
Chapter 4
Random Data Wave Equations

Nikolay Tzvetkov

Abstract Nowadays we have many methods allowing to exploit the regularising
properties of the linear part of a nonlinear dispersive equation (such as the KdV
equation, the nonlinear wave or the nonlinear Schrödinger equations) in order to
prove well-posedness in low regularity Sobolev spaces. By well-posedness in low
regularity Sobolev spaces we mean that less regularity than the one imposed by
the energy methods is required (the energy methods do not exploit the dispersive
properties of the linear part of the equation). In many cases these methods to
prove well-posedness in low regularity Sobolev spaces lead to optimal results
in terms of the regularity of the initial data. By optimal we mean that if one
requires slightly less regularity then the corresponding Cauchy problem becomes
ill-posed in the Hadamard sense. We call the Sobolev spaces in which these ill-
posedness results hold spaces of supercritical regularity. More recently, methods
to prove probabilistic well-posedness in Sobolev spaces of supercritical regularity
were developed. More precisely, by probabilistic well-posedness we mean that one
endows the corresponding Sobolev space of supercritical regularity with a non
degenerate probability measure and then one shows that almost surely with respect
to this measure one can define a (unique) global flow. However, in most of the
cases when the methods to prove probabilistic well-posedness apply, there is no
information about the measure transported by the flow. Very recently, a method
to prove that the transported measure is absolutely continuous with respect to the
initial measure was developed. In such a situation, we have a measure which is
quasi-invariant under the corresponding flow.

The aim of these lectures is to present all of the above described developments
in the context of the nonlinear wave equation.
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4.1 Deterministic Cauchy Theory for the 3d Cubic Wave
Equation

4.1.1 Introduction

In this section, we consider the cubic defocusing wave equation

(∂2
t −�)u+ u3 = 0, (4.1.1)

where u = u(t, x) is real valued, t ∈ R, x ∈ T
3 = (R/(2πZ))3 (the 3d torus).

In (4.1.1), � denotes the Laplace operator, namely

� = ∂2
x1
+ ∂2

x2
+ ∂2

x3
.

Since (4.1.1) is of second order in time, it is natural to complement it with two initial
conditions

u(0, x) = u0(x), ∂tu(0, x) = u1(x) . (4.1.2)

In this section, we will be studying the local and global well-posedness of the initial
value problem (4.1.1)–(4.1.2) in Sobolev spaces via deterministic methods.

The Sobolev spacesHs(T3) are defined as follows. For a function f on T
3 given

by its Fourier series

f (x) =
∑

n∈Z3

f̂ (n) ein·x,

we define the Sobolev normHs(T3) of f as

‖f ‖2
Hs =

∑

n∈Z3

〈n〉2s |f̂ (n)|2,

where 〈n〉 = (1 + |n|2)1/2. On has that

‖f ‖Hs ≈ ‖Dsf ‖L2, D ≡ (1 −�)1/2 .

For integer values of s one can also give an equivalent norm in the physical space as
follows

‖f ‖Hs(T3) ≈
∑

|α|≤s
‖∂α1
x1
∂α2
x2
∂α3
x3
f ‖L2(T3) ,

where the summation is taken over all multi-indexes α = (α1, α2, α3) ∈ N
3.
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As we shall see, it will be of importance to understand the interplay between
the linear and the nonlinear part of (4.1.1). Indeed, let us first consider the Cauchy
problem

∂2
t u+ u3 = 0, u(0, x) = u0(x), ∂tu(0, x) = u1(x)

which is obtained from (4.1.1) by neglecting the Laplacian. If we set

U = (U1, U2) ≡ (u, ∂tu)
t

then the last problem can be written as

∂tU = F(U), F (U) = (U2,−U3
1 )
t .

On may wish to solve, at least locally, the last problem via the Cauchy-Lipschitz
argument in the spaces Hs1(T3) × Hs2(T3). For such a purpose one should check
that the vector field F(U) is locally Lipschitz on these spaces. Thanks to the Sobolev
embedding Hs(T3) ⊂ L∞(T3), s > 3/2 we can see that the map U1 �→ U3

1 is
locally Lipschitz onHs(T3), s > 3/2. It is also easy to check that the mapU1 �→ U3

1
is not continuous on Hs(T3), s < 3/2. A more delicate argument shows that it is
not continuous on H 3/2(T3) either. Therefore, if we impose that F(u) is locally
Lipschitz on Hs1(T3) × Hs2(T3) than we necessarily need to impose a regularity
assumption s1 > 3/2. As we shall see below the term containing the Laplacian
in (4.1.1) will allow as to significantly relax this regularity assumption.

On the other hand if we neglect the nonlinear term u3 in (4.1.1), we get the linear
wave equation which is well-posed in Hs(T3)×Hs−1(T3) for any s ∈ R, as it can
be easily seen by the Fourier series description of the solutions of the linear wave
equation (see the next section). In other words the absence of a nonlinearity allows
us to solve the problem in arbitrary singular Sobolev spaces.

In summary, we expect that the Laplacian term in (4.1.1) will help us to prove
the well-posedness of the problem (4.1.1) in singular Sobolev spaces while the
nonlinear term u3 will be responsible for the lack of well-posedness in singular
spaces.

4.1.2 Local and Global Well-Posedness in H 1 × L2

4.1.2.1 The Free Evolution

We first define the free evolution, i.e. the map defining the solutions of the linear
wave equation

(∂2
t −�)u = 0, u(0, x) = u0(x), ∂tu(0, x) = u1(x). (4.1.3)
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Using the Fourier transform and solving the corresponding second order linear
ODE’s, we obtain that the solutions of (4.1.3) are generated by the map S(t), defined
as follows

S(t)(u0, u1) ≡ cos(t
√−�)(u0)+ sin(t

√−�)√−� (u1),

where

cos(t
√−�)(u0) ≡

∑

n∈Z3

cos(t|n|)û0(n) e
in·x

and

sin(t
√−�)√−� (u1) ≡ t û1(0)+

∑

n∈Z3
�

sin(t|n|)
|n| û1(n) e

in·x , Z
3
� = Z

3\{0} .

We have that S(t)(u0, u1) solves (4.1.3) and if (u0, u1) ∈ Hs × Hs−1, s ∈ R

then S(t)(u0, u1) is the unique solution of (4.1.3) in C(R;Hs(T3)) such that its
time derivative is in C(R;Hs−1(T3)). It follows directly from the definition that the
operator S̄(t) ≡ (S(t), ∂tS(t)) is bounded onHs×Hs−1, S̄(0) = Id and S̄(t+τ ) =
S̄(t) ◦ S̄(τ ), for every real numbers t and τ . In the proof of the boundedness on
Hs×Hs−1, we only use the boundedness of cos(t|n|) and sin(t|n|). As we shall see
below one may use the oscillations of cos(t|n|) and sin(t|n|) for |n| � 1 in order to
get more involved Lp , p > 2 properties of the map S(t).

Let us next consider the non homogeneous problem

(∂2
t −�)u = F(t, x), u(0, x) = 0, ∂tu(0, x) = 0. (4.1.4)

Using the variation of the constants method, we obtain that the solutions of (4.1.4)
are given by

u(t) =
∫ t

0

sin((t − τ )
√−�)√−� ((F(τ))dτ .

As a consequence, we obtain that the solution of the non homogeneous prob-
lem (4.1.4) is one derivative smoother than the source term F . More precisely, for
every s ∈ R, the solution of (4.1.4) satisfies the bound

‖u‖L∞([0,1];Hs+1(T3)) ≤ C‖F‖L1([0,1];Hs(T3)) . (4.1.5)
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4.1.2.2 The Local Well-Posedness

We state the local well-posedness result.

Proposition 4.1.1 (Local Well-Posedness) Consider the cubic defocusing wave
equation

(∂2
t −�)u+ u3 = 0 , (4.1.6)

posed on T
3. There exist constants c and C such that for every a ∈ R, every � ≥ 1,

every

(u0, u1) ∈ H 1(T3)× L2(T3)

satisfying

‖u0‖H 1 + ‖u1‖L2 ≤ � (4.1.7)

there exists a unique solution of (4.1.6) on the time interval [a, a+c�−2] of (4.1.6)
with initial data

u(a, x) = u0(x), ∂tu(a, x) = u1(x) .

Moreover the solution satisfies

‖(u, ∂tu)‖L∞([a,a+c�−2],H 1(T3)×L2(T3)) ≤ C�,

(u, ∂tu) is unique in the class L∞([a, a + c�−2],H 1(T3) × L2(T3)) and the
dependence with respect to the initial data and with respect to the time is continuous.
Finally, if

(u0, u1) ∈ Hs(T3)×Hs−1(T3)

for some s ≥ 1 then there exists cs > 0 such that

(u, ∂tu) ∈ C([a, a + cs�
−2];Hs(T3)×Hs−1(T3)) .

Proof If u(t, x) is a solution of (4.1.6) then so is u(t + a, x). Therefore, it suffices
to consider the case a = 0.

Thanks to the analysis of the previous section, we obtain that we should solve
the integral equation

u(t) = S(t)(u0, u1)−
∫ t

0

sin((t − τ )
√−�)√−� ((u3(τ ))dτ . (4.1.8)
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Set

	u0,u1(u) ≡ S(t)(u0, u1)−
∫ t

0

sin((t − τ )
√−�)√−� ((u3(τ ))dτ.

Then for T ∈ (0, 1], we define XT as

XT ≡ C([0, T ];H 1(T3)),

endowed with the natural norm

‖u‖XT = sup
0≤t≤T

‖u(t)‖H 1(T3) .

Using the boundedness properties of S̄ on Hs × Hs−1 explained in the previous
section and using the Sobolev embeddingH 1(T3) ⊂ L6(T3), we get

‖	u0,u1(u)‖XT ≤ C
(‖u0‖H 1 + ‖u1‖L2 + T sup

τ∈[0,T ]
‖u(τ)‖3

L6

)

≤ C
(‖u0‖H 1 + ‖u1‖L2 + CT ‖u‖3

XT

)
.

It is now clear that for T = c�−2 , c � 1 the map 	u0,u1 sends the ball

B ≡ (u : ‖u‖XT ) ≤ 2C�)

into itself. Moreover, by a similar arguments involving the Sobolev embedding
H 1(T3) ⊂ L6(T3) and the Hölder inequality, we obtain the estimate

‖	u0,u1(u)−	u0,u1(ũ)‖XT ≤ CT ‖u− ũ‖XT
(‖u‖2

XT
+ ‖ũ‖2

XT

)
. (4.1.9)

Therefore, with our choice of T , we get that

‖	u0,u1(u)−	u0,u1(ũ)‖XT ≤ 1

2
‖u− ũ‖XT , u, ũ ∈ B .

Consequently the map 	u0,u1 is a contraction on B. The fixed point of this
contraction defines the solution u on [0, T ] we are looking for. The estimate of
‖∂tu‖L2 follows by differentiating in t the Duhamel formula (4.1.8). Let us now
turn to the uniqueness. Let u, ũ be two solutions of (4.1.6) with the same initial data
in the space XT for some T > 0. Then for τ ≤ T , we can write similarly to (4.1.9)

‖	u0,u1(u)−	u0,u1(ũ)‖Xτ ≤ Cτ‖u− ũ‖Xτ
(‖u‖2

XT
+ ‖ũ‖2

XT

)
. (4.1.10)
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Let us take τ such that

Cτ
(‖u‖2

XT
+ ‖ũ‖2

XT

)
<

1

2
.

This fixes the value of τ . Thanks to (4.1.10), we obtain that u and ũ are the same on
[0, τ ]. Next, we cover the interval [0, T ] by intervals of size τ and we inductively
obtain that u and ũ are the same on each interval of size τ . This yields the uniqueness
statement.

The continuous dependence with respect to time follows from the Duhamel
formula representation of the solution of (4.1.8). The continuity with respect to the
initial data follows from the estimates on the difference of two solutions we have just
performed. Notice that we also obtain uniform continuity of the map data-solution
on bounded subspaces of H 1 × L2.

Let us finally turn to the propagation of higher regularity. Let (u0, u1) ∈ H 1×L2

such that (4.1.7) holds satisfy the additional regularity property (u0, u1) ∈ Hs ×
Hs−1 for some s > 1. We will show that the corresponding solution remains in
Hs ×Hs−1 in the (essentially) whole time of existence. For s ≥ 1, we define XsT as

XsT ≡ C([0, T ];Hs(T3)),

endowed with the norm

‖u‖XsT = sup
0≤t≤T

‖u(t)‖Hs(T3) .

We have that the solution with data (u0, u1) ∈ Hs ×Hs−1 remains in this space for
time intervals of order (1+‖u0‖Hs+‖u1‖Hs−1)−2 by a fixed point argument, similar
to the one we performed for data in H 1 × L2. We now show that the regularity is
preserved for (the longer) time intervals of order (1+‖u0‖H 1 +‖u1‖L2)−2 . Coming
back to (4.1.8), we can write

‖	u0,u1(u)‖XsT ≤ C
(‖u0‖Hs + ‖u1‖Hs−1 + T sup

τ∈[0,T ]
‖u3(τ )‖Hs−1

)
.

Now using the Kato-Ponce product inequality, we can obtain that for σ ≥ 0, one
has the bound

‖v3‖Hσ (T3) ≤ C‖Dσv‖L6(T3) ‖v‖2
L6(T3)

. (4.1.11)

Using (4.1.11) and applying the Sobolev embedding H 1(T3) ⊂ L6(T3), we infer
that

‖u3(τ )‖Hs−1 � ‖Ds−1u(τ)‖L6‖u(τ)‖2
L6 � ‖Dsu(τ)‖L2‖u(τ)‖2

H 1 .
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Therefore, we arrive at the bound

‖	u0,u1(u)‖XsT ≤ C
(‖u0‖Hs + ‖u1‖Hs−1 + CsT sup

τ∈[0,T ]
‖Dsu(τ)‖L2‖u(τ)‖2

H 1

)
.

By construction of the solution we infer that if T ≤ cs�
−2 with cs small enough,

we have that

‖u‖XsT = ‖	u0,u1(u)‖XsT ≤ C
(‖u0‖Hs + ‖u1‖Hs−1

) + 1

2
‖u‖XsT

which implies the propagation of the regularity statement for u. Strictly speaking,
one should apply a bootstrap argument starting from the propagation of the
regularity on times of order (1 + ‖u0‖Hs + ‖u1‖Hs−1)−2 and then extend the
regularity propagation to the longer interval [0, cs�−2]. One estimates similarly ∂tu
in Hs−1 by differentiating the Duhamel formula with respect to t . The continuous
dependence with respect to time inHs×Hs−1 follows once again from the Duhamel
formula (4.1.8). This completes the proof of Proposition 4.1.1. ��
Theorem 4.1.2 (Global Well-Posedness) For every (u0, u1) ∈ H 1(T3)× L2(T3)

the local solution of the cubic defocusing wave equation

(∂2
t −�)u+ u3 = 0 , u(0, x) = u0(x), ∂tu(0, x) = u1(x)

can be extended globally in time. It is unique in the class C(R;H 1(T3)× L2(T3))

and there exists a constant C depending only on ‖u0‖H 1 and ‖u1‖L2 such that for
every t ∈ R,

‖u(t)‖H 1(R) ≤ C.

If in addition (u0, u1) ∈ Hs(T3)×Hs−1(T3) for some s ≥ 1 then

(u, ∂tu) ∈ C(R;Hs(T3)×Hs−1(T3)) .

Remark 4.1.3 One may obtain global weak solutions of the cubic defocusing wave
equation for data in H 1 × L2 via compactness arguments. The uniqueness and the
propagation of regularity statements of Theorem 4.1.2 are the major differences with
respect to the weak solutions.

Proof of Theorem 4.1.2 The key point is the conservation of the energy displayed
in the following lemma.

Lemma 4.1.4 There exist c > 0 and C > 0 such that for every (u0, u1) ∈
H 1(T3) × L2(T3) the local solution of the cubic defocusing wave equation, with
data (u0, u1), constructed in Proposition 4.1.1 is defined on [0, T ] with

T = c(1 + ‖u0‖H 1(T3) + ‖u1‖L2(T3))
−2
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and
∫

T3

(
(∂tu(t, x))

2 + |∇xu(t, x)|2 + 1

2
u4(t, x)

)
dx

=
∫

T3

(
(u1(x))

2 + |∇xu0(x)|2 + 1

2
u4

0(x)
)
dx, t ∈ [0, T ]. (4.1.12)

As a consequence, for t ∈ [0, T ],

‖u(t)‖H 1(T3) + ‖∂tu(t)‖L2(T3) ≤ C
(
1 + ‖u0‖2

H 1(T3)
+ ‖u1‖L2(T3)

)
.

Remark 4.1.5 Using the invariance with respect to translations in time, we can state
Lemma 4.1.4 with initial data at an arbitrary initial time.

Proof of Lemma 4.1.4 We apply Proposition 4.1.1 with � = ‖u0‖H 1 + ‖u1‖L2 and
we take T = c10�

−2, where c10 is the small constant involved in the propagation
of the H 10 × H 9 regularity. Let (u0,n, u1,n) be a sequence in H 10 × H 9 which
converges to (u0, u1) in H 1 × L2 and such that

‖u0,n‖H 1 + ‖u1,n‖L2 ≤ ‖u0‖H 1 + ‖u1‖L2 .

Let un(t) be the solution of the cubic defocusing wave equation, with data
(u0,n, u1,n). By Proposition 4.1.1 these solutions are defined on [0, T ] and they
keep theirH 10 ×H 9 regularity on the same time interval. We multiply the equation

(∂2
t −�)un + u3

n = 0

by ∂tun. Using the regularity properties of un(t), after integrations by parts, we
arrive at

d

dt

[ ∫

T3

(
(∂tun(t, x))

2 + |∇xun(t, x)|2 + 1

2
u4
n(t, x)

)
dx

]
= 0

which implies the identity

∫

T3

(
(∂tun(t, x))

2 + |∇xun(t, x)|2 + 1

2
u4
n(t, x)

)
dx

=
∫

T3

(
(u1,n(x))

2 + |∇xu0,n(x)|2 + 1

2
u4

0,n(x)
)
dx, t ∈ [0, T ]. (4.1.13)

We now pass to the limit n −→ ∞ in (4.1.13). The right hand-side converges to

∫

T3

(
(u1(x))

2 + |∇xu0(x)|2 + 1

2
u4

0(x)
)
dx
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by the definition of (u0,n, u1,n) (we invoke the Sobolev embedding for the conver-
gence of the L4 norms) . The right hand-side of (4.1.13) converges to

∫

T3

(
(∂tu(t, x))

2 + |∇xu(t, x)|2 + 1

2
u4(t, x)

)
dx

by the continuity of the flow map established in Proposition 4.1.1. Using the
compactness of T3 and the Hölder inequality, we have that

‖u‖L2(T3) ≤ C‖u‖L4(T3) ≤ C(1 + ‖u‖2
L4(T3)

)

and therefore

‖u(t)‖2
H 1(T3)

+ ‖∂tu(t)‖2
L2(T3)

is bounded by

C

∫

T3

(
1 + (∂tu(t, x))

2 + |∇xu(t, x)|2 + 1

2
u4(t, x)

)
dx .

Now, using (4.1.12) and the Sobolev inequality

‖u‖L4(T3) ≤ C‖u‖H 1(T3) ,

we obtain that for t ∈ [0, T ],

‖u(t)‖2
H 1(T3)

+ ‖∂tu(t)‖2
L2(T3)

≤ C
(
1 + ‖u0‖4

H 1(T3)
+ ‖u1‖2

L2(T3)

)
.

This completes the proof of Lemma 4.1.4. ��
Let us now complete the proof of Theorem 4.1.2. Let (u0, u1) ∈ H 1(T3)×L2(T3).
Set

T = c
(
C

(
1 + ‖u0‖2

H 1(T3)
+ ‖u1‖L2(T3)

))−2
,

where the constants c and C are defined in Lemma 4.1.4. We now observe that
we can use Proposition 4.1.1 and Lemma 4.1.4 on the intervals [0, T ], [T , 2T ],
[2T , 3T ], and so on and therefore we extend the solution with data (u0, u1) on
[0,∞). By the time reversibility of the wave equation we similarly can construct
the solution for negative times. More precisely, the free evolution S(t)(u0, u1) well-
defined for all t ∈ R and one can prove in the same way the natural counterparts of
Proposition 4.1.1 and Lemma 4.1.4 for negative times. The propagation of higher
Sobolev regularity globally in time follows from Proposition 4.1.1 while the H 1 a
priori bound on the solutions follows from Lemma 4.1.4. This completes the proof
of Theorem 4.1.2. ��
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Remark 4.1.6 One may proceed slightly differently in the proof of Theorem 4.1.2
by observing that as a consequence of Proposition 4.1.1, if a local solution with
H 1 × L2 data blows-up at time T � <∞ then

lim
t→T �

‖(u(t), ∂tu(t))‖H 1(T3)×L2(T3) = ∞. (4.1.14)

The statement (4.1.14) is in contradiction with the energy conservation law.

Remark 4.1.7 Observe that the nonlinear problem

(∂2
t −�)u+ u3 = 0 (4.1.15)

behaves better than the linear problem

(∂2
t −�)u = 0 (4.1.16)

with respect to theH 1 global in time bounds. Indeed, Theorem 4.1.2 establishes that
the solutions of (4.1.15) are bounded in H 1 as far as the initial data is in H 1 × L2.
On the other hand one can consider u(t, x) = t which is a solution of the linear wave
equation (4.1.16) on T

3 with data inH 1 ×L2 and its H 1 norm is clearly growing in
time.

Remark 4.1.8 The sign in front of the nonlinearity is not of importance for
Proposition 4.1.1. One can therefore obtain the local well-posedness of the cubic
focusing wave equation

(∂2
t −�)u− u3 = 0, (4.1.17)

posed on T
3, with data in H 1(T3) × L2(T3). However, the sign in front of the

nonlinearity is of crucial importance in the proof of Theorem 4.1.2. Indeed, one has
that

u(t, x) =
√

2

1 − t

is a solution of (4.1.17), posed on T
3 with data (

√
2,−√

2) which is not defined
globally in time (it blows-up in H 1 × L2 at t = 1).

4.1.3 The Strichartz Estimates

In the previous section, we solved globally in time the cubic defocusing wave
equation in H 1 × L2. One may naturally ask whether it is possible to extend these
results to the more singular Sobolev spaces Hs ×Hs−1 for some s < 1. It turns out
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that this is possible by invoking more refined properties of the map S(t) defining
the free evolution. The proof of these properties uses in an essential way the time
oscillations in S(t) and can be quantified as the Lp, p > 2 mapping properties of
S(t) (cf. [19, 30]).

Theorem 4.1.9 (Strichartz Inequality for the Wave Equation) Let (p, q) ∈ R
2

be such that 2 < p ≤ ∞ and 1
p
+ 1

q
= 1

2 . Then we have the estimate

‖S(t)(u0, u1)‖Lp([0,1];Lq(T3)) ≤ C
(‖u0‖

H
2
p (T3)

+ ‖u1‖
H

2
p−1

(T3)

)
.

