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Abstract. In this paper, we propose a subclass of single-occurrence reg-
ular expressions with counting (cSOREs) and give a learning algorithm
of cSOREs. First, we learn a SORE. Then, we construct a countable finite
automaton (CFA) by traversing the syntax tree of the obtained SORE.
Next, the CFA runs on the given finite sample to obtain the minimum
and maximum number of repetitions of the subexpressions under the
iteration operators. Finally we obtain a cSORE by traversing the syntax
tree and introducing the counting operators. Our algorithm not only can
learn a cSORE, which is expressive enough to cover more XML data,
but also has better generalization ability for smaller sample.
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1 Introduction

The eXtensible Markup Language (XML), which has been widely used on the
Web, is the lingua franca for data exchange [1]. The schema languages (such as
DTD (Document Type Definitions) and XSD (XML Schema Definitions) rec-
ommended by W3C (World Wide Web Consortium) [24]) have advantages for
diverse applications such as data processing, automatic data integration, and
static analysis of transformations [12,21,22]. However, many XML documents
on the Web are not accompanied by a schema [3,23], or valid schema [6,7],
therefore, schema inference becomes an essential work.

Schema inference can be reduced to learning regular expressions from sets of
positive samples. Using techniques from Gold [16], the class of regular expressions
cannot be learned only from positive data. Even Bex et al. proved in [5] that the
class of deterministic regular expressions cannot be learned from positive data.
Therefore for practical purposes many researchers turned to focus on learning
subclasses of deterministic regular expressions [4,5,8,9,13,14,25].
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Deterministic regular expressions [11] require that each symbol in the input
word can unambiguously be matched to a position in the regular expression with-
out looking ahead in the word. In practice, there are many applications of the
subclass of deterministic regular expressions on the Web, including that of single-
occurrence regular expressions (SOREs) [8,9]. However, SOREs, which do not sup-
port counting, are defined on standard regular expressions. Regular expressions
with counting, which are used in XML Schema [10,15,17–20,25], are extended
from standard regular expressions by adding counting [15]. In this paper, we pro-
pose a subclass of single-occurrence regular expressions with counting (cSOREs).
Our experiments (see Table 1) showed that the proportion of cSOREs is 94.16%
for 32,750 real-world XSD files grabbed from Google, Maven, and GitHub, where
378,558 regular expressions were extracted. This indicates the practicability of
cSORE. Therefore, it is necessary to study a learning algorithm for cSORE.

For learning regular expressions with counting, we have proposed the class
ECsores [25], and the corresponding learning algorithm InfECsore [25]. However,
although the ECsore learnt by InfECsore is a precise representation of any given
finite sample, the algorithm InfECsore has less generalization ability such that,
in some cases, the learnt ECsore covers relatively less XML data1. Therefore,
a new subclass cSORE and a new method for learning cSORE are proposed.
Although the defined cSOREs have more constrains than ECsores, compared
with the algorithm InfECsore, our algorithm not only can learn a cSORE, which
is expressive enough to cover more XML data, but also has better generalization
ability (higher precision and recall) for smaller sample.

The main contributions of this paper are as follows. First, we infer a SORE.
Then, we present a learning algorithm for cSOREs, where the main steps are as
follows: (1) Construct a countable finite automaton (CFA) [25] from the syntax
tree of the learnt SORE; (2) The CFA runs on the given finite sample to obtain
the minimum and maximum number of repetitions of the subexpressions under
the iteration operators; and (3) Generate the cSORE by traversing the syntax
tree and introducing the counting operators. Finally, we provide the evaluations
in generalization ability about our algorithm.

The paper is structured as follows. Section 2 gives the basic definitions.
Section 3 presents the learning algorithm of the cSORE, Sect. 4 presents experi-
ments. Section 5 concludes the paper.

