®

Check for
updates

Induction in Saturation-Based Proof
Search

Giles Reger'®) and Andrei Voronkov'2

! University of Manchester, Manchester, UK
giles.reger@manchester.ac.uk

2 EasyChair, Manchester, UK

Abstract. Many applications of theorem proving, for example program
verification and analysis, require first-order reasoning with both quanti-
fiers and theories such as arithmetic and datatypes. There is no complete
procedure for reasoning in such theories but the state-of-the-art in auto-
mated theorem proving is still able to reason effectively with real-world
problems from this rich domain. In this paper we contribute to a miss-
ing part of the puzzle: automated induction inside a saturation-based
theorem prover. Our goal is to incorporate lightweight automated induc-
tion in a way that complements the saturation-based approach, allowing
us to solve problems requiring a combination of first-order reasoning,
theory reasoning, and inductive reasoning. We implement a number of
techniques and heuristics and evaluate them within the Vampire theo-
rem prover. Our results show that these new techniques enjoy practical
success on real-world problems.

1 Introduction

Saturation-based proof search has been the leading technology in automated
theorem proving for first-order logic for some time. The core idea of this app-
roach is to saturate a set of clauses (including the negated goal) with respect to
some inference system with the aim of deriving a contradiction and concluding
that the goal holds. Over the last few years this technology has been extended to
reason with both quantifiers, and theories such as arithmetic and term algebras
(also known as algebraic, recursive or inductive datatypes), making it highly
applicable in areas such as program analysis and verification, which were previ-
ously the sole domain of SMT solvers. However, so far little has been done to
extend saturation-based proof search with automated induction. Most attempts
to date have focussed on using saturation-based methods to discharge subgoals
once an induction axiom has been selected.

The aim of this work is to extend saturation-based proof search with
lightweight methods for automated induction where those techniques are inte-
grated directly into proof search i.e. they do not rely on some external procedure

This work was supported by EPSRC Grant EP/P03408X /1. Andrei Voronkov was also
partially supported by ERC Starting Grant 2014 SYMCAR 639270 and the Wallenberg
Academy Fellowship 2014 — TheProSE.

© Springer Nature Switzerland AG 2019

P. Fontaine (Ed.): CADE 2019, LNAI 11716, pp. 477-494, 2019.
https://doi.org/10.1007/978-3-030-29436-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29436-6_28&domain=pdf
https://doi.org/10.1007/978-3-030-29436-6_28

478 G. Reger and A. Voronkov

to produce subgoals. We achieve this by the introduction of new inference rules
capturing inductive steps and new proof search heuristics to guide their appli-
cation. Our approach is based on the research hypothesis that many problems
requiring induction only require relatively simple applications of induction.

Example 1. As an introductory example, consider the problem of proving the
commutativity of (VaVy)plus(z,y) =~ plus(y,), where x and y range over natural
numbers. We now briefly described how this approach will handle this problem.

When we Skolemise its negation, we obtain the clause plus(og,01) #
plus(oy,00). In this paper, we will denote by o; fresh Skolem constants intro-
duced by converting formulas to clausal form.

Our approach will immediately apply induction to oy in the negated conjec-
ture by resolving this clause with the (clausal form of the) induction axiom

plus(zero, o1) = plus(oy,zero)A

lus(z,01) = plus(oy,2) — — (Va)plus(z, 01) ~ plus(oq, x)
(¥2) (Sluz(succ(z),;)s% pIus(al,succ(z))> P o

to produce the following subgoals:

plus(zero, o1) % plus(oy,zero)V plus(succ(oz),01) % plus(oy, succ(oz)) (1)
plus(zero, o1) # plus(oy,zero)V plus(o1,02) ~ plus(oz, o1)

Clause splitting is then used to split the search space into two parts to be con-
sidered separately. This splitting is important to our approach and can be used
in any saturation theorem prover implementing some version of it, for example
using splitting with backtracking as in SPASS [24] or the AVATAR architecture
as in Vampire [22]. The first part contains plus(zero, o1) % plus(cy,zero) and is
refuted by deriving plus(oy,zero) % o using the definition of plus and applying
a second induction step to o; in this clause. By resolving with a similar induc-
tion axiom to before, the following clauses are produced and are refuted via the
definition of plus and the injectivity of datatype constructors.

zero % plus(zero, zero)V succ(os) # plus(succ(os), zero)
zero % plus(zero, zero)V plus(os, zero) ~ o3

The second part of the clause splitting then contains the other half of the clauses
given above. Superposition is then applied to these clauses and the axioms of
plus to derive

succ(plus(oy,02)) % plus(oy, succ(os))

and a third induction step is applied to this clause on ¢1. The resulting subgoals
can again be refuted via the definition of plus and the injectivity of datatype
constructors.

