
The Riemann–Roch strategy

Complex lift of the Scaling Site

Alain Connes and Caterina Consani

Abstract We describe the Riemann–Roch strategy which consists of adapting in
characteristic zero Weil’s proof, of RH in positive characteristic, following the ideas
of Mattuck–Tate and Grothendieck. As a new step in this strategy we implement
the technique of tropical descent that allows one to deduce existence results in
characteristic one from the Riemann–Roch result over C. In order to deal with
arbitrary distribution functions this technique involves the results of Bohr, Jessen,
and Tornehave on almost periodic functions.

Our main result is the construction, at the adelic level, of a complex lift of the
adèle class space of the rationals. We interpret this lift as a moduli space of elliptic
curves endowed with a triangular structure. The equivalence relation yielding the
noncommutative structure is generated by isogenies. We describe the tight relation
of this complex lift with the GL(2)-system. We construct the lift of the Frobenius
correspondences using the Witt construction in characteristic 1.

1 Introduction

This paper presents our latest attempts in the quest of an appropriate geometry
to localize the zeros of the Riemann zeta function. The constructions described
in this article define a complex geometry that is a “lift” in characteristic zero, of
the (tropical) Scaling Site. This project has undergone in the past years several
developments that we list below in order to frame and justify this latest work.
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– The interpretation of the explicit formulas of Riemann-Weil as a trace formula
for the scaling action on the adèle class space of a global field [11, 36].

– The interpretation of the Riemann zeta function as a Hasse–Weil counting
function [20, 21].

– The discovery of the Arithmetic Site, and the identity between the Galois action
on its points over the tropical semifield R

max+ with the scaling action on the adèle
class space of the rational numbers [22, 23].

– The discovery of the Scaling Site, the identity between its points and the adèle
class space of the rationals [24].

– In [25] we unveiled the tropical structure of the Scaling Site, proved the
Riemann–Roch theorem on its periodic orbits, and developed the theory of theta
functions on these orbits.

At this stage, the geometric framework that we built in characteristic one is
well understood. The theory of theta functions and the Riemann–Roch formula
with real valued indices on the periodic orbits of the Scaling Site, provide a
convincing reason in support of the strategy of adapting Weil’s proof (of the
Riemann Hypothesis in positive characteristic) by following the ideas of Mattuck
and Tate, and Grothendieck [30, 27]. However, in the process to formulate a
Riemann–Roch theorem on the square of the Scaling Site one faces a substantial
difficulty. The problem, which is still open at this time, has to do with an appropriate
definition of the sheaf cohomology (as idempotent monoid) H 1 (the definition of
H 0 is straightforward and that of H 2 can be given by turning Serre duality into
a definition). In [26], we have developed the beginning of a general homological
algebra machine in characteristic one (i.e. for tropical structures) exactly to aim
for a definition of the above H 1. In particular, we proved the existence of non-
trivial Ext-functors and we were also able to input the resolution of the diagonal
to obtain the tropical analogue of the Čech complex. However, when applied to
Čech covers, the presence of the null elements creates unwanted contributions to the
cohomology which so far we are unable to handle. The root of this problem had been
already unearthed in the Example 6.5 of [44]. This example provides pairs (C,D),
(C′,D′) of tropical curves and divisors on them, for which the tropical invariants
r(D) and r(D′) entering in the Riemann–Roch formulas [2, 28] as a substitute for
the dimension of the modules H 0(D) and H 0(D′) are different, while the modules
themselves are isomorphic.

It is well-known that the hard part of the Riemann–Roch results of [2, 28]
concerns the existence of non-trivial solutions i.e. the proof of a Riemann–Roch
inequality. This fact leads us now to concentrate, in our setup, exactly on the
existence theme and to develop a technique of “tropical descent,” with the goal
to deduce existence results in characteristic one from available Riemann–Roch
theorems in complex geometry.

Already in the appendix of [25], we pointed out the relevance of the tropi-
calization map in the non-Archimedean resp. Archimedean cases. In both cases
the tropicalization associates to an analytic function f in a corona a piecewise
affine convex function τ(f ), (on a real interval I ), whose tropical zeros are the
valuations v(zj ) (resp. − log |zj |) of the zeros zj of f . The ensuing technique of
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“tropical descent” is reported in Section 3.2. In the complex (Archimedean) case
the tropicalization of an analytic function f in the corona R1 < |z| < R2 is a
convex function in the interval − logR2 < λ < − logR1 and one obtains the real
half-line involved in the definition of the Scaling Site by taking R2 = 1 and R1 = 0.
Namely, one works with the punctured unit disk D

∗ := {q ∈ C | 0 < |q| ≤ 1} in C.
Moreover, the action by multiplication of N× on the real half-line, which is the

key structure in the definition of the Scaling Site, lifts naturally to the operation
f (z)→ f (zn) on analytic functions. This observation provides, as a starting point,
the definition of the ringed topos obtained by endowing the topos D∗ �N

× (for the
natural action of N× on D

∗ given by q �→ qn) with the structure sheaf O of complex
analytic functions. Given a pair of open sets Ω,Ω ′ in D

∗ and an integer n ∈ N
×,

with qn ∈ Ω ′ for any q ∈ Ω , one has a natural restriction map

Γ (Ω ′,O)→ Γ (Ω,O), f (q) �→ f (qn).

The map u : D∗ → [0,∞) given by u(q) = − log |q| extends to a geometric
morphism u : D∗ �N

× → [0,∞)�N
× of toposes.

This development provides a first glimpse of a complex lift of the Scaling
Site. The piecewise affine functions obtained as tropicalization using the Jensen
formula all have integral slopes, and the zeros have integral multiplicities. To reach
more general types of convex functions requires generalizing the original Jensen
framework. This is achieved by the extension of the work of Jensen as developed
by Jessen, Tornehave, and Bohr [6, 31, 32], to the case of analytic almost periodic
functions. In this work the Jensen formula, which counts a finite number of zeros,
is extended to measure, by the second derivative of a convex function ϕ, the density
of the zeros of an analytic function f (z)

lim
T→∞

1

2T
{#z | f (z) = 0, Re(z) = α, |	z| < T } = ϕ′′(α),

where f (z) is analytic and almost periodic on the lines Re(z) = α. In particular,
any convex function ϕ (there are minor restrictions on ϕ on intervals in which the
second derivative of ϕ is identical to 0) can be obtained as the “tropicalization”
of an analytic almost periodic function. This construction resolves the problem of
realizing arbitrary functions as tropicalizations and shows (see Section 4) how to
reach continuous divisors of the form

∫
n(λ)δλd

∗λ as “tropical shadows” of discrete
almost periodic divisors. This part is a first step, in our project, in order to handle the
continuous integrals

∫
f (λ)Ψλd

∗λ of the Frobenius correspondences Ψλ involved
in the implementation of the Riemann-Roch strategy to a proof of the Riemann
Hypothesis (RH).

This analytic construction supplies the useful hint that in order to construct
a complex lift of the Scaling Site one needs to implement an almost periodic
imaginary direction. This amounts to use the covering of the pointed disk D

∗ by
the closed Poincaré half plane H̄ := {z ∈ C | 	(z) ≥ 0} defined by the map
q(z) := exp(2πiz), and to compactify the real direction in H̄ to a compact group
G. In fact, the only requirement sought for the group compactification R ⊂ G is to
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be Q
×-invariant. We take for G the smallest available choice which is the compact

dual of the discrete additive group Q. The compactification of the real direction in
H̄ then yields the pro-étale covering D̃

∗ of the punctured disk D
∗, described as the

projective limit D̃∗ := lim←−(En, p(n,m))

En := D
∗, p(n,m) : Em → En, p(n,m)(z) := za , ∀m = na, z ∈ Em = D

∗.

Here, the indexing set N× is ordered by divisibility. At the topos level one would
then consider the semidirect product D̃∗ �N

×.
In this paper we prefer to proceed directly at the adelic level and consider

the quotient, by the action of Q
×, of the product of the adèles AQ by G. The

noncommutative space which we reach is thus the quotient

CQ := Q
×\ (

G× AQ

)

The first key observation of this paper (see Section 5) is that with the above choice
of G the quotient space CQ is identical to the quotient

CQ = P(Q)\P̄ (AQ), P̄ (AQ) :=
{(

a b

0 1

)

| a, b ∈ AQ

}

of P̄ (AQ) by the action by left multiplication of the affine “aX+ b” group P(Q) of
the rationals. Then, the right action of the affine group P(R) determines a natural
foliation on CQ whose leaves are one dimensional complex curves generically
isomorphic to the Poincaré half plane H. The sector of the Riemann zeta function is
obtained after division by the right action of Ẑ× on CQ (which naturally extends its
action on the adèle class space).

In Section 5.3, we consider (after division by Ẑ
×) the periodic orbit Γ (p) asso-

ciated with a prime p. We find that Γ (p) is the mapping torus of the multiplication
by p in the compact group G. This mapping torus is an ordinary compact space
and we analyze the restriction of the above foliation by one dimensional complex
leaves. We show that this foliation is of type IIIλ where λ = 1/p and that the
discrete decomposition of the associated factor has natural geometric interpretation.
We determine the de Rham cohomology in Proposition 5.2.

In Section 5.4 we analyze the restriction to the classical orbit of the above
foliation by one dimensional complex leaves. We show that it is of type II∞ and
we give an explicit construction, based on the results of Section 4, of the leafwise
discrete lift of continuous divisors.

The second key observation of this paper (see Section 6) is the tight relation of
the noncommutative space CQ = P(Q)\P(AQ) to the GL(2)-system ([16]). The
GL(2)-system was conceived as a higher dimensional generalization of the BC-
system and its main feature is its arithmetic subalgebra constructed using modular
functions. After recalling in Section 6.1 the standard notations for the Shimura
variety Sh(GL2,H

±) = GL2(Q)\GL2(AQ)/C
×, we consider in Section 6.2 the

natural map
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CQ = P(Q)\P(AQ)
θ→ GL2(Q)\M2(AQ)

•/C× = Shnc(GL2,H±) (1)

from CQ to the noncommutative space Shnc(GL2,H±) underlying the GL(2)-
system. At the Archimedean place, the corresponding inclusion P(R) ⊂ (M2(R)�

{0}) induces a bijection of P(R) with the complement in (M2(R) � {0})/C×
of the point ∞ given by the class of matrices with vanishing second line. This
result shows that the nuance between CQ and Shnc(GL2,H±) is mainly due to
the non-Archimedean components. In Section 6.3 we use the description of the
GL(2)-system in terms of adelic Q-lattices and interpret CQ in terms of parabolic
Q-lattices. The key result is Theorem 6.1 which states that the natural inclusion of
parabolic Q-lattices among Q-lattices remains injective, except in degenerate cases,
into the space of two-dimensional Q-lattices up to scale. The relevance of this fact
originates from the richness of the function theory on the space of two-dimensional
Q-lattices up to scale which involves in particular modular forms of arbitrary
level.

By using the geometric interpretation of Q-lattices up to scale in terms of elliptic
curves endowed with pairs of elements of the Tate module, we provide in Section 6.4
the geometric interpretation of the points of CQ in terms of elliptic curves endowed
with a triangular structure (reflecting the parabolic structure of the Q-lattice) and
modulo the equivalence relation generated by isogenies (Section 6.5). In Section 6.6
we prove that the natural complex structure of the moduli space of triangular elliptic
curves is the same as the complex structure on CQ defined in Section 5 using the
right action of P(R). The right action of P(Ẑ) has a simple geometric interpretation
(Section 6.7) and allows one to pass from CQ to ΓQ. Finally we give in the last
section (Section 6.8) the geometric interpretation of the degenerate cases.

The beginning of this paper explains a central philosophy of our strategy which
is not to focus on the zeta function itself (as a function “per se”) but to find from
the start, a geometric interpretation of the zero-cycle of its zeros. We record that the
original motivation for H. Bohr was the Riemann zeta function and in particular,
we recall that Borchsenius and Jessen proved in [9] (Theorems 14 and 15) the
“frightening” result that for any value x �= 0, the zeros of (ζ(z) − x) have real
parts which admit 1/2 as a limit point. More precisely, their results show that for
any fixed σ1 > 1

2 , the density of zeros of (ζ(z) − x), in the strip σ < �(z) < σ1,
1
2 < σ < σ1, tends to infinity when σ → 1

2 .
In Section 2, we explain why the adèle class space of the rationals is a natural

geometric space underlying the zeros of the Riemann zeta function. First, notice
that what is really central in studying these zeros is the ideal that the Riemann
zeta function generates among holomorphic functions in a suitable domain. After
applying Fourier transform, the key operation on functions of a positive real variable
which generates this ideal is the summation

f �→ E(f ), E(f )(v) :=
∑

N×
f (nv), N

× := {n ∈ N | n > 0}. (2)



58 A. Connes and C. Consani

In Section 2 we explain the two geometric approaches suggested by this formula.
The first one is of adelic nature and derived from Tate’s thesis. It consists in
replacing the sum over the monoid N

× by a sum over the associated group Q
×+,

at the expense of crossing the half-line involved at the geometric level in (2) by a
non-Archimedean component. This process leads directly to the adèle class space.
The second approach is topos theoretic and consists in considering the topos (called
the Scaling Site) which is the semidirect product of the half-line by the monoid N

×.
The key fact recalled in Section 2.2 is that the points of the Scaling Site coincide
with the points of the (sector of the) adèle class space. Thus while one could be
tempted to dismiss at first the adèle class space, the topos theoretic interpretation
of its points endows it with a clear geometric status. We explain the unavoidable
noncommutative nature of this space in Section 2.1.

The Riemann–Roch strategy, and in particular the technique of tropical descent
which allows one to deduce existence results in characteristic one from the
Riemann–Roch result over C, are explained in Section 3.

The framework in characteristic 1 is perfectly adapted to the geometric role of the
Frobenius. For instance, in the interpretation of the adèle class space as the points
of the Arithmetic Site defined over Rmax+ , the action by scaling becomes the natural
action of Aut(Rmax+ ) on these points.

In the lift from characteristic 1 to characteristic 0 one loses the automorphisms
Aut(Rmax+ ) = R

∗+. We explain in Section 7 the difficulty created by this loss and
show in Section 7.1 how it is resolved by the Witt construction in characteristic 1
achieved in our previous work [17, 18, 19]. Finally in Section 7.2 we discuss the
link between our construction of the complex lift and quantization.

Figure 1 gives a visually intuitive global picture at the present time. In particular,
the counterpart of ΓQ on the left column is the semidirect product of the pro-étale
cover D̃∗ of the punctured unit disk D

∗ in the complex domain, by the natural action
of N×.

2 The geometry behind the zeros of ζ

It is important to clarify from the start why the Riemann Hypothesis (=RH), namely
the problem of locating the zeros of the Riemann zeta function ζ(s), is tightly related
to the geometry of the adèle class space of the rationals Q. First of all we remark
that what characterizes the zeros locus of ζ(s) is not the zeta function itself rather
the ideal it generates among complex holomorphic functions in a suitable class. A
key role in the description of this ideal is played by the map E on functions f (v) of
a real positive variable v that is defined by the assignment

f �→ E(f ), E(f )(v) :=
∑

n∈N×
f (nv), N

× := {n ∈ N | n > 0}. (3)
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Fig. 1 Global picture

Notice that the map E becomes, in the variable log v, a sum of translations by log n:
log v �→ log v + log n (i.e. a convolution by a sum of delta functions). Thus, after
a suitable Fourier transform, E(f ) is a product by the Fourier transform of the sum
of the Dirac masses δlog n, i.e. by the function

∑
e−is log n = ζ(is). Hence it should

not come as a surprise that the cokernel of E determines a spectral realization of the
zeros of the Riemann zeta function.

At this point, there are two ways of unveiling the geometric meaning of the
map E

1. One may replace in (3) the sum over N× by a summation over the multiplicative
group Q

∗+ of positive rational numbers (obtained from the multiplicative monoid
N
× by symmetrization) with the final goal to interpret E as a projection onto a

quotient (of the adèles of Q) by the group Q
∗+. This approach leads naturally to

the adèle class space of Q, and more precisely to the sector associated with the
trivial character. This construction is described in Section 2.1.

2. Alternatively, one may keep the monoid N
× and have it acting on the real half-

line [0,∞). In this way one sees the space [0,∞)�N
× as a Grothendieck topos.

This process yields the Scaling Site of [25] that is reviewed in Section 2.2.
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The agreement of these two points of view is stated by the result, recalled in
Section 2.3, that the points of the topos [0,∞)�N

× coincide with the points of the
(sector of the) adèle class space of Q. We explain the unavoidable noncommutative
nature of this space in Section 2.1.

2.1 Adelic approach

In this part we show how the adèle class space of the rationals arises naturally in
connection with the study of the zeros of the Riemann zeta function. First of all
notice that the summation in (3) is not a summation over a group thus, in order to
provide a geometric meaning to this process, we replace N

× by its symmetrization
i.e. the group Q

∗+. Then, we look for a pair (Y, y) of a locally compact space Y on
which Q

∗+ acts and a point y ∈ Y so that the closure F of the orbit N×y is compact
(and also open) and the following equivalence holds

qy ∈ F ⇐⇒ q ∈ N
×. (4)

When (4) holds, one can replace the sum in (3) by the summation over the group
Q
∗+ by simply considering the function 1F ⊗ f on the product Y × R.
A natural solution to this problem is provided by Y = Af , the finite adèles of

Q, and by the principal adèle y = 1. One eventually achieves the minimal solution
after dividing by Ẑ

×. Here, we also note that the action of Q∗+ on the idèles cannot
be used because it is a proper action.

A basic difficulty that one faces at this point is that the quotient of Y × R = AQ

by the action of Q
∗+ is noncommutative in the sense that classical techniques to

analyze this space are here inoperative. A distinctive feature of a noncommutative
space is present already at the level of the underlying “set” since a noncommutative
space has the cardinality of the continuum and at the same time it is not possible
to put this space constructively in bijection with the continuum. More precisely,
any explicitly constructed map from such a set to the real line fails to be injective!
From these considerations one perceives immediately a major obstacle if one
seeks to understand such spaces using a commutative algebra of functions. The
reason why these spaces are named “noncommutative” is that if one accepts to use
noncommuting coordinates to encode them, and one extends the traditional tools
of commutative algebra to this larger noncommutative framework, everything falls
correctly in place. The basic principle that one adopts is to take advantage of the
presentation of the space as a quotient of an ordinary space (here the adèles) by an
equivalence relation (given here by the action of Q∗+) but then, instead of effecting
the quotient in one stroke, one replaces the equivalence relation by its convolution
algebra over the complex numbers.

A distinctive feature of noncommutative spaces can be seen at the level of the
Borel structure allowing all sorts of countable operations on Borel functions. In the
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noncommutative case, the Borel structure is no longer countably separated, in the
sense that any countable family of Borel functions fails to separate points, i.e. fails
to be injective.

Our goal in this section is to show that for whatever choice of the pair (Y, y)
fulfilling (4) the resulting quotient space Q

∗+\(Y × R) is noncommutative.
In Section 2.1.1 we shall consider the easier case obtained by replacing the

pair (N×,Q∗+) with (Z≥0,Z). Then we show that any solution (Y, y) for (Z≥0,Z)

involves a compactification of the discrete set Z≥0. In Section 2.1.2 we prove, for the
pair (Z≥0,Z), the stability of “noncommutativity.” This means that given a locally
compact space R and a homeomorphism S : R → R whose orbit space is not
countably separated, the product action of T × S on Y × R is never countably
separated, for any auxiliary action (Y, T ) as in Section 2.1.1. The strategy we follow
in the subsequent Section 2.1.3, in the process of extending this result to the case of
the action of (N×,Q∗+) on [0,∞), is reviewed by the following steps

1. In the presence of a fixed point p ∈ Y for the action of Q
∗+, the quotient of

{p} × R
∗+ by Q

∗+ would be R
∗+/Q∗+ which is not countably separated and this

entails that (Y × R
∗+)/Q∗+ is not countably separated.

2. If instead of a fixed point p ∈ Y for the action of Q∗+ one has a fixed probability
measure, then the same reasoning applies using Lemma 2.3.

3. Using (4), we construct a Q
∗+-invariant probability measure on Y .

Notice that condition (4) is essential for a meaningful development of the full
strategy. Indeed, if one takes the action of Q

∗+ on Y = Q
∗+ by translation, the

quotient (Y × R
∗+)/Q∗+ is the standard Borel space R

∗+.