We shall use that the solutions of the wave equation satisfy a finite propagation
speed property which will allow us to deduce the result of Theorem 4.1.9 from the
corresponding Strichartz estimate for the wave equation on the Euclidean space.
Consider therefore the wave equation

(∂2
t −�)u = 0, u(0, x) = u0(x), ∂tu(0, x) = u1(x), (4.1.18)

where now the spatial variable x belongs to R
3 and the initial data (u0, u1) belong

to Hs(R3) × Hs−1(R3). Using the Fourier transform on R
3, we can solve (4.1.18)

and obtain that the solutions are generated by the map Se(t), defined as

Se(t)(u0, u1) ≡ cos(t
√−�

R3)(u0)+ sin(t
√−�R3)

√−�R3

(u1),

where for u0 and u1 in the Schwartz class,

cos(t
√−�

R3)(u0) ≡
∫

R3
cos(t|ξ |)û0(ξ) e

iξ ·xdξ

and

sin(t
√−�

R3)
√−�R3

(u1) ≡
∫

R3

sin(t|ξ |)
|ξ | û1(ξ) e

iξ ·xdξ ,

where û0 and û1 are the Fourier transforms of u0 and u1 respectively. By density, one
then extends Se(t)(u0, u1) to a bounded map from Hs(R3)×Hs−1(R3) to Hs(R3)

for any s ∈ R. The next lemma displays the finite propagation speed property of
Se(t).

Proposition 4.1.10 (Finite Propagation Speed) Let (u0, u1) ∈ Hs(R3) ×
Hs−1(R3) for some s ≥ 0 be such that

supp(u0) ∪ supp(u1) ⊂ {x ∈ R
3 : |x − x0| ≤ R},
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for some R > 0 and x0 ∈ R
3. Then for t ≥ 0,

supp(Se(t)(u0, u1)) ⊂ {x ∈ R
3 : |x − x0| ≤ t + R}.

Proof The statement of Proposition 4.1.10 (and even more precise localisation
property) follows from the Kirchoff formula representation of the solutions of the
three dimensional wave equation. Here we will present another proof which has the
advantage to extend to an arbitrary dimension and to variable coefficient settings.
By the invariance of the wave equation with respect to spatial translations, we can
assume that x0 = 0. We need to prove Proposition 4.1.10 only for (say) s ≥ 100
which ensures by the Sobolev embedding that the solutions we study are of class
C2(R4). We than can treat the case of an arbitrary (u0, u1) ∈ Hs(R3)×Hs−1(R3),
s ≥ 0 by observing that

ρε � Se(t)(u0, u1) = Se(t)(ρε � u0, ρε � u1), (4.1.19)

where ρε(x) = ε−3ρ(x/ε), ρ ∈ C∞
0 (R

3), 0 ≤ ρ ≤ 1,
∫
ρ = 1. It suffices then to

pass to the limit ε → 0 in (4.1.19). Indeed, for ϕ ∈ C∞
0 (|x| > t + R), Se(t)(ρε �

u0, ρε � u1)(ϕ) is zero for ε small enough while ρε � Se(t)(u0, u1)(ϕ) converges to
Se(t)(u0, u1)(ϕ).

Therefore, in the remaining of the proof of Proposition 4.1.10, we shall assume
that Se(t)(u0, u1) is a C2 solution of the 3d wave equation. The main point in the
proof is the following lemma.

Lemma 4.1.11 Let x0 ∈ R
3, r > 0 and let Se(t)(u0, u1) be a C2 solution of the

3d linear wave equation. Suppose that u0(x) = u1(x) = 0 for |x − x0| ≤ r . Then
Se(t)(u0, u1) = 0 in the cone C defined by

C = {(t, x) ∈ R
4 : 0 ≤ t ≤ r, |x − x0| ≤ r − t}.

Proof Let u(t, x) = Se(t)(u0, u1). For t ∈ [0, r], we set

E(t) ≡ 1

2

∫

B(x0,r−t )
(
(∂tu)

2(t, x)+ |∇xu(t, x)|2
)
dx,

where B(x0, r− t) = {x ∈ R
3 : |x| ≤ r− t}. Then using the Gauss-Green theorem

and the equation solved by u, we obtain that

Ė(t) = −1

2

∫

∂B

(
(∂tu)

2(t, y)+ |∇xu(t, y)|2 − 2∂tu(t, y)∇xu(t, y) · ν(y)
)
dS(y),

where ∂B ≡ {x ∈ R
3 : |x| = r − t}, dS(y) is the volume element associated with

∂B and ν(y) is the outer unit normal to ∂B. We clearly have

2∂tu(t, y)∇xu(t, y) · ν(y) ≤ (∂tu)
2(t, y)+ |∇xu(t, y)|2,
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which implies that Ė(t) ≤ 0. Since E(0) = 0 we obtain that E(t) = 0 for every
t ∈ [0, r]. This in turn implies that u(t, x) is a constant in C. We also know that
u(0, x) = 0 for |x − x0| ≤ r . Therefore u(t, x) = 0 in C. This completes the proof
of Lemma 4.1.11. ��
Let us now complete the proof of Proposition 4.1.10. Let t0 ∈ R and y ∈ R

3 such
that |y| > R + t0. We need to show that u(t0, y) = 0. Consider the cone C defined
by

C = {(t, x) ∈ R
4 : 0 ≤ t ≤ t0, |x − y| ≤ t0 − t}.

Set B ≡ C ∩ {(t, x) ∈ R
4 : t = 0}. We have that

B = {(t, x) ∈ R
4 : t = 0, |x − y| ≤ t0}

and therefore by the definition of t0 and y we have that

B ∩ {(t, x) ∈ R
4 : t = 0, |x| ≤ R} = ∅. (4.1.20)

Therefore u(0, x) = ∂tu(0, x) for |x − y| ≤ t0. Using Lemma 4.1.11, we obtain
that u(t, x) = 0 in C. In particular u(t0, y) = 0. This completes the proof of
Proposition 4.1.10. ��

Using Proposition 4.1.10 and a decomposition of the initial data associated with
a partition of unity corresponding to a covering of T3 by sufficiently small balls, we
obtain that the result of Theorem 4.1.9 is a consequence of the following statement.

Proposition 4.1.12 (Local in Time Strichartz Inequality for the Wave Equation
on R

3) Let (p, q) ∈ R
2 be such that 2 < p ≤ ∞ and 1

p
+ 1

q
= 1

2 . Then we have
the estimate

‖Se(t)(u0, u1)‖Lp([0,1];Lq(R3)) ≤ C
(‖u0‖

H
2
p (R3)

+ ‖u1‖
H

2
p−1

(R3)

)
.

Proof Let χ ∈ C∞
0 (R

3) be such that χ(x) = 1 for |x| < 1. We then define the
Fourier multiplier χ(Dx) by

χ(Dx)(f ) =
∫

R3
χ(ξ)f̂ (ξ) eiξ ·xdξ. (4.1.21)

Using a suitable Sobolev embedding in R
3, we obtain that for every σ ∈ R,

∥∥ sin(t
√−�

R3)
√−�

R3

(χ(Dx)u1)
∥∥
Lp([0,1];Lq(R3))

≤ C‖u1‖Hσ (R3) .
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Therefore, by splitting u1 as

u1 = χ(Dx)(u1)+ (1 − χ(Dx))(u1)

and by expressing the sin and cos functions as combinations of exponentials, we
observe that Proposition 4.1.12 follows from the following statement.

Proposition 4.1.13 Let (p, q) ∈ R
2 be such that 2 < p ≤ ∞ and 1

p
+ 1

q
= 1

2 .

Then we have the estimate

∥∥e±it
√−�

R3 (f )
∥∥
Lp([0,1];Lq(R3))

≤ C‖f ‖
H

2
p (R3)

.

Remark 4.1.14 Let us make an important remark. As a consequence of Proposi-
tion 4.1.13 and a suitable Sobolev embedding, we obtain the estimate

∥∥e±it
√−�

R3 (f )
∥∥
L2([0,1];L∞(R3))

≤ C‖f ‖Hs(R3) , s > 1. (4.1.22)

Therefore, we obtain that for f ∈ Hs(R3), s > 1, the function eit
√−�

R3 (f ) which
is a priori defined as an element of C([0, 1];Hs(R3)) has the remarkable property
that

e
it
√−�

R3 (f ) ∈ L∞(R3)

for almost every t ∈ [0, 1]. Recall that the Sobolev embedding requires the condition
s > 3/2 in order to ensure that an Hs(R3) function is in L∞(R3). Therefore, one
may wish to see (4.1.22) as an almost sure in t improvement (with 1/2 derivative)

of the Sobolev embedding H
3
2+(R3) ⊂ L∞(R3), under the evolution of the linear

wave equation.

Proof of Proposition 4.1.13 Consider a Littlewood-Paley decomposition of the
unity

Id = P0 +
∑

N

PN , (4.1.23)

where the summation is taken over the dyadic values of N , i.e. N = 2j , j =
0, 1, 2, . . . and P0, PN are Littlewood-Paley projectors. More precisely they are
defined as Fourier multipliers by �0 = ψ0(Dx) and for N ≥ 1, PN = ψ(Dx/N),
whereψ0 ∈ C∞

0 (R
3) andψ ∈ C∞

0 (R
3\{0}) are suitable functions such that (4.1.23)

holds. The maps ψ(Dx/N) are defined similarly to (4.1.21) by

ψ(Dx/N)(f ) =
∫

R3
ψ(ξ/N)f̂ (ξ) eiξ ·xdξ.
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Set

u(t, x) ≡ e
±it√−�

R3 (f ) .

Our goal is to evaluate ‖u‖Lp([0,1]Lq(R3)). Thanks to the Littlewood-Paley square
function theorem, we have that

‖u‖Lq(R3) ≈
∥∥∥
(|P0u|2 +

∑

N

|PNu|2
) 1

2

∥∥∥
Lq(R3)

. (4.1.24)

The proof of (4.1.24) can be obtained as a combination of the Mikhlin-Hörmander
multiplier theorem and the Khinchin inequality for Bernouli variables.1 Using the
Minkowski inequality, since p ≥ 2 and q ≥ 2, we can write

‖u‖Lpt Lqx � ‖P0u‖Lpt Lqx+‖PNu‖Lpt Lqx l2N ≤ ‖P0u‖Lpt Lqx+‖PNu‖l2NLpt Lqx (4.1.25)

Therefore, it suffices to prove that for every ψ ∈ C∞
0 (R

3\{0}) there exists C > 0
such that for everyN and every f ∈ L2(R3),

‖ψ(Dx/N)e±it
√−�

R3 (f )‖Lp([0,1];Lq(R3)) ≤ CN
2
p ‖f ‖L2(R3) . (4.1.26)

Indeed, suppose that (4.1.26) holds true. Then, we define P̃N as P̃N = ψ̃(Dx/N),
where ψ̃ ∈ C∞

0 (R
3\{0}) is such that ψ̃ ≡ 1 on the support ofψ . ThenPN = P̃NPN .

Now, coming back to (4.1.25), using the Sobolev inequality to evaluate ‖P0u‖Lpt Lqx
and (4.1.26) to evaluate ‖PNu‖l2NLpt Lqx , we arrive at the bound

‖u‖Lpt Lqx � ‖f ‖L2 + ‖N 2
p ‖PNf ‖L2

x
‖l2N � ‖f ‖

H
2
p
.

Therefore, it remains to prove (4.1.26). Set

T ≡ ψ(Dx/N)e
±it√−�

R3 .

Our goal is to study the mapping properties of T from L2
x to Lpt L

q
x . We can write

‖Tf ‖Lpt Lqx = sup
‖G‖

L
p′
t L

q′
x

≤1

∣∣
∫

t,x

TfG
∣∣, (4.1.27)

1Interestingly, variants of the Khinchin inequality will be essentially used in our probabilistic
approach to the cubic defocusing wave equation with data of super-critical regularity.
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where 1
p
+ 1

p′ = 1
q
+ 1

q ′ = 1. Note that in order to write (4.1.27) the values 1 and
∞ of p and q are allowed. Next, we can write

∫

t,x

TfG =
∫

x

f T �G, (4.1.28)

where T � is defined by

T �G ≡
∫ 1

0
ψ(Dx/N)e

∓iτ√−�
R3G(τ)dτ .

Indeed, we have

∫

t,x

TfG =
∫ 1

0

∫

R3
ψ(Dx/N)e

±it√−�
R3f G(t)dxdt

=
∫ 1

0

∫

R3
f ψ(Dx/N)e

∓it√−�
R3G(t)dxdt

=
∫

R3
f

∫ 1

0
ψ(Dx/N)e

∓it√−�
R3G(t)dt dx .

Therefore (4.1.28) follows. But thanks to the Cauchy-Schwarz inequality we can
write

|
∫

x

f T �G| ≤ ‖f ‖L2
x
‖T �G‖L2

x
.

Therefore, in order to prove (4.1.26), it suffices to prove the bound

‖T �G‖L2
x
� N

2
p ‖G‖

L
p′
t L

q′
x
.

Next, we can write

‖T �G‖2
L2
x
=

∫

x

T �GT �G

=
∫

t,x

T (T �(G))G

≤ ‖T (T �(G))‖Lpt Lqx‖G‖Lp′t Lq′x .

Therefore, estimate (4.1.26) would follow from the estimate

‖T (T �(G))‖Lpt Lqx � N
4
p ‖G‖

L
p′
t L

q′
x
. (4.1.29)
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An advantage of (4.1.29) with respect to (4.1.26) is that we have the same number
of variables in both sides of the estimates. Coming back to the definition of T and
T �, we can write

T (T �(G)) =
∫ 1

0
ψ2(Dx/N)e

±i(t−τ )√−�
R3G(τ)dτ .

Now by using the triangle inequality, for a fixed t ∈ [0, 1], we can write

‖T (T �(G))‖Lqx ≤
∫ 1

0

∥∥ψ2(Dx/N)e
±i(t−τ )√−�

R3G(τ)
∥∥
L
q
x
dτ. (4.1.30)

On the other hand, using the Fourier transform, we can write

ψ2(Dx/N)e
±it√−�

R3 (f ) =
∫

R3
ψ2(ξ/N)e±it |ξ |eix·ξ f̂ (ξ)dξ .

Therefore,

ψ2(Dx/N)e
±it√−�

R3 (f ) =
∫

R3
K(t, x − x ′)f (x ′)dx,

where

K(t, x − x ′) =
∫

R3
ψ2(ξ/N)e±it |ξ |ei(x−x ′)·ξdξ .

A simple change of variable leads to

K(t, x − x ′) = N3
∫

R3
ψ2(ξ)e±itN |ξ |eiN(x−x ′)·ξdξ .

In order to estimate K(t, x − x ′), we invoke the following proposition.

Proposition 4.1.15 (Soft Stationary Phase Estimate) Let d ≥ 1. For every�> 0,
N ≥ 1 there exists C > 0 such that for every λ ≥ 1, every a ∈ C∞

0 (R
d), satisfying

sup
|α|≤2N

sup
x∈Rd

|∂αa(x)| ≤ �,

every ϕ ∈ C∞(supp(a)) satisfying

sup
2≤|α|≤2N+2

sup
x∈supp(a)

|∂αϕ(x)| ≤ � (4.1.31)
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one has the bound

∣∣∣
∫

Rd

eiλϕ(x)a(x)dx

∣∣∣ ≤ C

∫

supp(a)

dx

(1 + λ|∇ϕ(x)|2)N . (4.1.32)

Remark 4.1.16 Observe that in (4.1.31), we do not require upper bounds for the
first derivatives of ϕ.

We will give the proof of Proposition 4.1.15 later. Let us first show how to use it in
order to complete the proof of (4.1.26). We claim that

|K(t, x − x ′)| � N3(tN)−1 = N2t−1 . (4.1.33)

Estimate (4.1.33) trivially follows from the expression defining K(t, x − x ′) for
|tN | ≤ 1 (one simply ignores the oscillation term). For |Nt| ≥ 1, using
Proposition 4.1.15 (with a = ψ2, N = 2 and d = 3), we get the bound

|K(t, x − x ′)| � N3
∫

supp(ψ)

dξ

(1 + |tN ||∇ϕ(ξ)|2)2 ,

where

ϕ(ξ) = ±|ξ | + N(x − x ′) · ξ
t

.

Observe that ϕ is C∞ on the support of ψ and moreover it satisfies the assumptions
of Proposition 4.1.15. We next observe that

∫

supp(ψ)

dξ

(1 + |tN ||∇ϕ(ξ)|2)2 � (tN)−1 . (4.1.34)

Indeed, since ∇ϕ(ξ) = ± ξ
|ξ | + t−1N(x−x ′) we obtain that one can split the support

of integration in regions such that there are two different j1, j2 ∈ {1, 2, 3} such that
one can perform the change of variable

ηj1 = ∂ξj1
ϕ(ξ), ηj2 = ∂ξj2

ϕ(ξ),

with a non-degenerate Hessian. More precisely, we have

det

(
∂2
ξ1
ϕ(ξ) ∂2

ξ1,ξ2
ϕ(ξ)

∂2
ξ1,ξ2

ϕ(ξ) ∂2
ξ2
ϕ(ξ)

)
= ξ2

3

|ξ |4

which is not degenerate for ξ3 �= 0. Therefore for ξ3 �= 0, we can choose j1 = 1
and j2 = 2. Similarly, ξ1 �= 0, we can choose j1 = 2 and j2 = 3 and for ξ2 �= 0, we
can choose j1 = 1 and j2 = 3. Therefore, using that the support of ψ does not meet
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zero, after splitting the support of the integration in three regions, by choosing the
two “good” variables and by neglecting the integration with respect to the remaining
variable, we obtain that

∫

supp(ψ)

dξ

(1 + |tN ||∇ϕ(ξ)|2)2 �
∫

R2

dηj1dηj2

(1 + |tN | (|ηj1 |2 + |ηj2 |2)2
� (tN)−1 .

Thus, we have (4.1.34) which in turn implies (4.1.33).
Thanks to (4.1.33), we arrive at the estimate

∥∥ψ2(Dx/N)e
±i(t−τ )√−�

R3G(τ)
∥∥
L∞
x
� N2|t − τ |−1‖G(τ)‖L1

x
.

On the other hand, we also have the trivial bound

∥∥ψ2(Dx/N)e
±i(t−τ )√−�

R3G(τ)
∥∥
L2
x
� ‖G(τ)‖L2

x
.

Therefore using the basic Riesz-Torin interpolation theorem, we arrive at the bound

∥∥ψ2(Dx/N)e
±i(t−τ )√−�

R3G(τ)
∥∥
L
q
x
� N

4
p

|t − τ | 2
p

‖G(τ)‖
L
q′
x
.

Therefore coming back to (4.1.30), we get

‖T (T �(G))‖Lqx �
∫ 1

0

N
4
p

|t − τ | 2
p

∥∥G(τ)
∥∥
L
q′
x
dτ .

Therefore, the estimate (4.1.29) would follow from the one dimensional estimate

∥∥
∫

R

f (τ)

|t − τ | 2
p

dτ
∥∥
Lp(R)

� ‖f ‖
Lp

′
(R)
. (4.1.35)

Thanks to our assumption, one has 2
p
< 1 and also

1 + 1

p
= 1

p′
+ 2

p
.

Therefore estimate (4.1.35) is precisely the Hardy-Littlewood-Sobolev inequality
(cf. [29]). This completes the proof of (4.1.26), once we provide the proof of
Proposition 4.1.15.
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Proof of Proposition 4.1.15 We follow [17]. Consider the first order differential
operator defined by

L ≡ 1

i(1 + λ|∇ϕ|2)
d∑

j=1

∂jϕ∂j + 1

1 + λ|∇ϕ|2 .

which satisfies L(eiλϕ) = eiλϕ . We have that

∫

Rd

eiλϕ(x)a(x)dx =
∫

Rd

L(eiλϕ(x))a(x)dx =
∫

Rd

eiλϕ(x)L̃(a(x))dx,

where L̃ is defined by

L̃(u) = −
d∑

j=1

∂jϕ

i(1 + λ|∇ϕ|2)∂j u

+
(
−

d∑

j=1

∂2
j ϕ

i(1 + λ|∇ϕ|2) +
d∑

j=1

2λ∂jϕ (∇ϕ · ∇∂jϕ)
i(1 + λ|∇ϕ|2)2

)
u+ 1

1 + λ|∇ϕ|2u .

As a consequence, we get the bound

∣∣∣
∫

Rd

eiλϕ(x)a(x)dx

∣∣∣ ≤
∫

Rd

|L̃Na|, (4.1.36)

where N ∈ N. To conclude, we need to estimate the coefficients of L̃. We shall use
the notation 〈u〉 = (1 + |u|2) 1

2 and we set λ = μ2. At first, we consider

F(x) = Q(μ2|∇ϕ(x)|2), Q(u) = 1

1 + u
, u ≥ 0.

We clearly have

F � 〈μ∇ϕ〉−2 (4.1.37)

and we shall estimate the derivatives of F . Set

�k(x) = sup
2≤|α|≤k

|∂αϕ(x)|.

We have the following statement.

Lemma 4.1.17 For |α| = k ≥ 1, we have the bound

|∂αF (x)| � C(�k+1(x))
( 1

〈μ∇ϕ(x)〉2 + μk

〈μ∇ϕ(x)〉k+2

)
, (4.1.38)
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where C : R
+ → R

+ is a suitable continuous increasing function (which can
change from line to line and can always be taken of the form C(t) = (1 + t)M for a
sufficiently large M).

Proof Using an induction on k, we get that ∂αF for |α| = k ≥ 1 is a linear
combination of terms under the form

Tq = Q(m)(μ2|∇ϕ|2)
(
∂γ1(μ2|∇ϕ|2)

)q1 · · ·
(
∂γk(μ2|∇ϕ|2)

)qk

where

q1 + · · · + qk = m and
∑

|γi |qi = k, qi ≥ 0. (4.1.39)

Since |Q(m)(u)| � 〈u〉−m−1, we get

|Tq | � 1

〈μ∇ϕ〉2
(

μ

〈μ∇ϕ〉
)2m ∣∣∣

(
∂γ1(|∇ϕ|2)

)q1 · · ·
(
∂γk (|∇ϕ|2)

)qk ∣∣∣.

Moreover, by the Leibnitz formula

∂γi (|∇ϕ|2) ≤
{
C(�2)|∇ϕ|, if |γi | = 1,
C(�|γi |+1)(|∇ϕ| + 1), if |γi | > 1.

We therefore have the following bound for Tq

|Tq | � C(�k+1)
1

〈μ∇ϕ〉2
(

μ

〈μ∇ϕ〉
)2m (

|∇ϕ|m + |∇ϕ|
∑

|γi |=1 qi
)

� C(�k+1)
1

〈μ∇ϕ〉2
[(

μ

〈μ∇ϕ〉
)m

+
(

μ

〈μ∇ϕ〉
)m+∑

|γi |>1 qi
]
.

Next, by using (4.1.39), we note that

m+
∑

|γi |>1

qi =
∑

|γi |>1

2qi +
∑

|γi |=1

qi ≤
∑

|γi |qi = k.

Therefore, we get

|Tq | � C(�k+1)
( 1

〈μ∇ϕ〉2 + μk

〈μ∇ϕ〉k+2

)
.

This completes the proof of Lemma 4.1.17. ��
We are now in position to prove the following statement.
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Lemma 4.1.18 For N ∈ N, we can write L̃N under the form

L̃Nu =
∑

|α|≤N
a(N)α ∂αu (4.1.40)

with the estimates

|a(N)α (x)| � C(�N+2(x))
1

〈μ∇ϕ(x)〉N (4.1.41)

and more generally for |β| = k,

|∂βa(N)α (x)| � C(�N+k+2(x))
( 1

〈μ∇ϕ(x)〉N + μk

〈μ∇ϕ(x)〉N+k
)
. (4.1.42)

Proof We reason by induction on N . First, we notice that L̃ is under the form

L̃ =
d∑

j=1

aj ∂j + b,

where

aj = i∂jϕF, b = F + i

d∑

j=1

∂j
(
∂jϕF

) = F +
d∑

j=1

∂jaj .

