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Preface

General Remarks

In recent years, a new paradigm emerged in the area of partial differential equations
(PDEs): that probability may help to treat more singular problems than those that
can be tackled classically by deterministic tools. The lectures given at the CIME
summer school present two directions where this paradigm was developed into
mature theories.

The first one are stochastic partial differential equations (SPDEs). Probability
here is needed a priori, for the stochastic nature of the inputs. However, it does not
play a merely technical role to define and treat stochastic terms. It is the basic tool
which allows one to define, in suitable ways, nonlinear operations on distributions.
More precisely, it selects special inputs that have all the necessary properties for the
solution of very singular nonlinear equations.

The second one are deterministic PDEs with random initial conditions. The
typical picture that emerges in certain classes of PDEs is that classical deterministic
tools (like energy methods) allow to study the equation at sufficiently high level of
regularity of initial conditions (and solutions); maybe more refined deterministic
methods allow one to go beyond and treat certain classes of less regular initial
conditions. But the most remarkable extension is made by considering solvability
with random initial conditions, where probability selects suitable data.

A core question in these investigations is the interplay between rough inputs and
nonlinearity. Fully nonlinear PDEs represent a sort of extreme class, where classical
ideas of stochastic analysis cannot be applied directly. This is another direction we
wanted to emphasise in the summer school.

Despite the different subjects, the main theme of interplay of randomness and
nonlinear effects resulted in unexpected connections and analogies between the
various approaches and results presented. For example, the space-time regularity
of certain classes of Gaussian processes and some multilinear statistics thereof
play clearly a main role in the theory of regularity structures as in the theory of
energy solutions or in the analysis of the effect of random initial conditions on low
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regularity dispersive equations. Rough path theory is another common theme which
showed up in regularity structures and in the analysis of viscosity solution of fully
nonlinear SPDEs.

The Courses

Four courses of 6 h each were delivered to develop these ideas.
Massimiliano Gubinelli presented the approach to stochastic Burgers equation,

related to the KPZ equation, based on the concept of energy solutions. Solving the
stochastic Burgers equation is a priori very difficult since the square of white noise
appears. Nevertheless, there is a way to define this operation under the regularisation
of heat semigroup, as it appears in the variation of constant formulation. The series
of lectures of Gubinelli presented the foundations of this approach with the basic
existence result, a recent uniqueness result and ideas around the problem of weak
universality of the KPZ equation.

The lectures of Martin Hairer were devoted to his recent theory of regularity
structures, developed to deal with KPZ and other singular equations. This far-
reaching theory leverages ideas from T. Lyons’ rough path theory and generalises
them to a multidimensional context to provide an analytic well-posedness theory
for equations where the nonlinearities are apriori not well-defined. It does so by
introducing tools to give a precise local description of a distribution far beyond
what is possible with standard functional spaces and good enough to resolve the
singularities in the nonlinear operations and decompose them into well-defined
contributions. The stochastic quantisation equation for the�4

3 Euclidean field theory
has been the running example used in the lectures to illustrate the application of the
general framework.

Martin Hairer wrote several introductions to his theory. In order to make
his contribution to the volume original, we decided instead to write a review
summarising the achievements in the field by him, his school and related groups
and which could help the reader to find its way in the steadily increasing literature
(see the Introduction).

Panagiotis E. Souganidis presented the theory, developed mainly in collaboration
with P. L. Lions, about the pathwise weak solvability of fully nonlinear PDEs with
rough time-dependent inputs, including Brownian motion. The lectures covered
two classes of scalar fully nonlinear first- and second-order degenerate parabolic
stochastic partial differential equations, including Hamilton-Jacobi equations and
multidimensional scalar conservation laws. The lectures contained also the dis-
cussion of several examples and motivations, like the motion of interfaces and
stochastic selection principle, or stochastic control and mean field games.

Nikolay Tzvetkov considered, as a main example of dispersive PDE, the nonlin-
ear wave equation in space dimension 3. After basic definitions and properties, he
described in detail some key result of the deterministic theory, for comparison with
the probabilistic progresses. In particular, he showed well-posedness for relatively
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regular initial conditions by energy methods and for less regular ones by Strichartz
estimates. Then, he presented the approach based on random initial data in classes
of more singular functions. Here, new, probabilistic, Strichartz estimates can be
proved and used perturbatively to solve the wave equation. Several additional results
have been discussed, like large deviation bounds, continuous dependence, invariant
measures and the more recent research direction of quasi-invariant measures,
namely, the property of absolute continuity of the law at later time with respect
to the law at time zero.

Final Remarks

The summer school was attended by 83 PhD students, young and more senior
researchers, roughly one fourth of them from Italy and the remaining ones from
a wide range of countries including France, Germany, Norway, Turkey, Greece, the
United States, the United Kingdom and the Netherlands. All the junior participants
(PhD or Master students, which formed the majority of the attendance) were fully
supported by CIME and the European Mathematical Society with additional funds
contributed by various other institutions: the Hausdorff Center for Mathematics
in Bonn, the Laboratorio Ypatia delle Scienze Matematiche (joint project AMU-
ECM-CNRS-INdAM), the ERC grant Dispeq of Nikolay Tzvetkov, the ERC grant
of Martin Hairer and the IUF fellowship of Lorenzo Zambotti.

We thank the lecturers and all participants for their contributions to the success of
the school. Moreover, we thank CIME staff for their efficient and continuous help.

Pisa, Italy Franco Flandoli
Bonn, Germany Massimiliano Gubinelli
London, UK Martin Hairer
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Chapter 1
Introduction

Franco Flandoli, Massimiliano Gubinelli, and Martin Hairer

One of the most remarkable recent progresses in stochastic analysis has been
the invention of regularity structures (RS) as a tool to rigorously understand
SPDEs which were previously only written down at a formal level without clear
mathematical meaning.

A regularity structure allows to describe the local (in space-time) behaviour of
a distribution by generalising the notion of polynomials to include basis elements
which are themselves genuine distributions (possibly random), like for example
certain functionals of white noise. Those basis elements are called a model. The
family of local descriptions form naturally the section of a certain bundle over
which a notion of parallel transport can be introduced in order to compare local
descriptions in different points. This gives rise to natural subspaces of descriptions
which changes “smoothly”, therefore disconnecting the concept of regularity in the
sense of classical functional spaces to that of regularity in the sense of allowing
good analytic control. A Banach topology can be introduced under which the spaces
of sufficiently regular sections of this bundle are called modelled distributions.
In order to go from a section of this bundle of local regular descriptions to an
actual distribution which delivers a numerical value when tested with a smooth test
function we need to reconstruct such global description starting from the section
of local descriptions provided by the modelled distribution. That this reconstruction
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is possible (and unique under certain regularity conditions on the model and the
modelled distribution) is the content of the reconstruction theorem which is the
linchpin of the theory. In words, it states that there exists a unique distribution which
is coherent with the family of local descriptions, somewhat like the fundamental
theorem of calculus states that there exists only one primitive (modulo constants)
which possesses a given derivative (which is a local description of the function
itself).

The local description provided by the modelled distribution can then be used
to analyse the behaviour of non-linear operations among distributions which are
not controlled by standard functional spaces. In some sense, modelled distributions
provide refined notions of regularity well beyond classical concepts like Sobolev or
Besov regularity or even Hörmander’s wave front sets, which are tailored to work for
specific equations and capture the local structure of their solutions in a way effective
to analyse nonlinear operations.

RS is composed of various facets which are designed to handle in quite large
generality every natural class of singular SPDEs whose local behaviour can be
understood “perturbatively”. In the theory, this idea is encoded in the notion of
criticality. Equations amenable to the RS analysis are those whose scaling behaviour
is subcritical. Intuitively this means that, by blowing up locally the equation (or a
smooth approximation), it should behave more and more like a linear equation with
the non-linear terms gaining small factors due to the rescaling. The power of the
method lies in the fact that this class still includes a large number of equations
which are completely out of control with more classical theories. Let us give some
well-known and relevant examples:

1. The (generalised) KPZ equation

∂th(t, x)−�h(t, x)+ �(h(t, x))(∂xh(t, x))2
= σ(h(t, x))ξ(t, x), (t, x) ∈ R+ × T, (1.1)

where here and in the following we will denote by ξ a space-time (or space)
white noise.

2. The dynamic�4
d model for d = 2, 3

∂tϕ(t, x)−�ϕ(t, x)+ λ(ϕ(t, x))3 = ξ(t, x), (t, x) ∈ R+ × T
d . (1.2)

3. The Anderson model in two (and three) dimensions

∂tu(t, x)−�u(t, x)− ξ(x)u(t, x) = 0, (t, x) ∈ R+ × T
2,3. (1.3)

All of these equations are purely formal, in order to be well defined they need
suitable (infinite) counterterms which we haven’t indicated explicitly. They have
the heuristic intent of suggesting which kind of standard nonlinear PDE constitutes
a suitable approximation once the noise terms are duly regularised.
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Singular SPDEs (SSPDEs) are not just a mathematical challenge, devoid of
physical applications. Quite the contrary, they are often the mathematical coun-
terpart of very important and fundamental phenomenological physical theories
which try to describe the large scale fluctuations of random extended systems.
Here we understand ‘large scale’ in the sense that the mechanisms generating these
random fluctuations live at scales which are much smaller than the typical scale of
observation. From this point of view, one may compare SSPDEs with hydrodynamic
limits and fluctuations around them in the theory of interacting particle systems,
or with stochastic homogenisation theory. In these two examples however, there
are only two scales which play a fundamental role: the microscopic scale and the
macroscopic one, thus giving rise to Gaussian fluctuations. In SSPDEs, all the
intermediate scales stay relevant, which gives rise to non-linear fluctuations and
to non-Gaussian limiting random fields whose space-time dynamical features the
SSPDEs are describing. Very much like in the martingale problem formulation
of Markovian stochastic dynamics, the complicate nature of these fluctuations is
reduced (via the non-linear dynamics) to its purest form, that of local uncorrelated
Gaussian random fluctuations of white noise type.

In the following, we aim to give a reasoned guide to the current and fast evolving
literature around singular SPDEs, RS and other related methods.

The very first success in handling SSPDEs has been Hairer’s local solution
theory for the KPZ equation [31] which was obtained using Lyons’ rough path
theory [49–51] and in particular, controlled paths [18, 22]. Very soon after, Hairer
invented RS [33] and used them to give a local solution theory for the dynamical
�4

3 model (1.2). At the same time Gubinelli et al. introduced the notion of
paracontrolled distributions [27] and later Kupiainen [47] applied renormalisation
group ideas to give an alternative approach to the dynamical �4

3 model. Later on,
Otto and Weber also developed an alternative approach [58] to the study of equations
described by regularity structures, see also the follow up paper by Otto et al. [59].

Nice introductions to some aspects of these theories can be found in the book
of Friz and Hairer [18], in the papers of Mourrat et al. [57], in the ICM 2014
proceedings contribution of Hairer [32], in his course for the Brasilian School of
Probability in 2015 [34] and in the more recent survey paper [36] by Hairer.

Starting with these initial developments many models were considered. Catellier
and Chouk [11] gave a local solution theory for �4

3 using paracontrolled dis-
tributions. Later, Mourrat and Weber constructed global space-time solutions for
�4

2 [56] and global solution in time on the torus for �4
3 [55]. In this last work,

they proved that the dynamic equation “comes down from infinity” in finite time,
namely after a fixed time interval the solution can be bounded independently of
the initial condition, a very strong property related to the coercive term −ϕ3. More
recently, Gubinelli and Hofmanová [25] proved global space-time existence and
coming down from infinity for the �4

3 model and for its elliptic analogue which
lives naturally in d = 5. In doing so they developed a general technique to handle
the full space situation in paracontrolled equations.

For �4
d many weak universality results are also known. Mourrat and Weber [54]

proved that the Glauber dynamics for the Ising–Kac model (an Ising model with
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mesoscopic interactions of mean-field type) converges to the dynamic �4
2 model,

and this was later extended to more complex microscopic dynamics by Shen and
Weber [62], showing that they can also converge to the dynamic�6

2 model in some
situations.

In d = 3, Hairer and Xu [45] gave the first weak universality result for �4
3 by

proving that a class of reaction diffusion equations with polynomial nonlinearities
converge to it in a suitable crossover regime. Shen and Xu [63] examined the case
of a regularised �4

3 model with non-Gaussian noise and proved convergence to the
Gaussian driven �4

3 model under a space-time rescaling. Furlan and Gubinelli [19]
proved the convergence of non-polynomial reaction-diffusion equations using
Malliavin calculus. At the same time, an alternative approach to non-polynomial
non-linearities was found by Hairer and Xu [46] who introduced a method based
on proving probabilistic limit theorems for trigonometric polynomials of Gaussian
random variables.

Dynamics can be used also to prove properties of the invariant measure, very
much in the spirit of Parisi and Wu’s original idea of stochastic quantisation. Hairer
and Iberti [37] used the stationary Glauber dynamics to prove tightness of the Ising–
Kac model in d = 2. Albeverio and Kusuoka [1] used a similar strategy in the �4

3
case on the torus giving a proof of tightness of the �4

3 measure which does not use
the techniques of constructive quantum field theory. More recently, Gubinelli and
Hofmanová [24] extended and simplified the analysis of Albeverio and Kusuoka to
handle the �4

3 model in the full space: they proved tightness and an integration by
parts formula valid for any accumulation point.

As far as the KPZ equation is concerned, Gubinelli and Perkowski studied
the KPZ equation on the torus proving convergence of discrete approximations,
justifying rigorously the relation with the stochastic heat equation (SHE) and
proving a variational description of the solution [26]. More recently, Perkowski
and Rosati [60] proved global space-time existence for KPZ by relating it in a
pathwise manner to the random directed polymer measure and also providing a
renormalised stochastic control interpretation for it. A vectorial version of the KPZ
equation motivated by phenomenological fluctuating hydrodynamic theory has been
analysed by Kupiainen and Marcozzi [48] via the RG approach. It is interesting to
note that the 3D Navier–Stokes equations driven by space-time white noise exhibit
powercounting properties analogous to those of the KPZ equation, major differences
being the presence of the pressure term and the vectorial nature of the equation.
These hurdles were overcome by Zhu and Zhu [64].

Weak universality results for the KPZ equation started with the paper of Bertini
and Giacomin [6] which showed that the logarithm of the solution of the stochastic
heat equation describes the large scale fluctuations of the density of the weakly
asymmetric simple exclusion process. This result predates by many years the
invention of the modern approach to singular SPDEs and the KPZ equation in
particular, but was one of the main motivations to develop a theory for such
equations because it showed that there was a need of a theory capable of describing
directly the dynamics of the fluctuations without resorting to taking the logarithm of
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the SHE (the so called Hopf–Cole transform), which is very problem-specific. Using
regularity structures, Hairer and Quastel [42] were able to show that a large class
of growth models in 1d (on a periodic domain) described by SPDEs with additive
Gaussian noise converge to the KPZ equation in the weak asymmetry, large scale
limit. Later on, Hairer and Shen [44] developed general techniques to handle non-
Gaussian noise in the setup of Hairer and Quastel providing generalised central
limits for these growth models. Indeed they showed that a large class of random
fields with short range correlations driving a 1d weakly asymmetric growth model
will generate the additive white noise perturbations appearing in KPZ, irrespective
of their initial distribution. Cannizzaro and Matetski [10], using the adaptation to
the discrete setting of RS theory developed by Hairer and Matetski [41], analyse
a class of discrete KPZ equations and prove the convergence to their continuous
counterparts. More recently, Matetski [53] developed a general strategy to handle
noises defined via martingale properties, as those appearing in interacting particle
systems and shows convergence to RS models driven by space-time Brownian
motions, paving the way to very general weak universality statements.

Another class of models which played a fundamental role in the initial devel-
opment of the theories of SSPDEs are the 2d and 3d Anderson models (1.3). A
generalised version of the 2d model (on the torus) was used by Gubinelli et al. [27]
to exemplify the application of paracontrolled distributions to singular SPDEs. The
case of the full space was been treated by Hairer and Labbé in [39] for the 2d case
and in [40] for the 3d case. A support theorem for the generalised Anderson model
in 2d was obtained by Chouk and Friz [14].

A different point of view on the problem was taken by Allez and Chouk [2]
who proved that Anderson’s Hamiltonian operator H = � − ξ in d = 2 can be
renormalised in such a way that it is self-adjoint and bounded below, although
it has some rather unusual features. (For example, its domain does not contain
any smooth function, except 0.) They also analyse some of its spectral properties.
Perkowski and Martin [52] prove convergence of discrete versions of Anderson’s
Hamiltonian to its continuous counterpart via a small noise limit. In doing so
they developed basic tools to apply paracontrolled calculus in a discrete setting.
Non-linear Schrödinger evolutions (on a periodic 2d domain) associated with this
operator were first considered by Debussche and Weber [17] and later extended to
hyperbolic equations and to d = 3 by Gubinelli et al. [30] and to the full 2d space
dispersive setting by Debussche and Martin [16].

These are some of the first results for equations which are not of parabolic
type. Other results were obtained by Gubinelli et al. [29] for the 2d wave equation
with polynomial nonlinearities, including also some weak universality results for
2d hyperbolic equations with additive space-time white noise. More recently the
same authors solved in [28] also a 3d wave equation with quadratic nonlinearity
by introducing a new paracontrolled decomposition involving certain random
operators. A general solution theory for these nonlinear hyperbolic equation has
not yet been developed, especially due to the fact that the notions of homogeneity
and regularity developed for parabolic equations seems less amenable to capture



6 F. Flandoli et al.

the local behaviour of the solution and less efficient in controlling the non-linear
interaction term.

In [43] Hairer and Shen gave a solution theory for the dynamical sine-Gordon
model for certain values of the parameter α appearing in the equation. This model
is interesting since it requires a multiplicative renormalisation and the scaling
properties of the random objects needed to construct the RS models depend on a
parameter. The Hairer–Shen solution reaches the level of “first order” expansion,
well below the full range of values for α for which the equation is believed to be
subcritical. While the analytic part of RS theory developed in [33] is capable to
handle in complete generality the full subcritical regime of any non-linear SPDE
with smooth coefficients, the renormalisation step and the analysis of the random
RS model are usually done by hand and this become very rapidly a daunting task
as the regularity of the stochastic objects reaches the critical scaling. For this reason
Hairer and Shen limited their analysis to a relatively small range of values of α.

This limitation also plagues other very interesting applications of RS: for
example the generalised KPZ equation (1.1) described in [35] and recently analysed
in detail in [8]. The regularity structure needed to describe solutions to this equation
contains a very large number of basis objects and it is unfeasible to prove by
hand the renormalisation and the analytic properties needed in RS for all of them.
In order to provide a complete “black box” theory which encompasses all these
interesting but more complex situations one needs two new ingredients: a good
understanding of the algebraic properties of the subtraction of diverging quantities,
which is termed negative renormalisation and an equally good understanding of
the centering procedure of the monomials in the RS model needed to leverage the
notion of homogeneity (similar to physical scaling degree) which is crucial in the
analytic estimates. This second subtraction procedure, which produces terms very
much like a generalised Taylor remainder, is also called positive renormalisation.
Positive and negative renormalisation do not commute and their interplay can be
quite complex from a general point of view. In order to deal with this complexity,
Bruned et al. [9] put in place a theory of co-interacting Hopf algebras which
describe the abstract action of a large class of negative and positive renormalisation
schemes on the RS proving that those actions are compatible with the requirements
of the analytic side of RS theory. The use of Hopf algebras to describe negative
renormalisation is reminiscent of the approach of Connes and Kreimer [15] to
renormalisation of perturbative QFT, while their use for the positive renormalisation
has been pioneered by Hairer and Kelly [38] in the description of the branched rough
paths introduced in [23]. On the other hand, Chandra and Hairer [12] provided a
multiscale probabilistic analysis of a general class of random fields with the aim
to implement a specific negative renormalisation scheme applicable to a large class
of RS models constructed from random fields (like white noise or more generally,
stationary generalised random fields satisfying a hierarchy of cumulant bounds)
and kernel convolutions. This so called BHPZ renormalisation (After Bogoliubov,
Parasiuk, Hepp and Zimmermann who introduced the analogous renormalisation
scheme to the analysis of perturbative QFT) provides a general scheme to turn the
RS models arising in subcritical equations into well defined renormalised ones.
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Finally Bruned et al. [7] provided the missing piece, namely a proof that the
negative renormalisation provided by the BHPZ construction can be implemented
via a transformation of the equation being solved by the introduction of appropriate
local counterterms. This guarantees that for any subcritical equation there is a
(finite) number of counterterms which one has to include in the equation so that, by
suitably tuning these additional terms, regularised approximate solutions converge
to a limiting object in a robust fashion. All together the four papers [7, 9, 12, 33]
provide a complete, robust and systematic local well-posedness theory which is able
to handle any smooth quasilinear parabolic equation driven by a general class of
space-time random fields. Using this general theory Chandra et al. [13] were able
to complete the analysis of the sine-Gordon model and provide a well-posedness
theory in the full subcritical regime.

One interesting recent development is the analysis of the interplay between
symmetries and renormalisation. To some extent, this grew out of the desire to gain
a deeper understanding for the reason behind the exact cancellation between the
two logarithmic divergencies appearing in [31]. The recent article [8] provides a
very simple argument in support of the heuristic statement that ‘if one can formally
approximate a class of singular SPDEs in such a way that it exhibits a given
symmetry, then it can be renormalised in a way that preserves this symmetry’.
The generalised KPZ equation (1.1) exhibits two infinite-dimensional symmetries:
on the one hand, this class of equations is formally invariant under changes of
coordinates h �→ φ ◦ h of the target space (which could be more than one-
dimensional). On the other hand, Itô’s isometry suggests that the law of the solution
should only depend on σσ� rather than σ itself. Somewhat surprisingly, it turns out
that both of these symmetries can be preserved simultaneously, which is quite unlike
the case of SDEs where Stratonovich solutions satisfy the first symmetry but not the
second one and Itô solutions satisfy the second one but not the first! Symmetry
arguments are expected to play a crucial role in the stochastic quantisation of gauge
theories which was recently performed in the simples case (2D, Abelian) in [61].

There have been also attempts to generalise paracontrolled distributions to
handle more general equations by Bailleul and Bernicot who developed in [3] a
paracontrolled calculus which can work in the manifold setting via heat kernel
estimates and also higher order commutator estimates [4] to try to tackle less regular
equations. However, paracontrolled calculus remains less general than RS theory as
yet, the latter having reached a very complete state.

Let us mention also that through a series of paper published more or less at
the same time, Bailleul et al. [5], Otto and Weber [58], Furlan and Gubinelli [20],
Gerencsér and Hairer [21] developed extensions of the above theories to handle
quasilinear equations. Quasilinear equations feature non-linearities also in the
highest derivative term and, in the SSPDEs setting, these nonlinearities require
appropriate renormalisation. The above papers provide more or less specific solu-
tions to this problem. One key insight is that of Otto and Weber [58] who suggested
to generalise the notion of the model (like in RS) to a parametric one in order to
be able to perturb it in ways depending on the solution and obtain descriptions
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suitable to well approximate the local behaviour of the solutions to such quasilinear
equations.
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Chapter 2
Lectures on Energy Solutions
for the Stationary KPZ Equation

Massimiliano Gubinelli

Abstract These are a set of lectures delivered at the CIME-EMS Summer School
in Applied Mathematics “Singular Random Dynamics” which have been held from
22 to 26 August 2016 in Cetraro, Italy. The goal of these lectures is to introduce the
concept of energy solution for the Kadar–Parisi–Zhang equation and to discuss the
application of this notion of solution to the analysis of the scaling limit of certain
weakly-asymmetric growth processes.

2.1 Introduction

In these notes I will describe the martingale problem approach to the stationary KPZ
equation introduced by Gonçalves and Jara [8, 9] and Gubinelli and Jara [11] under
the name of energy solutions. Recent progress allowed to establish uniqueness for
this formulation [14] and convergence results for various models [3, 5, 7, 10, 13].
These notes will be based on the material contained in the works [3, 11, 13, 14] and
on the lecture notes [12] which covered the basic existence results. Here we will
discuss also uniqueness and give an example of convergence results for a particular
class of models. Note that recently a more general approach to uniqueness of the
martingale problem has been introduced in [15] via a careful study of the formal
generator of the process.

The equation we are interested in is the following SPDE, called the Kardar–
Parisi–Zhang equation (KPZ)

∂th(t, x) = �h(t, x)+ [(∂xh(t, x))2 −∞] + ξ(t, x), x ∈ T, t � 0, (2.1)

where T is the one dimensional torus, � the periodic Laplacian, ξ a space-time
white noise and where the notation∞ hints to the fact the quadratic terms needs a
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renormalization procedure in order to be properly defined. This equation has been
introduced (on the full line) by Kardar et al. in the celebrated paper [19] appeared in
1986 in the Physics literature in order to give a universal description of fluctuations
of growing interfaces in one dimension. This topic generated a vast physics literature
which is not our aim here to review. From the mathematical point of view the status
of the equations is not a-priori very clear since it cannot be given a meaning via
standard SPDE techniques due to difficulties to define the non-linear term (more on
this later on). The first rigorous results on KPZ are contained in a paper by Bertini
and Giacomin [2] where they (morally) proved the convergence of a the density
field of an interacting particle system towards the solution u(t, x) of the Stochastic
Burgers Equation (SBE)

∂tu(t, x) = �u(t, x)+ ∂x(u(t, x))2 + ∂xξ(t, x), x ∈ T, t � 0, (2.2)

which can be interpreted as the derivative of the KPZ equation. Again this SPDE
is not well-posed (and not even well-defined) and their precise result is the
convergence of the density field to a random field u which satisfies u(t, x) =
∂x logZ(t, x) where Z is the solutions to the Stochastic Heat Equation (SHE) with
multiplicative space-time white noise, namely the SPDE

∂tZ(t, x) = �Z(t, x)+ Z(t, x)ξ(t, x), x ∈ T, t � 0, (2.3)

which is well-posed if understood via stochastic calculus for the cylindrical Wiener
process W in L2(T) linked to the white noise ξ via the distributional relation
ξ = ∂t ∂xW(t, x). The result of Bertini and Giacomin shows that this indirect
formulation of the KPZ equation is the physically correct one (since obtained via
a scaling limit of a microscopic model) but it is still quite indirect and proofs of
convergence to this kind of solutions are limited to the availability of the exponential
transformation (called Hopf–Cole transformation) or some good approximation of
it at the microscopic level. For the weakly asymmetric simple exclusion model (the
one analysed by Bertini and Giacomin) this transformation can be implemented at
the microscopic level, a fact discovered by Gärtner.

For a general review of the mathematical formulation and other results around
the Hopf–Cole solutions and the related universality problem we refer to the nice
and complete lecture notes of Quastel [21].

A first attempt at an intrinsic formulation of the KPZ/SBE equation is the one
by Assign [1] where he manages to describe a generalized martingale problem
which however is still too weak to allow interesting results. After this work, Jara
and Gonçalves precised the notion of stationary martingale solution in their 2010
preprint [8] (whose published version is [9]). In a subsequent paper, Jara and myself
gave a slightly different notion of solution based on the idea of identifying a general
class of processes which would exhibit certain key path properties, similar to those
observed for limiting points of the microscopic dynamics described e.g. [8]. Later
on, in collaboration with Perkowski, we have established uniqueness of the refined
formulation of the stationary martingale problem (here conventionally called energy
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solution). This last result opens the way to a large class of convergence theorems via
the standard approach of stochastic compactness method:

(a) establish tightness of the sequence of macroscopic observables;
(b) prove that any limit point is an energy solution;
(c) use uniqueness to deduce the convergence of the whole sequence.

The topics covered in these notes are the following:

(a) Introduce the concept of controlled process which describe the possible limiting
points of stationary stochastic dynamics which should converge to the SBE
equation.

(b) Prove the regularising properties of these processes in the form of good
estimates for additive functionals.

(c) Exploit these properties to define in this space a notion of solution to SBE
and to prove uniqueness of solutions to SBE. Uniqueness will be the result of
implementing the Hopf–Cole transformation at the level of controlled process
(via a generalized Itô formula) and verifying that any energy solution is
transformed into a solution of a (slightly modified SHE) which in turns enjoy
pathwise uniqueness.

(d) Use the regularizing properties of controlled processes to prove that some
rescaling of certain microscopic additive functionals converge to simpler
macroscopic ones and use this to establish certain invariance principles, for
example the convergence of a class of SPDEs to the SBE via suitable space-
time rescalings.

2.1.1 Notations and Some Preliminaries

Let T = R/(2πZ) be the one dimensional torus, S the space of C∞ functions on
T and 〈f, g〉 = ∫

T f (x)g(x)dx the L2(T) scalar product. For k ∈ Z we denote
by ek(x) = exp(−ikx)/(2π)1/2 the Fourier basis. Let 0 : L2(T) → L2

0(T) the
projection from L2(T) to L2

0(T) = {f ∈ L2(T) : 〈e0, f 〉 = 0}, N0 : L2(T) →
L2

0(T) the projection on the span of (ek)0<|k|�N and byN : L2(T)→ L2(T) the
projection on the span of (ek)0�|k|�N . Let Hα the standard Sobolev spaces on T of
index α ∈ R defined as

Hα := Hα(T) :=
{

ρ ∈ S ′ : ‖ρ‖2
Hα :=

∑

k∈Z
(1+ |k|2)α|ρ(ek)|2 <∞

}

.

and Hα0 = 0H
α their mean-zero counterparts. The space of distributions S ′ =

S ′(Td ) is the set of linear maps f from S = C∞(Td ,C) to C, such that there
exist k ∈ N and C > 0 with

|〈f, ϕ〉| := |f (ϕ)| � C sup
|μ|�k

‖∂μϕ‖L∞(Td )
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for all ϕ ∈ S . The Fourier transform Ff : Zd → C,

Ff (k) = f̂ (k) = 〈f, ek〉,

with ek = e−i〈k,·〉/(2π)d/2, is defined for all f ∈ S ′, and it satisfies |Ff (k)| �
|P(k)| for a suitable polynomial P . Conversely, if (g(k))k∈Zd is at most of
polynomial growth, then its inverse Fourier transform

F−1g =
∑

k∈Z
g(k)e∗k

defines a distribution (here e∗k = ei〈k,·〉/(2π)d/2 is the complex conjugate of ek).
Parseval formula

〈f, ϕ∗〉L2(T) =
∫

T

f (x)ϕ(x)∗dx =
∑

k

f̂ (k)ϕ̂(k)∗

extends from f, ϕ ∈ L2(T) to f ∈ S ′ and ϕ ∈ S . Moreover for f ∈ S ′, ϕ ∈ S
and for u, v : Z→ C with u of polynomial growth and v of rapid decay

F (f ϕ)(k) = (2π)−d/2
∑

�

f̂ (k − �)ϕ̂(�)

and

F−1(uv)(x) = (2π)d/2〈F−1u, (F−1v)(x − ·)〉.

Linear maps on S ′ can be defined by duality: if A : S → S is such that for all k ∈
N there exists n ∈ N andC > 0 with supm�k ‖∂mx (Aϕ)‖L∞ � C supm�n ‖∂mx ϕ‖L∞ ,
then we set 〈tAf, ϕ〉 = 〈f,Aϕ〉. Differential operators are defined by 〈∂nx f, ϕ〉 =
(−1)n〈f, ∂nx ϕ〉. Any ϕ : Z → C growing at most polynomially defines a Fourier
multiplier

ϕ(D) : S ′ → S ′, ϕ(D)f = F−1(ϕFf ).

Denote CT V = C([0, T ], V ) the space of continuous functions from [0, T ] to the
Banach space V endowed with the supremum norm and withCγT V = Cγ ([0, T ], V )
the subspace of γ -Hölder continuous functions in CT V with the γ -Hölder norm.

We will need also a fixed family of smoothing operators indexed by L � 1. Let
q : T→ R+ be a even smooth function of compact support around 0 and such that∫
T q(x)dx = 1. Let δL(y) = Lq(Ly), δLx (y) = δL(x − y), ρLx = δLx − 1/(2π) and
I L

0 f = ρL ∗ f . We let also ρ∞x (y) = δx(y)− 1/(2π) and then I0f = ρ∞ ∗ f =
0f .
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2.1.2 White Noise

Fix a complete probability space (�,F ,P) where is defined a spatial white noise η
on T, i.e. η is a centred Gaussian process indexed by L2(T), with covariance

E[η(f )η(g)] =
∫

T

f (x)g(x)dx.

We can choose a version of η such that η ∈ S ′ almost surely. Indeed letting

Qλ :=
∑

k∈Z
exp(λ|η(ek)|2/2)/(1+ |k|2)

we have

sup
k∈Z

|η(ek)| � 2λ−1 log(1+ |k|2)+ 2λ−1 logQλ

and moreover E[Qλ] < ∞ for any λ < 1. This implies easily the existence of the
random distribution η and gives precise informations about the regularity of such a
distribution. In particular it holds that η ∈ H−1/2−ε(T) a.s. for all ε > 0 and we
will let μ be the law of η as a random variable taking values in H−1/2−ε(T) for
some fixed and small ε > 0.

The space-time white noise on R+ × T is similarly defined as the centred
Gaussian process ξ indexed by L2(R+ × T) with covariance

E[ξ(f )ξ(g)] =
∫

R+×T
f (t, x)g(t, x)dtdx.

A nice realisation for this process, the one we will use below, is to define Mt(ϕ) =√
2ξ(I[0,t ]ϕ) for ϕ ∈ L2(T) and t � 0 and observe that (Mt (ϕ))t�0,ϕ∈L2(T) is a

Gaussian random field with covariance

E[Mt(ϕ)Ms(ψ)] = 2(t ∧ s)〈ϕ,ψ〉L2(T).

In particular, for every ϕ ∈ S the stochastic process (Mt (ϕ))t�0 is a Brownian
motion with covariance 2‖ϕ‖2

L2(T)
. We will use this fact to have a rigorous

interpretation of the white noise ξ appearing in our equation. Moreover the notation
M stresses the fact that (Mt(ϕ))t is a martingale in its natural filtration and more
generally in the filtration F• = (Ft )t with Ft = σ(Ms(ϕ) : s � t, ϕ ∈ L2(T)),
t � 0.
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2.2 The Ornstein–Uhlenbeck Process

Let X be a solution to

Xt(ϕ) = X0(ϕ)+
∫ t

0
Xs(�ϕ)ds + ∂xMt(ϕ) (2.4)

for all t � 0 and ϕ ∈ S . This equation has at most one solution (for fixed
X0). Indeed, the difference D between two solutions should satisfy Dt(ϕ) =∫ t

0 Ds(�ϕ)ds, which means that D is a distributional solution to the heat equation.
Taking ϕ = ek we getDt(ek) = −k2

∫ t
0 Ds(ek)ds and then by Gronwall’s inequality

Dt(ek) = 0 for all t � 0. To obtain the existence of a solution, observe that

Xt(ek) = X0(ek)− k2
∫ t

0
Xs(ek)ds + ∂xMt (ek)

and that ∂xMt(e0) = 0. For all k �= 0 the process βt(k) = Mt(ek) is a complex
valued Brownian motion (i.e. real and imaginary part are independent Brownian
motions with the same variance). The covariance of β is given by

E[βt (k)βs(m)] = 2(t ∧ s)δk+m=0

and moreover βt(k)∗ = βt (−k) for all k �= 0 (where ·∗ denotes complex
conjugation). In other words, (Xt (ek))t,k is a complex-valued Ornstein–Uhlenbeck
process [18, Example 5.6.8] which solves a linear one-dimensional SDE and has an
explicit representation given by

Xt(ek) = e−k2tX0(ek)− ik
∫ t

0
e−k2(t−s)dsβs(k).

This is enough to determine Xt(ϕ) for all t � 0 and ϕ ∈ S . Moreover (Xt(ek) :
t ∈ R+, k ∈ Z) is a complex Gaussian random field. If we take X0 ∼ η where η is
a space white noise, independent of (βs(k))s�0,k∈Z we have that Xt has mean zero
and covariance

E[Xt(ek)Xs(em)] = δk+m=0e
−|t−s|k2

as well as

E[Xt(ek)Xs(em)∗] = δk=me−|t−s|k2
.

In particular, E[|Xt(ek)|2] = 1. Note that Xt(ek) ∼ NC(0, 1) for all k ∈ Z0 and
t ∈ R, where we write

U ∼ NC(0, σ
2)
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ifU = V + iW , where V andW are independent random variables with distribution
N (0, σ 2/2). The random distribution Xt then satisfies Xt(ϕ) ∼ N (0, ‖ϕ‖2

L2(T)
).

That is, the white noise on T. It is also possible to deduce that the white noise on
T is indeed the invariant measure of the Ornstein–Uhlenbeck process, that it is the
only one, and that it is approached quite fast [18]. Next we examine the Sobolev
regularity of X.

Lemma 1 Let α < −1/2 almost surely X ∈ CHα .

Proof Let α = −1/2− ε and consider

‖Xt −Xs‖2
Hα =

∑

k∈Z
(1+ |k|2)α|Xt(ek)−Xs(ek)|2.

Let us estimate the L2p(�) norm of this quantity for p ∈ N by writing

E‖Xt − Xs‖2p
Hα =

∑

k1,...,kp∈Z

p∏

i=1

(1+ |ki |2)αE
p∏

i=1

|Xt(eki )−Xs(eki )|2.

By Hölder inequality, we get

E‖Xt −Xs‖2p
Hα �

∑

k1,...,kp∈Z

p∏

i=1

(1+ |ki|2)α
p∏

i=1

(E|Xt(eki )− Xs(eki )|2p)1/p.

Note now that Xt(eki )−Xs(eki ) is a Gaussian random variable, so that there exists
a universal constant Cp for which

E|Xt(eki )−Xs(eki )|2p � Cp(E|Xt(eki )− Xs(eki )|2)p.

Moreover,

Xt(ek)− Xs(ek) = (e−k2(t−s) − 1)Xs(ek)+ ik
∫ t

s

e−k2(t−r)drβr(k),

leading to

E|Xt(ek)−Xs(ek)|2 � (k2(t − s))κ ,
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for any κ ∈ [0, 1] and k �= 0, while for k = 0 we have E|Xt(e0) − Xs(e0)|2 = 0.
Let us introduce the notation Z0 = Z \ {0}. Therefore,

E‖Xt −Xs‖2p
Hα �

∑

k1,...,kp∈Z0

p∏

i=1

(1+ |ki |2)α
p∏

i=1

E|Xt(eki )−Xs(eki )|2

� (t − s)κp
∑

k1,...,kp∈Z0

p∏

i=1

(1+ |ki |2)α(k2
i )
κ (|X0(eki )|2 + 1)

� (t − s)κp
⎡

⎣
∑

k∈Z0

(1+ |k|2)α(k2)κ

⎤

⎦

p

If α < −1/2 − κ , the sum on the right hand side is finite and we obtain an
estimation for the modulus of continuity of t �→ Xt in L2p(�;Hα):

E‖Xt − Xs‖2p
Hα � (t − s)κp.

Kolmogorov’s continuity criterion allows us to conclude that almost surely X ∈
CHα. ��

Note that the regularity of the Ornstein–Uhlenbeck process does not allow us to
form the quantity X2

t point-wise in time. One can show that X2
t (ek) does not make

sense as a random variable. So we should expect that, at fixed time, the regularity
of the Ornstein–Uhlenbeck process is like that of the space white noise and this is
a way of understanding our difficulties in defining X2

t since this will be, modulo
smooth terms, the square of the space white noise.

A different matter is to make sense of the time-integral of ∂xX2
t . Let us give it a

name and call it Jt (ϕ) =
∫ t

0 ∂xX
2
s (ϕ)ds. For Jt (ek), the computation of its variance

gives a quite different result.

Lemma 2 Almost surely, J ∈ C1/2−H−1/2−.

Proof We have now

E[|Jt (ek)|2] = 1

π
k2
∫ t

0

∫ t

0

∑

�+m=k
E[Xs(e�)Xs ′(e−�)]E[Xs(em)Xs ′(e−m)]dsds′.

If s > s′, we have

E[Xs(e�)Xs ′(e−�)] = e−�2(s−s ′),
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and therefore

E[|Jt (ek)|2] = k2

2π

∫ t

0

∫ t

0

∑

�+m=k
e−(�2+m2)|s−s ′|dsds′

� 1

π
k2t

∑

�+m=k

∫ ∞

0
e−(�2+m2)rdr = 1

π
k2t

∑

�+m=k

1

�2 +m2

Now for k �= 0

∑

�+m=k

1

�2 +m2
�
∫

R

dx

x2 + (k − x)2 � 1

|k| .

So finally E[|Jt (ek)|2] � |k|t . From which is easy to conclude that at fixed t the
random field Jt belongs almost surely to H−1/2−. Redoing a similar computation
in the case Jt (ek)− Js(ek), we obtain E[|Jt (ek) − Js(ek)|2] � |k| × |t − s|. To go
from this estimate to a path-wise regularity result of the distribution (Jt )t , following
the line of reasoning of Lemma 1, we need to estimate the p-th moment of Jt (ek)−
Js(ek). We already used in the proof of Lemma 1 that all moments of a Gaussian
random variable are comparable. By Gaussian hypercontractivity (see Theorem 3.50
of [17]) this also holds for polynomials of Gaussian random variables, so that

E[|Jt (ek)− Js(ek)|2p] �p (E[|Jt (ek)− Js(ek)|2])p.

From here we easily derive that almost surely J ∈ C1/2−H−1/2− which is the space
of 1/2−-Holder continuous functions with values in H−1/2−. ��

This shows that ∂xX2
t exists as a space-time distribution but not as a continuous

function of time with values in distributions in space. The key point in the proof
of Lemma 2 is the fact that the correlation E[Xs(e�)Xs ′(e−�)] of the Ornstein–
Uhlenbeck process decays quite rapidly in time.

The construction of the process J does not solve our problem of constructing∫ t
0 ∂xu

2
sds since we need similar properties for the full solution u of the non-linear

dynamics (or for some approximations thereof), and all we have done so far relies on
explicit computations and the specific Gaussian features of the Ornstein–Uhlenbeck
process. But at least this give us a hint that indeed there could exist a way of making
sense of the term ∂xu(t, x)

2, even if only as a space-time distribution, and that in
doing so we should exploit some decorrelation properties of the dynamics.

To deal with the full solution u, we need a replacement for the Gaussian
computations based on the explicit distribution of X that we used above. This will
be provided, in the current setting, by stochastic calculus along the time direction.
Indeed, note that for each ϕ ∈ S the process (Xt(ϕ))t�0 is a semi-martingale in
the filtration (Ft )t�0.



20 M. Gubinelli

Before proceeding with these computations, we need to develop some tools to
describe the Itô formula for functions of the Ornstein–Uhlenbeck process. This will
also serve us as an opportunity to set up some analysis on Gaussian spaces.

2.3 Gaussian Computations

For cylindrical functions F : S ′ → R of the form F(ρ) = f (ρ(ϕ1), . . . , ρ(ϕn))

with ϕ1, . . . , ϕn ∈ S and f : Rn→ R at least C2
b , we have by Itô’s formula

dtF (Xt ) =
n∑

i=1

Fi(Xt)dXt(ϕi)+ 1

2

n∑

i,j=1

Fi,j (Xt )d〈X(ϕi),X(ϕj )〉t ,

where 〈〉t denotes the quadratic covariation of two continuous semimartingales and
where Fi(ρ) = ∂if (ρ(ϕ1), . . . , ρ(ϕn)) and Fi,j (ρ) = ∂2

i,j f (ρ(ϕ1), . . . , ρ(ϕn)),
with ∂i denoting the derivative with respect to the i-th argument. Now recall that

dXt(ϕi) = Xt(�ϕi)dt + d∂xMt(ϕi)

is a continuous semimartingale, and therefore

d〈X(ϕi),X(ϕj )〉t = d〈∂xM(ϕi), ∂xM(ϕj )〉t = 〈∂xϕi, ∂xϕj 〉L2(T)dt,

and then

dtF (Xt ) =
n∑

i=1

Fi(Xt)d∂xMt(ϕi)+ L0F(Xt )dt,

where L0 is the second-order differential operator defined on cylindrical functions
F as

L0F(ρ) =
n∑

i=1

Fi(ρ)ρ(�ϕi)+
n∑

i,j=1

Fi,j (ρ)〈∂xϕi, ∂xϕj 〉L2(T). (2.5)

Another way to describe the generator L0 is to give its value on the functions ρ �→
exp(ρ(ψ)) for ψ ∈ S , which is

L0e
ρ(ψ) = eρ(ψ)(ρ(�ψ)− 〈ψ,�ψ〉L2(T)).
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If F,G are two cylindrical functions (which we can take of the form F(ρ) =
f (ρ(ϕ1), . . . , ρ(ϕn)) and G(ρ) = g(ρ(ϕ1), . . . , ρ(ϕn)) for the same ϕ1, . . . , ϕn ∈
S ), we can check that

L0(FG) = (L0F)G+ F(L0G)+ E(F,G), (2.6)

where the quadratic form E is given by

E(F,G)(ρ) = 2
∑

i,j

Fi(ρ)Gj (ρ)〈∂xϕi, ∂xϕj 〉L2(T). (2.7)

In particular, the quadratic variation of the martingale obtained in the Itô formula
for F is given by

d

〈∫ ·

0

n∑

i=1

Fi(Xs)d∂xMs(ϕi)

〉

t

= E(F, F )(Xt )dt .

Lemma 3 (Gaussian Integration by Parts) (Zi)i=1,...,M is an M-dimensional
Gaussian vector with zero mean and covariance (Ci,j )i,j=1,...,M iff for all g ∈
C1
b (R

M) we have

E[Zkg(Z)] =
∑

�

Ck,�E

[
∂g(Z)

∂Z�

]

.

As a first application of this formula let us show that E[L0F(η)] = 0 for every
cylindrical function, where η is a space white noise with mean zero, i.e. η(ϕ) ∼
N (0, ‖ϕ‖2

L2(T)
) for all ϕ ∈ L2

0(T), and η(1) = 0. Here we write L2
0(T) for the

subspace of all ϕ ∈ L2(T) with
∫
T
ϕdx = 0. Indeed, note that by polarization

E[η(ϕi)η(�ϕj)] = 〈ϕi,�ϕj 〉L2(T), leading to

E

n∑

i,j=1

Fi,j (η)〈∂xϕi, ∂xϕj 〉L2(T) = −E
n∑

i,j=1

Fi,j (η)〈ϕi,�ϕj 〉L2(T)

= −
n∑

i,j=1

〈ϕi,�ϕj 〉L2(T)E
∂

∂η(ϕi)
Fj (η)

= −
n∑

j=1

E[η(�ϕj)Fj (η)],

so that E[L0F(η)] = 0 (here we interpreted ∂j f as a function of n + 1 variables,
with trivial dependence on the (n + 1)-th one). In combination with Itô’s formula,
this indicates that the white noise law should indeed be a stationary distribution for
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X (convince yourself of it!). From now on we fix the initial distribution X0 ∼ η,
which means that Xt ∼ η for all t � 0.

As another application of the Gaussian integration by parts formula, we get

1

2
E[E(F,G)(η)] = −

∑

i,j

E[Fi(η)Gj(η)]〈ϕi,�ϕj 〉L2(T).

= −
∑

i,j

E[(F (η)Gj (η))i]〈ϕi,�ϕj 〉L2(T)

+
∑

i,j

E[F(η)Gij (η)]〈ϕi,�ϕj 〉L2(T)

= −
∑

j

E[F(η)Gj (η)η(�ϕj)]

+
∑

i,j

E[F(η)Gij (η)]〈ϕi,�ϕj 〉L2(T)

= −E[(FL0G)(η)].

Combining this with (2.6) and with E[L0(FG)(η)]=0, we obtain E[(FL0G)(η)] =
E[(GL0F)(η)]. That is, L0 is a symmetric operator with respect to the law of η.

Consider now the operator D, defined on cylindrical functions F by

DF(ρ) =
∑

i

Fi(ρ)ϕi (2.8)

so that DF takes values in S ′, the continuous linear functionals on S , D is
independent of the specific representation of F , that is if

F(ρ) = f (ρ(ϕ1), . . . , ρ(ϕn)) = g(ρ(ψ1), . . . , ρ(ψm))

for all ρ ∈ S ′, then

∑

i

∂if (ρ(ϕ1), . . . , ρ(ϕn))ϕi =
∑

j

∂jg(ρ(ψ1), . . . , ρ(ψm))ψm.

A way to show this is to consider that for all θ ∈ S ,

〈DF(ρ), θ〉 = d

dε
F (ρ + εθ)|ε=0.
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By Gaussian integration by parts we get

E[F(η)〈ψ,DG(η)〉] + E[G(η)〈ψ,DF(η)〉] =
∑

i

E[(FG)i(η)〈ψ, ϕi〉]

= 2E[η(ψ)(FG)(η)],

and therefore

E[F(η)〈ψ,DG(η)〉] = E[G(η)〈ψ,−DF(η)+ ηF(η)〉].

So if we consider the space L2(Law(η)) with inner product E[F(η)G(η)], then the
adjoint of D is given by D∗F(ρ) = −DF(ρ)+ρF(ρ). Let DψF(ρ) = 〈ψ,DF(ρ)〉
and similarly for D∗ψF(ρ) = −DψF(ρ)+ ρ(ψ)F(ρ). If (fn)n�1 is an orthonormal

basis of L2(T) then

L0 =
∑

n

D∗fnD�fn.

Moreover, we have

[Dθ ,D∗ψ ]F(ρ) = (DθD∗ψ − D∗ψDθ )F (ρ) = 〈ψ, θ〉L2(T)F (ρ),

whereas [D∗θ ,D∗ψ ] = 0. Therefore,

[L0,D∗ψ ] =
∑

n

[D∗enD�en,D∗ψ ] =
∑

n

D∗en [D�en,D∗ψ ] +
∑

n

[D∗en,D∗ψ ]D�en

=
∑

n

D∗en〈ψ,�en〉L2(T) = D∗�ψ.

So if ψ is an eigenvector of � with eigenvalue λ, then [L0,D
∗
ψ ] = λD∗ψ . Let now

(ψn)n∈N be an orthonormal eigenbasis for � with eigenvalues �ψn = λnψn and
consider the functions

H(ψi1, . . . , ψin ) : S ′ → R, H(ψi1, . . . , ψin)(ρ) = (D∗ψi1 · · ·D
∗
ψin

1)(ρ).

Then

L0H(ψi1 , . . . , ψin ) = L0D∗ψi1 · · ·D
∗
ψin

1

= D∗ψi1L0D∗ψi2 · · ·D
∗
ψin

1+ λi1 D∗ψi1 · · ·D
∗
ψin

1 (2.9)

= · · · = (λi1 + · · · + λin )H(ψi1, . . . , ψin ), (2.10)
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where we used that L01 = 0. These functions are eigenfunctions for L0 and the
eigenvalues are all the possible combinations of λi1+· · ·+λin for i1, . . . , in ∈ N. We
have immediately that for different n these functions are orthogonal in L2(law(η)).
They are actually orthogonal as soon as the indices i differ since in that case there is
an index j which is in one but not in the other and using the fact that D∗ψj is adjoint to
Dψj and that DψjG = 0 if G does not depend on ψj we get the orthogonality. The
functionsH(ψi1, . . . , ψin ) are polynomials and they are called Wick polynomials.

Lemma 4 For all ψ ∈ S , almost surely

(e
D∗ψ1)(η) = eη(ψ)−‖ψ‖2/2.

Proof If F is a cylindrical function of the form F(ρ) = f (ρ(ϕ1), . . . , ρ(ϕm)) with
f ∈ S (Rm), then

E[F(η)(eD∗ψ1)(η)] = E[eDψF (η)] = E[F(η + ψ)] = E[F(η)eη(ψ)−‖ψ‖2/2],

where the second step follows from the fact that if we note �t(η) = F(η + tψ)
(note that everyψ ∈ S can be interpreted as an element of S ′) we have ∂t�t (η) =
Dψ�t(η) and �0(η) = F(η) so that �t(η) = (etDψF )(η) for all t � 0 and in
particular for t = 1. The last step is simply a Gaussian change of variables. Indeed
if we take ϕ1 = ψ and ϕk⊥ψ for k � 2 we have

E[F(η + ψ)] = E[f (η(ψ)+ 〈ψ,ψ〉, η(ϕ2), . . . , η(ϕm))]

since (η + ψ)(ϕk) = η(ϕk) for k � 2. Now observe that η(ψ) is independent of
(η(ϕ2), . . . , η(ϕm)) so that

E[f (η(ψ) + 〈ψ,ψ〉, η(ϕ2), . . . , η(ϕm))]

=
∫

R

e−z2/2‖ψ‖2

√
2π‖ψ‖2

E[f (z + 〈ψ,ψ〉, η(ϕ2), . . . , η(ϕm))]

=
∫

R

e−z2/2‖ψ‖2

√
2π‖ψ‖2

ez−‖ψ‖2/2
E[f (z, η(ϕ2), . . . , η(ϕm))] = E[F(η)e2η(ψ)−‖ψ‖2].

To conclude the proof, it suffices to note that E[F(η)(eD∗ψ1)(η)] =
E[F(η)e2η(ψ)−‖ψ‖2] implies that (eD∗ψ1)(η) = eη(ψ)−‖ψ‖2/2. ��
Theorem 1 The Wick polynomials {H(ψi1, . . . , ψin )(η) : n � 0, i1, . . . , in ∈ N}
form an orthogonal basis of L2(law(η)).
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Proof Taking ψ =∑i σiψi in Lemma 4, we get

e
∑
i σiη(ψi)−

∑
i σ

2
i ‖ψi‖2/2 = (eD∗ψ1)(η) =

∑

n�0

((D∗ψ)n1)(η)

n!

=
∑

n�0

∑

i1,...,in

σi1 · · ·σin
n! H(ψi1, . . . , ψin︸ ︷︷ ︸

n times

)(η),

which is enough to show that any random variable in L2 can be expanded in a series
of Wick polynomials showing that the Wick polynomials are an orthogonal basis of
L2(law(η)) (but they are still not normalized). Indeed assume that Z ∈ L2(Law(η))
but Z⊥H(ψi1, . . . , ψin )(η) for all n � 0, i1, . . . , in ∈ N, then

0 = e
∑
i σ

2
i ‖ψi‖2/2

E[Z(eD∗ψ1)(η)] = e
∑
i σ

2
i ‖ψi‖2/2

E[Ze
∑
i σiη(ψi)−

∑
i σ

2
i ‖ψi‖2/2]

= E[Ze
∑
i σiη(ψi)].

Since the σi are arbitrary, this means that Z is orthogonal to any polynomial
in η (consider the derivatives in σ ≡ 0) and then that it is orthogonal also to
exp(i

∑
i σiη(ψi)). So let f ∈ S (RM) and σi = 0 for i > m, and observe that

0 = (2π)−m/2
∫

dσ1 · · · dσmFf (σ1, . . . , σm)E[Zei
∑
i σiη(ψi)]

= E[Zf (η(ψ1), . . . , η(ψM))],

which means that Z is orthogonal to all the random variables in L2 which are
measurable with respect to the σ -field generated by (η(ψn))n�0. This implies
Z = 0. That is, Wick polynomials form a basis for L2(μ). ��
Example 1 The first few (un-normalized) Wick polynomials are

H(ψi)(ρ) = D∗ψi1(ρ) = ρ(ψi),

H(ψi, ψj )(ρ) = D∗ψiD
∗
ψj

1 = D∗ψi ρ(ψj ) = −δi=j + ρ(ψi)ρ(ψj ),

and

H(ψi, ψj , ψk)(ρ) = D∗ψi (−δj=k + ρ(ψj )ρ(ψk))
= −δj=kρ(ψi)− δi=jρ(ψk)− δi=kρ(ψj )+ ρ(ψi)ρ(ψj )ρ(ψk).
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Some other properties of Wick polynomials can be derived using the commuta-
tion relation between D and D∗. By linearity D∗ϕ+ψ = D∗ϕ + D∗ψ , so that using the
symmetry of H we get

Hn(ϕ + ψ) := H (ϕ + ψ, . . . , ϕ + ψ)︸ ︷︷ ︸
n

=
∑

0�k�n

(
n

k

)

H(ϕ, . . . , ϕ
︸ ︷︷ ︸

k

, ψ, . . . , ψ
︸ ︷︷ ︸

n−k
).

Then note that by Lemma 4 we have

(eD∗ϕ1)(η)(eD∗ψ1)(η) = eη(ϕ)−‖ϕ‖2/2eη(ψ)−‖ψ‖2/2 = eη(ϕ+ψ)−‖ϕ+ψ‖2/2+〈ϕ,ψ〉

= (eD∗ϕ+ψ1)(η)e〈ϕ,ψ〉.

Expanding the exponentials,

∑

m,n

Hm(ϕ)

m!
Hn(ψ)

n! =
∑

r,�

Hr(ϕ + ψ)
r!

(2〈ϕ,ψ〉)�
�!

=
∑

p,q,�

H(

p
︷ ︸︸ ︷
ϕ, . . . , ϕ,

q
︷ ︸︸ ︷
ψ, . . . , ψ)

p!q!
(〈ϕ,ψ〉)�
�! ,

and identifying the terms of the same homogeneity in ϕ and ψ respectively we get

Hm(ϕ)Hn(ψ) =
∑

p+�=m

∑

q+�=n

m!n!
p!q!�!H(

p
︷ ︸︸ ︷
ϕ, . . . , ϕ,

q
︷ ︸︸ ︷
ψ, . . . , ψ)(〈ϕ,ψ〉)�. (2.11)

This gives a general formula for such products. By polarization of this multilinear
form, we can also get a general formula for the products of general Wick
polynomials. Indeed taking ϕ = ∑m

i=1 κiϕi and ψ = ∑n
j=1 λjψj for arbitrary

real coefficients κ1, . . . , κm and λ1, . . . , λn, we have

Hm(

m∑

i=1

κiϕi)Hn(

n∑

j=1

λjψj )

=
∑

i1,...,im

∑

j1,...,jn

κi1 · · · κimλj1 · · · λjmH(ϕi1, . . . , ϕim)H(ψj1, . . . , ψjn ).

Deriving this with respect to all the κ, λ parameters and setting them to zero, we
single out the term

∑

σ∈Sm,ω∈Sn
H(ϕσ(1), . . . , ϕσ(m))H(ψω(1), . . . , ψω(n))

= m!n!H(ϕ1, . . . , ϕm)H(ψ1, . . . , ψn),



2 Lectures on Energy Solutions for the Stationary KPZ Equation 27

where Sk denotes the symmetric group on {1, . . . , k}, and where we used the
symmetry of the Wick polynomials. Doing the same also for the right hand side
of (2.11) we get

H(ϕ1, . . . , ϕm)H(ψ1, . . . , ψn)

=
∑

p+�=m

∑

q+�=n

1

p!q!�!
∑

i,j

H (

p
︷ ︸︸ ︷
ϕi1, . . . , ϕip ,

q
︷ ︸︸ ︷
ψj1 , . . . , ψjq )

�∏

r=1

(〈ϕip+r , ψjq+r 〉),

where the sum over i, j runs over i1, . . . , im permutation of 1, . . . ,m and similarly
for j1, . . . , jn. Since H(ϕi1, . . . , ϕip , ψj1 , . . . , ψjq )(η) is orthogonal to 1 whenever
p + q > 0, we obtain in particular

E[H(ψ1, . . . , ψn)(η)H(ψ1, . . . , ψn)(η)] = 1

n!
∑

i,j

n∏

r=1

(〈ψir , ψjr 〉)

=
∑

σ∈Sn

n∏

r=1

(〈ψr,ψσ(r)〉).

In conclusion, we have shown that the family

⎧
⎪⎨

⎪⎩

⎛

⎝
∑

σ∈Sn

n∏

r=1

(〈ψr,ψσ(r)〉)
⎞

⎠

−1/2

H(ψi1, . . . , ψin )(η) : n � 0, i1, . . . , in ∈ N

⎫
⎪⎬

⎪⎭

is an orthonormal basis of L2(law(η)).

Remark 1 In our problem it will be convenient to take the Fourier basis as basis
in the above computations. Let ek(x) = exp(ikx)/

√
2π = ak(x) + ibk(x) where

(ak)k∈N and (bk)k∈N form together a real valued orthonormal basis for L2(T). Then
ρ(ek)

∗ = ρ(e−k) whenever ρ is real valued, and we will denote Dk = Dek =
Dak + iDbk and similarly for D∗k = D∗ak − iD∗bk = −D−k + ρ(e−k). In this way, D∗k
is the adjoint of Dk with respect to the Hermitian scalar product on L2(�;C) and
the Ornstein–Uhlenbeck generator takes the form

L0 =
∑

k∈N
(D∗∂xakD∂xak + D∗∂xbkD∂xbk ) =

1

2

∑

k∈Z
k2D∗kDk (2.12)

(convince yourself of the last identity by observing that D∗kDk + D∗−kD−k =
2(D∗akDak + D∗bkDbk )!). Similarly,

E(F,G) =
∑

k∈Z
k2(DkF )

∗(DkG). (2.13)
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2.4 The Itô Trick

We are ready now to start our computations. Recall that we want to analyze Jt (ϕ) =∫ t
0 ∂xX

2
s (ϕ)ds using Itô calculus with respect to the Ornstein–Uhlenbeck process.

We want to understand Jt as a correction term in Itô’s formula. If we can find a
functionG such that L0G(Xt ) = ∂xX2

t , then we get from Itô’s formula

∫ t

0
∂xX

2
s ds = G(Xt )−G(X0)−MG,t ,

where MG is a martingale depending on G. Of course, G will not be a cylindrical
function but we only defined L0 on cylindrical functions. So to make the following
calculations rigorous we would again have to replace ∂xX2

t by ∂xnX2
t and then

pass to the limit. As before we will perform the calculations already in the limitN =
+∞, in order to simplify the computations and to not obscure the ideas through
technicalities. The next problem is that the point-wise evaluation

∫ t
0 ∂xX

2
s (x)ds does

not make any sense because the integral will only be defined as a space distribution.
So we will consider

G : S ′ → S ′.

Note however that we can reduce every such G to a function from S ′ to C by
considering ρ �→ G(ρ)(ek) for all k ∈ Z0.

Now for a fixed k, we have

∂xX
2
t (ek) = ik

∑

�+m=k
Xt (e�)Xt(em) = ik

∑

�+m=k
H�,m(Xt), (2.14)

whereH�,m(ρ) = (D∗−�D∗−m1)(ρ) = ρ(e�)ρ(em)− δ�+m=0 is a second order Wick
polynomial so that L0H�,m = −(�2 +m2)H�,m by (2.9). Therefore, it is enough to
take

G(Xt)(ek) = −ik
∑

�+m=k

H�,m(Xt)

�2 +m2 . (2.15)

This corresponds to the distribution G(Xt )(ϕ) = − ∫∞0 ∂x(e
s�Xt )

2(ϕ)ds (check
it!). Then

G(Xt )(ϕ) = G(X0)(ϕ)+MG,t (ϕ)+ Jt (ϕ),

whereMG,t (ϕ) is a martingale with quadratic variation

d〈MG,∗(ϕ),MG,∗(ϕ)〉t = E(G(∗)(ϕ),G(∗)(ϕ))(Xt)dt .
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We can estimate

E[|Jt (ϕ)−Js(ϕ)|2p] �p E[|MG,t(ϕ)−MG,s(ϕ)|2p]+E[|G(Xt)(ϕ)−G(Xs)(ϕ)|2p].

To bound the martingale expectation, we will use the following Burkholder inequal-
ity:

Lemma 5 Letm be a continuous local martingale withm0 = 0. Then for all T � 0
and p > 1,

E[sup
t�T

|mt |2p] � CpE[〈m〉pT ].

Applying Burkholder’s inequality, we obtain

E[|Jt (ϕ)− Js(ϕ)|2p] �p E

[∣∣
∣
∣

∫ t

s

E(G(∗)(ϕ),G(∗)(ϕ))(Xr)dr
∣
∣
∣
∣
p

]

+E[|G(Xt)(ϕ)−G(Xs)(ϕ)|2p]

� (t − s)p−1
∫ t

s

E[|E(G(∗)(ϕ),G(∗)(ϕ))(Xr)|p]dr

+E[|G(Xt)(ϕ)−G(Xs)(ϕ)|2p]
= (t − s)pE[|E(G(∗)(ϕ),G(∗)(ϕ))(η)|p]
+E[|G(Xt)(ϕ)−G(Xs)(ϕ)|2p],

using that Xr ∼ η. Now

DmG(ρ)(ek) = −ik ρ(ek−m)
(k −m)2 +m2 ,

and therefore

E(G(∗)(ek),G(∗)(ek))(ρ) =
∑

m

m2D−mG(ρ)(e−k)DmG(ρ)(ek)

= k2
∑

�+m=k
m2 |ρ(e�)|2
(�2 +m2)2

� k2
∑

�+m=k

|ρ(e�)|2
�2 +m2 ,

which implies that

E[|E(G(∗)(ek),G(∗)(ek))(η)|] � k2
E

∑

�+m=k

|η(e�)|2
�2 +m2 � k2

∑

�+m=k

1

�2 +m2 � |k|.
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A similar computation gives also that

E[|E(G(∗)(ek),G(∗)(ek))(η)|p] � |k|p.
Further, we have

E[|G(Xt)(ek)−G(Xs)(ek)|2] � k2
∑

�+m=k
E

[ |H�,m(Xt )−H�,m(Xs))2
(�2 +m2)2

]

� k2|t − s|
∑

�+m=k

m2

(�2 +m2)2
� |k||t − s|.

Given thatG is a second order polynomial of a Gaussian process we can apply once
more Gaussian hypercontractivity to obtain

E[|Jt (ek)− Js(ek)|2p] �p (t − s)p|k|p.
The advantage of the Itô trick with respect to the explicit Gaussian computation is
that it goes over to the non-Gaussian case.

2.5 An Approximation Scheme

Our aim now is to devise suitable approximation for the SBE and try to modify the
Itô trick to get enough compactness to be able to extract limits. The properties of
these limit points will suggest a suitable notion of solution.

For any N � 1 consider solutions uN to the SPDE

∂tu
N = �uN + ∂xN(NuN)2 + 2∂xξ.

These are generalized functions such that

duNt (ek) = −k2uNt (ek)dt + [∂xN(NuN)2](ek)dt + ikdβt(k)

for k ∈ Z and t � 0. We take u0 to be the white noise with covariance u0(ϕ) ∼
N (0, ‖ϕ‖2). The point of our choice of the non-linearity is that this (infinite-
dimensional) system of equations decomposes into a finite dimensional system for
(vN(k) = NuN(ek))k:|k|�N and an infinite number of one-dimensional equations
for each uN(ek)with |k| > N . Indeed if |k| > N we have [∂xN(NuN)2](ek) = 0
so ut (ek) = Xt(ek) the Ornstein–Uhlenbeck process with initial conditionX0(ek) =
u0(ek) which renders it stationary in time (check it). The equation for (vN (k))|k|�N
reads

dvNt (k) = −k2vNt (k)dt + bk(vNt )dt + ikdβt(k), |k| � N, t � 0
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where

bk(v
N
t ) = ik

∑

�+m=k
I|�|,|k|,|m|�NvNt (�)vNt (m).

This is a standard finite-dimensional ODE having global solutions for all initial
conditions which gives rise to a nice Markov process. The fact that solutions do not
blow up even if the interaction is quadratic can be seen by computing the evolution
of the norm

At =
∑

|k|�N
|vNt (k)|2

and by showing that

dAt = 2
∑

|k|�N
vNt (−k)dvNt (k)

= −2
∑

|k|≤N
k2|vNt (k)|2dt

+2
∑

|k|�N
vNt (−k)bk(vNt )dt + 2ik

∑

|k|�N
vNt (−k)dβt(k).

Since A is nonnegative, we increase its absolute value by omitting the first
contribution. But now

∑

|k|�N
vNt (−k)bk(vNt ) = 2i

∑

k,�,m:�+m=k
I|�|,|k|,|m|�NkvNt (�)vNt (m)vNt (−k)

= −2i
∑

k,�,m:�+m+k=0

I|�|,|k|,|m|�N(k)vNt (�)vNt (m)vNt (k)

and by symmetry of this expression it is equal to

= −2

3
i

∑

k,�,m:�+m+k=0

I|�|,|k|,|m|�N(k + �+m)vNt (�)vNt (m)vNt (k) = 0,

so |At | ≤ |A0 +Mt | where dMt = 2
∑
|k|�N I|k|�N(ik)vNt (−k)dβt(k). Now

E[M2
T ] �

∫ T

0

∑

|k|�N
k2|vNt (k)|2dt � N2

∫ T

0
Atdt
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and then by martingales inequalities

E[ sup
t∈[0,T ]

(At )
2] � 2E[A2

0] + 2E[ sup
t∈[0,T ]

(Mt)
2] � 2E[A2

0] + 8E[M2
T ]

� 2E[A2
0] + CN2

∫ T

0
E(At )dt .

As a consequence, Gronwall’s inequality gives

E[ sup
t∈[0,T ]

(At )
2] � eCN2T

E[A2
0],

from where we can deduce (by a continuation argument) that almost surely there
is no blowup at finite time for the dynamics. The generator LN for the Galerkin
dynamics is given by

LNF(ρ) = L0F(ρ)+ BNF(ρ),

where

BNF(ρ) =
∑

k

I|k|�N(∂x(Nρ)2)(ek)DkF (ρ).

And again the non-linear drift BN is antisymmetric with respect to the invariant
measure of L0 by a computation similar to that for the full drift B. Next,
using Echeverría’s criterion [4] the invariance of the white noise follows from its
infinitesimal invariance which can be checked at the level of the generator LN .

2.5.1 Time Reversal

In order to carry over the Ito trick’s computation to the full process uN solution
of the non-linear dynamics we need to replace the generator of X with that of uN

and to have a way to handle the boundary terms. The idea is now to reverse the
Markov process uN in time, which will allow us to kill the antisymmetric part of
the generator and at the same time kill the boundary terms. Indeed observe that we
have the Itô formula

dtF (uNt ) =
n∑

i=1

Fi(u
N
t )∂xdMt(ϕi)+ LNF(uNt )dt,
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where LN is now the full generator of the approximate non-linear dynamics.
Formally, the non-linear term BN is antisymmetric with respect to the invariant
measure of L0. Indeed since BN is a first order operator

E[(BNF(η))G(η)] = E[(BN(FG)(η))] − E[F(η)(BNG(η))]
= −E[F(η)(BNG(η))] (2.16)

provided E[BNF(η)] = 0 for any cylinder function F . Let us show this.

E[BNF(η)] =
∑

k:|k|�N
E[(∂x(Nη)2)(ek)DkF (η)]

= −
∑

k:|k|�N
E[(Dk(∂x(Nη)2)(ek))F (η)]

+
∑

k:|k|�N
E[Dk[(∂x(Nη)2)(ek)F (η)]]

But now we get from (2.14)

Dk(∂x(Nη)2)(ek) =
√

2ikη(e0)I|k|�N = I|k|�Nπ−1/2ik〈η, 1〉 = 0,

where we used that 〈η, 1〉 = 0. Gaussian integration by parts then gives

E[BNF(η)] =
∑

k:|k|�N
E[Dk[(∂x(Nη)2)(ek)F (η)]]

=
∑

k:|k|�N
E[η(ek)(∂x(Nη)2)(ek)F (η)]

= E[〈η,N∂x(Nη)2〉F(η)] = 1

3
E[〈1, ∂x(Nη)3〉F(η)] = 0

since 〈1, ∂x(Nη)3〉 = −〈∂x1, (Nη)3〉 = 0.
The dynamics of uN backwards in time has a Markovian description. If (yt)t�0

is a stationary Markov process on a Polish space, with semigroup (Pt )t�0 and
stationary distributionμ and P ∗t the adjoint of Pt in L2(μ), then (P ∗t ) is a semigroup
of operators on L2(μ) (that is P ∗0 = id and P ∗s+t = P ∗s P ∗t as operators on L2(μ)).
Moreover if y0 ∼ μ, then for all T > 0 the process ŷt = yT−t , t ∈ [0, T ], is also
Markov, with semigroup (P ∗t )t∈[0,T ], and that μ is also an invariant distribution for
(P ∗t ).

Now if we reverse the process uN in time letting ûNt = uNT−t , we have by
stationarity

E[F(ûNt )G(ûN0 )] = E[F(uNT−t )G(uNT )] = E[F(uN0 )G(uNt )].
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So if we denote by L̂N the generator of ûN :

E[L̂NF (ûN0 )G(ûN0 )] =
d

dt

∣
∣
∣
∣
t=0

E[F(ûNt )G(ûN0 )]

= d

dt

∣
∣
∣
∣
t=0

E[F(uN0 )G(uNt )] = E[LG(uN0 )F (uN0 )],

which means that L̂N is the adjoint of LN in L2(μ), that is

L̂NF (ρ) = LN0 F(ρ)− BNF(ρ) = LN0 F(ρ)−
∑

k:|k|�N
(∂x(

Nρ)2)(ek)DkF (ρ).

In other words, the reversed process solves

ûNt (ϕ) = ûN0 (ϕ)+
∫ t

0
ûNs (�ϕ)ds +

∫ t

0
〈(NûNs )2, ∂xϕ〉ds −

∫ t

0
ξ̂s (∂xϕ)ds

for a different space-time white noise ξ̂ . Then Itô’s formula for ûN gives

dtF (ûNt ) =
n∑

i=1

Fi(û
N
t )d∂xM̂t (ϕi)+ L̂F (ûNt )dt,

where for all test functions ϕ, the process ∂xM̂(ϕ) is a continuous martingale in the
filtration of ûN with covariance

d〈∂xM̂(ϕ), ∂xM̂(ψ)〉t = 2〈∂xϕ, ∂xψ〉L2(T)dt .

Combining the Itô formulas for uN and ûN , we get

F(uNT )(ϕ) = F(uN0 )(ϕ)+ ∂xMN
F,T (ϕ)+

∫ T

0
LNF(uNs )(ϕ)ds

and

F(uN0 )(ϕ) = F(ûNT )(ϕ) = F(ûN0 )(ϕ)+ ∂xM̂N
F,T (ϕ)+

∫ T

0
L̂NF (ûNs )(ϕ)ds

= F(uNT )(ϕ)+ ∂xM̂N
F,T (ϕ)+

∫ T

0
L̂NF (uNs )(ϕ)ds.

Summing up these two equalities gives

0 = ∂xMN
F,T (ϕ)+ ∂xM̂N

F,T (ϕ)+
∫ T

0
(L̂N + LN)F(uNs )(ϕ)ds,
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that is

2
∫ T

0
L0F(u

N
s )(ϕ)ds = −∂xMN

F,T (ϕ)− ∂xM̂N
F,T (ϕ).

An added benefit of this forward–backward representation is that the only
term which required a lot of informations about uN , that is the boundary term
F(uNt )(ϕ) − F(uNs )(ϕ) does not appear at all now. As above if 2L0FN(ρ) =
∂x(

Nρ)2, we end up with

∫ T

0
∂x(

NuNs )(ϕ)ds = −∂xMN
FN,T

(ϕ)− ∂xM̂N
FN ,T

(ϕ). (2.17)

Setting BNt (ϕ) =
∫ t

0 ∂x(Nus)
2(ϕ)ds we can now show that

E[|BNt (ek)− BNs (ek)|2p] �p (t − s)p|k|p

and letting BN,Mt = BNt − BMt we get

E[|BN,Mt (ek)− BN,Ms (ek)|2p] �p (|k|/N)εp(t − s)p|k|p

for all 1 � N � M . From this we derive that

(E[‖BN,Mt − BN,Ms ‖2p
Hα ])1/2p �p,α N−ε/2(t − s)1/2

for all α < −1−ε. This estimate allows to prove compactness of the approximations
BN and then convergence to a limit B in L2p(�;C1/2−H−1−).

These uniform estimates are the key to prove tightness of the triplet (uN,BN,M)
and obtain limit points (u,B,M) which all will share the following properties:

1. the law of ut is the white noise μ for all t ∈ [0, T ];
2. For any test function ϕ ∈ S the process t �→ Bt (ϕ) is a.s. of zero quadratic

variation, B0(ϕ) = 0 and the pair (u(ϕ),B(ϕ))0�t�T satisfies the equation

ut (ϕ) = u0(ϕ)+
∫ t

0
us(�ϕ)ds + Bt (ϕ)+ ∂xMt(ϕ)

where (Mt(ϕ))0�t�T is a martingale with respect to the filtration generated by
(u,B)0�t�T with quadratic variation [M(ϕ)]t = 2t‖ϕ‖2

L2(T)
;

3. the reversed processes ût = uT−t , B̂t = −(BT − BT−t ) satisfies the same
equation with respect to its own filtration (the backward filtration of u).

The requirement for zero quadratic variation for B(ϕ) is due to the fact that we
want to be able to perform the Itô trick at the level of the limit points and that we
cannot expect the limiting drift (Bt (ϕ))t to have finite variation, that is limit points
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u will not be semimartingales but only Dirichlet processes: sums of martingales and
zero variation processes. Luckily in this setting it is still possible to derive an Itô
formula and everything goes through as described above, as we will see below.

For the moment the only property which is still not clear is this zero quadratic
variation for the drift. Indeed the only information the previous estimates gives
on t �→ Bt (ϕ) is that it belongs to C1/2−

T (R) which is not a sufficient regularity.
An interpolation procedure solves the problem. Indeed it is possible to prove that
t �→ Bt (ϕ) belongs to C3/4−

T (R) which is now enough to prove the zero quadratic
variation property. See [11] for additional details on the limiting procedure and the
interpolation and [23] for details on how to implement the Itô trick on the level of
diffusions.

2.6 Controlled Processes and Energy Solutions

Here we define stationary energy solutions of (2.2), taking inspiration by the
description of the limit points for the approximation scheme of the previous section.
We introduce first a class of processes u which at fixed time are distributed like the
(zero-mean) white noise on T but for which the nonlinear term ∂xu

2 is defined as
a space-time distribution. In this class of processes it makes then sense to look for
solutions of the SBE (2.2).

We cook up a definition which will allow us to rigorously perform the computa-
tions of the Itô trick in a general setting.

Definition 1 (Controlled Process) Denote with Q the space of pairs (u,A)0�t�T
of generalized stochastic processes with continuous paths in S ′ such that

1. the law of ut is the white noise μ for all t ∈ [0, T ];
2. For any test function ϕ ∈ S the process t �→ At (ϕ) is a.s. of zero quadratic

variation, A0(ϕ) = 0 and the pair (u(ϕ),A(ϕ))0�t�T satisfies the equation

ut (ϕ) = u0(ϕ)+
∫ t

0
us(�ϕ)ds +At (ϕ)+ ∂xMt (ϕ) (2.18)

where (Mt(ϕ))0�t�T is a martingale with respect to the filtration generated by
(u,A)0�t�T with quadratic variation [M(ϕ)]t = 2t‖ϕ‖2

L2(T)
;

3. the reversed processes ût = uT−t , Ât = −(AT − AT−t ) satisfies the same
equation with respect to its own filtration (the backward filtration of u).