2 Preliminaries

2.1 Regular Expression with Counting

Let Σ be a finite alphabet of symbols. The class of standard regular expressions
over Σ is defined in the standard way: ε, a ∈ Σ are regular expressions. For any

1 For instance, the original schema in XSD can be denoted by r0 = (a|b)+, given
sample S = {ba, aa, baabaa}, the ECsore learnt by InfECsore is r1 = (b?a[1,2])[1,2].
However, an learnt cSORE can be r2 = (b?a)[1,4], |L(r1)| = 16 < |L(r2)| = 30. Note
that L(r0) ⊇ L(r2) ⊇ S and L(r0) ⊇ L(r1) ⊇ S.
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regular expressions r1 and r2, the disjunction (r1|r2), the concatenate (r1 · r2),
and the Kleene-star r∗

1 are also regular expressions. Usually, we omit concatena-
tion operators in examples. The regular expressions with counting are extended
from standard regular expressions by adding the counting [15]: r[m,n] is a regu-
lar expression for regular expression r, where m ∈ N, n ∈ N/1, N = {1, 2, 3, · · · },
N/1 = {2, 3, 4, ...} ∪ {+∞}, and m ≤ n. L(r[m,n]) = {w1 · · · wi|w1, · · · , wi ∈
L(r),m ≤ i ≤ n}. Note that r+, r?, and r∗ are used as abbreviations of r[1,+∞],
r|ε, and r[1,+∞]|ε, respectively.

2.2 SORE, ECsore and cSORE

SORE is defined as follows.

Definition 1 (SORE [8,9]). Let Σ be a finite alphabet. A single-occurrence
regular expression (SORE) is a standard regular expression over Σ in which
every terminal symbol occurs at most once.

In this paper, for a SORE r, since L(r∗)=L((r+)?), a SORE does not use the
Kleene-star operation, and forbids the expressions of forms (r?)?, (r+)+, and
(r?)+.

Example 1. (ab)+ is a SORE, while (ab)+a is not. The expressions (a?)?, (a+)+,
and (a?)+ are forbidden.

Definition 2 (ECsore [25]). Let Σ be a finite alphabet. An ECsore is a regular
expression with counting over Σ in which every terminal symbol occurs at most
once. For a regular expression r, an ECsore forbids immediately nested counters,
expressions of form (r?)? and (r?)[m,n].

ECsore does not use the Kleene-star and the iteration operations. And ECsores
are deterministic by definition.

Definition 3 (cSORE). Let Σ be a finite alphabet. A cSORE is an ECsore over
Σ. For regular expressions r1, r2, · · · , rk (k ≥ 2), a cSORE forbids expressions
of form (r1r

[m1,n1]
2 r3)[m2,n2] and (r1(r

[m1,n1]
2 )?r3)[m2,n2] where ε ∈ L(r1) and

ε ∈ L(r3), and expressions of form (r1?r2? · · · rk?)[m,n].

According to the definition, cSOREs are a subclass of ECsores. ECsores are
deterministic regular expressions, so are the cSOREs.

Example 2. a?b[1,2](c|d)[1,+∞], ((c|d)[1,2])?, and a?b(c|d)e are cSOREs, also
ECsores, while a(b|c)+a is not a SORE, therefore neither a cSORE nor an
ECsore. (a[3,4]|b)[1,2] and (a[3,4]b)[1,2] are cSOREs, also ECsores. However, the
expressions (a?b[1,2]c?)[3,4], (a?(b[1,2])?c?)[3,4] are ECsores, not cSOREs.

Definition 4 (Countable Finite Automaton [25]). A Countable Finite
Automaton (CFA) is a tuple (Q,Qc, Σ, C, q0, qf , Φ,U, L). The members of the
tuple are described as follows:
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– Σ is a finite and non-empty alphabet.
– q0 and qf : q0 is the initial state, qf is the unique final state.
– Q is a finite set of states. Q = Σ ∪ {q0, qf} ∪ {+i}i∈N.
– Qc ⊂ Q is a finite set of counter states. Counter state is a state q (q ∈ Σ) that

can directly transit to itself, or a state +i. For each subexpression (excluding
single symbol a ∈ Σ) under the iteration operator, we associate a unique
counter state +i to count the minimum and maximum number of repetitions
of the subexpression, respectively.

