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Abstract
Nicotiana benthamiana originates from north-
ern Australia and belongs to the Suaveolentes
section. It is used extensively as a model
organism for many types of research, includ-
ing plant–pathogen interactions, RNA inter-
ference, and functional genomics. Recent
publications that used N. benthamiana as a
model for plant–pathogen interactions focused
mainly on bacteria, viruses, oomycete, and
fungi. Two different N. benthamiana whole
genome assemblies were published in 2012.
These assemblies have been improved and
structurally annotated in later versions but are
still incomplete. The lineage most widely used
in research originates from a population that
has retained a loss-of-function mutation in
Rdr1 (RNA-dependent RNA polymerase 1)

that makes it highly susceptible to viruses. In
this chapter, we review some of the techniques
used in N. benthamiana to study plant–
pathogen interactions, including
virus-induced gene silencing, transient protein
expression by agroinfiltration, stable genetic
manipulation, and transcriptomics analysis,
and discuss some of the results. Descriptions
and links to some of the most relevant online
resources for N. benthamiana are also
provided.

14.1 Evolutionary History
of Nicotiana benthamiana

N. benthamiana Domin is among the most pop-
ular plants used for plant pathology studies.
Despite this, specific details about the origin of
this species are still unknown. N. benthamiana is
a herbaceous plant with white flowers that is
native to Australia where it can be found along
the north coast, the Northern Territory, and
Queensland (Fig. 14.1) (Global Biodiversity
Information Facility (GBIF) 2018).

It can be identified following the dichotomous
key described by Burbidge. N. benthamiana is
distinguished from N. umbratica specimens by:
“Upper cauline leaves sessile and forming leafy
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bracts. Laminae ovate to broad lanceolate,
obtuse. Corolla lobes obtuse compared with the
corolla lobes acute of the last one” (Burbidge
1960). The first available record of N. ben-
thamiana can be found in the Herbarium Hook-
erianum at Kew Royal Botanical Gardens (http://
specimens.kew.org/herbarium/K000196107),
with a specimen collected by Benjamin Bynoe
during the voyage of the Beagle (1837–1843)
(Orchard 1999). Like other Australian Nicotiana
species, N. benthamiana belongs to the Suaveo-
lentes section, which contains 30 species and
represents an important radiation of the Nico-
tiana genus in Australia (26 species), South
Pacific (3 species), and Africa (1 species) (Marks
et al. 2011). They are adapted to a wide range of
conditions, from the high humidity coastal
regions of Cairns (e.g., N. debneyi) to the extre-
mely dry Great Sandy and Tanami deserts (e.g.,
N. benthamiana). All the Suaveolentes species
have been described as allotetraploids with a
variable number of chromosomes ranging from
2n = 4 � = 30 (N. suaveolens) to 2n = 4 � =
48 (N. debneyi).
Elucidation of the origin of the Suaveolentes

section is still ongoing. An early publication by
DeWolf and Goodspeed (1957) proposed that it
could have formed after the hybridization of

members of the Petunioides, Alatae/Sylvestres,
and/or Noctiflorae sections. Later phylogenetic
studies using plastid gene sequences such asmatK
indicated a Noctiflorae species as maternal donor
(Aoki and Ito 2000; Clarkson et al. 2004). The use
of interspacers ITS1 and ITS2, and 5.8S ribosomal
genes indicated that an ancestral member of Alatae
could be the possible paternal progenitor (Chase
et al. 2003). A study using the GS (glutamine
synthetase) gene,with both copies usually retained
in polyploid Nicotiana species, indicated Sylves-
tres as the maternal donor and Trigonophyllae as
the paternal donor (Clarkson et al. 2010). Never-
theless, the most accepted hypothesis based on
several genes, such as ADH (alcohol dehydroge-
nase), LFY/FLO (LEAFY/FLORICAULA), GS,
and nrITS (nuclear ribosomal interspacer), sug-
gests a complex history where the most probable
donors are Sylvestres (paternal) and
Noctiflorae/Petunioides (maternal) (Kelly et al.
2013). The divergency ages between the Suaveo-
lentes subgenomes and the corresponding pro-
posed progenitors were estimated as 6.4 million
years ago for the maternal contribution from the
Noctiflorae section and 5.5 million years ago for
the paternal contribution from the Sylvestres sec-
tion (Clarkson et al. 2017).