Consequently, by using (4.1.37), we get that

|aj | � 1

μ

1

〈μ∇ϕ〉 (4.1.43)

and by the Leibnitz formula, since ∂αaj for |α| ≥ 1 is a linear combination of terms
under the form

(∂β∂jϕ)∂
γ F, |β| + |γ | = |α|,

we get by using (4.1.38) that for |α| = k ≥ 1,

|∂αaj | � C(�k+1)
( 1

〈μ∇ϕ〉 +
μk−1

〈μ∇ϕ〉k+1

)
. (4.1.44)

Consequently, we also find thanks to (4.1.44), (4.1.38) that for |α| = k ≥ 0,

|∂αb| � C(�k+2)
( 1

〈μ∇ϕ〉 +
μk

〈μ∇ϕ〉k+2

)
. (4.1.45)
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Using (4.1.44) (4.1.45), we obtain that the assertion of the lemma holds true for
N = 1. Next, let us assume that it is true at the order N . We have

(L̃)N+1u =
d∑

j=1

∑

|α|≤N

(
aja

(N)
α ∂j ∂

αu+ aj ∂ja
(N)
α ∂αu

)
+

∑

|α|≤N
ba(N)α ∂αu.

Consequently, we get that the coefficients are under the form

a(N+1)
α = aja

(N)
β , |α| = N + 1, |β| = N,

a(N+1)
α = aj ∂ja

(N)
β + aja

(N)
γ + ba

(N)
δ , |β| = |δ| = |α|, |γ | = |α| − 1.

Therefore, by using (4.1.43) and (4.1.42), we get that (4.1.41) is true for N + 1.
In order to prove (4.1.42) for N + 1, we need to evaluate ∂γ a

(N+1)
α . The

estimate of the contribution of all terms except ∂γ (aj∂j a
(N)
β ) follows directly

from the induction hypothesis. In order to estimate ∂γ (aj∂j a
(N)
β ), we need to

invoke (4.1.43) and (4.1.44) and the induction hypothesis. This completes the proof
of Lemma 4.1.18. ��
Finally, thanks to (4.1.36) and Lemma 4.1.18, we get

∣∣∣
∫

Rd

eiλϕ(x)a(x) dx

∣∣∣ � K

∫

supp(a)

dx

(1 + λ|∇ϕ|2)N2
dx,

where

K ≡ ( sup
x∈supp(a)

�N+2(x))
(

sup
x∈Rd

sup
|α|≤N

|∂αa(x)|).

This completes the proof of Proposition 4.1.15. ��
This completes the proof of Proposition 4.1.13. ��
This completes the proof of Proposition 4.1.12. ��

Remark 4.1.19 If in the proof of the Strichartz estimates, we use the triangle
inequality instead of the square function theorem and the Young inequality instead
of the Hardy-Littlewood-Sobolev inequality, we would obtain slightly less precise
estimates. These estimates are sufficient to get all sub-critical well-posedness
results. However in the case of initial data with critical Sobolev regularity the finer
arguments using the square function and the Hardy-Littlewood-Sobolev inequality
are essentially needed.
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4.1.4 Local Well-Posedness in Hs × Hs−1, s ≥ 1/2

In this section, we shall use the Strichartz estimates in order to improve the well-
posedness result of Proposition 4.1.1. We shall be able to consider initial data in the
more singular Sobolev spaces Hs ×Hs−1, s ≥ 1/2. We start by a definition.

Definition 4.1.20 For 0 ≤ s < 1, a couple of real numbers (p, q), 2
s
≤ p ≤ +∞

is s-admissible if

1

p
+ 3

q
= 3

2
− s.

For T > 0, 0 ≤ s < 1, we define the spaces

XsT = C([0, T ];Hs(T3))
⋂

(p,q) s-admissible

Lp((0, T );Lq(T3)) (4.1.46)

and its “dual space”

Y sT =
⋃

(p,q) s-admissible

Lp
′
((0, T );Lq ′(T3)) (4.1.47)

(p′, q ′) being the conjugate couple of (p, q), equipped with their natural norms
(notice that to define these spaces, we can keep only the extremal couples corre-
sponding to p = 2/s and p = +∞ respectively).

We can now state the non homogeneous Strichartz estimates for the three dimen-
sional wave equation on the torus T3.

Theorem 4.1.21 For every 0 < s < 1, every s-admissible couple (p, q), there
exists C > 0 such that for every T ∈]0, 1], every F ∈ Y 1−s

T , every (u0, u1) ∈
Hs(T3)×Hs−1(T3) one has

‖S(t)(u0, u1)‖XsT ≤ C(‖u0‖Hs(T3) + ‖u1‖Hs−1(T3)) (4.1.48)

and

∥∥∥
∫ t

0

sin((t − τ )
√−�)√−� (F(τ))dτ

∥∥∥
XsT

≤ C‖F‖
Y 1−s
T

(4.1.49)

Proof Thanks to the Hölder inequality, in order to prove (4.1.48), it suffices
the consider the two end point cases for p, i.e. p = 2/s and p = ∞ (the
estimate in C([0, T ];Hs(T3)) is straightforward). The case p = 2/s follows from
Theorem 4.1.9. The case p = ∞ results from the Sobolev embedding. This ends
the proof of (4.1.48).
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Let us next turn to (4.1.49). We first observe that

∥∥∥
∫ t

0

sin((t − τ )
√−�)√−� (F(τ))dτ

∥∥∥
C([0,T ];Hs(T3))

≤ C‖F‖
Y 1−s
T

(4.1.50)

follows by duality from (4.1.48). Thanks to (4.1.50), we obtain that it suffices to
show

∥∥∥
∫ t

0

sin((t − τ )
√−�)√−� (F(τ))dτ

∥∥∥
L
p1
T Lq1

≤ C‖F‖
L
p′2
T L

q′2
, (4.1.51)

where (p1, q1) is s-admissible and (p′2, q ′2) are such that (p2, q2) are (1 − s)-
admissible and where for shortness we set

L
p
T L

q ≡ Lp((0, T );Lq(T3)).

Denote by �0 the projector on the zero Fourier mode on T
3, i.e.

�0(f ) = (2π)−3
∫

T3
f (x)dx .

We have the bound

∥∥∥
∫ t

0

sin((t − τ )
√−�)√−� (�0F(τ))dτ

∥∥∥
L
p
T L

q
≤ C‖F‖L1((0,T );L1(T3)) .

By the Hölder inequality

‖F‖L1((0,T );L1(T3)) ≤ C‖F‖
L
p′2
T L

q′2

and therefore, it suffices to show the bound

∥∥∥
∫ t

0

sin((t − τ )
√−�)√−� (�⊥

0 F(τ))dτ

∥∥∥
L
p1
T Lq1

≤ C‖F‖
L
p′2
T L

q′2
, (4.1.52)

where

�⊥
0 ≡ 1 −�0 .

By writing the sin function as a sum of exponentials, we obtain that (4.1.52) follows
from

∥∥∥
∫ t

0
e±i(t−τ )

√−�((−�)− 1
2�⊥

0 F(τ))dτ

∥∥∥
L
p1
T Lq1

≤ C‖F‖
L
p′2
T L

q′2
. (4.1.53)
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Observe that (−�)− 1
2�⊥

0 is well defined as a bounded operator from Hs(T3) to
Hs+1(T3). Set

K ≡ e±it
√−��⊥

0 .

Thanks to (4.1.48), by writing

e±it
√−��⊥

0 = cos(t
√−�)�⊥

0 ± i sin(t
√−�)(−�)− 1

2�⊥
0 (−�)

1
2 ,

we see that the mapK is bounded fromHs(T3) to XsT . Consequently, the dual map
K∗, defined by

K∗(F ) =
∫ T

0
e∓iτ

√−��⊥
0 (F (τ))dτ

is bounded from Y s to H−s(T3). Using the last property with s replaced by
1 − s (which remains in ]0, 1[ if s ∈]0, 1[), we obtain the following sequence of
continuous mappings

L
p′2
T L

q ′2 K�−→ Hs−1(T3)
(−�)− 1

2 �⊥
0−→ Hs(T3)

K−→ L
p1
T L

q1 . (4.1.54)

On the other hand, we have

(
K ◦ ((−�)− 1

2�⊥
0 ) ◦K∗)(F ) =

∫ T

0
e±i(t−τ )

√−�((−�)− 1
2�⊥

0 F(τ))dτ

Therefore, we obtain the bound

∥∥∥
∫ T

0
e±i(t−τ )

√−�((−�)− 1
2�⊥

0 F(τ))dτ

∥∥∥
L
p1
T Lq1

≤ C‖F‖
L
p′2
T L

q′2
. (4.1.55)

The passage from (4.1.55) to (4.1.53) can be done by using the Christ-Kiselev [11]
argument, as we explain below. By a density argument it suffices to prove (4.1.53)
for F ∈ C∞([0, T ] × T

3). We can of course also assume that

‖F‖
L
p′2
T L

q′2
= 1.

For n ≥ 1 an integer and m = 0, 1, · · · , 2n, we define tn,m as

∫ tn,m

0
‖F(τ)‖p′2

L
q′2 (T3)

dτ = m2−n .
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Of course 0 = tn,0 ≤ tn,1 ≤ · · · ≤ tn,2n = T . Next, we observe that for 0 ≤
α < β ≤ 1 there is a unique n such that α ∈ [2m2−n, (2m + 1)2−n) and β ∈
[(2m + 1)2−n, (2m + 2)2−n) for some m ∈ {0, 1, · · · , 2n−1 − 1}. Indeed, this
can be checked by writing the representations of α and β in base 2 (the number
n corresponds to the first different digit of α and β). Therefore, if we denote by
χτ<t (τ, t) the characteristic function of the set {(τ, t) : 0 ≤ τ < t ≤ T } then we
can write

χτ<t (τ, t) =
∞∑

n=1

2n−1−1∑

m=0

χn,2m(τ)χn,2m+1(t), (4.1.56)

where χn,m (m = 0, 1, · · · , 2n) denotes the characteristic function of the interval
[tn,m, tn,(m+1)). Indeed, in order to achieve (4.1.56), it suffices to apply the previous
observation for every : 0 ≤ τ < t ≤ T with α and β defined as

α =
∫ τ

0
‖F(s)‖p′2

L
q′2 (T3)

ds, β =
∫ t

0
‖F(s)‖p′2

L
q′2 (T3)

ds .

Therefore, thanks to (4.1.56), we can write

∫ t

0
e±i(t−τ )

√−�((−�)− 1
2�⊥

0 F(τ))dτ

as

∞∑

n=1

2n−1−1∑

m=0

χn,2m+1(t)

∫ T

0
e±i(t−τ )

√−�((−�)− 1
2�⊥

0 χn,2m(τ)F (τ))dτ .

The goal is to evaluate the Lp1
T L

q1 norm of the last expression. Using that for a
fixed n, χn,2m+1(t) have disjoint supports, we obtain that the Lp1

T L
q1 norm of the

last expression can be estimated by

∞∑

n=1

( 2n−1−1∑

m=0

∥∥
∫ T

0
e±i(t−τ )

√−�((−�)− 1
2�⊥

0 χn,2m(τ)F (τ))dτ
∥∥p1

L
p1
T Lq1

) 1
p1 .

Now, using (4.1.55), we obtain that the last expression is bounded by

C

∞∑

n=1

( 2n−1−1∑

m=0

∥∥χn,2m(τ)F (τ)
∥∥p1

L
p′2
T L

q′2

) 1
p1 . (4.1.57)
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By definition

∥∥χn,2m(τ)F (τ)
∥∥p′2
L
p′2
T L

q′2
= 2−n

and therefore (4.1.57) equals to

C

∞∑

n=1

( 2n−1−1∑

m=0

2
− np1

p′2
) 1
p1 ≤ C

∞∑

n=1

2
n( 1
p1

− 1
p′2
)
.

The last series is convergent since by the definition of admissible pairs it follows
that p′2 < 2 < p1. Therefore we proved that (4.1.55) indeed implies (4.1.53). This
completes the proof of Theorem 4.1.21. ��
We can now use Theorem 4.1.21 in order to get the following improvement of
Proposition 4.1.1.

Theorem 4.1.22 (Low Regularity Local Well-Posedness) Let s > 1/2. Consider
the cubic defocusing wave equation

(∂2
t −�)u+ u3 = 0 , (4.1.58)

posed on T
3. There exist positive constants γ , c and C such that for every � ≥ 1,

every

(u0, u1) ∈ Hs(T3)×Hs−1(T3)

satisfying

‖u0‖Hs + ‖u1‖Hs−1 ≤ � (4.1.59)

there exists a unique solution of (4.1.58) on the time interval [0, T ], T ≡ c�−γ
with initial data

u(0, x) = u0(x), ∂tu(0, x) = u1(x) .

Moreover the solution satisfies

‖(u, ∂tu)‖L∞([0,T ],Hs (T3)×Hs−1(T3)) ≤ C�,

u is unique in the class XsT described in Definition 4.1.20 and the dependence with
respect to the initial data and with respect to the time is continuous. More precisely,
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if u and ũ are two solutions of (4.1.58) with initial data satisfying (4.1.59) then

‖(u− ũ, ∂tu− ∂t ũ)‖L∞([0,T ],Hs (T3)×Hs−1(T3))

≤ C
(‖u(0)− ũ(0)‖Hs(T3) + ‖∂tu(0)− ∂t ũ(0)‖Hs−1(T3)

)
. (4.1.60)

Finally, if

(u0, u1) ∈ Hσ (T3)×Hσ−1(T3)

for some σ ≥ s then there exists cσ > 0 such that

(u, ∂tu) ∈ C([0, cσ�−γ ];Hσ(T3)×Hσ−1(T3)) .

Proof We shall suppose that s ∈ (1/2, 1), the case s ≥ 1 being already treated in
Proposition 4.1.1. As in the proof of Proposition 4.1.1, we solve the integral equation

u(t) = S(t)(u0, u1)−
∫ t

0

sin((t − τ )
√−�)√−� ((u3(τ ))dτ

by a fixed point argument. Recall that

	u0,u1(u) = S(t)(u0, u1)−
∫ t

0

sin((t − τ )
√−�)√−� ((u3(τ ))dτ.

We shall estimate 	u0,u1(u) in the spaces XsT introduced in Definition 4.1.20.
Thanks to Theorem 4.1.21

‖S(t)(u0, u1)‖XsT ≤ C(‖u0‖Hs(T3) + ‖u1‖Hs−1(T3)) .

Another use of Theorem 4.1.21 gives

∥∥∥
∫ t

0

sin((t − τ )
√−�)√−� ((u3(τ ))dτ

∥∥∥
XsT

≤ C‖u3‖
L

2
1+s
T L

2
2−s

= C‖u‖3

L

6
1+s
T L

6
2−s

.

Observe that the couple ( 2
1+s ,

2
2−s ) is the dual of ( 2

1−s ,
2
s
) which is the end point

(1 − s)-admissible couple. We also observe that if (p, q) is an s-admissible couple
then 1

q
ranges in the interval [ 1

2 − s
2 ,

1
2 − s

3 ]. The assumption s ∈ (1/2, 1) implies

1

2
− s

2
<

2 − s

6
<

1

2
− s

3
.
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Therefore q� ≡ 6
2−s is such that there exists p� such that (p�, q�) is an s-admissible

couple. By definition p� is such that

1

p�
+ 3

q�
= 3

2
− s .

The last relation implies that

1

p�
= 1

2
− s

2
.

Now, using the Hölder inequality in time, we obtain

‖u‖
L

6
1+s
T L

6
2−s

≤ T
2s−1

3 ‖u‖
L
p�

T Lq
�

which in turn implies

∥∥∥
∫ t

0

sin((t − τ )
√−�)√−� ((u3(τ ))dτ

∥∥∥
XsT

≤ CT 2s−1‖u‖3
XsT
.

Consequently

‖	u0,u1(u)‖XsT ≤ C(‖u0‖Hs(T3) + ‖u1‖Hs−1(T3))+ CT 2s−1‖u‖3
XsT
.

A similar argument yields

‖	u0,u1(u)−	u0,u1(v)‖XsT ≤ CT 2s−1(‖u‖2
XsT

+ ‖v‖2
XsT

)‖u− v‖XsT . (4.1.61)

Now, one obtains the existence and the uniqueness statements as in the proof of
Proposition 4.1.1. Estimate (4.1.60) follows from (4.1.61) and a similar estimate
obtained after differentiation of the Duhamel formula with respect to t . The propa-
gation of regularity statement can be obtained as in the proof of Proposition 4.1.1.
This completes the proof of Theorem 4.1.22. ��
Concerning the uniqueness statement, we also have the following corollary which
results from the proof of Theorem 4.1.22.

Corollary 4.1.23 Let s > 1/2. Let (p�, q�) be the s-admissible couple defined by

p� = 2

1 − s
, q� ≡ 6

2 − s
.

Then the solutions constructed in Theorem 4.1.22 is unique in the class

Lp
�

([0, T ];Lq�(T3)) .
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Remark 4.1.24 As a consequence of Theorem 4.1.22, we have that for each
(u0, u1) ∈ Hs(T3)×Hs−1(T3) there is a solution with a maximum time existence
T � and if T � <∞ than necessarily

lim
t→T �

‖(u(t), ∂tu(t))‖Hs(T3)×Hs−1(T3) = ∞. (4.1.62)

One can also prove a suitable local well-posedness in the case s = 1/2 but in this
case the dependence of the existence time on the initial data is more involved. Here
is a precise statement.

Theorem 4.1.25 Consider the cubic defocusing wave equation

(∂2
t −�)u+ u3 = 0 , (4.1.63)

posed on T
3. For every

(u0, u1) ∈ H 1
2 (T3)×H− 1

2 (T3)

there exists a time T > 0 and a unique solution of (4.1.63) in

L4([0, T ] × T
3)× C([0, T ];H 1

2 (T3)),

with initial data

u(0, x) = u0(x), ∂tu(0, x) = u1(x) .

Proof For T > 0, using the Strichartz estimates of Theorem 4.1.21, we get

‖	u0,u1(u)‖L4([0,T ]×T3) ≤ ‖S(t)(u0, u1)‖L4([0,T ]×T3) + C‖u3‖L4/3([0,T ]×T3)

= ‖S(t)(u0, u1)‖L4([0,T ]×T3) + C‖u‖3
L4([0,T ]×T3)

.

Similarly, we get

‖	u0,u1(u)−	u0,u1(v)‖L4([0,T ]×T3)

≤ C
(‖u‖2

L4([0,T ]×T3)
+ ‖v‖2

L4([0,T ]×T3)

)‖u− v‖L4([0,T ]×T3) .

Therefore if T is small enough then we can construct the solution by a fixed point
argument in L4([0, T ]×T

3). In addition, the Strichartz estimates of Theorem 4.1.21

yield that the obtained solution belongs to C([0, T ];H 1
2 (T3)). This completes the

proof of Theorem 4.1.25. ��
Remark 4.1.26 Observe that for data inH

1
2 (T3)×H− 1

2 (T3) we no longer have the
small factor T κ , κ > 0 in the estimates for 	u0,u1 . This makes that the dependence
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of the existence time T on the data (u0, u1) is much less explicit. In particular,
we can no longer conclude that the existence time is the same for a fixed ball in

H
1
2 (T3) × H− 1

2 (T3) and therefore we do not have the blow-up criterium (4.1.62)
(with s = 1/2).

4.1.5 A Constructive Way of Seeing the Solutions

In the proof of Theorem 4.1.22, we used the contraction mapping principle in order
to construct the solutions. Therefore, one can define the solutions in a constructive
way via the Picard iteration scheme. More precisely, for (u0, u1) ∈ Hs(T3) ×
Hs−1(T3), we define the sequence (u(n))n≥0 as u(0) = 0 and for a given u(n), n ≥ 0,
we define u(n+1) as the solutions of the linear wave equation

(∂2
t −�)u(n+1) + (u(n))3 = 0, u(0) = u0, ∂tu(0) = u1.

Thanks to (the proof of) Theorem 4.1.22 the sequence (u(n))n≥0 is converging in
XsT , and in particular in C([0, T ];Hs(T3)) for

T ≈ (‖u(0)‖Hs(T3) + ‖∂tu(0)‖Hs−1(T3))
−γ , γ > 0.

One has that

u(1) = S(t)(u0, u1)

and for n ≥ 1,

u(n+1) = u(1) + T (u(n), u(n), u(n)),

where the trilinear map T is defined as

T (u, v,w) = −
∫ t

0

sin((t − τ )
√−�)√−� ((u(τ)v(τ )w(τ))dτ.

One then may compute

u(2) = u(1) + T (u(1), u(1), u(1)).
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The expression for u(3) is then

u(3) = u(1) + T (u(1), u(1), u(1))+ 3T (u(1), u(1),T (u(1), u(1), u(1)))

+ 3T (u(1),T (u(1), u(1), u(1)),T (u(1), u(1), u(1)))

+ T (T (u(1), u(1), u(1)),T (u(1), u(1), u(1)),T (u(1), u(1), u(1))).

We now observe that for n ≥ 2, the nth Picard iteration u(n) is a sum from j = 1
to j = 3n−1 of j -linear expressions of u(1). Moreover the first 3n−2 terms of this
sum contain the (n− 1)th iteration. Therefore the solution can be seen as an infinite
sum of multi-linear expressions of u(1). The Strichartz inequalities we proved can
be used to show that for s ≥ 1/2,

‖T (u, v,w)‖Hs(T3) � ‖u‖Hs(T3)‖v‖Hs(T3)‖w‖Hs(T3) .

The last estimate can be used to analyse the multi-linear expressions in the
expansion and to show its convergence. Observe that, we do not exploit any
regularising effect in the terms of the expansion. The ill-posedness result of the
next section, will basically show that such an effect is in fact not possible. In our
probabilistic approach in the next section, we will exploit that the trilinear term
in the expression defining the solution is more regular in the scale of the Sobolev
spaces than the linear one, almost surely with respect to a probability measure on
Hs , s < 1/2.

4.1.6 Global Well-Posedness in Hs × Hs−1, for Some s < 1

One may naturally ask whether the solutions obtained in Theorem 4.1.22 can
be extended globally in time. Observe that one cannot use the argument of
Theorem 4.1.2 because there is no a priori bound available at the Hs , s �= 1
regularity. One however has the following partial answer.

Theorem 4.1.27 (Low Regularity Global Well-Posedness) Let s > 13/18. Then
the local solution obtained in Theorem 4.1.22 can be extended globally in time.

For the proof of Theorem 4.1.27, we refer to [18, 27, 40]. Here, we only present
the main idea (introduced in [14]). Let (u0, u1) ∈ Hs(T3) × Hs−1(T3) for some
s ∈ (1/2, 1). Let T � 1. ForN ≥ 1, we define a smooth Fourier multiplier acting as
1 for frequencies n ∈ Z

3 such that |n| ≤ N and acting asN1−s |n|s−1 for frequencies
|n| ≥ 2N . A concrete choice of IN is IN(D) = I

(
(−�)1/2/N)

, where I (x) is a
smooth function which equals 1 for x ≤ 1 and which equals xs−1 for x ≥ 2. In
other words I (x) is one for x close to zero and decays like xs−1 for x � 1. We
chooseN = N(T ) such that for the times of the local existence the modified energy
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(which is well-defined in Hs ×Hs−1)

∫

T3

(
(∂t INu)

2 + (∇INu)2 + 1

2
(INu)

4
)

does not vary much. This allows to extend the local solutions up to time T � 1.
The analysis contains two steps, a local existence argument for INu under the
assumption that the modified energy remains below a fixed size and an energy
increase estimate which is the substitute of the energy conservation used in the proof
of Theorem 4.1.2. More precisely, we chooseN asN = T γ for some γ = γ (s) ≥ 1.
With this choice of N the initial size of the modified energy is T γ (1−s). The local
well-posedness argument assures that INu (and thus u as well) exists on time of
size T −β for some β > 0 as far as the modified energy remains � T γ (1−s). The
main part of the analysis is to get an energy increase estimate showing that on the
local existence time the modified energy does not increase more then T −α for some
α > 0. In order to arrive at time T we need to iterate ≈ T 1+β times the local
existence argument. In order to ensure that at each step of the iteration the modified
energy remains � T γ (1−s), we need to impose the condition

T 1+β T −α � T γ (1−s), T � 1. (4.1.64)

As far as (4.1.64) is satisfied, we can extend the local solutions globally in time. The
condition (4.1.64) imposes the lower bound on s involved in the statement of The-
orem 4.1.27. One may conjecture that the global well-posedness in Theorem 4.1.27
holds for any s > 1/2.

