kas88] of the Connes–Kasparov conjecture
with coefficients for the Lorentz groups G = SO0(2n + 1, 1). The flag manifold
G/P is the sphere S2n, which is the boundary of the hyperbolic space of dimension
2n + 1. Because the nilpotent group N is abelian, the operator δ is zero and the
BGG complex is nothing but the de Rham complex. Kasparov constructs a Fredholm
module representing the element γ using the crucial fact that G/P = S2n carries a
G-invariant conformal structure. Indeed, let us equip the sphere with its K-invariant
metric. The action of g ∈ G transforms the metric into its multiple by some scalar
function λ2

g .

(1) We make the action of G unitary by twisting the representation by a cocycle
thanks to the conformal structure. More precisely, let

π(g)α = λn−k
g g−1∗α.

The representation π is unitary on the Hilbert space of L2 forms of degree k.
(2) We make the operator d bounded by considering F = d(1 + �)−1/2, where

� = dd∗ + d∗d is the Laplace–Beltrami operator. The bounded complex F

is no more G-invariant, but the natural action of g ∈ G takes the zero order
pseudo-differential operator F to λgF plus a negative order pseudo-differential
operator, as easily seen at the principal symbol level.

(3) Combining the two preceding items (and the fact that F maps k-forms to (k+1)-
forms) we easily see that the conjugate π(g)Fπ(g)−1 equals F plus a negative
order pseudo-differential operator, hence the compactness of the commutator
[F, π(g)].
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The Fredholm module thus obtained is not quite the good one, since its index is
2 (the Euler characteristic of S2n). To solve the problem, Kasparov cuts the complex
in the middle: the group acts on the sphere S2n by conformal transformations and the
Hodge ∗ operation on forms of degree n is therefore G-invariant. The half complex
consists in taking the forms of degree 0 to n− 1, and in degree n only half of them,
those for which ∗ = in. Then the index is 1. In the smallest dimension case n = 1
(G = PSL(2, C)) it amounts to take the ∂̄ operator instead of the d operator on
S2 = P 1(C). The G-Fredholm module thus obtained represents the element γ by
Proposition 5.10.

In [Kas84], the case of SO0(2n, 1) was settled as a mere corollary of the case of
SO0(2n+1, 1). Indeed SO0(2n, 1) is a subgroup of SO0(2n+1, 1) and the element
γ restricts to closed subgroups. However, it was most interesting to treat the case of
SO0(2n, 1) in itself before passing to the other rank one groups. The direct proof for
SO0(2n, 1) has been treated by Chen in his thesis [Che96]. The G-equivariant de
Rham complex on S2n−1 is again turned, thanks to the conformal structure, into a G-
Fredholm module, but this time the index is 0 (the Euler characteristic of S2n−1). To
get a Fredholm module of index 1, something new is needed, which has no analogue
in the SO0(2n + 1, 1) case. One must use the L2-cohomology of the hyperbolic
space of dimension 2n, i.e., the Hilbert space Hn of square-integrable harmonic
forms (which are of degree n), which is a sum of two discrete series of G. The
truncated module (with index 1) is obtained by considering forms of degree≤ n−1,
and completing by a map from �n−1(S2n−1) to Hn. For n = 1, the map �0(S1)→
H1 is just the composition of the classical Poisson transform with the de Rham
differential. In general one must use Gaillard’s Poisson transform for forms [Gai86].
One thus obtains an element of KKG(C, C) which is equal to γ by Proposition 5.10.

5.3.3 Generalization to other rank one groups

The de Rham complex is replaced by the BGG complex on the flag manifold. This
is done by Julg and Kasparov in [JK95] for G = SU(n, 1) where the BGG complex
is the so-called Rumin complex associated to the G-invariant contact structure
on G/P = S2n−1, and for Sp(n, 1) or F4(−20) by Julg [Jul19]. In order to turn
the BGG complex into a G-Fredholm module, one has to replace, in the above
SO0(n, 1)-picture, conformal structure by quasi-conformal structure: the tangent
bundle has a G-equivariant subbundle E of codimension 1, 3, or 7 respectively
for G = SU(n, 1), Sp(n, 1) or F4(−20), whose fiber Ex at any point x ∈ G/P is
defined as the subspace of TxG/P = n∗x orthogonal to the subalgebra [nx, nx] of the
Lie algebra nx . The K-invariant metric is no more conformal, but quasi-conformal
in the following sense: consider the action of G on the subbundle E and on the
quotient T M/E (note that there is no invariant supplementary subbundle), then
under g ∈ G the metric on E is multiplied by some scalar function λ2

g , and on the

quotient T M/E by λ4
g . The action of G on forms is not conformal, but after passing

to the δ-homology H∗(nx) splits into conformal components. Such a splitting is
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defined by the weight, i.e., the action of the abelian group R∗+ seen as a subgroup
of the quotient Px/Nx . This is closely related to the splitting of the representation
in the BGG complex into (non-unitary) principal series of G mentioned in Remark
5.14. It follows that one can modify the action of G into a unitary representation
π(g) on the space of L2 sections of the BGG complex.

Exploring the analytical properties of the complex D requires to replace the
ordinary K-invariant Laplacian by the K-equivariant sub-Laplacian on G/P .
Namely, � = −∑

X2
i where the vector fields Xj form at each point x ∈ G/P

an orthonormal basis (for a K-equivariant metric) of the subspace of TxG/P = n∗x
orthogonal to the subalgebra [nx, nx] of nx . The operator � is not elliptic but
hypoelliptic. It has a parametrix which is not a classical pseudo-differential operator,
but belongs to a new pseudo-differential calculus in which Fourier analysis is
replaced by representation theory of nilpotent Lie groups. Such calculi have been
constructed in special cases by Beals and Greiner [BG88] or by Christ et al.
[CGGP92]. However, what is needed here is the general construction, which seems
to appear only in Melin’s 1982 preprint [Mel82], unfortunately very difficult to find.
It is worth to mention that noncommutative geometry has motivated a revival of
work on the subject, in particular the groupoid approach. The groupoid adapted
to the situation has been constructed by various authors: Ponge [Pon06], van Erp
and Yuncken [vEY17b], see also [JvE18]. The most beautiful construction of the
groupoid using the functoriality of the deformation to the normal cone can be found
in the recent thesis of Mohsen [Moh18]. The link between the groupoid and the
pseudo-differential calculus is discussed in [DS14] and [vEY17a].

The following theorem explains how to combine the sublaplacian and the weight
grading to produce an element of KKG(C(G/P ), C) out of the BGG complex. See
[Rum99, Jul19] and [DH17].

Theorem 5.15 Let �W/2 be the pseudo-differential operator equal to the power
�w/2 on the w weight component of the BGG complex. Then the conjugate F =
�W/2D�−W/2 is a bounded operator satisfying F 2 = 0 on the Hilbert space of L2

sections of the BGG complex. The commutators [F, f ] and [F, π(g)] are compact
operators for any f ∈ C(G/P ) and g ∈ G. Moreover F admits a parametrix, i.e., a
bounded operator Q such that FQ+QF − 1, Q2, as well as [Q, f ] and [Q, π(g)]
for f ∈ C(G/P ) and g ∈ G are compact operators.

As above in the SO0(2n, 1) case, one has to modify the complex in order to
get a truncated complex of index 1 in R(K). Then Proposition 5.10 will ensure
that its class in KKG(C, C) is the element γ . Here again discrete series must be
involved, namely those entering the L2-cohomology of the symmetric space G/K ,
i.e., the Hilbert space Hm of harmonic L2 forms of degree m = dim G/K

2 , namely
m = n, n, 2n, and 8 respectively in the cases of SO0(2n, 1), SU(n, 1), Sp(n, 1), and
F4(−20). Note that the Casimir operator vanishes on Hm (since the Casimir operator
is equal to −� (the Laplace–Beltrami operator) on L2(�(G/K)), allowing to build
an adequate Poisson transform [cHJ19] sending the BGG component in degree m to
harmonic forms of degree m in G/K . The half complex is then obtained by taking
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the BGG complex up to degree m−1 and to complete by the composition of D with
such a Poisson transform [Jul19].

5.3.4 Generalization to higher rank groups

More difficult is the case where G is a simple Lie group of real rank ≥ 2. So far
only the case of SL(3, C) has been treated, by Yuncken [Yun11] who has been able
to produce a G-Fredholm module representing γ out of the BGG complex. Here
the flag manifold G/P , where P is the minimal parabolic of G comes with two
G-equivariant fibrations G/P → G/Pi ( i = 1, 2) onto smaller flag manifolds
coresponding to P1 and P2 the two other parabolics containing P . The operators
in the BGG complex turn out to be longitudinally elliptic differential operators
along the fibers. Considering a class of pseudo-differential operators on multifiltered
manifolds, and making an unexpected use of Kasparov’s technical lemma yields
a Fredholm module representing an element of KKG(C(G/P ), C). Its index can
be taken as 1 in R(K) if one considers the holomorphic BGG complex (as in the
SL(2, C) case of [Kas84], where d is replaced by ∂̄). Its class in KKG(C, C) is
therefore γ by Proposition 5.10.

6 Banach algebraic methods

As Julg pointed out in [Jul97], once non-unitary representations appear, one can
no longer work with C∗-algebras but with more general topological algebras, for
instance, Banach algebras. Unfortunately, Kasparov’s KK-theory is a purely C∗-
algebraic tool. However, K-theory can be defined for all kind of topological algebras
(see the appendix of [Bos90] for the notion of good topological algebras for which
the K-theory can be defined); consequently, one has to be able to work in a more
flexible framework whose foundations were laid by Lafforgue.

6.1 Lafforgue’s approach

6.1.1 Banach KK-theory

In [Laf02b], Lafforgue defined a bi-equivariant KK-theory, denoted by KKban,
for general Banach algebras. The basic idea to start with, was to define a group
KKban

G (C, C), in the same way as Kasparov defined KKG(C, C), but where unitary
representations on Hilbert spaces are replaced by isometric representations on
Banach spaces and, therefore, replacing C∗-algebras by Banach algebras. More
generally, Lafforgue defined a group KKban

G,�(C, C) using representations on Banach
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spaces that are not necessarily isometric but for which the growth is exponentially
controlled by a length function on the group G.

Knowing that the trivial representation is not isolated among representations
on Banach spaces,20 Lafforgue was able to prove for a class of groups called C′
in [Laf02b], which is contained in the class C and hence for which a γ -element
has been constructed, that such a γ is equal to 1 in KKban

G,�(C, C). The class C′
contains:

• semisimple real Lie groups and their closed subgroups;
• simple algebraic groups over non-Archimedean local fields, and their closed

subgroups;
• hyperbolic groups.

The equality γ = 1 in KKban
G,�(C, C) allowed Lafforgue to prove, for all groups

in C′, an analogue of the Baum–Connes conjecture where C∗(G) is replaced by
L1(G), which for general G is a conjecture of Bost. More precisely, Lafforgue used
his equivariant KKban to define a morphism

μA
L1 : Ktop∗ (G, A)→ K∗(L1(G, A)),

for all locally compact groups G and all G− C∗-algebra A.
More precisely, Lafforgue used his equivariant KKban to define a morphism

μA
L1 : Ktop∗ (G, A)→ K∗(L1(G, A)),

for all locally compact groups G and all G− C∗-algebras A.
Let us recall the important features of Lafforgue’s Banach KK-theory that allow

one to define the morphism μA
L1 . If A and B are two Banach algebras endowed with

an action of a locally compact group G then there exists a descent map

jL1

G : KKban
G (A, B)→ KKban(L1(G, A), L1(G, B)).

Unlike Kasparov’s bivariant theory, Banach KK-theory does not have a product but
nevertheless, it still acts on K-theory, i.e., there is a morphism

K0(A)×KKban(A, B)→ KKban(C, B)

and for every Banach algebra B, the group KKban(C, B) is isomorphic to K0(B).
Consequently, following the Baum–Connes–Higson formulation of the conjecture
and hence the construction of the assembly map (see 4.3), one gets, without too
much effort, the morphism μA

L1 : Ktop∗ (G, A)→ K∗(L1(G, A)).

Let us stress in addition that, unlike Hilbert spaces, Banach spaces are in general
not self-dual; so to define the groups KKban(A, B) Lafforgue has to replace Hilbert

20See the discussion of strong property (T) in 6.3.
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modules by pairs of Banach modules together with a duality condition. For details,
see Chapter 10 in Valette’s book [Val02].

6.1.2 Bost conjecture and unconditional completions

Bost’s conjecture (with coefficients) is stated as follows

Conjecture 11 (Bost) For all locally compact groups G and for all G−C∗-algebras
A the map μA

L1 is an isomorphism.

The moral is that when using representations with controlled growth on Banach
spaces to construct a homotopy between a γ -element and 1, as one gets out of the
C∗-algebraic context, the K-theory that we are able to compute is the K-theory of a
Banach algebra. In the case of the Bost conjecture, the Banach algebra that we get
is L1(G).

There are two good things about the Bost conjecture, the first one is that it is
easier to prove than the Baum–Connes conjecture (meaning that it has been proven
by Lafforgue for a wide class of groups containing all semisimple Lie groups as
well as their lattices) and no counter-example to the Bost conjecture is known, to the
best of our knowledge. Secondly, the original map μA,r of Baum–Connes–Higson
factors through the map μB

L1 so that the following diagram is commutative:

Ktop
∗ (G, B)

μB
L1

μB
r

K∗(C∗
r (G, B))

K∗(L1(G, B)),

ι∗

where ι denotes inclusion L1(G, B) → C∗r (G, B). Therefore, if we take G to be
a group for which the Bost conjecture has been proven, for example, a semisimple
Lie group or a lattice in such a group, trying to prove the Baum–Connes conjecture
for G amounts to prove that ι∗ is an isomorphism, in other words that ι induces an
isomorphism in K-theory.

Unfortunately, the usual criteria to prove that the continuous inclusion of L1(G)

in C∗r (G) induces an isomorphism in K-theory, is not true for most of the locally
compact groups. For example, the algebra L1(G) is not stable under holomorphic
calculus if G is a non-compact semisimple Lie group [LP79]. To illustrate this, let
us recall the usual criterion to determine whether an injective morphism of Banach
algebras induces an isomorphism at the level of their K-theory groups.

Definition 6.1 Let A and B be two unital Banach algebras and φ : A → B is a
morphism of Banach algebras between them. Then φ is called spectral, if for every
x ∈ A the spectrum of x in A equals the spectrum of φ(x) in B. It is called dense if
φ(A) is dense in B.
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This terminology is taken from [Nic08]. When φ is injective, A can be considered
as a subalgebra of B. In this case, A is said to be “stable under holomorphic
calculus in B,” because, for every x ∈ A and every holomorphic function f on
a neighborhood of the spectrum of x in B, the element f (x) constructed using
holomorphic functional calculus in B belongs to A (see [Bos90]).

The theorem below is a classical result known as the Density Theorem; it is due
to Swan and Karoubi (see [Swa77, Section 2.2 and 3.1], [Kar08, p. 109], [Con81,
Appendix 3] and [Bos90, Théorème A.2.1]).

Theorem 6.2 If A and B are two unital Banach algebras and φ : A → B is
dense and spectral morphism of Banach algebras then φ induces an isomorphism
φ∗ : K∗(A)→ K∗(B).

What Bost noticed is that the condition of been spectral is, somehow, too strong:
if φ is spectral it induces strong isomorphisms in K-theory:

Definition 6.3 ([Bos90]) An injective morphism between two unital Banach alge-
bras φ : A → B, induces a strong isomorphism in K-theory if for every n ≥ 1 the
maps

Mn(φ) : Pn(A)→ Pn(B) and GLn(φ) : GLn(A)→ GLn(B),

induced by φ are homotopy equivalences.

Here for an algebra A and for an integer n, we denote by Mn(A) the set of n × n

matrices with coefficients in A and Pn(A) = {p ∈ Mn(A) | p2 = p} is the set of
idempotent matrices.

If the maps Mn(φ) and GLn(φ) above are homotopy equivalences then the
morphism induced by φ, say φ∗ : P(A) → P(B) is an isomorphism (where P(A)

denotes the semi-group of isomorphism classes of projective A-modules of finite
type). This is stronger than inducing an isomorphism in K-theory.

The next example shows that, because of this strength, it is not easy to pass from
Bost conjecture to the Baum–Connes conjecture.

Example 6.4 Set G = SL2(R). Then G has two representations in the discrete
series (i.e., square-integrable representations) that are not integrable (i.e., the matrix
coefficients do not belong to L1(G)) and are therefore not isolated in the dual space
of L1(SL2(R)). This implies that the idempotent of C∗r (SL2(R)) associated to one
of these discrete series (which is equal to a matrix coefficient) does not belong
to L1(SL2(R)); hence, if π0 denotes the set of connected components, the map

from π0

(
P1(L

1(SL2(R))
)
→ π0

(
P1(C

∗
r (SL2(R))

)
, which is induced by ι, is not

surjective. Therefore applying what is known for the Bost conjecture to the Baum–
Connes conjecture is not in any case automatic.

Fortunately, Lafforgue’s proof of the Bost conjecture can actually be used to
compute the K-theory of a class of Banach algebras more general than L1(G) called
unconditional completions of Cc(G).
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Definition 6.5 Let G be a locally compact group. A Banach algebra completion
B(G) of Cc(G) is called unconditional if the norm ‖f ‖B(G) only depends on the
map g 	→ |f (g)|, i.e., for f1, f2 ∈ Cc(G), ‖f1‖B(G) ≤ ‖f2‖B(G) if |f1(g)| ≤
|f2(g)| for all g ∈ G.

Example 6.6 For a locally compact group G, the algebra L1(G) is an unconditional
completion of Cc(G).

Example 6.7 If G is a connected semisimple Lie group and K is a maximal compact
subgroup, let t ∈ R+ and let St (G) be the completion of Cc(G) for the norm given
by:

‖f ‖St (G) = sup
g∈G

|f (g)|φ(g)−1(1+ d(g))t ,

where φ is the Harish-Chandra function on G (see Chapter 4 in [Kna01]) and for
g ∈ G, d(g) is the distance of gK to the origin in G/K . Then, for t large enough,
St (G) is an unconditional completion (see Section 4 in [Laf02b]).

Another important example of unconditional completions appears in connexion
with the rapid decay property, to be discussed in Section 6.1.4 below.

Inspired by the definitions of the algebras L1(G, A), one can define analogues of
crossed products in the context of Banach algebras using unconditional completions
as follows: if A is a G − C∗-algebra and B(G) is an unconditional completion of
Cc(G), we define the algebra B(G, A) as the completion of Cc(G, A) for the norm

‖f ‖B(G,A) =
∥∥g 	→ ‖f (g)‖A

∥∥A(G)
.

For all locally compact group G, all G − C∗-algebra A and all unconditional
completions B(G) Lafforgue used his Banach KK-theory to construct a morphism

μA
B(G) : Ktop∗ (G, A)→ K∗(B(G, A)).

He then obtained an analogue of the “Dirac–dual-Dirac method” in this context:

Theorem 6.8 (Lafforgue) If the group G has a γ -element in KKG(C, C) and
if there exists a length function � on G, such that, for all s > 0, γ = 1 in
KKban

G,s�(C, C), then μA
B(G)

is an isomorphism for all unconditional completions
B(G) and for all G-algebras A.

Lafforgue proved the equality γ = 1 in KKban
G,s�(C, C) for all groups in the

class C′ (see [Laf02b, Introduction]). All real semisimple Lie groups and all p-adic
reductive Lie groups as well as their closed subgroups, all discrete groups acting
properly, cocompactly, continuously and by isometries on a CAT (0) space and all
hyperbolic groups belong to this class. For all these groups G and all G-algebras
A the map μA

B(G)
is an isomorphism and hence the Bost conjecture holds (see

[Laf02b]). For a nice expository explanation on how the homotopy between γ and
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1 is constructed using Banach representations, see [Ska02] where the combinatorial
case is explained in details, i.e., the case containing p-adic groups.

6.1.3 Application to the Baum–Connes conjecture

Let B(G) be an unconditional completion of Cc(G) that embeds in C∗r (G). In that
case, the Baum–Connes map μr factors through μB(G) so that the following diagram
is commutative:

Ktop
∗ (G)

μB(G)

μr

K∗(B(G))

i∗

K∗(C∗
r (G))

,

where i∗ is the inclusion map induced by the map i : B(G)→ C∗r (G).