14.2 Nicotiana benthamiana
Genome Assemblies
and Genetic Data

N. benthamiana was one of the first plant models
positively affected by next-generation sequenc-
ing (NGS) technologies. Although several plant
whole genome assemblies were built using NGS
before 2012, most of them were for crops such as
cucumber (Huang et al. 2009), apple (Velasco
et al. 2010), and soybean (Schmutz et al. 2010).
Two different N. benthamiana whole genome
assemblies were published in 2012 (Bombarely
et al. 2012; Naim et al. 2012). N. benthamiana is
an allotetraploid plant (2n = 4 � = 38) with a
large genome of 3.1 Gb, which made it difficult
to assemble using the short reads obtained by
NGS. Although both genomes were incomplete,

Fig. 14.1 Natural distribution of N. benthamiana in
Australia
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they have been used extensively for plant–
pathogen research. Statistics of the two N. ben-
thamiana genome assemblies are summarized in
Table 14.1.

Although a chromosome level assembly has
still not been achieved (as October 2018), these
assemblies have been improved. Statistics of the
latest versions are summarized in Table 14.2.
Evaluation of these genome assemblies using
BUSCO (Simao et al. 2015) indicated they had
similar completeness (95.4% for Niben1.0.1 and
94.4% for Nbv0.5), but Niben1.0.1 had a higher
proportion of duplicated genes (46.0%) than
Nbv0.5 (43.4%). These assemblies were also
structurally annotated revealing 59,814 and
49,818 primary transcripts for Niben1.0.1 and
Nbv0.5, respectively. Because of the ongoing
diploidization process in N. benthamiana, its
gene number is higher than the gene numbers for
diploid Solanaceae species such as Solanum
lycopersicum (Tomato Genome Consortium
2012), Solanum tuberosum (Potato Genome

Sequencing Consortium 2011), Capsicum
annuum (Kim et al. 2014), N. sylvestris and N.
tomentosiformis (Sierro 2013), and Petunia
axillaris (Bombarely et al. 2016), but lower than
the gene number for allotetraploid N. tabacum
(Sierro et al. 2014; Edwards et al. 2017). As
expected, the BUSCO evaluation of the com-
pleteness of the annotations produced a lower
value (88.1% for Niben1.0.1 and 75.2% for the
transcriptome Nbv5.1 from the assembly
Nbv0.5) than the evaluation of the genome
assembly. Kourelis et al. (2018) used the gen-
omes of other Nicotiana species to reanalyze the
four genomes (Niben1.0.1, Niben0.4.2, Nbv0.5,
and Nbv0.3) improving the quality of the N.
benthamiana gene annotations.

To date, dozens of experiments using NGS
technologies to investigate Solanaceae species
have been published by the National Center for
Biotechnology Information (NCBI). Indeed, the
NCBI’s Taxonomy Browser has links to 342 SRA
datasets, 442 BioSamples, and 74 BioProjects (up

Table 14.1 Details of the
two N. benthamiana 2012
genome assemblies

Assembly Niben0.4.2a Nbv0.3b

Assembly statistics Contigs Scaffolds Contigs Scaffolds

Total assembly size (Gb) 2.46 2.63 2.44 2.44

Total assembled sequences 461,463 141,339 300,384 275,036

Longest sequence length (Kb) 208.21 615.59 307.11 447.13

Average sequence length (Kb) 5.37 18.61 8.12 8.88

N50 index (sequences) 42,984 8,897 22,438 22,068

N50 length (Kb) 16.48 89.78 31.25 31.83
aBombarely et al. 2012; bNaim et al. 2012

Table 14.2 Details of the
latest publicly available N.
benthamiana genome
assemblies (up to October
2018)

Assembly Niben1.0.1a Nbv0.5b

Assembly statistics Contigs Scaffolds Contigs Scaffolds

Total assembly size (Gb) 2.49 2.97 2.51 2.55

Total assembled sequences 288,736 56,094 180,357 147,949

Longest sequence length (Kb) 187.66 2,838.18 965.20 2,628.40

Average sequence length (Kb) 8.62 52.94 13.92 17.23

N50 index (sequences) 37,001 1,738 7,104 1,936

N50 length (Kb) 20.13 520.10 105.31 396.15
aNiben1.0.1 is available on the Sol Genomics Network (https://solgenomics.net/
organism/Nicotiana_benthamiana/genome); bNbv0.5 is available from Queensland
University of Technology (http://benthgenome.qut.edu.au/)
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to December 2018) for N. benthamiana. These
BioProjects not only study plant–pathogen inter-
action using resistance gene enrichment sequenc-
ing (RenSeq) (e.g., BioProject accession
PRJNA496490) andRNA sequencing (RNA-Seq)
(e.g., PRJNA360110), but also study expression
regulatory mechanisms involving small RNAs
(e.g., PRJNA481240, PRJNA309389) and circu-
lar RNAs (e.g., PRJNA422356), transcriptomic
landscapes in several organs such as nectaries
(e.g., PRJNA448133), transition and floral
meristems (e.g., PRJNA343677), and grafting
experiments (e.g., PRJDB3306).