4.1.7 Local Ill-Posedness in Hs × Hs−1, s ∈ (0, 1/2)

It turns out that the restriction s > 1/2 in Theorem 4.1.22 is optimal. Recall that the
classical notion of well-posedness in the Hadamard sense requires the existence, the
uniqueness and the continuous dependence with respect to the initial data. A very
classical example of contradicting the continuous dependence with respect to the
initial data for a PDE is the initial value problem for the Laplace equation with data
in Sobolev spaces. Indeed, consider

(∂2
t + ∂2

x )v = 0, v : Rt × Tx −→ R. (4.1.65)

Equation (4.1.65) has the explicit solution

vn(t, x) = e−
√
nsh(nt) cos(nx).
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Then for every (s1, s2) ∈ R
2, vn satisfies

‖(vn(0), ∂t vn(0))‖Hs1 (T)×Hs2 (T) � e−
√
nnmax(s1,s2+1) −→ 0,

as n tends to +∞ but for t �= 0,

‖(vn(t), ∂t vn(t))‖Hs1 (T)×Hs2 (T) � en|t | e−
√
nnmin(s1,s2+1) −→ +∞,

as n tends to +∞. Consequently (4.1.65) in not well-posed in Hs1(T)×Hs2(T) for
every (s1, s2) ∈ R

2 because of the lack of continuous dependence with respect to
the initial data (0, 0).

It turns out that a similar phenomenon happens in the context of the cubic
defocusing wave equation with low regularity initial data. As we shall see below
the mechanism giving the lack of continuous dependence is however quite different
compared to (4.1.65). Here is the precise statement.

Theorem 4.1.28 Let us fix s ∈ (0, 1/2) and (u0, u1) ∈ C∞(T3) × C∞(T3). Then
there exist δ > 0, a sequence (tn)∞n=1 of positive numbers tending to zero and a
sequence (un(t, x))∞n=1 of C(R;C∞(T3)) functions such that

(∂2
t −�)un + u3

n = 0

with

‖(un(0)− u0, ∂tun(0)− u1)‖Hs(T3)×Hs−1(T3) ≤ C[log(n)]−δ →n→+∞ 0

but

‖(un(tn), ∂tun(tn))‖Hs(T3)×Hs−1(T3) ≥ C[log(n)]δ →n→+∞ +∞.

In particular, for every T > 0,

lim
n→+∞‖(un(t), ∂tun(t))‖L∞([0,T ];Hs(T3)×Hs−1(T3)) = +∞.

Proof of Theorem 4.1.28 We follow [6, 12, 48]. Consider

(∂2
t −�)u+ u3 = 0 (4.1.66)

subject to initial conditions

(u0(x)+ κnn
3
2−sϕ(nx), u1(x)), n� 1 , (4.1.67)

where ϕ is a nontrivial bump function on R
3 and

κn ≡ [log(n)]−δ1,
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with δ1 > 0 to be fixed later. Observe that for n � 1, we can see ϕ(nx) as a C∞
function on T

3.
Thanks to Theorem 4.1.2, we obtain that (4.1.66) with data given by (4.1.67)

has a unique global smooth solution which we denote by un. Moreover un ∈
C(R;C∞(T3)) thanks the propagation of the higher Sobolev regularity and the
Sobolev embeddings.

Next, we consider the ODE

V ′′ + V 3 = 0, V (0) = 1, V ′(0) = 0. (4.1.68)

Lemma 4.1.29 The Cauchy problem (4.1.68) has a global smooth (non constant)
solution V (t) which is periodic.

Proof One defines locally in time the solution of (4.1.68) by an application of the
Cauchy-Lipschitz theorem. In order to extend the solutions globally in time, we
multiply (4.1.68) by V ′. This gives that the solutions of (4.1.68) satisfy

d

dt

(
(V ′(t))2 + 1

2
(V (t))4

) = 0

and therefore taking into account the initial conditions, we get

(V ′(t))2 + 1

2
(V (t))4 = 1

2
. (4.1.69)

The relation (4.1.69) implies that (V (t), V ′(t)) cannot go to infinity in finite time.
Therefore the local solution of (4.1.68) is defined globally in time. Let us finally
show that V (t) is periodic in time. We first observe that thanks to (4.1.69), |V (t)| ≤
1 for all times t . Therefore t = 0 is a local maximum of V (t). We claim that there
is t0 > 0 such that V ′(t0) = 0. Indeed, otherwise V (t) is decreasing on [0,+∞)

which implies that V ′(t) ≤ 0 and from (4.1.69), we deduce

V ′(t) = −
√
(1 − (V (t)))4

2
.

Integrating the last relation between zero and a positive t0 gives

t0 = √
2
∫ 1

V (t0)

dv√
1 − v4

.

Therefore

t0 ≤ √
2

∫ 1

−1

dv√
1 − v4
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and we get a contradiction for t0 � 1. Hence, we indeed have that there is t0 > 0
such that V ′(t0) = 0. Coming back to (4.1.69) and using that V (t0) < 1, we deduce
that V (t0) = −1. Therefore t = t0 is a local minimum of V (t). We now can show
exactly as before that there exists t1 > t0 such that V ′(t1) = 0 and V (t1) > −1.
Once again using (4.1.69), we infer that V (t1) = 1, i.e. V (0) = V (t1) and V ′(0) =
V ′(t1). By the uniqueness part of the Cauchy-Lipschitz theorem, we obtain that V
is periodic with period t1. This completes the proof of Lemma 4.1.29. ��
We next denote by vn the solution of

∂2
t vn + v3

n = 0, (vn(0), ∂tvn(0)) = (κnn
3
2−sϕ(nx), 0). (4.1.70)

It is now clear that

vn(t, x) = κnn
3
2−sϕ(nx)V

(
tκnn

3
2−sϕ(nx)

)
.

In the next lemma, we collect the needed bounds on vn.

Lemma 4.1.30 Let

tn ≡ [log(n)]δ2n−(
3
2−s)

for some δ2 > δ1. Then, we have the following bounds for t ∈ [0, tn],

‖�(vn)(t, ·)‖H 1(T3) ≤ C[log(n)]3δ2n3−s, (4.1.71)

‖�(vn)(t, ·)‖L2(T3) ≤ C[log(n)]2δ2n2−s , (4.1.72)

‖∇kvn(t, ·)‖L∞(T3) ≤ C[log(n)]kδ2n
3
2−s+k , k = 0, 1, · · · . (4.1.73)

Finally, there exists n0 � 1 such that for n ≥ n0,

‖vn(tn, ·)‖Hs(T3) ≥ Cκn(tnκnn
3
2−s )s = C[log(n)]−(s+1)δ1+sδ2 . (4.1.74)

Proof Estimates (4.1.71) and (4.1.72) follow from the general bound

‖vn(t, ·)‖Hσ (T3) ≤ Cκn(tnκnn
3
2−s )σ nσ−s , (4.1.75)

where t ∈ [0, tn] and σ ≥ 0. For integer values of σ , the bound (4.1.75) is a direct
consequence of the definition of vn. For fractional values of σ one needs to invoke an
elementary interpolation inequality in the Sobolev spaces. Estimate (4.1.73) follows
directly from the definition of vn. The proof of (4.1.74) is slightly more delicate. We
first observe that for n� 1, we have the lower bound

‖vn(tn, ·)‖H 1(T3) ≥ cκn(tnκnn
3
2−s )n1−s . (4.1.76)
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Now, we can obtain (4.1.74) by invoking (4.1.75) (with σ = 2), the lower
bound (4.1.76) and the interpolation inequality

‖vn(tn, ·)‖H 1(T3) ≤ ‖vn(tn, ·)‖θHs (T3)
‖vn(tn, ·)‖1−θ

H 2(T3)

for some θ > 0. It remains therefore to show (4.1.76). After differentiating once the
expression defining vn, we see that (4.1.76) follows from the following statement.

Lemma 4.1.31 Consider a smooth not identically zero periodic function V and a
non trivial bump function φ ∈ C∞

0 (R
d). Then there exist c > 0 and λ0 ≥ 1 such

that for every λ > λ0

‖φ(x)V (λφ(x))‖L2(Rd) ≥ c .

Proof We can suppose that the period of V is 2πL for some L > 0. Consider the
Fourier expansion of V ,

V (t) =
∑

n∈Z
vne

i nL t , |vn| ≤ CN(1 + |n|)−N .

We can assume that there is an open ball B of R
d such that for some c0 > 0,

|∂x1φ(x)| ≥ c0 on B. Let 0 ≤ ψ ≤ 1 be a non trivial C∞
0 (B) function. We can write

‖φ(x)V (λφ(x))‖2
L2(Rd)

≥ ‖ψ(x)φ(x)V (λφ(x))‖2
L2(B)

= I1 + I2,

where

I1 =
∑

n∈Z
|vn|2

∫

B

(ψ(x)φ(x))2dx,

and

I2 =
∑

n1 �=n2

vn1vn2

∫

B

eiλ
n1−n2
L

φ(x) (ψ(x)φ(x))2 dx.

Clearly I1 > 0 is independent of λ. On the other hand

eiλ
n1−n2
L

φ(x) = L

iλ(n1 − n2)∂x1φ(x)
∂x1

(
eiλ

n1−n2
L

φ(x)
)
.

Therefore, after an integration by parts, we obtain that |I2| � λ−1. This completes
the proof of Lemma 4.1.31. ��

This completes the proof of Lemma 4.1.30. ��
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We next consider the semi-classical energy

En(u) ≡ n−(1−s)
(‖∂tu‖2

L2(T3)
+ ‖∇u‖2

L2(T3)

) 1
2

+ n−(2−s)
(‖∂tu‖2

H 1(T3)
+ ‖∇u‖2

H 1(T3)

) 1
2 .

We are going to show that for very small times un and vn + S(t)(u0, u1) are
close with respect to En but these small times are long enough to get the needed
amplification of theHs norm. We emphasise that this amplification is a phenomenon
only related to the solution of (4.1.70). Here is the precise statement.

Lemma 4.1.32 There exist ε > 0, δ2 > 0 and C > 0 such that for δ1 < δ2, if we
set

tn ≡ [log(n)]δ2n−(
3
2−s)

then for every n� 1, every t ∈ [0, tn],

En
(
un(t)− vn(t)− S(t)(u0, u1)

) ≤ Cn−ε .

Moreover,

‖un(t)− vn(t)− S(t)(u0, u1)‖Hs(T3) ≤ Cn−ε . (4.1.77)

Proof Set uL = S(t)(u0, u1) and wn = un− uL− vn. Then wn solves the equation

(∂2
t −�)wn = �vn− 3v2

n(uL +wn)− 3vn(uL+wn)2 − (uL +wn)3, (4.1.78)

with initial data

(wn(0, ·), ∂twn(0, ·)) = (0, 0) .

Set

F ≡ �vn − 3v2
n(uL + wn)− 3vn(uL +wn)

2 − (uL + wn)
3 .

Multiplying Eq. (4.1.78) with ∂twn and integrating over T3 gives

∣∣∣
d

dt

(‖∂twn(t)‖2
L2(T3)

+ ‖∇wn(t)‖2
L2(T3)

)∣∣∣ � ‖∂twn(t)‖L2(T3)‖F(t)‖L2(T3)

which in turn implies

∣∣∣
d

dt

(‖∂twn(t)‖2
L2(T3)

+ ‖∇wn(t)‖2
L2(T3)

) 1
2

∣∣∣ � ‖F(t)‖L2(T3) . (4.1.79)
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Similarly, by first differentiating (4.1.78) with respect to the spatial variables, we
get the bound

∣∣∣
d

dt

(‖∂twn(t)‖2
H 1(T3)

+ ‖∇wn(t)‖2
H 1(T3)

) 1
2

∣∣∣ � ‖F(t)‖H 1(T3) . (4.1.80)

Now, using (4.1.79) and (4.1.80), we obtain the estimate

∣∣∣
d

dt

(
En(wn(t))

)∣∣∣ ≤ Cn−(2−s)‖F(t)‖H 1(T3) + Cn−(1−s)‖F(t)‖L2(T3) .

Therefore using (4.1.71), (4.1.72), we get

∣∣∣
d

dt

(
En(wn(t))

)∣∣∣ ≤ C
(
[log(n)]3δ2n

+ n−(2−s)‖G(t, ·)‖H 1(T3) + n−(1−s)‖G(t, ·)‖L2(T3)

)
,

(4.1.81)

whereG ≡ G1 +G2 with

G1 = −3v2
nuL − 3vnu2

L − u3
L

and

G2 = −3(uL + vn)
2wn − 3(uL + vn)w

2
n −w3

n.

Since uL ∈ C∞(R × T
3) is independent of n, using (4.1.73) and (4.1.75) we can

estimate G1 as follows

n−(l−s)‖G1(t, ·))‖Hl−1(T3) � [logn]δ2n
1
2−s � [log(n)]3δ2n, l = 1, 2.

Writing for t ∈ [0, tn],

wn(t, x) =
∫ t

0
∂twn(τ, x)dτ,

we obtain

‖wn(t, ·)‖Hk(T3) ≤ C[log(n)]δ2n−(
3
2−s) sup

0≤τ≤t
‖∂twn(τ, ·)‖Hk(T3) . (4.1.82)

Set

en(wn(t)) ≡ sup
0≤τ≤t

En(wn(τ )) .
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Observe that en(wn(t)) is increasing. Using (4.1.82) (with k = 0, 1), (4.1.73) and
the Leibniz rule, we get that for t ∈ [0, tn] and for l = 1, 2,

n−(l−s)‖(uL(t)+ vn(t))
2wn(t)‖Hl−1(T3) ≤ C[log(n)]lδ2n

3
2−sen(wn(t)) .

Thanks to the Gagliardo-Nirenberg inequality, and (4.1.82) with k = 0, we get for
t ∈ [0, tn],

‖wn(t, ·)‖L∞(T3) ≤ C‖wn(t, ·)‖
3
4
H 2(T3)

‖wn(t, ·)‖
1
4
L2(T3)

(4.1.83)

≤ Cn
3
2−sen(wn(t)) .

Hence, we can use (4.1.83) to treat the quadratic and cubic terms in wn and to get
the bound

n−(l−s)‖G2(t, ·)‖Hl−1(T3) ≤ C[log(n)]lδ2n
3
2−s(en(wn(t))+ [en(wn(t))]3

)
.

Therefore, coming back to (4.1.81), we get for t ∈ [0, tn],
∣∣∣
d

dt

(
En(wn(t))

)∣∣∣ ≤ C[log(n)]3δ2n

+ C[log(n)]2δ2n
3
2−s(en(wn(t))+ [en(wn(t))]3

)
.

We now observe that

d

dt

(
en(wn(t))

) ≤
∣∣∣
d

dt

(
En(wn(t))

)∣∣∣

is resulting directly from the definition. Therefore, we have the bound

d

dt

(
en(wn(t))

)
≤ C[log(n)]3δ2n

+ C[log(n)]2δ2n
3
2−s(en(wn(t))+ [en(wn(t))]3

)
. (4.1.84)

We first suppose that en(wn(t)) ≤ 1. This property holds for small values of t
since En(wn(0)) = en(wn(0)) = 0. In addition, the estimate for en(wn(t)) we are
looking for is much stronger than en(wn(t)) ≤ 1. Therefore, once we prove the
desired estimate for en(wn(t)) under the assumption en(wn(t)) ≤ 1, we can use a
bootstrap argument to get the estimate without the assumption en(wn(t)) ≤ 1.

Estimate (4.1.84) yields that for t ∈ [0, tn],
d

dt
(en(wn(t))) ≤ C[log(n)]3δ2n+ C[log(n)]2δ2n

3
2−sen(wn(t))
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and consequently

d

dt

(
e−Ct [log(n)]2δ2n 3

2 −s
en(wn(t))

)
≤ C[log(n)]3δ2 n e−Ct [log(n)]2δ2n 3

2 −s
.

An integration of the last estimate gives that for t ∈ [0, tn],

en(wn(t)) ≤ C
([log(n)]δ2ns−

1
2
)
eCt [log(n)]2δ2n 3

2 −s

≤ C
([log(n)]δ2ns−

1
2
)
eC[log(n)]3δ2 .

(one should see δ2 as 3δ2 − 2δ2 and s − 1/2 as 1 − (3/2 − s)). Since s < 1/2,
by taking δ2 > 0 small enough, we obtain that there exists ε > 0 such that for
t ∈ [0, tn],

En(wn(t)) ≤ Cn−ε

and in particular one has for t ∈ [0, tn],

‖∂twn(t, ·)‖L2(T3) + ‖∇wn(t, ·)‖L2(T3) ≤ Cn1−s−ε . (4.1.85)

We next estimate ‖wn(t, ·)‖L2 . We may write for t ∈ [0, tn],

‖wn(t, ·)‖L2(T3) = ‖
∫ t

0
∂twn(τ, ·)dτ‖L2(T3) ≤ ctn sup

0≤τ≤t
‖∂twn(τ, ·)‖L2(T3) .

Thanks to (4.1.85) and the definition of tn, we get

‖wn(t, ·)‖L2(T3)) ≤ C[log(n)]δ2n−(
3
2−s)n1−sn−ε .

Therefore, since s < 1/2,

‖wn(t, ·)‖L2(T3) ≤ Cn−s−ε . (4.1.86)

An interpolation between (4.1.85) and (4.1.86) yields (4.1.77). This completes the
proof of Lemma 4.1.32. ��
Using Lemma 4.1.32, we may write

‖un(tn, ·)‖Hs(T3) ≥ ‖vn(tn, ·)‖Hs(T3) − C − Cn−ε .

Recall that (4.1.74) yields

‖vn(tn, ·)‖Hs(T3) ≥ C[log(n)]−(s+1)δ1+sδ2 ,
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provided n� 1. Therefore, by choosing δ1 small enough (depending on δ2 fixed in
Lemma 4.1.32), we obtain that the exists δ > 0 such that

‖vn(tn, ·)‖Hs(T3) ≥ C[log(n)]δ, n� 1

which in turn implies that

‖un(tn, ·)‖Hs(T3) ≥ C[log(n)]δ, n� 1 .

This completes the proof of Theorem 4.1.28. ��
Theorem 4.1.28 implies that the Cauchy problem associated with the cubic

focusing wave equation,

(∂2
t −�)u+ u3 = 0

is ill-posed in Hs(T3) × Hs−1(T3) for s < 1/2 because of the lack of continuous
dependence for any C∞(T3)× C∞(T3) initial data.

For future references, we also state the following consequence of Theo-
rem 4.1.28.

Theorem 4.1.33 Let us fix s ∈ (0, 1/2), T > 0 and

(u0, u1) ∈ Hs(T3)×Hs−1(T3) .

Then there exists a sequence (un(t, x))∞n=1 of C(R;C∞(T3)) functions such that

(∂2
t −�)un + u3

n = 0

with

lim
n→+∞ ‖(un(0)− u0, ∂tun(0)− u1)‖Hs(T3)×Hs−1(T3) = 0

but

lim
n→+∞‖(un(t), ∂tun(t))‖L∞([0,T ];Hs(T3)×Hs−1(T3)) = +∞.

Proof Let (u0,m, u1,m)
∞
m=1 be a sequence of C∞(T3)×C∞(T3) functions such that

lim
m→+∞ ‖(u0 − u0,m, u1 − u1,m)‖Hs(T3)×Hs−1(T3) = 0 .

For a fixed m, we apply Theorem 4.1.28 in order to find a sequence (um,n(t, x))∞n=1
of C(R;C∞(T3)) functions such that

(∂2
t −�)um,n + u3

m,n = 0
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with

lim
n→+∞‖(um,n(0)− u0,m, ∂tum,n(0)− u1,m)‖Hs(T3)×Hs−1(T3) = 0

and for everym ≥ 1,

lim
n→+∞‖(um,n(t), ∂tum,n(t))‖L∞([0,T ];Hs(T3)×Hs−1(T3)) = +∞. (4.1.87)

Now, using the triangle inequality, we obtain that for every l ≥ 1 there isM0(l) such
that for everym ≥ M0(l) there is N0(m) such that for every n ≥ N0(m),

‖(um,n(0)− u0, ∂tum,n(0)− u1)‖Hs(T3)×Hs−1(T3) <
1

l
.

Thanks to (4.1.87), we obtain that for every m ≥ 1 there exists N1(m) ≥ N0(m)

such that for every n ≥ N1(m),

‖(um,n(t), ∂tum,n(t))‖L∞([0,T ];Hs(T3)×Hs−1(T3)) > l .

We now observe that

ul(t, x) ≡ uM0(l),N1(M0(l))(t, x), l = 1, 2, 3, · · ·

is a sequence of solutions of the cubic defocusing wave equation satisfying the
conclusions of Theorem 4.1.33. ��
Remark 4.1.34 It is worth mentioning that we arrive without too much complicated
technicalities to a sharp local well-posedness result in the context of the cubic wave
equation because we do not need a smoothing effect to recover derivative losses
neither in the nonlinearity nor in the non homogeneous Strichartz estimates. The
Xs,b spaces of Bourgain are an efficient tool to deal with these two difficulties.
These developments go beyond the scope of these lectures.

4.1.8 Extensions to More General Nonlinearities

One may consider the wave equation with a more general nonlinearity than the cubic
one. Namely, let us consider the nonlinear wave equation

(∂2
t −�)u+ |u|αu = 0, (4.1.88)
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posed on T
3 where α > 0 measures the “degree” of the nonlinearity. If u(t, x) is a

solution of (4.1.88) posed on R
3, than so is uλ(t, x) = λ

2
α u(λt, λx). Moreover

‖uλ(t, ·)‖Hs ≈ λ
2
α λsλ−

3
2 ‖u(λt, ·)‖Hs

which implies thatHs with s = 3
2 − 2

α
is the critical Sobolev regularity for (4.1.88).

Based on this scaling argument one may wish to expect that for s > 3
2 − 2

α
the

Cauchy problem associated with (4.1.88) is well-posed in Hs × Hs−1 and that for
s < 3

2 − 2
α

it is ill-posed in Hs × Hs−1. In this section, we verified that this is
indeed the case for α = 2. For 2 < α < 4, a small modification of the proof
of Theorem 4.1.22 shows that (4.1.88) is locally well-posed in Hs × Hs−1 for
s ∈ ( 3

2 − 2
α
, α). Then, as in the proof of Theorem 4.1.2, we can show that (4.1.88)

is globally well-posed in H 1 × L2. Moreover a small modification of the proof of
Theorem 4.1.28 shows that for s ∈ (0, 3

2 − 2
α
) the Cauchy problem for (4.1.88) is

locally ill-posed in Hs × Hs−1. For α = 4, we can prove a local well-posedness
statement for (4.1.88) as in Theorem 4.1.25. The global well-posedness inH 1 ×L2

for α = 4 is much more delicate than the globalisation argument of Theorem 4.1.2.
It is however possible to show that (4.1.88) is globally well-posed in H 1 × L2

(see [20, 21, 41, 42]). The new global information for α = 4, in addition to the
conservation of the energy, is the Morawetz estimate which is a quantitative way to
contradict the blow-up criterium in the case α = 4. For α > 4 the Cauchy problem
associated with (4.1.88) is still locally well-posed inHs×Hs−1 for some s > 3

2− 2
α

.
The global well-posedness (i.e. global existence, uniqueness and propagation of
regularity) of (4.1.88) for α > 4 is an outstanding open problem. For α > 4, the
argument used in Theorem 4.1.28 may allow to construct weak solutions inH 1×L2

with initial data in Hσ for 1 < σ < 3
2 − 2

α
which are losing theirHσ regularity. See

[28] for such a result for (4.1.88), posed on R
3.

