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Abstract
In Nicotiana tabacum (tobacco), nicotine and
related pyridine alkaloids are produced in the
roots and accumulate mainly in the leaves.
Molecular analyses of nicotine biosynthesis,
especially of the steps involved in pyrrolidine
and pyridine formation, suggest that this
specialized pathway evolved through repeated
duplication of primary pathways, followed by
the recruitment of the metabolic genes into a
regulon. In tobacco, jasmonates elicit nicotine
formation via a conserved signaling cascade
anchored to the downstream nicotine biosyn-
thesis pathway by master transcription factors
of the ERF family, particularly ERF189 and its
homolog ERF199. ERF transcription factors
upregulate metabolic and transport genes
directly involved in the pathway by recogniz-
ing cis-elements in the promoters of target
genes. A pair of homologous clusters of related
ERF genes, including ERF189 and ERF199,
occurs in the tobacco genome. ERF189 corre-
sponds to the nicotine-controlling NIC2 locus.
A large chromosomal deletion of the cluster
that includes ERF189, as found in the nic2
mutant allele, has been exploited to breed
low-nicotine tobacco.

9.1 Introduction

Alkaloids are a large group of nitrogen-containing
specialized metabolites, typically with bioactive
properties, that are produced by multiple plant
species (Shoji 2016). Nicotine and its derivatives,
such as nornicotine, anabasine, and anatabine, are
pyridine alkaloids found in Nicotiana species,
including cultivated Nicotiana tabacum (tobacco)
(Saitoh et al. 1985) (Fig. 9.1). Even though
smoking is detrimental to human health, the
stimulatory and addictive properties of tobacco
alkaloids, which act on nicotinic acetylcholine
receptors essential for a range of neuronal activ-
ities, account for the widespread consumption of
tobacco products.

In tobacco, pyridine alkaloids are synthesized
exclusively in underground roots and are largely
stored in the leaves as defenses against insects
and other predators (Steppuhn et al. 2004).
Herbivory can result in increased accumulation
of nicotine and other toxic alkaloids (Baldwin
1989). Jasmonates are key signaling molecules
that trigger nicotine formation via transcription
factors that direct the coordinated expression of
genes involved in the nicotine biosynthesis
pathway (Shoji et al. 2010). Molecular and
genomic analyses have identified genes respon-
sible for nicotine biosynthesis, transport, and
regulation (Shoji and Hashimoto 2011a; Dewey
and Xie 2013; Shoji and Hashimoto 2013), pro-
viding insight into the evolution of this metabolic
pathway (Kajikawa et al. 2017a. Shoji 2019).
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9.2 Biosynthesis

Nicotine is composed of heterocyclic pyrrolidine
and pyridine rings; these rings are formed early in
the pathway and are coupled together in later
steps (Fig. 9.1). A five-member pyrrolidine ring

is formed from ornithine via a symmetric dia-
mine, putrescine, through three consecutive
reactions catalyzed by ornithine decarboxylase
(ODC) (Imanishi et al. 1998), putrescine N-
methyltransferase (PMT) (Hibi et al. 1994), and
N-methylputrescine oxidase (MPO) (Heim et al.
2007; Katoh et al. 2007) (Fig. 9.1). An alternative
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Fig. 9.1 Biosynthesis pathways of nicotine and related
alkaloids. Defined steps are shown with arrows and
enzyme names; dashed arrows represent undefined or
multiple steps. Boxes represent enzymes regulated by
ethylene response factor (ERF) transcription factors and
thus included in the nicotine biosynthesis regulon.
Putrescine N-methyltransferase (PMT) and N-