– C is finite set of counter variables that are used for counting the number of
repetitions of the subexpressions under the iteration operators. C = {cq|q ∈
Qc}, for each counter state q, we also associate a counter variable cq.

– U={u(q)|q ∈ Qc}, L={l(q)|q ∈ Qc}. For each subexpression under the iter-
ation operator, we associate a unique counter state q such that l(q) and u(q)
are the minimum and maximum number of repetitions of the subexpression,
respectively.

– Φ maps each state q∈Q to a set of tuples consisting of a state p∈Q and two
update instructions. Φ: Q �→ ℘(Q × ((L×U �→ (Min(L× C),Max(U× C)))∪
{∅}) × ((C �→ {res,inc}) ∪ {∅})). (∅ denotes empty instruction.)

Definition 5 (Transition Function of a CFA [25]). The transition function
δ of a CFA (Q,Qc, Σ, C, q0, qf , Φ,U, L) is defined for any configuration (q, γ, θ)
and the letter y ∈ Σ ∪ {�}
(1) y ∈ Σ : δ((q, γ, θ), y) = {(z, fα(γ, θ), gβ(θ))|(z, α, β) ∈ Φ(q) ∧ (z = y ∨

((y, α, β) �∈ Φ(q) ∧ z∈{+i}i∈N))}.
(2) y =�: δ((q, γ, θ),�) = {(z, fα(γ, θ), gβ(θ))|(z, α, β) ∈ Φ(q) ∧ (z = qf ∨ z ∈

{+i}i∈N)}.

3 Inference of cSOREs

Our learning algorithm works in the following steps.
Step 1: We infer a SORE for a given finite sample, and the SORE is obtained

by post-processing the result of the algorithm Soa2Sore [14].
The post processes for the SORE derived from algorithm Soa2Sore are as

follows. Let r0 denote the SORE inferred by Soa2Sore. Every possibly repeated
subexpression of r0 is rewritten to be under iteration (+), and for regular
expressions r1, r2, · · · , rk (k ≥ 2), the expressions of forms (r1r+2 r3)+ and
(r1(r+2 )?r3)

+ (ε ∈ L(r1) and ε ∈ L(r3)) are forbidden. And the expressions of
form (r1?r2? · · · rk?)+ are also forbidden.

Step 2: A CFA is constructed by traversing the syntax tree of the SORE
obtained from step 1.

First, the state-transition diagram G of a CFA is constructed by traversing
the syntax tree of the SORE obtained from step 1. The entire process is similar
to the preorder traversal of the binary tree. Then, the detailed descriptions of
the CFA are presented such as like in [25]. Note that, the parameter Φ(q) in
transition function of a CFA can be obtained from G.
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Step 3: The CFA derived from step 2 runs on the same finite sample used
in step 1 to obtain the minimum and maximum number of repetitions of the
subexpressions under the iteration operators.

The CFA counts the minimum and maximum number of repetitions of the
subexpressions under the iteration operators. Counting rules are given by tran-
sition functions of the CFA. We use the algorithm Counting proposed in [25] to
run the CFA. Let A denote the constructed CFA and S denote the given finite
sample. Let C=Counting(A, S), where C = {(l(q), u(q))|q ∈ A.Qc}.

Step 4: We obtain a cSORE by traversing the syntax tree constructed in
step 2 and replace the iteration operators with corresponding counting operators
where the values of the lower bound and upper bound are obtained in step 3.

Note that, C is the set of pairs of the lower bound and upper bound values.