Proposition 6.9 Let G be a group in Lafforgue’s class C′. Suppose there exists
an unconditional completion B(G) which is a dense subalgebra stable under
holomorphic calculus in C∗r (G). Then the Baum–Connes assembly map μr is an
isomorphism.

Using Example 6.7, we can state the first result of Lafforgue concerning
connected Lie groups (see the discussion in Section 5.2 regarding those groups)

Theorem 6.10 (Lafforgue) Let G be a connected semisimple Lie group. Then
Conjecture 4 (without coefficients) is true for G.

Proof For t ∈ R+ large enough, the algebra S t (G) from Example 6.7 is an
unconditional completion which is dense and stable under holomorphic calculus
in C∗r (G) (cf. Section 4 in [Laf02b]).

��
As a matter of fact, Lafforgue’s theorem is much more general. Let G be a locally

compact group. A quadruplet (G, K, d, φ) is a Harish-Chandra quadruplet if G is
unimodular with Haar measure denoted by dg, K is a compact subgroup endowed
with his unique Haar measure of mass equal to 1, d is a length function on G such
that d(k) = 0 for all k ∈ K and d(g−1) = d(g) for all g ∈ G and φ : G→]0, 1] is
a continuous function satisfying the following 5 properties:

1. φ(1) = 1,
2. ∀g ∈ G, φ(g−1) = φ(g),
3. ∀g ∈ G, ∀k, k′ ∈ K , φ(kgk′) = φ(g),
4. ∀g, g′ ∈ G,

∫
K

φ(gkg′)dk = φ(g)φ(g′),
5. for all t ∈ R+ large enough,

∫
G

φ2(g)(1+ d(g))−t dg converges.
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When one has a Harish-Chandra quadruplet, then one can define a Schwartz
space on G following Example 6.7 : St (G) is the Banach space completion of Cc(G)

with respect to the norm given by

‖f ‖St (G) = sup
g∈G

|f (g)|φ(g)−1(1+ d(g))t .

Lafforgue’s result is then stated a follows:

Proposition 6.11 Let (G, K, d, φ) be a Harish-Chandra quadruplet. Then, for
t ∈ R+ large enough, St (G) is an unconditional completion of Cc(G) which is
a subalgebra of C∗r (G) dense and stable under holomorphic calculus.

In Section 4 of [Laf02b], Lafforgue constructed a Harish-Chandra quadruplet for all
linear reductive Lie groups on local fields.

Remark 6.12 The method of finding a Schwartz type unconditional completion
dense and stable under holomorphic calculus in C∗r (G) like the algebra St (G) for
semisimple Lie groups, does not work with coefficients (see the remark after the
Proposition 4.8.2 of [Laf02b]). If � is a lattice in a semisimple Lie group G, we can
define an algebra St (�) in the same manner as for G: it is the completion of Cc(�)

for the norm ‖f ‖S t (�) = sup
γ∈�

|f (γ )|(1 + d(γ ))tφ(γ )−1, where φ is the Harish-

Chandra function of G and the d is the appropriate distance in G (see [Boy17] where
this algebras are studied). Suppose now that � is cocompact. Then St (G, C(G/�))

is not stable under holomorphic calculus in C∗r (G, C(G/�)) as these algebras are
Morita equivalent to St (�) and C∗r (�), respectively, and St (�) is not stable under
holomorphic calculus in C∗r (�). Indeed, if γ ∈ � is a hyperbolic element, since
d(γ n) grows linearly in n if we denote by eγ the corresponding Dirac function in
C�, its spectral radius as an element of C∗r (�) is 1 whereas its spectral radius in
St (�) is > 1. To see this we use the following classical estimate on the Harish-
Chandra φ-function (see Proposition 7.15 in [Vog81]): there are positive constants
C, � > 0 such that for every g ∈ G :

φ(g) ≤ Ce−d(g)(1+ d(g))�.

Hence

‖en
γ ‖St (�) = (1+ d(γ n))t

φ(γ n)
≥ C−1(1+ d(γ n))t−�ed(γ n).

Since d(γ n) grows linearly in n, we have for the spectral radius of eγ in St (�):

lim
n→∞‖e

n
γ ‖1/n

St (�)
> 1.
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6.1.4 The rapid decay property

To state Lafforgue’s results concerning lattices in connected Lie groups, and hence
examples of discrete groups having property (T) and verifying the Baum–Connes
conjecture (without coefficients), we need to introduce the property of rapid decay,
denoted by (RD).

Recall that, for G a locally compact group, a continuous function � : G → R+
is a length function if �(1) = 0 and �(gh) ≤ �(g)+ �(h) for every g, h ∈ G.

Example 6.13 If � is a finitely generated group and S is a finite generating subset,
then �(g) = |g|S (word length with respect to S) defines a length function on �.

The following definition is due to Jolissaint [Jol90].

Definition 6.14 Il � is a length function on the locally compact group G, we say
that G has the property of rapid decay with respect to � (abridged property (RD)) if
there exist positive constants C, k such that, for every f ∈ Cc(G):

‖λ(f )‖ ≤ C · ‖f (1+ �)k‖2.

In other words the norm of f in C∗r (G), i.e., the operator norm of f as
a convolutor on L2(G), is bounded above by a weighted L2-norm given by a
polynomial in the length function.

The relevance of property (RD) regarding Baum–Connes comes from the
following fact: If � is a discrete group with property (RD) with respect to a length
function �, then, for a real number s which is large enough, the space

Hs
� (�) =

⎧
⎪⎨

⎪⎩
f : � → C | ‖f ‖�,s =

⎛

⎝
∑

γ∈�

|f (γ )|2(1+ �(γ ))2s

⎞

⎠

1
2

<∞

⎫
⎪⎬

⎪⎭

is a convolution algebra and an unconditional completion of Cc(�) that is stable
under holomorphic calculus in C∗r (�) (see, for example, [Val02], 8.15, Example
10.5). Note that functions in Hs

� (�), with s � 0, are decaying fast at infinity on �,
hence the name rapid decay.

We can now state Lafforgue’s result concerning discrete groups (Corollaire 0.0.4
in [Laf02b]):

Theorem 6.15 Let � be a group with property (RD) in Lafforgue’s class C′ (see
Section 6.1.1). Then Conjecture 4 (without coefficients) for � is true.

Jolissaint [Jol90] has shown that property (RD) holds for cocompact lattices in
real rank 1 groups, a fact generalized in two directions:

• by de la Harpe [dlH88] to all Gromov hyperbolic groups;
• by Chatterji and Ruane [CR05] to all lattices in real rank 1 groups.
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By Theorem 6.15, those groups do satisfy the Baum–Connes conjecture (without
coefficients).

Remark 6.16 The first spectacular application of property (RD) was the proof of
the Novikov conjecture for Gromov hyperbolic groups by Connes and Moscovici
[CM90]. Their result is the following:

Theorem 6.17 Assume that the group � satisfies both Jolissaint’s (RD) property
and the bounded cohomology property (i.e., that any group n-cocycle is cohomolo-
gous to a bounded one, for n ≥ 2). Then � satisfies the Novikov conjecture.

Sketch of proof Let x ∈ Hn(�, Q) be a cohomology class. Let M be a closed, Spin
manifold and f : M → B� a map; let M̃ be the pullback of B̃� via f . Let D

be a �-invariant Dirac operator on M̃ . Connes and Moscovici show that the index
of D in K0(C

∗
r (�)) has a more refined version living in K0(C(�) ⊗ R), where

R is the algebra of smoothing operators. They deduce a cohomological formula
for the higher signature σx(M, f ) (defined in Section 2.5) by evaluating a cyclic
cocycle τx associated with x on the index in K0(C(�)⊗R). The two assumptions of
Theorem 6.17 ensure that the cocycle τx extends from C(�)⊗R to a subalgebra of
the C∗-algebra C∗r (�) ⊗ K which is stable under holomorphic functional calculus.
Therefore σx(M, f ) only depends on the index μr(f∗[D]) ∈ K0(C

∗
r (�)), which

is a homotopy invariant by Theorem 2.8. The hypothesis in the theorem holds in
particular for Gromov’s hyperbolic groups: the fact that they do satisfy the bounded
cohomology property is a result stated by Gromov and proved by Mineyev [Min01].

��
In higher rank it can be proved that non-cocompact lattices do not satisfy property

(RD). However, we have a conjecture by Valette (see p.74 in [FRR95]):

Conjecture 12 Let � be a group acting properly, isometrically, with compact
quotient, either on a Riemannian symmetric space or on a Bruhat–Tits building.
Then � has the (RD) property.

Valette’s conjecture holds in higher rank for the following special cases, all in
rank 2: assume G is locally isomorphic to SL3(R) or SL3(C): Lafforgue has shown
that any cocompact lattice � of G satisfies property (RD). Chatterji has generalized
this proof to SL3(H) and E6(−26), see [Cha03]. Their proofs are based on ideas of
Ramagge, Robertson, and Steger for SL3(Qp) ([RRS98]). Conjecture 4 therefore
follows for such lattices. As mentioned in Section 5.2 above, this gave the first
examples of infinite discrete groups having property (T) and satisfying the Baum–
Connes conjecture.

It is not known whether such a group � (or the Lie group G itself) satisfies the
conjecture with coefficients. Moreover, nothing is known about the Baum–Connes
conjecture for general discrete subgroups of G. In particular it is not known whether
SL3(Z) satisfies Conjecture 4, or similarly whether SL3(R) satisfies Conjecture 5.

On the other hand, regarding lattices in another real rank 2 simple Lie group
(e.g., the symplectic group Sp4(R)), or in a simple group with real rank at least 3,



The Baum–Connes conjecture: an extended survey 183

absolutely nothing is known, in particular for lattices in SLn(R) or SLn(C) when
n ≥ 4.

Remark 6.18 The group � = SL3(Z) does not have property (RD) (see [Jol90]).
Moreover, there is no unconditional completion B(�) that is a dense subalgebra
of C∗r (�) stable under holomorphic calculus. The following argument is due to
Lafforgue (see [Laf10]). Let us consider the action of Z on Z2 induced by the map

from Z to Z2 that sends n ∈ Z to

(
3 1
2 1

)n

and the semi-direct product H := Z � Z2

constructed using this action. The group H is solvable, hence amenable, and can be

embedded as a subgroup of SL3(Z) using the map:

(
n,

(
a

b

))
	→

⎛

⎝

(
3 1
2 1

)n (
a

b

)

0 1

⎞

⎠.

Suppose by contradiction that there is an unconditional completion B(G) that is a
subalgebra of C∗r (G). Then the algebra B(H) = B(G) ∩ C∗r (H) is contained in
�1(H) because as H is amenable, for every non-negative function f on H , one has
‖f ‖C∗r (H) = ‖f ‖L1(H). However, �1(H) is not spectral in C∗r (H) (see [Jen69]).

6.2 Back to Hilbert spaces

The motto of this section is the following: in the case where property (T) imposes
that γ �= 1 in KKG(C, C), the idea for showing that γ nevertheless acts by the
identity in the K-theory groups K∗(C∗r (G, A)) is to make the γ -element homotopic
to the trivial representation in a weaker sense, getting out of the class of unitary
representations, but staying within the framework of Hilbert spaces.

6.2.1 Uniformly bounded and slow growth representations

The idea of using uniformly bounded representations is a remark that Julg made
in 1994. A uniformly bounded representation of a locally group G is a strongly
continuous representation by bounded operators on a Hilbert space H , such that
there is a constant C with ‖π(g)‖ ≤ C for any g ∈ G. Equivalently, it is a
representation by isometries for a Banach norm equivalent to a Hilbert norm.

Following Kasparov [Kas95], let us denote R(G) = KKG(C, C). Let Rub(G)

be the group of homotopy classes of G-Fredholm modules, with uniformly bounded
representations replacing unitary representations, as in [Jul97].

Proposition 6.19 For any G− C∗-algebra A, the Kasparov map

R(G)→ EndK∗
(
C∗r (G, A)

)

factors through the map R(G)→ Rub(G).
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This follows from an easy generalization of the classical Fell lemma: indeed, if
π is a uniformly bounded representation of a group G in a Hilbert space H , and λ

is the left regular representation of G on L2(G), there exists a bounded invertible
operator U on H ⊗ L2(G), such that

π(g)⊗ λ(g) = U(1⊗ λ(g))U−1,

when π is a unitary representation, U is of course a unitary operator.
To any Hilbert space H equipped with a uniformly bounded representation π , let

us associate as in the construction of the map jG,r from [Kas95, Kas88], the Hilbert
module E = H ⊗C∗r (G, A) and the covariant representation of (G, A) with values
in LC∗r (G,A)(E) defined by:

a 	→ 1⊗ a, g 	→ π(g)⊗ λ(g).

Then the representation πA : Cc(G, A) → LC∗r (G,A)(E) extending the above
covariant representation factors through the reduced crossed product C∗r (G, A).

To a G-Fredholm module (H, π, T ) we can therefore associate the triple (H ⊗
C∗r (G, A), πA, TA), where πA : C∗r (G, A) → LC∗red(G,A)(E) is the Banach algebra
homomorphism defined above, and TA = T ⊗ 1 ∈ LC∗red(G,A)(E). The Banach G-
Fredholm module thus obtained defines a map from the group K∗(C∗red(G, A)) to
itself. Note that such a construction has no analogue for C∗max(G, A) since it relies
upon a specific feature of the regular representation.

As in the case of Lafforgue’s Banach representation, it often happens that a
family of representations can be deformed to a representation containing the trivial
representation, but with a uniform boundedness constant tending to infinity. One
must therefore use a more general class, as we now explain. Fix ε > 0. Let l be a
length function on G.

Definition 6.20 We say that a representation π of G is of ε-exponential type if
there is a constant C such that for any g ∈ G,

‖π(g)‖ ≤ Ceεl(g).

The following ideas come from a discussion between Higson, Julg, and Lafforgue
in 1999. We define as above a G-Fredholm module of ε-exponential type, and
similarly a homotopy of such modules. Let Rε(G) be the abelian group of homotopy
classes. The obvious maps Rε(G) → Rε′(G) for ε < ε′ form a projective system
and we consider the projective limit lim←−Rε(G) when ε → 0.

We would like to have an analogue of the above proposition with the group
lim←−Rε(G) instead of Rub(G). In fact there is a slightly weaker result, due to Higson
and Lafforgue (cf. [Laf12] Théorème 2.3) which is enough for our purpose. We
assume now that G is a connected Lie group.
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Theorem 6.21 The kernel of the map

R(G)→ lim←−Rε(G)

is included in the kernel of the map

R(G)→ EndK∗
(
C∗r (G, A)

)
.

Let us sketch the proof following [Laf12]. As above, to any representation π of
G is associated an algebra homomorphism

πA : Cc(G, A)→ LC∗r (G,A)(E)

where E = H ⊗ C∗red(G, A).
For all ε > 0 there is a Banach algebra Cε which is a completion of Cc(G, A)

such that for any representation π of ε-exponential type, the above map πA extends
to a bounded homomorphism Cε → LC∗r (G,A)(E). The Banach Fredholm module
thus obtained defines a map

Rε(G)→ Hom
(
K∗(Cε), K∗

(
C∗r (G, A)

))
.

This being done for each ε, we have a system of maps compatible with the maps
Cε → Cε′ for ε′ < ε, so that there is a commutative diagram (cf. [Laf12] prop 2.5)

R(G) EndK∗(C∗
r (G, A))

lim←− Rε(G) lim←−Hom(K∗(Cε), K∗(C∗
r (G, A))).

The theorem of Higson–Lafforgue then follows immediately, thanks to the
following lemma:

Lemma 6.22 The group K∗(C∗r (G, A)) is the union of the images of the maps
K∗(Cε)→ K∗(C∗r (G, A)).

To prove the lemma, Higson and Lafforgue use the fact that the symmetric space
Z = G/K has finite asymptotic dimension. They give an estimate of the form (prop
2.6 in [Laf12])

‖f ‖Cε ≤ kεe
ε(ar+b)‖f ‖C∗r (G,A)

for f ∈ Cc(G, A) with support in a ball of radius r (for the length l).
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The spectral radius formula in Banach algebras then implies for such an f ,

ρCε (f ) ≤ eεarρC∗r (G,A)(f ),

so that ρC∗r (G,A)(f ) = inf ρCε (f ). This fact, by standard holomorphic calculus
techniques, implies the lemma.

6.2.2 Cowling representations and γ

The beautiful work of Cowling and Haagerup on completely bounded multipliers
of the Fourier algebras for rank one simple Lie groups [CH89] inspired Julg to use
Cowling’s strip of uniformly bounded representations to prove the Baum–Connes
conjecture for such groups. Consider the Hilbert space L2(G/P ) associated to a K-
invariant measure on the flag manifold G/P . Let π1 be the natural action of G, i.e.,
π1(g)f = f ◦ g−1, and let π0 be the unitary representation obtained by twisting π1

by a suitable cocycle: π0(g) = λ
N/2
g π1(g). One can interpolate between π0 and π1

by taking

πs(g) = λ
(1−s)N

2
g π1(g),

with s being a complex number. The result of Cowling [Cow82, ACDB04] is the
following:

Theorem 6.23 The representation (1 + �E)(1−s)N/4πs(g)(1 + �E)−(1−s)N/4 is
uniformly bounded for any s in the strip −1 < �s < 1.

In particular this holds for −1 < s < 1. The important point is to compare
with Kostant’s result on the unitarizability of πs . The representations πs are by
construction unitary if �s = 0. Otherwise they are unitarizable (i.e., admit an
intertwining operator Ts such that T −1

s πs(g)Ts is unitary) if and only if−c < s < c

for a certain c ≤ 1. This is the so-called complementary series. The critical value s

is as follows:

(1) If G = SO0(n, 1) or SU(n, 1), c = 1.
(2) If G = Sp(n, 1), c = 2n−1

2n+1 .

(3) If G = F4(−20), c = 5
11 .

In case 1, G has the Haagerup property, and the complementary series approaches
the trivial representation. In cases 2 and 3 one has c < 1 so that there is a gap
between the complementary series and the trivial representation, as expected from
property (T).

The above family πs (0 ≤ s < 1) and its generalizations to the other principal
series are the tool for constructing a homotopy between γ and 1. Indeed the proofs
of γ = 1 by Kasparov [Kas84], Chen [Che96] and Julg-Kasparov [JK95] rest upon
the complementary series. In the general case, Julg [Jul19] constructs a similar
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homotopy involving Cowling uniformly bounded representations. Modulo some
(not yet fully clarified) estimates, that would prove that γ is 1 in Rε(G) for all
ε > 0 (with the above notations).

6.2.3 Lafforgue’s result for hyperbolic groups

In 2012, in a very long and deep paper, Vincent Lafforgue has proved the following
result.

Theorem 6.24 Let G be a word hyperbolic group. Then G satisfies the Baum–
Connes conjecture with coefficients (Conjecture 5).

Remark 6.25 Lafforgue proves more generally the same result for G a locally
compact group acting continuously, isometrically and properly on a metric space
X which is hyperbolic, weakly geodesic and uniformly locally finite.

Let us sketch the main steps of Lafforgue’s proof. The basic geometric object is
the Rips complex � = PR(G) of the group G seen as a metric space with respect
to the word metric dS associated with a set of generators S.

Definition 6.26 Let Y be a locally finite metric space (i.e., every ball in Y is finite).
Fix R ≥ 0. The Rips complex PR(Y ) is the simplicial complex with vertex set
Y , such that a subset F with (n + 1)-elements spans a n-simplex if and only if
diam(F) ≤ R.

Because G is hyperbolic, one can choose the radius R big enough so that � is
contractible. Let ∂ be the coboundary

C[�0] ← C[�1] ← C[�2] ← . . .

of the Rips complex. Let us recall the formula for ∂:

∂δg0,g1,...,gk
=

k∑

i=0

(−1)iδg0,...,ĝi ,...,gk

Contractibility of the Rips complex implies that the homology of the complex ∂

is zero in all degrees, except in degree 0 where it is one-dimensional. But a concrete
contraction onto the origin x0 of the graph gives rise to a parametrix, i.e., maps
h : C[�k] → C[�k+1] such that ∂h + h∂ = 1 (except in degree zero where it is
1−px0 where p0 has image in Cδx0 ) and h2 = 0. The prototype is the case of a tree,
where hδx =∑

δe, the sum being extended to the edges on the geodesic from x0 to
x. The case of a hyperbolic group is more subtle, and the construction of h has to
involve some averaging over geodesics. Suitable parametrices have been considered
by Lafforgue in the Banach framework.