4.2 Probabilistic Global Well-Posedness for the 3d Cubic
Wave Equation in Hs , s ∈ [0, 1]

4.2.1 Introduction

Consider again the Cauchy problem for the cubic defocusing wave equation

(∂2
t −�)u+ u3 = 0, u : R× T

3 → R,

u|t=0 = u0, ∂tu|t=0 = u1, (u0, u1) ∈ Hs(T3),
(4.2.1)

where

Hs(T3) ≡ Hs(T3)×Hs−1(T3) .
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In the previous section, we have shown that (4.2.1) is (at least locally in time) well-
posed in Hs(T3), s ≥ 1/2. The main ingredient in the proof for s ∈ [1/2, 1) was
the Strichartz estimates for the linear wave equation. We have also shown that for
s ∈ (0, 1/2) the Cauchy problem (4.2.1) is ill-posed in Hs(T3).

One may however ask whether some sort of well-posedness for (4.2.1) survives
for s < 1/2. We will show below that this is indeed possible, if we accept
to “randomise” the initial data. This means that we will endow Hs (T3), s ∈
(0, 1/2) with suitable probability measures and we will show that the Cauchy
problem (4.2.1) is well-posed in a suitable sense for initial data (u0, u1) on a set
of full measure.

Let us now describe these measures. Starting from (u0, u1) ∈ Hs given by their
Fourier series

uj (x) = aj +
∑

n∈Z3
�

(
bn,j cos(n · x)+ cn,j sin(n · x)

)
, j = 0, 1,

we define uωj by

uωj (x) = αj (ω)aj +
∑

n∈Z3
�

(
βn,j (ω)bn,j cos(n · x)+ γn,j (ω)cn,j sin(n · x)

)
,

(4.2.2)

where (αj (ω), βn,j (ω), γn,j (ω)), n ∈ Z
3
�, j = 0, 1 is a sequence of real random

variables on a probability space (�, p,F). We assume that the random variables
(αj , βn,j , γn,j )n∈Z3

�,j=0,1 are independent identically distributed real random vari-
ables with a distribution θ satisfying

∃ c > 0, ∀ γ ∈ R,

∫ ∞

−∞
eγ xdθ(x) ≤ ecγ

2
(4.2.3)

(notice that under the assumption (4.2.3) the random variables are necessarily of
mean zero). Typical examples (see Remark 4.2.13 below) of random variables
satisfying (4.2.3) are the standard Gaussians, i.e.

dθ(x) = (2π)−
1
2 e−

x2
2 dx

(with an identity in (4.2.3)) or the Bernoulli variables

dθ(x) = 1

2
(δ−1 + δ1) .

An advantage of the Bernoulli randomisation is that it keeps the Hs norm of the
original function. The Gaussian randomisation has the advantage to “generate” a
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dense set in Hs via the map

ω ∈ � �−→ (uω0 , u
ω
1 ) ∈ Hs (4.2.4)

for most of (u0, u1) ∈ Hs (see Proposition 4.2.2 below).

Definition 4.2.1 For fixed (u0, u1) ∈ Hs , the map (4.2.4) is a measurable map
from (�,F) to Hs endowed with the Borel sigma algebra since the partial sums
form a Cauchy sequence in L2(�;Hs). Thus (4.2.4) endows the space Hs(T3) with
a probability measure which is the direct image of p. Let us denote this measure by
μ(u0,u1). Then

∀A ⊂ Hs , μ(u0,u1)(A) = p(ω ∈ � : (uω0 , uω1 ) ∈ A).

Denote by Ms the set of measures obtained following this construction:

Ms =
⋃

(u0,u1)∈Hs

{μ(u0,u1)} .

Here are two basic properties of these measures.

Proposition 4.2.2 For any s′ > s, if (u0, u1) /∈ Hs ′ , then

μ(u0,u1)(Hs ′) = 0 .

In other words, the randomisation (4.2.4) does not regularise in the scale of the L2-
based Sobolev spaces (this fact is obvious for the Bernoulli randomisation). Next,
if (u0, u1) have all their Fourier coefficients different from zero and if supp(θ) =
R then supp(μ(u0,u1)) = Hs . In other words, under these assumptions, for any
(w0, w1) ∈ Hs and any ε > 0,

μ(u0,u1)({(v0, v1) ∈ Hs : ‖(w0, w1)− (v0, v1)‖Hs < ε}) > 0, (4.2.5)

or in yet other words, any set of full μ(u0,u1)-measure is dense in Hs .

We have the following global existence and uniqueness result for typical data with
respect to an element of Ms .

Theorem 4.2.3 (Existence and Uniqueness) Let us fix s ∈ (0, 1) and μ ∈ Ms .
Then, there exists a full μ measure set Σ⊂Hs (T3) such that for every (v0, v1)∈Σ ,
there exists a unique global solution v of the nonlinear wave equation

(∂2
t −�)v + v3 = 0, (v(0), ∂t v(0)) = (v0, v1) (4.2.6)

satisfying

(v(t), ∂t v(t)) ∈
(
S(t)(v0, v1), ∂tS(t)(v0, v1)

) + C(R;H 1(T3)× L2(T3)).
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Furthermore, if we denote by

	(t)(v0, v1) ≡ (v(t), ∂t v(t))

the flow thus defined, the set Σ is invariant by the map	(t), namely

	(t)(Σ) = Σ, ∀ t ∈ R.

The next statement gives quantitative bounds on the solutions.

Theorem 4.2.4 (Quantitative Bounds) Let us fix s ∈ (0, 1) and μ ∈ Ms . Let Σ
be the set constructed in Theorem 4.2.3. Then for every ε > 0 there exist C, δ > 0
such that for every (v0, v1) ∈ Σ , there exists M > 0 such that the global solution
to (4.2.6) constructed in Theorem 4.2.3 satisfies

v(t) = S(t)�⊥
0 (v0, v1)+w(t),

with

‖(w(t), ∂tw(t))‖H1(T3) ≤ C(M + |t|) 1−s
s +ε

and

μ((v0, v1) : M > λ) ≤ Ce−λδ .

Remark 4.2.5 Recall that �0 is the orthogonal projector on the zero Fourier mode
and �⊥

0 = Id −�0.

We now further discuss the uniqueness of the obtained solutions. For s > 1/2, we
have the following statement.

Theorem 4.2.6 (Unique Limit of Smooth Solutions for s > 1/2) Let s ∈ (1/2, 1).
With the notations of the statement of Theorem 4.2.3, let us fix an initial datum
(v0, v1) ∈ Σ with a corresponding global solution v(t). Let (v0,n, v1,n)

∞
n=1 be a

sequence of H1(T3) such that

lim
n→∞‖(v0,n − v0, v1,n − v1)‖Hs (T3) = 0 .

Denote by vn(t) the solution of the cubic defocusing wave equation with data
(v0,n, v1,n) defined in Theorem 4.1.2. Then for every T > 0,

lim
n→∞‖(vn(t)− v(t), ∂t vn(t)− ∂t v(t))‖L∞([0,T ];Hs (T3)) = 0 .

Thanks to Theorem 4.1.33, we know that for s ∈ (0, 1/2) the result of Theo-
rem 4.2.6 cannot hold true ! We only have a partial statement.
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Theorem 4.2.7 (Unique Limit of Particular Smooth Solutions for s < 1/2) Let
s ∈ (0, 1/2). With the notations of the statement of Theorem 4.2.3, let us fix an initial
datum (v0, v1) ∈ Σ with a corresponding global solution v(t). Let (v0,n, v1,n)

∞
n=1

be the sequence of C∞(T3) × C∞(T3) defined as the usual regularisation by
convolution, i.e.

v0,n = v0 � ρn, v1,n = v1 � ρn ,

where (ρn)∞n=1 is an approximate identity. Denote by vn(t) the solution of the cubic
defocusing wave equation with data (v0,n, v1,n) defined in Theorem 4.1.2. Then for
every T > 0,

lim
n→∞‖(vn(t)− v(t), ∂t vn(t)− ∂t v(t))‖L∞([0,T ];Hs (T3)) = 0 .

Remark 4.2.8 We emphasise that the result of Theorem 4.1.33 applies for the
elements of Σ . More precisely, thanks to Theorem 4.1.33, we have that for every
(v0, v1) ∈ Σ there is a sequence (v0,n, v1,n)

∞
n=1 of elements of C∞(T3)× C∞(T3)

such that

lim
n→∞‖(v0,n − v0, v1,n − v1)‖Hs (T3) = 0

but such that if we denote by vn(t) the solution of the cubic defocusing wave
equation with data (v0,n, v1,n) defined in Theorem 4.1.2 then for every T > 0,

lim
n→∞‖(vn(t), ∂t vn(t))‖L∞([0,T ];Hs (T3)) = ∞ .

Therefore the choice of the particular regularisation of the initial data in Theo-
rem 4.2.7 is of key importance. It would be interesting to classify the “admissible
type of regularisations” allowing to get a statement such as Theorem 4.2.7 .

Remark 4.2.9 We can also see the solutions constructed in Theorem 4.2.3 as the
(unique) limit as N tends to infinity of the solutions of the following truncated
versions of the cubic defocusing wave equation.

(∂2
t −�)SNu+ SN((SNu)

3) = 0,

where SN is a Fourier multiplier localising on modes of size ≤ N . The convergence
of a subsequence can be obtained by a compactness argument (cf. [9]). The
convergence of the whole sequence however requires strong solutions techniques.

The next question is whether some sort of continuous dependence with respect to
the initial data survives in the context of Theorem 4.2.3. In order to state our result
concerning the continuous dependence with respect to the initial data, we recall that
for any event B (of non vanishing probability) the conditioned probability p(·|B) is



4 Random Data Wave Equations 271

the natural probability measure supported by B, defined by

p(A|B) = p(A ∩ B)
p(B)

.

We have the following statement.

Theorem 4.2.10 (Conditioned Continuous Dependence) Let us fix s ∈ (0, 1), let
A > 0, let BA ≡ (V ∈ Hs : ‖V ‖Hs ≤ A) be the closed ball of radius A centered
at the origin of Hs and let T > 0. Let μ ∈ Ms and suppose that θ (the law of our
random variables) is symmetric. Let 	(t) be the flow of the cubic wave equations
defined μ almost everywhere in Theorem 4.2.3. Then for ε, η > 0, we have the
bound

μ⊗ μ
(
(V , V ′) ∈ Hs ×Hs : ‖	(t)(V )−	(t)(V ′)‖XT > ε

∣∣∣

‖V − V ′‖Hs < η and (V , V ′) ∈ BA × BA

)
≤ g(ε, η), (4.2.7)

where XT ≡ (C([0, T ];Hs) ∩ L4([0, T ] × T
3))× C([0, T ];Hs−1) and g(ε, η) is

such that

lim
η→0

g(ε, η) = 0, ∀ ε > 0.

Moreover, if for s ∈ (0, 1/2) we assume in addition that the support of μ is the
whole Hs (which is true if in the definition of the measureμ, we have ai, bn,j , cn,j �=
0,∀n ∈ Z

d and the support of the distribution function of the random variables is
R), then there exists ε > 0 such that for every η > 0 the left hand-side in (4.2.7) is
positive.

A probability measure θ on R is called symmetric if

∫

R

f (x)dθ(x) =
∫

R

f (−x)dθ(x), ∀ f ∈ L1(dθ).

A real random variable is called symmetric if its distribution is a symmetric measure
on R.

The result of Theorem 4.2.10 is saying that as soon as η � ε, among the initial
data which are η-close to each other, the probability of finding two for which the
corresponding solutions to (4.2.1) do not remain ε close to each other, is very small.
The last part of the statement is saying that the deterministic version of the uniform
continuity property (4.2.7) does not hold and somehow that one cannot get rid of
a probabilistic approach in the question concerning the continuous dependence (in
Hs , s < 1/2) with respect to the data. The ill-posedness result of Theorem 4.1.28
will be of importance in the proof of the last part of Theorem 4.2.10.
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4.2.2 Probabilistic Strichartz Estimates

Lemma 4.2.11 Let (ln(ω))∞n=1 be a sequence of real, independent random vari-
ables with associated sequence of distributions (θn)∞n=1. Assume that θn satisfy the
property

∃ c > 0 : ∀ γ ∈ R, ∀ n ≥ 1,
∣∣∣
∫ ∞

−∞
eγ xdθn(x)

∣∣∣ ≤ ecγ
2
. (4.2.8)

Then there exists α > 0 such that for every λ > 0, every sequence (cn)∞n=1 ∈ l2 of
real numbers,

p
(
ω : ∣∣

∞∑

n=1

cnln(ω)
∣∣ > λ

)
≤ 2e

− αλ2
∑
n c

2
n . (4.2.9)

As a consequence there exists C > 0 such that for every p ≥ 2, every (cn)∞n=1 ∈ l2,

∥∥
∞∑

n=1

cnln(ω)
∥∥
Lp(�)

≤ C
√
p
( ∞∑

n=1

c2
n

)1/2
. (4.2.10)

Remark 4.2.12 The property (4.2.8) is equivalent to assuming that θn are of zero
mean and assuming that

∃ c > 0, C > 0 : ∀ γ ∈ R, ∀ n ≥ 1,
∣∣∣
∫ ∞

−∞
eγ xdθn(x)

∣∣∣ ≤ C ecγ
2
. (4.2.11)

Remark 4.2.13 Let us notice that (4.2.8) is readily satisfied if (ln(ω))∞n=1 are
standard real Gaussian or standard Bernoulli variables. Indeed in the case of
Gaussian

∫ ∞

−∞
eγ xdθn(x) =

∫ ∞

−∞
eγ x e−x2/2 dx√

2π
= eγ

2/2 .

In the case of Bernoulli variables one can obtain that (4.2.8) is satisfied by invoking
the inequality

eγ + e−γ

2
≤ eγ

2/2, ∀ γ ∈ R.

More generally, we can observe that (4.2.11) holds if θn is compactly supported.

Remark 4.2.14 In the case of Gaussian we can see Lemma 4.2.11 as a very
particular case of a Lp smoothing properties of the Hartree-Foch heat flow (see
e.g. [44, Section 3] for more details on this issue).
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Proof of Lemma 4.2.11 For t > 0 to be determined later, using the independence
and (4.2.8), we obtain

∫

�

et
∑
n≥1 cnln(ω)dp(ω) =

∏

n≥1

∫

�

etcnln(ω)dp(ω)

=
∏

n≥1

∫ ∞

−∞
etcnx dθn(x)

≤
∏

n≥1

ec(tcn)
2 = e(ct

2)
∑
n c

2
n .

Therefore

e(ct
2)

∑
n c

2
n ≥ etλ p (ω :

∑

n≥1

cnln(ω) > λ)

or equivalently,

p (ω :
∑

n≥1

cnln(ω) > λ) ≤ e(ct
2)

∑
n c

2
n e−tλ .

We choose t as

t ≡ λ

2c
∑

n c
2
n

.

Hence

p (ω :
∑

n≥1

cnln(ω) > λ) ≤ e
− λ2

4c
∑
n c

2
n .

In the same way (replacing cn by −cn), we can show that

p (ω :
∑

n≥1

cnln(ω) < −λ) ≤ e
− λ2

4c
∑
n c

2
n

which completes the proof of (4.2.9). To deduce (4.2.10), we write

‖
∞∑

n=1

cnln(ω)‖pLp(�) = p

∫ +∞

0
p(ω : |

∞∑

n=1

cnln(ω)| > λ)λp−1dλ

≤ Cp

∫ +∞

0
λp−1e

− cλ2
∑
n c

2
n dλ
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≤ Cp(C
∑

n

c2
n)

p
2

∫ +∞

0
λp−1e−

λ2
2 dλ

≤ C(Cp
∑

n

c2
n)

p
2

which completes the proof of Lemma 4.2.11. ��
As a consequence of Lemma 4.2.11, we get the following “probabilistic”

Strichartz estimates.

Theorem 4.2.15 Let us fix s ∈ (0, 1) and let μ ∈ Ms be induced via the
map (4.2.4) from the couple (u0, u1) ∈ Hs . Let us also fix σ ∈ (0, s], 2 ≤ p1 <

+∞, 2 ≤ p2 ≤ +∞ and δ > 1 + 1
p1

. Then there exists a positive constant C such
that for every p ≥ 2,

∥∥∥‖〈t〉−δS(t)(v0, v1)‖Lp1 (Rt ;Lp2 (T3))

∥∥∥
Lp(μ)

≤ C
√
p‖(u0, u1)‖Hσ (T3) . (4.2.12)

As a consequence for every T > 0 and p1 ∈ [1,∞), p2 ∈ [2,∞],

‖S(t)(v0, v1)‖Lp1 ([0,T ];Lp2 (T3)) <∞, μ - almost surely. (4.2.13)

Moreover, there exist two positive constants C and c such that for every λ > 0,

μ
(
(v0, v1) ∈ Hs : ‖〈t〉−δS(t)(v0, v1)‖Lp1 (Rt ;Lp2 (T3)) > λ

)

≤ C exp
(
− cλ2

‖(u0, u1)‖2
Hσ (T3)

)
. (4.2.14)

Remark 4.2.16 Observe that (4.2.13) applied for p2 = ∞ displays an improvement
of 3/2 derivatives with respect to the Sobolev embedding which is stronger
than the improvement obtained by the (deterministic) Strichartz estimates (see
Remark 4.1.14). The proof of Theorem 4.2.15 exploits the random oscillations of
the initial data while the proof of the deterministic Strichartz estimates exploits
in a crucial (and subtle) manner the time oscillations of S(t). In the proof of
Theorem 4.2.15, we simply neglect these times oscillations.

Remark 4.2.17 In the proof of Theorem 4.2.15, we shall make use of the Sobolev
spaces Wσ,q(T3), σ ≥ 0, q ∈ (1,∞), defined via the norm

‖u‖Wσ,q (T3) = ‖(1 −�)σ/2u‖Lq(T3) .

Proof of Theorem 4.2.15 We have that

∥∥∥‖〈t〉−δ�0S(t)(v0, v1)‖Lp1 (Rt ;Lp2 (T3))

∥∥∥
Lp(μ)
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equals

∥∥∥‖〈t〉−δ (α0(ω)a0 + tα1(ω)a1)‖Lp1 (Rt ;Lp2 (T3))

∥∥∥
L
p
ω

. (4.2.15)

A trivial application of Lemma 4.2.11 implies that

‖αj (ω)‖Lpω ≤ C
√
p, j = 0, 1.

Therefore, using that δ > 1 + 1/p1 the expression (4.2.15) can be bounded by

(2π)
3
p2

∥∥∥‖〈t〉−δ (α0(ω)a0 + tα1(ω)a1)‖Lp1 (Rt )

∥∥∥
L
p
ω

≤ C
√
p(|a0| + |a1|) .

Therefore, it remains to estimate

∥∥∥‖〈t〉−δ�⊥
0 S(t)(v0, v1)‖Lp1 (Rt ;Lp2 (T3))

∥∥∥
Lp(μ)

.

By a use of the Hölder inequality on T
3, we observe that it suffices to estimate

∥∥∥‖〈t〉−δ�⊥
0 S(t)(v0, v1)‖Lp1 (Rt ;L∞(T3))

∥∥∥
Lp(μ)

.

Let q < ∞ be such that σ > 3/q . Then by the Sobolev embedding Wσ,q(T3) ⊂
C0(T3), we have

‖�⊥
0 S(t)(v0, v1)‖L∞(T3) ≤ C‖(1 −�)σ/2�⊥

0 S(t)(v0, v1)‖Lq(T3) .

Therefore, we need to estimate

∥∥∥‖〈t〉−δ (1 −�)σ/2�⊥
0 S(t)(v0, v1)‖Lp1 (Rt ;Lq(T3))

∥∥∥
Lp(μ)

which equals

∥∥∥‖〈t〉−δ (1 −�)σ/2�⊥
0 S(t)(u

ω
0 , u

ω
1 )‖Lp1 (Rt ;Lq(T3))

∥∥∥
L
p
ω

. (4.2.16)

By using the Hölder inequality in ω, we observe that it suffices to evaluate the last
quantity only for p > max(p1, q). For such values of p, using the Minkowski
inequality, we can estimate (4.2.16) by

∥∥∥
∥∥〈t〉−δ(1 −�)σ/2�⊥

0 S(t)(u
ω
0 , u

ω
1 )

∥∥
L
p
ω

∥∥∥
Lp1 (Rt ;Lq(T3))

. (4.2.17)
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Now, we can write (1 −�)σ/2�⊥
0 S(t)(u

ω
0 , u

ω
1 ) as

∑

n∈Z3
�

〈n〉σ
((
βn,0(ω)bn,0 cos(t|n|)+ βn,1(ω)bn,1

sin(t|n|)
|n|

)
cos(n · x)

+(
γn,0(ω)cn,0 cos(t|n|)+ γn,1(ω)cn,1

sin(t|n|)
|n|

)
sin(n · x)

)
,

with
∑

n∈Z3
�

〈n〉2σ
(
|bn,0|2 + |cn,0|2 + |n|−2(|bn,1|2 + |cn,1|2)

)
≤ C‖(u0, u1)‖2

Hσ (T3)
.

Now using (4.2.10) of Lemma 4.2.11 and the boundedness of sin and cos functions,
we obtain that (4.2.17) can be bounded by

C

∥∥∥〈t〉−δC√p‖(u0, u1)‖Hσ (T3)

∥∥∥
Lp1 (Rt ;Lq(T3))

. (4.2.18)

Since δ > 1 + 1/p1, we can estimate (4.2.18) by

C
√
p‖(u0, u1)‖Hσ (T3) .

This completes the proof of (4.2.12). Let us finally show how (4.2.12)
implies (4.2.14). Using the Tchebichev inequality and (4.2.12), we have that

μ
(
(v0, v1) ∈ Hs : ‖〈t〉−δS(t)(v0, v1)‖Lp1 (Rt ;Lp2(T3)) > λ

)

is bounded by

λ−p
∥∥∥‖〈t〉−δS(t)(v0, v1)‖Lp1 (Rt ;Lp2 (T3))

∥∥∥
p

Lp(μ)
≤ (

Cλ−1√p‖(u0, u1)‖Hσ (T3)

)p

We now choose p as

Cλ−1√p‖(u0, u1)‖Hσ (T3) =
1

2
⇔ p =

λ2‖(u0, u1)‖−2
Hσ (T3)

4C2
,

which yields (4.2.14). This completes the proof of Theorem 4.2.15. ��
The proof of Theorem 4.2.15 also implies the following statement.

Theorem 4.2.18 Let us fix s ∈ (0, 1) and let μ ∈ Ms be induced via the
map (4.2.4) from the couple (u0, u1) ∈ Hs . Let us also fix p ≥ 2, σ ∈ (0, s]
and q <∞ such that σ > 3/q . Then for every T > 0,

‖S(t)(v0, v1)‖Lp([0,T ];Wσ,q(T3)) <∞, μ - almost surely. (4.2.19)
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4.2.3 Regularisation Effect in the Picard Iteration Expansion

Consider the Cauchy problem

(∂2
t −�)u+ u3 = 0, u|t=0 = u0, ∂tu|t=0 = u1, (4.2.20)

where (u0, u1) is a typical element on the support ofμ ∈ Ms , s ∈ (0, 1). According
to the discussion in Sect. 4.1.5 of the previous section, for small times depending on
(u0, u1), we can hope to represent the solution of (4.2.20) as

u =
∞∑

j=1

Qj(u0, u1),

whereQj is homogeneous of order j in (u0, u1). We have that

Q1(u0, u1) = S(t)(u0, u1),

Q2(u0, u1) = 0,

Q3(u0, u1) = −
∫ t

0

sin((t − τ )
√−�)√−�

(
S(τ)(u0, u1)

)3
dτ,

etc. We have that μ a.s. Q1 /∈ Hσ for σ > s. However, using the probabilistic
Strichartz estimates of the previous section, we have that for T > 0,

‖Q3(u0, u1)‖L∞
T H

1(T3) � ‖S(t)(u0, u1)‖3
L3
T L

6(T3)
<∞, μ-almost surely.