methylputrescine oxidase (MPO1) have been proposed
to evolve from spermidine synthase (SPDS) and diamine
oxidase (DAO), respectively (Hibi et al. 1994; Heim et al.
2007; Katoh et al. 2007). AO, aspartate oxidase; BBL,
berberine bridge enzyme-like protein; NND, nicotine N-
demethylase; ODC, ornithine decarboxylase; QPT, quino-
linate phosphoribosyltransferase; QS, quinolinate synthase
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route to putrescine from arginine exists, which
includes a step catalyzed by arginine decarboxy-
lase (ADC). However, this route is not considered
to contribute greatly to nicotine biosynthesis,
because transgenic suppression of ADC, but not
of ODC (De Boer et al. 2011a), failed to alter
nicotine content significantly (Chintapakorn and
Hamill 1990). Because of their structural simi-
larities, PMT and MPO are thought to have arisen
through catalytic innovation from primary
enzymes involved in related polyamine metabo-
lism, namely, spermidine synthase and diamine
oxidase, respectively (Junker et al. 2013;
Naconsie et al. 2014) (Fig. 9.1). The ornithine-
derived moiety is also used to produce tropane
alkaloids (e.g., the clinically important hyoscya-
mine and scopolamine) and nortropane alkaloids
(e.g., calystegines, which inhibit glycosidase) in
various Solanaceae species (Shoji and Hashimoto
2015) (Fig. 9.1). The shared branch for pyrro-
lidine formation may have developed through
duplication of the polyamine pathway. The
resulting doubling of ODC genes may have
enabled increased metabolic flow into this branch,
and the subsequent innovative evolution of PMT
and MPO1 (Kajikawa et al. 2017a). The estab-
lishment of the ring-forming extension before the
Solanaceae species diversified is underlined by
the common existence of PMT and MPO1 genes
in Solanaceae genomes (Kajikawa et al. 2017b;
Xu et al. 2017).

A pyridine ring of nicotine and related alka-
loids is derived from nicotinic acid, a primary
metabolite in the pathway that supplies nicoti-
namide adenine dinucleotide (NAD), an impor-
tant co-factor for oxidation–reduction reactions.
In the NAD pathway, aspartate is converted to
nicotinic acid mononucleotide via quinolinate via
steps catalyzed by aspartate oxidase (AO),
quinolinate synthase (QS), and quinolinate
phosphoribosyltransferase (QPT) (Sinclair et al.
2000; Katoh et al. 2006) (Fig. 9.1). To meet
increased metabolic demands to support massive
downstream production of nicotine, AO and QPT
genes have been duplicated in Nicotiana species,
but not in other lineages (Kajikawa et al. 2017b;
Xu et al. 2017). Nicotinic acid is supplied as an
intermediate of a cyclic pathway for de novo and

salvage production of NAD, which starts with
nicotinic acid mononucleotide (Noctor et al.
2006) (Fig. 9.1). It is unclear whether nicotinic
acid itself or its derivatives are directly incorpo-
rated into alkaloids (Shoji and Hashimoto
2011a). To avoid excess accumulation of toxic
nicotinic acid, plants have developed mecha-
nisms to convert nicotinic acid to less-toxic
derivatives (Li et al. 2015a, b; Li et al. 2017).
Using nicotinic acid for alkaloid production may
have originally emerged as one such detoxifica-
tion reaction.

Little is known about the late steps required to
couple the heterocyclic rings. It has been pro-
posed that two oxidoreductases, A622 (De Boer
et al. 2009; Kajikawa et al. 2009) and berberine
bridge enzyme-like protein (BBL) (Kajikawa
et al. 2011), catalyze the late stages of the path-
way (Fig. 9.1), though biochemical details of
their reactions are yet to be defined. A622 and
BBL are required to produce not only nicotine,
but also other pyridine alkaloids (De Boer et al.
2009; Kajikawa et al. 2009, 2011), implying that
A622- and BBL-dependent steps are shared
between the pathways that produce the different
alkaloids.

Nornicotine is formed from nicotine via
demethylation mediated by nicotine N-demethy-
lase (NND) (Fig. 9.1), an enzyme belonging to
the CYP82E subfamily of cytochrome P450
monooxygenases. Three genes, CYP82E4,
CYP82E5, and CYP82E10, encoding functional
NND enzymes have been cloned from tobacco
(Siminszky et al. 2005; Gavilano and Siminszky
2007; Lewis et al. 2010). Nornicotine typically
accounts for 3–5% of the total alkaloids in
mature tobacco leaves. CYP82E5 and CYP82E10
contribute to this conventional accumulation of
nornicotine (Gavilano and Siminszky 2007;
Lewis et al. 2010). However, a small number of
plants within tobacco populations, especially in
Burley cultivars, are termed converters, as they
convert over 90% of their nicotine to nornicotine
during leaf senescence and curing (Griffith et al.
1955). CYP82E4 is responsible for this unstable
conversion phenotype, which depends on occa-
sional reactivation of normally silenced
CYP82E4 in converters (Siminszky et al. 2005).
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Nornicotine is reduced to nominal levels by
knockout mutations of all three CYP82E genes
(Lewis et al. 2010). Because N′-nitrosonornico-
tine is a carcinogen that is more harmful than
other tobacco-specific nitrosamines and is readily
formed from nornicotine during the curing pro-
cess (Bush et al. 2001), reducing nornicotine
levels is a desirable breeding goal.

