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Abstract. Feature modeling of different modalities is a basic problem
in current research of cross-modal information retrieval. Existing models
typically project texts and images into one embedding space, in which
semantically similar information will have a shorter distance. Semantic
modeling of textural relationships is notoriously difficult. In this paper,
we propose an approach to model texts using a featured graph by inte-
grating multi-view textual relationships including semantic relationships,
statistical co-occurrence, and prior relationships in knowledge base. A
dual-path neural network is adopted to learn multi-modal representa-
tions of information and cross-modal similarity measure jointly. We use
a Graph Convolutional Network (GCN) for generating relation-aware
text representations, and use a Convolutional Neural Network (CNN)
with non-linearities for image representations. The cross-modal similar-
ity measure is learned by distance metric learning. Experimental results
show that, by leveraging the rich relational semantics in texts, our model
can outperform the state-of-the-art models by 3.4% on 6.3% in accuracy
on two benchmark datasets.
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1 Introduction

Cross-modal information retrieval (CMIR), which enables queries from one
modality to retrieve information in another, plays an increasingly important
role in intelligent searching and recommendation systems. A typical solution of
CMIR is to project features from different modalities into one common seman-
tic space in order to measure cross-modal similarity directly. Therefore, feature
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Fig. 1. (a) The original text; (b) distributed semantic relationship; (c) word co-
occurrence relationship; and (d) general knowledge relationship.

representation is fundamental for CMIR research and has great influence on the
retrieval performance. Recently, Deep Neural Networks (DNN) achieve superior
advances in cross-modal retrieval [7,17]. For text-image retrieval, much effort
has been devoted to vector-space models, such as the CNN-LSTM network [7],
to represent multimodal data as “flat” features for both irregular-structured
text data and grid-structured image data. For image data, CNN can effectively
extract hierarchies of visual feature vectors. However, for text data, the “flat”
features are seriously limited by their inability to capture complex structures
hidden in texts [9] – there are many implicit and explicit textual relationships
that characterize syntactic rules in text modeling. Nevertheless, the possibility
of infusing prior facts or relationships (e.g., from a knowledge graph) into deep
textual models is excluded by the great difficulty it imposes.

Early works attempt to learn shallow statistical relationships, such as co-
occurrence [11] or location [8]. Later on, semantic relationship based on syntac-
tic analysis [4] or semantic rules between conceptual terms are explored. Besides,
semantic relationship derived from knowledge graphs (e.g., Wikidata [14]) has
attracted increasing attention. A most recent work [17] models text as featured
graphs with semantic relationships. However, the performance of this practice
heavily relies on the generalization ability of the word embeddings. It also fails
to incorporate general human knowledge and other textual relationships. To illus-
trate the above point, a text modeled by different types of relationships is shown in
Fig. 1. It can be observed in the KNN graph (Fig. 1-b) that Spielberg is located rela-
tively far away from Hollywood as compared to the way director is to film, whereas
in the common sense knowledge graph given in (Fig. 1-d), these two words are
closely related to each other as they should be. Figure 1-c shows the less-frequent
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subject-predicate relation pattern (e.g. Spielberg and E.T.) which is absent in the
KNN-based graph. The above analysis indicates that graph construction can be
improved by fusing different types of textual relationships, which is the underly-
ing motivation of this work.

In this paper, we propose a GCN-CNN model to learn textual and visual
features for similarity matching. The novelty is on the in-depth study of textual
relationship modeling for enhancing the successive correlation learning. The key
idea is to explore the effects of multi-view relationships and propose a graph-
based integration model to combine complementary information from different
relationships. Specifically, besides semantic and statistic relationships, we also
exploit fusion with the relational knowledge bases for acquiring common sense
about entities and their semantic relationships, thus resulting in a knowledge-
driven model. TensorFlow implementation of the model is available at https://
github.com/yzhq97/SCKR.

2 Methodology

Fig. 2. The schematic illustration of our proposed framework for cross-modal retrieval.

In this paper, a dual-path neural network (as shown Fig. 2) is proposed to
learn multimodal features and cross-modal similarity in an end-to-end mode. It
mainly consists of three parts: (1) Text Modeling (top in Fig. 2): each text is
represented by a featured graph by combining multi-view relationships, that is
also the key idea and will be elaborated later. Graph construction is performed
off-line and the graph structure is identical for all the texts in the dataset. Then
we adopt Graph Convolutional Network (GCN) [2], containing two layers of con-
volution modules, to progressively enhance the textual representations over the

https://github.com/yzhq97/SCKR
https://github.com/yzhq97/SCKR
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constructed graph. The last FC layer projects the text features to the common
semantic space; (2) Image Modeling (bottom in Fig. 2): we use pre-trained Con-
volutional Neural Network (CNN), i.e., VGGNet [13], for visual feature learning.
Similar to text modeling, the last FC layer is fine-tuned to project visual fea-
tures to the same semantic space as the text; (3) Distance Metric Learning (right
in Fig. 2): the similarity between textual and visual features are measured via
distance metric learning. An inner product layer is used to combine these two
kinds of features, followed by a FC layer with a sigmoid activation to output the
similarity scores. We use ranking-based pairwise loss function formalized in [6]
for training, which can maximize the similarity of positive text-image pairs and
minimizes the similarity of negative ones.

