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Foreword

From March 23 to April 7, 2017, the Shanghai Center for Mathematical Sciences
hosted a conference on noncommutative geometry dedicated to its founder and
foremost architect, Alain Connes, on the occasion of his 70th birthday. This volume
contains a collection of invited surveys and research articles stemming from talks
given at the conference and reflecting the scope and the state of the art of this field.

Deeply rooted in the modern theory of operator algebras and inspired by two
of the most influential mathematical discoveries of the twentieth century, the
foundations of quantum mechanics and index theory, Connes’ vision of noncom-
mutative geometry echoes the astonishing anticipation of Riemann that “it is quite
conceivable that the metric relations of space in the infinitely small do not conform
to the hypotheses of geometry” and accordingly “we must seek the foundation of its
metric relations outside it, in binding forces which act upon it.”

The radically new paradigm of space proposed by Connes in order to achieve
such a desideratum is that of a spectral triple, encoding the (generally non-
commuting) spatial coordinates in an algebra of operators in Hilbert space, and its
metric structure in an analogue of the Fermion propagator viewed as “line-element.”
For the analytic treatment of such spaces, Connes devised the quantized calculus,
whose infinitesimals are the compact operators, and where the role of the integral
is assumed by the Dixmier trace. On the differential-topological side, Connes has
invented a far-reaching generalization of de Rham’s theory, cyclic cohomology
which, in conjunction withKK-theory, provides the key tool for a vast extension of
index theory to the realm of noncommutative spaces.

Besides the wealth of examples of noncommutative spaces coming from physics
(including space-time itself with its fine structure), from discrete groups, Lie groups
(and smooth groupoids), with their rich K-theory, a whole class of new spaces can
be handled by the methods of noncommutative geometry and in turn lead to the
continual enrichment of its toolkit. They arise from a general principle, which first
emerged in the case of foliations. It states that difficult quotients such as spaces of
leaves are best understood using, instead of the usual commutative function algebra,
the noncommutative convolution algebra of the associated equivalence relation.

v



vi Foreword

An important such new space is the space of adele classes of a global field
that Connes has introduced to give a geometric interpretation of the Riemann–Weil
explicit formulas as a trace formula. The set of points of the simplest Grothendieck
toposes are typically noncommutative spaces in the above sense and the adele class
space itself, for the field of rationals, turns out to be the set of points of the Scaling
Site, a Grothendieck topos which provides the missing algebro-geometric structure
as a structure sheaf of tropical nature.

The pertinence and potency of the new concepts and methods are concretely
illustrated in the contributions which make up this volume. They cover a broad spec-
trum of topics and applications, shedding light on the fruitful interactions between
noncommutative geometry and a multitude of areas of contemporary research, such
as operator algebras, K-theory, cyclic homology, arithmetic geometry, index theory,
spectral theory, geometry of groupoids, and in particular of foliations.

Some of these contributions stand out as groundbreaking forays into more
seemingly remote areas, namely high energy physics, algebraic geometry, and
number theory.

The Shanghai Center of Mathematical Sciences is a recently founded mathemat-
ical research center jointly funded by the Central Government of China, the city
of Shanghai, and Fudan University. A major goal of the center is to foster research
collaborations among mathematicians from all over the world. The event celebrating
Alain Connes’ 70th birthday was part of this effort.

We thank the faculty and staff of the Shanghai Center for their exemplary
hospitality. We also acknowledge with thanks the support granted by the National
Science Foundation, through award no. 1701934, for the participation of US-based
researchers. Finally, we would like to thank Springer Verlag and in particular
Elizabeth Loew for her care and support during the production of this volume.

Beirut, Lebanon Ali Chamseddine
Baltimore, MD, USA Caterina Consani
University Park, PA, USA Nigel Higson
London, ON, Canada Masoud Khalkhali
Columbus, OH, USA Henri Moscovici
College Station, TX, USA Guoliang Yu
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A survey of spectral models of gravity
coupled to matter

Ali Chamseddine and Walter D. van Suijlekom

Dedicated to Alain Connes

Abstract This is a survey of the historical development of the spectral Standard
Model and beyond, starting with the ground breaking paper of Alain Connes
in 1988 where he observed that there is a link between Higgs fields and finite
noncommutative spaces. We present the important contributions that helped in the
search and identification of the noncommutative space that characterizes the fine
structure of space-time. The nature and properties of the noncommutative space are
arrived at by independent routes and show the uniqueness of the spectral Standard
Model at low energies and the Pati–Salam unification model at high energies.

1 Introduction

In 1988, at the height of the string revolution, there appeared an alternative way
to think about the structure of space-time, based on the breathtaking progress in
the new field of noncommutative geometry. Despite the success of string theory
in incorporating gravity, consistency of the theory depended on the existence of
supersymmetry as well as six or seven extra dimensions. Enormous amount of
research was carried out to obtain the Standard Model from string compactification,
which even up to day did not materialize. Most compactifications start in ten
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2 A. Chamseddine and W. D. van Suijlekom

dimensions with the Yang–Mills gauge group E8 × E8 requiring a very large
number of fields to become massive at high energies. In a remarkable paper, Alain
Connes laid down the blueprint of a new innovative approach to uncover the origin
of the Standard Model and its symmetries [28]. The foundation of this approach
was based on noncommutative geometry, a field he founded few years before [27]
(see also [29]). Alain realized that by making space slightly noncommutative by
tensoring the four-dimensional space with a space of two points, one gets a parallel
universe where the distance between the two sheets is of the order of 10−16 cm,
with the unexpected bonus of having the Higgs scalar field mediating between
them. Although this looked similar to the idea of Kaluza–Klein, there were essential
differences, mainly in avoiding the huge number of the massive tower of states
as well as obtaining the Higgs field in a representation which is not the adjoint.
Soon after this work inspired similar approaches also based on extending the four-
dimensional space to become noncommutative [43, 44, 45, 46, 23].

In this survey, we will review the key developments that allowed noncommutative
geometry to deepen our understanding of the structure of space-time and explain
from first principles why and how nature dictates the existence of the elementary
particles and their fundamental interactions. In Section 2, we will start by reviewing
the pioneering work of Alain Connes [28] introducing the basic mathematical
definitions and structures needed to define a noncommutative space. We summarize
the characteristic ingredients in the construction of the Connes–Lott model and
later generalizations by others. We then consider how to develop the analogue of
Riemannian geometry for noncommutative spaces, and to incorporate the gravita-
tional field in the Connes–Lott model. In Section 3, we present a breakthrough in
the development of noncommutative geometry with the introduction of the reality
operator which led to the definition of KO dimension of a noncommutative space.
With this it became possible to present the reconstruction theorem of Riemannian
geometry from noncommutative geometry. Section 4 covers the formulation and
applications of the spectral action principle where the spectrum of the Dirac operator
plays a dominant role in the study of noncommutative spaces. This key development
allowed to obtain the dynamics of the Standard Model coupled to gravity in a
non-ambiguous way, and to study geometric invariants of noncommutative spaces.
We then show that incorporating right-handed neutrinos with the fundamental
fermions forces a change in the algebra of the noncommutative space and the
use of real structures to impose simultaneously the reality and chirality conditions
on fundamental states, singling out the KO dimension to be 6. We show in
detail how the few requirements about KO dimension, Majorana masses for right-
handed neutrinos and the first order condition on the Dirac operator, single out
the geometry of the Standard Model. In Section 5, we present a classification of
finite noncommutative spaces of KO dimension 6 showing the almost uniqueness
of the spectral Standard model. In Section 6, we give a prescription of constructing
spectral models from first principles and show that the spectral Standard Model
agrees with the available experimental limits, provided that the scale giving mass
to the right-handed neutrinos is promoted to a singlet scalar field. We then show
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that there exists a more general case where the first order condition on the Dirac
operator is removed, the singlet scalar fields become part of a larger representation
of the Pati–Salam model. The Standard Model becomes a special point in the
spontaneous breaking of the Pati–Salam symmetries. In Section 6, we show that
a different starting point where a Heisenberg like quantization condition in terms
of the Dirac operator considered as momenta and two possible Clifford-algebra
valued maps from the four-dimensional manifold to two four-spheres S4 result in
noncommutative spaces with quantized volumes. The Pati–Salam model and its
various truncations are uniquely determined as the symmetries of the spaces solving
the constraint. Section 7 contains the conclusions and a discussion of possible
directions of future research.

2 Early days of the spectral Standard Model

The first serious attempt to utilize the ideas of noncommutative geometry in particle
physic was made by Alain Connes in 1988 in his paper “Essay on physics and
noncommutative geometry” [28]. He observed that it is possible to change the
structure of the (Euclidean) space-time so that the action functional gives the
Weinberg–Salam model. The main emphasis was on the conceptual understanding
of the Higgs field, which he calls, the black box of the Standard Model. The
qualitative picture was taken to be of a two-sheeted Euclidean space-time separated
by a distance of the order of 10−16 cm. In order to simplify the presentation,
and to easily follow the historical development, we will use a uniform notation,
representing old results in a new format. It is therefore more efficient to start with
the basic definitions.

2.1 Noncommutative spaces and differential calculus

A noncommutative space is determined from the spectral data (A,H,D, γ, J )
where A is an associative algebra with unit element 1 and involution *, H a Hilbert
space carrying a faithful representation π of the algebra,D is a self-adjoint operator

on H with
(
D2 + 1

)−1
compact, γ is the unitary chirality operator, and J an anti-

unitary operator on H, the reality structure. The operator J was introduced later in
1994 [30].

In the model proposed in 1988, there were ambiguities in defining the algebra
and the action on the Hilbert space. These were rectified in the 1990 paper [33]
with John Lott, in what became known as the Connes–Lott model. In order to
appreciate the enormous progress made over the years, we will summarize this
model in a simplified presentation. A more detailed account can be found in the
early reviews [77, 66, 54, 55, 56, 57]. Note that at around the same time, a derivation-
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based differential calculus was introduced by others in [43, 44, 45, 46] with many
similarities to the model proposed by Connes in 1988.

We need to first introduce new ingredients. Given a unital involutive algebra A,
the universal differential algebra over A is defined as

�∗ (A) =
∞⊕

n=0

�n (A)

where we set �0 (A) = A, and take

�n (A) =
{
∑

i

ai0da
i
1da

i
2 · · · dain, aij ∈ A, ∀i, j

}

, n = 1, 2, . . .

Here da denotes an equivalence class of A, modulo the following relations:

d (a · b) = da · b + a · db, d1 = 0, d2 = 0

An element of �n (A) is called a form of degree n. One form can be considered as
connections on a line bundle whose space of sections is given by the algebra A. A
one-form ρ ∈ �1 (A) is expressed in the form

ρ =
∑

i

aidbi, ai, bi ∈ A

and since d1 = 0, we may impose the condition
∑

i

aibi = 1, without any loss

in generality. We say that (H,D) is a Dirac K-cycle for A if and only if there
exists an involutive representation π of A on H satisfying π (a)∗ = π (a∗) with the
properties that π (a) and [D,π (a)] are bounded operators on H for all a ∈ A. The
K-cycle is called even if there exists a chirality operator γ such that γD = −Dγ,
γ = γ−1 = γ ∗ and [γ, π (a)] = 0, otherwise it is odd. The action of π on �∗ (A)
is defined as

π

(
∑

i

ai0da
i
1 · · · dain

)

=
∑

i

π(ai0)[D,π(ai1)] · · · [D,π(ain)]

The space of auxiliary fields is defined by

Aux = kerπ + d kerπ

where

kerπ =
∞⊕

n=0

{
∑

i

ai0da
i
1 · · · dain : π

(
∑

i

ai0da
i
1 · · · dain

)

= 0

}
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and

d kerπ =
∞⊕

n=0

{
∑

i

dai0da
i
1 · · · dain : π

(
∑

i

ai0da
i
1 · · · dain

)

= 0

}

The integral of a form α ∈ �∗ (A) over a noncommutative space of metric
dimension d is defined by setting

∫
α = Trw

(
π (α)D−d)

where Trw is the Dixmier trace.

2.2 Two-sheeted space-time

A simple extension of space-time is taken as a product of continuous four-
dimensional manifold times a discrete set of two points. The algebra is A = A1⊗A2
acting on the Hilbert space H = H1 ⊗ H2 where A1 = C∞ (M) and A2 =
M2 (C) ⊕ M1 (C) , the algebra of 2 × 2 and 1 × 1 matrices. The Hilbert space
is that of spinors of the form

L =
(
l

e

)

where l is a doublet and e is a singlet. The spinor L satisfies the chirality condition
γ5⊗�1L = Lwhere �1 = diag (12,−1) is a grading operator. From this we deduce

that l is a left-handed spinor and e is right handed, and we thus write l =
(
νL

eL

)
and

e = eR. The Dirac operator is given by D = D1 ⊗ 1 + γ5 ⊗D2 where D1 = γ μ∂μ
and D2 is the Dirac operator on A2 such that

Dl =
(
γ μ∂μ ⊗ 12 ⊗ 13 γ5 ⊗M12 ⊗ k

γ5 ⊗M21 ⊗ k∗ γ μ∂μ ⊗ 1 ⊗ 13

)

where M21 = M∗
12 and k is a 3 × 3 family mixing matrix representing Yukawa

couplings for the leptons. The 1 × 2 matrix M12 turns out to be the vev of the

Higgs field and is taken as M12 = μ

(
0
1

)
= H0. The elements a ∈ A have

the representation a =
(
a1 0
0 a2

)
where a1, a2 are 2 × 2 and 1 × 1 unitary

valued functions. A quick calculation shows that the self-adjoint one-form ρ has
the representation
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π1 (ρ) =
(

A1 ⊗ 13 γ5 ⊗H ⊗ k

γ5 ⊗H ∗ ⊗ k∗ A2 ⊗ 13

)

where

A1 = γ μ
∑

i

ai1∂μb
i
1, A2 = γ μ

∑

i

ai2∂μb
i
2,

H = H0 +
∑

i

ai1H0b
i
2.

The quarks are introduced by taking for the finite space a bimodule structure
relating two algebras A and B where the algebra B is taken to be M1 (C)⊕M3 (C)

commuting with the action of A. In addition, the mass matrices in the Dirac operator
are taken to be zero when acting on elements of B. The one-form η ∈ �1 (B) has
the simple form B1diag (12, 1) where B1 is a gauge field associated with M1 (C) .

The Hilbert space for the quarks is

Q =
⎛

⎝
qL

uR

dR

⎞

⎠ , qL =
(
uL

dL

)

The representation of a ∈ A is a → (a1, a2, a2) where a1 and a2 are a 2 × 2 and
1 × 1 complex valued functions. The Dirac operator acting on the quark Hilbert
space is

Dq =
⎛

⎝
γ μ

(
∂μ + · · · ) ⊗ 12 ⊗ 13 γ5 ⊗M12 ⊗ k′ γ5 ⊗ M̃12 ⊗ k

′′

γ5 ⊗M∗
12 ⊗ k′∗ γ μ

(
∂μ + · · · ) ⊗ 13 0

γ5 ⊗ M̃∗
12 ⊗ k

′′∗ 0 γ μ
(
∂μ + · · · ) ⊗ 13

⎞

⎠

where k′ and k′′ are 3 × 3 family mixing matrices and M̃12 = μ

(
1
0

)
. The one

form in �1 (A) has then the representation

πq (ρ) =
⎛

⎝
A1 ⊗ 13 γ5 ⊗H ⊗ k′ γ5 ⊗ H̃ ⊗ k

′′

γ5 ⊗H ∗ ⊗ k′∗ A2 ⊗ 13 0
γ5 ⊗ H̃ ∗ ⊗ k

′′∗ 0 A2 ⊗ 13

⎞

⎠

where H̃a = εabH
b. When acting on the algebra B, the Dirac operator has zero

mass matrices and the one-form η in �1 (B) has the representation πq (η) =
B2diag (12, 1) where B2 is the gauge field associated with M3 (C) . Imposing the
unimodularity condition on the algebras A and B would then relate theU (1) factors
in both algebras so that tr (A1) = 0, A2 = B1 = −tr (B2) ≡ i

2g1B. With these we
can then write
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A1 = − i

2
g2σ

aAa

B2 = − i

6
g1B − i

2
g3V

iλi

where g1, g2, and g3 are the U (1) , SU (2), and SU (3) gauge coupling constants,
σa and λi are the Pauli and Gell-Mann matrices, respectively. The fermionic actions
for the leptons and quarks are then given by

〈L, (D + ρ + η)L〉 =
∫
d4x

√
g
(
L (Dl + πl (ρ)+ πl (η)) L

)

〈Q, (D + ρ + η)Q〉 =
∫
d4x

√
g
(
Q

(
Dq + πq (ρ)+ πq (η)

)
Q
)

These terms can be easily checked to reproduce all the fermionic terms of the
Standard Model.

The bosonic action is the sum of the square of curvatures in both the lepton and
quark sectors. These are given by

Il = Tr
(
Cl

(
θρ + θη

)2
D−4
l

)

Iq = Tr
(
Cq

(
θρ + θη

)2
D−4
q

)

where

θρ ≡ dρ + ρ2

is the curvature of ρ, and Cl and Cq are constant elements of the algebra. Since
the representation π has a kernel, the auxiliary fields must be projected out. This
step mainly affects the potential. After some algebra, one can show that the bosonic
action given above reproduces all the bosonic interactions of the Standard Model
with the same number of parameters. If one assumes that Cl and Cq belong to the
center of the algebra, then one can get fixed values for the top quark mass and Higgs
mass. The main advantage of the noncommutative construction of the Standard
Model is that one gets a geometrical understanding of the origin of the Higgs field
and a unification of the gauge and Higgs sectors. One sees that the Higgs fields are
the components of the one form along discrete directions.

2.3 Constructions beyond the Standard Model

The early constructions of the Standard Model provided encouragements to look
further into noncommutative spaces. The construction was also complicated with
some ambiguities such as the independence of the lepton and quark sectors, the
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construction of the Higgs potential, and projecting out the auxiliary fields. It was
then natural to ask whether it is possible to go beyond the Standard Model. In
particle physics, the route taken was to consider larger groups such as SU (5) or
SO(10)which containsU (1)×SU (2)×SU (3) as a subgroup. The main advantage
of GUT is that the fermionic fields are unified in one or two representations, the most
attractive possibility being SO(10) where the spinor representation 16s contains
all the known fermions in addition to the right-handed neutrino. The simplicity
in the fermionic sector did not make the theory more predictive because of the
arbitrariness of the Higgs sector. There are many possible Higgs representations
that can break the symmetry spontaneously from SO(10) to SU (3) × U (1) . In
the noncommutative construction, the Higgs sector is more constrained which was
taken as an encouragement to explore the possibility of considering larger matrix

algebras. As an example, if one arranges the leptons in the form L =
(
lL

lR

)
where

l =
(
ν

e

)
, then the corresponding algebra will be M2 (C) ⊕ M2 (C) . A natural

possibility is then to consider a discrete space of four points and where the fermions

are arranged in the format ψ =

⎛

⎜⎜
⎝

lL

lR

lcL
lcR

⎞

⎟⎟
⎠ and the representation π acting on A is

given by π (a) = diag (a1, a2, a1, a2) where a1, a2 are 2×2 complex matrices. The
resulting model has SU (2)L × SU (2)R × U (1)B−L with the Higgs fields in the
representations (2, 2) , (3, 1)+(1, 3) of SU (2)L×SU (2)R .We can summarize the
steps needed to construct noncommutative particle physics models. First we specify
the fermion representations then we choose the number of discrete points and the
symmetry between them. From this we deduce the appropriate algebra and the map
π acting on the Hilbert space of spinors. Finally, we write down the Dirac operator
acting on elements of the algebra and choose the mass matrices to correspond to the
desired vacuum of the Higgs fields.

To illustrate these steps, consider the chiral space-time spinors P+ψ to be in
the 16s representation of SO(10), where P+ is the SO(10) chirality operator,
and the number of discrete points to be four. The Hilbert space is taken to be

� =

⎛

⎜
⎜
⎝

P+ψ
P+ψ
P−ψc
P−ψc

⎞

⎟
⎟
⎠ where ψc = BCψ

T
, C being the charge conjugation matrix

while B is the SO (10) conjugation matrix. The finite algebra is taken to be
A2 = P+

(
Cliff SO (10)

)
P+, and the finite Hilbert space H2 = C

32. Let π0
denote the representation of the algebra A on the Hilbert space H and let π0
denote the antirepresentation defined by π0 (a) = Bπ0 (a)B

−1. We then define
π (a) = π0 (a)⊕ π0 (a)⊕ π0 (a)⊕ π0 (a) . The Dirac operator is taken to be
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⎛

⎜
⎜
⎝

γ μ∂μ ⊗ 132 ⊗ 13 γ5 ⊗M12 ⊗K12 γ5 ⊗M13 ⊗K13 γ5 ⊗M14 ⊗K14

γ5 ⊗M∗
12 ⊗K∗

12 γ
μ∂μ ⊗ 132 ⊗ 13 γ5 ⊗M23 ⊗K23 γ5 ⊗M24 ⊗K24

γ5 ⊗M∗
13 ⊗K∗

13 γ5 ⊗M∗
23 ⊗K∗

23 γ
μ∂μ ⊗ 132 ⊗ 13 γ5 ⊗M34 ⊗K34

γ5 ⊗M∗
14 ⊗K∗

14 γ5 ⊗M∗
24 ⊗K∗

24 γ5 ⊗M∗
34 ⊗K∗

34 γ
μ∂μ ⊗ 132 ⊗ 13

⎞

⎟
⎟
⎠

where the Kmn are 3 × 3 family mixing matrices commuting with π (a) . We may
impose the exchange symmetries 1 ↔ 2 and 3 ↔ 4 so that M12 = M∗

12 = M0,

M13 = M14 = M23 = M24 = N0, M34 = M∗
34 = BM0B

−1. Computing π (ρ) we
get

π (ρ) =

⎛

⎜⎜
⎝

A γ5MK12 γ5NK13 γ5NK14

γ5MK∗
12 A γ5NK23 γ5NK24

γ5N ∗K∗
13 γ5N ∗K∗

23 BAB−1 γ5BMB−1K34

γ5N ∗K∗
14 γ5N ∗K∗

24 γ5BMB−1K∗
34 BAB−1

⎞

⎟⎟
⎠

where

A = P+
∑

i

aiγ μ∂μb
iP+

M + M0 = P+
∑

i

aiM0b
iP+

N + N0 = P+
∑

i

aiN0Bb
i
B−1P−

One sees immediately that the Higgs fields M and N are in the 16s × 16s and
16s × 16s representations. Equating the action of A on ψ and ψc will reduce
it to an SO (10) gauge field. Specifying M0 and N0 determines the breaking
pattern of SO (10) . One can then proceed to construct the bosonic sector and
project out the auxiliary fields to determine the potential. There are very limited
number of models one can construct. These models, however, will suffer the same
problems encountered in the GUT construction, mainly that of low unification scale
of 1014 GeV implying fast rate of proton decay which is ruled out experimentally.

2.4 Coupling matter to gravity

The dynamics of the gravitational force is based on Riemannian geometry. It is
therefore natural to study the nature of the gravitational field in noncommutative
geometry. The original attempt [24, 25] was based on generalizing the basic notions
of Riemannian geometry, notably the theory of linear connections on differential
forms. (Note that an alternative route that takes vector fields as a starting point ends
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with a derivation-based differential calculus as in [43] (cf. [65]). In line with the
Connes—Lott model, we will instead take differential forms as our starting point.
For more details, we also refer to the exposition in [60, Sect. 10.3].)

First one defines the metric as an inner product on a cotangent space. Then one
shows that every cycle over A yields a notion of cotangent bundle associated with A
and a Riemannian metric on the cotangent bundle �1

D (A) . With the connection ∇
the Riemann curvature of ∇ on�1

D (A) is defined by R (∇) := −∇2 and the torsion
by T = d − m ◦ ∇ where m is the tensor product. Requiring ∇ to be unitary and
the torsion to vanish we obtain the Levi–Civita connection. If �1

D (A) is a finitely
generated module, then it admits a basis eA, A = 1, 2, . . . , N, and the connection
ωAB ∈ �1

D (A) is defined by ∇eA = −ωAB ⊗ eB. The components of the torsion
T (∇) are defined by T A = T (∇) eA then T A ∈ �2

D (A) is given by

T A = deA + ωABe
B

Similarly, components of the curvature RAB ∈ �2
D (A) satisfy the defining property

that R (∇) eA = RAB ⊗ eB so that

RAB = dωAB + ωACω
C
B .

The analogue of the Einstein–Hilbert action is then

I (∇) := κ−2
〈
RABe

B, eA

〉

where κ−1 is the Planck scale. Computing this action for the product spaceM4 ×Z2
one finds that

I (∇) = 2
∫

M

d4x
√
g
(
κ−2r − 2∂μσ∂

μσ
)

where r is the scalar curvature of the Levi–Civita connection of the Riemannian
manifold M4 coupled to a scalar field σ. Applying this construction to the Connes–
Lott model is rather involved because the two sheets are not treated symmetrically,
being associated with two different algebras. The complication arise because the
projective module is not free and the basis eA is constrained. The Einstein–Hilbert
action in this case is given by

I (∇) = 2
∫

M

d4x
√
g

(
κ−2 3

2
r − 2 (3 + λ) ∂μσ∂

μσ + c (λ) e−2σ
)

where λ = Tr (kk∗)2 − 1. To understand the significance of the field σ , we note that
by examining the Dirac operator one finds that the field φ = e−κσ now replaces the
weak scale. Thus quantum corrections to the classical potential will depend on σ,
thus the vev of σ could be determined from the minimization equations.
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3 The spectral action principle

Despite the success of the Connes–Lott model and the generalizations that followed
in giving a geometrical meaning to the Higgs field and unifying it with the gauge
fields, it was felt that the construction is not satisfactory. The first unpleasant
feature was the use of the bimodule structure to introduce the SU (3) symmetry
and the second is the use of unimodularity condition to get the correct hypercharge
assignments to the particles. Another major problem was the existence of mirror
fermions as a consequence of the fact that the conjugation operator on fermions
gives independent fields. In addition, there was arbitrariness in the construction
of the potential in the bosonic sector associated with the step of eliminating the
auxiliary fields.

3.1 Real structures on spectral triples

The first breakthrough came in 1995 with the publication of Alain Connes’ paper
“Noncommutative geometry and reality” [30]. In this paper, the notion of real
structure is introduced, motivated by Atiyah’s KR theory and Tomita’s involution
operator J. A hint for the necessity of the reality operator can be taken from
physics. We have seen that space-time spinors, which are elements of the Hilbert
space, satisfy a chirality condition. The charge conjugation operator, when acting on
these spinors, produces a conjugate element, which in general is independent. It is
possible to replace the chirality condition, with a reality one, known as the Majorana
condition which equates the two. Imposing both conditions, chirality and reality,
simultaneously can only occur in certain dimensions. The action of the antilinear
isometry J on the algebra A satisfies the commutation relation [a, bo] = 0,
∀a, b ∈ A where

bo = Jb∗J−1, ∀b ∈ A (1)

so that bo ∈ Ao. This gives a bimodule, using the representation of A ⊗ Ao, given
by

a ⊗ bo → aJb∗J−1, ∀a, b ∈ A (2)

We define the fundamental class μ of the noncommutative space as a class in the
KR-homology of the algebra A ⊗ Ao having the involution

τ
(
a ⊗ bo) = b∗ ⊗ (

a∗)o
, ∀a, b ∈ A (3)

The KR-homology cycle implements the involution τ given by
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τ (w) = JwJ−1, ∀w ∈ A ⊗ Ao (4)

These imply that the KR-homology is periodic with period 8 and the dimension n
modulo 8 is determined from the commutation rules

J 2 = ε, JD = ε′DJ, Jγ = ε′′γ J (5)

where ε, ε′, ε′′ ∈ {−1, 1} are given as function of nmodulo 8 according to the table

n 0 1 2 3 4 5 6 7
ε 1 1 −1 −1 −1 −1 1 1
ε′ 1 −1 1 1 1 −1 1 1
ε′′ 1 −1 1 −1

(6)

It is not surprising that this table agrees with the one obtained by classifying
in which dimensions a spinor obey the Majorana and Weyl conditions. The
intersection form K∗ (A) × K∗ (A) → Z is obtained from the Fredholm index
of D in K∗ (A ⊗ Ao) . Using the Kasparov intersection product, Poincare duality is
formulated in terms of the invertibility of μ and that D is an operator of order one
implies the condition

[
[D, a] , bo] = 0, ∀a, b ∈ A (7)

Next we consider automorphisms of the algebra A denoted by Aut (A) . This
comprises both of inner and outer automorphisms. Inner automorphisms Int (A)
is a normal subgroup of Aut (A) defined by

α (f ) = uf u∗, ∀f ∈ A, u u∗ = u∗u = 1 (8)

The group Aut+ (A) of automorphisms of the involutive algebra A are implemented
by a unitary operator U in H commuting with J satisfying

α (x) = UxU−1 ∀x ∈ A (9)

For Riemannian manifolds M , this plays the role of the group of diffeomorphisms
Diff+ (M) , which preserves the K-homology fundamental class of M. Let E be a
finite projective, Hermitian right A-module, and define the algebra B = End (A)
as the Morita equivalence of the algebra A with a Hermitian connection ∇ on E
defined as the linear map ∇ : E → E ⊗A �1

D satisfying

∇ (ζa) = (∇ζ ) a + ζ ⊗ da, ∀ζ ∈ E, a ∈ A
d (ζ, η) = (ζ,∇η)− (∇ζ, η) , ∀ζ, η ∈ E
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where da = [D, a] and �1
D is the bimodule of operators of the form

A =
∑

i

ai [D, bi] , ai, bi ∈ A (10)

Since any algebra is Morita equivalent to itself with E = A, applying the
construction given above yields the inner deformation of the spectral geometry. The
unitary equivalence is implemented by the representation u → Ũ = u

(
Ju J−1

) =
u (uo)∗ so that the Dirac operator that includes inner fluctuations

DA = D + A+ JAJ−1 (11)

where A = A∗ transforms as DA → ŨDAŨ
−1 provided that

A → uAu∗ + u
[
D,u∗] (12)

This will ensure that the inner product

(�,DA�) (13)

is invariant under the transformation � → Ũ�. This expression will then take care
of all fermionic interactions which, as will be seen in the next section, removes the
arbitrariness in specifying the action of the connection on the Hilbert space.

3.2 The spectral action principle

The next breakthrough came a year later in 1996 in the work of Chamseddine and
Connes entitled “The spectral action principle” [12]. The basic observation is that
for a noncommutative space defined by spectral data, the emphasis is shifted from
the coordinates x of a geometric space to the spectrum � � R of the operator D.
We postulate the following hypothesis

The physical action depends only on � (14)

The existence of Riemannian manifolds which are isospectral but not isometric
shows that the spectral action principle is stronger than the usual diffeomorphism
invariance. In the usual Riemannian case the group Diff (M) of diffeomorphisms of
M is canonically isomorphic to the group Aut (A) of automorphisms of the algebra
A = C∞ (M) . To each ϕ ∈ Diff (M) one associates the algebra preserving map
αϕ : A → A given by

αϕ (f ) = f ◦ ϕ−1 ∀f ∈ C∞ (M) = A (15)
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The prescription to determine the bosonic action with some cutoff energy scale� is
to first replace the Hilbert space H by the subspace H� defined by

H� = rangeχ

(
D

�

)
(16)

where χ is a suitable smooth positive function, restricting both D and A to this
subspace maintaining the commutation relations for the algebra. This procedure is
superior to the lattice approximation because it does respect the geometric symmetry
group. The spectral action functional is then given by the

Trχ

(
D

�

)
.

For a noncommutative space which is a tensor product of a continuous manifold
times a discrete space, the functional Trχ

(
D
�

)
can be expanded in an asymptotic

series in �, rendering the computation amenable to a heat kernel expansion. This
procedure will be illustrated in the next section. More general methods to analyze
the spectral action have also been developed, see [50] for an early result and also
the recent book [48]. An interpretation of the spectral action as the von Neumann
entropy of a second-quantized spectral triple has been found recently in [20] (cf.
[42]).

To summarize, the breakthroughs carried out in the short period 1995–1996,
defining the reality operator J and developing the spectral action principle, will
allow to remove the ambiguities encountered before in the construction of the
noncommutative spectral Standard Model.

4 The spectral Standard Model

At the time that the spectral action was formulated, it was clear that this principle
forms a unifying framework for gravity and particle physics of the Standard Model.
As said, this led to much activity (cf. [69]) in the years that followed. Also
shortcomings of the approach were pointed out quite quickly, such as the notorious
fermion-doubling problem [63, 52]. This doubling—or actually, quadrupling—was
due to the incorporation of left-right, particle–anti-particle degrees of freedom both
in the continuum spinor space and in the finite noncommutative space. At the
technical level this was a crucial starting point, allowing for a product geometry
to describe gravity coupled to the Standard Model.

Nevertheless, it was a somewhat disturbing feature which, together with the
apparent arbitrariness of the choice of a finite geometry and the absence of neutrino
mixing in the model, led Connes to eventually resolve these problems in [31]. At
the same time John Barrett [4] arrived at the same conclusion (see also the recent
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uniqueness result [6]), even though his motivation came from the desire to have
noncommutative geometry with a Lorentzian signature.

The crucial insight in both of these works is that one should allow for a KO-
dimension for the finite space F which is different from the metric dimension
(which is zero). More specifically, the KO-dimension of the finite space should
be 6 (modulo 8), so that the product of the continuum M with F is 10 modulo
8. The precise structure of the spectral Standard Model (see Section 4.2) is then
best understood using the classification of all irreducible finite noncommutative
geometries of KO-dimension 6 which we now briefly recall.

4.1 Classification of irreducible geometries

In [14] Chamseddine and Connes classified irreducible finite real spectral triples of
KO-dimension 6. This lead to a remarkably concise list of spectral triples, based
on the matrix algebras MN(C) ⊕ MN(C) for some N . We remark that earlier
classification results were obtained [58, 68] which were also exploited in a search
Beyond the Standard Model (see Remark 5 below).

Definition 1 A finite real spectral triple (A,H,D; J, γ ) is called irreducible if the
triple (A,H, J ) is irreducible. More precisely, we demand that:

1. The representations of A and J in H are irreducible;
2. The action of A on H has a separating vector.

We will prove the main result of [14] using an alternative approach which is based
on [75, Sect. 3.4].

Theorem 2 Let (A,H,D; J, γ ) be an irreducible finite real spectral triple of KO-
dimension 6. Then there exists a positive integerN such thatA � MN(C)⊕MN(C).

Proof Let (A,H,D; J, γ ) be an arbitrary finite real spectral triple. We may then
decompose

A =
N⊕

i=1

Mni (C), H =
N⊕

i,j=1

C
ni ⊗ (Cnj )◦ ⊗ Vij ,

with Vij corresponding to the multiplicities as before. Now each C
ni ⊗ C

nj is an
irreducible representation of A, but in order for H to support a real structure J :
H → H we need both C

ni ⊗(Cnj )◦ and C
nj ⊗(Cni )◦ to be present inH . Moreover,

an old result of Wigner [78] for an anti-unitary operator with J 2 = 1 assures that
already with multiplicities dimVij = 1 there exists such a real structure. Hence, the
irreducibility condition (1) above yields

H = C
ni ⊗ (Cnj )◦ ⊕ C

nj ⊗ (Cni )◦,
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for some i, j ∈ {1, . . . , N}. Then, let us consider condition (2) on the existence
of a separating vector. Note first that the representation of A in H is faithful only if
A = Mni (C)⊕Mnj (C). Second, the stronger condition of a separating vector ξ then
implies ni = nj , as it is equivalent to A′ξ = H for the commutant A′ of A in H .
Namely, since A′ = Mnj (C)⊕Mni (C) with dimA′ = n2

i +n2
j , and dimH = 2ninj

we find the desired equality ni = nj . ��
With the complex finite-dimensional algebras A given as a direct sum MN(C)⊕

MN(C),1 the additional demand that H carries a symplectic structure I 2 = −1
yields real algebras of which A is the complexification. We see that this requires
N = 2k so that one naturally considers triples (A,H, J ) for which

A = Mk(H)⊕M2k(C); H = C
2(2k)2 . (17)

4.2 Noncommutative geometry of the Standard Model

The above classification of irreducible finite geometries of KO-dimension 6 forms
the starting point for the derivation of the Standard Model from a noncommutative
manifold [17]. Hence, it is based on the matrix algebra MN(C)⊕MN(C) for N ≥
1. Let us make the following two additional requirements on the irreducible finite
geometry (A,HF ,DF ; JF , γF ):
1. The finite-dimensional Hilbert spaceHF carries a symplectic structure I 2 = −1;
2. the grading γF induces a non-trivial grading on A, by mapping

a �→ γF aγF ,

and selects an even subalgebra Aev ⊂ A consisting of elements that commute
with γF .

But the first demand sets A = Mk(H) ⊕M2k(C), represented on the Hilbert space
C

2(2k)2 . The second requirement sets k ≥ 2; we will take the simplest k = 2 so that
HF = C

32.2 Indeed, this allows for a γF such that

Aev = HR ⊕ HL ⊕M4(C),

1The case N = 1 was exploited successfully in [47] for a noncommutative description of Abelian
gauge theories.
2Also other algebras that appear in the classification of irreducible geometries of KO-dimension
have been considered in the literature: besides the case N = 4 that we consider here the simplest
case N = 1 is relevant for the noncommutative geometric description of quantum electrodynamics
[47] and the case N = 8 leads to the “grand algebra” of [40, 38].
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where HR and HL are two copies (referred to as right and left) of the quaternions;
they are the diagonal of M2(H) ⊂ A. The Hilbert space can then be decomposed
according to the defining representations of Aev,

HF = (C2
R ⊕ C

2
L)⊗ (C4)◦ ⊕ C

4 ⊗ ((C2
R)

◦ ⊕ (C2
L)

◦). (18)

According to this direct sum decomposition, we write

DF =
(
S T ∗
T S

)
(19)

Moreover, JF is the anti-unitary operator that flips the two 16-dimensional compo-
nents in Equation (18).

The key result is that if we assume that T is non-trivial, then the first-order
condition selects the maximal subalgebra of the Standard Model, that is to say,
AF = C ⊕ H ⊕M3(C).

Proposition 3 ([17, Prop. 2.11]) Up to ∗-automorphisms of Aev, there is a unique
∗-subalgebraAF ⊂ Aev of maximal dimension that allows T �= 0 in (19). It is given
by

AF =
{(
qλ, q,

(
q 0
0 m

))
: λ ∈ C, q ∈ HL,m ∈ M3(C)

}
⊂ HR ⊕ HL ⊕M4(C),

where λ �→ qλ is the embedding of C into H, with

qλ =
(
λ 0
0 λ

)
.

Consequently, AF � C ⊕ H ⊕M3(C).

The restriction of the representation of A on HF to the subalgebra AF gives a
decomposition of HF into irreducible (left and right) representations of C, HL, and
M3(C). For instance,

(C2
R ⊕ C

2
L)⊗ (C4)◦ � (C ⊕ C ⊕ C

2
L)⊗

(
(C)◦ ⊕ (C3)◦

)
. (20)

and similarly for C4 ⊗ ((C2
R)

◦ ⊕ (C2
L)

◦). In order to connect to the physics of the
Standard Model, let us introduce an orthonormal basis forHF that can be recognized
as the fermionic particle content of the Standard Model, and subsequently write the
representation of AF in terms of this basis.

We let the subspace of HF displayed in Equation (20) be represented by
basis vectors {νR, eR, (νL, eL)} of the so-called lepton space Hl and basis vectors
{uR, dR, (uL, dL)} of the quark space Hq . Their reflections with respect to JF are
the anti-lepton spaceHl and the anti-quark spaceHq , spanned by {νR, eR, (νL, eL)}
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and {uR, dR, (uL, dL)}, respectively. The three colors of the quarks are given by a
tensor factor C3 and when we take into account three generations of fermions and
anti-fermions by tripling the above finite-dimensional Hilbert space we obtain

HF := (
Hl ⊕Hl ⊕Hq ⊕Hq

)⊕3
.

Note that Hl = C
4, Hq = C

4 ⊗ C
3, Hl = C

4, and Hq = C
4 ⊗ C

3.
An element a = (λ, q,m) ∈ AF acts on the space of leptons Hl as qλ ⊕ q, and

acts on the space of quarksHq as (qλ⊕q)⊗13. For the action of a on an anti-lepton
l ∈ Hl we have al = λ14l, and on an anti-quark q ∈ Hq we have aq = (14 ⊗m)q.

The Z2-grading γF is such that left-handed particles have eigenvalue +1 and
right-handed particles have eigenvalue −1. The antilinear operator JF interchanges
particles with their anti-particles, so JF f = f and JF f = f , with f a lepton or
quark.

The first indication that the subalgebra AF is relevant for the Standard Model—
to say the least—comes from the fact that the Standard Model gauge group can be
derived from the unitaries in AF . We restrict to the unimodular gauge group,

SU(AF ) = {
u ∈ AF : u∗u = uu∗ = 1, det(u) = 1

}

where det is the determinant of the action of u in HF . It then follows that, up to a
finite Abelian group we have

SU(AF ) ∼ U(1)× SU(2)× SU(3)

and the hypercharges are derived from the unimodularity condition to be the usual
ones:

Particle νR eR νL eL uR dR uL dL

Hypercharge 0 −2 −1 −1 4
3 − 2

3
1
3

1
3

Let us now turn to the form of the finite Dirac operator, and see what we can
say about the components of the matrix DF as displayed in (19). Recall that we are
looking for a self-adjoint operatorDF inHF that commutes with JF , anti-commutes
with γF , and fulfills the first-order conditions with respect to AF :

[[D, a], J bJ−1] = 0; (a, b ∈ AF ).

We also require that DF commutes with the subalgebra CF = {(λ, λ, 0)} ⊂ AF
which physically speaking corresponds to the fact that the photon remains massless.
Then it turns out [31, Theorem 1] (see also [17, Theorem 2.21]) that any DF that
satisfies these assumptions is of the following form: in terms of the decomposition
of HF in particle (H⊕3

l ⊕H⊕3
q ) and anti-particles (H⊕3

l
⊕H⊕3

q ) the operator S is
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Sl := S|
H⊕3
l

=

⎛

⎜
⎜
⎝

0 0 Y ∗
ν 0

0 0 0 Y ∗
e

Yν 0 0 0
0 Ye 0 0

⎞

⎟
⎟
⎠ , (21)

Sq ⊗ 13 := S|
H⊕3
q

=

⎛

⎜
⎜
⎝

0 0 Y ∗
u 0

0 0 0 Y ∗
d

Yu 0 0 0
0 Yd 0 0

⎞

⎟
⎟
⎠ ⊗ 13, (22)

where Yν , Ye, Yu, and Yd are some 3 × 3 matrices acting on the three generations,
and 13 acting on the three colors of the quarks. The symmetric operator T only acts
on the right-handed (anti)neutrinos, so it is given by T νR = YRνR , for a certain
3 × 3 symmetric matrix YR , and Tf = 0 for all other fermions f �= νR . Note that
νR here stands for a vector with three components for the number of generations.

The above classification result shows that the Dirac operators DF give all the
required features, such as mixing matrices for quarks and leptons, unbroken color,
and the seesaw mechanism for right-handed neutrinos. Let us illustrate the latter
in some more detail. The mass matrix restricted to the subspace of HF with basis
{νL, νR, νL, νR} is given by

⎛

⎜⎜
⎝

0 Y ∗
ν Y

∗
R 0

Yν 0 0 0
YR 0 0 Y

∗
ν

0 0 Y ν 0

⎞

⎟⎟
⎠ .

Suppose we consider only one generation, so that Yμ = mν and YR = mR are just
scalars. The eigenvalues of the above mass matrix are then given by

±1

2
mR ± 1

2

√
mR2 + 4mν2.

If we assume that mν � mR , then these eigenvalues are approximated by ±mR and

±mν
2

mR
. This means that there is a heavy neutrino, for which the Dirac mass mν may

be neglected, so that its mass is given by the Majorana mass mR . However, there
is also a light neutrino, for which the Dirac and Majorana terms conspire to yield a

mass mν
2

mR
, which is in fact much smaller than the Dirac mass mν . This is called the

seesaw mechanism. Thus, even though the observed masses for these neutrinos may
be very small, they might still have large Dirac masses (or Yukawa couplings).

Remark 4 Of course, in the physical applications one chooses Yν, Ye to be the
Yukawa mass matrices and YR is the Majorana mass matrix. There have been
searches for additional conditions to be satisfied by the spectral triple (AF ,HF ,DF )
to further constrain the form of DF , see, for instance, [11, 8, 59, 36, 37].
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4.3 The gauge and scalar fields as inner fluctuations

We here derive the precise form of internal fluctuations Aμ for the above spectral
triple of the Standard Model (following [17, Sect. 3.5] or [75, Sect. 11.5]).

Take two elements a = (λ, q,m) and b = (λ′, q ′,m′) of the algebra A =
C∞(C ⊕ H ⊕ M3(C)). According to the representation of AF on HF , the inner
fluctuations Aμ = −ia∂μb decompose as

�μ := −iλ∂μλ′; �′
μ := −iλ∂μλ′

on νR and eR , respectively, and as

Qμ := −iq∂μq ′; V ′
μ := −im∂μm′

acting on (νl, eL) and Hq , respectively. On all other components of HF the gauge
field Aμ acts as zero. Imposing the hermiticity �μ = �∗

μ implies �μ ∈ R, and
also automatically yields �′

μ = −�μ. Furthermore, Qμ = Q∗
μ implies that Qμ

is a real-linear combination of the Pauli matrices, which span i su(2). Finally, the
condition that V ′

μ be Hermitian yields V ′
μ ∈ i u(3), so V ′

μ is a U(3) gauge field.
As mentioned above, we need to impose the unimodularity condition to obtain an
SU(3) gauge field. Hence, we require that the trace of the gauge field Aμ over HF
vanishes, and we obtain

Tr|Hl
(
�μ14

) + Tr|Hq
(
14 ⊗ V ′

μ

) = 0 �⇒ Tr(V ′
μ) = −�μ.

Therefore, we can define a traceless SU(3) gauge field Vμ by V μ := −V ′
μ − 1

3�μ.

The action of the gauge field Bμ = Aμ − JFAμJ
−1
F on the fermions is then given

by

Bμ
∣
∣
Hl

=
⎛

⎝
0 0
0 −2�μ

Qμ −�μ12

⎞

⎠ ,

Bμ
∣∣
Hq

=
⎛

⎝
4
3�μ13 + Vμ 0

0 − 2
3�μ13 + Vμ

(Qμ + 1
3�μ12)⊗ 13 + 12 ⊗ Vμ

⎞

⎠ .

(23)

for some U(1) gauge field �μ, an SU(2) gauge field Qμ, and an SU(3) gauge field
Vμ.

Note that the coefficients in front of �μ in the above formulas are precisely the
aforementioned (and correct!) hypercharges of the corresponding particles.

Next, let us turn to the scalar field φ, which is given by
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φ|Hl =
(

0 Y ∗
Y 0

)
, φ|Hq =

(
0 X∗
X 0

)
⊗ 13, φ|Hl = 0, φ|Hq = 0, (24)

where we now have, for complex fields φ1, φ2,

Y =
(
Yνφ1 −Yeφ2

Yνφ2 Yeφ1

)
, X =

(
Yuφ1 −Ydφ2

Yuφ2 Ydφ1

)
.

The scalar field � is then given by

� = DF +
(
φ 0
0 0

)
+ JF

(
φ 0
0 0

)
J ∗
F =

(
S + φ T ∗
T (S + φ)

)
. (25)

Finally, one can compute that the action of the gauge group SU(AF ) by conjugation
on the fluctuated Dirac operator

Dω = D ⊗ 1 + γ μ ⊗ Bμ + γM ⊗�

is implemented by

�μ �→ �μ − iλ∂μλ, Qμ �→ qQμq
∗ − iq∂μq

∗, V μ �→ mVμm
∗ − im∂μm

∗,

H �→ λ qH,

for λ ∈ C∞(
M,U(1)

)
, q ∈ C∞(

M,SU(2)
)

andm ∈ C∞(
M,SU(3)

)
and we have

written the Higgs doublet as

H :=
(
φ1 + 1
φ2

)

For the detailed computation we refer to [17, Sect. 3.5] or [75, Prop. 11.5].
Summarizing, the gauge fields derived take values in the Lie algebra u(1) ⊕

su(2) ⊕ su(3) and transform according to the usual Standard Model gauge
transformations. The scalar field φ transforms as the Standard Model Higgs field
in the defining representation of SU(2), with hypercharge −1.

4.4 Spectral action

The spectral action for the above spectral Standard Model has been computed in
full detail in [17, Section 4.2] and confirmed in, e.g., [75, Theorem 11.10]. Since
it would lie beyond the scope of the present review, we refrain from repeating this
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computation. Instead, we summarize the main result, which is that the Lagrangian
derived from the spectral action is

SB =
∫ (

48χ4�
4

π2 − cχ2�
2

π2 + dχ(0)

4π2 +
(
cχ(0)

24π2 − 4χ2�
2

π2

)
s − 3χ(0)

10π2 (Cμνρσ )
2

+ 1

4
YμνY

μν + 1

4
Wa
μνW

μν,a + 1

4
GiμνG

μν,i + bπ2

2a2χ(0)
|H |4

− 2aχ2�
2 − eχ(0)

aχ(0)
|H |2 + 1

12
s|H |2 + 1

2
|DμH |2

)√
gd4x,

where χj = ∫ ∞
0 χ(v)vj−1dv are the moments of the function χ , j > 0, s = −R is

the scalar curvature, Yμν,Wμν , and Gμν are the field strengths of Yμ,Qμ, and Vμ,
respectively, and the covariant derivative DμH is given by

DμH = ∂μH + 1

2
ig2W

a
μσ

aH − 1

2
ig1YμH. (26)

Moreover, we have defined the following constants:

a = Tr
(
Y ∗
ν Yν + Y ∗

e Ye + 3Y ∗
u Yu + 3Y ∗

d Yd
)
,

b = Tr
(
(Y ∗
ν Yν)

2 + (Y ∗
e Ye)

2 + 3(Y ∗
u Yu)

2 + 3(Y ∗
d Yd)

2),

c = Tr
(
Y ∗
RYR

)
, (27)

d = Tr
(
(Y ∗
RYR)

2),

e = Tr
(
Y ∗
RYRY

∗
ν Yν

)
.

The normalization of the kinetic terms imposes a relation between the coupling
constants g1, g2, g3 and the coefficients χ0 of the form

χ(0)

2π2
g3

2 = χ(0)

2π2
g2

2 = 5χ(0)

6π2
g1

2 = 1

4
. (28)

The coupling constants are then related by

g3
2 = g2

2 = 5

3
g1

2,

which is precisely the relation between the coupling constants at unification, com-
mon to grand unified theories (GUT). We shall further discuss this in Section 4.6.
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4.5 Fermionic action in KO-dimension 6

As already announced above, the shift to KO-dimension 6 for the finite space
solved the fermion-doubling problem of [63]. Let us briefly explain how this works,
following [31].

The crucial observation is that in KO-dimension 2 ≡ 4+6 mod 8 the following
pairing

(ψ,ψ ′) �→ (Jψ,Dωψ
′)

is a skew-symmetric form on the +1-eigenspace of γ in H. This skew-symmetry is
in concordance with the Grassmann nature of fermionic fields ψ , guaranteeing that
the following action functional is in fact non-zero:

SF = 1

2
〈Jξ,DAξ 〉

for ξ a Grassmann variable in the +1-eigenspace of γ .
This then solves the fermion doubling, or actually quadrupling as follows. First,

the restriction to the chiral subspace of γ takes care of a factor of two. Then,
the functional integral involving anti-commuting Grassmann variables delivers a
Pfaffian, which takes care of a square root. That this indeed work has been worked
out in full detail for the case of the Standard Model in [17, Section 4.4.1] or [75,
Section 11.4].

4.6 Phenomenological consequences

The first phenomenological consequence one can derive from the spectral Standard
Model is an upper bound on the mass of the top quark. In fact, the appearance of the
constant a in both the fermionic and the bosonic action allows to derive

Tr
(
m∗
νmν +m∗

eme + 3m∗
umu + 3m∗

dmd
) = 2g2

2v2 = 8MW
2. (29)

It is natural to assume that the mass mtop of the top quark is much larger than all
other fermion masses, except possibly a Dirac mass that arises from the seesaw
mechanism as was described above. If we writemν = ρmtop, then the above relation
would yield the constraint

mtop �
√

8

3 + ρ2
MW. (30)

The relations (28) between the coupling constants and χ(0) suggest that we have
grand unification of the coupling constants. Moreover, from the action functional
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we see that the quartic Higgs coupling constant λ is related to χ(0) as well via

λ = 24
b

a2 g
2
2 .

Thus, the spectral Standard Model imposes relations between the coupling constants
and bounds on the fermion masses. These relations were used in [17] as input
at (or around) grand unification scale �GUT, and then run down using one-loop
renormalization group equations to “low energies” where falsifiable predictions
were obtained.

In fact, the mass of the top quark can indeed be found to get an acceptable value,
however, for the Higgs mass it was found that

167 GeV ≤ mh ≤ 176 GeV .

Given that there were not much models in particle physics around that could produce
falsifiable predictions, it is somewhat ironical that the first exclusion results on the
mass of the Higgs that appeared in 2009 from Fermilab hit exactly this region. See
Figure 1. And, of course, with the discovery of the Higgs at mh ≈ 125.5 GeV in
[1, 26] one could say that the spectral Standard Model was not in a particularly
good shape at that time.

Fig. 1 Observed and expected exclusion limits for a Standard Model Higgs boson at the 95%
confidence level for the combined CDF and DZero analyses (Fermilab)
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5 Beyond the Standard Model with noncommutative
geometry

Even though the incompatibility between the spectral Standard Model and the
experimental discovery of the Higgs with a relatively low mass was not an easy
stroke at the time, it also led to a period of reflection and reconsideration of the
premises of the noncommutative geometric approach. In fact, it was the beginning
of yet another exciting chapter in our story on the spectral model of gravity coupled
with matter. As we will see in this and the next chapter, once again the input from
experiment is taken as a guiding principle in our search for the spectral model that
goes beyond the Standard Model.

Remark 5 We do not pretend to give a complete overview of the literature here, but
only indicate some of the highlights and actively ongoing research areas.

Other searches beyond the Standard Model with noncommutative geometry
include [53, 70, 71, 73, 72, 74], adopting a slightly different approach to almost-
commutative manifolds as we do.

There is another aspect that was studied is the connection between supersym-
metry and almost-commutative manifolds. It turned out to be very hard—if not
impossible—to combine the two. A first approach is [13] and more recently the
intersection was studied in [9, 10, 5].

5.1 Resilience of the spectral Standard Model

In 2012 it was realized how a small correction of the spectral Standard Model gives
an intriguing possibility to go beyond the Standard Model, solving at the same time
a problem with the stability of the Higgs vacuum given the measured low mass mh.
This is based on [16], but for which some of the crucial ingredients surprisingly
enough were already present in the 2010 paper [15].

Namely, in the definition of the finite Dirac operator DF of Equation (19), we
can replace YR by YRσ , where σ is a real scalar field on M . Strictly speaking, this
brings us out of the class of almost-commutative manifolds M × F , since part of
DF now varies over M and this was the main reason why it was disregarded before.
However, since from a physical viewpoint there was no reason to assume YR to be
constant, it was treated as a scalar field already in [15]. This was only fully justified
in subsequent papers (as we will see in the next subsections) where the scalar field
σ arises as the relic of a spontaneous symmetry breaking mechanism, similar to the
Higgs field h in the electroweak sector of the Standard Model. We will discuss a few
of the existing approaches in the literature in the next few sections. For now, let us
simply focus on the phenomenological consequences of this extra scalar field.

Thus we replace YR by YRσ and analyze the additional terms in the spectral
action. The scalar sector becomes
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S′
H :=

∫

M

(
bf (0)

2π2
|H |4 − 2af2�

2

π2
|H |2 + ef (0)

π2
σ 2|H |2

− cf2�
2

π2
σ 2 + df (0)

4π2
σ 4 + af (0)

2π2
|DμH |2 + 1

4π2
f (0)c(∂μσ)

2
)√

gdx,

where we ignored the coupling to the scalar curvature.
We exploit the approximation thatmtop,mν , andmR are the dominant mass terms.

Moreover, as before we write mν = ρmtop. That is, the expressions for a, b, c, d,
and e in (27) now become

a ≈ m2
top
(ρ2 + 3),

b ≈ m4
top
(ρ4 + 3),

c ≈ m2
R,

d ≈ m4
R,

e ≈ ρ2m2
Rm

2
top
.

In a unitary gauge, where H =
(
h

0

)
, we arrive at the following potential:

Lpot (h, σ ) = 1

24
λhh

4 + 1

2
λhσh

2σ 2 + 1

4
λσσ

4 − 4g2
2

π2 f2�
2(h2 + σ 2),

where we have defined coupling constants

λh = 24
ρ4 + 3

(ρ2 + 3)2
g2

2, λhσ = 8ρ2

ρ2 + 3
g2

2, λσ = 8g2
2 . (31)

This potential can be minimized, and if we replace h by v + h and σ by w + σ ,
respectively, expanding around a minimum for the terms quadratic in the fields, we
obtain:

Lpot (v + h,w + σ)|quadratic = 1

6
v2λhv

2 + 2vwλhσ σh+ w2λσσ
2

= 1

2

(
h σ

)
M2

(
h

σ

)
,

where we have defined the mass matrix M by

M2 = 2

( 1
6λhv

2 λhσ vw

λhσ vw λσw
2

)
.
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This mass matrix can be easily diagonalized, and if we make the natural assumption
that w is of the order of mR , while v is of the order of MW , so that v � w, we find
that the two eigenvalues are

m2+ ∼ 2λσw
2 + 2

λ2
hσ

λσ
v2,

m2− ∼ 2λhv
2

(
1

6
− λ2

hσ

λhλσ

)

.

We can now determine the value of these two masses by running the scalar coupling
constants λh, λhσ , and λσ down to ordinary energy scalar using the renormalization
group equations for these couplings that were derived in [51], referring to [16, 75]
for full details. The result varies with the chosen value for �GUT and the parameter
ρ. The mass of σ is essentially given by the largest eigenvalue m+ which is of
the order 1012 GeV for all values of �GUT and the parameter ρ. The allowed
mass range for the Higgs, i.e. for m−, is depicted in Figure 2. The expected
value mh = 125.5 GeV is therefore compatible with the above noncommutative
model. Moreover, without the σ the λh turns negative at energies around 1012 GeV.
Furthermore, this calculation implies that there is a relation (given by the red line in
the figure) between the ratio mν/mtop and the unification scale �GUT.

Fig. 2 A contour plot of the
Higgs mass mh as a function
of ρ2 and
t = log(�GUT/MZ). The red
line corresponds to
mh = 125.5 GeV
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5.2 Pati–Salam unification and first-order condition

In order to see how we one can use the noncommutative geometric approach to go
beyond the Standard Model it is important to trace our steps that led to the spectral
Standard Model in the previous section. The route started with the classification
of the algebras of the finite space (cf. Equation (17)). The results show that the
only algebras which solve the fermion doubling problem are of the form M2a(C)⊕
M2a(C)where a is an even integer. An arbitrary symplectic constraint is imposed on
the first algebra restricting it from M2a(C) to Ma(H). The first non-trivial algebra
one can consider is for a = 2 with the algebra

M2(H)⊕M4(C). (32)

Coincidentally, and as explained in the introduction, the above algebra comes out
as a solution of the two-sided Heisenberg quantization relation between the Dirac
operator D and the two maps from the four spin-manifold and the two four spheres
S4 × S4 [18, 19]. This removes the arbitrary symplectic constraint and replaces it
with a relation that quantize the four-volume in terms of two quanta of geometry
and have far reaching consequences on the structure of space-time. We will come
back to this in the last section.

The existence of the chirality operator γ that commutes with the algebra breaks
the quaternionic matricesM2(H) to the diagonal subalgebra and leads us to consider
the finite algebra

AF = HR ⊕ HL ⊕M4(C). (33)

This algebras is the simplest candidate to search for new physics beyond the
Standard Model. In fact, the inner automorphism group of A = C∞ (M) ⊗ AF

is recognized as the Pati–Salam gauge group SU(2)R × SU(2)L × SU(4), and
the corresponding gauge bosons appear as inner perturbations of the (space-time)
Dirac operator [21]. Thus, we are considering a spectral Pati–Salam model as a
candidate beyond the Standard Model. Let us further analyze this model and its
phenomenological consequences.

An element of the Hilbert space � ∈ H is represented by

�M =
(
ψA

ψ
A

′

)
, ψA′ = ψcA (34)

where ψcA is the conjugate spinor to ψA. Thus all primed indices A′ correspond
to the Hilbert space of conjugate spinors. It is acted on by both the left algebra
M2 (H) and the right algebraM4 (C). Therefore, the index A can take 16 values and
is represented by

A = αI (35)
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where the index α is acted on by quaternionic matrices and the index I by M4 (C)

matrices. Moreover, when the grading breaks M2 (H) into HR ⊕ HL the index α is
decomposed to α = .

a, a where
.
a = .

1,
.

2 (dotted index) is acted on by the first
quaternionic algebra HR and a = 1, 2 is acted on by the second quaternionic
algebra HL. When M4 (C) breaks into C ⊕ M3 (C) (due to symmetry breaking
or through the use of the order one condition as in [14]) the index I is decomposed
into I = 1, i and thus distinguishing leptons and quarks, where the 1 is acted on by
the C and the i by M3 (C) . Therefore, the various components of the spinor ψA are

ψαI =
(
νR uiR νL uiL

eR diR eL diL

)
, i = 1, 2, 3 (36)

= (
ψ.
a1, ψ

.
ai , ψa1, ψai

)
, a = 1, 2,

.
a = .

1,
.

2

This is a general prediction of the spectral construction that there is 16 fundamental
Weyl fermions per family, 4 leptons and 12 quarks.

The (finite) Dirac operator can be written in matrix form

DF =
(
DB
A DB

′
A

DB

A
′ DB

′

A
′

)

, (37)

and must satisfy the properties

γFDF = −DFγF JFDF = DFJF (38)

where J 2
F = 1. A matrix realization of γF and JF are given by

γF =
(
GF 0
0 −GF

)
, GF =

(
12 0
0 −12

)
, JF =

(
04 14

14 04

)
◦ cc (39)

where cc stands for complex conjugation. These relations, together with the
hermiticity of D, imply the relations

(DF )
B

′

A
′ = (

DF

)B
A

(DF )
B

A
′ = (

DF

)A′
B

(40)

and have the following zero components [15]:

(DF )
bJ
aI = 0 = (DF )

.
bJ
.
aI

(41)

(DF )
.
b
′
J ′

aI = 0 = (DF )
b′J ′
.
aI

(42)

leaving the components (DF )
.

bJ
aI , (DF )b

′J ′
aI , and (DF )

.

b
′
J ′

.
aI

arbitrary. These restric-
tions lead to important constraints on the structure of the connection that appears in
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the inner fluctuations of the Dirac operator. In particular, the operator D of the full
noncommutative space given by

D = DM ⊗ 1 + γ5 ⊗DF (43)

gets modified to

DA = D + A(1) + JA(1)J
−1 + A(2) (44)

where

A(1) =
∑

a [D, b] , A2 =
∑

â
[
A(1), b̂

]
, â = JaJ−1 (45)

We have shown in [21] that components of the connection A which are tensored
with the Clifford gamma matrices γ μ are the gauge fields of the Pati–Salam model
with the symmetry of SU (2)R × SU (2)L × SU (4) . On the other hand, the non-
vanishing components of the connection which are tensored with the gamma matrix
γ5 are given by

(A)
.

bJ
aI ≡ γ5�

.

bJ
aI , (A)b

′J ′
aI = γ5HaIbJ , (A)

.

b
′
J ′

.
aI

≡ γ5H.
aI

.

bJ
(46)

where HaIbJ = HbJaI and H.
aI

.
bJ

= H.
bJ

.
aI

, which is the most general Higgs struc-
ture possible. These correspond to the representations with respect to SU (2)R ×
SU (2)L × SU (4) :

�
.
bJ
aI = (2R, 2L, 1)+ (2R, 2L, 15) (47)

HaIbJ = (1R, 1L, 6)+ (1R, 3L, 10) (48)

H.
aI

.
bJ

= (1R, 1L, 6)+ (3R, 1L, 10) (49)

We note, however, that the inner fluctuations form a semi-group and if a component

(DF )
.
bJ
aI or (DF )b

′J ′
aI or (DF )

.
b
′
J ′

.
aI

vanish, then the corresponding A field will also
vanish. We can distinguish three cases: (1) Left-right symmetric Pati–Salam model

with fundamental Higgs fields �
.
bJ
aI , HaIbJ , and H.

aI
.
bJ
. In this model the field

HaIbJ should have a zero vev. (2) A Pati–Salam model where the Higgs fieldHaIbJ
that couples to the left sector is set to zero which is desirable because there is
no symmetry between the left and right sectors at low energies. (3) If one starts

with (DF )
.
bJ
aI or (DF )b

′J ′
aI or (DF )

.
b
′
J ′

.
aI

whose values are given by those that were

derived for the Standard Model, then the Higgs fields �
.
bJ
aI , HaIbJ , and H.

aI
.
bJ

will

become composite and expressible in terms of more fundamental fields �JI , � .
aJ ,
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Fig. 3 Running of the gauge couplings of the Standard Model gauge couplings (below scalemR ≈
1011 GeV) and the Pati–Salam gauge coupling (above scale mR) in case 2

and φb.
a
. We refer to this as the composite model. It has the scalar field σ discussed

in the previous section as a remnant after spontaneous symmetry breaking [21]. In
fact, contrary to some claims in the literature it is possible to perform the potential
analysis in this case in unitarity gauge and arrive at the conclusion that the field
content contains the scalar field σ (cf. Appendix).

Depending on the precise particle content we may determine the renormalization
group equations of the Pati–Salam gauge couplings gR, gL, g. In [22] we have run
them to look for unification of the coupling gR = gL = g. The boundary conditions
are taken at the intermediate mass scale μ = mR to be the usual (e.g., [67, Eq.
(5.8.3)])

1

g2
1

= 2

3

1

g2 + 1

g2
R

,
1

g2
2

= 1

g2
L

,
1

g2
3

= 1

g2 , (50)

in terms of the Standard Model gauge couplings g1, g2, g3. At the mass scale mR
the Pati–Salam symmetry is broken to that of the Standard Model, and we take it
to be the same scale that is present in the seesaw mechanism. It should thus be of
the order 1011–1013 GeV. What we have found in [22] (and this was confirmed by
others in [3]) is that in all three cases it is possible to achieve grand unification of the
couplings, while connecting to Standard Model physics in the broken, low-energy
phase. An example of a running of the gauge coupling is illustrated in Figure 3.
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5.3 Grand symmetry and twisted spectral triples

In [40] the next-to-next case3 in the list of irreducible geometries in Equation (17)
was considered: k = 4. Thus, one considers

AG = M4(H)⊕M8(C); HF := C
128. (51)

where 128 is exactly the number of spinor and internal degrees of freedom combined
(including the aforementioned fermion quadruplication). The geometry is then

(C∞(M,AG), L2(M)⊗HF ,DM + γMDF )

where one has to assume that the spinor bundle on M has been trivialized to gather
the spinor and internal fermionic degrees of freedom in a single Hilbert space HF .

Note that the above geometry is not a direct product of the continuum with a
discrete space. In fact, both the algebra and the Dirac operator DM contain spinor
indices. As a consequence the commutator [DM, a] can become unbounded, thus
challenging one of the basic axioms of spectral triples. Instead, it is possible to
guarantee that twisted commutators are bounded so that this example fits in the
general framework of twisted spectral triples developed in [34]. In [41] the authors
identify an inner automorphism ρ = R(·)R of AG such that

[D, a]ρ = Da − ρ(a)D

is bounded.
An interesting question that arises at this point is how to generate inner

fluctuations of twisted spectral triples. This was analyzed in full detail from a
mathematical viewpoint in [61, 62]. One of the intriguing aspects is the self-
adjointness of the Dirac operator under fluctuations (even gauge transformations):
for this to be respected one has to impose a compatibility between the twist and the
fluctuation.

An alternative route was suggested in [39]. Namely, one may drop the above
condition of self-adjointness and instead look for operators that are Krein-self-
adjoint, using the Krein structure on the Hilbert space that is induced by the operator
R (defining the twist ρ). This will have an intriguing appearance of the Lorentzian
structure (given by the Krein inner product) from a purely algebraic and Euclidean
starting point. Here we also refer to the nice overview given in [64].

3The case k = 3 was ruled out by physical considerations [40].
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5.4 Algebraic constraints on the finite geometry

An interesting question to consider—in particular in light of theories that go beyond
the Standard Model—is whether one can derive the restricted form of the Dirac
operator DF in (19). We highlight a few approaches to this question that are present
in the literature.

First of all, as mentioned already on page 18, the form of the DF in terms of
the matrices Yν, Ye, Yu, Yd , and YR as in Equations (21) and (22) appears naturally
in the study of moduli of finite Dirac operators. The only constraint (in addition
to the usual conditions laid out in Section 3.1) there was that the photon remained
massless.

An attempt was made to make the latter condition less ad hoc is [49, 7, 8]. They
proposed to generalize noncommutative geometry to non-associative noncommuta-
tive geometry, thus allowing for non-associative algebras. The crucial idea—which
goes back to Eilenberg—is to combine the (differential) algebra and (Hilbert space)
bimodule into a single algebra, and understand the conditions such as commutant
property and first-order conditions as consequences of associativity of the pertinent
algebra B. However, this associativity is a strong constraint and accordingly further
restrict the geometry described by DF . Note that non-associative algebras have also
been used in the context of noncommutative geometry and particle physics to predict
the number of families (to be three) [76].

Another approach to analyzing the form of the Dirac operator DF by imposing
algebraic conditions is taken by Dabrowski et al. [35, 36]. Here the authors adopt
the principle that, similar to differential forms in the continuum, the finite Hilbert
space should be a Morita equivalence between A and the Clifford algebra generated
by AF and DF . One finds that the aforementioned form of DF does not satisfy this
condition but additional entries inDF should be non-zero. This gives rise to a model
beyond the Standard Model: an analysis of the phenomenological consequences is
performed in [59, 37]. In [2] it was then found that this model does not exhibit grand
unification of the Standard Model couplings.

6 Volume quantization and uniqueness of SM

In the classification of finite noncommutative spaces we arrived at the result that the
algebra AF = (HR⊕HL)⊕M4 (C) was the first possibility out of many of the form
AF = (Mn (H)R ⊕Mn (H)L)⊕M4n (C). In addition we made an assumption, that
seemed arbitrary, of the existence of antilinear isometry that reduced the algebra
M4n (C) to (Mn (H)R ⊕Mn (H)L). It is necessary to have a stronger evidence of the
uniqueness of our conclusions that helps us to avoid making the abovementioned
assumptions. Surprisingly, the new evidence came in the process of solving a
seemingly completely independent problem, encoding low dimensional geometries,
and in particular dimension four.
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6.1 Higher form of Heisenberg’s commutation relations

Starting with the simple example of one-dimensional geometries, consider the
equation

U∗ [D,U ] = 1, U∗U = 1

where D is self-adjoint operator. Assuming that the one-dimensional space is a
closed curve parameterized by coordinate x and the Dirac operator to be D =
−i d

dx
+ α the above equation simplifies to

−iU∗dU = dx

Writing U = einθ we obtain dx = ndθ. Integrating both sides implies that the
length of the one-dimensional curve is an integer multiple of 2π , the length of S1

∮

C

dx = n (2π)

To adopt this construction to higher dimensions, we note that we can characterize
the circle S1 by the equation YAYA = 1, A = 1, 2, YA∗ = YA. Assembling the
two coordinates Y 1, Y 2 in one matrix, define Y = YA�A, where �A, A = 1, 2 are
taken to be 2 × 2. In addition we identify �1 = σ1, �2 = σ2, the Pauli matrices,
and define � = −i�1�2 = σ3 so that �+ = 1

2 (1 + �) is a projection operator. We
notice that we can write

Y =
(

0 Y 1 − iY 2

Y 1 + iY 2 0

)
=

(
0 U∗
U 0

)

where U = Y 1 − iY 2 and U∗U = 1. The expression

〈�+Y [D,Y ]〉 = 1

where 〈〉 is defined to be the trace over the Clifford algebra defined by �A, gives
back the equation U∗ [D,U ] = 1. For higher dimensional geometries we consider
a Riemannian manifold with dimension n and where the algebra A is taken to be
C∞ (M) , the algebra of continuously differentiable functions, while the operatorD
is identified with the Dirac operator given by

DM = γ μ
(
∂

∂xμ
+ ωμ

)
,

where γ μ = e
μ
a γ

a and ωμ = 1
4ωμbcγ

bc is the SO(n) Lie-algebra valued spin-
connection with the (inverse) vielbein eμa being the square root of the (inverse)
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metric gμν = e
μ
a δ

abeνb. The gamma matrices γ a are anti-Hermitian (γ a)∗ = −γ a
that define the Clifford algebra

{
γ a, γ b

} = −2δab. The Hilbert space H is the space
of square integrable spinors L2 (M, S) . The chirality operator γ in even dimensions
is then given by

γ = (i)
n
2 γ 1γ 2 · · · γ n

Starting with manifolds of dimension 2 we first define the two sphere by the equation
YAYA = 1, A = 1, 2, 3, YA∗ = YA. Assembling the three coordinates Y 1, Y 2, Y 3

in one matrix, defining Y = YA�A, where �A, A = 1, 2, 3 are taken to be 2 × 2
Pauli matrices. Notice that in this case � ≡ −i�1�2�3 = 1 and to generalize
Equation (6.1) to two dimensions the factor � can be dropped, and we write instead

1

2!
〈
Y [D,Y ]2

〉
= γ

The reason we have to include the chirality operator γ on the two- dimensional
manifold M is that the Dirac operator D appears twice yielding a product of the
form γ1γ2 = −iγ .A simple calculation shows that the above equation in component
form is given by

1

2!ε
μνεABCY

A∂μY
B∂νY

C = det
(
eaμ

)

which is a constraint on the volume form ofM2. This implies that the volume ofM2
will be an integer multiple of the area of the unit 2-sphere

∫

M2

d2x
√
g =

∫
εABCY

AdYBdYC

= n(4π)

where n is the winding number. An example of a map Y with winding number n is

Y ≡ Y 1 + iY 2 = 2zn

|z|2n + 1
, Y 3 = |z|2n − 1

|z|2n + 1
, z = x1 + ix2

From this we deduce that the pullback Y ∗ (wn) is a differential form that does not
vanish anywhere. This in turn implies that the Jacobian of the map Y does not vanish
anywhere, and that Y is a covering of the sphere. The sphere is simply connected,
and on each connected component Mj ⊂ Mn, the restriction of the map Y to Mj

is a diffeomorphism, implying that the manifold must be disconnected, with each
piece having the topology of a sphere. To allow for two-dimensional manifolds
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with arbitrary topology, our first observation is that condition (6.1) involves the
commutator of the Dirac operator D and the coordinates Y. In momentum space
D is the Feynman-slashed γ μpμ momentum and Y are the Feynman-slashed
coordinates. This suggests that the quantization condition is a higher form of
Heisenberg commutation relation quantizing the phase space formed by coordinates
and momenta. We first notice that although the quantization condition is given in
terms of the noncommutative data, the operator J is the only one missing. We
therefore modify the condition to take J into account. The operator J transforms
Y into its commutant Y ′ = iJYJ−1 so that

[
Y, Y ′] = 0. Thus let Y = YA�A and

Y ′ = iJYJ−1 and �′
A = iJ�AJ

−1 so that we can write

Y = YA�A, Y ′ = Y ′A�′
A,

satisfying Y 2 = 1 and Y ′2 = 1 with the Clifford algebras C±

{�A,�B} = 2 δAB, (�A)
∗ = �A (52)

{
�′
A, �

′
B

} = −2 δAB, (�′
A)

∗ = −�′
A (53)

We immediately see that the Clifford algebra C+ = M2 (C) and C− = H. We
then define the projection operator e = 1

2 (1 + Y ) satisfying e2 = e and similarly
e′ = 1

2

(
1 + Y ′) satisfying e′2 = e′. From the tensor product of E = ee′ satisfying

E2 = E, we construct Z = 2E − 1 satisfying Z2 = 1 and allowing us to write

1

2

〈
Z [D,Z]2

〉
= γ

A straightforward calculation reveals that this relation splits as the sum of two non-
interfering parts

1

2

〈
Y [D,Y ]2

〉
+ 1

2

〈
Y ′ [D,Y ′]2

〉
= γ

which in component form reads

1

2!ε
μνεABC

(
YA∂μY

B∂νY
C + Y

′A∂μY
′B∂νY

′C
)

= det
(
eaμ

)

We will show later, when considering the four-dimensional case, that this modifica-
tion allows to reconstruct two-dimensional manifolds of arbitrary topology from the
pullbacks of the maps Y, Y ′.

For three-dimensional manifolds γ = 1 and in analogy with the one-dimensional
case we write

1

3!
〈
�+Y [D,Y ]3

〉
= 1
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where Y = YA�A, A = 1, . . . 4, Y 2 = 1, Y = Y ∗, �A are 4 × 4 Clifford algebra
matrices C+ where {�A,�B} = 2 δAB . In this representation of the � matrices we

have � = �5 = �1�2�3�4 =
(

12 0
0 −12

)
so that �+ = 1

2 (1 + �) is a projection

operator. In d = 3, we can write

Y = YA�A =
(

0 U∗
U 0

)

where U is a unitary 2 × 2 matrix such that it could be written in the form U =
exp (i (α01 + αaσ

a)) so that U∗U = 1. It is easy to check that
〈
Y [D,Y ]3

〉 = 0 and
that the component form of the above relation is

det
(
eaμ

) = 1

3!ε
μνρTr

(
U∗∂μUU∗∂νUU∗∂ρU

)

whose integral is the winding number of the SU(2) group manifold. Again, using the
reality operator J we act on the Clifford algebra Y ′ = iJYJ−1 so that

[
Y, Y ′] = 0,

then �′
A = iJ�AJ

−1 satisfies
{
�′
A, �

′
B

} = −2 δAB, (�′
A)

∗ = −�′
A. Forming the

projection operators e = 1
2 (1 + Y ) , e′ = 1

2

(
1 + Y ′), we form the tensor product

E = ee′ we define the field Z = 2E − 1, and thus the two sided relation becomes

1

3!
〈
�+�′+Z [D,Z]3

〉
= 1

A lengthy calculation shows that the component form of this relation separates into
two parts without interference terms

det
(
eaμ

) = 1

3!ε
μνρ

(
Tr

(
U∗∂μUU∗∂νUU∗∂ρU

)

+ Tr
(
U

′∗∂μU ′U ′∗∂νU ′U ′∗∂ρU ′)
)

Finally, for four-dimensional manifolds the Clifford algebras C+ and C− defined as
in (52) (53) with �A, �′

A, A = 1, . . . , 5 are known to be given by C+ = M2 (H)

and C− = M4 (C) . The quantization condition takes the same form as the two-
dimensional case

1

4!
〈
Z [D,Z]4

〉
= γ (54)

This relation separates into two non-interfering terms

1

4!
〈
Y [D,Y ]4

〉
+ 1

4!
〈
Y ′ [D,Y ′]4

〉
= γ
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the component form of which is given by

det
(
eaμ

) = 1

4!ε
μνκλεABCDE

(
YA∂μY

B∂νY
C∂κY

D∂λY
E

+ Y
′A∂μY

′B∂νY
′C∂κY

′D∂λY
′E
)

One can verify that similar considerations fail when the dimension of the manifold
n > 4 as there are interference terms between the Y and Y ′. Integrating both sides
imply

∫

M4

d4x
√
g = 8

3
π2 (N +N ′)

where N , N ′ are the winding numbers of the two maps Y, Y ′. An example of a map
Y with winding number n is given by

Y ≡ Y 41 + Y iei = 2xn

xnxn + 1
,

Y 5 = xnxn − 1

xnxn + 1
,

where x = x41 + xiei and ei, i = 1, 2, 3 are the quaternionic complex structures
e2
i = −1, eiej = εijkek, i �= j.

6.2 Volume quantization

Consider the smooth maps φ± : Mn → Sn then their pullbacks φ∗± would satisfy

φ∗+ (α)+ φ∗− (α) = ω, (55)

where α is the volume form on the unit sphere Sn and ω (x) is an n-form that does
not vanish anywhere on Mn. We have shown that for a compact connected smooth
oriented manifold with n < 4 one can find two maps φ∗+ (α) and φ∗− (α) whose sum
does not vanish anywhere, satisfying equation (55) such that

∫
ω ∈ Z. The proof for

n = 4 is more difficult and there is an obstruction unless the second Stiefel–Whitney
class w2 vanishes, which is satisfied if M is required to be a spin-manifold and the
volume to be larger than or equal to five units. The key idea in the proof is to note
that the kernel of the Jacobian of the map Y is a hypersurface � of co-dimension 2
and therefore



A survey of spectral models of gravity coupled to matter 39

dim� = n− 2.

We can then construct a map Y ′ = Y ◦ ψ where ψ is a diffeomorphism on M
such that the sum of the pullbacks of Y and Y ′ does not vanish anywhere. The
coordinates Y are defined over a Clifford algebra C+ spanned by {�A,�B} = 2δAB.
For n = 2, C+ = M2 (C) while for n = 4, C+ = M2 (H) ⊕ M2 (H) where
H is the field of quaternions. However, for n = 4, since we will be dealing with
irreducible representations we take C+ = M2 (H) . Similarly the coordinates Y ′
are defined over the Clifford algebra C− spanned by

{
�′
A, �

′
B

} = −2δAB and for
n = 2, C− = H ⊕ H and for n = 4, C− = M4 (C) . The operator J acts on the two
algebrasC+⊕C− in the form J (x, y) = (y∗, x∗) (i.e., it exchanges the two algebras
and takes the Hermitian conjugate). The coordinates Z = 1

2 (Y + 1)
(
Y ′ + 1

) − 1
then define the matrix algebras [18]

AF = M2 (C)⊕ H, n = 2

AF = M2 (H)⊕M4 (C) , n = 4.

One, however, must remember that the maps Y and Y ′ are functions of the
coordinates of the manifold M and therefore the algebra associated with this space
must be

A = C∞ (M,AF )

= C∞ (M)⊗ AF .

To see this consider, for simplicity, the n = 2 case with only the map Y. The Clifford
algebra C− = H is spanned by the set

{
1, �A

}
, A = 1, 2, 3, where

{
�A,�B

} =
−2δAB. We then consider functions which are made out of words of the variable Y
formed with the use of constant elements of the algebra [32]

∞∑

i=1

a1Ya2Y · · · aiY, ai ∈ H,

which will generate arbitrary functions over the manifold which is the most general
form since Y 2 = 1. One can easily see that these combinations generate all
the spherical harmonics. This result could be easily generalized by considering
functions of the fields

Z = 1

2
(Y + 1)

(
Y ′ + 1

) − 1, Y ∈ H, Y ′ ∈ M2 (C) ,

showing that the noncommutative algebra generated by the constant matrices and
the Feynman slash coordinates Z is given by [32]

A = C∞ (M2)⊗ (H+M2 (C)) .
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We now restrict ourselves to the physical case of n = 4. Here the algebra is given
by

A = C∞ (M4)⊗ (M2(H)+M4 (C)) .

The associated Hilbert space is

H = L2 (M4, S)⊗ HF .

The Dirac operator mixes the finite space and the continuous manifold non-trivially

D = DM ⊗ 1 + γ5 ⊗DF ,

where DF is a self-adjoint operator in the finite space. The chirality operator is

γ = γ5 ⊗ γF ,

and the anti-unitary operator J is given by

J = JMγ5 ⊗ JF ,

where JM is the charge-conjugation operator C on M and JF the anti-unitary

operator for the finite space. Thus an element � ∈ H is of the form � =
(
ψA

ψA′

)

where ψA is a 16 component L2 (M, S) spinor in the fundamental representation
of AF of the form ψA = ψαI where α = 1, . . . , 4 with respect to M2 (H) and
I = 1, . . . , 4 with respect toM4 (C) and where ψA′ = Cψ∗

A is the charge conjugate
spinor to ψA [15]. The chirality operator γ must commute with elements of A
which implies that γF must commute with elements in AF . Commutativity of the
chirality operator γF with the algebra AF and that this Z/2 grading acts non-
trivially reduces the algebra M2 (H) to HR ⊕ HL [18]. Thus the γF is identified
with γF = �5 = �1�2�3�4 and the finite space algebra reduces to

AF = HR ⊕ HL ⊕M4 (C) .

This can be easily seen by noting that an element ofM2 (H) takes the form

(
q1 q2

q3 q4

)

where each qi, i = 1, . . . , 4, is a 2 × 2 matrix representing a quaternion. Taking

the representation of �5 =
(

12 0
0 −12

)
to commute with M2 (H) implies that q2 =

0 = q3, thus reducing the algebra to HR ⊕ HL. Therefore the index α = 1, . . . , 4
splits into two parts,

.
a = .

1,
.

2 which is a doublet under HR and a = 1, 2 which is
a doublet under HL. The spinor � further satisfies the chirality condition γ� = �

which implies that the spinors ψ.
aI are in the (2R, 1L, 4) with respect to the algebra
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HR⊕HL ⊕M4 (C) while ψaI are in the (1R, 2L, 4) representation. The finite space
Dirac operator DF is then a 32 × 32 Hermitian matrix acting on the 32 component
spinors �. In addition we take three copies of each spinor to account for the three
families, but will omit writing an index for the families. At present we have no
explanation for why the number of generations should be three. The Dirac operator
for the finite space is then a 96×96 Hermitian matrix. The Dirac action is then given
by [17]

(J�,D�) .

We note that we are considering compact spaces with Euclidean signature and thus
the condition J� = � could not be imposed. It could, however, be imposed if the
four-dimensional space is Lorentzian [4]. The reason is that the KO dimension of
the finite space is 6 because the operators DF , γF , and JF satisfy

J 2
F = 1, JFDF = DFJF , JF γF = −γF JF .

The operators DM, γM = γ5, and JM = C for a compact manifold of dimension 4
satisfy

J 2
M = −1, JMDM = DMJM, JMγ5 = γ5JM.

Thus the KO dimension of the full noncommutative space (A,H,D) with the
decorations J and γ included is 10 and satisfies

J 2 = −1, JD = DJ, Jγ = −γ J.

We have shown in [17] that the path integral of the Dirac action, thanks to the
relations J 2 = −1 and Jγ = −γ J , yields a Pfaffian of the operator D instead
of its determinant and thus eliminates half the degrees of freedom of� and have the
same effect as imposing the condition J� = �.

We have also seen that the operator J sends the algebra A to its commutant, and
thus the full algebra acting on the Hilbert space H is A⊗Ao. Under automorphisms
of the algebra

� → U�,

where U = uû with u ∈ A, û ∈ Ao with [u, û] = 0, it is clear that Dirac action is
not invariant.

At this point it is clear that we have retrieved all our conclusions we have
before arriving at a unique possibility, which is to have a noncommutative space
corresponding to the Pati–Salam Model we considered before, and in the special
case where the Dirac operator and algebra satisfy the order one condition, the
result is the noncommutative space of the Standard Model. We have thus succeeded
in obtaining the Pati–Salam Model and Standard Model as unique possibilities
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starting with the two sided Heisenberg like Equation (54) thus eliminating all other
possibilities obtained in classifying finite noncommutative spaces of KO dimension
6. There is no need to assume the existence of an isometry that reduces the first
algebra from M4 (C) to M2 (H), and no need to assume that the KO dimension of
the finite space to be 6. These results are very satisfactory and serve to enhance
our confidence of the fine structure of space-time as given by the above derived
noncommutative space.

7 Outlook: towards quantization

Starting with the simple observation that the Higgs field could be interpreted as the
link between two parallel sheets separated by a distance of the order of 10−16 cm it
took enormous effort to identify a noncommutative space where the spectrum of the
Standard Model could fit. Small deviations from the model, such as the need for a
real structure and a KO dimension 6, were taken as input to fine tune and determine
precisely the noncommutative space. The spectral action principle proved to be
very efficient way in evaluating the bosonic sector of the theory. Having identified
the noncommutative space, the next target was to understand why nature would
chose the Standard Model and not any other possibility. A classification of finite
spaces revealed the special nature of the finite part of the noncommutative space
identified. Work on encoding manifolds with dimensions equal to four satisfying
a higher form of Heisenberg type equation showed that the most general solution
of this equation is that of a noncommutative space which is a product of a four-
dimensional Riemannian spin-manifold times the finite space corresponding to a
Pati–Salam unification model. The Standard Model is a special case of this space
where a first order differential condition is satisfied. After a long journey the reason
why nature chose the Standard Model is now reduced to determining solutions of a
higher form of Heisenberg equation. With such little input, it is quite satisfying to
learn that it is possible to answer many of the questions which puzzled theorists for a
long time. We now know why there are 16 fermions per generation, why the gauge
group is SU (3) × SU (2) × U (1) , an explanation of the Higgs field, and origin
of spontaneous symmetry breaking. The spectral model also predicts a Majorana
mass for the right-handed neutrinos and explains the seesaw mechanism. We thus
understand unification of all fundamental forces as a geometrical theory based on
the spectral action principle of a noncommutative space.

Naturally, there are many questions that are still unanswered, and this motivates
the need for further research to address these problems using noncommutative
geometry considerations. To conclude, we mention few of the possible directions of
future research. One important aspect to consider is the renormalizability properties
of the spectral model. Another problem is to study the quantum properties of the
Dirac operator and whether it could be related to the pullbacks of the maps used
in determining the quanta of geometry. The future of noncommutative geometry
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in the program of unification of all fundamental interactions looks now to be very
promising.
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Appendix: Pati–Salam model: potential analysis

We here include the scalar potential analysis for the composite Pati–Salam model,
as described in Section 5.2 above.

If there is unification of lepton and quark couplings, then ρ = 1 so that the
�IJ -field decouples. In that case we have

Lpot (φb.a ,� .
aI ) = −μ2φc.

a
φ
.
a
c − ν2

(
�.
aK�

.
aK

)2
+ λ�φ

.
c
aφ

b
.
c
φ
.

d
b φ

a
.
d

+ λH

(
�.
aK�

.
aL
�.
bL
�

.
bK

)2

+ λH�

(
�.
aJ�

.
aJ
�.
cI�

.
dI
)
φ
.
c
bφ

b
.

d

where we have absorbed some constant factors by redefining the couplings
λH , λH� , and λ� .

We choose unitarity gauge for the � and φ-fields, in the following precise sense.

Lemma 6 For each value of the fields {φbȧ ,�ȧI } there is an element (uR, uL, u) ∈
SU(2)R × SU(2)L × SU(4) such that

uR

(
φ1

1̇
φ2

1̇

φ1
2̇
φ2

2̇

)

u∗
L =

(
h 0
0 χ

)

and

uR

(
�1̇1 �1̇2 �1̇3 �1̇4
�2̇1 �2̇2 �2̇3 �2̇4

)
ut =

(
1 + δ0 0 0 0
δ1 η1 0 0

)

where h, δ0, δ1, η1 are real fields and χ is a complex field.

Proof Consider the singular value decomposition of the 2 × 2 matrix (φbȧ ):

(
φ1

1̇
φ2

1̇

φ1
2̇
φ2

2̇

)

= U

(
h 0
0 k

)
V ∗

for unitary 2 × 2 matrices U,V and real coefficients h, k. If we define
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uR =
(

1 0
0 detU

)
U∗ ∈ SU(2)R

uL =
(

1 0
0 detV

)
V ∗ ∈ SU(2)L

it follows that

uR

(
φ1

1̇
φ2

1̇

φ1
2̇
φ2

2̇

)

u∗
L =

(
h 0
0 k detUV ∗

)
=:

(
h 0
0 χ

)
.

Next, we consider �ȧI and write

(�ȧI ) =
(
u∗

1
u∗

2

)
, with u∗

a = (
�ȧ1 �ȧ2 �ȧ3 �ȧ4

)

for a = 1, 2. We may suppose that the vectors u1, u2 are such that their inner product
u∗

1u2 is a real number. Indeed, if this is not the case, then multiply �ȧI by a matrix
in SU(2)R as follows:

(
u∗

1
u∗

2

)
�→

(
α 0
0 α∗

)(
u∗

1
u∗

2

)
=

(
αu∗

1
α∗u∗

2

)
.

Now the inner product is (α∗u1)
∗αu2 = (α)2u∗

1u2 and we may choose α so as to
cancel the phase of u∗

1u2. Moreover, this transformation respects the above form of
φbȧ after a SU(2)L-transformation of exactly the same form:

(
h 0
0 χ

)
�→

(
α 0
0 α∗

)(
h 0
0 χ

)(
α 0
0 α∗

)∗
=

(
h 0
0 χ

)
.

Thus let us continue with the vectors u1, u2 satisfying u∗
1u2 ∈ R. We apply Gramm–

Schmidt orthonormalization to u1 and u2, to arrive at the following orthonormal set
of vectors {e1, e2} in C

4:

e1 = u1

‖u1‖; e2 = u2 − u∗
1u2

‖u1‖u1

‖u2 − u∗
1u2

‖u1‖u1‖
.

We complete this set by choosing two additional orthonormal vectors e3 and e4 and
write a unitary 4 × 4 matrix:

U = (
e1 e2 e3 e4

)

The sought-for matrix u ∈ SU(4) is determined by
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ut = U

(
13 0
0 detU∗

)

so as to give

(�ȧI ) u
t =

(
u∗

1e1 0 0 0
u∗

2e1 u
∗
2e2 0 0

)
=:

(
1 + δ0 0 0 0
δ1 η1 0 0

)

��
Remark 7 Note that this is compatible with the dimension of the quotient of the
space of field values by the group. Indeed, the fields φbȧ and �ȧI span a real 24-
dimensional space (at each manifold point). The dimension of the orbit space is then
24 − dimP with P a principal orbit of the action of SU(2)R × SU(2)L × SU(4)
on the space of field values. This dimension dimP is determined by the dimension
of the group and of a principal isotropy group.

First, we see that up to conjugation there is always a SU(2)-subgroup of
SU(4) leaving �ȧI invariant: it corresponds to SU(2)-transformations in the space
orthogonal to the vectors �1̇I and �2̇I in C

4. Moreover, one can compute that the
isotropy subgroup of the field values

(
φbȧ

) =
(

1 0
0 0

)
; (

�ȧI
) =

(
1 0 0 0
1 1 0 0

)

is given by Z2 × SU(2). Hence, the dimension of the principal orbit is 21 − 3 =
18 so that the orbit space is six-dimensional. This corresponds to the 4 real fields
h, δ0, δ1, η1 and the complex field χ .

We allow for the color SU(3)-symmetry not to be broken spontaneously, hence
we only choose unitarity gauge in the SU(2)R × SU(2)L × U(1)-representations.
That is, we retain the row vector �2̇I for I = 1, . . . , 4 as a variable and write

(
�ȧI

) =
(√

w + δ0/
√
w 0 0 0

δ1/
√
w η1/

√
w η2/

√
w η3/

√
w

)

so that (ηi) forms a scalar SU(3)-triplet field (so-called scalar leptoquarks). The
reason for the rescaling with

√
w is that it yields the right kinetic terms for δ0, δ1,

and η. Indeed, from the spectral action we then have

1

2
∂μH .

aI
.

bJ
∂μH

.
aI

.

bJ = 1

2
∂μ

(
�.
aJ�

.

bI

)
∂μ

(
�

.
aJ�

.

bJ
)

∼
1∑

a=0

∂μδa∂
μδa + ∂μη∂

μη∗ + higher order

The scalar potential becomes in terms of the fields h, χ, δ0, δ1, ηi :
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Lpot (h, χ, δ0, δ1, η) = −μ2(h2 + |χ |2)− ν2
(
(w + δ0)

2 + δ2
1 + |η|2

)2
/w2

+ λH�

(
(w + δ0)

2h2 + (δ2
1 + |η|2)|χ |2

) (
(w + δ0)

2 + δ2
1 + |η|2

)
/w2

+ λH

(
(w + δ0)

4 + 2(w + δ0)
2δ2

1 + (δ2
1 + |η|2)2

)2
/w4 + λ�(h

4 + |χ |4)

As we are interested in the truncation to the Standard Model, we look for extrema
with 〈δ1〉 = 〈ηi〉 = 0, while setting 〈h〉 = v, 〈δ0〉 = 0, 〈χ〉 = x. Note that the
symmetry of these vevs is

{((
λ 0
0 λ∗

)
,

(
λ∗ 0
0 λ

)
,

(
λ∗ 0
0 m

))
: λ ∈ U(1),m ∈ SU(3)

}

⊂ SU(2)R × SU(2)L × SU(4)

In other words, SU(2)R × SU(2)L × SU(4) is broken by the above vevs to U(1)×
SU(3).

The first derivative of V vanishes for these vevs precisely if

2v(w2λH� + 2v2λ� − μ2) = 0,

4x3λ� − 2xμ2 = 0,

4w(2w2λH + v2λH� − ν2) = 0.

This gives rise to the fine-tuning of v,w as in [16]:

w2λH� + 2v2λ� − μ2, 2w2λH + v2λH� − ν2

choosing μ and ν such that the solutions v,w are of the desired orders. Moreover,
we find that the vev for χ either vanishes or is equal to x = √

μ2/2λ� . Note that
this latter vev appears precisely at the entry kdh (or keh) of the finite Dirac operator,
which we have disregarded by setting ρ = 1.

If 〈χ〉 = x = 0, then the Hessian is (derivatives with respect to h, χ, δ0, δ1, η):

⎛

⎜
⎝

8v2λ� 0 8vwλH� 0 0
0 −2w2λH�−4v2λ� 0 0 0

8vwλH� 0 32w2λH 0 0
0 0 0 −2v2λH� 0
0 0 0 0 −8λHw2−2v2λH�w

213

⎞

⎟
⎠

where the 13 is the identity matrix in color space, corresponding to the η-field. This
Hessian is not positive definite so we disregard the possibility that 〈χ〉 = 0.

If x = √
μ2/2λ� , then the Hessian is
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⎛

⎜
⎜⎜⎜
⎝

8v2λ� 0 8vwλH� 0 0
0 4w2λH�+8v2λ� 0 0 0

8vwλH� 0 32w2λH 0 0

0 0 0 w2 λ
2
H�
λ�

0

0 0 0 0 w2 λ
2
H�

−8λH λ�
λ�

13

⎞

⎟
⎟⎟⎟
⎠

which is positive-definite if

λ2
H� ≥ 8λHλ�. (56)

Note that this relation may hold only at high-energies. The masses for χ , δ1, and η
are then readily found to be:

m2
χ = 4w2λH� + 8v2λ�,

m2
δ1

= w2 λ
2
H�

λ�
,

m2
η = w2 λ

2
H� − 8λHλ�

λ�
.

Under the assumption that v2 ≈ 102 GeV, w2 ≈ 1011 GeV we have m2
χ ≈

1011 GeV and m2
δ1
,mη ≈ 1011 GeV.

The (non-diagonal) h and δ0 sector has mass eigenstates as in [16]:

m2± = 16w2λH + 4v2λ�

± 4
√

16w4λ2
H + v4λ2

� + 4v2w2
(
λ2
H� − 2λHλ�

)

Under the assumption that v2 � w2 we can expand the square root:

4

√√√√16λ2
Hw

4

(

1 + λ2
�

λ2
H

v4

w4 + λ2
H� − 2λHλ�

4λ2
H

v2

w2

)

≈ 16λHw
2

(

1 + λ2
H� − 2λHλ�

8λ2
H

v2

w2

)

= 16λHw
2 + 2λ2

H�

λH
v2 − 4λ�v

2.

Consequently,

m+ ≈ 32λHw
2 + 2

2λ2
H�

λH
v2,
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m− ≈ 8λ�v
2

(

1 − λ2
H�

4λHλ�

)

.

which are of the order of 1011 and 102 GeV, respectively. This requires that we have
at low energies

4λHλ� ≥ λ2
H�, (57)

which fully agrees with [16] when we identify δ0 ≡ σ and with the couplings related
via

λH = 1

4
λσ , λH� = 1

2
λhσ , λ� = 1

4
λh

Note the tension between Equations (57) and (56), calling for a careful study of
the running of the couplings in order to guarantee positive mass eigenstates at their
respective energies.

We have summarized the scalar particle content of the above model in Table 1.
In terms of the original scalar fields φbȧ and �ȧI the vevs are of the following form:

(
φbȧ

) =
(
v 0
0
√
μ2/2��

)

(
�ȧI

) =
(
w 0 0 0
0 0 0 0

)
.

This shows that there are two scales of spontaneous symmetry breaking: at 1011–
1012 GeV we have

SU(2)R × SU(2)L × SU(4) → U(1)Y × SU(2)L × SU(3)

and then at electroweak scale (both v and μ) we have

U(1)Y × SU(2)L × SU(3) → U(1)Q × SU(3)

Table 1 Scalar particle
content with
SM-representations

U(1)Y SU(2)L SU(3)(
φ0

1

φ+
1

)

=
(
φ1

1̇
φ2

1̇

)
1 2 1

(
φ−

2

φ0
2

)

=
(
φ1

2̇
φ2

2̇

) −1 2 1

δ0 0 1 1

δ1 −2 1 1

η − 2
3 1 3
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The Riemann–Roch strategy

Complex lift of the Scaling Site

Alain Connes and Caterina Consani

Abstract We describe the Riemann–Roch strategy which consists of adapting in
characteristic zero Weil’s proof, of RH in positive characteristic, following the ideas
of Mattuck–Tate and Grothendieck. As a new step in this strategy we implement
the technique of tropical descent that allows one to deduce existence results in
characteristic one from the Riemann–Roch result over C. In order to deal with
arbitrary distribution functions this technique involves the results of Bohr, Jessen,
and Tornehave on almost periodic functions.

Our main result is the construction, at the adelic level, of a complex lift of the
adèle class space of the rationals. We interpret this lift as a moduli space of elliptic
curves endowed with a triangular structure. The equivalence relation yielding the
noncommutative structure is generated by isogenies. We describe the tight relation
of this complex lift with the GL(2)-system. We construct the lift of the Frobenius
correspondences using the Witt construction in characteristic 1.

1 Introduction

This paper presents our latest attempts in the quest of an appropriate geometry
to localize the zeros of the Riemann zeta function. The constructions described
in this article define a complex geometry that is a “lift” in characteristic zero, of
the (tropical) Scaling Site. This project has undergone in the past years several
developments that we list below in order to frame and justify this latest work.
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– The interpretation of the explicit formulas of Riemann-Weil as a trace formula
for the scaling action on the adèle class space of a global field [11, 36].

– The interpretation of the Riemann zeta function as a Hasse–Weil counting
function [20, 21].

– The discovery of the Arithmetic Site, and the identity between the Galois action
on its points over the tropical semifield R

max+ with the scaling action on the adèle
class space of the rational numbers [22, 23].

– The discovery of the Scaling Site, the identity between its points and the adèle
class space of the rationals [24].

– In [25] we unveiled the tropical structure of the Scaling Site, proved the
Riemann–Roch theorem on its periodic orbits, and developed the theory of theta
functions on these orbits.

At this stage, the geometric framework that we built in characteristic one is
well understood. The theory of theta functions and the Riemann–Roch formula
with real valued indices on the periodic orbits of the Scaling Site, provide a
convincing reason in support of the strategy of adapting Weil’s proof (of the
Riemann Hypothesis in positive characteristic) by following the ideas of Mattuck
and Tate, and Grothendieck [30, 27]. However, in the process to formulate a
Riemann–Roch theorem on the square of the Scaling Site one faces a substantial
difficulty. The problem, which is still open at this time, has to do with an appropriate
definition of the sheaf cohomology (as idempotent monoid) H 1 (the definition of
H 0 is straightforward and that of H 2 can be given by turning Serre duality into
a definition). In [26], we have developed the beginning of a general homological
algebra machine in characteristic one (i.e. for tropical structures) exactly to aim
for a definition of the above H 1. In particular, we proved the existence of non-
trivial Ext-functors and we were also able to input the resolution of the diagonal
to obtain the tropical analogue of the Čech complex. However, when applied to
Čech covers, the presence of the null elements creates unwanted contributions to the
cohomology which so far we are unable to handle. The root of this problem had been
already unearthed in the Example 6.5 of [44]. This example provides pairs (C,D),
(C′,D′) of tropical curves and divisors on them, for which the tropical invariants
r(D) and r(D′) entering in the Riemann–Roch formulas [2, 28] as a substitute for
the dimension of the modules H 0(D) and H 0(D′) are different, while the modules
themselves are isomorphic.

It is well-known that the hard part of the Riemann–Roch results of [2, 28]
concerns the existence of non-trivial solutions i.e. the proof of a Riemann–Roch
inequality. This fact leads us now to concentrate, in our setup, exactly on the
existence theme and to develop a technique of “tropical descent,” with the goal
to deduce existence results in characteristic one from available Riemann–Roch
theorems in complex geometry.

Already in the appendix of [25], we pointed out the relevance of the tropi-
calization map in the non-Archimedean resp. Archimedean cases. In both cases
the tropicalization associates to an analytic function f in a corona a piecewise
affine convex function τ(f ), (on a real interval I ), whose tropical zeros are the
valuations v(zj ) (resp. − log |zj |) of the zeros zj of f . The ensuing technique of
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“tropical descent” is reported in Section 3.2. In the complex (Archimedean) case
the tropicalization of an analytic function f in the corona R1 < |z| < R2 is a
convex function in the interval − logR2 < λ < − logR1 and one obtains the real
half-line involved in the definition of the Scaling Site by taking R2 = 1 and R1 = 0.
Namely, one works with the punctured unit disk D

∗ := {q ∈ C | 0 < |q| ≤ 1} in C.
Moreover, the action by multiplication of N× on the real half-line, which is the

key structure in the definition of the Scaling Site, lifts naturally to the operation
f (z) → f (zn) on analytic functions. This observation provides, as a starting point,
the definition of the ringed topos obtained by endowing the topos D∗

�N
× (for the

natural action of N× on D
∗ given by q �→ qn) with the structure sheaf O of complex

analytic functions. Given a pair of open sets Ω,Ω ′ in D
∗ and an integer n ∈ N

×,
with qn ∈ Ω ′ for any q ∈ Ω , one has a natural restriction map

Γ (Ω ′,O) → Γ (Ω,O), f (q) �→ f (qn).

The map u : D
∗ → [0,∞) given by u(q) = − log |q| extends to a geometric

morphism u : D∗
�N

× → [0,∞)�N
× of toposes.

This development provides a first glimpse of a complex lift of the Scaling
Site. The piecewise affine functions obtained as tropicalization using the Jensen
formula all have integral slopes, and the zeros have integral multiplicities. To reach
more general types of convex functions requires generalizing the original Jensen
framework. This is achieved by the extension of the work of Jensen as developed
by Jessen, Tornehave, and Bohr [6, 31, 32], to the case of analytic almost periodic
functions. In this work the Jensen formula, which counts a finite number of zeros,
is extended to measure, by the second derivative of a convex function ϕ, the density
of the zeros of an analytic function f (z)

lim
T→∞

1

2T
{#z | f (z) = 0, Re(z) = α, |"z| < T } = ϕ′′(α),

where f (z) is analytic and almost periodic on the lines Re(z) = α. In particular,
any convex function ϕ (there are minor restrictions on ϕ on intervals in which the
second derivative of ϕ is identical to 0) can be obtained as the “tropicalization”
of an analytic almost periodic function. This construction resolves the problem of
realizing arbitrary functions as tropicalizations and shows (see Section 4) how to
reach continuous divisors of the form

∫
n(λ)δλd

∗λ as “tropical shadows” of discrete
almost periodic divisors. This part is a first step, in our project, in order to handle the
continuous integrals

∫
f (λ)Ψλd

∗λ of the Frobenius correspondences Ψλ involved
in the implementation of the Riemann-Roch strategy to a proof of the Riemann
Hypothesis (RH).

This analytic construction supplies the useful hint that in order to construct
a complex lift of the Scaling Site one needs to implement an almost periodic
imaginary direction. This amounts to use the covering of the pointed disk D

∗ by
the closed Poincaré half plane H̄ := {z ∈ C | "(z) ≥ 0} defined by the map
q(z) := exp(2πiz), and to compactify the real direction in H̄ to a compact group
G. In fact, the only requirement sought for the group compactification R ⊂ G is to
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be Q
×-invariant. We take for G the smallest available choice which is the compact

dual of the discrete additive group Q. The compactification of the real direction in
H̄ then yields the pro-étale covering D̃

∗ of the punctured disk D
∗, described as the

projective limit D̃∗ := lim←−(En, p(n,m))

En := D
∗, p(n,m) : Em → En, p(n,m)(z) := za , ∀m = na, z ∈ Em = D

∗.

Here, the indexing set N× is ordered by divisibility. At the topos level one would
then consider the semidirect product D̃∗

�N
×.

In this paper we prefer to proceed directly at the adelic level and consider
the quotient, by the action of Q

×, of the product of the adèles AQ by G. The
noncommutative space which we reach is thus the quotient

CQ := Q
×\ (G× AQ

)

The first key observation of this paper (see Section 5) is that with the above choice
of G the quotient space CQ is identical to the quotient

CQ = P(Q)\P̄ (AQ), P̄ (AQ) :=
{(

a b

0 1

)
| a, b ∈ AQ

}

of P̄ (AQ) by the action by left multiplication of the affine “aX+ b” group P(Q) of
the rationals. Then, the right action of the affine group P(R) determines a natural
foliation on CQ whose leaves are one dimensional complex curves generically
isomorphic to the Poincaré half plane H. The sector of the Riemann zeta function is
obtained after division by the right action of Ẑ× on CQ (which naturally extends its
action on the adèle class space).

In Section 5.3, we consider (after division by Ẑ
×) the periodic orbit Γ (p) asso-

ciated with a prime p. We find that Γ (p) is the mapping torus of the multiplication
by p in the compact group G. This mapping torus is an ordinary compact space
and we analyze the restriction of the above foliation by one dimensional complex
leaves. We show that this foliation is of type IIIλ where λ = 1/p and that the
discrete decomposition of the associated factor has natural geometric interpretation.
We determine the de Rham cohomology in Proposition 5.2.

In Section 5.4 we analyze the restriction to the classical orbit of the above
foliation by one dimensional complex leaves. We show that it is of type II∞ and
we give an explicit construction, based on the results of Section 4, of the leafwise
discrete lift of continuous divisors.

The second key observation of this paper (see Section 6) is the tight relation of
the noncommutative space CQ = P(Q)\P(AQ) to the GL(2)-system ([16]). The
GL(2)-system was conceived as a higher dimensional generalization of the BC-
system and its main feature is its arithmetic subalgebra constructed using modular
functions. After recalling in Section 6.1 the standard notations for the Shimura
variety Sh(GL2,H

±) = GL2(Q)\GL2(AQ)/C
×, we consider in Section 6.2 the

natural map
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CQ = P(Q)\P(AQ)
θ→ GL2(Q)\M2(AQ)

•/C× = Shnc(GL2,H±) (1)

from CQ to the noncommutative space Shnc(GL2,H±) underlying the GL(2)-
system. At the Archimedean place, the corresponding inclusion P(R) ⊂ (M2(R)�

{0}) induces a bijection of P(R) with the complement in (M2(R) � {0})/C×
of the point ∞ given by the class of matrices with vanishing second line. This
result shows that the nuance between CQ and Shnc(GL2,H±) is mainly due to
the non-Archimedean components. In Section 6.3 we use the description of the
GL(2)-system in terms of adelic Q-lattices and interpret CQ in terms of parabolic
Q-lattices. The key result is Theorem 6.1 which states that the natural inclusion of
parabolic Q-lattices among Q-lattices remains injective, except in degenerate cases,
into the space of two-dimensional Q-lattices up to scale. The relevance of this fact
originates from the richness of the function theory on the space of two-dimensional
Q-lattices up to scale which involves in particular modular forms of arbitrary
level.

By using the geometric interpretation of Q-lattices up to scale in terms of elliptic
curves endowed with pairs of elements of the Tate module, we provide in Section 6.4
the geometric interpretation of the points of CQ in terms of elliptic curves endowed
with a triangular structure (reflecting the parabolic structure of the Q-lattice) and
modulo the equivalence relation generated by isogenies (Section 6.5). In Section 6.6
we prove that the natural complex structure of the moduli space of triangular elliptic
curves is the same as the complex structure on CQ defined in Section 5 using the
right action of P(R). The right action of P(Ẑ) has a simple geometric interpretation
(Section 6.7) and allows one to pass from CQ to ΓQ. Finally we give in the last
section (Section 6.8) the geometric interpretation of the degenerate cases.

The beginning of this paper explains a central philosophy of our strategy which
is not to focus on the zeta function itself (as a function “per se”) but to find from
the start, a geometric interpretation of the zero-cycle of its zeros. We record that the
original motivation for H. Bohr was the Riemann zeta function and in particular,
we recall that Borchsenius and Jessen proved in [9] (Theorems 14 and 15) the
“frightening” result that for any value x �= 0, the zeros of (ζ(z) − x) have real
parts which admit 1/2 as a limit point. More precisely, their results show that for
any fixed σ1 >

1
2 , the density of zeros of (ζ(z) − x), in the strip σ < &(z) < σ1,

1
2 < σ < σ1, tends to infinity when σ → 1

2 .
In Section 2, we explain why the adèle class space of the rationals is a natural

geometric space underlying the zeros of the Riemann zeta function. First, notice
that what is really central in studying these zeros is the ideal that the Riemann
zeta function generates among holomorphic functions in a suitable domain. After
applying Fourier transform, the key operation on functions of a positive real variable
which generates this ideal is the summation

f �→ E(f ), E(f )(v) :=
∑

N×
f (nv), N

× := {n ∈ N | n > 0}. (2)
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In Section 2 we explain the two geometric approaches suggested by this formula.
The first one is of adelic nature and derived from Tate’s thesis. It consists in
replacing the sum over the monoid N

× by a sum over the associated group Q
×+,

at the expense of crossing the half-line involved at the geometric level in (2) by a
non-Archimedean component. This process leads directly to the adèle class space.
The second approach is topos theoretic and consists in considering the topos (called
the Scaling Site) which is the semidirect product of the half-line by the monoid N

×.
The key fact recalled in Section 2.2 is that the points of the Scaling Site coincide
with the points of the (sector of the) adèle class space. Thus while one could be
tempted to dismiss at first the adèle class space, the topos theoretic interpretation
of its points endows it with a clear geometric status. We explain the unavoidable
noncommutative nature of this space in Section 2.1.

The Riemann–Roch strategy, and in particular the technique of tropical descent
which allows one to deduce existence results in characteristic one from the
Riemann–Roch result over C, are explained in Section 3.

The framework in characteristic 1 is perfectly adapted to the geometric role of the
Frobenius. For instance, in the interpretation of the adèle class space as the points
of the Arithmetic Site defined over Rmax+ , the action by scaling becomes the natural
action of Aut(Rmax+ ) on these points.

In the lift from characteristic 1 to characteristic 0 one loses the automorphisms
Aut(Rmax+ ) = R

∗+. We explain in Section 7 the difficulty created by this loss and
show in Section 7.1 how it is resolved by the Witt construction in characteristic 1
achieved in our previous work [17, 18, 19]. Finally in Section 7.2 we discuss the
link between our construction of the complex lift and quantization.

Figure 1 gives a visually intuitive global picture at the present time. In particular,
the counterpart of ΓQ on the left column is the semidirect product of the pro-étale
cover D̃∗ of the punctured unit disk D

∗ in the complex domain, by the natural action
of N×.

2 The geometry behind the zeros of ζ

It is important to clarify from the start why the Riemann Hypothesis (= RH), namely
the problem of locating the zeros of the Riemann zeta function ζ(s), is tightly related
to the geometry of the adèle class space of the rationals Q. First of all we remark
that what characterizes the zeros locus of ζ(s) is not the zeta function itself rather
the ideal it generates among complex holomorphic functions in a suitable class. A
key role in the description of this ideal is played by the map E on functions f (v) of
a real positive variable v that is defined by the assignment

f �→ E(f ), E(f )(v) :=
∑

n∈N×
f (nv), N

× := {n ∈ N | n > 0}. (3)
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Fig. 1 Global picture

Notice that the map E becomes, in the variable log v, a sum of translations by log n:
log v �→ log v + log n (i.e. a convolution by a sum of delta functions). Thus, after
a suitable Fourier transform, E(f ) is a product by the Fourier transform of the sum
of the Dirac masses δlog n, i.e. by the function

∑
e−is log n = ζ(is). Hence it should

not come as a surprise that the cokernel of E determines a spectral realization of the
zeros of the Riemann zeta function.

At this point, there are two ways of unveiling the geometric meaning of the
map E

1. One may replace in (3) the sum over N× by a summation over the multiplicative
group Q

∗+ of positive rational numbers (obtained from the multiplicative monoid
N

× by symmetrization) with the final goal to interpret E as a projection onto a
quotient (of the adèles of Q) by the group Q

∗+. This approach leads naturally to
the adèle class space of Q, and more precisely to the sector associated with the
trivial character. This construction is described in Section 2.1.

2. Alternatively, one may keep the monoid N
× and have it acting on the real half-

line [0,∞). In this way one sees the space [0,∞)�N
× as a Grothendieck topos.

This process yields the Scaling Site of [25] that is reviewed in Section 2.2.
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The agreement of these two points of view is stated by the result, recalled in
Section 2.3, that the points of the topos [0,∞)�N

× coincide with the points of the
(sector of the) adèle class space of Q. We explain the unavoidable noncommutative
nature of this space in Section 2.1.

2.1 Adelic approach

In this part we show how the adèle class space of the rationals arises naturally in
connection with the study of the zeros of the Riemann zeta function. First of all
notice that the summation in (3) is not a summation over a group thus, in order to
provide a geometric meaning to this process, we replace N

× by its symmetrization
i.e. the group Q

∗+. Then, we look for a pair (Y, y) of a locally compact space Y on
which Q

∗+ acts and a point y ∈ Y so that the closure F of the orbit N×y is compact
(and also open) and the following equivalence holds

qy ∈ F ⇐⇒ q ∈ N
×. (4)

When (4) holds, one can replace the sum in (3) by the summation over the group
Q

∗+ by simply considering the function 1F ⊗ f on the product Y × R.
A natural solution to this problem is provided by Y = Af , the finite adèles of

Q, and by the principal adèle y = 1. One eventually achieves the minimal solution
after dividing by Ẑ

×. Here, we also note that the action of Q∗+ on the idèles cannot
be used because it is a proper action.

A basic difficulty that one faces at this point is that the quotient of Y × R = AQ

by the action of Q
∗+ is noncommutative in the sense that classical techniques to

analyze this space are here inoperative. A distinctive feature of a noncommutative
space is present already at the level of the underlying “set” since a noncommutative
space has the cardinality of the continuum and at the same time it is not possible
to put this space constructively in bijection with the continuum. More precisely,
any explicitly constructed map from such a set to the real line fails to be injective!
From these considerations one perceives immediately a major obstacle if one
seeks to understand such spaces using a commutative algebra of functions. The
reason why these spaces are named “noncommutative” is that if one accepts to use
noncommuting coordinates to encode them, and one extends the traditional tools
of commutative algebra to this larger noncommutative framework, everything falls
correctly in place. The basic principle that one adopts is to take advantage of the
presentation of the space as a quotient of an ordinary space (here the adèles) by an
equivalence relation (given here by the action of Q∗+) but then, instead of effecting
the quotient in one stroke, one replaces the equivalence relation by its convolution
algebra over the complex numbers.

A distinctive feature of noncommutative spaces can be seen at the level of the
Borel structure allowing all sorts of countable operations on Borel functions. In the
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noncommutative case, the Borel structure is no longer countably separated, in the
sense that any countable family of Borel functions fails to separate points, i.e. fails
to be injective.

Our goal in this section is to show that for whatever choice of the pair (Y, y)
fulfilling (4) the resulting quotient space Q

∗+\(Y × R) is noncommutative.
In Section 2.1.1 we shall consider the easier case obtained by replacing the

pair (N×,Q∗+) with (Z≥0,Z). Then we show that any solution (Y, y) for (Z≥0,Z)

involves a compactification of the discrete set Z≥0. In Section 2.1.2 we prove, for the
pair (Z≥0,Z), the stability of “noncommutativity.” This means that given a locally
compact space R and a homeomorphism S : R → R whose orbit space is not
countably separated, the product action of T × S on Y × R is never countably
separated, for any auxiliary action (Y, T ) as in Section 2.1.1. The strategy we follow
in the subsequent Section 2.1.3, in the process of extending this result to the case of
the action of (N×,Q∗+) on [0,∞), is reviewed by the following steps

1. In the presence of a fixed point p ∈ Y for the action of Q
∗+, the quotient of

{p} × R
∗+ by Q

∗+ would be R
∗+/Q∗+ which is not countably separated and this

entails that (Y × R
∗+)/Q∗+ is not countably separated.

2. If instead of a fixed point p ∈ Y for the action of Q∗+ one has a fixed probability
measure, then the same reasoning applies using Lemma 2.3.

3. Using (4), we construct a Q
∗+-invariant probability measure on Y .

Notice that condition (4) is essential for a meaningful development of the full
strategy. Indeed, if one takes the action of Q

∗+ on Y = Q
∗+ by translation, the

quotient (Y × R
∗+)/Q∗+ is the standard Borel space R

∗+.

2.1.1 Forward compactification

To understand how to choose the pair (Y, y) as in Section 2.1, one first considers
the simpler case of the semigroup N

× replaced by the additive semigroup Z≥0 of
nonnegative integers. Then the symmetrized group is Z and one looks for a space Y
on which Z acts by a transformation T , and a point x ∈ Y so that the closure K of
T Nx is compact in Y and the following equivalence is fullfilled

T nx ∈ K ⇐⇒ n ∈ Z≥0.

Next lemma states that any solution of this problem involves a compactification of
the discrete set Z≥0

Lemma 2.1 Let Y be a locally compact space and T ∈ Aut(Y ) an automorphism.
Let x ∈ Y be such that the closure K of the forward orbit T Nx in Y is compact and
the following equivalence holds

T nx ∈ K ⇐⇒ n ≥ 0. (5)
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Then the map N ( n �→ T nx ∈ K turns K into a compactification of the discrete
set Z≥0 = {n ∈ Z | n ≥ 0}.
Proof It is enough to prove that for n ∈ N the subset {T nx} ⊂ K is open (i.e. that
T nx is isolated in K). Note that the complement V = Kc of K in Y is open as well
as T nV for any n ∈ Z, and that the intersection T nV ∩K is contained in the closure
(in Y ) of T nV ∩ T Nx. Next, note that (5) is equivalent to T ux ∈ V ⇐⇒ u < 0
and this equivalence implies T jx ∈ T nV ⇐⇒ j < n. Thus for n > 0, one gets

T nV ∩K = {T jx | 0 ≤ j < n}.

Since a point of K is closed, it follows that each {T jx} is open in K . ��
The simplest compactification K of the discrete set Z≥0 is the Alexandrov

compactification K = Z≥0 ∪ {∞} obtained by adding a limit point ∞. The open
subsets of K containing ∞ are the complements of finite subsets of Z≥0. More
generally, the Alexandrov compactification of a locally compact spaceX is obtained
by adding a point at infinity and the obtained pointed space X ∪ {∞} admits as
open sets the open subsets of X and the complements of compact subsets of X.
It is described by the following universal property. For every pointed compact
Hausdorff space (Y, ∗) and every continuous map f : X → Y such that f−1(K)

is compact for all compact sets K ⊂ Y not containing the base point ∗, there is
a unique basepoint-preserving continuous map that extends f . When passing to
the associated C∗-algebra, the one-point compactification just means adjoining a
unit. At the C∗-level, this is the smallest compactification, but since the functor
X �→ C0(X) is contravariant, one needs to express this fact dually. From a
categorical point of view, it means that the one-point compactification is a final
object among the compactifications of a given locally compact space X, where
morphisms of compactifications are continuous maps g : X1 → X2 which restrict
to the identity on X ⊂ Xj .

Taking K = Z≥0 ∪ {∞} yields the following minimal solution (Y, T ) of (5).

Lemma 2.2 Let Z(+∞) be the union Z ∪ {∞} endowed with the topology whose
restriction to Z is discrete and where the intervals [m,∞] form a basis of
neighborhoods of ∞. Then Z(+∞) is locally compact, the translation T (m) :=
m+ 1, T (∞) = ∞ defines a homeomorphism of Z(+∞) and any x ∈ Z fulfills (5).

Proof By construction Z(+∞) is the disjoint union of the discrete space of negative
integers with the Alexandrov compactification K = Z≥0 ∪ {∞}. ��
Remark 2.1 As a topological space the quotient Y = Af /Ẑ

× is the restricted
product of the spaces Qp/Z

∗
p each of which is isomorphic to Z(+∞) using the p-

adic valuation. Thus Lemma 2.1 shows that for each rational prime Qp/Z
∗
p is the

minimal solution of (5) for the multiplication by p. It is in this sense that Y =
Af /Ẑ

× is the minimal solution of (4).
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2.1.2 Stability of noncommutative nature of quotients

Let now R be a locally compact space endowed with an action of Z given by a
homeomorphism S : R → R, such that the space of the orbits is not countably
separated. In this section we show that for any auxiliary action (Y, T ) as in
Lemma 2.1 the product action of T × S on Y × R is never countably separated.
In order to prove this result (Proposition 2.1) we first state the following standard
fact

Lemma 2.3

(i) Let X be a compact metrizable space. Then the set of compact subsets of X is
countably separated.

(ii) The quotient of a compact metrizable space by an equivalence relation whose
orbits are closed is always countably separated.

(iii) The space of probability measures on a standard Borel space is countably
separated.

Proof

(i) For any ε > 0 there exists a finite subset F of X such that the union of open
balls of radius ε centered at points of F cover X. For n ∈ N, let εn = 2−n
and Fn an associated finite set. Let V ⊂ X be an open set. For each n, let
yn(V ) = {t ∈ Fn | B(t, εn) ⊂ V }. The map V �→ (yn(V ))n from open subsets
of X to the product

∏
n 2Fn is injective since V = ∪n ∪yn(V ) B(t, εn) and a

product of finite sets is countably separated by construction.
(ii) A subset of a countably separated set is also countably separated, and since

the orbits are closed they are compact so that they form a subset of the set of
compact subsets of X which is countably separated by (i).

(iii) The space of probability measures on a standard Borel space is the state space
of the separable C∗-algebra of continuous functions on a compact metrizable
space. Using a countable dense set of functions one gets the assertion. ��

With the notations of Lemma 2.1 one obtains

Lemma 2.4 The complement F of the forward orbit T Nx in K is a compact subset
of (Y, T ) invariant under the action of Z on Y .

Proof By Lemma 2.1, for n ∈ N the subset {T nx} ⊂ K is open, thus F ⊂ K is
closed and hence compact. One has T T Nx ⊂ T Nx, TK ⊂ K , and if y ∈ F and
Ty /∈ F one has Ty = T mx ∈ T Nx for some m ≥ 0. For m > 0 this contradicts
y /∈ T Nx. For m = 0 this gives T −1x ∈ K which contradicts (5). Thus T F ⊂ F .
Let then y ∈ Y with Ty ∈ F . Then y ∈ T −1TK = K and y /∈ T Nx since
T T Nx ⊂ T Nx. Thus y ∈ F and one has T F = F . ��

One concentrates on the product action of T ×S on F ×R. Note that it is enough
to show that this action is not countably separated to obtain the same result for the
action of T × S on Y ×R. Since F is compact and Z is an amenable group, one can
find a probability measure μ on F invariant for the action of T . Then one considers
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the quotient Z of F × R by the product action of T × S, i.e. the space of orbits of
this action. Let π : F ×R → Z be the quotient map and denote byM1(Z) the space
of probability measures on Z.

Proposition 2.1

(i) The map ρ : R → M1(Z), ρ(x) = π(μ × δx) given by the image in Z of the
probability measure μ × δx is S-invariant and induces an injection in M1(Z)

of the orbit space of S in E.
(ii) If Z is a standard Borel space then the orbit space of S in R is countably

separated.

Proof

(i) Since T μ = μ, and π ◦ (T × S) = π one has

ρ(Sx) = π(μ× δSx) = π((T × S)(μ× δx)) = π(μ× δx) = ρ(x).

We show that ρ is an injection in M1(Z) of the orbit space of S in R. Let
x, y ∈ E belong to distinct orbits of S. Then the characteristic function hx of
the Borel subset of F ×R given by F ×SZ(x) is (T ×S)-invariant and one has

ρ(x)(hx) = (μ×δx)(F×SZ(x)) = 1, ρ(y)(hx) = (μ×δy)(F×SZ(x)) = 0.

Thus one concludes that ρ(x) �= ρ(y).
(ii) It follows from (i) that the map ρ is an injection in M1(Z) of the orbit space of

S in R. By Lemma 2.3 (iii), the space M1(Z) is countably separated if Z is a
standard Borel space. ��

2.1.3 The need for the NCG point of view

The quotient of the real half-line [0,∞) by the action of the multiplicative group Q
∗+

is not countably separated. Indeed, this action is ergodic for the Haar measure on the
multiplicative group R

∗+ ⊂ [0,∞). Thus any Borel function invariant for the action
of Q∗+ is almost everywhere constant. In this section we show (Theorem 2.1) that for
any auxiliary action of Q∗+ on a locally compact space X such that the forward orbit
N

×x of some point x ∈ X has a compact closure inX, the quotient ofX×[0,∞) by
the product action of Q∗+ is never countably separated. The multiplicative group Q

∗+
is the product of an infinite number of copies of Z parametrized by the set of primes.
Its action is denoted simply as multiplication: (q, x) �→ qx. Let K be the compact
closure of N×x in X. We use the compactness property to construct a probability
measure μ on X invariant under the action of Q∗+. To achieve this result we define
an increasing sequence of finite subsets Fk ⊂ N

×, k ∈ N, which fulfill the following
properties
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1. For any integer n, all elements of Fk are divisible by n for k large enough.
2. For any prime p, one has

#(FkΔ(pFk))/#(Fk) → 0 for k → ∞

where for two subsets A,B of a set C, we denote by AΔB their symmetric
difference, i.e. the complement of A ∩ B in A ∪ B.

A way to define the set Fk is, for pj the j -th prime,

Fk :=
⎧
⎨

⎩

k∏

j=1

p
αj
j | k < αj ≤ 2k , ∀j

⎫
⎬

⎭
.

By construction all elements in Fk are divisible by any integer n whose prime
factorization only involves the first k primes taken with powers less than k. This
fact holds for k large enough and for any given n, thus condition 1 is fullfilled.
Moreover, for a given prime p = pu and any k ≥ u, one has

FkΔ(pFk) =
⎧
⎨

⎩

k∏

j=1

p
αj
j | k < αj ≤ 2k , ∀j �= u, αu ∈ {k + 1, 2k + 1}

⎫
⎬

⎭

and from this one derives #(FkΔ(pFk))/#(Fk) = 2
k

. Thus also 2 is achieved.

Theorem 2.1 Let X be a locally compact metrizable space on which Q
∗+ acts by

homeomorphisms and assume that for some x ∈ X the closure of N×x is compact.
Then the quotient of the product X × R

∗+ by the product action of Q∗+ is not a
standard Borel space.

Proof We define a probability measure μ on the compact space K closure of N×x
in X, by taking a limit point μ in the compact space M1(K) of the sequence of
measures

C(K) ( f �→ 1

#(Fk)

∑

n∈Fk
f (nx) = μk(f ).

For f ∈ C(K) and any prime p, one has μ(fp) = μ(f ), where fp(y) := f (py).
The same property μ(fn) = μ(f ) thus holds for any integer n. This proves that,
when viewed as a probability measure on X, the measure μ is invariant under the
action of Q∗+. Assume now that the quotient Z of the productX×R

∗+ by the product
action of Q∗+ is a standard Borel space and let π be the quotient map. One proceeds
as in Lemma 2.1 to show that the map ρ : R∗+ → M1(Z) which associates with
λ ∈ R

∗+ the image π(μ×δλ) in Z of the probability measure μ×δλ is Q∗+-invariant
and defines an injection in M1(Z) of the orbit space of Q∗+ in R

∗+. Indeed, for any
q ∈ Q

∗+ and λ ∈ R
∗+ one has
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ρ(qλ) = π(μ× δqλ) = π(q(μ× δλ)) = π(μ× δλ) = ρ(λ).

Moreover, the evaluation on the characteristic function hλ of the Borel subset of
X × R

∗+ given by X × Q
∗+λ shows that ρ is an injection in M1(Z) of the orbit

space of Q∗+ in R
∗+. The conclusion follows since the orbit space of Q∗+ in R

∗+ is not
countably separated. ��

2.1.4 Classical orbit and cohomological meaning of the map E

The role of the crossed product in encoding noncommutative spaces enters to
give a conceptual meaning of the map E as the cyclic homology counterpart of
the map between noncommutative spaces connecting the adèle class space to its
“classical orbit” which in turn can be understood as a special case of the “cooling
procedure” described in [16]. The cooling procedure is nothing but a testifier of the
thermodynamical nature of noncommutative spaces. When applied to the BC system
the cooling amounts to replace the additive Haar measure on the adèles, for which
the multiplicative action of Q∗ is ergodic, by the product of the Haar measure of the
idele class group by a power of the module. The adèle class space Q

×\AQ contains
the idele class group and the cooling process provides a conceptual meaning of the
restriction map. It turns out that once re-interpreted on cyclic homology HC0, the
restriction map coincides with the map E.

2.2 The Scaling Site

The map E defined in (3) implements the action of N
× by multiplication on the

real half-line [0,∞). The notion of Grothendieck topos allows one to interpret this
construction geometrically, namely as the Grothendieck topos [0,∞)�N

× of N×-
equivariant sheaves (of sets) on the real half-line.

The combinatorial skeleton of this topos is the Arithmetic Site A = (N̂×,Zmax)

[22, 23]. This is a semiringed topos where N̂× denotes the topos of sets equipped
with an action of N

×. The structure sheaf of the Arithmetic Site is given by the
semiring Zmax of “max-plus” integers that plays a key role in tropical geometry
and idempotent analysis. It is a semiring of characteristic 1, i.e. 1 ∈ Zmax fulfills
the rule 1 + 1 := max(1, 1) = 1. Moreover Zmax is the only semifield whose
multiplicative group is infinite cyclic ([25] Appendix B2, Proposition B3). The
action of N

× on Zmax (which turns Zmax into the structure sheaf of A ) is an
instance of a general result [29] stating that in a semifield of characteristic 1, for any
n ∈ N, the power maps x �→ xn are injective endomorphisms. These maps provide
the right generalization of the Frobenius endomorphisms in finite characteristic.
By construction, A is a topos defined over B = ({0, 1},max,+), the only finite
semifield which is not a field. Even though A is a combinatorial object of countable
nature, it is nonetheless endowed with a 1-parameter semigroup of correspondences
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on its square [22, 23]. Two further key properties of the Arithmetic Site are now
recalled: (1) The points of A defined over Rmax+ (the multiplicative version of the

tropical semifield Rmax) form the basic sector Q×\AQ/Ẑ
∗ of the adèle class space

of Q; (2) the canonical action of Aut(Rmax+ ) on these points corresponds to the

action of the idele class group on Q
×\AQ/Ẑ

∗. These facts lead us to investigate
the semiringed topos obtained from the Arithmetic Site by extension of scalars from
B to R

max+ . This space admits [0,∞)�N
× as the underlying topos, and moreover

it inherits, from its construction by extension of scalars, a natural sheaf O of regular
functions. We call Scaling Site the semiringed topos

S := ([0,∞)�N
×,O

)

so obtained [24, 25]. The sections of the sheaf O are convex, piecewise affine
functions with integral slopes.

2.3 Geometry of the adèle class space

The relation between S and the adèle class space of Q is provided by the following
result which states that the isomorphism classes of points of the topos [0,∞)�N

×
form the basic sector of the adèle class space of Q [25].

Theorem 2.2 The space of points of the topos [0,∞)�N
× is canonically isomor-

phic to Q
×\AQ/Ẑ

∗.

This theorem provides an algebraic-geometric structure on the adèle class space,
namely that of a tropical curve in an extended sense. In [25] this structure was
examined by considering its restriction onto the periodic orbit of the scaling flow
associated with each rational prime p. The output is that of a tropical structure
which describes this orbit as a real variant Cp = R

∗+/pZ of the classical Jacobi
description C

×/qZ of a complex elliptic curve. On Cp, a theory of Cartier divisors
is available; moreover the structure of the quotient of the abelian group of divisors
by the subgroup of principal divisors has been also completely described in op.cit.
The same paper also contains a description of the theory of theta functions on Cp
and finally a proof of the Riemann–Roch formula stated in terms of real valued
dimensions, as in the type-II index theory.

The main contribution of the adèle class space to this geometric picture is to
provide, through the implementation of the Riemann-Weil explicit formulas as a
trace formula, the understanding of the Riemann zeta function as a Hasse–Weil
generating function.

In the function field case, the Hasse–Weil formula writes the zeta function as a
generating function (the Hasse–Weil zeta function)
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ζC(s) := Z(C, q−s), Z(C, T ) := exp

⎛

⎝
∑

r≥1

N(qr)
T r

r

⎞

⎠ . (6)

For function fields, q is the number of elements of the finite field Fq on which the
associated curve C is defined.

In the case of the Riemann zeta function, the analogue of (6) was obtained in
[20, 21] by considering the limit of the right hand side of (6) when q → 1. This
process was originally suggested by C. Soulé, who introduced the zeta function of a
variety X over F1 using the polynomial counting function N(x) ∈ Z[x] associated
with X. The definition of the zeta function is as follows

ζX(s) := lim
q→1

Z(X, q−s)(q − 1)N(1), s ∈ R. (7)

When one seeks to apply (7) to get the Riemann zeta function (completed by the
gamma factor at the Archimedean place), one meets the obvious obstruction that the
exponent N(1) is equal to −∞ due to the infinite number of its zeros. In [20, 21] a
simple way to bypass this difficulty is described i.e. one considers the logarithmic
derivatives of both terms in (7) and observes that the Riemann sums of an integral
appear from the right hand side. Then, instead of dealing with (7) one works with
the equation

∂sζN(s)

ζN(s)
= −

∫ ∞

1
N(u) u−sd∗u (8)

which points out to a precise equation for the counting function NC(q) = N(q)

associated with C namely

∂sζQ(s)

ζQ(s)
= −

∫ ∞

1
N(u) u−sd∗u. (9)

In fact, one finds that this equation admits a distribution as a solution which is given
explicitly as

N(u) = d

du
ϕ(u)+ κ(u) (10)

where ϕ(u) := ∑
n<u nΛ(n), and κ(u) is the distribution that appears in the explicit

formula

∫ ∞

1
κ(u)f (u)d∗u =

∫ ∞

1

u2f (u)− f (1)

u2 − 1
d∗u+ cf (1) , c = 1

2
(logπ + γ ).

The conclusion is that the distribution N(u) is positive on (1,∞) and is given by
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N(u) = u− d

du

⎛

⎝
∑

ρ∈Z
order(ρ)

uρ+1

ρ + 1

⎞

⎠ + 1 (11)

where the derivative is taken in the sense of distributions, and the value at u = 1 of

the term ω(u) =
∑

ρ∈Z
order(ρ)

uρ+1

ρ + 1
is given by 1

2 + γ
2 + log 4π

2 − ζ ′(−1)
ζ(−1) .

As explained in [21] the adèle class space provides the geometric meaning of the
counting distributionN(u) and thus shows the coherence of our geometric approach.

3 The Riemann–Roch strategy

In relation to the study of the zeros of the Riemann zeta function, the Riemann–Roch
strategy consists in trading the question of the location of the zeros for the problem
of proving the non-positivity of a certain quadratic form s(f, f ) (see (12)). In the
function field case, this inequality derives from an argument of algebraic geometry
in finite characteristic and the most conceptual proof was obtained by applying
the Riemann–Roch formula on the square of the curve defining the function field
[30]. In that case, the function f defines a divisor D on the surface, as a linear
combination of Frobenius correspondences. Then, if one assumes the positivity of
s(f, f ) > 0 for some f , it is the existence part of the Riemann–Roch theorem
which yields a contradiction. More precisely, the assumed positivity s(f, f ) > 0
together with the appearance of s(f, f ) as the leading term in the topological side
of the Riemann–Roch formula show that one can turn the divisor nD for a suitable
n ∈ Z into an effective divisor and obtain a contradiction. This argument will
be reconsidered in more detail in Section 3.1. For function fields, the Riemann–
Roch formula relies on algebraic geometry in the same finite characteristic. In the
case of the Riemann zeta function, the structure sheaf of the Scaling Site S is
in characteristic 1, thus it seems reasonable trying to develop a Riemann–Roch
formalism in that context. Some very encouraging results are obtained in [25],
inclusive of a type-II Riemann–Roch formula for the periodic orbits. In this case, the
cohomology H 0 is defined using global sections while H 1 is introduced by turning
Serre duality into a definition. In order to attack the two-dimensional case of the
square of the Scaling Site, one needs to define the intermediate H 1 and a first direct
attempt, based on homological algebra in characteristic 1, is developed in [26].
It is striking that the existence results for the Riemann–Roch problem in tropical
geometry [2, 28, 37] are deeply related to potential theory and game theory [3, 5]
thus pointing to the relevance of these tools in a direct attack to the Riemann–Roch
formula needed for RH. Here we develop yet another approach which is based on
the construction of a complex lift from a geometry in characteristic 1 to the complex
world and the use of the tropicalization map. In Section 3.2, we explain how this
tropical descent allows one, in the context of the Riemann–Roch problem, to prove
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the existence results in characteristic 1 from existence results in characteristic 0.
Section 3.3 recalls the classical link, in characteristic zero, between the Hirzebruch–
Riemann–Roch theorem and the Index theorem. Finally, Section 3.4 lays down our
actual strategy which is based on the complex lift of the Scaling Site.

3.1 The role of the existence part of the Riemann–Roch
formula in characteristic one

It is known [8] that the RH problem is equivalent to an inequality for real valued
functions f on R

∗+ of the form

RH ⇐⇒ s(f, f ) ≤ 0 , ∀f |
∫
f (u)d∗u =

∫
f (u)du = 0. (12)

Here, for real compactly supported functions on R
∗+, one lets s(f, g) := N(f $ g̃),

where $ is the convolution product on R
∗+, g̃(u) := u−1g(u−1), and

N(h) :=
∞∑

n=1

Λ(n)h(n)+
∫ ∞

1

u2h(u)− h(1)

u2 − 1
d∗u+ c h(1) , c = 1

2
(logπ + γ ).

(13)
It follows from the geometric interpretation of the explicit formulas as in [21]
that the quadratic form s(f, f ) can be expressed as the self-intersection of the
divisor on the square of the Scaling Site by the formula involving the Frobenius
correspondences Ψλ

s(f, f ) = D •D, D :=
∫
f (λ)Ψλ d

∗λ. (14)

The intersection number of divisors is provided by the formula

D •D′ :=< D $ D̃′,Δ >

where D̃′ is the transposed of D′ and the composition D $ D̃′ is computed by
bilinearity, while the intersection < D $ D̃′,Δ > is obtained using the distribution
N(u) and the fact that Ψλ is of degree λ.

The Riemann–Roch strategy seeks to obtain a contradiction by assuming that,
contrary to (12), one has s(f, f ) > 0, for some function f . The key missing step is
provided by the implementation of a Riemann–Roch formula whose topological side
is 1

2D•D and to conclude from it that one can make the divisorD := ∫
f (λ)Ψλ d

∗λ
(or its opposite −D) effective.
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The positivity of the divisor D + (k) would then contradict the fact that the
degree and codegree of D = ∫

f (λ)Ψλ d
∗λ is equal to 0 in view of the hypothesis∫

f (u)d∗u = ∫
f (u)du = 0.

3.2 Tropical descent

The new step in our strategy is to obtain the existence part of the Riemann–Roch
theorem in the tropical shadow from the results on the analytic geometric version of
the space. Obviously, the advantage of working in characteristic zero is that to have
already available all the algebraic and analytical tools needed to test such formula.

We first explain how the Scaling Site appears naturally from the well-known
results on the localization of zeros of analytic functions by means of Newton
polygons in the non-Archimedean case and Jensen’s formula in the complex case.
These results in fact combine to show that the tropical half-line (0,∞), endowed
with the structure sheaf of convex, piecewise affine functions with integral slopes,
gives a common framework for the localization of zeros of analytic functions in the
punctured unit disk. The additional structure involved in the Scaling Site, namely the
action of N× by multiplication on the tropical half-line, corresponds, as shown in
(16) and (17), to the transformation on functions given by the composition with the
n-th power of the variable. The tropical notion of “zeros” of a convex piecewise
affine function f with integral slope is that a zero of order k occurs at a point
of discontinuity of the derivative f ′, with the order k equal to the sum of the
outgoing slopes. The conceptual meaning of this notion is understood by using
Cartier divisors.

3.2.1 Tropicalization in the p-adic case, Newton polygons

LetK be a complete and algebraically closed extension of Qp and v(x) = − log |x|
be the valuation. The tropicalization of a series with coefficients in K is obtained
by applying the transformation a �→ log |a| = −v(a) to the coefficients and
by implementing the change of operations: + → ∨ = sup, × → +, so that
Xn → −nx. In this way a sum of monomials such as

∑
anX

n is replaced by
∨(−nx − v(an)).

Definition 3.1 Let f (X) = ∑
anX

n be a Laurent series with coefficients in K and
convergent in an annulus A(r1, r2) = {z ∈ K | r1 < |z| < r2}. The tropicalization
of f is the real valued function of a real parameter

τ(f )(x) := max
n

{−nx − v(an)} ∀x ∈ (− log r2,− log r1). (15)

Up-to a trivial change of variables, this notion is well-known in p-adic analysis,
where the function −τ(−x), or rather its graph, is called the valuation polygon
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of the series [40]. This polygon is dual to the Newton polygon of the series which
is, by definition, the lower part of the convex hull of the points of the real plane
with coordinates (j, v(aj )). By construction, τ(f )(x) is finite since, using the
convergence hypothesis, the terms −nx − v(an) tend to −∞ when |n| → ∞. Thus
one obtains a convex and piecewise affine function. Moreover, the multiplicativity
property also holds τ(fg)(x) = τ(f )(x) + τ(g)(x),∀x ∈ (0,∞) as well as the
following classical result [40].

Theorem 3.1 Let f (X) = ∑
anX

n be a Laurent series with coefficients in K ,
convergent in an annulus A(r1, r2) = {z ∈ K | r1 < |z| < r2}. Then the valuations
v(zi) of its zeros zi ∈ A(r1, r2) (counted with multiplicities) are the zeros (in
the tropical sense and counted with multiplicities) of the tropicalization τ(f ) in
(− log r2,− log r1).

In particular, one can take r1 = 0, r2 = 1 so thatA(r1, r2) is the punctured open unit
diskD(0, 1)\{0}. In this case, τ(f ) are convex piecewise affine functions on (0,∞)

and one derives the following compatibility with the action of N× on functions by
f (X) �→ f (Xn)

τ(f (Xn))(x) = τ(f )(nx) , ∀x ∈ (0,∞), n ∈ N
×. (16)

3.2.2 Tropicalization in the Archimedean case, Jensen’s formula

Over the complex numbers, unlike the non-Archimedean case, it is not true that for
a generic radius r , the modulus |f (z)| (of a complex function f (z)) is constant on
the sphere of radius r . One replaces (15) with the following

Definition 3.2 Let f (z) be a holomorphic function in an annulus A(r1, r2) =
{z ∈ C | r1 < |z| < r2}. Its tropicalization is the function on the interval
(− log r2,− log r1)

τ (f )(x) := 1

2π

∫ 2π

0
log |f (e−x+iθ )|dθ.

By construction, the multiplicativity property still holds: τ(fg)(x) = τ(f )(x) +
τ(g)(x),∀x ∈ (0,∞).

For x ∈ (− log r2,− log r1) such that f has no zero on the circle of radius e−x ,
the derivative of τ(f )(x) is the opposite of the winding number n(x) of the loop
θ �→ f (e−x+iθ ) ∈ C

×. Thus the function τ(f )(x) is piecewise affine with integral
slopes. When the radius e−x of the circle increases, the winding number of the
associated loop increases by the number of zeros of f in the intermediate annulus
and this shows that the function τ(f )(x) is convex and fulfills Jensen’s formula
(cf. [41] Theorem 15.15). Thus we derive the analogue of Theorem 3.1

Theorem 3.2 Let f (z) be a holomorphic function in an annulus A(r1, r2) = {z ∈
C | r1 < |z| < r2} and zi ∈ A(r1, r2) its zeros counted with their multiplicities.
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Then the values − log |zi | are the zeros (in the tropical sense and counted with
multiplicities) of the tropicalization τ(f ) in (− log r2,− log r1).

In particular, one can take r1 = 0, r2 = 1 so thatA(r1, r2) is the open punctured unit
disk D(0, 1) \ {0}. In that case the τ(f ) are convex piecewise affine functions on
(0,∞) and one has the following compatibility with the action of N× on functions
by f (z) �→ f (zn)

τ (f (zn))(x) = τ(f )(nx) , ∀x ∈ (0,∞), n ∈ N
×. (17)

This fact follows from the equality for periodic functions h(θ)

1

2π

∫ 2π

0
h(nθ)dθ = 1

2nπ

∫ 2nπ

0
h(α)dα = 1

2π

∫ 2π

0
h(u)du.

3.2.3 Descent from characteristic zero to characteristic one

To explain the general technique that allows one to deduce the existence results
in characteristic one from a Riemann–Roch formula in characteristic zero, we first
develop the following simple example. Consider an open interval I of the real half-
line and an integral (finite) divisor D = ∑

nj δλj , with nj ∈ Z and λj ∈ I . The
Riemann–Roch problem in characteristic one asks for the construction of a piece-
wise affine continuous function f with integral slopes, whose divisor (f ) fulfills
D + (f ) ≥ 0. Here, (f ) is best understood as the second derivative Δ(f ), taken
in the sense of distributions. Thus the Riemann–Roch problem in characteristic one
corresponds to the solutions f , among piecewise affine continuous function f with
integral slopes, of the inequality

D + (f ) :=
∑

nj δλj +Δ(f ) ≥ 0. (18)

The technique we follow is to lift geometrically the divisor D to a divisor D̃ (in the
ordinary complex analytic sense) in the corona

C (I ) := {z ∈ C | − log |z| ∈ I }.

This involves a choice, for each λj , of points z ∈ C (I ) such that − log |z| = λj ,
and of multiplicities for these points which add up to nj . Now, assume that one
has a solution as a meromorphic function g in C (I ) such that D̃ + (g) ≥ 0. We
then consider, using Definition 3.2, the tropicalization f = τ(g). This formula is
in fact extended to meromorphic functions by the multiplicativity rule, i.e. using
τ(h/k) := τ(h) − τ(k) for g = h/k. Then, Theorem 3.2 shows that the divisor
Δ(τ(g)) is the image by the map u(z) := − log |z| of the divisor of g. This proves
that the tropicalization f = τ(g) fulfills the inequalityD+(f ) ≥ 0 of the Riemann–
Roch problem.
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3.3 The Hirzebruch–Riemann–Roch formula and the Index
theorem

Here we recall the Hirzebruch–Riemann–Roch theorem. Let E be a holomorphic
complex vector bundle of rank r over a compact complex manifold X of dimension
n. The Euler characteristic χ(E) of E is defined by

χ(E) :=
∑

j≥0

(−1)jdim(Hj (X,E)). (19)

The cohomology Hj(X,E) used in the formula is sheaf cohomology and one uses
the equivalence between holomorphic vector bundles and locally free sheaves. It is
known that the cohomology Hj(X,E) vanishes for j > n. The relation with the
analytic index is given, with the above notations, by the formula

χ(E) = Inda(∂E). (20)

The analytic index Inda(T ) of an operator is defined as

Inda(T ) := dim(Ker(T ))− dim(Ker(T ∗))

and ∂E denotes the “dbar” operator with coefficients in E. The Hirzebruch–
Riemann–Roch formula, which is a special case of the Atiyah–Singer Index
theorem, is the equality

χ(E) = 〈Ch(E)Td(X), [X]〉 (21)

of the Euler characteristic of E with the topological index which is the evaluation
on the fundamental class [X] ofX of the cohomology class Ch(E)Td(X) product of
the Chern character Ch(E) of the vector bundle E and the Todd genus Td(X) of X.

3.4 Potential role of the complex lift of the Scaling Site

In the case of the complex lift of the (square of the) Scaling Site, we expect E to
be a line bundle, the Todd genus be equal to 1 and that the relevant term in the
topological index comes from the term 1

2c1(E)
2 in the Chern character of E.

In this setup, one difficulty is that the self-intersection of the divisor D appears
as a trace taken in a relative situation. This means that one works with the difference
between the adèle class space (divided by Ẑ

∗), say X, and the ideles (also divided
by Ẑ

∗), which form a subset Y ⊂ X. The explicit formulas are obtained in the form
(after a cut-off)

(TrX − TrY )(π(f ))
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and this corresponds to the spectral realization as a cokernel ofE : F (X) → F (Y ).
Thus, the trace on this cokernel corresponds to the opposite of (TrX − TrY )(π(f ))
as required by the minus sign in the Explicit Formulas. In fact, a first task should
be to understand how to express this difference of traces as an intersection number
and then develop an appropriate intersection theory. The advantage of working in
a complex framework is that one could replace the naive real intersections by the
intersection of complex manifolds and also that everything is compatible with the
use of the Fourier transform. In fact, we also speculate that the divergent term in
logΛ which enters as coefficient of f (1) for the test function (see [16] Theorem
2.36) is due to the lack of good definition of self-intersection of the diagonal. While
one obtains an infinite result when working naively, the implementation of a suitable
intersection theory should provide the correct Euler characteristic. Thus adapting the
Riemann–Roch strategy comprises the following five steps

1. Construct the complex lift Γ of the Scaling Site.
2. Develop intersection theory in such a way that the divergent term in logΛ (see

[16] Theorem 2.36) is eliminated.
3. Formulate and prove a Hirzebruch–Riemann–Roch formula on Γ 2, whose

topological side part 1
2c1(E)

2 is 1
2s(f, f ) as in (14). This step involves the lifting

of the divisor D(f ) = ∫
f (λ)Ψλ d

∗λ in characteristic 1 to a divisor D̃(f ) in the
complex setup and the use of correspondences.

4. Use the assumed positivity of s(f, f ) to get an existence result for H 0(D̃(f )) or
H 0(−D̃(f )).

5. Use tropical descent to get the effectivity of a divisor equivalent to D(f ) and
finally get a contradiction.

The development of step 3 is the most problematic since in the lift from characteris-
tic 1 to characteristic 0 one loses the automorphisms Aut(Rmax+ ) = R

∗+ which are at
the origin of the Frobenius correspondences Ψλ. We settle this problem in Section 7
using the Witt construction in characteristic 1.

4 Tropical descent and almost periodic functions

In order to lift a continuous divisor D(f ) = ∫
f (λ)δλ d

∗λ on the Scaling Site (in
characteristic 1, Section 3.1) to a discrete divisor D̃(f ) on a complex geometric
space, one first needs to understand how to generalize Jensen’s formula to a case
where the Jensen function is no longer a piecewise linear affine convex function
with integral slopes but an arbitrary convex function.

In this part we explain how H. Bohr’s theory of almost periodic functions, and
the theory developed by B. Jessen on the density of zeros of almost periodic analytic
functions gives a satisfactory answer to this question. This technique plays a crucial
role in the process to extend the tropical descent procedure of Section 3.2 to control
the continuous divisors, in characteristic 1, following the Riemann–Roch lifting
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strategy. This procedure will also suggest a further important information on the
need of a suitable compactification G of the imaginary direction required for a
correct complex lift of the Scaling Site. This part will be developed in Section 5.

4.1 Almost periodic functions

We recall the definition of almost periodic functions (see [6] and [4] for more
details). Let H be the locally compact abelian group R or Z.

Definition 4.1 Let f : H −→ C be a bounded continuous function and ε > 0 a
real number. An ε-almost period for f is a number τ ∈ H such that

‖f (.+ τ)− f (.)‖∞ := sup
x∈H

|f (x + τ)− f (x)| < ε.

The function f is said to be almost periodic if for any ε > 0 the set of ε-almost
periods of f is relatively dense, i.e., there is a real number l = l(ε) > 0 such that
any interval with length l contains at least one ε-almost period.

The space of almost periodic functions onH is denoted by AP(H). In the following
part we are mostly interested in the case H = R but will use the case H = Z when
considering sequences.

By construction, AP(H) is aC∗-subalgebra of theC∗-algebraCb(H) of bounded
continuous functions on H . An important characterization of almost periodic
functions was given by Bochner [7].

Theorem 4.1 A bounded continuous function f ∈ Cb(H) is an almost periodic
function if and only if the family of translates {f (.+ t)}t∈H is relatively compact in
Cb(H), i.e. its closure is compact.

Bochner’s characterization lead von Neumann in [42] to extend the notion of almost
periodic function to arbitrary groups by requiring the relative compactness for the
uniform norm of the set of translates of f . This definition does not make use of the
topology of the group and von Neumann constructed the mean value of a function
f using the translation invariant element in the closed convex hull of the translates
of the function.

4.2 From Jensen to Jessen and the tropical descent

Jensen’s formula in the annular case allows one to define the tropicalization of a
holomorphic function. In [31], Jessen extended Jensen’s formula to analytic almost
periodic functions.
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Recall that an analytic function f (z) in the strip &(z) ∈ [α, β] is called almost
periodic when the function R ( t �→ f (σ + it) is uniformly almost periodic for
σ ∈ [α, β].

Jessen showed that, for such a function, the following limit exists

ϕ(σ) := lim
T→∞

1

2T

∫ T

−T
log |f (σ + it)|dt (22)

and determines a real convex continuous function ϕ(σ) of σ ∈ [α, β]. The function
ϕ(σ) is called the Jensen function of f . By convexity, the derivative ϕ′(σ ) exists at
all points of the interval except for a denumerable set E. For σj outside E, Jessen
proved that the relative frequency of zeros of f in the strip &(z) ∈ [σ1, σ2] exists
and is given by the variation of the derivative ϕ′. More precisely, if N(T ) denotes
the number of zeros of f with &(z) ∈ [σ1, σ2], and −T < "(z) < T one has

lim
T→∞

N(T )

2T
= ϕ′(σ2)− ϕ′(σ1)

2π
. (23)

4.3 Discrete lift of a continuous divisor

In this part we describe, following [32], the procedure of lifting a tropical continuous
divisor (i.e. a formal integral of delta functions

∫
f (λ)δλ dλ) to a discrete, integer

valued divisor, using the technique of almost periodic lifting.
The formal expression

∫
f (λ)δλ dλ replaces the finite discrete sum as in (18)

of Section 3.2.3. We recall that the basic relation defining the divisor div(φ), in
characteristic 1, of a piecewise affine function φ(σ) is div(φ) = Δ(φ), where Δ is
the Laplacian taken in the sense of distributions. Here, we extend this definition to
convex functions in terms of the equation (taken in the sense of distributions)

div(φ) := Δ(φ). (24)

Then, the almost periodic lifting of a convex function is the choice of an almost
periodic analytic function f whose tropicalization gives back the function φ(σ).
More precisely (following [32], Theorem 25) one has the next characterization of a
Jensen function of an almost periodic analytic function

Theorem 4.2 ([32], Theorem 25) A real function φ(σ), in the interval α < σ < β,
is the Jensen function of an almost periodic analytic function in the strip &(z) ∈
[α, β] if and only if φ(σ) is convex and for every compact interval I ⊂ (α, β) there
exist a finite set F of Q-linearly independent real numbers and a real number C <

∞ such that the positive difference φ′(σ2) − φ′(σ1) of slopes of φ(σ) in intervals
where it is affine is a rational combination of elements of F with
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φ′(σ2)− φ′(σ1) =
∑

μ∈F
r(μ)μ,

∑

μ∈F
r(μ)2 ≤ C |φ′(σ2)− φ′(σ1)|2.

These results are based on the characterization of the asymptotic distribution
function of almost periodic sequences U(k) ∈ R, k ∈ Z. Here, to be almost periodic
for sequences means, with H = Z in Definition 4.1, that for any ε > 0 the set of
ε-periods

χ(ε) := {j | |U(k + j)− U(k)| < ε , ∀k ∈ Z}

is relatively dense in Z (see Definition 4.1). A distribution function is a non-
decreasing function μ(σ) of a real variable σ ∈ R whose limit, when σ → −∞ is 0
and whose limit, when σ → ∞ is 1. One defines μ(σ ±0) respectively as the limits
on the left and on the right and one disregards the choice of a precise value in the
interval [μ(σ − 0), μ(σ + 0)] when the two values are different. This situation only
occurs on a denumerable set of values of σ . The asymptotic distribution function
of an almost periodic sequence U(k) of real numbers is defined using the densities
of the subsets E−(σ ) := {k | U(k) < σ } and E+(σ ) := {k | U(k) ≤ σ }. For
an arbitrary subset E ⊂ Z, one defines first the lower and upper densities by the
formulas

ρ(E) := lim inf
I

#{E ∩ I }
#I

, ρ(E) := lim sup
I

#{E ∩ I }
#I

(25)

where the limits are taken over all intervals I = [a, b] ⊂ Z whose length b−a tends
to ∞. Finally, the asymptotic distribution of an almost periodic sequence U(k),
when it exists, is uniquely determined (as a distribution function in the above sense)
as the non-decreasing function μ(σ) such that

μ(σ − 0) ≤ ρ(E−(σ )) ≤ ρ(E+(σ )) ≤ μ(σ + 0). (26)

A. Wintner showed that such a distribution function exists for all almost periodic
sequences U(k) of real numbers (see [32] Theorem 10 for a simple proof). The
almost periodic sequences are the continuous functions on the almost periodic
compactification of Z which is the dual of the additive group (R/2πZ)dis endowed
with the discrete topology. This abelian group is uncountable but the Fourier
transform of an almost periodic sequence U(k)

Û(s) := lim
T→∞

1

2T

T∑

−T
U(k)eisk, s ∈ (R/2πZ)dis

vanishes except on a countable subset, called the set of exponents of U in op.cit.
The subgroup M ⊂ R/2πZ generated by the exponents of U is called the “modul”
MU of U . Its intersection with 2πQ plays a role in particular in the following result
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Fig. 2 Jessen sequence U(k)

Theorem 4.3 ([32], Theorem 11) The asymptotic distribution function μ(σ) of an
almost periodic sequence U(k) of real numbers is constant in an open interval if
and only if the sequence does not take any value in this interval. In this case the
value of μ(σ) in this interval is a rational number which belongs to 1

2πMU .

The interesting outcome of this result is the rationality of the value μ(σ) = r in the
interval where the spectrum is empty. The proof uses the fact that an ε-period, for ε
smaller than the size of the gap, is a true period for the subset where U(k) < σ and
that the density of a periodic set is a rational number (Figure 2).

The following result (see [32], Theorem 12) characterizes the distribution
functions of the almost periodic sequences whose exponents belong to a fixed
subgroup M ⊂ R/2πZ which is assumed to be everywhere dense for the usual
topology.

Theorem 4.4 Let M be a given dense subgroup of R/2πZ. A distribution function
is the asymptotic distribution function μ(σ) of an almost periodic sequence U(k)
with exponents in M if and only if it has compact support and the values μ(σ) in
constancy intervals belong to 1

2πM .

To phrase this result in modern terms, note that the asymptotic distribution
functions μ(σ) of almost periodic sequences U(k) with exponents in M are the
same as the functions of the form

μ(σ) = ν({u | h(u) ≤ σ }

where h ∈ C(M̂) is an arbitrary continuous function on the compactification of
Z given by the Pontrjagin dual M̂ of M , and where ν is the normalized Haar
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measure on M̂ . The constancy intervals of μ(σ) are gaps in the spectrum of h and
the corresponding spectral projection given by the Cauchy integral of the resolvent
through the gap gives an idempotent in C(M̂). If M is torsion free (i.e. M intersects
trivially with 2πQ/2πZ), the compact group M̂ is connected and the spectrum of
any continuous function h is connected.

The gaps in the spectrum of h arise only from the torsion ofM , and Theorem 4.4
suggests that in order to describe all asymptotic distribution functions μ(σ) of
almost periodic sequences U(k) it is enough to consider, instead of the almost
periodic compactification of Z, (i.e. the Pontrjagin dual of (R/2πZ)dis) the dual
G of infinite torsion subgroups, i.e. groups of the form D = H/Z where H ⊂ Q is
a subgroup of Q containing Z as a subgroup of infinite index.

One writes D = lim−→Dn as a colimit of finite groups, thus its Pontrjagin dual

G = D̂ is a projective limit of finite groups and hence a totally disconnected space.
Theorem 4.4 displays the role of the idempotents in C(G). This accounts for the
existence of the many idempotents in C(G) associated with constancy intervals of
asymptotic distribution functions μ(σ).

To understand in explicit terms how to obtain general distribution functions, we
first work out the description of the distribution function μ(σ) := σ for σ ∈ [0, 1],
for the groupHp of rational numbers with denominator a power of p, with p a fixed
prime number.

In this case, the groupD = H/Z is the colimit of the finite groupsDn := Z/pnZ,
viewed as groups of roots of unity of order dividing pn, so that the inclusions Dn ⊂
Dn+1 turn D into a dense subgroup of U(1). Dually, one thus gets a projective
system of the finite cyclic groups D̂n and an homomorphism Z → lim←− D̂n. The

projective limit K := lim←− D̂n is topologically a Cantor set

Lemma 4.1 Let p be a prime.

(i) There exists a unique sequence U(x), x ∈ Z such that

U

⎛

⎝
∑

j≥0

ajp
j

⎞

⎠ =
∑

j

ajp
−j−1, ∀aj ∈ {0, . . . , p − 1},

U(x) := lim
n→∞U(x + pn). (27)

(ii) One has U(x) ∈ Hp, ∀x ∈ Z, and

|U(x + npm)− U(x)| ≤ p−m , ∀m ∈ N, x, n ∈ Z (28)

(iii) The sequence U(x) is almost periodic with modul M = 2πHp and has as
distribution function μ(σ) := σ , for σ ∈ [0, 1]
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Proof

(i) Let x ∈ N be a positive integer with expansion in base p given by x =∑k
j=0 ajp

j . One has for m > k, U(x + pm) = U(x) + p−m−1 thus U(x)
fulfills the continuity condition as in (27). For x ∈ Z, x < 0 let k > 0 be such
that y = x + pk > 0 and let y = ∑

0≤j<k bjpj be its expansion in base p.
One has

lim
n→∞U(y + pn − pk) =

∑

0≤j<k
bjp

−j−1 +
∞∑

k

(p − 1)p−&−1

=
∑

0≤j<k
bjp

−j−1 + p−k.

Replacing k by k′ ≥ k replaces y by y′ = ∑
0≤j<k bjpj + ∑k′−1

k (p − 1)pm

and gives the same result for U(x) since
∑k′−1

k (p− 1)p−m−1 = p−k − p−k′
.

Thus for any x ∈ Z the limit limn→∞ U(x + pn) exists and this shows the
existence and uniqueness of the sequence fulfilling (27).

(ii) The proof of (i) shows that U(x) ∈ Hp, ∀x ∈ Z. Let us prove (28). One can
assume n > 0 by symmetry and x > 0 using (27). Replacing x by x + npm

does not alter the digits aj of x in base p for j < m. Thus one has

|U(x + npm)− U(x)| ≤
∑

j≥m
(p − 1)p−j−1 = p−m.

(iii) By (28) the sequence U(x) is almost periodic with modul M = 2πHp. Let
k > 0 and aj ∈ {0, . . . , p − 1} for 0 ≤ j ≤ k − 1. Let I ⊂ [0, 1] be the
interval

I =
⎛

⎝
∑

j<k

ajp
−j−1,

∑

j<k

ajp
−j−1 + p−k

⎞

⎠ .

One has using the almost periodicity

lim
T→∞

1

2T
#{x ∈ Z | |x| ≤ T , U(x) ∈ I } = lim

T→∞
1

T
#{x ∈ N | x ≤ T ,

U(x) ∈ I }.

Moreover

lim
T→∞

1

T
#{x ∈ N | x ≤ T , U(x) ∈ I } = p−k
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since the condition U(x) ∈ I for x ∈ N means that the first k digits of x in base
p are equal to the aj . Thus the density of the subset {x ∈ Z | U(x) ∈ I } is p−k
and coincides with the length (and hence the Lebesgue measure) of the interval
I in the range of U . This shows that U has distribution function μ(σ) = σ for
σ ∈ [0, 1]. ��

Remark 4.1 In the above example we have chosen D = Hp/Z = Qp/Zp and its
dual is the group Zp of p-adic integers (using the self-duality of the p-adic numbers
Qp). The sequence U is thus obtained by mapping Zp to real numbers by means of
(up to an overall factor p) φ(

∑
j≥0 ajp

j ) = ∑
ajp

−j . This map is continuous but
not additive. It fulfills however the restricted additivity φ(x + y) = φ(x) + φ(y)

when no carry over is involved in computing x + y.

Corollary 4.1

(i) Let h ∈ C[0, 1] be a real valued function and U as in (27). Then the sequence
h(U)(n) := h(U(n)) is almost periodic and its distribution function μ is the
primitive of the image by h of the Lebesgue measure m on [0, 1], i.e. one has
dμ = h(m).

(ii) Let μ be a strictly increasing continuous function in a real interval [α, β] with
μ(α) = 0 and μ(β) = 1. Then with h ∈ C[0, 1] as in (i), its inverse function,
μ is the distribution function of h(U).

Proof

(i) The almost periodicity follows from the continuity of h. One has

h(U(n)) ∈ (a, b) ⇐⇒ U(n) ∈ h−1((a, b))

and the density of this set of integers is the Lebesgue measure of h−1((a, b)).
This shows that the measure dμ is the image by h of the Lebesgue measure on
[0, 1].

(ii) follows from (i) since for any pair of real numbers a < b one has

h(u) ∈ (a, b) ⇐⇒ u ∈ (μ(a), μ(b)).

��
In the construction provided in [32] of an almost periodic analytic function f whose
associated Jensen function is a given convex function ϕ, the zeros of f can be taken
of the form zk = V (k)+ ik for k ∈ Z, where V (k) is an almost periodic sequence.
The Jensen function ϕ is related to the asymptotic distribution function μ of V by
the equation

ϕ′(σ ) = μ(σ). (29)

Next, we apply Corollary 4.1 to construct a lifted divisor associated with the formal
expression

∫
f (λ)δλ dλ. We write f = f+ − f−, where f± is positive, and we
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assume that the support of f± is a compact real interval I± = [α±, β±]. We also
assume for simplicity that

∫
I± f±(λ) dλ = 1. Let us define

h± : [0, 1] → [α±, β±], h±(u) = a ⇐⇒
∫ a

α±
f±(v)dv = u. (30)

Then the construction of [32] provides the following lift

Lemma 4.2 The following discrete integral divisor lifts the continuous divisor∫
f (λ)δλ dλ

D :=
∑

k∈Z
δh+(U(k))+ik − δh−(U(k))+ik. (31)

Proof For a complex test function ψ defined on the real half-line (0,∞) one has by
definition

<

∫
f (λ)δλ dλ,ψ >=

∫
f (λ)ψ(λ) dλ.

It is enough to show that when evaluated on the function z �→ ψ ◦&(z), the discrete
divisor D gives the same result after averaging. One has

lim
T→∞

1

2T

∑

k∈Z,|k|≤T
< δh+(U(k))+ik − δh−(U(k))+ik, ψ ◦ & >=

= lim
T→∞

1

2T

∑

k∈Z,|k|≤T
(ψ(h+(U(k)))− ψ(h−(U(k))) =

=
∫ 1

0
(ψ ◦ h+)(u)du−

∫ 1

0
(ψ ◦ h−)(u)du =

=
∫ β+

α+
ψ(a)d

(∫ a

α+
f+(v)dv

)
−

∫ β−

α−
ψ(a)d

(∫ a

α−
f−(v)dv

)
=

=
∫
f (λ)ψ(λ) dλ.

��
Remark 4.2 The construction as in (27) generalizes when Hp is replaced by any
infinite subgroup of Q not isomorphic to Z. This is also explained in [32] and the
connection with the Scaling Site should be explored further. In fact, note that for
the periodic orbits of the Scaling Site the restriction on the slopes of the convex
functions of the structure sheaf was stated in terms of these slopes belonging to Hp,
and this condition corresponds to (29).
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Fig. 3 Jessen sequence k + iU(k) ∈ H

Fig. 4 Divisor for f (x) = −2x3 + 3x2 − x written as f = f+ − f−, with f+(x) = x(1 − x) and
f−(x) = 2x(1 − x)2

In the above development (following [32]) we have worked with the complex right-
half plane; however in relation with the action of SL(2,R), the use of the upper-half
plane H := {z ∈ C | Im(z) > 0} is more convenient.

Figure 3 shows the discrete almost periodic (in the horizontal direction) distribu-
tion of points in the upper-half plane H associated with k + iU(k) ∈ H.

Next Figure 4 represents the divisor (zeros in blue, poles in red) associated with
f (x) = −2x3 + 3x2 − x, written as f = f+ − f− with f+(x) = x(1 − x) and
f−(x) = 2x(1 − x)2.
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5 The complex lift of the Scaling Site

In this section we refine the framework of Jensen’s formula to construct the complex
lift of the Scaling Site. The original setup of Jensen’s theory and the related
tropicalization map, explained in Section 3.2.2, provide us with the following
starting point.

We let D∗ := {q ∈ C | 0 < |q| ≤ 1} be the punctured unit disk in C. The monoid
N

× acts naturally on D
∗ by means of the map q �→ qn. In this way, one defines a

ringed topos by endowing the topos D∗
�N

× with the structure sheaf O of complex
analytic functions.

Given a pair of open sets Ω,Ω ′ in D
∗ and an integer n ∈ N

× with qn ∈ Ω ′ for
q ∈ Ω , there is a natural restriction map

Γ (Ω ′,O) → Γ (Ω,O), f (q) �→ f (qn).

Lemma 5.1 The map u : D∗ → [0,∞), u(q) := − log |q|, extends to a geometric
morphism of toposes u : D∗

�N
× → [0,∞)�N

×.

Proof This follows from the continuity and N
×-equivariance of the map u(q) :=

− log |q|. ��
In order to work with continuous divisors as explained in Section 3.2, we consider
the covering of D∗ defined by the closed upper-half plane H̄

q : H̄ → D
∗, q(z) = e2πiz, ∀z ∈ H̄ = {z ∈ C | "(z) ≥ 0},

and make a compactification of the real direction in H̄ using a group compactifi-
cation G of R motivated by the results of Section 4. The compact group G ⊃ R

used in this construction is the smallest compactification of R on which Q
∗ acts (by

unique divisibility of the dual discrete group) by extending its natural action on R.
The dual of G is the additive discrete group Q.

At this point one could proceed in terms of ringed toposes and this would amount,
in the construction of D∗

�N
×, to replace the punctured unit disk D

∗ by its pro-étale
cover given by the projective limit

D̃
∗ := lim←−

N×
(D∗, z �→ zn).

on which N
× is acting by lifting the above action (see Proposition 5.4).

In this paper we prefer to proceed at the adelic level and the complex lift that we
are going to describe in detail is obtained as the fibered product of the adèle class
space of Q and G. It is thus the quotient of AQ ×G by the diagonal action of Q∗.

The construction of the compactification G is developed, in adelic terms, in
Section 5.1. It leads, in Section 5.2, to the adelic definition of the complex lift.
In Sections 5.3 and 5.4, we analyze the restriction of the so obtained complex
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lift to the periodic orbits and to the classical orbit of the adèle class space. In
particular, the restriction to the classical orbit turns out to be the projective limit
D̃

∗ (Proposition 5.4) of the open unit disks (whose closed version was mentioned
above in the topos theoretic context).

The complex lift is naturally endowed with a one dimensional complex foliation
that we describe and analyze both on the periodic and classical orbits. It is this
foliation that provides the geometric meaning of the discrete lift of continuous
divisors of Lemma 4.2. This part is explained in Section 5.4. This foliation retains
a meaning on the full complex lift, it is still one dimensional (complex) with leaves
being the orbits of the right action of the aX + b group.

By construction of the group G, the scaling action on AQ ×G exists for rational
values of λ and it extends the action by scaling on R ⊂ G. At the Archimedean
place, this action is simply given by (i.e. induces a) multiplication of the complex
variable by λ ∈ Q

∗ and thus preserves the complex structure. At the geometric level
what really matters in this construction is to have a compact abelian group G which
compactifies the additive locally compact group R and is such that the action of Q∗
on R by multiplication extends to G. After implementing such data one forms the
double quotient

C(G) := Q
∗\(AQ ×G)/(Ẑ× × Id). (32)

By construction, the space C(G) maps onto the principal factor Q∗\AQ/Ẑ
× of the

adèle class space and the fibers of this projection only involve the compact freedom
in G. Writing AQ = Af ×R, one sees that the element −1 ∈ Q

∗ acts as identity on
Af /Ẑ

× but non-trivially on R×G. Moreover, [0,∞)×G ⊂ R×G is a fundamental
domain for the action of ±1 and in the quotient the boundary {0} ×G is divided by
the symmetry u �→ −u. This fact accounts for the use of the complex half plane
H in the above discussion with this nuance on the boundary. The gain, before the
division by Ẑ

×, is that one retains the additive group structure that we expect to
play a key role in the definition of the de Rham complex, since the H 2 should be
generated by the Haar measure.

5.1 Adelic almost periodic compactification of R

The main requirement on an almost periodic compactification G of R is that the
action of Q∗ on R by multiplication extends toG. Then, by turning to the Pontrjagin
duals one derives a morphism ρ : Ĝ → R̂ with dense range. The fact that the scaling
action of Q∗ on R extends to G means here that the subgroup ρ(Ĝ) is stable under
multiplication by Q

∗ and hence is a Q-vector subspace of R.
The simplest case is when this vector space is one dimensional. We shall now

describe this special case in detail. Thus, and up to an overall scaling, we assume
ρ(Ĝ) = Q ⊂ R̂.
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We denote byG := AQ/(Q,+) the compact group quotient of the additive group
of adèles by the discrete subgroup Q ⊂ AQ. We first recall how one can interpret
the group G as the projective limit of the compact groups Gn := R/nZ under the
natural morphisms

γn,m : Gm → Gn, γn,m(x +mZ) = x + nZ, ∀n|m. (33)

First, notice that there is a natural group isomorphism

(Ẑ × R)/Z � AQ/(Q,+)

that is deduced by using the inclusion of additive groups Ẑ×R ⊂ AQ together with
the two equalities

Q ∩ (Ẑ × R) = Z, Q + (Ẑ × R) = AQ

where the latter derives from the density of Q in finite adèles Af .
Next, recall that by construction the group Ẑ is the projective limit of the finite

groups Z/nZ, and hence one obtains

(Ẑ × R)/Z = lim←−(Z/nZ × R)/Z.

Moreover one has a group isomorphism

ρn : (Z/nZ × R)/Z → Gn = R/nZ, ρn(j, x) = x − j + nZ

and when n|m one also has

γn,m ◦ ρm(j, x) = x − j + nZ = ρn(j, x).

The outcome is that the projective system (Ẑ × R)/Z = lim←−(Z/nZ × R)/Z is
isomorphic to the projective system {γn,m : Gm → Gn} and one derives in this way
a natural isomorphism of the corresponding projective limits.

Let us now understand the action of Q∗ on G by checking that G is a uniquely
divisible group. We show that the multiplication by an integer n > 0 defines a
bijection of G on itself. First, notice that its range contains the subgroup of (Ẑ ×
R)/Z of the classes of the elements (0, t) ∈ {0}×R ⊂ Ẑ×R and is therefore dense
inG since Z is dense in Ẑ. SinceG is compact, the image of the multiplication by n
is closed and thus equal to G. Let us now show that the kernel of the multiplication
by n is trivial. The equality (na, ns) = (m,m) with a ∈ Ẑ and m ∈ Z implies that
m is divisible by n since one has m/n ∈ Ẑ. Hence one obtains (a, s) ∼ (0, 0) and
the multiplication by n is therefore proven to be bijective.

Next lemma provides several relevant details on the chosen almost periodic
compactification G of R.
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Lemma 5.2 Let G := AQ/(Q,+) be the compact group described above.

(i) The homomorphism R ( t �→ a(t) = (0, t) ∈ AQ/(Q,+) determines an
almost periodic compactification of R.

(ii) Let α ∈ ÂQ ∩ Q
⊥ be a non-trivial additive character of the adèles which

restricts to the identity on Q ⊂ AQ. The map Q ( q �→ α(q · ) identifies the
additive group Q with the Pontrjagin dual Ĝ.

(iii) Let α = ∏
αv be the standard choice of the additive character of the adèles,

with α∞(s) = e2πis . The Pontrjagin dual ρ of the map a as in (i) identifies
r ∈ Q with the character (element of R̂) given by R ( s �→ e2πirs .

Proof

(i) By construction of the adèles, the subgroup Q ⊂ AQ is discrete and cocompact
thus G is a compact abelian group. The kernel of the homomorphism a :
R → AQ/(Q,+) is trivial since a non-zero rational has non-zero components
at every local place. The homomorphism a has also dense range since the
subgroup a(R) + Q is dense in the adèles as a consequence of the density
of Q in the finite adèles.

(ii) The pairing of AQ with itself given by α(xy) identifies AQ with its Pontrjagin
dual and the quotient of AQ by Q

⊥ = Q with the Pontrjagin dual of Q (see
[43]).

(iii) One has α(r a(s)) = α∞(rs) = e2πirs . ��

5.2 The adelic complex lift

Next, we assemble together the adèle class space and the adelic almost periodic
compactification of R. Our primary goal is to describe the complex structure that
arises from the pair (x, y) of variables at the Archimedean place, and to verify that
these variables are rescaled by the same rational number under the action of Q∗+.

In the following part we shall work with the full adèle class space and postpone
the division by Ẑ

× after this development.

Lemma 5.3 Let P(Q) be the ax + b group over Q. The left action of P(Q) on the
adelic affine plane A

2
Q

defined by

&

(
a b

0 1

)
(x, y) := (ax + b, ay) (34)

preserves the complex structure at the Archimedean place given by ∂̄ = ∂x + i∂y .

Proof The statement holds because the translation by b commutes with the operator
∂̄ and the multiplication by a, being the same on both entries, just rescales the
operator. ��
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Definition 5.1 The adelic complex lift is the adelic quotient

CQ := P(Q)\A2
Q. (35)

We denote by ΓQ the further quotient obtained by implementing the action of Ẑ×
on A

2
Q

given by multiplication on the second adelic variable y.

Recall that for any commutative ring R the algebraic group P is defined as

P(R) :=
{(

a b

0 1

)
| a ∈ R−1, b ∈ R

}
. (36)

One has a canonical inclusion of groups GL1(R) ⊂ P(R) given by

GL1(R) ( a �→
(
a 0
0 1

)
. (37)

For any commutative ring R, we introduce the notation

P(R) :=
{(

a b

0 1

)
| a ∈ R, b ∈ R

}
. (38)

By construction P(R) ⊂ M2(R), moreover there is a canonical set-theoretic
identification P(R) � R2 given by the first line of the matrix. In the following
part we prefer to work with the identification ι : R2 → P(R) defined by

ι(x, y) :=
(
y x

0 1

)
. (39)

Lemma 5.4

(i) Let R = AQ, then the bijection ι of (39) is equivariant for the left action of
P(Q) and induces a bijection

j : CQ = P(Q)\A2
Q

∼→ P(Q)\P(AQ). (40)

(ii) Let K be the compact subgroup Ẑ
× ⊂ GL1(AQ), then j induces a canonical

bijection

j : ΓQ ∼→ P(Q)\P(AQ)/K. (41)

(iii) The action of P(R) by right multiplication on P(Q)\P(AQ) is free on the open
subset V determined by the conditions yf �= 0 and y∞ �= 0, where y∞ ∈ R
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(resp. yf ∈ Af ) is the Archimedean (resp. non-Archimedean) component of y

for

(
y x

0 1

)
∈ P(AQ).

Proof

(i) The multiplication rule

(
a b

0 1

)(
y x

0 1

)
=

(
ay ax + b

0 1

)

shows the equivariance of the map ι with respect to the action (34).
(ii) The right action of GL1(AQ) on P(AQ) is given by the formula

(
y x

0 1

)(
u 0
0 1

)
=

(
uy x

0 1

)
.

Thus, under the isomorphism j of (40) the right action of Ẑ× corresponds to
the action of Ẑ× by multiplication on the y-component and hence it defines the
required isomorphism.

(iii) The conditions yf �= 0 and y∞ �= 0 are invariant under left multiplication
by P(Q) since this action replaces y by ay for a non-zero rational number a.
Thus these conditions define an open subset V of the quotient P(Q)\P(AQ).
Let π : P(AQ) → P(Q)\P(AQ) be the canonical quotient map. The right
action of P(R)

(
y x

0 1

)(
u v

0 1

)
=

(
uy vy + x

0 1

)

leaves yf and xf unchanged. The open set V ⊂ P(Q)\P(AQ) is invariant
under this action. Let z ∈ V and g ∈ P(R) be such that zg = z, with

z = π

(
y x

0 1

)
, g =

(
u v

0 1

)
.

The equality zg = z means that there exists h ∈ P(Q) with zg = hz, thus one
derives

h =
(
a b

0 1

)
,

(
y x

0 1

)(
u v

0 1

)
=

(
a b

0 1

)(
y x

0 1

)
.

The equality yf = ayf shows that a = 1 since yf �= 0. Then, the equality
xf = axf + b forces b = 0. Hence one gets h = 1. In turn, the equality
uy∞ = y∞ proves that u = 1 since y∞ �= 0. Finally, vy∞ + x∞ = x∞ implies
v = 0. ��
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Let P+(R) ⊂ P(R) be the connected component of the identity, in formulas

P+(R) :=
{(

a b

0 1

)
| a > 0

}
.

With the notations of Lemma 5.4, we shall use the right action of P+(R) ⊂ P(R) to
obtain a foliation of V by one dimensional complex leaves endowed with a natural
metric. We let

X =
(

0 1
0 0

)
, Y =

(
1 0
0 0

)

be the generators of the Lie algebra of P+(R): one has [Y,X] = X.

Proposition 5.1

(i) The free right action of P+(R) on the (open) space V endows the orbits with a
unique Riemannian metric so that the vector fields X, Y form an orthonormal
basis (at each point) and a unique complex structure such that

∂̄(f ) = 0 ⇐⇒ (X + iY )f = 0.

(ii) Each orbit as in (i) is isomorphic to the complex upper-half plane H = {x+iy |
y > 0} with the Poincaré metric.

(iii) The Laplacian Δ = −∂̄∗∂̄ , for the Riemannian metric as in (ii), is equal to
X2 + (Y − 1

2 )
2 − 1

4 .

Proof Recall that the Poincaré complex half plane H is a one dimensional complex
manifold endowed with the Riemannian metric

ds2 = dx2 + dy2

y2 .

The group GL(2,R)+ acts by automorphisms of H as follows

(
a b

c d

)
· z := az+ b

cz+ d
.

Using the inclusion P+(R) ⊂ GL(2,R)+ obtained by setting c = 0 and d = 1,
and selecting the point z = i, one obtains the left invariant Riemannian metric
ds2 = a−2(da2 + db2) on P+(R), and the complex structure such that 2∂̄f =
(∂af − i∂bf )(da + idb). The vector fields which provide the right action of P on
itself are Y = a∂a and X = a∂b. Using these fields, the Laplacian Δ = a2(∂2

a + ∂2
b )

is given by
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Δ = X2 +
(
Y − 1

2

)2

− 1

4
. (42)

Indeed, one has Y 2 − Y = (a∂a)(a∂a)− a∂a = a2(∂2
a ) and X2 = a2(∂2

b ).

For the orbit L though x ∈ V one has a bijection defined by φx : P+(R)
∼→ L,

φx(g) := xg, while for another point y = xg0 of the same orbit one has
φy(g) = φx(g0g). Thus, the full geometric structure of P+(R), invariant under
left translations, carries over unambiguously to the orbit and the three statements
follow from their validity on P+(R). ��

5.3 The periodic orbits

The complex foliation of the open invariant set V ⊂ P(Q)\P(AQ) as in
Proposition 5.1 is, by construction, invariant under the right action of K = Ẑ

×. To
describe the geometric structure induced on the quotient ΓQ = P(Q)\P(AQ)/Ẑ

×,
we start by investigating the induced structure on the periodic orbit associated with
a prime p in the adèle class space.

More precisely, we consider the subset
∏
(p) of AQ/Ẑ

× of classes modulo Ẑ
×

of adèles

a = (av), av ∈ Z
∗
v, ∀v /∈ {p,∞}, ap = 0, a∞ = λ > 0.

Any such class is uniquely determined by λ and will be denoted by π(λ) ∈ ∏
(p).

Lemma 5.5 The image in ΓQ = P(Q)\P(AQ)/Ẑ
× of G×∏

(p) ⊂ P(AQ)/Ẑ
× is

the compact space

Γ (p) := pZ\
(
(AQ/(Q,+))×

∏
(p)

)
(43)

which is described by the mapping torus of the homeomorphism ψ : G → G given
by multiplication by p.

Proof We recall that the left action of P(Q) on P(AQ) is given by

(
a b

0 1

)(
y x

0 1

)
=

(
ay ax + b

0 1

)
.

Two elements y = π(λ) and y′ = π(λ′) in
∏
(p) are equivalent under the action

of a ∈ Q
× if and only if λ/λ′ ∈ pZ, i.e. a ∈ pZ. Thus the orbits of the left action

of P(Q) are the same as the orbits of pZ in (AQ/(Q,+))× ∏
(p). The group G is

compact and the multiplication by p defines an automorphismψ ofG as can be seen
on the Pontrjagin dual Q which is a uniquely divisible group. Thus, as a topological
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space Γ (p) = pZ\ (G× ∏
(p)

)
is the mapping torus of the homeomorphism ψ

and is a compact space. ��
The geometric structure of the space Γ (p) as in (43) is described as follows

Theorem 5.1

(i) The foliation of V as in Proposition 5.1 induces on Γ (p) the foliation of G by
the cosets of the subgroup a(R) combined with the action of R∗+ on

∏
(p).

(ii) The foliation F on Γ (p) as in (i) is by one dimensional complex leaves
which are Riemann surfaces of curvature −1. All leaves of F , except one, are
isomorphic to H. The exceptional leaf is the quotient pZ\H.

(iii) The foliated space (Γ (p), F ) is, at the measure theory level, a factor of type
IIIλ, for λ = 1

p
.

Proof

(i) By Lemma 5.5, Γ (p) is the quotient of G × R
∗+ by the action of powers

of the map θ , given by G × R
∗+ ( (x, y) �→ θ(x, y) := (ψ(x), py),

where ψ is as in Lemma 5.5. The right action of P+(R) on ΓQ induces on
pZ\ ((AQ/(Q,+))× ∏

(p)
)

the following right action

φu,v(x, y) := (x + vy, uy) , ∀(x, y) ∈ G× R
∗+,

(
u v

0 1

)
∈ P+(R).

This is a translation x �→ x + a(vy) in the variable x ∈ G, where vy ∈ R by
construction, and is the scaling y �→ uy by u > 0 in the variable y ∈ R

∗+. The
compact group G = AQ/(Q,+) is foliated by the cosets of the subgroup a(R)
of Lemma 5.2. This foliation is globally invariant under the action ofψ because
the subgroup a(R) is globally invariant under this action. More precisely the
foliation of G by the cosets of a(R) derives from the flow φt (x) := x + a(t),
t ∈ R, x ∈ G and one has

ψ(φt (x)) = p (x + a(t)) = px + pat = ψ(x)+ a(pt) = φpt (ψ(x)).

The right action of P+(R) on G× R
∗+ commutes with θ and thus drops down

to the quotient Γ (p)

θ(φu,v(x, y)) = (ψ(φvy(x)), p(yu)) = (φvpy(ψ(x)), pyu) = φu,v(θ(x, y)).

The orbits of the right action of P+(R) on Γ (p) coincide with the leaves of the
foliation of the mapping torus of ψ induced by the foliation of G by the cosets
of the subgroup a(R), as in Figure 5.