4 Experiments

In this section, first, we present the practical analysis of cSOREs. Then, we
provide the evaluations in generalization ability about our algorithm. And all
experiments were conducted on a ThinkCentre M8600t-D065 with an Intel core
i7-6700 CPU (3.4GHz) and 8G memory. All codes were written in C++.

4.1 Practicability

The 32,750 real-world XSD files were grabbed from Google, Maven, and GitHub.
Table 1 shows that the proportion of cSOREs is 94.16% for the 378,558 regular
expressions that were extracted from these XSD files. This indicates the signifi-
cant practicability of cSOREs.

Table 1. Proportions of SOREs, ECsores and cSOREs.

Subclasses % of XSDs

SOREs 93.74

ECsore 96.53

cSORE 94.16

4.2 Generalization Abilities

We evaluate the algorithms InfECsore and InfcSORE by computing the precision
and recall according to the given sample. We specify that, the learnt expression
with higher precision and recall has better generalization ability. The average
precision and average recall, which are as functions of sample size, respectively,
are averaged over 1000 expressions.

We randomly extracted the 1000 expressions from XSDs, which were grabbed
from Google, Maven, and GitHub. Each one of the 1000 expressions does not
contain the iteration operators (+), but contains the counters, where the upper
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bounds are less than 10. To learn each extracted expression e0, we randomly gen-
erated corresponding XML data by using ToXgene [2], the samples are extracted
from the XML data, each sample size is that listed in Fig. 1. And we define pre-
cision (p) and recall (r). Let positive sample (S+) be the set of the all strings
accepted by e0, and let negative sample (S−) be the set of the all strings not
accepted by e0. Let e1 be the expression derived by InfECsore or InfcSORE. A
true positive sample (Stp) is the set of the strings, which are in S+ and accepted
by e1. While a false negative sample (Sfn) is the set of the strings, which are
in S+ and rejected by e1. Similarly, a false positive sample (Sfp) is the set of
the strings, which are in S− and accepted by e1. While a true negative sample
(Stn) is the set of the strings, which are in S− and rejected by e1. Then, let
p = |Stp|

|Stp|+|Sfp| and r = |Stp|
|Stp|+|Sfn| . Note that L(e0) and L(e1) are finite lan-

guages, and we can construct counter automata [15] (receptors) for e0 and e1,
respectively. Then we can obtain |Stp|, |Sfp| and |Sfn|.

The plots in Fig. 1(a) show that, for a smaller sample (sample size ≤ 500),
the precision for the expression derived by InfcSORE is higher than that for the
expression learnt by InfECsore. But for a larger sample (sample size ≥ 600),
the precision for the expression derived by InfcSORE is lower than that for the
expression learnt by InfECsore. However, the plots in Fig. 1(b) illustrate that,
the recall for the expression derived by InfcSORE is consistently higher than
that for the expression learnt by InfECsore. The reason is that, although the
cSOREs are a subclass of the ECsores, for the same sample, the learnt cSORE
can have more constrains than the learnt ECsore such that some subexpressions
without numerical constrains in the learnt cSORE. This will lead to that the
learnt cSORE is expressive enough to cover more XML data. In general, for a
smaller sample, InfcSORE has better generalization ability such that its result
has higher precision and recall.
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Fig. 1. (a) and (b) are average precision and average recall as functions of the sample
size for each algorithm, respectively.

5 Conclusion

This paper proposed an inference algorithm for learning a subclass of determin-
istic regular expressions: cSOREs. The main strategies include: (1) Construct a
CFA from the syntax tree of the learnt SORE; (2) The CFA runs on the given
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finite sample to obtain the counting operators; and (3) Generate the cSORE by
traversing the syntax tree and introducing the counting operators. Compared
with previous work, for any given finite language, our algorithm not only can
learn a cSORE, which is expressive enough to cover more XML data, but also
has better generalization ability for smaller sample. A future work is extending
the SORE with counting and interleaving, studying the practical issues and the
learning algorithms.
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