2.1.1 Forward compactification

To understand how to choose the pair (Y, y) as in Section 2.1, one first considers
the simpler case of the semigroup N

× replaced by the additive semigroup Z≥0 of
nonnegative integers. Then the symmetrized group is Z and one looks for a space Y
on which Z acts by a transformation T , and a point x ∈ Y so that the closure K of
T Nx is compact in Y and the following equivalence is fullfilled

T nx ∈ K ⇐⇒ n ∈ Z≥0.

Next lemma states that any solution of this problem involves a compactification of
the discrete set Z≥0

Lemma 2.1 Let Y be a locally compact space and T ∈ Aut(Y ) an automorphism.
Let x ∈ Y be such that the closure K of the forward orbit T Nx in Y is compact and
the following equivalence holds

T nx ∈ K ⇐⇒ n ≥ 0. (5)
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Then the map N � n �→ T nx ∈ K turns K into a compactification of the discrete
set Z≥0 = {n ∈ Z | n ≥ 0}.
Proof It is enough to prove that for n ∈ N the subset {T nx} ⊂ K is open (i.e. that
T nx is isolated in K). Note that the complement V = Kc of K in Y is open as well
as T nV for any n ∈ Z, and that the intersection T nV ∩K is contained in the closure
(in Y ) of T nV ∩ T Nx. Next, note that (5) is equivalent to T ux ∈ V ⇐⇒ u < 0
and this equivalence implies T jx ∈ T nV ⇐⇒ j < n. Thus for n > 0, one gets

T nV ∩K = {T jx | 0 ≤ j < n}.

Since a point of K is closed, it follows that each {T jx} is open in K . ��
The simplest compactification K of the discrete set Z≥0 is the Alexandrov

compactification K = Z≥0 ∪ {∞} obtained by adding a limit point ∞. The open
subsets of K containing ∞ are the complements of finite subsets of Z≥0. More
generally, the Alexandrov compactification of a locally compact space X is obtained
by adding a point at infinity and the obtained pointed space X ∪ {∞} admits as
open sets the open subsets of X and the complements of compact subsets of X.
It is described by the following universal property. For every pointed compact
Hausdorff space (Y, ∗) and every continuous map f : X → Y such that f−1(K)

is compact for all compact sets K ⊂ Y not containing the base point ∗, there is
a unique basepoint-preserving continuous map that extends f . When passing to
the associated C∗-algebra, the one-point compactification just means adjoining a
unit. At the C∗-level, this is the smallest compactification, but since the functor
X �→ C0(X) is contravariant, one needs to express this fact dually. From a
categorical point of view, it means that the one-point compactification is a final
object among the compactifications of a given locally compact space X, where
morphisms of compactifications are continuous maps g : X1 → X2 which restrict
to the identity on X ⊂ Xj .

Taking K = Z≥0 ∪ {∞} yields the following minimal solution (Y, T ) of (5).

Lemma 2.2 Let Z(+∞) be the union Z ∪ {∞} endowed with the topology whose
restriction to Z is discrete and where the intervals [m,∞] form a basis of
neighborhoods of ∞. Then Z(+∞) is locally compact, the translation T (m) :=
m+ 1, T (∞) = ∞ defines a homeomorphism of Z(+∞) and any x ∈ Z fulfills (5).

Proof By construction Z(+∞) is the disjoint union of the discrete space of negative
integers with the Alexandrov compactification K = Z≥0 ∪ {∞}. ��
Remark 2.1 As a topological space the quotient Y = Af /Ẑ

× is the restricted
product of the spaces Qp/Z

∗
p each of which is isomorphic to Z(+∞) using the p-

adic valuation. Thus Lemma 2.1 shows that for each rational prime Qp/Z
∗
p is the

minimal solution of (5) for the multiplication by p. It is in this sense that Y =
Af /Ẑ

× is the minimal solution of (4).
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2.1.2 Stability of noncommutative nature of quotients

Let now R be a locally compact space endowed with an action of Z given by a
homeomorphism S : R → R, such that the space of the orbits is not countably
separated. In this section we show that for any auxiliary action (Y, T ) as in
Lemma 2.1 the product action of T × S on Y × R is never countably separated.
In order to prove this result (Proposition 2.1) we first state the following standard
fact

Lemma 2.3

(i) Let X be a compact metrizable space. Then the set of compact subsets of X is
countably separated.

(ii) The quotient of a compact metrizable space by an equivalence relation whose
orbits are closed is always countably separated.

(iii) The space of probability measures on a standard Borel space is countably
separated.

Proof

(i) For any ε > 0 there exists a finite subset F of X such that the union of open
balls of radius ε centered at points of F cover X. For n ∈ N, let εn = 2−n
and Fn an associated finite set. Let V ⊂ X be an open set. For each n, let
yn(V ) = {t ∈ Fn | B(t, εn) ⊂ V }. The map V �→ (yn(V ))n from open subsets
of X to the product

∏
n 2Fn is injective since V = ∪n ∪yn(V ) B(t, εn) and a

product of finite sets is countably separated by construction.
(ii) A subset of a countably separated set is also countably separated, and since

the orbits are closed they are compact so that they form a subset of the set of
compact subsets of X which is countably separated by (i).

(iii) The space of probability measures on a standard Borel space is the state space
of the separable C∗-algebra of continuous functions on a compact metrizable
space. Using a countable dense set of functions one gets the assertion. ��

With the notations of Lemma 2.1 one obtains

Lemma 2.4 The complement F of the forward orbit T Nx in K is a compact subset
of (Y, T ) invariant under the action of Z on Y .

Proof By Lemma 2.1, for n ∈ N the subset {T nx} ⊂ K is open, thus F ⊂ K is
closed and hence compact. One has T T Nx ⊂ T Nx, TK ⊂ K , and if y ∈ F and
Ty /∈ F one has Ty = T mx ∈ T Nx for some m ≥ 0. For m > 0 this contradicts
y /∈ T Nx. For m = 0 this gives T −1x ∈ K which contradicts (5). Thus T F ⊂ F .
Let then y ∈ Y with Ty ∈ F . Then y ∈ T −1TK = K and y /∈ T Nx since
T T Nx ⊂ T Nx. Thus y ∈ F and one has T F = F . ��

One concentrates on the product action of T ×S on F ×R. Note that it is enough
to show that this action is not countably separated to obtain the same result for the
action of T × S on Y ×R. Since F is compact and Z is an amenable group, one can
find a probability measure μ on F invariant for the action of T . Then one considers
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the quotient Z of F × R by the product action of T × S, i.e. the space of orbits of
this action. Let π : F ×R→ Z be the quotient map and denote by M1(Z) the space
of probability measures on Z.

Proposition 2.1

(i) The map ρ : R → M1(Z), ρ(x) = π(μ × δx) given by the image in Z of the
probability measure μ × δx is S-invariant and induces an injection in M1(Z)

of the orbit space of S in E.
(ii) If Z is a standard Borel space then the orbit space of S in R is countably

separated.

Proof

(i) Since T μ = μ, and π ◦ (T × S) = π one has

ρ(Sx) = π(μ× δSx) = π((T × S)(μ× δx)) = π(μ× δx) = ρ(x).

We show that ρ is an injection in M1(Z) of the orbit space of S in R. Let
x, y ∈ E belong to distinct orbits of S. Then the characteristic function hx of
the Borel subset of F ×R given by F ×SZ(x) is (T ×S)-invariant and one has

ρ(x)(hx) = (μ×δx)(F×SZ(x)) = 1, ρ(y)(hx) = (μ×δy)(F×SZ(x)) = 0.

Thus one concludes that ρ(x) �= ρ(y).
(ii) It follows from (i) that the map ρ is an injection in M1(Z) of the orbit space of

S in R. By Lemma 2.3 (iii), the space M1(Z) is countably separated if Z is a
standard Borel space. ��

2.1.3 The need for the NCG point of view

The quotient of the real half-line [0,∞) by the action of the multiplicative group Q
∗+

is not countably separated. Indeed, this action is ergodic for the Haar measure on the
multiplicative group R

∗+ ⊂ [0,∞). Thus any Borel function invariant for the action
of Q∗+ is almost everywhere constant. In this section we show (Theorem 2.1) that for
any auxiliary action of Q∗+ on a locally compact space X such that the forward orbit
N
×x of some point x ∈ X has a compact closure in X, the quotient of X×[0,∞) by

the product action of Q∗+ is never countably separated. The multiplicative group Q
∗+

is the product of an infinite number of copies of Z parametrized by the set of primes.
Its action is denoted simply as multiplication: (q, x) �→ qx. Let K be the compact
closure of N×x in X. We use the compactness property to construct a probability
measure μ on X invariant under the action of Q∗+. To achieve this result we define
an increasing sequence of finite subsets Fk ⊂ N

×, k ∈ N, which fulfill the following
properties
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1. For any integer n, all elements of Fk are divisible by n for k large enough.
2. For any prime p, one has

#(FkΔ(pFk))/#(Fk)→ 0 for k→∞

where for two subsets A,B of a set C, we denote by AΔB their symmetric
difference, i.e. the complement of A ∩ B in A ∪ B.

A way to define the set Fk is, for pj the j -th prime,

Fk :=
⎧
⎨

⎩

k∏

j=1

p
αj
j | k < αj ≤ 2k , ∀j

⎫
⎬

⎭
.

By construction all elements in Fk are divisible by any integer n whose prime
factorization only involves the first k primes taken with powers less than k. This
fact holds for k large enough and for any given n, thus condition 1 is fullfilled.
Moreover, for a given prime p = pu and any k ≥ u, one has

FkΔ(pFk) =
⎧
⎨

⎩

k∏

j=1

p
αj
j | k < αj ≤ 2k , ∀j �= u, αu ∈ {k + 1, 2k + 1}

⎫
⎬

⎭

and from this one derives #(FkΔ(pFk))/#(Fk) = 2
k

. Thus also 2 is achieved.

Theorem 2.1 Let X be a locally compact metrizable space on which Q
∗+ acts by

homeomorphisms and assume that for some x ∈ X the closure of N×x is compact.
Then the quotient of the product X × R

∗+ by the product action of Q∗+ is not a
standard Borel space.

Proof We define a probability measure μ on the compact space K closure of N×x
in X, by taking a limit point μ in the compact space M1(K) of the sequence of
measures

C(K) � f �→ 1

#(Fk)

∑

n∈Fk
f (nx) = μk(f ).

For f ∈ C(K) and any prime p, one has μ(fp) = μ(f ), where fp(y) := f (py).
The same property μ(fn) = μ(f ) thus holds for any integer n. This proves that,
when viewed as a probability measure on X, the measure μ is invariant under the
action of Q∗+. Assume now that the quotient Z of the product X×R

∗+ by the product
action of Q∗+ is a standard Borel space and let π be the quotient map. One proceeds
as in Lemma 2.1 to show that the map ρ : R∗+ → M1(Z) which associates with
λ ∈ R

∗+ the image π(μ×δλ) in Z of the probability measure μ×δλ is Q∗+-invariant
and defines an injection in M1(Z) of the orbit space of Q∗+ in R

∗+. Indeed, for any
q ∈ Q

∗+ and λ ∈ R
∗+ one has
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ρ(qλ) = π(μ× δqλ) = π(q(μ× δλ)) = π(μ× δλ) = ρ(λ).

Moreover, the evaluation on the characteristic function hλ of the Borel subset of
X × R

∗+ given by X × Q
∗+λ shows that ρ is an injection in M1(Z) of the orbit

space of Q∗+ in R
∗+. The conclusion follows since the orbit space of Q∗+ in R

∗+ is not
countably separated. ��

2.1.4 Classical orbit and cohomological meaning of the map E

The role of the crossed product in encoding noncommutative spaces enters to
give a conceptual meaning of the map E as the cyclic homology counterpart of
the map between noncommutative spaces connecting the adèle class space to its
“classical orbit” which in turn can be understood as a special case of the “cooling
procedure” described in [16]. The cooling procedure is nothing but a testifier of the
thermodynamical nature of noncommutative spaces. When applied to the BC system
the cooling amounts to replace the additive Haar measure on the adèles, for which
the multiplicative action of Q∗ is ergodic, by the product of the Haar measure of the
idele class group by a power of the module. The adèle class space Q

×\AQ contains
the idele class group and the cooling process provides a conceptual meaning of the
restriction map. It turns out that once re-interpreted on cyclic homology HC0, the
restriction map coincides with the map E.

2.2 The Scaling Site

The map E defined in (3) implements the action of N
× by multiplication on the

real half-line [0,∞). The notion of Grothendieck topos allows one to interpret this
construction geometrically, namely as the Grothendieck topos [0,∞)�N

× of N×-
equivariant sheaves (of sets) on the real half-line.

The combinatorial skeleton of this topos is the Arithmetic Site A = (N̂×,Zmax)

[22, 23]. This is a semiringed topos where N̂× denotes the topos of sets equipped
with an action of N

×. The structure sheaf of the Arithmetic Site is given by the
semiring Zmax of “max-plus” integers that plays a key role in tropical geometry
and idempotent analysis. It is a semiring of characteristic 1, i.e. 1 ∈ Zmax fulfills
the rule 1 + 1 := max(1, 1) = 1. Moreover Zmax is the only semifield whose
multiplicative group is infinite cyclic ([25] Appendix B2, Proposition B3). The
action of N

× on Zmax (which turns Zmax into the structure sheaf of A ) is an
instance of a general result [29] stating that in a semifield of characteristic 1, for any
n ∈ N, the power maps x �→ xn are injective endomorphisms. These maps provide
the right generalization of the Frobenius endomorphisms in finite characteristic.
By construction, A is a topos defined over B = ({0, 1},max,+), the only finite
semifield which is not a field. Even though A is a combinatorial object of countable
nature, it is nonetheless endowed with a 1-parameter semigroup of correspondences
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on its square [22, 23]. Two further key properties of the Arithmetic Site are now
recalled: (1) The points of A defined over Rmax+ (the multiplicative version of the

tropical semifield Rmax) form the basic sector Q×\AQ/Ẑ
∗ of the adèle class space

of Q; (2) the canonical action of Aut(Rmax+ ) on these points corresponds to the

action of the idele class group on Q
×\AQ/Ẑ

∗. These facts lead us to investigate
the semiringed topos obtained from the Arithmetic Site by extension of scalars from
B to R

max+ . This space admits [0,∞)�N
× as the underlying topos, and moreover

it inherits, from its construction by extension of scalars, a natural sheaf O of regular
functions. We call Scaling Site the semiringed topos

S := ([0,∞)�N
×,O

)

so obtained [24, 25]. The sections of the sheaf O are convex, piecewise affine
functions with integral slopes.

2.3 Geometry of the adèle class space

The relation between S and the adèle class space of Q is provided by the following
result which states that the isomorphism classes of points of the topos [0,∞)�N

×
form the basic sector of the adèle class space of Q [25].

Theorem 2.2 The space of points of the topos [0,∞)�N
× is canonically isomor-

phic to Q
×\AQ/Ẑ

∗.

This theorem provides an algebraic-geometric structure on the adèle class space,
namely that of a tropical curve in an extended sense. In [25] this structure was
examined by considering its restriction onto the periodic orbit of the scaling flow
associated with each rational prime p. The output is that of a tropical structure
which describes this orbit as a real variant Cp = R

∗+/pZ of the classical Jacobi
description C

×/qZ of a complex elliptic curve. On Cp, a theory of Cartier divisors
is available; moreover the structure of the quotient of the abelian group of divisors
by the subgroup of principal divisors has been also completely described in op.cit.
The same paper also contains a description of the theory of theta functions on Cp

and finally a proof of the Riemann–Roch formula stated in terms of real valued
dimensions, as in the type-II index theory.

The main contribution of the adèle class space to this geometric picture is to
provide, through the implementation of the Riemann-Weil explicit formulas as a
trace formula, the understanding of the Riemann zeta function as a Hasse–Weil
generating function.

In the function field case, the Hasse–Weil formula writes the zeta function as a
generating function (the Hasse–Weil zeta function)
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ζC(s) := Z(C, q−s), Z(C, T ) := exp

⎛

⎝
∑

r≥1

N(qr)
T r

r

⎞

⎠ . (6)

For function fields, q is the number of elements of the finite field Fq on which the
associated curve C is defined.

In the case of the Riemann zeta function, the analogue of (6) was obtained in
[20, 21] by considering the limit of the right hand side of (6) when q → 1. This
process was originally suggested by C. Soulé, who introduced the zeta function of a
variety X over F1 using the polynomial counting function N(x) ∈ Z[x] associated
with X. The definition of the zeta function is as follows

ζX(s) := lim
q→1

Z(X, q−s)(q − 1)N(1), s ∈ R. (7)

When one seeks to apply (7) to get the Riemann zeta function (completed by the
gamma factor at the Archimedean place), one meets the obvious obstruction that the
exponent N(1) is equal to −∞ due to the infinite number of its zeros. In [20, 21] a
simple way to bypass this difficulty is described i.e. one considers the logarithmic
derivatives of both terms in (7) and observes that the Riemann sums of an integral
appear from the right hand side. Then, instead of dealing with (7) one works with
the equation

∂sζN(s)

ζN(s)
= −

∫ ∞

1
N(u) u−sd∗u (8)

which points out to a precise equation for the counting function NC(q) = N(q)

associated with C namely

∂sζQ(s)

ζQ(s)
= −

∫ ∞

1
N(u) u−sd∗u. (9)

In fact, one finds that this equation admits a distribution as a solution which is given
explicitly as

N(u) = d

du
ϕ(u)+ κ(u) (10)

where ϕ(u) :=∑
n<u nΛ(n), and κ(u) is the distribution that appears in the explicit

formula

∫ ∞

1
κ(u)f (u)d∗u =

∫ ∞

1

u2f (u)− f (1)

u2 − 1
d∗u+ cf (1) , c = 1

2
(logπ + γ ).

The conclusion is that the distribution N(u) is positive on (1,∞) and is given by
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N(u) = u− d

du

⎛

⎝
∑

ρ∈Z
order(ρ)

uρ+1

ρ + 1

⎞

⎠+ 1 (11)

where the derivative is taken in the sense of distributions, and the value at u = 1 of

the term ω(u) =
∑

ρ∈Z
order(ρ)

uρ+1

ρ + 1
is given by 1

2 + γ
2 + log 4π

2 − ζ ′(−1)
ζ(−1) .

As explained in [21] the adèle class space provides the geometric meaning of the
counting distributionN(u) and thus shows the coherence of our geometric approach.

3 The Riemann–Roch strategy

In relation to the study of the zeros of the Riemann zeta function, the Riemann–Roch
strategy consists in trading the question of the location of the zeros for the problem
of proving the non-positivity of a certain quadratic form s(f, f ) (see (12)). In the
function field case, this inequality derives from an argument of algebraic geometry
in finite characteristic and the most conceptual proof was obtained by applying
the Riemann–Roch formula on the square of the curve defining the function field
[30]. In that case, the function f defines a divisor D on the surface, as a linear
combination of Frobenius correspondences. Then, if one assumes the positivity of
s(f, f ) > 0 for some f , it is the existence part of the Riemann–Roch theorem
which yields a contradiction. More precisely, the assumed positivity s(f, f ) > 0
together with the appearance of s(f, f ) as the leading term in the topological side
of the Riemann–Roch formula show that one can turn the divisor nD for a suitable
n ∈ Z into an effective divisor and obtain a contradiction. This argument will
be reconsidered in more detail in Section 3.1. For function fields, the Riemann–
Roch formula relies on algebraic geometry in the same finite characteristic. In the
case of the Riemann zeta function, the structure sheaf of the Scaling Site S is
in characteristic 1, thus it seems reasonable trying to develop a Riemann–Roch
formalism in that context. Some very encouraging results are obtained in [25],
inclusive of a type-II Riemann–Roch formula for the periodic orbits. In this case, the
cohomology H 0 is defined using global sections while H 1 is introduced by turning
Serre duality into a definition. In order to attack the two-dimensional case of the
square of the Scaling Site, one needs to define the intermediate H 1 and a first direct
attempt, based on homological algebra in characteristic 1, is developed in [26].
It is striking that the existence results for the Riemann–Roch problem in tropical
geometry [2, 28, 37] are deeply related to potential theory and game theory [3, 5]
thus pointing to the relevance of these tools in a direct attack to the Riemann–Roch
formula needed for RH. Here we develop yet another approach which is based on
the construction of a complex lift from a geometry in characteristic 1 to the complex
world and the use of the tropicalization map. In Section 3.2, we explain how this
tropical descent allows one, in the context of the Riemann–Roch problem, to prove
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the existence results in characteristic 1 from existence results in characteristic 0.
Section 3.3 recalls the classical link, in characteristic zero, between the Hirzebruch–
Riemann–Roch theorem and the Index theorem. Finally, Section 3.4 lays down our
actual strategy which is based on the complex lift of the Scaling Site.