(ii) For (x, y) ∈ G× R
∗+,

(
u v

0 1

)
∈ P+(R) and n ∈ Z one has

φu,v(x, y) = θn(x, y) ⇐⇒ u = pn, x + a(vy) = pnx.
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Fig. 5 The foliation of G by
the cosets of the subgroup
a(R) is preserved by the map
ψ and thus extends to a
two-dimensional foliation of
the mapping torus of ψ

For n = 0 this gives u = 1 and v = 0. Assume now n �= 0. One has
G = AQ/Q, pnx ∈ x + Q + a(R). Let x = (xf , x∞) correspond to the
decomposition AQ = Af ×R. The above condition means that pnxf ∈ xf +Q,
i.e. (since n �= 0) that xf ∈ Q. This shows that the right action of P+(R) on
Γ (p) is free on the orbit of (x, y) provided xf /∈ Q, i.e. equivalently x /∈ a(R).
Thus, as in Proposition 5.1, these orbits of the right action of P+(R) inherit a
canonical structure of Riemann surface isomorphic to H. The right action of
P+(R) gives the two vector fields

X(f )(x, y) = y∂tf (x + a(t), y), Y (f )(x, y) = y∂yf (x, y). (44)

The vector fields X and Y verify the Lie algebra of the affine ax + b group:

[Y,X] = X. (45)

Assume now that x ∈ a(R). Then the orbit of (x, y) ∈ Γ (p) under the right
action of P+(R) is

pZ\
(
a(R)×

∏
(p)

)
� pZ\H

and does not depend upon the choice of the base point (x, y). The complex
structure makes sense and as a complex space one gets an open subset of
the elliptic curve E = pZ\C×. One has E � C/Γ by the isomorphism
e : C/Γ → E, e(z) := e2πiz and Γ = Z + logp

2πi Z.
(iii) At the measure theory level, the space of leaves of the foliation of G by the

cosets of the subgroup a(R) is the same as the quotient of the finite adèles Af
by the additive subgroup Q. The action of Q by addition on the finite adèles
Af is ergodic and measure preserving. In fact since Ẑ is open in Af and Q is
dense, every orbit meets Ẑ. Moreover, if b ∈ a + Q with a, b ∈ Ẑ one has
b − a ∈ Ẑ ∩ Q = Z. Also, the action of Z on Ẑ by translation is ergodic by
uniqueness of Haar measure on a compact group and density of Z in Ẑ.



The Riemann–Roch strategy 95

In Γ (p) the leaves of the two-dimensional foliation all meet the fiber of the
projection Γ (p) → pZ\∏(p) over the point π(1) and in the leaf space a leaf
of the foliation of G by the cosets of the subgroup a(R) gets identified with
its image by the map ψ (see Figure 5). Thus the leaf space is the quotient of
Af /Q (the quotient of the finite adèles Af by the additive subgroup Q) by the
further action by multiplication by powers of p. This latter action rescales the
invariant measure by a factor of p and thus one obtains a factor of type IIIλ,
where λ = 1

p
. ��

Remark 5.1

1. The Haar measure dn(x) on G gives an invariant transverse measure Λ for the
flow φt , moreover dn(x) is invariant under the automorphism of multiplication
by p. But the above transverse measure Λ is not invariant under multiplication
by p because it is obtained as the contraction of dn(x) by the flow φt and this
flow is rescaled by multiplication by p.

2. Both dn(x) and the measure on
∏
(p) given by dy/y, are invariant under

multiplication by p and thus the product measure descends to a measure on Γ (p)
given by

∫
f (x, y)dm(x, y) :=

∫ p

1

∫

G

f (x, y)dn(x)
dy

y
. (46)

Next, we use the basis of differential forms along the leaves which is dual to the
vector fields (45). It is given by α = y−1dx, β = y−1dy in the cotangent space to
the leaves.

Next statement computes the de Rham cohomology of Γ (p).

Proposition 5.2 The canonical projection Γ (p) → pZ\∏(p) = R
∗+/pZ is an

isomorphism in the de Rham cohomology.

Proof The de Rham complex on Γ (p) is described as follows using the Lie algebra
L of the affine group and its dual L∗. We take the basis (X, Y ) for L and the dual
basis (α, β) for L∗. One lets Ωj := A ⊗ ∧jL∗ where A is an algebra of functions
on Γ (p) stable under the derivations X, Y . The differential is given by

df =X(f )α+Y (f )β , ∀f ∈Ω0, d(f α+gβ) = df∧α+f dα+dg∧β, dα = α∧β.

We first describe the algebra A of functions on Γ (p) stable under the derivations
X, Y . Let B be the algebra of functions on G linearly generated by the characters
eq for q ∈ Q. Thus the multiplication rule is eqeq ′ = eq+q ′ for all q, q ′ ∈ Q. Let
f (y, q) be a function on R

∗+ × Q and define

f̂ (x, y) :=
∑

Q

f (y, q)eq(x).
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This definition of f̂ is meaningful if one assumes that for each y ∈ R
∗+ the function

q �→ f (y, q) has finite support. The condition that f̂ defines a function on Γ (p) is
f̂ (px, py) = f̂ (x, y) and since eq(px) = epq(x), the condition means that

f (py, p−1q) = f (y, q) , ∀y ∈ R
∗+, q ∈ Q. (47)

In terms of the function f (y, q) the derivations1 X and Y become

X(f )(y, q) = 2πiyqf (y, q), Y (f )(y, q) = y∂yf (y, q). (48)

The group pZ acts on Q by multiplication and (47) and (48) show that the de Rham
complex is a direct sum over the orbits O of this action

(Ω, d) =
⊕

O∈pZ\Q
(Ω(O), d).

The trivial orbit of 0 ∈ Q corresponds to the pull back by the projection Γ (p) →
pZ\∏(p) = R

∗+/pZ and the vector field X gives 0, thus the contribution of this
orbit reduces to the following complex of functions on R

∗+/pZ

df = Y (f )β , ∀f ∈ Ω0, d(f α + gβ) = (−Y (f )+ f )α ∧ β, d(f α ∧ β) = 0.

The map Id−Y is diagonalized in the basis of characters of R∗+/pZ � U(1) and the
eigenvalues are the complex values 1 − 2πin/ logp, n ∈ Z. Indeed, with u = log y
the condition f (py) = f (y) becomes periodicity of period logp and Y becomes
∂u. It follows that Id − Y is an isomorphism on smooth functions, since it does not
affect the rapid decay of the Fourier coefficients. This shows that the extra part due
to the presence of the sub-complex of the f α and f α ∧ β does not contribute to the
cohomology.

Next, we consider the contribution of a non-trivial orbit O = pZq0 with q0 �= 0.
A function f (y, q) restricted to this orbit can be seen as a function on R

∗+ ×Z given
by h(y, n) = f (y, pnq0). Then, condition (47) becomes h(py, n − 1) = h(y, n).
This shows that the restriction of f to the orbit is entirely specified by the function
on R

∗+ given by φ(y) = f (y, q0). Moreover this function is smooth and its support
intersects finitely each orbit pZy. We thus deal with the space C∞

c (R
∗+) of smooth

compactly supported functions on R
∗+. Let us compute the operators X, Y in terms

of the functions φ(y). Using (48) we get

(Xφ)(y) = (2πiq0)yφ(y), (Yφ)(y) = y∂yφ(y).

1The product is the convolution in the variable q and the ordinary product in the variable y.



The Riemann–Roch strategy 97

Thus the operator X is invertible, and using its inverse X−1 one defines a homotopy
s : (Ω(O), d) → (Ω(O), d), by

s(f α + gβ) := X−1(f ) ∈ Ω0(O), s(f α ∧ β) = X−1(f )β.

Next, we check that ds+ sd = Id. This is clear onΩ0 since sdf = X−1X(f ) = f .
On Ω2 is also clear since ds(f α ∧ β) = dX−1(f )β = XX−1(f )α ∧ β = f α ∧ β.
On Ω1 one has

(ds + sd)(f α + gβ) = dX−1(f )+ s ((−Y (f )+ f +X(g))α ∧ β)
= f α + YX−1(f )β +X−1(−Y (f )+ f +X(g))β

= f α + gβ.

This is because YX−1(f ) + X−1(−Y (f ) + f ) = 0 which follows from the
commutation relation (45) by multiplying on both sides by X−1. ��

5.4 The classical orbit

Consider the subset J ⊂ AQ/Ẑ
× of classes of adèles modulo Ẑ

×

a = (av), av ∈ Z
∗
v , ∀v �= ∞, a∞ = λ > 0. (49)

A class as in (49) is uniquely determined by λ and will be denoted j (λ) ∈ J . Two
such classes are in the same (classical) orbit for the left action of Q∗ if and only if
they are equal. Thus the structure of ΓQ over a classical orbit is simply that of the
product

ΓQ,cl � G× R
∗+.

Thus, in order to exploit measure theory and de Rham theory on this plain product
it is enough to supply this description for G foliated by the cosets of the subgroup
a(R). The right action of P+(R) on ΓQ induces on ΓQ,cl the right action

φu,v(x, y) := (x + a(vy), uy) , ∀(x, y) ∈ G× R
∗+,

(
u v

0 1

)
∈ P+(R).

Proposition 5.3

(i) The space ΓQ,cl is locally compact.
(ii) The right action of P+(R) on ΓQ,cl is free and defines a foliation F by Riemann

surfaces isomorphic to H.
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(iii) The foliated space (ΓQ,cl, F ) is, at the measure theory level, a factor of type
II∞.

(iv) The de Rham complex of (ΓQ,cl, F ) is the tensor product of the de Rham
complex of R∗+ by the de Rham complex of the foliation (G,W) of G by the
cosets of the subgroup a(R).

(v) The de Rham cohomology of (G,W) is one dimensional in degree 0 and 1 and
vanishes in higher degrees.

Proof

(i) Follows from the isomorphism ΓQ,cl � G× R
∗+.

(ii) The freeness of the right action is clear. As in Proposition 5.1 the orbits of
the right action of P+(R) inherit a canonical structure of Riemann surface
isomorphic to H.

(iii) The space of leaves of the foliated space (ΓQ,cl, F ) is the same as for the
foliation of G by the cosets of the subgroup a(R) and is thus the quotient of
the finite adèles Af by the additive subgroup Q. It is thus ergodic of type II∞.

(iv) Follows because the foliation (ΓQ,cl, F ) is the product of (G,W) by the trivial
foliation of R∗+.

(v) Let B be the algebra of functions on G linearly generated by the characters
eq for q ∈ Q. The operator dW of differentiation along the flow lines fulfills
dW (eq) = 2πiq eq . Thus its kernel is one dimensional and spanned by e0. Its
cokernel is given by the linear form L associated with the Haar measure of G,
i.e.L(eq) = 0 for q �= 0 andL(e0) = 1. Thus de Rham cohomology of (G,W)
is one dimensional in degree 0 and 1 and vanishes in higher degrees. ��

Theorem 5.2 Let C = ∫
f (λ)δλ dλ be a continuous divisor on R

∗+ with compact
support. There exists a finite union of graphs G±

j of maps g±
j

g±
j : D±

j → R
∗+, D±

j ⊂ Ẑ ⊂ G (50)

such that the leafwise discrete divisor D := ∑±G±
j is a lift of C.

Proof This follows from Lemma 4.2. ��
We next give a canonical isomorphism of the classical orbit ΓQ,cl with the pro-

étale cover D̃∗ of the punctured open unit disk D
∗ constructed from the projective

system defined as follows

En := D
∗, p(n,m) : Em → En, p(n,m)(z) := za , ∀m = na, z ∈ Em = D

∗

where the indexing set N× is ordered by divisibility. By construction, ΓQ,cl � G×
R

∗+ is the projective limit

G× R
∗+ = lim←−(Gn, γn,m)× R

∗+ = lim←−H/nZ (51)
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where the projective limit in the right hand side uses the canonical projections
H/mZ → H/nZ for m = na corresponding to the γn,m,

γn,m : Gm → Gn, γn,m(x +mZ) = x + nZ , ∀n|m

Proposition 5.4 Let D̃∗ := lim←−(En, p(n,m)). The maps en : H/nZ → D
∗, en(z) =

exp(2πi z
n
) assemble into an isomorphism exp : ΓQ,cl → D̃

∗.

Proof For each integer n the map en : H/nZ → D
∗ is an isomorphism. One has the

compatibility for m = na

p(n,m)(em(z)) = em(z)
a = exp

(
2πi

az

m

)
= exp

(
2πi

z

n

)
= en(z).

Thus this gives an isomorphism of the projective systems. ��
Remark 5.2 The formulation of Proposition 5.3 does not reflect the additive
structure at the Archimedean place. Instead of J as in (49), one can consider the
subset J̃ ⊂ AQ/Ẑ

× formed of classes of adèles modulo Ẑ
×

a = (av), av ∈ Z
∗
v , ∀v �= ∞.

Then, the value of a∞ gives an isomorphism J̃ � R and the equivalence for the
multiplicative action of Q∗ is reduced to the orbit of ±1. In this way one obtains the
following refinement of ΓQ,cl

Γ̄Q,cl � (G× R)/± 1 = ΓQ,cl ∪ (G/± 1).

Thus the only additional piece is G/± 1.

6 The moduli space interpretation

In this section we relate the noncommutative space CQ = P(Q)\P(AQ) described
in Section 5 to the GL(2)-system (see [16]). This system was conceived as a higher
dimensional generalization of the BC-system [10] and its main new feature is
provided by its arithmetic subalgebra of modular functions. The classical Shimura
scheme Sh(GL2,H

±) := GL2(Q)\GL2(AQ)/C
× recalled in Section 6.1 appears as

the set of classical points of the noncommutative space Shnc(GL2,H±) underlying
the GL(2)-system. This noncommutative space admits a simple description as the
double quotient

Shnc(GL2,H±) = GL2(Q)\M2(AQ)
•/C×
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obtained by replacing in the construction of Sh(GL2,H
±) the middle term

GL2(AQ) by M2(AQ)
• := M2(AQ,f ) × (M2(R) � {0}) i.e. the space of matrices

(of adèles) with non-zero Archimedean component.
In Section 6.2 we construct a map θ : CQ → Shnc(GL2,H±) using the natural

inclusion P(AQ) ⊂ M2(AQ)
• (Lemma 6.1). The important feature of this inclusion

is that, at the Archimedean place, the inclusion P(R) ⊂ M2(R) � {0}) induces a
bijection of P(R) with the complement of a single point in (M2(R)� {0})/C×.

In Section 6.3 we use the description of the GL(2)-system in terms of Q-
lattices to give a geometric interpretation of a generic element of CQ in terms
of commensurability classes of parabolic Q-lattices. More precisely, we show in
Theorem 6.1 that the space of parabolic Q-lattices, up to commensurability, is
canonically isomorphic to the quotient C o

Q
:= P(Q)\(P (AQ,f )× P(R)).

In Section 6.4 we interpret these results in terms of elliptic curves E endowed
with a triangular structure, i.e. a pair of elements of the Tate module T (E)
fulfilling an orthogonality relation (Definition 6.3). In Theorem 6.2 we prove that
the triangular condition characterizes the range of the map θ . The equivalence
relation of commensurability of Q-lattices is then interpreted in terms of isogenies
of triangular elliptic curves in Section 6.5.

In Section 6.6 we show that the complex structure on CQ inherited from the right
action of P+(R) coincides with the natural complex structure as a moduli space of
elliptic curves. In Section 6.7 we briefly describe the right action of P(Ẑ), while the
boundary cases are described in Section 6.8.

6.1 Notations

In this part we fix the notations for the Shimura scheme Sh(GL2,H
±). The group

GL+
2 (R) acts on the complex upper-half plane H by fractional linear transformations

α(z) = az+ b

cz+ d
, ∀α =

(
a b

c d

)
∈ GL+

2 (R). (52)

We identify the multiplicative group C
× as the subgroup SO2(R)×R

∗+ ⊂ GL+
2 (R)

by the map

a + ib ∈ C
× �→

(
a b

−b a
)

∈ GL+
2 (R). (53)

The quotient GL+
2 (R)/C

× gets thus identified with the upper-half plane H by the
map

α ∈ GL+
2 (R) �→ z = α(i) ∈ H. (54)



The Riemann–Roch strategy 101

In fact, the same map identifies the quotient GL2(R)/C
× with the disjoint union H

±
of the upper and lower half planes. By definition Sh(GL2,H

±) is the quotient

Sh(GL2,H
±) := GL2(Q)\GL2(AQ)/C

× = GL2(Q)\(GL2(AQ,f )× H
±),

(55)
where the left action of GL2(Q) in (GL2(AQ,f )×H

±) is via the diagonal embedding
in the product GL2(AQ,f ) × GL2(R). Sh(GL2,H

±) is a scheme over C (see
[38], Remark 2.10) which is the inverse limit of the Shimura varieties obtained as
quotients by compact open subgroups K ⊂ GL2(AQ,f ). The space Sh(GL2,H

±)
has infinitely many connected components. They are the fibers of the map

det ×sign : Sh(GL2,H
±) → Sh(GL1, {±1}), (56)

where the determinant det : GL2(AQ,f ) → GL1(AQ,f ) gives a map to the group of
finite ideles. Passing to the quotient gives a map to the idele class group modulo its
Archimedean component, i.e. here the group Ẑ

×. The fiber of the map (56) over the
point (1, 1) ∈ Sh(GL1, {±1}) is the connected quotient

Sh0(GL2,H
±) := SL2(Q)\(SL2(AQ,f )× H). (57)

By strong approximation (see op.cit. Theorem 1.12) SL2(Q) is dense in SL2(AQ,f ),
thus one derives

Sh0(GL2,H
±) = SL2(Z)\(SL2(Ẑ)× H). (58)

Using the identification SL2(Ẑ) = lim←−N
SL2(Z/NZ), the above quotient is

associated with the modular tower, that is the tower of modular curves. More
precisely, for N ∈ N, let Y (N) = Γ (N)\H be the modular curve of level N , where
Γ (N) is the principal congruence subgroup of Γ = SL2(Z). One has

Sh0(GL2,H
±) = lim←−

N

Γ (N)\H = lim←−
N

Y(N). (59)

6.2 The relation with the GL(2)-system

In the following part we explain the relation between the arithmetic construction of
CQ = P(Q)\P(AQ) and the GL(2)-system. The noncommutative space underlying
the GL(2)-system contains the quotient

Shnc(GL2,H
±) := GL2(Q)\(M2(AQ,f )× H

±), (60)

and enlarges it by taking cusps into account. It is defined as the double quotient
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Shnc(GL2,H±) := GL2(Q)\M2(AQ)
•/C×, (61)

where one sets

M2(AQ)
• := M2(AQ,f )× (M2(R)� {0}).

Next lemma defines a canonical map CQ
θ→ Shnc(GL2,H±)

Lemma 6.1

(i) The inclusion P(R) ⊂ (M2(R) � {0}) induces a bijection of P(R) with the
complement in (M2(R)� {0})/C× of the point ∞ given by the class of matrices
with vanishing second line.

(ii) The inclusion P(AQ) ⊂ M2(AQ)
• induces a morphism of noncommutative

spaces

CQ = P(Q)\P(AQ)
θ−→ GL2(Q)\M2(AQ)

•/C× = Shnc(GL2,H±).
(62)

Proof

(i) Note that for real matrices the following implication holds

(
a b

0 1

)
=

(
a′ b′
0 1

)(
x y

−y x
)

�⇒ y = 0 & x = 1 �⇒ a = a′ & b = b′.

Thus the induced map P(R) → (M2(R)� {0})/C× is injective.
Also, and again for real matrices one has, provided c or d is non-zero

(
a b

c d

)
=

(
ad−bc
c2+d2

ac+bd
c2+d2

0 1

)

×
(
d −c
c d

)
. (63)

Thus all matrices inM2(R) whose second line is non-zero belong to P(R)/C×.
When both c and d are zero, one derives

(
a b

0 0

)
=

(
1 0
0 0

)
×

(
a b

−b a
)
.

This means that when c = d = 0 the right action of C× determines a single
orbit {∞} provided one stays away from the matrix 0. Thus one obtains a
canonical bijection

(M2(R)� {0})/C× = P(R) ∪ {∞}.
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(ii) By construction one has the inclusion P(AQ) ⊂ M2(AQ)
• and moreover the

groups involved on both sides of the double quotient Shnc(GL2,H±) are larger
than those involved on the left hand side, thus one gets the required map θ . ��

The proof of Lemma 6.1 shows that one has the identification

M2(AQ)
•/C× = M2(AQ,f )× (P (R) ∪ {∞}). (64)

By construction, one has the factorization

P(AQ) = P(AQ,f )× P(R).

Thus the map θ as in (62), when considered at the Archimedean place, only misses
the point at infinity of P(R) ∪ {∞}.

6.3 Commensurability classes of parabolic Q-lattices

In this section we give a geometric interpretation of the subspace

C o
Q := P(Q)\(P (AQ,f )× P(R)) ⊂ P(Q)\P(AQ) =: CQ.

To this end, we introduce the notion of parabolic Q-lattice in Definition 6.1.
Then, by implementing the commensurability equivalence relation we provide, in
Proposition 6.1, the geometric description of C o

Q
in terms of commensurability

classes of parabolic Q-lattices. The condition det(g∞) �= 0 which defines the
subspace C o

Q
⊂ CQ is invariant under the left action of P(Q) and defines a dense

open set in the naive quotient topology. One obtains the canonical identification

C o
Q = P+(Q)\(P (AQ,f )× P+(R)). (65)

We recall (see [16], III Definition 3.17) that a two-dimensional Q-lattice is a pair
(Λ, φ) whereΛ ⊂ C is a lattice and φ : Q2/Z2 → QΛ/Λ is an arbitrary morphism
of abelian groups. The morphism φ encodes the non-Archimedean components of
the lattice. The action of C× by scaling on Q-lattices is given by

λ(Λ, φ) = (λΛ, λφ) , ∀λ ∈ C
×. (66)

The set of two-dimensional Q-lattices is (see [16], III Proposition 3.37) the quotient
space

Γ \(M2(Ẑ)× GL+
2 (R)), (67)



104 A. Connes and C. Consani

where Γ = SL2(Z). The set of two-dimensional Q-lattices up to scaling is therefore
identified with

Γ \(M2(Ẑ)× GL+
2 (R))/C

× = Γ \(M2(Ẑ)× H). (68)

In this part, we provide the details of this identification. We use, as in op.cit. the
basis {e1 = 1, e2 = −i} of C as a two-dimensional R-vector space to let GL2(R)

act on C as R-linear transformations. More precisely,

α(xe1 + ye2) = (ax + by)e1 + (cx + dy)e2, α =
(
a b

c d

)
∈ GL2(R). (69)

Every two-dimensional Q-lattice (Λ, φ) can then be described by the data

(Λ, φ) = (α−1Λ0, α
−1ρ), Λ0 := Ze1 + Ze2 = Z + iZ (70)

for some α ∈ GL+
2 (R) and some ρ ∈ M2(Ẑ) unique up to the left diagonal action

of Γ = SL2(Z). Let us explain the notation α−1ρ used in (70). The action of Z
by multiplication on the abelian group Q/Z extends to an isomorphism of rings
Ẑ = Hom(Q/Z,Q/Z) and M2(Ẑ) = Hom(Q2/Z2,Q2/Z2). This gives meaning to
the notation ax ∈ Q/Z for a ∈ Ẑ and x ∈ Q/Z. We associate with ρ ∈ M2(Ẑ) the
map

ρ : Q2/Z2 → QΛ0/Λ0, ρ(u) = ρ1(u)e1 + ρ2(u)e2, (71)

where ρ1(u) = ax + by and ρ2(u) = cx + dy for u = (x, y) ∈ Q
2/Z2. The action

of ρ is similar to the action of α as in (69)

ρ((x, y)) = (ax + by)e1 + (cx + dy)e2 , ∀(x, y) ∈ (Q/Z)2,

ρ =
(
a b

c d

)
∈ M2(Ẑ). (72)

To understand the extra structure on Q-lattices which reduces the group GL(2) down
to the parabolic subgroup P , we first consider the Archimedean component. The
natural characterization of the subgroup P+(R) ⊂ GL+

2 (R) is that its elements g
fulfill τ ◦ g = τ , where τ is the projection on the imaginary axis

τ : xe1 + ye2 �→ ye2, τ =
(

0 0
0 1

)
.

For z = x + iy ∈ C, we let "(z) := y denote the imaginary part of z, thus with
our choice of basis one has "(xe1 + ye2) = −y: we shall keep track of this minus
sign here below. This projection defines (Lemma 6.2 (ii)) a character of the elliptic
curve E = C/Λ where the lattice Λ is of the form
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Λ = α−1Λ0, Λ0 := Ze1 + Ze2 = Z + iZ. (73)

We define the orthogonal of a lattice Λ by the formula

Λ⊥ = {z ∈ C |< z, z′ >∈ Z,∀z′ ∈ Λ}.

Here we use the standard non-degenerate pairing defining the duality, given by

< z, z′ >:= &(zz̄′) = xx′ + yy′, ∀z = x + iy, z′ = x′ + iy′.

Lemma 6.2 Let Λ = α−1Λ0 be a Q-lattice, with α ∈ P(R). Then

(i) "(Λ) = Z.
(ii) The linear map " induces a group homomorphism " : E → R/Z from the

elliptic curve E = C/Λ to the abelian group U(1) := R/Z, i.e. a character of
the abelian group E.

(iii) The orthogonal lattice Λ⊥ contains the vector e2.

Proof

(i) One has the implications

α =
(
a b

0 1

)
⇒ αt =

(
a 0
b 1

)
⇒ αte2 = e2,

thus αt , the transpose of the matrix α, fulfills αte2 = e2 and

"(Λ) =< Λ, e2 >=< α−1Λ0, α
t e2 >=< Λ0, e2 >= Z.

(ii) For ξ ∈ E = C/Λ the value "ξ is meaningful modulo "(Λ) = Z, thus the
group homomorphism " : E → R/Z is well defined.

(iii) For Λ as in (73), Λ⊥ = αtΛ0. This follows from Λ0 = Λ⊥
0 and

< α−1ξ, η >=< ξ, (α−1)tη >, (α−1)tη ∈ Λ0 ⇐⇒ η ∈ αtΛ0.

Then the orthogonal lattice always contains the vector e2, since one has αte2 =
e2. ��

Next, we restrict the homomorphisms φ for Q-lattices (Λ, φ) in the same way
as we restricted the lattices in Lemma 6.2. From (72) and the definition of P(R) in
(38), one has

ρ ∈ P(Ẑ) ⇐⇒ ρ2(u) = y , ∀u = (x, y) ∈ Q
2/Z2. (74)

To write this condition in terms of φ : Q2/Z2 → QΛ/Λ, with φ = α−1ρ and for
Λ = α−1Λ0, α ∈ P(R), we use the character χ = −" : E → R/Z (sending
torsion points to torsion points). One has χ ◦ α−1 = χ , since α−1 ∈ P(R) and
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χ ◦ φ : Q2/Z2 → Q/Z, χ ◦ φ = χ ◦ α−1 ◦ ρ = χ ◦ ρ = ρ2.

One thus obtains

χ ◦ φ = ρ2. (75)

Lemma 6.3 Let (Λ, φ) be a two-dimensional Q-lattice described by data (Λ, φ) =
(α−1Λ0, α

−1ρ), for some α ∈ GL+
2 (R) and some ρ ∈ M2(Ẑ). Then,

(ρ, α) ∈ Γ \
(
P(Ẑ)× P+(R)

)
⇐⇒ "(Λ) = Z & χ ◦ φ(u) = y,

∀u = (x, y) ∈ Q
2/Z2 (76)

where χ : C/Λ → R/Z is given by χ = −" and Γ = SL2(Z) acts diagonally.

Proof By Lemma 6.2, one has α ∈ P(R) ⇒ "(Λ) = Z. Moreover, it follows

from the above discussion that ρ ∈ P(Ẑ) is equivalent to ρ2(u) = y, thus one
gets χ ◦ φ(u) = y for any u = (x, y) ∈ Q

2/Z2. This shows the implication
⇒ in (76), since the Q-lattice (Λ, φ) associated with (ρ, α) only depends upon
the orbit of this pair under the left diagonal action of Γ = SL2(Z). The character
χ : C/Λ → R/Z is induced by −" : C → R and only depends upon the lattice
Λ so that the conditions on the right hand side of (76) only depend on the Q-lattice
(Λ, φ).

Conversely, let us now assume that these conditions hold. The condition "(Λ) =
Z means that e2 ∈ Λ⊥ is not divisible, i.e. e2 does not belong to any multiple
of Λ⊥. It follows (using Bezout’s theorem) that there exists ξ ∈ Λ⊥ such that
Zξ + Ze2 = Λ⊥. Define β ∈ GL+

2 (R) as β(e1) = ±ξ and β(e2) = e2. One has
Λ⊥ = β(Λ0) by construction and thus one derives

Λ = (Λ⊥)⊥ = (β(Λ0))
⊥ = (βt )−1Λ0.

For β =
(
a b

c d

)
∈ GL+

2 (R), one derives from (69), β(e2) = be1 + de2 and thus

β(e2) = e2 is equivalent to b = 0 and d = 1. In turns these conditions mean that
α′ = βt ∈ P+(R). In this way we have proven that, using the condition "(Λ) = Z,
we can find α′ ∈ P+(R) such that Λ = α′−1Λ0. The equality α′−1Λ0 = α−1Λ0
shows that γ = α′α−1 ∈ Γ = SL2(Z) and γα ∈ P+(R). Thus by replacing (ρ, α)
with (γρ, γ α) we can assume that (Λ, φ) = (α−1Λ0, α

−1ρ), with α ∈ P+(R).
The second hypothesis χ ◦ φ(u) = y , ∀u = (x, y) ∈ Q

2/Z2 implies, using (75),

that ρ2(u) = y , ∀u = (x, y) ∈ Q
2/Z2 and thus, by (74), that ρ ∈ P(Ẑ). ��
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Fig. 6 A parabolic lattice

y=1

y=0

x=0

Definition 6.1 A parabolic two-dimensional Q-lattice is a Q-lattice of the form

(Λ, φ) = (α−1Λ0, α
−1ρ), where ρ ∈ P(Ẑ) and α ∈ P+(R).

We say that a parabolic Q-lattice (Λ, φ) is degenerate when ρ1 = 0.

Notice that for a parabolic two-dimensional Q-lattice (Figure 6), the pair (ρ, α) such
that (Λ, φ) = (α−1Λ0, α

−1ρ) is unique up to the diagonal action of Γ ∩ P+(R) =
P+(Z) � Z. Thus the space of parabolic two-dimensional Q-lattices is described
by the quotient

Π := P+(Z)\(P (Ẑ)× P+(R)). (77)

Remark 6.1

1. When the parabolic two-dimensional Q-lattice (Λ, φ) is degenerate, there exists

a unique α ∈ P+(R) such that (Λ, φ) = (α−1Λ0, α
−1p), where p =

(
0 0
0 1

)
∈

P(Ẑ).
2. Let Λ ⊂ C be a Q-lattice such that "(Λ) = Z, then Λ is characterized by the

following arithmetic progression in R with associated lattice L = Λ ∩ R

A = prog(Λ) := {u ∈ R | i + u ∈ Λ}. (78)

Let (Λ, φ) = (α−1Λ0, α
−1ρ) be a parabolic Q-lattice, with α =

(
y x

0 1

)
∈

P+(R). Then one has prog(Λ) = y−1(Z + x), with L = y−1
Z. The pair (L, ξ),

with ξ : Q/Z → R/L, ξ(u) := φ(u, 0) determines a one dimensional Q-lattice
(L, ξ).

The next step we undertake is to describe the meaning of commensurability for
parabolic Q-lattices. We recall from [16] the following (see Definition 3.17)
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Definition 6.2 Two Q-lattices are said to be commensurable ((Λ1, φ1) ∼ (Λ2, φ2))
when

QΛ1 = QΛ2 and φ1 = φ2 mod. Λ1 +Λ2. (79)

Commensurability is an equivalence relation ([16] Lemma 3.18). By applying
Proposition 3.39 of op.cit., the space of commensurability classes of two-
dimensional Q-lattices up to scaling is given by the quotient space

GL+
2 (Q)\(M2(AQ,f )× H) (80)

here GL+
2 (Q) acts diagonally by (ρ, z) �→ (gρ, g(z)). We then continue by

providing the description of the orbits for this action. Let us first consider the orbit
of Λ0 := Ze1 + Ze2 = Z + iZ.

Lemma 6.4 Let g ∈ GL2(Q) and assume that Λ = gΛ0 fulfills "Λ = Z. Then
there exist h ∈ P(Q) and k ∈ Γ = SL2(Z) such that g = hk.

Proof For g =
(
a b

c d

)
∈ GL2(Q), one then obtains

g(xe1 + ye2) = (ax + by)e1 + (cx + dy)e2, "(g(xe1 + ye2)) = −(cx + dy).

Thus "Λ = Z means that c, d ∈ Z and they are relatively prime. Let then u, v ∈ Z

be such that cu+ dv = 1. Set w =
(
d u

−c v
)

, then one has w ∈ Γ and

gw =
(
ad − bc au+ bv

0 cu+ dv

)
=

(
ad − bc au+ bv

0 1

)
∈ P(Q).

Thus by taking h = gw and k = w−1 one obtains the required factorization. ��
We recall ([16], Sect. III.5) that the equivalence relation of commensurability on

the space of two-dimensional Q-lattices is induced by the partially defined action of
GL+

2 (Q). Indeed, for g ∈ GL+
2 (Q) and (Λ, φ) = (α−1Λ0, α

−1ρ) such that gρ ∈
M2(Ẑ), the Q-lattice (α−1g−1Λ0, α

−1ρ) is commensurable to (Λ, φ). Moreover all
Q-lattices commensurable to a given (Λ, φ) are of this form. Here we used, as done
above, the description of two-dimensional Q-lattices as

Γ \(M2(Ẑ)× GL+
2 (R)), (ρ, α) �→ (Λ, φ) = (α−1Λ0, α

−1ρ).

We can now state the following key result on commensurability

Theorem 6.1

(i) Two parabolic two-dimensional Q-lattices (Λj , φj ) = (α−1
j Λ0, α

−1
j ρj ), j =

1, 2, with ρj ∈ P(Ẑ) and αj ∈ P+(R) are commensurable (as Q-lattices) if
and only if there exists g ∈ P+(Q) such that ρ2 = gρ1 and α2 = gα1.
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(ii) The space of parabolic Q-lattices up to commensurability is canonically
isomorphic to the quotient C o

Q
as in (65).

Proof

(i) Since P+(Q) ⊂ GL+
2 (Q), the existence of g ∈ P+(Q)with ρ2 = gρ1 and α2 =

gα1 implies the commensurability. Conversely, if two parabolic Q-lattices are
commensurable, there exists g ∈ GL+

2 (Q) such that ρ2 = gρ1 and α2 = gα1.
Because P+(R) is a group and αj ∈ P+(R), one gets g ∈ P+(R) and thus
g ∈ GL+

2 (Q) ∩ P+(R) = P+(Q).

(ii) Let h =
(
a b

0 1

)
∈ P(AQ,f ). We show that there exists g ∈ P+(Q) such that

gh ∈ P(Ẑ). Let α ∈ Q
×+ such that αa ∈ Ẑ. Since Ẑ is open and Q is dense in

AQ,f with Ẑ + Q = AQ,f , there exists β ∈ Q such that αb + β ∈ Ẑ. One then
derives

(
α β

0 1

)(
a b

0 1

)
=

(
αa αb + β

0 1

)
∈ P(Ẑ).

It follows that all the left P+(Q) orbits of elements of P(AQ,f ) × P+(R)
intersect the open subset P(Ẑ) × P+(R) whose elements yield parabolic Q-
lattices. Thus by applying (i) one obtains the required isomorphism. ��

Remark 6.2 From the point of view of noncommutative geometry, the quotient
space derived by applying the commensurability relation on the space (77) of
parabolic Q-lattices is best described by considering the crossed product, in the
sense of [33],[39], by the Hecke algebra of double classes of the subgroup P+(Z) ⊂
P+(Q). We find quite remarkable (and encouraging) that this Hecke algebra is
precisely the one on which the BC-system is based.

6.4 CQ and ΓQ as moduli spaces of elliptic curves

In this section we use the description of Shnc(GL2,H
±) as a moduli space of elliptic

curves to obtain a similar interpretation for the spaces CQ = P(Q)\P(AQ) and
ΓQ = P(Q)\P(AQ)/Ẑ

×. We first formulate Lemma 6.3 in terms of the global Tate
module2 of the elliptic curve E = C/Λ. For the theory developed in this paper, we
think of the global Tate module as the abelian group

T E = Hom(Q/Z, Etor) . (81)

2The global Tate module T E is best described at the conceptual level as the pro-etale fundamental
group π

alg
1 (E, 0), where E is viewed as a curve over C. Given ρ ∈ Hom(Q/Z, Etor) the

corresponding element of πalg
1 (E, 0) is given by the (ρ( 1

n
))n∈N.
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We denote by Etor = QΛ/Λ the torsion subgroup of the elliptic curve E. In this
way, the morphism φ in the definition of a two dimensional Q-lattice is now seen as
the map φ : Q2/Z2 → Etor. By applying the covariant functor T := Hom(Q/Z,−),
we rewrite φ as a Ẑ-linear map

T (φ) : Ẑ ⊕ Ẑ → T E, (82)

that is given by a pair of elements (ξ, η) of T E. The character χ : C/Λ → U(1)
induces a homomorphism of torsion subgroups χ : Etor → Q/Z, and by applying
Hom(Q/Z,−), we obtain a morphism

T (χ) : T E → Ẑ.

The following result characterizes the parabolic Q-lattices among two dimensional
Q-lattices.

Proposition 6.1 Let (Λ, φ) be a two-dimensional Q-lattice, E = C/Λ the
associated elliptic curve, and (ξ, η) the related pair of points in the total Tate module
T E. Then (Λ, φ) is a parabolic Q-lattice if and only if

"(Λ) = Z & T (χ)(ξ) = 0, T (χ)(η) = Id, for χ = −". (83)

Proof The result follows from Lemma 6.3, using the faithfulness of the functor T
in the form

h ∈ Hom(Q/Z,Q/Z) & T (h) = 0 ⇒ h = 0.

This is clear, by using T (h)(Id) = h. ��
Given two elliptic curves E = C/Λ and E′ = C/Λ′, an isomorphism j : E →

E′ is given by the multiplication map by λ ∈ C
×, such thatΛ′ = λΛ. It follows that

the elliptic curve E endowed with the pair (ξ, η) ∈ T (E) associated with a two-
dimensional Q-lattice (Λ, φ) determines the latter up to scale. In particular, passing
from a parabolic Q-lattice to the associated triple (E; ξ, η) is equivalent to assigning
the map θ from parabolic Q-lattices to Q-lattices up to scale

P+(Z)\(P (Ẑ)× P+(R)) θ−→ Γ \(M2(Ẑ)× GL+
2 (R))/C

×. (84)

Remark 6.3 If one ignores the non-Archimedean components, the map θ restricts
to the map θ∞ : P+(Z)\P+(R) → Γ \GL+

2 (R)/C
× induced by the inclusion

P+(R) ⊂ GL+
2 (R)/C

×. Notice that this restriction is far from being injective.
Indeed, let α ∈ P+(R) and γ ∈ Γ . Let γα = α′λ be the PC× decomposition
of γα as in (63). Then α′ ∈ P+(R) and θ∞(α′) = θ∞(α), while α′ /∈ P+(Z)α,
unless γ ∈ P+(Z).
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Next proposition shows that the implementation of the non-Archimedean com-
ponents makes θ injective except in a well understood case, corresponding to the
vanishing of the non-Archimedean components.

Proposition 6.2 The natural map θ as in (84) is injective except when the parabolic
Q-lattices are degenerate (Definition 6.1). Furthermore, the following formula
defines a free action of Z on the degenerate parabolic Q-lattices, whose orbits are
the fibers of the map θ

τ(c)(p, α) = (p, tc(α)), tc(α) =
(

1 0
c 1

)
α (1 + cz̄)−1 , ∀c ∈ Z. (85)

Here, p =
(

0 0
0 1

)
∈ P(Ẑ), α =

(
y x

0 1

)
∈ P+(R), and z = x + iy ∈ C.

Proof We first test the injectivity of θ . Let (ρ, α) and (ρ′, α′) be elements of P(Ẑ)×
P+(R) and assume that one has an equality of the form

(ρ′, α′) = γ (ρ, αλ), γ ∈ Γ, λ ∈ C
×.

Let γ =
(
a b

c d

)
and ρ =

(
u v

0 1

)
. One has γρ = ρ′ ∈ P(Ẑ) and thus cu = 0. This

implies that either c = 0 or u = 0, since c ∈ Z and u ∈ Ẑ.
Assume first that c = 0. Then γρ = ρ′ implies d = 1 and it follows that a = 1 so

that γ ∈ P+(Z). Then the equality γαλ = α′ implies λ ∈ P(R) and since λ ∈ C
×,

one concludes that λ = 1 and γα = α′. This shows that (ρ, α) and (ρ′, α′) are equal

in P+(Z)\(P (Ẑ)× P+(R)).
Assume now that c �= 0. Then one has u = 0. Moreover since γρ = ρ′ ∈ P(Ẑ)

one gets cv + d = 1. This gives v = (1 − d)/c and since v ∈ Ẑ and c, d ∈ Z

one gets that v ∈ Ẑ ∩ Q = Z. Then, by replacing (ρ, α) with δ(ρ, α), where

δ =
(

1 −v
0 1

)
one obtains the equality, in P+(Z)\(P (Ẑ) × P+(R)) of (ρ, α), with

an element of the form (p, α′′). It remains to see when two such elements are equal
in Γ \(M2(Ẑ)×GL+

2 (R))/C
×. Thus we now assume that ρ = ρ′ = p. The equality

γρ = ρ′ now means that b = 0 and d = 1. But since γ ∈ Γ one gets also that a = 1

and thus γ =
(

1 0
c 1

)
. Now by (63) there exists uniquely α′′ ∈ P(R) and λ′ ∈ C

×

such that γα = α′′λ′ and the equality (ρ′, α′) = γ (ρ, αλ) shows that α′ = α′′ and
λ′ = λ−1. One has

γα =
(

1 0
c 1

)
α =

(
1 0
c 1

)(
y x

0 1

)
=

(
y x

yc xc + 1

)
= α′

(
xc + 1 −yc
yc xc + 1

)

= α′(1 + cz̄).
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Thus α′ = tc(α). The first line of tc(α) is

(
y

y2c2 + (xc + 1)2
,
(x2 + y2)c + x

y2c2 + (xc + 1)2

)

and one has tc′+c(α) = tc′(tc(α)) for all c, c′ ∈ Z since

(
1 0

c′ + c 1

)
α =

(
1 0
c′ 1

)
γα =

(
1 0
c′ 1

)
α′(1 + cz̄) ∈ tc′(tc(α))C×.

By construction, the map θ is invariant under left multiplication by Γ and right

multiplication by C
×, thus one has, with γ =

(
1 0
c 1

)
∈ Γ , and z = x + iy

θ((p, α)) = θ((γp, γ α)) = θ((p, α′(1 + cz̄))) = θ((p, α′)) = θ(τ (c)(p, α)).

Finally, we claim that the pairs (p, tc(α)) for c ∈ Z are all distinct elements of

P+(Z)\(P (Ẑ)×P+(R)). Indeed, if (p, tc(α)) = u(p, tc′(α)) for some u ∈ P+(Z)
the equality up = p implies u = 1, thus it is enough to show that the tc(α) are all
distinct. But since y �= 0, the equality tc(α) = tc′(α) implies in particular (x2 +
y2)c = (x2 + y2)c′ and hence c = c′. ��

Next, we associate a character χ ∈ Hom(E,R/Z), unique up to sign, with certain
elements of T (E).

Lemma 6.5 Let ξ be an element of the total Tate module T E of the elliptic curve
E = C/Λ. Let

ξ⊥ := {χ ∈ Hom(E,R/Z) | T (χ)(ξ) = 0} ⊂ Hom(E,R/Z) � Λ⊥.

Then if ξ �= 0 and ξ⊥ �= {0} one has ξ⊥ = Zα, for a primitive character α unique
up to sign.

Proof By fixing a basis of Hom(E,R/Z) � Λ⊥ we may identify

T E = Ẑ × Ẑ, ξ = (u, v), ξ⊥ = {(n,m) ∈ Z
2 | nu+mv = 0}.

Since ξ �= 0, let & be a prime such that (u&, v&) �= (0, 0). Then since ξ⊥ �= {0} there
exists relatively prime integers (n,m) �= (0, 0) such that nu& + mv& = 0 and any
solution of n′u& + m′v& = 0 is a multiple of (n,m). If nu + mv = 0 in Ẑ one has
ξ⊥ = {k(n,m) | k ∈ Z}. Otherwise, there exists &′ such that nu&′ +mv&′ �= 0. Then
k(nu&′ + mv&′) �= 0 for any k �= 0 and this contradicts ξ⊥ �= {0}. This shows that
ξ⊥ = Zα, where α = (n,m). Uniqueness up to sign is clear. ��
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Next result gives an intrinsic description of the range of the map θ in terms of
the geometric interpretation of Q-lattices up to scale given in terms of an elliptic
curve E, and a pair of points ξ = (ξ1, ξ2) in the total Tate module T E (see also
Proposition 3.38 of [16]).

Theorem 6.2 Let E be an elliptic curve together with a pair of elements (ξ, η)
of the total Tate module T E. Assume ξ �= 0. Then the corresponding Q-lattice
belongs to the range of the map θ if and only if one has < ξ⊥, η >= Z, where
< ξ⊥, η >:= {T (χ)(η) | χ ∈ ξ⊥} ⊂ Ẑ.

Proof Assume first that the datum (E; ξ, η) arises from a Q-lattice (Λ, φ) =
(α−1Λ0, α

−1ρ), where ρ ∈ P(Ẑ) and α ∈ P+(R). The action of ρ is given in
(72). This determines

ξ ∈ Hom(Q/Z, Etor), ξ(x) = α−1(axe1 + cxe2) ∈ QΛ/Λ = Etor

and similarly

η ∈ Hom(Q/Z, Etor), η(y) = α−1(bye1 + dye2) ∈ QΛ/Λ = Etor.

Since ρ ∈ P(Ẑ), one has c = 0 and thus T (χ)(ξ) = 0, where the character χ of
E is associated with the element αt (e2) = e2 of the dual lattice Λ⊥. Since χ is
primitive and ξ �= 0 one has ξ⊥ = Zχ . Since d = 1 one gets that χ ◦ η(y) = y

for all y ∈ Q/Z and thus one obtains < ξ⊥, η >= Z as required. Conversely,
let us assume that (E; ξ, η) fulfill ξ �= 0 and < ξ⊥, η >= Z. By Lemma 6.5
one has ξ⊥ = Zχ , for a primitive character χ unique up to sign. Moreover since
< ξ⊥, η >= Z one can choose the sign in such a way that T (χ)(η) = 1. Consider
the pair (E, χ) of the elliptic curve E and the primitive character χ . Let E = C/Λ,
then χ ∈ Λ⊥, and using the scaling action of C×, we can assume that χ = e2.
Since χ is primitive one has "(Λ) = Z and the linear map −" induces the group
morphism χ : C/Λ → R/Z. We also have T (χ)(ξ) = 0 and T (χ)(η) = 1 so
that Proposition 6.1 applies showing that the Q-lattice (Λ, φ), with φ = (ξ, η) is
parabolic. Thus (E; ξ, η) is in the range of the map θ . ��
Definition 6.3 A triangular structure on an elliptic curve E is a pair (ξ, η) of
elements of the Tate module T (E), such that ξ �= 0 and < ξ⊥, η >= Z.

In the following, we shall abbreviate “elliptic curve with triangular structure” by
“triangular elliptic curve.”

By Proposition 3.38 of [16] a triangular elliptic curve corresponds to a Q-lattice
(Λ, φ) unique up to scale, and by Proposition 6.2 this datum corresponds to a unique
parabolic Q-lattice which we call the associated Q-lattice.
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6.5 Commensurability and isogenies

We recall that an isogeny from an abelian variety A to another B is a surjective
morphism with finite kernel. In this section we describe how a triangular structure
behaves under isogenies. At the geometric level, the commensurability relation is
obtained from the following notion of isogeny between triangular elliptic curves

Definition 6.4 An isogeny f : (E, ξ, η) → (E′, ξ ′, η′) of triangular elliptic curves
is an isogeny f : E → E′ such that T (f )(ξ) = ξ ′ and T (f )(η) = η′.

For ordinary isogenies, one can use the dual isogeny to show that the existence of an
isogenyE → E′ is a symmetric relation. This result uses the fact that multiplication
by a positive integer n is an isogeny. In our setup the multiplication by n gives
ξ ′ = nξ and η′ = nη. This modification does not alter the orthogonal, i.e. one
has ξ ′⊥ = ξ⊥. But one has < ξ ′⊥, η′ >= nZ, thus the triangular condition is not
fulfilled unless n = ±1.

The following result determines the equivalence relation generated by isogenies

Proposition 6.3 Let (E; ξ, η) and (E′; ξ ′, η′) be two triangular elliptic curves and
(Λ, φ) and (Λ′, φ′) the associated parabolic Q-lattices.

(i) Let f : (E; ξ, η) → (E′; ξ ′, η′) be an isogeny of triangular elliptic curves.
Then Λ ⊂ Λ′, f : C/Λ → C/Λ′ is the map induced by the identity and
φ′ = f ◦ φ.

(ii) The parabolic Q-lattices (Λ, φ) and (Λ′, φ′) are commensurable if and only if
there exist two isogenies f : (E, ξ, η) → (E′′, ξ ′′, η′′) and f ′ : (E′, ξ ′, η′) →
(E′′, ξ ′′, η′′) to the same triangular elliptic curve.

Proof

(i) By definition, an isogeny f : E → E′ is a holomorphic group morphism
f : C/Λ → C/Λ′, f (z) = λz, ∀z ∈ C, where the complex number λ is such
that λΛ ⊂ Λ′. The characters χ and χ ′ uniquely determined by the triangular
structure are given in both cases by minus the imaginary part, and one has
χ ′ ◦ f = χ . This shows that, modulo Z, one has "(λz) = "(z) for all z ∈ C,
i.e. "((λ − 1)C) ⊂ Z. Thus λ = 1, Λ ⊂ Λ′, and f is the map induced by the
identity.

(ii) By applying Definition 6.2, when the two Q-lattices Λ1 = Λ, Λ2 = Λ′ are
parabolic, one derives

"(Λj ) = Z & χ ◦ φj (u) = y , ∀u = (x, y) ∈ Q
2/Z2

for the character χ = −". Then the lattice Λ′′ = Λ1 +Λ2 fulfills "(Λ′′) = Z

and the quotient maps fj : C/Λj → C/Λ′′ fulfill χ ◦ fj = χ , since for z ∈ C

one has "(z+Λj) = "(z)+Z = "(z+Λ′′). It follows that the two equal maps
φ := fj ◦ φj fulfill the condition
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χ ◦ φ(u) = y , ∀u = (x, y) ∈ Q
2/Z2,

so that the pair (Λ′′, φ) is a parabolic Q-lattice. Thus the inclusions Λj ⊂ Λ′′
induce isogenies to the same triangular elliptic curve as required. To prove the
converse it is enough, using the transitivity of the commensurability relation
for Q-lattices, to show that if f : (E, ξ, η) → (E′, ξ ′, η′) is an isogeny of
triangular elliptic curves the associated Q-lattices are commensurable. This fact
follows from (i). ��

6.6 The complex structure

Proposition 6.2 states that the natural map θ as in (84) from parabolic Q-lattices to
Q-lattices up to scale is injective except in the degenerate case. Thus θ provides, by
pull back, a large class of functions, by implementing the arithmetic subalgebra of
the GL2-system ([16] Chapter 3, §7). The functions in this algebra are holomorphic
for the natural complex structure on the moduli space of elliptic curves and in
this section we compare this complex structure with the one on the space Π =
P+(Z)\(P (Ẑ)×P+(R)) defined using the right action of P+(R) (Proposition 5.1).

We recall that the complex structure on the moduli space of elliptic curves is
obtained by comparing two descriptions of the quotient space GL+

2 (R)/C
×. The

first one identifies GL+
2 (R)/C

× with the complex upper-half plane H via the map

C : α ∈ GL+
2 (R) �→ z = α(i) = ai + b

ci + d
∈ H. (86)

The second description derives from the space B/C× of pairs (ξ1, ξ2) of R-
independent elements of C up to scale. The maps

r : B/C× → H
± = H ∪ −H, r(ξ1, ξ2) = −ξ2/ξ1 ∈ C \ R = H

± (87)

and

B : GL+
2 (R) → B/C×, B(α) = (α−1e1, α

−1e2), (88)

fulfill r ◦B = C. Indeed, both maps only depend on the right coset in GL+
2 (R)/C

×.
The right C×-coset associated with z = x + iy ∈ H contains, in view of (86), the
matrix

α =
(
y x

0 1

)
∈ GL+

2 (R).
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One can replace α−1 = y−1
(

1 −x
0 y

)
, up to scale, by g =

(
1 −x
0 y

)
and obtain

g(e1) =
(

1 −x
0 y

)(
1
0

)
= e1 = 1, g(e2) =

(
1 −x
0 y

)(
0
1

)
= −xe1 + ye2 = −z.

This shows that r ◦ B = C. Notice that it is meaningless to use the action of
GL+

2 (R) on the elements (ξ1, ξ2) of a basis because this action does not commute
with scaling.

Next, we consider the complex structure on Π = P+(Z)\(P (Ẑ) × P+(R)) as
defined in Lemma 5.3, namely by means of the “dbar” operator ∂x+i∂y and in terms

of the map ι of (39), i.e. of the matrix

(
y x

0 1

)
∈ P+(R). The above calculation then

shows that this complex structure is identical to the canonical complex structure on
the moduli space of elliptic curves. We now verify that this complex structure can
also be described, as in Proposition 5.1, using the right action of P+(R) on Π .

The “dbar” operator for the latter structure is defined by X + iY , where the two
vector fields X, Y on Π are defined as X = y∂x and Y = y∂y , corresponding to the
Lie algebra elements of the one parameter subgroups u(ε) for X

ε �→ u(ε) :=
(

0 ε
0 1

)
,

(
y x

0 1

)
u(ε) =

(
y x + yε

0 1

)

and v(ε) for Y

ε �→ v(ε) :=
(
eε 0
0 1

)
,

(
y x

0 1

)
v(ε) =

(
yeε x

0 1

)
.

The comparison of the complex structures is summarized in the following statement

Proposition 6.4 The natural map from parabolic Q-lattices to Q-lattices up to
scale

θ : Π → Γ \(M2(Ẑ)× GL+
2 (R))/C

× (89)

is holomorphic for the canonical complex structure on the moduli space of elliptic
curves and the complex structure on Π associated with the right action of P+(R).

Proof It suffices to check that (X+iY )(f ) = 0, where the function f is the pullback
by θ of the local parameter z ∈ H = GL+

2 (R))/C
×. This fact follows from the direct

computation

f

(
y x

0 1

)
= x + iy, (X + iY )(f ) = y∂x(x + iy)+ iy∂y(x + iy) = 0.

��
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6.7 The right action of P(Ẑ)

In order to pass from CQ = P(Q)\P(AQ) to ΓQ = P(Q)\P(AQ)/Ẑ
× one

needs to divide the component in the adèle class space by the action of Ẑ
×

given by multiplication. This action is induced by the right action of Ẑ
× on

Π = P+(Z)\(P (Ẑ) × P+(R)), and it is meaningful even before passing to
commensurability classes. In this section we provide its geometric meaning in
terms of parabolic Q-lattices. It turns out that this is the special case (obtained by
restricting to the subgroup Ẑ

× ⊂ P(Ẑ) of diagonal matrices) of the right action of
P(Ẑ) on Π , whose geometric meaning is given in the following Proposition 6.5.

Proposition 6.5 Let (E; ξ, η) be a triangular elliptic curve and (Λ, φ) the asso-

ciated Q-lattice. Its image, under the right action of w =
(
u v

0 1

)
∈ P(Ẑ), is the

triangular elliptic curve (E; ξ ′, η′) where ξ ′ = ξ ◦ u and η′ = η + ξ ◦ v.

Proof Note that the condition < ξ⊥, η >= Z of Theorem 6.2 still holds for the
transformed pair (E; ξ ′, η′), since (ξ ◦ u)⊥ = ξ⊥ and < ξ⊥, ξ ◦ v >= 0. For

ρ =
(
a b

0 1

)
∈ P(Ẑ), one has

ξ(x) = α−1(axe1) ∈ QΛ/Λ, η(y) = α−1(bye1 + ye2) ∈ QΛ/Λ

and for w =
(
u v

0 1

)
∈ P(Ẑ), one obtains

(
a b

0 1

)(
u v

0 1

)
=

(
au av + b

0 1

)
=

(
a′ b′
0 1

)
.

Thus the right action of w determines the new pair (ξ ′, η′)

ξ ′(x) = α−1(auxe1) ∈ QΛ/Λ, η′(y) = α−1(bye1+ye2)+α−1(avxe1) ∈ QΛ/Λ,

and one concludes ξ ′ = ξ ◦ u and η′ = η + ξ ◦ v. ��

6.8 Boundary cases

Theorem 6.2 and Proposition 6.2 show that triangular elliptic curves are classified
by the subspace



118 A. Connes and C. Consani

Π ′ := P+(Z)\
{
(ρ, α) ∈ P(Ẑ)× P+(R) | ρ =

(
u v

0 1

)
, u �= 0

}
⊂ Π.

The condition u �= 0 in this definition is meaningful in the quotient since the left
action of P+(Z) leaves u unaltered. Assume now that u = 0 and v /∈ Z. Then,
with the notations of Proposition 6.2, ρ /∈ P+(Z)p. This result thus shows that the
corresponding triple (E; ξ, η) still characterizes the element of Π . One has ξ = 0
since ρ(x, 0) = uxe1 = 0, moreover one also gets ρ(0, y) = vye1 + ye2. Let χ be
a character of E, then χ = αt (ne1 +me2), with n,m ∈ Z. Thus T (χ)(η) = nv+m.
Since v /∈ Z, while v ∈ Ẑ, one derives v /∈ Q. Thus χ = αt (e2) is the only character
which takes the value 1 on η, i.e.

∃!χ ∈ ξ⊥ such that T (χ)(η) = 1. (90)

Note that if (90) holds, then, when ξ �= 0, Lemma 6.5 shows that there exists a
primitive character χ0 of E with ξ⊥ = Zχ0. Since χ ∈ ξ⊥, one thus gets χ = nχ0
for some n ∈ Z. Thus T (χ)(η) = nT (χ0)(η) and nT (χ0)(η) = 1. But T (χ0)(η) ∈
Ẑ and one then gets n = ±1. This shows that one can refine the definition of a
triangular structure using (90) in place of the condition

ξ �= 0 & < ξ⊥, η >= Z.

Thus, the case u = 0 (i.e. ξ = 0) and v /∈ Z is covered by the following

Definition 6.5 A degenerate triangular structure on an elliptic curve E is a pair
(χ, η) of a character χ : E → R/Z and an element η ∈ T (E) with T (χ)(η) = 1.

This notion also covers the case u = v = 0, i.e. of degenerate parabolic Q-lattices.
Indeed, in this case Proposition 6.2 shows that one needs to choose the character
χ ∈ ξ⊥ so that < χ, η >= 1. More precisely, let θ̃ be the map which associates
with a degenerate parabolic Q-lattice (Λ, φ) the degenerate triangular structure on
E = C/Λ given by the pair (χ, η), where χ = −" and η(y) = φ((0, y)) for all
y ∈ Q/Z. Then we have the following

Proposition 6.6 Two degenerate parabolic Q-lattices are the same if and only if
the degenerate triangular elliptic curves, associated via the map θ̃ , are isomorphic.

Proof Let (Λ, φ) and (Λ′, φ′) be degenerate parabolic Q-lattices, and E, (χ, η),
E′, (χ ′, η′) their images under θ̃ . By the degeneracy hypothesis there exists uniquely
α, α′ ∈ P+(R) such that

Λ = α−1Λ0, φ(x, y) = α−1(ye2) , ∀x, y ∈ Q/Z

and similarly for (Λ′, φ′). An isomorphism j : E → E′ is implemented by the
multiplication by a complex number λ such that λΛ = Λ′. If j preserves the
degenerate triangular structure, one has χ ′ ◦ j = χ , i.e. "(λz) = "(z) modulo
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Z for all z ∈ E = C/Λ and thus λ = 1. Hence one derives Λ = Λ′ and j is the
identity. Let us show that φ′ = φ. One has φ(x, y) = η(y), ∀x, y ∈ Q/Z, and since
by hypothesis j ◦ η = η′ one concludes that φ′ = φ. ��

Next we consider the degeneracy occurring when in the matrix α =
(
a b

0 1

)
∈

P+(R), a tends to 0. We follow the lattice Λ = α−1Λ0 up to scale. One has

aα−1 = a

( 1
a

− b
a

0 1

)
=

(
1 −b
0 a

)
, aα−1

(
x

y

)
=

(
1 −b
0 a

)(
x

y

)
=

(
x − by

ay

)
.

Thus when a → 0 the lattice Λ = α−1Λ0 up to scale converges pointwise (i.e. for
each fixed pair (x, y)) towards the subgroup of R ⊂ C given by

Λ(b) := Z + bZ ⊂ R ⊂ C. (91)

The subgroup Λ(b) only depends upon b ∈ R/Z and the quotient R/Λ(b)

corresponds to the noncommutative torus T
2
b. In fact, the composition with ρ =(

u v

0 1

)
∈ P(Ẑ) gives the following Q-pseudolattice in the sense of Definition 3.106

of [16]

φ : Q2/Z2 → QΛ(b)/Λ(b), φ((x, y)) = ux + vy − by.

When b /∈ Q, the subspace QΛ(b) ⊂ R is two-dimensional over Q and one defines
a character on the Q-rational points by setting χ(x−by) := y ∈ Q/Z, for x−by ∈
QΛ(b)/Λ(b). Using this character one gets χ ◦ φ((x, y)) = y and this condition
characterizes the relevant pseudolattices.

7 Lift of the Frobenius correspondences

In this paper we have constructed the simplest complex lift of the Scaling Site,
using an almost periodic compactification of the added imaginary direction. We
have illustrated the role of the tropicalization map and found a surprising relation
between the obtained complex lift and the GL2 system of [16].

In order to complete the Riemann–Roch strategy in this lifted framework one
meets a fundamental difficulty tied up to the loss of the one parameter group of
automorphisms of Rmax in moving from characteristic 1 to characteristic zero. The
difficulty arises in the construction of the proper lift of the correspondences Ψλ
which are canonical in characteristic 1. The natural candidates in characteristic
zero come from the right action of P+(R). This choice is justified using the
tropicalization map which is given on all terms by the determinant (on 2 by 2
matrices of adèles) and makes the following diagram commutative
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P(Q)

det

��

�� P(AQ)

det

��

P+(R)

det

��

��

Q
× �� AQ R

∗+��

(92)

The problem arises because the right action of R∗+ ⊂ P+(R) does not preserve the
complex structure defined in Proposition 5.1. More precisely this action preserves
the foliation (since the leaves are precisely the orbits of the right action of P+(R))
but it does not preserve the complex structure of the leaves. Indeed, the right action
of R∗+ ⊂ P+(R) is of the form

(
y x

0 1

)(
λ 0
0 1

)
=

(
λy x

0 1

)

and since it replaces x+iy ∈ H by x+iλy it does not respect the complex structure.

7.1 Witt construction in characteristic 1 and lift of the Ψλ

In [19] we already addressed the problem of the loss of the one parameter group of
automorphisms of Rmax in moving from characteristic 1 to characteristic zero. In
that paper we also developed the Archimedean analogue of the basic steps of the
construction of the rings of p-adic periods and we defined the universal thickening
of the real numbers. In fact we showed that when one applies the analogue of the
Witt construction to the real tropical hyperfield R

+, the universal W -model of R+

exists and it coincides with the triple which was constructed in [17, 18], by working
with the tropical semifield R

max+ of characteristic one and implementing concrete
formulas, involving entropy, which extend the Teichmüller formula for sums of
Teichmüller lifts to the case of characteristic one. We use the notation [x] = τ(x)

for the Teichmüller lift of x ∈ R
∗+. These elements generate linearly the ring W ,

they fulfill the multiplication rule [xy] = [x][y] and the automorphisms of Rmax+ lift
to automorphisms θλ of W such that

θλ([x]) = [xλ] , ∀x ∈ R
max+ , λ ∈ R

∗+.

We shall use complex coefficients so that in first approximation W is the complex
group ring of the multiplicative group R

∗+. We disregard here the nuances obtained
from various completions of W explored in [19] and concentrate on the algebraic
question of showing why the use of W as coefficients resolves the problem of the
lack of invariance of the complex structure under the right action of R∗+. For each
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λ ∈ R
∗+ one has a ring homomorphism χλ : W → C which is C-linear and such

that χλ([x]) = xλ for any x ∈ R
∗+. By construction one has χλ ◦ θμ = χλμ and the

character χ1 plays a key role in [19] where it is denoted θ . Now given a function
with values inW on a leaf given by an orbit of the right action of P+(R) we say that
f is holomorphic when

(λX + iY ) χλ(f ) = 0 , ∀λ ∈ R
∗+, (93)

where X, Y correspond to the generators of the Lie algebra of P+(R) as in
Proposition 5.1. We then restore the invariance under the right action of R

∗+ ⊂
P+(R) by combining it with the automorphisms θλ ∈ Aut(W) as we did in the
construction of the arithmetic Frobenius in [25]. By construction the right action
R(μ) of R∗+ ⊂ P+(R) extends toW valued functions so that the following equation
holds

χλ(R(μ)(f )) = μYχλ(f ) , ∀λ,μ ∈ R
∗+ (94)

Proposition 7.1 For μ ∈ R
∗+, the operation Fraμ,

f �→ Fraμ(f ), Fraμ(f ) := θμ(R(μ
−1)(f )) (95)

preserves the holomorphy condition (93).

Proof One has

χλ(Fraμ(f )) = χλ ◦ θμ(R(μ−1)(f )) = χλμ(R(μ
−1)(f )) = μ−Y χλμ(f )

using (94) for the last equality. By construction Y commutes with μY , and since
[Y,X] = X, one has μYXμ−Y = μX so that

(λX + iY ) μ−Y = μ−Y (λμX + iY )

and one gets

(λX + iY ) χλ(Fraμ(f )) = (λX + iY ) μ−Y χλμ(f ) = μ−Y (λμX + iY ) χλμ(f ) = 0.

Thus Fraμ(f ) fulfills (93) if f does. ��
To give a non-trivial example of a W -valued function which is holomorphic in the
sense of (93), we take the classical orbit ΓQ,cl which is the pro-étale cover D̃∗. One
can represent the elements of ΓQ,cl as pairs (x, y) ∈ G × R

∗+ and the following
equality defines a function

q : ΓQ,cl → W, q(x + iy) := [e−2πy]e2πix (96)

where, by Lemma 5.2 (iii), e2πix makes sense as a complex number for any x ∈ G.
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Proposition 7.2 The function q : ΓQ,cl → W of (96) is holomorphic in the sense
of condition (93). Moreover it is invariant under the transformations Fraμ for any
μ ∈ R

∗+. The same holds for the rational powers qr of q, ∀r ∈ Q.

Proof One has by construction

χλ(q)(x + iy) = e−2πλye2πix = e2πi(x+iλy).

Moreover

(λy∂x + iy∂y)(x + iλy) = 0 ⇒ (λX + iY ) χλ(q) = 0

which gives condition (93). Finally the equality

θμ

(
q
(
x + iμ−1y

)
=

[(
e
−2π y

μ

)μ]
e2πix =

[
e−2πy

]
e2πix = q(x + iy)

)

shows that q is invariant under the transformations Fraμ. The same proof applies to
the rational powers of q which make sense because of Lemma 5.2 (iii). ��
Remark 7.1 Proposition 7.2 suggests that for the topos counterpart D̃∗

�N
× of the

above adelic description of the complex lift (see the left column of Figure 1) the
structure sheaf involves the ring W [qr ] generated by rational powers qr of q over
W .

7.2 Quantization

It is still unclear in which precise sense the complex lift constructed in this paper
can be used to “quantize” the Scaling Site. One of the origins of the world of
characteristic 1 is the inverse process of quantization, it is called “dequantization.”
It was developed under the name of idempotent analysis by the school of Maslov,
Kolokolstov, and Litvinov [34, 35]. One of their key discoveries is that the Legendre
transform which plays a fundamental role in all of physics and in particular in
thermodynamics in the nineteenth century, is simply the Fourier transform in the
framework of idempotent analysis. There is a whole circle of ideas which compares
tropicalization, dequantization, and deformation of complex structures (see e.g. [1]
and the references there) and these ideas should be carefully identified for the
complex lift constructed in our paper. In particular the deformation of complex
structures used in Section 7.1 and the interpretation of its limit as a real polarization
should be clarified. In the process of quantizing a classical dynamical system the
expected outcome is a self-adjoint operator in Hilbert space. We expect here that the
operatorX+ iY will play a role as well as the “transverse elliptic theory” developed
in [12]. Indeed, when viewing the adèle class space Q

×\AQ as a noncommutative
space and the complex lift CQ over it, the complex structure takes place in the
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transverse direction. In fact, as we have seen in Section 5, the space of points
of CQ fibers over Q

×\AQ with fiber the almost periodic compactification G of
R. The effect of the almost periodic compactification is occurring purely in the
transversal direction and it thus suggests that the ∂̄ operator associated with the
complex structure should be viewed as a K-homology class in the relative type
II setup. The results of [13, 14, 15] on the transverse structure of modular Hecke
algebras should then be brought into play.

Acknowledgements The second named author would like to thank Alain Connes for introducing
her to the noncommutative geometric vision on the Riemann Hypothesis and for sharing with her
many mathematical ideas and insights.

Caterina Consani is partially supported by the Simons Foundation collaboration Grant no.
353677. She would like to thank Collège de France for some financial support.

References

1. T. Baier, C. Florentino, J. Mourao, J. Nunes, Toric Kähler metrics seen from infinity,
quantization and compact tropical amoebas. J. Differential Geom. 89 (2011), no. 3, 411–454.

2. M. Baker, S. Norine, Riemann-Roch and Abel-Jacobi theory on a finite graph, Advances in
Mathematics 215 (2007), 766–788.

3. M. Baker, F. Shokrieh, Chip-firing games, potential theory on graphs, and spanning trees. J.
Combin. Theory Ser. A 120 (2013), no. 1, 164–182.

4. A.S. Besicovitch, Almost Periodic Functions, Cambridge University Press, 1932.
5. A. Bjorner, L. Lovasz, P. W. Shor, Chip-firing games on graphs, European J. Combin., 12(4),

(1991), 283–291.
6. H. Bohr, Almost Periodic Functions, Chelsea Pub. Co., New York, 1947.
7. S. Bochner, Beitrage zur Theorie der fastperiodischen Funktionen, Math. Annalen, 96: 119–

147.
8. E. Bombieri, J. Lagarias Complements to Li’s criterion for the Riemann hypothesis. J. Number

Theory 77 (1999), no. 2, 274–287.
9. V. Borchsenius, B. Jessen, Mean motion and values of the Riemann zeta function. Acta Math.

80 (1948), 97–166.
10. J.B. Bost, A. Connes, Hecke algebras, Type III factors and phase transitions with spontaneous

symmetry breaking in number theory, Selecta Math. (New Series) Vol.1 (1995) N.3, 411–457.
11. A. Connes, Trace formula in noncommutative geometry and the zeros of the Riemann zeta

function. Selecta Math. (N.S.) 5 (1999), no. 1, 29–106.
12. A. Connes, H. Moscovici, The local index formula in noncommutative geometry, GAFA, Vol.

5 (1995), 174–243.
13. A. Connes, H. Moscovici, Modular Hecke Algebras and their Hopf Symmetry, Mosc. Math. J.

4 (2004), no. 1, 67–109, 310.
14. A. Connes, H. Moscovici, Rankin-Cohen Brackets and the Hopf Algebra of Transverse

Geometry, Mosc. Math. J. 4 (2004), no. 1, 111–130, 311.
15. A. Connes, H. Moscovici, Transgressions of the Godbillon-Vey class and Rademacher

functions, in “Noncommutative Geometry and Number Theory”, pp.79–107. Vieweg Verlag,
2006.



124 A. Connes and C. Consani

16. A. Connes, M. Marcolli, Noncommutative Geometry, Quantum Fields and Motives American
Mathematical Society Colloquium Publications, 55. American Mathematical Society, Provi-
dence, RI; Hindustan Book Agency, New Delhi, 2008.

17. A. Connes, C. Consani, Characteristic one, entropy and the absolute point, “ Noncommutative
Geometry, Arithmetic, and Related Topics”, the Twenty-First Meeting of the Japan-U.S.
Mathematics Institute, Baltimore 2009, JHUP (2012), 75–139.

18. A. Connes, The Witt construction in characteristic one and Quantization. Noncommutative
geometry and global analysis, 83–113, Contemp. Math., 546, Amer. Math. Soc., Providence,
RI, 2011.

19. A. Connes, C. Consani, Universal thickening of the field of real numbers. Advances in the
theory of numbers, 11–74, Fields Inst. Commun., 77, Fields Inst. Res. Math. Sci., Toronto,
ON, 2015.

20. A. Connes, C. Consani, Schemes over F1 and zeta functions, Compositio Mathematica 146 (6),
(2010) 1383–1415.

21. A. Connes, C. Consani, From monoids to hyperstructures: in search of an absolute arith- metic,
in Casimir Force, Casimir Operators and the Riemann Hypothesis, de Gruyter (2010), 147–198.

22. A. Connes, C. Consani, The Arithmetic Site, Comptes Rendus Mathematique Ser. I 352 (2014),
971–975.

23. A. Connes, C. Consani, Geometry of the Arithmetic Site. Advances in Mathematics 291 (2016)
274–329.

24. A. Connes, C. Consani, The Scaling Site, C.R. Mathematique, Ser. I 354 (2016) 1–6.
25. A. Connes, C. Consani, Geometry of the Scaling Site, Selecta Math. New Ser. 23 no. 3 (2017),

1803–1850.
26. A. Connes, C. Consani, Homological algebra in characteristic one. Higher Structures Journal

3 (2019), no. 1, 155–247.
27. A. Connes, An essay on the Riemann Hypothesis. In “Open problems in mathematics”, Springer

(2016), volume edited by Michael Rassias and John Nash.
28. A. Gathmann and M. Kerber. A Riemann-Roch theorem in tropical geometry. Math. Z.,

259(1):217–230, 2008.
29. J. Golan, Semi-rings and their applications, Updated and expanded version of The theory of

semi-rings, with applications to mathematics and theoretical computer science [Longman Sci.
Tech., Harlow, 1992. Kluwer Academic Publishers, Dordrecht, 1999.

30. A. Grothendieck Sur une note de Mattuck-Tate J. reine angew. Math. 200, 208–215 (1958).
31. B. Jessen, Börge; Über die Nullstellen einer analytischen fastperiodischen Funktion. Eine

Verallgemeinerung der Jensenschen Formel. (German) Math. Ann. 108 (1933), no. 1, 485–
516.

32. Jessen, Tornehave Mean motions and zeros of almost periodic functions. Acta math. 77, 137–
279 (1945).

33. M. Laca, N. Larsen and S. Neshveyev, Phase transition in the Connes-Marcolli GL2 system,
J. Noncommut. Geom. 1 (2007), no. 4, 397–430.

34. V. Kolokoltsov, V. P. Maslov, Idempotent analysis and its applications. Mathematics and its
Applications, 401. Kluwer Academic Publishers Group, Dordrecht, 1997.

35. G. Litvinov, Tropical Mathematics, Idempotent Analysis, Classical Mechanics and Geometry.
Spectral theory and geometric analysis, 159–186, Contemp. Math., 535, Amer. Math. Soc.,
Providence, RI, 2011.

36. R. Meyer, On a representation of the idele class group related to primes and zeros of L-
functions. Duke Math. J. Vol.127 (2005), N.3, 519–595.

37. G. Mikhalkin and I. Zharkov, Tropical curves, their Jacobians and theta functions. In
Curves and abelian varieties, volume 465 of Contemp. Math., p 203–230. Amer. Math. Soc.,
Providence, RI, 2008.

38. J.S. Milne, Canonical models of Shimura curves, manuscript, 2003 (www.jmilne.org).
39. M. Laca, S. Neshveyev, M. Trifkovic Bost-Connes systems, Hecke algebras, and induction. J.

Noncommut. Geom. 7 (2013), no. 2, 525–546.

www.jmilne.org


The Riemann–Roch strategy 125

40. A. Robert, A course in p-adic analysis. Graduate Texts in Mathematics, 198. Springer-Verlag,
New York, 2000.

41. W. Rudin, Real and complex analysis. McGraw-Hill, New York, 1966.
42. J. von Neumann, Almost Periodic Functions in a Group I, Trans. Amer. Math. Soc., 36 no. 3

(1934) pp. 445–492
43. A. Weil, Basic Number Theory, Reprint of the second (1973) edition. Classics in Mathematics.

Springer-Verlag, 1995.
44. S. Yoshitomi, Generators of modules in tropical geometry. ArXiv Math.AG, 10010448.



The Baum–Connes conjecture: an
extended survey

Maria Paula Gomez Aparicio, Pierre Julg, and Alain Valette

To Alain Connes, for providing lifelong inspiration

Abstract We present a history of the Baum–Connes conjecture, the methods
involved, the current status, and the mathematics it generated.

1 Introduction

1.1 Building bridges

Noncommutative Geometry is a field of Mathematics which builds bridges between
many different subjects. Operator algebras, index theory, K-theory, geometry
of foliations, group representation theory are, among others, ingredients of the
impressive achievements of Alain Connes and of the many mathematicians that he
has inspired in the past 40 years.

At the end of the 1970s the work of Alain Connes on von Neumann theory nat-
urally led him to explore foliations and groups. His generalizations of Atiyah’s L2

index theorem were the starting point of his ambitious project of Noncommutative
Geometry. A crucial role has been played by the pioneering conference in Kingston
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in July 1980, where he met the topologist Paul Baum. The picture of what was soon
going to be known as the Baum–Connes conjecture quickly emerged. The catalytic
effect of IHES should not be underestimated; indeed the paper [BC00] was for a long
time available only as an IHES 1982 preprint. It is only in 1994 that the general and
precise statement was given in the proceedings paper [BCH94] with Nigel Higson.

1.2 In a nutshell: without coefficients. . .

The Baum–Connes conjecture also builds a bridge between commutative geometry
and noncommutative geometry. Although it may be interesting to formulate the
conjecture for locally compact groupoids,1 we stick to the well-accepted tradition
of formulating the conjecture for locally compact, second countable groups.

For every locally compact group G there is a Baum–Connes conjecture! We
start by associating to G four abelian groups Ktop∗ (G) and K∗(C∗

r (G)) (with ∗ =
0, 1), then we construct a group homomorphism, the assembly map:

μr : Ktop∗ (G) → K∗(C∗
r (G)) (∗ = 0, 1).

We say that the Baum–Connes conjecture holds forG ifμr is an isomorphism
for ∗ = 0, 1. Let us give a rough idea of the objects.

• The RHS of the conjecture, K∗(C∗
r (G)), is called the analytical side: it belongs

to noncommutative geometry. Here C∗
r (G), the reduced C∗-algebra of G, is the

closure in the operator norm of L1(G) acting by left convolution on L2(G), and
K∗(C∗

r (G)) is its topological K-theory.
Topological K-theory is a homology theory for Banach algebras A, enjoy-

ing the special feature of Bott periodicity (Ki(A) is naturally isomorphic to
Ki+2(A)), so that there are just two groups to consider: K0 and K1. K-theory
conquered C∗-algebra theory around 1980, as a powerful invariant to distinguish
C∗-algebras up to isomorphism. The first success was, in the case of the free
group Fn of rank n, the computation of K∗(C∗

r (Fn)) by Pimsner and Voiculescu
[PV82]: they obtained

K0
(
C∗
r (Fn)

) = Z, K1
(
C∗
r (Fn)

) = Zn,

so that K1 distinguishes reduced C∗-algebras of free groups of various ranks.
For many connected Lie groups (e.g., semisimple), C∗

r (G) is type I, which
points to using dévissage techniques: representation theory allows to define
ideals and quotients of C∗

r (G) that are less complicated, so K∗(C∗
r (G)) can be

computed by means of the 6-term exact sequence associated with a short exact

1This is important, e.g., for applications to foliations, see Chapter 7.
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sequence of Banach algebras. By way of contrast, if G is discrete, C∗
r (G) is

very often simple (see [BKKO17] for recent progress on that question); in that
case, dévissage must be replaced by brain power (see [Pim86] for a sample), and
the Baum–Connes conjecture at least provides a conjectural description of what
K∗(C∗

r (G)) should be (see, e.g., [SG08]).
• The LHS of the conjecture, Ktop∗ (G), is called the geometric, or topological

side. This is actually misleading, as its definition is awfully analytic, involving
Kasparov’s bivariant theory (see in this chapter). A better terminology would be
the commutative side, as indeed it involves a space EG, the classifiying space
for proper actions of G (see Chapter 4) and Ktop∗ (G) is the G-equivariant K-
homology of EG.

When G is discrete and torsion-free, then EG = EG = B̃G, the universal
cover of the classifying space BG. As G acts freely on EG, the G-equivariant
K-homology of EG is K∗(BG), the ordinary K-homology of BG, where K-
homology for spaces can be defined as the homology theory dual to topological
K-theory for spaces.

• The assembly map μr will be defined in Chapter 4 using Kasparov’s equivariant
KK-theory. Let us only give here a flavor of the meaning of this map. It was
discovered in the late 1970s and early 1980s that the K-theory groupK∗(C∗

r (G))

is a receptacle for indices, see Section 2.3. More precisely, if M is a smooth
manifold with a proper action of G and compact quotient, and D an elliptic
G-invariant differential operator on M , then D has an index indG(D) living in
K∗(C∗

r (G)). Therefore, the geometric groupKtop∗ (G) should be thought of as the
set of homotopy classes of such pairs (M,D), and the assembly map μr maps
the class [(M,D)] to indG(D) ∈ K∗(C∗

r (G)).

1.3 . . . and with coefficients

There is also a more general conjecture, called the Baum–Connes conjecture with
coefficients, where we allow G to act by *-automorphisms on an auxiliary C∗-
algebra A (which becomes a G−C∗-algebra), and where the aim is to compute the
K-theory of the reduced crossed product C∗

r (G,A). One defines then the assembly
map

μA,r : Ktop∗ (G,A) → K∗
(
C∗
r (G,A)

)
(∗ = 0, 1)

and we say that the Baum–Connes conjecture with coefficients holds for G if
μA,r is an isomorphism for ∗ = 0, 1 and everyG−C∗-algebra A. The advantage
of the conjecture with coefficients is that it is inherited by closed subgroups; its
disadvantage is that it is false in general, see Chapter 9.
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1.4 Structure of these notes

Using the acronym BC for “Baum–Connes conjecture,” here is what the reader will
find in this piece.

• Where does BC come from? Chapter 2, on the history of the conjecture.
• What are the technical tools and techniques? Chapter 3, on Kasparov theory (and

the Dirac–dual-Dirac method).
• What is BC, what does it entail, what is the state of the art? Chapter 4.
• Why is BC difficult? Chapter 5, discussing BC with coefficients for semisimple

Lie groups and their closed (e.g., discrete) subgroups.
• How can we hope to overcome those difficulties? Chapter 6, on Banach algebraic

methods.
• Is BC true or false? For BC without coefficients we don’t know, but we know

that the natural extension of BC from groups to groupoids is false (see Chapter
7), and we know that BC with coefficients is false (see Chapter 9).

We could have stopped there. But it seemed unfortunate not to mention an important
avatar of BC, namely the coarse Baum–Connes conjecture (CBC) due to the late
John Roe: roughly speaking, groups are replaced by metric spaces, see Chapter 8.
An important link with the usual BC is that for a finitely generated group, which
can be viewed as a metric space via some Cayley graph, CBC implies the injectivity
part of BC.

Finally, it was crucial to mention the amount of beautiful mathematics generated
by BC, and this is done in Chapter 9.

1.5 What do we know in 2019?

In Chapter 3 we explain the “Dirac–dual-Dirac” method used by Kasparov [Kas95]
to prove the injectivity of μA,r for all semisimple Lie group G and all G − C∗-
algebras A; this also proves injectivity for closed subgroups of a semisimple Lie
group, as this property passes to closed subgroups. Since then, an abstraction of
the Dirac–dual-Dirac method, explained in Section 4.4, has been used by Kasparov
and Skandalis [KS03], to prove the injectivity of the assembly map for a large class
of groups denoted by C in [Laf02b]. This class contains, for example, all locally
compact groups acting continuously, properly and isometrically on a complete
and simply connected Riemannian manifold of non-positive scalar curvature (see
[Kas88]), or on a Bruhat–Tits affine building (for example, all p-adic groups, see
[KS91]), all hyperbolic groups (see [KS03]). So the injectivity of the Baum–Connes
assembly map has been proven for a huge class of groups.

The conjecture with coefficients has been proven for a large class of groups that
includes all groups with the Haagerup property (e.g., SL2(R), SO0(n, 1), SU(n, 1),
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and all free groups). For those groups the proof is due to Higson and Kasparov
(see [HK01]) and it is also based on the “Dirac–dual-Dirac” method. This method
cannot, however, be applied to non-compact groups having property (T), not even
for the conjecture without coefficients: see Section 5.1 for more on the tension
between the Haagerup and Kazhdan properties.

Nevertheless, as will be explained in Section 6.1, Lafforgue managed to prove
the conjecture without coefficients for all semisimple Lie groups and for some
of their discrete subgroups, precisely those having property (RD) (as defined in
Section 6.1.4). For example, the conjecture without coefficients is true for all
cocompact lattices in SL3(R) but it is still open for SL3(Z).2

On the other hand, the conjecture with coefficients has been proven for all
hyperbolic groups (see [Laf12]), but it still open for higher rank semisimple Lie
groups and their closed subgroups: see Sections 5.2 and 6.2.3 for more on that.

An example of a group for which, at the time of writing, μr is not known to
be either injective or surjective is the free Burnside group B(d, n), as soon as it is
infinite.3

1.6 A great conjecture?

What makes a conjecture great? Here we should of course avoid the chicken-and-
egg answer “It’s a great conjecture because it is due to great mathematicians.”
We should also be suspicious of the pure maths self-referential answer: “It’s a
great conjecture because it implies several previous conjectures”: that an abstruse
conjecture implies even more abstruse ones,4 does not necessarily make it great.

We believe that the interest of a conjecture lies in the feeling of unity of
mathematics that it entails. We hope that the reader, in particular the young expert,
after glancing at the table of contents and the various subjects listed in Section 1.7
below, will not let her/himself be discouraged. Rather (s)he should take this as
an incentive to learn new mathematics, and most importantly connections between
them.

Judging by the amount of fields that it helps bridging (representation theory,
geometric group theory, metric geometry, dynamics,. . . ), we are convinced that yes,
the Baum–Connes conjecture is indeed a great conjecture.

2In the case of SL3(Z), surjectivity of μr is the open problem; the LHS of the Baum–Connes
conjecture was computed in [SG08].
3Recall that B(d, n) is defined as the quotient of the non-abelian free group Fd by the normal
subgroup generated by all n’s powers in Fd .
4Compare with Sections 2.5 and 4.5.
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1.7 Which mathematics are needed?

We use freely the following concepts; for each we indicate one standard reference:

• locally compact groups (Haar measure, unitary representations): see [Dix96];
• semisimple Lie groups and symmetric spaces: see [Hel62];
• operator algebras (full and reduced group C∗-algebras, full and reduced crossed

products): see [Ped79];
• K-theory for C∗-algebras (Bott periodicity, 6-term exact sequences, Morita

equivalence): see [WO93];
• index theory: see [BBB13].

2 Birth of a conjecture

2.1 Elliptic (pseudo-) differential operators

Let M be a closed manifold, and let D be a (pseudo-) differential operator acting
on smooth sections of some vector bundles E,F over M , so D maps C∞(E) to
C∞(F ). Let T ∗M denote the cotangent bundle of M . The (principal) symbol is a
bundle map σ(D) from the pullback of E to the pullback of F on T ∗M . Recall that
D is said to be elliptic if σ(D) is invertible outside of the zero section of T ∗M .
In this case standard elliptic theory guarantees that ker(D) and coker(D) are finite-
dimensional, so that the (Fredholm) index of D is defined as

Ind(D) = dimC ker(D)− dimC coker(D) ∈ Z.

The celebrated Atiyah–Singer theorem [AS68] then provides a topological formula
for Ind(D) in terms of topological invariants associated with M and σ(D).

Now let M̃ → M be a Galois covering of M , with group �, so that M = �\M̃ .
Assume that D lifts to a �-invariant operator D̃ on M̃ , between smooth sections of
Ẽ, F̃ , the vector bundles pulled back from E,F via the covering map.

• Assume first that � is finite, i.e., our covering has n = |�| sheets. Then M̃ is a
closed manifold, and the index of D̃ satisfies Ind(D̃) = n·Ind(D). Now we may
observe that, in this case, there is a more refined analytical index, obtained by
observing that ker(D̃) and coker(D̃) are finite-dimensional representation spaces
of �, hence their formal difference makes sense in the additive group of the
representation ring R(�): we get an element � − Ind(D̃) ∈ R(�); the character
of this virtual representation of �, evaluated at 1 ∈ �, gives precisely Ind(D̃).

• Assume now that � is infinite. Then the L2-kernel and L2-cokernel of D̃ are
closed subspaces of the suitable space of L2-sections, namely L2(M̃, Ẽ) and
L2(M̃, F̃ ), and by �-invariance those spaces are representation spaces of �. The
problem with these representations is that their classical dimension is infinite.
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Atiyah’s idea in [Ati76] is to measure the size of these spaces via the dimension
theory of von Neumann algebras.

More precisely, theL2-kernel of D̃ is �-invariant, so the orthogonal projection
onto that kernel belongs to the algebraA of operators commuting with the natural
�-representation on L2(M̃, Ẽ). Choosing a fundamental domain for the �-action
on M̃ allows to identify �-equivariantly L2(M̃, Ẽ) with &2(�) ⊗ L2(M,E). So
A becomes the von Neumann algebra L(�) ⊗ B(L2(M,E)), where L(�), the
group von Neumann algebra of �, is generated by the right regular representation
of � on &2(�). The canonical trace on L(�) (defined by τ(a) = 〈a(δe), δe〉 for
a ∈ L(�)) provides a dimension function dim� on the projections in A. Atiyah’s
L2-index theorem [Ati76] states that

Theorem 2.1 In the situation above:

Ind(D) = Ind�(D̃),

where the right-hand side is defined as

Ind�(D̃) := dim�(kerD̃))− dim�(coker(D̃)).

2.2 Square-integrable representations

Recall that, for G a locally compact unimodular group, a unitary irreducible
representation π of G is said to be square-integrable if, for every two vectors ξ, η
in the Hilbert space of the representation π , the coefficient function

g �→ 〈π(g)ξ, η〉

is square-integrable on G. Equivalently, π is a sub-representation of the left regular
representation λG of G on L2(G) (see [Dix96], section 14.1, for the equivalence).
The set of square-integrable representations of G is called the discrete series of G.

When G is a semisimple Lie group with finite center, we denote by Ĝr the
reduced dual, or tempered dual of G: this is the set of (equivalence classes
of) unitary irreducible representations of G weakly contained in λG; it may
also be defined as the support of the Plancherel measure on the full dual Ĝ of
G. A cornerstone of twentieth century mathematics is Harish-Chandra’s explicit
description of the Plancherel measure on semisimple Lie groups, and it turns out
that the discrete series of G is exactly the set of atoms of the Plancherel measure.

Let us be more specific. LetK be a maximal compact subgroup ofG, a connected
semisimple Lie group with finite center. The first result of Harish-Chandra states
that the discrete series of G is non-empty if and only if G and K have equal rank.
This exactly means that a maximal torus of K is also a maximal torus of G. Let
us assume that this holds, and let us fix a maximal torus T in K . Let gC, kC, tC
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be the complexified Lie algebras of G,K, T respectively. Decomposing the adjoint
representations of T on kC and gC respectively, we get two root systems �c and
�, with �c ⊂ �: we say that � is the set of roots, while �c is the set of compact
roots. Correspondingly there are two Weyl groupsW(K) ⊂ W . We denote by� the
lattice of weights of T . An element of tC is regular if its stabilizer in W is trivial.
We denote by ρ half the sum of positive roots in � (with respect to a fixed set �
of positive roots), and by ρc half the sum of the positive compact roots. We have
then Harish-Chandra’s main result on existence and exhaustion of discrete series
(see [Lip74], section I.B.2 for a nice summary of Harish-Chandra’s theory):

Theorem 2.2 To each regular element λ ∈ � + ρ is naturally associated a
square-integrable irreducible representation πλ of G such that πλ|K contains with
multiplicity 1 the K-type with highest weight λ + ρ − 2ρc. Every discrete series
representation ofG appears in this way. If λ,μ ∈ �+ρ, the representations πλ, πμ
are unitarily equivalent if and only if λ and μ are in the same W(K)-orbit.

Impressive as it is, Theorem 2.2 left open the question of constructing geometri-
cally the discrete series representations πλ. That question was solved by Atiyah and
Schmid [AS77]. Assume that G has discrete series representations, which forces
the symmetric space G/K to be even-dimensional. Assume moreover that G/K
carries a G-invariant spin structure, meaning that the isotropy representation of K
on V := g/k lifts to the spin group of V ; this can be ensured by replacing G by
a suitable double cover. Then we have the two irreducible spinor representations
S+, S− of Spin(V ), that we view as K-representations.5 Fix a regular element λ in
�+ ρ; conjugating � by some element of W , we may assume that λ is dominating
for �. Then μ := λ − ρc ∈ � is a weight dominating for �c ∩ �, and we denote
by Eμ the irreducible representation of K with highest weight μ. Form the G-
equivariant induced vector bundles G×K (Eμ ⊗ S±) over G/K , and let

Dμ : C∞(G×K (Eμ ⊗ S+)) → C∞(G×K (Eμ ⊗ S−))

be the corresponding Dirac operator with coefficients in μ. The main result of
Atiyah and Schmid (see [AS77, 9.3]) is then:

Theorem 2.3 Let λ ∈ � + ρ be regular, with λ = μ + ρc as above. Then
coker(D+

μ ) = 0 and the G-representation on ker(D+
μ ) is the discrete series

representation πλ. If λ is not regular, then ker(D+
μ ) = coker(D+

μ ) = 0.

It is interesting to observe that Atiyah’s L2-index theorem plays a role in the
proof, as the authors need a torsion-free cocompact lattice � in G and apply the
L2-index theorem to the covering of the compact manifold �\G/K by G/K .

5G/K carries a G-invariant spin structure if and only if ρ − ρc ∈ �, see [AS77, 4.34]; the
distinction between S+ and S− is made by requiring that ρ − ρc is the highest weight for S+,
see [AS77, 3.13].



The Baum–Connes conjecture: an extended survey 135

To summarize, Dirac induction (i.e., realizing G-representations by means of
Dirac operators with coefficients in K-representations) sets up a bijection between
a generic set of irreducible representations of K and all square-integrable repre-
sentations of G. Suitably interpreted using K-theory of C∗-algebras, this principle
paved the way towards the Connes–Kasparov conjecture, which was the first form
of the Baum–Connes conjecture.

2.3 Enters K-theory for group C∗-algebras

The Atiyah–Schmid construction of the discrete series, served as a crucial moti-
vation for Connes and Moscovici [CM82] in their study of the G-index for
G-equivariant elliptic differential operators D on homogeneous spaces of the
form G/K , where G is a unimodular Lie group with countably many connected
components, and K is a compact subgroup. Their aim is to define the G-index of D
intrinsically, i.e., without appealing to Atiyah’s L2-index theory (so, not needing an
auxiliary cocompact lattice inG):D will not be Fredholm in the usual sense (unless
G is compact), but ker(D) and coker(D) will have finite G-dimension in the sense
of the Plancherel measure on Ĝr . The formal difference of these, the G-index of D,
is a real number shown to depend only on the class [σ(D)] of the symbol of D in
KK(V

∗), where KK denotes equivariant K-theory with compact supports and V ∗ is
the cotangent space to G/K at the origin. This G-index is computed in terms of the
symbol of D, and this index formula is used to prove that ker(D) is a finite direct
sum of square-integrable representations of G.

Crucial for our story is the final section of [CM82]. Indeed, there Connes and
Moscovici sketch the construction of an index taking values in K∗(C∗

r (G)), the
topological K-theory of the reduced C∗-algebra of G. It goes as follows: let ρ be
a finite-dimensional unitary representation of K on Hρ , form the induced vector
bundleEρ := G×KHρ overG/K . Denote by�∗

G(G/K,Eρ) be the norm closure of
the space of 0-th order G-invariant pseudo-differential operators on G/K acting on
sections of Eρ : since such an operator acts by bounded operators on L2(G/K,Eρ),
we see that �∗

G(G/K,Eρ) is a C∗-algebra on L2(G/K,Eρ). The symbol map
induces a ∗-homomorphism �∗

G(G/K,Eρ) → CK(S(V
∗),B(Hρ)), where the

latter is the algebra of K-invariant, B(Hρ)-valued continuous functions on S(V ∗),
the unit sphere in V ∗. It fits into a short exact sequence

0 → C∗
G(G/K,Eρ) → �∗

G(G/K,Eρ) → CK(S(V
∗),B(Hρ)) → 0, (2.1)

where the kernel C∗
G(G/K,Eρ) is the norm closure of G-invariant regularizing

operators on G/K . When ρ is the left regular representation of K , Connes and
Moscovici observe that C∗

G(G/K,Eρ) is canonically isomorphic to the reduced C∗-
algebra C∗

r (G) of G. If D ∈ �∗
G(G/K,Eρ) is elliptic, then its symbol is invertible

in CK(S(V ∗),B(Hρ)), so defines an element [σ(D)] ∈ K1(CK(S(V
∗))). The short

exact sequence (2.1) defines a 6-term exact sequence in K-theory, and the connecting
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map K1(CK(S(V
∗))) → K0(C

∗
r (G)) allows to define indG(D) ∈ K0(C

∗
r (G)). So

the K-theory K∗(C∗
r (G)) appears as a receptacle for indices of G-invariant elliptic

pseudo-differential operators on manifolds of the form G/K , with K compact.
We quote the final lines of [CM82]: “Of course, to obtain a valuable formula

for the index map indG, one first has to compute K0(C
∗
r (G)). When G is simply

connected and solvable, it follows from the Thom isomorphism in [Con81] that
Ki(C

∗(G)) � Ki+j (point), i, j ∈ Z2, where j is the dimension mod 2 of G. The
computation of the K-theory of C∗(G) for an arbitrary Lie group G and the search
for an “intrinsic” index formula certainly deserve further study.” This served as a
research program for the following years!6

Let us end this section by mentioning that, since the framework in [CM82]
is unimodular Lie groups with countably many connected components, it applies
in particular to countable discrete groups �. In this case the canonical trace τ :
C∗
r (�) → C defines a homomorphism τ∗ : K0(C

∗
r (�)) → R, and τ∗(ind�(D)) =

Ind�(D), the �-index of D as in (2.1).

2.4 The Connes–Kasparov conjecture

Disclaimer: the Connes–Kasparov conjecture is not a conjecture anymore
since 2003! After proofs of several particular cases, starting with the case
of simply connected solvable groups established by Connes [Con81], and
the cornerstone of semisimple groups being established first by Wassermann
[Was87] by representation-theoretic methods then by Lafforgue [Laf02b] by
geometric/analytical techniques, the general case was handled by Chabert–
Echterhoff–Nest [CEN03] building on Lafforgue’s method. Nevertheless the
Connes–Kasparov conjecture was fundamental for the later formulation of the
more general Baum–Connes conjecture.

Let G be a connected Lie group, and let K be a maximal compact subgroup
(it follows from structure theory that K is unique up to conjugation). Set V =
g/k; assume that G/K carries a G-invariant spin structure, i.e., that the adjoint
representation ofK on V lifts to Spin(V ). Let S+, S− be the spinor representations
of Spin(V ) (with the convention S+ = S− if j = dimG/K is odd), that we view
as K-representations. Let ρ be a finite-dimensional representation of K , form the
induced G-vector bundles E±

ρ = G×K (ρ ⊗ S±). Let Dρ : C∞(E+
ρ ) → C∞(E−

ρ )

be the corresponding Dirac operator. Let R(K) be the representation ring of K .
Thanks to the previous section, we may define the Dirac induction

μG : R(K) → Kj(C
∗
r (G)) : ρ �→ indG(D

+
ρ ),

6We believe that Connes and Moscovici actually had C∗
r (G), not C∗(G), in mind when writing

this.
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a homomorphism of abelian groups. The Connes–Kasparov conjecture (see [BC00],
section 5; [Kas87]; [Kas95], Conjecture 1) is the following statement:

Conjecture 1 (1st version) Let G be a connected Lie group, K a maximal compact
subgroup, j = dim(G/K). Assume thatG/K carries aG-invariant spin structure.

(1) The Dirac induction μG : R(K) → Kj(C
∗
r (G)) is an isomorphism;

(2) Kj+1(C
∗
r (G)) = 0

Remark 2.4 If G is semisimple with finite center, and π is a square-integrable
representation of G, then π defines an isolated point of Ĝr , so there is a splitting
C∗
r (G) = Jπ ⊕ K, where Jπ is the C∗-kernel of π and K is the standard algebra of

compact operators. HenceK0(C
∗
r (G)) = K0(Jπ )⊕Z, i.e., π defines a free generator

[π ] of K0(C
∗
r (G)). In terms of the Connes–Kasparov conjecture, Theorem 2.3

expresses the fact that the Dirac induction μG induces an isomorphism between
an explicit free abelian subgroup of R(K) and the free abelian part of K0(C

∗
r (G))

associated with the discrete series.

Example 2.5 Take G = SL2(R), so that K = T = SO(2). Then the set
� of weights of T identifies with Z, the set � of roots is {−2, 0, 2} (so that
ρ = 1 if � = {2}), the set �c of compact roots is {0}, and the Dirac induction
consists in associating to n > 0 the holomorphic discrete series representation
πn+1 (with minimal K-type n + 1), and to n < 0 the anti-holomorphic discrete
series representation πn−1 (with minimal K-type n − 1). For the singular weight
n = 0 (i.e., the trivial character of K), it follows from Theorem 2.3 that the
corresponding Dirac operator D0 has no kernel or cokernel. However, as prescribed
by Conjecture 1, its image by μG provides the “missing” generator of K0(C

∗
r (G)).

To understand this, let us dig further into the structure of C∗
r (G): apart from discrete

series representations, Ĝr comprises two continuous series of representations. To
describe those, consider the subgroup B of upper triangular matrices and define two
families of unitary characters (where t ≥ 0):

χ0,t : B → T :
(
a b

0 a−1

)
�→ |a|it

χ1,t : B → T :
(
a b

0 a−1

)
�→ sign(a) · |a|it

For ε = 0, 1 and t ≥ 0, denote by σε,t the unitarily induced representation:

σε,t = IndGB χε,t .

The family {σ0,t : t ≥ 0} (resp. {σ1,t : t ≥ 0}) is the even principal series (resp.
odd principal series). For t > 0 or for ε = 0, the representation σε,t is irreducible.
But σ1,0 splits into two irreducible components σ+

1 , σ
−
1 (sometimes called mock

discrete representations), and Ĝr is the union of the discrete series, the even and the
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odd principal series of representations. The topology on the even principal series is
the topology of [0,+∞[, while the topology on the odd principal series is mildly
non-Hausdorff: for t → 0, the representation σ1,t converges simultaneously to σ+

1
and σ−

1 . As a consequence, the direct summand of C∗
r (G) corresponding to the

even principal series is Morita equivalent to C0([0,+∞[), and hence is trivial in K-
theory, while the direct summand corresponding to the odd principal series is Morita
equivalent to

{f ∈ C0([0,+∞[,M2(C)) : f (0) is diagonal},

that contributes a copy of Z to K0(C
∗
r (G)), generated by the image of the trivial

character of K under Dirac induction. This description of C∗
r (G) also gives

K1(C
∗
r (G)) = 0 by direct computation.

Coming back to the general framework (G connected Lie group, K maximal
compact subgroup), let us indicate how to modify the conjecture when G/K does
not have a G-invariant spin structure. Then we may construct a double cover G̃
of G, with maximal compact subgroup K̃ , such that G̃/K̃ = G/K carries a G̃-
invariant spin structure. Let ε ∈ Z(G̃) be the non-trivial element of the covering
map G̃ → G. Then R(K̃) splits into a direct sum

R(K̃) = R(K̃)0 ⊕ R(K̃)1,

whereR(K̃)0 (resp.R(K̃)1) is generated by those irreducible representations ρ ∈ K̂
such that ρ(ε) = 1 (resp. ρ(ε) = −1). So R(K̃)0 identifies canonically with R(K).
Similarly C∗

r (G̃) splits into the direct sum of two ideals C∗
r (G̃) = J 0 ⊕ J 1, where

J 0 (resp. J 1) corresponds to those representations π ∈ (̂G̃)r such that π(ε) = 1
(resp. π(ε) = −1); so J 0 identifies canonically with C∗

r (G). Now we observe that
the Dirac induction for G̃:

μ
G̃

: R(K̃) = R(K̃)0 ⊕ R(K̃)1 → Kj

(
C∗
r (G̃)

)
= Kj(J

0)⊕Kj(J
1)

interchanges the Z/2-gradings: indeed the spin representations S± do not factor
through K by assumption, but if ρ is in R(K̃)1, then S± ⊗ ρ factors through K (as
ε acts by the identity). Hence the second case of the Connes–Kasparov conjecture:

Conjecture 2 (2nd version) LetG be a connected Lie group,K a maximal compact
subgroup, j = dim(G/K). Assume that G/K does not carry a G-invariant spin
structure.

(1) The Dirac induction μ
G̃

: R(K̃)1 → Kj(C
∗
r (G)) is an isomorphism;

(2) Kj+1(C
∗
r (G)) = 0

As we said before, the Connes–Kasparov conjecture was eventually proved for
arbitrary connected Lie groups by Chabert et al. [CEN03], whose result is even more
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general as it encompasses almost connected groups, i.e., locally compact groups
whose group of connected components is compact.

Theorem 2.6 The Connes–Kasparov conjecture holds for almost connected
groups.

In the same paper [CEN03], Chabert–Echterhoff–Nest obtain a purely
representation-theoretic consequence of Theorem 2.6:

Corollary 2.7 Let G be a connected unimodular Lie group. Then all square-
integrable factor representations of G are type I. Moreover, G has no square-
integrable factor representations if dim(G/K) is odd.

2.5 The Novikov conjecture

For discrete groups, an important motivation for the Baum–Connes conjecture was
provided by the work of Mishchenko (see, e.g., [Mis74]) and Kasparov (see, e.g.,
[Kas95]) on the Novikov conjecture, whose statement we now recall.

For a discrete group �, denote by B� “the” classifying space of �, a CW -
complex characterized, up to homotopy, by the properties that its fundamental
group is � and its universal cover E� is contractible.7 Alternatively, B� is a
K(�, 1)-space. As a consequence, group cohomology of �, defined algebraically,
is canonically isomorphic to cellular cohomology of B�.

Let M be a smooth, closed, oriented manifold of dimension n, equipped with a
map f : M → B�. For x ∈ H ∗(B�,Q) (cohomology with rational coefficients),
consider the higher signature

σx(M, f ) = 〈f ∗(x) ∪ L(M), [M]〉 ∈ Q,

where L(M) is the L-class (a polynomial in the Pontryagin classes, depending on
the smooth structure of M), and [M] is the fundamental class of M . The Novikov
conjecture states that these numbers are homotopy invariant (and so do not depend
on the smooth structure of M):

Conjecture 3 (The Novikov conjecture on homotopy invariance of higher signatures)
Let h : N → M be a homotopy equivalence; then for any x ∈ H ∗(B�,Q):

σx(M, f ) = σx(N, f ◦ h).

We say that the Novikov conjecture holds for � if Conjecture 3 holds for every
x ∈ H ∗(B�,Q). We refer to the detailed survey paper [FRR95] for the history of
this conjecture, and an explanation why it is important.

7As Connes once pointed out: “E� is a point on which � acts freely!.”
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We summarize now Kasparov’s approach from section 9 in [Kas95].8 Keeping
notations as in Conjecture 3, Kasparov considers the homology class D(M) =
L(M) ∩ [M] ∈ H∗(M,Q) which is Poincaré-dual to L(M), and Conjecture 3 is
equivalent to the homotopy invariance of the class f∗(D(M)) ∈ H∗(B�,Q).

Let d : �p(M) → �p+1(M) be the exterior derivative on differential forms. Up
to crossing M with the circle S1, we may assume that n = dimM is even. Fix an
auxiliary Riemannian metric onM . This allows to define the adjoint d∗ : �p(M) →
�p−1(M): it satisfies d∗ = − $ d$, where $ is the Hodge operator associated with
the Riemannian structure.

Now consider d + d∗ acting on the space of all forms �(M) = ⊕n
p=0�

p(M).
One way to consider this as a graded operator is the following: let τ be an involution
on the space of all forms defined by:

τ(ω) = ip(p−1)+ n
2 $ ω , ω ∈ �p(M).

It is verified that d + d∗ anti-commutes with τ : with this grading on forms, d + d∗
is the signature operator on M . As it is an elliptic operator, it defines an element
[d + d∗] in the group K0(M) of K-homology9 of M . Note that, by connectedness
of the space of Riemannian metrics on M , the element [d + d∗] ∈ K0(M) does not
depend on the choice of a Riemannian metric. Using Hodge theory, it is classical
to check that the index of d + d∗ is exactly the topological signature of M , i.e.,
the signature of the quadratic form given by cup product on the middle-dimensional
cohomology H

n
2 (M,C). Now consider the index pairing between K-theory and K-

homology of M:

K0(M)×K0(M) → Z : (ξ,D) �→ Ind(Dξ ),

the index of the differential operator Dξ , which is D with coefficients in the vector
bundle ξ on M . In particular Ind((d + d∗)ξ ) is the index of the signature operator
with coefficients in ξ , i.e., acting on sections of �∗(M) ⊗ ξ . It is given by the
cohomological version of the Atiyah–Singer index theorem:

Ind((d + d∗)ξ ) = 〈Ch∗(ξ) ∪ L(M), [M]〉, (2.2)

where Ch∗ denotes the Chern character in cohomology. Recall that, for every finite
CW -complex X, we have Chern characters in cohomology and homology:

Ch∗ : K0(X) →
∞⊕

k=0

H 2k(X,Q);

8Although published only in 1995, the celebrated “ Conspectus” was first circulated in 1981.
9K-homology is the homology theory dual to topological K-theory. It was shown by Atiyah [Ati70]
that an elliptic (pseudo-)differential operator on M defines an element in K0(M).
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Ch∗ : K0(X) →
∞⊕

k=0

H2k(X,Q),

which are rational isomorphisms, compatible with the index pairing and with the
pairing between cohomology and homology. Equation 2.2 then implies that

Ch∗([d + d∗]) = L(M) ∩ [M] = D(M). (2.3)

Assume for simplicity that B� is a closed manifold,10 which implies that � is
torsion-free. Recall that Conjecture 3 is equivalent to homotopy invariance of
f∗(D(M)). By Equation 2.3 and functoriality of Ch∗, we have:

f∗(D(M)) = f∗(Ch∗([d + d∗])) = Ch∗(f∗[d + d∗]).

By rational injectivity of Ch∗, we see that Conjecture 3 is equivalent to the
homotopy invariance of f∗[d + d∗] in K0(B�)⊗Z Q.

In the final section of [Kas95], Kasparov defines a homomorphism β :
Ki(B�) → Ki(C

∗
r (�)) that later was identified with the assembly map

μr : K�
i (E�) → Ki(C

∗
r (�)). Kasparov’s β is defined as follows: keep

the assumption that B� is a finite complex. Form the induced vector bundle
L� = E� ×� C

∗
r (�) (where � acts on C∗

r (�) by left translations). This is a
vector bundle with fiber C∗

r (�) over B�, sometimes called the Mishchenko line
bundle. Its space C(E�,C∗

r (�))
� of continuous sections, is a projective finite

type module over C(B�) ⊗ C∗
r (�) (and as such it defines a K-theory element

[L�] ∈ K0(C(B�)⊗C∗
r (�))). For a K-homology element [D] ∈ K0(B�) given by

an elliptic (pseudo-)differential operatorD over B� we may form the operatorDL�
with coefficients in L�: its kernel and cokernel are projective finite type modules
over C∗

r (�), so their formal difference defines an element β[D] ∈ K0(C
∗
r (�)): this

defines the desired homomorphism11

β : K0(B�) → K0(C
∗
r (�)).

Coming back to the Novikov conjecture, recall that it is equivalent to the
homotopy invariance of f∗[d+d∗] inK0(B�)⊗Z Q. Now one of Kasparov’s result
in [Kas95] (Theorem 2 in the final section) is:

Theorem 2.8 If M is an even-dimensional smooth, closed, oriented manifold and
f : M → B� is a continuous map, then β(f∗[d+d∗]) ∈ K0(C

∗
r (�)) is a homotopy

invariant of M . �

10When B� is a general CW -complex we must replace K0(B�) by RK0(B�) = lim−→X
K0(X),

where X runs along compact subsets of B�.
11In terms of Kasparov theory, to be defined in Chapter 3 below, this can be expressed using
Kasparov product: β[D] = [L�] ⊗C(B�) [D].
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As an immediate consequence of Theorem 2.8, we get the following result:

Corollary 2.9 If the map β is rationally injective, then the Novikov conjecture
(Conjecture 3) holds for �.

The main result of Kasparov’s Conspectus [Kas95] is the following:

Theorem 2.10 If � is a discrete subgroup of a connected Lie group, then the map
β is injective.

Corollary 2.11 The Novikov conjecture holds for any discrete subgroup of a
connected Lie group.

3 Index maps in K-theory: the contribution of Kasparov

3.1 Kasparov bifunctor

The powerful tool developed by Kasparov in his proof of the Novikov conjecture is
the equivariant KK-theory. We refer to [Kas95] and [Kas88].

For any locally compact group G and A, B two G − C∗-algebras (i.e., C∗-
algebras equipped with a strongly continuous action by automorphisms of the group
G), Kasparov defines an abelian group KKG(A,B). The main tool in the theory is
the cup product

KKG(A,B)×KKG(B,C) → KKG(A,C) : (x, y) �→ x ⊗B y.

In particular, if C is the field of complex numbers equipped with the trivial G-
action, KKG(C,C) is a ring, which turns out to be commutative. Moreover the
homomorphisms

τD : KKG(A,B) → KKG(A⊗D,B ⊗D)

defined by tensoring by a C∗-algebraD equip all theKKG(A,B)’s with a structure
of KKG(C,C)-modules.

One of the most important ingredients in G-equivariant KK-theory is the
existence of descent maps: for all G − C∗algebras A and B there are group
homomorphisms

jG,r : KKG(A,B) → KK
(
C∗
r (G,A), C

∗
r (G,B)

)

jG,max : KKG(A,B) → KK
(
C∗

max(G,A), C
∗
max(G,A)

)
,

where C∗
r (G,A) and C∗

max(G,A) denote respectively the reduced and the full
crossed product.
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The abelian group KKG(A,B) is defined as follows:

Definition 3.1 An (A,B)-Fredholm bimodule is given by:

(i) a B-Hilbert module E;
(ii) a covariant representation (π, ρ(g)) of (G,A) on the Hilbert module E;

(iii) an operator T on E , B-bounded and self-adjoint (i.e., T = T ∗) and such that:
for any a in A and g in G, the operators (1 − T 2)ρ(a), Tρ(a) − ρ(a)T , and
T π(g) − π(g)T are B-compact operators; moreover the map g �→ T π(g) −
π(g)T is norm continuous.

Such a (A,B)-Fredholm module is also called odd (A,B)-Fredholm module. An
even (A,B)-Fredholm module is given by a (A,B)-Fredholm module together with
a Z/2-grading on the module E, such that the covariant representation preserves the
grading, and the operator T is odd with respect to the grading.

One defines a homotopy of (A,B)-Fredholm modules to be a (A,B⊗C[(0, 1])-
Fredholm module. An element of KKG(A,B) is defined as a homotopy class of
even (A,B)-Fredholm modules. Addition is given by direct sum. The zero element
is given by the class of degenerate modules, i.e., those where “compact” is replaced
by “zero” in Definition 3.1. When necessary we use the notation KKj

G(A,B) with
j = 0 (resp. 1) for the even (resp. odd case).

When there is no group acting, we simply write KK(A,B). Ordinary K-
theory for C∗-algebras is recovered by K∗(B) = KK∗(C, B), while K-homology
corresponds to K∗(A) = KK∗(A,C).

3.2 Dirac induction in KK-theory

In [Kas95], Kasparov gives an interpretation of the Dirac induction map from
K∗(C∗(K,A)) to K∗(C∗

r (G,A)) in the framework of KK-theory. Here G is a
semisimple Lie group with finite center and K a maximal compact subgroup. We
assume that the adjoint representation of K on V = g/k lifts to Spin(V ). The
symmetric space X = G/K then carries a G-invariant spin structure. Let D be the
corresponding Dirac operator, aG-invariant elliptic operator defined on the sections
of the spinor bundle S of X.

We define an element α of the group KKj
G(C0(X),C) as the homotopy class of

the (C0(X),C)-Fredholm bimodule defined by:

(1) The Hilbert space L2(X, S) of L2-sections of the spinor bundle S.
(2) The covariant action on L2(X, S) of the G − C∗-algebra C0(X) of continuous

functions on X vanishing at infinity.
(3) The operator F = D(1 + D2)−1/2 obtained by functional calculus from the

Dirac operator D.
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Note that the bundle S is graded for j even, and trivially graded if j is odd. The
above Fredholm module therefore defines an element α ∈ KK

j
G(C0(G/K),C),

where j = dimG/K ( mod 2).
Now consider the following composition

KKG(C0(G/K),C) → KKG(C0(G/K)⊗A,A) → KK
(
C∗(K,A), C∗

r (G,A)
)
,

where the first map is τA and the second is jG,r , taking into account the Morita
equivalence of C∗

r (G,C0(G/K)⊗A) with C∗(K,A). The image of α by the above
composed map is an element of KKj(C∗(K,A), C∗

r (G,A)) which defines a map

α̃A : K∗+j (C∗(K,A)) → K∗
(
C∗
r (G,A)

)
.

Note the two special cases:

(1) When A = C, this is nothing but the Connes–Kasparov map K∗+j (C∗(K)) →
K∗(C∗

r (G)), see Conjecture 1.
(2) When � is a torsion-free discrete cocompact subgroup ofG, andM = �\G/K ,

this gives the map β : K∗+j (C(M)) → K∗(C∗
r (�)), see section 2.5 where

M = B�, the classifying space of �.

3.3 The dual-Dirac method and the γ -element

In order to construct the inverse map, Kasparov defines in [Kas95] the element

β ∈ KKj
G(C, C0(X))

as the homotopy class of the following (C, C0(X))-Fredholm bimodule:

(1) The C0(X)-Hilbert module C0(X, S) of sections of the spinor bundle S;
(2) the natural action of G on C0(X);
(3) the operator on C0(X) which is the Clifford multiplication by the vector field b

onX defined as follows: let x0 be the origin inX (i.e., the class of the identity in
G/K), then the value of b at a point x ∈ X is the vector tangent to the geodesic
from x to x0, and of length ρ(1 +ρ2)−1/2 if ρ is the distance between x and x0.

Similarly to what was done for α, the element β ∈ KK
j
G(C, C0(G/K)) gives

rise to an element β̃ ofKKj(C∗
red(G,A), C

∗(K,A)) by applying to β the following
maps:

KKG((C, C0(G/K)) → KKG(A,C0(G/K)⊗A) → KK
(
C∗
r (G,A), C

∗(K,A)
)
,

hence a map K∗(C∗
r (G,A)) → K∗+j (C∗(K,A)) which is a candidate to be the

inverse of the index map.



The Baum–Connes conjecture: an extended survey 145

In other words, one would hope that the following equalities hold in KK-theory:
α⊗Cβ = 1 inKKG(C0(X), C0(X)) and β⊗C0(X) α = 1 inKKG(C,C). However,
such a dream is not fulfilled. Only the first statement is true in general.

Theorem 3.2 One has α ⊗C β = 1 in KKG(C0(X), C0(X)). As a consequence,
γ := β ⊗C0(X) α is an idempotent of the ring KKG(C,C) , i.e., γ ⊗C γ = γ .

This element γ plays a key role in the Baum–Connes conjecture. The main step
in the proof of Theorem 3.2 is the following rotation lemma:

Lemma 3.3 α ⊗C β = τC0(X)(β ⊗C0(X) α).

On the other hand, Kasparov shows

Lemma 3.4 RestGK(γ ) = 1 in R(K),

where

RestGK : KKG(C,C) → R(K)

is the natural restriction map. This is aK-equivariant version of the Bott periodicity.
Namely, from theK-equivariant point of view, the spaceG/K can be replaced by its
tangent space V at x0. Then the Euclidean space V is equipped with a representation
of K which factors though Spin(V ) and the Bott periodicity has an equivariant
version, an isomorphism between K∗(C∗(K,C0(V ))) and R(K).

Corollary 3.5 τC0(G/K)(γ ) = 1 in KKG(C0(G/K),C0(G/K)).

This follows from the fact that τC0(G/K) = IndGK ◦ RestGK , where the induction
IndGK : R(K) → KKG(C0(G/K),C0(G/K)) is defined in [Kas88]. Theorem 3.2
follows by combining Lemma 3.3 with Corollary 3.5.

Since γ is an idempotent, the ring KKG(C,C) is a direct sum of two subrings

KKG(C,C) = γKKG(C,C)⊕ (1 − γ )KKG(C,C).

Moreover, by Lemma 3.4 the restriction mapKKG(C,C) → KKK(C,C) = R(K)

is an isomorphism from γKKG(C,C) to R(K), and vanishes on the complement
(1 − γ )KKG(C,C). More generally for any A, B as above,

KKG(A,B) = γKKG(A,B)⊕ (1 − γ )KKG(A,B),

the restriction map is an isomorphism from γKKG(A,B) to KKK(A,B) and
vanishes on (1 − γ )KKG(A,B).

The element γ acts on the K-theory of C∗
r (G,A) by an idempotent map which

can be described as follows: consider the composition of ring homomorphisms

KKG(C,C) → KKG(A,A) → KK
(
C∗
r (G,A), C

∗
r (G,A)

)

→ End
(
K∗

(
C∗
r (G,A)

))
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and take the image of the idempotent γ by the above map:

γ̃A ∈ End
(
K∗

(
C∗
r (G,A)

))
.

The results of Kasparov [Kas95] [Kas88] can then be summarized as follows:

Theorem 3.6 The map α̃A is injective.12 Its image inK∗(C∗
r (G,A)) is equal to the

image of the idempotent map γ̃A.

Corollary 3.7 The Connes–Kasparov conjecture with coefficients in A (i.e., the
statement that α̃A is an isomorphism) is equivalent to the equality γ̃A = Id.

Corollary 3.8 If γ = 1 inKKG(C,C), then the Connes–Kasparov conjecture with
coefficients is true.

3.4 From K-theory to K-homology

All the constructions above rest upon the assumption that the space X = G/K

carries a G-equivariant structure of a spin manifold, or equivalently that the
representation of K on V ∗ = T ∗

x0
X is spinorial.

In the case of a general connected Lie group, this is not necessarily the case, and
Kasparov’s constructions have to be modified as follows: consider the cotangent
bundle T ∗X which has an almost-complex structure. There is therefore a Dirac
operator on T ∗X, which defines an element α ∈ KKG(C0(T

∗X),C). Applying the
same procedure as above yields an element ofKK(C∗(K,A⊗C0(V

∗)), C∗
r (G,A))

since C∗(G,A⊗ C0(T
∗X)) is Morita equivalent to C∗(K,A⊗ C0(V

∗)).
Therefore the element α defines a map

K∗
(
C∗ (K,A⊗ C0(V

∗)
)) → K∗

(
C∗
r (G,A)

)
.

Note that there is no dimension shift but thatA is replaced byA⊗C0(V
∗). As usual,

note the special cases A = C and A = C(G/�)

(1) K∗(C∗(K,C0(V
∗))) → K∗(C∗

r (G));
(2) K∗(T ∗M) → K∗(C∗

r (�)), where M = �\G/K .

In the same way one can define a dual-Dirac element β ∈ KKG(C, C0(T
∗X)) and

an element γ ∈ KKG(C,C). The same results as above do hold.
The role of the cotangent bundle T ∗X or equivalently the representation of K

on V ∗ = T ∗
x0
X is closely related to Poincaré duality in K-theory. The latter is

conveniently formulated in Kasparov theory as follows: as we shall see, the left-hand
side of the conjecture should in fact be interpreted, rather than a K-theory group, as

12The injectivity of α̃A is responsible for the Novikov conjecture, Conjecture 3: see Section 4.5.1.
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a K-homology group. The Dirac induction map appears rather as the composition
of the assembly map with the Poincaré duality map.

Let us explain that point. In Kasparov theory, the K-homology K∗(A) of a C∗-
algebra is defined as the group KK(A,C). There is a duality pairing

K∗(A)⊗K∗(A) → Z

with the K-theory K∗(A) = KK(C, A), defined by the cup product

KK(C, A)⊗KK(A,C) → KK(C,C) = Z.

For example, if M is a compact manifold, the K-homology group K∗(M) =
K∗(C(M)) can be described, according to Atiyah [Ati70], as the group Ell(M) of
classes of elliptic operators on the manifoldM . The pairingK∗(M)⊗K∗(M) → Z
associates to a vector bundle E and an elliptic operator D the index of the operator
DE with coefficients in E. Poincaré duality in K-theory is a canonical isomorphism

K∗(T ∗M) → K∗(M)

between the K-homology of M and the K-theory of the total space T ∗M of
its cotangent bundle. Such a map can be interpreted as follows: an element of
K∗(T ∗M) is the homotopy class of an elliptic symbol on M . Its image in K∗(M)
is the class of an elliptic pseudo-differential operator associated to that symbol. In
Kasparov theory, one can interpret Poincaré duality as the existence of two elements,
respectively of KK(C(M) ⊗ C0(T

∗M),C) and of KK(C, C(M) ⊗ C0(T
∗M)),

inverse to each other for the cup product. See the details in [Kas88].
This allows to reformulate the conjecture as follows: for the case of a torsion-

free discrete cocompact subgroup � as above, the map K∗(T ∗M) → K∗(C∗
r (�))

becomes13

K∗(M) → K∗
(
C∗
r (�)

)
.

In general, one needs the G-equivariant version of Poincaré duality for the space
X = G/K . There are two elements one of KKG(C0(X) ⊗ C0(T

∗X),C) and the
other of KKG(C, C0(X)⊗ C0(T

∗X)) that are inverse to each other.
Then for any G− C∗-algebra A, one has an isomorphism

KKG
(
C, C0(T

∗X)⊗ A
) → KKG (C0(X),A) .

One can show that the first group is isomorphic to

KK
(
C, C∗ (G,C0(T

∗X)⊗ A
)) = KK

(
C, C∗ (K,C0(V

∗)⊗ A
))
.

13This is actually the same map as the map β from Section 2.5.
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The Dirac induction with coefficients in A can therefore be defined as a map

KKG(C0(X),A) → K∗
(
C∗

red(G,A)
)

which in the case without coefficients can be written as KG∗ (X) → K∗(C∗
red(G)).

3.5 Generalization to the p-adic case

Shortly after the work of Kasparov, it became natural to investigate the analogue
of the Kasparov Dirac–dual-Dirac method when real Lie groups are replaced by p-
adic groups. According to the philosophy of Bruhat and Tits the p-adic analogue
of the symmetric space is a building of affine type (see [BT72, Tit75]). It shares
with symmetric spaces the property of unique geodesics between two points, and
the fact that the stabilizers of vertices are maximal compact subgroups (note that
there may be several conjugacy classes of such subgroups). In the rank one case,
e.g., SL(2,Qp), the Bruhat–Tits building is the Bass–Serre tree. Julg and Valette
[JV88] have constructed an element γ for buildings using an operator on the Hilbert
space &2(X) (the set X is seen as the set of objects of all dimensions) which may be
seen as the “vector pointing to the origin,” generalizing the Julg-Valette element for
trees [JV84].

The question of an analogue of the Connes–Kasparov conjecture for p-adic
groups has been considered by Kasparov and Skandalis in [KS91]. They met the
following difficulty: the building is not a manifold, and it does not satisfy the
Poincaré duality in the usual sense. However, ifX is a simplicial complex, there is an
algebra AX which plays the role played by the algebra C∗(TM) = C0(T

∗M) in the
case of a manifold M . The algebra AX is not commutative, it is in fact the algebra
of a groupoid associated to the simplicial complex X. Moreover, AX is Poincaré
dual in K-theory to the commutative algebra C0(|X|) of continuous functions on the
geometric realization of X: there is a canonical isomorphism

K∗(AX) → K∗(C0(|X|))

from the K-theory of the algebra AX to the K-homology of the space |X|.
Let us now assume that X is the Bruhat–Tits building of a reductive linear group

over a non-Archimedean local field (e.g., Qp). Then the above form of the Poincaré
duality, in a G-equivariant way, shows the isomorphism

KKG(C0(|X|), A) = K∗
(
C∗(G,AX ⊗ A)

)

for any G− C∗-algebra A.
By analogy with the Lie group case, it was natural to construct a map from the

group above to the K-theory group K∗(C∗
r (G,A)). Kasparov and Skandalis [KS91]
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construct a Dirac element α ∈ KKG(AX,C) which defines as above maps in K-
theory:

K∗(C∗(G,AX ⊗ A)) → K∗(C∗
r (G,A)).

The left-hand side can be computed by Morita equivalence from the K-theory of
crossed products of A by the compact subgroups of G stabilizing the vertices of
a simplex viewed as a fundamental domain. A special case is the Pimsner exact
sequence for trees [Pim86].

Kasparov and Skandalis have shown the injectivity of the above map (which
implies the Novikov conjecture for discrete subgroups of p-adic groups) by
constructing a dual-Dirac element β ∈ KKG(C,AX). They show that

β ⊗AX α = γ ∈ KKG(C,C),

the Julg-Valette element of [JV88]. A rotation trick shows that α ⊗C β = 1.
At this point we note that the Lie group case and the p-adic group case can be

unified by the K-homology formulation of the conjecture. If Z denotes the locally
compact G-space which is the symmetric space G/K in the Lie case, the geometric
realization |X| of the Bruhat–Tits building in the p-adic case, the conjecture is that
a certain map

KKG(C0(Z),A) → K∗(C∗(G,A))

is an isomorphism. This will become more precise with the Baum–Connes–Higson
formulation of the conjecture for general locally compact groups: the role of the
symmetric spaces or Bruhat–Tits buildings will be clarified as classifying spaces
for proper actions, see Sections 4.2 and 4.3. In both cases injectivity can be proved
by a Dirac–dual-Dirac method, which hints to a general notion of γ -element, as
explained in Section 4.4.

4 Towards the official version of the conjecture

4.1 Time-dependent left-hand side

There is a certain time-dependency in the left-hand side of the Baum–Connes
conjecture, hence also in the assembly map. Let us first recall the fundamental
concept of proper actions.

Definition 4.1

1. Let G be a locally compact group. A G-action on a locally compact space X is
said to be proper if the action map
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G×X → X : (g, x) �→ gx

is proper, i.e., the inverse image of a compact subset of X, is compact.
2. IfX is a locally compact, properG-space, then the quotient spaceG\X is locally

compact, and X is said to be G-compact if G\X is compact.

In the original paper of Baum–Connes [BC00], the conjecture is formulated
only for Lie groups—possibly with infinitely many connected components, so
as to include discrete groups. However, the authors take great care in allowing
coefficients, in the form of group actions on smooth manifolds. So if G is a Lie
group (not necessarily connected) and M is a manifold, the goal is to identify the
analytical object K∗(C∗

r (G,C0(M))) (the K-theory of the reduced crossed product
C∗-algebra), with something of geometrical nature.

This is done in two steps. First, let Z be a proper G-manifold. Denote by V 0
G(Z)

the collection of all G-elliptic complexes of vector bundles (E+, E−, σ ), where
E+, E− are G-vector bundles over Z, and σ : E+ → E− is a G-equivariant
vector bundle map, which is invertible outside of a G-compact set. One also defines
V 1
G(Z) = V 0

G(Z × R), where G acts trivially on R.
The second—and main—step is to consider an arbitrary G-manifold M and

to “approximate” it by proper G-manifolds; here one can identify, in germ, the
presence of the classifying space forG-proper actions that will come to the forefront
in the “official” version of the conjecture in [BCH94]; see Section 4.3 below. In
[BC00], a K-cocycle for M will be a triple (Z, f, ξ), where:

• Z is a proper, G-compact, G-manifold;
• f : Z → M is a G-map;
• ξ ∈ V ∗

G(T
∗Z ⊕ f ∗T ∗M).

We denote by �(G,M) the set of K-cocycles for M . If (Z, f, ξ) and (Z′, f ′, ξ ′)
are two equivariant K-cycles for X, then their disjoint union is the equivariant K-
cycle (Z

∐
Z′, f

∐
f ′, ξ

∐
ξ ′). It is assumed that manifolds are not necessarily

connected, and their connected components do not always have the same dimension.
The operation of disjoint union will give addition.

Suppose that the manifolds Z1, Z2,M and the G-maps f1, f2, g fit into a
commutative diagram

Z1
h

f1

Z2

f2

M

Then, using the Thom isomorphism, it is possible to construct a “wrong way
functoriality” Gysin map

h! : K∗
G

(
T ∗Z1 ⊕ f ∗

1 T
∗M

) → K∗
G

(
T ∗Z2 ⊕ f ∗

2 T
∗M

)
.
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Two K-cocycles (Z1, f1, ξ1), (Z2, f2, ξ2) are said to be equivalent14 if there exists a
K-cocycle (Z̃, f̃ , ξ̃ ) andG-maps h1 : Z1 → Z̃, h2 : Z2 → Z̃ making the following
diagram commutative:

Z1
h1

f1

Z̃

f̃

Z2
h2

f2

M

,

and such that h1,!(ξ1) = ξ̃ = h2,!(ξ2). Then we define Ktop(G,M) as the quotient
of �(G,M) by this equivalence relation.

To construct the assembly map μr,M : Ktop(G,M) → K∗(C∗
r (G,C0(M))),

the construction is roughly as follows: start from a K-cocycle (Z, f, ξ) ∈ �(G,M).
Observe that f = p◦i, where i : Z → Z×M : z �→ (z, f (z)) and p : Z×M → M

is the projection onto the second factor. Replacing Z by Z×M and f by p, we may
assume that f is a submersion. Let then τ be the cotangent bundle along the fibers
of f . By the Thom isomorphism, the class ξ ∈ V ∗

G(T
∗Z ⊕ f ∗T ∗M) determines a

unique class η ∈ V ∗
G(η). For x ∈ M , set Zx = f−1(x). Then, restricting η to Zx we

get ηx ∈ V ∗(Zx), which can be viewed as the symbol of some elliptic differential
operator Dx on Zx . Then the family (Dx)x∈M is a G-equivariant family of elliptic
differential operators on M , so its G-index belongs to K∗(C∗

r (G,C0(M))) and we
set:

μ̃r,M(Z, f, ξ) = IndG(Dx)x∈M.

It is stated in Theorem 5 of [BC00] that this map μ̃r,M is compatible with wrong
way Gysin maps, so it descends to a homomorphism of abelian groups:

μr,M : Ktop(G,M) → K∗
(
C∗
r (G,C0(M))

)
,

and the main conjecture in [BC00] is that μr,M is an isomorphism for every Lie
group G and every G-manifold M .

4.2 The classifying space for proper actions, and its
K-homology

In the paper [BCH94], Baum, Connes, and Higson consider the class of all 2nd
countable, locally compact groupsG. They make a systematic use of the classifying
space for proper actions EG, first introduced in this context in [10]. TheG/K space

14The fact that it is indeed an equivalence relation does not appear in [BC00].
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associated to a connected Lie group and the Bruhat–Tits building of a p-adic group
are special cases of classifying space of proper actions as we mentioned already in
Section 3.5.

Definition 4.2 Let G be a 2nd countable locally compact group. A classifying
space for proper actions for G, is a proper G-space EG with the properties that,
if X is any proper G-space, then there exists a G-map X → EG, and any two
G-maps from X to EG are G-homotopic.

When � is a countable discrete group, we could also define E� as a �-CW-
complex such that the fixed point set E�H is empty whenever H is an infinite
subgroup of �, and is contractible whenever H is a finite subgroup (in particular
E� is itself contractible).

Back to the general case: even if we refer to EG as “the” universal space for
proper actions of G, it is important to keep in mind that EG is only unique up to
G-equivariant homotopy, and the definition of the left-hand side Ktop∗ (G,A) will
have to account for this ambiguity. So we define

K
top∗ (G,A) = lim

X
KKG∗ (C0(X),A),

where X runs in the directed set of closed, G-compact subsets of EG. This is the
left-hand side of the assembly map for G� A.

4.3 The Baum–Connes–Higson formulation of the conjecture

For any proper, G-compact G-space X, the space C0(X) is a module of finite type
over the algebra C∗(G,C0(X)) (which is both the full and the reduced one) whose
class inK0(C

∗(G,C0(X))) = KK(C, C∗(G,C0(X))) will be denoted by eX. Then
for any G− C∗-algebra A, Kasparov’s descent map

jG,r : KKG(C0(X),A) → KK
(
C∗(G,C0(X)), C

∗
r (G,A)

)

can be composed with the left multiplication by eX :

KK
(
C∗(G,C0(X)), C

∗
r (G,A)

) → KK
(
C, C∗

r (G,A)
)

to define a map KKG(C0(X),A) → K∗(C∗
r (G,A)).

WhenX runs in the directed set of closed,G-compact subsets ofEG, those maps
are compatible with the direct limit, hence define the assembly map or index map:

μA,r : Ktop∗ (G,A) → K∗
(
C∗
r (G,A)

)
.

ForA = C, the mapμA,r is simply denoted byμr . The Baum–Connes conjecture
is then stated as follows, in its two classical versions:
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Conjecture 4 (The Baum–Connes conjecture) For all locally compact, 2nd count-
able groups G the assembly map μr is an isomorphism.

Conjecture 5 (The Baum–Connes conjecture with coefficients) For all locally com-
pact 2nd countable groupsG and for allG−C∗-algebras A, the assembly map μA,r
is an isomorphism.

Conjecture 5 has the advantage of being stable under passing to closed subgroups
(see [BCH94]), and the disadvantage of being false in general: see Sections 7.2
and 9.3.3. If G is discrete, the classifying space BG classifies actions of G which
are free and proper. By forgetting about freeness of the action we get a canonical
map

ιG : K∗(BG) → K
top∗ (G)

which is rationally injective. The Strong Novikov conjecture for G is the rational
injectivity of μr ◦ ιG.

Remark 4.3 If p ∈ K∗(C∗(G,C0(X))) = KK∗(C, C∗(G;C0(X))) is a fixed
element, the Kasparov product p⊗C∗(G,C0(X)) : x �→ p⊗C∗(G,C0(X))x provides
a map KK∗(C∗(G,C0(X)), C

∗
r (G,A)) → KK∗(C, C∗

r (G,A)). Observe that if
p is given by an idempotent of C∗(G,C0(X)), and x = (E+, E−, F ), with
E+, E− Hilbert C∗-modules over C∗

r (G,A) and F ∈ BC∗
r (G,A)

(E+, E−), then
p ⊗C∗(G,C0(X)) x is described simply as (pE+, pE−, pFp). It turns out that
eX can be described by such an idempotent. Indeed, by properness and G-
compactness, there exists a Bruhat function on X, i.e., a non-negative function
f ∈ Cc(X) such that

∫
G
f (g−1x) dg = 1 for every x ∈ X. Set then e(x, g) =√

f (x)f (g−1x). Recalling that the product in Cc(X×G) is given by (a$b)(x, g) =∫
G
a(x, h)b(h−1x, h−1g) dh, one sees immediately that e2 = e. Since the set of

Bruhat functions is clearly convex, we have a canonical K-theory class [eX] ∈
K0(C

∗(G,C0(X))).

Remark 4.4 Assume that A = C. Let x = (E+, E−, F ) be an element of
KKG

0 (C0(X),C). Denote by π± the representation of C0(X) on E±. Say that F
is properly supported if for every φ ∈ Cc(X) there exists ψ ∈ Cc(X) such that
π−(ψ)Fπ+(φ) = Fπ+(φ). Replacing F by some homotopical operator (so not
changing the K-homology class of (E+, E−, F ), we may assume that F is properly
supported. Consider then the linear subspaces π±(Cc(X))E± of E±: those are
not Hilbert spaces in general, but these are Cc(G)-modules and F induces a G-
intertwiner between them. These spaces carry the Cc(G)-valued scalar product:

〈ξ, η〉(g) =: 〈ξ, ρ±(g)η〉 (ξ, η ∈ E±),

where ρ± denotes the unitary representation of G on E±. Completing those spaces
into C∗-modules over C∗

r (G), and extending F to the completion, we get a triple
μr(x) = (E+, E−,F) ∈ KK∗(C, C∗

r (G)) = K∗(C∗
r (G)), also called the G-index

of F .
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The two above approaches, for A = C, were shown to be equivalent in Corollary
2.16 of Part 2 of [MV03].15

Remark 4.5 It was only in 2009 that Baum et al. [BHS10] reconciled the original
approach of [BC00] with the Kasparov-based approach of [BCH94], in the case of
discrete groups.

For general Lie groups (with arbitrarily many connected components), the
equivalence between the approaches in [BC00] and [BCH94] has not been proved
in print so far. However, for connected Lie groups both approaches reduce to the
Connes–Kasparov conjecture so there is no problem.

Remark 4.6 There is also a homotopical approach to the Baum–Connes conjecture,
developed by Davis and Lück [DL98]; it is valid for discrete groups only. It uses
homotopy spectra over the orbit category. More precisely, let G be a group, and
denote by OF (G) the category whose objects are homogeneous spaces G/H ,
with H a finite subgroup, and morphisms are G-equivariant maps. Equivariant K-
homology is obtained by defining some functor from OF (G) to the category of
�-spectra, extending it to a functor from G-spaces to �-spectra, and then applying
the i-th homotopy group to get KG

i (with i ≥ 0). It turns out that the value
of their functor on G/H , for every subgroup H on G, is K∗(C∗

r (G)). Hence
the assembly map, in that framework, is the map functorially associated to the
projection EG → G/G = {∗}. The equivalence with the approach in [BCH94]
was worked out by Hambleton and Pedersen [Hp04].

For the operator algebra inclined reader, we emphasize that the Davis-Lück
approach, abstract as it may seem, allows for explicit computations of the left-hand
side Ktop∗ (G), for G discrete: this is due to the existence of an Atiyah–Hirzebruch
spectral sequence relating Bredon homology HF∗ (EG,RC) to equivariant K-
homology. In favorable circumstances (e.g., dimEG ≤ 3), there are exact sequences
allowing one to compute exactly (i.e., integrally, not just rationally) Ktop∗ (G) from
Bredon homology (see [MV03], Theorem I.5.27). For specific classes of groups, the
Baum–Connes conjecture can be checked by hand in this way (see, e.g., [FPV17]
for the case of lamplighter groups F 1 Z, with F a finite group).

4.4 Generalizing the γ -element method

4.4.1 The case of groups acting on bolic spaces

The general formulation of the Baum–Connes conjecture suggests the problem of
generalizing the γ -element method, which was first elaborated in the realm of
Riemannian symmetric spaces and of their p-adic analogues, Bruhat–Tits buildings.

15Note that the proof is given there only for discrete groups, but the proof goes over to locally
compact group.
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Kasparov and Skandalis [KS03] have explored the case of a combinatorial analogue
of simply connected Riemannian manifold with non-positive curvature. The good
framework is that of weakly bolic, weakly geodesic metric spaces of bounded coarse
geometry (see the definition in their paper). They prove the following:

Theorem 4.7 Let G be a group acting properly by isometries on a weakly bolic,
weakly geodesic metric space of bounded coarse geometry. Then the Baum–Connes
assembly map is injective.

The proof involves analogues of the Dirac, dual-Dirac, and γ -elements. However,
α and β should no more be thought as defining the Baum–Connes assembly map
and the candidate for its inverse. They rather give maps imbedding the K-theory
of arbitrary crossed products into the K-theory of crossed products by some proper
G-algebras, for which the conjecture is known to be true:

Definition 4.8 Let X be a G-space. A G−X−C∗-algebra is a G−C∗-algebra B
equipped with a G-equivariant homomorphism C0(X) → Z(M(B)), the center of
the multiplier algebra of B. A G − C∗-algebra B is proper if there exists a proper
G-space X such that B is a G−X − C∗ algebra.

The following was proved by Chabert et al. [CEM01]16:

Theorem 4.9 The Baum–Connes morphism with coefficients in a properG-algebra
is an isomorphism.

In the case of a discrete groupG acting properly by isometries on a weakly bolic,
weakly geodesic metric space of bounded coarse geometry, Kasparov and Skandalis
define a proper algebra B, Dirac and dual-Dirac elements α ∈ KKG(B,C), β ∈
KKG(C, B) and consider the product γ = β ⊗B α ∈ KKG(C,C). In that case, it
is no more the case that α ⊗C β is equal to 1 in KKG(B,B), and this is in fact not
needed. However, one still has the fact that γ becomes 1 when restricted to finite
subgroups. This is enough to prove injectivity of the assembly map for such a group
G.

4.4.2 Tu’s abstract gamma element

The Kasparov–Skandalis method has been formalized by Tu who defined a general
notion of γ element for a locally compact group, such that the mere existence of
γ ∈ KKG(C,C) implies the injectivity of the Baum–Connes map, and that the
surjectivity is equivalent to the fact that γ̃A = Id with notations as in Theorem 3.6.
The techniques use the representable KK-theory of Kasparov and can also be
beautifully interpreted in the framework of equivariant KK-theory for groupoids

16See also Higson and Guentner [HG04, Theorem 2.19] and Kasparov and Skandalis [KS03]. The
case where G is a connected Lie group and B = C0(X), where X is a proper G-space, was
previously treated by Valette [Val88].
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as introduced by Le Gall [LG99]. See Chapter 7 below for details on the groupoid
framework.

Definition 4.10 A γ -element for G is an element γ of the ring KKG(C,C)
satisfying the following two conditions:

(1) there exists a proper G − C∗−algebra B and two elements α ∈ KKG(B,C)
and β ∈ KKG(C, B) such that γ = β ⊗B α ∈ KKG(C,C);

(2) for any compact subgroup K of G, the image of γ by the restriction map
KKG(C,C) → R(K) is the trivial representation 1K .

Remark 4.11 The second condition is technically formulated as follows: for any
proper G-space X, we have p∗(γ ) = 1 in RKKG(X; C,C) (where p∗ denotes
the induction homomorphism KKG(C,C) → RKKG(X; C,C)). The notations
are as follows: for X a G-space, A and B two G − X − C∗-algebras, Kasparov
defines RKKG(X;A,B) as the set of homotopy classes of (A,B)-Fredhom
bimodules equipped with a covariant action of the C∗-algebra C0(X), with the usual
assumption of compactness of commutators. The beautiful language of groupoids
allows to think of A and B as G −C∗-algebras with G = X�G the groupoid given
by the action of G on X. Then

RKKG(X;A,B) = KKG(A,B).

Now for two G − C∗-algebras A and B (no action of C0(X) is needed), Kasparov
defines

RKKG(A,B) = RKKG(X;A⊗ C0(X), B ⊗ C0(X))

= KKG(A⊗ C0(X), B ⊗ C0(X)).

In the definition of a γ -element, the map

p∗ : KKG(C,C) → RKKG(X; C,C)

is the pullback by the groupoid homomorphism p : G = X �G → G. Note that if
X = G/K with K a compact subgroup, then RKKG(X; C,C) = R(K).

Tu has proved the following [Tu00]:

Proposition 4.12 If an element γ exists, then it is unique. Moreover, it is an
idempotent of the ring KKG(C,C), namely γ ⊗C γ = γ .

Observe that, if a γ -element does exist, then it acts as the identity on any group
K
top∗ (G,A), for every G − C∗-algebra A. The relation with the Baum–Connes

conjecture can be stated as follows

Theorem 4.13 (Theorems 4.2 and 4.4 [Tu99c]) LetG be a locally compact group
admitting a γ -element.
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(1) The map μA,r is injective for every G− C∗-algebra A.
(2) The map μA,r is surjective if and only if the map γ̃A (i.e., Kasparov product

by jG,r (τA(γ ))) is the identity on K∗(C∗
r (G,A)). This is in particular true if

γ = 1.

Proof Let γ = β ⊗B α be a γ -element, with B a proper G− C∗-algebra. Let A be
any G− C∗-algebra. Then we have a commutative diagram:

Ktop(G, A)
⊗AτA(β)

μA,r

Ktop
∗ (G, A ⊗ B)

⊗A⊗B(τA(α))

μA⊗B,r�

Ktop(G, A)

μA,r

K∗(C∗
r (G, A))

⊗C∗
r (G,A)jG(τA(β))

K∗(C∗(G;A ⊗ B))
⊗

C∗(G,A⊗B)jG(τ(α))

K∗(C∗
r (G, A)),

with jG the descent map as in Section 3.1. Since A⊗B is a properG−C∗-algebra,
the map μA⊗B,r is an isomorphism, by Theorem 4.9. The assumption in (1) is that
the composition of the two maps on the top row is the identity: this implies that μA,r
is injective. The assumption in (2) is that moreover the composition of the two maps
on the bottom row is the identity: this implies that μA,r is also surjective. ��
Remark 4.14 The element γ initially defined by Kasparov in [Kas95] is of course
a special case of γ -element in the sense of Tu. Note that if K is a maximal compact
subgroup of a connected Lie group G, the element γ is simply characterized by the
conditions (cf. Proposition 4.1 in [Tu00]) that it factorizes through a properG−C∗-
algebra and that the image of γ by the restriction map KKG(C,C) → R(K) is the
trivial representation 1K .

4.4.3 Nishikawa’s new approach

Very recently (March 2019), Nishikawa [Nis19] introduced a new idea in the
subject, that amounts to constructing the γ element without having to construct
the Dirac and dual-Dirac elements. We briefly explain his approach. The standing
assumption is that the groupG admits a cocompact model forEG (in particularEG
is locally compact).

Definition 4.15 Let x be an element of KKG(C,C). Say that x has property (γ ) if
it can be represented by a Fredhom module KKG(C,C) such that:

1. For every compact subgroup K of G, x restricts to 1K in R(K).
2. The Hilbert space H carries a G-equivariant non-degenerate representation of
C0(EG) such that, for every f ∈ C0(EG), the map g �→ [g(f ), T ] is a norm
continuous map vanishing at infinity on G, with values in the ideal of compact
operators.
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3. Moreover, the integral

∫

G

g(c)T g(c)dg − T = −
∫

G

g(c)[g(c), T ]dg

is compact, where c is a compactly supported function on EG such that∫
G
g(c)2dg = 1.

It is not known whether the technical condition 3 follows from condition 2 or
is really needed. Nishikawa shows that such a Fredholm module allows to define,
for every G − C∗-algebra A, a map νxA : K∗(C∗

r (G,A)) → K
top∗ (G,A) =

KKG(C0(EG),A), which is a left inverse for the assembly map μA,r . One has
the following theorem:

Theorem 4.16 Assume that there exists a Fredholm module x = (H, F ) with
property (�). Then:

1. For every G− C∗-algebra A, the map μA,r is injective.
2. For everyG−C∗-algebra A, the map μA,r is surjective if and only if the element
x defines the identity on K∗(C∗

r (G,A)). In particular, if x = 1 in KKG(C,C),
Conjecture 5 holds for G.

Nishikawa also proves the following result:

Theorem 4.17

1. If there exists an element x of KKG(C,C) with property (γ ), then it is unique
and is an idempotent in KKG(C,C).

2. If G admits a γ element in the sense of Tu, then x = γ has the (γ ) property.

In particular, in the case of groups admitting an abstract γ element, any element
with the (γ ) property is in fact equal to γ .

Using this new approach, Nishikawa can reprove Conjecture 5 for Euclidean
motion groups, as well as the injectivity of the Baum–Connes map with coefficients
μA,r for G a semisimple Lie group. He also reproves the conjecture for groups
acting properly on locally finite trees and announces a generalization (with Brodzki,
Guentner, and Higson) to groups acting properly on CAT (0) cubic complexes.

4.5 Consequences of the Baum–Connes conjecture

4.5.1 Injectivity: the Novikov conjecture

In Section 2.5, we already emphasized that the Novikov conjecture (Conjecture 3)
on homotopy invariance of higher signature followed from the (rational) injectivity
of Kasparov’s map

β : K0(B�) → K0
(
C∗
r (�)

)
.
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In the case of a cocompact, torsion-free lattice of a connected Lie group G, the map
β coincides with the Dirac induction map

K0(M) → K0
(
C∗
r (�)

)

of Section 3.1. In general there is a natural injection group ι� : K0(B�) →
K�

0 (E�) and its composition with the assembly map μr gives β. That fact, taken
for granted for a long time, was proved only fairly recently by Land [Lan15].

Therefore, the Novikov conjecture follows from the Strong Novikov conjecture,
i.e., from the rational injectivity of the map μr ◦ ι� . In particular, the Novikov
conjecture follows from the injectivity of the assembly map μr .

We must here mention the beautiful recent approach of Antonini et al. [AAS18]
on K-theory with coefficients in the real numbers. They make use of von Neumann
theory of II1-factors. For such a factor N , the trace defines naturally an isomor-
phism from K0(N) to R whereas K1(N) = 0. The KK-theory with real coefficients
KKG

R (A,B) is defined as the inductive limit: of the groupsKKG(A,B⊗N) for all
N a II1-factorsN . Note that there is a mapKKG(A,B)⊗R → KKG

R (A,B) but it
is in general not an isomorphism. Any trace onA defines an element ofKKR(A,C).
In particular for � a discrete group, the canonical trace τ defines an element [τ ] of
KKR(C

∗
r (�),C) = KK�

R(C,C). The crucial remark of [AAS18] is the following:

Proposition 4.18 The element [τ ] is an idempotent of the ring KK�
R(C,C). More-

over for any proper and free space X, the identity 1C0(X) of the ring KK�
R(C,C)

satisfies 1C0(X) ⊗ [τ ] = 1C0(X).

The authors define the KKR-groups localized at the identity as the products by the
idempotent [τ ], i.e., KK�

R(A,B)τ = KK�
R(A,B)⊗C [τ ]. In particular the Baum–

Connes map can be localized as

μτ : Ktop

∗,R(�)τ → K∗,R
(
C∗
r (�)

)
τ
,

where the right-hand side is nothing but KK�
R(C, C

∗
r (�))τ and the left-hand side is

KK�
R(C0(X),C)τ (assume for simplicity that E� is cocompact).

The results of [AAS18] can be summarized as follows

Theorem 4.19 Let � be a discrete group.

1. If the Baum–Connes conjecture (with coefficients) holds for �, then μτ is an
isomorphism.

2. If the map μτ is injective, then the Strong Novikov conjecture holds for �.

The first point uses the Baum–Connes map with coefficients in any II1-factor.
The second point rests upon the observation that the map from E� to E� induces
an isomorphism from

K∗(B�)⊗ R = KK�
R(C0(E�),C) → K

top

∗,R(�)τ = KK�
R(C0(E�),C)τ .
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In other words, the conjecture that μτ is an isomorphism is intermediate
between the Baum–Connes conjecture (without coefficents) and the Strong Novikov
conjecture.

4.5.2 Injectivity: the Gromov–Lawson–Rosenberg conjecture

Let M be a Riemannian manifold of dimension n. The scalar curvature is a smooth
function κ : M → R that, at a point p ∈ M , measures how fast the volume of small
balls centered at p grows when compared to the volume of small balls of the same
radius in Euclidean space En. More precisely we expand the ratio V ol BM(p,r)

V ol BEn (0,r)
as a

power series in r:

V ol BM(p, r)

V ol BEn(0, r)
= 1 − κ(p)

6(n+ 2)
r2 + o(r2);

so positive scalar curvature means that small balls in M grow more slowly than
corresponding Euclidean balls.

Let M be now a closed spin manifold, and D the Dirac operator of M , the
Atiyah–Singer index formula for D is

Ind(D) = 〈Â(M), [M]〉,

where Â(M) is a polynomial in the Pontryagin classes, and [M] is the fundamental
class of M; see [BBB13]. Let � = π1(M) be the fundamental group of M , and let
f : M → B� be the classifying map. Fix x ∈ H ∗(B�,Q). The number 〈Â(M)[M]〉
being called the Â-genus, it is natural to call the numbers

Âx(M) =: 〈f ∗(x) ∪ Â(M), [M]〉

higher Â-genera, by analogy with higher signatures. The Gromov–Lawson–
Rosenberg conjecture (GLRC) states:

Conjecture 6 (GLRC) LetM be a closed spin manifoldM with fundamental group
�. If M admits a Riemannian metric with positive scalar curvature, then all higher
Â-genera do vanish: Âx(M) = 0 for all x ∈ H ∗(B�,Q).

GLRC for manifolds with given fundamental group �, follows from injectivity
of the assembly map for �, see Theorem 7.11 in [BCH94]. The fact that the usual Â-
genus vanishes for a closed spin manifold with positive scalar curvature, is a famous
result by Lichnerowicz.

See [RS95] for a lucid discussion of GLRC, together with speculations about a
suitable converse: does the vanishing of a certain K-theory class in the real K-theory
of C∗

r (�) implies the existence of a metric with positive scalar curvature on M?
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4.5.3 Surjectivity: the Kadison–Kaplansky conjecture

Let � be a discrete group. If g ∈ � is a group element of finite order n > 1, then
e = 1

n

∑n−1
k=0 g

k defines a non-trivial element in the complex group ring C� (“non-
trivial” meaning: distinct from 0 and 1). When � is torsion-free, it is not clear that
C� admits non-trivial idempotents, and around 1950, Kaplansky turned this into a
conjecture:

Conjecture 7 If � is a torsion-free group, then C� has no non-trivial idempotent.

Around 1954, Kadison and Kaplansky conjectured that this should be even true
by replacing C� by the larger reduced group C∗-algebra:

Conjecture 8 If � is a torsion-free group, thenC∗
r (�) has no non-trivial idempotent.

In contrast with the Novikov conjecture (Conjecture 3), Conjecture 8 is easy
to state. It is interesting that it follows too from the Baum–Connes conjecture
(Conjecture 4), actually from the surjectivity part.

Proposition 4.20 Let � be a torsion-free group. If the assembly map μr is onto,
then Conjecture 8 holds for �.

The proof of Proposition 4.20 goes through an intermediate conjecture. To
motivate this one, recall that any trace σ on a complex algebra A defines a
homomorphism

σ∗ : K0(A) → C : [e] �→ (T rn ⊗ σ)(e),

where e = e2 ∈ Mn(A) and T rn : Mn(A) → A is the usual trace. If A is
a C∗-algebra and σ is a positive trace, then the image of σ∗ is contained in R.
Consider now the canonical trace τ on C∗

r (�). The following conjecture is known
as conjecture of integrality of the trace.

Conjecture 9 If � is a torsion-free group, then the canonical trace τ∗ maps
K0(C

∗
r (�)) to Z.

It is then easy to see that Conjecture 9 implies the Kadison–Kaplansky conjecture
(Conjecture 8). Indeed, take e = e2 ∈ C∗

r (�). Since an idempotent in a unital C∗-
algebra is similar to a projection, we may assume that e = e∗ = e2. As 0 ≤ e ≤ 1
and τ is a positive trace, we have 0 ≤ τ(e) ≤ 1. But τ(e) ∈ Z by Conjecture 9,
so τ(e) is either 0 or 1. If 0 = τ(e) = τ(e∗e), then e = 0 by faithfulness of τ .
Replacing e by 1 − e, we see that if τ(e) = 1, then e = 1.

Proof of Proposition 4.20 By the previous remarks, it is enough to see that, for a
torsion-free group � such that μr is onto, Conjecture 9 holds. Actually we prove
that, assuming � to be torsion-free, τ∗ is always integer-valued on the image of μr
in K0(C

∗
r (�)).

Thanks to Remark 4.5, the domain of μr , i.e., the left-hand side of the Baum–
Connes conjecture, is the groupK0(�, pt), whose cycles are of the form (Z, ξ)with
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Z a proper �-compact manifold and ξ ∈ V�(T
∗Z), and by Section 4.1 we have

μr(Z, ξ) = Ind�(D̃), where D̃ is some �-invariant elliptic differential operator on
Z. As � is torsion-free, any proper �-action is free and proper, so that the map
Z → �\Z is a �-covering and we may appeal to Atiyah’s L2-index theorem
(Theorem 2.1): the operator D̃ descends to an elliptic operator on the compact
manifold �\Z and

τ∗(μr(Z, ξ)) = Ind�(D̃) = Ind(D).

Since Ind(D) ∈ Z, this concludes the proof.17 ��

4.5.4 Surjectivity: vanishing of a topological Whitehead group

For a group �, denote by Z� its integral group ring, and let

K
alg

1 (Z�) =: lim−→GLn(Z�)/En(Z�)

be the first algebraic K-theory group of Z�, where En(Z�) is the subgroup of
elementary matrices. We denote by [±�] the subgroup of Kalg

1 (Z�) generated by
the image of the inclusion of �×{±1} intoGL1(Z�). The Whitehead groupWh(�)
is then

Wh(�) = K
alg

1 (Z�)/[±�].

By analogy, using the inclusion of � in the unitary group of C∗
r (�), we may define

the topological Whitehead group asWhtop(�) =: K1(C
∗
r (�))/[�]. So the vanishing

of Whtop(�) is equivalent to the fact that every unitary matrix in M∞(C∗
r (�)) is in

the same connected component as a diagonal matrix diag(γ, 1, 1, 1, . . .) for some
γ ∈ �.

Conjecture 10 Assume that there is a 2-dimensional model for B�. Then
Whtop(�) = 0.

The following result appears in [BMV05]:

Proposition 4.21 When � has a 2-dimensional model for B�, Conjecture 10
follows from the surjectivity of the assembly map μr .

Proof Let �ab denote the abelianization of �. The inclusion of � in the unitary
group of C∗

r (�) induces a map β : �ab → K1(C
∗
r (�)), as K1 is an abelian group.

17For a nice proof of that result NOT appealing to Atiyah’s L2-index theorem, see lemma 7.1 in
[MV03].
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By lemma 7.5 in [BMV05], as B� is 2-dimensional, the Chern character Ch :
K1(B�) → H1(B�,Z) is an isomorphism. Of course we have H1(B�,Z) =
H1(�,Z) = �ab. Moreover we have a commutative diagram

K1(BΓ)

Ch

μr
K1(C

∗
r (Γ))

Γab

β

.

So β is onto as soon as μr is, and this implies Whtop(�) = 0 ��

4.5.5 Surjectivity: discrete series of semisimple Lie groups

LetG be a semisimple connected Lie group with finite center and maximal compact
subgroup K . As we shall see in Theorem 6.10 below, Lafforgue has given a proof
of the Baum–Connes conjecture without coefficients for G which is independent of
Harish-Chandra theory. On the other hand, let us present here a beautiful argument,
also due to Lafforgue [Laf02a], showing that the surjectivity of the assembly map
does say something on the representation theory: namely, surjectivity implies that
the Dirac induction μG maps bijectively a subset of the dual K̂ to the discrete series
of G; compare with Remark 2.4.

Recall that semisimple groups are CCR, i.e., any unitary irreducible represen-
tation σ of G maps C∗(G) onto the compact operators on Hσ ; so in K-theory σ
induces a homomorphism σ∗ : K0(C

∗(G)) → Z.
As the main ingredient for Lafforgue’s observation, we just need to recall

from Remark 2.4 that any discrete series π of G defines a K-theory class [π ] ∈
K0(C

∗
r (G)) such that π∗([π ]) = 1. In particular [π ] �= 0. Note that if G/K is odd

dimensional, then the surjectivity part of the conjecture implies thatK0(C
∗
r (G)) = 0

so that G has no discrete series, reproving a well-known fact in Harish-Chandra
theory. We therefore now assume that G/K has even dimension.

Assume for simplicity that G/K has a G-invariant spin structure, i.e., the
adjoint representation of K in V = g/k lifts to Spin(V ). The Connes–
Kasparov map μG then coincides with Kasparov’s Dirac map α̃ : R(K) =
K0(C

∗(K)) → K0(C
∗
r (G)). The inverse of the map is Kasparov’s dual-Dirac

map β̃ : K0(C
∗
r (G)) → R(K). Lafforgue’s observation is the following duality:

Lemma 4.22 For any discrete series π of G and any irreducible representation ρ
of K , the following integers are equal:

π∗(α̃([ρ])) = ρ∗(β̃([π ])).

Indeed, one can show that both are equal to the dimension of the intertwining
space HomK(S ⊗ Vρ,Hπ), where S is the spinor representation of K .
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Fix π a discrete series of G. Viewing R(K) as the free abelian group on K̂ , we
may write

β̃([π ]) =
∑

ρ∈K̂
nπ,ρ[ρ],

where nπ,ρ is the integer defined in two different ways in Lemma 4.22. Now the
assumed surjectivity of μG translates into α̃ ◦ β̃ = Id, which implies the following
decomposition in K0(C

∗
r (G)):

[π ] =
∑

ρ

nπ,ρα̃([ρ]).

Now the equality π∗([π ]) = 1 and Lemma 4.22 yield:

1 =
∑

ρ

nπ,ρπ∗(α̃([ρ])) =
∑

ρ

n2
π,ρ.

So the integers nπ,ρ satisfy
∑

ρ n
2
π,ρ = 1, hence there is a unique ρ such that

nπ,ρ = ±1, the others being zero. Then α̃([ρ]) = ±[π ], and the Dirac induction
maps bijectively a subset of the dual K̂ to the discrete series of G; in other words,
we have recovered Theorem 2.3 in a qualitative way.

5 Full and reduced C∗-algebras

5.1 Kazhdan vs. Haagerup: property (T) as an obstruction

The assembly map could as well be constructed using maximal C∗-algebras instead
of reduced. There is indeed a map

μA,max : KG∗ (EG,A) → K∗
(
C∗

max(G,A)
)

so that μA,r is the composition of μA,max with the map λ∗
A obtained by functoriality

in K-theory from the map

λA : C∗
max(G,A) → C∗

r (G,A).

In other words we have a commutative diagram

sKG
∗ (EG, A)

μA,r

μA,max
K∗(C∗

max(G, A))

λ∗
A

K∗(C∗
r (G, A))),
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The main difficulty in that the Baum–Connes conjecture is a conjecture about
μA,r , not μA,max. In order to understand that crucial point, it will be enlightening
to consider two classes of groups: one for which both μA,r and μA,max are
isomorphisms, hence also λ∗

A.; another for which λ∗
A is not injective, μA,max not

surjective, and for which the conjectural bijectivity of μA,r is difficult and proved
only in very few cases. We refer to [Jul98] for more details.

Definition 5.1 A locally compact second countable group G has the Haagerup
property18 if the following equivalent conditions are satisfied:

(i) There exists an action of G by affine isometries on a Hilbert space which is
metrically proper.

(ii) There exists a unitary representation π of G on a Hilbert space H, and a 1-
cocycle (i.e., a map b : G → H such that b(gg′) = b(g) + π(g)b(g′)) which
is proper.

(iii) There exists a function of conditional negative type on G which is proper.

Definition 5.2 A locally compact second countable group G has Kazhdan’s prop-
erty (T) if the following equivalent conditions are satisfied:

(i) Any action of G by affine isometries on a Hilbert space admits a fixed point.
(ii) For any unitary representation π of G on a Hilbert space H, any 1-cocycle is

bounded.
(iii) Any function of conditional negative type on G is bounded.

Note that only compact groups are both Haagerup and Kazhdan. The above
definitions can also be expressed in terms of the almost invariant vectors property:
a unitary representation π of G on H almost admits invariant vectors if for any
ε > 0 and any compact subset C of G, there is a unit vector x ∈ H such that
‖π(g)x − x‖ ≤ ε for any g ∈ C.

Proposition 5.3 A locally compact group G has property (T) if and only if any
unitary representation almost admitting invariant vectors has a non-zero invariant
vector. It has the Haagerup property if and only if there exists a unitary representa-
tion with coefficients vanishing at infinity and almost admitting invariant vectors.

The above characterization of property (T) is the original definition of Kazhdan.
As to the characterization of the Haagerup property, it is due to Jolissaint and implies
that all amenable groups have the Haagerup property. For examples of groups having
Haagerup or Kazhdan property, we refer to [BdlHV08] and to [CCJ+01]. Typical
examples of non-amenable discrete groups with Haagerup property are the free
groups Fn(n ≥ 2) or SL2(Z), whereas typical discrete groups having Kazhdan
property are SLn(Z), n ≥ 3.

18Or is a-(T)-menable, according to Gromov.
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Let us now explain the link with the Baum–Connes conjecture. We begin with
a C∗-algebraic characterization of property (T) (see [AW81]), in terms of the
existence of a Kazhdan projection.

Proposition 5.4 The locally compact group G has property (T) if and only if there
exists an idempotent eG ∈ C∗

max(G) such that, for every unitary representation π
of G, the idempotent π(eG) is the orthogonal projector on the space of π(G)-fixed
vectors in Hπ .

From this we deduce a key observation made by Connes in the early 1980s: let us
consider, for a locally compact group, the map λ : C∗

max(G) → C∗
r (G) associated

with the left regular representation of G.

Lemma 5.5 If G is non-compact with property (T), the map induced in K-theory

λ∗ : K∗
(
C∗

max(G)
) → K∗

(
C∗
r (G)

)

is not injective: its kernel contains a copy of Z which is a direct summand in
K0(C

∗
max(G)).

Proof Because of property (T), we have a direct sum decomposition

C∗
max(G) = ker(εG)⊕ CeG,

where εG is the trivial one-dimensional representation of G. So K0(C
∗
max(G)) =

K0(ker(εG))⊕ Z. On the other hand, as G is not compact: λ∗(eG) = 0, which ends
the proof. ��
Corollary 5.6 Assume that G is non-compact with property (T), and admits a γ -
element. Then μmax is not surjective. In particular, γ �= 1 in KKG(C,C).

Proof We have μr = λ∗ ◦ μmax, and the injectivity of μr (see Theorem 4.13)
trivially implies that a non-zero element of the kernel of λ∗ cannot be in the image of
μmax. Moreover, if γ = 1, the Kasparov machine, which works also for full crossed
products, shows that μA,max is an isomorphism, a contradiction. ��

On the other hand, Higson and Kasparov have proved in the 1990s the following
beautiful result:

Theorem 5.7 Let G be a locally compact group having the Haagerup property.
ThenG has a γ -element equal to 1. As a consequence, the three maps μA,r , μA,max,
and (λA)∗ are isomorphisms. In particular Conjecture 5 holds for G.

For a proof (using E-theory instead of KK-theory) we refer to [HK01] and
[Jul98]. We shall only explain how a locally compact proper G-space can be
constructed from an affine action on a Hilbert space. Consider the space Z =
H × [0,+∞[ equipped by the topology pulled back by the map (x, t) �→
(x,

√‖x‖2 + t2) of the topology of the space Hw × [0,+∞[, where Hw is the
space H with weak topology. The space Z is a locally compact space and carries
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a proper action defined by g.(x, t) = (g.x, t) for g ∈ G. It is a representative of
the classifying space of proper actions EG. The space Z can also be defined as a
projective limit of spaces [0,+∞[×V over all affine subspaces V of H , with the
maps [0,+∞[×V ′ → [0,+∞[×V (for all V ⊂ V ′) combining the projection to V
with the map x �→ √‖x‖2 + t2 on the vector subspace orthogonal to V in V ′.

A locally compact groupG is K-amenable (see, e.g., [JV84]) if, for anyG−C∗-
algebra A, the full crossed product C∗

max(G,A) and the reduced crossed product
C∗
r (G,A) do have the same K-theory via the map (λA)∗. So Theorem 5.7 says that

groups with the Haagerup property are K-amenable, while Corollary 5.6 says that
non-compact groups with property (T), are not.

Remark 5.8 In a recent preprint, Gong et al. [GWY19] prove the Strong Novikov
conjecture for discrete groups acting isometrically and metrically properly on
a Hilbert–Hadamard manifold (i.e., an infinite-dimensional analogue of simply
connected and non-positively curved manifold). This contains of course the case
of groups with the Haagerup property, but also the case of geometrically discrete
subgroups of the group of volume preserving diffeomorphisms of a compact smooth
manifold. Their proof uses a generalization of the Higson–Kasparov construction,
but also the techniques of Antonini et al. [AAS18].

5.2 A trichotomy for semisimple Lie groups

Let us now assume that G is a semisimple Lie group, connected with finite center.
The conjecture without coefficients (Conjecture 4) for G is known to be true. There
are now three completely distinct proofs of that fact. In 1984, Wassermann [Was87]
(following the work of Penington and Plymen [PP83] and Valette [Val85, Val84])
proved the conjecture using the whole machinery of Harish-Chandra theory together
with the work of Knapp-Stein and Arthur, allowing for a precise description of
the reduced dual of such groups. The second proof, due to Lafforgue, only uses
Harish-Chandra’s Schwartz space, but appeals to the whole of his Banach KK-
theory, sketched in Chapter 6 below. Another idea of proof had been suggested by
Baum et al. [BCH94] following the idea of Mackey correspondence, i.e., of a very
subtle correspondence between the reduced dual of a semisimple Lie group G and
the dual of its Cartan motion group, i.e., the semidirect product G0 = g/k � K ,
where K is a maximal compact subgroup of G. Very recently Afgoustidis [Afg16]
has given such a proof using the notion of minimal K-types introduced by Vogan
[Vog81].

But the most difficult problem arises when one is interested in the conjecture
for a discrete subgroup � of G. Such groups inherit the geometry from G, but
there is of course no hope to describe their reduced dual. However, the conjecture
(with or without coefficients) for � follows from the conjecture with coefficients
(Conjecture 5) for the Lie group G, a fact stated without proof in [BCH94] and first
proved by Oyono-Oyono [OO01].
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As a result the question of Baum–Connes for � can be summarized as follows,
resulting from Kasparov’s work:

(1) injectivity of the Baum–Connes assembly map for G holds with coefficients in
any G− C∗-algebra, hence it also holds for the discrete group �.

(2) the question of surjectivity of the Baum–Connes assembly map for the discrete
group �, or more generally the surjectivity of the Baum–Connes assembly map
with coefficients in any A for the Lie group G, are difficult questions and can
be considered as a crucial test for Conjecture 4.

We shall have to distinguish, among simple Lie groups, the real rank 1 and the
higher rank cases. We need to recall the classification of real rank 1 simple Lie
groups. Up to local isomorphism, the list is: SO0(n, 1), SU(n, 1), Sp(n, 1), F4(−20),
i.e., the isometry group of the n-dimensional hyperbolic space over the division
algebras R,C,H (the Hamilton quaternions), and O (the Cayley octonions); over
R, we restrict to orientation-preserving isometries; over O, there is only n = 2.

Assume thatG is locally isomorphic to a simple Lie group. There is the following
trichotomy:

(1) If G is (locally isomorphic to) one of the real rank one groups SO0(n, 1) or
SU(n, 1) (n ≥ 2): then G is known to have the Haagerup property. Therefore,
by Theorem 5.7, G satisfies the Baum–Connes conjecture with coefficients
(Conjecture 5), and so do all its discrete subgroups.

However, it is worth noting that the SO0(n, 1) and SU(n, 1) cases had
been solved before the Higson–Kasparov theorem by more geometric methods
in the works of Kasparov [Kas84], Chen [Che96] and Julg-Kasparov [JK95].
Indeed, the above authors have produced a construction of a representative of
γ combining a complex on the flag manifold (which is the boundary of the
symmetric space) and a Poisson transform, as explained in Section 5.3 below.
Then a homotopy using the so-called complementary series yields the required
equality γ = 1 in KKG(C,C).

(2) If G is (locally isomorphic to) one of the real rank one groups Sp(n, 1)
(n ≥ 2) or F4(−20): then by a result of Kostant, G has Kazhdan’s property
(T). This fact makes the Baum–Connes conjecture more difficult since the full
and reduced crossed product do not have in general the same K-theory. The
first deep result in that direction was obtained by Lafforgue in 1998 [Laf00] by
combining the Banach analogue of the conjecture, explained in Chapter 6, with
Jolissaint’s rapid decay property (see Section 6.1.4 below): if � is a cocompact
discrete subgroup of such a groupG, then � satisfies Conjecture 4 (i.e., without
coefficients).

Moreover, Julg has been able to extend to those cases the method of flag
manifolds and Poisson transforms, which gives again the construction of a Fred-
holm module representing γ . However, it is no longer possible to use the theory
of unitary representations since the complementary series stays away from the
trivial representation, in accordance with property (T). An idea proposed by Julg
in 1994 is to use a family of uniformly bounded representations approaching the
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trivial representation. Such a family of uniformly bounded representations has
been constructed by Cowling [Cow82]: see Section 6.2.2 for more details.

It should be possible to show that the element γ , though not equal to 1 in
KKG(C,C), still gives the identity map in K∗(C∗

r (G,A)) (but of course not in
K∗(C∗

max(G,A)). Technically the notion of uniformly bounded representations
has to be extended to representations with an arbitrary slow exponential growth,
following an idea of Higson explained in Section 6.2.1 below. The details of the
proof announced by Julg [Jul02] have not yet been fully written, we refer to
[Jul19].

On the other hand, there is a detailed proof of a similar result by Lafforgue
[Laf12]: any Gromov hyperbolic group � satisfies Conjecture 5 (with coef-
ficients). His proof uses the same idea of arbitrary slow exponential growth
representations, see Section 6.2.3 below.

The result of Lafforgue and the announced result of Julg have in common the
following important case, namely the case of a cocompact lattice � of Sp(n, 1)
(n ≥ 2) or F4(−20). Note, however, that Lafforgue’s result applies to general
Gromov hyperbolic groups (many do have property (T)), whereas Julg’s claim
would apply to all discrete subgroups of Sp(n, 1) (n ≥ 2) or F4(−20), including
non-cocompact lattices,19 which also have property (T).

(3) If G is a simple group of real rank greater or equal to 2: this is the very difficult
case. Actually Lafforgue found that for higher rank Lie groups an obstruction
persists: they satisfy a stronger version of property (T), explained in Section 6.3,
that prevents the use of representations of arbitrary small exponential growth to
succeed (see [Laf08] and [Laf10]). In this case very few are known. The only
results are for the cocompact discrete subgroups � of a simple Lie group G
of rank 2 locally isomorphic to SL3(R), SL3(C), SL3(H), or E6(−26). The
proof combines again Lafforgue’s result on the Banach analogue of the Baum–
Connes conjecture (see Chapter 6), and Jolissaint’s (RD) property that we recall
in 6.1.4.

5.3 Flag manifolds and KK-theory

Let G be a semisimple Lie group, connected with finite center. Kasparov [Kas84]
has made the following remark: Let P = MAN be the minimal parabolic (or Borel)
subgroup. The flag manifold G/P is a compact G-space satisfying the following
proposition:

Proposition 5.9 An element of KKG(C,C) which is in the image of the map
KKG(C(G/P ),C) → KKG(C,C) and restricts to 1 in R(K) is equal to γ .

19A concrete example of a non-cocompact lattice in Sp(n, 1), is Sp(n, 1)(H(Z)), the group of
points of the real algebraic group Sp(n, 1) over the ring H(Z) of integral quaternions. For such a
group Conjecture 5 is still open.
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This result follows from the fact that the restriction of γ to the amenable
connected Lie group P is equal to 1. Hence (1 − γ )KKG(C(G/P ),C) = 0.

A stronger statement is used by Julg-Kasparov[JK95] and Julg [Jul19]. Let us
compactify the symmetric space X = G/K by adding at infinity the flag manifold
G/P . Consider X̄ = G/K ∪G/P . They prove the following:

Proposition 5.10 An element of KKG(C,C) which is in the image of the map
KKG(C(X̄),C) → KKG(C,C) and restricts to 1 in R(K) is equal to γ .

5.3.1 The BGG complex

An important object associated to flag manifolds is the so-called Bernstein–
Gelfand–Gelfand (BGG) complex on G/P . The following construction is due to
Čap et al. [cSS01].

Lemma 5.11 The cotangent bundle T ∗G/P carries a G-equivariant structure of
Lie algebra bundle.

Proof The group G acts transitively on the flag manifold G/P . Let us consider a
point x ∈ G/P . Its stabilizer in G is a parabolic subgroup Px , a conjugate of P .
The tangent space at x is the quotient of Lie algebras g/px . The Killing form on
G identifies the cotangent space T ∗

x G/P = (g/px)
∗ with the Lie algebra nx of

the maximal nilpotent normal subgroup Nx of Px . The Lie algebras nx form a Lie
algebra bundle on G/P , which is, as a vector bundle, G-equivariantly isomorphic
to T ∗G/P . ��

Let δx : ∧knx → ∧k−1nx be the boundary operator defining the homology of
the Lie algebra nx for each x ∈ G/P . Recall the formula for δx :

δx(X1 ∧ . . .∧Xk) =
∑

i<j

(−1)i+j [Xi,Xij ] ∧X1 ∧ . . .∧ X̂i ∧ . . .∧ X̂j ∧ . . .∧Xk.

Transporting δx from nx to T ∗
x G/P defines a bundle map

δ :
∧k

T ∗G/P →
∧k−1

T ∗G/P.

Let � = �(G/P ) be the graded algebra of differential forms on the flag
manifold G/P . We consider on � the two operators d and δ, respectively of degree
1 and −1. Since d2 and δ2 are both zero, the degree zero map dδ + δd commutes
both with d and δ. In fact, as proved by Čap and Souček [cS07]:

Proposition 5.12 The Casimir operator ofG acting on � is equal to −2(dδ+ δd).
Let �0 be kernel of the Casimir operator in �, which is a subcomplex of the de

Rham complex.
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Theorem 5.13

(1) �0 = ker(dδ + δd) = kerδ ∩ kerδd.
(2) The canonical injection �0 → � induces an isomorphism in cohomology.
(3) The canonical map kerδ ∩ kerδd → kerδ/imδ is a G-equivariant isomorphism

from �0 to the space of sections of the bundle kerδ/imδ, whose fibers are the
homology groups Hk(nx) of the Lie algebra T ∗

x G/P = nx .
(4) The complex D transported from the complex d on �0 is a complex of

differential operators on the space of sections of the above bundle.

Remark 5.14 The adjoint action of Nx on nx induces the identity on Hk(nx), a
classical fact about Lie algebra homology. Therefore the BGG complex is defined
on a space of sections of a bundle onG/P obtained from a representation of P which
is trivial on the nilpotent normal subgroup N , i.e., factors through P/N = MA. In
the language of representation theory, it means that the representation involved in
the BGG complex are finite sums of (non-unitary) principal series of G.

5.3.2 The model: SO0(n, 1)

Let us now explain Kasparov’s proof [Kas88] of the Connes–Kasparov conjecture
with coefficients for the Lorentz groups G = SO0(2n + 1, 1). The flag manifold
G/P is the sphere S2n, which is the boundary of the hyperbolic space of dimension
2n + 1. Because the nilpotent group N is abelian, the operator δ is zero and the
BGG complex is nothing but the de Rham complex. Kasparov constructs a Fredholm
module representing the element γ using the crucial fact that G/P = S2n carries a
G-invariant conformal structure. Indeed, let us equip the sphere with itsK-invariant
metric. The action of g ∈ G transforms the metric into its multiple by some scalar
function λ2

g .

(1) We make the action of G unitary by twisting the representation by a cocycle
thanks to the conformal structure. More precisely, let

π(g)α = λn−kg g−1∗α.

The representation π is unitary on the Hilbert space of L2 forms of degree k.
(2) We make the operator d bounded by considering F = d(1 + �)−1/2, where

� = dd∗ + d∗d is the Laplace–Beltrami operator. The bounded complex F
is no more G-invariant, but the natural action of g ∈ G takes the zero order
pseudo-differential operator F to λgF plus a negative order pseudo-differential
operator, as easily seen at the principal symbol level.

(3) Combining the two preceding items (and the fact that F maps k-forms to (k+1)-
forms) we easily see that the conjugate π(g)Fπ(g)−1 equals F plus a negative
order pseudo-differential operator, hence the compactness of the commutator
[F, π(g)].
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The Fredholm module thus obtained is not quite the good one, since its index is
2 (the Euler characteristic of S2n). To solve the problem, Kasparov cuts the complex
in the middle: the group acts on the sphere S2n by conformal transformations and the
Hodge ∗ operation on forms of degree n is therefore G-invariant. The half complex
consists in taking the forms of degree 0 to n− 1, and in degree n only half of them,
those for which ∗ = in. Then the index is 1. In the smallest dimension case n = 1
(G = PSL(2,C)) it amounts to take the ∂̄ operator instead of the d operator on
S2 = P 1(C). The G-Fredholm module thus obtained represents the element γ by
Proposition 5.10.

In [Kas84], the case of SO0(2n, 1) was settled as a mere corollary of the case of
SO0(2n+1, 1). Indeed SO0(2n, 1) is a subgroup of SO0(2n+1, 1) and the element
γ restricts to closed subgroups. However, it was most interesting to treat the case of
SO0(2n, 1) in itself before passing to the other rank one groups. The direct proof for
SO0(2n, 1) has been treated by Chen in his thesis [Che96]. The G-equivariant de
Rham complex on S2n−1 is again turned, thanks to the conformal structure, into aG-
Fredholm module, but this time the index is 0 (the Euler characteristic of S2n−1). To
get a Fredholm module of index 1, something new is needed, which has no analogue
in the SO0(2n + 1, 1) case. One must use the L2-cohomology of the hyperbolic
space of dimension 2n, i.e., the Hilbert space Hn of square-integrable harmonic
forms (which are of degree n), which is a sum of two discrete series of G. The
truncated module (with index 1) is obtained by considering forms of degree ≤ n−1,
and completing by a map from �n−1(S2n−1) to Hn. For n = 1, the map �0(S1) →
H1 is just the composition of the classical Poisson transform with the de Rham
differential. In general one must use Gaillard’s Poisson transform for forms [Gai86].
One thus obtains an element ofKKG(C,C)which is equal to γ by Proposition 5.10.

5.3.3 Generalization to other rank one groups

The de Rham complex is replaced by the BGG complex on the flag manifold. This
is done by Julg and Kasparov in [JK95] forG = SU(n, 1) where the BGG complex
is the so-called Rumin complex associated to the G-invariant contact structure
on G/P = S2n−1, and for Sp(n, 1) or F4(−20) by Julg [Jul19]. In order to turn
the BGG complex into a G-Fredholm module, one has to replace, in the above
SO0(n, 1)-picture, conformal structure by quasi-conformal structure: the tangent
bundle has a G-equivariant subbundle E of codimension 1, 3, or 7 respectively
for G = SU(n, 1), Sp(n, 1) or F4(−20), whose fiber Ex at any point x ∈ G/P is
defined as the subspace of TxG/P = n∗

x orthogonal to the subalgebra [nx, nx] of the
Lie algebra nx . The K-invariant metric is no more conformal, but quasi-conformal
in the following sense: consider the action of G on the subbundle E and on the
quotient TM/E (note that there is no invariant supplementary subbundle), then
under g ∈ G the metric on E is multiplied by some scalar function λ2

g , and on the

quotient TM/E by λ4
g . The action ofG on forms is not conformal, but after passing

to the δ-homology H∗(nx) splits into conformal components. Such a splitting is
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defined by the weight, i.e., the action of the abelian group R∗+ seen as a subgroup
of the quotient Px/Nx . This is closely related to the splitting of the representation
in the BGG complex into (non-unitary) principal series of G mentioned in Remark
5.14. It follows that one can modify the action of G into a unitary representation
π(g) on the space of L2 sections of the BGG complex.

Exploring the analytical properties of the complex D requires to replace the
ordinary K-invariant Laplacian by the K-equivariant sub-Laplacian on G/P .
Namely, � = −∑

X2
i where the vector fields Xj form at each point x ∈ G/P

an orthonormal basis (for a K-equivariant metric) of the subspace of TxG/P = n∗
x

orthogonal to the subalgebra [nx, nx] of nx . The operator � is not elliptic but
hypoelliptic. It has a parametrix which is not a classical pseudo-differential operator,
but belongs to a new pseudo-differential calculus in which Fourier analysis is
replaced by representation theory of nilpotent Lie groups. Such calculi have been
constructed in special cases by Beals and Greiner [BG88] or by Christ et al.
[CGGP92]. However, what is needed here is the general construction, which seems
to appear only in Melin’s 1982 preprint [Mel82], unfortunately very difficult to find.
It is worth to mention that noncommutative geometry has motivated a revival of
work on the subject, in particular the groupoid approach. The groupoid adapted
to the situation has been constructed by various authors: Ponge [Pon06], van Erp
and Yuncken [vEY17b], see also [JvE18]. The most beautiful construction of the
groupoid using the functoriality of the deformation to the normal cone can be found
in the recent thesis of Mohsen [Moh18]. The link between the groupoid and the
pseudo-differential calculus is discussed in [DS14] and [vEY17a].

The following theorem explains how to combine the sublaplacian and the weight
grading to produce an element of KKG(C(G/P ),C) out of the BGG complex. See
[Rum99, Jul19] and [DH17].

Theorem 5.15 Let �W/2 be the pseudo-differential operator equal to the power
�w/2 on the w weight component of the BGG complex. Then the conjugate F =
�W/2D�−W/2 is a bounded operator satisfying F 2 = 0 on the Hilbert space of L2

sections of the BGG complex. The commutators [F, f ] and [F, π(g)] are compact
operators for any f ∈ C(G/P ) and g ∈ G. Moreover F admits a parametrix, i.e., a
bounded operator Q such that FQ+QF − 1,Q2, as well as [Q,f ] and [Q,π(g)]
for f ∈ C(G/P ) and g ∈ G are compact operators.

As above in the SO0(2n, 1) case, one has to modify the complex in order to
get a truncated complex of index 1 in R(K). Then Proposition 5.10 will ensure
that its class in KKG(C,C) is the element γ . Here again discrete series must be
involved, namely those entering the L2-cohomology of the symmetric space G/K ,
i.e., the Hilbert space Hm of harmonic L2 forms of degree m = dimG/K

2 , namely
m = n, n, 2n, and 8 respectively in the cases of SO0(2n, 1), SU(n, 1), Sp(n, 1), and
F4(−20). Note that the Casimir operator vanishes on Hm (since the Casimir operator
is equal to −� (the Laplace–Beltrami operator) on L2(�(G/K)), allowing to build
an adequate Poisson transform [cHJ19] sending the BGG component in degreem to
harmonic forms of degree m in G/K . The half complex is then obtained by taking
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the BGG complex up to degreem−1 and to complete by the composition ofD with
such a Poisson transform [Jul19].

5.3.4 Generalization to higher rank groups

More difficult is the case where G is a simple Lie group of real rank ≥ 2. So far
only the case of SL(3,C) has been treated, by Yuncken [Yun11] who has been able
to produce a G-Fredholm module representing γ out of the BGG complex. Here
the flag manifold G/P , where P is the minimal parabolic of G comes with two
G-equivariant fibrations G/P → G/Pi ( i = 1, 2) onto smaller flag manifolds
coresponding to P1 and P2 the two other parabolics containing P . The operators
in the BGG complex turn out to be longitudinally elliptic differential operators
along the fibers. Considering a class of pseudo-differential operators on multifiltered
manifolds, and making an unexpected use of Kasparov’s technical lemma yields
a Fredholm module representing an element of KKG(C(G/P ),C). Its index can
be taken as 1 in R(K) if one considers the holomorphic BGG complex (as in the
SL(2,C) case of [Kas84], where d is replaced by ∂̄). Its class in KKG(C,C) is
therefore γ by Proposition 5.10.

6 Banach algebraic methods

As Julg pointed out in [Jul97], once non-unitary representations appear, one can
no longer work with C∗-algebras but with more general topological algebras, for
instance, Banach algebras. Unfortunately, Kasparov’s KK-theory is a purely C∗-
algebraic tool. However, K-theory can be defined for all kind of topological algebras
(see the appendix of [Bos90] for the notion of good topological algebras for which
the K-theory can be defined); consequently, one has to be able to work in a more
flexible framework whose foundations were laid by Lafforgue.

6.1 Lafforgue’s approach

6.1.1 Banach KK-theory

In [Laf02b], Lafforgue defined a bi-equivariant KK-theory, denoted by KKban,
for general Banach algebras. The basic idea to start with, was to define a group
KKban

G (C,C), in the same way as Kasparov definedKKG(C,C), but where unitary
representations on Hilbert spaces are replaced by isometric representations on
Banach spaces and, therefore, replacing C∗-algebras by Banach algebras. More
generally, Lafforgue defined a groupKKban

G,&(C,C) using representations on Banach
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spaces that are not necessarily isometric but for which the growth is exponentially
controlled by a length function on the group G.

Knowing that the trivial representation is not isolated among representations
on Banach spaces,20 Lafforgue was able to prove for a class of groups called C′
in [Laf02b], which is contained in the class C and hence for which a γ -element
has been constructed, that such a γ is equal to 1 in KKban

G,&(C,C). The class C′
contains:

• semisimple real Lie groups and their closed subgroups;
• simple algebraic groups over non-Archimedean local fields, and their closed

subgroups;
• hyperbolic groups.

The equality γ = 1 in KKban
G,&(C,C) allowed Lafforgue to prove, for all groups

in C′, an analogue of the Baum–Connes conjecture where C∗(G) is replaced by
L1(G), which for general G is a conjecture of Bost. More precisely, Lafforgue used
his equivariant KKban to define a morphism

μA
L1 : Ktop∗ (G,A) → K∗(L1(G,A)),

for all locally compact groups G and all G− C∗-algebra A.
More precisely, Lafforgue used his equivariant KKban to define a morphism

μA
L1 : Ktop∗ (G,A) → K∗(L1(G,A)),

for all locally compact groups G and all G− C∗-algebras A.
Let us recall the important features of Lafforgue’s Banach KK-theory that allow

one to define the morphism μA
L1 . If A and B are two Banach algebras endowed with

an action of a locally compact group G then there exists a descent map

jL
1

G : KKban
G (A,B) → KKban(L1(G,A), L1(G,B)).