14.3 Nicotiana benthamiana
as a Model for the Study
of Plant–Pathogen
Interactions

The use of N. benthamiana as a model for plant–
pathogen interactions has been thoroughly
reviewed by Goodin et al. 2008; therefore, we
will focus mainly on the information that has been
generated since then. In their review, Goodin
et al. performed a PubMed search using the term
“Nicotiana benthamiana” and found 1,743 pub-
lications until 2006. We conducted a similar
search, which yielded 3,606 hits (as of October

2018). By curating the publications since 2008,
we identified 314 papers in which N. benthami-
ana was used as a tool to study different
pathosystems, not taking into account studies in
which N. benthamiana was used merely for
transient protein expression and was unrelated to
plant immunity. Among the 314 publications, the
focus of study included plant interactions with
bacterium (Senthil-Kumar and Mysore 2010;
Kim et al. 2016), virus (Pavli et al. 2011; Zhu
et al. 2014), oomycete (Adachi et al. 2015; King
et al. 2014), fungus (De Jonge et al. 2012; Li et al.
2015), nematode (Mantelin et al. 2011; Ali et al.
2015), aphid (Peng et al. 2016; Atamian et al.
2013), insect (Chen et al. 2014), and viroid
(Adkar-Purushothama et al. 2015). Among these
pathogen types, the first four were the most
widely studied using N. benthamiana (Fig. 14.2).

N. benthamiana was adopted as a model in the
plant–virus research field because of its remark-
able susceptibility (Goodin et al. 2008). In par-
ticular, the lineage employed at that time, which
continues to be widely used in research, has a
disruptive insertion in the gene coding
RNA-dependent RNA polymerase I (Rdr1),
which enhances plant fitness but simultaneously
leads to its high susceptibility to viruses (Balli
et al. 2015). Other reasons why N. benthamiana
is so extensively used include high efficiency of

Fig. 14.2 Pathogen types studied in publications involv-
ing N. benthamiana (2009 to October 2018). The input for
WordSift (https://wordsift.org) was derived from
the information from 314 publications in which

N. benthamiana was employed in studies of plant–
pathogen interaction published after 2008. Word font size
indicates frequency of use
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gene silencing, ease of protein transient expres-
sion using Agrobacterium tumefaciens, the pos-
sibility of stable genetic manipulation (Todesco
and De Felippes 2016), and the availability of a
draft genome (Bombarely et al. 2012; Naim et al.
2012). In addition, the ongoing development of
NGS techniques may further enhance the use of
N. benthamiana to study plant–pathogen inter-
actions. In the following sections, we describe
and discuss each of the uses and techniques
mentioned in this section.

14.4 Virus-Induced Gene Silencing
(VIGS)

This technique relies on the silencing machinery
of plants in order to be able to target the tran-
scripts of genes of interest (Burch-Smith et al.
2004). Tobacco rattle virus (TRV)-based vectors
are commonly used in numerous plant species,
particularly those belonging to the Solanaceae
family (Senthil-Kumar and Mysore 2014). VIGS
technology offers several advantages such as
rapid reverse genetic screens, mainly because the
time-consuming process of plant transformation
is avoided (Velasquez et al. 2009). VIGS also
allows the simultaneous knockdown of multiple
genes by selecting a single fragment with enough
homology to the target genes or by arranging
several fragments in a single construct (Miki
et al. 2005; Zhou and Zeng 2017). An important
general aspect of VIGS is the choice of a control
against which the target gene’s silencing perfor-
mance can be compared. An empty vector
(TRV2::00) is not recommended as a control,
rather TRV2 carrying an insert is preferred (Hartl
et al. 2008; Wu et al. 2011). Inserts derived from
green fluorescent protein (GFP) (Ryu et al.
2004), b-glucuronidase (Gonorazky et al. 2014),
or an Escherichia coli gene (Ec1) (Rosli et al.
2013) have been used previously. Another key
aspect of VIGS is the selection of an insert that
will effectively target the gene(s) of interest while
avoiding off-targets. The Sol Genomics Network
(SGN) VIGS Tool allows the interactive identi-
fication of most probable targets and off-targets,
thereby assisting in construct design