3.1 The role of the existence part of the Riemann–Roch
formula in characteristic one

It is known [8] that the RH problem is equivalent to an inequality for real valued
functions f on R

∗+ of the form

RH ⇐⇒ s(f, f ) ≤ 0 , ∀f |
∫

f (u)d∗u =
∫

f (u)du = 0. (12)

Here, for real compactly supported functions on R
∗+, one lets s(f, g) := N(f � g̃),

where � is the convolution product on R
∗+, g̃(u) := u−1g(u−1), and

N(h) :=
∞∑

n=1

Λ(n)h(n)+
∫ ∞

1

u2h(u)− h(1)

u2 − 1
d∗u+ c h(1) , c = 1

2
(logπ + γ ).

(13)
It follows from the geometric interpretation of the explicit formulas as in [21]
that the quadratic form s(f, f ) can be expressed as the self-intersection of the
divisor on the square of the Scaling Site by the formula involving the Frobenius
correspondences Ψλ

s(f, f ) = D •D, D :=
∫

f (λ)Ψλ d
∗λ. (14)

The intersection number of divisors is provided by the formula

D •D′ :=< D � D̃′,Δ >

where D̃′ is the transposed of D′ and the composition D � D̃′ is computed by
bilinearity, while the intersection < D � D̃′,Δ > is obtained using the distribution
N(u) and the fact that Ψλ is of degree λ.

The Riemann–Roch strategy seeks to obtain a contradiction by assuming that,
contrary to (12), one has s(f, f ) > 0, for some function f . The key missing step is
provided by the implementation of a Riemann–Roch formula whose topological side
is 1

2D•D and to conclude from it that one can make the divisor D := ∫
f (λ)Ψλ d

∗λ
(or its opposite −D) effective.
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The positivity of the divisor D + (k) would then contradict the fact that the
degree and codegree of D = ∫

f (λ)Ψλ d
∗λ is equal to 0 in view of the hypothesis∫

f (u)d∗u = ∫
f (u)du = 0.

3.2 Tropical descent

The new step in our strategy is to obtain the existence part of the Riemann–Roch
theorem in the tropical shadow from the results on the analytic geometric version of
the space. Obviously, the advantage of working in characteristic zero is that to have
already available all the algebraic and analytical tools needed to test such formula.

We first explain how the Scaling Site appears naturally from the well-known
results on the localization of zeros of analytic functions by means of Newton
polygons in the non-Archimedean case and Jensen’s formula in the complex case.
These results in fact combine to show that the tropical half-line (0,∞), endowed
with the structure sheaf of convex, piecewise affine functions with integral slopes,
gives a common framework for the localization of zeros of analytic functions in the
punctured unit disk. The additional structure involved in the Scaling Site, namely the
action of N× by multiplication on the tropical half-line, corresponds, as shown in
(16) and (17), to the transformation on functions given by the composition with the
n-th power of the variable. The tropical notion of “zeros” of a convex piecewise
affine function f with integral slope is that a zero of order k occurs at a point
of discontinuity of the derivative f ′, with the order k equal to the sum of the
outgoing slopes. The conceptual meaning of this notion is understood by using
Cartier divisors.

3.2.1 Tropicalization in the p-adic case, Newton polygons

Let K be a complete and algebraically closed extension of Qp and v(x) = − log |x|
be the valuation. The tropicalization of a series with coefficients in K is obtained
by applying the transformation a �→ log |a| = −v(a) to the coefficients and
by implementing the change of operations: + → ∨ = sup, × → +, so that
Xn → −nx. In this way a sum of monomials such as

∑
anX

n is replaced by
∨(−nx − v(an)).

Definition 3.1 Let f (X) =∑
anX

n be a Laurent series with coefficients in K and
convergent in an annulus A(r1, r2) = {z ∈ K | r1 < |z| < r2}. The tropicalization
of f is the real valued function of a real parameter

τ(f )(x) := max
n
{−nx − v(an)} ∀x ∈ (− log r2,− log r1). (15)

Up-to a trivial change of variables, this notion is well-known in p-adic analysis,
where the function −τ(−x), or rather its graph, is called the valuation polygon
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of the series [40]. This polygon is dual to the Newton polygon of the series which
is, by definition, the lower part of the convex hull of the points of the real plane
with coordinates (j, v(aj )). By construction, τ(f )(x) is finite since, using the
convergence hypothesis, the terms −nx − v(an) tend to −∞ when |n| → ∞. Thus
one obtains a convex and piecewise affine function. Moreover, the multiplicativity
property also holds τ(fg)(x) = τ(f )(x) + τ(g)(x),∀x ∈ (0,∞) as well as the
following classical result [40].

Theorem 3.1 Let f (X) = ∑
anX

n be a Laurent series with coefficients in K ,
convergent in an annulus A(r1, r2) = {z ∈ K | r1 < |z| < r2}. Then the valuations
v(zi) of its zeros zi ∈ A(r1, r2) (counted with multiplicities) are the zeros (in
the tropical sense and counted with multiplicities) of the tropicalization τ(f ) in
(− log r2,− log r1).

In particular, one can take r1 = 0, r2 = 1 so that A(r1, r2) is the punctured open unit
disk D(0, 1)\{0}. In this case, τ(f ) are convex piecewise affine functions on (0,∞)

and one derives the following compatibility with the action of N× on functions by
f (X) �→ f (Xn)

τ(f (Xn))(x) = τ(f )(nx) , ∀x ∈ (0,∞), n ∈ N
×. (16)

3.2.2 Tropicalization in the Archimedean case, Jensen’s formula

Over the complex numbers, unlike the non-Archimedean case, it is not true that for
a generic radius r , the modulus |f (z)| (of a complex function f (z)) is constant on
the sphere of radius r . One replaces (15) with the following

Definition 3.2 Let f (z) be a holomorphic function in an annulus A(r1, r2) =
{z ∈ C | r1 < |z| < r2}. Its tropicalization is the function on the interval
(− log r2,− log r1)

τ (f )(x) := 1

2π

∫ 2π

0
log |f (e−x+iθ )|dθ.

By construction, the multiplicativity property still holds: τ(fg)(x) = τ(f )(x) +
τ(g)(x),∀x ∈ (0,∞).

For x ∈ (− log r2,− log r1) such that f has no zero on the circle of radius e−x ,
the derivative of τ(f )(x) is the opposite of the winding number n(x) of the loop
θ �→ f (e−x+iθ ) ∈ C

×. Thus the function τ(f )(x) is piecewise affine with integral
slopes. When the radius e−x of the circle increases, the winding number of the
associated loop increases by the number of zeros of f in the intermediate annulus
and this shows that the function τ(f )(x) is convex and fulfills Jensen’s formula
(cf. [41] Theorem 15.15). Thus we derive the analogue of Theorem 3.1

Theorem 3.2 Let f (z) be a holomorphic function in an annulus A(r1, r2) = {z ∈
C | r1 < |z| < r2} and zi ∈ A(r1, r2) its zeros counted with their multiplicities.
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Then the values − log |zi | are the zeros (in the tropical sense and counted with
multiplicities) of the tropicalization τ(f ) in (− log r2,− log r1).

In particular, one can take r1 = 0, r2 = 1 so that A(r1, r2) is the open punctured unit
disk D(0, 1) \ {0}. In that case the τ(f ) are convex piecewise affine functions on
(0,∞) and one has the following compatibility with the action of N× on functions
by f (z) �→ f (zn)

τ (f (zn))(x) = τ(f )(nx) , ∀x ∈ (0,∞), n ∈ N
×. (17)

This fact follows from the equality for periodic functions h(θ)

1

2π

∫ 2π

0
h(nθ)dθ = 1

2nπ

∫ 2nπ

0
h(α)dα = 1

2π

∫ 2π

0
h(u)du.

3.2.3 Descent from characteristic zero to characteristic one

To explain the general technique that allows one to deduce the existence results
in characteristic one from a Riemann–Roch formula in characteristic zero, we first
develop the following simple example. Consider an open interval I of the real half-
line and an integral (finite) divisor D = ∑

nj δλj , with nj ∈ Z and λj ∈ I . The
Riemann–Roch problem in characteristic one asks for the construction of a piece-
wise affine continuous function f with integral slopes, whose divisor (f ) fulfills
D + (f ) ≥ 0. Here, (f ) is best understood as the second derivative Δ(f ), taken
in the sense of distributions. Thus the Riemann–Roch problem in characteristic one
corresponds to the solutions f , among piecewise affine continuous function f with
integral slopes, of the inequality

D + (f ) :=
∑

nj δλj +Δ(f ) ≥ 0. (18)

The technique we follow is to lift geometrically the divisor D to a divisor D̃ (in the
ordinary complex analytic sense) in the corona

C (I ) := {z ∈ C | − log |z| ∈ I }.

This involves a choice, for each λj , of points z ∈ C (I ) such that − log |z| = λj ,
and of multiplicities for these points which add up to nj . Now, assume that one
has a solution as a meromorphic function g in C (I ) such that D̃ + (g) ≥ 0. We
then consider, using Definition 3.2, the tropicalization f = τ(g). This formula is
in fact extended to meromorphic functions by the multiplicativity rule, i.e. using
τ(h/k) := τ(h) − τ(k) for g = h/k. Then, Theorem 3.2 shows that the divisor
Δ(τ(g)) is the image by the map u(z) := − log |z| of the divisor of g. This proves
that the tropicalization f = τ(g) fulfills the inequality D+(f ) ≥ 0 of the Riemann–
Roch problem.
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3.3 The Hirzebruch–Riemann–Roch formula and the Index
theorem

Here we recall the Hirzebruch–Riemann–Roch theorem. Let E be a holomorphic
complex vector bundle of rank r over a compact complex manifold X of dimension
n. The Euler characteristic χ(E) of E is defined by

χ(E) :=
∑

j≥0

(−1)jdim(Hj (X,E)). (19)

The cohomology Hj(X,E) used in the formula is sheaf cohomology and one uses
the equivalence between holomorphic vector bundles and locally free sheaves. It is
known that the cohomology Hj(X,E) vanishes for j > n. The relation with the
analytic index is given, with the above notations, by the formula

χ(E) = Inda(∂E). (20)

The analytic index Inda(T ) of an operator is defined as

Inda(T ) := dim(Ker(T ))− dim(Ker(T ∗))

and ∂E denotes the “dbar” operator with coefficients in E. The Hirzebruch–
Riemann–Roch formula, which is a special case of the Atiyah–Singer Index
theorem, is the equality

χ(E) = 〈Ch(E)Td(X), [X]〉 (21)

of the Euler characteristic of E with the topological index which is the evaluation
on the fundamental class [X] of X of the cohomology class Ch(E)Td(X) product of
the Chern character Ch(E) of the vector bundle E and the Todd genus Td(X) of X.

3.4 Potential role of the complex lift of the Scaling Site

In the case of the complex lift of the (square of the) Scaling Site, we expect E to
be a line bundle, the Todd genus be equal to 1 and that the relevant term in the
topological index comes from the term 1

2c1(E)
2 in the Chern character of E.

In this setup, one difficulty is that the self-intersection of the divisor D appears
as a trace taken in a relative situation. This means that one works with the difference
between the adèle class space (divided by Ẑ

∗), say X, and the ideles (also divided
by Ẑ

∗), which form a subset Y ⊂ X. The explicit formulas are obtained in the form
(after a cut-off)

(TrX − TrY )(π(f ))
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and this corresponds to the spectral realization as a cokernel of E : F (X)→ F (Y ).
Thus, the trace on this cokernel corresponds to the opposite of (TrX − TrY )(π(f ))
as required by the minus sign in the Explicit Formulas. In fact, a first task should
be to understand how to express this difference of traces as an intersection number
and then develop an appropriate intersection theory. The advantage of working in
a complex framework is that one could replace the naive real intersections by the
intersection of complex manifolds and also that everything is compatible with the
use of the Fourier transform. In fact, we also speculate that the divergent term in
logΛ which enters as coefficient of f (1) for the test function (see [16] Theorem
2.36) is due to the lack of good definition of self-intersection of the diagonal. While
one obtains an infinite result when working naively, the implementation of a suitable
intersection theory should provide the correct Euler characteristic. Thus adapting the
Riemann–Roch strategy comprises the following five steps

1. Construct the complex lift Γ of the Scaling Site.
2. Develop intersection theory in such a way that the divergent term in logΛ (see

[16] Theorem 2.36) is eliminated.
3. Formulate and prove a Hirzebruch–Riemann–Roch formula on Γ 2, whose

topological side part 1
2c1(E)

2 is 1
2s(f, f ) as in (14). This step involves the lifting

of the divisor D(f ) = ∫
f (λ)Ψλ d

∗λ in characteristic 1 to a divisor D̃(f ) in the
complex setup and the use of correspondences.

4. Use the assumed positivity of s(f, f ) to get an existence result for H 0(D̃(f )) or
H 0(−D̃(f )).

5. Use tropical descent to get the effectivity of a divisor equivalent to D(f ) and
finally get a contradiction.

The development of step 3 is the most problematic since in the lift from characteris-
tic 1 to characteristic 0 one loses the automorphisms Aut(Rmax+ ) = R

∗+ which are at
the origin of the Frobenius correspondences Ψλ. We settle this problem in Section 7
using the Witt construction in characteristic 1.

4 Tropical descent and almost periodic functions

In order to lift a continuous divisor D(f ) = ∫
f (λ)δλ d

∗λ on the Scaling Site (in
characteristic 1, Section 3.1) to a discrete divisor D̃(f ) on a complex geometric
space, one first needs to understand how to generalize Jensen’s formula to a case
where the Jensen function is no longer a piecewise linear affine convex function
with integral slopes but an arbitrary convex function.

In this part we explain how H. Bohr’s theory of almost periodic functions, and
the theory developed by B. Jessen on the density of zeros of almost periodic analytic
functions gives a satisfactory answer to this question. This technique plays a crucial
role in the process to extend the tropical descent procedure of Section 3.2 to control
the continuous divisors, in characteristic 1, following the Riemann–Roch lifting
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strategy. This procedure will also suggest a further important information on the
need of a suitable compactification G of the imaginary direction required for a
correct complex lift of the Scaling Site. This part will be developed in Section 5.

4.1 Almost periodic functions

We recall the definition of almost periodic functions (see [6] and [4] for more
details). Let H be the locally compact abelian group R or Z.

Definition 4.1 Let f : H −→ C be a bounded continuous function and ε > 0 a
real number. An ε-almost period for f is a number τ ∈ H such that

‖f (.+ τ)− f (.)‖∞ := sup
x∈H

|f (x + τ)− f (x)| < ε.

The function f is said to be almost periodic if for any ε > 0 the set of ε-almost
periods of f is relatively dense, i.e., there is a real number l = l(ε) > 0 such that
any interval with length l contains at least one ε-almost period.

The space of almost periodic functions on H is denoted by AP(H). In the following
part we are mostly interested in the case H = R but will use the case H = Z when
considering sequences.

By construction, AP(H) is a C∗-subalgebra of the C∗-algebra Cb(H) of bounded
continuous functions on H . An important characterization of almost periodic
functions was given by Bochner [7].

Theorem 4.1 A bounded continuous function f ∈ Cb(H) is an almost periodic
function if and only if the family of translates {f (.+ t)}t∈H is relatively compact in
Cb(H), i.e. its closure is compact.

Bochner’s characterization lead von Neumann in [42] to extend the notion of almost
periodic function to arbitrary groups by requiring the relative compactness for the
uniform norm of the set of translates of f . This definition does not make use of the
topology of the group and von Neumann constructed the mean value of a function
f using the translation invariant element in the closed convex hull of the translates
of the function.

4.2 From Jensen to Jessen and the tropical descent

Jensen’s formula in the annular case allows one to define the tropicalization of a
holomorphic function. In [31], Jessen extended Jensen’s formula to analytic almost
periodic functions.
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Recall that an analytic function f (z) in the strip �(z) ∈ [α, β] is called almost
periodic when the function R � t �→ f (σ + it) is uniformly almost periodic for
σ ∈ [α, β].

Jessen showed that, for such a function, the following limit exists

ϕ(σ) := lim
T→∞

1

2T

∫ T

−T
log |f (σ + it)|dt (22)

and determines a real convex continuous function ϕ(σ) of σ ∈ [α, β]. The function
ϕ(σ) is called the Jensen function of f . By convexity, the derivative ϕ′(σ ) exists at
all points of the interval except for a denumerable set E. For σj outside E, Jessen
proved that the relative frequency of zeros of f in the strip �(z) ∈ [σ1, σ2] exists
and is given by the variation of the derivative ϕ′. More precisely, if N(T ) denotes
the number of zeros of f with �(z) ∈ [σ1, σ2], and −T < 	(z) < T one has

lim
T→∞

N(T )

2T
= ϕ′(σ2)− ϕ′(σ1)

2π
. (23)

4.3 Discrete lift of a continuous divisor

In this part we describe, following [32], the procedure of lifting a tropical continuous
divisor (i.e. a formal integral of delta functions

∫
f (λ)δλ dλ) to a discrete, integer

valued divisor, using the technique of almost periodic lifting.
The formal expression

∫
f (λ)δλ dλ replaces the finite discrete sum as in (18)

of Section 3.2.3. We recall that the basic relation defining the divisor div(φ), in
characteristic 1, of a piecewise affine function φ(σ) is div(φ) = Δ(φ), where Δ is
the Laplacian taken in the sense of distributions. Here, we extend this definition to
convex functions in terms of the equation (taken in the sense of distributions)

div(φ) := Δ(φ). (24)

Then, the almost periodic lifting of a convex function is the choice of an almost
periodic analytic function f whose tropicalization gives back the function φ(σ).
More precisely (following [32], Theorem 25) one has the next characterization of a
Jensen function of an almost periodic analytic function

Theorem 4.2 ([32], Theorem 25) A real function φ(σ), in the interval α < σ < β,
is the Jensen function of an almost periodic analytic function in the strip �(z) ∈
[α, β] if and only if φ(σ) is convex and for every compact interval I ⊂ (α, β) there
exist a finite set F of Q-linearly independent real numbers and a real number C <

∞ such that the positive difference φ′(σ2) − φ′(σ1) of slopes of φ(σ) in intervals
where it is affine is a rational combination of elements of F with
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φ′(σ2)− φ′(σ1) =
∑

μ∈F
r(μ)μ,

∑

μ∈F
r(μ)2 ≤ C |φ′(σ2)− φ′(σ1)|2.

These results are based on the characterization of the asymptotic distribution
function of almost periodic sequences U(k) ∈ R, k ∈ Z. Here, to be almost periodic
for sequences means, with H = Z in Definition 4.1, that for any ε > 0 the set of
ε-periods

χ(ε) := {j | |U(k + j)− U(k)| < ε , ∀k ∈ Z}

is relatively dense in Z (see Definition 4.1). A distribution function is a non-
decreasing function μ(σ) of a real variable σ ∈ R whose limit, when σ →−∞ is 0
and whose limit, when σ →∞ is 1. One defines μ(σ ±0) respectively as the limits
on the left and on the right and one disregards the choice of a precise value in the
interval [μ(σ − 0), μ(σ + 0)] when the two values are different. This situation only
occurs on a denumerable set of values of σ . The asymptotic distribution function
of an almost periodic sequence U(k) of real numbers is defined using the densities
of the subsets E−(σ ) := {k | U(k) < σ } and E+(σ ) := {k | U(k) ≤ σ }. For
an arbitrary subset E ⊂ Z, one defines first the lower and upper densities by the
formulas

ρ(E) := lim inf
I

#{E ∩ I }
#I

, ρ(E) := lim sup
I

#{E ∩ I }
#I

(25)

where the limits are taken over all intervals I = [a, b] ⊂ Z whose length b−a tends
to ∞. Finally, the asymptotic distribution of an almost periodic sequence U(k),
when it exists, is uniquely determined (as a distribution function in the above sense)
as the non-decreasing function μ(σ) such that

μ(σ − 0) ≤ ρ(E−(σ )) ≤ ρ(E+(σ )) ≤ μ(σ + 0). (26)

A. Wintner showed that such a distribution function exists for all almost periodic
sequences U(k) of real numbers (see [32] Theorem 10 for a simple proof). The
almost periodic sequences are the continuous functions on the almost periodic
compactification of Z which is the dual of the additive group (R/2πZ)dis endowed
with the discrete topology. This abelian group is uncountable but the Fourier
transform of an almost periodic sequence U(k)

Û(s) := lim
T→∞

1

2T

T∑

−T
U(k)eisk, s ∈ (R/2πZ)dis

vanishes except on a countable subset, called the set of exponents of U in op.cit.
The subgroup M ⊂ R/2πZ generated by the exponents of U is called the “modul”
MU of U . Its intersection with 2πQ plays a role in particular in the following result
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Fig. 2 Jessen sequence U(k)

Theorem 4.3 ([32], Theorem 11) The asymptotic distribution function μ(σ) of an
almost periodic sequence U(k) of real numbers is constant in an open interval if
and only if the sequence does not take any value in this interval. In this case the
value of μ(σ) in this interval is a rational number which belongs to 1

2πMU .