Unlike Kasparov’s bivariant theory, Banach KK-theory does not have a product but
nevertheless, it still acts on K-theory, i.e., there is a morphism

K0(A)×KKban(A,B) → KKban(C, B)

and for every Banach algebra B, the group KKban(C, B) is isomorphic to K0(B).
Consequently, following the Baum–Connes–Higson formulation of the conjecture
and hence the construction of the assembly map (see 4.3), one gets, without too
much effort, the morphism μA

L1 : Ktop∗ (G,A) → K∗(L1(G,A)).

Let us stress in addition that, unlike Hilbert spaces, Banach spaces are in general
not self-dual; so to define the groupsKKban(A,B) Lafforgue has to replace Hilbert

20See the discussion of strong property (T) in 6.3.
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modules by pairs of Banach modules together with a duality condition. For details,
see Chapter 10 in Valette’s book [Val02].

6.1.2 Bost conjecture and unconditional completions

Bost’s conjecture (with coefficients) is stated as follows

Conjecture 11 (Bost) For all locally compact groupsG and for allG−C∗-algebras
A the map μA

L1 is an isomorphism.

The moral is that when using representations with controlled growth on Banach
spaces to construct a homotopy between a γ -element and 1, as one gets out of the
C∗-algebraic context, the K-theory that we are able to compute is the K-theory of a
Banach algebra. In the case of the Bost conjecture, the Banach algebra that we get
is L1(G).

There are two good things about the Bost conjecture, the first one is that it is
easier to prove than the Baum–Connes conjecture (meaning that it has been proven
by Lafforgue for a wide class of groups containing all semisimple Lie groups as
well as their lattices) and no counter-example to the Bost conjecture is known, to the
best of our knowledge. Secondly, the original map μA,r of Baum–Connes–Higson
factors through the map μB

L1 so that the following diagram is commutative:

Ktop
∗ (G, B)

μB
L1

μB
r

K∗(C∗
r (G, B))

K∗(L1(G, B)),

ι∗

where ι denotes inclusion L1(G,B) → C∗
r (G,B). Therefore, if we take G to be

a group for which the Bost conjecture has been proven, for example, a semisimple
Lie group or a lattice in such a group, trying to prove the Baum–Connes conjecture
for G amounts to prove that ι∗ is an isomorphism, in other words that ι induces an
isomorphism in K-theory.

Unfortunately, the usual criteria to prove that the continuous inclusion of L1(G)

in C∗
r (G) induces an isomorphism in K-theory, is not true for most of the locally

compact groups. For example, the algebra L1(G) is not stable under holomorphic
calculus if G is a non-compact semisimple Lie group [LP79]. To illustrate this, let
us recall the usual criterion to determine whether an injective morphism of Banach
algebras induces an isomorphism at the level of their K-theory groups.

Definition 6.1 Let A and B be two unital Banach algebras and φ : A → B is a
morphism of Banach algebras between them. Then φ is called spectral, if for every
x ∈ A the spectrum of x in A equals the spectrum of φ(x) in B. It is called dense if
φ(A) is dense in B.
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This terminology is taken from [Nic08]. When φ is injective, A can be considered
as a subalgebra of B. In this case, A is said to be “stable under holomorphic
calculus in B,” because, for every x ∈ A and every holomorphic function f on
a neighborhood of the spectrum of x in B, the element f (x) constructed using
holomorphic functional calculus in B belongs to A (see [Bos90]).

The theorem below is a classical result known as the Density Theorem; it is due
to Swan and Karoubi (see [Swa77, Section 2.2 and 3.1], [Kar08, p. 109], [Con81,
Appendix 3] and [Bos90, Théorème A.2.1]).

Theorem 6.2 If A and B are two unital Banach algebras and φ : A → B is
dense and spectral morphism of Banach algebras then φ induces an isomorphism
φ∗ : K∗(A) → K∗(B).

What Bost noticed is that the condition of been spectral is, somehow, too strong:
if φ is spectral it induces strong isomorphisms in K-theory:

Definition 6.3 ([Bos90]) An injective morphism between two unital Banach alge-
bras φ : A → B, induces a strong isomorphism in K-theory if for every n ≥ 1 the
maps

Mn(φ) : Pn(A) → Pn(B) and GLn(φ) : GLn(A) → GLn(B),

induced by φ are homotopy equivalences.

Here for an algebra A and for an integer n, we denote by Mn(A) the set of n × n

matrices with coefficients in A and Pn(A) = {p ∈ Mn(A) | p2 = p} is the set of
idempotent matrices.

If the maps Mn(φ) and GLn(φ) above are homotopy equivalences then the
morphism induced by φ, say φ∗ : P(A) → P(B) is an isomorphism (where P(A)
denotes the semi-group of isomorphism classes of projective A-modules of finite
type). This is stronger than inducing an isomorphism in K-theory.

The next example shows that, because of this strength, it is not easy to pass from
Bost conjecture to the Baum–Connes conjecture.

Example 6.4 Set G = SL2(R). Then G has two representations in the discrete
series (i.e., square-integrable representations) that are not integrable (i.e., the matrix
coefficients do not belong to L1(G)) and are therefore not isolated in the dual space
of L1(SL2(R)). This implies that the idempotent of C∗

r (SL2(R)) associated to one
of these discrete series (which is equal to a matrix coefficient) does not belong
to L1(SL2(R)); hence, if π0 denotes the set of connected components, the map

from π0

(
P1(L

1(SL2(R))
)

→ π0

(
P1(C

∗
r (SL2(R))

)
, which is induced by ι, is not

surjective. Therefore applying what is known for the Bost conjecture to the Baum–
Connes conjecture is not in any case automatic.

Fortunately, Lafforgue’s proof of the Bost conjecture can actually be used to
compute the K-theory of a class of Banach algebras more general than L1(G) called
unconditional completions of Cc(G).
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Definition 6.5 Let G be a locally compact group. A Banach algebra completion
B(G) of Cc(G) is called unconditional if the norm ‖f ‖B(G) only depends on the
map g �→ |f (g)|, i.e., for f1, f2 ∈ Cc(G), ‖f1‖B(G) ≤ ‖f2‖B(G) if |f1(g)| ≤
|f2(g)| for all g ∈ G.

Example 6.6 For a locally compact groupG, the algebra L1(G) is an unconditional
completion of Cc(G).

Example 6.7 IfG is a connected semisimple Lie group andK is a maximal compact
subgroup, let t ∈ R+ and let St (G) be the completion of Cc(G) for the norm given
by:

‖f ‖St (G) = sup
g∈G

|f (g)|φ(g)−1(1 + d(g))t ,

where φ is the Harish-Chandra function on G (see Chapter 4 in [Kna01]) and for
g ∈ G, d(g) is the distance of gK to the origin in G/K . Then, for t large enough,
St (G) is an unconditional completion (see Section 4 in [Laf02b]).

Another important example of unconditional completions appears in connexion
with the rapid decay property, to be discussed in Section 6.1.4 below.

Inspired by the definitions of the algebras L1(G,A), one can define analogues of
crossed products in the context of Banach algebras using unconditional completions
as follows: if A is a G − C∗-algebra and B(G) is an unconditional completion of
Cc(G), we define the algebra B(G,A) as the completion of Cc(G,A) for the norm

‖f ‖B(G,A) = ∥∥g �→ ‖f (g)‖A
∥∥A(G).

For all locally compact group G, all G − C∗-algebra A and all unconditional
completions B(G) Lafforgue used his Banach KK-theory to construct a morphism

μAB(G) : Ktop∗ (G,A) → K∗(B(G,A)).

He then obtained an analogue of the “Dirac–dual-Dirac method” in this context:

Theorem 6.8 (Lafforgue) If the group G has a γ -element in KKG(C,C) and
if there exists a length function & on G, such that, for all s > 0, γ = 1 in
KKban

G,s&(C,C), then μAB(G) is an isomorphism for all unconditional completions
B(G) and for all G-algebras A.

Lafforgue proved the equality γ = 1 in KKban
G,s&(C,C) for all groups in the

class C′ (see [Laf02b, Introduction]). All real semisimple Lie groups and all p-adic
reductive Lie groups as well as their closed subgroups, all discrete groups acting
properly, cocompactly, continuously and by isometries on a CAT (0) space and all
hyperbolic groups belong to this class. For all these groups G and all G-algebras
A the map μAB(G) is an isomorphism and hence the Bost conjecture holds (see
[Laf02b]). For a nice expository explanation on how the homotopy between γ and
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1 is constructed using Banach representations, see [Ska02] where the combinatorial
case is explained in details, i.e., the case containing p-adic groups.

6.1.3 Application to the Baum–Connes conjecture

Let B(G) be an unconditional completion of Cc(G) that embeds in C∗
r (G). In that

case, the Baum–Connes mapμr factors throughμB(G) so that the following diagram
is commutative:

Ktop
∗ (G)

μB(G)

μr

K∗(B(G))

i∗

K∗(C∗
r (G))

,

where i∗ is the inclusion map induced by the map i : B(G) → C∗
r (G).

Proposition 6.9 Let G be a group in Lafforgue’s class C′. Suppose there exists
an unconditional completion B(G) which is a dense subalgebra stable under
holomorphic calculus in C∗

r (G). Then the Baum–Connes assembly map μr is an
isomorphism.

Using Example 6.7, we can state the first result of Lafforgue concerning
connected Lie groups (see the discussion in Section 5.2 regarding those groups)

Theorem 6.10 (Lafforgue) Let G be a connected semisimple Lie group. Then
Conjecture 4 (without coefficients) is true for G.

Proof For t ∈ R+ large enough, the algebra S t (G) from Example 6.7 is an
unconditional completion which is dense and stable under holomorphic calculus
in C∗

r (G) (cf. Section 4 in [Laf02b]).
��

As a matter of fact, Lafforgue’s theorem is much more general. LetG be a locally
compact group. A quadruplet (G,K, d, φ) is a Harish-Chandra quadruplet if G is
unimodular with Haar measure denoted by dg, K is a compact subgroup endowed
with his unique Haar measure of mass equal to 1, d is a length function on G such
that d(k) = 0 for all k ∈ K and d(g−1) = d(g) for all g ∈ G and φ : G →]0, 1] is
a continuous function satisfying the following 5 properties:

1. φ(1) = 1,
2. ∀g ∈ G, φ(g−1) = φ(g),
3. ∀g ∈ G, ∀k, k′ ∈ K , φ(kgk′) = φ(g),
4. ∀g, g′ ∈ G,

∫
K
φ(gkg′)dk = φ(g)φ(g′),

5. for all t ∈ R+ large enough,
∫
G
φ2(g)(1 + d(g))−t dg converges.
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When one has a Harish-Chandra quadruplet, then one can define a Schwartz
space onG following Example 6.7 : St (G) is the Banach space completion ofCc(G)
with respect to the norm given by

‖f ‖St (G) = sup
g∈G

|f (g)|φ(g)−1(1 + d(g))t .

Lafforgue’s result is then stated a follows:

Proposition 6.11 Let (G,K, d, φ) be a Harish-Chandra quadruplet. Then, for
t ∈ R+ large enough, St (G) is an unconditional completion of Cc(G) which is
a subalgebra of C∗

r (G) dense and stable under holomorphic calculus.

In Section 4 of [Laf02b], Lafforgue constructed a Harish-Chandra quadruplet for all
linear reductive Lie groups on local fields.

Remark 6.12 The method of finding a Schwartz type unconditional completion
dense and stable under holomorphic calculus in C∗

r (G) like the algebra St (G) for
semisimple Lie groups, does not work with coefficients (see the remark after the
Proposition 4.8.2 of [Laf02b]). If � is a lattice in a semisimple Lie group G, we can
define an algebra St (�) in the same manner as for G: it is the completion of Cc(�)
for the norm ‖f ‖S t (�) = sup

γ∈�
|f (γ )|(1 + d(γ ))tφ(γ )−1, where φ is the Harish-

Chandra function ofG and the d is the appropriate distance inG (see [Boy17] where
this algebras are studied). Suppose now that � is cocompact. Then St (G,C(G/�))
is not stable under holomorphic calculus in C∗

r (G,C(G/�)) as these algebras are
Morita equivalent to St (�) and C∗

r (�), respectively, and St (�) is not stable under
holomorphic calculus in C∗

r (�). Indeed, if γ ∈ � is a hyperbolic element, since
d(γ n) grows linearly in n if we denote by eγ the corresponding Dirac function in
C�, its spectral radius as an element of C∗

r (�) is 1 whereas its spectral radius in
St (�) is > 1. To see this we use the following classical estimate on the Harish-
Chandra φ-function (see Proposition 7.15 in [Vog81]): there are positive constants
C, & > 0 such that for every g ∈ G :

φ(g) ≤ Ce−d(g)(1 + d(g))&.

Hence

‖enγ ‖St (�) = (1 + d(γ n))t

φ(γ n)
≥ C−1(1 + d(γ n))t−&ed(γ n).

Since d(γ n) grows linearly in n, we have for the spectral radius of eγ in St (�):

lim
n→∞ ‖enγ ‖1/n

St (�) > 1.
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6.1.4 The rapid decay property

To state Lafforgue’s results concerning lattices in connected Lie groups, and hence
examples of discrete groups having property (T) and verifying the Baum–Connes
conjecture (without coefficients), we need to introduce the property of rapid decay,
denoted by (RD).

Recall that, for G a locally compact group, a continuous function & : G → R+
is a length function if &(1) = 0 and &(gh) ≤ &(g)+ &(h) for every g, h ∈ G.

Example 6.13 If � is a finitely generated group and S is a finite generating subset,
then &(g) = |g|S (word length with respect to S) defines a length function on �.

The following definition is due to Jolissaint [Jol90].

Definition 6.14 Il & is a length function on the locally compact group G, we say
that G has the property of rapid decay with respect to & (abridged property (RD)) if
there exist positive constants C, k such that, for every f ∈ Cc(G):

‖λ(f )‖ ≤ C · ‖f (1 + &)k‖2.

In other words the norm of f in C∗
r (G), i.e., the operator norm of f as

a convolutor on L2(G), is bounded above by a weighted L2-norm given by a
polynomial in the length function.

The relevance of property (RD) regarding Baum–Connes comes from the
following fact: If � is a discrete group with property (RD) with respect to a length
function &, then, for a real number s which is large enough, the space

Hs
& (�) =

⎧
⎪⎨

⎪⎩
f : � → C | ‖f ‖&,s =

⎛

⎝
∑

γ∈�
|f (γ )|2(1 + &(γ ))2s

⎞

⎠

1
2

< ∞

⎫
⎪⎬

⎪⎭

is a convolution algebra and an unconditional completion of Cc(�) that is stable
under holomorphic calculus in C∗

r (�) (see, for example, [Val02], 8.15, Example
10.5). Note that functions in Hs

& (�), with s 2 0, are decaying fast at infinity on �,
hence the name rapid decay.

We can now state Lafforgue’s result concerning discrete groups (Corollaire 0.0.4
in [Laf02b]):

Theorem 6.15 Let � be a group with property (RD) in Lafforgue’s class C′ (see
Section 6.1.1). Then Conjecture 4 (without coefficients) for � is true.

Jolissaint [Jol90] has shown that property (RD) holds for cocompact lattices in
real rank 1 groups, a fact generalized in two directions:

• by de la Harpe [dlH88] to all Gromov hyperbolic groups;
• by Chatterji and Ruane [CR05] to all lattices in real rank 1 groups.
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By Theorem 6.15, those groups do satisfy the Baum–Connes conjecture (without
coefficients).

Remark 6.16 The first spectacular application of property (RD) was the proof of
the Novikov conjecture for Gromov hyperbolic groups by Connes and Moscovici
[CM90]. Their result is the following:

Theorem 6.17 Assume that the group � satisfies both Jolissaint’s (RD) property
and the bounded cohomology property (i.e., that any group n-cocycle is cohomolo-
gous to a bounded one, for n ≥ 2). Then � satisfies the Novikov conjecture.

Sketch of proof Let x ∈ Hn(�,Q) be a cohomology class. Let M be a closed, Spin
manifold and f : M → B� a map; let M̃ be the pullback of B̃� via f . Let D
be a �-invariant Dirac operator on M̃ . Connes and Moscovici show that the index
of D in K0(C

∗
r (�)) has a more refined version living in K0(C(�) ⊗ R), where

R is the algebra of smoothing operators. They deduce a cohomological formula
for the higher signature σx(M, f ) (defined in Section 2.5) by evaluating a cyclic
cocycle τx associated with x on the index inK0(C(�)⊗R). The two assumptions of
Theorem 6.17 ensure that the cocycle τx extends from C(�)⊗R to a subalgebra of
the C∗-algebra C∗

r (�) ⊗ K which is stable under holomorphic functional calculus.
Therefore σx(M, f ) only depends on the index μr(f∗[D]) ∈ K0(C

∗
r (�)), which

is a homotopy invariant by Theorem 2.8. The hypothesis in the theorem holds in
particular for Gromov’s hyperbolic groups: the fact that they do satisfy the bounded
cohomology property is a result stated by Gromov and proved by Mineyev [Min01].

��
In higher rank it can be proved that non-cocompact lattices do not satisfy property

(RD). However, we have a conjecture by Valette (see p.74 in [FRR95]):

Conjecture 12 Let � be a group acting properly, isometrically, with compact
quotient, either on a Riemannian symmetric space or on a Bruhat–Tits building.
Then � has the (RD) property.

Valette’s conjecture holds in higher rank for the following special cases, all in
rank 2: assumeG is locally isomorphic to SL3(R) or SL3(C): Lafforgue has shown
that any cocompact lattice � of G satisfies property (RD). Chatterji has generalized
this proof to SL3(H) and E6(−26), see [Cha03]. Their proofs are based on ideas of
Ramagge, Robertson, and Steger for SL3(Qp) ([RRS98]). Conjecture 4 therefore
follows for such lattices. As mentioned in Section 5.2 above, this gave the first
examples of infinite discrete groups having property (T) and satisfying the Baum–
Connes conjecture.

It is not known whether such a group � (or the Lie group G itself) satisfies the
conjecture with coefficients. Moreover, nothing is known about the Baum–Connes
conjecture for general discrete subgroups ofG. In particular it is not known whether
SL3(Z) satisfies Conjecture 4, or similarly whether SL3(R) satisfies Conjecture 5.

On the other hand, regarding lattices in another real rank 2 simple Lie group
(e.g., the symplectic group Sp4(R)), or in a simple group with real rank at least 3,
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absolutely nothing is known, in particular for lattices in SLn(R) or SLn(C) when
n ≥ 4.

Remark 6.18 The group � = SL3(Z) does not have property (RD) (see [Jol90]).
Moreover, there is no unconditional completion B(�) that is a dense subalgebra
of C∗

r (�) stable under holomorphic calculus. The following argument is due to
Lafforgue (see [Laf10]). Let us consider the action of Z on Z2 induced by the map

from Z to Z2 that sends n ∈ Z to

(
3 1
2 1

)n
and the semi-direct product H := Z � Z2

constructed using this action. The group H is solvable, hence amenable, and can be

embedded as a subgroup of SL3(Z) using the map:

(
n,

(
a

b

))
�→

⎛

⎝

(
3 1
2 1

)n (
a

b

)

0 1

⎞

⎠.

Suppose by contradiction that there is an unconditional completion B(G) that is a
subalgebra of C∗

r (G). Then the algebra B(H) = B(G) ∩ C∗
r (H) is contained in

&1(H) because as H is amenable, for every non-negative function f on H , one has
‖f ‖C∗

r (H)
= ‖f ‖L1(H). However, &1(H) is not spectral in C∗

r (H) (see [Jen69]).

6.2 Back to Hilbert spaces

The motto of this section is the following: in the case where property (T) imposes
that γ �= 1 in KKG(C,C), the idea for showing that γ nevertheless acts by the
identity in the K-theory groups K∗(C∗

r (G,A)) is to make the γ -element homotopic
to the trivial representation in a weaker sense, getting out of the class of unitary
representations, but staying within the framework of Hilbert spaces.

6.2.1 Uniformly bounded and slow growth representations

The idea of using uniformly bounded representations is a remark that Julg made
in 1994. A uniformly bounded representation of a locally group G is a strongly
continuous representation by bounded operators on a Hilbert space H , such that
there is a constant C with ‖π(g)‖ ≤ C for any g ∈ G. Equivalently, it is a
representation by isometries for a Banach norm equivalent to a Hilbert norm.

Following Kasparov [Kas95], let us denote R(G) = KKG(C,C). Let Rub(G)

be the group of homotopy classes ofG-Fredholm modules, with uniformly bounded
representations replacing unitary representations, as in [Jul97].

Proposition 6.19 For any G− C∗-algebra A, the Kasparov map

R(G) → EndK∗
(
C∗
r (G,A)

)

factors through the map R(G) → Rub(G).
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This follows from an easy generalization of the classical Fell lemma: indeed, if
π is a uniformly bounded representation of a group G in a Hilbert space H , and λ
is the left regular representation of G on L2(G), there exists a bounded invertible
operator U on H ⊗ L2(G), such that

π(g)⊗ λ(g) = U(1 ⊗ λ(g))U−1,

when π is a unitary representation, U is of course a unitary operator.
To any Hilbert spaceH equipped with a uniformly bounded representation π , let

us associate as in the construction of the map jG,r from [Kas95, Kas88], the Hilbert
module E = H ⊗C∗

r (G,A) and the covariant representation of (G,A) with values
in LC∗

r (G,A)
(E) defined by:

a �→ 1 ⊗ a, g �→ π(g)⊗ λ(g).

Then the representation πA : Cc(G,A) → LC∗
r (G,A)

(E) extending the above
covariant representation factors through the reduced crossed product C∗

r (G,A).
To a G-Fredholm module (H, π, T ) we can therefore associate the triple (H ⊗

C∗
r (G,A), πA, TA), where πA : C∗

r (G,A) → LC∗
red(G,A)

(E) is the Banach algebra
homomorphism defined above, and TA = T ⊗ 1 ∈ LC∗

red(G,A)
(E). The Banach G-

Fredholm module thus obtained defines a map from the group K∗(C∗
red(G,A)) to

itself. Note that such a construction has no analogue for C∗
max(G,A) since it relies

upon a specific feature of the regular representation.
As in the case of Lafforgue’s Banach representation, it often happens that a

family of representations can be deformed to a representation containing the trivial
representation, but with a uniform boundedness constant tending to infinity. One
must therefore use a more general class, as we now explain. Fix ε > 0. Let l be a
length function on G.

Definition 6.20 We say that a representation π of G is of ε-exponential type if
there is a constant C such that for any g ∈ G,

‖π(g)‖ ≤ Ceεl(g).

The following ideas come from a discussion between Higson, Julg, and Lafforgue
in 1999. We define as above a G-Fredholm module of ε-exponential type, and
similarly a homotopy of such modules. LetRε(G) be the abelian group of homotopy
classes. The obvious maps Rε(G) → Rε′(G) for ε < ε′ form a projective system
and we consider the projective limit lim←−Rε(G) when ε → 0.

We would like to have an analogue of the above proposition with the group
lim←−Rε(G) instead of Rub(G). In fact there is a slightly weaker result, due to Higson
and Lafforgue (cf. [Laf12] Théorème 2.3) which is enough for our purpose. We
assume now that G is a connected Lie group.
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Theorem 6.21 The kernel of the map

R(G) → lim←−Rε(G)

is included in the kernel of the map

R(G) → EndK∗
(
C∗
r (G,A)

)
.

Let us sketch the proof following [Laf12]. As above, to any representation π of
G is associated an algebra homomorphism

πA : Cc(G,A) → LC∗
r (G,A)

(E)

where E = H ⊗ C∗
red(G,A).

For all ε > 0 there is a Banach algebra Cε which is a completion of Cc(G,A)
such that for any representation π of ε-exponential type, the above map πA extends
to a bounded homomorphism Cε → LC∗

r (G,A)
(E). The Banach Fredholm module

thus obtained defines a map

Rε(G) → Hom
(
K∗(Cε),K∗

(
C∗
r (G,A)

))
.

This being done for each ε, we have a system of maps compatible with the maps
Cε → Cε′ for ε′ < ε, so that there is a commutative diagram (cf. [Laf12] prop 2.5)

R(G) EndK∗(C∗
r (G, A))

lim←− Rε(G) lim←−Hom(K∗(Cε), K∗(C∗
r (G, A))).

The theorem of Higson–Lafforgue then follows immediately, thanks to the
following lemma:

Lemma 6.22 The group K∗(C∗
r (G,A)) is the union of the images of the maps

K∗(Cε) → K∗(C∗
r (G,A)).

To prove the lemma, Higson and Lafforgue use the fact that the symmetric space
Z = G/K has finite asymptotic dimension. They give an estimate of the form (prop
2.6 in [Laf12])

‖f ‖Cε ≤ kεe
ε(ar+b)‖f ‖C∗

r (G,A)

for f ∈ Cc(G,A) with support in a ball of radius r (for the length l).
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The spectral radius formula in Banach algebras then implies for such an f ,

ρCε (f ) ≤ eεarρC∗
r (G,A)

(f ),

so that ρC∗
r (G,A)

(f ) = inf ρCε (f ). This fact, by standard holomorphic calculus
techniques, implies the lemma.

6.2.2 Cowling representations and γ

The beautiful work of Cowling and Haagerup on completely bounded multipliers
of the Fourier algebras for rank one simple Lie groups [CH89] inspired Julg to use
Cowling’s strip of uniformly bounded representations to prove the Baum–Connes
conjecture for such groups. Consider the Hilbert space L2(G/P ) associated to a K-
invariant measure on the flag manifold G/P . Let π1 be the natural action of G, i.e.,
π1(g)f = f ◦ g−1, and let π0 be the unitary representation obtained by twisting π1

by a suitable cocycle: π0(g) = λ
N/2
g π1(g). One can interpolate between π0 and π1

by taking

πs(g) = λ
(1−s)N

2
g π1(g),

with s being a complex number. The result of Cowling [Cow82, ACDB04] is the
following:

Theorem 6.23 The representation (1 + �E)
(1−s)N/4πs(g)(1 + �E)

−(1−s)N/4 is
uniformly bounded for any s in the strip −1 < &s < 1.

In particular this holds for −1 < s < 1. The important point is to compare
with Kostant’s result on the unitarizability of πs . The representations πs are by
construction unitary if &s = 0. Otherwise they are unitarizable (i.e., admit an
intertwining operator Ts such that T −1

s πs(g)Ts is unitary) if and only if −c < s < c

for a certain c ≤ 1. This is the so-called complementary series. The critical value s
is as follows:

(1) If G = SO0(n, 1) or SU(n, 1), c = 1.
(2) If G = Sp(n, 1), c = 2n−1

2n+1 .

(3) If G = F4(−20), c = 5
11 .

In case 1, G has the Haagerup property, and the complementary series approaches
the trivial representation. In cases 2 and 3 one has c < 1 so that there is a gap
between the complementary series and the trivial representation, as expected from
property (T).

The above family πs (0 ≤ s < 1) and its generalizations to the other principal
series are the tool for constructing a homotopy between γ and 1. Indeed the proofs
of γ = 1 by Kasparov [Kas84], Chen [Che96] and Julg-Kasparov [JK95] rest upon
the complementary series. In the general case, Julg [Jul19] constructs a similar
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homotopy involving Cowling uniformly bounded representations. Modulo some
(not yet fully clarified) estimates, that would prove that γ is 1 in Rε(G) for all
ε > 0 (with the above notations).

6.2.3 Lafforgue’s result for hyperbolic groups

In 2012, in a very long and deep paper, Vincent Lafforgue has proved the following
result.

Theorem 6.24 Let G be a word hyperbolic group. Then G satisfies the Baum–
Connes conjecture with coefficients (Conjecture 5).

Remark 6.25 Lafforgue proves more generally the same result for G a locally
compact group acting continuously, isometrically and properly on a metric space
X which is hyperbolic, weakly geodesic and uniformly locally finite.

Let us sketch the main steps of Lafforgue’s proof. The basic geometric object is
the Rips complex � = PR(G) of the group G seen as a metric space with respect
to the word metric dS associated with a set of generators S.

Definition 6.26 Let Y be a locally finite metric space (i.e., every ball in Y is finite).
Fix R ≥ 0. The Rips complex PR(Y ) is the simplicial complex with vertex set
Y , such that a subset F with (n + 1)-elements spans a n-simplex if and only if
diam(F) ≤ R.

Because G is hyperbolic, one can choose the radius R big enough so that � is
contractible. Let ∂ be the coboundary

C[�0] ← C[�1] ← C[�2] ← . . .

of the Rips complex. Let us recall the formula for ∂:

∂δg0,g1,...,gk =
k∑

i=0

(−1)iδg0,...,ĝi ,...,gk

Contractibility of the Rips complex implies that the homology of the complex ∂
is zero in all degrees, except in degree 0 where it is one-dimensional. But a concrete
contraction onto the origin x0 of the graph gives rise to a parametrix, i.e., maps
h : C[�k] → C[�k+1] such that ∂h + h∂ = 1 (except in degree zero where it is
1−px0 where p0 has image in Cδx0 ) and h2 = 0. The prototype is the case of a tree,
where hδx = ∑

δe, the sum being extended to the edges on the geodesic from x0 to
x. The case of a hyperbolic group is more subtle, and the construction of h has to
involve some averaging over geodesics. Suitable parametrices have been considered
by Lafforgue in the Banach framework.

Kasparov and Skandalis in [KS91] have shown that hyperbolic groups admit a
γ -element which can be represented by an operator on the space &2(�). Lafforgue
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considers the following variant of the Kasparov–Skandalis construction. Let us
conjugate the operator ∂ + h by a suitable function of the form etρ , where ρ is
the (suitably averaged) distance function to the point x0. Then for t big enough, the
operator etρ(∂ + h)e−tρ , on the Hilbert space &2(�) equipped with the even/odd
grading and the natural representation π of G, represents the γ -element.

Lafforgue’s tour de force is to modify the construction of the operator h and to
construct Hilbert norms ‖.‖ε on C[�] such that the operators etρ(∂+h)e−tρ become
a homotopy between γ (for t big ) and 1 (for t = 0), this homotopy being through
ε-exponential representations. Let us give the precise statement:

Theorem 6.27 Let G be a word hyperbolic group; let � and ∂ be as above. Fix
ε > 0. There exists a suitable parametrix h satisfying the conditions above, a Hilbert
completion Hε of the space C[�], and a distance function d on G differing from dS
by a bounded function such that:

1. the operator Ft = etρ(∂ + h)e−tρ (where ρ is the distance to the origin x0)
extends to a bounded operator on Hε for any t ,

2. the representation π of G extends to a representation on Hε with estimates
‖π(g)‖ε ≤ Ceεd(gx0,x0),

3. the operators [Ft , π(g)] are compact on Hε.

Let us give an idea of how the Hilbert norms ‖.‖ε on C[�] are constructed. It is
most enlightening to consider the prototype case of trees. Let Sn denote the sphere
of radius n, i.e., the set of vertices at distance n from the origin x0 and Bn the ball
of radius n, i.e., the set of vertices at distance ≤ n of x0. Suppose that f ∈ C[�0]
has support in Sn. Then

‖f ‖2
ε = e2εn

∑

z∈Bn

∣∣∣
∣∣

∑

x→z

f (x)

∣∣∣
∣∣

2

where the last sum is over all x ∈ Sn such that z lies on the path from x0 to x. For
general f ∈ C[�0], one defines ‖f ‖2

ε = ∑∞
n=0 ‖fn‖2

ε , where f is the restriction
of f to Sn. A similar formula defines the norm ‖.‖ε on C[�1]. The way the norm
‖.‖ε is constructed makes relatively easy to prove the continuity of the operator
etρ(∂+h)e−tρ for any t (and uniformly with respect to t). More subtle is the estimate
for the action π(g) of a group element g. Equivalently, it amounts to compare the
norms ‖.‖ε for two choices of x0. Lafforgue establishes an inequality of the form

‖π(g)‖ε ≤ P(l(g))eεl(g)

with a certain polynomial P . In particular ‖π(g)‖ε ≤ Ceε
′l(g) for any ε′ > ε.

According to the philosophy of Gromov, the geometry of trees is a model for
the geometry of general hyperbolic spaces. The implementation of that principle
can, however, be technically hard. In our case, Lafforgue needs almost 200 pages of
difficult calculations to construct the analogue of the norms ‖.‖ε above and for all
the required estimates. We refer to [Laf12] and [Pus14] for the details.
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6.3 Strong property (T)

Theorem 6.24 yields examples of discrete groups with property (T) satisfying
Conjecture 5. Indeed, many hyperbolic groups have property (T). On the other hand,
as a by-product of his proof, Lafforgue shows that hyperbolic groups do not satisfy a
certain strengthening of property (T), in which unitary representations are replaced
by ε-exponential representations. To that effect, let us consider the representation π
of G on the completion of C[�0] for the norm ‖.‖ε.
Lemma 6.28 The representation π on Hε has no non-zero invariant vector,
whereas its contragredient π̌ does have non-zero invariant vectors.

Proof The first fact is obvious since a constant function is not in Hε. On the other
hand, the G-invariant form f �→ ∑

g∈G f (g) extends to a continuous form on
Hε. Let us explain that point in the case of a tree: it follows immediately from the
definition of the norm ‖.‖ε that any f ∈ C[�0] satisfies the inequality

∞∑

n=0

e2εn

∣
∣∣∣∣

∑

x∈Sn
f (x)

∣
∣∣∣∣

2

≤ ‖f ‖2
ε

hence by Cauchy–Schwarz inequality,

∣∣∣
∑

f (x)

∣∣∣
2 ≤

( ∞∑

n=0

e−2εn

)⎛

⎝
∞∑

n=0

e2εn

∣
∣∣∣∣

∑

x∈Sn
f (x)

∣
∣∣∣∣

2
⎞

⎠ ≤
(

1 − e−2ε
)−1 ‖f ‖2

ε.

The identification of Hε with its dual therefore gives a non-zero invariant vector
for the contragredient representation π̌ . ��

Let G be a locally compact group, l a length function on G, and real numbers
ε > 0, K > 0. Let Fε,K the family of representations π of G on a Hilbert space
satisfying ‖π(g)‖ ≤ Keεl(g), and let Cε,K(G) be the Banach algebra defined as the
completion of Cc(G) for the norm sup ‖π(f )‖, where the supremum is taken over
representations π in Fε,K .

Definition 6.29 A Kazhdan projection in the Banach algebra Cε,K(G) is an idem-
potent element p satisfying the following condition: for any representation π

belonging to Fε,K , on a Hilbert space H , the range of the idempotent π(p) is the
space Hπ of G-invariant vectors.

Remark 6.30 The above definition is given in a more general setting by de la Salle
[dlS16], whose Proposition 3.4 and Corollary 3.5 also show that, since the family
Fε,K is stable under contragredient, a Kazhdan projection is necessarily central,
hence unique and self-adjoint.

The above lemma has the following consequence:
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Corollary 6.31 LetG be a hyperbolic group. Then for any ε > 0 there existsK > 0
such that the Banach algebra Cε,K(G) has no Kazhdan projection.

Indeed, assume there is such a projection p. By the above remark p is self-
adjoint, so that π(p)∗ = π̌(p), where π is the representation ofG inHε. But by the
lemma, π(p) = 0 and π̌(p) �= 0, a contradiction.

The following definition should be thought as a strengthening of the charac-
terization of Kazhdan’s property (T) by a Kazhdan projection in C∗

max(G), cf.
Proposition 5.4.

Definition 6.32 The group G has strong property (T) for Hilbert spaces if for any
length function l, there exists an ε > 0 such that for every K there is a Kazhdan
projection in Cε,K(G).

We thus conclude:

Theorem 6.33 Gromov hyperbolic groups do not satisfy the strong property (T) for
Hilbert spaces.

On the other hand, it follows from the works of Lafforgue, Liao, de Laat and
de la Salle (see [Laf08, Lia14, dlS18, dLdlS15]) that in higher rank the situation is
completely different.

Theorem 6.34 Let G be a simple connected Lie group of real rank ≥ 2 or a simple
algebraic group of split rank ≥ 2 over a non archimedian local field. Then G has
strong property (T) in Hilbert spaces. The same holds for any lattice in such a G.

Lafforgue more generally defines strong property (T) for a given class E of
Banach spaces. The theorem above also holds provided the class of Banach spaces
E has a non-trivial type, i.e., if the Banach space &1 is not finitely representable in E .

Strong property (T) had been introduced by Lafforgue [Laf10] to understand the
obstruction, if not to the Baum–Connes conjecture, at least to the proofs considered
so far. But in fact, he has been led to introduce the following variant of strong
property (T). We consider a locally compact group G and a compact subgroup K .
Let l be a K-biinvariant length function on G and ε > 0.

Definition 6.35 An ε-exponentialK-biinvariant Schur multiplier is aK-biinvariant
function c on G such that for any K-biinvariant function f on G with values in
Cc(G) and support in the ball of radius R for the length l,

‖cf ‖ ≤ eεR‖f ‖
where cf is the pointwise product on G and ‖.‖ is the norm in the crossed product
C∗(G,C0(G)) = K(L2(G)).

Definition 6.36 The group G has Schur property (T) relative to the compact
subgroup K if for any K-biinvariant length function l, there exists ε > 0 and a
K-biinvariant function ϕ on G with non-negative values and vanishing at infinity
satisfying the following property: any ε-exponential K-biinvariant Schur multiplier
c has a limit c∞ at infinity and satisfies |c(g)− c∞| ≤ ϕ(g) for any g ∈ G.
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Lafforgue explains in [Laf10] that Schur property (T) for a group G relative to a
compact subgroupK is an obstacle to the above attempts to prove the Baum–Connes
conjecture. It contradicts the existence, for any G − C∗ algebra A and any ε > 0,
of a Banach subalgebra B of the reduced crossed product C∗

r (G,A) satisfying the
inequality ‖f ‖B ≤ eεR‖f ‖C∗

r (G,A)
for any f ∈ Cc(G,A) supported in the ball

of radius R. In particular, supposing that G admits a γ element, it is hopeless to
try to prove the Baum–Connes conjecture with coefficients using a homotopy of γ
to 1 through ε-exponential representations as suggested above. It is also shown in
[Laf10] that SL3(R) and SL3(Qp) do satisfy Schur property (T) with respect to
their maximal compact subgroups. Liao [Lia16] has a similar result for the group
Sp4 over a nonarchimedian local field of finite characteristic. It is very likely, but as
far as we know not yet proved, that it is also the case for simple groups of higher
rank and with finite center.

Remark 6.37 The logical link between strong property (T) and Schur property (T)
is not completely clear. One would expect that Schur property (T) for G relative to
some compact subgroup K implies strong property (T) for G. But as noted by Laf-
forgue, this is not quite the case. As suggested to us by M. de la Salle, there should
be a natural strengthening of Schur property (T) implying strong property (T).

6.4 Oka principle in Noncommutative Geometry

As explained in the previous section, Lafforgue observed that the “Dirac–dual-
Dirac”-like methods used so far, would probably not work to prove the Baum–
Connes conjecture with arbitrary coefficients for simple Lie groups of higher rank,
mainly because of the presence of a variant of strong property (T) (see Section 6.3).
In [Laf10], he even gave a necessary condition for this kind of approach to work and
proved that these methods would certainly not succeed, leaving very few hope in
proving further cases of the conjecture using the classical techniques. Nonetheless,
he indicates that Bost’s ideas on Oka principle are still open and he leaves them as
a path for investigating the problem of surjectivity.

6.4.1 Isomorphisms in K-theory

In analytic geometry, the reduction of holomorphic problems to topological prob-
lems is known as Oka principle, whose classical version is the so-called Oka–
Grauert principle. In its simplest form, it states that the holomorphic classification
of complex vector bundles over an analytic Stein space agrees with their topological
classification. The case of line bundles was proven by Oka in 1939 and it was then
generalized by Grauert in 1958 ([Gra94]; see also [Gro89] for a seminal paper on the
theory and [FL11] for a survey). Let us state Grauert’s Theorem regarding complex
vector bundles.
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Theorem 6.38 (Grauert) Let X be an analytic Stein space. Then,

1. if E and F are two complex holomorphic vector bundles over X which are
continuously isomorphic, then E and F are holomorphically isomorphic.

2. every continuous vector bundle over X carries a holomorphic vector bundle
structure that is uniquely determined.

3. the inclusion ι : O(X,GLn(C)) ↪→ C(X,GLn(C)) of the space of all
holomorphic maps X → GLn(C) into the space of all continuous maps is a
weak homotopy equivalence with respect to the compact-open topology, i.e., ι
induces isomorphisms of all homotopy groups:

πk(ι) : πk O(X, GLn(C))
�

πk C(X, GLn(C)) , k = 0, 1, 2, ...

Let us assume X is compact. Let O(X) be the set of all continuous functions on
X which are holomorphic on the interior of X, as a Banach subalgebra of C(X).
Then the injection ι : O(X) → C(X) is a strong isomorphism in K-theory.

In [Bos90], Bost asks the following question: Let A and B be two Banach
algebras and ι : A → B a continuous injective morphism with dense image. What
can be said about the map ι∗ : K(A) → K(B)? More precisely, under which
conditions on ι is the map ι∗ an isomorphism? As we have already mentioned in
Section 6.1.2, the most classical criteria for the map ι∗ to be an isomorphism is
the fact that A is a dense subalgebra stable under holomorphic calculus in B (see
[Kar08, p. 209], [Swa77, 2.2 and 3.1]). The discussion from Section 6.1 makes it
clear why having a good criteria to ensure that ι∗ is an isomorphism, can be very
helpful when trying to prove the Baum–Connes conjecture. We will see that a closer
relation can be stated.

The link between Bost’s question and Grauert’s Theorem 6.38 can be philosoph-
ically thought as follows: we start from a Banach algebra B, e.g., a C∗-algebra
that we may think as the algebra of continuous functions on some noncommutative
space T . Assume that T can be imbedded in some neighborhood X which is
homotopic to T and carries a (non-commutative analogue of) complex structure.
The dense subalgebra A is the set of functions on T which extend to functions
on X which are holomorphic. Then the injection ι : A → B can be seen as the
composition of the Banach space injection A = O(X) ⊂ C(X) and a restriction
map C(X) → C(T ) = B. The first should be an isomorphism in K-theory by
a noncommutative analogue of Oka–Grauert’s principle, and the second by the
homotopy invariance of K-theory.

More precisely, Bost considers the following situation: LetB be a Banach algebra
endowed with a continuous action of Rn denoted by α. Let F be a compact and
convex subset of Rn containing 0 and with non-empty interior. Then one defines
A = O(B, α, F ) as the set of elements a in B such that the continuous map
t �→ αt (a) from Rn to B has a continuous extension on Rn + iF ⊂ Cn which

is holomorphic on Rn + i
◦
F , where

◦
F is the interior of F .
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For z ∈ Rn + iF , denote by αz(a) ∈ B the value of the map that extends α at z.
Then A = O(B, α, F ) is a Banach algebra endowed with the norm

‖a‖F = sup
z∈Rn+iF

‖αz(a)‖ ,

and the inclusion map ι : A = O(B, α, F ) → B is dense (see [Bos90, 3.1 and
Corollaire 3.2.4]). As mentioned by Bost, the algebra O(B, α, F ) is not in general
stable under holomorphic calculus in B (see [Bos90, 1.3.1]), but the map ι still
induces a strong isomorphism in K-theory (see Definition 6.3, see also [Nic08] for
other criteria on ι so that ι∗ is an isomorphism):

Theorem 6.39 ([Bos90, Théorème 2.2.1]) Let B be a complex Banach algebra
endowed with an action of Rn denoted by α. For all compact and convex subset
F of Rn, containing 0 and with non-zero interior, the inclusion map ι : A =
O(B, α, F ) → B induces a strong isomorphism in K-theory.

The idea of the proof is the following. The map which to a ∈ A associates
the function τ �→ αiτ (a) provides an isometric embedding of the Banach algebra
A = O(B, α, F ) intoC(F,B). Bost’s proof then imitates the proof of Theorem 6.38
to show that the canonical injection A → C(F,B) is a strong isomorphism in K-
theory. Composing with the evaluation at 0 from C(F,B) to B (which is also a
strong isomorphism theorem by the usual homotopy argument) yields the result.

The following examples are the basic examples of [Bos90]. Example 6.40 is
equivalent to Grauert’s theorem for a corona U = {z ∈ C | ρ1 ≤ |z| ≤ ρ2}:
Example 6.40 Let S1 = {z ∈ C | |z| = 1} denote the unit circle, and let B be
the algebra C(S1) of continuous functions on S1 with complex values. Let ρ1 and
ρ2 be two real numbers such that 0 < ρ1 < 1 < ρ2, consider the closed corona
U = {z ∈ C | ρ1 ≤ |z| ≤ ρ2} and let A be the subalgebra of C(U) of continuous

functions φ : U → C which are holomorphic in
◦
U . The algebra A, endowed

with the norm of uniform convergence, is closed in C(U) and hence it is a Banach
algebra. Then, Theorem 6.39 says that the inclusion map ι : A → B induces an
isomorphism in K-theory. Indeed, let (αtf )(z) = f (e−it z), then (αt )t∈R defines a
one parameter group of isometric algebra automorphisms of B and O(B, α, I ) = A

for I = [log ρ1, log ρ2] ⊂ R.

Example 6.41 Let B be the convolution algebra l1(Z). Let R > 0 be a real number

and let A = {
(an) ∈ CZ

∣∣
+∞∑
n=−∞

eR|n||an| < +∞}
. Hence A endowed with the

norm ‖(an)‖R =
+∞∑
n=−∞

eR|n||an| is a Banach algebra which is densely embedded in

B. Theorem 6.39 says that the inclusion map ι : A ↪→ B induces an isomorphism
in K-theory. In this case, the one parameter group of isometric automorphisms of B
is defined by (αt (an) = (eint an), and if I = [−R,R] ⊂ R, then O(B, α, I ) = A.
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Example 6.42 The previous example can be also considered with coefficients so
that things can be formulated in a noncommutative way: if A is a Banach algebra
and α is an action of Z by isometric automorphism of A, let B := &1(Z, A) be the
completion of the convolution algebra Cc(Z, A) given by ‖(bn)n‖1 = ∑

n∈Z
‖bn‖A,

for (bn)n ∈ Cc(Z, A). The product in B is given by twisted convolution, i.e.,
(bb′)n = ∑

k∈Z
bkα(k)(bn−k), for b, b′ ∈ Cc(Z, A). For all t ∈ R, set βt ((bn)n) =

(e−int bn)n and

O(B, β, I ) =
{

(bn)n ∈ &1(Z, A)

∣∣∣∣∣

+∞∑

n=−∞
eR|n|‖an‖A < +∞

}

,

where I = [−R,R]. Then Theorem 6.39 applies and O(B, β, I ) ↪→ B = &1(Z, A)
induces an isomorphism in K-theory.

Theorem 6.39 can be applied to more general crossed products algebras for which
it states that a certain subalgebra defined using an exponential decay condition on
L1(G) has the same K-theory as Ł1(G). For a general locally compact group G, a
Banach G-algebra B and a continuous function a : G → R+ such that a(g1g2) ≤
a(g1) + a(g2), for g1, g2 ∈ G, define a subspace Expa(G,B) of L1(G,B) by the
following decay condition:

φ ∈ Expa(G,B) if and only if eaφ ∈ L1(G,B).

Then, endowed with the norm given by ‖φ‖a = ‖eaφ‖1, Expa(G,B) is a Banach
dense subalgebra ofL1(G,B). Bost proved that ifG is an elementary abelian group,
then K∗(Expa(G,B)) is isomorphic to K∗(L1(G,B)). Let us state his result more
precisely,

Theorem 6.43 ([Bos90, Théorème 2.3.2]) Let G be a locally compact group and
B a Banach algebra endowed with an action ofG. IfG is an extension by a compact
group of a group of the form Zp × Rq (i.e., there is a compact group K and a short
exact sequence 1 → K → G → Zp × Rq → 1), then, for every subadditive
function a : G → R+, the inclusion morphism

Expa(G,B) ↪→ L1(G,B)

induces an isomorphism in K-theory.

6.4.2 Relation with the Baum–Connes conjecture

Since we are dealing with K-theoretic issues, we focus on the right-hand side
of the assembly map and therefore we are interested in surjectivity: let G be a
group for which injectivity of the Baum–Connes assembly map is known (take,
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for example, any group in Lafforgue’s class C), and let A be a G − C∗-algebra.
Let ρ : G → End(V ) be a representation of G on a complex hermitian vector
space V of finite dimension. Then the norm of ρ(g) can be used as a weight to
define exponential decay subalgebras of crossed product algebras. In the case of
L1(G,A), these are easy to define: using the notation of the previous paragraph
and taking a(g) = log ‖ρ(g)‖, denote by Expρ(G,B) := Expa(G,B) which is the
completion of Cc(G,A) for the norm

‖f ‖1,ρ =
∫

G

‖f (g)‖A
(
1 + ‖ρ(g)‖End(V )

)
dg.

Hence Expρ(G,A) is a dense subalgebra of L1(G,A) and the representation ρ
is used as a weight to define exponential decay subalgebras of L1. An Oka principle
applied to this case, would state that these two algebras have the same K-theory.

Notice that for all groups belonging to the class C′, as the algebra Expρ(G,C) is
an unconditional completion, by Theorem 6.8 we know that

K∗
(
Expρ(G,A)

) � K∗
(
L1(G,A)

)
.

Furthermore, we can use ρ to define exponential decay subalgebras of any
unconditional completion,

Definition 6.44 Let B(G) be an unconditional completion of Cc(G) and A a G −
C∗-algebra. Let Bρ(G,A) be the completion of Cc(G,A) for the norm

‖f ‖Bρ = ∥∥g �→ ‖f (g)‖A ‖ρ(g)‖End(V )

∥∥B(G) .

When B(G) = L1(G), if ρ satisfies the following growth condition:

∫

G

1

‖ρ(g)‖ dg < +∞,

then Lρ(G,A) is embedded in L1(G,A).
In the case of the reduced (resp. maximal) C∗-crossed products, an algebra that

we call weighted crossed product and denoted by Aρ
r (G,A) (resp. Aρ(G,A)) was

defined in [GA10] (for more details see 6.4.3 below). Taking ρ to be very large
(meaning that

∫
G

1
‖ρ(g)‖ dg < +∞) this algebra plays the same role in C∗

r (G,A)

as Expρ(G,A) in L1(G,A); they are constructed to be some kind of “exponential
decay subalgebras” of C∗

r (G,A). Suppose now that G is a group for which the
Bost conjecture is known to be true, in other words, the map μA

L1 : Ktop∗ (G,A) →
K∗(L1(G,A)) is an isomorphism. We will see that taking ρ very large allows us
to have a morphism ι : K∗(Aρ

r (G,A)) → K∗(L1(G,A)) and hence a morphism
ϕ : K∗(Aρ

r (G,A)) → K∗(C∗
r (G,A)) (see Proposition 6.51 below), so that the

following diagram is commutative:
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K∗(C∗
r (G, A)) K∗(Aρ

r(G, A))
ϕ

ι
Ktop

∗ (G, A)

μA,r

�
μA

L1

K∗(L1(G, A)) K∗(L1,ρ(G, A))
�

A suitable Oka principle applied to these crossed products states that the
weighted group algebras Aρ

r (G,A), have the same K-theory as C∗
r (G,A), i.e., ϕ

is an isomorphism. This would then imply the surjectivity of μA,r and hence the
Baum–Connes conjecture with coefficients for G.

6.4.3 Weighted group algebras

In this section, we will recall the construction of weighted group algebras con-
structed in [GA10]. Let us first recall some definition and establish some notation.

Let G be a locally compact group and let dg a left Haar measure on G. Let � be
the modular function on G (i.e., dg−1 = �(g)−1dg for all g ∈ G).

Let A be a G − C∗-algebra. For all g ∈ G and for all a ∈ A, let g.a, or g(a),
be the action of g on a. The space of continuous functions with compact support on
G with values in A, denoted by Cc(G,A), is endowed with a structure of involutive
algebra where the multiplication and the involution are given, respectively, by the
formulas:

(f1 ∗ f2)(g) =
∫

G

f1(g1)g1

(
f2

(
g−1

1 g
))
dg1,

for f1, f2 ∈ Cc(G,A) and

f ∗(g) = g
(
f
(
g−1

))∗
�

(
g−1

)
,

for f ∈ Cc(G,A) and g ∈ G. In a general, we write every element f in Cc(G,A) as
the formal integral

∫
G
f (g)egdg, where eg is a formal letter satisfying the following

conditions:

egeg′ = egg′ , e∗g = (eg)
−1 = eg−1 and egae

∗
g = g.a,

for all g, g′ ∈ G and for all a ∈ A.
We denote by C∗

max(G,A) and C∗
r (G,A) the maximal and the reduced crossed

product of G and A, respectively. Moreover, we denote by
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L2(G,A) =
{
f ∈ Cc(G,A)

∣∣∣∣

∫

G

f (g)∗f (g)dg converges inA

}
,

and λG,A the left regular representation of Cc(G,A) on L2(G,A) which is given by
the formula:

λG,A(f )(h)(t) =
∫

G

t−1(f (s))h(s−1t)ds,

for f ∈ Cc(G,A), h ∈ L2(G,A) and t ∈ G. Recall that λG,A induces a
unique morphism of C∗-algebras from C∗

max(G,A) to C∗
r (G,A); we also denote

that morphism by λG,A, by abuse of notation.
Let (ρ, V ) be a finite-dimensional representation ofG. We then consider the map

Cc(G,A) → Cc(G,A)⊗ End(V )
∫

G

f (g)egdg �→
∫

G

f (g)eg ⊗ ρ(g)dg.

Definition 6.45 The reduced crossed product weighted by ρ of G and A, denoted
by Aρ

r (G,A), is the completion of Cc(G,A) for the norm:

‖
∫

G

f (g)egdg‖A�ρG = ‖
∫

G

f (g)eg ⊗ ρ(g)dg‖C∗
r (G,A)⊗End(V ),

for f ∈ Cc(G,A). If A = C, we denote it by Aρ
r (G) := Aρ

r (G,C).

It is then easy to prove that the reduced weighted crossed product Aρ
r (G,A)

is a Banach algebra. When ρ is an unitary representation of G then Aρ
r (G,A) =

C∗
r (G,A), up to norm equivalence.

Remark 6.46 In the same manner, we can define weighted maximal crossed
products, however, we don’t treat them here because of the discussion held in 5.1.

Example 6.47 Let G = Z and let ρ : Z → C∗ be a character of Z. Let Sρ :=
{z ∈ C | |z| = |ρ(1)|} the circle of radius |ρ(1)|. Hence, Aρ

r (G) is the algebra of
continuous functions on Sρ .

Example 6.48 Let G = Z and let ρ1 : Z → C∗ and ρ2 : Z → C be two characters
of Z such that R1 < R2, where R1 = |ρ1(1)| and R2 = |ρ2(1)|. Then, Aρ1⊕ρ2(G)

is the algebra of continuous functions on the closed corona U := {z ∈ C | |ρ1(1)| ≤
|z| ≤ |ρ2(1)|} holomorphic on

◦
U . Indeed, we have the following diagram:

Aρ1⊕ρ2(G) C(S1,End(C2))

�1,ρ1⊕ρ2(G) �1(Z,End(C2))
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where the vertical arrows are given by Fourier series and the norm in &1,ρ1⊕ρ2(G)

is given by ‖(an)n‖ = ∑

n∈Z
|an|‖(ρ1 ⊕ ρ2)(n)‖. It is then clear that the algebra

&1,ρ1⊕ρ2(G) can be identified with the algebra

A =
{

(an) ∈ CZ

∣∣∣∣∣

+∞∑

n=−∞
e|n| log r |an| < +∞, for all r ∈]R1, R2[

}

,

which is identified by Fourier series with the algebra of continuous functions on U

holomorphic on
◦
U . Applying Theorem 6.39, taking R1 < 1 < R2, we get that the

algebras Aρ1⊕ρ2(Z) and C∗
r (Z) have the same K-theory.

In [GA10], a weighted version of the Baum–Connes morphism was constructed
using Lafforgue’s Banach KK-theory:

μ
ρ
r,A : Ktop(G,A) → K(Aρ

r (G,A));

it computes the K-theory of this weighted algebras. Analogues of Kasparov’s and
Lafforgue’s Dirac–dual-Dirac methods were proven in this context. We state them
as the following two theorems.

Theorem 6.49 ([GA10]) Let G be a locally compact group with a γ -element.
Then, for every G − C∗-algebra A and every finite-dimensional representation ρ
of G, the weighted morphism μ

ρ
r,A is injective. If moreover, γ = 1 in KKG(C,C),

then μρr,A is surjective.

Theorem 6.50 ([GA09]) Let G be a locally compact group with a γ -element. If
γ = 1 in KKban

G,&(C,C) and there is an unconditional completion stable under

holomorphic calculus in C∗
r (G), then μ

ρ
r is an isomorphism for every finite-

dimensional representation ρ of G.

Hence the morphism μ
ρ
r,A is an isomorphism, for example, for all groups with

the Haagerup property and more general, for all K-amenable groups, and when
A = C, the morphism μ

ρ
r is an isomorphism for all semisimple Lie groups and

all cocompact lattices in a semisimple Lie group.
It is worth nothing to mention that, proving that the weighted map is an

isomorphism is not easier than proving the Baum–Connes conjecture; one of
the reasons is that, even though the algebras Aρ

r (G,A) are in general not C∗-
algebras, there are constructed in a very C∗-algebraic way. However, the following
proposition shows that the weighted crossed products can be very small when the
representation ρ is very large.

Proposition 6.51 ([GA10, Proposition 1.5]) Let � be a discrete group and A a
�−C∗-algebra. Let ρ : � → End(V ) a finite-dimensional representation of � such
that

∑

γ∈�
1

‖ρ(γ )‖ converges. Then Aρ
r (�,A) embeds into &1(�,A).
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We then have the inclusions Aρ
r (�,A) ↪→ &1(�,A) ↪→ C∗

r (�,A) and hence, if
we take a group � for which we know that Ktop∗ (�) � K∗(&1(�,A)), proving that
Aρ
r (�,A) and C∗

r (�,A) have the same K-theory would prove the surjectivity of the
Baum–Connes map with coefficients for �. These ideas also work for more general
locally compact groups, but we don’t always have a continuous map from Aρ

r (G,A)

to C∗
r (G,A) (this map exists if and only if the regular representation λG is weakly

contained in λG ⊗ ρ). Nevertheless, thanks to the following proposition, we have a
map at the level of K-theory:

Proposition 6.52 Let G be a locally compact group and let ρ : G → End(V ) a
finite-dimensional representation of G such that

∫
G

1
‖ρ(g)‖dg converges. Then, if A

is a G− C∗-algebra, Aρ
r (G,A) ∩ L1(G,A) is relatively spectral in Aρ

r (G,A).

Definition 6.53 A morphism φ : A → B between two algebras is relatively
spectral if spB(φ(x)) = spA(x) for all x in some dense subalgebra X of A. It is
a weaker condition than being stable under holomorphic calculus and it induces an
isomorphism in K-theory (see [Nic08]).

As a result, we have a map from K∗(Aρ
r (G,A)) to K∗(L1(G,A)) defined

through K(Aρ
r (G,A) ∩ L1(G,A)) and we can prove that the following diagram

is commutative:

Ktop
∗ (G, A)

μρ
r

μA
r

�
μL1

K∗(L1(G, A)) K∗(C∗
r (G, A))

K ( ρ
r(G, A))

ϕ

.

Hence, we get a morphism ϕ : K∗(Aρ
r (G,A)) → K∗(C∗

r (G,A)). The following
result is then straightforward:

Theorem 6.54 Let G be a locally compact group with a γ -element and let (ρ, V )
be a finite-dimensional representation of G such that

∫
G

1
‖ρ(g)‖dg converges. If ϕ is

an isomorphism then the Baum–Connes conjecture with coefficients in A is true for
G.

Let us give two examples of groups having a “very large” finite-dimensional
representation.
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Example 6.55

1. Let G = R and let ρ : R → GL3(C), be the representation of G defined by

t �→ Exp(tX), where X =
⎛

⎝
0 1 0
0 0 1
0 0 0

⎞

⎠. Then,

Exp(tX) = 1 + tX + t2

2
X2 =

⎛

⎜
⎝

1 t t2

2
0 1 t

0 0 1

⎞

⎟
⎠

and hence, ‖Exp(tX)‖ ≥
(
t4

4 + t2 + 1
) 1

2 = 1 + t2

2 . It follows that,

∫ +∞

−∞
dt

‖Exp(tX)‖ ≤
∫ +∞

−∞
dt

1 + t2

2

< +∞.

2. Take G = SL2(R). Set K = SO(2), and let

A =
{
at =

(
et 0
0 e−t

)
: t ∈ R

}

be the diagonal subgroup. Recall that the Haar measure in the Cartan decompo-
sition G = KA+K is expressed as

∫

G

f (g) dg =
∫

K

∫ ∞

0

∫

K

sinh(2t)f (k1atk2) dk1 dt dk2

for f ∈ Cc(G). Let ρn be the (n + 1)-dimensional representation of G on
homogeneous polynomials of degree n on C2. Then ‖ρn(at )‖ = ent for t ≥ 0,
so that ρn is very large exactly when n ≥ 3.

Accordingly, proving the Baum–Connes conjecture with coefficients for a group
for which injectivity is known (for example, a semisimple Lie group or one of its
closed subgroups) amounts to prove that the map ϕ is surjective. To illustrate the
fact that proving the surjectivity of ϕ fits in the framework of Oka’s principle as
introduced by Bost in [Bos90], let us state the following proposition. The first point
is a generalization of Theorem 6.43 concerning L1 algebras; even though this result
does not appear in [Bos90], the proof is due to Bost.

Proposition 6.56 Let G be a locally compact group and let ρ : G → GLn(R) a
representation of G.

1. If ρ(G) is amenable and a(g) = log(‖ρ(g)‖), then the mapK∗(Expa(G,B)) →
K∗(L1(G,B)) is an isomorphism.
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2. If ρ(G) is amenable and
∫
G

1
‖ρ(g)‖dg converges then the map

K∗
(Aρ

r (G,B)
) → K∗

(
C∗
r (G,B)

)

defined using Proposition 6.52 is an isomorphism.

The conditions that
∫
G

1
‖ρ(g)‖dg converges and that ρ(G) is amenable imply that

G is amenable. This is because the condition that
∫
G

1
‖ρ(g)‖dg converges implies that

ρ is proper. Hence, Theorem 6.56 does not give anything new apart from proving
that the Baum–Connes conjecture is true for an amenable group. Yet, it seemed to
us that this result gives a good idea of how Bost’s version of Oka principle works,
and therefore we give the main ideas of the proof below.

We will use the following properties of weighted algebras. Analogous properties
are satisfied by Expρ(G,B).

Lemma 6.57 Let ρ, ρ′, π, σ finite-dimensional representations of a locally com-
pact group G.

1. If ρ′ is either a sub-representation or a quotient of ρ, then Aρ
r (G,B) ⊂

Aρ′
r (G,B).

2. If ρ = π ⊗ σ and σ is unitary, then Aρ
r (G,B) = Aπ

r (G,B).
3. If ρ = ⊕

k

ρk , then Aρ
r (G,B) ⊂ ⋂

k

Aρk
r (G,B).

Lemma 6.58 Let ρ : G → GLn(R) be a representation of a locally compact group.
If Rn has a G-invariant filtration of the form 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vr = Rn and
σk : G → End(Vk/Vk−1) is the corresponding representation on Vk/Vk−1 and
σ = ⊕

k

σk is its semi-simplification, then Aρ
r (G,B) ⊂ Aσ

r (G,B) and, moreover,

Aρ
r (G,B) is stable under holomorphic calculus in Aσ

r (G,B).

If ρ(G) is amenable then the Zariski closure of ρ(G) is also amenable by a result
of Moore (see, for example, [Zim84, page 64]). Using Furstenberg’s Lemma we may
suppose that ρ(G) is contain in the a subgroup of GLn(R) of the form

⎛

⎜⎜
⎜⎜
⎝

R∗+ × SO(n1) ∗ . . . ∗
0 R∗+ × SO(n2) ∗ ...
...

. . . ∗
0 . . . 0 R∗+ × SO(nk)

⎞

⎟⎟
⎟⎟
⎠
.

Hence, we may apply Lemma 6.57 with σi = χi ⊗ ui , where χi is a character of
R∗+ and ui is an unitary representation of SO(ni). Using the fact that Aσi

r (G,B) =
Aχi
r (G,B), we get a injective morphism

Aρ
r (G,B) → Aπ

r (G,B)
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where π =
m⊕

k=1
χk and this morphism is dense and stable under holomorphic

calculus. Therefore,

K∗
(Aρ

r (G,B)
) � K∗

(Aπ
r (G,B)

)
.

It remains to prove that the inclusion

Aπ
r (G,B) → C∗

r (G,B)

induces an isomorphism in K-theory.
Let W be the space of real-valued functions on G defined as W = ∑

k

R log(χk).

We define an action ofW on C∗
r (G,B) by the formula αξ (f )(g) = f (g)e−iξ(g), for

f ∈ Cc(G,B) and ξ ∈ W . Then, we need to check that

Aπ
r (G,B) = O(K,C∗

r (G,B), α)

where K is the convex hull of {0, logχk}. We conclude by applying Theorem 6.39.

7 The Baum–Connes conjecture for groupoids

Let G be a locally compact, σ -compact, Hausdorff groupoid with Haar system and
let C∗

r (G) be its reduced C∗-algebra (see the definition below). The Baum–Connes
conjecture for G states that a certain map

μr : Ktop∗ (G) → K∗
(
C∗
r (G)

)

is an isomorphism. Many important examples of operator algebras may be realized
as the C∗-algebra associated to a groupoid. This is the case, for example, for C∗-
algebras associated to a foliation, to an action of a group on a space as well as
the C∗-algebra associated to a group. Therefore, a version of the Baum–Connes
conjecture for groupoids allows to study the K-theory of all of these algebras in a
very general framework; we will see that it is also the case for the coarse Baum–
Connes conjecture developed in Chapter 8.

The Baum–Connes map μr for groupoid C∗-algebras appeared in the work of
Baum and Connes on the Novikov conjecture for foliations (see [Con82] for a
very nice survey on the subject). In [BC85], Baum and Connes gave a proof of the
injectivity ofμr in the case of groupoids coming from foliations that have negatively
curved leaves which is based on the construction of a Dual-Dirac element following
ideas of both Kasparov and Mishchenko. Using a construction of a Kasparov
bivariant theory which is equivariant with respect to the action of a groupoid defined
by Le Gall in [LG99], Tu stated in [Tu99c] the Dirac–dual-Dirac method in a
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very general context. He then proved injectivity of μr for a class of groupoids
called bolic, generalizing Kasparov and Skandalis’s work for groups, and that μr
is an isomorphism for amenable groupoids generalizing the results of Higson and
Kasparov (see [Tu99c, Tu99b]).

7.1 Groupoids and their C∗-algebras

In this section, we recall the definition of the C∗-algebras associated to groupoids
and the Baum–Connes conjecture for those. It is mostly taken from the survey
written by Tu on the subject [Tu00].

A groupoid is a small category in which all morphisms are invertible. More
concretely, it is given by the following data:

1. the set of objects G0, also called the unit space,
2. the set of morphisms G,
3. an inclusion i : G0 ↪→ G,
4. two maps “range” and “source” r, s : G → G0 such that r ◦ i = s ◦ i = Id,
5. an involution G → G, denoted by g �→ g−1 such that r(g) = s(g−1) for every
g ∈ G,

6. a partially defined product G2 → G, denoted by (g, h) �→ gh, where G2 :=
{(g, h) ∈ G × G | s(g) = r(h)} is the set of composable pairs.

It is assumed moreover that the product is associative (i.e., if (g, h), (h, k) ∈ G2

then the products (gh)k and g(hk) are defined and are equal), that for all g ∈ G,
i(r(g))g = gi(s(g)) = g and for all g ∈ G, gg−1 = i(r(g)).

A topological groupoid is a groupoid such that G and G0 are topological spaces
and all maps appearing in the definitions are continuous. When a topological
groupoid G is locally compact and Hausdorff, it is said to be

(a) principal if (r, s) : G → G0 × G0 is injective,
(b) proper if (r, s) : G �→ G0 × G0 is proper,
(c) étale, or r-discrete, if the range map r : G �→ G0 is local homeomorphism, i.e.,

if every x ∈ G admits an open neighborhood U such that r(U) is an open subset
of G0 and r : U �→ r(U) is a homeomorphism

Before giving some examples of groupoids, let us introduce some notations: for
all x, y ∈ G0, Gx := s−1(x), Gx = r−1(x), Gxy = Gx ∩ Gy .

Example 7.1

1. Groups and Spaces. A group G is a groupoid withG0 = {1}, the unit element. A
space X is a groupoid where G = G0 = X and r = s = IdX.

2. An equivalence relation R ⊂ X×X on a set X can be endowed with a groupoid
structure; the unit space is X, the range and source maps are r(x, y) = x,
s(x, y) = y, respectively, composition is defined by (x, y)(z, t) = (x, t) if y = z

and inverses by (x, y)−1 = (y, x). In particular, the space X ×X is a groupoid.
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3. If a group � acts on the right on a space X, then one obtains a groupoid G =
X � � by taking as a set G = X × � as unit space G0 = X × {1} � X,
r(x, γ ) = x, s(x, γ ) = xγ , x, γ )−1 = (xγ, γ−1), (x, γ )(xγ, γ ′) = (x, γ γ ′). If
X is a topological space, � a topological group and the cation is continuous then
X� is a topological groupoid, which is Hausdorff if X and � are. In that case, if
� is discrete, X � � is étale and it is principal if the action is free.

4. LetX be topological space and take G to be the set of equivalence classes of paths
ϕ : [0, 1] → X where two paths are equivalent if and only if they are homotopic
with fixed endpoints. Then G0 � X is the set of equivalence classes of constant
paths on X. If ϕ is a path on X and g = [ϕ] is its class in G, then r(g) = ϕ(1),
s(g) = ϕ(0), g−1 = [ϕ−1], where ϕ−1(t) = ϕ(1 − t) and [ϕ][ψ] = [ϕ ∗ ψ],
where ϕ ∗ψ(t) = ϕ(2t) for t ∈

[
0, 1

2

]
and ϕ ∗ψ(t) = ψ(2t − 1) for t ∈

[
1
2 , 1

]
.

G is called the fundamental groupoid of X.
5. Let (V , F ) be a foliation. The holonomy groupoid G is the set of equivalence

classes of paths whose support is contained in one leaf, where two paths are
identified if they have the same end points and they define the same holonomy
element. Composition and inverse are defined in the same way as for the
fundamental groupoid. The space of units is V ; if V is of dimension n and
the foliation of codimension q then G is a differentiable groupoid of dimension
2n − q. It is not Hausdorff in general. If T is a transversal that meets all leaves
of the foliation, then the restriction of the holonomy groupoid to T is an étale
groupoid equivalent to G.

From now on let G be a locally compact Hausdorff groupoid. An action (on the
right) of G on a space Z is given by a map p : Z → G0, called the source map,
and a continuous map from Z ×G0 G = {(z, g) |p(z) = r(g)} to Z, denoted by
(z, g) �→ zg, such that (zg)h = z(gh) whenever p(z) = r(g) and s(g) = r(h) and
zp(z) = z. A space endowed with an action of G is called a G-space.

We can then define a groupoid denoted by Z�G with underlying set Z×G, unit
space Z � {(z, p(z)) | z ∈ Z}, source and range maps s(z, g) = zg, r(z, g) = z,
inverse (z, g)−1 = (zg, g−1) and products (z, g)(zg, h) = (z, gh). Note that Z � G
is étale if G is. If Z and G are locally compact Hausdorff, the action of G on Z is
free (resp. proper) if and only if the groupoid Z � G is principal (resp. proper). A
G-space Z is said to be G-compact if the action is proper and the quotient Z/G is
compact.

A G-algebra is an algebra A endowed with an action of G i.e., A is a C(G0)-
algebra and the action of G on A is given by an isomorphism of C(G)-algebras
α : s∗A → r∗A such that the morphisms αg : As(g) → Ar(g) satisfy the relation
αg ◦ αh = αgh. Recall that if X is a locally compact Hausdorff space, a C(X)-
algebra is a C∗-algebra endowed with a ∗-homomorphism θ from C0(X) to the
center Z(M(A)) of the multiplier algebra of A, such that θ(C0(X))A = A. If p :
X → Y is a map between two locally compact Hausdorff spaces and A is a C(X)-
algebra, then p∗A = A⊗C0(X) C0(Y ) is a C(Y )-algebra. If x ∈ X, the fiber Ax of
A over x is defined by i∗A where ix : {x} → X is the inclusion map.
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Suppose G is σ -compact and has a Haar system λ = {λx | x ∈ G0} (we can take,
for example, G to be étale and then λx is the counting measure on Gx). A cutoff
function on G is a continuous function c : G0 → R

+ such that for every x ∈ G0,∫
g∈Gx c(s(g))dλ

x(g) = 1, and for every compact K ⊂ G0, supp(c) ∩ s(GK) is
compact. Such a function exists if and only if G is proper [Tu99c, Propositions 6.10,
6.11].

Let A be a G-algebra. The full and reduced crossed products of A by G,
denoted C∗(G, A) and C∗

r (G, A) respectively are defined in the following way: let
Cc(G, r∗A) be the space of functions with compact support g �→ ϕ(g) ∈ Ar(g)
continuous in the sense of [LG99]. The product and adjoint are defined respectively
by

ϕ ∗ ψ(g) =
∫

h∈Gr(g)
ϕ(h)αh(ψ(h

−1g))dλr(g)(h),

ϕ∗(g) = αg(ϕ(g
−1))∗.

Then, L1(G, r∗A) denotes the completion of Cc(G, r∗A) for the norm

‖ϕ‖ = max(|ϕ|1, |ϕ∗|1),

where |ϕ|1 = sup
x∈G0

∫
g∈Gx ‖ϕ(g)‖dλx(g) and C∗(G, A) is the enveloping C∗-algebra

of L1(G, r∗A) and C∗
r (G, A) is the closure of L1(G, r∗A) in L(L2(G, r∗A)).

When the G-algebra A is the algebra C0(G0) of continuous functions vanishing
at infinity on the space of objects G0, the crossed products C∗(G, A) and C∗

r (G, A)
will simply be denoted C∗(G) and C∗

r (G), and called groupoid full and reduced
C∗-algebras.

In [LG97, LG99], for every pair (A,B) of graded G-algebras, Le Gall defined
a bifunctor KKG(A,B) generalizing Kasparov’s KK-bifuntor for groups (see
Section 3.1) that has mostly the same features, in particular, there is an associative
product KKG(A,D) × KKG(D,B) → KKG(A,B) that satisfies the same
naturality properties as in case of the non-equivariant KK-functor. The product of
two elements α ∈ KKG(A,D), β ∈ KKG(D,B) is denoted by α ⊗D β. And there
are descent morphisms

jG : KKG(A,B) → KK
(
C∗(G, A), C∗(G, B)) ,

jG,r : KKG(A,B) → KK
(
C∗
r (G, A), C∗

r (G, B)
)
,

compatible with the product.
Suppose that G is proper and that G0/G is compact and let c be a cutoff

function for G. The function g �→ √
c(r(g))c(s(g)), which is continuous with

compact support, defines a projection in C∗(G) = C∗
r (G) whose homotopy class

is independent of the choice of the cutoff function and hence defines a canonical
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element λG ∈ K0(C
∗(G)). If Z is a G-compact proper space and B is a G-algebra,

the map

KK∗(C0(Z), B)
jG,r

KK∗(C∗(Z � G), C∗
r (G, B))

λZ�G⊗.
K∗(C∗

r (G, B))

induces the Baum–Connes map with coefficients

μBr : Ktop∗ (G;B) = lim→ KK∗
G(C0(Z), B) → K∗

(
C∗
r (G, B)

)
,

where the inductive limit is taken among all the Z subspace of EG that are G-
compact and EG is the classifying space for proper actions of G. As shown in
[Tu99c], one can take EG to be the se of positive measures μ on G such that s∗μ is
a Dirac measure on G0 and |μ| ∈ ( 1

2 , 1].
The Baum–Connes conjecture with coefficients for groupoids can be stated as

follows

Conjecture 13 For every locally compact Haussdorf groupoid with Haar system G
and every G-algebra, μBr (G) is an isomorphism.

When B = C0(G0), we get the Baum–Connes map without coefficients:

μr : Ktop∗ (G) = K
top∗ (G;C0(G)) = limKK∗

G(C0(Z), B) → K∗
(
C∗
r (G)

)
,

And the conjecture without coefficients states that μr(G) is an isomorphism.
Tu’s general definition of the dual-Dirac method as discussed in Section 4.4 is

stated in terms of groupoids as follows: let G be a locally compact, σ -compact
groupoid with Haar system. Suppose there exists a proper G-algebraA and elements

η ∈ KKG(C0(G0, A), D ∈ KKG(A,C0(G0)),

γ ∈ KKG(C0(G0),G0))

such that η ⊗A D = γ and p∗γ = 1 ∈ KKEG�G(C0(EG), C0(EG)), where p :
EG → G0 is the source map for the action of G on EG. Then this element is unique
and G is said to have a γ -element. It is the same element as the one constructed
by Kasparov for every connected locally compact group [Kas95] (see Section 3.3).
Tu’s result is stated as follows

Theorem 7.2 ([Tu99c, Proposition 5.23], [Tu99a, Theorem 2.2]) If the groupoid
G has a γ -element, then the Baum–Connes maps with coefficients μ and μr are
split injective. Moreover, if γ = 1 in KKG(C0(G0), C0(G0)), then μ and μr with
coefficients are isomorphisms and G is K-amenable.

As explained by Tu in [Tu00], proofs of injectivity of μr based in Theorem 7.2
are constructive: they require explicit constructions of a proper C∗-algebra and the
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elements in KKG appearing in the definition of a γ -element, and to do so one
uses the existence of an action of the corresponding groupoid on some space with
particular geometric properties.

Using Theorem 7.2 Tu proved that the assembly map μr is injective for bolic
foliations (cf. [Tu99c], Définition 1.15) and that it is a isomorphism for groupoids
satisfying the Haagerup property, for example, amenable groupoids (cf. [Tu99b]).

As an example, let us mention that Higson and Roe proved that a discrete group
� has property A if and only if the groupoid β� � � is amenable, where β� is the
Stone-Čech compactification of � (see Section 9.3.1 for a discussion on property A
and [HR00]).

Higson also proved that if � has property A, then the Baum–Connes map with
coefficients μr for � is injective and C∗

r (�) is an exact C∗-algebra [Hig00].
On the other hand, Skandalis, Tu, and Yu proved in [STY02] that � can be

coarsely embedded into a Hilbert space if and only if β��� has Haagerup property.
If this is the case, then the Baum–Connes map with coefficients for � is injective.

We mention here that there is also a Banach version of the dual-Dirac technique
for groupoids developed by Lafforgue in [Laf07]. He defined a KK-theory for
Banach algebras that is equivariant with respect to the action of a groupoid and
he used a notion of unconditional completion that he established in this context to
prove the Baum–Connes conjecture with commutative coefficients for hyperbolic
groups.

7.2 Counter-examples for groupoids

This section is based on sections 1 and 2 of [HLS02]. Let G be a locally compact,
Hausdorff groupoid. Say that a closed subset F of the unit space G0 is saturated if
every morphism with source in F has also range in F . Set U = G\F . Let GF be the
groupoid obtained by restricting G to F , and let GU be the open subgroupoid of G
comprising those morphisms with source and range in U . Then there is a short exact
sequence at the level of maximal C∗-algebras:

0 → C∗
max(GU) → C∗

max(G) → C∗
max(GF ) → 0,

but the corresponding sequence at the level of reduced C∗-algebras

0 → C∗
r (GU) → C∗

r (G) → C∗
r (GF ) → 0

may fail to be exact; in favorable circumstances this lack of exactness can even be
detected at the level of K-theory. This can be exploited to produce counter-examples
to the Baum–Connes conjecture.
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Lemma 7.3 Assume that the sequence

K0
(
C∗
r (GU)

) → K0
(
C∗
r (G)

) → K0
(
C∗
r (GF )

)
(7.1)

is NOT exact in the middle term. If the assembly map Ktop

0 (GF ) → K0(C
∗
r (GF )) is

injective, then the assembly map Ktop

0 (G) → K0(C
∗
r (G)) is NOT surjective.

Proof By contrapositive, we assume that Ktop

0 (G) → K0(C
∗
r (G)) is surjective, and

prove that the sequence 7.1 is exact. For this we chase around the commutative
diagram:

Ktop
0 (G) Ktop

0 (GF )

0 K0(C
∗
max(GU )) K0(C

∗
max(G)) K0(C

∗
max(GF )) 0

0 K0(C
∗
r (GU )) K0(C

∗
r (G)) K0(C

∗
r (GF ) 0

Let y be in the kernel of K0(C
∗
r (G)) → K0(C

∗
r (GF )). By the assumed

surjectivity of the assembly map for G, we write y as the image of x ∈ K
top

0 (G).
Then the image of x inKtop

0 (GF ) is zero, by the assumed injectivity of the assembly
map for GF . So μmax(x) is in the kernel of K0(C

∗
max(G)) → K0(C

∗
max(GF ))

and therefore in the image of K0(C
∗
max(GU)), by exactness of the middle row. So

y = μr(x) is in the image of K0(C
∗
r (GU)). ��

Let us give a simple example where this happens.

Definition 7.4 A group � is residually finite if � admits a filtration, i.e., a decreas-
ing sequence (Nk)k>0 of finite index normal subgroups with trivial intersection.

We recall that finitely generated linear groups are residually finite, which
provides a wealth of examples. If (Nk)k>0 is a filtration of �, we denote by λ�/Nk
the representation of � obtained by composing the regular representation of �/Nk
with the quotient map � → �/Nk , and by λ0

�/Nk
the restriction of λ�/Nk to the

orthogonal of constants.

Definition 7.5 If (Nk)k>0 is a filtration of �, the group � has property (τ ) with
respect to the filtration (Nk)k>0 if the representation ⊕k>0λ

0
�/Nk

does not almost
admit invariant vectors.

It follows from Proposition 5.3 that a residually finite group with property (T)
has property (τ ) with respect to every filtration. For a group like the free group, this
property depends crucially on the choice of a filtration.
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Fix now a filtration (Nk)k>0 in the residually finite21 group �∞, let qk : �∞ →
�k = �∞/Nk be the quotient homomorphism. Let N = N ∪ {∞} be the one-point
compactification of N, endow N × �∞ with the following equivalence relation:

(m, g) ∼ (n, h) ⇔
{

either m = n = ∞ and g = h

or m = n ∈ N and qm(g) = qm(h).

Let G be the groupoid with set of objects G0 = N, and with set of morphisms
G1 = (N × �∞)/ ∼, with the quotient topology; observe that G is a Hausdorff
groupoid, as (Nk)k>0 is a filtration. We may view G as a continuous field of groups
over N, with �k sitting over k ∈ N. Set F = {∞} and U = N.

Proposition 7.6 Let �∞ be an infinite, discrete subgroup of SLn(R). Assume that
there exists a filtration (Nk)k>0 such that �∞ has property (τ ) with respect to it.
Let G be the groupoid construct above, associated with this filtration. The assembly
map for G is not surjective.

Proof We check the two assumptions of Lemma 7.3. First, GF = �∞. As the
assembly map μr is injective for every closed subgroup of any connected Lie group
(e.g., SLn(R)), it is injective for GF . It remains to see that the sequence (7.1) is
not exact in our case. For the representation π = ⊕k>0λ�∞/Nk of �∞, denote by
C∗
π (�∞) the completion of C�∞ defined by π . Because of property (τ ) there exists

a Kazhdan projection eπ ∈ C∗
π (�∞) that projects on the �∞-invariant vectors22 in

every representation of C∗
π (�∞).

Now C∗
r (G) is the completion of Cc(G1) for the norm

‖f ‖ = sup
k∈N

‖λ�∞/Nk (fk)‖,

where f ∈ Cc(G1) and fk = f |{k}×�k .
Consider the homomorphism C�∞ → Cc(G1) which to g ∈ �∞ associates

the characteristic function of the set of (k, h) ∈ N̄ × �∞ such that h = qk(g).
It extends to a homomorphism α : C∗

π (�∞) → C∗
r (G), as is easily checked.

The projection α(eπ ) is in the kernel of the map C∗
r (G) → C∗

r (GF ): as �∞ is
infinite, its regular representation has no non-zero invariant vector. Therefore the
class [α(eπ )] ∈ K0(C

∗
r (G)) is in the kernel of the mapK0(C

∗
r (G)) → K0(C

∗
r (GF )).

On the other hand GU = ∐
k>0(�∞/Nk), soC∗

r (GU) = ⊕k>0C
∗(�∞/Nk) (aC∗-

direct sum) and K0(C
∗
r (GU)) = ⊕k>0K0(C

∗(�∞/Nk)) (an algebraic direct sum).
Considering now the natural homomorphism λ�∞/Nk : C∗

r (GU) → C∗(�∞/Nk),
we see in this way that (λ�∞/Nk )∗(x) �= 0 for only finitely many k’s if x lies in the

21Until the end of Proposition 7.6, we denote a countable group by �∞ rather than �, as we view
�∞ as the limit of its finite quotients �k .
22If �∞ has property (T), eπ is the image in C∗

π (�∞) of the Kazhdan projection eG ∈ C∗
max(�∞)

from Proposition 5.4.
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image ofK0(C
∗
r (GU)) inK0(C

∗
r (G)), while (λ�∞/Nk )∗[α(eπ )] �= 0 for every k ∈ N.

This shows that [α(eπ )] is not in the image of K0(C
∗
r (GU)). ��

Example 7.7 Explicit examples where Proposition 7.6 applies, are SLn(Z) with
n ≥ 3 and any filtration (because of property (T)), and SL2(Z) with a filtration
by congruence subgroups (property (τ ) is established in [Lub10]).

The paper [HLS02] by Higson–Lafforgue–Skandalis contains several other
counter-examples to the Baum–Connes conjecture for groupoids:

• injectivity counter-examples for Hausdorff groupoids;
• injectivity counter-examples for (non-Hausdorff) holonomy groupoids of folia-

tions;
• surjectivity counter-examples for semi-direct product groupoids Z��, where Z

is a suitable locally compact space carrying an action of a Gromov monster � (see
Section 9.2 below for more on Gromov monsters). In terms of C∗-algebras, since
C∗
r (Z � �) = C∗

r (�, C0(Z)), this is a counter-example for the Baum–Connes
conjecture with coefficients (Conjecture 5).

8 The coarse Baum–Connes conjecture (CBC)

We dedicate this section to the memory of John Roe (1959–2018)

The idea behind coarse, or large scale-geometry is very simple: ignore the local,
small-scale features of a geometric space and concentrate on its large-scale, or long-
term, structure. By doing so, trends or qualities may become apparent which are
obscured by small-scale irregularities. For a metric space X, the coarse Baum–
Connes conjecture postulates an isomorphism

μX : KX∗(X) = lim
d→∞K∗(Pd(X))

�−→ K∗(C∗(X)),

where the actors only depend on large scale, or coarse structure of X. The right-
hand side is the K-theory of a certain C∗-algebra, the Roe algebra of X—a
noncommutative object; while the left-hand side is the limit of the K-homology
groups of certain metric spaces (i.e., commutative objects), namely Rips complexes
of X, see Definition 6.26, and the isomorphism should be given by a concrete map,
the coarse assembly mapμX. This way the analogy with the classical Baum–Connes
conjecture (Conjecture 4) becomes apparent: both are in the spirit of bridging
noncommutative geometry with classical topology and geometry. CBC has several
applications, e.g., the Novikov conjecture (Conjecture 2.5) when X = �, a finitely
generated group equipped with a word metric.

Let (X, dX), (Y, dY ) be metric spaces, and f : X → Y a map (not necessarily
continuous). We say that f is almost surjective if there exists C > 0 such that Y is
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the C-neighborhood of f (X). Recall that f is a quasi-isometric embedding if there
exists A > 0 such that

1

A
dX(x, x

′)− A ≤ dY (f (x), f (x
′)) ≤ AdX(x, x

′)+ A,

for every x, x′ ∈ X, and that f is a quasi-isometry if f is a quasi-isometric
embedding which is almost surjective. A weaker condition is provided by coarse
embeddings, relevant for large-scale structure and corresponding to injections in the
coarse category: f is a coarse embedding if there exist functions ρ+, ρ− : R+ →
R+ (called control functions) such that limt→∞ ρ±(t) = ∞ and

ρ−(dX(x, x′)) ≤ dY (f (x), f (x
′)) ≤ ρ+(dX(x, x′))

for every x, x′ ∈ X. Finally, f is a coarse equivalence if f is a coarse embedding
which is almost surjective; coarse equivalences are isomorphisms in the coarse
category.

8.1 Roe algebras

8.1.1 Locality conditions on operators

Let (X, dX) be a proper metric space. A standard module over C0(X) is a Hilbert
space HX carrying a faithful representation of C0(X), whose image meets the
compact operators only in 0. Fix a bounded operator T on HX. A point (x, x′) ∈
X ×X is in the complement of the support of T if there exists f, f ′ ∈ Cc(X), with
f (x) �= 0 �= f ′(x′) and f ′Tf = 0.

Say that T is pseudo-local if the commutator [T , f ] is compact for every f ∈
C0(X), that T is locally compact if Tf and f T are compact operators for every
f, f ′ ∈ C0(X). Say that T has finite propagation if the support of T is contained in
a neighborhood of the diagonal inX of the form {(x, x′) ∈ X×X : dX(x, x′) ≤ R}.
Definition 8.1 The Roe algebra C∗(X) is the norm closure of the set of locally
compact operators with finite propagation on HX.

It can be shown thatC∗(X) does not depend on the choice of the standard module
HX over C0(X). The K-theory K∗(C∗(X)) will be the right-hand side of the CBC.

Example 8.2 If X is a uniformly discrete metric space (i.e., the distance between
two distinct points is bounded below by some positive number), then we may take
HX = &2(X) ⊗ &2(N), any operator T ∈ B(HX) can be viewed as a matrix T =
(Txy)x,y∈X. Then T is locally compact if and only if Txy is compact for every x, y ∈
X, and T has finite propagation if and only if there is R > 0 such that Txy = 0
for d(x, y) > R. In particular &∞(X,K), acting diagonally on HX, is contained in
C∗(X).
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Example 8.3 Let � be a finitely generated group, endowed with the word metric
d(x, y) = |x−1y|S associated with some finite generating set S ofG. Let |�| denote
the underlying metric space, which is clearly uniformly discrete. Let ρ be the right
regular representation of G on &2(G); observe that, because d(xg, x) = |g|S , the
operator ρ(g) ⊗ 1 has finite propagation. Actually the Roe algebra in this case is
C∗(|�|) = &∞(�,K)�r �, where � acts via ρ.

8.1.2 Paschke duality and the index map

Let X be a proper metric space and HX a standard module over C0(X), as in the
previous paragraph. Denote by �0(X,HX) the set of pseudo-local operators, and
by �−1(X,HX) the set of locally compact operators. It follows from the definitions
that �0(X,HX) is a C∗-algebra containing �−1(X,HX) as a closed 2-sided ideal.

The K-homology of X may be related to the K-theory of the quotient

�0(X,HX)/�−1(X,HX).

For i = 0, 1 there are maps

Ki(�0(X,HX)/�−1(X,HX)) → K1−i (X) (8.1)

defined as follows: for i = 0, let p be a projection in �0(X,HX)/�−1(X,HX) (or
in a matrix algebra over�0(X,HX)/�−1(X,HX)), form the self-adjoint involution
f = 2p − 1, let F be a self-adjoint lift of f in �0(X,HX). Then the pair
(HX, F ) is an odd Fredholm module over C0(X), in the sense of Definition 3.1,
so it defines an element of the K-homology K1(X). For i = 1, let u be a unitary
in �0(X,HX)/�−1(X,HX) (or in a matrix algebra over it), let U be a lift of u in
�0(X,HX), form the self-adjoint operator

F =
(

0 U

U 0

)

on HX⊕HX: then (HX⊕HX, F ) is an even Fredholm module overC0(X), defining
an element of the K-homology K0(X). Paschke [Pas81] proved that, when HX is
a standard module, the homomorphisms in 8.1 are isomorphisms: this is Paschke
duality.

Now define D∗(X,HX) as the norm closure of the pseudo-local, finite propa-
gation operators. It is clear that C∗(X) is a closed 2-sided ideal in D∗(X,HX).
It was proved by Higson and Roe (see [HR95], lemma 6.2), that the inclu-
sion D∗(X,HX) ⊂ �0(X,HX) induces an isomorphism D∗(X,HX)/C

∗(X) �
�0(X,HX)/�−1(X,HX) of quotient C∗-algebras. Now consider the 6-term exact
sequence in K-theory associated with the short exact sequence

0 → C∗(X) → D∗(X,HX) → D∗(X,HX)/C
∗(X) → 0;
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the connecting maps K1−i (D∗(X,HX)/C
∗(X)) → Ki(C

∗(X) (i = 0, 1) can be
seen as maps K1−i (�0(X,HX)/�−1(X,HX)) → Ki(C

∗(X)). Applying Paschke
duality, we get an index map

IndX : K∗(X) → K∗(C∗(X)),

for every proper metric space X.

Example 8.4 If X is compact, then C∗(X) is the C∗-algebra of compact operators,
so K0(C

∗(X)) = Z and the map IndX : K0(X) → Z is the usual index map that
associates its Fredholm index to an even Fredholm module over C(X).

8.2 Coarse assembly map and Rips complex

8.2.1 The Rips complex and its K-homology

We now define the left-hand side of the assembly map, in terms of Rips complexes.
Recall from Definition 6.26 that, for X a locally finite metric space (i.e., every ball
in X is finite) and d ≥ 0, the Rips complex Pd(X) is the simplicial complex with
vertex set X, such that a subset F with (n + 1)-elements spans a n-simplex if and
only if diam(F) ≤ d. We define a metric on Pd(X) by taking the maximal metric
that restricts to the spherical metric on every n-simplex—the latter being obtained
by viewing the n-simplex as the intersection of the unit sphere Sn with the positive
octant in Rn+1.

The coarse K-homology of X is then defined as:

KX∗(X) := lim
d→∞K∗(Pd(X));

this will be the left-hand side of the CBC. Observe that, for every d ≥ 0, the
spaces X and Pd(X) are coarsely equivalent. Then, taking K-theory, we see that
limd→∞K∗(C∗(Pd(X))) is isomorphic to K∗(C∗(X)).

Example 8.5 If � is a finitely generated group and X = |�|, then KX∗(X) =
limY K∗(Y ), where Y runs in the directed set of closed, �-compact subsets of the
classifying space for proper actions E�. This is to say that CBC can really be seen
as a non-equivariant version of the Baum–Connes Conjecture 4.

8.2.2 Statement of the CBC

The index map IndPd(X) is compatible with the maps K∗(Pd(X)) → K∗(Pd ′(X))
and K∗(C∗(Pd(X))) → K∗(C∗(Pd ′(X))) induced by the inclusion Pd(X) →
Pd ′(X) for d < d ′. Passing to the limit for d → ∞, we get the coarse assembly
map
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μX : KX∗(X) → K∗(C∗(X)).

Say that X has bounded geometry if, for every R > 0, the cardinality of balls of
radius R is uniformly bounded over X. Here is now the statement of the coarse
Baum–Connes conjecture.

Conjecture 14 (CBC) For every spaceX with bounded geometry, the coarse assem-
bly map μX is an isomorphism.

8.2.3 Relation to the Baum–Connes conjecture for groupoids

It is a result of Yu [Yu95] that, if � is a finitely generated group, the CBC for the
metric space |�| is the usual Baum–Connes conjecture for � with coefficients in
the C∗-algebra &∞(�,K) (compare with Example 8.3). Skandalis et al. [STY02]
generalize this by associating to every discrete metric space X with bounded
geometry, a groupoid G(X) such that the coarse assembly map for X is equivalent
to the Baum–Connes assembly map for G(X) with coefficients in the C∗-algebra
&∞(X,K).

Let us explain briefly the groupoid G(X). So let X be a countable metric space
with bounded geometry. A subset E ofX×X is called an entourage if d is bounded
on E, i.e., if there exists R > 0 such that ∀(x, y) ∈ E, d(x, y) ≤ R.

Let

G(X) =
⋃

E entourage

E ⊂ β(X ×X),

where β(X×X) is the Stone-Čech compactification of X×X and E is the closure
ofE in β(X×X). G(X) is the spectrum of the abelian C∗-subalgebra of &∞(X×X)
generated by the characteristic functions χE of entourages E. Skandalis, Tu, and Yu
proved that it can be endowed with a structure of groupoid extending the one on
X×X. Recall that X×X is endowed with a structure of groupoid where the source
and range are defined by s(x, y) = y and r(x, y) = x. These maps extend to maps
from β(X×X) to βX, hence to maps from G(X) to βX so that G(X) is a groupoid
whose unit space is βX and which is étale, locally compact, Hausdorff and principal
(cf. [STY02], Proposition 3.2).

In the case where X is a finitely generated discrete group � with a word metric,
the groupoid G(X) is β� � �. Skandalis, Tu, and Yu proved the following result.

Theorem 8.6 ([STY02]) Let X be a discrete metric space with bounded geometry.
Then X has property A(in the sense of Definition 9.4 below) if and only if G(X)
is amenable. Moreover, X is coarsely embedded into a Hilbert space if and only if
G(X) has Haagerup property.

The coarse Baum–Connes conjecture can be put inside the framework of the
conjecture for groupoids: let C∗(X) be the Roe algebra associated to (X, d),
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see Definition 8.1. Then C∗(X) is isomorphic to the reduced crossed product
C∗
r (G(X), &∞(X,K)) and the coarse assembly map identifies with the Baum–

Connes assembly map for the groupoid G(X) with coefficients in &∞(X,K).

8.2.4 The descent principle

For a finitely generated group �, there is a “descent principle” saying that the CBC
for |�| implies the Novikov conjecture for � (see Theorem 8.4 in [Roe96])

Theorem 8.7 Let � be a finitely generated group. Assume that � admits a finite
complex as a model for its classifying space B�. If CBC holds for the underlying
metric space |�|, then the assembly map μ� is injective; in particular the Novikov
conjecture (Conjecture 3) holds for �.

8.3 Expanders

Expanders are families of sparse graphs which are ubiquitous in mathematics, from
theoretical computer science to dynamical systems, to coarse geometry.

Let X = (V ,E) be a finite, connected, d-regular graph. The combinatorial
Laplace operator on X is the operator � on &2(V ) defined by

(�f )(x) = d · f (x)−
∑

y∈V :y∼x
f (y),

where f ∈ &2(V ) and ∼ denotes the adjacency relation on X.
It is well known from algebraic graph theory (see, e.g., [Lub10, DSV03]) that, if

X has n vertices, the spectrum of � consists of n eigenvalues (repeated according
to multiplicity):

0 = λ0 < λ1 ≤ λ2 ≤ . . . ≤ λn−1 ∈ [0, 2d].

On the other hand, the Cheeger constant, or isoperimetric constant of X, is
defined as

h(X) = inf
A⊂V

|∂A|
min{|A|, |V \A|} ,

where ∂A is the boundary of A, i.e., the set of edges connecting A with V \A. The
Cheeger constant measures the difficulty of disconnecting X.

The Cheeger–Buser inequality says that h(X) and λ1(X) essentially measure the
same thing:
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λ1(X)

2
≤ h(X) ≤ √

2kλ1(X).

Expanders are families of large graphs which are simultaneously sparse (i.e.,
they have few edges, a condition ensured by d-regularity, with d fixed) and hard to
disconnect (a condition ensured by h(X) being bounded away form 0).

Definition 8.8 A family (Xk)k>0 of finite, connected, d-regular graphs is a family
of expanders if limk→∞ |Vk| = +∞ and there exists ε > 0 such that λ1(Xk) ≥ ε

for all k (equivalently: there exists ε′ > 0 such that h(Xk) ≥ ε′ for every k).

The tension between sparsity of X and h(X) being bounded away from 0, makes
the mere existence of expanders non-trivial. The first explicit construction, using
property (T), is due to Margulis:

Theorem 8.9 Let � be a discrete group with property (T), let S = S−1 be a finite,
symmetric, generating set of �. Assume that � admits a sequence of finite index
normal subgroups Nk 4 � with limk→∞[� : Nk] = +∞. Then the sequence of
Cayley graphs (Cay(�/Nk, S))k>0 is a family of expanders.

Example 8.10 Take � = SLd(Z), with d ≥ 3, and Nk = �(k) the congruence
subgroup of level k, i.e., the kernel of the map of reduction modulo k:

�(k) = ker(SLd(Z) → SLd(Z/kZ)).

Coarse geometry prompts us to view a family (Xk)k>0 of finite connected graphs
as a single metric space. This is achieved by the coarse disjoint union: on the
disjoint union

∐
k>0Xk , consider a metric d such that the restriction of d to each

component Xk is the graph metric, and d(Xk,X&) ≥ diam(Xk) + diam(X&) for
k �= &. Such a metric is unique up to coarse equivalence.

A favorite source of examples comes from box spaces, that we now define. Let
� be a finitely generated, residually finite group, and let (Nk)k>0 be a filtration in
the sense of Definition 7.4. If S is a finite, symmetric, generating set of �, we may
form the Cayley graph Cay(�/Nk, S), as in Theorem 8.9.

Definition 8.11 The coarse disjoint union
∐
k>0 Cay(�/Nk, S) is the box space of

� associated with the filtration (Nk)k>0.

It is clear that, up to coarse equivalence, it does not depend on the finite
generating set S, so we simple write

∐
k>0 �/Nk . By Theorem 8.9, any box space

of a residually finite group with property (T) is an expander. More generally, it is
a result by Lubotzky and Zimmer [LZ89] that

∐
k>0 Cay(�/Nk, S) is a family of

expanders if and only if � has property (τ ) with respect to the filtration (Nk)k>0, in
the sense of Definition 7.5.

For future reference (see Section 9.4.1), we give one more characterization of
expanders:
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Proposition 8.12 Let (Xk)k>0 be a sequence of finite, connected, d-regular graphs
with limk→∞ |Vk| = +∞. The family (Xk)k>0 is a family of expanders if and only
if there exists C > 0 such that, for every map f from

∐
k>0Xk to a Hilbert space

H, the following Poincaré inequality holds for every k > 0:

1

|Vk|2
∑

x,y∈Vk
‖f (x)− f (y)‖2 ≤ C

|Vk|
∑

x∼y
‖f (x)− f (y)‖2. (8.2)

Proof

(1) Let X = (V ,E) be a finite connected graph. We first re-interpret the first non-
zero eigenvalue λ1 of �. Consider two quadratic forms on &2(V ), both with
kernel the constant functions: φ �→ 1

|V |2
∑

x,y∈V |φ(x) − φ(y)|2 and φ �→
1

|V |
∑

x∼y |φ(x)− φ(y)|2. Then 1
λ1

is the smallest constant K > 0 such that23

1

|V |2
∑

x,y∈V
|φ(x)− φ(y)|2 ≤ K

|V |
∑

x∼y
|φ(x)− φ(y)|2

for all φ ∈ &2(V ).
(2) By the first step, the sequence (Xk)k>0 is an expander if and only if there exists

a constant C such that, for every function φ on
∐
k>0Xk , we have:

1

|Vk|2
∑

x,y∈Vk
|φ(x)− φ(y)|2 ≤ C

|Vk|
∑

x∼y
|φ(x)− φ(y)|2.

(3) Taking a map f : ∐k>0Xk → H and expanding in some orthonormal basis of
H, we immediately deduce inequality (8.2) from the 2nd step.

��

8.4 Overview of CBC

8.4.1 Positive results

The CBC was formulated by Roe in 1993, see [Roe93].

• Yu 2000: if a discrete metric space with bounded geometry that admits a coarse
embedding into Hilbert space, then CBC holds for X, see [Yu00];

23The re-interpretation goes as follows: fix an auxiliary orientation on the edges ofE, allowing one
to define the coboundary operator d : &2(V ) → &2(E) : φ �→ dφ, where dφ(e) = φ(e+)−φ(e−).
Observe that � = d∗d, so that 〈�φ, φ〉 = ‖dφ‖2 = 1

2

∑
x∼y |φ(x) − φ(y)|2. By the Rayleigh

quotient, 1
λ1

is the smallest constant K > 0 such that ‖φ‖2 ≤ K‖dφ‖2 for every φ ⊥ 1. We leave
the rest as an exercise.
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• Kasparov and Yu 2006: if X is a discrete metric space with bounded geometry
that coarsely embeds into a super-reflexive Banach space, then the coarse
Novikov conjecture (i.e., the injectivity of μX) holds for X, see [KY06].

8.4.2 Negative results

• Yu 1998: the coarse assembly map is not injective for the coarse disjoint union∐
n>0 n · S2n, where n · S2n denotes the sphere of radius n in (2n+ 1)-Euclidean

space, with induced metric, see [Yu98].
• Willett and Yu 2012: the coarse assembly map is not surjective for expanders

with large girth, see [WY12].
• Higson, Lafforgue, and Skandalis 2001: the coarse assembly map is not surjective

for box spaces of residually finite groups � which happen to be expanders,
when � moreover satisfies injectivity of the assembly map with coefficients, see
[HLS02].

Let us describe those counter-examples of Higson et al. [HLS02] more precisely.
We first observe (building on Lemma 7.3) that any family of expanders provides
a counter-example either to injectivity or to surjectivity of the Baum–Connes
assembly map for suitable associated groupoids. To see this, let (Xk)k>0 be a family
of d-regular expanders, and let X = ∐

k>0Xk be their coarse disjoint union. Let
G(X) be the groupoid associated to X, as in Section 8.2.2. Let F = β(X)\X be a
saturated closed subset in the space of objects, and U = X its complement.

Proposition 8.13 Let X be the coarse disjoint union of a family of d-regular
expanders. Let G(X) be the associated groupoid, set F = β(X)\X. Either the
assembly map is not injective for the groupoid G(X)F or the coarse assembly map
is not surjective for the space X. The same holds true for the assembly map with
coefficients in &∞(X,K).
Sketch of proof In view of Lemma 7.3, we must check that

K0
(
C∗
r (G(X)U )

) → K0
(
C∗
r (G(X))

) → K0
(
C∗
r (G(X)F )

)

is NOT exact in the middle term. Set HX = &2(X) ⊗ &2(N), fix some rank 1
projection e ∈ K(&2(N)) on some unit vector ξ , let �k denote the combinatorial
Laplacian onXk , and set�X = ⊕k>0(�k⊗e). Then�X a locally compact operator
with finite propagation on HX, as such it defines an element of the Roe algebra
C∗(X). The fact that (Xk)k>0 is a family of expanders exactly means that 0 is
isolated in the spectrum of �X. By functional calculus, the spectral projector pX
associated with {0} is also in C∗(X). Now the kernel of�k on &2(Xk) is spanned by
uk , with uk = (1, 1, . . . , 1), so the restriction of pX to &2(Xk)⊗&2(N) is pk⊗(1−e),
where pk is the |Vk| × |Vk|-matrix with all entries equal to 1

|Vk | . In particular entries
(pX)x,y of pX, go to 0 when d(x, y) → ∞, so pX is in the kernel of the map
C∗
r (G(X))) → C∗

r (G(X)F ).
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It remains to show that the class [pX] inK0(C
∗
r (G(X))) does not lie in the image

ofK0(C
∗
r (G(X)U )). To see this, first observe that G(X)U is the groupoid with space

of objects X and exactly one morphism between every two objects. So C∗
r (G(X)U )

is nothing but K(&2(X)). To proceed, for an operator T with finite propagation on
X, denote by Tk the restriction of T to Xk × Xk . If S, T are operators with finite
propagation then, for k large enough, we have (ST )k = SkTk: the reason is that,
given R > 0, for k 2 0 anR-neighborhood inX coincides with anR-neighborhood
in Xk , as the Xk’s are further and further apart. As a consequence, there exists a
homomorphism

C∗(X) →
(
∏

k>0

K(&2(Xk))⊗ K)/(⊕k>0K(&2(Xk))⊗ K
)

,

that factors through C∗(X)/K(&2(X)). To conclude, it is enough to show that the
image of [pX] is non-zero in K0

(
(
∏
k>0 K(&2(Xk))⊗K)/(⊕k>0K(&2(Xk))⊗K)).

For this observe that pX lifts to a projector p̃X ∈ ∏
k>0 K(&2(Xk)) ⊗ K, and that

projections on all factors define a homomorphism

K0

(
∏

k>0

K(&2(Xk))⊗ K
)

→ ZN

that maps [p̃X] to (1, 1, 1, . . .) ∈ ZN. Since that homomorphism also maps the
group K0(⊕k>0K(&2(Xk)) ⊗ K) to Z(N), we have shown that [p̃X] is not in the
image of

K0(⊕k>0K(&2(Xk))⊗ K) → K0

(
∏

k>0

K(&2(Xk))⊗ K
)

,

so [pX] �= 0 in K0((
∏
k>0 K(&2(Xk))⊗ K)/(⊕k>0K(&2(Xk))⊗ K)). ��

By carefully choosing the family of expanders, we get actual counter-examples
to surjectivity in the CBC. For this we need a group � exactly as in Proposition 7.6
(with explicit examples provided by Example 7.7), and a box space in the sense of
Definition 8.11.

Theorem 8.14 Let � be an infinite, discrete subgroup of SLn(R), endowed with a
filtration (Nk)k>0 such that � has property (τ ) with respect to it. Then the coarse
assembly map for the box space X associated with this filtration, is not surjective.

Proof Because of property (τ ), the space X is the coarse disjoint union of a
family of expanders, and Proposition 8.13 will apply. Since by [STY02] the coarse
assembly map forX is the Baum–Connes assembly map for the groupoid G(X)with
coefficients in &∞(X,K), by Lemma 7.3 it is enough to check that the assembly
map for the groupoid G(X)F is injective with coefficients in &∞(X,K). Now,
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because X is a box space, G(X)F identifies with the semi-direct product groupoid
(β(X)\X) � �. Since � is a discrete subgroup of SLn(R), the assembly map μA,r
is injective for any coefficient C∗-algebra A: this proves the desired injectivity, so
the coarse assembly map for X is not surjective by Proposition 8.13. ��

8.5 Warped cones

Warped cones were introduced by Roe in 2005, see [Roe05]; he had the intuition that
they might lead to counter-examples to CBC. Let (Y, dY ) be a compact metric space.
Let � be a finitely generated group, with a fixed finite generating set S. Assume
that � acts on Y by Lipschitz homeomorphisms, not necessarily preserving dY . The
warped metric dS on Y is the largest metric dS ≤ dY such that, for every x ∈ Y, s ∈
S, dS(sx, x) ≤ 1. It is given by

dS(x, y)

= inf{n+
n∑

i=0

dY (xi, yi) : x0 = x, yn = y, xi = si(yi−1), si ∈ S ∪ S−1, n ∈ N}.

Intuitively, we modify the metric dY by introducing “group shortcuts,” as two points
x, γ x will end at distance dS(x, γ x) ≤ |γ |S , where |.|S denotes word length on �.

Form the “cone” Y×]1,+∞[, with the distance d given by:

dCone((y1, t1), (y2, t2)) =: |t1 − t2| + min{t1, t2} · dY (y1, y2).

Let � act trivially on the second factor. The warped cone O�Y is the cone
Y×]1,+∞[, with the warped metric obtained from dCone. To get an intuition of
what the warped metric does on the level sets Y ×{t}: assume for a while that Y is a
closed Riemannian manifold, fix a 1

t
-net on Y , and consider the Voronoi tiling of Y

associated to this net (if y is a point in the net, the tile around y is the set of points of
Y closer to y that to any other point in the net). Define a graphXt whose vertices are
closed Voronoi tiles, and two tiles T1, T2 are adjacent if there exists s ∈ S∪S−1∪{1}
such that s(T1) ∩ T2 �= ∅. Then the family of level sets (Y × {t})t>1 is uniformly
quasi-isometric to the family of graphs (Xt )t>1 (i.e., the quasi-isometry constants
do not depend on t).

In 2015, Druţu and Nowak [DN17] made Roe’s intuition more precise with
the following conjecture. Assume that, on top of the above assumptions, Y
carries a �-invariant probability measure ν such that the action � � (Y, ν) is
ergodic. Assume that the measure ν is adapted to the metric dY in the sense that
limr→0 supy∈Y ν(B(y, r)) = 0.

Conjecture 15 If the action of � on Y has a spectral gap (i.e., the �-representation
on L2

0(Y, nu) does not have almost invariant vectors), then O�Y violates CBC.
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At the time of writing, warped cones are a hot topic:

• Nowak and Sawicki 2015: warped cones do not embed coarsely into a large class
of Banach spaces (those with non-trivial type), containing in particular all Lp-
spaces (1 ≤ p < +∞), see [NS17].

• Vigolo 2016: relates warped cones and expanders, therefore getting new families
of expanders [Vig19].

• Sawicki 2017: the level sets Y × {t} of warped cones provide new examples of
super-expanders, i.e., expanders not embedding coarsely into any Banach space
with non-trivial type, see [Saw17b].

• de Laat and Vigolo 2017: those examples of super-expanders are different (i.e.,
not coarsely equivalent) to Lafforgue’s super-expanders, see [dLV17].

• Fisher, Nguyen, and Van Limbeek 2017: there is a continuum of coarsely pair-
wise inequivalent super-expanders obtained from warped cones, see [FNVL17].
See Section 9.4.1 for super-expanders.

In 2017, Sawicki [Saw17c] confirmed Roe’s intuition by proving the following
form of Conjecture 15.

Theorem 8.15 Let � having Yu’s property A. Assume that � acts on Y by Lipschitz
homeomorphisms, freely, and with a spectral gap. Set A = {2n : n ∈ N} ⊂]1,+∞[,
let O′

�Y be the subspace Y × A ⊂ O�Y , equipped with the warped cone metric.
Then μCBC is not surjective for O′

�Y . �
By looking at actions on Cantor sets, Sawicki is even able to produce counter-

examples to CBC which are NOT coarsely equivalent to any family of graphs.

9 Outreach of the Baum–Connes conjecture

The Baum–Connes conjecture and the coarse Baum–Connes conjecture prompted
a surge of activity at the interface between operator algebras and other fields of
mathematics, e.g., geometric group theory and metric geometry. Indeed results
like the Higson–Kasparov theorem (see Theorem 5.7 above) are of the form
“groups (resp. spaces) in a given class satisfy the Baum–Connes (resp. coarse
Baum–Connes) conjecture.” This leads naturally to trying to extend the class of
groups (resp. spaces) in question, as a way of enlarging the domain of validity of
either conjecture. The study of a class of groups (resp. spaces) has two obvious
counterparts: providing new examples, and studying permanence properties of the
class. We sketch some of those developments below.
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9.1 The Haagerup property

The 5-authors book [CCJ+01] was the first survey on the subject. Although
motivated by Theorem 5.7, it barely mentions the Baum–Connes conjecture and
focuses on new examples and stability properties. It was updated in the paper
[Val18], which can serve as a guide to more recent literature. Here we mention
some long-standing open questions on the Haagerup property, and partial results.

• LetBn denote the braid group on n strands. DoesBn have the Haagerup property?
Yes trivially for B2 � Z, and yes easily for B3 � F2 � Z. A recent result by
Haettel [Hae19] shows that, if the general answer is affirmative, it will not be
for a very geometric reason: for n ≥ 4, the group Bn has no proper, cocompact
isometric action on a CAT(0) cube complex.24 Note that a fairly subtle proof of
the Baum–Connes conjecture with coefficients for Bn, has been given by Schick
[Sch07].

• Unlike amenability or property (T), the Haagerup property is not stable under
extensions.25 The standard examples to see this are Z2

� SL2(Z) and R2
�

SL2(R), where the relative property (T) with respect to the non-compact normal
subgroup, is an obstruction to the Haagerup property. However, the Haagerup
property is preserved by some types of semi-direct products: e.g., Cornulier–
Stalder–Valette [CSV12] proved that, if �,� are countable groups with the
Haagerup property, then the wreath product �1� = (⊕��)�� has the Haagerup
property. A probably difficult question: is G,N are locally compact groups with
the Haagerup property and G acts continuously on N by automorphisms, under
which conditions on the action G � N does the semi-direct product N � G

have the Haagerup property? When G,N are σ -compact and N is abelian, the
answer was provided by Cornulier–Tessera (Theorem 4 in [CT11]):N�G has the
Haagerup property if and only if there exists a net (μi)i∈I of Borel probability
measures on the Pontryagin dual N̂ , such that there is a weak-* convergence
μi → δ1, and μi{1} = 0 for every i ∈ I , and ‖g · μi − μi‖ → 0 uniformly on
compact subsets ofG, and finally the Fourier transform μ̂i is a C0 function on N
for every i ∈ I .

• The behavior of the Haagerup property under central extensions is a widely
open question. More precisely: if Z is a closed central subgroup in the locally
compact group G, is it true that G has the Haagerup property if and only if G/Z
has it? Both implications are open. See Proposition 4.2.14 and Section 7.3.3 in
[CCJ+01] for partial results on lifting the Haagerup property from G/Z to G, in

particular from SU(n, 1) to ˜SU(n, 1).

24Recall that a group acting properly isometrically on a CAT(0) cube complex, has the Haagerup
property, see, e.g., Corollary 1 in [Val18].
25Amenability (resp. property (T)) can be defined by a fixed point property: existence of a fixed
point for affine actions on compact convex sets (resp. affine isometric actions on Hilbert spaces).
This makes clear that it is preserved under extensions.
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• The Haagerup property for discrete groups is stable under free products or more
generally amalgamated products over finite groups, by Proposition 6.2.3(1) of
[CCJ+01]. In general, it is not true that, if A,B have the Haagerup property and
C is a common subgroup, then A ∗C B has the Haagerup property: see section
4.3.3 in [Val18] for an example with C = Z2. An open question concerns the
permanence of the Haagerup property for amalgamated products A ∗C B with C
virtually cyclic; The first positive result was obtained recently by Carette et al.
[CWW17]: recall that if a group G acts by isometries on a metric space (X, d),
the action of G on X is said to be semisimple if, for every g ∈ G, the infimum
infx∈X d(gx, x) is actually a minimum. They proved that, if A,B are groups
acting properly and semisimply on some real hyperbolic space H

n(R), and C is
a cyclic subgroup common to A and B, then the amalgamated product A ∗C B
has the Haagerup property.

9.2 Coarse embeddings into Hilbert spaces

In 2000, Yu [Yu00] opened a new direction in mathematics by uniting the fields
of K-theory for C∗-algebras and of metric embeddings into Hilbert space. Indeed
he proved that if a metric space X with bounded geometry coarsely embeds into
Hilbert space, then X satisfies the CBC. Using the descent principle (Theorem 8.7),
this implies that if some Cayley graph |�| of a finitely generated group �

coarsely embeds into Hilbert space, then the Baum–Connes assembly map for �
is injective,26 i.e., the assembly map μ embeds the K-homology of the classifying
space B� into the K-theory of the reduced C∗-algebra of �. This implies the
Novikov conjecture on the homotopy invariance of the higher signatures for �. This
was a stunning result, as a strong topological conclusion resulted from a weak metric
assumption.

Finitely generated groups with the Haagerup property coarsely embed into
Hilbert space. Indeed if α is a proper isometric action of � on H, then for every
x ∈ H the orbit map g �→ α(g)x is a coarse embedding.

Using their groupoid approach, Skandalis, Tu, and Yu (Theorem 6.1 in [STY02])
proved the following:

Theorem 9.1 Let � be a finitely generated group that admits a coarse embedding
into Hilbert space. Then the assembly map μA,r is injective for every � − C∗-
algebra A.

Lots of finitely generated groups embed coarsely into Hilbert space, as they
satisfy the stronger property A (see Section 9.3.1 below). Actually it is not even
easy to find a bounded geometry space not embedding coarsely. The most famous

26Under the assumption that |�| coarsely embeds into Hilbert space, the assumption that B� is a
finite complex was removed by Skandalis et al. [STY02], using their groupoid approach to CBC.
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example is due to Matousek [Mat97], and was popularized by Gromov [Gro03]; we
will give a proof of a stronger result in Proposition 9.17:

Proposition 9.2 Let X be the coarse disjoint union of a family of expanders. Then
X does not coarsely embed into Hilbert space.

In [Gro03], Gromov sketched the construction of families of groups containing
families of expanders coarsely embedded in their Cayley graphs, which therefore do
not embed coarsely into Hilbert space. These are called Gromov’s random groups,
or Gromov monsters. Details of their construction were supplied by Arzhantseva and
Delzant [AD08]. It was shown by Higson et al. [HLS02] that those groups provide
counter-examples to the Baum–Connes conjecture with coefficients (Conjecture 5).

Theorem 9.3 Let � be a Gromov monster. Consider the commutative C∗-algebra
A = &∞(N, c0(�)), with the natural �-action. Then the Baum–Connes conjecture
with coefficients fails for � and A, in the sense that μA,r is not onto.

We will come back on those groups in Section 9.3.1, and explain what exactly is
needed to get counter-examples to Conjecture 5.

9.3 Yu’s property A: a polymorphous property

One of the crucial new invariants of metric spaces introduced by Yu [Yu00] is
property A, a non-equivariant form of amenability. Like standard amenability, it
has several equivalent definitions. In particular we will see that three concepts
from different areas (property A for discrete spaces, boundary amenability from
topological dynamics, and exactness from C∗-algebra theory) provide one and the
same concept when applied to finitely generated groups.

9.3.1 Property A

Definition 9.4 Let (X, d) be a discrete metric space. The space X has property A
if there exists a sequence �n : X×X → C of normalized, positive-definite kernels
on X such that �n is supported in some entourage,27 and (�n)n>0 converges to 1
uniformly on entourages for n → ∞.

This is inspired by the following characterization of amenability for a countable
group �: the group � is amenable if and only if there exists a sequence ϕn : � → C
of normalized, finitely supported, positive-definite functions on � such that (ϕn)n>0
converges to 1 for n → ∞. If this happens and if � is finitely generated, then
�n(s, t) = ϕn(s

−1t) witnesses that |�| has property A. However, there are many

27Recall from Section 8.2.3 that an entourage is a subset of X ×X on which d(., .) is bounded.
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more examples of finitely generated groups with property A. Other natural examples
are provided by linear groups, i.e., subgroups of the group GLn(F ) for some field
F , this is a result by Guentner et al. [GHW05]; this class includes many groups with
property (T). The list of classes of groups that satisfy property A also includes one-
relator groups, Coxeter groups, groups acting on finite-dimensional CAT(0) cube
complexes, and many more.

Theorem 9.5 (see Theorem 2.2 in [Yu00]) A discrete metric space with property
A admits a coarse embedding into Hilbert space.

The converse is false: endow {0, 1}n with the Hamming distance; then the coarse
disjoint union

∐
n{0, 1}n coarsely embeds into Hilbert space but does not have

property A, as proved by Nowak [Now07]; however, this space does not have
bounded geometry. For a while, an unfortunate situation was that the only way of
disproving property A for a space X, was to prove that X has no coarse embedding
into Hilbert space (see Section 9.2). The situation began to evolve with a paper of
Willett [Wil11] containing a nice result addressing property A directly: the coarse
disjoint union of a sequence of finite regular graphs with girth tending to infinity
(i.e., graphs looking more and more like trees), does not have property A. On the
other hand some of them can be coarsely embedded into Hilbert space, as was shown
by Arzhantseva et al. [AGv12] using box spaces of the free group. For every group
G, denote by G(2) the normal subgroup generated by squares in G, and define a
decreasing sequence of subgroups in G by G0 = G and Gn = G

(2)
n−1. The main

result of [AGv12] is:

Theorem 9.6 For the free group Fk of rank k ≥ 2, with (Fk)n defined as above,
the box space

∐
n>0 Fk/(Fk)n does not have property A but is coarsely embeddable

into Hilbert space.

To summarize the above discussion, we have a square of implications, for finitely
generated groups (where CEH stands for coarse embeddability into Hilbert space):

amenable �⇒ property A
⇓ ⇓

Haagerup property �⇒ CEH

Let us observe:

• The top horizontal and the left vertical implications cannot be reversed: indeed a
non-abelian free group enjoys both property A and the Haagerup property, but is
not amenable.

• The bottom horizontal implication cannot be reversed: SL3(Z) has CEH but,
because of property (T), it does not have the Haagerup property. The same
example shows that property A does not imply the Haagerup property.

This leaves possibly open the implications “CEH ⇒ property A” (which was
known to be false for spaces, by Theorem 9.6), and the weaker implication
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“Haagerup property ⇒ property A.” The latter was disproved by Osajda [Osa14]:
he managed, using techniques of graphical small cancellation, to embed sequences
of graphs isometrically into Cayley graphs of suitably constructed groups. This way
he could prove:

Theorem 9.7 There exists a finitely generated group not having property A, but
admitting a proper isometric action on a CAT(0) cube complex (and therefore
having the Haagerup property).

We refer to [Khu18] for a nice survey of that work.

9.3.2 Boundary amenability

Let � be a countable group; we denote by Prob(�) the set of probability measures
on �, endowed with the topology of pointwise convergence.

Definition 9.8

1. Let X be a compact space on which � acts by homeomorphisms. We say that the
action � � X is topologically amenable if there exists a sequence of continuous
maps μn : X → Prob(�) which are almost �-equivariant, i.e.,

lim
n→∞ sup

x∈X
‖μn(gx)− gμn(x)‖1 = 0.

2. The group � is boundary amenable if � admits a topologically amenable on some
compact space.

For example, the action of � on a point is topologically amenable if and
only if � is amenable, so boundary amenability is indeed a generalization of
amenability. We will see in Theorem 9.9 below that, for finitely generated group,
boundary amenability is equivalent to property A. Boundary amenability attracted
the attention of low-dimensional topologists, so that the following groups were
shown to verify it:

• Mapping class groups, see [Ham09, Kid08];
• Out(Fn), the outer automorphism group of the free group, see [BHG17].

9.3.3 Exactness

For C∗-algebras A,B, denote by A ⊗min B (resp. A ⊗max B) the minimal (resp.
maximal) tensor product. Recall thatA is nuclear if the canonical mapA⊗maxB →
A ⊗min B is an isomorphism for every C∗-algebra B, and that A is exact if the
minimal tensor product with A preserves short exact sequences of C∗-algebras. As
the maximal tensor product preserves short exact sequences, nuclear implies exact.
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A classical result of Lance says that, for discrete groups, a group � is amenable
if and only if C∗

r (�) is nuclear. It turns out that, for exactness we have an analogous
result merging this section with Sections 9.3.1 and 9.3.2; it is a combination of
results by Anantharaman-Delaroche and Renault [AR01], Guentner and Kaminker
[GK02], Higson and Roe [HR00], and Ozawa [Oza00].

Theorem 9.9 For a finitely generated group �, the following are equivalent:

1. � has property A;
2. � is boundary amenable;
3. C∗

r (�) is exact.

Combining with Theorems 9.5 and 9.1, we get immediately:

Corollary 9.10 If � is a finitely generated group with property A, then for every
� − C∗-algebra A the assembly map μA,r is injective.

As a consequence of Theorem 9.9, for a finitely generated group �, nuclearity
and exactness ofC∗

r (�) are quasi-isometry invariants (which is by no means obvious
on the analytical definitions). An interesting research question is: which other
properties of C∗

r (�) are quasi-isometry invariants of �?
We now explain how the lack of exactness of C∗

r (�), when detected at the level
of K-theory, leads to counter-examples to Conjecture 5.

Definition 9.11 A C∗-algebra C is half-K-exact if for any short exact sequence
0 → J → A → B → 0 of C∗-algebras, the sequence

K∗(J ⊗min C) → K∗(A⊗min C) → K∗(B ⊗min C)

is exact in the middle term.

The following statement is an unpublished result by Ozawa (see, however,
Theorem 5.2 in [Oza01]).

Theorem 9.12 Gromov monsters are not half-K-exact.

Proof Let � be a Gromov monster. So there is a family (Xk)k>0 of d-regular
expanders which coarsely embeds in �, i.e., there exists a family of maps fk :
Xk → � such that, for xk, yk ∈ Xk , we have dXk (xk, yk) → +∞ ⇐⇒
d�(fk(xk), fk(yk)) → +∞. We will need below a consequence of this fact: there
exists a constant K > 0 such that the fiber f−1

k (g) has cardinality at most K , for
every k > 0 and every g ∈ �. (Indeed, first observe that, as a consequence of
the coarse embedding, there exists R > 0 such that, for every k and g, we have
dXk (x, y) ≤ R for every x, y ∈ f−1

k (g); then use the bounded geometry of the
family (Xk)k>0: we may, for example, take for K the cardinality of a ball of radius
R in the d-regular tree.)

We now start the proof really. Denote by nk the number of vertices of Xk , and
form the product of matrix algebras M = ∏

k>0Mnk(C) together with its ideal
J = ⊕k>0Mnk(C). We are going to show that the sequence
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K0(J ⊗min C
∗
r (�)) → K0(M ⊗min C

∗
r (�)) → K0((M/J )⊗min C

∗
r (�))

is not exact at its middle term. Let us identify Mnk(C) with End(&2(Xk) via the
canonical basis.

We first define an injective homomorphism ιk : Mnk(C) → Mnk(C) ⊗ C∗
r (�)

by ιk(Exy) = Exy ⊗ fk(x)
−1fk(y), where Exy is the standard set of matrix

units in End(&2(Xk)). We then use an idea similar to the one in the proof of
Proposition 8.13. Let�k be the combinatorial Laplace operator on Xk , let pk be the
projection on its 1-dimensional kernel: recall that (pk)xy = 1

nk
for every x, y ∈ Xk .

Then � := (ιk(�k))k>0 ∈ M ⊗min C
∗
r (�) has 0 as an isolated point in its spectrum,

as the Xk’s are a family of expanders. The spectral projection associated with 0
is q = (ιk(pk))k>0. The class [q] ∈ K0(M ⊗min C

∗
r (�)) will witness the desired

non-exactness.
Let π : M → M/J denote the quotient map. To show that q is in the kernel of

π⊗min Id, consider the conditional expectation EM = IdM⊗τ : M⊗minC
∗
r (�) →

M , where τ denotes the canonical trace on C∗
r (�). We have

(Idnk ⊗ τ)(ιk(pk))xy =
{

1
nk
if fk(x) = fk(y)

0 if fk(x) �= fk(y)

So the operator norm of (Idnk ⊗ τ)(ιk(pk)) satisfies:

‖(Idnk ⊗ τ)(ιk(pk))‖ ≤ 1

nk
· max
x∈Xk

∣
∣∣f−1
k (fk(x))

∣
∣∣ ≤ K

nk
,

where K is the constant introduced at the beginning of the proof. As a consequence
EM(q) belongs to J and

0=π(EM(q))=π((IdM⊗τ)(q))=(IdM/J⊗τ)((π⊗minId)(q))=EM/J ((π⊗minId)(q));

by faithfulness of EM/J we get (π ⊗min Id)(q) = 0.
It remains to show that [q] is not in the image ofK0(J⊗minC

∗
r (�)) inK0(M⊗min

C∗
r (�). For this, denote by σk : M ⊗min C

∗
r (�) → Mnk(C)⊗ C∗

r (�) the projection
on the k-th factor. Because K0(J ⊗min C

∗
r (�)) = ⊕k>0K0(Mnk (C) ⊗ C∗

r (�)), for
every x ∈ K0(J ⊗min C

∗
r (�)) we have (σk ⊗ τ)(x) = 0 for k large enough. On the

other hand (σk ⊗ τ)(q) > 0 for every k > 0. ��
The following result may be extracted from [HLS02], where it is not stated

explicitly.

Theorem 9.13 Let � be a countable group. If � is not half-K-exact, then there is a
C∗-algebra C with trivial �-action such that the assembly map

μC,r : Ktop∗ (�,C) → K∗
(
C∗
r (�, C)

)

is NOT onto.



The Baum–Connes conjecture: an extended survey 229

The proof will be given below. Combining with Theorem 9.12 and its proof, we
immediately get the following:

Corollary 9.14 If � is a Gromov monster, there exists a noncommutative C∗-
algebra C with trivial �-action such that the assembly map

μC,r : Ktop∗ (�,C) → K∗
(
C∗
r (�, C)

)

is NOT onto. �
It seems this is as close as one can get to a counter-example to the Baum–Connes

conjecture without coefficients (Conjecture 4).
To prove Theorem 9.13, we start by some recalls about mapping cones.

Definition 9.15 Let β : A → B be a homomorphism of C∗-algebras. The mapping
cone of β is the C∗-algebra C(β) = {(a, f ) ∈ A ⊕ C([0, 1], B) : f (0) =
β(a), f (1) = 0}.

Consider now the following situation, with three C∗-algebras J,A,B and
homomorphisms:

• α : J → A, injective;
• β : A → B, surjective, such that β ◦ α = 0.

We then have an inclusion γ : J → C(β) : j �→ (α(j), 0).

Lemma 9.16

1. If Im(α) = ker(β), i.e., the sequence 0 → J → A → B → 0 is exact, then
γ∗ : K∗(J ) → K∗(C(β)) is an isomorphism.

2. If γ∗ is an isomorphism, then the sequence K∗(J )
α∗→ K∗(A)

β∗→ K∗(B) is exact.
3. γ∗ is an isomorphism if and only if K∗(C(γ )) = 0.

Proof of lemma 9.16 1. See Exercise 6.N in [WO93].
2. Set I = ker(β) and γ̃ : I → C(β) : x �→ (x, 0), so that γ = γ̃ ◦ α.

Since γ̃∗ is an isomorphism by the previous point, and γ∗ is an isomorphism
by assumption, we get that α∗ : K∗(J ) → K∗(I ) is an isomorphism. Since the

sequence K∗(I ) �� K∗(A)
β∗

�� K∗(B) is exact, so is the sequence

K∗(J)
α∗

K∗(A)
β∗

K∗(B).

3. Since γ is injective, we may identify the mapping cone C(γ ) with {f ∈
C([0, 1], C(β)) : f (0) ∈ γ (J ), f (1) = 0}. By evaluation at 0, we get a short
exact sequence
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0 C0]0, 1[⊗C(β) C(γ) J 0.

In the associated 6-term exact sequence in K-theory, the use of Bott periodicity
to identifyK∗(C0]0, 1[⊗C(β)) withK∗(C(β)) allows to identify the connecting
maps with γ∗, so the result follows.

��
Proof of Theorem 9.13 Since � is not half-K-exact, we find a short exact sequence

0 �� J
α

�� A
β

�� B �� 0 such that

K∗
(
J ⊗min C

∗
r (�)

) (α⊗minId)∗
�� K∗

(
A⊗min C

∗
r (�)

) (β⊗minId)∗
�� K∗

(
B ⊗min C

∗
r (�)

)

(9.1)
is not exact in the middle term. As above, define the mapping cone C(β) and the
inclusion γ : J → C(β). Set C = C(γ ), with trivial �-action. We prove in three
steps that the assembly map μC,r with coefficients in C, is not onto.

• K∗(C ⊗min C
∗
r (�)) = K∗(C(γ ⊗min Id)) is non-zero: this follows from

non-exactness of the sequence (9.1) together with the two last statements of
Lemma 9.16.

• K∗(C ⊗max C
∗
max(�)) = K∗(C(γ ⊗max Id)) is zero: this follows from exactness

of

0 → J ⊗max C
∗
max(�) → A⊗max C

∗
max(�) → B ⊗max C

∗
max(�) → 0

together with the first and last statements of Lemma 9.16.
• The assembly map μC,r : Ktop∗ (�,C) → K∗(C∗

r (�, C)) = K∗(C ⊗min C
∗
r (�))

is zero, and therefore is not onto: this is because, as explained in the beginning
of Section 5.1, μC,r factors through

μC,max : Ktop∗ (�,C) → K∗
(
C∗

max(�,C)
) = K∗

(
C ⊗max C

∗
max(�)

)
,

and this is the zero map.
��

9.4 Applications of strong property (T)

9.4.1 Super-expanders

A Banach space is super-reflexive if it admits an equivalent norm making it
uniformly convex. As mentioned in Section 8.4.1 Kasparov and Yu proved in
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[KY06] that if a discrete metric space with bounded geometry coarsely embeds into
some super-reflexive space, then the coarse assembly map μX is injective. Since
families of expanders do not embed coarsely into Hilbert space, by Proposition 9.2,
it is natural to ask: is there a family of expanders that admits a coarse embedding
into some super-reflexive Banach space? This is a very interesting open question.
However, certain families of expanders are known not to embed coarsely into any
super-reflexive Banach space, and we wish to explain the link with strong property
(T) from Section 6.3.

Let (Xk = (Vk, Ek))k>0 be a family of finite, connected, d-regular graphs with
limk→∞ |Vk| = +∞, and let B be a Banach space. We say that (Xk)k>0 satisfies a
Poincaré inequality with respect to B if there exists C = C(B) > 0 such that for
every map f : ∐k>0Xk → B we have:

1

|Vk|2
∑

x,y∈Vk
‖f (x)− f (y)‖2

B ≤ C

|Vk|
∑

x∼y
‖f (x)− f (y)‖2

B. (9.2)

Compare with inequality (8.2), which is the Poincaré inequality with respect to
Hilbert spaces. In view of Proposition 8.12, the following result implies Proposi-
tion 9.2.

Proposition 9.17 Assume that the family (Xk)k>0 satisfies a Poincaré inequality
with respect to the Banach space B. Then the coarse disjoint union X of the Xk’s,
admits no coarse embedding into B.

Proof Suppose by contradiction that there exists a coarse embedding f : X → B,
with control functions ρ±. Then, using ‖f (x)− f (y)‖B ≤ ρ+(1) for x ∼ y in any
Xk , we get for every k > 0:

1

|Vk|2
∑

x,y∈Vk
ρ−(d(x, y))2 ≤ 1

|Vk|2
∑

x,y∈Vk
‖f (x)− f (y)‖2

B

≤ C

|Vk|
∑

x∼y
‖f (x)− f (y)‖2

B

≤ 2C|Ek|ρ+(1)2

|Vk| = dCρ+(1)2,

where the second inequality is the Poincaré inequality and the final equality is
|Ek| = d|Vk |

2 . Set M = dCρ+(1)2; since the mean of the quantities ρ−(d(x, y))2
is at most M , this means that for at least half of the pairs (x, y) ∈ Vk × Vk , we
have ρ−(d(x, y))2 ≤ 2M , for every k > 0. Since limt→∞ ρ−(t) = +∞, we
find a constant N > 0 such that, for every k > 0 and at least half of the pairs
(x, y) ∈ Vk × Vk , we have d(x, y) ≤ N . But as Xk is d-regular, the cardinality
of a ball of radius N is at most (d + 1)N , so the cardinality of the set of pairs



232 M. P. Gomez Aparicio et al.

(x, y) ∈ Vk × Vk with d(x, y) ≤ N , is at most |Vk|(d + 1)N . For k 2 0, this is

smaller than |Vk |2
2 , and we have reached a contradiction. ��

Definition 9.18 A sequence (Xk)k>0 of finite, connected, d-regular graphs with
limk→∞ |Xk| = +∞, is a family of super-expanders if, for any super-reflexive
Banach space B, the sequence (Xk)k>0 satisfies the Poincaré inequality (9.2) with
respect to B.

It follows from Proposition 8.12 that, assuming they do exist, super-expanders
are expanders, and from Proposition 9.17 that super-expanders do not admit a
coarse embedding into any super-reflexive Banach space. Lafforgue’s construction
of super-expanders in [Laf08, Laf09], following a suggestion by Naor, answered a
question from [KY06]:

Theorem 9.19 Let F be a non-Archimedean local field, letG be a simple algebraic
group of higher rank defined over F , and letG(F) be the group of F -rational points
of G. Let � be a lattice in G(F), fix any filtration (Nk)k>0 of �. Then the box space∐
k>0 Cay(�/Nk, S) (see Definition 8.11) is a family of super-expanders.

Proof Write Xk =: Cay(�/Nk, S). Let B be a super-reflexive Banach space. The
goal is to show that the Poincaré inequality (9.2) is satisfied.

1. Let Bk be the space of functions Xk → B, with norm ‖f ‖2
Bk

=
1

|Xk |
∑

x∈Xk ‖f (x)‖2
B . For f ∈ Bk , set mf = 1

|Xk
∑

x∈Xk f (x) ∈ B. Then28

1

|Xk|2
∑

x,y∈Xk
‖f (x)− f (y)‖2

B ≤ 4

|Xk|
∑

x∈Xk
‖f (x)−mf ‖2

B. (9.3)

To see this: by translation we may assume mf = 0. Then by the triangle
inequality:

‖f (x)− f (y)‖2
B ≤ (‖f (x)‖B + ‖f (y)‖B)2 ≤ 2

(
‖f (x)‖2

B + ‖f (y)‖2
B

)
,

and inequality 9.3 follows by averaging over Xk ×Xk .
2. Let πk be the natural isometric representation of � on Bk . As � acts transitively

on X − K , the fixed point space of � in Bk is the space of constant functions.
Now strong property (T) for representations in a Banach space is defined by
analogy with Definition 6.32, by replacing Hilbert space by a suitable class of
Banach spaces: it posits the existence of a Kazhdan projection projecting onto
the fixed point space, for any representation in a suitable class. It turns out
that the lattice � has strong property (T) for isometric representations in super-
reflexive Banach spaces: this is due to Lafforgue [Laf08, Laf09] when G(F)

28Note typos regarding inequality 9.3 in Proposition 5.2 of [Laf08] and in Proposition 5.5 of
[Laf09]: ≤ 4

|Xk | is erroneously written as = 2
|Xk | .
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contains SL3(F ), and to Liao [Lia14] in general. So, denoting by C0,1(�) the
Banach algebra completion of C� with respect to isometric �-representations in
the spaces (Bk)k>0, there exists an idempotent p ∈ C0,1(�) such that in particular
πk(p)f = mf for every f ∈ Bk . Inequality 9.3 is then reformulated

1

|Xk|2
∑

x,y∈Xk
‖f (x)− f (y)‖2

B ≤ 4‖f − πk(p)f ‖2
Bk
. (9.4)

3. Let q ∈ C� be an element such that ‖p−q‖C0,1(�) <
1
2 and

∑
γ q(γ ) = 1. Then

‖πk(p)f − πk(q)f ‖Bk = ‖(πk(p)− πk(q))(f −mf )‖Bk
≤ 1

2
‖f −mf ‖Bk = 1

2
‖f − πk(p)f ‖Bk ;

but ‖f −πk(p)f ‖Bk ≤ ‖f −πk(q)f ‖Bk +‖πk(q)f −πk(p)f ‖Bk by the triangle
inequality, so

‖f − πk(p)f ‖Bk ≤ 2‖f − πk(q)f ‖Bk ,

that we plug in (9.4).
4. Finally it is easy to see that there exists a constant C1 > 0, only depending on q,

such that for every k > 0:

‖f − πk(q)f ‖2
Bk

≤ C1

|Xk|
∑

x∼y
‖f (x)− f (y)‖2

B.

��
Later on, other constructions of super-expanders were provided:

• by Mendel and Naor [MN14], using zig-zag products;
• independently by Sawicki [Saw17a] and by de Laat and Vigolo [dLV18], using

warped cones, as defined in Section 8.5: the constructions appeal to actions on
manifolds of groups with strong property (T).

9.4.2 Zimmer’s conjecture

A striking, unexpected application of Lafforgue’s strong property (T) from Sec-
tion 6.3 is the recent solution of Zimmer’s conjecture on actions of higher rank
lattices on manifolds. Roughly speaking, Zimmer’s conjecture claims that a lattice
� in a higher rank simple Lie group G, has only finite actions on manifolds of
dimension small enough (relative to data only associated with G). Somewhat more
precisely, in this section:
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• higher rank means that the real rank of G is at least 2 (think of G = SLn(R), for
n ≥ 3; or G = Sp2n(R), for n ≥ 2);

• manifold means a smooth closed manifold M;
• action of � on M means an action by diffeomorphisms of class at least C2;
• a finite action of � is one that factors through a finite quotient of �.

It remains to explain “dimension small enough” and for this we will restrict to G =
SLn(R), n ≥ 3. For the general case, we refer to Conjecture 1.2 in [BFHS16]. For
the original statement by Zimmer, see [Zim87].

If � is a lattice in SLn(R), we may let it act linearly on Rn. So we get an infinite
action of � on the (n − 1)-dimensional projective space Pn−1(R); we observe that
this action has no invariant volume form. On the other hand, � = SLn(Z) has an
infinite action on the n-dimensional torus Tn = Rn/Zn, this one clearly preserving
a volume form. Zimmer’s conjecture basically claims that those examples are of
minimal dimension among non-finite actions. Precisely, Zimmer’s conjecture for
cocompact lattices in SLn(R), is now the following result by Brown et al. (Theorem
1.1 in [BFHS16]):

Theorem 9.20 Let � be a cocompact lattice in SLn(R), n ≥ 3.

1. If dimM < n− 1, any action of � on M is finite.
2. If dimM < n, any volume-preserving action of � on M is finite.

Let us give a rough sketch, in 3 steps, of the proof of the first statement in
Theorem 9.20. So we consider α : � → Diff (M), with dimM < n − 1, we
must show that α is finite.

• Let α : � → Diff∞(M) be a homomorphism (for simplicity we assume that
� acts by C∞ diffeomorphisms). Fix any Riemannian structure on M . For x ∈
M,γ ∈ �, denote by Dxα(γ ) the differential of α(γ ) at x. Then α has uniform
subexponential growth of derivatives, i.e., for every ε > 0, there exists C ≥ 1
such that for every γ ∈ �:

sup
x∈M

‖Dxα(γ )‖ ≤ Ceε&(γ ), (9.5)

where & denotes the word length with respect to a fixed finite generating set of �.
Morally, this means that generators of � are close to being isometries of M .

• A Riemannian structure of class Ck on M is a Ck section of the symmetric
square S2(TM) of the tangent bundle TM of M . Via α, the group � acts on
Ck Riemannian structures on M and this defines a homomorphism α0 from �

to the group of invertibles in the algebra B(Ck(S2(TM))) of bounded operators
on Ck(S2(TM)). At this point we introduce the Hilbert space Hk which is the
Sobolev space of sections of S2(TM) with weak k-th derivative being L2. By
the Sobolev embedding theorem, we have Hk ⊂ C&(S2(TM)) for k 2 &. If α
satisfies (9.5), then α0 has slow exponential growth: for all ε > 0, there exists
C ≥ 1 such that for all g ∈ G:
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‖α0(g)‖Hk→Hk ≤ Ceε&(g).

It is here that strong property (T) enters the game; it is, however, needed in a
form both stronger and more precise than in Definition 6.32, namely there exists
a constant δ > 0 and a sequence μn of probability measures supported in the
balls B&(n) of radius n in �, such that for all C > 0 and any representation π
on a Hilbert space with ‖π(g)‖ ≤ Ceδ&(g), the operators (π(μn))n>0 converge
exponentially quickly to a projection P∞ onto the space of invariant vectors.
That is, there exists K > 0 and 0 < λ < 1, independent of π , such that
‖π(μi) − P∞‖ < K · λi . Theorem 6.3 in [BFHS16] explains how to deduce
the extra desired features (exponentially fast convergence and approximation by
positive measures rather than signed measures) from the proofs of Theorem 6.34
by Lafforgue, de Laat and de la Salle [Laf08, dlS18, dLdlS15].29

Coming back to our sketch of proof of Theorem 9.20:

Proposition 9.21 α(�) preserves some C& Riemannian structure on M .

Proof We will apply the above form of strong property (T) to the representation
α0. Let (μn)n>0 be the sequence of probability measures as above, set Pn =
α0(μn), so that ‖Pi − P∞‖Hk→Hk < K · λi .

We start with any smooth Riemannian metric g on M , view it as an element
in Hk , and apply the averaging operators Pi : then gi =: Pi(g). We set g∞ =
limi→∞ gi , so that g∞ is α0(�)-invariant in Hk , hence also in C&(S2(TM)). We
have g∞(v, v) ≥ 0 for every v ∈ TM , as g∞ is a limit of positive-definite forms,
but we must show that g∞ is positive-definite, i.e., g∞(v, v) > 0 for every unit
vector v ∈ TM . By the previous point (subexponential growth of derivatives),

taking eε = λ− 1
3 , we have for every γ ∈ �:

C2λ− 2&(γ )
3 ≥ ‖Dα(γ−1)‖2 = sup

u∈TM
g(u, u)

g(Dα(γ )(u),Dα(γ )(u))

≥ 1

g(Dα(γ )(v),Dα(γ )(v))

hence, if &(γ ) ≤ i:

g(Dα(γ )(v),Dα(γ )(v)) ≥ 1

C2
· λ 2&(γ )

3 ≥ 1

C2
· λ 2i

3

Since μi is supported in the ball of radius i of �, we have

29The subtlety here is that, as lucidly explained in [dlS16], Definition 6.32 for an arbitrary finitely
generated group is equivalent to the existence of a sequence of signed probability measures as
above.
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gi(v, v) ≥ 1

C2 · λ 2i
3 .

On the other hand |g∞(v, v)− gi(v, v)| ≤ K · λi , hence

g∞(v, v) ≥ gi(v, v)−K · λi ≥ 1

C2 · λ 2i
3 −K · λi,

which is positive for i 2 0. ��
• Set m = dimM . Let g be an α(�)-invariant C& metric on M , so that α(�) is

a subgroup of the isometry group K =: Isom(M, g). Now K is a compact Lie
group, of dimension at most m(m+1)

2 . Assuming by contradiction that α(�) is
infinite, a suitable version of Margulis’ super-rigidity says that the Lie algebra
sun, which is the compact real form of sln(R), must embed into the Lie algebra
of K . Counting dimensions we get

n2 − 1 = dim sun ≤ dimK ≤ m(m+ 1)

2
,

contradicting the assumption m < n− 1. So α is finite.

More recently in [BFHS17], Brown, Fisher, and Hurtado verified Zimmer’s
conjecture for SL3(Z). For this they had to appeal to de la Salle’s result [dlS18]
that strong property (T) holds for arbitrary lattices in higher rank simple Lie groups.

It is expected that in 2019, Brown, Fisher, and Hurtado, with the help of D. Witte-
Morris, will complete a proof of Zimmer’s conjecture for any lattice in any higher
rank simple Lie group.

Acknowledgement Thanks are due to J.-B. Bost, R. Coulon, N. Higson, V. Lafforgue, P.-Y. Le
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In The Čech centennial (Boston, MA, 1993), volume 181 of Contemp. Math., pages
405–418. Amer. Math. Soc., Providence, RI, 1995.



The Baum–Connes conjecture: an extended survey 243

[Rum99] M. Rumin. Differential geometry on C-C spaces and application to the Novikov-
Shubin numbers of nilpotent Lie groups. C. R. Acad. Sci. Paris Sér. I Math.,
329(11):985–990, 1999.

[Saw17a] D. Sawicki. Super-expanders and warped cones. Preprint 2017,
arXiv:1704.03865, 2017.

[Saw17b] D. Sawicki. Warped cones, (non-)rigidity, and piecewise properties (with a joint
appendix with Dawid Kielak). Preprint, arXiv:1707.02960, 2017.

[Saw17c] D. Sawicki. Warped cones violate the Baum-Connes conjecture. Preprint available
on https://www.impan.pl/
~dsawicki/files/counterexamples.pdf, 2017.

[Sch07] T. Schick. Finite group extensions and the Baum-Connes conjecture. Geom. Topol.,
11:1767–1775, 2007.

[SG08] R. Sánchez-García. Bredon homology and equivariant K-homology of SL(3,Z). J.
Pure Appl. Algebra, 212(5):1046–1059, 2008.

[Ska02] G. Skandalis. Progrès récents sur la conjecture de Baum-Connes. Contribution
de Vincent Lafforgue. Astérisque, (276):105–135, 2002. Séminaire Bourbaki, Vol.
1999/2000.

[STY02] G. Skandalis, J. L. Tu, and G. Yu. The coarse Baum-Connes conjecture and
groupoids. Topology, 41(4):807–834, 2002.

[Swa77] R. Swan. Topological examples of projective modules. Trans. Amer. Math. Soc.,
230:201–234, 1977.

[Tit75] J. Tits. On buildings and their applications. In Proceedings of the International
Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 1, pages 209–220.
Canad. Math. Congress, Montreal, Que., 1975.

[Tu99a] J.-L. Tu. The Baum-Connes conjecture and discrete group actions on trees. K-
Theory, 17(4):303–318, 1999.

[Tu99b] J.-L. Tu. La conjecture de Baum-Connes pour les feuilletages moyennables. K-
Theory, 17(3):215–264, 1999.

[Tu99c] J.-L. Tu. La conjecture de Novikov pour les feuilletages hyperboliques. K-Theory,
16(2):129–184, 1999.

[Tu00] J.-L. Tu. The Baum-Connes conjecture for groupoids. In C∗-algebras (Münster,
1999), pages 227–242. Springer, Berlin, 2000.

[Val84] A. Valette.K-theory for the reduced C∗-algebra of a semisimple Lie group with real
rank 1 and finite centre. Quart. J. Math. Oxford Ser. (2), 35(139):341–359, 1984.

[Val85] A. Valette. Dirac induction for semisimple Lie groups having one conjugacy class
of Cartan subgroups. In Operator algebras and their connections with topology and
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Lie groupoids, pseudodifferential
calculus, and index theory

Claire Debord and Georges Skandalis

Abstract Alain Connes introduced the use of Lie groupoids in noncommutative
geometry in his pioneering work on the index theory of foliations. In the present
paper, we recall the basic notion involved: groupoids, their C∗-algebras, their
pseudodifferential calculus, etc. We review several recent and older advances on
the involvement of Lie groupoids in noncommutative geometry. We then propose
some open questions and possible developments of the subject.

1 Introduction

Groupoids, and especially smooth ones, appear naturally in various areas of modern
mathematics. One can find a recent overview on Lie groupoids, with a historical
introduction in [23].

Our aim in this paper is to review some advances in the study of Lie groupoids
as objects of noncommutative geometry. This theory of Lie groupoids is very
much linked with various index problems. A main tool for this index theory is
the corresponding pseudodifferential calculus. On the other hand, index theory and
pseudodifferential calculus are strongly linked with deformation groupoids.

Groupoids first appeared in the theory of operator algebras in the measurable—
von Neumann algebra—setting. They were natural generalizations of actions of
groups on spaces. These crossed product operator algebras go back to the “group
measure space construction” of Murray von Neumann [94], who used it in order
to construct factors of all different types. It often happens that two group actions
give rise to isomorphic groupoids (especially in the world of measurable actions—
i.e., the von Neumann algebra case). It was noticed in [52] that the corresponding
operator algebras only depend on the corresponding groupoid. A recent survey of
this measurable point of view can be found in [53].
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Two almost simultaneous major contributions forced groupoids into the topolog-
ical noncommutative world, i.e., C∗-algebras:

• The construction by Jean Renault of the C∗-algebra of a locally compact
groupoid, its representation theory [102],

• The construction by Alain Connes of the von Neumann algebra and the C∗-
algebra of a foliation based on its holonomy groupoid [28, 30, 32].

Moreover, as a motivation for Connes was the generalization of the Atiyah–
Singer index theorem [8, 10], he used the smooth longitudinal structure in order
to construct the associated pseudodifferential calculus and the C∗-algebraic exact
sequence of pseudodifferential operators. This allowed him to construct the analytic
index, and to prove a measured index theorem [28]. Very soon after, he constructed
a topological index with values in the C∗-algebra of the foliation [30]. The
corresponding index theorem was proved in [36].

This pseudodifferential calculus on groupoids and the construction of the analytic
index in the groupoid C∗-algebra was then easily generalized to all Lie groupoids
[91, 95]. They gave rise to several index theorems—cf. [43, 22, 42].

Another very nice construction of Connes (see [32]) gave a geometric insight on
this generalized index theory: the construction of the tangent groupoid. This tangent
groupoid allowed to construct the analytic index of (pseudo)differential operators
without pseudodifferential calculus. It was also used to give beautiful alternate
proofs of the Atiyah–Singer index theorem [32, 43].

Connes’ tangent groupoid was an inspiration for many papers (cf. [61, 91, 95]. . . )
where this idea was generalized to various geometric contexts. Its natural setting is
the deformation to the normal cone (DNC) construction. Since DNC is functorial,
Connes’ construction can be extended to any case of a sub-Lie groupoid of a
Lie groupoid (see [46]). Moreover, this construction is immediately related to
the Connes–Higson E-theory (cf. [33]). It therefore opened a whole world of
deformation groupoids that are useful in many situations and gave rise to many
interesting K-theoretic constructions and computations.

One also sees that the C∗-algebra extension of the pseudodifferential operators
on a groupoid is directly related to the one naturally associated with the DNC
construction and the canonical action of R∗+ on it [1, 45]. There is a well-defined
Morita equivalence between these exact sequences, and the corresponding bimodule
gives an alternative definition of the pseudodifferential calculus on a groupoid (cf.
[45])—which in turn should be used to various contexts.

In the present survey, we recall definitions and several examples of Lie groupoids
and describe their C∗-algebras. Next, we study the pseudodifferential operators
associated with Lie groupoids from various view points. Examples of various
constructions of groupoids giving rise to interesting K-theoretic computations are
then outlined. We end with a few remarks and several natural questions concerning
groupoids, deformations, and applications.
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2 Lie groupoids and their operator algebras

We refer to [78, 80] for the classical definitions and constructions related to
groupoids and their Lie algebroids. The construction of theC∗-algebra of a groupoid
is due to Jean Renault [102], one can look at his course [103] which is mainly
devoted to locally compact groupoids.

2.1 Generalities on Lie groupoids

A groupoid is a small category in which every morphism is an isomorphism. Thus
a groupoid G is a pair (G(0),G(1)) of sets together with structural morphisms:

Units and arrows The set G(0) denotes the set of objects (or units) of the
groupoid, whereas the set G(1) is the set of morphisms (or arrows). The unit
map u : G(0) → G(1) is the injective map which assigns to any object of G its
identity morphism.

The source and range maps s, r : G(1) → G(0) are (surjective) maps equal to
identity in restriction to G(0): s ◦ u = r ◦ u = Id.

The inverse ι : G(1) → G(1) is an involutive map which exchanges the source
and range:

for α ∈ G, (α−1)−1 = α and s(α−1) = r(α), where α−1 denotes ι(α)

The partial multiplication m : G(2) → G(1) is defined on the set of composable
pairs G(2) = {(α, β) ∈ G(1) ×G(1) | s(α) = r(β)}. It satisfies for any (α, β) ∈
G(2):

r(αβ) = r(α), s(αβ) = s(β), αu(s(α)) = u(r(α))α = α, α−1α = u(s(α))

where αβ stands form(α, β). Moreover the product is associative, if α, β, γ ∈ G:

(αβ)γ = α(βγ ) when s(α) = r(β) and s(β) = r(γ )

We often identifyG(0) with its image inG(1) and make the confusion betweenG

and G(1). A groupoid G = (G(0),G(1), s, r, u, ι,m) will be simply denoted G
r,s

⇒
G(0) or just G⇒ G(0).

Notation For any maps f : A → G(0) and g : B → G(0), define

Gf = {(x, γ ) ∈ A×G; r(γ ) = f (x)}, Gg = {(γ, x) ∈ G× B; s(γ ) = g(x)}
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and

G
f
g = {(x, γ, y) ∈ A×G× B; r(γ ) = f (x), s(γ ) = g(y)} .

In particular for A,B ⊂ G(0), we put GA = {γ ∈ G; r(γ ) ∈ A} and GA = {γ ∈
G; s(γ ) ∈ A}; we also put GBA = GA ∩GB .

Remark 2.1 For any x ∈ G(0), Gxx is a group with unit x, called the isotropy group
at x. It acts by left (resp. right) multiplication on Gx (resp. Gx) and the quotient
identifies with s(Gx) = r(Gx) ⊂ G(0) which is called the orbit of G passing
through x. Thus a groupoid acts on its set of units.

Note that A is a saturated subset of G(0) (for the action of G) if and only if
GA = GA = GAA.

In order to construct the C∗-algebra of a groupoid, we will assume that it is
locally compact. This means that G(0) and G are endowed with topologies for
which

• G(0) is a locally compact Hausdorff space,
• G is second countable, and locally compact locally Hausdorff, i.e., each point γ

in G has a compact (Hausdorff) neighborhood;
• all structural maps (s, r, u, ι,m) are continuous and s is open.

In this situation the map r is open and the s-fibers of G are Hausdorff.
In order to study differential operators and index theories, we will assume our
groupoid to be smooth. The groupoid G ⇒ G(0) is Lie or smooth when G and
G(0) are second countable smooth manifolds with G(0) Hausdorff, s is a smooth
submersion (hence G(2) is a manifold), and the structural morphisms are smooth.

The Lie groupoid G is said to be s-connected when for any x ∈ G(0), the
s-fiber of G over x is connected. The s-connected component of a groupoid G
is ∪x∈G(0)CGx where CGx is the connected component of the s-fiber Gx which
contains the unit u(x). The groupoid CG is the smallest open subgroupoid of G
containing its units.

Example 2.2

(a) A space M is a groupoid over itself with s = r = u = Id. Thus, a manifold is a
Lie groupoid.

(b) A group H ⇒ {e} is a groupoid over its unit e, with the usual product and
inverse map. A Lie group is a Lie groupoid!

(c) A group bundle: π : E → M is a groupoid E ⇒ M with r = s = π and
algebraic operations given by the group structure of each fiber Ex , x ∈ M .
In particular, a smooth vector bundle over a manifold gives thus rise to a Lie
groupoid.

(d) If R is an equivalence relation on a space M , then the graph of R, GR :=
{(x, y) ∈ M × M | xRy}, admits a structure of groupoid over M , which is
given by:
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u(x) = (x, x) , s(x, y) = y , r(x, y) = x ,

(x, y)−1 = (y, x) , (x, y) · (y, z) = (x, z)

for x, y, z in M . Notice that the orbits of the groupoid GR are precisely
the orbits of the equivalence relation R. If M is a manifold, GR is a smooth
submanifold of M ×M and s restricts to a submersion, it is a Lie groupoid.

When xRy for any x, y in M , GR = M × M ⇒ M is called the pair
groupoid. If M is a manifold, the pair groupoid M ×M is a Lie groupoid.

Without entering too much in the details, let us say that a smooth regular
foliation on a manifold M(of dimension n) is an equivalence relation on M
whose orbits, called the leaves, are immersed connected submanifolds of M
(of dimension p). The corresponding groupoid GR does not have a smooth
structure, but there is a “smallest” Lie groupoid of dimension n+ p, called the
holonomy groupoid of the foliation, whose orbits are the leaves [118, 101, 55,
80]. The holonomy appears to be exactly the obstruction for GR to be smooth!

(e) IfH is a group acting on a space M , the groupoid of the action isH �M ⇒ M

with the following structural morphisms:

u(x) = (e, x) , s(g, x) = x , r(g, x) = g · x ,
(g, x)−1 = (g−1, g · x) , (h, g · x) · (g, x) = (hg, x) ,

for x in M and g, h in H . Once again, notions of isotropy groups, and orbits of
the groupoid coincide with the corresponding notions for the group action.

If H is a Lie group, M is a smooth manifold and the action is smooth, then
H �M is a Lie groupoid.

(f) Let M be a smooth manifold of dimension n. The Poincaré groupoid of M is

1(M) := {γ̄ | γ : [0, 1] → M a continuous path} ⇒ M

where γ̄ denotes the homotopy class (with fixed endpoints) of γ . For x ∈ M ,
u(x) will be the (class of the) constant path at x, s(γ̄ ) = γ (0), r(γ̄ ) = γ (1),
the product comes from the concatenation product of paths.

The groupoid 1(M) is naturally endowed with a smooth structure (of
dimension 2n). For any x ∈ M , the isotropy group 1(M)xx is the fundamental
group ofM with base point x and1(M)x the corresponding universal covering.

(g) If G⇒ M is a groupoid and f : N → M a map, Gff ⇒ N is again a groupoid:

u(x) = (x, f (x), x), s(x, α, y) = y,

(x, α, y)−1 = (y, α−1, x), (x, α, y)(y, β, z) = (x, αβ, z)

where α, β are in G, x, y, z in N and f (x) = r(α), f (y) = s(α) = r(β) and
f (z) = s(β).
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When G is a Lie groupoid, and f a smooth map transverse to G (see
Definition 2.4), Gff ⇒ N is a Lie groupoid.

The infinitesimal object associated with a Lie groupoid is its Lie algebroid:

Definition 2.3 A Lie algebroid A over a manifold M is a vector bundle A → M ,
together with a Lie algebra structure on the space �(A) of smooth sections of A
and a bundle map 2 : A → TM , called the anchor, whose extension to sections of
these bundles satisfies

(i) 2([X, Y ]) = [2(X), 2(Y )], and
(ii) [X, f Y ] = f [X, Y ] + (2(X)f )Y ,

for any smooth sections X and Y of A and any smooth function f on M .

Now, let G
s,r

⇒ G(0) be a Lie groupoid.
For any α in G, let Rα : Gr(α) → Gs(α) be the right multiplication by α. A

tangent vector field Z on G is right invariant if it satisfies,

– Z is s-vertical, namely T s(Z) = 0, i.e., for every α ∈ G, Z(α) is tangent to the
fiber Gs(α).

– For all (α, β) in G(2), Z(αβ) = T Rβ(Z(α)).

The Lie algebroid AG of the Lie groupoid G is defined as follows [78],

– The fiber bundle AG → G(0) is the restriction of the kernel of the differential
T s of s to G(0). In other words, AG = ∪x∈G(0)TxGx is the union of the tangent
spaces to the s-fibers at the corresponding unit.

– The anchor 2 : AG → T G(0) is the restriction of the differential T r of r to AG.
– If Y : U → AG is a local section of AG, where U is an open subset of G(0), we

define the local right invariant vector field ZY associated with Y by

ZY (α) = T Rα(Y (r(α))) for all α ∈ GU .

The Lie bracket is then defined by

[ , ] : �(AG)× �(AG) −→ �(AG)

(Y1, Y2) �→ [ZY1, ZY2 ]G(0)

where [ZY1, ZY2 ]G(0) is the restriction of the usual bracket [ZY1, ZY2 ] to G(0).

Notice that AG identifies with the normal bundle NG
G(0)

of the inclusion u :
G(0) ↪→ G.

Definition 2.4 A smooth map f : N → M is transverse to a Lie groupoidG⇒ M

when for all x ∈ N : Tf (TxN)+ 2(AG)f (x) = Tf (x)M .

Lie theory for groupoids is much trickier than for groups: a Lie algebroid does not
always integrate into a Lie groupoid [2].
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Nevertheless, when the anchor of a Lie algebroid A is injective in restriction
to a dense open subset it is integrable and there is a “smallest” s-connected Lie
groupoid integrating it [38]. This situation is often encountered in index theory
where such a Lie algebroid of vector fields is naturally associated with the studied
geometrical object (e.g., manifolds with corners, conical singularities, etc.). See [37]
for a complete answer to this integrability problem.

Example 2.5

(a) The Lie algebroid of a Lie group is the Lie algebra of the group.
(b) The Lie algebroid of the pair groupoid M ×M ⇒ M on a smooth manifold M

is TM with identity as anchor.
(c) If f : M → B is a smooth submersion, the Lie groupoid of the equivalence

relation on M “being on the same fiber of f ” is Bff = M ×f M ⇒ M and its
Lie algebroid is the kernel of Tf with anchor the inclusion.

(d) More generally, if F is a regular foliation on a manifold M , TF with inclusion
as anchor, defines a Lie algebroid over M and the holonomy groupoid is the
smallest Lie groupoid which integrates TF [118, 101].

(e) Let M be a manifold and V an hypersurface cutting M into two pieces. The
module of smooth vector fields on M that are tangent to V was considered by
Melrose for the study of b-operators for manifold with boundary [83]. This
module is the module of sections of a Lie algebroid Ab overM which integrates
into the b-groupoid Gb [90].

If M = V × R and V = V × {0} (which is always locally the case around
V up to a diffeomorphism), then Ab = T V × TR with anchor 2(x,U, t, ξ) �→
(x, U, t, tξ) and Gb = (V ×V )× (R�R

∗+) is the product of the pair groupoid
on V with the groupoid of the multiplicative action of R∗+ on R.

Remark 2.6 The unit spaces of many interesting groupoids have boundaries or
corners. In (almost) all the situations, these groupoids sit naturally inside Lie
groupoids without boundaries as restrictions to closed saturated subsets. This
means that the object under study is a subgroupoid GVV = GV of a Lie groupoid
G⇒G(0) where V is a closed saturated subset of G(0). Such groupoids have a
natural algebroid, adiabatic deformation, pseudodifferential calculus, etc. that are
restrictions to V and GV of the corresponding objects on G(0) and G. We chose
to give definitions and constructions for Lie groupoids; the case of a longitudinally
smooth groupoid over a manifold with corners is a straightforward generalization
using a convenient restriction.

In [92, 97] are treated slightly more singular cases. There, the authors deal with
foliations and groupoids that are only smooth in the direction of the orbits. One can
perform with some effort the above constructions in these generalized cases too.
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2.1.1 Morita equivalence of Lie groupoids

An important feature of noncommutativity is a nontrivial notion of Morita equiva-
lence: indeed a Morita equivalence of commutative algebras is just an isomorphism.

In the same way in the world of groupoids there is an interesting notion of Morita
equivalence, although this notion reduces to isomorphism both for spaces and for
groups.

Definition 2.7 Two Lie groupoids G1
r,s

⇒ M1 and G2
r,s

⇒ M2 are Morita equivalent

if there exists a groupoid G
r,s

⇒ M and smooth maps fi : Mi → M transverse to G
such that the pull-back groupoids Gfifi identify toGi and fi(Mi) meets all the orbits
of G.

More precisely, a Morita equivalence is given by a linking manifold X with
extra data: surjective smooth submersions r : X → M1 and s : X → M2 and
compositionsG1×s,rX → X,X×s,rG2 → X,X×r,rX → G2 andX×s,sX → G1
with natural associativity conditions (see [93] for details). In the above situation,
X is the manifold Gf1

f2
and the extra data are the range and source maps and the

composition rules of the groupoid Gf1�f2
f1�f2

⇒ M1 �M2 (see [93]).

Example 2.8 There are many interesting Morita equivalences of Lie groupoids.

(a) Given a surjective submersion f : M → B, the subgroupoid G = {(x, y) ∈
M×M; f (x) = f (y)} of the pair groupoidM×M is Morita equivalent to the
space B, i.e., the groupoid B ⇒ B (cf. Example 2.5c).

(b) More generally, if G ⇒ B is a Lie groupoid and f : M → B is a submersion1

whose image meets allG orbits, then the groupoidGff is a Lie groupoid Morita
equivalent to G (cf. Example 2.5d).

(c) IfM is a connected manifold, its Poincaré groupoidΠ(M) is Morita equivalent
to the fundamental group π1(M) (cf. Example 2.2f).

2.2 C∗-algebra of a Lie groupoid

2.2.1 Convolution∗-algebra of smooth functions with compact support

Recall that on a Lie group H , the convolution product formula is given for f and g
in C∞

c (H) (i.e., smooth functions with compact supports on H ) by

f ∗ g(x) =
∫

H

f (y)g(y−1x)dy

1We may just assume that f satisfies the transversality condition.
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For M a manifold, the convolution product formula of kernels is given for f and g
in C∞

c (M ×M) by

f ∗ g(x, y) =
∫

M

f (x, z)g(z, y)dz

Both these convolution products are special cases of convolution product on a Lie
groupoid, the first one is for the Lie group viewed as a Lie groupoid H ⇒ {e} and
the second one corresponds to the pair groupoid M ×M ⇒ M .

Let us assume now that G ⇒ G(0) is a Lie groupoid with source s and range r .
We define a convolution algebra structure on C∞

c (G) in the following way:

Convolution product. For f, g ∈ C∞
c (G) and γ ∈ G one wants to define a

convolution formula of the following form:

f ∗ g(γ ) =
∫

(α,β)∈G(2); αβ=γ
f (α)g(β)

In order to define the previous integral, one can choose a smooth Haar system on
G that is

• a smooth family of Lebesgue measure νx on every Gx , x ∈ G(0),
• with left invariance property: for every α ∈ G, the diffeomorphism β �→ α ·β

from Gs(α) with Gr(α) sends the measure νs(α) to the measure νr(α).

Now the convolution formula becomes:

f ∗ g(γ ) =
∫

Gr(γ )
f (α)g(α−1γ ) dνr(γ )(α).

The convolution product is associative by invariance of the Haar system (and
Fubini).

Adjoint. For f ∈ C∞
c (G), its adjoint is the function f ∗ : α �→ f (α−1).

Remarks 2.9 Let us mention two very useful constructions that appeared in [30].

(a) In order to have intrinsic formulas for the convolution and adjoint, it is suitable
to replace the space C∞

c (G) by the space of sections of a bundle of (half)
densities on the groupoid, more precisely sections of the vector bundle �1/2 =
|�|1/2(ker T s × ker T r) of half densities of the bundle ker T s × ker T r . Note
that the Haar system is just an invariant section of the bundle |�|1(ker T r) of
1-densities of the bundle ker(ker T r) and can be used to trivialize the bundle
|�|1/2(ker T s × ker T r).

(b) Also in [30] Connes explains how to naturally define the convolution algebra
“C∞

c (G)” when the groupoid G is not assumed to be Hausdorff (but is still a
locally Hausdorff manifold).
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2.3 Norm and C∗-algebra

For f ∈ C∞
c (G), define

‖f ‖I = max

(

sup
x∈G(0)

∫

Gx
|f (γ )|dνr(γ )(α) ; sup

x∈G(0)

∫

Gx
|f (γ−1)|dνr(γ )(α)

)

A ∗-representation π : C∞
c (G) −→ B(H), where B(H) is the algebra of

bounded operator on the separable Hilbert space H, is bounded when it satisfies:
‖π(f )‖ ≤ ‖f ‖I for any f ∈ C∞

c (G).
We define the maximal norm of f ∈ C∞

c (G) by:

‖f ‖max = sup
π bounded

‖π(f )‖B(H)

For any x ∈ G(0) the map πx : C∞
c (G) → B(L2(Gx)) defined by the formula:

πx(f )(τ )(γ ) =
∫

Gr(γ )
f (α)τ(α−1γ ) dνr(γ )(α).

where f ∈ C∞
c (G), τ ∈ L2(Gx) and γ ∈ G, is a bounded representation.

We define the minimal norm of f ∈ C∞
c (G) by:

‖f ‖min = sup
x∈G(0)

‖πx(f )‖B(L2(Gx))

The reduced C∗-algebra of G is the completion of C∞
c (G) with respect to

the minimal norm: C∗
r (G) = C∞

c (G)
min

. The maximal C∗-algebra of G is the
completion of C∞

c (G) with respect to the maximal norm: C∗(G) = C∞
c (G)

max
.

The identity induces a surjective morphism from C∗(G) to C∗
r (G). This mor-

phism is an isomorphism when the groupoidG is amenable (see [4] for a discussion
of the amenability of locally compact groupoids).

TheC∗-completions C∗(G) andC∗
r (G) have both advantages and disadvantages.

Some properties hold for one of them and not necessarily for the other one. The
celebrated Baum–Connes conjecture [11, 12] is a statement for the K-theory of
the reduced one—and Kaszdan’s property T shows easily that it cannot hold for the
maximal one (see [112] for a very nice discussion on the Baum–Connes conjecture).

On the other hand, let G⇒ M be a Lie groupoid and X ⊂ M a closed subset of
M saturated for G (i.e., if for α ∈ G, s(α) ∈ X if and only if r(α) ∈ X). Then we
have an exact sequence:

0 → C∗(GM\X) → C∗(G) → C∗(GX) → 0
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of maximal C∗-algebras. The corresponding sequence at the level of reduced C∗-
algebras is not always exact in its middle term. This nonexactness is responsible
for counterexamples to the Baum–Connes conjecture in [56]. See [13, 20, 21] for a
possible solution to this lack of exactness.

2.4 Deformation to the normal cone and blowup groupoids

2.4.1 Deformation to the normal cone groupoid

Let us first recall the standard deformation to the normal cone construction. Let
V ⊂ M be a submanifold of a manifold M and denote NM

V the normal bundle. The
deformation to the normal cone of V in M is:

DNC(M,V ) = (M × R
∗) � (NM

V × {0})

It is equipped with the natural smooth structure generated by the following
constraints:

• the map ϕ : DNC(M,V ) → M × R given by (x, t) ∈ M × R
∗ �→ (x, t) and

(x, ξ, 0) ∈ NM
V × {0} �→ (x, 0) is smooth.

• if f : M → R is any smooth function that vanishes on V , the function f dnc :
DNC(M,V ) → R given by (x, t) ∈ M × R

∗ �→ f (x)
t

and (x, ξ, 0) ∈ NM
V ×

{0} �→ df (ξ) is smooth.

One can also define the smooth structure with the choice of an exponential map
θ : U ′ ⊂ NM

V → U ⊂ M , by requiring the map

3 : (x, ξ, t) �→
{
(θ(x, tξ), t) f or t �= 0
(x, ξ, 0) f or t = 0

to be a diffeomorphism from the open neighborhood W ′ = {(x, ξ, t) ∈ NM
V ×

R | (x, tξ) ∈ U ′} of NM
V × {0} in NM

V × R on its image.
Note that describing the smooth structure thanks to the choice of an exponential

map ensures that such a structure exists, while the description thanks to the
characterization of the smooth functions ensures that this structure is independent
of choices.

Remark 2.10 By the characterization of the smooth functions, it follows that the
deformation to the normal cone construction is functorial.

A consequence of this remak is

Corollary 2.11 If G is a Lie groupoid and H is a subgroupoid, DNC(G,H) ⇒
DNC(G(0), H (0)) is a Lie groupoid. Moreover the Lie algebroid ofDNC(G,H) is
DNC(AG,AH).
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At the set level DNC(G,H) = G × R
∗ � NG

H × {0}. The normal space NG
H is

equipped with a Lie groupoid structure with units NG(0)

H (0) called the normal groupoid

of the inclusion of H in G. Its Lie algebroid is NAG
AH .

Example 2.12 The first and most famous example of groupoid resulting from the
DNC construction is the tangent groupoid of Connes [32]: let M be a smooth
manifold diagonally embedded in the pair groupoid M ×M , perform DNC(M ×
M,M), and restrict it to M × [0, 1]:

GT (M) = DNC(M×M,M)|M×[0,1] = M×M×(0, 1]�TM×{0} ⇒ M×[0, 1]

Similarly, the adiabatic groupoid of a Lie groupoidG⇒ G(0) is the restriction over
G(0) × [0, 1] of DNC(G,G(0)) [91, 95]:

Gad = G× (0, 1] � AG× {0} ⇒ G(0) × [0, 1]

2.4.2 Blowup groupoid

We keep the notation of the previous section: V ⊂ M is a submanifold of a manifold
M and DNC(M,V ) is the deformation to the normal cone of V in M .

Recall that ϕ : DNC(M,V ) = M × R
∗ � NM

V × {0} → M × R is the natural
(smooth) map. We will consider the manifold with boundary DNC+(M, V ) =
ϕ−1(M × R+) = M × R

∗+ � NM
V .

The scaling action of R∗+ on M × R
∗ extends to the zooming action of R∗+ on

DNC+(M, V ) :

DNC+(M, V )× R
∗ −→ DNC+(M, V )

(z, t, λ) �→ (z, λt) f or t �= 0

(x,X, 0, λ) �→
(
x, 1

λ
X, 0

)
f or t = 0

By functoriality, the manifold V × R+ = DNC+(V , V ) embeds in
DNC+(M, V ). The zooming action is free and proper on the open subset
DNC+(M, V ) \ V × R+ of DNC+(M, V ). We let the spherical blowup of V
in M be:

SBlup(M,V ) = (
DNC+(M, V ) \ V × R+

)
/R∗+ = M \ V ∪ S(NM

V ) .

Remark 2.13 The spherical blowup construction is functorial “wherever it is

defined”. Precisely, suppose that we have a commutative diagram

V

f |V

M

f

V ′ M ′

where the horizontal arrows are embeddings of submanifolds. Functoriality of the
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deformation to the normal cones constructions yields a smooth map DNC(f ) :
DNC(M,V ) → DNC(M ′, V ′). This smooth map restricts to the mapDNC(f )+ :
DNC+(M, V ) → DNC+(M ′, V ′) which is equivariant under the zooming action.

Let SUf (M,V ) = DNC+(M, V ) \DNC(f )−1(V ′ × R+) and define

SBlupf (M,V ) = SUf /R
∗+ ⊂ SBlup(M,V )

Then DNC(f )+ passes to the quotient:

SBlup(f ) : SBlupf (M,V ) → SBlup(M ′, V ′)

If

V

g|V

M

g

V ′ M ′ is another smooth map of embeddings, we will denote
SUf,g(M, V ) = DNC+(M, V )\ (DNC(f )−1(V ′ ×R+)∪DNC(g)−1(V ′ ×R+))
and SBlupf,g(M, V ) its quotient under the zooming action.

A consequence of the preceding remak is

Corollary 2.14 If G
r,s

⇒ G(0) is a Lie groupoid and H is a subgroupoid,
SBlupr,s(G,H) ⇒ SBlup(G(0), H (0)) is a Lie groupoid. Moreover the Lie
algebroid of SBlupr,s(G, �) is SBlupr,s(AG,A�).

Example 2.15

(a) IfG⇒ G(0) is a Lie groupoid, define G = G×R×R ⇒ G(0)×R, the product
of G with the pair groupoid on R. One can check that

SBlupr,s(G,G
(0) × {(0, 0)}) = DNC+(G,G(0))�R

∗+ ⇒ G(0) × R

and recover the Gauge adiabatic groupoid of [45].
(b) Let V ⊂ M be a hypersurface. The blowup procedure enables to recover

groupoids and spaces involved in the pseudodifferential calculus on manifold
with boundary. In particular,

Gb = SBlupr,s(M ×M,V × V )
︸ ︷︷ ︸

The b-calculus groupoid

⊂ SBlup(M ×M,V × V )
︸ ︷︷ ︸

Melrose’s b-space

G0 = SBlupr,s(M ×M,�(V ))
︸ ︷︷ ︸

The 0-calculus groupoid

⊂ SBlup(M ×M,�(V ))
︸ ︷︷ ︸

Mazzeo-Melrose’s 0-space

(c) One can iterate these constructions to go to the study of manifolds with corners,
or consider a foliation with no holonomy on V , or define the holonomy groupoid
of a manifold with iterated fibered corners, etc.
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3 Pseudodifferential calculus on Lie groupoids

The “classical” pseudodifferential calculus was developed in the 1960s and was
crucial in the Atiyah–Singer index theorem [8].

Pseudodifferential operators appear naturally when trying to solve (elliptic)
differential equations. Using Fourier transform, one associates canonically to
a differential operator a polynomial function—its symbol. The composition of
differential operators is not commutative and therefore it does not induce just the
product of these polynomials, but at least the leading term of the symbol of the
product is the product of the leading terms of the symbols. When trying to solve
such an equation, one then naturally tries to invert this symbol. This inverse is
no longer a polynomial of course, but one can still associate to it an operator—a
pseudodifferential operator.

The pseudodifferential operators are used in many different parts of mathematics.
Information on pseudodifferential operators and much more can be found in the
classical books [66, 67, 68, 69, 107, 109, 110, 111].

Here we will concentrate to the use of pseudodifferential operators in connection
with Lie groupoids and noncommutative geometry.

In [28], Alain Connes, in order to generalize the Atiyah–Singer index theorem
for families [10] to the case of general foliations, considered the C∗-algebra of the
holonomy groupoid as a noncommutative generalization of the space of parameters
and studied index problems with values in this algebra. He therefore introduced the
pseudodifferential calculus on the holonomy groupoid of a foliation.

This pseudodifferential calculus was easily extended to general Lie groupoids
(see [91, 95]). In this way one constructs an analytic index map K∗(C0(A

∗G)) →
K∗(C∗(G)) for every Lie groupoid G.

Alain Connes made another beautiful observation. His tangent groupoid that we
described in Section 2.4.1 can be used in order to construct the analytic index of
elliptic operators in a differential and pseudodifferential free way. The fact that this
indeed coincides with the analytic index of elliptic operators is just a consequence
of the existence of a pseudodifferential calculus on every Lie groupoid.

In this section, we will discuss various constructions of this pseudodifferential
calculus on groupoids and the construction of the index.

3.1 Distributions on G conormal to G(0)

The point of view developed by Connes is the following: locally the foliation looks
like a fibration. On a foliation chart �i � Ui × Ti , where Ti is the local transversal
and Ui represents the leaf direction, a pseudodifferential operator Pi is a family
indexed by Ti of operators on Ui (in the sense of [10]). Connes then defines a
pseudodifferential operator on the foliation as a finite sum f + ∑

i

Pi of such local

pseudodifferential families Pi (with compact support) and f ∈ C∞
c (G).
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It was then quite easy to extend this calculus to a general Lie groupoid and this
was done independently in [91] and [95]. There, pseudodifferential operators appear
as G-invariant pseudodifferential families acting on the source fibers of G.

In fact, it is probably easier and more natural to consider pseudodifferential
operators on Lie groupoids as distributions on G which are conormal to G(0). This
point of view appears in various calculi of Melrose (on some spaces that contain
Lie groupoids as dense open subsets—see, e.g., [85]) and in [6]. It is explained and
developed in [75, 76] where the interested reader will have all details and complete
description of the pseudodifferential calculus on a Lie groupoid.

Given a manifold M and a (locally) closed submanifold V , conormal distribu-
tions are some particular distributions on M , with singular support in V .

A remak on densities As the elements of the convolution algebra of a groupoid
are sections of a density bundle �1/2 rather than functions, the distributions that
we consider are generalized sections of the same density bundle. The distribution
associated with a smooth section of a bundle E over a manifold M is a continuous
linear mapping on the topological vector space C∞

c (M;�1(M) ⊗ E∗) of smooth
sections with compact support of the tensor product of the bundle of one densities
on M with the dual bundle of E. In order to simplify our exposition we will drop
all these trivial bundles and just consider functions—although this issue is not
completely trivial. We will in fact assume that coherent choices of sections of these
bundles are made.

A guiding principle is that symbols (of scalar operators) are indeed functions.

3.1.1 Symbols and conormal distributions

Symbols and conormal distributions on R
n Let α = (α1, . . . , αn) ∈ N

n.

Put |α| = ∑
αi . The map Dα : f �→ ∂ |α|f

(∂x1)
α1 ...(∂xn)αn

(0) is a distribution on
R
n with (singular) support 0. In Fourier terms it can be written as Dα(f ) =
1

(2π)n
∫
Rn
(iξ)αf̂ (ξ) dξ .

A classical symbol on R
n of order m ∈ Z (or in C) is a function a on R

n that can
be written as

a(ξ) ∼
+∞∑

k=0

am−k(ξ),

where aj is a smooth function on R
n \ {0} homogeneous of degree j , i.e., such that,

for t ∈ R
∗+ and ξ ∈ R

n \ {0} we have aj (tξ) = tj aj (ξ).
The notation ∼ means that for every k ∈ N, and every α ∈ N

n, there is a constant
Mk,α such that, for ‖ξ‖ ≥ 1, we have

∂ |α|(a − ∑k−1
j=0 am−j )

(∂ξ1)α1 . . . (∂ξn)αn
(ξ) ≤ Mk,α‖ξ‖m−k−|α|.
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Such a symbol a gives rise to a distribution using the formula

Pa(f ) = 1

(2π)n

∫

Rn
a(ξ)f̂ (ξ) dξ.

• The support of this distribution is now R
n, but its singular support is 0: For every

neighborhood V of 0, one can write Pa = Qa + κ where Qa has support in V
and κ is a smooth (Schwartz) function.

• The function a is called the total symbol of Pa . It is the Fourier transform of a
since a(ξ) = Pa(hξ ) where hξ (x) = ei〈x|ξ〉.

• The homogeneous function am is called the principal symbol of Pa . Note that
am(ξ) = lim

t→+∞ t−ma(tξ)—and therefore am only depends on Pa .

Symbols on a vector bundle Let now p : E → B be a real vector bundle over a
manifoldB. We consider symbols onE as being families—indexed byB of symbols
on the fibers (Ex)x∈B . Such a symbol is then a function a : E∗ → C where E∗ is
the dual vector bundle such that

a(x, ξ) ∼
+∞∑

k=0

am−k(x, ξ),

where aj is a smooth function on E∗ \ B (where B ⊂ E∗ is the 0 section of the
bundle E∗) homogeneous of degree j in ξ , i.e., such that, for t ∈ R

∗+, x ∈ B and
ξ ∈ E∗

x \ {0} we have aj (x, tξ) = tj aj (x, ξ).
The writing ∼ means here that, in local coordinates, putting B = R

p and E =
R
p × R

n, for every (k, α, β,K) where k ∈ N, α ∈ N
n, β ∈ N

p and K ⊂ B is a
compact subset, there is a constant Mk,α,β,K such that, for x ∈ K and ‖ξ‖ ≥ 1, we
have

∂ |α|+|β|
(
a − ∑k−1

j=0 am−j
)

(∂x1)β1 . . . (∂xp)
βp ∂ξ1)α1 . . . (∂ξn)αn

(x, ξ) ≤ Mk,α,β,K‖ξ‖m−k−|α|.

Remark 3.1 Note that giving a symbol a of order m on E∗ is equivalent to a
homogeneous smooth function b of order m on E∗ × R+ \ B × {0}.
• given a homogeneous smooth function b : E∗×R+\B×{0} → R, put a(x, ξ) =
b(x, ξ, 1);

• given a symbol a, put b(x, ξ, t) = t−ma
(
x,
ξ

t

)
for t �= 0 and b(x, ξ, 0) =

am(u, ξ) (where am is the principal symbol of a).
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The expansion a(x, ξ) ∼ ∑

j

am−j (x, ξ) corresponds to the Taylor expansion of b

at t = 0: we have b(x, ξ, t) ∼ ∑

j

tj am−j (x, ξ).

Associated conormal distributions To such a symbol, we may still associate a
distribution Pa given by the formula

Pa(f ) = 1

(2π)n

∫

E∗
a(x, ξ)f̂ (x, ξ) dx dξ

(where f̂ (x, ξ) = ∫
Ex
e−i〈u|ξ〉f (x, u) du).

• The singular support of this distribution is contained in B ⊂ E.
• The function a is called the total symbol of Pa . The homogeneous function am is

called the principal symbol of Pa .

Symbols and conormal distributions on a manifold Let now M be a manifold
and B ⊂ M a closed submanifold of M . The tubular neighborhood construction
provides us with a neighborhood U of B in M and a diffeomorphism ϕ : N → U

where N = NM
B is the normal bundle: for x ∈ B, we have Nx = TxM/TxB.

The requirement for such a diffeomorphism is ϕ(b) = b for every b ∈ B and, for
every x in B, the differential Tf : TxN → TxM satisfies px ◦ Tfx(ξ) = ξ for
ξ ∈ Nx ⊂ Tx(N) where px : TxM → Nx = TxM/TxB is the projection.

Using ϕ, we obtain a family of distributions on M: those that are a sum Q =
ϕ∗(Pa) + κ of a smooth function κ on M (with compact support) and a conormal
distribution Pa on N where a is a symbol on N∗: we write

Q(f ) =
∫

M

κ(y)f (y) dy +
∫

N∗
a(x, ξ)

( ∫

u∈Nx
e−i〈u|ξ〉f ◦ ϕ(x, u) du

)
dx dξ.

Diffeomorphism invariance of conormal distributions and principal symbol It
turns out that

• the space of distributions on M of the form ϕ∗(Pa) + κ does not depend on the
partial diffeomorphism ϕ : NM

B → M;
• the principal symbol am of ϕ∗(Pa)+ κ does not depend on ϕ either.

Remark We can also write

Q(f ) = lim
R→∞

∫

M

κR(y)f (y) dy with

κR(y) = κ(y)+ χ(y)

∫

ξ∈N∗
p(y)

, ‖ξ‖≤R
a(p(y), ξ)e−i〈θ(y)|ξ〉 dξ,
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where χ ∈ C∞(M) is a smooth function which is equal to 0 outside U and to
1 for y ∈ B (taking into account the Jacobian of ϕ), and where we have written
ϕ−1(y) = (p(y), θ(y)) with p(y) ∈ B and θ(y) ∈ (NM

B )p(y).

Conormal distributions We denote by Imc (M,B) the space of such conormal
distributions with compact support. The map σm : ϕ∗(Pa)+κ �→ am is the principal
symbol map.

Note that we have a natural exact sequence 0 → Im−1
c (M,B) →

Imc (M,B)
σm−→ C∞

m ((NM
B )

∗ \ B) → 0 where we denoted by C∞
m ((NM

B )
∗ \ B) the

space of smooth functions on (NM
B )

∗ \ B which are homogeneous of degree m.

Definition 3.2 A (classical) pseudodifferential operator of order m on a Lie
groupoid G⇒ M is a conormal distribution P ∈ Imc (G,M).

3.1.2 Convolution

Let G⇒ M be a Lie groupoid.
The convolution for C∞

c (G) can be understood in the following way. Let G(2) =
{(α, β) ∈ G × G; s(α) = r(β)} be the set of composable elements, and let
p1, p2,m : G(2) → G be the maps defined by p1(α, β) = α, p2(α, β) = β and
m(α, β) = αβ.