Kasparov and Skandalis in [KS91] have shown that hyperbolic groups admit a
γ -element which can be represented by an operator on the space �2(�). Lafforgue
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considers the following variant of the Kasparov–Skandalis construction. Let us
conjugate the operator ∂ + h by a suitable function of the form etρ , where ρ is
the (suitably averaged) distance function to the point x0. Then for t big enough, the
operator etρ(∂ + h)e−tρ , on the Hilbert space �2(�) equipped with the even/odd
grading and the natural representation π of G, represents the γ -element.

Lafforgue’s tour de force is to modify the construction of the operator h and to
construct Hilbert norms ‖.‖ε on C[�] such that the operators etρ(∂+h)e−tρ become
a homotopy between γ (for t big ) and 1 (for t = 0), this homotopy being through
ε-exponential representations. Let us give the precise statement:

Theorem 6.27 Let G be a word hyperbolic group; let � and ∂ be as above. Fix
ε > 0. There exists a suitable parametrix h satisfying the conditions above, a Hilbert
completion Hε of the space C[�], and a distance function d on G differing from dS

by a bounded function such that:

1. the operator Ft = etρ(∂ + h)e−tρ (where ρ is the distance to the origin x0)
extends to a bounded operator on Hε for any t ,

2. the representation π of G extends to a representation on Hε with estimates
‖π(g)‖ε ≤ Ceεd(gx0,x0),

3. the operators [Ft , π(g)] are compact on Hε.

Let us give an idea of how the Hilbert norms ‖.‖ε on C[�] are constructed. It is
most enlightening to consider the prototype case of trees. Let Sn denote the sphere
of radius n, i.e., the set of vertices at distance n from the origin x0 and Bn the ball
of radius n, i.e., the set of vertices at distance ≤ n of x0. Suppose that f ∈ C[�0]
has support in Sn. Then

‖f ‖2
ε = e2εn

∑

z∈Bn

∣∣∣
∣∣

∑

x→z

f (x)

∣∣∣
∣∣

2

where the last sum is over all x ∈ Sn such that z lies on the path from x0 to x. For
general f ∈ C[�0], one defines ‖f ‖2

ε =
∑∞

n=0 ‖fn‖2
ε , where f is the restriction

of f to Sn. A similar formula defines the norm ‖.‖ε on C[�1]. The way the norm
‖.‖ε is constructed makes relatively easy to prove the continuity of the operator
etρ(∂+h)e−tρ for any t (and uniformly with respect to t). More subtle is the estimate
for the action π(g) of a group element g. Equivalently, it amounts to compare the
norms ‖.‖ε for two choices of x0. Lafforgue establishes an inequality of the form

‖π(g)‖ε ≤ P(l(g))eεl(g)

with a certain polynomial P . In particular ‖π(g)‖ε ≤ Ceε′l(g) for any ε′ > ε.
According to the philosophy of Gromov, the geometry of trees is a model for

the geometry of general hyperbolic spaces. The implementation of that principle
can, however, be technically hard. In our case, Lafforgue needs almost 200 pages of
difficult calculations to construct the analogue of the norms ‖.‖ε above and for all
the required estimates. We refer to [Laf12] and [Pus14] for the details.
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6.3 Strong property (T)

Theorem 6.24 yields examples of discrete groups with property (T) satisfying
Conjecture 5. Indeed, many hyperbolic groups have property (T). On the other hand,
as a by-product of his proof, Lafforgue shows that hyperbolic groups do not satisfy a
certain strengthening of property (T), in which unitary representations are replaced
by ε-exponential representations. To that effect, let us consider the representation π

of G on the completion of C[�0] for the norm ‖.‖ε.

Lemma 6.28 The representation π on Hε has no non-zero invariant vector,
whereas its contragredient π̌ does have non-zero invariant vectors.

Proof The first fact is obvious since a constant function is not in Hε. On the other
hand, the G-invariant form f 	→ ∑

g∈G f (g) extends to a continuous form on
Hε. Let us explain that point in the case of a tree: it follows immediately from the
definition of the norm ‖.‖ε that any f ∈ C[�0] satisfies the inequality

∞∑

n=0

e2εn

∣
∣∣∣∣

∑

x∈Sn

f (x)

∣
∣∣∣∣

2

≤ ‖f ‖2
ε

hence by Cauchy–Schwarz inequality,

∣∣∣
∑

f (x)

∣∣∣
2 ≤

( ∞∑

n=0

e−2εn

) ⎛

⎝
∞∑

n=0

e2εn

∣
∣∣∣∣

∑

x∈Sn

f (x)

∣
∣∣∣∣

2
⎞

⎠ ≤
(

1− e−2ε
)−1 ‖f ‖2

ε.

The identification of Hε with its dual therefore gives a non-zero invariant vector
for the contragredient representation π̌ . ��

Let G be a locally compact group, l a length function on G, and real numbers
ε > 0, K > 0. Let Fε,K the family of representations π of G on a Hilbert space
satisfying ‖π(g)‖ ≤ Keεl(g), and let Cε,K(G) be the Banach algebra defined as the
completion of Cc(G) for the norm sup ‖π(f )‖, where the supremum is taken over
representations π in Fε,K .

Definition 6.29 A Kazhdan projection in the Banach algebra Cε,K(G) is an idem-
potent element p satisfying the following condition: for any representation π

belonging to Fε,K , on a Hilbert space H , the range of the idempotent π(p) is the
space Hπ of G-invariant vectors.

Remark 6.30 The above definition is given in a more general setting by de la Salle
[dlS16], whose Proposition 3.4 and Corollary 3.5 also show that, since the family
Fε,K is stable under contragredient, a Kazhdan projection is necessarily central,
hence unique and self-adjoint.

The above lemma has the following consequence:
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Corollary 6.31 Let G be a hyperbolic group. Then for any ε > 0 there exists K > 0
such that the Banach algebra Cε,K(G) has no Kazhdan projection.

Indeed, assume there is such a projection p. By the above remark p is self-
adjoint, so that π(p)∗ = π̌(p), where π is the representation of G in Hε. But by the
lemma, π(p) = 0 and π̌(p) �= 0, a contradiction.

The following definition should be thought as a strengthening of the charac-
terization of Kazhdan’s property (T) by a Kazhdan projection in C∗max(G), cf.
Proposition 5.4.

Definition 6.32 The group G has strong property (T) for Hilbert spaces if for any
length function l, there exists an ε > 0 such that for every K there is a Kazhdan
projection in Cε,K(G).

We thus conclude:

Theorem 6.33 Gromov hyperbolic groups do not satisfy the strong property (T) for
Hilbert spaces.

On the other hand, it follows from the works of Lafforgue, Liao, de Laat and
de la Salle (see [Laf08, Lia14, dlS18, dLdlS15]) that in higher rank the situation is
completely different.

Theorem 6.34 Let G be a simple connected Lie group of real rank ≥ 2 or a simple
algebraic group of split rank ≥ 2 over a non archimedian local field. Then G has
strong property (T) in Hilbert spaces. The same holds for any lattice in such a G.

Lafforgue more generally defines strong property (T) for a given class E of
Banach spaces. The theorem above also holds provided the class of Banach spaces
E has a non-trivial type, i.e., if the Banach space �1 is not finitely representable in E .

Strong property (T) had been introduced by Lafforgue [Laf10] to understand the
obstruction, if not to the Baum–Connes conjecture, at least to the proofs considered
so far. But in fact, he has been led to introduce the following variant of strong
property (T). We consider a locally compact group G and a compact subgroup K .
Let l be a K-biinvariant length function on G and ε > 0.

Definition 6.35 An ε-exponential K-biinvariant Schur multiplier is a K-biinvariant
function c on G such that for any K-biinvariant function f on G with values in
Cc(G) and support in the ball of radius R for the length l,

‖cf ‖ ≤ eεR‖f ‖
where cf is the pointwise product on G and ‖.‖ is the norm in the crossed product
C∗(G, C0(G)) = K(L2(G)).

Definition 6.36 The group G has Schur property (T) relative to the compact
subgroup K if for any K-biinvariant length function l, there exists ε > 0 and a
K-biinvariant function ϕ on G with non-negative values and vanishing at infinity
satisfying the following property: any ε-exponential K-biinvariant Schur multiplier
c has a limit c∞ at infinity and satisfies |c(g)− c∞| ≤ ϕ(g) for any g ∈ G.
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Lafforgue explains in [Laf10] that Schur property (T) for a group G relative to a
compact subgroup K is an obstacle to the above attempts to prove the Baum–Connes
conjecture. It contradicts the existence, for any G − C∗ algebra A and any ε > 0,
of a Banach subalgebra B of the reduced crossed product C∗r (G, A) satisfying the
inequality ‖f ‖B ≤ eεR‖f ‖C∗r (G,A) for any f ∈ Cc(G, A) supported in the ball
of radius R. In particular, supposing that G admits a γ element, it is hopeless to
try to prove the Baum–Connes conjecture with coefficients using a homotopy of γ

to 1 through ε-exponential representations as suggested above. It is also shown in
[Laf10] that SL3(R) and SL3(Qp) do satisfy Schur property (T) with respect to
their maximal compact subgroups. Liao [Lia16] has a similar result for the group
Sp4 over a nonarchimedian local field of finite characteristic. It is very likely, but as
far as we know not yet proved, that it is also the case for simple groups of higher
rank and with finite center.

Remark 6.37 The logical link between strong property (T) and Schur property (T)
is not completely clear. One would expect that Schur property (T) for G relative to
some compact subgroup K implies strong property (T) for G. But as noted by Laf-
forgue, this is not quite the case. As suggested to us by M. de la Salle, there should
be a natural strengthening of Schur property (T) implying strong property (T).

6.4 Oka principle in Noncommutative Geometry

As explained in the previous section, Lafforgue observed that the “Dirac–dual-
Dirac”-like methods used so far, would probably not work to prove the Baum–
Connes conjecture with arbitrary coefficients for simple Lie groups of higher rank,
mainly because of the presence of a variant of strong property (T) (see Section 6.3).
In [Laf10], he even gave a necessary condition for this kind of approach to work and
proved that these methods would certainly not succeed, leaving very few hope in
proving further cases of the conjecture using the classical techniques. Nonetheless,
he indicates that Bost’s ideas on Oka principle are still open and he leaves them as
a path for investigating the problem of surjectivity.

6.4.1 Isomorphisms in K-theory

In analytic geometry, the reduction of holomorphic problems to topological prob-
lems is known as Oka principle, whose classical version is the so-called Oka–
Grauert principle. In its simplest form, it states that the holomorphic classification
of complex vector bundles over an analytic Stein space agrees with their topological
classification. The case of line bundles was proven by Oka in 1939 and it was then
generalized by Grauert in 1958 ([Gra94]; see also [Gro89] for a seminal paper on the
theory and [FL11] for a survey). Let us state Grauert’s Theorem regarding complex
vector bundles.
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Theorem 6.38 (Grauert) Let X be an analytic Stein space. Then,

1. if E and F are two complex holomorphic vector bundles over X which are
continuously isomorphic, then E and F are holomorphically isomorphic.

2. every continuous vector bundle over X carries a holomorphic vector bundle
structure that is uniquely determined.

3. the inclusion ι : O(X, GLn(C)) ↪→ C(X, GLn(C)) of the space of all
holomorphic maps X → GLn(C) into the space of all continuous maps is a
weak homotopy equivalence with respect to the compact-open topology, i.e., ι

induces isomorphisms of all homotopy groups:

πk(ι) : πk O(X, GLn(C)) �
πk C(X, GLn(C)) , k = 0, 1, 2, ...

Let us assume X is compact. Let O(X) be the set of all continuous functions on
X which are holomorphic on the interior of X, as a Banach subalgebra of C(X).
Then the injection ι : O(X)→ C(X) is a strong isomorphism in K-theory.

In [Bos90], Bost asks the following question: Let A and B be two Banach
algebras and ι : A → B a continuous injective morphism with dense image. What
can be said about the map ι∗ : K(A) → K(B)? More precisely, under which
conditions on ι is the map ι∗ an isomorphism? As we have already mentioned in
Section 6.1.2, the most classical criteria for the map ι∗ to be an isomorphism is
the fact that A is a dense subalgebra stable under holomorphic calculus in B (see
[Kar08, p. 209], [Swa77, 2.2 and 3.1]). The discussion from Section 6.1 makes it
clear why having a good criteria to ensure that ι∗ is an isomorphism, can be very
helpful when trying to prove the Baum–Connes conjecture. We will see that a closer
relation can be stated.

The link between Bost’s question and Grauert’s Theorem 6.38 can be philosoph-
ically thought as follows: we start from a Banach algebra B, e.g., a C∗-algebra
that we may think as the algebra of continuous functions on some noncommutative
space T . Assume that T can be imbedded in some neighborhood X which is
homotopic to T and carries a (non-commutative analogue of) complex structure.
The dense subalgebra A is the set of functions on T which extend to functions
on X which are holomorphic. Then the injection ι : A → B can be seen as the
composition of the Banach space injection A = O(X) ⊂ C(X) and a restriction
map C(X) → C(T ) = B. The first should be an isomorphism in K-theory by
a noncommutative analogue of Oka–Grauert’s principle, and the second by the
homotopy invariance of K-theory.

More precisely, Bost considers the following situation: Let B be a Banach algebra
endowed with a continuous action of Rn denoted by α. Let F be a compact and
convex subset of Rn containing 0 and with non-empty interior. Then one defines
A = O(B, α, F ) as the set of elements a in B such that the continuous map
t 	→ αt (a) from Rn to B has a continuous extension on Rn + iF ⊂ Cn which

is holomorphic on Rn + i
◦
F , where

◦
F is the interior of F .
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For z ∈ Rn + iF , denote by αz(a) ∈ B the value of the map that extends α at z.
Then A = O(B, α, F ) is a Banach algebra endowed with the norm

‖a‖F = sup
z∈Rn+iF

‖αz(a)‖ ,

and the inclusion map ι : A = O(B, α, F ) → B is dense (see [Bos90, 3.1 and
Corollaire 3.2.4]). As mentioned by Bost, the algebra O(B, α, F ) is not in general
stable under holomorphic calculus in B (see [Bos90, 1.3.1]), but the map ι still
induces a strong isomorphism in K-theory (see Definition 6.3, see also [Nic08] for
other criteria on ι so that ι∗ is an isomorphism):

Theorem 6.39 ([Bos90, Théorème 2.2.1]) Let B be a complex Banach algebra
endowed with an action of Rn denoted by α. For all compact and convex subset
F of Rn, containing 0 and with non-zero interior, the inclusion map ι : A =
O(B, α, F )→ B induces a strong isomorphism in K-theory.

The idea of the proof is the following. The map which to a ∈ A associates
the function τ 	→ αiτ (a) provides an isometric embedding of the Banach algebra
A = O(B, α, F ) into C(F, B). Bost’s proof then imitates the proof of Theorem 6.38
to show that the canonical injection A → C(F, B) is a strong isomorphism in K-
theory. Composing with the evaluation at 0 from C(F, B) to B (which is also a
strong isomorphism theorem by the usual homotopy argument) yields the result.

The following examples are the basic examples of [Bos90]. Example 6.40 is
equivalent to Grauert’s theorem for a corona U = {z ∈ C | ρ1 ≤ |z| ≤ ρ2}:
Example 6.40 Let S1 = {z ∈ C | |z| = 1} denote the unit circle, and let B be
the algebra C(S1) of continuous functions on S1 with complex values. Let ρ1 and
ρ2 be two real numbers such that 0 < ρ1 < 1 < ρ2, consider the closed corona
U = {z ∈ C | ρ1 ≤ |z| ≤ ρ2} and let A be the subalgebra of C(U) of continuous

functions φ : U → C which are holomorphic in
◦
U . The algebra A, endowed

with the norm of uniform convergence, is closed in C(U) and hence it is a Banach
algebra. Then, Theorem 6.39 says that the inclusion map ι : A → B induces an
isomorphism in K-theory. Indeed, let (αtf )(z) = f (e−it z), then (αt )t∈R defines a
one parameter group of isometric algebra automorphisms of B and O(B, α, I ) = A

for I = [log ρ1, log ρ2] ⊂ R.

Example 6.41 Let B be the convolution algebra l1(Z). Let R > 0 be a real number

and let A = {
(an) ∈ CZ

∣∣
+∞∑

n=−∞
eR|n||an| < +∞}

. Hence A endowed with the

norm ‖(an)‖R =
+∞∑

n=−∞
eR|n||an| is a Banach algebra which is densely embedded in

B. Theorem 6.39 says that the inclusion map ι : A ↪→ B induces an isomorphism
in K-theory. In this case, the one parameter group of isometric automorphisms of B

is defined by (αt (an) = (eint an), and if I = [−R, R] ⊂ R, then O(B, α, I ) = A.
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Example 6.42 The previous example can be also considered with coefficients so
that things can be formulated in a noncommutative way: if A is a Banach algebra
and α is an action of Z by isometric automorphism of A, let B := �1(Z, A) be the
completion of the convolution algebra Cc(Z, A) given by ‖(bn)n‖1 = ∑

n∈Z
‖bn‖A,

for (bn)n ∈ Cc(Z, A). The product in B is given by twisted convolution, i.e.,
(bb′)n = ∑

k∈Z
bkα(k)(bn−k), for b, b′ ∈ Cc(Z, A). For all t ∈ R, set βt ((bn)n) =

(e−int bn)n and

O(B, β, I ) =
{

(bn)n ∈ �1(Z, A)

∣∣∣∣∣

+∞∑

n=−∞
eR|n|‖an‖A < +∞

}

,

where I = [−R, R]. Then Theorem 6.39 applies and O(B, β, I ) ↪→ B = �1(Z, A)

induces an isomorphism in K-theory.

Theorem 6.39 can be applied to more general crossed products algebras for which
it states that a certain subalgebra defined using an exponential decay condition on
L1(G) has the same K-theory as Ł1(G). For a general locally compact group G, a
Banach G-algebra B and a continuous function a : G → R+ such that a(g1g2) ≤
a(g1) + a(g2), for g1, g2 ∈ G, define a subspace Expa(G, B) of L1(G, B) by the
following decay condition:

φ ∈ Expa(G, B) if and only if eaφ ∈ L1(G, B).

Then, endowed with the norm given by ‖φ‖a = ‖eaφ‖1, Expa(G, B) is a Banach
dense subalgebra of L1(G, B). Bost proved that if G is an elementary abelian group,
then K∗(Expa(G, B)) is isomorphic to K∗(L1(G, B)). Let us state his result more
precisely,

Theorem 6.43 ([Bos90, Théorème 2.3.2]) Let G be a locally compact group and
B a Banach algebra endowed with an action of G. If G is an extension by a compact
group of a group of the form Zp ×Rq (i.e., there is a compact group K and a short
exact sequence 1 → K → G → Zp × Rq → 1), then, for every subadditive
function a : G→ R+, the inclusion morphism

Expa(G, B) ↪→ L1(G, B)

induces an isomorphism in K-theory.

6.4.2 Relation with the Baum–Connes conjecture

Since we are dealing with K-theoretic issues, we focus on the right-hand side
of the assembly map and therefore we are interested in surjectivity: let G be a
group for which injectivity of the Baum–Connes assembly map is known (take,
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for example, any group in Lafforgue’s class C), and let A be a G − C∗-algebra.
Let ρ : G → End(V ) be a representation of G on a complex hermitian vector
space V of finite dimension. Then the norm of ρ(g) can be used as a weight to
define exponential decay subalgebras of crossed product algebras. In the case of
L1(G, A), these are easy to define: using the notation of the previous paragraph
and taking a(g) = log ‖ρ(g)‖, denote by Expρ(G, B) := Expa(G, B) which is the
completion of Cc(G, A) for the norm

‖f ‖1,ρ =
∫

G

‖f (g)‖A
(
1+ ‖ρ(g)‖End(V )

)
dg.

Hence Expρ(G, A) is a dense subalgebra of L1(G, A) and the representation ρ

is used as a weight to define exponential decay subalgebras of L1. An Oka principle
applied to this case, would state that these two algebras have the same K-theory.

Notice that for all groups belonging to the class C′, as the algebra Expρ(G, C) is
an unconditional completion, by Theorem 6.8 we know that

K∗
(
Expρ(G, A)

) � K∗
(
L1(G, A)

)
.