2.1 Fine-Grained Textual Relationship

In this section, we introduce the construction of graph structure to represent
each text. As is mentioned above, all the texts share the same graph. Given
the training texts, we extract all the nouns to form a dictionary and each noun
corresponds to a vertex in the graph. The vertex set is denoted as V . Edges are
the integration of the following relationships from different views.

Distributed Semantic Relationship (SR). Following the distributional
hypothesis [3], words appear in similar context may share semantic relationship,
which is critical for relation modeling. To model such semantic relationship, we
build a semantic graph denoted as GSR = (V,ESR). Each edge eij(SR) ∈ ESR is
defined as follows:

eij(SR) =

{
1 if wi ∈ Nk(wj) or wj ∈ Nk(wi)

0 otherwise
(1)

where Nk(·) is the set of k-nearest neighbors computed by the cosine similarity
between words using word2vec embedding and k is the neighbor numbers, which
is set to 8 in our experimental studies.

Word Co-occurrence Relationship (CR). Co-occurrence statistics have
been widely used in many tasks such as keyword extraction and web search.
Although the appearance of word embeddings seems to eclipse this method,
we argue that it can serve as effective backup information to capture infre-
quent but syntax-relevant relationships. Each edge eij(CR) ∈ ECR in the graph
GCR = (V,ECR) indicates that the words wi and wj co-occur at least ε times.
The CR model can be formulated as below:

eij(CR) =

{
1 if Freq(wi, wj) ≥ ε

0 otherwise
(2)

where Freq(wi, wj) denotes the frequency that wi and wj appear in the same
sentence in the dataset, we define ε as the threshold to rule out noise, which aims
to achieve better generalization ability and improve computation efficiency. We
empirically set ε to be 5.
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General Knowledge Relationship (KR). General knowledge can effectively
support decision-making and inference by providing high-level expert knowledge
as complementary information to training corpus. However, it is not fully covered
by task-specific text. In this paper, we utilize the triples in Knowledge Graphs
(KG), i.e. (Subject, Relation, Predicate), which well represent various relation-
ships in human commonsense knowledge. To incorporate such real-world rela-
tionships, we construct the graph GKR = (V,EKR) and each edge eij(KR) ∈ EKR

is defined as below:

eij(KR) =

{
1 if (wi, relation(wi, wj), wj) ∈ D

0 otherwise
(3)

where D refers to a given knowledge graph. In this paper, we adopt wikidata
[14] in our experiments. For simplification, we ignore the types of relationships
in KG and leave it for the future work.

Graph Integration. Different textual relationships capture information from
different perspectives. It is conceivable that the relationship integration will fuse
semantic information. We simply utilize the union operation to obtain multi-view
relationships. G = (V,E), where the edge set E satisfying:

E = ESR ∪ ECR ∪ EKR (4)

2.2 Graph Feature Extraction

Previous work [17] adopts Bag-of-Words (BoW), i.e., the word frequency, as the
feature of each word in the text. However, this kind of feature is not informative
enough to capture the rich semantic information. In this paper, we propose a
kind of context-aware features for word-level representations. We first pretrain a
Bi-LSTM in the text parts of the training set to predict the corresponding cate-
gory labels, then sum up the concatenated outputs of Bi-LSTM of each word over
every mention in the text to obtain the word representation. Such representation
is context-relevant and can better incorporate the content-specific semantics in
the text. From our experiment observation, our proposed context-aware graph
features can achieve +2% overall retrieval performance lift compared with tradi-
tional BoW features. Due to the space limitation, we omit the BoW experimental
results and focus on our proposed Bi-LSTM features.

3 Experimental Studies

Datasets. In this section, we test our models on two benchmark datasets: Cross-
Modal Places [1] (CMPlaces) and English Wikipedia [10] (Eng-Wiki). CMPlaces
is one of the largest cross-modal datasets providing weakly aligned data in five
modalities divided into 205 categories. We follow the way in [17] for sample
generation, resulting in 204,800 positive pairs and 204,800 negative pairs for
training, 1,435 pairs for validation and 1,435 pairs for test. Eng-Wiki is the most
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widely used dataset in literature. There are 2,866 image-text pairs divided into
10 categories. We generate 40,000 positive samples and 40,000 negative samples
respectively from the given 2,173 pairs for training. The remaining 693 pairs
are for test. We use MAP@100 to evaluate the performance. The density for all
models over two datasets is much less than 1%, indicating that our models are
not trivial dense matrix.