When A = 0 the process (X, 0) ∈ Q is the stationary Ornstein–Uhlenbeck (OU)
process with invariant measure μ. It is the unique solution of the SPDE

dX = �Xdt + ∂xdM
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with initial condition u0 ∼ μ. Allowing A �= 0 has the intuitive meaning of con-
sidering perturbation of the OU process with zero quadratic variation antisymmetric
drifts. In this sense we say that a couple (u,A) ∈ Q is a process controlled by the
Ornstein–Uhlenbeck process.

Controlled processes allow the definition of some interesting non-linear func-
tionals. We do not insists on generality here, all we need is that the Burgers drift
makes sense as a space-time distribution:

Theorem 2 Assume that (u,A) ∈ Q and for any N � 1 and 0 � t � T . Let

BNt (ϕ) =
∫ t

0
∂x

(
N0 us

)2
(ϕ)ds

then (BNt )N�1 converges in probability in C1/2+H−1− ∩ C0+H 0−, we denote the
limit by

∫ t

0
∂xu

2
s (ϕ)ds.

Proof The proof can be obtained as a particular case of the Boltzmann–Gibbs
principle proved in Proposition 1 below and valid for all controlled processes. We
leave the reader to explicit the details. ��

We are ready to give a rigorous meaning to the SBE (2.2) in the class of controlled
processes:

Definition 2 A controlled process (u,A) ∈ Q is an energy solution of SBE iff

At (ϕ) =
∫ t

0
∂xu

2
s (ϕ)ds.

almost surely for all t ∈ [0, T ] and ϕ ∈ S .

2.6.1 Regularization by Noise for Controlled Processes

In this section u will always denote a generic controlled process in Q, not a solution
to SBE. Controlled processes have regularization properties coming from the fast
decorrelation in time of the OU process associated to the Laplacian �. As showed
above in the particular case of the OU process itself and of finite dimensional
approximations to SBE we are able to exploit an Itô formula to replace time-
averages of some functional with a sum of forward and backward martingales whose
quadratic variation is controlled in terms of a more regular (or smaller) functional.

For any test function ϕ ∈ S the processes (ut (ϕ))t∈[0,T ] and (ût (ϕ))t∈[0,T ]
are Dirichlet processes: the sum of a martingale and a zero quadratic variation
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process. This is compatible with the regularity of our solutions and there is no clue
that solutions of SBE are distributional semimartingales. Dirichlet processes can
be handled via the stochastic calculus by regularization developed by Russo and
Vallois [22]. In this approach the Itô formula holds also for Dirichlet processes and
ifX = (Xi)i=1,...,k is an Rk valued Dirichlet process and g is aC2(Rk;R) function
then we have

g(Xt ) = g(X0)+
k∑

i=1

∫ t

0
∂ig(Xs)d−Xis +

1

2

k∑

i,j=1

∫ t

0
∂2
i,j g(Xs)d

−[Xi,Xj ]s
(2.19)

where d− denotes the forward integral and [X,X] the quadratic covariation of the
vector process X. Decomposing X = M + N as the sum of a martingale M and a
zero quadratic variation process N we have [X,X] = [M,M] and

g(Xt ) = g(X0)+
k∑

i=1

∫ t

0
∂ig(Xs)d

−Mi
s +

k∑

i=1

∫ t

0
∂ig(Xs)d

−Nis

+
k∑

i,j=1

1

2

∫ t

0
∂2
i,j g(Xs)d

−[Mi,Mj ]s

where now d−M coincide with the usual Itô integral and [M,M] is the usual
quadratic variation of the martingale M . The integral

∫ t
0 ∂ig(Xs)d

−Nis is well-
defined due to the fact that all the other terms in this formula are well defined. The
case the function g depends explicitly on time can be handled by the above formula
by considering time as an additional (0-th) component of the process X and using
the fact that [Xi,X0] = 0 for all i = 1, .., k. In the computations which follows we
will only need to apply the Itô formula to smooth functions.

For any smooth cylinder function h : [0, T ] ×N0 H 0
0 → R the Itô formula for

the finite quadratic variation process (uNt = N0 ut )t gives

h(t, uNt ) = h(0, uN0 )+
∫ t

0
(∂s + LN0 )h(s, uNs )ds +

∫ t

0
Dh(s, uNs )dI

NAs +M+
t

where

LN0 h(s, x) =
∑

0<|k|≤N
|k|2(−xkDkh(s, x)+DkD−kh(s, x))

is the restriction of the operator L0 to NH 0
0 . The martingale part, denoted M+,

has quadratic variation given by [M+]t =
∫ t

0 EN(h(s, ·))(uNs )ds, where

EN(ϕ)(x) =
∑

0<|k|≤N
|k|2|Dkϕ(x)|2 =

∥
∥
∥I N

0 Dϕ

∥
∥
∥

2

H 1
0

,
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is the density of the Dirichlet form associated to the generator LN0 . The Itô formula
on the backward process reads

h(T − t, uNT−t ) = h(T , uNT )+
∫ t

0
(−∂s + LN0 )h(T − s, uNT−s)ds

−
∫ t

0
Dh(T − s, uNT−s )dI NAT−s +M−

t

with [M−]t =
∫ t

0 EN(h(T − s, ·))(uNT−s )ds. Adding the two Itô formulas we have
the key equality

∫ t

0
2LN0 h(s, u

N
s )ds = −M+

t +M−
T−t −M−

T . (2.20)

which allows us to represent the time integral of 2LN0 h as a sum of martingales
which allows better control since their quadratic variation depends only on EN(h).
From this we can prove easily (see [11]) the following lemma.

Lemma 6 (Itô Trick) Let h : [0, T ] × NH → R be a cylinder function. Then
for any p ≥ 1,

∥
∥
∥
∥
∥

sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0
L0h(s, us )ds

∣
∣
∣
∣

∥
∥
∥
∥
∥
Lp(Pμ)

�p T 1/2 sup
s∈[0,T ]

‖E(h(s, ·))‖1/2
Lp/2(μ)

(2.21)

where E(ϕ)(x) = 1
2

∑
|k|>0 |k|2|Dkϕ(x)|2. In the particular case h(s, x) =

ea(T−s)h̃(x) for some a ∈ R we have the improved estimate

∥
∥
∥
∥

∫ T

0
ea(T−s)L0h̃(us)ds

∥
∥
∥
∥
Lp(Pμ)

�p
(

1− e2aT

2a

)1/2

‖E(h̃)‖1/2
Lp/2(μ)

. (2.22)

If we take p = 2 in Lemma 6 we have

E

[

sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0
L0h(us)ds

∣
∣
∣
∣

2
]

� T ‖h‖2
1

where

‖h‖2
1 = EE(h(u0)) = E‖Dh(u0)‖2

H 1

is the Dirichlet form of the OU process.
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We denote by H 1 the completion of the space of smooth cylinder functions with
respect to the norm ‖ ∗ ‖1 and denote with H −1 the dual of H 1 with norm

‖f ‖−1 = sup
g∈L2(μ)

(2〈f, g〉 − ‖g‖2
1)

(see [20, Chap. 2] for details).
In order to exploit the Itô trick of Lemma 6 we need to be able to solve the

Poisson equationL0hf = f for given function f . Sometimes we can do it explicitly
and estimate directly the Dirichlet energy of the solution. In other situations however
it is preferable to have a bound involving directly f without need to find hf
explicitly. (In order not to bother us with domain considerations the reader can think
of cylindrical and smooth f, h since this will be enough for our purposes.) Fix an
arbitrary h and consider the decomposition

f = L0h+ L0h− f

then
∥
∥
∥
∥
∥

sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0
L0h(us)ds

∣
∣
∣
∣

∥
∥
∥
∥
∥
L2(P)

� CT 1/2‖h‖1

and
∥
∥
∥
∥
∥

sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0
(L0h− f )(us)ds

∣
∣
∣
∣

∥
∥
∥
∥
∥
L2(P)

�
∫ T

0
‖(L0h− f )(us)‖L2(P)ds

� T ‖L0h− f ‖L2(μ)

so
∥
∥
∥
∥
∥

sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0
f (us)ds

∣
∣
∣
∣

∥
∥
∥
∥
∥
L2(P)

� CT 1/2‖h‖1 + T ‖L0h− f ‖L2(μ)

Now note that, for fixed λ > 0 a solution hλ to (λ−L0)hλ = −f is given explicitly
by

hλ(x) = −
∫ ∞

0
e−λs(POU

s f )(x)ds

where POU is the contraction semigroup generated by L0 on L2(μ). Then

〈hλ,−f 〉 = 〈hλ, (λ− L0)hλ, 〉 = λ‖hλ‖2
L2 + ‖hλ‖2

1
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and if f ∈H −1 we have

λ‖hλ‖2
L2 + ‖hλ‖2

1 = |〈hλ, f 〉| � ‖f ‖−1‖hλ‖1

which implies ‖hλ‖1 � ‖f ‖−1 and ‖hλ‖L2 � λ−1/2‖f ‖−1. So noting that L0hλ −
f = λhλ we have

CT 1/2‖hλ‖1 + T ‖L0hλ − f ‖L2(μ) = CT 1/2‖hλ‖1 + T ‖λhλ‖L2(μ)

� CT 1/2‖f ‖−1 + T λ1/2‖f ‖−1.

Taking λ → 0 we end up with the following lemma which extends the Kipnis–
Varadhan lemma (cfr. Lemma 2.4 in [20]) to controlled processes:

Lemma 7 Assume that f ∈H −1 then for every controlled process u we have

∥
∥
∥
∥
∥

sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0
f (us)ds

∣
∣
∣
∣

∥
∥
∥
∥
∥
L2(P)

� CT 1/2‖f ‖−1.

with some constant C which does not depends on u.

2.7 Boltzmann–Gibbs Principle

In the theory of interacting particle systems the phenomenon that local quantities
of the microscopic fields can be replaced in time averages by simple functionals
of the conserved quantities is called Boltzmann–Gibbs principle. In this section we
investigate a similar phenomenon in order to control quantities of the form

∫ t

0
∂xF (ε

1/2(uεs )(x))ds (2.23)

as N → +∞ where ε = π/N and uεs = N0 v
ε
s where vε is a controlled process

which could depend on ε. Note that we have E[(ε1/2uεs (x))
2] = 1 for all N , and

therefore the Gaussian random variables (ε1/2uεs (x))N stay bounded in L2 for fixed
(s, x), but for largeN there will be wild fluctuations in (s, x). We will show that the
quantity in (2.23) can be replaced by simpler expressions that are constant, linear,
or quadratic in uε.
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2.7.1 A First Computation

In the following G ∈ C(R,R) denotes a generic continuous function. A first
interesting computation is to consider the random field x �→ G(ε1/2N0 η(x)) and to
derive its chaos expansion in the variables (ηk)k where ηk = 〈η, e−k〉 are the Fourier
coordinates of η (a space white noise as usual). To do so consider the standard
Gaussian random variable

ηN(x) := ε1/2N0 η(x) = ε1/2
∑

0<|k|�N
ek(x)ηk,

and observe that the chaos expansion in L2(Law(ηN(x))) yields

G(ηN(x)) =
∑

n�0

cn(G)Hn(η
N(x)),

whereHn is the n-th Hermite polynomial and

cn(G) = 1

n!E[G(η
N(x))Hn(η

N(x))] = 1

n!
∫

R

G(x)Hn(x)γ (x)dx,

where γ is the standard Gaussian density. Since Hn(x) = (−1)nex
2/2∂nx e

−x2/2,
we get

cn(G) = 1

n!
∫

R

G(x)(−1)n∂nx γ (x)dx =
ψ
(n)
G (0)

n! ,

where ψG(λ) = E[G(λ+ ηN(x))].
Our next aim is to relate the Hermite polynomials of ηN(x) with the Wick

powers of the family (ηk)k . To do so we observe that, on one hand the monomials
Hn(η

N(x)) are the coefficients of the powers of λ in exp(ληN(x) − λ2/2), and on
the other hand

∑

n

λn

n!Hn(η
N(x)) = exp(ληN(x)− λ2/2)

= exp

⎛

⎝λε1/2
∑

0<|k|�N
ek(x)ηk − 1

4π

∑

0<|k|�N
(λε1/2)2

⎞

⎠ .
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Writing �·�n for the projection onto the n-th homogeneous chaos generated by η, we
have

exp

⎛

⎝
∑

0<|k|�N
μkηk − 1

2

∑

0<|k|�N
μkμ−k

⎞

⎠ =
∑

n�0

∑

k1···kn

μk1 · · ·μkn
n! �ηk1 · · · ηkn�n,

where the sum on the right hand side and all the following sums in k1 . . . kn are over
0 < |k1|, . . . , |kn| � N . Setting μk = ε1/2λek(x) and identifying the coefficients
for different powers of λ, we get

Hn(ε
1/2N0 η(x)) = εn/2

∑

k1···kn

ei(k1+···+kn)x

(2π)n/2
�ηk1 · · · ηkn�n,

which can also be obtained by writing Hn(ε1/2N0 η(x)) = �(ε1/2N0 η(x))
n�n and

expanding the power (·)n inside the projection. We can thus represent the function
G(ηN(x)) as

G(ηN(x)) =
∑

n�0

cn(G)Hn(ε
1/2N0 η(x))

=
∑

n�0

cn(G)ε
n/2

∑

k1,...,kn

ei(k1+···+kn)x

(2π)n/2
�ηk1 · · · ηkn�n.

If ϕ ∈ C∞(T) is a test function, we get

〈G(ηN), ϕ〉 =
∑

n�0

cn(G)ε
n/2

∑

k1,...,kn

ϕ̂(−k1 − · · · − kn)
(2π)(n−1)/2

�ηk1 · · · ηkn�n. (2.24)

So in particular the q-th Littlewood-Paley block (see [12] for the definition of
Littlewood-Paley blocks) of G(ηN) is given by

�qG(η
N)(x) =

∑

n�0

cn(G)ε
n/2

∑

k1,...,kn

θq(k1+ · · · + kn)e
i(k1+···+kn)x

(2π)(n−1)/2
�ηk1 · · · ηkn�n,

where (θq)q�−1 is a dyadic partition of unity, and

E[|�q(G(ηN)− c0(G))(x)|2] �
∑

n�1

cn(G)
2 znε

n

(2π)n−1

∑

k1,...,kn

θq(k1 + · · · + kn)2

�
∑

n�1

cn(G)
2zn
εn(2N)n−1

(2π)n−1 (2q ∧ N)

� ε
∑

n�1

cn(G)
2zn(2q ∧ N),
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where zn = maxk1...kn E[|�ηk1 · · · ηkn�n|2] � n! is a combinatorial factor. We thus
obtain

E[‖�q(G(ηN)− c0(G))‖2
L2(T)

] � min{ε2q, 1},

uniformly in N , and then

E

[∣
∣
∣
∣

∫ t

s

�q(G(ε
1/2uεr (x))− c0(G))dr

∣
∣
∣
∣

2
]

� |t − s|
∫ t

s

E[|�q(G(ε1/2uεr (x))

− c0(G))|2]dr
� |t − s|2 min{ε2q, 1},

where in the last step we used that ε1/2uεr has the same distribution as ηN , which
easily implies the following first result.

Lemma 8 Assume that E[|G(U)|2] < ∞ for a standard normal variable U , and
let c0(G) = E[G(U)]. Then

lim
N→∞

∫ t

0
G(ε1/2uεs (x))ds = c0(G)t,

where the convergence is in C([0, T ],H 0−). If c0(G) = 0, then

ε−1/2
∫ t

0
G(ε1/2uεs (x))ds

is bounded in C([0, T ],H−1/2−).

To analyse the case where c0(G) = 0 we need a more refined argument which is
provided by the Itô trick for controlled paths.

Let us write L ε
0 for the generator of the mollified Ornstein–Uhlenbeck process

∂tX
ε = �Xε + ∂xN0 ξ.

For � ∈ dom
(
L ε

0

)
and T > 0, p � 1 we have:

E

[

sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0
L ε

0�(u
ε
s )ds

∣
∣
∣
∣

p
]

� T p/2E[Eε(�)p/2].

To apply this Itô trick we need to solve the Poisson equation. In our setting this can
be done efficiently by using the chaos expansion (2.24). Recall that we wrote ηk =
〈η, ek〉 for the Fourier coefficients of a truncated spatial white noise N0 η (which
therefore has law με), and that �·�n denotes the projection onto the n-th chaos. We
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need to compute L ε
0 �ηk1 . . . ηkn�n, as these are the random variables appearing in

a general chaos expansion. Let us start by considering ϕ ∈ YN = N0 L
2(T,R)

with ‖ϕ‖L2 = 1 for which we have �〈η, ϕ〉n�n = Hn(〈η, ϕ〉), where Hn is the n-th
Hermite polynomial. Itô’s formula gives

dHn(〈Xεt , ϕ〉) = H ′n(〈Xεt , ϕ〉)〈Xεt ,�ϕ〉dt +H ′′n (〈Xεt , ϕ〉)〈N0 ∂xϕ,N0 ∂xϕ〉dt + dMt,

with a square integrable martingale M . The Hermite polynomials satisfy H ′n =
nHn−1, so we get

H ′n(〈Xεt , ϕ〉)〈Xεt ,�ϕ〉 +H ′′n (〈Xεt , ϕ〉)〈N0 ∂xϕ,N0 ∂xϕ〉
= nHn−1(〈Xεt , ϕ〉)H1(〈Xεt ,�ϕ〉)− n(n− 1)Hn−2(〈Xεt , ϕ〉)〈N0 ϕ,N0 �ϕ〉.

The projection onto the n-th chaos of the first term is explicitly given by

�Hn−1(〈Xεt , ϕ〉)H1(〈Xεt ,�ϕ〉)�n = ��〈Xεt , ϕ〉n−1�n−1�〈Xεt ,�ϕ〉�1�n

= �〈Xεt , ϕ〉n−1�n−1�〈Xεt ,�ϕ〉�1

− (n− 1)�〈Xεt , ϕ〉n−2�n−2〈N0 ϕ,N0 �ϕ〉,

which is obtained by contracting 〈Xεt ,�ϕ〉 with each of the n− 1 variables 〈Xεt , ϕ〉
inside the projector �·�n−1. Therefore, we have

dHn(〈Xεt , ϕ〉) = n�Hn−1(〈Xεt , ϕ〉)H1(〈Xεt ,�ϕ〉)�ndt + dMt

= n�〈Xεt , ϕ〉n−1〈Xεt ,�ϕ〉�ndt + dMt,

which shows that

L ε
0 �〈η, ϕ〉n�n = n�〈η, ϕ〉n−1〈η,�ϕ〉�n.

So far we assumed ‖ϕ‖L2 = 1, but actually this last formula is invariant under
scaling so it extends to all ϕ ∈ N0 L2(T,R), and then to ϕ ∈ N0 L2(T,C), and for
general products we obtain by polarization

L ε
0 �〈η, ϕ1〉 . . . 〈η, ϕn〉�n =

n∑

k=1

�〈η, ϕ1〉 . . . � text . . . 〈η, ϕn〉〈η,�ϕk〉�n .

So finally we deduce that

L ε
0 �ηk1 · · · ηkn� = −(k2

1 + · · · + k2
n)�ηk1 · · · ηkn�, (2.25)
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for all 0 < |k1|, . . . , |kn| � N . Combining that formula with (2.24), we obtain the
following lemma.

Lemma 9 Consider a function of the form �(η) = 〈G(ε1/2N0 η), ϕ〉 and assume
that E[G(U)] = 0, where U is a standard normal variable, or that ϕ̂(0) = 0. Then
the solution � to the Poisson equation L ε

0� = � is explicitly given by

�(η) = −
∑

n�1

cn(G)ε
n/2

∑

k1···kn

ϕ̂(−k1 − · · · − kn)
(2π)(n−1)/2

�ηk1 · · · ηkn�n
(k2

1 + · · · + k2
n)
,

where the sum is over all 0 < |k1|, . . . , |kn| � N .

Remark 2 Incidentally note that the solution can be represented as

�(η) = −
∫ ∞

0
dt
∑

n�1

cn(G)ε
n/2

∑

k1···kn
e−(k2

1+···+k2
n)t
ei(k1+···+kn)x

(2π)n/2
�ηk1 · · · ηkn�n

= −
∫ ∞

0
dtG(ε1/2(e�tN0 η)(x)).

To apply the Itô trick we need also to compute E(�) = ∑k k
2D−k�Dk� for the

solution � of the Poisson equation. For that purpose consider again ϕ ∈ YN with
‖ϕ‖L2 = 1 and Hn(〈η, ϕ〉) = �〈η, ϕ〉n�n, for which we have

DkHn(〈η, ϕ〉) = H ′n(〈η, ϕ〉)〈ek, ϕ〉 = nHn−1(〈η, ϕ〉)〈ek, ϕ〉
= n�〈η, ϕ〉n−1�n−1〈ek, ϕ〉,

so by polarization

Dk�ηk1 · · · ηkn�n =
∑

j

1kj=k�ηk1 · · · η̂kj · · · ηkn�n−1, (2.26)

where η̂kj denotes that this particular factor is removed.
To prove the Boltzmann–Gibbs principle we need one more auxiliary result.

Lemma 10 For allM � N , � ∈ Z and 0 � s < t <∞ we have the estimate

E

[∣
∣
∣
∣

∫ t

s

〈∂x(M0 uεr )2, e−�〉dr
∣
∣
∣
∣

2
]

� �2|t − s|2M.

Proof We simply bound

E

[∣
∣
∣
∣

∫ t

s

〈∂x(M0 uεr )2, e−�〉dr
∣
∣
∣
∣

2
]

� |t − s|
∫ t

s

E[|〈∂x(M0 uεr )2, e−�〉|2]dr,
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and since we can replace (M0 u
ε
r )

2 by (M0 u
ε
r )

2 − E[(M0 uεr )2], the integrand is
given by

E[|〈∂x(M0 uεr )2, e−�〉|2] = �2
∫

T

dx
∫

T

dx ′E[�(M0 uεr (x))2�2�(
M
0 u

ε
r (x

′))2�2]

� �2
∫

T

dx
∫

T

dx ′|E[M0 uεr (x)M0 uεr (x ′)]|2.

The expectation on the right hand side can be explicitly computed as

|E[M0 uεr (x)M0 uεr (x ′)]| =
∣
∣
∣
∣
∣
∣

∑

0<|k|�M
eik(x−x ′)

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
cos(M(x − x ′))− cos((M + 1)(x − x ′))

1− cos(x − x ′) − 1

∣
∣
∣
∣

� min{2M,C|x − x ′|−1},

for some constant C < +∞, for which

∫

T

dx
∫

T

dx ′min{2M,C|x − x ′|−1}2dx � 2M,

and therefore the claim follows. ��
Proposition 1 (Boltzmann–Gibbs Principle) LetG,G′ ∈ L2(ν), where ν denotes
the law of a standard normal variable. Then for all � ∈ Z and 0 � s < t � s + 1
and all κ > 0

E

[∣
∣
∣
∣

∫ t

s

〈ε−1∂x
N
0 G(ε

1/2uεr )− ε−1/2c1(G)∂x
N
0 u

ε
r , e−�〉dr

∣
∣
∣
∣

2
]

� |t − s|3/2−κ�2
∫

R

|G′(x)|2ν(dx)

uniformly in N ∈ N, and for allM � N/2

E

[∣
∣
∣
∣

∫ t

s

〈ε−1∂x
N
0 G(ε

1/2uεr )− ε−1/2c1(G)∂x
N
0 u

ε
r − c2(G)∂x(

M
0 u

ε
r )

2, e−�〉dr
∣
∣
∣
∣

2
]

� |t − s|�2(M−1 + ε log2N)

∫

R

|G′(x)|2ν(dx).
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Proof We start by showing the second bound. Note that ∂x(M0 η)
2 =

N0 ∂x(
M
0 η)

2 forM � N/2 and that by Lemma 9 the solution � to

L ε
0�(η) = −ε−1〈G(ε1/2N0 η)− c1(G)ε

1/2N0 η− c2(G)(ε
1/2M0 η)

2, ∂x
N
0 e−�〉

is given by

�(η) = c2(G)
∑

k1,k2

1|k1|∨|k2|>M10<|�|�N(i�)
1k1+k2=�
(2π)1/2

�ηk1ηk2�2

(k2
1 + k2

2)

+
∑

n�3

cn(G)ε
n/2−1

∑

k1···kn
10<|�|�N(i�)

1k1+···+kn=�
(2π)(n−1)/2

�ηk1 · · · ηkn�n
(k2

1 + · · · + k2
n)
,

where it is understood that all sums in ki are over 0 < |ki | � N . Therefore (2.26)
yields for 0 < |�| � N

Dk�(η) = c2(G)2
∑

k1

1|k|∨|k1|>Mi�
1k+k1=�
(2π)1/2

�ηk1�1

(k2 + k2
1)

+
∑

n�2

cn+1(G)ε
(n−1)/2(n+ 1)

×
∑

k1···kn
i�

1k+k1+···+kn=�
(2π)n/2

�ηk1 · · · ηkn�n
(k2 + k2

1 + · · · + k2
n)
.

Applying the Itô trick we get

E

[∣∣
∣
∣

∫ t

s

〈ε−1∂x
N
0 G(ε

1/2uεr )

− ε−1/2c1(G)∂x
N
0 u

ε
r − c2(G)∂x(

M
0 u

ε
r )

2, e−�〉dr
∣
∣
∣
∣

2]

� |t − s|
∑

0<|k|�N
k2
E[|Dk�|2]

= |t − s|
∑

0<|k|�N
k2c2(G)

222�2
∑

k1

1|k|∨|k1|>M
1k+k1=�

2π

E[|�ηk1�1|2]
(k2 + k2

1)
2

+ |t − s|
∑

0<|k|�N
k2
∑

n�2

cn+1(G)
2ε(n+1)−2(n+ 1)2�2

×
∑

k1···kn

1k+k1+···+kn=�
(2π)n

E[|�ηk1 · · · ηkn�n|2]
(k2 + k2

1 + · · · + k2
n)

2

= |t − s|
∑

n�1

An,
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where the (An) are implicitly defined by the equation. Now E[|�ηk1 · · · ηkn�n|2] � n!
for all k1, . . . , kn, so that

A1 �
∑

0<|k|,|k1|�N
k2c2(G)

2�21k+k1=�
1|k|∨|k1|>M
(k2 + k2

1)
2

�
∑

0<|k|,|k1|�N
c2(G)

2�21k+k1=�
1|k|∨|k1|>M
k2 + k2

1

� c2(G)
2�2

∑

0<|k|<∞

1� �=k1|k|∨|�−k|>M
k2 + (�− k)2

� c2(G)
2�2

∑

0<|k|<∞

(
1� �=k

M2 + (�− k)2 +
1� �=k

k2 +M2

)

� c2(G)
2�2M−1,

while for n > 1

An =
∑

0<|k|�N
k2cn+1(G)

2εn−1(n+ 1)2�2

×
∑

k1···kn

1k+k1+···+kn=�
(2π)n

E[|�ηk1 · · · ηkn�n|2]
(k2 + k2

1 + · · · + k2
n)

2

� εn−1

(2π)n
�2(n+ 1)2cn+1(G)

2n!
∑

0<|k|,|k1|,...,|kn|�N
k2 1k+k1+···+kn=�
(k2 + k2

1 + · · · + k2
n)

2

� εn−1

(2π)n
�2(n+ 1)2cn+1(G)

2n!
∑

0<|k1|,...,|kn|�N

1

k2
1 + · · · + k2

n

� εn−1

(2π)n
�2(n+ 1)2cn+1(G)

2n!
∑

0<|k1|,...,|kn|�N

1

k2
1 + k2

2

= εn−1

(2π)n
�2(n+ 1)2cn+1(G)

2n!(2N)n−2
∑

0<|k1|,|k2|�N

1

k2
1 + k2

2

� ε�2(n+ 1)2cn+1(G)
2n! log2N.

The sum over n is bounded by

∞∑

n=2

cn+1(G)
2n!(n+ 1)2 =

∞∑

n=1

ncn(G)
2n! �

∫

R

|G′(x)|2ν(dx),
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so that overall we get

E

[∣∣
∣
∣

∫ t

s

〈ε−1∂x
N
0 G(ε

1/2uεr )− ε−1/2c1(G)∂x
N
0 u

ε
r − c2(G)∂x(

M
0 u

ε
r )

2, e−�〉dr
∣
∣
∣
∣

2]

(2.27)

� |t − s|�2(M−1 + ε log2N)

∫

R

|G′(x)|2ν(dx), (2.28)

which is our second claimed bound.
To get the first bound, we take M � |t − s|−1/2 in (2.27) (which requires N >

|t − s|−1/2), and combine this with Lemma 10 to obtain

E

[∣
∣
∣
∣

∫ t

s

〈ε−1∂x
N
0 G(ε

1/2uεr )− ε−1/2c1(G)∂x
N
0 u

ε
r , e−�〉dr

∣
∣
∣
∣

2
]

� |t − s|�2(M−1 + ε log2N + |t − s|M)
∫

R

|G′(x)|2ν(dx)

� |t − s|3/2−κ�2
∫

R

|G′(x)|2ν(dx).

If N � |t − s|−1/2 we use another estimate: as in the proof of Lemma 10 we have

E

[∣
∣
∣
∣

∫ t

s

〈ε−1∂x
N
0 G(ε

1/2uεr )− ε−1/2c1(G)∂x
N
0 u

ε
r , e−�〉dr

∣
∣
∣
∣

2
]

� |t − s|2E[|〈ε−1∂x
N
0 G(ε

1/2uε0)− ε−1/2c1(G)∂x
N
0 u

ε
0, e−�〉|2]

� |t − s|2
∑

n�2

�2ε−2cn(G)
2
∫

T

dx
∫

T

dx ′E[Hn(ε1/2uε0(x))Hn(ε
1/2uε0(x

′))],

� |t − s|2
∑

n�2

�2ε−2n!cn(G)2
∫

T

dx
∫

T

dx ′|E[ε1/2uε0(x)ε
1/2uε0(x

′)]n|

� |t − s|2
∑

n�2

�2εn−2n!cn(G)2
∫

T

dx
∫

T

dx ′min{2N,C|x − x ′|−1}n

� |t − s|2
∑

n�2

�2εn−2n!cn(G)2(2N)n−1 � |t − s|2
∑

n�2

�2ε−1cn(G)
2n!

� �2|t − s|3/2
∫

R

|G′(x)|2ν(dx),

where in the last step we used that |t − s|−1/2N−1 � 1. ��
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2.8 The Hairer–Quastel Invariance Principle

In this section we will study convergence to SBE for the large scale limit of a class
of (non-singular) SPDEs of the form

∂tv = �v + ε1/2∂xF (v)+ ∂xχε (2.29)

on [0,∞)×Tε with Tε = R/(2πε−1
Z), where χε is a Gaussian noise that is white

in time and spatially smooth. The Hairer–Quastel universality result [16] states that
there exist constants c1, c2 ∈ R such that the rescaled process ε−1/2vtε−2((x −
c1ε

−1/2t)ε−1) converges (for small time) to the solution u of the stochastic Burgers
equation (as defined in the context of Regularity Structures)

∂tu = �u+ c2∂xu
2 + ∂xξ,

where ξ is a space-time white noise. Here we give an alternative proof of this result,
based on the concept of energy solutions and in a stationary situation. The proof
turns out to be simpler in this language, on the other hand our method only applies
at stationarity and moreover we need an explicit control of the invariant measure
which will force us to formulate a bit differently the initial problem.

Let us state the result more precisely. We modify (2.29) such that after rescaling
ũεt (x) = ε−1/2vtε−2(xε−1) we have

∂t ũ
ε = �ũε + ε−1∂x

N
0 F(ε

1/2ũε)+ ∂xN0 ξ̃ , ũε0 = N0 η, (2.30)

where ξ̃ is a space-time white noise on [0,∞)×T (where T = T1) with variance 2,
η is a space white noise which is independent of ξ̃ , N0 denotes the projection onto
the Fourier modes 0 < |k| � N , and we always link N and ε via

N = π/ε.

Theorem 3 Let F be almost everywhere differentiable and assume that for all ε >
0 there is a unique solution ũε to (2.30) which does not blow up before T > 0.
Assume also that F,F ′ ∈ L2(ν) where ν is the standard normal distribution. Then
uεt (x) := ũεt (x − ε−1/2c1(F )t), (t, x) ∈ [0, T ] ×T, converges in distribution to the
unique stationary energy solution u of

∂tu = �u+ c2(F )∂xu
2 + ∂xξ,

where ξ is a space-time white noise with variance 2 and for U ∼ ν and k � 0 and
Hk the k-th Hermite polynomial

ck(F ) = 1

k!E[F(U)Hk(U)].
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Remark 3 If F is even, then c1(F ) = 0 while c2(F ) = 0 if F is odd.

Note that we introduced a second regularization in (2.30) compared to (2.29)
which acts on F(ε1/2uε). The reason is that we need to keep track of the invariant
measure and this second regularization allows us to write it down explicitly. For
simplicity here we only consider the mollification operatorN0 , but it is possible to
extend everything to more general operators ρ(ε|∂x |)u = F−1(ρ(ε·)Fu), where
ρ is an even, compactly supported, bounded function which is continuous in a
neighborhood of 0 and satisfies ρ(0) = 1. We should then modify the equation as

∂t ũ
ε = �ũε + ε−1∂xρ(ε|∂x |)ρ(ε|∂x |)F (ε1/2ũε)+ ∂xρ(ε|∂x |)ξ̃ , ũε0 = ρ(ε|∂x |)η,

to keep control of the invariant measure, see [6].
While this result only applies in the stationary state, we have more freedom in

choosing the nonlinearityF than [16] who require it to be an even polynomial. Also,
the energy solution method extends without great difficulty to the modified equation
on [0, T ] ×R.

Let us start by making some basic observations concerning the solution to (2.30).

Galilean Transformation Recall that ũε solves

∂t ũ
ε = �ũε + ε−1∂x

N
0 F(ε

1/2ũε)+ ∂xN0 ξ̃ ,

and that uεt (x) = ũεt (x−ε−1/2c1(F )t). We define the modified test function ϕ̃t (x) =
ϕ(x + ε−1/2c1(F )t) and then 〈uεt , ϕ〉 = 〈ũεt , ϕ̃t 〉. The Itô–Wentzell formula gives

d〈uεt , ϕ〉 = 〈dũεt , ϕ̃t 〉 + 〈ũεt , ∂t ϕ̃t 〉dt
= 〈�ũεt , ϕ̃t 〉dt + 〈ε−1∂x

N
0 F(ε

1/2ũε), ϕ̃t 〉dt + 〈d∂xM̃ε
t , ϕ̃t 〉

+ 〈ε−1/2c1(F )ũ
ε
t , ∂x ϕ̃t 〉dt,

where M̃ε
t (x) =

∫ t
0 

N
0 ξ̃ (s, x)ds. Integrating the last term on the right hand side by

parts, we get

d〈uεt , ϕ〉 = 〈�uεt , ϕ〉dt + 〈ε−1∂x
N
0 F(ε

1/2uε), ϕ〉dt − ε−1/2c1(F )〈∂xuεt , ϕ〉dt
+ 〈d∂xM̃ε

t , ϕ̃t 〉.

The martingale term has quadratic variation

d[〈∂xM̃ε, ϕ̃t 〉]t = d[〈M̃ε, ∂x ϕ̃t 〉]t = 2‖N0 ∂xϕ̃t‖2
L2dt = 2‖N0 ∂xϕ‖2

L2dt,
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which means that the process 〈Mε
t , ϕ〉 := 〈M̃ε

t , ϕ̃t 〉 is of the form Mε
t =∫ t

0 
N
0 ξ(s, x)ds for a new space-time white noise ξ̃ with variance 2. In conclusion,

uε solves

∂tu
ε = �uε + ε−1∂x

N
0 (F (ε

1/2uε)− c1(F )ε
1/2uε)+ ∂xN0 ξ, uε0 = N0 η,

(2.31)

so in other words by performing the change of variables uεt (x) = ũεt (x −
ε−1/2c1(F )t) we replaced the function F by F̃ (x) = F(x) − c1(F )x, and now
it suffices to study Eq. (2.31).

Invariant Measure Note that (2.31) actually is an SDE in the finite dimensional
space YN = N0 L

2(T,R) � R
2N , so that we can apply Echeverria’s criterion [4]

to show the stationarity of a given distribution. The natural candidate is με =
law(N0 η), where η is a space white noise, since we know that the dynamics of
the regularized Ornstein–Uhlenbeck process

∂tX
ε = �Xε + ∂xN0 ξ

are invariant and even reversible under με and that for models in the KPZ
universality class the asymmetric version often has the same invariant measure as
the symmetric one. Let us write

BεF (u) = ε−1∂x
N
0 (F (ε

1/2u)− c1(F )ε
1/2u) =: ε−1∂x

N
0 F̃ (ε

1/2u),

where F̃ = F − c1(F )x.

Lemma 11 The vector field BεF : YN → YN leaves the Gaussian measure με

invariant. More precisely, if D denotes the gradient with respect to the Fourier
monomials (ek)0<|k|�N on YN , then

∫

YN

(BεF (u) · D�(u))�(u)με(du) = −
∫

YN

�(u)BεF (u) ·D�(u)με(du)

for all �,� ∈ L2(με) with BεF · D�,BεF ·D� ∈ L2(με).

Proof In this proof it is more convenient to work with the orthonormal basis

{
1√
π

sin(k·), 1√
π

cos(k·), 0 < k � N
}

of YN , rather than with Fourier monomials. We write (ϕk)k=1,...,2N for an enumer-
ation of these trigonometric functions. Then BεF · D can also be expressed in terms
of the (ϕk), and we have

�(u) = f (〈u, ϕ1〉, . . . , 〈u, ϕ2N 〉), �(u) = g(〈u, ϕ1〉, . . . , 〈u, ϕ2N 〉)
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for some f, g : R2N → R. We assume that f and g are continuously differentiable,
with polynomial growth of the first order derivatives. The general case then
follows by an approximation argument (note that Hermite polynomials of linear
combinations of (〈u, ϕk〉)k form an orthogonal basis of L2(με)). Identifying YN
with R

2N , we can write με(du) = γ2N(u)du, where γ2N is the density of a 2N-
dimensional standard normal variable. Integrating by parts we therefore have

∫

YN

(BεF (u) · D�(u))�(u)με(du) = −
∫

YN

(BεF (u) ·D�(u))�(u)με(du)
(2.32)

−
∫

YN

2N∑

k=1

(〈∂〈u,ϕk 〉BεF (u), ϕk〉

− 〈BεF (u), ϕk〉〈u, ϕk〉)�(u)�(u)με(du)
(2.33)

and it suffices to show that the zero order differential operator terms on the right
hand side vanish. For the first one of them we have

2N∑

k=1

〈∂〈u,ϕk 〉BεF (u), ϕk〉 =
2N∑

k=1

〈∂〈u,ϕk〉ε−1∂x
N
0 F̃ (ε

1/2u), ϕk〉

=
2N∑

k=1

〈ε−1/2∂x(
N
0 F̃

′(ε1/2u)ϕk), ϕk〉

= −
2N∑

k=1

〈ε−1/2N0 F̃
′(ε1/2u)ϕk, ∂xϕk〉

= −ε
−1/2

2
〈N0 F̃ ′(ε1/2u), ∂x

2N∑

k=1

ϕ2
k 〉,

and since sin(mx)2+cos(mx)2 = 1 the sum of the squares of the ϕk does not depend
on x so its derivative is 0. For the remaining term in (2.32) we get με-almost surely

2N∑

k=1

〈BεF (u), ϕk〉〈u, ϕk〉 = 〈BεF (u), u〉 = 〈ε−1∂x
N
0 F̃ (ε

1/2u), u〉

= ε−1〈∂xF̃ (ε1/2u),N0 u〉 = −ε−1〈F̃ (ε1/2u), ∂x
N
0 u〉.
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Now observe that there existsG withG′ = F̃ , and that under με we have u = N0 u
almost surely, which yields

−ε−1〈F̃ (ε1/2u), ∂x
N
0 u〉 = −ε−1〈G′(ε1/2N0 u), ∂x

N
0 u〉

= −ε−3/2〈∂xG(εN0 u), 1〉 = 0,

and therefore the proof is complete. ��
The previous lemma, together with the reversibility of the Ornstein–Uhlenbeck

dynamics under με , implies that the Itô SDE (2.31) has με as invariant measure and
that for T > 0 the time reversed process ûεt = ûεT−t solves

∂t û
ε = �ûε − ε−1∂xF̃ (ε

1/2N0 û
ε)+ ∂xN0 ξ̂ (2.34)

with a time-reversed space-time white noise ξ̂ .

2.8.1 The Invariance Principle

We now have all the tools to prove the convergence of (uε) to an energy solution
of the stochastic Burgers equation. We proceed in two steps. First we establish
the tightness of (uε), and in a second step we show that every weak limit is an
energy solution. Using the uniqueness of energy solutions, we therefore obtain the
convergence of (uε).

Tightness Let (uε) solve (2.31) and write F̃ (x) = F(x) − c1(F )x. To prove
the tightness of (uε) it suffices to show that for all � ∈ Z the complex-valued
process 〈uε, e−�〉 is tight and satisfies a polynomial bound in �, uniformly in ε.
We decompose 〈uεt , e−�〉 as

〈uεt , e−�〉 = 〈uε0, e−�〉 +
∫ t

0
〈uεs ,�e−�〉ds −

∫ t

0
〈ε−1N0 F̃ (ε

1/2uεs ), ∂xe−�〉ds
(2.35)

−
∫ t

0
〈N0 ξs, ∂xe−�〉ds (2.36)

=: 〈uε0, e−�〉 + 〈Sεt , e−�〉 + 〈Aεt , e−�〉 + 〈Mε
t , e−�〉, (2.37)

where Sε , Aε , Mε stand for symmetric, antisymmetric and martingale part, respec-
tively, and we show tightness for each term on the right hand side separately. The
convergence of 〈uεt , e−�〉 at a fixed time (in particular t = 0) follows from the fact
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that the law of uεt is that of με for all t , and (με) obviously converges to the law of
the white noise as ε→ 0. The linear term is tight because

E

[∣∣
∣
∣

∫ t

s

〈uεr ,�e�〉dr
∣
∣
∣
∣

p]

� |t − s|p−1
∫ t

s

E[|〈uεr , �2e�〉|p]dr

� |t − s|p−1
∫ t

s

E[|〈uεr , �2e�〉|2]p/2dr = |t − s|p|�|2p.

For all ε > 0 the martingale term is a mollified space-time white noise, so its
convergence is immediate.

Only the nonlinear contribution to the dynamics is nontrivial to control. Here we
use the Boltzmann–Gibbs principle stated in Proposition 1 to get

E

[∣
∣
∣
∣

∫ t

s

〈ε−1N0 F̃ (ε
1/2uεr ), ∂xe−�〉dr

∣
∣
∣
∣

2
]

� |t − s|3/2−κ�2
∫

R

|F ′(x)|2ν(dx).

This bound gives readily tightness in C([0, T ],C) and also that any limit point has
zero quadratic variation.

Similarly we have for the time reversed process ûεt = uεT−t

〈ûεt , e−�〉 = 〈ûε0, e−�〉 +
∫ t

0
〈ûεs ,�e−�〉ds +

∫ t

0
〈ε−1N0 F̃ (ε

1/2ûεs ), ∂xe−�〉ds
(2.38)

−
∫ t

0
〈N0 ξ̂s , ∂xe−�〉ds (2.39)

=: 〈ûε0, e−�〉 + 〈Ŝεt , e−�〉 + 〈Âεt , e−�〉 + 〈M̂ε
t , e−�〉, (2.40)

and the same arguments as before show that each term on the right hand side is tight
in C([0, T ],C), satisfies a uniform polynomial bound, and that any limit point of
〈Âε, e−�〉 has zero quadratic variation. Since we have suitable moment bounds for
each term, we actually get the joint tightness:

Lemma 12 Consider the decomposition (2.35), (2.38). Then the tuple

(uε0, û
ε
0, S

ε, Ŝε, Aε, Âε,Mε, M̂ε)

is tight in
(
S ′)2×C ([0, T ],S ′)6. For every weak limit (u0, û0, S, Ŝ,A, Â,M, M̂)

and any ϕ ∈ C∞(T) the processes 〈A, ϕ〉 and 〈Â, ϕ〉 have zero quadratic variation
and satisfy Ât = −(AT −AT−t ). Moreover, ut = u0 + St + At +Mt , t ∈ [0, T ],
is for every fixed time a spatial white noise.
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Theorem 4 Let (u,A) be as in Lemma 12. Then (u,A) ∈ Q and u is an energy
solution to

∂tu = �u+ c2(F )∂xu
2 + ∂xξ.

Proof The tuple (uε0, û
ε
0, S

ε, Ŝε, Aε, Âε,Mε, M̂ε) converges along a subsequence
εn → 0, but to simplify notation we still denote this subsequence by the same
symbol. Since (uε0, S

ε,Aε,Mε) converges jointly and for every fixed ε the process
uε solves (2.30), we get for ϕ ∈ C∞(T)

〈ut , ϕ〉 = 〈u0, ϕ〉 + 〈St , ϕ〉 + 〈At , ϕ〉 + 〈Mt, ϕ〉,

and since 〈Sεt , ϕ〉 =
∫ t

0 〈uεs ,�ϕ〉ds also 〈St , ϕ〉 =
∫ t

0 〈us,�ϕ〉ds. The same
argument works for the backward process, so that (u,A) ∈ Q. It remains to
show that A = c2(F )∂xu

2, which follows from the Boltzmann–Gibbs principle,
Proposition 1. For all ε > 0 andM � N/2 = π/(2ε),

E

[∣
∣
∣
∣

∫ t

s

〈Aεr − c2(F )∂x(
M
0 u

ε
r )

2, e−�〉dr
∣
∣
∣
∣

2
]

� |t − s|�2(M−1 + ε log2N)

∫

R

|F ′(x)|2ν(dx),

so by Fatou’s lemma

E

[∣
∣
∣
∣

∫ t

s

〈A − c2(F )∂x(
M
0 ur)

2, e−�〉dr
∣
∣
∣
∣

2
]

� lim inf
ε→0

E

[∣
∣
∣
∣

∫ t

s

〈Aεr − c2(F )∂x(
M
0 u

ε
r )

2, e−�〉dr
∣
∣
∣
∣

2
]

� |t − s|�2M−1
∫

R

|F ′(x)|2ν(dx).

It now suffices to sendM →∞. ��

2.9 Uniqueness of Energy Solutions

Now we prove uniqueness of energy solutions.
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2.9.1 Mapping to the SHE

The strategy to prove uniqueness is to perform the Hopf–Cole transformation at the
level of controlled processes and check that after the transformation we get an Itô
solution to the SHE which we already know it is unique. In order to implement this
idea we need first to regularise the energy solution, apply Itô formula to the Hopf–
Cole transformation. The critical step is to control the error term in the Itô formula
and show that it goes to zero. This is done via the Itô trick, in the form of the
Kipnis–Varadhan lemma for energy solutions and a careful analysis of the related
estimation. The control of this remainder is very similar to some computation in the
paper of Funaki–Quastel [6].

Fix L � 1 and consider the process φLt (x) = exp(IuLt (x)) where uLt = I L
0 ut

and I = ∂−1
x is the antiderivative defined onL2

0(T) by ∂xIϕ = ϕ for all ϕ ∈ L2
0(T).

Let I∗ = −I the adjoint of I and ρLx = I L
0 δx is a smooth test function of zero

mean. Now IρLx (y) = (δL ∗ �)(y − x) where � : T → R is the odd periodic
function given by �(y) = 1

2 sgn(y)− y/(2π) for y ∈ (−π, π] with �(0) = 0.
The process (φLt (x))t,x is smooth in x and of finite quadratic variation in t . Note

that φLt (x) = exp(IuLt (x)) = exp(ut (I∗ρLx )) is not a cylindrical function but by a
direct approximation procedure we can pretend it is and since (ut ,A) is controlled
we have

d(IuLt )(x) = dut (I∗ρLx ) = ut (�I∗ρLx )dt + dAt (I∗ρLx )− dMt(∂xI∗ρLx ).

The Itô formula for Dirichlet processes (2.19) gives

dφLt (x) = φLt (x)(ut (�I∗ρLx )dt
+ dAt (I∗ρLx )− dMt(∂xI∗ρLx ))+ φt(x)〈∂xI∗ρLx , ∂xI∗ρLx 〉dt

= φLt (x)(ut (�I∗ρLx )dt + dAt (I∗ρLx )+ dMt(ρLx ))+ φt (x)〈ρLx , ρLx 〉dt

Moreover since ρLx (y) = ρL0 (y − x) we have�(I∗ρLx ) = �x(I∗ρLx ) and

φLt (x)ut (�I
∗ρLx ) = φLt (x)�xut (I∗ρLx ) = �xφLt (x)− φLt (x)(∂xut (I∗ρLx ))2

= �xφLt (x)− φLt (x)(ut(∂xI∗ρLx ))2

= �xφLt (x)− φLt (x)(ut(ρLx ))2.

Being φLt is smooth in space we can rewrite this as an approximate stochastic heat
equation (SHE)

dφLt (x) = �xφLt (x)dt + φLt (x)(KL −QLt )dt + φLt (x)dMt(ρLx )+ dRLt (x)
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where the remainder RL is given by

RLt (x) =
∫ t

0
φLs (x)(dAs(I∗ρLx )−I0(us(ρ

L∗ ))2(x)ds −KLds)

and where we introduced a constant KL and the one-dimensional process

QLt =
1

2π

∫

T
[(ut (ρLx ))2 − 〈ρLx , ρLx 〉]dx

By definition of energy solution of SBE we have also

At (I∗ρLx ) = − lim
N→0

∫ t

0

(
I N

0 us

)2
(∂xI

∗ρLx )ds = lim
N→0

∫ t

0

(
I N

0 us

)2
(ρLx )ds

(2.41)

Thanks to Eq. (2.41) we can define for any N � 1 the process

R
L,N
t (x) =

∫ t

0
φLs (x)(

(
I N

0 us

)2
(ρLx )−I0

(
(I L

0 us)
2
)
(x)−KL,N)ds

=
∫ t

0
φLs (x)(I

L
0

(
I N

0 us

)2
(x)−I0

(
(I L

0 us)
2
)
(x)−KL,N)ds

and observe that limN→∞ RL,N = RL if we choose the sequence of constantsKL,N

so that KL,N → KL. In Sect. 2.9.2 below we prove the following lemma which is
the key for the convergence

Lemma 13 There exists a choice of KL,N such that for any ϕ ∈ S we have
E[RL,Nt (ϕ)] = 0 and

lim
L→∞ lim

N→∞E[ sup
0�t�T

(R
L,N
t (ϕ))2] = 0

where RL,Nt (ϕ) = 〈RL,Nt , ϕ〉L2(T). Moreover KL,N → KL as N → +∞ and
KL→ K = −1/12 as L→ +∞.

We are now ready to prove the uniqueness result. We have

RLt (ϕ) = φLt (ϕ)− φL0 (ϕ)−
∫ t

0
φLs (�ϕ)ds

−
∫ t

0
φLs (ϕ)(K

L −QLs )ds −
∫ t

0

∫

T
φLs (x)ϕ(x)dMs(ρ

L
x )dx
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We already know that the family (φLt (x))t,x convergences in the space of continuous
paths on [0, T ]×T to φt (x) = exp((Iut )(x)). It is not difficult also to show that the
process (QLs )s converges in L2([0, T ]) to a limit which we call Q. The quadratic
variation of the martingale part converges also, so we have that, for fixed ϕ ∈ S

Rt (ϕ) = lim
L→∞R

L
t (ϕ)

= φt(ϕ)− φ0(ϕ)−
∫ t

0
φs(�ϕ)ds

−
∫ t

0
φs(ϕ)(K −Qs)ds −

∫ t

0

∫

T
φs(x)ϕ(x)d (I0Ms) (x)dx

as a continuous process in t ∈ [0, T ]. But from Lemma 13 we have also by Fatou

E[ sup
0�t�T

(Rt (ϕ))
2] � lim inf

L→∞ E[ sup
0�t�T

(RLt (ϕ))
2]

� lim inf
L→∞ lim inf

N→∞ E[ sup
0�t�T

(R
L,N
t (ϕ))2] = 0

so we conclude that φ satisfy

φt(ϕ)− φ0(ϕ)−
∫ t

0
φs(�ϕ)ds −

∫ t

0
φs(ϕ)(K −Qs)ds

−
∫ t

0

∫

T
φs(x)ϕ(x)d (I0Ms) (x)dx = 0

almost surely for all ϕ ∈ S and t ∈ [0, T ]. Note also that the process

φ̃t (x) = φt(x) exp

(

Mt(1)− t

2
+Kt −

∫ t

0
Qsds

)

= exp

(

(Iut )(x)+Mt(1)− t

2
+Kt −

∫ t

0
Qsds

)

satisfies

φ̃t (ϕ)− φ̃0(ϕ)−
∫ t

0
φ̃s (�ϕ)ds −

∫ t

0

∫

T
φ̃s(x)ϕ(x)dMs(x)dx = 0.

However we also know that there exists a unique strictly positive solution ψ for
this equation which is adapted to the filtration generated by M , so we must have
φ̃t (x) = ψt (x) and in particular

(Iut )(x)+Mt(1)− t

2
+Kt −

∫ t

0
Qsds = log φ̃t (x) = logψt (x)
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By differentiating this equality (in the sense of distributions) and projecting away
the constants we get

ut (x) = ∂x logψt(x)

which shows that the only energy solution of the SBE is the Cole–Hopf solution
obtained from solving the SHE associated to the noiseM .

2.9.2 Convergence of the Remainder

Let

rL,N(us, x) = φLs (x)(I L
0

(
I N

0 us

)2
(x)−I0(I

L
0 us)

2(x)−KL,N)

so that RL,Nt (x) = ∫ t0 rL,N(us, x)ds. Using Lemma 7 we can estimate

E[ sup
0�t�T

(R
L,N
t (ϕ))2] � T ‖rL,N (·, ϕ)‖2−1

where

‖rL,N(·, ϕ)‖2−1 = sup
�∈L2(μ)

2E[rL,N(u0, ϕ)�(u0)] − ‖�‖2
1

with ‖�‖2
1 = E‖D�‖2

H 1 in terms of the Malliavin derivative D associated to the

measure μ. We prove below that we can choose KL,N so that E[rL,N(ut , x)] =
E[rL,N(u0, x)] = 0 for all x ∈ T. This is necessary in order for ‖rL,N (·, ϕ)‖−1 to
be finite for all ϕ. At this point everything boils down to control

E[rL,N(u0, ϕ)�(u0)]

and show that it goes to zero as N → +∞ and L→ +∞ where ϕ is a smooth test
function and � ∈ L2(μ) is such that ‖�‖1 < +∞.

For any n � 1 we denote by

Wn(h) =
∫

Tn

h(z1, . . . , zn)W(dz1 · · · dzn)
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the n-th chaos of the white noise u0. It is also possible to check that when � is in
the domain of the Malliavin derivative D we can partially integrate by parts in the
expression E[Wn(h)�] to obtain the equality

E[Wn(h)�] =
∫

T
E[Wn−1(h(z1, ·, . . . , ·))Dz1�]dz1

this will be used repeatedly below.

Observe that the random variable (I L
0

(
I N

0 u0
)2
(x)−I0

(
(I L

0 u0)
2
)
(x)) is an

element of the second chaos of u0. Let us compute its kernel:

I L
0

(
I N

0 u0

)2
(x) =

∫

T2

[∫

T
dyρLx (y)ρ

N
y (z1)ρ

N
y (z2)

]

W(dz1dz2)

and

I0

(
(I L

0 u0)
2
)
(x) =

∫

T2

[∫

T
dyρ∞x (y)ρLy (z1)ρ

L
y (z2)

]

W(dz1dz2)

where

ρ∞x (y) = lim
K→∞ ρ

K
y (y) = δx(y)−

1

2π

is the distributional kernel of I0. Let

gL,Nx (z1, z2) =
∫

T
dy(ρLx (y)ρ

N
y (z1)ρ

N
y (z2)− ρ∞x (y)ρLy (z1)ρ

L
y (z2))

so that

(I L
0

(
I N

0 u0

)2
(x)−I0

(
(I L

0 u0)
2
)
(x)) = W2(g

L,N
x )

=
∫

T2
gL,Nx (z1, z2)W(dz1dz2).

We let also

W1(g
L,N
x (z1, ·)) =

∫

T
gL,Nx (z1, z2)W(dz2).

Consider now

E[rε(u0, ϕ)�(u0)] =
∫

T
ϕ(x)E[(W2(g

L,N
x )−KL,N)φL0 (x)�(u0)]dx
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Partially integrating by partsW2 we have

E[W2(g
L,N
x )φL0 (x)�(u0)] =

∫

T
E[W1(g

L,N
x (z1, ·))Dz1[φL0 (x)�(u0)]]dz1

=
∫

T
E[W1(g

L,N
x (z1, ·))φL0 (x)Dz1�(u0)]dz1

+
∫

T
E[W1(g

L,N
x (z1, ·))Dz1φ

L
0 (x)�(u0)]dz1

The second term can be again integrated by parts to obtain
∫

T
E[W1(g

L,N
x (z1, ·))Dz1φ

L
0 (x)�(u0)]dz1

=
∫

T2
gL,Nx (z1, z2)E[D2

z1,z2
φL0 (x)�(u0)]dz1dz2

+
∫

T2
gL,Nx (z1, z2)E[Dz1φ

L
0 (x)Dz2�(u0)]dz1dz2.

while the first can be written as
∫

T
E[W1(g

L,N
x (z1, ·))φL0 (x)Dz1�(u0)]dz1

=
∫

T
E[(W1(g

L,N
x (z1, ·)) � φL0 (x))Dz1�(u0)]dz1

+
∫

T2
gL,Nx (z1, z2)E[Dz2φ

L
0 (x)Dz1�(u0)]dz1dz2.

where

(W1(g
L,N
x (z1, ·)) �φL0 (x))=W1(g

L,N
x (z1, ·))φL0 (x)−

∫

T
gL,Nx (z1, z2)Dz2φ

L
0 (x)dz2

is a (partial) Wick contraction of the two terms. In the end we have the
decomposition

E[rL,N(u0, ϕ)�(u0)] = AL,N + BL,N + CL,N

where

AL,N =
∫

T
ϕ(x)

∫

T
E[(W1(g

L,N
x (z1, ·)) � φL0 (x))Dz1�(u0)]dz1dx

BL,N =
∫

T
ϕ(x)

[ ∫

T2
gL,Nx (z1, z2)E

[
(D2
z1,z2

φL0 (x))� (u0)

]
dz1dz2

−KL,NE[φL0 (x)�(u0)]
]

dx
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and

CL,N = 2
∫

T
ϕ(x)

∫

T2
gL,Nx (z1, z2)E[(Dz1φ

L
0 (x))Dz2�(u0)]dz1dz2dx.

So we can bound these three terms independently. In order to proceed, observe that

Dz1φ
L
0 (x) = φL0 (x)(I∗ρLx )(z1)

and

D2
z1,z2

φL0 (x) = φL0 (x)(I∗ρLx )(z1)(I
∗ρLx )(z2)

so

BL,N =
∫

T
ϕ(x)

[∫

T2
gL,Nx (z1, z2)(I

∗ρLx )(z1)(I
∗ρLx )(z2)dz1dz2 −KL,N

]

×E[φL0 (x)�(u0)]dx

and

CL,N = 2
∫

T
ϕ(x)

∫

T2
gL,Nx (z1, z2)(I

∗ρLx )(z1)E[φL0 (x)Dz2�(u0)]dz1dz2dx.

Let

KL,N =
∫

T2
gL,Nx (z1, z2)(I

∗ρLx )(z1)(I
∗ρLx )(z2)dz1dz2

to have BL,N = 0. From the expression of AL,N and CL,N we deduce that with this
choice

E[rL,N(u0, ϕ)] = 0

as required. By Cauchy–Schwarz we have

(AL,N)2 � E

∥
∥
∥
∥

∫

T
ϕ(x)(W1(g

L,N
x (z1, ·)) � φL0 (x))dx

∥
∥
∥
∥

2

H−1
z1

E‖Dz1�(u0)‖2
H 1
z1

= (AL,N1 )2‖�‖2
1
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where

(A
L,N
1 )2 = E

∥
∥
∥
∥

∫

T
ϕ(x)W1(g

L,N
x (z1, ·)) � φL0 (x)dx

∥
∥
∥
∥

2

H−1
z1

=
∫

T2
ϕ(x)ϕ(x ′)E

×
[
〈φL0 (x) �W1(g

L,N
x (z1, ·)), φL0 (x ′) �W1(g

L,N
x ′ (z1, ·))〉H−1

z1

]
dxdx ′

and

(CL,N)2 � E

∥
∥
∥
∥

∫

T
ϕ(x)φL0 (x)

∫

T
gL,Nx (z1, z2)(I

∗ρLx )(z1)dz1dx

∥
∥
∥
∥

2

H−1
z2

×E‖Dz2�(u0)‖2
H 1
z2

� (CL,N1 )2‖�‖2
1

with

(C
L,N
1 )2 = E

∥
∥
∥
∥

∫

T
ϕ(x)φL0 (x)

∫

T
gL,Nx (z1, z2)(I

∗ρLx )(z1)dz1dx

∥
∥
∥
∥

2

H−1
z2

So we have proven

Lemma 14 We have

|E[rL,N(u0, ϕ)�(u0)]| � ‖�‖1(A
L,N
1 + CL,N1 )

and in particular

‖rL,N(u0, ϕ)‖−1 � AL,N1 + CL,N1 .

Then it remains to bound each of these constants to show that they vanish in the
limit N,L→ +∞ and to study the limit of KL,N . This is the aim of the following
lemmas which unfortunately have to be obtained by tedious and careful explicit
computations.

Lemma 15 We have limN→+∞ KL,N = KL and limL→+∞KL = K = −1/12.

Proof Since
∫

T
(I∗ρLx )(z1)ρ

N
y (z1)dz1 =

〈
I∗I L

0 δx,I
N

0 δy

〉

L2

=
〈
δx, II

L
0 I N

0 δy

〉

L2
=
(
II L

0 I N
0 δy

)
(x)
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we have

KL,N =
∫

T2
gL,Nx (z1, z2)(I

∗ρLx )(z1)(I
∗ρLx )(z2)dz1dz2

=
∫

T
dy(ρLx (y)

(
II L∧N

0 δy

)
(x)2 − ρ∞x (y)

(
II L

0 δy

)
(x)2).

Taking N →∞ we get

KL,N → KL =
∫

T
dy(ρLx (y)

(
II L

0 δy

)
(x)2 − ρ∞x (y)

(
II L

0 δy

)
(x)2).

Now note that the integral of the first term in the expression ofKL vanishes, indeed:

∫

T
dyρLx (y)

(
II L

0 δy

)
(x)2 =

∫

T
dyρLx (y)

(
II L

0 δx

)
(y)2

=
∫

T
dy
(
∂yII

L
0 δx

)
(y)
(
II L

0 δx

)
(y)2

= 1

3

∫

T
dy∂y

(
II L

0 δx

)
(y)3 = 0.

Moreover the second term satisfies
∫

T
dyρ∞x (y)

(
II L

0 δy

)
(x)2 =

(
II L

0 δx

)
(x)2 − 1

2π

∫

T
dy
(
II L

0 δy

)
(x)2

since ρ∞x = δx −1/2π . By symmetry also the
(
II L

0 δx
)
(x)2 contribution vanishes,

since
(
II L

0 δx

)
(x) =

(
I∗I L

0 δx

)
(x) = −

(
II L

0 δx

)
(x) = 0.

So we ends up with

KL = − 1

2π

∫

T
dy
(
II L

0 δx

)
(y)2 = − 1

2π

〈
II L

0 δx, II
L

0 δx

〉

= − 1

4π2

∑

0<|k|

|ρ̂L(k)|2
|k|2

since

F
(
II L

0 δx

)
(k) = ρ̂L(k)

ik
ek(x)

∗.
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And as L→∞ we obtain ρ̂L(k)→ 1 for all k �= 0 so

KL →− 1

2π2

∞∑

n=1

1

n2 = −
1

12
= K.

��
Lemma 16 We have AL,N1 → 0 as N →∞ and L→∞.

Proof

(A
L,N
1 )2 = E

∥
∥
∥
∥

∫

T
ϕ(x)W1(g

L,N
x (z1, ·)) � φL0 (x)dx

∥
∥
∥
∥

2

H−1
z1

=
∫

T2
ϕ(x)ϕ(x ′)E

×
[
〈φL0 (x) �W1(g

L,N
x (z1, ·)), φL0 (x ′) �W1(g

L,N
x ′ (z1, ·))〉H−1

z1

]
dxdx ′

Integrating by parts the W1 terms and taking into account the cancellations due to
the partial � contractions we get

E
[
〈φL0 (x) �W1(g

L,N
x (z1, ·)), φL0 (x ′) �W1(g

L,N
x ′ (z1, ·))〉H−1

z1

]

= E[φL0 (x)φL0 (x ′)]
∫

T2
〈gL,Nx (z1, z2), g

L,N
x ′ (z1, z2)〉H−1

z1
dz2

+
∫

T2
E[(Dz3φ

L
0 (x))(Dz2φ

L
0 (x

′))]〈gL,Nx (z1, z2), g
L,N
x ′ (z1, z3)〉H−1

z1
dz2dz3

The second term can be written as

E[φL0 (x)φL0 (x ′)]
∫

T2
(I∗ρLx )(z3)(I

∗ρLx ′)(z2)〈gL,Nx (z1, z2), g
L,N
x ′ (z1, z3)〉H−1

z1
dz2dz3

so letting

V L(x, x ′) = ϕ(x)ϕ(x ′)E[φL0 (x)φL0 (x ′)]
we have

(A
L,N
1 )2 =

∫

T2
V L(x, x ′)

∫

T2
(I∗ρLx )(z3)(I

∗ρLx ′)(z2)

× 〈gL,Nx (z1, z2), g
L,N
x ′ (z1, z3)〉H−1

z1
dz2dz3dxdx ′

+
∫

T2
V L(x, x ′)

∫

T2
〈gL,Nx (z1, z2), g

L,N
x ′ (z1, z2)〉H−1

z1
dz2dxdx ′

= A1,1 + A1,2
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Let us consider A1,1 first :

A1,1 =
∫

T4
V L(x, x ′)〈Gx,x ′,Gx ′,x〉H−1 dxdx ′

where

Gx,x ′(z1) =
∫

T
(I∗ρLx ′)(z2)g

L,N
x (z1, z2)dz2.

Now observe that

Gx,x ′(z1) =
∫

T
dyρLx (y)ρ

N
y (z1)(I

N
0 I

∗ρLx ′)(y)−
∫

T
dyρ∞x (y)ρLy (z1)(I

∗ρLx ′)(y)

so the H−1 scalar product in A1,1 can be expanded as

〈Gx,x ′,Gx ′,x〉H−1 =
∫

T
dyρLx (y)(I

N
0 I

∗ρLx ′)(y)

×
∫

T
dy ′ρLx ′(y

′)(I N
0 I

∗ρLx )(y ′)〈ρNy (z1), ρ
N
y ′ (z1)〉H−1

z1

−
∫

T
dyρ∞x (y)(I∗ρLx ′)(y)

×
∫

T
dy ′ρLx ′(y

′)(I N
0 I

∗ρLx )(y ′)〈ρLy (z1), ρ
N
y ′ (z1)〉H−1

z1

−
∫

T
dyρLx (y)(I

N
0 I

∗ρLx ′)(y)

×
∫

T
dy ′ρ∞x ′ (y

′)(I∗ρLx )(y ′)〈ρNy (z1), ρ
L
y ′(z1)〉H−1

z1

+
∫

T
dyρ∞x (y)(I∗ρLx ′)(y)

×
∫

T
dy ′ρ∞x ′ (y

′)(I∗ρLx )(y ′)〈ρLy (z1), ρ
L
y ′(z1)〉H−1

z1

Taking N →∞ we get

〈Gx,x ′,Gx ′,x〉H−1 →
∫

T
dyρLx (y)(I

∗ρLx ′)(y)

×
∫

T
dy ′ρLx ′(y

′)(I∗ρLx )(y ′)〈ρ∞y (z1), ρ
∞
y ′ (z1)〉H−1

z1

−
∫

T
dyρ∞x (y)(I∗ρLx ′)(y)
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×
∫

T
dy ′ρLx ′(y

′)(I∗ρLx )(y ′)〈ρLy (z1), ρ
∞
y ′ (z1)〉H−1

z1

−
∫

T
dyρLx (y)(I

∗ρLx ′)(y)

×
∫

T
dy ′ρ∞x ′ (y

′)(I∗ρLx )(y ′)〈ρ∞y (z1), ρ
L
y ′(z1)〉H−1

z1

+
∫

T
dyρ∞x (y)(I∗ρLx ′)(y)

×
∫

T
dy ′ρ∞x ′ (y

′)(I∗ρLx )(y ′)〈ρLy (z1), ρ
L
y ′(z1)〉H−1

z1

=
〈
II0(ρ

L
x (I

∗ρLx ′)), II0(ρ
L
x ′(I

∗ρLx ))
〉

−
〈
II L

0 (ρ
∞
x (I

∗ρLx ′)), II0(ρ
L
x ′(I

∗ρLx ))
〉

−
〈
II0(ρ

L
x (I

∗ρLx ′)), II
L

0 (ρ
∞
x ′ (I

∗ρLx ))
〉

+
〈
II L

0 (ρ
∞
x (I

∗ρLx ′)), II
L

0 (ρ
∞
x ′ (I

∗ρLx ))
〉
.

The point is to show that, as L→+∞,

〈
II0(ρ

L
x (I

∗ρLx ′)), II0(ρ
L
x ′(I

∗ρLx ))
〉
→ 〈

II0(ρ
∞
x (I

∗ρ∞x ′ )), II0(ρ
∞
x ′ (I

∗ρ∞x ))
〉

and the same limit for the other three quantities. Writing things in Fourier space we
have

JL(x − x ′) =
〈
II0(ρ

L
x (I

∗ρLx ′)), II0(ρ
L
x ′(I

∗ρLx ))
〉

= 1

2π

∑

0 < |k1 |, |k2|, |k3|, |k4 |
k1 + k2 + k3 + k4 = 0

Ik1+k2 �=0

(k1 + k2)2
eik1x

eik2x
′

−ik2
eik3x

′ eik4x

−ik4

× ρ̂L(k1)ρ̂
L(k2)ρ̂

L(k3)ρ̂
L(k4)

= 1

2π

∑

0 < |k1 |, |k2|, |k3|, |k4 |
k1 + k2 + k3 + k4 = 0

Ik1+k2 �=0

(k1 + k2)2

ei(k2+k3)(x
′−x)

−ik2

1

−ik4

× ρ̂L(k1)ρ̂
L(k2)ρ̂

L(k3)ρ̂
L(k4)
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Now taking Littlewood–Paley blocks (�q)q�−1 of this quantity we get

�qJL(x) = 1

2π

∑

0 < |k1|, |k2 |, |k3|, |k4|
k1 + k2 + k3 + k4 = 0

Ik1+k2 �=0

(k1 + k2)2

ei(k2+k3)(x
′−x)

−ik2

θq(k2 + k3)

−ik4

× ρ̂L(k1)ρ̂
L(k2)ρ̂

L(k3)ρ̂
L(k4).

Where θq is the Fourier multiplier associated to �q by �q = θq(D). Taking into
account that supk |ρ̂L(k)| < +∞ if we show that the quantity

Sq = 1

2π

∑

0 < |k1|, |k2 |, |k3|, |k4|
k1 + k2 + k3 + k4 = 0

Ik1+k2 �=0
θq(k2 + k3)

(k1 + k2)2|k2||k3|

is finite then we can conclude by dominated convergence. Note that

Sq � 2qε
∑

0<|k1|,|k2|,|k3|

Ik1+k2 �=0,k2+k3 �=0

(k1 + k2)2|k2||k3||k2 + k3|ε

for any ε > 0 since

|θq(k)| = |θ(2−qk)| � (1+ |2−qk|)−ε � 2qε|k|−ε

due to the fact that the function θ is supported in a ball of finite radius. We can now
perform the sum over k3 and get

Sq � 2qε
∑

0<|k1|,|k2|

Ik1+k2 �=0

(k1 + k2)2|k2|1+ε

since

∑

0<|k3|

Ik2+k3 �=0

|k3||k2 + k3|ε � 1

|k2|ε

uniformly in k2 �= 0 and L. Now performing the other two sums we show simply
that

Sq � 2qε
∑

0<|k2|

1

|k2|1+ε � 2qε
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where we used the fact that

∑

0<|k1|

Ik1+k2 �=0

(k1 + k2)2
�
∑

k1∈Z

Ik1+k2 �=0

(k1 + k2)2
=
∑

k1∈Z

Ik1 �=0

(k1)2
� 1.

By dominated convergence we can conclude that

〈
II0(ρ

L
x (I

∗ρLx ′)), II0(ρ
L
x ′(I

∗ρLx ))
〉
→ 〈

II0(ρ
∞
x (I

∗ρ∞x ′ )), II0(ρ
∞
x ′ (I

∗ρ∞x ))
〉

as distributions of arbitrarily small negative order of the variable x − x ′. This is
ok since we test this quantity against the function V L which belongs to C1/2−(T2)

uniformly in L. The other terms can be handled similarly and thus we conclude that
A1,1 → 0.

Let us turn now to A1,2. The relevant computation is the following:

∫

T2
〈gL,Nx (z1, z2), g

L,N
x ′ (z1, z2)〉H−1

z1
dz2

=
∫

T
dyρLx (y)

∫

T
dy ′ρLx ′(y

′)〈ρNy (z1), ρ
N
y ′ (z1)〉H−1

z1
〈ρNy (z2), ρ

N
y ′ (z2)〉L2

z2

−
∫

T
dyρLx (y)

∫

T
dy ′ρ∞x ′ (y

′)〈ρNy (z1), ρ
L
y ′(z1)〉H−1

z1
〈ρNy (z2), ρ

L
y ′(z2)〉L2

z2

−
∫

T
dyρ∞x (y)

∫

T
dy ′ρLx ′(y

′)〈ρLy (z1), ρ
N
y ′ (z1)〉H−1

z1
〈ρLy (z2), ρ

N
y ′ (z2)〉L2

z2

+
∫

T
dyρ∞x (y)

∫

T
dy ′ρ∞x ′ (y

′)〈ρLy (z1), ρ
L
y ′(z1)〉H−1

z1
〈ρLy (z2), ρ

L
y ′(z2)〉L2

z2

Now consider one of the terms:
∫

T
dyρLx (y)

∫

T
dy ′ρLx ′(y

′)〈ρNy (z1), ρ
N
y ′ (z1)〉H−1

z1
〈ρNy (z2), ρ

N
y ′ (z2)〉L2

z2

=
∫

T
dyρLx (y)

∫

T
dy ′ρLx ′(y

′)ρNy (y ′)(I∗IρNy )(y ′)

since

〈ρNy (z1), ρ
N
y ′ (z1)〉H−1

z1
= 〈IρNy , IρNy ′ 〉L2 = 〈I∗IρNy , δy ′ 〉L2 = (I∗IρNy )(y ′)



72 M. Gubinelli

As N →∞ this quantity becomes

→
∫

T
dyρLx (y)

∫

T
dy ′ρLx ′(y

′)ρ∞y (y ′)(I∗Iρ∞y )(y ′)

=
∫

T
dyρLx (y)ρ

L
x ′(y)(I

∗Iρ∞y )(y)−
1

2π

∫

T
dyρLx (y)

∫

T
dy ′ρLx ′(y

′)(I∗Iρ∞y )(y ′)

= (I∗Iρ∞0 )(0)
∫

T
dyρLx (y)ρ

L
x ′(y)−

1

2π
(I∗IρLx )(x ′)

= (I∗Iρ∞0 )(0)ρLx (x ′)−
1

2π
(I∗IρLx )(x ′)

since (I∗Iρ∞y )(y) = (I∗Iρ∞0 )(0). As L→∞ we obtain

= (I∗Iρ∞0 )(0)ρ∞x (x ′)−
1

2π
(I∗Iρ∞x )(x ′)

For the other terms the discussion of the convergence is similar and the limit is the
same so we obtain that

∫

T2
〈gL,Nx (z1, z2), g

L,N
x ′ (z1, z2)〉H−1

z1
dz2 → 0

as a distribution in the x, x ′ variables and we conclude that A1,2 → 0. ��
Lemma 17 We have CL,N1 → 0 as N →∞ and L→∞.

Proof Let

Gx(z2) =
∫

T
gL,Nx (z1, z2)(I

∗ρLx )(z1)dz1 = Gx,x(z2)

and recall that

(C
L,N
1 )2 = E

∥
∥
∥
∥

∫

T
ϕ(x)φL0 (x)Gx(z2)dx

∥
∥
∥
∥

2

H−1
z2

=
∫

T2
V L(x, x ′)〈Gx,Gx ′ 〉H−1 dxdx ′

In order to estimate the scalar product can take f ∈ H 1 and consider∫
Gx,x(z)f (z)dz instead. Recall that

∫
Gx,x(z)f (z)dz =

∫

T
dyρLx (y)I

N
0 f (y)(I

N
0 I

∗ρLx )(y)

−
∫

T
dyρ∞x (y)I L

0 f (y)(I
∗ρLx )(y)
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replace ρ∞x (y) by δx(y)− 1/2π and ρLx (y) by δLx (y)− 1/2π to get

=
∫

T
dyδLx (y)

(
I N

0 f (y)
)
(I N

0 I
∗ρLx )(y)−

(
I L

0 f (x)
)
(I∗ρLx )(x)

− 1

2π

∫

T
dyI N

0 f (y)(I
N

0 I
∗ρLx )(y)+

1

2π

∫

T
dyI L

0 f (y)(I
∗ρLx )(y)

=
∫

T
dyδLx (y)

(
I N

0 f (y)−I N
0 f (x)

)
(I N

0 I
∗ρLx )(y)

+
(
I N

0 f (x)
)
(I∗
(
δL ∗I N

0 ρ
L
x

)
)(x)−

(
I L

0 f (x)
)
(I∗ρLx )(x)

− 1

2π

∫

T
dyI N

0 f (y)(I
N

0 I
∗ρLx )(y)+

1

2π

∫

T
dyI L

0 f (y)(I
∗ρLx )(y).

We note that, by symmetry,
(
I N

0 f (x)
)
(I∗
(
δL ∗I N

0 ρ
L
x

)
)(x) =

(
I L

0 f (x)
)
(I∗ρLx )(x) = 0

and moreover that in this expression we have that

sup
x

∣
∣
∣
〈
I L

0 f, I
∗ρLx

〉
− 〈f,�x〉

∣
∣
∣+ sup

x

∣
∣
∣
〈
I N

0 f,I
N

0 I
∗ρLx

〉
− 〈f,�x〉

∣
∣
∣

� ‖f ‖H 1o((L ∧N)−1)

so finally it remains to bound

H =
∫

T
dyδLx (y)

(
I N

0 f (y)−I N
0 f (x)

)
(I N

0 I
∗ρLx )(y)

However using H 1 ⊆ C1/2 compactly and that
∥
∥I N

0 I
∗ρLx

∥
∥∞ < +∞ uniformly in

x,L,N we have

|H | �
∥
∥
∥I N

0 f

∥
∥
∥
H 1

∫

T
dyδLx (y)|y − x|1/2 � ‖f ‖H 1L−1/2 → 0.