While inductive reasoning in this example may seem to be the same as
in almost any other inductive theorem prover, there is an essential difference:
instead of reducing goals to subgoals using induction and trying to prove these

Induction in Saturation-Based Proof Search 479

subgoals using theory reasoning or again induction, we simply consider induction
as an additional inference rule adding new formulas to the search space. In a way,
every clause generated during the proof search becomes a potential target for
applying induction and induction becomes integrated in the saturation process.

In this example there were three applications of induction to ground unit
clauses in the search space, however our implementation performs 5 induction
steps with 2 being unnecessary for the proof. This is typical in saturation-based
proof search where many irrelevant consequences are often derived. This is an
important observation; our general approach is to derive consequences (inductive
or otherwise) in a semi-guided fashion, meaning that we may make many unnec-
essary induction steps. However, this is the philosophy behind saturation-based
approaches.

During proof search for this example it was necessary to (i) decide which
clauses to apply induction to, (ii) decide which term within that clause to apply
induction to, and (iii) decide how to apply induction. We address issues (ii) and
(iii) in this paper, whilst relying on the clause selection techniques of saturation-
based theorem provers for (i). We begin in Sect. 2 by introducing the necessary
preliminary definitions for the work. In Sect.3 we address (iii), how we apply
induction, through the introduction of a set of new inference rules. In Sect. 4
we consider (ii) through a number of heuristics for selecting goals for induction.
Then in Sect. 5 we show how standard clause splitting techniques can be used in
our induction proofs (without any additional work) for case splitting. Section 6
describes implementation and experimental evaluation. We then consider related
work in Sect. 7 before concluding in Sect. 8.

2 Preliminaries

Multi-sorted First-Order Logic. We consider standard multi-sorted first-order
predicate logic with equality. We allow all standard boolean connectives and
quantifiers in the language. We denote terms by s, ¢, variables by z, y, z, constants
by a, and function symbols by f. We consider equality = as part of the language,
that is, equality is not a symbol. An atom is an equality or a predicate applied
to a list of terms. A literal is an atom A or its negation —A. Literals that are
atoms are called positive, while literals of the form —A are negative. If L = - A
is a literal we write —L for the literal A. A clause is a disjunction of literals
LiV...V L,, where n > 0. When n = 0, we will speak of the empty clause,
denoted by [J. We denote atoms by A, literals by L, clauses by C, and formulas
by F, all possibly with indices. Formulas can be clausified (transformed into a
set of clauses) via standard techniques (e.g. [13] and our recent work in [15]).
We write clausify(F’) for the set of clauses obtained from F by clausification.

By an expression E we mean a term, atom, literal, or clause. We write E|t]
to mean an expression E with a particular occurrence of a term ¢ and then F[s]
for that expression with the particular occurrence of ¢ replaced by term s.

A multi-sorted signature is a finite set of symbols and a finite set of sorts
with the accompanying function srt providing sorts for the symbols.

480 G. Reger and A. Voronkov

The Theory of Finite Term Algebras. In this paper we consider induction for
finite term algebras, also known as algebraic, inductive, or recursive datatypes.
A definition of the first-order theory of term algebras over a finite signature can
be found in e.g. [17] and a description of how saturation-based proof search may
be extended to reason with such structures is given in [9]. Let X be a finite set of
function symbols containing at least one constant. Denote by 7 (X) the set of all
ground terms built from the symbols in 2. The X-term algebra is the algebraic
structure whose carrier set is 7 (X') and defined in such a way that every ground
term is interpreted by itself (we leave details to the reader).

We will often consider extensions of term algebras by additional symbols.
Elements of X will be called term constructors (or simply just constructors),
to distinguish them from other function symbols. We will differentiate between
recursive constructors that are recursive in their arguments and base construc-
tors that are not. Where we wish to differentiate we may write 7(Xp, X'r) for
base constructors X' and recursive constructors Y.