Therefore the second non trivial term in the formal expansion defining the solution
is more regular than the initial data ! The strategy will therefore be to write the
solution of (4.2.20) as

u = Q1(u0, u1)+ v,

where v ∈ H 1 and solve the equation for v by the methods described in the previous
section. In the case of the cubic nonlinearity the deterministic analysis used to solve
the equation for v is particularly simple, it is in fact very close to the analysis in
the proof of Proposition 4.1.1. For more complicated problems the analysis of the
equation for v could involve more advanced deterministic arguments. We refer to
[4], where a similar strategy is used in the context of the nonlinear Schrödinger
equation and to [16] where it is used in the context of stochastic PDE’s.

This argument is not particularly restricted to Q3. One can imagine situations
when for some m > 3, Qm is the first element in the expansion whose regularity
fits well in a deterministic analysis. Then we can equally well look for the solutions
under the form
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u =
m−1∑

j=1

Qj(u0, u1)+ v, (4.2.21)

and treat v by a deterministic analysis. It is worth noticing that such a situation
occurs in the work on parabolic PDE’s with a singular random source term [22–24].
In these works in expansions of type (4.2.21) the random initial data (u0, u1) should
be replaced by the random source term (the white noise). Let us also mention that
in the case of parabolic equations the deterministic smoothing comes from elliptic
regularity estimates while in the context of the wave equation we basically rely on
the smoothing estimate (4.1.5).

4.2.4 The Local Existence Result

Proposition 4.2.19 Consider the problem

(∂2
t −�)v + (f + v)3 = 0 . (4.2.22)

There exists a constantC such that for every time interval I = [a, b] of size 1, every
� ≥ 1, every (v0, v1, f ) ∈ H 1 × L2 × L3(I, L6) satisfying

‖v0‖H 1 + ‖v1‖L2 + ‖f ‖3
L3(I,L6)

≤ �

there exists a unique solution on the time interval [a, a+C−1�−2] of (4.2.22) with
initial data

v(a, x) = v0(x), ∂tv(a, x) = v1(x) .

Moreover the solution satisfies ‖(v, ∂t v)‖L∞([a,a+C−1�−2],H 1×L2) ≤ C�, (v, ∂t v)

is unique in the class L∞([a, a + C−1�−2],H 1 ×L2) and the dependence in time
is continuous.

Proof The proof is very similar to the proof of Proposition 4.1.1. By translation
invariance in time, we can suppose that I = [0, 1]. We can rewrite the problem as

v(t) = S(t)(v0, v1)−
∫ t

0

sin((t − τ )
√−�)√−� ((f (τ)+ v(τ ))3dτ . (4.2.23)

Set

	v0,v1,f (v) ≡ S(t)(v0, v1)−
∫ t

0

sin((t − τ )
√−�)√−� ((f (τ)+ v(τ ))3dτ.

Then for T ∈ (0, 1], using the Sobolev embeddingH 1(T3) ⊂ L6(T3), we get
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‖	v0,v1,f (v)‖L∞([0,T ],H 1)

≤ C
(‖v0‖H 1 + ‖v1‖L2 +

∫ T

0
‖f (τ)‖3

L6dτ
) + T sup

τ∈[0,T ]
‖v(τ )‖3

L6

≤ C
(‖v0‖H 1 + ‖v1‖L2 + ‖f ‖3

L3(I,L6)

) + T ‖v‖3
L∞([0,T ],H 1)

.

It is now clear that for T ≈ �−2 the map 	u0,u1,f send the ball

{v : ‖v‖L∞([0,T ],H 1) ≤ C�}

into itself. Moreover by a similar argument, we obtain that this map is a contraction
on the same ball. Thus we obtain the existence part and the bound on v in H 1. The
estimate of ‖∂t v‖L2 follows by differentiating in t the Duhamel formula (4.2.23).
This completes the proof of Proposition 4.2.19. ��

4.2.5 Global Existence

In this section, we complete the proof of Theorem 4.2.3. We search v under the form
v(t) = S(t)(v0, v1)+w(t). Then w solves

(∂2
t −�)w + (S(t)(v0, v1)+w)3 = 0, w |t=0= 0, ∂tw |t=0= 0. (4.2.24)

Thanks to Theorems 4.2.15 and 4.2.18, we have that μ-almost surely,

g(t) = ‖S(t)(v0, v1)‖3
L6(T3)

∈ L1
loc(Rt ),

f (t) = ‖S(t)(v0, v1)‖Wσ,q (T3) ∈ L1
loc(Rt ),

(4.2.25)

σ > 3/q . The local existence for (4.2.24) follows from Proposition 4.2.19 and the
first estimate in (4.2.25). We also deduce from Proposition 4.2.19, that as long as
the H 1 × L2 norm of (w, ∂tw) remains bounded, the solution w of (4.2.24) exists.
Set

E(w(t)) = 1

2

∫

T3

(
(∂tw)

2 + |∇xw|2 + 1

2
w4)dx .
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Using the equation solved by w, we now compute

d

dt
E(w(t)) =

∫

T3

(
∂tw∂

2
t w + ∇x∂tw · ∇xw + ∂tw w

3)dx

=
∫

T3
∂tw

(
∂2
t w −�w +w3

)
dx

=
∫

T3
∂tw

(
w3 − (S(t)(v0, v1)+w)3

)
dx.

Now, using the Cauchy-Schwarz inequality, the Hölder inequalities and the Sobolev
embeddingWσ,q(T3) ⊂ C0(T3), we can write

d

dt
E(w(t)) ≤ C

(
E(w(t))

)1/2‖w3 − (S(t)(v0, v1)+w)3‖L2(T3)

≤ C
(
E(w(t))

)1/2

×
(
‖S(t)(v0, v1)‖3

L6(T3)
+ ‖S(t)(v0, v1)‖L∞(T3)‖w2‖L2(T3)

)

≤ C
(
E(w(t))

)1/2

×
(
‖S(t)(v0, v1)‖3

L6(T3)
+ ‖S(t)(v0, v1)‖Wσ,q (T3)‖w2‖L2(T3)

)

≤ C
(
E(w(t))

)1/2
(
g(t) + f (t)

(
E(w(t))

)1/2
)

and consequently, according to Gronwall inequality and (4.2.25), w exists globally
in time.

This completes the proof of the existence and uniqueness part of Theorem 4.2.3.
Let us now turn to the construction of an invariant set. Define the sets

� ≡ {
(v0, v1) ∈ Hs : ‖S(t)(v0, v1)‖3

L6(T3)
∈ L1

loc(Rt ),

‖S(t)(v0, v1)‖Wσ,q (T3) ∈ L1
loc(Rt )

}

and Σ ≡ � + H1. Then Σ is of full μ measure for every μ ∈ Hs , since so is �.
We have the following proposition.

Proposition 4.2.20 Assume that s > 0 and let us fix μ ∈ Ms . Then, for every
(v0, v1) ∈ Σ , there exists a unique global solution

(v(t), ∂t v(t)) ∈ (S(t)(v0, v1), ∂tS(t)(v0, v1))+ C(R;H 1(T3)× L2(T3))

of the nonlinear wave equation

(∂2
t −�)v + v3 = 0, (v(0, x), ∂tv(0, x)) = (v0(x), v1(x)) . (4.2.26)
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Moreover for every t ∈ R, (v(t), ∂t v(t)) ∈ Σ and thus by the time reversibility Σ
is invariant under the flow of (4.2.26).

Proof By assumption, we can write (v0, v1) = (ṽ0, ṽ1)+ (w0, w1) with (ṽ0, ṽ1) ∈
� and (w0, w1) ∈ H1. We search v under the form

v(t) = S(t)(ṽ0, ṽ1)+ w(t) .

Then w solves

(∂2
t −�T3)w + (S(t)(ṽ0, ṽ1)+ w)3 = 0, w |t=0= w0, ∂tw |t=0= w1 .

Now, exactly as before, we obtain that

d

dt
E(w(t)) ≤ C

(
E(w(t))

)1/2
(
g(t) + f (t)

(
E(w(t))

)1/2
)
,

where

g(t) = ‖S(t)(ṽ0, ṽ1)‖3
L6(T3)

, f (t) = ‖S(t)(ṽ0, ṽ1)‖Wσ,q (T3).

Therefore thanks to the Gronwall lemma, using that E(w(0)) is well defined, we
obtain the global existence for w. Thus the solution of (4.2.26) can be written as

v(t) = S(t)(ṽ0, ṽ1)+w(t), (w, ∂tw) ∈ C(R;H1).

Coming back to the definition of �, we observe that

S(t)(�) = �.

Thus (v(t), ∂t v(t)) ∈ Σ .

This completes the proof of Theorem 4.2.3. ��

4.2.6 Unique Limits of Smooth Solutions

In this section, we present the proofs of Theorems 4.2.6 and 4.2.7.

Proof of Theorem 4.2.6 Thanks to Theorem 4.2.3, the Sobolev embeddings and
Theorem 4.2.15 we obtain that

(v, ∂t v) ∈ C(R;Hs(T3))



282 N. Tzvetkov

and

v ∈ Lp�loc(R;Lq
�

(T3)) ,

where (p�, q�) are as in Corollary 4.1.23 (observe that q� ≤ 6). Once, we have this
information the proof of Theorem 4.2.6 follows from Theorem 4.1.22 (here we use
the assumption s > 1/2) and Corollary 4.1.23. Indeed, let us fix T > 0 and let� be
such that

sup
0≤t≤T

‖(v(t), ∂t v(t))‖Hs (T3) < �− 1 .

Let τ > 0 be the time of existence associated with � in Theorem 4.1.22. We now
cover the interval [0, T ] with intervals of size τ and using iteratively the continuous
dependence statement of Theorem 4.1.22 and the uniqueness statement given by
Corollary 4.1.23, we obtain that

lim
n→∞‖(vn(t)− v(t), ∂t vn(t)− ∂t v(t))‖L∞([0,T ];Hs (T3)) = 0 .

This completes the proof of Theorem 4.2.6. ��
We now turn to the proof of Theorem 4.2.7 which is slightly more delicate.

Proof of Theorem 4.2.7 For (v0, v1) ∈ Σ we decompose the solution as

v(t) = S(t)(v0, v1)+ w(t), w(0) = 0, ∂tw(0) = 0.

Similarly, we decompose the solutions issued from (v0,n, v1,n) as

vn(t) = S(t)(v0,n, v1,n)+wn(t), wn(0) = 0, ∂twn(0) = 0.

Using the energy estimates of the previous section, we obtain that

d

dt
E(wn(t)) ≤ C

(
E(wn(t))

)1/2
(
gn(t)+ fn(t)

(
E(w(t))

)1/2
)
,

where

gn(t) = ‖S(t)(v0,n, v1,n)‖3
L6(T3)

, fn(t) = ‖S(t)(v0,n, v1,n)‖Wσ,q (T3).

Therefore

(E(wn(t)))1/2 ≤ C
( ∫ t

0
gn(τ )dτ

)
e
∫ t

0 fn(τ )dτ .
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Using that

S(t)(v0,n, v1,n) = ρn �
(
S(t)(v0, v1)

)
, (4.2.27)

and the fact that (v0, v1) ∈ Σ , we obtain that

lim
n→∞

∫ t

0
gn(τ )dτ =

∫ t

0
g(τ)dτ, lim

n→∞

∫ t

0
fn(τ )dτ =

∫ t

0
f (τ)dτ,

where g(t) and f (t) are defined in (4.2.25). Therefore, we obtain that for every
T > 0 there is C > 0 such that for every n,

sup
0≤t≤T

‖(wn(t), ∂twn(t))‖H1(T3) ≤ C. (4.2.28)

Next, we observe that w and wn solve the equations

(∂2
t −�)w + (S(t)(v0, v1)+w)3 = 0

and

(∂2
t −�)wn + (S(t)(v0,n, v1,n)+wn)

3 = 0.

Therefore

(∂2
t −�)(w −wn) = −(

(S(t)(v0, v1)+w)3 − S(t)(v0,n, v1,n)+wn)
3).

We multiply the last equation by ∂t (w −wn), and by using the Sobolev embedding
H 1(T3) ⊂ L6(T3) and the Hölder inequality, we arrive at the bound

d

dt
‖(w −wn, ∂tw − ∂twn)‖H1(T3)

≤ C
(‖S(t)(v0 − v0,n, v1 − v1,n)‖L6(T3) + ‖w −wn‖H 1(T3)

)

×
(
‖S(t)(v0, v1)‖2

L6(T3)
+ ‖S(t)(v0,n, v1,n)‖2

L6(T3)

+‖w‖2
H 1(T3)

+ ‖wn‖2
H 1(T3)

)
.

Using (4.2.28) and the properties of the solutions obtained in Theorem 4.2.3, we
obtain

d

dt
‖(w −wn, ∂tw − ∂twn)‖H1(T3)

≤ C
(‖S(t)(v0 − v0,n, v1 − v1,n)‖L6(T3) + ‖w −wn‖H 1(T3)

)

×
(
‖S(t)(v0, v1)‖2

L6(T3)
+ ‖S(t)(v0,n, v1,n)‖2

L6(T3)
+ C

)
.
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The last inequality implies the following bound for t ∈ [0, T ],

‖(w(t) −wn(t), ∂tw(t)− ∂twn(t))‖H1

≤ C

∫ t

0
‖S(τ)(v0 − v0,n, v1 − v1,n)‖L6

×(‖S(τ)(v0, v1)‖2
L6 + ‖S(τ)(v0,n, v1,n)‖2

L6 + C
)
dτ

× exp

(∫ t

0
(‖S(τ)(v0, v1)‖2

L6 + ‖S(τ)(v0,n, v1,n)‖2
L6 + C)dτ

)
. (4.2.29)

More precisely, we used that if x(t) ≥ 0 satisfies the differential inequality

ẋ(t) ≤ Cz(t)(y(t)+ x(t)), x(0) = 0,

for some z(t) ≥ 0 and y(t) ≥ 0 then

x(t) ≤ C

∫ t

0
y(τ)z(τ )dτ exp

( ∫ t

0
z(τ )dτ

)
.

Coming back to (4.2.29) and using the Hölder inequality, we get for t ∈ [0, T ],

‖(w(t) −wn(t), ∂tw(t)− ∂twn(t))‖H1

≤ C‖S(t)(v0 − v0,n, v1 − v1,n)‖L2
T L

6

×(‖S(t)(v0, v1)‖2
L4
T L

6 + ‖S(t)(v0,n, v1,n)‖2
L4
T L

6 + C
)

× exp

(∫ t

0
(‖S(τ)(v0, v1)‖2

L6 + ‖S(τ)(v0,n, v1,n)‖2
L6 + C)dτ

)
. (4.2.30)

Recalling (4.2.27), we obtain that for 1 < p <∞,

lim
n→∞

∫ T

0
‖S(τ)(v0 − v0,n, v1 − v1,n)‖pL6(T3)

dτ = 0.

Therefore (4.2.30) implies that

lim
n→∞‖(w(t) −wn(t), ∂tw(t)− ∂twn(t))‖L∞([0,T ];H1(T3)) = 0 .

Recall that

v(t) = S(t)(v0, v1)+w(t), vn(t) = S(t)(v0,n, v1,n)+ wn(t).
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Using once again (4.2.27) and

∂tS(t)(v0,n, v1,n) = ρn �
(
∂tS(t)(v0, v1)

)

we get

lim
n→∞‖(S(t)(v0, v1)− S(t)(v0,n, v1,n),

∂tS(t)(v0, v1)− ∂tS(t)(v0,n, v1,n))‖L∞([0,T ];Hs (T3)) = 0

and consequently

lim
n→∞‖(v(t) − vn(t), ∂t v(t) − ∂tvn(t))‖L∞([0,T ];Hs (T3)) = 0 .

This completes the proof of Theorem 4.2.7. ��
Remark 4.2.21 In the proof of Theorem 4.2.7, we essentially used that the regu-
larisation by convolution works equally well in Hs and Lp (p < ∞) and that
it commutes with the Fourier multipliers such as the free evolution S(t). Any
other regularisation respecting these two properties would produce smooth solutions
converging to the singular dynamics constructed in Theorem 4.2.3.

4.2.7 Conditioned Large Deviation Bounds

In this section, we prove conditioned large deviation bounds which are the main tool
in the proof of Theorem 4.2.10.

Proposition 4.2.22 Let μ ∈ Ms , s ∈ (0, 1) and suppose that the real random
variable with distribution θ , involved in the definition of μ is symmetric. Then for
δ > 1 + 1

p1
, 2 ≤ p1 <∞ and 2 ≤ p2 ≤ ∞ there exist positive constants c, C such

that for every positive ε, λ,� and A,

μ⊗ μ
(
((v0, v1), (v

′
0, v

′
1)) ∈ Hs ×Hs :

‖〈t〉−δS(t)(v0 − v′0, v1 − v′1)‖Lp1 (Rt ;Lp2 (T3)) > λ

or ‖〈t〉−δS(t)(v0 + v′0, v1 + v′1)‖Lp1 (Rt ;Lp2 (T3))

> �

∣∣∣‖(v0 − v′0, v1 − v′1)‖Hs (T3) ≤ ε

and ‖(v0 + v′0, v1 + v′1)‖Hs (T3) ≤ A
)
≤ C

(
e
−c λ2

ε2 + e
−c �2

A2
)
.

(4.2.31)

We shall make use of the following elementary lemmas.
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Lemma 4.2.23 For j = 1, 2, let Ej be two Banach spaces endowed with measures
μj . Let f : E1 × E2 → C and g1, g2 : E2 → C be three measurable functions.
Then

μ1 ⊗ μ2

(
(x1, x2) ∈ E1 ×E2 : |f (x1, x2)| > λ

∣∣∣| g1(x2)| ≤ ε, |g2(x2)| ≤ A
)

≤ sup
x2∈E2,|g1(x2)|≤ε,|g2(x2)|≤A

μ1(x1 ∈ E1 : |f (x1, x2)| > λ) ,

where by sup we mean the essential supremum.

Lemma 4.2.24 Let g1 and g2 be two independent identically distributed real
random variables with symmetric distribution. Then g1 ± g2 have symmetric
distributions. Moreover if h is a Bernoulli random variable independent of g1 then
hg1 has the same distribution as g1.

Proof of Proposition 4.2.22 Define

E ≡ R× R
Z

3
� × R

Z
3
� ,

equipped with the natural Banach space structure coming from the l∞ norm. We
endow E with a probability measure μ0 defined via the map

ω �→
(
k0(ω),

(
ln(ω)

)
n∈Z3

�
,
(
hn(ω)

)
n∈Z3

�

)
,

where (k0, ln, hn) is a system of independent Bernoulli variables.
For h = (

x, (yn)n∈Z3
�
, (zn)n∈Z3

�

) ∈ E and

u(x) = a +
∑

n∈Z3
�

(
bn cos(n · x)+ cn sin(n · x)

)
,

we define the operation $ by

h$ u ≡ ax +
∑

n∈Z3
�

(
bnyn cos(n · x)+ cnzn sin(n · x)

)
.

Let us first evaluate the quantity

μ⊗ μ
(
((v0, v1), (v

′
0, v

′
1)) ∈ Hs ×Hs :

‖〈t〉−δS(t)(v0 − v′0, v1 − v′1)‖Lp1 (Rt ;Lp2 (T3)) > λ

∣∣∣

‖(v0 − v′0, v1 − v′1)‖Hs (T3) ≤ ε

and ‖(v0 + v′0, v1 + v′1)‖Hs (T3) ≤ A
)
. (4.2.32)
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Observe that, thanks to Lemma 4.2.24, (4.2.32) equals

μ⊗ μ⊗ μ0 ⊗ μ0

(
((v0, v1), (v

′
0, v

′
1), (h0, h1)) ∈ Hs ×Hs × E × E :

‖〈t〉−δS(t)(h0 $ (v0 − v′0), h1 $ (v1 − v′1))‖Lp1 (Rt ;Lp2 (T3)) > λ

∣∣∣

‖(h0 $ (v0 − v′0), h1 $ (v1 − v′1))‖Hs (T3) ≤ ε

and ‖(h0 $ (v0 + v′0), h1 $ (v1 + v′1))‖Hs (T3) ≤ A
)
. (4.2.33)

Since the Hs(T3) norm of a function f depends only on the absolute value of its
Fourier coefficients, we deduce that (4.2.33) equals

μ⊗ μ⊗ μ0 ⊗ μ0

(
((v0, v1), (v

′
0, v

′
1), (h0, h1)) ∈ Hs ×Hs × E × E :

‖〈t〉−δS(t)(h0 $ (v0 − v′0), h1 $ (v1 − v′1))‖Lp1 (Rt ;Lp2 (T3)) > λ

∣∣∣

‖(v0 − v′0, v1 − v′1)‖Hs (T3) ≤ ε and ‖(v0 + v′0, v1 + v′1)‖Hs (T3) ≤ A
)
.

(4.2.34)

We now apply Lemma 4.2.23 with μ1 = μ0⊗μ0 andμ2 = μ⊗μ to get that (4.2.34)
is bounded by

sup
‖(v0−v′0,v1−v′1)‖Hs (T3)≤ε

μ0 ⊗ μ0

(
(h0, h1) ∈ E × E :

‖〈t〉−δS(t)(h0 $ (v0 − v′0), h1 $ (v1 − v′1))‖Lp1 (Rt ;Lp2 (T3)) > λ
)
. (4.2.35)

We now apply Theorem 4.2.15 (with Bernoulli variables) to obtain that (4.2.32) is

bounded by C exp(−c λ2

ε2 ). A very similar argument gives that

μ⊗ μ
(
((v0, v1), (v

′
0, v

′
1)) ∈ Hs ×Hs :

‖〈t〉−δS(t)(v0 + v′0, v1 + v′1)‖Lp1 (Rt ;Lp2 (T3)) > �

∣∣∣

‖(v0 − v′0, v1 − v′1)‖Hs (T3) ≤ ε

and ‖(v0 + v′0, v1 + v′1)‖Hs (T3) ≤ A
)

is bounded by C exp(−c�2

A2 ). This completes the proof of Proposition 4.2.22. ��
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4.2.8 End of the Proof of the Conditioned Continuous
Dependence

In this section, we complete the proof of Theorem 4.2.10. According to (a variant
of) Proposition 4.2.22, we have that for any

2 ≤ p1 < +∞, 2 ≤ p2 ≤ +∞, δ > 1 + 1

p1
, η ∈ (0, 1),

one has

μ⊗ μ
(
(V0, V1) ∈ Hs ×Hs : ‖〈t〉−δS(t)(V0 − V1)‖Lp1 (Rt ;Lp2 (T3)) > η

1
2

or ‖〈t〉−δS(t)(V0)‖Lp1 (Rt ;Lp2 (T3)) > log log log(η−1)

or ‖〈t〉−δS(t)(V1)‖Lp1 (Rt ;Lp2 (T3)) > log log log(η−1)

∣∣∣

‖V0 − V1‖Hs (T3) < η and ‖Vj‖Hs (T3) ≤ A, j = 0, 1
)
−→ 0,

as η→ 0. Therefore, we can also suppose that

‖〈t〉−δS(t)(V0 − V1)‖Lp1 (Rt ;Lp2 (T3)) ≤ η
1
2 (4.2.36)

and

‖〈t〉−δS(t)(Vj )‖Lp1 (Rt ;Lp2 (T3)) ≤ log log log(η−1), j = 0, 1, (4.2.37)

when we estimate the needed conditional probability.
We therefore need to estimate the difference of two solutions under the assump-

tions (4.2.36) and (4.2.37), in the regime η � 1. Let

vj (t) = S(t)(Vj )+wj(t), j = 0, 1

be two solutions of the cubic wave equation with data Vj . We thus have

(wj (0), ∂twj (0)) = (0, 0).