In conclusion

sup
x∈T

∣
∣
∣
∣

∫
Gx,x ′(z)f (z)dz

∣
∣
∣
∣ � ‖f ‖H 1o((L ∧N)−1)

which implies

sup
x∈T

〈Gx,x,Gx,x〉H−1 = o((L ∧ N)−1).

and thus we can conclude that CL,N1 → 0. ��
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Chapter 3
Pathwise Solutions for Fully Nonlinear
First- and Second-Order Partial
Differential Equations with
Multiplicative Rough Time Dependence

Panagiotis E. Souganidis

Abstract The notes are an overview of the theory of pathwise weak solutions of
two classes of scalar fully nonlinear first- and second-order degenerate parabolic
partial differential equations with multiplicative rough time dependence, a spe-
cial case being Brownian. These are Hamilton-Jacobi, Hamilton-Jacobi-Isaacs-
Bellman and quasilinear divergence form equations including multidimensional
scalar conservation laws. If the time dependence is “regular”, the weak solutions
are respectively the viscosity and entropy/kinetic solutions. The main results are
the well-posedness and qualitative properties of the solutions. Some concrete
applications are also discussed.

3.1 Introduction

I present an overview of the theory of pathwise weak solutions of two classes
of scalar fully nonlinear first- and second-order degenerate parabolic (stochas-
tic) partial differential equations (spde for short) with multiplicative rough time
dependence, a special case being Brownian. These are Hamilton-Jacobi, Hamilton-
Jacobi-Isaacs-Bellman and quasilinear divergence form partial differential equa-
tions (pde for short) including multidimensional scalar conservation laws. If the
time dependence is “regular”, the weak solutions are respectively the viscosity and
entropy/kinetic solutions. The main results are the well-posedness and qualitative
properties of the solutions. Some concrete applications are also discussed both to
motivate as well as to show the scope of the theory. Most of the results presented
here are part of the ongoing development of the theory in collaboration with Lions
[71, 72, 74–79]. The results about quasilinear divergence form equations are based
on joint work with Lions et al. [38–41, 65–67].
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Problems of the type discussed here arise in several applied contexts and models
for a wide variety of phenomena and applications including mean field games, turbu-
lence, phase transitions and front propagation with random velocity, nucleations in
physics, macroscopic limits of particle systems, pathwise stochastic control theory,
stochastic optimization with partial observations, stochastic selection, etc.

The general classes of evolution equations considered in these notes are

{
du = F(D2

u,Du, u, x, t)

+∑m
i=1H

i(Du, u, x, t) · dBi in QT := R
d × (0, T ], (3.1)

and

du+
d∑

i=1

∂xi (A
i(u, x, t)) · dBi − div(A(u, x, t)Du)dt = 0 in QT , (3.2)

with initial condition

u(·, 0) = u0 on R
d . (3.3)

Here F = F(X,p, u, x, t),H 1 = H 1(p, u, x, t), . . . , Hm = Hm(p, u, x, t),

A1 = A1(u, x, t), . . . , Ad = Ad(u, x, t) and A = A(u, x, t) are (at least) contin-
uous functions of their arguments (exact assumptions will be shown later), F and
A are respectively degenerate elliptic in X and monotone in u, B := (B1, . . . , Bm)

and B = (B1, . . . , Bd) are, for example, continuous geometric rough in time and
“·” simply denotes the way B acts on the Hi and Ai . When B is a Brownian path,
“·” becomes the usual Stratonovich differential “◦”, something justified by the fact
that the pathwise solutions may be obtained as the limit of solutions of equations
with smooth signals. The Bi ’s can be taken to be approximations of “colored white
noise.” For simplicity, below we assume that any spatial dependence on the signal
Bi is part of Hi and the Ai . Finally,Q∞ := R

d × (0,∞).
When B is either smooth or has bounded variation, then “d” is the regular time

derivative and (3.1) and (3.2) are “regular” equations, which have been studied using
respectively the viscosity and entropy/kinetic theories. When the driving signals are
regular (“non rough”), I refer to the equations as “deterministic” or “non-rough”. If
the signals are “rough”, the equations will be called “rough” or “stochastic” when
the path is Brownian.

The theory presented in these notes is a pathwise one and simply treats B as the
time derivative of a continuous function. When the Hi’s and Ai’s are respectively
independent of (u, x) and x, the general qualitative theory does not need any other
assumption but continuity. When there is spatial dependence, then it is necessary to
argue differently.
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There is a vast literature for linear and quasilinear versions of (3.1) as well as
work for some versions of (3.2). Listing all the references is not possible in this
introduction. Some connections are made in main the body of the notes.

3.1.1 Organization of the Notes

Concrete examples where (3.1) and (3.2) arise are presented in Sect. 3.2. Section 3.3
discusses the main difficulties and explains why the Stratonovich formulation is
more appropriate. Sections 3.4 to 3.14 are devoted to the pathwise solutions of
Hamilton-Jacobi and Hamilton-Jacobi-Isaacs equations. In Sect. 3.4, I present new
results about nonlinear equations with linear rough path dependence, I introduce the
system of characteristics, and I discuss a short time classical result about stochastic
Hamilton-Jacobi equations in the smooth regime. Section 3.5 is about fully nonlin-
ear equations with semilinear rough path dependence. Section 3.6 is about formulae
or the lack thereof for Hamilton-Jacobi equations with time dependence. Section 3.7
discusses the simplest possible nonlinear pde with rough time signals as the limit of
regular approximations. Section 3.8 is about pathwise solutions of nonlinear first-
order pde with nonsmooth Hamiltonians and rough signals. In Sect. 3.9, I present
new results about the qualitative properties of the pathwise solutions. Section 3.10
is devoted to the well-posedness theory of the pathwise solutions with spatially
depended Hi’s. Section 3.11 is about Perron’s method, while Sect. 3.12 discusses
the convergence of approximation schemes with error estimates. In Sect. 3.13 I
present new results about the homogenization of pathwise solutions. Section 3.14 is
about the asymptotics of stochastically perturbed reaction-diffusion equations. The
results about quasilinear divergence form equations including multi-dimensional
stochastic conservation laws are presented in Section 3.15. Finally, Appendix
summarizes few basic things from the classical theory of viscosity solutions that
are used in the notes.

3.2 Motivation and Some Examples

A discussion follows about a number of results that have been or may be solved
using the theory presented in here. In several places, to keep the discussion simple,
the presentation is informal.

3.2.1 Motion of Interfaces

An important question in pde and geometry as well as applications like phase
transitions is the understanding of the long time behavior of solutions of reaction-
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diffusion equations and the properties of the developing interfaces, which separate
the regions where the solutions approach the different equilibria of the equation.

A classical and well studied problem in this context is the asymptotic behavior
of the solution uε to the so called Allen-Cahn equation

uεt −Δuε +
1

ε2W
′(uε) = 0 inQT ,

where W : R → R is a double-well potential with wells of equal depth located at,
for example, at ±1. It is well known that as, ε → 0, uε → ±1 inside and outside
an interface moving with normal velocity V = −κ , where κ is the mean curvature.
The interface is the zero-level set of the solution of the level-set pde

vt =
(

I − Dv

|Dv| ⊗
Dv

|Dv|
)

: D2v in QT , (3.4)

where for A,B ∈ Sd , the space of symmetric d × d matrices, A : B := tr(AB) and
I is the identity matrix in R

d .
For the applications, however, it is interesting to consider potentials with wells

at locations which change with the scale ε and to identify the exact scaling at which
something nontrivial comes up. An example of such a problem is

uεt −Δuε +
1

ε2 (W
′(uε)+ εc(t)) = 0 in QT ,

for some smooth function c = c(t), which leads, as ε → 0, to an interface moving
with normal velocity V = −κ+αc(t), where α ∈ R is a “universal” constant which
is independent of c.

A natural question is what happens if c is irregular and, in particular, if c =
dB, where B is a Brownian path. Note that such perturbations often appear in the
hydrodynamic limit of interacting particle systems. It turns out that in this case
the oscillations of the wells due to dB are too strong for the system to stabilize.
However, as it was it was shown by Lions and Souganidis [69], if B is replaced by a
“mild” approximationBε , then the asymptotic interface moves with normal velocity

V = −κ + αdB,

and is characterized as a level set of the solution of the “stochastic” level-set pde

dv =
[(

I − Dv

|Dv| ⊗
Dv

|Dv|
)

: D2v

]

dt + α|Dv| · dB inQT . (3.5)

More details including references as well as a sketch of the proof of the result in
[69] are presented in Sect. 3.14.
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3.2.2 A Stochastic Selection Principle

A classical question in the theory of level set interfacial motions is whether there is
“fattening”, that is, if there are configurations (initial data) such that the zero level
set of the solution v to (3.4) develops interior. For the motion by mean curvature, it is
known that, if the initial configuration is two touching balls, then, for positive times,
the evolving front is a “surface” that looks like the boundary of either two separated
shrinking balls or some connected open set which moves in time, and there are well
defined minimal and maximal moving boundaries.

As it is often the case the introduction of stochasticity resolves this ambiguity
and provides a definitive selection principle. Indeed, it was proved by Souganidis
and Yip [104] without any regularity restrictions on the evolving set (see also Dirr
et al. [23] for a short time result), that the zero level sets of the solutions v±ε of the
stochastically perturbed level set pde

dv±ε =
[(

I − Dv±ε

|Dv±ε | ⊗
Dv±ε

|Dv±ε |
)

: D2v±ε
]

dt ± ε|Dv±ε | ◦ dB inQT ,

with initial data two touching balls, never develop interior and, as ε→ 0, converge
in the Hausdorff distance to the maximal interface of the unperturbed problem.

3.2.3 Pathwise Stochastic Control Theory

To keep the notation simple I assume here that d = 1. A typical stochastic control
problem with finite horizon T > 0 consists of

1. a controlled stochastic differential equation (sde for short)

⎧
⎨

⎩

dXs = b(Xs, αs)ds +
√

2σ1(Xs, αs)dB1,s +
√

2σ2(Xs) ◦ dB2,s in (t, T ],
Xt = x,

where (B1,t )t≥0 and (B2,t )t≥0 are two independent Brownian motions with
respective filtrations (FB1

t )t≥0 and (FB2
t )t≥0, (αt )t≥0 ∈ A, the set of admissible

FB1
t -progressively measurable controls with values in A a subset of some R

k ,
and

2. a pay-off functional, which, to simplify the presentation, here is taken to be

J (x, t; α) = Ex,t [g(XT )|FB2
T ],

the goal being to minimize the pay-off over A.
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The associated value function, which is defined by

u(x, t) = essinfα∈AJ (x, t; α),

has been shown in Lions and Souganidis [71, 75] (see also Buckdahn and Ma
[10] for a special case) to be the pathwise solution of the stochastic associated
Bellman equation

du+ inf
α∈A

[
σ 2

1 (x, α)uxx + b(x, α)ux
]
dt

+√2σ2(x)ux ◦ dB2 = 0 inQT u(·, T ) = g,

which is a special case of (3.1) with F nonlinear and H linear; notice that to
be consistent with control theoretic formulation of the problem the equation is
written backwards in time.

The aim of the classical stochastic control theory with the stochastic dynamics
above, is to minimize over A the “averaged” payoff

J (x, t; α) = Ex,t [g(XT )].

It is a classical fact that the value function

u(x, t) = essinfα∈AJ (x, t; α)

is the unique viscosity solution of the deterministic Bellman terminal valued
problem

⎧
⎨

⎩

ut + infα∈A
[(
σ 2

1 (x, α)+ σ 2
2 (x)

)
uxx +

(
b(x, α)+ σ2,xσ2(x)

)
ux
] = 0 inQT ,

u(·, T ) = g.

3.2.4 Mean Field Games

A typical example of the Lasry-Lions mean field theory [53–55] is the study of the
asymptotic behavior, as L → ∞, of the law L(X1

t , . . . , X
L
t ) of the solution of the

sde

dXi = σ
⎛

⎝Xi,
1

L− 1

∑

j �=i
δXj

⎞

⎠ ◦ dB (i = 1, . . . , L).
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Here δy is the Dirac mass at y and σ ∈ C0,1(Rd × P(Rd);Sd), P(X) being the set
of probability measures on X.

The result (see Lions [57]) is that, as L→ ∞, in the sense of measures and for
all t > 0,

L(X1
t , . . . , X

L
t )→ πt ∈ P(P(Rd)),

where the density (mt )t≥0 of the evolution in time of (πt )t≥0, which is defined, for
all U ∈ C(P(Rd)), by

∫
U(m)dπt (m) = E[U(mt)],

solves the stochastic conservation law

dm+ divx(σT (m, x) ◦ dB) = 0 inQT ,

which is a special case of (3.2). Here σT is the transpose of the matrix σ .

3.3 The Main Difficulties and the Choice of Stochastic
Calculus

3.3.1 Difficulties

Given that, in general and without rough signals, (3.1) and (3.2) do not have global
smooth solutions, it is natural to expect that this is the case in the presence of rough
time dependence.

It is also not possible to use directly the standard viscosity and entropy solutions
of the “deterministic” theory, since they depend on inequalities satisfied either at
some special points or after integration. Consider, for example, (3.2) with d = 1
and A ≡ 0. An entropy solution must satisfy, in the sense of distributions, the weak
entropy inequality dS(u)+Q(u)x · dB ≤ 0 for all pairs (S,Q) of convex entropy
S and entropy flux Q. The inequality does not make sense if B is a rough path. A
similar difficulty arises when dealing with viscosity inequalities.

Moreover, the lack of regularity does not allow to express the solutions in any
form involving time integration as is the case for sde, that is to say, for example, that
u solves du = H(Du) · dB inQT if, for all x ∈ R

d and s, t ∈ [0, T ] with s > 0,

u(x, t) = u(x, s)+
∫ t

s

H (Du(x, τ )) · dB(τ).

Another possibility, at least when m = 1, is to take advantage of the multiplica-
tive noise to change time and obtain an equation without rough parts. For example,
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formally, if du + H(Du) · dB = 0, the change of time u(x, t) = U(x,B(t))

yields that U must be a global smooth solution to the forward-backward time
homogeneous Hamilton-Jacobi equation Ut + H(DU) = 0 in R

d × (−∞,∞).
It is, of course, well known that such solutions do not exist in general. Behind this
difficulty is the basic fact that the nonlinear problems develop shocks which are not
reversible, while the changing sign of the rough signals, in some sense, forces the
solutions to move forward and backward in time. Note that the time change works
in intervals where dB does not change sign. More details about this are given later
in the notes.

A natural question is whether it is possible to solve the equations in law. Recall
that solving the sde dX = √2σ(Xt)dB in law is equivalent to understanding, for
all smooth φ and T > 0, the solutions u of the initial value problem

ut = σσT : D2u inQT u(·, 0) = φ.

For the equations here the state variable must belong to a suitable function space
and the corresponding spde is set in infinite dimensions. For example, the infinite
dimensional pde describing the law of du = √2H(Du) ◦ dB is, formally,

Ut = D2U(H(Df ),H(Df )).

The problem is that the Hessian D2U is an unbounded operator independently of
the choice of the base space. Such pdes are far away from the theory of viscosity
solutions in infinite dimensions developed by Crandall and Lions [14, 15].

Solving linear stochastic pde in law is related to the martingale approach which
has been used successfully in linear and some quasilinear settings. A partial list of
references is Chueshov and Vuillermot [12, 13], Da Prato et al. [18], Gerencsér et al.
[37], Huang and Kushner [45], Krylov [48, 49], Krylov and Röckner [50], Rozovskiı̆
[94, 95], Pardoux [85–87], Watanabe [105]. The methodology requires some
tightness (compactness) which typically follows from estimates on the derivatives
of the solutions. In general, the latter are not available for nonlinear problems.

3.3.2 The Choice of Stochastic Calculus: Stratonovich vs Itô

When studying sdes, it is important to decide if they are written in Stratonovich or
Itô form, each of which having advantages and disadvantages; for example, more
regularity and chain rule for the former and less regularity but no chain rule for the
latter.

At first glance, the choice of calculus does not seem to be relevant for the
nonlinear problems discussed here due to the lack of regularity. This is, however, not
the case. The actual formulation plays an important role in the interpretation, well-
posedness, stability and construction of the solutions, which, typically, are obtained
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as limits of solutions with regular time dependence. The discussion below touches
upon some of these issues.

The advantage of the Stratonovich formulation can be seen in the following rather
simple example. Consider, for λ � 0, the Itô-form spde

du = λuxxdt +
√

2uxdB inQT .

The change of variables u(x, t) = v(x + √2B(t), t) yields that v satisfies the
(deterministic) pde

vt = (λ− 1)vxx inQT ,

which is well-posed if and only if λ ≥ 1.
Of course this is not an issue if the spde was in Stratonovich form to begin with.

In that case the change of variables yields the equation

vt = λvxx inQT ,

which is well posed if and only if λ ≥ 0, as is this case when B is a smooth path.
Consider, for example, a family (Bε)ε>0 of smooth approximations of the

Brownian motion B and the solution uε of the equation

uεt = uεxx + uεxḂε.

It is immediate that uε(x, t) = v(x + Bε(t), t) with v solving vt = vxx . Letting
ε→ 0 then yields that uε → u, which solves

du = uxxdt + ux ◦ dB.

Another example, where the use of Stratonovich appears to be necessary, is the
application to front propagation via the level set pde. One of the important elements
of the theory is that the moving interfaces depend only on the initial one and not the
particular choice of the initial datum of the pde. This is equivalent to the requirement
that the equations are invariant under increasing changes of the unknown.

Consider, for example, the pde

ut + |Du| = 0 .

Arguing as if the solution u were smooth (the argument can be made rigorous using
viscosity solutions), it is straightforward to check that, for nondecreasing φ, φ(u)
is also a solution; note that the monotonicity of φ is important when dealing with
viscosity solutions.
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The next example shows that the Itô formulation is the wrong one. Assume that
level set pde of the interfacial motion V = dB with B a Brownian motion is

du = |Du|dB.

If u is a smooth solution and φ : R→ R is smooth and nondecreasing, Itô’s formula
yields that

dφ(u) = |Dφ(u)|dB + 1

2
φ′′(u)|Du|2,

which is not the same equation as the one satisfied by u. This is of course not the case
if the level set pde was written in the Stratonovich form, which, however, requires a
priori additional regularity which is not available here. Indeed, if du = H(Du)◦dB,
then, in Itô’s form

du = H(Du)dB + 1

2

〈
D2uDH(Du),DH(Du)

〉
dt.

where, for x, y ∈ R
d , 〈x, y〉 is the usual inner product. To make, however, sense of

this last equation, it is necessary to have information about D2u which, in general,
is not available.

In the context of second- and first-order (deterministic) pde the difficulties due
to the lack of regularity are overcome using viscosity solutions. Their definition is
based on inequalities which, as mentioned earlier, cannot be expected to make sense
in the presence of rough signals.

There is, however, a reformulation of the definition for viscosity solutions, which,
at first glance, appears to be more conducive to stochastic calculus.

Indeed, for B smooth, consider again the equation ut = H(Du, x)Ḃ. The
definition of viscosity subsolutions is equivalent to the requirement that, for any
smooth φ : Rd → R, the map t → max(u− φ) satisfies, in the viscosity sense, the
differential inequality

d

dt
sup(u(·, t)− φ) � sup

x̄(t )∈argmax(u(·,t )−φ)
(H(Dφ(x̄(t)), x̄(t))Ḃ).

If B is a Brownian motion, then, assuming that there exists a unique maximum
point x̄(t) of u(·, t)− φ, the Stratonovich formulation should be

d

dt
max(u(·, t) − φ) � H(Dφ(x̄(t)), x̄(t)) ◦ dB,

a fact which, however, breaks down due to the lack of regularity in t of the map
t �→ x̄(t).



3 Pathwise Solutions Nonlinear Equations Rough Time Dependence 85

If Ḃ ∈ L1((0, T )), then the above inequality is meaningful and has been used
by Lions and Perthame [61] and Ishii [46] to study viscosity solutions of Hamilton-
Jacobi equations with L1-time dependence.

The regularity concerns can, of course, be relaxed, if the inequality above is
required to hold in Itô’s sense. This, however, leads to a contradiction to the classical
fact that the maximum of two subsolutions is a subsolution.

Recall that, if u and v are actually differentiable with respect to t , then

d

dt
(max(u, v)) = 1{u(·,t )>v(·,t )}ut + 1{u(·,t )�v(·,t )}vt ,

where 1A denotes the characteristic function of the set A.
If

ut = H(Du) , vt = H(Dv) and H(0) = 0 ,

it follows that

d

dt
max(u, v) � H(D(max(u, v))),

and, hence, max(u, v) is a subsolution.
Checking the same claim in the Itô’s formulation yields

d max(u, v) � 1{u(·,t )>v(·,t )}du+ 1{u(·,t )�v(·,t )}dv,

which suggests that max(u, v) is not necessarily a subsolution.
The final justification for considering the Stratonovich vs Itô’s formulation when

studying, for example, the equation

du = H(Du) · dB

comes from considering the family of problems

uεt = H(Duε)Ḃε,

where Bε are smooth approximations of the Brownian motion B. If uε and u are
smooth and, as ε → 0, uε → u in C2(Rd × (0,∞)), it is not difficult to see that u
must solve the equation in the Stratonovich sense.

Note that, under suitable assumptions on the initial datum of the regularized
equation and the Hamiltonian, it is possible to show, using arguments from the
theory of viscosity solutions, that the solutions uε are, uniformly in ε, bounded
and Lipschitz continuous in x, and, hence, converge uniformly along subsequences
for each t . This observation is the starting point of the theory, since it provides a
candidate for a possible solution of (3.1).
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3.4 Single Versus Multiple Signals, the Method
of Characteristics and Nonlinear pde with Linear
Rough Dependence on Time

3.4.1 Single Versus Multiple Signals

The next example illustrates that there is a difference between one single and many
signals and indicates the role that rough paths may play in the theory.

Consider two smooth paths B1 and B2 and the linear pde

ut = uxḂ1 + f (x)Ḃ2 in QT u(·, 0) = u0. (3.6)

It is immediate that v(x, t) = u(x − B1(t), t) solves

vt = f (x − B1(t))Ḃ2 inQT v(·, 0) = u0,

and, hence,

u(x, t) = v(x + B1(t), t) = u0(x + B1(t))+
∫ t

0
f (x + B1(t)− B1(s))Ḃ2(s)ds .

To extend this expression to non smooth paths, it is necessary to deal with integrals
of the form

∫ b

a

g(B1(s)) dB2(s),

which is one of the key ingredients of Lyons’s theory of rough paths; see, for
example, Qian and Lyons [82], Lyons [81, 83], Lejay and Lyons [56], etc.

3.4.2 Nonlinear pde with Linear Rough Dependence on Time

The calculation above suggests, however, a possible way to study general lin-
ear/nonlinear equations with linear rough dependence, that is, equations of the form

{
du = F(D2u,Du, x)dt + 〈a(x),Du〉 · dB1 + c(x)u · dB2 inQT ,

u(·, 0) = u0.
(3.7)
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Consider the system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dX = −a(X) · dB1 X(0) = x,
dP = 〈Da(X), P 〉 · dB1 + 〈Dc(X), P 〉U · dB2 P(0) = p,
dU = c(X)U · dB2 U(0) = u,

(3.8)

which, in view of the theory of rough paths, has a solution for any initial datum
(x, p, u). Of course, a and c must satisfy appropriate conditions. This, however, is
not important for the ongoing discussion.

It is immediate that, with initial condition X(0) = x, P (0) = Du0(x), U(0) =
u0(x), (3.8) is the system of characteristic equations of the linear Hamilton-Jacobi
equation

du = 〈a(x),Du〉 · dB1 + c(x)u · dB2 u(·, 0) = u0.

The next step is to make the ansatz that the solution u of (3.7) has the form

u(x, t) = v(X−1(x, t), t), (3.9)

and to find the equation satisfied by v. Note that, due to the linearity, it is immediate
that the map x → X(x, t) is invertible for all t .

Substituting in (3.7), arguing formally (the calculation can be made rigorous
using viscosity solutions when B1 and B2 are smooth), and rewriting (3.9) as

u(·, t) = S(t)v(·, t),

where, for any v0, S(t)v0 is the solution of the linear Hamilton-Jacobi equation with
initial datum v0, yields

du = d(S(t)v(·, t)) = dS(t)v(·, t) + S(t)dv(·, t)
= 〈a(x),DS(t)v(·, t)〉 · dB1 + c(x)S(t)v(·, t) · dB2 + S(t)(vt (·, t))

= 〈a(x),DS(t)v(·, t)〉 · dB1 + c(x)S(t)v(·, t), x) · dB2

+ F(D2S(t)v(·, t),DS(t)v(·, t), S(t)v(·, t), x)dt,

and, hence,

S(t)dv(·, t) = F(D2S(t)v(·, t),DS(t)v(·, t), S(t)v(·, t), x)dt,
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and

dv = S−1(t)F (D2S(t)v(·, t),DS(t)v(·, t), S(t)v(·, t), x)dt.

Since the last equation does not contain any singular time dependence, it is
convenient to replace dv by vt and to rewrite the last equation as

vt = S−1(t)F (D2S(t)v(·, t),DS(t)v(·, t), S(t)v(·, t), x). (3.10)

This last expression appears to be more complicated than (3.7), but this is only due
to the notation.

The point is that (3.10) actually is simpler since the transformation eliminates the
troublesome term

〈a(x),Du〉 · dB1 + c(x)u · dB2.

The new equation is of the form

vt = F̃ (D2v,Dv, v, x, t) inQT v(·, 0) = u0,

and can be studied using the viscosity theory as long as F̃ satisfies the appropriate
conditions for well-posedness.

The discussion above gives an alternative way to find pathwise solutions to all
the equations studied using the martingale method as well as scalar quasilinear
equations of divergence form, always with linear rough time dependence. As a
matter of fact, a closer look at the existing theories for linear spde yields that the
approach described above allows for the treatment of larger class of equations.

3.4.3 Stochastic Characteristics

The analysis in the previous subsection suggests that to handle equations with non-
linear rough dependence, it may be useful to look, at least when the Hamiltonians
are smooth, at the associated system of characteristics. When the time signals are
smooth this is a classical system of 2d + 1 ode. In the particular case that the rough
dependence is Brownian, the stochastic characteristics were used in the work of
Kunita [51] on stochastic flows. In what follows, statements are made without any
assumptions and the details are left to the reader.

The characteristics of the Hamilton-Jacobi equation

du =
m∑

i=1

Hi(Du, u, x, t) · dBi in QT u(·, 0) = u0, (3.11)
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are the solutions to the following system of differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX = −
m∑

i=1

DpH
i(P,U,X, t) · dBi,

dP =
m∑

i=1

(
DxH

i(P,U,X, t) +DuHi(P,U,X, t)P
)
· dBi,

dU =
m∑

i=1

(
Hi(P,U, x, t) − 〈DpHi(P,U, x, t), P 〉

)
· dBi,

X(x, 0) = x , P (x, 0) = Du0(x) , U(x, 0) = u0(x).

(3.12)

The connection between (3.11) and (3.12) is made through the relationship

U(x, t) = u(X(x, t), t) and P(x, t) = Du(X(x, t), t).

The method of characteristics works as long as it is possible to invert the map t →
X(x, t). This can always be done in some interval (−T ∗, T ∗) for small T ∗ > 0,
which depends on bounds onH,u0, their derivatives and the signal, and, in general,
is difficult to estimate in a sharp way.

It then follows that

u(x, t) = U(X−1(x, t), t)

is a smooth solution to (3.11) in R
d × (−T ∗, T ∗). The latter means, for all s, t ∈

(−T ∗, T ∗) with s < t and x ∈ R
d ,

u(x, t) = u(x, s)+
∫ t

s

m∑

i=1

Hi(Du(x, r), u(x, r), x, r) · dBi(r).

If m = 1, it is possible to express the solutions of (3.12) using in the characteristics
of the “non rough” equation

ut = H(Du, u, x, t) in QT u(·, 0) = u0.

Indeed if (Xd, Pd ,Ud) is the solution of

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ẋd = −DpH(Pd,Ud,Xd, t),
Ṗd = DxH i(Pd,Ud,Xd, t)+DuHi(Pd,Ud,Xd, t)Pd,
U̇d = Hi(Pd,Ud,Xd, t) − 〈DpH(Pd,Ud,Xd, t), Pd 〉,
Xd(x, 0) = x , Pd(x, 0) = Du0(x), Ud(x, 0) = u0(x),

(3.13)
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then

X(x, t) = Xd(x,B(t)), P (x, t) = Pd(x, B(t)), and U(x, t) = Ud(x, B(t)),

and the inversion is possible as long as |B(t)| < T ∗d , the maximal time for which
Xd is invertible.

This simple expression for the solution of (3.12) is not valid for m � 2 unless
the HamiltonianH satisfies the involution relationship

{Hi,Hj } := DxH iDpHj −DxHjDpH i = 0 for all i, j = 1, . . . ,m.

The latter yields that the solutions of the system of the characteristics commute, that
is

X(x, t) = X1
d(·, B1(t)) • X2

d (·, B2(t)) • · · · • XMd (·, Bm(t))(x),

where, for i = 1, . . . ,m, (Xid, P
i
d , U

i
d ) is the solution of (3.12) with H ≡ Hi and

Bi(t) = 1 and • stands for the composition of maps.
For example, if, for all i = 1, . . . ,m, theHi’s are independent of x, u and t , then

the involution relationship is satisfied, and (3.12) reduces to

dX = −
m∑

i=1

DHi(P )·dBi , dP = 0 , dU =
m∑

i=1

[Hi(P )−〈DpHi(P ), P 〉]·Bi .

and the X-characteristic is given by

X(x, t) = x −
m∑

i=1

DxH
i(Du0(x))Bi(t).

Finally, either for m = 1 or for space homogeneous Hamiltonians when m � 2, it
is possible to find X,P and U for any continuous B. Otherwise it is necessary to
appeal to the rough path theory.

3.5 Fully Nonlinear Equations with Semilinear Stochastic
Dependence

I describe next the work of Lions and Souganidis [77] about fully nonlinear
equations with semilinear stochastic dependence.

Consider the initial value problem

du = F(D2u,Du, u)dt +
m∑

i=1

Hi(u) · dBi inQT u(·, 0) = u0, (3.14)
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with u0 ∈ BUC(Rd ), B = (B1, . . . , Bm) is a Cα geometric rough path with α ∈
(1/3, 1/2), for example Brownian motion with Stratonovich, F ∈ C(Sd × R

d )

degenerate elliptic, that is, for all (p, u) ∈ R
d+1 and X,Y ∈ Sd ,

if X ≤ Y, then F(X,p, u) ≤ F(Y, p, u), (3.15)

and

H = (H 1, . . . , Hm) ∈ (C5(R))m. (3.16)

When m = 1 and B is continuous path, then (3.16) can be replaced by

H ∈ C3,1(R). (3.17)

Although the results presented here also apply to the more general equations like

du = F(D2u,Du, u, x, t)dt +
m∑

i=1

Hi(u, x, t) · dBi inQT , (3.18)

for simplicity I concentrate on (3.14) and assume that m = 1.
For v ∈ R, consider the differential equation

dΦ = H(Φ) · dB in (0,∞) Φ(v, 0) = v. (3.19)

It is assumed that

⎧
⎪⎪⎨

⎪⎪⎩

there exists a unique solution Φ ∈ C([0, T ];C3(R)) of (3.19)

such that, for all T > 0,

M(T ) = sup0≤t≤T
[
|Φ(0, t)| +∑3

i=1 ‖DivΦ(·, t)‖∞
]
<∞.

(3.20)

Since m = 1, it follows that, for all t > 0,

Φ(v, t) = Φ̂(v, B(t)) , (3.21)

where Φ̂ solves the ode

˙̂Φ = H(Φ̂) in R Φ̂(v, 0) = v. (3.22)

It is then straightforward to obtain (3.20) from the analogous properties of Φ̂ .
Define F̃ : Sd × R× [0,∞)→ R by

F̃ (X, p, v, t)

= 1
Φ′(v,t)F (Φ

′(v, t)X +Φ ′′(v, t)(p ⊗ p),Φ ′(v, t, )p,Φ(v, t)), (3.23)
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where, to simplify the presentation, “′” denotes the partial derivatives of Φ with
respect to v.

The following definitions are motivated by the strategy described in Sect. 3.4
which amounts to inverting the characteristics. For (3.14), the latter are the solutions
of (3.19), which, in view of the semilinear form, can be inverted globally.

The definition of weak solution of (3.14) is introduced next.

Definition 5.1 Fix T > 0. Then u ∈ BUC(QT ) is a pathwise subsolution (resp.
supersolution) of (3.14), if, for all φ ∈ C2(QT ) and all local maximum (resp.
minimum) points (x0, t0) ∈ QT of (x, t)→ u(x, t)−Φ(φ(x, t), t),

φt (x0, t0) ≤ F̃ (D2φ(x0, t0),Dφ(x0, t0), u(x0, t0), t0), (3.24)

(resp.

φt(x0, t0) ≥ F̃ (D2φ(x0, t0),Dφ(x0, t0), u(x0, t0), t0)
)
. (3.25)

A function u ∈ BUC(QT ) is a pathwise (viscosity) solution of (3.14), if it is both
subsolution and supersolution of (3.14).

Since the characteristics are globally invertible, it is possible to introduce a global
change of the unknown without going through test functions. This leads to the next
possible definition.

Definition 5.2 Fix T > 0. Then u ∈ BUC(QT ) is a pathwise subsolution (resp.
supersolution) of (3.14), if the function v : Rd × [0, T ] → R defined by

u(x, t) = Φ(v(x, t), t) (3.26)

is a viscosity subsolution (resp. supersolution) of

vt = F̃ (D2v,Dv, v, t) inQT v(·, 0) = u0. (3.27)

A function u ∈ BUC(QT ) is a pathwise solution of (3.14) if it is both a subsolution
and supersolution.

The two definitions are equivalent, and, moreover, for smooth B’s, the solutions
introduced in Definitions 5.1 and 5.2 coincide with the classical viscosity solution.

In view of the above, the well-posedness of solutions to (3.14) reduces to the
study of the analogous questions for (3.27).

After the work described above was announced, Buckdahn and Ma [9, 10] used
the map (3.26), which is known as the Doss-Sussman transformation, to study
equations similar to (3.14). The work in [9, 10] covers a more restrictive class of
F ’s and well-posedness is proved under the assumption that the transformed initial
value problem admits a comparison principle. In [77] there is no such assumption
and the comparison is proved directly.
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If H is linear in u, the problem is simpler and the details are left to the reader.
For the rest of the section, H is taken to be nonlinear, and, to simplify the

presentation, it is also assumed that F is independent of u.
To deal with F̃ , it is necessary to assume that

F ∈ C0,1(Sd × R
d), (3.28)

and
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

there exists a constant C > 0 such that,

for almost every (X, p),

either DXF(X,p) : X + 〈DpF(X,p), p〉 − F � C

or DXF(X,p) : X + 〈DpF(X,p), p〉 − F � −C.

(3.29)

It is easy to see that any linear F satisfies (3.29). Moreover, (3.28) implies that F
can be written as the minmax of linear functions, that is,

F(X,p) = sup
α∈A

inf
β∈B(aα,β : X + 〈bα,β, p〉 + hα,β),

for A ⊂ Sd and B ⊂ R
d bounded and aα,β ∈ Sd and bα,β ∈ R

d such that

sup
α∈A

inf
β∈B[‖aα,β‖ + |bα,β |] <∞.

SinceDXF(X,p) : X+〈DpF(X,P ), P 〉−F is formally the derivative, at λ = 1, of
the map λ→ F(λX, λp)− λF(X,P ), it follows that (3.29) is related to, a uniform
in α, β, one sided bound of λ−1hα,β − hα,β in a neighborhood of λ = 1.

I present next two explanations for the need for an assumption like (3.29). The
first is based on considerations from the method of characteristics. The second relies
on viscosity solution arguments.

Consider the following first-order versions of (3.14) and (3.27), namely

du = F(Du)dt +H(u) · dB, (3.30)

and

vt = F̃ (Dv, v, t), (3.31)

with

F̃ (p, v, t) = 1

Φ ′(v, t)
F (Φ ′(v, t)p), (3.32)

where dΦ = H(Φ) · dB, and assume that F , H , B and, hence, F̃ are smooth.
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The characteristics of the equations in (3.30) and (3.31) are respectively

⎧
⎪⎪⎨

⎪⎪⎩

Ẋ = −DF(P),
Ṗ = H ′(U)P Ḃ,
U̇ = [F(P)− 〈DF(P), P 〉] +H(U)Ḃ,

(3.33)

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẏ = −DQF̃ (Q,V ) = −DPF(Φ ′(V ),Q),
Q̇ = F̃V Q = Φ ′′(V )(Φ ′(V ))−2

Q[DPF(Φ ′(V )Q),Φ ′(V )Q))− F(Φ ′(V )Q)],
V̇ = F̃ − 〈DQF̃ (Q,V ),Q〉 = (Φ ′(V ))−1[F(Φ ′(V )Q)

−〈DPF(Φ ′(V )Q),Φ ′(V )Q〉].

(3.34)

Of course, (3.33) and (3.34) are equivalent after a change of variables. It is,
however, clear that some additional hypotheses are needed in order for (3.33),
and, hence, (3.34) to have unique solutions. For example, without any additional
assumptions, the right hand side of the P -equation in (3.33) may not be Lipschitz
continuous in U . On the other hand, the right hand side of the equations for Q and
V in (3.34) contain the quantity 〈DpF,P 〉 − F appearing in (3.29) and an, at least
one-sided, Lipschitz condition is necessary to yield existence and uniqueness.

The second explanation is based on the fact that the comparison principle for
the pathwise viscosity solutions of (3.14) will follow from the comparison in
BUC(QT ) of viscosity solutions of (3.27). The latter does not follow directly from
the existing theory unless something more is assumed; see, for example, Barles [4]
and Crandall et al. [17].

This “additional” assumption is that for each R > 0, there exists CR > 0 such
that, for all X ∈ Sd , p ∈ R

d , v ∈ [−R,R] and t ∈ [0, T ],

∂F̃

∂v
(X, p, v, t) � CR . (3.35)

A straightforward calculation, using (3.29), yields that, for all X,p, v and t ,

∂F̃

∂v
= Φ ′′

(Φ ′)2
[DXF : (Φ ′X +Φ ′′p ⊗ p)+ 〈DpF,Φ ′p〉 − F ]

+Φ ′(Φ
′′

Φ ′
)′DXF : p ⊗ p;

(3.36)

note that to keep the formula simple, the explicit dependence of F and its derivatives
on Φ ′X +Φ ′′p ⊗ p is omitted.
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It is immediate that
∂F̃

∂v
cannot satisfy (3.35) without an extra assumption on F

and control on the size of p. If a bound on p is not available, it is necessary to know
that Φ ′(Φ ′′(Φ ′)−1)′ � 0.

The last point that needs explanation is that (3.36) is nonlocal, in the sense that
it depends on v through Φ, while (3.29) is a local one, that is Φ plays no role
whatsoever. This can be taken care of in the proof by working in uniformly small
time intervals, using the local time behavior ofΦ and then iterating in time.

The comparison result is stated next.

Theorem 5.1 Assume (3.15), (3.17), (3.20), (3.28) and (3.29). For each T > 0 and
any geometric rough path B in Cα with α ∈ (1/3, 1/2], there exists a constant
C = C(F,H,B, T ) > 0 such that, if v ∈ BUC(QT ) and v ∈ BUC(QT ) are
respectively a subsolution and a supersolution of (3.14), then, for all t ∈ [0, T ],

sup
x∈Rd

(v(x, t)− v(·, t))+ ≤ C sup
x∈Rd

(v(·, 0)− v(·, 0))+.

Proof To simplify the presentation, it is assumed that F is smooth. The actual
proof follows by writing finite differences instead of taking derivatives and using
regularizations.

Since Φ(v, 0) = v, (3.20) yields that, for fixed δ > 0, it is possible to choose
h > 0 so small that

sup
0≤t≤h

[|Φ(v, t) − v| + |Φ ′(v, t) − 1| + |Φ ′′(v, t)| + |Φ ′′′(v, t))] ≤ δ. (3.37)

Next consider the new change of variables

v = φ(z) = z+ δψ(z) with φ′ > 0 .

If v is a subsolution (resp. supersolution) of (3.27), then z is a subsolution (resp.
supersolution) of

zt = ˜̃F(D2z,Dz, z), (3.38)

with

˜̃F (X,p, z) = 1

Φ ′(φ(z), t)φ′(z)
F
(
Φ ′(φ(z), t)[φ′(z)X + φ′′(z)(p ⊗ p)]

+Φ ′′(φ(z), t)(φ′(z))2(p ⊗ p),Φ ′(φ(z), t)φ′(z)p).
(3.39)
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The comparison result follows from the classical theory of viscosity solutions, if
there exists C = CR > 0 where R = max(‖v̄‖, ‖v‖), such that, for all X, p and z,

∂

∂z

˜̃F(X,p, z) ≤ C. (3.40)

A straightforward calculation yields

∂

∂z
˜̃F(X,p, z) = − (Φ

′φ′)′

(Φ ′φ′)2
F + 1

(Φ ′φ′)

[
〈DXF,

[
(Φ ′φ′)′X

+ [(Φ ′φ′′)′ + (Φ ′′(φ′)2)′](p ⊗ p)〉]+ 〈DpF, (Φ ′φ′)′p)〉
]

= (Φ ′φ′)′

(Φ ′φ′)2
[− F + 〈DXF, (Φ ′φ′X + (Φ ′φ′′ +Φ ′′(φ′)2)(p ⊗ p))〉

+ 〈DpF,Φ ′φ′p〉]

+ 〈DXF,
[ (Φ ′φ′′ + Φ ′′(φ′)2)′

Φ ′φ′
− (Φ

′φ′′ +Φ ′′(φ′)2)(Φ ′φ′)′′
(Φ ′φ′)2

]

× (p ⊗ p)〉,

where, to simplify the notation, the arguments of F ,DpF ,D2
XF , Φ ′, Φ ′′, φ′ and φ′′

are omitted.
In view of (3.15) and (3.28), to obtain (3.35) it suffices to choose φ so that

(Φ ′φ′′ +Φ ′′(φ′)2)′
Φ ′φ′

− (Φ
′φ′′ + Φ ′′(φ′)2)(Φ ′φ′)′′

(Φ ′φ′)2
≤ 0 (3.41)

and, if the second inequality in (3.29) holds,

(Φ ′φ′)′

(Φ ′φ′)2
≤ 0 (3.42)

or, if the first inequality in (3.29) holds,

(Φ ′φ′)′

(Φ ′φ′)2
≥ 0. (3.43)

Assumption (3.37) and the special choice of φ yield that (3.41) is satisfied if
ψ ′′′ ≤ −1, and that (3.42) (resp. (3.43)) holds, if ψ ′′ ≤ −1 (resp. ψ ′′ ≥ 1). It is a
simple exercise to find ψ so that (3.41) and either (3.42) or (3.43) hold in its domain
of definition.
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The classical comparison result for viscosity solutions then yields that, if
v(·, 0) ≤ v(·, 0) on R

d , then v ≤ v on R
d × [0, h]. The same argument then yields

the comparison in [h, 2h], etc.

The existence of the pathwise solutions of (3.14) is based on the stability
properties of the “approximating” initial value problem

uεt = F(D2uε,Duε)+
m∑

i=1

Hi(uε)Ḃεi inQT uε(·, 0) = uε0, (3.44)

where uε0 ∈ BUC(Rd ), and

⎧
⎨

⎩

Bε = (Bε1 , . . . , Bεm) ∈ C1([0,∞);Rm),
and, for all T > 0, as ε→ 0, Bε → B in the rough path metric.

(3.45)

Note that, if m = 1, the assumption in (3.45) can be reduced to Bε → B

uniformly on [0, T ].
The existence result is stated next.

Theorem 5.2 Assume (3.15), (3.17), (3.20), (3.28) and (3.29) and fix T > 0. Let
(ζ ε)ε>0 and (ξη)η>0 satisfy (3.45) and consider the solutions uε, vη ∈ BUC(QT )
of (3.44) with initial datum uε0 and vη0 respectively. If, as ε, η → 0, uε0 − vη0 → 0
uniformly on R

d , then, as ε, η → 0, uε − vη → 0 uniformly on QT . In
particular, each family (uε)ε>0 is Cauchy in QT . Hence, it converges uniformly
to u ∈ BUC(QT ), which is a pathwise viscosity solution to (3.14). Moreover, all
approximate families converge to the same limit.

The proof of Theorem 5.2 follows from the comparison between subsolutions and
supersolutions of (3.27) for different approximations (ζ ε)ε>0 and (ξη)η>0. Since a
similar theorem will be proved later when dealing with nonlinear gradient dependent
H , the proof is omitted.

Finally the next result is about the Lipschitz continuity of the solutions. Its proof
is based on the comparison estimate obtained in Theorem 5.1 and, hence, it is
omitted.

Proposition 5.1 Fix T and assume (3.15), (3.17), (3.20), (3.28) and (3.29) and let
u ∈ BUC(QT ) be the unique pathwise solution to (3.14) for u0 ∈ C0,1(Rd ). Then
u(·, t) ∈ C0,1(Rd ) for all t ∈ [0, T ], and there exists C = C(F,H,B, T ) > 0 such
that, for all t ∈ [0, T ], ‖Du(·, t)‖ � C.

Of course Proposition 5.1 is immediate if F andH do not depend on x. The point
is that the claim holds in full generality.
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3.6 The Extension Operator for Spatially Homogeneous
First-Order Problems

The object here is the study the space homogeneous Hamilton-Jacobi equation

du =
m∑

i=1

Hi(Du) · dBi in Q∞ u(·, 0) = u0, (3.46)

with B = (B1, . . . , Bm) ∈ C0([0,∞);Rm) = {B ∈ C([0,∞);Rm) : B(0) = 0}.
The aim is to show that, if H = (H1, . . . , Hm) ∈ C1,1

loc (R
d;Rm), the solution

operator of (3.46) with smooth paths has a unique extension to the set of continuous
paths.

The result is stated next.

Theorem 6.1 Fix H ∈ C1,1
loc (R

d;Rm), u0 ∈ BUC(Rd ) and B ∈ C0([0,∞);Rm).
There exists a unique u ∈ BUC(Q∞) such that, for any families (Bε)ε>0 in
C0([0,∞);Rm) ∩ C1([0,∞);Rm) and (uε0)ε>0 in BUC(Rd) which approximate
respectively B in C([0,∞);Rm) and u0 in BUC(Rd), if uε ∈ BUC(Q∞) is the
unique viscosity solution of duε =∑m

i=1H
i(Duε) · dBεi inQ∞ and uε(·, 0) = uε0,

then, as ε→ 0, uε → u uniformly in Q∞.

This unique limit will be also characterized later as the unique pathwise solution
of (3.46).

The claim follows from the next theorem which asserts that, if the family of
smooth paths (Bε)ε>0 and initial data (uε0)ε>0 are Cauchy in C0([0,∞);R) and
BUC(Rd) respectively, then the solutions uε ∈ BUC(Q∞) of

duε =
m∑

i=1

Hi(Duε) · dBεi in Q∞ uε(·, 0) = uε0, (3.47)

form a Cauchy family in BUC(Q∞).

Theorem 6.2 Fix H ∈ C1,1
loc (R

d;Rm), assume that ζ ε, ξη ∈ C0([0,∞);Rm) ∩
C1([0,∞);Rm) and uε0, v

η
0 ∈ BUC(Rd) are such that, as ε, η → 0, ζ ε − ξη → 0

in C([0,∞);Rm) and uε0 − vη0 → 0 in BUC(Rd ). If uε, vη ∈ BUC(Q∞) are the
viscosity solutions of (3.47) with respective paths and initial condition (ζ ε, uε0),
(ξη, v

η
0 ), then, as ε, η→ 0, uε − vη → 0 in BUC(Q∞).

Proof A simple density argument implies that it is enough to consider uε0, v
η
0 ∈

C0,1(Rd ). Since H is independent of x, it follows that uε, vη ∈ C0,1(Q∞) and, for
all t > 0, max(‖Duε(·, t)‖, ‖Dvη(·, t)‖) � max(‖Duε0‖, ‖Dvη0 ‖). Hence, without
any loss of generality, it may be assumed that H ∈ C1,1(Rd).

Notice that, for each ε and η, uε and vη are actually also Lipschitz continuous
in time. The Lipschitz constants in time, however, depend on |ζ̇ ε| and |ξ̇ η|, and,
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hence, are not bounded uniformly in ε, η. This is one of the main reasons behind the
difficulties here.

To keep the arguments simple, it is also assumed that uε0 and vε0, and, hence,
uε and vη are periodic in the unit cube T

d . This simplification allows not be
concerned about infinity, and, more precisely, the possibility that the suprema below
are not achieved. The periodicity can be eliminated as an assumption by introducing
appropriate penalizations at infinity that force the sup’s to be actually maxima.

Finally, from now on I assume thatm = 1. This is only done to keep the notation
simpler. Since the equation does not depend on the space variable, the extension to
m > 1 is immediate

The general strategy in the theory of viscosity solutions to show that, as ε, η→ 0,
uε − vη → 0 inQ∞, is to double the variables and consider the function

z(x, y, t) = uε(x, t)− vη(y, t),

which satisfies the so-called “doubled” initial value problem

zt = H(Dxz)ζ̇ ε −H(−Dyz)ξ̇η in R
d ×R

d × (0,∞),
z(x, y, 0) = uε0(x)− vη0 (y).

(3.48)

The assumptions on uε0 and vη0 imply that, for λ > 0, there exists θ(λ) > 0 such
that θ(λ)→ 0 as λ→∞ and

z0(x, y) � λ|x − y|2 + θ(λ)+ sup(uε0 − vη0 ). (3.49)

To conclude, it suffices to show that there exists Uε,η,λ : Rd ×R
d × [0, T ] → R

such that, as ε, η→ 0 and λ→∞,

Uε,η,λ(x, x, t)→ 0 uniformly in Q∞ and z � Uε,η,λ in R
d × R

d × [0,∞).

It would then follow that

lim
ε,η→0

sup
(x,t)∈Q∞

z(x, x, t) = 0,

which is one part of the claim. The other direction is proved similarly.
Again, as in the general “non rough” theory, it is natural to try to show that there

exists, for someC > 0 and a(λ) > 0 such that a(λ)→ 0 as λ→∞, a supersolution
of (3.48) of the form

Uε,η,λ(x, y, t) = Cλ|x − y|2 + a(λ).
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This is, however, the main difficulty, since both the C and a(λ) will depend on |ζ̇ ε|
and |ξ̇ η|, which are not bounded uniformly in ε and η.

The first new idea to circumvent this difficulty is to find sharper upper bounds by
considering the solution φλ,ε,η(x, y, t) of

⎧
⎨

⎩

φ
λ,ε,η
t =H(Dxφλ,ε,η)ζ̇ ε−H(−Dyφλ,ε,η)ξ̇ ηin R

d ×R
d×(0,∞),

φλ,ε,η(x, y, 0) = λ|x − y|2,
(3.50)

which, in view of the spatial homogeneity of H and the fact that φλ,ε,η(·, ·, 0)
depends on x − y, is given by

φλ,ε,η(x, y, t) = Φλ,ε,η(x − y, t),

with Φλ,ε,η solving the initial value problem

Φt = H(DΦ)(ζ̇ ε − ξ̇ η) in Q∞ Φ(·, 0) = λ|z|2, (3.51)

which is well-posed for each ε, η.
The classical comparison principle for viscosity solutions yields, that for all

x, y ∈ R
d , t � 0, λ > 0 and ε, η,

z(x, y, t) � φλ,ε,η(x, y, t)+ max
x,y∈Rd

(z(x, y, 0)− λ|x − y|2),

and, hence, for all x ∈ R
d and t � 0,

uε(x, t)− uη(x, t) � φλ,ε,η(x, x, t)+ θ(λ)+ sup(uε0 − vη0 ).

To conclude, it is necessary to show that there exists Θ(λ) > 0 such that
limλ→∞Θ(λ) = 0 and

lim
ε,η→0

sup
x∈Rd

φλ,ε,η(x, x, t) � Θ(λ),

a fact that a priori may present a problem since the “usual” viscosity theory yields
the existence of φλ,ε,η but not the desired uniform estimate.

Here comes the second new idea, namely, to use the characteristics to construct a
smooth solution φλ,ε,η, at least for a small time, which, of course, depends on ε and
η. The aim then will be to show that, as ε, η→ 0, the interval of existence becomes
of order one.
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The characteristics of (3.50) are

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ = −DH(P)ζ̇ ε Ẏ = −DH(Q)ξ̇η,
Ṗ = 0 Q̇ = 0,

U̇ = (H(P)− 〈DpH(P), P 〉
)
ζ̇ ε − (H(Q)

−〈DH(Q),Q〉)ξ̇ η,
X(0) = xY (0) = yP(0) = Q(0) = 2λ(x − y) U(0) = λ|x − y|2.

(3.52)

Note that to keep the equations simpler the system is written for Q(x, t) =
−Dvη(Y (t), t) instead of Dvη(Y (t), t). Similarly I ignore the dependence on λ, ε
and η.

The method of characteristics provides a classical solution of (3.50) for some
short time T ∗ε,η,λ as long the map (x, y)→ (X(t), Y (t)) is invertible.

The special structure of (3.52) yields that, for all t ≥ 0,

P(t) = Q(t) = 2λ(x − y),

and

(X − Y )(t) = (x − y)−DH(2λ(x − y))(ζ ε(t)− ξη(t)).

To simplify the notation, let z = x − y and Z(t) = X(t)− Y (t), in which case the
last equation can be rewritten as

Z(x, t) = z−DH(2λz)(ζ ε(t)− ξη(t)).

Note that z → Z(z, t) is the position characteristic associated with the simplified
initial value problem (3.51), and, in the problem at hand, is the only map that needs
to be inverted. Since

DzZ(z, t) = I + 2λD2H(2λz)(ζ ε(t)− ξη(t)),

it follows that the map z �→ Z is invertible as long as

sup
t∈[0,T ]

|(ζ ε(t)− ξη(t))| ‖D2H‖∞ < (2λ)−1. (3.53)

This is, of course, possible for any T and λ provided ε and η are small, since, as
ε, η→ 0, ζ ε − ξη → 0 in C([0,∞)).

The above estimates depend on having H ∈ C2. Since the interval of existence
depends only on the C1,1 bounds ofH , it can be assumed that H has this regularity
and then conclude introducing yet another level of approximations.
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It now follows that

φλ,ε,η(X(t), Y (t), t) = λ|x − y −DH(2λ(x − y))(ζ ε(t)− ξη(t))|2
+ [H(2λ(x − y))− 〈DH(2λ(x − y)), 2λ(x − y)〉]
× (ζ ε(t)− ξη(t)) .

Moreover, it follows from (3.50), that there exists C > 0 depending only on
‖H‖C1,1 such that

|φλ,ε,η(X(t), Y (t), t) − λ|x − y|2| ≤ λC sup
0�t�T

|ζ ε(t)− ξη(t)| .

Returning to the x, y variables, the above estimate gives that, for each fixed λ > 0
and T > 0 and as ε, η→ 0,

sup
x,y∈Rd
t∈[0,T ]

(φλ,ε,η(x, y, t)− λ|x − y|2)→ 0.

3.6.1 A Summary of the General Strategy

Since the approach and the arguments of the proof above are used several times in
the theory and the notes, it is helpful to present a brief summary of the main points.

The conclusion of the theorem is that it is possible to construct, using the classical
theory of viscosity solutions, a (unique) u ∈ BUC(Q∞), which is the candidate for
the solution of (3.46) for any B continuous as long as H ∈ C1,1

loc .
The key technical step in the proof was the fact that, if, as ε, η→ 0, ζ ε−ξη → 0

in C([0,∞)), then, for each λ > 0 and T > 0, as ε, η→ 0

sup
z∈Rd
t∈[0,T ]

(
vλε,η(z, t)− λ|z|

)→ 0 ,

where v = vλε,η is the solution of the initial value problem

vt = H(Dv)(ζ̇ ε − ξ̇ η) in Q∞ v(z, 0) = λ|z|. (3.54)

The proof presented earlier used λ|z|2 as initial condition in (3.54). It is not hard
to see, however, that the same argument will work for initial datum λ|z|. Indeed it is
enough to consider regularizations like (δ+|z|2)1/2 and to observe that the estimate
on uε(·, t) − vη(·, t) is uniform on δ in view of the assumption that H ∈ C1,1. The
conclusion for λ|z| then follows from the stability properties of viscosity solutions.

The result about the extension can be summarized as follows.
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Given sufficiently regular paths Bn = (B1,n, . . . , Bm,n) : [0,∞) → R
m, H =

(H 1, . . . , Hm) ∈ C(Rd ;Rm) and λ > 0, let vλn,t ∈ BUC(Q∞) be the solution of

vλn,t =
m∑

i=1

Hi(Dvλn)Ḃn,i in Q∞ vλn(z, 0) = λ|z|. (3.55)

The following theorem gives a sufficient condition for the existence of the
extension.

Theorem 6.3 If for every Bn ∈ C0([0,∞);Rm) ∩ C1([0,∞);Rm) such that, as
n→∞, Bn → 0 in C([0,∞);Rm), and T > 0, the solution vλn,t of (3.55) has the
property

lim
n→∞,λ→∞ sup

(z,t)∈Rd×[0,T ]

(
vλn(z, t)− λ|z|

) = 0 (3.56)

then there is an extension.

3.7 Pathwise Solutions for Equations with Non-smooth
Hamiltonians

It is important to extend the class of Hamiltonians for which the solution operator
of (3.50) with smooth paths has an extension. The assumption that H ∈ C1,1

loc is
rather restrictive. For example, the typical Hamiltonian H(p) = |p| arising in front
propagation does not have this regularity.

The aim of this section is to provide a necessary and sufficient condition on H
to have an extension as well as to investigate if it is possible to assume less in H by
“increasing” the regularity of the paths, while still covering many cases of interest.

An important question and tool in this direction is to understand/control the
cancellations arising from the oscillations of the paths. And for this, it is useful
to investigate if there are some formulae for the solutions in the presence of sign
changing driving signals.

3.7.1 Formulae for Solutions

The simplest possible formulae for the solutions of

ut = H(Du) in QT u(·, 0) = u0, (3.57)
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are the well known Lax-Oleinik and Hopf formula which require convexity for H
and u0 respectively. In Appendix the reader can find an extensive discussion about
these formulae, their relationship and possible extensions.

When H is convex, the Lax-Oleinik formula is

u(x, t) = sup
y∈Rd

[

u0(y)− tH ∗(y − x
t
)

]

, (3.58)

where, given a convex function w : Rd → R, w∗(q) = sup[〈q, p〉 − w(p)] is its
Legendre transform.

The Hopf formula, which is the “dual” of the Lax-Oleinik one, says that, if u0 is
convex, then

u(x, t) = sup
p∈Rd

[〈p, x〉 + tH (p)− u∗0(p)
]
. (3.59)

In general, neither formula extends to the solutions of

ut = H(Du)ξ̇ inQT u(·, 0) = u0, (3.60)

except in time intervals where the path is either increasing or decreasing in which
case it is possible to change time.

Indeed, if H ∈ C(Rd ), ξ ∈ C1 and u0 convex, the natural extension of (3.59)
should be

sup
p∈Rd

[〈p, x〉 + ξ(t)H(p)− u∗0(p)].

The formula above is a subsolution, as the “sup” of solutions 〈p, x〉 + B(t)H(p)−
u∗0(p), but, in general, is not a solution of (3.60). The heuristic reason is that shocks
are not reversible.

For example, if H(p) = |p| and u0(x) = |x|, then

sup
p∈R
(px + ξ(t)|p| − | · |∗(p)) = (|x| + ξ(t))+.

On the other hand, the following is true.

Proposition 7.1 The unique viscosity solution of (3.60) with ξ ∈ C1, ξ(0) = 0,
H(p) = |p| and u0(x) = |x| is

u(x, t) = max

[

(|x| + ξ(t))+, ( max
0�s�t

ξ(s))+

]

. (3.61)
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Although the regularity of ξ is used in the proof of (3.61), the actual formula extends
by density to arbitrary continuous ξ ’s.

It is possible to give two different proofs for (3.61). One is based on dividing
[0, T ] into intervals where ξ̇ is positive or negative and iterating the Hopf formula.
The second is a direct justification that (3.61) is the viscosity solution to the problem.
The details can be found in [71].

From the analysis point of view, the difficulty is related to the fact that when the
signal changes sign, the convexity properties of Hamiltonian also change. This leads
to the possibility of using the formulae provided by the interpretation of the solution
as the value function of a two-player, zero-sum differential games, which I briefly
recall next.

Assume that

H(p) = sup
α∈A

inf
β∈B(〈f (α, β), p〉 + h(α, β)),

where, for simplicity, the sets A and B are assumed to be compact subsets of Rp

and R
q and f : A × B → R

d and h : A × B → R are bounded; note that any
Lipschitz continuous Hamiltonian H can be written as a max/min of linear maps.

It was shown in Evans and Souganidis [26] that the unique viscosity solution of
the initial value problem

ut = H(Du) in QT u(·, 0) = u0,

admits the representation

u(x, t) = sup
α∈Γ (T−t )

inf
z∈N(T−t )

{∫ T

T−t
h(α[z](s), z(s))ds + u(x(T ))

}

,

where N(T − t) is the set of controls z : [T − t, T ] → B, Γ (T − t) is the set
of nonanticipating strategies which map B-valued controls to A-valued ones, and
(x(s))s∈[T−t,T ] is the solution of the ode

ẋ = f (α[z](s), z(s)) x(T − t) = x.

An attempt to extend this formula to (3.59) meets immediately difficulties.
Assume, for example, that ξ ∈ C1. Then

H(p)ξ̇(t) = H(p)ξ̇ (t)+ −H(p)ξ̇ (t)−,

and it easy to check that, in general, it is not possible to find compact sets C andD,
vectors f± : C ×D→ R

d and scalars h± : C ×D→ R such that

H(p)ξ̇(t) = sup
c∈C

inf
d∈D〈((f+(c, d)ξ̇ (t)+ + f−(c, d)ξ̇ (t)−), p〉

+ (h+(c, d)ξ̇ (t)+ + h−(c, d)ξ̇ (t)−)).
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Of course, if the above holds, then the solution of (3.59) is given by the formula

u(x, t) = sup
α∈Γ (T−t )

inf
z∈N(T−t )

∫ T

T−t
h+(α[z](s), z(s))ξ̇ (T − s)+))

+ h−(α[z](s), z(s)ξ̇ (T − s)−)ds + u(x(T )),

where for the control z ∈ N(T − t) and strategy a ∈ Γ (T − t), x(s)s∈[T−t,T ] solves

ẋ(s) = f+(α[z](s), z(s))ξ̇ (T − s)+ + f−(α[z](s), z(s))ξ̇ (T − s)− x(T − t) = x.

3.7.2 Pathwise Solutions for Nonsmooth Hamiltonians

When H is less regular than in Theorem 6.2, it is also possible to prove the unique
extension property for the solution operator for smooth paths, but the argument is
different and does not rely on inverting the characteristics. It is, however, possible
to use the general strategy summarized in Theorem 6.3 to identify the conditions on
H that will allow for the extension to exist for the initial value problem

du =
m∑

i=1

Hi(Du) · dBi inQT u(·, 0) = u0. (3.62)

The main result is stated next.

Theorem 7.1 The solution operator of (3.62) with smooth paths has a unique
extension to continuous paths if and only if Hi is the difference of two convex
functions for i = 1, . . . ,m.

Identifying the class of HamiltoniansH which can be as written as the difference
of two convex functions is a difficult question.

When d = 1, a necessary and sufficient condition for H to be the difference
of two convex functions is that H ′ ∈ BV. Indeed in this case, in the sense of
distributions,H ′′ = H ′′1−H ′′2 withH ′′1 andH ′′2 nonnegative distributions and, hence,
locally bounded measures. Conversely, if H ′ ∈ BV, then H ′′ = (H ′′)+ − (H ′′)−.

When d � 2, if H = H1 − H2 with H1,H2 convex, then, as above, DH ∈
BV. The converse is, however, false. Functions with gradients in BV may not have
directional derivatives at every point, while differences of convex functions do.

Finally, ifH ∈ C1,1, thenH is clearly the difference of convex functions. Indeed
since, for some c > 0, D2H � −2cI , then H = H1 − H2 with H1(p) = H(p) +
c|p|2 and H2(p) = c|p|2.
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The proof of Theorem 7.1 is divided in several parts and requires a number of
ingredients which are developed next.

Proposition 7.2 Assume that the extension operator exists for all continuous paths.
Then H must be the difference of two convex functions.

Proof In what follows, I assume for simplicity that m = 1 and the problem is set in
Q1.

The necessity follows from the criterion summarized in Theorem 6.3. Since the
extension must hold for any continuous path, it is possible to construct a sequence
of paths satisfying the assumptions of Theorem 6.3 such that (3.56) implies that H
must be the difference of two convex functions.

Consider a partition of [0, 1] of 2n intervals of length 1/2n and define the
piecewise linear paths Bn : [0, 1] → R with slope Ḃn = ±μ and, for definiteness,
assume that Ḃn = μ in the first interval. It follows that

sup
t∈[0,1]

|Bn(t)| � μ

2n
and, if μ/2n→ 0, Bn → 0 in C([0,∞)).

Fix λ > 0 and let vλn : Q1 → R be the solution of

vλn,t = H(Dvλn)Ḃn in Q1 vλn(z, 0) = λ|z|. (3.63)

Assume that, for some δ > 0, μ = 2nδ. The claim follows if it is shown that the
vλn’s blow up, as n→∞, ifH is not the difference of two convex functions in a ball
of radius λ.

Recall that, in each time interval of length 1/2n, the equation in (3.63) are

either vn,t = 2nδH(Dvn) or vn,t = −2nδH(Dvn),

or, after rescaling,

either Un,t = δH(DUn) in Q1 or Vn,t = −δH(DV n) in Q1;

here, for notational simplicity, I omit the explicit dependence on λ.
The Vn’s are constructed by a repeated iteration of Hopf’s formula. This

procedure yields sequences (V ∗2k+1)
∞
k=0 and (V ∗2k)∞k=0 which, as k → ∞, either

blow up or converge, uniformly in Bλ, to V
∗
1 and V

∗
2 respectively.

In the latter case, it follows that

V
∗
2 = (V ∗1 − δH)∗∗ and V

∗
1 = (V ∗2 + δH)∗∗,
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and, therefore,

δH = V ∗1 − V ∗2,

which yields that H is the difference of two convex functions.
If the sequences (V ∗2k+1)

∞
k=0 and (V ∗2k)∗k=0 blow up, then a diagonal argument, in

the limit δ→ 0, shows that (3.56) cannot hold.
Indeed, since, for each δ > 0 and as k → ∞, V ∗2k+1 → −∞ and V ∗2k →

−∞ in Bλ, choosing δ = 1/m along a sequence km→∞ yields V ∗2km � −1.
Going back to the original scaled problem, it follows that vkm � −1, while

Bkm → 0 in C([0,∞)) and vkm(0, 0) = 0.

The next step is to show that, ifH is the difference of two convex functions, then
there exists a unique extension of the solution operator with B smooth to the class
of merely continuous B.

The main difficulties are the lack of differentiability of B and how to control the
oscillation of the solutions with respect to time. This was actually already exploited
in the proof of Proposition 7.2. For the sufficiency, it is important to obtain a more
explicit estimate.

Controlling the cancellations due to the oscillations of the paths is very much
related to the irreversibility of the equations due to the formation of shocks. “Some
memory”, however, remains resulting in cancellations taking place as it can be seen
in the next result.

Consider the initial value problems

ut =
m∑

i=1

Hi(Du)Ḃi in QT u(·, 0) = u0, (3.64)

and

vit = Hi(Dvi )Ḃi in QT vi(·, 0) = vi0, (3.65)

where, for each i = 1, . . . ,m,

Hi ∈ C(Rd ) , Bi ∈ C1([0,∞)) and u0, v
i
0 ∈ BUC(Rd ). (3.66)

It is known that both initial value problems in (3.64) and (3.65) have unique
viscosity solutions. In the statement below, SHi (t)v is the solution of (3.65) with
Ḃi ≡ 1 at time t > 0.

Theorem 7.2 Assume, in addition to (3.66), that, for each i = 1, . . . ,m, Hi is
convex and DHi(pi) exists for some pi ∈ R

d , and let u ∈ BUC(QT ) be the
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viscosity solution of (3.64). Then, for all (x, t) ∈ QT ,

m∏

i=1

SHi (− min
0�s�t

Bi(s))u0

(

x+
m∑

i=1

DHi(pi)( min
0�s�t

(Bi(s)−Bi(t)))
)

+
m∑

i=1

Hi(pi)( min
0�s�t

(Bi(s)− Bi(t))) � u(x, t)

�
m∏

i=1

SHi ( max
0�s�t

Bi(s))u0

(

x+
m∑

i=1

DHi(pi)( min
0�s�t

(Bi(s)−Bi(t)))
)

−
m∑

i=1

Hi(pi)( max
0�s�t

(Bi((s)− Bi(t))).

(3.67)

The proof of the estimated above, which is complicated, is based on repeated use
of the Lax-Oleinik and Hopf formulae. The details can be found in [71].

The following remark is useful for what follows.
If, in addition,

minHi = 0 for i = 1, . . . ,m ,

then the claim can be simplified considerably to read

m∏

i=1

SHi ( max
0�s�t

Bi,−s )u0(x) � u(x, t) �
m∏

i=1

SHi ( max
0�s�t

Bi,+s )u0(x) . (3.68)

The bounds in (3.67) are sharp. Indeed, recall that in the particular case

H(p) = |p| , u0(x) = |x| and m = 1 ,

it was already claimed that the solution of (3.64) is given by

u(x, t) = max

[

(|x| + B(t))+, max
0�s�t

B(s))+

]

.

Evaluating the formula at x = 0 yields that the upper bound in Proposition 7.2 is
sharp, since, in this case,

SH ( max
0�s�t

B(s))u0(0) = max
0�s�t

B(s) and max(B+(t), max
0�s�t

B(s)) = max
0�s�t

B(s).

Using Theorem 7.2 it is now possible to prove the sufficient part of Theorem 7.2.
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Proposition 7.3 Assume that, for each other i = 1, . . . ,m, H i ∈ C(Rd ) is the
difference of two convex functions. Then the solution operator of (3.63) on the class
of smooth paths has a unique extension to the space of continuous paths.

Proof The proof is based again on Theorem 6.3. Fix λ > 0, letBn = (Bn1 , . . . Bnm) ∈
C0([0,∞),Rm) ∩ C1((0,∞);Rm) be sequence of signals such that, as n → ∞,
Bn → 0 in C([0,∞),Rm), and consider the solution φn ∈ BUC(Q∞) of

φnt =
m∑

i=1

Hi(Dφn)Ḃni inQ∞ φn(z, 0) = φ0(z) = λ|z|. (3.69)

It shown here that the assumption on H yields, for each λ > 0 and T > 0,

lim
n

max
(z,t)∈QT

(φn(z, t)− λ|z|) = 0.

For each i = 1, . . . ,m, Hi = Hi1 − Hi2 with Hi1,H
i
2 convex. To simplify the

presentation, it is assumed that eachHi1 and Hi2 has minimum 0 which is attained at
p = 0. Then, it is possible to use (3.67).

Rewriting (3.69) as

φnt =
m∑

i=1

Hi,1(Dφn)Bni +
m∑

i=1

Hi,2(Dφn)(−Ḃni ),

and using (3.68) yields, for all x ∈ R
d ,

m∏

i=1

SHi,1 (− min
0�s�t

Bni (s))

m∏

i=1

SHi,2 ( max
0�s�t

Bni (s))φ0(x)

� φλ,ε,η(x, t) �
M∏

i=1

SHi,1 ( max
0�s�t

Bni (s))

m∏

i=1

SHi,2 (− min
0�s�t

Bni (s))φ0(x),

and the claim now follows since, limε,η→0(maxi=1,,̇m maxs∈[0,T ] |Bni |) = 0.

Another consequence of the “cancellation” estimates of Theorem 7.2 is an
explicit error estimate between two solutions with different signals.

In what follows, for k = 1, 2, uk ∈ BUC(Q∞), Bk ∈ C0([0,∞);Rm) and
uk0 ∈ C0,1(Rd ) is the solution of the initial value problem

ukt =
m∑

i=1

Hi(Duk)Ḃki in Q∞ uk(·, 0) = uk0. (3.70)
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In (3.70), the solution is either a classical viscosity solution if the signal is smooth,
or the function obtained by the extension operator if Bk is continuous.

Theorem 7.3 Assume that, for each 1, . . . ,m, Hi ∈ C(Rd ) is the difference of two
nonnegative convex functions Hi,1,H i,2. For k = 1, 2, Bk ∈ C0([0,∞);Rm) and
uk0 ∈ C0,1(Rd ). Let uk ∈ BUC(Q∞) be the solution of (3.70). There exists C > 0
depending on ‖uk0‖ and ‖Duk0‖ and the growth of Hi’s such that, for all t > 0,

sup
x∈Rd

|u1(x, t)−v1(x, t)| � C max
i=1,...,m

max
0�s�t

|B1
i (s)−B2

i (s)|+ sup
x∈Rd

|u1
0(x)−u2

0(x)|.

Proof Only the estimate for sup(u1 − u2) is shown here. The one for sup(u2 − u1)

follows similarly. Moreover, the claim is proven under the additional assumption
that the signals are smooth. The general case follows by density.

Let L = maxk=1,2 ‖Duk0‖. Since the Hamiltonians are x-independent, it is
immediate from the contraction property that, for all t � 0, u1(·, t), u2(·, t) ∈
C0,1(Rd ) and maxk=1,2 ‖Duk(·, t)‖ � L. The standard comparison estimate for
viscosity solutions implies that, for all (x, t) ∈ QT ,

u1(x, t)− u2(x, t)− φL(x, x, t) � sup
x,y∈Rd

[
u1

0(x)− u2
0(y)− L|x − y|

]
� 0,

where φL is the solution of the usual doubled equation with φL(x, y, 0) = L|x−y|.
Basic estimates from the theory of viscosity solutions yields that, for any τ > 0

and w ∈ C0,1(Rd) with ‖Dw‖ ≤ L,

max
i
‖SHi (τ )w −w‖ �

(

max
i

max
|p|�L

|Hi(p)|
)

τ .

It follows that

φL(x, x, t) � L|x − x| +m max
1�i�m

[max
|p|�L

|Hi(p)| max
0�s�t

|B1
i (s)− B2

i (s)]

= m max
1�i�m

[max
|p|�L

|Hi(p)| max
0≤s≤t |ξ

i,ε(s)− ζ i,η(s)|].

Combining the upper bounds for u1(x, t) − u2(x, t) and φL(x, x, t) gives the
claim.
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3.7.3 Control of Cancellations for Spatially Dependent
Hamiltonians

It is both interesting and important for the study of qualitative properties of the
pathwise solutions, see, for example, Sect. 3.8 of the notes, to extend the results
about the cancellations to spatially dependent Hamiltonians H = H(p, x) and the
initial value problem

du = H(Du, x) · dξ in Q∞. (3.71)

The basic cancellation estimate reduces to whether if, for any u ∈ BUC(Rd) and
any a > 0,

SH (a)S−H(a)u ≤ u ≤ S−H (a)SH (a)u, (3.72)

where S±H is the solution operator of (3.71) with Hamiltonians±H .
A consequence of a counterexample of Gassiat [33] presented in the next section

is that such a result cannot be expected for nonconvex Hamiltonians, since it would
imply a domain of dependence property which is shown in [33] not to hold for a
very simple nonconvex problem.

A first step towards an affirmative result was shown some time ago by Lions
and the author. This was extended lately by Gassiat et al. [35] who established the
following.

Theorem 7.4 Fix ξ ∈ C0([0,∞);R) and assume that

⎧
⎨

⎩

H = H(p, x) : Rd ×R
d → R is convex and

Lipschitz continuous in p uniformly in x.
(3.73)

Then (3.72) holds.

Proof The result is shown for ξ ∈ C1([0,∞)). The general conclusion follows by
density. Moreover, since the arguments are identical, I only work with the inequality
on the left.

For notational simplicity, I assume that ‖DpH‖ = 1. If L is the Legendre
transform of H , it follows that

H(p, x) = sup
B1(0)

{〈p, v〉 − L(v, x)}.
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Let A = L∞(R+;B1(0)). The control representation of the solution u of (3.71)
(see, for example, Lions [58]) with ξt ≡ t and u0 ∈ BUC(Rd ) gives

SH (t)u0(x) = sup
q∈A

{
u0(X(t))

−
∫ t

0
L(q(s),X(s))ds : X(0) = x, Ẋ(s) = q(s) for s ∈ [0, t]

}
,

and

S−H (t)u0(y) = inf
r∈A

{
u0(Y (t))

+
∫ t

0
L(r(s), Y (s))ds : Y (0) = y, Ẏ (s) = −r(s) for s ∈ [0, t]

}
.

It follows that

SH (t) ◦ SH (−t)u0(x) = sup
q∈A

inf
r∈A

{
u0(Y (t))+

∫ t

0
L(r(s), Y (s))ds

−
∫ t

0
L(q(s),X(s))ds :

Y (0) = X(t), Ẏ (s) = −r(s), X(0) = x, Ẋ(s) = q(s) for s ∈ [0, t]
}
.

Given q ∈ A choose r(s) = q(t − s) in the infimum above. Since Y (s) = X(t − s),
it follows that

SH (t) ◦ SH (−t)u0(x) ≤ sup
q∈A

{
u0(X(0))+

∫ t

0
L(q(t − s),X(t − s))ds

−
∫ t

0
L(q(s),X(s))ds : X(0) = x, Ẋ(s) = q(s) for s ∈ [0, t]

}

= u0(x).

As a matter of fact, Lions and Souganidis came up recently with a more refined
form of (3.72), which is stated below without proof.

Theorem 7.5 Fix ξ ∈ C0([0,∞);R) and assume (3.73). For every a, b, c > 0 such
that b ≤ min(a, c),

SH (c)SH (b)SH (a) = SH (a + c − b).
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3.7.4 The Interplay Between the Regularity of the
Hamiltonians and the Paths

The classical theory of viscosity solutions applies when H ∈ C and B ∈ C1;
actually it is possible to consider B ∈ C1,1 or even discontinuous B as long as
Ḃ ∈ L1. It was also shown here that, when H ∈ C1,1 or, more generally, if H is the
difference of two convex (or half-convex) functions, there exists a unique extension
for any B ∈ C([0,∞)).

Arguments similar to the ones presented next yield a unique extension for B ∈
C0,α([0,∞)) with α ∈ (0, 1) and H ∈ C2(1−α)+ε(Rd ) for ε > 0; recall that, for
any β ∈ [0,∞), Cβ(Rd ) is the space C[β],β−[β](Rd). It is not clear, however, if the
additional ε-regularity is necessary.