Furthermore, we can use ρ to define exponential decay subalgebras of any
unconditional completion,

Definition 6.44 Let B(G) be an unconditional completion of Cc(G) and A a G −
C∗-algebra. Let Bρ(G, A) be the completion of Cc(G, A) for the norm

‖f ‖Bρ = ∥∥g 	→ ‖f (g)‖A ‖ρ(g)‖End(V )

∥∥B(G)
.

When B(G) = L1(G), if ρ satisfies the following growth condition:

∫

G

1

‖ρ(g)‖ dg < +∞,

then Lρ(G, A) is embedded in L1(G, A).
In the case of the reduced (resp. maximal) C∗-crossed products, an algebra that

we call weighted crossed product and denoted by Aρ
r (G, A) (resp. Aρ(G, A)) was

defined in [GA10] (for more details see 6.4.3 below). Taking ρ to be very large
(meaning that

∫
G

1
‖ρ(g)‖ dg < +∞) this algebra plays the same role in C∗r (G, A)

as Expρ(G, A) in L1(G, A); they are constructed to be some kind of “exponential
decay subalgebras” of C∗r (G, A). Suppose now that G is a group for which the
Bost conjecture is known to be true, in other words, the map μA

L1 : Ktop∗ (G, A) →
K∗(L1(G, A)) is an isomorphism. We will see that taking ρ very large allows us
to have a morphism ι : K∗(Aρ

r (G, A)) → K∗(L1(G, A)) and hence a morphism
ϕ : K∗(Aρ

r (G, A)) → K∗(C∗r (G, A)) (see Proposition 6.51 below), so that the
following diagram is commutative:
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K∗(C∗
r (G, A)) K∗(Aρ

r(G, A))
ϕ

ι
Ktop

∗ (G, A)

μA,r

�
μA

L1

K∗(L1(G, A)) K∗(L1,ρ(G, A))�

A suitable Oka principle applied to these crossed products states that the
weighted group algebras Aρ

r (G, A), have the same K-theory as C∗r (G, A), i.e., ϕ

is an isomorphism. This would then imply the surjectivity of μA,r and hence the
Baum–Connes conjecture with coefficients for G.

6.4.3 Weighted group algebras

In this section, we will recall the construction of weighted group algebras con-
structed in [GA10]. Let us first recall some definition and establish some notation.

Let G be a locally compact group and let dg a left Haar measure on G. Let � be
the modular function on G (i.e., dg−1 = �(g)−1dg for all g ∈ G).

Let A be a G − C∗-algebra. For all g ∈ G and for all a ∈ A, let g.a, or g(a),
be the action of g on a. The space of continuous functions with compact support on
G with values in A, denoted by Cc(G, A), is endowed with a structure of involutive
algebra where the multiplication and the involution are given, respectively, by the
formulas:

(f1 ∗ f2)(g) =
∫

G

f1(g1)g1

(
f2

(
g−1

1 g
))

dg1,

for f1, f2 ∈ Cc(G, A) and

f ∗(g) = g
(
f

(
g−1

))∗
�

(
g−1

)
,

for f ∈ Cc(G, A) and g ∈ G. In a general, we write every element f in Cc(G, A) as
the formal integral

∫
G

f (g)egdg, where eg is a formal letter satisfying the following
conditions:

egeg′ = egg′ , e∗g = (eg)−1 = eg−1 and egae∗g = g.a,

for all g, g′ ∈ G and for all a ∈ A.
We denote by C∗max(G, A) and C∗r (G, A) the maximal and the reduced crossed

product of G and A, respectively. Moreover, we denote by
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L2(G, A) =
{
f ∈ Cc(G, A)

∣∣∣∣

∫

G

f (g)∗f (g)dg converges in A

}
,

and λG,A the left regular representation of Cc(G, A) on L2(G, A) which is given by
the formula:

λG,A(f )(h)(t) =
∫

G

t−1(f (s))h(s−1t)ds,

for f ∈ Cc(G, A), h ∈ L2(G, A) and t ∈ G. Recall that λG,A induces a
unique morphism of C∗-algebras from C∗max(G, A) to C∗r (G, A); we also denote
that morphism by λG,A, by abuse of notation.

Let (ρ, V ) be a finite-dimensional representation of G. We then consider the map

Cc(G, A)→ Cc(G, A)⊗ End(V )
∫

G

f (g)egdg 	→
∫

G

f (g)eg ⊗ ρ(g)dg.

Definition 6.45 The reduced crossed product weighted by ρ of G and A, denoted
by Aρ

r (G, A), is the completion of Cc(G, A) for the norm:

‖
∫

G

f (g)egdg‖A�
ρG = ‖

∫

G

f (g)eg ⊗ ρ(g)dg‖C∗r (G,A)⊗End(V ),

for f ∈ Cc(G, A). If A = C, we denote it by Aρ
r (G) := Aρ

r (G, C).

It is then easy to prove that the reduced weighted crossed product Aρ
r (G, A)

is a Banach algebra. When ρ is an unitary representation of G then Aρ
r (G, A) =

C∗r (G, A), up to norm equivalence.

Remark 6.46 In the same manner, we can define weighted maximal crossed
products, however, we don’t treat them here because of the discussion held in 5.1.

Example 6.47 Let G = Z and let ρ : Z → C∗ be a character of Z. Let Sρ :=
{z ∈ C | |z| = |ρ(1)|} the circle of radius |ρ(1)|. Hence, Aρ

r (G) is the algebra of
continuous functions on Sρ .

Example 6.48 Let G = Z and let ρ1 : Z → C∗ and ρ2 : Z → C be two characters
of Z such that R1 < R2, where R1 = |ρ1(1)| and R2 = |ρ2(1)|. Then, Aρ1⊕ρ2(G)

is the algebra of continuous functions on the closed corona U := {z ∈ C | |ρ1(1)| ≤
|z| ≤ |ρ2(1)|} holomorphic on

◦
U . Indeed, we have the following diagram:

Aρ1⊕ρ2(G) C(S1,End(C2))

�1,ρ1⊕ρ2(G) �1(Z,End(C2))
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where the vertical arrows are given by Fourier series and the norm in �1,ρ1⊕ρ2(G)

is given by ‖(an)n‖ = ∑

n∈Z
|an|‖(ρ1 ⊕ ρ2)(n)‖. It is then clear that the algebra

�1,ρ1⊕ρ2(G) can be identified with the algebra

A =
{

(an) ∈ CZ

∣∣∣∣∣

+∞∑

n=−∞
e|n| log r |an| < +∞, for all r ∈]R1, R2[

}

,

which is identified by Fourier series with the algebra of continuous functions on U

holomorphic on
◦
U . Applying Theorem 6.39, taking R1 < 1 < R2, we get that the

algebras Aρ1⊕ρ2(Z) and C∗r (Z) have the same K-theory.

In [GA10], a weighted version of the Baum–Connes morphism was constructed
using Lafforgue’s Banach KK-theory:

μ
ρ
r,A : Ktop(G, A)→ K(Aρ

r (G, A));

it computes the K-theory of this weighted algebras. Analogues of Kasparov’s and
Lafforgue’s Dirac–dual-Dirac methods were proven in this context. We state them
as the following two theorems.

Theorem 6.49 ([GA10]) Let G be a locally compact group with a γ -element.
Then, for every G − C∗-algebra A and every finite-dimensional representation ρ

of G, the weighted morphism μ
ρ
r,A is injective. If moreover, γ = 1 in KKG(C, C),

then μ
ρ
r,A is surjective.

Theorem 6.50 ([GA09]) Let G be a locally compact group with a γ -element. If
γ = 1 in KKban

G,�(C, C) and there is an unconditional completion stable under

holomorphic calculus in C∗r (G), then μ
ρ
r is an isomorphism for every finite-

dimensional representation ρ of G.

Hence the morphism μ
ρ
r,A is an isomorphism, for example, for all groups with

the Haagerup property and more general, for all K-amenable groups, and when
A = C, the morphism μ

ρ
r is an isomorphism for all semisimple Lie groups and

all cocompact lattices in a semisimple Lie group.
It is worth nothing to mention that, proving that the weighted map is an

isomorphism is not easier than proving the Baum–Connes conjecture; one of
the reasons is that, even though the algebras Aρ

r (G, A) are in general not C∗-
algebras, there are constructed in a very C∗-algebraic way. However, the following
proposition shows that the weighted crossed products can be very small when the
representation ρ is very large.

Proposition 6.51 ([GA10, Proposition 1.5]) Let � be a discrete group and A a
�−C∗-algebra. Let ρ : � → End(V ) a finite-dimensional representation of � such
that

∑

γ∈�

1
‖ρ(γ )‖ converges. Then Aρ

r (�, A) embeds into �1(�, A).
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We then have the inclusions Aρ
r (�, A) ↪→ �1(�, A) ↪→ C∗r (�, A) and hence, if

we take a group � for which we know that K
top∗ (�) � K∗(�1(�, A)), proving that

Aρ
r (�, A) and C∗r (�, A) have the same K-theory would prove the surjectivity of the

Baum–Connes map with coefficients for �. These ideas also work for more general
locally compact groups, but we don’t always have a continuous map from Aρ

r (G, A)

to C∗r (G, A) (this map exists if and only if the regular representation λG is weakly
contained in λG ⊗ ρ). Nevertheless, thanks to the following proposition, we have a
map at the level of K-theory:

Proposition 6.52 Let G be a locally compact group and let ρ : G → End(V ) a
finite-dimensional representation of G such that

∫
G

1
‖ρ(g)‖dg converges. Then, if A

is a G− C∗-algebra, Aρ
r (G, A) ∩ L1(G, A) is relatively spectral in Aρ

r (G, A).

Definition 6.53 A morphism φ : A → B between two algebras is relatively
spectral if spB(φ(x)) = spA(x) for all x in some dense subalgebra X of A. It is
a weaker condition than being stable under holomorphic calculus and it induces an
isomorphism in K-theory (see [Nic08]).

As a result, we have a map from K∗(Aρ
r (G, A)) to K∗(L1(G, A)) defined

through K(Aρ
r (G, A) ∩ L1(G, A)) and we can prove that the following diagram

is commutative:

Ktop
∗ (G, A)

μρ
r

μA
r

�
μL1

K∗(L1(G, A)) K∗(C∗
r (G, A))

K ( ρ
r(G, A))

ϕ

.

Hence, we get a morphism ϕ : K∗(Aρ
r (G, A))→ K∗(C∗r (G, A)). The following

result is then straightforward:

Theorem 6.54 Let G be a locally compact group with a γ -element and let (ρ, V )

be a finite-dimensional representation of G such that
∫
G

1
‖ρ(g)‖dg converges. If ϕ is

an isomorphism then the Baum–Connes conjecture with coefficients in A is true for
G.

Let us give two examples of groups having a “very large” finite-dimensional
representation.
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Example 6.55

1. Let G = R and let ρ : R → GL3(C), be the representation of G defined by

t 	→ Exp(tX), where X =
⎛

⎝
0 1 0
0 0 1
0 0 0

⎞

⎠. Then,

Exp(tX) = 1+ tX + t2

2
X2 =

⎛

⎜
⎝

1 t t2

2
0 1 t

0 0 1

⎞

⎟
⎠

and hence, ‖Exp(tX)‖ ≥
(

t4

4 + t2 + 1
) 1

2 = 1+ t2

2 . It follows that,

∫ +∞

−∞
dt

‖Exp(tX)‖ ≤
∫ +∞

−∞
dt

1+ t2

2

< +∞.

2. Take G = SL2(R). Set K = SO(2), and let

A =
{
at =

(
et 0
0 e−t

)
: t ∈ R

}

be the diagonal subgroup. Recall that the Haar measure in the Cartan decompo-
sition G = KA+K is expressed as

∫

G

f (g) dg =
∫

K

∫ ∞

0

∫

K

sinh(2t)f (k1atk2) dk1 dt dk2

for f ∈ Cc(G). Let ρn be the (n + 1)-dimensional representation of G on
homogeneous polynomials of degree n on C2. Then ‖ρn(at )‖ = ent for t ≥ 0,
so that ρn is very large exactly when n ≥ 3.

Accordingly, proving the Baum–Connes conjecture with coefficients for a group
for which injectivity is known (for example, a semisimple Lie group or one of its
closed subgroups) amounts to prove that the map ϕ is surjective. To illustrate the
fact that proving the surjectivity of ϕ fits in the framework of Oka’s principle as
introduced by Bost in [Bos90], let us state the following proposition. The first point
is a generalization of Theorem 6.43 concerning L1 algebras; even though this result
does not appear in [Bos90], the proof is due to Bost.

Proposition 6.56 Let G be a locally compact group and let ρ : G → GLn(R) a
representation of G.

1. If ρ(G) is amenable and a(g) = log(‖ρ(g)‖), then the map K∗(Expa(G, B))→
K∗(L1(G, B)) is an isomorphism.
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2. If ρ(G) is amenable and
∫
G

1
‖ρ(g)‖dg converges then the map

K∗
(Aρ

r (G, B)
)→ K∗

(
C∗r (G, B)

)

defined using Proposition 6.52 is an isomorphism.

The conditions that
∫
G

1
‖ρ(g)‖dg converges and that ρ(G) is amenable imply that

G is amenable. This is because the condition that
∫
G

1
‖ρ(g)‖dg converges implies that

ρ is proper. Hence, Theorem 6.56 does not give anything new apart from proving
that the Baum–Connes conjecture is true for an amenable group. Yet, it seemed to
us that this result gives a good idea of how Bost’s version of Oka principle works,
and therefore we give the main ideas of the proof below.

We will use the following properties of weighted algebras. Analogous properties
are satisfied by Expρ(G, B).

Lemma 6.57 Let ρ, ρ′, π, σ finite-dimensional representations of a locally com-
pact group G.

1. If ρ′ is either a sub-representation or a quotient of ρ, then Aρ
r (G, B) ⊂

Aρ′
r (G, B).

2. If ρ = π ⊗ σ and σ is unitary, then Aρ
r (G, B) = Aπ

r (G, B).
3. If ρ =⊕

k

ρk , then Aρ
r (G, B) ⊂⋂

k

Aρk
r (G, B).

Lemma 6.58 Let ρ : G→ GLn(R) be a representation of a locally compact group.
If Rn has a G-invariant filtration of the form 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vr = Rn and
σk : G → End(Vk/Vk−1) is the corresponding representation on Vk/Vk−1 and
σ = ⊕

k

σk is its semi-simplification, then Aρ
r (G, B) ⊂ Aσ

r (G, B) and, moreover,

Aρ
r (G, B) is stable under holomorphic calculus in Aσ

r (G, B).

If ρ(G) is amenable then the Zariski closure of ρ(G) is also amenable by a result
of Moore (see, for example, [Zim84, page 64]). Using Furstenberg’s Lemma we may
suppose that ρ(G) is contain in the a subgroup of GLn(R) of the form

⎛

⎜⎜
⎜⎜
⎝

R∗+ × SO(n1) ∗ . . . ∗
0 R∗+ × SO(n2) ∗

...
...

. . . ∗
0 . . . 0 R∗+ × SO(nk)

⎞

⎟⎟
⎟⎟
⎠

.

Hence, we may apply Lemma 6.57 with σi = χi ⊗ ui , where χi is a character of
R∗+ and ui is an unitary representation of SO(ni). Using the fact that Aσi

r (G, B) =
Aχi

r (G, B), we get a injective morphism

Aρ
r (G, B)→ Aπ

r (G, B)
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where π =
m⊕

k=1
χk and this morphism is dense and stable under holomorphic

calculus. Therefore,

K∗
(Aρ

r (G, B)
) � K∗

(Aπ
r (G, B)

)
.

It remains to prove that the inclusion

Aπ
r (G, B)→ C∗r (G, B)

induces an isomorphism in K-theory.
Let W be the space of real-valued functions on G defined as W =∑

k

R log(χk).

We define an action of W on C∗r (G, B) by the formula αξ (f )(g) = f (g)e−iξ(g), for
f ∈ Cc(G, B) and ξ ∈ W . Then, we need to check that

Aπ
r (G, B) = O(K, C∗r (G, B), α)

where K is the convex hull of {0, log χk}. We conclude by applying Theorem 6.39.

7 The Baum–Connes conjecture for groupoids

Let G be a locally compact, σ -compact, Hausdorff groupoid with Haar system and
let C∗r (G) be its reduced C∗-algebra (see the definition below). The Baum–Connes
conjecture for G states that a certain map

μr : Ktop∗ (G)→ K∗
(
C∗r (G)

)

is an isomorphism. Many important examples of operator algebras may be realized
as the C∗-algebra associated to a groupoid. This is the case, for example, for C∗-
algebras associated to a foliation, to an action of a group on a space as well as
the C∗-algebra associated to a group. Therefore, a version of the Baum–Connes
conjecture for groupoids allows to study the K-theory of all of these algebras in a
very general framework; we will see that it is also the case for the coarse Baum–
Connes conjecture developed in Chapter 8.

The Baum–Connes map μr for groupoid C∗-algebras appeared in the work of
Baum and Connes on the Novikov conjecture for foliations (see [Con82] for a
very nice survey on the subject). In [BC85], Baum and Connes gave a proof of the
injectivity of μr in the case of groupoids coming from foliations that have negatively
curved leaves which is based on the construction of a Dual-Dirac element following
ideas of both Kasparov and Mishchenko. Using a construction of a Kasparov
bivariant theory which is equivariant with respect to the action of a groupoid defined
by Le Gall in [LG99], Tu stated in [Tu99c] the Dirac–dual-Dirac method in a
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very general context. He then proved injectivity of μr for a class of groupoids
called bolic, generalizing Kasparov and Skandalis’s work for groups, and that μr

is an isomorphism for amenable groupoids generalizing the results of Higson and
Kasparov (see [Tu99c, Tu99b]).

7.1 Groupoids and their C∗-algebras

In this section, we recall the definition of the C∗-algebras associated to groupoids
and the Baum–Connes conjecture for those. It is mostly taken from the survey
written by Tu on the subject [Tu00].

A groupoid is a small category in which all morphisms are invertible. More
concretely, it is given by the following data:

1. the set of objects G0, also called the unit space,
2. the set of morphisms G,
3. an inclusion i : G0 ↪→ G,
4. two maps “range” and “source” r, s : G → G0 such that r ◦ i = s ◦ i = Id,
5. an involution G → G, denoted by g 	→ g−1 such that r(g) = s(g−1) for every

g ∈ G,
6. a partially defined product G2 → G, denoted by (g, h) 	→ gh, where G2 :=
{(g, h) ∈ G × G | s(g) = r(h)} is the set of composable pairs.

It is assumed moreover that the product is associative (i.e., if (g, h), (h, k) ∈ G2

then the products (gh)k and g(hk) are defined and are equal), that for all g ∈ G,
i(r(g))g = gi(s(g)) = g and for all g ∈ G, gg−1 = i(r(g)).

A topological groupoid is a groupoid such that G and G0 are topological spaces
and all maps appearing in the definitions are continuous. When a topological
groupoid G is locally compact and Hausdorff, it is said to be

(a) principal if (r, s) : G → G0 × G0 is injective,
(b) proper if (r, s) : G 	→ G0 × G0 is proper,
(c) étale, or r-discrete, if the range map r : G 	→ G0 is local homeomorphism, i.e.,

if every x ∈ G admits an open neighborhood U such that r(U) is an open subset
of G0 and r : U 	→ r(U) is a homeomorphism

Before giving some examples of groupoids, let us introduce some notations: for
all x, y ∈ G0, Gx := s−1(x), Gx = r−1(x), Gx

y = Gx ∩ Gy .

Example 7.1

1. Groups and Spaces. A group G is a groupoid with G0 = {1}, the unit element. A
space X is a groupoid where G = G0 = X and r = s = IdX.

2. An equivalence relation R ⊂ X×X on a set X can be endowed with a groupoid
structure; the unit space is X, the range and source maps are r(x, y) = x,
s(x, y) = y, respectively, composition is defined by (x, y)(z, t) = (x, t) if y = z

and inverses by (x, y)−1 = (y, x). In particular, the space X ×X is a groupoid.
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3. If a group � acts on the right on a space X, then one obtains a groupoid G =
X � � by taking as a set G = X × � as unit space G0 = X × {1} � X,
r(x, γ ) = x, s(x, γ ) = xγ , x, γ )−1 = (xγ, γ−1), (x, γ )(xγ, γ ′) = (x, γ γ ′). If
X is a topological space, � a topological group and the cation is continuous then
X� is a topological groupoid, which is Hausdorff if X and � are. In that case, if
� is discrete, X � � is étale and it is principal if the action is free.