(Fernandez-Pozo et al. 2015a, b) (see the section
“Online resources for Nicotiana benthamiana” in
this chapter for more details). In N. benthamiana,
VIGS has been used to silence some target genes
(Kang et al. 2010; Choi et al. 2011; Liebrand
et al. 2012 Rosli et al. 2013; Pombo et al. 2014),
as well as large sets of candidate genes in a
high-throughput fashion (Chakravarthy et al.
2010; Zhu et al. 2010; Mantelin et al. 2011;
Rojas et al. 2012; Senthil-Kumar and Mysore
2012; Xu et al. 2012; Du et al. 2013; Lee et al.
2013; Nakano et al. 2013). The silencing step is
followed by a readout experiment that depends
on the particular process under study and may
involve transient protein expression and elicita-
tion of programmed cell death (PCD) (see
below), pathogen challenge (Asai et al. 2008;
Tanaka et al. 2009; Senthil-Kumar and Mysore
2010; Chaparro-Garcia et al. 2011; Kiba et al.
2012; Du et al. 2013; Ohtsu et al. 2014; Adachi
et al. 2015; Bruckner et al. 2017; Turnbull et al.
2017), reactive oxygen species (ROS) production
(Shibata et al. 2010; Segonzac et al. 2011; Deng
et al. 2016; Pfeilmeier et al. 2016; Saur et al.
2016), nitric oxide production (Zhang et al.
2010), and stomatal aperture measurement
(Zhang et al. 2012, 2016). Although N. ben-
thamiana is susceptible to many pathogens, it
may not be a host to the pathogen under study.
This has been overcome by engineering the
pathogen (Wei et al. 2007) or using a related
species that causes disease in N. benthamiana
(Yu et al. 2012; Yin et al. 2013; Wang et al.
2016). Chakravarthy et al. (2010) developed an
assay that can be used to test the effect of
silencing a candidate gene on the
pattern-triggered immunity (PTI) response. This
requires the infiltration of a PTI inducer (Pseu-
domonas fluorescens) and, a few hours later, a
second infiltration performed in an overlapping
manner with a challenger (Pseudomonas syr-
ingae pv. tomato, Pst). The speed of PCD pro-
gression in the overlapping area is related to the
functionality of PTI. The authors coupled this
assay with VIGS high-throughput screening and
identified genes involved in the PTI response.

Recently, Zhou and Zeng 2017 developed a
novel VIGS strategy to specifically and
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efficiently knockdown members of a highly
homologous gene family using fragments of
approximately 70 base pairs. The authors com-
bined the SGN VIGS Tool (Fernandez-Pozo
et al. 2015a, b) with a manual optimization step
to select the fragments in order to analyze func-
tional redundancy among members of a gene
family.

14.5 Transient Protein Expression
by Agroinfiltration

This technique uses Agrobacterium tumefaciens
carrying an expression vector system. Usually a
suspension is infiltrated into a leaf and within 1–
3 days the tissue is ready for downstream analysis
or treatment. The most commonly used vector
cloning methods rely mainly on Gateway (Life
Technologies, Carlsbad, CA, USA) (Karimi et al.
2002; Nakagawa et al. 2007) and type IIS
assembly-based technologies (Golden Gate and
GreenGate) (Engler et al. 2008; Lampropoulos
et al. 2013). Expression vectors allow the targeted
proteins to be expressed under different promot-
ers, depending on the final purpose of the
experiment. In plant–pathogen studies, transient
expression in N. benthamiana has been driven
mainly by the constitutive cauliflower mosaic
virus 35S (CaMV 35S) promoter (Kang et al.
2010; Anderson et al. 2012; Stirnweis et al. 2014;
Song et al. 2015; Saur et al. 2016) and in some
cases under the native promoter (Sato et al. 2014;
El Kasmi et al. 2017; Ramachandran et al. 2017).
Alternatively, when controlled timing of protein
expression was required or when prolonged pro-
tein expression could lead to detrimental effects,
gene expression was modulated by inducible
promoters (Stork et al. 2015; Hwang et al. 2017).
To study plant immunity, transient expression in
N. benthamiana has been followed mainly by
subcellular and tissue localization (Thiel et al.
2012; Rodriguez et al. 2014; Su et al. 2015;
Zhuang et al. 2016), protein–protein interactions
through co-immunoprecipitation (Co-IP) (Zhao
et al. 2013; Hurni et al. 2014; Kim and Hwang
2015; El Kasmi et al. 2017), bimolecular
fluorescence complementation (Sun et al. 2014;

Du et al. 2015; Liu et al. 2016) or luciferase
complementation imaging assay (Du et al. 2013),
effect on pathogen performance (Bae et al. 2011;
Medina-Hernandez et al. 2013; Song et al. 2015),
expression of immune-related or marker genes
(Nguyen et al. 2010; Li et al. 2014; Rodriguez
et al. 2014; Su et al. 2014; Chaparro-Garcia et al.
2015), electrolyte leakage (Yu et al. 2012; Teper
et al. 2014; Gupta et al. 2015), and ROS pro-
duction (Stork et al. 2015). Because N. ben-
thamiana does not respond with a ROS burst
when challenged with the microbe-associated
molecular pattern (MAMP) flgII-28 from flag-
ellin, transient overexpression of the tomato
receptor-like kinase flagellin-sensing FLS3 was
used to confer responsiveness to N. benthamiana
(Hind et al. 2016). The transient expression of a
mutated version of FLS3 showed that its kinase
activity was required for downstream signaling
associated with the flgII-28 ROS burst.