Take f1, f2 ∈ C∞
c (G). We then may write f1 ∗ f2 = m!(p∗

1(f1).p
∗
2(f2)),

where:

• p∗
i : C∞(G) → C∞(G(2)) is given by p∗

i (fi) = fi ◦ pi ;
• p∗

1(f1).p
∗
2(f2) is just the pointwise product of the functions p∗

i (fi);
• m! : C∞

c (G
(2)) → C∞

c (G) is the integration along the fibers of the submersion
m:
m!(f )(γ ) = ∫

αβ=γ f (α, β) dν = m!(f )(γ ) = ∫
Gr(γ )

f (α, α−1γ )dνr(γ )(α).

We wish to extend these three operations to the case when f1 and f2 are conormal
distributions.

Push-forward, pull-back, product of distributions

Push-forward Let ϕ : M → M ′ be a smooth map. Dual to ϕ∗ : C∞(M ′) →
C∞(M) is a map ϕ∗ : C−∞

c (M) → C−∞
c (M ′) given by (ϕ∗(P ))(f ) = P(ϕ∗(f ))

for P ∈ C−∞
c (M) and f ∈ C∞(M ′).

Let V ⊂ M be a submanifold. Assume that ϕ is a submersion and that the
restriction of ϕ to V is a diffeomorphism. Then, the image ϕ∗ of P ∈ Imc (M,V ) is
a smooth distribution: ϕ∗(P ) ∈ C∞

c (M
′) ⊂ C−∞

c (M ′).
We may indeed, by restricting to a neighborhood of V in M , assume that ϕ :

M → V � M ′ is a vector bundle projection and that P = Pa where a is a symbol
on the dual bundle M∗. Then P is in fact a family of pseudodifferential operators
(Px)x∈V and
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ϕ∗(P )(f ) =
∫

V

f (x)Px(1) dx =
∫

V

f (x)a(x, 0) dx.

In other words, ϕ∗(P ) is the distribution associated with the function x �→ a(x, 0).

Pull-back by a submersion Let p : M ′ → M be a submersion. Dual to the
integration along the fibers p! : C∞

c (M
′) → C∞

c (M) is a map p! : C−∞(M) →
C−∞(M ′) given by (p!(P ))(f ) = P(p!(f )) for P ∈ C−∞(M) and f ∈ C∞

c (M
′).

The map p! extends to distributions the map p∗ : C∞(M) → C∞(M ′).

Proposition 3.3 Let V ⊂ M be a closed submanifold. Put V ′ = p−1(V ).

(a) The normal bundle of V ′ inM ′ identifies with the pull back of the normal bundle
of V in M .

(b) Assume that P ∈ Imc (M,V ). Then p!(P ) ∈ Imc (M ′, V ′). Under the identifica-
tion of the normal bundle N ′ of V ′ in M ′ with p∗NM

V , the principal symbol of
p∗P is given by σm(p∗P) = σm(P ) ◦ p.

Proof The first statement is obvious. Thanks to it, we may assume thatM is a vector
bundle p : E → V and M ′ is the pull-back vector bundle E′ = E ×V V

′ → V ′.
The second statement is then immediate too. ��
Products of conormal distributions

(a) One can extend the (pointwise) product of functions to the case where one of
them is a distribution. The pointwise product of two distributions is not always
well defined.

Already in this way, we may define the convolution of a classical pseu-
dodifferential operator P with an element f ∈ C∞

c (G): we have P ∗
f = m∗(p!

1(P ).p
∗
2(f2)). Then p!

1(P ).p
∗
2(f2) ∈ Ic(G(2), p−1

1 G(0)) and the
submersionm : G(2) → G induces a diffeomorphism p−1

1 (G(0)) → G, whence
P ∗ f ∈ C∞

c (G) and in the same way, f ∗ P ∈ C∞
c (G).

From this it follows that pseudodifferential operators define multipliers of
C∞
c (G).

(b) To explain the convolution of two pseudodifferential operators we use the two
following facts which reduce to linear algebra.

(i) Let M be a manifold, V1, V2 two closed submanifolds of M that are
transverse to each other. This means that, for every x ∈ V1 ∩ V2 we have
TxM = TxV1 + TxV2 (we do not assume that this sum is a direct sum).
Then if Q1 ∈ I&1

c (M, V1) and Q2 ∈ I&2
c (M, V2), then the distribution

Q1.Q2 makes sense.
(ii) If moreoverQ1.Q2 has compact support andm : M → M ′ is a submersion

whose restriction to both V1 and V2 is a diffeomorphism Vi → M ′, then
m∗(Q1.Q2) ∈ I&1+&2

c (M ′,m(V1 ∩ V2)) and its principal symbol is the
product of the symbols of Q1 and Q2 under the natural identification of
the normal bundles:
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• the restriction (NM
V1
)|V1∩V2 of NM

V1
to V1 ∩ V2 identifies with N V2

V1∩V2
;

• the restriction (NM
V2
)|V1∩V2 of NM

V1
to V1 ∩ V2 identifies with N V1

V1∩V2
;

• finally, using the map m, we identify N V1
V1∩V2

and N V2
V1∩V2

identify with

NM ′
m(V1∩V2)

.

Given P1 ∈ I&1
c (G,G

(0)) and P2 ∈ I&2
c (G,G

(0)) we then put

• M = G(2) = {(α, β) ∈ G×G; s(α) = r(β)};
• Qi = p!

i (Pi) where pi : G(2) → G are the submersions (γ1, γ2) �→ γi ;
• M ′ = G and m : (α, β) �→ αβ is the composition.

It follows that P1P2 ∈ I&1+&2
c (G,G(0)) with principal symbol σ&1(P1)σ&2(P2).

Formal adjoint One can also define the adjoint of a pseudodifferential operator P
by setting P ∗ = j∗(P ), where j : G → G is the diffeomorphism γ �→ γ−1.

3.1.3 Pseudodifferential operators of order ≤ 0

Pseudodifferential operators with compact supports on a Lie groupoid G ⇒ M

appear as multipliers of C∞
c (G).

Proposition 3.4 Pseudodifferential operators with compact support of order ≤ 0
extend to multipliers of C∗(G); pseudodifferential operators of order< 0 are in fact
elements of C∗(G).

The first statement means that if P is a pseudodifferential operator with compact
support in G and of order ≤ 0, then there exists a constant c such that, for all
f ∈ C∞

c (G), we have ‖P ∗ f ‖ ≤ c‖f ‖ and ‖f ∗ P ‖ ≤ c‖f ‖ (this is true for both
the maximal and the reduced C∗-norm of G).

Proof To establish this statement, first assume that P is of order < −p where p =
dimG−dimM is the dimension of the algebroid. Note that if a is a symbol of order
≤ −p, then Pa is a continuous function. Therefore, P is a continuous function with
compact support on G, and thus an element of C∗(G).

If P is of order < −p/2, then ‖P ∗ f ‖2 = ‖f ∗ ∗ P ∗ ∗ P ∗ f ‖ (and ‖f ∗ P ‖2 =
‖f ∗ P ∗ P ∗ ∗ f ∗‖) and as P ∗ ∗ P is of order < −p, it is in C∗(G) and thus
‖P ∗f ‖2 ≤ ‖P ∗ ∗P ‖‖f ‖2. It follows that P is a multiplier, and as P ∗ ∗P ∈ C∗(G)
we find P ∈ C∗(G).

If P is of negative order, (P ∗P)2k ∈ C∗(G) for some k ∈ N, and by induction in
k, P ∈ C∗(G).

Let P be a pseudodifferential operator of order 0.
Note first that every smooth function q ∈ C∞

c (M) is a pseudodifferential
operator of order 0 with principal symbol σq : (x, ξ) �→ q(x)—and of course
a bounded multiplier: we have (q ∗ f )(γ ) = q(r(γ ))f (γ ) and (f ∗ q)(γ ) =
f (γ )q(s(γ )).
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Let q ∈ Cc(M) which is equal to 1 on the support of σP—i.e., the projection
on M of the closure of {(x, ξ); σq(x, ξ) �= 0} (which is assumed to be compact
in the space of half lines of the bundle A∗). Let c ∈ R+ with c > σP (x, ξ) for all

(x, ξ). Put b(x, ξ) = q(x)

√
c2 + 1 − |σq(x, ξ)|2, and let Q be a pseudodifferential

operator with principal symbol b. Then P ∗P +Q∗Q which has symbol (1+c2)|q|2
is of the form (1+c2)|q|2+R whereR is of negative order and therefore P ∗P+Q∗Q
is bounded.

For all f ∈ Cc(G), ‖Pf ‖2 = ‖f ∗P ∗Pf ‖ ≤ ‖f ∗P ∗Pf+f ∗Q∗Qf ‖ ≤ ‖P ∗P+
Q∗Q‖‖f ‖2, and thus f �→ Pf is bounded.

In the same way f �→ fP is bounded. ��
As a consequence, one gets:

Theorem 3.5 We have a short exact sequence of C∗-algebras

0 → C∗(G) → �∗(G) σ→ C0(SA
∗) → 0

where�∗(G) is the closure of the algebra of order 0 pseudodifferential operators in
the multiplier algebra of C∗(G) and SA∗ is the sphere bundle (the set of half lines)
of the dual A∗ of the algebroid A of G.

Note that this statement is true for the full groupoid C∗-algebra as well as for the
reduced one.

Proof First note that as �∗(G) contains C∞
c (G), it contains its closure C∗(G).

The only statement which does not follow from Proposition 3.4 is that the
principal symbol map is well defined, i.e., if σ(P ) �= 0, then P �∈ C∗

r (G) (it is
enough to check this for the reduced algebra).

In fact, one shows that for every pseudodifferential operator P of order 0 every
x ∈ M and a nonzero ξ ∈ A∗

x , we have σP (x, ξ) = limn→∞〈ϕn, λx(P )ϕn〉 where
ϕn is a function on Gx of L2-norm 1 whose support is concentrated around x and
whose Fourier transform is concentrated in R

∗+ξ : we may take, in local coordinates,

ϕn(y) = (2n)p/4e−nπ‖x−y‖2−in〈(y−x)|ξ〉. Here, λx is the representation of C∗(G)
on L2(Gx) by left convolution—extended to the multipliers. On the other hand, for
f ∈ C∞

c (G), we have limn→∞〈ϕn, λx(f )ϕn〉 = 0 and by continuity the same is
true for f ∈ C∗

r (G). ��

3.1.4 Analytic index

The connecting map of the exact sequence of Theorem 3.5 is the analytic index of
the Lie groupoid

∂G : Ki+1(C0(SA
∗)) → Ki(C

∗(G)).
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This analytic index can be improved a little by taking vector bundles into account.
Indeed, the starting point of an index problem is often a pair of bundles E± over M
together with a symbol of order 0 which gives a smooth family of isomorphisms
a(x, ξ) : E+

x → E−
x .

Such a symbol defines an element in the relative K-theory of the morphism μ :
C0(M) → C0(SA

∗), in other words an element of the K-theory of the mapping
cone

Cμ = {(f, g) ∈ C0(M)× C0(SA
∗ × R+); ∀(x, ξ) ∈ SA∗, g(x, ξ, 0) = f (x)}

of μ. This mapping cone is naturally isomorphic to C0(A
∗) using the map

(x, ξ, t) �→ (x, tξ).
Consider the morphism ψ : C0(M) → �∗(G) which associates to a (smooth)

function f the order 0 (pseudo)differential operator multiplication by f . Note that
we have μ = σ ◦ ψ . Using the commutative diagram

C0(M)
μ

ψ

C0(S
∗)

Ψ∗(G)
σ

C0(S
∗)

we obtain a morphism ψ̃ : C0(A
∗) = Cμ → Cψ . Now, we also have an exact

sequence

0 → C∗(G) eG−→ Cψ −→ C0(SA
∗ × R+) → 0.

As the algebra C0(SA
∗ × R+) is contractible (and nuclear), the excision map eG is

a KK-equivalence.

Definition 3.6 The analytic index map of the Lie groupoid G is the composition

indG = [eG]−1 ◦ [ψ̃] : Kj(A∗) = Kj(C0(A
∗)) → Kj(C

∗(G)).

The index ∂G is the composition of the morphism Kj+1(C0(SA
∗)) →

Kj(C0(A
∗)) induced by the inclusion SA∗ × R

∗+ → A∗ with the index map
indG).

3.2 Classical examples

The analytic index for groupoids recovers many classical situations.

(a) Assume that G = M × M is just the pair groupoid. Then the corresponding
index is the classical Atiyah–Singer index K0(T ∗M) → K0(K) = Z of
(pseudo)differential operators on M , i.e., the one constructed and computed
in [8].
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(b) Assume that G is the groupoid M ×Y M associated with a smooth fibration π :
M → Y . The corresponding index is the Atiyah–Singer index Kj(T ∗

FM) →
Kj(C

∗(G)) = Kj(Y ) of families of (pseudo)differential operators on the fibers
of π , i.e., the one constructed and computed in [10].

(c) Assume that G is the groupoid G = (M̃ × M̃)/� where � is a countable
group acting freely and properly on a manifold M̃ . The corresponding index
Kj(T ∗M) → K0(C

∗(G)) = Kj(C
∗(�)). This situation was introduced by

Atiyah in [7] where it is shown that the von Neumann dimension of the index
(for j = 0) is in fact the index K0(T ∗M) → Z. In the C∗-context, it was
studied in [87] and has been since then studied in many, many papers.

3.3 Analytic index via deformation groupoids

The deformation groupoids allow to construct the analytic index without use of
pseudodifferential operators. This was Connes’ main motivation for introducing
them.

Let G ⇒ M be a Lie groupoid and let Gad = A × {0} ∪ G × (0, 1] be its
adiabatic groupoid. Consider the evaluation maps ev0 : C∗(Gad) → C∗(A∗) and
evt : C∗(Gad) → C∗(G) for t �= 0.

As the sequence

0 → C∗(G× (0, 1]) −→ C∗(Gad)
ev0−→ C∗(A∗) → 0

is exact and C∗(G × (0, 1]) is contractible, the evaluation ev0 is K-invertible. We
then have the following important theorem which is in a sense just an observation.

Theorem 3.7 (Connes. cf. [32, 91, 95, 42]) The analytic index is the composition
indG = [ev1] ◦ [ev0]−1.

The proof of this theorem reduces to the following two observations:

(a) (Naturality of the analytic index.) Let G1 ⇒ M1 be a Lie groupoid and let
M2 ⊂ M1 be a closed submanifold which is saturated for G1 (i.e., for γ ∈ G1
we have r(γ ) ∈ M2 if and only if s(γ ) ∈ M2). Denote by G2 ⇒ M2 the Lie
groupoid {γ ∈ G1; s(γ ) ∈ M2}. The algebroid A2 ofG2 is the restriction toM2
of the algebroid A1 of G1. We have restriction maps rG : C∗(G1) → C∗(G2)

and rA∗ : C0(A
∗
1) → C0(A

∗
2).

Then the diagram

Kj(C0(
∗
1))

indG1

r ∗

Kj(C
∗(G1))

rG

Kj(C0(
∗
2))

indG2
Kj(C

∗(G2)) is commutative.
(b) If E → B is a vector bundle considered as a Lie groupoid, then

indE : Kj(C0(E
∗)) → Kj(C

∗(E)) = Kj(C0(E
∗))

is the identity.
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Remarks 3.8

(a) One can also use the deformation groupoids in order to prove index theorems. In
[32], Alain Connes gives a beautiful proof of the Atiyah–Singer index theorem
in K-theory—based on the analogue of the Thom isomorphism for crossed
products by R

n of [29]. A different proof was given in [43]. These proofs
naturally generalize to more general index theorems.

(b) An extra step is also taken in his lectures at the Collège de France (see also,
e.g., [50]) where the asymptotics of the deformation groupoid are used in order
to derive the cohomological formula of the Atiyah–Singer index theorem [9].
This is a very important issue for index theory, but we will not discuss it any
further here.

3.4 Deformation to the normal cone, zooming action and PDO

The deformation groupoids as we saw give some insight to the pseudodifferential
calculus on a groupoid. We will see in fact that the deformation groupoids allow
to recover the pseudodifferential calculus itself, using the natural “zooming” action
(called gauge action in [45]).

3.4.1 The zooming action of R∗
+ on a deformation to the normal cone

Let M be a smooth manifold and V a closed submanifold. Denote by N = NM
V

the normal bundle of V in M . The group R
∗+ acts smoothly on DNC(M,V ): for

t ∈ R
∗+ put αt (z, λ) = (z, tλ) for z ∈ M and λ ∈ R

∗ and αt (x, U, 0) = (x, U
t
, 0)

for x ∈ V and U ∈ Nx .
This zooming action gives two interpretations of conormal distributions.

3.4.2 Integrals of smooth functions

Define first the space S(M, V ) of Schwartz functions onDNC+(M, V ): notice that
DNC+(M, V ) is an open dense subset of the blowup SBlup(M×R, V ×{0}). The
space S(M, V ) is the set of smooth functions with compact support on SBlup(M×
R, V × {0}) which vanish at infinite order on the complement of DNC+(M, V ).

The subspace J (M, V ) An element k ∈ S(M, V ) defines a family (kt )t �=0 of
smooth function on M . We define then the subspace J (M, V ) ⊂ S(M, V ) to be
the set of elements k ∈ S(M, V ) such that (kt )t �=0 vanishes at infinite order at 0 as a
distribution on M , i.e., such that for every f ∈ C∞(M), the function t �→ 〈kt |f 〉 =∫
M
kt (x)f (x) dx extends to a smooth function on R which vanishes at infinite order

when t → 0.
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In local coordinates, i.e., if M is a vector bundle over V , identifying
DNC(M,V ) with M × R, an element k ∈ S(M, V ) is in J (M, V ) if and
only if k̂ vanishes at infinite order on V × {0} ⊂ M∗ × R. Indeed, in that case,

〈kt |f 〉 = ∫
V
du

( ∫
M∗
u
k̂t (u, tξ)f̂ (u, ξ) dξ

)
.

It is then easy to see—using local coordinates:

Theorem 3.9 ([45]) For m ∈ C, Imc (M,V ) is the set of distributions of the form∫
R+ kt t−1−m dt where k runs over J (M, V ).

Proof We may assume that M is a vector bundle over V . We need then to write a
symbol a(u, ξ) ∼ ∑

am−j (u, ξ) on the dual bundle M∗ as an integral a(u, ξ) =∫ +∞
0 g(u, tξ, t) t−1−m dt . Such a g will have a Taylor expansion at t = 0 of the

form g(u, ξ, t) ∼
+∞∑
j=0

tngj (x, ξ). Then

∫ +∞

0
g(u, tξ, t) t−1−m dt ∼

+∞∑

j=0

bm−j (u, ξ)

where bm−j (u, ξ) = ∫ +∞
0 gj (u, tξ) t

n−1−m dt is homogeneous in ξ of orderm−j .
Using Borel’s theorem, one easily finds a smooth function g whose Taylor expansion
gj yields bm−j = am−j . The theorem follows. ��

3.4.3 Almost equivariant distributions

In [114], Erik van Erp and Robert Yuncken presented another point of view on
pseudodifferential calculus on groupoids. Their construction can be carried to
conormal distribution in the following way:

Theorem 3.10 A conormal distribution P ∈ Imc (M,V ) is a distribution onM with
compact support such that there exists a distribution Q on DNC(M,V ) given by
a smooth family (Pt )t∈R∗ , (i.e., such that 〈Q|f 〉 = ∫

R
〈Pt |ft 〉 dt) which satisfies

P1 = P and αλQ− λmQ ∈ C∞(DNC(M,V )) for every λ ∈ R
∗+.

Proof We may of course assume that M is the total space of a vector bundle E →
V (and V is the 0-section). As Q has compact support, we may write 〈Q|f 〉 =∫
R
〈P̂t |f̂t 〉 dt where P̂t is a smooth function on E∗. The family (P̂t )t∈R+ is then a

smooth function F onE∗×R+ such that, for every λ ∈ R
∗+, the function (x, ξ, t) �→

λmF(x, ξ, t)− F(x, λx, λt) has compact support.
If F is of that form, then (x, ξ) �→ F(x, ξ, 1) is a symbol; if a is a symbol,

just put F(x, ξ, t) = χ(‖ξ‖2 + t2)t−ma
(
x,

ξ
t

)
for t �= 0 and F(x, ξ, 0) =

χ(‖ξ‖2)am(x, ξ). ��
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Remark: Equivariant linear forms on J (M, V ) One can modify a little bit this
construction. The distributions used here are linear forms on S(M, V ). Such linear
forms can be exactly equivariant for m ∈ N—and in this case we obtain only
differential operators. If instead we take linear forms only defined on the subspace
J (M, V ) ⊂ S(M, V ) of [45], we probably construct an exactly equivariant family
of linear forms on J (M, V ) extending any element of Imc (M,V ).

3.5 Some generalizations

We will just cite here, without going too much into the details, some more general
distributions which were constructed and used in operator algebras.

3.5.1 More general families of pseudodifferential operators

One can associate useful distributions to much more general symbols. In [61] appear
symbols of type (ρ, δ) and the associated pseudodifferential operators.

Let ρ, δ ∈ [0, 1]. Let E → M be a Euclidean vector bundle. A symbol of order
m and type (ρ, δ) is a function a : E → C such that, in local coordinates, for every
multiindices α, β, and every compact subset K in M , there exists C ∈ R+ such that

∣∣∣∣
∂ |α|+|β|a
∂αx ∂βξ

(x, ξ)

∣∣∣∣ ≤ C(‖ξ‖ + 1)m−ρ|β|+δ|α|

for every x ∈ K and ξ ∈ Ex [62].
Polyhomogeneous symbols, i.e., the ones considered above, are particular cases

of symbols of type (1, 0).
These symbols of type (ρ, δ) were used in [61] in order to construct holonomy

almost invariant transversally elliptic operators on any foliation, i.e., holonomy
invariant up to lower order. Restricting to a transversal this amounts to finding
operators on a manifold almost invariant under the action of a (pseudo)group �.
Thanks to the work of Connes [31], one may assume that the (tangent) bundle E
has an invariant subbundle F which has an invariant Euclidean metric as well as
the quotient E/F . In [61] were constructed pseudodifferential operators of order 0
that “differentiate more” along the direction F and were used to construct almost
invariant Dirac type operators.

3.5.2 Inhomogeneous calculus

Connes–Moscovici [34, 35], in order to write formulae in cyclic cohomology,
used a more specific and unbounded analogue of [61]. This was a differential
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operator which is of second order in the direction tangent to F and of order 1 in
the complementary direction. This falls into a construction of an inhomogeneous
pseudodifferential calculus modelled on nilpotent groups studied by many authors—
see the book [14].

In order to understand better this calculus and the corresponding index map,
Choi-Ponge [25, 27, 26] and van Erp-Yuncken [115] constructed independently a
deformation Lie groupoid of the form (M ×M × R

∗) � N × {0}.
Let us briefly describe the very general and nice setting for this inhomogeneous

calculus.
Let M be a smooth manifold and let {0} ⊂ H 1 ⊂ H 2 ⊂ . . . ⊂ Hk = TM be a

filtration of TM by subbundles. We assume that if X is a smooth section of Hi and
Y is a smooth section ofHj then [X, Y ] is a section ofHi+j (we putH& = TM for
& ≥ k). We declare then that a vector field which is a section of Hi is a differential
operator of degree i.

Note that the bundle N =
n⊕

i=1
Hi is naturally equipped with a nilpotent Lie

algebra structure, thanks to the Lie brackets of sections: Let x ∈ M . If X is a
smooth section of Hi and Y is a smooth section of Hj , then the class of [X, Y ]x is
H
i+j
x /H

i+j−1
x only depends on the class ofXx inHi

x/H
i−1
x and of Yx inHj

x /H
j−1
x .

One then has an associated nilpotent Lie group bundle N over M , which as a set in
N and the product is constructed, thanks to the Baker–Campbell–Hausdorff formula.
An important feature of this is that there is a natural action α of the group R

∗+ on N
and N given by αλ(X) = λiX if X ∈ Hi .

Constructions as those explained in Section 3.4 (should) naturally allow to
recover the associated inhomogeneous pseudodifferential calculus out of this
deformation groupoid [115].

Mohsen [88] gave a very nice construction of this groupoid based on defor-
mations to the normal cone. We will come back to Mohsen’s construction of this
deformation groupoid in Section 4.2.2.

3.5.3 Fourier integral operators

A “classical” family of operators generalizing pseudodifferential calculus is that
of Fourier integral operators (cf. [69]). These were constructed by Hörmander
[63] in order to better understand the propagation of singularities for some strictly
hyperbolic operators as the wave equation. These operators were studied by several
authors and were very useful in local analysis [49, 64, 65, 69, 48, 107, 111]. Recently,
an index theory based on Fourier integral operators was developed (cf. [105]).

In [76], Lescure and Vassout show how to define Fourier integral operators on Lie
groupoids. Fourier integral operators with proper support define multipliers of the
convolution algebra C∞

c (G), those of order 0 define multipliers of the C∗-algebra
of the groupoid, and negative order ones define elements of the C∗-algebra.
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4 Constructions based on Lie groupoids and their
deformations

We briefly discuss here some constructions where deformation groupoids are
naturally obtained and used. Such groupoids give a geometric description of
important pseudodifferential calculi. Some others are used to construct elements
of Kasparov’s KK-theory [72] such as index maps, or Poincaré duality.

4.1 The associated index map

Let G ⇒ M be a Lie groupoid and � ⇒ V a sub-Lie groupoid, i.e., a submanifold
and a subgroupoid of G. The groupoid DNC(G,�) when restricted to the interval
[0, 1] gives rise to a diagram:

0 C∗(G × (0, 1]) C∗(DNC(G, Γ)[0,1]
ev0

ev1

C∗(N G
Γ )

∂G
Γ

0

C∗(G)

where the top line is exact—at least in the full C∗-algebra level.
As C∗(G × (0, 1]) is contractible, the map ev0 is invertible in E-theory of

Connes–Higson [33]—and inKK-theory if this exact sequence admits a completely
positive splitting—which is the case if the groupoid NG

� is amenable.
We thus obtain an index element ∂G� = [ev1] ⊗ [ev0]−1 ∈ E(C∗(NG

� ), C
∗(G)).

Let us see some examples:

4.1.1 The “Dirac element” of a Lie group

Consider an inclusion H ⊂ G of Lie groups. Note that the groupoid NG
H is actually

a group. This group is immediately seen to be the semidirect product H � (G/H)—
where H acts on the lie algebra G ofG via the adjoint representation ofG and fixes
the Lie algebra H of H .

Assume G is a (almost) connected Lie group and K is its maximal compact
subgroup. The K theory of the group C∗(NG

K ) is a twisted K theory of C∗(G) and
the map ∂GK : K0(C

∗(NG
K )) → C∗

r (G) identifies with the “Dirac element”—i.e., the
Connes–Kasparov map.

4.1.2 Foliation and shriek map for immersions

Let (M1, F1) and (M2, F2) be smooth (regular) foliations. In [61] is considered a
notion of maps between leaf spaces f : M1/F1 → M2/F2. The goal of that paper is
to construct wrong way functoriality maps f ! : K(C∗(M1, F1)) → K(C∗(M2, F2))

generalizing constructions of [36].
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As in [36], writing f as a composition p◦i where i : M1/F1 → M1/F1×M2/F2
is (somewhat loosely speaking) & �→ (&, f (&))—where & is a leaf of (M1, F1) and
p is the projection M1/F1 ×M2/F2 → M2/F2 the problem is reduced to the case
of immersions and submersions.

Following Connes’ construction of the tangent groupoid, a deformation groupoid
was used in [61] in order to construct the wrong way functoriality map for
immersions between spaces of leaves, in the following way:

• Using a Morita equivalence, one may reduce to transversals in order to under-
stand an immersion M1/F1 → M2/F2 to be an inclusion f : G1 ↪→ G2 where
M1 is a submanifold of M2 which is saturated and G1 is the restriction of G2
to M1—i.e., for γ ∈ G2 we have the equivalences: s(γ ) ∈ M1 ⇐⇒ r(γ ) ∈
M1 ⇐⇒ γ ∈ G1.

• Then, the DNC construction is used in order to obtain a wrong way functoriality
element f ! ∈ E(C∗(G1), C

∗(G2)).2 This element is the Kasparov product [th]⊗
∂
G2
G1

of a Thom isomorphism element [th] ∈ KK(C∗(G1), C
∗(NG2

G1
)) with the

index element ∂G2
G1

∈ E(C∗(NG2
G1
), C∗(G2)).

Remark 4.1 In order to construct the Thom element [th] in [61] one of course has
to assume a K-orientation. Moreover, is used the fact that the groupoid G1 acts
naturally on the normal bundle NM2

M1
.

Question 1 Can one construct the Thom element when the groupoid G1 does not
act on the bundle NM2

M1
? What is the right condition of K-orientation for NG2

G1
?

Remark 4.2 It is mentioned also in [61] that one could use a deformation groupoid
to construct f ! for submersions.

4.1.3 On the computation of the index map in some cases

In [47], the index map index element ∂G� = [ev1] ⊗ [ev0]−1 ∈ E(C∗(NG
� ), C

∗(G))
associated with the inclusion of groupoids is computed in some situations. In
particular, when � is just a space V ⊂ M , the C∗-algebra of the groupoid NG

V

has the same K theory as the space NG
V . We have an embedding j : NG

V → AG
of this space, via a tubular neighborhood construction, as an open subset of the Lie
algebroid of G. The index ∂G� is the composition:

K∗
(
C∗ (NG

V

))
� K∗

(
C0

(
NG
V

))
j−→ K∗(C0(AG))

indG−→ K0(C
∗(G))

(and this is actually true for KK-elements instead of morphisms of K-theory).
Also, one can compare it to the connecting map ∂̃G� of the exact sequence

0 → C∗(G̊) → C∗(SBlup(G,�)) → C∗ (SNG
�

)
→ 0,

2In [61] this element is just a morphism of K-groups since E-theory of Connes–Higson was
defined later.
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associated with the open saturated subset M̊ = M \V ⊂ SBlup(M,V ). Here, G̊ is

the groupoid GM̊
M̊

.

We then have a commutative diagram3

Kj(C
∗(G̊))

j

∂̃G
Γ

Kj+1(C
∗(SN G

Γ ))

th

Kj(C
∗(G))

∂G
Γ

Kj(C
∗(N G

Γ ))

where th is a map based on the Connes analogue of the Thom isomorphism (cf.
[29], see also [51] for its construction in Kasparov’s bivariant groups).

It is then easily seen that:

• if no G orbit is contained in V , then the inclusion C∗(G̊) → C∗(G) is a Morita
equivalence and therefore j : K∗(C∗(G̊)) → K∗(C∗(G)) is an isomorphism;

• if for every x ∈ V , the tangent to the G orbit through x, i.e., the image by the
anchor map 2x : AGx → TxM is not contained in TxV , then the Thom element
th is also an isomorphism.

4.1.4 Full index

Another natural question, involving blowup groupoids, appears: Let P be an elliptic
operator on SBlupr,s(G, �). When is it invertible modulo C∗(G̊)? If this is the case,
can one compute its index as an element inK∗(C∗(G̊))? There is a particular interest
when G̊ = M̊ × M̊ , in which case the index is in Z.

We have a commutative diagram

0 0 0

0 C∗(G̊) Ψ∗(G̊) C0(S
∗ G̊) 0

0 C∗(SBlupr,s(G, Γ)) Ψ∗(SBlupr,s(G, Γ))
σ

q

C0(S
∗ SBlupr,s(G, Γ)) 0

0 C∗(SN G
Γ ) Ψ∗(SN G

Γ ) C0(S
∗ SN G

Γ ) 0

000

where lines and columns are exact.

3The arrows are in fact E-theory elements or even KK-theory elements.
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• The columns represent the exact sequence corresponding to the partition of
the groupoid SBlupr,s(G, �) into the open subgroupoid G̊ and the closed sub-
groupoid SNG

� at the level of C∗-algebras, order 0 pseudodifferential operators
and principal—0-homogeneous symbol.

• The lines are the exact sequences of zero order pseudodifferential operators of
the groupoids G̊, SBlupr,s(G, �), and SNG

� (see Theorem 3.5).

It follows that a pseudodifferential operator, i.e., an element P ∈ �∗(SBlupr,s(G, �))
is invertible modulo C∗(G̊) if and only if its classical symbol σ(P ) and its
noncommutative symbol, i.e., its restriction q(P ) to the “singular part” SNG

� are
both invertible.

In other words, we have a full symbol algebra �G� = C0(S
∗ASBlupr,s(G, �))

×C0(S
∗ASNG

� )
�∗(SNG

� ) and an exact sequence

0 → C∗(G̊) → �∗(SBlupr,s(G, �)) → �G� → 0.

One can compute in some cases the K-theory of �G� and the connecting map. For
instance, if—as above � is just a submanifold V ⊂ M and if we assume that the
anchor map 2x : AGx → TxM is not contained in TxV , then �GV is K-equivalent
to the algebra of pseudodifferential operators on G whose symbol is “trivial” when
restricted to V—i.e., a function on V , and the index map is the restriction to this
subalgebra of �∗(G) to the index map of G.

4.2 Groupoids using deformation constructions

As Lie groupoids are useful in defining natural pseudodifferential calculi and in sev-
eral K-theoretic constructions, many authors have introduced interesting groupoids
using various techniques: gluing, integration of algebroids, etc. Recognizing some
of these groupoids as deformations or blowups often simplifies their construction,
may help their understanding and give a geometric insight on their properties.

In this section we outline some of these natural and useful constructions of
deformation or blowup Lie groupoids.

4.2.1 Pseudodifferential calculi on singular manifolds

Let M be a singular manifold. This can be a manifold with boundary, or with
corners, or even a stratified manifold. Many natural pseudodifferential calculi were
constructed by analysts—especially in the school of Richard Melrose—in order to
take into account, sometimes in a very fine way, the behavior of the operators near
the boundary (cf. [85, 80, 79, 81, 86]).



276 C. Debord and G. Skandalis

Some of these calculi were already constructed using blowup constructions.
Some others just putting some conditions on the Riemannian metric in the regular
part M̊ ⊂ M degenerating near the boundary. In many cases, when this metric is
complete, this metric actually corresponds to an algebroid. More precisely, the space
of bounded vector fields with respect to this metric is the module of sections of a Lie
algebroid on M . It follows from [38] that this algebroid integrates to a Lie groupoid
G⇒ M .

Of course knowing this groupoid will certainly not solve at once all the
questions for which the corresponding calculus was constructed! It may however
help understanding some of its properties: the decomposition of C∗(G) into ideals
that can often be seen geometrically can simplify the study of conditions for
Fredholmness of an associated (pseudo)differential operator; it is also relevant for
various index computations.

Let us outline specific examples.

The groupoid of the b-calculus Let M be manifold with boundary. Melrose
constructs the b space which is the blowup ofM×M along its corner ∂M×∂M (cf.
[83, 84, 86, 85]). The pseudodifferential operators of the corresponding b-calculus
consist of operators which are distributions on the b-space that are conormal along
the diagonal M and have a specific decay near the boundary components M × ∂M

and ∂M ×M .
Monthubert [89, 90] constructed the associated b-groupoid which is nothing else

than the dense open subspace Gb = SBlupr,s(M ×M, ∂M × ∂M) of the b-space
SBlup(M ×M, ∂M × ∂M).

Let us note that in fact all these constructions were also performed in the more
general case of manifolds with corners.

Fibered corners We restrict again to the case of a manifold with boundary,
although the constructions below extend to more general settings of manifolds with
corners.

Let M be manifold with boundary ∂M and let p : ∂M → B be a fibration.
Mazzeo [79] studied the edge calculus in this situation. This corresponds to the
blowup SBlup(M ×M, ∂M ×B ∂M) and of course to the corresponding groupoid
Ge = SBlupr,s(M ×M, ∂M ×B ∂M).

Later, [81] Mazzeo and Melrose introduced and studied in the same situation the
� calculus which correspond to the algebroid of vector fields that are tangent to the
fibers at the boundary but also whose derivative is tangent to ∂M: these are vector
fields of the form X+ tY + t2N—where t is a defining function of the boundary, X
is a vector field along the fibration (extended near the boundary), Y is tangent to the
boundary, andN is normal to the boundary. Piazza and Zenobi [99] actually realized
that the groupoid constructed in [44] integrating this algebroid can be obtained via
a double blowup construction. See also [119] for topological aspects of indices in
this context.

Question 2 A natural question is also to try to understand the noncomplete case
too in terms of deformation groupoids.
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4.2.2 Inhomogeneous pseudodifferential calculus

The “inhomogeneous” pseudodifferential calculus (also called “filtered” or
“Carnot”) deals with manifoldsM whose tangent bundle is endowed with a filtration
(Hi)0�1�k (with H0 = 0 and Hk = TM) satisfying [�(Hi), �(Hj )] ⊂ �(Hi+j )].
A natural pseudodifferential calculus has been constructed in this framework,
generalizing the case of contact manifolds (cf. [14]). In this sub-elliptic or Carnot
calculus, the vector fields that are sections of the bundle Hi are considered as
differential operators of order i.

A deformation groupoid taking into account this inhomogeneous calculus was
constructed independently in [100, 25, 27, 26] and [113, 70, 115]. Both these
constructions are rather technical and based on higher jets. This groupoid plays
the role of Connes’ tangent groupoid in this setting. It allows to recover the
inhomogeneous pseudodifferential calculus (cf. [115]).

Omar Mohsen presents in [88] a very elegant construction of this deformation
groupoid in terms of successive deformations to the normal cone. In the case where
there is only one subbundle H ⊂ TM , one just considers the inclusion of H × {0}
into Connes’ tangent groupoid (M×M)×R

∗ �TM×{0}. The crucial fact that the
object built is canonically a groupoid is clear in this construction—while it leads to
relatively sophisticated computations in the works cited above. The general case is
treated by induction.

In addition, this construction has the advantage of being very flexible and
generalizing immediately, for example, in the context of an inhomogeneous a
pseudodifferential calculus transverse to a foliation—as the one appearing in the
work of Connes–Moscovici [34, 35].

4.2.3 Poincaré dual of a stratified manifold

K-duality Kasparov in [72] defines a formal KK-duality of C∗-algebras. If A and
B are K-dual C∗-algebras, the K-homology of A is isomorphic to the K-theory
of B.

LetM be a smooth compact manifold. The algebra C(M) has naturally aK-dual
which is C0(T

∗M) (cf. [71, 72, 36]). The corresponding duality map associates to
the K-homology class of an elliptic (pseudo)differential the K-theory class of its
symbol.

Several generalizations to manifolds with singularities have been given by
various authors: manifolds with boundary [36], non Hausdorff manifolds [73],
manifolds with conic singularity [40, 22], stratified manifolds [41]. Many of them
use naturally Lie groupoids.

Manifolds with a conic singularity Let us outline the construction of [40].
Let M be a compact manifold with boundary ∂M . Denote by M̊ the open subset

M \ ∂M . The one point compactification M+ of M̊ is the quotient of M by the
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equivalence relation which identifies all the points of the boundary ∂M . It is a
manifold with conic singularity.

Let Gb = Blupr,s(M × M, ∂M × ∂M) = M̊ × M̊ � ∂M × ∂M × R
∗+ be the

groupoid of the b-calculus of the manifold with boundary M . The Poincaré dual
of M+ constructed in [40] is a closed subgroupoid G of the “adiabatic” groupoid
DNC(Gb,G

(0)
b ) of Gb: it is G = DNC(Gb,G

(0)
b ) \ M̊ × M̊ × R

∗+ [40]. Note
that G is the union of the algebroid AGb = TM = T M̊ � T ∂M × R of Gb with
∂M × ∂M × R

2.
The Poincaré duality element is an element ψ ∈ KK(C(M+)⊗C∗(G),C). It is

obtained as follows:

• first C(M+) sits naturally in the center of the multiplier algebra of C∗(G), by
extending in a unital way the map C0(M̊) → M(C0(T

∗M̊)) = M(C∗(TM)).
We thus have a morphism of C∗-algebras m : C(M+)⊗ C∗(G) → C∗(G).

• As C∗(M̊ × M̊ × R
∗+) � K ⊗ C0(R

∗+), the extension

0 → C∗ (M̊ × M̊ × R
∗+
)

→ C∗ (DNC
(
Gb,G

(0)
b

))
→ C∗(G) → 0

gives rise to an element d ∈ KK1(C∗(G), C0(R
∗+)) = KK(C∗(G),C).

Put then ψ = m∗(d).

Question 3 It would be nice to understand this Poincaré duality by describing as
precisely as possible which operators on M̊+ correspond to symbols on C∗(G). In
particular, what is the symbol class of a Fuchs type operator studied in [74]? This
question is certainly linked with Question 2.

Stratified manifolds One can generalize immediately this construction to mani-
folds with a fibered boundary: given a fibration p : ∂M → B one can form the
space M/ ∼, where ∼ is the equivalence relation on M given by

x ∼ y ⇐⇒
{
x = y or

x, y ∈ ∂M and p(x) = p(y).

One just replaces the groupoid Gb by the groupoid Ge of the edge calculus or by
the groupoid G� of the � calculus.

This construction was extended in [41], using an induction process, to describe in
a similar way the Poincaré dual of general stratified manifolds X. The construction
can in fact be obtained by use of several blowups: one blows up inductively all the
strata to obtain a groupoidGX generalizingGb; then, one uses as above the adiabatic
deformation ofGX in order to construct the dual groupoid GX = DNC(GX,G

(0)
X )\

X̊ × X̊ × R
∗+ and the Poincaré duality element ψX ∈ KK(C(X) ⊗ C∗(GX),C).

Details will appear in [39].
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5 Related topics and further questions

In this section, we examine some topics that are not a priori based on Lie groupoids,
but are actually linked to our discussion.

5.1 Relation to Roe algebras

Starting from a finite propagation speed principle for differential operators of order
one [24], John Roe developed a very beautiful theory of coarse spaces and algebras
[104]. TheK-theory of Roe algebras has been used as a receptacle for various index
problems [60].

We will not develop here this theory. Let us just outline some links with
groupoids that have been made in the literature.

• In [108], a groupoid is constructed out of a coarse space and it is shown that
the Roe C∗-algebra of locally compact functions with finite propagation on this
coarse space is the C∗-algebra of this groupoid

• Out of a Lie groupoid one constructs Roe type algebras (see, e.g., [15]). A natural
example is the case of a covering space M̃ → M with group �. In that case, one
may also define naturally the index with values in the K-theory C∗(�) for �-
invariant elliptic operators on M̃ using coarse techniques. In particular, there is
an exact sequence of Roe algebras [57, 58, 59, 98]

0 → C∗ (M̃
)� −→ D∗ (M̃

)� −→ D∗ (M̃
)�
/C∗ (M̃

)� → 0.

The algebra C∗(M̃)� is Morita equivalent toC∗(�) and that of D∗(M̃)�/C∗(M̃)�
is the K-homology of M (Paschke duality—[96]).

• In this precise case, Zenobi [120] identified the K-theory exact sequence of
the Higson–Roe sequence with the adiabatic groupoid exact sequence of the
groupoid (M̃ × M̃)/� ⇒ M .

Question 4 How far can one push this parallel between groupoid C∗-algebras and
Roe algebras?

5.2 Singular foliations and “singular Lie groupoids”

Let us just say a few words on very singular Lie groupoids associated with singular
foliations in [5].

A singular foliation on a compact manifold M is a submodule F of the C∞(M)
module of vector fields �(TM) which is finitely generated and involutive—i.e.,
closed under Lie brackets: [F ,F] ⊂ F .
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The module F tells us which differential operators are “longitudinal.” In [5] is
constructed the holonomy groupoid and the C∗-algebra of such a singular foliation.
In [6] is also constructed a pseudodifferential calculus and an analytic index for a
singular foliations as well as a deformation holonomy groupoid, which gives rise to
an alternate way of defining the analytic index.

Question 5 Let (M,F) be a singular foliation in the sense of [5]. It is sometimes
possible by blowing up singular leaves to obtain a less singular foliation: one for
which the holonomy groupoid is a Lie groupoid.

For instance, take the singular foliation of R
3 whose leaves are the spheres

of center 0—given by the action of SO(3)—has a singular holonomy groupoid
{(x, y) ∈ R

3 \ {0}; ‖x‖ = ‖y‖} � {0} × SO(3). Blowing up the singular leaf
{0}, we obtain the regular foliation on R+ × S

2 with leaves {r} × S
2.

This poses several questions

(a) How general/canonical can this procedure be?
(b) When such a blowup is possible, what is the precise relation between the C∗-

algebra of the foliation in the sense of [5] and that of the Lie groupoid obtained
by blowing up?

Question 6 The holonomy groupoid Hol(M,F) of a singular foliation is a “bad”
topological space. On the other hand, there is a natural notion of a smooth map
V → Hol(M,F)—and also of a smooth submersion—for a manifold V (this
notion is called a bisubmersion in [5]). Is there a natural structure to express this
in a functorial way?

5.3 Computations using cyclic cohomology

A classical way to make K-theoretic computations for spaces is to use the Chern
isomorphism with (co)homology. In the case of manifolds, one naturally uses the
de Rham cohomology. The de Rham cohomology extends to the noncommutative
setting, thanks to Connes’ cyclic cohomology. On the other hand, de Rham
cohomology uses differentiation and is not well suited for continuous functions,
but rather smooth functions. So, starting with Connes (cf. [31, 32]) and then many
others, one constructs natural cyclic cocycles defined on the algebra C∞

c (G) of
smooth functions with compact support on a Lie groupoid G—and then we need
to extend them to a larger algebra that has the same K-theory as C∗(G). Such
an extension was performed in [31] using a notion of n-traces—which are “well
behaved cyclic cocycles”.

Question 7 Extend natural cocycles so that they pair with the K-theory of the C∗-
algebra of the groupoid and compute this pairing.
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5.4 Behavior of the resolvent of an elliptic operator

Let us start with say a positive Laplacian � on a groupoid G with compact G(0).
As � is elliptic, self-adjoint, and positive, the operator 1 + � is invertible and its
inverse is in C∗(G) (cf. [116]).

Question 8 What is the behavior of (1 + �)−1? Is it a smooth function outside
G(0)? What kind of decay at infinity does it have?

Just a few cases have been worked out (cf. [85, 80]).
Let us make a comment about these problems. The elements of C∗

r (G) define
distributions onG. In other words there is an injective map C∗

r (G) → C−∞(G). So
it is a natural question to ask what kind of distributions are elements like (1+�)−1.
The distribution associated with an element of C∗(G) only depends on its image in
C∗
r (G). So that these problems a priori concern the reduced C∗-algebra of G.

5.5 Relations with the Boutet de Monvel calculus

This was a motivation for us from the beginning.
Let us very briefly say a few words on the Boutet de Monvel calculus. Details

can be found in [18, 19, 54, 106].
Let M be a manifold with boundary. We consider M as included in a manifold

M̃ without boundary in which a smooth hypersurface ∂M of M̃ separates M̃ into
two open subsets M̊ and M−.

Denote by χM the characteristic function of M . Boutet de Monvel defines:

Definition 5.1 A pseudodifferential operator � (with compact support) on M̃ is
said to have the transmission property if for every smooth function f̃ on M̃ , the
function �(χMf̃ ) coincides on M with a smooth function on M̃ . 4

Of course, a smoothing operator satisfies the transmission property, and thus this
property can be described in terms of the (restriction to ∂M of the) total symbol of
�. This condition is explicitly given in local coordinates.

Assume that � satisfies the transmission property, and let �+(f ) be the
restriction to M of the smooth function which coincides with �(χMf̃ ) on M .

The operators �+, do not form an algebra since �+�+ �= (��)+, and the
difference �+�+ − (��)+ is not a pseudodifferential operator. On the other hand,
this difference belongs to a new class of operators—described again precisely in
local coordinates—called singular Green operators.

4We actually have to assume that the same holds also for the adjoint of �.



282 C. Debord and G. Skandalis

The set of operators of the form�+ +S where P is a pseudodifferential operator
with the transmission property and S a singular Green operator is an algebra. Call it
PBM(M).

Boutet de Monvel moreover defines singular Poisson (or Potential) operators
mapping functions on ∂M to functions on M and singular Trace operators which
map functions on M to functions on ∂M . Singular Poisson operators and singular
Trace operators are adjoint of each other.

They form bimodules yielding a Morita equivalence between singular Green
operators on M and ordinary pseudodifferential operators on its boundary.

We thus obtain the Boutet de Monvel algebra which consists of matrices of the

form

(
�+ + S P

T Q

)
where

• � is a pseudodifferential operator on M̃ with the transmission property, and �+
the corresponding operator on smooth functions on M;

• S is a singular Green operator acting on M;
• P is a singular Poisson operator mapping functions on ∂M to functions on M;
• T is a singular trace operator mapping functions on M to functions on ∂M;
• Q is a pseudodifferential operator on ∂M .

All these constructions are generalized to the case of families of manifolds and
more generally to a Lie groupoidG⇒ M on a manifold with boundaryM assuming
that G is transverse to the boundary M (cf. [82, 77, 16, 17]).

When taking the closure of the bounded singular Green operators, we find an
exact sequence

0 → K(L2(M)) −→ Green
σg−→ �GM → 0, (Green)

where σGM is the noncommutative symbol of singular Green operators with values in
the algebra �M = C0(S

∗∂M)⊗ K. This exact sequence can be compared with the
exact sequence

0 → K(L2(∂M)) −→ �∗(∂M) σ∂M−→ C0(S
∗∂M) → 0, (�∂M )

of pseudodifferential operators on ∂M . Bounded singular Poisson operators and
singular trace operators form bimodules yielding a Morita equivalence of these
sequences.

Now, the group R
∗+ naturally acts on Connes tangent groupoid T ∂M × {0} �

(∂M × ∂M)× R
∗+ of the manifold ∂M via the zooming action. The corresponding

crossed product groupoid G gives naturally rise to an exact sequence

0 → K
(
L2(∂M)× R

∗+
)

−→ C∗(G) ev0−→ C0(T
∗∂M)�R

∗+ → 0. (G)
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Note that C0(S
∗∂M)⊗ K naturally sits in C0(T

∗∂M)� R
∗+ as an ideal. In [1], the

exact sequence (G) restricted to this ideal was shown to coincide with (Green)—by
showing that they define the sameKK-element and then using Voiculescu’s theorem
[117].

This construction was generalized in [45], where for any Lie groupoidG⇒ V is
directly constructed a (sub)-Morita equivalence relating the pseudodifferential exact
sequence

0 → C∗(G) −→ �∗(G) σG−→ C0(S
∗AG) → 0, (�G)

of the groupoid G and the exact sequence

0 → C∗(G)⊗ K
(
L2 (

R
∗+
)) −→ C∗(GG) ev0−→ C0(A

∗G)�R
∗+ → 0, (GG)

where GG is the “gauge adiabatic groupoid” obtained as the crossed product by the
natural scaling action of R∗+ on the adiabatic groupoid Gad = AG× {0} �G×R

∗+.
In [46], the construction of the “gauge adiabatic groupoid” is generalized using

the blowup construction for groupoids discussed above (cf. Section 2.4.2). If
V ⊂ M is a hypersurface which is transverse to the groupoid G, the groupoid
Blupr,s(G, V ) → Blup(M,V ) � M is the gauge adiabatic groupoid of GVV . More
generally, if V is any submanifold ofM which is transverse toG, one still constructs
a Boutet de Monvel type calculus.

Question 9 It is natural to try to show that the closure of the algebra of bounded
elements of the Boutet de Monvel algebra coincides with the one obtained in this
way. We have quite well understood this and should write it precisely. Actually, the
transmission property gives rise to a small difference between them.

5.6 Algebroids and integrability

Recall from Definition 2.3 that an algebroid over a manifold M is a smooth bundle
A over M endowed with the following structure:

• a Lie algebra bracket on the space of smooth sections of A;
• a bundle morphism 2 : A → TM .

These are assumed to satisfy: [X, f Y ] = 2(X)(f )Y + f [X, Y ].
The integrability problem for algebroids is not “trivial”. There are indeed

algebroids that are not associated with groupoids (cf. [3]—se also [37] where
necessary and sufficient conditions for integrability are given).

On the other hand, one can define differential operators on an algebroid and even
pseudodifferential operators locally using local integration, which is also possible.
These operators act naturally on C∞(M) (or L2(M) when they are bounded). When
the algebroid is integrated to a Lie groupoid G, the C∗-algebra C∗(G) is generated
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by resolvents of elliptic operators. Also, in that case, we find more representations
where these operators act.

Question 10 How much of a groupoid C∗-algebra can one construct out of just
its algebroid? Is there a construction of an (s-simply connected) Lie groupoid C∗-
algebra which makes sense even for nonintegrable algebroids?

Remark 5.2 Let us remak that we can also restrict this question to the case of
Poisson manifolds which are particular cases of Lie algebroids.

5.7 Fourier integral operators

Fourier integral operators [64, 65, 49] form a class of operators, larger than
pseudodifferential operators. They are very useful in order to understand hyperbolic
differential operators.

In [76], Fourier integral operators on a Lie groupoid are defined and studied. We
do not wish to say much on these. Let us just ask a question.

Question 11 Is there a construction of Fourier integral operators in the spirit of [45]
or [114] (See Section 3.4 above)?
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Abstract In work of Connes and Consani, �-spaces have taken a new importance.
Segal introduced �-spaces in order to study stable homotopy theory, but the new
perspective makes it apparent that also information about the unstable structure
should be retained. Hence, the question naturally presents itself: to what extent are
the commonly used invariants available in this context? We offer a quick survey
of (topological) cyclic homology and point out that the categorical construction is
applicable also in an N-algebra (aka. semi-ring or rig) setup.
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Alain Connes introduced cyclic homology in 1981 as a generalization of de Rham
homology suitable for non-commutative geometry. Boris Tsygan reintroduced it
in 1983 as an “additive” version of algebraic K-theory (see Section 1 for a brief
overview with citations of the part of the theory relevant for our considerations).
Almost immediately it became apparent that cyclic homology was a very good
invariant for studying K-theory, at least rationally. However, for torsion information
one needed to extend the construction from rings to so-called S-algebras (i.e.,
replacing the ring Z of integers with the sphere spectrum S), resulting in Bökstedt,
Hsiang, and Madsen’s topological cyclic homology TC. A possible framework
for extending cyclic homology in this direction is Segal’s category of �-spaces,
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generalizing the concept of abelian groups in a way that also allows objects
where the axioms of an abelian group are perhaps only true up to some notion of
equivalence—see Section 2.1 for an elementary introduction to �-spaces where we
try to explain why the structure is virtually forced upon us from the algebraic origins.

Actually, in many of these examples there is one axiom that does not hold at
all—the existence of negatives. For instance, at the outset there are no sets with
a negative number of elements or vector spaces of negative dimension. However,
experience—starting in elementary school—has taught us that we get a much more
effective theory if we adjoin negatives.

Stable homotopy theory is the study of such examples after adjoining negatives
by a process dubbed stabilization. This is an enormously successful theory: the
sphere spectrum sees much more combinatorial data than the ring of integers does,
and some of this combinatorial data is reflected in the number theory revealed by
algebraic K-theory. In fact, Thomason [60] showed that algebraic K-theory can be
viewed as a localization from the category SMC of small symmetric monoidal
categories to the homotopy category (with respect to stable equivalences) of �-
spaces.

Example 0.0.1 One crucial difference between abelian groups and stable homotopy
theory is how symmetries behave. For instance, if A is an S-algebra we can consider
the smash A∧A—the analog of the tensor product or, in algebraic geometry, a
product X × X. The cyclic group of order two acts and we can consider the fixed
points (A∧A)C2 —analog to the symmetric product (X ×X)/C2.

What does not have an analog in the algebraic or geometric situation is that in
stable homotopy theory (A∧A)C2 is much like a form of Witt vectors: there is a
“restriction” map (A∧A)C2 → A (it is not any sort of multiplication! At the level
of path components it is the extension of the group π0A by (π0A⊗π0A)/C2 by the
cocycle (x, y) �→ −x ⊗ y) which often is the first step of a lift, either from finite
characteristic to infinite characteristic or higher up in the so-called chromatic tower
of stable homotopy theory. The restriction map is essential for the construction of
TC in Section 1.5 and can be viewed as the source of most of the verifications we
know of the so-called “red-shift conjecture” in algebraic K-theory.

The restriction map reappears below in a special context as a composite of the
geometric diagonal of Section 2.3.4 and isotropy separation in Section 2.2.1.

However, algebraic K-theory kills much information one might be interested in.
For a ring A, the Grothendieck group K0(A) is obtained from the isomorphism
classes of finitely generated projective A-modules by introducing objects of “nega-
tive rank.” For many situations this is a rather innocent operation (from the natural
numbers one obtains the integers), but in other situations group completion can
drastically alter the object at hand.

Example 0.0.2 If k is a field, consider the category Vectcount
k of all k-vector spaces

of countable dimension. Then kn ⊕ k∞ ∼= k∞ for all n ≤ ∞, and if you group



Cyclic homology in a special world 293

complete with respect to sum—essentially introducing negative dimensions—you
have cancellation, leaving you with the rather uninformative trivial group. This sorry
state of affairs is sometimes referred to as the Eilenberg swindle. This is in stark
contrast with the situation where you only consider finite dimensional vector spaces
which leads to the usual algebraic K-theory, which is far from trivial and (the higher
homotopy) contains much information about the field.

For all its categorical defects, the category SMC of small symmetric monoidal
categories is in many ways the natural philosophical relaxation of the category
of abelian groups. We must perhaps live without negatives and that laws like
commutativity only hold up to isomorphism. While we want to retain as much
information about SMC as possible, in order to obtain a situation we can calculate
with, some localization seems necessary.

One choice is to study the localization of SMC with respect to the unstable
equivalences: a symmetric monoidal functor f : c → d in SMC is a weak
equivalence if the map of nerves Nc → Nd is a weak equivalence in spaces.
Mandell [46] improves on Thomason’s result by showing that the localization of
SMC with respect to unstable equivalences is equivalent to the localization of the
category of �-spaces with respect to the special equivalences (we will discuss these
in Section 2.2.3).

Forty years after Segal’s discovery, �-spaces reappear in work of Connes and
Consani [18] where it becomes clear that this generalization of abelian groups fits
as a common framework for many of the current efforts of understanding the “field
with one element.” The rôle of the field with one element is taken by the sphere
spectrum S and the rôle of the tensor product is taken by the smash product ∧, see
Section 2 for further details. However, for Connes and Consani it is vital that we
do not adjoin negative elements; we are no longer in the realm of stable homotopy
theory and many of the identifications we are used to no longer hold. A priori this
has serious consequences for invariants—we may have used identifications that only
hold after having adjoined negatives.

What follows is a tentative study of to what extent we can hope to extend invari-
ants to a context that handles symmetric monoidal categories well without adjoining
negatives by treating (successfully) the case of topological cyclic homology, see
Section 3. Central to this is that the underlying machinations of the restriction map
of Example 0.0.1 carry through.

The reader should be aware of the fact that this is only a tentative study:
ultimately we are after a theory that better reflects the intuition of how modules
over the field with one element should behave. In order to achieve this, there are
reasons to not take spaces as our primitive notion, but rather quasi-categories (i.e.,
the Joyal model structure on the category of spaces). However, this theory is more
technical and not at all suited for a survey-type paper of this sort. While most things
follow a path very similar to the one sketched below, we have not yet written down
all the details and hope to return to it in a future paper.
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Overview
In Section 1 we give a quick overview of the history and some results pertaining to
cyclic homology that are relevant to our discussion.

In Section 2 we study the equivariant theory you get from �-spaces when you
stop short of group completing. This is the so-called special model and the most
important output is that the categorical model adapts to the current situation. The
category of �-spaces is in many ways a much less friendly world than most of its
competitors modeling stable homotopy theory, but it is almost finitely generated (a
technical term of Voevodsky’s) which means that we retain just enough control also
over the special situation.

In Section 3 we see that the equivariant control we obtained in Section 2 is exactly
what is needed in order to set up TC in the special situation.

Lastly we collect some results on modules and monoids that are of interest, but
require input that did not fit with the equivariant focus of the rest of the paper. In
particular, one of the examples Connes and Consani pay special attention to is the
so-called Boolean algebra B = {0, 1} with 1+1 = 1. In Section 4 we show that B is
“specially solid”: the multiplication map B∧LB → B is a special equivalence. This
can be seen as a disappointment: although we have devised a theory that avoids
the Scylla of group completing the monoidal structure of a symmetric monoidal
category, we still must deal with the Charybdis of weak equivalences which is akin
to inverting the morphisms. In this example these processes are much the same (not
quite: otherwise everything would be zero). One fix is to consider the Joyal structure
referred to above, but this is as mentioned postponed to another day.

Notational conventions
1. The category of symmetric monoids is symmetric monoidal with unit N =

{0, 1, 2, . . . } and tensor ⊗N (defined exactly as the usual tensor product). To
avoid the rig/semi-ring controversy (we find neither alternative particularly
attractive, but we really dislike “semi-rings”) we call the monoids with respect
to the tensor in symmetric monoids N-algebras.

2. If C is a category and c, c′ are objects, then C(c, c′) is the set (or space according
to flavor) of morphisms c → c′ in C. The functor c′ �→ C(c, c′) is denoted
C(c,−).

3. If X and Y are pointed sets, then the wedge X ∨ Y ⊆ X × Y is the subset where
one of the coordinates is the base point and the smash product is the quotient
X∧Y = X × Y/X ∨ Y .

4. We use “k+” as shorthand for the set {0, 1, . . . , k} pointed at 0 and [k] for the
ordered set {0 < 1 < · · · < k}. The category of pointed finite sets is called �o

and the category of nonempty totally ordered finite sets is called �.
5. Objects in the category S∗ of pointed simplicial sets will be referred to as spaces.

A �-space is a pointed functor from �o to S∗.
6. If X is an object on which a group G acts, then XG → X is the “inclusion of

fixed points” (as defined e.g., by a categorical limit over G).
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1 Cyclic homology

1.1 Prehistory

The connection between algebraic K-theory and de Rham cohomology was pointed
out already in the early days of higher algebraic K-theory (ca. 1972). For a
commutative ring A, Gersten provided a map to the Kähler differentials

d log : K∗A → �∗
A

and Bloch [5] proved that the “tangent space” TKn(A) = ker{Kn(A[ε]/ε2) →
Kn(A)} contains �n−1

A as a split summand when A is local, 1/2 ∈ A and n > 0.
Also other connections between algebraic K-theory and homological theories were
investigated, for instance the Dennis trace map to Hochschild homology HH(A).

1.2 Cyclic homology

In 1980 Alain Connes was searching for a cohomology theory of de Rham type [14]
suitable for non-commutative algebras and introduced cyclic homology the year
after [15, 17]. A few years later, Tsygan [61] rediscovered cyclic homology and
in parallel with Loday and Quillen [42] proved that in characteristic zero, cyclic
homology HC∗−1(A) is isomorphic to the primitive part of the homology of the Lie
algebra gl(A). Goodwillie completed the picture by showing [31] that in the context
of a nilpotent extension of associative rings, the relative algebraic K-theory agrees,
rationally and up to a shift in grading, with relative cyclic homology.

It is tempting to think of the map used by Goodwillie between relative K-
theory and cyclic homology as a “logarithm” from the general linear group GL(A)
to its “tangent space,” the Lie algebra gl(A). In this interpretation the rationality
assumption is necessary for the coefficients in the Taylor expansion of the logarithm
to be defined, the nilpotence assures convergence and finally the need for taking
primitives stems from the correspondence in rational stable homotopy between
homology and homotopy. See [19] and [63] for ideas along this line.

Connes demonstrated [16] that the Hochschild homology is a cyclic object and its
associated spectrum HH(A) comes with an action by the circle T (see Section 3.1 for
more on cyclic objects). In this interpretation, cyclic homology corresponds to the
homotopy orbits HC(A) = HH(A)hT (the double complex is a concrete algebraic
representation of the fact that the classifying space BT ∼= CP∞ of the circle T

has a single cell in each even dimension). Goodwillie (and Jones [38]) showed that
the Dennis trace factors through the homotopy fixed points HH(A)hT (which was
dubbed “negative cyclic homology”). The difference between the homotopy orbits
and fixed points is measured by the “norm map” N : �HH(A)hT → HH(A)hT (note
the suspension which is responsible for the above observed shift in grading) which
is part of a fiber sequence
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�HH(A)hT → HH(A)hT → HH(A)tT.

The last term—the “Tate-construction” on HH(A) and whose homotopy groups are
referred to as periodic homology—is defined by this sequence and vanishes in
certain key situations. Most notably, in the rational nilpotent situation the relative
periodic homology vanishes.

1.3 The “topological” version

However, as Goodwillie and Waldhausen pointed out, Hochschild homology in itself
contains much too little information to be a useful starting point for measuring alge-
braic K-theory and they conjectured the existence of a version built on the sphere
spectrum S instead of the integers Z and the smash product ∧ instead of the tensor
product ⊗. This idea was realized by Bökstedt and dubbed “topological Hochschild
homology,” THH(A) or—emphasizing that this is nothing but Hochschild homology
over S—HHS(A).

Topological Hochschild homology has a richer inner life than Hochschild
homology over the integers, and Bökstedt et al. [10] used this to define topological
cyclic homology and prove an algebraic K-theory version of the Novikov conjecture.
Although predating the first fully adequate setups for S-algebras, their approach
critically used the ability to move freely between S and Z as ground rings and that
rationally the difference is very small.

Topological Hochschild homology gained further credibility from the fact
[62, 56, 27, 26] that it agreed with stable K-theory as predicted by Goodwillie and
Waldhausen. Stable K-theory is a version of Bloch’s tangent space, where the dual
numbersA�εA = A[ε]/ε2 is replaced by a square zero extensionA�M where the
connectivity of M is allowed to tend to infinity—it is the differential of algebraic
K-theory in a way made precise by Goodwillie’s calculus of functors. Related to
early ideas of Goodwillie, Lindenstrauss, and McCarthy [41] show that it actually is
(relatively) fair to think of TC as the Taylor tower of K-theory. This also sheds light
on the nature of the action by cyclic group Cn ⊆ T: it is a remnant of the action by
the symmetric group hiding behind the denominator n! in the usual Taylor series.
Much of this insight was clear already at the time of [47].

It is not only the connection to algebraic K-theory that makes topological
cyclic homology and its relatives interesting. Topological cyclic homology carries
interesting information from an algebro-geometric and number theoretic point of
view, as a theory with close connections to motivic, étale, crystalline and de Rham
cohomology. Some of this was clear from the very start, but some aspects have
become apparent more recently, see e.g., [33] and [34].
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1.4 The cyclotomic trace

The cyclotomic trace K → TC, first defined by Bökstedt et al. [10], refined in
[22] and beautifully pinned down in [6] and [7], is of crucial importance for two
reasons:

1. TC has surprisingly often been possible to calculate
2. the homotopy fiber K inv of the cyclotomic trace K → TC is very well behaved.

The starting point for many applications is that the K-theory of finite fields is known
by Quillen [50] and that topological cyclic homology is possible to calculate in a
number of difficult situations. From there the following omnibus theorem will take
you a long way.

Theorem 1.4.1 Let A → B be a map of connective S-algebras such that the map
π0A → π0B is a surjection with kernel I .

Locally constant If I is nilpotent, then the map K invA → K inv(B) is a stable
equivalence [22]

Rigidity If π0A and π0B are commutative and (π0A, I) is a Henselian pair, then
the map K inv(A) → K inv(B) is a stable equivalence with mod-n coefficients for
n ∈ N [13]

Closed excision If C → B is a map of connective S-algebras and D = A×h
B C

the homotopy pullback, then

K invD K invC

K invA K invB

is a homotopy pullback square [40].
��

Closed excision was proved rationally by Cortiñas [20], after completion by
Geisser and Hesselholt [28] for rings and in general by Dundas–Kittang [23]. Land
and Tamme’s preprint [40] removes an unnecessary surjectivity condition from the
integral result of [24].

The combined outcome of the calculations of TC and Theorem 1.4.1 has been that
a vast range of calculations in algebraic K-theory has become available, at least after
profinite completion, but also integrally when coupled with motivic calculations.
Even a somewhat random and very inadequate listing of results would include [10,
9, 35, 52, 4, 53, 54, 51, 36, 29, 30, 3, 49, 32, 2, 1, 43]. See [45] and [22] for more
background on these methods.
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1.5 The original construction of TC

Bökstedt et al. [10] relied on equivariant stable homotopy theory to produce a
“naively invariant” theory out of categorical fixed points with respect to the finite
cyclic subgroups Cm of the circle. In particular, if m|n the model for THH provided
by Bökstedt comes with a hands-on restriction map

Rmn : THH(A)Cn → THH(A)Cm

related to the restriction map in Example 0.0.1. The restriction map has very good
homotopical properties; for instance, if p is a prime, it fits into the “fundamental
cofibration sequence”

i.e., the homotopy fiber of the restriction map Rp
n−1

pn is naturally equivalent to the
homotopy orbits THH(A)hCpn . The algebraic analog of the restriction map is the
restriction map of truncated Witt vectors, and the inclusion of fixed points

Fmn : THH(A)Cn → THH(A)Cm

turns out to mirror the Frobenius. Focusing on one prime p, one defines

TC(A, p) = holim←−−
F,R

THH(A)Cpn .

Note that one has full homotopic control of this construction. For instance, if a map
A → B induces an equivalence THH(A) → THH(B), the fundamental cofibration
sequences guarantee that the same is true for all Cpn -fixed points and ultimately
TC(A, p) → TC(B, p) is an equivalence too.

After p-completion, the inclusion of the p-power roots of unity induces an
equivalence of classifying spaces lim−→

n BCpn = BCp∞ → BT, and so the target of
the natural map

TC(A, p) → holim←−
F

THH(A)Cpn → holim←−
F

THH(A)hCpn

(given by restricting to the Frobenius maps and mapping the fixed points to the
homotopy fixed points) is equivalent after p-completion to THH(A)hT, and one
defines integral topological cyclic homology by the pullback
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Hesselholt and Madsen packaged in [35] the information about the nature of
the restriction map in the language of stable equivariant homotopy theory via their
notion of cyclotomic spectra by focusing on the so-called geometric fixed points�N

(which we will discuss more extensively in Sections 2.2 and 2.3) and one way of
stating this is that there is an equivalence between THH(A) and its Cp-geometric
fixed points �CpTHH(A), see Lemma 3.3.1.

1.6 The Nikolaus–Scholze approach

The fundamental cofibration sequence/cyclotomic structure implies that the cate-
gorical fixed points of topological Hochschild homology is a homotopy invariant
(for instance, THH(A)Cp is the homotopy pullback of a diagram of the form
THH(A)hCp → THH(A)tCp ← THH(A)). Nikolaus and Scholze [48] showed
that this gives rise to an extremely elegant formula expressing topological cyclic
homology in terms of functors that are manifestly homotopy invariant; namely as
the homotopy fiber of a certain map

THH(A)hT → THH(A)tT̂

from the homotopy fixed points to the profinite completion of the Tate-construction
of topological Hochschild homology.

2 The special version

We have seen that there are many reasons to consider �-spaces. If we are especially
careful (as we will be) it models symmetric monoidal categories very faithfully but
still has very good algebraic properties and is a common framework for various
points of view of the “vector spaces over the field with one element.” In what
follows, we explore how we can formulate some important invariants in this special
context.

2.1 �-spaces as a generalization of symmetric monoids

Graeme Segal introduced �-spaces as an infinite delooping machine in [58],
and Manos Lydakis [44] realized that this very down-to-earth approach actually
possessed very good properties. Other useful sources for the properties of �-spaces
are Bousfield and Friedlander [11] and Schwede [57]. As we try to elucidate below,
apart from being very concrete, one of the benefits of �-spaces is that their algebraic
origin is very clear.
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A symmetric monoid is a set M together with a multiplication and a unit element
so that any two maps M×j → M obtained by composing maps in the diagram

are equal. The diagram is mirrored by the diagram of sets

We will need to encode the two projections M × M → M as well, and for this
purpose we add a basepoint and consider the category �o of finite pointed sets (the
functions must preserve the base point), so that the diagram governing the axioms
of a monoid looks like

where k+ = {0, 1, . . . , k}. Segal realized that if one wants to relax the axioms for
symmetric monoids so that they only are true up to some sort of equivalence (as
for instance is the case for symmetric monoidal categories) it is fruitful to extend
this diagram to all finite pointed sets: send k+ to HM(k+) = M×k and a pointed
function φ : k+ → l+ to

φ∗ : M×k → M×l , φ∗(m1, . . . , mk) =
⎛

⎝
∏

φ(j)=1

mj , . . . ,
∏

φ(j)=k
mj

⎞

⎠ .

This is the so-called Eilenberg–Mac Lane construction which identifies the category
of symmetric monoids with a combinatorially easily recognizable subcategory of the
category of �-sets (pointed functors from the category �o of finite pointed sets to
pointed sets): we get an isomorphism between the categories of symmetric monoids
and of the full category of �-sets sending ∨ to × strictly (e.g., 3+ = 1+ ∨ 1+ ∨ 1+
must be sent to the triple product of the values at 1+). The projections HM(k+) =
M×k → M = HM(1+) are given by the characteristic functions

δi : k+ → 1+, δi(j) =
{

1 i = j

0 i �= j

for i = 1, . . . k and the multiplication M ×M → M is given by ∇ : 2+ → 1+ with
∇(1) = ∇(2) = 1.

We want to be able to handle not only symmetric monoids but also symmetric
monoidal categories, so we allow a simplicial direction to harbor morphisms: Let
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• S∗ = pointed simplicial sets (“spaces”),
• �o = pointed finite sets,
• �S∗ = “�-spaces” = pointed functors �o → S∗.

Note that (up to natural isomorphism) it is enough to specify a �-space on the
skeletal subcategory containing the objects of the form k+ only.

2.1.1 Smash as a generalization of tensor

The smash product—even more than its sibling the tensor product—is often
shrouded in mystery, but I insists it is a natural object forced on us by bilinearity
and can be motivated as follows: Fiddling with the functoriality of the Eilenberg–
Mac Lane construction

H : sMon → �S∗, M �→ HM = {k+ �→ M×k}

defined above we see that a transformation HM → HN is uniquely given by its
value on 1+: it comes from a unique homomorphism M → N , and the canonical
map sMon(M,N) → �S∗(HM,HN) is an isomorphism (actually, of spaces, but
you may ignore this enrichment if you just want to understand the smash of �-sets).
However, sMon(M,N) is obviously itself a symmetric (simplicial) monoid and

HsMon(M,N)(k+) ∼= sMon
(
M,N×k) ∼= �S∗

(
HM,HN×k)

∼= �S∗(HM,HN (−∧k+))

(where k′+∧k+ ∼= k′k+ is the smash of finite pointed sets), so if we define the
internal morphism object by �S∗(X, Y ) = {k+ �→ �S∗(X, Y (−∧k+))} ∈ �S∗ for
arbitrary X, Y ∈ �S∗ we get a natural isomorphism of �-spaces

HsMon(M,N) ∼= �S∗(HM,HN).

Now, we want the smash product to be the adjoint:

�S∗(X∧Y,Z) ∼= �S∗(Y, �S∗(X,Z)),

and the usual Yoneda yoga “solving the equation with respect to X∧Y ” gives us the
smash product by means of a concrete coend formula

X∧Y =
∫ m+,n+∈�o

�o (m+∧n+,−)∧X (m+)∧Y (n+)

i.e., as the “weighted average of all pointwise smash products.” Even more
concretely, we have an identification between mapsX∧Y → Z ∈ �S∗ and transfor-
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mations X(m+)∧Y (n+) → Z(m+∧n+) natural in m+, n+ ∈ �o, specifying X∧Y
up to unique isomorphism.

This affords �S∗ the structure of a closed symmetric monoidal category. This
categorical construction is a special case of the Day construction known since the
1970s but it was Lydakis who realized that it actually was the relevant construction
for stable homotopy theory [44].

The unit for the smash is the inclusion �o ⊆ S∗ denoted either by S or �o(1+,−)
and often referred to as the sphere spectrum (since under the equivalence between
the stable homotopy categories of �-spaces and connective spectra S corresponds to
the actual sphere spectrum).

Hence it makes sense to talk about monoids with respect to the smash products,
and we refer to these as S-algebras. By design, the Eilenberg–Mac Lane construction
is lax symmetric monoidal from (sMon,⊗,N) to (�S∗,∧,S) and so takes N-
algebras (aka. rigs or semi-rings—they do not necessarily have additive inverses
but otherwise satisfy the axioms of rings) to S-algebras.

2.1.2 Special �-spaces

Although simplicial monoids are too restrictive for our purposes, some �-spaces are
more important than others (in particular those that arise from symmetric monoidal
categories) and we consider Segal’s “up to homotopy” notion.

A �-space X ∈ �S∗ is isomorphic to the Eilenberg–Mac Lane construction of a
symmetric monoid if and only if

δk : X (k+) → X (1+)×k , δk(x) =
(
δ1∗x, . . . , δk∗x

)

is an isomorphism for all k ≥ 0. The “up to homotopy” notion is the following

Definition 2.1.3 A �-space X is special if δk : X(k+) → X(1+)×k is a weak
equivalence for all k.

An equivalent, and for our purposes better, way of expressing this is as follows.
For k+ ∈ �o, consider the inclusion

sk : �o (1+,−)∧k+ = �o (1+,−)∨k ⊆ �o (1+,−)×k = �o(k+,−).

Under the Yoneda isomorphisms X(k+) ∼= �S∗(�o(k+,−),X) and X(1+)×k ∼=
�S∗(�o(1+,−)∧k+, X) we see that δk corresponds to s∗k : �S∗(�o(k+,−),X) →
�S∗(�o(1+,−)∧k+, X). Let

L = {sk | k+ ∈ �o}.

Example 2.1.4 Among examples of special �-spaces we have those that arise from
symmetric monoidal categories: The Eilenberg–Mac Lane construction extends
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from symmetric monoids to symmetric monoidal categories—and in this guise it
is often referred to as algebraic K-theory

H : SMC → �S∗

by incorporating automorphisms into the construction (functorially rectifying the
pseudo-functor you get by taking the formula for monoids either through one of the
standard machines or by hand), and all special �-spaces are unstably equivalent to
something in its image [46].

This is yet another manifestation of the idea that �S∗ represents the categorifi-
cation of the category of symmetric monoids. Driving home this message, de Brito
and Moerdijk [8] prove a special refinement of the famous Barratt–Priddy–Quillen
theorem: “the canonical map S → H� is a fibrant replacement in the special
structure,” where � is the category of finite sets and isomorphisms.

The problem is that standard operations of special �-spaces give output that is not
special (case in point: the smash product), and the standard remedy is to allow for
all �-spaces, but localize with respect to L. We will need to do this in the presence
of extra symmeries, so we will bake this into the presentation from the start.

2.2 Symmetries on �-spaces

From now on, let G be a finite group. A pointed G-set is a pointed set together
with an action of G preserving the base point. Let (deleting “the category of” for
convenience)

• �oG: finite pointed G-sets and all (not necessarily equivariant) pointed maps
• SG: pointed simplicialG-sets and all (not necessarily equivariant) pointed maps;

GS∗: pointed simplicial G-sets and pointed G-equivariant maps
• �GSG: pointed G-functors �oG → SG and G-natural transformations; �GS∗:

pointed functors �o → GS∗ and natural transformations; in other words, G-
objects in �S∗.

To elucidate the distinctions, let us list some functors connecting these (see
Shimakawa [59])

• the inclusion ν : �o ⊆ �oG giving a finite pointed set the trivial G-action is an
equivalence of categories with retraction �oG → �o the forgetful functor.

• sending X ∈ �GSG to {k+ → X(νk+)} ∈ GS∗ induces an equivalence
ν∗ : �GSG → �GS∗ with inverse �GS∗ → �GSG sending Y ∈ �GS∗ to
{A �→ Y (A) = ∫ k+ �o(k+, A)∧Y (k+)} ∈ �GSG (with G acting diagonally on
�o(k+, A)∧Y (k+)).
Analogous to the set of maps L determining the special �-spaces we have the set

LG of inclusions
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sA : �o(1+,−)∧A ⊆ �o(A,−) ∈ �GSG
(whereA is aG-set which for the sake of keeping LG a set is of the form k+ for some
k ∈ N and some homomorphism G → �k) and we say that X ∈ �GSG is special if
the maps �GSG(sA,X) ∈ GS∗ areG-equivalences (i.e., for every subgroupH ⊆ G,
the map of H -fixed points �GSG(sA,X)H = �S∗(sA,X)H is a weak equivalence

X(A)H
∼→ S∗(A,X(1+))H

of simplicial sets).

2.2.1 Fixed points

If f : G� J is a surjective group homomorphism with kernel N we let

[−]N,�N : �GSG → �JSJ
be the categorical and geometric fixed point functors sending X ∈ �GSG to the
objects in �JSJ sending V ∈ �oJ to

XN(V ) = [X(f ∗V )]N,

�NX(V ) = coeq

⎧
⎨

⎩

∨

W∈�oG
�o

(
WN,V

)
∧[X(W)]N

⇔
∨

W,W ′∈�oG
�o

(
WN,V

)
∧ [
�o(W ′,W)∧X(W ′)

]N
⎫
⎬

⎭

(with the two maps in the coequalizer given by functoriality �o(W ′,W)∧X(W ′) →
X(W) and composition �o(WN, V )∧�o(W ′,W)N → �o([W ′]N, V )). Although
weird-looking when presented like this without any motivation, the geometric
fixed points are in many ways more convenient. In particular, �N preserves much
structure, like colimits and smash; a fact that becomes particularly potent when
coupled with the isomorphism

�N(�o(A,−)∧K) ∼= �o
(
AN,−

)
∧KN

(for A ∈ �oG and K ∈ SG) obtained from the dual Yoneda lemma plus the fact that
for G-spaces fixed points commute with smash. This isomorphism is the �-space
version of “geometric fixed points commute with forming the suspension spectrum.”
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By writing out the definitions we see that �N has a very special effect on the
elements of LG:

Lemma 2.2.2 If f : G � J is a surjective group homomorphism with kernel N
and A ∈ �oG, then

commutes.

Note that since [f ∗V ]N = V , we have a canonical isotropy separation map

XN → �NX.

2.2.3 Model structures

We record a minimum of the model theoretic properties that we need. Readers
unfamiliar with this technology can for a large part ignore this and the next section at
the price of accepting as black boxes the special equivalences and the few references
to (co)fibrant replacements occurring later (in particular to Lemma 2.2.9).

The projective model structure on �GSG is the one where a map X → Y is a
fibration (resp. weak equivalence) if for every subgroup H ⊆ G and V ∈ �oG, the
induced mapX(V )H → Y (V )H is a (Kan) fibration (resp. weak equivalence) in S∗.

As sets of generating cofibrations and generating acyclic cofibrations for the
projective structure on �GSG we may choose

IG = {�oG(A,−)∧(G/H × ∂�[n])+ → �oG(A,−)∧(G/H ×�[n])+}A,H, 0≤n

JG = {�oG(A,−)∧
(
G/H ×�nk

)
+ → �oG(A,−)∧(G/H ×�[n])+}A,H, 0<n, 0≤k≤n,

where A varies over �oG and H over the subgroups of G and �nk ⊆ �[n] is the
k-th horn in the n-simplex. The source and targets of the maps in IG and JG are
finitely presented, and so the projective structure is finitely generated. The internal
morphism object is

�GSG(C,Z) = {V �→ �GSG(C,Z(V∧−))} ∈ �GSG.

Cell induction implies that smashing with a cofibrant object preserves projective
equivalences.
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Definition 2.2.4 The special model structure on �GSG is the one obtained from the
projective model structure by (left Bousfield) localizing with respect to LG. The
weak equivalences and fibrations in the special structure are referred to as special
equivalences and special fibrations, whereas—since the cofibrations are the same in
the projective structure and its localizations—we refer to the cofibrations simply as
cofibrations without any qualifications.

Note 2.2.5 Even if we started with the Joyal structure, the cofibrations would
remain the same.

Explicitly, a map A → B ∈ �GSG with A,B cofibrant is a special equivalence
if and only if for all specially fibrant (special and projectively fibrant) Z ∈ �GSG,
the induced map

�GSG(B,Z) → �GSG(A,Z)
is a weak equivalence on all fixed points. In general, a map is a special equivalence
if its (projective) cofibrant replacement is.

Lemma 2.2.6 Smashing with a cofibrant object preserves special equivalences.

Proof Let C ∈ �GSG be cofibrant. Since smashing with cofibrant objects preserves
projective equivalences, we may consider the case of a special equivalence A →
B with A and B cofibrant. If Z is specially fibrant and V ∈ �oG, then the map
Z(V∧−) → S∗(V , Z) ∈ �GSG is a projective equivalence and so the internal
morphism object �GSG(C,Z) is specially fibrant. By the adjointness of smash and
internal morphism object, this implies that A∧C → B∧C is a special equivalence.

��

2.2.7 Special fibrant replacements and geometric fixed points

We need some control over special fibrant replacements in �GSG, so for the moment
we allow ourselves to be a bit technical. For sA : �o(1+,−)∧A → �o(A,−) ∈ LG,
let

s̃A : �o(1+,−)∧A	 MA

be the result of applying the simplicial mapping cylinder construction to sA, so that
s̃A is a cofibration while localizing with respect to L̃G = {s̃A} still gives the special
structure on �GSG. Finally, we let�(LG)= {s̃A�i | s̃A ∈ L̃G, i ∈ IG}. Here � is the
“pushout product”: if f : X→X′ and g : Y →Y ′, then f�g is the universal map
form the pushout to the final vertex X′ ∧ Y ′ in
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The following results show that we have good control over the specially fibrant
objects.

Lemma 2.2.8 Consider a map f : X → Y ∈ �GSG with Y specially fibrant. Then
f is a special fibration if and only if f has the right lifting property with respect
to �(LG) ∪ JG. In particular, X is specially fibrant if X → ∗ has the right lifting
property with respect to �(LG) ∪ JG.

By the small object argument, we construct a specially fibrant replacement
functor X → XfG as a relative (�(LG) ∪ JG)-cell. A cell induction using
Lemma 2.2.2 then gives that

Lemma 2.2.9 If f : G� J is a surjection of groups with kernel N and X ∈ �GSG
then the geometric N -fixed points applied to the specially fibrant replacement,
�N(X) → �N(XfG), is a special equivalence in �JSJ .

Note 2.2.10 There is a slight variant that is occasionally useful. Note that the
source and targets in �(LG) ∪ JG are cofibrant, so smashing one of these with
a projective equivalence X

∼→ Y ∈ �GSG gives a projective equivalence. Since
cofibrant replacements are projective equivalences we get that all the maps in
(�(LG)∪JG)∧�GSG are special equivalences. Applying this to the construction in
[25, 3.3.2] we get a fibrant replacement �GSG-functor

id → RG.

In particular, we get an induced map of internal morphism objects

RG : �GSG(X, Y ) → �GSG(RGX,RGY) ∈ �GSG,

RGX is specially fibrant and X → RGX is a special equivalence (it may not be a
cofibration).

2.3 Fixed points of smash powers

The (co)domains of the generating cofibrations behave nicely with respect to the
smash product:

Lemma 2.3.1 If A,A′ ∈ �oG and K,K ′ ∈ SG, then the smash

�oG(A,B)∧�oG(A′, B ′) → �oG(A∧A′, B∧B ′)

(for B,B ′ ∈ �oG) induces an isomorphism

(
�oG(A,−)∧K

)∧ (
�oG(A

′,−)∧K ′) ∼= �oG
(
A∧A′,−)∧K∧K ′.
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2.3.2 Smash powers

If X ∈ �GSG we can form smash indexed over arbitrary finite sets S:

∧

S

X = X∧ . . .∧X

(either by choosing orderings on every S and coherently sticking to these choices
or defining the S-fold smash in a symmetric fashion from scratch as we did for
S = {1, 2}). This will at the outset only be functorial with respect to bijections of
sets, but if X has more structure (if for instance X is an S-algebra) then we obtain
more functoriality as in [12]. However, the functoriality in mere bijections means
that all the symmetries of S are present in the smash:

∧
S X is an Aut(S)-object in

�GSG, or equivalently, an element in �o(Aut(S)×G)S∗ � �Aut(S)×GSAut(S)×G.
For some applications one may want to consider cases where S varies over sets

with some prescribed group interacting withG. However, for our current purposes, it
even suffices to focus on the symmetries of S, not on the symmetries of the incoming
�-spaces. So, for simplicity we will start with X ∈ �S∗ and since then “G” is freed
from its duties and is such a good letter for a group, we let G be a group acting on
S and view the S-fold smash as a functor

∧

S

: �S∗ → �GSG.

Note that

∧

S

(
�o(A,−)∧K) ∼= �o

(
A∧S,−

)
∧K∧S = �oG

(
A∧S,−

)
∧K∧S

is cofibrant (where A∧S is considered as an object in �oG and K∧S an object in SG)
and a cell induction yields

Lemma 2.3.3 If S is a finite G-set, then the S-fold smash
∧
S : �S∗ → �GSG

preserves cofibrations.

2.3.4 The Geometric diagonal

The geometric fixed points treat smash powers of cofibrant objects like fixed points
of sets treat Cartesian power. The beginning of the induction needed to show this is

Lemma 2.3.5 If f : G � J is a surjection of groups with kernel N , then the dual
Yoneda lemma gives isomorphisms



Cyclic homology in a special world 309

�N

(
∧

S

(�o(A,−)∧K)
)

∼=�o
(
[A∧S]N,−

)
∧[K∧S]N

∼=�oJ
(
A∧S/N ,−

)
∧K∧S/N

∼=
∧

S/N

(
�o(A,−)∧K)

.

Inspired by the observation 2.3.5 we define, following the pattern laid out in e.g.,
[12, 37, 39], a chain of natural (in X ∈ �S∗) transformations connecting

∧
S/N X

and �N
∧
S X, which in the case when X is cofibrant(!) gives an isomorphism

�N
∧

S

X ∼=
∧

S/N

X

called the geometric diagonal. The tricky part is the functoriality in S. For
Example 0.0.1 there is no requirement, and for topological Hochschild homology,
as discussed in Section 3.3, when X is an S-algebra and G is a cyclic group we
only need functoriality with respect to the structure maps in the (subdivisions of the
simplicial) circle. For commutative S-algebras this is much more demanding since
we have to be more careful with our cofibration hypotheses and typically we want
functoriality with respect to a wide range of functions of finite sets.

3 TC in a special world

It is relatively straightforward to express (topological) Hochschild homology in �-
spaces: you simply do exactly as Goodwillie and Walhausens envisioned: in the
standard complex replace the tensor with the smash (tensor over S). Just as in the
algebraic case there are flatness concerns, but that is all you need to worry about
(and taken care of by the unproblematic demand that the input being cofibrant).

However, if you want to make further refinements like cyclic homology you need
to take a right derived version (aka a fibrant replacement). Magically, Bökstedt’s
topological Hochschild homology is an explicit version of such a right derived
version: its very construction has built in deloopings with respect to all finite
subgroups of the circle. This extremely fortunate state of affairs is crucially used
in [10] for the definition of topological cyclic homology; most importantly the
restriction map is simply obtained by restricting an equivariant map to the fixed
points.

Since we want to avoid group completion we do not want to deloop, but we
do want to retain homotopical control. Luckily, the categorical approach works
wonderfully, as we now will sketch.
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3.1 Cyclic objects

Connes’ cyclic category � and its variants �a (for a = 1, 2, . . . ,∞ with � = �1)
can be obtained as follows. Fixing a there is an object [n]a ∈ �a for each n =
0, 1, . . . . For fixedm and n the set of morphisms�∞([m]∞, [n]∞) is the set of order

preserving functions f : 1
m+1Z → 1

n+1Z with f
(

i
m+1 + 1

)
= f

(
i

n+1

)
+ 1 for all

i. Fixing a < ∞, we let �a([m]a, [n]a) be the quotient of �∞([m]∞, [n]∞) by the
equivalence relation generated by f ∼ f + a. Composition in�a is composition of
functions.

The cyclic group Ca of order a acts on �a by the identity on objects and by
f �→ f − 1 on �a([m]a, [n]a). This means that functors from �a comes with
a natural Ca-action. The group of automorphisms Aut�a ([n]a) is cyclic of order
a(n + 1) generated by the class ta,n of the function 1

n+1Z → 1
n+1Z given by i �→

i+ 1
n+1 . The faithful inclusion ja : � → �a is given by j [n] = [n]a and by sending

φ ∈ �([m], [n]) to the class of the function 1
m+1Z → 1

n+1Z with i
m+1 �→ φ(i)

n+1 for
0 ≤ i ≤ m.

A functor X from �
o = �

o

1 to some category is called a cyclic object in that
category and the composite j∗X = Xj = Xj1 is referred to as the underlying
simplicial object.

A particularly important example is the cyclic set S1 = �[0] modeling the circle.
An element in S1

n = �([n], [0]) can be composed uniquely into an automorphism of
[n] followed by the unique map [n] → [0] coming from �. Hence, S1

n is identified
with the cyclic group Aut�([n]) of order n+1. Restricting to�op we have the usual
simplicial circle: j∗S1 = �[1]/∂�[1].

3.2 Edgewise subdivision

Essentially because |S1| is homeomorphic to the circle, the geometric realization of
cyclic object comes equipped with an action by the circle group T = |S1|. Bökstedt,
Hsiang, and Madsen [10] introduced the edgewise subdivision as a way of making
the action of the finite cyclic subgroups of T combinatorial. Let sdr : � → � be
the r-fold concatenation S �→ S � · · · � S. Note that sdr [k− 1] = [kr − 1] and that
sdrsds = sdrs . This extends to the cyclic situation

by setting sdr(tar ) = ta . Precomposing any cyclic object X with sdr gives sdrX =
X◦sdr , the r-fold edgewise subdivision of X, giving us a functor from cyclic objects
to �r -objects. We note that (sdrX)k−1 = Xkr−1 and that
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(sdmnS
1)/Cn ∼= sdmS

1.

From [10] we know that there is a natural Cr -equivariant homeomorphism
D : |sdCrX| ∼= |X|, where the Cr -action on |sdCrX| comes from the Cr -action on
sdCrX, and the action on |X| comes from the cyclic structure on X. The resulting
homeomorphism |sdCrXCr | ∼= |X|Cr is T-equivariant if we let T act on |sdCrXCr |
via the cyclic structure, and on |X|Cr through the isomorphism T ∼= T/Cr .

3.3 (Topological) Hochschild homology

Topological cyclic homology makes sense in the special world. This is not obvious
since the classical construction relies on various objects being equivalent, and when
the meaning of “equivalent” is changed not all constructions translate. There is much
to be said, for instance in regard to compatibility, but we present only what is needed
for setting up the framework.

(Topological) Hochschild homology for S-algebras is defined exactly as ordinary
Hochschild homology, with (Ab,⊗,Z) replaced by (�S∗,∧,S): if A is an S-
algebra then HHS(A) is the cyclic �-space

[q] �→ A∧(q+1) = A∧ . . .∧A,

with face maps induced by multiplication, degeneracy maps by insertion of identi-
ties, and the cyclic operator acting by cyclic permutation. As in the algebraic case
where the analogous definition is problematic unless the ring is flat, we really only
ever use this definition for sufficiently flat A—being cofibrant is more than enough.
We have chosen to use the notation HHS rather than THH to emphasize that we are
using the categorical smash powers.

Recall the discussion of the smash powers and geometric fixed points from
Section 2.3. When A is a cofibrant, then the geometric diagonal �Cp

∧
S�p A ∼=∧

S A is an isomorphism 2.3.4 which is natural in A and natural enough in S to give
an isomorphism on the level of Hochschild homology:

Lemma 3.3.1 If A is a cofibrant S-algebra, then the geometric diagonal yields an
isomorphism

� : �Cpsdpn+1 HHS(A) ∼= sdpnHHS(A).

Hence the considerations of Section 2.2.1 give an isotropy separation or “restric-
tion” map

|HHS(A)|Cp ∼= |sdpHHS(A)Cp | → |�CpsdpHHS(A)| ∼= |HHS(A)|
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and an inclusion of fixed points “Frobenius” |HHS(A)|Cp ⊆ |HHS(A)| and we want
to build the theory from here.

Note 3.3.2 There are technicalities regarding fibrant replacements that we for the
sake of exposition have glossed over, but which can be handled as follows. If X
is a Cpn -�-space (simplicial or topological) we let X → Xfn be the specially
Cpn -fibrant replacement. Note that if i : Cpk ⊆ Cpn , then i∗X → i∗(Xfn) is
a special Cpk -fibrant replacement, and so naturally equivalent (but not equal) to
i∗X → i∗(X)fk . In all honesty, the “restriction map” is the chain

given by composing the map

|HHSA|fnCpn = [|HHSA|fnCp ]Cpn/Cp ∼→ |HHSA|fnCp fn−1Cpn−1

induced by fibrant replacement with (−)fn−1Cpn−1 of

(the unmarked equivalences are annoying but innocent jugglings with fibrant
replacements written out in its most primitive form), whereas the Frobenius is
the inclusion of fixed points (and change of fibrant replacement)

3.4 Topological cyclic homology

We define TC(A;p) as the homotopy limit over the R and F -maps (which makes
sense since the arrows pointing in the “wrong” directions are equivalences and we
can choose an explicit model taking this into account).

Note that for any T-space X, there is a chain XfnCpn → Xfn hCpn
∼← XhCpn

compatible with the inclusion of fixed points (we useET for all theECpns occurring
in the homotopy fixed points), so that we get a map



Cyclic homology in a special world 313

holim←−
F

|HHSA|fnCpn → holim←− |HHSA|hCpn ,

where after p-completion the latter object is naturally equivalent to the homotopy
T-fixed points |HHSA|hT. Ultimately, this leads us to the same definition for TC(A)
as in the stable case.

Definition 3.4.1 Let A be a cofibrant S-algebra. Then the topological cyclic
homology TC(A) is the homotopy pullback of

∏

p

TC(A;p)p →
∏

p

|HHS(A)|hTp ← |HHS(A)|hT.

Note 3.4.2 I do not know whether the setup of Nikolaus and Scholze of Section 1.6
translates well to the special situation since the nature of the Tate-construction is
somewhat mysterious in this case.

Note 3.4.3 The extension from S-algebras to categories enriched in �-spaces is
straightforward and left to the reader.

4 On modules and monoids

We end by discussing some algebraic properties. In particular we show that if B
is the Boolean N-algebra, then HB-modules are specially homotopy discrete. For
this purpose we first give a more concrete characterization of special equivalences.
Recall that a map A → B of cofibrant �-spaces is a special equivalence if for
all special and projectively fibrant Z ∈ �S∗ the induced map �S∗(B,Z) →
�S∗(A,Z) ∈ S∗ is a weak equivalence. In general, a map A → B is a special
equivalence if its cofibrant replacement is a special equivalence.

Using the fibrant replacement �S∗-functor of 2.2.10 (we use the enriched fibrant
replacement in order to apply it to modules) we can simplify this to the statement
that A → B is a special equivalence if and only if RA → RB is a projective
equivalence, which in view of the fact that RA and RB are special is the same as
saying that RA(1+) → RB(1+) is a weak equivalence of simplicial sets.

4.1 Linearization

The Eilenberg–Mac Lane construction has a left adjoint L : �S∗ → sMon with LX
given as the coequalizer in sMon of the two maps

δ1∗ + δ2∗,∇∗ : N[X(2+)] ⇒ N[X(1+)],
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where N[−] is free functor adjoint to the forgetful functor from symmetric monoids
to pointed sets. Adapting the argument in [57, Lemma 1.2] we get

Lemma 4.1.1 The unit of adjunction A → LHA is an isomorphism. The
adjunction is enriched in the sense that it extends to a natural isomorphism

�S∗(X,HA) ∼= HsMon(LX,A) ∈ �S∗

and L is strong symmetric monoidal: the maps induced by the enriched adjunction
are isomorphisms N ∼= L(S), LX ⊗N LY ∼= L(X∧Y ). Furthermore, L preserves
finite products.

Lemma 4.1.2 The Eilenberg–Mac Lane functor H : sMon → �S∗ is a right
Quillen map, both with respect to the projective and the special structures on �S∗.

Proof It is enough to show that H preserves acyclic fibrations and fibrations
between fibrant objects (see [21]). Since finite products preserve fibrations
and equivalences, H sends fibrations/weak equivalences to projective fibra-
tions/equivalences. Since acyclic fibrations in the projective and special structures
coincide, it is enough to show that ifM � N ∈ sMon is a fibration between fibrant
objects then HM → HN is a special fibration. This follows since HM,HN are
specially fibrant and HM → HN projectively fibrant. ��

Note that, contrary to what is the case in other formalisms the Eilenberg–
Mac Lane functor very rarely takes cofibrant values.

Lemma 4.1.3 If M is a nontrivial simplicial symmetric monoid, then HM ∈ �S∗
is not cofibrant.

Proof If HM ∈ �S∗ is cofibrant, then LHM ∼= M is cofibrant in sMon with the
projective structure ((L,H) is a Quillen pair), which is equivalent to M being a
retraction of a free (in the sense of Quillen) simplicial symmetric monoid. Hence,
it is enough to consider the case where M is free simplicial symmetric monoid. In
that case, if n is the smallest dimension in which Mn is nontrivial (here we use that
M �= 0), then Mn is actually a nontrivial free symmetric monoid, and so contains
N as a retract. By Schwede [57, A3], if HM were cofibrant then HMn—and hence
HN—would be a wedge of representables.

However, HN has no proper retracts: if X ⊆ HN → X is a retract, then LX ⊆
N → LX is a retract (of symmetric monoids), implying that either LX = 0 or
LX = N. In the first case, the inclusion X ⊆ HN factors over HLX = 0, so that
X = 0, and in the second case the compositeHN → X → HLX is an isomorphism
implying that the surjection HN → X is an injection too.

Combining this information, we get that if HN were cofibrant, HN would be
representable, which is nonsense given that representables are finite. ��
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4.1.4 The special path monoid

The special analog of the set of path components is the following.

Definition 4.1.5 If X is a �-space, then the special path monoid of X is the
symmetric monoid π special

0 X = π0RX(1+).

It can alternatively be seen as the monoid of all maps S → X in the special homo-
topy category, but for our purposes the characterization in terms of linearization is
more useful.

Lemma 4.1.6 A special equivalence X → Y (of not necessarily cofibrant �-
spaces) induces an isomorphism π0LX ∼= π0LY . If Z is special, then the map
π0Z(1+) → π0LZ induced by the unit Z → HLZ is an isomorphism. Hence, for
any X ∈ �S∗ we have a chain of natural isomorphisms

π
special
0 X = π0RX(1+)

∼=−→ π0LRX
∼=←− π0LX

∼= coeq{Nπ0X(2+)⇒ Nπ0X(1+)}.

Proof Since L is a left Quillen functor, it sends special equivalences between
cofibrant objects to weak equivalences, so we need to show that π0L sends
projective equivalences to isomorphisms. This is true since π0 commutes with
colimits.

Likewise, if Z is special, then π0Z(1+) inherits a monoid structure and π0LZ is
a coequalizer of a diagram

Nπ0Z(1+)⊗ Nπ0Z(1+) ∼= Nπ0Z(2+)⇒ Nπ0Z(1+)

exactly recovering the generators π0Z(1+) ⊆ Nπ0Z(1+) ��
Corollary 4.1.7 The isomorphism of Lemma 4.1.6 and the monoidality of L of
Lemma 4.1.1 induce isomorphisms

π
special
0 (X∧Y ) ∼=π0L(X∧Y ) ∼= π0(LX ⊗N LY) ∼= π0LX ⊗N π0LY

∼=π special
0 X ⊗N π

special
0 Y.

In particular, ifA,B ∈ sMon, then π special
0 (HA∧LHB) ∼= π

special
0 (HA∧HB) ∼=

π0A⊗N π0B.

The superscript L signifies the derived smash, where the factors are functorially
replaced by cofibrant objects. For instance we could use the standard simplicial
replacement (symmetric version, Hochschild-style structure maps) for X∧LY with
�-space of q-simplices
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∨

a0,...,aq ,b0,...,bq∈�o
X(aq)∧Y (bq)∧�o(a0∧b0,−)∧

∧

j=1q
�o(ai, ai−1)∧�o(bi, bi−1).

Generally, X∧Y and X∧LY are not specially equivalent but, as we see, their path
monoids coincide. On the other hand, allowing a simplicial direction offers no
real advantage (or disadvantage) when considering B-modules (or for that matter
modules over other rigs where 1 + · · · + 1 = 1).

Example 4.1.8 Consider the Boolean algebra B = {0, 1} (0 is “false” and 1 is
“true”) with the operation + being “or” ((B,+) is isomorphic to Z/2×, the integers
mod 2 under multiplication) and · being “and”. This is the N-algebra on {0, 1}
defined by 1 + 1 = 1. If we force all elements to have negatives, then we can
cancel 1 on each side of the expression 1 + 1 = 1 resulting in 1 = 0: the group
completion is the trivial group.

The advantage of the special world is that we do not group complete and so the
theory is not trivialized, but the special theory of HB-modules is of an essentially
discrete nature unless we change the underlying weak equivalences on simplicial
sets (e.g., by using quasi-categories instead of Kan complexes as our fibrant objects).

The fact that HB-modules are specially homotopy discrete can be seen as
follows. It is enough to consider specially fibrant HB-modules M and show that
the map

M → HLM → Hπ0LM ∼= Hπ
special
0 M

is a projective equivalence, or equivalently, that M(1+) → π0M(1+) is a weak
equivalence. Consider the part of the functoriality of the multiplication map
HB∧M → M expressed in the diagram

Choosing a basepoint x ∈ M(1+) we see that for i > 0 the lower row defines
a group homomorphism +: πi(M(1+), x) × πi(M(1+), x) → πi(M(1+), x). If
α ∈ πi(M(1+), x) and 0 ∈ πi(M(1+), x) is the constant loop, then tracing through
the diagram we see that α = 0 +α = α+ 0, so that Eckmann–Hilton forces + to be
the usual group operation in πi(M(1+), x), but also α + α = α, which means that
πi(M(1+), x) = 0.

This is somewhat disappointing. For instance, it means that multiplication
B∧LB → B is a special equivalence. Since topological Hochschild homology
HHS(B) is a B-module it also means that HHS(B) → B is a special equivalence.
This is a good motivation for not only to moving from the stable to the special
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world, but also from Kan simplicial sets to quasi-categories (where not all paths
have homotopy inverses, and so the argument about homotopy discreteness fails).

If A is an S-algebra, then the fixed points of the smash powers and TC(A) are
generally not an A-module since it is built out of non-split extensions (for instance,
π

special
0 (HF2∧LHF2)

C2 ∼= Z/4Z is not an F2-algebra), but Example 4.1.8 still
makes it clear that the presence of elements killed by group completion puts severe
restrictions on the theory. In addition, even when such a theory is set up, it is by
no means clear that is has any of the calculational power that the original setup of
Bökstedt, Hsiang, and Madsen had.

Note 4.1.9 Example 4.1.8 showed that if 1+1 = 1 in an N-algebra, then its modules
are specially discrete. It should however be noted that the ∞+1 = ∞ encountered in
Example 0.0.2 for the category Vectcount

k of countable vector spaces is less dramatic.
The associated �-space (wrt. ⊕) is specially fibrant with value at 1+ (the nerve
of) the groupoid Vectcount

k . This groupoid has a lot of automorphisms and so is not
homotopy discrete.
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Curvature in noncommutative geometry

Farzad Fathizadeh and Masoud Khalkhali

Dedicated to Alain Connes with admiration, affection, and much
appreciation

Abstract Our understanding of the notion of curvature in a noncommutative
setting has progressed substantially in the past 10 years. This new episode in
noncommutative geometry started when a Gauss-Bonnet theorem was proved by
Connes and Tretkoff for a curved noncommutative two torus. Ideas from spectral
geometry and heat kernel asymptotic expansions suggest a general way of defining
local curvature invariants for noncommutative Riemannian type spaces where the
metric structure is encoded by a Dirac type operator. To carry explicit computations
however one needs quite intriguing new ideas. We give an account of the most recent
developments on the notion of curvature in noncommutative geometry in this paper.

1 Introduction

Broadly speaking, the progress of noncommutative geometry in the last four decades
can be divided into three phases: topological, spectral, and arithmetical. One can
also notice the pervasive influence of quantum physics in all aspects of the subject.
Needless to say, each of these facets of the subject is still evolving, and there are
many deep connections among them.

In its topological phase, noncommutative geometry was largely informed by
index theory and a real need to extend index theorems beyond their classical realm
of smooth manifolds, to what we collectively call noncommutative spaces. Thus
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K-theory, K-homology, and KK-theory in general were brought in and with the
discovery of cyclic cohomology by Connes [10, 11], a suitable framework was
created by him to formulate noncommutative index theorems. With the appearance
of the groundbreaking and now classical paper of Connes [12], results of which
were already announced in Oberwolfach in 1981 [10], this phase of the theory
was essentially completed. In particular a noncommutative Chern-Weil theory
of characteristic classes was created with Chern character maps for both K-
theory and K-homology with values in cyclic (co)homology. To define all these
a notion of Fredholm module (bounded or unbounded, finitely summable or theta
summable) was introduced which essentially captures and brings in many aspects
of smooth manifolds into the noncommutative world. These results were applied
to noncommutative quotient spaces such as the space of leaves of a foliation, or
the unitary dual of noncompact and nonabelian Lie groups. Ideas and tools from
global analysis, differential topology, operator algebras, representation theory, and
quantum statistical mechanics were crucial. One of the main applications of this
resulting noncommutative index theory was to settle some long-standing conjectures
such as the Novikov conjecture and the Baum-Connes conjecture for specific and
large classes of groups.

Next came the study of the geometry of noncommutative spaces and the impact
of spectral geometry. Geometry, as we understand it here, historically has dealt
with the study of spaces of increasing complexity and metric measurements within
such spaces. Thus in classical differential geometry one learns how to measure
distances and volumes, as well as various types of curvature of Riemannian
manifolds of arbitrary dimension. One can say the two notions of Riemannian
metric and the Riemann curvature tensor are hallmarks of classical differential
geometry in general. This should be contrasted with topology where one studies
spaces only from a rather soft homotopy theoretic point of view. A similar division
is at work in noncommutative geometry. Thus, as we mentioned briefly above,
while in its earlier stage of development noncommutative geometry was mostly
concerned with the development of topological invariants like cyclic cohomology,
Connes-Chern character maps, and index theory, starting in about 10 years ago
noncommutative geometry entered a new truly geometric phase where one tries to
seriously understand what a curved noncommutative space is and how to define and
compute curvature invariants for such a noncommutative space.

This episode in noncommutative geometry started when a Gauss-Bonnet theorem
was proved by Connes and Cohen for a curved noncommutative torus in [22] (see
also the MPI preprint [8] where many ideas are already laid out). This paper was
immediately followed in [30] where the Gauss-Bonnet was proved for general
conformal structures. The metric structure of a noncommutative space is encoded in
a (twisted) spectral triple. Giving a state-of-the-art report on developments following
these works, and on the notion of curvature in noncommutative geometry, is the
purpose of our present review.

Classically, geometric invariants are usually defined explicitly and algebraically
in a local coordinate system, in terms of a metric tensor or a connection on the
given manifold. However, methods based on local coordinates, or algebraic methods
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This is not a quantum curved torus

based on commutative algebra, have no chance of being useful in a noncommutative
setting, in general. But other methods, more analytic and more subtle, based on ideas
of spectral geometry are available. In fact, thanks to spectral geometry, we know that
there are intricate relations between Riemannian invariants and spectra of naturally
defined elliptic operators like Laplace or Dirac operators on the given manifold. A
prototypical example is the celebrated Weyl’s law on the asymptotic distribution of
eigenvalues of the Laplacian of a closed Riemannian manifold Mn in terms of its
volume:

N(λ) ∼ ωnVol(M)

(2π)n
λ
n
2 λ → ∞. (1)

Here N(λ) is the number of eigenvalues of the Laplacian in the interval [0, λ] and
ωn is the volume of the unit ball in R

n. In the spirit of Marc Kac’s article [39],
one says one can hear the volume of a manifold. But one can ask what else about
a Riemannian manifold can be heard? Or even we can ask: what can we learn
by listening to a noncommutative manifold? Results so far indicate that one can
effectively define and compute, not only the volume, but in fact the scalar and Ricci
curvatures of noncommutative curved spaces, at least in many examples.

In his Gibbs lecture of 1948, Ramifications, old and new, of the eigenvalue
problem, Hermann Weyl had this to say about possible extensions of his asymptotic
law (1): I feel that these informations about the proper oscillations of a membrane,
valuable as they are, are still very incomplete. I have certain conjectures on what
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a complete analysis of their asymptotic behavior should aim at; but since for more
than 35 years I have made no serious attempt to prove them, I think I had better
keep them to myself.

One of the most elaborate results in spectral geometry is Gilkey’s theorem that
gives the first four non-zero terms in the asymptotic expansion of the heat kernel
of Laplace type operators in terms of covariant derivatives of the metric tensor and
the Riemann curvature tensor [36]. More precisely, if P is a Laplace type operator,
then the heat operator e−tP is a smoothing operator with a smooth kernel k(t, x, y),
and there is an asymptotic expansion near t = 0 for the heat kernel restricted to the
diagonal of M ×M:

k(t, x, x) ∼ 1

(4πt)m/2
(a0(x, P )+ a2(x, P )t + a4(x, P )t

2 + · · · ),

where ai(x, P ) are known as the Gilkey-Seeley-DeWitt coefficients. The first term
a0(x, P ) is a constant. It was first calculated by Minakshisundaram and Pleijel
[51] for P = � the Laplace operator. Using Karamata’s Tauberian theorem, one
immediately obtains Weyl’s law for closed Riemannian manifolds. Note that Weyl’s
original proof was for bounded domains with a regular boundary in Euclidean space
and does not extend to manifolds in general. The next term a2(x, P ), for P = �,
was calculated by MacKean and Singer [50] and it was shown that it gives the scalar
curvature:

a2(x,8) = 1

6
S(x).

This immediately shows that the scalar curvature has a spectral nature and in
particular the total scalar curvature is a spectral invariant. This result, or rather its
localized version to be recalled later, is at the heart of the noncommutative geometry
approach to the definition of scalar curvature. The expressions for a2k(x, P ) get
rapidly complicated as k grows, although in principle they can be recursively
computed in a normal coordinate chart. They are reproduced up to term a6 in the
next section.

It is this analytic point of view on geometric invariants that play an important
role in understanding the geometry of curved noncommutative spaces. The algebraic
approach almost completely breaks down in the noncommutative case. Our experi-
ence so far in the past few years has been that in the noncommutative case spectral
and hard analytic methods based on pseudodifferential operators yield results that
are in no way possible to guess or arrive at from their commutative counterparts by
algebraic methods. One just needs to take a look at our formulas for scalar, and now
Ricci curvature, in dimensions two, three, and four, in later sections to believe in this
statement. The fact that in the first step we had to rely on heavy symbolic computer
calculations to start the analysis shows the formidable nature of this material. Surely
computations, both symbolic and analytic, are quite hard and are done on a case-by-
case basis, but the surprising end results totally justify the effort.
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The spectral geometry of a curved noncommutative two torus has been the
subject of intensive studies in recent years. As we said earlier, this whole episode
started when a Gauss-Bonnet theorem was proved by Connes and Tretkoff (formerly
Cohen) in [22] (see also [8] for an earlier version), and for general conformal struc-
tures in [30]. A natural question then was to define and compute the scalar curvature
of a curved noncommutative torus. This was done, independently, by Connes-
Moscovici [21] and Fathizadeh-Khalkhali [31]. The next term in the expansion,
namely the term a4, which in the classical case contains explicit information about
the analogue of the Riemann tensor, is calculated and studied in [17]. A version
of the Riemann-Roch theorem is proven in [41] and the study of local spectral
invariants is extended to all finite projective modules on noncommutative two tori
in [47].

A key idea to define a curved noncommutative space in the above works is
to conformally perturb a flat spectral triple by introducing a noncommutative
Weyl factor. The complex geometry of the noncommutative two torus, on the
other hand, provides a Dirac operator which, in analogy with the classical case,
originates from the Dolbeault complex. By perturbing this spectral triple, one can
construct a (twisted) spectral triple that can be used to study the geometry of the
conformally perturbed flat metric on the noncommutative two torus. Then, using
the pseudodifferrential operator theory for C∗-dynamical systems developed by
Connes in [9], the computation is performed and explicit formulas are obtained.
The spectral geometry and the study of scalar curvature of noncommutative tori
have been pursued further in [23, 32, 28].

Finally, for the latest on interactions between noncommutative geometry, number
theory, and arithmetic algebraic geometry, the reader can start with the article by
Connes and Consani [16] in this volume and the references therein.

2 Curvature in noncommutative geometry

This section is of an introductory nature and is meant to set the stage for later sec-
tions and to motivate the evolution of the concept of curvature in noncommutative
geometry from its beginnings to its present form. Clearly we have no intention of
giving even a brief sketch of the history of the development of the curvature concept
in differential geometry. That would require a separate long article, if not a book.
We shall simply highlight some key concepts that have impacted the development
of the idea of curvature in noncommutative geometry.

2.1 A brief history of curvature

Curvature, as understood in classical differential geometry, is one of the most
important features of a geometric space. It is here that geometry and topology differ
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in the ways they probe a space. To talk about curvature we need more than just
topology or smooth structure on a space. The extra piece of structure is usually
encoded in a (pseudo-)Riemannian metric, or at least a connection on the tangent
bundle, or on a principal G-bundle. It is remarkable that Greek geometers missed
the curvature concept altogether, even for simple curves like a circle, which they
studied so intensely. The earliest quantitative understanding of curvature, at least
for circles, is due to Nicole Oresme in the fourteenth century. In his treatise, De
configurationibus, he correctly gives the inverse of radius as the curvature of a circle.
The concept had to wait for Descartes’ analytic geometry and the Newton-Leibniz
calculus before to be developed and fully understood. In fact the first definitions of
the (signed) curvature κ of a plane curve y = y(x) are due to Newton, Leibniz, and
Huygens in the seventeenth century:

κ = y′′

(1 + y′2)3/2
.

It is important to note that this is not an intrinsic concept. Intrinsically any one-
dimensional Riemannian manifold is locally isometric to R with its flat Euclidean
metric and hence its intrinsic curvature is zero.

Thus the first major case to be understood was the curvature of a surface
embedded in a three-dimensional Euclidean space with its induced metric. In his
magnificent paper of 1828 entitled disquisitiones generales circa superficies curvas,
Gauss first defines the curvature of a surface in an extrinsic way, using the Gauss
map and then he proves his theorema egregium: the curvature so defined is in fact
an intrisic concept and can solely be defined in terms of the first fundamental form.
That is the Gaussian curvature is an isometry invariant, or in Gauss’ own words:

Thus the formula of the preceding article leads itself to the remarkable Theorem. If a curved
surface is developed upon any other surface whatever, the measure of curvature in each point
remains unchanged.

Now the first fundamental form is just the induced Riemannian metric in more
modern language. As we shall see, in the hands of Riemann, Theorema Egregium
opened the way for the idea of intrinsic geometry of spaces in general. Surfaces, and
manifolds in general, have an intrinsic geometry defined solely by metric relations
within the space itself, independent of any ambient space.

If g = eh(dx2 + dy2) is a locally conformally flat metric, then its Gaussian
curvature is given by

K = −1

2
e−h�h,

where � is the flat Laplacian. We shall see later in this paper that the analogous
formula in the noncommutative case, first obtained in [21, 31], takes a much more
complicated form, with remarkable similarities and differences.

Another major result of Gauss’ surface theory was his local uniformization
theorem, which amounts to existence of isothermal coordinates: any analytic
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Riemannian metric in two dimensions is locally conformally flat. The result holds
for all smooth metrics in two dimensions, but Gauss’ proof only covers analytic
metrics. Since conformal classes of metrics on a two torus are parametrized by the
upper half plane modulo the action of the modular group, this justifies the initial
choice of metrics for noncommutative tori by Connes and Cohen in their Gauss-
Bonnet theorem in [22], and for general conformal structures in our paper [30]. By
all chances, in the noncommutative case one needs to go beyond the class of locally
conformally flat metrics. For recent results in this direction, see [35].

A third major achievement of Gauss in differential geometry is his local Gauss-
Bonnet theorem: for any geodesic triangle drawn on a surface with interior angles
α, β, γ, we have

α + β + γ − π =
∫
KdA,

where K denotes the Gauss curvature and dA is the surface area element. By using
a geodesic triangulation of the surface, one can then easily prove the global Gauss-
Bonnet theorem for a closed Riemannian surface:

1

2π

∫

M

KdA = χ(M),

where χ(M) is the Euler characteristic of the closed surface M . It is hard
to overemphasize the importance of this result which connects geometry with
topology. It is the first example of an index theorem and the theory of characteristic
classes.

To find a true analogue of the Gauss-Bonnet theorem in a noncommutative setting
was the motivation for Connes and Tretkoff in their groundbreaking work [22]. After
conformally perturbing the flat metric of a noncommutative torus, they noticed that
while the above classical formulation has no clear analogue in the noncommutative
case, its spectral formulation

ζ(0)+ 1 = 1

12π

∫

M

KdA = 1

6
χ(M),

makes perfect sense. Here

ζ(s) =
∑

λ−s
j , Re(s) > 1, (2)

is the spectral zeta function of the scalar Laplacian 8g = d∗d of (M, g). The
spectral zeta function has a meromorphic continuation to C with a unique (simple)
pole at s = 1. In particular ζ(0) is defined. Thus ζ(0) is a topological invariant,
and, in particular, it remains invariant under the conformal perturbation g → ehg of
the metric. This result was then extended to all conformal classes in the upper half
plane in our paper [30].
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After the work of Gauss, a decisive giant step was taken by Riemann in his epoch-
making paper Ueber die Hypothesen, welche der Geometrie zu Grunde liegen,
which is a text of his Habilitationsvortrag of June 1854. The notion of space, as an
entity that exists on its own, without any reference to an ambient space or external
world, was first conceived by Riemann. Riemannian geometry is intrinsic from the
beginning. In Riemann’s conception, a space, which he called a mannigfaltigkeit,
manifold in English, can be discrete or continuous, finite or infinite dimensional.
The idea of a geometric space as an abstract set endowed with some extra structure
was born in this paper of Riemann. Local coordinates are just labels without any
intrinsic meaning, and thus one must always make sure that the definitions are
independent of the choice of coordinates. This is the general principle of relativity,
which later came to be regarded as a cornerstone of modern theories of spacetime
and Einstein’s theory of gravitation. This idea quickly led to the development of
tensor calculus, also known as the absolute differential calculus, by the Italian
school of Ricci and his brilliant student Levi-Civita.

Riemann also introduced the idea of a Riemannian metric and understood that
to define the bending or curvature of a space one just needs a Riemannian metric.
This was of course directly inspired by Gauss’ theorema egregium. In fact he gave
two definitions for curvature. His sectional curvature is defined as the Gaussian
curvature of two-dimensional submanifolds defined via the geodesic flow for each
two-dimensional subspace of the tangent space at each point. For his second
definition he introduced the geodesic coordinate systems and considered the Taylor
expansion of the metric components gij (x) in a geodesic coordinate. Let

cij,kl = 1

2

∂2gij

∂xk∂xl
.

He shows that sectional curvature is determined by the components cij,kl , and vice
versa. Also, one knows that the components cij,kl are closely related to Riemann
curvature tensor.

The Riemann curvature tensor, in modern notation, is defined as

R(X, Y ) = ∇X∇Y − ∇Y∇X − ∇[X,Y ],

where ∇ is the Levi-Civita connection of the metric, and X and Y are vector
fields on the manifold. The analogue of this curvature tensor of rank four is still
an illusive concept in the noncommutative case. However, the components of the
Riemann tensor appear in the term a4 in the small time heat kernel expansion of
the Laplacian of the metric, the analogue of which was calculated and studied in
[17] for noncommutative two tori and for noncommutative four tori with product
geometries.

It is hard to exaggerate the importance of the Ricci curvature in geometry and
physics. For example, it plays an indispensable role in Einstein’s theory of gravity
and Einstein field equations. In particular, it directly leads, thanks to Schwarzschild
solution, to the prediction of black holes. It is also fundamental for the Ricci
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flow. Ricci curvature can be formulated in spectral terms and this opened up the
possibility of defining it in noncommutative settings [34]. The reader should consult
later sections in this survey for more on this.

The first black hole image by
Event Horizon Telescope,
April 2019

Although they won’t be a subject for the present exposition, let us briefly mention
some other aspects of curvature that have found their analogues in noncommutative
settings. These are mostly linear aspects of curvature, and have much to do with
representation theory of groups. They include Chern-Weil theory of characteristic
classes and specially the Chern-Connes character maps for both K-theory and K-
homology, Chern-Simons theory, and Yang-Mills theory. Riemannian curvature,
whose noncommutative analogue we are concerned with here, is a nonlinear theory
and from our point of view that is why it took so long to find its proper formulation
and first calculations in a noncommutative setting.

2.2 Laplace type operators and Gilkey’s theorem

At the heart of spectral geometry, Gilkey’s theorem [36] gives the most precise
information on asymptotic expansion of heat kernels for a large class of elliptic
PDEs. Since this result and its noncommutative analogue play such an important
role in defining and computing curvature invariants in noncommutative geometry,
we shall explain it briefly in this section. Let M be a smooth closed manifold with
a Riemannian metric g and a vector bundle V on M . An operator P : �(M,V ) →
�(M,V ) on smooth sections of V is called a Laplace type operator if in local
coordinates it looks like

P = −gij ∂i∂j + lower orders.

Examples of Laplace type operators include Laplacian on forms

� = (d + d∗)2 : �p(M) → �p(M),
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and the Dirac Laplacians � = D∗D, where D : �(S) → �(S) is a generalized
Dirac operator.

Now if P is a Laplace type operator, then there exist a unique connection ∇ on
the vector bundle V and an endomorphism E ∈ End(V ) such that

P = ∇∗∇ − E.

Here ∇∗∇ is the connection Laplacian which is locally given by −gij∇i∇j . For
example, the Lichnerowicz formula for the Dirac operator, D2 = ∇∗∇ − 1

4R, gives

E = 1

4
R,

where R is the scalar curvature. Now e−tP is a smoothing operator with a smooth
kernel k(t, x, y). There is an asymptotic expansion near t = 0

k(t, x, x) ∼ 1

(4πt)m/2
(a0(x, P )+ a2(x, P )t + a4(x, P )t

2 + · · · ),

where a2k(x, P ) are known as the Gilkey-Seeley-De Witt coefficients. Gilkey’s
theorem asserts that a2k(x, P ) can be expressed in terms of universal polynomials
in the metric g and its covariant derivatives. Gilkey has computed the first four non-
zero terms and they are as follows:

a0(x, P ) = tr(1),

a2(x, P ) = tr

(
E − 1

6
R

)
,

a4(x, P ) = 1

360
tr
(( − 12R;kk + 5R2 − 2RjkRjk + 2RijklRijkl

)

−60RE + 180E2 + 60E;kk + 30�ij�ij
)
.

a6(x, P ) = tr
{ 1

7!
(

− 18R;kkll + 17R;kR;k − 2Rjk;lRjk;l − 4Rjk;lRjl;k

+ 9Rijku;lRijku;l + 28RR;ll − 8RjkRjk;ll + 24RjkRjl;kl

+ 12RijklRijkl;uu
)

+ 1

9 · 7!
(

− 35R3 + 42RRlpRlp − 42RRklpqRklpq + 208RjkRjlRkl

− 192RjkRulRjukl + 48RjkRjulpRkulp − 44RijkuRijlpRkulp

− 80RijkuRilkpRjlup
)
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+ 1

360

(
8�ij ;k�ij ;k + 2�ij ;j�ik;k + 12�ij�ij ;kk − 12�ij�jk�ki

− 6Rijkl�ij�kl + 4Rjk�jl�kl − 5R�kl�kl
)

+ 1

360

(
6E;iijj + 60EE;ii + 30E;iE;i + 60E3 + 30E�ij�ij

− 10RE;kk − 4RjkE;jk − 12R;kE;k − 30RE2 − 12R;kkE

+ 5R2E − 2RjkRjkE + 2RijklRijklE
)}
.

Here Rijkl is the Riemann curvature tensor, R is the scalar curvature, � is the
curvature matrix of two forms, and ; denotes the covariant derivative operator.

As we shall later see in this survey, the first two terms in the above list allow us to
define the scalar and Ricci curvatures in terms of heat kernel coefficients and extend
them to noncommutative settings.

Alternatively, one can use spectral zeta functions to extract information from the
spectrum. Heat trace and spectral zeta functions are related via Mellin transform. For
a concrete example, let 8 denote the Laplacian on functions on an m-dimensional
closed Riemannian manifold. Define

ζ8(s) =
∑

λ−s
i Re(s) >

m

2
.

The spectral invariants ai in the heat trace asymptotic expansion

Trace(e−t8) ∼ (4πt)
−m

2

∞∑

j=0

aj t
j (t → 0+)

are related to residues of spectral zeta function by

Ress=αζ8(s) = (4π)−
m
2
am

2 −α
�(α)

, α = m

2
− j > 0.

To get to the local invariants like scalar curvature we can consider localized zeta
functions. Let ζf (s) := Tr (f8−s), f ∈ C∞(M). Then we have

Res ζf (s)|s=m
2 −1 = (4π)−m/2

�(m/2 − 1)

∫

M

f (x)R(x)dvolx, m ≥ 3,

ζf (s)|s=0 = 1

4π

∫

M

f (x)R(x)dvolx − Tr(f P ), m = 2,

where P is projection onto zero eigenmodes of 8. Thus the scalar curvature R
appears as the density function for the localized spectral zeta function.
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2.3 Noncommutative Chern-Weil theory

Although it is not our intention to review this subject in the present survey, we
shall nevertheless explain some ideas of noncommutative Chern-Weil theory here.
Many aspects of Chern-Weil theory of characteristic classes for vector bundles and
principal bundles over smooth manifolds can be cast in an algebraic formalism
and as such is even used in commutative algebra and algebraic geometry [5].
Thus one can formulate notions like de Rham cohomology, connection, curvature,
Chern classes, and Chern character, over a commutative algebra and then for a
scheme. This is a commutative theory which is more or less straightforward in the
characteristic zero case. But there seemed to be no obvious extension of de Rham
theory and the rest of Chern-Weil theory to the noncommutative case.

In [9] Connes realized that many aspects of Chern-Weil theory can be imple-
mented in a noncommutative setting. The crucial ingredient was the discovery
of cyclic cohomology that replaces de Rham homology of currents in a non-
commutative setting [11, 12]. Let A be a not necessarily commutative algebra
over the field of complex numbers. By a noncommutative differential calculus on
A we mean a triple (�, d, ρ) such that (�, d) is a differential graded algebra
and ρ : A → �0 is an algebra homomorphism. Given a right A-module E , a
connection on E is a C-linear map ∇ : E −→ E ⊗A �

1 satisfying the Leibniz rule
∇(ξa) = ∇(ξ)a+ξ⊗da, for all ξ ∈ E and a ∈ A. Let ∇̂ : E⊗A�• → E⊗A�•+1

be the (necessarily unique) extension of ∇ which satisfies the graded Leibniz rule
∇̂(ξω) = ∇̂(ξ)ω + (−1)deg ξ ξdω with respect to the right �-module structure on
E ⊗A�. The curvature of ∇ is the operator of degree 2, ∇̂2 : E ⊗A�

• → E ⊗A�
•,

which can be easily checked to be �-linear.
Now to obtain Connes’ Chern character pairing between K-theory and cyclic

cohomology, K0(A)⊗ HC2n(A) → C, one can proceed as follows. Given a finite
projectiveA-module E , one can always equip E with a connection over the universal
differential calculus �A. An element of HC2n(A) can be represented by a closed
graded trace τ on �2nA. The value of the pairing is then simply τ(∇̂2n). Here we
used the same symbol τ to denote the extension of τ to the ring End�•(E ⊗A �

•).
One checks that this definition is independent of all choices that we made [12].
Connes in fact initially developed the more sophisticated Chern-Connes pairing in
K-homology with explicit formulas that do not have a commutative counterpart. For
all this and more, the reader should check Connes’ book and his above cited article
[12, 14] as well as the book [40].

2.4 From spectral geometry to spectral triples

The very notion of Riemannian manifold itself is now subsumed and vastly
generalized through Connes’ notion of spectral triples, which is a centerpiece
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of noncommutative geometry and applications of noncommutative geometry to
particle physics.

Let us first motivate the definition of a spectral triple. During the course of their
heat equation proof of the index theorem, it was discovered by Atiyah-Bott-Patodi
[2] that it is enough to prove the theorem for Dirac operators twisted by vector
bundles. The reason is that these twisted Dirac operators in fact generate the whole
K-homology group of a spin manifold and thus it suffices to prove the theorem
only for these first order elliptic operators. This indicates the preeminence of Dirac
operators in topology. As we shall see below, Dirac operators also encode metric
information of a Riemannian manifold in a succinct way. Broadly speaking, spectral
triples, suitably enhanced, are noncommutative spin manifolds and form a backbone
of noncommutative geometry, specially its metric aspects. One precise formulation
of this idea is Connes’ reconstruction theorem [15] which states that a commutative
spectral triple satisfying some natural conditions is in fact the standard spectral triple
of a spinc manifold described below.

Recall that the Dirac operator D on a compact Riemannian spinc manifold acts
as an unbounded selfadjoint operator on the Hilbert space L2(M, S) of L2-spinors
on M . If we let C∞(M) act on L2(M, S) by multiplication operators, then one can
check that for any smooth function f , the commutator [D, f ] = Df − fD extends
to a bounded operator onL2(M, S). The metric d onM , that is the geodesic distance
of M , can be recovered, thanks to the distance formula of Connes [14]:

d(p, q) = Sup{|f (p)− f (q)|; ‖ [D, f ] ‖≤ 1}.

The triple (C∞(M),L2(M, S),D/) is a commutative example of a spectral triple.
The general definition of a spectral triple, in the odd case, is as follows.

Definition 2.1 Let A be a unital algebra. An odd spectral triple on A is a triple
(A,H,D) consisting of a Hilbert space H, a selfadjoint unbounded operator D :
Dom(D) ⊂ H → H with compact resolvent, i.e., (D−λ)−1 ∈ K(H), for all λ /∈ R,

and a representation π : A → L(H) of A such that for all a ∈ A, the commutator
[D,π(a)] is defined on Dom(D) and extends to a bounded operator on H.

A spectral triple is called finitely summable if for some n ≥ 1

|D|−n ∈ L1,∞(H).

Here L1,∞(H) is the Dixmier ideal. It is an ideal of compact operators which is
slightly bigger than the ideal of trace class operators and is the natural domain of
the Dixmier trace. Spectral triples provide a refinement of Fredholm modules. Going
from Fredholm modules to spectral triples is similar to going from the conformal
class of a Riemannian metric to the metric itself. Spectral triples simultaneously
provide a notion of Dirac operator in noncommutative geometry, as well as a
Riemannian type distance function for noncommutative spaces. In later sections we
shall define and work with concrete examples of spectral triples and their conformal
perturbations.
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3 Pseudodifferential calculus and heat expansion

In this section we discuss the classical pseudodifferential calculus on the Euclidean
space and will then provide practical details of the pseudodifferential calculus of [9]
that we use for heat kernel calculations on noncommutative tori.

3.1 Classical pseudodifferential calculus

In the Euclidean case we follow the notations and conventions of [36] as follows.
For any multi-index α = (α1, . . . , αm) of non-negative integers and coordinates
x = (x1, . . . , xm) ∈ R

m we set:

|α| = α1 + · · · + αm, α! = α1! · · ·αm!, xα = x
α1
1 · · · xαmm ,

∂αx =
(
∂

∂x1

)α1

· · ·
(
∂

∂xm

)αm
, Dα

x = (−i)|α|∂αx .

Also we normalize the Lebesgue measure on R
m by a multiplicative factor of

(2π)−m/2 and still denote it by dx. Therefore we have:
∫

Rm
exp

(
−1

2
|x|2

)
dx = 1.

The main idea behind pseudodifferential calculus is that it uses the Fourier
transform to turn a differential operator into multiplication by a function, namely the
symbol of the differential operator. The Fourier transform f̂ of a Schwartz function
f on R

m is defined by the following integration:

f̂ (ξ) =
∫

Rm
e−ix·ξ f (x) dx, ξ ∈ R

m.

This integral is convergent because, by definition, the set of Schwartz functions
S(Rm) consists of all complex-valued smooth functions f on the Euclidean space
such that for any multi-indices α and β of non-negative integers

sup
x∈Rm

|xαDβf (x)| < ∞.

It turns out that the Fourier transform preserves the L2-norm, hence it extends to a
unitary operator on L2(Rm).

The differential operator Dα
x turns in the Fourier mode to multiplication by the

monomial ξα , in the sense that:

(̂Dα
x f )(ξ) = ξαf̂ (ξ).
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The monomial ξα is therefore called the symbol of the differential operator Dα
x .

Then, the Fourier inversion formula,

f (x) =
∫

Rm
eiξ ·xf̂ (ξ) dξ, f ∈ S(Rm),

implies that

Dα
x f (x) =

∫

Rm
eix·ξ ξαf̂ (ξ) dξ =

∫

Rm

∫

Rm
ei(x−y)·ξ ξαf (y) dy dξ. (3)

It is now clear from the above facts that the symbol of any differential operator,
given by a finite sum of the form

∑
aα(x)D

α
x , is the polynomial in ξ of the

form
∑
aα(x)ξ

α, whose coefficients are the functions aα(x) (which we assume
to be smooth). Using the notation σ(·) for the symbol it is an easy exercise to see
that given two differential operators P1 and P2, the symbol of their composition
σ (P1 ◦ P2) is given by the following expression:

∑

α∈Zm≥0

1

α!∂
α
ξ σ (P1)D

α
x σ (P2), (4)

which is a finite sum because only finitely many of the summands are non-zero.
By considering a wider family of symbols, one obtains a larger family of

operators which are called pseudodifferential operators. A smooth function p :
R
m × R

m → C is a pseudodifferential symbol of order d ∈ R if it satisfies the
following conditions:

• p(x, ξ) has compact support in x,
• for any multi-indices α, β ∈ Z

m
≥0, there exists a constant Cα,β such that

|∂βξ ∂αx p(x, ξ)| ≤ Cα,β(1 + |ξ |)d−|β|. (5)

Clearly the space of pseudodifferential symbols possesses a filtration because,
denoting the space of symbols of order d by Sd , we have:

d1 ≤ d2 �⇒ Sd1 ⊂ Sd2 .

Existence of symbols of arbitrary orders can be assured by observing that for any
d ∈ R and any compactly supported function f0, the function p(x, ξ) = f0(x)(1 +
|ξ |2)d/2 belongs to Sd .

Given a symbol p ∈ Sd , inspired by formula (3), the corresponding pseudodif-
ferential operator P is defined by

Pf (x) =
∫

Rm
eix·ξp(x, ξ)f̂ (ξ) dξ, f ∈ S(Rm). (6)



336 F. Fathizadeh and M. Khalkhali

The space of pseudodifferential operators associated with symbols of order d
is denoted by �d(Rm). Searching for an analog of formula (4) for general
pseudodifferential operators leads to a complicated analysis which, at the end, gives
an asymptotic expansion for the symbol of the composition of such operators. The
formula is written as

σ (P1P2) ∼
∑

α∈Zm≥0

1

α!∂
α
ξ σ (P1)D

α
x σ (P2). (7)

It is important to put in order some explanations about this formula. If σ(P1) ∈
Sd1 and σ(P2) ∈ Sd2 , then there is a symbol in Sd1+d2 that gives P1 ◦ P2
via formula (6). However σ(P1 ◦ P2) has a complicated formula which involves
integrals, which can be seen by writing the formulas directly. The trick is then to
use Taylor series and to perform analytic manipulations on the closed formula for
σ(P1 ◦ P2) to derive the expansion (7). The error terms in the Taylor series that one
uses in the manipulations are responsible for having an asymptotic expansion rather
than a strict identity. The precise meaning of this expansion is that given any d ∈ R,
there exists a positive integer N such that

σ (P1P2)−
∑

|α|≤N

1

α!∂
α
ξ σ (P1)D

α
x σ (P2) ∈ Sd.

Therefore, as one subtracts the terms 1
α!∂

α
ξ σ (P1)D

α
x σ (P2) from σ(P1 ◦ P2), the

orders of the resulting symbols tend to −∞. Regarding this, it is convenient to
introduce the space S−∞ = ∩d∈RSd of the infinitely smoothing pseudodifferential
symbols. For example, for any compactly supported function f0, the symbol
p(x, ξ) = f0(x)e

−|ξ |2 belongs to S−∞.
The composition rule (7) is a very useful tool. For instance, it can be used to find a

parametrix for elliptic pseudodifferential operators. Important geometric operators
such as Laplacians are elliptic, and by finding a parametrix, as we shall explain,
one finds an approximation of the fundamental solution of the partial differential
equation defined by such an important operator. Intuitively, a pseudodifferential
symbol p(x, ξ) of order d ∈ R is elliptic if it is non-zero when ξ is away from
the origin (or invertible in the case of matrix-valued symbols), and |p(x, ξ)−1| is
bounded by a constant times (1 + |ξ |)−d as ξ → ∞. For our purposes, it suffices to
know that a differential operator D = ∑

aα(x)D
α
x of order d = maxα |α| is elliptic

if its leading symbol,

σL(D) =
∑

|α|=d
aα(x)ξ

α,

is non-zero (or invertible) for ξ �= 0. Given such an elliptic differential operator one
can use formula (7) to find an inverse for D, called a parametrix, in the quotient
�/�−∞ of the algebra of pseudodifferential operators � by infinitely smoothing
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operators �−∞. This process can be described as follows. One makes the natural
assumption that the symbol of the parametrix has an expansion starting with a
leading term of order −d and other terms whose orders descend to −∞, namely
terms of orders −d − 1, −d − 2, . . . , and one continues as follows. The formula
given by (7) can be used to find these terms recursively and thereby find a parametrix
R such that

DR − I ∼ RD − I ∼ 0.

We will illustrate this carefully in Section 3.2 in a slightly more complicated
situation, where a parameter λ and a parametric pseudodifferential calculus are
involved in deriving heat kernel expansions. We just mention that invertibility of
σL(D) is the crucial point that allows one to start the recursive process, and to
continue on to find the parametrix R.

3.2 Small-time heat kernel expansion

For simplicity and practical purposes we assume that P is a positive elliptic
differential operator of order 2 with

σ(P ) = p2(x, ξ)+ p1(x, ξ)+ p0(x, ξ),

where each pj is (homogeneous) of order j in ξ . We know that p2(x, ξ) is non-
zero (or invertible) for non-zero ξ . The first step in deriving a small time asymptotic
expansion for Tr(exp(−tP )) as t → 0+ is to use the Cauchy integral formula to
write

e−tP = 1

2πi

∫

γ

e−tλ(P − λ)−1 dλ, (8)

where the contour γ goes clockwise around the non-negative real axis, where
the eigenvalues of P are located. The term (P − λ)−1 in the above integral can
now be approximated by pseudodifferential operators as follows. We look for an
approximation Rλ of (P − λ)−1 such that

σ(Rλ) ∼ r0(x, ξ, λ)+ r1(x, ξ, λ)+ r2(x, ξ, λ)+ · · · ,

where each rj is a symbol of order −2 − j in the parametric sense which we will
elaborate on later. For now one can use formula (7) to find the rj recursively out of
the equation

Rλ(P − λ) ∼ I.
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This means that the terms rj in the expansion should satisfy

∑

j

rj ◦ ((p2 − λ)+ p1 + p0) ∼ 1, (9)

where the composition ◦ is given by (7). By writing the expansion one can see that
there is only one leading term, which is of order 0, namely r0(p2 − λ) and needs
to be set equal to 1 so that it matches the corresponding (and the only term) on the
right-hand side of the Equation (9). Therefore the leading term r0 is found to be

r0 = (p2 − λ)−1. (10)

Here the ellipticity plays an important role, because we need to be ensured that the
inverse of p2 − λ exists. Since, in our examples, P will be a Laplace type operator,
the leading term p2 is a positive number (or a positive invertible matrix in the vector
bundle case) for any ξ �= 0. Therefore for any λ on the contour γ , we know that p2−
λ is invertible. One can then proceed by considering the term that is homogeneous of
order −1 in the expansion of the left-hand side of (9) and set it equal to 0 since there
is no term of order −1 on the right-hand side. This will yield a formula for the next
term r1. By continuing this process one finds recursively that for n = 1, 2, 3, . . . ,
we have

rn = −

⎛

⎜⎜
⎝

∑

|α|+j+2−k=n,
0≤j<n, 0≤k≤2

1

α!∂
α
ξ rj D

α
x pk

⎞

⎟⎟
⎠ r0. (11)

It turns out that the rn calculated by this formula have the following homogeneity
property:

rn(x, tξ, t
2λ) = t−2−nrn(t, ξ, λ).

Having an approximation of the resolvent Rλ ∼ (P − λ)−1 via the symbols rn,
one can use the formulas (8) and (6) to approximate the kernel Kt of the operator
e−tP , namely the unique smooth function such that

e−tP f (x) =
∫
Kt(x, y) f (y) dy, f ∈ S(Rm).

Since Tr(e−tP ) can be calculated by integrating the kernel on the diagonal,

Tr
(
e−tP

)
=

∫
Kt(x, x) dx,

the integration of the approximation of the kernel obtained by going through the
procedure described above leads to an asymptotic expansion of the following form:
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Tr
(
e−tP

)
∼t→0+ t−m/2

∞∑

n=0

a2n(P ) t
n, (12)

where each coefficient a2n is the integral of a density a2n(x, P ) given by

a2n(x, P ) = 1

2πi

∫ ∫

γ

e−λtr(r2n(x, ξ, λ)) dλ dξ.

In this integrand, the tr denotes the matrix trace which needs to be considered in the
case of vector bundles.

It is a known fact that when P is a geometric operator such as the Laplacian of a
metric, each a2n(x, P ) can be written in terms of the Riemann curvature tensor, its
contractions, and covariant derivatives, see, for example, [18]. However, in practice,
as n grows, these terms become so complicated rapidly. One can refer to [36] for
the formulas for the terms up a6 derived using invariant theory.

3.3 Pseudodifferential calculus and heat kernel expansion for
noncommutative tori

Now that we have illustrated the derivation of the heat kernel expansion (12),
we explain briefly in this subsection that using the pseudodifferential calculus
developed in [9] for C∗-dynamical systems, heat kernel expansions of Laplacians
on noncommutative tori can be derived by taking a parallel approach. We note that,
in [48], for toric manifolds, the Widom pseudodifferential calculus is adapted to
their noncommutative deformations and it is used for the derivation of heat kernel
expansions.

We first recall the pseudodifferential calculus on the algebra of noncommutative
m-torus. A pseudodifferential symbol of order d ∈ Z on T

m
3 is a smooth mapping ρ :

R
m → C∞(Tm3) such that for any multi-indices α and β of non-negative integers,

there exists a constant Cα,β such that

||∂βξ δαρ(ξ)|| ≤ Cα,β(1 + |ξ |)d−|β|.

Here || · || denotes the C∗-algebra norm, which is the equivalent of the supremum
norm in the commutative setting. Therefore this definition is the noncommutative
analog of the definition given by (5) in the classical case. A symbol of order d is
elliptic if ρ(ξ) is invertible for large enough ξ and there exists a constant Cρ > 0
such that

||ρ(ξ)−1|| ≤ Cρ(1 + |ξ |)−d .
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Given a pseudodifferential symbol on T
m
3 the corresponding pseudodifferential

operator Pρ : C∞(Tm3) → C∞(Tm3) is defined in [9] by the oscillatory integral

Pρ(a) =
∫∫

e−is·ξ ρ(ξ) αs(a) ds dξ, a ∈ C∞(Tm3), (13)

where αs is the dynamics given by

αs(U
α) = eis·αUα.

For example, the symbol of a differential operator of the form
∑

|α|≤d aαδα , aα ∈
C∞(Tm3) is

∑
|α|≤d aαξα .

Given a positive elliptic operator P of order 2 acting on C∞(Tm3), such as the
Laplacian of a metric, in order to derive an asymptotic expansion for Tr(e−tP ) one
can start by writing the Cauchy integral formula as we did in formula (8). However
now one has to use the pseudodifferential calculus given by (13) to write P − λ in
terms of its symbol and thereby approximate its inverse. In this calculus, if ρ1 and
ρ2 are, respectively, symbols of orders d1 and d2, then the composition Pρ1Pρ2 has
a symbol of order d1 + d2 with the following asymptotic expansion:

σ
(
Pρ1Pρ2

) ∼ ρ1 ◦ ρ2 :=
∑

α∈Zm≥0

1

α!∂
α
ξ ρ1 δ

αρ2. (14)

Having these tools available, one can then perform calculations as in the process
illustrated in Section 3.2 to derive an asymptotic expansion for Tr(e−tP ). That is,
one writes σ(P ) = p2 + p1 + p0, where each pj is homogeneous of order j ,
and finds recursively the terms rj , j = 0, 1, 2, . . . , that are homogeneous of order
−2 − j and

∑

j

rj ◦ ((p2 − λ)+ p1 + p0) ∼ 1.

This means that we are using the composition rule (14) to approximate the inverse
of P − λ. The result of this process is a recursive formula similar to the one given
by (10) and (11). That is, one finds that

r0 = (p2 − λ)−1. (15)

and for n = 1, 2, 3, . . . ,

rn = −

⎛

⎜⎜
⎝

∑

|α|+j+2−k=n,
0≤j<n, 0≤k≤2

1

α!∂
α
ξ rj δ

αpk

⎞

⎟⎟
⎠ r0. (16)
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Then one finds the small asymptotic expansion

Tr(e−tP ) ∼t→0+ t−m/2
∞∑

n=0

ϕ0(a2n)t
n,

where ϕ0 is the canonical trace

ϕ0

⎛

⎝
∑

α∈Zm
aαU

α

⎞

⎠ = a0

providing us with integration on the noncommutative torus T
m
3. The terms a2n ∈

C∞(Tm3) can be calculated using (15) and (16) as follows:

a2n = 1

2πi

∫

Rm

∫

γ

e−λr2n(ξ, λ) dλ dξ. (17)

We shall see in Section 4 that in order to perform this type of integrals in the
noncommutative setting one encounters noncommutative features which will lead
to the appearance of a functional calculus with a modular automorphism in the
outcome of the integrals.

4 Gauss-Bonnet theorem and curvature for noncommutative
2-tori

The Gauss-Bonnet theorem for smooth oriented surfaces is a fundamental result
that establishes a bridge between topology and differential geometry of surfaces.
Given a surface, its Euler characteristic is a topological invariant which can be
calculated by choosing an arbitrary triangulation on the surface and forming an
alternating summation on the number of its vertices, edges, and faces. It is quite
remarkable that the Euler characteristic is independent of the choice of triangulation
and depends only on the genus of the surface. Clearly, under a diffeomorphism,
or roughly speaking under changes on the surface that do not change the genus,
the Euler characteristic remains unchanged. However the scalar curvature of the
surface changes under such changes by diffeomorphisms, say when the surface is
embedded in the three-dimensional Euclidean space and has inherited the metric of
the ambient space. However, the striking fact, namely the statement of the Gauss-
Bonnet theorem, is that the change of curvature on the surface occurs in a way that
the increase and decrease of curvature over the surface compensate for each other to
the effect that the curvature integrates to the Euler characteristic, up to multiplication
by a universal constant that is independent of the surface. Hence, the total curvature,
namely the integral of the scalar curvature over the surface, is a topological invariant.
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4.1 Scalar curvature and Gauss-Bonnet theorem for T2
θ

In noncommutative geometry, the analog of the Gauss-Bonnet theorem has been
investigated for the noncommutative two torus. In this setting, the flat geometry
of T

2
θ was conformally perturbed by means of a conformal factor e−h, where h

is a selfadjoint element in C∞(T2
θ ). In the late 1980s, a heavy calculation was

performed by P. Tretkoff and A. Connes to find an expression for the analog of
the total curvature of the perturbed metric on T

2
θ . The expression had a heavy

dependence on the element h used for changing the metric, therefore it was not
clear whether the analog of the Gauss-Bonnet theorem holds for T

2
θ , and they

just recorded the result of their calculations in an MPI preprint [8]. However,
following calculations for the spectral action in the presence of a dilaton [7] and
developments in the theory of twisted spectral triples [20], there were indications
that the complicated expression for the total curvature has to be independent of
the element h. By further calculations, simplifications and using symmetries in the
result, it was shown in [22] that the terms in the complicated expression for the
total curvature indeed cancel each other out to 0, hence the analog of the Gauss-
Bonnet theorem for T

2
θ . The conformal class of metrics that was used in [22] is

associated with the simplest translation-invariant complex structure on T
2
θ , namely

the complex structure associated with i = √−1. The Gauss-Bonnet theorem for
T

2
θ for the complex structure associated with an arbitrary complex number τ in the

upper-half plane was established in [30].
After considering a general complex number τ in the upper half-plane to induce

a complex structure and thereby a conformal structure on T
2
θ , and by conformally

perturbing the flat metric in this class by a fixed conformal factor e−h, h = h∗ ∈
C∞(T2

θ ), the Laplacian of the curved metric is shown [22, 30] to be anti-unitarily
equivalent to the operator

8τ,h = eh/28τ,0 e
h/2,

where

8τ,0 = δ2
1 + 2τ1δ1δ2 + |τ |2δ2

2

is the Laplacian of the flat metric in the conformal class determined by τ = τ1 + iτ2
in the upper half-plane. The pseudodifferential symbol of 8τ,h is the sum of the
following homogeneous components of order 2, 1, and 0, in which we use k = h/2
for simplicity:

p2(ξ) = ξ2
1 k

2 + |τ |2ξ2
2 k

2 + 2τ1ξ1ξ2k
2,

p1(ξ) = 2ξ1kδ1(k)+ 2|τ |2ξ2kδ2(k)+ 2τ1ξ1kδ2(k)+ 2τ1ξ2kδ1(k),

p0(ξ) = kδ2
1(k)+ |τ |2kδ2

2(k)+ 2τ1kδ1δ2(k).
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The analog of the scalar curvature is then the term a2(8τ,h) ∈ C∞(T2
θ ) appearing

in the small time (t → 0+) asymptotic expansion

Tr(ae−t8τ,h ) ∼ t−1
∞∑

n=0

ϕ0
(
a a2n(8τ,h)

)
tn, a ∈ C∞(T2

θ ). (18)

By going through the process illustrated in Section 3.3 one can calculate a2.
However, there is a purely noncommutative obstruction for the calculation of the
involved integrals in formula (17), namely one encounters integration of C∗-algebra
valued functions defined on the Euclidean space, R2 in this case. By passing to a
suitable variation of the polar coordinates, the angular integration can be performed
easily, and the main obstruction remains in the radial integration which can be
overcome by the following rearrangement lemma [22, 3, 21, 46]:

Lemma 4.1 For any tuple m = (m0,m1, . . . , m&) ∈ Z
&+1
>0 and elements

ρ1, . . . , ρ& ∈ C∞(T2
θ ), one has

∫ ∞

0

u|m|−2

(ehu+ 1)m0

&∏

1

ρj (e
hu+1)−mj du = e−(|m|−1)hFm(�(1), . . . , �(&))

( &∏

1

ρj

)
,

where

Fm(u1, . . . , u&) =
∫ ∞

0

x|m|−2

(x + 1)m0

&∏

1

(
x

j∏

1

uh + 1
)−mj

dx,

and � is the modular automorphism

�(a) = e−haeh, a ∈ C(T2
θ ).

After applying this lemma to the numerous integrands with the help of computer
programming, the result for the scalar curvature a2(8τ,h) was calculated in [21, 31]
(Figure 1):

Theorem 4.1 The scalar curvature a2(8τ,h) ∈ C∞(T2
θ ) of a general metric in the

conformal class associated with a complex number τ = τ1 + iτ2 in the upper half-
plane is given by

a2(8τ,h) = K(∇)
(
δ2

1

(
h

2

)
+ |τ |2δ2

2

(
h

2

)
+ 2τ1δ1δ2

(
h

2

))

+H(∇,∇)
(
δ1

(
h

2

)
δ1

(
h

2

)
+ |τ |2δ2

(
h

2

)
δ2

(
h

2

)

+ τ1δ1

(
h

2

)
δ2

(
h

2

)
+ τ1δ2

(
h

2

)
δ1

(
h

2

))
,
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Fig. 1 Graph of K given by (19)

where

K(x) = 2ex/2(2 + ex(−2 + x)+ x)

(−1 + ex)2x
, (19)

and

H(s, t) = −
−t (s+t) cosh s+s(s+t) cosh t−(s−t)
(s+t+sinh s+sinh t−sinh(s+t))

st (s+t) sinh(s/2)
sinh(t/2) sinh2((s+t)/2)

. (20)

Here the flat metric is conformally perturbed by e−h, where h = h∗ ∈ C∞(T2
θ ),

and ∇ is the logarithm of the modular automorphism �(a) = e−haeh, hence the
derivation given by taking commutator with −h.

Using the symmetries of these functions describing the term a2(8τ,h) integrates
to 0, hence the analog of the Gauss-Bonnet theorem. This result was proved in [22,
30] in a kind of simpler manner as by exploiting the trace property of ϕ0 from the
beginning of the symbolic calculations, only a one variable function was necessary
to describe ϕ0(a2(8τ,h)). However, for the description of a2 one needs both one
and two variable functions, which are given by (19) and (20). So we can state the
Gauss-Bonnet theorem for T2

θ from [22, 30] as follows (Figure 2).

Theorem 4.2 For any choice of the complex number τ in the upper half-plane and
any conformal factor e−h, where h = h∗ ∈ C∞(T2

θ ), one has

ϕ0(a2(8τ,h)) = 0.

Hence the total curvature of T2
θ is independent of τ and h defining the metric.
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Fig. 2 Graph of H given
by (20)
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As we mentioned earlier, the validity of the Gauss-Bonnet theorem for T2
θ was

suggested by developments on the spectral action in the presence of a dilaton [6] and
also studies on twisted spectral triples [20]. In harmony with these developments,
in fact a non-computational proof of the Gauss-Bonnet theorem can be given, as
written in [21], in the spirit of conformal invariance of the value at the origin of the
spectral zeta function of conformally covariant operators [4]. The argument is based
on a variational technique: one can write a formula for the variation of the heat
coefficients as one varies the metric conformally with e−sh, where h is a dilaton,
and the real parameter s goes from 0 to 1. However, the non-computational proof
does not lead to an explicit formula for the curvature term a2(8τ,h). Hence the
remarkable achievements in [22, 30, 21, 31] after heavy computer aided calculations
include the explicit expression for the scalar curvature of T2

θ and the fact that the
analog of the Gauss-Bonnet theorem holds for it.

4.2 The Laplacian on (1, 0)-forms on T
2
θ

with curved metric

The analog of the Laplacian on (1, 0)-forms is also considered in [21, 31] and the
second term in its small time heat kernel expansion is calculated. The operator is
anti-unitarily equivalent to the operator 8(1,0)

τ,h = ∂̄eh∂ , where ∂ = δ1 + τ̄ δ2 and

∂̄ = δ1 + τδ2. The symbol of this Laplacian is equal to c2(ξ)+ c1(ξ) where

c2(ξ) = ξ2
1 k

2 + 2τ1ξ1ξ2k
2 + |τ |2ξ2

2 k
2,

c1(ξ) = (δ1(k
2)+ τδ2(k

2))ξ1 + (τ̄ δ1(k
2)+ |τ |2δ2(k

2))ξ2.

Therefore by using the same strategy of using computer aided symbol calculations
one can calculate the terms appearing in the following heat kernel expansion:
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Tr

(
ae

−t8(1,0)
τ,h

)
∼ t−1

∞∑

n=0

ϕ0

(
a a2n(8(1,0)

τ,h )
)
tn, a ∈ C∞(T2

θ ).

The result for the second term in this expansion is that [21, 31]

a2(8(1,0)
τ,h ) = S(∇)

(
δ2

1

(
h

2

)
+ |τ |2δ2

2

(
h

2

)
+ 2τ1δ1δ2

(
h

2

))

+T (∇,∇)
(
δ1

(
h

2

)
δ1

(
h

2

)
+ |τ |2δ2

(
h

2

)
δ2

(
h

2

)

+ τ1δ1

(
h

2

)
δ2

(
h

2

)
+ τ1δ2

(
h

2

)
δ1

(
h

2

))

−iτ2W(∇,∇)
(
δ1

(
h

2

)
δ2

(
h

2

)
− δ2

(
h

2

)
δ1

(
h

2

))
,

where

S(x) = − 4ex(−x + sinh x)

(−1 + ex/2)2(1 + ex/2)2x
,

T (s, t) = − cosh((s + t)/2)×
−t (s+t) cosh s+s(s+t) cosh t−(s−t)
(s+t+sinh s+sinh t−sinh(s+t))
st (s+t) sinh(s/2) sinh(t/2)

sinh2((s+t)/2)
,

and

W(s, t) = −s − t + t cosh s + s cosh t + sinh s + sinh t − sinh(s + t)

st sinh(s/2) sinh(t/2) sinh((s + t)/2)
.

Using a simple iso-spectrality argument for the operators 8τ,h and 8(1,0)
τ,h one

can argue that ϕ0

(
a2(8(1,0)

τ,h )
)

= 0, based on the Gauss-Bonnet theorem proved in

[22, 30]. However, one can also use properties of the functions S, T ,W to prove this
directly (Figure 3).

5 Noncommutative residues for noncommutative tori and
curvature of noncommutative 4-tori

In this section we discuss noncommutative residues and illustrate an application
of a noncommutative residue defined for noncommutative tori in calculating the
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Fig. 3 Graph of W
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scalar curvature of the noncommutative 4-torus in a convenient way with certain
advantages.

5.1 Noncommutative residues

Noncommutative residues are trace functionals on algebras of pseudodifferential
operators, which were first discovered by Adler and Manin in dimension 1 [1, 49]. In
order to illustrate their construction in dimension 1 we consider the algebra C∞(S1)

of smooth functions on the circle S
1 = R/Z, and the differentiation (−i)d/dx,

whose pseudodifferential symbol is σ(ξ) = ξ . We then consider the algebra of
pseudodifferential symbols of the form

N∑

n=−∞
an(x)ξ

n, an(x) ∈ C∞(S1), N ∈ Z.

The product rule of this algebra can be deduced from the following relations:

ξa(x) = a(x)ξ + a′(x), an(x) ∈ C∞(S1),

which are dictated by the Leibniz property of differentiation. The Adler-Manin trace
is the linear functional defined by

N∑

n=−∞
an(x)ξ

n �→
∫

S1
a−1(x) dx,
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which is shown to be a trace functional on the algebra of pseudodifferential symbols
on the circle [1, 49]. A twisted version of this trace was worked out in [27],
motivated by the notion of twisted spectral triples [20].

Wodzicki generalized this functional, in a remarkable work, to higher dimensions
[55]. Consider a closed manifold M of dimension m and the algebra of classical
pseudodifferential operators M . A classical pseudodifferential symbol σ of order d
has an expansion with homogeneous terms, of the form

σ(x, ξ) ∼
∞∑

j=0

σd−j (x, ξ),

where σd−j (x, tξ) = td−j σd−j (x, ξ) for any t > 0. The composition rule of this
algebra is induced by the composition rule for the symbol of pseudodifferential
operators:

σP1P2(x, ξ) ∼
∑

α∈Zm≥0

(−i)|α|

α! ∂aξ σP1(x, ξ) ∂
α
x σP2(x, ξ),

which we mentioned and used in Section 3 as well. Wodzicki’s noncommutative
residue WRes is the linear functional defined on the algebra of classical pseudodif-
ferential symbols by

WRes

⎛

⎝
∞∑

j=0

σd−j (x, ξ)

⎞

⎠ =
∫

S∗M
tr(σ−m(x, ξ)) dm−1ξ dmx, (21)

where S∗M is the cosphere bundle of the manifold with respect to a Riemannian
metric. We stress that in this formula m is the dimension of the manifold M .
It is proved that WRes is the unique trace functional on the algebra of classical
pseudodifferential symbols on M [55].

The noncommutative residue has a spectral formulation as well. That is, one can
fix a Laplacian 8 on M and define the noncommutative residue of a pseudodiffer-
ential operator Pσ to be the residue at s = 0 of the meromorphic extension of the
zeta function defined, for complex numbers s with large enough real parts, by

s �→ Tr(Pσ8−s).

This formulation is used in noncommutative geometry, when one works with the
algebra of pseudodifferential operators associated with a spectral triple [19].

For noncommutative tori, the analog of formula (21) can be written and it was
shown in [33] that it gives the unique continuous trace functional on the algebra
of classical pseudodifferential operators on the noncommutative 2-torus. Although
the argument written in [33] is for dimension 2, but it is general enough that
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works for any dimension, see, for example, [32] for the illustration in dimension
4. Given a classical pseudodifferential symbol ρ : Rm → C∞(Tm3) of order d on
the noncommutative m-torus, by definition, there is an asymptotic expansion for
ξ → ∞ of the form

ρ(ξ) ∼
∞∑

j=0

ρd−j (ξ),

where each ρd−j is positively homogeneous of order d − j . One can define the
noncommutative residue Res of the corresponding pseudodifferential symbol as

Res(Pρ) =
∫

Sm−1
ϕ0 (ρ−m) d�, (22)

where ϕ0 is the canonical trace on C(Tm3) and d� is the volume form of the round
metric on the (m − 1)-dimensional sphere in Rm. The same argument as the one
given in [33] shows that Res is the unique continuous trace on the algebra of classical
pseudodifferential symbols on T

m
3.

5.2 Scalar curvature of the noncommutative 4-torus

The Laplacian associated with the flat geometry of the noncommutative four torus
T

4
3 is simply given by the sum of the squares of the canonical derivatives, namely:

80 = δ2
1 + δ2

2 + δ2
3 + δ2

4 .

After conformally perturbing the flat metric on T
4
3 by means of a conformal factor

e−h, for a fixed h = h∗ ∈ C∞(T4
3), the perturbed Laplacian is shown in [32] to be

anti-unitarily equivalent to the operator

8h = eh∂̄1e
−h∂1e

h + eh∂1e
−h∂̄1e

h + eh∂̄2e
−h∂2e

h + eh∂2e
−h∂̄2e

h,

where

∂1 = δ1 − iδ3, ∂2 = δ2 − iδ4,

∂̄1 = δ1 + iδ3, ∂̄2 = δ2 + iδ4.

The latter are the analogues of the Dolbeault operators.
The scalar curvature of the metric on T

4
3 encoded in 8h is the term a2 ∈ C∞(T4

3)

appearing in the following small time asymptotic expansion:
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Tr(ae−t8h) ∼ t−2
∞∑

n=0

ϕ0(a a2n)t
n, a ∈ C∞(T4

3).

The curvature term a2 ∈ C∞(T4
3) was calculated in [32] by going through the

procedure explained in Section 3.3. As we explained earlier, there is a purely non-
commutative obstruction in this procedure that needs to be overcome by Lemma 4.1,
the so-called rearrangement lemma. That is, one encounters integration over the
Euclidean space of C∗-algebra valued functions. For this type of integrations,
one can pass to polar coordinates and take care of the angular integrations with
no problem. However, the redial integration brings forth the necessity of the
rearrangement lemma.

Striking is the fact that after applying the rearrangement lemma to hundreds of
terms, each of which involves a function from this lemma to appear in the calcula-
tions, the final formula for the curvature simplifies significantly with computer aid.
In [28], by using properties of the noncommutative residue (22), it was shown that
the curvature term a2 ∈ C∞(T4

3) can be calculated as the integral over the 3-sphere
of a homogeneous symbol. Therefore, with this method, the calculation of a2 does
not require radial integration, hence the calculation without using the rearrangement
lemma and clarification of the reason for the significant simplifications. In fact, in
[28], the term is shown to be a scalar multiple of

∫
S3 b2(ξ) d�, where b2 is the

homogeneous term of order −4 in the expansion of the symbol of the parametrix of
8h. The result, in agreement with the calculation of [32], is that

a2 = e−hK(∇)
( 4∑

i=1

δ2
i (h)

)
+ e−hH(∇,∇)

( 4∑

i=1

δi(h)
2
)

∈ C∞(T4
3), (23)

where ∇ = [−h, ·], and

K(x) = 1 − e−x

2x
,

H(s, t) = −e
−s−t ((−es − 3) s

(
et − 1

) + (es − 1)
(
3et + 1

)
t
)

4st (s + t)
. (24)

The simplicity of this calculation also revealed in [28] the following functional
relation between the functions K and H (Figure 4).

Theorem 5.1 Let K̃(s) = esK(s) and H̃ (s, t) = es+tH(s, t), where the function
K and H are given by (24). Then

H̃ (s, t) = 2
K̃(s + t)− K̃(s)

t
+ 3

2
K̃(s)K̃(t).

Another important result that we wish to recall from [32] is about the extrema of
the analog of the Einstein-Hilbert action for T4

3, namely ϕ0(a2):
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Fig. 4 Graph of H given
by (24)
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Theorem 5.2 For any conformal factor e−h, where h = h∗ ∈ C∞(T4
3),

ϕ0(a2) ≤ 0,

where a2 ∈ C∞(T4
3) is the scalar curvature given by (23). Moreover, we have

ϕ0(a2) = 0 if and only if h is a scalar.

6 The Riemann curvature tensor and the term a4 for
noncommutative tori

The Riemann curvature tensor appears in the term a4 in the heat kernel expansion for
the Laplacian of any closed Riemannian manifoldM . That is, if�g is the Laplacian
of a Riemannian metric g, which acts on C∞(M), then

a4(x,�g) = (4π)−1(1/360)(−12�gR(x)+5R(x)2 −2|Ric(x)|2 +2|Riem(x)|2).

In this section we recall from [17] the formula obtained for the analog of the term
a4 in a noncommutative setting. Recall that in Section 4.1, we discussed the term a2,
namely the analog of the scalar curvature, for the noncommutative two torus when
the flat metric is perturbed by a positive invertible element e−h ∈ C∞(T2

θ ), where
h = h∗. These geometric terms appear in the expansion given by (18). Setting,

& = h

2

for the simplest conformal class (associated with τ = i), the main calculation of
[17] gives the term a4 by a formula of the following form:
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a4(h) = −e2&
(
K1(∇)

(
δ2

1δ
2
2(&)

)
+K2(∇)

(
δ4

1(&)+ δ4
2(&)

)
(25)

+K3(∇,∇) ((δ1δ2(&)) · (δ1δ2(&)))

+K4(∇,∇)
(
δ2

1(&) · δ2
2(&)+ δ2

2(&) · δ2
1(&)

)

+K5(∇,∇)
(
δ2

1(&) · δ2
1(&)+ δ2

2(&) · δ2
2(&)

)

+K6(∇,∇)
(
δ1(&) · δ3

1(&)+ δ1(&) ·
(
δ1δ

2
2(&)

)
+ δ2(&) · δ3

2(&)

+δ2(&) ·
(
δ2

1δ2(&)
))

+K7(∇,∇)
(
δ3

1(&) · δ1(&)+
(
δ1δ

2
2(&)

)
· δ1(&)+ δ3

2(&) · δ2(&)

+
(
δ2

1δ2(&)
)

· δ2(&)
)

+K8(∇,∇,∇)
(
δ1(&) · δ1(&) · δ2

2(&)+ δ2(&) · δ2(&) · δ2
1(&)

)

+K9(∇,∇,∇) (δ1(&) · δ2(&) · (δ1δ2(&))+ δ2(&) · δ1(&) · (δ1δ2(&)))

+K10(∇,∇,∇) (δ1(&) · (δ1δ2(&)) · δ2(&)+ δ2(&) · (δ1δ2(&)) · δ1(&))

+K11(∇,∇,∇)
(
δ1(&) · δ2

2(&) · δ1(&)+ δ2(&) · δ2
1(&) · δ2(&)

)

+K12(∇,∇,∇)
(
δ2

1(&) · δ2(&) · δ2(&)+ δ2
2(&) · δ1(&) · δ1(&)

)

+K13(∇,∇,∇) ((δ1δ2(&)) · δ1(&) · δ2(&)+ (δ1δ2(&)) · δ2(&) · δ1(&))

+K14(∇,∇,∇)
(
δ2

1(&) · δ1(&) · δ1(&)+ δ2
2(&) · δ2(&) · δ2(&)

)

+K15(∇,∇,∇)
(
δ1(&) · δ1(&) · δ2

1(&)+ δ2(&) · δ2(&) · δ2
2(&)

)

+K16(∇,∇,∇)
(
δ1(&) · δ2

1(&) · δ1(&)+ δ2(&) · δ2
2(&) · δ2(&)

)

+K17(∇,∇,∇,∇) (δ1(&) · δ1(&) · δ2(&) · δ2(&)

+δ2(&) · δ2(&) · δ1(&) · δ1(&))

+K18(∇,∇,∇,∇) (δ1(&) · δ2(&) · δ1(&) · δ2(&)

+δ2(&) · δ1(&) · δ2(&) · δ1(&))

+K19(∇,∇,∇,∇) (δ1(&) · δ2(&) · δ2(&) · δ1(&)

+δ2(&) · δ1(&) · δ1(&) · δ2(&))

+K20(∇,∇,∇,∇) (δ1(&) · δ1(&) · δ1(&) · δ1(&)

+δ2(&) · δ2(&) · δ2(&) · δ2(&))
)
.
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Fig. 5 Graph of K1
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We provide the explicit formulas for a few of the functions appearing in (25), and
we refer the reader to [17] for the remaining functions, most of which have lengthy
expressions. We have, for example, (Figure 5):

K1(s1) = −4πe
3s1
2

((
4es1 + e2s1 + 1

)
s1 − 3e2s1 + 3

)

(es1 − 1) 4s1
, (26)

and

K3(s1, s2) = Knum
3 (s1, s2)

(es1 − 1) 2 (es2 − 1) 2
(
es1+s2 − 1

)
4s1s2 (s1 + s2)

, (27)

where the numerator is given by

Knum
3 (s1, s2) = 16 e

3s1
2 + 3s2

2 π
[ (
es1 − 1

) (
es2 − 1

) (
es1+s2 − 1

)

×
{ (

−5es1 − es2 + 6es1+s2 − e2s1+s2 − 5es1+2s2

+3e2s1+2s2 + 3
)
s1

+
(
es1 + 5es2 − 6es1+s2 + 5e2s1+s2 + es1+2s2 − 3e2s1+2s2 − 3

)
s2

}

−2
(
es1 − es2

) (
es1+s2 − 1

)

×
(
−es1 − es2 − e2s1+s2 − es1+2s2 + 2e2s1+2s2 + 2

)
s1s2

+2es1
(
es2 − 1

) 3
(
es1 − es1+s2 + 2e2s1+s2 − 2

)
s2

1

−2es2
(
es1 − 1

) 3
(
es2 − es1+s2 + 2es1+2s2 − 2

)
s2

2

]
.
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6.1 Functional relations

One of the main results of [17] is the derivation of a family of conceptually predicted
functional relations among the functionsK1, . . . , K20 appearing in (25). As we shall
see shortly the functional relations are highly nontrivial. There are two main reasons
for the derivation of the relations, both of which are extremely important. First, the
calculation of the term a4 involves a really heavy computer aided calculation, hence,
the need for a way of confirming the validity of the outcome by checking that the
expected functional relations are satisfied. Second, patterns and structural properties
of the relations give significant information that help one to obtain conceptual
understandings about the structure of the complicated functions appearing in the
formula for a4. In order to present the relations, we need to consider the modification
of each function Kj in (25) to a new function K̃j by the formula

K̃j (s1, . . . , sn) = 1

2n
sinh ((s1 + · · · + sn)/2)

(s1 + · · · + sn)/2
Kj(s1, . . . , sn),

where n ∈ {1, 2, 3, 4} is the number of variables, on which Kj depends. We also
need to introduce the restriction of the functionsKj to certain hyperplanes by setting

kj (s1, . . . , sn−1) = Kj(s1, . . . , sn−1,−s1 − · · · − sn−1).

We shall explain shortly how these functional relations are predicted, using funda-
mental identities and lemmas [21, 17] (Figure 6).

Let us first list a few of the functional relations in which some auxiliary functions
Gn(s1, . . . , sn) appear. These functions are mainly useful for relating the derivatives
of eh and those of h and we recall from [17] their recursive formula:

Fig. 6 Graph of K3
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Lemma 6.1 The functions Gn(s1, . . . , sn) are given recursively by

G0 = 1,

and

Gn(s1, . . . , sn) =
∫ 1

0
rn−1es1r Gn−1(rs2, rs3, . . . , rsn) dr.

Explicitly, for n = 1, 2, 3, one has:

G1(s1) = es1 − 1

s1
, (28)

G2(s1, s2) = es1 ((es2 − 1) s1 − s2)+ s2

s1s2 (s1 + s2)
,

G3(s1, s2, s3) =
es1(es2+s3 s1s2(s1+s2)+(s1+s2+s3)

((s1+s2)s3−es2 s1(s2+s3)))−s2s3(s2+s3)
s1s2(s1+s2)s3

(s2+s3)(s1+s2+s3)
.

We can now write the relations. The functional relation associated with the
function K1 is given by

K̃1(s1) = − 1

15
πG1 (s1)+ 1

4
es1k3 (−s1)+ 1

4
k3 (s1)

+1

2
es1k4 (−s1)+ 1

2
k4 (s1)− 1

2
es1k6 (−s1)

−1

2
k6 (s1)− 1

2
es1k7 (−s1)− 1

2
k7 (s1)− π (es1 − 1)

15s1
. (29)

It is quite remarkable that such a nontrivial relation should exist among the
functions, and it gets even more interesting when one looks at the case associated
with a 2-variable function. For K3 one finds the associated relation to be:

K̃3(s1, s2) = 1

15
(−4)πG2 (s1, s2)+ 1

2
k8 (s1, s2)+ 1

4
k9 (s1, s2) (30)

−1

4
es1+s2k9 (−s1 − s2, s1)

−1

4
es1k9 (s2,−s1 − s2)− 1

4
k10 (s1, s2)− 1

4
es1+s2k10 (−s1 − s2, s1)

+1

4
es1k10 (s2,−s1 − s2)
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+1

2
es1k11 (s2,−s1 − s2)+ 1

2
es1+s2k12 (−s1 − s2, s1)

−1

4
k13 (s1, s2)+ 1

4
es1+s2k13 (−s1 − s2, s1)− 1

4
es1k13 (s2,−s1 − s2)

+1

4
es2G1 (s1) k3 (−s2)+ 1

4
G1 (s1) k3 (s2)−G1 (s1) k6 (s2)

−es2G1 (s1) k7 (−s2)

+
(
es1+s2 − 1

)
k3 (s1)

4 (s1 + s2)
+ k3 (s2)− k3 (s1 + s2)

4s1

+k3 (s1 + s2)− k3 (s1)

4s2

+k6 (s1)− k6 (s1 + s2)

s2
+ k6 (s1 + s2)− k6 (s2)

s1

+e
s1 (k7 (−s1)− es2k7 (−s1 − s2))

s2

+e
s2 (es1k7 (−s1 − s2)− k7 (−s2))

s1

−e
s2 (es1k3 (−s1 − s2)− k3 (−s2))

4s1

−e
s1 (k3 (−s1)− es2k3 (−s1 − s2))

4s2

−e
s1 (k3 (−s1)+ es2k3 (s1)− es2k3 (−s2)− k3 (s2))

4 (s1 + s2)
.

The rapid pace in growing complexity of the functional relations can be seen in
the higher variable cases as, for example, the functional relation corresponding to
the 3-variable function K8 is the following expression:

K̃8(s1, s2, s3) = 1

15
(−2)πG3 (s1, s2, s3)+ 1

2
es3G2 (s1, s2) k4 (−s3) (31)

−
es3

(
es2 s1k4(−s2−s3)+es2 s2k4(−s2−s3)−es1+s2 s2k4(−s1−s2−s3)−s1k4(−s3)

)

2s1s2 (s1 + s2)

+1

2
G2 (s1, s2) k4 (s3)+ G1 (s1) (k4 (s3)− k4 (s2 + s3))

2s2

+ s1k4 (s3)− s1k4 (s2 + s3)− s2k4 (s2 + s3)+ s2k4 (s1 + s2 + s3)

2s1s2 (s1 + s2)

−1

2
G2 (s1, s2) k6 (s3)
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+G1 (s1) (k6 (s2)− k6 (s2 + s3))

4s3
+

k6(s2)−k6(s1+s2)−k6(s2+s3)+k6(s1+s2+s3)
4s1s3

+
−s3k6(s1)+s2k6(s1+s2)+s3k6(s1+s2)−s2k6(s1+s2+s3)

4s2s3 (s2 + s3)

+
−s1k6(s3)+s1k6(s2+s3)+s2k6(s2+s3)−s2k6(s1+s2+s3)

2s1s2 (s1 + s2)

+e
s2G1 (s1) (k7 (−s2)− es3k7 (−s2 − s3))

4s3

−

es1

(
s3k7(−s1)−es2 s2k7(−s1−s2)−es2 s3k7(−s1−s2)

+es2+s3 s2k7(−s1−s2−s3)
)

4s2s3 (s2 + s3)

−

es2

(
es1k7(−s1−s2)−k7(−s2)+es3k7(−s2−s3)

−es1+s3k7(−s1−s2−s3)
)

4s1s3

+e
s3G1 (s1) (e

s2k7 (−s2 − s3)− k7 (−s3))
2s2

−1

2
es3G2 (s1, s2) k7 (−s3)

+

es3

(
es2 s1k7(−s2−s3)+es2 s2k7(−s2−s3)

−es1+s2 s2k7(−s1−s2−s3)−s1k7(−s3)
)

2s1s2 (s1 + s2)

+
(−1 + es1+s2+s3

)
k8 (s1, s2)

8 (s1 + s2 + s3)
+ k8 (s1, s2 + s3)− k8 (s1, s2)

8s3

−1

8
es2+s3G1 (s1) k8 (−s2 − s3, s2)

+e
s1+s2+s3 (k8 (−s1 − s2 − s3, s1)− k8 (−s1 − s2 − s3, s1 + s2))

8s2

+1

8
G1 (s1) k9 (s2, s3)

+k9 (s2, s3)− k9 (s1 + s2, s3)

8s1

+k9 (s1 + s2, s3)− k9 (s1, s2 + s3)

8s2
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+1

8
es2G1 (s1) k10 (s3,−s2 − s3)

+e
s2 (k10 (s3,−s2 − s3)− es1k10 (s3,−s1 − s2 − s3))

8s1

+e
s1 (es2k10 (s3,−s1 − s2 − s3)− k10 (s2 + s3,−s1 − s2 − s3))

8s2

−1

8
G1 (s1) k11 (s2, s3)

+k11 (s1, s2 + s3)− k11 (s1 + s2, s3)

8s2

+k11 (s1 + s2, s3)− k11 (s2, s3)

8s1

−1

8
es2G1 (s1) k12 (s3,−s2 − s3)

+1

8
es2+s3G1 (s1) k13 (−s2 − s3, s2)

+e
s2+s3 (k13 (−s2 − s3, s2)− es1k13 (−s1 − s2 − s3, s1 + s2))

8s1

− 1

16
k17 (s1, s2, s3)− 1

16
es1+s2k17 (s3,−s1 − s2 − s3, s1)

− 1

16
es1k19 (s2, s3,−s1 − s2 − s3)

− 1

16
es1+s2+s3k19 (−s1 − s2 − s3, s1, s2)

−e
s2+s3 (k8 (−s2 − s3, s2)− es1k8 (−s1 − s2 − s3, s1 + s2))

8s1

−e
s2 (k12 (s3,−s2 − s3)− es1k12 (s3,−s1 − s2 − s3))

8s1

−e
s3G1 (s1) (e

s2k4 (−s2 − s3)− k4 (−s3))
2s2

−G1 (s1) (k6 (s3)− k6 (s2 + s3))

2s2

−e
s1 (es2k12 (s3,−s1 − s2 − s3)− k12 (s2 + s3,−s1 − s2 − s3))

8s2

−
es1+s2+s3 (k13(−s1−s2−s3,s1)−k13(−s1−s2−s3,s1+s2))

8s2
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−e
s1 (k11 (s2,−s1 − s2)− k11 (s2 + s3,−s1 − s2 − s3))

8s3

−e
s1+s2 (k12 (−s1 − s2, s1)− es3k12 (−s1 − s2 − s3, s1))

8s3

−e
s1+s2+s3 (k8 (s1, s2)− k8 (−s2 − s3, s2))

8 (s1 + s2 + s3)

−e
s1 (k11 (s2,−s1 − s2)− k11 (s2, s3))

8 (s1 + s2 + s3)

−e
s1+s2 (k12 (−s1 − s2, s1)− k12 (s3,−s2 − s3))

8 (s1 + s2 + s3)
.

The interested reader can refer to [17] to see that the functional relations of the
4-variable functions get even more complicated. The main point, which will be
elaborated further, is that all these functional relations are derived conceptually,
and by checking that our calculated functions K1, . . . , K20 satisfy these relations,
the validity of the calculations and their outcome, such as the explicit formu-
las (26), (27), is confirmed.

6.2 A partial differential system associated with the functional
relations

When one takes a close look at the functional relations, one notices that there are
terms in the right-hand sides (in the finite difference expressions) with s1+· · ·+sn in
their denominators. For example, in (30) one can see that there is a term with s1 + s2
in the denominator. The question answered in [17], which leads to a differential
system with interesting properties, is what happens when one restricts the functional
relations to the hyperplanes s1 +· · ·+sn = 0 by setting s1 +· · ·+sn = ε and letting
ε → 0. For example, the restriction of the functional relation (30) to the hyperplane
s1 + s2 = 0 yields:

1

4
es1k′

3 (−s1)− 1

4
k′

3 (s1) = 1

60s1

(
16πs1G2(s1,−s1)− 30s1k8(s1,−s1) (32)

+15s1k9(0, s1)+ 15es1s1k9(−s1, 0)

−15s1k9(s1,−s1)+ 15s1k10(0, s1)

−15es1s1k10(−s1, 0)+ 15s1k10(s1,−s1)
−30es1s1k11(−s1, 0)− 30s1k12(0, s1)
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−15s1k13(0, s1)+ 15es1s1k13(−s1, 0)

+15s1k13(s1,−s1)− 15s1G1(s1)k3(−s1)
−15e−s1s1G1(s1)k3(s1)+ 60s1G1(s1)k6(−s1)
+60e−s1s1G1(s1)k7(s1)− 15es1k3(−s1)
−15k3(−s1)− 15e−s1k3(s1)− 15k3(s1)

+60k6(−s1)+ 60k6(s1)+ 60es1k7(−s1)
+60e−s1k7(s1)+ 60k3(0)

−120k6(0)− 120k7(0)
)
.

The restriction of the functional relation (31) to the hyperplane s1 + s2 + s3 = 0
yields

1

8
es1∂2k11 (s2,−s1 − s2)− 1

8
es1+s2∂2k12 (−s1 − s2, s1) (33)

−1

8
∂1k8 (s1, s2)+ 1

8
es1+s2∂1k12 (−s1 − s2, s1)

= −
(
K̃8(s1, s2, s3)− K̃8, s(s1, s2, s3)

) ∣∣
s3=−s1−s2 ,

where

K̃8, s(s1, s2, s3) = 1

8 (s1 + s2 + s3)

(
− k8 (s1, s2)+ es1+s2+s3k8 (−s2 − s3, s2)

−es1k11 (s2,−s1 − s2)+ es1k11 (s2, s3)

−es1+s2k12 (−s1 − s2, s1)+ es1+s2k12 (s3,−s2 − s3)
)
.

In order to see the general structure in a 4-variable case, we just mention that
the restriction to the hyperplane s1 + s2 + s3 + s4 = 0 of the functional relation
corresponding to the function K̃17 gives

− 1

16
es1+s2∂3k17 (s3,−s1 − s2 − s3, s1) (34)

+ 1

16
es1∂3k19 (s2, s3,−s1 − s2 − s3)

+ 1

16
es1+s2∂2k17 (s3,−s1 − s2 − s3, s1)

− 1

16
es1+s2+s3∂2k19 (−s1 − s2 − s3, s1, s2)
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− 1

16
∂1k17 (s1, s2, s3)+ 1

16
es1+s2+s3∂1k19 (−s1 − s2 − s3, s1, s2)

= −
(
K̃17(s1, s2, s3, s4)− K̃17, s(s1, s2, s3, s4)

) ∣∣
s4=−s1−s2−s3 ,

where

K̃17, s(s1, s2, s3, s4) = 1

16 (s1 + s2 + s3 + s4)
(

− k17 (s1, s2, s3)

−es1+s2k17 (s3,−s1 − s2 − s3, s1)

+es1+s2k17 (s3, s4,−s2 − s3 − s4)

+es1+s2+s3+s4k17 (−s2 − s3 − s4, s2, s3)

−es1k19 (s2, s3,−s1 − s2 − s3)+ es1k19 (s2, s3, s4)

−es1+s2+s3k19 (−s1 − s2 − s3, s1, s2)

+es1+s2+s3k19 (s4,−s2 − s3 − s4, s2)
)
.

6.3 Action of cyclic groups in the differential system, invariant
expressions and simple flow of the system

In the partial differential system of the form given by (32), (33), (34) the action of
the cyclic groups Z/2Z, Z/3Z, Z/4Z is involved. For example, in (32) one can see
very easily that Z/2Z is acting by

T2(s1) = −s1, s1 ∈ R.

Using this fact, in [17], symmetries of some lengthy expressions are explored, which
we recall in this subsection.

Theorem 6.1 For any integers j0, j1 in {3, 4, 5, 6, 7},

e−
s1
2

(
−(k′

j0
(s1)+ k′

j1
(s1))+ es1

(
k′
j0
(−s1)+ k′

j1
(−s1)

))
,

is in the kernel of 1 + T2. Moreover, considering the finite difference expressions in
the differential system corresponding to the following cases, one can find explicitly
finite differences of the kj that are in the kernel of 1 + T2:

(1) When (j0, j1) = (3, 3).
(2) When (j0, j1) = (4, 4).
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(3) When (j0, j1) = (5, 5).
(4) When (j0, j1) = (6, 7).

In (33), the action of Z/3Z is involved as we have the following transformation
acting on the variables:

T3(s1, s2) = (−s1 − s2, s1). (35)

Using the latter, symmetries of more complicated expressions are discovered in [17]:

Theorem 6.2 For any integers j0, j1, j2 in {8, 9, . . . , 16},

e−
2s1
3 − s2

3

(
− ∂1(kj0 + kj1 + kj2) (s1, s2)

−es1+s2(∂2 − ∂1)(kj0 + kj1 + kj2) (−s1 − s2, s1)

+es1∂2(kj0 + kj1 + kj2) (s2,−s1 − s2)
)

is in the kernel of 1 + T3 + T 2
3 . Also there are finite differences of the functions kj

associated with the following cases that are in the kernel of 1 + T3 + T 2
3 :

(1) When (j0, j1, j2) = (8, 12, 11).
(2) When (j0, j1, j2) = (9, 13, 10).
(3) When (j0, j1, j2) = (14, 16, 15).

The action of Z/4Z in the partial differential system can be seen in (34) since the
following transformation is involved:

T4(s1, s2, s3) = (−s1 − s2 − s3, s1, s2).

The symmetries of the functions with respect to this action are also analyzed in [17]:

Theorem 6.3 For any pair of integers j0, j1 in {17, 18, 19, 20},

e−
3s1
4 − s2

2 − s3
4

(
− ∂1(kj0 + kj1) (s1, s2, s3)

−es1+s2+s3(∂2 − ∂1)(kj0 + kj1)(−s1 − s2 − s3, s1, s2)

−es1+s2(∂3 − ∂2)(kj0 + kj1)(s3,−s1 − s2 − s3, s1)

+es1∂3(kj0 + kj1)(s2, s3,−s1 − s2 − s3)
)

is in the kernel of 1 + T4 + T 2
4 + T 3

4 . Moreover, there are expressions given by finite
differences of the kj corresponding to the following cases that are in the kernel of
1 + T4 + T 2

4 + T 3
4 :

(1) When (j0, j1) = (17, 19).
(2) When (j0, j1) = (18, 18).
(3) When (j0, j1) = (20, 20).
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Moreover, in [17], it is shown that a very simple flow defined by

(s1, s2, . . . , sn) �→ (s1 + t, s2, . . . , sn),

combined with the action of the cyclic groups as described above, can be used to
write the differential part of the partial differential system. In order to illustrate
the idea, we just mention that, for example, in the case that the action of Z/3Z
is involved via the transformation (35), one defines the orbit Ok of any 2-variable
function k by

Ok(s1, s2) = (k(s1, s2), k(−s1 − s2, s1), k(s2,−s1 − s2)) .

Then one has to use the auxiliary function

α2(s1, s2) = e−
2s1
3 − s2

3 ,

to write
(
d

dt

∣∣
t=0 Ok(s1 + t, s2)

)
· (Oα2(s1, s2))

as a finite difference expression when k = kj0 + kj1 + kj2 and (j0, j1, j2) is either
(8, 12, 11), (9, 13, 10), or (14, 16, 15). One can refer to §4.3 of [17] for more details
and to see the treatment of all cases in detail.