9.3 Transport

Many plant metabolites, both end products and
intermediates, move within and between cells.
Various membrane-localized transporters, such
as those belonging to the ATP-binding cassette,
multidrug and toxic compound extrusion
(MATE), and purine permease families, mediate
the active transport of low-molecular-weight
compounds across biological membranes,
including alkaloids, which are often positively
charged and thus membrane-impermeable (Shoji
2014; Shitan et al. 2014a).

To prevent cytotoxicity when accumulated at
high concentrations, nicotine is sequestered into
storage vacuoles in tobacco cells. Tonoplast-
localized MATE transporters, N. tabacum
jasmonate-inducible alkaloid transporter 1 (Nt-
JAT1) (Morita et al. 2009), Nt-JAT2 (Shitan
et al. 2014b), NtMATE1, and NtMATE2 (Shoji
et al. 2009), are proton antiporters that sequester
nicotine in the vacuole. These transporters couple
proton gradients across the membrane with the
energy-consuming uptake of alkaloids into
organelles. The Nt-JAT1 and Nt-JAT2 homo-
logs, which are phylogenetically related to
xenobiotic-transporting DTX1 from Arabidopsis,
mediate the vacuolar sequestration of nicotine in
tobacco leaves (Morita et al. 2009; Shitan et al.
2014b). NtMATE1 and NtMATE2, which encode
homologs of flavonoid transporters, are co-
expressed with nicotine biosynthesis genes, and
the encoded proteins are thereby involved in the
uptake of nicotine into the vacuoles in alkaloid-
producing roots (Shoji et al. 2009). It is note-
worthy that NtMATE2 resides near a gene
encoding a late-step enzyme A622 (see
“Biosynthesis” section) on chromosome (chr) 12

in the tobacco genome; this is the only example
of non-homologous clustering among nicotine
pathway genes reported to date (Kajikawa et al.
2017b).

Nicotine uptake permease 1 (NUP1) is a
plasma membrane-localized purine permease-
family transporter of the pyridine ring-bearing
molecules nicotine and vitamin B6 (e.g., pyri-
doxine) (Hildreth et al. 2011; Kato et al. 2014,
2015). Unlike other nicotine pathway genes
expressed in inner cell layers (Shoji et al. 2000,
2002, 2009; Shoji and Hashimoto 2011b; Kaji-
kawa et al. 2017b), NUP1 is mainly expressed in
root epidermal cells (Kato et al. 2014). In addi-
tion to its role in metabolite transport, NUP1 is
involved in the genetic regulation of nicotine
biosynthesis by way of master transcription fac-
tors (see “Regulation” section) and in the regu-
lation of root growth (Hildreth et al. 2011; Kato
et al. 2014). The mechanisms underlying this
regulation, however, are unclear.

Dawson (1942) conducted a classic grafting
experiment that clearly demonstrated root-to-
shoot transport of tobacco alkaloids between
tobacco rootstock and Solanum lycopersicum
(tomato) scion. It is known that nicotine moves
up through the xylem along the transpiration
stream, and that xylem loading and unloading
depend on nicotine efflux from root cells and
influx into leaf cells, respectively, although the
transporters responsible for these processes have
yet to be defined. Unlike most species in the
Nicotiana genus, the flowering tobacco N. alata
is devoid of alkaloids in aboveground shoots,
because it lacks long-distance translocation
ability (Pakdeechanuan et al. 2012). Elucidating
the genetic basis of this natural variation may
provide mechanistic insights into alkaloid
transport.

9.4 Regulation

While primary pathways are nearly constitutive,
pathways for specialized metabolites are subject
to dynamic regulation in developmental and
environmental contexts. Metabolic flow through
a long, multistep pathway relies on the
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coordinated expression of metabolic and trans-
port genes, or structural genes. Transcription
factors typically control this coordination at the
transcriptional level, often forming a multigene
network, or regulon, with downstream structural
genes (Shoji 2019).