4. Let X be topological space and take G to be the set of equivalence classes of paths
ϕ : [0, 1] → X where two paths are equivalent if and only if they are homotopic
with fixed endpoints. Then G0 � X is the set of equivalence classes of constant
paths on X. If ϕ is a path on X and g = [ϕ] is its class in G, then r(g) = ϕ(1),
s(g) = ϕ(0), g−1 = [ϕ−1], where ϕ−1(t) = ϕ(1 − t) and [ϕ][ψ] = [ϕ ∗ ψ],
where ϕ ∗ψ(t) = ϕ(2t) for t ∈

[
0, 1

2

]
and ϕ ∗ψ(t) = ψ(2t − 1) for t ∈

[
1
2 , 1

]
.

G is called the fundamental groupoid of X.
5. Let (V , F ) be a foliation. The holonomy groupoid G is the set of equivalence

classes of paths whose support is contained in one leaf, where two paths are
identified if they have the same end points and they define the same holonomy
element. Composition and inverse are defined in the same way as for the
fundamental groupoid. The space of units is V ; if V is of dimension n and
the foliation of codimension q then G is a differentiable groupoid of dimension
2n − q. It is not Hausdorff in general. If T is a transversal that meets all leaves
of the foliation, then the restriction of the holonomy groupoid to T is an étale
groupoid equivalent to G.

From now on let G be a locally compact Hausdorff groupoid. An action (on the
right) of G on a space Z is given by a map p : Z → G0, called the source map,
and a continuous map from Z ×G0 G = {(z, g) |p(z) = r(g)} to Z, denoted by
(z, g) 	→ zg, such that (zg)h = z(gh) whenever p(z) = r(g) and s(g) = r(h) and
zp(z) = z. A space endowed with an action of G is called a G-space.

We can then define a groupoid denoted by Z�G with underlying set Z×G, unit
space Z � {(z, p(z)) | z ∈ Z}, source and range maps s(z, g) = zg, r(z, g) = z,
inverse (z, g)−1 = (zg, g−1) and products (z, g)(zg, h) = (z, gh). Note that Z � G
is étale if G is. If Z and G are locally compact Hausdorff, the action of G on Z is
free (resp. proper) if and only if the groupoid Z � G is principal (resp. proper). A
G-space Z is said to be G-compact if the action is proper and the quotient Z/G is
compact.

A G-algebra is an algebra A endowed with an action of G i.e., A is a C(G0)-
algebra and the action of G on A is given by an isomorphism of C(G)-algebras
α : s∗A → r∗A such that the morphisms αg : As(g) → Ar(g) satisfy the relation
αg ◦ αh = αgh. Recall that if X is a locally compact Hausdorff space, a C(X)-
algebra is a C∗-algebra endowed with a ∗-homomorphism θ from C0(X) to the
center Z(M(A)) of the multiplier algebra of A, such that θ(C0(X))A = A. If p :
X → Y is a map between two locally compact Hausdorff spaces and A is a C(X)-
algebra, then p∗A = A⊗C0(X) C0(Y ) is a C(Y )-algebra. If x ∈ X, the fiber Ax of
A over x is defined by i∗A where ix : {x} → X is the inclusion map.
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Suppose G is σ -compact and has a Haar system λ = {λx | x ∈ G0} (we can take,
for example, G to be étale and then λx is the counting measure on Gx). A cutoff
function on G is a continuous function c : G0 → R

+ such that for every x ∈ G0,∫
g∈Gx c(s(g))dλx(g) = 1, and for every compact K ⊂ G0, supp(c) ∩ s(GK) is

compact. Such a function exists if and only if G is proper [Tu99c, Propositions 6.10,
6.11].

Let A be a G-algebra. The full and reduced crossed products of A by G,
denoted C∗(G, A) and C∗r (G, A) respectively are defined in the following way: let
Cc(G, r∗A) be the space of functions with compact support g 	→ ϕ(g) ∈ Ar(g)

continuous in the sense of [LG99]. The product and adjoint are defined respectively
by

ϕ ∗ ψ(g) =
∫

h∈Gr(g)

ϕ(h)αh(ψ(h−1g))dλr(g)(h),

ϕ∗(g) = αg(ϕ(g−1))∗.

Then, L1(G, r∗A) denotes the completion of Cc(G, r∗A) for the norm

‖ϕ‖ = max(|ϕ|1, |ϕ∗|1),

where |ϕ|1 = sup
x∈G0

∫
g∈Gx ‖ϕ(g)‖dλx(g) and C∗(G, A) is the enveloping C∗-algebra

of L1(G, r∗A) and C∗r (G, A) is the closure of L1(G, r∗A) in L(L2(G, r∗A)).
When the G-algebra A is the algebra C0(G0) of continuous functions vanishing

at infinity on the space of objects G0, the crossed products C∗(G, A) and C∗r (G, A)

will simply be denoted C∗(G) and C∗r (G), and called groupoid full and reduced
C∗-algebras.

In [LG97, LG99], for every pair (A, B) of graded G-algebras, Le Gall defined
a bifunctor KKG(A, B) generalizing Kasparov’s KK-bifuntor for groups (see
Section 3.1) that has mostly the same features, in particular, there is an associative
product KKG(A, D) × KKG(D, B) → KKG(A, B) that satisfies the same
naturality properties as in case of the non-equivariant KK-functor. The product of
two elements α ∈ KKG(A, D), β ∈ KKG(D, B) is denoted by α ⊗D β. And there
are descent morphisms

jG : KKG(A, B)→ KK
(
C∗(G, A), C∗(G, B)

)
,

jG,r : KKG(A, B)→ KK
(
C∗r (G, A), C∗r (G, B)

)
,

compatible with the product.
Suppose that G is proper and that G0/G is compact and let c be a cutoff

function for G. The function g 	→ √
c(r(g))c(s(g)), which is continuous with

compact support, defines a projection in C∗(G) = C∗r (G) whose homotopy class
is independent of the choice of the cutoff function and hence defines a canonical
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element λG ∈ K0(C
∗(G)). If Z is a G-compact proper space and B is a G-algebra,

the map

KK∗(C0(Z), B)
jG,r

KK∗(C∗(Z � G), C∗
r (G, B))

λZ�G⊗.
K∗(C∗

r (G, B))

induces the Baum–Connes map with coefficients

μB
r : Ktop∗ (G;B) = lim→ KK∗G(C0(Z), B)→ K∗

(
C∗r (G, B)

)
,

where the inductive limit is taken among all the Z subspace of EG that are G-
compact and EG is the classifying space for proper actions of G. As shown in
[Tu99c], one can take EG to be the se of positive measures μ on G such that s∗μ is
a Dirac measure on G0 and |μ| ∈ ( 1

2 , 1].
The Baum–Connes conjecture with coefficients for groupoids can be stated as

follows

Conjecture 13 For every locally compact Haussdorf groupoid with Haar system G
and every G-algebra, μB

r (G) is an isomorphism.

When B = C0(G0), we get the Baum–Connes map without coefficients:

μr : Ktop∗ (G) = K
top∗ (G;C0(G)) = lim KK∗G(C0(Z), B)→ K∗

(
C∗r (G)

)
,

And the conjecture without coefficients states that μr(G) is an isomorphism.
Tu’s general definition of the dual-Dirac method as discussed in Section 4.4 is

stated in terms of groupoids as follows: let G be a locally compact, σ -compact
groupoid with Haar system. Suppose there exists a proper G-algebra A and elements

η ∈ KKG(C0(G0, A), D ∈ KKG(A, C0(G0)),

γ ∈ KKG(C0(G0),G0))

such that η ⊗A D = γ and p∗γ = 1 ∈ KKEG�G(C0(EG), C0(EG)), where p :
EG → G0 is the source map for the action of G on EG. Then this element is unique
and G is said to have a γ -element. It is the same element as the one constructed
by Kasparov for every connected locally compact group [Kas95] (see Section 3.3).
Tu’s result is stated as follows

Theorem 7.2 ([Tu99c, Proposition 5.23], [Tu99a, Theorem 2.2]) If the groupoid
G has a γ -element, then the Baum–Connes maps with coefficients μ and μr are
split injective. Moreover, if γ = 1 in KKG(C0(G0), C0(G0)), then μ and μr with
coefficients are isomorphisms and G is K-amenable.

As explained by Tu in [Tu00], proofs of injectivity of μr based in Theorem 7.2
are constructive: they require explicit constructions of a proper C∗-algebra and the
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elements in KKG appearing in the definition of a γ -element, and to do so one
uses the existence of an action of the corresponding groupoid on some space with
particular geometric properties.

Using Theorem 7.2 Tu proved that the assembly map μr is injective for bolic
foliations (cf. [Tu99c], Définition 1.15) and that it is a isomorphism for groupoids
satisfying the Haagerup property, for example, amenable groupoids (cf. [Tu99b]).

As an example, let us mention that Higson and Roe proved that a discrete group
� has property A if and only if the groupoid β� � � is amenable, where β� is the
Stone-Čech compactification of � (see Section 9.3.1 for a discussion on property A

and [HR00]).
Higson also proved that if � has property A, then the Baum–Connes map with

coefficients μr for � is injective and C∗r (�) is an exact C∗-algebra [Hig00].
On the other hand, Skandalis, Tu, and Yu proved in [STY02] that � can be

coarsely embedded into a Hilbert space if and only if β��� has Haagerup property.
If this is the case, then the Baum–Connes map with coefficients for � is injective.

We mention here that there is also a Banach version of the dual-Dirac technique
for groupoids developed by Lafforgue in [Laf07]. He defined a KK-theory for
Banach algebras that is equivariant with respect to the action of a groupoid and
he used a notion of unconditional completion that he established in this context to
prove the Baum–Connes conjecture with commutative coefficients for hyperbolic
groups.

7.2 Counter-examples for groupoids

This section is based on sections 1 and 2 of [HLS02]. Let G be a locally compact,
Hausdorff groupoid. Say that a closed subset F of the unit space G0 is saturated if
every morphism with source in F has also range in F . Set U = G\F . Let GF be the
groupoid obtained by restricting G to F , and let GU be the open subgroupoid of G
comprising those morphisms with source and range in U . Then there is a short exact
sequence at the level of maximal C∗-algebras:

0 → C∗max(GU)→ C∗max(G)→ C∗max(GF )→ 0,

but the corresponding sequence at the level of reduced C∗-algebras

0 → C∗r (GU)→ C∗r (G)→ C∗r (GF )→ 0

may fail to be exact; in favorable circumstances this lack of exactness can even be
detected at the level of K-theory. This can be exploited to produce counter-examples
to the Baum–Connes conjecture.
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Lemma 7.3 Assume that the sequence

K0
(
C∗r (GU)

)→ K0
(
C∗r (G)

)→ K0
(
C∗r (GF )

)
(7.1)

is NOT exact in the middle term. If the assembly map K
top

0 (GF ) → K0(C
∗
r (GF )) is

injective, then the assembly map K
top

0 (G)→ K0(C
∗
r (G)) is NOT surjective.

Proof By contrapositive, we assume that K
top

0 (G)→ K0(C
∗
r (G)) is surjective, and

prove that the sequence 7.1 is exact. For this we chase around the commutative
diagram:

Ktop
0 (G) Ktop

0 (GF )

0 K0(C∗
max(GU )) K0(C∗

max(G)) K0(C∗
max(GF )) 0

0 K0(C∗
r (GU )) K0(C∗

r (G)) K0(C∗
r (GF ) 0

Let y be in the kernel of K0(C
∗
r (G)) → K0(C

∗
r (GF )). By the assumed

surjectivity of the assembly map for G, we write y as the image of x ∈ K
top

0 (G).
Then the image of x in K

top

0 (GF ) is zero, by the assumed injectivity of the assembly
map for GF . So μmax(x) is in the kernel of K0(C

∗
max(G)) → K0(C

∗
max(GF ))

and therefore in the image of K0(C
∗
max(GU)), by exactness of the middle row. So

y = μr(x) is in the image of K0(C
∗
r (GU)). ��

Let us give a simple example where this happens.

Definition 7.4 A group � is residually finite if � admits a filtration, i.e., a decreas-
ing sequence (Nk)k>0 of finite index normal subgroups with trivial intersection.

We recall that finitely generated linear groups are residually finite, which
provides a wealth of examples. If (Nk)k>0 is a filtration of �, we denote by λ�/Nk

the representation of � obtained by composing the regular representation of �/Nk

with the quotient map � → �/Nk , and by λ0
�/Nk

the restriction of λ�/Nk
to the

orthogonal of constants.

Definition 7.5 If (Nk)k>0 is a filtration of �, the group � has property (τ ) with
respect to the filtration (Nk)k>0 if the representation ⊕k>0λ

0
�/Nk

does not almost
admit invariant vectors.

It follows from Proposition 5.3 that a residually finite group with property (T)
has property (τ ) with respect to every filtration. For a group like the free group, this
property depends crucially on the choice of a filtration.
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Fix now a filtration (Nk)k>0 in the residually finite21 group �∞, let qk : �∞ →
�k = �∞/Nk be the quotient homomorphism. Let N = N ∪ {∞} be the one-point
compactification of N, endow N× �∞ with the following equivalence relation:

(m, g) ∼ (n, h)⇔
{

either m = n = ∞ and g = h

or m = n ∈ N and qm(g) = qm(h).

Let G be the groupoid with set of objects G0 = N, and with set of morphisms
G1 = (N × �∞)/ ∼, with the quotient topology; observe that G is a Hausdorff
groupoid, as (Nk)k>0 is a filtration. We may view G as a continuous field of groups
over N, with �k sitting over k ∈ N. Set F = {∞} and U = N.

Proposition 7.6 Let �∞ be an infinite, discrete subgroup of SLn(R). Assume that
there exists a filtration (Nk)k>0 such that �∞ has property (τ ) with respect to it.
Let G be the groupoid construct above, associated with this filtration. The assembly
map for G is not surjective.

Proof We check the two assumptions of Lemma 7.3. First, GF = �∞. As the
assembly map μr is injective for every closed subgroup of any connected Lie group
(e.g., SLn(R)), it is injective for GF . It remains to see that the sequence (7.1) is
not exact in our case. For the representation π = ⊕k>0λ�∞/Nk

of �∞, denote by
C∗π (�∞) the completion of C�∞ defined by π . Because of property (τ ) there exists
a Kazhdan projection eπ ∈ C∗π (�∞) that projects on the �∞-invariant vectors22 in
every representation of C∗π (�∞).

Now C∗r (G) is the completion of Cc(G1) for the norm

‖f ‖ = sup
k∈N
‖λ�∞/Nk

(fk)‖,

where f ∈ Cc(G1) and fk = f |{k}×�k
.

Consider the homomorphism C�∞ → Cc(G1) which to g ∈ �∞ associates
the characteristic function of the set of (k, h) ∈ N̄ × �∞ such that h = qk(g).
It extends to a homomorphism α : C∗π (�∞) → C∗r (G), as is easily checked.
The projection α(eπ ) is in the kernel of the map C∗r (G) → C∗r (GF ): as �∞ is
infinite, its regular representation has no non-zero invariant vector. Therefore the
class [α(eπ )] ∈ K0(C

∗
r (G)) is in the kernel of the map K0(C

∗
r (G))→ K0(C

∗
r (GF )).

On the other hand GU =∐
k>0(�∞/Nk), so C∗r (GU) = ⊕k>0C

∗(�∞/Nk) (a C∗-
direct sum) and K0(C

∗
r (GU)) = ⊕k>0K0(C

∗(�∞/Nk)) (an algebraic direct sum).
Considering now the natural homomorphism λ�∞/Nk

: C∗r (GU) → C∗(�∞/Nk),
we see in this way that (λ�∞/Nk

)∗(x) �= 0 for only finitely many k’s if x lies in the

21Until the end of Proposition 7.6, we denote a countable group by �∞ rather than �, as we view
�∞ as the limit of its finite quotients �k .
22If �∞ has property (T), eπ is the image in C∗π (�∞) of the Kazhdan projection eG ∈ C∗max(�∞)

from Proposition 5.4.
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image of K0(C
∗
r (GU)) in K0(C

∗
r (G)), while (λ�∞/Nk

)∗[α(eπ )] �= 0 for every k ∈ N.
This shows that [α(eπ )] is not in the image of K0(C

∗
r (GU)). ��

Example 7.7 Explicit examples where Proposition 7.6 applies, are SLn(Z) with
n ≥ 3 and any filtration (because of property (T)), and SL2(Z) with a filtration
by congruence subgroups (property (τ ) is established in [Lub10]).

The paper [HLS02] by Higson–Lafforgue–Skandalis contains several other
counter-examples to the Baum–Connes conjecture for groupoids:

• injectivity counter-examples for Hausdorff groupoids;
• injectivity counter-examples for (non-Hausdorff) holonomy groupoids of folia-

tions;
• surjectivity counter-examples for semi-direct product groupoids Z ��, where Z

is a suitable locally compact space carrying an action of a Gromov monster � (see
Section 9.2 below for more on Gromov monsters). In terms of C∗-algebras, since
C∗r (Z � �) = C∗r (�, C0(Z)), this is a counter-example for the Baum–Connes
conjecture with coefficients (Conjecture 5).

8 The coarse Baum–Connes conjecture (CBC)

We dedicate this section to the memory of John Roe (1959–2018)

The idea behind coarse, or large scale-geometry is very simple: ignore the local,
small-scale features of a geometric space and concentrate on its large-scale, or long-
term, structure. By doing so, trends or qualities may become apparent which are
obscured by small-scale irregularities. For a metric space X, the coarse Baum–
Connes conjecture postulates an isomorphism

μX : KX∗(X) = lim
d→∞K∗(Pd(X))

�−→ K∗(C∗(X)),

where the actors only depend on large scale, or coarse structure of X. The right-
hand side is the K-theory of a certain C∗-algebra, the Roe algebra of X—a
noncommutative object; while the left-hand side is the limit of the K-homology
groups of certain metric spaces (i.e., commutative objects), namely Rips complexes
of X, see Definition 6.26, and the isomorphism should be given by a concrete map,
the coarse assembly map μX. This way the analogy with the classical Baum–Connes
conjecture (Conjecture 4) becomes apparent: both are in the spirit of bridging
noncommutative geometry with classical topology and geometry. CBC has several
applications, e.g., the Novikov conjecture (Conjecture 2.5) when X = �, a finitely
generated group equipped with a word metric.

Let (X, dX), (Y, dY ) be metric spaces, and f : X → Y a map (not necessarily
continuous). We say that f is almost surjective if there exists C > 0 such that Y is
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the C-neighborhood of f (X). Recall that f is a quasi-isometric embedding if there
exists A > 0 such that

1

A
dX(x, x′)− A ≤ dY (f (x), f (x′)) ≤ AdX(x, x′)+ A,

for every x, x′ ∈ X, and that f is a quasi-isometry if f is a quasi-isometric
embedding which is almost surjective. A weaker condition is provided by coarse
embeddings, relevant for large-scale structure and corresponding to injections in the
coarse category: f is a coarse embedding if there exist functions ρ+, ρ− : R+ →
R+ (called control functions) such that limt→∞ ρ±(t) = ∞ and

ρ−(dX(x, x′)) ≤ dY (f (x), f (x′)) ≤ ρ+(dX(x, x′))

for every x, x′ ∈ X. Finally, f is a coarse equivalence if f is a coarse embedding
which is almost surjective; coarse equivalences are isomorphisms in the coarse
category.

8.1 Roe algebras

8.1.1 Locality conditions on operators

Let (X, dX) be a proper metric space. A standard module over C0(X) is a Hilbert
space HX carrying a faithful representation of C0(X), whose image meets the
compact operators only in 0. Fix a bounded operator T on HX. A point (x, x′) ∈
X ×X is in the complement of the support of T if there exists f, f ′ ∈ Cc(X), with
f (x) �= 0 �= f ′(x′) and f ′Tf = 0.

Say that T is pseudo-local if the commutator [T , f ] is compact for every f ∈
C0(X), that T is locally compact if Tf and f T are compact operators for every
f, f ′ ∈ C0(X). Say that T has finite propagation if the support of T is contained in
a neighborhood of the diagonal in X of the form {(x, x′) ∈ X×X : dX(x, x′) ≤ R}.
Definition 8.1 The Roe algebra C∗(X) is the norm closure of the set of locally
compact operators with finite propagation on HX.

It can be shown that C∗(X) does not depend on the choice of the standard module
HX over C0(X). The K-theory K∗(C∗(X)) will be the right-hand side of the CBC.