6.4 Gradient calculations leading to functional relations

Here we explain how the functional relations written in Section 6.1 were derived
in [17]. In fact the idea comes from [21], where a fundamental identity was proved
and by means of a functional relation, the 2-variable function of the scalar curvature
term a2 was written in terms of its 1-variable function. The main identity to use from
[21] is that, if we consider the conformally perturbed Laplacian,

8h = eh/28eh/2.

then for the spectral zeta function defined by

ζh(a, s) = Tr(a8−s
h ), s ∈ C, &(s) 2 0,

one has

d

dε

∣
∣
ε=0 ζh+εa(1, s) = − s

2
ζh (̃a, s) , (36)
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where

ã =
∫ 1

−1
euh/2ae−uh/2 du.

One can then see that

ζh(a,−1) = −ϕ0(a a4(h)), a ∈ C∞(T2
θ ), h = h∗ ∈ C∞(T2

θ ).

Therefore, it follows from (36) that

d

dε

∣∣
ε=0 ϕ0(a4(h+ εa)) = −1

2
ζh(̃a,−1) = 1

2
ϕ0(̃a a4(h)) = −ϕ0

(
aeh ã4(h)

)
.

(37)
where ã4(h) is given by the same formula as (25) when the functionsKj(s1, . . . , sn)
are replaced by

K̃j (s1, . . . , sn) = 1

2n
sinh ((s1 + · · · + sn)/2)

(s1 + · · · + sn)/2
Kj(s1, . . . , sn).

Hence, the gradient d
dε

∣∣
ε=0 ϕ0(a4(h + εa)) can be calculated mainly by using the

important identity (37).
There is a second way of calculating the gradient d

dε

∣∣
ε=0 ϕ0(a4(h+ εa)) which

yields finite difference expressions. For this approach a series of lemmas were
necessary as proved in [17], which are of the following type.

Lemma 6.2 For any smooth function L(s1, s2, s3) and any elements x1, x2, x3, x4
in C(T2

θ ), under the trace ϕ0, one has:

eh
(
d

dε

∣∣
ε=0 L(∇ε,∇ε,∇ε)(x1 · x2 · x3)

)
x4

= aehLε3,1(∇,∇,∇,∇)(x1 · x2 · x3 · x4)

+aehLε3,2(∇,∇,∇,∇)(x2 · x3 · x4 · x1)

+aehLε3,3(∇,∇,∇,∇)(x3 · x4 · x1 · x2)

+aehLε3,4(∇,∇,∇,∇)(x4 · x1 · x2 · x3),

where

Lε3,1(s1, s2, s3, s4) := es1+s2+s3+s4 L(−s2 − s3 − s4, s2, s3)− L(s1, s2, s3)

s1 + s2 + s3 + s4
,

Lε3,2(s1, s2, s3, s4) := es1+s2+s3 L(s4, − s2 − s3 − s4, s2)−L(−s1 − s2 − s3, s1, s2)
s1 + s2 + s3 + s4

,
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Lε3,3(s1, s2, s3, s4) := es1+s2 L(s3, s4,−s2 − s3 − s4)− L(s3,−s1 − s2 − s3, s1)

s1 + s2 + s3 + s4
,

Lε3,4(s1, s2, s3, s4) := es1
L(s2, s3, s4)− L(s2, s3,−s1 − s2 − s3)

s1 + s2 + s3 + s4
.

Also, in order to perform necessary manipulations in the second calculation of
the gradient d

dε

∣∣
ε=0 ϕ0(a4(h+ εa)), one needs lemmas of this type:

Lemma 6.3 For any smooth function L(s1, s2, s3) and any elements x1, x2, x3 in
C(T2

θ ), one has:

δj (L(∇,∇,∇)(x1 · x2 · x3))

= L(∇,∇,∇)(δj (x1) · x2 · x3)+ L(∇,∇,∇)(x1 · δj (x2) · x3)

+L(∇,∇,∇)(x1 · x2 · δj (x3))+ Lδ3,1(∇,∇,∇,∇)(δj (h) · x1 · x2 · x3)

+Lδ3,2(∇,∇,∇,∇)(x1 · δj (h) · x2 · x3)

+Lδ3,3(∇,∇,∇,∇)(x1 · x2 · δj (h) · x3)

+Lδ3,4(∇,∇,∇,∇)(x1 · x2 · x3 · δj (h)),

where

Lδ3,1(s1, s2, s3, s4) := L(s2, s3, s4)− L(s1 + s2, s3, s4)

s1
,

Lδ3,2(s1, s2, s3, s4) := L(s1 + s2, s3, s4)− L(s1, s2 + s3, s4)

s2
,

Lδ3,3(s1, s2, s3, s4) := L(s1, s2 + s3, s4)− L(s1, s2, s3 + s4)

s3
,

Lδ3,4(s1, s2, s3, s4) := L(s1, s2, s3 + s4)− L(s1, s2, s3)

s4
.

After performing the second gradient calculation in [17], and comparing it
with the first calculation based on (37), the functional relations were derived
conceptually.

6.5 The term a4 for non-conformally flat metrics on
noncommutative four tori

It was illustrated in [17] that, having the calculation of the term a4 for the
noncommutative two torus in place, one can conveniently write a formula for the
term a4 of a non-conformally flat metric on the noncommutative four torus that is the
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product of two noncommutative two tori. The metric is the noncommutative analog
of the following metric. Let (x1, y1, x2, y2) ∈ T

4 = (R/2πZ)4 be the coordinates
of the ordinary four torus and consider the metric

g = e−h1(x1,y1)
(
dx2

1 + dy2
1

)
+ e−h2(x2,y2)

(
dx2

2 + dy2
2

)
,

where h1 and h2 are smooth real valued functions. The Weyl tensor is conformally
invariant, and one can assure that the above metric is not conformally flat by
calculating the components of its Weyl tensor and observing that they do not all
vanish. The non-vanishing components are:

C1212 = 1

6
e−h1(x1,y1)∂2

y1
h1 (x1, y1)

+1

6
eh2(x2,y2)−2h1(x1,y1)∂2

y2
h2 (x2, y2)

+1

6
e−h1(x1,y1)∂2

x1
h1 (x1, y1)

+1

6
eh2(x2,y2)−2h1(x1,y1)∂2

x2
h2 (x2, y2) ,

C1313 = −1

2
e−h2(x2,y2)+h1(x1,y1)C1212,

C2424 = C2323 = C1414 = C1313,

C3434 = e−2h2(x2,y2)+2h1(x1,y1)C1212.

Now, one can consider a noncommutative four torus of the form T
2
θ ′ × T

2
θ ′′

that is the product of two noncommutative two tori. Its algebra has four unitary
generators U1, V1, U2, V2 with the following relations: each element of the pair
(U1, V1) commutes with each element of the pair (U2, V2), and there are fixed
irrational real numbers θ ′ and θ ′′ such that:

V1 U1 = e2πiθ ′
U1 V1, V2 U2 = e2πiθ ′′

U2 V2.

One can then choose conformal factors e−h′
and e−h′′

, where h′ and h′′ are
selfadjoint elements inC∞(T2

θ ′) andC∞(T2
θ ′′), respectively, and use them to perturb

the flat metric of each component conformally. Then the Laplacian of the product
geometry is given by

8ϕ′,ϕ′′ = 8ϕ′ ⊗ 1 + 1 ⊗ 8ϕ′′ ,
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where 8ϕ′ and 8ϕ′′ are, respectively, the Laplacians of the perturbed metrics on
T

2
θ ′ and T

2
θ ′′ . Now one can use a simple Kunneth formula to find the term a4 in the

asymptotic expansion

Tr(a exp(−t8ϕ′,ϕ′′)) ∼ t−2
(
(ϕ′

0 ⊗ ϕ′′
0 )(a a0)+ (ϕ′

0 ⊗ ϕ′′
0 )(a a2) t

+(ϕ′
0 ⊗ ϕ′′

0 )(a a4) t
2 + · · ·

)
(38)

in terms of the known terms appearing in the following expansions:

Tr(a′ exp(−t8ϕ′)) ∼ t−1
(
ϕ′

0(a
′ a′

0)+ ϕ′
0(a

′ a′
2) t + ϕ′

0(a
′ a′

4) t
2 + · · ·

)
,

Tr(a′′ exp(−t8ϕ′′)) ∼ t−1
(
ϕ′′

0 (a
′′ a′′

0 )+ ϕ′′
0 (a

′′ a′′
2 ) t + ϕ′′

0 (a
′′ a′′

4 ) t
2 + · · ·

)
.

The general formula is

a2n =
n∑

i=0

a′
2i ⊗ a′′

2(n−i) ∈ C∞(T2
θ ′ × T

2
θ ′′),

hence an explicit formula for a4 of the noncommutative four torus with the product
geometry explained above since there are explicit formulas for its ingredients.

In this case of the non-conformally flat metric on the product geometry, two
modular automorphisms are involved in the formulas for the geometric invariants
and this motivates further systematic research on twistings that involve two-
dimensional modular structures, cf. [13].

7 Twisted spectral triples and Chern-Gauss-Bonnet theorem
for ergodic C∗-dynamical systems

This section is devoted to the notion of twisted spectral triples and some details
of their appearance in the context of noncommutative conformal geometry. In
particular we explain construction of twisted spectral triples for ergodic C∗-
dynamical systems and the validity of the Chern-Gauss-Bonnet theorem in this vast
setting.

7.1 Twisted spectral triples

The notion of twisted spectral triples was introduced in [20] to incorporate the study
of type III algebras using noncommutative differential geometric techniques. In
the definition of this notion, in addition to a triple (A,H,D) of a ∗-algebra A, a
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Hilbert space H , and an unbounded operator D on H which plays the role of the
Dirac operator, one has to bring into the picture an automorphism σ of A which
interacts with the data as follows. Instead of the ordinary commutators [D, a] as
in the definition of an ordinary spectral triple, in the twisted case one asks for the
boundedness of the twisted commutators [D, a]σ = Da − σ(a)D. More precisely,
here also one assumes a representation of A by bounded operators on H such that
the operator Da − σ(a)D is defined on the domain of D for any a ∈ A, and that it
extends by continuity to a bounded operator on H .

This twisted notion of a spectral triple is essential for type III examples as this
type of algebras do not possess non-zero trace functionals, and ordinary spectral
triples with suitable properties cannot be constructed over them for the following
reason [20]. If (A,H,D) is an m+-summable ordinary spectral triple then the
following linear functional on A defined by

a �→ Trω(a|D|−m)

gives a trace. The main reason for this is that the kernel of the Dixmier trace Trω is a
large kernel that contains all operators of the form |D|−ma − a|D|−m, a ∈ A, if the
ordinary commutators are bounded. In fact we are using the regularity assumption
on the spectral triple, which in particular requires boundedness of the commutators
of elements of A with |D| as well as with D (indeed this is a natural condition and
the main point is that one is using ordinary commutators). Hence, trace-less algebras
cannot fit into the paradigm of ordinary spectral triples.

It is quite amazing that in [20], examples are provided where one can obtain
boundedness of twisted commutators Da − σ(a)D and |D|a − σ(a)|D| for all
elements a of the algebra by means of an algebra automorphism σ , where the Dirac
operatorD has them+-summability property. Then they use the boundedness of the
twisted commutators to show that operators of the form |D|−ma − σ−m(a)|D|−m
are in the kernel of the Dixmier trace and the linear functional a �→ Trω(a|D|−m)
yields a twisted trace on A.

7.2 Conformal perturbation of a spectral triple

One of the main examples in [20] that demonstrates the need for the notion
of twisted spectral triples in noncommutative geometry is related to conformal
perturbation of Riemannian metrics. That is, if D is the Dirac operator of a spin
manifold equipped with a Riemannian metric g, then, after a conformal perturbation
of the metric to g̃ = e−4hg by means of a smooth real valued function h on the
manifold, the Dirac operator of the perturbed metric g̃ is unitarily equivalent to the
operator

D̃ = ehDeh.
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So this suggests that given an ordinary spectral triple (A,H,D) with a noncommu-
tative algebra A, since the metric is encoded in the analog D of the Dirac operator,
one can implement conformal perturbation of the metric by fixing a self-adjoint
element h ∈ A and by then replacing D with D̃ = ehDeh. However, it turns out
that the triple (A,H, D̃) is not necessarily a spectral triple any more, since, because
of noncommutativity of A, the commutators [D̃, a], a ∈ A, are not necessarily
bounded operators. Despite this, interestingly, the remedy brought forth in [20] is to
introduce the automorphism

σ(a) = e2hae−2h, a ∈ A,

which yields the bounded twisted commutators

[D̃, a]σ = D̃a − σ(a)D̃, a ∈ A.

7.3 Conformal perturbation of the flat metric on T
2
θ

Another important example, which is given in [22], shows that twisted spectral
triples can arise in a more intrinsic manner, compared to the example we just
illustrated, when a conformal perturbation is implemented. In [22], the flat geometry
of T

2
θ is perturbed by a fixed conformal factor e−h, where h = h∗ ∈ C∞(T2

θ ).
This is done by replacing the canonical trace ϕ0 on C(T2

θ ) (playing the role of
the volume form) by the tracial state ϕ(a) = ϕ0(ae

−h), a ∈ C(T2
θ ). In order to

represent the opposite algebra of C(T2
θ ) on the Hilbert space Hϕ , obtained from

C(T2
θ ) by the GNS construction, one has to modify the ordinary action induced by

right multiplication. That is, one has to consider the action defined by

aop · ξ = ξe−h/2aeh/2.

It then turns out that with the new action, the ordinary commutators [D, a], a ∈
C∞(T2

θ )
op, are not bounded any more, where D is the Dirac operator

D =
(

0 ∂∗
ϕ

∂ϕ 0

)
: H → H.

Here,

∂ϕ = δ1 + iδ2 : Hϕ → H(1,0),

where H(1,0), the analogue of (1, 0)-forms, is the Hilbert space completion of finite
sums

∑
a∂(b), a, b ∈ A∞

θ , with respect to the inner product
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(a∂b, c∂d) = ϕ0(c
∗a(∂b)(∂d)∗),

and

H = Hϕ ⊕ H(1,0).

The remedy for obtaining bounded commutators is to use a twist given by the
automorphism

σ(aop) = e−h/2aeh/2,

which leads to bounded twisted commutators [22]

[D, aop]σ = Daop − σ(aop)D, a ∈ C∞(T2
θ )
op.

7.4 Conformally twisted spectral triples for C∗-dynamical
systems

The example in Section 7.3 inspired the construction of twisted spectral triples for
general ergodicC∗-dynamical systems in [29]. The Dirac operator used in this work,
following more closely the geometric approach taken originally in [9], is the analog
of the de Rham operator. An important reason for this choice is that an important
goal in [29] was to confirm the validity of the analog of the Chern-Gauss-Bonnet
theorem in the vast setting of ergodic C∗-dynamical systems.

In this subsection we consider aC∗-algebra A with a strongly continuous ergodic
action α of a compact Lie groupG of dimension n, and we let A∞ denote the smooth
subalgebra of A, which is defined as:

A∞ = {a ∈ A : the map g �→ αg(a) is in C∞(G,A)}.

Following closely the construction in [9], we can define a space of differential forms
on A by using the exterior powers of g∗, namely that for k = 0, 1, 2, . . . , n, we set:

�k(A,G) = A ⊗
k∧
g∗, (39)

where g∗ is the linear dual of the Lie algebra g of the Lie group G. We consider
the inner product 〈·, ·〉 on g∗ induced by the Killing form, and extend it to an inner
product on

∧k g∗ by setting

〈v1 ∧ · · · ∧ vk,w1 ∧ · · · ∧ wk〉 = det(〈vi, wj 〉).
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After fixing an orthonormal basis (ωj )j=1,...,n for g∗, we equip the above
differential forms with an exterior derivative d : �k(A,G) → �k+1(A,G) given
by

d(a ⊗ ωi1 ∧ ωi2 ∧ · · · ∧ ωik ) =
n∑

j=1

∂j (a)⊗ ωj ∧ ωi1 ∧ ωi2 ∧ · · · ∧ ωik (40)

− 1

2

k∑

j=1

∑

α,β

(−1)j+1c
ij
αβa ⊗ ωα ∧ ωβ

∧ ωi1 ∧ · · · ∧ ωij−1 ∧ ωij+1 ∧ · · · ∧ ωik ,

where the coefficients ciαβ are the structure constants of the Lie algebra g determined
by the relations

[∂α, ∂β ] =
n∑

i=1

ciαβ∂i

for the predual (∂j )j=1,...,n of (ωj )j=1,...,n. This exterior derivative satisfies d◦d = 0
on �•(A,G), therefore we have a complex (�•(A,G), d). This complex is called
the Chevalley-Eilenberg cochain complex with coefficients in A, one can refer to
[44] for more details.

We now define an inner product on �k(A,G), for which we make use of the
unique G-invariant tracial state ϕ0 on A, see [37]. The inner product is defined by

(a ⊗ v1 ∧ · · · ∧ vk, a′ ⊗ w1 ∧ · · · ∧ wk)0 = ϕ0(a
∗a′) det(〈vi, wj 〉). (41)

We denote the Hilbert space completion of �k(A,G) with respect to this inner
product by Hk,0.

In order to implement a conformal perturbation, we fix a selfadjoint element
h ∈ A∞, define the following new inner product on �k(A,G):

(a⊗v1 ∧· · ·∧vk, a′ ⊗w1 ∧· · ·∧wk)h = ϕ0(a
∗a′e(n/2−k)h) det(〈vi, wj 〉), (42)

and denote the associated Hilbert space by Hk,h.
One of the goals is to construct ordinary and twisted spectral triples by using

the unbounded operator d + d∗, the analog of the de Rham operator, acting on the
direct sum of all Hk,h. Here the adjoint d∗ of d is of course taken with respect to the
conformally perturbed inner product (·, ·)h. The Hilbert spaces are simply related
by the unitary maps Uk : Hk,0 → Hk,h given on degree k forms by:

Uk(a ⊗ v1 ∧ · · · ∧ vk) = ae−(n/2−k)h/2 ⊗ v1 ∧ · · · ∧ vk.
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Therefore, for simplicity, we use these unitary maps to transfer the operator d + d∗
to an unbounded operator D acting on the Hilbert space H that is the direct sum of
all Hk,0. We can now state the following result from [29].

Theorem 7.1 Consider the above constructions associated with a C∗-algebra A
with an ergodic action of an n-dimensional Lie group G. The operator D has
a selfadjoint extension which is n+-summable. With the representation of A∞ on
H = ⊕

kHk,0 induced by left multiplication, the triple (A∞,H,D) is an ordinary
spectral triple. However, when one represents the opposite algebra of A∞ on H
using multiplication from right, one obtains a twisted spectral triple with respect to
the automorphism defined by β(aop) = ehae−h.

The spectral triples described in the above theorem can in fact be equipped with
the grading operator given by

γ (a ⊗ v1 ∧ · · · ∧ vk) = (−1)k(a ⊗ v1 ∧ · · · ∧ vk).

Related to this grading, it is interesting to study the Fredholm index of the operator
D, which is unitarily equivalent to d + d∗, when viewed as an operator from the
direct sum of all even differential forms to the direct sum of all odd differential
forms. We shall discuss this issue shortly.

7.5 The Chern-Gauss-Bonnet theorem for C∗-dynamical
systems

In Section 4 we briefly discussed the Gauss-Bonnet theorem for surfaces, which
states that for any closed oriented two-dimensional Riemannian manifold � with
scalar curvature R, one has

1

4π

∫

�

R = χ(�),

where χ(�) is the Euler characteristic of �. The Chern-Gauss-Bonnet theorem
generalizes this result to higher even dimensional manifolds. That is, in higher
dimensions as well, the Euler characteristic, which is a topological invariant,
coincides with the integral of a certain geometric invariant, namely the Pfaffian
of the curvature form. Given a closed oriented Riemannian manifold M of even
dimension n, consider the Levi-Civita connection, which is the unique torsion-
free metric-compatible connection on the tangent bundle TM . Let us denote the
matrix of local 2-forms representing the curvature of this connection by �. The
Chern-Gauss-Bonnet theorem states that the Pfaffian of � (the square root of the
determinant defined on the space of anti-symmetric matrices) integrates over the
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manifold to the Euler characteristic of the manifold, up to multiplication by a
universal constant:

1

(2π)n

∫

M

Pf(�) = χ(M).

Interestingly, there is a spectral way of interpreting such relations between local
geometry and topology of manifolds. Relevant to our discussion is indeed the
Fredholm index of the de Rham operator d + d∗, where d is the de Rham exterior
derivative and d∗ is its adjoint with respect to the metric on the differential forms
induced by the Riemannian metric. The Fredholm index of d + d∗ should be
calculated when the operator is viewed as a map from the direct sum of all even
differential forms to the direct sum of all odd differential forms on M:

d + d∗ : �evenM =
⊕

�2kM → �oddM =
⊕

�2k+1M

The index of this operator is certainly an important geometric quantity since the
adjoint d∗ of d heavily depends on the choice of metric on the manifold. Amazingly,
using the Hodge decomposition theorem, one can find a canonical identification of
the de Rham cohomology group Hk(M) with the kernel of the Laplacian 8k =
d∗d + dd∗ : �kM → �kM . This can then be used to show that the index of d + d∗
is equal to the Euler characteristic of M . Moreover, one can appeal to the McKean-
Singer index theorem to find curvature related invariants appearing in small time
heat kernel expansions associated with d + d∗ to see that the index is given by the
integral of curvature related invariants.

In [29], this spectral approach is taken to show that the analog of the Chern-
Gauss-Bonnet theorem can be established for ergodic C∗-dynamical systems. Let us
consider the setup and the constructions presented in Section 7.4 for a C∗-algebra
A with an ergodic action of a compact Lie group G of dimension n. Then, one of
the main results proved in [29] is the following statement. Here, d is given by (40),
h = h∗ ∈ A∞ is the element that was used to implement with eh a conformal
perturbation of the metric, and the Hilbert space Hk,h is the completion of the k-
differential forms �k(A,G) with respect to the perturbed metric.

Theorem 7.2 The Fredholm index of the operator

d + d∗ :
⊕

k

H2k,h →
⊕

k

H2k+1,h

is equal to the Euler characteristic χ(A,G) of the complex (�•(A,G), d). Since
χ(A,G) = ∑

k(−1)kdim
(
Hk(A,G)

)
is the alternating sum of the dimensions of

the cohomology groups, the index of d + d∗ is independent of the conformal factor
eh used for perturbing the metric.
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8 The Ricci curvature

Classically, scalar curvature is only a deem shadow of the full Riemann curvature
tensor. In fact there is no evidence that Riemann considered anything else but the
full curvature tensor, and, equivalently, the sectional curvature. Both were defined
by him for a Riemannian manifold. The Ricci and scalar curvatures were later
defined by contracting the Riemann curvature tensor with the metric tensor. Once
the metric is given in a local coordinate chart, all three curvature tensors can be
computed explicitly via algebraic formulas involving only partial derivatives of the
metric tensor. This is a purely algebraic process, with deep geometric and analytic
implications. It is also a top-down process, going from the full Riemann curvature
tensor, to Ricci curvature, and then to scalar curvature.

The situation in the noncommutative case is reversed and we have to move up
the ladder, starting from the scalar curvature first, which is the easiest to define
spectrally, being given by the second term of the heat expansion for the scalar
Laplacian, the square of the Dirac operator in general. Thus after treating the
scalar curvature, which we recalled in previous sections together with examples,
one should next try to define and possibly compute, in some cases, a Ricci curvature
tensor. But how? In [34] and motivated by the local formulas for the asymptotic
expansion of heat kernels in spectral geometry, the authors propose a definition
of Ricci curvature in a noncommutative setting. One necessarily has to use the
asymptotic expansion of Laplacians on functions and 1-forms and a version of the
Weitzenböck formula.

As we shall see in this section, the Ricci operator of an oriented closed
Riemannian manifold can be realized as a spectral functional, namely the functional
defined by the zeta function of the full Laplacian of the de Rham complex,
localized by smooth endomorphisms of the cotangent bundle and their trace. In the
noncommutative case, this Ricci functional uniquely determines a density element,
called the Ricci density, which plays the role of the Ricci operator. The main result of
[34] provides a general definition and an explicit computation of the Ricci density
when the conformally flat geometry of the curved noncommutative two torus is
encoded in the de Rham spectral triple. In a follow-up paper [24], the Ricci curvature
of a noncommutative curved three torus is computed. In this section we explain these
recent developments in more detail.

8.1 A Weitzenböck formula

The Weitzenböck formula

Hodge − Bochner = Ricci
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in conjunction with Gilkey’s asymptotic expansion gives an opening to define the
Ricci curvature in spectral terms. Let M be a closed oriented Riemannian manifold.
Consider the de Rham spectral triple

(C∞(M),L2(�ev(M))⊕ L2(�odd(M)), d + δ, γ ),

which is the even spectral triple constructed from the de Rham complex. Here d is
the exterior derivative, δ is its adjoint acting on the exterior algebra, and γ is the Z2-
grading on forms. The eigenspaces for eigenvalues 1 and -1 of γ are even and odd
forms, respectively. The full Laplacian on forms � = dδ + δd is the Laplacian of
the Dirac operator d+δ, and is the direct sum of Laplacians on p-forms,� = ⊕�p.
As a Laplace type operator, � can be written as ∇∗∇ −E by Weitzenböck formula,
where ∇ is the Levi-Civita connection extended to all forms and

E = −1

2
c(dxμ)c(dxν)�(∂μ, ∂ν).

Here c denotes the Clifford multiplication and � is the curvature operator of the
Levi-Civita connection acting on exterior algebra. The restriction of E to one forms
gives the Ricci operator.

8.2 Ricci curvature as a spectral functional

The Ricci curvature of a Riemannian manifold (Mm, g) is originally defined as
follows. Let ∇ be the Levi-Civita connection of the metric g. The Riemannian
operator and the curvature tensor are defined for vector fields X, Y,Z,W by

Riem(X, Y ) := ∇X∇Y − ∇Y∇X − ∇[X,Y ],

Riem(X, Y,Z,W) := g(Riem(X, Y )Z,W).

With respect to the coordinate frame ∂μ = ∂
∂xμ

, the components of the curvature
tensor are denoted by

Riemμνρε := Riem(∂μ, ∂ν, ∂ρ, ∂ε).

The components of the Ricci tensor Ric and scalar curvature R are given by

Ricμν := gρεRiemμρεν,

R := gμνRicμν = gμνgρεRiemμρεν.

Now these algebraic formulas have no chance to be extended to a noncommutative
setting in general. One must thus look for a spectral alternative reformulation.
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Let P : C∞(V ) → C∞(V ) be a positive elliptic differential operator of order
two acting on the sections of a smooth Hermitian vector bundle V overM . The heat
trace Tr(e−tP ) has a short time asymptotic expansion of the form

Tr(e−tP ) ∼
∞∑

n=0

an(P )t
n−m

2 , t → 0+,

where an(P ) are integrals of local densities

an(P ) =
∫

tr(an(x, P ))dx.

Here dx = dvolx is the Riemannian volume form and tr is the fiberwise matrix
trace. The endomorphism an(x, P ) can be uniquely determined by localizing the
heat trace by an smooth endomorphism F of V . It is easy to see that the asymptotic
expansion of the localized heat trace Tr(Fe−tP ) is of the form

Tr(Fe−tP ) ∼
∞∑

n=0

an(F, P )t
n−m

2 , (43)

with

an(F, P ) =
∫

tr
(
F(x)an(x, P )

)
dx. (44)

If P is a Laplace type operator i.e., its leading symbol is given by the metric
tensor, then the densities an(x, P ) can be expressed in terms of the Riemannian cur-
vature, an endomorphism E, and their derivatives. The endomorphism E measures
how far the operator P is from being the Laplacian ∇∗∇ of a connection ∇ on V ,
that is

E = ∇∗∇ − P. (45)

The first two densities of the heat equation for such P are given by [36, Theorem
3.3.1]

a0(x, P ) = (4π)−m/2I, (46)

a2(x, P ) = (4π)−m/2
(

1

6
R(x)+ E

)
. (47)

For the scalar Laplacian 80, the connection is the de Rham differential d :
C∞(M) → �1(M), and E = 0. Hence the first two first terms of the heat kernel of
80 are given by
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a0(x,80) = (4π)−m/2, (48)

a2(x,80) = (4π)−m/2 1

6
R(x). (49)

For Laplacian on one forms 81 : �1(M) → �1(M), the Hodge-de Rham
Laplacian, the connection in (45) is the Levi-Civita connection on the cotangent
bundle. The endomorphism E is the negative of the Ricci operator, E = −Ric, on
the cotangent bundle, which is defined by raising the first index of the Ricci tensor
(denoted by Ric as well),

Ricx(α
0,X) = Ricx(α)(X), α ∈ T ∗

x M, X ∈ TxM.

Therefore, one has

a0(x,81) = (4π)−m/2I, (50)

a2(x,81) = (4π)−m/2
(

1

6
R(x)− Ricx

)
. (51)

We can use the function tr(F ) to localize the heat trace of the scalar Laplacian 80
and get the identity

a2(tr(F ),80)− a2(F,81) = (4π)−m/2
∫

M

tr
(
F(x)Ricx

)
dx. (52)

This motivates the following definition.

Definition 8.1 ([34]) The Ricci functional of the closed Riemannian manifold
(M, g) is the functional on C∞(End(T ∗M)) defined as

Ric(F ) = a2(tr(F ),80)− a2(F,81).

Proposition 8.1 For a closed Riemannian manifold M of dimension m, we have
the short time asymptotics

Tr
(

tr(F )e−t80
)

− Tr
(
Fe−t81

)
∼ Ric(F ) t1−m

2 .

Proof By (46) and (44), we have tr(F )a0(x,80) = tr(F (x)a0(x,81)). This implies
that

a0(tr(F ),80) = a0(F,81), F ∈ C∞(End(T ∗M)). (53)

The asymptotic expansion of the localized heat kernel (43) then shows that the first
terms will cancel each other. The difference of the second terms, which are multiples
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of t1−m
2 , will become the first term in the asymptotic expansion of the differences

of localized heat kernels. ��

8.3 Spectral zeta function and the Ricci functional

The spectral zeta function of a positive elliptic operator P is defined as

ζ(s, P ) = Tr(P−s(I −Q)), &(s) 2 0,

where Q is the projection on the kernel of P . Its localized version is ζ(s, F, P ) =
Tr(FP−s(I − Q)). These function have a meromorphic extension to the complex
plane with isolated simple poles. Using the Mellin transform, one finds explicit
relation between residue at the poles and coefficients of the heat kernel. This leads
to the following expression for the Ricci functional in terms of zeta functions.

Proposition 8.2 For a closed Riemannian manifold M of dimension m > 2, we
have

Ric(F ) = �
(m

2
− 1

)
ress=m

2 −1

(
ζ(s, tr(F),80)− ζ(s,F,81)

)
. (54)

If M is two-dimensional, then

Ric(F ) = ζ(0, tr(F ),80)− ζ(0, F,81)+ Tr(tr(F )Q0)− Tr(FQ1), (55)

where Qj is the projection on the kernel of Laplacian 8j , j = 0, 1.

It follows that the difference of zeta functions ζ(s, tr(F ),80) − ζ(s, F,81) is
regular at m/2, and its first pole is located at s = m/2 − 1.

To work with the Laplacian on one forms, we will use smooth endomorphisms
F of the cotangent bundle. The smearing endomorphism F̃ = tr(F )I0 ⊕ F ∈
C∞(End(

∧•
M)), where I0 denotes the identity map on functions, can be used to

localize the heat kernel of the full Laplacian and

Ric(F ) = a2(γ F̃ ,8). (56)

With the above notation, one can express the Ricci functional as special values of
the (localized) spectral zeta functions

Ric(F ) =

⎧
⎪⎪⎨

⎪⎪⎩

�(m2 − 1)ress=m
2 −1ζ(s, F̃γ,8) m > 2,

ζ(0, γ F̃ ,8)+ Tr(tr(F )Q0)− Tr(FQ1) m = 2.

(57)
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The flat de Rham spectral triple of the noncommutative two torus can be
perturbed by a Weyl factor e−h with h ∈ A∞

θ a self adjoint element. This procedure
gives rise to the de Rham spectral triple of a curved noncommutative torus. The
Ricci functional is defined in a similar fashion as above, and it can be shown that
there exists an element Ric ∈ A∞

θ ⊗M2(C), called the Ricci density, such that

Ric(F ) = 1

"(τ )ϕ(tr(FRic)e−h), F ∈ A∞
θ ⊗M2(C).

8.4 The de Rham spectral triple for the noncommutative two
torus

In this section, we describe the de Rham spectral triple of a noncommutative two
torus Aθ equipped with a complex structure. This is a deformation of the Dolbeault
complex that we used in Section. Consider the vector space W = R

2, and let τ be a
complex number in the upper half plane. Let gτ be the positive definite symmetric
bilinear form on W given by

gτ = 1

"(τ )2
( |τ |2 −&(τ )

−&(τ ) 1

)
. (58)

The inverse g−1
τ =

(
1 &(τ )

&(τ ) |τ |2
)

of gτ is a metric on the dual of W . The entries of

g−1
τ will be denoted by gjk .

Let
∧•

W ∗
C

be the exterior algebra of W ∗
C

= (W ⊗ C)∗. The algebra A∞
θ ⊗∧•

W ∗
C

is the algebra of differential forms on the noncommutative two torus Aθ . In
this framework, the Hilbert space of functions, denoted H(0), is simply the Hilbert
space given by the GNS construction of A∞

θ with respect to 1
"(τ )ϕ. Additionally, the

Hilbert space of one forms, denoted H(1), is the space H0 ⊗ (C2, g−1
τ ) with inner

product given by

〈a1 ⊕ a2, b1 ⊕ b2〉 = 1

"(τ )
∑

j,k

gjkϕ(b∗
kaj ), ai, bi ∈ A∞

θ , (59)

while the Hilbert space of two forms, denoted H(2), is given by the GNS construc-
tion of A∞

θ with respect to "(τ ) ϕ.
The exterior derivative on elements of A∞

θ is given by

a �→ iδ1(a)⊕ iδ2(a), a ∈ A∞
θ . (60)
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It will be denoted by d0, when considered as a densely defined operator from H(0)

to H(1). The operator d1 : H(1) → H(2) is defined on the elements of A∞
θ ⊕ A∞

θ as

a ⊕ b �→ iδ1(b)− iδ2(a), a, b ∈ A∞
θ . (61)

The adjoints of the operators d0 : H(0) → H(1) and d1 : H(1) → H(2) are then
given by

d∗
0 (a ⊕ b) = −iδ1(a)− i&(τ )δ2(a)− i&(τ )δ1(b)− i|τ |2δ2(b),

d∗
1 (a) = (i|τ |2δ2(a)+ i&(τ )δ1(a))⊕ (−i&(τ )δ2(a)− iδ1(a)),

for all a, b ∈ A∞
θ .

Definition 8.2 The (flat) de Rham spectral triple of Aθ is the even spectral triple

(Aθ ,H,D), where H = H(0) ⊕ H(2) ⊕ H(1), D =
(

0 d∗
d 0

)
, and d = d0 + d∗

1 .

Note that the operator d and its adjoint d∗ = d1 + d∗
0 act on A∞

θ ⊕ A∞
θ as

d =
(
iδ1 i|τ |2δ2 + i&(τ )δ1

iδ2 −i&(τ )δ2 − iδ1

)
, d∗ =

(−iδ1 − i&(τ )δ2 −i&(τ )δ1 − i|τ |2δ2

−iδ2 iδ1

)
.

(62)
Note also that the de Rham spectral triple introduced in Definition 8.2 is isospectral
to the de Rham complex spectral triple of the flat torus T

2 with the metric given
by (58).

8.5 The twisted de Rham spectral triple

The conformal perturbation of the metric on the noncommutative two torus is
implemented by changing the tracial state ϕ by a noncommutative Weyl factor e−h,
where the dilaton h is a selfadjoint smooth element of the noncommutative two
torus, h = h∗ ∈ A∞

θ . The conformal change of the metric by the Weyl factor
e−h will change the inner product on functions and on two forms as follows. On
functions, the Hilbert space given by GNS construction of Aθ with respect to the
positive linear functional ϕ0(a) = 1

"(τ )ϕ(ae
−h) will be denoted by H(0)

h . Therefore

the inner product of H(0)
h is given by

〈a, b〉0 = 1

"(τ )ϕ(b
∗ae−h), a, b ∈ Aθ .

On one forms, the Hilbert space will stay the same as in (59), and will be denoted
by H(1)

h . On the other hand, the Hilbert space of two forms, denoted by H(2)
h , is
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the Hilbert space given by the GNS construction of Aθ with respect to ϕ2(a) =
"(τ )ϕ(aeh). Hence its inner product is given by

〈a, b〉2 = "(τ )ϕ(b∗aeh), a, b ∈ Aθ .

The positive functional a �→ ϕ(ae−h), called the conformal weight, is a twisted
trace of which modular operator is given by

�(a) = e−haeh, a ∈ Aθ .

The logarithm log� of the modular operator will be denoted by ∇, and is given by
∇(a) = −[h, a]. For more details the reader can check the previous sections.

The exterior derivatives are defined in the same way they were defined in the flat
case (60) and (61). However, to emphasize that they are acting on different Hilbert
spaces, we will denote them by dh,0 : H(0)

h → H(1)
h and dh,1 : H(1)

h → H(2)
h .

Next, we consider the Hilbert spaces H+
h = H(0)

h ⊕ H(2)
h and H−

h = H(1)
h , and

the operator dh : H+
h → H−

h , dh = dh,0 + d∗
h,1. Therefore

dh =
(
iδ1

(
i|τ |2δ2 + i&(τ )δ1

)
◦ Rk2

iδ2
( − i&(τ )δ2 − iδ1

)
◦ Rk2

)
,

and its adjoint is given by

d∗
h =

(
Rk2 ◦

(
iδ1 − i&(τ )δ2

)
Rk2 ◦

( − i&(τ )δ1 − i|τ |2δ2
)

−iδ2 iδ1

)
.

We also consider the operator

Dh =
(

0 d∗
h

dh 0

)
,

which acts on Hh = H+
h ⊕H−

h . Define the Hilbert space H = H0 ⊕H0 ⊕H0 ⊕H0
and the unitary operator W : H → Hh,

W = Rk ⊕ Rk−1 ⊕ IH0⊕H0 .

The operatorDh can be transferred to an operator D̃h on H by the inner perturbation

D̃h := W ∗DhW =
(

0 Rk ◦ d∗
d ◦ Rk 0

)
.

In order to define the twisted, or modular, de Rham spectral triple for the
noncommutative two torus, we employ the following constructions from [21]. Let
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(A,H+ ⊕ H−,D) be an even spectral triple with grading operator γ , where

D =
(

0 T ∗
T 0

)
and T : H+ → H− is an unbounded operator with adjoint T ∗.

If f ∈ A is positive and invertible, then (A,H,D(f,γ )) is a modular spectral triple
with respect to the inner automorphism σ(a) = f af−1, a ∈ A [21, Lemma 1.1],
where the Dirac operator is given by

D(f,γ ) =
(

0 f T ∗
Tf 0

)
.

On the other hand, any modular spectral triple (A,H,D) with an automorphism
σ admits a transposed modular spectral triple (Aop, H̄,Dt ) [21, Proposition 1.3],
where Aop is the opposite algebra of A, H̄ is the dual Hilbert space, the action of
Aop on H̄ is the transpose of the action of A on H, Dt is the transpose of D, and σ ′
is the automorphism of Aop given by σ ′(aop) = (σ−1(a))op.

Proposition 8.3 Let k = eh/2, where h = h∗ ∈ A∞
θ . The triple (Aop

θ ,H, D̃h) is a
modular spectral triple, where the automorphism of Aop

θ is given by

aop �→ (k−1ak)op, a ∈ A∞
θ ,

and the representation of Aop
θ on H is given by the right multiplication of Aθ on H.

Moreover, the transposed of the modular spectral triple (Aop
θ ,H, D̃h) is isomorphic

to the perturbed spectral triple

(Aθ ,H, D̄h), D̄h =
(

0 kd

d∗k 0

)
, (63)

where the operators d and d∗ are as in (62).

Definition 8.3 The modular spectral triple (Aθ ,H, D̄h) in (63) will be called the
modular de Rham spectral triple of the noncommutative two torus with dilaton h.

8.6 Ricci functional and Ricci curvature for the curved
noncommutative torus

Using the pseudodifferential calculus with symbols in A∞
θ ⊗M4(C), one shows that

the localized heat trace of D̄2
h has an asymptotic expansion with coefficients of the

form

an(E, D̄
2
h) = ϕ ◦ tr

(
E cn(D̄

2
h)
)
, E ∈ A∞

θ ⊗M4(C),
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where cn(D̄2
h) ∈ A∞

θ ⊗ (
M2(C) ⊕ M2(C)

)
and tr is the matrix trace. The Ricci

functional can now be defined:

Definition 8.4 ([34]) The Ricci functional of the modular de Rham spectral triple
(Aθ ,H, D̄h) is the functional on Aθ ⊗M2(C) defined as

Ric(F ) = a2(γ F̃ , D̄
2) = ζ(0, γ F̃ , D̄2

h)+ Tr(tr(F )Q0)− Tr(FQ1),

where F̃ = tr(F ) ⊕ 0 ⊕ F , and Qj is the orthogonal projection on the kernel of
8h,j , for j = 0, 1.

Lemma 8.1 There exists an element Ric ∈ A∞
θ ⊗ M2(C) such that for all F ∈

A∞
θ ⊗M2(C)

Ric(F ) = 1

"(τ )ϕ(tr(FRic)e−h).

Proof For any such F we have

a2(γ F̃ , D̄
2) = a2(tr(F ),8h,0)− a2(F,8h,1).

Now tr(F )e−t8h,0 = tr(Fe−t8h,0⊗I2), and thus

a2(tr(F ),8h,0) = a2(F,8h,0 ⊗ I2).

As a result, we have

Ric(F ) = a2(tr(F ),8h,0)− a2(F,8h,1)

= ϕ
(

tr
(
F
(
c2(8h,0)⊗ I2 − c2(8h,1)

)))

= 1

"(τ )ϕ
(
"(τ )tr

(
F
(
c2(8h,0)⊗ I2 − c2(8h,1)

))
ehe−h

)
.

Hence,

Ric = "(τ )
(
c2(8h,0)⊗ I2 − c2(8h,1)

)
eh.

��
Definition 8.5 The element Ric is called the Ricci density of the curved noncom-
mutative torus with dilaton h.

The terms c2(8h,j ) can be computed by integrating the symbol of the parametrix

of 8h,j . Since the operator 8h,1 is a first order perturbation of 8(0,1)
ϕ , we will

only need to compute the difference c2(8h,1) − c2(8(0,1)
ϕ ) ⊗ I2. The terms
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c2(8h,0) = c2(k80k) and c2(8(0,1)
ϕ ) are computed previously in two places by

Connes-Moscovici and Fathizadeh-Khalkhali, and their difference is given by

Rγ = (
c2(k8k)⊗ I2 − c2(8(0,1)

ϕ )
)
eh

= − π

"(τ )
(
Kγ (∇)(80(log k))+Hγ

(∇1,∇2
)
(�&(log k))

+S(∇1,∇2)(�"(log k))
)
eh.

Here,

�&(&) = (δ1(&))
2 + &(τ ) (δ1(&)δ2(&)+ δ2(&)δ1(&))+ |τ |2(δ2(&))

2,

�"(&) = i"(τ )(δ1(&)δ2(&)− δ2(&)δ1(&))

with & = log k. Moreover,

Kγ (u) =
1
2 + sinh(u/2)

u

cosh2(u/4)
,

Hγ (s, t) = (
1 − cosh((s + t)/2)

)

×
t (s+t) cosh(s)−s(s+t) cosh(t)+(s−t)
(s+t+sinh(s)+sinh(t)−sinh(s+t))

st (s + t) sinh
(
s
2

)
sinh

(
t
2

)
sinh

(
s+t

2

)2 ,

S(s, t) = (s + t − t cosh(s)− s cosh(t)− sinh(s)− sinh(t)+ sinh(s + t))

s t
(
sinh

(
s
2

)
sinh

(
t
2

)
sinh

(
s+t

2

)) .

The term S coincides with the function S found in [21, 31] for scalar curvature.
Now the main result of [34] can be stated as follows. It computes the Ricci

curvature density of a curved noncommutative two torus with a conformally flat
metric. The proof of this theorem is quite long and complicated and will not be
reproduced here.

Theorem 8.1 ([34]) Let k = eh/2 with h ∈ A∞
θ a selfadjoint element. Then the

Ricci density of the modular de Rham spectral triple with dilaton h is given by

Ric = "(τ )
4π2 R

γ ⊗ I2 − 1

4π
S(∇1,∇2)

([δ1(log k), δ2(log k)])eh ⊗
(
i"(τ ) "(τ )2
−1 i"(τ )

)
.

It is important to check the classical limit for consistency. In the commutative
limit the Ricci density Ric is retrieved as lim(s,t)→(0,0) Ric. Since (cf. [21] for a
proof)
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lim
(s,t)→(0,0)

Rγ = − π

"(τ )80(log k),

and [δ1(log k), δ2(log k)] = 0, we have

Ric|θ=0 = −1

4π
80(log k)eh ⊗ I2.

If we take into account the normalization of the classical case that comes from the
heat kernel coefficients, this gives the formula for the Ricci operator in the classical
case.

Unlike the commutative case, the Ricci density Ric in the noncommutative case
is not a symmetric matrix. Indeed, it has non-zero off diagonal terms, which are
multiples of S(∇1,∇2)([δ1(log k), δ2(log k)]). This phenomenon, observed in [34]
for the first time, is obviously a consequence of the noncommutative nature of the
space. It is an interesting feature of noncommutative geometry that, contrary to the
commutative case, the Ricci curvature is not a multiple of the scalar curvature even
in dimension two. This manifests itself in the existence of off diagonal terms in the
Ricci operator Ric above.

It is clear that one can define in a similar fashion a Ricci curvature operator
for higher dimensional noncommutative tori, as well as for noncommutative toric
manifolds. Its computation in these cases poses an interesting problem. This
problem now is completely solved for noncommutative three tori in [24]. It would
also be interesting to find the analogue of the Ricci flow based on our definition of
Ricci curvature functional. It should be noted that for noncommutative two tori a
definition of Ricci flow, without a notion of Ricci curvature, is proposed in [3].

9 Beyond conformally flat metrics and beyond dimension
four

In the study of spectral geometry of noncommutative tori one is naturally interested
in going beyond conformally flat metrics and beyond dimension four. Even in the
case of noncommutative two torus it is important to consider metrics which are not
conformally flat. In fact while by uniformization theorem we know that any metric
on the two torus is conformally flat, there is strong evidence that this is not so in
the noncommutative case. This is closely related to the problem of classification
of complex structures on the noncommutative two torus via positive Hochschild
cocycles, which is still unsolved.

As far as higher dimensions go, our original methods do not allow us to treat
the dimension as a variable in the calculations and obtain explicit formulas in all
dimensions in a uniform manner. This is in sharp contrast with the classical case
where formulas work in a uniform manner in all dimensions. In this section we
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report on a very recent development [35] where progress has been made on both
fronts.

In the recent paper [35], using a new strategy based on Newton divided
differences, it is shown how to consider non-conformal metrics and how to treat all
higher dimensional noncommutative tori in a uniform way. In fact based on older
methods it was not clear how to extend the computation of the scalar curvature to a
general higher dimensional case. The class of non-conformal metrics introduced in
[35] is quite large and leads to beautiful combinatorial identities for the curvature
via divided differences. In this section we shall briefly sketch the results obtained in
[35], following closely its organization of material.

9.1 Rearrangement lemma revisited

To compute and effectively work with integrals of the form

∫ ∞

0
(uk2 + 1)−mb(uk2 + 1)umdu,

the rearrangement lemma was proved by Connes and Tretkoff in [22]. Here k =
eh/2, h, b ∈ C∞(T2

θ ) and h is selfadjoint. The problem stems from the fact that
h and b need not commute. Later on this lemma was generalized, for the sake of
curvature calculations, for more than one b in [21, 31]. A detailed study of this
lemma for more general integrands of the form

∫ ∞

0
f0(u, k)b1f1(u, k)ρ2 · · · bnfn(u, k)du,

was given by M. Lesch in [46], with a new proof and a new point of view. This
approach uses the multiplication map

μ : a1 ⊗ a2 ⊗ · · · ⊗ an �→ a1a2 · · · an
from the projective tensor product A⊗γ n to A. The above integral is expressed as
the contraction of the product of an element F(k(0), · · · , k(n)) of A⊗γ (n+1), with the
element b1 ⊗ b2 ⊗ · · · bn ⊗ 1 which is

μ
(
F(k(0), · · · , k(n))(b1 ⊗ b2 ⊗ · · · bn ⊗ 1)

)
.

The above element is usually written in the so-called contraction form

F(k(0), · · · , k(n))(b1 · b2 · · · · bn). (64)
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The following version of the rearrangement lemma is stated in [35] with the
domain of integration changed from [0,∞) to any domain in R

N .

Lemma 9.1 (Rearrangement Lemma [35]) Let A be a unital C∗-algebra, h ∈ A
be a selfadjoint element, and � be an open neighborhood of the spectrum of h in
R. For a domain U in R

N , let fj : U × � → C, 0 ≤ j ≤ n, be smooth functions
such that f (u, λ) = ∏n

j=0 fj (u, λj ) satisfies the following integrability condition:

for any compact subset K ⊂ �n+1 and every given multi-index α we have

∫

U

sup
λ∈K

|∂αλ f (u, λ)|du < ∞.

Then,

∫

U

f0(u, h)b1f1(u, h) · · · bnfn(u, h)du = F(h(0), h(1), · · · , h(n))(b1 · b2 · · · bn),
(65)

where F(λ) = ∫
U
f (u, λ)du. ��

In particular it follows that every expression in the contraction form with a
Schwartz function F ∈ S(Rn+1) used in the operator part can be written as an
integral. In fact if we set

fn(ξ, λ) = f̂ (ξ)eiξnλ, fj (ξ, λ) = eiξj λ, 0 ≤ j ≤ n− 1,

and f (ξ, λ0, · · · , λn) = ∏n
j=0 fj (ξ, λj ), by the Fourier inversion formula, we have

F(λ) = ∫
f (ξ, λ)dξ . Then, Lemma 9.1 gives the equality

F(h(0), · · · , h(n))(b1 · b2 · · · bn) =
∫

Rn
eiξ0hb1e

iξ1hb2 · · · bneiξnhf̂ (ξ)dξ. (66)

This is crucial for calculations in [35].

9.2 A new idea

As we saw in previous sections, to prove the Gauss-Bonnet theorem and to compute
the scalar curvature of a curved noncommutative two torus in [22, 30] and [21, 31],
the second density of the heat trace of the Laplacian D2 of the Dirac operator had
to be computed. First, the symbol of the parametrix of D2 was computed, next
a contour integral coming from Cauchy’s formula for the heat operator had to be
computed, and finally one had to integrate out the momentum variables. It was for
this last step that the rearrangement lemma played an important role. Luckily, the
contour integral could be avoided using a homogeneity argument.
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A key observation in [35] is that one need not wait till the last step to have
elements in the contraction form. It is just enough to start off with operators whose
symbol is written in the contraction form

F(h(0), · · · , h(n))(b1 · b2 · · · bn).
It is further noted that the symbol calculus can be effectively applied to differential
operators whose symbols can be written in the contraction form. These operators are
called h-differential operators in [35]. This is a new and larger class of differential
operators that lends itself to precise spectral analysis. It is strictly larger than the
class of Dirac Laplacians for conformally flat metrics on noncommutative tori which
has been the subject of intensive studies lately.

Next, the Newton divided difference calculus was brought in to find the action of
derivations on elements in contracted form (Theorem 9.1 below). For example, one
has

δj
(
f (h(0), h(1))(b1)

) = f (h(0), h(1))(δj (b1))+ [
h(0), h(1); f (·, h(2))(δj (h) · b)]

+[
h(1), h(2); f (h(0), ·)(b · δj (h))

]
.

Using this fact, and applying the pseudodifferential calculus, one can compute the
spectral densities of positive h-differential operators whose principal symbol is
given by a functional metric. These operators are called Laplace type h-differential
operator in [35].

This change in order of the computations, i.e. writing symbols in the contraction
form first, led to a smoother computation symbolically, and played a fundamental
in computing with more general functional metrics. It also paved the way for
calculating the curvature in all higher dimensions for conformally flat and twisted
product of flat metrics.

9.3 Newton divided differences

A nice application of the rearrangement lemma is to find a formula for the
differentials of a smooth element written in contraction form. To this end, Newton
divided differences were used in [35].

Let x0, x1, · · · , xn be distinct points in an interval I ⊂ R and let f be a function
on I . The nth-order Newton divided difference of f , denoted by [x0, x1, · · · , xn; f ],
is the coefficient of xn in the interpolating polynomial of f at the given points. In
other words, if the interpolating polynomial is p(x), then

p(x) = pn−1(x)+ [x0, x1, · · · , xn; f ](x − x0) · · · (x − xn−1),

where pn−1(x) is a polynomial of degree at most n−1. There is a recursive formula
for the divided difference which is given by
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[x0; f ] = f (x0)

[x0, x1, · · · , xn; f ] = [x1, · · · , xn; f ] − [x0, x1, · · · , xn−1; f ]
xn − x0

.

There is also an explicit formula for the divided difference:

[x0, x1, · · · , xn; f ] =
n∑

j=0

f (xj )∏
j �=l (xj − xl)

.

The Hermite-Genocchi formula gives an integral representation for the divided
differences of an n times continuously differentiable function f as an integral over
the standard simplex:

[x0, · · · , xn; f ] =
∫

�n

f (n)
( n∑

j=0

sj xj

)
ds. (67)

Let δ be a densely defined, unbounded and closed derivation on a C∗-algebra A.
If a ∈ Dom(δ), then eza ∈ Dom(δ) for any z ∈ C, and one has

δ(eza) = z

∫ 1

0
ezsaδ(a)ez(1−s)ads. (68)

Using the rearrangement lemma, one can now express the differential of a smooth
element given in contraction form. This result generalizes the expansional formula,
also known as Feynman-Dyson formula, for eA+B , and not only for elements of the
form f (h), but also for any element written in the contraction form.

Theorem 9.1 Let δ be a closed derivation of a C∗-algebra A and h ∈ Dom(δ) be
a selfadjoint element. Let bj ∈ Dom(δ), 1 ≤ j ≤ n, and let f : Rn+1 → C be a
smooth function. Then f (h(0), · · · , h(n))(b1 · b2 · · · · · bn) is in the domain of δ and

δ(f (h(0), · · · , h(n))(b1 · b2 · · · bn))

=
n∑

j=1

f (h(0), · · · , h(n))
(
b1 · · · bj−1 · δ(bj ) · bj+1 · · · bn

)

+
n∑

j=0

fj (h(0), · · · , h(n+1))
(
b1 · · · bj · δ(h) · bj+1 · · · bn

)
,

where fj (t0, · · · , tn+1), which we call the partial divided difference, is defined as

fj (t0, · · · , tn+1) = [
tj , tj+1; t �→ f (t0, · · · , tj−1, t, tj+2, · · · , tn)

]
.
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9.4 Laplace type h-differential operators and asymptotic
expansions

Let us first recall this class of differential operators which is introduced in [35].
It extends the previous classes of differential operators on noncommutative tori, in
particular Dirac Laplacians of conformally flat metrics.

Definition 9.1 ([35]) Let h ∈ C∞(Tdθ ) be a smooth selfadjoint element.

(i) An h-differential operator on T
d
θ is a differential operator P = ∑

α pαδ
α, with

C∞(Tdθ )-valued coefficients pα which can be written in the contraction form

pα = Pα,α1,··· ,αk (h(0), · · · , h(k))(δα1(h) · · · δαk (h)).

(ii) A second order h-differential operator P is called a Laplace type h-differential
operator if its symbol is a sum of homogeneous parts pj of the form

p2 = P
ij

2 (h)ξiξj ,

p1 = P
ij

1 (h(0), h(1))(δi(h))ξj ,

p0 = P
ij

0,1(h(0), h(1))(δiδj (h))+ P
ij

0,2(h(0), h(1), h(2))(δi(h) · δj (h)),

where the principal symbol p2 : Rn → C∞(Tdθ ) is a C∞(Tdθ )-valued quadratic
form such that p2(ξ) > 0 for all ξ ∈ R.

We can allow the symbols to be matrix valued, that is pj : C∞(Rd) → C∞(Tdθ )⊗
Mn(C), provided that all p2(ξ) ∈ C∞(Tdθ )⊗ In for all non-zero ξ ∈ R.

Many of the elliptic second order differential operators on noncommutative tori
which were studied in the literature are Laplace type h-differential operators. For
instance, the two differential operators on T

2
θ whose spectral invariants are studied

in [21, 31] are indeed Laplace type h-differential operator. In fact with k = eh/2,
these operators are given by

k8k = kδδ∗k, 8(0,1)
ϕ = δ∗k2δ,

where δ = δ1 + τ̄ δ2 and δ∗ = δ1 + τδ2 for some complex number τ in the upper
half plane.

Let P be a positive Laplace type h-differential operator. Using the Cauchy
integral formula, one has

e−tP = −1

2πi

∫

γ

e−tλ(P − λ)−1dλ, t > 0,
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for a suitable contour γ . Expanding the symbol of the parametrix σ((P − λ)−1),
one obtains a short time asymptotic expansion for localized heat trace for any a ∈
C∞(Tdθ ):

Tr(ae−tP ) ∼
∞∑

n=0

cn(a)t
(n−d)/2.

Here, cn(a) = ϕ(abn) with

bn = 1

(2π)d

∫

Rd

−1

2πi

∫

γ

bn(ξ, λ)dλdξ. (69)

Using the rearrangement lemma (Lemma 9.1) and the fact that the contraction map
and integration commute, one obtains

b2 =
(

1

(2π)d

∫

Rd

−1

2πi

∫

γ

B
ij

2,1(ξ, λ, h(0), h(1)) e
−λdλdξ

) (
δiδj (h)

)

+
(

1

(2π)d

∫

Rd

−1

2πi

∫

γ

B
ij

2,2(ξ, λ, , h(0), h(1), , h(2)) e
−λdλdξ

)

× (
δi(h) · δj (h)

)
.

The dependence of Bij2,k on λ comes only from different powers of B0 in its terms,
while its dependence on ξj ’s is the result of appearance of ξj as well as of B0 in the
terms. Therefore, the contour integral will only contain e−λ and product of powers
of B0(tj ). Hence, we need to deal with a certain kind of contour integral for which
we shall use the following notation and will call them T -functions:

Tn;α(t0, · · · , tn) := −1

πd/2

∫

Rd
ξn1 · · · ξn2|α|−4

1

2πi

∫

γ

e−λBα0
0 (t0) · · ·Bαn0 (tn)dλdξ,

(70)
where n = (n1, · · · , n2|α|−4) and α = (α0, · · · , αn). We recall the T -functions and
their properties a bit later. There is an explicit formula for b2(P ) which we now
recall from [35]:

Proposition 9.1 For a positive Laplace type h-differential operator P with the
symbol given by (9.1), the term b2(P ) in the contraction form is given by

b2(P ) = (4π)−d/2
(
B
ij

2,1(h(0), h(1))
(
δiδj (h)

)

+Bij2,2(h(0), h(1), h(2))
(
δi(h) · δj (h)

))
,
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where the functions are defined by

B
ij

2,1(t0, t1) = − T;1,1(t0, t1)P ij0,1(t0, t1)+ 2Tk&;2,1(t0, t1)P ik2 (t0)P
j&

1 (t0, t1)

+ Tk&;2,1(t0, t1) P ij2 (t0)
[
t0, t1;P k&2

]

− 4Tk&mn;3,1(t0, t1)P ik2 (t0)P
j&

2 (t0)
[
t0, t1;Pmn2

]
,

and

B
ij

2,2(t0, t1, t2) = − T;1,1(t0, t2)P ij0,2(t0, t1, t2)

+ Tk&;1,1,1(t0, t1, t2) P ik1 (t0, t1)P
j&

1 (t1, t2)

− 2Tk&mn;2,1,1(t0, t1, t2) P im2 (t0)
[
t0, t1;P k&2

]
P
jn

1 (t1, t2)

+ 2Tk&;2,1(t0, t2) P ik2 (t0)
[
t0, t1;P j&1 (·, t2)

]

+ 2Tk&;2,1(t0, t2) P jk2 (t0)
[
t1, t2;P i&1 (t0, ·)

]

+ Tk&;1,1,1(t0, t1, t2) P ij1 (t0, t1)
[
t1, t2;P k&2

]

− 2Tk&mn;2,1,1(t0, t1, t2) P j&2 (t0)P
ik
1 (t0, t1)

[
t1, t2;Pmn2

]

− 2Tk&mn;1,2,1(t0, t1, t2) P ik1 (t0, t1)P
j&

2 (t1)
[
t1, t2;Pmn2

]

− 2Tk&mn;2,1,1(t0, t1, t2) P ij2 (t0)
[
t0, t1;P &m2

] [
t1, t2;P kn2

]

− 4Tk&mn;2,1,1(t0, t1, t2) P ik2 (t0)
[
t0, t1;P j&2

] [
t1, t2;Pmn2

]

+ 8Tk&mnpq;3,1,1(t0, t1, t2) P ik2 (t0)P
jn

2 (t0)
[
t0, t1;P &m2

]

× [
t1, t2;Ppq2

]

+ 4Tk&mnpq;2,2,1(t0, t1, t2)P ik2 (t0)
[
t0, t1;P &m2

]
P
jn

2 (t1)

× [
t1, t2;Ppq2

]

+ 2Tk&;2,1(t0, t2) P ij2 (t0)
[
t0, t1, t2;P k&2

]

− 8Tk&mn;3,1(t0, t2) P ik2 (t0)P
j&

2 (t0)[t0, t1, t2;Pmn2

]
.

��
The computation of the higher heat trace densities for a Laplace type h-operator

can be similarly carried out, expecting many more terms in the results. This would
give a way to generalize results obtained for the conformally flat noncommutative
two torus in [17] where b4 of the LaplacianD2 of the Dirac operatorD is computed.
This problem won’t be discussed further in this paper, but is certainly an interesting
problem.
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Evaluating T -functions (70), the only parts of formulas for Bi,j2,1 and Bi,j2,2 that
need to be evaluated, is not always an easy task. In [35] a concise integral formula
for T -functions is given and their properties are studied. For the contour integral
in (70). it is clear that there are functions fα1,··· ,αn such that

−1

2πi

∫

γ

e−λBα0
0 (t0) · · ·Bαn0 (tn)dλ = fα0,··· ,αn

(
‖ξ‖2

t0
, · · · , ‖ξ‖2

tn

)
.

Here, we denoted P ij2 (tk)ξiξj by ‖ξ‖2
tk

. Examples of such functions are

f1,1(x0, x1) = − e−x0

x0 − x1
− e−x1

x1 − x0
,

f2,1(x0, x1) = − e−x0

x0 − x1
− e−x0

(x0 − x1)2
+ e−x1

(x1 − x0)2
.

Lemma 9.2 ([35]) Let P2(t) be a positive definite d × d matrix of smooth real
functions. Then

Tn;α(t0, · · · , tn) = 1

2|α|−2β!
∫

�n

n∏

j=0

s
αj−1
j

∑∏

n
P−1(s)ninσ(i)

√
detP(s)

ds,

where P(s) = ∑n
j=0 sjP2(tj ) and β = (α0 − 1, · · · , αn − 1). ��

9.5 Functional metrics and scalar curvature

A natural question is if there exists a large class of noncommutative metrics
whose Laplacians are h-differential operators and hence amenable to the spectral
analysis developed in the last section. As we saw, conformally flat metrics on
noncommutative tori is such a class. But there are more. One of the interesting
concepts developed in [35] is the notion of a functional metric which is a much larger
class than conformally flat metrics and whose Laplacian is still an h-differential
operator. In this section we shall first recall this concept and reproduce the scalar
curvature formula for these metrics developed in [35].

Definition 9.2 Let h be a selfadjoint smooth element of a noncommutative d-torus
and let gij : R → R, 1 ≤ i, j ≤ d, be smooth functions such that the matrix

(
gij (t)

)

is a positive definite matrix for every t in a neighborhood of the spectrum of h. We
shall refer to gij (h) as a functional metric on Adθ .

The construction of the Laplacian on functions on T
d
θ equipped with a functional

metric g = gij (h) follows the same pattern as in previous sections. Details can
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be found in [35], where the following crucial result is also proved. The Laplacian
δ∗δ : H0,g → H0,g on elements of C∞(Tdθ ) is given by

δj (a)g
jk(h)δk(|g| 1

2 (h))|g|− 1
2 (h)+ δj (a)δk(g

jk(h))+ iδk(δj (a))g
jk(h).

To carry the spectral analysis of the Laplacian δ∗δ : H0,g → H0,g , we switch to the
antiunitary equivalent setting as follows. Let H0 be the Hilbert space obtained by
the GNS construction from Adθ using the nonperturbed tracial state ϕ.

Proposition 9.2 The operator δ∗δ : H0,g → H0,g is antiunitary equivalent to
a Laplace type h-differential operator 80,g : H0 → H0 whose symbol, when
expressed in the contraction form, has the functional parts given by

P
jk

2 (t0) = gjk(t0),

P
jk

1 (t0, t1) = |g|− 1
4 (t0)

[
t0, t1; |g| 1

4
]
gjk(t1)+ [

t0, t1; gjk
]

+ |g| 1
4 (t0)g

jk(t0)
[
t0, t1; |g|− 1

4
]
,

P
jk

0,1(t0, t1) = |g| 1
4 (t0)g

jk(t0)
[
t0, t1; |g|− 1

4
]
,

P
jk

0,2(t0, t1, t2) = |g|− 1
4 (t0)

[
t0, t1; gjk|g| 1

2
][
t1, t2; |g|− 1

4
]

+ 2|g| 1
4 (t0)g

jk(t0)
[
t0, t1, t2; |g|− 1

4
]
.

An important case of the functional metric is the conformally flat metric

gij (t) = f (t)−1gij , (71)

where f is a positive smooth function and gij ’s are the entries of a constant metric
on R

d . The functions given by Proposition 9.2, for the conformally flat metrics, give
us the following:

P
jk

2 (t0) = gjkf (t0), (72)

P
jk

1 (t0, t1) = gjk
(
f (t0)

d
4
[
t0, t1; f 1− d

4
] + f (t0)

1− d
4
[
t0, t1; f d

4
])
,

P
jk

0,1(t0, t1) = gjkf (t0)
1− d

4
[
t0, t1; f d

4
]
,

P
jk

0,2(t0, t1, t2) = gjk
(
f (t0)

d
4
[
t0, t1; f 1− d

2
][
t1, t2; f d

4
]

+ 2f (t0)
1− d

4
[
t0, t1, t2; f d

4
])
.

A careful examination of formula (72) shows that for any function P ij• there exists a
function P• such that P ij• = gijP•. We have similar situation with the T -functions
for conformally flat metrics.



Curvature in noncommutative geometry 395

Lemma 9.3 ([35]) Let α and n = (n1, · · · , n2|α|−4) be two multi-indices. Then the
T -function Tn,α for the conformally flat metric (71) is of the form

Tn,α(t0, · · · , tn) = √|g|
∑∏

n

gninσ(i)Tα(t0, · · · , tn).

The function Tα in dimension d �= 2 is given by

Tα(t0, · · · , tn) = (−1)|α|−1�
(
d
2 − 1

)

�
(
d
2 + |α| − 2

) ∂
β
x

[
x0, · · · , xn; u1− d

2
]∣∣∣
xj=f (tj )

, (73)

where β = (α0 − 1, · · · , αn − 1).

As an example, we have

Tα,1(t0, t1) = (−1)α�(d2 − 1)

2α−1�(d2 + α − 1)

×
( f (t1)

1− d
2

(f (t1)− f (t0))α

−
α−1∑

m=0

(−1)m�(d2 +m− 1)

�(d2 − 1)m!
f (t0)

− d
2 −m+1

(f (t1)− f (t0))α−m
)
.

Note that for dimension two, Tα,1(t0, t1) can be obtained by taking the limit
of (73) as d approaches 2. When f (t) = t , we have

Tα,1(t0, t1) = (−1)α−1

2α−1�(α)2
∂α−1
t0

[
t0, t1; log(u)

]
.

Recall that the scalar curvature density of a given functional metric is defined by

R = (4π)
d
2 b2(80,g).

This scalar curvature density is computed for two classes of examples in all
dimensions: conformally flat metrics and twisted products of conformally flat
metrics. Let us recall this result:

Theorem 9.2 ([35]) The scalar curvature of the d-dimensional noncommutative
tori Tdθ equipped with the metric f (h)−1gij is given by

R = √|g|
(
Kd(h(0), h(1))(8(h))+Hd(h(0), h(1), h(2))(�(h))

)
,
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where 8(h) = gij δiδj (h), �(h) = gij δi(h) · δj (h). The functions Kd and Hd are
given by

Kd(t0, t1) =Kt
d(f (t0), f (t1))

[
t0, t1; f

]
,

Hd(t0, t1, t2) =Ht
d(f (t0), f (t1), f (t2))

[
t0, t1; f

][
t1, t2; f

]

+ 2Kt
d(f (t0), f (t2))

[
t0, t1, t2; f

]
,

(74)

where Kt
d and Ht

d are the functions Kd and Hd when f (t) = t . For d �= 2, they can
be computed to be

Kt
d(x, y) = 4 x2− 3d

4 y2− 3d
4

d(d − 2)(x − y)3

(
(d − 1)x

d
2 y

d
2 −1 − (d − 1)x

d
2 −1y

d
2 − xd−1 + yd−1

)
,

and

Ht
d(x, y, z) = 2x− 3d

4 y−dz− 3d
4

(d − 2)d(x − y)2(x − z)3(y − z)2

×
(
xdydz2(x − y)

(
3x2y − 2x2z− 4xy2 + 4xyz− 2xz2 + yz2

)

+ xdy
d
2 +1z

d
2 +1(x − z)2(z− y)(dx + (1 − d)y)

+ xdy3zd(z− x)3 + x
d
2 +1y

3d
2 z2(x − y)(x − z)2

+ 2(d − 1)x
d
2 +1ydz

d
2 +1(x − y)(x − z)(z− y)(x − 2y + z)

− x
d
2 +1y

d
2 +1zd(x − y)(x − z)2((1 − d)y + dz)

− x2y
3d
2 z

d
2 +1(x − z)2(z− y)

+ x2ydzd(y − z)
(
x2y − 2x2z+ 4xyz− 2xz2 − 4y2z+ 3yz2

))
.

These functions for the dimension two are given by

Kt
2(x, y) = −

√
x
√
y

(x − y)3
((x + y) log(x/y)+ 2(y − x)),

H t
2(x, y, z) = 2

√
x
√
z

(x − y)2(x − z)3(y − z)2

×
(

− (x − y)(x − z)(y − z)(x − 2y + z)+ y(x − z)3 log(y)
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+ (y − z)2(−2x2 + xy + yz) log(x)

− (x − y)2(xy + zy − 2z2) log(z))
)
.

Note that the Function Kt
d(x, y) is the symmetric part of the function

8x2− d
4 y2− 3d

4

d(d − 2)(x − y)3

(
(d − 1)y

d
2 −1 − x

d
2 −1

)
.

Similarly, Ht
d(x, y, z) is equal to (Fd(x, y, z)+ Fd(z, y, x))/2 where

Fd(x, y, z) = 4x− 3d
4 y−dz− 3d

4

d(d − 2)(x − y)2(x − z)3(y − z)2

×
(
xdydz2(x − y)(3x2y − 2x2z− 4xy2 + 4xyz− 2xz2 + yz2)

+ xdy
d
2 +1z

d
2 +1(x − z)2(z− y)(dx + (1 − d)y)

+ 1

2
xdy3zd(z− x)3

+ x
d
2 +1y

3d
2 z2(x − y)(x − z)2

+ 2(d − 1)x
d
2 +1ydz

d
2 +1(x − y)2(x − z)(z− y)

)
.

As we recalled in earlier sections, in low dimensions two, three, and four, the
curvature of the conformally flat metrics was computed in [21, 31, 28, 32, 24]. It is
shown in [35] that the above general formula reproduces those results. We should
first note that the functions found in all the aforementioned works are written in
terms of the commutator [h, ·], denoted by �. To produce those functions from
our result, a linear substitution of the variables tj in terms of new variables sj
is needed. On the other hand, it is important to note that the functions Kt

d(x, y)

and Ht
d(x, y, z) are homogeneous rational functions of order − d

2 and − d
2 − 1,

respectively. Using formula (74), it is clear that the functions Kd(t0, t1) and
Hd(t0, t1, t2) are homogeneous of order 1 − d

2 in f (tj )’s. This is the reason that for

function f (t) = et and a linear substitution such as tj = ∑j

m=0 sm, a factor of some
power of es0 comes out. This term can be replaced by a power of eh multiplied from
the left to the final outcome. This explains how the functions in the aforementioned
papers have one less variable than our functions. In other words, we have

Kd(s0, s0+s1) = e(1− d
2 )s0Kd(s1), Hd(s0, s0+s1, s0+s1+s2) = e(1− d

2 )s0Hd(s1, s2).

For instance, function Kd(s) is given by
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Kd(s1) =
8e

d+2
4 s1

(
(d − 1) sinh

(
s1
2

) + sinh
(
(1−d)s1

2

))

d(d − 2)d (es1 − 1)2 s1
.

Now, we can obtain functions in dimension two:

H2(s1) = −e
s1
2 (es1 (s1 − 2)+ s1 + 2)

(es1 − 1) 2s1
,

K2(s1, s2) =
(
s1(s1 + s2) cosh(s2)− (s1 − s2)

× (s1 + s2 + sinh(s1)+ sinh(s2)− sinh(s1 + s2))

−s2(s1 + s2) cosh(s1)
)

×csch
( s1

2

)
csch

( s2
2

)
csch2

(
s1 + s2

2

)
/(4s1s2(s1 + s2)).

we have −4H2 = H and −2K2 = K where K and H are the functions found in
[21, 31]. The difference is coming from the fact that the noncommutative parts of the
results in [28, Section 5.1] are 8(log(eh/2)) = 1

28(h) and �(log(eh/2)) = 1
4�(h).

The functions for dimension four, with the same conformal factor f (t) = et and
substitution tj = ∑j

m=0 sm, gives the following which up to a negative sign are in
complete agreement with the results from our papers [32, 28]:

H4(s1) = 1 − es1

2es1s1
, K4(s1, s2) = (es1 − 1) (3es2 + 1) s2 − (es1 + 3) (es2 − 1) s1

4es1+s2s1s2 (s1 + s2)
.

To recover the functions for curvature of a noncommutative three torus equipped
with a conformally flat metric obtained in [42, 24], we need to set f (t) = e2t and
t0 = s0, t1 = s0 + s1/3 and t2 = s0 + (s1 + s2)/3. Then up to a factor of e−s0 , we
have

H3(s1) = 4 − 4e
s1
3

e
s1
6 (s1e

s1
3 + 1)

, K3(s1, s2) =
6(e

s1
3 −1)(3e

s2
3 +1)s2

−6(e
s1
3 +3)(e

s2
3 −1)s1

e
s1+s2

6 (e
s1+s2

3 + 1)s1s2(s1 + s2)
.

Finally, one needs to check the classical limit of these formulas as θ → 0. In the
commutative case, the scalar curvature of a conformally flat metric g̃ = e2hg on a
d-dimensional space reads

R̃ = −2(d − 1)e−2hgjk∂j ∂k(h)− (d − 2)(d − 1)e−2hgjk∂j (h)∂k(h).

For f (t) = e−2t , the limit is
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lim
t0,t1→t

Kd(t0, t1)= 1

3
(d−1)e(d−2)t , lim

t0,t1,t2→t
Hd(t0, t1, t2) = 1

6
(d−2)(d−1)e(d−2)t .

We should also add that since δj → −i∂j as θ → 0, we have 8(h) → −gjk∂j ∂k(h)
and �(h) → −gjk∂j (h)∂k(h). Therefore, these results recover the classical result
up to a factor of

√|g|edh/6. The factor
√|g|edh represents the volume form in the

scalar curvature density and the factor 1/6 is due to the choice of normalization
in (9.5).

9.6 Twisted product, warped product, and scalar curvature

In this section, following [35], we shall recall the computation of the scalar curvature
density of a noncommutative d-torus equipped with a class of functional metrics,
which is called a twisted product metric.

Definition 9.3 ([35]) Let g be an r×r and g̃ be a (d−r)× (d−r) positive definite
real symmetric matrices and assume f is a positive function on the real line. The
functional metric

G = f (t)−1g ⊕ g̃, (75)

is called a twisted product functional metric with the twisting element f (h)−1.

Some examples of the twisted product metrics on noncommutative tori were already
studied. The asymmetric two torus whose Dirac operator and spectral invariants are
studied in [23] is a twisted product metric for r = 1. The scalar and Ricci curvature
of noncommutative three torus of twisted product metrics with r = 2 are studied in
[24]. It is worth mentioning that conformally flat metrics as well as warped metrics
are two special cases of twisted product functional metrics. The following theorem
is proved in [35].

Theorem 9.3 The scalar curvature density of the d-dimensional noncommutative
tori Tdθ equipped with the twisted product functional metric (75) with the twisting
element f (h)−1 is given by

R = √|g||g̃|
(
Kr(h(0), h(1))(8(h))+Hr(h(0), h(1), h(2))(�(h))

+ K̃r (h(0), h(1))(8̃(h))+ H̃r (h(0), h(1), h(2))(�̃(h))
)
,

where 8̃(h) = ∑
r<i,j g̃

ij δiδj (h) and �̃(h) = ∑
r<i,j g̃

ij δi(h)δj (h) and 8, �, Kr
and Hr are given by Theorem 9.2. The functions K̃r and H̃r for r �= 2, 4 are given
by

K̃r (t0, t1) = K̃t
r (f (t0), f (t1))

[
t0, t1; f

]
,
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H̃r (t0, t1, t2) = H̃ t
r (f (t0), f (t1), f (t2))

[
t0, t1; f

][
t1, t2; f

]

+ 2K̃t
r (f (t0), f (t2))

[
t0, t1, t2; f

]
.

The functions K̃t
r and H̃ t

r are

K̃t
r (x, y) = (2r − 4)(x2 − y2)x

r
2 y

r
2 + 4x2yr − 4xry2

(r − 4)(r − 2)x
3
4 ry

3
4 r (x − y)3

,

and

H̃ t
r (x, y, z) = 2x− 3r

4 y−r z− 3r
4

(r − 4)(r − 2)(x − y)2(x − z)3(y − z)2

×
(
xryrz2(x − y)

(
x2 + 2x(y − 2z)− 4y2 + 6yz− z2

)

+ xry
r
2 z

r
2 (x − z)2(y − z)

(
(r − 3)yz− x((r − 3)z+ y)

)

− xry2zr(x − z)3 + x
r
2 y

3r
2 z2(x − y)(x − z)2

− x
r
2 yrz

r
2 (x−y)(x−z)(y−z)((r−3)x2− 2x((r−2)y + (1− r)z)

+ z((r− 3)z− 2(r− 2)y)
)

+ x
r
2 y

r
2 zr(y − x)(x − z)2(yz− (r − 3)x(y − z))

+ x2y
3r
2 z

r
2 (x − z)2(y − z)− x2yrzr (y − z)

×
(
x2 − 6xy + 4xz+ 4y2 − 2yz− z2

) )
.

When the selfadjoint element h ∈ Adθ has the property that δj (h) = 0 for 1 ≤
j ≤ r , we call the twisted product functional metric (75) a warped functional metric
with the warping element 1/f (h).

Corollary 9.1 The scalar curvature density of a warped product of g̃ and g with
the warping element 1/f (h) is given by

R = √|g||g̃|
(
K̃r (h(0), h(1))(8̃(h))+ H̃r (h(0), h(1), h(2))(�̃(h))

)
.

Proof It is enough to see that 8(h) and �(h) vanish for the warped metric. ��
For r = 2 and r = 4, functions H̃r and K̃r are the limit of the functions given in

Theorem 9.3 as r approaches 2 or 4. This is because of the fact that for these values
of r , some of T kα functions are the limit case of formulas found earlier. For r = 2
we have
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K̃2(x, y) = −x2 + y2 + 2xy log( x
y
)

√
xy(x − y)3

,

and

H̃2(x, y, z) = 1

2y
√
xz(x − y)2(x − z)3(y − z)2

×
(

− y(x + y)(x − z)3(y + z) log(y)

− z(x − y)2
(
−3x2y + x2z− 8xy2

+10xyz− 2xz2 + yz2 + z3
)

log(z)

+ x(y − z)2
(
x3 + x2y − 2x2z

+10xyz+ xz2 − 8y2z− 3yz2
)

log(x)

+ 2y(y − x)(x − z)(x + z)(z− y)(x − 2y + z)
)
.

For r = 4, we have

K̃4(x, y) = x2 − y2 − (x2 + y2) log( x
y
)

xy(x − y)3
,

and

H̃4(x, y, z) = 1

2x(x − y)2y2(x − z)3(y − z)2z

×
( (
x2 + y2

)
(x − z)3

(
y2 + z2

)
log(y)

+ log(x)(y − z)2
(
x4y + x4z− 6x3y2 − 2x3yz− 2x3z2 + 3x2y3

+x2y2z+ x2yz2 + x2z3 + 2xy3z− 4xy2z2 + 3y3z2 + y2z3
)

− log(z)(x − y)2
(
x3y2 + x3z2 + 3x2y3 − 4x2y2z+ x2yz2

−2x2z3 + 2xy3z+ xy2z2 − 2xyz3 + xz4 + 3y3z2

−6y2z3 + yz4
)

− 2(x − y)(x − z)(y − z)
(
x3z+ x2y2 − 2x2z2 − 2xy3 + 2xy2z

+xz3 − 2y3z+ y2z2
) )
.
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In [24, section 4.1], the scalar curvature density of twisted product functional
metric on noncommutative three torus for f (t) = e2t and r = 2 is found. This
result can be recovered from our formulas given in Theorem 9.3 by setting t0 = s0,
t1 = s0 + s1/2 and t2 = s0 + s1/2 + s2/2.

9.7 Dimension two and Gauss-Bonnet theorem

The following result which is proved in [35] shows that the total scalar curvature of
a noncommutative two torus equipped with a functional metric g is independent
of g. This result extends the Gauss-Bonnet theorem of [22, 30] earlier proved
for conformally flat metrics. This is done by a careful study of the functions
F
ij
S in dimension two, where it is shown that these functions vanish for the

noncommutative two torus equipped with a functional metric g. This means that
the total scalar curvature of (T2

θ , g) is independent of g. Similar to the case of
conformally flat metrics, we call this result the Gauss-Bonnet theorem for functional
metrics.

Theorem 9.4 (Gauss-Bonnet Theorem [35]) The total scalar curvature ϕ(R) of
the noncommutative two tori equipped with a functional metric vanishes, hence it is
independent of the metric.

Let us summarize the results obtained in [35] where a new family of metrics,
called functional metrics, on noncommutative tori is introduced and their spectral
geometry is studied. A class of Laplace type operators for these metrics is introduced
and their spectral invariants are obtained from the heat trace asymptotics. A formula
for the second density of the heat trace is also obtained. In particular, the scalar
curvature density and the total scalar curvature of functional metrics are explicitly
computed in all dimensions for certain classes of metrics including conformally flat
metrics and twisted product of flat metrics. Finally a Gauss-Bonnet type theorem for
a noncommutative two torus equipped with a general functional metric is proved.

10 Matrix Gauss-Bonnet

As we emphasized in the previous section, it is quite important to go beyond
conformally flat metrics, go beyond noncommutative tori, and beyond dimension
four. For example, one naturally needs to consider noncommutative algebras that
would represent higher genus noncommutative curves and other noncommutative
manifolds. As far as noncommutative higher genus curves go, there is as yet no
satisfactory theory, even at a topological level, and much less at a metric or spectral
level. This is a largely uninvestigated area and we expect new methods and ideas
will be needed to make further progress with these objects.
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A reasonable class of noncommutative algebras are algebras of matrix valued
functions on a smooth manifold. Now topologically they are Morita equivalent
to commutative algebras and not so interesting, but their spectral geometry poses
interesting questions. A first step was taken in [43] to address this question. In
this paper a new class of noncommutative algebras that are amenable to spectral
analysis, namely algebras of matrix valued functions on a Riemann surface of
arbitrary genus, are studied. The Dirac operator is conformally rescaled by a
diagonalizable matrix and a Gauss-Bonnet theorem is proved for them. This is the
matrix Gauss-Bonnet in the title of this section. When the surface has genus one,
scalar curvature is explicitly computed. We shall briefly sketch these results in this
section.

Let M be a two-dimensional closed spin Riemannian manifold and consider the
algebra of smooth matrix valued functions on M:

A = C∞(M,Mn(C)).

The Dirac operator of M , D : L2(S) → L2(S) acts on the Hilbert space of spinors.
The algebra A acts diagonally on the Hilbert space H = L2(S)⊗ C

n and we have
a spectral triple.

Let h ∈ A be a positive element. We use h to perturb the spectral triple of A
in the following way. Consider the operator Dh = hDh as a conformally rescaled
Dirac operator. Now Dh does not have bounded commutators with the elements of
A, but we still have a twisted spectral triple. This is similar to the situation with
curved noncommutative tori. The question is if the Gauss-Bonnet theorem holds
for Dh. One is also interested in knowing if the scalar curvature can be computed
explicitly. The answer is positive as we sketch now.

To simplify the matters a bit, it is assumed that the Weyl conformal factor h is
diagonalizable, that is h = UHU∗, where U is unitary and H is diagonal. Then we
have

hDh = UHU∗DUHU∗ = U
(
H

(
D + U∗[D,U ])H )

U∗,

which shows that the spectrum of Dh and DA,H = H(D + A)H are equal.
Here A = U∗[D,U ] is a matrix valued one-form on M and D + A represents a
fluctuation of the geometry represented by D. It is shown in [43] that the Gauss-
Bonnet theorem holds for the family of conformally rescaled Dirac operators with
possible fluctuations DA,H = H(D + A)H as above. Local expressions for the
scalar curvature are computed as well. The results demonstrate that unlike the case
of higher residues in [38], the expressions for the value of the ζ function at 0 are
complicated also in the matrix case.

Let us consider first the canonical spectral triple for a flat torus M = R
2/Z2. Its

spin structure is defined by the Pauli spin matrices σ 1, σ 2 and its Dirac operator is

D = σ 1δ1 + σ 2δ2.
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Here δ1, δ2 are the partial derivatives 1
i
∂
∂x

and 1
i
∂
∂y
. To compute the resolvent kernel

we work in the algebra of matrix valued pseudodifferential operators obtained by
tensoring the algebra � of pseudodifferential operators on a smooth manifoldM by
the algebra of n by n matrices.

The Resolvent The symbol of the Bochner LaplacianD2
A,H = H(D+A)H 2(D+

A)H is given by σD2
A,H

= a2 + a1 + a0, where

a2 = H 4ξ2,

a1 = iεij σ
32H 3δi(H)ξ

j + 4H 3δi(H)ξ
i − iεij σ

3H 3AiHξ
j

+H 3AiHξ
i + iεij σ

3HAiH
3ξj +HAiH

3ξ i,

a0 = H 4(�H)+H 3Ajδi(H)−H 3iσ 3εijAiδj (H)+H 3δi(Ai)H

+ iσ 3H 3εij δj (Ai)H + 2H 2δi(H)δi(H)+ 2H 2δi(H)AiH

+ 2HAiH
2δi(H)+ 2iσ 3H 2εij δi(H)AjH

+ iσ 3εijHAiH
2δi(H)+ iσ 3εijHAiH

2Aj +HAiH
2AiH.

The first three terms of the symbols of (DH,a)−2 = b0 + b1 + b2 + · · · are:

b0 = (a2 + 1)−1,

b1 = − (b0a1 + ∂k(b0)δk(a2)) b0,

b2 = −
(
b1a1 + b0a0 + ∂k(b0)δk(a1)+ ∂k(b1)δk(a2)+ 1

2
∂k∂j (b0)δkδj (a2)

)
b0.

10.1 Matrix curvature

Let us call a matrix-valued function R : T2 → Mn(C) the scalar curvature if for
any matrix valued function f ∈ A we have:

ζf,D(0) =
∫

T2
Tr fR,

where the localized spectral zeta function is defined by

ζf,D(s) = Tr f |D|−s .

It is found that four terms contribute to the scalar curvature R [43]:
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Terms not Depending on A They depend only on H and derivatives of H , and
since they commute with each other, they can be computed as in the classical case.

b2(H, ξ) =96 b5
0δi(H)δi(H)H

14(ξ2)3 − 136 b4
0δi(H)δi(H)H

10(ξ2)2

+ 46 b3
0δi(H)δi(H)H

6(ξ2)− 2 b2
0δi(H)δi(H)H

2

− 8 b4
0�(H)H

11(ξ2)2 + 8 b3
0�(H)H

7(ξ2)− b2
0�(H)H

3,

(76)

To integrate over the ξ space, we can use the formula

∫ ∞

0

r2k+1dr

(1 + a2r2)2k+3 = 1

2(k + 1)a2(k+1)
,

and obtain

R(H) = −π
(

1

3
H−2δi(H)δi(H)+ 1

3
H−1�(H)

)
. (77)

To continue, we use the rearrangement lemma of [46]. Let

�(x) = H−4xH 4.

Terms Linear in A We have:

b
(1)
2 (H,A) = −b0hAib0δi(H)H

2 + 5b0hAib
2
0δi(H)H

6ξ2

− 4b0hAib
3
0δi(H)H

10(ξ2)2

− b0H
3Aib0δi(H)+ 7b0H

3Aib
2
0δi(H)H

4ξ2

− 4b0H
3Aib

3
0δi(H)H

8(ξ2)2

+ 3b2
0H

5Aib0δi(H)H
2ξ2 − 4b2

0H
5Aib

2
0δi(H)H

6(ξ2)2

+ b2
0H

7Aib0δi(H)ξ
2 − 4b2

0H
7Aib

2
0δi(H)H

4(ξ2)2

and

b
(1)
2 (H,A) = −2b0δi(H)H

2Aib0H + 2b2
0δi(H)H

4Aib0H
3ξ2

+ 6b2
0δi(H)H

6Aib0Hξ
2 − 4b3

0δi(H)H
8Aib0H

3(ξ2)2

− 4b3
0δi(H)H

10Aib0H(ξ
2)2.
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Explicit computations give

R(1)(H,A) =
∑

i=1,2

2πHG(�)(Ai)δi(H),

where G is the following function:

G(s) = (1 + √
s)

√
s

(s − 1)3
(
(s + 1) ln(s)− 2(s − 1)

)
,

and a second term,

R(2)(H,A) =
∑

i=1,2

−2πH−2δi(H)G(�)(Ai)H,

with the same function G(s). After taking the trace these terms cancel each other,
and we get

Tr
(
R(1)(H,A)+ R(2)(H,A)

)
= 0.

Terms Linear in δi(Ai) In this case we have:

b2(H, δi(Aj )) = −b0H
3δi(Ai)b0H + b2

0H
5δi(Ai)b0H

3ξ2

+ b2
0H

7δi(Ai)b0Hξ
2,

and integrating out the ξ variables, we get πH−1F(�)(δi(Ai))H, where

F = − (1 + √
s)

√
s

(s − 1)2
ln(s)+

√
s + 1

s − 1
.

Again, it is not difficult to check that F(1) = 0 and the expression vanishes after
taking the trace:

Tr
(
R(H, δi(Aj ))

) = 0.

Quadratic Terms in Ai We have:

b2(H,A
2) = −b0HAiH

2Aib0H + b0HAib0H
6Aib0Hξ

2

+ b0H
3Aib0H

2Aib0H
3ξ2.

Integrating over ξ we obtain:

R(H,A2) = −πH−1Q(�(1),�(2))(Ai · Ai)H
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where

Q(s, t) =
√
s(

√
t + s)

(s − 1))(s − t)
ln s −

√
s
√
s

(s − t)
√
t

ln t.

To compute the trace, let

F(s) = Q(s, 1) = (s + 1) ln s + 2(1 − s)

(s − 1)2
,

and observe that due to the trace property:

Tr
(
H−1F(�)(Ai)AiH

)
= Tr (AiF (�)(Ai))

= Tr
(
F(�−1)(Ai)Ai

)
.

Now since

F(
1

s
) = −( 1

s
+ 1) ln s + 2(1 − 1

s
)

( 1
s

− 1)2

= −(s + 1) ln s − 2(1 − s)

(s − 1)2

= −F(s),
one gets

Tr R(H,A2) = 0,

and so the quadratic term vanishes as well.

10.2 The Gauss-Bonnet theorem

The term which does not depend on A is a total derivative term:

1

3
δi

(
H−1δi(H)

)
.

Using Stokes theorem, this term is seen to vanish as well after integration. Putting
it all together, one thus obtains:
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Proposition 10.1 For the matrix conformally rescaled Dirac operator on the two-
dimensional torus,Dh = hDh, where h is a globally diagonalizable positive matrix,
the Gauss-Bonnet theorem holds:

ζDh(0) = ζD(0).

10.3 Higher genus matrix Gauss-Bonnet

Now we look at the general case where M is a closed Riemann surface with a spin
structure and a Dirac operator D. Consider the operator

DH,A = H(D + A)H,

for H a diagonal matrix valued function on M and A a matrix-valued one-form,
identified here with its Clifford image.

We must now compute the value of ζD2
H,A
(0) using methods of pseudodifferential

calculus. Let us denote the symbols of D2
H as:

D2
H = (HDH)2 = aH2 + aH1 + aH0 ,

and the symbol of D2 as

D2 = ao2 + ao1 + ao0 .

As in the case of the torus, the computation is divided into the cases of terms not
depending on A, linear in A and quadratic in A.

Terms Independent of A Since H is globally diagonalizable, we can assume it is
scalar. Thus we are reduced to a conformal rescaling of the classical Dirac operator.
Since in this case the Gauss-Bonnet theorem holds, it remains only to see that the
contribution to the Gauss-Bonnet term from the linear and quadratic terms in A
vanishes.

Terms Linear in A Linear terms do arise in b2 from the following terms:

b0a
H
1 b0a1(A)b0 + ∂

ξ
k (b0)∂

x
k (a

H
2 )b0a1(A)b0 + b0a1(A)b0a

H
1 b0

− b0a0(A)b0 − ∂
ξ
k (b0)∂

x
k (a1(A))b0 − ∂

ξ
k (b0a1(A)b0)∂

x
k (a

H
2 )b0.

where a1(A), a0(A) denote terms linear in A. Now, one can use normal coordinates
at a given point x of M . The terms without derivatives reduce easily to the torus
case. The only difficulty arises from terms with derivatives in x, that is, ∂xk (a

H
2 ). and

∂xk (a1(A)). Since aH2 = H 4gij ξ
iξ j , and in normal coordinates the first derivatives
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of the metric vanish at the point x, we see that the only remaining term would be
with the derivative of H 4, and again this term would be reduced to the term linear
in A from the torus case.

Similar argument works also for the other term, a1(A), which is

(
H 3AiH +HAkH

3
)
σkσ iξi,

and since in ∂ξk (b0)∂
x
k (a1(A))b0 there are no further σ matrices, one can compute

first the trace over the Clifford algebra and write it as

1

2

(
H 3AiH +HAkH

3
)
gkiξi .

Thus, in normal coordinates around x the expression is identical to the one for the
flat torus. Therefore, the integration over ξ would yield the same result, and the
density of the linear A contribution to the trace of b2 vanishes at x. Consequently,
the contribution to the Gauss-Bonnet term linear in A also vanishes.

Quadratic Terms The quadratic terms in A are

b0a1(A)b0a1(A)b0 − b0a0(A
2)b0.

It is easy to see that in normal coordinates we have:

a1(A) =
(
H 3σ j ξj (σ

iAi)H + σ iHAiH
3σ j ξj

)
,

a0(A) = (σ iHAiH)(σ
kHAkH).

Using normal coordinates, one reduces the ξ -integral to the situation already
considered for the torus. Hence the density of Gauss-Bonnet term with quadratic
contributions from A identically vanishes as well. This finishes the proof of Gauss-
Bonnet for higher genus matrix valued functions with a general Dirac operator with
fluctuation. This result was obtained in [43].

11 Curvature of the determinant line bundle

It would be interesting to know how far our hard analytic methods like pseudod-
ifferential operators, spectral analysis and heat equation techniques, can be pushed
in the noncommutative realm, at least for noncommutative tori and toric manifolds.
So far we have seen that these analytic techniques, suitably modified and enhanced,
has been quite successful in dealing with scalar and Ricci curvature. Along this
idea, in [25] the curvature of the determinant line bundle on a family of Dirac
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operators for a noncommutative two torus is computed. Following Quillen’s original
construction for Riemann surfaces [53] and using zeta regularized determinant
of Laplacians, the determinant line bundle is endowed with a natural Hermitian
metric. By defining an analogue of Kontsevich-Vishik canonical trace, defined on
Connes’ algebra of classical pseudodifferential symbols for the noncommutative
two torus, the curvature form of the determinant line bundle is computed through
the second variation δwδw̄ log det(�). Calculus of symbols and the canonical trace
were effectively used to bypass local calculations involving Green functions in [53]
which is not applicable in the noncommutative case. In a sequel paper [26], the
spectral eta function for certain families of Dirac operators on noncommutative 3-
torus is studied and its regularity at zero is proved. By using variational techniques,
it is shown that the eta function ηD(0) is a conformal invariant. By studying the
Laurent expansion at zero of TR(|D|−z), the conformal invariance of ζ ′|D|(0) for
noncommutative 3-torus is proved. Finally, for the coupled Dirac operator, a local
formula for the variation ∂AηD+A(0) is derived which is the analogue of the so-
called induced Chern-Simons term in quantum field theory literature.

In this section we shall recall and comment on results obtained in [25] on the
curvature of the determinant line bundle on a noncommutative torus.

11.1 The determinant line bundle

Let F = Fred(H0,H1) denote the set of Fredholm operators between Hilbert spaces
H0 and H1. It is an open subset, in norm topology, in the complex Banach space of
all bounded linear operators between H0 and H1. The index map index : F → Z is
a homotopy invariant and in fact defines a bijection between connected components
of F and the set of integers Z. It is well known that F is a classifying space
for K-theory (Atiyah-Janich): for any compact space X we have a natural ring
isomorphism K0(X) = [X,F] between the K-theory of X and the set of homotopy
classes of continuous maps from X to F .

In [53] Quillen defines a holomorphic line bundle DET → F over the space of
Fredholm operators such that for any T ∈ F

DETT = �max(ker(T ))∗ ⊗�max(coker(T )).

This is remarkable if we notice that ker(T ) and coker(T ) are not vector bundles due
to discontinuities in their dimensions as T varies within F .

It is tempting to think that since c1(DET) is the generator ofH 2(F0,Z) ∼= Z, F0
being the index zero operators, there might exist a natural Hermitian metric on DET
whose curvature 2-form would be a representative of this generator. One problem
is that the induced metric from ker(T ) and ker(T ∗) on DET is not even continuous.
In [53] Quillen shows that for families of Cauchy-Riemann operators on a Riemann
surface one can correct the Hilbert space metric by multiplying it by zeta regularized
determinant and in this way one obtains a smooth Hermitian metric on the induced
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determinant line bundle. In [25] a similar construction for the noncommutative two
torus is given as we explain later in this section.

11.2 The canonical trace and noncommutative residue

To carry the calculations, an analogue of the canonical trace of [45] for the
noncommutative torus is constructed in [25]. First we need to extend our original
algebra of pseudodifferential operators to classical pseudodifferential operators.

A smooth map σ : R2 → Aθ is called a classical symbol of order α ∈ C if for
anyN and each 0 ≤ j ≤ N there exist σα−j : R2\{0} → Aθ positive homogeneous
of degree α − j and a symbol σN ∈ S&(α)−N−1(Aθ ), such that

σ(ξ) =
N∑

j=0

χ(ξ)σα−j (ξ)+ σN(ξ) ξ ∈ R
2. (78)

Here χ is a smooth cut-off function on R
2 which is equal to zero on a small ball

around the origin, and is equal to one outside the unit ball. It can be shown that the
homogeneous terms in the expansion are uniquely determined by σ . We denote
the set of classical symbols of order α by Sαcl(Aθ ) and the associated classical
pseudodifferential operators by �α

cl(Aθ ).
The space of classical symbols Scl(Aθ ) is equipped with a Fréchet topology

induced by the semi-norms

pα,β(σ ) = sup
ξ∈R2

(1 + |ξ |)−m+|β|||δα∂βσ (ξ)||. (79)

The analogue of the Wodzicki residue for classical pseudodifferential operators
on the noncommutative torus is defined in [33].

Definition 11.1 The Wodzicki residue of a classical pseudodifferential operator Pσ
is defined as

Res(Pσ ) = ϕ0 (res(Pσ )) ,

where res(Pσ ) := ∫
|ξ |=1 σ−2(ξ)dξ .

It is evident from its definition that Wodzicki residue vanishes on differential
operators and on non-integer order classical pseudodifferential operators.

To define the analogue of the canonical trace on non-integer order pseudodif-
ferential operators on the noncommutative torus, one needs the existence of the
so-called cut-off integral for classical symbols.
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Proposition 11.1 Let σ ∈ Sαcl(Aθ ) and B(R) be a disk of radius R around the
origin. One has the following asymptotic expansion as R → ∞

∫

B(R)

σ (ξ)dξ ∼
∞∑

j=0,α−j+2 �=0

αj (σ )R
α−j+2 + β(σ) logR + c(σ ),

where β(σ) = ∫
|ξ |=1 σ−2(ξ)dξ and the constant term in the expansion, c(σ ), is

given by

∫

Rn
σN +

N∑

j=0

∫

B(1)
χ(ξ)σα−j (ξ)dξ −

N∑

j=0,α−j+2 �=0

1

α − j + 2

∫

|ξ |=1
σα−j (ω)dω.

(80)

Definition 11.2 The cut-off integral of a symbol σ ∈ Sαcl(Aθ ) is defined to be the
constant term in the above asymptotic expansion, and we denote it by

∫− σ(ξ)dξ .

The cut-off integral of a symbol is independent of the choice of N . It is also
independent of the choice of the cut-off function χ .

Definition 11.3 The canonical trace of a classical pseudodifferential operator P ∈
�α
cl(Aθ ) of non-integral order α is defined as

TR(P ) := ϕ0

(∫
− σP (ξ)dξ

)
.

Note that any pseudodifferential operator P of order less than −2 is a trace-class
operator on H0 and its trace is given by

Tr(P ) = ϕ0

(∫

R2
σP (ξ)dξ

)
.

On the other hand, for such operators the symbol is integrable and we have

∫
− σP (ξ)dξ =

∫

R2
σP (ξ)dξ. (81)

Therefore, the TR-functional and operator trace coincide on classical pseudodiffer-
ential operators of order less than −2.

The canonical trace TR is an analytic continuation of the operator trace and using
this fact one can prove that it is actually a trace.

Proposition 11.2 Given a holomorphic family σ(z) ∈ Sα(z)cl (Aθ ), z ∈ W ⊂ C, the
map

z �→
∫
− σ(z)(ξ)dξ,
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is meromorphic with at most simple poles. Its residues are given by

Resz=z0

∫
− σ(z)(ξ)dξ = − 1

α′(z0)

∫

|ξ |=1
σ(z0)−2dξ.

Using the above result one can show that if A ∈ �α
cl(Aθ ) is of order α ∈ Z and

Q is a positive elliptic classical pseudodifferential operator of positive order q, then

Resz=0TR(AQ−z) = 1

q
Res(A).

Using this and the uniqueness of analytic continuation one can prove the trace
property of TR. That is, TR(AB) = TR(BA) for any A,B ∈ �cl(Aθ ), provided
that ord(A)+ ord(B) /∈ Z.

11.3 Log-polyhomogeneous symbols

In general, z-derivatives of a classical holomorphic family of symbols is not classical
anymore and therefore one needs to introduce log-polyhomogeneous symbols which
include the z-derivatives of the symbols of the holomorphic family σ(AQ−z).

Definition 11.4 A symbol σ is called a log-polyhomogeneous symbol if it has the
following form

σ(ξ) ∼
∑

j≥0

∞∑

l=0

σα−j,l(ξ) logl |ξ | |ξ | > 0, (82)

with σα−j,l positively homogeneous in ξ of degree α − j .

A prototypical example of an operator with such a symbol is logQ where
Q ∈ �

q
cl(Aθ ) is a positive elliptic pseudodifferential operator of order q > 0.

The logarithm of Q can be defined by

logQ = Q
d

dz

∣
∣∣∣
z=0

Qz−1 = Q
d

dz

∣
∣∣∣
z=0

i

2π

∫

C

λz−1(Q− λ)−1dλ.

For an operator A with log-polyhomogeneous symbol as (82) we define

res(A) =
∫

|ξ |=1
σ−2,0(ξ)dξ.

The following result can be proved along the lines of its classical counterpart in
[52].
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Proposition 11.3 Let A ∈ �α
cl(Aθ ) and Q be a positive, in general an admissible,

elliptic pseudodifferential operator of positive order q. If α ∈ P , then 0 is a possible
simple pole for the function z �→ TR(AQ−z) with the following Laurent expansion
around zero.

TR(AQ−z) = 1

q
Res(A)

1

z

+ ϕ0

(∫
− σ(A)(ξ)dξ − 1

q
res(A logQ)

)
− Tr(A1Q)

+
K∑

k=1

(−1)k
(z)k

k!

×
(
ϕ0

(∫
− σ(A(logQ)k)(ξ)dξ − 1

q(k + 1)
res(A(logQ)k+1)

)

−Tr(A(logQ)k1Q)
)

+ o(zK).

where 1Q is the projection on the kernel of Q.

For operators A and Q as in the previous Proposition, the generalized zeta
function is defined by

ζ(A,Q, z) = TR(AQ−z). (83)

From Proposition 11.2, it follows that ζ(A,Q, z) is a meromorphic function with
simple poles. Moreover, ζ(A,Q, z) is the analytic continuation of the spectral zeta
function Tr(AQ−z). If A is a differential operator, the zeta function (83) is regular
at z = 0 with a value

ϕ0

(∫
− σ(A)(ξ)dξ − 1

q
res(A logQ)

)
− Tr(A1Q).

11.4 Cauchy-Riemann operators on noncommutative tori

As we did before, we can fix a complex structure on Aθ by a complex number τ in
the upper half plane. Consider the spectral triple

(
Aθ,H0 ⊕ H0,1,D0 =

(
0 ∂̄∗
∂̄ 0

))
, (84)
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where ∂̄ : Aθ → Aθ is given by ∂̄ = δ1 + τδ2. The Hilbert space H0 is defined
by the GNS construction from Aθ using the trace ϕ0 and ∂̄∗ is the adjoint of the
operator ∂̄ .

As in the classical case, the Cauchy-Riemann operator on Aθ is the positive part
of the twisted Dirac operator. All such operators define spectral triples of the form

(
Aθ,H0 ⊕ H0,1,DA =

(
0 ∂̄∗ + α∗
∂̄ + α 0

))
,

where α ∈ Aθ is the positive part of a selfadjoint element

A =
(

0 α∗
α 0

)
∈ �1

D0
(Aθ ).

We recall that �1
D0
(Aθ ) is the space of quantized one forms consisting of the

elements
∑
ai[D0, bi] where ai, bi ∈ Aθ [14]. Note that in this case the space

A of Cauchy-Riemann operators is the space of (0, 1)-forms on Aθ .

11.5 The curvature of the determinant line bundle for Aθ

For any α ∈ A, the Cauchy-Riemann operator

∂̄α = ∂̄ + α : H0 → H0,1

is a Fredholm operator. We pull back the determinant line bundle DET on the space
of Fredholm operators Fred(H0,H0,1), to get a line bundle L on A. Following
Quillen [53], one can define a Hermitian metric on L and the problem is to compute
its curvature. Let us define a metric on the fiber

Lα = �max(ker ∂̄α)
∗ ⊗�max(ker ∂̄∗

α)

as the product of the induced metrics on �max(ker ∂̄α)∗ and �max(ker ∂̄∗
α), with the

zeta regularized determinant e−ζ
′
�α
(0). Here we define the Laplacian as�α = ∂̄∗

α∂̄α :
H0 → H0, and its zeta function by

ζ(z) = TR(�−z
α ).

It is a meromorphic function and is regular at z = 0. Similar proof as in [53] shows
that this defines a smooth Hermitian metric on the determinant line bundle L.
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On the open set of invertible operators each fiber of L is canonically isomorphic
to C and the non-zero holomorphic section σ = 1 gives a trivialization. Also,
according to the definition of the Hermitian metric, the norm of this section is given
by

‖σ‖2 = e
−ζ ′

�α
(0)
. (85)

11.6 Variations of LogDet and curvature form

A holomorphic line bundle equipped with a Hermitian inner product has a canonical
connection compatible with the two structures. This is also known as the Chern
connection. The curvature form of this connection is given by ∂̄∂ log ‖σ‖2, where
σ is any non-zero local holomorphic section.

In the case at hand, the second variation ∂̄∂ log ‖σ‖2 on the open set of invertible
Cauchy-Riemann operators must be computed. Let us consider a holomorphic
family of invertible Cauchy-Riemann operators Dw = ∂̄ + αw, where αw depends
holomorphically on the complex variable w. The second variation of logdet, that is
δw̄δwζ

′
�(0), is computed in [25] as we recall now.

Lemma 11.1 For the holomorphic family of Cauchy-Riemann operators Dw, the
second variation of ζ ′(0) is given by

δw̄δwζ
′(0) = 1

2
ϕ0

(
δwDδw̄res(log�D−1)

)
.

��
The final step is to compute δw̄res(log�D−1). This combined with the above
lemma will show that the curvature form of the determinant line bundle equals the
Kähler form on the space of connections. We refer the reader to [25] for the proof
which is long and technical. We emphasize that the original Quillen proof, based on
Green function calculations, cannot be extended to the noncommutative case.

Lemma 11.2 With the above definitions and notations, we have

σ−2,0(log�D−1) = (α + α∗)ξ1 + (τ̄α + τα∗)ξ2

(ξ2
1 + 2&(τ )ξ1ξ2 + |τ |2ξ2

2 )(ξ1 + τξ2)

− log

(
ξ2

1 + 2&(τ )ξ1ξ2 + |τ |2ξ2
2

|ξ |2
)

α

ξ1 + τξ2
,



Curvature in noncommutative geometry 417

and

δw̄res(log(�)D−1) = 1

2π"(τ ) (δwD)
∗.

Now we can state the main result of [25] which computes the curvature of
the determinant line bundle in terms of the natural Kähler form on the space of
connections.

Theorem 11.1 The curvature of the determinant line bundle for the noncommuta-
tive two torus is given by

δw̄δwζ
′(0) = 1

4π"(τ )ϕ0
(
δwD(δwD)

∗) . (86)

In order to recover the classical result of Quillen in the classical limit of θ = 0, one
has to notice that the volume form has changed due to a change of the metric. This
means we just need to multiply the above result by "(τ ).

12 Open problems

In this final section we formulate some of the open problems that we think are
worthy of study for further understanding of local invariants of noncommutative
manifolds.

1. Beyond dimension two and beyond conformally flat. The class of conformally
flat metrics in dimensions bigger than two cover only a small part of all possible
metrics. It would be very important to formulate large classes of metrics that are
not conformally flat, but at the same time lend themselves to spectral analysis
and to heat asymptotics techniques. It is also very important to have curvature
formulas that work uniformly in all dimensions. The largest such class so far is
the class of the so-called functional metrics introduced in [35] and surveyed in
Section 9 of this paper. It is an interesting problem to further enlarge this class.

2. To extend the definition of curvature invariants to noncommutative spaces with
non-integral dimension, including zero dimensional spaces. This would require
rethinking the heat trace asymptotic expansion, and the nature of its leading and
sub-leading terms. In particular since quantum spheres are zero dimensional,
its spectrum is of exponential growth and does not satisfy the usual Weyl’s
asymptotic law. A first step would be to see how to formulate a Gauss-Bonnet
type theorem for quantum spheres.

3. Weyl tensor and full curvature tensor. It is not clear that the classical differential
geometry would, or should, give us a blueprint in the noncommutative case. One
should be prepared for new phenomena. Having that in mind, one should still
look for analogues of Weyl and full Riemann curvature tensors. The problem
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is that the components of these tensors are quite entangled in the heat trace
expansion, and separating and identifying their different components seem to
be a hard task, if not impossible. One needs new ideas to make progress here.

4. Gauss-Bonnet terms in higher dimensions. The Gauss-Bonnet density in two
dimension is particularly simple and is in fact equal to the scalar curvature
multiplied by the volume form. In dimensions four and above this term is
classically more complicated, being the Pfaffian of the curvature tensor. In
dimension four it is a linear combination of norms of the Riemann tensor, the
Ricci tensor, and the Ricci scalar. It is not clear how this can be expressed in
terms of the heat kernel coefficients.

5. Higher genus noncommutative Riemann surfaces. It is highly desirable to define
noncommutative Riemann surfaces of higher genus equipped with a spectral
triple and check the Gauss-Bonnet theorem for them. This would greatly extend
our understanding of local invariants of noncommutative spaces.

6. Noncommutative uniformization theorem. The study of curved noncommutative
2-tori suggests a natural problem in noncommutative geometry. At least for
the class of noncommutative 2-tori it is desirable to know to what extent the
uniformization theorem holds, or what form and shape it would take.

7. Analytic versus algebraic curvature. In classical differential geometry, as we saw
in this paper, there are algebraic as well as analytic techniques (based on the heat
equation) to define the scalar and Ricci curvature. The two approaches give the
same results. This is not so in the noncommutative case. For noncommutative
tori, when the deformation parameter satisfies some diophantine condition,
Rosenberg in [54] proved a Levi-Civita type theorem and hence gets an algebraic
definition of curvature. The resulting formula is very different from the formula
of Connes-Moscovici-Fathizadeh-Khalkhali [21, 32] surveyed in this paper. It is
important to see if there is any relation at all between these formulas and what
this means for the study of curved noncommutative tori.
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Index theory and noncommutative
geometry: a survey

Alexander Gorokhovsky and Erik Van Erp

Dedicated to Alain Connes, with admiration

Abstract This chapter is an introductory survey of selected topics in index theory
in the context of noncommutative geometry, focusing in particular on Alain Connes’
contributions. This survey has two parts. In the first part, we consider index theory
in the setting of K-theory of C∗ algebras. The second part focuses on the local
index formula of A. Connes and H. Moscovici in the context of noncommutative
geometry.

1 Introduction

The contributions of Alain Connes to index theory are fundamental, broad, and
deep. This article is an introductory survey of index theory in the context of
noncommutative geometry. The selection of topics is determined by the interests
of the authors, and we make no claim to being exhaustive.

This survey has two parts. In the first half, we consider index theory in the
setting ofK-theory. If P is an elliptic linear differential operator on a closed smooth
manifoldX, then the highest order part of P determines a cohomological object that
is most naturally understood as an element in K-theory,

[σ(P )] ∈ K0(T ∗X)
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The index of P is a function of this K-theory class [σ(P )]. Atiyah and Singer
derived a topological formula for the index map

K0(T ∗X) → Z [σ(P )] �→ IndexP

Developments in noncommutative geometry have shed considerable light on the
nature of this map. Here we emphasize, on the one hand, the organizing role of
Connes’ tangent groupoid and its generalizations, and on the other hand his study
of the wrong-way functoriality of the Gysin map in K-theory. An important fruit
of these investigations of index theory in noncommutative geometry is the Baum–
Connes conjecture, which concerns the K-theory of the reduced C∗-algebra of
locally compact groups. This work has deep ties to geometry and algebraic topology.

A different and purely analytic approach to index theory is based on the McKean–
Singer formula [55] which expresses the index of an elliptic operator P in terms of
the trace of the heat kernel,

IndexP = Tr e−tP ∗P − Tr e−tPP ∗
t > 0

The heat kernel has an asymptotic expansion in powers of t (as t → 0+). This
implies that its trace, and hence the index of P , can be computed as the integral
of a density which is locally determined by the coefficients of the operator P . This
density is called the local index of P .

For Dirac-type operators, the local index density can be explicitly computed,
and is identified with differential forms that represent the characteristic classes that
appear in the Atiyah–Singer formula. Thus, one obtains not just a formula for the
index, which is a global invariant, but a representation of the index as the integral
of a density that is canonically and locally determined by the operator. This makes
it possible to extend index theory to manifolds with boundary, as in the Atiyah–
Patodi–Singer theorem [5]. Bismut extended this approach to elliptic families [18],
using the superconnection approach developed for this purpose by Quillen [62]. The
local index formula in this case describes an explicit differential form representing
the Chern character of an elliptic family.

The extension of local index theory to the noncommutative framework necessi-
tates the construction of the Chern character for noncommutative algebras. In this
case, a natural receptacle for the Chern character is cyclic homology theory. Cyclic
theory has been closely connected to index theory from its very beginning [27].

The second half of the present paper focuses on a more recent development: the
local index formula of Connes and Moscovici in the context of noncommutative
geometry. Our goal is to give a brief yet detailed exposition of the proof of this
theorem. We follow closely the arguments of the original paper [25]. A distinctive
feature of the Connes–Moscovici paper is its detailed and illuminating explicit
calculations, illustrating the cocycle property of the local index formula, and the
renormalization procedure used to derive it. For an alternative approach to the
Connes–Moscovici formula, we refer the reader to [45, 46].
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2 Atiyah and Singer

In 1963, Michael Atiyah and Isadore Singer announced their formula for the index
of an elliptic operator on a compact manifold [6]. On a manifold X with complex
vector bundles E,F , a linear differential operator of order d

P : C∞(X,E) → C∞(X, F )

is, in local coordinates on U ⊂ X and with local trivializations of E,F , of the form

P =
d∑

α1+···+αn=0

aα
∂α1

∂x
α1
1

· · · ∂αn

∂x
αn
n

: C∞ (
U,Cr

) → C∞ (
U,Cr

)

where the coefficients aα are smooth functions on U with values in the algebra
Mr(C) of r × r matrices. The principal symbol of P is a matrix-valued polynomial
in the formal variable ξ = (ξ1, . . . , ξn) ∈ R

n,

σ(P )(x, ξ) =
∑

α1+···+αn=d
aα(x) ξ

α1
1 · · · ξαnn ∈ Mk(C)

By definition, the operator P is elliptic if the matrix σ(P )(x, ξ) ∈ Mk(C) is
invertible for all ξ �= 0, and at all points of X. If X is a compact manifold without
boundary, an elliptic operator on X has finite dimensional kernel and cokernel. The
index of P is

IndexP = dim kerP − dim cokerP = dim kerP − dim kerP ∗

Interpreting (x, ξ) as coordinates for the cotangent bundle T ∗X, σ(P ) has an
invariant interpretation as an endomorphism of vector bundles

σ(P ) : π∗E → π∗F π : T ∗X → X

where π∗E,π∗F are E,F pulled back to T ∗X. Since σ(P ) is invertible outside
the zero section of T ∗X, which is a compact subset, the triple (π∗E,π∗F, σ(P ))
determines an element in the Atiyah–Hirzebruch K-theory group of T ∗X,

[σ(P )] ∈ K0(T ∗X)

The Chern character

ch : Kj(T ∗X)⊗ Q →
n⊕

k=0

H
2k+j
c (T ∗X,Q) j = 0, 1
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is a natural ring isomorphism of (rational) K-theory and cohomology with compact
supports.

Proposition 1 ([6]) If P is an elliptic operator on a closed manifold X, then

IndexP = {ch(σ (P )) ∪ Td(π∗TX ⊗ C)}[T ∗X]

where Td is the Todd class, TX ⊗ C the complexified tangent bundle of X, and
[T ∗X] ∈ H2n(T

∗X,Q) the fundamental cycle for T ∗X, canonically oriented as a
symplectic manifold.

The formula of Atiyah and Singer answered a question of Gel′fand, who
proposed in [32] the investigation of the relation between homotopy invariants and
analytical invariants of elliptic operators. Moreover, a number of classical theorems
in geometry and topology are special cases of the Atiyah–Singer index formula. If
we take

P = d + d∗ : C∞(X,�evenT ∗M) → C∞(X,�oddT ∗M)

with d the de Rham differential, we recover the curvature formula of Gauss–Bonnet
for the Euler number of a closed oriented surface, and its generalization to higher
dimensional manifolds due to Hopf and Chern. With

P = ∂̄ + ∂̄∗ : C∞(X,�evenT 1,0M) → C∞(X,�oddT 1,0M)

with ∂̄ the Dolbeault operator, we get the Riemann–Roch theorem for Riemann
surfaces and Hirzebruch’s generalization to projective algebraic varieties. Finally, if
P is the signature operator, we obtain Hirzebruch’s signature theorem.

3 The Gysin map

The original proof of Proposition 1 followed the strategy of Hirzebruch’s proof
of the signature theorem, relying on the calculation of cobordism groups by René
Thom. The proof published in [7] is independent of cobordism theory, and makes
use of Atiyah–Hirzebruch K-theory.

If X is compact Hausdorff, K0(X) is the abelian group generated by isomor-
phism classes of complex vector bundles on X. Vector bundles naturally pull back
along continuous maps. K-theory is a cohomology theory for locally compact
Hausdorff spaces, and a contravariant functor for proper maps f : X → Y . If X, Y
are smooth manifolds, then K-theory is also covariant for (not necessarily proper)
smooth maps f : X → Y that are K-oriented. A K-orientation of a smooth map
f : X → Y is a spinc structure for the vector bundle TX⊕ f ∗T Y . A K-orientation
of f induces a wrong-way functorial Gysin map
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f! : K•(X) → K•(Y )

In three special cases, the construction of the Gysin map is straightforward. If f :
U → V is the inclusion of U as an open submanifold of V , then f! is the map in
analytic K-theory determined by the inclusion C0(U) ⊂ C0(V ). If E is the total
space of a spinc vector bundle on Z, and f : Z → E is the zero section, then f!
is the K-theory Thom isomorphism. Similarly, if f : E → Z is the base point
projection of a spinc vector bundle, then f! is the inverse of the Thom isomorphism.
In general, every K-oriented map can be factored as a composition of three maps of
the above type.

The cotangent bundle T ∗X of a closed smooth manifold X has a canonical
symplectic form, and is therefore a spinc manifold. Thus, the map p : T ∗X → point
is K-oriented, and we have a Gysin map

p! : K0(T ∗X) → K0(point) = Z

Proposition 2 ([7]) If P is an elliptic operator on a closed manifold X, then

IndexP = p!(σ (P ))

A purely topological calculation, carried out in [8], shows that the characteristic
class formula of Proposition 1 follows from Proposition 2.

4 The tangent groupoid

One of many significant contributions of Alain Connes to index theory is the
introduction of the tangent groupoid as a fundamental tool (see [28, chapter II.5]).

A groupoid G is a small category in which all morphisms are isomorphisms. We
refer to the morphisms G(1) of the category as the elements of the groupoid G, and
composition of morphisms as multiplication. An object x ∈ G(0) in the category is
identified with its identity morphism Idx ∈ G(1) and thought of as a unit element
x ∈ G. Each morphism γ ∈ G has a source object s(γ ) ∈ G(0) and range object
r(γ ) ∈ G(0). A pair γ1, γ2 ∈ G can be multiplied if s(γ1) = r(γ2).

A Lie groupoid is a groupoid such that G is a smooth manifold, G(0) ⊂ G is a
smooth submanifold, the source and target maps are smooth submersionsG → G(0)

making the set of composable elements G(2) = {(γ1, γ2) | s(γ1) = r(γ2)} into a
smooth submanifold of G × G, and multiplication G(2) → G : (γ1, γ2) �→ γ1γ2
and inversion G → G : γ �→ γ−1 are smooth maps.

If G is a Lie groupoid, and f, g ∈ C∞
c (G) are two smooth functions with

compact support, then the convolution product f ∗ g is defined as on a group,

(f ∗ g)(γ ) =
∫

Gx

f
(
γβ−1

)
g(β)dλx(β) x = s(γ ) = s(β)



426 A. Gorokhovsky and E. Van Erp

For this formula to make sense we must choose a smooth density λx on the
submanifold Gx = s−1(x) ⊂ G for each unit x ∈ G(0). The support of λx must be
all of Gx . To obtain an associative product the family of densities {λx, x ∈ G(0)}
must depend smoothly on x, and be invariant under right multiplicationGx → Gy :
γ1 → γ1γ2 with r(γ2) = x, s(γ2) = y.

Involution is f ∗(γ ) = f (γ−1), and the ∗-algebra C∞
c (G) completes to a

C∗-algebra C∗(G). A different choice of densities λx results in an isomorphic C∗-
algebra C∗(G). Many, if not most, C∗-algebras in noncommutative geometry arise
as groupoid C∗-algebras.

Example 3 Let X be a smooth manifold. The tangent bundle TX, conceived as a
smooth family of abelian Lie groups TxX ∼= R

n, is a Lie groupoid. The set of units is
the zero section X ⊂ TX, and source and range maps are the projection TX → X.
Composition is addition of vectors in the same fiber TxX. The convolution algebra
C∗(T X) is commutative, because γ1γ2 = γ2γ1. Fourier transform in each fiber TxX
determines a natural isomorphism of C∗-algebras,

C∗(T X) ∼= C0(T
∗X)

Example 4 The Cartesian product X ×X is a groupoid with multiplication

(x, y)(y, z) = (x, z) x, y, z ∈ X

The units are the elements (x, x) of the diagonal in X×X. Thus, the space of units
can be identified with X. Convolution of functions f, g ∈ C∞

c (X ×X) is

(f ∗ g)(x, y) =
∫

X

f (x, z)g(z, y)dλ(z)

with arbitrary choice of positive smooth density λ onX = X×{y} = s−1(y). This is
the rule for composition of Schwartz kernels. The convolution algebra C∞

c (X×X)

is naturally represented as operators on L2(X, λ), and these operators are compact
because their Schwartz kernels are square integrable. After completion in norm we
have

C∗(X ×X) ∼= K(L2(X))

Algebraically, the tangent groupoid TX is the disjoint union of the abelian groups
TxX ∼= R

n parametrized by x ∈ X, and a family of pair groupoids X × X

parametrized by t ∈ (0, 1],

TX = TX × {0} � X ×X × (0, 1]
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The nontrivial aspect of the construction of TX is the way the tangent bundle TX is
glued, as a smooth boundary at t = 0, to the family of pair groupoids for t ∈ (0, 1],
by “blowing up” the diagonal in X ×X.

Evaluation at t = 0 gives a ∗-homomorphism

ev0 : C∗(TX) → C∗(T X) ∼= C0(T
∗X)

The kernel of this map is a contractibleC∗-algebraC0((0, 1],K), and so ev0 induces
an isomorphism in K-theory,

(ev0)∗ : K0(C
∗(TX)) ∼= K0(T ∗X)

Evaluation at t = 1 determines a homomorphism

(ev1)∗ : K0(C
∗(TX)) → K0(C

∗(X ×X)) ∼= K0(K(L2(X)) ∼= Z

Proposition 5 ([28, II.5]) The homomorphism

(ev1)∗ ◦ (ev0)
−1∗ : K0(T ∗X) → Z

is the analytic index, i.e., it maps the principal symbol of an elliptic operator P to
the index of P ,

IndexP = (ev1)∗ ◦ (ev0)
−1∗ [σ(P )]

Proof Let P be a linear differential operator on X. For simplicity, we assume that
E,F are trivial line bundles. P determines a differential operator P on TX as
follows. The space of units of TX isX×[0, 1]. P differentiates only in the direction
of the source fibers s−1(x, t) with (x, t) ∈ X × [0, 1]. If t > 0, then P restricted to
s−1(x, t) = X × {x} × {t} is tdP . If t = 0, then on each fiber s−1(x, 0) = TxX of
the tangent bundle, P restricts to the constant coefficient operator Px homogeneous
of degree d, obtained by freezing the coefficients of P at x, and retaining only the
highest order terms,

Px =
∑

α1+···+αn=d
aα(x)

∂α1

∂x
α1
1

· · · ∂αn

∂x
αn
n

(where aα(x) are constant matrices). Note that the principal symbol σ(P )(x, ξ) at
x ∈ X is the Fourier transform of Px .

The smooth structure of TX is constructed in precisely such a way that the
coefficients of P are smooth functions on TX. In fact, P is a right invariant
differential operator on the groupoid TX, and is a multiplier of the convolution
algebra C∞

c (TX). This construction generalizes to pseudodifferential operators. If
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P is elliptic, and if Q is a parametrix of P , then Q is an inverse of P modulo
C∞
c (TX). Therefore, P determines an element in algebraic K-theory

[P] ∈ Kalg
0 (C∞

c (TX))

The inclusion C∞
c (TX) ⊂ C∗(TX) induces a map in K-theory, and we obtain

[P] ∈ K0(C
∗(TX))

Evaluation at t = 0 maps the K-theory class [P] to the class [σ(P )] defined by
Atiyah and Singer,

(ev0)∗([P]) = [σ(P )] ∈ K0(T ∗X)

Evaluation at t = 1, on the other hand, sends [P] to an element in K0(K) ∼= Z that
corresponds to the index of P ,

(ev1)∗([P]) = IndexP ∈ Z

��
In [28, II.5] Connes gives a short and conceptually elegant proof that the map

(ev1)∗ ◦ (ev0)
−1∗ : K0(T ∗X) → Z determined by the tangent groupoid agrees with

the Gysin map p! : K0(T ∗X) → Z. This proves Proposition 2. Connes’ proof
makes use of the Baum–Connes isomorphism for the tangent groupoid G = TX,

K0(BG) ∼= K0(C
∗(G))

(see Section 9). Here BG is a classifying space for free and proper actions of G.
This isomorphism replaces the groupoid G = TX by the topological space BG,
which turns the index map into one that can be computed topologically.

In subsequent work by many authors, the tangent groupoid has proven to be
a very useful tool in index theory. Analogs of the tangent groupoid have been
constructed to deal with index problems in various contexts. As a random (neither
exhaustive nor fully representative) sample of publications ranging from 1987 to
2018, see [48, 56, 61, 1, 63, 65, 47, 30].

Remark 6 The tangent groupoid formalism is intimately connected to deformation
theory. The C∗-algebra C∗(TX) is the algebra of sections of a continuous field of
C∗-algebras over [0, 1] with fiber C0(T

∗X) at t = 0 and K(L2(X)) at all t >
0. This field encodes a strong deformation quantization of the algebra of classical
observables (functions on the symplectic phase space T ∗X) to quantum observables
(operators on L2(X)).
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5 K-homology

The wrong-way functoriality of the Gysin map suggests that the topological index
is perhaps more naturally regarded as a map in K-homology. Atiyah–Hirzebruch
K-theory is associated with the Bott spectrum,

Kj(X) = [
X,Kj

]
K2j = BU × Z, K2j+1 = U

Abstractly,K-homologyKj(X) is then defined as the stable homotopy group of the
smash product of X with the Bott spectrum,

K
top
j (X) = πj (X ∧K) = lim−→ πj+k(X ∧Kk)

K-homology is naturally covariant. The Gysin map p! : K0(T ∗X) → Z in K-
theory corresponds in K-homology to the map determined by ε : X → point,

ε∗ : Ktop

0 (X) → K
top

0 (point) ∼= Z

composed with the Poincaré duality isomorphism

K0(T ∗X) ∼= K
top

0 (X)

5.1 Analytic K-homology

The homotopy theoretic definition ofK-homology lacks a concrete model for cycles
in Kj(X) that is useful in calculations. In [3] Atiyah shows that elliptic operators
can representK-cycles. If P is an elliptic operator on a closed manifoldX, and V is
a complex vector bundle onX, we can twist P by V to obtain a new elliptic operator

PV : C∞(M,E ⊗ V ) → C∞(M,F ⊗ V )

Thus, P determines a homomorphism

K0(X) → Z [V ] �→ IndexPV

In [3] Atiyah axiomatized the notion of elliptic operator such that it still makes
sense ifX is not a smooth manifold, but only a compact Hausdorff space. Following
Atiyah, an element in the even K-homology group K0(X) is represented by a
bounded Fredholm operator F : H 0 → H 1, where the Hilbert spaces Hj are
equipped with a ∗-representation φj : C(X) → B(Hj ), and F is “an operator
on X” in the sense that
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Fφ0(f )− φ1(f )F : H 0 → H 1 is a compact operator for all f ∈ C(X) (5.1)

This axiom guarantees that the index of the operator F twisted by a vector bundle
V on X is a well-defined integer. In fact, twisting implements the cap product, i.e.,
the structure of K-homology as a module over the K-theory ring,

∩ : K0(X)×K0(X) → K0(X) [V ] ∩ [P ] = [PV ]

For an elliptic operator P : C∞(E) → C∞(F ), the Hilbert spaces H 0,H 1

are appropriate Sobolev spaces of sections in E,F , such that P : H 0 → H 1

is a bounded Fredholm operator, and Atiyah’s axiom is satisfied because of the
Rellich Lemma. The correct equivalence relation for Atiyah’s group of abstract
elliptic operators was identified by Kasparov [51]. The Atiyah–Kasparov analytic
K-homology of X is the KK-group KK(C(X),C). For finite CW -complexes X
there is an isomorphism

KK(C(X),C) ∼= K
top

0 (X)

Kasparov developed the theory far beyond Atiyah’s ansatz. For two separable (pos-
sibly noncommutative) C∗-algebras A,B, elements in the abelian groupKK(A,B)
are represented by generalized Fredholm operators F : H 0 → H 1. Now H 0,H 1

are Hilbert C∗-modules over B, and φj : A → L(Hj ) are ∗-representations of A
by adjointable operators on Hj . F is invertible modulo “compact operators” in the
sense of the theory of operators on Hilbert-modules. The power of KK-theory rests
on the existence of an associative product

# : KK(A,B)×KK(B,C) → KK(A,C)

For example, K-theory is

K0(A) ∼= KK(C, A)

and an element in the bivariant group ξ ∈ KK(A,B) induces, by right composition,
a map of K-theory groups

K0(A) → K0(B) : α �→ α#ξ

Kasparov showed that Proposition 1 of Atiyah–Singer can be understood in K-
homology as follows. The Dirac operator DT ∗X of the (symplectic) spinc manifold
T ∗X determines a class in analytic K-homology,

[DT ∗X] ∈ KK(C0(T
∗X),C)
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and hence determines a map K0(T ∗X) → Z. This map is equal to the topological
index of Atiyah–Singer.1 But the principal symbol σ(P ) of an elliptic operator P
determines not only an element in K-theory,

[σ(P )] ∈ KK(C, C0(T
∗X))

but in fact gives the slightly better

[σ(P )] ∈ KK(C(X),C0(T
∗X))

Proposition 7 ([19, section 24.5]) The element in analytic K-homology deter-
mined by an elliptic operator P on a closed manifold X is the product

[P ] = [σ(P )]#[DT ∗X] ∈ KK(C(X),C)

The importance of KK-theory to index theory is hard to overstate. For an
excellent first introduction to KK-theory see [44].

5.2 Geometric K-homology

A geometric model for cycles inK-homology was developed by Baum and Douglas
[12]. In their theory, a K-cycle is represented by a triple (M, V, ϕ), where M is a
closed spinc manifold, V is a complex vector bundle on M , and ϕ : M → X is
a continuous map. The nontrivial aspect of the theory is the equivalence relation
on such triples (see [12] for details). The groups Kgeo

0 (X) and Kgeo
1 (X) consist

of equivalence classes of triples (M, V, ϕ) with M even or odd dimensional,
respectively. Remarkably, Baum–Douglas geometric K-homology is equivalent to
topological K-homology for all topological spaces X [50],

K
geo
j (X) ∼= πj (X ∧K)

A proof of the special case of the Atiyah–Singer index theorem for Dirac operators
using geometric K-homology is as follows. Propositions 7 and 8 together imply
Proposition 1.

Proposition 8 If M is a spinc manifold with Dirac operator D, and V is a smooth
complex vector bundle on M , then

IndexDV = {ch(V ) ∪ Td(M)}[M]

1This is a restatement of Bott’s version of the Atiyah–Singer formula in his review of [6] for the
AMS mathematical reviews.
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where Td(M) is the Todd class of the spinc vector bundle TM .

Proof The geometric K-homology of a point Kgeo
0 (point) consists of pairs (M, V ),

with M a spinc manifold with complex vector bundle V . There is an isomorphism
of abelian groups,

K
geo
0 (point) ∼= Z (M, V ) �→ {ch(V ) ∪ Td(M)}[M]

The proof that this is an isomorphism is purely topological, and Bott periodicity
plays a key role. There is a second homomorphism, namely the analytic index

K
geo
0 (point) → Z (M, V ) �→ IndexDV

The proof that this map is well-defined relies on bordism invariance of the index
of Dirac operators. To prove that the two homomorphisms of abelian groups
K

geo
0 (point) → Z are equal, it suffices to verify this by direct calculation in one

example whereDV has nonzero index (for example, the Dolbeault operator of CP 1).
(See [15] for details.) ��

The point of view proposed in [12] is that index theory, in general, is based on the
equivalence between analytic and geometric K-homology. For a compact manifold
X (or, more generally, a finite CW -complex), there is an isomorphism [13]

μ : Kgeo
0 (X) ∼= KK(C(X),C)

If (M, V, ϕ) is a geometric K-cycle for X, the spinc manifold M has a Dirac
operatorD;D twisted by V determines an element in analyticK-homology [DV ] ∈
KK(C(M),C); finally φ : M → X maps this element to

μ(M,V, ϕ) = ϕ∗(DV ) ∈ KK(C(X),C)

In [12], Baum and Douglas conceptualize index theory as follows:

Given an element in analytic K-homology, ξ ∈ KKj (C(X),C), explicitly compute the
unique ξ̃ in geometric K-homology, ξ̃ ∈ Kgeo

j (X), corresponding to ξ .

In concrete terms, this proposes that index problems are solved by reduction to the
index of a Dirac operator, possibly on a different manifold—as, for example, in
Proposition 7. This perspective on index theory was used, more recently, to solve
the index problem for hypoelliptic operators in the Heisenberg calculus on contact
manifolds [14]. This is a class of (pseudo)differential operators that are Fredholm,
but not elliptic. Yet these operators satisfy Atiyah’s axiom (5.1), and therefore
determine an analytic K-cycle. The index problem for this class of hypoelliptic
operators was solved by computing an equivalent geometric K-cycle.
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6 Elliptic families

The suggestion in [12] that index problems are solved by reduction to Dirac
operators is intimately related to the point of view that the topological index is a
Gysin map in K-theory. To see the connection between the two perspectives, we
consider the families index theorem of Atiyah and Singer [9].

Suppose Pb is a smooth family of elliptic operators on a closed manifold X,
parametrized by points b ∈ B in another compact manifold B. Alternatively, we
may think of such an elliptic family {Pb, b ∈ B} as a single differential operator P
onX×B that differentiates along the fibers ofX×B → B. The kernel Vb = ker Pb
of each individual operator Pb is a finite dimensional vector space. If the dimension
of Vb is independent of b ∈ B, then the collection {Vb, b ∈ B} defines a vector
bundle V = ker P on B. The same holds for the cokernels of Pb, and the index of
the elliptic family P is a formal difference of two vector bundles on B,

IndexP = [ker P ] − [cokerP ] ∈ K0(B)

The construction can be modified so that it makes sense even if the dimension of
Vb is not constant. See [9], where the product X×B is generalized to fiber bundles
Z → B, and B is allowed to be a compact Hausdorff space.

The analog of Proposition 7 holds for families. As a single operator, P : H 0 →
H 1 is a generalized Fredholm operator, whereH 0,H 1 are Hilbert modules over the
C∗-algebra C(B). As such, P determines a class in KK(C, C(B)). The families
index of P is precisely the isomorphism

Index : KK(C, C(B)) ∼= K0(B)

If V → Z is a complex vector bundle on Z, then each elliptic operator Pb can be
twisted by the restriction V |Zb. We obtain the twisted family PV , whose families
index is an element in K0(B). Thus, P determines a group homomorphism

[V ] → IndexPV : K0(Z) → K0(B)

This homomorphism is the product, in KK-theory, with a KK-element determined
by the elliptic family P ,

IndexPV = [V ]#[P ] [P ] ∈ KK(C(Z), C(B))

As with a single operator, the principal symbol of an elliptic family on Z → B is
an element in K-theory,

[σ(P )] ∈ K0 (T ∗
vertZ

)
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where TvertZ is the bundle of vertical tangent vectors, i.e., the kernel of the map
dπ : T Z → T B. We have in fact

[σ(P )] ∈ KK (
C(Z), C0

(
T ∗

vertZ
))

The cotangent bundles T ∗Zb of the fibers Zb are symplectic and hence spinc

manifolds. The family of Dirac operators DT ∗Zb is an elliptic family parametrized
by b ∈ B, and determines a KK-element

[
DT ∗

vertZ

] ∈ KK (
C0

(
T ∗

vertZ
)
, C(B)

)

Then, as in Kasparov’s Proposition 7, a version of the families index theorem is

[P ] = [σ(P )]# [
DT ∗

vertZ

] ∈ KK(C(Z), C(B))

To derive the families index theorem of [9], we need a topological characterization
of the KK-element [DT ∗

vertZ
]. This topological characterization is provided by the

Gysin map.

Proposition 9 Let π : W → B be a submersion of manifolds. Assume that
ker dπ ⊂ TW is a spinc vector bundle, so that each fiber Wb is a spinc manifold,
and π is K-oriented. If D is the elliptic family of Dirac operators Db of Wb, then
the KK-element

[D] ∈ KK(C0(W), C(B))

has the property that the corresponding map in K-theory

K0(W) → K0(B) : [V ] �→ [V ]#[D] = IndexDV

is the Gysin map

π! : K0(W) → K0(B)

Proposition 9 is a special case of the families index theorem in [9]. Together with
the equality [P ] = [σ(P )]#[DT ∗

vertZ
], it gives the index theorem for general elliptic

families as,

IndexP = π!(σ (P )) ∈ K0(B) π : T ∗
vertZ → B
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7 The adiabatic groupoid

The tangent groupoid formalism can be adapted to the families index problem.
The relevant generalization of Connes’ tangent groupoid is developed by Nistor,
Weinstein, and Xu in [61]. For an arbitrary Lie groupoid G, let T sG be the vector
bundle on G of vectors tangent to the source fibers, i.e., vectors in the kernel of
ds : TG → TG(0), where s : G → G(0) is the source map of the groupoid G. Let
AG be the restriction of T sG to the space of objects G(0) ⊂ G. The vector bundle
AG has the structure of a Lie algebroid, but this is not relevant for our purposes
here.

A “blow-up” construction that closely follows [28, II.5] produces a groupoid

Gad = AG× {0} � G× (0, 1]

called the adiabatic groupoid of G. Algebraically, Gad is the disjoint union of a
family of copies of G parametrized by t ∈ (0, 1] with the vector bundle AG as the
boundary at t = 0. Connes’ tangent groupoid is the special case with G = X × X

and AG = TX.
As in Section 4 above, the adiabatic groupoid gives rise to a map in K-theory

K0(A∗G) → K0(C
∗(G))

from the K-theory of the vector bundle A∗G to the K-theory of the Lie groupoid
G. This map can be interpreted as an analytic index. If P is a (pseudo)differential
operator onG that differentiates only in the direction of the fibers of the source map
s : G → G(0), and if P is right invariant, then if the principal symbol σ(P )(x, ξ) is
invertible for all groupoid units x ∈ G(0) and all ξ ∈ A∗G with ξ �= 0, then P has
an index,

IndexP ∈ K0(C
∗(G))

The principal symbol of P determines a class in topological K-theory

[σ(P )] ∈ K0(A∗G)

The analytic index map determined by the adiabatic groupoid maps [σ(P )] to
IndexP . For differential operators, the proof of these facts is essentially the same
as the proof of Proposition 5.

Example 10 Given a smooth fiber bundle π : Z → B, consider the Lie groupoid

G = Z ×B Z = {(z, z′) ∈ Z × Z | π(z) = π(z′)}

with multiplication (z, z′)(z′, z′′) = (z, z′′). The Lie algebroid ofG isAG = TvertZ.
The groupoid Z ×B Z is Morita equivalent to the manifold B (as a Lie groupoid in
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which all elements are units), and the adiabatic groupoid of G determines an index
map

K0(A∗G) = K0 (T ∗
vertZ

) → K0(B) ∼= K0(C
∗(G))

This map is the analytic index map for families of elliptic operators on the fibers of
Z → B.

8 Foliations

A foliation of a smooth manifold Z is a subbundle F ⊆ T Z such that [F,F ] ⊆ F .
Equivalently, Z is a disjoint union of immersed submanifolds L ⊂ Z, called the
leaves of the foliation, such that at every point x ∈ L for any leaf L ⊂ Z we have
TxL = Fx . The leaf space is the set of leaves with the quotient topology inherited
from Z. If π : Z → B is a fibration, then Z is foliated with F = TvertZ = ker dπ .
The leafs are the fibers Zb = π−1(b), and the leaf space is B. In general, the leaf
space of a foliation may have pathological topology. For example, if Z contains at
least one leaf L that is dense in Z (e.g., the Kronecker foliation of a torus), then the
leaf space has only two open sets.

The holonomy groupoid GZ/F of a foliated manifold (Z, F ) is a Lie groupoid
whose elements are equivalence classes of paths γ : [0, 1] → L connecting points
x = s(γ ), y = r(γ ) in the same leaf L. Two paths are equivalent if they have
the same holonomy (see [23]). Multiplication in GZ/F is composition of paths.
In simple cases where there is no holonomy (e.g., the Kronecker foliation), the
groupoid GZ/F is algebraically a disjoint union of the pair groupiods L× L of the
leaves. If the leaf space (with its quotient topology) is Hausdorff, then it is Morita
equivalent to the groupoidGZ/F . But in general the holonomy groupoidGZ/F (as a
“smooth stack”) is a better representation of the space of leaves than the leaf space
with its quotient space.

By definition, the K-theory of the leaf space of a foliation is the K-theory of the
reduced C∗-algebra of the holonomy groupoid,

K0(Z/F) := K0
(
C∗
r

(
GZ/F

))

The Lie algebroid of GZ/F is AG = F , as a vector bundle over G(0) = Z. Thus, by
the general procedure of [61], we have an analytic index

K0(F ∗) → K0(Z/F)

This map generalizes the analytic index of elliptic families. It is defined, for
example, for differential operators on Z that differentiate in the leaf direction, and
are elliptic along the leafs. Such operators are called longitudinally elliptic.
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Assume that the leaves are even dimensional spinc manifolds. This means that
F is a spinc vector bundle of even rank, and so in particular we have the Thom
isomorphism,

K0(F ∗) ∼= K0(Z)

The spinc Dirac operators of the leaves form a longitudinally elliptic family D on
Z. Given a vector bundle V on Z, we can twist the Dirac operator of each leaf L by
the restriction V |L, and we obtain a new elliptic family DV . The longitudinal index
problem consists in identifying a “topological index” that equals the analytic index
map

K0(Z) → K0(Z/F) V �→ IndexDV

The solution was suggested in [23] and proven in [26] by Connes and Skandalis. A
smooth maps between foliated manifolds

f : Z1/F1 → Z2/F2

is defined as a smooth groupoid homomorphism G′
Z1/F1

→ GZ2/F2 , where G′
Z1/F1

is a groupoid that is Morita equivalent toGZ1/F1 . (This is a morphism of stacks.) The
notion of K-orientation naturally extends to such maps. The difficulty is showing
that such a K-oriented map determines a Gysin map in K-theory that is (wrong-
way) functorial,

f! : K•(V1/F1) → K•(V2/F2)

If F is a spinc vector bundle, then the identity map l : Z → Z is K-oriented when
considered as a morphism from the manifold Z to the foliation Z/F . In the case of
a fiber bundle π : Z → B, where Z/F = B, this is just the map π . The topological
index for longitudinally elliptic operators is the Gysin map

l! : K0(Z) → K0(Z/F)

Thus, the index theorem of Connes–Skandalis for longitudinally elliptic operators
generalizes Proposition 9.

9 The Baum–Connes conjecture

Among the most significant developments of index theory in the context of non-
commutative geometry is the Baum–Connes conjecture. To fit it in the framework
discussed so far, consider a manifold X with fundamental cover p : X̃ → X. The
fundamental groupoid of X is the Lie groupoid
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X̃ ×X X̃ = {(a, b) ∈ X̃ × X̃ | p(a) = p(b)}

with multiplication (a, b)(b, c) = (a, c). Equivalently, elements of the fundamental
groupoid are homotopy classes of paths γ : [0, 1] → X (with no base point),
and multiplication is composition of paths. The fundamental groupoid is Morita
equivalent to the fundamental group � = π1(X), and so

K0

(
C∗ (X̃ ×X X̃

)) ∼= K0(C
∗(�))

The Lie algebroid of X̃ ×X X̃ is TX, i.e., it is the same as the Lie algebroid of the
pair groupoid X×X. The adiabatic groupoid of X̃×X X̃ thus gives rise to an index
map in K-theory

K0(T ∗X) → K0(C
∗(�))

If P is an elliptic operator on X, then P lifts to a �-equivariant elliptic operator P̃
on X̃. The analytic index maps the symbol [σ(P )] ∈ K0(T ∗X) to the �-index of
P̃ . By Poincaré duality, we may conceive of this �-index as a map

K0(X) → K0(C
∗ (�))

(where K0(X) is K-homology, K0(C
∗(�)) is K-theory).

Now let � be an arbitrary countable discrete group. The classifying space B�
for principal �-bundles is not generally a smooth manifold, but one can still define
a generalized index map

μ : K0(B�) → K0(C
∗(�))

called the assembly map. By composition with the natural map C∗(�) → C∗
r (�),

we may replace the full C∗-algebra C∗(�) on the right-hand side by the reduced
C∗-algebra C∗

r (�),

μr : K0(B�) → K0
(
C∗
r (�)

)

The conjecture asserts that μr is an isomorphism if � is a countable discrete group
without torsion elements [52]. If � has torsion, the left-hand side of the conjecture
is replaced by the �-equivariant K-homology (with �-compact supports) of the
classifying space E� for proper (instead of principal) �-actions. If � is torsion
free, then K�

0 (E�)
∼= K0(B�). In general, the assembly map

μ : K�
j (E�) → Kj

(
C∗
r (�)

)
j = 0, 1

is conjectured to be an isomorphism for any second countable locally compact group
� [11]. Early versions of the Baum–Connes conjecture concerned the K-theory
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of groupoids (the holonomy groupoid of a foliation [23] and crossed product
groupoids [10]), but we now have counterexamples for the conjecture for groupoids.
For groups, to this day no counterexample has been found, and the conjecture
has been verified for large classes of groups. Since injectivity of the assembly
map for a discrete group � implies the Novikov higher signature conjecture, the
Baum–Connes conjecture is a development within noncommutative geometry with
significant implications in algebraic topology.

10 Cohomological index formulas and local index theory

One can obtain index formulas for the index of a single operator or an elliptic
family by applying the Chern character toK-theoretical index formulas. A different
analytic approach has been proposed by Atiyah and Bott [4]. It is based on the
following fundamental observation. Let P , as before, be an elliptic operator on a
manifold X acting between sections of bundles E and F . We can then form two
positive operators P ∗P and PP ∗ and consider two ζ -functions Tr(1 + P ∗P)−s
and Tr(1 + P ∗P)−s . Both of these functions are defined and holomorphic for &s
sufficiently large and admit meromorphic continuation to the entire complex plane.
Moreover, they are holomorphic at s = 0 and the value of each ζ -function at s = 0
can be computed by an explicit integral of a well-defined local density, see [64]. The
operators P ∗P and PP ∗ have the same sets of nonzero eigenvalues with the same
multiplicities. The multiplicities of 0 as an eigenvalue on the other hand differ for
two operators, and the difference of multiplicities is precisely the index of operator
P . It follows that for any s with &s sufficiently large

Tr(1 + P ∗P)−s − Tr(1 + PP ∗)−s = indexP

Writing ζ(s) := Tr(1 + P ∗P)−s − Tr(1 + PP ∗)−s we thus obtain by analytic
continuation

indexP = ζ(0).

It is useful to rewrite these considerations in the following Z2 -graded notations. Let

H := L2(X,E)⊕ L2(X, F ) (10.1)

be a Hilbert space. On H one has a grading operator γ given by the matrix

[
1 0
0 −1

]

with respect to the decomposition (10.1) and an operator D =
[

0 P ∗
P 0

]
. In these

terms we can write ζ(s) = Tr γ (1 + D2)−s . McKean and Singer [55] proposed
using a closely related formula
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indexP = Tr γ e−tD2
,

which holds for any t > 0, for index computation. Since the trace of the heat
kernel e−tD2

admits an asymptotic expansion as t → 0+ with the coefficients being
canonically defined local densitiesX this formula allows in principle to compute the
index as an integral over X. Explicitly, the index formula for Dirac-type operators
has been obtained by computing the local densities using invariant theory in [37, 2].
Later significantly simpler methods allowing direct calculations of the local index
density were found in [33, 34, 17], cf. [16]. It is important to note that this approach
provides not just cohomology classes appearing in a cohomological index formula,
but rather canonically defined differential forms representing these classes, thus
justifying the name local index formulas. This locality has been exploited to extend
index theory, e.g., to manifolds with boundary [5]. The extension of local index
techniques to the elliptic families case has been carried out in [18] based on the
superconnection formalism proposed in [62]. Further extension of these results to
the case of foliations presents an additional difficulty. Since the algebras involved
are noncommutative, de Rham theory is no longer a proper receptacle for the Chern
character in K-theory. As we will see, this role is played by cyclic theory. Finally,
we mention that a different approach to local index theory based on the study of
cyclic theory of deformation quantization algebras has been developed by R. Nest
and B. Tsygan. For their approach as well as some applications we refer to the
original papers [57, 58, 59, 20].

11 Cyclic complexes

In this section, we give a very brief overview of periodic cyclic homological and
cohomological complexes, mostly to fix the notations. The standard reference for
this material is [54].

For a complex unital algebra A set Cl(A) := A ⊗ (A/(C · 1))⊗l , l ≥ 0. For
a topological algebra, e.g., a normed algebra, one needs to take an appropriately
completed tensor product. One defines differentials b : Cl(A) → Cl−1(A) and
B : Cl(A) → Cl+1(A) by

b (a0 ⊗ a1 ⊗ . . . al) :=
l−1∑

i=0

(−1)ia0 ⊗ . . . aiai+1 ⊗ . . . al+(−1)lala0 ⊗a1 ⊗ . . . al−1

B(a0 ⊗ a1 ⊗ . . . al) :=
l∑

i=0

(−1)li1 ⊗ ai ⊗ ai+1 ⊗ . . . ai−1 (with a−1 := al).

One verifies directly that b, B are well defined and satisfy b2 = 0, B2 = 0, Bb +
bB = 0. We will be primarily interested in the periodic cyclic complex, which is
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a totalization of a bicomplex defined as follows. Set Ckl(A) := Cl−k(A), k, l ∈ Z

(Ckl(A) = 0 if k > l) and note that b, B define maps b : Ckl(A) → Ck,(l−1)(A)
and B : Ckl(A) → C(k−1),l(A).

(
C•,•(A), b, B

)
is thus a bicomplex. To obtain the

periodic cyclic complex it is totalized as follows:

CC
per
i (A) :=

∏

k+l=i
Ckl(A)

with the differential b + B : CCperi (A) → CC
per

i−1(A). Note CC
per
i (A) =

CC
per

i+2m(A) for every m ∈ Z, and therefore the complex is (indeed) 2-periodic.
Its homology is denoted by HC

per

0 (A)(∼= HC
per

2m (A)) and HC
per

1 (A)(∼=
HC

per

1+2m(A)), m ∈ Z. We will write a chain in CC
per
i (A), i = 0 or 1 as

α = ∑∞
m=0 αi+2m, where αk ∈ Ck(A).

Two important examples of classes in cyclic homology are the following. Let
e ∈ Mn(A) = A ⊗Mn(C) be a idempotent. Then

Ch(e) := tr e +
∞∑

l=1

(−1)l
(2l)!
l! tr

(
e − 1

2

)
⊗ e⊗2l ∈

∏

l≥0

C−l,l(A) = CC
per

0 (A)

where tr : (A ⊗Mn(C))
⊗k → A⊗k is the map given by

tr(a0 ⊗m0)⊗ (a1 ⊗m1)⊗ . . . (ak ⊗mk) = (trm0m1 . . . mk)a0 ⊗ a1 ⊗ . . . ak.

The class of Ch(e) in HCper0 (A) depends only on the class of e in K0(A) and thus
defines the Chern character morphism

Ch : K0(A) → HC
per

0 (A)

Similarly, if u ∈ Mn(A) is invertible on can define

Ch(u) := 1√
2πi

∞∑

l=0

(−1)l l! tr
(
u−1 ⊗ u

)⊗(l+1) ∈ CCper1 (A)

This defines a homomorphism

Ch : K1(A) → HC
per

1 (A).

from topologicalK-theory to periodic cyclic cohomology in the odd case. Note that
one can define Chern characters for K0 and K1 by the same formulas in the case of
algebraic K-theory as well, but in the case of K1 the target of the Chern character
should be a different flavor of cyclic theory, the negative cyclic homology.
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Example 11 Let A = C∞(X) where X is a compact manifold. We have a map
λ : Ck(A) → �k(X) given by

λ(a0 ⊗ a1 ⊗ . . . ak) = 1

k!a0da1 . . . dak

which intertwines the differential B with de Rham differential d and b with 0. It
follows that if we consider a bicomplex Dkl := �l−k(X) with the differentials
given by d and 0, the map λ will induce a morphism of bicomplexes Ckl(A)
and Dkl . It can be shown that this map is a quasi-isomorphism [27] and hence

HC
per
i (C∞(X)) ∼= ⊕m∈ZHi+2m(X). The map Ki(X) ∼= Ki(C

∞(X)) Ch−→
HC

per
i (C∞(X)) λ−→ ⊕m∈ZHi+2m(X) recovers the ordinary Chern character in K-

theory (up to normalization).

Dually, one considers cyclic cohomology. Set Ck(A) := (Ck(A))′—the space
of continuous multilinear functionals φ(a0, a1, . . . , ak) on A with the property
that if for some i ≥ 1 ai = 1, then φ(a0, a1, . . . , ak) = 0. The transpose of
the differentials b, B induce maps, also denoted b, B: b : Ck(A) → Ck+1(A),
B : Ck(A) → Ck−1(A). One then forms a bicomplex Ckl(A) := Cl−k(A), k, l ∈ Z

with the differentials b : Ckl(A) → Ck,(l+1)(A) and B : Ckl(A) → C(k+1),l(A).
Again dually to the homological case it is totalized using the direct sums rather than
products:

CCiper (A) :=
⊕

k+l=i
Ckl(A).

Here again the complex we consider is 2-periodic. An even (resp. odd)
cyclic cochain is thus given by a collection of multilinear functionals φk =
φk(a0, . . . , ak) ∈ Ck(A), k = 0, 2, . . . (resp. k = 1, 3, . . .), only finitely many
of which are nonzero. A cochain is a cocycle if it satisfies bφk + Bφk+2 = 0. We
denote the cohomology of the periodic cyclic complex CC•

per (A) by HC•
per (A);

these again take two distinct values HC0
per (A) and HC1

per (A).
Note that it is important that the cyclic cohomological bicomplex is totalized by

using direct sums and not products: if we remove the requirement that only finitely
many of the φk are nonzero we obtain a complex with vanishing cohomology. One
can however obtain a nontrivial theory with infinite cochains as follows. Assume
that A is a Banach (or normed) algebra. Denote by CCientire(A) the space of
cochains φk ∈ Ck(A), k same parity as i, satisfying

∑√
k!‖φk‖rk < ∞ for every r ≥ 0.

The space of such cochains is preserved by the differential b + B and we thus
obtain a complex CC•

entire(A) with the cohomology denoted by HC•
entire(A).
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CC•
per (A) is clearly a subcomplex of CC•

entire(A), and we therefore have a
morphism HC•

per (A) → HC•
entire(A) induced by the inclusion map.

12 The longitudinal index formula in cyclic theory

Let (Z, F ) be a foliated manifold, and D a longitudinally elliptic operator on Z.
Choose a (possibly disconnected) transversal T to the foliation. By restricting the
foliation groupoid to T , i.e., considering only paths which start and end in T we
obtain an etale groupoid GT , Morita equivalent to the holonomy groupoid GZ/F .
One can consider the convolution algebra C∞

c (GT ) of smooth compactly supported
functions on GT and define the index of a leafwise family D as an element

indexD ∈ K0
(
C∞
c (GT )⊗ R)

where R is the algebra of rapidly decaying infinite matrices. We can apply a Chern
character to obtain a class in cyclic homology Ch(indexD) ∈ HC

per

0 (C∞
c (GT ) ⊗

R) ∼= HC
per

0 (C∞
c (GT )). To obtain numerical information one has to pair this

class with cyclic cohomology. The cyclic cohomology of etale groupoid convolution
algebras has been completely described in [21, 29], based on earlier computations
for group algebras and cross-products [22, 31, 60, 35]. Earlier Connes constructed
a canonical imbedding � : H •(BGT , τ) → HC•−dim T

per (C∞
c (GT )). Here BGT

is the classifying space of the groupoid GT and τ is the local system on BGT
induced by the orientation bundle of T . We can now state Connes’ index formula
for a longitudinally elliptic family. Assume for simplicity that DV is a family of
longitudinal Dirac operators with coefficients in a auxiliary bundle V . Then we have
[28]

〈�(c),Ch(indexDV )〉 =
∫

Z

Â(F )Ch(V )ν∗(c)

Here ν : Z → BGT is the classifying map of GT and Â(F ) is the Â genus of the
bundle F .

We note that unlike the case of, for example, elliptic families, this result cannot in
general be deduced from the K-theoretical Connes–Skandalis index theorem. This
is due to the fact that while indexDV can be defined in K0(C

∞
c (GT ) ⊗ R), only

its image in the K-theory of the C∗-completion of C∞
c (GT ) is computed by the

Connes–Skandalis index theorem. Cyclic homology and the Chern character on the
other hand are nontrivial only for the smaller algebra C∞

c (GT )⊗ R.
The local index theory approach to the cohomological index formula for

foliations and etale groupoids has been developed in [40, 41, 39].
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13 Finitely summable Fredholm modules

Definition 12 An odd Fredholm module (H, F ) over an algebra A is given by the
following data:

A Hilbert space H and a representation on it of an algebra A, i.e., a homomor-
phism π : A → End(H).

An operator F , such that

π(a)(1 − F 2) ∈ K for every a ∈ A (13.1)

π(a)[F, π(b)] ∈ K for every a, b ∈ A (13.2)

The set of (equivalence classes) of odd Fredholm modules with the appropriate
equivalence relation (cf. [19]) and an operation of direct sum becomes the K-
homology group K1(A). For a unital algebra A (but not necessarily unital repre-
sentation) one can replace the Fredholm module by an equivalent one satisfying

1 − F 2 ∈ K for every a ∈ A (13.3)

[F, π(a)] ∈ K for every a ∈ A (13.4)

Definition 13 An even Fredholm module (H, F, γ ) over an algebra A is given by
the following data:

An odd Fredholm module (H, F ) over an algebra A
A Z2 grading on the Hilbert space H, i.e., an operator γ satisfying γ 2 = 1. This

data has to satisfy the following conditions: the operator F is odd with respect to
this grading, i.e.,

Fγ + γF = 0

and elements of the algebra A are even, i.e.,

π(a)γ = γπ(a) for every a ∈ A.

As in the odd case, equivalence classes of even Fredholm modules form the group
K1(A). Let p ≥ 1.

Definition 14 An (odd or even) or Fredholm module is p-summable if the follow-
ing stronger conditions hold:

π(a)(1 − F 2) ∈ Lp for every a ∈ A (13.5)

π(a)[F, π(b)] ∈ Lp for every a, b ∈ A (13.6)

where Lp is the Schatten-ideal of operators T with Tr(|T |p) < ∞. In [27]
Connes shows that with every Fredholm module (called pre-Fredholm module
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in [27]) one can canonically, by changing the Hilbert space and representation,
associate a different Fredholm module, satisfying

F 2 = 1 (13.7)

representing the same K-homology class. If the original Fredholm module was p-
summable, the new one will also be p-summable.

With the Fredholm module satisfying (13.7) Connes associates a cyclic cocycle
called the character of the Fredholm module. Choose n > p−1 and the same parity
as the Fredholm module. Then, viewed in the periodic cyclic bicomplex, Connes’
character has only one component of degree n, τn. defined by the equations

for an even Fredholm module

τn(F )(a0, a1, . . . , an) = (n/2)!
n! Tr′ (γ π(a0)[F, π(a1)] . . . [F, π(an)]) (13.8)

and for an odd Fredholm module

τn(F )(a0, a1, . . . , an) = √
2i
�(n/2 + 1)

n! Tr′ (π(a0)[F, π(a1)] . . . [F, π(an)])
(13.9)

Here we use the notation Tr′(T ) = 1/2 Tr (F (FT + T F)). The cohomology class
of the cocycle τn in periodic cyclic cohomology does not depend on the choice of n
(of appropriate parity).

A fundamental property of the character of a Fredholm module is the following
theorem of Connes [27]. Let e be an idempotent in MN(A), and (H, F, γ ) be an
even Fredholm module over A. Construct a Fredholm operator

Fe = π(e)(F ⊗ 1)π(e) : H+ ⊗ C
N → H− ⊗ C

N

(where H+ and H− denote the ±1 eigenspaces of γ ). Then

Theorem 15 Let (H, F, γ ) be an even p-summable Fredholm module satisfying
F 2 = 1, n > p − 1. Then

index(Fe) = 〈τn(F ),Ch(e)〉 (13.10)

Here Ch(e) is the Chern character in cyclic homology.
Similarly in the odd case pairing of the character of a Fredholm module with a

class in odd K-theory computes the spectral flow. More precisely, let (H, F ) be an
odd Fredholm module and u an invertible element of MN(A). Equivalently, if P
is the spectral projection on the positive spectrum of F (i.e., P = 1/2(1 + F) if
F 2 = 1) consider the Fredholm operator

Tu := (P ⊗ 1)π(u)(P ⊗ 1) ∈ End
(
PH ⊗ C

N
)
.

Then
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Theorem 16 Let (H, F ) be an odd p-summable Fredholm module satisfying F 2 =
1, n > p − 1. Then

index Tu = 〈τn(F ),Ch(u)〉

When π is unital one can show that index Tu coincides with the spectral flow
between two self-adjoint operators F ⊗ 1 and π(u)((F ⊗ 1)π(u)−1 acting on the
space H ⊗ C

N .
In what follows we fix the representation of A on H and will therefore drop it

from the notation. Moreover, we will assume that the algebra A is unital and its
representation is unital as well.

Assume now that we have an even or odd Fredholm module satisfying

(1 − F 2) ∈ L p
2 (13.11)

[F, a] ∈ Lp for a ∈ A. (13.12)

We remark that for any p summable Fredholm module one can achieve these
summability conditions by perturbing the operator F and keeping all the other data
intact. Then one can directly construct cyclic cocycles on A representing the class
of Connes’ character of a Fredholm module [38].

In the even case: choose even n > p. Define a periodic cyclic cocycle with
components Chkn(F ), k = 0, 2, . . . n by

Chkn(F )(a0, a1, . . . ak)

= ( n2 )!
( n+k2 )!

∑

i0+i1+···+ik= n−k
2

Tr γ a0(1 − F 2)i0 [F, a1]

× (1 − F 2)i1 . . . [F, ak](1 − F 2)ik (13.13)

Similarly in the odd case choose odd n > p. Define a periodic cyclic cocycle
with components Chkn(F ), k = 1, 3, . . . n by

Chkn(F )(a0, a1, . . . , ak)

= �
(
n
2 + 1

)√
2i

(
n+k

2

)!
∑

i0+i1+···+ik= n−k
2

Tr a0(1 − F 2)i0 [F, a1]

× (1 − F 2)i1 . . . [F, ak](1 − F 2)ik (13.14)

One can slightly improve the summability assumptions and require only n >

p − 1 (rather than n > p) by replacing Tr with Tr′ where now Tr′(T ) =
1/2 Tr (F (FT + T F))+ Tr(1 − F 2)T .
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These cocycles represent the class of the character of a Fredholm module in
the following sense. With every even p-summable Fredholm module (H, F, γ ) one
can associate by Connes’ construction a Fredholm module (H′, F ′, γ ′) satisfying
(F ′)2 = 1.

Theorem 17 Let (H, F, γ ) be a p-summable Fredholm module satisfying condi-
tion (13.11). Then

[Chn(F )] = [
τn(F

′)
]
, n > p − 1.

An analogous result holds in the odd case.

14 Unbounded picture

Definition 18 A p-summable spectral triple (or unbounded Fredholm module)
(A,H,D) consists of a unital algebra A represented on a Hilbert space H and a
self-adjoint operator D such that

For any a ∈ A, a(DomD) ⊂ DomD and [D, a] is bounded, and (14.1)

(D2 + 1)−1 ∈ Lp/2 (14.2)

An even p-summable spectral triple is a spectral triple (A,H,D)with the following
additional data: H is equipped with a Z2 grading given by an operator γ satisfying
γ 2 = 1. We denote by H± the ±1 eigenspaces of γ . The operator D is odd with
respect to this grading, i.e., γ (DomD) ⊂ DomD and Dγ + γD = 0. We will
assume for simplicity that A is not graded and represented by even operators.

Otherwise a spectral triple is odd.

Example 19 Let M be a compact spinc manifold and E the associated spinor
bundle. With it one can associate a spectral triple as follows: H = L2(E) is the
Hilbert space of L2-sections of E. A = C∞(M) acts on H by multiplication.
Finally D is the Dirac operator on E. This spectral triple will be p-summable for
every p > dimM . If the dimension of M is even, E has a natural grading which
anticommutes with D. Thus we obtain an even finitely summable spectral triple for
an even-dimensional M and odd for an odd-dimensional one.

If (A,H,D) is a p-summable spectral triple, one can form an associated
Fredholm module (A,H, F ) where F = D(D2 + 1)−1/2. It is easy to see that
(A,H, F ) is p-summable and, moreover, satisfies condition (13.11). One can
therefore define its character using (13.13) and (13.14). An alternative approach
to the character in this case is given by the JLO formula [49, 36]. It is applicable
in a more general context of θ -summable Fredholm modules, i.e., triples (A,H,D)
satisfying Equation (14.1) and with finite summability condition (14.2) replaced by
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e−θD2 ∈ L1 for any θ > 0. (14.3)

Note that condition (14.2) implies (14.3) since e−θD2 = (1 + D2)−p/2(
(1 +D2)p/2e−θD2

)
and the operator (1 + D2)p/2e−θD2

is bounded (by the

spectral theorem).
The JLO (Jaffe–Lesniewski–Osterwalder, [49]) formula associates with every

even θ -summable Fredholm module an infinite cochain in the (b, B) bicomplex of
A given for k = 0, 2, . . . by

Chk(D)(a0, a1, . . . ak)

=
∫

�k
Tr γ a0e

−t0D2 [D, a1]e−t1D2
. . . [D, ak]e−tkD2

dt1dt2 . . . dtk (14.4)

where ti ≥ 0, i = 0, . . . , k,
∑
ti = 1 are the barycentric coordinates on the simplex

�k .
The formula in the odd case is similar:

Chk(D)(a0, a1, . . . ak)

= √
2i

∫

�k
Tr a0e

−t0D2 [D, a1]e−t1D2
. . . [D, ak]e−tkD2

dt1dt2 . . . dtk (14.5)

k = 1, 3, . . ..

Theorem 20 ([49])

(1) The cochain Ch•(D) is an entire cyclic cocycle.
(2) The cocycles Ch•(D) and Ch•(εD) are canonically cohomologous.

The second statement follows from the following transgression formula:

− d

dε
Chk(D) = bChk−1(εD,D)+ B Chk+1(εD,D)

where, in the even case Ch(εD,D) is an odd cochain given by (k-odd)

Chk(εD,D)(a0, a1, . . . ak) =
k∑

l=0

(−1)l
∫

�k+1
Tr γ a0e

−t0D2 [D, a1]

e−t1D2
. . . e−tlD2

De−tl+1D
2
. . . [D, ak]e−tk+1D

2
dt1dt2 . . . dtk+1. (14.6)

In the odd case Ch(εD,D) is an even cochain given by (k-even)
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Chk(εD,D)(a0, a1, . . . ak) = √
2i

k∑

l=0

(−1)l
∫

�k+1
Tr a0e

−t0D2 [D, a1]

e−t1D2
. . . e−tlD2

De−tl+1D
2
. . . [D, ak]e−tk+1D

2
dt1dt2 . . . dtk+1. (14.7)

Finally, the following result of [24] shows that the JLO cocycle indeed computes
Connes’ character in the following sense:

Theorem 21 ([24]) If (A,H,D) is p-summable and F = D(1 +D2)−1/2 then the
image of [Ch•(F )] in HC•

entire(A) is [Ch•(D)].

15 Locality and spectral invariants

It is well known that indices of elliptic operators, e.g., the Dirac operator from
Example 19, can be computed as integrals of well-defined local densities. All of
the formulas previously described above apply in the case of Example 19 and in
conjunction with Equation (13.10) provide formulas for the index of the Dirac
operator twisted with a vector bundle. A common feature of these formulas however
is that they express the index in terms of traces of operators and thus are not local.
One can however obtain a local expression from these formulas, e.g., by replacing
D by εD in the JLO formula, ε > 0 and considering the limit when ε → 0+.
One therefore is naturally led [28] to the question of obtaining a local formula
for Connes’ Chern character for spectral triples. Invariants of noncommutative
geometry naturally have a spectral nature. A prototypical example of a local spectral
invariant appearing in geometry is the noncommutative residue introduced in [66],
cf. also [43]. We recall the definition.

Let X be a compact manifold. Denote by �(X) the algebra of classical pseu-
dodifferential operators of integral orders, �k(X) denotes the space of operator of
order k. Choose a positive pseudodifferential operator R of order 1. For A ∈ �(X)
consider the function

ζA(s) := TrAR−s .

ζ(s) is defined for &(s) > dimX + ordA and admits a meromorphic extension to
the entire complex plane [64]. It has at most a simple pole at s = 0.

Introduce

ResA := Ress=0 ζ(s)

It has the following properties:

(1) ResA does not depend on the choice of R ∈ �1(X),
(2) Res is a trace on the algebra �(X):
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ResAB = ResBA for A,B ∈ �(X),

(3) ResA = ResB whenever A− B ∈ �− dimX−1(X).

The last property is a manifestation of the locality of Res: it depends only on a (part
of) the complete symbol of an operator.

Explicitly in local coordinates noncommutative residue can be described as
follows. Let U ⊂ X be a coordinate neighborhood, and (x, ξ)—the standard
coordinates on T ∗U . Let

a(x, ξ) ∼
m∑

k=−∞
ak(x, ξ)

be the asymptotic expansion of the complete symbol a(x, ξ) of the operator A ∈
�m(M), ak(x, ξ) homogeneous of order k on in ξ . Then the expression

(∫

|ξ |=1
a−n(x, ξ) volS

)
|dx|,

where volS denotes the normalized volume form on the unit sphere |ξ | = 1, defines
a density on U independent of the choice of local coordinates.

Res(A) =
∫

X

(∫

|ξ |=1
a−n(x, ξ) volS

)
|dx|.

16 Pseudodifferential calculus for spectral triples

Motivated by connections between the noncommutative residue and the Dixmier
trace, Connes and Moscovici extended it to more general spectral triples. As a first
step they construct an analog of the pseudodifferential calculus for spectral triples.

Let PKer(D2) be orthogonal projection onto Ker(D2). Define

|D| :=
√
D2 + PKer(D2). (16.1)

If D is invertible, then |D| has the usual meaning, but for us |D| is always a strictly
positive operator.

For nonnegative s, put Hs = Dom (|D|s), with the inner product

〈v1, v2〉Hs = 〈|D|sv1, |D|sv2〉H. (16.2)

For s < 0, put Hs = (H−s)∗. Put H∞ = ⋂
s≥0 Hs , a dense subspace of H.

Following [25, Appendix B], we can consider operators acting in a controlled
way in this scale.
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Let opk be the set of closed operators F such that

(1) H∞ ⊂ Dom(F ),
(2) F(H∞) ⊂ H∞, and
(3) For all s, the operator F : H∞ → H∞ extends to a bounded operator from Hs

to Hs−k .

Introduce now a derivation δ on B(H) by

δ(T ) := [|D|, T ]

with the domain Dom δ consisting of T ∈ B(H) such that T (DomD) ⊂ DomD

and [|D|, T ] extends to a bounded operator. Define OP 0 := ∩ {Dom δn | n ∈ N}. It
is shown in [25, Appendix B] that

OP 0 ⊂ op0.

Define nowOPα , α ∈ R as the set of closed operators P for which |D|−αP ∈ OP 0.
Note that OPα ⊂ opα . Connes and Moscovici show that with

∇(T ) := [D2, T ]

∇(OPα) ⊂ OPα+1. On the other hand δ(OPα) ⊂ OPα .
Carefully estimating the remainder one can prove that for T ∈ OPα there is an

asymptotic expansion

|D|2z · T · |D|−2z �
∞∑

k=0

z(z− 1) . . . (z− k)

k! ∇k(T )|D|−2k (16.3)

The precise meaning of the asymptotic expansion is that for every N ∈ N

|D|2z · T · |D|−2z −
N∑

k=0

z(z− 1) . . . (z− k + 1)

k! ∇k(T )|D|−2k ∈ OPα−N−1

(note that ∇k(T )|D|−2k ∈ OPα−k). For an invertible D we have ∇(T )|D|−2 =
2δ(T )|D|−1 + δ2(T )|D|−2; for not necessarily invertible D ∇(T )|D|−2 −
2δ(T )|D|−1 − δ2(T )|D|−2 is a finite rank operator and hence is in OP−∞. Using
this we can rewrite the asymptotic expansion as

|D|z · T · |D|−z �
∞∑

k=0

z(z− 1) . . . (z− k)

k! δk(T )|D|−k (16.4)

It will also be convenient to consider a derivation
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L(T ) := [log |D|2, T ] = d

dz
|z=0|D|2z · T · |D|−2z

It follows from (16.3), (16.4) that for T ∈ OPα L(T ) ∈ OPα−1 and there are
asymptotic expansions (in the above sense)

L(T ) �
∞∑

k=1

(−1)k−1

k
∇k(T )|D|−2k, L(T ) � 2

∞∑

k=1

(−1)k−1

k
δk(T )|D|−k.

Finally, for T ∈ OPα we have the following equality:

|D|2z · T · |D|−2z =
∞∑

k=0

zk

k!L
k(T )

where convergence of the series on the right is in each of the norms T �→
‖δn(|D|−αT )‖, n = 0, 1, 2 . . ..

Impose from now on the following smoothness assumption on the spectral triple:
for every a ∈ A we have a ∈ OP 0, [D, a] ∈ OP 0. Let B be the algebra
generated by δn(a), δn([D, a]), a ∈ A, n ≥ 0. Clearly B ⊂ OP 0. One defines
the pseudodifferential operators of order α by

�α(A) =
{

P ∈ OP&α | P �
∞∑

k=0

bk|D|α−k, bk ∈ B
}

.

It follows from the asymptotic expansion (16.4) that�α ·�β ⊂ �α+β . In particular
we can consider the algebra

�(A) :=
⋃

k∈Z
�k(A).

17 Dimension Spectrum

From now on we assume that the spectral triple (A,H,D) is p-summable. Then
OPα ⊂ L1(H) f for α ≤ −p. It follows that for every b ∈ B the function

ζb(s) := Tr b|D|−s

is defined and holomorphic for &s > p.
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Definition 22 A spectral triple (A,H,D) has a discrete dimensional spectrum
Sd ⊂ C if Sd is a discrete set and ζb(s) extends holomorphically to C \ Sd for
every b ∈ B.

We will assume at the beginning that each ζb(s) actually extends meromophically to
C with poles only in Sd and the order of every pole is at most q ∈ N, q independent
of the pole and b. It is immediate from the definition that for every P ∈ �α(A) the
function ζP (s) := TrP |D|−s is holomorphic for &s sufficiently large and extends
meromophically to C with possible poles in the set

⋃ {Sd + α − k}, where k runs
through nonnegative integers.

We now define a collection of linear functionals τi on �α(A) for every α, −1 ≤
i ≤ q − 1 by the following equality:

ζP (2z) = τq−1(P )z
−q+τq−2(P )z

−q+1+. . . τ0(P )z
−1+τ−1(P )+O(|z|) near z = 0

Note that for &z sufficiently large

Tr
(
P1P2|D|−2z

)
= Tr

(
P2

(
|D|−2zP1|D|2z

)
|D|−2z

)

=
∞∑

k=0

(−z)k
k! Tr

(
P2L

k(P1)|D|−2z
)

By meromorphic continuation this equality holds for every z ∈ C, except for a
discrete set. Comparing the Laurent series at z = 0 of the right- and left-hand sides
we conclude that

τi(P1P2) = τi(P2P1)+
q−1−k∑

k=1

(−1)k

k! τi+k

In particular, τq−1 is a trace on
⋃
α �

α(A). It is important to note that τi , i ≥ 0 are
local in the following sense:

τi(P ) = 0 if P ∈ L1(H), i ≥ 0.

The family τi thus generalizes the noncommutative residue to the spectral triple
framework. τ−1 on the other hand does not have this property:

τ−1(P ) = TrP if P ∈ L1(H).

If α /∈ {k − Sd}, k ≥ 0, then τ−1 defines a trace on �α—a generalization of the
Kontsevich–Vishik trace.
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18 The local index formula in the odd case

We are now ready to sketch the derivation of the Connes–Moscovici local index
formula in noncommutative geometry. We start with the odd case, as it is in this
case that one can obtain a formula that is fully local. As in the geometric situation
of the spectral triple defined by a Dirac operator, we obtain the formula by studying
the behavior of the JLO formula under rescaling D → εD as ε → 0+.

The starting point is the following result of [24]. First we recall the notion of the
finite part of a function. Assume that a function g(ε), ε ∈ (0, T ], can be written as

g(ε) =
∑

i,j≥0

αi,j (log ε)j ε−λi +
∑

k≥1

βk(log ε)k + ψ(ε) (18.1)

where the sum is finite, &λi ≤ 0, λi �= 0 and ψ ∈ C[0, T ]. Then the finite part of g
at 0 is defined by

PF(g) := ψ(0).

Theorem 23 Let (A,H,D) be a p-summable spectral triple. Assume that the
components of Ch(εD) and Ch(εD,D) (see Equations (14.5) and (14.7)) have
asymptotic behavior as in (18.1). Define a cochain ψk by

ψk(a0, a1, . . . , ak) := PF(Ch(εD)(a0, a1, . . . , ak))

(here k takes odd values for odd spectral triples and even values for even spectral
triples). Then ψk = 0 for k > p and ψk is a periodic cyclic cocycle whose
cohomology class coincides with [Ch(F )], F = D(D2 + 1)−1/2.

Therefore, we study the asymptotic behavior of the expression

Chk(εD) =
∫

�k
Tr a0e

−t0ε2D2[εD, a1]e−t1ε2D2
. . . [εD, ak]e−tkε2D2

dt1dt2 . . . dtk.

We start with the following identity (here P ∈ OPα):

e−sD2
P =

N∑

m=0

(−s)m
m! ∇m(P )e−sD2

+ (−s)N+1

N !
∫ 1

0
(1 − t)Ne−tsD2∇N+1(P )e−(1−t)sD2

dt.

Applying it repeatedly to Ch(εD) to move all the exponentials in

a0e
−t0ε2D2[D, a1]e−t1ε2D2

. . . [D, ak]e−tkε2D2
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to the end of the expression we obtain

Chk(εD) = √
2i

∑

0≤mi≤N
Cmε

k+2m Tr a0∇m1([D, a1]) . . .∇mk ([D, ak])e−ε2D2+RN

where m = ∑k
i=1mi and

Cm = (−1)m
∫

�k

t
m1
0 (t0 + t1)

m2 . . . (t0 + t1 + . . . tk−1)
mk

m1!m2! . . . mk! dt1dt2 . . . dtk

= (−1)m
1

(m1 + 1)(m1 +m2 + 2) . . . (m1 +m2 + . . . mk + k)m1!m2! . . . mk! .

The remainder RN can be bounded by a constant times ε(k+1)N−p (cf. [42]) and
thus does not contribute to PF(Ch(εD)) if sufficiently large N is chosen. Hence it
is sufficient to determine the finite part of

εk+2m TrAe−ε2D2
, A = a0∇m1([D, a1]) . . .∇mk ([D, ak]) ∈ OPm

Note that

e−ε2D2 = e−ε2|D|2 + (1 − e−ε2
)PKer(D2).

Hence

TrAe−ε2D2 = TrAe−ε2|D|2 +O(ε2)

and the finite parts of εk+2m TrAe−ε2D2
and εk+2m TrAe−ε2|D|2 coincide for every

k, m. The expression TrAe−ε2D2
is related to the ζ -function ζA(s) = TrA|D|−s by

the Mellin transform: the equation �(s)|D|−2s = ∫ ∞
0 e−t |D|2 t s−1dt implies that

�(s)ζA(2s) = �(s)TrA|D|−2s =
∫ ∞

0
TrAe−t |D|2 t s−1dt

To deduce the asymptotic expansion of TrAe−t |D|2 at t = 0 from the information on
the poles of �(s)ζA(2s) we need a technical assumption on the decay of �(s)ζA(2s)
on vertical lines in the complex plane. Under this assumption we obtain that

εk+2m TrAe−ε2|D|2 =
∑

j

qj−1∑

k=0

αj,kε
−2aj logk ε + o(1) as ε → 0+

where aj are the poles of �(s)ζA(2s) in the half plane &s ≥ k/2 + m and qj—the
order of the pole at aj . Moreover the constant term in this expansion is equal to
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Ress=k/2+m �(s)ζA(2s). A virtually identical argument shows that Ch(εD,D) has
the desired asymptotic behavior as ε → 0+.

Summarizing, we obtain the following result of Connes and Moscovici:

Theorem 24 (Connes–Moscovici) The formulas

ψk(a0, a1, . . . ak)

:= √
2i

∑

mi≥0

Cm Ress=k/2+m �(s)Tr a0∇m1([D, a1]) . . .∇mk ([D, ak])|D|−2s

= √
2i

∑

mi≥0

Cm Ress=0 �(s + k/2 +m)

× Tr a0∇m1([D, a1]) . . .∇mk ([D, ak])|D|−2s−k−2m (18.2)

k = 1, 3, . . . define an odd periodic cyclic cocycle cohomologous to Ch(F ), F =
D(D2 + 1)−1/2.

One can rewrite this result to obtain the formula in terms of generalized residues.
Since for h(s) holomorphic at s = 0

Ress=0 h(s)ζA(2s) =
∑

l≥0

h(l)(0)

l! τl(A)

We therefore obtain the following version of the previous theorem.

Theorem 25 (Connes–Moscovici) The formulas

ψk(a0, a1, . . . ak) = √
2i

∑

mi≥0,l≥0

�(l)(k/2 +m)

l!

× Cmτl

(
a0∇m1([D, a1]) . . .∇mk ([D, ak])|D|−k−2m

)

(18.3)

k = 1, 3, . . . define an odd periodic cyclic cocycle cohomologous to Ch(F ), F =
D(D2 + 1)−1/2.

19 Renormalization

Here we outline the Connes–Moscovici process of renormalization which allows
one to replace the local index cocycle ψk by a cohomologous one of the form
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ψ ′
k(a0, a1, . . . ak) :=

∑

mi≥0,l≥0

C′(l,m1,m2, . . . mk)τl

(
a0∇m1([D, a1]) . . .∇mk ([D, ak])|D|−k−2m

)

where the constants C′(l,m1,m2, . . . mk) have the following properties: they
are rational multiples of

√
2πi and the summation over l is finite even if the ζ -

functions have isolated essential singularities and/or there is no bound on the order
of poles that can occur in the ζ -functions. The starting point is the observation that
the cohomology class of ψk does not change under rescalingD → e−μ/2D, μ ∈ R.
The cocycle ψk is then replaced by a cohomologous cocycle

ψ
μ
k (a0, a1, . . . ak) := √

2i
∑

mi≥0

Cm Ress=0 e
μs�

(
s + k

2
+m

)

× Tr a0∇m1([D, a1]) . . .∇mk ([D, ak])|D|−2s−k−2m

= ψk(a0, a1, . . . ak)+
∑

μ≥1

μq

q! φ
q
k (a0, a1, . . . ak). (19.1)

where

φ
q
k (a0, a1, . . . ak) := √

2i
∑

mi≥0

Cm Ress=0 s
q�

(
s + k

2
+m

)

× Tr a0∇m1([D, a1]) . . .∇mk ([D, ak])|D|−2s−k−2m

Here we used the identity

∣∣∣e−μ/2D
∣∣∣
−2s = eμs |D|−2s + (1 − eμs)PkerD2

to replace
∣∣e−μ/2D

∣∣−2s
by eμs |D|−2s without changing the residues. Hence for each

q = 1, 2, . . ., φqk is an odd cyclic cocycle cohomologous to 0. It follows that for
every function g(s) holomorphic at 0 with g(0) = 1 the formula

ψ ′
k(a0, a1, . . . ak) := √

2i
∑

mi≥0

Cm Ress=0 g(s)�

(
s + k

2
+m

)

× Tr a0∇m1([D, a1]) . . .∇mk ([D, ak])|D|−2s−k−2m

(19.2)

defines a periodic cyclic cocycle cohomologous to ψk . In Connes–Moscovici
renormalization one chooses g(s) = �(1/2)

�(1/2+s) . One can then express the resulting
formula in terms of generalized residues using the identity
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�
(

1
2

)

�
(

1
2 + s

)�
(
s + k

2
+m

)
= �

(
1

2

)(
1

2
+ s

)(
3

2
+ s

)
. . .

(
k + 2m− 2

2
+ s

)

Denote by σj (n) the coefficients in the expansion

(
1

2
+ s

)(
3

2
+ s

)
. . .

(
2n− 1

2
+ s

)
=

∞∑

l=0

σl(n)s
l

Theorem 26 (Connes–Moscovici) The formulas

ψ ′
k(a0, a1, . . . ak) := √

2i
∑

mi≥0,l≥0

σl

(
k − 1

2
+m

)

× Cmτl

(
a0∇m1([D, a1]) . . .∇mk ([D, ak])|D|−k−2m

)

k = 1, 3, . . . define an odd periodic cyclic cocycle cohomologous to Ch(F ),
F = D(D2 + 1)−1/2,

Note that σl
(
k−1

2 +m
)

= 0 for l > k−1
2 +m and

a0∇m1([D, a1]) . . .∇mk ([D, ak])|D|−k−2m ∈ OP−k−m ⊂ L1

when k+m ≥ p (recall that p denotes the summability degree of the spectral triple).
Since each τl vanishes on trace class operators, only τl with l < p may appear in
the renormalized formula.

Example 27 Let (A,H,D) be a spectral triple with discrete dimension spectrum.
Let Ã be the algebra generated by A and operators of the form |D|−k(log |D|)l ,
where k, l are integers, k ≥ 1, l ≥ 0. Since Tr (A log |D|) |D|−s = − d

ds
TrA|D|−s ,

(Ã,H,D) again will be a spectral triple with discrete dimension spectrum. More-
over, if (at least for some A ∈ �(A)) ζ -function TrA|D|−s is not entire, the
ζ -functions with A ∈ �(Ã) will have poles of arbitrarily high orders.

In the situation of Example 19 the corresponding algebra of pseudodifferential
operators is contained in the algebra of pseudodifferential operators with log-
polyhomogeneous symbols constructed and studied in detail in [53].

20 The even case

Most of the discussion above extends to the even case verbatim, so here we just
state the relevant results and indicate the point where a difference with the odd case
arises.
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One first obtains the following result: the formulas:

ψk(a0, a1, . . . ak) :=
∑

mi≥0

Cm Ress=0 �(s + k/2 +m)

× Tr γ a0∇m1([D, a1]) . . .∇mk ([D, ak])|D|−2s−k−2m

(20.1)

k = 0, 2, . . . define an even periodic cyclic cocycle cohomologous to Ch(F ), F =
D(D2 + 1)−1/2. Here, as in the odd case,

Cm = (−1)m

(m1 + 1)(m1 +m2 + 2) . . . (m1 +m2 + . . . mk + k)m1!m2! . . . mk! ,

m = m1 +m2 + . . .+mk
The renormalization process allows us to replace the cocycle ψk by a cohomolo-

gous one

ψ ′
k(a0, a1, . . . ak) :=

∑

mi≥0

Cm Ress=0
�
(
s + k

2 +m
)

�(s + 1)

× Tr γ a0∇m1([D, a1]) . . .∇mk ([D, ak])|D|−2s−k−2m

(20.2)

Denote by σj (n) coefficients in the expansion

�(s + n)

�(s + 1)
= (1 + s) (2 + s) . . . (n− 1 + s) =

∞∑

l=0

σl(n)s
l

Then we can write an expression for the cocycle ψ ′
k in terms of linear functionals

τl :

Theorem 28 (Connes–Moscovici) The formulas

ψ ′
0(a0) := τ−1(γ a0)

ψ ′
k(a0, a1, . . . ak) :=

∑

mi≥0,l≥0

σl

(
k

2
+m

)
Cmτl

(
a0∇m1

× ([D, a1]) . . .∇mk ([D, ak])|D|−k−2m
)

for k = 2, 4, . . .

define an even periodic cyclic cocycle cohomologous to Ch(F ), F = D(D2 +
1)−1/2.
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Note the important difference with the odd case: in addition to generalized
residues this formula contains a nonlocal term involving τ−1. Some nonlocality is
unavoidable in the even case as can be seen by considering the case when H is
finite dimensional. All the linear functionals τi , i ≥ 0 vanish, as every operator is of
trace class. Nevertheless one can have operators with nonzero index between finite
dimensional vector spaces and thus the Connes character of a finite dimensional
spectral triple can be nonzero.
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Matthias Lesch and Henri Moscovici

Dedicated to Alain Connes with admiration and much
appreciation

Abstract This is a brief survey of the main developments that led to the emergence
of the quantized analogue of Gaussian curvature for the noncommutative torus and
to its current understanding. It highlights the role of Connes’ pseudodifferential
calculus as the crucial technical tool for the explicit computation of the modular
Gaussian curvature, the effectiveness of the variational methods, and it sheds more
light on the intrinsic geometric meaning of the Morita equivalence in this context.