In practice, it can be useful to consider multiple sorts, especially for problems
taken from functional programming. In this setting, each term algebra construc-
tor has a type 7 X -+ X 7, — 7. The requirement for at least one constant is
replaced by the requirement that for every sort, there exists a ground term of
this sort. We also consider theories, which mix constructor and non-constructor
sorts. That is, some sorts contain constructors and some do not (e.g. arithmetic).

Finally, we associate n destructor (or projection) functions with every con-
structor ¢ of arity n such that each destructor returns one of the arguments of
c. Note, that the behavior of destructors is unspecified on some terms.

Example 2. We introduce two term algebras. Firstly, that of natural numbers
nat := zero | succ(dec(nat))
and secondly that of integer lists
list := nil | cons(hd(Int), tail(list)).
Note that this second term algebra relies on a built-in integer sort.

Saturation-Based Proof Search. An important concept in this work is that of
saturation with respect to an inference system. Inference systems are used in
the theory of superposition [12] implemented by several leading automated first-
order theorem provers, including Vampire [10] and E [18]. Superposition theo-
rem provers implement proof-search algorithms in S using so-called saturation
algorithms, as follows. Given a set S of formulas, superposition-based theorem
provers try to saturate S with respect to S, that is build a set of formulas that
contains S and is closed under inferences in S. At every step, a saturation algo-
rithm selects an inference of S, applies this inference to S, and adds conclusions
of the inferences to the set S. If at some moment the empty clause [is obtained,
by soundness of S, we can conclude that the input set of clauses is unsatisfiable.
Figure 1 gives a simple saturation algorithm. This is missing an important notion

Induction in Saturation-Based Proof Search 481

input: Init: set of clauses;

var active, passive, unprocessed: set of clauses; var given, new: clause;
active := &; unprocessed := Init;
loop
while unprocessed # &
new :=pop(unprocessed);
if new = O then return unsatisfiable;
add new to passive
if passive = @ then return satisfiable or unknown

given := select(passive); (* clause selection *)
move given from passive to active;

dzi . S " o %
unprocessed : =infer(given, active); (* generating inferences *)

Fig. 1. Simple saturation algorithm.

of redundancy. We have omitted this as it does not interact with the elements
of proof search we consider here. However, it is core to the implementation in
the Vampire theorem prover. It is important to note that the only way to guide
proof search is via how we select clauses and how we perform inferences on them.

3 Performing Induction

This section introduces inference rules for induction on term algebras.

3.1 General Approach

We begin by describing our general approach. The idea is to add inference rules
that capture the application of induction to the selected clause in proof search.
These inference rules will be applied during proof search to selected clauses in
the same way as other inference rules such as resolution. We define an induction
aziom to be any valid (in the underlying theory) formula of the form

formula — (Vx)(L[z]).

For simplicity we assume that this formula is closed, leaving out the general
case due to the lack of space. The idea is to resolve this with a clause =L[t] V C
obtaining formula — C. Again, for simplicity we assume that ¢ is a ground term.
As long as the induction axiom is valid, this approach is always sound. If the
resulting formula is not a clause, it should then be converted to its CNF.

The idea is that L[t] is a (sub)goal we are trying to prove (by induction).
This is an interesting point. Typically, saturation-based proof search is not goal-
oriented (although one can introduce heuristics that support this) but this app-
roach to induction is goal-oriented in nature as the conclusion of an induction
inference is a subgoal that, if refuted, proves the goal represented by the premise.
Also, similar to [6] by resolving the induction axiom to reduce the goal to sub-
goals we bypass the literal selection used in saturation algorithms. This means

482 G. Reger and A. Voronkov

that, if we would just add the (clausal form of) the induction axiom to the search
space, we would most likely never use it to resolve against the goal in the same
way as above since the literal L[z] would not necessarily be selected.

Below we consider two different kinds of induction axioms, introducing three
inference rules, parametrised by some (general) term algebra. To formalise the
selection of goals that can be proved by induction we introduce a predicate
sel(C, L, t) that is true if C is clause, L a literal in C and ¢ a term in L. We will
call this predicate the induction heuristic since it will be used to decide when
induction should be applied. In this case we will informally say that ¢ is the
induction term and L the induction literal in C.