The interesting outcome of this result is the rationality of the value μ(σ) = r in the
interval where the spectrum is empty. The proof uses the fact that an ε-period, for ε
smaller than the size of the gap, is a true period for the subset where U(k) < σ and
that the density of a periodic set is a rational number (Figure 2).

The following result (see [32], Theorem 12) characterizes the distribution
functions of the almost periodic sequences whose exponents belong to a fixed
subgroup M ⊂ R/2πZ which is assumed to be everywhere dense for the usual
topology.

Theorem 4.4 Let M be a given dense subgroup of R/2πZ. A distribution function
is the asymptotic distribution function μ(σ) of an almost periodic sequence U(k)

with exponents in M if and only if it has compact support and the values μ(σ) in
constancy intervals belong to 1

2πM .

To phrase this result in modern terms, note that the asymptotic distribution
functions μ(σ) of almost periodic sequences U(k) with exponents in M are the
same as the functions of the form

μ(σ) = ν({u | h(u) ≤ σ }

where h ∈ C(M̂) is an arbitrary continuous function on the compactification of
Z given by the Pontrjagin dual M̂ of M , and where ν is the normalized Haar
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measure on M̂ . The constancy intervals of μ(σ) are gaps in the spectrum of h and
the corresponding spectral projection given by the Cauchy integral of the resolvent
through the gap gives an idempotent in C(M̂). If M is torsion free (i.e. M intersects
trivially with 2πQ/2πZ), the compact group M̂ is connected and the spectrum of
any continuous function h is connected.

The gaps in the spectrum of h arise only from the torsion of M , and Theorem 4.4
suggests that in order to describe all asymptotic distribution functions μ(σ) of
almost periodic sequences U(k) it is enough to consider, instead of the almost
periodic compactification of Z, (i.e. the Pontrjagin dual of (R/2πZ)dis) the dual
G of infinite torsion subgroups, i.e. groups of the form D = H/Z where H ⊂ Q is
a subgroup of Q containing Z as a subgroup of infinite index.

One writes D = lim−→Dn as a colimit of finite groups, thus its Pontrjagin dual

G = D̂ is a projective limit of finite groups and hence a totally disconnected space.
Theorem 4.4 displays the role of the idempotents in C(G). This accounts for the
existence of the many idempotents in C(G) associated with constancy intervals of
asymptotic distribution functions μ(σ).

To understand in explicit terms how to obtain general distribution functions, we
first work out the description of the distribution function μ(σ) := σ for σ ∈ [0, 1],
for the group Hp of rational numbers with denominator a power of p, with p a fixed
prime number.

In this case, the group D = H/Z is the colimit of the finite groups Dn := Z/pn
Z,

viewed as groups of roots of unity of order dividing pn, so that the inclusions Dn ⊂
Dn+1 turn D into a dense subgroup of U(1). Dually, one thus gets a projective
system of the finite cyclic groups D̂n and an homomorphism Z → lim←− D̂n. The

projective limit K := lim←− D̂n is topologically a Cantor set

Lemma 4.1 Let p be a prime.

(i) There exists a unique sequence U(x), x ∈ Z such that

U

⎛

⎝
∑

j≥0

ajp
j

⎞

⎠ =
∑

j

ajp
−j−1, ∀aj ∈ {0, . . . , p − 1},

U(x) := lim
n→∞U(x + pn). (27)

(ii) One has U(x) ∈ Hp, ∀x ∈ Z, and

|U(x + npm)− U(x)| ≤ p−m , ∀m ∈ N, x, n ∈ Z (28)

(iii) The sequence U(x) is almost periodic with modul M = 2πHp and has as
distribution function μ(σ) := σ , for σ ∈ [0, 1]
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Proof

(i) Let x ∈ N be a positive integer with expansion in base p given by x =∑k
j=0 ajp

j . One has for m > k, U(x + pm) = U(x) + p−m−1 thus U(x)

fulfills the continuity condition as in (27). For x ∈ Z, x < 0 let k > 0 be such
that y = x + pk > 0 and let y = ∑

0≤j<k bjpj be its expansion in base p.
One has

lim
n→∞U(y + pn − pk) =

∑

0≤j<k
bjp

−j−1 +
∞∑

k

(p − 1)p−�−1

=
∑

0≤j<k
bjp

−j−1 + p−k.

Replacing k by k′ ≥ k replaces y by y′ = ∑
0≤j<k bjpj +∑k′−1

k (p − 1)pm

and gives the same result for U(x) since
∑k′−1

k (p− 1)p−m−1 = p−k − p−k′ .
Thus for any x ∈ Z the limit limn→∞ U(x + pn) exists and this shows the
existence and uniqueness of the sequence fulfilling (27).

(ii) The proof of (i) shows that U(x) ∈ Hp, ∀x ∈ Z. Let us prove (28). One can
assume n > 0 by symmetry and x > 0 using (27). Replacing x by x + npm

does not alter the digits aj of x in base p for j < m. Thus one has

|U(x + npm)− U(x)| ≤
∑

j≥m
(p − 1)p−j−1 = p−m.

(iii) By (28) the sequence U(x) is almost periodic with modul M = 2πHp. Let
k > 0 and aj ∈ {0, . . . , p − 1} for 0 ≤ j ≤ k − 1. Let I ⊂ [0, 1] be the
interval

I =
⎛

⎝
∑

j<k

ajp
−j−1,

∑

j<k

ajp
−j−1 + p−k

⎞

⎠ .

One has using the almost periodicity

lim
T→∞

1

2T
#{x ∈ Z | |x| ≤ T , U(x) ∈ I } = lim

T→∞
1

T
#{x ∈ N | x ≤ T ,

U(x) ∈ I }.

Moreover

lim
T→∞

1

T
#{x ∈ N | x ≤ T , U(x) ∈ I } = p−k



82 A. Connes and C. Consani

since the condition U(x) ∈ I for x ∈ N means that the first k digits of x in base
p are equal to the aj . Thus the density of the subset {x ∈ Z | U(x) ∈ I } is p−k
and coincides with the length (and hence the Lebesgue measure) of the interval
I in the range of U . This shows that U has distribution function μ(σ) = σ for
σ ∈ [0, 1]. ��

Remark 4.1 In the above example we have chosen D = Hp/Z = Qp/Zp and its
dual is the group Zp of p-adic integers (using the self-duality of the p-adic numbers
Qp). The sequence U is thus obtained by mapping Zp to real numbers by means of
(up to an overall factor p) φ(

∑
j≥0 ajp

j ) =∑
ajp

−j . This map is continuous but
not additive. It fulfills however the restricted additivity φ(x + y) = φ(x) + φ(y)

when no carry over is involved in computing x + y.

Corollary 4.1

(i) Let h ∈ C[0, 1] be a real valued function and U as in (27). Then the sequence
h(U)(n) := h(U(n)) is almost periodic and its distribution function μ is the
primitive of the image by h of the Lebesgue measure m on [0, 1], i.e. one has
dμ = h(m).

(ii) Let μ be a strictly increasing continuous function in a real interval [α, β] with
μ(α) = 0 and μ(β) = 1. Then with h ∈ C[0, 1] as in (i), its inverse function,
μ is the distribution function of h(U).

Proof

(i) The almost periodicity follows from the continuity of h. One has

h(U(n)) ∈ (a, b) ⇐⇒ U(n) ∈ h−1((a, b))

and the density of this set of integers is the Lebesgue measure of h−1((a, b)).
This shows that the measure dμ is the image by h of the Lebesgue measure on
[0, 1].

(ii) follows from (i) since for any pair of real numbers a < b one has

h(u) ∈ (a, b) ⇐⇒ u ∈ (μ(a), μ(b)).

��
In the construction provided in [32] of an almost periodic analytic function f whose
associated Jensen function is a given convex function ϕ, the zeros of f can be taken
of the form zk = V (k)+ ik for k ∈ Z, where V (k) is an almost periodic sequence.
The Jensen function ϕ is related to the asymptotic distribution function μ of V by
the equation

ϕ′(σ ) = μ(σ). (29)

Next, we apply Corollary 4.1 to construct a lifted divisor associated with the formal
expression

∫
f (λ)δλ dλ. We write f = f+ − f−, where f± is positive, and we
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assume that the support of f± is a compact real interval I± = [α±, β±]. We also
assume for simplicity that

∫
I± f±(λ) dλ = 1. Let us define

h± : [0, 1] → [α±, β±], h±(u) = a ⇐⇒
∫ a

α±
f±(v)dv = u. (30)

Then the construction of [32] provides the following lift

Lemma 4.2 The following discrete integral divisor lifts the continuous divisor∫
f (λ)δλ dλ

D :=
∑

k∈Z
δh+(U(k))+ik − δh−(U(k))+ik. (31)

Proof For a complex test function ψ defined on the real half-line (0,∞) one has by
definition

<

∫
f (λ)δλ dλ,ψ >=

∫
f (λ)ψ(λ) dλ.

It is enough to show that when evaluated on the function z �→ ψ ◦�(z), the discrete
divisor D gives the same result after averaging. One has

lim
T→∞

1

2T

∑

k∈Z,|k|≤T
< δh+(U(k))+ik − δh−(U(k))+ik, ψ ◦ � >=

= lim
T→∞

1

2T

∑

k∈Z,|k|≤T
(ψ(h+(U(k)))− ψ(h−(U(k))) =

=
∫ 1

0
(ψ ◦ h+)(u)du−

∫ 1

0
(ψ ◦ h−)(u)du =

=
∫ β+

α+
ψ(a)d

(∫ a

α+
f+(v)dv

)

−
∫ β−

α−
ψ(a)d

(∫ a

α−
f−(v)dv

)

=

=
∫

f (λ)ψ(λ) dλ.

��
Remark 4.2 The construction as in (27) generalizes when Hp is replaced by any
infinite subgroup of Q not isomorphic to Z. This is also explained in [32] and the
connection with the Scaling Site should be explored further. In fact, note that for
the periodic orbits of the Scaling Site the restriction on the slopes of the convex
functions of the structure sheaf was stated in terms of these slopes belonging to Hp,
and this condition corresponds to (29).
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Fig. 3 Jessen sequence k + iU(k) ∈ H

Fig. 4 Divisor for f (x) = −2x3 + 3x2 − x written as f = f+ − f−, with f+(x) = x(1− x) and
f−(x) = 2x(1− x)2

In the above development (following [32]) we have worked with the complex right-
half plane; however in relation with the action of SL(2,R), the use of the upper-half
plane H := {z ∈ C | Im(z) > 0} is more convenient.

Figure 3 shows the discrete almost periodic (in the horizontal direction) distribu-
tion of points in the upper-half plane H associated with k + iU(k) ∈ H.

Next Figure 4 represents the divisor (zeros in blue, poles in red) associated with
f (x) = −2x3 + 3x2 − x, written as f = f+ − f− with f+(x) = x(1 − x) and
f−(x) = 2x(1− x)2.
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5 The complex lift of the Scaling Site

In this section we refine the framework of Jensen’s formula to construct the complex
lift of the Scaling Site. The original setup of Jensen’s theory and the related
tropicalization map, explained in Section 3.2.2, provide us with the following
starting point.

We let D∗ := {q ∈ C | 0 < |q| ≤ 1} be the punctured unit disk in C. The monoid
N
× acts naturally on D

∗ by means of the map q �→ qn. In this way, one defines a
ringed topos by endowing the topos D∗�N

× with the structure sheaf O of complex
analytic functions.

Given a pair of open sets Ω,Ω ′ in D
∗ and an integer n ∈ N

× with qn ∈ Ω ′ for
q ∈ Ω , there is a natural restriction map

Γ (Ω ′,O)→ Γ (Ω,O), f (q) �→ f (qn).

Lemma 5.1 The map u : D∗ → [0,∞), u(q) := − log |q|, extends to a geometric
morphism of toposes u : D∗ �N

× → [0,∞)�N
×.

Proof This follows from the continuity and N
×-equivariance of the map u(q) :=

− log |q|. ��
In order to work with continuous divisors as explained in Section 3.2, we consider
the covering of D∗ defined by the closed upper-half plane H̄

q : H̄→ D
∗, q(z) = e2πiz, ∀z ∈ H̄ = {z ∈ C | 	(z) ≥ 0},

and make a compactification of the real direction in H̄ using a group compactifi-
cation G of R motivated by the results of Section 4. The compact group G ⊃ R

used in this construction is the smallest compactification of R on which Q
∗ acts (by

unique divisibility of the dual discrete group) by extending its natural action on R.
The dual of G is the additive discrete group Q.

At this point one could proceed in terms of ringed toposes and this would amount,
in the construction of D∗�N

×, to replace the punctured unit disk D
∗ by its pro-étale

cover given by the projective limit

D̃
∗ := lim←−

N×
(D∗, z �→ zn).

on which N
× is acting by lifting the above action (see Proposition 5.4).

In this paper we prefer to proceed at the adelic level and the complex lift that we
are going to describe in detail is obtained as the fibered product of the adèle class
space of Q and G. It is thus the quotient of AQ ×G by the diagonal action of Q∗.

The construction of the compactification G is developed, in adelic terms, in
Section 5.1. It leads, in Section 5.2, to the adelic definition of the complex lift.
In Sections 5.3 and 5.4, we analyze the restriction of the so obtained complex
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lift to the periodic orbits and to the classical orbit of the adèle class space. In
particular, the restriction to the classical orbit turns out to be the projective limit
D̃
∗ (Proposition 5.4) of the open unit disks (whose closed version was mentioned

above in the topos theoretic context).
The complex lift is naturally endowed with a one dimensional complex foliation

that we describe and analyze both on the periodic and classical orbits. It is this
foliation that provides the geometric meaning of the discrete lift of continuous
divisors of Lemma 4.2. This part is explained in Section 5.4. This foliation retains
a meaning on the full complex lift, it is still one dimensional (complex) with leaves
being the orbits of the right action of the aX + b group.

By construction of the group G, the scaling action on AQ ×G exists for rational
values of λ and it extends the action by scaling on R ⊂ G. At the Archimedean
place, this action is simply given by (i.e. induces a) multiplication of the complex
variable by λ ∈ Q

∗ and thus preserves the complex structure. At the geometric level
what really matters in this construction is to have a compact abelian group G which
compactifies the additive locally compact group R and is such that the action of Q∗
on R by multiplication extends to G. After implementing such data one forms the
double quotient

C(G) := Q
∗\(AQ ×G)/(Ẑ× × Id). (32)

By construction, the space C(G) maps onto the principal factor Q∗\AQ/Ẑ
× of the

adèle class space and the fibers of this projection only involve the compact freedom
in G. Writing AQ = Af ×R, one sees that the element −1 ∈ Q

∗ acts as identity on
Af /Ẑ

× but non-trivially on R×G. Moreover, [0,∞)×G ⊂ R×G is a fundamental
domain for the action of ±1 and in the quotient the boundary {0} ×G is divided by
the symmetry u �→ −u. This fact accounts for the use of the complex half plane
H in the above discussion with this nuance on the boundary. The gain, before the
division by Ẑ

×, is that one retains the additive group structure that we expect to
play a key role in the definition of the de Rham complex, since the H 2 should be
generated by the Haar measure.

5.1 Adelic almost periodic compactification of R

The main requirement on an almost periodic compactification G of R is that the
action of Q∗ on R by multiplication extends to G. Then, by turning to the Pontrjagin
duals one derives a morphism ρ : Ĝ→ R̂ with dense range. The fact that the scaling
action of Q∗ on R extends to G means here that the subgroup ρ(Ĝ) is stable under
multiplication by Q

∗ and hence is a Q-vector subspace of R.
The simplest case is when this vector space is one dimensional. We shall now

describe this special case in detail. Thus, and up to an overall scaling, we assume
ρ(Ĝ) = Q ⊂ R̂.
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We denote by G := AQ/(Q,+) the compact group quotient of the additive group
of adèles by the discrete subgroup Q ⊂ AQ. We first recall how one can interpret
the group G as the projective limit of the compact groups Gn := R/nZ under the
natural morphisms

γn,m : Gm → Gn, γn,m(x +mZ) = x + nZ, ∀n|m. (33)

First, notice that there is a natural group isomorphism

(Ẑ× R)/Z ! AQ/(Q,+)

that is deduced by using the inclusion of additive groups Ẑ×R ⊂ AQ together with
the two equalities

Q ∩ (Ẑ× R) = Z, Q+ (Ẑ× R) = AQ

where the latter derives from the density of Q in finite adèles Af .
Next, recall that by construction the group Ẑ is the projective limit of the finite

groups Z/nZ, and hence one obtains

(Ẑ× R)/Z = lim←−(Z/nZ× R)/Z.

Moreover one has a group isomorphism

ρn : (Z/nZ× R)/Z→ Gn = R/nZ, ρn(j, x) = x − j + nZ

and when n|m one also has

γn,m ◦ ρm(j, x) = x − j + nZ = ρn(j, x).

The outcome is that the projective system (Ẑ × R)/Z = lim←−(Z/nZ × R)/Z is
isomorphic to the projective system {γn,m : Gm → Gn} and one derives in this way
a natural isomorphism of the corresponding projective limits.

Let us now understand the action of Q∗ on G by checking that G is a uniquely
divisible group. We show that the multiplication by an integer n > 0 defines a
bijection of G on itself. First, notice that its range contains the subgroup of (Ẑ ×
R)/Z of the classes of the elements (0, t) ∈ {0}×R ⊂ Ẑ×R and is therefore dense
in G since Z is dense in Ẑ. Since G is compact, the image of the multiplication by n

is closed and thus equal to G. Let us now show that the kernel of the multiplication
by n is trivial. The equality (na, ns) = (m,m) with a ∈ Ẑ and m ∈ Z implies that
m is divisible by n since one has m/n ∈ Ẑ. Hence one obtains (a, s) ∼ (0, 0) and
the multiplication by n is therefore proven to be bijective.

Next lemma provides several relevant details on the chosen almost periodic
compactification G of R.
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Lemma 5.2 Let G := AQ/(Q,+) be the compact group described above.

(i) The homomorphism R � t �→ a(t) = (0, t) ∈ AQ/(Q,+) determines an
almost periodic compactification of R.

(ii) Let α ∈ ÂQ ∩ Q
⊥ be a non-trivial additive character of the adèles which

restricts to the identity on Q ⊂ AQ. The map Q � q �→ α(q · ) identifies the
additive group Q with the Pontrjagin dual Ĝ.

(iii) Let α = ∏
αv be the standard choice of the additive character of the adèles,

with α∞(s) = e2πis . The Pontrjagin dual ρ of the map a as in (i) identifies
r ∈ Q with the character (element of R̂) given by R � s �→ e2πirs .

Proof

(i) By construction of the adèles, the subgroup Q ⊂ AQ is discrete and cocompact
thus G is a compact abelian group. The kernel of the homomorphism a :
R→ AQ/(Q,+) is trivial since a non-zero rational has non-zero components
at every local place. The homomorphism a has also dense range since the
subgroup a(R) + Q is dense in the adèles as a consequence of the density
of Q in the finite adèles.