Applying the energy estimate, performed several times in this section, for j = 0, 1,
we get the bound

d

dt
E1/2(wj (t)) ≤ C

(
‖S(t)(Vj )‖3

L6(T3)
+ ‖S(t)(Vj )‖L∞(T3)E1/2(wj (t))

)
,
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and therefore, under the assumptions (4.2.36) and (4.2.37), for t ∈ [0, T ] one has

E1/2(wj (t)) ≤ CT e
CT log log log(η−1)(log log log(η−1))3 (4.2.38)

≤ CT [log(η−1)] 1
20 ,

where here and in the sequel we denote by CT different constants depending only
on T (but independent of η).

We next estimate the differencew0 −w1. Using the equations solved by w0, w1,
we infer that

d

dt
‖w0(t, ·)−w1(t, ·)‖2

H1(T3)

≤ 2
∣∣∣
∫

T3
∂t (w0(t, x)−w1(t, x))(∂

2
t −�)(w0(t, x)−w1(t, x))dx

∣∣∣

≤ C‖w0(t, ·)−w1(t, ·)‖H1(T3)

‖(w0 + S(t)(V0))
3 − (w1 + S(t)(V1))

3‖L2(T3) , (4.2.39)

where for shortness we denote ‖(u, ∂tu)‖H1 simply by ‖u‖H1 .
Thanks to (4.2.39) and the Sobolev embeddingH 1(T3) ⊂ L6(T3), we get that

d

dt
‖w0(t, ·)−w1(t, ·)‖H1(T3)

is bounded by

C
(
‖w0(t, ·)−w1(t, ·)‖H1(T3) + ‖S(t)(V0 − V1)‖L6(T3)

)

(
‖w0(t, ·)‖2

H 1(T3)
+ ‖w1(t, ·)‖2

H 1(T3)

+‖S(t)(V0)‖2
L6(T3)

+ ‖S(t)(V1)‖2
L6(T3)

)
.

Therefore, using (4.2.38) and the Gronwall lemma, under the assumptions (4.2.36)
and (4.2.37), for t ∈ [0, T ],

‖w0(t, ·)−w1(t, ·)‖H1(T3) ≤ CT η
1
2 [log(η−1)] 1

10 eCT [log(η−1)] 1
10

≤ CT η
1
4 .

In particular by the Sobolev embedding

‖w0 −w1‖L4([0,T ]×T3) ≤ CT η
1
4 ,
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and therefore under the assumption (4.2.36),

‖v0 − v1‖L4([0,T ]×T3) ≤ CT η
1
4 .

In summary, we obtained that for a fixed ε > 0, the μ ⊗ μ measure of V0, V1 such
that

‖	(t)(V0)−	(t)(V1)‖XT > ε

under the conditions (4.2.36), (4.2.37) and ‖V0 −V1‖Hs < η is zero, as far as η > 0
is sufficiently small. Therefore, we obtain that the left hand side of (4.2.7) tends to
zero as η→ 0. This ends the proof of the first part of Theorem 4.2.10.

For the second part of the proof of Theorem 4.2.10, we argue by contradiction.
Suppose thus that for every ε > 0 there exist η > 0 and Σ of full μ ⊗ μ measure
such that

∀ (V , V ′) ∈ Σ ∩ (BA × BA), ‖V − V ′‖Hs < η

%⇒ ‖	(t)(V )−	(t)(V ′)‖XT < ε.

Let us apply the previous affirmation with ε = 1/n, n = 1, 2, 3 . . . which produces
full measure sets Σ(n). Set

Σ1 ≡
∞⋂

n=1

Σ(n).

Then Σ1 is of full μ⊗ μ measure and we have that

∀ ε > 0, ∃ η > 0, ∀ (V , V ′) ∈ Σ1 ∩ (BA × BA),

‖V − V ′‖Hs < η %⇒ ‖	(t)(V )−	(t)(V ′)‖XT < ε. (4.2.40)

Next for V ∈ Hs we define A(V ) ⊂ Hs by

A(V ) ≡ {V ′ ∈ Hs : (V , V ′) ∈ Σ1}.

According to Fubini Theorem, there exists E ⊂ Hs a set of full μmeasure such that
for every V ∈ E the set A(V ) is a full μ measure.

We are going to extend 	(t) to a uniformly continuous map on BA. For that
purpose, we first extend 	(t) to a uniformly continuous map on dense set of BA.
Let {(Vj )j∈N} be a dense set of BA for the Hs topology. For j ∈ N, we can construct
by induction a sequence (Vj,n) such that

Vj,n ∈ BA ∩ E ∩
⋂

m<n

A(Vj,m) ∩
⋂

l<j,q∈N
A(Vl,q), ‖Vj,n − Vj‖Hs < 1/n.
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Indeed, the induction assumption guarantees that the set

E ∩
⋂

m<n

A(Vj,m)
⋂

l<j,q∈N
A(Vl,q)

has measure 1 (as an intersection of sets of measure 1) and consequently is dense.
Notice that by construction, we have

(Vk,n, Vl,m) ∈ Σ1,∀ k < l,∀ n,m ∈ N, and ∀ k = l, n < m. (4.2.41)

Using (4.2.41) for k = l, we obtain according to (4.2.40) that for any fixed k, the
sequence	(t)(Vk,n)n∈N is a Cauchy sequence inXT and we can define	(t)(Vj ) as
its limit. Using again (4.2.41), for k �= l, we see according to (4.2.40) that the map
	(t) is uniformly continuous on the set {(Vj )j∈N}. Therefore	(t) can be extended
by density to a uniformly continuous map, on the whole BA. Let us denote by 	(t)
the extension of 	(t) to BA. We therefore have

∀ ε > 0, ∃ η > 0, ∀V, V ′ ∈ BA,
‖V − V ′‖Hs < η %⇒ ‖	(t)(V )−	(t)(V ′)‖XT < ε. (4.2.42)

We have the following lemma.

Lemma 4.2.25 For V ∈ (C∞(T3) × C∞(T3)) ∩ BA, we have that 	(t)(V ) =
(u, ut ), where u is the unique classical solution on [0, T ] of

(∂2
t −�)u+ u3 = 0, (u(0), ∂tu(0)) = V.

Proof Let us first show that first component of

	(t)(V ) ≡ (	1(t)(V ),	2(t)(V ))

is a solution of the cubic wave equation. Observe that by construction, necessarily
	2(t)(V ) = ∂t	1(t)(V ) in the distributional sense (in D′((0, T )× T

3)).
Again by construction, we have that

V = lim
n→∞Vn ,

in Hs where Vn are such that

(∂2
t −�)(	1(t)(Vn))+ (	1(t)(Vn))

3 = 0, (4.2.43)

with the notation 	(t) = (	1(t),	2(t)). In addition,

	(t)(V ) = lim
n→∞	(t)(Vn) ,



292 N. Tzvetkov

in XT . We therefore have that

(∂2
t −�)(	1(t)(V )) = lim

n→∞(∂
2
t −�)(	1(t)(Vn)),

in the distributional sense. Moreover, coming back to the definition of XT , we also
obtain that

(	1(t)(V ))
3 = lim

n→∞(	1(t)(Vn))
3,

in L4/3([0, T ] × T
3). Therefore, passing into the limit n → ∞ in ((4.2.43)), we

obtain that	1(t)(V ) solves the cubic wave equation (with data V ). Moreover, since
(	1(t)(V ))

3 ∈ L4/3([0, T ] × T
3), it also satisfies the Duhamel formulation of the

equation.
Let us denote by u(t), t ∈ [0, T ] the classical solution of

(∂2
t −�)u+ u3 = 0, (u(0), ∂tu(0)) = V,

defined by Theorem 4.1.2. Set v ≡ 	1(t)(V ). Since our previous analysis has shown
that v is a solution of the cubic wave equation, we have that

(∂2
t −�)(u− v)+ u3 − v3 = 0, (u(0), ∂tu(0)) = (0, 0) . (4.2.44)

We now invoke the L4 −L4/3 non homogenous estimates for the three dimensional
wave equation. Namely, thanks to Theorem 4.1.21, we have that there exists a
constant (depending on T ) such that for every interval I ⊂ [0, T ], the solution
of the wave equation

(∂2
t −�)w = F, (u(0), ∂tu(0)) = (0, 0)

satisfies

‖w‖L4(I×T3) ≤ C‖F‖L4/3(I×T3) . (4.2.45)

Applying (4.2.45) in the context of (4.2.44) together with the Hölder inequality
yields the bound

‖u− v‖L4(I×T3) ≤ C
(‖u‖2

L4(I×T3)
+ ‖v‖2

L4(I×T3)

)‖u− v‖L4(I×T3) . (4.2.46)

Since u, v ∈ L4(I × T
3), we can find a partition of intervals I1, . . . , Il of [0, T ]

such that

C
(‖u‖2

L4(Ij×T3)
+ ‖v‖2

L4(Ij×T3)

)
<

1

2
, j = 1, . . . , l.
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We now apply (4.2.46) with I = Ij , j = 1, . . . , l to conclude that u = v on I1, then
on I2 and so on up to Il which gives that u = v on [0, T ]. Thus u = 	1(t)(V ) and
therefore also ∂tu = 	2(t)(V ). This completes the proof of Lemma 4.2.25. ��
It remains now to apply Lemma 4.2.25 to the sequence of smooth data in the
statement of Theorem 4.1.28 to get a contradiction with (4.2.42). More precisely,
if (Un) is the sequence involved in the statement of Theorem 4.1.28, the result
of Theorem 4.1.28 affirms that 	(t)(Un) tends to infinity in L∞([0, T ];Hs)

while (4.2.42) affirms that the same sequence tends to zero in the same space
L∞([0, T ];Hs). This completes the proof of Theorem 4.2.10.

4.2.9 Extensions to More General Nonlinearities

In the remarkable work by Oh-Pocovnicu [35, 36] (based on the previous contribu-
tions [2, 38]) it is shown that the result of Theorem 4.2.3 can be extended to the
energy critical equation

(∂2
t −�)v + v5 = 0 .

This equation isH 1 critical and the data is a typical element with respect toμ ∈ Ms ,
s > 1/2. We refer also to [31, 43] for extensions of Theorem 4.2.3 to nonlinearities
between cubic and quintic.

4.2.10 Notes

For the case s = 0 and the proof of the quantitative bounds displayed by
Theorem 4.2.4, we refer to [8]. For the proof of Proposition 4.2.2, we refer to
[6, Appendix B] and [8, Appenidix B2]. The probabilistic part of our analysis
only relies on linear bounds such as Lemma 4.2.11. In other situations multi-linear
versions of these bounds are of importance (see [4, 13, 33]). The above mentioned
work by Oh-Pocovnicu relies on a much more complicated deterministic analysis
(such as the concentration compactness) and also on a significant extension of the
probabilistic energy bound used in the proof of Theorem 4.2.3.

Our starting point and main motivation toward the probabilistic well-posedness
results presented in this section was the ill-posedness result of Theorem 4.1.28 of the
previous section. As already mentioned the method of proof has some similarities
with the earlier work [16] or with the even earlier work of Bourgain [4] on the
invariance of the Gibbs measure associated with the nonlinear Schrödinger equation

(i∂t +�)u = |u|2u, (4.2.47)
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posed on the two dimensional torus. The main purpose of [4] is to show the
invariance of the Gibbs measure and as a byproduct one gets the global existence
and uniqueness of solutions of (4.2.47) with a suitable random data belonging a.s.
to H−ε(T2) for every ε > 0 but missing a.s. L2(T2). In the time of writing of
[4] statement such as Theorem 4.1.28 or Theorem 4.1.33 were not known in the
context of (4.2.47). In the recent work [34], the analogue of Theorems 4.1.28 and
4.1.33 in the context of (4.2.47) is obtained. Most likely, the analysis of [4] can be
adapted in order to get the analogue of Theorem 4.2.7 in the context of (4.2.47).
As a consequence, it looks that we can see from the same view point (4.2.47) with
data on the support of the Gibbs measure and the cubic defocusing wave equation
with random data of super-critical regularity presented in these lectures. We plan to
address this issue in a future work.

4.3 Random Data Global Well-Posedness with Data
of Supercritical Regularity via Invariant Measures

In the previous section, we presented a method to construct global in time solutions
for the cubic defocusing wave equation posed on the three dimensional torus with
random data of supercritical regularity (Hs(T3) × Hs−1(T3), s ∈ (0, 1/2)). These
solutions are unique in a suitable sense and depend continuously (in a conditional
sense) on the initial data. The method we used is based on a local in time result
showing that even if the data is of supercritical regularity, we can find a local
solution written as “free evolution” (keeping the Sobolev regularity of the initial
data) plus “a remainder of higher regularity”. The term of higher regularity is then
regular enough to allow us to deal it with the deterministic methods to treat the
equation. The globalisation was then done by establishing an energy bound for the
remainder in a probabilistic manner, here of course the energy conservation law is
the key structure allowing to perform the analysis. Moreover, we have shown that
the problem is ill-posed with data of this supercritical regularity and this in turn
implied the impossibility to see the constructed flow as the unique extension of the
regular solutions flow.

In this section, we will show another method for global in time solutions for
a defocusing wave equation with data of supercritical regularity. The construction
of local solutions will be based on the same principle as in the previous section,
i.e. we shall again see the solution as a “free evolution” plus “a remainder of
higher regularity”. However the globalisation will be done by a different argument
(due to Bourgain [3, 4]) based on exploiting the invariance of the Gibbs measure
associated with the equation. The Gibbs measure is constructed starting from the
energy conservation law and therefore this energy conservation law is again the
key structure allowing to perform the global in time analysis. This method of
globalisation by invariant measures is working only for very particular choice
of the initial data and in this sense it is much less general than the method
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presented in the previous section. On the other hand the method based on exploiting
invariant measures gives a strong macroscopic information about the constructed
flow, namely one has a precise information on the measure evolution along the time.
The method presented in the previous section gives essentially no information about
the evolution in time under the constructed flow of the measures in Ms . We shall
come back to this issue in the next section.

Our model to present the method of globalisation via invariant measures will
be the radial nonlinear wave equation posed on the unit ball of R3, with Dirichlet
boundary conditions. Let � be the unit ball of R

3. Consider the nonlinear wave
equation with Dirichlet boundary condition posed on �,

(∂2
t −�)w + |w|αw = 0, (w, ∂tw)|t=0 = (f1, f2), α > 0, (4.3.1)

subject to Dirichlet boundary conditions

u |Rt×∂�= 0,

with radial real valued initial data (f1, f2).
We now make some algebraic manipulations on (4.3.1) allowing to write it as

a first order equation in t . Set u ≡ w + i
√−�−1

∂tw. Observe that �−1 is well-
defined because 0 is not in the spectrum of the Dirichlet Laplacian. Then we have
that u solves the equation

(i∂t −
√−�)u−√−�−1(|Re(u)|αRe(u)

) = 0, u|t=0 = u0, (4.3.2)

with u|R×∂� = 0, where u0 = f1 + i
√−�−1

f2. We consider (4.3.2) for data in the
(complex) Sobolev spaces Hs

rad(�) of radial functions.
Equation (4.3.2) is (formally) an Hamiltonian equation on L2(�) with Hamilto-

nian,

1

2
‖√−�(u)‖2

L2(�)
+ 1

α + 2
‖Re(u)‖α+2

Lα+2(�)
(4.3.3)

which is (formally) conserved by the flow of (4.3.2).
Let us next discuss the measure describing the initial data set. For s < 1/2,

we define the measure μ on Hs
rad(�) as the image measure under the map from

a probability space (�,A, p) to Hs
rad(�) equipped with the Borel sigma algebra,

defined by

ω �−→
∞∑

n=1

hn(ω)+ iln(ω)

nπ
en , (4.3.4)

where ((hn, ln))∞n=1 is a sequence of independent standard real Gaussian random
variables. In (4.3.4), the functions (en)∞n=1 are the radial eigenfunctions of the
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Dirichlet Laplacian on �, associated with eigenvalues (πn)2. The eigenfunctions
en have the following explicit form

en(r) = sin(nπr)

r
, 0 ≤ r ≤ 1.

They are the analogues of cos(n ·x) and sin(n ·x), n ∈ Z
3 used in the analysis on T

3

in the previous section. One has that μ(H 1/2
rad (�)) = 0. By the method described in

the previous section one may show that (4.3.2) is ill-posed inHs
rad(�) for s < 3

2− 2
α

.
Therefore for α > 2 the map (4.3.4) describes functions of supercritical Sobolev
regularity (i.e.Hs

rad(�)with s smaller than 3
2 − 2

α
). The situation is therefore similar

to the analysis of the cubic defocusing wave equation on T
3 with data inHs×Hs−1,

s < 1/2 considered in the previous section. As in the previous section, we can still
get global existence and uniqueness for (4.3.2), almost surely with respect to μ.

Theorem 4.3.1 Let s < 1/2. Suppose that α < 3. Let us fix a real number p such
that max(4, 2α) < p < 6. Then there exists a full μ measure set Σ ⊂ Hs

rad(�)

such that for every u0 ∈ Σ there exists a unique global solution of (4.3.2)

u ∈ C(R,H s
rad(�)) ∩ Lploc(Rt ;Lp(�)) .

The solution can be written as

u(t) = S(t)(u0)+ v(t),

where S(t) = e−it
√−� is the free evolution and v(t) ∈ Hσ

rad(�) for some σ > 1/2.
Moreover

‖u(t)‖Hs(�) ≤ C(s)
(

log(2 + |t|)) 1
2 .

The proof of Theorem 4.3.1 is based on the following local existence result.

Proposition 4.3.2 For a given positive number α < 3 we choose a real number p
such that max(4, 2α) < p < 6. Then we fix a real number σ by σ = 3

2 − 4
p

. There

exist C > 0, c ∈ (0, 1], γ > 0 such that for every R ≥ 1 if we set T = cR−γ then
for every radially symmetric u0 satisfying

‖S(t)u0‖Lp((0,2)×�) ≤ R

there exists a unique solution u of (4.3.2) such that

u(t) = S(t)u0 + v(t)

with v ∈ XσT (the Strichartz spaces defined in the previous section). Moreover

‖v‖XσT ≤ CR.
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In particular, since S(t) is 2 periodic and thanks to the Strichartz estimates,

sup
t∈[−T ,T ]

‖S(τ)u(t)‖Lp(τ∈(0,2);Lp(�)) ≤ CR .

In addition, if u0 ∈ Hs(�) (and thus s < σ ) then

‖u(t)‖Hs(�) ≤ ‖S(t)u0‖Hs(�) + ‖v(t)‖Hs(�) ≤ ‖u0‖Hs(�) + CR .

Using probabilistic Strichartz estimates for S(t) as we did in the previous section,
we can deduce the following corollary of Proposition 4.3.2.

Proposition 4.3.3 Under the assumptions of Proposition 4.3.2 there is a set Σ of
full μ measure such that for every u0 ∈ Σ there is T > 0 and a unique solution
of (4.3.2) on [0, T ] in

C([0, T ],H s
rad(�)) ∩ Lploc(Rt ;Lp(�)).

Moreover for every T ≤ 1 there is a set ΣT ⊂ Σ such that

μ(ΣT ) ≥ 1 − Ce−c/T δ , c > 0, δ > 0

and such that for every u0 ∈ ΣT the time of existence is at least T .

Let us next define the Gibbs measures associated with (4.3.2). Using [1, Theorem 4],
we have that for α < 4 the quantity

‖
∞∑

n=1

hn(ω)+ iln(ω)

nπ
en‖Lα+2(�) (4.3.5)

is finite almost surely. Moreover the restriction α < 4 is optimal because for α = 4
the quantity (4.3.5) is infinite almost surely. Therefore, for α < 4, we can define a
nontrivial measure ρ as the image measure on Hs

rad(�) by the map (4.3.4) of the
measure

exp
(
− 1

α + 2
‖

∞∑

n=1

hn(ω)

nπ
en)‖α+2

Lα+2(�)

)
dp(ω) . (4.3.6)

The measure ρ is the Gibbs measures associated with (4.3.2) and it can be formally
seen as

exp
(
− 1

2
‖√−�(u)‖2

L2(�)
− 1

α + 2
‖Re(u)‖α+2

Lα+2(�)

)
du,
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where a renormalisation of

exp
(
− 1

2
‖√−�(u)‖2

L2(�)

)
du,

corresponds to the measure μ and

exp
(
− 1

α + 2
‖Re(u)‖α+2

Lα+2(�)

)
,

corresponds to the density in (4.3.6). Thanks to the conservation of the Hamilto-
nian (4.3.3), the measure ρ is expected to be invariant under the flow of (4.3.2).
This expectation is also supported by the fact that the vector field defining (4.3.2) is
(formally) divergence free. This fact follows again from the Hamiltonian structure
of (4.3.2).

Observe that if a Borel set A ⊂ Hs(�) is of full ρ measure then A is also of full
μ measure. Therefore, it suffices to solve (4.3.2) globally in time for u0 in a set of
full ρ measure.

We now explain how the local existence result of Proposition 4.3.2 can be
combined with invariant measure considerations in order to get global existence of
the solution. The details can be found in [7]. Consider a truncated version of (4.3.2)

(i∂t −
√−�)u− SN

(√−�−1(|SNRe(u)|αSNRe(u)
)) = 0, (4.3.7)

where SN is a suitable “projector” tending to the identity asN goes to infinity. Let us
denote by	N(t) the flow of (4.3.7). This flow is well-defined for a fixedN because
for frequencies � N it is simply the linear flow and for the remaining frequencies
one can use that (4.3.7) has the preserved energy

1

2
‖√−�(u)‖2

L2(�)
+ 1

α + 2
‖SNRe(u)‖α+2

Lα+2(�)
. (4.3.8)

The energy (4.3.8) allows us to define an approximated Gibbs measure ρN . One
has that ρN is invariant under 	N(t) by the Liouville theorem and the invariance
of complex Gaussians under rotations (for the frequencies � N). In addition, ρN
converges in a strong sense to ρ as N → ∞.

Let us fix T � 1 and a small ε > 0. Our goal is to find a set of ρ residual
measure< ε such that for initial data in this set we can solve (4.3.2) up to time T .

The local existence theory implies that as far as

‖S(t)u‖Lp(τ∈(0,2);Lp(�)) ≤ R, R ≥ 1 (4.3.9)

we can define the solution of the true equation with datum u for times of orderR−γ ,
γ > 0, the bound (4.3.9) is propagated and moreover on the interval of existence
this solution is the limit asN → ∞ of the solutions of the truncated equation (4.3.7)
with the same datum.
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Our goal is to show that with a suitably chosen R = R(T , ε) we can propagate
the bound (4.3.9) for the solutions of the approximated equation (4.3.7) (forN � 1)
up to time T for initial data in a set of residual ρ measure � ε.

For R > 1, we define the set BR as

BR = {u : ‖S(t)u‖Lp(τ∈(0,2);Lp(�)) ≤ R}.

As mentioned the (large) number R will be determined depending on T and ε.
Thanks to the probabilistic Strichartz estimates for S(t), we have the bound

ρ(BcR) < e−κR2
(4.3.10)

for some κ > 0. Let τ ≈ R−γ be the local existence time associated to R given by
Proposition 4.3.2. Define the set B by

B =
[T/τ ]⋂

k=0

	N(−kτ)(BR) . (4.3.11)

Thanks to the local theory, we can propagate (4.3.9) for data in B up to time T . On
the other hand, using the invariance of ρN under	N(t) and (4.3.10), we obtain that

ρN(B
c) � T Rγ e−κR2

.