Here we concentrate on how induction should be performed once an induction
term and literal have been selected. Section 4 discusses choices for selection.

3.2 Structural Induction

We begin by motivating the inference rule by the simple example of inductively
proving that the length of a list is non-negative.

Ezample 8 (Structural Induction on Lists). Consider the following conjecture
(Vz : list)(len(z) > 0) for integer lists (defined in Example2) given the axioms
len(nil) ~ 0 and (Vz : Int,y : list)(len(cons(z,y)) =~ 1+ len(y)) for the len
function. To prove this conjecture we must first negate it to get —(len(c) > 0)
and then introduce the induction axiom

len(nil) > 0 A (Vz,y)(len(z) > 0 — len(cons(y, x)) > 0) — (Vz)(len(z) > 0)

which is then resolved against —(len(c) > 0) to give, after conversion to CNF,

fvo clauses =(len(nil) > 0) Vlen(cy) >0
—(len(nil) > 0) V = (len(cons(o2,01)) > 0),

which can be refuted using the axioms for len. The question now is what inference
rule is needed for performing the above induction step. To do so, we define the
induction heuristics sel(C, L, t) to hold when L is the only literal in C and ¢ is a
constant of the sort list. This rule effectively results in the following inferences
performed by a saturation theorem prover:

- Ald]
=A[nil] vV Alo4]
—Alnil] vV ~A[cons(o2, 01)]

where a is a constant, Ala] is ground, srt(a) = list and o1, 09 are fresh constants.

3.3 Well-Founded Induction

Suppose that x > y is any binary predicate that is interpreted as a well-founded
relation (which is not necessarily an ordering). We require both arguments of >~

Induction in Saturation-Based Proof Search 483

to be of the same sort. Then the following is a valid formula, which represents
well-founded induction on this relation:

Va(-L[z] — Jy(x = y A —-L[y])) — Ve L[z].
When we skolemize this formula, we obtain two clauses
—L[o1] V L[z] -0y =y V Ly V L]
We can use the following two equivalent clauses instead:
—Lo1] V L[] —o1 =y V Ly (2)

Well-founded induction is the most general form of induction (though in
practice it can only be used when the relation > can be expressed in the first-
order language we are using). We are interested in finding special cases of well-
founded induction for term algebras. There are two obvious candidates for it:
the immediate subterm relation »=; and the subterm relation discussed in the
sequel.

Let us begin with the immediate subterm relation. Note that the relation >
must have both arguments of the same sort, so the corresponding induction rule
will only be useful for term algebras where at least one argument of a constructor
has the same sort as the constructor itself. Fortunately, this is the case for the
three most commonly used inductive data types: natural numbers, lists and trees.

Let us provide a complete axiomatisation of the immediate subterm relation
>1 first for natural numbers and lists:

—(zero 1 x) =(nil =1 x)
succ(z) =1y ax~y cons(z,y) =1z oy~ z

The subterm relation is generally not axiomatisable. However, this is not a
problem in general, since we can use as an incomplete axiomatisation of the
subterm relation any set of formulas which are true on this relation (though this
restricts what can be proved about the relation). If we then prove anything using
this set of formulas, then our proof will be correct for the subterm relation too,
which makes the corresponding induction rule valid too.

We can generalise the immediate subterm and subterm relation also to trees
and some other (but not all!) inductively defined types. We do not include general
definitions here as they become very involved with multiple sorts and mutually
recursive type definitions.

3.4 Inductive Strengthening

We now consider a different form of induction axiom (inspired by [16]).

Ezample 4. Given the negated conjecture —(len(o1) > 0) given in Example 3 we
consider a different way in which to inductively demonstrate L[z] and thus refute
this claim. The idea here is to argue that if there does not exist a smallest list

484 G. Reger and A. Voronkov

of non-negative length then the length of all lists is non-negative. This can be
captured in the induction axiom

~(len(z) > 0)A
—(3x) <(Vy)(subtermlist(x,y) — len(tail(y)) > 0)> — (Vz)(len(z) > 0)

where subtermy;(x,y) is true if y is a subterm of x of list sort. However, as
argued in [9], the subterm relation needs to be axiomatised and these axioms
(which include transitivity) can have a large negative impact on the search space.
Therefore, we can consider two alternative inductive axioms. The first is the weak
form where we consider only direct subterms of x as follows.