(ii) The pairing of AQ with itself given by α(xy) identifies AQ with its Pontrjagin
dual and the quotient of AQ by Q

⊥ = Q with the Pontrjagin dual of Q (see
[43]).

(iii) One has α(r a(s)) = α∞(rs) = e2πirs . ��

5.2 The adelic complex lift

Next, we assemble together the adèle class space and the adelic almost periodic
compactification of R. Our primary goal is to describe the complex structure that
arises from the pair (x, y) of variables at the Archimedean place, and to verify that
these variables are rescaled by the same rational number under the action of Q∗+.

In the following part we shall work with the full adèle class space and postpone
the division by Ẑ

× after this development.

Lemma 5.3 Let P(Q) be the ax + b group over Q. The left action of P(Q) on the
adelic affine plane A

2
Q

defined by

�

(
a b

0 1

)

(x, y) := (ax + b, ay) (34)

preserves the complex structure at the Archimedean place given by ∂̄ = ∂x + i∂y .

Proof The statement holds because the translation by b commutes with the operator
∂̄ and the multiplication by a, being the same on both entries, just rescales the
operator. ��
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Definition 5.1 The adelic complex lift is the adelic quotient

CQ := P(Q)\A2
Q. (35)

We denote by ΓQ the further quotient obtained by implementing the action of Ẑ×
on A

2
Q

given by multiplication on the second adelic variable y.

Recall that for any commutative ring R the algebraic group P is defined as

P(R) :=
{(

a b

0 1

)

| a ∈ R−1, b ∈ R

}

. (36)

One has a canonical inclusion of groups GL1(R) ⊂ P(R) given by

GL1(R) � a �→
(
a 0
0 1

)

. (37)

For any commutative ring R, we introduce the notation

P(R) :=
{(

a b

0 1

)

| a ∈ R, b ∈ R

}

. (38)

By construction P(R) ⊂ M2(R), moreover there is a canonical set-theoretic
identification P(R) ! R2 given by the first line of the matrix. In the following
part we prefer to work with the identification ι : R2 → P(R) defined by

ι(x, y) :=
(
y x

0 1

)

. (39)

Lemma 5.4

(i) Let R = AQ, then the bijection ι of (39) is equivariant for the left action of
P(Q) and induces a bijection

j : CQ = P(Q)\A2
Q

∼→ P(Q)\P(AQ). (40)

(ii) Let K be the compact subgroup Ẑ
× ⊂ GL1(AQ), then j induces a canonical

bijection

j : ΓQ
∼→ P(Q)\P(AQ)/K. (41)

(iii) The action of P(R) by right multiplication on P(Q)\P(AQ) is free on the open
subset V determined by the conditions yf �= 0 and y∞ �= 0, where y∞ ∈ R
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(resp. yf ∈ Af ) is the Archimedean (resp. non-Archimedean) component of y

for

(
y x

0 1

)

∈ P(AQ).

Proof

(i) The multiplication rule

(
a b

0 1

) (
y x

0 1

)

=
(
ay ax + b

0 1

)

shows the equivariance of the map ι with respect to the action (34).
(ii) The right action of GL1(AQ) on P(AQ) is given by the formula

(
y x

0 1

) (
u 0
0 1

)

=
(
uy x

0 1

)

.

Thus, under the isomorphism j of (40) the right action of Ẑ× corresponds to
the action of Ẑ× by multiplication on the y-component and hence it defines the
required isomorphism.

(iii) The conditions yf �= 0 and y∞ �= 0 are invariant under left multiplication
by P(Q) since this action replaces y by ay for a non-zero rational number a.
Thus these conditions define an open subset V of the quotient P(Q)\P(AQ).
Let π : P(AQ) → P(Q)\P(AQ) be the canonical quotient map. The right
action of P(R)

(
y x

0 1

) (
u v

0 1

)

=
(
uy vy + x

0 1

)

leaves yf and xf unchanged. The open set V ⊂ P(Q)\P(AQ) is invariant
under this action. Let z ∈ V and g ∈ P(R) be such that zg = z, with

z = π

(
y x

0 1

)

, g =
(
u v

0 1

)

.

The equality zg = z means that there exists h ∈ P(Q) with zg = hz, thus one
derives

h =
(
a b

0 1

)

,

(
y x

0 1

) (
u v

0 1

)

=
(
a b

0 1

) (
y x

0 1

)

.

The equality yf = ayf shows that a = 1 since yf �= 0. Then, the equality
xf = axf + b forces b = 0. Hence one gets h = 1. In turn, the equality
uy∞ = y∞ proves that u = 1 since y∞ �= 0. Finally, vy∞+ x∞ = x∞ implies
v = 0. ��
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Let P+(R) ⊂ P(R) be the connected component of the identity, in formulas

P+(R) :=
{(

a b

0 1

)

| a > 0

}

.

With the notations of Lemma 5.4, we shall use the right action of P+(R) ⊂ P(R) to
obtain a foliation of V by one dimensional complex leaves endowed with a natural
metric. We let

X =
(

0 1
0 0

)

, Y =
(

1 0
0 0

)

be the generators of the Lie algebra of P+(R): one has [Y,X] = X.

Proposition 5.1

(i) The free right action of P+(R) on the (open) space V endows the orbits with a
unique Riemannian metric so that the vector fields X, Y form an orthonormal
basis (at each point) and a unique complex structure such that

∂̄(f ) = 0 ⇐⇒ (X + iY )f = 0.

(ii) Each orbit as in (i) is isomorphic to the complex upper-half plane H = {x+iy |
y > 0} with the Poincaré metric.

(iii) The Laplacian Δ = −∂̄∗∂̄ , for the Riemannian metric as in (ii), is equal to
X2 + (Y − 1

2 )
2 − 1

4 .

Proof Recall that the Poincaré complex half plane H is a one dimensional complex
manifold endowed with the Riemannian metric

ds2 = dx2 + dy2

y2 .

The group GL(2,R)+ acts by automorphisms of H as follows

(
a b

c d

)

· z := az+ b

cz+ d
.

Using the inclusion P+(R) ⊂ GL(2,R)+ obtained by setting c = 0 and d = 1,
and selecting the point z = i, one obtains the left invariant Riemannian metric
ds2 = a−2(da2 + db2) on P+(R), and the complex structure such that 2∂̄f =
(∂af − i∂bf )(da + idb). The vector fields which provide the right action of P on
itself are Y = a∂a and X = a∂b. Using these fields, the Laplacian Δ = a2(∂2

a + ∂2
b )

is given by
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Δ = X2 +
(

Y − 1

2

)2

− 1

4
. (42)

Indeed, one has Y 2 − Y = (a∂a)(a∂a)− a∂a = a2(∂2
a ) and X2 = a2(∂2

b ).

For the orbit L though x ∈ V one has a bijection defined by φx : P+(R) ∼→ L,
φx(g) := xg, while for another point y = xg0 of the same orbit one has
φy(g) = φx(g0g). Thus, the full geometric structure of P+(R), invariant under
left translations, carries over unambiguously to the orbit and the three statements
follow from their validity on P+(R). ��

5.3 The periodic orbits

The complex foliation of the open invariant set V ⊂ P(Q)\P(AQ) as in
Proposition 5.1 is, by construction, invariant under the right action of K = Ẑ

×. To
describe the geometric structure induced on the quotient ΓQ = P(Q)\P(AQ)/Ẑ

×,
we start by investigating the induced structure on the periodic orbit associated with
a prime p in the adèle class space.

More precisely, we consider the subset
∏
(p) of AQ/Ẑ

× of classes modulo Ẑ
×

of adèles

a = (av), av ∈ Z
∗
v, ∀v /∈ {p,∞}, ap = 0, a∞ = λ > 0.

Any such class is uniquely determined by λ and will be denoted by π(λ) ∈∏
(p).

Lemma 5.5 The image in ΓQ = P(Q)\P(AQ)/Ẑ
× of G×∏

(p) ⊂ P(AQ)/Ẑ
× is

the compact space

Γ (p) := pZ\
(
(AQ/(Q,+))×

∏
(p)

)
(43)

which is described by the mapping torus of the homeomorphism ψ : G→ G given
by multiplication by p.

Proof We recall that the left action of P(Q) on P(AQ) is given by

(
a b

0 1

) (
y x

0 1

)

=
(
ay ax + b

0 1

)

.

Two elements y = π(λ) and y′ = π(λ′) in
∏
(p) are equivalent under the action

of a ∈ Q
× if and only if λ/λ′ ∈ pZ, i.e. a ∈ pZ. Thus the orbits of the left action

of P(Q) are the same as the orbits of pZ in (AQ/(Q,+))×∏
(p). The group G is

compact and the multiplication by p defines an automorphism ψ of G as can be seen
on the Pontrjagin dual Q which is a uniquely divisible group. Thus, as a topological
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space Γ (p) = pZ\ (
G×∏

(p)
)

is the mapping torus of the homeomorphism ψ

and is a compact space. ��
The geometric structure of the space Γ (p) as in (43) is described as follows

Theorem 5.1

(i) The foliation of V as in Proposition 5.1 induces on Γ (p) the foliation of G by
the cosets of the subgroup a(R) combined with the action of R∗+ on

∏
(p).

(ii) The foliation F on Γ (p) as in (i) is by one dimensional complex leaves
which are Riemann surfaces of curvature −1. All leaves of F , except one, are
isomorphic to H. The exceptional leaf is the quotient pZ\H.

(iii) The foliated space (Γ (p), F ) is, at the measure theory level, a factor of type
IIIλ, for λ = 1

p
.

Proof

(i) By Lemma 5.5, Γ (p) is the quotient of G × R
∗+ by the action of powers

of the map θ , given by G × R
∗+ � (x, y) �→ θ(x, y) := (ψ(x), py),

where ψ is as in Lemma 5.5. The right action of P+(R) on ΓQ induces on
pZ\ (

(AQ/(Q,+))×∏
(p)

)
the following right action

φu,v(x, y) := (x + vy, uy) , ∀(x, y) ∈ G× R
∗+,

(
u v

0 1

)

∈ P+(R).

This is a translation x �→ x + a(vy) in the variable x ∈ G, where vy ∈ R by
construction, and is the scaling y �→ uy by u > 0 in the variable y ∈ R

∗+. The
compact group G = AQ/(Q,+) is foliated by the cosets of the subgroup a(R)

of Lemma 5.2. This foliation is globally invariant under the action of ψ because
the subgroup a(R) is globally invariant under this action. More precisely the
foliation of G by the cosets of a(R) derives from the flow φt (x) := x + a(t),
t ∈ R, x ∈ G and one has

ψ(φt (x)) = p (x + a(t)) = px + pat = ψ(x)+ a(pt) = φpt (ψ(x)).

The right action of P+(R) on G× R
∗+ commutes with θ and thus drops down

to the quotient Γ (p)

θ(φu,v(x, y)) = (ψ(φvy(x)), p(yu)) = (φvpy(ψ(x)), pyu) = φu,v(θ(x, y)).

The orbits of the right action of P+(R) on Γ (p) coincide with the leaves of the
foliation of the mapping torus of ψ induced by the foliation of G by the cosets
of the subgroup a(R), as in Figure 5.

(ii) For (x, y) ∈ G× R
∗+,

(
u v

0 1

)

∈ P+(R) and n ∈ Z one has

φu,v(x, y) = θn(x, y) ⇐⇒ u = pn, x + a(vy) = pnx.
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Fig. 5 The foliation of G by
the cosets of the subgroup
a(R) is preserved by the map
ψ and thus extends to a
two-dimensional foliation of
the mapping torus of ψ

For n = 0 this gives u = 1 and v = 0. Assume now n �= 0. One has
G = AQ/Q, pnx ∈ x + Q + a(R). Let x = (xf , x∞) correspond to the
decomposition AQ = Af×R. The above condition means that pnxf ∈ xf+Q,
i.e. (since n �= 0) that xf ∈ Q. This shows that the right action of P+(R) on
Γ (p) is free on the orbit of (x, y) provided xf /∈ Q, i.e. equivalently x /∈ a(R).
Thus, as in Proposition 5.1, these orbits of the right action of P+(R) inherit a
canonical structure of Riemann surface isomorphic to H. The right action of
P+(R) gives the two vector fields

X(f )(x, y) = y∂tf (x + a(t), y), Y (f )(x, y) = y∂yf (x, y). (44)

The vector fields X and Y verify the Lie algebra of the affine ax + b group:

[Y,X] = X. (45)

Assume now that x ∈ a(R). Then the orbit of (x, y) ∈ Γ (p) under the right
action of P+(R) is

pZ\
(
a(R)×

∏
(p)

)
! pZ\H

and does not depend upon the choice of the base point (x, y). The complex
structure makes sense and as a complex space one gets an open subset of
the elliptic curve E = pZ\C×. One has E ! C/Γ by the isomorphism
e : C/Γ → E, e(z) := e2πiz and Γ = Z+ logp

2πi Z.
(iii) At the measure theory level, the space of leaves of the foliation of G by the

cosets of the subgroup a(R) is the same as the quotient of the finite adèles Af

by the additive subgroup Q. The action of Q by addition on the finite adèles
Af is ergodic and measure preserving. In fact since Ẑ is open in Af and Q is
dense, every orbit meets Ẑ. Moreover, if b ∈ a + Q with a, b ∈ Ẑ one has
b − a ∈ Ẑ ∩ Q = Z. Also, the action of Z on Ẑ by translation is ergodic by
uniqueness of Haar measure on a compact group and density of Z in Ẑ.
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In Γ (p) the leaves of the two-dimensional foliation all meet the fiber of the
projection Γ (p)→ pZ\∏

(p) over the point π(1) and in the leaf space a leaf
of the foliation of G by the cosets of the subgroup a(R) gets identified with
its image by the map ψ (see Figure 5). Thus the leaf space is the quotient of
Af /Q (the quotient of the finite adèles Af by the additive subgroup Q) by the
further action by multiplication by powers of p. This latter action rescales the
invariant measure by a factor of p and thus one obtains a factor of type IIIλ,
where λ = 1

p
. ��

Remark 5.1

1. The Haar measure dn(x) on G gives an invariant transverse measure Λ for the
flow φt , moreover dn(x) is invariant under the automorphism of multiplication
by p. But the above transverse measure Λ is not invariant under multiplication
by p because it is obtained as the contraction of dn(x) by the flow φt and this
flow is rescaled by multiplication by p.

2. Both dn(x) and the measure on
∏
(p) given by dy/y, are invariant under

multiplication by p and thus the product measure descends to a measure on Γ (p)

given by

∫
f (x, y)dm(x, y) :=

∫ p

1

∫

G

f (x, y)dn(x)
dy

y
. (46)

Next, we use the basis of differential forms along the leaves which is dual to the
vector fields (45). It is given by α = y−1dx, β = y−1dy in the cotangent space to
the leaves.

Next statement computes the de Rham cohomology of Γ (p).

Proposition 5.2 The canonical projection Γ (p) → pZ\∏
(p) = R

∗+/pZ is an
isomorphism in the de Rham cohomology.

Proof The de Rham complex on Γ (p) is described as follows using the Lie algebra
L of the affine group and its dual L∗. We take the basis (X, Y ) for L and the dual
basis (α, β) for L∗. One lets Ωj := A ⊗∧jL∗ where A is an algebra of functions
on Γ (p) stable under the derivations X, Y . The differential is given by

df =X(f )α+Y (f )β , ∀f ∈Ω0, d(f α+gβ) = df∧α+f dα+dg∧β, dα = α∧β.

We first describe the algebra A of functions on Γ (p) stable under the derivations
X, Y . Let B be the algebra of functions on G linearly generated by the characters
eq for q ∈ Q. Thus the multiplication rule is eqeq ′ = eq+q ′ for all q, q ′ ∈ Q. Let
f (y, q) be a function on R

∗+ ×Q and define

f̂ (x, y) :=
∑

Q

f (y, q)eq(x).
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This definition of f̂ is meaningful if one assumes that for each y ∈ R
∗+ the function

q �→ f (y, q) has finite support. The condition that f̂ defines a function on Γ (p) is
f̂ (px, py) = f̂ (x, y) and since eq(px) = epq(x), the condition means that

f (py, p−1q) = f (y, q) , ∀y ∈ R
∗+, q ∈ Q. (47)

In terms of the function f (y, q) the derivations1 X and Y become

X(f )(y, q) = 2πiyqf (y, q), Y (f )(y, q) = y∂yf (y, q). (48)

The group pZ acts on Q by multiplication and (47) and (48) show that the de Rham
complex is a direct sum over the orbits O of this action

(Ω, d) =
⊕

O∈pZ\Q
(Ω(O), d).

The trivial orbit of 0 ∈ Q corresponds to the pull back by the projection Γ (p) →
pZ\∏

(p) = R
∗+/pZ and the vector field X gives 0, thus the contribution of this

orbit reduces to the following complex of functions on R
∗+/pZ

df = Y (f )β , ∀f ∈ Ω0, d(f α + gβ) = (−Y (f )+ f )α ∧ β, d(f α ∧ β) = 0.

The map Id−Y is diagonalized in the basis of characters of R∗+/pZ ! U(1) and the
eigenvalues are the complex values 1− 2πin/ logp, n ∈ Z. Indeed, with u = log y
the condition f (py) = f (y) becomes periodicity of period logp and Y becomes
∂u. It follows that Id − Y is an isomorphism on smooth functions, since it does not
affect the rapid decay of the Fourier coefficients. This shows that the extra part due
to the presence of the sub-complex of the f α and f α ∧ β does not contribute to the
cohomology.

Next, we consider the contribution of a non-trivial orbit O = pZq0 with q0 �= 0.
A function f (y, q) restricted to this orbit can be seen as a function on R

∗+×Z given
by h(y, n) = f (y, pnq0). Then, condition (47) becomes h(py, n − 1) = h(y, n).
This shows that the restriction of f to the orbit is entirely specified by the function
on R

∗+ given by φ(y) = f (y, q0). Moreover this function is smooth and its support
intersects finitely each orbit pZy. We thus deal with the space C∞c (R∗+) of smooth
compactly supported functions on R

∗+. Let us compute the operators X, Y in terms
of the functions φ(y). Using (48) we get

(Xφ)(y) = (2πiq0)yφ(y), (Yφ)(y) = y∂yφ(y).

1The product is the convolution in the variable q and the ordinary product in the variable y.
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Thus the operator X is invertible, and using its inverse X−1 one defines a homotopy
s : (Ω(O), d)→ (Ω(O), d), by

s(f α + gβ) := X−1(f ) ∈ Ω0(O), s(f α ∧ β) = X−1(f )β.

Next, we check that ds+ sd = Id. This is clear on Ω0 since sdf = X−1X(f ) = f .
On Ω2 is also clear since ds(f α ∧ β) = dX−1(f )β = XX−1(f )α ∧ β = f α ∧ β.
On Ω1 one has

(ds + sd)(f α + gβ) = dX−1(f )+ s ((−Y (f )+ f +X(g))α ∧ β)

= f α + YX−1(f )β +X−1(−Y (f )+ f +X(g))β

= f α + gβ.

This is because YX−1(f ) + X−1(−Y (f ) + f ) = 0 which follows from the
commutation relation (45) by multiplying on both sides by X−1. ��

5.4 The classical orbit

Consider the subset J ⊂ AQ/Ẑ
× of classes of adèles modulo Ẑ

×

a = (av), av ∈ Z
∗
v , ∀v �= ∞, a∞ = λ > 0. (49)

A class as in (49) is uniquely determined by λ and will be denoted j (λ) ∈ J . Two
such classes are in the same (classical) orbit for the left action of Q∗ if and only if
they are equal. Thus the structure of ΓQ over a classical orbit is simply that of the
product

ΓQ,cl ! G× R
∗+.

Thus, in order to exploit measure theory and de Rham theory on this plain product
it is enough to supply this description for G foliated by the cosets of the subgroup
a(R). The right action of P+(R) on ΓQ induces on ΓQ,cl the right action

φu,v(x, y) := (x + a(vy), uy) , ∀(x, y) ∈ G× R
∗+,

(
u v

0 1

)

∈ P+(R).

Proposition 5.3

(i) The space ΓQ,cl is locally compact.
(ii) The right action of P+(R) on ΓQ,cl is free and defines a foliation F by Riemann

surfaces isomorphic to H.
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(iii) The foliated space (ΓQ,cl, F ) is, at the measure theory level, a factor of type
II∞.