Implementation Details. We set the dropout ratio 0.2 at the input of the
last fully connected layer, learning rate 0.001 with an Adam optimization, and
regularization weight 0.005. The parameters setting for loss function follows [17].
In the final semantic mapping layers of both text path and image path, the
reduced dimensions are set to 1,024 for both datasets. The Bi-LSTM model is
pretrained on classification task on Eng-wiki and CMPlaces, respectively.

Table 1. MAP score comparison on two benchmark datasets.

Method QT QI Avg. Dataset

CCA [10] 18.7 21.6 20.2 Eng-Wiki

SCM [10] 23.4 27.6 25.5

LCFS [16] 20.4 27.1 23.8

LGCFL [5] 31.6 37.8 34.7

GMLDA [12] 28.9 31.6 30.2

GMMFA [12] 29.6 31.6 30.6

AUSL [18] 33.2 39.7 36.4

JFSSL [15] 41.0 46.7 43.9

GIN [17] 76.7 45.3 61.0

SR [ours] 83.5 41.4 62.4

SCR [ours] 84.3 42.6 63.4

SKR [ours] 83.9 42.0 62.9

SCKR [ours] 84.9 44.0 64.4

BL-ShFinal [1] 3.3 12.7 8.0 CMPlaces

Tune(Free) [1] 5.2 18.1 11.7

TuneStatReg [1] 15.1 22.1 18.6

GIN [17] 19.3 16.1 17.7

SR [ours] 18.6 15.8 17.2

SCR [ours] 25.4 20.3 22.8

SKR [ours] 24.8 20.5 22.6

SCKR [ours] 28.5 21.3 24.9

Comparison with State-of-the-Art Methods. In the Eng-Wiki dataset, we
compare our model to some state-of-the-art (SOTA) retrieval models, which are
listed in Table 1. We observe that SCKR achieves the best performance on the
average MAP scores and slightly inferior to JFSSL on the image query (QI),
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which confirms that our relation-aware model can bring an overall improve-
ment over existing CMIR models. Especially, text query (QT ) gains remarkable
8.2% increase over the SOTA model GIN, which proves that our model leads
to better representation and generalization ability for the text query. In the
large CMPlaces dataset, compared with the previous SOTA models, SCKR also
achieves 6.3% improvement compared to TuneStatReg [1].

Ablation Study. In this section, we conduct ablation experiments to evalu-
ate the influence of the components in our proposed SCKR model. We compare
SCKR model to three ablated versions, i.e., SR, SCR and SKR. The retrieval
performance is also listed in Table 1. Compared to SR, both SCR and SKR
achieve a significant improvement on both datasets (i.e., +5% on CMPlaces
and +2% on Eng-Wiki). It indicates that either co-occurrence or the common-
sense knowledge could provide complementary information to the distributed
semantic relationship modeling. By integrating all kinds of textual relationships
(SCKR), we obtain further promotion on MAP scores, especially on the relation-
rich CMPlaces dataset. It is because that SR, CR or KR alone focuses on dif-
ferent views of relationships and their integration could bring more informative
connections to the relational graph, thus facilitating information reasoning.

Fig. 3. Some samples of text query results using four of our models on the CMPlaces
dataset. The corresponding relation graphs are shown in the second column. The
retrieval results are given in the third column.

Qualitative Analysis. Fig. 3 gives an example for the text-query task on SCKR
and three baseline models. We show the corresponding relation graphs and the
retrieved results. We observe that SR captures the least relationships and the
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results are far from satisfaction, which necessitates the exploration of the richer
textual relationship. SCR can effectively emphasize the descriptive textual rela-
tionship (e.g. “sun-ball” and “sun-bright”), which is infrequent but informa-
tive for better understanding the content. Notice that, only SKR incorporates
the relationship between “overhead” and “airplane” through “sky-overhead -
airplane” inference path, which indicates that general knowledge is beneficial
in relation inference and information propagation. The SCKR model leverages
the advantages of different models and achieves the best performance.

4 Conclusions

In this paper, we proposed a graph-based approach to integrate multi-view tex-
tual relationships, including the semantic relationship, statistical co-occurrence,
and pre-defined knowledge graph, for text modeling in the CMIR tasks. A GCN-
CNN framework is proposed for feature learning and cross-modal correlation
modeling. Experimental results on both two benchmark datasets show that our
model can significantly outperforms the state-of-the-art models, especially for
text queries. In the future work, we can extend this model to other cross-modal
areas such as automatic image captioning and video captioning.
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