The conclusion resembles nonlinear interpolation. Indeed, consider the solution
mapping T (B,H) = u, which is a bounded map from C1×C0 into C and C0×C2

into C. Typically, if T is bilinear, abstract interpolation results would imply that T
must be a bounded map from C0,α ×C[2(−1−α)],2(1−α)−[2(1−α)] into C. But T is far
from being bilinear.

Next it is stated without proof (see [71] for the details) that, in the particular case
α = 1/2, it is possible to have a unique extension if H ∈ C1,δ for δ > 0. Of course,
the goal is to show that is enough to have H ∈ C1 or even H ∈ C0,1. Questions
related to the issues described above are studied in an ongoing work by Lions et al.
[68].

A sequence (Bn)n∈N in C1([0,∞)) is said to approximate B ∈ C([0,∞)) in
C0, 1/2 if, as n→∞,

Bn → B in C([0,∞)) and sup
n
‖Ḃn‖∞ ‖Bn − B‖∞ <∞ .

Given B ∈ C0,1/2([0,∞)), it is possible to find at least two classes of such
approximations. The first uses convolution with a suitable smooth kernel, while the
second relies on finite differences.

Let ρn(t) = nρ(nt) with ρ a smooth nonnegative kernel with compact support
in [−1, 1] such that

∫
zρ(z)dz = 0 and

∫
ρ(z)dz = 1, and consider the smooth

function Bn = B ∗ ρn. If C = (‖ρ′‖ + ‖ρ‖ + 1)[B]0, 1/2, then

‖Ḃn‖ � C
√
n and ‖Bn − B‖ � C/

√
n .

For the second approximation, subdivide [0, T ] into intervals of length Δ = T/n

and construct Bn by a linear interpolation of (BkΔ)k=1,...,n. Then

|Ḃn| = |B(k+1)Δ − BkΔ|
Δ

� [B]0, 1/2√
Δ

= C√n and

‖B − Bn‖ � [B]0, 1/2
√
Δ = C√

n
.
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The next result says that C0, 1
2 -approximations of C0, 1

2 paths yield a unique
extension for H ∈ C1,δ(Rd) with δ > 0. As a matter of fact the result not only
gives an extension but also an estimate. For the proof I refer to [71].

Theorem 7.6 Assume that B ∈ C0,1/2([0,∞)) andH ∈ C1,δ(Rd ) for some δ > 0,
and fix T > 0 and u0 ∈ BUC(Rd ). For any (ξn)n∈N, (ζm)m∈N ∈ C0([0,∞)) and
u0,n, v0,m ∈ BUC(Rd ), which are respectively C0,1/2-approximations of B and
u0 in BUC(Rd ), let un, vm ∈ BUC(QT ) be the solutions of the corresponding
initial value problems. Then there exists u ∈ BUC(QT ) such that, as n,m → ∞,
un, vm → u in BUC(QT ). Moreover, if ‖u0,n − u0‖ � Cn−β for some α, β > 0,
then there exist γ > 0 and C > such that |un − u| � Cn−γ inQT .

A discussion follows about the need to have conditions onH . The key step in the
proof of Theorem 7.6 can be reformulated as follows. Let (Bn)n∈N be a sequence
of C1-functions such that, as n→∞, Bn → 0 and supn ‖Bn‖∞ ‖Ḃn‖∞ <∞,
and consider the solution vn of vn,t = H(Dvn)Ḃn in QT and vn(x, 0) = λ|x|. As
before, it suffices to show that, for each fixed T > 0 and for all (x, t) ∈ QT ,

lim
n→∞ sup

(x,t)∈QT
[vn(x, t)− λ|x|] → 0 .

Next let Ḃ be piecewise constant such that, for ti = T
k
i,

Ḃ = Δ1 in [t2k, t2k+1] and Ḃ = −Δ2 in [t2k+1, t2k],

and, for simplicity, take λ = 1. Arguments similar to the ones earlier in this section
and the fact that vk is convex, since vk(·, 0) is, yield a sequence wk = v∗k such that

w0 = 01{|p|�1} +∞1{|p|>1}

and

w2k+1 = (w2k +Δ2kH)
∗∗ and w2k = (w2k−1 −Δ2k−1H)

∗∗

where Δi = k
[
B(
(i + 1)T

k
)− B(iT

k
)
]
.

The convexity of the vk’s and Hopf’s formula implies that the sequence wk is
decreasing. Then convergence will follow if there is a lower bound for the wk’s.

Consider next the particular case H(p) = |p|θ and assume that, for all i, Δi =√
k.
If w̃k is constructed similarly to wk but with Δi ≡ 1, it is immediate that wk =

k−1/2w̃k, and, since w̃k+1 = ((w̃k ± |p|θ )∗∗ ∓ |p|θ )∗∗, it follows that w̃k+1 � w̃k
and w̃k = +∞ if |p| > 1.

Let mk = − inf|p|<1 wk(p). Since H is not the difference of two convex
functions if θ ∈ (0, 1/2), it must be that mk →∞ as k→∞.
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It turns out, and this is tedious computation, that there exists c > 0 such that
w̃k � −ck1−θ .

It follows that, if θ < 1/2,

wk = k−1/2w̃k � −ck1/2−θ → −∞ as k→∞ .

The above calculations show that, if H ∈ C0,α(Rd) with α ∈ (0, 1
2 ) and

supn ‖Bn‖
C

0, 1
2
< ∞, then there is blow up, and, hence, not a good solution. On

the other hand, if H ∈ C0, 1
2 (Rd), there is no blow up.

3.8 Qualitative Properties

Recently there has been great interest in the study and understanding of various
qualitative properties of the solutions. In this section, I focus mainly on the initial
problem

du = H(Du, x) · dB in Q∞ u(·, 0) = u0, (3.74)

and I discuss the following three qualitative behaviors: domain of dependence and
finite speed of propagation , intermittent regularizing effect and regularity, and long
time behavior of the pathwise solutions.

3.8.1 Domain of Dependence and Finite Speed of Propagation

Given that the pathwise solutions are obtained as uniform limits of solutions of
hyperbolic equations with domain of dependence and finite speed of propagation
property, it is natural to ask if this property remains true in the limit.

In the context of the “non-rough” viscosity solutions, it is known that, if H is
Lipschitz continuous with constant L, and u1, u2 ∈ BUC(QT ) solve the initial
value problems

u1
t = H(Du1) inQT u1(·, 0) = u1

0 and u2
t = H(Du2) inQT u2(·, 0) = u2

0,

then

if u1
0 = u2

0 in B(0, R), then u1(·, t) = u2(·, t) in B(0, R − Lt).

The first positive but partial result in this direction for pathwise solutions was
proved [71]. The claim is the following.
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Proposition 8.1 Assume that H = H1 −H2 with H1 and H2 convex and bounded
from below, and u0 ∈ C0,1(Rd). Let L be the Lipschitz constant of H1 and H2 in
B(0, ‖Du‖) and consider the solution u ∈ BUC(QT ) of (3.74). If, for some A ∈ R

and R > 0,

u(·, 0) ≡ A in B(0, R),

then

u(·, t) ≡ A in B(0, R − L( max
0�s≤t

B(s) − min
0�s≤t

B(s)).

Proof Without loss of generality, the problem may be reduced to Hamiltonians with
the additional property

H1,H2 nonnegative and H1(0) = H2(0) = 0. (3.75)

As long as R > L(max0�s≤t B(s) −min0�s≤t B(s)), and, since H1(0) = H2(0) =
0, the finite speed of propagation of the initial value problem with B(t) = t yields

SH1( max
0�s�t

B±(s))u0 = SH2( max
0�s�t

B±(s))u0 = A,

and the claim then follows using the estimate in Theorem 7.2.

The following example in [33] shows that, when the Hamiltonian is neither
convex nor concave, the initial value problem does not have the finite speed of
propagation property.

Fix T > 0 and ξ ∈ C0([0,∞);R). The total variation V0,T (ξ) of ξ in [0, T ] is

V0,T (ξ) := sup
(t0,...,tn)∈P

n−1∑

i=0

|ξ(ti+1)− ξ(ti )|,

where P = {0 = t0 < t1 < · · · , tn = T } is a partition of [0, T ].
The result is stated next.

Proposition 8.2 Given ξ ∈ C0([0, T ];R), let u ∈ BUC(R2×[0, T ]) be the solution
of

du = (|ux | − |uy|) · dξ in R
2× [0, T ] u(x, y, 0) = |x− y| +Θ(x, y), (3.76)
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with Θ ∈ BUC(R2) nonnegative and such that, for some R > 0, Θ(x, y) ≥ R if
min(x, y) ≥ R. Then

u(0, 0, T ) ≥
(

sup
(t0,...,tn)∈P

∑n−1
i=0 |ξ(ti+1)− ξ(ti )| − R

n

)

+
∧ 1. (3.77)

In particular, u(0, 0, T ) > 0 as soon as V0,T (ξ) > R.

If ξ is a Brownian motion, then V0,T (ξ) = +∞ for all T > 0. Then (3.76)
implies there is no finite speed of propagation property for any R > 0.

Proof (The Proof of Proposition 8.2) The argument is based on the differential
games representation formula discussed earlier in the notes, which is possible to
have for the very special Hamiltonian considered here.

Arguing by density, I assume that ξ ∈ C1. A simple calculation shows that, for
all p, q ∈ R,

(|p| − |q|)ξ̇ (t) = max|a|≤1
min|b|≤1

{
(aξ̇(t)+ + bξ̇(t)−)p + (bξ̇(t)+ + aξ̇(t)−)q

}
.

It follows that, for any T > 0,

u(0, 0, T ) = sup
α∈Γ (T )

inf
z∈N(T ) J (α[z], z),

where, for each pair (w, z) of controls in [0, T ],

J (w, z) = |xw,z(T )− yw,z(T )| +Θ(xw,z(T ), yw,z(T )),

and

ẋw,z(s) = w(s)ξ̇ (T − s)+ + z(s)ξ̇ (T − s)− xw,z(0) = 0,

ẏw,z(s) = z(s)ξ̇ (T − s)+ +w(s)ξ̇ (T − s)− yw,z(0) = 0.

I refer to [33] for the rest of the argument, which is based on the choice, for each
partition of [0, T ], of a suitable pair of strategy and control, and the assumption on
Θ .

Motivated by the general question and the partial result and counterexample
discussed above, Gassiat et al. [35] considered the case of convex, spatially
dependent Hamiltonians. Using the cancellation property discussed in the previous
section, it is proven in [35] that, in this setting, there is a finite speed of propagation.
This required the use of what is known as “skeleton” of the path. The details are
presented next.

Given ξ ∈ C([0, T ]), if arg min[a,b] (resp. arg max[a,b]) denotes the set of minima
(resp. maxima) points of ξ on the interval [a, b] ⊆ [0, T ], the sequence (τi)i∈Z of



3 Pathwise Solutions Nonlinear Equations Rough Time Dependence 119

successive extrema of ξ is defined by

τ0 = sup

{

t ∈ [0, T ] : ξ(t) = max
0≤s≤T ξ(s) or ξ(t) = min

0≤s≤T ξ(s)
}

, (3.78)

where, for all i ≥ 0,

τi+1 =
{

sup arg max[τi ,T ] ξ if ξ(τi) < 0,

sup arg min[τi ,T ] ξ if ξ(τi) > 0,
(3.79)

and, for all i ≤ 0,

τi−1 =
{

inf arg max[0,τi ] ξ if ξ(τi) < 0,

inf arg min[0,τi ] ξ if ξ(τi) > 0.
(3.80)

The skeleton (resp. full skeleton) or reduced (resp. fully reduced) path R0,T (ξ)

(resp. R̃0,T (ξ)) of ξ ∈ C0([0, T ]) are defined as follows.

Definition 8.1 Let ξ ∈ C([0, T ]).
(i) The reduced path R0,T (ξ) is a piecewise linear function which agrees with ξ

on (τi)i∈Z.
(ii) The fully reduced path R̃0,T (ξ) is a piecewise linear function agreeing with ξ

on (τ−i )i∈N ∪ {T }.
(iii) A path ξ ∈ C0([0, T ]) is reduced (resp. fully reduced) if ξ = R0,T (ξ) (resp.

ξ = R̃0,T (ξ)).

Note that the reduced and the fully reduced paths coincide prior to the global
extremum τ0. While the reduced path captures the max-min fluctuations also after
τ0, the fully reduced path is affine linear on [τ0, T ] and, in this sense, is more
“reduced”.

Throughout the discussion, it is assumed that

⎧
⎨

⎩

H : Rd ×R
d → R is convex and

Lipschitz continuous with constant L in the first argument.
(3.81)

The speed of propagation of (3.74) at time T is defined by

ρH (ξ, T ) = sup
{
R ≥ 0 : there exist solutions u1, u2 of (3.74) and x ∈ R

d,

(3.82)

such that u1(·, 0) = u2(·, 0) in BR(x) and u1(x, T ) �= u2(x, T )
}
.
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To keep track of the dependence of the solution on the path, in what follows I use
the notation uξ for the solution of (3.74) with path ξ . The main observation is that

uξ (·, T ) = uR0,T (ξ)(·, T ), (3.83)

which immediately implies the following result about the speed of propagation.

Theorem 8.1 Assume (3.81). Then, for all ξ ∈ C([0, T ]),

ρH (ξ, T ) ≤ L ‖R0,T (ξ)‖T V ([0,T ]). (3.84)

The second main result of [35] concerns the total variation of the reduced path of
a Brownian motion. To state it, it is necessary to introduce the random variable
θ : [0,∞)→ [0,∞) given by

θ(a) = inf{t ≥ 0 : max[0,t ] B −min[0,t ] B = a}, (3.85)

which is the first time that the range, that is max−min of a Brownian motion equals
a.

It is proved in [35], where I refer for the details, that the length of the reduced
path is a random variable with almost Gaussian tails. It is also shown that if the
range, that is, the maximum minus the minimum of B, is fixed instead of the time
horizon T , then the length has Poissonian tails.

Theorem 8.2 Let B be a Brownian motion and fix T > 0. Then, for each γ ∈
(0, 2), there exists C = C(γ, T ) > 0 such that, for any x ≥ 2,

P

(∥
∥R0,T (B)

∥
∥
T V ([0,T ]) ≥ x

)
≤ C exp

(−Cxγ ) , (3.86)

and

lim
x→∞

lnP
(∥
∥R0,θ(1)(B)

∥
∥
T V ([0,θ(1)]) ≥ x

)

x ln(x)
= −1. (3.87)

A related result, proving that the expectation of the total variation of the so-called
piecewise linear oscillating running max/min function of Brownian motion is finite,
has been obtained independently by Hoel et al. in [42].

The following remark shows that upper bound in Theorem 8.1 is actually sharp.

Proposition 8.3 Let H(p) = |p| on R
d with d ≥ 1. Then, for all T > 0 and

ξ ∈ C0([0, T ];R),

ρH (ξ, T ) ≥ ‖R̃0,T (ξ)‖T V ([0,T ]). (3.88)
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When d = 1, then

ρH (ξ, T ) = ‖R̃0,T (ξ)‖T V ([0,T ]).

Here I only sketch the proof of the first result.

Proof (A Sketch of the Proof of Theorem 8.1) The first step is (3.72). The second is
a monotonicity property for piecewise linear paths. Let ξt = 1t∈[0,t1](a0t)+
1t∈[t1,T ](a1(t − t1)+ a0t1) and, for s < t , set ξs,t = ξt − ξs .

If a0 ≥ 0 and a1 ≤ 0 (resp. a0 ≤ 0 and a1 ≥ 0), then

S
ξ
H (0, T ) ≥ SH (ξ0,T ) (resp. S

ξ
H (0, T ) ≤ SH (ξ0,T ).) (3.89)

Since the claim is immediate if a0 = 0 or a1 = 0, next it is assumed that a0 > 0
and a1 < 0.

If ξ0,T ≤ 0, then

SH (a1(T − t1)) = S−H (−a1(T − t1)) = S−H (−a1(T − t1)− a0t1) ◦ S−H (a0t1)

= S−H (−ξ0,T ) ◦ S−H (a0t1) = SH (ξ0,T ) ◦ SH (−a0t1),

and, hence, in view of (3.73),

S
ξ
H (0, T ) = SH (ξ0,T ) ◦ SH (−a0t1) ◦ SH (a0t1) ≥ SH (ξ0,T ).

If ξ0,T ≥ 0 then, again, (3.73) yields

S
ξ
H (0, T ) = SH (a1(T − t1)) ◦ SH (−a1(T − t1)+ a0t1 + a1(T − t1))

= SH (a1(T − t1)) ◦ SH (−a1(T − t1)) ◦ SH (a0t1 + a1(T − t1))
≤ SH (ξ0,T ).

For the second inequality, note that S−ξ−H (0, T ) = SξH (0, T ), S−H (−t) = SH (t). It
then follows from the first part that

S
ξ
H (0, T ) = S−ξ−H (0, T ) ≥ S−H (−ξ0,T ) = SH (ξ0,T ).

The next observation provides the first indication of the possible reduction
encountered when using the max or min of a given path. For the statement, given a
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piecewise linear path ξ , set

τmax = sup

{

t ∈ [0, T ] : ξt = max
s∈[0,T ] ξs

}

and

τmin = inf

{

t ∈ [0, T ] : ξt = min
s∈[0,T ] ξs

}

.

Lemma 8.1 Fix a piecewise linear path ξ . Then

S
ξ
H (τmax, T ) ◦ SH (ξ0,τmax ) ≤ SξH (0, T ) ≤ SH (ξτmin,T ) ◦ SξH (0, τmin).

Proof Since the proofs of both inequalities are similar, I only show the details for
the first.

Without loss of generality, it is assumed that sign(ξti−1,ti ) = −sign(ξti ,ti+1) for

all [ti−1, ti+1] ⊆ [0, τmax]. It follows that, if ξ|[0,τmax ] is linear, then SξH (0, τmax) =
SH (ξ0,τmax ).

If not, since ξ0,τmax ≥ 0, there is an index j such that ξtj−1,tj+1 ≥ 0 and ξtj−1,tj ≤
0. It then follows from (3.89) that

S
ξ
H (0, τmax) ≤ Sξ̃H (0, τmax),

where ξ̃ is piecewise linear and coincides with ξ for all t ∈ {ti : i �= j }.
A simple iteration yields SξH (0, τmax) ≤ SH (ξ0,τmax ), and, since SξH (0, T ) =

S
ξ
H (τmax, T ) ◦ SξH (0, τmax), this concludes the proof.

The previous conclusions and lemmata are combined to establish the following
monotonicity result.

Corollary 8.1 Let ξ, ζ be piecewise linear, ξ(0) = ζ(0), ξ(T ) = ζ(T ) and ξ ≤ ζ
on [0, T ]. Then

S
ξ
H (0, T ) ≤ SζH (0, T ). (3.90)

Proof Assume that ξ and ζ are piecewise linear on each interval [ti , ti+1] on a
common partition 0 = t0 ≤ . . . ≤ tN = T of [0, T ].

If N = 2, then, for all γ ≥ 0 and all a, b ∈ R,

SH (a + γ ) ◦ SH (b − γ ) ≤ SH (a) ◦ SH (b). (3.91)

If a ≥ 0, this follows from the fact that, in view of (3.89),

SH (γ ) ◦ SH (b − γ ) ≤ SH (b).
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If a + γ ≤ 0, then again (8.1) yields

SH (a) ◦ SH (b) = SH (a + γ ) ◦ SH (−γ ) ◦ SH (b) ≥ SH (a + γ ) ◦ SH (b − γ ).

Finally, if a ≤ 0 ≤ a + γ we have

SH (a) ◦ SH (b) ≥ SH (a + b) ≥ SH (a + γ ) ◦ SH (b − γ ).

The proof forN > 2 follows by induction onN . Let ρ be piecewise linear on the
same partition and coincide with ζ on t0, t1, and with ξ on t2, . . . , tN . The induction
hypothesis then yields

S
ξ
H (0, t2) ≤ SρH (0, t2) and SρH (t1, T ) ≤ SζH (t1, T )

from which we deduce

S
ξ
H (0, T ) ≤ SρH (0, T ) ≤ SζH (0, T ).

To complete the study of the cancellations, it is necessary to use a density
argument, which, itself, requires a result about the uniform continuity of the
solutions with respect to the paths. Such a result was shown earlier in the notes
for spatially-independent Hamiltonians which are the difference of two convex
functions and for spatially dependent under some additional conditions on the joint
dependence but not convexity. The most general result available without additional
assumptions other than convexity was obtained in [73]. Here it is stated without a
proof.

Theorem 8.3 Assume (3.73). Then, for each u0 ∈ BUC(Rd ) and T ≥ 0, the family

{
S
ξ
H (0, T )u0 : ξ piecewise linear

}

has a uniform modulus of continuity.

An immediate consequence is the following extension result which is stated as a
corollary without proof; see [35] for the details.

Corollary 8.2 The map ξ �→ SH (ξ) is uniformly continuous in the sup-norm in
the sense that, if (ξn)n∈N is a sequence of piecewise-linear functions on [0, T ] with
limn,m→∞ ‖ξn − ξm‖∞,[0,T ] = 0, then, for all u ∈ BUC(Rd )× (0,∞),

lim
n,m→∞‖S

ξn

H (0, T )u− Sξ
m

H (0, T )u‖∞ = 0. (3.92)

Combining all the results above completes the proof.
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3.8.2 Stochastic Intermittent Regularization

A very interesting question is whether there is some kind of stochastic
regularization-type property for the pathwise solutions of

du = H(Du) · dζ in Q∞. (3.93)

It is assumed that

H ∈ C2(Rd ) is uniformly convex, (3.94)

which implies that there exist Θ ≥ θ > 0 such that, for all p ∈ R
d and in the sense

of symmetric matrices,

θI ≤ D2H(p) ≤ ΘI. (3.95)

The upper bound in (3.95) can be relaxed when dealing with Lipschitz solutions
of (3.93).

Motivated by a recent observation of Gassiat and Gess [34] for the very special
case that H(p) = (1/2)|p|2, recently Lions and the author [80] investigated this
question. A summary of these results is presented next without proofs. The details
can be found in [80].

The possible intermittent regularizing results follow from iterating regularizing
and propagation of regularity-type results for the “non rough” problem

ut = ±H(Du) in Q∞. (3.96)

It turns out that the quantity to measure the regularizing effects is the symmetric
matrix

F(p) =
√
D2H(p),

the reason being that, if, for example, u is a smooth solution of (3.96), then a simple
calculation yields that the matrixW(x, t) = F(Du(x, t)) satisfies the matrix valued
problem

Wt = DH(Du)DW ± |DW |2.

The first claim is about the regularizing effect of (3.96). In what follows all the
inequalities and solutions below should be understood in the viscosity sense.
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Theorem 8.4 Assume (3.94). If u ∈ BUC(Rd × (0,∞)) is a solution of ut =
H(Du)

(resp.

ut = −H(Du)) in R
d × (0,∞)and, f orsomeC ∈ (0,∞],

− F(Du(·, 0))D2u(·, 0)F (Du(·, 0)) ≤ CI in R
d, (3.97)

(resp.

− F(Du(·, 0))D2u(·, 0)F (Du(·, 0)) ≥ −CI in R
d), (3.98)

then, for all t > 0,

− F(Du(·, t))D2u(·, t)F (Du(·, t)) ≤ C

1+ Ct I in R
d, (3.99)

(resp.

− F(Du(·, t))D2u(·, t)F (Du(·, t)) ≥ − C

1+ Ct I in R
d). (3.100)

Estimates (3.99) and (3.100) are sharper versions of the classical regularizing
effect-type results for viscosity solutions (see Lions [58], Lasry and Lions [52]),
which say that, if ut = H(Du) (resp. ut = −H(Du)) in Q∞, and, for some C ∈
(0,∞], −D2u(·, 0) ≤ CI (resp.−D2u(·, 0) ≥ −CI) in R

d , then, for all t > 0,

−D2u(·, t) ≤ C

1+ θCt I in R
d (3.101)

(resp.

−D2u(·, t) ≥ − C

1+ θCt I in R
d .) (3.102)

Note that, when C = ∞, that is, no assumption is made on u(·, 0), then (3.97)
and (3.98) reduce to

− F(Du(·, t))D2u(·, t)F (Du(·, t))

≤ 1

t

(

resp.− F(Du(·, t))D2u(·, t)F (Du(·, t)) ≥ −1

t

)

,
(3.103)
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which are sharper versions of (3.101) and (3.102), in the sense that they do not
depend on θ , of the classical estimates

−D2u(·, t) ≤ 1

θt
(resp. D2u(·, t) ≥ − 1

θt
).

To continue with the propagation of regularity result, I first recall that it was
shown in [52] that, if u solves ut = H(Du) (resp. ut = −H(Du)) in R

d × [0,∞),
with H satisfying (3.95), then,

if −D2u(·, 0) ≥ −CI, then −D2u(·, t) ≥ − C

(1−ΘCt)+ , (3.104)

(resp.

if −D2u(·, 0) ≤ CI, then −D2u(·, t) ≤ C

(1−ΘCt)+ .) (3.105)

The new propagation of regularity result depends on the dimension. In what
follows, it is said that H : Rd → R is quadratic, if there exists a symmetric matrix
A which satisfies (3.95) such that

H(p) = (Ap, p).

Theorem 8.5 Assume (3.94) and let u ∈ BUC(Q∞) solve ut = H(Du) (resp.
ut = −H(Du)) in Q∞. Suppose that either d = 1 or H is quadratic. If, for some
C > 0,

− F(Du(·, 0))D2u(·, 0)F (Du(·, 0)) ≥ −CI in R
d , (3.106)

(resp.

− F(Du(·, 0))D2u(·, 0)F (Du(·, 0)) ≤ CI in R
d ), (3.107)

then, for all t > 0,

− F(Du(·, t))D2u(·, t)F (Du(·, t)) ≥ − C

(1− Ct)+ I in R
d , (3.108)

(resp.

− F(Du(·, t))D2u(·, t)F (Du(·, t)) ≤ C

(1− Ct)+ I in R
d .) (3.109)

The result for d ≥ 2 and general H required more regularity for the initial
condition.
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Theorem 8.6 Assume that d > 1 and that H satisfies (3.94) but is not quadratic.
Let u ∈ BUC(Rd × [0,∞)) solve ut = H(Du) (resp. ut = −H(Du))
in R

d × (0,∞) and assume that u(·, 0) ∈ C1,1(Rd). If, for some C > 0,

− F(Du(·, 0))D2u(·, 0)F (Du(·, 0)) ≥ −CI in R
d , (3.110)

(resp.

− F(Du(·, 0))D2u(·, 0)F (Du(·, 0)) ≤ CI in R
d ), (3.111)

then, for all t > 0,

− F(Du(·, t))D2u(·, t)F (Du(·, t)) ≥ − C

(1− Ct)+ I in R
d , (3.112)

(resp.

− F(Du(·, t))D2u(·, t)F (Du(·, t)) ≤ C

(1− Ct)+ I in R
d .) (3.113)

It turns out that the assumption that u(·, 0) ∈ C1,1(Rd) if d > 1 and H is not
quadratic is necessary to have estimates like (3.112) and (3.113). This is the claim
of the next result.

Theorem 8.7 Assume (3.94) and d > 1. If (3.112) holds for all solutions u ∈
BUC(Q∞) of ut = H(Du) (resp. ut = −H(Du)) in Q∞ with u ∈ C0,1(Rd )

satisfying (3.110) (resp. (3.111)), then the map λ → (D2H(p + λξ)ξ⊥, ξ⊥) must
be concave (resp. convex). In particular, both estimates hold without any restrictions
on the data if and only if H is quadratic.

The motivation behind Theorems 8.4–8.6 is twofold. The first is to obtain as
sharp as possible regularity results for solutions of (3.96). The second is to obtain
intermittent regularity results for (3.93), like the ones obtained in [34] in the specific
case that H(p) = 1

2 |p|2, where, of course, θ = Θ = 1, F(Du)D2uF(Du) = D2u

and the “new” estimates are the same as the old ones, that is, (3.104) and (3.105),
which hold without any regularity conditions.

The regularity results of [34] follow from an iteration of (3.99), (3.100), (3.104)
and (3.105). As shown next, the iteration scheme cannot work when H is not
quadratic unless d = 1.

To explain the problem, I consider the first two steps of the possible iteration for
u ∈ BUC(Q∞) solving

ut = H(Du) in R
d × (0, a], ut = −H(Du) in R

d × (a, a + b]
and ut = H(Du) in R

d × (a + b, a + b + c].
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If the only estimates available were (3.99), (3.100), (3.104) and (3.105), we find,
after some simple algebra, that

D2u(·, a) ≥ − 1

θa
I, D2u(·, a + b) ≥ − 1

(θa −Θb)+ I and

D2u(·, a + b + c) ≥ − 1

(θa −Θb)+ + θc I.

It is immediate that the above estimates cannot be iterated unless there is a special
relationship between the time intervals and the convexity constants, something
which will not be possible for arbitrary continuous paths ξ .

If it were possible, as is the case when d = 1, to use the estimates of Theorem 8.6
without any regularity restrictions, then Theorems 8.4–8.6 would imply

W(a) ≥ −1

a
I, W(a + b) ≥ − 1

(a − b)+ I and W(a + b + c) ≥ − 1

(a − b)+ + c I,

which can be further iterated, since the estimates are expressed only in terms of
increments ζ .

Before turning to the intermittent regularity results, it is necessary to make some
additional remarks. For the sake of definiteness, I continue the discussion in the
context of the example above. Although u(·, a) may not be in C1,1, it follows
from (3.104) and (3.111) that, for some h ∈ (0, b] and t ∈ (a, a+h), u(·, t) ∈ C1,1.
There is no way, however, to guarantee that h = b. Moreover, as was shown in
[80], in general, it is possible to have u and h > 0 such that ut = −H(Du) in
R
d × (−h, 0], ut = H(Du) in R

d × (0, h], u(·, t) ∈ C1,1 for t ∈ (−h, 0) ∪ (0, h)
and u(·, 0) /∈ C1,1. The implication is that when d > 1 andH is not quadratic, there
is no hope to obtain after iteration smooth solutions.

To state the results about intermittent regularity, it is convenient to introduce the
running maximum and minimum functionsM : [0,∞)→ R and m : [0,∞)→ R

of a path ζ ∈ C0([0,∞);R) defined respectively by

M(t) = max
0≤s≤tζ(t) and m(t) = min

0≤s≤tζ(t). (3.114)

Theorem 8.8 Assume (3.94) and either d = 1 or H is quadratic when d > 1, fix
ζ ∈ C0([0, T );R) and let u ∈ BUC(Q∞ be a solution of (3.93). Then, for all t > 0,

− 1

M(t)− ζ(t) ≤ −F(Du(·, t))D
2u(·, t)F (Du(·, t)) ≤ 1

ζ(t)−m(t) . (3.115)
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Note that when (3.115) holds, then, at times t such that m(t) < ζ(t) < M(t),
u(·, t) ∈ C1,1(Rd ) and (3.115) implies that, for all t > 0,

|F(Du(·, t))D2u(·, t))F (Du(·, t))| ≤ max

[
1

ζ(t)−m(t) ,
1

M(t)− ζ(t)
]

.

(3.116)

When, however, (3.115) is not available, the best regularity estimate available,
which is also new, is a decay on the Lipschitz constant ‖Du‖.
Theorem 8.9 Assume (3.94), fix ζ ∈ C0([0, T );R), and let u ∈ BUC(Q∞ be a
solution of (3.93). Then, for all t > 0,

‖Du(·, t)‖ ≤
√

2‖u(·, t)‖
θ(M(t)−m(t)) . (3.117)

It follows from (3.117) that, for any t > 0 such that m(t) < M(t), any solution
of (3.93) is actually Lipschitz continuous.

An immediate consequence of the estimates in Theorems 8.9 and 8.8, which
is based on well known properties of the Brownian motion (see, for, example,
Peres [88]) is the following observation.

Theorem 8.10 Assume that ζ is a Brownian motion and H satisfies (3.94). There
exists a random uncountable subset of (0,∞) with no isolated points and of
Hausdorff measure 1/2, which depends on ζ , off of which, any stochastic viscosity
solution of (3.93) is in C0,1(Rd ) with a bound satisfying (3.117). If d = 1 or H is
quadratic, for the same set of times, the solution is in C1,1(Rd) and satisfies (3.115).

3.8.3 Long Time Behavior of the “Rough” Viscosity Solutions

I begin with a short introduction about the long time behavior of solutions of
Hamilton-Jacobi equations. In order to avoid technicalities due to the behavior of
the solutions at infinity, throughout this subsection, it is assumed that solutions are
periodic functions in T

d .
To explain the difficulties, I first look at two very simple cases. In the first case,

fix some p ∈ R
d and consider the linear initial value problem

du = (p,Du) · dζ inQ∞ u(·, 0) = u0.

Its solution is u(x, t) = u0(x + pζ(t)), and clearly it is not true that u(·, t) has,
as t →∞, a uniform limit.
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The second example is about (3.93) with H satisfying (3.94), and ξ̇ > 0 and
lim
t→∞ξ(t) =∞. Since

u(x, t) = sup
y∈Rd

[

u0(y)− tH $(x − y
ξ(t)

)

]

,

it is immediate that, as t →∞ and uniformly in x, u(x, t)→ supu.
The intermittent regularizing results yield information about the long time

behavior of the solutions of (3.93) under the rather weak assumption that

H ∈ C(Rd ) is convex and H(p) > H(0) = 0 for all p ∈ R
d \ {0}. (3.118)

Theorem 8.11 Assume (3.118), fix ζ ∈ C0([0, T );R), and let u ∈ BUC(Q∞ be
a space periodic solution of (3.93). If there exists tn → ∞ such that M(tn) −
m(tn) → ∞, then there exists u∞ ∈ R such that, as t → ∞ and uniformly in
space, u(·, t)→ u∞.

In the particular case that ξ is a standard Brownian motion the long time result is
stated next.

Theorem 8.12 Assume (3.118). For almost every Brownian path B, if u ∈
BUC(Q∞) is a periodic solution of du = H(Du)·dB inQ∞, there exists a constant
u∞ = u∞(B, u(·, 0)) such that, as t → ∞ and uniformly in R

d , u(·, t) → u∞.
Moreover, the random variable is, in general, not constant.

Proof The contraction property and the fact that H(0) = 0 yield that the family
(u(·, t))t≥0 is uniformly bounded.

It is assumed next that the Hamiltonian satisfies (3.94). It follows from the
intermittent regularizing property, the a.s. properties of the running max and min
of the Brownian motion, and the fact that the Lipschitz constant of the solutions
decreases in time that, as t →∞, ‖Du(·, t)‖ → 0.

In view of the periodicity, it follows that, along subsequences sn → ∞, the
u(·, sn)’s converge uniformly to constants.

It remains to show that the whole family converges to the same constant. This
is again a consequence of the intermittent regularizing result and the fact that the
periodicity, the contraction property of the solutions of (3.93) and H(0) = 0 yield
that

t → max
x∈Rd

u(x, t) is nonincreasing,

and

t → min
x∈Rd

u(x, t) is nondecreasing.

(3.119)

It remains to remove the assumption that the Hamiltonians satisfy (3.94). Indeed,
if (3.118) holds, H can be approximated uniformly by a sequence (Hm)m∈N
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of Hamiltonians satisfying (3.94). Let um be the solution of the (3.49) with
Hamiltonian Hm and same initial datum. Since, as m → ∞, um → u uniformly
inQT for all T > 0, it follows that, for all t > 0,

∫

T

H(Du(x, t))dx ≤ lim inf
m→∞

∫

T

H(Dum(x, t))dx.

Choose the sequence tn and sn as before to conclude.

I conclude with an example that shows that, in the stochastic setting, the limit
constant u∞ must be random.

Consider the initial value problem

du = |ux | · dB in Q∞ u(·, 0) = u0, (3.120)

with u0 a 2-periodic extension on R of u0(x) = 1 − |x − 1| on [0, 2]. Let c be the
limit as t → ∞ of u. Since 1 − u0(x) = u0(x + 1) and −B is also a Brownian
motion with the same law as B, if L(f ) denotes the law of the random variable f ,
it follows that

L(c) = L(1− c). (3.121)

If the limit c of the solution of (3.120) is deterministic, then (3.121) implies that
c = 1/2. It is shown next that this is not the case.

Recall that the pathwise solutions are Lipschitz with respect to paths. Indeed, if
u, v are two pathwise solutions of (3.120) with paths respectivelyB, ξ and u(·, 0) ≡
v(·, 0), then there exists L > 0, which depends on ‖ux(·, 0)‖ such that, for any
T > 0,

max
x∈R,t∈[0,T ]

|u(x, t)− v(x, t)| ≤ L max
t∈[0,T ]|ζ(t)− ξ(t)|. (3.122)

Next fix T = 2 and use (3.122) to compare the solutions of (3.120) with ζ ≡ B
and ξ(t) ≡ t and ζ ≡ B and ξ(t) ≡ −t .

When ξ(t) ≡ t (resp. ξ ≡ −t) the solution v of (3.120) is given by

v(x, t) = max|y|≤t u0(x + y) (resp. v(x, t) = min|y|≤t u0(x + y)).

It is then simple to check that, if ξ(t) ≡ t , then v(·, 2) ≡ 1, while, when ξ(t) ≡
−t , v(x, 2) = 0.

Fix ε = 1/4L and consider the events

A+ :=
{

max
t∈[0,2]

|B(t) − t| < ε
}

and A− :=
{

max
t∈[0,2]

|B(t) + t| > ε
}

.
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Of course,

P(A+) > 0 and P(A−) > 0.

Then (3.122) implies

u(x, 2) ≥ 1− Lε = 3/4 on A+ and u(x, 2) ≤ Lε = 1/4 on A−.

It follows that the random variable c cannot be constant since in A+ it must be
bigger than 3/4 and in A− smaller than 1/4.

In an upcoming publication [36] we are visiting this problem and obtain in a
special case more information about u∞.

3.9 Pathwise Solutions for Fully Nonlinear, Second-Order
PDE with Rough Signals and Smooth, Spatially
Homogeneous Hamiltonians

Consider the initial value problem

{
du = F(D2u,Du, u, x, t) dt +∑m

i=1H
i(Du) · dBi in Q∞

u(·, 0) = u0,
(3.123)

with

H = (H 1, . . . , Hm) ∈ C2(Rd;Rm), (3.124)

B = (B1, . . . , Bm) ∈ C0([0,∞);Rm) (3.125)

and

F is degenerate elliptic. (3.126)

The case of “irregular” Hamiltonians requires different arguments. Spatially
dependent regular Hamiltonians are discussed later.

An important question is if the Hamiltonian’s can depend on u and Du at the
same time. The theory for Hamiltonians depending only on u was developed in
Sect. 3.4. The case whereH depends both on u andDu is an open problem with the
exception of a few special cases, like, for example, linear dependence on u and p,
which are basically an exercise.
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The theory of viscosity solutions for equations like (3.123) with H ≡ 0 is based
on using smooth test functions to test the equation at appropriate points. As already
discussed earlier this cannot be applied directly to (3.123).

Recall that, when H is sufficiently regular, it is possible to construct, using the
characteristics, local in time smooth solutions to (3.46). These solutions, for special
initial data, play the role of the smooth test functions for (3.123).

Definition 9.1 Fix B ∈ C([0,∞);Rm) and T > 0. A function u ∈ BUC(QT ) is
a pathwise subsolution (resp. supersolution) of (3.123) if, for any maximum (resp.
minimum) (x0, t0) ∈ Q∞ of u−Φ −ψ , where ψ ∈ C1((0,∞)) and Φ is a smooth
solution of dΦ = ∑m

i=1H
i(DΦ) ◦ dBi in R

d × (t0 − h, t0 + h) for some h > 0,
then

ψ ′(t0) � F(D2Φ(x0, t0),DΦ(x0, t0), u(x0, t0), x0, t0) (3.127)

(resp. ψ ′(t0) � F(D2Φ(x0, t0),DΦ(x0, t0), u(x0, t0), x0, t0).) (3.128)

Finally, u ∈ BUC(QT ) is a solution of (3.123) if it is both a subsolution and
supersolution.

As in the. classical “non rough” theory, it is possible to have upper-
semicontinuous subsolutions, lower-semicontinuous supersolutions and discon-
tinuous solutions. For simplicity, this is avoided here. Such weaker “solutions” are
used to carry out the Perron construction in Sect. 3.11.

Although somewhat natural, the definition introduces several difficulties at the
technical level. One of the advantages of the theory of viscosity solutions is the
flexibility associated with the choice of the test functions. This is not, however,
the case here. As a result, it is necessary to work very hard to obtain facts which
were almost trivial in the deterministic setting. For example, in the definition, it is
often useful to assume that the max/min is strict. Even this fact, which is trivial for
classical viscosity solutions, in the current setting requires a more work.

It is also useful to point out the relationship between the approach used for
equations with linear dependence on Du and the above definition. Heuristically,
in Definition 9.1, one inverts locally the characteristics in an attempt to “eliminate”
the bad term involving dB. Since the problem is nonlinear and u is not regular, it is,
of course, not possible to do this globally. In a way consistent with the spirit of the
theory of viscosity solutions, this difficulty is overcome by working at the level of
the test functions, where, of course, it is possible to invert locally the characteristics.
The price to pay for this is that the test functions used here are very robust and not
as flexible as the ones used in the classical deterministic theory. This leads to several
technical difficulties, since all the theory has to be revisited.

The fact that Definition 9.1 is good in the sense that it agrees with the classical
(deterministic) one if B ∈ C1, is left as an exercise. There are also several other
preliminary facts about short time behavior, etc., which are omitted.

The emphasis here is on establishing a comparison principle and some stability
properties. The existence follows either by a density argument or by Perron’s
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method. The latter was established lately in a very general setting by Seeger [100]
form ≥ 1.

The next result is about the stability properties of the pathwise viscosity
solutions. Although it can be stated in a much more general form using “half relaxed
limits” and lower- and upper-semicontinuous envelopes, here it is presented in a
simplified form.

Proposition 9.1 Let Fn, F be degenerate elliptic, Hn,H ∈ C2(Rd;Rm), Bn,B ∈
C([0,∞);Rm) be such that supi,n ‖D2Hi,n‖ < ∞ and, as n → ∞ and locally
uniformly, Fn → F , Hn → H in C2(Rd ;Rm), and Bn → B in C([0,∞);Rm). If
un is a pathwise solution of (3.123) with nonlinearity Fn, HamiltonianHn and path
Bn and un→ u in C(QT ), then u is a pathwise solution of (3.123).

The assumptions that Hn → H in C2(Rd;Rm) instead of just in C(Rd) and
supn ‖D2Hn‖ < ∞ are not needed for the “deterministic” theory. Here they are
dictated by the nature of the test functions.

Proof (Proof of Proposition 9.1) Let (x0, t0) ∈ R
d × (0, T ] be a strict maximum of

u − Φ − ψ where ψ ∈ C1((0,∞)) and, for some h > 0, Φ is a smooth solution
of (3.46) in (t0 − h, t0 + h).

Let Φn be the smooth solution of

Φnt = Hn(DΦn)Ḃn in R
d × (t0 − hn, t0 + hn) Φn(·, t0) = Φ(·, t0).

The assumptions on the Hn and Bn imply that, as n → ∞, Φn → Φ, DΦn →
DΦ andD2Φn → D2Φ in C(Rd × (t0 − h′, t0 + h′)), for some, uniform in n, h′ ∈
(0, h); note that this is the place whereHn→ H in C2(Rd ) and supn ‖D2Hn‖ <∞
are used.

Let (xn, tn) be a maximum point of un−Φn−ψ in R
d ×[t0−h′, t0+h′]. Since

(x0, t0) is a strict maximum of u − Φ − ψ , there exists a subsequence such that
(xn, tn)→ (x0, t0). The definition of viscosity solution then gives

ψ ′(tn) � F(D2Φn(xn, tn),DΦn(xn, tn), un(xn, tn), xn, tn) .

Letting n→∞ yields the claim.

The next result is the comparison principle for pathwise viscosity solutions of the
first-order initial value problem, that is,

du =
m∑

i=1

Hi(Du) · dBi in Q∞ u(·, 0) = u0. (3.129)

Theorem 9.1 Assume that (3.124), (3.125) and u0 ∈ BUC(Rd ). Then (3.129)
has a unique pathwise solution u ∈ BUC(Q∞) which agrees with the “solution”
obtained from the extension operator.
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The proof follows from the arguments used to prove the next result about the
extension operator for (3.123) which is stated next, hence it is omitted.

The next result is about the extension operator for (3.123). As before, it is
shown that the solutions to initial value problems (3.123) with smooth time signal
approximating the given rough one form a Cauchy family in BUC(QT ) and, hence,
all converge to the same function which is a pathwise viscosity solution to (3.123).

The next result provides an extension from smooth to arbitrary continuous paths
B. For simplicity the dependence of F on u, x and t is omitted.

Theorem 9.2 Assume (3.124)–(3.126) and fix u0 ∈ BUC(Rd) and B ∈
C0([0,∞);Rm). Consider two families (ζε)ε>0, (ξη)η>0 in C0([0,∞);Rm) ∩
C1([0,∞);Rm) and (u0,ε)ε>0, (v0,η)η>0 ∈ BUC(Rd ) such that, as ε, η → 0,
ζε and ξη converge to B in C([0,∞);Rm) and u0,ε and v0,η converge to u0
uniformly in R

d . Let (uε)ε>0, (vη)η>0 ∈ BUC(Q∞) be the unique viscosity
solutions of (3.123) with signal and initial datum ζε, u0,ε and ξη, v0,η respectively.
Then, for all T > 0, as ε, η → 0, uε − vη → 0 uniformly in QT . In particular,
the family (uε)ε>0 is Cauchy in BUC(QT ) and all approximations converge to the
same limit.

Proof Fix T > 0 and consider the doubled initial value problem

⎧
⎪⎨

⎪⎩

dZλ,ε,η =∑m
i=1 H(DxZ

λ,ε,η)ξ̇i,ε −∑m
i=1 H(−DyZλ,ε,η)ζ̇i,η, in R

d × R
d × (0, T )

Zλ,ε,η(x, y, 0) = λ|x − y|2.
(3.130)

It is immediate that Zλ,ε,η(x, y, t) = Φλ,ε,η(x − y, t), where

Φ
λ,ε,η
t =

m∑

i=1

H(DzΦ
λ,ε,η)(ξ̇i,ε − ζ̇i,η) in QT Φλ,ε,η(z, 0) = λ|z|2. (3.131)

As discussed earlier, there exists T λ,ε,η > 0 such that Φλ,ε,η is given by the
method of characteristics in R

d × [0, T λ,ε,η) and

lim
ε,η→0

T λ,ε,η = ∞ and lim
ε,η→0

sup
(z,t)∈Rd×[0,T ]

(
Φλ,ε,η(z)− λ|z|2

)
= 0. (3.132)

The conclusion will follow as soon as it established that

lim
λ→∞ lim

ε,η→0
sup

(x,y)∈R2N,t∈[0,T ]
(uε(x, t)− vη(y, t)− λ|x − y|2) = 0 . (3.133)

Consider next the function

Ψ λ,ε,η(x, y, t) = uε(x, t)− vη(y, t)−Φλ,ε,η(x − y, t) .
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The classical theory of viscosity solutions (see [17]) yields that the map

t �−→ Mλ,ε,η(t) = sup
x,y∈Rd

[uε(x, t)− vη(y, t)−Φλ,ε,η(x − y, t)]

is nonincreasing in [0, T λ,ε,η).
Hence, for x, y ∈ R

d and t ∈ [0, T λ,ε,η),

uε(x, t)− vη(y, t)−Φλ,ε,η(x − y, t) � sup
x,y∈Rd

(uε0(x)− vη0 (y)− λ|x − y|2) .

The claim now follows from the assumptions on uε0 and vη0 .

The uniqueness of the pathwise viscosity solutions of (3.123) is considerably
more complicated than the one for (3.129). This is consistent with the deterministic
theory, where the uniqueness theory of viscosity solutions for second-order degen-
erate, elliptic equations is by far more complex than the one for Hamilton-Jacobi
equations. For the same reasons as for the existence, I will present the argument
omitting the dependence on u, x and t .

The proof follows the general strategy outlined in the “User’s Guide”. The actual
arguments are, however, different and more complicated.

Recall that in the background of the “deterministic” proof are the so called sup-
and inf-convolutions. These are particular regularizations that yield approximations
which have parabolic expansions almost everywhere and are also subsolutions and
supersolutions of the nonlinear pde.

This is exactly where the pathwise case becomes different. The “classical”
sup-convolutions and inf-convolutions of pathwise viscosity solutions do not have
parabolic expansions. To deal with this serious difficulty, it is necessary to change
the sup-convolutions and inf-convolutions by replacing the quadratic weights by
short time smooth solutions of the first-order part of (3.123). The new regulariza-
tions have now parabolic expansions—the reader should think that the new weights
remove the “singularities” due to the roughness of B.

Theorem 9.3 Assume (3.124)–(3.126). Let u, v ∈ BUC(Q∞) be respectively a
viscosity subsolution and supersolution of (3.123). Then, for all t ≥ 0,

sup
x∈Rd

(u− v)(x, t) � sup
x∈Rd

(u− v)(x, 0) . (3.134)

Proof To simplify the presentation below it is assumed that m = 1. Recall that, for
any φ ∈ C3(Rd × R

d ) ∩ C0,1(Rd × R
d), there exists some a > 0 such that the

doubled initial value problem

dU = [H(DxU)−H(−DyU)]◦dB in R
d×(t0−a, t0+a) U(x, y, t0) = φ(x, y),

has a smooth solution which, for future use, is denoted by SdH (t − t0, t0)φ.
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If φ is of separated form, that is, φ(x, y) = φ1(x)+ φ2(y), making if necessary,
the interval of existence smaller, it is immediate that

Sd(t − t0, t0)φ(x, y) = S+H(t − t0, t0)φ1(x)+ S−H (t − t0, t0)φ2(y) ,

where, as before, S±
H± denote the smooth short time solution operators to du =

±H(Du) · dB.
Moreover, for any λ > 0 and t, t0 ∈ R, it is obvious that

Sd(t − t0, t0)(λ| · − · |2)(x, y) = λ|x − y|2 .

Finally, again for smooth solutions,

S−H (t − t0, t0)φ2(y) = −S+H (t − t0, t0)(−φ2)(y).

Fix μ > 0. The claim is that, for large enough λ,

Φ(x, y, t) = u(x, t)− u(y, t)− λ|x − y|2 − μt

cannot have a maximum in R
d × R

d × (0, T ]. This leads to the desired conclusion
as in the classical proof of the maximum principle.

Arguing by contradiction, it is assumed that there exists (xλ, yλ, tλ) ∈ R
d×R

d×
(0, T ] such that, for all (x, y, t) ∈ R

d × R
d × [0, T ],

Φ(x, y, t) = u(x, t)− v(y, t)− Sd(t − tλ, tλ)(λ| · − · |2)(x, y)− μt
� Φ(xλ, yλ, tλ) .

(3.135)

To handle the behavior at infinity and assert the existence of a maximum, it is
necessary to consider Sd(t− tλ, tλ)[λ| ·−· |2+βν(·)](x, y) instead of Sd(t− tλ)[λ| ·
− · |2] in (3.135), for t − tλ small, β → 0, and a smooth approximation ν(x) of |x|.
Since this adds some tedious details which may obscure the main ideas of the proof,
below it is assumed that a maximum exists.

Elementary computations and a straightforward application of the Cauchy-
Schwarz inequality yield, for all ε > 0 and ξ, η ∈ R

d ,

|x − y|2 − |xλ − yλ|2
� 2〈xλ − yλ, x − xλ − ξ〉
− 2〈xλ − yλ, y − yλ − η〉 + 2〈xλ − yλ, ξ − η〉
+ (2+ ε−1)(|x − xλ − ξ |2 + |y − yλ − η|2)
+ (1+ 2ε)|ξ − η|2.

(3.136)
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Let

pλ = λ(xλ − yλ) , λε = λ(2+ ε−1) and βε = λ(1+ 2ε) .

The comparison of local in time smooth solutions of stochastic Hamilton-Jacobi
equations, which are easily obtained by the method of characteristics, and the facts
explained before the beginning of the proof yield that the function

Ψ (x, y, ξ, η, t) = u(x, t)− v(y, t)
− S+H (t − tλ, tλ)(2〈pλ, · − xλ − ξ〉
+ λε| · −xλ − ξ |2)(x)
− S−H (t − tλ, tλ)(−2〈pλ, · − yλ − η〉
+ λε| · −yλ − η|2)(y)
− 2〈pλ, ξ − η〉 − βε|ξ − η|2 − μt

achieves, for h ≤ h0 = h0(λ, ε
−1), its maximum in R

d × R
d × R

d × R
d × (tλ −

h, tλ + h) at (xλ, yλ, 0, 0, tλ).
Note that here it is necessary to take t − tλ sufficiently small to have local in time

smooth solutions for the doubled as well as the H and −H(−) equations given by
the characteristics.

For t ∈ (tλ − h, tλ + h) define the modified sup- and inf-convolutions

ū(ξ, t) = sup
x∈Rd

[u(x, t)− S+H (t − tλ, tλ)(2〈pλ, · − xλ − ξ〉 + λε| · −xλ − ξ |2)(x)]

and

v(η, t) = inf
y∈Rd

[v(y, t)+ S−H (t − tλ, tλ)(−2〈pλ, · − yλ− η〉 + λε| · −yλ− η|2)(y)] .

It follows that, for δ > 0,

G(ξ, η, t) = ū(ξ, t) − v(η, t) − (βε + δ)|ξ − η|2 − 2〈pλ, ξ − η〉 − μt

attains its maximum in R
d × R

d × (tλ − h, tλ + h) at (0, 0, tλ).
Observe next that there exists a constantKε,λ > 0 such that, in R

d× (tλ−h, tλ+
h),

D2
ξ ū ≥ −Kε,λ, D2

ηv ≤ Kε,λ, ūt ≤ Kε,λ, and vt ≥ −Kε,λ . (3.137)

with the inequalities understood both in the viscosity and distributional sense.
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The one sided bounds of D2
ξ ū and D2

ηv are an immediate consequence of the
definition of ū and v and the regularity of the kernels, which imply that, for some
Kε,λ > 0 and in R

d × (tλ − h, tn + h),

|D2
ξ S
+
H(· − tλ, tλ)(2〈pλ, · − xλ − ξ〉 + λε| · −xλ − ξ |2)|

+ |D2
ηS
−
H (· − tλ, tλ)(−2〈pλ, · − yλ − η〉 + λε| · −yλ − η|2)| � Kε,λ .

The bound for ūt is shown next; the argument for vt is similar. Note that, in view
of the behavior of B, such a bound cannot be expected to hold for ut . Indeed take
F ≡ 0 and H ≡ 1, in which case u(x, t) = Bt .

Assume that, for some smooth function g and for ξ fixed, the map (ξ, t) →
ū(ξ, t)− g(t) has a max at t̂ . It follows that

(x, t) �→ u(x, t)− S+H (t − tλ, tλ)
(

2〈pλ, · − xλ − ξ〉 + λε| · −ξ |2
)
(x)− g(t)

has a max at (x̂, t̂ ), where x̂ is a point where that supremum in the definition of
ū(ξ, t) is achieved, that is,

ū(ξ, t̂ ) = u(x̂, t̂ )− S+H (t̂ − tλ, tλ)
(

2〈pλ, · − xλ − ξ〉 + λε| · −ξ |2
)
(x̂) .

In view of the definition of the pathwise viscosity sub-solution, it follows that
there exists some K̂ε,λ depending onKε,λ andH , such that g(t̂) ≤ K̂ε,λ, and, hence,
the claim follows.

The one-sided bounds (3.137) yield the existence of pn, qn, ξn, ηn ∈ R
d and

tn > 0 such that, as n→∞,

1. (ξn, ηn, tn)→ (0, 0, tλ), pn, qn → 0,
2. the map (ξ, η, t)→ ū(ξ, t)− v(η, t)− βε|ξ − η|2 − 〈pn, ξ〉 − 〈qn, η〉
− 2〈pλ, ξ − η〉 − μt has a maximum at (ξn, ηn, tn),

3. ū and v have parabolic second-order expansions from above and below at (ξn, tn)
and (ηn, tn) respectively, that is, there exist an, bn ∈ R such that

ū(ξ, t) ≤ ū(ξn, tn)+ an(t − tn)+ (Dξ ū(ξn, tn), ξ − ξn)

+ 1

2
(D2

ξ ū(ξn, tn)(ξ − ξn), ξ − ξn)+ o(|ξ − ξn|2 + |t − tn|) ,

and

v(η, t) ≥ v(ηn, tn)+ bn(t − tn)+ (Dηv(ηn, tn), η − ηn)

+ 1

2
(D2

ηv(ηn, tn)(η − ηn), η − ηn)+ o(|η− ηn|2 + |t − tn|) ,

and, finally,
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4. an = bn + μ, Dξ ū(ξn, tn) = pn + 2pλ + 2βε(ξn − μn), Dηv(ξn, tn) =
−qn + 2pλ2βε(ξn − ηn) and D2

ξ ū(ξn, tn) ≤ D2
ηv(ηn, tn).

It follows that, for some θ > 0 fixed, t < tn, (ξ, t) near (ξn, tn) and (η, t) near
(ηn, tn), the maps

(x, ξ, t)→ u(x, t)−S+H (t− tλ, tλ)(2〈pλ, ·−xλ−ξ〉+λε | ·−xλ−ξ |2)(x)−Φ(ξ, t),

and

(y, η, t)→ v(y, t)+S−H (t − tλ, tλ)(−2〈pλ, · − yλ− η〉+ λε| · −η|2)(y)−Ψ (η, t),

attain respectively a maximum at (xn, ξn, tn) and a minimum at (yn, ηn, tn), where

Φ(ξ, t) = ū(ξn, tn)+ (ūt (ξn, tn)− θ)(t − tn)+ (Dξ ū(ξn, tn), ξ − ξn)

+ 1

2
((D2

ξ ū(ξn, tn)+ θI)(ξ − ξn), ξ − ξn)

and

Ψ (η, t) = v(ηn, tn)+ (vt (ηn, tn)+ θ)(t − tn)+ (Dηv(ηn, tn), η − ηn)

+ 1

2
((D2

ηv(ηn, tn)+ θI)(η − ηn), η − ηn) .

Next, for sufficiently small r > 0, let B(ξn, tn, rn) = B(ξn, r)× (tn − r, tn] and
define

Φ(x, t) = inf
[
Φ(ξ, t)+ S+H(t − tλ, tλ)(2〈pλ, · − xλ − ξ〉

+ λε| · −xλ − ξ |2)(x) : (ξ, t) ∈ B(ξn, tn, rn)
]
,

and

Ψ (y, t) = sup
[
Ψ (η, t)− S−H (t − tλ, tλ)(−2〈pλ, · − yλ − η〉

+ λε| · −yλ − η|2)(x) : (ξ, t) ∈ B(ξn, tn, rn)
]
.

It follows that u − Φ̄ and v − Ψ attain a local max at (xn, tn) and a local min
at (yn, tn). Moreover, Φ̄ and Ψ are smooth solutions of du = H(Du) · dB for
(x, t) near (xn, tn) and dv = −H(−Dyv) · dB for (y, t) near (yn, tn). This last
assertion for Φ̄ and Ψ follows, using the inverse function theorem, from the fact
that, at (xn, tn) and (yn, tn), there exists a unique minimum in the definition of Φ̄
and Ψ . This in turn comes from the observation that for λ > λ0, at (ξn, xn, tn) and
(ηn, yn, tn),

D2Φ(ξn, tn)+ (λε + θ)I > 0 and D2Ψ (ηn, tn)− (λε + θ)I < 0 .
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Finally, elementary calculations also yield that

D2
ξΦ(ξn, tn) � D2

xΦ̄(xn, tn) and D2
ηΨ (ηn, tn) � D2

yΨ (yn, tn) .

Applying now the definitions of the pathwise subsolution and supersolution to u
and v respectively, yields

ūt (ξn, tn)− θ ≤ F(D2
xΦ̄(xn, tn),DxΦ̄(xn, tn))

≤ F(D2
ξΦ(ξn, tn),DξΦ(ξn, tn))

= F(D2
ξ ū(ξn, tn)+ θI,Dξ ū(ξn, tn))

and

vt (ηn, tn)+ θ ≥ F(−D2
ξ v(ξn, tn)− θI,Dηv(ηn, tn)).

Hence

μ− 2θ ≤ an − bn − 2θ

≤ sup[F(A+ θI, p + pn)
− F(A− θI, p + qn) : |pn|, |qn| ≤ n−1, |A| ≤ Kε,λ].

The conclusion now follows choosing ε = (2λ)−1 and letting λ→∞ and θ → 0.

It is worth remarking that, in the course of the previous proof, it was shown that,
for 0 < h ≤ ĥ0, with ĥ0 = ĥ0(λ, ε) ≤ h0, ū (resp. v) is a viscosity subsolution
(resp. supersolution) of

ūt ≤ F(D2
ξ ū,Dξ ū) (resp. vt ≥ F(D2

ηv,Dηv)) in R
d × (tλ − h, tλ + h).

3.10 Pathwise Solutions to Fully Nonlinear First and Second
Order pde with Spatially Dependent Smooth
Hamiltonians

3.10.1 The General Problem, Strategy and Difficulties

The next step in the development of the theory is to consider spatially dependent
Hamiltonians and, possibly, multiple paths.
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Most of this section is about pathwise solutions of initial value problems of the
form

du = F(D2u,Du, u, x) +H(Du, x) · dB in Q∞ u(·, 0) = u0, (3.138)

with only one path and, as always, F degenerate elliptic.
Extending the theory to equations with multiple rough time dependence had been

an open problem until very recently, when Lions and Souganidis [72] came up with
a way to resolve the difficulty. A brief discussion about this appears at the end of
this section.

Finally, to study equations for nonsmooth Hamiltonians, it is necessary to modify
the definition of the solution using now as test functions solutions of the doubled
equations constructed for non smooth Hamiltonians. The details appear in [71].

The strategy of the proof of the comparison is similar to the one followed for
spatially homogeneous Hamiltonians. The pathwise solutions are defined using as
test functions smooth solutions of

du = H(Du, x) · dB in R
d × (t0 − h, t0 + h), u(·, t0) = φ, (3.139)

which under the appropriate assumptions on H exist for each t0 > 0 and smooth φ
in (t0 − h, t0 + h) for some small h.

The aim in this section is to prove that pathwise solutions are well posed. To avoid
many technicalities, the discussion here is restricted to Hamilton-Jacobi initial value
problems

du = H(Du, x) · dB in QT u(·, 0) = u0. (3.140)

The general problem (3.138) is studied using he arguments of this and the previous
sections; some details can be found in [100].

Similarly to the spatially homogeneous case, the main technical issue is to control
the length of the interval of existence of smooth solutions of the doubled equation
with quadratic initial datum and smooth approximations to ζ ε and ξη of the path B,
that is,

⎧
⎪⎪⎨

⎪⎪⎩

dz = H(Dxz, x) · dζ ε −H(−Dyz, y) · dξη
in R

d ×R
d × (t0 − h, t0 + h),

z(x, y, 0) = λ|x − y|2.
(3.141)

As already discussed earlier, the most basic estimate is that h = O(λ−1), which,
as is explained below, is too small to carry out the comparison proof. The challenge,
therefore, is to take advantage of the cancellations, due to the special form of the
initial datum as well as of the doubled Hamiltonian, to obtain smooth solutions in a
longer time interval.
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Since the smooth solutions to (3.141) are constructed by the method of charac-
teristics, the technical issue is to control the length of the interval of invertibility of
the characteristics. This can be done by estimating the interval of time in which
the Jacobian does not vanish. It is here that using a single path helps, because,
after a change of time, the problem reduces to studying the analogous question for
homogeneous in time odes.

To further simplify the presentation, the “rough” problem discussed in the sequel
is not (3.141) but rather the doubled equation with the rough path, that is

⎧
⎪⎪⎨

⎪⎪⎩

dw = H(Dxw, x) · dB −H(−Dyw, y) · dB
in R

d × R
d × (t0 − h, t0 + h)

w(x, y, 0) = λ′|x − y|2.
(3.142)

In what follows, to avoid cumbersome expressions, λ = 2λ′
The short time smooth solutions of (3.142) are given by w(x, y, t) =

U(x, y, B(t) − B(t0)), where U is the short time smooth solutions to the “non-
rough” doubled initial value problem

⎧
⎨

⎩

Ut = H(DxU, x)−H(−DyU, y) in R
d × R

d × (−T ∗, T ∗)
U(x, y, 0) = λ′|x − y|2,

(3.143)

and T ∗ > 0 and h are such that sups∈(t0−h,t0+h) |B(s) − B(t0)| ≤ T ∗.
The smooth solutions of (3.143) are constructed by inverting the map (x, y)→

(X(x, y, t), Y (x, y, t)) of the corresponding system of characteristics, that is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ = −DpH(P,X) Ẏ = −DqH(Q, Y ),
Ṗ = DxH(P,X) Q̇ = DyH(Q, Y ),
U̇ = H(P,X)− 〈DpH(P,X), P 〉

−H(Q, Y )+ 〈DqH(Q, Y ),Q〉
X(x, y, 0) = x Y (x, y, 0) = y,
P (x, y, 0) = Q(x, y, 0) = λ(x − y)
U(x, y, 0) = λ′|x − y|2.

(3.144)

A crude estimate, which does not take into account the special form of the system
and the initial data, gives that the map (x, y) �→ (X(x, y, t), Y (x, y, t)) is invertible
at least in a time interval of length O(λ−1) with the constant depending on ‖H‖C2 .

This implies that the characteristics of (3.142) are invertible as long as

sup
s∈(t0−h,t0+h)

|B(s) − B(t0)| � O(λ−1).
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It turns out, as it is shown below, that this interval is not long enough to yield a
comparison for the pathwise solutions. Taking, however, advantage of the special
structure of (3.143) and (3.144) and under suitable assumptions on H and its
derivatives, it is possible to improve the estimate of the time interval.

The discussion next aims to explain the need of intervals of invertibility that are
longer than O(λ−1), and serves as a blueprint for the strategy of the actual proof.

Assume that u and v are respectively a subsolution and a supersolution of (3.139).
As in the x-independent case, it is assumed that, for some α > 0 and λ > 0,
(x0, y0, t0) with t0 > 0 is a maximum point of

u(x, t)− v(y, t) − λ′|x − y|2 − αt.

Then, for h > 0 and all x, y,

u(x, t0−h)− v(y, t0−h) � λ′|x−y|2−αh+u(x0, t0)− v(y0, t0)−λ′|x0−y0|2 .

Since w(x, y, t) = u(x, t) − v(y, t) solves the doubled equation (3.139), to obtain
the comparison it is enough to compare w with the small time smooth solution z
to (3.142) starting at t0 − h.

It follows that

u(x0, t0)−v(y0, t0) � w(x0, y0, t0)+u(x0, t0)−v(y0, t0)−w(x0, y0, t0−h)−αh,

and, hence,

α ≤ w(x0, y0, t0)−w(x0, y0, t0 − h)
h

.

Recall that h depends on λ and, to conclude, this dependence must be such that

lim sup
λ→∞

w(x0, y0, t0)−w(x0, y0, t0 − h)
h

≤ 0.

On the other hand, it will be shown that, if z is a smooth solution to (3.142), then

w(x0, y0, t0)−w(x0, y0, t0 − h) � sup
s∈(t0−h,t0+h)

|B(s)− B(t0)|h−1λ−
1
2 .

Combining the last two statements implies that, to get a contradiction, h = h(λ)

must be such that

lim sup
λ→∞

sup
s∈(t0−h,t0+h)

|B(s) − B(t0)|h−1λ−
1
2 = 0. (3.145)

The next argument indicates that there is indeed a problem if the smooth solutions
of the “deterministic” doubled problem exist only for times of orderO(λ−1).
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Indeed in this case, the proof of the comparison argument outlined above, yields

αh � o(1)|B(t0)− B(t0 − h)|λ−1/2,

and, if B ∈ C0,β([0,∞)), it follows that hβ ≈ λ−1, and the above inequality yields

α � o(1)h
3β
2 −1 in which case it is not possible to obtain a contradiction, if β < 2/3,

which, of course, is the case for Brownian paths.
It appears, at least for the moment formally, that for this case the Brownian case

“optimal” interval of existence is O(λ−1/2). Indeed if this is the case then we must

have |B(t0)− B(t0 − h)| ≈ λ− 1
2 , and, hence, h ≈ λ−1. This leads to α � o(1) and,

hence, a contradiction.

3.10.2 Improvement of the Interval of Existence of Smooth
Solutions

The problem is to find longer than O(λ−1) intervals of existence of smooth solution
of the doubled deterministic Hamilton-Jacobi equation (3.143).

Two general sets of conditions will be modeled by two particular classes of
Hamiltonians, namely separated and linear H ’s.

To give the reader a flavor of the type of arguments that will be involved, it is
convenient to begin with “separated” Hamiltonians of the form

H(p, x) = H(p)+ F(x), (3.146)

in which case the doubled equation and its characteristics are

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ut = H(DxU)−H(−DyU)+ F(x)− F(y)
in R

d ×R
d × (−T , T )

U(x, y, 0) = λ′|x − y|2,
(3.147)

and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ = −DH(P) Ẏ = −DH(Q),
Ṗ = DF(X) Q̇ = DF(Y ),
U̇ = H(P)− 〈DH(P), P 〉 −H(Q)+ 〈DH(Q),Q〉

+F(X)− F(Y ),
X(0) = x Y (0) = y P(0) = Q(0) = λ(x − y)
U(0) = λ′|x − y|2.

(3.148)
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Let J (t) denote the Jacobian of the map (x, y) �→ (X(x, y, t), Y (x, y, t)) at time
t. In what follows, to avoid the rather cumbersome notation involving determinants,
all the calculations below are presented for d = 1, that is x, y ∈ R.

It follows that

J = ∂X

∂x

∂Y

∂y
− ∂X
∂y

∂Y

∂x
and J (0) = 1.

The most direct way to find an estimate for the time of existence of smooth solutions
is, for example, to obtain a bound for the first time tλ such that J (tλ) = 1

2 , and, for
this, it is convenient to calculate and estimate the derivatives of J with respect to
time at t = 0.

Hence, it is necessary to derive the odes satisfied by
∂X

∂x
,
∂X

∂y
,
∂Y

∂x
and

∂Y

∂y
.

Writing
∂X

∂α
,
∂Y

∂α
,
∂P

∂α
, and

∂Q

∂α
with α = x or y, differentiating (3.148) and

omitting the subscripts for the derivatives of H and F yields the systems

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

&̇

∂X

∂α
= −D2H(P)

∂P

∂α
,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

&̇

∂X

∂x
(x, y, 0) = 1,

&̇

∂X

∂y
(x, y, 0) = 0,

&̇

∂P

∂α
= D2F(X)

∂X

∂α
,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

&̇

∂P

∂x
(x, y, 0) = λ,

&̇

∂P

∂y
(x, y, 0) = −λ ,

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

&̇

∂Y

∂α
= −D2H(Q)

∂Q

∂α
,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

&̇

∂Y

∂x
(x, y, 0) = 0,

&̇

∂Y

∂Y
(x, y, 0) = 1,

&̇

∂Q

∂α
= D2F(Y )

∂Y

∂α
,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

&̇

∂Q

∂x
(x, y, 0) = λ,

&̇

∂Q

∂y
(x, y, 0) = −λ.

Proposition 10.1 Assume that DH , DF , D2F , D2H , |D3H |(1 + |p|) and D4H

are bounded. If tλ is the first time that J (tλ) = 1/2, then, for some uniform constant
c > 0 which depends on the bounds on H,F and their derivatives, and for all
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x, y ∈ R
d ,

tλ ≥ cmin(1, λ−1/3) .

Proof Straightforward calculations that take advantage of the separated form of the
Hamiltonian yield

J̇ = −D2H(P)

(
∂P

∂x

∂Y

∂y
− ∂P
∂y

∂Y

∂x

)

−D2H(Q)

(
∂X

∂x

∂Q

∂y
− ∂X
∂y

∂Q

∂x

)

and

J̈ has = −
(
D2H(P)D2F(X) +D2H(Q)D2F(Y )

)
J

+ 2D2H(P)D2H(Q)

(
∂P

∂x

∂Q

∂y
− ∂P
∂y

∂Q

∂x

)

−D3H(P)DF(X)

(
∂P

∂x

∂Y

∂y
− ∂P
∂y

∂Y

∂x

)

−D3H(Q)DF(Y )

(
∂X

∂x

∂Q

∂y
− ∂X
∂y

∂Q

∂x

)

.

To simplify the expressions for J̇ and J̈ , it is convenient to write
∂X

∂α
,
∂Y

∂α
,
∂P

∂α
and

∂Q

∂α
in terms of the solutions (η1, ψ1, η2, ψ2) of the linearized system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ̇1 = −D2H(P )φ1, ξ1(0) = 1,

φ̇1 = D2F(X)ξ1, φ1(0) = 0,

ξ̇2 = −D2H(P )φ2, ξ2(0) = 0,

φ̇2 = D2F(X)ξ2, φ2(0) = 1,

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

η̇1 = −D2H(Q)ψ1, η1(0) = 1,

ψ̇1 = D2F(Y )η1, ψ1(0) = 0,

η̇2 = −D2H(Q)ψ2, η2(0) = 0,

ψ̇2 = D2F(Y )η2, ψ2(0) = 1,

which are bounded in [0, 1] and satisfy

⎧
⎨

⎩

ξ1(t) = 1+O(1)t, ξ2(t) = O(1)t,
φ1(t) = O(1)t, φ2(t) = 1+O(1)t,

and
⎧
⎨

⎩

η1(t) = 1+O(1)t, η2 = O(1)t,
ψ1(t) = O(1)t, ψ2 = 1+O(1)t,
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where O(1) denotes different quantities for each functions which are uniformly
bounded in [0, 1]; note that the assumption thatD2H andD2F are bounded is used
here.

A direct substitution yields

⎧
⎪⎨

⎪⎩

∂X
∂x
= ξ1 + λξ2 ∂X

∂y
= −λξ2,

∂P
∂x
= φ1 + λφ2

∂P
∂y
= −λφ2,

and

⎧
⎪⎨

⎪⎩

∂Y
∂x
= λη2

∂Y
∂y
= η1 − λη2,

∂Q
∂x
= λψ2

∂Q
∂y
= ψ1 − λψ2.

Using the observations above gives

∂P

∂x

∂P

∂y
− ∂P
∂y

∂Q

∂x
= (φ1 + λφ2)(ψ1 − λψ2)− (−λφ2)λψ2

= φ1ψ1 + 2λ(φ2ψ1 − φ1ψ2) = O(1)(1+ 2λt),

since

φ1ψ1 = O(1) and φ2ψ1 − φ1ψ2 = (1+O(1)t)O(1)t −O(1)t (1+O(1)t)
= O(1)t .

Similarly, since

φ2η1 − φ1η2 = (1+O(1)t)(1+O(1)t)−O(1)tO(1)t = 1+O(1)t and

ξ2ψ1 − ξ1ψ2 = O(1)tO(1)t − (1+O(1)t)(1+O(1)t) = O(1)t − 1,

it follows that

∂P

∂x

∂Y

∂y
− ∂P
∂y

∂Y

∂x
= (φ1 + λφ2)(η1 − λη2)− (−λφ2)λη2

= φ1ξ1 + λ(φ2η1 − φ1η2) = O(1)(1+ λt)+ λ,

and

∂X

∂x

∂Q

∂y
− ∂X
∂y

∂Q

∂x
= (ξ1 + λξ2)(ψ1 − ψ2)− (−λξ2)λψ2

= ξ1ψ1 + λ(ξ2ψ1 − ξ1ψ2) = O(1)(1+ λt) − λ .

Inserting all the above in the expression for J̈ yields

J̈ = O(1)J +O(1)(1+ λt)+ λ(D3H(Q)DF(Y )−D3H(P)DF(X)).
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Set

A := (D3H(Q)−D3H(P))DF(Y ) and D := D3H(P)(DF(Y ) −DF(X)).

It is immediate that

λ|A| � λO(‖DF‖∞|Q− P |) = λO(1)t,

with the last estimate following from the observation that

(P −Q)(t) = λ(x − y)+
∫ t

0
DF(X(s))ds − (λ(x − y)t

∫ t

0
DF(Y (s))ds

=
∫ t

0
(DF(X(s))−DF(Y (s))ds = O(1)t.

As far as D is concerned, observe that

|D| � ‖D3H‖∞|X − Y | � |X − Y |
1+ |P | ,

and recall that

|X − Y | � |x − y| +O(1)t and |P | = |λ(x − y)+O(1)t|.

Hence,

λ|D| �
[

λ|x − y|
1+ |λ(x − y)+O(1)t| +

λO(1)t

1+ |P |
]

�
[ |P(0)|

1+ |P(0)+O(1)t| +
λO(1)t

1+ |P |
]

;

the second term in the bound above comes from λO(1)t , while an additional
argument is needed for the first.

Choose t ≤ t1 so that the O(1)t term in P is such that |O(1)t| � 1
2 . If |P(0)| �

1, then

|P(0)|
1+ |P(0)+O(1)t| � 1

while, if |P(0)| > 1,

1+ |P(0)+O(1)t| � 1+ |P(0)| − |O(1)t| � |P(0)| + 1

2
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and

|P(0)|
1+ |P(t)| �

|P(0)|
1
2 + |P(0)|

� 1 .

Combining the estimates on λA and λD gives

J̈ = O(1)J +O(1)λt +O(1).

It is also immediate that

J (0) = 1 and J̇ (0) = 0;

this is another place where the separated form of the Hamiltonian and the symmetric
form of the test function play a role.

It follows there exists sλ ∈ (0, tλ) such that

1

2
= 1+ 1

2
t2λ J̈ (sλ)

and, hence,

|t2λ J̈ (sλ)| = 1,

which implies

1 � t2λ(1+ λtλ).

It follows that

1 � λt3λ + t2λ,

and the claim is proved.

Having established a longer than O(λ−1) interval of existence for the solutionUλ
of (3.147), it is now possible to obtain the following comparison result for pathwise
solutions to Hamilton-Jacobi equations with separated Hamiltonians.

Theorem 10.1 Let u ∈ BUC(QT ) and v ∈ BUC(QT ) be respectively a
subsolution and a supersolution of (3.139) in QT with H as in (3.146), that is, of
separated form, satisfying the assumptions of Proposition 10.1. Moreover, assume
that B ∈ C0,β([0,∞]) with β ≥ 2/5. Then, for all t ∈ [0, T ],

sup
x∈Rd

(u(x, t)− v(x, t)) � sup
x∈Rd

(u(·, 0)− v(·, 0)) .
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The following lemma, which is stated without a proof since it is rather classical, will
be used in the proof of Theorem 10.1.

Lemma 10.1 Assume that H ∈ C(Rd ) and F ∈ C0,1(Rd ) and let Uλ be the
viscosity solution of the doubled equationwt = H(Dxw)+F(x)−H(−Dyw, y)−
F(y) inQT with initial datum λ|x − y|2. Then, for all x, y ∈ R

d and t ∈ [0, T ],

|Uλ(x, y, t)− λ|x − y|2| � t‖DF‖ |x − y| .