(iv) The de Rham complex of (ΓQ,cl, F ) is the tensor product of the de Rham
complex of R∗+ by the de Rham complex of the foliation (G,W) of G by the
cosets of the subgroup a(R).

(v) The de Rham cohomology of (G,W) is one dimensional in degree 0 and 1 and
vanishes in higher degrees.

Proof

(i) Follows from the isomorphism ΓQ,cl ! G× R
∗+.

(ii) The freeness of the right action is clear. As in Proposition 5.1 the orbits of
the right action of P+(R) inherit a canonical structure of Riemann surface
isomorphic to H.

(iii) The space of leaves of the foliated space (ΓQ,cl, F ) is the same as for the
foliation of G by the cosets of the subgroup a(R) and is thus the quotient of
the finite adèles Af by the additive subgroup Q. It is thus ergodic of type II∞.

(iv) Follows because the foliation (ΓQ,cl, F ) is the product of (G,W) by the trivial
foliation of R∗+.

(v) Let B be the algebra of functions on G linearly generated by the characters
eq for q ∈ Q. The operator dW of differentiation along the flow lines fulfills
dW (eq) = 2πiq eq . Thus its kernel is one dimensional and spanned by e0. Its
cokernel is given by the linear form L associated with the Haar measure of G,
i.e. L(eq) = 0 for q �= 0 and L(e0) = 1. Thus de Rham cohomology of (G,W)

is one dimensional in degree 0 and 1 and vanishes in higher degrees. ��
Theorem 5.2 Let C = ∫

f (λ)δλ dλ be a continuous divisor on R
∗+ with compact

support. There exists a finite union of graphs G±j of maps g±j

g±j : D±j → R
∗+, D±j ⊂ Ẑ ⊂ G (50)

such that the leafwise discrete divisor D :=∑±G±j is a lift of C.

Proof This follows from Lemma 4.2. ��
We next give a canonical isomorphism of the classical orbit ΓQ,cl with the pro-

étale cover D̃∗ of the punctured open unit disk D
∗ constructed from the projective

system defined as follows

En := D
∗, p(n,m) : Em → En, p(n,m)(z) := za , ∀m = na, z ∈ Em = D

∗

where the indexing set N× is ordered by divisibility. By construction, ΓQ,cl ! G×
R
∗+ is the projective limit

G× R
∗+ = lim←−(Gn, γn,m)× R

∗+ = lim←−H/nZ (51)
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where the projective limit in the right hand side uses the canonical projections
H/mZ→ H/nZ for m = na corresponding to the γn,m,

γn,m : Gm → Gn, γn,m(x +mZ) = x + nZ , ∀n|m

Proposition 5.4 Let D̃∗ := lim←−(En, p(n,m)). The maps en : H/nZ→ D
∗, en(z) =

exp(2πi z
n
) assemble into an isomorphism exp : ΓQ,cl → D̃

∗.

Proof For each integer n the map en : H/nZ→ D
∗ is an isomorphism. One has the

compatibility for m = na

p(n,m)(em(z)) = em(z)
a = exp

(
2πi

az

m

)
= exp

(
2πi

z

n

)
= en(z).

Thus this gives an isomorphism of the projective systems. ��
Remark 5.2 The formulation of Proposition 5.3 does not reflect the additive
structure at the Archimedean place. Instead of J as in (49), one can consider the
subset J̃ ⊂ AQ/Ẑ

× formed of classes of adèles modulo Ẑ
×

a = (av), av ∈ Z
∗
v , ∀v �= ∞.

Then, the value of a∞ gives an isomorphism J̃ ! R and the equivalence for the
multiplicative action of Q∗ is reduced to the orbit of±1. In this way one obtains the
following refinement of ΓQ,cl

Γ̄Q,cl ! (G× R)/± 1 = ΓQ,cl ∪ (G/± 1).

Thus the only additional piece is G/± 1.

6 The moduli space interpretation

In this section we relate the noncommutative space CQ = P(Q)\P(AQ) described
in Section 5 to the GL(2)-system (see [16]). This system was conceived as a higher
dimensional generalization of the BC-system [10] and its main new feature is
provided by its arithmetic subalgebra of modular functions. The classical Shimura
scheme Sh(GL2,H

±) := GL2(Q)\GL2(AQ)/C
× recalled in Section 6.1 appears as

the set of classical points of the noncommutative space Shnc(GL2,H±) underlying
the GL(2)-system. This noncommutative space admits a simple description as the
double quotient

Shnc(GL2,H±) = GL2(Q)\M2(AQ)
•/C×
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obtained by replacing in the construction of Sh(GL2,H
±) the middle term

GL2(AQ) by M2(AQ)
• := M2(AQ,f ) × (M2(R) � {0}) i.e. the space of matrices

(of adèles) with non-zero Archimedean component.
In Section 6.2 we construct a map θ : CQ → Shnc(GL2,H±) using the natural

inclusion P(AQ) ⊂ M2(AQ)
• (Lemma 6.1). The important feature of this inclusion

is that, at the Archimedean place, the inclusion P(R) ⊂ M2(R) � {0}) induces a
bijection of P(R) with the complement of a single point in (M2(R)� {0})/C×.

In Section 6.3 we use the description of the GL(2)-system in terms of Q-
lattices to give a geometric interpretation of a generic element of CQ in terms
of commensurability classes of parabolic Q-lattices. More precisely, we show in
Theorem 6.1 that the space of parabolic Q-lattices, up to commensurability, is
canonically isomorphic to the quotient C o

Q
:= P(Q)\(P (AQ,f )× P(R)).

In Section 6.4 we interpret these results in terms of elliptic curves E endowed
with a triangular structure, i.e. a pair of elements of the Tate module T (E)

fulfilling an orthogonality relation (Definition 6.3). In Theorem 6.2 we prove that
the triangular condition characterizes the range of the map θ . The equivalence
relation of commensurability of Q-lattices is then interpreted in terms of isogenies
of triangular elliptic curves in Section 6.5.

In Section 6.6 we show that the complex structure on CQ inherited from the right
action of P+(R) coincides with the natural complex structure as a moduli space of
elliptic curves. In Section 6.7 we briefly describe the right action of P(Ẑ), while the
boundary cases are described in Section 6.8.

6.1 Notations

In this part we fix the notations for the Shimura scheme Sh(GL2,H
±). The group

GL+2 (R) acts on the complex upper-half plane H by fractional linear transformations

α(z) = az+ b

cz+ d
, ∀α =

(
a b

c d

)

∈ GL+2 (R). (52)

We identify the multiplicative group C
× as the subgroup SO2(R)×R

∗+ ⊂ GL+2 (R)
by the map

a + ib ∈ C
× �→

(
a b

−b a

)

∈ GL+2 (R). (53)

The quotient GL+2 (R)/C× gets thus identified with the upper-half plane H by the
map

α ∈ GL+2 (R) �→ z = α(i) ∈ H. (54)
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In fact, the same map identifies the quotient GL2(R)/C
× with the disjoint union H

±
of the upper and lower half planes. By definition Sh(GL2,H

±) is the quotient

Sh(GL2,H
±) := GL2(Q)\GL2(AQ)/C

× = GL2(Q)\(GL2(AQ,f )×H
±),

(55)
where the left action of GL2(Q) in (GL2(AQ,f )×H±) is via the diagonal embedding
in the product GL2(AQ,f ) × GL2(R). Sh(GL2,H

±) is a scheme over C (see
[38], Remark 2.10) which is the inverse limit of the Shimura varieties obtained as
quotients by compact open subgroups K ⊂ GL2(AQ,f ). The space Sh(GL2,H

±)
has infinitely many connected components. They are the fibers of the map

det×sign : Sh(GL2,H
±)→ Sh(GL1, {±1}), (56)

where the determinant det : GL2(AQ,f )→ GL1(AQ,f ) gives a map to the group of
finite ideles. Passing to the quotient gives a map to the idele class group modulo its
Archimedean component, i.e. here the group Ẑ

×. The fiber of the map (56) over the
point (1, 1) ∈ Sh(GL1, {±1}) is the connected quotient

Sh0(GL2,H
±) := SL2(Q)\(SL2(AQ,f )×H). (57)

By strong approximation (see op.cit. Theorem 1.12) SL2(Q) is dense in SL2(AQ,f ),
thus one derives

Sh0(GL2,H
±) = SL2(Z)\(SL2(Ẑ)×H). (58)

Using the identification SL2(Ẑ) = lim←−N
SL2(Z/NZ), the above quotient is

associated with the modular tower, that is the tower of modular curves. More
precisely, for N ∈ N, let Y (N) = Γ (N)\H be the modular curve of level N , where
Γ (N) is the principal congruence subgroup of Γ = SL2(Z). One has

Sh0(GL2,H
±) = lim←−

N

Γ (N)\H = lim←−
N

Y(N). (59)

6.2 The relation with the GL(2)-system

In the following part we explain the relation between the arithmetic construction of
CQ = P(Q)\P(AQ) and the GL(2)-system. The noncommutative space underlying
the GL(2)-system contains the quotient

Shnc(GL2,H
±) := GL2(Q)\(M2(AQ,f )×H

±), (60)

and enlarges it by taking cusps into account. It is defined as the double quotient
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Shnc(GL2,H±) := GL2(Q)\M2(AQ)
•/C×, (61)

where one sets

M2(AQ)
• := M2(AQ,f )× (M2(R)� {0}).

Next lemma defines a canonical map CQ
θ→ Shnc(GL2,H±)

Lemma 6.1

(i) The inclusion P(R) ⊂ (M2(R) � {0}) induces a bijection of P(R) with the
complement in (M2(R)� {0})/C× of the point∞ given by the class of matrices
with vanishing second line.

(ii) The inclusion P(AQ) ⊂ M2(AQ)
• induces a morphism of noncommutative

spaces

CQ = P(Q)\P(AQ)
θ−→ GL2(Q)\M2(AQ)

•/C× = Shnc(GL2,H±).
(62)

Proof

(i) Note that for real matrices the following implication holds

(
a b

0 1

)

=
(
a′ b′
0 1

) (
x y

−y x

)

%⇒ y = 0 & x = 1 %⇒ a = a′ & b = b′.

Thus the induced map P(R)→ (M2(R)� {0})/C× is injective.
Also, and again for real matrices one has, provided c or d is non-zero

(
a b

c d

)

=
(

ad−bc
c2+d2

ac+bd
c2+d2

0 1

)

×
(
d −c
c d

)

. (63)

Thus all matrices in M2(R) whose second line is non-zero belong to P(R)/C×.
When both c and d are zero, one derives

(
a b

0 0

)

=
(

1 0
0 0

)

×
(

a b

−b a

)

.

This means that when c = d = 0 the right action of C× determines a single
orbit {∞} provided one stays away from the matrix 0. Thus one obtains a
canonical bijection

(M2(R)� {0})/C× = P(R) ∪ {∞}.
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(ii) By construction one has the inclusion P(AQ) ⊂ M2(AQ)
• and moreover the

groups involved on both sides of the double quotient Shnc(GL2,H±) are larger
than those involved on the left hand side, thus one gets the required map θ . ��

The proof of Lemma 6.1 shows that one has the identification

M2(AQ)
•/C× = M2(AQ,f )× (P (R) ∪ {∞}). (64)

By construction, one has the factorization

P(AQ) = P(AQ,f )× P(R).

Thus the map θ as in (62), when considered at the Archimedean place, only misses
the point at infinity of P(R) ∪ {∞}.

6.3 Commensurability classes of parabolic Q-lattices

In this section we give a geometric interpretation of the subspace

C o
Q := P(Q)\(P (AQ,f )× P(R)) ⊂ P(Q)\P(AQ) =: CQ.

To this end, we introduce the notion of parabolic Q-lattice in Definition 6.1.
Then, by implementing the commensurability equivalence relation we provide, in
Proposition 6.1, the geometric description of C o

Q
in terms of commensurability

classes of parabolic Q-lattices. The condition det(g∞) �= 0 which defines the
subspace C o

Q
⊂ CQ is invariant under the left action of P(Q) and defines a dense

open set in the naive quotient topology. One obtains the canonical identification

C o
Q = P+(Q)\(P (AQ,f )× P+(R)). (65)

We recall (see [16], III Definition 3.17) that a two-dimensional Q-lattice is a pair
(Λ, φ) where Λ ⊂ C is a lattice and φ : Q2/Z2 → QΛ/Λ is an arbitrary morphism
of abelian groups. The morphism φ encodes the non-Archimedean components of
the lattice. The action of C× by scaling on Q-lattices is given by

λ(Λ, φ) = (λΛ, λφ) , ∀λ ∈ C
×. (66)

The set of two-dimensional Q-lattices is (see [16], III Proposition 3.37) the quotient
space

Γ \(M2(Ẑ)× GL+2 (R)), (67)
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where Γ = SL2(Z). The set of two-dimensional Q-lattices up to scaling is therefore
identified with

Γ \(M2(Ẑ)× GL+2 (R))/C
× = Γ \(M2(Ẑ)×H). (68)

In this part, we provide the details of this identification. We use, as in op.cit. the
basis {e1 = 1, e2 = −i} of C as a two-dimensional R-vector space to let GL2(R)

act on C as R-linear transformations. More precisely,

α(xe1 + ye2) = (ax + by)e1 + (cx + dy)e2, α =
(
a b

c d

)

∈ GL2(R). (69)

Every two-dimensional Q-lattice (Λ, φ) can then be described by the data

(Λ, φ) = (α−1Λ0, α
−1ρ), Λ0 := Ze1 + Ze2 = Z+ iZ (70)

for some α ∈ GL+2 (R) and some ρ ∈ M2(Ẑ) unique up to the left diagonal action
of Γ = SL2(Z). Let us explain the notation α−1ρ used in (70). The action of Z
by multiplication on the abelian group Q/Z extends to an isomorphism of rings
Ẑ = Hom(Q/Z,Q/Z) and M2(Ẑ) = Hom(Q2/Z2,Q2/Z2). This gives meaning to
the notation ax ∈ Q/Z for a ∈ Ẑ and x ∈ Q/Z. We associate with ρ ∈ M2(Ẑ) the
map

ρ : Q2/Z2 → QΛ0/Λ0, ρ(u) = ρ1(u)e1 + ρ2(u)e2, (71)

where ρ1(u) = ax + by and ρ2(u) = cx + dy for u = (x, y) ∈ Q
2/Z2. The action

of ρ is similar to the action of α as in (69)

ρ((x, y)) = (ax + by)e1 + (cx + dy)e2 , ∀(x, y) ∈ (Q/Z)2,

ρ =
(
a b

c d

)

∈ M2(Ẑ). (72)

To understand the extra structure on Q-lattices which reduces the group GL(2) down
to the parabolic subgroup P , we first consider the Archimedean component. The
natural characterization of the subgroup P+(R) ⊂ GL+2 (R) is that its elements g
fulfill τ ◦ g = τ , where τ is the projection on the imaginary axis

τ : xe1 + ye2 �→ ye2, τ =
(

0 0
0 1

)

.

For z = x + iy ∈ C, we let 	(z) := y denote the imaginary part of z, thus with
our choice of basis one has 	(xe1 + ye2) = −y: we shall keep track of this minus
sign here below. This projection defines (Lemma 6.2 (ii)) a character of the elliptic
curve E = C/Λ where the lattice Λ is of the form
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Λ = α−1Λ0, Λ0 := Ze1 + Ze2 = Z+ iZ. (73)

We define the orthogonal of a lattice Λ by the formula

Λ⊥ = {z ∈ C |< z, z′ >∈ Z,∀z′ ∈ Λ}.

Here we use the standard non-degenerate pairing defining the duality, given by

< z, z′ >:= �(zz̄′) = xx′ + yy′, ∀z = x + iy, z′ = x′ + iy′.

Lemma 6.2 Let Λ = α−1Λ0 be a Q-lattice, with α ∈ P(R). Then

(i) 	(Λ) = Z.
(ii) The linear map 	 induces a group homomorphism 	 : E → R/Z from the

elliptic curve E = C/Λ to the abelian group U(1) := R/Z, i.e. a character of
the abelian group E.

(iii) The orthogonal lattice Λ⊥ contains the vector e2.

Proof

(i) One has the implications

α =
(
a b

0 1

)

⇒ αt =
(
a 0
b 1

)

⇒ αte2 = e2,

thus αt , the transpose of the matrix α, fulfills αte2 = e2 and

	(Λ) =< Λ, e2 >=< α−1Λ0, α
t e2 >=< Λ0, e2 >= Z.

(ii) For ξ ∈ E = C/Λ the value 	ξ is meaningful modulo 	(Λ) = Z, thus the
group homomorphism 	 : E → R/Z is well defined.

(iii) For Λ as in (73), Λ⊥ = αtΛ0. This follows from Λ0 = Λ⊥0 and

< α−1ξ, η >=< ξ, (α−1)tη >, (α−1)tη ∈ Λ0 ⇐⇒ η ∈ αtΛ0.

Then the orthogonal lattice always contains the vector e2, since one has αte2 =
e2. ��

Next, we restrict the homomorphisms φ for Q-lattices (Λ, φ) in the same way
as we restricted the lattices in Lemma 6.2. From (72) and the definition of P(R) in
(38), one has

ρ ∈ P(Ẑ) ⇐⇒ ρ2(u) = y , ∀u = (x, y) ∈ Q
2/Z2. (74)

To write this condition in terms of φ : Q2/Z2 → QΛ/Λ, with φ = α−1ρ and for
Λ = α−1Λ0, α ∈ P(R), we use the character χ = −	 : E → R/Z (sending
torsion points to torsion points). One has χ ◦ α−1 = χ , since α−1 ∈ P(R) and
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χ ◦ φ : Q2/Z2 → Q/Z, χ ◦ φ = χ ◦ α−1 ◦ ρ = χ ◦ ρ = ρ2.

One thus obtains

χ ◦ φ = ρ2. (75)

Lemma 6.3 Let (Λ, φ) be a two-dimensional Q-lattice described by data (Λ, φ) =
(α−1Λ0, α

−1ρ), for some α ∈ GL+2 (R) and some ρ ∈ M2(Ẑ). Then,

(ρ, α) ∈ Γ \
(
P(Ẑ)× P+(R)

)
⇐⇒ 	(Λ) = Z & χ ◦ φ(u) = y,

∀u = (x, y) ∈ Q
2/Z2 (76)

where χ : C/Λ→ R/Z is given by χ = −	 and Γ = SL2(Z) acts diagonally.

Proof By Lemma 6.2, one has α ∈ P(R) ⇒ 	(Λ) = Z. Moreover, it follows

from the above discussion that ρ ∈ P(Ẑ) is equivalent to ρ2(u) = y, thus one
gets χ ◦ φ(u) = y for any u = (x, y) ∈ Q

2/Z2. This shows the implication
⇒ in (76), since the Q-lattice (Λ, φ) associated with (ρ, α) only depends upon
the orbit of this pair under the left diagonal action of Γ = SL2(Z). The character
χ : C/Λ → R/Z is induced by −	 : C → R and only depends upon the lattice
Λ so that the conditions on the right hand side of (76) only depend on the Q-lattice
(Λ, φ).

Conversely, let us now assume that these conditions hold. The condition 	(Λ) =
Z means that e2 ∈ Λ⊥ is not divisible, i.e. e2 does not belong to any multiple
of Λ⊥. It follows (using Bezout’s theorem) that there exists ξ ∈ Λ⊥ such that
Zξ + Ze2 = Λ⊥. Define β ∈ GL+2 (R) as β(e1) = ±ξ and β(e2) = e2. One has
Λ⊥ = β(Λ0) by construction and thus one derives

Λ = (Λ⊥)⊥ = (β(Λ0))
⊥ = (βt )−1Λ0.

For β =
(
a b

c d

)

∈ GL+2 (R), one derives from (69), β(e2) = be1 + de2 and thus

β(e2) = e2 is equivalent to b = 0 and d = 1. In turns these conditions mean that
α′ = βt ∈ P+(R). In this way we have proven that, using the condition 	(Λ) = Z,
we can find α′ ∈ P+(R) such that Λ = α′−1Λ0. The equality α′−1Λ0 = α−1Λ0
shows that γ = α′α−1 ∈ Γ = SL2(Z) and γα ∈ P+(R). Thus by replacing (ρ, α)

with (γρ, γ α) we can assume that (Λ, φ) = (α−1Λ0, α
−1ρ), with α ∈ P+(R).