Transient protein expression in N. benthami-
ana also was employed to identify the receptor of
another MAMP from the bacterial cold shock
protein, the csp22 peptide (Saur et al. 2016).
Under the hypothesis that this receptor should
interact with the coreceptor BAK1 (that is part of
several activated receptor complexes) upon
csp22 challenge, BAK1 was expressed fused to a
GFP tag that was used for immunoprecipitation,
followed by liquid chromatography–mass spec-
trometry (LC-MS/MS). This strategy allowed the
identification of the N. benthamiana receptor-like
protein required for csp22 responsiveness,
NbCSPR.

Attachment of fatty acids as a
post-translational modification is important for
the regulation of protein location and is of par-
ticular interest in the study of plant–pathogen
interactions (Boyle and Martin 2015). In N.
benthamiana, transient protein expression cou-
pled with click chemistry has been exploited for
the detection of modifications such as
N-myristoylation and S-acylation of both patho-
gen and host proteins (Boyle et al. 2016).

Transient overexpression of the transcription
factor CabZIP63 from Capsicum annuum (pep-
per) in N. benthamiana leaves, followed by
chromatin immunoprecipitation combined with
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PCR, was used to study the transcriptional reg-
ulation that CabZIP63 exerted on CaWRKY40, a
transcription factor involved in the response to
the bacterial pathogen Ralstonia solanacearum
(Shen et al. 2016).

One of the most frequently used outcomes
following transient protein expression is the
observation of, usually macroscopic, PCD
symptoms (Kang et al. 2010; Cunnac et al. 2011;
Chronis et al. 2013; Mafurah et al. 2015). The
large N. benthamiana leaves allow testing several
elicitors using different concentrations or com-
binations. Coupled with VIGS, this approach has
been used to test if the targeted candidate gene
participates in PCD associated with highly
divergent types of pathogens, such as bacterium,
virus, nematode, and oomycete (Del Pozo et al.
2004; Oh and Martin 2011; Pombo et al. 2014).
This approach also has been used to test
PCD-suppressing activity of pathogen effectors
by co-infiltration with inducers of PCD (Teper
et al. 2014; Stork et al. 2015). The importance of
using appropriate controls in these types of
experiments has been highlighted by Adlung and
Bonas 2017 who found that some effectors
affected Agrobacterium tumefaciens performance
in leaf tissues, which could lead to overall lower
amounts of the PCD-eliciting protein than
expected.

Protein expression also has been used in
high-throughput approaches. A simple toothpick
method (Takken et al. 2000) coupled with the
observation of PCD development allowed the
identification of plant proteins involved in resis-
tance (Nasir et al. 2005; Coemans et al. 2008;
Takahashi et al. 2009). High-throughput transient
in planta expression assays were performed to
study the biological activities of pathogen effec-
tor proteins (Caillaud et al. 2012; Stam et al.
2013; Petre et al. 2015). The availability of
genome sequences from a variety of pathogens
allows the computational prediction of candidate
effector genes based on conserved host translo-
cation motifs and their presence in well-defined
genome regions (Pais et al. 2013). Cloning and
transient Agrobacterium-mediated expression of
candidate effectors can give valuable insights
into the virulence activities of effector proteins,

particularly regarding the suppression of host
plant immunity (Pais et al. 2013). Using this
approach named “effectoromics,” Petre et al.
2015 selected, cloned, and expressed 20 candi-
date effectors in N. benthamiana leaf cells to
determine their subcellular localizations and to
identify the plant proteins they interacted with,
through downstream experiments such as Co-IP
and mass spectrometry. A similar approach was
used for the phenotypic characterization of 84
members of a subclass of Phytophthora capsici
effectors, which allowed the identification of one
member that, when expressed in planta,
enhanced P. capsici virulence in N. benthamiana
(Stam et al. 2013). By transiently expressing 49
RxLR effector candidates (HaRxLs) of the fila-
mentous phytopathogen Hyaloperonospora ara-
bidopsidis fused to fluorescent tags in N.
benthamiana, two major classes of HaRxLs were
defined as those that accumulated in the plant cell
nucleus and those that accumulated in the plant
membranes. Functional analysis revealed that, in
particular, a membrane-localized effector,
HaRxL17, enhanced the susceptibility of N.
benthamiana to this pathogen (Caillaud et al.
2012).