Example 8.2 If X is a uniformly discrete metric space (i.e., the distance between
two distinct points is bounded below by some positive number), then we may take
HX = �2(X) ⊗ �2(N), any operator T ∈ B(HX) can be viewed as a matrix T =
(Txy)x,y∈X. Then T is locally compact if and only if Txy is compact for every x, y ∈
X, and T has finite propagation if and only if there is R > 0 such that Txy = 0
for d(x, y) > R. In particular �∞(X,K), acting diagonally on HX, is contained in
C∗(X).
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Example 8.3 Let � be a finitely generated group, endowed with the word metric
d(x, y) = |x−1y|S associated with some finite generating set S of G. Let |�| denote
the underlying metric space, which is clearly uniformly discrete. Let ρ be the right
regular representation of G on �2(G); observe that, because d(xg, x) = |g|S , the
operator ρ(g) ⊗ 1 has finite propagation. Actually the Roe algebra in this case is
C∗(|�|) = �∞(�,K) �r �, where � acts via ρ.

8.1.2 Paschke duality and the index map

Let X be a proper metric space and HX a standard module over C0(X), as in the
previous paragraph. Denote by �0(X,HX) the set of pseudo-local operators, and
by �−1(X,HX) the set of locally compact operators. It follows from the definitions
that �0(X,HX) is a C∗-algebra containing �−1(X,HX) as a closed 2-sided ideal.

The K-homology of X may be related to the K-theory of the quotient

�0(X,HX)/�−1(X,HX).

For i = 0, 1 there are maps

Ki(�0(X,HX)/�−1(X,HX))→ K1−i (X) (8.1)

defined as follows: for i = 0, let p be a projection in �0(X,HX)/�−1(X,HX) (or
in a matrix algebra over �0(X,HX)/�−1(X,HX)), form the self-adjoint involution
f = 2p − 1, let F be a self-adjoint lift of f in �0(X,HX). Then the pair
(HX, F ) is an odd Fredholm module over C0(X), in the sense of Definition 3.1,
so it defines an element of the K-homology K1(X). For i = 1, let u be a unitary
in �0(X,HX)/�−1(X,HX) (or in a matrix algebra over it), let U be a lift of u in
�0(X,HX), form the self-adjoint operator

F =
(

0 U

U 0

)

on HX⊕HX: then (HX⊕HX, F ) is an even Fredholm module over C0(X), defining
an element of the K-homology K0(X). Paschke [Pas81] proved that, when HX is
a standard module, the homomorphisms in 8.1 are isomorphisms: this is Paschke
duality.

Now define D∗(X,HX) as the norm closure of the pseudo-local, finite propa-
gation operators. It is clear that C∗(X) is a closed 2-sided ideal in D∗(X,HX).
It was proved by Higson and Roe (see [HR95], lemma 6.2), that the inclu-
sion D∗(X,HX) ⊂ �0(X,HX) induces an isomorphism D∗(X,HX)/C∗(X) �
�0(X,HX)/�−1(X,HX) of quotient C∗-algebras. Now consider the 6-term exact
sequence in K-theory associated with the short exact sequence

0 → C∗(X)→ D∗(X,HX)→ D∗(X,HX)/C∗(X)→ 0;
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the connecting maps K1−i (D
∗(X,HX)/C∗(X)) → Ki(C

∗(X) (i = 0, 1) can be
seen as maps K1−i (�0(X,HX)/�−1(X,HX)) → Ki(C

∗(X)). Applying Paschke
duality, we get an index map

IndX : K∗(X)→ K∗(C∗(X)),

for every proper metric space X.

Example 8.4 If X is compact, then C∗(X) is the C∗-algebra of compact operators,
so K0(C

∗(X)) = Z and the map IndX : K0(X) → Z is the usual index map that
associates its Fredholm index to an even Fredholm module over C(X).

8.2 Coarse assembly map and Rips complex

8.2.1 The Rips complex and its K-homology

We now define the left-hand side of the assembly map, in terms of Rips complexes.
Recall from Definition 6.26 that, for X a locally finite metric space (i.e., every ball
in X is finite) and d ≥ 0, the Rips complex Pd(X) is the simplicial complex with
vertex set X, such that a subset F with (n + 1)-elements spans a n-simplex if and
only if diam(F) ≤ d. We define a metric on Pd(X) by taking the maximal metric
that restricts to the spherical metric on every n-simplex—the latter being obtained
by viewing the n-simplex as the intersection of the unit sphere Sn with the positive
octant in Rn+1.

The coarse K-homology of X is then defined as:

KX∗(X) := lim
d→∞K∗(Pd(X));

this will be the left-hand side of the CBC. Observe that, for every d ≥ 0, the
spaces X and Pd(X) are coarsely equivalent. Then, taking K-theory, we see that
limd→∞K∗(C∗(Pd(X))) is isomorphic to K∗(C∗(X)).

Example 8.5 If � is a finitely generated group and X = |�|, then KX∗(X) =
limY K∗(Y ), where Y runs in the directed set of closed, �-compact subsets of the
classifying space for proper actions E�. This is to say that CBC can really be seen
as a non-equivariant version of the Baum–Connes Conjecture 4.

8.2.2 Statement of the CBC

The index map IndPd(X) is compatible with the maps K∗(Pd(X)) → K∗(Pd ′(X))

and K∗(C∗(Pd(X))) → K∗(C∗(Pd ′(X))) induced by the inclusion Pd(X) →
Pd ′(X) for d < d ′. Passing to the limit for d → ∞, we get the coarse assembly
map
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μX : KX∗(X)→ K∗(C∗(X)).

Say that X has bounded geometry if, for every R > 0, the cardinality of balls of
radius R is uniformly bounded over X. Here is now the statement of the coarse
Baum–Connes conjecture.

Conjecture 14 (CBC) For every space X with bounded geometry, the coarse assem-
bly map μX is an isomorphism.

8.2.3 Relation to the Baum–Connes conjecture for groupoids

It is a result of Yu [Yu95] that, if � is a finitely generated group, the CBC for the
metric space |�| is the usual Baum–Connes conjecture for � with coefficients in
the C∗-algebra �∞(�,K) (compare with Example 8.3). Skandalis et al. [STY02]
generalize this by associating to every discrete metric space X with bounded
geometry, a groupoid G(X) such that the coarse assembly map for X is equivalent
to the Baum–Connes assembly map for G(X) with coefficients in the C∗-algebra
�∞(X,K).

Let us explain briefly the groupoid G(X). So let X be a countable metric space
with bounded geometry. A subset E of X×X is called an entourage if d is bounded
on E, i.e., if there exists R > 0 such that ∀(x, y) ∈ E, d(x, y) ≤ R.

Let

G(X) =
⋃

E entourage

E ⊂ β(X ×X),

where β(X×X) is the Stone-Čech compactification of X×X and E is the closure
of E in β(X×X). G(X) is the spectrum of the abelian C∗-subalgebra of �∞(X×X)

generated by the characteristic functions χE of entourages E. Skandalis, Tu, and Yu
proved that it can be endowed with a structure of groupoid extending the one on
X×X. Recall that X×X is endowed with a structure of groupoid where the source
and range are defined by s(x, y) = y and r(x, y) = x. These maps extend to maps
from β(X×X) to βX, hence to maps from G(X) to βX so that G(X) is a groupoid
whose unit space is βX and which is étale, locally compact, Hausdorff and principal
(cf. [STY02], Proposition 3.2).

In the case where X is a finitely generated discrete group � with a word metric,
the groupoid G(X) is β� � �. Skandalis, Tu, and Yu proved the following result.

Theorem 8.6 ([STY02]) Let X be a discrete metric space with bounded geometry.
Then X has property A(in the sense of Definition 9.4 below) if and only if G(X)

is amenable. Moreover, X is coarsely embedded into a Hilbert space if and only if
G(X) has Haagerup property.

The coarse Baum–Connes conjecture can be put inside the framework of the
conjecture for groupoids: let C∗(X) be the Roe algebra associated to (X, d),
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see Definition 8.1. Then C∗(X) is isomorphic to the reduced crossed product
C∗r (G(X), �∞(X,K)) and the coarse assembly map identifies with the Baum–
Connes assembly map for the groupoid G(X) with coefficients in �∞(X,K).

8.2.4 The descent principle

For a finitely generated group �, there is a “descent principle” saying that the CBC
for |�| implies the Novikov conjecture for � (see Theorem 8.4 in [Roe96])

Theorem 8.7 Let � be a finitely generated group. Assume that � admits a finite
complex as a model for its classifying space B�. If CBC holds for the underlying
metric space |�|, then the assembly map μ� is injective; in particular the Novikov
conjecture (Conjecture 3) holds for �.

8.3 Expanders

Expanders are families of sparse graphs which are ubiquitous in mathematics, from
theoretical computer science to dynamical systems, to coarse geometry.

Let X = (V , E) be a finite, connected, d-regular graph. The combinatorial
Laplace operator on X is the operator � on �2(V ) defined by

(�f )(x) = d · f (x)−
∑

y∈V :y∼x

f (y),

where f ∈ �2(V ) and ∼ denotes the adjacency relation on X.
It is well known from algebraic graph theory (see, e.g., [Lub10, DSV03]) that, if

X has n vertices, the spectrum of � consists of n eigenvalues (repeated according
to multiplicity):

0 = λ0 < λ1 ≤ λ2 ≤ . . . ≤ λn−1 ∈ [0, 2d].

On the other hand, the Cheeger constant, or isoperimetric constant of X, is
defined as

h(X) = inf
A⊂V

|∂A|
min{|A|, |V \A|} ,

where ∂A is the boundary of A, i.e., the set of edges connecting A with V \A. The
Cheeger constant measures the difficulty of disconnecting X.

The Cheeger–Buser inequality says that h(X) and λ1(X) essentially measure the
same thing:
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λ1(X)

2
≤ h(X) ≤ √

2kλ1(X).

Expanders are families of large graphs which are simultaneously sparse (i.e.,
they have few edges, a condition ensured by d-regularity, with d fixed) and hard to
disconnect (a condition ensured by h(X) being bounded away form 0).

Definition 8.8 A family (Xk)k>0 of finite, connected, d-regular graphs is a family
of expanders if limk→∞ |Vk| = +∞ and there exists ε > 0 such that λ1(Xk) ≥ ε

for all k (equivalently: there exists ε′ > 0 such that h(Xk) ≥ ε′ for every k).

The tension between sparsity of X and h(X) being bounded away from 0, makes
the mere existence of expanders non-trivial. The first explicit construction, using
property (T), is due to Margulis:

Theorem 8.9 Let � be a discrete group with property (T), let S = S−1 be a finite,
symmetric, generating set of �. Assume that � admits a sequence of finite index
normal subgroups Nk $ � with limk→∞[� : Nk] = +∞. Then the sequence of
Cayley graphs (Cay(�/Nk, S))k>0 is a family of expanders.

Example 8.10 Take � = SLd(Z), with d ≥ 3, and Nk = �(k) the congruence
subgroup of level k, i.e., the kernel of the map of reduction modulo k:

�(k) = ker(SLd(Z)→ SLd(Z/kZ)).

Coarse geometry prompts us to view a family (Xk)k>0 of finite connected graphs
as a single metric space. This is achieved by the coarse disjoint union: on the
disjoint union

∐
k>0 Xk , consider a metric d such that the restriction of d to each

component Xk is the graph metric, and d(Xk, X�) ≥ diam(Xk) + diam(X�) for
k �= �. Such a metric is unique up to coarse equivalence.

A favorite source of examples comes from box spaces, that we now define. Let
� be a finitely generated, residually finite group, and let (Nk)k>0 be a filtration in
the sense of Definition 7.4. If S is a finite, symmetric, generating set of �, we may
form the Cayley graph Cay(�/Nk, S), as in Theorem 8.9.

Definition 8.11 The coarse disjoint union
∐

k>0 Cay(�/Nk, S) is the box space of
� associated with the filtration (Nk)k>0.

It is clear that, up to coarse equivalence, it does not depend on the finite
generating set S, so we simple write

∐
k>0 �/Nk . By Theorem 8.9, any box space

of a residually finite group with property (T) is an expander. More generally, it is
a result by Lubotzky and Zimmer [LZ89] that

∐
k>0 Cay(�/Nk, S) is a family of

expanders if and only if � has property (τ ) with respect to the filtration (Nk)k>0, in
the sense of Definition 7.5.

For future reference (see Section 9.4.1), we give one more characterization of
expanders:



The Baum–Connes conjecture: an extended survey 217

Proposition 8.12 Let (Xk)k>0 be a sequence of finite, connected, d-regular graphs
with limk→∞ |Vk| = +∞. The family (Xk)k>0 is a family of expanders if and only
if there exists C > 0 such that, for every map f from

∐
k>0 Xk to a Hilbert space

H, the following Poincaré inequality holds for every k > 0:

1

|Vk|2
∑

x,y∈Vk

‖f (x)− f (y)‖2 ≤ C

|Vk|
∑

x∼y

‖f (x)− f (y)‖2. (8.2)

Proof

(1) Let X = (V , E) be a finite connected graph. We first re-interpret the first non-
zero eigenvalue λ1 of �. Consider two quadratic forms on �2(V ), both with
kernel the constant functions: φ 	→ 1

|V |2
∑

x,y∈V |φ(x) − φ(y)|2 and φ 	→
1
|V |

∑
x∼y |φ(x)− φ(y)|2. Then 1

λ1
is the smallest constant K > 0 such that23

1

|V |2
∑

x,y∈V

|φ(x)− φ(y)|2 ≤ K

|V |
∑

x∼y

|φ(x)− φ(y)|2

for all φ ∈ �2(V ).
(2) By the first step, the sequence (Xk)k>0 is an expander if and only if there exists

a constant C such that, for every function φ on
∐

k>0 Xk , we have:

1

|Vk|2
∑

x,y∈Vk

|φ(x)− φ(y)|2 ≤ C

|Vk|
∑

x∼y

|φ(x)− φ(y)|2.

(3) Taking a map f : ∐k>0 Xk → H and expanding in some orthonormal basis of
H, we immediately deduce inequality (8.2) from the 2nd step.

��

8.4 Overview of CBC

8.4.1 Positive results

The CBC was formulated by Roe in 1993, see [Roe93].

• Yu 2000: if a discrete metric space with bounded geometry that admits a coarse
embedding into Hilbert space, then CBC holds for X, see [Yu00];

23The re-interpretation goes as follows: fix an auxiliary orientation on the edges of E, allowing one
to define the coboundary operator d : �2(V )→ �2(E) : φ 	→ dφ, where dφ(e) = φ(e+)−φ(e−).
Observe that � = d∗d, so that 〈�φ, φ〉 = ‖dφ‖2 = 1

2

∑
x∼y |φ(x) − φ(y)|2. By the Rayleigh

quotient, 1
λ1

is the smallest constant K > 0 such that ‖φ‖2 ≤ K‖dφ‖2 for every φ ⊥ 1. We leave
the rest as an exercise.



218 M. P. Gomez Aparicio et al.

• Kasparov and Yu 2006: if X is a discrete metric space with bounded geometry
that coarsely embeds into a super-reflexive Banach space, then the coarse
Novikov conjecture (i.e., the injectivity of μX) holds for X, see [KY06].

8.4.2 Negative results

• Yu 1998: the coarse assembly map is not injective for the coarse disjoint union∐
n>0 n · S2n, where n · S2n denotes the sphere of radius n in (2n+ 1)-Euclidean

space, with induced metric, see [Yu98].
• Willett and Yu 2012: the coarse assembly map is not surjective for expanders

with large girth, see [WY12].
• Higson, Lafforgue, and Skandalis 2001: the coarse assembly map is not surjective

for box spaces of residually finite groups � which happen to be expanders,
when � moreover satisfies injectivity of the assembly map with coefficients, see
[HLS02].

Let us describe those counter-examples of Higson et al. [HLS02] more precisely.
We first observe (building on Lemma 7.3) that any family of expanders provides
a counter-example either to injectivity or to surjectivity of the Baum–Connes
assembly map for suitable associated groupoids. To see this, let (Xk)k>0 be a family
of d-regular expanders, and let X = ∐

k>0 Xk be their coarse disjoint union. Let
G(X) be the groupoid associated to X, as in Section 8.2.2. Let F = β(X)\X be a
saturated closed subset in the space of objects, and U = X its complement.

Proposition 8.13 Let X be the coarse disjoint union of a family of d-regular
expanders. Let G(X) be the associated groupoid, set F = β(X)\X. Either the
assembly map is not injective for the groupoid G(X)F or the coarse assembly map
is not surjective for the space X. The same holds true for the assembly map with
coefficients in �∞(X,K).

Sketch of proof In view of Lemma 7.3, we must check that

K0
(
C∗r (G(X)U )

)→ K0
(
C∗r (G(X))

)→ K0
(
C∗r (G(X)F )

)

is NOT exact in the middle term. Set HX = �2(X) ⊗ �2(N), fix some rank 1
projection e ∈ K(�2(N)) on some unit vector ξ , let �k denote the combinatorial
Laplacian on Xk , and set �X = ⊕k>0(�k⊗e). Then �X a locally compact operator
with finite propagation on HX, as such it defines an element of the Roe algebra
C∗(X). The fact that (Xk)k>0 is a family of expanders exactly means that 0 is
isolated in the spectrum of �X. By functional calculus, the spectral projector pX

associated with {0} is also in C∗(X). Now the kernel of �k on �2(Xk) is spanned by
uk , with uk = (1, 1, . . . , 1), so the restriction of pX to �2(Xk)⊗�2(N) is pk⊗(1−e),
where pk is the |Vk| × |Vk|-matrix with all entries equal to 1

|Vk | . In particular entries
(pX)x,y of pX, go to 0 when d(x, y) → ∞, so pX is in the kernel of the map
C∗r (G(X)))→ C∗r (G(X)F ).
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It remains to show that the class [pX] in K0(C
∗
r (G(X))) does not lie in the image

of K0(C
∗
r (G(X)U )). To see this, first observe that G(X)U is the groupoid with space

of objects X and exactly one morphism between every two objects. So C∗r (G(X)U )

is nothing but K(�2(X)). To proceed, for an operator T with finite propagation on
X, denote by Tk the restriction of T to Xk × Xk . If S, T are operators with finite
propagation then, for k large enough, we have (ST )k = SkTk: the reason is that,
given R > 0, for k � 0 an R-neighborhood in X coincides with an R-neighborhood
in Xk , as the Xk’s are further and further apart. As a consequence, there exists a
homomorphism

C∗(X)→
(

∏

k>0

K(�2(Xk))⊗K)/(⊕k>0K(�2(Xk))⊗K
)

,

that factors through C∗(X)/K(�2(X)). To conclude, it is enough to show that the
image of [pX] is non-zero in K0

(
(
∏

k>0 K(�2(Xk))⊗K)/(⊕k>0K(�2(Xk))⊗K)
)
.

For this observe that pX lifts to a projector p̃X ∈ ∏
k>0 K(�2(Xk)) ⊗ K, and that

projections on all factors define a homomorphism

K0

(
∏

k>0

K(�2(Xk))⊗K
)

→ ZN

that maps [p̃X] to (1, 1, 1, . . .) ∈ ZN. Since that homomorphism also maps the
group K0(⊕k>0K(�2(Xk)) ⊗ K) to Z(N), we have shown that [p̃X] is not in the
image of

K0(⊕k>0K(�2(Xk))⊗K)→ K0

(
∏

k>0

K(�2(Xk))⊗K
)

,

so [pX] �= 0 in K0((
∏

k>0 K(�2(Xk))⊗K)/(⊕k>0K(�2(Xk))⊗K)). ��
By carefully choosing the family of expanders, we get actual counter-examples

to surjectivity in the CBC. For this we need a group � exactly as in Proposition 7.6
(with explicit examples provided by Example 7.7), and a box space in the sense of
Definition 8.11.

Theorem 8.14 Let � be an infinite, discrete subgroup of SLn(R), endowed with a
filtration (Nk)k>0 such that � has property (τ ) with respect to it. Then the coarse
assembly map for the box space X associated with this filtration, is not surjective.