=(len(z) > 0)A
~(32) ((x = cona(hd(2), tail(z)) — len(tail(z)) > 0)> = (V) (len(y) 2 0)

This is clausified as

len(z) > 0V —(len(oz) > 0)
len(z) > 0V g % cons(hd(o2), tail(o2)) V len(tail(o2)) > 0

which can be resolved against the conjecture —(len(oq) > 0) as before.

The second (taken from [9]) is where we represent the subterm relation in a
way that is more friendly to saturation-based theorem provers i.e. we introduce
a fresh predicate less, and then add axioms such that it holds for exactly those
terms smaller than the existential witness x. This can be written as follows.

—(len(z) > 0) A (Vz)(less,(2) — len(z) > 0)
—(3z) | A (z =~ cons(hd(x),tail(x)) — less,(tail(z))) A | — (Vy)(len(y) > 0)
(Vy)(less; (cons(hd(y), tail(y))) — less, (tail(y)))

Again, the specific approach taken in this example can be generalised to the
arbitrary term algebra ta = 7 (X'p U XR). The existential part ezists;q (L) of the
general induction axiom can be given as

(3z) | —Lx] A /\ (@=con(....di(x),...) = Lldj(x)])

con(...,di,...)€EXr j€Erec(con)
for the first approach and as
=L[z] A (Vz)(less(z) — L[z]) A
(3)

/\con<,..,di,...)eER /\je,ec(mn) z =~ con(...,di(x),...) — lessy(dj(z)) A
(vy) (/\con(.“,di,.“)EZ‘R /\jErec(con) |€SSIZ(COH(,) dl(y)? t)) - Iessz (dJ (y)))

for the second approach. The general induction rule then becomes
Lit)vC
clausify(existsiq (—L) V C)

for ground literal L[t], clause C and term t, where srt(t) = ta and sel(L[t] V
C,Llt],t).

Induction in Saturation-Based Proof Search 485

One could consider an optimisation where this approach is applied directly to
the input (as is done in [16]). However, this would introduce induction axioms
too early in proof search i.e. it goes against the saturation-based philosophy.
One could also consider reusing Skolem constants instead of introducing new
ones where t in the above rule is already a Skolem constant. However, this could
only be done for each Skolem constant at most once.

Table 1. Illustrating the induction inference schemas for the rbtree term algebra.

LitjvC
C' V Llempty| V L[leaf(c1)] V = L[o4] V = L[o2]
C'V Llempty| V Lleaf (01)] V = L[o4] V = L[os]
C'V Llempty| V L{leaf(01)] V = L[o7] V =L[o2]
C'V Llempty| V Lileaf(01)] V = L[o7] V = L[os]
C' V Llempty| V L[leaf(c1)] V L|black(os, o7, 04)] V = L[o2]
C V Llempty| V L{leaf(c1)] V L|black(cs, 07, 04)] V = L[os]
C' V Llempty| V Llleaf(c1)] V L{red(os, 02, 06)]] V —L[o7]
C' V Llempty| V Llleaf(c1)] V L{red(os, 02,06)] V —L[o4]
C'V Llempty] V Lleaf(c1)] V L|black(cs, 07,04)] V Lired(0os, 02, 06)]

LitjvC

C V red(rval(o1), rleft(o1), rright(c1)) % o1 V —L[rleft(o1)]

C V red(rval(c1), rleft(o1), rright(o1)) % o1 V = L[rright(o1)]
C'V black(bval(c1), bleft(a1), bright(c1)) % o1 V —L[bleft(o1)]
C'V black(bval(o1), bleft(o1), bright(c1)) % o1 V —L[bright(o1)]
cv L[O’l]

‘ Approach Three ‘

LitjvC

CcvVv L[O’l}

C' V —lessy (z) V = L[x]

C V red(rval(o1), rleft(cn)7 rright(o1) % o1 V lessg (rleft(o1))