1 Introduction

The genesis of natural but noncommuting coordinates can be traced back to Heisen-
berg’s uncertainty principle in quantum mechanics, which limits the accuracy of the
simultaneous determination of the position and momentum (q, p) of a subatomic
particle. As Heisenberg argued [HEI27] (and Kennard rigorously derived [KEN27]),
the inherent imprecision of such a measurement “is a straightforward mathematical
consequence of the quantum mechanical commutation rule for the position and the
corresponding momentum operators qp − pq = ih̄,” where h̄ = h

2π is the reduced
Planck constant. Such an identity cannot be satisfied by matrices (over C), which
is obvious, but not even by bounded operators in Hilbert space. Assuming q and p
self-adjoint, this can be seen by passing to the Weyl integrated form [WEY28, §45],
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VsUt = e2πih̄tsUtVs, t, s ∈ R. (1.1)

Moreover, the latter relation determines a unitary representation πh̄ of the (implicitly
defined) group H3(R), called the Heisenberg group. By a celebrated theorem of
Stone and von Neumann all such irreducible representations are unitarily equivalent.
The restriction to the latticeH3(Z) ⊂ H3(R) of an irreducible unitary representation
πθ , θ ∈ R, generates the C∗-algebra Aθ nowadays known as the noncommutative
torus of slope θ . When θ ∈ [0, 1]\Q, as shall be assumed throughout this paper, the
C∗-algebra Aθ is also known as the irrational rotation algebra and is the (unique
up to isomorphism) C∗-algebra generated by a pair of unitary operators U1, U2
satisfying

U2U1 = e2πiθU1U2. (1.2)

Moreover Aθ is a simple C∗-algebra, thus typifying the coordinates of a purely
noncommutative space. For this reason on the one hand, and due to its accessibility
on the other, Aθ has received much attention during the last several decades and
has been a favorite testing ground for quite a number of fruitful mathematical
investigations.

Although the habitual geometric intuition is rendered utterly inoperative in a
“space without points” such as the one represented by Aθ , the curvature as a
“measure of deviation from flatness” (in Riemann’s own words) could still make
some sense. It is the goal of this brief survey to review the recent developments
that led to the emergence of a quantized version of Gaussian curvature for the
noncommutative torus. Many of the essential ideas presented below have their origin
in Alain Connes’ 1980 C. R. Acad. Sc. Paris Note [CON80], which effectively
constitutes the birth certificate of noncommutative differential geometry. That
foundational article not only established the most basic geometric concepts and
constructions, such as the geometric realization of the finitely generated projective
modules over Aθ , the explicit construction of constant curvature connections for
them and the definition and calculation of their Chern classes, but also provided the
crucial computational tool, in the form of a pseudodifferential calculus adapted to
C∗-dynamical systems.

The specific line of research whose highlights we are about to summarize
was sparked by a paper by Connes and Paula Cohen (Conformal geometry of
the irrational rotation algebra, Preprint MPI Bonn, 1992–93) which showed how
the passage from the (unique) trace of Aθ to a non-tracial conformal weight
associated with a Weyl factor (or “dilaton”) gives rise to a non-flat geometry on
the noncommutative torus, which can be investigated with the help of the adapted
pseudodifferential calculus of [CON80]. In a later elaboration [COTR11] of that
paper, the passage from flatness to conformal flatness was placed in the setting of
spectral triples (see Sections 2.1 and 2.2 below), which in the intervening years
has emerged as the proper framework for the metric aspect in noncommutative
geometry (cf. [CON94, Ch. 6], [CON13], [COMO08]). Completing the calculations
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begun in the 1992 preprint they proved in [COTR11] an analogue of the Gauss–
Bonnet formula for the conformally twisted (called “modular”) spectral triples. The
full calculation of the modular Gaussian curvature was first done by A. Connes
in 2009, with the aid of Wolfram’s Mathematica, and is included in [COMO14].
Fathizadeh and Khalkhali [FAKH13] independently performed the same calculation
with the help of a different computing software.

Apart from computing the expression of the modular curvature (see Section 2.3
below), Connes and Moscovici showed in [COMO14] that one can make effective
use of variational methods even in the abstract operator-theoretic context of the
spectral triple encoding the geometry of the noncommutative torus. After giving
a variational proof of the modular Gauss–Bonnet formula which requires no
computations (see Section 2.4), they related the modular Gaussian curvature to the
gradient of the Ray–Singer log-determinant of the Laplacian viewed as a functional
on the space of Weyl factors. As a consequence, they obtained an a priori proof
of an internal consistency relation for the constituents of the modular curvature. In
addition they showed by purely operator-theoretic arguments that, as in the case of
Riemann surfaces (cf. [OPS88]), the normalized log-determinant functional attains
its extreme value only at the trivial Weyl factor, in other words for the flat “metric”
(see Section 2.5 below).

For reasons which will soon become transparent (see Section 3.1), the natural
equivalence relation between noncommutative spaces is that of Morita equivalence
between their respective algebras of coordinates. For noncommutative tori the
Morita equivalence is implemented by the Heisenberg bimodules described by
Connes [CON80] and Rieffel [RIE81]. Lesch and Moscovici extended in [LEMO16]
the results of [COMO14] to spectral triples on noncommutative tori associated with
Heisenberg equivalence bimodules (see Sections 3.2 and 3.3). Moreover, in doing
so they managed to dispose of any computer-aided calculations (see Section 5.1).
Most notably they showed (see Section 3.4 below) that whenever Aθ is realized
as the endomorphism algebra of a Heisenberg Aθ ′ -module endowed with the Aθ ′ -
valued Hermitian structure obtained by twisting the canonical one by a positive
invertible element in Aθ , the curvature of Aθ with respect to the corresponding
spectral triple over Aθ ′ is equal to the modular curvature associated with the same
element of Aθ viewed as conformal factor. In a certain sense this is reminiscent
of Gauss’s Theorema Egregium “If a curved surface is developed upon any other
surface whatever, the measure of curvature in each point remains unchanged.”

The fundamentals of Connes’ pseudodifferential calculus as well as its extension
to twisted C∗-dynamical systems, which provide the essential device for proving all
the above results, are explained in Section 4. Finally, Section 5 clarifies how to use
the affiliated symbol calculus in order to compute the resolvent trace expansion, or
equivalently the heat trace expansion, for the relevant Laplace-type operators.
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2 Curvature of modular spectral triples

2.1 Flat spectral triples

In noncommutative geometry a metric structure on a space with C∗-algebra of
coordinates A is represented by a triad of data (A,H,D) called spectral triple,
modeled on the Dirac operator on a manifold: A is realized as a norm-closed
subalgebra of bounded operators on a Hilbert space H, D is an unbounded self-
adjoint operator whose resolvent belongs to any p-Schatten ideal with p > d where
d > 0 signifies the dimension, and D interacts with the coordinates by having
bounded commutators (or more generally bounded twisted commutators) [D, a] for
any a in a dense subalgebra of A. The Dirac operator was chosen as model since it
represents the fundamental class inK-homology and at the same time plays the role
of a quantized inverse line element (see [CON13]). In the case of Aθ one can obtain
such a triad by simply reproducing the construction of the ∂̄ + ∂̄∗ operator on the
ordinary torus T2 = (R/2πZ)2.

To fix the notation we briefly review some basic properties of the C∗-algebra Aθ
with θ ∈ R \ Q.

First of all, the torus T
2 acts on Aθ via the representation by automorphisms

defined on the basis elements by

αr(U
n
1 U

m
2 ) = ei(r1n+r2m)Un1 U

m
2 , r = (r1, r2) ∈ R

2. (2.1)

By analogy with the action of T2 on A0 ≡ C(T2), we call these automorphisms
translations.

The smooth vectors of this representation of T
2 are precisely the elements of

the form a = ∑
m,n∈Z am,nUm1 U

n
2 with rapidly decaying coefficients, i.e., such that

(1 + |m|)k(1 + |n|)&|am,n| ≤ Ck,&, k, & > 0. These elements form a subalgebra Aθ
which is the analogue of C∞(T2) viewed in Fourier transform. The assignment

Aθ ( a =
∑

m,n∈Z
am,nU

m
1 U

n
2 �→ ϕ0(a) = a0,0,

determines the unique normalized trace ϕ0 of the C∗-algebra Aθ .
The image of the differential of the above representation on Aθ is the Lie algebra

generated by the outer derivations δ1 and δ2, uniquely determined by the relations
δi(Uj ) = δ

j
i Uj , i, j ∈ {1, 2}.

By analogy with the ordinary torus, one defines on Aθ a translation invariant
complex structure with modular parameter τ ∈ C, "τ > 0, by means of the pair of
derivations

δτ = δ1 + τ̄ δ2, δ∗τ = δ1 + τδ2; (2.2)
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these are the counterparts of the operators 1
i
(∂/∂x + τ̄ ∂/∂y), and 1

i
(∂/∂x + τ∂/∂y)

acting on C∞(T2).
To obtain the analogue of the corresponding flat metric on T

2, we let H0 ≡
L2(Aθ , ϕ0) denote the Hilbert space completion of Aθ with respect to the scalar
product

〈a, b〉 = ϕ0(a
∗b), a, b ∈ Aθ .

The space �1Aθ of formal 1-forms
∑

a db, a, b ∈ Aθ , is also endowed with a
semi-definite inner product defined by

〈adb, a′db′〉 = ϕ0(a
∗ (a′)δτ (b′) δτ b∗) , a, a′, b, b′ ∈ Aθ .

On completing its quotient modulo the subspace of those elements ω ∈ �1Aθ such
that 〈ω,ω〉 = 0, one obtains a Hilbert space denoted H(1,0). H(1,0) is also an Aθ -
bimodule under the natural left and right action ofAθ . Both these actions are unitary.
Moreover, the linear map from �1Aθ to Aθ defined by sending the class of

∑
adb

in H(1,0) to
∑
aδτ (b) ∈ H0 induces an Aθ -bimodule isomorphism between H(1,0)

and H0.
Denoting by ∂τ the closure of the operator δτ : Aθ → H0 viewed as unbounded

operator from H0 to H(1,0) one obtains a spectral triple (Aθ , H̃,Dτ ) by taking

H̃ = H0 ⊕ H(1,0) and as unbounded self-adjoint operator Dτ =
(

0 ∂∗
τ

∂τ 0

)
.

Concurrently, the triad (Aop
θ , H̃,Dτ ) is a spectral triple with respect to the right

action of Aθ . One can turn it into a spectral triple for the left action ofAθ by passing
to its transposed (Aθ , H̄, D̄τ ) (see [COMO14, §1.2] for the general definition),

where H̄ is the complex conjugate of H̃ and D̄τ =
(

0 ∂̄∗
τ

∂̄τ 0

)
.

2.2 Modular spectral triples

To implement the analogue of a conformal change of metric structure, we choose a
self-adjoint element h = h∗ ∈ Aθ and use it to replace the trace ϕ0 by the positive
linear functional ϕ ≡ ϕh defined by

ϕ(a) ≡ ϕh(a) = ϕ0(ae
−h) , a ∈ Aθ . (2.3)

Then ϕ determines an inner product 〈 , 〉ϕ on Aθ ,

〈a, b〉ϕ = ϕ(a∗b) , a, b ∈ Aθ,
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which by completion gives rise to a Hilbert space Hϕ . The latter is again an Aθ -
bimodule but, since ϕ is no longer tracial, the right action is no longer unitary.

The non-unimodularity of ϕ is expressed by Tomita’s modular operator�, which
in this case is

�(x) = e−hxeh, x ∈ Aθ,

and gives rise to the 1-parameter group of inner automorphisms

σt (x) = �−it = eithxe−ith, x ∈ Aθ . (2.4)

Instead of the tracial property ϕ satisfies the KMS condition

ϕ(ab) = ϕ(bσi (a)) = ϕ(be−haeh) , a, b ∈ Aθ .

To restore the unitarity of the right action one redefines it by setting

aop := Jϕa
∗Jϕ ∈ L(Hϕ), a ∈ Aθ,

where Jϕ(a) = �1/2(a∗) = k−1a∗k, a ∈ Aθ , and k = eh/2.
While keeping H(1,0) unchanged, we now view δτ as a densely defined operator

from Hϕ to H(1,0). Its closure ∂ϕ is then used to define Dϕ =
(

0 ∂∗
ϕ

∂ϕ 0

)
giving rise

to the triad (Aop
θ , H̃ϕ,Dϕ), where H̃ϕ = Hϕ⊕H(1,0). This is a twisted spectral triple

(see [COMO08] for the general definition) over Aop, with the twisted commutators
Dϕ a

op −(k−1ak)opDϕ , a ∈ Aθ bounded. Its transposed, formed as in the flat case,

yields the modular spectral triple over Aθ , with operator D̄ϕ =
(

0 k∂ϕ

∂∗
ϕk 0

)
, where

the conformal factor k acts by left multiplication, and with underlying Hilbert space

H̃ϕ .
By a series of identifications, it is shown in [COMO14, §1.3] that the modular

spectral triple associated with ϕ, or equivalently to the conformal factor k = eh/2,
is canonically isomorphic to the twisted spectral triple (Aθ , H̃0,Dk) with H̃0 :=
H0 ⊕ H0 and Dk :=

(
0 kδτ

δ∗τ k 0

)
.

We finally note that D2
k = 8k ⊕ 8(0,1)

k , where

8k := k8τ k ≡ kδτ δ
∗
τ k and 8(0,1)

k = δ∗τ k2δτ , (2.5)

are the counterparts of the Laplacian on functions, respectively, the Laplacian on
(0, 1)-forms.
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2.3 Modular curvature

The meaning of locality in noncommutative geometry is guided by the analogy
with the Fourier transform, which interrelates the local behavior of functions with
the decay at infinity of their coefficients. In a similar way, in the noncommutative
formalism the local invariants of a spectral triple (A,H,D) are encoded in the
high frequency behavior of the spectrum of the “inverse line element” D coupled
with the action of the algebra of coordinates. For example, the local index formula
in noncommutative geometry [COMO95, Part II] expresses the Connes–Chern
character of a spectral triple with finite dimension spectrum in terms of multilinear
functionals given by residues of zeta functions defined by

z �→ Tr
(
a0[D, a1](k1) . . . [D, ap](k1) |D|−z

)
, &(z) >> 0,

where a0, . . . , ap ∈ A and [D, a](k) = [D2, . . . , [D2, [D, a]] · · · ] with D2

repeated k-times; the existence of the meromorphic continuation of such zeta
functions is built in the definition of finite dimension spectrum for a spectral
triple. Clearly, perturbing D by a trace class operator will not affect these residue
functionals, whence the local nature of the index formula described in their terms.

In the specific case of the noncommutative torus the concept of locality can be
pushed much closer to the customary one. Namely, if (Aθ , H̃0,Dk) is a modular
spectral triple as in Section 2.2, for its Laplacian “on functions” there is an
asymptotic expansion

Tr
(
a e−t8k

) ∼t↘0

∞∑

q=0

a2q(a,8k) t
q−1, a ∈ Aθ , (2.6)

whose functional coefficients a2q are not only local in the above sense, but they are
also absolutely continuous with respect to the unique trace, i.e., of the form

Aθ ( a �−→ a2q(a,8k) = ϕ0

(
aK(q)k

)
, K(q)k ∈ Aθ ,

with “Radon–Nikodym derivatives” K(q)k ∈ Aθ computable by means of symbolic
calculus. The technical apparatus which justifies the heat expansion Equation (2.6)
as well as the explicit computation of K(0)k will be discussed in Sections 4 and 5.

In particular, the Radon–Nikodym derivative of the term a2, which classically
delivers the scalar curvature, was fully computed in [COMO14, FAKH13] and
represents the modular scalar curvature. Abbreviating its notation to Kk instead of
K(0)k , it has the following expression:

Kk = − π

2"τ
(
K0(∇)(8(h))+ 1

2
H0

(
∇(1),∇(2)

)
(�&(h))

)
, (2.7)
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where ∇ = log� is the inner derivation implemented by −h,

8(h) = δτ δ
∗
τ = δ2

1(h)+ 2&τ δ1δ2(h)+ |τ |2δ2
2(h),

�& is the Dirichlet quadratic form

�&(&) := (δ1(&))
2 + &τ (δ1(&)δ2(&)+ δ2(&)δ1(&))+ |τ |2(δ2(&))

2 ,

and ∇(i), i = 1, 2, signifies that ∇ is acting on the ith factor. The functions
K0(s) and H0(s, t), whose expressions resulted from the symbolic computations,
are given by

K0(s) = −2 + s coth
(
s
2

)

s sinh
(
s
2

) and H0(s, t) =

t (s+t) cosh(s)−s(s+t) cosh(t)+(s−t)(s+t+ sinh(s)+ sinh(t)− sinh(s+t))
st (s+t) sinh

(
s
2

)
sinh

(
t
2

)
sinh

(
s+t

2

)2 .

The second function is related to the first by the functional identity

−1

2
H̃0(s1, s2) = K̃0(s2)− K̃0(s1)

s1 + s2
(2.8)

+ K̃0(s1 + s2)− K̃0(s2)

s1
− K̃0(s1 + s2)− K̃0(s1)

s2
,

where

K̃0(s) = 4
sinh(s/2)

s
K0(s) and

H̃0(s, t) = 4
sinh((s + t)/2)

s + t
H0(s, t).

(2.9)

A noteworthy feature of the main curvature-defining function is that, up to a constant
factor, K̃0 is a generating function for the Bernoulli numbers; precisely,

K̃0(t) = 8
∞∑

n=1

B2n

(2n)! t
2n−2. (2.10)

2.4 Modular Gauss–Bonnet formula

Since the K-groups of the noncommutative torus are the same as of the ordinary
torus, its Euler characteristic vanishes. Thus, the analogue of the Gauss–Bonnet
theorem for the modular spectral triple is the identity
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ϕ0

(
K(0)k

)
= 0.

This can be directly checked by making use of the fact that the group of modular
automorphisms σt (cf. Equation (2.4)) preserves the trace ϕ0 and fixes the dilaton h,
in conjunction with the “integration by parts” rule

ϕ0(aδj (b)) = −ϕ0(δj (a)b), a, b ∈ Aθ .

(see [COMO14, Lemma 4.2] for the precise identity to be used).
An alternative variational argument, given in [COMO14, §1.4]), runs as follows.

Consider the family of Laplacians

8s := ks 8 ks = e
sh
2 8τ e

sh
2 , s ∈ R. (2.11)

One has
d

ds
8s = 1

2
(h8s + 8sh). By Duhamel’s formula one can interchange the

derivative with the trace, hence

d

ds
Tr

(
e−t8s

) = −t Tr
(
h8s e

−t8s
) = t

d

dt
Tr

(
h e−t8s

)
.

Differentiating term-by-term the asymptotic expansion Equation (2.6) (with a = 1
omitted in notation) yields

d

ds
aj (8s) = 1

2
(j − 2) aj (h,8s) , j ∈ Z

+.

In particular, a2(8s) = a2(8τ ). The latter vanishes because 8τ is isospectral to
the Laplacian of the ordinary torus with the same complex structure and, as is well-
known, if 8M is the Laplacian on a Riemann surface then a2(8M) = χ(M)

6 , where
χ(M) is the Euler characteristic of M .

2.5 Variation of determinant and modular Gaussian curvature

The zeta function ζ8k
(a, z) = Tr

(
a8−z

k (1 −Pk)
)
, &z > 2 where Pk stands for the

orthogonal projection onto Ker 8k , is related to the corresponding theta function by
the Mellin transform

ζ8k
(a, z) = 1

�(z)

∫ ∞

0
tz−1 Tr

(
a
(
e−t8k − Pk

))
dt.

The asymptotic expansion Equation (2.6) ensures that it has meromorphic continu-
ation and its value at 0 is
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ζ8k
(a, 0) = a2(a,8ϕ)− Tr(Pk a Pk) = a2(a,8ϕ)− ϕ0(ak

−2)

ϕ0(k−2)
. (2.12)

In particular for a = 1 (suppressed in notation), one has

ζ8k
(0) = −1, (2.13)

and also the Ray–Singer log-determinant is well-defined:

log Det 8k := −ζ ′8k
(0).

Differentiating the 1-parameter family of zeta functions corresponding to (2.11)
one obtains the identity

d

ds
ζ8sh

(z) = −z ζ8sh
(h, z), ∀ z ∈ C,

which in turn yields the variation formula

− d

ds
ζ ′8sh

(0) = ζ8sh
(h, 0).

From Equations (2.12) and (2.7) applied to the weights ϕs with dilaton sh one
obtains

log Det 8k = log Det 8 + logϕ(1)− π

"τ
∫ 1

0
ϕ0

(
h
(
sK0(s∇)(8(log k))

+ s2H0(s∇(1), s∇(2))(�&(log k))
))
ds

The first term is the same as for the corresponding elliptic curve and by the
Kronecker limit formula has the expression (cf. [RASI73, Theorem 4.1])

log Det 8 = − d

ds

∣
∣
s=0

∑

(n,m) �=(0,0)
|n+mτ |−2s = log

(
4π2 |η(τ)|4

)
,

where η is the Dedekind eta function η(τ) = e
π i
12 τ

∏
n>0

(
1 − e2πinτ

)
. After a series

of technical manipulations of the last term (see [COMO14, §4.1]), one obtains the
modular analogue of Polyakov’s anomaly formula:

log Det 8k = log
(

4π2 |η(τ)|4
)

+ logϕ(1)− π

4"τ ϕ0

(
K+(∇(1))(�&(h))

)
,

(2.14)

where K+(s) := 4
s2 − 2coth( s2 )

v
≥ 0, s ∈ R. Furthermore, it is shown in [COMO14,

Proof of Theorem 4.6] that the positivity of the function K+ can be upgraded to
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operator positivity, implying the inequality

ϕ0

(
K+(∇(1))(�&(log k))

)
≥ 0, (2.15)

with equality only for k = 1.
The (negative of) log-determinant can be turned into a scale invariant functional

by adding the area term:

F(log k) := ζ ′8k
(0)+ logϕ(1) = − log Det(8k)+ logϕ(1). (2.16)

Due to the equality Equation (2.12), the corrected functional F remains unchanged
when the Weyl factor k is multiplied by a scalar. In the new notation the identity
Equation (2.14) reads as follows:

F(h) = − log
(

4π2 |η(τ)|4
)

+ π

4"τ ϕ0

(
K+(∇(1))(�&(h))

)
. (2.17)

In view of the inequality Equation (2.15) one concludes that, as in the case of the
ordinary torus (cf. [OPS88]), the scale invariant functional F attains its extremal
value only for the trivial Weyl factor, in other words at the flat metric.

The gradient of F is defined by means of the inner product of L2(Aθ , ϕ0) via the
pairing

〈gradh F, a〉 ≡ ϕ0(a gradh F ) = d

dε

∣∣
ε=0F(h+ εa), a = a∗ ∈ Aθ .

A direct computation of the gradient, using the definition Equation (2.16) combined
with the identities Equations (2.12) and (2.7), yields the following explicit expres-
sion (cf. [COMO14, Theorem 4.8]):

gradh F = π

4"(τ )
(
K̃(∇)(8(h))+ H̃ (∇(1),∇(2))(�&(h))

)
. (2.18)

In the case of the ordinary torus the gradient of the corresponding functional
(cf. [OPS88, (3.8)]) gives precisely the Gaussian curvature. This makes it com-
pelling to take the above formula as definition of the modular Gaussian curvature.

Finally, computing the gradient of F out of its explicit formula Equation (2.17),
and then comparing with the expression Equation (2.18), produces the functional
identity Equation (2.8) relating H̃ and K̃ .
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3 Morita invariance of the modular curvature

3.1 Foliation algebras and Heisenberg bimodules

The most suggestive depiction of the noncommutative torus was given by Connes
in [CON82], where he described it as the “space of leaves” for the Kronecker
foliation Fθ of the ordinary torus T

2 = R
2/Z2, given by the differential equation

dy − θdx = 0 with θ ∈ R \ Q. The holonomy groupoid Gθ of this foliation
identifies with the smooth groupoid determined by the flow of the above equation.
Its convolution C∗-algebra C∗(Gθ ), which represents the (coordinates of the) space
of leaves, coincides with the crossed product C(T2)×θ R, where the action of R on
T

2 is given by the flow Equation (2.1). C∗(Gθ ) is isomorphic to Aθ ⊗ K, where K
denotes the C∗-algebra of compact operators, and thus strongly Morita equivalent
to Aθ .

Finer geometric representations of the space of leaves are obtained by passing to
reduced C∗-algebras associated with complete transversals. Any pair of relatively
prime integers (d, c) ∈ Z

2 determines a family of lines of slope d
c

, which
project onto simple closed geodesics in the same free homotopy class, and the
free homotopy classes of closed geodesics on T

2 are parametrized by the rational
projective line P 1(Q) ≡ Q∪ { 1

0 }. Letting Nc,d denote the primitive closed geodesic
of slope d

c
passing through the base point of T2, one obtains a complete transversal

for Fθ . The convolution algebra of the corresponding étale holonomy groupoid
identifies with the crossed product algebra C(R/Z) �θ ′ Z, where 1 ∈ Z acts by
the rotation of angle θ ′ = aθ+b

cθ+d with a, b ∈ Z chosen such that ad − bc = 1. This
C∗-algebra is none other than Aθ ′ . In particular, Aθ = C(R/Z)�θ Z is the reduced
C∗-algebra associated with N0,1. By construction all algebras Aθ ′ with θ ′ = g · θ ,
g ∈ SL(2,Z), are Morita equivalent, and they actually exhaust (cf. [RIE81]) all the
noncommutative tori Morita equivalent to Aθ .

In the same framework Connes [CON82, §13] gave a geometric description of the
(Aθ ′ , Aθ )-bimodules E(g, θ) implementing the Morita equivalence of Aθ with Aθ ′ .
E(g, θ) is a completion of the (Aθ ′ ,Aθ )-bimodule E(g, θ) := S(R)|c| ≡ S(R×Zc),
Zc := Z/cZ, with the actions defined as follows:

(fU1)(t, α) := e2πi(t− αd
c
)f (t, α) , (fU2)(t, α) := f

(
t − cθ + d

c
, α − 1

)
;

(V1f )(t, α) := e
2πi

(
t

cθ+d − α
c

)
f (t, α) , (V2f )(t, α) := f

(
t − 1

c
, α − a

)
.

If c = 0, then E(g, θ) = A
op
θ is the trivial (Aop

θ , Aθ )-bimodule. By analogy with
the vector bundles over elliptic curves, one defines the rank, degree, and slope of
E(g, θ) by rk(g, θ) = cθ + d, deg(g, θ) = c, resp. μ(g, θ) := deg(g,θ)

rk(g,θ) .

The L2-scalar product on E(g, θ)
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< f1, f2 >:=
∫

R×Zc

f1(t, α)f2(t, α)dtdα

where the integration is with respect to the Lebesgue measure on R and the counting
measure on Zc, determines uniquely Aθ -valued and Aθ ′ -valued inner products
satisfying the double equality

|rk(g, θ)|ϕ′
0(Aθ ′< f2, f1 >) =< f1, f2 >= ϕ0(< f1, f2 >Aθ ), (3.1)

where ϕ′
0 stands for the trace of Aθ ′ . The completion E(g, θ) with respect to | <

·, · >Aθ |1/2 is a full right C∗-module over Aθ , and EndAθ = Aθ ′ . In addition,
H0(g, θ) := E(g, θ)⊗Aθ L

2(Aθ , ϕ0) is the Hilbert space L2(R × Zc).
Instead of the R

2-action Equation (2.1), the nontrivial bimodules E(g, θ) are
acted upon by the Heisenberg group H3(R). Equivalently, R

2 acts projectively
on E(g, θ), and this action is compatible with the natural R2-actions on Aθ and
Aθ ′ . At the Lie algebra level, this action gives rise to the standard connection ∇E

on E(g, θ), given by the derivatives (∇1f )(t, α) = ∂
∂t
f (t, α), (∇2f )(t, α) =

2πi t μ(g, θ) f (t, α) with constant curvature: [∇1,∇2] = 2πiμ(g, θ) Id. Fur-
thermore, this connection is bi-Hermitian, in the sense that it preserves both the
Aθ -valued and the Aθ ′ -valued inner product.

3.2 Modular Heisenberg spectral triples

Each bimodule E = E(g, θ) gives rise to a double spectral triple, by coupling it
with the flat Dirac Dτ by means of its standard connection. Specifically, ∇E splits
into holomorphic and anti-holomorphic components, ∇E = ∂E ⊕ ∂∗

E, where ∂E :=
∇1 +τ∇2. One then forms the operatorDE =

(
0 ∂∗

E

∂E 0

)
acting on the Hilbert space

H̃(g, θ) = H0(g, θ)⊕H(1,0)(g, θ), where H(1,0)(g, θ) := E(g, θ)⊗Aθ
H(1,0)(Aθ ).

Together with the natural right action of Aθ , these data define a spectral triple of
constant curvature

(
A

op
θ , H̃(g, θ),DE

)
. We note that from the spectral point of view

the operator DE resembles the Hodge–de Rham operator of an elliptic curve with
coefficients in a line bundle. In particular, its Laplacian 8E = ∂∗

E∂E is a direct sum
of | deg(E)| copies of the harmonic oscillator

H := − d2

dt2
+ 4π2μ(E)2|τ |2t2 − 4πiμ(E)&(τ ) t d

dt
− 2πiμ(E)τ Id .

Now turning on the conformal change Equation (2.3) from ϕ0 to ϕh, one replaces
DE by DE,ϕ in the same way as in Section 2.2. The resulting spectral triple over
the algebra Aop

θ is again a twisted one. After correcting for the lack of unitarity
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of the action of Aop
θ again as in Section 2.2, the operator DE,ϕ is being canonically

identified withDE,k :=
(

0 Rk∂
∗
E

∂ERk 0

)
acting on H̃0(g, θ) = H0(g, θ)⊕H0(g, θ).

The appropriate transposed in this setting is constructed using the canonical anti-
isomorphism from E = E(g, θ) to E′ := E(g−1, θ ′),

Jg,θ (f )(x, α) = f ((cθ + d)x, −d−1α), f ∈ E(g, θ),

which switches the (Aθ ′ ,Aθ )-action on the first into the (Aθ ,Aθ ′)-action
on the second. We thus arrive at the modular Heisenberg spectral triple
(
Aθ, H̃0(g

−1, θ ′), DE′,k
)

with DE′,k = − rk(E′)
(

0 k∂E′
∂∗
E′k 0

)

. Its Laplacian on

sections is 8E′,k = rk(E′)2 k∂E′∂∗
E′k.

A moment of reflection shows that replacing ϕ0 by ϕ is equivalent to changing
the Hermitian structure on E′ by k−2 ∈ Aθ ≡ EndAθ ′ (E

′). Indeed, in view of
Equation (3.1) applied to E′, the passage to the Aθ ′ -valued Hermitian inner product

(f ′
1, f

′
2)Aθ ′ ,k = | rk(E′)|−1 < k−2f ′

1, f
′
2 >Aθ ′ , f ′

1, f
′
2 ∈ E′, (3.2)

has the same effect on the L2-inner product, since

ϕ′
0

(
(f ′

1, f
′
2)Aθ ′ ,k

) = | rk(E′)|−1ϕ′
0(< k−2f ′

1, f
′
2 >Aθ ′ ) = ϕ0(Aθ

< k−2f ′
1, f

′
2 >)

= ϕ0(Aθ
< f ′

1, f
′
2 > k−2) = ϕ(Aθ

< f ′
1, f

′
2 >).

In conclusion, the passage from the “constant curvature metric” on Aθ represented
by the Heisenberg spectral triple

(
A

op
θ , H̃(g, θ),DE

)
to the “curved metric” repre-

sented by the modular Heisenberg spectral triple
(
Aθ, H̃0(g

−1, θ ′), DE′,k
)

can be
interpreted as being effected by changing the Hermitian structure of E′ according
to Equation (3.2). Note that this interpretation remains valid even when c = 0, i.e.,
for E = Aθ .

The extended version of Connes’ pseudodifferential calculus (see Section 4)
allows to establish the heat asymptotic expansion

Tr
(
a e−t8E′,k

)
∼t↘0

∞∑

q=0

a2q(a,8E′,k) t
q−1, a ∈ Aθ , (3.3)

and express its functional coefficients in local form. In particular, the curvature
functional is of the form

a2(a,8E′,k) = 1

4π"τ ϕE′(aKE′,k) = 1

4π"τ rk(E′)ϕ0(aKE′,k), a ∈ Aθ ,
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where ϕE′ := rk(E′)ϕ0 is the natural trace on Aθ = EndAθ ′ (E
′), and the curvature

density has the expression (cf. [LEMO16, Theorem 2.12])

KE′,k = K(∇)(8(h))+H(∇1,∇2)
(
�&(h)

)
+ μ(E′)1. (3.4)

3.3 Ray–Singer determinant vs. Yang–Mills functional

To obtain the variation formula of the Ray–Singer log-determinant functional

Asa
θ ( h∗ = h �−→ log Det(8E ′,k) : = −ζ ′8E ′,k (0),

one proceeds as in Section 2.5, starting with the insertion of the curvature expression
(3.4) in the derivative − d

ds
ζ ′8E ′,ks (0) = ζ8E ′,ks (h, 0). After integrating the resulting

expression one arrives at the following exact formula for the Ray–Singer determi-
nant (cf. [LEMO16, Theorem 2.15])

log Det(8E ′,k) = 1

2
| deg(E ′)| log

(
2|μ(E ′)|"(τ̄ )) − 1

2
| deg(E ′)|ϕ0(h)

− | rk(E ′)|
16π"τ

(
1

3
ϕ0(h8h)+ ϕ0

(
K2(∇1

h)
(
�&(h)

)))
.

The scale invariant form of the functional is

FE ′(h) = − log Det(8E ′,k) − 1

2
| deg(E ′)|ϕ0(h).

Using the preceding formula, its exact expression is seen to be

FE ′(h) = − log Det(8E ′)

+ | rk(E ′)|
16π"τ

(
1

3
ϕ0(h8h)+ ϕ0

(
K2(∇1

h)(�&(h))
))

.
(3.5)

When viewed as a functional on the (positive cone of) metrics on the Heisenberg
left Aθ -module E ′, FE ′ attains its minimum only at the metric whose corresponding
connection compatible with the holomorphic structure has constant curvature (cf.
[LEMO16, Theorem 2.16]).

Thus the Ray–Singer functional behaves in the same manner as the Yang–Mills
functional of Connes and Rieffel (cf. [CORI87]), which however is defined on the
space of connections on the noncommutative torus.
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3.4 Invariance of the Gaussian curvature

The gradient of the functional FE ′ now defined via the equation

〈gradh F, a〉E ′ ≡ 1

4π"τ ϕE′(a · gradh FE ′) := d

dε

∣∣
ε=0F(h+ εa),

Its explicit expression can be computed as in [COMO14, §4.2] and the answer turns
out to be exactly the same as in the case of trivial coefficients, cf. Equation (2.18):

gradh FE ′ = π

4"(τ )
(
K̃(∇)(8(h))+ H̃ (∇(1),∇(2))(�&(h))

)
= gradh F.

This result can be interpreted as expressing the invariance of the modular
Gaussian curvature under Morita equivalence in two different ways. First it shows
that the Gaussian curvature associated with a change of Hermitian metric on a
Heisenberg equivalence bimodule E′ by a fixed positive invertible k ∈ Aθ , viewed as
an element of EndAθ ′ (E ′), is independent of E′. Second, regarding the Heisenberg
spectral triples with inverse line-element DE′,k as right spectral triples, conferring
metrics to Aθ ′ , it proves that the entire collection of Morita equivalent algebras
{Ag·θ ; θ ∈ SL(2,Z)} inherits the same modular curvature as the intrinsic one
of Aθ .

4 Pseudodifferential multipliers and symbol calculus

The main technical device which was used for proving the above results is a
pseudodifferential calculus adapted to twisted C∗-dynamical systems, extending the
well-known calculi due to Connes [CON80].

Originally, pseudodifferential operators (�DO) were invented (see Kohn and
Nirenberg [KONI65] or for a textbook Shubin [SHU01]) to study elliptic partial
differential operators. �DO form an algebra which contains differential operators
and the parametrices to elliptic differential operators. They come with a symbolic
calculus: while the (complete) symbols of differential operators are polynomials
in the covariables, �DO are obtained by allowing more general types of symbol
functions, e.g., of Hörmander type.
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4.1 Ordinary �DO in R
n from the point of view of

C∗-dynamical systems

4.1.1 Standard representation on the L2-space (GNS space)

Connes’ pseudodifferential calculus on a C∗-dynamical system (A,Rn, α) should
be viewed as a pseudodifferential calculus on R

n. To motivate the defining formulas
and to connect to the standard pseudodifferential calculus, we briefly recast the
latter in the language of C∗-dynamical systems such that the link becomes apparent.
Recall that for a suitably nice symbol function σ(ξ, s), s, ξ ∈ R

n1 one defines the
pseudodifferential operator with complete symbol σ as

(
Op(σ )u

)
(s) :=

∫

Rn
ei〈s,ξ 〉σ(ξ, s)û(ξ) -dξ =

∫

Rn

∫

Rn
ei〈s−y,ξ〉σ(ξ, s)u(y)dy -dξ.

(4.1)

Now let us abuse this formula a little. Let A∞ := S(Rn) ⊂ C0(R
n) be the Schwartz

space viewed as a ∗-subalgebra of C0(R
n). It acts on itself by left multiplication.

Furthermore, there is a one parameter group of ∗-automorphisms αx(f ) := f (·−x)
and a one parameter family of operators πx(f ) := f (· − x) satisfying πyaπ−y =
α−y(a), a ∈ A∞. This gives rise to a covariant representation of the dynamical
system (A∞,Rn, α) on the Hilbert space L2(Rn) which is the GNS space of the
α-invariant tracial weight ϕ0(f ) = ∫

Rn
f , i.e., the completion of A∞ with respect

to the inner product 〈f, g〉ϕ0 = ϕ0(f
∗g) = ∫

Rn
f g.

Now given u ∈ A∞ and a symbol σ ∈ S(Rn,A∞) = S(Rn, S(Rn)) = S(Rn ×
R
n) we continue from Equation (4.1) and compute

(
Op(σ )u

)
(s) =

∫

Rn

( ∫

Rn
ei〈y,ξ〉σ(ξ, s) -dξ

)
u(s − y)dy

=
∫

Rn

(
F−1
ξ→yσ (y)

)
(s)u(s − y)dy

=
∫

Rn
σ∨
ξ→y(y)πyudy(s),

(4.2)

with σ∨
ξ→y := F−1

ξ→yσ .
Thus symbols in the Schwartz space S(Rn,A∞) act, after a Fourier transform

in the first variable, covariantly with respect to the natural representation of the
covariance algebra S(Rn,A∞)�α R on the GNS space of the weight ϕ0.

1For consistency with the later exposition we deliberately use a somewhat unusual order and
naming convention for the variables ξ, s. ξ plays the role of the covariable and the spacial variable
s is normally called x in �DO textbooks.

We want to view the function σ(ξ, ·) as an algebra valued function on R
n
ξ .
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We note furthermore that for σ ∈ S(Rn,A∞) = S(Rn ×R
n) the operator Op(σ )

is trace class and from the calculation Equation (4.2) we see that the Schwartz kernel
of Op(σ ) on the diagonal is given by

∫
Rn
σ (ξ, ·) -dξ , hence

Tr
(

Op(σ )
) =

∫

Rn

∫

Rn
σ (ξ, s)ds -dξ = ϕ0

(
(σ∨
ξ→y(0)

) =
∫

Rn
ϕ0

(
σ(ξ, ·) -dξ.

(4.3)

We now take the Schwartz functions σ∨
ξ→y as basic objects. Identifying f ∈

S(Rn, S(Rn)) with π(f ) = ∫
Rn
f (x)πxdx the space S(Rn, S(Rn)) becomes a ∗-

algebra with ∗-representation f �→ π(f ) on L2(Rn). Explicitly, π(f ) ◦ π(g) =
π(f ∗ g) and π(f ∗) = π(f ∗), where

f ∗(x) = αx
(
f (−x)∗), (f ∗ g)(x) =

∫

Rn
f (y)αy

(
g(x − y)

)
dy, (4.4)

resp. with the second variables spelled out, S(Rn × R
n) becomes a ∗-algebra with

involution and product given by

f ∗(x, s) = f (−x, s − x) , (f ∗g)(x, s) =
∫

Rn
f (y, s)g(x−y, s−y)dy. (4.5)

4.1.2 Pseudodifferential multipliers

We now lift the previous ∗-representation to a “universal” multiplier representation
as follows:

S(Rn, S(Rn)) is a pre-C∗-module with inner product 〈f, g〉 = ∫
Rn
f (x)∗g(x)dx.

Put

(a f )(x) = α−x(a)f (x) , (Uyf )(x) = f (x − y) , a ∈ S(Rn). (4.6)

Since UxaU−x = αx(a) this gives rise to a covariant representation of the ∗-
algebra S(Rn, S(Rn)) by associating to f ∈ S(Rn, S(Rn)) the multiplier Mf =∫
Rn
f (x)Uxdx.

If ϕ is a α-invariant trace on S(Rn), then the dual trace ψ̂ on S(Rn, S(Rn)) is
given by

ψ̂(f ) = ψ
(
f (0)

) =
∫

Rn
ψ
(
f̂ (ξ)

) -dξ. (4.7)

Note that -dξ is the Plancherel measure of the dual group (Rn)∧ w.r.t. the duality
pairing (x, ξ) �→ ei〈x,ξ〉.

In case of the trace ϕ0 = ∫
Rn

from the previous section the dual trace equals
the trace Equation (4.3) on the Hilbert space representation L2(Rn). This equality
should be viewed as a coincidence. In general, the dual trace does not coincide with
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the Hilbert space trace on a representation, resp. this depends on the representation,
see Section 5.2.

By associating to f ∈ S(Rn,A∞) the multiplierMf = ∫
Rn
f (x)Uxdx the space

S(Rn,A∞) becomes a ∗-algebra. Putting Pf := Mf ∨ and allowing f to be a symbol
of Hörmander class Sm(Rn,A∞) we obtain an algebra of multipliers which, via
the representation π from above, is isomorphic to an algebra of pseudodifferential
operators in R

n. We deliberately say “an” and not “the” here as in R
n there are

various versions of such algebras which differ only by the behavior of symbols as
the spacial variable s → ∞, cf. [SHU01, Chap. IV].

4.2 Pseudodifferential multipliers on twisted crossed products

The action of the Heisenberg group on E(g, θ) induces a C∗-dynamical system
(A,Rn=2, α) (A = Aθ or A = Aθ ′ ). Equivalently, R

n acts by a projective
representation with cocycle e(x, y) := ei〈Bx,y〉, with a skew- symmetric matrix
B = (bkl)

n
k,l=1. In order to construct the resolvent of elliptic differential operators

(i.e., Laplacians) on Heisenberg modules one therefore extends the previous con-
siderations to twisted C∗-dynamical systems. In the previous two sections we have
formulated the standard pseudodifferential operator conventions in such a way that
they carry over almost ad verbatim to the twisted case.

Consider a C∗-dynamical system (A,Rn, α) with, now for simplicity, unital A.
Furthermore, let

e(x, y) := eiσ(x,y) = ei〈Bx,y〉, σ (x, y) := 〈Bx, y〉 (4.8)

with a skew-symmetric real n × n-matrix B = (bkl)
n
k,l=1. By A∞ we denote the

smooth subalgebra, i.e., those a ∈ A for which t �→ αt (a) is smooth.
As before the Schwartz space S(Rn,A∞) is a pre-C∗-module with inner product

〈f, g〉 = ∫
Rn
f (x)∗g(x)dx. Putting (Uyf )(x) = e(x,−y)f (x − y) we obtain a

projective family of unitaries U∗
x = U−x , Ux Uy = e(x, y)Ux+y , x, y ∈ R

n,
UxaU−x = αx(a), a ∈ A∞. Together with (a f )(x) = α−x(a)f (x), a ∈ A∞
and associating to f ∈ S(Rn,A∞) the multiplier Mf = ∫

Rn
f (x)Uxdx the space

S(Rn,A∞) becomes a ∗-algebra. Explicitly, cf. Equation (4.4)

f ∗(x) = αx
(
f (−x)∗), (f ∗ g)(x) =

∫

Rn
f (y)αy

(
g(x − y)

)
e(y, x)dy. (4.9)

Note that the formula for f ∗ is the same as in the untwisted case.
As in the untwisted case, a α-invariant trace ψ on A induces a dual trace ψ̂ on

S(Rn,A∞) which is given by the same formula as Equation (4.7).
To define the pseudodifferential operator convention we now read Equation (4.2)

backwards. Namely, given Schwartz functions f, u ∈ S(Rn,A∞), and abbreviating
f ∨ := F−1

ξ→yf the inverse Fourier transform of f , we find
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(Mf ∨u)(x) :=
( ∫

Rn
f ∨(y)Uyu dy

)
(x)

=
∫

Rn
α−x(f ∨(y))u(x − y)e(x,−y) dy

=
∫

Rn
α−x(f ∨(x − y))u(y)e(x, y) dy (4.10)

=
∫

Rn

∫

Rn
ei〈x−y,ξ−Bx〉α−x(f (ξ))u(y)dy -dξ (4.11)

=
∫

Rn
ei〈x,ξ〉α−x(f (ξ))û(ξ − Bx) -dξ

=
∫

Rn
ei〈x,ξ〉α−x(f (ξ + Bx))û(ξ) -dξ (4.12)

=: (Pf u)(x) (4.13)

and call the so defined multiplier Pf a (twisted) pseudodifferential multiplier with
symbol f . This should be compared to Equation (4.1).

Strictly speaking, so far we have only dealt with smoothing operators as all
symbols were Schwartz functions. One now has to extend Pf to a larger class of
functions f . The purpose of the somewhat lengthy exposition so far was to show
that, at least in R

n but there in a rather broad sense, smoothing operators are nothing
but convolution operators and their symbols are obtained by applying a partial
Fourier transform. General �DO are therefore nothing but singular convolution
operators. This is not surprising as �DO may, via the Schwartz Kernel Theorem,
also be viewed as singular integral operators.

The extension to general symbol functions now follows the standard route.
Putting Pf := Mf ∨ and allowing f to be a symbol of Hörmander class Sm(Rn,A∞)
we obtain a class of multipliers extending the pseudodifferential multipliers à la
Connes [CON80] and Baaj’s [BAA88A, BAA88B]. Later we will also need the so-
called classical (1-step polyhomogeneous) symbols f ∈ CSm(Rn,A∞) which have
an asymptotic expansion

f ∼
∞∑

j=0

fm−j

with fm−j (λξ) = λm−j · fm−j (ξ), |ξ | ≥ 1, λ ≥ 1.
Thus for f ∈ Sm(Rn,A∞) we obtain a well-defined multiplier Pf acting on

the pre-C∗-module S(Rn,A∞) with complete symbol f . The usual stationary phase
arguments (e.g., [SHU01, § I.3]) then allow to prove that the space L•

σ (R
n,A∞) =⋃

n∈Z Lmσ (R
n,A∞) of twisted pseudodifferential multipliers (as well as its classical

counterpart where the symbols f are 1-step polyhomogeneous) is a ∗-algebra.
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For symbols f ∈ Sm(Rn,A∞), g ∈ Sm
′
(Rn,A∞) the composition Pf ◦ Pg

is a pseudodifferential multiplier with symbol h ∈ Sm+m′
(Rn,A∞) and h has the

asymptotic expansion

h(t) ∼
∑

γ

i−|γ |

γ ! (∂
γ f )(t)∂

γ
y

∣∣
y=0

(
α−y

(
g(t + By)

))
. (4.14)

Furthermore, P ∗
f is a pseudodifferential multiplier with symbol

σ(P ∗
f ) ∼

∑

γ

1

γ !∂
γ
t δ

γ f (t)∗. (4.15)

Here δγ denotes the basic derivative on A induced by the flow α: For a ∈ A∞ and
a multiindex γ ∈ Z

n+ it is defined by

δγ a := i|γ |∂γx
∣∣
x=0αx(a) = i−|γ |∂γx

∣∣
x=0α−x(a). (4.16)

δγ plays the role of the partial derivative i−|γ | ∂γ
∂xγ

.

4.3 Differential multipliers

In the standard calculus differential operators are characterized as those pseudod-
ifferential operators whose complete symbols are polynomial in the covariables
ξ . Adopting this as a definition for differential multipliers it turns out that the
(multiplier counterparts) of the natural first and second order differential operators
discussed in Section 2 are differential multipliers in this sense.

Somewhat more formally we call Pf ∈ L•
σ (R

n,A∞) a differential multiplier of
order m if

f (ξ) =
∑

|γ |≤m
aγ ξ

γ ; aγ ∈ A∞, (4.17)

f ∈ A∞[ξ1, . . . , ξn] is a polynomial of degree at most m. Here the sum runs
over all multiindices γ ∈ Z

n+ with |γ | ≤ m. Clearly, polynomials in ξ are 1-step
polyhomogeneous and hence differential multipliers are classical pseudodifferential
multipliers.

Recall that in the ordinary pseudodifferential calculus the symbol of the basic
derivatives i−|γ |∂γx is given by ξγ . Therefore, for a multiindex γ we put ∂γ := Pξγ .
Explicitly, we find from Equation (4.12) for u ∈ S(Rn,A∞)
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(∂γ u)(x) = (Pξγ u)(x) =
∫

Rn
ei〈x,y〉

(
ξ + Bx

)γ
û(ξ) -dξ

= i−|γ |∂γy
∣∣
y=0

∫

Rn
ei〈x+y,ξ+Bx〉û(ξ) -dξ

= i−|γ |∂γy
∣∣
y=0

(
e(x, y)u(x + y)

) = i|γ |∂γy
∣∣
y=0Uyu(x).

(4.18)

It is important to note that due to the twisting in general ∂γ ∂γ
′ �= ∂γ+γ ′

, as can
be seen either directly or by the just proved product formula.

As in the ordinary pseudodifferential calculus it is in general not true that P ∗
f =

Pf ∗ . However, σ(Pf )∗ = σ(P ∗
f ) mod Sm−1(Rn,A∞).

Furthermore, ∂γ is formally self-adjoint and thus for any differential multiplier
we have indeed P ∗

f = Pf ∗ .

4.4 Differential multipliers of order 1 and 2

We look more closely at the most relevant case of differential multipliers of order
1 and 2. Let ej , j = 1, . . . , n be the canonical basis vectors of Rn. We abbreviate
∂j := ∂ej and recall that bjk denotes the entries of the skew-symmetric structure
matrix of the twisting Equation (4.8). Then by Equation (4.18)

∂j u(x) = i−1∂yj

∣∣
y=0e

i〈Bx,y〉u(x + y) =
(

1

i
∂xj + bjlxl

)
u(x), (4.19)

where summing over repeated indices is understood. Thus

∂j∂k = −∂xj ∂xk − ibjsxs∂xk − ibksxs∂xj − ibkj + bjsbkrxsxr . (4.20)

In particular we have the “curvature identity”

[∂j , ∂k] = 2i bjk. (4.21)

The twisting and the noncommutativity has an interesting effect on the symbol
calculus. The symbol of ∂j · ∂k is not ξj · ξk but rather it is a consequence of the
formula Equation (4.14) that

σ
(
∂j · ∂k

) = ξj · ξk + ibjk = σ
(
∂ej+ek

) + ibjk, (4.22)

hence ∂ej+ek = ∂j · ∂k − ibjk . From this the curvature identity Equation (4.21) also
follows.
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4.4.1 Differential multipliers in dimension n = 2

Specializing further to dimension n = 2 it is most convenient to make use of the
complex Wirtinger derivatives. Furthermore, the structure matrix bjk has only one
interesting entry b12. Fixing τ ∈ C with "τ > 0 (a complex structure!) we have the
following basic differential multipliers:

∂τ := ∂1 + τ∂2, ∂∗
τ = ∂1 + τ∂2, ∂1 := ∂1,0, ∂2 := ∂0,1

[∂τ , ∂
∗
τ ] = −4 · "τ · b12 =: cτ ,

�τ := 1

2
(∂∗

τ ∂τ + ∂τ ∂∗
τ ) = ∂2

1 + |τ |2∂2
2 + &τ(∂1∂2 + ∂2∂1).

We will first analyze these operators acting as multipliers on the Hilbert module
completion of S(Rn,A∞). Later on we will have to pass to their concrete counter-
parts acting on the Heisenberg modules.

5 The resolvent expansion and trace formula

The resolvent trace, or equivalently the heat trace, expansion for second order
Laplace type operators goes back at least to Minakshisundaram and Pleijel
[MIPL49]. Via Karamata’s tauberian theorem there is a connection to the eigenvalue
counting function whose asymptotic analysis is quite subtle. The best remainder
term for the counting function of general elliptic operators led Hörmander to develop
his beautiful theory of Fourier integral operators [HÖR71]. Later the resolvent trace
(aka heat equation) method led to the development of local index theory [ABP73]
with an enormous flow of publications.

In our opinion, by now the most streamlined approach to the resolvent expansion
of elliptic differential operators is the calculus of parameter dependent pseudodif-
ferential operators which essentially goes back to Seeley’s seminal complex powers
paper [SEE67] and which is presented very nicely in Shubin’s book [SHU01, § II.9].2

We will come back to this soon. Our goal here is to show that this calculus carries
over to twisted pseudodifferential multipliers and that the second coefficient in the
expansion can be calculated quite easily without any computer aid.

We consider the differential multiplier P = Pε1,ε2 := k2�τ + ε1(∂τ k
2)∂∗

τ +
ε2(∂

∗
τ k

2)∂τ + a0, where a0 ∈ A and ε1, ε2 are real parameters. This multiplier
contains all conformal Laplace type multipliers, which occur on Heisenberg mod-

2In Seeley’s paper a subtle oversight caused a certain confusion which, at least among non-
experts, seems to exist to this day. The resolvents of elliptic pseudodifferential operators in general
only belong to a “weakly parametric“ calculus. This difference between the resolvent calculi for
differential resp. true pseudodifferential operators was clarified almost 30 years after Seeley’s
original paper [GRSE95].
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ules over noncommutative tori, as special cases. The symbol of P takes the form
σP (ξ) := a2(ξ)+ a1(ξ)+ a0, where a0 ∈ A∞ is the same as above and

a2(ξ) = k2|ξ1 + τξ2|2 =: k2|η|2,
a1(ξ) = ε1(∂τ k

2)η + ε2(∂
∗
τ k

2)η, η := ξ1 + τξ2,

=: 21η + 22η, 21 := ε1∂τ k
2, 22 := ε2∂

∗
τ k

2.

The resolvent (P − λ)−1 belongs to the parameter dependent pseudodifferential
calculus and therefore its symbol has a polyhomogeneous expansion σ(P−λ)−1 ∼
b−2 + b−3 + b−4 + . . ., where b−k(ξ, λ) ∈ A∞ depends smoothly on (ξ, λ) and
is homogeneous of degree −k: b−k(rξ, r2λ) = r−kb(ξ, λ). As a consequence we
obtain for the a ∈ A∞ with respect the dual trace Equation (4.7) ϕ̂0 (ϕ0 is the
invariant trace on A∞) an asymptotic expansion

ϕ0

(
e−tP

)
∼t↘0

∞∑

j=0

a2j (P, a)t
j−1, (5.1)

where it follows from the homogeneity3

a2j (P, a) =
∫

R2

∫

C

e−tλϕ0
(
(b−2j (ξ, gl)

) -dλ -dξ

=
∫

R2
ϕ0

(
b−2j−2(ξ,−1)

)
-dξ

∫

C

e−tλ(−λ)−j -dλ.

(5.2)

Here C is a contour in the complex plane encircling the positive semiaxis clockwise
such that

∫
C
e−tλ(r − λ)−1 -dλ = e−tr . The second line is a consequence of

the homogeneity of the b−k (see [COMO95, §6]). For the second nontrivial heat
coefficient one therefore obtains up to a sign (see loc. cit.)

a2(P, a) =
∫

R2
ϕ0(b−4(ξ,−1)) -dξ.

Due to this formula, it will be convenient to compute b−4(ξ,−1) modulo functions
of total ξ -integral 0. Up to a function of total ξ -integral 0 we have the following
closed formulas for the first three terms in the symbol expansion of (P − λ)−1:

b−2 = b = (k2|η|2 − λ)−1, b−3 = −bk2(η∂∗
τ + η∂τ

)
b − ba1b,

3Note that heat/resolvent invariants are enumerated from 0. We are after a2 which is the second
nontrivial heat invariant, as a1 is always 0 for differential operators, but in the counting of the
recursion system it is the third term.
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b−4 = (
2bk2|η|2 − 1 − ε1 − ε2

)
bk28τ b + λbk2((∂∗

τ b)(∂τ b)+ (∂τ b)(∂
∗
τ b)

)

+ ε1 · λb(∂τ k2)b∂∗
τ b + ε2 · λb(∂∗

τ k
2)b∂τ b

+ ε1ε2 · |η|2b · ((∂τ k2)b(∂∗
τ k

2)+ (∂∗
τ k

2)b∂τ k
2) · b − ba0b.

The proof is straightforward, completely computer free, and fits on two pages,
cf. [LEMO16, § 3.3].

5.1 Second heat coefficient

Integrating b−4 over ξ is still a little involved and it requires the Rearrangement
Lemma [COMO95, § 6.2]. This was recast and generalized in [LES17]. The calculus
of divided differences allows to compute the many explicit integrals in a systematic
way. As a result there exist entire functionsK(s),H&(s, t),H"(s, t), such that with
h := log k2 the second heat coefficient of P (w.r.t. the natural dual trace on the
twisted crossed product) takes the form

a2(P, a) = 1

4π |"τ |ϕ0

[
a
(
K(∇)(8τ h)− k−2a0

+H&(∇(1),∇(2))
(
�&(h)

) +H"(∇(1),∇(2))
(
�"(h)

))]
.

Here, �&/"(h) := 1
2

(
∂τh · ∂∗

τ ± ∂∗
τ h · ∂τh

)
, ∇ = − ad(h), and ∇(i) signifies that it

acts on the i-th factor (cf. [COMO14], [LES17]).
The functions K,H&,H" depend only on P but not on τ . They can naturally be

expressed in terms of simple divided divided differences of log.

5.2 Effective pseudodifferential operators and trace formulas

We consider the noncommutative torus Aθ with generators U1, U2 and normalized
trace ϕ0. Let f : R

2 → A∞ be a symbol function (or Schwartz function)
of sufficiently low order. Recall the trace Equation (4.7) of the multiplier Pf :
ϕ̂(Pf ) = ∫

R2 ϕ0(f (x))dx. However, the multiplier Pf is canonically represented
as an operator on the GNS space L2(Aθ , ϕ0) by Op(f ) = ∫

R2 f
∨(x)πxdx, where

πx(U
n1
1 U

n2
2 ) = ei〈x,n〉Un1

1 U
n2
2 is the unitary which implements the natural R2-

action on Aθ , cf. Equation (2.1). Op(f ) acts as a trace class operator on L2(Aθ , ϕ0).
More concretely, one computes Op(f )Un1

1 Un2 = f (−n1,−n2)U
n1
1 U

n2
2 . Since

(U
n1
1 U

n2
2 )n∈Z2 is an orthonormal basis of L2(A∞, ϕ0) we obtain the trace formula
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Tr(Op(f )) =
∑

n∈Z2

〈Un1
1 U

n2
2 , f (−n1,−n2)U

n1
1 U

n2
2 〉

=
∑

n∈Z2

ϕ0

((
U
n1
1 U

n2
2

)∗
f (−n1,−n2)U

n1
1 U

n2
2

)

=
∑

n∈Z2

ϕ0
(
f (n)

)
.

(5.3)

This looks a little different from the formula for the dual trace. However, for
a parameter dependent symbol f (x, λ) we can take advantage of the Poisson
summation formula. Then we find

∑

n∈Z2

f (k, λ) =
∑

k∈Z
f̂ (2πk, λ)

= f̂ (0, λ)+
∑

k∈Z2\{0}
f̂ (2πk, λ)

=
∫

R2
f (ξ, λ)dξ +O(λ−N)

(5.4)

for any N . The latter follows from integration by parts in the Fourier transform and
the symbol estimates.

Thus the upshot is that for trace class symbols in the parameter dependent
calculus the multiplier trace and the trace in the Hilbert space representation
coincide only asymptotically. However, for computing heat and resolvent trace
asymptotics this is good enough.

Furthermore, this observation has a far reaching generalization. Namely, the
effective implementation of the pseudodifferential calculus amounts to passing from
its realization on multipliers to a direct action on projective representation spaces
(Heisenberg modules) or on L2(A, ϕ0) itself. More concretely, let π : G → L(H)
be a projective unitary representation of G = R

n × (Rn)∧. For a symbol f ∈
Sm(Rn,A∞) the assignment Sm(Rn,A∞) ( f �→ Op(f ) := ∫

G
f ∨(y)π(y)dy

represents pseudodifferential multipliers as concrete operators in H.
By exploiting the representation theory of the Heisenberg group we are able to

relate the Hilbert space trace of parameter dependent pseudodifferential operators
to the trace of the corresponding multiplier acting on S(Rn,A∞). For details see
[LEMO16, § 5 and Appendix A].
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Advances in Dixmier traces
and applications

Steven Lord, Fedor A. Sukochev, and Dmitriy Zanin

Abstract Jacques Dixmier constructed a trace in the 1960s on an ideal larger
than the trace class. In 1988 Alain Connes developed Dixmier’s trace and used it
centrally in noncommutative geometry, extending classical Yang-Mills actions, the
noncommutative residue of Adler, Manin, Wodzicki and Guillemin, and integration
of differential forms.

Independent of Dixmier’s construction and Connes development, Albrecht
Pietsch identified a bijective correspondence between traces on two-sided ideals
and shift invariant functionals in the 1980s. At the same time Kalton and Figiel
identified the commutator subspace of trace class operators, showing that there
exist traces different from ‘the trace’ on the trace class ideal. The commutator
approach was subsequently developed in the 1990s for arbitrary ideals by Dykema,
Figiel, Weiss and Wodzicki.

We survey recent advances in singular traces, of which Dixmier’s trace is an
example, based on the approaches of Dixmier, Connes, Pietsch, Kalton, Figiel
and the approach of Dykema, Figiel, Weiss and Wodzicki. The results include the
bijective association of positive traces with Banach limits, the characterisation of
Dixmier traces within this bijection, Lidskii and Fredholm formulations of singular
traces as the summation of divergent sums of eigenvalues and expectation values,
and their calculation using zeta function residues, heat semigroup asymptotics and
symbols of integral operators.

There are basic implications of these advances for users in noncommutative
geometry such as the redundancy of the requirement for invariance properties of
the extended limit used in Dixmier’s trace, the capacity to calculate traces for
resolvents of non-smooth partial differential operators and the characterisation
of independence from which singular trace is used in terms of the rate of log
divergence of the series of energy expectation values—a more physically suitable
criteria to impose, or to test the satisfaction of, than series of generally intractable
singular values of products of operators. We also survey recent applications in
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noncommutative geometry such as calculation of traces using noncommutative
symbols, that Connes’ Hochschild Character formula holds for any trace, and
extensions of Connes’ results for quantum differentiability for Euclidean space and
the noncommutative torus.

Keywords Singular trace · Dixmier trace · Noncommutative geometry

2000 Mathematics Subject Classification Primary 46L51

1 Introduction

The work of famous mathematicians, Fredholm, Hilbert, Weyl, von Neumann, led
to the definition and study of the trace on a separable Hilbert space and the ideal of
trace class operators. Early in the 1950s Halmos proved that every bounded operator
of the Hilbert space to itself is the sum of two commutators involving bounded
operators [98, 99]. Brown, Pearcy and Topping extended this in the 1970s to show
that every compact operator is a sum of four commutators involving compact
operators [21, 100, 165, 72]. Therefore, because a trace vanishes on commutators,
the ideals of bounded and compact operators cannot have a non-zero trace. A
fundamental question in functional analysis became whether the trace on the trace
class operators was the only (non-zero) trace on a two-sided ideal of bounded
operators.

Jacques Dixmier constructed such a trace in the 1960s on the ideal of compact
operators whose series of singular values diverge as log(n) [61]. From 1988 Alain
Connes developed the theory of Dixmier’s trace [39, 38], with also Henri Moscovici
[45]. Alain Connes coined the name “Dixmier trace” in the 1988 publication [39]
(and Dixmier’s trace was the topic of Connes’ course at College de France the year
before). An extensive body of work followed with other authors generalising the
construction and applications initiated by Connes, e.g. [3, 4, 162, 65, 96, 95, 163,
147, 164].

Connes used the Dixmier trace centrally in noncommutative geometry, demon-
strating its role in a unique and remarkable theory of noncommutative integration
based on differential geometry. In [39] and [38] Connes applied the Dixmier trace
to extensions of classical Yang-Mills and Polyakov actions, extended the noncom-
mutative residue of Adler, Manin, Wodzicki and Guillemin, showed an equivalent
expression for the Hochschild class of the Chern Character in terms of the Dixmier
trace, and introduced the fundamental relation between the noncommutative integral
defined by the Dixmier trace and Voiculescu’s obstruction to the Berg-Weyl-von
Neumann discretisation theorem for tuples.

After Dixmier’s trace became central in Connes’ noncommutative geometry [47],
interest in the topic of traces exploded. Most users of noncommutative geometry
still refer to the original presentation of Dixmier’s trace by Connes from 1988 [39,
38] (or the monograph “Noncommutative Geometry” from 1994 [40]). With the
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condition of translation and dilation invariance of the extended limit removed [199]
[150, Ch. 9], and the highly non-trivial fact that eigenvalues can be used instead of
singular values [121, 70, 125, 200, 217], Dixmier’s functional is

ω

⎛

⎝ 1

log(n)

n∑

j=0

λ(j,A)

⎞

⎠ (1.1)

where λ(j,A), j ≥ 0 are the eigenvalues of a compact operator A in any order
so that |λ(j,A)|, j ≥ 0 is non-increasing and ω ∈ &∗∞ is an extended limit.
That is, ω is a state on the algebra of bounded complex-valued sequences &∞
vanishing on the ideal c0 of sequences converging to 0. These conditions provide
that ω(x) = c whenever limn→∞ xn = c, hence the term extended limit. The
dependence on ω cannot be removed in general, so there are in fact many Dixmier
traces. Formula (1.1) is finite if, ordered as before,

nλ(n, |A|) = O(1), n ≥ 0

(though not only if, see the discussion in Section 3.2.1) and defines a trace on
the ideal L1,∞ of compact operators satisfying this condition. The formula is the
realisation of the formal idea of log divergence of the trace series

lim
n→∞

1

log(n)

n∑

j=0

λ(j,A). (1.2)

Despite Dixmier’s trace playing an outstanding and central role in noncommutative
geometry, its role is not unique. Some results have been shown to hold for larger
classes of traces. Connes’ trace theorem recovering the noncommutative residue and
integration of forms [38], recovery of the Lebesgue integral [14, 71, 146], and the
Hochschild character formula [39, 45, 108, 54, 24, 23] have been proven for all traces
on L1,∞ [125, 30, 149]. This relates to the rate of log divergence of eigenvalues in
known applications, which we explain in the text. Though it is not straightforward
to show, what we do know about the unique features of Dixmier’s trace, and will
outline below, is that the formulation of Dixmier’s trace in (1.1) describes every
positive trace on L1,∞ monotone with respect to Hardy-Littlewood submajorisation
[122, 216], it is in bijective correspondence with the set of factorisable Banach
limits [203], and it coincides with the set of so-called heat functionals based on
extracting the first coefficient of an asymptotic expansion of the heat semigroup
partition function [27, 215]. Dixmier’s trace is an example of a singular trace. A
singular trace is a trace that vanishes on all finite rank operators.

Other approaches to singular traces developed independently. During the 1980s
Albrecht Pietsch, working in the more general area of continuous operators between
Banach spaces [167], identified a bijective correspondence between traces on two-
sided ideals of continuous operators between Hilbert spaces and translation invariant
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functionals [171]. Nigel Kalton answered Pietsch’s question from 1981 [170]
concerning continuous traces different from ‘the trace’ on proper quasi-Banach
ideals of the trace class ideal L1 in 1987 by constructing singular traces [119,
Theorem 6] on certain quasi-Banach ideals. Kalton also identified which quasi-
Banach ideals within L1 possessed no singular traces [119, Theorem 6].

Kalton in 1989 identified the commutator subspace of trace class operators
studied by Gary Weiss [236, 120] and Anderson and Vaserstein [8, 7]. In doing
so Kalton proved the existence of traces different from ‘the trace’ on L1 [120]. An
alternative unpublished proof of the same fact using shift invariant functionals on
&1 is due to Tadeusz Figiel [120, p. 73]. Figiel learnt of Pietsch’s approach in 1981
(Srni, January 1981) [170, p. 89] and at a meeting in Georgenthal (East-Germany,
April 1986). The commutator approach was subsequently developed in the 1990s
for arbitrary ideals by Dykema et al. [66]. The approach can be used to define
traces and prove their existence [68, 115, 241, 66]. Kalton in 1998 [121] developed
the spectral version of the commutator characterisation to investigate which traces
are determined completely by eigenvalues [121, 67]. Spectrality of traces had been
raised earlier in the Banach space setting by Pietsch [170]. The 1989 paper of
Varga [229] contained an approach to the existence of traces on ideals generated
by a single compact operator. Another direction involves symmetric functionals
[65, 76, 62, 64, 124, 123], where the correspondence of J. W. Calkin is used to
transfer the construction and existence of symmetric functionals on sequence or
function spaces to the study of traces on operator ideals.

The authors published a monograph on the general study of singular traces in
2012 [150] including some of the above results on Dixmier traces, on the heat
semigroup and zeta function formulas associated with them [27, 28, 198, 215] [150,
Ch. 8], and when the limit in (1.2) exists and the dependence on the extended
limit in (1.1) is removed [147, 199, 223] [150, Ch. 9]. Prior to this there was a
survey in 2006 [31]. Since then there have been several major advances. Pietsch’s
bijective identification of traces has come to the fore [168, 177, 203, 178], which is
more constructive than the bijective identification between traces and symmetric
functionals on the Calkin sequence space [150, Ch. 4]. The question of when
traces on ideals of compact operators are determined solely by eigenvalues has
been completely solved [217] (there exist traces which are not determined by
eigenvalues). The integral product formula for tensor products of spectral triples
is now known to be false without analytic conditions on the heat semigroup [218].

On the application side, integration formulas for forms in Connes’ quantised
calculus for Rd and the noncommutative torus have been proven for every trace on
L1,∞ [149], and Connes’ Hochschild character formula has been shown for every
trace on L1,∞ in the compact [30] and non-compact case [220]. Singular traces have
been applied outside of noncommutative geometry; in perturbation formulas [183],
and in Banach geometry arising from the identification of the trace of the Haagerup
L1-space of a type III von Neumann algebra with a singular trace on the L1,∞-space
of the type II invariant von Neumann algebra [182].
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To this end, we survey these recent advances to Dixmier traces gained from using
all the approaches of Dixmier, Connes, Pietsch, Kalton, and subsequently Dykema,
Figiel, Weiss and Wodzicki, together with new and resurrected devices such as
uniform and logarithmic submajorisation. There are basic implications for users
such as the redundancy of translation and dilation invariance in Dixmier’s original
formulation (Section 3.2), and the capacity to use eigenvalues and expectation
values in the formula (Section 3.3). This leads to a characterisation of independence
from which trace is used in terms of the rate of log divergence of energy expectation
values—a more physically suitable criteria to impose, or to test the satisfaction of,
than the same statement for the generally intractable singular values of products of
operators.

The main interest for the user are calculation formulas. The construction
formulas using singular or eigenvalues sequences seldom provide a format by which
the trace of the operators used in noncommutative geometry can be calculated;
the almost sole exception being that the logarithmic divergence in (1.2) can be
calculated for the Dirichlet Laplacian on a bounded domain in R

d using Weyl’s
asymptotics formula for the eigenvalues [237, 112, 97] [188, XIII.15]. Extending
Connes trace theorem for classical pseudodifferential operators [38, Theorem 1],
we discuss the class of integral operators with L2-symbols on L2(R

d) that have
finite log divergence in (free) energy and the calculation of their Dixmier trace using
an extended noncommutative residue (Section 5.1.1). This permits the calculation
of the noncommutative integral of a bounded linear operator in L(H), and certain
unbounded ones, using symbols (Section 5.1.2). Such symbols support an extended
notion of principal symbol (Theorem 5.2), which we discuss and use to calculate
the trace of quantised differential d-forms in R

d (Theorem 5.7). Following Connes
identification of the Dixmier trace with the first residue of the zeta function and the
first term in the asymptotic expansion of the heat partition function [40, 45, IV] the
user should also note new conditions linking the heat semigroup and zeta function
formulas to measurability and the calculation of a Dixmier trace as a genuine residue
(Section 4.2.3).

After preliminaries on ideals and the singular value function in Section 2, Sec-
tion 3 discusses existence and construction of singular traces. Here we summarise
the situation for traces on L1,∞ and the position of Dixmier traces. To not distract
from the central case we concentrate mostly on the ideal L1,∞. Section 4 concerns
calculation of traces and which operators in the ideal have the same value when
a non-zero trace is applied to that operator independent of which non-zero trace
is applied—also called measurability [40, p. 308]. We illustrate the calculation
formulas and measurability by discussing Connes’ trace theorem from [38] for
general classes of non-smooth integral operators (Theorems 5.1–5.4), and universal
measurability in the Hochschild character formula (Theorem 5.8).

Throughout we highlight some open questions concerning singular traces and
noncommutative geometry, and potential areas for new applications.
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2 Preliminaries

Denote by L(H) the algebra of bounded linear operators on a separable Hilbert
space H equipped with the uniform norm ‖ · ‖. Two operators A and B in L(H) are
unitarily equivalent if

A = UBU∗, for some U∗U = UU∗ = 1, U ∈ L(H).

Fix an orthonormal basis en, n ≥ 0 of H . We identify the algebra l∞ of bounded
sequences with the subalgebra of all diagonal operators with respect to this basis.
Define

diag(x) =
∞∑

n=0

xnPn, x = (x0, x1, x2, . . .) ∈ &∞

where Pn, n ≥ 0, are the one-dimensional projections Pnh = 〈en, h〉en, h ∈ H . The
choice of basis will be inessential, the diagonal operator defined with another basis
is unitarily equivalent.

2.1 Ideals and singular values

A subspace E of L(H) for which

BAC ∈ E for all B,C ∈ L(H),A ∈ E

is an ideal. All ideals considered will be two-sided. Proper ideals of L(H) contain
only compact operators. A quasi-norm ‖ · ‖E on an ideal E is called symmetric if

‖BAC‖E ≤ ‖B‖‖A‖E‖C‖, B,C ∈ L(H),A ∈ E .

If E is complete in a symmetric (quasi-)norm ‖·‖E then E is called a (quasi-)Banach
ideal.

The non-zero eigenvalues of a compact operator A form either a sequence
converging to 0 or a finite set. In the former case we define an eigenvalue sequence
λ(A) of A as the sequence of eigenvalues λ(n,A), n ≥ 0 each repeated according to
algebraic multiplicity, and arranged in an order such that |λ(n,A)| is non-increasing
[207, p. 7]. In the latter case we construct a finite sequence λ(n,A), 0 ≤ n ≤ N

of the non-zero eigenvalues and set λ(n,A) = 0 for n > N. The ordering may not
be unique but all eigenvalues sequences are unitarily equivalent (using the implicit
embedding of &∞ in L(H) given by diag). Since UAU∗ has the same eigenvalues
with multiplicity as A for any unitary U ∈ L(H), then λ(n,A) and λ(n,UAU∗)
are unitarily equivalent. Denoted by μ(A) the sequence of singular values of A,
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μ(n,A), n ≥ 0, that is, an eigenvalue sequence of |A| [207, Ch. 1] [88, II] [150,
Chapter 2].

For A ∈ L(H) we also denote by μ(A) the non-increasing right continuous
singular value function [150, Chapter 2]

μ(t, A) = inf{‖A(1 − P)‖ : P = P ∗ = P 2 ∈ L(H), Tr(P ) ≤ t}, t > 0.

It is easy to see from the formula for the singular value function that

μ(t, UAU∗) = μ(t, A), t > 0, UU∗ = U∗U = 1, U ∈ L(H).

and that μ(t, A), t > 0 is a step function with

μ(t, A) = μ(n,A), t ∈ [n, n+ 1), n ≥ 0.

The singular value function generalises the singular values of a compact operator.
For A,B ∈ L(H) we say A is Hardy-Littlewood submajorised by B, and write

A ≺≺ B, when

n∑

j=0

μ(j,A) ≤
n∑

j=0

μ(j, B), ∀n ≥ 0.

For x ∈ &∞, the sequence μ(n, diag(x)), n ≥ 0 is the decreasing rearrangement
of x. The decreasing rearrangement is often denoted x∗; as a special case of the
singular value function however, we denote the decreasing rearrangement by μ(x)
using the implicit embedding of &∞ in L(H) given by diag. A linear subspace E of
&∞ is called a symmetric sequence space if μ(x1) ≤ μ(x2) for x2 ∈ E and x1 ∈ &∞
implies that x1 ∈ E. A quasi-norm ‖ · ‖E on E is symmetric if μ(x1) ≤ μ(x2)

implies that ‖x1‖E ≤ ‖x2‖E for any x1, x2 ∈ E.

2.2 Trace class and the trace

Let Tr denote the standard trace on L(H)

Tr(A) =
∞∑

n=0

〈en,Aen〉, A ∈ L(H).

The trace is unitarily invariant

Tr(UAU∗) = Tr(A), U∗U = UU∗ = 1, U ∈ L(H)

and independent of the choice of basis.
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The space of all trace class operators

L1 = {A ∈ L(H) : Tr(|A|) < ∞}
forms an ideal of L(H) [189, p. 207]. The norm

‖A‖1 = Tr(|A|), A ∈ L1

is a symmetric norm on L1, and L1 is complete in ‖ · ‖1.
From the existence of a complete basis of eigenvectors for a normal compact

operator, it follows that

Tr(A) =
∞∑

n=0

λ(n,A), AA∗ = A∗A,A ∈ L1

It is a non-trivial result of Lidskii [142, 184] [207, Sect. 3] that for arbitrary A ∈ L1

Tr(A) =
∞∑

n=0

λ(n,A), A ∈ L1.

2.3 Weak trace class and Dixmier’s trace

The notion of dimension in noncommutative geometry is described in the compact
case by a self-adjoint operatorD : Dom(D) → H with compact resolvent such that

|D|−p ∈ L1,∞

for some p > 0 [40, p. 546], where

L1,∞ = {A ∈ L(H) : μ(n,A) ≤ c · n−1, c is a const.}.
Here |D|−p acts trivially on the finite dimensional kernel of D. Specifying

(1 +D2)−p/2 ∈ L1,∞

is an equivalent statement [27, Sect. 6], which we often choose to do.

2.3.1 Weak trace class

The assignment

‖A‖L1,∞ = sup
n≥0

(n+ 1)μ(n,A), A ∈ L1,∞

is a symmetric quasi-norm on L1,∞ in whose topology L1,∞ is closed.
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The ideals Lp,∞, p > 1, defined as follows, are solid under submajorisation,

Lp,∞ = {A ∈ L(H) : μ(n,A) ≤ c · n−1/p, c is a const.}
= {A ∈ L(H) : μ(n,A) ≺≺ c · n−1/p, c is a const.}

and are Banach ideals. The statement that |D|−p ∈ L1,∞ for some p ≥ 1 is
equivalent to |D|−1 ∈ Lp,∞. The ideal

M1,∞ = {A ∈ L(H) : μ(n,A) ≺≺ c · n−1, c is a const.}

is the submajorisation closure of L1,∞

M1,∞ = {A ∈ L(H) : μ(A) ≺≺ μ(B), B ∈ L1,∞}.

It is a Banach ideal under the norm

‖A‖M1,∞ = inf{c ≥ 0 : μ(n,A) ≺≺ c · n−1} = sup
n≥0

1

log(n+ 2)

n∑

j=0

μ(j,A).

The ideals L1,∞ and M1,∞ are not the same [196, 124]. L1,∞ is not solid under
submajorisation and is not a Banach ideal. M1,∞ is not the Banach envelope of
L1,∞ [172]. The ideal M1,∞ is often referred to as the dual of the Macaev ideal.

2.3.2 Extended limits

A state on a unital C∗-algebra is a bounded linear functional such that ω(1) = 1.
An extended limit ω ∈ &∗∞ is a state on the algebra of bounded complex-valued
sequences &∞ vanishing on the ideal c0 of sequences converging to 0. These
conditions provide that ω(x) = c whenever limn→∞ xn = c, c const., hence the
term extended limit.

Banach [11, p. 34] and Mazur [154, p. 103] proved the existence of extended
limits. Not all the properties of the classical limit can be preserved by extended
limits. Mazur [155] noted that an extended limit that preserves the shift invariance
of the classical limit, that is

lim
n→∞ xn+1 = lim

n→∞ xn,

cannot preserve the product formula

lim
n→∞ xnyn = lim

n→∞ xn · lim
n→∞ yn.
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That the product of limits being equal to the limit of the product is equivalent to ω
being a character, or pure state, of &∞ that vanishes on c0. We leave the discussion
of pure states, that is, ultrafilters, to another occasion, and concentrate on extended
limits for shift and additional invariances.

Many of the invariances are easier to phrase on R+ rather than N ∪ {0}. There
is no loss considering states on the C∗-algebra L∞(R+) and extended limits in the
sense that ω ∈ L∞(R+)∗ is a state that vanishes on the ideal C0(R+) of functions
vanishing at infinity. Banach and Mazur proved the existence of extended limits on
L∞(R+) that extend taking the limit at infinity.

Define the shift operator

Sa : L∞(R+) → L∞(R+) , Saf (s) = f (s + a), a ≥ 0

and the dilation operator

Db : L∞(R+) → L∞(R+) , Dbf (s) = f (b−1s), b > 0.

An extended limit ω ∈ L∞(R+)∗ is shift invariant if

ω(f ) = ω(Saf ), for all a ≥ 0.

Banach [11, p. 34] and Mazur [154, p. 103] proved the existence of shift invariant
extended limits, originally termed Banach-Mazur limits but now referred to as
Banach limits.

There are other operations on &∞ or L∞(R+) required to understand the
definition and calculation of Dixmier traces in noncommutative geometry, the
most important being the Cesaro mean (or arithmetic mean) operator and the
logarithmic mean operator. Discussion of these additional operators we refer to
[27, 62, 63, 202, 222, 199, 224, 6]. We define them in the text as they are needed. The
existence of extended limits invariant under the operations we consider is provided
by Carey et al. [27, Theorem 1.5].

2.3.3 Dixmier trace

For any extended limit ω ∈ &∗∞ the functional

Trω(A) = ω

⎛

⎝ 1

log(n)

n∑

j=0

μ(n,A)

⎞

⎠ , 0 ≤ A ∈ L1,∞

is positive, unitarily invariant, and normalised in the sense that

Trω(diag(n−1)) = 1.
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It is also additive on the positive cone [61] [150, Sect. 9.7]

Trω(A+ B) = Trω(A)+ Trω(B), 0 ≤ A,B ∈ L1,∞.

Therefore it has a unique linear extension Trω : L1,∞ → C such that

Trω(UAU
∗) = Trω(A), A ∈ L1,∞, UU∗ = U∗U = 1, U ∈ L(H).

It is immediate from linear extension and the definition that

|Trω(A)| ≤ Trω(|A|) ≤ ‖A‖L1,∞ ,

and

Trω(A) = 0, A ∈ L1.

Hence Trω is continuous on L1,∞ and vanishes on the ideal of trace class operators
L1 contained in L1,∞.

3 Existence and construction of traces

Weyl’s formula describes the asymptotic spectral behaviour of a general Laplacian
� on a closed manifold (a compact manifold without boundary) � of dimension d
[97] [188, XIII.15] [16, 138] [204, p. 117] (supressing some absolute constants),

λ(n,−�) ∼ Vol(�)−2/d · n2/d , n ≥ 0

where λ describes the discrete eigenvalues of the Laplacian ordered, with multiplic-
ity, as an increasing sequence. An inverse power of the negative of such a Laplacian
(technically, any pseudodifferential parametrix of (1 − �)d/2 of order −d) has
harmonic asymptotic behaviour proportional to the volume

λ(n, (1 −�)−d/2) ∼ Vol(�) · n−1, n ≥ 0.

From a practical perspective, the log divergence of partial sums in Dixmier’s
formula in (1.1) (or Section 2.3.3 above) is naturally associated with volumes and
with the inherent philosophy of the pseudodifferential calculus that operators of
order −d represent infinitesimals on �. Connes showed that this philosophy is
borne out factually, in that it is indeed true that applying a Dixmier trace yields
[38, 14, 148]

Trω(A(1 −�)−d/2) ∼
∫

S∗�
a(v)dv (3.1)
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for any zero order classical pseudodifferential operatorA : C∞(�) → C∞(�)with
principal symbol a, and dv is the Liouville measure on the sphere bundle S∗� [35,
VII]. Heuristically, A(1 − �)−d/2 is the quantisation of a(v)dv and the Dixmier
trace acts as integration [93, 41]. The lhs of (3.1) is a genuine noncommutative
extension of integration; it is well defined and, in fact, norm continuous for any
bounded linear operator A : L2(�) → L2(�) paired with the bounded operator
defined by the functional calculus (1 −�)−d/2 : L2(�) → L2(�).

From pseudodifferential theory, e.g. [204], it may be asked why the Dixmier trace
is necessary. The operator (1 −�)−α/2 is trace class for α > d; is

Tr(A(1 −�)−α/2) (3.2)

not sufficient to recover the integral? Without curvature, e.g. on the flat torus, the
answer is yes. Generally, the Laplace-Beltrami operator, for example, contains first
and zero order differential terms relating to the metric on �. In the expansion
of the pseudodifferential operator (1 − �)−α/2 these become lower order trace
class terms that contain additional geometric information [86, 16]. These additional
terms do not generally vanish under the trace. However, when α = d, the lower
order trace class terms do vanish under the Dixmier trace, leaving the leading or
asymptotic term relating to volume. Most readers will recognise the zeta function
in (3.2) defined on α > d [158, 187, 109]. Poles of its analytic extension
relate to the noncommutative residue [239, 240], and have many connections with
mathematical physics included zeta-function regularisation [103], Seeley-deWitt
coefficients [233] and the Einstein-Hilbert action [127, 1]. From a substitution in
the Tauberian theorem of Hardy and Littlewood [102, p. 155], as noted by Connes
[40, p. 306], the residue at the first pole α = d indeed becomes equivalent to
formula (3.1). However, this only applies to certain Dixmier traces, or is limited
to certain linear operators A admitting asymptotics [40, p. 545] [125]. Recent work
has developed simplified and natural criteria for operators A such that (3.2) has a
meromorphic extension to Re(z) > α − 1, and when the residue of a simple pole
at z = d is calculated by a trace which is singular, meaning that it vanishes on
finite rank operators (see Section 4.2.3). Extension criteria for Re(z) ≤ α − 1, and
associations between residues at higher poles and singular traces is an open topic
[211].

The use of Dixmier’s trace in (3.1), and as the residue at the first pole
of (3.2), is not unique [125, 228]. Other singular traces can provide the same
result. The structure of singular traces therefore becomes a necessary component
of a well-formulated theory of integration in Alain Connes’ generalisation of
pseudodifferential calculus and algebraic geometry. This structure, which recently
has been identified, see below, for positive traces at least, with the infinite-
dimensional lattice of Banach limits on &∞, collapses to the same functional on
the operators of classical geometry. What are sufficient, if not necessary, conditions
on operators for this same collapse of a lattice of traces to a unique functional as
observed in classical geometry? What significance, if any, is there to the existence
of the lattice? Operators that separate points in the lattice are not that exotic.



Advances in Dixmier traces and applications 503

It is not hard to construct a non-classical zero order pseudodifferential operator
A : C∞(�) → C∞(�) such that the lhs of (3.1) depends explicitly on the state
ω ∈ &∗∞ [125, 203].

From a theoretical point of view, Dixmier’s construction is neither injective, in
the sense that distinct extended limits can provide the same trace on L1,∞, nor
surjective in the sense that it does not describe all positive traces on L1,∞ up to
a scalar multiple. Instead, the spectral characterisation of sums of commutators
developed during the late 1990s [76, 121, 67, 66] and Pietsch’s dyadic averaging
construction [167, 171, 229] developed during the late 1980s have been the basis
for a rapid advance in the study of singular traces—especially for the ideal L1,∞
of compact operators of weak trace class which feature prominently in Connes’
noncommutative geometry. Over the last 5 years a series of papers [125, 217, 175,
177, 203] have solved the problem of bijective identification of positive traces and
their spectrality. We highlight these existence and construction results as they have
formed the basis for new results for integrals and residues in applications.

3.1 Existence of traces and the commutator subspace

J. W. Calkin first noted the bijective correspondence [22] [206, Ch. 2] [150] between
two-sided ideals of compact operators and proper symmetric sequence spaces.1 The
correspondence extends to traces on ideals and rearrangement invariant functionals
on symmetric sequence spaces.

3.1.1 Calkin correspondence

A two-sided ideal is completely determined by its diagonal; if E is a two-sided ideal
of compact operators then

E = diag(E) := {a ∈ &∞ : diag(a) ∈ E}

is a symmetric sequence space, conversely, if E is a proper symmetric sequence
space then

E := {A ∈ L(H) : μ(A) ∈ E}

1Symmetric sequence spaces are also called rearrangement invariant sequence spaces. The reader
of the literature should be warned that some texts refer to rearrangement invariant spaces solid
under Hardy-Littlewood submajorisation as symmetric spaces. The same object in other texts is
referred to as fully symmetric spaces.
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determines a two-sided ideal of compact operators. Every two-sided ideal of
compact operators and every proper symmetric sequence space arise in this way,

E
diag


μ
E.

John von Neumann in the 1930s first posed the question whether every symmetric
norm on the symmetric sequence space E defines a symmetric norm on E by the
assignment

‖A‖E = ‖μ(A)‖E, A ∈ E .

This was solved in 2008 [124]. If E is complete, then E is complete. Hence all
Banach ideals are in bijective correspondence with symmetric Banach sequence
spaces. The question was resolved for symmetric quasi-norms in 2013 [221] [140].

3.1.2 Commutator subspace

Using the Calkin correspondence, traces on an ideal E associate with functionals on
the sequence space E. A trace on E is a linear functional φ : E → C such that

φ(UAU∗) = φ(A), A ∈ E

for all unitaries U ∈ L(H). That is, it vanishes on the subspace of E

linear span{A− UAU∗ : A ∈ E, UU∗ = U∗U = 1, U ∈ L(H)}

which is equivalent to the subspace of finite sums of commutators

Com(E) = linear span{[A,B] : A ∈ E, B ∈ L(H)}.

Under the Calkin correspondence Com(E) corresponds to the subspace

Z(E) = linear span{x − y : 0 ≤ x, y ∈ E,μ(x) = μ(y)}

of E called the centre. This is a consequence of a result due to Dykema et al. [66],
see also the Figiel-Kalton theorem [76] and [121, Theorem 3.1]. If 0 ≤ A,B ∈ E
then A− B ∈ Com(E) if and only if (Theorem 3.2 below, based on [125, Theorem
3.2] which is a refinement of the main result of [66])

C (μ(A)− μ(B)) ∈ E
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where C is the Cesaro mean

C : &∞ → &∞ , (Cx)n = 1

n+ 1

n∑

j=0

xj x = (x0, x1, . . .) ∈ &∞.

The Figiel-Kalton theorem [76] essentially states that C (μ(A)− μ(B)) ∈ E if and
only if the difference μ(A)− μ(B) belongs to Z(E).

By diagonalisation, a positive compact operator A is unitarily equivalent to
diag(μ(A)), hence

A− diag(μ(A)) ∈ Com(E), 0 ≤ A ∈ E .

The difference between a positive operator A and its Calkin projection onto the
diagonal is in the commutator subspace. For a trace φ on E this implies

φ(A) = φ ◦ diag(μ(A)), 0 ≤ A ∈ E .

Hence, on the positive cone, the trace φ on E can be replaced by the functional
φ ◦ diag on E. A linear functional f : E → C is called symmetric if f vanishes
on Z(E), and it turns out that traces on the ideal E are bijective with symmetric
functionals on E via the assignment φ ◦ diag [123, Theorem 5.2] (see also [180,
Theorem 2.2]).

To sketch how this result is shown, consider f symmetric on E. Define the
functional f ◦ μ on E by

f ◦ μ(A) = f (μ(A)), 0 ≤ A ∈ E .

Unitary invariance and scalar homogeneity on the positive cone are obvious. The
challenge is additivity, and it needs to be shown that

μ(A)+ μ(B)− μ(A+ B) ∈ Z(E) 0 ≤ A,B ∈ E .

Inequalities of Hersch [105, 106], or [150, Theorem 3.3, Theorem 3.4] show that

0 ≤
n∑

j=0

μ(j,A)+μ(j, B)−μ(j,A+B) ≤
2n+1∑

j=n+1

μ(j,A+B) ≤ nμ(n+1, A+B)

which implies

C(μ(A)+ μ(B)− μ(A+ B)) ∈ E.
By the Figiel-Kalton Theorem,

μ(A)+ μ(B)− μ(A+ B) ∈ Z(E).
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Similarly, if φ is a trace on E , define the functional φ ◦ diag on E by

φ ◦ diag(x) = φ(diag(x)), 0 ≤ x ∈ E.

Scalar homogeneity and additivity are obvious. The challenge is showing that φ ◦
diag vanishes on Z(E). We have

diag(x)− diag(μ(x)) = diag(x)− μ(diag(x)) ∈ Com(E).

If μ(x) = μ(y), 0 ≤ x, y ∈ E, then

φ(diag(x)) = φ(diag(μ(x))) = φ(diag(μ(y))) = φ(diag(y)).

Hence φ ◦ diag is a symmetric functional on E.
So, the Calkin correspondence also extends to a bijection between traces and

symmetric functionals

φ
◦diag


◦μ

f.

If E is a quasi-Banach ideal, then the bijection preserves continuity. If φ ∈ E∗ is
a continuous trace, then f = φ ◦ diag is continuous and a symmetric functional
[124, 221]. Similarly, if f ∈ E∗ is symmetric, then φ = f ◦μ is a continuous trace.

3.1.3 Existence of traces

An application of this bijection is the existence of non-trivial traces on ideals. If
Z(E) = E, equivalently C(E) ⊂ E, then the zero functional is the only symmetric
functional. If Z(E) �= E, then for any x ∈ E \ Z(E) there exists a symmetric
functional f such that f (x) �= 0.2 The invariance of the diagonal E under the
Cesaro mean can be tested for many ideals. The quest that led Dixmier to his trace
was whether the algebraic properties of the type I factor L(H) implied Tr was the
unique semifinite trace. The answer is no. In the following, existence of a trace
should be read as existence of a trace different from the zero functional.

Remark 3.1

1. Traces do not require continuity. There are many traces on L1 [119]. This follows
as there exist sequences x ∈ &1 such that Cx �∈ &1 yet

∑∞
n=0 xn = 0. Then

2Z(E) is a linear subspace of E and the algebraic dual of E/Z(E) admits a functional f̃ such that
f̃ ([x]) �= 0. Let f be the extension of f̃ to E vanishing on Z(E).
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diag(x) ∈ ker Tr but diag(x) �∈ Com(L1). The commutator subspace Com(L1)

is a strict subspace of ker Tr. For an example of such a sequence x, set

x0 = −
∞∑

n=1

1

(n+ 1) log2(n+ 1)
, xn = 1

(n+ 1) log2(n+ 1)
, n ≥ 1.

Tr is the unique continuous trace on L1.
2. The ideal L0

1,∞ is the maximal ideal (for the partial order of set inclusion)

supporting an extension of the trace Tr on finite rank operators [68]. Recall L0
1,∞

denotes the closure of the finite rank operators in the quasi-norm of L1,∞.
3. The ideal L1,∞ is the minimal ideal such that all traces are singular. Recall a

trace is singular if it vanishes on all finite rank operators. There is no distinction
between a trace and a singular trace on L1,∞. In fact, every trace on L1,∞
vanishes on L1 [150, Theorem 5.7.8]. Every ideal larger than L1,∞ admits only
singular traces that vanish on L1.

3. There are many unbounded traces and many quasi-norm continuous traces
on L1,∞. Let the subspace K denote the common kernel of all quasi-norm
continuous trace on L1,∞. Since L0

1,∞ ⊂ K , the positive cone of L0
1,∞ is

contained in the positive cone of K . Since C(μ(x)) ∈ &1,∞ for 0 ≤ x ∈ &∞
implies that x ∈ &1, the positive cone of the commutator subspace Com(L1,∞)
is the positive cone of L1,

Com(L1,∞)+ � (L0
1,∞)+ ⊂ K+

Hence Com(L1,∞) is not identical to L0
1,∞ and strictly contained inK . There are

unbounded traces on L1,∞ that do not vanish on L0
1,∞.

4. Every quasi-norm continuous trace on L1,∞ is a linear combination of four
positive traces on L1,∞ [44, Corollary 2.2]. Subsequent results that mention
only positive traces—construction in Section 3.2, measurability in Section 4 and
applications in Section 5, apply therefore to all quasi-norm continuous traces.

5. There exist unbounded traces φ on L1,∞ such that the trace Tr+φ is a non-trivial
trace on L0

1,∞ identical to Tr on L1. Hence the extension of Tr on L1 to L0
1,∞ is

not unique.
6. Exact conditions for the existence of continuous traces on Banach ideals [150,

Theorem 4.1.3] and quasi-Banach ideals [179, Theorem 2.1] are known. There
are Banach ideals that admit traces, but no continuous traces at all [150, Example
5.6.9]. Are there Banach ideals where all traces are continuous? A. Pietsch has
shown that all traces being continuous is equivalent to a finite number of linearly
independent singular traces on a quasi-Banach ideal [176, Theorem 8.14].
Banach ideals admit either an infinite number of linearly independent singular
traces, or none [176, Proposition 8.17]. Therefore, Banach ideals that admit
a singular trace must also admit a discontinuous trace. This dichotomy, that
generally an ideal admits either an infinite number of linearly independent
singular traces or none, is an open conjecture [115] [176, Problem 4.6].
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3.2 Construction of traces and dyadic averages

The Calkin correspondence provides an identification between traces on an ideal
of compact operators and symmetric functionals on the diagonal of the ideal (as a
sequence space when given a fixed orthonormal basis of the separable Hilbert space
H ). The correspondence yields no information about the form of the symmetric
functional.

Dixmier’s construction is the most approachable of the trace constructions on
L1,∞. We emphasise again the distinction made in the preliminaries; we concentrate
on the quasi-Banach ideal of compact operators whose singular value sequence is
order O(n−1), n ≥ 1. This is the classical ideal of weak trace class operators
whose diagonal corresponds to weak &1. The term “Dixmier ideal” is often used
in noncommutative geometry, with the same notation, to refer to the dual of the
Macaev ideal [152]; compact operators whose series of singular values is at most
logarithmically divergent. The two ideals are not the same [172], and the properties
of traces on them are different.

3.2.1 Dixmier trace

Dixmier’s trace was originally defined by him [61] as

Trω(A) = ω

⎛

⎝ 1

log(n)

n∑

j=0

μ(j,A)

⎞

⎠ , A ≥ 0 (3.3)

and extended from the positive cone to all of L1,∞ by linearity. According to
Dixmier’s letter to the 2012 Luminy workshop on singular traces, reproduced in the
notes of [150, Ch. 6], Dixmier first considered Banach limits applied to the bounded
sequence

μ(n,A)

1
n+1

= (n+ 1)μ(n,A), n ≥ 0. (3.4)

Dixmier was unable to prove additivity. N. Aronszajn suggested to Dixmier to use
partial sums instead,

∑n
j=0 μ(j,A)
∑n

j=0
1
j+1

, n ≥ 0.

Under the assumption that the extended limit ω be shift and dilation invariant,
Dixmier was able to prove additivity of (3.3). Recalling the Hardy-Littlewood
submajorisation preorder, A ≺≺ B, A,B ∈ L(H)
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n∑

j=0

μ(j,A) ≤
n∑

j=0

μ(j, B), n ≥ 0,

this latter ratio of partial sums being bounded for the compact operator A defines
the dual of the Macaev ideal

M1,∞ = {A ∈ L(H) : A ≺≺ diag(n−1)}

and the formula (3.3) provides a trace on the dual of the Macaev ideal. As yet,
however, no applications in noncommutative geometry have used operators from
M1,∞ that do not already belong to L1,∞.

The condition of shift and dilation invariance of the extended limit in (3.3) can
be removed completely [199] [150, Ch. 9]. This fact applies to L1,∞ only. If ω is
any state on &∞ that vanishes on c0, there exists a dilation and translation invariant
state ω0 such that Trω = Trω0 [222, Theorem 40] [199] [150, Ch. 9]. This displays
the lack of injectivity in Dixmier’s construction on L1,∞, the set of Dixmier traces
defined by any extended limit is the same as the set defined by translation and
dilation invariant extended limits. On the dual of the Macaev ideal the construction
still lacks injectivity [222, Theorem 40]; the set of dilation invariant states provides
the same set as that of translation and invariant states.

Dixmier’s trace is monotone for submajorisation

Trω(A) ≤ Trω(B), A ≺≺ B, 0 ≤ A,B ∈ L1,∞.

It is known that, up to scalar multiple, every positive trace on L1,∞ that is monotone
for submajorisation is a Dixmier trace [203, Corollary 5.7] [122]. This identification
with submajorisation monotone traces is the first characterisation of Dixmier’s trace.
What it shows below is that Dixmier’s construction is not surjective. There are
positive traces on L1,∞ that are not monotone for submajorisation.

3.2.2 Dyadic averages

It has turned out that an injective and surjective construction comes, not from the full
partial sums as in Aronszajn’s suggestion, but from dyadic partial sums. Considering
instead the bounded sequence

∑2n+1−2
j=2n−1 μ(j,A)
∑2n+1−2

j=2n−1
1
j+1

, n ≥ 0, (3.5)

define for any Banach limit θ ∈ &∗∞ (recall Banach limits are the shift invariant
states on &∞) the functional
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τθ (A) = θ

⎛

⎝ 1

log 2

2n+1−2∑

j=2n−1

μ(j,A)

⎞

⎠ , A ≥ 0. (3.6)

This functional is additive on the positive cone of L1,∞, and hence τθ extends
by linearity to a positive trace on L1,∞. Remarkably, this construction bijectively
describes every positive trace on L1,∞ [177, Theorem 4], see also [203, Corollary
3.8, Corollary 4.2].

Define the operators

D : &∞ → &1,∞ , D′ : &1,∞ → &∞

by

D(x) := log 2 ·

⎛

⎜
⎜
⎝
x0

20
,
x1

21
,
x1

21
︸ ︷︷ ︸
2 times

,
x2

22
,
x2

22
,
x2

22
,
x2

22
︸ ︷︷ ︸

4 times

, . . . ,
xn

2n
, . . . ,

xn

2n︸ ︷︷ ︸
2n times

, . . .

⎞

⎟
⎟
⎠ , x ∈ &∞

and

D′(x) = 1

log 2

2n+1−2∑

j=2n−1

μ(j, x), x ∈ &1,∞.

The key element of the bijection is the result that [203, Lemma 3.6] (a variation of
[175, Lemmas 5.3–5.5])

x −DD′(x) ∈ Z(&1,∞), 0 ≤ x ∈ &1,∞

where Z(&1,∞) is the centre of &1,∞. If f is a symmetric functional on &1,∞ and we
assign θ = f ◦D then

f (x) = fDD′(x) = θ(D′(x)) = θ

⎛

⎝ 1

log 2

2n+1−2∑

j=2n−1

μ(j, x)

⎞

⎠ , 0 ≤ x ∈ &1,∞.

Hence θ = f ◦D provides the explicit isometry between symmetric functionals f
on &1,∞ and shift invariant states θ on &∞. The Calkin correspondence between
symmetric functionals on &1,∞ and traces on L1,∞ then identifies (3.6) as a
bijective construction between shift invariant functionals on &∞ and traces acting
on the positive cone of L1,∞. Those shift invariant functionals that are states
(i.e. Banach limits) then correspond with positive traces that are normalised (i.e.
τθ (diag(n−1)) = 1).
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This bijection is due to A. Pietsch who introduced the dyadic partial sums in
the late 1980s on quasi-Banach ideals, summarised in the 1990 publication [171].
Pietsch later showed that the dyadic approach produces the bijection between
traces on ideals and shift-monotone invariant linear functionals on shift-monotone
invariant sequence spaces for all ideals [177, Theorem 4] [178, Theorem 4.6]
(see [174] and historical comments in [177]). The bijection obtained by Pietsch
is a consequence of his approach to the Calkin correspondence using dyadic
decompositions [169, 171, 175], which have provided more results and more direct
proofs than using the Schmidt decomposition of a compact operator. Shift-monotone
invariant functionals and shift-monotone invariant sequence spaces introduced by
Pietsch were largely unstudied compared to rearrangement invariance, symmetric
functionals and symmetric sequence spaces, though their equivalence is established
[175, Theorem 6.3]. There is, as yet, no neat classification for general shift-
monotone invariant states such as their identification with Banach limits that occurs
in the case of &1,∞. The 1995 doctoral thesis of Varga [230] also contains an
approach based on dyadic partial sums. The bijection {an}∞n=1 → {2nan}∞n=1
transfers between Pietsch’s shift-monotone ideals and those introduced by Varga,
and the bijection between traces on operator ideals and shift-monotone invariant
functionals on associated unbounded shift-monotone invariant sequence space is
proved as [230, Theorem 4] in Varga’s thesis. Varga assumes that the operator ideals
are full, in his terms, a condition that eventually is satisfied by all proper ideals
of compact operators (private communication A. Pietsch). The paper [203] repeats
many of Pietsch’s existing results for the ideal L1,∞. The format of the operators D
and D′ in [203] is chosen so that equivalence between the shift invariant states and
the classically known set of Banach limits becomes overt in (3.6).

The set of Banach limits is known to have cardinality of beth two 22N [117,
Theorem 3]. Therefore, due to the association with Banach limits, there are a lot of
positive traces on L1,∞; the set of positive traces on L1,∞ has cardinality 22N , see
also [176, Theorem 9.6].

The bijective correspondence (3.6) between positive normalised traces on L1,∞
and Banach limits provides a very neat classification for Dixmier’s trace, and the
smaller set of Dixmier traces used by Connes in the monograph “Noncommutative
Geometry” in 1994 [40]; first noticed by Pietsch [173].

3.2.3 Characterisation of traces

A Banach limit θ is called a factorisable Banach limit if it is of the form

θ = γ ◦ C

where γ is an extended limit and C : &∞ → &∞ is the Cesaro operator. Raimi
studied factorisable Banach limits in 1980, to determine whether every Banach limit
extended Cesaro summability. He gave an example of a Banach limit that was not
factorisable [186].
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If θ is factorisable, then in (3.6) we have

τθ (A) = γ

⎛

⎝ 1

log 2n

2n∑

j=0

μ(j,A)

⎞

⎠ , A ≥ 0.

This is nearly the formula for a Dixmier trace and shows that τθ is submajorisation
monotone (recall Dixmier’s trace describes all submajorisation monotone traces on
L1,∞). The converse requires showing that if f is a submajorisation monotone
symmetric functional on l1,∞, then f ◦D : &∞ → &∞ is factorisable [203, Theorem
3.13].

Hence the second characterisation of Dixmier’s trace is that it is in bijective
correspondence with the set of factorisable Banach limits.

On page 305 of “Noncommutative Geometry” [40], the Dixmier trace

Trω◦M(A) = ω ◦M
⎛

⎝ 1

log(n)

n∑

j=0

μ(j,A)

⎞

⎠ , A ≥ 0

is used where M is the logarithmic form of the Cesaro operator

M(x) = 1

log(n+ 2)

n∑

j=1

xj

j
, x = (x1, x2, . . .) ∈ &∞. (3.7)

Connes’ construction is not equivalent to Dixmier’s [147]. This is revealed clearly
in the particularly neat classification that in the bijection correspondence of positive
normalised traces on L1,∞ and Banach limits on &∞, Connes’ trace is bijective with
twice factorisable Banach limits

θ = γ ◦ C2

where γ is an extended limit and C is the Cesaro operator [203, Theorem 5.13].
Further details on descendingly smaller sets of traces with ascendingly stronger

invariance in the extended limit can be found in3 [202, 222, 203, 223].
Raimi’s construction of a Banach limit that is not factorisable has the conse-

quence that there exist positive normalised traces on L1,∞ that are not Dixmier
traces. Dixmier’s construction is not surjective. A similar argument shows that
Connes’ construction is not equivalent to Dixmier’s. The cardinality of sets of
once and twice factorisable Banach limits is an open question, as is the cardinality
of the set differences of Banach limits and factorisable Banach limits. Hence the

3One of the strongest invariances generally considered are traces Trω where ω = ω ◦ M is an
extended limit invariant under M . This set of traces are characterised by what might be considered
‘infinitely’ factorisable Banach limits where θ = θ ◦ C is a Banach limit invariant under C [203].
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cardinality of the sets of Dixmier traces discussed and the size of the difference
between the sets of positive normalised traces and Dixmier traces is not precisely
known [173].

3.3 Spectrality and expectation values

Eigenvalues can be used instead of singular values and linear extension in the
construction of every positive trace on L1,∞ since L1,∞ is a solid set under
logarithmic submajorisation [200, 121, 125, 217].

3.3.1 Spectral formulation and limits of expectation values at infinity

Explicitly, for any positive trace on L1,∞ [203, Theorem 6.2]

τθ (A) = θ

⎛

⎝ 1

log 2

2n+1−2∑

j=2n−1

λ(j,A)

⎞

⎠ , A ∈ L1,∞ (3.8)

for any Banach limit θ . We reiterate that λ(j,A) is an eigenvalue sequence; the
eigenvalues of the compact operator A in any order so that |λ(j,A)|, j ≥ 0 is non-
increasing.

By the identification with factorisable Banach limits eigenvalues can be used
instead of singular values and linear extension in Dixmier’s construction. Dixmier’s
trace on all of L1,∞, not just the positive cone of the ideal, is [125, Lemma 6.31]

Trω(A) = ω

⎛

⎝ 1

log(n)

n∑

j=0

λ(j,A)

⎞

⎠ , A ∈ L1,∞. (3.9)

The state ω is again any extended limit. Fack in 2004 noted that Dixmier’s
trace, specifically, was spectral [70]. Spectrality of all traces was proven earlier
[67]. Almost no texts in noncommutative geometry mention it in the construction
of the Dixmier trace, despite the strong interaction between spectral theory and
pseudodifferential operators [204]. We show its utility below by pairing the log
divergence of the spectrum of a pseudodifferential operator with integration of its
symbol over increasingly larger cylinders in phase space in Section 5.

If we return to the noncommutative integration formula (3.1), it is also true for
every bounded operator A ∈ L(L2(�)) that [125, Theorem 7.6]

Trω(A(1 −�)−d/2) = ω

⎛

⎝ 1

log(n)

n∑

j=0

〈en,Aen〉(1 − λ(j,−�))−d/2
⎞

⎠ , A ∈ L(H)

(3.10)
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where λ(n,−�) are the non-increasing eigenvalues of the Laplace-Beltrami oper-
ator � on the closed manifold �, and en are the eigenvectors ordered so that
−�en = λ(n,−�)en, n ≥ 0. The eigenvectors must be ordered; the order is not
uniquely determined but there exist orthonormal bases such that the equality is false
[150, Section 7.5]. Using Weyl’s law (up to the constant Vol(Sd−1 ×�)(d(2π)d)−1

which we suppress)

(1 − λ(n,−�))−d/2 ∼ (n+ 1)−1, n → ∞,

this simplifies even further [150, Theorem 12.1.2]

Trω(A(1 −�)−d/2) = (ω ◦M) (〈en,Aen〉) , A ∈ L(H)

where M is the logarithmic mean operator in (3.7). Hence in noncommutative
geometry the notion of a factorisable dilation invariant limit also becomes important.
A feature of the identification (3.1), which we will cover next section, is that the
equality is independent of the extended limit ω. If x ∈ &∞ and ω(x) = α for fixed
α for every extended limit ω, then x is convergent such that limn→∞ x = α. So, in
fact, for every zero order pseudodifferential operator on A : C∞(�) → C∞(�)

Trω(A(1 −�)−d/2) = lim ◦M (〈en,Aen〉)

and the Liouville integral on the sphere bundle of the closed manifold � is the
logarithmic mean limit of the free energy expectation values of A.

These features come from the identification of differences in the commutator
subspace. The Calkin correspondence yields the bijection

φ
◦diag


◦μ

f.

between a trace φ on an ideal of compact operators E and a symmetric functional f
on the ideal’s diagonal E, such that

φ(A) = f (μ(A)), 0 ≤ A ∈ E

on the positive cone of E . If λ(A) is any eigenvalue sequence of a compact operator
A ∈ E , under what conditions is it true that the extension of φ from the positive
cone to the whole ideal is given by

φ(A) = f (λ(A)), A ∈ E?

The question is not trivial; for an operator A ∈ E written as the sum of four positive
operator A = A1 − A2 + iA3 − iA4 then it is not automatic that the difference

(μ(A1)− μ(A2)+ iμ(A3)− iμ(A4))− λ(A)
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should belong to the centre Z(E) of E. Or, more succinctly written,

A− diag(λ(A)) ∈ Com(E). (3.11)

The problem is even more basic; there is no guarantee that λ(A) belongs to E.

3.3.2 Log submajorisation

Kalton, using the identification of the commutator subspace for normal operators
due to [66], identified in 1998 the necessary and sufficient conditions for (3.11) for
a countably generated ideal [121]. With Dykema it was extended to the semifinite
case in [67, 70]. The problem was fully solved for any ideal E of compact operators
in 2014 [217].

An arbitrary ideal of compact operators E is called logarithmic submajorisation
closed if A ∈ E and B is a compact operator such that

n∏

k=0

μ(k, B) ≤
n∏

k=0

μ(k,A), n ≥ 0

implies that B ∈ E .
The following refinement of [66] from [125], updated with the result of [217],

identifies when the difference of two operators belong to the commutator subspace
in terms of the difference in their eigenvalue sequences.

Theorem 3.2 Suppose E is an ideal of compact operators with diagonal E and
either: (a) A,B ∈ E are normal; or (b) E is logarithmic submajorisation closed
and A,B ∈ E are arbitrary. Then the following statements are equivalent:

(1) A− B ∈ Com(E);
(2) for any eigenvalue sequences {λ(j,A)}∞j=0 of A and {λ(j, B)}∞j=0 of B,

⎧
⎨

⎩
1

n+ 1

⎛

⎝
n∑

j=1

λ(j,A)−
n∑

j=0

λ(j, B)

⎞

⎠

⎫
⎬

⎭

∞

n=1

∈ E

(3) for any eigenvalue sequences {λ(j,A)}∞j=0 of A and {λ(j, B)}∞j=0 of B,

∣∣∣
∣∣∣

n∑

j=0

λ(j,A)−
n∑

j=0

λ(j, B)

∣∣∣
∣∣∣
≤ (n+ 1)μn

for a positive decreasing sequence μ = {μn}∞n=1 ∈ E.
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When A,B ≥ 0 the statement that A − B ∈ Com(E) if and only if C(μ(A) −
μ(B)) ∈ E is the result used earlier. If B = diag(λ(A)) ∈ E , the statement of the
theorem provides (3.11). From [217, Theorem 8]

Corollary 3.3 (Lidskii) If E is a logarithmic submajorisation closed ideal of
L(H), then λ(A) ∈ E for every operator A ∈ E and

φ(A) = φ ◦ diag(λ(A))

for every trace φ on E .

If E is not logarithmic submajorisation closed, then there is an operator A ∈ E
such that λ(A) /∈ E [217, Theorem 8]. This ends any hope of (3.11) for every
operator in an ideal that is not logarithmically submajorisation closed. Logarithmic
submajorisation was introduced by Weyl [238] [88, Lemma 3.3], who showed that
the singular value sequence logarithmic submajorises an eigenvalue sequence. A
formal definition was given by Ando and Hiai in [9], and expounded in the survey
[107].

All Banach and quasi-Banach ideals, including therefore L1,∞, are logarithmic
submajorisation closed [121] [217, Lemma 35]. An arbitrary ideal E has a logarith-
mic submajorisation closure,

LE(E) :=
⎧
⎨

⎩
B ∈ L(H) :

n∏

j=0

μ(j, B) ≤
n∏

j=0

μ(j,A),∀n ≥ 0, for some A ∈ E
⎫
⎬

⎭
.

Then LE(E) is the smallest logarithmic submajorisation closed ideal containing
E [217, Lemma 33]. Consequently LE(E) is the smallest ideal whose diagonal
contains the eigenvalue sequences of E , i.e. A ∈ E implies diag(λ(A)) ∈ LE(E).
While a native spectral formulation is denied to traces on an arbitrary ideal E , it is
natural to ask which traces on E extend to traces on LE(E) and thereby obtain a
spectral formulation in LE(E). This is still an open problem.

If A ∈ L(H) and B = B∗ ∈ E for an arbitrary two-sided ideal E , another
corollary of Theorem 3.2 is [125, Corollary 4.6]

AB − diag({〈en,ABen〉}∞n=1) ∈ Com(E) (3.12)

where en, n ≥ 0 is an orthonormal basis of H such that Ben = λ(n, B)en, n ≥ 0.
Formula (3.10) for the noncommutative integral follows setting B = (1−�)−d/2 ∈
L1,∞.
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4 Calculation and independence from the singular trace

The calculation of a Dixmier trace is rarely done using the explicit construction.
Most cases in noncommutative geometry use the zeta function approach or the heat
kernel asymptotics approach to calculate the trace. These approaches originated
early in noncommutative geometry and are well studied. We quickly restate the
known facts from [150, Ch. 8] in Theorem 4.1. We then concentrate on develop-
ments in the last 5 years.

For brevity in this section, we pass to continuous extended limits. A functional
ω ∈ L∞(R+)∗ is called an extended limit if it vanishes on C0(R+). Using the
singular value function μ(t, A), t ≥ 0 of a compact operator defined in the
preliminaries, which is a step function with values μ(n,A), n ≥ 0 given by the
singular value sequence, define Dixmier’s trace as

Trω(A) = ω

(
1

log(1 + t)

∫ t

0
μ(s,A)ds

)
, 0 ≤ A ∈ L1,∞

for any extended limit ω ∈ L∞(R+)∗. This produces the same set of traces [147,
Section 2, Theorem 6.2] with correspondence given simply by4

ω

(
1

log(1 + t)

∫ t

0
μ(s,A)ds

)
= ω◦p

⎛

⎝ 1

log(1 + n)

n∑

j=0

μ(j,A)

⎞

⎠ , 0 ≤ A ∈ L1,∞

where p : &∞ → L∞(R+) is the piecewise linear extension

p(x)(t) =
∞∑

n=0

(xn + (xn+1 − xn)(t − n)) χ[n,n+1)(t), t ≥ 0.

4.1 Zeta functions and heat kernels

Connes noted [40, p. 306] that a substitution in the Tauberian theorem of Hardy and
Littlewood [102, Theorem 95, p. 156] shows, for 0 ≤ A ∈ L1,∞,

1

log(1 + t)

∫ t

0
μ(s,A)ds → c, t → ∞ (4.1)

4That this is a bijective correspondence follows from using the identification of Dixmier traces
with fully symmetric functionals in [122].
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for a value c ≥ 0, if and only if

(s − 1)Tr(As) → c, s → 1+.

Hence, for certain 0 ≤ A ∈ L1,∞ at least, the behaviour of the zeta function
determines the Dixmier trace of A.

4.1.1 Zeta function and residues

From Minakshisundaram and Pleijel in 1949 [158], and more generally Seeley in
1967 [201], it was known that the zeta function of a −d/m power of an order m
elliptic differential operator on a closed Riemannian manifold� of dimension d has
a meromorphic extension from Re(s) > 1 with a simple pole at s = 1 [204, p. 112]
[109]. For such elliptic differential operators, the residue of the zeta function at its
first pole offers a way to both calculate the Dixmier trace, and through existence of
the actual limit in (4.1), shows that the result does not depend on which Dixmier
trace is chosen.

The residue at the first pole is extended to any classical pseudodifferential
operator of order −d on � by the noncommutative residue Res developed by
Wodzicki in 1983 and Guillemin 1985 [239] [240, p. 384] [97] as an extension of
Adler and Manin’s work in one dimension [2, 153]. Hearing of the existence of the
singular traces from Dixmier in 1985 [150, p. 218], Connes published the following
trace theorem in 1988 [38, Theorem 1]

Trω(Q) = 1

d
Res(Q) (4.2)

where Q is a classical scalar-valued pseudodifferential operator of order −d on
� that, as a compact operator acting on L2(�), belongs to L1,∞. Wodzicki’s
noncommutative residue Res(Q) can be calculated as follows or by integrating the
principal symbol of Q over the sphere bundle (examined further below).

A scalar-valued pseudodifferential operator Q of order −d on � can be written
as

Q = Q0(1 −�)−d/2

where Q0 is pseudodifferential and scalar-valued of order 0. The noncommutative
residue Res(Q) of Q is equivalent to [239, p. 387]

d · ress=1Tr(Q0(1 −�)−sd/2),

so that

Trω(Q) = ress=1Tr(Q0(1 −�)−sd/2) = lim
s→1+(s − 1)Tr(Q0(1 −�)−sd/2).
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Can this approach to calculating a Dixmier trace be applied to other operators on
other Hilbert spaces? The natural question examined first in [27, 14, 28] concerns
the behaviour of the function

(s − 1)Tr(BAs), s → 1+, B ∈ L(H), 0 ≤ A ∈ L1,∞.

The function s �→ Tr(BAs), Re(s) > 1 does not have a meromorphic analytic
continuation generally. Counterexamples are provided by Carey and Sukochev [29,
Lemma 17] or Kalton et al. [125, Corollary 6.34]. The function (s − 1)Tr(BAs)
is bounded for s ≥ 1 if 0 ≤ A ∈ L1,∞5 [27, 28]. Taking an “extended limit as
s → 1+” we can define the functional

ςω(B,A) = ω

(
1

t
Tr(BA1+1/t )

)
, B ∈ L(H), 0 ≤ A ∈ L1,∞ (4.3)

for an extended limit ω ∈ L∞(R+). Whether the functional Trω(BA) is equal to the
functional ζω(B,A) for the same extended limit ω has been examined in [27, 25,
14, 28, 29, 215, 222, 228]. What is known is described in Theorem 4.1 below.

4.1.2 Heat kernel

Minakshisundaram published a shorter proof in 1953 [157] of the meromorphicity
of the zeta function of the Laplace-Beltrami operator � on a closed manifold �
using the Mellin transform to relate the asymptotics of the diagonal of the heat
kernel and the poles of the (analytic continuation of the) zeta function. For any
s > 0, the operator

es� : L2(�) → C∞(�)

is infinitely smoothing [201]. It is compact as an operator L2(�) → L2(�) and
trace class [204, p. 203]. For each s > 0 it has smooth real kernel K(s, ·, ·) ∈
C∞(�×�) of the form

K(s, x, y) =
∞∑

n=0

e−sλ(n,−�)en(x)en(y), s > 0, x, y ∈ �

where λ(n,−�) are the eigenvalues of the Laplace-Beltrami operator in non-
decreasing order with multiplicity and en ∈ C∞(�), n ≥ 0 is an eigenbasis
such that −�en = λ(n,−�)en, n ≥ 0 [204, Theorem 8.3] [85, Lemma 1.6.3].

5The function (s − 1)Tr(BAs) is bounded for s ≥ 1 if and only if 0 ≤ A ∈ M1,∞ [28, Theorem
4.5].



520 S. Lord et al.

Minakshisundaram identified an asymptotic expansion in s of the kernel on the
diagonal of �×� [85, Lemma 1.7.4] [204, p. 119],

K(s, x, x) ∼ s−d/2
∞∑

k=0

ak(x)s
k, s → 0+, x ∈ �

where ak(x) ∈ C∞, k ≥ 0 can be expressed in terms of combinatorial expressions
of the derivatives of the symbol of �. They are local invariants of the differential
operator � but difficult to calculate. Investigation of the Seeley-deWitt coefficient
functions ak(x) has a long history in spectral geometry [84] [85, Section 4.9] [15,
IV]. The asymptotic expansion of the kernel becomes an asymptotic expansion of
the partition function

Tr(es�) =
∫

�

K(s, x, x)dx ∼ s−d/2
∞∑

n=0

aks
k, s → 0+ (4.4)

where the sequence of Seeley-deWitt numbers

ak =
∫

�

ak(x)dx, k ≥ 0

are the integrals of the smooth coefficient functions. Minakshisundaram could
calculate the first two coefficients for the Laplace-Beltrami operator [85, Theorem
4.8.18]

Tr(es�) ∼ (4π)−d/2s−d/2

×
(

Vol(�)+ 1

6

∫

�

Rg(x)dx · s +O(s2)+ · · ·
)
, s → 0+ (4.5)

where Rg(x) denotes the scalar curvature of the metric g at the point x ∈ �.
So the invariants of dimension, volume and total scalar curvature of a closed
Riemannian manifold are contained in the expansion. Further coefficients depend
on combinatorial terms and derivatives of the curvature tensor.

Seeley showed that Minakshisundaram’s approach works for a general positive
elliptic differential operator P of order m on the closed manifold �, and under the
Mellin transform the scalar coefficients ak(P ) in the partition function asymptotic
expansion correspond to the residues of the zeta function of P [85, Lemma 1.10.1]

ak(P ) = res
s= d−2k

m
�(s)Tr(P−s), k ≥ 0.

For 0 ≤ k < d/2 the leading poles are in the positive half-plane where the Gamma
function � is regular. In terms of the noncommutative residue [240, p. 384]
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ak(P ) = d−1�

(
d − 2k

m

)
Res

(
P− d−2k

m

)
, 0 ≤ k < d/2.

If Q0 : C∞(�) → C∞(�) is a zero order differential operator, then

Tr(Q0e
−sP )

also has an asymptotic expansion as t → 0+ with coefficients ak(Q0, P ), k ≥ 0
[85, 94, Lemma 1.7.7] such that

ak(Q0, P ) = res
s= d−2k

m
�(s)Tr(Q0P

−s), k ≥ 0.

If an order −d pseudodifferential operator is of the formQ = Q0(1−Δ)−d/2 where
Q0 is differential, with P = (1 −�)d/2 we obtain

a0(Q0, (1 −�)d/2) = lim
s→0+ s

−d/2Tr(Q0e
−s(1−�)d/2)

= lim
s→1+(s − 1)Tr(Q0(1 −�)−sd/2) = Trω(Q). (4.6)

The first co-efficient in the heat kernel asymptotic expansion calculates a Dixmier
trace of an order −d pseudodifferential operator.

The same question as before was asked; can this approach to calculating a
Dixmier trace be applied to other operators on other Hilbert spaces? When 0 ≤
A ∈ L1,∞ we can define the operator

e−sA−1 ∈ L1, s > 0

by the functional calculus, understanding that e−sA−1
η = 0 for every η ∈ kerA.

The behaviour of the function

s �→ sTr(Be−sA−1
), s → 0+, B ∈ L(H), 0 ≤ A ∈ L1,∞

is bounded if and only if A ∈ L1,∞ [198, 23] but not convergent in general.6 Taking
an “extended limit as s → 0+” we can define the functional [27, 14, 28, 198, 215]

ξω(B,A) = ω
(
t−1Tr(Be−(tA)−1

)
)
, B ∈ L(H), 0 ≤ A ∈ L1,∞ (4.7)

for an extended limit ω ∈ L∞(R+)∗.

6Note that this function is not bounded when 0 ≤ A ∈ M1,∞ belongs to the dual of the Macaev
ideal. The logarithmic mean is applied to obtain a bounded function in this case [28, 198].
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4.1.3 Calculation of leading terms

The extent to which the functional ςω(B,A) defined in (4.3), and ξω(B,A) defined
in (4.7), determine the Dixmier trace of BA, and, as in (4.6) above, define the same
value of the Dixmier trace, is answered in Theorem 4.1. Define the (continuous)
logarithmic mean operator M : L∞(R+) → L∞(R+) by

Mf (t) = 1

log(1 + t)

∫ t

0

f (s)

s
ds, t ≥ 0, f ∈ L∞(R+).

Define Pa : L∞(R+) → L∞(R+) for any a > 0 by

Pa(f )(t) = f (ta), t ≥ 0, f ∈ L∞(R+).

Define log : L∞(R) → L∞(R+) by

log(f )(t) = f (log(t)), t > 0, f ∈ L∞(R).

Note that log : L∞(R) → L∞(R+) is an isomorphism that intertwines the
exponentiation operator Pa , a > 0 on L∞(R+) and the dilation operator Da on
L∞(R) [27, Prop. 1.3].

Theorem 4.1 Suppose B ∈ L(H) and 0 ≤ A ∈ L1,∞. Let ςω(B,A) be as defined
in (4.3), and ξω(B,A) be as defined in (4.7). Then:

(1) the set of Dixmier traces is identical to the set of all heat kernel asymptotic
functionals ξω(1, ·), ω ∈ L∞(R+)∗ an extended limit, acting on the positive
cone of L1,∞. Further

(a) if ω ∈ L∞(R+)∗ is an extended limit then

Trω(BA) = ω ◦M
(

1

t
Tr(Be−(tA)−1

)

)
, ∀B ∈ L(H), 0 ≤ A ∈ L1,∞

(b) however the logarithmic mean cannot be removed, there exists an extended
limit ω ∈ L∞(R+)∗ such that

Trω(A) �= ω

(
1

t
Tr(e−(tA)−1

)

)
, 0 ≤ A ∈ L1,∞.

(2) the set of Dixmier traces is strictly larger than the set of all zeta residue
functionals ςω(1, ·), ω ∈ L∞(R+)∗ an extended limit, acting on the positive
cone of L1,∞. Further

(a) if ω ∈ L∞(R+)∗ is a Pa-invariant limit, a > 0, that is ω ◦ Pa = ω then
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Trω(BA) = ω ◦ log

(
1

t
Tr(BA1+1/t )

)
, ∀B ∈ L(H), 0 ≤ A ∈ L1,∞

(b) there exists an extended limit ω ∈ L∞(R+)∗ such that

Trω(A) > lim sup
t→∞

1

t
Tr(A1+1/t ), 0 ≤ A ∈ L1,∞.

(3) if ω ∈ L∞(R+)∗ is an M-invariant and Pa-invariant limit, a > 0, that is
ω ◦M = ω ◦ Pa = ω, then

Trω(BA) = ω

(
1

t
Tr(Be−(tA)−1

)

)
= ω ◦ log

(
1

t
Tr(BA1+1/t )

)

for all B ∈ L(H) and 0 ≤ A ∈ L1,∞.

The theorem combines result from [150, Section 8] and [198, Theorem 5] [224,
Theorem 16] [222, Theorem 33] [203, p. 599] [214, Theorem 3.10], from a history
of previous results in [91, 27, 25, 14, 28, 198, 215, 29]. It is not known if the
statements of 1(a), 2(a) and 3 are optimal.

Theorem 4.1 provides the third characterisation of Dixmier’s trace, they cor-
respond to the set of heat kernel asymptotic functionals. Meaning they generally
provide a “leading term of the asymptotic expansion” of the partition function

Tr(e−sA−1
), s → 0+, 0 ≤ A ∈ L1,∞

when there are no well-defined asymptotics. Statement 3 generalises the association
between the noncommutative residue, the leading term of the heat kernel expansion
of a positive elliptic differential operator on a closed Riemannian manifold, and
the residue at the first pole of the zeta function of that operator. Unlike the case of
differential operators, proper asymptotics do not exist and calculation is complicated
by the presence of various extended limits; this is the best that can be done for
arbitrary 0 ≤ A ∈ L1,∞. The complimentary question is to consider smaller sets
of operators instead of extending the limits. For what smaller set of operators in the
positive cone of L1,∞ do the limits actually exist in Theorem 4.1, and the extended
limits can be dispensed with?

We note some history of the proof of Theorem 4.1. In [102] Hardy proves
the Hardy-Littlewood Tauberian theorem [102, Theorem 95, p. 155] following
Karamata [126] [102, Theorem 98, p. 156]. Karamata’s Tauberian theorem provides
the equivalence in (4.1) between the logarithmically diverging series and zeta
functions. The Mellin transform relates zeta functions to heat kernel asymptotics.
This method underlies the proofs from [27] to [198], where a weak∗-Karamata
theorem was proved for extended limits and applied to zeta functions [27, Theorem
2.2] using substitution or used directly for heat kernels [198, Theorem 2]. In 2010
[215], by which time it was realised Dixmier traces provide all Hardy-Littlewood



524 S. Lord et al.

submajorisation monotone traces, the method transferred to identification of heat
and zeta functionals with submajorisation monotone traces. Different computations
yield the association of heat kernel functionals with Dixmier traces and the Mellin
transform is not used. The bijective association with factorisable Banach limits was
used recently to identify the set of zeta residue functions [214, Lemma 3.5].

4.1.4 The second term

For the Laplace-Beltrami operator� on a closed Riemannian manifold� the second
term in (4.5) is

1

6

∫

�

Rg(x)dx,

which is proportional to the Einstein-Hilbert action whose variation describes the
vacuum field equations of general relativity. Replacing −� acting on C∞(�) by
a generalised Laplacian D2 where D is a general Dirac operator on the smooth
sections C∞(�,E) of a Clifford bundleE over the closed manifold� [138, Sect. 5]
only changes the constant of proportionality and introduces a cosmological constant
to the action; noted by Kalau and Walze [118, Sect. 5] and seen in [85, Theorem
4.8.18]. Therefore the second term in the expansion of Tr(e−tD2

) for any standard
Laplacian in differential geometry is equivalent to the vacuum gravity action.
Following Connes [42], and Kastler’s computation in [127], Kalau and Walze [118,
Sect. 5] further noted that the partition function for the square of the Dirac operator
of the Connes-Lott model of a four-dimensional manifold tensored by a matrix
algebra representing the standard model [40, VI] has second term proportional to
the vacuum Einstein-Hilbert action. In 1996 Chamseddine-Connes introduced the
spectral action, where the first, second and third terms of an asymptotic expansion
of the partition function for the Connes-Lott model were associated with a (bosonic)
action incorporating the standard model, gravity and additional terms [34].

Obtaining the second and higher terms of the asymptotics of the partition
function for more general geometries than those associated with elliptic differential
operators is an open problem. Given the partition function Tr(e−sH ), s > 0 of an
arbitrary positive operator H with finite dimensional kernel and H−d/2 ∈ L1,∞
for some d ≥ 4, Dixmier’s trace extracts the “leading term of the asymptotic
expansion”. Presently there are no analogue formulas involving singular traces that
extract the second or higher terms. It was noted, in [240, p. 389] [118] and [34] and
reiterated in [1] after [127], that in the case of Dirac operators on closed Riemannian
manifolds, as above, the noncommutative residue

Res((D2)−d/2+1)

calculates the second term and hence Einstien-Hilbert action. However, for general
positive operators such thatH−d/2 ∈ L1,∞ and d ≥ 4, there is no analogue formula
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for the noncommutative residue of H−d/2+1 in the same manner as the Dixmier
trace is the noncommutative residue of H−d/2.

4.2 Measurability of operators

Connes’ trace theorem (4.2) shows that all Dixmier traces applied to a classical
pseudodifferential operator of order −d on a d-dimensional closed Riemannian
manifold � have the same value, namely the residue of that pseudodifferential
operator. Having a large and central class of operators in differential geometry
where the calculation of the Dixmier trace does not depend on which Dixmier trace
is chosen, warrants the introduction of the notion of a measurable operator [40,
p. 308]. An operator A ∈ L1,∞ is measurable if

Trω(A) = ω

⎛

⎝ 1

log(n)

n∑

j=0

λ(n,A)

⎞

⎠ = c, c const.

for every extended limit ω ∈ L∞(R+)∗.
Given the properties of pseudodifferential operators seen last section some

natural questions arise. Does measurability imply the existence of an asymptotic
expansion of order 1 of the associated partition function Tr(e−sA−1

), s > 0? Does
measurability imply the existence of an analytic continuation and simple pole at
s = 1 of the zeta function Tr(As), Re s > 1. Are non-classical pseudodifferential
operators of order −d measurable? Are there measurable integral operators not
associated with smooth symbols? Does measurability imply the existence of the
limit in (1.2)?

4.2.1 Measurability

By virtue of the fact that the set of Dixmier traces can be associated surjectively to
every extended limit, and that for every α such that

lim inf
t→∞ f (t) < α < lim sup

t→∞
f (t), f = f ∗ ∈ L∞(R+)

there exists some extended limit ω ∈ L∞(R+)∗ such that α = ω(f (t)) [27] [150,
Lemma 9.3.6], then we can note immediately that 0 ≤ A ∈ L1,∞ is measurable if
and only if

lim
t→∞

1

log(1 + t)

∫ t

0
μ(s,A)ds = c.
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The existence of this limit is equivalent to the existence of all the limits in
Theorem 4.1 in the case B = 1 [150, Theorem 9.3.1] [198, Theorem 6]. The
operator 0 ≤ A ∈ L1,∞ is measurable if and only if

lim
s→∞M

(
1

t
Tr(e−(tA)−1

)

)
(s) = c,

and if and only if

lim
s→1+(s − 1)Tr(As) = c.

The logarithmic meanM cannot be removed from these equivalent conditions [150,
Example 9.3.3]. Measurability does not imply the existence of a leading term in the
partition function associated with 0 ≤ A ∈ L1,∞ nor an analytic continuation of the
zeta function with simple pole at s = 1.

It follows from an analysis of the Mellin transform that the existence of the limit

lim
s→0+ sTr(e−sA−1

) = c, c const., 0 ≤ A ∈ L1,∞,

or equivalently

Tr(e−sA−1
) = c

s
+ o

(
1

s

)
, c const., 0 ≤ A ∈ L1,∞, (4.8)

is stronger than measurability [198, Theorem 6]. It implies

Tr(As) = c

s − 1
+ o

(
1

s − 1

)
, c const.

but is not strong enough to establish the nature of the singularity of the zeta function
at s = 1. We discuss this further below. The existence of the limit (4.8) is equivalent
however to spectral asymptotics of the operator 0 ≤ A ∈ L1,∞, i.e. a Weyl formula
[198, Theorem 6]

μ(n,A) ∼ c

n
, n → ∞.

4.2.2 Universal measurability

Written another way, A ∈ L1,∞ is measurable if and only if

n∑

j=0

λ(j,A) = c · log(n)+ o(log(n)), n ≥ 0, c const.
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We recall from Section 3 that Dixmier’s trace does not describe every trace on L1,∞.
An operator A ∈ L1,∞ is universally measurable if

φ(A) = c, c const.

for every trace φ on L1,∞ such that φ(diag(n−1)) = 1, i.e. normalised trace. This
form of measurability is equivalent to

A− c · diag(n−1) ∈ Com(L1,∞).

By Theorem 3.2, A ∈ L1,∞ is universally measurable if and only if

n∑

j=0

λ(j,A) = c · log(n)+O(1), n ≥ 0, c const.

The difference between universal measurability and measurability is therefore in
the remainder of the logarithmic divergence of the partial sums of an eigenvalue
sequence. All classical pseudodifferential operators P of order −d on a closed
manifold � of dimension d are universally measurable. In fact, it was shown that
Connes’ trace theorem (4.2) reads as [125, Corollary 7.22]

φ(P ) = 1

d
Res(P ) (4.9)

for every normalised trace φ on L1,∞. This result is not surprising, given the
uniqueness of the noncommutative residue as a trace on classical pseudodifferential
operators. The new feature behind this result is the asymptotic behaviour of the
sums of eigenvalues of pseudodifferential operators P of order −d in Theorem 5.1
below. There are non-classical pseudodifferential operators of order −d that are
measurable, but not universally measurable [203, Theorem 8.13], and non-classical
pseudodifferential operators of order −d that are not measurable [125, Corollary
7.23].

4.2.3 Products

Measurability of a product of operators is challenging. That 0 ≤ A ∈ L1,∞ is
measurable does not imply that BA is measurable for a given B ∈ L(H). There
are counterexamples. On a d-dimensional closed manifold � the positive operator
A = (1 − �)−d/2 ∈ L1,∞ is measurable. There exists a non-classical zero order
pseudodifferential operator B = Q0 : C∞(�) → C∞(�) such that the operator
Q0(1 −�)−d/2 ∈ L1,∞ is not measurable [147, Corollary 7.23].

This is problematic, since in noncommutative geometry the integral is a continu-
ous linear functional on L(H) of the form
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B �→ Trω(BA), B ∈ L(H)

for some fixed measurable 0 ≤ A ∈ L1,∞ with Trω(A) = 1. The equivalences for
measurability of an operator 0 ≤ A ∈ L1,∞ listed above (4.8) become unclear [214,
Sect. 1] if B is naively inserted into the formulas. For all 0 ≤ A ∈ L1,∞, B ∈ L(H),
we have (3.12)

BA− diag(〈en, Ben〉)diag(μ(n,A)) ∈ Com(L1,∞) (4.10)

where en, n ≥ 0 is an orthonormal basis of eigenvector ordered so that Aen =
μ(n,A)en, n ≥ 0. Under the condition (4.8)—the Weyl formula for 0 ≤ A ∈ L1,∞,
we have [150, Theorem 12.1.2]

Trω(BA) = (ω ◦M)(〈en, Ben〉)

for an extended limit ω ∈ &∗∞ . Hence the measurability of BA for a given operator
B ∈ L(H) when A satisfies (4.8) is equivalent to logarithmic mean convergence

lim
j→∞M(〈en, Ben〉)(j) = c, c const.

of the expectation values of B ∈ L(H).
Recent advances on measurability of products use the bijection of traces with

Banach limits (3.6) and the fact that, due to (4.10), any product can be replaced with
the product of a commuting normal and positive diagonal operator.

Theorem 4.2 Suppose B ∈ L(H) and 0 ≤ A ∈ L1,∞. Let en, n ≥ 0 denote the
eigenbasis such that Aen = μ(n,A)en. Let λ(n, V ), n ≥ 0 denote an eigenvalue
sequence of a compact operator V ∈ L1,∞.

(1) The following statements are equivalent

(a) BA is measurable and

Trω(BA) = c, c const.

(b)

lim
n→∞

1

log(n+ 1)

n∑

k=0

λ(k, BA) = c

(c)

lim
n→∞

1

log(n+ 1)

n∑

k=0

〈ek, Bek〉λ(k,A) = c
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(d)

lim
s→∞M(

1

t
Tr(Be−(tA)−1

))(s) = c

(e)

lim
s→1+(s − 1)Tr(BAs) = c.

(2) The following statements are equivalent

(a) BA is universally measurable and for any normalised trace φ on L1,∞

φ(BA) = c, c const.

(b)

Tr(BAe−(tA)−2
) = c · log t +O(1), t → ∞.

(3) (a) If BA is universally measurable and for any normalised trace φ on L1,∞

φ(BA) = c, c const.,

then the following asymptotics hold

Tr(BAs) = c

s − 1
+O(1), s → 1+.

(b) If the function

z �→ Tr(BAz)− c

z− 1
is regular at z = 1, c const.

then BA is universally measurable and

φ(BA) = c

for any normalised trace φ on L1,∞.

The equivalences in the statement of theorem can be false for the dual of the
Macaev ideal M1,∞.7 The theorem combines result from [30, 214, 215] [125, Sect.

7For example, the statement 1. (a) ⇔ (b) in Theorem 4.2, that

Trω(A) = c, c const., A ∈ L1,∞

is equivalent to
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3] [220, Theorem 1.2.7] (actually the proof of [220, Theorem 1.2.7], which can be
extended to satisfy the condition in Theorem 4.2(b)), from a history of results cited
after Theorem 4.1.

Theorem 4.2 indicates that the property of the zeta function z �→ Tr(BAz) having
analytic extension to a neighbourhood of z = 1 and a genuine pole at that point

Tr(BAz)− c

z− 1
is regular at z = 1, c const. (4.11)

is stronger than universal measurability. The condition of a first order expansion in
s

Tr(Be−(sA)−1
) = c

s
+O(s−ε), s → 0+, ε < 1, c const. (4.12)

is stronger than both universal measurability and condition (4.11) [29, Sect. 4].
Universal measurability and equivalent spectral conditions for (4.11) and (4.12)

are current topics of research. There are other measurability conditions developed
over the last 10 years, some weaker than measurability, some between measurability
and universal measurability.

4.2.4 Dyadic averaging and remainders

We note from (3.6) that an operator A ∈ L1,∞ with eigenvalue sequence λ(j,A)
has the same value on every positive trace on L1,∞ if and only if

θ

⎛

⎝ 1

log 2

2n+1−2∑

j=2n−1

λ(j,A)

⎞

⎠ = c, c const.

for every Banach limit θ . Lorentz [151] introduced the notion of almost convergence
when a sequence has the same value for every Banach limit. Sucheston [213] gave
concrete criteria for almost convergence. Directly from (3.6) it follows that A ∈
L1,∞ with eigenvalue sequence λ(j,A) has the same value c for every positive
trace on L1,∞ if and only if

lim
n→∞

1

log(n+ 1)

n∑

k=0

λ(k,A) = c

for an eigenvalue sequence λ(n,A), n ≥ 0, is false on M1,∞. It is true when 0 ≤ A ∈ M1,∞
[147], but false for arbitrary operators in the ideal [199, Corollary 11]. The maximal ideal on which
the statement 1. (a) ⇔ (b) remains true has been identified [199, p. 3058]—it is not L1,∞.
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2n+1−2∑

j=2n−1

λ(j,A) almost converges to c · log 2, n → ∞

This criteria provides a notion weaker than universal measurability but stronger than
measurability [203, Theorem 7.4]. The bijection between Dixmier traces on L1,∞
and factorisable Banach limits in Section 3.2 provides an alternative criteria for
measurability and could be added to the equivalent statements in Theorem 4.1(1)

2n+1−2∑

j=2n−1

λ(j,A) is Cesaro convergent to c · log 2, n → ∞.

Connes’ version of Dixmier’s trace corresponds to a twice factorisable Banach limit
θ = ω ◦ C2 for some extended limit ω ∈ &∗∞. Despite being a strictly smaller
set of traces on L1,∞ Connes’ Dixmier trace does not provide a weaker notion
of measurability. A Tauberian theorem on Cesaro summability due to Hardy and
Landau [102, Theorem 63, Theorem 64], first used for the present purpose in 2004

[147, Theorem 3.16], indicates that the sequence an = ∑2n+1−2
j=2n−1 λ(j,A), n ≥ 1

is (C, 1)-convergent if and only if it is (C, 2)-convergent [203, Theorem 7.7].
This applies to further factorisation, so there is no weaker notion of measurability
associated with the increasingly smaller sets of n-factorisable Banach limits of the
form θ = ω ◦ Cn, n ≥ 3. Traces associated with Cesaro invariant Banach limits,
θ = θ ◦ C, which may be consider “infinitely factorisable” do, however, provide a
weaker notion of measurability [203, Theorem 7.9].

It is perhaps too much to hope that the variety of conditions above and in prior
sections can be captured in the remainder term of the log divergence;

n∑

j=0

λ(n,A) = c · log(n)+ r(n), n → ∞, A ∈ L1,∞

where various orders of r(n) provide a meaningful partial order on sets of traces
or properties of the leading divergence of the zeta function of |A| or asymptotic
expansion of the partition function of |A|. Measurability and universal measurability
fit into this scale. The condition of universal measurability shows the requirement
to go beyond Tauberian theorems in the book of Hardy, which provide no resolution
of the remainder beyond o(log(n)).

Tauberian theorems with remainder [212] were utilised in [214] to prove
Statement 3(b) in Theorem 4.2. An extension of Hardy and Littlewood’s Tauberian
theorem [212, Theorem 2.3.1] shows that the condition

Tr(As) = c

s − 1
+O(1), s → 1+, 0 ≤ A ∈ L1,∞
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implies

n∑

k=0

λ(k,A) = c · log(n)+O

(
log(n)

log(log(n))

)
, n ≥ 0.

Further, the remainder term is optimal. This precludes an if and only if statement in
Theorem 4.2 (3)(a). Condition (4.11) and a Fatou theorem for Dirichlet series [212,
Theorem 2.3.2] provides an O(1) remainder, and hence universal measurability in
Statement 3(b).

4.2.5 Examples from fractals

The asymptotic behaviour of Laplacians on fractals provide examples that distin-
guish between measurability and universal measurability [40, Sect. IV.3.ε] [214,
Sect.5]. Fractal examples also distinguish between conditions (4.11) and (4.12) as
noted in [214, Sect. 5] and [29, Sect. 4].

LetL be the Laplacian associated with a self-similar Dirichlet form on the Hilbert
space L2(K,μ) of a p.c.f. self-similar set K ⊂ R

d , d ≥ 2 with Bernoulli measure
μ [132]. Recall that a self-similar set is a compact subset K of Rd such that

K = ∪Ni=1Fi(K)

where Fi : R
d → R

d , i = 1, . . . , N are contractions and N ≥ 2. Recall the
Bernoulli measure is defined by weights μi , i = 1, . . . , n such that

N∑

i=1

μi = 1

and, for all m ≥ 0,

μ(Fw1 ◦ . . . ◦ Fwm(K)) = μw1 · · ·μwm, w = (w1, . . . , wm) ∈ ×m
j=1{1, . . . N}.

Denote by

π : ×∞
j=1{1, . . . N} → P(K)

the map

π(w) = ∩n≥1Fw1 ◦ . . . ◦ Fwn(K).

Denote by S the shift on ×∞
j=1{1, . . . N} given by
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S(w)n = wn+1, w ∈ ×∞
j=1{1, . . . N}.

The self-similar set K is p.c.f. if [131]

P = ∪n≥1S
n
(
π−1(∪i �=jFi(K) ∩ Fj (K))

)

is a finite set where π−1 denotes the preimage of the surjection π . Set

V0 = π(P ).

The fractal K has an increasing sequence of approximating sets

Vm = ∪w∈×m
j=1{1,...N}Fw1 ◦ · · · ◦ Fwm(V0), m ≥ 1.

K is the closure of V∗ = ∪m≥0Vm. A sequence of Dirichlet forms Dm [132,
Definition 4.1, Lemma 6.1] [79] is self-similar if there exist λ > 0 and sequence
r = (r1, . . . , rN ) of positive numbers such that

Dm+1(u, v) = λ

N∑

k=1

r−1
i Dm(u ◦ Fi, v ◦ Fi), u, v : V∗ → R

The sequence defines a Dirichlet form D with dense domain Dom(L1/2) ⊂
L2(K,μ) by Kigami and Lapidus [132, Prop. 1.7] by setting

Dom(L1/2) = {u : V∗ → R : lim
m→∞Dm(u|Vm, u|Vm) exists, u|V0 = 0}

and

D(u, v) = lim
m→∞Dm(u|Vm, v|Vm), u, v ∈ Dom(L1/2).

If a self-similar sequence of Dirichlet forms exists, the Dirichlet Laplacian L is the
Friedrich’s operator associated with the quadratic form D. It has compact resolvent
[132, Sect. 4] [80, Theorem 4.2]. Denote the increasing sequence of eigenvalues of
L repeated with multiplicity by λ(n,L), n ≥ 0, and denote the spectral counting
function

NL(s) = sup{n ≥ 0 : λ(n,L) ≤ s}, s ≥ 0.

The sequence of self-similar Dirichlet forms, the scale λ, and the constants
(r1, . . . rN ) are properties of the fractal K . The Laplacian L depends on the weights
(μ1, . . . μN), but we suppress the dependence. It is unknown if every p.c.f. self-
similar set admits a self-similar Dirichlet form. The Sierpinski Gasket and nested
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fractals are known to have self-similar Dirichlet forms, amongst other examples in
[132, Sect. 3]. Associate with the Laplacian L on K the numbers

γi =
( riμi
λ

)1/2
, i = 1, . . . , N.

Following Fukishima and Shima’s results for the Sierpinski Gasket [80], and
Kigami’s construction of p.c.f. self-similar sets, Kigami and Lapidus in 1993 [132,
Theorem 2.4] proved the following analogue on fractals of Weyl’s asymptotic
formula. The two cases come from the use of the renewal theorem from probability
theory [75, Theorem 2.1].

Theorem 4.3 (Kigami and Lapidus [132]) Let K be a p.c.f. self-similar set with
Bernoulli measure μ admitting a self-similar Dirichlet form as above. Let L be the
associated Dirichlet Laplacian on the Hilbert space L2(K,μ) and let dS be the
unique number such that

N∑

i=1

γ
dS
i = 1.

Then

0 < lim inf
s→∞ s−dS/2NL(s) ≤ lim sup

s→∞
s−dS/2NL(s) < ∞ (4.13)

and

(1) [non-lattice] if
∑N

i=1 log(γi)Z is not a discrete subgroup of R, then

NL(s) = (c + o(1)) sdS/2, s → ∞

where c is a constant.
(2) [lattice] if

∑N
i=1 log(γi)Z is a discrete subgroup of R with generator τ (the

smallest number τ such that the discrete subgroup is τZ)

NL(s) = (G(log s)+ o(1)) sdS/2, s → ∞

where G is a 2τ -periodic function.

Kigami and Lapidus conjectured that G is a non-constant function in the lattice
case (equivalently, that the inequality in (4.13) is strict) when dS is not an integer
[132, p. 105]. The conjecture is still open. In [132, Sect. 3] examples of self-
similar fractals and self-similar Dirichlet forms are given for all cases. There exist
self-similar fractals in the interval [0, 1] which satisfy both the lattice and non-
lattice case. The Modified Sierpinski Gasket in C associated with the parameter
1/3 < α < 1/2 and with normalised Hausdorff measure satisfies the non-lattice
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case for almost all values of α. The Koch snowflake in [0, 1] with Hausdorff
measure has dS = 1, satisfies the lattice case, but the asymptotics for NL exist. In
1991 Fukushima and Shima [80] defined Dirichlet forms associated with Kigami’s
construction of the standard Laplacian L on the Sierpinski Gasket in R

N−1 [131].
For the standard Laplacian on the Sierpinski Gasket associated with Hausdorff
measure then λ = N+2

N
, and ri = 1, μi = N−1, i = 1, . . . , d and dS =

2 log(N)/ log(N + 2). Fukishima and Shima showed explicitly [80, Theorem 4.2]
that the inequality in (4.13) is strict. Hence the log(N + 2)-periodic function G in
Theorem 4.3(2) is not constant and no asymptotics exist for the standard Laplacian
on the Sierpinski Gasket. Example 3.5 in [132] describes the Laplacian associated
with nested fractals introduced by Lindstrøm [144], which all satisfy the lattice case.
For Laplacians that admit a localised eigenfunction, including nested fractals, it
has subsequently been shown that the inequality in (4.13) is strict [12]. Hence the
periodic function G for a Laplacian on a nested fractal is also non-constant.

Note that Theorem 4.3 implies, in all cases, that (1 + L)−dS/2 ∈ L1,∞. In the
non-lattice case, or when G is constant, then the positive operator (1 + L)−dS/2
satisfies the Weyl asymptotics (4.8). Hence (1 + L)−dS/2 is measurable. In fact,
for many known cases, the operator (1 + L)−dS/2 satisfies (4.11) with A = (1 +
L)−dS/2 and B = 1, and hence is universally measurable. However, these cases fail
to satisfy (4.12) for A = (1 + L)−dS/2 and B = 1. We briefly explain.

From Theorem 4.3, in all cases, the partition function of L has the asymptotics

Tr(e−tL) = (G1(− log t)+ o(1))t−dS/2, t → 0+

for a possibly non-constant periodic positive bounded function G1. Similar asymp-
totics for the partition function are known for non p.c.f. self-similar fractals such
as generalised Sierpinski carpets [101, Theorem 1.1] [116]. From these asymptotics
Steinhurst and Teplyaev [210, Theorem 2] proved, under assumptions that ri = 1,
μi = 1/N , i = 1, . . . , N and that the self-similar fractal is intersection finite, that
the zeta function

Tr((1 + L)−s/2)

has a meromorphic extension to Re(s) > dS − ε with simple poles on the line
Re(s) = dS at the points

dS + i
4πk

log(λN)
, k ∈ Z.

Laplacians on the Sierpinski Gasket and nested fractals satisfy the assumptions
of [210, Theorem 2]. They therefore satisfy (4.11), and hence the Laplacian is
universally measurable with dimension, according to Connes, dS . The value, for
any trace φ on L1,∞ is given by Theorem 4.2(3b)

φ((1 + L)−dS/2) = ress=dSTr((1 + L)−s/2) = ress=1Tr((1 + L)−sdS/2).
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Laplacians on the Sierpinski Gasket and nested fractals do not satisfy (4.12), or
even (4.8), however.

Generally, condition (4.11) states the existence of the analytic continuation of the
zeta function Tr(Az), 0 ≤ A ∈ L1,∞, in some neighbourhood of the line Re z = 1
and the presence of a simple pole at z = 1. Condition (4.12) implies that the simple
pole at z = 1 can be the only pole on the line Re z = 18 [28, Sect. 5.2]. The
fractal examples show that, in general, there can be Laplacians whose zeta functions
have meromorphic extensions with poles on the line Re z = 1. Lapidus and Frank
prescribe fractal geometry as the presence of poles with imaginary components in a
meromorphic continuation of the spectral zeta function [136].

A fractal string is an open bounded subset � ⊂ R which is written as an disjoint
countable union of open intervals of not necessarily distinct lengths lj , j ≥ 0,
ordered in non-increasing order [136, Chap. 1]. Note that

∑∞
j=0 lj is finite and

equals the Lebesgue measure of �. Denote by D the Minkowski dimension of the
boundary ∂�. We have

0 ≤ H ≤ D ≤ 1

where H is the Hausdorff dimension of ∂�. We assume that 0 < D < 1.
Let �� denote the Dirichlet Laplacian on �, that is the Freidrich’s extension

associated with the Dirichlet form

(u, u) = ‖u‖2
1,2 =

∫

�

|x|2|û(x)|2dx,

with dense domain

F = {
u ∈ C(�) : (u, u) < ∞, u|∂� = 0

}
.

The zeta function ζ�(s) = Tr(�−s/2
� ), s > 1 has a meromorphic extension on

Re(s) > D and a simple pole at s = 1 [136, Theorem 1.21]. The residue at the
simple pole calculates the volume of � [136, Theorem 1.22]. Hence �−1/2

� ∈ L1,∞
is universally measurable and every trace calculates the volume of �. The so-called
geometric zeta function of � is more interesting.

We define a Laplacian whose zeta function corresponds to the geometric zeta
function of � as defined in [136, Chap. 1]. The eigenvalues of �−1/2

� correspond to
the positive double sequence [136, p. 24]

8A spectral triple (A,D,H) consists of a ∗-algebra A ⊂ L(H) and a self-adjoint operator D :
Dom(D) → H such that [D, a] ∈ L(H). Connes and Moscovici defined the dimension spectrum
[55, II.1]. Let Sd = ∪BSd(B) where B belongs to the algebra generated by a, [D, a], a ∈ A and
Sd(B) ⊂ C is the set such that Tr(B|D|z) is analytic on C \ Sd(B). It is usually assumed that Sd
is a discrete set, but not that poles with imaginary components should be excluded.
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a = {k, j ≥ 1 : ak,j = π−1k−1lj }.

Let en, n ≥ 0 be an orthonormal basis of eigenfunctions of the Laplacian ��
ordered so that �−1/2

� en = μ(n, a)en. Define the geometric Laplacian L on L2(�)

as the Friedrich’s extension associated with the Dirichlet form

(u, u)L =
∞∑

n=0

l−2
n 〈u, en〉〈en, u〉

with dense domain

FL = {
u ∈ C(�) : (u, u)L < ∞, u|∂� = 0

}
.

L has trivial kernel and compact resolvent. By construction, L−1/2 is compact with
eigenvalue sequence λ(j, L−1/2) = lj , j ≥ 0, and the geometric zeta function of
[136, p. 17] is

ζL(s) := Tr(L−s/2), s > D.

The relation between the spectral and the geometric zeta function is [136, Theorem
1.21]

ζ(s) = ζ�(s)

ζL(s)
, s > D

where ζ is the Riemann zeta function. The geometric zeta function ζL has a
singularity at s = D [136, Theorem 1.10]. The nature of the singularity is at most
simple. The boundary ∂� of a fractal string � has Minkowski dimension D if and
only if lDj = O(j−1), j → ∞ [135, Theorem 2.4] [214, Sect. 5]. Hence

∂� has Minkowski dimension D if and only if L−D/2 ∈ L1,∞.

For a detailed discussion of Minkowski measurability, Minkowski dimension and
Minkowski content, we refer to [136, Chap. 1]. We also have [135, Theorem 2.2]

∂� is Minkowski measurable if and only if lim
j→∞ j−1/Dlj = c (4.14)

for some positive constant c. The Minkowski content of ∂� then equals

M(∂�) = 21−D

1 −D
cD.

The condition in (4.14) is the Weyl condition (4.8) discussed previously. We obtain
the result noted by Connes in 1994 [40, p. 327] [214, Corollary 5.7]; if ∂� is
Minkowski measurable, then the operator L−D/2 ∈ L1,∞ is measurable and
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Trω(L
−D/2) = 1 −D

21−D M(∂�)

for every Dixmier trace Trω on L1,∞ where M(∂�) is the Minkowski content of
∂�.

The converse is not true [40, p. 328]. Measurability of L−D/2 does not imply
∂� is Minkowski measurable since (4.8) is stronger than measurability. Choose
0 < D < 1 and let � be the fractal string associated with the non-increasing
numbers lj with

lj =
{

m−1/D j ∈ [22m, 22m+1]
21/Dm−1/D j ∈ [22m+1, 22m+2] , j ≥ 0.

Then

n∑

j=0

λ(j, L−D/2) = 3

2
· log(n)+O(1), n ≥ 0

and L−D/2 is measurable, in fact, universally measurable, but j−1/Dlj oscillates
between 1 and 21/D as j → ∞.

Sequences lj , j ≥ 0 can be constructed so that ∂� is Minkowski measurable but
L−D/2 is not universally measurable. Take the fractal string � corresponding to the
sequence

lj = c1/D ·
(
(j + 1)−1 + ((j + 2) log(j + 2))−1

)1/D
, j ≥ 0

for a constant c > 0. Then j−1/Dlj → c1/D as j → ∞, but

n∑

j=0

λ(j, L−D/2) = c · log(n)+O(log(log(n))), n ≥ 0

and L−D/2 is not universally measurable. Geometric Laplacians on fractal strings
with Minkowski measurable boundary provide examples of operators between
measurable and universally measurable operators.

4.3 Fubini theorem

Tensor products are a central way to construct geometries. The Connes-Lott semi-
classical approach is a product of four-dimensional space-time continuum and the
standard model [40, p. 562]. It might be expected from the tensor product behaviour
of the heat kernel asymptotic expansion [85, Lemma 1.7.5], and the association we
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have found in previous sections between Dixmier traces and the leading term of the
asymptotic expansion, that the integral of the tensor product of two noncommutative
geometries is equal to the product of the integrals. A counterexample published in
2017 [218] found that this is false without caveats.

Extending the formula for the tensor product of leading terms in the partition
function asymptotic expansion [85, Lemma 1.7.5], in 1994 Connes on p. 563 of
“Noncommutative Geometry” [40] proposed the statement

Statement 1 SupposeD1 : Dom(D1) → H is a self-adjoint operator with compact
resolvent and trivial kernel such that |D1|−p1 ∈ L1,∞, p1 > 0. SupposeD2 satisfies
the same condition for a number p2 > 0 and B1, B2 ∈ L(H). If one of the terms
B1|D1|−p1 or B2|D2|−p2 is “convergent”, then

�

(
1 + p1 + p2

2

)
Trω

(
(B1 ⊗ B2)(|D1| ⊗ 1 + 1 ⊗ |D2|)−(p1+p2)

)

= �
(

1 + p1

2

)
Trω(B1|D1|−p1) · �

(
1 + p2

2

)
Trω(B2|D2|−p2)

for a Dixmier trace Trω on L1,∞ (as an ideal of L(H ⊗ H) on the left side of the
formula, and L(H) on the right).

The assumption of trivial kernel is irrelevant to the following discussion. As
noted by Sukochev and Zanin [218], the term “convergent” used in [40] is unclear.
It was shown in [218, Theorem 1.14] under the conditions that one, or both, of the
terms Bi |Di |−pi , i = 1, 2 are measurable (Section 4.2.1 above), or one, or both,
of the terms are universally measurable (Section 4.2.2), then the statement is false.
The counterexample given in [218] is for B1 = B2 = 1. Volume in noncommutative
geometry, as defined using the Dixmier trace, can be badly behaved under products.

The convergence implied by Connes [218, p. 1231] is equivalent to the heat
kernel asymptotic condition (4.8).

Statement 2 Suppose the conditions of Statement 1 and that

Tr(T1e
−sD2

1 ) = c · s− p1
2 + o

(
s−

p1
2

)
, s → 0+, c const.

Then

�

(
1 + p1 + p2

2

)
Trω

(
(B1 ⊗ B2)(|D1| ⊗ 1 + 1 ⊗ |D2|)−(p1+p2)

)

= �
(

1 + p1

2

)
Trω(B1|D1|−p1) · �

(
1 + p2

2

)
Trω(B2|D2|−p2).

Statement 2 is still false [218, Theorem 1.15] without some restriction on
the Dixmier trace [218, Theorem 1.9]. Recall the (continuous) logarithmic mean
operator M : L∞(R+) → L∞(R+),
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Mf (t) = 1

log(1 + t)

∫ t

0

f (s)

s
ds, t ≥ 0, f ∈ L∞(R+).

Define Pa : L∞(R+) → L∞(R+) for any a > 0 by

Pa(f )(t) = f (ta), t ≥ 0, f ∈ L∞(R+).

Suppose ω is a state on L∞(R+) that is M-invariant and Pa-invariant for all a > 0.
Then Statement 2 is true [218, Theorem 1.10].

We note that only one of the terms needs to satisfy the convergence condition
in Statement 2. We also note that the set of traces associated with extended limits
satisfying M-invariance and Pa-invariance is strictly smaller than the subsets of
Dixmier’s trace considered so far, i.e. Connes’ version of Dixmier’s trace.

Condition (4.12) is stronger than (4.8) and universal measurability.

Statement 3 Suppose the conditions of Statement 1 and

Tr(Tie
−sD2

i ) = ci · s− pi
2 +O

(
s−

pi
2 +ε) , s → 0+, ε > 0, ci const.

for both i = 1, 2. Then

�

(
1 + p1 + p2

2

)
φ
(
(B1 ⊗ B2)(|D1| ⊗ 1 + 1 ⊗ |D2|)−(p1+p2)

)

= �
(

1 + p1

2

)
φ(B1|D1|−p1) · �

(
1 + p2

2

)
φ(B2|D2|−p2)

for any normalised trace φ on L1,∞.
Statement 3 is true [218, Theorem 1.10]. Statement 3 is close to the leading term

calculation in [85, Lemma 1.7.5]. If only one of the terms satisfies the convergence
condition in Statement 3, then it is false [218, Theorem 1.15]. Statement 2 is
therefore the nearest statement to a Fubini theorem for noncommutative geometry.
Presently it is not known the degree to which the sufficient condition of M-
invariance and Pa-invariance can be relaxed in Statement 2.

From the heat kernel asymptotic expansion of Minakshisundaram and Seeley,
every generalised Laplacian D2 : C∞(�,E) → C∞(�,E) and order zero
pseudodifferential operator B : C∞(�,E) → C∞(�,E) over a vector bundle
E on a closed Riemannian manifold � satisfies the condition of Statement 3
on the Hilbert space L2(�,E) of square integrable sections. Noncommutative
geometries that are essentially isospectral to their commutative counterparts such
as noncommutative tori and SUq(2) satisfy the conditions of Statement 3 [218,
Sect. 4].

Partition function estimates for Laplacians are known for some finitely and
infinitely ramified self-similar fractals (Section 4.2.5). From those examples there
are universally measurable Laplacians belonging to L1,∞ that satisfy the conditions
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of Statement 2 but not Statement 3, and some that do not satisfy the conditions of
Statement 2.

5 Recent applications

Dixmier’s trace is not singled out by applications. Recent results [125, 203, 149,
30, 220] using the advances in traces above show that Connes’ trace theorems [38]
concerning the noncommutative residue and integration of forms hold for all traces
on L1,∞. The Hochschild character formula [45, 108, 54, 24, 23] has also been
proven for any trace on L1,∞ and under conditions weaker than the original.

5.1 Integral operators and symbols

The utility of the noncommutative residue is that it can be calculated locally by
integrating the −d symbol in the asymptotic expansion of a classical symbol over
an atlas of the sphere bundle of a closed d-dimensional Riemannian manifold �
[239]. By virtue of the residue vanishing on smoothing operators, integrating the
−d symbol is independent of which local charts the symbol is calculated in [91,
Theorem 7.5]. When A : C∞(�) → C∞(�) is a classical pseudodifferential
operator of order −d, its principal symbol a−d is the order −d symbol, and the
noncommutative residue is obtained by integrating the principal symbol over the
sphere bundle. Connes’ original version of the trace theorem [38, Theorem 1]
in (4.2) says that A belongs to the ideal L1,∞ and the Dixmier trace of A is
calculated from the principal symbol

Trω(A) = 1

d

∫

S∗�
a−d(v)dv.

Can traces of other weak-trace class integral operators be obtained from symbols?

5.1.1 Noncommutative residue

Trace theorems have advanced through the association between partial sums of
eigenvalues of Hilbert-Schmidt operators and integration of their associated L2-
symbols over cylinders in the tangent bundle of a manifold � [125]. For illustration
on R

d ; if A ∈ L2(L2(R
d)) is Hilbert-Schmidt, then it admits an L2-symbol

pA ∈ L2(R
d × R

d) such that

(Ah)(x) =
∫

Rd
eix·ξpA(x, ξ)ĥ(ξ)dξ, h ∈ L2(R

d)
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where ĥ denotes the Fourier transform. A non-trivial proof originating with Kalton
shows that [125, Prop. 6.3] [125, Theorem 6.23]

Theorem 5.1 If A ∈ L2(L2(R
d)) is Hilbert-Schmidt with symbol pA ∈ L2(R

d ×
R
d) of decay

∫

Rd

∫

‖ξ‖>n1/d
|pA(x, ξ)|2dξdx = O(n−1), n ≥ 0, (5.1)

and AMψ = A for some ψ ∈ C∞
c (R

d), then A ∈ L1,∞ and

n∑

j=0

λ(j,A) =
∫

Rd

∫

‖ξ‖≤n1/d
pA(x, ξ)ψ(x)dξdx +O(1), n ≥ 0 (5.2)

where λ(j,A), j ≥ 0 is an eigenvalue sequence of A.

Here

(Mψh)(x) = ψ(x)h(x), ψ ∈ C∞
c (R

d), h ∈ L2(R
d)

is the operator giv en by pointwise multiplication and C∞
c (R

d) denotes smooth
functions of compact support.

If a Hilbert-Schmidt operator A and its adjoint A∗ both satisfy (5.1), then the
condition that MψA = A for some ψ ∈ C∞

c (R
d) (instead of AMψ = A) is

sufficient for A ∈ L1,∞ and (5.2). That MψA = A for some ψ ∈ C∞(Rd) is
equivalent to the symbol pA(x, ξ) = ψ(x)pA(x, ξ) having compact support almost
everywhere in the first variable. Integration of theL2-symbol over cylinders in phase
space provides estimates of the log divergence and the remainder term of the partial
sums of eigenvalues. From Section 4, the divergence calculates a trace and the
remainder term specifies degree of measurability. Specifically, under the conditions
mentioned, A ∈ L1,∞ and [125, Theorem 6.32]

Trω(A) = ω

(
1

log(n)

∫

Rd

∫

‖ξ‖≤n1/d
pA(x, ξ)ψ(x)dξdx

)

for any extended limit ω ∈ &∗∞. For any positive trace on L1,∞ there is a similar
formula involving the integral over increasing dyadic annuli in phase space [203,
Theorem 8.10]; recalling the bijection (3.6) in Section 3 then

τθ (A) = θ

(
1

log 2

∫

Rd

∫

2
n
d ≤‖ξ‖≤2

n+1
d

pA(x, ξ)ψ(x)dξdx

)

for a Banach limit θ .
This approach can be viewed as a generalisation of the noncommutative residue.

When A : C∞(�) → C∞(�) is a classical uniform pseudodifferential operator
of order −d, with leading term a−d(x, ξ) homogenous order −d in ξ outside a
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neighbourhood of the origin and compactly supported in x, the log divergence of
the integral over the cylinders coincides with the integral over the sphere bundle
[125, Prop. 6.16],

n∑

j=0

λ(j,A) = 1

d

∫

Rd×Sd−1
a−d(x, s)dxds · log(n)+O(1), n ≥ 0

and it follows from the discussion in Section 4 that A is universally measurable with

φ(A) = 1

d

∫

Rd×Sd−1
a−d(x, s)dxds

for every normalised trace φ on L1,∞. Symbols with oscillatory leading term
behaviour provide examples of operators that are not measurable or not universally
measurable. Let Q : C∞(Rd) → C∞(Rd) be an order −d nonclassical pseudod-
ifferential operator with symbol q(x, ξ) = q1(x)q2(ξ) where q1, q2 ∈ C∞(Rd), q1
has compact support with

∫

Rd
q1(x)dx = 1

and

q2(ξ) = |ξ |−d (sin(log log |ξ |)+ cos(log log |ξ |)) , |ξ | ≥ 4.

Then Q ∈ L1,∞,

Trω(Q) = ω
(

sin(log log(n1/d))
)

and Q is not measurable since sin(log log(n1/d)), n ≥ 0 is not convergent [125,
p. 29]. Another example is given in [203, Theorem 8.13], where Q is as described
above except with the replacement

q2(x) = |ξ |−d sin

(
log |ξ |

log log |ξ |
)
, |ξ | ≥ 4.

The pseudodifferential operatorQ is measurable, in fact Trω(Q) = 0 for all Dixmier
traces, but τθ (Q) �= 0 for some positive trace τθ on L1,∞ [203, Lemma 8.12].

The log divergent term depends only on the principal symbol of the total symbol
pA of the Hilbert-Schmidt operator A, where the principal symbol is defined as an
equivalence class providing the same log divergent behaviour [125, p. 48]. When
A is a classical pseudodifferential operator of order −d, its principal symbol in
the classical sense determines this equivalence class. Though this approach seems
restricted to integral operators on R

d , these estimates can be described solely in
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terms of the operator A and the Laplacian without reference to the underlying space
R
d [150, Chap. 11].
The Laplacian can be replaced by generalisations such as the Laplace-Beltrami

operator. By using charts, the R
d theory above can be transferred to a closed

manifold � and trace formulas expressed using local expressions of symbols
integrated over cylinder bundles within the tangent bundle [125, Theorem 7.13]
[150, Sect. 11.6]. One obtains the earlier mentioned formula (4.9); for any classical
pseudodifferential operator A : C∞(�) → C∞(�) of order −d

φ(A) = 1

d

∫

S∗�
a−d(v)dv = 1

d
Res(A)

for every normalised trace φ on L1,∞. There are alternative expressions using an
ordered eigenvectors of the Laplace-Beltrami operator en, n ≥ 0 such that −�en =
λ(n,−�)en; if a Hilbert-Schmidt operator A ∈ L2(L2(�)) satisfies the decay [125,
Prop. 5.13]

∞∑

j=n
‖Aej‖2 = O(n−1), n ≥ 0 (5.3)

then A ∈ L1,∞ [125, Theorem 5.2]

n∑

j=0

λ(j,A) =
n∑

j=0

〈en,Aen〉 +O(1), n ≥ 0 (5.4)

and the Dixmier trace calculates the logarithmic divergence of expectation values
[125, Theorem 7.6]

Trω(A) = ω

⎛

⎝ 1

log(n)

n∑

j=0

〈en,Aen〉
⎞

⎠ .

The decay in (5.1) and integration over cylinders in phase space and the
logarithmic divergence of eigenvalue series in (5.2) are related to the “free energy”
generalised eigenfunctions e−ix·ξ , x, ξ ∈ R

d . Conditions (5.1) and (5.3) are both
equivalent to [125, Sect. 5]

‖A(1 + nH−p/2)−1‖2
L2

= O(n−1), n ≥ 0, some p > 0

whereH is one minus the Laplacian in the case of (5.1) and one minus the Laplace-
Beltrami operator in the case of (5.3). The fundamental theory works when H is
any positive operator with trivial kernel [125, Sect. 5] [150, Sect. 12.1]. As yet there
has been no exploration of the theory for Schrödinger operators, e.g. the quantum
harmonic oscillator H = −� + Mx2 acting on L2(R) and p = 2. The theory on
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R
d and closed manifolds was developed in the setting of Kohn-Nirenberg, that is, in

terms of the left symbol pA above. The Weyl symbol was examined in [83].

5.1.2 Noncommutative integral and symbols

Suppose B : C∞(Rd) → C∞(Rd) is a uniform order 0 classical pseudodifferential
operator on R

d with principal symbol σ0(B); a bounded smooth function with
bounded derivatives on the sphere bundle R

d × S
d−1. Denote by �0

cl the algebra of
uniform classical pseudodifferential operators of order 0 and the principal symbol
map [194, Chap. 2] [113]

σ0 : �0
cl → C∞

b (R
d × S

d−1).

Assume that BMψ = B for a compactly supported function ψ ∈ C∞(Rd).9 Then
σ0(B)ψ = σ0(B) has compact support. Last section (Section 5.1.1) indicates that

φ(B(1 −�)−d/2) = 1

d(2π)d

∫

Rd×Sd−1
σ0(B)(x, s)dxds (5.5)

for any normalised trace φ on L1,∞. Calculation of the noncommutative integral
using symbols can be extended to more general bounded operators.

If B ∈ L(L2(R
d)) is any bounded operator satisfying BMψ = B for ψ ∈

C∞(Rd) of compact support, then, as the classical pseudodifferential operator
Mψ(1 −�)−d/2 belongs to L1,∞, we have

B(1 −�)−d/2 ∈ L1,∞.

From the pseudodifferential calculus [Mψ, (1 − �)−d/2] ∈ L1 [150, Sect. 10.2],
and we have

B(1 −�)−d/2 −MψBMψ(1 −�)−d/2Mψ ∈ Com(L1,∞).

The operator MψBMψ(1 −�)−d/2Mψ satisfies the conditions of Theorem 5.1 and
has the L2-symbol [150, p. 349]

p(x, ξ) = ψ(x)e−ξ (x)(Beξ )(x)(1 + ‖2πξ‖2)−d/2 + f (x, ξ), x, ξ ∈ R
d

where

9For pseudodifferential operators this can be weakened toMψB = B; this implies BMψ −B ∈ L1
[150, Example 10.2.23], which is sufficient. Throughout this section the condition BMψ = B on
B ∈ L(L2(R

d )) can be replaced by BMψ − B ∈ L1.
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eξ (x) = e−ix·ξ , x, ξ ∈ R
d

and

f (x, ξ) ∈ L1(R
d × R

d).

Näively rewriting the result (5.2) using this symbol, the asymptotic behaviour as
n → ∞ of the sequence of functions in L1(R

d × S
d−1)

pn(B)(x, s) = 1

log(n1/d)

∫ n1/d

1
e−rs(x)(Bers)(x)

dr

r
, n ≥ 0, x ∈ R

d , s ∈ S
d−1

generalises the role of the principal symbol. For example

Trω(B(1 −�)−d/2) = 1

d(2π)d
· ω

(∫

Rd×Sd−1
pn(B)(x, s)ψ(x)dxds

)

for any extended limit ω ∈ &∗∞. Similarly, defining

mn(B)(x, s) = 1

log(21/d)

∫ 2(n+1)/d

2n/d
e−rs(x)(Bers)(x)

dr

r
, n ≥ 0, x ∈ R

d , s ∈ S
d−1

then

τθ (B(1 −�)−d/2) = 1

d(2π)d
· θ

(∫

Rd×Sd−1
mn(B)(x, s)ψ(x)dxds

)

for a Banach limit θ .
If B is a zero order classical uniform pseudodifferential operator satisfying

BMψ = B, then pn(B), n ≥ 0 andmn(B), n ≥ 0 are the same constant sequence of
functions (σ0(B), σ0(B), . . .). Here σ0(B) is the principal symbol of B. For general
B ∈ L(H) these “principal symbol as a sequence” maps lose many properties of the
classical principal symbol map.

A recent paper [225] considered calculation of traces using an extension of the
principal symbol map that is unique and an algebra homomorphism. Abstractions
of the principal symbol are usually based on quotient maps of compact operators
and commutator ideals [59, 57, 185]—an idea of Gohberg originating in 1960 [87,
69], or based on invariant actions by unitaries [160, 104]. Denote by π0 the algebra
homomorphism from the bounded operators to the Calkin algebra of the bounded
operators quotient compact operators; a setting for the principal symbol established
by Cordes [57, Chap. IV]

π0 : L(L2(R
d)) → Q(L2(R

d)) = L(L2(R
d))/K(L2(R

d)).
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If � is a C∗-algebra of bounded operators in L(H) whose commutators [B1, B2],
B1, B2 ∈ � are compact operators in K(H), then π0(�) is a commutative
C∗-algebra in Q(L2(R

d)) [59]. Using the Gelfand representation [161, Theo-
rem. 2.1.10], π0(�) is isomorphic with the C∗-algebra of functions C0(X), for X
some locally compact Hausdorff space. Suppressing the Gelfand isomorphism, the
combination

π0 : � → C0(X)

is a homomorphism of C∗-algebras. Cordes established [57, p. 172, Theorem 9.1]
[57, p. 177, Theorem 10.1] [58] that π0 implements the principal symbol map;

π0 : {B ∈ �0
cl : B = MϕBMψ } → C∞

c (R
d × S

d−1),

that is, if B ∈ �0
cl and B = MϕBMψ for some compactly supported ϕ,ψ ∈

C∞(Rd) then

π0 : B → σ0(B).

The principal symbol map σ0 on �0
cl without restriction can be obtained by

σ0(B)(x, ξ) = lim
n→∞π0(MψnBMψn)(x, ξ)

where ψn ∈ C∞(Rd) is an increasing sequence of smooth compactly supported
nonnegative functions such that ψn(x) → 1− as n → ∞.10 The principal symbol
map investigated by Cordes, Herman, Power and others in the 1960s and 1970s in
the C∗-algebraic setting [104, 197, 160, 58, 185] began with natural extensions of
the Kohn-Nirenberg pseudodifferential symbol map [113]. Define the representation

π1 : L∞(Rd) → L(L2(R
d))

by

π1(f )h = f h, f ∈ L∞(Rd), h ∈ L2(R
d).

10Even though �0
cl is a ∗-subalgebra of bounded operators on L2(R

d ), the principal symbol map
on �0

cl cannot be defined directly with π0. There are operators in �0
cl whose commutators are not

compact operators on L2(R
d ) [57, Lemma 10.5]. Cordes considers several subalgebras of�0

cl with
compact commutators, the maximal one being the ∗-subalgebra of operators B whose total symbol
σ(B)(x, ξ) ∈ C∞

b (R
d×R

d ) has all derivatives in C∞
0 (R

d×R
d ) [57, p. 133], and the ∗-subalgebra

of operators B whose total symbol satisfy [58] [204, Chap. IV]

∂αx ∂
β
ξ σ (B)(x, ξ) = O((1 + |x|2)−|α|)O((1 + |ξ |2)−|β|), x, ξ ∈ R

d .
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Let

s : Rd \ {0} → S
d−1 , s(x) = ‖x‖−1 · x, x ∈ R

d .

For any g ∈ L∞(Sd−1) define the bounded operator

π2(g) = F−1π1(g ◦ s)F : L2(R
d) → L2(R

d)

where F : L2(R
d) → L2(R

d) is the unitary defined by Fourier transform. This is a
representation

π2 : L∞(Sd−1) → L(L2(R
d)).

Denote by

1(A1,A2) ⊂ L(L2(R
d))

the C∗-algebra generated by a C∗-subalgebra A1 of L∞(Rd) represented in
L(L2(R

d)) by π1, and a C∗-subalgebra A2 of L∞(Sd−1) represented in L(L2(R
d))

by π2. Then [57, Theorem 1.6, p. 135]

π0 : 1(C0(R
d), C(Sd−1)) → (C + C0(R

d))⊗ C(Sd−1)

such that

π0(π1(f )) = f ⊗ 1

and

π0(π2(g)) = 1 ⊗ g.

Using mollifiers as before provides a unique algebraic homomorphism

σ̂0 : 1(Cb(Rd), C(Sd−1)) → Cb(R
d ⊗ S

d−1)

such that

σ̂0(π1(f )) = f ⊗ 1

and

σ̂0(π2(g)) = 1 ⊗ g

which extends the principal symbol map σ0 of classical pseudodifferential operators.
Other presentations of the principal symbol as a quotient map usually restrict to
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continuous functions, [197, Remark 1.8] [5, p. 134] [129, p. 197]. The extension,
which we also denote by σ̂0,

σ̂0 : 1(L∞(Rd), C(Sd−1)) → L∞(Rd)⊗ C(Sd−1)

such that

σ̂0(π1(f )) = f ⊗ 1

and

σ̂0(π2(g)) = 1 ⊗ g

was known in 1971 [160, p. 616] [185, Theorem 6.2].
The main result of [225] extends σ̂0 further using an invariance argument similar

to [160].

Theorem 5.2 There is a unique algebraic homomorphism of C∗-algebras extending
the principal symbol map σ0 of zero order uniform pseudodifferential operators on
R
d ,

σ̂0 : 1(L∞(Rd), L∞(Sd−1)) → L∞(Rd × S
d−1)

such that

σ̂0(π1(f )) = f ⊗ 1, f ∈ L∞(Rd)

and

σ̂0(π2(g)) = 1 ⊗ g, g ∈ L∞(Sd−1).

If B ∈ 1(L∞(Rd), L∞(Sd−1)) with B = BMψ for some compactly supported
ψ ∈ C∞(Rd), then B(1 −�)−d/2 ∈ L1,∞ and

φ(B(1 −�)−d/2) = 1

d(2π)d

∫

Rd×Sd−1
σ̂0(B)(x, s)dxds (5.6)

for any positive normalised trace φ on L1,∞.

The result combines [225, Theorem 1.2] [225, Theorem 1.5] and [225,
Lemma 8.3]; it provides a trace formula equivalent to (5.5). In (5.5) the trace
was arbitrary and followed from the spectral estimate (5.2). The proof of [225,
Theorem 1.5] is different and uses the Riesz-Markov Theorem [189, p. 111].
Essentially, the algebra 1(L∞(Rd), L∞(Sd−1)) has a unique noncommutative
integral. There is no extension of σ̂0 to the weak closure with the same
properties. The weak operator closure of the C∗-algebra 1(L∞(Rd), L∞(Sd−1)) is
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L(L2(R
d)), and, because every bounded operator is a finite sum of commutators

[98, 99], there is no non-zero homomorphism of L(L2(R
d)) into a commutative

C∗-algebra [225, Lemma 3.5].
If B ∈ 1(L∞(Rd), L∞(Sd−1)), then Cordes and Beals [58, 13, 227] noted the

condition that [57, Theorem 10.1]

∂α,βB ∈ L(L2(R
d)), all multi-indices α, β,

identifies a zero order classical uniform pseudodifferential operator of Kohn-
Nirenberg within 1(L∞(Rd), L∞(Sd−1)). Here

∂α,βB = [−i∂α1 , . . . , [−i∂αN , [Mxβ1
, [. . . , [MxβM

, B]]]]] (5.7)

where α and β denote multi-indices and −i∂j , j = 1, . . . , d andMxj , j = 1, . . . , d
are the unbounded self-adjoint operators densely defined on L2(R

d) by partial
derivatives and multiplication by coordinates, respectively.

5.1.3 Noncommutative symbols

Noncommutative versions of the principal symbol have been developed to prove
trace theorems for noncommutative geometries; McDonald et al. [156] extends the
compact commutator setting of Cordes and Herman [59] and Power [185]. Denote
the quotient map

π0 : L(H) → Q(H)

for a separable Hilbert space H . Let A1 and A2 be unital C∗-algebras represented
in L(H) by π1 and π2 respectively, where A2 is commutative. Denote by

1(A1,A2) ⊂ L(H)

the C∗-algebra generated by π1(A1) and π1(A2). Let A1⊗A2 denote the C∗-algebra
obtained by closing the algebraic tensor product A1 ⊗alg A2 in the spatial norm11

[161, Sect. 6]. Suppose that

1. [π1(a), π2(b)] ∈ K(H) for all a ∈ A1 and b ∈ A2, and
2. the map

n∑

k=1

ak ⊗ bk �→ π0

(
n∑

k=1

π1(ak)π2(bk)

)

is injective for all ak ∈ A1, bk ∈ A2, 1 ≤ k ≤ n.

11As one of the algebras is commutative, it is in particular nuclear and all C∗-norms on A1 ⊗alg A2
coincide.
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Then π0 : L(H) → Q(H) implements a unique continuous ∗-homomorphism [161,
Theorem 6.3.7] [156, Lemma 3.2]

π0 : 1(A1,A2) → A1 ⊗ A2.

Here we suppressed the ∗-isomorphism between A1 ⊗ A2 and π0(1(A1,A2)).
The purpose of using the symbol to calculate the noncommutative integral is

in the following observation; if ρ is a continuous linear functional on 1(A1,A2)

which vanishes on commutators, and

ρ(π1(a)π2(b)) = ψ1(a)ψ2(b), a ∈ A1, b ∈ A2

for some ψ1 ∈ A∗
1 and ψ2 ∈ A∗

2 then

ρ(B) = (ψ1 ⊗ ψ2)(π0(B)), B ∈ 1(A1,A2).

Hereψ1⊗ψ2 is the unique continuous extension of (ψ1⊗ψ2)(a⊗b) = ψ1(a)ψ2(b),
a ∈ A1, b ∈ A2 acting on the algebraic tensor product [161, Corollary 6.4.3].

If A ∈ L1,∞ is fixed, then

ρ(B) = φ(BA), B ∈ L(H)

is a continuous linear functional on L(H) for any positive trace φ on L1,∞. The
trace φ vanishes on finite rank operators; if B is finite rank, then BA is finite rank
and ρ(B) = 0. Hence ρ vanishes on K(H). Therefore, to identify a noncommutative
integral on a C∗-algebra of the form 1(A1,A2) generalising the ∗-algebra of zero-
order pseudodifferential operators, it suffices to identify the individual states

φ(π1(a)A) , φ(π2(b)A), a ∈ A1, b ∈ A2.

We illustrate using the noncommutative torus and the noncommutative plane.

5.1.4 Noncommutative torus and noncommutative plane

Let θ be a real antisymmetric d × d matrix with det θ �= 0. In particular, d is even.
The noncommutative d-torus C(Tdθ ) is the universal C∗-algebra generated by a

family of unitaries {un}n∈Zd satisfying the relation [191],

umun = e2in·θmunum, n,m ∈ Z
d .

It has a representation π1 on the Hilbert space &2(Z
d) using the Fourier dual of the

discrete Moyal product; the realisations are

π1(um)h(n) = e−im·θnh(n−m), n,m ∈ Z
d , h ∈ &2(Z

d).
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The geometry of the noncommutative torus, including connections, curvature, a
pseudodifferential calculus, and index pairings, was developed originally by Connes
[36] in 1980, see also presentations in [42] [91, Sect. 12.3] [40, p. 758] [46]; the
Moyal product itself goes back to Groenewold and Moyal in the 1940s [92, 159].
The derivatives on the noncommutative torus are realised in the Fourier dual
presentation using multiplication operators

(Mjh)(n) = njh(n), n = (n1, n2, . . . , nd) ∈ Z
d , j = 1, . . . , d

and the Laplacian M2 : w2,2(Z
d) → &2(Z

d) defined by

M2 =
d∑

j=1

M2
j

acting on the domain

w2,2(Z
d) = {h ∈ &2(Z

2) :
∑

n∈Zd
‖n‖4||h(n)|2 < ∞}.

Define the representation π2 of the C∗-algebra C(Sd−1) on &2(Z
d) as the multipli-

cation operator

(π2(g)h)(n) = (g ◦ s)(n)h(n), n ∈ Z
d , h ∈ &2(Z

d).

where s(n) = n
‖n‖ . The trace τ on C(Tdθ ) is defined by the state

τ(a) = 〈e0, π1(a)e0〉 = 〈en, π1(a)en〉, a ∈ C(Tdθ ), n ∈ Z
d

where en, n ≥ 0 is the standard basis of &2(Z
d). The last equality follows from

translation invariance of the Haar measure on Z
d . The conditions (1) and (2) in

Section 5.1.3 above can be checked directly [156].
Suppose that φ is a positive trace on L1,∞. We may calculate the following

noncommutative integrals:

ψ1(a) = φ(π1(a)(1 −M2)−d/2), a ∈ C(Tdθ )

and

ψ2(g) = φ(π2(g)(1 −M2)−d/2), g ∈ C(Sd−1).