The second hypothesis χ ◦ φ(u) = y , ∀u = (x, y) ∈ Q
2/Z2 implies, using (75),

that ρ2(u) = y , ∀u = (x, y) ∈ Q
2/Z2 and thus, by (74), that ρ ∈ P(Ẑ). ��
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Fig. 6 A parabolic lattice

y=1

y=0

x=0

Definition 6.1 A parabolic two-dimensional Q-lattice is a Q-lattice of the form

(Λ, φ) = (α−1Λ0, α
−1ρ), where ρ ∈ P(Ẑ) and α ∈ P+(R).

We say that a parabolic Q-lattice (Λ, φ) is degenerate when ρ1 = 0.

Notice that for a parabolic two-dimensional Q-lattice (Figure 6), the pair (ρ, α) such
that (Λ, φ) = (α−1Λ0, α

−1ρ) is unique up to the diagonal action of Γ ∩ P+(R) =
P+(Z) ! Z. Thus the space of parabolic two-dimensional Q-lattices is described
by the quotient

Π := P+(Z)\(P (Ẑ)× P+(R)). (77)

Remark 6.1

1. When the parabolic two-dimensional Q-lattice (Λ, φ) is degenerate, there exists

a unique α ∈ P+(R) such that (Λ, φ) = (α−1Λ0, α
−1p), where p =

(
0 0
0 1

)

∈

P(Ẑ).
2. Let Λ ⊂ C be a Q-lattice such that 	(Λ) = Z, then Λ is characterized by the

following arithmetic progression in R with associated lattice L = Λ ∩ R

A = prog(Λ) := {u ∈ R | i + u ∈ Λ}. (78)

Let (Λ, φ) = (α−1Λ0, α
−1ρ) be a parabolic Q-lattice, with α =

(
y x

0 1

)

∈
P+(R). Then one has prog(Λ) = y−1(Z+ x), with L = y−1

Z. The pair (L, ξ),
with ξ : Q/Z→ R/L, ξ(u) := φ(u, 0) determines a one dimensional Q-lattice
(L, ξ).

The next step we undertake is to describe the meaning of commensurability for
parabolic Q-lattices. We recall from [16] the following (see Definition 3.17)
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Definition 6.2 Two Q-lattices are said to be commensurable ((Λ1, φ1) ∼ (Λ2, φ2))
when

QΛ1 = QΛ2 and φ1 = φ2 mod. Λ1 +Λ2. (79)

Commensurability is an equivalence relation ([16] Lemma 3.18). By applying
Proposition 3.39 of op.cit., the space of commensurability classes of two-
dimensional Q-lattices up to scaling is given by the quotient space

GL+2 (Q)\(M2(AQ,f )×H) (80)

here GL+2 (Q) acts diagonally by (ρ, z) �→ (gρ, g(z)). We then continue by
providing the description of the orbits for this action. Let us first consider the orbit
of Λ0 := Ze1 + Ze2 = Z+ iZ.

Lemma 6.4 Let g ∈ GL2(Q) and assume that Λ = gΛ0 fulfills 	Λ = Z. Then
there exist h ∈ P(Q) and k ∈ Γ = SL2(Z) such that g = hk.

Proof For g =
(
a b

c d

)

∈ GL2(Q), one then obtains

g(xe1 + ye2) = (ax + by)e1 + (cx + dy)e2, 	(g(xe1 + ye2)) = −(cx + dy).

Thus 	Λ = Z means that c, d ∈ Z and they are relatively prime. Let then u, v ∈ Z

be such that cu+ dv = 1. Set w =
(
d u

−c v
)

, then one has w ∈ Γ and

gw =
(
ad − bc au+ bv

0 cu+ dv

)

=
(
ad − bc au+ bv

0 1

)

∈ P(Q).

Thus by taking h = gw and k = w−1 one obtains the required factorization. ��
We recall ([16], Sect. III.5) that the equivalence relation of commensurability on

the space of two-dimensional Q-lattices is induced by the partially defined action of
GL+2 (Q). Indeed, for g ∈ GL+2 (Q) and (Λ, φ) = (α−1Λ0, α

−1ρ) such that gρ ∈
M2(Ẑ), the Q-lattice (α−1g−1Λ0, α

−1ρ) is commensurable to (Λ, φ). Moreover all
Q-lattices commensurable to a given (Λ, φ) are of this form. Here we used, as done
above, the description of two-dimensional Q-lattices as

Γ \(M2(Ẑ)× GL+2 (R)), (ρ, α) �→ (Λ, φ) = (α−1Λ0, α
−1ρ).

We can now state the following key result on commensurability

Theorem 6.1

(i) Two parabolic two-dimensional Q-lattices (Λj , φj ) = (α−1
j Λ0, α

−1
j ρj ), j =

1, 2, with ρj ∈ P(Ẑ) and αj ∈ P+(R) are commensurable (as Q-lattices) if
and only if there exists g ∈ P+(Q) such that ρ2 = gρ1 and α2 = gα1.
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(ii) The space of parabolic Q-lattices up to commensurability is canonically
isomorphic to the quotient C o

Q
as in (65).

Proof

(i) Since P+(Q) ⊂ GL+2 (Q), the existence of g ∈ P+(Q) with ρ2 = gρ1 and α2 =
gα1 implies the commensurability. Conversely, if two parabolic Q-lattices are
commensurable, there exists g ∈ GL+2 (Q) such that ρ2 = gρ1 and α2 = gα1.
Because P+(R) is a group and αj ∈ P+(R), one gets g ∈ P+(R) and thus
g ∈ GL+2 (Q) ∩ P+(R) = P+(Q).

(ii) Let h =
(
a b

0 1

)

∈ P(AQ,f ). We show that there exists g ∈ P+(Q) such that

gh ∈ P(Ẑ). Let α ∈ Q
×+ such that αa ∈ Ẑ. Since Ẑ is open and Q is dense in

AQ,f with Ẑ+Q = AQ,f , there exists β ∈ Q such that αb + β ∈ Ẑ. One then
derives

(
α β

0 1

)(
a b

0 1

)

=
(
αa αb + β

0 1

)

∈ P(Ẑ).

It follows that all the left P+(Q) orbits of elements of P(AQ,f ) × P+(R)
intersect the open subset P(Ẑ) × P+(R) whose elements yield parabolic Q-
lattices. Thus by applying (i) one obtains the required isomorphism. ��

Remark 6.2 From the point of view of noncommutative geometry, the quotient
space derived by applying the commensurability relation on the space (77) of
parabolic Q-lattices is best described by considering the crossed product, in the
sense of [33],[39], by the Hecke algebra of double classes of the subgroup P+(Z) ⊂
P+(Q). We find quite remarkable (and encouraging) that this Hecke algebra is
precisely the one on which the BC-system is based.

6.4 CQ and ΓQ as moduli spaces of elliptic curves

In this section we use the description of Shnc(GL2,H
±) as a moduli space of elliptic

curves to obtain a similar interpretation for the spaces CQ = P(Q)\P(AQ) and
ΓQ = P(Q)\P(AQ)/Ẑ

×. We first formulate Lemma 6.3 in terms of the global Tate
module2 of the elliptic curve E = C/Λ. For the theory developed in this paper, we
think of the global Tate module as the abelian group

T E = Hom(Q/Z, Etor) . (81)

2The global Tate module T E is best described at the conceptual level as the pro-etale fundamental
group π

alg
1 (E, 0), where E is viewed as a curve over C. Given ρ ∈ Hom(Q/Z, Etor) the

corresponding element of πalg
1 (E, 0) is given by the (ρ( 1

n
))n∈N.
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We denote by Etor = QΛ/Λ the torsion subgroup of the elliptic curve E. In this
way, the morphism φ in the definition of a two dimensional Q-lattice is now seen as
the map φ : Q2/Z2 → Etor. By applying the covariant functor T := Hom(Q/Z,−),
we rewrite φ as a Ẑ-linear map

T (φ) : Ẑ⊕ Ẑ→ T E, (82)

that is given by a pair of elements (ξ, η) of T E. The character χ : C/Λ → U(1)
induces a homomorphism of torsion subgroups χ : Etor → Q/Z, and by applying
Hom(Q/Z,−), we obtain a morphism

T (χ) : T E → Ẑ.

The following result characterizes the parabolic Q-lattices among two dimensional
Q-lattices.

Proposition 6.1 Let (Λ, φ) be a two-dimensional Q-lattice, E = C/Λ the
associated elliptic curve, and (ξ, η) the related pair of points in the total Tate module
T E. Then (Λ, φ) is a parabolic Q-lattice if and only if

	(Λ) = Z & T (χ)(ξ) = 0, T (χ)(η) = Id, for χ = −	. (83)

Proof The result follows from Lemma 6.3, using the faithfulness of the functor T
in the form

h ∈ Hom(Q/Z,Q/Z) & T (h) = 0 ⇒ h = 0.

This is clear, by using T (h)(Id) = h. ��
Given two elliptic curves E = C/Λ and E′ = C/Λ′, an isomorphism j : E →

E′ is given by the multiplication map by λ ∈ C
×, such that Λ′ = λΛ. It follows that

the elliptic curve E endowed with the pair (ξ, η) ∈ T (E) associated with a two-
dimensional Q-lattice (Λ, φ) determines the latter up to scale. In particular, passing
from a parabolic Q-lattice to the associated triple (E; ξ, η) is equivalent to assigning
the map θ from parabolic Q-lattices to Q-lattices up to scale

P+(Z)\(P (Ẑ)× P+(R)) θ−→ Γ \(M2(Ẑ)× GL+2 (R))/C
×. (84)

Remark 6.3 If one ignores the non-Archimedean components, the map θ restricts
to the map θ∞ : P+(Z)\P+(R) → Γ \GL+2 (R)/C× induced by the inclusion
P+(R) ⊂ GL+2 (R)/C×. Notice that this restriction is far from being injective.
Indeed, let α ∈ P+(R) and γ ∈ Γ . Let γα = α′λ be the PC

× decomposition
of γα as in (63). Then α′ ∈ P+(R) and θ∞(α′) = θ∞(α), while α′ /∈ P+(Z)α,
unless γ ∈ P+(Z).
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Next proposition shows that the implementation of the non-Archimedean com-
ponents makes θ injective except in a well understood case, corresponding to the
vanishing of the non-Archimedean components.

Proposition 6.2 The natural map θ as in (84) is injective except when the parabolic
Q-lattices are degenerate (Definition 6.1). Furthermore, the following formula
defines a free action of Z on the degenerate parabolic Q-lattices, whose orbits are
the fibers of the map θ

τ(c)(p, α) = (p, tc(α)), tc(α) =
(

1 0
c 1

)

α (1+ cz̄)−1 , ∀c ∈ Z. (85)

Here, p =
(

0 0
0 1

)

∈ P(Ẑ), α =
(
y x

0 1

)

∈ P+(R), and z = x + iy ∈ C.

Proof We first test the injectivity of θ . Let (ρ, α) and (ρ′, α′) be elements of P(Ẑ)×
P+(R) and assume that one has an equality of the form

(ρ′, α′) = γ (ρ, αλ), γ ∈ Γ, λ ∈ C
×.

Let γ =
(
a b

c d

)

and ρ =
(
u v

0 1

)

. One has γρ = ρ′ ∈ P(Ẑ) and thus cu = 0. This

implies that either c = 0 or u = 0, since c ∈ Z and u ∈ Ẑ.
Assume first that c = 0. Then γρ = ρ′ implies d = 1 and it follows that a = 1 so

that γ ∈ P+(Z). Then the equality γαλ = α′ implies λ ∈ P(R) and since λ ∈ C
×,

one concludes that λ = 1 and γα = α′. This shows that (ρ, α) and (ρ′, α′) are equal

in P+(Z)\(P (Ẑ)× P+(R)).
Assume now that c �= 0. Then one has u = 0. Moreover since γρ = ρ′ ∈ P(Ẑ)

one gets cv + d = 1. This gives v = (1 − d)/c and since v ∈ Ẑ and c, d ∈ Z

one gets that v ∈ Ẑ ∩ Q = Z. Then, by replacing (ρ, α) with δ(ρ, α), where

δ =
(

1 −v
0 1

)

one obtains the equality, in P+(Z)\(P (Ẑ) × P+(R)) of (ρ, α), with

an element of the form (p, α′′). It remains to see when two such elements are equal
in Γ \(M2(Ẑ)×GL+2 (R))/C×. Thus we now assume that ρ = ρ′ = p. The equality
γρ = ρ′ now means that b = 0 and d = 1. But since γ ∈ Γ one gets also that a = 1

and thus γ =
(

1 0
c 1

)

. Now by (63) there exists uniquely α′′ ∈ P(R) and λ′ ∈ C
×

such that γα = α′′λ′ and the equality (ρ′, α′) = γ (ρ, αλ) shows that α′ = α′′ and
λ′ = λ−1. One has

γα =
(

1 0
c 1

)

α =
(

1 0
c 1

)(
y x

0 1

)

=
(
y x

yc xc + 1

)

= α′
(
xc + 1 −yc
yc xc + 1

)

= α′(1+ cz̄).
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Thus α′ = tc(α). The first line of tc(α) is

(
y

y2c2 + (xc + 1)2 ,
(x2 + y2)c + x

y2c2 + (xc + 1)2

)

and one has tc′+c(α) = tc′(tc(α)) for all c, c′ ∈ Z since

(
1 0

c′ + c 1

)

α =
(

1 0
c′ 1

)

γα =
(

1 0
c′ 1

)

α′(1+ cz̄) ∈ tc′(tc(α))C
×.

By construction, the map θ is invariant under left multiplication by Γ and right

multiplication by C
×, thus one has, with γ =

(
1 0
c 1

)

∈ Γ , and z = x + iy

θ((p, α)) = θ((γp, γ α)) = θ((p, α′(1+ cz̄))) = θ((p, α′)) = θ(τ (c)(p, α)).

Finally, we claim that the pairs (p, tc(α)) for c ∈ Z are all distinct elements of

P+(Z)\(P (Ẑ)×P+(R)). Indeed, if (p, tc(α)) = u(p, tc′(α)) for some u ∈ P+(Z)
the equality up = p implies u = 1, thus it is enough to show that the tc(α) are all
distinct. But since y �= 0, the equality tc(α) = tc′(α) implies in particular (x2 +
y2)c = (x2 + y2)c′ and hence c = c′. ��

Next, we associate a character χ ∈ Hom(E,R/Z), unique up to sign, with certain
elements of T (E).

Lemma 6.5 Let ξ be an element of the total Tate module T E of the elliptic curve
E = C/Λ. Let

ξ⊥ := {χ ∈ Hom(E,R/Z) | T (χ)(ξ) = 0} ⊂ Hom(E,R/Z) ! Λ⊥.

Then if ξ �= 0 and ξ⊥ �= {0} one has ξ⊥ = Zα, for a primitive character α unique
up to sign.

Proof By fixing a basis of Hom(E,R/Z) ! Λ⊥ we may identify

T E = Ẑ× Ẑ, ξ = (u, v), ξ⊥ = {(n,m) ∈ Z
2 | nu+mv = 0}.

Since ξ �= 0, let � be a prime such that (u�, v�) �= (0, 0). Then since ξ⊥ �= {0} there
exists relatively prime integers (n,m) �= (0, 0) such that nu� + mv� = 0 and any
solution of n′u� + m′v� = 0 is a multiple of (n,m). If nu + mv = 0 in Ẑ one has
ξ⊥ = {k(n,m) | k ∈ Z}. Otherwise, there exists �′ such that nu�′ +mv�′ �= 0. Then
k(nu�′ + mv�′) �= 0 for any k �= 0 and this contradicts ξ⊥ �= {0}. This shows that
ξ⊥ = Zα, where α = (n,m). Uniqueness up to sign is clear. ��
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Next result gives an intrinsic description of the range of the map θ in terms of
the geometric interpretation of Q-lattices up to scale given in terms of an elliptic
curve E, and a pair of points ξ = (ξ1, ξ2) in the total Tate module T E (see also
Proposition 3.38 of [16]).

Theorem 6.2 Let E be an elliptic curve together with a pair of elements (ξ, η)

of the total Tate module T E. Assume ξ �= 0. Then the corresponding Q-lattice
belongs to the range of the map θ if and only if one has < ξ⊥, η >= Z, where
< ξ⊥, η >:= {T (χ)(η) | χ ∈ ξ⊥} ⊂ Ẑ.

Proof Assume first that the datum (E; ξ, η) arises from a Q-lattice (Λ, φ) =
(α−1Λ0, α

−1ρ), where ρ ∈ P(Ẑ) and α ∈ P+(R). The action of ρ is given in
(72). This determines

ξ ∈ Hom(Q/Z, Etor), ξ(x) = α−1(axe1 + cxe2) ∈ QΛ/Λ = Etor

and similarly

η ∈ Hom(Q/Z, Etor), η(y) = α−1(bye1 + dye2) ∈ QΛ/Λ = Etor.

Since ρ ∈ P(Ẑ), one has c = 0 and thus T (χ)(ξ) = 0, where the character χ of
E is associated with the element αt (e2) = e2 of the dual lattice Λ⊥. Since χ is
primitive and ξ �= 0 one has ξ⊥ = Zχ . Since d = 1 one gets that χ ◦ η(y) = y

for all y ∈ Q/Z and thus one obtains < ξ⊥, η >= Z as required. Conversely,
let us assume that (E; ξ, η) fulfill ξ �= 0 and < ξ⊥, η >= Z. By Lemma 6.5
one has ξ⊥ = Zχ , for a primitive character χ unique up to sign. Moreover since
< ξ⊥, η >= Z one can choose the sign in such a way that T (χ)(η) = 1. Consider
the pair (E, χ) of the elliptic curve E and the primitive character χ . Let E = C/Λ,
then χ ∈ Λ⊥, and using the scaling action of C×, we can assume that χ = e2.
Since χ is primitive one has 	(Λ) = Z and the linear map −	 induces the group
morphism χ : C/Λ → R/Z. We also have T (χ)(ξ) = 0 and T (χ)(η) = 1 so
that Proposition 6.1 applies showing that the Q-lattice (Λ, φ), with φ = (ξ, η) is
parabolic. Thus (E; ξ, η) is in the range of the map θ . ��
Definition 6.3 A triangular structure on an elliptic curve E is a pair (ξ, η) of
elements of the Tate module T (E), such that ξ �= 0 and < ξ⊥, η >= Z.

In the following, we shall abbreviate “elliptic curve with triangular structure” by
“triangular elliptic curve.”

By Proposition 3.38 of [16] a triangular elliptic curve corresponds to a Q-lattice
(Λ, φ) unique up to scale, and by Proposition 6.2 this datum corresponds to a unique
parabolic Q-lattice which we call the associated Q-lattice.
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6.5 Commensurability and isogenies

We recall that an isogeny from an abelian variety A to another B is a surjective
morphism with finite kernel. In this section we describe how a triangular structure
behaves under isogenies. At the geometric level, the commensurability relation is
obtained from the following notion of isogeny between triangular elliptic curves

Definition 6.4 An isogeny f : (E, ξ, η)→ (E′, ξ ′, η′) of triangular elliptic curves
is an isogeny f : E → E′ such that T (f )(ξ) = ξ ′ and T (f )(η) = η′.

For ordinary isogenies, one can use the dual isogeny to show that the existence of an
isogeny E → E′ is a symmetric relation. This result uses the fact that multiplication
by a positive integer n is an isogeny. In our setup the multiplication by n gives
ξ ′ = nξ and η′ = nη. This modification does not alter the orthogonal, i.e. one
has ξ ′⊥ = ξ⊥. But one has < ξ ′⊥, η′ >= nZ, thus the triangular condition is not
fulfilled unless n = ±1.

The following result determines the equivalence relation generated by isogenies

Proposition 6.3 Let (E; ξ, η) and (E′; ξ ′, η′) be two triangular elliptic curves and
(Λ, φ) and (Λ′, φ′) the associated parabolic Q-lattices.

(i) Let f : (E; ξ, η) → (E′; ξ ′, η′) be an isogeny of triangular elliptic curves.
Then Λ ⊂ Λ′, f : C/Λ → C/Λ′ is the map induced by the identity and
φ′ = f ◦ φ.

(ii) The parabolic Q-lattices (Λ, φ) and (Λ′, φ′) are commensurable if and only if
there exist two isogenies f : (E, ξ, η)→ (E′′, ξ ′′, η′′) and f ′ : (E′, ξ ′, η′)→
(E′′, ξ ′′, η′′) to the same triangular elliptic curve.