C V red(rval(o1), rleft(o1), rright(o1) 5 o1 V lessg (rright(o1))
C'V black(bval(o1), bleft(o1), bright(o1) % o1 V lessz (bleft(o1))
C' V black(bval(c1), bleft(o1), bright(o1) % o1 V lessg (bright(o1))
C' V —lessy (red(rval(x), rleft(x), rright(z))) V lessz (rleft(x))

C'V —lessy (red(rval(x), rleft(z), rright(z))) V less, (rright(x))

C' V —less, (black(bval(z), bleft(z), bright(z))) V less, (bleft(x))
C' V —less, (black(bval(x), bleft(z), bright(z))) V less, (bright(x))

486 G. Reger and A. Voronkov

3.5 Comparing the Approaches with an Example

To illustrate the differences in the clauses produced by the above three
approaches we give, in Table 1, the introduced inference rules instantiated with
ta = rbtree defined as

rbtree := empty | leaf(lval(Int)) | red(rval(Int), rleft(rbtree), rright(rbtree))
| black(bval(Int), bleft(rbtree), bright(rbtree))

This covers all the important cases from above (i) non-zero arity base construc-
tors, and (ii) multiple base and multiple recursive constructors. Notice how the
structural induction rule, in this case introduces 7 new Skolem constants and
9 clauses (although this could be slightly optimised here) whilst the inductive
strengthening approaches introduce one Skolem constant.

4 Selecting Where to Apply Induction

We now consider how to define various induction heuristics.

4.1 Goal-Directed Search

In our introductory example (Example 1, proving commutativity of addition) we
(usefully) applied induction three times. The first time was directly to the goal
and the second two times were to unit clauses derived directly from the result of
this first induction. We hypothesise that this is a typical scenario and introduce
heuristics for this common case. An important observation is that an implicative
universal goal becomes a set of unit ground clauses once negated.

Unit Clauses. A unit clause represents a single goal or subgoal that, if refuted,
will lead to a final proof. Conversely, applying the above induction inference
rules to non-unit clauses will lead to applications of induction that may not be
as general as needed. This selection can be defined as follows for some literal
L[t] and term t.

sely(L[t], L[t], t)

Negative Literals. Typically, goal statements are positive and therefore proof
search is attempting to derive a contradiction from a negative statement. Apply-
ing induction to a negative statement leads to a mixture of positive and nega-
tive conclusions. As we saw in the introductory example, it is common to apply
further induction to the negative conclusions. This selection can be defined as
follows for clause C', atom A and term ¢.

seln(C Vv —A[t], —A[t], t)

However, it is easy to see cases where this is too restrictive. For example, the
goal from Example 3 could have been rewritten as (Vz)(—(len(z) < 0)) and the
negated goal on which induction should be performed would have been positive.

Induction in Saturation-Based Proof Search 487

Constants. Given a purely universal goal, the terms of interest will be Skolem
constants (whether this Skolemisation occurred within the solver or not) and
terms introduced by induction for repeated induction are also typically Skolem
constants. Therefore, to restrict application of induction to this special case,
we can restrict it to constants only. This selection can be defined as follows for
clause C, literal L and constant a.

sele(C V Lia), La], a)

Special Symbols. The goal will typically contain the symbols on which induction
should be performed. Additionally, further induction steps are often performed
on the Skolem constants introduced by a previous induction. We define a selec-
tion predicate parameterised by a set of symbols « as follows for clause C), literal
L and term t.

selo (CV L[t], Lt],t) & (t = f(t1,...,tn) = fEQ)A(t=a—a €)

and define the functions selg and sel; for sets of goal symbols G and induction
Skolem constants I.

The sel function is defined as any conjunction of zero or more of the above
with the trivial selection function that is true on all inputs of term algebra sort.

4.2 Inferring Goal Clause(s)

One issue with the above heuristics is that we may not have an explicit goal in
our input problem. Indeed, SMT-LIB [1] has no syntax for indicating the goal
(unlike TPTP [21]). To address this we define a notion of goal symbol that is
independent of the notion of an explicit goal being given.