Proof Because of property (τ ), the space X is the coarse disjoint union of a
family of expanders, and Proposition 8.13 will apply. Since by [STY02] the coarse
assembly map for X is the Baum–Connes assembly map for the groupoid G(X) with
coefficients in �∞(X,K), by Lemma 7.3 it is enough to check that the assembly
map for the groupoid G(X)F is injective with coefficients in �∞(X,K). Now,
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because X is a box space, G(X)F identifies with the semi-direct product groupoid
(β(X)\X) � �. Since � is a discrete subgroup of SLn(R), the assembly map μA,r

is injective for any coefficient C∗-algebra A: this proves the desired injectivity, so
the coarse assembly map for X is not surjective by Proposition 8.13. ��

8.5 Warped cones

Warped cones were introduced by Roe in 2005, see [Roe05]; he had the intuition that
they might lead to counter-examples to CBC. Let (Y, dY ) be a compact metric space.
Let � be a finitely generated group, with a fixed finite generating set S. Assume
that � acts on Y by Lipschitz homeomorphisms, not necessarily preserving dY . The
warped metric dS on Y is the largest metric dS ≤ dY such that, for every x ∈ Y, s ∈
S, dS(sx, x) ≤ 1. It is given by

dS(x, y)

= inf{n+
n∑

i=0

dY (xi, yi) : x0 = x, yn = y, xi = si(yi−1), si ∈ S ∪ S−1, n ∈ N}.

Intuitively, we modify the metric dY by introducing “group shortcuts,” as two points
x, γ x will end at distance dS(x, γ x) ≤ |γ |S , where |.|S denotes word length on �.

Form the “cone” Y×]1,+∞[, with the distance d given by:

dCone((y1, t1), (y2, t2)) =: |t1 − t2| +min{t1, t2} · dY (y1, y2).

Let � act trivially on the second factor. The warped cone O�Y is the cone
Y×]1,+∞[, with the warped metric obtained from dCone. To get an intuition of
what the warped metric does on the level sets Y ×{t}: assume for a while that Y is a
closed Riemannian manifold, fix a 1

t
-net on Y , and consider the Voronoi tiling of Y

associated to this net (if y is a point in the net, the tile around y is the set of points of
Y closer to y that to any other point in the net). Define a graph Xt whose vertices are
closed Voronoi tiles, and two tiles T1, T2 are adjacent if there exists s ∈ S∪S−1∪{1}
such that s(T1) ∩ T2 �= ∅. Then the family of level sets (Y × {t})t>1 is uniformly
quasi-isometric to the family of graphs (Xt )t>1 (i.e., the quasi-isometry constants
do not depend on t).

In 2015, Druţu and Nowak [DN17] made Roe’s intuition more precise with
the following conjecture. Assume that, on top of the above assumptions, Y

carries a �-invariant probability measure ν such that the action � � (Y, ν) is
ergodic. Assume that the measure ν is adapted to the metric dY in the sense that
limr→0 supy∈Y ν(B(y, r)) = 0.

Conjecture 15 If the action of � on Y has a spectral gap (i.e., the �-representation
on L2

0(Y, nu) does not have almost invariant vectors), then O�Y violates CBC.
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At the time of writing, warped cones are a hot topic:

• Nowak and Sawicki 2015: warped cones do not embed coarsely into a large class
of Banach spaces (those with non-trivial type), containing in particular all Lp-
spaces (1 ≤ p < +∞), see [NS17].

• Vigolo 2016: relates warped cones and expanders, therefore getting new families
of expanders [Vig19].

• Sawicki 2017: the level sets Y × {t} of warped cones provide new examples of
super-expanders, i.e., expanders not embedding coarsely into any Banach space
with non-trivial type, see [Saw17b].

• de Laat and Vigolo 2017: those examples of super-expanders are different (i.e.,
not coarsely equivalent) to Lafforgue’s super-expanders, see [dLV17].

• Fisher, Nguyen, and Van Limbeek 2017: there is a continuum of coarsely pair-
wise inequivalent super-expanders obtained from warped cones, see [FNVL17].
See Section 9.4.1 for super-expanders.

In 2017, Sawicki [Saw17c] confirmed Roe’s intuition by proving the following
form of Conjecture 15.

Theorem 8.15 Let � having Yu’s property A. Assume that � acts on Y by Lipschitz
homeomorphisms, freely, and with a spectral gap. Set A = {2n : n ∈ N} ⊂]1,+∞[,
let O′�Y be the subspace Y × A ⊂ O�Y , equipped with the warped cone metric.
Then μCBC is not surjective for O′�Y . �

By looking at actions on Cantor sets, Sawicki is even able to produce counter-
examples to CBC which are NOT coarsely equivalent to any family of graphs.

9 Outreach of the Baum–Connes conjecture

The Baum–Connes conjecture and the coarse Baum–Connes conjecture prompted
a surge of activity at the interface between operator algebras and other fields of
mathematics, e.g., geometric group theory and metric geometry. Indeed results
like the Higson–Kasparov theorem (see Theorem 5.7 above) are of the form
“groups (resp. spaces) in a given class satisfy the Baum–Connes (resp. coarse
Baum–Connes) conjecture.” This leads naturally to trying to extend the class of
groups (resp. spaces) in question, as a way of enlarging the domain of validity of
either conjecture. The study of a class of groups (resp. spaces) has two obvious
counterparts: providing new examples, and studying permanence properties of the
class. We sketch some of those developments below.
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9.1 The Haagerup property

The 5-authors book [CCJ+01] was the first survey on the subject. Although
motivated by Theorem 5.7, it barely mentions the Baum–Connes conjecture and
focuses on new examples and stability properties. It was updated in the paper
[Val18], which can serve as a guide to more recent literature. Here we mention
some long-standing open questions on the Haagerup property, and partial results.

• Let Bn denote the braid group on n strands. Does Bn have the Haagerup property?
Yes trivially for B2 � Z, and yes easily for B3 � F2 � Z. A recent result by
Haettel [Hae19] shows that, if the general answer is affirmative, it will not be
for a very geometric reason: for n ≥ 4, the group Bn has no proper, cocompact
isometric action on a CAT(0) cube complex.24 Note that a fairly subtle proof of
the Baum–Connes conjecture with coefficients for Bn, has been given by Schick
[Sch07].

• Unlike amenability or property (T), the Haagerup property is not stable under
extensions.25 The standard examples to see this are Z2

� SL2(Z) and R2
�

SL2(R), where the relative property (T) with respect to the non-compact normal
subgroup, is an obstruction to the Haagerup property. However, the Haagerup
property is preserved by some types of semi-direct products: e.g., Cornulier–
Stalder–Valette [CSV12] proved that, if �, � are countable groups with the
Haagerup property, then the wreath product ��� = (⊕��)�� has the Haagerup
property. A probably difficult question: is G, N are locally compact groups with
the Haagerup property and G acts continuously on N by automorphisms, under
which conditions on the action G � N does the semi-direct product N � G

have the Haagerup property? When G, N are σ -compact and N is abelian, the
answer was provided by Cornulier–Tessera (Theorem 4 in [CT11]): N�G has the
Haagerup property if and only if there exists a net (μi)i∈I of Borel probability
measures on the Pontryagin dual N̂ , such that there is a weak-* convergence
μi → δ1, and μi{1} = 0 for every i ∈ I , and ‖g · μi − μi‖ → 0 uniformly on
compact subsets of G, and finally the Fourier transform μ̂i is a C0 function on N

for every i ∈ I .
• The behavior of the Haagerup property under central extensions is a widely

open question. More precisely: if Z is a closed central subgroup in the locally
compact group G, is it true that G has the Haagerup property if and only if G/Z

has it? Both implications are open. See Proposition 4.2.14 and Section 7.3.3 in
[CCJ+01] for partial results on lifting the Haagerup property from G/Z to G, in

particular from SU(n, 1) to ˜SU(n, 1).

24Recall that a group acting properly isometrically on a CAT(0) cube complex, has the Haagerup
property, see, e.g., Corollary 1 in [Val18].
25Amenability (resp. property (T)) can be defined by a fixed point property: existence of a fixed
point for affine actions on compact convex sets (resp. affine isometric actions on Hilbert spaces).
This makes clear that it is preserved under extensions.
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• The Haagerup property for discrete groups is stable under free products or more
generally amalgamated products over finite groups, by Proposition 6.2.3(1) of
[CCJ+01]. In general, it is not true that, if A, B have the Haagerup property and
C is a common subgroup, then A ∗C B has the Haagerup property: see section
4.3.3 in [Val18] for an example with C = Z2. An open question concerns the
permanence of the Haagerup property for amalgamated products A ∗C B with C

virtually cyclic; The first positive result was obtained recently by Carette et al.
[CWW17]: recall that if a group G acts by isometries on a metric space (X, d),
the action of G on X is said to be semisimple if, for every g ∈ G, the infimum
infx∈X d(gx, x) is actually a minimum. They proved that, if A, B are groups
acting properly and semisimply on some real hyperbolic space H

n(R), and C is
a cyclic subgroup common to A and B, then the amalgamated product A ∗C B

has the Haagerup property.

9.2 Coarse embeddings into Hilbert spaces

In 2000, Yu [Yu00] opened a new direction in mathematics by uniting the fields
of K-theory for C∗-algebras and of metric embeddings into Hilbert space. Indeed
he proved that if a metric space X with bounded geometry coarsely embeds into
Hilbert space, then X satisfies the CBC. Using the descent principle (Theorem 8.7),
this implies that if some Cayley graph |�| of a finitely generated group �

coarsely embeds into Hilbert space, then the Baum–Connes assembly map for �

is injective,26 i.e., the assembly map μ embeds the K-homology of the classifying
space B� into the K-theory of the reduced C∗-algebra of �. This implies the
Novikov conjecture on the homotopy invariance of the higher signatures for �. This
was a stunning result, as a strong topological conclusion resulted from a weak metric
assumption.

Finitely generated groups with the Haagerup property coarsely embed into
Hilbert space. Indeed if α is a proper isometric action of � on H, then for every
x ∈ H the orbit map g 	→ α(g)x is a coarse embedding.

Using their groupoid approach, Skandalis, Tu, and Yu (Theorem 6.1 in [STY02])
proved the following:

Theorem 9.1 Let � be a finitely generated group that admits a coarse embedding
into Hilbert space. Then the assembly map μA,r is injective for every � − C∗-
algebra A.

Lots of finitely generated groups embed coarsely into Hilbert space, as they
satisfy the stronger property A (see Section 9.3.1 below). Actually it is not even
easy to find a bounded geometry space not embedding coarsely. The most famous

26Under the assumption that |�| coarsely embeds into Hilbert space, the assumption that B� is a
finite complex was removed by Skandalis et al. [STY02], using their groupoid approach to CBC.
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example is due to Matousek [Mat97], and was popularized by Gromov [Gro03]; we
will give a proof of a stronger result in Proposition 9.17:

Proposition 9.2 Let X be the coarse disjoint union of a family of expanders. Then
X does not coarsely embed into Hilbert space.

In [Gro03], Gromov sketched the construction of families of groups containing
families of expanders coarsely embedded in their Cayley graphs, which therefore do
not embed coarsely into Hilbert space. These are called Gromov’s random groups,
or Gromov monsters. Details of their construction were supplied by Arzhantseva and
Delzant [AD08]. It was shown by Higson et al. [HLS02] that those groups provide
counter-examples to the Baum–Connes conjecture with coefficients (Conjecture 5).

Theorem 9.3 Let � be a Gromov monster. Consider the commutative C∗-algebra
A = �∞(N, c0(�)), with the natural �-action. Then the Baum–Connes conjecture
with coefficients fails for � and A, in the sense that μA,r is not onto.

We will come back on those groups in Section 9.3.1, and explain what exactly is
needed to get counter-examples to Conjecture 5.

9.3 Yu’s property A: a polymorphous property

One of the crucial new invariants of metric spaces introduced by Yu [Yu00] is
property A, a non-equivariant form of amenability. Like standard amenability, it
has several equivalent definitions. In particular we will see that three concepts
from different areas (property A for discrete spaces, boundary amenability from
topological dynamics, and exactness from C∗-algebra theory) provide one and the
same concept when applied to finitely generated groups.

9.3.1 Property A

Definition 9.4 Let (X, d) be a discrete metric space. The space X has property A
if there exists a sequence �n : X×X → C of normalized, positive-definite kernels
on X such that �n is supported in some entourage,27 and (�n)n>0 converges to 1
uniformly on entourages for n→∞.

This is inspired by the following characterization of amenability for a countable
group �: the group � is amenable if and only if there exists a sequence ϕn : � → C
of normalized, finitely supported, positive-definite functions on � such that (ϕn)n>0
converges to 1 for n → ∞. If this happens and if � is finitely generated, then
�n(s, t) = ϕn(s−1t) witnesses that |�| has property A. However, there are many

27Recall from Section 8.2.3 that an entourage is a subset of X ×X on which d(., .) is bounded.
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more examples of finitely generated groups with property A. Other natural examples
are provided by linear groups, i.e., subgroups of the group GLn(F ) for some field
F , this is a result by Guentner et al. [GHW05]; this class includes many groups with
property (T). The list of classes of groups that satisfy property A also includes one-
relator groups, Coxeter groups, groups acting on finite-dimensional CAT(0) cube
complexes, and many more.

Theorem 9.5 (see Theorem 2.2 in [Yu00]) A discrete metric space with property
A admits a coarse embedding into Hilbert space.

The converse is false: endow {0, 1}n with the Hamming distance; then the coarse
disjoint union

∐
n{0, 1}n coarsely embeds into Hilbert space but does not have

property A, as proved by Nowak [Now07]; however, this space does not have
bounded geometry. For a while, an unfortunate situation was that the only way of
disproving property A for a space X, was to prove that X has no coarse embedding
into Hilbert space (see Section 9.2). The situation began to evolve with a paper of
Willett [Wil11] containing a nice result addressing property A directly: the coarse
disjoint union of a sequence of finite regular graphs with girth tending to infinity
(i.e., graphs looking more and more like trees), does not have property A. On the
other hand some of them can be coarsely embedded into Hilbert space, as was shown
by Arzhantseva et al. [AGv12] using box spaces of the free group. For every group
G, denote by G(2) the normal subgroup generated by squares in G, and define a
decreasing sequence of subgroups in G by G0 = G and Gn = G

(2)
n−1. The main

result of [AGv12] is:

Theorem 9.6 For the free group Fk of rank k ≥ 2, with (Fk)n defined as above,
the box space

∐
n>0 Fk/(Fk)n does not have property A but is coarsely embeddable

into Hilbert space.

To summarize the above discussion, we have a square of implications, for finitely
generated groups (where CEH stands for coarse embeddability into Hilbert space):

amenable '⇒ property A
⇓ ⇓

Haagerup property '⇒ CEH

Let us observe:

• The top horizontal and the left vertical implications cannot be reversed: indeed a
non-abelian free group enjoys both property A and the Haagerup property, but is
not amenable.

• The bottom horizontal implication cannot be reversed: SL3(Z) has CEH but,
because of property (T), it does not have the Haagerup property. The same
example shows that property A does not imply the Haagerup property.

This leaves possibly open the implications “CEH ⇒ property A” (which was
known to be false for spaces, by Theorem 9.6), and the weaker implication
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“Haagerup property ⇒ property A.” The latter was disproved by Osajda [Osa14]:
he managed, using techniques of graphical small cancellation, to embed sequences
of graphs isometrically into Cayley graphs of suitably constructed groups. This way
he could prove:

Theorem 9.7 There exists a finitely generated group not having property A, but
admitting a proper isometric action on a CAT(0) cube complex (and therefore
having the Haagerup property).

We refer to [Khu18] for a nice survey of that work.

9.3.2 Boundary amenability

Let � be a countable group; we denote by Prob(�) the set of probability measures
on �, endowed with the topology of pointwise convergence.

Definition 9.8

1. Let X be a compact space on which � acts by homeomorphisms. We say that the
action � � X is topologically amenable if there exists a sequence of continuous
maps μn : X → Prob(�) which are almost �-equivariant, i.e.,

lim
n→∞ sup

x∈X

‖μn(gx)− gμn(x)‖1 = 0.

2. The group � is boundary amenable if � admits a topologically amenable on some
compact space.

For example, the action of � on a point is topologically amenable if and
only if � is amenable, so boundary amenability is indeed a generalization of
amenability. We will see in Theorem 9.9 below that, for finitely generated group,
boundary amenability is equivalent to property A. Boundary amenability attracted
the attention of low-dimensional topologists, so that the following groups were
shown to verify it:

• Mapping class groups, see [Ham09, Kid08];
• Out(Fn), the outer automorphism group of the free group, see [BHG17].

9.3.3 Exactness

For C∗-algebras A, B, denote by A ⊗min B (resp. A ⊗max B) the minimal (resp.
maximal) tensor product. Recall that A is nuclear if the canonical map A⊗max B →
A ⊗min B is an isomorphism for every C∗-algebra B, and that A is exact if the
minimal tensor product with A preserves short exact sequences of C∗-algebras. As
the maximal tensor product preserves short exact sequences, nuclear implies exact.
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A classical result of Lance says that, for discrete groups, a group � is amenable
if and only if C∗r (�) is nuclear. It turns out that, for exactness we have an analogous
result merging this section with Sections 9.3.1 and 9.3.2; it is a combination of
results by Anantharaman-Delaroche and Renault [AR01], Guentner and Kaminker
[GK02], Higson and Roe [HR00], and Ozawa [Oza00].

Theorem 9.9 For a finitely generated group �, the following are equivalent:

1. � has property A;
2. � is boundary amenable;
3. C∗r (�) is exact.

Combining with Theorems 9.5 and 9.1, we get immediately:

Corollary 9.10 If � is a finitely generated group with property A, then for every
� − C∗-algebra A the assembly map μA,r is injective.

As a consequence of Theorem 9.9, for a finitely generated group �, nuclearity
and exactness of C∗r (�) are quasi-isometry invariants (which is by no means obvious
on the analytical definitions). An interesting research question is: which other
properties of C∗r (�) are quasi-isometry invariants of �?

We now explain how the lack of exactness of C∗r (�), when detected at the level
of K-theory, leads to counter-examples to Conjecture 5.

Definition 9.11 A C∗-algebra C is half-K-exact if for any short exact sequence
0 → J → A→ B → 0 of C∗-algebras, the sequence

K∗(J ⊗min C)→ K∗(A⊗min C)→ K∗(B ⊗min C)

is exact in the middle term.

The following statement is an unpublished result by Ozawa (see, however,
Theorem 5.2 in [Oza01]).

Theorem 9.12 Gromov monsters are not half-K-exact.

Proof Let � be a Gromov monster. So there is a family (Xk)k>0 of d-regular
expanders which coarsely embeds in �, i.e., there exists a family of maps fk :
Xk → � such that, for xk, yk ∈ Xk , we have dXk

(xk, yk) → +∞ ⇐⇒
d�(fk(xk), fk(yk)) → +∞. We will need below a consequence of this fact: there
exists a constant K > 0 such that the fiber f−1

k (g) has cardinality at most K , for
every k > 0 and every g ∈ �. (Indeed, first observe that, as a consequence of
the coarse embedding, there exists R > 0 such that, for every k and g, we have
dXk

(x, y) ≤ R for every x, y ∈ f−1
k (g); then use the bounded geometry of the

family (Xk)k>0: we may, for example, take for K the cardinality of a ball of radius
R in the d-regular tree.)

We now start the proof really. Denote by nk the number of vertices of Xk , and
form the product of matrix algebras M = ∏

k>0 Mnk
(C) together with its ideal

J = ⊕k>0Mnk
(C). We are going to show that the sequence
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K0(J ⊗min C∗r (�))→ K0(M ⊗min C∗r (�))→ K0((M/J )⊗min C∗r (�))

is not exact at its middle term. Let us identify Mnk
(C) with End(�2(Xk) via the

canonical basis.
We first define an injective homomorphism ιk : Mnk

(C) → Mnk
(C) ⊗ C∗r (�)

by ιk(Exy) = Exy ⊗ fk(x)−1fk(y), where Exy is the standard set of matrix
units in End(�2(Xk)). We then use an idea similar to the one in the proof of
Proposition 8.13. Let �k be the combinatorial Laplace operator on Xk , let pk be the
projection on its 1-dimensional kernel: recall that (pk)xy = 1

nk
for every x, y ∈ Xk .

Then � := (ιk(�k))k>0 ∈ M ⊗min C∗r (�) has 0 as an isolated point in its spectrum,
as the Xk’s are a family of expanders. The spectral projection associated with 0
is q = (ιk(pk))k>0. The class [q] ∈ K0(M ⊗min C∗r (�)) will witness the desired
non-exactness.