Proof (The Proof of Theorem 10.1) Assume that (x0, y0, t0) with t0 > 0 is a
maximum point of u(x, t) − v(y, t) − λ|x − y|2 − αt . Repeating the arguments
at the end of the previous subsection and using Lemma 10.1 yields

αh � ‖DF‖∞|x0 − y0| |B(t0)− B(t0 − h)| . (3.149)

Recall that, in view of Proposition 10.1, the above inequality holds as long as

|B(t0)− B(t0 − h)| � λ−1/3 .

Since B ∈ C0,β([0,∞]), h = h(λ)can be chosen so that

λ−1 ≈ h−3β.

Moreover, (x0, y0) ∈ R
d ×R

d being a maximum of u(x, t0)− v(y, t0)− λ|x − y|2
yields λ|x0 − y0|2 � max(‖u‖, ‖v‖) and, if ω is the modulus of continuity of u,
λ|x0 − y0|2 � ω(λ−1/2 max(‖u‖, ‖v‖)1/2) = O(1), and, hence, |x0 − y0| � λ−1/2.

Inserting all the observations above in (3.149), gives αh � o(1)h
5β
2 , and, thus,

α � o(1)h
5β
2 −1, which leads to a contradiction as λ→∞.

Note that it is possible to assume less on B in Theorem 10.1, if more information
is available about the modulus of continuity of either u or v.

For Hamiltonians that are not of separated form, the situation is more compli-
cated. Indeed the “canonical” assumption on H for the deterministic theory is that,
for some modulus ωH and all x, y, p ∈ R

d ,

|H(p, x)−H(p, y)| � ωH (|x − y|(1+ |p|)). (3.150)

On the other hand, the proof of the comparison yields

λ|x0 − y0|2 � 2 max(‖u‖, ‖v‖),

and

λ|x0 − y0|2 � max(ωu(|x0 − y0|), ωv(|x0 − y0|)) ,
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and, hence,

|x0 − y0|2 � λ−1 max(ωu, ωv)(2(λ−1 max(‖u‖, ‖v‖))1/2) .
If either u or v is Lipschitz continuous, then the above estimate can be improved

to

|x0 − y0| � min(‖Du‖, ‖Dv‖)λ−1 .

The next technical result replaces Lemma 10.1. Its proof is again classical and it is
omitted.

Lemma 10.2 Assume that H satisfies (3.150) with ωH (r) = Lr. Let Uλ be the
viscosity solution of the doubled initial value problem (3.143). Then there exists
C > 0 depending on L such that, for all x, y ∈ R

d and t ∈ [0, T ],

|Uλ(x, y, t)− λ′eCt |x − y|2| � (eCt − 1)|x − y| . (3.151)

If, in addition |x − y| � λ−1, then

|Uλ(x, y, t)− λ′eCt |x − y|2| � tλ−1 .

A discussion follows about how to “increase” the length of the interval of existence
of solutions given by the method of characteristics forH ’s which are not separated.
To keep the notation simple, it is again convenient to argue for d = 1.

The characteristic odes for the deterministic doubled pde (3.147) are
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ẋ = −DpH(P,X) Ẏ = −DqH(Q, Y ),
Ṗ = DxH(P,X) Q̇ = DyH(Q, Y ),
U̇ = H(P,X)− 〈DpH(P,X,P )〉 −H(Q, Y )+ 〈DQH(Q, Y )Q)〉,
X(0) = x Y (0) = y P(0) = Q(0) = λ(x − y) U(0) = λ′|x − y|2.

Recall that the Jacobian is given by

J = ∂X

∂x

∂Y

∂y
− ∂X
∂y

∂Y

∂x
,

and, for α = x or y,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂X

∂α
= −D2

pH(P,X)
∂P

∂α
−D2

pxH(P,X)
∂X

∂α
,

∂X

∂α
(0) =

{
1 if α = x
0 if α �= x ,

∂P

∂α
= D2

pxH(P,X)
∂P

∂α
+D2

xH(P,X)
∂X

∂α
,

∂P

∂α
(0) =

{
λ if α = x
−λ if α = y ,
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and
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂Y

∂α
= −D2

qH(Q, Y )
∂Q

∂α
−D2

qyH(Q, Y )
∂Y

∂α
,

∂Y

∂α
(0) =

{
0 if α = x
1 if α = y ,

∂Q

∂α
= D2

yqH(Q, Y )
∂Q

∂α
+D2

yH(Q, Y )
∂Y

∂α
,

∂Q

∂α
(0) =

{
λ if α = x
−λ if α = y .

It is also convenient to consider, for i = 1, 2 and z = x − y, the linearized auxiliary
systems

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ̇i=−D2
ppH(P,X)(1 + λ|z|)φi−D2

xpH(P,X)ξi ,

ξ1(0) = 1, ξ2(0) = 0

φ̇i = D2
xpH(P,X)φi +

D2
xxH(P,X)ξi

1+ λ|z|
φ1(0) = 0, φ1(0) = 1

1+ λ|z| ,

(3.152)

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η̇i=−D2
qH(Q, Y )(1+ λ|z|)ψi−D2

qyH(Q, Y )η
i,

η1(0) = 1, η2(0) = 0,

ψ̇i = D2
qyH(Q, Y )ψi +D2

yyH(Q, Y )
ηi

1+ λ|z| ,
ψ1(0) = 0, ψ2(0) = 1

1+ λ|z| .

(3.153)

It is immediate that
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂X

∂x
= ξ1 + λξ2, ∂X

∂y
= −λξ2, ∂Y

∂x
= −λη2,

∂Y

∂x
= −λη2,

∂P

∂x
= (φ1 + λφ2)(1+ λ|z|) ∂Q

∂x
= −λψ2(1+ λ|z|),

∂P

∂y
= −λφ2(1+ λ|z|) ∂Q

∂y
= (ψ1 + λψ2)(1+ λ|z|).
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Assume next that, for all p, x ∈ R
d ,

|D2
xpH(p, x)| � 1, |D2

pH(p, x| � 1, (1+ |p|)|D2
xH(p, x| � 1

|D3
xxpH(p, x| � 1 (1+ |p|)|D3

xppH(p, x)| � 1

(1+ |p|)2|D3
pH(p, x)| � 1.

(3.154)

It follows that there exists C = C(T ) > 0 such that, for all t ∈ [−T , T ],

|ξ1(t)| � C, |η1(t)| � C, |ξ2(t)| � Ct

1+ λ|z|
and |η2(t)| � Ct

1+ λ|z| .
(3.155)

Consider the matrices

Ax =
⎛

⎜
⎝

−D2
xpH(P,X) −D2

ppH(P,X)(1 + λ|z|)
D2
xH(P,X)

1+ λ|z| D2
xpH(P,X)

⎞

⎟
⎠

and

Ay =
⎛

⎜
⎝

−D2
yqH(Q, Y ) −D2

qqH(Q, Y )(1+ λ|z|)
D2
yyH(Q, Y )

1+ λ|z| D2
yqH(Q, Y ).

⎞

⎟
⎠

The next lemma, which is stated without proof, is important for the development of
the rest of the theory here as well as for the theory of pathwise conservation laws.

Lemma 10.3 Assume that, in addition to (3.154), for all p, x ∈ R
d , |DpH(p, x)|

and (1+ |p|)−1|DxH(p, x)| are bounded. Then there exist ε0 > 0 and C > 0 such
that, for all t ∈ (0, ε0),

‖Ax − Ay‖ � C|z| .

Lemma 10.3 implies that, for all t ∈ (0, ε0),

|ξ1 − η1| � C|z|t and |ξ2 − η2| � C|z|t
1+ λ|z| , (3.156)

and, since

λ(ξ2η1 − ξ1η2) = λ(ξ2 − η2)η1 + λη2(η1 − ξ1),
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it follows from (3.155) and (3.156) that

|λ(ξ2η1 − ξ1η2)| � Ct. (3.157)

Similar arguments allow to obtain an interval of invertibility of the characteristics
that is uniform in λ, and, hence, a O(1)-interval of existence of smooth solutions
of the doubled equation if either one of the following three groups of possible
assumptions hold for all (x, p) ∈ R

d × R
d :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|D2
xH | � 1, |D3

xxxH | � 1, |D2
xpH | � 1,

|D3
xxpH |(1+ |p|) � 1, |D2

pH | � 1,

|D3
xppH |(1+ |p|) � 1, |D3

pH |(1+ |p|) � 1.

(3.158)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|D2
xH | � 1, |D3

xH | � (1+ |p|), |D2
xpH | � 1,

|D3
xxpH | � 1, |D2

pH |(1+ |p|) � 1,

|D3
ppxH |(1+ |p|) � 1, |D3

pH |(1+ |p|2) � 1.

(3.159)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|D2
pH | � 1, |D2

xpH | � 1, |D2
xH |(1+ |p|) � 1,

|D3
xxpH |(1+|p|2) � 1, |D3

xppH | � 1,

|D3
xH |(1+|p|) � 1.

(3.160)

Note that (3.158) contains the split variable case, and linear-type Hamiltonians are
a special case of (3.159).

Calculations similar to the ones used in the split variable case yield

|ξ2η1 − η2ξ1| � t2,

and, as was already seen, tλ = λ−1/3. Note that, if |DH |, |D2H | and |D3H | are all
bounded, then tλ = λ−1/2.

3.10.3 The Necessity of the Assumptions

An important question is whether conditions like the ones stated above are actually
necessary to have well posed problems for Hamiltonians that depend on p, x. That
some conditions are needed is natural since the argument is based on inverting
characteristics and, hence, staying away from shocks. In view of this, assumptions
that control the behavior of H and its derivatives for large |p| are to be expected.
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On the other hand, some of the restrictions imposed are due to the specific choice
of the initial datum of the doubled equation, which, in principle, does not “interact
well” with the cancellation properties of the given H .

Consider, for example, the Hamiltonian

H(p, x) = F(a(x)p), (3.161)

with

a, F ∈ C2(R) ∩ C0,1(R) and a > 0. (3.162)

The characteristics are

Ẋ = −F ′(a(X)P )a(X) and Ṗ = F ′(a(X)P )a′(X)P.

Let φ ∈ C2(R) be such that φ′ = 1

a
, X̂ = φ(X) and P̂ = a(X)P. Then

˙̂
X = φ′(X)Ẋ = −a−1(X)F ′(a(X)P )a(X) = −F ′(P̂ )

and

˙̂
P = a′(X)ẊP + a(X)Ṗ = −a′(X)F ′(P̂ )a(X)P + a(X)F ′(a(X)P )a′(X)P = 0 .

The observations above yield that it is better to use λ|φ−1(x)− φ−1(y)|2 instead of
λ|x − y|2 in the comparison proof.

At the level of the pde

du = F(a(x)ux) · dB,

the above transformation yields that, if u(x, t) = U(φ(x), t), then

dU = F(Ux) · dB ,

a problem which is, of course, homogeneous in space, and, hence, as already seen,
there is a O(1)-interval of existence for the doubled pde.

This leads to the question if it is possible to find, instead of λ|x − y|2, an initial
datum for the doubled pde, which is still coercive, and, in the mean time, better
adjusted to the structure of the doubled equation. This is the topic of the next
subsection.
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3.10.4 Convex Hamiltonians and a Single Path

The example discussed was the motivation behind several works which eventually
led to a new class of well-posedness results in the case of a single path and convex
Hamiltonians.

The first result in this direction which applied to quadratic Hamiltonians
corresponding to Riemannian metrics is due to Friz et al. [30]. A more general
version of the problem (positively homogeneous and convex in p Hamiltonians)
was studied in [98]. The final and definitive results, which apply to general convex
in p Hamiltonians with minimal regularity conditions, were obtained by Lions and
Souganidis [73]. These results are sketched next.

To keep the ideas simple, here I only discuss the first-order problem

du = H(Du, x) · dB in QT u(·, 0) = u0. (3.163)

To motivate the question, I recall that the basic step of any comparison proof for
viscosity solutions is to maximize functions like u(x, t)− v(y, t)− λ|x − y|2. The
properties of λ|x − y|2 used in the proofs are that

⎧
⎨

⎩

DxLλ = −DyLλ, Lλ ≥ 0, Lλ(x, x) = 0 and

Lλ(x, y)→∞ if |x − y| > 0.
(3.164)

The difficulty is that in the spatially dependent problems this choice of Lλ leads
to expressions like H(λ(x − y), x) − H(λ(x − y), y) and, hence, error terms that
are difficult to estimate when dealing with rough signals.

To circumvent this problem it seems to be natural to ask if it is possible to replace
λ|x−y|2 by some Lλ(x, y) that has similar continuity and coercivity properties and
is better suited to measure the “distance” between H(·, x) and H(·, y).

In particular, it is necessary to find Lλ : Rd × R
d → R such that

H(DxLλ, x) = H(−DyLλ, y),
Lλ � −λ−1, Lλ(x, y) →

λ→∞ ∞ if x �= y,

Lλ(x, x) →
λ→∞ 0, and Lλ ∈ C1

x,y in a neighborhood of {x = y}. (3.165)

It turns out (see [73]) that this is possible if H is convex or, more generally, if
there exists H0 convex such that the pair H,H0 is an involution, that is, {H,H0} =
0. Here I concentrate on the convex case.
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Given H convex with Legendre transform L, define

Lλ(x, y) = inf
{ ∫ λ−1

0
L(−ẋ(s), x(s))ds :

x(0) = x, x(λ−1) = y, x(·) ∈ C0,1([0, λ−1])
}
.

It follows, see, for example, Crandall et al. [16] and Lions [58], that Lλ(x, y) =
L(x, y, λ−1), where L is the unique solution of

Lt +H(DxL, x) = 0 in R
d × (0,∞) L(x, y, 0) = δ{y}(x)

Lt +H(−DyL, y) = 0 in R
d × (0,∞) L(x, y, 0) = δ{x}(y),

where δA(x) = 0 if x ∈ A and δA(x) = ∞ otherwise.
Note that, at least formally, the above imply that

H(DxLλ, x) = H(−DyLλ, y).

From the remaining properties in (3.165) the most challenging one is the regularity.
I summarize next without proofs the main result of [73]. In what follows ν and

μ denote respectively constants for lower and upper bounds.
The assumption onL : Rd×R

d → R is that there exist positive constants q, ν, μ
and C ≥ 0 such that, for all ξ ∈ R

d ,

⎧
⎨

⎩

ν|p|q − C ≤ L ≤ μ|p|q + C,
|DxL| ≤ μ|p|q + C, |DpxL| ≤ μ|p|q−1 + C,

(3.166)

and
⎧
⎨

⎩

ν|p|q−2|ξ |2 ≤ 〈D2Lpξ, ξ〉 ≤ (μ|p|q−2 + C)|ξ |2,
|D2Lx | ≤ μ|p|q + C;

(3.167)

notice that it is important that D2
pL is positive definite.

The result is stated next.

Theorem 10.2 Assume (3.166) and (3.167). Then:

(i) If q ≤ 2, then there exists λ0 such that, if λ > λ0, Lλ ∈ C1
x,y({|x−y| < λ−1}).

(ii) If q > 2 and C > 0, then, in general, (i) above is false, and, in fact,
L(x, x, λ−1) may not be differentiable for any λ.

(iii) If q > 2 and C = 0, then there exists λ0 such that, if λ > λ0, Lλ ∈ C1
x,y({|x −

y| < λ−1}).
(iv) In all cases, L is semiconcave in both x and y.
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It follows that, when q ≤ 2 or q > 2 and C = 0, the pathwise solutions of the
stochastic Hamilton-Jacobi initial value problem are well posed. The result extends
to the full second order problem, because the semiconcavity is enough to carry out
the details.

3.10.5 Multiple Paths

I sketch here briefly the strategy that Lions and the author developed in [72] to
establish the well-posedness of the pathwise solutions in the multi-path spatially
dependent setting with Brownian signals. The argument is rather technical and to
keep the ideas as simple as possible I only discuss the first-order problem

du =
m∑

i=1

Hi(Du, x) · dBi in QT u(·, 0) = u0, (3.168)

and provide some hints about the difficulties and the methodology.
As in the single-path case, the main step is to obtain a sufficiently long interval

of existence of smooth solutions of the doubled initial value problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dU =∑m
i=1

[
Hi(DxU, x)−Hi(−DyU, y)

] · dBi
in R

d × R
d × (0, T ],

U(x, y, 0) = λ|x − y|2.
(3.169)

The semiformal argument presented earlier suggests that it is necessary to have
an interval of existence of order λ−α for an appropriately chosen small α > 0 which
depends on the properties of the path. This was accomplished by reverting to the
“non rough” time homogeneous doubled equation, something that is not possible
for (3.169).

The new methodology developed in [72] consists of several steps. The first is
to provide a large deviations-type estimate about the error, in terms of powers of
λ−1, between the stochastic characteristics and their linearizations and the Jacobian,
and their second-order expansion in terms of B and its Levy areas. This would be
straightforward, if it were not for the fact that the error must be uniform in (x, y)
such that |x − y| = O(λ−1/2).

Next I describe this problem for the solution S of a stochastic differential
equation dS = σ(S)dB with S(0) = s. The aim is to obtain an exponentially
small estimate for the probability of the event that sups∈K |S(t)− (s + σ(s)B(s) +
(1/2)σσ ′(s)B2(t))| > λ−β , where is A is a subset of R which may depend on λ. In
other words we need an estimate for the probability of the sup instead of the sup of
the probability. Obtaining such a result requires a new approach based on estimating
Lp-norms of events for large p.
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Having such estimates allows for a local in time comparison result off a set of
exponentially small probability in terms of λ−1. An “algebraic” iteration of this
local comparison provides the required result at the limit λ→∞.

3.11 Perron’s Method

Perron’s method is a general way to obtain solutions of equations which satisfy
a comparison principle. The general argument is that the maximal subsolution is
actually a solution. The idea is that, at places where it fails to be a solution, a
subsolution can be strictly increased and maintain the subsolution property. This is a
local argument which has been carried out successfully for “deterministic” viscosity
solutions. This locality creates, however, serious technical difficulties in the rough
path setting due to the rigidity of the test functions.

In this section I discuss this method in the context of the simplified initial value
problem

du = F(D2u,Du) dt +
m∑

i=1

Hi(Du, x) · dBi in QT u(·, 0) = u0, (3.170)

where u0 ∈ BUC(Rd ), T > 0, and B = (B1, . . . , Bm) is a Brownian path. The
method can be a extended to problems with F depending also on (x, t) and B a
geometric rough path that is α-Hölder continuous for some α ∈ (1/3, 1/2]. For
details I refer to [100].

Throughout the discussion it is assumed that

⎧
⎨

⎩

F : Sd ×R
d → R is continuous, bounded for bounded

(X, p) ∈ Sd × R
d and degenerate elliptic,

(3.171)

and the Hamiltonians are sufficiently regular, for example,

H ∈ C4
b (R

d ×R
d ;Rm), (3.172)

to allow for the construction of local-in-time, C2 in space solutions of dw =∑m
i=1H

i(Du, x) · dBi.
As mentioned in Sect. 3.4, if the Poisson brackets of the {Hi} vanish, for

example, if m = 1 or there is no spatial dependence, then it suffices to have
H ∈ C2

b (BR × R
d;Rm) for all R > 0.

The result is stated next.
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Theorem 11.1 Assume (3.171) and (3.172). Then (3.170) has a unique solution
u ∈ BUC(QT ), which is given by

u(x, t) = sup {v(x, t) : v(·, 0) ≤ u0

and v is a subsolution of (3.170)} . (3.173)

As has been discussed earlier, more assumptions are generally required for F ,H ,
and B in order for the comparison principle to hold. This is especially the case when
H has nontrivial spatial dependence even whenm = 1. Apart from the assumptions
that yield the comparison, the only hypotheses used for the Perron construction
are (3.172).

As before, S(t, t0) : C2
b (R

d) → C2
b (R

d) be the solution operator for local in
time, spatially smooth solutions of

dΦ =
m∑

i=1

Hi(DΦ, x) · dBi in R
d × (t0 − h, t0 + h) Φ(·, t0) = φ. (3.174)

It is clear from the definition of stochastic viscosity subsolutions that the maxi-
mum of a finite number of subsolutions is also a subsolution, with a corresponding
statement holding true for the minimum of a finite number of supersolutions. This
observation to can be generalized to infinite families.

Lemma 11.1 Given a family F of subsolutions (resp. supersolutions) of (3.170), let
U(x, t) = supv∈F v(x, t) ( resp. infv∈F v(x, t)) . If U∗ <∞ (resp. U∗ > −∞),
then U∗ (resp. U∗) is a subsolution (resp. supersolution) of (3.170).

Proof I only a sketch of the proof of the subsolution property.
Let φ ∈ C2

b (R
d), ψ ∈ C1([0, T ]), t0 > 0, and h > 0 be such that S(·, t0)φ ∈

C((t0 − h, t0 + h),C2
b (R

d)), assume that U∗(x, t) − S(t, t0)φ(x)− ψ(t) attains a
strict local maximum at (x0, t0) ∈ R

d × (t0 − h, t0 + h), and set p = Dφ(x0),
X = D2φ(x0), and a = ψ ′(t0). The goal is to show that

a ≤ F(X,p).

The definition of upper-semicontinuous envelopes and arguments from the
classical viscosity solution theory imply that there exist sequences (xn, tn) ∈
R
d × (t0 − h, t0 + h) and vn ∈ F such that limn→∞(xn, tn) = (x0, t0),

limn→∞ vn(xn, tn) = U∗(x0, t0), and

vn(x, t)− S(t, t0)φ(x)− ψ(t)

attains a local maximum at (xn, t0). Applying the definition of stochastic viscosity
subsolutions and letting n→∞ completes the proof.

The second main step of the Perron construction is discussed next.
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Lemma 11.2 Suppose that w is a subsolution of (3.170), and that w∗ fails to be
a supersolution. Then there exists (x0, t0) ∈ R

d × (0, T ] such that, for all κ >
0, (3.170) has a subsolution wκ such that

wκ ≥ w, sup(wκ −w) > 0, and

wκ = w in QT \ (Bκ(x0)× (t0 − κ, t0 + κ)) .

Proof By assumption, there exist φ ∈ C2
b (R

d), ψ ∈ C1([0, T ]), (x0, t0) ∈ R
d ×

(0, T ], and h ∈ (0, κ) such that S(·, t0)φ ∈ C((t0 − h, t0 + h),C2
b (R

d)),

w∗(x, t)− S(t, t0)φ(x)− ψ(t)

attains a local minimum at (x0, t0), and

ψ ′(t0)− F(D2φ(x0),Dφ(x0)) < 0. (3.175)

Assume, without loss of generality, that x0 = 0, φ(0) = 0, and ψ(t0) = 0, set X =
D2φ(0), p = Dφ(0), and a = ψ ′(t0), fix γ ∈ (0, 1), r ∈ (0, κ), and s ∈ (0, h), and
choose η̂ ∈ C2

b (R
d ) and h > 0 so that

η̂(x) = p · x + 1

2
〈Xx, x〉 − γ |x|2 in Br(x0), η̂ ≤ φ in R

d,

and

S(·, t0)η̂ ∈ C((t0 − h, t0 + h);C2
b(R

d )).

For (x, t) ∈ R
d × (t0 − h, t0 + h) and δ > 0, define

ŵ(x, t) = w∗(0, t0)+ δ + S(t, t0)η̂(x)+ a(t − t0)− γ (|t − t0|2 + δ2)1/2.

In view of the strict inequality in (3.175), the continuity of the solution map S(t, t0)
on C2

b (R
d), and the continuity of F , if γ , r , s, and δ are sufficiently small, then ŵ

satisfies the subsolution property in Br(0)× (t0 − s, t0 + s).
The most important step in the proof is to show that, with all parameters

sufficiently small, there exist 0 < r ′ < r and 0 < s′ < s such that

w > ŵ in (Br(0)× (t0 − s, t0 + s)) \Br ′(0)× (t0 − s′, t0 + s′). (3.176)

Achieving the inequality in (3.176) for points of the form (x, t0) can be done
using classical arguments. However, this is much more difficult for arbitrary t �= t0,
because, in view of the definition of ŵ, it is necessary to study the local in time,
spatially smooth solution operator S(t, t0).
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This difficulty is overcome by establishing a finite speed of propagation for such
local in time, spatially smooth solutions. As has been discussed earlier in the notes,
such a result cannot be true in general. Here it relies on access to the system of rough
characteristics. Indeed, the domain of dependence result is proved by estimating the
deviation of characteristics from their starting points, using tools from the theory of
rough or stochastic differential equations.

Once (3.176) is established, define

wκ(x, t) =
{

max(ŵ(x, t), w(x, t)) for (x, t) ∈ Br(0)× (t0 − s, t0 + s),
w(x, t) for (x, t) /∈ Br(0)× (t0 − s, t0 + s).

Then wκ ≥ w, and wκ = w outside of Bκ(0)× (t0 − κ, t0 + κ). If (xn, tn) is such
that limn→∞(xn, tn) = (0, t0) and limn→∞ w(xn, tn) = w∗(0, t0), then

lim
n→∞

(
w(xn, tn)− ŵ(xn, tn)

) = −(1− γ )δ < 0,

so that

sup
Bκ(0)×(t0−κ,t0+κ)

(wκ − w) > 0.

Finally,wκ is a subsolution. This is evident outside of Br(0)×(t0−s, t0+s), as well
as in the interior ofBr(0)×(t0−s, t0+s), because there,wκ is equal to the pointwise
maximum of two subsolutions. It remains to verify the subsolution property on the
boundary of Br(0) × (t0 − s, t0 + s), and this follows because, in view of (3.176),
wκ = w in a neighborhood of the boundary of Br(0)× (t0 − s, t0 + s).
Proof (Proof of Theorem 11.1) The first step is to verify that u is well defined and
bounded. This follows from the comparison principle, and the fact that, in view of
the assumptions, it is possible to construct a subsolution and a supersolution with
respectively initial datum −‖u0‖∞ and ‖u0‖∞.

Fix ε > 0 and let φε ∈ C2
b (R

d ) be such that

φε − ε ≤ u0 ≤ φε + ε on R
d .

It is possible to construct a subsolution and a supersolution uε and uε which are
continuous in a neighborhood of Rd×{0} and achieve respectively the initial datum
φε − ε and φε + ε. This can be done by using the solution operator S(tk+1, tk)

on successive, small intervals [tk, tk+1] and the boundedness properties of F . Once
again, see [99] for the details.

The comparison principle yields

uε ≤ u∗ ≤ u ≤ u∗ ≤ uε in QT ,
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and, in view of the continuity of uε and uε near Rd × {0},

φε − ε ≤ u∗(·, 0) ≤ u∗(·, 0) ≤ φε + ε.

Since ε is arbitrary, it follows that u(·, 0) = u0 and lim(x,t)→(x0,0) u(x, t) = u0(x0)

for all x0 ∈ R
d .

Lemma 11.1 now implies that u∗ is a subsolution of (3.170) with u∗(x, 0) ≤
u0(x). The formula (3.173) for u then yields u∗ ≤ u, and, therefore, u∗ = u. That
is, u is itself upper-semicontinuous and a subsolution.

On the other hand, u∗ is a supersolution. If this were not the case, then
Lemma 11.2 would imply the existence of a subsolution ũ ≥ u and a neighborhood
N ⊂ R

d × (0, T ] such that ũ = u in (Rd × [0, T ])\N and supN(ũ − u) > 0,
contradicting the maximality of u.

The comparison principle gives u∗ ≤ u∗, and, as a consequence of the definition
of semicontinuous envelopes, u∗ ≤ u∗. Therefore, u = u∗ = u∗ is a solution
of (3.170) with u = u0 on R

d × {0}. The uniqueness of u follows from yet another
application of the comparison principle.

3.12 Approximation Schemes, Convergence and Error
Estimates

Here I discuss a general program for constructing convergent (numerical) approx-
imation schemes for the pathwise viscosity solutions and obtain, for first-order
equations, explicit error estimates.

The presentation focuses on the initial value problem

du = F(D2u,Du) dt +
m∑

i=1

Hi(Du) · dBi in QT u(·, 0) = u0, (3.177)

where T > 0 is a fixed finite horizon, F ∈ C0,1(Sd × R
d ) is degenerate elliptic,

H ∈ C2(Rd ), B = (B1, . . . , Bm) ∈ C([0, T ];Rm), and u0 ∈ BUC(Rd ).

3.12.1 The Scheme Operator

Following the general methodology for constructing convergent schemes for “non-
rough” viscosity solutions put forward by Barles and Souganidis [5], the approxima-
tions are constructed using a “scheme” operator, which, for h > 0, 0 ≤ s ≤ t ≤ T ,
and ζ ∈ C([0, T ];Rm), is a map Sh(t, s; ζ ) : BUC(Rd )→ BUC(Rd ).

Given a partition P = {0 = t0 < t1 < · · · < tN = T } of [0, T ] with mesh size
|P | and a path ζ ∈ C0([0, T ];Rm), usually a piecewise linear approximation of B,
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the (approximating) function ũh(·; ζ,P) is defined by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ũh(·, 0; ζ,P) := u0 and

ũh(·, t; ζ,P) := Sh(t, tn; ζ )ũh(·, tn; ζ,P)
for n = 0, 1, . . . , N − 1, t ∈ (tn, tn+1].

(3.178)

The strategy is to choose families of approximating paths {Bh}h>0 and partitions
{Ph}h>0 satisfying

lim
h→0+

‖Bh − B‖∞ = 0 = lim
h→0+

|Ph| , (3.179)

in such a way that the function

uh(x, t) := ũh(x, t;Bh,Ph) (3.180)

is an efficient approximation of the solution of (3.177).
The main restriction on the scheme operator is that it has to be monotone, that is,

⎧
⎪⎪⎨

⎪⎪⎩

if tn ≤ t ≤ tn+1, tn, tn+1 ∈ Ph, and u, v ∈ BUC(Rd ) such that u ≤ v in R
d ,

then

Sh(t, tn;Bh)u ≤ Sh(t, tn;Bh) in R
d .

(3.181)

It will also be necessary for the scheme operator to commute with constants, that is,
for all u ∈ BUC(Rd ), h > 0, 0 ≤ s ≤ t <∞, ζ ∈ C0([0, T ],Rm), and k ∈ R,

Sh(t, s; ζ ) (u+ k) = Sh(t, s; ζ )u+ k. (3.182)

Finally, the scheme operator must be “consistent” with the equation in some sense.
This point, as well as the motivation for the above assumptions, are explained below.

3.12.2 The Method of Proof

I give here a brief sketch of the proof. All the details and concrete examples can be
found in Seeger [96].

Assume for the moment that limh→0 uh = u locally uniformly for some u ∈
BUC(QT ). In fact, a rigorous proof involves studying the so-called half-relaxed
limits of uh, but I omit these cumbersome details.
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The goal is to show that u is the unique pathwise solution of (3.177). To that end,
suppose that

u(x, t)−Φ(x, t)− ψ(t)

attains a strict maximum at (y, s) ∈ R
d × I , where ψ ∈ C1([0, T ]) and, for some

small open interval I ⊂ [0, T ], Φ ∈ C(I ;C2(Rd)) is a local in time, smooth in
space solution of

dΦ =
m∑

i=1

Hi(DΦ) · dBi in R
d × I. (3.183)

I will show that

ψ ′(s) ≤ F(D2Φ(y, s),DΦ(y, s)),

which implies that u is a subsolution. The argument to show it is a supersolution is
similar.

For h > 0, let Φh be the local in time, smooth in space solution of

Φh,t =
m∑

i=1

Hi(DΦh)Ḃi,h in R
d × I Φh(·, s) = Φ(·, t0). (3.184)

Recall that such a solution can be shown to exist using the method of character-
istics. The interval I may need to be shrunk, if necessary, but its length is uniform
in h. Since limh→0 Bh = B uniformly on [0, T ], it follows that, as h → 0, Φh
converges to Φ in C(I ;C2(Rd)).

As a result, there exists {(yh, sh)}h>0 ⊂ R
d×I such that limh→0(yh, sh) = (y, s)

and

uh(x, t)−Φh(x, t)− ψ(t)

attains a local maximum at (yh, sh).
That lim

h→0
|Ph| = 0 yields that, for h sufficiently small, there exist n ∈ N

depending on h such that

tn < sh ≤ tn+1 and tn, tn+1 ∈ I.

It then follows that

uh(·, tn)−Φh(·, tn)− ψ(tn) ≤ uh(yh, sh)−Φh(yh, sh)− ψ(sh),
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or, after rearranging terms,

uh(·, tn) ≤ uh(yh, sh)+Φh(·, tn)−Φh(yh, sh)+ ψ(tn)− ψ(sh). (3.185)

This is the place where the monotonicity (3.181) and the commutation with
constants (3.182) of the scheme come into play. Applying Sh(sh, tn;Wh) to both
sides of (3.185), and evaluating the resulting expression at x = yh give

uh(yh, sh) ≤ uh(yh, sh)+Sh(sh, tn;Bh)Φh(·, tn)(yh)−Φh(yh, sh)+ψ(tn)−ψ(sh),

whence

ψ(sh)− ψ(tn)
sh − tn ≤ Sh(sh, tn;Bh)Φh(·, tn)(yh)−Φh(yh, sh)

sh − tn .

As h → 0, the left-hand side converges to ψ ′(s). The construction of a
convergent scheme then reduces to creating a scheme operator, partitions Ph, and
pathsWh satisfying (3.181) and (3.182), as well as the consistency requirement

lim
s,t∈I, t−s→0

Sh(t, s;Bh)Φh(·, s)−Φh(·, s)
t − s = F(D2Φ,DΦ) (3.186)

wheneverΦ and Φh are as in respectively (3.183) and (3.184).

3.12.3 The Main Examples

Presenting a full list of the types of schemes that may be constructed is beyond the
scope of these notes. Here, I give a few specific examples that are representative of
the general theory. More schemes and details can be found in [96].

Here I focus mainly on finite difference schemes. To simplify the presentation,
assume d = m = 1, F and H are both smooth, and F depends only on uxx , so
that (3.177) becomes

du = F(uxx) dt +H(ux) · dB in QT u(·, 0) = u0, (3.187)

and, in the first-order case when F ≡ 0,

du = H(ux) · dB in QT u(·, 0) = u0. (3.188)

I present next a number of different partitions Ph and approximating paths Bh
for which the program in the preceding subsection may be carried out. While
technical, these are all made with the same idea in mind, namely, to ensure that
the approximation Bh is “mild” enough with respect to the partition. In particular,



168 P. E. Souganidis

for any consecutive points tn and tn+1 of the partition Ph and for sufficiently small
h, the ratio

|Bh(tn+1)− Bh(tn)|
h

should be less than some fixed constant. This is a special case of the well-
known Courant-Lewy-Friedrichs (CFL) conditions required for the monotonicity
of schemes in the “non-rough” setting.

For some εh > 0 to be determined, define

Sh(t, s; ζ )u(x) = u(x)+H
(
u(x + h)− u(x − h)

2h

)

(ζ(t)− ζ(s))

+
[
F

(
u(x + h)+ u(x − h)− 2u(x)

h2

)

+ εh
(
u(x + h)+ u(x − h)− 2u(x)

h2

)]
(t − s).

(3.189)

The first result, which is qualitative in nature, applies to the simple setting above
as follows.

Theorem 12.1 Assume that, in addition to (3.179), Bh and Ph satisfy

|Ph| ≤ h2

‖F ′‖∞
and εh = h‖Ḃh‖ h→0−−−→ 0.

Then, as h → 0, the function uh defined by (3.180) using the scheme opera-
tor (3.189) converges locally uniformly to the solution u of (3.187).

The condition in Theorem 12.1 on the approximating path Bh can be satisfied in
several different ways. For example, Bh could be a piecewise linear approximation
ofB of step-size ηh > 0, with limh→0 ηh = 0 in such a way that limh→0 h‖Ḃh‖ = 0.

By quantifying the method of proof in the previous subsection, it is possible to
obtain explicit error estimates for finite difference approximations of the pathwise
Hamilton-Jacobi equation (3.188). The results below are stated for the following
scheme, which is defined, for some θ ∈ (0, 1], by

Sh(t, s; ζ )u(x) = u(x)+H
(
u(x + h)− u(x − h)

2h

)

(ζ(t)− ζ(s))

+ θ
2
(u(x + h)+ u(x − h)− 2u(x)) ;

(3.190)

note that this corresponds to choosing εh = θh2

2(t − s) in (3.189).
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Assume that ω : [0,∞) → [0,∞) is the modulus of continuity of the fixed
continuous path B on [0, T ], define, for h > 0, ρh implicitly by

λ = (ρh)
1/2ω((ρh)

1/2)

h
<

θ

‖H ′‖∞
, (3.191)

and choose the partition Ph and path Bh so that

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ph = {nρh ∧ T }n∈N0, Mh := %(ρh)−1/2&,
and, for k ∈ N0 and t ∈ [kMhρh, (k + 1)Mhρh),

Bh(t) = B(kMhρh)

+
(
B((k + 1)Mhρh)− B(kMhρh)

Mhρh

)

(t − kMhρh) .

(3.192)

Theorem 12.2 There exists C > 0 depending only on L such that, if uh is
constructed using (3.180) and (3.190) with Ph and Bh as in (3.191) and (3.192),
and u is the pathwise viscosity solution of (3.188), then

sup
(x,t)∈Rd×[0,T ]

|uh(x, t)− u(x, t)| ≤ C(1+ T )ω((ρh)1/2).

If, for example, B ∈ C0,α([0, T ]), then (3.191) means that ρh = O(h2/(1+α)),
and the rate of convergence in Theorem 12.2 is O(hα/(1+α)).

I describe next some examples in the case that B is a Brownian motion.
As a special case of Theorem 12.2, the approximating paths and partitions may

be taken to satisfy (3.192) with ρh given by

λ = (ρh)
3/4 |logρh|1/2

h
<

θ

‖H ′‖∞ , (3.193)

in which case the scheme operator will be monotone almost surely for all h smaller
than some (random) threshold h0 > 0.

It is also possible to define the partitions and approximating paths using certain
stopping times that ensure that the scheme is monotone almost surely for all h > 0.
More details can be found in [96].

Theorem 12.3 Suppose that B is a Brownian motion, and assume that Ph and Bh
are as in (3.192) with ρh defined by (3.193). If uh is constructed using (3.180)
and (3.190), and u is the solution of (3.188), then there exists a deterministic
constant C > 0 depending only on L and λ such that, with probability one,

lim sup
h→0

sup
(x,t)∈Rd×[0,T ]

|uh(x, t)− u(x, t)|
h1/3 |logh|1/3 ≤ C(1+ T ).
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The final result presented here is about a scheme that converges in distribution
in the space BUC(Rd × [0, T ]) equipped with the topology of local uniform
convergence.

Recall that, given random variables (Xδ)δ>0 and X taking values in some
topological space X , it is said that Xδ converges, as δ → 0 in distribution (or in
law) to X, if the law νδ of Xδ on X converges weakly to the law ν of X. That is, for
any bounded continuous function φ : X → R,

lim
δ→0

∫

X
φ dνδ =

∫

X
φ dν.

Below, the paths Bh are taken to be appropriately scaled simple random walks,
and, as a consequence, Bh converges in distribution to a Brownian motion B (see
for instance Billingsley [8]). This corresponds above to X = C([0, T ];Rm) and ν
the Wiener measure on X .

Let λ, ρh, Bh, and Ph be given, for some probability space (A,G,P), by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ = (ρh)
3/4

h
≤ θ

‖H ′‖∞
, Mh := %(ρh)−1/2&,

Ph := {tn}Nn=0 = {nρh ∧ T }n∈N0
,

{ξn}∞n=1 : A→ {−1, 1} are independent,

P(ξn = 1) = P(ξn = −1) = 1

2
,

B(0) = 0, and for k ∈ N0, t ∈ [kMhρh, (k + 1)Mhρh),

Bh(t) = Bh(kMhρh)+ ξk√
Mhρh

(t − kMhρh).

(3.194)

Theorem 12.4 If uh is constructed using (3.180) and (3.190) with Bh and Ph as
in (3.194), and u is the solution of (3.188), then, as h → 0, uh converges to u in
distribution.

3.12.4 The Need to Regularize the Paths

A short discussion follows about the necessity to consider regularizations Bh of the
continuous path B in all of the results above. To keep the presentation simple, I
concentrate on the one-dimensional, pathwise Hamilton-Jacobi equation (3.188).



3 Pathwise Solutions Nonlinear Equations Rough Time Dependence 171

Consider the following naive attempt at constructing a scheme operator by setting

Sh(t, s)u(x) = u(x)+H
(
u(x + h)− u(x − h)

2h

)

(B(t) − B(s))

+ εh
(
u(x + h)+ u(x − h)− 2u(x)

h2

)

(t − s).
(3.195)

A simple calculation reveals that Sh(t, s) is monotone for 0 ≤ t − s ≤ ρh, if ρh
and εh are such that, for some θ ≤ 1,

εh = θh2

2(t − s) and λ = max|t−s|≤ρh
osc(B, s, t)

h
≤ λ0 = θ

‖H ′‖∞
. (3.196)

On the other hand, for any s, t ∈ [0, T ] with |s − t| sufficiently small, spatially
smooth solutions Φ of (3.188) have the expansion

Φ(x, t) = Φ(x, s)+H(Φx(x, s))(B(t) − B(s))
+H ′(Φx(x, s))2Φxx(x, s)(B(t) − B(s))2 +O(|B(t)− B(s)|3).

(3.197)

It follows that, if 0 ≤ t − s ≤ ρh, there exists C > 0 depending only on H such
that

⎧
⎪⎪⎨

⎪⎪⎩

supR |Sh(t, s)Φ(·, s) −Φ(·, t)|
≤ C supr∈[s,t ]

∥
∥D2Φ(·, r)∥∥∞

(|B(t)− B(s)|2 + h2
)

≤ C supr∈[s,t ]
∥
∥D2Φ(·, r)∥∥∞ (1+ λ2

0)h
2.

(3.198)

Therefore, in order for the scheme to have a chance of converging, ρh should satisfy

lim
h→0

h2

ρh
= 0. (3.199)

Both (3.196) and (3.199) can be achieved when B is continuously differentiable or
merely Lipschitz continuous by setting

ρh = λh
∥
∥Ḃ
∥
∥∞

−1
.

More generally, if B ∈ C0,α([0, T ]) with α > 1
2 and

(ρh)
α = λh

[W ]α,T , (3.200)
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then both (3.196) and (3.199) are satisfied, since

h2

ρh
=
( [B]α,T h2α−1

λ

)1/α
h→0−−−→ 0.

However, this approach fails as soon as the quadratic variation path

〈B〉T := lim
|P |→0

N−1∑

n=0

|B(tn+1)− B(tn)|2

is non-zero, as (3.196) and (3.199) together imply that 〈B〉T = 0. This rules out,
for instance, the case where B is the sample path of a Brownian motion, or, more
generally, any nontrivial semimartingale.

Motivated by the theory of rough differential equations, it is natural to explore
whether the scheme operator (3.195) can be somehow altered to refine the estimate
in (3.198), potentially allowing (3.199) to be relaxed and ρh to converge more
quickly to zero as h→ 0+.

More precisely, the next term in the expansion (3.197) suggests taking B ∈
C0,α([0, T ];Rm) with α > 1

3 , or, more generally, B with p-variation with p < 3,
and defining

Sh(t, s)u(x) = u(x)+H
(
u(x + h)− u(x − h)

2h

)

(B(t)− B(s))

+ 1

2
H ′
(
u(x + h)− u(x − h)

2h

)2

×
(
u(x + h)+ u(x − h)− 2u(x)

h2

)

(B(t) − B(s))2

+ θ
2
(u(x + h)+ u(x − h)− 2u(x)) .

(3.201)

As can easily be checked, (3.201) is monotone as long as (3.196) holds, and

Lip(u) ≤ L, θ + ∥∥H ′∥∥∞ λ2 ≤ 1, and λ ≤ θ

‖H ′‖∞ (1+ 2L ‖H ′′‖∞)
.

The error in (3.198) would then be of order h2+|B(t) − B(s)|3, which again leads to
a requirement like (3.199). This seems to indicate that it is necessary to incorporate
higher order corrections in (3.201) to deal with the second-order spatial derivatives
of u. However, this will disrupt, in general, the monotonicity of the scheme, since it
will no longer be possible to use discrete maximum principle techniques.

For this reason, it is more convenient to concentrate on the more effective strategy
of regularizing the path B. If {Bh}h>0 is a family of smooth paths converging
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uniformly, as h→ 0, to B, then 〈Bh〉T = 0 for each fixed h > 0, and therefore, Bh
and ρh can be chosen so that (3.196) and (3.199) hold for Bh rather thanW .

3.13 Homogenization

I present a variety of results regarding the asymptotic properties, for small ε > 0, of
equations of the form

uεt +
m∑

i=1

Hi(Duε, x/ε)ζ̇ εi = 0 in Q∞ uε(·, 0) = u0. (3.202)

Many proofs and details are omitted here, and can be found in Seeger [98].
Each Hamiltonian Hi in (3.202) is assumed to have some averaging properties

in the variable y = x/ε. The paths ζ ε = (ζ ε1 , · · · , ζ εm), which converge locally
uniformly to some limiting path ζ ∈ C0([0,∞);Rm), will be assumed to be
piecewise C1, although I present some results where they are only continuous.

One motivation for considering such problems is to study general equations of
the form

uεt +
1

εγ
H

(

Duε,
x

ε
,
t

ε2γ

)

= 0 in Q∞ uε(·, 0) = u0. (3.203)

In addition to the averaging dependence on space, the Hamiltonian H is assumed
to have zero expectation, so that, on average, uε is close to its initial value u0. The
dependence on time, meanwhile, is assumed to be “mixing” with a certain rate, so
that, with the scaling of the central limit theorem, ε−γH(·, ·, tε−2γ ) will resemble,
as ε→ 0, to white noise in time.

When γ = 1, (3.203) arises naturally as a scaled version of

ut +H(Du, x, t) = 0 in Q∞ u(·, 0) = ε−1u0(ε·), (3.204)

with u and uε related by uε(x, t) = εu(x/ε, t/ε2).
Studying the ε→ 0 limit of uε then amounts to understanding the averaged large

space, long time behavior of solutions of (3.204) with large, slowly-varying initial
data.

Although it is of interest to examine (3.203) for different values of γ , it turns
out that the nature of the limiting behavior does not change for different values of
γ . Hence, from a practical point of view, ε and δ = εγ can be viewed as small,
independent parameters. It should be, however, noted that for technical reasons,
some results can only be proved under a mildness assumption on the approximate
white noise dependence, which translates to a smallness condition on γ .
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The Hamiltonians considered in (3.203) have the form

H(p, y, t) =
m∑

i=1

Hi(p, y)ξi(t), (3.205)

where the random fields ξi : [0,∞) → R are defined on a probability space
(Ω,F ,P) and are assumed to be mixing with rate ρ as explained below.

For 0 ≤ s ≤ t ≤ ∞, consider the sigma algebras F is,t ⊂ F generated by
{ξi(r)}r∈[s,t ]. The mixing rate is then defined by

ρ(t) = max
i=1,2,...,m

sup
s≥0

sup
A∈F i

s+t,∞
sup
B∈F i

0,s

|P(A | B)− P(A)| . (3.206)

The quantitative mixing assumptions for the ξ i are that

⎧
⎪⎨

⎪⎩

t �→ ξi(t) is stationary, ρ(t)
t→∞−−−→ 0,

∫ ∞

0
ρ(t)1/2 dt <∞,

E[ξi(0)] = 0, and E[ξi(0)2] = 1.

(3.207)

Above stationarity means that

(ξ(s1), ξ(s2), . . . , ξ(sM)) and (ξ(s1 + t), ξ(s2 + t), . . . , ξ(sM + t))

have the same joint distribution for any choice of s1, s2, . . . , sM ∈ [0,∞) and t ≥
−minj sj .

It follows from the ergodic theorem, the stationarity and the centering assump-
tions that

lim
δ→0

δ

∫ t
δ

0
ξi(s) ds = 0.

The properties of the long time fluctuations of ζ = ∫ t0 ξ(s)ds around 0 can be
studied using the central limit theorem scaling. Indeed setting ζ δi (t) = δζi(t/δ2), it
is well-known that, as δ → 0, ζ δi converges in distribution and locally uniformly to
a standard Brownian motion. Indeed, with δ = εγ , (3.203) is then a specific form
of (3.202).
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3.13.1 The Difficulties and General Strategy

Here I discuss some of the difficulties in the study of the ε→ 0 behavior of (3.202)
and the strategies that can be used to overcome them. To keep things simple, I only
consider Hamiltonians that are periodic in space.

The starting (formal) assumption is that the noise is “mild” enough to allow for
averaging behavior in space, and therefore, uε is closely approximated by a solution
uε of an equation of the form uεt +Hε(Duε, t) = 0.

More precisely, following the standard strategy of the homogenization theory, it
is assumed that there exists some auxiliary function v : Td × [0,∞)→ R, so that
uε has the formal expansion

uε(x, t) ≈ uε(x, t)+ εv(x/ε, t).

An asymptotic analysis yields that, for fixed p ∈ R
d (here, p = Duε(x, t) and

y = x
ε

), v solves the so called “cell problem”

m∑

i=1

Hi(Dyv + p, y)ξi = H(p, ξ) in . Rd, (3.208)

where the fixed parameter ξ ∈ R
m stands in place of the mild white noise

ε−γ ξ(t/ε2γ ).
It is standard the theory of periodic homogenization of Hamilton-Jacobi equa-

tions that, under the right conditions, there is a unique constant H(p, ξ) for
which (3.208) has periodic solutions, which are called “correctors.”

Taking this fact for granted for now and always arguing formally yields that uε

will be closely approximated by uε which solves

uεt +
1

εγ
H

(

Duε, ξ

(
t

ε2γ

))

= 0 in Q∞ uε(·, 0) = u0. (3.209)

Note that, in deriving (3.209), it was used that ξ �→ H(·, ξ) is positively
homogenous, which follows from multiplying (3.208) by a positive constant and
using the uniqueness of the right-hand side.

If

E
[
H(p, ξ(t))

] = 0 for all p ∈ R
d, (3.210)

then the solution of (3.209) with u0(x) = 〈p0, x〉, which is given by

uε(x, t) = 〈p0, x〉 − 1

ε2γ

∫ t

0
H
(
p0, ξ

( s

ε2γ

))
ds,
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converges, as ε→ 0 and in distribution, to p0 ·x+σ(p0)B(t), whereB is a standard
Brownian motion and

σ(p0) =
(
E

[
H(p0, ξ(0))2

])1/2
.

Due, however, to the nonlinearity of the map ξ �→ H(·, ξ) and the difficulties
associated with the “rough” pathwise solutions, it is not clear how to study
the (3.209) for an arbitrary u0 ∈ UC(Rd ). It turns out that the answers are subtle,
and, in the multiple path case considered below, depend strongly on the nature of
the mixing field ξ .

When m = 1, the characterization of H(p, ξ) reduces to the study of the two
Hamiltonians

H(p) = H(p, 1) and (−H)(p) = H(p,−1).

Then (3.209) takes the form

⎧
⎨

⎩

uεt + 1
εγ
H

1
(Duε)ξ

(
t
ε2γ

)
+ 1
εγ
H

2
(Duε)

∣
∣
∣ξ
(
t
ε2γ

)∣∣
∣ = 0 in QT

uε(·, 0) = u0,
(3.211)

where

H
1
(p) = H(p)− (−H)(p)

2
and H

2
(p) = H(p)+ (−H)(p)

2
.

Note that H
2 = 0 if and only if

(−H) = −H, (3.212)

and, moreover, that (3.210) is equivalent to (3.212) when m = 1.
Since (3.208) is interpreted in the viscosity solution sense, it is not possible to

multiply the equation by −1, and so (3.212) is not only not obvious, but actually
false in general.

Indeed, assume that, for some p0 ∈ R
d , (−H)(p0) �= −H(p0). Then uε with

u0(x) = 〈p0, x〉 is given by

uε(x, t) = 〈p0, x〉 − εγ H(p0)− (−H)(p0)

2
ζ

(
t

ε2γ

)

− εγ H(p0)+ (−H)(p0)

2

∫ t/ε2γ

0

∣
∣
∣ξ
( s

ε2γ

)∣∣
∣ ds,
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and, hence,

εγ uε(x, t)
ε→0−−→ −H(p0)+ (−H)(p0)

2
E |ξ(0)| t in distribution.

On the other hand, if (3.212) holds, then (3.209) becomes

uεt +
1

εγ
H(Duε)ξ

(
t

ε2γ

)

= 0 inQT uε(·, 0) = u0, (3.213)

and the determination of whether or not uε has a limit depends on the properties of
the effective HamiltonianH , and, in particular, whether or not it is the difference of
two convex functions.

3.13.2 The Single-Noise Case

I state next some results about

uεt +
1

εγ
H
(
Duε,

x

ε

)
ξ

(
t

ε2γ

)

= 0 in QT uε(·, 0) = u0. (3.214)

As suggested in the previous subsection, the fact that there is only one source of
noise simplifies the structure of the problem. Consequently, the results are more
comprehensive than in the multiple-path setting.

It is assumed that

H ∈ C(Rd ×R
d ) is convex and coercive in the gradient variable. (3.215)

The convexity assumption is important for two reasons. It guarantees that
the consistency condition (3.212) holds, and it also implies strong path-stability
estimates for the solutions. The latter were already alluded to earlier in the notes,
in the section on the comparison principle for equations with convex, spatially-
dependent Hamiltonians.

Regarding the spatial environment, the results are general enough to allow for a
variety of different assumptions. Here, I list two well-studied examples.

The first possible self-averaging assumption is that

y �→ H(p, y) is Zd -periodic. (3.216)

The periodic homogenization of (time-homogenous) Hamilton-Jacobi equations has
a vast literature going back to Lions et al. [63] and Evans [24, 25].

Another type of averaging dependence, which in general is more physically
relevant, is stationary-ergodicity. In this setting, the Hamiltonians H = H(p, x, ω)
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are defined on a probability space (Ω,F) that is independent of the random field
ξ and is equipped with a group of translation operators Tz : Ω → Ω such that
H(·, Tzy) = H(·, y + z). It is assumed that {Tz}z∈Rd is stationary and ergodic, that
is,

{
P = P ◦ Tz for all z ∈ R

d , and

if E ∈ F and TzE = E for all z ∈ R
d, then P[E] = 1 or P[E] = 0.

(3.217)

In the time-inhomogenous setting, this homogenization problem was studied by
Souganidis [103] and Rezakhanlou and Tarver [93].

The first result is stated next.

Theorem 13.1 There exists a Brownian motion B : [0,∞)→ R such that, as ε→
0, (uε, ζ ε) converges in distribution to (u, B) in BUC(Rd × [0,∞))×C([0,∞)),
where u is the pathwise viscosity solution of

du+H(Du) · dB = 0 in Q∞ u(·, 0) = u0. (3.218)

Since δB(t/δ2) equals B(t) in distribution, it is also an interesting question to
study the limiting behavior of

duε +H(Duε, x/ε) · dB = 0 in Q∞ uε(·, 0) = u0. (3.219)

Theorem 13.2 In addition to the hypotheses of Theorem 13.1, assume that the
comparison principle holds for (3.219). Then, with probability one, as ε → 0, the
solution uε of (3.219) converges locally uniformly to the solution of (3.218).

The final remark is that the theorems above can be applied to a variety of other
settings like, for instance, the homogenization of

uεt +H
(
Duε, x,

x

ε

)
ζ̇ ε(t) = 0 in Q∞ uε(·, 0) = u0

with (ζ ε)ε>0 any collection of paths converging locally uniformly and almost surely
(or in distribution) to a Brownian motion or other stochastic process, and with the
dependence of H on the fast variable being, for instance, periodic, quasi-periodic,
or stationary-ergodic.

3.13.3 The Multiple-Noise Case

Since in this setting the results so far are less general and quite technical, I only
present an overview here. Details and more results can be found in a forthcoming
work of Seeger [97].
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The problem is the behavior of equations like

uεt +
1

εγ

m∑

i=0

Hi(Duε, x/ε)ξi(
t

ε2γ ) = 0 in Q∞ uε(·, 0) = u0, (3.220)

where, for each i = 0, . . . ,m, ξ i is a mixing field satisfying (3.207). More
assumptions on the Hamiltonians and the paths will need to be made later.

To simplify the presentation, here I only consider the periodic setting (3.216).
It turns out that, under appropriate conditions on the Hi’s which are made more
specific below, for everyp ∈ R

d and ξ ∈ R
m, there exists a unique constantH(p, ξ)

such that the cell problem

m∑

i=1

Hi(p +Dyv, y)ξ i = H(p, ξ) (3.221)

admits periodic solutions v : Td → R. Moreover, ξ �→ H(p, ξ) is positively
homogenous, and

E[H(p, ξ(0)] = 0 for all p ∈ R
d . (3.222)

Using error estimates for the theory of periodic homogenization of Hamilton-
Jacobi equations, it is possible to show that uε is closely approximated by the
solution uε of

uεt +
1

εγ
H

(

Duε, ξ

(
t

ε2γ

))

= 0 in Q∞ uε(·, 0) = u0. (3.223)

The limiting behavior of (3.223) is well understood if u0(x) = 〈p0, x〉 for some
fixed p0 ∈ R

d . Indeed, in view of the mixing properties of ξ and the centering
property (3.222), there exists a Brownian motion B such that, as ε → 0, uε

converges locally uniformly in distribution to

〈p0, x〉 + E

[
H(p0, ξ(0))

2
]1/2

B(t).

I comment next about the limit of uε for arbitrary initial data u0. The goal is to
show that, under assumptions on the Hamiltonians and mixing fields, there exists

M ≥ 1 and, for each j = 1, . . . ,M , an effective Hamiltonian H
j : Rd → R which

is the difference of two convex functions, and a Brownian motion Bj such that, as
ε → 0 and in distribution, uε and, therefore, uε converges in BUC(QT ) to the
pathwise viscosity solution u of

du+
M∑

j=1

H
j
(Du) · dBj = 0 in Q∞ u = u0. (3.224)
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Although at first glance, the nature of the problem is similar to the single path
case, there are some fundamental differences. Most importantly, the deterministic

effective Hamiltonians {Hj }Mj=1, and even the numberM , depend on the particular
law of the mixing field ξ .

Next I introduce some further assumptions that give rise to a rich class of
examples and results.

As far as the Hamiltonians (Hi, . . . ,Hm) are concerned, it is assumed that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hi ∈ C0,1(Rd × T
d ),

p �→ H 1(p, ·) +
m∑

i=2

Hi(p, ·)ξi is convex

for all ξ2, . . . , ξm ∈ {−1, 1}, and

lim|p|→+∞ inf
y∈Td

(

H 1(p, y)−
m∑

i=2

∣
∣
∣Hi(p, y)

∣
∣
∣

)

= +∞.

(3.225)

As a consequence, the cell problem (3.221) is solvable for all p ∈ R
d and

ξ ∈ {−1, 1}m, and furthermore, p �→ H(p, 1, ξ) is convex and ξ �→ H(p, ξ)

is homogenous, that is, for all λ ∈ R and ξ ∈ {−1, 1}m,

H(·, λξ) = λH(·, ξ). (3.226)

The mixing fields are assumed to be, for i = 1, . . . ,m, of the form

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξi =
∞∑

k=0

Xik1(k,k+1) where

(
Xik

)

i=1,2,...,m, k=0,1,...

are independent Rademacher random variables.

(3.227)

In particular, if

ξεi (t) =
1

εγ
ξi(t/ε

2γ ) and ζ εi (t) =
∫ t

0
ξε(s)i ds, (3.228)

then each ζ i,ε is a scaled, linearly-interpolated, simple random walk on Z, and there
exists an m-dimensional Brownian motion (B1, . . . , Bm), such that, in distribution,

(ζ 1,ε, ζ 2,ε, . . . , ζm,ε)
ε→0−−→ (B1, . . . , Bm) in C([0,∞);Rm).
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Consider the sets of indices

⎧
⎪⎪⎨

⎪⎪⎩

Am := {j = (j1, . . . , jl) : ji ∈ {1, . . . ,m}, j1 < · · · < jl}
with l = |j| = |(j1, j2, . . . , jl)|
AmO := {j ∈ Am : |j| is odd},

noting that #Am = 2m − 1 and #Am0 = 2m−1.
For any j = (j1, j2, . . . , jl) ∈ Am, define

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξj := ξj1 · · · ξjl for ξ = (ξ1, . . . , ξm) ∈ {−1, 1}m,
H

j
(p) :=

∑

ξ∈{−1,1}m
2−mH(p, ξ)ξj,

X
j
k := Xj1k Xj2k · · ·Xjlk ,

ζj(0) := 0, ζ̇j =
∞∑

k=0

X
j
k1(k,k+1), and ζ εj (t) = εγ ζj(t/ε

2γ ),

(3.229)

and observe that, for each j ∈ Am0 , H
j

is a difference of convex functions. Note also

that, if |j| is even, then the homogeneity property (3.226) implies that H
j = 0.

The following is true.

Theorem 13.3 Assume that γ ∈ (0, 1/6), u0 ∈ C0,1(Rd), (3.225), and (3.227),
and let uε be the solution of (3.220). Then there exist 2m−1 independent Brownian
motions {Bj}j∈Am

o
, such that, in distribution,

(
uε, {ζ j,ε}j∈Am

o

)
ε→0−−→

(
u, {Bj}j∈Am

o

)
in BUC(QT )× C

(
[0, T ];R2m−1

)
,

where u is the stochastic viscosity solution of

du+
∑

j∈Am
0

H
j
(Du) · dBj = 0 in Q∞ u(·, 0) = u0. (3.230)

The result relies on the fact that, in view of the assumptions on the mixing
fields ξi , which take their values only in {−1, 1}, the general effective Hamiltonian
H(p, ξ) can be decomposed using a combinatorial argument.

As already mentioned, the above theorem covers only some of the possible
homogenization problems that can be studied in the multiple-noise case. In particu-
lar, it is shown in [97] that the limiting equation depends on the law of the mixing
field ξ . This is in stark contrast to the single-noise case, where the limiting equation
is independent of the mild-noise approximation.
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3.14 Stochastically Perturbed Reaction-Diffusion Equations
and Front Propagation

I discuss here a result of Lions and Souganidis [69] about the onset of fronts in
the long time and large space asymptotics of bistable reaction-diffusion equations
which are additively perturbed by small relatively smooth (mild) stochastic in time
forcing. The prototype problem is the so called stochastic Allen-Cahn equation.
The interfaces evolve with curvature dependent normal velocity which is additively
perturbed by time white noise. No regularity assumptions are made on the fronts.
The results can be extended to more complicated equations with anisotropic
diffusion, drift and reaction which may be periodically oscillatory in space. To keep
the ideas simple, in this section I concentrate on the classical Allen-Cahn equation.

The goal is to study the behavior, as ε → 0, of the parabolically rescaled Allen-
Cahn equation

uεt −Δuε +
1

ε2
(f (uε)− εḂε(t, ω)) = 0 inQ∞ uε(·, 0) = uε0, (3.231)

where, f ∈ C2(Rd;R) is such that

⎧
⎪⎨

⎪⎩

f (±1) = f (0) = 0, f ′(±1) > 0, f ′(0) < 0

f > 0 in (−1, 0), f < 0 in (0, 1), and
∫ +1

−1
f (u)du = 0,

(3.232)

that is, f is the derivative of a double well potential with wells of equal depth at, for
definiteness,±1 and in between maximum at 0,

Bε(·, ω) ∈ C2([0,∞);R) is an a.s. mild approximation of B(·, ω), (3.233)

that is, a.s. in ω and locally uniformly [0,∞),

lim
ε→0

Bε(t, ω) = B, Bε(0, ω) = 0, and lim
ε→0

ε|B̈ε(t, ω)| = 0, (3.234)

and there exists an open O0 ⊂ R
d such that

⎧
⎪⎪⎨

⎪⎪⎩

O0 = {x ∈ R
d : uε0(x) > 0}, Rd \O0 = {x ∈ R

d : uε0(x) < 0},
and

Γ0 = ∂O0 = ∂(Rd \O0) = {x ∈ R
d : uε0(x) = 0}.

(3.235)

Although it is not stated explicitly, it assumed that there exists an underlying
probability space, but, for ease of the notation, we omit the dependence on ω unless
necessary.
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Here are two classical examples of mild approximations. The first is the
convolution Bε(t) = B $ ρε(t), where ρε(t) = ε−γ ρ(ε−γ t) with ρ ∈ C∞, even
and compactly supported in (−1, 1),

∫
ρ(t)dt = 1 and γ ∈ (0, 1/2). The second

is Ḃε(t) = ε−γ ξ(ε−2γ t), where ξ(t) is a stationary, strongly mixing, mean zero
stochastic process such that max(|ξ |, |ξ̇ |) ≤ M and γ ∈ (0, 1/3). I refer to [51] for
a discussion.

Next I use the notion of stochastic viscosity solutions and the level set approach
to describe the generalized evolution (past singularities) of a set with normal
velocity

V = −tr[Dn] dt + dζ, (3.236)

for some a continuous path ζ ∈ C0([0,∞);R). Here n is the external normal to the
front and, hence, tr[Dn] is the mean curvature.

Given a triplet (O0, Γ0,R
d \ O0) with O0 ⊂ R

d open, we say that the sets
(Γt )t>0 move with normal velocity (3.236), if, for each t > 0, there exists a triplet
(Ot , Γt ,Rd \Ot ), with Ot ⊂ R

d open, such that

⎧
⎪⎪⎨

⎪⎪⎩

Ot = {x ∈ R
d : w(x, t) > 0}, Rd \Ot = {x ∈ R

d : w(x, t) < 0},
and

Γt = {x ∈ R
d : w(x, t) = 0},

(3.237)

where w ∈ BUC(Rd × [0,∞)) is the unique stochastic (pathwise) solution of the
level-set initial value pde

dw = (I − D̂w ⊗ D̂w) : D2w − |Dw| · dζ inQ∞ w(·, 0) = w0, (3.238)

with p̂ := p/|p| and w0 ∈ BUC(Rd) such that

⎧
⎪⎪⎨

⎪⎪⎩

O0 = {x ∈ R
d : w0(x) > 0}, Rd \O0 = {x ∈ R

d : w0(x) < 0},
and

Γ0 = {x ∈ R
d : w0(x) = 0}.

(3.239)

The properties of (3.238) are used here to adapt the approach introduced in Evans
et al. [27], Barles et al. [7], and Barles and Souganidis [6] to study the onset of
moving fronts in the asymptotic limit of reaction-diffusion equations and interacting
particle systems with long range interactions. This methodology allows to prove
global in time asymptotic results and is not restricted to smoothly evolving fronts.

The main result of the paper is stated next.

Theorem 14.1 Assume (3.232)–(3.235), and let uε be the solution of (3.231). There
exists α0 ∈ R such that, if w is the solution of (3.238) with w0 satisfying (3.239)
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and ζ ≡ α0B, where B is a standard Brownian path, then, as ε → 0, a.s. in ω and
locally uniformly in (x, t), uε → 1 in {(x, t) ∈ R

d × (0,∞) : w(x, t) > 0} and
uε → −1 in {(x, t) ∈ R

d× (0,∞) : w(x, t) < 0}, that is, uε → 1 (resp. uε → −1)
inside (resp. outside) a front moving with normal velocity V = −tr[Dn] dt+α0dB.

Theorem 14.1 provides a complete characterization of the asymptotic behavior
of the Allen-Cahn equation perturbed by mild approximations of the time white
noise. The result holds in all dimensions, it is global in time and does not require
any regularity assumptions on the moving interface.

In [32] Funaki studied the asymptotics of (3.231) when d = 2 assuming that
the initial set is a smooth curve bounding a convex set. Under these assumptions
the evolving curve remains smooth and (3.295) reduces to a stochastic differential
equation in the arc length variable. Under the assumption that the evolving set is
smooth, which is true if the initial set is smooth and for small time, a similar result
was announced recently by Alfaro et al. [1]. Assuming convexity at t = 0, Yip [106]
showed a similar result for all times using a variational approach. There have also
been several other attempts to study the asymptotics of (3.231) in the graph-like
setting and always for small time.

Reaction-diffusion equations perturbed additively by white noise arise naturally
in the study of hydrodynamic limits of interacting particles. The relationship
between the long time, large space behavior of the Allen-Cahn perturbed additively
by space-time white noise and fronts moving by additively perturbed mean curvature
was conjectured by Ohta et al. [84]. Funaki [31] obtained results in this direction
when d = 1 where there is no curvature effect. A recent observation of Lions and
Souganidis [70] shows that the general conjecture cannot be correct. Indeed, it is
shown in [70] that the formally conjectured interfaces, which should move by mean
curvature additively perturbed with space-time white noise, are not well defined.

From the phenomelogical point of view, problems like (3.231) arise naturally in
the phase-field theory when modeling double-well potentials with depths (stochasti-
cally) oscillating in space-time around a common one. This leads to stable equilibria
that are only formally close to±1. As a matter of fact, the locations of the equilibria
may diverge due to the strong effect of the white noise.

The history and literature about the asymptotics of (3.231) with or without
additive continuous perturbations is rather long. I refer to [6] for an extensive review
as well as references.

An important tool in the study of evolving fronts is the signed distance function
to the front which is defined as

ρ(x, t) =
⎧
⎨

⎩

ρ(x, {x ∈ R
d : w(x, t) ≤ 0}),

−ρ(x, {x ∈ R
d : w(x, t) ≥ 0}),

(3.240)

where ρ(x,A) is the usual distance between a point x and a set A.
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When there is no interior, that is,

∂{x ∈ R
d : w(x, t) < 0} = ∂{x ∈ R

d : w(x, t) > 0},

then

ρ(x, t) =
⎧
⎨

⎩

ρ(x, Γt ) if w(x, t) > 0,

−ρ(x, Γt ) if w(x, t) < 0.

The next claim is a direct consequence of the stability properties of the pathwise
solutions and the fact that a nondecreasing function of the solution is also a solution.
When ζ is a smooth path, the claim below is established in [7]. The result for the
general path follows by the stability of the pathwise viscosity solutions with respect
to the local uniform convergence of the paths.

Theorem 14.2 Let w ∈ BUC(Rd × [0,∞)) be the solution of (3.295) and ρ
the signed distance function defined by (3.240). Then ρ = min(ρ, 0) and ρ =
max(ρ, 0) satisfy respectively

dρ ≤
[(

I − Dρ ⊗Dρ|Dρ|2
)

: D2ρ

]

dt + |Dρ| ◦ dζ ≤ in Q∞, (3.241)

and

dρ ≥
[(

I − Dρ ⊗Dρ|Dρ|2
)

: D2ρ

]

dt + |Dρ| ◦ dζ ≥ 0 inQ∞. (3.242)

In addition,

− (D2ρDρ, ρ) ≤ 0 and dρ ≤ Δρ − dζ in {ρ < 0}, (3.243)

and

− (D2ρDρ, ρ) ≥ 0 and dρ ≥ Δρ − dζ in {ρ > 0}. (3.244)

Following the arguments of [7], it is possible to construct global in time subsolutions
and supersolutions of (3.231) which do not rely on the regularity of the evolving
fronts. In view of the stabilities of the solutions, it is then possible to conclude.

An important ingredient of the argument is the existence and properties of
traveling wave solutions of (3.231) and small additive perturbations of it, which
we describe next.
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It is well known (see, for example, [7] for a long list of references) that, if f
satisfies (3.232), then for every sufficiently small b, there exists a unique strictly
increasing traveling wave solution q = q(x, b) and a unique speed c = c(b) of

cqξ + qξξ = f (q)− b in R q(±∞, a) = h±(b) q(0, a) = h0(b), (3.245)

where h−(b) < h0(b) < h+(b)) are the three solutions of the algebraic equation
f (u) = b. Moreover, as b→ 0,

h±(b)→±1 and h0(b)→ 0. (3.246)

The results needed here are summarized in the next lemma. For a sketch of its
proof I refer to [7] and the references therein. In what follows, qξ and qξξ denote
first and second derivatives of q in ξ and qb the derivative with respect to b.

Lemma 14.1 Assume (3.232). There exist b0 > 0, C > 0, λ > 0 such that, for all
|b| < b0, there exist a unique c(b) ∈ R, a unique strictly increasing q(·, b) : R→ R

satisfying (7.3), (3.246) and α0 ∈ R such that

⎧
⎨

⎩

0 < h+(b)− q(ξ; b) ≤ Ce−λ|ξ | if ξ ≥ 0

and 0 < q(ξ; b)− h−(b) ≤ Ce−λ|ξ | if ξ ≤ 0,
(3.247)

0 < qξ(ξ; b) ≤ Ce−λ|ξ |, |qξξ (ξ; b)| ≤ Ce−λ|ξ | and |qb| ≤ C, (3.248)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c(b) = − h+(b)−h−(b)∫ ∞

−∞
qξ (ξ; b)2dξ

,

−α0 = − dc
db
(0) = 2∫ 1

−1
q2
ξ (ξ, 0)dξ

|c(b)
b
+ α0| ≤ C|b|.

(3.249)

In the proof of Theorem 14.1 we work with b = εḂε(t) − εa for a ∈ (−1, 1);
note that, in view of (3.234), for ε sufficiently small, |b| < b0. To ease the notation,
I write

qε(ξ, t, a) = q(ξ, ε(Ḃε(t)− a)) and cε(a) = c(ε(Ḃε(t)− a)),

and I summarize in the next lemma, without a proof, the key properties of qε and cε

that we need later.
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Lemma 14.2 Assume the hypotheses of Lemma 14.1 and (3.234). Then, there exists
C > 0 such that

{
limε→ ε|qεt (ξ, t, a)| = 0 uniformly on ξ

and a and locally uniformly in t ∈ [0,∞), (3.250)

1

ε
qεξ (ξ, t, a)+

1

ε2 |qεξξ ξ, t, a)| ≤ Ce−Cη/ε for all |ξ | ≥ η and all η > 0, (3.251)

qεξ ≥ 0 and qεa ≥ 0 for all t ≥ 0 and ε, |a| sufficiently small, (3.252)

and

|c
ε

ε
+ α0ε(Ḃ

ε(t)− a)| = o(1) uniformly for bounded t and a. (3.253)

Theorem 14.1 is proved assuming that uε0 in (3.231) is well prepared, that is, has
the form

uε0(x) = qε(
ρ(x)

ε
, 0), (3.254)

where ρ is the signed distance function to Γ0 and q(·, 0) is the standing wave
solution of (7.3).

Going from (3.254) to a general uε0 as in the statement of the theorem is standard
in the theory of front propagation. It amounts to showing that, in a conveniently
small time interval, uε can be “sandwiched” between functions like the ones
in (3.254). Since this is only technical, I omit the details and I refer to [6] for the
details.

The proof of the result is a refinement of the analogous results of [27] and [7]. It
is based on using two approximate flows, which evolve with normal velocity V =
−tr[Dn] + α0(Ḃ

ε(t) − εa), to construct a subsolution and supersolution (3.231).
Since the arguments are similar, here we show the details only for the supersolution
construction.

For fixed δ, a > 0 to be chosen below and any T > 0, consider the solution
wa,δ,ε of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w
a,δ,ε
t −

(
I − D̂wa,δ,ε ⊗ D̂wa,δ,ε

)
: D2wa,δ,ε

+α0(Ḃ
ε − a)|Dwa,δ,ε| = 0 inQT ,

wa,δ,ε(·, 0) = ρ + δ.
(3.255)
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Let ρa,δ,ε be the signed distance from {wa,δ,ε = 0}. It follows from Theorem 14.2
(see also Theorem 3.1 in [7]) that

ρa,δ,ε −Δρa,δ,ε−α0(Ḃ
ε − a) ≥ 0 in {ρa,δ,ε 0}. (3.256)

Following the proof of Lemma 3.1 of [27], define

Wa,δ,ε = ηδ(ρa,δ,ε), (3.257)

where ηδ : R→ R is smooth and such that, for some C > 0 independent of δ,

⎧
⎨

⎩

ηδ ≡ −δ in (−∞, δ/4], ηδ ≤ −δ/2 in (−∞, δ/2],
ηδ(z) = z− δ in [δ/2,∞), 0 ≤ η′δ ≤ C and |η′′δ | ≤ Cδ−1 on R.

(3.258)

Let T $ be the extinction time of {wa,δ,ε = 0}. A straightforward modification of
Lemma 3.1 of [27] leads to the following claim.

Lemma 14.3 There exists a constant C > 0, which is independent of ε, δ and a,
such that

W
a,δ,ε
t −ΔWa,δ,ε − α0(Ḃ

ε − a)|DWa,δ,ε| ≥ −C
δ

in R
d × [0, T $], (3.259)

W
a,δ,ε
t −ΔWa,δ,ε − α0(Ḃ

ε − a) ≥ 0 in {ρa,δ,ε > δ/2}, (3.260)

and

|DWa,δ,ε| = 1 in {ρa,δ,ε > δ/2}. (3.261)

Finally, set

Ua,δ,ε(x, t) = qε
(
Wa,δ,ε(x, t)

ε
, t, a

)

on R
d × [0,∞). (3.262)

Proposition 14.1 Assume (3.232), (3.234) and (3.235). Then, for every a ∈ (0, 1),
Uε is a supersolution of (3.231) if ε ≤ ε0 = ε0(δ, a) and δ ≤ δ0 = δ0(a).

Proof Since the arguments are similar to the ones used to prove the analogous result
(Proposition 10.2) in [7], here I only sketch the argument. Note that since everything
takes place at the ε > 0 level, there is no reason to be concerned about anything
“rough”. Below, for simplicity, I argue as if wε,δ,a had actual derivatives, and is left
up to the reader to argue in the viscosity sense. Note that, throughout the proof, o(1)
stands for a function such that limε→0 o(1) = 0. Finally, throughout the proof qε

and its derivatives are evaluated at (Wa,δ,ε/ε, t, a).
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Using the equation satisfied by qε gives

U
a,δ,ε
t −ΔUa,δ,ε + 1

ε2 [f (Ua,δ,ε)− εḂ(t))
= J ε − 1

ε2 q
ε
ξξ (|DWa,δ,ε|2 − 1)

+1

ε
qεξ (DW

a,δ,ε
t −ΔWa,δ,ε + c

ε

ε
)+ a

ε
,

(3.263)

and

J ε(x, t) = qb
(
Wa,δ,ε(x, t)

ε
, εḂε(t)− εa

)

εB̈ε(t). (3.264)

In view of its definition, it is immediate that |DWa,δ,ε| ≤ C with C as in (14.3),
while it follows from Lemma 14.1 that, as ε→ 0 and uniformly in (x, t, δ, a)

J ε = o(1)

ε
. (3.265)

Three different cases, which depend on the relationship between ρa,δ,ε and δ,
need to be considered.

If δ/2 < ρa,δ,ε < 2δ, then (3.260), (3.261), (3.253) and the form of ηδ allow to
rewrite (3.263) as

U
a,δ,ε
t −ΔUa,δ,ε + 1

ε2 [f (Ua,δ,ε)− εḂ(t))

≥ −1

ε

[

qεξ

(
cε

ε
+ α0(εḂ

ε − εa)
)

+ a + o(1)

]

≥ −1

ε

[
qεξ o(1)+ a + o(1)

]
.