From (1 −M2)−d/2 ∈ L1,∞ and the formula (5.4)
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n∑

j=1

λ(j, π1(a)(1 −M2)−d/2) =
∑

‖m‖≤n1/d

〈em, π1(a)(1 −M2)−d/2em〉 +O(1)

= τ(a)
∑

‖m‖≤n1/d

(1 + ‖m‖2)−d/2 +O(1)

= τ(a) · Vol Sd−1

d
log(n)+O(1), a ∈ C(Tdθ ).

It follows that

ψ1(a) =φ(π1(a)(1 −M2)−d/2) = Vol Sd−1

d
τ(a), a ∈ C(Tdθ ).

Since φ is assumed to be continuous, it follows that ψ2 is a continuous linear
functional on C(Sd−1). By the Riesz-Markov Theorem [189, p. 111] and direct
confirmation of the rotation invariance of ψ2 [156, Lemma 6.3] yields:

ψ2(g) = φ(π2(g)(1 −M2)−d/2) = 1

d

∫

Sd−1
g(s)ds, g ∈ C(Sd−1).

We summarise with the following theorem [156, Lemma 6.4]. See also Fathizadeh
and Khalkhali for Connes’ trace theorem on the noncommutative torus [73, The-
orem 5.3] using the notion of pseudodifferential operators on the noncommutative
torus due to Connes [36] , and the general result that the noncommutative residue is
an invariant of isospectral deformation [150, Theorem 12.4.1] (see also [74]).

Theorem 5.3 On the C∗-algebra of operators of “order 0” for the noncommutative
torus defined above

1(C(Tdθ ), C(S
d−1)) ⊂ L(L2(T

d)),

we have the principal symbol homomorphism

π0 : 1(C(Tdθ ), C(Sd−1)) → C(Sd−1, C(Tdθ )),

all operators in 1(C(Tdθ ), C(S
d−1)) have unique noncommutative integral, and we

have the trace theorem for the noncommutative integral

φ(B(1 −M2)−d/2) = 1

d

∫

Sd−1
τ(π0(B)(s))ds, B ∈ 1(C(Tdθ ), C(Sd−1))

for any positive trace φ on L1,∞.

The noncommutative plane C0(R
d
θ ) has equivalent presentations as a Moyal

product algebra [90, 231, 232, 81, 82] and deformation quantisation of Rd [192],
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quantum Euclidean space [89], or a canonical commutation relation (CCR) algebra
[20, Section 5.2.2.2].

We use the Fourier dual of the Moyal representation on the Hilbert space L2(R
d)

[192]; define the unitaries

uth(x) = e−it ·θxh(x − t), x, t ∈ R
d , h ∈ L2(R

d).

We have suppressed the representation π1. Denote by L∞(Rdθ ) the von Neumann
algebra in L(L2(R

d)) generated by the unitaries {ut }t∈Rd . Then L∞(Rdθ ) can be
identified with L(L2(R

d/2)) through a spatial ∗-isomorphism iθ [90, Theorem 2.2]
[82, Proposition 2.13] [141, Theorem 6.5].

We define a faithful semifinite normal trace τθ on L∞(Rdθ ) and noncommutative
Lp-spaces Lp(Rdθ ), 1 ≤ p < ∞, using the spatial ∗-isomorphism. Define

τθ (a) = (2π)−d/4Tr(iθ (a)), a ∈ L∞(Rdθ )

where Tr is the trace on L(L2(R
d/2)), and then

Lp(R
d
θ ) = i−1

θ (Lp),

where Lp are the Schatten ideals of L(L2(R
d/2)). The C∗-algebra C0(R

d
θ ) is

identified with the compact operators on L2(R
d/2);

C0(R
d
θ ) = i−1

θ (K(L2(R
d/2))).

The noncommutative geometry of the noncommutative plane is realised in the
Fourier dual presentation using multiplication operators

(Mjh)(x) = xjh(x), x = (x1, x2, . . . , xd) ∈ R
d , j = 1, . . . , d

and the Laplacian M2 : W2,2(R
d) → L2(R

d) defined by

M2 =
d∑

j=1

M2
j

acting on the Sobolev space

W2,2(R
d) = {h ∈ L2(R

d) :
∫

Rd
‖x‖4|h(x)|2dx < ∞}.

For any g ∈ L∞(Sd−1) define the bounded operator

π2(g) = Mg◦s , (Mg◦sh)(x) = (g ◦ s)(x)h(x), h ∈ L2(R
d).
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We describe the trace theorem involving a principal symbol map. The conditions
in Section 5.1.3 can be checked for the C∗-algebras C + C0(R

d
θ ) (adjoined with

unit) and C(Sd−1) represented by π1 and π2 in L(L2(R
d)) [156, Lemma 4.3, The-

orem 5.3]. To obtain a state on C+C0(R
d
θ ) we need to weight the noncommutative

integral. We choose to weight it by a Schwartz function and require the abstract
Cwikel estimates described in Section 5.2.2 below.

If x ∈ L∞(Rdθ ), then x ∈ L2(R
d
θ ) if and only if

x =
∫

Rd
f (t)utdt.

for some unique f ∈ L2(R
d) [81]. Here the integral is the Bochner integral in the

norm of L2(R
d
θ ). When z ∈ S(Rd) is a Schwartz function we denote the operator in

L∞(Rdθ ) corresponding to z by

Lθ(z) =
∫

Rd
z(t)utdt.

Denote S(Rdθ ) = Lθ(S(Rd)). Then S(Rdθ ) is dense in L1(R
d
θ ) in the L1-norm and

dense in C0(R
d
θ ) in the uniform norm [231, 219, 141]. Further

τθ (Lθ (z)) = z(0).

Section 5.2.2 shows that Lθ(z)(1 − M2)−d/2 ∈ L1,∞. Fix z ∈ S(Rd). For a
positive trace φ on L1,∞ the weighted noncommutative integral ρz defined by

ρz(B) = φ(BLθ(z)(1 −M2)−d/2), B ∈ L(L2(R
d))

satisfies

|ρz(B)| ≤ ‖B‖‖Lθ(z)(1 −M2)−d/2‖1,∞

and is a continuous linear functional on L(L2(R
d)) that vanishes on K(L2(R

d)).
We use Section 5.1.3 to identify ρz on the C∗-algebra 1(C + C0(R

d
θ ), C(S

d−1)).
The functional

φ(xLθ (z)(1 −M2)−d/2), x ∈ C + C0(R
d
θ )

is identified in [219, Theorem 1.1] using unitary invariances ofM2, see Section 5.2.2
below. Specifically

φ(xLθ (z)(1 −M2)−d/2) = Vol Sd−1

d
τθ (xLθ (z)).
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The functional

φ(π2(g)Lθ (z)(1 −M2)−d/2), g ∈ C(Sd−1), z ∈ S(Rd)

for fixed z can be identified, by considering rotation invariance, with the Lebesgue
integral on the sphere [156, Lemma 6.13]

φ(π2(g)Lθ (z)(1 −M2)−d/2) = 1

d
τθ (Lθ (z))

∫

Sd−1
g(s)ds.

To summarise [156, Theorem 6.15]

Theorem 5.4 On the C∗-algebra of operators of “order 0” for the noncommutative
plane defined above

1(C0(R
d
θ ), C(S

d−1)) ⊂ L(L2(R
d)),

we have the principal symbol homomorphism

π0 : 1(C0(R
d
θ ), C(S

d−1)) → C(Sd−1,C + C0(R
d
θ )).

For a Schwartz function z ∈ S(Rd); all operators in 1(C0(R
d
θ ), C(S

d−1))Lθ (z)

have unique noncommutative integral, and we have the trace theorem for the
noncommutative integral

φ(BLθ(z)(1 −M2)−d/2) = 1

d

∫

Sd−1
τθ (π0(B)(s)Lθ (z))ds,

for B ∈ 1(C0(R
d
θ ), C(S

d−1)) and any positive trace φ on L1,∞.

5.2 Integration of functions and Cwikel estimates

Integration of smooth compactly supported functions was known for Dixmier traces
directly from Connes’ trace theorem in 1988 [38] and highlighted by Benameur and
Fack [14, p. 34] [91, Corollary 7.21]. Oversights in [71] and [91, Corollary 7.22]
incorrectly extended the result to compactly supported f ∈ L1(R

d) before [146]
and [125]. The statements below in Section 5.2.1 are corollaries of [125, Theorems
6.32, 7.6] following Theorem 5.1.
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5.2.1 Integration of functions

If f ∈ L2(R
d) has compact support, then the Hilbert-Schmidt operator [125, p. 25]

[207, Chap. 4]

Af = Mf (1 −�)−d/2 ∈ L2

satisfies the conditions of Theorem 5.1 up to addition of a trace class operator; here

(Mf h)(x) = f (x)h(x), f ∈ L2(R
d), h ∈ L∞(Rd)

and the product is understood as the composition

(1 −�)−d/2 : L2(R
d) → L∞(Rd) , Mf : L∞(Rd) → L2(R

d).

We revert to the multiplier notation for the action of functions by pointwise product
in this section as two different representations of Schwartz functions are discussed
further below.

The square-integrable symbol of Af is the function

pAf (x, ξ) = f (x)(1 + ‖2πξ‖2)−d/2, x, ξ ∈ R
d .

It follows from Theorem 3.2 and Theorem 5.1 [125, p. 43] that Mf (1 − �)−d/2 ∈
L1,∞ and

φ(Mf (1 −�)−d/2) = Vol Sd−1

d(2π)d
·
∫

Rd
f (x)dx

for any normalised trace φ on L1,∞.
The same result has been shown on a closed manifold � (the condition for

compact support of f can of course be removed), where � is the Laplace-Beltrami
operator [125] [150, Sect. 11.7] [146]. In this case the condition f ∈ L2(�) is
necessary and sufficient for Mf (1 −�)−d/2 ∈ L1,∞ [150, p. 359].

For the noncompact manifold R
d , Cwikel-type estimates of Birman and

Solomyak [17] indicate that Mf (1 − �)−d/2 ∈ L1,∞ when f belongs to the
function space

&1(L2)(R
d) = {f :

∑

m∈Zd
‖f χQm‖2 < ∞,Qm = unit cube in R

d translated by m}.

Denoting the norm on &1(L2)(R
d)

‖f ‖&1(L2) =
∑

m∈Zd
‖f χQm‖2, f ∈ &1(L2)(R

d),
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then

‖Mf (1 −�)−d/2‖L1,∞ ≤ c‖f ‖&1(L2), f ∈ &1(L2)(R
d), c const.

Compactly supported functions in L2(R
d) are dense in &1(L2)(R

d). Using conti-
nuity properties of a positive trace φ, and Birman and Solomyak’s estimate, the
condition of compact support can be removed [225, Prop. 4.1]. To summarise:

Theorem 5.5 Let f ∈ &1(L2)(R
d) be as above and � be the Laplacian on R

d .
Then Mf (1 −�)−d/2 ∈ L1,∞ and

φ(Mf (1 −�)−d/2) = Vol Sd−1

d(2π)d
·
∫

Rd
f (x)dx, f ∈ &1(L2)(R

d)

for every positive normalised trace φ on L1,∞.
Let � be the Laplace-Beltrami operator on a d-dimensional closed manifold �.

Then Mf (1 −�)−d/2 ∈ L1,∞ if and only if f ∈ L2(�), and

φ(Mf (1 −�)−d/2) = Vol Sd−1

d(2π)d
·
∫

�

f (x)dx, f ∈ L2(�)

for every normalised trace φ on L1,∞.

Cwikel-type estimates have been abstracted to noncommutative algebras as
discussed in the next section (Section 5.2.2). They are currently the main device
for extending from compact support. The first statement in Theorem 5.5 requires
positivity of the trace so that the Cwikel estimate can be employed, while the
second statement does not require any condition on the trace because it follows
from Theorem 5.1. Weakening the condition that AMψ = A in Theorem 5.1 to
obtain the first statement in Theorem 5.5 directly from the spectral estimate (5.2) is
still an open problem.

5.2.2 Cwikel estimates

Section 5.2.1 used estimates of Birman and Solomyak to extend the noncom-
mutative integral for the Euclidean plane beyond functions of compact support.
Section 5.1.4 used a similar estimate for the noncommutative plane Rdθ as explained
below.

Cwikel’s celebrated estimate is [60, 205]

‖Mf g(−i∇)‖Lp,∞ ≤ cp‖f ‖p‖g‖p,∞, f ∈ Lp(Rd), g ∈ Lp,∞(Rd), p > 2

for a constant cp > 0. Here
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g(−i∇)h = F−1MgFh, g ∈ Lp,∞(Rd), h ∈ S(Rd)

where F : L2(R
d) → L2(R

d) is the unitary defined by Fourier transform. The
estimate appears in mathematical physics, where it is used to obtain the Cwikel-
Lieb-Rosenblum estimates on the number negative eigenvalues of Schroedinger
operators in R

d , d ≥ 3 [207, Ch. 7] [137].
The estimate has been generalised in multiple directions with various approaches

[18, 19, 234, 235, 78, 10, 111]. The most relevant is the one mentioned due to Birman
and Solomyak [18, Theorem 11.1] where

‖Mf g(−i∇)‖L1,∞ ≤ c1‖f ‖&1(L2)‖g‖1,∞, f ∈ &1(L2)(R
d), g ∈ L1,∞(Rd)

for a constant c1 > 0. The operator (1 −�)−d/2 = g(−i∇) where

g(t) = (1 + ‖t‖2)−d/2 ∈ L1,∞(Rd).

This provides the estimate

‖Mf (1 −�)−d/2‖L1,∞ ≤ c1‖f ‖&1(L2)

used in Section 5.2.1.
Cwikel’s estimate for the noncommutative plane will require extending some

notions from Section 2. Let A ⊂ L(H) be a semifinite von Neumann algebra with a
faithful normal semifinite trace τ . Denote the τ -measurable operators associated
with A by S(A, τ ) [150, Chapter 2]. The singular value function μ(A) of an
operator a ∈ S(A, τ ) is a non-increasing right continuous function defined by
setting

μA(t, a) = inf{‖a(1 − p)‖ : p = p∗ = p2, τ (p) ≤ t}, t > 0.

When A = L∞(Rd) and τ is the Lebesgue integral, the generalised singular value
function μ(f ) is the decreasing rearrangement of a function f [133, 143]. We drop
the subscript on the singular value function in this case. Denote by S the space
of τ -measurable functions.12 A linear subspace E of τ -measurable functions on
R
d is called symmetric if μ(f1) ≤ μ(f2) for f2 ∈ E and f1 ∈ S implies that

f1 ∈ E. A quasi-norm ‖ · ‖E on E is called symmetric if μ(f1) ≤ μ(f2) implies
‖f1‖E ≤ ‖f2‖E .

12S is the subspace of measurable functions f ∈ L0(R
d ) with a distribution function

nf (λ) = m({s ∈ R
d : |f (s)| > λ}), λ > 0,m Lebesgue measure,

that is finite as λ → ∞. Equivalently, the function μ(s, f ), s > 0 is finite valued.
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When A = &∞(Zd) and τ is counting, the generalised singular value function
μ(x) is the decreasing rearrangement of the sequence x. IfE is a symmetric function
space with symmetric quasi-norm ‖ · ‖E and F a symmetric sequence space with
symmetric quasi-norm ‖ · ‖F , then we define a function space

E(F)(Rd) = {f ∈ S : ‖f ‖E(F) < ∞}

where

‖f ‖E(F) = ‖μ({‖f χQm‖F }m∈Zd )‖E
and

Qm = unit cube in R
d translated by m ∈ Z

d .

Weidl [235, Theorem 4.1] noted that Cwikel’s theorem could follow from a more
refined estimate on the singular value function [141, Corollary 3.6]

μL(L2(R
d ))(Mf g(−i∇))2 ≺≺ μ(f ⊗ g)2, f ∈ Lp(Rd), g ∈ Lp,∞(Rd), p > 2.

Here μ(f ⊗g) is the decreasing rearrangement of the function f ⊗g in Lp,∞(Rd ×
R
d). The paper [141] obtained the above estimate; and generalised Cwikel’s and

Birman and Solomyak’s estimates to noncommutative versions of the operators Mf

and g(−i∇).
Theorem 5.6 Let A1 and A2 be semifinite von Neumann algebras represented in
L(H) by π1 and π2 respectively. Denote by A1⊗̄A2 their spatial tensor product.
Let τ1 and τ2 be faithful normal semifinite traces on A1 and A2. Suppose that

‖π1(x)π2(y)‖L2 ≤ ‖x‖L2(A1,τ1)‖y‖L2(A2,τ2),

for all x ∈ L2(A1, τ1), y ∈ L2(A2, τ2).

(1) There is a constant c > 0 such that

μL(L2(H))(π1(x)π2(y))
2 ≺≺ c μA1⊗̄A2

(x ⊗ y)2.

(2) Suppose E is an (L2, L∞) interpolation space. The operator π1(x)π2(y)

belongs to the ideal E of compact operators corresponding to the symmetric
function space E if x ⊗ y belongs to E(A1⊗̄A2, τ1 ⊗ τ2), and we have the
estimate

‖π1(x)π2(y)‖E ≤ cE‖x ⊗ y‖E(A1⊗̄A2,τ1⊗τ2)

for some constant cE > 0.

Suppose 1 ≤ p < 2.



Advances in Dixmier traces and applications 561

(3) Then

‖Mf g(−i∇)‖Lp ≤ cp‖f ⊗ g‖&p(L2)(R
d×Rd )

and

‖Mf g(−i∇)‖Lp,∞ ≤ cp‖f ⊗ g‖&p,∞(L2)(R
d×Rd )

for some constant cp > 0.
(4) Suppose x ∈ Lp(R

d
θ ) = Lp(L∞(Rdθ ), τθ ) where L∞(Rdθ ) and τθ denote the

noncommutative plane represented on L2(R
d) and faithful normal semifinite

trace from Section 5.1.4. Define

Wm,p(R
d
θ ) = {x ∈ Lp(Rdθ ) : ∂(0,α)(x) ∈ Lp(Rdθ ), |α| ≤ m}

and

‖x‖Wm,p =
∑

|α|≤m
‖∂(0,α)(x)‖Lp(Rdθ )

where ∂(0,α) are the derivations in (5.7) and α is a multi-index. Then

‖xMg‖Lp ≤ cp‖x‖Wd,p
‖g‖&p(L∞)(Rd )

and

‖xMg‖Lp,∞ ≤ cp‖x‖Wd,p
‖g‖&p,∞(L∞)(Rd )

for some constant cp > 0. Note that Mg = Fg(−i∇)F−1 as the noncommuta-
tive plane in Section 5.1.4 is presented for the Fourier dual.

The statement combines the results [141, Theorem 3.4] [141, Corollary 3.5] [141,
Corollary 4.6] and [141, Theorems 7.6–7.7]. No estimate similar to Theorem 5.6(3)
can hold for p = 2 [141, Theorem 5.1]. Properties of the noncommutative Sobolev
spaces Wm,p(R

d
θ ) are listed in [141, Prop. 6.15]; note the construction there is

Fourier dual as indicated in Theorem 5.6(4). If f ∈ S(Rd), then Lθ(f ) ∈ Wd,p(R
d
θ )

for all d, p ≥ 1.
Birman and Solomyak’s estimate was used to extend the noncommutative inte-

gral to functions of noncompact support in Section 5.2.1. The equivalent estimate in
Theorem 5.6(4) can extend the identification of the noncommutative integral on the
noncommutative plane, as used in Section 5.1.4, beyond Schwartz functions [219,
Theorem 1.1]; if x ∈ Wd,1(R

d
θ ) then x(1 −M2)−d/2 ∈ L1,∞ and

φ(x(1 −M2)−d/2) = Vol Sd−1

d
τθ (x)
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for any positive trace φ on L1,∞. For f ∈ S(Rd),

φ(Lθ(f )(1 −M2)−d/2) = Vol Sd−1

d
f (0).

That the noncommutative integral is an invariant of isospectral deformation was
seen originally in [82, Theorem 6.1] for f ∈ C∞

c (R
d) and φ a Dixmier trace.

The approach in [82] and [23] used approximation by trace class operators. The
above extension from [219, Theorem 1.1] incorporates a wider class of operators
and traces.

5.3 Integration of forms

Suppose � is the Laplacian on R
d . So far we have considered the bounded operator

(1 − �)−d/2 ∈ L(L2(R
d)) as a kind of volume element dv [40, Sect. VI] [41, 51,

52, 53, 43]. Taking a trace of the operator B(1 − �)−d/2, when it can be shown to
belong to the ideal L1,∞, indicates the transformed volumes can be summed, and
the noncommutative integral is defined by

B �→ φ(B(1 −�)−d/2), B ∈ L(L2(R
d))

where φ is a trace on L1,∞. The text so far has indicated what is known concerning
the dependence of this functional on the trace φ, and examples of operators and
conditions which provide B(1 −�)−d/2 ∈ L1,∞.

When � is the Laplace-Beltrami operator for a closed d-dimensional Rieman-
nian manifold �, then the situation is simpler in that (1 − �)−d/2 ∈ L1,∞. The
volume is finite. The noncommutative integral is defined for any B ∈ L(L2(�)).
Consideration still needs to be given for dependence of the trace. From Sects. 5.1
and 5.2, however, a large class of operators of interest in differential geometry and
mathematical physics possess a noncommutative integral that is independent of, at
least, the positive normalised trace φ on L1,∞ chosen.

Differential geometry has another notion of integration associated with dif-
ferential forms on the tangent bundle [208, 195, 35, 139]. On a p-dimensional
Riemannian manifold � with boundary ∂�, the exterior derivative

d : C∞
c (�) → C∞

c (�, T
∗�),

in local co-ordinates

df (x) =
p∑

i=1

(∂if )(x)dxi, x ∈ �, f ∈ C∞
c (�)
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allows consideration of the exterior algebra C∞
c (�,�

∗�) of pointwise anti-
symmetric products of the one-forms df . The exterior derivative is extended

d : C∞
c (�,�

n�) → C∞
c (�,�

n+1�)

by

d(f dxi1 ∧ . . . ∧ dxin) �→
p∑

i=1

(∂if )(x)dxi ∧ dxi1 ∧ . . . ∧ dxin,

defined locally and extended linearly. From anti-symmetry,

d2 = 0,

the space C∞
c (�,�

p+1�) is trivial, and every w ∈ C∞
c (�,�

p�) can be written
locally in the form

w(x) = f (x)
√

det(g(x))dx1 ∧ . . . ∧ dxm, f ∈ C∞
c (�).

The linear functional ρ� onw ∈ C∞
c (�,�

p�), defined in a chart ϕ : U → ϕ(U) ⊂
R
p by

ρ�(w) =
∫

ϕ(U)

f ◦ ϕ−1(s)

√
det(g(ϕ−1(s)))ds

can be associated with a measureμ on�. The form v� = √
det(g(x))dx1∧. . .∧dxp

is called the volume form on �, and when � is orientable

ρ�(f v�) =
∫

�

f (x)dμ(x), f ∈ C∞
c (�).

Note if w ∈ C∞
c (�,�

p−1�), by Stokes’ Theorem [32, 128]

ρ�(dw) = ρ∂�(w|∂�)

where ∂� is the smooth boundary of�. This identifies the integral ρ� as a p-current
on the space of differential p-forms [190]. The homology class of ρ� in the de Rham
homology Hp(�) is called the fundamental class of �.

Hochschild homology and cohomology provide abstract versions of differential
forms and currents on manifolds [47], [110]. Let A be an Frechet algebra [130, 77];
that is, an algebra and Frechet space [189, Sect. V.2] for which multiplication is
jointly continuous. The tensor powers of A are completed in the projective tensor
product topology [130, 77].
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The Hochschild boundary b : A⊗(n+1) → A⊗n is defined by setting

b(a0 ⊗ · · · ⊗ an) = a0a1 ⊗ a2 ⊗ · · · ⊗ an

+
n−1∑

k=1

(−1)ka0 ⊗ a1 ⊗ · · · ak−1 ⊗ akak+1 ⊗ ak+1 ⊗ · · · ⊗ an

+ (−1)nana0 ⊗ a1 ⊗ a2 ⊗ · · · ⊗ an−1.

If c ∈ A⊗(n+1) is such that bc = 0, then c is called a Hochschild cycle. Two
elements d, e ∈ A⊗(n+1) are equivalent if b(d − e) = 0. Let Hn(A) denote the
space of equivalence classes.

If θ : A⊗n → C is a continuous multilinear functional, then the multilinear
functional bθ : A⊗(n+1) → C is defined by

(bθ)(a0 ⊗ · · · ⊗ an) = θ(a0a1 ⊗ a2 ⊗ · · · ⊗ an)

+
n−1∑

k=1

(−1)kθ

× (a0 ⊗ a1 ⊗ · · · ak−1 ⊗ akak+1 ⊗ ak+1 ⊗ · · · ⊗ an)

+ (−1)nθ(ana0 ⊗ a1 ⊗ a2 ⊗ · · · ⊗ an−1).

If θ vanishes on Hochschild cycles, then θ is called a Hochschild cocycle. Let
Hn(A) denote the space of equivalence classes under b. The relation

θ(bc) = (bθ)(c)

is an abstraction of the relationship in differential geometry between currents and
the boundary map ∂ , and differential forms and the exterior derivative d [33]. If
� is a closed manifold, then Connes showed that the Hochschild cohomology
H ∗(C∞(�)) is isomorphic to the de Rham homology H∗(�) of currents on
differential forms [47, Lemma 45, p. 344] [91, p. 363]. The Hochschild boundary
map b is not equivalent to ∂ under this isomorphism though; an exact generalisation
is possible with the introduction of cyclic homology and cohomology [40, p. 207].
The fundamental class [ρ�] ∈ Hp(�) = Hp(C∞(�)), or integral, of� is identified
in the case of a closed manifold as the sole generator of Hp(C∞(�)).

For a general noncommutative Frechet algebra A the Hochschild cohomol-
ogy Hp(A) need not be one-dimensional. There is another identification. The
fundamental class of a manifold is the Hochschild cohomology class of the
Chern character [24, p. 123] acting on p-forms. This characterisation is used in
noncommutative geometry.

Noncommutative differential geometry was formulated in terms of forms and
characters [37, 47, 226]; if A is a ∗-algebra in L(H) with H a separable Hilbert
space H suppose the existence of a bounded operator F = F ∗ ∈ L(H) such that
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F 2 = 1

and

[F, a] ∈ Lp+1

for an integer p > 0. The triple (A,H, F ) is a Fredholm module. Form the graded
algebra �∗ = ⊕∞

k=0�
k where �k contains the linear span of forms

w = a0[F, a1] . . . [F, ak], a0, . . . , ak ∈ A.

Then �0 = A and �k ⊂ L(p+1)/k , k ≥ 1. The map

d : �k → �k+1

defined by

dw = Fw + (−1)kwF, w ∈ �k+1

satisfies [40, p. 292]

d2 = 0

such that

d (a0[F, a1] . . . [F, ak]) = [F, a0][F, a1] . . . [F, ak], a0, . . . , ak ∈ A.

In this setting, called the quantum calculus, d has the role of the exterior derivative
and the compact operators [F, a], a ∈ A are differential one forms. When p is even,
assume the existence of a unitary � = �∗ such that [�, a] = 0 and {�,F } = 0.
When p is odd, set � = 1. Then

�F

p∏

k=0

[F, ak] ∈ L1, a0, . . . , ap ∈ A.

Connes defined the character [40, p. 293]

τp(a0, . . . , ap) = 1

2
Tr

(

�F

p∏

k=0

[F, ak]
)

,

as the leading term of an abstraction of the Chern character. The Hochschild class
of this leading term is the abstraction of the fundamental class of a manifold. When
� is an oriented closed spinc Riemannian manifold [138] of dimension d > 1 with
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spinor bundle S, F = sgn(D) is the sign of the Dirac operator on smooth sections of
S, and A = C∞(�) is represented by pointwise multiplication on square integrable
sections of S, then [40, p. 551]

τp(f0, . . . , fp) =
∫

�

f0df1 ∧ . . . ∧ dfp, f0, . . . , fp ∈ C∞(�).

Langmann showed the same result directly for F the sign of the Dirac operator on
R
d and A = C∞

c (R
d) [134, p. 3826]. It follows from Theorem 5.8 below that the

identification holds for any complete Riemannian manifold�where f0 has compact
support [220, Theorem 3.4.1].

We discuss recent identifications of which non-smooth functions f ∈ L∞(Rd),
d ≥ 2 are quantum differentiable in the sense of Connes [149], and that Connes’
Hochschild character theorem [40, p. 308], which identifies the Hochschild class of
the leading term of the Chern character, holds for any normalised trace φ on L1,∞
[30] in both unital and non-unital cases.

5.3.1 Quantum differentiability

Let d ≥ 1 and N = 2>d/2?. Let D : CN ⊗ S(Rd) → C
N ⊗ S(Rd) be the Dirac

operator

D =
d∑

j=1

γj ⊗ −i∂j ,

where γ1, . . . , γd are N × N self-adjoint complex matrices satisfying the anticom-
mutation relation [138],

γjγk + γkγj = 2δj,k. 1 ≤ j, k ≤ d,

and ∂j , j = 1, . . . , d denote the partial derivatives in R
d . The Dirac operator is

essentially self-adjoint [138, p. 117]. Denote the closure

D : CN⊗W1,2(R
d) → C

N⊗L2(R
d)

where the Sobolev spaces on R
d are

Wp,2(R
d) = {f ∈ L2(R

d) :
∫

Rd
|f̂ (ξ)|2(1 + ‖ξ‖2)pdx < ∞}, p ≥ 0.

Using the signum function and the Borel functional calculus [189, Theorem VII.2],
define the bounded operator
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F = sgn(D) : CN⊗L2(R
d) → C

N⊗L2(R
d).

When d = 1, F is the Hilbert transform [40, p. 314] [91, p. 330]. When d > 1, F is
Clifford multiplication of Riesz transforms [91, p. 333]

F =
d∑

j=1

γj ⊗ Rj , Rj = −i(−�)−1/2∂j , 1 ≤ j ≤ d.

Define the representation

π1 : L∞(Rd) → L(L2(R
d)⊗ C

N) , (π1(f )h)(x) = f (x)h(x).

The functions f ∈ L∞(Rd) such that

[F, π1(f )] ∈ Lp, p > d

are quantum differentials associated with the Dirac operator. Results of Peller [166,
Chap. 6] and Janson and Wolff [114] give necessary and sufficient conditions;
[F, π1(f )] ∈ Lp, d < p < 2d if and only f ∈ L∞ belongs to the Besov function

space Bd/ppp

B
d/p
pp (R

d) = {f ∈ Lp,loc(R
d) :

∫

Rd×Rd

|f (x)− f (y)|p
‖x − y‖2d dxdy < ∞}.

Janson and Wolfe also showed that if p ≤ d, then [F, π1(f )] ∈ Lp if and only if
f is a constant. The dimension d is a lower bound for non-trivial behaviour; noted
by Connes for the one-dimensional case in 1994 [40, p. 314] and for d > 1 in the
monograph [91, p. 333].

The functions f ∈ L∞(Rd) satisfying

[F, π1(f )] ∈ Ld,∞

are a more refined class of quantum differentials. When d = 1 a necessary and
sufficient condition on f ∈ L∞(R) can be derived from [166, p. 256]. The appendix
of Connes, Sullivan and Teleman’s paper [56, p. 679] provided necessary and
sufficient conditions on f ∈ L∞(Rd) for [F, π1(f )] ∈ Ld,∞ when d > 1. The
sketched proof used results of Rochberg and Semmes [193, Corollary 2.8, Theorem
3.4] on behaviour of the mean oscillation of the function f .

A recent paper [149] used double operator integrals to confirm Connes, Sullivan
and Teleman’s necessary and sufficient conditions for f ∈ L∞(Rd) without the
intermediary of mean oscillation. It also identified the seminorm [149, Theorem 1]

‖[F, π1(f )]‖Ld,∞
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as being equivalent to the Sobolev (1, d)-seminorm. Following Connes’ result for
closed manifolds in [38, Theorem 3(3)], it proved Connes’ trace theorem for forms
on R

d [149, Theorem 2].

Theorem 5.7 Let d > 1.

(1) If f ∈ L∞(Rd), then [F, π1(f )] ∈ Ld,∞ if and only if ∇f ∈ Ld(Rd ,Cd) with
equivalent seminorms

‖[F, π1(f )]‖Ld,∞ ∼= ‖∇f ‖Ld(Rd ,Cd ).

(2) Let f = f ∗ ∈ L∞(Rd) be real valued with ∇f ∈ Ld(Rd ,Cd). Then

|[F, π1(f )]|d ∈ L1,∞

and there is a constant cd > 0 such that

φ(|[F, π1(f )]|d) = cd

∫

Rd
‖∇f (x)‖d2 dx. (5.8)

for any positive normalised trace φ on L1,∞.

The value of cd can be found below. In the statement of Theorem 5.7,

∇f = (∂1f, . . . , ∂df )

where ∂jf , j = 1, . . . , d denotes the distributional derivative when f ∈ L∞(Rd)
is not smooth [209, Chap. V]. Writing

∇f ∈ Ld(Rd ,Cd)

assumes that f ∈ L∞(Rd) has weak partial derivatives and that the Bochner norm
of ∇f in Ld(Rd ,Cd),

‖∇f ‖Ld(Rd ,Cd ) =
(∫

Rd
‖(∇f )(x)‖dd dx

)1/d

=
⎛

⎝
∫

Rd

d∑

j=1

|∂jf (x)|ddx
⎞

⎠

1/d

,

is finite. The Sobolev space W1,d (R
d) has the equivalent norm ‖f ‖1,d = ‖f ‖d +

‖∇f ‖Ld(Rd ,Cd ).
Formula (5.8) is analogous to the following trace formula of Connes on forms

[38, Theorem 3(3)]. Suppose � is an oriented closed spinc Riemannian manifold
[138] of dimension d > 1 with spinor bundle S and F = sgn(D) is the sign of the
Dirac operator on smooth sections of S. Given f = f ∗ ∈ C∞(�), let π1(f ) be the
operator of pointwise multiplication by f on sections of S. Theorem 3(3) of [38]
states that
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Trω(|[F, π1(f )]|d) = λd

∫

�

‖df (x)‖ddx, f = f ∗ ∈ C∞(�) (5.9)

where Trω is a Dixmier trace, and λd > 0 is a constant depending only on d.
To compare the results, formula (5.8) holds for non-smooth functions and any

positive trace φ on L1,∞ for the noncompact space R
d . We note a proof of (5.8)

using the principal symbol map σ̂0 of Theorem 5.2 in Section 5.1.2. Tensoring by
matrices [225, Lemma 9.1]; if

A ∈ 1(L∞(Rd), L∞(Sd−1))⊗MN(C)

then

φ(Aπ1(ψ)(1 +D2)−d/2) = 1

d

∫

Rd×Sd−1
Tr(σ̂0 ⊗ 1N)(A)(x, s)ψ(x)dxds

for any positive normalised trace φ on L1,∞ and compactly supported function ψ ∈
C∞
c (R

d). For f ∈ C∞
c (R

d) a short argument shows that there is an operator Af ∈
1(L∞(Rd), L∞(Sd−1))⊗MN(C) such that

|[F, π1(f )]|d = |Af |d(1 +D2)−d/2 + L1

where

(σ̂0⊗1N)(|Af |d)(x, s) = ‖(∇f )(x)−((s ·∇)f )(x)s‖d⊗1N, (x, s) ∈ R
d×S

d−1.

Rotation invariance of the integral on S
d−1 implies the result

∫

Sd−1
Tr

(
‖(∇f )(x)− ((s · ∇)f )(x)s‖d ⊗ 1N

)
ds = cd‖∇(f )(x)‖d

with constant

cd = 2>d/2?
∫

Sd−1
‖e1 − (s · e1)s‖dds

where e1 = (1, 0, . . . , 0) ∈ R
d . Approximation of f ∈ L∞(Rd) in the seminorm

of Theorem 5.7(1) by smooth functions completes the proof. This argument mimics
the original proof of [38, Theorem 3(3)].

5.3.2 Hochschild character formula

Suppose (A,H, F ) is a Fredholm module with [F, a] ∈ Lp+1. Here p is a positive
integer. When p is even, assume the existence of a unitary� = �∗ such that [�, a] =
0 and {�,F } = 0. When p is odd, set � = 1. Then
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�F

n∏

k=0

[F, ak] ∈ L1, a0, . . . , an ∈ A, n ≥ p.

Connes defined the characters n ≥ 0 [40, p. 293]

τp+2n(a0, . . . , ap+2n) = 1

2
Tr

⎛

⎝�F
p+2n∏

k=0

[F, ak]
⎞

⎠ , (5.10)

which are cyclic cocycles of order p + 2n whose cyclic cohomology class in
HCp+2n [48] [40, Chap. III] [145] is obtained from the leading character τp by
n applications of the periodicity operator S : HCm → HCm+2, m ≥ 0 [40, p. 294]

[τm+2] = − 2

m+ 2
[Sτm], m = p + 2n, n ≥ 0.

The periodic cyclic cohomology class of

(−1)p(p−1)/2cp�(1 + p/2)τp, cp = 1, p even, cp = √
2i, p odd

is called the Chern character [40, p. 295].
Suppose the existence of a spectral triple (A,H,D) [40, p. 310] [49, 50]; a ∗-

algebra A of L(H) where H is an infinite- dimensional separable Hilbert space and
a bounded operator D : Dom(D) ∈ L(H) such that

[D, a] extends to a bounded operator in L(H)

and

a(1 +D2)−p/2 ∈ L1,∞.

When B ∈ L(H) and B : Dom(D) → Dom(D) define the derivations

∂(B) = [D,B] , δ(B) = [|D|, B].

Define

dom(δk) = {B ∈ L(H) : δk(B) ∈ L(H)}, k ≥ 0,

and the increasing family of seminorms

ρk(B) =
k∑

j=0

‖δj (B)‖ + ‖δj (∂(B))‖, B, ∂(B) ∈ dom(δk).
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Assume that A is a Frechet ∗-algebra for ρk , k ≥ 0. When D has trivial kernel
F = sgn(D) generates a Fredholm module [40, p. 310] [26] [91, p. 327]. This
assumption can be removed when D has compact resolvent [40, p. 310] and forms
a pre-Fredholm module [91, Sect. 8.2]. For Fredholm modules associated with
spectral triples, there is the refinement in compact behaviour [181]

[F, a] ∈ Lp,∞.

Set

3(a0, . . . , ap) = �a0

p∏

k=1

[D, ak] ∈ L(H), a0 ⊗ . . .⊗ ap ∈ Ap+1,

which is a bounded operator. For any trace φ ∈ L1,∞ define the noncommutative
integral

φ(3(a0, . . . , ap)(1 +D2)−p/2) = φ

(

�a0

p∏

k=1

[D, ak](1 +D2)−p/2
)

. (5.11)

The Hochschild character theorem due to Connes [40, p. 308] states that

φ(3(c)(1 +D2)−p/2) = τp(c)

for every Hochschild cycle c and any Dixmier trace φ on L1,∞ associated with
factorisable Banach limit in the bijection of Section 3.2.3 (Connes’ variant of
Dixmier’s trace). Up to coboundaries, the integral on forms defined by the quantum
calculus and the generating element of the Chern character agrees with forms
defined by commutators with the operator D and integration in the sense of the
noncommutative integral defined by (1 +D2)−p/2.

In 2016 the character theorem was proved for any normalised trace φ on L1,∞
[30]. Additional conditions were added recently to prove the Hochschild character
theorem for non-unital spectral triples as well [220].

Theorem 5.8 Let (A,H,D) be a graded spectral triple with ker(D) = {0}.
Suppose p ≥ 1 is an integer.

(1) Suppose A contains the identity 1 of L(H) and |D|−p ∈ L1,∞. Then

φ(3(c)|D|−p) = τp(c)

for every normalised trace φ on L1,∞ and every Hochschild cycle c.
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(2) Suppose the following conditions:

(a) for every a ∈ A,

a(D + i)−p ∈ L1,∞,

∂(a)(D + i)−p ∈ L1,∞;

(b) for every a ∈ A and for all k ≥ 0, we have

∥
∥∥δk(a)(D + iλ)−p−1

∥
∥∥L1

= O(λ−1), λ → ∞,

∥∥∥δk(∂(a))(D + iλ)−p−1
∥∥∥L1

= O(λ−1), λ → ∞.

Then

φ(3(c)|D|−p) = τp(c)

for every normalised trace φ on L1,∞ and every Hochschild cycle c such that

c =
m∑

j=1

a
j

0 ⊗ · · · ⊗ a
j
p ∈ A⊗(p+1)

satisfies ψaj0 = a
j

0 , 1 ≤ j ≤ m for a positive element ψ ∈ A.

This version of the Hochschild character theorem combines [30, Theorem 16],
with errata mentioned in [220, p. 3], and [220, Theorem 1.2.5]. Theorem 1.2.3 in
[220] shows that the zeta function

Tr(3(c)|D|−z), Re z > p

satisfies (4.11) under the hypothesis in Theorem 5.8(2); it has an analytic contin-
uation to the punctured half-plane Re z > p − 1 with simple pole at z = p.
Theorem 5.8(2) also considers only algebraic Hochschild cycles, i.e. the algebraic
tensor product, and not the continuous Hochschild homology and cohomology
using the projective tensor product. Theorem 5.8 follows a line of results [91,
p. 479] [24, 108, 14] concerning Connes’ original Hochschild character theorem
[40, p. 308]. The character theorem implies a cohomological obstruction to triviality
of the noncommutative integral [40, p. 309]. It also implies that the operators
3(c)|D|−p are universally measurable (Section 4.2.2) for every Hochschild cycle c.
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Commutants mod normed ideals

Dan-Virgil Voiculescu

Dedicated to Alain Connes on the occasion of his 70th birthday.

Abstract To Alain Connes’ non-commutative geometry the normed ideals of com-
pact operators are purveyors of infinitesimals. A numerical invariant, the modulus of
quasicentral approximation, plays a key role in perturbations from these ideals. New
structure is provided by commutants mod normed ideals of n-tuples of operators and
by their Calkin algebras. I review the modulus of quasicentral approximation, the
relation to invariance of absolutely continuous spectra, to dynamical entropy and the
hybrid generalization. I then discuss commutants mod normed ideals, their Banach
space duality properties, K-theory aspects, the case of the Macaev ideal. Sample
open problems are included.

1 Introduction

The full name of the normed ideals to which we refer in the title, is “symmetrically
normed ideals of compact operators,” among which the Schatten–von Neumann p-
classes are the most familiar. The commutants are commutants modulo a normed
ideal of n-tuples of self-adjoint operators, or equivalently of the algebras generated
by these operators. When the normed ideal is K, that is the ideal of compact
operators, then up to factoring by K, this is roughly how one arrives at the Paschke
dual of a finitely generated C∗-algebra ([35], see also [25]), that is a basic duality
construction in the K-theory of C∗-algebras, that in essence hails from the abstract
elliptic operators of Atiyah [2]. What happens if K is replaced by a smaller normed
ideal I? As we will see, commutants mod I are not simply “smooth versions” of
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those mod K, and they are often closer to C∗-algebras than one would expect, while
they connect with many questions in perturbation theory.

From an operator theory perspective, following the Brown–Douglas–Fillmore
work [7, 8] and the development of the K-theory of C∗-algebras all the way to
Kasparov’s bivariant theory ([26], see also [5, 23]) many things about compact
perturbations can now be understood from this point of view.

When other normed ideals than K are considered, there are different aspects
to be taken into account. For instance, Alain Connes’ cyclic cohomology is
the algebraic framework for trace-formulas like the Helton–Howe formula for
almost normal operators [22, 15]. On the other hand, the invariance of Lebesgue
absolutely continuous spectra under trace-class perturbations fits with our modulus
of quasicentral approximation invariant which is one focus of the present article.

Starting with an adaptation [43] of the Voiculescu non-commutative Weyl–
von Neumann type theorem [42] to normed ideals other than K, we found that
kI(τ ), the modulus of quasicentral approximation for the n-tuple τ relative to the
normed ideal I, underlies many questions concerning perturbation of operators
[43, 44, 49]. This quantity has also turned out to be connected to the Kolmogorov–
Sinai dynamical entropy and to the supramenability of groups [47, 54]. We should
also mention that, as we found in [43, 44, 45], in many of these questions Lorentz
(p, 1) ideals instead of Schatten–von Neumann p-classes give sharp results when
p > 1.

To Alain Connes’ non-commutative geometry, the normed ideals are purveyors
of infinitesimals [15]. The machinery around kI(τ ) has found technical uses in the
spectral characterization of compact manifolds [16] (i.e., their characterization as
non-commutative manifolds) and in results about unbounded Fredholm modules
[13].

Since the numerical invariant kI(τ ) turned out to have good properties and to
unify several perturbation problems, we recently looked whether there is not actually
more structure around this number. The commutant E(τ ; I) of an n-tuple of opera-
tors τ mod a normed ideal I provides such structure. The first step in the study of
E(τ ; I) is to introduce K(τ ; I) its ideal of compact operators and the corresponding
Calkin algebra E/K(τ ; I). Under suitable assumptions on kI(τ ), there are many
functional analysis similarities between (K(τ ; I),E(τ ; I),E/K(τ ; I)) and the usual
(K,B,B/K) where B denotes the bounded operators. With this analogy as a guide
we also took the first steps in computing some K-groups of such algebras. The
K-theory can be quite rich and this demonstrates why the E/K(τ ; I) should not be
thought as being “smooth versions” of E/K(τ ;K), i.e., essentially of Paschke duals.

As a general comment about algebras associated with perturbations from a
normed ideal I, it appears that E(τ ; I), which is closer to the abstract elliptic
operators point of view of Atiyah, being a Banach algebra may have from a func-
tional analysis point of view some advantages over dealing with homomorphisms
of algebras into B/I in the Brown–Douglas–Fillmore style. The algebra B/I is not
a Banach algebra, though smooth functional calculus of various kinds can still be
performed inB/I. On the other hand E/K(τ ; I) if kI(τ ) < ∞ is actually isomorphic
to a C∗-algebra.
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Very recently we found that kI(τ ) remains an effective tool also when general-
ized to handling of hybrid perturbations. That is instead of a normed ideal I, we will
have an n-tuple of normed ideals (I1, . . . , In) and the perturbation of τ to τ ′

1 is such
that Tj −T ′

j ∈ Ij , 1 ≤ j ≤ n. We will also very briefly mention a few results in this
direction [57, 58], which are quite sharp.

Here is in brief how the survey proceeds. After this introduction we provide some
background on the normed ideals we will use. We then as a motivating example
recall the main facts about normed ideal perturbations of one self-adjoint operator.
Then we introduce the invariant kI(τ ) and its basic properties. Next we give a
version of the Voiculescu theorem adapted to normed ideals. After this we pass
to the applications of this machinery to normed ideal perturbations of n-tuples of
commuting Hermitian operators. Next we explain the endpoint properties of k−∞(τ )
which is the case when I is the Macaev ideal. The way the Kolmogorov–Sinai
entropy is related to k−∞(τ ) is explained after this. Then we discuss results for finitely
generated groups and the result and open problem about k−∞ and supramenable
groups. After this, we go over to commutants mod normed ideals. We explain
that kI(τ ) is related to approximate units of the compact ideal K(τ ; I) of E(τ ; I).
The Banach space properties of E(τ ; I) are then discussed as well as properties
of E/K(τ ; I) where kI(τ ) < ∞ or kI(τ ) = 0. We then look at the results about
K0(E(τ ; I)) for n-tuples of commuting Hermitian operators, which, to simplify
matters we choose here to be multiplication operators by the coordinate functions in
the L2-space with respect to Lebesgue measure on a hypercube. We then discuss
a few results in the hybrid setting. Quite briefly finally some applications to
unbounded Fredholm modules are then pointed out.

The study of commutants mod normed ideals and of the invariant kI(τ ) and of
the hybrid generalization are still at an early stage and from a reading of this survey
one realizes the multitude of open problems of varying degrees of difficulty. Still
at the end we briefly mention some sample open problems which had not appeared
with the presentation of results.

At various points in this exposition, in order to avoid technical detail, we did not
aim at the most general or technically strongest version of the results. We hope this
kind of simplification will make it easier for the reader to focus on the big picture.

2 Background on normed ideals

Throughout we shall denote by H an infinite dimensional separable complex Hilbert
space and by B(H), K(H), R(H) or simply B,K,R the bounded operators, the
compact operators and the finite rank operators on H. The Calkin algebra is then
B/K and p : B → B/K will be the canonical homomorphism. A normed ideal
(I, | |I) is an ideal of B so that R ⊂ I ⊂ K and | |I is a Banach space norm on I

satisfying a set of axioms which can be found in [20, 40]. In particular if A,B ∈ B

and X ∈ I we have |AXB|I ≤ ‖A‖ |X|I ‖B‖. If I is a normed ideal, its dual as
a Banach space is also a normed ideal Id , where now we have to also allow the
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possibility that Id = B, and the duality is given by (X, Y ) → Tr XY . If I is a
normed ideal, then the closure of R in I is also a normed ideal which we shall
denote by I(0) and which may be strictly smaller than I.

If 1 ≤ p < ∞, the Schatten–von Neumann p-class Cp is the normed ideal
of operators X ∈ K so that |X|p = (Tr((X∗X)p/2))1/p < ∞ endowed with the
norm | |p. In particular, C1 is the trace-class and C2 is the ideal of Hilbert–Schmidt
operator. Another scale of normed-ideals which we shall use here is (C−

p , | |−p ), 1 ≤
p ≤ ∞ which are the Lorentz (p, 1)-ideals. If s1 ≥ s2 ≥ . . . are the eigenvalues
of the compact operator (X∗X)1/2, then |X|−p = ∑

j∈N sj j−1+1/p. Of particular

interest is the case where p = ∞ and |X|−∞ = ∑
j∈N sj j−1. If p = 1, C−

1 = C1, but
otherwise C−

p ⊂ Cp but C−
p �= Cp, 1 < p ≤ ∞, where C∞ = K. The ideal C−

p can
also be described as the smallest normed ideal for which the norm on projections is
equivalent to the p-norm, when 1 ≤ p < ∞ while |P |−∞ ∼ log Tr P when p = ∞
for a projection P . The ideal C−∞ is also called the Macaev ideal.

The normed ideals can also be viewed as the non-commutative analogue of
classical Banach sequence spaces [29].

3 The theorems of Weyl–von Neumann–Kuroda and of
Kato–Rosenblum

Let A and B be Hermitian operators on H and let (I, | |I) be a normed ideal.
Recall that p denotes the homomorphism onto the Calkin algebra. Thus the essential
spectrum σ(p(A)) of the Hermitian operator A is obtained from its spectrum σ(A)

by removing the isolated points λ ∈ σ(A)which corresponds to eigenvalues of finite
multiplicity. By results of Weyl, von Neumann and Kuroda, see [27], we have:

Assume I �= C1, ε > 0, and σ(A) = σ(B) = σ(p(A)) = σ(p(B)).
Then there is a unitary operator U so that

|UBU∗ − A| I < ε.

Note that, given A, we may choose B to be diagonal in an orthonormal basis
and thus we get |X − A|I < ε where X = UBU∗ is an operator which can be
diagonalized in an orthonormal basis.

The trace-class C1 is actually the smallest normed ideal. If I = C1, the previous
result fails because of the Lebesgue absolutely continuous spectrum, which is a
conserved quantity under trace-class perturbations. This is a consequence of the
Kato–Rosenblum theorem of abstract scattering theory [27, 37]. If X = X∗, we say
thatX has Lebesgue absolutely continuous spectrum, if its spectral measureE(X; ·)
is absolutely continuous wṙṫL̇ebesgue measure (equivalently this is that the scalar
measures 〈E(X; ·)ξ, η〉 for all ξ, η ∈ H are Lebesgue absolutely continuous). Given
X, the Hilbert space H splits in a unique way H = Hac ⊕ Hsing into X-invariant
subspaces so that X | Hac has Lebesgue absolutely continuous spectrum, while
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X | Hsing has singular spectrum, that is the spectral measure ofX | Hsing is carried
by a Borel set of Lebesgue measure zero. It is a corollary of the Kato–Rosenblum
theorem that:

ifX−A ∈ C1, thenX | Hac(X) andA | Hac(A) are unitarily equivalent.

The Kato–Rosenblum theorem actually provides two intertwiners, to achieve the
unitary equivalence, the generalized wave operators W±:

under the assumption X − A ∈ C1 the strong limits

W± = s − lim
t→±∞ eitAe−itX | Hac(X)

exist. Moreover we have W±Hac(X) = Hac(A) and

W±(X | Hac(X)) = (A | Hac(A))W±.

Thus the Lebesgue absolutely continuous part A | Hac(A) is conserved up to
unitary equivalence under perturbations in C1 and cannot be diagonalized.

On the other hand for the singular spectrum, the ideal C1 is not different from
other ideals. For instance, the Weyl–von Neumann–Kuroda theorem holds also for
C1 if the spectrum is singular that is if Hac(A) = Hac(B) = 0.

Concerning what goes into the proofs of these theorems, the Weyl–
von Neumann–Kuroda results rely essentially on partitioning

I = E(A;ω1)+ · · · + E(A;ωn)

where ω1, . . . , ωn is a partition of σ(A) into Borel sets of small diameter, while
the Kato–Rosenblum theorem uses some Fourier analysis, which can be viewed as
related to the L2-boundedness of the Hilbert transform.

To conclude this discussion we should also say that the role of assumptions
about spectra and essential spectra σ(A) = σ(p(A)) will become clearer in the
next section when we consider C∗-algebras.

4 The theorem of Voiculescu

After the work of Brown–Douglas–Fillmore which solved the unitary conjugacy
question for normal elements of the Calkin algebra, it became clear that it is
preferable in this kind of question to view operators or n-tuples of operators as
representations of the C∗-algebra which they generate. For instance, given an n-
tuple of commuting Hermitian operatorsA1, . . . , An this is just the representation of
the commutative C∗-algebra C(K) of continuous functions on their joint spectrum
K = σ(A1, . . . , An)which arises from functional calculus ρ(f ) = f (A1, . . . , An).
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One version of the Voiculescu theorem ([42], see also [1]) is a non-commutative
generalization of the perturbation results for one Hermitian operator in case I = K,
the ideal of compact operators:

If A is a unital separable C∗-algebra and ρ1, ρ2 : A → B(H) are unital
∗-homomorphisms such that kerp ◦ ρ1 = kerp ◦ ρ2 = 0, then there is a
unitary operator U so that ρ1(a)− Uρ2(a)U

∗(a) ∈ K for all a ∈ A.

For instance, to recover the Weyl–von Neumann result for two Hermitian
operators A,B with σ(A) = σ(B) = σ(p(A)) = σ(p(B)) = K one takes
A = C(K), ρ1(f ) = f (A), ρ2(f ) = f (B) and the conclusion is applied to the
particular choice of f being the identical function.

This very general result for compact perturbations obviously leads to the
question: What happens when the compact operators are replaced by a smaller
normed ideal I? We found that there is a key quantity which needs to be taken
into account and which will be discussed in the next section.

5 The invariant kI(τ)

Let τ = (Tj )1≤j≤n be an n-tuple of bounded operators on H and (I, | |I) a normed
ideal. Then the modulus of quasicentral approximation is defined as follows [43,
45]:

kI(τ ) is the least C ∈ [0,∞], such that there exist finite rank operators
0 ≤ Am ≤ I so that Am ↑ I and we have

lim
m→∞ max

1≤j≤n |[Am, Tj ]|I = C.

If I = Cp or I = C−
p we denote kI(τ ) by kp(τ ) or respectively by k−

p (τ). In
particular in the case of the Macaev ideal I = C−∞ we get k−∞(τ ). Here are some of
the first properties of this invariant (see [45]).

1◦ [1,∞] ( p → k−
p (τ) ∈ [0,∞] is a decreasing function of p.

2◦ for a given τ there is p0 ∈ [1,∞] so that if p ∈ [1, p0) then k−
p (τ) = ∞, while

if p ∈ (p0,∞] then k−
p (τ) = 0. (Note that if k−

p (τ) ∈ (0,∞) then we must
have p0 = p.)

3◦ assuming R is dense in I, then if τ, τ ′ are n-tuples so that Tj−T ′
j ∈ I, 1 ≤ j ≤ n,

then kI(τ ) = kI(τ
′).

4◦ assuming τ = τ ∗ and that R is dense in I, we have: kI(τ ) > 0 iff there exist

Yj = Y ∗
j ∈ Idual, 1 ≤ j ≤ n so that i

∑
j [Tj , Yj ] ∈ C1 + B(H)+ and

Tr i
∑

j [Tj , Yj ] > 0.

To prove that kI(τ ) = 0 or that kI(τ ) < ∞ one can use the definition of kI(τ ) and
find a suitable sequence of operators An. To prove that kI(τ ) > 0 is usually more
difficult as one has to find suitable Yj (1 ≤ j ≤ n) which satisfy property 4◦. For
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instance, in the case of I = C1 and n = 1, this boils down to the boundedness of
the Hilbert transform in L2. Indeed, remark that if T is the multiplication operator
in L2([0, 1], dλ) by the coordinate function andH is the compression of the Hilbert
transform to L2([0, 1], dλ) then [T ,H ] = iP where P is the rank one projection
onto the constant functions.

The reader may have wondered why we did not pay more attention to kp(τ )
instead of focusing on k−

p (τ). The reason is that if p = 1 then C−
1 = C1 and we

have k1(τ ) = k−
1 (τ ), while otherwise, if p > 1 we have that kp(τ ) ∈ {0,∞} [45].

6 Some uses of kI(τ)

A general result that uses kI(τ ) is the adaptation of the Voiculescu theorem [43], to
deal with other normed ideals than K. Here is a version of such an adaptation:

Let A be a C∗-algebra generated by Xk , 1 ≤ k ≤ n and let ρ1, ρ2 be
unital ∗-representations on H of A, so that kerp ◦ ρj = 0, j = 1, 2.
Assume moreover that kI(ρj (Xk)1≤k≤n) = 0, j = 1, 2. Then there is a
unitary operator U so that

Uρ1(Xk)U
∗ − ρ2(Xk) ∈ I, 1 ≤ k ≤ n.

Actually, this version which we chose for simplicity is a corollary of a more
general absorption version (see [43]). Note also that one can also have that

|Uρ1(Xk)U
∗ − ρ2(Xk)|I < ε, 1 ≤ k ≤ n

for a given ε > 0.
Remark that the previous result when applied to A = C(K) where K ⊂ R

is a compact set and X is the identical function X(t) = t reduces the Weyl–
von Neumann–Kuroda theorem to prove the following fact:

if T = T ∗ and I �= C1, then kI(T ) = 0.

There is also the following general construction for a given n-tuple τ and a
normed ideal I.

If (Pi)i∈I are projections in the commutant (τ )′ so that kI(τ | PiH) = 0, then
also P = ∨

i∈I
Pi is so that kI(τ | PH) = 0. In particular, there is a largest reducing

subspace Hs of τ , so that kI(τ | Hs) = 0. The subspace Hs is called the I-singular
subspace of τ , while Hs = H A Hs is called the I-absolutely continuous subspace
of τ .

The names given to these reducing subspaces of τ are motivated by the case of
commuting Hermitian operators. In particular, in the simplest case of one Hermitian
operator T = T ∗ and I = C1, the C1-singular and C1-absolutely continuous



592 D.-V. Voiculescu

subspaces of T are precisely the Lebesgue singular and Lebesgue absolutely
continuous subspaces of T . The use of k1 reduces this to the following fact:

k1(T ) = 0 ⇔ the spectral measure of T is singular w.r.t. Lebesgue
measure.

Note that ⇒ relies essentially on the L2-boundedness of the Hilbert transform.
Much of our initial motivation for developing a machinery based on the invariant

kI(τ ) for studying perturbations of n-tuples of operators was to extend perturbation
results for one Hermitian operator to commuting n-tuples of Hermitian operators.
For instance, for n = 2, which is equivalent to dealing with one normal operator N ,
there was the problem attributed to P. R. Halmos whether N = D + K where D

was diagonalizable and K ∈ C2. In essence, this problem was whether C2 plays the
same role for pairs of commuting Hermitian operators that C1 plays for singletons. It
turned out that normal operators can be diagonalized mod C2 [43], but it is better
to go over to n-tuples of commuting Hermitian operators and describe the general
results obtained with the modulus of quasicentral approximation.

7 Perturbations of commuting n-tuples of Hermitian
operators

It turned out that for n-tuples of commuting Hermitian operators there is a threshold
ideal C−

n . This also explains the mod C2 diagonalization of normal operators. Here
are some of the main results for such n-tuples [3, 7, 43, 44].

1◦ If I is a normed ideal and I ⊃ C−
n , I �= C−

n and τ is an n-tuple of commuting
Hermitian operators then kI(τ ) = 0. In particular, there is a diagonalizable n-
tuple δ so that τ ≡ δ mod I.

2◦ If τ and τ ′ are n-tuples of commuting Hermitian operators and τ ≡ τ ′ mod C−
n ,

then their Lebesgue absolutely continuous parts τac and τ ′
ac are unitarily

equivalent.
3◦ There is a universal constant 0 < γn < ∞ so that if τ is an n-tuple of commuting

Hermitian operators, then

(
k−
n (τ )

)n = γn

∫

Rn
m(s)dλ(s)

where λ is Lebesgue measure and m(s) is the multiplicity function of the
Lebesgue absolutely continuous part of τ . If n = 1, then γ1 = 1/π .

The Kato–Rosenblum theorem was also generalized using k−
n (τ ), but the results

(see [44]) are perhaps not complete. For n ≥ 3 we have a very general result
showing that some very general generalized wave operators exist and are actually
all equal. For n = 2 we get the existence of enough non-trivial intertwiners,
but the convergence is not strong. Note that we do not have a proof of the usual



Commutants mod normed ideals 593

Kato–Rosenblum theorem using k1(τ ). Its corollary about the unitary equivalence
of absolutely continuous parts can be however recovered in case the multiplicity
function of one of the operators is integrable by using the formula for k1 applied to
f (A) for C∞-functions f .

It is an open problem whether the very strong Kato–Rosenblum type results we
proved for n ≥ 3 in [44] also hold for n = 2.

The machinery based on kI(τ ) for dealing with perturbations of commuting n-
tuples of Hermitian operators applies as soon as we know the decomposition H =
Ha(τ ) ⊕ Hs(τ ) for a given normed ideal I. This essentially means to study the
n-tuple of multiplication operators by the coordinate functions in L2(Rn, μ) where
μ is a more general measure, for instance, more like a Hausdorff p-dimensional
measure 1 ≤ p < n, p not necessarily an integer. The essential difficulty is in
showing that certain singular integrals give operators in certain normed ideals in
order to show that k−

p (τ) > 0. Rather general results of this kind were obtained in
our joint work with Guy David [17]. Here is the key result from [17]:

Let μ be a Radon probability measure with compact support on R
n so

that the Ahlfors condition

μ(B(x, r)) ≤ Crp, ∀x ∈ R
n, r ≤ 1

holds for a certain p > 1. Let further τμ be the n-tuple of multiplication
operators by the coordinate functions in L2(Rn, dμ). Then we have:

k−
p

(
τμ

)
> 0.

8 k−
p (τ) at the endpoint p = ∞ and dynamical entropy

In case I = C−∞, the Macaev ideal, the invariant k−∞(τ ) has remarkable properties
[45].

Let τ be an n-tuple of bounded operators. We have:

(1) k−∞(τ ) < ∞, more precisely k−∞(τ ) ≤ 2‖τ‖ log(2n+ 1)
(2) k−∞(τ ) = k−∞(τ ⊗ IH)

(3) if I is a normed ideal so that I ⊃ C−∞ and I �= C−∞ then

kI(τ ) = 0

(4) if S1, . . . , Sn are isometries with orthogonal ranges and n ≥ 2 then

k−∞ (S1, . . . , Sn) > 0.

We saw that k−
p for finite integer p is related to p-dimensional Lebesgue measure

and somewhat more loosely when p is not an integer to corresponding quantities
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of Hausdorff dimension p. When p = ∞ we have found that instead of a p-
dimensional measure there are connections to dynamical entropy. Using k−∞ a
quantity “approximately” equivalent to the Kolmogorov–Sinai dynamical entropy
can be obtained [47]. Here is how this dynamical perturbation entropy [47] is
constructed.

Let θ be a measure-preserving automorphism of a probability measure space
(�,�,μ), μ(�) = 1. Let further Uθ be the unitary operator in L2(�,�,μ)

induced by θ and � the set of multiplication operators in L2(�,�,μ) by
measurable numerical functions which take finitely many values. The dynamical
perturbation entropy is defined by the formula

Hp(θ) = sup
ϕ ⊂ �

ϕ finite

k−∞ (ϕ ∪ {Uθ }) .

This is the definition from [49]. It is easy to show that it is equal to the quantity
denoted by H̃P (θ) in [47, 48].

Comparing HP (θ) to the Kolmogorov–Sinai entropy h(θ)we have the following
results [48].

(i) There are universal constants 0 < C1 < C2 < ∞ so that

C1h(θ) ≤ HP (θ) ≤ C2h(θ).

(ii) If θ is a Bernoulli shift, then

Hp(θ) = γ h(θ)

where 0 < γ < ∞ is a universal constant.

It is not known whether (ii) does not actually hold for all θ .
The definition of HP (θ) easily extends to more general non-singular transforma-

tions θ for which there may be no equivalent invariant probability measure. It is not
known whether HP (θ) is a non-trivial invariant for transformations which are not
equivalent to transformations with an invariant probability measure. As pointed out
by Lewis Bowen to us, the results of [24] may be relevant to this question.

Weaker than the connection to the Kolmogorov–Sinai entropy, there is also a
connection to the Avez entropy of random walks on groups.

Let G be a group with a finite generator g1, . . . , gn and let μ be a probability
measure with finite support on G and let h(G, μ) be the Avez entropy of the random
walk on G defined by μ. We have the following result [50]:

If h(G, μ) > 0 then k−∞(λ(g1), . . . , λ(gn)) > 0 where λ is the regular
representation of G on &2(G).
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We should also point out to the reader that further results on k−∞ for Gromov
hyperbolic groups G and for the entropy of subshifts can be found in the papers
[32, 33, 34] of Rui Okayasu.

The result about Avez entropy dealt with k−∞(λ(g1), . . . , λ(gn)). We shall return
to this quantity in the next section where we discuss kI(λ(g1), . . . , λ(gn)) more
generally.

9 Finitely generated groups and supramenability

If G is a finitely generated group with generator γ = {g1, . . . , gn} and I is a normed
ideal, then, which of the following three possibilities takes place

kI(λ(γ )) = 0,
0 < kI(λ(γ )) < ∞,

kI(λ(γ )) = ∞

does not depend on the choice of the generator γ and is thus an invariant of the
group G. In particular if I = C−

p , the number p0 ∈ [1,∞] so that p ∈ [1, p0) ⇒
k−
p (λ(γ )) = 0 and p ∈ (p0,∞] ⇒ k−

p (λ(γ )) = ∞ is an invariant of G, a kind of
dimension.

Here are three examples.

1◦ [43] If G = Z
n, then k−

n (λ(γ )) ∈ (0,∞).
2◦ [4] If G is the discrete Heisenberg group of 3 × 3 upper triangular, unipotent

matrices with integer entries, then k−
4 (λ(γ )) ∈ (0,∞).

3◦ [45] If G is a free group on n ≥ 2 generators, then k−∞(λ(γ )) ∈ (0,∞).

In view of the special features of k−∞ and C−∞ it is natural to wonder for which
finitely generated groups is k−∞(λ(γ )) = 0?

Here is what we know [54]:

(i) if G has subexponential growth the k−∞(λ(γ )) = 0.
(ii) if k−∞(λ(γ )) = 0, then G is supramenable.

The fact that subexponential growth insures the vanishing of k−∞(λ(γ )) is easy. The
second assertion uses a recent result of Kellerhals–Monod–Rørdam [28] which is
not easy. For the reader’s convenience we include here a few things about the notion
of supramenability introduced by Joseph Rosenblatt [38] (we will stay with finitely
generated groups). The group G is supramenable if for every subset ∅ �= A ⊂ G

there is a left invariant, finitely additive measure on the subsets of G, taking values
in [0,∞], so that μ(A) = 1. In particular supramenable groups are amenable
and groups with subexponential growth are supramenable. On the other hand there
are amenable groups which are not supramenable. The Kellerhals–Monod–Rørdam
theorem establishes the fact that supramenability of G is equivalent to the fact that
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there is no Lipschitz embedding of a free group on two generators F2 into G with
respect to the Cayley graph metric. It is also not known whether supramenability
and subexponential growth are not actually equivalent properties.

Concerning the class of finitely generated groups for which k−∞(λ(γ )) vanishes, it
is natural to ask whether it coincides with the class of supramenable groups or with
the class of groups with subexponential growth, with the possibility that actually all
three classes coincide. Note also a fourth condition introduced by Monod [31] quite
recently and which could be equivalent to some of the preceding.

Amusingly, there is a certain similarity in what we do not know about supra-
menability and about vanishing of k−∞(λ(γ )). We do not know whether the
supramenability of G1 and G2 implies that of G1 × G2. Similarly, we do not know
whether vanishing of k−∞ for G1 and G2 implies this property for G1 ×G2. We should
also point out that this is a question specifically for generators of groups, since there
are n-tuples τ and τ ′ so that k−∞(τ ⊗ I, I ⊗ τ ′) > 0, while k−∞(τ ) = k−∞(τ ′) = 0
(actually k−

p (τ) = k−
p (τ

′) = 0 for some given p > 1) [54].
Finally, we should remark that the questions about kI(λ(γ )) > 0 are actually

questions about functions on G. If &I(G) denotes the symmetrically normed Banach
space on G, which identifies with the diagonal operators in I, then kI(λ(γ )) > 0 is
equivalent to

0 < inf

{
max

1≤j≤n |f (·)− f (gj ·)|I | f : G → R, supp f finite, f (e) = 1

}
.

The quantity appearing above can be viewed as a generalization of Yamasaki
hyperbolicity, which is the special case when I = Cp [59].

From this point of view it is easy to see that kI(λ(γ )) = 0 is a property of the
Cayley graph of G. Actually, even more:

if G1,G2 are groups with finite generators γ1, γ2 and ψ : G1 → G2 is
an injection which is Lipschitz with respect to the Cayley graph metrics,
then

kI(λ(γ2)) = 0 ⇒ kI(λ(γ1)) = 0

(this was used for I = C−∞ in [54]).

10 The commutant mod a normed ideal E(τ; I) and its
compact ideal K(τ; I)

To put more structure around the invariant kI(τ ), we shall now introduce the
commutant mod I of τ . We shall assume τ = τ ∗.
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The commutant mod I of the n-tuple of Hermitian operators τ is the
subalgebra of B(H)

E(τ ; I) = {X ∈ B(H) | [X, Tj ] ∈ I, 1 ≤ j ≤ n}

which is a Banach algebra with isometric involution when endowed with
the norm

�X� = ‖X‖ + max
1≤j≤n |[Tj ,X]|I.

The compact ideal of E(τ ; I) is

K(τ ; I) = E(τ ; I) ∩ K

and the Calkin algebra of E(τ ; I) is the quotient Banach algebra with
involution

E/K(τ ; I) = E(τ ; I)/K(τ ; I).
Whether kI(τ ) vanishes, is finite but > 0 or = ∞, often appears among the

assumptions when studying properties of E(τ ; I). Actually these 3 situations can be
expressed also in terms of approximate units for the compact ideal K(τ ; I) [55, 57].
Assume R is dense in I.

(a) The following are equivalent:

(i) kI(τ ) = 0
(ii) there are Am ∈ K(τ ; I), m ∈ N so that

lim
m→∞ �AmK −K� = lim

m→∞ �KAm −K� = 0

for all K ∈ K(τ ; I) and �Am� ≤ 1, m ∈ N.
(iii) condition (ii) is satisfied and moreover theAm are finite rank, 0 ≤ Am ≤ I

and Am ↑ I as m → ∞.

(b) The following are equivalent

(i) kI(τ ) < ∞
(ii) there are Am ∈ K(τ ; I), m ∈ N so that

lim
m→∞ �AmK −K� = lim

m→∞ �KAm −K� = 0

for all K ∈ K(τ ; I) and supm∈N �Am� < ∞.
(iii) condition (ii) is satisfied and moreover the Am are finite rank 0 ≤ Am ≤ I

and Am ↑ I as m → ∞.
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In general E/K(τ ; I) is only a Banach-algebra and for purely algebraic reasons
it identifies with the ∗-subalgebra p(E(τ ; I)) of the usual Calkin algebra B/K.
However, the connection between kI(τ ) and approximate unit for K(τ ; I) has the
following somewhat unexpected consequence for E/K(τ ; I).

Assuming R is dense in I, we have

(a) if kI(τ ) = 0 then p(E(τ ; I)) is a C∗-subalgebra of B/K which is isometrically
isomorphic to E/K(τ ; I).

(b) if kI(τ ) < ∞ then p(E(τ ; I)) is a C∗-subalgebra of B/K, which is isomorphic
as a Banach algebra to E/K(τ ; I) (the norms are equivalent).

(c) in particular if I = C−∞, p(E(τ ;C−∞)) is always a C∗-algebra canonically iso-
morphic to the Banach algebra E/K(τ ; I) and if k−∞(τ ) = 0, the isomorphism
is isometric.

Concerning the analogy with the usual Calkin algebra, we should also mention the
result in [6] about the center of certain E/K(τ ; I).

11 Banach space dualities

When kI(τ ) = 0 and certain additional conditions are satisfied there are many
similarities between (K(τ ; I),E(τ ; I)), and (K,B) (which can be viewed as the
case of τ = 0). For instance, we have the following Banach space duality properties
[52, 56]

1◦ assuming R is dense in I and in Id and kI(τ ) = 0, we have that E(τ ; I) identifies
with the bidual of K(τ ; I)

2◦ assuming I is reflexive and kI(τ ) = 0, the Banach space E(τ ; I) has unique
predual.

The second property, the uniqueness of predual result, is the analogue of the
Grothendieck–Sakai uniqueness [21, 39]. It uses a decomposition into singular and
ultraweakly continuous part of the functionals on E(τ ; I) which is analogous to a
theorem of Takesaki [41] for von Neumann algebras. This result then can be used in
conjunction with a general result of Pfitzner [36] on unique preduals.

The dual of K(τ ; I) which is implicit in the above results, under the assumption
that R is dense in I and that kI(τ ) < ∞ [52, 55] can be identified with
(C1 × (Id)n)/N, where N is the subspace of elements (x, (yj )1≤j≤n) so that
x = ∑

1≤j≤n[Tj , yj ]. The norm on (C1 × (Id)n) is

‖(x, (yj
)

1≤j≤n ‖ = max

⎛

⎝|x|1,
∑

1≤j≤n
|yj |Id

⎞

⎠ .
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The duality pairings arise by mapping E(τ ; I) (and hence also K(τ ; I)) into B× In

by

X → (X,
([
X, Tj

])
1≤j≤n).

12 Multipliers

If I is a normal ideal, we recall that I(0) denotes the closure of R in I. Let also

Ĩ =
{
X ∈ K | sup

P∈P∩R
|PX|I < ∞

}

where P is the set of Hermitian projections in B. The sup in the definition of Ĩ

is the definition of a norm on Ĩ which is also a normed ideal. The fact that B is
the multiplier algebra (double centralizer) of K has the following analogue in our
setting [52, 55]:

If I is a normed ideal and τ is an n-tuple of Hermitian operators, so
that kI(τ ) < ∞, then K(τ ; I(0)) is a closed ideal in E(τ ; Ĩ) and E(τ ; Ĩ)
identifies with the multiplier algebra of K(τ ; I(0)).

13 Countable degree −1-saturation

The countable degree −1-saturation property of C∗-algebras of Farah and Hart
[18] is a model-theory property which is satisfied by the Calkin algebra and by
many other corona algebras. Very roughly, if certain linear relations are satisfied
approximately, they can also be satisfied exactly. We have shown in [52] the
following:

If R is dense in I and kI(τ ) = 0, then E/K(τ ; I) has the countable
degree −1-saturation property of Farah–Hart.

Based on a result of [10], here is an example of the consequences of degree −1-
saturation.

Assume R is dense in I and kI(τ ) = 0. If � is a countable amenable
group and ρ is a bounded homomorphism

ρ : � → GL(E/K(τ ; I))

then ρ is unitarizable, that is, there is s ∈ GL(E/K(τ ; I)) so that

sρ(�)s−1 ⊂ U(E/K(τ ; I)).
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14 K-theory aspects

In case I = K and C∗(τ )∩K = {0}, the algebra E/K(τ ; I) which is the commutant
of p(C∗(τ )) in the Calkin algebra B/K is precisely the Paschke dual of C∗(τ ).
The first impulse when encountering the algebra E/K(τ ; I) is to think that they are
some kind of smooth subalgebras of the Paschke dual. Already the fact that when
kI(τ ) < ∞, E/K(τ ; I) is aC∗-algebra suggests we are dealing with a quite different
situation. Results about the K-theory, which show the K-theory can be much richer
than that of the Paschke dual make this difference quite clear.

To avoid technicalities, we will deal here with generic examples instead of
the more general results in the original papers. We shall consider τn the n-tuple
of multiplication operators by the coordinate functions in L2([0, 1]n, dλ), where
λ is Lebesgue measure. The C∗-algebra of τn is the C∗-algebra of continuous
functions on [0, 1]n. Since [0, 1]n is contractable we infer because of the properties
of the Paschke dual construction that the K0-group of E/K(τn;K) is the same as
K0(B/K) = 0.

We shall denote by Fn the ordered group of Lebesgue measurable functions f :
[0, 1]n → Z up to almost everywhere equality and which are in L∞([0, 1]n, dλ),
i.e., bounded. Note that Fn coincides with the ordered group K0((τn)

′) where (τn)′
is the von Neumann algebra which is the commutant of τn.

Example 1 ([55]) There is an order preserving isomorphism

K0 (E (τ ;C1)) → F1

where for each projection P in Mn(E(τ ;C1)) its K0-class [P ]0 is mapped to the
multiplicity function of the Lebesgue absolutely continuous part of P(T1 ⊗ In)P

where τ1 = (T1). Since k1(τ1) < ∞ we have that the K-group of K(τ1;C1) and K

are equal and since E(τ1;C1) contains a Fredholm operator of index 1, we have that

K0(E (τ1,C1)) � K0(E/K(τ1,C1)).

Example 2 ([55]) Assume I �= C1 and R is dense in I, then we have

K0(E (τ1; I)) = 0

and this also implies

K0(E/K(τ1; I)) = 0

since R is dense in K(τ1, I) and K1(K(τ1, I)) = 0.

Example 3 ([55]) If n ≥ 3 and I = C−
n , then we have

K0
(
E
(
τn,C

−
n

)) = Fn ⊕ Xn
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where the direct summand Xn is not known. This can also be stated saying that the
map

K0
(
(τn)

′) → K0
(
E
(
τn;C−

n

))

is an injection and its range is complemented. This uses the results on C−
n

perturbations of commuting n-tuples of Hermitian operators. Using k−
n (τn) < ∞

we also have that K0(E(τn,C
−
n ) � K0(E/K(τn;C−

n )).

The next example will show that if n > 1, there is no analogue of the situation
we had when n = 1 in Example 2, that is that K0 be trivial if I ⊃ C−

n , I �= C−
n .

Example 4 ([51]) Let n = 2 and I = C2. Then, if P is a projection in
Mn(E(τ2,C2)), the operator P((T1 + iT2) ⊗ In)P is an operator with trace-class
self-commutator and associated with such an operator there is its Pincus principal
function gP(T⊗In)P which is in L1([0, 1]2, dλ). The map

[P ]0 → gP(T⊗In)P ∈ L1
(
[0, 1]2, dλ

)

turns out to be well defined and gives a homomorphism

K0(E (τ2,C2)) → L1
(
[0, 1]2, dλ

)
.

One can also show that the range is an uncountable subgroup of L1([0, 1]2, dλ).
We refer the reader to [51, 46, 53] for a discussion about how this homomorphism
relates K0(E(τ2;C2)) to problems on almost normal operators. Note also that the
Pincus principal function [9, 30] is related to cyclic cohomology and thus at least
some part of K0(E(τ2;C2)) is related to cyclic cohomology [14]. We should also
point out that the algebras E(τ2;C2) are also related to non-commutative potential
theory objects [11, 12, 51].

15 The hybrid generalization

In the recent papers [57, 58] we have shown that the machinery we developed
for normed ideal perturbations extends to hybrid perturbations that is n-tuples of
Hermitian operators τ and τ ′ such that Tj − T ′

j ∈ Ij where (I1, . . . , In) is an n-
tuple of normed ideals. The surprising feature has been that the extension continues
to produce sharp results. We shall illustrate this with a few examples of results for
commuting n-tuples of Hermitian operators.
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If τ = (Tj )1≤j≤n is an n-tuple of Hermitian operators and (I1, . . . , In)

is an n-tuple of normed ideals, then k(I1,...,In)(τ ) is defined as the
smallest C ∈ [0,∞] for which there are Am ↑ I , 0 ≤ Am ≤ I finite
rank operators so that

lim
m→∞ max

1≤j≤n |[Am, Tj ]|Ij = C.

If the n-tuple of ideals is (Cp1 , . . . ,Cpn) or (C−
p1
, . . . ,C−

pn
) we also use the

notation kp1,...,pn(τ ) or k−
p1,...,pn

(τ ), respectively.

1◦ [58] Let τ and τ ′ be n-tuples of commuting Hermitian operators and pj ≥ 1,
1 ≤ j ≤ n so that p−1

1 + · · · + p−1
n = 1 and Tj − T ′

j ∈ C−
pj

1 ≤ j ≤ n. Then

the absolutely continuous parts τac and τ ′
ac are unitarily equivalent.

2◦ [57] Let pj ≥ 1, 1 ≤ j ≤ n be so that p−1
n + · · · + p−1

1 = 1. Then
there is a universal constant 0 < γp1,...,pn < ∞ so that if τ is an n-tuple of
commuting Hermitian operators and m(x), x ∈ R

n is the multiplicity function
of its Lebesgue absolutely continuous part, we have

(
k−
p1,...,pn

(τ )
)n = γp1,...,pn

∫

Rn
m(s)dλ(s).

16 Unbounded Fredholm modules

Alain Connes ([13], see also [15, 19]) has provided an upper bound for k−
n based on

unbounded Fredholm modules arising in his work on non-commutative geometry.
The unbounded Fredholm module with which one deals here is given by a ∗-

algebra of bounded operators on a Hilbert space H and an unbounded densely
defined self-adjoint operator D so that:

[D, a] when a ∈ A, is densely defined and bounded, and |D|−1 ∈ I, where I is a
normed ideal.

We refer to (A,D) as an unbounded I-Fredholm-module on H. (From the early
papers [13, 14] the terminology has been fluid and other related names like spectral
triple, K-cycle have also been used). Here is the Connes estimate:

Let τ be an n-tuple of operators in A, where (A,D) is a (C−
q )
dual-

unbounded Fredholm module, with q = p(p − 1)−1, then

k−
p (τ) ≤ βp‖[D, τ ]‖

(
Trω

(|D|−p))1/p

where βp is a universal constant and Trω is the Dixmier trace.

Note that the ideal (C−
q )
dual is larger than C−

p , it is actually C+
p the (p,∞)

ideal on the Lorenz scale. The estimate fits situations involving pseudodifferential
operators D.
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Unless some of the unbounded Fredholm module requirements are relaxed one
should not expect a perfect fit between existence of Fredholm modules and k−

p . On
the other hand, unbounded Fredholm modules behave well with respect to tensor
products, which is not the case for k−

p . For other results around unbounded Fredholm
modules and kI see also the last part of [45].

For more on the Connes estimate and non-commutative geometry see [13, 15,
19].

17 Sample open problems

Besides the open questions which have come up in our exposition, there are certainly
many more. Here are a few we would like to point out.

Problem 1 Find upper and lower bounds for the universal constants γn, n ≥ 2 in
the formula for (k−

n (τ ))
n where τ is an n-tuple of commuting Hermitian operators.

More generally the same question for the universal constants γp1,...,pn in the hybrid
setting is also open. Clearly, it would be of interest to have lower and upper bounds
as close to each other.

Problem 2 Does the Farah–Hart degree −1-saturation property still hold for
p(E(τ ; I)) when the assumption kI(τ ) = 0 is replaced by 0 < kI(τ ) < ∞? If
the answer to the preceding is negative, is there some weaker form of degree −1-
saturation of p(E(τ ; I)) when 0 < kI(τ ) < ∞? In particular, it would be of interest
to know the answer to these questions in the case when I = C1 and τ is a singleton,
a Hermitian operator with Lebesgue absolutely continuous spectrum of multiplicity
one.

Problem 3 The perturbation entropy of a measure-preserving transformation
HP (θ) has a natural generalization [47] to an invariant HP (θ1, . . . , θn) of an
n-tuple of such transformations

sup
ϕ ⊂ �

ϕ finite

k−∞
(
ϕ ∪ {Uθ1 , . . . ,Uθn}

)
.

What is the corresponding generalization of the Kolmogorov–Sinai entropy h(θ) so
that

HP (θ1, . . . , θn)
5

6
h(θ1, . . . , θn)?

One possible candidate for h(θ1, . . . , θn) could be the supremum over finite
partitions P of the probability measure space of
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lim inf
m→∞ m−1H(Pm)

where Pn is defined recursively by P1 = P and Pm+1 = Pm ∨ θ1Pm ∨ · · · ∨ θnPm.
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Quantum field theory on
noncommutative spaces

Raimar Wulkenhaar

Abstract This survey tries to give a rigorous definition of Euclidean quantum field
theory on a fairly large class of noncommutative geometries, namely nuclear AF
Fréchet algebras. After a review of historical developments and current trends we
describe in detail the construction of the �3-model and explain its relation to the
Kontsevich model. We review the current status of the construction of the�4-model
and present in an outlook a possible definition of Schwinger functions for which the
Osterwalder–Schrader axioms can be formulated.

1 Introduction

1.1 Quantum field theory and gravity

History of sciences culminates in the discovery that the enormous complexity
of structures observed on earth and in its nearby part1 of the universe derives,
through a hierarchy of models, from a tiny set of rules that we call the standard
model of particle physics coupled to Einstein gravity. This standard model is
described elsewhere in this collection of surveys. Here we stress that it has to be
built in two stages: The first stage is classical field theory, which has an elegant
mathematical formulation in terms of (traditional or noncommutative) differential
geometry. The dynamics is governed by field equations which can be derived from
an action functional. The second stage is quantisation, i.e. the implementation of
field equations between operators on Hilbert space which satisfy natural axioms.
This is not yet achieved. It is true that remarkable approximations have been

1The large-scale dynamics of the universe seems to require ‘dark matter’ which is not at all
understood.
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established, for instance, the agreement to 11 significant digits between quantum
field theoretical prediction and measurement of the magnetic moment of the electron
(classical field theory agrees to one digit with measurement).

The problem is twofold. There is first the challenge to construct an interacting
quantum field theory on 4-dimensional Euclidean or Minkowskian space, a difficult
mathematical problem. Several approaches seem possible; we give more details in
Section 2.

However, even if one of these programmes succeeds, there remains a profound
physical problem: gravity has to be taken into account. We should distinguish at
least four levels:

1. Gravity is ignored, the universe is flat Minkowski space. See above.
2. Quantum field theory in an external classical gravitational background field, i.e.

on a curved Lorentz manifold, but without any back-reaction of the quantum
field theoretical objects to the manifold. The local quantum field theory approach
which goes back to Haag–Kastler can cope with this generality. The free quantum
field on a general Lorentz manifold is under control.

3. Gravity is still described by classical Einstein theory in which quantum field
theoretical objects influence the metric via the stress-energy tensor. Discussed
below.

4. True quantum gravity. A driving force in contemporary mathematical physics,
with many ideas on the market. Work on these programmes has produced
spectacular mathematical results and will continue to do so. But a solution is
not in sight. We will not discuss it in this survey.

This survey is about a conceptional problem which arises already in level 3.
Quantum fields are operator-valued distributions, smeared over the support of a
test function (see Section 2). How ‘small’ can we make the support? According
to Heisenberg’s principle, the extension �x of support in position space and the
extension�p of support in momentum space are correlated by�x�p ≥ h̄/2 (where
h̄ is Planck’s constant). We can sharply localise �x at expense of undetermined
momentum. In a certain sense, it is this momentum uncertainty which manifests
itself in the experimentally confirmed quantum corrections. However, all this breaks
down in dynamical gravity. A momentum uncertainty�p comes with an uncertainty
in the stress-energy tensor which, by Einstein’s field equation, creates an uncertainty
in the metric tensor. For a rough estimate we translate �p = c�m in a mass
uncertainty (c is the speed of light) which induces an uncertainty �xs = 2G�m

c2

of the Schwarzschild radius (where G is Newton’s constant). Its influence on the
original geometry in which we localised the support of our quantum field to�x can
only be ignored as long as

�x 2 �xs = 2G

c3 �p >
Gh̄

c3

1

�x
.

In other words, we cannot localise the support of quantum fields better than the

Planck length &P =
√
Gh̄

c3 if (classical!) gravity is taken into account.
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These restrictions on the localisability of quantum fields must be incorporated
into quantum field theory itself. This is what quantum field theories on noncommu-
tative geometries try to do.

1.2 Noncommutativity

We know from quantum mechanics that any measurement uncertainty (enforced
by principles of Nature and not due to lack of experimental skills) goes hand in
hand with noncommutativity. To the best of my knowledge, the possibility that
geometry loses its meaning in quantum physics was first2 considered by Schrödinger
[Sch34]. On the other hand, Heisenberg suggested to use coordinate uncertainty
relations to ameliorate the short-distance singularities in the quantum theory of
fields. His idea (which appeared later [Hei38]) inspired Peierls in the treatment of
electrons in a strong external magnetic field [Pei33]. Via Pauli and Oppenheimer
the idea came to Snyder who was the first to write down uncertainty relations
between coordinates [Sny47]. The mutual interaction of quantum-mechanical and
gravitational disturbances was first discussed by Wheeler [Whe55] in his model of
‘geons’.

The uncertainty relations for coordinates were revived by Doplicher et al.
[DFR95] as a means to avoid gravitational collapse when localising events with
extreme precision. According to [DFR95], the coordinate uncertainties�xμ have to
satisfy �x0(�x1 +�x2 +�x3) ≥ &2

P and �x1�x2 +�x2�x3 +�x3�x1 ≥ &2
P .

These uncertainty relations are induced by noncommutative coordinate operators
x̂μ = (x̂μ)∗ satisfying [x̂μ, x̂ν] = i3̂μν , where 3̂μν are the components of a 2-form
3̂ which is central and normalised to 〈3̂, 3̂〉 = 0 and 〈3̂, ∗3̂〉 = 8&4

p. Moreover,
in [DFR95] first steps are taken towards a perturbative quantum field theory on the
resulting (Minkowskian) quantum space-time.

The previous discussion suggests that space itself, and not only the phase space of
quantum mechanics, should be noncommutative. The corresponding mathematical
framework of noncommutative geometry [Con94] has been developed. It is today
an integral part of mathematics. Noncommutative geometry is the reformulation of
geometry and topology in an algebraic and functional-analytic language, thereby
permitting an enormous generalisation. Many of its facets are presented in this
collection of surveys.

1.3 Structure of the survey

The main structures and techniques in noncommutative geometry are already
presented in other surveys so that we will not repeat them. We therefore start

2Actually, Riemann himself speculated in his famous Habilitationsvortrag [Rie92] about the
possibility that the hypotheses of geometry lose their validity in the infinitesimal small.
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in Section 2 with an informal introduction into basic concepts of quantum field
theory (QFT) in its traditional sense, i.e. on ordinary Minkowskian or Euclidean
space. After a sketch of the Wightman axioms we give a few details of the
Euclidean formulation of QFT. In this framework we describe the crucial concept
of renormalisation. For completeness we also sketch Feynman graphs, but our
philosophy is to avoid them.

Section 3 generalises the Euclidean formulation to a class of noncommutative
geometries. We argue that—to implement renormalisation—this should be the class
of nuclear AF Fréchet algebras. They are the analogue of AF C∗-algebras, but with
closure in a locally-convex topology rather than in norm topology. Our construction
heavily uses two classical theorems: The Bochner–Minlos theorem 2.3 provides us
with a measure on the space of Euclidean quantum fields. The Kōmura-Kōmura
theorem 3.3 achieves the coexistence of QFT on a discrete noncommutative algebra
with an apparently continuous universe.

We describe in Section 4 a couple of examples of such noncommutative
geometries and also mention a few other popular geometries which are not of this
class. One should retain from these discussions that we work with sequences of
matrix algebras. As such, QFT on noncommutative geometry is closely related to
matrix models. After Sections 3 and 4 the reader may directly jump to Section 7
where we introduce the main techniques and a prominent example in a class of
matrix models we have in mind. In between we try to give in Section 5 a review
of more physically oriented work on noncommutative quantum field theories. In
Section 6 we give more details on a particular direction which branched on one
hand into the axiomatic formulation of Section 3 and on the other hand into a novel
approach to quantum gravity. Both Sections 5 and 6 are nearly independent from
the others and could be skipped or exclusively read.

After a preparation on matrix models in Section 7, we present in Sections 8
and 9 two Euclidean QFT models on noncommutative geometries for which our
programme succeeded completely (Section 8) or at least partially (Section 9). In a
more speculative Section 10 we outline how a QFT on noncommutative geometry
could possibly be projected onto a true QFT on Minkowski space. That section
should be read with caution; the sketched ideas might go into a void direction.

1.4 Disclaimer

This survey has severe limitations. They are partly unavoidable because several
lines of research were developed in parallel, whereas only a sequential presentation
can be given. More severely, since an enormous amount of publications has been
produced, we can only review a tiny fraction. Our apologies go to everyone who is
not adequately acknowledged.
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2 Quantum field theory

2.1 Axiomatic and algebraic quantum field theory

It is fair to say that noncommutative geometry, operator algebras and quantum
field theory have a common root in von Neumann’s axiomatic characterisation
of quantum mechanics [vN32]. Quantum field theory (QFT) is an extension of
quantum mechanics to infinitely many degrees of freedom which at the same time
takes care of interactions between particles mediated by quantised fields. In fact
the distinction between particles and fields is abandoned in favour of a unifying
framework. The first spectacular confirmation of the new concept was Bethe’s
explanation [Bet47] of the Lamb shift.

In the early 1950s, Gårding and Wightman gave a rigorous mathematical
foundation to quantum field theory by casting the unquestionable physical principles
(locality, covariance, stability, unitarity) into a set of axioms. These ideas were
published years later [Wig56, WG64, SW64]. There are several possibilities to group
the data, but essentially one wants for a single scalar field:

Definition 2.1 A scalar quantum field ϕ on D-dimensional Minkowski space
R

1,D−1 is an unbounded operator-valued distribution, i.e. ϕ(f ), ϕ∗(f ) : D → D
are linear on a dense subspace D ⊂ H of a Hilbert space, for any test function
f ∈ S(R1,D−1). Moreover:

1. Covariance. There is a representation of the Poincaré group P↑
+ ( (t, R) by uni-

taries U(t, R) in H, which preserves D and satisfies U(t, R)ϕ(f )U(t, R)−1 =
ϕ(ft,R) with ft,R(x) := f (R−1(x − t)).

2. Spectrum condition. The joint spectrum of the generators of the translation
subgroup of P↑

+ lies in the forward lightcone V+ = {(p0,p) ∈ R
1,D−1 : p0 ≥

0, p2
0 ≥ ‖p‖2}.

3. Locality. For f, g causally independent, [ϕ(f ), ϕ(g)] = 0.

It is convenient to require that the subspace of P↑
+-invariant vectors in D is 1-

dimensional, and that for a P↑
+-invariant unit vector � (the vacuum), the generated

subspace span(polynomials(ϕ(fi), ϕ(fj )∗)�) is dense in H.

From these data one builds the Wightman functions, i.e. vacuum expectation
values of field operators

(S(R1,D−1))N ( (f1, . . . , fN) �→ W(f1, . . . , fN) := 〈�,�(f1) · · ·�(fN)�〉.
(2.1)

They are also called N -point functions or correlation functions. The Wightman
axioms induce covariance, locality, positivity, spectrum and cluster properties for
the Wightman functions. Conversely, Wightman’s reconstruction theorem allows
to reconstruct the data of Definition 2.1 from Wightman functions with these
properties. Some fundamental theorems such as PCT theorem and spin-statistics
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theorem can be proved in this framework. See [SW64]. The Wightman theory
is the basis for a rigorous theory of scattering processes (Haag-Ruelle theory
[Haa58, Rue62])—and this is exactly what the large accelerator facilities detect.

Unfortunately, it turned out very difficult to provide examples richer than the
free field which satisfy these (very natural) Wightman axioms. This difficulty
motivated the development of equivalent or more general frameworks. In particular,
the Wightman axioms are not made for gauge fields so that generalisation is indeed
necessary. One powerful generalisation is Algebraic QFT (or better Local QFT)
which shifts the focus from the field operators to the Haag–Kastler net of operator
algebras assigned to open regions in space-time [HK64]. Fields merely provide
coordinates on the algebra. This has the advantage to work with (C∗, von Neumann)
algebras of bounded operators where powerful mathematical tools are available.
Over the years this point of view turned out to be very fruitful [Haa96]. It is, in
particular, possible to describe quantum field theory on curved space-time [BFV03].

2.2 Euclidean QFT

As consequence of the spectrum condition 2 in Definition 2.1, Wightman func-
tions (2.1) admit an analytic continuation in time. At purely imaginary time they
become the Schwinger functions [Sch59] of a Euclidean quantum field theory.
Symanzik emphasised the powerful Euclidean-covariant functional integral repre-
sentation [Sym64]. In this way the Schwinger functions become the moments of a
statistical physics probability distribution. This tight connection between Euclidean
quantum field theory and statistical physics led to a fruitful exchange of concepts
and methods, most importantly that of the renormalisation group [WK74].

It is sometimes possible to rigorously prove the existence of a Euclidean quantum
field theory or of a statistical physics model without knowing or using that this
model derives from a true relativistic quantum field theory. Sufficient conditions
on the Euclidean model which guarantee the Wightman axioms were first given by
Nelson [Nel73b, Nel73a]. These conditions based on Markoff fields turned out to
be too strong or inconvenient. Shortly later, Osterwalder and Schrader established
a set of axioms [OS73, OS75] by which the Euclidean quantum field theory is (up
to a regularity subtlety) equivalent to a Wightman theory. In simplified terms, the
following data are necessary:

Definition 2.2 Let SN0 ⊂ S(RND) be the subspace of test functions which
vanish, with all derivatives, on any diagonal xi = xj , for 1 ≤ i < j ≤ N .
For xi =: (x0

i , xi ) ∈ R
D , let SN0+ ⊂ SN0 be the subspace of test functions

with support in the cone {x0
i ≥ 0} for all i = 1, . . . , N . Moreover, we let

f σ (x1, . . . , xN) := f (xσ(1), . . . , xσ(N)) be a permutation and f r(x1, . . . , xN) :=
f ((−x0

1 , x1), . . . , (−x0
N, xN)) be the reflection of all first components.

A Euclidean quantum field theory consists of a family {SN } of Schwinger N -
point distributions, where SN is a linear functional on SN0 which satisfies
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1. Euclidean invariance. SN(f ) = SN(ft,R) for any f ∈ SN0 and (t, R) ∈ R
D
�

SO(D), where ft,R(x1, . . . , xN) = f (R−1(x1 − t), . . . , R−1(xN − t)).
2. Reflection positivity. For any tuple (f0, f1, . . . , fK) of fk ∈ Sk0+, one has∑K

k,l=1 Sk+l (f rk × fl) ≥ 0.

[here, (f rk × fl)(x1, . . . , xk+l ) = f rk (x1, . . . , xk)fl(xk+1, . . . , xk+l )]
3. Symmetry. SN(f ) = SN(f

σ ) for any f ∈ SN0 and any permutation σ .

The Osterwalder–Schrader theorem asserts that Schwinger functions according
to Definition 2.2 of factorial growth (i.e. |SN(f )| ≤ cN(N !)L‖f ‖SN0 for some
seminorm defining SN0) are Laplace–Fourier transforms of Wightman functions in
a relativistic quantum field theory. The properties of the vacuum � follow if the
Schwinger functions cluster, limt→∞ Sk+l ((fk)t,1 × fl) = Sk(fk)Sl(fl).

2.3 The free Euclidean scalar field

We describe in some detail the free Euclidean scalar field because it serves as
example for the construction in the noncommutative setting. We start from the
Schwinger 2-point function and its corresponding Schwinger distribution

S2(x, y) :=
∫

RD

dq

(2π)D
ei〈x−y,q〉

‖q‖2 + μ2 , S2(f×g) =
∫

R2D
d(x, y) S2(x, y)f (x)g(y).

(2.2)

It satisfies reflection positivity on tuples (0, f, 0, . . . , 0), where f ∈ S10+:

S2(f r × f ) (2.3)

=
∫

R2D
d(x, y)

∫

RD

dq

(2π)D
ei(x0−y0)q0+i〈x−y,q〉

‖q‖2 + μ2
f (−x0, x)f (y0, y)

=
∫

(R+)2
d(x0, y0)

∫ ∞

−∞
dq0

∫

R3(D−1)

d(x, y,q)
(2π)D

e−i(x0+y0)q0+i〈x−y,q〉

q2
0 + ‖q‖2 + μ2

f (x0, x)f (y0, y)

=
∫

RD−1

dq
(2π)D−1 · 2ωμ(q)

∣∣∣∣

∫ ∞

0
dx0

∫

RD−1
dx e−x0ωμ(q)−i〈x,q〉f (x0, x)

∣∣∣∣

2

≥ 0,

where ωμ(q) := √‖q‖2 + μ2. Here, from the 2nd to 3rd line, after x0 �→ −x0, the
support property of f ∈ S10+ has been used. This allows to evaluate the q0-integral
via the residue theorem, resulting in the last line.

Next we introduce one of our most important tools:

Theorem 2.3 (Bochner–Minlos) Let X be a real nuclear vector space. Let a
continuous map F : X → R with F(0) = 1 be of positive type, i.e. for any
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x1, . . . , xK ∈ X and c1, . . . , cK ∈ C one has
∑K

i,j=1 ci c̄jF(xi − xj ) ≥ 0. Then
there exists a unique Radon probability measure dM on the dual space X′ with

F(x) =
∫

X′
eiφ(x)dM(φ). (2.4)

The theorem was proved in this generality by Minlos [Min59]. A proof can be found,
e.g. in [GJ87, §A6], starting from Bochner’s theorem [Boc32] which covers the case
X = X′ = R.

Recall that the Schwartz spaces S(RD) are nuclear. Consider for f ∈ S10+ the
continuous functional F(f ) = exp(− 1

2S2(f×f )) defined by the Schwinger 2-point
function (2.2). Then

K∑

i,j=1

cicjF(fi − fj ) =
K∑

i,j=1

∞∑

n=0

CiCj
S2(fi × fj )

n

n! (2.5)

with Ci := cie− 1
2S2(fi×fi). Since 〈fi, fj 〉 = S2(fi×fi) has all properties of a scalar

product, (S2(fi × fj ))ij is a positive definite Gram matrix. By the Schur product
theorem, (S2(fi, fj ))

n is, as Hadamard product of positive matrices, again positive.
In this way we have constructed out of a Schwinger 2-point function (2.2) a

measure dM(φ) on the space (S(RD))′ of Euclidean quantum fields. It gives rise to
Schwinger N -point distributions via

SN(f1 × · · · × fN) :=
∫

(S(RD))′
φ(f1) · · ·φ(fN) dM(φ) (2.6)

= (−i)N
∂N

∂t1 · · · ∂tN F(t1f1 + · · · + tNfN)

∣∣
∣
ti=0

.

The family {SN } satisfies all Osterwalder–Schrader axioms.

2.4 The interacting scalar field

For a polynomial P bounded from below, we would like to define an interacting
scalar QFT by a ‘deformed measure’ on (S(RD))′:

dMint(φ) := dM(φ) exp
( − ∫

RD
dx λ(x)P (φ(x))

)

∫
X′ dM(φ) exp

( − ∫
RD
dx λ(x)P (φ(x))

) , (2.7)

where dM(φ) is the previous Bochner–Minlos measure and λ a test function which,
to achieve Euclidean invariance, eventually is sent to a coupling constant. The
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‘definition’ (2.7) has very many problems. It is motivated by the successful quantum-
mechanical Feynman–Kac formula [Kac49] which constructs deformations of the
Wiener measure on the space of Hölder-continuous paths.

The problems with (2.7) are related to the fact that the pointwise product of
distributions is not necessarily a distribution. Therefore, the integral in (2.7), and
integrals involving dMint(φ), are meaningless; we have to modify the rules. Many
such modification procedures are known; they are (or should be) all equivalent. The
following steps are typical:

Programme 2.4

1. Infrared regularisation. Restrict RD to a compact subset K ⊂ R
D . If K is a cube,

the Schwinger 2-point function (2.2) will contain a sum over discrete {qn} instead
of an integral. After integrating over K, now safe, the summation over {qn} might
still diverge. Therefore it is necessary to introduce an ultraviolet regularisation.

2. Ultraviolet regularisation. Restrict to finitely many discrete momenta ‖qn‖ ≤
�. Both regularisations together give rise to a finite-dimensional problem,
which is important to retain for the treatment of quantum field theories on
noncommutative geometries in the next section.

3. Identify parameters. After regularisation one hopes to see how to modify
parameters in order to achieve a well-defined limit � → ∞ and K → R

D .
These parameters can be the scalar coefficients in the polynomial P(φ), the mass
μ2 in (2.2) and a global field redefinition φ �→ √

Zφ. Let us collectively call
them λ1(K,�), . . . , λr (K,�).

4. Renormalisation. Identify r moments (here a lot of experience is necessary to
decide which) of the regularised measure to be kept constant. We say they are
normalised to values M1, . . . ,Mr which all depend on λ1(K,�), . . . , λr (K,�).
By the implicit function theorem, this dependence can generically be inverted to

λ1(K,�,M1, . . . ,Mr), . . . , λr (K,�,M1, . . . ,Mr).

In this way all moments of the regularised measure, i.e. our regularised
Schwinger functions, depend on K,�,M1, . . . ,Mr ; we say they are
renormalised.

Here comes the

Challenge 2.5 (of QFT)

1. Prove that after these preparations the limit � → ∞ and K → R
D (understood

as convergence of nets) of all moments exists.
2. Prove that the resulting Schwinger functions satisfy the Osterwalder–Schrader

axioms.

This programme succeeded in a few cases, all in dimension D < 4. In D = 2
dimensions and for arbitrary polynomial P(φ) bounded from below, this was
achieved in groundbreaking works by Simon [Sim74] and Glimm–Jaffe–Spencer
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[GJS74]. See also [GJ87]. They proved that it is essentially enough to replace
P(φ) by its normal ordering :P(φ):, a well-defined procedure which for monomials
reads :φk: = ∑

k2+···+ks=k ck1,...,ks φ
k1(

∫
φk2 dM(φ)) · · · (∫ φksdM(φ)) for certain

integers ck1,...,ks . The resulting polynomial is no longer bounded from below so that
the very assumption of the Feynman–Kac formula is lost. That the Challenge 2.5
is solvable for this so-called P(φ)2-model (the subscript 2 refers to D = 2
dimensions) is a highly non-trivial result.

For the φ4
3-model, which means P(φ) = φ4 in D = 3 dimensions, a similar

existence proof can be established, but the work is already harder. The strategy
fails for the φ4

4-model (i.e. in 4 dimensions). Here the only possibility is to expand

e−λ ∫
R4 dx (φ(x))4 = ∑∞

n=0
(−λ)n
n! (

∫
R4 dx (φ(x))4)n into a power series and to

formally exchange sum
∑

n and integration
∫
X′ dM(φ). By a procedure known as

renormalised perturbation theory, briefly sketched below, one can give a meaning
to the

∫
X′ dM(φ) order by order in λn. However, the resulting series necessarily

has zero radius of convergence.3 In principle there exist summation techniques
for series where λ = 0 is a boundary point of the holomorphicity domain.
But in case of φ4

4 this is also expected to fail because of the so-called triviality
conjecture [Aiz81, Frö82]. The problem was first discovered by Landau et al for
QED [LAK54]; it almost killed renormalised quantum field theory (rescued by the
discovery of asymptotic freedom in QCD [GW73, Pol73]). Later we come back to
that point.

Here we only mention that Yang–Mills theory in 4 dimensions is conjecturally
free of the triviality problem and should exist as a quantum field theory. The proof
is one of the millennium prize problems [JW00], left for the far future.

2.5 Feynman graphs and Feynman integrals

Here we briefly discuss interesting structures which arise when exchanging sum

and integral of the expanded interaction term e− λ
4!

∫
RD

dx (φ(x))4 . The integral in
footnote 3 serves as a warning that this is not what one ultimately wants. Step 1
of Challenge 2.5 is often in reach order by order in λn; for that it is helpful that the
implicit function theorem has an easy Taylor approximation. Step 2 is meaningless
as long as the convergence of the series remains obscure.

3It is instructive to look at the following integral, which is a sort of φ4
0 -model:

I (λ) =
∫ ∞

−∞
dφ e−φ2−λφ4

“=”
∞∑

k=0

∫ ∞

−∞
dφ

(−λ)kφ4k

k! e−φ2 =
∞∑

k=0

(−λ)k �(2k + 1
2 )

�(k + 1)
,

where ‘=‘ results when exchanging sum and integral. The series diverges for any λ �= 0, but the lhs
is perfectly defined for Re(λ) ≥ 0 and evaluates into I (λ) = 1

2
√
λ

exp( 1
8λ )K 1

4

( 1
8λ

)
, where Kν is a

modified Bessel function.
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The various contributions are conveniently organised into Feynman graphs
[Fey49]. These arise because the (divergent) integral

λn
∫

RnD
d(y1, . . . , yN)f1(y1) · · · fN(yN)

∫

RnD
d(x1, . . . , xn)

×
∫

X′
dM(φ) φ(y1) · · ·φ(yN)(φ(x1))

4 · · · (φ(xn))4

contributing to the perturbative order-n Schwinger N -point function factors into all
possible pairings of φ(xi) with φ(xj ) into S2(x1, x2). Up to combinatorial factors
which we do not discuss, this is given by the sum over Feynman graphs � with

• n four-valent vertices located at x1, . . . , xn ∈ R
D , each with a factor λ assigned;

• N one-valent vertices located at y1, . . . , yN ∈ R
D;

• with factor S2(xa, xb) assigned to every edge between xa, xb (which can be x’s
and y’s, also xa = xb is allowed);

• integrated over x1, . . . , xn (will diverge unless restricted to K and �);
• integrated against test functions f1(y1), . . . , fN(yN) over y1, . . . , yN .

The resulting Feynman integral can be rearranged in several ways. One can keep the
momentum variables q from (2.2) in every edge and move the Fourier kernels to the
vertices, where the x-integrals give Dirac-δ distributions. The momentum rules are
thus:

• assign oriented momentum qab to every (arbitrarily oriented) edge from vertex a
to vertex b, assign 1

‖qab‖2+μ2 to that edge;

• assign (2π)Dλδ(q1 + · · · + q4) to every 4-valent vertex a, where qi := qbi if the
edge arrives from vertex b and qi := −qib if the edge goes to b.

Writing the weight factors as 1
‖q‖2+μ2 = ∫ ∞

0 dα e−α(‖q‖2+μ2) and returning to

(2π)Dδ(q1, . . . , q4) = ∫
RD
dx ei〈x,(q1+···+qr )〉, all x-integrations and q-integrations

for edges between 4-valent vertices are Gaußian and give rise to the parametric
representation which can immediately be deduced from:

Theorem 2.6 A connected graph � with L edges between 4-valent vertices con-
tributes with weight

∫

RD

dp1 f̂1(p)

|p1‖2 + μ2 · · ·
∫

RD

dp1 f̂N (pN)

|pN‖2 + μ2 δ(p1+ . . .+pN)A�(p1, . . . , pN), where

A�(p1, . . . , pN) =
∫

(R+)L
d(α1, . . . , αL)

e
−μ2(α1+···+αL)− V�(α&,pν )

U�(α&)

(U�(α&))
D
2

, (2.8)

U�(α&) =
∑

T1∈�

∏

&/∈T1

α&, V�(α&) =
∑

T2∈�

( ∏

&/∈T2

α&

)∥∥∥
∑

ν∈T21

pν

∥
∥∥

2
.
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Here the sum in U� runs over all spanning trees T1 of � (trees which meet every
4-valent vertex); the sums in V� run over all forests T2 of exactly two trees T21 and
T22 which together contain all 4-valent vertices, and each of them at least one vertex
with some incoming momentum pν .

TheU�, V� are referred to as the Kirchhoff–Symanzik polynomials of �. At vanish-
ing external momenta pν , the amplitude diverges for α → 0. This divergence is best
controlled by a decomposition into Hepp sectors απ(1) < · · · < απ(L), which give
rise to iterated integrals. Such iterated integrals are fascinating objects [Bro13b].
They form a Hopf algebra [Kre00], which relates them to noncommutative geometry
[CK98], and they evaluate (for μ = 0 and pν = 0) to special values of analytic
number theory, typically multiple zeta values [Bro13a]. The Symanzik polynomials
provide connections between algebraic varieties and Feynman integrals [Blo15].
According to the Goncharov–Manin conjecture [GM04], there is a relation between
periods in mixed Tate motives and residues of Feynman integrals.

The perturbative regularisation and renormalisation methods for the above
Feynman integrals produce two problems which make a resummation of the
perturbation series impossible. The same will apply to the perturbative treatment
of QFTs on noncommutative geometries. One can do better, both in traditional and
noncommutative QFT. First, the usual renormalisation at a single scale pν = 0
produces amplitudes which grow as log ‖pν‖. Inserting n such renormalised graphs
γ as subgraphs into a bigger, convergent graph � with n vertices leads to amplitudes
A� = O(n!). This is the renormalon problem; it arises because one repairs too
much. Constructive renormalisation theory [Riv91] avoids the renormalon problem
by slicing the α-integrals and external momenta pν into multiple scales and only
repairs if the α-scale is higher than the p-scale. The second problem is that the
number of Feynman graphs with n vertices grows too fast with n. This problem
is addressed by a reorganisation of the perturbation series into trees instead of
graphs [GRM09]. The idea goes as follows: A Schwinger function is a sum of
amplitudes indexed by graphs, S = ∑

� S� . Let T ⊂ � be the spanning trees,
and assume there is a weight function with

∑
T⊂� w(�, T ) = 1. Then formally

S = ∑
�

∑
T⊂� w(�, T )S� = ∑

T ST with ST = ∑
�⊃T w(�, T )S� .

3 Euclidean quantum fields on noncommutative geometries

3.1 Nuclear AF Fréchet algebras

A noncommutative geometry is for us a spectral triple (A,H,D) [Con95] con-
sisting of an associative ∗-algebra represented on Hilbert space H, together with a
self-adjoint unbounded operator D such that [D, a] extends to a bounded operator
for all a ∈ A. Often compactness of a(D + i)−1 is required, and various topologies
on and closures of A are considered.
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In this survey we restrict ourselves to Euclidean quantum field theory which
we intend to construct by analogy with Sections 2.3 and 2.4. The construction of
a (Euclidean) QFT on a noncommutative geometry (A,H,D) is a compromise
between two contradictory requirements. Steps 1+2 of Programme 2.4 require a
reduction to a finite-dimensional problem where everything is well-defined. This
allows to adjust parameters so that a limit can be studied. Finite-dimensional
algebras are matrix algebras, and the limiting procedure seems at first sight to be
what is known as AF C∗-algebras [Bra72]. An important (non-unital) example is
the algebra of compact operators which is the norm closure of finite-rank operators.
On the other hand, for the initial definition of a free Euclidean scalar field via the
Bochner–Minlos theorem 2.3 we need a scalar product on a nuclear vector space.
But the vector space of compact operators is not nuclear, and consequently the norm
closure is the wrong concept for our purpose.

What we rather need is a class of algebras A which we would like to call nuclear
AF Fréchet algebras:

Definition 3.1 A Fréchet space is a locally convex vector space X topologised by
a countable increasing family (pn) of seminorms, which make X metrisable and
complete. The Fréchet space is nuclear if

1. the topology is defined by a countable family (pn) of Hilbert seminorms, i.e. for
every n there is an inner product 〈 , 〉n on X with (pn(x))2 = 〈x, x〉n.

2. If Xn denotes the closure of X with respect to 〈 , 〉n, then for any pn there is a
larger pm such that the natural map from Xm to Xn is trace-class.

Definition 3.2 A (nuclear) Fréchet algebra is an algebra A that, as a vector space,
is a (nuclear) Fréchet space and in which the multiplication · : A × A → A is
continuous.

Nuclear Fréchet algebras can always be understood as a certain space of smooth
functions with deformed product. Namely,

Theorem 3.3 For a Fréchet space X are equivalent:

1. X is nuclear.
2. X is isomorphic to a closed subspace of C∞(U), for any open U ⊂ R

D .

The equivalence is essentially due to T. Kōmura and Y. Kōmura [KK66] (for D =
1; the general case can be found in the literature, see e.g. [Vog00]). Given now
a Fréchet algebra A, then an isomorphism ιU of vector spaces between A and a
closed subspace of C∞(U) induces a deformed product $U on ιU (A) by

ιU (a) $ιU ιU (b) := ιU (ab). (3.1)

We will mainly be interested in U = R
D . In case that ιRD(A) is invariant under

translations by R
D , or even under the Euclidean group R

D
� SO(D), or under a

subgroup of them, we can define a corresponding group action on A by
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αt,R(a) := ι−1
RD
((ιRDa)t,R), where ft,R(x) = f (R−1(x − t)). (3.2)

Such a group action is very important for us because it is needed to formulate an
analogue of the Osterwalder–Schrader axioms, see Section 10. There are clearly
examples for Fréchet algebras carrying an action of the Euclidean group, but we do
not know how generic they are. So let us formulate:

Question 3.4 Which assumptions on a Fréchet algebra guarantee the exis-
tence of an isomorphism to a closed subspace of C∞(RD) that is invariant
under (a subgroup of) the Euclidean group?

It remains to define our approximation property needed for renormalisation:

Definition 3.5 A nuclear Fréchet algebra A is called AF (for approximately finite-
dimensional) if there is an increasing sequence A0 ⊂ A1 ⊂ A2 ⊂ . . . of
finite-dimensional subalgebras, embedded into each other by ∗-homomorphisms
ιN : AN → AN+1, such that

⋃
N∈NAN is dense in A in the locally-convex

topology induced by the Hilbert seminorms {pn} of A.

This definition is inspired by the corresponding definition AF-C∗-algebras [Bra72],
but we do not require A to be unital and we close in the locally-convex topology.
The class of unital AF-C∗-algebras is very rich and classified by K-theoretic data
[Ell76]. We have no idea about the corresponding landscape in the locally-convex
setup:

Question 3.6

1. How rich is the class of nuclear AF Fréchet algebras?
2. How much do they depend on the choice of Hilbert seminorms?
3. Is there any chance to classify them, possibly under extra conditions?
4. Is there any relation to limits of compact quantum metric spaces [Rie04]?

Remark 3.7 The Kōmura-Kōmura theorem 3.3 is a typical example for the coex-
istence of the discrete and the continuum in noncommutative geometry [Con95]. It
is undeniable that our universe is very close to a continuous space. But we cannot
conclude that our universe is a manifold; it just means that smooth functions on a
manifold are the universal model for a nuclear Fréchet space which could very well
be inherently discrete.
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3.2 The free Euclidean scalar field on a noncommutative
geometry

Every nuclear Fréchet algebra A admits a free Euclidean scalar field. The vector
space A∗ of self-adjoint elements of A is a real nuclear vector space. Consider
a continuous symmetric positive-semidefinite bilinear form C on A∗, called the
covariance. Such a C always exists; take, for instance, the inner product defining
any of the Hilbert seminorms pn on A. In the same way as in Section 2.3, the
continuous linear map FC : A∗ → R defined by

FC(a) := exp
(

− 1

2
C(a, a)

)
, a = a∗ ∈ A∗, (3.3)

satisfies the assumptions of the Bochner–Minlos theorem 2.3. Consequently, there
exists a unique Radon probability measure dMC on the dual space A′∗ of Euclidean
scalar fields with

FC(a) =
∫

A′∗
dMC(�) ei�(a). (3.4)

It is straightforward to generalise this construction to finitely generated projective
modules over A, but for the sake of clarity we will not spell it out. The moments of
dMC are, as before, given by

∫

A′∗
dMC(�) �(a1) · · ·�(aN)

= (−i)N
∂N

∂t1 · · · ∂tN F(t1a1 + · · · + tNaN)

∣∣
∣
ti=0

(3.5)

=
⎧
⎨

⎩

∑

pairings of [N ]
C(ai1 , aj1) · · ·C(aiN/2 , ajN/2) for N even.

0 for N odd.

A pairing is a partition of {1, 2, . . . , N} into N
2 subsets (i1, j1), . . . , (iN/2, jN/2)

with ik < jk . We interpret SN(a1 ⊗ · · · ⊗ aN) := ∫
A′∗ dMC(�) �(a1) · · ·�(aN)

as the Schwinger N -point function of the free scalar field of covariance C on the
noncommutative algebra A.

We postpone a discussion of Osterwalder–Schrader axioms for the free field to
Section 10.
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3.3 Towards an interacting scalar field on noncommutative
geometry

Switching on interaction is, as in ordinary quantum field theory, a very hard
problem. We proceed as in Section 2.4 and formally define correlation functions
as moments of a Feynman–Kac perturbation of dMC . Given a functional Sint on
A′∗, bounded from below, we define

〈a1 ⊗ · · · ⊗ aN 〉 :=

∫

A′∗
dMC(�) �(a1) · · ·�(aN) exp(−Sint(�))

∫

A′∗
dMC(�) exp(−Sint(�))

(3.6)

= (−i)N

ZC(0)

∂NZC(t1a1 + · · · + tNaN)

∂t1 · · · ∂tN
∣∣
∣
ti=0

,

where

ZC(J ) =
∫

A′∗
dMC(�) ei�(J )−Sint(�) (3.7)

is the partition function. For the free theory Sint(�) ≡ 0, it coincides with the
characteristic function FC(J ) defined in (3.3), with J ∈ A∗. For Sint(�) �= 0,
however, these naïve correlation or partition functions do not make any sense.
One meets the usual divergences whose treatment requires regularisation and
renormalisation. As stressed in Section 2.4, we have to restrict in a first step to
finite-dimensional subspaces, at least for a rigorous (non-perturbative) treatment. In
perturbation theory one may hope to do less, but this depends on the situation.

Inspired by renormalisation in usual QFT, sketched in Section 2.4, we proceed
as follows:

Programme 3.8 For a given nuclear AF Fréchet algebra A, consider covari-
ances C(N) and interaction functionals S(N)int on the finite-dimensional subspace
AN∗ of A∗. Parametrise them by real numbers λ1(N), . . . , λr (N), define corre-
lation functions (3.6) by integrals with measure dMC(N) over (AN∗ )′. Identify
r of these moments M1, . . . ,Mr , all functions of λ1(N), . . . , λr (N), but con-
sidered as fixed. The implicit function theorem generically allows to invert to
λ1(N,M1, . . . ,Mr), . . . , λr (N,M1, . . . ,Mr). Consequently, all level-N correla-
tion functions depend on N and M1, . . . ,Mr .

Now we face part 1 of the fundamental Challenge 2.5: Prove that with these
preparations, under the embeddings ιN and corresponding embeddings of (C(N))
and (S

(N)
int ), the limit N → ∞ of all moments (3.6) exists, thereby defining

Schwinger functions of an interacting scalar QFT on A.

Discussion of Step 2, the Osterwalder–Schrader axioms, has to be postponed.
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We describe the parametrisation by λ1(N), . . . , λr (N) for the most relevant case
of tracial interaction functionals. As with C∗-algebras, every AN is a direct sum of
finitely many matrix algebras, AN = ⊕

i MnN,i (C). Let (e(i)kl ) be the standard matrix
basis of MnN,i (C). We extend the real linear functionals Φ to A via Φ(a + ib) :=
Φ(a) + iΦ(b). Then the restriction of � ∈ A′∗ to AN is uniquely specified by the

complex numbers�(i)kl := �(e
(i)
kl ) ≡ �

(i)
lk , and the following defines a functional on

(AN∗ )′:

S
(N)
int (�) :=

∑

i

∑

pi

λi,pi (N)
pi

nN,i∑

ki1,...,k
i
pi

=1

�
(i)

ki1k
i
2
�
(i)

ki2k
i
3
· · ·�(i)

kipi−1k
i
pi

�
(i)

kipi
ki1
. (3.8)

Additional λc(N) will parametrise the covariances and possible field redefinitions
�
(i)
kl �→ √

Zi(N)�(i)kl .
An investigation in this generality has not yet been performed. We describe in

Section 4.1 below the simplest case given by a single summand i (hence omitted)
and an embedding ιN analogous to compact operators.

4 Some noncommutative geometries for QFT

4.1 Simplest example: Moyal algebra

Let Aθ = {a = (akl) : k, l = 1, 2, 3, . . . } be the vector space of double-indexed
sequences, with involution (a∗)kl = alk , completed in the Fréchet topology induced
by the family of inner products

〈a, b〉m :=
∞∑

k,l=1

θ2m(k + 1
2 )
m(l + 1

2 )
maklbkl . (4.1)

Let ers be the terminating sequence in Aθ defined by (ers)kl = δrkδsl , then (b(m)rs )

with b(m)rs := θ−m(r+ 1
2 )

−m/2(s+ 1
2 )

−m/2ers form an orthonormal basis with respect
to 〈 , 〉m. Let Aθ,m be the closure of Aθ with respect to 〈 , 〉m. Every a ∈ Aθ,m+3
has a representation

a =
∞∑

r,s=1

〈b(m+3)
rs , a〉m+3b

(m+3)
rs =

∞∑

r,s=1

〈b(m+3)
rs , a〉m+3

θ3(r + 1
2 )

3
2 (s + 1

2 )
3
2

b(m)rs ,

which shows that, for any m, the natural map Aθ,m+3 ( a �→ a ∈ Aθ,m is trace-
class. Hence, Aθ is a nuclear Fréchet space.
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For a = (akl), b = (bkl) ∈ Aθ we consider [ab]kl := ∑∞
n=1 aknbnk . Using

Cauchy–Schwarz inequality several times one has

(pm(ab))
2 ≤

( ∞∑

k,n=1

θm(k + 1
2 )
m|akn|2

)( ∞∑

l,n′=1

θm(l + 1
2 )
m|bn′l |2

)

≤ 1

θ2m (pm(a))
2(pm(b))

2. (4.2)

This shows that the sequence ab := ([ab]kl) belongs to Aθ and that the
corresponding multiplication Aθ × Aθ ( (a, b) �→ ab ∈ Aθ is continuous. Hence,
Aθ is a nuclear Fréchet algebra. The terminating sequences (ers) introduced above
satisfy ersetu = δst eru. Thus they play the rôle of matrix bases, and we will often
expand a = ∑∞

k,l=1 aklekl where it is understood that ekl ∈ Aθ and akl ∈ C.
By Theorem 3.3 there exists an isomorphism ιθ := ιR2 of vector spaces between

Aθ and a closed subspace of C∞(R2). A particular realisation is given by ιθ (ekl) :=
fk−1,l−1, where

f
(θ)
kl (x1, x2) := 2(−1)k

√
k!
l!

(√
2

θ
(x1 + ix2)

)l−k
Ll−kk

(
2‖x‖2

θ

)
e− ‖x‖2

θ , (4.3)

for x = (x1, x2). The Lαm(t) are associated Laguerre polynomials of degree m in t .

One has
∫
R2 dx f (θ)mn (x) = 2πθδmn. By linear extension we obtain an isomorphism

between Aθ and the nuclear vector space S(R2) of Schwartz functions. According
to (3.1), this isomorphism induces an associative product $θ on S(R2), the Moyal
product. One can verify [GBV88]

(φ $θ ψ)(x) =
∫

R2×R2

dk dy

(2π)2
φ

(
x + 1

2
3y

)
ψ(x + y)ei〈y,k〉, (4.4)

where 3 =
(

0 θ

−θ 0

)
. This makes the Moyal product an example of a strict

deformation quantisation by action of R
2 [Rie93]. In particular, the action of

the Euclidean group R
2
� SO(2) on S(R2) induces via (3.2) a corresponding

group action αt,R on Aθ which has the important property to commute with the
multiplication:

αt,R(ab) = (αt,Ra)(αt,Rb). (4.5)

Remains to describe the AF structure of Aθ . We let AN
θ := span(ekl : 1 ≤

k, l ≤ N), then every AN
θ is a subalgebra for the multiplication in AN. The natural

identification AN
θ ≡ MN(C) defines via
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ιN : AN
θ = MN(C) ( a �→

(
a 0
0 0

)
∈ MN+1(C) = AN+1

θ

the connecting ∗-homomorphism ιN. Given a finite family (pn1, . . . , pnK ) of Hilbert
seminorms and ε > 0, for every a = (akl) ∈ Aθ the absolute convergence pni (a) <
∞ guarantees the existence of an Nε;n1,...,nK ∈ N with

pni

(
a −

Nε;n1,...,nK∑

k,l=1

aklekl

)
< ε for all i = 1, . . . , K.

Hence,
⋃∞

N=1 AN
θ is dense in Aθ for the Fréchet topology, and Aθ is indeed a

nuclear AF Fréchet algebra.

4.2 Quantum fields on the Moyal algebra

We describe possible choices of covariances and interaction functionals on Aθ . The
interaction functionals (3.8) specify to

S
(N)
int (�) =

∑

p

λp(N)
p

N∑

k1,...,kp=1

�k1k2�k2k3 · · ·�kp−1kkp
�kpk1 , (4.6)

where �kl := �(ekl) and the sum over p is finite. The particularly relevant cases
p = 3 and p = 4 are discussed in Sections 8 and 9. Passing via ιθ to Schwartz
functions and taking the Fourier transform, the functional (4.6) becomes in the limit
N → ∞
Sint(�) (4.7)

=
∑

p

λp

p

∫

R2p
d(q1, . . . , qp) δ(q1+ . . .+qp)e i

2

∑
1≤k<l≤p〈qk,3ql〉�̂(q1) · · · �̂(qp),

assuming that λp(N) has a limit (which is rarely the case in practice). This form has
often been used in a perturbative treatment of QFTs on Moyal space (see Section 5).
It is not suitable for a rigorous construction.

The covariances (3.3) could be chosen arbitrarily, but for a convenient interpreta-
tion we assume that they arise from a family {dν}ν=1,...,s of continuous linear maps
dν : Aθ → Aθ of geometrical significance, for instance, induced by the Dirac
operator D of a spectral triple (A,H,D). For a = ∑N

k,l=1 aklekl ∈ AN
θ ≡ MN(C),

consider

s∑

ν=1

Tr((dνa)
∗dνa) =:

N∑

k,l,m,n=1

Dkl;mnaklamn. (4.8)



626 R. Wulkenhaar

The covariance is the inverse of that matrix,
∑N

m′,n′=1 C
(N)(ekl, em′n′)Dn′m′;mn =

δknδlm = ∑N
m′,n′=1Dkl;m′n′C(N)(en′m′ , emn).

The following choices are of particular relevance:

• For an arbitrary sequence (Ek) of positive real numbers, define dE(ekl) =√
Ek + Elekl . It follows CE(ekl, emn) = δknδlm

Ek+El . This covariance together with
p = 3 in (4.6) defines the Kontsevich model [Kon92] which is of paramount
importance in algebraic geometry. We discuss it in Sections 7.2 and 8. The same
covariance but with quartic interaction p = 4 has also received considerable
attention and will be discussed in Section 9.

• The action αt,1 of translations by t ∈ R
2 defined in (3.2) can be shown to be

generated by

(∂1 − i∂2)(ekl) =
√

2

θ
(
√
l − 1ek,l−1 − √

kek+1,l),

(∂1 + i∂2)(ekl) =
√

2

θ
(
√
k − 1ek−1,l −

√
lek,l+1). (4.9)

In this way the covariance of the Laplacian 〈a,−�a〉 = ∑2
ν=1 Tr((∂νa)∗∂νa)

can be defined. The calculation is lengthy; one has to diagonalise the resulting
matrix �kl;mn via Meixner polynomials. We briefly describe these steps in
Section 6.1.

• Pointwise multiplication (M1φ)(x) = x1φ(x) and (M2φ)(x) = x2φ(x) of
Schwartz functions defines continuous linear maps which translate via ι−1

θ into
the following action on the matrix bases:

(M1 + iM2)(ekl) =
√
θ

2
(
√
l − 1ek,l−1 + √

kek+1,l),

(M1 − iM2)(ekl) =
√
θ

2
(
√
k − 1ek−1,l +

√
lek,l+1). (4.10)

Instead of the Laplacian one can consider the slightly more general covariance

of the operator 〈a,H�a〉 = ∑2
ν=1 Tr((∂νa)∗∂νa + 4�2

θ2 (Mνa)
∗Mνa). See

Section 6.1.

Remark 4.1 The Moyal product (4.4) has its origin in quantum mechanics, in
particular in Weyl’s operator calculus [Wey28]. Wigner introduced the useful
concept of the phase space distribution function [Wig32]. Then, Groenewold
[Gro46] and Moyal [Moy49] showed that quantum mechanics can be formulated
on classical phase space using the twisted product concept. In particular, Moyal
proposed the ‘sine-Poisson bracket’ (nowadays called Moyal bracket), which
is the analogue of the quantum mechanical commutation relation. The twisted
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product was extended from Schwartz class functions to (appropriate) tempered
distributions by Gracia-Bondía and Várilly [GBV88, VGB88]. The programme
of Groenewold and Moyal culminated in the axiomatic approach of deformation
quantisation [BFF+78a, BFF+78b]. The problem to lift a given Poisson structure to
an associative $-product was solved by Kontsevich [Kon03]. Cattaneo and Felder
[CF00] found a physical derivation of Kontsevich’s formula in terms of a path
integral quantisation of a Poisson sigma model [SS94]. The Moyal product is a
strict deformation by R

D-action [Rie93], not only a formal deformation. The Moyal
plane is a spectral triple [GGBI+04], and the spectral action has been computed
[Vas04, GI05].

4.3 4-Dimensional Moyal space

The generalisation of the Moyal algebra introduced in Section 4.1 to 4 dimensions
is achieved by double-double-indexed sequences A3 = {a = (akl) : k, l ∈ N

2≥1}
with (a∗)kl = alk and completed in the Fréchet topology induced by

〈a, b〉m :=
∑

k,l∈N2≥1

(
θ2m

1 (k1 + 1
2 )
m(l1 + 1

2 )
m + θ2m

2 (k2 + 1
2 )
m(l2 + 1

2 )
m
)
aklbkl .

(4.11)

We introduce already here the block-diagonal matrix 3 = diag
(
31,32) with

3i = ( 0 θi−θi 0

)
. A multiplication on the nuclear Fréchet space A3 is again introduced

via multi-indexed matrix bases (e r1
r2

s1
s2
) k1
k2

l1
l2

= δr1k1δr2k2δs1l1δs2l2 and e k1
k2

l1
l2

em1
m2

n1
n2

:=
δl1m1δl2m2e k1

k2
n1
n2

. For the isomorphism ι3 := ιR4 of Theorem 3.3 we arrange

ι3 : A3 → S(R4) by defining ι3(e k1
k2

l1
l2

) := f
(θ1)
k1−1,l1−1 × f

(θ2)
k2−1,l2−1 and linear

extension, where (f (θ1)
kl × f

(θ2)
mn )(x1, x2, x3, x4) := f

(θ1)
kl (x1, x2)f

(θ1)
mn (x3, x4). Then

the resulting $-product (3.1) on S(R4) takes the form

(φ $3 ψ)(x) =
∫

R4×R4

dk dy

(2π)4
φ(x + 1

23y)ψ(x + y)ei〈y,k〉,

generalising (4.4). The AF-structure is obtained via the Cantor polynomial which
implements the bijection between N

2 and N. After a shift, the Cantor bijection reads
P(

k1
k2
) := 1

2 ((k1 + k2)
2 − 3k1 − k2 + 2). Accordingly, we identify e k1

k2

l1
l2

with the

standard matrix basis e 1
2 ((k1+k2)

2−3k1−k2+2), 1
2 ((l1+l2)2−3l1−l2+2). Symmetry between

both components selects AN
3 ≡ MN(N+1)/2(C); the embedding ιN : AN

3 → AN+1
3

is given by filling up with zeros.
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Question 4.2 Is it true that limN→∞ AN
3 described here is, as nuclear AF

Fréchet algebra, different from limN→∞ AN
θ introduced in Section 4.1?

Under the isomorphism ι3 we obtain finite-dimensional subalgebras of the 4-
dimensional Moyal algebras ι3(AN

3) = span(f (θ1)
k1l1

×f (θ2)
k2l2

: k1 + l1 ≤ N−1, k2 +
l2 ≤ N−1). Interestingly, this dependence on the length | k1

k1
| := k1 + k2 of double

indices will be respected by the covariances chosen in Sections 6, 8 and 9.

4.4 Gauge models

Gauge models arise very naturally in noncommutative geometry [CR87]. With
spectral triples either the older formulation [Con94, Con95] via the Dixmier trace
or the spectral action [Con96, CC97] is available. Everything works for the Moyal
space [Gay03, Vas04, GI05]. But this defines only the classical action which does
not give rise to a covariance for the free gauge field. Gauge fixing [FP67] is required
and can be implemented in noncommutative geometry [Wul00, Per07].

In D dimensions one needs D gauge fields A1, . . . , AD ∈ A which have
to be extended by a Faddeev–Popov ghost c (a Maurer–Cartan form for the
BRST-differential s) and two auxiliary objects c̄, B. Then a covariance for
(A1, . . . , AD,B) and for (c, c̄) exists, and quantum gauge theory can formally
be defined along the same lines as before. Partial results for perturbative
renormalisation have been achieved, also numerical results have been obtained,
but nothing rigorous. Some of these investigations will be reviewed in Section 5.

4.5 Fuzzy spaces

The fuzzy sphere [Mad92] is one of the simplest noncommutative spaces. It is
obtained by truncating representations of su(2). The algebra S2

N is identified with
mappings from the representation space N

2 of su(2) to itself, thus with the algebra

MN+1(C). The fuzzy sphere S2
N is generated by X̂ν , ν = 1, 2, 3, which form an

su(2)-Lie algebra with suitable rescaling, identified by the requirement that the
Casimir operator still fulfils the defining relation of the two-sphere as an operator:

[X̂μ, X̂ν] =
3∑

κ=1

iλεμνκX̂κ ,
3∑

ν=1

X̂νX̂ν = R2,
R

λ
=

√
N
2

(N
2 + 1

)
. (4.12)

The philosophy about the limit N → ∞ is quite different than before, namely the
ordinary commutative sphere should arise in the limit. The necessary framework
was worked out by Rieffel [Rie04]. Its main steps are the realisation of the S2

N
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as compact quantum metric spaces, where Lipschitz seminorms are relevant. The
embeddings of S2

N into bigger structures are achieved via “bridges”, and in the
end it is shown that the sequence of S2

N converges to S2 in the Gromov–Hausdorff
topology.

The Lie algebra su(2) generated by Jν , ν = 1, 2, 3, acts on a ∈ S2
N by the

adjoint action Jνa = 1
λ
[X̂ν, a]. Thus, an element a ∈ S2

N can be represented by

a =
N∑

l=0

l∑

m=−l
alm�lm, where

3∑

ν=1

J 2
ν �lm = l(l+1)�lm, J3�lm = m�lm,

4π

N+1
Tr
(
�lm�l′m′

) = δll′δmm′ .

(4.13)

Other fuzzy spaces include the fuzzy CP 2 [GS99, ABIY02] and the q-deformed
fuzzy sphere [GMS01, GMS02].

Remark 4.3 Any quantum field theory shows divergences in some way. The first
step to treat them is regularisation. Typically a regularisation destroys the symme-
tries of the theory so that the limit N → ∞ is considered. Fuzzy noncommutative
spaces [Mad92, Mad95] achieve a regularisation of quantum field theory models
without losing symmetry [GM92, GKP96b, GKP96a, GS99]. Of course, the usual
divergences of a quantum field theory on S2 will reappear in the limit N → ∞. This
limit was investigated in [CMS01]. For the one-loop self-energy in the φ4-model, a
finite but non-local difference between the N → ∞ limit of the fuzzy sphere and the
ordinary sphere was found. See [Haw99] for similar calculations. Gauge models on
the fuzzy sphere have been studied, e.g. in [IKTW01, Ste04]. Another approach to
finite quantum field theories on noncommutative spaces is point-splitting via tensor
products [CHMS00, BDFP03].

4.6 A non-example: the noncommutative torus

The noncommutative torus Aθ is the universal C∗-algebra generated by two
unitaries U,V satisfying UV = e2iπθVU , for some θ ∈ R \ Q. Several equivalent
presentations are known, for instance, as irrational rotation algebra. It is probably
the best-studied noncommutative space [Rie90]. We are more interested in a Fréchet
subalgebra of Aθ which consists of elements of the form

a =
∑

q1,q2∈Z
aq1q2U

q1V q2 , 〈a, b〉n :=
∑

q1,q2∈Z
(1 + |q1| + |q2)

naq1q2bq1q2 < ∞.

(4.14)
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The noncommutative torus is not an AF algebra (all AF-algebras have trivial K1-
group, whereas K1(Aθ ) = Z). However, there is an AF algebra into which Aθ
embeds. The construction relies on the approximative continued fraction expansion
of θ and is explained in [LLS01]. It is also shown there that objects of a quantum
field theory on the noncommutative torus can conveniently be constructed as
limits of finite-dimensional problems. This formulation is employed in [LLS04] to
construct matrix models which approximate field theories on the noncommutative
torus.

The computation of the spectral action [EILS08] and renormalisation of scalar
fields [DPV16] on the noncommutative torus are quite involved. QFTs on projective
modules over the noncommutative torus were treated in [GJKW07].

4.7 Other (non-) examples

Many other noncommutative spaces have been studied. A formal definition of free
Euclidean scalar fields is mostly possible. An overview goes beyond the scope of
this survey, but a few examples can be flashed: κ-deformation [IMSS11], quantum
groups [ILS09].

5 QFT on NCG: the first years4

5.1 Very short overview about QFT on deformed
Minkowski space

The initial work by Doplicher–Fredenhagen–Roberts [DFR95] mentioned in Sec-
tion 1.2 also introduced free relativistic quantum fields on quantum space-time and
prepared for a perturbative treatment of interactions. Later the Euclidean approach
(see Section 5.2), formally obtained by a Wick rotation, became much more popular.

It was pointed out in [BDFP02] that a simple Wick rotation does not give a
meaningful theory on Minkowskian space-time, first of all because formal (i.e.
wrong) Wick rotation destroys unitarity [GM00, AGBZ01]. To obtain a consistent
Minkowskian quantum field theory, it was proposed in [BDFP02] to iteratively
solve the field equations à la Yang-Feldman. See also [Bah03]. Another possibility
is time-ordered perturbation theory [LS02c, LS02b]. See also [BFG+03, DS03].
Unfortunately, the resulting Feynman rules become so complicated that apart
from tadpole-like diagrams [BFG+03] it seems impossible to perform perturbative
calculations in time-ordered perturbation theory. Moreover, it seems impossible to
preserve Ward identities [ORZ04], and dispersion relations are severely distorted
[Zah06].

4This is a slight adaptation from a previous review [Wul06].
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A fascinating re-import of quantum fields on deformed Minkowski space back
into usual Minkowski space was initiated by Grosse and Lechner [GL07]. They
considered a family of free quantum fields indexed by the noncommutativity
parameter and related by a Lorentz transform. They showed that the family can be
considered as wedge-local on ordinary Minkowski space, satisfying the axioms, and
possessing a non-trivial two-particle S-matrix. Their construction was generalised
to the Haag–Kastler setting in [BS08] and termed ‘warped convolution’. After
further investigation in the Wightman setting [GL08], it was shown in [BLS11] that
warped convolution is an isometric representation of Rieffel’s strict deformation
quantisation [Rie93] of C∗-dynamical systems.

5.2 Perturbative QFT on deformed Euclidean space

The Euclidean approach started with Filk [Fil96] who showed that the planar graphs
of a field theory on the Moyal plane are identical to the commutative theory (and
thus have the same divergences). Another achievement in [Fil96] was the definition
of the intersection matrix of a graph which is read off from its reduction to a rosette.
Later in [VGB99] the persistence of divergences was rephrased in the framework of
noncommutative geometry, based on the general definition of a dimension and the
noncommutative formulation of external field quantisation. At about the same time,
Connes et al. [CDS98] investigated the possibility that M-theory is compactified on
the noncommutative torus instead of on an ordinary torus. M-theory lives in higher
dimensions so that some of them must be compactified to give a realistic model.
Compactifying on a noncommutative instead of a commutative torus amounts to
turn on a constant background 3-form C. An alternative interpretation based on D-
branes on tori in presence of a Neveu-Schwarz B-field was given by Douglas and
Hull [DH98].

Knowing that divergences persist in quantum field theories on the Moyal plane,
the question arises whether these models are renormalisable. Martín and Sánchez-
Ruiz [MSR99] investigated U(1) Yang–Mills theory on the noncommutative R

4

(the same as the Moyal space) at the one-loop level. They found that all one-
loop pole terms of this model in dimensional regularisation5 can be removed by
multiplicative renormalisation (minimal subtraction) in a way preserving the BRST
symmetry. This is completely analogous to the situation on the noncommutative 4-
torus [KW00] where ζ -function techniques and cocycle identities are used to extract
pole parts of Feynman graphs, thereby proving multiplicative renormalisation of the
initial action and verifying the Ward identities. Around the same time there appeared
also an investigation of (2 + 1)-dimensional super-Yang–Mills theory with the 2-
dimensional space being the noncommutative torus [SJ99].

5There is of course a problem extending 3 to complex dimensions, this is however discussed in
[MSR99].
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Inspired by [CDS98] and its companion [DH98], Schomerus [Sch99] observed
that in string theory with D-branes, and a magnetic field on the branes, the field
theory limit of string theory produces Kontsevich’s formal $-product [Kon03] of
deformation quantisation. There are also other noncommutative spaces which arise
as limiting cases of string theory [ARS99].

Shortly later, the appearance of noncommutative field theory in the zero-
slope limit of type-II string theory was thoroughly investigated by Seiberg and
Witten [SW99]. They noticed that passing to the zero-slope limit in two different
regularisation schemes (point-splitting and Pauli–Villars) gives rise to a Yang–Mills
theory either on noncommutative or on commutative R

D . Since the regularisation
scheme cannot matter, Seiberg and Witten argued that both theories must be gauge-
equivalent. More general, under an infinitesimal transformation of θ one has to
require that gauge-invariant quantities remain gauge-invariant. This requirement
leads to the Seiberg–Witten differential equation

dAμ

dθρσ
= −1

8

{
Aρ, ∂σAμ + Fσμ

}
$
+ 1

8

{
Aσ , ∂ρAμ + Fρμ

}
$
, (5.1)

where {a, b}$ = a $ b + b $ a.
The Seiberg–Witten paper [SW99] made the connection between string the-

ory and noncommutative geometry extremely popular. Several lines of research
appeared. One important question concerns the extension of the one-loop renor-
malisation proof of quantum field theories on noncommutative R

D to any loop
order. The main contributions to this programme are due to Chepelev and Roiban
[CR00]. Their work uses ribbon graphs in an essential manner. Ribbon graphs
were invented by t’Hooft [tH74] for strong interactions and were first employed
for noncommutative field theories in [Haw99]. Such ribbon graphs can be drawn
on an (oriented) Riemann surface with boundary to which the external legs of the
graph are attached. See Section 7.1. Chepelev and Roiban derived the parametric
representation of a ribbon graph � and found the analogues of the Symanzik
polynomials U�, V� of Theorem 2.6, which now contain θ in a manner that depends
on the topology of �. This makes the identification of divergent Hepp sectors more
involved. The first conclusion in [CR00] was that a noncommutative field theory
is renormalisable iff its commutative counterpart is renormalisable. However, by
computing the non-planar one-loop graphs explicitly, Minwalla, Van Raamsdonk
and Seiberg pointed out a serious problem in the renormalisation of φ4-theory on
noncommutative R

4 and φ3-theory on noncommutative R
6 [MVRS00]. It turned

out that this problem was simply overlooked in the first version of [CR00], with
the power-counting analysis being correct. A refined proof of the power-counting
theorem was given in [CR01]. Roughly, the problem discovered in [MVRS00]
is the following: Non-planar graphs are regulated by the phase factors in the $-
product (4.7), but only if the external momenta of the graph are non-exceptional.
Inserting non-planar graphs (declared as regular) as subgraphs into bigger graphs,
external momenta of the subgraph are internal momenta for the total graph. As such,
exceptional external momenta for the subgraph are realised in the loop integration,
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resulting in an divergent integral for the total graph. This is the so-called UV/IR-
mixing problem [MVRS00].

The UV/IR mixing problem received considerable attention. In the following
months an enormous number of articles doing (mostly) one-loop computations of
all kind of models appeared of which only a few key results should be mentioned in
this survey: the two-loop calculation of φ4-theory [ABK00b]; the renormalisation
of complex φ $ φ∗ $ φ $ φ∗ theory [ABK00a], later explained by a topological
analysis [CR01]; computations in noncommutative QED [Hay00]; the calculation of
noncommutativeU(1)Yang–Mills theory [MST00], with an outlook to super-Yang–
Mills theory; the one-loop analysis of noncommutative U(N) Yang–Mills theory
[BS01]. Several reviews of these activities appeared, for instance, by Konechny and
Schwarz with focus on compactifications of M-theory on noncommutative tori as
well as on instantons and solitons on noncommutative R

D [KS02], by Douglas and
Nekrasov [DN01] as well as by Szabo [Sza03], both with focus on field theory
on noncommutative spaces in relation to string theory. For reviews which include
results discussed in Section 6, see [Wul06, Riv07b].

It was also investigated whether for gauge theories on noncommutative R
D the

Seiberg–Witten θ -expansion defined in (5.1) can be helpful. In that approach one
solves (5.1) as a formal power series in θ , in fact often truncated to finite order. The
result is a local quantum field theory which has no relation to the original problem.
Anyway, the Seiberg–Witten approach was made popular in [JSSW00] where it was
argued that this is the only way to obtain a finite number of degrees of freedom
in non-Abelian noncommutative Yang–Mills theory. The solution of (5.1) to all
orders in θ and lowest order in A(0) was given in [Gar00]. A generating functional
for the complete solution was derived in [JSW01]. The quantum field theoretical
treatment of θ -expanded field theories was initiated in [BGP+02]. In [BGG+01]
it was shown that the superficial divergences in the photon self-energy are field
redefinitions to all orders in θ and any loop order [BGG+01]. However, this fails
for more complicated sectors [Wul02]. In fact, in the class of formal power series in
θ , quantum field theoretical quantities are (up to field redefinition) the same with or
without the Seiberg–Witten map [GW02]. Thus, the Seiberg–Witten map is merely
an unphysical (but convenient) change of variables.

In [Ste07] an alternative interpretation of the UV/IR-mixing ofU(1)-gauge fields
was proposed: It does not describe a noncommutative photon but a sort of graviton.
See [GSW08] and, for a review, [Ste10]. Phenomenological investigations of θ -
expanded field theories have also been performed [CJS+02, BDD+03].

5.3 Numerical simulations

There is another approach which goes back to older work on the large-N limit
of 2-dimensional SU(N) lattice gauge theory. Here the number of degrees of
freedom is reduced and corresponds to a zero-dimensional model [EK82], under
the condition that no spontaneous breakdown of the [U(1)]4-symmetry appears.
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As shown in [GAO83], a spontaneous symmetry breakdown does not appear
when twisted boundary conditions are used. This construction was adapted in
[AII+00] to type-IIB matrix models. It was shown in [AMNS99] that, imposing
a natural constraint for the (finite) matrices, the twisted Eguchi–Kawai construction
[GAO83] can be generalised to noncommutative Yang–Mills theory on a toroidal
lattice. The appearing gauge-invariant operators are the analogues of Wilson loops
[Wil74]. This formulation enabled numerical simulations [BHN02, BHN03] of the
various limiting procedures which confirmed conjectures [GS01] about striped and
disordered patterns in the phase diagram of spontaneously broken noncommutative
φ4-theory.

6 Renormalisation of noncommutative φ4-theory to all
orders

With Harald Grosse we started in summer 2002 an investigation of the UV/IR-
mixing problem in the matrix basis (4.3) [GBV88] of the Moyal space. In
combination with Polchinski’s implementation [Pol84] of Wilson’s renormalisation
group equations [WK74], we hoped to disentangle various limit procedures which
occur in the renormalisation of Feynman graphs. Our programme succeeded, but
not for the anticipated reason.

6.1 QFT with harmonic oscillator covariance on Moyal space

The Laplace kernel defined in (4.8) with (4.9) takes for the AN
3-approximation of

4-dimensional Moyal space (see Section 4.3) the form [GW05b]

2∑

ν=4

Tr((∂νa)
∗∂νa)+ μ2Tr(X∗X) =:

N∑

ki ,li ,mi ,ni=1

�k1
k2

l1
l2

;m1
m2

n1
n2

a k1
k2

l1
l2

am1
m2

n1
n2
,

�k1

k2
l1

l2 ;m1

m2
n1

n2
= (

μ2+ 2
θ
(m1+n1+m2+n2+2)

)
δn1k1δm1l1δn2k2δm2l2 (6.1)

− 2
θ

(√
k1l1 δn1+1,k1δm1+1,l1+

√
m1n1 δn1−1,k1δm1−1,l1

)
δn2k2δm2l2

− 2
θ

(√
k2l2 δn2+1,k2δm2+1,l2+

√
m2n2 δn2−1,k2δm2−1,l2

)
δn1k1δm1l1 .

We call the line (6.1) the local interaction, the last two lines the nearest-neighbour
interaction. When deriving Feynman rules for ribbon graphs on assigns to the edges
the covariance, which is the inverse of �k1

k2
l1

l2 ;m1

m2
n1

n2
. As shown in [GW05a], renor-

malisability requires a sufficiently fast decay of the covarianceC(e k1

k2
l1

l2
, em1

m2
n1

n2
)with

max(ki, li , mi, ni) and a bound on partial sums
∑

k1,k2 maxli ,mi C(e k1

k2
l1

l2
, em1

m2
n1

n2
).
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It turned out that this would be the case if only the local interaction was present,
but the nearest-neighbour interaction spoils it. We therefore decided to scale down,
completely ad hoc, the nearest-neighbour terms. The resulting kernel

H�
m1

m2
n1

n2 ; k1

k2
l1

l2

= (
μ2+ 2+2�2

θ
(m1+n1+m2+n2+2)

)
δn1k1δm1l1δn2k2δm2l2 (6.2)

− 2−2�2

θ

(√
k1l1 δn1+1,k1δm1+1,l1+

√
m1n1 δn1−1,k1δm1−1,l1

)
δn2k2δm2l2

− 2−2�2

θ

(√
k2l2 δn2+1,k2δm2+1,l2+

√
m2n2 δn2−1,k2δm2−1,l2

)
δn1k1δm1l1

turned out to describe the harmonic oscillator Schrödinger operator

4∑

ν=1

(
Tr((∂νa)

∗∂νa)+ 4�

θ2 Tr((Mνa)
∗Mνa)

)
+ μ2Tr(a∗a)

=:
N∑

ki ,li ,mi ,ni=1

H�
k1
k2

l1
l2

;m1
m2

n1
n2

a k1
k2

l1
l2

am1
m2

n1
n2
, (6.3)

where Mν is the pointwise multiplication introduced in (4.10). The introduction of
� was completely ad hoc. It has, however, one appealing property. The interaction
Tr(�n), for n even, is invariant under a duality transformation of the Moyal product
discovered by Langmann and Szabo [LS02a]. This transformation transforms∑4

ν=1 Tr((∂ν�)∗∂ν�) into
∑4

ν=1 Tr((Mν�)
∗Mν�) and vice versa, thus achieving

duality-covariance of the model with �-term.
For renormalisation a fine control of the covariance is necessary. To invert (6.3)

one first diagonalises (6.2) by noticing that the corresponding 3-term relation defines
the Meixner polynomials [KS96]. Then the inverse is computed to

C(em1

m2
n1

n2
, e k1

k2
l1

l2
) = θ

2(1+�)2 δm1+k1,n1+l1δm2+k2,n2+l2

×
m1+l1

2∑

v1= |m1−l1|
2

m2+l2
2∑

v2= |m2−l2|
2

B
(
1+μ2θ

8� + 1
2 (m

1+k1+m2+k2)−v1−v2, 1+2v1+2v2)

× 2F1

(1+2v1+2v2,
μ2θ
8� − 1

2 (m
1+k1+m2+k2)+v1+v2

2+μ2θ
8� + 1

2 (m
1+k1+m2+k2)+v1+v2

∣∣
∣∣
(1−�)2
(1+�)2

)

×
2∏

i=1

(1−�
1+�

)2vi
√(

ni

vi+ni−ki
2

)(
ki

vi+ ki−ni
2

)(
mi

vi+mi−li
2

)(
li

vi+ li−mi
2

)
.

(6.4)
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The free theory is now under control. In the limit � → 0 to the covariance of the
Laplacian a confluent hypergeometric function arises.

Formally we define an interacting QFT via the perturbation (3.6) of the Bochner–
Minlos measure dMC associated with the covariance (6.4):

G k1

m1
l1

n1 ;...; kN
mN

lN

nN

:=

∫
dMC(�) � k1

m1
l1

n1
· · ·� kN

mN
lN

nN

exp
(

− λ

4
Tr(�4)

)

∫
dMC(�) exp

(
− λ

4
Tr(�4)

) , (6.5)

where � k1

m1
l1

n1
:= �(e k1

m1
l1

n1
).

At this stage we are interested in a perturbative expansion as formal power series
G k1

m1
l1

n1 ;...; kN
mN

lN

nN

= ∑∞
v=0 λ

v
∑∞

g=0
∑N

B=1G
(v,B,g)

k1

m1
l1

n1 ;...; kN
mN

lN

nN

in which we collect

contributions of ribbon graphs with v vertices, B boundary components and genus
g. We postpone a discussion of such ribbon graphs to Section 7.1. As pointed out in
Programme 3.8, for renormalisation we have to restrict to finite matrix size N and
to take a conditional limit N → ∞ where certain correlation functions (6.5) are
held fixed. In the original work [GW05b], instead of a sharp restriction N a smooth
cut-off of matrix indices near θ�2 was chosen. This allows to derive first-order
Polchinski differential equations [Pol84] which describe the flow of correlation
functions when varying the scale�. The key strategy is to integrate these differential
equation for mixed boundary conditions. Finitely many correlation functions which
are termed relevant or marginal are integrated from � = 0 to �. These are
G
(v,1,0)
0
0

0
0 ; 0

0
0
0 ; 0

0
0
0 ; 0

0
0
0
, G(v,1,0)0

0
0
0 ; 0

0
0
0

(which has a relevant and a marginal contribution) as well

as G(v,1,0)1
0

0
0 ; 0

0
1
0

= G
(v,1,0)
0
1

0
0 ; 0

0
0
1

= G
(v,1,0)
0
0

1
0 ; 1

0
0
0

= G
(v,1,0)
0
0

0
1 ; 0

1
0
0
. The remaining infinitely many

irrelevant correlation functions are integrated from � = ∞ down to �. Here a
subtlety has be taken into account: A local planar four-point function (which is not
the generic case; adjacent indices are the same) must be split as

G
(v,1,0)
k1

m1
k2

m2 ; k2

m2
k3

m3 ; k3

m3
k4

m4 ; k4

m4
k1

m1

≡
(
G
(v,1,0)
k1

m1
k2

m2 ; k2

m2
k3

m3 ; k3

m3
k4

m4 ; k4

m4
k1

m1

−G
(v,1,0)
0
0

0
0 ; 0

0
0
0 ; 0

0
0
0 ; 0

0
0
0

)
+G

(v,1,0)
0
0

0
0 ; 0

0
0
0 ; 0

0
0
0 ; 0

0
0
0
.

The final term is marginal and integrated from 0 to �, whereas the difference of
the first two terms must be proved to be irrelevant, integrated from ∞ down to
�. Similar mixed integrations are necessary for the local and nearest-neighbour
planar 2-point function. After all one achieves, order by order in the coupling
constant, bounds which allow to take the limit � → ∞ of any �-dependent
correlation function. Here bounds on the covariance enter, which in [GW05b] were
only numerically achieved. In [RVTW06] rigorous analytic bounds for � close to 1
were proved.
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Renormalisability of the 2-dimensional case has been proved in [GW03]. In this
case the oscillator frequency required in intermediate steps can be switched of at the
end.

6.2 The β-function

In total we have four marginal and relevant correlation functions integrated from
initial values at �R = 0 to �. They can be interpreted as produced by �-dependent
parameters in the Sint(�)-perturbed measure. These are

1. a scale-dependent mass μ(�),
2. a scale-dependent oscillator frequency �(�) in (6.2) or (6.4),
3. a wave-function renormalisation � �→ √

Z(�)� which induces a global
prefactor 1

Z(�)
in front of (6.4) and

4. a combined factor λ �→ λ(λ)Z(�)2 in Sint(�).

The logarithmic derivatives β� = � ∂
∂�
�(μR,�R, λR,�) and βλ =

� ∂
∂�
λ(μR,�R, λR,�) are referred to as β-functions (of oscillator frequency and

coupling constant). Here μR,�R, λR are the initial values of mass, oscillator
frequency and coupling constant corresponding to the moments held fixed at
�R = 0. At one-loop order one finds [GW04]

β� = λR�R

96π2

(1 −�2
R)

(1 +�2
R)

3
βλ = λ2

R

48π2

(1 −�2
R)

(1 +�2
R)

3
. (6.6)

These relations have far-reaching consequences. Namely, λ(�)

�2(�)
is constant under

the renormalisation group flow (first noticed by David Broadhurst). Solving the
coupled system of differential equations one finds lim�→∞�(�) = 1 and
consequently lim�→∞ λ(�) = λR

�2
R

. The finiteness of λ(∞) is in sharp contrast

with the usual (commutative) φ4
4-model which is believed to suffer from the

triviality problem. Strictly speaking, triviality is only proved in 4 + ε dimensions
[Aiz81, Frö82], but the perturbative renormalisation group flow indicates triviality
also in 4 dimensions. Triviality means that the running coupling constant λ(�)
diverges already at finite �0, referred to as the Landau pole [LAK54]. The only
possibility to extend the model to � → ∞ is to let the initial coupling λR → 0,
resulting in a free (or trivial) field theory.

The one-loop absence of the triviality problem had considerable impact on the
further development of the subject. It seemed that implementing the constructive (as
opposed to perturbative) approach [Riv91] to quantum field theory, the�4-model on
4-dimensional Moyal space could possibly become the first constructed interacting
quantum field theory model in 4 dimensions. The first step, the multiscale-slicing
of the covariance, was introduced in [RVTW06]. We describe in the next subsection
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the further development into this direction. Here we focus on the progress which the
enlarged community achieved for the β-function.

At the fixed point � = 1 of the renormalisation group flow, the covariance sim-
plifies enormously: The matrix Schrödinger operator (6.2) becomes H�=1

m1

m2
n1

n2 ; k1

k2
l1

l2

=
(
μ2+ 4�2

θ
(m1+n1+m2+n2+2)

)
δn1k1δm1l1δn2k2δm2l2 with inverse

C�=1
(
em1

m2
n1

n2
, e k1

k2
l1

l2

)
= δn1k1δm1l1δn2k2δm2l2

μ2+ 4�2

θ
(m1+n1+m2+n2+2)

. (6.7)

This simplification has early been exploited by Langmann et al. [LSZ03, LSZ04]
to make contact with the theory of matrix models [DFGZJ95]. We return to this
point in Section 7. Also the perturbative calculation of the β-function simplifies
enormously. Disertori and Rivasseau proved in [DR07] that at� = 1 the β-function
remains zero up to three-loop order.

This result clearly suggested the existence of a symmetry transformation which
implies βλ = 0 to all orders in perturbation theory. The transformation was soon
identified by Disertori et al. in [DGMR07], inspired by 1-dimensional Fermi liquid
[BM04]. We will derive these Ward–Takahashi identities in slightly generalised
form in Section 7.3. In [DGMR07] a special case was considered and thereby
proved that the divergent part of the 4-point function is, graph by graph, completely
determined by the divergent part of the 2-point function. Therefore, it is enough
to renormalise the 2-point function; no infinite renormalisation of the coupling
constant λ is necessary. This means that the β-function at � = 1 vanishes to all
orders in perturbation theory.

Research bifurcated at this point. With H. Grosse we developed a solution
strategy for models in the Kontsevich class (to be reviewed in Sections 8 and 9).
The authors of [DGMR07] tailored constructive renormalisation theory to the non-
commutative situation. We briefly review some achievements in the next subsection.

6.3 Constructive renormalisation

Several aspects of constructive renormalisation are best understood in position
space. The bosonic covariance is the Mehler kernel [GRVT06],

C(x, y) = �2

π2θ2

∫ ∞

0

dt

sin2 4�t
θ

e
(
− �

2θ ‖x−y‖2 coth( 2�
θ
)− �

2θ ‖x+y‖2 tanh( 2�
θ
)−μ2t

)
.

(6.8)

In [GRVT06] also the fermionic covariance was evaluated, which was used in
[VT07] to prove renormalisability to all orders of the orientable noncommutative
Gross–Neveu model. In [GR07] the parametric representation was derived, which in
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particular identified the analogues of the Symanzik polynomials (see Theorem 2.6).
Besides linking QFT to algebraic geometry, these Symanzik polynomials are
also particular multivariate versions of the Tutte polynomial in graph theory
[KRTW10]. The graph-theoretical interpretation of the noncommutative analogue
of the Symanzik polynomial (Bollobás-Riordan polynomials) was clarified in
[KRVT11].

Traditional bosonic constructive renormalisation employs two technical tools:
the cluster expansion and the Mayer expansion [GJS74, BK87]. They are designed
for usual Euclidean space which is divided into cubes to test the localisation of
vertices. Since vertices of a QFT on Moyal space are not localised, these traditional
tools cannot be applied. In [Riv07a], Rivasseau developed the loop vertex expansion
which serves as substitute for cluster and Mayer expansion. It was made for
constructive matrix theory, but it is also a conceptional simplification for traditional
constructive renormalisation [MR08]. The loop vertex expansion combines the
Hubbard–Stratonovich transform, the BKAR forest formula [BK87, AR95] and the
replica trick. For N × N-matrices �, the Hubbard–Stratonovich transform is based
on the following identity:

e−λ/4 Tr(�4)

∫
dσ e− 1

2 Tr(σ 2) =
∫

dσ e− 1
2 Tr(σ 2)−i

√
λ/2 Tr(σ�2),

where dσ is the translation-invariant Lebesgue measure on R
N2

. Then the Euclidean
scalar field � is integrated with measure dMC(�), resulting in an effective
potential e−V (σ), called the loop vertex, for the intermediate field σ . In the
limit N → ∞ divergences reappear and must be treated by multiscale slic-
ing [GR15]. The factorisation over slices is automated by Grassmann integrals
over fermionic variables. Then, in an expansion of the exponential e−W =
∑∞

n=0
1
n! (−W)n = ∑∞

n=0
1
n!
∏n
a=1(−Wa)

∣∣∣
Wa=W

, one artificially distinguishes the

factors (replica trick). The replica measure is degenerate, consisting of an n × n-
matrix with all entries 1. The BKAR forest formula [BK87, AR95] allows to
write such matrices as sum of positive matrices indexed by forests. Here a two-
level forest formula, bosonic and fermionic, is necessary. Taking the logarithm
amounts to restricting the forest to a sum of trees. In this way the organisation
of the perturbative series into trees, briefly outlined at the end of Section 2.5, is
achieved. For an overview about this and other new methods in constructive QFT,
see [GRS14]. In [RW12, RW15] this new constructive renormalisation method
was successfully applied to the φ4

2-model. The considerably harder problem, the
constructive renormalisation of the �4-model on 2-dimensional Moyal space with
harmonic propagation of critical frequency� = 1, was achieved by Wang [Wan18].
He proved that the logarithm of the partition function is the Borel sum of its
perturbation series, analytic in a cardioid domain |λ| < ρ cos2( 1

2 arg(λ)), excluding
the negative reals.
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6.4 Other developments

In [dGWW07] (using Mehler kernels in position space) and in [GW07] (using
the matrix basis) an induced gauge theory with �-term was derived by coupling
quantum scalar fields to classical gauge fields Aμ. The induced class of actions can
be formulated using covariant coordinates [MSSW00] Xμ(x) = (3−1)μνx

ν + Aμ
as (with Einstein’s sum convention)

S =
∫

R4
dx

(
c1Fμν $ F

μν + c2{Xμ,Xν}$ $ {Xμ,Xν}$ + c3Xμ $ X
μ
)
(x),

(6.9)

where Fμν = (3−1)μν − i[Xμ,Xν]$ = ∂μAν − ∂νAμ− i[Aμ,Aν]$ is the curvature
and [a, b]$ := a $ b − b $ a, {a, b}$ := a $ b + b $ a. These gauge models were
abandoned because of their complicated vacuum structure.

In [GMRT09] another possibility to cure the UV/IR-mixing problem on Moyal
space was suggested. It relies on a covariance which in position coordinates reads

C(x, y) = ∫
dq ei〈q,x−y〉

‖q‖2+μ2+ α

θ2‖q‖2
. Renormalisability to all orders was also proved in

[GMRT09]. It was generalised to gauge theories in [BGK+08], where however the
renormalisation is much more involved [BKR+10].

The extension of the harmonic oscillator potential to Minkowski space was
discussed in [FS09]. Corresponding field theory models are problematic [Zah11].

A spectral noncommutative geometry which leads to (6.3) was analysed in
[GW12, GW13a]. It lives in a Clifford algebra of doubled dimension which unites
the standard Dirac operator with the ‘Feynman slash’, central in a new proposal for
quanta of geometry [CCM15, CCM14].

6.5 Tensor models

Work on quantum field theories on noncommutative geometries inspired a new
research topic: coloured random tensor models. Tensor models were introduced
in [ADJ91] to extend the success of matrix models in describing 2-dimensional
quantum gravity [DFGZJ95] (see also Section 7.2) to higher dimension. However,
they were essentially useless because no analogue of the 1/N-expansion [tH74] was
found. In 2009, Gurau [Gur11a] introduced the colouring of tensor models. The
colouring allowed Gurau [Gur11b, Gur12] and with Rivasseau in [GR11] shortly
after to show that the tensor models have an analytically controlled 1/N -expansion
indexed by a positive integer called the degree. Then, Ben Geloun and Rivasseau
proved in [BGR13] that a certain rank-4 tensor model is renormalisable to all orders
in perturbation theory. The proof uses multiscale analysis and relies on experience
with topological aspects in QFTs on noncommutative geometries. Soon many
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more renormalisable tensor models have been found; and they generically show
asymptotic freedom [BG14]. First analytical results were established in [BGRR11]:
tensor models undergo a phase transition to a theory of continuous random spaces
when tuning to criticality. Also the loop vertex expansion [Riv07a] was generalised
to tensor models [Gur14].

With these initial achievements, the subject of coloured tensor field theory took a
spectacular development. For more information we refer to several reviews already
available. There is an early review [GR12] by Gurau and Ryan, a sequence of ‘Ten-
sor track’ lectures by Rivasseau (e.g. [Riv14]), Gurau’s book [Gur17]. Most recently
connections to the Sachdev-Ye-Kitaev model [SY93, Kit15a, Kit15b, MS16] have
been established [Wit16]. The enormous activity goes beyond this survey; we only
refer to recent lectures [KPT18].

7 Structures and techniques in matrix models

7.1 Riemann surfaces and ribbon graphs

A Riemann surface is a complex-analytic manifold of complex dimension 1 (hence
real dimension 2). We are only interested in compact (and connected) Riemann
surfaces on which we distinguish a (possibly empty) set x1, . . . , xs of marked
points. Two such Riemann surfaces are isomorphic if there exists a biholomorphic
map between them which sends marked points into marked points. Two (marked)
Riemann surfaces are homeomorphic if and only if they have the same number s
of marked points and the same genus g ∈ N. Their common Euler characteristics
is χg,s = 2 − 2g − s. The isomorphism classes of Riemannian manifolds of genus
g with s marked points form for χg,s < 0 a complex orbifold Mg,s of complex
dimension dg,s = 3g − 3 + s, called the moduli space of complex curves.

As conjectured by Witten [Wit91] and proved by Kontsevich [Kon92] the topol-
ogy of the moduli spaces Mg,s is deeply related to matrix models, and therefore,
as argued in the previous sections, to QFT on noncommutative geometries. For
the Witten–Kontsevich relation we have to introduce two further structures: a
compactification Mg,s of the moduli spaces (which we sketch in Section 7.2) and
ribbon graphs drawn on Riemann surfaces.

A ribbon graph is a simplicial 2-complex � made of |V�| vertices, |E�| edges
and |F�| faces. An edge connects two vertices (possible the same) and separates
two faces (possibly the same). Ribbon graphs arise in several variants, depending
on presence of marked faces or boundaries. First consider absent boundaries and a
ribbon graph � with a total number |F�| of faces, s of them marked. This ribbon
graph can be drawn on a compact genus-g Riemann surface �g,s with s marked
points. The genus is determined by χ = 2−2g−s = |V�|−|E�|+ (|F�|−s). The
drawing partitions �g,s into |F�| closed subsurfaces, each topologically a disk, and
with s of these disks containing precisely one marked point. Conversely, a Riemann
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Fig. 1 Left: a ribbon graph with |V| = 2 vertices (both tri-valent), |E| = 3 edges and |F| = 3
faces of which s = 2 are marked, drawn on a sphere (a compact Riemann surface of genus g = 0).
One marked point is the north pole, the other one near the equator. The Euler characteristics is χ =
|V|−|E|+(|F|−s) = 2−3+(3−2) = 0 = 2−2g−s. Centre: Removing small open disks around
the marked points produces a surface with boundary, here of B = 2 components (topologically a
cylinder). The marked faces become an annulus. Right: 4 half-edges, each connecting a vertex to
one of the boundary components, are added to the central picture. In total there are |V| = 2 vertices
(one 4-valent and one 6-valent), |E| = 7 (half-)edges and |F| = 5 faces (4 of them external; the
remaining internal face coincides with the unmarked face on the left). The Euler characteristics is
χ = |V| − |E| + |F| = 2 − 7 + 5 = 0. We later say that this ribbon graph describes a contribution
to the planar (1+3)-point function in a QFT model with both �4- and �6-interactions

surface is the gluing of topological disks into the faces of a ribbon graph. See the
left picture in Figure 1 for an example.

Closely related are Riemann surfaces and ribbon graphs with boundaries. They
arise by removing from the Riemann surface a small open disk (inside the disks
glued into the ribbon graph) around a marked point. The previously marked face
thus becomes an annulus (see central picture in Figure 1).

We extend the previous ribbon graphs by admitting half-edges in the annulus.
Half-edges connect with its true end to a vertex on the previous marked face and
with the other virtual end to the boundary. Crossings of half-edges with other
(half-) edges are forbidden. See the right picture in Figure 1 for an example. We
have two equivalent interpretations of the Euler characteristics. Either we ignore
the half-edges (consider them as amputated), or we count them as ordinary edges
but also include the additional external faces between half-edges and parts of the
boundary.

Ribbon graphs with half-edges ending at boundary components can be contracted
by subsequently gluing a pair of half-edges to form a true edge. Two cases must be
distinguished:

I. half-edges ending at different boundary components (of the same surface or of
disconnected surfaces) are glued; see Figure 2;

II. half-edges ending at the same boundary component are glued; see Figure 3.

We see that the subcase where all boundary components carry exactly one half-edge
corresponds to the usual framework of bordisms. This framework is relevant for
the Atiyah–Segal formulation [Ati88, Seg01] of topological quantum field theory
(TQFT) [Wit88].
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Fig. 2 Gluing of half-edges from different boundary components. (Top) [at least one of the
previous boundary components carries ≥ 2 half-edges]: The neighbourhoods of the boundary
components where we want to glue half-edges can be deformed to a half-cylinder (left). We
glue two half-edges to an edge and also the faces bordering the previous half-edges (centre).
The result is deformed to a single common boundary component (right). The total number of
(half-)edges is reduced by 1 (�|E| = −1), the number of faces is reduced by 2, (�|F| = −2),
the number of boundary components is reduced by 1 (�B = −1). Vertices are unchanged. If
boundary components of a connected surface are glued this way, its Euler characteristics change
by �|V| − �|E| + �|F| = 0 − (−1) + (−2) = −2(�g) − �B, i.e. the genus is increased by
�g = +1. If two disconnected surfaces of topology (g1, B1) and (g2, B2) are glued, the resulting
connected surface has Euler characteristics (|V1|+|V2|)− (|E1|+|E2|−1)+ (|F1|+|F2|−2) =
(2 − 2g1 − B1) + (2 − 2g2 − B2) − 1 = 2 − 2(g1 + g2) − (B1 + B2 − 1). Hence, the genus is
additive. (Bottom) [both previous boundary components carry a single half-edge]: After deforming
the neighbourhood to a half-cylinder (left), we glue both half-edges to an edge and also the
faces bordering the previous half-edges (centre). The resulting boundary component no longer
carries half-edges and by convention is shrunk to the empty set (right). We have �|E| = −1,
�|F| = −1, �B = −2. In case of the same surface, the Euler characteristics change by
�|V| − �|E| + �|F| = 0 − (−1) + (−1) = −2(�g) − �B, i.e. the genus is increased by
�g = +1. In case of different surfaces, (|V1| + |V2|)− (|E1| + |E2| − 1)+ (|F1| + |F2| − 1) =
(2 − 2g1 −B1)+ (2 − 2g2 −B2) = 2 − 2(g1 + g2)− (B1 +B2 − 2). Hence, the genus is additive

We consider it worthwhile to extend this axiomatisation to the richer case
where several half-edges end at the boundary. Namely, individual ribbon graphs
correspond to a single contribution to the perturbative expansion of correlation
functions (3.6) in a QFT on noncommutative geometries (see Section 3). For a non-
perturbative formulation we are interested in the sum over all contributions encoded
in ribbon graphs with the same boundary structure, or better we do not want to
perturbatively expand at all. This means we encode a non-perturbative amplitude
of a QFT on noncommutative geometries in a Riemann surface with boundary and
defects on the boundary components. Such surfaces can be glued along the defects,
not along the boundary as a whole. The corresponding rules can be read off from
Figures 2 and 3 by reduction to the end points of half edges. To such a surface
�
g
N1,...,NB

of genus g with B boundaries of N1, . . . , NB defects, all Nβ ≥ 1, we
associate an amplitude

G
(g)
N1,...,NB

:
B⊗

β=1

A∗ ⊗c · · · ⊗c A∗︸ ︷︷ ︸
Nβ

→ C, (7.1)
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�(a) �(b)

(c)
�

�(d)

�(e) �(f)

Fig. 3 Gluing of a pair of half-edges at the same boundary component which carries N half-
edges. (Top) (a) We glue for N ≥ 4 two non-neighboured half-edges to an edge and also join the
faces bordering the previous half-edges. The boundary component splits into two. (b) The result is
deformed into two disjoint boundary components with at least one and in total N − 2 half-edges.
(c) We glue for N ≥ 3 two neighboured half-edges to an edge and also join the faces bordering the
previous half-edges. The boundary component splits into two, but one of them no longer carries
any half-edge. (d) The boundary component without half-edge is shrunk to the empty set, the other
one deformed into a boundary component with N − 2 half-edges. (Bottom) (e) We glue for N = 2
both half-edges to an edge and also join the faces bordering the previous half-edges. The boundary
component splits into two, but none of them contains any half-edge. (f) Both boundary component
without half-edges are shrunk to the empty set

where ⊗c is a cyclic tensor product and the leading
⊗

a symmetric tensor product.
As such we have the first ingredient of a hypothetical functor from the category of
Riemann surface with boundary and defects to the category of vector spaces. The
gluing of such surfaces along defects is mapped to tensor products with contraction
of vector spaces. Such an axiomatic setting analogous to TQFT could be called
noncommutative quantum field theory (NCQFT) because it exactly captures the non-
perturbative formulation of Section 3.

Question 7.1 Can these ideas be turned into a consistent axiomatisation? Is it
useful in other areas?

In practice we have more structures on the vector space side:

• The vector spaces we are interested in have trace functionals Tn(a1, . . . , an) =
λnTr(a1 · · · aN). An n-valent vertex in a ribbon graph is mapped to Tn. These
vertices alone do not describe any surface, but they encode another building
block: an elementary n-disk, i.e. a sphere (g = 0) with one boundary component
(B = 1) and n defects on it. As part of the rules one has to implement the
removal of an elementary n-disk with at least one of its defects located on a
boundary component. This removal translates to the Dyson–Schwinger equations
in quantum field theory. See Sections 7.3, 8 and 9.
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• The Ward–Takahashi identities present on the vector space side (see Corollary 7.6
later) should also be transferred to the category of surfaces.

We will see later that Dyson–Schwinger equations and Ward–Takahashi identities
completely determine the NCQFT models, at least for �4- and �3-interaction.

7.2 The Kontsevich model

This section gives a short introduction into the Kontsevich model [Kon92]. It
became a classical topic which is reviewed and discussed in nearly every book
and review on matrix models and 2-dimensional quantum gravity. More details
than given here can be found, e.g. in the books by Lando and Zvonkin [LZ04],
by Eynard [Eyn16] as well as in the review [DFGZJ95] by Di Francesco, Ginsparg
and Zinn-Justin. The Kontsevich model comes close to a quantum field theory; it
ignores however renormalisation and is understood as a formal power series only.
In Section 8 we show how to non-perturbatively construct renormalised correlation
functions out of a quantum field theory closely related to the Kontsevich model.
This construction heavily uses prior work on the original Kontsevich model, most
importantly an exact solution [MS91] of a non-linear integral equation and the
topological recursion [EO07, Eyn14, Eyn16].

Euclidean quantum gravity is an attempt to give a meaning to the partition
function

∑

topologies

∫

metrics
dg exp(−SEH (g)),

where SEH (g) is the Einstein–Hilbert action with cosmological constant. In D =
2 dimensions, where the Einstein–Hilbert action reduces (by the Gauß-Bonnet
theorem) to the Euler characteristics and (from the cosmological constant) the area
of the surface, it was argued at the end of [LPW88] and further elaborated in [Wit90,
MP90, Wit91] that topological gravity in 2 dimensions reduces to topological data
of the moduli spaces {Mg,s} (more precisely their compactifications). Particularly
significant are the intersection numbers which we briefly introduce below. More
details can be found in [Wit91, LZ04, Eyn16].

For the Deligne–Mumford compactification on adds to Mg,s degenerate surfaces,
so-called nodal curves. They arise from gluing (smaller) Riemann surfaces�1∪· · ·∪
�& of Euler characteristics χi = 2 − 2gi − si < 0 along each two of their marked
points. The resulting nodal curve contributes to Mg,s if 2 − 2g − s = ∑&

i=1 χi and
s is the number of marked points of �1, . . . , �& which are not glued. For example,
a sphere with three marked points glued along two of them gives rise to a pinched
torus of genus g = 1 and one remaining marked point: M1,1 = M1,1 ∪ M0,3. In
general, Mg,s has subsets of smaller dimension than dg,s ; it is called a stack.
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On Mg,s there is a natural family {Li}i=1,...,s of complex line bundles obtained
by taking as fibre of Li at x ∈ Mg,s the cotangent space T ∗

zi
C at the marked point

zi of the curve x ≡ C. Complex line bundles are classified by their first Chern
class c1(Li ) ∈ H 2(Mg,s,Q). The (commutative) wedge product of dim(Mg,s) =
3g − 3 + s of these 2-forms c1(Li ) is of top degree 2(3g − 3 + s), equal to the real
dimension of Mg,s . So the following integral is meaningful:

〈τd1 · · · τds 〉 :=
∫

Mg,s

s∏

j=1

(
c1(Lj )

)dj , (7.2)

which is non-zero only if d1 + · · · + ds = 3g − 3 + s. These rational numbers are
called intersection numbers and provide topological invariants of Mg,s .

Since the order of marked points does not matter, the intersection numbers can
be collected to 〈τ k0

0 τ
k1
1 · · · 〉. Their generating function is defined by

F(t0, t1, . . . ) =
∞∑

k0,k1,···=0

〈τ k0
0 τ

k1
1 . . . 〉

∞∏

i=0

t
ki
i

ki ! . (7.3)

The simplest cases and an analogy to the Hermitean one-matrix model [BK90,
DS90, GM90] led Witten to the following conjecture:

Conjecture 7.2 ([Wit91])

1. F obeys the string equation

∂F

∂t0
= t20

2
+

∞∑

i=0

ti+1
∂F

∂ti
. (7.4)

2. U({t}) := ∂2

∂t20
F({t}) satisfies the Korteweg-de Vries equations

∂U

∂tn
= ∂

∂t0
Rn+1(U, ∂t0U, ∂

2
t0
U, . . . ), (7.5)

where the Rn are polynomials in U and their t0-derivatives which are recursively
defined by R1(U) = U and

∂

∂t0
Rn+1 = 1

2n+ 1

(
Rn
∂U

∂t0
+ 2U

∂Rn

∂t0
+ 1

4

∂3Rn

∂t30

)
.

Kontsevich [Kon92] achieved a proof of the Witten’s conjecture 7.2 by relating
F to the partition function of a new type of matrix model, nowadays called the
Kontsevich model. Starting point is a theorem by Strebel [Str67] which provides a
stratification of decorated moduli spaces by ribbon graphs:
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Theorem 7.3 ([Str84]) On any Riemann surface C ∈ Mg,s (where s > 0
and χg,s < 0) with marked points z1, . . . , zs there is, for any given perimeters
L1, . . . , Ls ∈ R+, a unique quadratic differential �(z) = f (z)(dz)2 such that

• f is meromorphic on C, with poles of order 2 at zi , and no other poles;
• horizontal trajectories of �, defined by Im(

∫ z √
�) = const, are either circles

about the marked points or critical trajectories which form a ribbon graph with
s faces drawn on C.

The j th face has perimeter Lj when measured with the metric 1
2π |√�|.

A k-fold zero of the quadratic differential gives rise to a (k+ 2)-valent vertex of the
ribbon graph of critical trajectories. The ribbon graph of a generic surface C ∈ Mg,s

has only 3-valent vertices (corresponding to simple zeros) and 2(3g−3+s)+s edges
(combine 2−2g = v−e+s with 3v = 2e) whose lengths &1, . . . , &2(3g−3+s)+s > 0
are measured by 1

2π |√�|. An edge between different vertices of valencies k1, k2
may have degenerate length 0; this collapses the vertices to a single (k1 + k2 − 2)-
valent vertex and corresponds to a (k1+k2−4)-fold zero of the quadratic differential.
The topology (g, s) is unchanged by such contractions. It turns out that this
assignment of ribbon graphs with 3-valent vertices and (possibly degenerate) edge
lengths &e to a Riemann surface with face perimeters Li defines (for s ≥ 1) an
isomorphism of orbifolds (see [LZ04, Eyn16])

Mg,s × (R×+)s ∼
⋃

RG3
g,s

(R+)s+2(3g−3+s), (7.6)

where we denote by RG3
g,s the set of (connected) genus-g ribbon graphs with s faces

and only 3-valent vertices. In particular, the top degree differential forms must be
proportional to each other. Kontsevich proved in [Kon92] that

23−3g−s

(3g − 3 + s)!

(
s∑

i=1

L2
i c1(Li )

)3g−3+s
∧ dL1 ∧ · · · ∧ dLs = 22g−2+s

s+2(3g−3+s)∧

e=1

d&e,

(7.7)

independently of the ribbon graph. Since Li = ∑
e∈edges around face i &e and every

edge e separates two faces i(e), i′(e) (possibly the same), one has
∏s
i=1 e−EiLi =

∏
e∈E� e−&e(Ei(e)+Ei′(e)). Inserted into the cell decomposition (7.6) gives after inte-

gration with volume forms (7.7) the following:

Theorem 7.4 ([Kon92]) The intersection numbers of line bundles on Mg,s are
generated by

∑

d1+···+ds=3g−3+s
〈τd1 · · · τds 〉

s∏

i=1

(2di − 1)!!
E

2di+1
i

=
∑

�∈RG3
g,s

22g+s−2

#Aut(�)

∏

e∈E�

1

Ei(e) + Ei′(e)
,

(7.8)
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where E� denotes the set of edges of � and #Aut(�) is the order of the automor-
phism group of �. The faces are labelled by positive real numbers E1, . . . , Es , and
Ei(e), Ei′(e) are the labels of the two faces i(e), i′(e) separated by the edge e.

The sum over ribbon graphs with weight 1
Ei+Ei′ for an edge separating faces

i, i′ is easily interpreted as the perturbative expansion of a partition function. For a
diagonal N × N-matrix E = (Eiδij ) and d� the usual Lebesgue measure on the

vector space MN(C)∗ � R
N2

of self-adjoint matrices, the Gauß measure

dMCE (�) :=
d� exp

(
− NTr

(
E�2 + 1

3λ�
3)
)

∫
(MN(C)∗)′ d� exp

(
− NTr

(
E�2

)) (7.9)

is precisely the Borel measure on (MN(C)∗)′ for a covariance CE(ekl, emn) =
δlmδknN(Ek+El) introduced in Section 3.2. In particular, its moments are given by (3.6).

It is then a combinatorial exercise to establish

log
( ∫

(MN(C)∗)′
dMCE (�) e− λ

3 NTr(�3)
)

=
∞∑

g=0

∞∑

s=1

1

s!
(λ2

N
)2g−2+s N∑

i1,...,is=1

[ ∑

�∈RGg,s

1

#Aut(�)

∏

e∈E�

1

Ei(e) + Ei′(e)

]
,

(7.10)

where the innermost sum is over labelled ribbon graphs � of genus g with s faces
labelled Ei1 , . . . , Eis . These face labels are subsequently summed over its indices
from 1 to N.

Inserting (7.8) for [ ] on the rhs of (7.10) shows that the intersection numbers
〈τd1 · · · τds 〉 are generated by the cubic matrix model (7.9). Strictly speaking,
independence of the formal variables ti in (7.3) is only achieved in the limit
N → ∞. On the other hand, convergence of the sums over i1, . . . , is on the rhs
and a meaningful integral on the lhs of (7.10) are not guaranteed for N → ∞. For
these reasons the Kontsevich model is not yet a quantum field theory, but as shown in
Section 8, it can be turned into one. We remark that (7.10) describes only the vacuum
contributions. True correlation functions do arise in the proof [Wit92, DFIZ93] of
the string equation (7.4) and the KdV equation (7.5). Some of these correlation
functions have a topological interpretation as κ-classes [AC96].

7.3 The Ward–Takahashi identity in matrix models

The Ward–Takahashi identities to be derived in this section play a key rôle in the
exact solutions of QFT models in Sections 8 and 9.
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Lemma 7.5 Let A be a nuclear AF Fréchet algebra (see Section 3) with matrix
basis (ekl). Let FCE (J ) be the Bochner–Minlos characteristic function (3.3) for
a covariance CE(ekl, emn) = δknδlm

Ek+El , where (Ek) is a sequence of positive real
numbers and J ∈ A∗. Then

(Ek − El)
∂2FCE (J )
∂Jkn∂Jnl

= Jln
∂FCE (J )
∂Jkn

− Jnk
∂FCE (J )
∂Jnl

. (7.11)

Proof Expanding J = ∑
p,q Jpqepq , the characteristic function reads

FCE (J ) =
∫

A′∗
dMCE (�) ei

∑
p,q Jpq�(epq),

where Φ(epq) := 1
2Φ(epq + eqp)− i

2Φ(iepq − ieqp). Then

(Ek − El)
∂2FCE (J )
∂Jkn∂Jnl

= ∂

∂Jnl
(Ek + En)

∂FCE (J )
∂Jkn

− ∂

∂Jkn
(El + En)

∂FCE (J )
∂Jnl

= ∂

∂Jnl

∫

A′∗
dMCE (�) i(Ek + En)�(ekn)e

i
∑
p,q Jpq�(epq)

− ∂

∂Jkn

∫

A′∗
dMCE (�) i(El + En)�(enl)e

i
∑
p,q Jpq�(epq).

Now observe that, expanding the exponential and evaluating the pairings (3.5), we
have
∫

A′∗
dMCE (�) �(ekn)e

i
∑
p,q Jpq�(epq) = iJnk

Ek + En

∫

A′∗
dMCE (�) ei

∑
p,q Jpq�(epq)

and similarly for the other term. The (Ek + En) and (El + En) terms cancel, and
derivative and multiplication with J commute up to a term which also cancels. We
end up in (7.11). ��
It is now remarkable that, at least formally, Lemma 7.5 extends to interacting QFT
models. Namely, the partition function (3.7) can be realised as a derivative operator
applied to the characteristic function:

ZE(J ) =
∫

A′∗
dMC(�) ei�(J )−Sint({�(epq)}) = exp

(
−Sint

({ ∂

i∂Jpq

}))
FCE (J ).