We now choose R so that

T Rγ e−κR2 ∼ ε.

In other words

R ∼
(

log
(T
ε

)) 1
2
.

This fixes the value of R. With this choice of R, ρ(Bc) < ε, providedN � 1. With
this value of R the set B defined by (4.3.11) is such that for data in B we have the
bound (4.3.9) up to time T on a set of residual ρ measure< ε. Now, we can pass to
the limit N → ∞ thanks to the above mentioned consequence of the local theory
and hence defining the solution of the true equation (4.3.2) up to time T for data in
a set of ρ residual measure< ε.

We now apply the last conclusion with T = 2j and ε/2j . This produces a set
Σj,ε such that ρ((Σj,ε)c) < ε/2j an for u0 ∈ Σj,ε we can solve (4.3.2) up to time
2j . We next set

Σε =
∞⋂

j=1

Σj,ε .
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Clearly, we have ρ((Σε)c) < ε and for u0 ∈ Σε , we can define a global solution
of (4.3.2). Finally

Σ =
∞⋃

j=1

Σ2−j

is a set of full ρ measure on which we can define globally the solutions of (4.3.2).
The previous construction also keeps enough information allowing to get the
claimed uniqueness property.

Remark 4.3.4 In [5], a part of the result of Theorem 4.3.1 was extended to α < 4
which is the full range of the definition of the measure ρ.

Remark 4.3.5 The previous discussion has shown that we have two methods to
globalise the solutions in the context of random data well-posedness for the non-
linear wave equation. The one of the previous section is based on energy estimates
while the method of this section is based on invariant measures considerations.
It is worth mentioning that these two methods are also employed in the context
of singular stochastic PDE’s. More precisely in [32] the globalisation is done via
the (more flexible) method of energy estimates while in [25] one globalises by
exploiting invariant measures considerations.

4.4 Quasi-Invariant Measures

4.4.1 Introduction

4.4.1.1 Motivation

In Sect. 4.2, for each s ∈ (0, 1) we introduced a family of measures Ms on the
Sobolev space Hs(T3) = Hs(T3) × Hs−1(T3). Then for each μ ∈ Ms , we
succeeded to define a unique global flow	(t) of the cubic defocusing wave equation
a.s. with respect to μ. This result is of interest for the solvability of the Cauchy
problem associated with the cubic defocusing wave equation for data in Hs (T3),
especially for s < 1/2 because for these regularities this Cauchy problem is ill-
posed in the Hadamard sense in Hs(T3). On the other hand the methods of Sect. 4.2
give no information about the transport by 	(t) of the measures in Ms , even for
large s. Of course, Ms can be defined for any s ∈ R and for s ≥ 1 the global
existence a.s. with respect to an element of Ms follows from Theorem 4.1.2. The
question of the transport of the measures of Ms under 	(t) is of interest in the
context of the macroscopic description of the flow of the cubic defocusing wave
equation. It is no longer only a low regularity issue and the answer of this question
is a priori not clear at all for regular solutions either.
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On the other hand, in Sect. 4.3, we constructed a very particular (Gaussian)
measure μ on the Sobolev spaces of radial functions on the unit disc of R3 such
that a.s. with respect to this measure the nonlinear defocusing wave equation with
nonlinear term |u|αu, α ∈ (2, 3) has a well defined dynamics. The typical Sobolev
regularity on the support of this measure is supercritical and thus again this result
is of interest concerning the individual behaviour of the trajectories. This result is
also of interest concerning the macroscopic description of the flow because, we can
also prove by the methods of Sect. 4.3 that the transported measure by the flow is
absolutely continuous with respect to μ. Unfortunately, the method of Sect. 4.3 is
only restricted to a very particular initial distribution with data of low regularity.

Motivated by the previous discussion, a natural question to ask is what can be
said for the transport of the measures of Ms under the flow of the cubic defocusing
wave equation. In this section we discuss some recent progress on this question.

4.4.1.2 Statement of the Result

Consider the cubic defocusing wave equation

(∂2
t −�)u+ u3 = 0, (4.4.1)

where u : R× T
d → R. We rewrite (4.4.1) as the first order system

∂tu = v, ∂t v = �u− u3. (4.4.2)

As we already know, if (u, v) is a smooth solution of (4.4.2) then

d

dt
H(u(t), v(t)) = 0,

where

H(u, v) = 1

2

∫

Td

(
v2 + |∇u|2) + 1

4

∫

Td

u4 . (4.4.3)

Thanks to Theorem 4.1.2, for d ≤ 3 the Cauchy problem associated with (4.4.2) is
globally well-posed in Hs (Td ) = Hs(Td ) × Hs−1(Td ), s ≥ 1. Denote by 	(t) :
Hs(Td ) → Hs (Td) the resulting flow. As we already mentioned, we are interested
in the statistical description of 	(t). Let μs,d be the measure formally defined by

dμs,d = Z−1
s,de

− 1
2 ‖(u,v)‖2

Hs+1dudv

or

dμs,d = Z−1
s,d

∏

n∈Z2

e−
1
2 〈n〉2(s+1) |̂un|2e−

1
2 〈n〉2s |̂vn|2dûndv̂n ,
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where ûn and v̂n denote the Fourier transforms of u and v respectively. Recall that

〈n〉 = (1 + |n|2) 1
2 .

Rigorously one can define the Gaussian measure μs,d as the induced probability
measure under the map

ω �−→ (uω(x), vω(x))

with

uω(x) =
∑

n∈Zd

gn(ω)

〈n〉s+1 e
in·x, vω(x) =

∑

n∈Zd

hn(ω)

〈n〉s e
in·x . (4.4.4)

In (4.4.4), (gn)n∈Zd , (hn)n∈Zd are two sequences of “standard” complex Gaussian
random variables, such that gn = g−n, hn = h−n and such that {gn, hn} are
independent, modulo the central symmetry. The measures μs,d can be seen as
special cases of the measures in Ms considered in Sect. 4.2. The partial sums of the
series in (4.4.4) are a Cauchy sequence in L2(�;Hσ (Td )) for every σ < s + 1− d

2
and therefore one can see μs,d as a probability measure on Hσ for a fixed σ <

s + 1− d
2 . Therefore, thanks to the results of Sect. 4.2, for d ≤ 3, the flow 	(t) can

be extended μs,d almost surely, provided s > d
2 − 1. We have the following result.

Theorem 4.4.1 Let s ≥ 0 be an integer. Then the measure μs,1 is quasi-invariant
under the flow of (4.4.2).

We recall that given a measure space (X,μ), we say that μ is quasi-invariant under
a transformation T : X → X if the transported measure T∗μ = μ ◦ T −1 and μ are
equivalent, i.e. mutually absolutely continuous with respect to each other. The proof
of Theorem 4.4.1 is essentially contained in the analysis of [45].

For d = 2 the situation is much more complicated. Recently in [37], we were
able to prove the following statement.

Theorem 4.4.2 Let s ≥ 2 be an even integer. Then the measure μs,2 is quasi-
invariant under the flow of (4.4.2).

We expect that by using the methods of Sect. 4.2, one can extend the result of
Theorem 4.4.2 to all s > 0, not necessarily an integer.

It would be interesting to decide whether one can extend the result of Theo-
rem 4.4.2 to the three dimensional case. It could be that the type of renormalisations
employed in the context of singular stochastic PDE’s or the QFT become useful in
this context.

From now on we consider d = 2 and we denote μs,2 simply by μs .
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4.4.1.3 Relation to Cameron-Martin Type Results

In probability theory, there is an extensive literature on the transport property of
Gaussian measures under linear and nonlinear transformations. The statements of
Theorems 4.4.1 and 4.4.2 can be seen as such kind of results for the nonlinear
transformation defined by the flow map of the cubic defocusing wave equation. The
most classical result concerning the transport property of Gaussian measures is the
result of Cameron-Martin [10] giving an optimal answer concerning the shifts. The
Cameron-Martin theorem in the context of the measuresμs is saying that for a fixed
(h1, h2) ∈ Hσ , σ < s, the transport of μs under the shift

(u, v) �−→ (u, v)+ (h1, h2),

is absolutely continuous with respect to μs if and only if (h1, h2) ∈ Hs+1.
If we denote by S(t) the free evolution associated with (4.4.2) then for (u, v) ∈

Hσ , we classically have that the flow of the nonlinear wave equation can be
decomposed as

	(t)(u, v) = S(t)
(
(u, v) + (h1, h2)

)
, (4.4.5)

where (h1, h2) = (h1(u, v), h2(u, v)) ∈ Hσ+1. In other word there is one derivative
smoothing and no more. Of course, if σ < s then σ + 1 < s + 1 and therefore
the result of Theorem 4.4.2 represents a statement displaying fine properties of the
vector field generating 	(t). More precisely if in (4.4.5) (h1, h2) ∈ Hσ+1 were
fixed (independent of (u, v)) then the transported measures would not be absolutely
continuous with respect to μs !

Let us next compare the result of Theorem 4.4.2 with a result of Ramer [39]. For
σ < s, let us consider an invertible map Ψ on Hσ (T2) of the form

Ψ (u, v) = (u, v)+ F(u, v),

where F : Hσ (T2) → Hs+1(T2). Under some more assumptions, the most
important being that

DF(u, v) : Hs+1(T2)→ Hs+1(T2)

is a Hilbert-Schmidt map, the analysis of [39] implies that μs is quasi-invariant
under Ψ . A typical example for the F is

F(u, v) = ε(1 −�)−1−δ(u2, v2), δ > 0, |ε| � 1,

i.e. 2-smoothing is needed in order to ensure the Hilbert-Schmidt assumption.
Therefore the approach of Ramer is far from being applicable in the context of the
flow map of the nonlinear wave equation because for the nonlinear wave equation
there is only 1-smoothing.
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Let us finally discuss the Cruzeiro generalisation of the Cameron-Martin theo-
rem. In [15], Ana Bela Cruzeiro considered a general equation of the form

∂tu = X(u), (4.4.6)

where X is an infinite dimensional vector field. She proved that μs would be quasi-
invariant under the flow of (4.4.6) if we suppose a number of assumptions, the most
important being of type:

∫

Hσ (T2)

ediv(X(u))dμs(u) <∞ . (4.4.7)

The problem is how to check the abstract assumption (4.4.7) for concrete examples.
Very roughly speaking the result of Theorem 4.4.2 aims to verify assumptions of
type (4.4.7) “in practice”.

4.4.2 Elements of the Proof

In this section, we present some of the key steps in the proof of Theorem 4.4.2.

4.4.2.1 An Equivalent Gaussian Measure

Since the quadratic part of (4.4.3) does not control the L2 norm of u, we will
prove the quasi-invariance for the equivalent measure μ̃s defined as the induced
probability measure under the map

ω ∈ � �−→ (uω(x), vω(x))

with

uω(x) =
∑

n∈Z2

gn(ω)

(1 + |n|2 + |n|2s+2)
1
2

ein·x, vω(x) =
∑

n∈Z2

hn(ω)

(1 + |n|2s) 1
2

ein·x .

Formally μ̃s can be seen as

Z−1e−
1
2

∫
v2− 1

2

∫
(Dsv)2− 1

2

∫
u2− 1

2

∫ |∇u|2− 1
2

∫
(Ds+1u)2dudv,

where

D ≡ √−�.
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As we shall see below, the expression

1

2

∫

T2
v2 + 1

2

∫

T2
(Dsv)2 + 1

2

∫

T2
u2 + 1

2

∫

T2
|∇u|2 + 1

2

∫

T2
(Ds+1u)2 (4.4.8)

is the main part of the quadratic part of the renormalised energy in the context of
the nonlinear wave equation (4.4.2). Using the result of Kakutani [26], we can show
that for s > 1/2 the Gaussian measures μs and μ̃s are equivalent.

4.4.2.2 The Renormalised Energies

Consider the truncated wave equation

∂tu = v, ∂tv = �u− πN((πNu)
3), (4.4.9)

where πN is the Dirichlet projector on frequencies n ∈ Z
2 such that |n| ≤ N . If

(u, v) is a solution of (4.4.9) then

∂t

[1

2

∫

T2
(DsvN)

2 + 1

2

∫

T2
(Ds+1uN)

2
]
=

∫

T2
(D2svN)(−u3

N) ,

where (uN, vN ) = (πNu, πNv). Clearly ∂tuN = vN . Observe that for s = 0, we
recover the conservation of the truncated energyHN(u, v), defined by

HN(u, v) ≡ H(πNu, πNv) .

For s ≥ 2, an even integer, using the Leibniz rule, we get

∫

T2
(D2svN )(−u3

N) = −3
∫

T2
DsvN D

suN u
2
N

+
∑

|α|+|β|+|γ |=s
|α|,|β|,|γ |<s

cα,β,γ

∫

T2
DsvN ∂

αuN∂
βuN∂

γ uN,

for some unessential constants cα,β,γ .
It will be convenient in the sequel to suppose that the integration on T

2 is done
with respect to a probability measure. Therefore the integrations will be done with
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respect to the Lebesgue measure multiplied by (2π)−2. We can write

−3
∫

T2
DsvN D

suN u
2
N = −3

2
∂t

[ ∫

T2
(DsuN)

2u2
N

]
+ 3

∫

T2
(DsuN)

2 vN uN

= −3

2
∂t

[ ∫

T2
�⊥

0 [(DsuN)
2]�⊥

0 [u2
N ]

]
+ 3

∫

T2
�⊥

0 [(DsuN)
2]�⊥

0 [vN uN ]

−3

2
∂t

[ ∫

T2
(DsuN)

2
∫

T2
u2
N

]
+ 3

∫

T2
(DsuN)

2
∫

T2
vN uN, (4.4.10)

where�⊥
0 is again the projector on the nonzero frequencies, i.e.

(�⊥
0 (f ))(x) = f (x)−

∫

T2
f (y)dy .

The last two terms on the right-hand side of (4.4.10) are problematic because

lim
N→∞Eμ̃s

[ ∫

T2
(DsπNu)

2
]
= +∞ .

Therefore, we need to use a renormalisation in the definitions of the energies. Define
σN by

σN = Eμ̃s

[ ∫

T2
(DsπNu)

2
]
=

∑

n∈Z2

|n|≤N

|n|2s
1 + |n|2 + |n|2s+2

∼ logN .

Then, we have

−3

2
∂t

[ ∫

T2
(DsuN)

2
∫

T2
u2
N

]
+ 3

∫

T2
(DsuN)

2
∫
vN uN

= −3

2
∂t

[( ∫

T2
(DsuN)

2 − σN

) ∫

T2
u2
N

]
+ 3

( ∫

T2
(DsuN)

2 − σN

)∫

T2
vN uN .

Now, the term

∫

T2
(DsuN)

2 − σN

is a good term because thanks to Wiener chaos estimates, we have the bound

∥∥∥
∫

T2
(DsπNu)

2 − σN

∥∥∥
Lp(dμ̃s(u,v))

≤ Cp,
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where the constant C is independent of p and N . We define H̃s,N(u, v) by

H̃s,N(u, v) = 1

2

∫

T2
(Dsv)2 + 1

2

∫

T2
(Ds+1u)2 + 3

2

∫

T2
(Dsu)2u2 − 3

2
σN

∫

T2
u2 .

We can summarise the previous analysis as follows: if (u, v) is a solution of (4.4.9)
then

∂t H̃s,N(uN, vN) = 3
∫

T2
�⊥

0 [(DsuN)
2]�⊥

0 [vN uN ]

+
∑

|α|+|β|+|γ |=s
|α|,|β|,|γ |<s

cα,β,γ

∫

T2
DsvN ∂

αuN∂
βuN∂

γ uN

+ 3

(∫

T2
(DsuN)

2 − σN

) ∫

T2
vN uN . (4.4.11)

All terms in the right hand-side of (4.4.11) are suitable for a perturbative analysis.
We finally define the full modified energyHs,N(u, v) as

Hs,N(u, v) = H̃s,N(u, v)+H(u, v)+ 1

2

∫

T2
u2,

where H is defined by (4.4.3). The quadratic part of Hs,N (except the renor-
malisation term which is morally quartic) is now given by (4.4.8). Therefore in
order to prove the quasi-invariance it will be of crucial importance to study the
variation in time of Hs,N . Here is the main quantitative bound used in the proof of
Theorem 4.4.2.

Theorem 4.4.3 Let s ≥ 2 be an even integer and let us denote by	N(t) the flow of

∂tu = v, ∂tv = �u− πN((πNu)
3) .

Then for every r > 0 there is a constant C such that for every p ≥ 2 and every
N ≥ 1,

( ∫

HN(u,v)≤r

∣∣∣∂tHs,N(πN	N(t)(u, v))|t=0

∣∣∣
p

dμ̃s(u, v)
) 1
p ≤ Cp.

4.4.2.3 On the Proof of Theorem 4.4.3

Using Eq. (4.4.9), we have that

∂tHs,N(uN, vN ) = ∂t H̃s,N(uN, vN)+
∫

T2
uNvN .



308 N. Tzvetkov

Therefore, coming back to (4.4.11), we obtain

∂t H̃s,N(πN	N(t)(u, v))|t=0 =
∫

T2
πNuπNv +Q1(u, v) +Q2(u, v)+Q3(u, v),

where

Q1(u, v) = 3
∫

T2
�⊥

0 [(DsπNu)
2]�⊥

0 [πNv πNu],

Q2(u, v) =
∑

|α|+|β|+|γ |=s
|α|,|β|,|γ |<s

cα,β,γ

∫

T2
DsπNv ∂

απNu∂
βπNu∂

γ πNu,

Q3(u, v) = 3

( ∫

T2
(DsuN)

2 − σN

) ∫

T2
πNv πNu.

Let us first consider
∫

T2
πNuπNv . (4.4.12)

We need to estimate (4.4.12) under the restriction

∫

T2
(|∇πNu|2 + (πNv)

2 + 1

2
(πNu)

4) ≤ 2r. (4.4.13)

Using the compactness of T2, one can see that under the restriction (4.4.13),

∣∣
∫

T2
πNuπNv

∣∣ ≤ ‖πNu‖L2(T2)‖πNv‖L2(T2) ≤ C‖πNu‖L4(T2)‖πNv‖L2(T2) ≤ Cr
3
4 .

Let us next considerQ3(u, v). For r > 0, we define μs,r,N as

dμs,r,N(u, v) = χHN(u,v)≤r dμ̃s(u, v) ,

where χHN(u,v)≤r stays for the characteristic function of the set

{(u, v) : HN(u, v) ≤ r}.

The goal is to show that

‖Q3(u, v)‖Lp(dμs,r,N (u,v)) ≤ Cp,
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with a constant C independent of N and p. Since we already checked that
under (4.4.13),

∣∣∣
∫

T2
πNv πNu

∣∣∣ ≤ Cr,

we obtain that

‖Q3(u, v)‖Lp(dμs,r,N (u,v)) ≤ Cr

∥∥∥
∫

T2
(DsπNu)

2 − σN

∥∥∥
Lp(dμs,r,N (u,v))

≤ Cr

∥∥∥
∫

T2
(DsπNu)

2 − σN

∥∥∥
Lp(dμ̃s(u,v))

.

On the other hand

∥∥∥
∫

T2
(DsπNu)

2 − σN

∥∥∥
Lp(dμ̃s(u,v))

=
∥∥∥

∑

n∈Z2

|n|≤N

(|gn(ω)|2 − 1)|n|2s
1 + |n|2 + |n|2s+2

∥∥∥
Lp(�)

and by using Wiener chaos estimates, we have

∥∥∥
∑

n∈Z2

|n|≤N

(|gn(ω)|2 − 1)|n|2s
1 + |n|2 + |n|2s+2

∥∥∥
Lp(�)

≤ Cp

∥∥∥
∑

n∈Z2

|n|≤N

(|gn(ω)|2 − 1)|n|2s
1 + |n|2 + |n|2s+2

∥∥∥
L2(�)

≤ Cp

which provides the needed bound for Q3(u, v).
The analysis of

Q1(u, v) = 3
∫

T2
�⊥

0 [(DsπNu)
2]�⊥

0 [πNv πNu]

is the most delicate part of the analysis and relies on subtle multi-linear arguments.
The analysis of Q2(u, v) follows similar lines.

Basically, we are allowed to have outputs as

‖Dσu‖L∞(T2), σ < s

with a loss
√
p and HN(u, v) with no loss in p. The outputs HN(u, v) follow from

deterministic analysis and thus have no loss in p but they are regularity consuming.
We observe that a naive Hölder inequality approach clearly fails. A purely

probabilistic argument based on Wiener chaos estimates fails because the output
power of p is too large. The basic strategy is therefore to perform a multi-scale
analysis redistributing properly the derivative losses by never having more then
quadratic weight of the contribution of the Wiener chaos estimate.
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When analysing the 4-linear expression defining Q1(u, v), we suppose that

DsπNu, D
sπNu, πNv, πNu

are localised at dyadic frequenciesN1, N2, N3, N4 respectively.

We first consider the case when N4 � (max(N1, N2))
1

100 . In this case we
exchange some regularity of DsπNu with this of πNu and we perform the naive
linear analysis.

Therefore, in the analysis of Q1(u, v) we can suppose that

N4 � (max(N1, N2))
1

100 .

In this case, we have that

max(N1, N2) ∼ max(Nj , j = 1, 2, 3, 4).

By symmetry, we can suppose that N1 = max(N1, N2). We next consider the case

N3 � N1−a
1 , a = a(s)� 1 .

In this case, we perform a bi-linear Wiener chaos estimate and we have some gain
of regularity in the localisation of �⊥

0 [(DsπNu)
2]. Finally, we consider the case

N1 ∼ max(Nj , j = 1, 2, 3, 4), N4 � (max(N1, N2))
1

100 , N3 � N1−a
1

In this case, we perform a tri-linear Wiener chaos estimate and we have enough gain
of regularity in the localisation of

�⊥
0 [(J sπNu)2]πNv .

This essentially explains the argument leading to the key estimate of Theorem 4.4.3.
We refer to [37] for the details.

4.4.2.4 On the Soft Analysis

We can observe that

Hs,N(u, v) = (4.4.8) + 3

2

∫

T2
(Dsu)2u2 − 3

2
σN

∫

T2
u2 +

∫

T2
u4 .

By classical arguments from QFT, we can define

lim
N→∞

(3

2

∫
(DsπNu)

2(πNu)
2 − 3

2
σN

∫
(πNu)

2
)
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in Lp(dμ̃s(u, v)), p < ∞. Denote this limit by R(u). Essentially speaking, once
we have the key estimate, we study the quasi-invariance of

χH(u,v)≤r e−R(u)−
∫
u4
dμ̃s(u, v) (4.4.14)

by soft analysis techniques.
Let us finally explain the importance of the loss p in the key estimate of

Theorem 4.4.3. Denote by x(t) the measure evolution of a set having zero measure
with respect to (4.4.14). Essentially speaking, using the key estimate and the
arguments introduced in [46, 47], we obtain that x(t) satisfy the estimate

ẋ(t) ≤ Cp(x(t))
1− 1

p , x(0) = 0 . (4.4.15)

Integrating the last estimate leads to x(t) ≤ (Ct)p . Taking the limit p → ∞, we
infer that x(t) = 0 for 0 ≤ t < 1/C. Since C is an absolute constant, we can
iterate the argument and show that x(t) is vanishing. Observe that this argument
would not work if in (4.4.15), we have pα , α > 1 instead of p. In order to
make the previous reasoning rigorous, we need to use some more or less standard
approximation arguments. We refer to [45] and [37] for the details of such type of
reasoning.
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