(3.266)

It easily now follows that the right side of (3.266) is positive, if ε and δ are small.
If da,δ,ε ≤ δ/2, the choice of ηδ implies that Wa,δ,ε ≤ −δ/2. Hence, (3.251)

yields that, for some C > 0,

1

ε
qεξ +

1

ε2 |qεξξ | ≤ Ce−Cδ/ε.

Then |DWa,δ,ε| ≤ C and (3.259) and (3.260) in (3.266) give

U
a,δ,ε
t −ΔUa,δ,ε + 1

ε2 [f (Ua,δ,ε)− εḂ(t)] ≤ −C(
1

δ
+ 1)e−Cδ/ε + o(1)+ a

ε
;

note that, for ε small enough the right hand side of the inequality above is positive.
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Finally, if ρa,δ,ε > δ, it is possible to conclude as in the previous case
using (3.260) and (3.251).

The proof of the main result is sketched next.

Proof (The Proof of Theorem 14.1) Fix (x0, t0) ∈ R
d×[0, T $) such thatw(x0, t0) =

−β < 0. The stability of the pathwise solutions yields that, in the limit ε → 0,
δ→ 0 and a → 0 and uniformly in (x, t), wa,δ,ε → w. Thus, for sufficiently small
ε, δ and a,

wa,δ,ε(x0, t0) < −β
2
< 0. (3.267)

Then Ua,δ,ε, which is defined in (3.261), is a supersolution of (3.231) for
sufficiently small ε and also satisfies, in view of (3.252),

Ua,δ,ε(x, 0) ≥ qε(ρ(x)
ε
, 0) on R

d,

since

wa,δ,ε(x, 0) = ηδ(ρ(x)+ δ) ≥ ρ(x).

The comparison of viscosity solutions of (3.231) then gives

uε ≤ Ua,δ,ε in R
d × [0, T $).

Recall that, in view of (3.267), ρa,δ,ε(x0, t0) < 0, and, hence,

lim sup
ε→0

uε(x0, t0) ≤ lim sup
ε→0

Ua,δ,ε(x0, t0) = −1.

For the reverse inequality, observe that Û(x, t) = −1−γ is a subsolution of (3.231)
if ε and γ > 0 are chosen sufficiently small as can be seen easily from

Ût −ΔÛ + 1

ε2 (f (Û)+ εḂε) ≤ C +
1

ε2 [−γf ′(−1)+ o(1)].

The maximum principle then gives, for all (x, t) and sufficiently small γ > 0,

lim inf
ε→0

uε(x0, t0) ≥ −1− γ.

The conclusion now follows after letting γ → 0.
Finally note that a simple modification of the argument above yields the local

uniform convergence of uε to −1 in compact subsets of {w < 0}.
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3.15 Pathwise Entropy/Kinetic Solutions for Scalar
Conservation Laws with Multiplicative Rough Time
Signals

3.15.1 Introduction

Ideas similar to the ones described up to the previous sections were used by Lions
et al. [65, 66], Gess and Souganidis [38–40] and Gess et al. [41] to study pathwise
entropy/kinetic solutions for scalar conservation laws with multiplicative rough time
signals as well as their long time behavior, the existence of invariant measures and
the convergence of general relaxation schemes with error estimates.

To keep the ideas simple the presentation here is about the simplest possible case,
that is the spatially homogeneous initial value problem

du+
d∑

i=1

Ai(u)xi · dBi = 0 in QT u0(·, 0) = u0, (3.268)

with

A = (A1, . . . , Ad) ∈ C2(R;Rd) (3.269)

and merely continuous paths

B = (B1, . . . , Bd) ∈ C([0,∞);Rd). (3.270)

If, instead of (3.270), B ∈ C1([0,∞);Rd), (3.268) is a “classical” problem with a
well known theory; see, for example, the books by Dafermos [19] and Serre [101].
The solution can develop singularities in the form of shocks (discontinuities). Hence
it is necessary to consider entropy solutions which, although not regular, satisfy the
L1 -contraction property established by Kruzkov [47].

Solutions of deterministic non-degenerate conservation laws have remarkable
regularizing effects in Sobolev spaces of low order. It is an interesting question to
see if they are still true in the present case. This is certainly possible with different
exponents as shown in [66] and [39].

Contrary to the Hamilton-Jacobi equation, the approach put forward for (3.268)
does not work for conservation laws with semilinear rough path dependence like

du+
d∑

i=1

(Ai(u))xi dt = �(u) · dB̃ in QT u(·, 0) = u0, (3.271)

for � = (Φ1, . . . , Φm) ∈ C2(R;Rm) and an m-dimensional path B̃ =
(B̃1, . . . , B̃m).
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Semilinear stochastic conservation laws in Itô’s form like

du+
d∑

i=1

(Ai(u))xi dt = �(u)dB̃ in QT (3.272)

have been studied by Debussche and Vovelle [20–22], Feng and Nualart [28], Chen
et al. [11], and Hofmanova [43, 44].

It turns out that pathwise solutions are natural in problems with nonlinear
dependence. Indeed, let u, v be solutions of the simple one dimensional problems

du+ A(u)x · dB = 0 and dv + A(v)x · dB = 0.

Then

d(u− v)+ (A(u)− A(v))x · dB = 0.

Multiplying by the sign(u− v) and integrating over R formally leads to

d

∫

R

|u− v|dx +
∫

R

(sign(u− v)(A(u)− A(v)))x · dB = 0

and, hence,

d

∫

R

|u− v|dx = 0.

On the other hand, if du = Φ(u) · dB and dv = Φ(v) · dB, then the previous
argument cannot be used since the term

∫
R sign(u−v)(Φ(u)−Φ(v)) ·dB is neither

0 nor has a sign. More about this is presented in the last subsection.

3.15.2 The Kinetic Theory When B Is Smooth

To make the connection with the “non rough” theory, assume that B ∈
C1((0,∞);Rd), in which case du stands for the usual derivative and · is the
usual multiplication and, hence, should be ignored.

The entropy inequality (see [19, 101]), which guarantees the uniqueness of the
weak solutions, is that

dS(u)+
d∑

i=1

(Ai,S(u))xi · dBi ≤ 0 in QT S(u(·, 0)) = S(u0), (3.273)
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for all C2 -convex functions S and fluxes AS defined by

(
AS(u)

)′ = a(u)S′(u) with a = A′.

It is by now well established that the simplest way to handle conservation laws
is through their kinetic formulation developed through a series of papers—see
Perthame and Tadmor [92], Lions et al. [62], Perthame [89, 90], and Lions et al.
[64]. The basic idea is to write a linear equation on the nonlinear function

χ(x, ξ, t) = χ(u(x, t), ξ) =

⎧
⎪⎪⎨

⎪⎪⎩

+1 if 0 ≤ ξ ≤ u(x, t),
−1 if u(x, t) ≤ ξ ≤ 0,

0 otherwise.

(3.274)

The kinetic formulation states that using the entropy inequalities (3.273) for all
convex entropies S is equivalent to χ solving, in the sense of distributions,

dχ +
d∑

i=1

Ai(ξ)∂xi χ · dBi = ∂ξmdt in R
d ×R× (0,∞) χ(x, ξ, 0)

= χ(u0(x), ξ),

(3.275)

where

m is a nonnegative bounded measure in R
d ×R× (0,∞). (3.276)

At least formally, one direction of this equivalence can be seen easily. Indeed since,
for all (x, t) ∈ R

d × (0,∞),

S
(
u(x, t)

) − S(0) =
∫
S′(ξ)χ

(
u(x, t), ξ

)
dξ,

multiplying (3.275) by S′(ξ) and integrating in ξ leads to (3.273).
The next proposition, which is stated without proof, summarizes the basic

estimates of the kinetic theory, which hold for smooth paths and are independent
of the regularity of the paths. They are the Lp(QT ) and BV (QT ) bounds (for all
T > 0) for the solutions, as well as the bounds on the kinetic defect measures m,
which imply that the latter are weakly continuous in ξ as measures onQT .
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Proposition 15.1 Assume (3.269). The entropy solutions to (3.268) satisfy, for all
t > 0,

‖u(·, t)‖Lp(Rd) ≤ ‖u0‖Lp(Rd) for all p ∈ [1,∞], (3.277)

‖Du(·, t)‖L1(Rd) ≤ ‖Du0‖L1(Rd), (3.278)

{ξ ∈ R : |χ(x, ξ, t) > 0} ⊂ [−|u(x, t)|, |u(x, t)|] for all (x, t) ∈ R× (0,∞),
(3.279)

∫ ∞

0

∫

Rd

∫

R

m(x, ξ, t)dxdξdt ≤ 1

2
‖u0‖2

L2(Rd)
, (3.280)

∫ ∞

0

∫

Rd

m(x, ξ, t)dx dt ≤ ‖u0‖L1(Rd) for all ξ ∈ R, (3.281)

and, for all smooth test functions ψ ,

d

dξ

∫ ∞

0

∫

Rd

ψ(x, t)m(x, ξ, t)dx dt

≤
[
‖Dx,tψ‖L∞(Rd+1) + ‖ψ(·, 0)‖L∞(Rd)

]
‖u0‖L1(Rd).

(3.282)

The next observation is the backbone of the theory of pathwise entropy/kinetic
solutions. The reader will recognize ideas described already in the earlier parts of
these notes.

Since the flux in (3.268) is independent of x, it is possible to use the char-
acteristics associated with (3.275) to derive an identity which is equivalent to
solving (3.275) in the sense of distributions. Indeed, choose

ρ0 ∈ C∞(Rd ) such that ρ0 ≥ 0 and
∫

Rd

ρ0(x)dx = 1, (3.283)

and observe that

ρ(y, x, ξ, t) = ρ0
(
y − x + a(ξ)B(t)

)
, (3.284)

where

a(ξ)B(t) := (a1(ξ)B1(t), a2(ξ)B2(t), . . . , aN(ξ)BN(t)), (3.285)
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solves the linear transport equation (recall that in this subsection it is assumed that
B is smooth)

dρ +
d∑

i=1

Ai(ξ)∂xi ρ · dBi = 0 in R
d × R× (0,∞),

and, hence,

d(ρ(y, x, ξ, t)χ(x, ξ, t)) +
d∑

i=1

Ai(ξ)∂xi (ρ(y, x, ξ, t)χ(x, ξ, t)) · dBi

= ρ(y, x, ξ, t)∂ξm(x, ξ, t)dt.
(3.286)

Integrating (3.286) with respect to x (recall that ρ0 has compact support) yields that,
in the sense of distributions in R× (0,∞),
d

dt

∫

Rd

χ(x, ξ, t)ρ(y, x, ξ, t)dx =
∫

Rd

ρ(y, x, ξ, t)∂ξm(x, ξ, t)dx. (3.287)

Observe that, although the regularity of the path was used to derive (3.287),
the actual conclusion does not need it. In particular, (3.287) holds for paths
which are only continuous. Moreover, (3.287) is basically equivalent to the kinetic
formulation, if the measurem satisfies (3.276).

Finally, note that (3.287) makes sense only after integrating with respect to ξ
against a test function. This requires that a′ ∈ C1(R;Rd) as long as we only use
that m is a measure. Indeed, integrating against a test function Ψ yields

∫

Rd+1
Ψ (ξ)ρ(y, x, ξ, t)∂ξm(x, ξ, t) dxdξ

= −
∫

Rd+1
Ψ ′(ξ)ρ(y, x, ξ, t) m(x, ξ, t) dxdξ

+
∫

Rd+1
Ψ (ξ)(

d∑

i=1

∂xi ρ(y, x, ξ, t)(a
i)′(ξ)Bi(t)) m(x, ξ, t) dxdξ

and all the terms make sense as continuous functions tested against a measure.
Some (new) estimates and identities, needed for the proof of the main results of

this section and derived from (3.287), are stated next. Here δ denotes the Dirac mass
at the origin.

Proposition 15.2 Assume (3.269) and u0 ∈ (L1 ∩ L∞ ∩ BV )(Rd ). Then, for all
t > 0,

d

dt

∫

Rd+1
|χ(x, ξ, t)|dx dξ = −2

∫

Rd

m(x, 0, t)dx, (3.288)
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and
∫

Rd+1

∫

R2d
δ(ξ − u(z, t)) ρ(y, z, ξ, t)ρ(y, x, ξ, t) m(t, x, ξ)dxdydzdξ

= 1
2
d
dt

∫

Rd+1
[
(∫

Rd

χ(x, ξ, t)ρ(y, x, ξ, t)dx

)2

− |χ(y, ξ, t)|]dydξ.
(3.289)

Proof The first identity is classical and is obtained from multiplying (3.268)
by sign(ξ) and using that the fact that sign(ξ)χ(x, ξ, t) = |χ(x, ξ, t)|. Notice
that taking the value ξ = 0 in m is allowed by the Lipschitz regularity in
Proposition 15.1.

The proof of (3.289) uses the regularization kernel along the characteris-
tics (3.284). Indeed, (3.287) and the facts that χξ (z, ξ, t) = δ(ξ) − δ(ξ − u(z, t))
and, for all ξ ∈ R,

∫

Rd

∫

R2d
χ(z, ξ, t)[Dyρ(y, z, ξ, t)ρ(y, x, ξ, t)

+ ρ(y, z, ξ, t)Dyρ(y, x, ξ, t)] m(t, x, ξ)dzdxdy = 0,

which follows from the observation that the integrand is an exact derivative with
respect to y.

1

2

d

dt

∫

Rd+1

(∫

Rd

χ(x, ξ, t)ρ(y, x, ξ, t)dx

)2

dydξ

=
∫

Rd+1

[∫

Rd

χ(z, ξ, t)ρ(y, z, ξ, t)dz

∫

Rd

ρ(y, x, ξ, t)∂ξm(x, ξ, t) dx

]

dydξ

= −
∫

Rd+1

∫

R2d
[δ(ξ)− δ(ξ − u(z, t))]

× ρ(y, z, ξ, t)ρ(y, x, ξ, t) m(x, ξ, t)dzdxdydξ

= −
∫

Rd

m(x, 0, t)dx

+
∫

Rd+1

∫

R2d
δ(ξ − u(z, t))ρ(y, z, ξ, t)ρ(y, x, ξ, t) m(x, ξ, t)dzdxdydξ.

Using next (3.288) gives (3.289).
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3.15.3 Dissipative Solutions

The notion of dissipative solutions, which was studied by Perthame and Souganidis
[91], is equivalent to that of entropy solutions. The interest in them is twofold.
Firstly, the definition resembles and enjoys the same flexibility as the one for
viscosity solutions in, of course, the appropriate function space. Secondly, in
defining them, it is not necessary to talk at all about entropies, shocks, etc.

It is said that u ∈ L∞((0, T ), (L1∩L∞)(Rd)) is a dissipative solution of (3.268),
if, for all Ψ ∈ C([0,∞);C∞c (Rd )) and all ψ ∈ C∞c (R; [0,∞)), where the
subscript c means compactly supported, in the sense of distributions,

d

dt

∫

Rd

∫

R

ψ(k)(u− k − Ψ )+dxdk ≤
∫

Rd

∫

R

ψ(k)sign+(u− k − Ψ )

× (−Ψt −
d∑

i=1

∂xi (A
i(Ψ )) · dBi)dxdk.

To provide an equivalent definition which will allow to go around the difficulties
with inequalities mentioned earlier, it is necessary to take a small detour to recall
the classical fact that, under our regularity assumptions on the flux and paths, for
any φ ∈ C∞c (Rd) and any t0 > 0, there exists h > 0, which depends on φ, such that
the problem

dΨ̄+
d∑

i=1

∂xi (A
i(Ψ̄ ))·dBi = 0 in R

d×(t0−h, t0+h) Ψ̄ (·t0) = φ, (3.290)

has a smooth solution given by the method of characteristics.
It is left up to the reader to check that the definition of the dissipative solution is

equivalent to saying that, for φ ∈ C∞c (Rd), ψ ∈ C∞c (R; [0,∞)) and any t0 > 0,
there exists h > 0, which depends on φ, such that, if Ψ̄ and h > 0 are as in (3.290),
then in the sense of distributions

d

dt

∫

Rd

∫

R

ψ(k)(u− k − Ψ̄ )+dxdk ≤ 0 in (t0 − h, t0 + h).

3.15.4 Pathwise Kinetic/Entropy Solutions

The following definition is motivated by the theory of pathwise viscosity solutions.

Definition 15.1 Assume (3.269) and (3.270). Then u ∈ (L1 ∩ L∞)(QT ) is a
pathwise kinetic/entropy solution to (3.268), if there exists a nonnegative bounded
measure m on R

d × R× (0,∞) such that, for all test functions ρ given by (3.284)
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with ρ0 satisfying (3.283), in the sense of distributions in R× (0,∞),
d

dt

∫

Rd

χ(x, ξ, t)ρ(y, x, ξ, t)dx =
∫

Rd

ρ(y, x, ξ, t)∂ξm(x, ξ, t)dx. (3.291)

The main result is:

Theorem 15.1 Assume (3.269), (3.270) and u0 ∈ (L1 ∩ L∞)(Rd). For all T > 0
there exists a unique pathwise entropy/kinetic solution u ∈ C([0,∞);L1(Rd )

) ∩
L∞(QT ) to (3.268) and (3.277), (3.75), (3.280), (3.281) and (3.282) hold. In
addition, any pathwise entropy solutions u1, u2 ∈ C

([0,∞);L1(Rd )
)

to (3.268)
satisfy, for all t > 0, the contraction property

‖u2(·, t)− u1(·, t)‖L1(Rd) ≤ ‖u2(·, 0)− u1(·, 0)‖L1(Rd). (3.292)

Moreover, there exists a uniform constant C > 0 such that, if, for i = 1, 2, ui is the
pathwise entropy/kinetic solution to (3.268) with path Bi and ui,0 ∈ BV (Rd), then
u1 and u2 satisfy, for all t > 0, the contraction property

‖u2(·, t) − u1(·, t)‖L1(Rd) ≤ ‖u2,0 − u1,0‖L1(Rd)

+ C[‖a‖(|u1,0|BV (Rd) + |u2,0|BV (Rd))|(B1 − B2)(t)| (3.293)

+ ( sup
s∈(0,t )

|(B1 − B2)(s)|‖a′‖[‖u1,0‖2
L2(RN)

+ ‖u2,0‖2
L2(RN)

])1/2].

Looking carefully into the proof of (3.293) for smooth paths, it is possible to
establish, after some approximations, an estimate similar to (3.293), for non BV -
data, with a rate that depends on the modulus of continuity in L1 of the initial data.
It is also possible to obtain an error estimate for different fluxes. The details for both
are left to the interested reader.

3.15.5 Estimates for Regular Paths

Following ideas from the earlier parts of the notes, the solution operator of (3.268)
may be thought of as the unique extension of the solution operators with regular
paths. It is therefore necessary to study first (3.268) with smooth paths and to obtain
estimates that allow to prove that the solutions corresponding to any regularization
of the same path converge to the same limit, which is a pathwise entropy/kinetic
solution. The intrinsic uniqueness for the latter is proved later.

The key step is a new estimate, which depends only on the sup-norm of B and
yields compactness with respect to time.
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Theorem 15.2 Assume (3.269) and, for i = 1, 2, ui,0 ∈ (L1 ∩ L∞ ∩ BV )(Rd).
Consider two smooth paths B1 and B2 and the corresponding solutions u1 and u2
to (3.268). There exists a uniform constant C > 0 such that, for all t > 0, (3.293)
holds.

The proof of Theorem 15.2, which is long and technical, can be found in [65]. It
combines the uniqueness proof for scalar conservation laws based on the kinetic
formulation of [89, 90] and the regularization method along the characteristics
introduced for Hamilton-Jacobi equations in [71, 74–77].

3.15.6 The Proof of Theorem 15.1

The existence of a pathwise kinetic/entropy solution follows easily. Indeed, the
estimate of Theorem 15.2 implies that, for every u0 ∈ (L1 ∩ L∞ ∩ BV )(Rd) and
for every T > 0, the mapping B ∈ C([0, T ];Rd) �→ u ∈ C([0, T ];L1(Rd )

)
is well

defined and uniformly continuous with the respect to the norm of C([0, T ];Rd).
Therefore, by density, it has a unique extension to C([0, T ]). Passing to the limit
gives the contraction properties (3.292) and (3.293) as well as (15.1). Once (3.292)
is available for initial data in BV (Rd), the extension to general data is immediate
by density.

The next step is to show that pathwise kinetic/entropy satisfying (15.1) are intrin-
sically unique in an intrinsic sense. The contraction property only proves uniqueness
of the solution built by the above regularization process. It is, however, possible to
prove that (3.291) implies uniqueness. Indeed, for BV -data, the estimates in the
proof of Theorem 15.2 only use the equality of Definition 15.1. From there the only
nonlinear manipulation needed is to check that

1

2

d

dt

∫

Rd+1

(∫

Rd

χ(x, ξ, t)ρ(y, x, ξ, t)dx

)2

=
∫

Rd+1

(∫

Rd

χ(x, ξ, t)ρ(y, x, ξ, t)dx

)

× d
dt

∫

Rd+1

(∫

Rd

χ(x, ξ, t)ρ(y, x, ξ, t)dx

)

.

This is justified after time regularization by convolution because it has been assumed
that solutions belong to C

([0, T );L1(Rd )
)

for all T > 0. This fact also allows to
justify that the right hand side

∫

Rd+1

(∫

Rd

χ(x, ξ, t)ρ(y, x, ξ, t)dx

) ∫

Rd+1

∫

Rd

χ(z, ξ, t)ρ(y, z, ξ, t)dz

∫

Rd

ρ(y, x, ξ, t)∂xi χ(x, ξ, t) dx
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can be analyzed by a usual integration by parts, because it is possible to incorporate
a convolution in ξ before forming the square. All these technicalities are standard
and I omit them. The uniqueness for general data requires one more layer of
approximation.

3.15.7 The Semilinear Problem

Based on the results of Sect. 3.5, it is natural to expect that the approach developed
earlier will also be applicable to the semilinear problem (3.271) to yield a pathwise
theory of stochastic entropy solutions. It turns out, however, that this not the case.

To keep things simple, here it is assumed that d = 1, B = t and B̃ ∈
C([0,∞);R) is a single continuous path. Consider, forΦ ∈ C2(R;R), the problem

du+ divA(u)dt = Φ(u) · dB in QT u = u0. (3.294)

Following the earlier considerations as well as the analogous problem for Hamilton-
Jacobi equations, it is assumed that, for each v ∈ R and T > 0, the initial value
problem

dΨ = Φ(Ψ ) · dB̃ in (0,∞) Ψ (0) = v, (3.295)

has a unique solution Ψ (v; ·) ∈ C([0, T ];R) such that, for all t ∈ [0, T ],

Ψ (·, t) ∈ C1(R;R). (3.296)

According to [77], to study (3.294) it is natural to consider a change of unknown
given by the Doss-Sussman-type transformation

u(x, t) = Ψ (v(x, t), t). (3.297)

Assuming for a moment that B̃ and, hence, Ψ are smooth with respect to t
and (3.294) and (3.295) have classical solutions, it follows, after a straightforward
calculation, that

vt + divÃ(v, t) = 0 in QT v = u0, (3.298)

where Ã ∈ C0,1(R× [0, T ]) is given by Ã′(v, t) = A′(Ψ (v, t)).
Under the above assumptions on the flux and the forcing term, the theory of

entropy solutions of scalar conservation laws applies to (3.298) and yields the
existence of a unique entropy solution.
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Hence, exactly as in Sect. 3.5, it is tempting to define u ∈ (L1∩L∞)(QT ), for all
T > 0, to be a pathwise entropy/kinetic solution of (3.294) if v ∈ (L1 ∩ L∞)(QT )
defined, for all T > 0, by (3.297) is an entropy solution of (3.298).

This does not, however, lead to a well-posed theory. The difficulty is best seen
when adding a small viscosity ν to (3.294), and, hence, considering the approximate
equation

ut + divA(u) = �(u) · dB + νΔu,

and, after the transformation (3.297), the problem

vt + 〈a
(
Ψ (v(x, t), t)

)
,Dv〉 = ν

Ψv(v(x, t), t)
ΔΨ (v(x, t), t)

= νΔv + ν(Ψvv
Ψv
)(v(x, t), t)|Dv|2 .

If the approach based on (3.297) were correct, one would expect to get, after
letting ν → 0, (3.298). This, however, does not seem to be the case due to the lack
of the necessary a priori bounds to pass to the limit.

The problem is, however, not just a technicality but something deeper. Indeed the
transformation (3.297) does not, in general, preserve the shocks unless, as an easy
calculation shows, the forcing is linear.

Assume that d = 1 and B(t) = t , let H be the Heaviside step function and
consider the semilinear Burgers equation

ut + 1

2
(u2)x = Φ(u) in QT u0 = H, (3.299)

with Φ such that

Φ(0) = 0, Φ(1) = 0, and Φ(u) > 0 for u ∈ (0, 1). (3.300)

It is easily seen that the entropy solution of (3.299) is

u(x, t) =
{

1 for x < t/2,

0 for x > t/2.

Next consider the transformation u = Ψ (v, t) with Ψ̇ (v; t) = Φ(Ψ (v; t)), and
Ψ (v; 0) = v.

Since, in view of (3.300), Ψ (0; t) = Ψ (1; t) ≡ 1, and Ψ (v; t) > v for v ∈
(0, 1), it follows that the flux for the equation for v is

Ã(v, t) =
∫ v

0
Ψ (w; t)dw,
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and the entropy solution with initial data u0 is v(x, t) = H(x − x̄(t)) with the
Rankine-Hugoniot condition

˙̄x(t) =
∫ 1

0
Ψ (w; t)dw >

∫ 1

0
wdw = 1

2
,

which shows that the shock waves are not preserved.
The final point is that, when B is a Brownian path, it is more natural to consider

contractions in L1(Rd × Ω) instead of L1(Rd) a.s. in ω for (3.271). To fix the
ideas take A = 0 and B a Brownian motion and consider the stochastic initial value
problem

du = Φ(u) ◦ dB in (0,∞) u(·, 0) = u0. (3.301)

If u1, u2 are solutions to (3.301) with initial data u1,0, u2,0 respectively, then,
subtracting the two equations, multiplying by sign(u1 − u2), taking expectations
and using Itô’s calculus, gives, for some C > 0 depending on bounds on Φ and its
derivatives,

E

∫
|u1(x, t)− u2(x, t)|dx ≤ exp(Ct)E

∫
|u0

1(x)− u0
2(x)|dx,

while it is not possible, in general, to get an almost sure inequality on∫ |u1(x, t;ω)− u2(x, t, ω)|dx.
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Appendix: A Brief Review of the Theory of Viscosity Solutions
in the Deterministic Setting

This is a summary of several facts about the theory of viscosity solutions of
Hamilton-Jacobi equations that are used in these notes. At several places, an attempt
is made to motivate the definitions and the arguments. This review is very limited
in scope. Good references are the books by Bardi and Capuzzo-Dolceta [2], Barles
[4], Fleming and Soner [29], the CIME notes [3] and the “User’s Guide” by Crandall
et al. [17].
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The Method of Characteristics

Consider the initial value problem

ut = H(Du, x) in QT u(·, 0) = u0. (3.302)

The classical method of characteristics yields, for smooth H and u0, short time
smooth solutions of (3.302). Indeed, assume that H,u0 ∈ C2. The characteristics
associated with (3.302) are the solutions of the system of odes

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ẋ = −DpH(P,X),
Ṗ = DxH(P,X),
U̇ = (H(P,X)− 〈DpH(P,X), P )〉

(3.303)

with initial conditions

X(x, 0) = x, P (x, 0) = Du0(x) and U(x, 0) = u0(x) . (3.304)

The connection between (3.302) and (3.303) is made through the relationship

U(t) = u(X(x, t), t) and P(t) = Du(X(x, t), t) .

The issue is then the invertibility, with respect to x, of the map x �→ X(x, t).
A simple calculation involving the Jacobian of X shows that x �→ X(t, x) is a
diffeomorphism in (−T ∗, T ∗) with

T ∗ = (‖D2H‖ ‖D2u0‖)−1 .

Viscosity Solutions and Comparison Principle

Passing next to the issues of the definition and well-posedness of weak solutions, to
keep the ideas simple, it is convenient to consider the two simple problems

ut = H(Du)Ḃ in QT u(·, 0) = u0, (3.305)

and

u+H(Du) = f in R
d , (3.306)

and to assume that H ∈ C(Rd ), B ∈ C1(R) and f ∈ BUC(Rd ).
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Nonlinear first-order equations do not have in general smooth solutions. This can
be easily seen with explicit examples. On the other hand, it is natural to expect,
in view of the many applications, like control theory, front propagation, etc., that
global, not necessarily smooth solutions, must exist for all time and must satisfy
a comparison principle. For (3.305) this will mean that if u0 � v0, then u(·, t) �
v(·, t) for all t > 0 and, for (3.306), if f � g, then u � v.

To motivate the definition of the viscosity solutions it is useful to proceed, in a
formal way, to prove this comparison principle.

Beginning with (3.306), it is assumed that, for i = 1, 2, ui solves (3.306) with
right hand side fi . To avoid further technicalities it is further assumed that the ui’s
and fi ’s are periodic in the unit cube. The goal is to show that if f1 � f2, then
u1 � u2.

The “classical” proof consists of looking at max(u1 − u2) which, in view of the
assumed periodicity, is attained at some x0 ∈ R

d , that is,

(u1 − u2)(x0) = max(u1 − u2) .

If both u1 and u2 are differentiable at x0, then Du1(x0) = Du2(x0) , and then it
follows from the equations that

(u1 − u2)(x0) � (f1 − f2)(x0) .

Observe that to prove that u1 � u2, it is enough to have that

u1 +H(Du1) � f1 and u2 +H(Du2) � f2 ,

that is, it suffices for u1 and u2 to be respectively a subsolution and a supersolution.
Turning now to (3.305), it is again assumed the data is periodic in space. If, for

i = 1, 2, ui solves (3.305) and u1(·, 0) � u2(·, 0), the aim is to show that, for all
t > 0, u1(·, t) � u2(·, t).

Fix δ > 0 and let (x0, t0) be such that

(u1 − u2)(x0, t0)− δt0 = max
(x,t)∈Rd×[0,T ]

(u1(x, t)− u2(x, t)− δt) .

If t0 ∈ (0, T ] and u1, u2 are differentiable at (x0, t0), then

Du1(x0, t0) = Du2(x0, t0) and u1,t (x0, t0) ≥ u2,t (x0, t0)+ δ.

Since evaluating the equations at (x0, t0) yields a contradiction, it must be that t0 =
0, and, hence,

max
(x,t)∈Rd×[0,T ]

((u1 − u2)(x, t)− δt) � max
Rd
(u1(·, 0)− u2(·, 0)) � 0 .

Letting δ→ 0 leads to the desired conclusion.
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The previous arguments use, of course, strongly the fact that u1 and u2 are both
differentiable at the maximum of u1 − u2, which is not the case in general. This
is a major difficulty that is overcome using the notion of viscosity solution, which
relaxes the need to have differentiable solutions.

The definition of the viscosity solutions for the general problems

ut = F(D2u,Du, u, x, t) in U × (0, T ] , (3.307)

and

F(D2u,Du, u, x) = 0 in U , (3.308)

where U is an open subset of Rd , is introduced next.

Definition 1

(i) u ∈ C(U × (0, T ]) (resp. u ∈ C(U)) is a viscosity subsolution of (3.307)
(resp. (3.308)), if, for all smooth test functions of u − φ and all maximum
points (x0, t0) ∈ U × (0, T ] (resp. resp. x0 ∈ U ) of u− φ

φt + F(D2φ,Dφ, u, x0, t0) � 0 (resp. F(D2φ,Dφ, u, x0) � 0) .

(ii) u ∈ C(U × (0, T ]) (resp. u ∈ C(U)) is a viscosity supersolution of (3.307)
(resp. (3.308)) if, for all smooth test functions φ and all minimum points
(x0, t0) ∈ U × (0, T ] (resp. x0 ∈ U ) of u− φ,

φt + F(D2φ,Dφ, u, x0, t0) � 0 (resp. F(D2φ,Dφ, u, x0) � 0) .

(iii) u ∈ C(U × (0, T )) (resp. u ∈ C(U)) is a viscosity solution of (3.307)
(resp. (3.308)) if it is both a sub- and super-solution. of (3.307) (resp. (3.308)).

In the definition above, maxima (resp. minima) can be either global or local.
Moreover, φ may have any regularity, C1 being the least required for first-order
and C2,1 for second-order equations.

Using the definition of viscosity solution, it is possible to make the previous
heuristic proof rigorous and to show the well-posedness of the solutions.

A general comparison result for (3.305) and (3.306) is stated and proved next.

Theorem 1

(i) Assume H ∈ C(Rd ), f, g ∈ BUC(Rd ) and let u, v ∈ BUC(Rd ) be
respectively viscosity subsolution and supersolution of (3.306) with right hand
side f and g respectively. Then supRd (u− v)+ � sup(f − g)+.

(ii) Assume H ∈ R
d , B ∈ C1(R), u0, v0 ∈ BUC(Rd ) and let u, v ∈ BUC(QT )

be respectively viscosity sub- and super-solutions of (3.305) with initial data
u0 and v0 respectively. Then, for all t ∈ [0, T ], supRd (u(·, t) − v(·, t))+ �
sup(u0 − v0)+.
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Proof To simplify the argument it is assumed throughout the proof that f , g, u0, v0,
u and v are periodic in the unit cube. This assumption guarantees that all suprema
in the statement are actually achieved and are therefore maxima. The general result
is proved by introducing appropriate penalization at infinity, i.e., considering, in the
case of (3.306) for example, sup(u(x)− v(x)− α|x|2) and then letting α→ 0; see
[4] and [17] for all the arguments and variations.

Consider first (3.306). The key technical step is to double the variables by
introducing the new function z(x, y) = u(x) − v(y) which solves the doubled
equation

z +H(Dxz)−H(−Dyz) � f (x)− g(y) in R
d × R

d . (3.309)

Indeed if, for a test function φ, z− φ attains a maximum at (x0, y0), then u(x)−
φ(x, y0) and v(y)+ φ(x0, y) attain respectively a maximum at x0, and a minimum
at y0. Therefore

u(x0)+H(Dxφ(x0, y0)) � f (x0) and v(y0)+H(−Dyφ(x0, y0)) � f (y0),

and the claim follows by subtracting these two inequalities.
To prove the comparison result, z is compared with a smooth function, which is

“almost” a solution, that is, in the case at hand, a function of x − y.
It turns out that the most convenient choice is, for an appropriate aε,

φε(x, y) = 1

2ε
|x − y|2 + aε.

Indeed

φε+H(Dxφε))−H(−Dyφε)−(f (x)−g(y)) = 1

2ε
|x−y|2+aε−(f (x)−g(y)) � 0,

if

aε = max(f − g)+ νε and νε = max

(

g(x)− g(y)− 1

2ε
|x − y|2

)

;

note that, since g is uniformly continuous, limε→0 νε = 0.
Let (xε, yε) be such that

z(xε, yε)− φ(xε, yε) = max
Rd×Rd

(z− φ) .

Then

z(xε, yε)+H(Dxφ(xε, yε)−H(−Dyφ(xε, yε)) � f (xε)− g(yε) .
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On the other hand, it is known that

φ(xε, yε)+H(Dxφ(xε, yε))−H(−Dyφ(xε, yε)) � f (xε)− g(yε) .

It follows that

z(xε, yε) � φ(xε, yε)

and, hence,

z � φ in R
d × R

d .

Letting x = y in the above inequality yields

u(x)− v(x) � φ(x, x) = aε = max(f − g)+ νε
and, after sending ε→ 0,

max(u− v) � max(f − g) .

The comparison for (3.305) is proved similarly. In the course of the proof, however,
it is not necessary to double the t-variable, since the equation is linear in the time
derivative. This fact plays an important role in the analysis of the pathwise pde when
B is merely continuous.

To this end, define the function

z(x, y, t, s) = u(x, t)− v(y, s) ,

and observe, as before, that

zt − zs � H(Dxz)Ḃ(t)−H(−Dyz)Ḃ(s) in R
d × R

d × (0,∞)× (0,∞) .

On the other hand, it is possible to show that

z(x, y, t) = u(x, t)− v(y, t)

actually satisfies

zt � (H(Dxz)−H(−Dyz))Ḃ in R
d × R

d × (0,∞) . (3.310)

Indeed, fix a smooth φ and let (x0, y0, t0) be a (strict) local maximum of (x, y, t)→
z(x, y, t) − φ(x, y, t). Since all functions are assumed to be periodic with respect
to the spatial variable, the penalized function

u(x, t)− v(y, s)− φ(x, y, t)− 1

2θ
(t − s)2
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achieves a local maximum at (xθ , yθ , tθ , stheta). It follows that, as θ → 0,
(xθ , yθ , tθ , sθ )→ (x0, y0, t0, t0).

Applying the definition to the function u(x, t)− v(y, s) gives at (xθ , yθ , tθ , sθ )

φt + 1

θ
(tθ − sθ )− 1

θ
(tθ − sθ ) � H(Dxφ)Ḃ(tθ )−H(−Dyφ)Ḃ(sθ )

and, after letting θ → 0 and using the assumption that B ∈ C1, at (x0, y0, t0),

φt � (H(Dxφ)−H(−Dyφ))Ḃ.

Since

φε(x, y) = 1

2ε
|x − y|2

is a smooth supersolution of (3.310), it follows immediately, after repeating an
earlier argument, that

u(x, t)− v(y, t) � 1

2ε
|x − y|2 + max

x,y∈Rd
(u(x, 0)− v(y, 0)− 1

2ε
|x − y|2)

and, after letting ε→ 0,

max
Rd
(u(x, t)− v(x, t)) � max

Rd
(u(x, 0)− v(x, 0))) .

Formulae for Solutions

The next item in this review is the control interpretation of Hamilton-Jacobi
equation. For simplicity here Ḃ ≡ 1.

Consider the controlled system of ode

ẋ(t) = b(x(t), α(t)) x(0) = x ∈ R
d ,

where b : Rd × A → R
d is bounded and Lipschitz continuous with respect to

x uniformly in α, A is a compact subset of RM for some M , the measurable map
t �→ αt ∈ A is the control, and (xt )t�0 is the state variable.

The associated cost function is given by

J (x, t, α·) =
∫ t

0
f (x(s), α(s))dt + u0(x(t)),
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where u0 ∈ BUC(Rd ) is the terminal cost and f : Rd × A → R is the running
cost, which is also assumed to be bounded and Lipschitz continuous with respect to
x uniformly in α.

The goal is to minimize—one can, of course, consider maximization—the cost
function J over all possible controls. The value function is

u(x, t) = inf
α·
J (x, t, α·) . (3.311)

The key tool to study u is the dynamic programming principle, which is nothing
more than the semigroup property. It states that, for any τ ∈ (0, t),

u(x, t) = inf
α·

[ ∫ τ

0
f (x(s), α(s))ds + u(x(τ ), t − τ )

]

. (3.312)

Its proof, which is straightforward, is based on the elementary observation that when
pieced together, optimal controls and paths in [a, b] and [b, c] form an optimal path
for [a, c].

The following formal argument, which can be made rigorous using viscosity
solutions and test functions shows the connection between the dynamic program-
ming and the Hamilton-Jacobi equation.

Using the dynamic programming identity, with τ = h small, yields

u(x, t) ≈ inf
α·
(hf (x, α)+Dxu(x, t) · b(x, α)h)+ u(x, t)− ut (x, t)h ,

and, hence,

ut + sup
α
[−Dxu · b(x, α)− f (x, α)] = 0 ,

that is

ut +H(Du, x) = 0 in R
d × (0,∞) ,

where the (convex) HamiltonianH is given by the formula

H(p, x) = sup
α
[−〈p, b(x, α)〉 − f (x, α)] .

Recall that, if H : Rd → R is convex, then

H(p) = sup
q∈Rd

(〈p, q〉 −H ∗(p)),



210 P. E. Souganidis

whereH ∗ is the Legendre transform of H defined by

H ∗(q) = sup
p∈Rd

(〈q, p〉 −H(p)) .

The Legendre transform H ∗ of any continuous, not necessarily convex,H : Rd →
R is convex.

When H : Rd × R
d → R is convex, the previous discussion provides a formula

for the viscosity solution of the Hamilton-Jacobi equation

ut +H(Du, x) = 0 in QT , u(·, 0) = u0 on R
d . (3.313)

Indeed recall that

H(p, x) = sup
q
[〈p, q〉 −H ∗(q, x)]

and consider the controlled system

ẋ(t) = q(t) x(0) = x,

and the pay-off

J (x, t, q·) = u0(x(t))+
∫ t

0
H ∗(q(s), x(s))ds.

The theory of viscosity solutions (see [4, 58]) yields that

u(x, t) = inf
q·

[

u0(x(t))+
∫ t

0
H ∗(q(s), x(s)) ds

]

. (3.314)

WhenH does not depend on x, then (3.314) can be simplified considerably. Indeed,
applying Jensen’s inequality to the representation formula (3.314) of the viscosity
solution u of

ut +H(Du) = 0 in QT u(·, 0) = u0 on R
d, (3.315)

yields the Lax-Oleinik formula

u(x, t) = inf
y∈Rd

[

u0(y)+ tH ∗(x − y
t
)

]

. (3.316)

A similar argument, when H is concave, yields

u(x, t) = sup
y∈Rd

[

u0(y)− tH ∗(x − y
t
)

]

. (3.317)
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The existence of viscosity solution follows either directly using Perron’s method
(see [17]), which yields the solution as the maximal (resp. minimal) subsolution
(resp. supersolution) or indirectly by considering regularizations of the equation, the
most commonly used consisting of “adding”−εΔuε to the equation and passing to
the limit ε→ 0.

A summary follows of some of the key facts about viscosity solutions of the
initial value problem (3.315), which are used in the notes, for H ∈ C(Rd) and
u0 ∈ BUC(Rd ).

The results discussed earlier yield that there exists a unique solution u ∈
BUC(QT ). In particular, u = SH (t)u0 , with the solution operator SH (t) :
BUC(Rd )→ BUC(Rd ) a strongly continuous semigroup, that is, for s, t > 0,

SH (t + s) = SH (t)SH (s).

The time homogeneity of the equation also yields, for t > 0, the identity

SH (t) = StH (1).

Moreover, SH commutes with translations, additions of constants and is order-
preserving, and, hence, a contraction in the sup-norm, that is,

‖(SH (t)u− SH (t)v)±‖∞ � ‖(u− v)±‖∞.

If u0 ∈ C0,1(Rd), the space homogeneity of H and the contraction property
yield, that, for all t > 0, SH (t)u ∈ C0,1(Rd ) and, moreover,

‖DSH (t)u0‖ � ‖Du0‖.

It also follows from the order preserving property that, for all u, v ∈ BUC(Rd )
and t > 0,

SH (t)max(u, v) � max(SH (t)u, SH (t)v)

and

SH (t)min(u, v) � min(SH (t)u, SH (t)v) .

Finally, it can be easily seen from the definition of viscosity solutions that, if, for
i ∈ I , ui is a sub-(resp. super-solution), then supi ui is a subsolution (resp. infi ui a
supersolution).

A natural question is whether there are any other explicit formulae for the
solutions of (3.315); recall that forH convex/concave, the solutions satisfy the Lax-
Oleinik formula.
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It turns out there exists another formula, known as the Hopf formula, which does
not requireH to have any concavity/convexity property as long as the initial datum
is convex/concave.

For definiteness, here it is assumed that u0 is convex, and denote by u∗0 its
Legendre transform.

It is immediate that, for any p ∈ R
d , the function up(x, t) = 〈p, x〉 + tH (p) is

a viscosity solution of (3.315) and, hence, in view of the previous discussion,

v(x, t) = sup
p∈Rd

[〈p, x〉 + tH (p)− u∗0(p)] , (3.318)

is a subsolution of (3.315).
The claim is that, if u0 is convex, then v is actually a solution. Since this fact

plays an important role in the analysis, it is stated as a separate proposition.

Proposition 1 Let H ∈ C(Rd ) and assume that u0 ∈ BUC(Rd ) is convex. The
unique viscosity solution u ∈ BUC(QT ) of (3.315) is given by (3.318).

Proof If H is either convex or concave, the claim follows using the Lax-Oleinik
formula. Assume, for example, that H is convex. Then

sup
p∈Rd

[〈p, x〉 + tH(p) − u∗0(p)] = sup
p∈Rd

[〈p, x〉 + t sup
q∈Rd

((p, q) −H ∗(q)) − u∗0(p)]

= sup
p∈Rd

sup
q∈Rd

[〈p, x〉 + t (p, q)− tH ∗(q) − u∗0(p)]

= sup
q∈Rd

sup
p∈Rd

[〈p, x + tq〉 − u∗0(p)− tH ∗(q)]

= sup
q∈Rd

[u0(x + tq)− tH ∗(q)]

= sup
y∈Rd

[u0(y)− tH ∗(y − x
t
)] .

If H is concave, the argument is similar, provided the min-max theorem is used to
interchange the sup and inf that appear in the formula.

For the general case the first step is that the map F(t) : BUC(Rd )→ BUC(Rd )

defined by

F(t)u0(x) = sup
p∈Rd

[〈p, x〉 + tH (p)− u∗0(p)]

has the semi-group property, that is,

F(t + s) = F(t)F (s).
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If u0 is convex, then F(t)u0 is also convex, since it is the sup of linear functions,
and, moreover,

F(t)u0 = (u∗0 − tH )∗.

In view of this observation and the fact that, if w is convex then w = w∗∗, the
semigroup identity follows if it shown that

(u∗0 − (t + s)H)∗∗ = ((u∗0 − sH)∗∗ − tH )∗∗ .

On the other hand, the definition of the Legendre transform, the min-max theorems
and the fact that

sup
x∈Rd

〈z, x〉 =
{
+∞ if z �= 0 ,

0 if z = 0 ,

yield, for τ > 0, the following sequence of equalities:

(u∗0 − τH)∗∗(y) = sup
x∈Rd

[〈y, x〉 − (u∗0 − τH)∗(x)]

= sup
x∈Rd

[〈y, x〉 − sup
p∈Rd

[〈x, p〉 + τH(p)− u∗0(p)]]

= sup
x∈Rd

inf
p∈Rd

[〈y − p, x〉 − τH(p)+ u∗0(p)]

= inf
p∈Rd

sup
x∈Rd

[〈y − p, x〉 − τH(p)+ u∗0(p)] = u∗0(y)− τH(p) .

It follows that

(u∗0 − (t + s)H)∗∗ = u∗0 − (t + s)H
= u∗0 − sH − tH = (u∗0 − sH)∗∗ − tH
= ((u∗0 − sH)∗∗ − tH )∗∗ .

Next it is shown that actually (3.318) is a viscosity solution. In view of the previous
discussion, it is only needed to check the super-solution property.

Assume that, for some smooth φ, v−φ attains a minimum at (x0, t0)with t0 > 0.
Let p = Dφ(x0, t0) and λ = φt(x0, t0). The convexity of v yields that, for all (x, t)
and h ∈ (0, t0),

v(x, t0 − h) � v(x0, t0)+ 〈p, x − x0〉 − λh+ o(h) .
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Since

v(x0, t0) = F(h)v(·, t0 − h)(x0),

it follows that

v(x0, t0) = F(h)(v(x0, t0)+ 〈p, · − x0〉)(x0)− λh+ o(h) ,

and, finally,

λh � hH(p)+ o(h) .

Dividing by h and letting h→ 0 gives λ � H(p).
The above proof is a typical argument in the theory of viscosity solutions

which has been used by Lions [59] to give a characterization of viscosity solutions
and Souganidis [102] and Barles and Souganidis [5] to prove convergence of
approximations to viscosity solutions. Similar arguments were also used by Lions
[60] in image processing and Barles and Souganidis [6] to study front propagation.

It is a natural question to investigate whether the Hopf formula can be used for
more general Hamilton-Jacobi equations with possible dependence on (u, x).

A first requirement for such formula to hold is that the equation must preserve
convexity, that is, if u0 is convex, then u(·, t) must be convex for all t > 0.

It turns out that the general form of Hamiltonian’s satisfying this latter property
is

H(p, u, x) =
d∑

j=1

xjHj (Du)+ uH0(Du)+G(Du) .

To establish a Hopf-type formula, it is necessary to look at solutions starting with
linear initial data, that is, for some p ∈ R

d and a ∈ R„

u0(x) = 〈p, x〉 + a .

If there is a Hopf-type formula, the solution u starting with u0 as above must be of
the form

u(x, t) = P(t)x + A(t) with A(0) = a and P(0) = p.

A straightforward computation yields that P and A must satisfy, for H =
(H1, . . . , HN), the ode

Ṗ = H(P)+H0(P )P and Ȧ = H0(P )A+G(P).
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Whether the function

sup
p∈Rd

[〈P(t), x〉 + A(t)]

with A(0) = −u∗0(p) is a solution of the Hamilton-Jacobi equation is an open ques-
tion in general. Some special cases can be analyzed under additional assumptions
on the Hi’s, H0, etc.
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Chapter 4
Random Data Wave Equations

Nikolay Tzvetkov

Abstract Nowadays we have many methods allowing to exploit the regularising
properties of the linear part of a nonlinear dispersive equation (such as the KdV
equation, the nonlinear wave or the nonlinear Schrödinger equations) in order to
prove well-posedness in low regularity Sobolev spaces. By well-posedness in low
regularity Sobolev spaces we mean that less regularity than the one imposed by
the energy methods is required (the energy methods do not exploit the dispersive
properties of the linear part of the equation). In many cases these methods to
prove well-posedness in low regularity Sobolev spaces lead to optimal results
in terms of the regularity of the initial data. By optimal we mean that if one
requires slightly less regularity then the corresponding Cauchy problem becomes
ill-posed in the Hadamard sense. We call the Sobolev spaces in which these ill-
posedness results hold spaces of supercritical regularity. More recently, methods
to prove probabilistic well-posedness in Sobolev spaces of supercritical regularity
were developed. More precisely, by probabilistic well-posedness we mean that one
endows the corresponding Sobolev space of supercritical regularity with a non
degenerate probability measure and then one shows that almost surely with respect
to this measure one can define a (unique) global flow. However, in most of the
cases when the methods to prove probabilistic well-posedness apply, there is no
information about the measure transported by the flow. Very recently, a method
to prove that the transported measure is absolutely continuous with respect to the
initial measure was developed. In such a situation, we have a measure which is
quasi-invariant under the corresponding flow.

The aim of these lectures is to present all of the above described developments
in the context of the nonlinear wave equation.
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4.1 Deterministic Cauchy Theory for the 3d Cubic Wave
Equation

4.1.1 Introduction

In this section, we consider the cubic defocusing wave equation

(∂2
t −�)u+ u3 = 0, (4.1.1)

where u = u(t, x) is real valued, t ∈ R, x ∈ T
3 = (R/(2πZ))3 (the 3d torus).

In (4.1.1), � denotes the Laplace operator, namely

� = ∂2
x1
+ ∂2

x2
+ ∂2

x3
.

Since (4.1.1) is of second order in time, it is natural to complement it with two initial
conditions

u(0, x) = u0(x), ∂tu(0, x) = u1(x) . (4.1.2)

In this section, we will be studying the local and global well-posedness of the initial
value problem (4.1.1)–(4.1.2) in Sobolev spaces via deterministic methods.

The Sobolev spacesHs(T3) are defined as follows. For a function f on T
3 given

by its Fourier series

f (x) =
∑

n∈Z3

f̂ (n) ein·x,

we define the Sobolev normHs(T3) of f as

‖f ‖2
Hs =

∑

n∈Z3

〈n〉2s |f̂ (n)|2,

where 〈n〉 = (1+ |n|2)1/2. On has that

‖f ‖Hs ≈ ‖Dsf ‖L2, D ≡ (1−�)1/2 .

For integer values of s one can also give an equivalent norm in the physical space as
follows

‖f ‖Hs(T3) ≈
∑

|α|≤s
‖∂α1
x1
∂α2
x2
∂α3
x3
f ‖L2(T3) ,

where the summation is taken over all multi-indexes α = (α1, α2, α3) ∈ N
3.
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As we shall see, it will be of importance to understand the interplay between
the linear and the nonlinear part of (4.1.1). Indeed, let us first consider the Cauchy
problem

∂2
t u+ u3 = 0, u(0, x) = u0(x), ∂tu(0, x) = u1(x)

which is obtained from (4.1.1) by neglecting the Laplacian. If we set

U = (U1, U2) ≡ (u, ∂tu)t

then the last problem can be written as

∂tU = F(U), F (U) = (U2,−U3
1 )
t .

On may wish to solve, at least locally, the last problem via the Cauchy-Lipschitz
argument in the spaces Hs1(T3) × Hs2(T3). For such a purpose one should check
that the vector field F(U) is locally Lipschitz on these spaces. Thanks to the Sobolev
embedding Hs(T3) ⊂ L∞(T3), s > 3/2 we can see that the map U1 �→ U3

1 is
locally Lipschitz onHs(T3), s > 3/2. It is also easy to check that the mapU1 �→ U3

1
is not continuous on Hs(T3), s < 3/2. A more delicate argument shows that it is
not continuous on H 3/2(T3) either. Therefore, if we impose that F(u) is locally
Lipschitz on Hs1(T3) × Hs2(T3) than we necessarily need to impose a regularity
assumption s1 > 3/2. As we shall see below the term containing the Laplacian
in (4.1.1) will allow as to significantly relax this regularity assumption.

On the other hand if we neglect the nonlinear term u3 in (4.1.1), we get the linear
wave equation which is well-posed in Hs(T3)×Hs−1(T3) for any s ∈ R, as it can
be easily seen by the Fourier series description of the solutions of the linear wave
equation (see the next section). In other words the absence of a nonlinearity allows
us to solve the problem in arbitrary singular Sobolev spaces.

In summary, we expect that the Laplacian term in (4.1.1) will help us to prove
the well-posedness of the problem (4.1.1) in singular Sobolev spaces while the
nonlinear term u3 will be responsible for the lack of well-posedness in singular
spaces.

4.1.2 Local and Global Well-Posedness in H 1 × L2

4.1.2.1 The Free Evolution

We first define the free evolution, i.e. the map defining the solutions of the linear
wave equation

(∂2
t −�)u = 0, u(0, x) = u0(x), ∂tu(0, x) = u1(x). (4.1.3)
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Using the Fourier transform and solving the corresponding second order linear
ODE’s, we obtain that the solutions of (4.1.3) are generated by the map S(t), defined
as follows

S(t)(u0, u1) ≡ cos(t
√−�)(u0)+ sin(t

√−�)√−� (u1),

where

cos(t
√−�)(u0) ≡

∑

n∈Z3

cos(t|n|)û0(n) e
in·x

and

sin(t
√−�)√−� (u1) ≡ t û1(0)+

∑

n∈Z3
$

sin(t|n|)
|n| û1(n) e

in·x , Z
3
$ = Z

3\{0} .

We have that S(t)(u0, u1) solves (4.1.3) and if (u0, u1) ∈ Hs × Hs−1, s ∈ R

then S(t)(u0, u1) is the unique solution of (4.1.3) in C(R;Hs(T3)) such that its
time derivative is in C(R;Hs−1(T3)). It follows directly from the definition that the
operator S̄(t) ≡ (S(t), ∂tS(t)) is bounded onHs×Hs−1, S̄(0) = Id and S̄(t+τ ) =
S̄(t) ◦ S̄(τ ), for every real numbers t and τ . In the proof of the boundedness on
Hs×Hs−1, we only use the boundedness of cos(t|n|) and sin(t|n|). As we shall see
below one may use the oscillations of cos(t|n|) and sin(t|n|) for |n| ' 1 in order to
get more involved Lp , p > 2 properties of the map S(t).

Let us next consider the non homogeneous problem

(∂2
t −�)u = F(t, x), u(0, x) = 0, ∂tu(0, x) = 0. (4.1.4)

Using the variation of the constants method, we obtain that the solutions of (4.1.4)
are given by

u(t) =
∫ t

0

sin((t − τ )√−�)√−� ((F(τ))dτ .

As a consequence, we obtain that the solution of the non homogeneous prob-
lem (4.1.4) is one derivative smoother than the source term F . More precisely, for
every s ∈ R, the solution of (4.1.4) satisfies the bound

‖u‖L∞([0,1];Hs+1(T3)) ≤ C‖F‖L1([0,1];Hs(T3)) . (4.1.5)
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4.1.2.2 The Local Well-Posedness

We state the local well-posedness result.

Proposition 4.1.1 (Local Well-Posedness) Consider the cubic defocusing wave
equation

(∂2
t −�)u+ u3 = 0 , (4.1.6)

posed on T
3. There exist constants c and C such that for every a ∈ R, every * ≥ 1,

every

(u0, u1) ∈ H 1(T3)× L2(T3)

satisfying

‖u0‖H 1 + ‖u1‖L2 ≤ * (4.1.7)

there exists a unique solution of (4.1.6) on the time interval [a, a+c*−2] of (4.1.6)
with initial data

u(a, x) = u0(x), ∂tu(a, x) = u1(x) .

Moreover the solution satisfies

‖(u, ∂tu)‖L∞([a,a+c*−2],H 1(T3)×L2(T3)) ≤ C*,

(u, ∂tu) is unique in the class L∞([a, a + c*−2],H 1(T3) × L2(T3)) and the
dependence with respect to the initial data and with respect to the time is continuous.
Finally, if

(u0, u1) ∈ Hs(T3)×Hs−1(T3)

for some s ≥ 1 then there exists cs > 0 such that

(u, ∂tu) ∈ C([a, a + cs*−2];Hs(T3)×Hs−1(T3)) .

Proof If u(t, x) is a solution of (4.1.6) then so is u(t + a, x). Therefore, it suffices
to consider the case a = 0.

Thanks to the analysis of the previous section, we obtain that we should solve
the integral equation

u(t) = S(t)(u0, u1)−
∫ t

0

sin((t − τ )√−�)√−� ((u3(τ ))dτ . (4.1.8)
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Set

�u0,u1(u) ≡ S(t)(u0, u1)−
∫ t

0

sin((t − τ )√−�)√−� ((u3(τ ))dτ.

Then for T ∈ (0, 1], we define XT as

XT ≡ C([0, T ];H 1(T3)),

endowed with the natural norm

‖u‖XT = sup
0≤t≤T

‖u(t)‖H 1(T3) .

Using the boundedness properties of S̄ on Hs × Hs−1 explained in the previous
section and using the Sobolev embeddingH 1(T3) ⊂ L6(T3), we get

‖�u0,u1(u)‖XT ≤ C
(‖u0‖H 1 + ‖u1‖L2 + T sup

τ∈[0,T ]
‖u(τ)‖3

L6

)

≤ C(‖u0‖H 1 + ‖u1‖L2 + CT ‖u‖3
XT

)
.

It is now clear that for T = c*−2 , c ( 1 the map �u0,u1 sends the ball

B ≡ (u : ‖u‖XT ) ≤ 2C*)

into itself. Moreover, by a similar arguments involving the Sobolev embedding
H 1(T3) ⊂ L6(T3) and the Hölder inequality, we obtain the estimate

‖�u0,u1(u)−�u0,u1(ũ)‖XT ≤ CT ‖u− ũ‖XT
(‖u‖2

XT
+ ‖ũ‖2

XT

)
. (4.1.9)

Therefore, with our choice of T , we get that

‖�u0,u1(u)−�u0,u1(ũ)‖XT ≤
1

2
‖u− ũ‖XT , u, ũ ∈ B .

Consequently the map �u0,u1 is a contraction on B. The fixed point of this
contraction defines the solution u on [0, T ] we are looking for. The estimate of
‖∂tu‖L2 follows by differentiating in t the Duhamel formula (4.1.8). Let us now
turn to the uniqueness. Let u, ũ be two solutions of (4.1.6) with the same initial data
in the space XT for some T > 0. Then for τ ≤ T , we can write similarly to (4.1.9)

‖�u0,u1(u)−�u0,u1(ũ)‖Xτ ≤ Cτ‖u− ũ‖Xτ
(‖u‖2

XT
+ ‖ũ‖2

XT

)
. (4.1.10)



4 Random Data Wave Equations 227

Let us take τ such that

Cτ
(‖u‖2

XT
+ ‖ũ‖2

XT

)
<

1

2
.

This fixes the value of τ . Thanks to (4.1.10), we obtain that u and ũ are the same on
[0, τ ]. Next, we cover the interval [0, T ] by intervals of size τ and we inductively
obtain that u and ũ are the same on each interval of size τ . This yields the uniqueness
statement.

The continuous dependence with respect to time follows from the Duhamel
formula representation of the solution of (4.1.8). The continuity with respect to the
initial data follows from the estimates on the difference of two solutions we have just
performed. Notice that we also obtain uniform continuity of the map data-solution
on bounded subspaces of H 1 × L2.

Let us finally turn to the propagation of higher regularity. Let (u0, u1) ∈ H 1×L2

such that (4.1.7) holds satisfy the additional regularity property (u0, u1) ∈ Hs ×
Hs−1 for some s > 1. We will show that the corresponding solution remains in
Hs ×Hs−1 in the (essentially) whole time of existence. For s ≥ 1, we define XsT as

XsT ≡ C([0, T ];Hs(T3)),

endowed with the norm

‖u‖XsT = sup
0≤t≤T

‖u(t)‖Hs(T3) .

We have that the solution with data (u0, u1) ∈ Hs ×Hs−1 remains in this space for
time intervals of order (1+‖u0‖Hs+‖u1‖Hs−1)−2 by a fixed point argument, similar
to the one we performed for data in H 1 × L2. We now show that the regularity is
preserved for (the longer) time intervals of order (1+‖u0‖H 1+‖u1‖L2)−2 . Coming
back to (4.1.8), we can write

‖�u0,u1(u)‖XsT ≤ C
(‖u0‖Hs + ‖u1‖Hs−1 + T sup

τ∈[0,T ]
‖u3(τ )‖Hs−1

)
.

Now using the Kato-Ponce product inequality, we can obtain that for σ ≥ 0, one
has the bound

‖v3‖Hσ (T3) ≤ C‖Dσv‖L6(T3) ‖v‖2
L6(T3)

. (4.1.11)

Using (4.1.11) and applying the Sobolev embedding H 1(T3) ⊂ L6(T3), we infer
that

‖u3(τ )‖Hs−1 � ‖Ds−1u(τ)‖L6‖u(τ)‖2
L6 � ‖Dsu(τ)‖L2‖u(τ)‖2

H 1 .
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Therefore, we arrive at the bound

‖�u0,u1(u)‖XsT ≤ C
(‖u0‖Hs + ‖u1‖Hs−1 + CsT sup

τ∈[0,T ]
‖Dsu(τ)‖L2‖u(τ)‖2

H 1

)
.

By construction of the solution we infer that if T ≤ cs*−2 with cs small enough,
we have that

‖u‖XsT = ‖�u0,u1(u)‖XsT ≤ C
(‖u0‖Hs + ‖u1‖Hs−1

)+ 1

2
‖u‖XsT

which implies the propagation of the regularity statement for u. Strictly speaking,
one should apply a bootstrap argument starting from the propagation of the
regularity on times of order (1 + ‖u0‖Hs + ‖u1‖Hs−1)−2 and then extend the
regularity propagation to the longer interval [0, cs*−2]. One estimates similarly ∂tu
in Hs−1 by differentiating the Duhamel formula with respect to t . The continuous
dependence with respect to time inHs×Hs−1 follows once again from the Duhamel
formula (4.1.8). This completes the proof of Proposition 4.1.1. ��
Theorem 4.1.2 (Global Well-Posedness) For every (u0, u1) ∈ H 1(T3)× L2(T3)

the local solution of the cubic defocusing wave equation

(∂2
t −�)u+ u3 = 0 , u(0, x) = u0(x), ∂tu(0, x) = u1(x)

can be extended globally in time. It is unique in the class C(R;H 1(T3)× L2(T3))

and there exists a constant C depending only on ‖u0‖H 1 and ‖u1‖L2 such that for
every t ∈ R,

‖u(t)‖H 1(R) ≤ C.

If in addition (u0, u1) ∈ Hs(T3)×Hs−1(T3) for some s ≥ 1 then

(u, ∂tu) ∈ C(R;Hs(T3)×Hs−1(T3)) .

Remark 4.1.3 One may obtain global weak solutions of the cubic defocusing wave
equation for data in H 1 × L2 via compactness arguments. The uniqueness and the
propagation of regularity statements of Theorem 4.1.2 are the major differences with
respect to the weak solutions.

Proof of Theorem 4.1.2 The key point is the conservation of the energy displayed
in the following lemma.

Lemma 4.1.4 There exist c > 0 and C > 0 such that for every (u0, u1) ∈
H 1(T3) × L2(T3) the local solution of the cubic defocusing wave equation, with
data (u0, u1), constructed in Proposition 4.1.1 is defined on [0, T ] with

T = c(1+ ‖u0‖H 1(T3) + ‖u1‖L2(T3))
−2
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and
∫

T3

(
(∂tu(t, x))

2 + |∇xu(t, x)|2 + 1

2
u4(t, x)

)
dx

=
∫

T3

(
(u1(x))

2 + |∇xu0(x)|2 + 1

2
u4

0(x)
)
dx, t ∈ [0, T ]. (4.1.12)

As a consequence, for t ∈ [0, T ],

‖u(t)‖H 1(T3) + ‖∂tu(t)‖L2(T3) ≤ C
(
1+ ‖u0‖2

H 1(T3)
+ ‖u1‖L2(T3)

)
.

Remark 4.1.5 Using the invariance with respect to translations in time, we can state
Lemma 4.1.4 with initial data at an arbitrary initial time.

Proof of Lemma 4.1.4 We apply Proposition 4.1.1 with * = ‖u0‖H 1 + ‖u1‖L2 and
we take T = c10*

−2, where c10 is the small constant involved in the propagation
of the H 10 × H 9 regularity. Let (u0,n, u1,n) be a sequence in H 10 × H 9 which
converges to (u0, u1) in H 1 × L2 and such that

‖u0,n‖H 1 + ‖u1,n‖L2 ≤ ‖u0‖H 1 + ‖u1‖L2 .

Let un(t) be the solution of the cubic defocusing wave equation, with data
(u0,n, u1,n). By Proposition 4.1.1 these solutions are defined on [0, T ] and they
keep theirH 10×H 9 regularity on the same time interval. We multiply the equation

(∂2
t −�)un + u3

n = 0

by ∂tun. Using the regularity properties of un(t), after integrations by parts, we
arrive at

d

dt

[ ∫

T3

(
(∂tun(t, x))

2 + |∇xun(t, x)|2 + 1

2
u4
n(t, x)

)
dx
]
= 0

which implies the identity

∫

T3

(
(∂tun(t, x))

2 + |∇xun(t, x)|2 + 1

2
u4
n(t, x)

)
dx

=
∫

T3

(
(u1,n(x))

2 + |∇xu0,n(x)|2 + 1

2
u4

0,n(x)
)
dx, t ∈ [0, T ]. (4.1.13)

We now pass to the limit n −→∞ in (4.1.13). The right hand-side converges to

∫

T3

(
(u1(x))

2 + |∇xu0(x)|2 + 1

2
u4

0(x)
)
dx
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by the definition of (u0,n, u1,n) (we invoke the Sobolev embedding for the conver-
gence of the L4 norms) . The right hand-side of (4.1.13) converges to

∫

T3

(
(∂tu(t, x))

2 + |∇xu(t, x)|2 + 1

2
u4(t, x)

)
dx

by the continuity of the flow map established in Proposition 4.1.1. Using the
compactness of T3 and the Hölder inequality, we have that

‖u‖L2(T3) ≤ C‖u‖L4(T3) ≤ C(1+ ‖u‖2
L4(T3)

)

and therefore

‖u(t)‖2
H 1(T3)

+ ‖∂tu(t)‖2
L2(T3)

is bounded by

C

∫

T3

(
1+ (∂tu(t, x))2 + |∇xu(t, x)|2 + 1

2
u4(t, x)

)
dx .

Now, using (4.1.12) and the Sobolev inequality

‖u‖L4(T3) ≤ C‖u‖H 1(T3) ,

we obtain that for t ∈ [0, T ],

‖u(t)‖2
H 1(T3)

+ ‖∂tu(t)‖2
L2(T3)

≤ C(1+ ‖u0‖4
H 1(T3)

+ ‖u1‖2
L2(T3)

)
.

This completes the proof of Lemma 4.1.4. ��
Let us now complete the proof of Theorem 4.1.2. Let (u0, u1) ∈ H 1(T3)×L2(T3).
Set

T = c(C(1+ ‖u0‖2
H 1(T3)

+ ‖u1‖L2(T3)

))−2
,

where the constants c and C are defined in Lemma 4.1.4. We now observe that
we can use Proposition 4.1.1 and Lemma 4.1.4 on the intervals [0, T ], [T , 2T ],
[2T , 3T ], and so on and therefore we extend the solution with data (u0, u1) on
[0,∞). By the time reversibility of the wave equation we similarly can construct
the solution for negative times. More precisely, the free evolution S(t)(u0, u1) well-
defined for all t ∈ R and one can prove in the same way the natural counterparts of
Proposition 4.1.1 and Lemma 4.1.4 for negative times. The propagation of higher
Sobolev regularity globally in time follows from Proposition 4.1.1 while the H 1 a
priori bound on the solutions follows from Lemma 4.1.4. This completes the proof
of Theorem 4.1.2. ��
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Remark 4.1.6 One may proceed slightly differently in the proof of Theorem 4.1.2
by observing that as a consequence of Proposition 4.1.1, if a local solution with
H 1 × L2 data blows-up at time T $ <∞ then

lim
t→T $ ‖(u(t), ∂tu(t))‖H 1(T3)×L2(T3) = ∞. (4.1.14)

The statement (4.1.14) is in contradiction with the energy conservation law.

Remark 4.1.7 Observe that the nonlinear problem

(∂2
t −�)u+ u3 = 0 (4.1.15)

behaves better than the linear problem

(∂2
t −�)u = 0 (4.1.16)

with respect to theH 1 global in time bounds. Indeed, Theorem 4.1.2 establishes that
the solutions of (4.1.15) are bounded in H 1 as far as the initial data is in H 1 × L2.
On the other hand one can consider u(t, x) = t which is a solution of the linear wave
equation (4.1.16) on T

3 with data inH 1×L2 and its H 1 norm is clearly growing in
time.

Remark 4.1.8 The sign in front of the nonlinearity is not of importance for
Proposition 4.1.1. One can therefore obtain the local well-posedness of the cubic
focusing wave equation

(∂2
t −�)u− u3 = 0, (4.1.17)

posed on T
3, with data in H 1(T3) × L2(T3). However, the sign in front of the

nonlinearity is of crucial importance in the proof of Theorem 4.1.2. Indeed, one has
that

u(t, x) =
√

2

1− t
is a solution of (4.1.17), posed on T

3 with data (
√

2,−√2) which is not defined
globally in time (it blows-up in H 1 × L2 at t = 1).

4.1.3 The Strichartz Estimates

In the previous section, we solved globally in time the cubic defocusing wave
equation in H 1 × L2. One may naturally ask whether it is possible to extend these
results to the more singular Sobolev spaces Hs ×Hs−1 for some s < 1. It turns out
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that this is possible by invoking more refined properties of the map S(t) defining
the free evolution. The proof of these properties uses in an essential way the time
oscillations in S(t) and can be quantified as the Lp, p > 2 mapping properties of
S(t) (cf. [19, 30]).

Theorem 4.1.9 (Strichartz Inequality for the Wave Equation) Let (p, q) ∈ R
2

be such that 2 < p ≤ ∞ and 1
p
+ 1
q
= 1

2 . Then we have the estimate

‖S(t)(u0, u1)‖Lp([0,1];Lq(T3)) ≤ C
(‖u0‖

H
2
p (T3)

+ ‖u1‖
H

2
p−1

(T3)

)
.

We shall use that the solutions of the wave equation satisfy a finite propagation
speed property which will allow us to deduce the result of Theorem 4.1.9 from the
corresponding Strichartz estimate for the wave equation on the Euclidean space.
Consider therefore the wave equation

(∂2
t −�)u = 0, u(0, x) = u0(x), ∂tu(0, x) = u1(x), (4.1.18)

where now the spatial variable x belongs to R
3 and the initial data (u0, u1) belong

to Hs(R3) × Hs−1(R3). Using the Fourier transform on R
3, we can solve (4.1.18)

and obtain that the solutions are generated by the map Se(t), defined as

Se(t)(u0, u1) ≡ cos(t
√−�

R3)(u0)+ sin(t
√−�R3)
√−�R3

(u1),

where for u0 and u1 in the Schwartz class,

cos(t
√−�

R3)(u0) ≡
∫

R3
cos(t|ξ |)û0(ξ) e

iξ ·xdξ

and

sin(t
√−�

R3)
√−�R3

(u1) ≡
∫

R3

sin(t|ξ |)
|ξ | û1(ξ) e

iξ ·xdξ ,

where û0 and û1 are the Fourier transforms of u0 and u1 respectively. By density, one
then extends Se(t)(u0, u1) to a bounded map from Hs(R3)×Hs−1(R3) to Hs(R3)

for any s ∈ R. The next lemma displays the finite propagation speed property of
Se(t).

Proposition 4.1.10 (Finite Propagation Speed) Let (u0, u1) ∈ Hs(R3) ×
Hs−1(R3) for some s ≥ 0 be such that

supp(u0) ∪ supp(u1) ⊂ {x ∈ R
3 : |x − x0| ≤ R},
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for some R > 0 and x0 ∈ R
3. Then for t ≥ 0,

supp(Se(t)(u0, u1)) ⊂ {x ∈ R
3 : |x − x0| ≤ t + R}.

Proof The statement of Proposition 4.1.10 (and even more precise localisation
property) follows from the Kirchoff formula representation of the solutions of the
three dimensional wave equation. Here we will present another proof which has the
advantage to extend to an arbitrary dimension and to variable coefficient settings.
By the invariance of the wave equation with respect to spatial translations, we can
assume that x0 = 0. We need to prove Proposition 4.1.10 only for (say) s ≥ 100
which ensures by the Sobolev embedding that the solutions we study are of class
C2(R4). We than can treat the case of an arbitrary (u0, u1) ∈ Hs(R3)×Hs−1(R3),
s ≥ 0 by observing that

ρε $ Se(t)(u0, u1) = Se(t)(ρε $ u0, ρε $ u1), (4.1.19)

where ρε(x) = ε−3ρ(x/ε), ρ ∈ C∞0 (R3), 0 ≤ ρ ≤ 1,
∫
ρ = 1. It suffices then to

pass to the limit ε → 0 in (4.1.19). Indeed, for ϕ ∈ C∞0 (|x| > t + R), Se(t)(ρε $
u0, ρε $ u1)(ϕ) is zero for ε small enough while ρε $ Se(t)(u0, u1)(ϕ) converges to
Se(t)(u0, u1)(ϕ).

Therefore, in the remaining of the proof of Proposition 4.1.10, we shall assume
that Se(t)(u0, u1) is a C2 solution of the 3d wave equation. The main point in the
proof is the following lemma.

Lemma 4.1.11 Let x0 ∈ R
3, r > 0 and let Se(t)(u0, u1) be a C2 solution of the

3d linear wave equation. Suppose that u0(x) = u1(x) = 0 for |x − x0| ≤ r . Then
Se(t)(u0, u1) = 0 in the cone C defined by

C = {(t, x) ∈ R
4 : 0 ≤ t ≤ r, |x − x0| ≤ r − t}.

Proof Let u(t, x) = Se(t)(u0, u1). For t ∈ [0, r], we set

E(t) ≡ 1

2

∫

B(x0,r−t )
(
(∂tu)

2(t, x)+ |∇xu(t, x)|2
)
dx,

where B(x0, r− t) = {x ∈ R
3 : |x| ≤ r− t}. Then using the Gauss-Green theorem

and the equation solved by u, we obtain that

Ė(t) = −1

2

∫

∂B

(
(∂tu)

2(t, y)+ |∇xu(t, y)|2 − 2∂tu(t, y)∇xu(t, y) · ν(y)
)
dS(y),

where ∂B ≡ {x ∈ R
3 : |x| = r − t}, dS(y) is the volume element associated with

∂B and ν(y) is the outer unit normal to ∂B. We clearly have

2∂tu(t, y)∇xu(t, y) · ν(y) ≤ (∂tu)2(t, y)+ |∇xu(t, y)|2,
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which implies that Ė(t) ≤ 0. Since E(0) = 0 we obtain that E(t) = 0 for every
t ∈ [0, r]. This in turn implies that u(t, x) is a constant in C. We also know that
u(0, x) = 0 for |x − x0| ≤ r . Therefore u(t, x) = 0 in C. This completes the proof
of Lemma 4.1.11. ��
Let us now complete the proof of Proposition 4.1.10. Let t0 ∈ R and y ∈ R

3 such
that |y| > R + t0. We need to show that u(t0, y) = 0. Consider the cone C defined
by

C = {(t, x) ∈ R
4 : 0 ≤ t ≤ t0, |x − y| ≤ t0 − t}.

Set B ≡ C ∩ {(t, x) ∈ R
4 : t = 0}. We have that

B = {(t, x) ∈ R
4 : t = 0, |x − y| ≤ t0}

and therefore by the definition of t0 and y we have that

B ∩ {(t, x) ∈ R
4 : t = 0, |x| ≤ R} = ∅. (4.1.20)

Therefore u(0, x) = ∂tu(0, x) for |x − y| ≤ t0. Using Lemma 4.1.11, we obtain
that u(t, x) = 0 in C. In particular u(t0, y) = 0. This completes the proof of
Proposition 4.1.10. ��

Using Proposition 4.1.10 and a decomposition of the initial data associated with
a partition of unity corresponding to a covering of T3 by sufficiently small balls, we
obtain that the result of Theorem 4.1.9 is a consequence of the following statement.

Proposition 4.1.12 (Local in Time Strichartz Inequality for the Wave Equation
on R

3) Let (p, q) ∈ R
2 be such that 2 < p ≤ ∞ and 1

p
+ 1
q
= 1

2 . Then we have
the estimate

‖Se(t)(u0, u1)‖Lp([0,1];Lq(R3)) ≤ C
(‖u0‖

H
2
p (R3)

+ ‖u1‖
H

2
p−1

(R3)

)
.

Proof Let χ ∈ C∞0 (R3) be such that χ(x) = 1 for |x| < 1. We then define the
Fourier multiplier χ(Dx) by

χ(Dx)(f ) =
∫

R3
χ(ξ)f̂ (ξ) eiξ ·xdξ. (4.1.21)

Using a suitable Sobolev embedding in R
3, we obtain that for every σ ∈ R,

∥
∥ sin(t

√−�
R3)

√−�
R3

(χ(Dx)u1)
∥
∥
Lp([0,1];Lq(R3))

≤ C‖u1‖Hσ (R3) .
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Therefore, by splitting u1 as

u1 = χ(Dx)(u1)+ (1− χ(Dx))(u1)

and by expressing the sin and cos functions as combinations of exponentials, we
observe that Proposition 4.1.12 follows from the following statement.