14.6 Stable Genetic Manipulation

The technique has been used frequently in studies
of plant–virus interactions for stably overex-
pressing virus-derived transcripts by taking
advantage of post-transcriptional gene silencing
(PTGS) to generate N. benthamiana plants more
resistant to a pathogen (Ling et al. 2008; Reyes
et al. 2009). Plant PTGS machinery has been
exploited to improve resistance by overexpress-
ing transcripts derived from viral DNA fragments
(Lin et al. 2012), double-strand RNA from viral
replicase (Pavli et al. 2012), artificial microRNA
(Ali et al. 2013; Wagaba et al. 2016), and inter-
fering satellite RNA and RNA interference
(RNAi) (Montes et al. 2014). Expression of a
whitefly GroEL chaperonin, a protein that can
bind to several viruses, produced N. benthamiana
plants more tolerant to tomato leaf curl virus and
cucumber mosaic virus (Edelbaum et al. 2009).
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Broad-spectrum resistance was explored using
stable expression of artificial transcript
activator-like effectors, assembled based on
highly conserved regions within begomovirus
genomes, that conferred partial resistance to three
begomoviruses tested (Cheng et al. 2015). The
CRISPR/Cas9 system (clustered regulatory
interspaced short palindromic
repeat/CRISPR-associated DNA endonuclease
9), which revolutionized plant and animal gen-
ome editing (Samanta et al. 2016), has been used
successfully in N. benthamiana (Nekrasov et al.
2013; Li et al. 2013). CRISPR/Cas9 N. ben-
thamiana plants with an inactivated Argonaute 2
gene were used to investigate broad range resis-
tance, which showed that the Argonaute 2 pro-
tein had antiviral activity against at least three
viruses in a virus-specific manner (Ludman et al.
2017). Stable plastid protein expression
(transplastomics) in N. benthamiana using a
plastid-transformation vector and biolistic was
employed to express multiple defense genes
(Chen et al. 2014). The results showed that a
combination of sweet potato sporamin, taro
cystatin, and chitinase from Paecilomyces
javanicus conferred broad-spectrum resistance
against insects, pathogens, and abiotic stresses.

As mentioned in the “Transient protein
expression by agroinfiltration” section, N. ben-
thamiana has been used to study the molecular
mechanisms of pathogen effectors. Plasmopara
viticola effectors with immune-suppressing
activities have been identified by combining
transient and stable protein expression. In par-
ticular, the overexpression of the effector
PvRxLR28 in N. benthamiana and grapevine
produced plants with enhanced susceptibility to
this oomycete (Xiang et al. 2016). Interestingly,
the stable overexpression of two Phytophthora
sojae effectors enhanced disease resistance and
tolerance to salt and drought stresses in N. ben-
thamiana plants (Rajput et al. 2015; Zhang et al.
2015). These results suggested the possible use
of these effectors in crop breeding strategies.

A good degree of conservation of certain
molecular pathways, which allows interfamily

gene transfer, has been key to the use of N.
benthamiana in plant–pathogen studies. For
example, stably expressed proteins from Ara-
bidopsis thaliana (Lacombe et al. 2010; Nar-
usaka et al. 2013; Huang et al. 2014; Wang et al.
2016), tomato (Rommens et al. 1995), and cotton
(Lu et al. 2013; Li et al. 2014; Xu et al. 2014)
were shown to have functional roles in N. ben-
thamiana immunity. A pathogen-induced
nucleotide-binding (NB)-leucine-rich repeat
(LRR) candidate gene from Vitis amurensis was
stably overexpressed in N. benthamiana (Li et al.
2017) and the transgenic plants were more
resistant not only to the oomycete Plasmopara
viticola, but also to drought and salt stresses,
suggesting that the NB-LRR protein may have
immune and non-immune roles.