Let π : M → M/J denote the quotient map. To show that q is in the kernel of
π⊗min Id, consider the conditional expectation EM = IdM⊗τ : M⊗min C∗r (�)→
M , where τ denotes the canonical trace on C∗r (�). We have

(Idnk
⊗ τ)(ιk(pk))xy =

{
1
nk

if fk(x) = fk(y)

0 if fk(x) �= fk(y)

So the operator norm of (Idnk
⊗ τ)(ιk(pk)) satisfies:

‖(Idnk
⊗ τ)(ιk(pk))‖ ≤ 1

nk

· max
x∈Xk

∣
∣∣f−1

k (fk(x))

∣
∣∣ ≤ K

nk

,

where K is the constant introduced at the beginning of the proof. As a consequence
EM(q) belongs to J and

0=π(EM(q))=π((IdM⊗τ)(q))=(IdM/J⊗τ)((π⊗minId)(q))=EM/J ((π⊗minId)(q));

by faithfulness of EM/J we get (π ⊗min Id)(q) = 0.
It remains to show that [q] is not in the image of K0(J⊗minC∗r (�)) in K0(M⊗min

C∗r (�). For this, denote by σk : M ⊗min C∗r (�)→ Mnk
(C)⊗ C∗r (�) the projection

on the k-th factor. Because K0(J ⊗min C∗r (�)) = ⊕k>0K0(Mnk
(C) ⊗ C∗r (�)), for

every x ∈ K0(J ⊗min C∗r (�)) we have (σk ⊗ τ)(x) = 0 for k large enough. On the
other hand (σk ⊗ τ)(q) > 0 for every k > 0. ��

The following result may be extracted from [HLS02], where it is not stated
explicitly.

Theorem 9.13 Let � be a countable group. If � is not half-K-exact, then there is a
C∗-algebra C with trivial �-action such that the assembly map

μC,r : Ktop∗ (�, C)→ K∗
(
C∗r (�, C)

)

is NOT onto.
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The proof will be given below. Combining with Theorem 9.12 and its proof, we
immediately get the following:

Corollary 9.14 If � is a Gromov monster, there exists a noncommutative C∗-
algebra C with trivial �-action such that the assembly map

μC,r : Ktop∗ (�, C)→ K∗
(
C∗r (�, C)

)

is NOT onto. �
It seems this is as close as one can get to a counter-example to the Baum–Connes

conjecture without coefficients (Conjecture 4).
To prove Theorem 9.13, we start by some recalls about mapping cones.

Definition 9.15 Let β : A→ B be a homomorphism of C∗-algebras. The mapping
cone of β is the C∗-algebra C(β) = {(a, f ) ∈ A ⊕ C([0, 1], B) : f (0) =
β(a), f (1) = 0}.

Consider now the following situation, with three C∗-algebras J, A, B and
homomorphisms:

• α : J → A, injective;
• β : A→ B, surjective, such that β ◦ α = 0.

We then have an inclusion γ : J → C(β) : j 	→ (α(j), 0).

Lemma 9.16

1. If Im(α) = ker(β), i.e., the sequence 0 → J → A → B → 0 is exact, then
γ∗ : K∗(J )→ K∗(C(β)) is an isomorphism.

2. If γ∗ is an isomorphism, then the sequence K∗(J )
α∗→ K∗(A)

β∗→ K∗(B) is exact.
3. γ∗ is an isomorphism if and only if K∗(C(γ )) = 0.

Proof of lemma 9.16 1. See Exercise 6.N in [WO93].
2. Set I = ker(β) and γ̃ : I → C(β) : x 	→ (x, 0), so that γ = γ̃ ◦ α.

Since γ̃∗ is an isomorphism by the previous point, and γ∗ is an isomorphism
by assumption, we get that α∗ : K∗(J ) → K∗(I ) is an isomorphism. Since the

sequence K∗(I ) �� K∗(A)
β∗

�� K∗(B) is exact, so is the sequence

K∗(J)
α∗

K∗(A)
β∗

K∗(B).

3. Since γ is injective, we may identify the mapping cone C(γ ) with {f ∈
C([0, 1], C(β)) : f (0) ∈ γ (J ), f (1) = 0}. By evaluation at 0, we get a short
exact sequence
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0 C0]0, 1[⊗C(β) C(γ) J 0.

In the associated 6-term exact sequence in K-theory, the use of Bott periodicity
to identify K∗(C0]0, 1[⊗C(β)) with K∗(C(β)) allows to identify the connecting
maps with γ∗, so the result follows.

��
Proof of Theorem 9.13 Since � is not half-K-exact, we find a short exact sequence

0 �� J
α

�� A
β

�� B �� 0 such that

K∗
(
J ⊗min C∗r (�)

) (α⊗minId)∗
�� K∗

(
A⊗min C∗r (�)

) (β⊗minId)∗
�� K∗

(
B ⊗min C∗r (�)

)

(9.1)
is not exact in the middle term. As above, define the mapping cone C(β) and the
inclusion γ : J → C(β). Set C = C(γ ), with trivial �-action. We prove in three
steps that the assembly map μC,r with coefficients in C, is not onto.

• K∗(C ⊗min C∗r (�)) = K∗(C(γ ⊗min Id)) is non-zero: this follows from
non-exactness of the sequence (9.1) together with the two last statements of
Lemma 9.16.

• K∗(C ⊗max C∗max(�)) = K∗(C(γ ⊗max Id)) is zero: this follows from exactness
of

0 → J ⊗max C∗max(�)→ A⊗max C∗max(�)→ B ⊗max C∗max(�)→ 0

together with the first and last statements of Lemma 9.16.
• The assembly map μC,r : Ktop∗ (�, C) → K∗(C∗r (�, C)) = K∗(C ⊗min C∗r (�))

is zero, and therefore is not onto: this is because, as explained in the beginning
of Section 5.1, μC,r factors through

μC,max : Ktop∗ (�, C)→ K∗
(
C∗max(�, C)

) = K∗
(
C ⊗max C∗max(�)

)
,

and this is the zero map.
��

9.4 Applications of strong property (T)

9.4.1 Super-expanders

A Banach space is super-reflexive if it admits an equivalent norm making it
uniformly convex. As mentioned in Section 8.4.1 Kasparov and Yu proved in
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[KY06] that if a discrete metric space with bounded geometry coarsely embeds into
some super-reflexive space, then the coarse assembly map μX is injective. Since
families of expanders do not embed coarsely into Hilbert space, by Proposition 9.2,
it is natural to ask: is there a family of expanders that admits a coarse embedding
into some super-reflexive Banach space? This is a very interesting open question.
However, certain families of expanders are known not to embed coarsely into any
super-reflexive Banach space, and we wish to explain the link with strong property
(T) from Section 6.3.

Let (Xk = (Vk, Ek))k>0 be a family of finite, connected, d-regular graphs with
limk→∞ |Vk| = +∞, and let B be a Banach space. We say that (Xk)k>0 satisfies a
Poincaré inequality with respect to B if there exists C = C(B) > 0 such that for
every map f :∐k>0 Xk → B we have:

1

|Vk|2
∑

x,y∈Vk

‖f (x)− f (y)‖2
B ≤

C

|Vk|
∑

x∼y

‖f (x)− f (y)‖2
B. (9.2)

Compare with inequality (8.2), which is the Poincaré inequality with respect to
Hilbert spaces. In view of Proposition 8.12, the following result implies Proposi-
tion 9.2.

Proposition 9.17 Assume that the family (Xk)k>0 satisfies a Poincaré inequality
with respect to the Banach space B. Then the coarse disjoint union X of the Xk’s,
admits no coarse embedding into B.

Proof Suppose by contradiction that there exists a coarse embedding f : X → B,
with control functions ρ±. Then, using ‖f (x)− f (y)‖B ≤ ρ+(1) for x ∼ y in any
Xk , we get for every k > 0:

1

|Vk|2
∑

x,y∈Vk

ρ−(d(x, y))2 ≤ 1

|Vk|2
∑

x,y∈Vk

‖f (x)− f (y)‖2
B

≤ C

|Vk|
∑

x∼y

‖f (x)− f (y)‖2
B

≤ 2C|Ek|ρ+(1)2

|Vk| = dCρ+(1)2,

where the second inequality is the Poincaré inequality and the final equality is
|Ek| = d|Vk |

2 . Set M = dCρ+(1)2; since the mean of the quantities ρ−(d(x, y))2

is at most M , this means that for at least half of the pairs (x, y) ∈ Vk × Vk , we
have ρ−(d(x, y))2 ≤ 2M , for every k > 0. Since limt→∞ ρ−(t) = +∞, we
find a constant N > 0 such that, for every k > 0 and at least half of the pairs
(x, y) ∈ Vk × Vk , we have d(x, y) ≤ N . But as Xk is d-regular, the cardinality
of a ball of radius N is at most (d + 1)N , so the cardinality of the set of pairs
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(x, y) ∈ Vk × Vk with d(x, y) ≤ N , is at most |Vk|(d + 1)N . For k � 0, this is

smaller than |Vk |2
2 , and we have reached a contradiction. ��

Definition 9.18 A sequence (Xk)k>0 of finite, connected, d-regular graphs with
limk→∞ |Xk| = +∞, is a family of super-expanders if, for any super-reflexive
Banach space B, the sequence (Xk)k>0 satisfies the Poincaré inequality (9.2) with
respect to B.

It follows from Proposition 8.12 that, assuming they do exist, super-expanders
are expanders, and from Proposition 9.17 that super-expanders do not admit a
coarse embedding into any super-reflexive Banach space. Lafforgue’s construction
of super-expanders in [Laf08, Laf09], following a suggestion by Naor, answered a
question from [KY06]:

Theorem 9.19 Let F be a non-Archimedean local field, let G be a simple algebraic
group of higher rank defined over F , and let G(F) be the group of F -rational points
of G. Let � be a lattice in G(F), fix any filtration (Nk)k>0 of �. Then the box space∐

k>0 Cay(�/Nk, S) (see Definition 8.11) is a family of super-expanders.

Proof Write Xk =: Cay(�/Nk, S). Let B be a super-reflexive Banach space. The
goal is to show that the Poincaré inequality (9.2) is satisfied.

1. Let Bk be the space of functions Xk → B, with norm ‖f ‖2
Bk

=
1
|Xk |

∑
x∈Xk

‖f (x)‖2
B . For f ∈ Bk , set mf = 1

|Xk

∑
x∈Xk

f (x) ∈ B. Then28

1

|Xk|2
∑

x,y∈Xk

‖f (x)− f (y)‖2
B ≤

4

|Xk|
∑

x∈Xk

‖f (x)−mf ‖2
B. (9.3)

To see this: by translation we may assume mf = 0. Then by the triangle
inequality:

‖f (x)− f (y)‖2
B ≤ (‖f (x)‖B + ‖f (y)‖B)2 ≤ 2

(
‖f (x)‖2

B + ‖f (y)‖2
B

)
,

and inequality 9.3 follows by averaging over Xk ×Xk .
2. Let πk be the natural isometric representation of � on Bk . As � acts transitively

on X − K , the fixed point space of � in Bk is the space of constant functions.
Now strong property (T) for representations in a Banach space is defined by
analogy with Definition 6.32, by replacing Hilbert space by a suitable class of
Banach spaces: it posits the existence of a Kazhdan projection projecting onto
the fixed point space, for any representation in a suitable class. It turns out
that the lattice � has strong property (T) for isometric representations in super-
reflexive Banach spaces: this is due to Lafforgue [Laf08, Laf09] when G(F)

28Note typos regarding inequality 9.3 in Proposition 5.2 of [Laf08] and in Proposition 5.5 of
[Laf09]: ≤ 4

|Xk | is erroneously written as = 2
|Xk | .
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contains SL3(F ), and to Liao [Lia14] in general. So, denoting by C0,1(�) the
Banach algebra completion of C� with respect to isometric �-representations in
the spaces (Bk)k>0, there exists an idempotent p ∈ C0,1(�) such that in particular
πk(p)f = mf for every f ∈ Bk . Inequality 9.3 is then reformulated

1

|Xk|2
∑

x,y∈Xk

‖f (x)− f (y)‖2
B ≤ 4‖f − πk(p)f ‖2

Bk
. (9.4)

3. Let q ∈ C� be an element such that ‖p−q‖C0,1(�) < 1
2 and

∑
γ q(γ ) = 1. Then

‖πk(p)f − πk(q)f ‖Bk
= ‖(πk(p)− πk(q))(f −mf )‖Bk

≤ 1

2
‖f −mf ‖Bk

= 1

2
‖f − πk(p)f ‖Bk

;

but ‖f −πk(p)f ‖Bk
≤ ‖f −πk(q)f ‖Bk

+‖πk(q)f −πk(p)f ‖Bk
by the triangle

inequality, so

‖f − πk(p)f ‖Bk
≤ 2‖f − πk(q)f ‖Bk

,

that we plug in (9.4).
4. Finally it is easy to see that there exists a constant C1 > 0, only depending on q,

such that for every k > 0:

‖f − πk(q)f ‖2
Bk
≤ C1

|Xk|
∑

x∼y

‖f (x)− f (y)‖2
B.

��
Later on, other constructions of super-expanders were provided:

• by Mendel and Naor [MN14], using zig-zag products;
• independently by Sawicki [Saw17a] and by de Laat and Vigolo [dLV18], using

warped cones, as defined in Section 8.5: the constructions appeal to actions on
manifolds of groups with strong property (T).

9.4.2 Zimmer’s conjecture

A striking, unexpected application of Lafforgue’s strong property (T) from Sec-
tion 6.3 is the recent solution of Zimmer’s conjecture on actions of higher rank
lattices on manifolds. Roughly speaking, Zimmer’s conjecture claims that a lattice
� in a higher rank simple Lie group G, has only finite actions on manifolds of
dimension small enough (relative to data only associated with G). Somewhat more
precisely, in this section:
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• higher rank means that the real rank of G is at least 2 (think of G = SLn(R), for
n ≥ 3; or G = Sp2n(R), for n ≥ 2);

• manifold means a smooth closed manifold M;
• action of � on M means an action by diffeomorphisms of class at least C2;
• a finite action of � is one that factors through a finite quotient of �.

It remains to explain “dimension small enough” and for this we will restrict to G =
SLn(R), n ≥ 3. For the general case, we refer to Conjecture 1.2 in [BFHS16]. For
the original statement by Zimmer, see [Zim87].

If � is a lattice in SLn(R), we may let it act linearly on Rn. So we get an infinite
action of � on the (n − 1)-dimensional projective space P n−1(R); we observe that
this action has no invariant volume form. On the other hand, � = SLn(Z) has an
infinite action on the n-dimensional torus Tn = Rn/Zn, this one clearly preserving
a volume form. Zimmer’s conjecture basically claims that those examples are of
minimal dimension among non-finite actions. Precisely, Zimmer’s conjecture for
cocompact lattices in SLn(R), is now the following result by Brown et al. (Theorem
1.1 in [BFHS16]):

Theorem 9.20 Let � be a cocompact lattice in SLn(R), n ≥ 3.

1. If dim M < n− 1, any action of � on M is finite.
2. If dim M < n, any volume-preserving action of � on M is finite.

Let us give a rough sketch, in 3 steps, of the proof of the first statement in
Theorem 9.20. So we consider α : � → Diff (M), with dim M < n − 1, we
must show that α is finite.

• Let α : � → Diff∞(M) be a homomorphism (for simplicity we assume that
� acts by C∞ diffeomorphisms). Fix any Riemannian structure on M . For x ∈
M, γ ∈ �, denote by Dxα(γ ) the differential of α(γ ) at x. Then α has uniform
subexponential growth of derivatives, i.e., for every ε > 0, there exists C ≥ 1
such that for every γ ∈ �:

sup
x∈M

‖Dxα(γ )‖ ≤ Ceε�(γ ), (9.5)

where � denotes the word length with respect to a fixed finite generating set of �.
Morally, this means that generators of � are close to being isometries of M .

• A Riemannian structure of class Ck on M is a Ck section of the symmetric
square S2(T M) of the tangent bundle T M of M . Via α, the group � acts on
Ck Riemannian structures on M and this defines a homomorphism α" from �

to the group of invertibles in the algebra B(Ck(S2(T M))) of bounded operators
on Ck(S2(T M)). At this point we introduce the Hilbert space Hk which is the
Sobolev space of sections of S2(T M) with weak k-th derivative being L2. By
the Sobolev embedding theorem, we have Hk ⊂ C�(S2(T M)) for k � �. If α

satisfies (9.5), then α" has slow exponential growth: for all ε > 0, there exists
C ≥ 1 such that for all g ∈ G:
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‖α"(g)‖Hk→Hk ≤ Ceε�(g).

It is here that strong property (T) enters the game; it is, however, needed in a
form both stronger and more precise than in Definition 6.32, namely there exists
a constant δ > 0 and a sequence μn of probability measures supported in the
balls B�(n) of radius n in �, such that for all C > 0 and any representation π

on a Hilbert space with ‖π(g)‖ ≤ Ceδ�(g), the operators (π(μn))n>0 converge
exponentially quickly to a projection P∞ onto the space of invariant vectors.
That is, there exists K > 0 and 0 < λ < 1, independent of π , such that
‖π(μi) − P∞‖ < K · λi . Theorem 6.3 in [BFHS16] explains how to deduce
the extra desired features (exponentially fast convergence and approximation by
positive measures rather than signed measures) from the proofs of Theorem 6.34
by Lafforgue, de Laat and de la Salle [Laf08, dlS18, dLdlS15].29

Coming back to our sketch of proof of Theorem 9.20:

Proposition 9.21 α(�) preserves some C� Riemannian structure on M .

Proof We will apply the above form of strong property (T) to the representation
α". Let (μn)n>0 be the sequence of probability measures as above, set Pn =
α"(μn), so that ‖Pi − P∞‖Hk→Hk < K · λi .

We start with any smooth Riemannian metric g on M , view it as an element
in Hk , and apply the averaging operators Pi : then gi =: Pi(g). We set g∞ =
limi→∞ gi , so that g∞ is α"(�)-invariant in Hk , hence also in C�(S2(T M)). We
have g∞(v, v) ≥ 0 for every v ∈ T M , as g∞ is a limit of positive-definite forms,
but we must show that g∞ is positive-definite, i.e., g∞(v, v) > 0 for every unit
vector v ∈ T M . By the previous point (subexponential growth of derivatives),

taking eε = λ− 1
3 , we have for every γ ∈ �:

C2λ−
2�(γ )

3 ≥ ‖Dα(γ−1)‖2 = sup
u∈T M

g(u, u)

g(Dα(γ )(u), Dα(γ )(u))

≥ 1

g(Dα(γ )(v), Dα(γ )(v))

hence, if �(γ ) ≤ i:

g(Dα(γ )(v), Dα(γ )(v)) ≥ 1

C2
· λ 2�(γ )

3 ≥ 1

C2
· λ 2i

3

Since μi is supported in the ball of radius i of �, we have

29The subtlety here is that, as lucidly explained in [dlS16], Definition 6.32 for an arbitrary finitely
generated group is equivalent to the existence of a sequence of signed probability measures as
above.
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gi(v, v) ≥ 1

C2 · λ
2i
3 .

On the other hand |g∞(v, v)− gi(v, v)| ≤ K · λi , hence

g∞(v, v) ≥ gi(v, v)−K · λi ≥ 1

C2 · λ
2i
3 −K · λi,

which is positive for i � 0. ��
• Set m = dim M . Let g be an α(�)-invariant C� metric on M , so that α(�) is

a subgroup of the isometry group K =: Isom(M, g). Now K is a compact Lie
group, of dimension at most m(m+1)

2 . Assuming by contradiction that α(�) is
infinite, a suitable version of Margulis’ super-rigidity says that the Lie algebra
sun, which is the compact real form of sln(R), must embed into the Lie algebra
of K . Counting dimensions we get

n2 − 1 = dim sun ≤ dim K ≤ m(m+ 1)

2
,

contradicting the assumption m < n− 1. So α is finite.

More recently in [BFHS17], Brown, Fisher, and Hurtado verified Zimmer’s
conjecture for SL3(Z). For this they had to appeal to de la Salle’s result [dlS18]
that strong property (T) holds for arbitrary lattices in higher rank simple Lie groups.

It is expected that in 2019, Brown, Fisher, and Hurtado, with the help of D. Witte-
Morris, will complete a proof of Zimmer’s conjecture for any lattice in any higher
rank simple Lie group.

Acknowledgement Thanks are due to J.-B. Bost, R. Coulon, N. Higson, V. Lafforgue, P.-Y. Le
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