Proposition 4.1.13 Let (p, q) ∈ R
2 be such that 2 < p ≤ ∞ and 1

p
+ 1

q
= 1

2 .

Then we have the estimate

∥
∥e±it

√−�
R3 (f )

∥
∥
Lp([0,1];Lq(R3))

≤ C‖f ‖
H

2
p (R3)

.

Remark 4.1.14 Let us make an important remark. As a consequence of Proposi-
tion 4.1.13 and a suitable Sobolev embedding, we obtain the estimate

∥
∥e±it

√−�
R3 (f )

∥
∥
L2([0,1];L∞(R3))

≤ C‖f ‖Hs(R3) , s > 1. (4.1.22)

Therefore, we obtain that for f ∈ Hs(R3), s > 1, the function eit
√−�

R3 (f ) which
is a priori defined as an element of C([0, 1];Hs(R3)) has the remarkable property
that

e
it
√−�

R3 (f ) ∈ L∞(R3)

for almost every t ∈ [0, 1]. Recall that the Sobolev embedding requires the condition
s > 3/2 in order to ensure that an Hs(R3) function is in L∞(R3). Therefore, one
may wish to see (4.1.22) as an almost sure in t improvement (with 1/2 derivative)

of the Sobolev embedding H
3
2+(R3) ⊂ L∞(R3), under the evolution of the linear

wave equation.

Proof of Proposition 4.1.13 Consider a Littlewood-Paley decomposition of the
unity

Id = P0 +
∑

N

PN , (4.1.23)

where the summation is taken over the dyadic values of N , i.e. N = 2j , j =
0, 1, 2, . . . and P0, PN are Littlewood-Paley projectors. More precisely they are
defined as Fourier multipliers by �0 = ψ0(Dx) and for N ≥ 1, PN = ψ(Dx/N),
whereψ0 ∈ C∞0 (R3) andψ ∈ C∞0 (R3\{0}) are suitable functions such that (4.1.23)
holds. The maps ψ(Dx/N) are defined similarly to (4.1.21) by

ψ(Dx/N)(f ) =
∫

R3
ψ(ξ/N)f̂ (ξ) eiξ ·xdξ.



236 N. Tzvetkov

Set

u(t, x) ≡ e±it
√−�

R3 (f ) .

Our goal is to evaluate ‖u‖Lp([0,1]Lq(R3)). Thanks to the Littlewood-Paley square
function theorem, we have that

‖u‖Lq(R3) ≈
∥
∥
∥
(|P0u|2 +

∑

N

|PNu|2
) 1

2

∥
∥
∥
Lq(R3)

. (4.1.24)

The proof of (4.1.24) can be obtained as a combination of the Mikhlin-Hörmander
multiplier theorem and the Khinchin inequality for Bernouli variables.1 Using the
Minkowski inequality, since p ≥ 2 and q ≥ 2, we can write

‖u‖Lpt Lqx � ‖P0u‖Lpt Lqx+‖PNu‖Lpt Lqx l2N ≤ ‖P0u‖Lpt Lqx+‖PNu‖l2NLpt Lqx (4.1.25)

Therefore, it suffices to prove that for every ψ ∈ C∞0 (R3\{0}) there exists C > 0
such that for everyN and every f ∈ L2(R3),

‖ψ(Dx/N)e±it
√−�

R3 (f )‖Lp([0,1];Lq(R3)) ≤ CN
2
p ‖f ‖L2(R3) . (4.1.26)

Indeed, suppose that (4.1.26) holds true. Then, we define P̃N as P̃N = ψ̃(Dx/N),
where ψ̃ ∈ C∞0 (R3\{0}) is such that ψ̃ ≡ 1 on the support ofψ . ThenPN = P̃NPN .
Now, coming back to (4.1.25), using the Sobolev inequality to evaluate ‖P0u‖Lpt Lqx
and (4.1.26) to evaluate ‖PNu‖l2NLpt Lqx , we arrive at the bound

‖u‖Lpt Lqx � ‖f ‖L2 + ‖N 2
p ‖PNf ‖L2

x
‖l2N � ‖f ‖

H
2
p
.

Therefore, it remains to prove (4.1.26). Set

T ≡ ψ(Dx/N)e±it
√−�

R3 .

Our goal is to study the mapping properties of T from L2
x to Lpt L

q
x . We can write

‖Tf ‖Lpt Lqx = sup
‖G‖

L
p′
t L

q′
x

≤1

∣
∣
∫

t,x

TfG
∣
∣, (4.1.27)

1Interestingly, variants of the Khinchin inequality will be essentially used in our probabilistic
approach to the cubic defocusing wave equation with data of super-critical regularity.



4 Random Data Wave Equations 237

where 1
p
+ 1
p′ = 1

q
+ 1
q ′ = 1. Note that in order to write (4.1.27) the values 1 and

∞ of p and q are allowed. Next, we can write

∫

t,x

TfG =
∫

x

f T $G, (4.1.28)

where T $ is defined by

T $G ≡
∫ 1

0
ψ(Dx/N)e

∓iτ√−�
R3G(τ)dτ .

Indeed, we have

∫

t,x

TfG =
∫ 1

0

∫

R3
ψ(Dx/N)e

±it√−�
R3f G(t)dxdt

=
∫ 1

0

∫

R3
f ψ(Dx/N)e

∓it√−�
R3G(t)dxdt

=
∫

R3
f

∫ 1

0
ψ(Dx/N)e

∓it√−�
R3G(t)dt dx .

Therefore (4.1.28) follows. But thanks to the Cauchy-Schwarz inequality we can
write

|
∫

x

f T $G| ≤ ‖f ‖L2
x
‖T $G‖L2

x
.

Therefore, in order to prove (4.1.26), it suffices to prove the bound

‖T $G‖L2
x
� N

2
p ‖G‖

L
p′
t L

q′
x
.

Next, we can write

‖T $G‖2
L2
x
=
∫

x

T $GT $G

=
∫

t,x

T (T $(G))G

≤ ‖T (T $(G))‖Lpt Lqx‖G‖Lp′t Lq′x .

Therefore, estimate (4.1.26) would follow from the estimate

‖T (T $(G))‖Lpt Lqx � N
4
p ‖G‖

L
p′
t L

q′
x
. (4.1.29)
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An advantage of (4.1.29) with respect to (4.1.26) is that we have the same number
of variables in both sides of the estimates. Coming back to the definition of T and
T $, we can write

T (T $(G)) =
∫ 1

0
ψ2(Dx/N)e

±i(t−τ )√−�
R3G(τ)dτ .

Now by using the triangle inequality, for a fixed t ∈ [0, 1], we can write

‖T (T $(G))‖Lqx ≤
∫ 1

0

∥
∥ψ2(Dx/N)e

±i(t−τ )√−�
R3G(τ)

∥
∥
L
q
x
dτ. (4.1.30)

On the other hand, using the Fourier transform, we can write

ψ2(Dx/N)e
±it√−�

R3 (f ) =
∫

R3
ψ2(ξ/N)e±it |ξ |eix·ξ f̂ (ξ)dξ .

Therefore,

ψ2(Dx/N)e
±it√−�

R3 (f ) =
∫

R3
K(t, x − x ′)f (x ′)dx,

where

K(t, x − x ′) =
∫

R3
ψ2(ξ/N)e±it |ξ |ei(x−x ′)·ξdξ .

A simple change of variable leads to

K(t, x − x ′) = N3
∫

R3
ψ2(ξ)e±itN |ξ |eiN(x−x ′)·ξdξ .

In order to estimate K(t, x − x ′), we invoke the following proposition.

Proposition 4.1.15 (Soft Stationary Phase Estimate) Let d ≥ 1. For every*> 0,
N ≥ 1 there exists C > 0 such that for every λ ≥ 1, every a ∈ C∞0 (Rd), satisfying

sup
|α|≤2N

sup
x∈Rd

|∂αa(x)| ≤ *,

every ϕ ∈ C∞(supp(a)) satisfying

sup
2≤|α|≤2N+2

sup
x∈supp(a)

|∂αϕ(x)| ≤ * (4.1.31)
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one has the bound

∣
∣
∣

∫

Rd

eiλϕ(x)a(x)dx

∣
∣
∣ ≤ C

∫

supp(a)

dx

(1+ λ|∇ϕ(x)|2)N . (4.1.32)

Remark 4.1.16 Observe that in (4.1.31), we do not require upper bounds for the
first derivatives of ϕ.

We will give the proof of Proposition 4.1.15 later. Let us first show how to use it in
order to complete the proof of (4.1.26). We claim that

|K(t, x − x ′)| � N3(tN)−1 = N2t−1 . (4.1.33)

Estimate (4.1.33) trivially follows from the expression defining K(t, x − x ′) for
|tN | ≤ 1 (one simply ignores the oscillation term). For |Nt| ≥ 1, using
Proposition 4.1.15 (with a = ψ2, N = 2 and d = 3), we get the bound

|K(t, x − x ′)| � N3
∫

supp(ψ)

dξ

(1+ |tN ||∇ϕ(ξ)|2)2 ,

where

ϕ(ξ) = ±|ξ | + N(x − x
′) · ξ

t
.

Observe that ϕ is C∞ on the support of ψ and moreover it satisfies the assumptions
of Proposition 4.1.15. We next observe that

∫

supp(ψ)

dξ

(1+ |tN ||∇ϕ(ξ)|2)2 � (tN)−1 . (4.1.34)

Indeed, since ∇ϕ(ξ) = ± ξ
|ξ | + t−1N(x−x ′) we obtain that one can split the support

of integration in regions such that there are two different j1, j2 ∈ {1, 2, 3} such that
one can perform the change of variable

ηj1 = ∂ξj1ϕ(ξ), ηj2 = ∂ξj2ϕ(ξ),

with a non-degenerate Hessian. More precisely, we have

det

(
∂2
ξ1
ϕ(ξ) ∂2

ξ1,ξ2
ϕ(ξ)

∂2
ξ1,ξ2

ϕ(ξ) ∂2
ξ2
ϕ(ξ)

)

= ξ2
3

|ξ |4

which is not degenerate for ξ3 �= 0. Therefore for ξ3 �= 0, we can choose j1 = 1
and j2 = 2. Similarly, ξ1 �= 0, we can choose j1 = 2 and j2 = 3 and for ξ2 �= 0, we
can choose j1 = 1 and j2 = 3. Therefore, using that the support of ψ does not meet
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zero, after splitting the support of the integration in three regions, by choosing the
two “good” variables and by neglecting the integration with respect to the remaining
variable, we obtain that

∫

supp(ψ)

dξ

(1+ |tN ||∇ϕ(ξ)|2)2 �
∫

R2

dηj1dηj2

(1+ |tN | (|ηj1 |2 + |ηj2 |2)2
� (tN)−1 .

Thus, we have (4.1.34) which in turn implies (4.1.33).
Thanks to (4.1.33), we arrive at the estimate

∥
∥ψ2(Dx/N)e

±i(t−τ )√−�
R3G(τ)

∥
∥
L∞x

� N2|t − τ |−1‖G(τ)‖L1
x
.

On the other hand, we also have the trivial bound

∥
∥ψ2(Dx/N)e

±i(t−τ )√−�
R3G(τ)

∥
∥
L2
x
� ‖G(τ)‖L2

x
.

Therefore using the basic Riesz-Torin interpolation theorem, we arrive at the bound

∥
∥ψ2(Dx/N)e

±i(t−τ )√−�
R3G(τ)

∥
∥
L
q
x
� N

4
p

|t − τ | 2
p

‖G(τ)‖
L
q′
x
.

Therefore coming back to (4.1.30), we get

‖T (T $(G))‖Lqx �
∫ 1

0

N
4
p

|t − τ | 2
p

∥
∥G(τ)

∥
∥
L
q′
x
dτ .

Therefore, the estimate (4.1.29) would follow from the one dimensional estimate

∥
∥
∫

R

f (τ)

|t − τ | 2
p

dτ
∥
∥
Lp(R)

� ‖f ‖
Lp
′
(R)
. (4.1.35)

Thanks to our assumption, one has 2
p
< 1 and also

1+ 1

p
= 1

p′
+ 2

p
.

Therefore estimate (4.1.35) is precisely the Hardy-Littlewood-Sobolev inequality
(cf. [29]). This completes the proof of (4.1.26), once we provide the proof of
Proposition 4.1.15.
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Proof of Proposition 4.1.15 We follow [17]. Consider the first order differential
operator defined by

L ≡ 1

i(1+ λ|∇ϕ|2)
d∑

j=1

∂jϕ∂j + 1

1+ λ|∇ϕ|2 .

which satisfies L(eiλϕ) = eiλϕ . We have that

∫

Rd

eiλϕ(x)a(x)dx =
∫

Rd

L(eiλϕ(x))a(x)dx =
∫

Rd

eiλϕ(x)L̃(a(x))dx,

where L̃ is defined by

L̃(u) = −
d∑

j=1

∂jϕ

i(1+ λ|∇ϕ|2)∂j u

+
(
−

d∑

j=1

∂2
j ϕ

i(1+ λ|∇ϕ|2) +
d∑

j=1

2λ∂jϕ (∇ϕ · ∇∂jϕ)
i(1+ λ|∇ϕ|2)2

)
u+ 1

1+ λ|∇ϕ|2u .

As a consequence, we get the bound

∣
∣
∣

∫

Rd

eiλϕ(x)a(x)dx

∣
∣
∣ ≤

∫

Rd

|L̃Na|, (4.1.36)

where N ∈ N. To conclude, we need to estimate the coefficients of L̃. We shall use
the notation 〈u〉 = (1+ |u|2) 1

2 and we set λ = μ2. At first, we consider

F(x) = Q(μ2|∇ϕ(x)|2), Q(u) = 1

1+ u, u ≥ 0.

We clearly have

F � 〈μ∇ϕ〉−2 (4.1.37)

and we shall estimate the derivatives of F . Set

*k(x) = sup
2≤|α|≤k

|∂αϕ(x)|.

We have the following statement.

Lemma 4.1.17 For |α| = k ≥ 1, we have the bound

|∂αF (x)| � C(*k+1(x))
( 1

〈μ∇ϕ(x)〉2 +
μk

〈μ∇ϕ(x)〉k+2

)
, (4.1.38)
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where C : R+ → R
+ is a suitable continuous increasing function (which can

change from line to line and can always be taken of the form C(t) = (1+ t)M for a
sufficiently largeM).

Proof Using an induction on k, we get that ∂αF for |α| = k ≥ 1 is a linear
combination of terms under the form

Tq = Q(m)(μ2|∇ϕ|2)
(
∂γ1(μ2|∇ϕ|2)

)q1 · · ·
(
∂γk(μ2|∇ϕ|2)

)qk

where

q1 + · · · + qk = m and
∑

|γi |qi = k, qi ≥ 0. (4.1.39)

Since |Q(m)(u)| � 〈u〉−m−1, we get

|Tq | � 1

〈μ∇ϕ〉2
(

μ

〈μ∇ϕ〉
)2m ∣

∣
∣
(
∂γ1(|∇ϕ|2)

)q1 · · ·
(
∂γk (|∇ϕ|2)

)qk ∣∣
∣.

Moreover, by the Leibnitz formula

∂γi (|∇ϕ|2) ≤
{
C(*2)|∇ϕ|, if |γi | = 1,
C(*|γi |+1)(|∇ϕ| + 1), if |γi | > 1.

We therefore have the following bound for Tq

|Tq | � C(*k+1)
1

〈μ∇ϕ〉2
(

μ

〈μ∇ϕ〉
)2m (

|∇ϕ|m + |∇ϕ|
∑
|γi |=1 qi

)

� C(*k+1)
1

〈μ∇ϕ〉2
[(

μ

〈μ∇ϕ〉
)m
+
(

μ

〈μ∇ϕ〉
)m+∑|γi |>1 qi

]

.

Next, by using (4.1.39), we note that

m+
∑

|γi |>1

qi =
∑

|γi |>1

2qi +
∑

|γi |=1

qi ≤
∑

|γi |qi = k.

Therefore, we get

|Tq | � C(*k+1)
( 1

〈μ∇ϕ〉2 +
μk

〈μ∇ϕ〉k+2

)
.

This completes the proof of Lemma 4.1.17. ��
We are now in position to prove the following statement.
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Lemma 4.1.18 For N ∈ N, we can write L̃N under the form

L̃Nu =
∑

|α|≤N
a(N)α ∂αu (4.1.40)

with the estimates

|a(N)α (x)| � C(*N+2(x))
1

〈μ∇ϕ(x)〉N (4.1.41)

and more generally for |β| = k,

|∂βa(N)α (x)| � C(*N+k+2(x))
( 1

〈μ∇ϕ(x)〉N +
μk

〈μ∇ϕ(x)〉N+k
)
. (4.1.42)

Proof We reason by induction on N . First, we notice that L̃ is under the form

L̃ =
d∑

j=1

aj ∂j + b,

where

aj = i∂jϕF, b = F + i
d∑

j=1

∂j
(
∂jϕF

) = F +
d∑

j=1

∂jaj .

Consequently, by using (4.1.37), we get that

|aj | � 1

μ

1

〈μ∇ϕ〉 (4.1.43)

and by the Leibnitz formula, since ∂αaj for |α| ≥ 1 is a linear combination of terms
under the form

(∂β∂jϕ)∂
γ F, |β| + |γ | = |α|,

we get by using (4.1.38) that for |α| = k ≥ 1,

|∂αaj | � C(*k+1)
( 1

〈μ∇ϕ〉 +
μk−1

〈μ∇ϕ〉k+1

)
. (4.1.44)

Consequently, we also find thanks to (4.1.44), (4.1.38) that for |α| = k ≥ 0,

|∂αb| � C(*k+2)
( 1

〈μ∇ϕ〉 +
μk

〈μ∇ϕ〉k+2

)
. (4.1.45)



244 N. Tzvetkov

Using (4.1.44) (4.1.45), we obtain that the assertion of the lemma holds true for
N = 1. Next, let us assume that it is true at the order N . We have

(L̃)N+1u =
d∑

j=1

∑

|α|≤N

(
aja

(N)
α ∂j ∂

αu+ aj ∂ja(N)α ∂αu
)
+
∑

|α|≤N
ba(N)α ∂αu.

Consequently, we get that the coefficients are under the form

a(N+1)
α = aja(N)β , |α| = N + 1, |β| = N,
a(N+1)
α = aj ∂ja(N)β + aja(N)γ + ba(N)δ , |β| = |δ| = |α|, |γ | = |α| − 1.

Therefore, by using (4.1.43) and (4.1.42), we get that (4.1.41) is true for N + 1.
In order to prove (4.1.42) for N + 1, we need to evaluate ∂γ a(N+1)

α . The
estimate of the contribution of all terms except ∂γ (aj∂j a

(N)
β ) follows directly

from the induction hypothesis. In order to estimate ∂γ (aj∂j a
(N)
β ), we need to

invoke (4.1.43) and (4.1.44) and the induction hypothesis. This completes the proof
of Lemma 4.1.18. ��
Finally, thanks to (4.1.36) and Lemma 4.1.18, we get

∣
∣
∣

∫

Rd

eiλϕ(x)a(x) dx

∣
∣
∣ � K

∫

supp(a)

dx

(1+ λ|∇ϕ|2)N2
dx,

where

K ≡ ( sup
x∈supp(a)

*N+2(x))
(

sup
x∈Rd

sup
|α|≤N

|∂αa(x)|).

This completes the proof of Proposition 4.1.15. ��
This completes the proof of Proposition 4.1.13. ��
This completes the proof of Proposition 4.1.12. ��

Remark 4.1.19 If in the proof of the Strichartz estimates, we use the triangle
inequality instead of the square function theorem and the Young inequality instead
of the Hardy-Littlewood-Sobolev inequality, we would obtain slightly less precise
estimates. These estimates are sufficient to get all sub-critical well-posedness
results. However in the case of initial data with critical Sobolev regularity the finer
arguments using the square function and the Hardy-Littlewood-Sobolev inequality
are essentially needed.
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4.1.4 Local Well-Posedness in Hs × Hs−1, s ≥ 1/2

In this section, we shall use the Strichartz estimates in order to improve the well-
posedness result of Proposition 4.1.1. We shall be able to consider initial data in the
more singular Sobolev spaces Hs ×Hs−1, s ≥ 1/2. We start by a definition.

Definition 4.1.20 For 0 ≤ s < 1, a couple of real numbers (p, q), 2
s
≤ p ≤ +∞

is s-admissible if

1

p
+ 3

q
= 3

2
− s.

For T > 0, 0 ≤ s < 1, we define the spaces

XsT = C([0, T ];Hs(T3))
⋂

(p,q) s-admissible

Lp((0, T );Lq(T3)) (4.1.46)

and its “dual space”

Y sT =
⋃

(p,q) s-admissible

Lp
′
((0, T );Lq ′(T3)) (4.1.47)

(p′, q ′) being the conjugate couple of (p, q), equipped with their natural norms
(notice that to define these spaces, we can keep only the extremal couples corre-
sponding to p = 2/s and p = +∞ respectively).

We can now state the non homogeneous Strichartz estimates for the three dimen-
sional wave equation on the torus T3.

Theorem 4.1.21 For every 0 < s < 1, every s-admissible couple (p, q), there
exists C > 0 such that for every T ∈]0, 1], every F ∈ Y 1−s

T , every (u0, u1) ∈
Hs(T3)×Hs−1(T3) one has

‖S(t)(u0, u1)‖XsT ≤ C(‖u0‖Hs(T3) + ‖u1‖Hs−1(T3)) (4.1.48)

and

∥
∥
∥

∫ t

0

sin((t − τ )√−�)√−� (F(τ))dτ

∥
∥
∥
XsT

≤ C‖F‖
Y 1−s
T

(4.1.49)

Proof Thanks to the Hölder inequality, in order to prove (4.1.48), it suffices
the consider the two end point cases for p, i.e. p = 2/s and p = ∞ (the
estimate in C([0, T ];Hs(T3)) is straightforward). The case p = 2/s follows from
Theorem 4.1.9. The case p = ∞ results from the Sobolev embedding. This ends
the proof of (4.1.48).
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Let us next turn to (4.1.49). We first observe that

∥
∥
∥

∫ t

0

sin((t − τ )√−�)√−� (F(τ))dτ

∥
∥
∥
C([0,T ];Hs(T3))

≤ C‖F‖
Y 1−s
T

(4.1.50)

follows by duality from (4.1.48). Thanks to (4.1.50), we obtain that it suffices to
show

∥
∥
∥

∫ t

0

sin((t − τ )√−�)√−� (F(τ))dτ

∥
∥
∥
L
p1
T L

q1
≤ C‖F‖

L
p′2
T L

q′2
, (4.1.51)

where (p1, q1) is s-admissible and (p′2, q ′2) are such that (p2, q2) are (1 − s)-
admissible and where for shortness we set

L
p
T L

q ≡ Lp((0, T );Lq(T3)).

Denote by0 the projector on the zero Fourier mode on T
3, i.e.

0(f ) = (2π)−3
∫

T3
f (x)dx .

We have the bound

∥
∥
∥

∫ t

0

sin((t − τ )√−�)√−� (0F(τ))dτ

∥
∥
∥
L
p
T L

q
≤ C‖F‖L1((0,T );L1(T3)) .

By the Hölder inequality

‖F‖L1((0,T );L1(T3)) ≤ C‖F‖
L
p′2
T L

q′2

and therefore, it suffices to show the bound

∥
∥
∥

∫ t

0

sin((t − τ )√−�)√−� (⊥0 F(τ))dτ
∥
∥
∥
L
p1
T L

q1
≤ C‖F‖

L
p′2
T L

q′2
, (4.1.52)

where

⊥0 ≡ 1−0 .

By writing the sin function as a sum of exponentials, we obtain that (4.1.52) follows
from

∥
∥
∥

∫ t

0
e±i(t−τ )

√−�((−�)− 1
2⊥0 F(τ))dτ

∥
∥
∥
L
p1
T L

q1
≤ C‖F‖

L
p′2
T L

q′2
. (4.1.53)
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Observe that (−�)− 1
2⊥0 is well defined as a bounded operator from Hs(T3) to

Hs+1(T3). Set

K ≡ e±it
√−�⊥0 .

Thanks to (4.1.48), by writing

e±it
√−�⊥0 = cos(t

√−�)⊥0 ± i sin(t
√−�)(−�)− 1

2⊥0 (−�)
1
2 ,

we see that the mapK is bounded fromHs(T3) to XsT . Consequently, the dual map
K∗, defined by

K∗(F ) =
∫ T

0
e∓iτ

√−�⊥0 (F (τ))dτ

is bounded from Y s to H−s(T3). Using the last property with s replaced by
1 − s (which remains in ]0, 1[ if s ∈]0, 1[), we obtain the following sequence of
continuous mappings

L
p′2
T L

q ′2 K$−→ Hs−1(T3)
(−�)− 1

2⊥0−→ Hs(T3)
K−→ L

p1
T L

q1 . (4.1.54)

On the other hand, we have

(
K ◦ ((−�)− 1

2⊥0 ) ◦K∗
)
(F ) =

∫ T

0
e±i(t−τ )

√−�((−�)− 1
2⊥0 F(τ))dτ

Therefore, we obtain the bound

∥
∥
∥

∫ T

0
e±i(t−τ )

√−�((−�)− 1
2⊥0 F(τ))dτ

∥
∥
∥
L
p1
T L

q1
≤ C‖F‖

L
p′2
T L

q′2
. (4.1.55)

The passage from (4.1.55) to (4.1.53) can be done by using the Christ-Kiselev [11]
argument, as we explain below. By a density argument it suffices to prove (4.1.53)
for F ∈ C∞([0, T ] × T

3). We can of course also assume that

‖F‖
L
p′2
T L

q′2
= 1.

For n ≥ 1 an integer and m = 0, 1, · · · , 2n, we define tn,m as

∫ tn,m

0
‖F(τ)‖p′2

L
q′2 (T3)

dτ = m2−n .



248 N. Tzvetkov

Of course 0 = tn,0 ≤ tn,1 ≤ · · · ≤ tn,2n = T . Next, we observe that for 0 ≤
α < β ≤ 1 there is a unique n such that α ∈ [2m2−n, (2m + 1)2−n) and β ∈
[(2m + 1)2−n, (2m + 2)2−n) for some m ∈ {0, 1, · · · , 2n−1 − 1}. Indeed, this
can be checked by writing the representations of α and β in base 2 (the number
n corresponds to the first different digit of α and β). Therefore, if we denote by
χτ<t (τ, t) the characteristic function of the set {(τ, t) : 0 ≤ τ < t ≤ T } then we
can write

χτ<t (τ, t) =
∞∑

n=1

2n−1−1∑

m=0

χn,2m(τ)χn,2m+1(t), (4.1.56)

where χn,m (m = 0, 1, · · · , 2n) denotes the characteristic function of the interval
[tn,m, tn,(m+1)). Indeed, in order to achieve (4.1.56), it suffices to apply the previous
observation for every : 0 ≤ τ < t ≤ T with α and β defined as

α =
∫ τ

0
‖F(s)‖p′2

L
q′2 (T3)

ds, β =
∫ t

0
‖F(s)‖p′2

L
q′2 (T3)

ds .

Therefore, thanks to (4.1.56), we can write

∫ t

0
e±i(t−τ )

√−�((−�)− 1
2⊥0 F(τ))dτ

as

∞∑

n=1

2n−1−1∑

m=0

χn,2m+1(t)

∫ T

0
e±i(t−τ )

√−�((−�)− 1
2⊥0 χn,2m(τ)F (τ))dτ .

The goal is to evaluate the Lp1
T L

q1 norm of the last expression. Using that for a
fixed n, χn,2m+1(t) have disjoint supports, we obtain that the Lp1

T L
q1 norm of the

last expression can be estimated by

∞∑

n=1

( 2n−1−1∑

m=0

∥
∥
∫ T

0
e±i(t−τ )

√−�((−�)− 1
2⊥0 χn,2m(τ)F (τ))dτ

∥
∥p1

L
p1
T L

q1

) 1
p1 .

Now, using (4.1.55), we obtain that the last expression is bounded by

C

∞∑

n=1

( 2n−1−1∑

m=0

∥
∥χn,2m(τ)F (τ)

∥
∥p1

L
p′2
T L

q′2

) 1
p1 . (4.1.57)
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By definition

∥
∥χn,2m(τ)F (τ)

∥
∥p

′
2

L
p′2
T L

q′2
= 2−n

and therefore (4.1.57) equals to

C

∞∑

n=1

( 2n−1−1∑

m=0

2
− np1
p′2
) 1
p1 ≤ C

∞∑

n=1

2
n( 1
p1
− 1
p′2
)
.

The last series is convergent since by the definition of admissible pairs it follows
that p′2 < 2 < p1. Therefore we proved that (4.1.55) indeed implies (4.1.53). This
completes the proof of Theorem 4.1.21. ��
We can now use Theorem 4.1.21 in order to get the following improvement of
Proposition 4.1.1.

Theorem 4.1.22 (Low Regularity Local Well-Posedness) Let s > 1/2. Consider
the cubic defocusing wave equation

(∂2
t −�)u+ u3 = 0 , (4.1.58)

posed on T
3. There exist positive constants γ , c and C such that for every * ≥ 1,

every

(u0, u1) ∈ Hs(T3)×Hs−1(T3)

satisfying

‖u0‖Hs + ‖u1‖Hs−1 ≤ * (4.1.59)

there exists a unique solution of (4.1.58) on the time interval [0, T ], T ≡ c*−γ
with initial data

u(0, x) = u0(x), ∂tu(0, x) = u1(x) .

Moreover the solution satisfies

‖(u, ∂tu)‖L∞([0,T ],Hs (T3)×Hs−1(T3)) ≤ C*,

u is unique in the class XsT described in Definition 4.1.20 and the dependence with
respect to the initial data and with respect to the time is continuous. More precisely,
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if u and ũ are two solutions of (4.1.58) with initial data satisfying (4.1.59) then

‖(u− ũ, ∂tu− ∂t ũ)‖L∞([0,T ],Hs (T3)×Hs−1(T3))

≤ C(‖u(0)− ũ(0)‖Hs(T3) + ‖∂tu(0)− ∂t ũ(0)‖Hs−1(T3)

)
. (4.1.60)

Finally, if

(u0, u1) ∈ Hσ (T3)×Hσ−1(T3)

for some σ ≥ s then there exists cσ > 0 such that

(u, ∂tu) ∈ C([0, cσ*−γ ];Hσ(T3)×Hσ−1(T3)) .

Proof We shall suppose that s ∈ (1/2, 1), the case s ≥ 1 being already treated in
Proposition 4.1.1. As in the proof of Proposition 4.1.1, we solve the integral equation

u(t) = S(t)(u0, u1)−
∫ t

0

sin((t − τ )√−�)√−� ((u3(τ ))dτ

by a fixed point argument. Recall that

�u0,u1(u) = S(t)(u0, u1)−
∫ t

0

sin((t − τ )√−�)√−� ((u3(τ ))dτ.

We shall estimate �u0,u1(u) in the spaces XsT introduced in Definition 4.1.20.
Thanks to Theorem 4.1.21

‖S(t)(u0, u1)‖XsT ≤ C(‖u0‖Hs(T3) + ‖u1‖Hs−1(T3)) .

Another use of Theorem 4.1.21 gives

∥
∥
∥

∫ t

0

sin((t − τ )√−�)√−� ((u3(τ ))dτ

∥
∥
∥
XsT

≤ C‖u3‖
L

2
1+s
T L

2
2−s
= C‖u‖3

L

6
1+s
T L

6
2−s
.

Observe that the couple ( 2
1+s ,

2
2−s ) is the dual of ( 2

1−s ,
2
s
) which is the end point

(1 − s)-admissible couple. We also observe that if (p, q) is an s-admissible couple
then 1

q
ranges in the interval [ 1

2 − s
2 ,

1
2 − s

3 ]. The assumption s ∈ (1/2, 1) implies

1

2
− s

2
<

2− s
6

<
1

2
− s

3
.
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Therefore q$ ≡ 6
2−s is such that there exists p$ such that (p$, q$) is an s-admissible

couple. By definition p$ is such that

1

p$
+ 3

q$
= 3

2
− s .

The last relation implies that

1

p$
= 1

2
− s

2
.

Now, using the Hölder inequality in time, we obtain

‖u‖
L

6
1+s
T L

6
2−s
≤ T 2s−1

3 ‖u‖
L
p$

T L
q$

which in turn implies

∥
∥
∥

∫ t

0

sin((t − τ )√−�)√−� ((u3(τ ))dτ

∥
∥
∥
XsT

≤ CT 2s−1‖u‖3
XsT
.

Consequently

‖�u0,u1(u)‖XsT ≤ C(‖u0‖Hs(T3) + ‖u1‖Hs−1(T3))+ CT 2s−1‖u‖3
XsT
.

A similar argument yields

‖�u0,u1(u)−�u0,u1(v)‖XsT ≤ CT 2s−1(‖u‖2
XsT
+ ‖v‖2

XsT

)‖u− v‖XsT . (4.1.61)

Now, one obtains the existence and the uniqueness statements as in the proof of
Proposition 4.1.1. Estimate (4.1.60) follows from (4.1.61) and a similar estimate
obtained after differentiation of the Duhamel formula with respect to t . The propa-
gation of regularity statement can be obtained as in the proof of Proposition 4.1.1.
This completes the proof of Theorem 4.1.22. ��
Concerning the uniqueness statement, we also have the following corollary which
results from the proof of Theorem 4.1.22.

Corollary 4.1.23 Let s > 1/2. Let (p$, q$) be the s-admissible couple defined by

p$ = 2

1− s , q$ ≡ 6

2− s .

Then the solutions constructed in Theorem 4.1.22 is unique in the class

Lp
$

([0, T ];Lq$(T3)) .
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Remark 4.1.24 As a consequence of Theorem 4.1.22, we have that for each
(u0, u1) ∈ Hs(T3)×Hs−1(T3) there is a solution with a maximum time existence
T $ and if T $ <∞ than necessarily

lim
t→T $ ‖(u(t), ∂tu(t))‖Hs(T3)×Hs−1(T3) = ∞. (4.1.62)

One can also prove a suitable local well-posedness in the case s = 1/2 but in this
case the dependence of the existence time on the initial data is more involved. Here
is a precise statement.

Theorem 4.1.25 Consider the cubic defocusing wave equation

(∂2
t −�)u+ u3 = 0 , (4.1.63)

posed on T
3. For every

(u0, u1) ∈ H 1
2 (T3)×H− 1

2 (T3)

there exists a time T > 0 and a unique solution of (4.1.63) in

L4([0, T ] × T
3)× C([0, T ];H 1

2 (T3)),

with initial data

u(0, x) = u0(x), ∂tu(0, x) = u1(x) .

Proof For T > 0, using the Strichartz estimates of Theorem 4.1.21, we get

‖�u0,u1(u)‖L4([0,T ]×T3) ≤ ‖S(t)(u0, u1)‖L4([0,T ]×T3) + C‖u3‖L4/3([0,T ]×T3)

= ‖S(t)(u0, u1)‖L4([0,T ]×T3) + C‖u‖3
L4([0,T ]×T3)

.

Similarly, we get

‖�u0,u1(u)−�u0,u1(v)‖L4([0,T ]×T3)

≤ C(‖u‖2
L4([0,T ]×T3)

+ ‖v‖2
L4([0,T ]×T3)

)‖u− v‖L4([0,T ]×T3) .

Therefore if T is small enough then we can construct the solution by a fixed point
argument in L4([0, T ]×T

3). In addition, the Strichartz estimates of Theorem 4.1.21

yield that the obtained solution belongs to C([0, T ];H 1
2 (T3)). This completes the

proof of Theorem 4.1.25. ��
Remark 4.1.26 Observe that for data inH

1
2 (T3)×H− 1

2 (T3) we no longer have the
small factor T κ , κ > 0 in the estimates for �u0,u1 . This makes that the dependence
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of the existence time T on the data (u0, u1) is much less explicit. In particular,
we can no longer conclude that the existence time is the same for a fixed ball in

H
1
2 (T3) × H− 1

2 (T3) and therefore we do not have the blow-up criterium (4.1.62)
(with s = 1/2).

4.1.5 A Constructive Way of Seeing the Solutions

In the proof of Theorem 4.1.22, we used the contraction mapping principle in order
to construct the solutions. Therefore, one can define the solutions in a constructive
way via the Picard iteration scheme. More precisely, for (u0, u1) ∈ Hs(T3) ×
Hs−1(T3), we define the sequence (u(n))n≥0 as u(0) = 0 and for a given u(n), n ≥ 0,
we define u(n+1) as the solutions of the linear wave equation

(∂2
t −�)u(n+1) + (u(n))3 = 0, u(0) = u0, ∂tu(0) = u1.

Thanks to (the proof of) Theorem 4.1.22 the sequence (u(n))n≥0 is converging in
XsT , and in particular in C([0, T ];Hs(T3)) for

T ≈ (‖u(0)‖Hs(T3) + ‖∂tu(0)‖Hs−1(T3))
−γ , γ > 0.

One has that

u(1) = S(t)(u0, u1)

and for n ≥ 1,

u(n+1) = u(1) + T (u(n), u(n), u(n)),

where the trilinear map T is defined as

T (u, v,w) = −
∫ t

0

sin((t − τ )√−�)√−� ((u(τ)v(τ )w(τ))dτ.

One then may compute

u(2) = u(1) + T (u(1), u(1), u(1)).
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The expression for u(3) is then

u(3) = u(1) + T (u(1), u(1), u(1))+ 3T (u(1), u(1),T (u(1), u(1), u(1)))

+ 3T (u(1),T (u(1), u(1), u(1)),T (u(1), u(1), u(1)))

+ T (T (u(1), u(1), u(1)),T (u(1), u(1), u(1)),T (u(1), u(1), u(1))).

We now observe that for n ≥ 2, the nth Picard iteration u(n) is a sum from j = 1
to j = 3n−1 of j -linear expressions of u(1). Moreover the first 3n−2 terms of this
sum contain the (n− 1)th iteration. Therefore the solution can be seen as an infinite
sum of multi-linear expressions of u(1). The Strichartz inequalities we proved can
be used to show that for s ≥ 1/2,

‖T (u, v,w)‖Hs(T3) � ‖u‖Hs(T3)‖v‖Hs(T3)‖w‖Hs(T3) .

The last estimate can be used to analyse the multi-linear expressions in the
expansion and to show its convergence. Observe that, we do not exploit any
regularising effect in the terms of the expansion. The ill-posedness result of the
next section, will basically show that such an effect is in fact not possible. In our
probabilistic approach in the next section, we will exploit that the trilinear term
in the expression defining the solution is more regular in the scale of the Sobolev
spaces than the linear one, almost surely with respect to a probability measure on
Hs , s < 1/2.

4.1.6 Global Well-Posedness in Hs × Hs−1, for Some s < 1

One may naturally ask whether the solutions obtained in Theorem 4.1.22 can
be extended globally in time. Observe that one cannot use the argument of
Theorem 4.1.2 because there is no a priori bound available at the Hs , s �= 1
regularity. One however has the following partial answer.

Theorem 4.1.27 (Low Regularity Global Well-Posedness) Let s > 13/18. Then
the local solution obtained in Theorem 4.1.22 can be extended globally in time.

For the proof of Theorem 4.1.27, we refer to [18, 27, 40]. Here, we only present
the main idea (introduced in [14]). Let (u0, u1) ∈ Hs(T3) × Hs−1(T3) for some
s ∈ (1/2, 1). Let T ' 1. ForN ≥ 1, we define a smooth Fourier multiplier acting as
1 for frequencies n ∈ Z

3 such that |n| ≤ N and acting asN1−s |n|s−1 for frequencies
|n| ≥ 2N . A concrete choice of IN is IN(D) = I

(
(−�)1/2/N), where I (x) is a

smooth function which equals 1 for x ≤ 1 and which equals xs−1 for x ≥ 2. In
other words I (x) is one for x close to zero and decays like xs−1 for x ' 1. We
chooseN = N(T ) such that for the times of the local existence the modified energy
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(which is well-defined in Hs ×Hs−1)

∫

T3

(
(∂t INu)

2 + (∇INu)2 + 1

2
(INu)

4
)

does not vary much. This allows to extend the local solutions up to time T ' 1.
The analysis contains two steps, a local existence argument for INu under the
assumption that the modified energy remains below a fixed size and an energy
increase estimate which is the substitute of the energy conservation used in the proof
of Theorem 4.1.2. More precisely, we chooseN asN = T γ for some γ = γ (s) ≥ 1.
With this choice of N the initial size of the modified energy is T γ (1−s). The local
well-posedness argument assures that INu (and thus u as well) exists on time of
size T −β for some β > 0 as far as the modified energy remains � T γ (1−s). The
main part of the analysis is to get an energy increase estimate showing that on the
local existence time the modified energy does not increase more then T −α for some
α > 0. In order to arrive at time T we need to iterate ≈ T 1+β times the local
existence argument. In order to ensure that at each step of the iteration the modified
energy remains � T γ (1−s), we need to impose the condition

T 1+β T −α � T γ (1−s), T ' 1. (4.1.64)

As far as (4.1.64) is satisfied, we can extend the local solutions globally in time. The
condition (4.1.64) imposes the lower bound on s involved in the statement of The-
orem 4.1.27. One may conjecture that the global well-posedness in Theorem 4.1.27
holds for any s > 1/2.

4.1.7 Local Ill-Posedness in Hs × Hs−1, s ∈ (0, 1/2)

It turns out that the restriction s > 1/2 in Theorem 4.1.22 is optimal. Recall that the
classical notion of well-posedness in the Hadamard sense requires the existence, the
uniqueness and the continuous dependence with respect to the initial data. A very
classical example of contradicting the continuous dependence with respect to the
initial data for a PDE is the initial value problem for the Laplace equation with data
in Sobolev spaces. Indeed, consider

(∂2
t + ∂2

x )v = 0, v : Rt × Tx −→ R. (4.1.65)

Equation (4.1.65) has the explicit solution

vn(t, x) = e−
√
nsh(nt) cos(nx).
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Then for every (s1, s2) ∈ R
2, vn satisfies

‖(vn(0), ∂t vn(0))‖Hs1 (T)×Hs2 (T) � e−
√
nnmax(s1,s2+1) −→ 0,

as n tends to +∞ but for t �= 0,

‖(vn(t), ∂t vn(t))‖Hs1 (T)×Hs2 (T) � en|t | e−
√
nnmin(s1,s2+1) −→ +∞,

as n tends to +∞. Consequently (4.1.65) in not well-posed in Hs1(T)×Hs2(T) for
every (s1, s2) ∈ R

2 because of the lack of continuous dependence with respect to
the initial data (0, 0).

It turns out that a similar phenomenon happens in the context of the cubic
defocusing wave equation with low regularity initial data. As we shall see below
the mechanism giving the lack of continuous dependence is however quite different
compared to (4.1.65). Here is the precise statement.

Theorem 4.1.28 Let us fix s ∈ (0, 1/2) and (u0, u1) ∈ C∞(T3) × C∞(T3). Then
there exist δ > 0, a sequence (tn)∞n=1 of positive numbers tending to zero and a
sequence (un(t, x))∞n=1 of C(R;C∞(T3)) functions such that

(∂2
t −�)un + u3

n = 0

with

‖(un(0)− u0, ∂tun(0)− u1)‖Hs(T3)×Hs−1(T3) ≤ C[log(n)]−δ →n→+∞ 0

but

‖(un(tn), ∂tun(tn))‖Hs(T3)×Hs−1(T3) ≥ C[log(n)]δ →n→+∞ +∞.

In particular, for every T > 0,

lim
n→+∞‖(un(t), ∂tun(t))‖L∞([0,T ];Hs(T3)×Hs−1(T3)) = +∞.

Proof of Theorem 4.1.28 We follow [6, 12, 48]. Consider

(∂2
t −�)u+ u3 = 0 (4.1.66)

subject to initial conditions

(u0(x)+ κnn 3
2−sϕ(nx), u1(x)), n' 1 , (4.1.67)

where ϕ is a nontrivial bump function on R
3 and

κn ≡ [log(n)]−δ1,
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with δ1 > 0 to be fixed later. Observe that for n ' 1, we can see ϕ(nx) as a C∞
function on T

3.
Thanks to Theorem 4.1.2, we obtain that (4.1.66) with data given by (4.1.67)

has a unique global smooth solution which we denote by un. Moreover un ∈
C(R;C∞(T3)) thanks the propagation of the higher Sobolev regularity and the
Sobolev embeddings.

Next, we consider the ODE

V ′′ + V 3 = 0, V (0) = 1, V ′(0) = 0. (4.1.68)

Lemma 4.1.29 The Cauchy problem (4.1.68) has a global smooth (non constant)
solution V (t) which is periodic.

Proof One defines locally in time the solution of (4.1.68) by an application of the
Cauchy-Lipschitz theorem. In order to extend the solutions globally in time, we
multiply (4.1.68) by V ′. This gives that the solutions of (4.1.68) satisfy

d

dt

(
(V ′(t))2 + 1

2
(V (t))4

) = 0

and therefore taking into account the initial conditions, we get

(V ′(t))2 + 1

2
(V (t))4 = 1

2
. (4.1.69)

The relation (4.1.69) implies that (V (t), V ′(t)) cannot go to infinity in finite time.
Therefore the local solution of (4.1.68) is defined globally in time. Let us finally
show that V (t) is periodic in time. We first observe that thanks to (4.1.69), |V (t)| ≤
1 for all times t . Therefore t = 0 is a local maximum of V (t). We claim that there
is t0 > 0 such that V ′(t0) = 0. Indeed, otherwise V (t) is decreasing on [0,+∞)
which implies that V ′(t) ≤ 0 and from (4.1.69), we deduce

V ′(t) = −
√
(1− (V (t)))4

2
.

Integrating the last relation between zero and a positive t0 gives

t0 =
√

2
∫ 1

V (t0)

dv√
1− v4

.

Therefore

t0 ≤
√

2
∫ 1

−1

dv√
1− v4
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and we get a contradiction for t0 ' 1. Hence, we indeed have that there is t0 > 0
such that V ′(t0) = 0. Coming back to (4.1.69) and using that V (t0) < 1, we deduce
that V (t0) = −1. Therefore t = t0 is a local minimum of V (t). We now can show
exactly as before that there exists t1 > t0 such that V ′(t1) = 0 and V (t1) > −1.
Once again using (4.1.69), we infer that V (t1) = 1, i.e. V (0) = V (t1) and V ′(0) =
V ′(t1). By the uniqueness part of the Cauchy-Lipschitz theorem, we obtain that V
is periodic with period t1. This completes the proof of Lemma 4.1.29. ��
We next denote by vn the solution of

∂2
t vn + v3

n = 0, (vn(0), ∂tvn(0)) = (κnn 3
2−sϕ(nx), 0). (4.1.70)

It is now clear that

vn(t, x) = κnn 3
2−sϕ(nx)V

(
tκnn

3
2−sϕ(nx)

)
.

In the next lemma, we collect the needed bounds on vn.

Lemma 4.1.30 Let

tn ≡ [log(n)]δ2n−( 3
2−s)

for some δ2 > δ1. Then, we have the following bounds for t ∈ [0, tn],

‖�(vn)(t, ·)‖H 1(T3) ≤ C[log(n)]3δ2n3−s, (4.1.71)

‖�(vn)(t, ·)‖L2(T3) ≤ C[log(n)]2δ2n2−s , (4.1.72)

‖∇kvn(t, ·)‖L∞(T3) ≤ C[log(n)]kδ2n 3
2−s+k , k = 0, 1, · · · . (4.1.73)

Finally, there exists n0 ' 1 such that for n ≥ n0,

‖vn(tn, ·)‖Hs(T3) ≥ Cκn(tnκnn
3
2−s )s = C[log(n)]−(s+1)δ1+sδ2 . (4.1.74)

Proof Estimates (4.1.71) and (4.1.72) follow from the general bound

‖vn(t, ·)‖Hσ (T3) ≤ Cκn(tnκnn
3
2−s )σ nσ−s , (4.1.75)

where t ∈ [0, tn] and σ ≥ 0. For integer values of σ , the bound (4.1.75) is a direct
consequence of the definition of vn. For fractional values of σ one needs to invoke an
elementary interpolation inequality in the Sobolev spaces. Estimate (4.1.73) follows
directly from the definition of vn. The proof of (4.1.74) is slightly more delicate. We
first observe that for n' 1, we have the lower bound

‖vn(tn, ·)‖H 1(T3) ≥ cκn(tnκnn
3
2−s )n1−s . (4.1.76)
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Now, we can obtain (4.1.74) by invoking (4.1.75) (with σ = 2), the lower
bound (4.1.76) and the interpolation inequality

‖vn(tn, ·)‖H 1(T3) ≤ ‖vn(tn, ·)‖θHs (T3)
‖vn(tn, ·)‖1−θ

H 2(T3)

for some θ > 0. It remains therefore to show (4.1.76). After differentiating once the
expression defining vn, we see that (4.1.76) follows from the following statement.

Lemma 4.1.31 Consider a smooth not identically zero periodic function V and a
non trivial bump function φ ∈ C∞0 (Rd). Then there exist c > 0 and λ0 ≥ 1 such
that for every λ > λ0

‖φ(x)V (λφ(x))‖L2(Rd) ≥ c .

Proof We can suppose that the period of V is 2πL for some L > 0. Consider the
Fourier expansion of V ,

V (t) =
∑

n∈Z
vne

i nL t , |vn| ≤ CN(1+ |n|)−N .

We can assume that there is an open ball B of R
d such that for some c0 > 0,

|∂x1φ(x)| ≥ c0 on B. Let 0 ≤ ψ ≤ 1 be a non trivial C∞0 (B) function. We can write

‖φ(x)V (λφ(x))‖2
L2(Rd)

≥ ‖ψ(x)φ(x)V (λφ(x))‖2
L2(B)

= I1 + I2,

where

I1 =
∑

n∈Z
|vn|2

∫

B

(ψ(x)φ(x))2dx,

and

I2 =
∑

n1 �=n2

vn1vn2

∫

B

eiλ
n1−n2
L

φ(x) (ψ(x)φ(x))2 dx.

Clearly I1 > 0 is independent of λ. On the other hand

eiλ
n1−n2
L

φ(x) = L

iλ(n1 − n2)∂x1φ(x)
∂x1

(
eiλ

n1−n2
L

φ(x)
)
.

Therefore, after an integration by parts, we obtain that |I2| � λ−1. This completes
the proof of Lemma 4.1.31. ��

This completes the proof of Lemma 4.1.30. ��
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We next consider the semi-classical energy

En(u) ≡ n−(1−s)
(‖∂tu‖2

L2(T3)
+ ‖∇u‖2

L2(T3)

) 1
2

+ n−(2−s)(‖∂tu‖2
H 1(T3)

+ ‖∇u‖2
H 1(T3)

) 1
2 .

We are going to show that for very small times un and vn + S(t)(u0, u1) are
close with respect to En but these small times are long enough to get the needed
amplification of theHs norm. We emphasise that this amplification is a phenomenon
only related to the solution of (4.1.70). Here is the precise statement.

Lemma 4.1.32 There exist ε > 0, δ2 > 0 and C > 0 such that for δ1 < δ2, if we
set

tn ≡ [log(n)]δ2n−( 3
2−s)

then for every n' 1, every t ∈ [0, tn],

En
(
un(t)− vn(t)− S(t)(u0, u1)

) ≤ Cn−ε .

Moreover,

‖un(t)− vn(t)− S(t)(u0, u1)‖Hs(T3) ≤ Cn−ε . (4.1.77)

Proof Set uL = S(t)(u0, u1) and wn = un− uL− vn. Then wn solves the equation

(∂2
t −�)wn = �vn− 3v2

n(uL +wn)− 3vn(uL+wn)2− (uL +wn)3, (4.1.78)

with initial data

(wn(0, ·), ∂twn(0, ·)) = (0, 0) .

Set

F ≡ �vn − 3v2
n(uL + wn)− 3vn(uL +wn)2 − (uL + wn)3 .

Multiplying Eq. (4.1.78) with ∂twn and integrating over T3 gives

∣
∣
∣
d

dt

(‖∂twn(t)‖2
L2(T3)

+ ‖∇wn(t)‖2
L2(T3)

)∣∣
∣ � ‖∂twn(t)‖L2(T3)‖F(t)‖L2(T3)

which in turn implies

∣
∣
∣
d

dt

(‖∂twn(t)‖2
L2(T3)

+ ‖∇wn(t)‖2
L2(T3)

) 1
2

∣
∣
∣ � ‖F(t)‖L2(T3) . (4.1.79)
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Similarly, by first differentiating (4.1.78) with respect to the spatial variables, we
get the bound

∣
∣
∣
d

dt

(‖∂twn(t)‖2
H 1(T3)

+ ‖∇wn(t)‖2
H 1(T3)

) 1
2

∣
∣
∣ � ‖F(t)‖H 1(T3) . (4.1.80)

Now, using (4.1.79) and (4.1.80), we obtain the estimate

∣
∣
∣
d

dt

(
En(wn(t))

)∣∣
∣ ≤ Cn−(2−s)‖F(t)‖H 1(T3) + Cn−(1−s)‖F(t)‖L2(T3) .

Therefore using (4.1.71), (4.1.72), we get

∣
∣
∣
d

dt

(
En(wn(t))

)∣∣
∣ ≤ C

(
[log(n)]3δ2n

+ n−(2−s)‖G(t, ·)‖H 1(T3) + n−(1−s)‖G(t, ·)‖L2(T3)

)
,

(4.1.81)

whereG ≡ G1 +G2 with

G1 = −3v2
nuL − 3vnu2

L − u3
L

and

G2 = −3(uL + vn)2wn − 3(uL + vn)w2
n −w3

n.

Since uL ∈ C∞(R × T
3) is independent of n, using (4.1.73) and (4.1.75) we can

estimate G1 as follows

n−(l−s)‖G1(t, ·))‖Hl−1(T3) � [logn]δ2n 1
2−s � [log(n)]3δ2n, l = 1, 2.

Writing for t ∈ [0, tn],

wn(t, x) =
∫ t

0
∂twn(τ, x)dτ,

we obtain

‖wn(t, ·)‖Hk(T3) ≤ C[log(n)]δ2n−( 3
2−s) sup

0≤τ≤t
‖∂twn(τ, ·)‖Hk(T3) . (4.1.82)

Set

en(wn(t)) ≡ sup
0≤τ≤t

En(wn(τ )) .
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Observe that en(wn(t)) is increasing. Using (4.1.82) (with k = 0, 1), (4.1.73) and
the Leibniz rule, we get that for t ∈ [0, tn] and for l = 1, 2,

n−(l−s)‖(uL(t)+ vn(t))2wn(t)‖Hl−1(T3) ≤ C[log(n)]lδ2n 3
2−sen(wn(t)) .

Thanks to the Gagliardo-Nirenberg inequality, and (4.1.82) with k = 0, we get for
t ∈ [0, tn],

‖wn(t, ·)‖L∞(T3) ≤ C‖wn(t, ·)‖
3
4
H 2(T3)

‖wn(t, ·)‖
1
4
L2(T3)

(4.1.83)

≤ Cn 3
2−sen(wn(t)) .

Hence, we can use (4.1.83) to treat the quadratic and cubic terms in wn and to get
the bound

n−(l−s)‖G2(t, ·)‖Hl−1(T3) ≤ C[log(n)]lδ2n 3
2−s(en(wn(t))+ [en(wn(t))]3

)
.

Therefore, coming back to (4.1.81), we get for t ∈ [0, tn],
∣
∣
∣
d

dt

(
En(wn(t))

)∣∣
∣ ≤ C[log(n)]3δ2n

+ C[log(n)]2δ2n 3
2−s(en(wn(t))+ [en(wn(t))]3

)
.

We now observe that

d

dt

(
en(wn(t))

) ≤
∣
∣
∣
d

dt

(
En(wn(t))

)∣∣
∣

is resulting directly from the definition. Therefore, we have the bound

d

dt

(
en(wn(t))

)
≤ C[log(n)]3δ2n

+ C[log(n)]2δ2n 3
2−s(en(wn(t))+ [en(wn(t))]3

)
. (4.1.84)

We first suppose that en(wn(t)) ≤ 1. This property holds for small values of t
since En(wn(0)) = en(wn(0)) = 0. In addition, the estimate for en(wn(t)) we are
looking for is much stronger than en(wn(t)) ≤ 1. Therefore, once we prove the
desired estimate for en(wn(t)) under the assumption en(wn(t)) ≤ 1, we can use a
bootstrap argument to get the estimate without the assumption en(wn(t)) ≤ 1.

Estimate (4.1.84) yields that for t ∈ [0, tn],
d

dt
(en(wn(t))) ≤ C[log(n)]3δ2n+ C[log(n)]2δ2n 3

2−sen(wn(t))
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and consequently

d

dt

(
e−Ct [log(n)]2δ2n 3

2−s
en(wn(t))

)
≤ C[log(n)]3δ2 n e−Ct [log(n)]2δ2n 3

2−s
.

An integration of the last estimate gives that for t ∈ [0, tn],

en(wn(t)) ≤ C
([log(n)]δ2ns− 1

2
)
eCt [log(n)]2δ2n 3

2−s

≤ C([log(n)]δ2ns− 1
2
)
eC[log(n)]3δ2 .

(one should see δ2 as 3δ2 − 2δ2 and s − 1/2 as 1 − (3/2 − s)). Since s < 1/2,
by taking δ2 > 0 small enough, we obtain that there exists ε > 0 such that for
t ∈ [0, tn],

En(wn(t)) ≤ Cn−ε

and in particular one has for t ∈ [0, tn],

‖∂twn(t, ·)‖L2(T3) + ‖∇wn(t, ·)‖L2(T3) ≤ Cn1−s−ε . (4.1.85)

We next estimate ‖wn(t, ·)‖L2 . We may write for t ∈ [0, tn],

‖wn(t, ·)‖L2(T3) = ‖
∫ t

0
∂twn(τ, ·)dτ‖L2(T3) ≤ ctn sup

0≤τ≤t
‖∂twn(τ, ·)‖L2(T3) .

Thanks to (4.1.85) and the definition of tn, we get

‖wn(t, ·)‖L2(T3)) ≤ C[log(n)]δ2n−( 3
2−s)n1−sn−ε .

Therefore, since s < 1/2,

‖wn(t, ·)‖L2(T3) ≤ Cn−s−ε . (4.1.86)

An interpolation between (4.1.85) and (4.1.86) yields (4.1.77). This completes the
proof of Lemma 4.1.32. ��
Using Lemma 4.1.32, we may write

‖un(tn, ·)‖Hs(T3) ≥ ‖vn(tn, ·)‖Hs(T3) − C − Cn−ε .

Recall that (4.1.74) yields

‖vn(tn, ·)‖Hs(T3) ≥ C[log(n)]−(s+1)δ1+sδ2 ,
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provided n' 1. Therefore, by choosing δ1 small enough (depending on δ2 fixed in
Lemma 4.1.32), we obtain that the exists δ > 0 such that

‖vn(tn, ·)‖Hs(T3) ≥ C[log(n)]δ, n' 1

which in turn implies that

‖un(tn, ·)‖Hs(T3) ≥ C[log(n)]δ, n' 1 .

This completes the proof of Theorem 4.1.28. ��
Theorem 4.1.28 implies that the Cauchy problem associated with the cubic

focusing wave equation,

(∂2
t −�)u+ u3 = 0

is ill-posed in Hs(T3) × Hs−1(T3) for s < 1/2 because of the lack of continuous
dependence for any C∞(T3)× C∞(T3) initial data.

For future references, we also state the following consequence of Theo-
rem 4.1.28.

Theorem 4.1.33 Let us fix s ∈ (0, 1/2), T > 0 and

(u0, u1) ∈ Hs(T3)×Hs−1(T3) .

Then there exists a sequence (un(t, x))∞n=1 of C(R;C∞(T3)) functions such that

(∂2
t −�)un + u3

n = 0

with

lim
n→+∞ ‖(un(0)− u0, ∂tun(0)− u1)‖Hs(T3)×Hs−1(T3) = 0

but

lim
n→+∞‖(un(t), ∂tun(t))‖L∞([0,T ];Hs(T3)×Hs−1(T3)) = +∞.

Proof Let (u0,m, u1,m)
∞
m=1 be a sequence of C∞(T3)×C∞(T3) functions such that

lim
m→+∞ ‖(u0 − u0,m, u1 − u1,m)‖Hs(T3)×Hs−1(T3) = 0 .

For a fixed m, we apply Theorem 4.1.28 in order to find a sequence (um,n(t, x))∞n=1
of C(R;C∞(T3)) functions such that

(∂2
t −�)um,n + u3

m,n = 0
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with

lim
n→+∞‖(um,n(0)− u0,m, ∂tum,n(0)− u1,m)‖Hs(T3)×Hs−1(T3) = 0

and for everym ≥ 1,

lim
n→+∞‖(um,n(t), ∂tum,n(t))‖L∞([0,T ];Hs(T3)×Hs−1(T3)) = +∞. (4.1.87)

Now, using the triangle inequality, we obtain that for every l ≥ 1 there isM0(l) such
that for everym ≥ M0(l) there is N0(m) such that for every n ≥ N0(m),

‖(um,n(0)− u0, ∂tum,n(0)− u1)‖Hs(T3)×Hs−1(T3) <
1

l
.

Thanks to (4.1.87), we obtain that for every m ≥ 1 there exists N1(m) ≥ N0(m)

such that for every n ≥ N1(m),

‖(um,n(t), ∂tum,n(t))‖L∞([0,T ];Hs(T3)×Hs−1(T3)) > l .

We now observe that

ul(t, x) ≡ uM0(l),N1(M0(l))(t, x), l = 1, 2, 3, · · ·

is a sequence of solutions of the cubic defocusing wave equation satisfying the
conclusions of Theorem 4.1.33. ��
Remark 4.1.34 It is worth mentioning that we arrive without too much complicated
technicalities to a sharp local well-posedness result in the context of the cubic wave
equation because we do not need a smoothing effect to recover derivative losses
neither in the nonlinearity nor in the non homogeneous Strichartz estimates. The
Xs,b spaces of Bourgain are an efficient tool to deal with these two difficulties.
These developments go beyond the scope of these lectures.

4.1.8 Extensions to More General Nonlinearities

One may consider the wave equation with a more general nonlinearity than the cubic
one. Namely, let us consider the nonlinear wave equation

(∂2
t −�)u+ |u|αu = 0, (4.1.88)
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posed on T
3 where α > 0 measures the “degree” of the nonlinearity. If u(t, x) is a

solution of (4.1.88) posed on R
3, than so is uλ(t, x) = λ 2

α u(λt, λx). Moreover

‖uλ(t, ·)‖Hs ≈ λ 2
α λsλ−

3
2 ‖u(λt, ·)‖Hs

which implies thatHs with s = 3
2 − 2

α
is the critical Sobolev regularity for (4.1.88).

Based on this scaling argument one may wish to expect that for s > 3
2 − 2

α
the

Cauchy problem associated with (4.1.88) is well-posed in Hs × Hs−1 and that for
s < 3

2 − 2
α

it is ill-posed in Hs × Hs−1. In this section, we verified that this is
indeed the case for α = 2. For 2 < α < 4, a small modification of the proof
of Theorem 4.1.22 shows that (4.1.88) is locally well-posed in Hs × Hs−1 for
s ∈ ( 3

2 − 2
α
, α). Then, as in the proof of Theorem 4.1.2, we can show that (4.1.88)

is globally well-posed in H 1 × L2. Moreover a small modification of the proof of
Theorem 4.1.28 shows that for s ∈ (0, 3

2 − 2
α
) the Cauchy problem for (4.1.88) is

locally ill-posed in Hs × Hs−1. For α = 4, we can prove a local well-posedness
statement for (4.1.88) as in Theorem 4.1.25. The global well-posedness inH 1×L2

for α = 4 is much more delicate than the globalisation argument of Theorem 4.1.2.
It is however possible to show that (4.1.88) is globally well-posed in H 1 × L2

(see [20, 21, 41, 42]). The new global information for α = 4, in addition to the
conservation of the energy, is the Morawetz estimate which is a quantitative way to
contradict the blow-up criterium in the case α = 4. For α > 4 the Cauchy problem
associated with (4.1.88) is still locally well-posed inHs×Hs−1 for some s > 3

2− 2
α

.
The global well-posedness (i.e. global existence, uniqueness and propagation of
regularity) of (4.1.88) for α > 4 is an outstanding open problem. For α > 4, the
argument used in Theorem 4.1.28 may allow to construct weak solutions inH 1×L2

with initial data in Hσ for 1 < σ < 3
2 − 2

α
which are losing theirHσ regularity. See

[28] for such a result for (4.1.88), posed on R
3.

4.2 Probabilistic Global Well-Posedness for the 3d Cubic
Wave Equation in Hs , s ∈ [0, 1]

4.2.1 Introduction

Consider again the Cauchy problem for the cubic defocusing wave equation

(∂2
t −�)u+ u3 = 0, u : R× T

3 → R,

u|t=0 = u0, ∂tu|t=0 = u1, (u0, u1) ∈ Hs(T3),
(4.2.1)

where

Hs(T3) ≡ Hs(T3)×Hs−1(T3) .
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In the previous section, we have shown that (4.2.1) is (at least locally in time) well-
posed in Hs(T3), s ≥ 1/2. The main ingredient in the proof for s ∈ [1/2, 1) was
the Strichartz estimates for the linear wave equation. We have also shown that for
s ∈ (0, 1/2) the Cauchy problem (4.2.1) is ill-posed in Hs(T3).

One may however ask whether some sort of well-posedness for (4.2.1) survives
for s < 1/2. We will show below that this is indeed possible, if we accept
to “randomise” the initial data. This means that we will endow Hs (T3), s ∈
(0, 1/2) with suitable probability measures and we will show that the Cauchy
problem (4.2.1) is well-posed in a suitable sense for initial data (u0, u1) on a set
of full measure.

Let us now describe these measures. Starting from (u0, u1) ∈ Hs given by their
Fourier series

uj (x) = aj +
∑

n∈Z3
$

(
bn,j cos(n · x)+ cn,j sin(n · x)

)
, j = 0, 1,

we define uωj by

uωj (x) = αj (ω)aj +
∑

n∈Z3
$

(
βn,j (ω)bn,j cos(n · x)+ γn,j (ω)cn,j sin(n · x)

)
,

(4.2.2)

where (αj (ω), βn,j (ω), γn,j (ω)), n ∈ Z
3
$, j = 0, 1 is a sequence of real random

variables on a probability space (�, p,F). We assume that the random variables
(αj , βn,j , γn,j )n∈Z3

$,j=0,1 are independent identically distributed real random vari-
ables with a distribution θ satisfying

∃ c > 0, ∀ γ ∈ R,

∫ ∞

−∞
eγ xdθ(x) ≤ ecγ 2

(4.2.3)

(notice that under the assumption (4.2.3) the random variables are necessarily of
mean zero). Typical examples (see Remark 4.2.13 below) of random variables
satisfying (4.2.3) are the standard Gaussians, i.e.

dθ(x) = (2π)− 1
2 e−

x2
2 dx

(with an identity in (4.2.3)) or the Bernoulli variables

dθ(x) = 1

2
(δ−1 + δ1) .

An advantage of the Bernoulli randomisation is that it keeps the Hs norm of the
original function. The Gaussian randomisation has the advantage to “generate” a
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dense set in Hs via the map

ω ∈ � �−→ (uω0 , u
ω
1 ) ∈ Hs (4.2.4)

for most of (u0, u1) ∈ Hs (see Proposition 4.2.2 below).

Definition 4.2.1 For fixed (u0, u1) ∈ Hs , the map (4.2.4) is a measurable map
from (�,F) to Hs endowed with the Borel sigma algebra since the partial sums
form a Cauchy sequence in L2(�;Hs). Thus (4.2.4) endows the space Hs(T3) with
a probability measure which is the direct image of p. Let us denote this measure by
μ(u0,u1). Then

∀A ⊂ Hs , μ(u0,u1)(A) = p(ω ∈ � : (uω0 , uω1 ) ∈ A).

Denote by Ms the set of measures obtained following this construction:

Ms =
⋃

(u0,u1)∈Hs

{μ(u0,u1)} .

Here are two basic properties of these measures.

Proposition 4.2.2 For any s′ > s, if (u0, u1) /∈ Hs ′ , then

μ(u0,u1)(Hs ′) = 0 .

In other words, the randomisation (4.2.4) does not regularise in the scale of the L2-
based Sobolev spaces (this fact is obvious for the Bernoulli randomisation). Next,
if (u0, u1) have all their Fourier coefficients different from zero and if supp(θ) =
R then supp(μ(u0,u1)) = Hs . In other words, under these assumptions, for any
(w0, w1) ∈ Hs and any ε > 0,

μ(u0,u1)({(v0, v1) ∈ Hs : ‖(w0, w1)− (v0, v1)‖Hs < ε}) > 0, (4.2.5)

or in yet other words, any set of full μ(u0,u1)-measure is dense in Hs .

We have the following global existence and uniqueness result for typical data with
respect to an element of Ms .

Theorem 4.2.3 (Existence and Uniqueness) Let us fix s ∈ (0, 1) and μ ∈ Ms .
Then, there exists a full μ measure set Σ⊂Hs (T3) such that for every (v0, v1)∈Σ ,
there exists a unique global solution v of the nonlinear wave equation

(∂2
t −�)v + v3 = 0, (v(0), ∂t v(0)) = (v0, v1) (4.2.6)

satisfying

(v(t), ∂t v(t)) ∈
(
S(t)(v0, v1), ∂tS(t)(v0, v1)

)+ C(R;H 1(T3)× L2(T3)).
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Furthermore, if we denote by

�(t)(v0, v1) ≡ (v(t), ∂t v(t))

the flow thus defined, the set Σ is invariant by the map�(t), namely

�(t)(Σ) = Σ, ∀ t ∈ R.

The next statement gives quantitative bounds on the solutions.

Theorem 4.2.4 (Quantitative Bounds) Let us fix s ∈ (0, 1) and μ ∈ Ms . Let Σ
be the set constructed in Theorem 4.2.3. Then for every ε > 0 there exist C, δ > 0
such that for every (v0, v1) ∈ Σ , there exists M > 0 such that the global solution
to (4.2.6) constructed in Theorem 4.2.3 satisfies

v(t) = S(t)⊥0 (v0, v1)+w(t),

with

‖(w(t), ∂tw(t))‖H1(T3) ≤ C(M + |t|) 1−s
s +ε

and

μ((v0, v1) : M > λ) ≤ Ce−λδ .

Remark 4.2.5 Recall that 0 is the orthogonal projector on the zero Fourier mode
and⊥0 = Id−0.

We now further discuss the uniqueness of the obtained solutions. For s > 1/2, we
have the following statement.

Theorem 4.2.6 (Unique Limit of Smooth Solutions for s > 1/2) Let s ∈ (1/2, 1).
With the notations of the statement of Theorem 4.2.3, let us fix an initial datum
(v0, v1) ∈ Σ with a corresponding global solution v(t). Let (v0,n, v1,n)

∞
n=1 be a

sequence of H1(T3) such that

lim
n→∞‖(v0,n − v0, v1,n − v1)‖Hs (T3) = 0 .

Denote by vn(t) the solution of the cubic defocusing wave equation with data
(v0,n, v1,n) defined in Theorem 4.1.2. Then for every T > 0,

lim
n→∞‖(vn(t)− v(t), ∂t vn(t)− ∂t v(t))‖L∞([0,T ];Hs (T3)) = 0 .

Thanks to Theorem 4.1.33, we know that for s ∈ (0, 1/2) the result of Theo-
rem 4.2.6 cannot hold true ! We only have a partial statement.
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Theorem 4.2.7 (Unique Limit of Particular Smooth Solutions for s < 1/2) Let
s ∈ (0, 1/2). With the notations of the statement of Theorem 4.2.3, let us fix an initial
datum (v0, v1) ∈ Σ with a corresponding global solution v(t). Let (v0,n, v1,n)

∞
n=1

be the sequence of C∞(T3) × C∞(T3) defined as the usual regularisation by
convolution, i.e.

v0,n = v0 $ ρn, v1,n = v1 $ ρn ,

where (ρn)∞n=1 is an approximate identity. Denote by vn(t) the solution of the cubic
defocusing wave equation with data (v0,n, v1,n) defined in Theorem 4.1.2. Then for
every T > 0,

lim
n→∞‖(vn(t)− v(t), ∂t vn(t)− ∂t v(t))‖L∞([0,T ];Hs (T3)) = 0 .

Remark 4.2.8 We emphasise that the result of Theorem 4.1.33 applies for the
elements of Σ . More precisely, thanks to Theorem 4.1.33, we have that for every
(v0, v1) ∈ Σ there is a sequence (v0,n, v1,n)

∞
n=1 of elements of C∞(T3)× C∞(T3)

such that

lim
n→∞‖(v0,n − v0, v1,n − v1)‖Hs (T3) = 0

but such that if we denote by vn(t) the solution of the cubic defocusing wave
equation with data (v0,n, v1,n) defined in Theorem 4.1.2 then for every T > 0,

lim
n→∞‖(vn(t), ∂t vn(t))‖L∞([0,T ];Hs (T3)) =∞ .

Therefore the choice of the particular regularisation of the initial data in Theo-
rem 4.2.7 is of key importance. It would be interesting to classify the “admissible
type of regularisations” allowing to get a statement such as Theorem 4.2.7 .

Remark 4.2.9 We can also see the solutions constructed in Theorem 4.2.3 as the
(unique) limit as N tends to infinity of the solutions of the following truncated
versions of the cubic defocusing wave equation.

(∂2
t −�)SNu+ SN((SNu)3) = 0,

where SN is a Fourier multiplier localising on modes of size ≤ N . The convergence
of a subsequence can be obtained by a compactness argument (cf. [9]). The
convergence of the whole sequence however requires strong solutions techniques.

The next question is whether some sort of continuous dependence with respect to
the initial data survives in the context of Theorem 4.2.3. In order to state our result
concerning the continuous dependence with respect to the initial data, we recall that
for any event B (of non vanishing probability) the conditioned probability p(·|B) is
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the natural probability measure supported by B, defined by

p(A|B) = p(A ∩ B)
p(B)

.

We have the following statement.

Theorem 4.2.10 (Conditioned Continuous Dependence) Let us fix s ∈ (0, 1), let
A > 0, let BA ≡ (V ∈ Hs : ‖V ‖Hs ≤ A) be the closed ball of radius A centered
at the origin of Hs and let T > 0. Let μ ∈ Ms and suppose that θ (the law of our
random variables) is symmetric. Let �(t) be the flow of the cubic wave equations
defined μ almost everywhere in Theorem 4.2.3. Then for ε, η > 0, we have the
bound

μ⊗ μ
(
(V , V ′) ∈ Hs ×Hs : ‖�(t)(V )−�(t)(V ′)‖XT > ε

∣
∣
∣

‖V − V ′‖Hs < η and (V , V ′) ∈ BA × BA
)
≤ g(ε, η), (4.2.7)

where XT ≡ (C([0, T ];Hs) ∩ L4([0, T ] × T
3))× C([0, T ];Hs−1) and g(ε, η) is

such that

lim
η→0

g(ε, η) = 0, ∀ ε > 0.

Moreover, if for s ∈ (0, 1/2) we assume in addition that the support of μ is the
whole Hs (which is true if in the definition of the measureμ, we have ai, bn,j , cn,j �=
0,∀n ∈ Z

d and the support of the distribution function of the random variables is
R), then there exists ε > 0 such that for every η > 0 the left hand-side in (4.2.7) is
positive.

A probability measure θ on R is called symmetric if

∫

R

f (x)dθ(x) =
∫

R

f (−x)dθ(x), ∀ f ∈ L1(dθ).

A real random variable is called symmetric if its distribution is a symmetric measure
on R.

The result of Theorem 4.2.10 is saying that as soon as η ( ε, among the initial
data which are η-close to each other, the probability of finding two for which the
corresponding solutions to (4.2.1) do not remain ε close to each other, is very small.
The last part of the statement is saying that the deterministic version of the uniform
continuity property (4.2.7) does not hold and somehow that one cannot get rid of
a probabilistic approach in the question concerning the continuous dependence (in
Hs , s < 1/2) with respect to the data. The ill-posedness result of Theorem 4.1.28
will be of importance in the proof of the last part of Theorem 4.2.10.
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4.2.2 Probabilistic Strichartz Estimates

Lemma 4.2.11 Let (ln(ω))∞n=1 be a sequence of real, independent random vari-
ables with associated sequence of distributions (θn)∞n=1. Assume that θn satisfy the
property

∃ c > 0 : ∀ γ ∈ R, ∀ n ≥ 1,
∣
∣
∣

∫ ∞

−∞
eγ xdθn(x)

∣
∣
∣ ≤ ecγ 2

. (4.2.8)

Then there exists α > 0 such that for every λ > 0, every sequence (cn)∞n=1 ∈ l2 of
real numbers,

p
(
ω : ∣∣

∞∑

n=1

cnln(ω)
∣
∣ > λ

)
≤ 2e

− αλ2
∑
n c

2
n . (4.2.9)

As a consequence there exists C > 0 such that for every p ≥ 2, every (cn)∞n=1 ∈ l2,

∥
∥
∞∑

n=1

cnln(ω)
∥
∥
Lp(�)

≤ C√p(
∞∑

n=1

c2
n

)1/2
. (4.2.10)

Remark 4.2.12 The property (4.2.8) is equivalent to assuming that θn are of zero
mean and assuming that

∃ c > 0, C > 0 : ∀ γ ∈ R, ∀ n ≥ 1,
∣
∣
∣

∫ ∞

−∞
eγ xdθn(x)

∣
∣
∣ ≤ C ecγ 2

. (4.2.11)

Remark 4.2.13 Let us notice that (4.2.8) is readily satisfied if (ln(ω))∞n=1 are
standard real Gaussian or standard Bernoulli variables. Indeed in the case of
Gaussian

∫ ∞

−∞
eγ xdθn(x) =

∫ ∞

−∞
eγ x e−x2/2 dx√

2π
= eγ 2/2 .

In the case of Bernoulli variables one can obtain that (4.2.8) is satisfied by invoking
the inequality

eγ + e−γ
2

≤ eγ 2/2, ∀ γ ∈ R.

More generally, we can observe that (4.2.11) holds if θn is compactly supported.

Remark 4.2.14 In the case of Gaussian we can see Lemma 4.2.11 as a very
particular case of a Lp smoothing properties of the Hartree-Foch heat flow (see
e.g. [44, Section 3] for more details on this issue).
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Proof of Lemma 4.2.11 For t > 0 to be determined later, using the independence
and (4.2.8), we obtain

∫

�

et
∑
n≥1 cnln(ω)dp(ω) =

∏

n≥1

∫

�

etcnln(ω)dp(ω)

=
∏

n≥1

∫ ∞

−∞
etcnx dθn(x)

≤
∏

n≥1

ec(tcn)
2 = e(ct2)

∑
n c

2
n .

Therefore

e(ct
2)
∑
n c

2
n ≥ etλ p (ω :

∑

n≥1

cnln(ω) > λ)

or equivalently,

p (ω :
∑

n≥1

cnln(ω) > λ) ≤ e(ct2)
∑
n c

2
n e−tλ .