Some stably modified N. benthamiana lines
have been employed as tools to study the plant
immune response. Line SLJR15 expresses the
reporter protein Aequorin (Knight et al. 1993),
which allows cytoplasmatic Ca2+ dynamics to be
studied through luminescence imaging (Segon-
zac et al. 2011; Saur et al. 2016). Line 16c, which
expresses Aequorea victoria GFP targeted to the
endoplasmic reticulum (Ruiz et al. 1998), is the
most frequently used N. benthamiana line, in
particular, to study small RNAs (Philips et al.
2017). Using NGS, the T-DNA insertion region
was identified in line 16c and, surprisingly, a
portion of a bacterial transposon was found to
have co-integrated with this insertion, raising the
concern that such events may occur in lines
designed for commercial use (Philips et al.
2017). A Cas9-overexpressing (Cas9-OE) N.
benthamiana line was developed as part of a
virus-mediated genome editing system (Ali et al.
2015). In these plants, the DNA endonuclease
Cas9 is stably overexpressed under the 35S
promoter, and the single guide RNA (sgRNA),
which determines the target sequence, is sys-
temically delivered via tobacco rattle virus (Ali
et al. 2015). This approach was used to rapidly
test different sgRNAs to confer better immunity
more efficiently against the DNA virus, tomato
yellow leaf curl virus.
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14.7 Transcriptomics Analysis
of Plant–Pathogen
Interactions Using
N. benthamiana

Before a microarray derived entirely from N.
benthamiana expressed sequence tags (EST) was
developed, potato cDNA arrays were used to
determine changes in gene expression in response
to virus infection (Senthil et al. 2005; Dardick
2007). Subsequently, a N. benthamiana microar-
ray was developed and used to comparatively
analyze gene expression changes in response to
the necrotrophic Pectobacterium carotovorum
and hemibiotrophic Pst DC3000 bacteria (Kim
et al. 2011). Analysis of the data showed that the
transcriptomic expression profiles of N. ben-
thamiana in response to P. carotovorum were
similar to those in response to a mutated Pst
DC3000 without a type III secretion system.

The development of NGS techniques and the
availability of a draft genome (Bombarely et al.
2012; Naim et al. 2012) may further enhance the
use of N. benthamiana as a model plant. So far,
the Illumina RNA-Seq approach has been used to
analyze changes in messenger RNA (mRNA) or
small RNA levels. High-throughput small RNA
sequencing was used to study the effectiveness of
different RNA silencing approaches in the con-
trol of virus infections based on the expression of
large virus-derived sequences (Montes et al.
2014; Zhao et al. 2015). NGS also was employed
to identify and characterize microRNAs involved
in the N protein-mediated immune response to
tobacco mosaic virus (Yin et al. 2015). RNA-Seq
was recently used for the identification of a set of
stably expressed genes in N. benthamiana which
were validated as reference genes for reverse
transcription-quantitative PCR (qPCR) in plant–
bacteria interaction experiments (Pombo et al.
2019).

The use of integrated omics, which included
RNA-Seq analysis of healthy and Odontoglos-
sum ringspot virus (ORSV)-infected N. ben-
thamiana leaves combined with proteomics,
allowed the identification of putative host pro-
teins that interacted with ORSV capsid protein,
which is important for viral long-distance

movement in N. benthamiana (Lin et al. 2015).
Recently, transcriptomic differences detected
between mock-treated and Phytophthora para-
sitica-inoculated N. benthamiana leaves pro-
vided broad insights into N. benthamiana
defense mechanisms against this oomycete
pathogen (Shen et al. 2016).

14.8 Online Resources for Nicotiana
benthamiana

Many online resources are available for N. ben-
thamiana ranging from bioinformatics tools and
sequence databases to germplasm collections.
Some of the most relevant of these resources are
summarized in Table 14.3.

The three main genomics and transcriptomics
resources for N. benthamiana sequences and
annotations are the Queensland University of
Technology (QUT) database, the SGN, and
NCBI’s GenBank. The data in the QUT database
are based mostly on the Nbv0.5 genome assem-
bly and transcriptomes v5.1 and v6.1 from Naim
et al. 2012. The main features and tools in this
database are BLAST and keyword searches, data
downloading, genome browsing, expression
visualization, and a transcript lookup tool to find
corresponding transcripts among the four gen-
ome assemblies (Niben1.0.1, Niben0.4.4,
Nbv0.5, and Nbv0.3) of Bombarely et al. (2012)
and Naim et al. (2012). The SGN contains
resources and tools for Niben0.4.4 and
Niben1.0.1 (Bombarely et al. 2012). The
sequences, annotations, and proteomics resources
from these genome versions are available for
downloading and the data also can be queried in
BLAST and JBrowse (genome browser) tools.
The SGN also hosts the SGN VIGS Tool (see
below) and SolCyc, a bioinformatics tool to
visualize metabolic pathways based on genes
from Solanaceae species. GenBank is a large
database that contains sequences, annotations,
scientific publications, and much more informa-
tion for all species. Links to the most useful
NCBI resources for N. benthamiana can be
found on the N. benthamiana page in NCBI’s
Taxonomy Browser (https://www.ncbi.nlm.nih.
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gov/Taxonomy/Browser/wwwtax.cgi?id=4100).
In addition to these three web portals, the Boyce
Thompson Institute (BTI) N. benthamiana web-
site (https://btiscience.org/our-research/research-
facilities/research-resources/nicotiana-
benthamiana/) has a collection of links to bioin-
formatics tools and experimental protocols and
resources for N. benthamiana.