(7.12)

Since the derivative operator commutes with the lhs of (7.11), we conclude:

Corollary 7.6 Under the conditions of Lemma 7.5, the partition function (7.12)
satisfies
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(Ek − El)
∂2ZE(J )

∂Jkn∂Jnl
= Jln

∂ZE(J )

∂Jkn
− Jnk

∂ZE(J )

∂Jnl
(7.13)

+
[
Jln, Sint

({ ∂

i∂Jpq

})]∂ZE(J )

∂Jkn
−

[
Jnk, Sint

({ ∂

i∂Jpq

})]∂ZE(J )

∂Jnl
.

If Sint = S
(N)
int is a linear combination of traces (4.6), then

N∑

n=1

(Ek − El)
∂2ZE(J )

∂Jkn∂Jnl
=

N∑

n=1

(
Jln
∂ZE(J )

∂Jkn
− Jnk

∂ZE(J )

∂Jnl

)
. (7.14)

Proof Only (7.14) is to show. For S(N)int given by (4.6) one has

Sint

({ ∂

i∂Jpq

})
=

∑

p

λp(N)
ipp

N∑

k1,...,kp=1

∂p

∂Jk1k2 · · · ∂Jkp−1kp∂Jkpk1

.

Now both terms in the 2nd line of (7.13) give, when summed over n, the same term

∑

p

λp(N)
ip

N∑

k2,...,kp=1

∂p

∂Jkk2∂Jk2k3 · · · ∂Jkp−1kp∂Jkpl
ZE(J ).

(Without the sum, we have k2 �→ n in the first term, not summed, and kp �→ n in
the second term, not summed. Then the difference does not cancel.) ��
The Ward–Takahashi identity (7.14) was originally proved in [DGMR07] starting
from invariance of the matrix Lebesgue measure under unitary transformations. That
such transformations are not necessary was only recently observed in [HW18].

Recall from (3.6) that correlation functions are obtained by directional deriva-
tives of the partition function (3.7) for which we have the representation (7.12).
A series expansion of exp in (7.12) gives rise to expressions encoded by ribbon
graphs on Riemann surfaces with possibly several boundary components and half-
edges ending at defects on the boundaries. See Section 7.1. As discussed there we
recollect the contributions with the same defect structure, which amounts to the
same contractions of test functions J ∈ A∗:

log
Z(N)
E (J )

Z(N)
E (0)

(7.15)

=
∞∑

B=1

∞∑

g=0

∑

N1≤···≤NB

N2−B−2g

SN1···NB

(N)∑

k1
1 ,...,k

B
NB

G
(g)

|k1
1 ...k

1
N1

|...|kB1 ...kBNB |

B∏

β=1

J
k
β
1 ...k

β
Nβ

Nβ
,
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where J
k
β
1 ...k

β
Nβ

= iNβ
∏Nβ
i=1 Jkβi k

β
i+1

with cyclic identification kβNβ+1 ≡ k
β
1 . The sums

over kβi are over a finite set determined by N, and SN1···NB = ν1! · · · νs ! if each νj of
theNβ coincide. Conversely, the correlation functionsG(g)... are for pairwise different

k
β
i recovered via

∞∑

g=0

N−2gG
(g)

|k1
1 ...k

1
N1

|...|kB1 ...kBNB | = 1

N2−B
∂NB

∂JkBNB ...k
B
1

· · · ∂N1

∂Jk1
N1
...k1

1

logZ(N)
E (J )

∣∣∣
J≡0

,

(7.16)

where ∂
Nβ

∂J
k
β
Nβ

...k
β
1

= (−i)Nβ ∂
Nβ

∂J
k
β
Nβ

k
β
Nβ−1

···J
k
β
1 k
β
Nβ

.

Dyson–Schwinger equations result from the interplay between the J -derivatives
in (7.16) with the internal J -derivatives in Sint

({
∂

i∂Jpq

})
according to the repre-

sentation (7.12) of ZE(J ). Following an observation in [GW14a], the following
programme arises:

Programme 7.7 For QFT models with covariance CE(ekl, emn) = δknδlm
Ek+El , the

interplay of J -derivatives gives rise to expressions known from the Ward–Takahashi
identity (7.14). In particular cases, which include the �3 and �4 interactions, the
tower of Dyson–Schwinger equations decouples into a closed non-linear equation
for the simplest function G... and a hierarchy of affine equations for all other
functions. The whole model can then (at least in principle) be recursively solved
starting from the solution of a single non-linear equation.

This programme succeeded completely for the �3-model (reviewed in Section 8)
and partially for the �4-model (reviewed in Section 9).

8 Exact solution of the �3-model

8.1 Preliminary remarks

It was first stressed in [GS06b] that results about the Kontsevich model can be
used to define a quantum field theory on noncommutative Moyal space with �3-
interaction and harmonic oscillator covariance (see Section 6.1) at critical frequency
� = 1. By including a linear term proportional to Tr(�) with carefully adjusted
singular coefficient, Grosse and Steinacker were able to renormalise the divergence
in the 1-point function. They derived exact formulae for the low-genus one-point
function from the intersection numbers computed in [IZ92]. Via quantum equations
of motions, higher correlation functions were related to the 1-point function. Shortly
later the renormalisation in dimensionsD = 4 [GS06a] andD = 6 [GS08] was also
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understood. Below we review an extension [GSW17, GSW18, GHW19] of these
techniques based on the Ward–Takahashi identity proved in Corollary 7.6.

Recall the harmonic oscillator Hamiltonian (6.2) which at critical frequency� =
1 and in dimensionD ∈ {2, 4, 6} readsH 1(ekl) = (Ek+El)ekl withEk = μ2

2 +D
θ

+
4
θ
|k|. By k = (k1, . . . , kD/2) we understand a (D/2)-tuple of natural numbers, of

length |k| := k1+· · ·+kD/2, which parametrises the matrix bases (ekl)k,l∈ND/2 of the
D-dimensional Moyal space (see Section 4.3 for D = 4). The Ek will be identified
with the labels Ei in the Kontsevich formula (7.8). In fact we can construct QFT
models for a more general label function (than resulting from H 1)

E = (Ẽkδk,l), Ẽk := μ̃2

2
+ μ2e

( |k|
μ2V

2
D

)
, e(0) ≡ 0, (8.1)

where e : R+ → R+ is a monotonously increasing differentiable function. For
the covariance of the harmonic oscillator on Moyal space we have e(x) = x

independent of D and V
2
D = θ

4 . The parameter μ > 0 will become the
renormalised mass, whereas the bare mass μ̃ ≡ μ̃(N) is a function of (V ,N, λ, μ)
identified later. For such label functions Ẽk we consider a quantum field theory
on a noncommutative geometry, understood as nuclear AF Fréchet algebra A (see
Section 3), with generalised matrix basis (ekl)k,l∈ND/2 . It is defined by a covariance
CE and an interaction functional which according to Programme 3.8 is parametrised
by sequences μ̃, Z̃, κ̃, ν̃, ζ̃ , λ̃ in N which implement the embeddings ιN : AN →
AN+1. We have AN = span(ekl : k, l ∈ N

D/2
N ), where N

D/2
N consists of the

D
2 -tuples k with |k| ≤ N. For the �3-model we choose the covariance

C
(N)
E (ekl, emn) = δk,nδl,m

V Z̃(Ẽk + Ẽl)
(8.2)

(in which the Ẽk also depend on N via μ̃) and the interaction functional on A′∗

S
(N)
int (�) := V

( ∑

n∈ND/2N

(κ̃+ν̃Ẽn+ζ̃ Ẽ2
n)�nn + λ̃Z̃

3
2

3

∑

n,m,l∈ND/2N

�nm�ml�ln

)
, (8.3)

where �kl := �(ekl).

8.2 Solution of the planar sector

We return to Equation (7.16), adapted to multi-indices k. Evaluation of the rightmost

derivative gives with (7.12) and FCE (J ) = exp
( − V

2

∑
k,l∈ND/2N

JklJlk

Z̃(Ẽk+Ẽl )
)



Quantum field theory on noncommutative spaces 653

(−i)
∂

∂Jk1
1k

1
N1

logZE(J ) =
iV Jk1

N1
k1

1

Z̃(Ẽk1
1
+ Ẽk1

N1
)

−
V
(
κ̃ + ν̃Ẽk1

1
+ ζ̃ Ẽ2

k1
1

)

2Z̃Ẽk1
1

δk1
N1
,k1

1

+ λ̃Z̃
1
2

VZE(J )(Ẽk1
1
+ Ẽk1

N1
)

∑

n∈ND/2N

∂2

∂Jk1
N1
n∂Jnk1

1

ZE(J ).

(8.4)

The first line only contributes to B = 1 and N1 ≤ 2 in (7.16). Inserting (7.15)
into the second line and evaluating the remaining derivatives in (7.16) gives exact
(non-perturbative) Dyson–Schwinger equations between the correlation functions
G(g)... . However, since the last line of (8.4) has one more derivative than the lhs, these
equations relate an N -point function to the not yet known (N + 1)-point function.
This would make the Dyson–Schwinger equations rather useless. We are rescued
by the Ward–Takahashi identity of Corollary 7.6. There we have to replace Ek �→
V Z̃Ẽk to account for the different conventions in (8.2) and Lemma 7.5. We also
rescale Jkl �→ V Jkl . The second line of (8.3) is a trace and does not contribute
to the second line of (7.13) when summed over n. For |k| �= |l| we can divide by
Ẽk − Ẽl �= 0 (by the assumptions on e(x) in (8.1)):

∑

n∈ND/2N

∂2ZE(J )

∂Jkn∂Jnl
= V

Z̃(Ẽk − Ẽl)

∑

n∈ND/2N

(
Jln
∂ZE(J )

∂Jkn
− Jnk

∂ZE(J )

∂Jnl

)
(8.5)

+ V

iZ̃
(ν̃ + ζ̃ (Ẽk + Ẽl))

∂ZE(J )

∂Jkl
, for |k| �= |l|.

The lhs is (assuming N1 > 1; the case N1 = 1 implies |k| = |l|) precisely of
the form needed in the second line of (8.4). Starting with the 1-point function G|k|
which needs a special treatment, one obtains a hierarchy of equations which only
depend on data known by induction. Hence, if G|k| can be determined, the exact
solution of the �3-matricial QFT model is possible.

For B = 1, with N1 − 1 further derivatives applied to (8.4), one obtains after
insertion of (8.5) and suppression of the upper index k1

i ≡ ki

Z̃(1 − λ̃Z̃− 1
2 ζ̃ )

(
(Ẽk1 + ẼkN1

)− λ̃Z̃− 1
2 ν̃

(1 − λ̃Z̃− 1
2 ζ̃ )

)
G
(g)
|k1...kN1 |

= δg,0δN1,2 + λ̃Z̃
1
2

G
(g)
|k1...kN1−1| −G

(g)
|k2...kN1 |

Ẽk1 − ẼkN1

. (8.6)

This equation fixes μ̃(N), λ̃(N), ζ̃ (N) in terms of μ, λ, Z̃(N), ν̃(N) to
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Z̃(1 − λ̃Z̃− 1
2 ζ̃ ) = 1, λ̃Z̃

1
2 = λ, μ̃2 = μ2 + λ̃Z̃− 1

2 ν̃

(1 − λ̃Z̃− 1
2 ζ̃ )

.

The recursion can be solved explicitly [GSW17]:

G
(g)
|k1...kN1 | =

N1∑

i=1

W
(g)
ki

2λ

N1∏

j=1,j �=i

λ

E2
ki

− E2
kj

,
W
(g)
k

2λ
:= G

(g)
|k| + δg,0Ek

λ
,

(8.7)

where Ek := Ẽk − 1
2 λ̃Z̃

1
2 ν̃ = μ2( 1

2 + e(
|k|

μ2V 2/D )) is the renormalisation of (8.1)

which replaces μ̃ by μ.
The 1-point function is directly obtained from (8.4) at k1

1 = k1
N1

≡ k and J ≡ 0.
After renormalisation and insertion of (8.7) one arrives at

g∑

h=0

W
(h)
k W

(g−h)
k + 2ν̃λW(g)

k + 2λ2

V

∑

n∈ND/2N

W
(g)
k −W

(g)
n

E2
k − E2

n

=
(4E2

k

Z̃
− ν̃2λ2

(
1 + 1

Z̃

)
− 4κ̃λ

Z̃

)
δg,0 − 4λ2G

(g−1)
|k|k| . (8.8)

The following observation is crucial. It was already employed in [MS91] and
brought to perfection in topological recursion [Eyn16]:

Observation 8.1 For a real parameter c soon to be determined, replacing
4E2

k + c �→ z2 by a complex variable, the Equations (8.8) have a continuation

W
(g)
|k| �→ W(g)(z) which are holomorphic outside the support of {(4E2

n + c)
1
2 }.

All other Dyson–Schwinger equations extend similarly to several complex
variables and define holomorphic functions G(g)(z1

1, . . . , z
1
N1

| . . . |zB1 , . . . , zBNB )
of zβi ∈ C \ {0}, possibly with the exception of diagonals z

β
i = ±zβj .

The original matricial correlation functions are recovered from W
(g)
k =

W(g)((4E2
k + c)

1
2 ) and

G
(g)

|k1
1...k

1
N1

|...|kB1 ...kBNB |

= G(g)
(
(4E2

k1
1
+ c)

1
2 , . . . , (4E2

k1
N1

+ c)
1
2

∣∣
∣ . . .

∣∣
∣(4E2

kB1
+ c)

1
2 , . . . , (4E2

kBNB

+ c)
1
2

)
.

We pass to mass-dimensionless quantities via multiplication by specified powers
of μ [GSW18]. This amounts to choose the mass scale as μ = 1. Also V = ( θ4 )

D/2

is dimensionless from now on. It is convenient to introduce a measure
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d2(y) = 8λ2

V

∑

n∈ND/2N

δ(y2 − (4E2
n + c))dy2 = 8λ2

V

∑

n∈ND/2N

δ
(
y − (4E2

n + c)
1
2
)
dy.

(8.9)

The measure has support on [√1 + c,

√
�2

N + c], where �2
N = max(4E2

n : |n| =
N). From now on we drop N in favour of a dependence of correlation functions on
a scale � that in the end has to be sent to ∞ by the same renormalisation procedure
of Programme 3.8.

After these reparametrisations, Equation (8.8) takes the form

g∑

h=0

W(h)(z)W(g−h)(z)+ 2ν̃λW(g)(z)+
∫ √

�2+c
√

1+c
d2(y)

W(g)(z)−W(g)(y)

z2 − y2

=
(z2 − c

Z̃
− ν̃2λ2

(
1 + 1

Z̃

)
− 4κ̃λ

Z̃

)
δg,0 − 4λ2G(g−1)(z|z). (8.10)

For g = 0 one obtains in this way a closed non-linear equation for a sectionally
holomorphic function W(0)(z) which (at κ̃ = ν̃ = 1 − Z̃ = 0) was solved by
Makeenko and Semenoff [MS91] using techniques for boundary values of section-
ally holomorphic functions. Alternatively, it can be solved by residue techniques
for meromorphic functions [Eyn16]. These methods are easily extended to include
ν̃, κ̃, Z̃ and give

W(0)(z) = z
√
Z̃

− λν̃ + 1

2

∫ √
�2+c

√
1+c

d2(y)

y(z+ y)
, (8.11)

where
c

Z̃
+ 1

√
Z̃

∫ √
�2+c

√
1+c

d2(y)

y
= −4λκ̃

Z̃
− λ2ν̃2

Z̃
. (8.12)

We have eventually reached the point where we can describe the renormalisation
procedure. It depends on a spectral dimension which characterises the growth rate
of |n| �→ En:

Definition 8.2

• dimension 0:
∑

n∈ND/2 1
En

converges. No renormalisation is necessary, κ̃ = ν̃ =
Z̃ − 1 = 0. The finite number c is determined from the consistency equation
c + ∫ ∞√

1+c
d2(y)
y

= 0. This is the case considered in [MS91] and [Eyn16] for the
usual Kontsevich model. It is not realised on Moyal space.

• dimension 2:
∑

n∈ND/2 1
En

diverges but
∑

n∈ND/2 1
E2
n

converges. We can set ν̃ =
Z̃ − 1 = 0 and determine κ̃(c,�) as the solution of (8.12). The finite parameter
c translates into a normalisation condition. A natural choice is G(0)|0| = 0, which
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by (8.7) translates into W(0)(
√

1 + c) = 1. The equation for c is then the limit
� → ∞ of (8.11) at z = √

1 + c.
• dimension 4:

∑
n∈ND/2 1

E2
n

diverges but
∑

n∈ND/2 1
E3
n

converges. We can set

Z̃ = 1 and determine ν̃(c,�) by the condition that the rhs of (8.11) at z =√
1 + c equals 1 = W(0)(

√
1 + c) for any �. Then determine κ̃(c,�) as the

solution of (8.12). The finite parameter c is typically obtained from a condition
d

dEn
G
(0)
|n|

∣∣
n=0 = 0 which by (8.7) translates into 1

z
d
dzW

(0)(z)
∣∣
z=√

1+c = 1.

• dimension 6:
∑

n∈ND/2 1
E3
n

diverges but
∑

n∈ND/2 1
E4
n

converges. We determine

ν̃(c,�, Z̃) and κ̃(c,�, Z̃) as for dimension 4 and now fix Z̃(c,�) from
1
z

d
dzW

(0)(z)
∣∣
z=√

1+c = 1. The finite parameter c is typically obtained from

another condition d2

dE2
n
G
(0)
|n|

∣∣
n=0 = 0 with by (8.7) translates into ( c

z
d
dz + (z2 −

c) d
2

dz2 )W
(0)(z)

∣∣
z=√

1+c = 0.

• dimension ≥ 8:
∑

n∈ND/2 1
E4
n

diverges. No quantum field theory can be achieved

in this case.

The normalisation conditions can for D ∈ {0, 2, 4, 6} be summarised to the
following equation for the crucial parameter c:

(−c)
( 2

1 + √
1 + c

)δD,2+δD,4 =
∫ ∞

√
1+c

d2(y)

y(
√

1 + c + y)D/2
. (8.13)

Recalling the prefactor λ2 in (8.9), the implicit function theorem guarantees a
smooth solution c(λ, {En}) of (8.13) inside a disk of radius λc.

Remark 8.3 It is remarkable that in this QFT model on noncommutative geometry
A = ⋃

NAN such a non-perturbative renormalisation procedure can be established.
Usually one can only renormalise individual (ribbon) graphs with recursive diving
into subgraphs [BP57]. This recursive prescription in encoded in a Hopf algebra
[Kre98, CK98] and relates to other occurrences of Hopf algebras in noncommutative
geometry [CM98]. Here, this diving into subgraphs is completely avoided. One can
show [GSW18] that, breaking down these exact formulae into ribbon graphs, there
is perfect agreement with the usual BPHZ renormalisation [BP57, Hep66, Zim69],
including the handling of overlapping divergences by Zimmermann’s forest formula
[Zim69].

Remark 8.4 Furthermore, it turns out that in D = 6 dimensions and for λ ∈ R

the β-function of the coupling constant λ is positive [GSW18]. Nonetheless, there
is no triviality problem and the model can rigorously be constructed. We see this
as indication that also for realistic quantum field theories (such as QED and the
Higgs sector of the standard model) with positive β-function a construction is not
completely impossible.
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The Dyson–Schwinger equations for higher correlation functions have a simple
solution in terms of 1 + · · · + 1-point functions [GSW17]:

G(g)
(
z1

1, . . . , z
1
N1

∣
∣ . . .

∣
∣zB1 , . . . , z

B
NB

)
(8.14)

=
N1∑

i1=1

. . .

NB∑

iB=1

G(g)
(
z1
i1

∣∣ . . .
∣∣zBiB

)

×
( N1∏

j1=1,j1 �=i1

4λ

(z1
i1
)2−(z1

j1
)2

)
· · ·

( NB∏

jB=1,jB �=iB

4λ

(zBiB
)2−(zBjB )2

)
.

For B = 1 on has to replaceG(zi) by 1
2λW

(g)(zi), see (8.7). The remaining Dyson–
Schwinger equations for the 1 + · · · + 1-point functions all involve the integral
operator K̂z defined by

K̂zf (z) := (W(0)(z)+ λν̃)f (z)+ 1

2

∫ √
�2+c

√
1+c

d2(y)
f (z)− f (y)

z2 − y2 . (8.15)

For instance, the Dyson–Schwinger equation for the planar (i.e. g = 0) (1+1)-point
function becomes K̂z1G

(0)(z1|z2) = −λG(0)(z1, z2, z2) and has the solution

G(0)(z1|z2) = 4λ2

z1z2(z1 + z2)2
. (8.16)

Formula (8.16) is the same as the cylinder amplitude [Eyn16, Thm. 6.4.3] in the
usual Kontsevich model! This is a clear indication that all topological sectors other
than the disk of the �3-QFT model on noncommutative geometries are governed
by a universal structure called topological recursion. This indication was fully
confirmed in [GHW19]. We give more details in the next subsection. The sector
(g = 0, B ≥ 3) is also accessible by combinatorial techniques [GSW17] which give
the following result:

G(0)(z1| . . . |zB) = dB−3

dtB−3

∣∣∣∣
t=0

(
(−2λ)3B−4

(R(t))B−2
∏B
β=1((z

β)2 − 2t)
3
2

)
, (8.17)

R(t) := lim
�→∞

(
1

√
Z̃(�)

−
∫ √

�2+c
√

1+c
d2(y)

y
(
y + √

y2 − 2t
)√
y2 − 2t

)
.

The t-differentiation produces a polynomial in 1
zβ

, of odd degree in each variable,
with coefficients in rational functions of the moments

2l := lim
�→∞

(
δl,0√
Z̃(�)

− 1

2

∫ √
�2+c

√
1+c

d2(y)

y3+2l

)
. (8.18)

These moments play a key rôle in the solution of the non-planar sector.
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8.3 The non-planar sector

The main tool is a differential operator identified in [GHW19],

Â†g
z1,...,zB :=

3g+B−4∑

l=0

(
− (3 + 2l)2l+1

20z
3
B

+ 3 + 2l

z5+2l
B

) ∂

∂2l
+
B−1∑

i=1

1

20z
3
Bzi

∂

∂zi
. (8.19)

It is understood to act on Laurent polynomials in z2, . . . , zB , bounded at ∞,
with coefficients in rational functions of the moments 2l defined in (8.18). These
differential operators play the rôle of ‘boundary creation operators’:

Theorem 8.5 ([GHW19]) The 1+ . . .+1-point function at genus g ≥ 1 is given
by

G(g)(z1| . . . |zB) = (2λ)3B−4Â†g
z1,...,zB

(
Â†g
z1,...,zB−1

( · · · Â†g
z1,z2W

(g)(z1) . . .
))
,

(8.20)

for zi �= 0.

The proof is lengthy. It consists in checking that taking (8.20) as an ansatz, all
Dyson–Schwinger equations for functions with B ≥ 2 boundary components are
identically fulfilled, provided that W(g)(z1) is an odd Laurent polynomial of z1,
bounded at ∞, which depends only on 20, . . . , 23g−2. The assumptions are later
confirmed via solution of (8.21).

Equation (8.10) takes with K̂z defined in (8.15) for g ≥ 1 the form

K̂zW
(g)(z) = −1

2

g−1∑

h=1

W(h)(z)W(g−h)(z)− 2λ2G(g−1)(z|z). (8.21)

We recall G(0)(z|z) = λ2

z4 and G(g−1)(z|z) = (2λ)2Â†g−1
z,z W(g−1)(z) for g ≥ 2.

Thus, all W(g)(z) can recursively evaluated if K̂z has a tractable inverse. This is the
case:

Proposition 8.6 Let f (z) = ∑∞
k=0

a2k
z2k be an even Laurent series about z = 0

bounded at ∞. Then the inverse of the integral operator K̂z is given by the residue
formula

[
z2K̂z

1

z

]−1
f (z) = − Res

z′→0

[
K(z, z′) f (z′)dz′

]
, (8.22)

where K(z, z′) := 2

(W(0)(z′)−W(0)(−z′))(z′2 − z2)
.
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The proof can be directly achieved from the series expansion ofK(z, z′) [GHW19].
Inspiration for a residue formula (8.22) comes from topological recursion:

Remark 8.7 A (1 + 1 + . . . + 1)-point function of genus g with B boundary
components fulfils a universal structure when expressed in terms of ωg,B defined by

ωg,B(z1, . . . , zB) :=
(
B∏

i=1

zi

)(

G(g)(z1| . . . |zB)+ 16λ2 δg,0δ2,B

(z2
1 − z2

2)
2

)

, B > 1

ωg,1(z) :=zW
(g)(z)

2λ
.

Furthermore, let y(x) be the spectral curve defined by x(z) = z2 and

y(z) :=W
(0)(z)

2λ
= z

2λ
√
Z

− ν̃

2
+ 1

4λ

∫ √
1+�2

√
1+c

d2(t)

t (t + z)
.

It can be checked that with these definitions, up to trivial redefinitions by powers of
2λ, the theorems proved in topological recursion [Eyn16] apply. These determine
all ωg,B with 2 − 2g − B < 0 out of the initial data y(z) and ω0,2:

Theorem 8.8 ([Eyn16, Thm. 6.4.4]) For a subset I = {i1, . . . , i|I |} ⊂ {1, . . . , B}
let zI := (zi1, . . . , zi|I |). Then for 2 − 2g − (1 + B) < 0 the function
ωg,B+1(z0, . . . , zB) is given by the topological recursion

ωg,B+1(z0, . . . , zB) = Res
z→0

[
K(z0, z) dz

(
ωg−1,B+2(z,−z, z1, . . . , zB)

+
′∑

h+h′=g
IBI ′={1,...,B}

ωh,|I |+1(z, zI )ωh′,|I ′|+1(−z, zI ′)
)]
,

where K(z0, z) = 1
(z2−z2

0)(y(z)−y(−z))
and the sum

∑′ excludes (h, I ) = (0,∅) and

(h, I ) = (g, {1, . . . , B}).
Similar topological recursions have been established in various topics, for instance,
in the one-matrix model [Eyn04], the two-matrix model [CEO06], in the theory of
Gromov–Witten invariants [BKMP09] and for hyperbolic volumes of moduli spaces
[Mir07].

Proposition 8.6 applied to (8.21) provide with Theorem 8.5 and (8.14) the
recursive solution of the planar sector. One can achieve more:
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Proposition 8.9 ([GHW19]) There is a unique function Fg of {2l} satisfying

W(g)(z) = (2λ)4Â†g
z Fg(2),

F1(2) = − 1

24
log 20, Fg(2) = 1

(2 − 2g)(2λ)4

∞∑

l=0

Res
z→0

[z4+2l2l

3 + 2l
W(g)(z)dz

]
.

Here we close the circle because the Fg(2) are, after a change of variables, nothing
but the restriction to genus g of the generating functions (7.3) of intersection
numbers. The change of variables turns out to be 20 = 1 − t0 and −(2l +
1)!!2l = tl+1. This follows essentially from comparison between (8.18) and (7.8) at
infinitesimally small λ, i.e. c = 0, or from a similar relation in topological recursion.
Therefore, given the usual generating function of intersection numbers (see [IZ92]),

Fg(t0, t2, t3, . . . , t3g−2)

:=
∑

(k)

〈τ k2
2 τ

k2
3 . . . τ

k3g−2
3g−2 〉

(1 − t0)
2g−2+∑

i ki

3g−2∏

i=2

t
ki
i

ki ! ,
∑

i≥2

(i − 1)ki = 3g − 3, (8.23)

we have Fg(2) := (2λ)4g−4Fg(t)
∣∣
1−t0=20,tl=−(2l−1)!!2l−1

, and from there we build

W(g) = (2λ)4Â†g
z Fg(2) and higher functions via Theorem 8.5.

On the other hand, the solution of Equation (8.21) via Proposition 8.6 also
permits to derive a formula for Fg . For that it is convenient to collect all genera to

Â†
z := ∑∞

g=1 Â†,g
z and Znp

V := exp
(∑∞

g=1 V
2−2gFg(2)

)
. Then (8.21) is equivalent

to

0 =
( 2V 2

(2λ)4
K̂zÂ

†
z +

(
Â†
z + 1

20z4

∂

∂z

)
Â†
z + V 2

4(2λ)4z4

)
Znp
V . (8.24)

Inverting K̂zÂ
†
z via Propositions 8.6 and 8.9, and separating the case g = 1, the

following result can be established:

Theorem 8.10 ([GHW19]) The generating function (8.23) of intersection numbers
on the moduli spaces Mg,n of complex curves of genus g [Wit91, Kon92] is obtained
from

exp
( ∞∑

g=2

N2−2gFg(t)
)

= exp
(

− 1

N2�t + F2(t)

N2

)
1 (8.25)

where F2(t) = 7

240
· t32

3!T 5
0

+ 29

5760

t2t3

T 4
0

+ 1

1152

t4

T 3
0

with T0 := (1− t0) generates the

intersection numbers of genus 2 and�t = −∑
i,j ĝ

ij ∂i∂j −∑
i �̂

i∂i is a Laplacian
on the formal parameters t0, t2, t3, . . . given by
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�t := −
( 2t32

45T 3
0

+ 37t2t3
1050T 2

0

+ t4

210T0

) ∂2

∂t20

−
( 2t32

27T 4
0

+ 1097t2t3
12600T 3

0

+ 41t4
2520T 2

0

) ∂

∂t0

−
∞∑

k=2

(( 2t22
45T 3

0

+ 2t3
105T 2

0

)
tk+1 + t2Rk+1(t)

2T0
+ 3Rk+2(t)

2(3 + 2k)

) ∂2

∂tk∂t0

−
∞∑

k,l=2

( t2tk+1tl+1

90T 2
0

+ tk+1Rl+1(t)

4T0
+ tl+1Rk+1(t)

4T0

+ (1+2k)!!(1+2l)!!Rk+l+1(t)

4(1+2k+2l)!!
) ∂2

∂tk∂tl

−
∞∑

k=2

(( 19t22
540T 4

0

+ 5t3
252T 3

0

)
tk+1 + t2Rk+1(t)

48T 2
0

+ Rk+2(t)

16(3 + 2k)T0
+ t2tk+2

90T 3
0

+ Rk+2(t)

2T0

) ∂

∂tk

with Rm(t) := 2

3

m∑

k=1

(2m−1)!! ktk+1

(2k+3)!!T0

m−k∑

l=0

l!
(m−k)!Bm−k,l

({ j !tj+1

(2j+1)!!T0

}m−l+1

j=1

)
.

The Fg(t) are recursively extracted from Zg(t) := 1
(g−1)! (−�t + F2(t))

g−11 and

Fg(t) = Zg(t)− 1

(g − 1)!
g−1∑

k=2

Bg−1,k

({
h!Fh+1(t)}g−kh=1

)
. (8.26)

Here and in Theorem 8.10, Bm,k({x}) are the Bell polynomials.
Theorem 8.10 seems to be closely related with exp(

∑
g≥0 Fg) = exp(Ŵ )1

proved by Alexandrov [Ale11], where Ŵ := 2
3

∑∞
k=1(k + 1

2 )tkL̂k−1 involves the

generators L̂n of the Virasoro algebra. Including N and moving exp(N2F0 +F1) to
the other side, �t is in principle obtained via Baker–Campbell–Hausdorff formula
from Alexandrov’s equation, but evaluating the necessary commutators is not viable.

Theorem 8.10 and Equation (8.26) are easily implemented in any computer
algebra system and quickly allow to compute intersection numbers to moderately
large g. The result is confirmed by other implementations such as [DSvZ18].

8.4 Summary

The construction of the renormalised �3
D-QFT model on noncommutative geome-

tries of dimension D ≤ 6 is complete. Given the mass-renormalised sequence (En)
for the covariance and renormalised coupling constant λ, the planar 1-point function
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G(g)(z) = W(0)(z)−
√
z2−c

2λ is described by (8.11) with parameters chosen according
to Definition 8.2 and Equation (8.13). It gives rise to planar functions with several
boundary components by (8.16), (8.17) and (8.14). The non-planar sector is obtained
by the following steps:

1. Compute the free energy Fg(t) via Theorem 8.10 and the note thereafter. Take
F1 = − 1

24 log T0 for g = 1. Alternatively, start from intersection numbers
obtained by other methods (e.g. [DSvZ18]).

2. Change variables to 20 = 1− t0 and 2l = − tl+1
(2l+1)!! , where 2l are given by (8.18)

for the measure (8.9) and with c implicitly defined by (8.13).
3. Apply to the resulting Fg(2) according to Proposition 8.9 and Theorem 8.5 the

boundary creation operators Â†g
z1,...,zB ◦. . . Â†g

z1,z2 ◦Â†g
z1 defined in (8.19). Multiply

by (2λ)4g+3B−4+δB,1 to obtain G(g)(z1| · · · |zB).
4. Pass to G(g)(z1

1 . . . z
1
N1

| . . . |zB1 . . . zBNB ) via difference quotients (8.14).

Finally, evaluate at zβkβ �→ (4E2
p
β
kβ

+c)1/2 to obtain G(g)|p1
1...p

1
N1

|...|pB1 ...pBNB |, where Ep

arises by mass-renormalisation from the Ẽp in the initial action (8.3) of the model.
There remains a final problem. We have achieved exact formulae for any

correlation function at any fixed genus, which corresponds to a convergent sum
over amplitudes encoded in infinitely many ribbon graphs. It remains to understand
the sum

∑∞
g=0 V

−2gG(g)... over genera in (7.16), which by the Steps 1–4 is derived

from the sum
∑∞

g=2N
2−2gFg(t) in (8.25). The generating function Fg contains

p(3g − 3) ∼ 1
12

√
3(g−1)

exp(π
√

2g − 2) terms, which are too many for ordinary
convergence:

Question 8.11 Is it possible to Borel-sum the series
∑∞

g=1 V
2−2gFg(2) for

2l > 0? Note that this corresponds to tl < 0 for l ≥ 2 and λ ∈ iR (see (8.9)).
One should use asymptotic estimates [MZ15] of intersection numbers or
the heat flow of �t given in Theorem 8.10, or a recent estimate by Eynard
[Eyn19].

One could also ask whether the metric ĝ in �t = −∑
i,j ĝ

ij ∂i∂j − ∑
i �̂

i∂i has
any significance:

Question 8.12 Is �̂i a Levi-Civita connection for ĝij ? Does ĝij admit a
reasonable definition of a volume and a curvature? Is there any relation to
the Weil–Petersson volumina which are deeply connected with intersection
numbers [AC96, Mir07]?
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9 Exact solution of the �4-model

9.1 The planar sector

It would have far-reaching consequences if the �4-model admitted a similar
construction as the �3-model. After a decade of work and many failed attempts,
such a construction is now in reach. Combining Dyson–Schwinger equations and
Ward–Takahashi identity, we derived in [GW09] a closed equation for the planar
two-point function of the �4-model. This equation is complicated. A considerable
simplification to an angle functions of essentially only one variable was achieved in
[GW14a]. In [PW18] the exact solution was found for the important special case of
a scaling limit of two-dimensional Moyal space. In [GHW19b] it was understood
how to generalise this construction to any covariance of dimension ≤4. For finite
matrices a representation by rational functions arises. This rationality is a strong
support for the conjecture that the �4-model is integrable. Below we give a few
details. It remains to be seen whether correlation functions at higher (g, B) satisfy
any sort of topological recursion [EO07], and to identify the integrable structure.

The�4-model is defined by the identical covarianceC(N)E as given before in (8.2)
with (8.1) but instead of (8.3) by a quartic interaction functional

S
(N)
int (�) := V

λZ̃2

4

∑

k,l,m,n∈ND/2N

�kl�lm�mn�nk , �kl := �(ekl) . (9.1)

By the same techniques as described in Section 7.3—Dyson–Schwinger equations
combined with Ward–Takahashi identity—exact non-perturbative equations for
correlation functions are obtained. Below we give these equations for planar
functions with a single boundary component (g = 0, B = 1):

Proposition 9.1 ([GW14a])

G
(0)
|kl| = 1

Z̃(Ẽk + Ẽl)
− Z̃λ

Ẽk + Ẽl

1

V

∑

n∈ND/2N

(
G
(0)
|kl|G

(0)
|kn| − G

(0)
|nl| −G

(0)
|kl|

Z̃(Ẽn − Ẽk)

)
,

(9.2)

G
(0)
|k0k1...kN−1| (9.3)

= (−λ)
N−2

2∑

l=1

G
(0)
|k0k1...k2l−1|G

(0)
|k2l k2l+1...kN−1| −G

(0)
|k2l k1...k2l−1|G

(0)
|k0k2l+1...kN−1|

(Ek0
− Ek2l

)(Ek1
− EkN−1

)
.

The general case including higher-genus contributions can be found in [GW14a]. A
manifestly symmetric variant of (9.2) was derived in [PW18].
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The first Equation (9.2) requires renormalisation (see below), whereas (9.3) is
automatically expressed in terms of the renormalised 2-point function G(0)|kl| and

the mass-renormalised sequence Ek := Ẽk + μ2−μ̃2

2 with En − Ek ≡ Ẽn − Ẽk .
Thus, no renormalisation of the coupling constant λ is necessary, which means
that the β-function vanishes identically (provided that the 2-point function can be
renormalised). This is the non-perturbative proof of [DGMR07].

Equation (9.3) is the analogue of (8.6). Its explicit solution is a sum of
monomials in G(0)|k2i k2j+1|,

1
Ek2i−Ek2j

and 1
Ek2i+1−Ek2j+1

. As proved in [dJHW19],

these monomials are in one-to-one correspondence with Catalan tables of length
N
2 , which are iterations of Catalan tuples.

Definition 9.2 A Catalan tuple of length k is a (k + 1)-tuple t̃ = (t0, . . . , tk) with∑k
i=0 ti = k and

∑l
i=0 ti > l for any l < k. We let |t̃ | be the length of t̃ .

A Catalan table of length k is a k + 1-tuple T = 〈t̃0, . . . , t̃k〉 of Catalan tuples t̃i
such that (|t̃0| + 1, |t̃1|, . . . , |t̃1|) is itself a Catalan tuple.

There are Ck = 1
k+1

(2k
k

)
different Catalan tuples of length k (whence its name)

and 1
k+1

(3k+1
k

)
different Catalan tables T of length k. A Catalan table of length

N
2 simultaneously encodes a pocket tree for the monomials in G(0)k2i k2j+1

, a rooted

tree for the monomials in 1
Ek2i−Ek2j

and an opposite tree for the monomials in

1
Ek2i+1−Ek2j+1

.

By the same reasoning as before, any solution of (9.2) extends to a sectionally
holomorphic function G(0)(ζ1, ζ2) with G(0)|kl| = G(0)(ζ1, ζ2)

∣∣
ζ1=Ẽk−μ̃2/2,ζ2=Ẽl−μ̃2/2

which satisfies

(μ̃2+ζ1+ζ2)Z̃G
(0)(ζ1, ζ2) (9.4)

= 1 − λ

∫ �2

0
dt 2(t)

(
Z̃G(0)(ζ1, ζ2) Z̃G

(0)(ζ1, t)− Z̃G(0)(t, ζ2)− Z̃G(0)(ζ1, ζ2)

(t − ζ1)

)
,

where 2(t) := 1
V

∑
n∈ND/2N

δ(t − (Ẽn − 1
2 μ̃

2)) and Ẽn ∈ [ 1
2 μ̃

2,�2 + 1
2 μ̃

2] for all

n ∈ N
D/2
N . Next we temporarily assume that 2 can be approximated by a Hölder-

continuous function. The strategy developed in [GW14a] consists in an ansatz

ZG(0)(a, b) = eH�
a [τb(•)] sin τb(a)

λπ2(a)
= eH�

b [τa(•)] sin τa(b)

λπ2(b)
, (9.5)

where the angle function τa : (0,�2) → [0, π ] for λ > 0 and τa : (0,�2) →
[−π, 0] for λ < 0 remains to be determined. Here,
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H�
a [f (•)] := 1

π
lim
ε→0

∫

[0,�2]\[a−ε,a+ε]
dt f (t)

t − a
= lim

ε→0
Re

( 1

π

∫ �2

0

dt f (t)

t − (a + iε)

)

(9.6)

denotes the finite Hilbert transform. We go with the ansatz (9.5) into (9.4) at ζ1 =
a + iε and ζ2 = b:

(
μ̃2 + a + b + λπH�

a [2(•)] + 1

π

∫ �2

0
dt eH

�
t [τa(•)] sin τa(t)

)
ZG(0)(a, b)

= 1 + H�
a

[
eH

�• [τb] sin τb(•)
]
. (9.7)

A Hölder-continuous function τ : (0,�2) → [0, π ] or τ : (0,�2) → [−π, 0]
satisfies

H�
a

[
eH

�• [τ ] sin τ(•)] = eH
�
a [τ ] cos τ(a)− 1 ,

∫ �2

0
dt e±H�

t [τ(•)] sin τ(t) =
∫ �2

0
dt τ (t) . (9.8)

The first identity appeared in [Tri57], the second one was proved in [PW18].
Inserting both identities into (9.7) gives with (9.5) a consistency relation for the
angle function:

τa(p) = arctan

(
λπ2(p)

μ̃2 + a + p + λπH�
p [2(•)] + 1

π

∫ �2

0 dt τp(t)

)
, (9.9)

where the arctan-branch in [0, π ] is selected for λ > 0 and the branch in [−π, 0]
for λ < 0.

The dependence on a in (9.9) is relatively simple so that the first attempts focused
on the resulting equation for τ0(p). This allowed to prove, for the case 2(x) = x

of 4-dimensional Moyal space with harmonic propagation, existence of a solution
[GW16]. Also an interesting phase structure was detected [GW14b], but a solution
was missed.

9.2 Exact solution of the planar 2-point function

A breakthrough was achieved in [PW18], where the special case 2(x) = 1
was solved that describes a scaling limit of the 2-dimensional Moyal space with
harmonic propagation:
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Theorem 9.3 ([PW18]) For 2(x) = 1 and with μ̃2 = 1 − 2λ log(1 + �2), the
consistency equation (9.9) has in the limit � → ∞ for λ > 0 the solution

τa(p) = arctan

(
λπ

a + λW0
( 1
λ

e
1+p
λ

) − λ log
(
λW0

( 1
λ

e
1+p
λ

) − 1
)

)
, (9.10)

whereW0 denotes the principal branch of the Lambert function [Lam58, CGH+96].

The HyperInt package [Pan15] was used to push a perturbative solution of (9.10)
far enough to guess the whole perturbation series. The series is resumed by
Lagrange-Bürmann formula [Lag70, Bür99] to Lambert-W. The result is confirmed
by the residue theorem. The 2-point functionG(0)(a, b) is then evaluated from (9.5)
via deformation of complex contour integrals (the result will be given below for any
2).

Building on [PW18], in [GHW19b] the exact solution of the non-linear equa-
tion (9.4) was achieved for any density 2 (which encodes a sequence (En) of
dimension D ≤ 4 according to Definition 8.2). Starting point was the observation
that the denominator of (9.10) can be written (up to a shift 1 + a) as −Re(−f (p)+
λ log(−f (p))), where f (p) = λW0

( 1
λ

e
1+p
λ

) − 1 solves 1 + p = 1 + f (p) +
λ log(1 + f (p))). The logarithm is the renormalised Stieltjes transform of the
measure 2(t) = 1. This suggested to try the same combination of reflection
z ↔ −μ2 − z with the Stieltjes transform of the given density 2. But this was
not enough: The general case requires a deformation of 2 to an implicitly defined
measure function 2λ:

Definition 9.4 Given a real λ in some open neighbourhood of 0, a scale μ2 > 0
and a Hölder-continuous function 2 : [0,�2] → R+ of dimension D ∈ {0, 2, 4}.
Then a function 2λ on [νλ,�2

λ] is implicitly defined by

2(t) =: 2λ(R−1
λ (t)) , �2

λ := R−1
λ (�2) , νλ := R−1

λ (0) , (9.11)

where Rλ : C \ [−μ2 −�2
λ,−μ2 − νλ] → C is defined via the same function 2λ by

Rλ(z) := z− λ(−z)D2
∫ �2

λ

νλ

dt 2λ(t)

(t + μ2)
D
2 (t + μ2 + z)

. (9.12)

The definition is consistent because for |λ| small enough, Rλ is a biholomorphic

map from the half-plane Re(z) > −μ2

2 onto a domain which contains [0,�2].
Using the same complex analysis techniques as in [PW18], including Lagrange

inversion theorem and Bürmann formula, the following generalisation of Theo-
rem 9.3 can be achieved:

Theorem 9.5 ([GHW19b]) Let 2 : [0,�2] → R+ be a Hölder-continuous mea-
sure of dimension D ∈ {0, 2, 4} and 2λ its deformation according to Definition 9.4
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for a real coupling constant λ with |λ| < ( ∫ �2
λ

νλ
dt 2λ(t)

(t+μ2/2)2
+δD,4

∫ �2
λ

νλ
dt 2λ(t)

(t+μ2)2

)−1
.

Then the consistency equation (9.9) for the angle function is solved by

τa(p) = lim
ε→0

Im
(

log(a − Rλ(−μ2 − R−1
λ (p + iε)))

)
, (9.13)

where Rλ is defined by (9.12) and μ̃ is renormalised according to

μ̃2 = μ2
(

1 − λδD,4

∫ �2
λ

νλ

dt 2λ(t)

(t + μ2)2

)
− 2λ(δD,2 + δD,4)

∫ �2
λ

νλ

dt 2λ(t)

t + μ2 .

(9.14)

A constant measure such as 2(t) = 1 remains undeformed to 2λ(x) = 1, and (9.13)
reduces for D = 2 and μ = 1 to (9.10).

Evaluation of the Hilbert transform of (9.13) yields for (9.5):

Proposition 9.6 ([GHW19b]) The renormalised planar two-point function of the
D-dimensional �4-model is given by

G(0)(a, b) := (μ2)δD,4(μ2 + a + b) exp(Nλ(a, b))

(μ2 + b + R−1
λ (a))(μ2 + a + R−1

λ (b))
, (9.15)

where Rλ is built via (9.12) with the deformed measure 2λ defined in (9.11) and

Nλ(a, b) := 1

2π i

∫ ∞

−∞
dt

{
log

(
a − Rλ(−μ2

2 − it)

a − (−μ2

2 − it)

)
d

dt
log

(
b − Rλ(−μ2

2 + it)

b − (−μ2

2 + it)

)

− δD,4 log

(
Rλ(−μ2

2 − it)

(−μ2

2 − it)

)
d

dt
log

(
Rλ(−μ2

2 + it)

(−μ2

2 + it)

)}
. (9.16)

In D = 4 dimensions, G(0)(a, b) is only determined up to a multiplicative constant
(the finite part of Z̃) which here is normalised toG(0)(0, 0) = 1 independently of μ.

Moyal space in dimension D = 2 corresponds to 2(x) = 1 and accordingly
Rλ(x) = x + λ log(1 + x) (when setting μ = 1). The perturbative expansion of
Nλ(a, b) involves Nielsen’s generalised polylogarithms [Nie09] and Riemann zeta
values.

Moyal space in dimension D = 4 corresponds to 2(t) = t , which by (9.11)
and (9.12) results (for � → ∞) in

2λ(x) = Rλ(x) = x − λx2
∫ ∞

0

dt Rλ(t)

(t + μ2)2(t + μ2 + x)
. (9.17)
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Proposition 9.7 ([GHW19c]) The Fredholm integral equation (9.17) has the solu-
tion

Rλ(x) = x 2F1

(αλ, 1 − αλ

2

∣∣
∣ − x

μ2

)
, (9.18)

where αλ :=
{

arcsin(λπ)
π

for |λ| ≤ 1
π
,

1
2 + i arcosh(λπ)

π
for λ ≥ 1

π
.

Inserting (9.18) into (9.15) provides an integral representation6 for the planar two-
point function, which is exact in λ ≥ − 1

π
. Its perturbative expansion involves a

particular class of hyperlogarithms in alternating letters 0,−1 [GHW19c].

Remark 9.8 It is very important that Rλ : R+ → R+ given by (9.18) is bijective.
This was not expected in the beginning: If 2λ in (9.12) had the same asymptotic
behaviour 2λ(x) ∝ x as 2(x) = x for D = 4, then Rλ would reach a maximum
on R+ and could not be inverted globally, unless λ = 0 is trivial. The �4-
model on 4-dimensional Moyal space avoids the triviality [Aiz81, Frö82] of the
commutative φ4

4-model by a significant modification of the spectral dimension.

Defining Dspec(ρ) = inf{p : ∫ ∞
0 dt

ρ(t)

(1+t)p/2 < ∞}, then Dspec(2λ) =
4 − 2 arcsin(λπ)

π
for |λ| ≤ 1

π
but Dspec(2) = 4.

The final result (9.15) and (9.16) does not require anymore that 2 is Hölder-
continuous. It also holds for 2 a finite sum of Dirac measures, and in this case one
can even evaluate the remaining integral (9.16):

Theorem 9.9 ([GHW19b]) Consider the �4-model for N × N-matrices in which
the covariance is defined by a d-tupel (E1, . . . , Ed) of positive real numbers, where
Ek arises with multiplicity rk , and

∑d
k=1 rk = N. These data encode a rational

function

R(z) := z− λ

N
d∑

k=1

2k

εk + z
, (9.19)

where {εk, 2k}k=1,...,d are the unique solutions in a neighbourhood of λ = 0 of

Ek = R(εk) , rk = 2kR
′(εk) with lim

λ→0
εk = Ek , lim

λ→0
2k = rk.

(9.20)

6The inverse functionR−1
λ (x) in (9.15) can be combined with Nλ to another integral representation

[GHW19b].
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Then the planar two-point function has in an open neighbourhood of λ = 0 the
explicit solution G(0)ab = G(0)(εa, εb), where G(0) : C̄ × C̄ → C̄ is the rational
function

G(0)(z, w) =
1 − λ

N
d∑

k=1

rk

(R(z)− R(εk))(R(εk)− R(−w))
d∏

j=1

R(w)− R(−ε̂kj )
R(w)− (εj )

R(w)− R(−z)
(9.21)

in which z ∈ {u, û1, . . . , ûd} is the list of roots ofR(z) = R(u). The 2-point function
is symmetric, G(0)(z, w) = G(0)(w, z), and defined outside poles located at z+w =
0, at z = ε̂k

m and at w = ε̂l
n, for k, l,m, n = 1, . . . , d.

Theorem 9.9 undeniably establishes that the �4-model is exactly solvable in
surprisingly close analogy with the �3-model (i.e. the Kontsevich model). The
rationality achieved in (9.21) is overwhelming support for the conjecture that the
�4-model is integrable, too, which means it descends from a τ -function satisfying
a Hirora equation [Miw82].

The simplest case E = μ2

2 = const of a single r1 = N-fold degenerate

eigenvalue E1 = μ2

2 is already interesting. One finds [GHW19b]

G
(0)
11 = 4

3

μ2 + 2
√
μ4 + 12λ

(
μ2 + √

μ4 + 12λ
)2 . (9.22)

It agrees with corresponding formulae in the literature [BIPZ78].

9.3 Outlook

It remains to recursively solve the Dyson–Schwinger equations for B > 1. In
[GW14a] this problem was already reduced to affine equations for N1 + · · · +NB -
point functions with all Nβ ≤ 2, where Nβ = 1 is much simpler than Nβ = 2.
One should start with finite matrices where the initial data of the recursion is known
from (9.21). The same change of variables (9.19) brings the equation for the 1 + 1-
point function into the form

(
R(z)− R(−z))G(0)(z|w)− λ

N
d∑

k=1

rkG(0)(εk|w)
R(εk)− R(z)

= λ
G(0)(z, w)− G(0)(w,w)

R(z)− R(w)
.

(9.23)
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The lhs agrees exactly with the corresponding operator in topological recursion
[EO07, Eyn16], provided that one chooses the classical spectral curve
E(x(z), y(z)) = 0 as

x(z) = R(z) , y(z) = −R(−z). (9.24)

But the rhs of (9.23) is completely different. Its poles at z,w ∈ {ε̂k l} have no
counterpart in topological recursion. These poles are expected to proliferate into
all functions of higher topology. Moreover, topological recursion assumes that the
branched covering x : C → C is invariant under the local Galois involution, here
z �→ −z. This invariance does not hold in (9.24). Finally, higher N -point functions
arising as inhomogeneity of the recursion are (via the generalisation of (9.3)) non-
linear in the basic N1 + · · · + NB -point functions with all Nβ ≤ 2, whereas in
topological recursion the analogous dependence is linear.

Thus, in spite of striking similarities with the topological recursion, the recursion
of the�4-model differs significantly when looking closer. Solving the�4-recursion
from scratch will be a fascinating programme for the next years. The remarkable
fact that also the �4-model is exactly solvable raises several questions:

Question 9.10

• Why are the exact solutions of the �4- and �3-models so similar, whereas
their perturbative treatment falls completely apart?

• Do all contributions to correlation functions with topology (g, B) have a
significance in topological recursion, or only those with an odd number of
defects per boundary component?

• What is the integrable structure of the �4-model? Is the logarithm of the
partition function of the �4-model a τ -function for a Hirota equation?

• Is the logarithm of the partition function a series in certain ti with rational
coefficients? If so, do these rational numbers describe some intersection
numbers of some characteristic classes on some moduli space?

• Can one identify a Virasoro algebra, or some generalisation, in the �4-
model?

• Can the standard model of particle physics learn something from the
integrable �4-model? Does the enormous complexity concerning polylog-
arithms and other transcendental functions in the standard model possibly
arise through the perturbative solution of implicitly defined problems
similar to Definition 9.4?
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10 Osterwalder–Schrader axioms

Strictly speaking, the programme outlined in Section 3, completely solved for the
�3-model in Section 8 and partially solved for the �3-model in Section 9, does
not yet produce any quantum field theory. It gives consistent continuum limits
of statistical physics models, but not a QFT. For a true quantum field theory
a time evolution is necessary. On standard Euclidean space R

D , time evolution
is a deep consequence of the Osterwalder–Schrader axioms [OS73, OS75] (see
Definition 2.2). The most decisive axiom is reflection positivity, a variant of the
Hausdorff–Bernstein–Widder theorem:

Theorem 10.1 (Hausdorff–Bernstein–Widder) Let S be a convex cone in a real
vector space X, containing 0. Then for a continuous function F : S → R the
following are equivalent:

1. F is decreasing and positive definite, i.e.
∑K

i,j=1 cicjF (ti + tj ) ≥ 0 for all
ci, cj ∈ C and ti , tj ∈ S.

2. F is the Laplace transform F(t) = ∫
X′ dμ(λ) e−λ(t) of a positive measure on

X′.
3. F is completely monotonic, i.e.

∏K
i=1(id − Tδi )F ≥ 0 for all δi ∈ S, where

(TδiF )(t) = F(t + δi).

Consequently, F is smooth, and 3. can be replaced by (−1)|n|f (n)(t) ≥ 0 for any
multi-index n.

The original publications [Hau23, Ber29, Wid31] prove the theorem for S = R+.
The higher-dimensional version S = (R+)N is given in Bochner’s book [Boc55].
It was extended to fairly general Abelian semigroups by Nussbaum [Nus55] and to
operators in Hilbert space by several authors, for instance [KL81]. The main feature
of the Laplace integral is that it provides a holomorphic extension of F into the
tube S + iX. It is this purely imaginary iX what we refer to as ‘time’. Reflection
positivity is a challenging topic in mathematics and physics. We refer to [NO18]
and the Oberwolfach reports [JNOS17] for more details and for an overview about
current research activities.

To develop an Osterwalder–Schrader setup for a (noncommutative) nuclear AF
Fréchet algebra A = ⋃

NAA on which we constructed QFT models we need
a continuous linear map q∗ : A∗ → C∞(U) into a vector space of smooth
functions. It is tempting to identify q∗ with the isomorphism ιU provided by the
Kōmura-Kōmura theorem 3.3. In this case we would need that the image ιU (A∗) is
invariant under translations. This is the case for the Moyal algebras in Sections 4.1
and 4.3, but we do not know it in general (see Question 3.4). We briefly review in
Section 10.1 what is known for the choice q∗ = ιRD . The lesson will be to proceed
differently. We develop first ideas in Section 10.2.
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10.1 Previous approaches to reflection positivity

Reflection positivity in QFTs on Moyal space has been studied in several contexts.
We admit, however, that a satisfactory picture was not yet given. If one had a
reflection-positive QFT on ordinary R

3 or R4, then one can choose to Moyal-deform
only a 2-dimensional subspace orthogonal to the time direction. In this case analytic
continuation (‘Wick rotation’) and deformation commute up to an isomorphism of
the Minkowskian Moyal algebra [GLLV13]. The restriction to degenerate Moyal
space is an essential requirement. Without it the continuation of Moyal-deformed
Wightman functions leads to Euclidean functions with twists in mass-shell momenta
[Bah10].

Another approach proposed in [GW13b] consists in using the isomorphism ι3 =
ιRD to map matrix correlation functions 〈ek1l1 ⊗ · · · ⊗ ekN lN 〉 defined in (3.6) into

R
D-labelled candidate Schwinger functions

Sc(x1, . . . , xn) (10.1)

:=
∑

k1,...,lN∈ND/2
fk1l1(x1) · · · fkN lN (xN)

(−i)N

ZC(0)

∂NZC(t1ek1l1+ . . .+tNekN lN )
∂t1 · · · ∂tN

∣∣
∣
ti=0

,

where the fkl are extension of f (θ)kl defined in (4.3) to D/2 components. The
function ZC(J ) is expanded by (7.15). This involves the covariance C defined
in (6.7) which essentially relies on the harmonic oscillator Schrödinger operator
H�=1 = −� + 4

θ2 x
2. The explicit dependence on the position x in this operator

makes the candidate Schwinger functions (10.1) not even translation-invariant.
However, the dangerous term vanishes in the limit V = ( θ4 )

D/2 → ∞. Note that
the limit V → ∞ is highly singular for the matrix basis functions (4.3). It was
proved in [GW13b] that the limit V → ∞ of (10.1) is well-defined and gives with

a convention
δJmn
δJ (x)

:= μDfmn(x) the following formula for connected Schwinger
functions:

Sc(x1, . . . , xN)

= 1

(8π)
D
2

∑

N1+...+NB=N
Nβ even

∑

σ∈SN

( B∏

β=1

4Nβ

Nβ

∫

R4

dpβ
4π2 ei

〈
pβ,

∑Nβ
i=1(−1)i−1xσ(sβ+i)

〉)

×G∣
∣ ‖p1‖2

2 , · · · , ‖p1‖2

2︸ ︷︷ ︸
N1

∣
∣...

∣
∣ ‖pB‖2

2 , · · · , ‖pB‖2

2︸ ︷︷ ︸
NB

∣
∣. (10.2)

Euclidean invariance is manifest. The most interesting sector is Nβ = 2 in
every boundary component. This (2+ . . .+2)-sector describes the propagation and
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interaction of B Euclidean ‘particles’ without any momentum exchange. Absence
of momentum transfer is characteristic to integrable models [Mos75, Kul76], but
in 4 dimensions a sign of triviality [Aks65]. However, not all assumptions of this
triviality proof are satisfied in the models under consideration.

For the �3-model constructed in Section 8, the explicit formulae (8.17)
and (8.14) admit a direct verification of complete monotonicity (property 3. of
Theorem 10.1). For the 2-point function this amounts to prove that a �→ G|aa| ≡
∫ ∞

0
dρ(m2)

a+m2 is a Stieltjes function [GW13b], i.e. the Stieltjes transform of a positive

measure dρ(m2). Surprisingly, the 2-point function of the �3
D-model is Stieltjes

for D = 4 and D = 6 (and λ real where the partition function is meaningless),
but not for D = 2 or λ purely imaginary [GSW17]. Numerical evidence was given
[GW14b] that the same is true for the �4

4-model: The 2-point function is definitely
not reflection positive in the stable case λ > 0, whereas for λ < 0 positivity seems
to hold.

Reflection positivity cannot be expected to hold for the whole set of Schwinger
functions (10.2) for the �3-model. The reason is the fast decay in Ek established
in (8.17) which contradicts complete monotonicity in Theorem 10.1.

10.2 A proposal

In a sort of outlook we sketch ideas about another approach to the Osterwalder–
Schrader axioms in QFTs on noncommutative algebras A. The failure of (10.1)
to produce reflection-positive Schwinger functions suggests that the dequantisation
q∗ : A∗ → C∞(RD) should be different from the Kōmura-Kōmura isomorphism
ιU .

Instead we propose to build the dequantisation as a positive map (q∗(a∗a))(x) ≥
0 for all a ∈ A and x ∈ R

D . Adjusting the norm we choose it in the class of RD-
labelled states {ωv : v ∈ R

D}. There are good reasons for this ansatz. On the

Moyal algebra (S(R2), $θ ) one can check that ω̃γ (f ) := 1
πγ θ

∫
R2 dx e− |x|2

γ θ f (x)

is a state if and only if γ ≥ 1. Pointwise evaluation, a state for the commutative
product, would be recovered by limγ→0 ω̃γ (f ) = f (0), but it is not positive for the
Moyal product. We argued in the very beginning (Section 1.1) that sharp localisation
in a QFT is incompatible with gravity. This observation was precisely the reason
to introduce QFTs on noncommutative geometries (Section 1.2). The smearing in
an area |x|2 ≥ θ via the state ω̃γ implements the localisability restrictions, with
θ = &2

p being the Planck area. Moreover, states provide the correct framework to
pass from the noncommutative topology encoded in an algebra A to the metric
aspects of noncommutative geometry [Con94]. Given a spectral triple (A,H,D), a
metric structure is defined on (an appropriate subspace of) states on A via Connes’
distance formula [Con94]

dist(ω1, ω2) = sup{|ω1(a)− ω2(a)| : ‖[D, a]‖ ≤ 1}. (10.3)
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We therefore propose:

Definition 10.2 Let A be nuclear AF Fréchet algebra generated by orthonormal
matrix bases {ekl}. Then renormalised correlation functions 〈ek1l1 ⊗ · · · ⊗ ekN lN 〉
defined on A via (3.6) and renormalisation gives rise to Schwinger functions by

S(vN) :=
∑

k1,...,lN∈ND/2
ωvN (ek1l1 ⊗ · · · ⊗ ekN lN )〈ek1l1 ⊗ · · · ⊗ ekN lN 〉, (10.4)

where ωvN is a state on A⊗N .

We assume that the Kōmura-Kōmura isomorphism endows A by an action α : RD×
A → A of translations. It is probably not necessary that the R

D-action commutes
with multiplication in A. We obtain an R

D-action on the states ωvN by duality,

(
αt1,...,tN ωvN

)(
a1 ⊗ · · · ⊗ aN

) := ωvN
(
αt1a1 ⊗ · · · ⊗ αtN aN

)
, (10.5)

for ti ∈ R
D . Hence, it is enough to specify a single reference state ωv̂N which via

ωt1,...,tN := αt1,...,tN ωv̂N induces an R
ND-indexed family of states. This would make

the R
D a universal model of noncommutative geometries defined via the distance

formula (10.3). It was shown in [MT13] that for A the 2D-Moyal algebra one has
dist(ωt , ωt ′) = ‖t − t ′‖ for the noncommutative distance (10.3) between any such
translates ωt , ωt ′ of a reference state on the Moyal algebra. In short, everything is
consistent.

One of the Osterwalder–Schrader axioms requires translation invariance of the
Schwinger functions (10.4), i.e. S(t1, . . . , tN ) = S(t1 + t0, . . . , tN + t0) for any
t0 ∈ R

D . This is not automatic for our proposal, but can be achieved for the Moyal
algebra following an observation in [BDFP03]. Namely, the tensor product of Moyal
algebras factorises into A⊗N = A⊗A⊗N−1, where the first tensor factor describes
the centre-of-motion coordinate and the second one depends only on coordinate
differences. Let ιc : A⊗N → A ⊗ A⊗N−1 be this factorisation isomorphism, then
translation-invariant Schwinger functions can be defined as

S(t1, . . . , tN ) (10.6)

:=
∑

k1,...,lN∈ND/2

(
ω̂⊗ωt1−t2,...,tN−1−tN

)(
ιc(ek1l1⊗. . .⊗ekN lN )

)〈ek1l1⊗. . .⊗ekN lN 〉,

where ω̂ averages over the centre-of-motion and ωt1−t2,...,tN−1−tN is a R
D(N−1)-

translate of a reference state on A⊗N−1. The Schwinger functions (10.6) are
translation-invariant by construction. It thus remains:
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Question 10.3 Is it possible to find examples of reference states, or even
to classify them, for which the free theory with covariance CE is reflection
positive? Does it extend to reflection positivity of Schwinger 2-point func-
tions (10.6) for the moments 〈ek1l1 ⊗ ek2l2〉 of the �3 and �4-models?

The dream would be to prove reflection positivity of all Schwinger functions.
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Higher invariants in noncommutative
geometry

Zhizhang Xie and Guoliang Yu

Dedicated to Alain Connes with great admiration

Abstract We give a survey on higher invariants in noncommutative geometry and
their applications to differential geometry and topology.

1 Introduction

Geometry and topology of a smooth manifold is often governed by natural
differential operators on the manifold. When a smooth manifold M is closed
(compact without boundary), a basic invariant of these differential operators is
their Fredholm index. Roughly speaking the Fredholm index measures the size
of the solution space for an infinite dimensional linear system associated to the
operator D. More precisely, the Fredholm index of D by the formula: index(D) =
dim(kernel(D)) − dim(kernel(D∗)). The beauty of the Fredholm index is its
invariance under small perturbations and homotopy equivalence. The Fredholm
index is an obstruction to invertibility of the operator. The Fredholm index of such
an operator D is computed by the well-known Atiyah–Singer index theorem [AS].
The Atiyah–Singer index theorem has important applications to geometry, topology,
and mathematical physics.

Alain Connes’ powerful noncommutative geometry provides the framework for
a much more refined index theory, called higher index theory [BC, BCH, C, CM, K].
Higher index theory is a far-reaching generalization of classic Fredholm index
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theory by taking into consideration of the symmetries given by the fundamental
group. Let D be an elliptic differential operator on a closed manifold M of
dimension n. If M̃ is the universal cover of M , and D̃ is the lift of D onto M̃ ,
then we can define a higher index of D̃ in Kn(C

∗
r (π1M)), where π1M is the

fundamental group of M and Kn(C∗
r (π1M)) is the K-theory of the reduced group

C∗-algebra C∗
r (π1M). This higher index is an obstruction to the invertibility of D̃

and is invariant under homotopy. Higher index theory plays a fundamental role in
the studies of problems in geometry and topology such as the Novikov conjecture
on homotopy invariance of higher signatures and the Gromov–Lawson conjecture
on nonexistence of Riemmanian metrics with positive scalar curvature. Higher
indices are often referred to as primary invariants due to its homotopy invariance
property. The Baum–Connes conjecture provides an algorithm for computing the
higher index [BC, BCH] while the strong Novikov conjecture predicts when the
higher index vanishes [K]. When a closed manifold M carries a Riemannian metric
with positive scalar curvature, by the Lichnerowicz formula, the Dirac operator
D̃ on M̃ is invertible and hence its higher index vanishes. If M is aspherical,
i.e., its universal cover is contractible, then the strong Novikov conjecture predicts
that the higher index of the Dirac operator is nonzero and hence implies the
Gromov–Lawson conjecture stating that any closed aspherical manifold cannot
carry a Riemannian metric with positive scalar curvature [R]. Another important
application of higher index theory is the Novikov conjecture [N], a central prob-
lem in topology. Roughly speaking, the Novikov conjecture claims that compact
smooth manifolds are rigid at an infinitesimal level. More precisely, the Novikov
conjecture states that the higher signatures of compact oriented smooth manifolds
are invariant under orientation preserving homotopy equivalences. Recall that a
compact manifold is called aspherical if its universal cover is contractible. In the
case of aspherical manifolds, the Novikov conjecture is an infinitesimal version
of the Borel conjecture, which states that all compact aspherical manifolds are
topologically rigid, i.e., if another compact manifold N is homotopy equivalent
to the given compact aspherical manifold M , then N is homeomorphic to M . A
theorem of Novikov states that the rational Pontryagin classes are invariant under
orientation preserving homeomorphisms [N1]. Thus the Novikov conjecture for
compact aspherical manifolds follows from the Borel conjecture and Novikov’s
theorem, since for aspherical manfolds, the information about higher signatures is
equivalent to that of rational Pontryagin classes. In general, the Novikov conjecture
follows from the strong Novikov conjecture when applied to the signature operator.
With the help of noncommutative geometry, spectacular progress has been made on
the Novikov conjecture.

When the higher index of an elliptic operator is trivial with a given trivialization,
a secondary index theoretic invariant naturally arises [HR2, Roe1]. This secondary
invariant is called the higher rho invariant. It serves as an obstruction to locality of
the inverse of an invertible elliptic operator. For example, when a closed manifold
M carries a Riemannian metric with positive scalar curvature, the Dirac operator
D̃ on its universal cover M̃ is invertible, hence its higher index is trivial. In this
case, the positive scalar curvature metric gives a specific trivialization of the higher
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index, thus naturally defines a higher rho invariant. Such a secondary index theoretic
invariant is of fundamental importance for studying the space of positive scalar
curvature metrics of a given closed spin manifold. For instance, this secondary
invariant is an essential ingredient for measuring the size of the moduli space
(under diffeomorphism group) of positive scalar curvature metrics on a given closed
spin manifold [XY1]. The following is another typical situation where higher rho
invariants naturally arise. Given an orientation preserving homotopy equivalence
between two oriented closed manifolds, the higher index of the signature operator
on the disjoint union of the two manifolds (one of them equipped with the opposite
orientation) is trivial with a trivialization given by the homotopy equivalence.
Hence such a homotopy equivalence naturally defines a higher rho invariant for the
signature operator [HR2, Roe1]. More generally, the notion of higher rho invariants
can be defined for homotopy equivalences between topological manifolds [Z],
and these invariants serve as a powerful tool for detecting whether a homotopy
equivalence can be “deformed” into a homeomorphism. Furthermore, the authors
proved in [WXY] that the higher rho invariant defines a group of homomorphism
on the structure group of a topological manifold. As an application, one can use the
higher rho invariant to measure the degree of non-rigidity of a topological manifold.

Connes’ cyclic cohomology theory provides a powerful method to compute
higher rho invariants. It turns out that the pairing of cyclic cohomology with higher
rho invariants can be computed in terms of John Lott’s higher eta invariants. This
relation can be used to give an elegant approach to the higher Atiyah-Patodi-Singer
index theory for manifolds with boundary and provide a potential way to construct
counter examples to the Baum–Connes conjecture.

The purpose of this article is to give a friendly survey on these recent develop-
ments of higher invariants in noncommutative geometry and their applications to
geometry and topology.

2 Geometric C∗-algebras

In this section, we give an overview of several C∗-algebras naturally arising
from geometry and topology. The K-theory groups of these C∗-algebras serve as
receptacles of our higher invariants.

Let X be a proper metric space. That is, every closed ball in X is compact. An
X-module is a separable Hilbert space equipped with a ∗-representation of C0(X),
the algebra of all continuous functions on X which vanish at infinity. An X-module
is called nondegenerate if the ∗-representation of C0(X) is nondegenerate. An X-
module is said to be standard if no nonzero function in C0(X) acts as a compact
operator.

We shall first recall the concepts of propagation, local compactness, and pseudo-
locality.
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Definition 2.1 Let HX be an X-module and T a bounded linear operator acting on
HX.

(i) The propagation of T is defined to be sup{d(x, y) | (x, y) ∈ supp(T )}, where
supp(T ) is the complement (in X×X) of the set of points (x, y) ∈ X×X for
which there exist f, g ∈ C0(X) such that gTf = 0 and f (x) �= 0, g(y) �= 0;

(ii) T is said to be locally compact if f T and Tf are compact for all f ∈ C0(X);
(iii) T is said to be pseudo-local if [T , f ] is compact for all f ∈ C0(X).

Pseudo-locality is the essential property for the concept of an abstract “differen-
tial operator” in K-homology theory [A, K].

The following concept was introduced by Roe in his work on higher index theory
for noncompact spaces [Roe].

Definition 2.2 Let HX be a standard nondegenerate X-module and B(HX) the set
of all bounded linear operators on HX. The Roe algebra of X, denoted by C∗(X), is
the C∗-algebra generated by all locally compact operators with finite propagations
in B(HX).

The following localization algebra was introduced by [Y].

Definition 2.3 The localization algebra C∗
L(X) is the C∗-algebra generated by all

bounded and uniformly norm-continuous functions f : [0,∞) → C∗(X) such that

propagation of f (t) → 0, as t → ∞.

We define C∗
L,0(X) to be the kernel of the evaluation map

e : C∗
L(X) → C∗(X), e(f ) = f (0).

In particular, C∗
L,0(X) is an ideal of C∗

L(X).

The localization algebra was motivated by local index theory.
Now we take symmetries into consideration. Let us assume that a discrete group

� acts properly on X by isometries. Let HX be an X-module equipped with a
covariant unitary representation of �. If we denote the representation of C0(X) by
ϕ and the representation of � by π , this means

π(γ )(ϕ(f )v) = ϕ(f γ )(π(γ )v),

where f ∈ C0(X), γ ∈ �, v ∈ HX, and f γ (x) = f (γ−1x). In this case, we call
(HX, �, ϕ) a covariant system.

Definition 2.4 ([Y3]) A covariant system (HX, �, ϕ) is called admissible if

(1) the �-action on X is proper and cocompact;
(2) HX is a nondegenerate standard X-module;
(3) for each x ∈ X, the stabilizer group �x acts on HX regularly in the sense that

the action is isomorphic to the action of �x on l2(�x) ⊗ H for some infinite
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dimensional Hilbert space H . Here �x acts on l2(�x) by translations and acts
on H trivially.

We remark that for each locally compact metric space X with a proper and
cocompact isometric action of �, there exists an admissible covariant system
(HX, �, ϕ). Also, we point out that the condition (3) above is automatically satisfied
if � acts freely on X. If no confusion arises, we will denote an admissible covariant
system (HX, �, ϕ) by HX and call it an admissible (X, �)-module.

Definition 2.5 Let X be a locally compact metric space X with a proper and
cocompact isometric action of �. If HX is an admissible (X, �)-module, we denote
by C[X]� the ∗-algebra of all �-invariant locally compact operators with finite
propagations in B(HX). We define the equivariant Roe algebra C∗(X)� to be the
completion of C[X]� in B(HX).

We remark that if the �-action on X is cocompact, then the equivariant Roe
algebra C∗(X)� is ∗-isomorphic to C∗

r (�)⊗K , where C∗
r (�) is the reduced group

C∗-algebra of � and K is the C∗-algebra of all compact operators. We also point
out that, up to isomorphism, C∗(X) = C∗(X,HX) does not depend on the choice
of the standard nondegenerateX-moduleHX. The same statement holds for C∗

L(X),
C∗
L,0(X), and their �-equivariant versions.

We can also define the maximal versions of the geometric C∗-algebras in this
section by taking the norm completions over all ∗-representations of their algebraic
counterparts.

3 Higher index theory and localization

In this section, we construct the higher index of an elliptic operator. We also
introduce a local index map from the K-homology group to the K-group of the
localization algebra and explain that this local index map is an isomorphism.

3.1 K-homology

We first discuss the K-homology theory of Kasparov. Let X be a locally compact
metric space with a proper and cocompact isometric action of �. The K-homology
groups K�

j (X), j = 0, 1, are generated by the following cycles modulo certain
equivalence relations (cf. [K]):

1. an even cycle for K�
0 (X) is a pair (HX, F ), where HX is an admissible (X, �)-

module and F ∈ B(HX) such that F is �-equivariant, F ∗F − I and FF ∗ − I are
locally compact and [F, f ] = Ff − fF is compact for all f ∈ C0(X).
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2. an odd cycle for K�
1 (X) is a pair (HX, F ), where HX is an admissible (X, �)-

module and F is a �-equivariant self-adjoint operator in B(HX) such that F 2 −I
is locally compact and [F, f ] is compact for all f ∈ C0(X).

Roughly speaking, the K-homology group of X is generated by abstract elliptic
operators over X [A, K].

In the general case where the action of � on X is not necessarily cocompact, we
define

K�
i (X) = lim−→

Y⊆X
K�
i (Y ),

where Y runs through all closed �-invariant subsets ofX such that Y/� is compact.

3.2 K-theory and boundary maps

In this subsection, we recall the standard construction of the index maps in K-
theory of C∗-algebras. For a short exact sequence of C∗-algebras 0 → J → A →
A/J → 0, we have a six-term exact sequence in K-theory:

K0(J ) K0(A) K0(A/J )

∂1

K1(A/J )

∂0

K1(A) K1(J )

Let us recall the definition of the boundary maps ∂i .

1. Even case. Let u be an invertible element in A/J . Let v be the inverse of u in
A/J . Now suppose U,V ∈ A are lifts of u and v. We define

W =
(

1 U
0 1

)(
1 0

−V 1

)(
1 U
0 1

)(
0 −1
1 0

)
.

Notice that W is invertible and a direct computation shows that

W −
(
U 0
0 V

)
∈ J .

Consider the idempotent

P = W

(
1 0
0 0

)
W−1 =

(
UV + UV (1 − UV ) (2 − UV )(1 − UV )U

V (1 − UV ) (1 − VU)2

)
.

(3.1)
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We have

P −
(

1 0
0 0

)
∈ J .

By definition,

∂([u]) := [P ] −
[(

1 0
0 0

)]
∈ K0(J ).

2. Odd case. Let q be an idempotent in A/J and Q a lift of q in A. Then

∂([q]) := [e2πiQ] ∈ K1(J ).

3.3 Higher index map and local index map

In this subsection, we describe the constructions of the higher index map [BC, BCH,
K, FM] and the local index map [Y, Y1].

Let (HX, F ) be an even cycle for K�
0 (X). Choose a �-invariant locally finite

open cover {Ui} of X with diameter (Ui) < c for some fixed c > 0. Let {φi} be a
�-invariant continuous partition of unity subordinate to {Ui}. We define

F =
∑

i

φ
1/2
i Fφ

1/2
i ,

where the sum converges in strong operator norm topology. It is not difficult to
see that (HX,F) is equivalent to (HX, F ) in K�

0 (X). By using the fact that F has
finite propagation, we see that F is a multiplier of C∗(X)� and, is a unitary modulo
C∗(X)� . Consider the short exact sequence of C∗-algebras

0 → C∗(X)� → M(C∗(X)�) → M(C∗(X)�)/C∗(X)� → 0,

where M(C∗(X)�) is the multiplier algebra of C∗(X)� . By the construction in
Section 3.2 above, F produces a class ∂([F]) ∈ K0(C

∗(X)�). We define the higher
index of (HX, F ) to be ∂([F]). From now on, we denote [F] by Ind(HX, F ) or
simply Ind(F ), if no confusion arises.

To define the local index of (HX, F ), we need to use a family of partitions of
unity. More precisely, for each n ∈ N, let {Un,j } be a �-invariant locally finite open
cover of X with diameter (Un,j ) < 1/n and {φn,j } be a �-invariant continuous
partition of unity subordinate to {Un,j }. We define
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F(t) =
∑

j

(1 − (t − n))φ
1/2
n,j Fφ1/2

n,j + (t − n)φ
1/2
n+1,jFφ1/2

n+1,j (3.2)

for t ∈ [n, n+ 1].
Then F(t), 0 ≤ t < ∞, is a multiplier ofC∗

L(X)
� and a unitary moduloC∗

L(X)
� .

By the construction in Section 3.2 above, we define ∂([F(t)]) ∈ K0(C
∗
L(X)

�) to be
the local index of (HX, F ). If no confusion arises, we denote this local index class
by IndL(HX, F ) or simply IndL(F ).

Now let (HX, F ) be an odd cycle in K�
1 (X). With the same notation from

above, we set q = F+1
2 . Then the index class of (HX, F ) is defined to be

[e2πiq ] ∈ K1(C
∗(X)�). For the local index class of (HX, F ), we use q(t) = F(t)+1

2
in place of q.

We have the following commutative diagram:

KΓ
∗ (X)

K∗(C∗
L(X)Γ) K∗(C∗(X)Γ),

IndIndL

e∗

where e∗ is the homomorphism induced by the evaluation map e at 0.
The following result was proved in the case of simplicial complexes in [Y] and

the general case in [QR].

Theorem 3.1 If a discrete group � acts properly on a locally compact space X,
then the local index map is an isomorphism from the K-homology group K�∗ (X) to
the K-group of the localization algebra K∗(C∗

L(X)
�).

4 The Baum–Connes assembly and a local-global principle

In this section, we formulate the Baum–Connes conjecture as a local-global
principle and discuss its connection to the Novikov conjecture.

We first recall the concept of Rips complexes.

Definition 4.1 Let � be a discrete group, let F ⊆ � be a finite symmetric subset
containing the identity (symmetric in the sense if g ∈ F , then g−1 ∈ F ). The Rips
complex PF (�) is a simplicial complex such that

(i) the set of vertices is �;
(ii) a finite subset {γ0, · · · , γn} span a simplex if and only if γ−1

i γj ∈ F for all
0 ≤ i, j ≤ n.

We endow the Rips complex with the simplicial metric, i.e., the maximal metric
whose restriction to a maximal simplex is the standard Euclidean metric on the
simplex.
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The Baum–Connes conjecture [BC, BCH] can be stated as follows.

Conjecture 4.2 (Baum–Connes Conjecture) The evaluation map e induces
an isomorphism e∗ from the K-group of the equivariant localization alge-
bra lim−→

F

K∗(C∗
L(PF (�))

�) to the K-group of the equivariant Roe algebra

lim−→
F

K∗(C∗(PF (�))�), where the limit is taken over the directed set of all finite

symmetric subset F of � containing the identity.

Note that lim−→
F

K∗(C∗(PF (�))�) is isomorphic to K-group of C∗
r (�), the reduced

group C∗-algebra of � since the � action on the Rips complex is cocompact.
While the K-theory of the equivariant Roe algebra is global and hard to compute,

the K-theory of the localization algebra is local and completely computable. Thus
the Baum–Connes conjecture is a local-global principle. If true, the conjecture
provides an algorithm for computing K-groups of equivariant Roe algebras and
higher indices of elliptic operators. In particular, in this case, we see that every
element in the K-group of the equivariant Roe algebra can be localized.

More generally, if A is a C∗-algebra with an action of �, then we can define
the equivariant Roe algebra with coefficients in A, denoted by C∗(PF (�),A)� . The
equivariant Roe algebra with coefficients inA is ∗-isomorphic to (A��)⊗K, where
K is the algebra of compact operators on a Hilbert space. We can similarly introduce
an equivariant localization algebra with coefficients to formulate the Baum–Connes
conjecture with coefficients.

Higson and Kasparov developed an index theory of certain differential operators
on an infinite-dimensional Hilbert space and proved the following spectacular result
[HK].

Theorem 4.3 If a discrete group � acts on Hilbert space properly and isomentri-
cally, then the Baum–Connes conjecture with coefficients holds for �.

Recall that an isometric action α of a group � on a Hilbert space H is said to be
proper if ‖α(γ )h‖ → ∞ when γ → ∞ for any h ∈ H , i.e., for any h ∈ H and any
positive number R > 0, there exists a finite subset F of � such that ‖α(γ )h‖ > R if
γ ∈ �−F . A theorem of Bekka–Cherix–Valette states that an amenable group acts
properly and isometrically on a Hilbert space [BCV]. Roughly speaking, a group is
amenable if there exist large finite subsets of the group with small boundary. The
concept of amenability is a large scale geometric property and was introduced by
von Neumann. We refer the readers to the book [NY] as a general reference for
geometric group theory related to the Novikov conjecture.

The following deep theorem is due to Lafforgue [L1].

Theorem 4.4 The Baum–Connes conjecture with coefficients holds for hyperbolic
groups.
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Earlier Lafforgue developed a Banach KK-theory to attack the Baum–Connes
conjecture [L]. This approach yielded the Baum–Connes conjecture for hyperbolic
groups [L, MY].

The Baum–Connes conjecture with coefficients actually fail for general groups.
Higson–Lafforgue–Skandalis gave a counterexample in [HLS]. On the other hand,
the Baum–Connes conjecture (without coefficients) is still open.

5 The Novikov conjecture

A central problem in topology is the Novikov conjecture. Roughly speaking, the
Novikov conjecture claims that compact smooth manifolds are rigid at an infinites-
imal level. More precisely, the Novikov conjecture states that the higher signatures
of compact oriented smooth manifolds are invariant under orientation preserving
homotopy equivalences. Recall that a compact manifold is called aspherical if its
universal cover is contractible. In the case of aspherical manifolds, the Novikov
conjecture is an infinitesimal version of the Borel conjecture, which states that
all compact aspherical manifolds are topologically rigid, i.e., if another compact
manifold N is homotopy equivalent to the given compact aspherical manifold
M , then N is homeomorphic to M . A theorem of Novikov says that the rational
Pontryagin classes are invariant under orientation preserving homeomorphisms
[N1]. Thus the Novikov conjecture for compact aspherical manifolds follows from
the Borel conjecture and Novikov’s theorem, since for aspherical manfolds, the
information about higher signatures is equivalent to that of rational Pontryagin
classes. In general, the Novikov conjecture follows from the (rational) strong
Novikov conjecture.

The (rational) strong Novikov conjecture can be stated as follows.

Conjecture 5.1 (Strong Novikov Conjecture) The evaluation map e induces
an injection e∗ from the K-group of the equivariant localization alge-
bra lim−→

F

K∗(C∗
L(PF (�))

�) to the K-group of the equivariant Roe algebra

lim−→
F

K∗(C∗(PF (�))�), where the limit is taken over the directed set of all finite

symmetric subset F of � containing the identity. The rational strong Novikov
conjecture states that e∗ is an injection after tensoring with Q.

The strong Novikov conjecture predicts when the higher index of an elliptic
operator is nonzero. The strong Novikov conjecture implies the following analytic
Novikov conjecture.

Conjecture 5.2 (Analytic Novikov Conjecture) The evaluation map e induces an
injection e∗ from theK-group of the equivariant localization algebraK∗(C∗

L(E�)
�)

to theK-group of the equivariant Roe algebraK∗(C∗(E�)�), whereK∗(C∗
L(E�)

�)

is defined to be lim−→
X

K∗(C∗
L(X)

�) with the limit to be taken over the directed set
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of locally compact, �-equivariant, �-cocompact subset X of the universal space
E� for free �-action, and similarly K∗(C∗(E�)�) is defined to be the limit
lim−→
X

K∗(C∗(X)�). The rational analytic Novikov conjecture states that e∗ is an

injection after tensoring with Q, that is,

e∗ : K∗(C∗
L(E�)

�)⊗ Q → K∗(C∗(E�)�)⊗ Q

is an injection.

The classical Novikov conjecture follows from the rational analytic Novikov
conjecture. With the help of noncommutative geometry, spectacular progress has
been made on the Novikov conjecture. It has been proven that the Novikov
conjecture holds when the fundamental group of the manifold lies in one of the
following classes of groups:

1. groups acting properly and isometrically on simply connected and non-
positively curved manifolds [K],

2. hyperbolic groups [CM],
3. groups acting properly and isometrically on Hilbert spaces [HK],
4. groups acting properly and isometrically on bolic spaces [KS],
5. groups with finite asymptotic dimension [Y1],
6. groups coarsely embeddable into Hilbert spaces [Y2, H, STY],
7. groups coarsely embeddable into Banach spaces with property (H) [KY],
8. all linear groups and subgroups of all almost connected Lie groups [GHW],
9. subgroups of the mapping class groups [Ha, Ki],

10. subgroups of Out(Fn), the outer automorphism groups of the free groups
[BGH],

11. groups acting properly and isometrically on (possibly infinite dimensional)
admissible Hilbert–Hadamard spaces, in particular geometrically discrete sub-
groups of the group of volume preserving diffeomorphisms of any smooth
compact manifold [GWY].

In the first three cases, an isometric action of a discrete group � on a metric space
X is said to be proper if for some x ∈ X, d(x, gx) → ∞ as g → ∞, i.e., for any
x ∈ X and any positive number R > 0, there exists a finite subset F of � such that
d(x, gx) > R if g ∈ � − F .

In a tour de force, Connes proved a striking theorem that the Novikov conjecture
holds for higher signatures associated to Gelfand-Fuchs classes [C1]. Connes,
Gromov, and Moscovici proved the Novikov conjecture for higher signatures
associated to Lipschitz group cohomology classes [CGM]. Hanke–Schick and
Mathai proved the Novikov conjecture for higher signatures associated to group
cohomology classes with degrees one and two [HS, Ma].

J. Rosenberg discovered an important application of the (rational) strong
Novikov conjecture to the existence problem of Riemannian metrics with positive
scalar curvature [R]. We refer to Rosenberg’s survey [R1] for recent developments
on this topic.
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5.1 Non-positively curved groups and hyperbolic groups

In this subsection, we give a survey on the work of A. Mishchenko, G. Kasparov, A.
Connes and H. Moscovici, G. Kasparov and G. Skandalis on the Novikov conjecture
for non-positively curved groups and Gromov’s hyperbolic groups.

In [M], A. Mishchenko introduced a theory of infinite dimensional Fredholm
representations of discrete groups to prove the following theorem.

Theorem 5.3 The Novikov conjecture holds if the fundamental group of a manifold
acts properly, isometrically and cocompactly on a simply connected manifold with
non-positive sectional curvature.

In [K], G. Kasparov developed a bivariant K-theory, called KK-theory, to prove
the following theorem.

Theorem 5.4 The Novikov conjecture holds if the fundamental group of a manifold
acts properly and isometrically on a simply connected manifold with non-positive
sectional curvature.

As a consequence, G. Kasparov proved the following striking theorem.

Theorem 5.5 The Novikov conjecture holds if the fundamental group of a manifold
is a discrete subgroup of a Lie group with finitely many connected components.

The theory of hyperbolic groups was developed by Gromov [G]. Gromov’s
hyperbolic groups are generic among all finitely presented groups. A. Connes and
H. Moscovici proved the following spectacular theorem using powerful techniques
from noncommutative geometry [CM].

Theorem 5.6 The Novikov conjecture holds if the fundamental group of a manifold
is a hyperbolic group in the sense of Gromov.

The proof of Theorem 5.6 uses Connes’ theory of cyclic cohomology in a crucial
way. Cyclic homology theory plays the role of de Rham theory in noncommutative
geometry, and is the natural receptacle for the Connes–Chern character [C].

The following theorem of G. Kasparov and G. Skandalis unified the above results
[KS].

Theorem 5.7 The Novikov conjecture holds if the fundamental group of a manifold
is bolic.

Bolicity is a notion of non-positive curvature. Examples of bolic groups include
groups acting properly and isometrically on simply connected manifolds with non-
positive sectional curvature and Gromov’s hyperbolic groups.
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5.2 Amenable groups, groups with finite asymptotic dimension
and coarsely embeddable groups

In this subsection, we give a survey on the work of Higson–Kasparov on the
Novikov conjecture for amenable groups, the work of G. Yu on the Novikov
conjecture for groups with finite asymptotic dimension, and the work of G.
Yu, N. Higson, Skandalus-Tu-Yu on the Novikov conjecture for groups coarsely
embeddable into Hilbert spaces. Finally we discuss the work of Kasparov–Yu on
the connection of the Novikov conjecture with Banach space geometry.

As mentioned above (Theorem 4.3), Higson and Kasparov proved that the Baum–
Connes conjecture holds for groups that act properly and isometrically on a Hilbert
space [HK]. As a consequence, the Novikov conjecture holds for these groups.

Theorem 5.8 The Novikov conjecture holds if the fundamental group of a manifold
acts properly and isometrically on a Hilbert space.

Since amenable groups act properly and isometrically on a Hilbert space [BCV],
the above theorem has the following immediate corollary.

Corollary The Novikov conjecture holds if the fundamental group of a manifold is
amenable.

This corollary is quite striking since the geometry of amenable groups can be
very complicated (for example, the Grigorchuk’s groups [Gr]).

Next we recall a few basic concepts from geometric group theory. A non-negative
function l on a countable group G is called a length function if (1) l(g−1) = l(g)

for all g ∈ G; (2) l(gh) ≤ l(g)+ l(h) for all g and h in G; (3) l(g) = 0 if and only
if g = e, the identity element of G. We can associate a left-invariant length metric
dl to l: dl(g, h) = l(g−1h) for all g, h ∈ G. A length metric is called proper if the
length function is a proper map (i.e., the inverse image of every compact set is finite
in this case). It is not difficult to show that every countable group G has a proper
length metric. If l and l′ are two proper length functions on G, then their associated
length metrics are coarsely equivalent. If G is a finitely generated group and S is a
finite symmetric generating set (symmetric in the sense that if an element is in S,
then its inverse is also in S), then we can define the word length lS on G by

lS(g) = min{n : g = s1 · · · sn, si ∈ S}.

If S and S′ are two finite symmetric generating sets of G, then their associated
proper length metrics are quasi-isometric.

The following concept is due to Gromov [G1].

Definition 5.9 The asymptotic dimension of a proper metric spaceX is the smallest
integer n such that for every r > 0, there exists a uniformly bounded cover {Ui} for
which the number of Ui intersecting each r ball B(x, r) is at most n+ 1.
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For example, the asymptotic dimension of Zn is n and the asymptotic dimension
of the free group Fn with n generators is 1. The asymptotic dimension is invariant
under coarse equivalence. The Lie groupGL(n,R)with a left-invariant Riemannian
metric is quasi-isometric to T (n,R), the subgroup of invertible upper triangular
matrices. By permanence properties of asymptotic dimension [BD1], we know that
the solvable group T (n,R) has finite asymptotic dimension. As a consequence,
every countable discrete subgroup of GL(n,R) has finite asymptotic dimension (as
a metric space with a proper length metric). More generally one can prove that
every discrete subgroup of an almost connected Lie group has finite asymptotic
dimension (a Lie group is said to be almost connected if the number of its
connected components is finite). Gromov’s hyperbolic groups have finite asymptotic
dimension [Roe2]. Mapping class groups also have finite asymptotic dimension
[BBF].

In [Y1], G. Yu developed a quantitative operator K-theory to prove the following
theorem.

Theorem 5.10 The Novikov conjecture holds if the fundamental group of a mani-
fold has finite asymptotic dimension.

The basic idea of the proof is that the finiteness of asymptotic dimension allows
us to develop an algorithm to compute K-theory in a quantitative way. This strategy
has found applications to topological rigidity of manifolds [GTY].

The following concept of Gromov makes precise of the idea of drawing a good
picture of a metric space in a Hilbert space.

Definition 5.11 (Gromov): Let X be a metric space and H be a Hilbert space. A
map f : X → H is said to be a coarse embedding if there exist non-decreasing
functions ρ1 and ρ2 on [0,∞) such that

(1) ρ1(d(x, y)) ≤ dH (f (x), f (y)) ≤ ρ2(d(x, y)) for all x, y ∈ X;
(2) limr→+∞ ρ1(r) = +∞.

Coarse embeddability of a countable group is independent of the choice of proper
length metrics. Examples of groups coarsely embeddable into Hilbert space include
groups acting properly and isometrically on a Hilbert space (in particular amenable
groups [BCV]), groups with Property A [Y2], countable subgroups of connected Lie
groups [GHW], hyperbolic groups [S], groups with finite asymptotic dimension,
Coxeter groups [DJ], mapping class groups [Ki, Ha], and semi-direct products of
groups of the above types.

The following theorem unifies the above theorems.

Theorem 5.12 The Novikov conjecture holds if the fundamental group of a mani-
fold is coarsely embeddable into Hilbert space.

Roughly speaking, this theorem says if we can draw a good picture of the
fundamental group in a Hilbert space, then we can recognize the manifold at an
infinitesimal level. This theorem was proved by G. Yu when the classifying space of
the fundamental group has the homotopy type of a finite CW complex [Y2] and this
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finiteness condition was removed by N. Higson [H], Skandalis-Tu-Yu [STY]. The
original proof of the above result makes heavy use of infinite dimensional analysis.
More recently, R. Willett and G. Yu found a relatively elementary proof within the
framework of basic operator K-theory [WiY].

E. Guentner, N. Higson and S. Weinberger proved the beautiful theorem that
linear groups are coarsely embeddable into Hilbert space [GHW]. Recall that a
group is called linear if it is a subgroup of GL(n, k) for some field k. The following
theorem follows as a consequence [GHW].

Theorem 5.13 The Novikov conjecture holds if the fundamental group of a mani-
fold is a linear group.

More recently, Bestvina–Guirardel–Horbez proved that Out(Fn), the outer auto-
morphism groups of the free groups, is coarsely embeddable into Hilbert space. This
implies the following theorem [BGH].

Theorem 5.14 The Novikov conjecture holds if the fundamental group of a mani-
fold is a subgroup of Out(Fn).

We have the following open question.

Open Question 5.15 Is every countable subgroup of the diffeomorphism group of
the circle coarsely embeddable into Hilbert space?

Let E be the smallest class of groups which include all groups coarsely
embeddable into Hilbert space and is closed under direct limit. Recall that if I is
a directed set and {Gi}i∈I is a direct system of groups over I , then we can define
the direct limit limGi . We emphasize that here the homomorphism φij : Gi → Gj
for i ≤ j is not necessarily injective.

The following result is a consequence of Theorem 5.12.

Theorem 5.16 The Novikov conjecture holds if the fundamental group of a mani-
fold is in the class E.

The following open question is a challenge to geometric group theorists.

Open Question 5.17 Is there any countable group not in the class E?

We mention that the Gromov monster groups are in the class E [G2, G3, AD, O].
Next we shall discuss the connection of the Novikov conjecture with geometry

of Banach spaces.

Definition 5.18 A Banach space X is said to have Property (H) if there exist an
increasing sequence of finite dimensional subspaces {Vn} of X and an increasing
sequence of finite dimensional subspaces {Wn} of a Hilbert space such that

(1) V = ∪nVn is dense in X,
(2) if W = ∪nWn, S(V ) and S(W) are respectively the unit spheres of V and W ,

then there exists a uniformly continuous map ψ : S(V ) → S(W) such that the
restriction of ψ to S(Vn) is a homeomorphism (or more generally a degree one
map) onto S(Wn) for each n.
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As an example, let X be the Banach space lp(N) for some p ≥ 1. Let Vn and Wn

be respectively the subspaces of lp(N) and l2(N) consisting of all sequences whose
coordinates are zero after the n-th terms. We define a map ψ from S(V ) to S(W) by

ψ(c1, · · · , ck, · · · ) = (c1|c1|p/2−1, · · · , ck|ck|p/2−1, · · · ).

ψ is called the Mazur map. It is not difficult to verify that ψ satisfies the conditions
in the definition of Property (H). For each p ≥ 1, we can similarly prove that Cp,
the Banach space of all Schatten p-class operators on a Hilbert space, has Property
(H).

Kasparov and Yu proved the following.

Theorem 5.19 The Novikov conjecture holds if the fundamental group of a mani-
fold is coarsely embeddable into a Banach space with Property (H).

Let c0 be the Banach space consisting of all sequences of real numbers that are
convergent to 0 with the supremum norm.

Open Question 5.20 Does the Banach space c0 have Property (H)?

A positive answer to this question would imply the Novikov conjecture since
every countable group admits a coarse embedding into c0 [BG].

A less ambitious question is the following.

Open Question 5.21 Is every countable subgroup of the diffeomorphism group of a
compact smooth manifold coarsely embeddable into Cp for some p ≥ 1?

For each p > q ≥ 2, it is also an open question to construct a bounded geometry
space which is coarsely embeddable into lp(N) but not lq(N). Beautiful results in
[JR] and [MN] indicate that such a construction should be possible. Once such
a metric space is constructed, the next natural question is to construct countable
groups which coarsely contain such a metric space. These groups would be from
another universe and would be different from any group we currently know.

5.3 Gelfand-Fuchs classes, the group of volume preserving
diffeomorphisms, Hilbert–Hadamard spaces

In this subsection, we give an overview on the work of A. Connes, Connes–
Gromov–Moscovici on the Novikov conjecture for Gelfand-Fuchs classes and the
recent work of Gong–Wu–Yu on the Novikov conjecture for groups acting properly
and isometrically on a Hilbert–Hadamard spaces and for any geometrically discrete
subgroup of the group of volume preserving diffeomorphisms of a compact smooth
manifold.

A. Connes proved the following deep theorem on the Novikov conjecture [C1].



Higher invariants in noncommutative geometry 707

Theorem 5.22 The Novikov conjecture holds for higher signatures associated to
the Gelfand-Fuchs cohomology classes of a subgroup of the group of diffeomor-
phisms of a compact smooth manifold.

The proof of this theorem uses the full power of noncommutative geometry [C].

Open Question 5.23 Does the Novikov conjecture hold for any subgroup of the
group of diffeomorphisms of a compact smooth manifold?

Motivated in part by this open question, S. Gong, J. Wu and G. Yu proved the
following theorem [GWY].

Theorem 5.24 The Novikov conjecture holds for groups acting properly and
isometrically on an admissible Hilbert–Hadamard space.

Roughly speaking, Hilbert–Hadamard spaces are (possibly infinite dimensional)
simply connected spaces with non-positive curvature. We will give a precise
definition a little later. We say that a Hilbert–Hadamard space M is admissible if
it has a sequence of subspaces Mn, whose union is dense in M , such that each
Mn, seen with its inherited metric from M , is isometric to a finite-dimensional
Riemannian manifold. Examples of admissible Hilbert–Hadamard spaces include
all simply connected and non-positively curved Riemannian manifold, the Hilbert
space, and certain infinite dimensional symmetric spaces. Theorem 5.24 can be
viewed as a generalization of both Theorems 5.4 and 5.8.

Infinite dimensional symmetric spaces are often naturally admissible Hilbert–
Hadamard spaces. One such an example is

L2(N, ω,SL(n,R)/SO(n)),

where N is a compact smooth manifold with a given volume form ω. This infinite-
dimensional symmetric space is defined to be the completion of the space of all
smooth maps from N to X = SL(n,R)/SO(n) with respect to the following
distance:

d(ξ, η) =
(∫

N

(dX(ξ(y), η(y)))
2 dω(y)

) 1
2

,

where dX is the standard Riemannian metric on the symmetric space X and ξ and
η are two smooth maps from N to X. This space can be considered as the space of
L2-metrics on N with the given volume form ω and is a Hilbert–Hadamard space.
With the help of this infinite dimensional symmetric space, the above theorem can
be applied to study the Novikov conjecture for geometrically discrete subgroups of
the group of volume preserving diffeomorphisms on such a manifold.

The key ingredients of the proof for Theorem 5.24 include a construction of a
C∗-algebra modeled after the Hilbert–Hadamard space, a deformation technique for
the isometry group of the Hilbert–Hadamard space and its corresponding actions on
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K-theory, and a KK-theory with real coefficient developed by Antonini, Azzali, and
Skandalis [AAS].

Let Diff(N, ω) denote the group of volume preserving diffeomorphisms on a
compact orientable smooth manifold N with a given volume form ω. In order to
define the concept of geometrically discrete subgroups of Diff(N, ω), let us fix a
Riemannian metric on N with the given volume ω and define a length function λ on
Diff(N, ω) by

λ+(ϕ) =
(∫

N

(log(‖Dϕ‖))2dω
)1/2

and

λ(ϕ) = max
{
λ+(ϕ), λ+(ϕ−1)

}

for all ϕ ∈ Diff(N, ω), where Dϕ is the Jacobian of ϕ, and the norm ‖ · ‖ denotes
the operator norm, computed using the chosen Riemannian metric on N .

Definition 5.25 A subgroup � of Diff(N, ω) is said to be a geometrically discrete
subgroup if λ(γ ) → ∞ when γ → ∞ in �, i.e., for any R > 0, there exists a finite
subset F ⊂ � such that λ(γ ) ≥ R if γ ∈ � \ F .

Observe that although the length function λ depends on our choice of the
Riemannian metric, the above notion of geometric discreteness does not. Also
notice that if γ preserves the Riemannian metric we chose, then λ(γ ) = 0. This
suggests that the class of geometrically discrete subgroups of Diff(N, ω) does
not intersect with the class of groups of isometries. Of course, we already know
the Novikov conjecture for any group of isometries on a compact Riemannian
manifold. This, together with the following result, gives an optimistic perspective
on the open question on the Novikov conjecture for groups of volume preserving
diffeomorphisms.

Theorem 5.26 Let N be a compact smooth manifold with a given volume form ω,
and let Diff(N, ω) be the group of all volume preserving diffeomorphisms ofN . The
Novikov conjecture holds for any geometrically discrete subgroup of Diff(N, ω).

Now let us give a precise definition of Hilbert–Hadamard space. We will first
recall the concept of CAT(0) spaces. Let X be a geodesic metric space. Let � be
a triangle in X with geodesic segments as its sides. � is said to satisfy the CAT(0)
inequality if there is a comparison triangle �′ in Euclidean space, with sides of the
same length as the sides of �, such that distances between points on � are less than
or equal to the distances between corresponding points on �′. The geodesic metric
space X is said to be a CAT(0) space if every geodesic triangle satisfies the CAT(0)
inequality.

LetX be a geodesic metric space. For three distinct points x, y, z ∈ X, we define
the comparison angle �̃ xyz to be
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�̃ xyz = arccos

(
d(x, y)2 + d(y, z)2 − d(x, z)2

2d(x, y)d(y, z)

)
.

In other words, �̃ xyz can be thought of as the angle at y of the comparison triangle
�xyz in the Euclidean plane.

Given two nontrivial geodesic paths α and β emanating from a point p in X,
meaning that α(0) = β(0) = p, we define the angle between them, � (α, β), to be

� (α, β) = lim
s,t→0

�̃ (α(s), p, β(t)) ,

provided that the limit exists. For CAT(0) spaces, since the �̃ (α(s), p, β(t))
decreases with s and t , the angle between any two geodesic paths emanating from a
point is well-defined. These angles satisfy the triangle inequality.

For a point p ∈ X, let �′
p denote the metric space induced from the space of

all geodesics emanating from p equipped with the pseudometric of angles, that is,
for geodesics α and β, we define d(α, β) = � (α, β). Note, in particular, from our
definition of angles, that d(α, β) ≤ π for any geodesics α and β.

We define �p to be the completion of �′
p with respect to the distance d. The

tangent cone Kp at a point p in X is then defined to be a metric space which is, as
a topological space, the cone of �p. That is, topologically

Kp � �p × [0,∞)/�p × {0}.

The metric on it is given as follows. For two points p, q ∈ Kp we can express
them as p = [(x, t)] and q = [(y, s)]. Then the metric is given by

d(p, q) =
√
t2 + s2 − 2st cos(d(x, y)).

The distance is what the distance would be if we went along geodesics in a Euclidean
plane with the same angle between them as the angle between the corresponding
directions in X.

The following definition is inspired by [FS].

Definition 5.27 A Hilbert–Hadamard space is a complete geodesic CAT(0) metric
space (i.e., an Hadamard space) all of whose tangent cones are isometrically
embedded in Hilbert spaces.

Every connected and simply connected Riemannian–Hilbertian manifold with
non-positive sectional curvature is a separable Hilbert–Hadamard space. In fact, a
Riemannian manifold without boundary is a Hilbert–Hadamard space if and only
if it is complete, connected, and simply connected, and has non-positive sectional
curvature. We remark that a CAT(0) space X is always uniquely geodesic.

Recall that a subset of a geodesic metric space is called convex if it is again a
geodesic metric space when equipped with the restricted metric. We observe that
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a closed convex subset of a Hilbert–Hadamard space is itself a Hilbert–Hadamard
space.

Definition 5.28 A separable Hilbert–Hadamard space M is called admissible if
there is a sequence of convex subsets isometric to finite-dimensional Riemannian
manifolds, whose union is dense in M .

The notion of Hilbert–Hadamard spaces is more general than simply connected
Riemannian–Hilbertian space with non-positive sectional curvature. For example,
the infinite dimensional symmetric space L2(N, ω,SL(n,R)/SO(n)) is a Hilbert–
Hadamard space but not a Riemannian–Hilbertian space with non-positive sectional
curvature.

6 Secondary invariants for Dirac operators and applications

We have been mainly concerned with the primary invariants, i.e., the higher index
invariants, till now. Starting this section, we shall shift our focus to secondary
invariants. We try to keep the discussion relatively self-contained, which hopefully
will give a better sense of some of the more recent development on secondary
invariants.

In this section, we introduce a secondary invariant for Dirac operators on
manifolds with positive scalar curvature and apply the invariant to measure the size
of the moduli space of Riemmanian metrics with positive scalar curvature on a given
spin manifold.

We carry out the construction in the odd-dimensional case. The even dimensional
case is similar. Suppose that X is an odd-dimensional complete spin manifold
without boundary and we fix a spin structure on X. Assume that there is a discrete
group � acting on X properly and cocompactly by isometries. In addition, we
assume the action of � preserves the spin structure on X. A typical such example
comes from a Galois cover M̃ of a closed spin manifold M with � being the group
of deck transformations.

Let S be the spinor bundle over M and D be the associated Dirac operator on X.
Let HX = L2(X, S) and

F = D(D2 + 1)−1/2.

(HX, F ) defines a class in K�
1 (X). Note that F lies in the multiplier algebra of

C∗(X)� , since F can be approximated by elements of finite propagation in the
multiplier algebra of C∗(X)� . As a result, we can directly work with1

1In other words, there is no need to pass to the operator F or F(t) as in the general case.
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F(t) =
∑

j

((1 − (t − n))φ
1/2
n,j Fφ

1/2
n,j + (t − n)φ

1/2
n+1,jFφ

1/2
n+1,j ) (6.1)

for t ∈ [n, n+1]. The same index construction as before defines the index class and
the local index class of (HX, F ). We shall denote them by Ind(D) ∈ K1(C

∗(X)�)
and IndL(D) ∈ K1(C

∗
L(X)

�) respectively.
Now suppose in addition X is endowed with a complete Riemannian metric g

whose scalar curvature κ is positive everywhere, then the associated Dirac operator
in fact naturally defines a class in K1(C

∗
L,0(X)

�). Indeed, recall that

D2 = ∇∗∇ + κ

4
,

where ∇ : C∞(X, S) → C∞(X, T ∗X ⊗ S) is the associated connection and ∇∗
is the adjoint of ∇. If κ > 0, then it follows immediately that D is invertible. So,
instead of D(D2 + 1)−1/2, we can use

F := D|D|−1.

Note that F+1
2 is a genuine projection. Define F(t) as in formula (6.1), and define

q(t) := F(t)+1
2 . We form the path of unitaries u(t) = e2πiq(t), 0 ≤ t < ∞, which

defines an element in (C∗
L(X)

�)+. Notice that u(0) = 1. So this path u(t), 0 ≤ t <

∞, in fact lies in (C∗
L,0(X)

�)+, therefore defines a class in K1(C
∗
L,0(X)

�).
Let us now define the higher rho invariant. It was first introduced by Higson and

Roe [Roe1, HR3]. Our formulation is slightly different from that of Higson and Roe.
The equivalence of the two definitions was shown in [XY].

Definition 6.1 The higher rho invariant ρ(D, g) of the pair (D, g) is defined to be
the K-theory class [u(t)] ∈ K1(C

∗
L,0(X)

�).

The definition of higher rho invariant in the even dimensional case is similar,
where one needs to work with the natural Z/2Z-grading on the spinor bundle.

Next we shall apply the higher rho invariant to estimate the size of the moduli
space of Riemannian metrics with positive scalar curvature on a given spin manifold.
Let M be a closed smooth manifold. Suppose that M carries a metric of positive
scalar curvature. It is well known that the space of all Rimennian metrics on M is
contractible, hence topologically trivial. To the contrary, the space of all positive
scalar curvature metrics on M , denoted by R+(M), often has very nontrivial
topology. In particular, R+(M) is often not connected and in fact has infinitely many
connected components [BoG, LP1, PS, RS]. For example, by using the Cheeger–
Gromov L2-rho invariant and Lott’s delocalized eta invariant, Piazza and Schick
showed that R+(M) has infinitely many connected components, if M is a closed
spin manifold with dimM = 4k + 3 ≥ 5 and π1(M) contains torsion [PS].

Following Stolz [St], Weinberger and Yu introduced an abelian group P(M) to
measure the size of the space of positive scalar curvature metrics on a manifold M
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[WY]. In addition, they used the finite part of K-theory of the maximal group C∗-
algebra C∗

max(π1(M)) to give a lower bound of the rank of P(M). A special case of
their theorem states that the rank of P(M) is ≥ 1, if M is a closed spin manifold
with dimM = 2k + 1 ≥ 5 and π1(M) contains torsion. In particular, this implies
the above theorem of Piazza and Schick.

For convenience of the reader, we recall the definition of the abelian group P(M).
Let M be an oriented smooth closed manifold with dimM ≥ 5 and its fundamental
group π1(M) = �. Assume that M carries a metric of positive scalar curvature. We
denote it by gM . Let I be the closed interval [0, 1]. Consider the connected sum
(M × I )0(M × I ), where the connected sum is performed away from the boundary
of M × I . Note that π1

(
(M × I )0(M × I )

) = � ∗ � the free product of two copies
of �.

Definition 6.2 We define the generalized connected sum (M × I )8(M × I ) to
be the manifold obtained from (M × I )0(M × I ) by removing the kernel of the
homomorphism � ∗ � → � through surgeries away from the boundary.

Note that (M × I )8(M × I ) has four boundary components, two of them being
M and the other two being −M , where −M is the manifold M with its reversed
orientation. Now suppose g1 and g2 are two positive scalar curvature metrics on
M . We endow one boundary component M with gM , and endow the two −M
components with g1 and g2. Then by the Gromov–Lawson and Schoen–Yau surgery
theorem for positive scalar curvature metrics [GL, SY], there exists a positive scalar
curvature metric on (M × I )8(M × I ) which is a product metric near all boundary
components. In particular, the restriction of this metric on the other boundary
component M has positive scalar curvature. We denote this metric on M by g.

Definition 6.3 Two positive scalar curvature metrics g and h on M are concordant
if there exists a positive scalar curvature metric on M × I which is a product
metric near the boundary and restricts to g and h on the two boundary components
respectively.

One can in fact show that if g and g′ are two positive scalar curvature metrics on
M obtained from the same pair of positive scalar curvature metrics g1 and g2 by the
above procedure, then g and g′ are concordant [WY].

Definition 6.4 Fix a positive scalar curvature metric gM on M . Let P+(M) be the
set of all concordance classes of positive scalar metrics on M . Given [g1] and [g2]
in P+(M), we define the sum of [g1] and [g2] (with respect to [gM ]) to be [g]
constructed from the procedure above. Then it is not difficult to verify that P+(M)
becomes an abelian semigroup under this addition. We define the abelian group
P(M) to be the Grothendieck group of P+(M).

Recall that the group of diffeomorphisms on M , denoted by Diff(M), acts on
R+(M) by pulling back the metrics. The moduli space of positive scalar curvature
metrics is defined to be the quotient space R+(M)/Diff(M). Similarly, Diff(M)
acts on the group P(M) and we denote the coinvariant of the action by P̃ (M). That
is, P̃ (M) = P(M)/P0(M), where P0(M) is the subgroup of P(M) generated by
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elements of the form [x] −ψ∗[x] for all [x] ∈ P(M) and all ψ ∈ Diff(M). We call
P̃ (M) the moduli group of positive scalar curvature metrics on M . It measures the
size of the moduli space of positive scalar curvature metrics on M . The following
conjecture gives a lower bound for the rank of the abelian group P̃ (M).

Conjecture 6.5 Let M be a closed spin manifold with π1(M) = � and dimM =
4k − 1 ≥ 5, which carries a positive scalar curvature metric. Then the rank of the
abelian group P̃ (M) is ≥ Nfin(�), where Nfin(�) is the cardinality of the following
collection of positive integers:

{
d ∈ N+ | ∃γ ∈ � such that order(γ ) = d and γ �= e

}
.

In [XY1], we apply the higher rho invariants of the Dirac operator to prove the
following result.

Theorem 6.6 Let M be a closed spin manifold which carries a positive scalar
curvature metric with dimM = 4k − 1 ≥ 5. If the fundamental group � = π1(M)

of M is strongly finitely embeddable into Hilbert space, then the rank of the abelian
group P̃ (M) is ≥ Nfin(�).

To prove this theorem, we need index theoretic invariants that are insensitive
to the action of the diffeomorphism group. The index theoretic techniques used in
[WY], for example, do not produce such invariants. The key idea of the proof is that
the higher rho invariant remains unchanged in a certain K-theory group under the
action of the diffeomorphism group, allowing us to distinguish elements in P̃ (M).

We now recall the concept of strongly finite embeddability into Hilbert space
for groups [XY1]. This concept is a stronger version of the notion of finite
embeddability into Hilbert space introduced in [WY], a concept more flexible than
the notion of coarse embeddability.

Definition 6.7 A countable discrete group � is said to be finitely embeddable into
Hilbert spaceH if for any finite subset F ⊆ �, there exist a group �′ that is coarsely
embeddable into H and a map φ : F → �′ such that

(1) if γ, β and γβ are all in F , then φ(γβ) = φ(γ )φ(β);
(2) if γ is a finite order element in F , then order(φ(γ )) = order(γ ).

As mentioned above, Weinberger and Yu proved that Conjecture 6.5 holds for all
groups that are finitely embeddable into Hilbert space [WY].

If g ∈ � has finite order d, then we can define an idempotent in the group algebra
Q� by

pg = 1

d
(

d∑

k=1

gk).

For the rest of this survey, we denote the maximal group C∗-algebra of � by
C∗(�).
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Definition 6.8 We define Kfin
0 (C∗(�)), called the finite part of K0(C

∗(�)), to be
the abelian subgroup of K0(C

∗(G)) generated by [pg] for all elements g �= e in G
with finite order.

We remark that rationally all representations of a finite group are induced from
its finite cyclic subgroups [Serre]. This explains that the finite part of K-theory,
despite being constructed using only cyclic subgroups, rationally contains all K-
theory elements which can be constructed using finite subgroups.

Definition 6.9 Let J fin
0 (C∗(�)) be the abelian subgroup of Kfin

0 (C∗(�)) generated
by elements [pγ ] − [pβ ] with order(γ ) = order(β). We define the reduced finite
part of K0(C∗(�)) to be

K̃fin
0 (C∗(�)) = Kfin

0 (C∗(�))/J fin
0 (C∗(�)).

An argument in [WY] can be used to prove the following result, which plays a
crucial role in the proof of Theorem 6.6.

Proposition 6.10 Let {γ1, · · · , γn} be a collection of nontrivial elements (i.e.,
γi �= e) with distinct finite order in �. We define Mγ1,··· ,γn to be the abelian

subgroup of Kfin
0 (C

∗(�)) generated by {[pγ1 ], · · · , [pγn ]}. Let M̃γ1,··· ,γn be the
image of Mγ1,··· ,γn in K̃fin

0 (C∗(�)). If � is finitely embeddable into Hilbert space,
then

(1) the abelian group M̃γ1,··· ,γn has rank n,
(2) any nonzero element in Kfin

0 (C∗(�)) is not in the image of the assembly map

μ : K�
0 (E�) → K0(C

∗(�)),

where E� is the universal space for proper and free �-action.

So one is led to the following conjecture.

Conjecture 6.11 Let � be a countable discrete group. Suppose {γ1, · · · , γn} is a
collection of elements in � with distinct finite orders and γi �= e for all 1 ≤ i ≤ n.
Then

(1) the abelian group M̃γ1,··· ,γn has rank n,
(2) any nonzero element in Kfin

0 (C∗(�)) is not in the image of the assembly map

μ : K�
0 (E�) → K0(C

∗(�)),

where E� is the universal space for proper and free �-action.

We are now ready to introduce the notion of strongly finitely embeddability for
groups. Since we are interested in the fundamental groups of manifolds, all groups
are assumed to be finitely generated in the following discussion.
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Let � be a countable discrete group. Then any set of n automorphisms of �, say,
ψ1, · · · , ψn ∈ Aut(�), induces a natural action of Fn the free group of n generators
on �. More precisely, if we denote the set of generators of Fn by {s1, · · · , sn}, then
we have a homomorphism Fn → Aut(�) by si �→ ψi . This homomorphism induces
an action of Fn on �. We denote by � �{ψ1,··· ,ψn} Fn the semi-direct product of �
and Fn with respect to this action. If no confusion arises, we shall write � � Fn
instead of � �{ψ1,··· ,ψn} Fn.

Definition 6.12 A countable discrete group � is said to be strongly finitely
embeddable into Hilbert space H , if � �{ψ1,··· ,ψn} Fn is finitely embeddable into
Hilbert space H for all n ∈ N and all ψ1, · · · , ψn ∈ Aut(�).

We remark that all coarsely embeddable groups are strongly finitely embeddable.
Indeed, if a group � is coarsely embeddable into Hilbert space, then ��{ψ1,··· ,ψn}Fn
is coarsely embeddable (hence finitely embeddable) into Hilbert space for all n ∈ N

and all ψ1, · · · , ψn ∈ Aut(�).
If a group � has a torsion free normal subgroup �′ such that �/�′ is residually

finite, then � is strongly finitely embeddable into Hilbert space. Indeed, recall that
any finitely generated group has only finitely many distinct subgroups of a given
index. Let �m be the intersection of all subgroups of � with index at most m. Then
�/�m is a finite group. Moreover, for given ψ1, · · · , ψn ∈ Aut(�), the induced
action of Fn on � descends to an action of Fn on �/�m. In other words, we have a
natural homomorphism

φm : � � Fn → (�/�m)�Gm,

where Gm is the image of Fn under the homomorphism Fn → Aut(�/�m). It
follows that, for any finite set F ⊆ �, there exists a sufficiently large m such that
the map

φm : F ⊂ � � Fn → (�/�m)�Gm

satisfies

(1) if γ, β and γβ are all in F , then φ(γβ) = φ(γ )φ(β);
(2) if γ is a finite order element2 in F , then order(φ(γ )) = order(γ ).

Notice that (�/�m)�Gm is a finite group, which is obviously coarsely embeddable
into Hilbert space. This shows that � is strongly finitely embeddable into Hilbert
space.

To summarize, we see that the class of strongly finitely embeddable groups
includes all residually finite groups, virtually torsion free groups (e.g., Out(Fn)),
and groups that coarsely embed into Hilbert space, where the latter contains all
amenable groups and Gromov’s hyperbolic groups.

2Note that in this case, all finite order elements in � �{ψ1,··· ,ψn} Fn come from �.
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The notion of sofic groups is a generalization of amenable groups and residually
finite groups. It is an open question whether sofic groups are (strongly) finitely
embeddable into Hilbert space. Narutaka Ozawa, Denise Osin and Thomas Delzant
have independently constructed examples of groups which are not finitely embed-
dable into Hilbert space. An affirmative answer to the above question would imply
that there exist non-sofic groups.

By definition, strongly finite embeddability implies finite embeddability. It is an
open question whether the converse holds:

Open Question 6.13 If a group is finitely embeddable into Hilbert space, then does
it follow that the group is also strongly finitely embeddable into Hilbert space?

In fact, it was shown in [WY] that Gromov’s monster groups and any group of
analytic diffeomorphisms of an analytic connected manifold fixing a given point
are finitely embeddable into Hilbert space. It is still an open question whether these
groups are strongly finitely embeddable into Hilbert space.

Now let us proceed to prove Theorem 6.6. One of main ingredients of the proof
is the following proposition,3 which, combined with a surgery technique [GL, SY]
and the relative higher index theorem [B, XY2], allows us to construct genuinely
“new” positive scalar curvature metrics from old ones. For a finite group F , an F -
manifold Y is called F -connected if the quotient Y/F is connected. Let Zd be the
cyclic group of order d.

Proposition 6.14 Given positive integers d and k, there exist Zd -connected closed
spin Zd -manifolds {Y1, · · · , Yn} with dimYi = 2k such that

(a) the Zd -equivariant indices of the Dirac operators on {Y1, · · · , Yn} rationally
generate KO(Zd)⊗ Q,

(b) Zd acts on Yi freely except for finitely many fixed points.

Let M be a closed spin manifold with a positive scalar curvature metric gM and
dimM ≥ 5 as before. For each nontrivial finite order element γ ∈ �, one can
construct a new positive scalar curvature metric hγ on M such that the relative
higher index Ind�(gM, hγ ) = [pγ ] ∈ K0(C

∗(�)), where pγ = 1
d

∑d
k=1 γ

k with
d = order(γ ). The detailed construction will be given in the next paragraphs. Here
let us recall the definition of this relative higher index Ind�(gM, hγ ). We endow
M×R with the metric gt + (dt)2, where gt is a smooth path of Riemannian metrics
on M such that

gt =

⎧
⎪⎪⎨

⎪⎪⎩

gM for t ≤ 0,

hγ for t ≥ 1,

any smooth path of metrics from gM to hγ for 0 ≤ t ≤ 1.

3 Proposition 6.14 first appeared in [WY]. The original statement in [WY] seems to contain a minor
error when d is even, the version we state in this survey and its proof can be found in [XYZ].
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Then M × R becomes a complete Riemannian manifold with positive scalar
curvature away from a compact subset. Denote by DM×R the corresponding Dirac
operator on M × R with respect to this metric. Then the higher index of DM×R is
well-defined and is denoted by Ind�(gM, hγ ) (cf. the discussion at the beginning of
Section 7 below).

Next we shall describe a construction of a new positive scalar curvature metric hγ
on M associated to a nontrivial finite order element γ ∈ �. Let M̃ be the universal
cover of M . For each finite order element g in G with order d. By Proposition 6.14,
there exist Z/dZ-connected compact smooth spin Z/dZ-manifolds {N1, · · · , Nn}
such that the dimension of each Ni is 4k and the sum of the Z/dZ-equivariant
indices of the Dirac operators on {N1, · · · , Nn} is a nonzero multiple of the trivial
representation of Z/dZ.

LetNg,l = G×Z/dZNl,where Z/dZ acts onNl as in Proposition 6.14 and Z/dZ

acts on G by [m]h = hgm for all h ∈ G and [m] ∈ Z/dZ. Observe that Ng,l is a
G-manifold.

Let {g1, · · · , gr} be a collection of finite order elements such that
{[pg1 ], · · · , [pgr ]} generates an abelian subgroup of K0(C

∗(G)) with rank r . Let

Ngi = ⊔ji
l=1Ngi,l be the disjoint union of all G-manifolds described as above. Let

I be the unit interval [0, 1]. We first form a generalized G-equivariant connected
sum (M̃× I )8Ngi along a freeG-orbit of each Ngi,l and away from the boundary of
M̃ × I as follows. We first obtain a G∗ji -equivariant connected sum (M̃ × I )0Ngi
along a freeG-orbit of eachNgi,l and away from the boundary of M̃×I , whereG∗ji
is the free product of ji copies of G. More precisely, we inductively form the G∗ji -
equivariant connected sum (· · · ((M̃ × I )0Ngi,1) · · · )0Ngi,ji , where the equivariant
connected sum is inductively taken along a free orbit and away from the boundary.
We denote this space by (M̃ × I )0Ngi . We then perform surgeries on (M̃ × I )0Ngi
to obtain a G-equivariant cobordism between two copies of G-manifold M̃ .

For any positive scalar curvature metric h on M , by [RW, Theorem 2.2], the
above cobordism gives us another positive scalar curvature metric hi on M . Now
the relative higher index theorem [B, XY2] implies that the relative higher index of
the Dirac operator M × R associated to the positive scalar curvature metrics of hi
and gM is [pgi ] in K0(C

∗(G)). As a consequence, we know that {[h1], · · · , [hr ]}
generates an abelian subgroup of P(M) with rank r .

To summarize, one can construct distinct elements in P(M) by surgery theory
and the relative higher index theorem. Moreover, these elements are distinguished
by their relative higher indices (with respect to gM ). However, to prove Theorem 6.6,
that is, to show that these concordance classes of positive scalar curvature metrics
remain distinct even after modulo the action of diffeomorphisms, we will need to
use higher rho invariants (instead of relative higher indices) in an essential way.

Proof of Theorem 6.6 Consider the following short exact sequence:

0 → C∗
L,0(M̃)

� → C∗
L(M̃)

� → C∗(M̃)� → 0
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where M̃ is the universal cover of M . It induces the following six-term long exact
sequence:

K0(C∗
L,0(M)Γ) K0(C∗

L(M)Γ)
μM

K0(C∗(M)Γ)

∂

K1(C∗(M)Γ) K1(C∗
L(M)Γ) K1(C∗

L,0(M)Γ)

Recall that we have K0(C
∗
L(M̃)

�) ∼= K�
0 (M̃) and K0(C

∗(M̃)�) ∼= K0(C
∗(�)).

Fix a positive scalar curvature metric gM on M . For each finite order element
γ ∈ �, we can construct a new positive scalar curvature metric hγ on M such
that the relative higher index Ind�(gM, hγ ) = [pγ ] ∈ K0(C

∗(�)) as described as
above. Let us still denote by hγ (resp. gM ) the metric on M̃ lifted from the metric
hγ (resp. gM ) on M . Let ρ(D, hγ ) and ρ(D, gM) be the higher rho invariants for
the pairs (D, hγ ) and (D, gM), where D is the Dirac operator on M̃ . Then we have

∂([pγ ]) = ∂
(
Ind�(gM, hγ )

) = ρ(D, hγ )− ρ(D, gM), (6.2)

(cf. [PS1, XY]).
One of the key points of the proof is to construct a certain group homomorphism

on P̃ (M) which can be used to distinguish elements in P̃ (M). First, we define a
map 2 : P(M) → K1(C

∗
L,0(M̃)

�) by

2(h) := ρ(D, h)− ρ(D, gM)

for all h ∈ P(M). It follows from the definition of P(M) and [XY, Theorem
4.1] that the map 2 is a well-defined group homomorphism. Now recall that a
diffeomorphism ψ ∈ Diff(M) induces a homomorphism

ψ∗ : K1(C
∗
L,0(M̃)

�) → K1(C
∗
L,0(M̃)

�).

Let I1(C
∗
L,0(M̃)

�) be the subgroup of K1(C
∗
L,0(M̃)

�) generated by elements of the

form [x] − ψ∗[x] for all [x] ∈ K1(C
∗
L,0(M̃)

�) and all ψ ∈ Diff(M). We see that 2
descends to a group homomorphism

2̃ : P̃ (M) → K1(C
∗
L,0(M̃)

�)
/I1(C

∗
L,0(M̃)

�).

To see this, it suffices to verify that

2(h)− 2(ψ∗(h)) ∈ I1(C
∗
L,0(M̃)

�)

for all [h] ∈ P(M) and ψ ∈ Diff(M). Indeed, we have

2(h)− 2(ψ∗(h)) = ρ(D, h)− ρ(D, gM)− (
ρ(D,ψ∗(h))− ρ(D, gM)

)
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= ρ(D, h)− ρ(D,ψ∗(h))

= ρ(D, h)− ψ∗(ρ(D, h)) ∈ I1(C
∗
L,0(M̃)

�).

We remark that it is crucial to use the higher rho invariant, instead of the relative
higher index, to construct such a group homomorphism. Let us explain the subtlety
here. Note that there is in fact a well-defined group homomorphism Indrel :
P(M) → K0(C

∗(�)) by Indrel(h) = Ind�(D; gM, h). The well-definedness of
Indrel follows from the definition of P(M) and the relative higher index theorem
[B, XY2]. However, in general, it is not clear at all whether Indrel descends to
a group homomorphism P̃ (M) → K0(C

∗(�))/I0(C
∗(�)), where I0(C

∗(�)) is
the subgroup of K0(C

∗(�)) generated by elements of the form [x] − ψ∗[x] for all
[x] ∈ K0(C

∗(�)) and all ψ ∈ Diff(M).
Now for a collection of elements {γ1, · · · , γn} with distinct finite orders, we con-

sider the associated collection of positive scalar curvature metrics {hγ1, · · · , hγn} as
before. To prove the theorem, it suffices to show that for any collection of elements
{γ1, · · · , γn} with distinct finite orders, the elements

2̃(hγ1), · · · , 2̃(hγn)
are linearly independent in K1(C

∗
L,0(M̃)

�)
/I1(C

∗
L,0(M̃)

�).

Let us assume the contrary, that is, there exist [x1], · · · , [xm] ∈ K1(C
∗
L,0(M̃)

�)

and ψ1, · · · , ψm ∈ Diff(M) such that

n∑

i=1

ci2(hγi ) =
m∑

j=1

([xj ] − (ψj )∗[xj ]
)
, (6.3)

where c1, · · · , cn ∈ Z with at least one ci �= 0.
We denote by W the wedge sum of m circles. The fundamental group π1(W) is

the free group Fm of m generators {s1, · · · , sm}. We denote the universal cover of
W by W̃ . Clearly, W̃ is the Cayley graph of Fm with respect to the generating set
{s1, · · · , sm, s−1

1 , · · · , s−1
m }. Notice that Fm acts onM through the diffeomorphisms

ψ1, · · · , ψm. In other words, we have a homomorphism Fm → Diff(M) by si �→
ψi . We define

X = M ×Fm W̃ .

Notice that π1(X) = � �{ψ1,··· ,ψm} Fm. Let us write � � Fm for � �{ψ1,··· ,ψm} Fm,
if no confusion arises.

Let X̃ be the universal cover of X. We have the following short exact sequence:

0 → C∗
L,0(X̃)

��Fm → C∗
L(X̃)

��Fm → C∗(X̃)��Fm → 0.

Recall that K0(C
∗
L(X̃)

��Fm) ∼= K
��Fm
0 (X̃) and K0(C

∗(X̃)��Fm) ∼= K0(C
∗(� �

Fm)). So we have the following six-term long exact sequence:
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K0(C∗
L,0(X)Γ�Fm) KΓ�Fm

0 (X) K0(C∗(Γ � Fm))

∂

K1(C∗(Γ � Fm)) KΓ�Fm
1 (X) K1(C∗

L,0(X)Γ�Fm) (6.4)

Now recall the following Pimsner-Voiculescu exact sequence [PV]:

m
j=1 K0(C∗(Γ))

∑m
j=1 1−(ψj)∗

K0(C∗(Γ))
i∗

K0(C∗(Γ � Fm))

K1(C∗(Γ � Fm)) K1(C∗(Γ)) m
j=1 K1(C∗(Γ))

∑m
j=1 1−(ψj)∗

where (ψj )∗ is induced by ψj and i∗ is induced by the inclusion map of �
into � � Fm. Similarly, we also have the following two Pimsner-Voiculescu type
exact sequences for K-homology and the K-theory groups of C∗

L,0-algebras in the
diagram (6.4) above.

m
i KΓ

0 (M)
∑m

j=1 1−(ψj)∗
KΓ

0 (M)
i∗

KΓ�Fm
0 (X)

KΓ�Fm
1 (X) KΓ

1 (M) m
i=1 K

Γ
1 (M)

∑m
j=1 1−(ψj)∗

m
i=1 K0(C∗

L,0(M)Γ)
∑m

j=1 1−(ψj)∗
K0(C∗

L,0(M)Γ)
i∗

K0(C∗
L,0(X)Γ�Fm)

K1(C∗
L,0(X)Γ�Fm) K1(C∗

L,0(M)Γ) m
i=1 K1(C∗

L,0(M)Γ)
∑m

j=1 1−(ψj)∗

where again (ψj )∗ and i∗ are defined in the obvious way.
Combining these Pimsner-Voiculescu exact sequences together, we have the

following commutative diagram:

m
j=1 K

Γ
0 (M) σ

KΓ
0 (M)

i∗
KΓ�Fm

0 (X)

μ

m
j=1 K0(C∗(Γ)) σ

K0(C∗(Γ)) ∗
K0(C∗(Γ � Fm))

∂Γ�Fm

m
j=1 K1(C∗

L,0(M)Γ) σ
K1(C∗

L,0(M)Γ)
i∗

K1(C∗
L,0(X)Γ�Fm)

...

.

.. .
.. .

..

...
...

(6.5)
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where σ = ∑m
j=1 1 − (ψj )∗. Notice that all rows and columns are exact.

Now on one hand, if we pass Equation (6.3) toK1(C
∗
L,0(X̃)

��Fm) under the map
i∗, then it follows immediately that

n∑

k=1

ck · i∗[2(hγk )] = 0 in K1(C
∗
L,0(X̃)

��Fm),

where at least one ck �= 0. On the other hand, by assumption, � is strongly finitely
embeddable into Hilbert space. Hence � � Fm is finitely embeddable into Hilbert
space. By Proposition 6.10, we have the following:

1. {[pγ1], · · · , [pγn ]} generates a rank n abelian subgroup of Kfin
0 (C∗(� � Fm)),

since γ1, · · · , γn have distinct finite orders. In other words,

n∑

k=1

ck[pγk ] �= 0 ∈ Kfin
0 (C∗(� � Fm))

if at least one ck �= 0.
2. Every nonzero element in Kfin

0 (C∗(��Fm)) is not in the image of the assembly
map

μ : K��Fm
0 (E(� � Fm)) → K0(C

∗(� � Fm)),

where E(� � Fm) is the universal space for proper and free � � Fm-action. In
particular, every nonzero element inKfin

0 (C∗(��Fm)) is not in the image of the
map

μ : K��Fm
0 (X̃) → K0(C

∗(� � Fm))

in diagram (6.5). It follows that the map

∂��Fm : Kfin
0 (C∗(� � Fm)) → K1(C

∗
L,0(X̃)

��Fm)

is injective. In other words, ∂��Fm maps a nonzero element inKfin
0 (C∗(��Fm))

to a nonzero element in K1(C
∗
L,0(X̃)

��Fm).

To summarize, we have

(a)
∑n

k=1 ck[pγk ] �= 0 in Kfin
0 (C∗(� � Fm)),

(b)
∑n

k=1 ck · i∗[2(hγk )] = 0 in K1(C
∗
L,0(X̃)

��Fm),

(c) the map ∂��Fm : Kfin
0 (C∗(� � Fm)) → K1(C

∗
L,0(X̃)

��Fm) is injective,

(d) and by Equation (6.2), ∂��Fm
(∑n

k=1 ck[pγk ]
)

= ∑n
k=1 ck · i∗[2(hγk )].

Therefore, we arrive at a contradiction. This finishes the proof. ��
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7 Higher index, higher rho and positive scalar
curvature at infinity

In this section, we will first describe a construction of the higher index for the
Dirac operator on a complete manifold with positive scalar curvature at infinity. This
construction is due to Gromov–Lawson in the classic Fredholm case [GL1] and its
generalization to higher index case is due to Bunke [B] (see also [Roe1, BW, Roe3]).
We will then discuss a connection between the higher index for the Dirac operator
on a manifold with boundary and the higher rho invariant of the Dirac operator on
the boundary.

Let M be a complete Riemannian spin manifold with a proper and isometric
action of a discrete group �. We assume that M has positive scalar curvature at
infinity relative to the action of �, i.e., there exists a �-cocompact subset Z of M
and a positive number a such that the scalar curvature k ofM is greater than or equal
to a outside Z. Let D be the Dirac operator M .

We need some preparations in order to define the higher index. The following
useful lemma is due to Roe [Roe3].

Lemma 7.1 With the notation as above, suppose that f ∈ S(R) has its Fourier
transform f̂ supported in (−r, r). Let φ ∈ C0(M) have support disjoint from a
4r-neighborhood of Z. We have

||f (D)φ|| ≤ 2||φ|| sup{|f (λ)| : |λ| ≥ a}.

Proof Let us first deal with the case where f is an even function. In the case, the
Fourier transform formula gives us

f (D) =
∫ r

−r
f̂ (t) cos(tD)dt.

Let us define

U = {x ∈ M : d(x, Z) > r} and U ′ = {x ∈ M : d(x, Z) > 2r}.

Consider the unbounded symmetric operatorD2 with domainC∞
c (U). This operator

is bounded below by a2I and has a Friedrichs extension on the Hilbert space
L2(U, S), where S is the spinor bundle. We denote this extension by E. Clearly,
E is bounded below by the same lower bound a2I .

A standard finite propagation speed argument shows that if s is smooth and
compactly supported on U ′, then

cos(tD)s = cos(t
√
E)s

for −r ≤ t ≤ r. Since the spectrum of
√
E is bounded below by a, we have
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||f (√E)|| ≤ sup{|f (λ)| : |λ| ≥ a}.

This implies the following inequality:

||f (D)φ|| ≤ ||φ|| sup{|f (λ)| : |λ| ≥ a}.

If f is an odd function, we have

||f (D)φ||2 ≤ ||φ̄|| || f 2(D)φ ||.

In this case, the function f 2 is even, belongs to S(R), and has Fourier transform
supported in (−2r, 2r). Hence we have the following inequality:

||f 2(D)φ|| ≤ ||φ|| sup{|f (λ)|2 : |λ| ≥ a}.

It follows that

||f (D)φ|| ≤ ||φ|| sup{|f (λ)| : |λ| ≥ a}.

The general case follows from the above two special cases by writing f as a sum
of even and odd functions. ��

With the help of the above lemma, we can prove the following result.

Lemma 7.2 For any f ∈ Cc(−a, a), we have f (D) ∈ limR→∞ C∗(NR(Z))� ,
where NR(Z) is the R-neighborhood4 of Z and limR→∞ C∗(NR(Z))� is the C∗-
algebra limit of the equivariant Roe algebras.

Proof For any ε > 0, there exists a smooth function g such that its Fourier transform
is compactly supported, and

sup{|g(λ)− f (λ)| : λ ∈ R} < ε.

It follows that |g(λ)| < ε for |λ| > a. Let r be a positive number such that
Supp(ĝ) ⊆ (−r, r) and let ψ : M → [0, 1] be a continuous �-invariant function
equal to 1 on a 4r-neighborhood of Z and vanishing outside a 5r-neighborhood of
Z. We write

f (D) = ψg(D)ψ + (1 − ψ)g(D)ψ + g(D)(1 − ψ)+ (f (D)− g(D)).

Note that the first term is a �-equivariant and locally compact operator with finite
propagation supported near Z, the second and third terms have norm bounded by 2ε
by Lemma 7.1. This implies the desired result. ��

4Without loss of generality, we can assume NR(Z) is �-invariant.
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We remark limR→∞ C∗(NR(Z))� is isomorphic to the reduced groupC∗-algebra
C∗
r (�).

A normalizing function χ : R → [−1, 1] is, by definition, a continuous odd
function that goes to ±1 as x → ∞. Now choose a normalizing function χ such
that χ2 − 1 is supported in (−a, a) and let

F = χ(D).

By Lemma 7.2, the same construction from Section 3 defines a higher index
Ind(D) ∈ K∗(C∗

r (�)).

The following question is wide open.

Open Question 7.3 LetM be a complete spin manifold with a proper and isometric
action of a discrete group �. Let D be the Dirac operator on M . Assume that M has
positive scalar curvature at infinity relative to the action of �. Is Ind(D) an element
in the image of the Baum–Connes assembly map?

Let N be a spin manifold with boundary, where the boundary ∂N is endowed
with a positive scalar curvature metric. We will explain that the K-theoretic
“boundary” of the higher index class of the Dirac operator on N is equal to the
higher rho invariant of the Dirac operator on ∂N . More generally, let M be an m-
dimensional complete spin manifold with boundary ∂M such that

(i) the metric on M has product structure near ∂M and its restriction on ∂M ,
denoted by h, has positive scalar curvature;

(ii) there is a proper and cocompact isometric action of a discrete group � on M;
(iii) the action of � preserves the spin structure of M .

We denote the associated Dirac operator on M by DM and the associated Dirac
operator on ∂M byD∂M . With the positive scalar curvature metric h on the boundary
∂M , we can define the higher index class Ind(DM) ofDM inK∗(C∗

r (�)) as follows.
We can attach a cylinder ∂M × [0,∞) to the boundary of M to form a complete
Riemannian manifold (without boundary) M̄ , where the Riemannian metric onM is
naturally extended to M̄ such that Riemannian metric on the cylinder is a product.
The action of � on M naturally extends to an action on M̄ . By construction, M̄
has positive scalar curvature at infinity relative to the action of M . We can therefore
define the higher index Ind(DM) ofDM to be the higher index of the Dirac operator
on M̄ .

Notice that the short exact sequence of C∗-algebras

0 → C∗
L,0(M)

� → C∗
L(M)

� → C∗(M)� → 0

induces the following long exact sequence in K-theory:

· · · →Ki(C
∗
L(M)

�)→Ki(C
∗(M)�) ∂i−→ Ki−1(C

∗
L,0(M)

�)→Ki−1(C
∗
L(M)

�)→ · · · .
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Also, by functoriality, we have a natural homomorphism

ι∗ : Km−1(C
∗
L,0(∂M)

�) → Km−1(C
∗
L,0(M)

�)

induced by the inclusion map ι : ∂M ↪→ M . With the above notation, one has the
following theorem.

Theorem 7.4 ∂m(Ind(DM)) = ι∗(ρ(D∂M, h)) in Km−1(C
∗
L,0(M)

�).

This theorem is due to Piazza and Schick [PS1] when the dimension of M is
even and to Xie and Yu [XY] in the general case. As an immediate application,
one sees that nonvanishing of the higher rho invariant is an obstruction to extension
of the positive scalar curvature metric from the boundary to the whole manifold.
Moreover, the higher rho invariant can be used to distinguish whether or not two
positive scalar curvature metrics are connected by a path of positive scalar curvature
metrics.

8 Secondary invariants of the signature operators and
topological non-rigidity

In this section, we introduce the higher rho invariants for a pair of closed manifolds
which are homotopic equivalent to each other. Roughly speaking, we consider
the relative signature operator associated to this pair of manifolds. This relative
signature operator has trivial higher index with a natural trivilialization given by the
homotopy equivalence. This trivialization allows us to define a higher rho invariant,
which can be used to detect whether a homotopy equivalence can be deformed into
a homeomorphism.

We shall focus on the case of smooth manifolds. General topological manifolds
can be handled in a similar way with the help of Lipschitz structures [Su].

Let M and N be two closed oriented smooth manifolds of dimension n. We will
only discuss the odd-dimensional case; the even dimensional case is completely
similar. We denote the de Rham complex of differential forms on M by

�0(M)
d−→ �1(M)

d−→ · · · d−→ �n(M),

whose L2-completion is

�0
L2(M)

d−→ �1
L2(M)

d−→ · · · d−→ �n
L2(M).

We shall write dM if we need to specify d is the differential associated to the de
Rham complex of M . Similarly, we have
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�0
L2(N)

dN−−→ �1
L2(N)

dN−−→ · · · dn−−→ �n
L2(N)

for the manifold N .
Let T = ∗M : �k

L2(M) → �n−k
L2 (M) be the Hodge star operator on M , which is

defined by

〈T α, β〉 =
∫

M

α ∧ β,

where β is the complex conjugation of β. The Hodge star operator T satisfies the
following properties:

(1) T ∗α = (−1)k(n−k)T α for any α ∈ �k
L2(M);

(2) T dα + (−1)kd∗T α = 0 for any smooth β ∈ �k(M);
(3) T 2α = (−1)nk+kα for any α ∈ �k

L2(M);

where T ∗ is the adjoint of T , and d∗ is the adjoint of d. More generally, a bounded
operator T satisfying conditions (1) and (2) is said to be a duality operator of the
chain complex (�∗

L2(M), d) if in addition, it satisfies the condition

(3)′ T induces a chain homotopy equivalence from the dual complex of
(�∗

L2(M), d) to the complex (�∗
L2(M), d), where the dual complex is defined

to be

�n
L2(M)

d∗−−→ �n−1
L2 (M)

d∗−−→ · · · d∗−−→ �0
L2(M).

In this case, we call (�∗
L2(M), d) together with the duality operator T a (unbounded)

Hilbert–Poincaré complex.
Define S = ik(k−1)+mT , where m = (n − 1)/2. It follows from properties (1)

and (3) above that S is a self-adjoint involution.

Definition 8.1 The signature operator D of M is defined to be i(d + d∗)S acting
on even degree differential forms.

All the above discussion generalizes to the universal covering M̃ of M . We
denote the corresponding π1(M)-equivariant signature operator of M̃ by D̃.

In the standard K-theoretic construction of the index of D̃ (cf. Section 3), let us
choose the normalizing function χ(t) = 2

π
arctan(t). In this case, we have

Ind(D̃) = e2πi χ(D̃)+1
2 = (D̃ − i)(D̃ + i)−1.

Let B = d + d∗. The above formula implies the following index formula:

Ind(D̃) = (B − S)(B + S)−1 ∈ K1(C
∗
r (π1(M))). (8.1)
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The above index formula in fact holds for general Hilbert–Poincaré complexes,
that is, chain complexes with general duality operators. We shall not get into the
technical details regarding the notion of Hilbert–Poincaré complexes, but instead
refer the reader to [HR] for details. A key feature of the notion of Hilbert–Poincaré
complexes is that it allows us to use a much larger class of duality operators besides
the Hodge star operators. In the case of general Hilbert–Poincaré complexes, the
well-definedness of the above index formula is justified by the following lemma
[HR, Lemma 3.5].

Lemma 8.2 B + S and B − S are invertible.

Proof Consider the mapping cone complex associated to the chain map

S : (�∗
L2(M),−d∗) → (�∗

L2(M), d)

with the differential

b =
(
d 0
S d∗

)
.

Since S is an isomorphism on the homology, the mapping cone complex is acyclic.
Therefore the operator b + b∗ is invertible. Recall that S is self-adjoint. Hence we
have

b + b∗ =
(
d + d∗ S

S d + d∗
)
.

Note that

(
d + d∗ S

S d + d∗
)(

v

v

)
=

(
(d + d∗ + S)v

(d + d∗ + S)v

)
.

This implies that B+S is invertible. We can similarly show that B−S is invertible.
��

Suppose f : M → N is an orientation preserving homotopy equivalence
between M and N . It is known that Ind(D̃M) = Ind(D̃N) in K1(C

∗
r (�)), where

� = π1(M) = π1(N), cf. [K1, KM]. Intuitively speaking, one can use the homotopy
equivalence f together with the signature operators on M and N to produce an
invertible operator Df on M ∪ (−N) such that the index of Df coincides with the
index of the signature operator on M ∪ (−N), which is Ind(D̃M) − Ind(D̃N), cf.
[HiS]. Here −N is the manifold N with the reversed orientation and M ∪ (−N)
stands for the disjoint union of the two. In particular, the invertibility of Df is the
reason that Ind(D̃M) = Ind(D̃N), by giving a specific trivialization of the index
class of DM∪(−N). Thus the homotopy equivalence f naturally defines a higher
rho invariant. In the following, we shall take a different but simpler approach to
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construct the higher rho invariant of f . Although this process does not produce an
invertible operator Df , but it does provide a trivialization at the K-theory level. Our
choice of such an approach is mainly its simplicity, which will hopefully convey the
key ideas with more clarity.

We denote the induced pullback map on differential forms by f ∗ : �∗(N) →
�∗(M). In general, f ∗ does not extend to a bounded linear map between the spaces
of L2 forms �∗

L2(N) and �∗
L2(M). In order to fix this issue, we need the following

construction due to Hilsum and Skandalis [HiS]. First, suppose ϕ : X → Y is a
submersion between two closed manifolds. It is easy to see that ϕ∗ does extend to
a bounded linear operator from �∗

L2(Y ) to �∗
L2(X). Now let ι : N → R

k be an

embedding. Suppose U is a tubular neighborhood of N in R
k and π : U → N is

the associated projection. Without loss of generality, we assume ι(N) + B
k ⊂ U ,

where Bk is the unit ball of Rk . Let p : M ×B
k → N be the submersion defined by

p(x, t) = π(f (x)+ t). Furthermore, let ω be a volume form on B
k whose integral

is 1. Then the formula

α →
∫

Bk
p∗(α) ∧ ω

defines a morphism of chain complexes A : �∗(N) → �∗(M), where
∫
Bk

denotes
fiberwise integration along B

k . It is easy to see that A extends to a bounded
linear operator from �∗

L2(N) to �∗
L2(M). We shall still denote this extension by

A : �∗
L2(N) → �∗

L2(M).
Now a routine calculation shows that A is a homotopy equivalence between

the two complexes (�L2(M), dM) and (�L2(N), dN) such that ATA∗ is chain
homotopy equivalent to T ′, where T ′ is the Hodge star operator on N . It follows
that the operator

S =
(

0 AT

TA∗ 0

)

together with the chain complex (�∗
L2(M) ⊕ �∗

L2(N), dM ⊕ dN) gives rise to an
(unbounded) Hilbert–Poincaré complex.

We have the following lemma due to Higson and Roe [HR].

Lemma 8.3 If we write

B =
(
BM 0
0 BN

)
=

(
dM + d∗

M

0 dN + d∗
N

)
,

then the element

(B − S)(B + S)−1

is equal to Ind(D̃M)− Ind(D̃N) in K1(C
∗
r (�)).
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Proof Note that T ′ and ATA∗ induce the same map on homology. It follows that
the path

(
T 0
0 (s − 1)T ′ − sATA∗

)

is an operator homotopy connecting the duality operator T ⊕ −T ′ to the duality
operator T ⊕ −ATA∗. The path

(
cos(s)T sin(s)T A∗

sin(s)AT − cos(s)ATA∗
)

is an operator homotopy connecting the duality operator T ⊕−ATA∗ to the duality

operator

(
0 AT

TA∗ 0

)
, where s ∈ [0, π/2]. Now the lemma follows from the

explicit index formula in line (8.1). ��
For each t ∈ [0, π ], the following operator

St =
(

0 eitAT

e−it T A∗ 0

)

defines a duality operator for the chain complex (�∗
L2(M)⊕�∗

L2(N), dM ⊕ dN). It
is not difficult to verify that

(B − S0)(B + St )
−1

defines a continuous path of invertible elements in (C∗
r (�)⊗ K)+. Note that Sπ =

−S0, thus (B − S0)(B + Sπ)
−1 = 1. Therefore, the path (B − S0)(B + St )

−1 gives
a specific trivialization of the index class Ind(D̃M)− Ind(D̃N). This trivialization
in turn induces a higher rho invariant as follows. Let {v(t)}1≤t≤2 be the path of
invertible elements connecting (B − S0)(B + S0)

−1 to

(
B − (

T 0
0 T ′

))(
B + (

T 0
0 T ′

))−1
.

We define

ρ(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(B − S0)(B + S(1−t)π )−1, for 0 ≤ t ≤ 1,

v(t) for 1 ≤ t ≤ 2,

(
eπi(χ(

1
t
D̃M)+1) 0

0 eπi(χ(
1
t
D̃−N )+1)

)

for 2 ≤ t < ∞.
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Definition 8.4 We define the higher rho invariant of a given homotopy equivalence
f : M → N to be the above element [ρ] in K1(C

∗
L,0(Ñ)

�). Here we have used f to

map elements in C∗(M̃)� to C∗(Ñ)� .

The fact that ρ is an element in the matrix algebra of (C∗
L,0(Ñ)

�)+ follows
from a standard finite propagation speed argument. The even dimensional higher rho
invariant can be defined in a similar way. Zenobi generalized the concept of higher
rho invariant to homotopy equivalences between closed topological manifolds with
the help of Lipschitz structures [Z].

Given a closed oriented manifold N , the higher rho invariant in fact defines a
map from the structure set of N to Kn(C∗

L,0(Ñ)
�), where n = dimN . On the

other hand, when N is a topological manifold, the structure set of N carries a
natural abelian group structure. It was long standing open problem whether the
higher rho inviariant map is a group homomorphism from the structure group of
N to K1(C

∗
L,0(Ñ)

�). This was answered in positive in complete generality by
Weinberger–Xie–Yu [WXY]. In the following we shall briefly discuss some of the
key ideas of their proof and also some applications to topology.

Let X be a closed oriented connected topological manifold of dimension n.
The structure group S(X) is the abelian group of equivalence classes of all pairs
(f,M) such that M is a closed oriented manifold and f : M → X is an orientation
preserving homotopy equivalence. Recall that the abelian group structure on S(X) is
originally described through the Siebenmann periodicity map, which is an injection
from S(X) to S∂ (X ×D4), where D4 is the 4-dimensional Euclidean unit ball and
S∂ (X × D4) is the rel ∂ version of structure set of X × D4. The set S∂ (X × D4)

carries a natural abelian group structure by stacking, and induces an abelian group
structure on S(X) by Nicas’ correction map to the Siebenmann periodicity map
[Ni]. Both S(X) and S∂ (X × D4) carry a higher rho invariant map. It is not
difficult to verify that the higher rho invariant map on S∂ (X × D4) is additive,
i.e., a homomorphism between abelian groups. One possible approach to show the
additivity of the higher rho invariant map on S(X) is to prove the compatibility
of higher rho invariant maps on S(X) and S∂ (X × D4). However, there are some
essential analytical difficulties to directly prove such a compatibility, due to the
subtleties of the Siebenmann periodicity map.5 A main novelty of Weinberger–Xie–
Yu’s approach [WXY] is to give a new description of the topological structure group
in terms of smooth manifolds with boundary. This new description uses more objects
and an equivalence relation broader than h-cobordism, which allows us to replace
topological manifolds in the usual definition of S(X) by smooth manifolds with
boundary. Such a description leads to a transparent group structure, which is given
by disjoint union. The main body of Weinberger–Xie–Yu’s work [WXY] is devoted
to proving that the new description coincides with the classical description of the
topological structure group; and to developing the theory of higher rho invariants in

5A geometric construction of the Siebenmann periodicity map was given by Cappell and
Weinberger [CW].
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this new setting, in which higher rho invariants are easily seen to be additive. As a
consequence, the higher rho invariant maps on S(X) and S∂ (X × D4) are indeed
compatible.

Theorem 8.5 ([WXY, Theorem 4.40]) The higher rho invariant map is a group
homomorphism from S(X) to Kn(C∗

L,0(X̃)
�).

As mentioned above, the above theorem solves the long standing open problem
whether the higher rho inviariant map defines a group homomorphism on the
topological structure group. As an application, Weinberger–Xie–Yu applied the
above theorem to prove that the structure groups of certain manifolds are infinitely
generated [WXY].

Theorem 8.6 LetM be a closed oriented topological manifold of dimension n ≥ 5,
and � be its fundamental group. Suppose the rational strong Novikov conjecture
holds for �. If ⊕k∈ZHn+1+4k(�,C) is infinitely generated, then the topological
structure group of S(M) is infinitely generated.

We refer to the article [WXY] for examples of groups satisfying the conditions
in the above theorem.

9 Non-rigidity of topological manifolds and reduced
structure groups

The structure group measures the degree of non-rigidity and the reduced structure
group estimates the size of non-rigidity modulo self-homotopy equivalences. In this
section, we apply the higher rho invariants of signature operators to give a lower
bound of the free rank of reduced structure groups of closed oriented topological
manifolds. Our key tool is the additivity property of higher rho invariants from
the previous section. There are in fact two different versions of reduced structure
groups, S̃alg(X) and S̃geom(X), whose precise definitions will be given below. The
group S̃alg(X) is functorial and fits well with the surgery long exact sequence.
On the other hand, the group S̃geom(X) is more geometric in the sense that it
measures the size of the collection of closed manifolds homotopic equivalent but
not homeomorphic to X.

Since we will be using the maximal version of various C∗-algebras throughout
this section, we will omit the subscript “max” for notational simplicity.

Let X be an n-dimensional oriented closed topological manifold. Denote the
monoid of orientation preserving self-homotopy equivalences of X by Auth(X).
There are two different actions of Auth(X) on S(X), which induce two different
versions of reduced structure groups as follows.

On one hand, Auth(X) acts naturally on S(X) by

αu(θ) = u∗(θ)
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for all u ∈ Auth(X) and all θ ∈ S(X), where u∗ is the group homomorphism from
S(X) to S(X) induced by the map u [KiS]. This action α is compatible with the
actions of Auth(X) on other terms in the topological surgery exact sequence.

On the other hand, Auth(X) also naturally acts on S(X) by compositions of
homotopy equivalences, that is,

βu(θ) = (u ◦ f,M)

for all u ∈ Auth(X) and all θ = (f,M) ∈ S(X). Note that

βu : S(X) → S(X)

only defines a bijection of sets, and is not a group homomorphism in general.

Definition 9.1 With the same notation as above, we define the following reduced
structure groups.

(1) Define S̃alg(X) to be the quotient group of S(X) by the subgroup generated by
elements of the form θ − αu(θ) for all θ ∈ S(X) and all u ∈ Auth(X).

(2) we define S̃geom(X) to be the quotient group of S(X) by the subgroup generated
by elements of the form θ − βu(θ) for all θ ∈ S(X) and all u ∈ Auth(X).

Next we recall a method of constructing elements in the structure group by the
finite part of K-theory [WY, Theorem 3.4].

LetM be a (4k−1)-dimensional closed oriented connected topological manifold
with π1M = �. Suppose {g1, · · · , gm} is a collection of elements in � with distinct
finite orders such that gi �= e for all 1 ≤ i ≤ m. Recall the topological surgery exact
sequence:

· · · → H4k(M,L•) → L4k(�)
S−→ S(M) → H4k−1(M,L•) → · · · .

For each finite subgroup H of �, we have the following commutative diagram:

HH
4k(EH,L•)

A
L4k(H)

HG
4k(EΓ,L•)

A
L4k(Γ),

where the vertical maps are induced by the inclusion homomorphism from H to �.
For each element g in H with finite order d, the idempotent pg = 1

d
(
∑d

k=1 g
k)

produces a class in L0(QH), where L0(QH) is the algebraic definition of L-
groups using quadratic forms and formations with coefficients in Q. Let [qg] be
the corresponding element in L4k(QH) given by periodicity. Recall that

L4k(H)⊗ Q � L4k(QH)⊗ Q.
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For each element g in H with finite order, we use the same notation [qg] to denote
the element in L4k(H) ⊗ Q corresponding to [qg] ∈ L4k(QH) under the above
isomorphism.

We also have the following commutative diagram:

HΓ
4k(EΓ,L•) ⊗ Q

A
L4k(Γ) ⊗ Q

KΓ
0 (EΓ) ⊗ Q

μ∗
K0(C∗(Γ)) ⊗ Q,

where the left vertical map is induced by a map at the spectra level and the right
vertical map is induced by the inclusion map:

L4k(�) → L4k(C
∗(�)) ∼= K0(C

∗(�))

(see [R2] for the last identification).
Now if � is finitely embeddable into Hilbert, then the abelian subgroup of

K0(C
∗(�)) generated by {[pg1], · · · , [pgm ]} is not in the image of of the map

μ∗ : K�
0 (E�) → K0(C

∗(�)).

It follows that

1. any nonzero element in the abelian subgroup of L4k(�) ⊗ Q generated by the
elements {[qg1 ], · · · , [qgm ]} is not in the image of the rational assembly map

A : H�
4k(E�,L•)⊗ Q → L4k(�)⊗ Q;

2. the abelian subgroup of L4k(�)⊗Q generated by {[qg1 ], · · · , [qgm ]} has rankm.

By exactness of the surgery sequence, we know that the map

S : L4k(�)⊗ Q → S(M)⊗ Q, (9.1)

is injective on the abelian subgroup of L4k(�)⊗Q generated by {[qg1 ], · · · , [qgn ]}.
In order to prove the main result of this section, we need to apply the above

argument not only to�, but also to certain semi-direct products of � with free groups
of finitely many generators.

Recall that Nfin(�) is the cardinality of the following collection of positive
integers:

{d ∈ N+ | ∃γ ∈ � such that γ �= e and order(γ ) = d}.
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We have the following result [WXY]. At the moment, we are only able to prove the
theorem for S̃alg(M). We will give a brief discussion to indicate the difficulties in
proving the version S̃geom(M) after the theorem.

Theorem 9.2 LetM be a closed oriented topological manifold with dimension n =
4k−1 (k > 1) and π1M = �. If � is strongly finitely embeddable into Hilbert space
(cf. Definition 6.12), then the free rank of S̃alg(M) is ≥ Nfin(�).

Proof A key point of the argument below is to use a semi-direct product � � Fm to
turn certain outer automorphisms of � into inner automorphisms of � � Fm.

Consider the higher rho invariant homomorphism from Theorem 8.5:

ρ : S(M) → K1(C
∗
L,0(M̃)

�).

Note that every self-homotopy equivalence ψ ∈ Auth(M) induces a homomor-
phism6

ψ̃∗ : K1(C
∗
L,0(M̃)

�) → K1(C
∗
L,0(M̃)

�).

Let I1(C
∗
L,0(M̃)

�) be the subgroup of K1(C
∗
L,0(M̃)

�) generated by elements of the

form [x] − ψ̃∗[x] for all [x] ∈ K1(C
∗
L,0(M̃)

�) and all ψ ∈ Auth(M). Note that, by
the definition of the higher rho invariant, we have

ρ(αψ(θ)) = ψ̃∗(ρ(θ)) ∈ K1(C
∗
L,0(M̃)

�)

for all θ ∈ S(M) and ψ ∈ Auth(M). It follows that ρ descends to a group
homomorphism S̃alg(M) → K1(C

∗
L,0(M̃)

�)
/I1(C

∗
L,0(M̃)

�).

Now for a collection of elements {γ1, · · · , γ&} with distinct finite orders, we
consider the elements S (pγ1), · · · ,S (pγ&) ∈ S(M) as in line (9.1). To be
precise, the elements S (pγ1), · · · ,S (pγ&) actually lie in S(M)⊗Q. Consequently,
all abelian groups in the following need to be tensored by the rationals Q. For
simplicity, we shall omit ⊗Q from our notation, with the understanding that the
abelian groups below are to be viewed as tensored with Q. Also, let us write

ρ(γi) := ρ(S (pγi )) ∈ K1(C
∗
L,0(M̃)

�).

6Let us review how the homomorphism ψ∗ : K1(C
∗
L,0(M̃)

�) → K1(C
∗
L,0(M̃)

�) is defined. The

map ψ : M → M lifts to a map ψ̃ : M̃ → M̃ . However, to view ψ̃ as a �-equivariant map, we
need to use two different actions of � on M̃ . Let τ be a right action of � on M̃ through deck
transformations. Then we define a new action τ ′ of � on M̃ by τ ′

g = τψ∗(g), where ψ∗ : � → �

is the automorphism induced by ψ . It is easy to see that ψ̃ : M̃ → M̃ is �-equivariant, when �
acts on the first copy of M̃ by τ and the second copy of M̃ by τ ′. Let us denote the corresponding
C∗-algebras by C∗

L,0(M̃)
�
τ and C∗

L,0(M̃)
�
τ ′ . Observe that, despite the two different actions of � on

M̃ , the two C∗-algebras C∗
L,0(M̃)

�
τ and C∗

L,0(M̃)
�
τ ′ are canonically identical, since an operator is

invariant under the action τ if and only if it is invariant under the action τ ′.
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To prove the theorem, it suffices to show that for any collection of elements
{γ1, · · · , γ&} with distinct finite orders, the elements

ρ(γ1), · · · , ρ(γ&)
are linearly independent in K1(C

∗
L,0(M̃)

�)
/I1(C

∗
L,0(M̃)

�).

Let us assume the contrary, that is, there exist [x1], · · · , , [xm] ∈ K1(C
∗
L,0(M̃)

�)

and ψ1, · · · , ψm ∈ Auth(M) such that

&∑

i=1

ciρ(γi) =
m∑

j=1

([xj ] − (ψ̃j )∗[xj ]
)
, (9.2)

where c1, · · · , c& ∈ Z with at least one ci �= 0. In fact, we shall study Equation
(9.2) in the group K1(C

∗
L,0(E(� � Fm))

��Fm) and arrive at a contradiction, where
��Fm is a certain semi-direct product of � with the free group ofm generators Fm
and E(� � Fm) is the universal space for free and proper � � Fm-actions.

Let us fix a map σ : M → B� that induces an isomorphism of their fundamental
groups, where B� is the classifying space of �. Suppose ϕ : M → M is
an orientation preserving self-homotopy equivalence of M . Then ϕ induces an
automorphism7 of �, also denoted by ϕ ∈ Aut(�). Now consider the semi-direct
product ��ϕZ and its associated classifying space B(��ϕZ). Let ϕ̂ be the element
in � �ϕ Z that corresponds to the generator 1 ∈ Z. We write

� : B(� �ϕ Z) → B(� �ϕ Z)

for the map induced by the automorphism � �ϕ Z → � �ϕ Z defined by a →
ϕ̂aϕ̂−1. Suppose ι : B� → B(� �ϕ Z) is the map induced by the inclusion � ↪→
� �ϕ Z. Then the map

ι ◦ σ ◦ ϕ : M ϕ−→ M
σ−→ B�

ι−→ B(� �ϕ Z)

is homotopy equivalent to the map

� ◦ ι ◦ σ : M σ−→ B�
ι−→ B(� �ϕ Z)

�−→ B(� �ϕ Z),

since they induce the same map on fundamental groups. Let σ̃ : M̃ → E� be the
lift of the map σ : M → B�. Similarly, ϕ̃ : M̃ → M̃ is the lift of ϕ : M → M , and
�̃ : E(� �ϕ Z) → E(� �ϕ Z) is the lift of � : B(� �ϕ Z) → B(� �ϕ Z).

Since� : B(��ϕZ) → B(��ϕZ) is induced by an inner conjugation morphism
on ��ϕ Z, the map8 �̃∗ : K1(C

∗
L,0(E�)

�) → K1(C
∗
L,0(E�)

�) is the identity map.

7Precisely speaking, ϕ only defines an outer automorphism of �, and one needs to make a specific
choice of a representative in Aut(�). In any case, any such choice will work for the proof.
8The C∗-algebra C∗

L,0(E�)
� is the inductive limit of C∗

L,0(Y )
� , where Y ranges over all �-

cocompact subspaces of E�.
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It follows that for each [x] ∈ K1(C
∗
L,0(M̃)

�), we have

ι̃∗σ̃∗(ϕ̃∗[x]) = �̃∗̃ι∗σ̃∗([x]) = ι̃∗σ̃∗([x])

in K1(C
∗
L,0(E(� �ϕ Z))

��ϕZ), where ι̃∗σ̃∗ is the composition

K1(C
∗
L,0(M̃)

�)
σ̃∗−→ K1(C

∗
L,0(E�)

�)
ι̃∗−→ K1(C

∗
L,0(E(� �ϕ Z))

��ϕZ).

The same argument also works for an arbitrary finite number of orientation
preserving self-homotopy equivalences ψ1, · · · , ψm ∈ Auth(M) simultaneously,
in which case we have

ι̃∗σ̃∗((ψ̃i)∗[x]) = ι̃∗σ̃∗([x]) in K1(C
∗
L,0(E(� �{ψ1,··· ,ψm} Fm))��{ψ1,··· ,ψm}Fm),

for all [x] ∈ K1(C
∗
L,0(M̃)

�). In other words, (ψ̃i)∗[x] and [x] have the same image

in K1(C
∗
L,0(E(� �{ψ1,··· ,ψm} Fm))��{ψ1,··· ,ψm}Fm). For notational simplicity, let us

write � � Fm for � �{ψ1,··· ,ψm} Fm. If no confusion is likely to arise, we shall still
write [x] for its image ι̃∗σ̃∗([x]) in K1(C

∗
L,0(E(� � Fm))

��Fm).

If we pass Equation (9.2) to K1(C
∗
L,0(E(� � Fm))

��Fm) under the map

K1(C
∗
L,0(M̃)

�)
σ̃∗−→ K1(C

∗
L,0(E�)

�)
ι̃∗−→ K1(C

∗
L,0(E(� � Fm))

��Fm),

then it follows from the above discussion that

&∑

k=1

ckρ(γk) = 0 in K1(C
∗
L,0(E(� � Fm))

��Fm),

where at least one ck �= 0. We have

∂��Fm

( &∑

k=1

ck[pγk ]
)

= 2 · (
&∑

k=1

ckρ(γk)
) = 0, (9.3)

where ∂��Fm is the connecting map in the following long exact sequence:

K0(C∗
L,0(E(Γ � Fm))Γ�Fm) KΓ�Fm

0 (E(Γ � Fm))
μ

K0(C∗(Γ � Fm))

∂Γ�Fm

K1(C∗(Γ � Fm)) KΓ�Fm
1 (E(Γ � Fm)) K1(C∗

L,0(E(Γ � Fm))Γ�Fm) (9.4)

Now by assumption � is strongly finitely embeddable into Hilbert space. Hence
� � Fm is finitely embeddable into Hilbert space. By Proposition 6.10, we have the
following.
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1. {[pγ1], · · · , [pγ& ]} generates a rank n abelian subgroup of Kfin
0 (C∗(� � Fm)),

since γ1, · · · , γn have distinct finite orders. In other words,

n∑

k=1

ck[pγk ] �= 0 ∈ Kfin
0 (C∗(� � Fm))

if at least one ck �= 0.
2. Every nonzero element in Kfin

0 (C∗(��Fm)) is not in the image of the assembly
map

μ : K��Fm
0 (E(� � Fm)) → K0(C

∗(� � Fm)).

In particular, we see that ∂��Fm : Kfin
0 (C∗(� � Fm)) → K1(C

∗
L,0(X̃)

��Fm) is
injective.

It follows that ∂��Fm
(∑&

k=1 ck[pγk ]
)

�= 0, which contradicts Equation (9.3). This

finishes the proof. ��
It is tempting to use a similar argument to prove an analogue of Theorem 9.2

above for S̃geom(M). However, there are some subtleties. First, note that

αϕ(θ)+ [ϕ] = βϕ(θ)

for all θ = (f,N) ∈ S(M) and all ϕ ∈ Auth(M), where [ϕ] = (ϕ,M) is the
element given by ϕ : M → M in S(M). It follows that

ρ(βϕ(θ)) = ρ(αϕ(θ))+ ρ([ϕ]) = ϕ∗(ρ(θ))+ ρ([ϕ]).

In other words, in general, ρ(βϕ(θ)) �= ϕ∗(ρ(θ)), and consequently the homomor-
phism

ρ : S(M) → K1(C
∗
L,0(M̃)

�)

does not descend to a homomorphism from S̃geom(M) to K1(C
∗
L,0(M̃)

�)
/

I1(C
∗
L,0(M̃)

�). New ideas are needed to take care of this issue. On the other
hand, there is strong evidence which suggests an analogue of Theorem 9.2 for
S̃geom(M). For example, this has been verified by Weinberger and Yu for residually
finite groups [WY, Theorem 3.9]. Also, Chang and Weinberger showed that the free
rank of S̃geom(M) is at least 1 when π1X = � is not torsion free [ChW, Theorem
1].

The above discussion motivates the following conjecture.

Conjecture 9.3 Let M be a closed oriented topological manifold with dimension
n = 4k − 1 (k > 1) and π1M = �. Then the free ranks of S̃alg(M) and S̃geom(M)
are ≥ Nfin(�).
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We conclude this section by proving the following theorem, which is an analogue
of the theorem of Chang and Weinberger cited above [ChW, Theorem 1].

Theorem 9.4 Let X be a closed oriented topological manifold with dimension n =
4k − 1 (k > 1) and π1X = �. If � is not torsion free, then the free rank of S̃alg(X)
is ≥ 1.

Proof Recall that for any non-torsion-free countable discrete group G, if γ �= e

is a finite order element of G, then [pγ ] generates a subgroup of rank one in
K0(C

∗(G)) and any nonzero multiple of [pγ ] is not in the image of the assembly
map μ : K�

0 (EG) → K0(C
∗(G)) [WY]. Using this fact, the statement follows from

the same proof as in Theorem 9.2. ��

10 Cyclic cohomology and higher rho invariants

Connes’ cyclic cohomology theory provides a powerful method to compute higher
rho invariants. In this section, we give a survey of recent work on the pairing
between Connes’ cyclic cohomology and C∗-algebraic secondary invariants. In
the case of higher rho invariants given by invertible9 operators on manifolds, this
pairing can be computed in terms of Lott’s higher eta invariants. We apply these
results to the higher Atiyah-Patodi-Singer index theory and discuss a potential way
to construct counter examples to the Baum–Connes conjecture.

We shall first discuss the zero dimensional cyclic cocycle case. Let M be a spin
Riemannian manifold with positive scalar curvature and let D be the Dirac operator
on M . Let M̃ be the universal cover of M and D̃ the lifting of D. Lott introduced
the following delocalized eta invariant η〈h〉(D̃) [Lo1]:

η〈h〉(D̃) := 2√
π

∫ ∞

0
tr〈h〉(D̃e−t

2D̃2
)dt, (10.1)

under the condition that the conjugacy class 〈h〉 of h ∈ � = π1M has polynomial
growth. Here � = π1M is the fundamental group of M , and the trace map tr〈h〉 is
defined as follows:

tr〈h〉(A) =
∑

g∈〈h〉

∫

F
A(x, gx)dx

on �-equivariant Schwartz kernels A ∈ C∞(M̃ × M̃), where F is a fundamental
domain of M̃ under the action of �.

We have the following theorem [XY3].

9Here “invertible” means being invertible on the universal cover of the manifold.
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Theorem 10.1 Let M be a closed odd-dimensional spin manifold equipped with a
positive scalar curvature metric g. Suppose M̃ is the universal cover of M , g̃ is the
Riemannnian metric on M̃ lifted from g, and D̃ is the associated Dirac operator
on M̃ . Suppose the conjugacy class 〈h〉 of a non-identity element h ∈ π1M has
polynomial growth, then we have

τh(ρ(D̃, g̃)) = −1

2
η〈h〉(D̃),

where ρ(D̃, g̃) is the K-theoretic higher rho invariant of D̃ with respect to the
metric g̃, and τh is a canonical determinant map associated to 〈h〉.

As an application of Theorem 10.1 above, we have the following algebraicity
result concerning the values of delocalized eta invariants [XY3].

Theorem 10.2 With the same notation as above, if the rational Baum–Connes
conjecture holds for �, and the conjugacy class 〈h〉 of a non-identity element h ∈ �
has polynomial growth, then the delocalized eta invariant η〈h〉(D̃) is an algebraic
number. Moreover, if in addition h has infinite order, then η〈h〉(D̃) vanishes.

This theorem follows from the construction of the determinant map τh and a
L2-Lefschetz fixed-point theorem of B.-L. Wang and H. Wang [WW, Theorem
5.10]. When � is torsion-free and satisfies the Baum–Connes conjecture, and the
conjugacy class 〈h〉 of a non-identity element h ∈ � has polynomial growth,
Piazza and Schick have proved the vanishing of η〈h〉(D̃) by a different method [PS,
Theorem 13.7].

In light of this algebraicity result, we propose the following open question.

Open Question 10.3 If the conjugacy class 〈h〉 of a non-identity element h ∈ � has
polynomial growth, what values can the delocalized eta invariant η〈h〉(D̃) take in
general? Are they always algebraic numbers?

In particular, if a delocalized eta invariant is transcendental, then it will lead
to a counterexample to the Baum–Connes conjecture [BC, BCH, C]. Note that the
above question is a reminiscent of Atiyah’s question concerning rationality of &2-
Betti numbers [A1]. Atiyah’s question was answered in negative by Austin, who
showed that &2-Betti numbers can be transcendental [Au].

So far, we have been assuming the conjugacy class 〈h〉 has polynomial growth,
which guarantees the convergence of the integral in (10.1). In general, the integral in
(10.1) fails to converge. The following theorem of Chen–Wang–Xie–Yu [CWXY]
gives a sufficient condition for when the integral in (10.1) converges.

Theorem 10.4 Let M be a closed manifold and M̃ the universal covering over M .
Suppose D is a self-adjoint first-order elliptic differential operator over M and D̃
the lift of D to M̃ . If 〈h〉 is a nontrivial conjugacy class of π1(M) and D̃ has a
sufficiently large spectral gap at zero, then the delocalized eta invariant η〈h〉(D̃)
defined in line (10.1) converges absolutely.
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We would like to emphasis that the theorem above works for all fundamental
groups. In the special case where the conjugacy class 〈h〉 has sub-exponential
growth, then any nonzero spectral gap is in fact sufficiently large, hence in this
case η〈h〉(D̃) is well-defined as long as D̃ is invertible.

Let us make precise of what “sufficiently large spectral gap at zero” means. Fix
a finite generating set S of �. Let & be the corresponding word length function on �
determined by S. Since S is finite, there exist C and K〈h〉 > 0 such that

#{g ∈ 〈h〉 : &(g) = n} � CeK〈h〉·n. (10.2)

We define τ〈h〉 to be

τ〈h〉 = lim inf
g∈〈h〉

&(g)→∞

(
inf
x∈M̃

dist(x, gx)

&(g)

)
. (10.3)

Since the action of � on M̃ is free and cocompact, we have τ〈h〉 > 0.
We denote the principal symbol of D by σD(x, v), for x ∈ M and cotangent

vector v ∈ T ∗
x M . We define the propagation speed of D to be the positive number

cD = sup{‖σD(x, v)‖: x ∈ M, v ∈ T ∗
x M, ‖v‖ = 1}.

Definition 10.5 With the above notation, let us define

σ〈h〉 := 2K〈h〉 · cD
τ〈h〉

. (10.4)

Recall that D̃ is said to have a spectral gap at zero if there exists an open interval
(−ε, ε) ⊂ R such that spectrum(D̃)∩ (−ε, ε) is either {0} or empty. Moreover, D̃ is
said to have a sufficiently large spectral gap at zero if its spectral gap is larger than
σ〈h〉.

Again it is natural to ask the following question.

Open Question 10.6 With D̃ as in the above theorem, what values can the delocal-
ized eta invariant η〈h〉(D̃) take in general? Are they always algebraic numbers?

A special feature of traces is that they always have uniformly bounded rep-
resentatives, when viewed as degree zero cyclic cocycles. In fact, our proof of
Theorem 10.4 allows us to generalize Theorem 10.4 to cyclic cocycles of higher
degrees, as long as they have at most exponential growth. Recall that the cyclic
cohomology of a group algebra C� has a decomposition respect to the conjugacy
classes of � ([Nis]):

HC∗(C�) ∼=
∏

〈h〉
HC∗(C�, 〈h〉),
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where HC∗(C�, 〈h〉) denotes the component that corresponds to the conjugacy
class 〈h〉. If 〈h〉 is a nontrivial conjugacy class, then a cyclic cocycle in
HC∗(C�, 〈h〉) will be called a delocalized cyclic cocycle at 〈h〉.
Theorem 10.7 Assume the same notation as in Theorem 10.4. Let ϕ be a delocal-
ized cyclic cocycle at a nontrivial conjugacy class 〈h〉. If ϕ has exponential growth
and D̃ has a sufficiently large spectral gap at zero, then a higher analogue ηϕ(D̃)
(cf. [CWXY, Definition 3.17]) of the formula (10.1) converges absolutely.

For higher degree cyclic cocycles, the precise meaning of “sufficiently large
spectral gap at zero” is similar to but slightly different from that of the case of
traces. We refer the reader to [CWXY, Section 3.2] for more details. For now, we
simply point out that if both � and ϕ have sub-exponential growth, then any nonzero
spectral gap is in fact sufficiently large, hence in this case ηϕ(D̃) is well-defined as
long as D̃ is invertible. The explicit formula for ηϕ(D̃) is described in terms of the
transgression formula for the Connes–Chern character [C, C2]. It is essentially10

a periodic version of the delocalized part of Lott’s noncommutative-differential
higher eta invariant. We shall call ηϕ(D̃) a delocalized higher eta invariant from
now on.

Formally speaking, just as Lott’s delocalized eta invariant η〈h〉(D̃) can be
interpreted as the pairing between the degree zero cyclic cocycle tr〈h〉 and the
higher rho invariant ρ(D̃), so can the delocalized higher eta invariant ηϕ(D̃) be
interpreted as the pairing between the cyclic cocycle ϕ and the higher rho invariant
ρ(D̃). A key analytic difficulty here is to verify when such a pairing is well-
defined, or more ambitiously, to verify when one can extend this pairing to a pairing
between the cyclic cohomology of C� and theK-theory groupK∗(C∗

L,0(M̃)
�). The

group K∗(C∗
L,0(M̃)

�) consists of C∗-algebraic secondary invariants; in particular,
it contains all higher rho invariants from the discussion above. Such an extension
of the pairing is important, often necessary, for many interesting applications to
geometry and topology (cf. [PS1, XY1, WXY]).

In [CWXY], such an extension of the pairing, that is, a pairing between
delocalized cyclic cocycles of all degrees and the K-theory group K∗(C∗

L,0(M̃)
�)

was established, in the case of Gromov’s hyperbolic groups. More precisely, we
have the following theorem [CWXY].

Theorem 10.8 Let M be a closed manifold whose fundamental group � is hyper-
bolic. Suppose 〈h〉 is nontrivial conjugacy class of �. Then every element [α] ∈
HC2k+1−i (C�, 〈h〉) induces a natural map

τ[α] : Ki(C∗
L,0(M̃)

�) → C

10We refer the reader to [CWXY] for details on how to identify the formula for ηϕ(D̃) in
Theorem 10.7 with the periodic version of Lott’s noncommutative-differential higher eta invariant.
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such that the following are satisfied:

(i) τ[Sα] = τ[α], where S is Connes’ periodicity map

S : HC∗(C�, 〈h〉) → HC∗+2(C�, 〈h〉);

(ii) ifD is an elliptic operator onM such that the lift D̃ ofD to the universal cover
M̃ of M is invertible, then we have

τ[α](ρ(D̃)) = η[α](D̃),

where ρ(D̃) is the higher rho invariant of D̃ and η[α](D̃) is the delocalized
higher eta invariant from Theorem 10.7. In particular, in the case of hyperbolic
groups, the delocalized higher eta invariant η[α](D̃) converges absolutely, as
long as D̃ is invertible.

The construction of the map τ[α] in the above theorem uses Puschnigg’s smooth
dense subalgebra for hyperbolic groups [P1] in an essential way. In more conceptual
terms, the above theorem provides an explicit formula to compute the delocalized
Connes–Chern character of C∗-algebraic secondary invariants. More precisely, the
same techniques developed in [CWXY] actually imply11 that there is a well-defined

delocalized Connes–Chern character Chdeloc : Ki(C∗
L,0(M̃)

�) → HC
deloc

∗ (B),
where B is Puschnigg’s smooth dense subalgebra of C∗

r (�) and HC
deloc

∗ (B) is
the delocalized part of the cyclic homology12 of B. Now for Gromov’s hyperbolic
groups, every cyclic cohomology class of C� continuously extends to cyclic
cohomology class of B (cf. [P1] for the case of degree zero cyclic cocycles and
[CWXY] for the case of higher degree cyclic cocycles). Thus the map τ[α] can be
viewed as a pairing between cyclic cohomology and delocalized Connes–Chern
characters of C∗-algebraic secondary invariants. As a consequence, this unifies
Higson–Roe’s higher rho invariant and Lott’s higher eta invariant for invertible
operators.

We point out that the proof of Theorem 10.8 does not rely on the Baum–Connes
isomorphism for hyperbolic groups [L, MY], although the theorem is closely
connected to the Baum–Connes conjecture and the Novikov conjecture. On the other
hand, if one is willing to use the full power of the Baum–Connes isomorphism for
hyperbolic groups, there is in fact a different, but more indirect, approach to the

11In fact, even more is true. One can use the same techniques developed in [CWXY] to show that
if A is smooth dense subalgebra of C∗

r (�) for any group � (not necessarily hyperbolic) and in
addition A is a Fréchet locallym-convex algebra, then there is a well-defined delocalized Connes–

Chern character Chdeloc : Ki(C∗
L,0(M̃)

�) → HC
deloc

∗ (A). Of course, in order to pair such a
delocalized Connes–Chern character with a cyclic cocycle of C�, the key remaining challenge
is to continuously extend this cyclic cocycle of C� to a cyclic cocycle of A.
12Here the definition of cyclic homology of B takes the topology of B into account, cf. [C2, Section
II.5].
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delocalized Connes–Chern character map. First, observe that the map τ[α] factors
through a map

τ[α] : Ki(C∗
L,0(E�)

�)⊗ C → C

where E� is the universal space for proper �-actions. Now the Baum–Connes iso-

morphism μ : KG∗ (E�)
∼=−−→ K∗(C∗

r (�)) for hyperbolic groups implies that one can
identify Ki(C∗

L,0(E�)
�) ⊗ C with

⊕
〈h〉�=1HC∗(C�, 〈h〉), where HC∗(C�, 〈h〉)

is the delocalized cyclic homology at 〈h〉 and the direct sum is taken over all
nontrivial conjugacy classes. In particular, after this identification, it follows that
the map τ[α] becomes the usual pairing between cyclic cohomology and cyclic
homology. However, for a specific element, e.g., the higher rho invariant ρ(D̃),
in Ki(C

∗
L,0(E�)

�), its identification with an element in
⊕

〈h〉�=1HC∗(C�, 〈h〉)
is rather abstract and implicit. More precisely, the computation of the number
τ[α](ρ(D̃)) essentially amounts to the following process. Observe that if a closed
spin manifold M is equipped with a positive scalar curvature metric, then stably
it bounds (more precisely, the universal cover M̃ of M becomes the boundary
of another �-manifold, after finitely many steps of cobordisms and vector bundle
modifications). In principle, the number τ[α](ρ(D̃)) can be derived from a higher
Atiyah-Patodi-Singer index theorem for this bounding manifold. Again, there is a
serious drawback of such an indirect approach—the explicit formula for τ[α](ρ(D̃))
is completely lost. In contrast, a key feature of the construction of the delocalized
Connes–Chern character map in Theorem 10.8 is that the formula is explicit and
intrinsic.

In [DG], Deeley and Goffeng also constructed an implicit delocalized Chern
character map forC∗-algebraic secondary invariants. Their approach is in spirit sim-
ilar to the indirect method just described above (making use of the Baum–Connes
isomorphism for hyperbolic groups), although their actual technical implementation
is different.

As an application, we use this delocalized Connes–Chern character map from
Theorem 10.8 to derive a delocalized higher Atiyah-Patodi-Singer index theorem for
manifolds with boundary. More precisely, let W be a compact n-dimensional spin
manifold with boundary ∂W . SupposeW is equipped with a Riemannian metric gW
which has product structure near ∂W and in addition has positive scalar curvature
on ∂W . Let W̃ be the universal covering of W and gW̃ the Riemannian metric on W̃
lifted from gW . With respect to the metric gW̃ , the associated Dirac operator D̃W on
W̃ naturally defines a higher index Ind�(D̃W ) (as in Section 7) in Kn(C∗(W̃ )�) =
Kn(C

∗
r (�)), where � = π1(W). Since the metric gW̃ has positive scalar curvature

on ∂W̃ , it follows from the Lichnerowicz formula that the associated Dirac operator
D̃∂ on ∂W̃ is invertible, hence naturally defines a higher rho invariant ρ(D̃∂) in
Kn−1(C

∗
L,0(W̃ )

�). We have the following delocalized higher Atiyah-Patodi-Singer
index theorem.
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Theorem 10.9 With the notation as above, if � = π1(W) is hyperbolic and 〈h〉 is
a nontrivial conjugacy class of �, then for any [ϕ] ∈ HC∗(C�, 〈h〉), we have

Ch[ϕ](Ind�(D̃W )) = −1

2
η[ϕ](D̃∂), (10.5)

where Ch[ϕ](Ind�(D̃W )) is the Connes–Chern pairing between the cyclic cohomol-
ogy class [ϕ] and the higher index class Ind�(D̃W ).

Proof This follows from Theorems 10.8 and 7.4. ��
By using Theorem 10.8, we have derived Theorem 10.9 as a consequence of a

K-theoretic counterpart. This is possible only because we have realized η[ϕ](D̃∂) as
the pairing between the cyclic cocycle ϕ and the C∗-algebraic secondary invariant
ρ(D̃∂) in K1(C

∗
L,0(W̃ )

�).
Alternatively, one can also derive Theorem 10.9 from a version of higher Atiyah-

Patodi-Singer index theorem due to Leichtnam and Piazza [LP3, Theorem 4.1] and
Wahl [Wa, Theorem 9.4 & 11.1]. This version of higher Atiyah-Patodi-Singer index
theorem is stated in terms of noncommutative differential forms on a smooth dense
subalgebra of C∗

r (�); or noncommutative differential forms on a certain class of
smooth dense subalgebras (if exist) of general C∗-algebras (not just group C∗-
algebras) in Wahl’s version. In the case of Gromov’s hyperbolic groups, one can
choose such a smooth dense subalgebra to be Puschnigg’s smooth dense subalgebra
B. As mentioned before, for Gromov’s hyperbolic groups, every cyclic cohomology
class of C� continuously extends to a cyclic cohomology class of B (cf. [P1] for the
case of degree zero cyclic cocycles and [CWXY] for the case of higher degree cyclic
cocycles). Now Theorem 10.9 follows by pairing the higher Atiyah-Patodi-Singer
index formula of Leichtnam-Piazza and Wahl with the delocalized cyclic cocycles
of C�.

One can also try to pair the higher Atiyah-Patodi-Singer index formula of
Leichtnam-Piazza and Wahl with group cocycles of �, or equivalently cyclic
cocycles in HC∗(C�, 〈1〉), where 〈1〉 stands for the conjugacy class of the identity
element of �. In this case, for fundamental groups with property RD, Gorokhovsky,
Moriyoshi, and Piazza proved a higher Atiyah-Patodi-Singer index theorem for
group cocycles with polynomial growth [Gr].

For other related interesting development, we refer the reader to the following
papers [BL, BLH, BR, BD2, BW1, CG, CP, CFY, C3, CH, D, DFW, FH, FJ1, FJ2,
FJ3, FJ4, FP, FW1, FW2, GMP, GWY, HR1, J, LP1, LP2, Lo, OY, Pi, P, W, W1,
WiY1, WiY2, RTY].
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