We choose t as

t ≡ λ

2c
∑
n c

2
n

.

Hence

p (ω :
∑

n≥1

cnln(ω) > λ) ≤ e
− λ2

4c
∑
n c

2
n .

In the same way (replacing cn by −cn), we can show that

p (ω :
∑

n≥1

cnln(ω) < −λ) ≤ e
− λ2

4c
∑
n c

2
n

which completes the proof of (4.2.9). To deduce (4.2.10), we write

‖
∞∑

n=1

cnln(ω)‖pLp(�) = p
∫ +∞

0
p(ω : |

∞∑

n=1

cnln(ω)| > λ)λp−1dλ

≤ Cp
∫ +∞

0
λp−1e

− cλ2
∑
n c

2
n dλ
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≤ Cp(C
∑

n

c2
n)

p
2

∫ +∞

0
λp−1e−

λ2
2 dλ

≤ C(Cp
∑

n

c2
n)

p
2

which completes the proof of Lemma 4.2.11. ��
As a consequence of Lemma 4.2.11, we get the following “probabilistic”

Strichartz estimates.

Theorem 4.2.15 Let us fix s ∈ (0, 1) and let μ ∈ Ms be induced via the
map (4.2.4) from the couple (u0, u1) ∈ Hs . Let us also fix σ ∈ (0, s], 2 ≤ p1 <

+∞, 2 ≤ p2 ≤ +∞ and δ > 1 + 1
p1

. Then there exists a positive constant C such
that for every p ≥ 2,

∥
∥
∥‖〈t〉−δS(t)(v0, v1)‖Lp1 (Rt ;Lp2 (T3))

∥
∥
∥
Lp(μ)

≤ C√p‖(u0, u1)‖Hσ (T3) . (4.2.12)

As a consequence for every T > 0 and p1 ∈ [1,∞), p2 ∈ [2,∞],

‖S(t)(v0, v1)‖Lp1 ([0,T ];Lp2 (T3)) <∞, μ - almost surely. (4.2.13)

Moreover, there exist two positive constants C and c such that for every λ > 0,

μ
(
(v0, v1) ∈ Hs : ‖〈t〉−δS(t)(v0, v1)‖Lp1 (Rt ;Lp2 (T3)) > λ

)

≤ C exp
(
− cλ2

‖(u0, u1)‖2
Hσ (T3)

)
. (4.2.14)

Remark 4.2.16 Observe that (4.2.13) applied for p2 = ∞ displays an improvement
of 3/2 derivatives with respect to the Sobolev embedding which is stronger
than the improvement obtained by the (deterministic) Strichartz estimates (see
Remark 4.1.14). The proof of Theorem 4.2.15 exploits the random oscillations of
the initial data while the proof of the deterministic Strichartz estimates exploits
in a crucial (and subtle) manner the time oscillations of S(t). In the proof of
Theorem 4.2.15, we simply neglect these times oscillations.

Remark 4.2.17 In the proof of Theorem 4.2.15, we shall make use of the Sobolev
spacesWσ,q(T3), σ ≥ 0, q ∈ (1,∞), defined via the norm

‖u‖Wσ,q (T3) = ‖(1−�)σ/2u‖Lq(T3) .

Proof of Theorem 4.2.15 We have that

∥
∥
∥‖〈t〉−δ0S(t)(v0, v1)‖Lp1 (Rt ;Lp2 (T3))

∥
∥
∥
Lp(μ)
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equals

∥
∥
∥‖〈t〉−δ (α0(ω)a0 + tα1(ω)a1)‖Lp1 (Rt ;Lp2 (T3))

∥
∥
∥
L
p
ω

. (4.2.15)

A trivial application of Lemma 4.2.11 implies that

‖αj (ω)‖Lpω ≤ C
√
p, j = 0, 1.

Therefore, using that δ > 1+ 1/p1 the expression (4.2.15) can be bounded by

(2π)
3
p2

∥
∥
∥‖〈t〉−δ (α0(ω)a0 + tα1(ω)a1)‖Lp1 (Rt )

∥
∥
∥
L
p
ω

≤ C√p(|a0| + |a1|) .

Therefore, it remains to estimate

∥
∥
∥‖〈t〉−δ⊥0 S(t)(v0, v1)‖Lp1 (Rt ;Lp2 (T3))

∥
∥
∥
Lp(μ)

.

By a use of the Hölder inequality on T
3, we observe that it suffices to estimate

∥
∥
∥‖〈t〉−δ⊥0 S(t)(v0, v1)‖Lp1 (Rt ;L∞(T3))

∥
∥
∥
Lp(μ)

.

Let q < ∞ be such that σ > 3/q . Then by the Sobolev embedding Wσ,q(T3) ⊂
C0(T3), we have

‖⊥0 S(t)(v0, v1)‖L∞(T3) ≤ C‖(1 −�)σ/2⊥0 S(t)(v0, v1)‖Lq(T3) .

Therefore, we need to estimate

∥
∥
∥‖〈t〉−δ (1−�)σ/2⊥0 S(t)(v0, v1)‖Lp1 (Rt ;Lq(T3))

∥
∥
∥
Lp(μ)

which equals

∥
∥
∥‖〈t〉−δ (1−�)σ/2⊥0 S(t)(uω0 , uω1 )‖Lp1 (Rt ;Lq(T3))

∥
∥
∥
L
p
ω

. (4.2.16)

By using the Hölder inequality in ω, we observe that it suffices to evaluate the last
quantity only for p > max(p1, q). For such values of p, using the Minkowski
inequality, we can estimate (4.2.16) by

∥
∥
∥
∥
∥〈t〉−δ(1−�)σ/2⊥0 S(t)(uω0 , uω1 )

∥
∥
L
p
ω

∥
∥
∥
Lp1 (Rt ;Lq(T3))

. (4.2.17)
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Now, we can write (1−�)σ/2⊥0 S(t)(uω0 , uω1 ) as

∑

n∈Z3
$

〈n〉σ
((
βn,0(ω)bn,0 cos(t|n|)+ βn,1(ω)bn,1 sin(t|n|)

|n|
)

cos(n · x)

+(γn,0(ω)cn,0 cos(t|n|)+ γn,1(ω)cn,1 sin(t|n|)
|n|

)
sin(n · x)

)
,

with
∑

n∈Z3
$

〈n〉2σ
(
|bn,0|2 + |cn,0|2 + |n|−2(|bn,1|2 + |cn,1|2)

)
≤ C‖(u0, u1)‖2

Hσ (T3)
.

Now using (4.2.10) of Lemma 4.2.11 and the boundedness of sin and cos functions,
we obtain that (4.2.17) can be bounded by

C

∥
∥
∥〈t〉−δC√p‖(u0, u1)‖Hσ (T3)

∥
∥
∥
Lp1 (Rt ;Lq(T3))

. (4.2.18)

Since δ > 1+ 1/p1, we can estimate (4.2.18) by

C
√
p‖(u0, u1)‖Hσ (T3) .

This completes the proof of (4.2.12). Let us finally show how (4.2.12)
implies (4.2.14). Using the Tchebichev inequality and (4.2.12), we have that

μ
(
(v0, v1) ∈ Hs : ‖〈t〉−δS(t)(v0, v1)‖Lp1 (Rt ;Lp2(T3)) > λ

)

is bounded by

λ−p
∥
∥
∥‖〈t〉−δS(t)(v0, v1)‖Lp1 (Rt ;Lp2 (T3))

∥
∥
∥
p

Lp(μ)
≤ (Cλ−1√p‖(u0, u1)‖Hσ (T3)

)p

We now choose p as

Cλ−1√p‖(u0, u1)‖Hσ (T3) =
1

2
⇔ p =

λ2‖(u0, u1)‖−2
Hσ (T3)

4C2
,

which yields (4.2.14). This completes the proof of Theorem 4.2.15. ��
The proof of Theorem 4.2.15 also implies the following statement.

Theorem 4.2.18 Let us fix s ∈ (0, 1) and let μ ∈ Ms be induced via the
map (4.2.4) from the couple (u0, u1) ∈ Hs . Let us also fix p ≥ 2, σ ∈ (0, s]
and q <∞ such that σ > 3/q . Then for every T > 0,

‖S(t)(v0, v1)‖Lp([0,T ];Wσ,q(T3)) <∞, μ - almost surely. (4.2.19)
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4.2.3 Regularisation Effect in the Picard Iteration Expansion

Consider the Cauchy problem

(∂2
t −�)u+ u3 = 0, u|t=0 = u0, ∂tu|t=0 = u1, (4.2.20)

where (u0, u1) is a typical element on the support ofμ ∈Ms , s ∈ (0, 1). According
to the discussion in Sect. 4.1.5 of the previous section, for small times depending on
(u0, u1), we can hope to represent the solution of (4.2.20) as

u =
∞∑

j=1

Qj(u0, u1),

whereQj is homogeneous of order j in (u0, u1). We have that

Q1(u0, u1) = S(t)(u0, u1),

Q2(u0, u1) = 0,

Q3(u0, u1) = −
∫ t

0

sin((t − τ )√−�)√−�
(
S(τ)(u0, u1)

)3
dτ,

etc. We have that μ a.s. Q1 /∈ Hσ for σ > s. However, using the probabilistic
Strichartz estimates of the previous section, we have that for T > 0,

‖Q3(u0, u1)‖L∞T H 1(T3) � ‖S(t)(u0, u1)‖3
L3
T L

6(T3)
<∞, μ-almost surely.

Therefore the second non trivial term in the formal expansion defining the solution
is more regular than the initial data ! The strategy will therefore be to write the
solution of (4.2.20) as

u = Q1(u0, u1)+ v,

where v ∈ H 1 and solve the equation for v by the methods described in the previous
section. In the case of the cubic nonlinearity the deterministic analysis used to solve
the equation for v is particularly simple, it is in fact very close to the analysis in
the proof of Proposition 4.1.1. For more complicated problems the analysis of the
equation for v could involve more advanced deterministic arguments. We refer to
[4], where a similar strategy is used in the context of the nonlinear Schrödinger
equation and to [16] where it is used in the context of stochastic PDE’s.

This argument is not particularly restricted to Q3. One can imagine situations
when for some m > 3, Qm is the first element in the expansion whose regularity
fits well in a deterministic analysis. Then we can equally well look for the solutions
under the form
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u =
m−1∑

j=1

Qj(u0, u1)+ v, (4.2.21)

and treat v by a deterministic analysis. It is worth noticing that such a situation
occurs in the work on parabolic PDE’s with a singular random source term [22–24].
In these works in expansions of type (4.2.21) the random initial data (u0, u1) should
be replaced by the random source term (the white noise). Let us also mention that
in the case of parabolic equations the deterministic smoothing comes from elliptic
regularity estimates while in the context of the wave equation we basically rely on
the smoothing estimate (4.1.5).

4.2.4 The Local Existence Result

Proposition 4.2.19 Consider the problem

(∂2
t −�)v + (f + v)3 = 0 . (4.2.22)

There exists a constantC such that for every time interval I = [a, b] of size 1, every
* ≥ 1, every (v0, v1, f ) ∈ H 1 × L2 × L3(I, L6) satisfying

‖v0‖H 1 + ‖v1‖L2 + ‖f ‖3
L3(I,L6)

≤ *

there exists a unique solution on the time interval [a, a+C−1*−2] of (4.2.22) with
initial data

v(a, x) = v0(x), ∂tv(a, x) = v1(x) .

Moreover the solution satisfies ‖(v, ∂t v)‖L∞([a,a+C−1*−2],H 1×L2) ≤ C*, (v, ∂t v)

is unique in the class L∞([a, a + C−1*−2],H 1 ×L2) and the dependence in time
is continuous.

Proof The proof is very similar to the proof of Proposition 4.1.1. By translation
invariance in time, we can suppose that I = [0, 1]. We can rewrite the problem as

v(t) = S(t)(v0, v1)−
∫ t

0

sin((t − τ )√−�)√−� ((f (τ)+ v(τ ))3dτ . (4.2.23)

Set

�v0,v1,f (v) ≡ S(t)(v0, v1)−
∫ t

0

sin((t − τ )√−�)√−� ((f (τ)+ v(τ ))3dτ.

Then for T ∈ (0, 1], using the Sobolev embeddingH 1(T3) ⊂ L6(T3), we get
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‖�v0,v1,f (v)‖L∞([0,T ],H 1)

≤ C(‖v0‖H 1 + ‖v1‖L2 +
∫ T

0
‖f (τ)‖3

L6dτ
)+ T sup

τ∈[0,T ]
‖v(τ )‖3

L6

≤ C(‖v0‖H 1 + ‖v1‖L2 + ‖f ‖3
L3(I,L6)

)+ T ‖v‖3
L∞([0,T ],H 1)

.

It is now clear that for T ≈ *−2 the map �u0,u1,f send the ball

{v : ‖v‖L∞([0,T ],H 1) ≤ C*}

into itself. Moreover by a similar argument, we obtain that this map is a contraction
on the same ball. Thus we obtain the existence part and the bound on v in H 1. The
estimate of ‖∂t v‖L2 follows by differentiating in t the Duhamel formula (4.2.23).
This completes the proof of Proposition 4.2.19. ��

4.2.5 Global Existence

In this section, we complete the proof of Theorem 4.2.3. We search v under the form
v(t) = S(t)(v0, v1)+w(t). Then w solves

(∂2
t −�)w + (S(t)(v0, v1)+w)3 = 0, w |t=0= 0, ∂tw |t=0= 0. (4.2.24)

Thanks to Theorems 4.2.15 and 4.2.18, we have that μ-almost surely,

g(t) = ‖S(t)(v0, v1)‖3
L6(T3)

∈ L1
loc(Rt ),

f (t) = ‖S(t)(v0, v1)‖Wσ,q (T3) ∈ L1
loc(Rt ),

(4.2.25)

σ > 3/q . The local existence for (4.2.24) follows from Proposition 4.2.19 and the
first estimate in (4.2.25). We also deduce from Proposition 4.2.19, that as long as
the H 1 × L2 norm of (w, ∂tw) remains bounded, the solution w of (4.2.24) exists.
Set

E(w(t)) = 1

2

∫

T3

(
(∂tw)

2 + |∇xw|2 + 1

2
w4)dx .
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Using the equation solved by w, we now compute

d

dt
E(w(t)) =

∫

T3

(
∂tw∂

2
t w + ∇x∂tw · ∇xw + ∂tw w3)dx

=
∫

T3
∂tw
(
∂2
t w −�w +w3

)
dx

=
∫

T3
∂tw
(
w3 − (S(t)(v0, v1)+w)3

)
dx.

Now, using the Cauchy-Schwarz inequality, the Hölder inequalities and the Sobolev
embeddingWσ,q(T3) ⊂ C0(T3), we can write

d

dt
E(w(t)) ≤ C(E(w(t)))1/2‖w3 − (S(t)(v0, v1)+w)3‖L2(T3)

≤ C(E(w(t)))1/2

×
(
‖S(t)(v0, v1)‖3

L6(T3)
+ ‖S(t)(v0, v1)‖L∞(T3)‖w2‖L2(T3)

)

≤ C(E(w(t)))1/2

×
(
‖S(t)(v0, v1)‖3

L6(T3)
+ ‖S(t)(v0, v1)‖Wσ,q (T3)‖w2‖L2(T3)

)

≤ C(E(w(t)))1/2
(
g(t) + f (t)(E(w(t)))1/2

)

and consequently, according to Gronwall inequality and (4.2.25), w exists globally
in time.

This completes the proof of the existence and uniqueness part of Theorem 4.2.3.
Let us now turn to the construction of an invariant set. Define the sets

� ≡ {(v0, v1) ∈ Hs : ‖S(t)(v0, v1)‖3
L6(T3)

∈ L1
loc(Rt ),

‖S(t)(v0, v1)‖Wσ,q (T3) ∈ L1
loc(Rt )

}

and Σ ≡ � + H1. Then Σ is of full μ measure for every μ ∈ Hs , since so is �.
We have the following proposition.

Proposition 4.2.20 Assume that s > 0 and let us fix μ ∈ Ms . Then, for every
(v0, v1) ∈ Σ , there exists a unique global solution

(v(t), ∂t v(t)) ∈ (S(t)(v0, v1), ∂tS(t)(v0, v1))+ C(R;H 1(T3)× L2(T3))

of the nonlinear wave equation

(∂2
t −�)v + v3 = 0, (v(0, x), ∂tv(0, x)) = (v0(x), v1(x)) . (4.2.26)
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Moreover for every t ∈ R, (v(t), ∂t v(t)) ∈ Σ and thus by the time reversibility Σ
is invariant under the flow of (4.2.26).

Proof By assumption, we can write (v0, v1) = (ṽ0, ṽ1)+ (w0, w1) with (ṽ0, ṽ1) ∈
� and (w0, w1) ∈ H1. We search v under the form

v(t) = S(t)(ṽ0, ṽ1)+ w(t) .

Then w solves

(∂2
t −�T3)w + (S(t)(ṽ0, ṽ1)+ w)3 = 0, w |t=0= w0, ∂tw |t=0= w1 .

Now, exactly as before, we obtain that

d

dt
E(w(t)) ≤ C(E(w(t)))1/2

(
g(t) + f (t)(E(w(t)))1/2

)
,

where

g(t) = ‖S(t)(ṽ0, ṽ1)‖3
L6(T3)

, f (t) = ‖S(t)(ṽ0, ṽ1)‖Wσ,q (T3).

Therefore thanks to the Gronwall lemma, using that E(w(0)) is well defined, we
obtain the global existence for w. Thus the solution of (4.2.26) can be written as

v(t) = S(t)(ṽ0, ṽ1)+w(t), (w, ∂tw) ∈ C(R;H1).

Coming back to the definition of �, we observe that

S(t)(�) = �.

Thus (v(t), ∂t v(t)) ∈ Σ .

This completes the proof of Theorem 4.2.3. ��

4.2.6 Unique Limits of Smooth Solutions

In this section, we present the proofs of Theorems 4.2.6 and 4.2.7.

Proof of Theorem 4.2.6 Thanks to Theorem 4.2.3, the Sobolev embeddings and
Theorem 4.2.15 we obtain that

(v, ∂t v) ∈ C(R;Hs(T3))
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and

v ∈ Lp$loc(R;Lq
$

(T3)) ,

where (p$, q$) are as in Corollary 4.1.23 (observe that q$ ≤ 6). Once, we have this
information the proof of Theorem 4.2.6 follows from Theorem 4.1.22 (here we use
the assumption s > 1/2) and Corollary 4.1.23. Indeed, let us fix T > 0 and let* be
such that

sup
0≤t≤T

‖(v(t), ∂t v(t))‖Hs (T3) < *− 1 .

Let τ > 0 be the time of existence associated with * in Theorem 4.1.22. We now
cover the interval [0, T ] with intervals of size τ and using iteratively the continuous
dependence statement of Theorem 4.1.22 and the uniqueness statement given by
Corollary 4.1.23, we obtain that

lim
n→∞‖(vn(t)− v(t), ∂t vn(t)− ∂t v(t))‖L∞([0,T ];Hs (T3)) = 0 .

This completes the proof of Theorem 4.2.6. ��
We now turn to the proof of Theorem 4.2.7 which is slightly more delicate.

Proof of Theorem 4.2.7 For (v0, v1) ∈ Σ we decompose the solution as

v(t) = S(t)(v0, v1)+ w(t), w(0) = 0, ∂tw(0) = 0.

Similarly, we decompose the solutions issued from (v0,n, v1,n) as

vn(t) = S(t)(v0,n, v1,n)+wn(t), wn(0) = 0, ∂twn(0) = 0.

Using the energy estimates of the previous section, we obtain that

d

dt
E(wn(t)) ≤ C

(
E(wn(t))

)1/2(
gn(t)+ fn(t)

(
E(w(t))

)1/2)
,

where

gn(t) = ‖S(t)(v0,n, v1,n)‖3
L6(T3)

, fn(t) = ‖S(t)(v0,n, v1,n)‖Wσ,q (T3).

Therefore

(E(wn(t)))1/2 ≤ C
( ∫ t

0
gn(τ )dτ

)
e
∫ t

0 fn(τ )dτ .
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Using that

S(t)(v0,n, v1,n) = ρn $
(
S(t)(v0, v1)

)
, (4.2.27)

and the fact that (v0, v1) ∈ Σ , we obtain that

lim
n→∞

∫ t

0
gn(τ )dτ =

∫ t

0
g(τ)dτ, lim

n→∞

∫ t

0
fn(τ )dτ =

∫ t

0
f (τ)dτ,

where g(t) and f (t) are defined in (4.2.25). Therefore, we obtain that for every
T > 0 there is C > 0 such that for every n,

sup
0≤t≤T

‖(wn(t), ∂twn(t))‖H1(T3) ≤ C. (4.2.28)

Next, we observe that w and wn solve the equations

(∂2
t −�)w + (S(t)(v0, v1)+w)3 = 0

and

(∂2
t −�)wn + (S(t)(v0,n, v1,n)+wn)3 = 0.

Therefore

(∂2
t −�)(w −wn) = −

(
(S(t)(v0, v1)+w)3 − S(t)(v0,n, v1,n)+wn)3

)
.

We multiply the last equation by ∂t (w −wn), and by using the Sobolev embedding
H 1(T3) ⊂ L6(T3) and the Hölder inequality, we arrive at the bound

d

dt
‖(w −wn, ∂tw − ∂twn)‖H1(T3)

≤ C(‖S(t)(v0 − v0,n, v1 − v1,n)‖L6(T3) + ‖w −wn‖H 1(T3)

)

×
(
‖S(t)(v0, v1)‖2

L6(T3)
+ ‖S(t)(v0,n, v1,n)‖2

L6(T3)

+‖w‖2
H 1(T3)

+ ‖wn‖2
H 1(T3)

)
.

Using (4.2.28) and the properties of the solutions obtained in Theorem 4.2.3, we
obtain

d

dt
‖(w −wn, ∂tw − ∂twn)‖H1(T3)

≤ C(‖S(t)(v0 − v0,n, v1 − v1,n)‖L6(T3) + ‖w −wn‖H 1(T3)

)

×
(
‖S(t)(v0, v1)‖2

L6(T3)
+ ‖S(t)(v0,n, v1,n)‖2

L6(T3)
+ C

)
.
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The last inequality implies the following bound for t ∈ [0, T ],

‖(w(t) −wn(t), ∂tw(t)− ∂twn(t))‖H1

≤ C
∫ t

0
‖S(τ)(v0 − v0,n, v1 − v1,n)‖L6

×(‖S(τ)(v0, v1)‖2
L6 + ‖S(τ)(v0,n, v1,n)‖2

L6 + C
)
dτ

× exp

(∫ t

0
(‖S(τ)(v0, v1)‖2

L6 + ‖S(τ)(v0,n, v1,n)‖2
L6 + C)dτ

)

. (4.2.29)

More precisely, we used that if x(t) ≥ 0 satisfies the differential inequality

ẋ(t) ≤ Cz(t)(y(t)+ x(t)), x(0) = 0,

for some z(t) ≥ 0 and y(t) ≥ 0 then

x(t) ≤ C
∫ t

0
y(τ)z(τ )dτ exp

( ∫ t

0
z(τ )dτ

)
.

Coming back to (4.2.29) and using the Hölder inequality, we get for t ∈ [0, T ],

‖(w(t) −wn(t), ∂tw(t)− ∂twn(t))‖H1

≤ C‖S(t)(v0 − v0,n, v1 − v1,n)‖L2
T L

6

×(‖S(t)(v0, v1)‖2
L4
T L

6 + ‖S(t)(v0,n, v1,n)‖2
L4
T L

6 + C
)

× exp

(∫ t

0
(‖S(τ)(v0, v1)‖2

L6 + ‖S(τ)(v0,n, v1,n)‖2
L6 + C)dτ

)

. (4.2.30)

Recalling (4.2.27), we obtain that for 1 < p <∞,

lim
n→∞

∫ T

0
‖S(τ)(v0 − v0,n, v1 − v1,n)‖pL6(T3)

dτ = 0.

Therefore (4.2.30) implies that

lim
n→∞‖(w(t) −wn(t), ∂tw(t)− ∂twn(t))‖L∞([0,T ];H1(T3)) = 0 .

Recall that

v(t) = S(t)(v0, v1)+w(t), vn(t) = S(t)(v0,n, v1,n)+ wn(t).
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Using once again (4.2.27) and

∂tS(t)(v0,n, v1,n) = ρn $
(
∂tS(t)(v0, v1)

)

we get

lim
n→∞‖(S(t)(v0, v1)− S(t)(v0,n, v1,n),

∂tS(t)(v0, v1)− ∂tS(t)(v0,n, v1,n))‖L∞([0,T ];Hs (T3)) = 0

and consequently

lim
n→∞‖(v(t) − vn(t), ∂t v(t) − ∂tvn(t))‖L∞([0,T ];Hs (T3)) = 0 .

This completes the proof of Theorem 4.2.7. ��
Remark 4.2.21 In the proof of Theorem 4.2.7, we essentially used that the regu-
larisation by convolution works equally well in Hs and Lp (p < ∞) and that
it commutes with the Fourier multipliers such as the free evolution S(t). Any
other regularisation respecting these two properties would produce smooth solutions
converging to the singular dynamics constructed in Theorem 4.2.3.

4.2.7 Conditioned Large Deviation Bounds

In this section, we prove conditioned large deviation bounds which are the main tool
in the proof of Theorem 4.2.10.

Proposition 4.2.22 Let μ ∈ Ms , s ∈ (0, 1) and suppose that the real random
variable with distribution θ , involved in the definition of μ is symmetric. Then for
δ > 1+ 1

p1
, 2 ≤ p1 <∞ and 2 ≤ p2 ≤ ∞ there exist positive constants c, C such

that for every positive ε, λ,* and A,

μ⊗ μ
(
((v0, v1), (v

′
0, v

′
1)) ∈ Hs ×Hs :

‖〈t〉−δS(t)(v0 − v′0, v1 − v′1)‖Lp1 (Rt ;Lp2 (T3)) > λ

or ‖〈t〉−δS(t)(v0 + v′0, v1 + v′1)‖Lp1 (Rt ;Lp2 (T3))

> *

∣
∣
∣‖(v0 − v′0, v1 − v′1)‖Hs (T3) ≤ ε

and ‖(v0 + v′0, v1 + v′1)‖Hs (T3) ≤ A
)
≤ C

(
e
−c λ2

ε2 + e−c *
2

A2
)
.

(4.2.31)

We shall make use of the following elementary lemmas.
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Lemma 4.2.23 For j = 1, 2, let Ej be two Banach spaces endowed with measures
μj . Let f : E1 × E2 → C and g1, g2 : E2 → C be three measurable functions.
Then

μ1 ⊗ μ2

(
(x1, x2) ∈ E1 ×E2 : |f (x1, x2)| > λ

∣
∣
∣| g1(x2)| ≤ ε, |g2(x2)| ≤ A

)

≤ sup
x2∈E2,|g1(x2)|≤ε,|g2(x2)|≤A

μ1(x1 ∈ E1 : |f (x1, x2)| > λ) ,

where by sup we mean the essential supremum.

Lemma 4.2.24 Let g1 and g2 be two independent identically distributed real
random variables with symmetric distribution. Then g1 ± g2 have symmetric
distributions. Moreover if h is a Bernoulli random variable independent of g1 then
hg1 has the same distribution as g1.

Proof of Proposition 4.2.22 Define

E ≡ R× R
Z

3
$ × R

Z
3
$ ,

equipped with the natural Banach space structure coming from the l∞ norm. We
endow E with a probability measure μ0 defined via the map

ω �→
(
k0(ω),

(
ln(ω)

)
n∈Z3

$
,
(
hn(ω)

)
n∈Z3

$

)
,

where (k0, ln, hn) is a system of independent Bernoulli variables.
For h = (x, (yn)n∈Z3

$
, (zn)n∈Z3

$

) ∈ E and

u(x) = a +
∑

n∈Z3
$

(
bn cos(n · x)+ cn sin(n · x)

)
,

we define the operation/ by

h/ u ≡ ax +
∑

n∈Z3
$

(
bnyn cos(n · x)+ cnzn sin(n · x)

)
.

Let us first evaluate the quantity

μ⊗ μ
(
((v0, v1), (v

′
0, v

′
1)) ∈ Hs ×Hs :

‖〈t〉−δS(t)(v0 − v′0, v1 − v′1)‖Lp1 (Rt ;Lp2 (T3)) > λ

∣
∣
∣

‖(v0 − v′0, v1 − v′1)‖Hs (T3) ≤ ε
and ‖(v0 + v′0, v1 + v′1)‖Hs (T3) ≤ A

)
. (4.2.32)
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Observe that, thanks to Lemma 4.2.24, (4.2.32) equals

μ⊗ μ⊗ μ0 ⊗ μ0

(
((v0, v1), (v

′
0, v

′
1), (h0, h1)) ∈ Hs ×Hs × E × E :

‖〈t〉−δS(t)(h0 / (v0 − v′0), h1 / (v1 − v′1))‖Lp1 (Rt ;Lp2 (T3)) > λ

∣
∣
∣

‖(h0 / (v0 − v′0), h1 / (v1 − v′1))‖Hs (T3) ≤ ε
and ‖(h0 / (v0 + v′0), h1 / (v1 + v′1))‖Hs (T3) ≤ A

)
. (4.2.33)

Since the Hs(T3) norm of a function f depends only on the absolute value of its
Fourier coefficients, we deduce that (4.2.33) equals

μ⊗ μ⊗ μ0 ⊗ μ0

(
((v0, v1), (v

′
0, v

′
1), (h0, h1)) ∈ Hs ×Hs × E × E :

‖〈t〉−δS(t)(h0 / (v0 − v′0), h1 / (v1 − v′1))‖Lp1 (Rt ;Lp2 (T3)) > λ

∣
∣
∣

‖(v0 − v′0, v1 − v′1)‖Hs (T3) ≤ ε and ‖(v0 + v′0, v1 + v′1)‖Hs (T3) ≤ A
)
.

(4.2.34)

We now apply Lemma 4.2.23 with μ1 = μ0⊗μ0 andμ2 = μ⊗μ to get that (4.2.34)
is bounded by

sup
‖(v0−v′0,v1−v′1)‖Hs (T3)≤ε

μ0 ⊗ μ0

(
(h0, h1) ∈ E × E :

‖〈t〉−δS(t)(h0 / (v0 − v′0), h1 / (v1 − v′1))‖Lp1 (Rt ;Lp2 (T3)) > λ
)
. (4.2.35)

We now apply Theorem 4.2.15 (with Bernoulli variables) to obtain that (4.2.32) is

bounded by C exp(−c λ2

ε2 ). A very similar argument gives that

μ⊗ μ
(
((v0, v1), (v

′
0, v

′
1)) ∈ Hs ×Hs :

‖〈t〉−δS(t)(v0 + v′0, v1 + v′1)‖Lp1 (Rt ;Lp2 (T3)) > *

∣
∣
∣

‖(v0 − v′0, v1 − v′1)‖Hs (T3) ≤ ε
and ‖(v0 + v′0, v1 + v′1)‖Hs (T3) ≤ A

)

is bounded by C exp(−c*2

A2 ). This completes the proof of Proposition 4.2.22. ��
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4.2.8 End of the Proof of the Conditioned Continuous
Dependence

In this section, we complete the proof of Theorem 4.2.10. According to (a variant
of) Proposition 4.2.22, we have that for any

2 ≤ p1 < +∞, 2 ≤ p2 ≤ +∞, δ > 1+ 1

p1
, η ∈ (0, 1),

one has

μ⊗ μ
(
(V0, V1) ∈ Hs ×Hs : ‖〈t〉−δS(t)(V0 − V1)‖Lp1 (Rt ;Lp2 (T3)) > η

1
2

or ‖〈t〉−δS(t)(V0)‖Lp1 (Rt ;Lp2 (T3)) > log log log(η−1)

or ‖〈t〉−δS(t)(V1)‖Lp1 (Rt ;Lp2 (T3)) > log log log(η−1)

∣
∣
∣

‖V0 − V1‖Hs (T3) < η and ‖Vj‖Hs (T3) ≤ A, j = 0, 1
)
−→ 0,

as η→ 0. Therefore, we can also suppose that

‖〈t〉−δS(t)(V0 − V1)‖Lp1 (Rt ;Lp2 (T3)) ≤ η
1
2 (4.2.36)

and

‖〈t〉−δS(t)(Vj )‖Lp1 (Rt ;Lp2 (T3)) ≤ log log log(η−1), j = 0, 1, (4.2.37)

when we estimate the needed conditional probability.
We therefore need to estimate the difference of two solutions under the assump-

tions (4.2.36) and (4.2.37), in the regime η ( 1. Let

vj (t) = S(t)(Vj )+wj(t), j = 0, 1

be two solutions of the cubic wave equation with data Vj . We thus have

(wj (0), ∂twj (0)) = (0, 0).

Applying the energy estimate, performed several times in this section, for j = 0, 1,
we get the bound

d

dt
E1/2(wj (t)) ≤ C

(
‖S(t)(Vj )‖3

L6(T3)
+ ‖S(t)(Vj )‖L∞(T3)E1/2(wj (t))

)
,
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and therefore, under the assumptions (4.2.36) and (4.2.37), for t ∈ [0, T ] one has

E1/2(wj (t)) ≤ CT eCT log log log(η−1)(log log log(η−1))3 (4.2.38)

≤ CT [log(η−1)] 1
20 ,

where here and in the sequel we denote by CT different constants depending only
on T (but independent of η).

We next estimate the differencew0 −w1. Using the equations solved by w0, w1,
we infer that

d

dt
‖w0(t, ·)−w1(t, ·)‖2

H1(T3)

≤ 2
∣
∣
∣

∫

T3
∂t (w0(t, x)−w1(t, x))(∂

2
t −�)(w0(t, x)−w1(t, x))dx

∣
∣
∣

≤ C‖w0(t, ·)−w1(t, ·)‖H1(T3)

‖(w0 + S(t)(V0))
3 − (w1 + S(t)(V1))

3‖L2(T3) , (4.2.39)

where for shortness we denote ‖(u, ∂tu)‖H1 simply by ‖u‖H1 .
Thanks to (4.2.39) and the Sobolev embeddingH 1(T3) ⊂ L6(T3), we get that

d

dt
‖w0(t, ·)−w1(t, ·)‖H1(T3)

is bounded by

C
(
‖w0(t, ·)−w1(t, ·)‖H1(T3) + ‖S(t)(V0 − V1)‖L6(T3)

)

(
‖w0(t, ·)‖2

H 1(T3)
+ ‖w1(t, ·)‖2

H 1(T3)

+‖S(t)(V0)‖2
L6(T3)

+ ‖S(t)(V1)‖2
L6(T3)

)
.

Therefore, using (4.2.38) and the Gronwall lemma, under the assumptions (4.2.36)
and (4.2.37), for t ∈ [0, T ],

‖w0(t, ·)−w1(t, ·)‖H1(T3) ≤ CT η
1
2 [log(η−1)] 1

10 eCT [log(η−1)] 1
10

≤ CT η 1
4 .

In particular by the Sobolev embedding

‖w0 −w1‖L4([0,T ]×T3) ≤ CT η
1
4 ,
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and therefore under the assumption (4.2.36),

‖v0 − v1‖L4([0,T ]×T3) ≤ CT η
1
4 .

In summary, we obtained that for a fixed ε > 0, the μ ⊗ μ measure of V0, V1 such
that

‖�(t)(V0)−�(t)(V1)‖XT > ε

under the conditions (4.2.36), (4.2.37) and ‖V0−V1‖Hs < η is zero, as far as η > 0
is sufficiently small. Therefore, we obtain that the left hand side of (4.2.7) tends to
zero as η→ 0. This ends the proof of the first part of Theorem 4.2.10.

For the second part of the proof of Theorem 4.2.10, we argue by contradiction.
Suppose thus that for every ε > 0 there exist η > 0 and Σ of full μ ⊗ μ measure
such that

∀ (V , V ′) ∈ Σ ∩ (BA × BA), ‖V − V ′‖Hs < η

0⇒ ‖�(t)(V )−�(t)(V ′)‖XT < ε.

Let us apply the previous affirmation with ε = 1/n, n = 1, 2, 3 . . . which produces
full measure sets Σ(n). Set

Σ1 ≡
∞⋂

n=1

Σ(n).

ThenΣ1 is of full μ⊗ μ measure and we have that

∀ ε > 0, ∃ η > 0, ∀ (V , V ′) ∈ Σ1 ∩ (BA × BA),
‖V − V ′‖Hs < η 0⇒ ‖�(t)(V )−�(t)(V ′)‖XT < ε. (4.2.40)

Next for V ∈ Hs we define A(V ) ⊂ Hs by

A(V ) ≡ {V ′ ∈ Hs : (V , V ′) ∈ Σ1}.

According to Fubini Theorem, there exists E ⊂ Hs a set of full μmeasure such that
for every V ∈ E the set A(V ) is a full μ measure.

We are going to extend �(t) to a uniformly continuous map on BA. For that
purpose, we first extend �(t) to a uniformly continuous map on dense set of BA.
Let {(Vj )j∈N} be a dense set of BA for the Hs topology. For j ∈ N, we can construct
by induction a sequence (Vj,n) such that

Vj,n ∈ BA ∩ E ∩
⋂

m<n

A(Vj,m) ∩
⋂

l<j,q∈N
A(Vl,q), ‖Vj,n − Vj‖Hs < 1/n.
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Indeed, the induction assumption guarantees that the set

E ∩
⋂

m<n

A(Vj,m)
⋂

l<j,q∈N
A(Vl,q)

has measure 1 (as an intersection of sets of measure 1) and consequently is dense.
Notice that by construction, we have

(Vk,n, Vl,m) ∈ Σ1,∀ k < l,∀ n,m ∈ N, and ∀ k = l, n < m. (4.2.41)

Using (4.2.41) for k = l, we obtain according to (4.2.40) that for any fixed k, the
sequence�(t)(Vk,n)n∈N is a Cauchy sequence inXT and we can define�(t)(Vj ) as
its limit. Using again (4.2.41), for k �= l, we see according to (4.2.40) that the map
�(t) is uniformly continuous on the set {(Vj )j∈N}. Therefore�(t) can be extended
by density to a uniformly continuous map, on the whole BA. Let us denote by �(t)
the extension of �(t) to BA. We therefore have

∀ ε > 0, ∃ η > 0, ∀V, V ′ ∈ BA,
‖V − V ′‖Hs < η 0⇒ ‖�(t)(V )−�(t)(V ′)‖XT < ε. (4.2.42)

We have the following lemma.

Lemma 4.2.25 For V ∈ (C∞(T3) × C∞(T3)) ∩ BA, we have that �(t)(V ) =
(u, ut ), where u is the unique classical solution on [0, T ] of

(∂2
t −�)u+ u3 = 0, (u(0), ∂tu(0)) = V.

Proof Let us first show that first component of

�(t)(V ) ≡ (�1(t)(V ),�2(t)(V ))

is a solution of the cubic wave equation. Observe that by construction, necessarily
�2(t)(V ) = ∂t�1(t)(V ) in the distributional sense (in D′((0, T )× T

3)).
Again by construction, we have that

V = lim
n→∞Vn ,

in Hs where Vn are such that

(∂2
t −�)(�1(t)(Vn))+ (�1(t)(Vn))

3 = 0, (4.2.43)

with the notation�(t) = (�1(t),�2(t)). In addition,

�(t)(V ) = lim
n→∞�(t)(Vn) ,
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in XT . We therefore have that

(∂2
t −�)(�1(t)(V )) = lim

n→∞(∂
2
t −�)(�1(t)(Vn)),

in the distributional sense. Moreover, coming back to the definition of XT , we also
obtain that

(�1(t)(V ))
3 = lim

n→∞(�1(t)(Vn))
3,

in L4/3([0, T ] × T
3). Therefore, passing into the limit n → ∞ in ((4.2.43)), we

obtain that�1(t)(V ) solves the cubic wave equation (with data V ). Moreover, since
(�1(t)(V ))

3 ∈ L4/3([0, T ] × T
3), it also satisfies the Duhamel formulation of the

equation.
Let us denote by u(t), t ∈ [0, T ] the classical solution of

(∂2
t −�)u+ u3 = 0, (u(0), ∂tu(0)) = V,

defined by Theorem 4.1.2. Set v ≡ �1(t)(V ). Since our previous analysis has shown
that v is a solution of the cubic wave equation, we have that

(∂2
t −�)(u− v)+ u3 − v3 = 0, (u(0), ∂tu(0)) = (0, 0) . (4.2.44)

We now invoke the L4 −L4/3 non homogenous estimates for the three dimensional
wave equation. Namely, thanks to Theorem 4.1.21, we have that there exists a
constant (depending on T ) such that for every interval I ⊂ [0, T ], the solution
of the wave equation

(∂2
t −�)w = F, (u(0), ∂tu(0)) = (0, 0)

satisfies

‖w‖L4(I×T3) ≤ C‖F‖L4/3(I×T3) . (4.2.45)

Applying (4.2.45) in the context of (4.2.44) together with the Hölder inequality
yields the bound

‖u− v‖L4(I×T3) ≤ C
(‖u‖2

L4(I×T3)
+ ‖v‖2

L4(I×T3)

)‖u− v‖L4(I×T3) . (4.2.46)

Since u, v ∈ L4(I × T
3), we can find a partition of intervals I1, . . . , Il of [0, T ]

such that

C
(‖u‖2

L4(Ij×T3)
+ ‖v‖2

L4(Ij×T3)

)
<

1

2
, j = 1, . . . , l.
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We now apply (4.2.46) with I = Ij , j = 1, . . . , l to conclude that u = v on I1, then
on I2 and so on up to Il which gives that u = v on [0, T ]. Thus u = �1(t)(V ) and
therefore also ∂tu = �2(t)(V ). This completes the proof of Lemma 4.2.25. ��
It remains now to apply Lemma 4.2.25 to the sequence of smooth data in the
statement of Theorem 4.1.28 to get a contradiction with (4.2.42). More precisely,
if (Un) is the sequence involved in the statement of Theorem 4.1.28, the result
of Theorem 4.1.28 affirms that �(t)(Un) tends to infinity in L∞([0, T ];Hs)

while (4.2.42) affirms that the same sequence tends to zero in the same space
L∞([0, T ];Hs). This completes the proof of Theorem 4.2.10.

4.2.9 Extensions to More General Nonlinearities

In the remarkable work by Oh-Pocovnicu [35, 36] (based on the previous contribu-
tions [2, 38]) it is shown that the result of Theorem 4.2.3 can be extended to the
energy critical equation

(∂2
t −�)v + v5 = 0 .

This equation isH 1 critical and the data is a typical element with respect toμ ∈Ms ,
s > 1/2. We refer also to [31, 43] for extensions of Theorem 4.2.3 to nonlinearities
between cubic and quintic.

4.2.10 Notes

For the case s = 0 and the proof of the quantitative bounds displayed by
Theorem 4.2.4, we refer to [8]. For the proof of Proposition 4.2.2, we refer to
[6, Appendix B] and [8, Appenidix B2]. The probabilistic part of our analysis
only relies on linear bounds such as Lemma 4.2.11. In other situations multi-linear
versions of these bounds are of importance (see [4, 13, 33]). The above mentioned
work by Oh-Pocovnicu relies on a much more complicated deterministic analysis
(such as the concentration compactness) and also on a significant extension of the
probabilistic energy bound used in the proof of Theorem 4.2.3.

Our starting point and main motivation toward the probabilistic well-posedness
results presented in this section was the ill-posedness result of Theorem 4.1.28 of the
previous section. As already mentioned the method of proof has some similarities
with the earlier work [16] or with the even earlier work of Bourgain [4] on the
invariance of the Gibbs measure associated with the nonlinear Schrödinger equation

(i∂t +�)u = |u|2u, (4.2.47)
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posed on the two dimensional torus. The main purpose of [4] is to show the
invariance of the Gibbs measure and as a byproduct one gets the global existence
and uniqueness of solutions of (4.2.47) with a suitable random data belonging a.s.
to H−ε(T2) for every ε > 0 but missing a.s. L2(T2). In the time of writing of
[4] statement such as Theorem 4.1.28 or Theorem 4.1.33 were not known in the
context of (4.2.47). In the recent work [34], the analogue of Theorems 4.1.28 and
4.1.33 in the context of (4.2.47) is obtained. Most likely, the analysis of [4] can be
adapted in order to get the analogue of Theorem 4.2.7 in the context of (4.2.47).
As a consequence, it looks that we can see from the same view point (4.2.47) with
data on the support of the Gibbs measure and the cubic defocusing wave equation
with random data of super-critical regularity presented in these lectures. We plan to
address this issue in a future work.

4.3 Random Data Global Well-Posedness with Data
of Supercritical Regularity via Invariant Measures

In the previous section, we presented a method to construct global in time solutions
for the cubic defocusing wave equation posed on the three dimensional torus with
random data of supercritical regularity (Hs(T3) × Hs−1(T3), s ∈ (0, 1/2)). These
solutions are unique in a suitable sense and depend continuously (in a conditional
sense) on the initial data. The method we used is based on a local in time result
showing that even if the data is of supercritical regularity, we can find a local
solution written as “free evolution” (keeping the Sobolev regularity of the initial
data) plus “a remainder of higher regularity”. The term of higher regularity is then
regular enough to allow us to deal it with the deterministic methods to treat the
equation. The globalisation was then done by establishing an energy bound for the
remainder in a probabilistic manner, here of course the energy conservation law is
the key structure allowing to perform the analysis. Moreover, we have shown that
the problem is ill-posed with data of this supercritical regularity and this in turn
implied the impossibility to see the constructed flow as the unique extension of the
regular solutions flow.

In this section, we will show another method for global in time solutions for
a defocusing wave equation with data of supercritical regularity. The construction
of local solutions will be based on the same principle as in the previous section,
i.e. we shall again see the solution as a “free evolution” plus “a remainder of
higher regularity”. However the globalisation will be done by a different argument
(due to Bourgain [3, 4]) based on exploiting the invariance of the Gibbs measure
associated with the equation. The Gibbs measure is constructed starting from the
energy conservation law and therefore this energy conservation law is again the
key structure allowing to perform the global in time analysis. This method of
globalisation by invariant measures is working only for very particular choice
of the initial data and in this sense it is much less general than the method
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presented in the previous section. On the other hand the method based on exploiting
invariant measures gives a strong macroscopic information about the constructed
flow, namely one has a precise information on the measure evolution along the time.
The method presented in the previous section gives essentially no information about
the evolution in time under the constructed flow of the measures in Ms . We shall
come back to this issue in the next section.

Our model to present the method of globalisation via invariant measures will
be the radial nonlinear wave equation posed on the unit ball of R3, with Dirichlet
boundary conditions. Let � be the unit ball of R

3. Consider the nonlinear wave
equation with Dirichlet boundary condition posed on �,

(∂2
t −�)w + |w|αw = 0, (w, ∂tw)|t=0 = (f1, f2), α > 0, (4.3.1)

subject to Dirichlet boundary conditions

u |Rt×∂�= 0,

with radial real valued initial data (f1, f2).
We now make some algebraic manipulations on (4.3.1) allowing to write it as

a first order equation in t . Set u ≡ w + i√−�−1
∂tw. Observe that �−1 is well-

defined because 0 is not in the spectrum of the Dirichlet Laplacian. Then we have
that u solves the equation

(i∂t −
√−�)u−√−�−1(|Re(u)|αRe(u)

) = 0, u|t=0 = u0, (4.3.2)

with u|R×∂� = 0, where u0 = f1+ i
√−�−1

f2. We consider (4.3.2) for data in the
(complex) Sobolev spaces Hsrad(�) of radial functions.

Equation (4.3.2) is (formally) an Hamiltonian equation on L2(�) with Hamilto-
nian,

1

2
‖√−�(u)‖2

L2(�)
+ 1

α + 2
‖Re(u)‖α+2

Lα+2(�)
(4.3.3)

which is (formally) conserved by the flow of (4.3.2).
Let us next discuss the measure describing the initial data set. For s < 1/2,

we define the measure μ on Hsrad(�) as the image measure under the map from
a probability space (�,A, p) to Hsrad(�) equipped with the Borel sigma algebra,
defined by

ω �−→
∞∑

n=1

hn(ω)+ iln(ω)
nπ

en , (4.3.4)

where ((hn, ln))∞n=1 is a sequence of independent standard real Gaussian random
variables. In (4.3.4), the functions (en)∞n=1 are the radial eigenfunctions of the
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Dirichlet Laplacian on �, associated with eigenvalues (πn)2. The eigenfunctions
en have the following explicit form

en(r) = sin(nπr)

r
, 0 ≤ r ≤ 1.

They are the analogues of cos(n ·x) and sin(n ·x), n ∈ Z
3 used in the analysis on T

3

in the previous section. One has that μ(H 1/2
rad (�)) = 0. By the method described in

the previous section one may show that (4.3.2) is ill-posed inHsrad(�) for s < 3
2− 2

α
.

Therefore for α > 2 the map (4.3.4) describes functions of supercritical Sobolev
regularity (i.e.Hsrad(�)with s smaller than 3

2− 2
α

). The situation is therefore similar
to the analysis of the cubic defocusing wave equation on T

3 with data inHs×Hs−1,
s < 1/2 considered in the previous section. As in the previous section, we can still
get global existence and uniqueness for (4.3.2), almost surely with respect to μ.

Theorem 4.3.1 Let s < 1/2. Suppose that α < 3. Let us fix a real number p such
that max(4, 2α) < p < 6. Then there exists a full μ measure set Σ ⊂ Hsrad(�)

such that for every u0 ∈ Σ there exists a unique global solution of (4.3.2)

u ∈ C(R,H srad(�)) ∩ Lploc(Rt ;Lp(�)) .

The solution can be written as

u(t) = S(t)(u0)+ v(t),

where S(t) = e−it
√−� is the free evolution and v(t) ∈ Hσrad(�) for some σ > 1/2.

Moreover

‖u(t)‖Hs(�) ≤ C(s)
(

log(2+ |t|)) 1
2 .

The proof of Theorem 4.3.1 is based on the following local existence result.

Proposition 4.3.2 For a given positive number α < 3 we choose a real number p
such that max(4, 2α) < p < 6. Then we fix a real number σ by σ = 3

2 − 4
p

. There

exist C > 0, c ∈ (0, 1], γ > 0 such that for every R ≥ 1 if we set T = cR−γ then
for every radially symmetric u0 satisfying

‖S(t)u0‖Lp((0,2)×�) ≤ R

there exists a unique solution u of (4.3.2) such that

u(t) = S(t)u0 + v(t)

with v ∈ XσT (the Strichartz spaces defined in the previous section). Moreover

‖v‖XσT ≤ CR.
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In particular, since S(t) is 2 periodic and thanks to the Strichartz estimates,

sup
t∈[−T ,T ]

‖S(τ)u(t)‖Lp(τ∈(0,2);Lp(�)) ≤ CR .

In addition, if u0 ∈ Hs(�) (and thus s < σ ) then

‖u(t)‖Hs(�) ≤ ‖S(t)u0‖Hs(�) + ‖v(t)‖Hs(�) ≤ ‖u0‖Hs(�) + CR .

Using probabilistic Strichartz estimates for S(t) as we did in the previous section,
we can deduce the following corollary of Proposition 4.3.2.

Proposition 4.3.3 Under the assumptions of Proposition 4.3.2 there is a set Σ of
full μ measure such that for every u0 ∈ Σ there is T > 0 and a unique solution
of (4.3.2) on [0, T ] in

C([0, T ],H srad(�)) ∩ Lploc(Rt ;Lp(�)).

Moreover for every T ≤ 1 there is a set ΣT ⊂ Σ such that

μ(ΣT ) ≥ 1− Ce−c/T δ , c > 0, δ > 0

and such that for every u0 ∈ ΣT the time of existence is at least T .

Let us next define the Gibbs measures associated with (4.3.2). Using [1, Theorem 4],
we have that for α < 4 the quantity

‖
∞∑

n=1

hn(ω)+ iln(ω)
nπ

en‖Lα+2(�) (4.3.5)

is finite almost surely. Moreover the restriction α < 4 is optimal because for α = 4
the quantity (4.3.5) is infinite almost surely. Therefore, for α < 4, we can define a
nontrivial measure ρ as the image measure on Hsrad(�) by the map (4.3.4) of the
measure

exp
(
− 1

α + 2
‖
∞∑

n=1

hn(ω)

nπ
en)‖α+2

Lα+2(�)

)
dp(ω) . (4.3.6)

The measure ρ is the Gibbs measures associated with (4.3.2) and it can be formally
seen as

exp
(
− 1

2
‖√−�(u)‖2

L2(�)
− 1

α + 2
‖Re(u)‖α+2

Lα+2(�)

)
du,
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where a renormalisation of

exp
(
− 1

2
‖√−�(u)‖2

L2(�)

)
du,

corresponds to the measure μ and

exp
(
− 1

α + 2
‖Re(u)‖α+2

Lα+2(�)

)
,

corresponds to the density in (4.3.6). Thanks to the conservation of the Hamilto-
nian (4.3.3), the measure ρ is expected to be invariant under the flow of (4.3.2).
This expectation is also supported by the fact that the vector field defining (4.3.2) is
(formally) divergence free. This fact follows again from the Hamiltonian structure
of (4.3.2).

Observe that if a Borel set A ⊂ Hs(�) is of full ρ measure then A is also of full
μ measure. Therefore, it suffices to solve (4.3.2) globally in time for u0 in a set of
full ρ measure.

We now explain how the local existence result of Proposition 4.3.2 can be
combined with invariant measure considerations in order to get global existence of
the solution. The details can be found in [7]. Consider a truncated version of (4.3.2)

(i∂t −
√−�)u− SN

(√−�−1(|SNRe(u)|αSNRe(u)
)) = 0, (4.3.7)

where SN is a suitable “projector” tending to the identity asN goes to infinity. Let us
denote by�N(t) the flow of (4.3.7). This flow is well-defined for a fixedN because
for frequencies' N it is simply the linear flow and for the remaining frequencies
one can use that (4.3.7) has the preserved energy

1

2
‖√−�(u)‖2

L2(�)
+ 1

α + 2
‖SNRe(u)‖α+2

Lα+2(�)
. (4.3.8)

The energy (4.3.8) allows us to define an approximated Gibbs measure ρN . One
has that ρN is invariant under �N(t) by the Liouville theorem and the invariance
of complex Gaussians under rotations (for the frequencies ' N). In addition, ρN
converges in a strong sense to ρ as N →∞.

Let us fix T ' 1 and a small ε > 0. Our goal is to find a set of ρ residual
measure< ε such that for initial data in this set we can solve (4.3.2) up to time T .

The local existence theory implies that as far as

‖S(t)u‖Lp(τ∈(0,2);Lp(�)) ≤ R, R ≥ 1 (4.3.9)

we can define the solution of the true equation with datum u for times of orderR−γ ,
γ > 0, the bound (4.3.9) is propagated and moreover on the interval of existence
this solution is the limit asN →∞ of the solutions of the truncated equation (4.3.7)
with the same datum.
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Our goal is to show that with a suitably chosen R = R(T , ε) we can propagate
the bound (4.3.9) for the solutions of the approximated equation (4.3.7) (forN ' 1)
up to time T for initial data in a set of residual ρ measure � ε.

For R > 1, we define the set BR as

BR = {u : ‖S(t)u‖Lp(τ∈(0,2);Lp(�)) ≤ R}.

As mentioned the (large) number R will be determined depending on T and ε.
Thanks to the probabilistic Strichartz estimates for S(t), we have the bound

ρ(BcR) < e
−κR2

(4.3.10)

for some κ > 0. Let τ ≈ R−γ be the local existence time associated to R given by
Proposition 4.3.2. Define the set B by

B =
[T/τ ]⋂

k=0

�N(−kτ)(BR) . (4.3.11)

Thanks to the local theory, we can propagate (4.3.9) for data in B up to time T . On
the other hand, using the invariance of ρN under�N(t) and (4.3.10), we obtain that

ρN(B
c) � T Rγ e−κR2

.

We now choose R so that

T Rγ e−κR2 ∼ ε.

In other words

R ∼
(

log
(T

ε

)) 1
2
.

This fixes the value of R. With this choice of R, ρ(Bc) < ε, providedN ' 1. With
this value of R the set B defined by (4.3.11) is such that for data in B we have the
bound (4.3.9) up to time T on a set of residual ρ measure< ε. Now, we can pass to
the limit N → ∞ thanks to the above mentioned consequence of the local theory
and hence defining the solution of the true equation (4.3.2) up to time T for data in
a set of ρ residual measure< ε.

We now apply the last conclusion with T = 2j and ε/2j . This produces a set
Σj,ε such that ρ((Σj,ε)c) < ε/2j an for u0 ∈ Σj,ε we can solve (4.3.2) up to time
2j . We next set

Σε =
∞⋂

j=1

Σj,ε .
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Clearly, we have ρ((Σε)c) < ε and for u0 ∈ Σε , we can define a global solution
of (4.3.2). Finally

Σ =
∞⋃

j=1

Σ2−j

is a set of full ρ measure on which we can define globally the solutions of (4.3.2).
The previous construction also keeps enough information allowing to get the
claimed uniqueness property.

Remark 4.3.4 In [5], a part of the result of Theorem 4.3.1 was extended to α < 4
which is the full range of the definition of the measure ρ.

Remark 4.3.5 The previous discussion has shown that we have two methods to
globalise the solutions in the context of random data well-posedness for the non-
linear wave equation. The one of the previous section is based on energy estimates
while the method of this section is based on invariant measures considerations.
It is worth mentioning that these two methods are also employed in the context
of singular stochastic PDE’s. More precisely in [32] the globalisation is done via
the (more flexible) method of energy estimates while in [25] one globalises by
exploiting invariant measures considerations.

4.4 Quasi-Invariant Measures

4.4.1 Introduction

4.4.1.1 Motivation

In Sect. 4.2, for each s ∈ (0, 1) we introduced a family of measures Ms on the
Sobolev space Hs(T3) = Hs(T3) × Hs−1(T3). Then for each μ ∈ Ms , we
succeeded to define a unique global flow�(t) of the cubic defocusing wave equation
a.s. with respect to μ. This result is of interest for the solvability of the Cauchy
problem associated with the cubic defocusing wave equation for data in Hs (T3),
especially for s < 1/2 because for these regularities this Cauchy problem is ill-
posed in the Hadamard sense in Hs(T3). On the other hand the methods of Sect. 4.2
give no information about the transport by �(t) of the measures in Ms , even for
large s. Of course, Ms can be defined for any s ∈ R and for s ≥ 1 the global
existence a.s. with respect to an element of Ms follows from Theorem 4.1.2. The
question of the transport of the measures of Ms under �(t) is of interest in the
context of the macroscopic description of the flow of the cubic defocusing wave
equation. It is no longer only a low regularity issue and the answer of this question
is a priori not clear at all for regular solutions either.
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On the other hand, in Sect. 4.3, we constructed a very particular (Gaussian)
measure μ on the Sobolev spaces of radial functions on the unit disc of R3 such
that a.s. with respect to this measure the nonlinear defocusing wave equation with
nonlinear term |u|αu, α ∈ (2, 3) has a well defined dynamics. The typical Sobolev
regularity on the support of this measure is supercritical and thus again this result
is of interest concerning the individual behaviour of the trajectories. This result is
also of interest concerning the macroscopic description of the flow because, we can
also prove by the methods of Sect. 4.3 that the transported measure by the flow is
absolutely continuous with respect to μ. Unfortunately, the method of Sect. 4.3 is
only restricted to a very particular initial distribution with data of low regularity.

Motivated by the previous discussion, a natural question to ask is what can be
said for the transport of the measures of Ms under the flow of the cubic defocusing
wave equation. In this section we discuss some recent progress on this question.

4.4.1.2 Statement of the Result

Consider the cubic defocusing wave equation

(∂2
t −�)u+ u3 = 0, (4.4.1)

where u : R× T
d → R. We rewrite (4.4.1) as the first order system

∂tu = v, ∂t v = �u− u3. (4.4.2)

As we already know, if (u, v) is a smooth solution of (4.4.2) then

d

dt
H(u(t), v(t)) = 0,

where

H(u, v) = 1

2

∫

Td

(
v2 + |∇u|2)+ 1

4

∫

Td

u4 . (4.4.3)

Thanks to Theorem 4.1.2, for d ≤ 3 the Cauchy problem associated with (4.4.2) is
globally well-posed in Hs (Td ) = Hs(Td ) × Hs−1(Td ), s ≥ 1. Denote by �(t) :
Hs(Td )→ Hs (Td) the resulting flow. As we already mentioned, we are interested
in the statistical description of �(t). Let μs,d be the measure formally defined by

dμs,d = Z−1
s,de

− 1
2 ‖(u,v)‖2

Hs+1dudv

or

dμs,d = Z−1
s,d

∏

n∈Z2

e−
1
2 〈n〉2(s+1) |̂un|2e−

1
2 〈n〉2s |̂vn|2dûndv̂n ,
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where ûn and v̂n denote the Fourier transforms of u and v respectively. Recall that

〈n〉 = (1+ |n|2) 1
2 .

Rigorously one can define the Gaussian measure μs,d as the induced probability
measure under the map

ω �−→ (uω(x), vω(x))

with

uω(x) =
∑

n∈Zd

gn(ω)

〈n〉s+1 e
in·x, vω(x) =

∑

n∈Zd

hn(ω)

〈n〉s e
in·x . (4.4.4)

In (4.4.4), (gn)n∈Zd , (hn)n∈Zd are two sequences of “standard” complex Gaussian
random variables, such that gn = g−n, hn = h−n and such that {gn, hn} are
independent, modulo the central symmetry. The measures μs,d can be seen as
special cases of the measures in Ms considered in Sect. 4.2. The partial sums of the
series in (4.4.4) are a Cauchy sequence in L2(�;Hσ (Td )) for every σ < s + 1− d

2
and therefore one can see μs,d as a probability measure on Hσ for a fixed σ <

s + 1− d
2 . Therefore, thanks to the results of Sect. 4.2, for d ≤ 3, the flow �(t) can

be extended μs,d almost surely, provided s > d
2 − 1. We have the following result.

Theorem 4.4.1 Let s ≥ 0 be an integer. Then the measure μs,1 is quasi-invariant
under the flow of (4.4.2).

We recall that given a measure space (X,μ), we say that μ is quasi-invariant under
a transformation T : X→ X if the transported measure T∗μ = μ ◦ T −1 and μ are
equivalent, i.e. mutually absolutely continuous with respect to each other. The proof
of Theorem 4.4.1 is essentially contained in the analysis of [45].

For d = 2 the situation is much more complicated. Recently in [37], we were
able to prove the following statement.

Theorem 4.4.2 Let s ≥ 2 be an even integer. Then the measure μs,2 is quasi-
invariant under the flow of (4.4.2).

We expect that by using the methods of Sect. 4.2, one can extend the result of
Theorem 4.4.2 to all s > 0, not necessarily an integer.

It would be interesting to decide whether one can extend the result of Theo-
rem 4.4.2 to the three dimensional case. It could be that the type of renormalisations
employed in the context of singular stochastic PDE’s or the QFT become useful in
this context.

From now on we consider d = 2 and we denote μs,2 simply by μs .
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4.4.1.3 Relation to Cameron-Martin Type Results

In probability theory, there is an extensive literature on the transport property of
Gaussian measures under linear and nonlinear transformations. The statements of
Theorems 4.4.1 and 4.4.2 can be seen as such kind of results for the nonlinear
transformation defined by the flow map of the cubic defocusing wave equation. The
most classical result concerning the transport property of Gaussian measures is the
result of Cameron-Martin [10] giving an optimal answer concerning the shifts. The
Cameron-Martin theorem in the context of the measuresμs is saying that for a fixed
(h1, h2) ∈ Hσ , σ < s, the transport of μs under the shift

(u, v) �−→ (u, v)+ (h1, h2),

is absolutely continuous with respect to μs if and only if (h1, h2) ∈ Hs+1.
If we denote by S(t) the free evolution associated with (4.4.2) then for (u, v) ∈

Hσ , we classically have that the flow of the nonlinear wave equation can be
decomposed as

�(t)(u, v) = S(t)((u, v) + (h1, h2)
)
, (4.4.5)

where (h1, h2) = (h1(u, v), h2(u, v)) ∈ Hσ+1. In other word there is one derivative
smoothing and no more. Of course, if σ < s then σ + 1 < s + 1 and therefore
the result of Theorem 4.4.2 represents a statement displaying fine properties of the
vector field generating �(t). More precisely if in (4.4.5) (h1, h2) ∈ Hσ+1 were
fixed (independent of (u, v)) then the transported measures would not be absolutely
continuous with respect to μs !

Let us next compare the result of Theorem 4.4.2 with a result of Ramer [39]. For
σ < s, let us consider an invertible map Ψ on Hσ (T2) of the form

Ψ (u, v) = (u, v)+ F(u, v),

where F : Hσ (T2) → Hs+1(T2). Under some more assumptions, the most
important being that

DF(u, v) : Hs+1(T2)→ Hs+1(T2)

is a Hilbert-Schmidt map, the analysis of [39] implies that μs is quasi-invariant
under Ψ . A typical example for the F is

F(u, v) = ε(1−�)−1−δ(u2, v2), δ > 0, |ε| ( 1,

i.e. 2-smoothing is needed in order to ensure the Hilbert-Schmidt assumption.
Therefore the approach of Ramer is far from being applicable in the context of the
flow map of the nonlinear wave equation because for the nonlinear wave equation
there is only 1-smoothing.
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Let us finally discuss the Cruzeiro generalisation of the Cameron-Martin theo-
rem. In [15], Ana Bela Cruzeiro considered a general equation of the form

∂tu = X(u), (4.4.6)

where X is an infinite dimensional vector field. She proved that μs would be quasi-
invariant under the flow of (4.4.6) if we suppose a number of assumptions, the most
important being of type:

∫

Hσ (T2)

ediv(X(u))dμs(u) <∞ . (4.4.7)

The problem is how to check the abstract assumption (4.4.7) for concrete examples.
Very roughly speaking the result of Theorem 4.4.2 aims to verify assumptions of
type (4.4.7) “in practice”.

4.4.2 Elements of the Proof

In this section, we present some of the key steps in the proof of Theorem 4.4.2.

4.4.2.1 An Equivalent Gaussian Measure

Since the quadratic part of (4.4.3) does not control the L2 norm of u, we will
prove the quasi-invariance for the equivalent measure μ̃s defined as the induced
probability measure under the map

ω ∈ � �−→ (uω(x), vω(x))

with

uω(x) =
∑

n∈Z2

gn(ω)

(1+ |n|2 + |n|2s+2)
1
2

ein·x, vω(x) =
∑

n∈Z2

hn(ω)

(1+ |n|2s) 1
2

ein·x .

Formally μ̃s can be seen as

Z−1e−
1
2

∫
v2− 1

2

∫
(Dsv)2− 1

2

∫
u2− 1

2

∫ |∇u|2− 1
2

∫
(Ds+1u)2dudv,

where

D ≡ √−�.
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As we shall see below, the expression

1

2

∫

T2
v2 + 1

2

∫

T2
(Dsv)2 + 1

2

∫

T2
u2 + 1

2

∫

T2
|∇u|2 + 1

2

∫

T2
(Ds+1u)2 (4.4.8)

is the main part of the quadratic part of the renormalised energy in the context of
the nonlinear wave equation (4.4.2). Using the result of Kakutani [26], we can show
that for s > 1/2 the Gaussian measures μs and μ̃s are equivalent.

4.4.2.2 The Renormalised Energies

Consider the truncated wave equation

∂tu = v, ∂tv = �u− πN((πNu)3), (4.4.9)

where πN is the Dirichlet projector on frequencies n ∈ Z
2 such that |n| ≤ N . If

(u, v) is a solution of (4.4.9) then

∂t

[1

2

∫

T2
(DsvN)

2 + 1

2

∫

T2
(Ds+1uN)

2
]
=
∫

T2
(D2svN)(−u3

N) ,

where (uN, vN ) = (πNu, πNv). Clearly ∂tuN = vN . Observe that for s = 0, we
recover the conservation of the truncated energyHN(u, v), defined by

HN(u, v) ≡ H(πNu, πNv) .

For s ≥ 2, an even integer, using the Leibniz rule, we get

∫

T2
(D2svN )(−u3

N) = −3
∫

T2
DsvN D

suN u
2
N

+
∑

|α|+|β|+|γ |=s
|α|,|β|,|γ |<s

cα,β,γ

∫

T2
DsvN ∂

αuN∂
βuN∂

γ uN,

for some unessential constants cα,β,γ .
It will be convenient in the sequel to suppose that the integration on T

2 is done
with respect to a probability measure. Therefore the integrations will be done with
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respect to the Lebesgue measure multiplied by (2π)−2. We can write

−3
∫

T2
DsvN D

suN u
2
N = −

3

2
∂t

[ ∫

T2
(DsuN)

2u2
N

]

+ 3
∫

T2
(DsuN)

2 vN uN

= −3

2
∂t

[ ∫

T2
⊥0 [(DsuN)2]⊥0 [u2

N ]
]

+ 3
∫

T2
⊥0 [(DsuN)2]⊥0 [vN uN ]

−3

2
∂t

[ ∫

T2
(DsuN)

2
∫

T2
u2
N

]

+ 3
∫

T2
(DsuN)

2
∫

T2
vN uN, (4.4.10)

where⊥0 is again the projector on the nonzero frequencies, i.e.

(⊥0 (f ))(x) = f (x)−
∫

T2
f (y)dy .

The last two terms on the right-hand side of (4.4.10) are problematic because

lim
N→∞Eμ̃s

[ ∫

T2
(DsπNu)

2
]

= +∞ .

Therefore, we need to use a renormalisation in the definitions of the energies. Define
σN by

σN = Eμ̃s

[ ∫

T2
(DsπNu)

2
]

=
∑

n∈Z2

|n|≤N

|n|2s
1+ |n|2 + |n|2s+2

∼ logN .

Then, we have

−3

2
∂t

[ ∫

T2
(DsuN)

2
∫

T2
u2
N

]

+ 3
∫

T2
(DsuN)

2
∫
vN uN

= −3

2
∂t

[( ∫

T2
(DsuN)

2 − σN
)∫

T2
u2
N

]

+ 3

(∫

T2
(DsuN)

2 − σN
)∫

T2
vN uN .

Now, the term

∫

T2
(DsuN)

2 − σN

is a good term because thanks to Wiener chaos estimates, we have the bound

∥
∥
∥

∫

T2
(DsπNu)

2 − σN
∥
∥
∥
Lp(dμ̃s(u,v))

≤ Cp,
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where the constant C is independent of p and N . We define H̃s,N(u, v) by

H̃s,N(u, v) = 1

2

∫

T2
(Dsv)2 + 1

2

∫

T2
(Ds+1u)2 + 3

2

∫

T2
(Dsu)2u2 − 3

2
σN

∫

T2
u2 .

We can summarise the previous analysis as follows: if (u, v) is a solution of (4.4.9)
then

∂t H̃s,N(uN, vN) = 3
∫

T2
⊥0 [(DsuN)2]⊥0 [vN uN ]

+
∑

|α|+|β|+|γ |=s
|α|,|β|,|γ |<s

cα,β,γ

∫

T2
DsvN ∂

αuN∂
βuN∂

γ uN

+ 3

(∫

T2
(DsuN)

2 − σN
)∫

T2
vN uN . (4.4.11)

All terms in the right hand-side of (4.4.11) are suitable for a perturbative analysis.
We finally define the full modified energyHs,N(u, v) as

Hs,N(u, v) = H̃s,N(u, v)+H(u, v)+ 1

2

∫

T2
u2,

where H is defined by (4.4.3). The quadratic part of Hs,N (except the renor-
malisation term which is morally quartic) is now given by (4.4.8). Therefore in
order to prove the quasi-invariance it will be of crucial importance to study the
variation in time of Hs,N . Here is the main quantitative bound used in the proof of
Theorem 4.4.2.

Theorem 4.4.3 Let s ≥ 2 be an even integer and let us denote by�N(t) the flow of

∂tu = v, ∂tv = �u− πN((πNu)3) .

Then for every r > 0 there is a constant C such that for every p ≥ 2 and every
N ≥ 1,

( ∫

HN(u,v)≤r

∣
∣
∣∂tHs,N(πN�N(t)(u, v))|t=0

∣
∣
∣
p

dμ̃s(u, v)
) 1
p ≤ Cp.

4.4.2.3 On the Proof of Theorem 4.4.3

Using Eq. (4.4.9), we have that

∂tHs,N(uN, vN ) = ∂t H̃s,N(uN, vN)+
∫

T2
uNvN .
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Therefore, coming back to (4.4.11), we obtain

∂t H̃s,N(πN�N(t)(u, v))|t=0 =
∫

T2
πNuπNv +Q1(u, v) +Q2(u, v)+Q3(u, v),

where

Q1(u, v) = 3
∫

T2
⊥0 [(DsπNu)2]⊥0 [πNv πNu],

Q2(u, v) =
∑

|α|+|β|+|γ |=s
|α|,|β|,|γ |<s

cα,β,γ

∫

T2
DsπNv ∂

απNu∂
βπNu∂

γ πNu,

Q3(u, v) = 3

(∫

T2
(DsuN)

2 − σN
)∫

T2
πNv πNu.

Let us first consider
∫

T2
πNuπNv . (4.4.12)

We need to estimate (4.4.12) under the restriction

∫

T2
(|∇πNu|2 + (πNv)2 + 1

2
(πNu)

4) ≤ 2r. (4.4.13)

Using the compactness of T2, one can see that under the restriction (4.4.13),

∣
∣
∫

T2
πNuπNv

∣
∣ ≤ ‖πNu‖L2(T2)‖πNv‖L2(T2) ≤ C‖πNu‖L4(T2)‖πNv‖L2(T2) ≤ Cr

3
4 .

Let us next considerQ3(u, v). For r > 0, we define μs,r,N as

dμs,r,N(u, v) = χHN(u,v)≤r dμ̃s(u, v) ,

where χHN(u,v)≤r stays for the characteristic function of the set

{(u, v) : HN(u, v) ≤ r}.

The goal is to show that

‖Q3(u, v)‖Lp(dμs,r,N (u,v)) ≤ Cp,
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with a constant C independent of N and p. Since we already checked that
under (4.4.13),

∣
∣
∣

∫

T2
πNv πNu

∣
∣
∣ ≤ Cr,

we obtain that

‖Q3(u, v)‖Lp(dμs,r,N (u,v)) ≤ Cr
∥
∥
∥

∫

T2
(DsπNu)

2 − σN
∥
∥
∥
Lp(dμs,r,N (u,v))

≤ Cr
∥
∥
∥

∫

T2
(DsπNu)

2 − σN
∥
∥
∥
Lp(dμ̃s(u,v))

.

On the other hand

∥
∥
∥

∫

T2
(DsπNu)

2 − σN
∥
∥
∥
Lp(dμ̃s(u,v))

=
∥
∥
∥
∑

n∈Z2

|n|≤N

(|gn(ω)|2 − 1)|n|2s
1+ |n|2 + |n|2s+2

∥
∥
∥
Lp(�)

and by using Wiener chaos estimates, we have

∥
∥
∥
∑

n∈Z2

|n|≤N

(|gn(ω)|2 − 1)|n|2s
1+ |n|2 + |n|2s+2

∥
∥
∥
Lp(�)

≤ Cp
∥
∥
∥
∑

n∈Z2

|n|≤N

(|gn(ω)|2 − 1)|n|2s
1+ |n|2 + |n|2s+2

∥
∥
∥
L2(�)

≤ Cp

which provides the needed bound forQ3(u, v).
The analysis of

Q1(u, v) = 3
∫

T2
⊥0 [(DsπNu)2]⊥0 [πNv πNu]

is the most delicate part of the analysis and relies on subtle multi-linear arguments.
The analysis ofQ2(u, v) follows similar lines.

Basically, we are allowed to have outputs as

‖Dσu‖L∞(T2), σ < s

with a loss
√
p and HN(u, v) with no loss in p. The outputs HN(u, v) follow from

deterministic analysis and thus have no loss in p but they are regularity consuming.
We observe that a naive Hölder inequality approach clearly fails. A purely

probabilistic argument based on Wiener chaos estimates fails because the output
power of p is too large. The basic strategy is therefore to perform a multi-scale
analysis redistributing properly the derivative losses by never having more then
quadratic weight of the contribution of the Wiener chaos estimate.
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When analysing the 4-linear expression definingQ1(u, v), we suppose that

DsπNu, D
sπNu, πNv, πNu

are localised at dyadic frequenciesN1, N2, N3, N4 respectively.

We first consider the case when N4 � (max(N1, N2))
1

100 . In this case we
exchange some regularity of DsπNu with this of πNu and we perform the naive
linear analysis.

Therefore, in the analysis ofQ1(u, v) we can suppose that

N4 ( (max(N1, N2))
1

100 .

In this case, we have that

max(N1, N2) ∼ max(Nj , j = 1, 2, 3, 4).

By symmetry, we can suppose that N1 = max(N1, N2). We next consider the case

N3 ( N1−a
1 , a = a(s)( 1 .

In this case, we perform a bi-linear Wiener chaos estimate and we have some gain
of regularity in the localisation of⊥0 [(DsπNu)2]. Finally, we consider the case

N1 ∼ max(Nj , j = 1, 2, 3, 4), N4 ( (max(N1, N2))
1

100 , N3 � N1−a
1

In this case, we perform a tri-linear Wiener chaos estimate and we have enough gain
of regularity in the localisation of

⊥0 [(J sπNu)2]πNv .

This essentially explains the argument leading to the key estimate of Theorem 4.4.3.
We refer to [37] for the details.

4.4.2.4 On the Soft Analysis

We can observe that

Hs,N(u, v) = (4.4.8)+ 3

2

∫

T2
(Dsu)2u2 − 3

2
σN

∫

T2
u2 +

∫

T2
u4 .

By classical arguments from QFT, we can define

lim
N→∞

(3

2

∫
(DsπNu)

2(πNu)
2 − 3

2
σN

∫
(πNu)

2
)
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in Lp(dμ̃s(u, v)), p < ∞. Denote this limit by R(u). Essentially speaking, once
we have the key estimate, we study the quasi-invariance of

χH(u,v)≤r e−R(u)−
∫
u4
dμ̃s(u, v) (4.4.14)

by soft analysis techniques.
Let us finally explain the importance of the loss p in the key estimate of

Theorem 4.4.3. Denote by x(t) the measure evolution of a set having zero measure
with respect to (4.4.14). Essentially speaking, using the key estimate and the
arguments introduced in [46, 47], we obtain that x(t) satisfy the estimate

ẋ(t) ≤ Cp(x(t))1− 1
p , x(0) = 0 . (4.4.15)

Integrating the last estimate leads to x(t) ≤ (Ct)p . Taking the limit p → ∞, we
infer that x(t) = 0 for 0 ≤ t < 1/C. Since C is an absolute constant, we can
iterate the argument and show that x(t) is vanishing. Observe that this argument
would not work if in (4.4.15), we have pα , α > 1 instead of p. In order to
make the previous reasoning rigorous, we need to use some more or less standard
approximation arguments. We refer to [45] and [37] for the details of such type of
reasoning.
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