A few transcription factors in the ethylene
response factor (ERF) family, particularly
ERF189 and its closest homolog ERF199, are
involved in the master transcriptional regulation
of nicotine pathway genes in tobacco (Dewey
and Xie 2013; Shoji and Hashimoto 2013a)
(Fig. 9.2). ERF189 and ERF199 are expressed
strongly, but not exclusively, in the roots and are
induced by jasmonates along with structural
genes at the transcript level (Shoji et al. 2010;
Kajikawa et al. 2017b). ERF transcription factors
upregulate nearly the entire series of nicotine
metabolic and transport genes, including ODC2,
PMT, MPO1, AO2, QS, QPT2, A622, BBL,
NtMATE1, and NtMATE2 (Fig. 9.1), but not
NUP1, NtJAT1, or NtJAT2, by directly recog-
nizing specific cis-regulatory elements, termed P

boxes, in their promoter regions (Fig. 9.2) (Todd
et al. 2010; Shoji et al. 2010; De Boer et al.
2011b; Shoji and Hashimoto 2011b; Kajikawa
et al. 2017b). The GC-rich P box resembles a
canonical GCC box, and a few amino acid resi-
dues critical for its recognition have been iden-
tified within the DNA-binding domain of the
ERF transcription factors (Shoji et al. 2013).

In the allotetraploid N. tabacum genome,
there are two homologous clusters of related ERF
genes, including ERF189 and ERF 199. In one
cluster, ERF189 is located on chr 19, and in the
other, ERF199 is located on chr 7 (Fig. 9.3).
These clusters may have originated from the
diploid ancestral parents of N. tabacum, N.
tomentosiformis, and N. sylvestris, respectively
(Shoji et al. 2010; Kajikawa et al. 2017b). The
ERF189-containing cluster corresponds to the
NIC2 locus, one of two genetic loci controlling
nicotine content in tobacco (Shoji et al. 2010).
A substantial chromosomal deletion (ca. 650 kb)
encompassing a large portion of the cluster,
including ERF189 (Fig. 9.3), was found in a nic2
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Fig. 9.2 A model for jasmonate (JA)-dependent regula-
tion of nicotine biosynthesis in tobacco. Ethylene
response factor (ERF) transcription factors regulate the
structural genes of the nicotine pathway by binding at P
box elements in their promoters. JA-induced transcription
of the ERF genes is mediated by a basic helix-loop-helix
(bHLH)-family MYC2 transcription factor, a direct target
of upstream jasmonate ZIM-domain (JAZ) repressors.
MYC2 regulates structural genes along with ERF by

directly binding to G box elements. JAZ proteins are
degraded when a co-receptor complex comprised of
coronatine-insensitive 1 (COI1) and JAZ proteins per-
ceives a JA signal. ERF and MYC2 transcription factors
are stimulated by a phosphorylation cascade that includes
the JA factor-stimulating MAPKK (JAM1). Other details
of the regulation of ERF by MYC2 and the phosphory-
lation cascade are unclear
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mutant allele (Kajikawa et al. 2017b) used to
breed low-nicotine tobacco cultivars (Legg and
Collins 1971).

Given that ERF genes exhibit low basal levels
of expression and are induced by salt stress
(Shoji and Hashimoto 2015; Kajikawa et al.
2017b), and considering the limited effects of
overexpression on nicotine biosynthesis (Shoji
et al. 2010), the contribution to nicotine regula-
tion of clustered ERF genes other than ERF189
and ERF199 is believed to be limited. Experi-
mental evidence contradicting this view, how-
ever, exists (De Boer et al. 2011b; Sears et al.
2014). Further work is required to functionally
differentiate related and mostly clustered ERF
genes in the regulation of nicotine and other
pathways.

Clusters of transcription factor genes homol-
ogous to tobacco ERFs are present in the gen-
omes of other species (Cárdenas et al. 2016;
Thagun et al. 2016; Paul et al. 2017). For
instance, JRE4 (also known as GAME9) from
tomato (Fig. 9.3) and potato (Solanum tubero-
sum) (Cárdenas et al. 2016; Thagun et al. 2016,

Nakayasu et al. 2018) and ORCAs from Catha-
ranthus roseus (van der Fits and Memelink 2000;
Paul et al. 2017) regulate the jasmonate-induced
production of specialized metabolites, suggesting
that these related factors are functionally similar
(Shoji and Hashimoto 2013b). Consistent with
such notion, cell type-specific and jasmonate-
inducible expression of a promoter reporter of
tobacco QPT2 regulated by ERF189 was found
to be mediated by JRE4 in tomato (Shoji and
Hashimoto 2019).