Two bioinformatics tools, CRISPR-P and
CCTop, provide support to design targets for
genome editing using CRISPR with Niben0.4.4
and Niben1.0.1, respectively, as the reference
genomes (see Table 14.3).

VIGS is an important and efficient tool for
functional genomics in N. benthamiana (see the
“Virus induced gene silencing (VIGS)” section).
Several resources for designing and performing
VIGS analysis in N. benthamiana are available,
including, for example, the SGN VIGS Tool
(Fernandez-Pozo et al. 2015), the VIGS database
(Senthil-Kumar and Mysore 2014), and a video
titled “Virus-induced gene silencing (VIGS) in
Nicotiana benthamiana and tomato” (Velasquez
et al. 2009). The SGN VIGS Tool assists in the
design of VIGS constructs based on Niben1.0.1
or Niben0.4.4 using an interactive and intuitive

Table 14.3 Online resources for N. benthamiana

Resource Type URL

The Plant List Taxonomic/Systematics http://www.theplantlist.org/tpl1.1/record/kew-
2382877

TimeTreea Taxonomic/Systematic http://timetree.org/

GBIF Populations/Natural occurrences https://www.gbif.org/species/3800423

Atlas of Living
Australia

Populations/Natural occurrences http://bie.ala.org.au/species

GRIN Germplasm collections https://npgsweb.ars-grin.gov/gringlobal/
taxonomydetail.aspx?25258

IPK Gatersleben Germplasm collections https://gbis.ipk-gatersleben.de/

NCBI/GenBankb Molecular/Genomics/Literature https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/
wwwtax.cgi?id=4100

QUT N.
benthamianac

Molecular/Genomics/Transcriptomics http://benthgenome.qut.edu.au/

Sol Genomic
Networkd

Molecular/Genomics/Transcriptomics https://solgenomics.net/organism/Nicotiana_
benthamiana/genome

miRNESTe MicroRNAs and predicted targets http://rhesus.amu.edu.pl/mirnest/copy/browse.php

SolCycf Metabolic pathways https://solgenomics.net/tools/solcyc/index.pl

CRISPR-Pg Biotechnology (CRISPR) http://crispr.hzau.edu.cn/CRISPR/

CCToph Biotechnology (CRISPR) https://crispr.cos.uni-heidelberg.de/

VIGS databasei Biotechnology (VIGS) https://vigs.noble.org/

SGN VIGS
Toolj

Biotechnology (VIGS) http://vigs.solgenomics.net/

JOVE VIGS
videosk

Biotechnology (VIGS) https://www.jove.com/video/1292/virus-induced-
gene-silencing-vigs-in-nicotiana-benthamiana-and-
tomato

BTI N.
benthamiana

Biotechnology https://btiscience.org/our-research/research-facilities/
research-resources/nicotiana-benthamiana/

iGEM
Foundation

Biotechnology (Synthetic biology) http://parts.igem.org/Collections/Plants#Nicotiana_
benthamiana

aKumar et al. (2017); bBenson et al. (2004); cNakasugi et al. (2013); dFernandez-Pozo et al. (2015a, b); eSzczesniak and
Makalowska (2014); fFoerster et al. (2018); gLei et al. (2014); hStemmer et al. (2015); iSenthil-Kumar and Mysore
(2014); jFernandez-Pozo et al. (2015a, b); kVelasquez et al. 2009)
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interface. This tool predicts the best target of a
gene of interest, thereby allowing the design of
constructs to silence multiple genes and mini-
mizing the silencing of off-target genes.
The VIGS database contains phenotypic infor-
mation for a large number of genes silenced in N.
benthamiana. Currently, the database contains
about 1,300 descriptions and/or photographs of
gene-silenced plants as well as sequence infor-
mation of about 4,500 ESTs used for VIGS. This
database also includes keyword and BLAST
searches to explore all the resources.

Another resource of interest for biotechnology
is the International Genetically Engineered
Machine (iGem) Foundation’s Registry of Stan-
dard Biological Parts for N. benthamiana (http://
parts.igem.org/Collections/Plants#Nicotiana_
benthamiana), which provides a collection of
expression constructs, reporters, promoters, and
other elements tested or that could be used in N.
benthamiana.

More information about N. benthamiana tax-
onomic resources, populations and natural
occurrence, and germplasm collections can be
found in the links provided in Table 14.3.
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