Proof

(i) By definition, an isogeny f : E → E′ is a holomorphic group morphism
f : C/Λ → C/Λ′, f (z) = λz, ∀z ∈ C, where the complex number λ is such
that λΛ ⊂ Λ′. The characters χ and χ ′ uniquely determined by the triangular
structure are given in both cases by minus the imaginary part, and one has
χ ′ ◦ f = χ . This shows that, modulo Z, one has 	(λz) = 	(z) for all z ∈ C,
i.e. 	((λ − 1)C) ⊂ Z. Thus λ = 1, Λ ⊂ Λ′, and f is the map induced by the
identity.

(ii) By applying Definition 6.2, when the two Q-lattices Λ1 = Λ, Λ2 = Λ′ are
parabolic, one derives

	(Λj ) = Z & χ ◦ φj (u) = y , ∀u = (x, y) ∈ Q
2/Z2

for the character χ = −	. Then the lattice Λ′′ = Λ1 +Λ2 fulfills 	(Λ′′) = Z

and the quotient maps fj : C/Λj → C/Λ′′ fulfill χ ◦ fj = χ , since for z ∈ C

one has 	(z+Λj) = 	(z)+Z = 	(z+Λ′′). It follows that the two equal maps
φ := fj ◦ φj fulfill the condition
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χ ◦ φ(u) = y , ∀u = (x, y) ∈ Q
2/Z2,

so that the pair (Λ′′, φ) is a parabolic Q-lattice. Thus the inclusions Λj ⊂ Λ′′
induce isogenies to the same triangular elliptic curve as required. To prove the
converse it is enough, using the transitivity of the commensurability relation
for Q-lattices, to show that if f : (E, ξ, η) → (E′, ξ ′, η′) is an isogeny of
triangular elliptic curves the associated Q-lattices are commensurable. This fact
follows from (i). ��

6.6 The complex structure

Proposition 6.2 states that the natural map θ as in (84) from parabolic Q-lattices to
Q-lattices up to scale is injective except in the degenerate case. Thus θ provides, by
pull back, a large class of functions, by implementing the arithmetic subalgebra of
the GL2-system ([16] Chapter 3, §7). The functions in this algebra are holomorphic
for the natural complex structure on the moduli space of elliptic curves and in
this section we compare this complex structure with the one on the space Π =
P+(Z)\(P (Ẑ)×P+(R)) defined using the right action of P+(R) (Proposition 5.1).

We recall that the complex structure on the moduli space of elliptic curves is
obtained by comparing two descriptions of the quotient space GL+2 (R)/C×. The
first one identifies GL+2 (R)/C× with the complex upper-half plane H via the map

C : α ∈ GL+2 (R) �→ z = α(i) = ai + b

ci + d
∈ H. (86)

The second description derives from the space B/C× of pairs (ξ1, ξ2) of R-
independent elements of C up to scale. The maps

r : B/C× → H
± = H ∪ −H, r(ξ1, ξ2) = −ξ2/ξ1 ∈ C \ R = H

± (87)

and

B : GL+2 (R)→ B/C×, B(α) = (α−1e1, α
−1e2), (88)

fulfill r ◦B = C. Indeed, both maps only depend on the right coset in GL+2 (R)/C×.
The right C×-coset associated with z = x + iy ∈ H contains, in view of (86), the
matrix

α =
(
y x

0 1

)

∈ GL+2 (R).
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One can replace α−1 = y−1
(

1 −x
0 y

)

, up to scale, by g =
(

1 −x
0 y

)

and obtain

g(e1) =
(

1 −x
0 y

) (
1
0

)

= e1 = 1, g(e2) =
(

1 −x
0 y

) (
0
1

)

= −xe1 + ye2 = −z.

This shows that r ◦ B = C. Notice that it is meaningless to use the action of
GL+2 (R) on the elements (ξ1, ξ2) of a basis because this action does not commute
with scaling.

Next, we consider the complex structure on Π = P+(Z)\(P (Ẑ) × P+(R)) as
defined in Lemma 5.3, namely by means of the “dbar” operator ∂x+i∂y and in terms

of the map ι of (39), i.e. of the matrix

(
y x

0 1

)

∈ P+(R). The above calculation then

shows that this complex structure is identical to the canonical complex structure on
the moduli space of elliptic curves. We now verify that this complex structure can
also be described, as in Proposition 5.1, using the right action of P+(R) on Π .

The “dbar” operator for the latter structure is defined by X + iY , where the two
vector fields X, Y on Π are defined as X = y∂x and Y = y∂y , corresponding to the
Lie algebra elements of the one parameter subgroups u(ε) for X

ε �→ u(ε) :=
(

0 ε

0 1

)

,

(
y x

0 1

)

u(ε) =
(
y x + yε

0 1

)

and v(ε) for Y

ε �→ v(ε) :=
(
eε 0
0 1

)

,

(
y x

0 1

)

v(ε) =
(
yeε x

0 1

)

.

The comparison of the complex structures is summarized in the following statement

Proposition 6.4 The natural map from parabolic Q-lattices to Q-lattices up to
scale

θ : Π → Γ \(M2(Ẑ)× GL+2 (R))/C
× (89)

is holomorphic for the canonical complex structure on the moduli space of elliptic
curves and the complex structure on Π associated with the right action of P+(R).

Proof It suffices to check that (X+iY )(f ) = 0, where the function f is the pullback
by θ of the local parameter z ∈ H = GL+2 (R))/C×. This fact follows from the direct
computation

f

(
y x

0 1

)

= x + iy, (X + iY )(f ) = y∂x(x + iy)+ iy∂y(x + iy) = 0.

��
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6.7 The right action of P(Ẑ)

In order to pass from CQ = P(Q)\P(AQ) to ΓQ = P(Q)\P(AQ)/Ẑ
× one

needs to divide the component in the adèle class space by the action of Ẑ
×

given by multiplication. This action is induced by the right action of Ẑ
× on

Π = P+(Z)\(P (Ẑ) × P+(R)), and it is meaningful even before passing to
commensurability classes. In this section we provide its geometric meaning in
terms of parabolic Q-lattices. It turns out that this is the special case (obtained by
restricting to the subgroup Ẑ

× ⊂ P(Ẑ) of diagonal matrices) of the right action of
P(Ẑ) on Π , whose geometric meaning is given in the following Proposition 6.5.

Proposition 6.5 Let (E; ξ, η) be a triangular elliptic curve and (Λ, φ) the asso-

ciated Q-lattice. Its image, under the right action of w =
(
u v

0 1

)

∈ P(Ẑ), is the

triangular elliptic curve (E; ξ ′, η′) where ξ ′ = ξ ◦ u and η′ = η + ξ ◦ v.

Proof Note that the condition < ξ⊥, η >= Z of Theorem 6.2 still holds for the
transformed pair (E; ξ ′, η′), since (ξ ◦ u)⊥ = ξ⊥ and < ξ⊥, ξ ◦ v >= 0. For

ρ =
(
a b

0 1

)

∈ P(Ẑ), one has

ξ(x) = α−1(axe1) ∈ QΛ/Λ, η(y) = α−1(bye1 + ye2) ∈ QΛ/Λ

and for w =
(
u v

0 1

)

∈ P(Ẑ), one obtains

(
a b

0 1

) (
u v

0 1

)

=
(
au av + b

0 1

)

=
(
a′ b′
0 1

)

.

Thus the right action of w determines the new pair (ξ ′, η′)

ξ ′(x) = α−1(auxe1) ∈ QΛ/Λ, η′(y) = α−1(bye1+ye2)+α−1(avxe1) ∈ QΛ/Λ,

and one concludes ξ ′ = ξ ◦ u and η′ = η + ξ ◦ v. ��

6.8 Boundary cases

Theorem 6.2 and Proposition 6.2 show that triangular elliptic curves are classified
by the subspace
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Π ′ := P+(Z)\
{

(ρ, α) ∈ P(Ẑ)× P+(R) | ρ =
(
u v

0 1

)

, u �= 0

}

⊂ Π.

The condition u �= 0 in this definition is meaningful in the quotient since the left
action of P+(Z) leaves u unaltered. Assume now that u = 0 and v /∈ Z. Then,
with the notations of Proposition 6.2, ρ /∈ P+(Z)p. This result thus shows that the
corresponding triple (E; ξ, η) still characterizes the element of Π . One has ξ = 0
since ρ(x, 0) = uxe1 = 0, moreover one also gets ρ(0, y) = vye1 + ye2. Let χ be
a character of E, then χ = αt (ne1+me2), with n,m ∈ Z. Thus T (χ)(η) = nv+m.
Since v /∈ Z, while v ∈ Ẑ, one derives v /∈ Q. Thus χ = αt (e2) is the only character
which takes the value 1 on η, i.e.

∃!χ ∈ ξ⊥ such that T (χ)(η) = 1. (90)

Note that if (90) holds, then, when ξ �= 0, Lemma 6.5 shows that there exists a
primitive character χ0 of E with ξ⊥ = Zχ0. Since χ ∈ ξ⊥, one thus gets χ = nχ0
for some n ∈ Z. Thus T (χ)(η) = nT (χ0)(η) and nT (χ0)(η) = 1. But T (χ0)(η) ∈
Ẑ and one then gets n = ±1. This shows that one can refine the definition of a
triangular structure using (90) in place of the condition

ξ �= 0 & < ξ⊥, η >= Z.

Thus, the case u = 0 (i.e. ξ = 0) and v /∈ Z is covered by the following

Definition 6.5 A degenerate triangular structure on an elliptic curve E is a pair
(χ, η) of a character χ : E → R/Z and an element η ∈ T (E) with T (χ)(η) = 1.

This notion also covers the case u = v = 0, i.e. of degenerate parabolic Q-lattices.
Indeed, in this case Proposition 6.2 shows that one needs to choose the character
χ ∈ ξ⊥ so that < χ, η >= 1. More precisely, let θ̃ be the map which associates
with a degenerate parabolic Q-lattice (Λ, φ) the degenerate triangular structure on
E = C/Λ given by the pair (χ, η), where χ = −	 and η(y) = φ((0, y)) for all
y ∈ Q/Z. Then we have the following

Proposition 6.6 Two degenerate parabolic Q-lattices are the same if and only if
the degenerate triangular elliptic curves, associated via the map θ̃ , are isomorphic.

Proof Let (Λ, φ) and (Λ′, φ′) be degenerate parabolic Q-lattices, and E, (χ, η),
E′, (χ ′, η′) their images under θ̃ . By the degeneracy hypothesis there exists uniquely
α, α′ ∈ P+(R) such that

Λ = α−1Λ0, φ(x, y) = α−1(ye2) , ∀x, y ∈ Q/Z

and similarly for (Λ′, φ′). An isomorphism j : E → E′ is implemented by the
multiplication by a complex number λ such that λΛ = Λ′. If j preserves the
degenerate triangular structure, one has χ ′ ◦ j = χ , i.e. 	(λz) = 	(z) modulo
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Z for all z ∈ E = C/Λ and thus λ = 1. Hence one derives Λ = Λ′ and j is the
identity. Let us show that φ′ = φ. One has φ(x, y) = η(y), ∀x, y ∈ Q/Z, and since
by hypothesis j ◦ η = η′ one concludes that φ′ = φ. ��

Next we consider the degeneracy occurring when in the matrix α =
(
a b

0 1

)

∈
P+(R), a tends to 0. We follow the lattice Λ = α−1Λ0 up to scale. One has

aα−1 = a

( 1
a
− b

a

0 1

)

=
(

1 −b
0 a

)

, aα−1
(
x

y

)

=
(

1 −b
0 a

) (
x

y

)

=
(
x − by

ay

)

.

Thus when a → 0 the lattice Λ = α−1Λ0 up to scale converges pointwise (i.e. for
each fixed pair (x, y)) towards the subgroup of R ⊂ C given by

Λ(b) := Z+ bZ ⊂ R ⊂ C. (91)

The subgroup Λ(b) only depends upon b ∈ R/Z and the quotient R/Λ(b)

corresponds to the noncommutative torus T
2
b. In fact, the composition with ρ =

(
u v

0 1

)

∈ P(Ẑ) gives the following Q-pseudolattice in the sense of Definition 3.106

of [16]

φ : Q2/Z2 → QΛ(b)/Λ(b), φ((x, y)) = ux + vy − by.

When b /∈ Q, the subspace QΛ(b) ⊂ R is two-dimensional over Q and one defines
a character on the Q-rational points by setting χ(x−by) := y ∈ Q/Z, for x−by ∈
QΛ(b)/Λ(b). Using this character one gets χ ◦ φ((x, y)) = y and this condition
characterizes the relevant pseudolattices.

7 Lift of the Frobenius correspondences

In this paper we have constructed the simplest complex lift of the Scaling Site,
using an almost periodic compactification of the added imaginary direction. We
have illustrated the role of the tropicalization map and found a surprising relation
between the obtained complex lift and the GL2 system of [16].

In order to complete the Riemann–Roch strategy in this lifted framework one
meets a fundamental difficulty tied up to the loss of the one parameter group of
automorphisms of Rmax in moving from characteristic 1 to characteristic zero. The
difficulty arises in the construction of the proper lift of the correspondences Ψλ

which are canonical in characteristic 1. The natural candidates in characteristic
zero come from the right action of P+(R). This choice is justified using the
tropicalization map which is given on all terms by the determinant (on 2 by 2
matrices of adèles) and makes the following diagram commutative
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P(Q)

det

��

�� P(AQ)

det

��

P+(R)

det

��

��

Q
× �� AQ R

∗+��

(92)

The problem arises because the right action of R∗+ ⊂ P+(R) does not preserve the
complex structure defined in Proposition 5.1. More precisely this action preserves
the foliation (since the leaves are precisely the orbits of the right action of P+(R))
but it does not preserve the complex structure of the leaves. Indeed, the right action
of R∗+ ⊂ P+(R) is of the form

(
y x

0 1

) (
λ 0
0 1

)

=
(
λy x

0 1

)

and since it replaces x+iy ∈ H by x+iλy it does not respect the complex structure.

7.1 Witt construction in characteristic 1 and lift of the Ψλ

In [19] we already addressed the problem of the loss of the one parameter group of
automorphisms of Rmax in moving from characteristic 1 to characteristic zero. In
that paper we also developed the Archimedean analogue of the basic steps of the
construction of the rings of p-adic periods and we defined the universal thickening
of the real numbers. In fact we showed that when one applies the analogue of the
Witt construction to the real tropical hyperfield R

", the universal W -model of R"

exists and it coincides with the triple which was constructed in [17, 18], by working
with the tropical semifield R

max+ of characteristic one and implementing concrete
formulas, involving entropy, which extend the Teichmüller formula for sums of
Teichmüller lifts to the case of characteristic one. We use the notation [x] = τ(x)

for the Teichmüller lift of x ∈ R
∗+. These elements generate linearly the ring W ,

they fulfill the multiplication rule [xy] = [x][y] and the automorphisms of Rmax+ lift
to automorphisms θλ of W such that

θλ([x]) = [xλ] , ∀x ∈ R
max+ , λ ∈ R

∗+.

We shall use complex coefficients so that in first approximation W is the complex
group ring of the multiplicative group R

∗+. We disregard here the nuances obtained
from various completions of W explored in [19] and concentrate on the algebraic
question of showing why the use of W as coefficients resolves the problem of the
lack of invariance of the complex structure under the right action of R∗+. For each
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λ ∈ R
∗+ one has a ring homomorphism χλ : W → C which is C-linear and such

that χλ([x]) = xλ for any x ∈ R
∗+. By construction one has χλ ◦ θμ = χλμ and the

character χ1 plays a key role in [19] where it is denoted θ . Now given a function
with values in W on a leaf given by an orbit of the right action of P+(R) we say that
f is holomorphic when

(λX + iY ) χλ(f ) = 0 , ∀λ ∈ R
∗+, (93)

where X, Y correspond to the generators of the Lie algebra of P+(R) as in
Proposition 5.1. We then restore the invariance under the right action of R

∗+ ⊂
P+(R) by combining it with the automorphisms θλ ∈ Aut(W) as we did in the
construction of the arithmetic Frobenius in [25]. By construction the right action
R(μ) of R∗+ ⊂ P+(R) extends to W valued functions so that the following equation
holds

χλ(R(μ)(f )) = μYχλ(f ) , ∀λ,μ ∈ R
∗+ (94)

Proposition 7.1 For μ ∈ R
∗+, the operation Fraμ,

f �→ Fraμ(f ), Fraμ(f ) := θμ(R(μ
−1)(f )) (95)

preserves the holomorphy condition (93).

Proof One has

χλ(Fraμ(f )) = χλ ◦ θμ(R(μ−1)(f )) = χλμ(R(μ
−1)(f )) = μ−Y χλμ(f )

using (94) for the last equality. By construction Y commutes with μY , and since
[Y,X] = X, one has μYXμ−Y = μX so that

(λX + iY ) μ−Y = μ−Y (λμX + iY )

and one gets

(λX + iY ) χλ(Fraμ(f )) = (λX + iY ) μ−Y χλμ(f ) = μ−Y (λμX + iY ) χλμ(f ) = 0.

Thus Fraμ(f ) fulfills (93) if f does. ��
To give a non-trivial example of a W -valued function which is holomorphic in the
sense of (93), we take the classical orbit ΓQ,cl which is the pro-étale cover D̃∗. One
can represent the elements of ΓQ,cl as pairs (x, y) ∈ G × R

∗+ and the following
equality defines a function

q : ΓQ,cl → W, q(x + iy) := [e−2πy]e2πix (96)

where, by Lemma 5.2 (iii), e2πix makes sense as a complex number for any x ∈ G.
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Proposition 7.2 The function q : ΓQ,cl → W of (96) is holomorphic in the sense
of condition (93). Moreover it is invariant under the transformations Fraμ for any
μ ∈ R

∗+. The same holds for the rational powers qr of q, ∀r ∈ Q.

Proof One has by construction

χλ(q)(x + iy) = e−2πλye2πix = e2πi(x+iλy).

Moreover

(λy∂x + iy∂y)(x + iλy) = 0 ⇒ (λX + iY ) χλ(q) = 0

which gives condition (93). Finally the equality

θμ

(
q

(
x + iμ−1y

)
=

[(
e
−2π y

μ

)μ]
e2πix =

[
e−2πy

]
e2πix = q(x + iy)

)

shows that q is invariant under the transformations Fraμ. The same proof applies to
the rational powers of q which make sense because of Lemma 5.2 (iii). ��
Remark 7.1 Proposition 7.2 suggests that for the topos counterpart D̃∗ �N

× of the
above adelic description of the complex lift (see the left column of Figure 1) the
structure sheaf involves the ring W [qr ] generated by rational powers qr of q over
W .

7.2 Quantization

It is still unclear in which precise sense the complex lift constructed in this paper
can be used to “quantize” the Scaling Site. One of the origins of the world of
characteristic 1 is the inverse process of quantization, it is called “dequantization.”
It was developed under the name of idempotent analysis by the school of Maslov,
Kolokolstov, and Litvinov [34, 35]. One of their key discoveries is that the Legendre
transform which plays a fundamental role in all of physics and in particular in
thermodynamics in the nineteenth century, is simply the Fourier transform in the
framework of idempotent analysis. There is a whole circle of ideas which compares
tropicalization, dequantization, and deformation of complex structures (see e.g. [1]
and the references there) and these ideas should be carefully identified for the
complex lift constructed in our paper. In particular the deformation of complex
structures used in Section 7.1 and the interpretation of its limit as a real polarization
should be clarified. In the process of quantizing a classical dynamical system the
expected outcome is a self-adjoint operator in Hilbert space. We expect here that the
operator X+ iY will play a role as well as the “transverse elliptic theory” developed
in [12]. Indeed, when viewing the adèle class space Q

×\AQ as a noncommutative
space and the complex lift CQ over it, the complex structure takes place in the
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transverse direction. In fact, as we have seen in Section 5, the space of points
of CQ fibers over Q

×\AQ with fiber the almost periodic compactification G of
R. The effect of the almost periodic compactification is occurring purely in the
transversal direction and it thus suggests that the ∂̄ operator associated with the
complex structure should be viewed as a K-homology class in the relative type
II setup. The results of [13, 14, 15] on the transverse structure of modular Hecke
algebras should then be brought into play.
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