In plants, jasmonate signals are perceived by a
co-receptor complex comprised of coronatine-
insensitive 1 (COI1) and jasmonate ZIM-domain
(JAZ) proteins. This triggers proteasome-
dependent degradation of JAZs and subsequent
transcriptional activation mediated by a basic
helix-loop-helix (bHLH)-family MYC2 tran-
scription factor liberated from repression by JAZs
(Wasternack and Hause 2013) (Fig. 9.2).
Jasmonate-induced formation of nicotine depends
on COI1, JAZ, and MYC2 proteins in tobacco
(Paschold et al. 2007; Shoji et al. 2008; Todd
et al. 2010; De Boer et al. 2011b; Shoji and

Chr. 7

100 kb

Chr. 19

deletion in nic2

tobacco

Chr. 1 tomato

Fig. 9.3 Clustered ethylene response factor (ERF) tran-
scription factor genes in tobacco and tomato. Arrowheads
indicate positions and orientations of predicted open
reading frames of ERF genes. A chromosomal region of
tobacco chr. 19 deleted in nic2 mutant is indicated. Boxes
indicate ERF189 and ERF199 from tobacco, which are

involved in nicotine regulation, and JRE4 from tomato,
which is involved in steroidal glycoalkaloid regulation.
Tobacco ERF genes, denoted by D, possibly encode non-
functional transcription factors that lack full-length DNA-
binding domains
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Hashimoto 2011c; Zhang et al. 2012) (Fig. 9.2).
In cooperation with ERF factors, tobacco MYC2
factors regulate a series of nicotine pathway genes
directly by recognizing G box elements in their
promoters (Shoji and Hashimoto 2011c; Zhang
et al. 2012). These factors also act indirectly
through transcriptional activation of the ERF
genes (Shoji and Hashimoto 2011c) (Fig. 9.2).
Similar schemes linking MYC2, a central player
in general jasmonate signaling, to downstream
ERFs and defense metabolism have been
demonstrated in other plants (Zhang et al. 2011;
Cárdenas et al. 2016; Paul et al. 2017). In addition
to transcriptional regulation, ERF proteins are
postulated to be regulated by protein phosphory-
lation in N. tabacum (De Boer et al. 2011b; Paul
et al. 2017). In tobacco, a protein phosphorylation
cascade involving a mitogen-activated protein
kinase kinase (MAPKK), jasmonate factor-
stimulating MAPKK (JAM1), has been pro-
posed to stimulate nicotine biosynthesis via the
ERF and MYC2 transcription factors (De Boer
et al. 2011b) (Fig. 9.2).

A long non-coding RNA acting as an
endogenous target mimicry and its corresponding
microRNA predicted to target QPT2 gene were
identified and found to be involved in topping-
triggered induction of nicotine accumulation (Li
et al. 2015a, b), presenting an example of regu-
lation of specialized metabolism by a module
consisting of non-coding RNAs.

9.5 Perspectives

Molecular and genomic studies have greatly
advanced the understanding of the nicotine
biosynthesis pathway in tobacco. Complementing
gene cloning efforts based mainly on homologies
and expression profiles, the genome sequences of
tobacco (Sierro et al. 2014) and two wild Nico-
tiana species (Xu et al. 2017) have revealed
properties of the entire suite of genes involved in
nicotine biosynthesis and regulation (Kajikawa
et al. 2017b; Xu et al. 2017). With several struc-
tural and regulatory genes now known, it is easier

to genetically manipulate the biosynthesis of the
toxic alkaloids (Sato et al. 2001; Lewis et al.
2010; De Boer et al. 2011a). Recent advances
have identified a critical role for transcription
factors in nicotine regulation, demonstrating
conserved regulatory circuits centering on
jasmonate-responsive ERF transcription factors.
Molecular studies of the nicotine biosynthesis
pathway have elucidated how such coordinated
systems were established during plant evolution
(Kajikawa et al. 2017b; Shoji 2019).
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