Given a set of input formulas Fi, ..., F}, and a set G containing zero or more
formulas F; marked as goal formulas, a goal symbol is a symbol such that

— It appears in a formula F € G, or

It is a Skolem constant introduced in the clausification of some F' € G, or

— It appears in at most limit formulas, or

— It is a Skolem constant introduced by the Skolemisation of some formula F;
of the form dz.F

where ltmit is a parameter to the process. In the case where this is a single
goal formula we would expect limit to be 1. However, the input may have been
subject to some additional preprocessing meaning that the goal is represented
by a few clauses in the input. The last point is because many goals will take the
form of negated universal statements; this is also how formulas for induction are
identified in [16] (our approach is more general).

Once all such goal symbols have been identified, the set G is extended to
include all formulas containing a goal symbol. This is done as G typically plays
another role in proof search as clauses derived from formulas in G may be pri-
oritised in clause selection, providing some heuristic goal-directionality.

488 G. Reger and A. Voronkov

5 Case Splitting for Free

An important part of inductive proofs is typically the case splitting between the
base case and the inductive step. In this section we describe a clause splitting
approach (implemented in Vampire as AVATAR [14,22]) that achieves this.

We briefly describe the ground part of the AVATAR framework for clause
splitting as case splitting for induction only requires the ground part. The general
idea is that given a set of clauses S and a ground clause L1 V Lo we can consider
the two sub-problems S U {L;} and S U {L2} independently.

Let name be a function from ground literals to labels that is injective up to
symmetry of equality. Let C' < A be a labelled clause where A is a set of labels.
We can lift an inference system on clauses to one on labelled clauses where
all conclusions take the union of the labels in premises. The previous rules for
induction can be extended such that the consequent clauses take the labels of the
premise clause. Figure 2 shows how the simple saturation algorithm from Sect. 2
can be extended to perform ground clause splitting. It uses a SAT procedure
that we add clauses of labels to and then request the difference between a new
model and the previous model in terms of added/removed labels.

input: Init: set of clauses;

var active, passive, unprocessed: set of clauses; var given, new: clause;
active := &; passive := J; unprocessed := Init;
loop
while unprocessed # &
new :=pop(unprocessed);
if new = O then return unsatisfiable;
if new =0 «— A then add —A to SAT;
if new is ground then add label(new) to SAT;
else add new to passive;
if passive = @ then return satisfiable or unknown
(add_labels, remove_labels) = new_model (SAT); (* compute new model *)
active:= {C «— L € active | L N remove_labels = (};
passive:= {C — L € passive | L N remove_labels = O};
passive :=passive U {retrieve(l) < 1 | I € add_labels};

given := select(passive); (* clause selection *)
move given from passive to active;
unprocessed : =infer(given, active); (* generating inferences *)

Fig. 2. Simple saturation algorithm with ground clause splitting.

To understand why this is useful consider the conclusions of the inference
rules given in Table 1. These clauses are all ground and multi-literal i.e. they cap-
ture multiple cases. As an example, when proving the conjecture height(t) > 0
our implementation considers and refutes between 6 and 8 different cases depend-
ing on which form of induction rule is used.

Induction in Saturation-Based Proof Search 489

6 Experimental Evaluation

In this section we describe the implementation and evaluation of the techniques
described in this paper.

Implementation. We extended the Vampire [10] theorem prover with additional
options to capture the techniques described in the previous sections. Table 2
gives an overview of these new options. The sik option captures the different
approaches introduced in Sect. 3. The indm option limits the depth of induction.
The remaining options capture the choices made in Sect.4. Our implementa-
tion of the induction inference rules ensures that we never instantiate the same
induction axiom more than once and that proof search when there are no term
algebra sorts in the problem is unaffected. Furthermore, this implementation is
fully compatible with all other proof search options and heuristics in Vampire.
Our implementation is available online!.

Table 2. New options and their values.

Name | Values Description

ind | none, struct Whether structural induction should be applied or
not

sik |1, 2,3, all The kind of structural induction to apply. The

numbers 1,2, 3 refer to the three kinds introduced in
Sect. 3 and all applies them all

indmd | n > 0 (0) The maximum depth to which induction is applied
where 0 indicates it is unlimited

indc | goal, goal_plus, all | Choices for the sel, predicate (see Sect.4) where
goal uses goal symbols only, goal_plus uses goal and
induction symbols, and all is unrestricted

indu |on, off Whether to include the sely predicate

indn |on, off Whether to include the seln predicate

gtg |on, off Whether goal clauses in the input should be inferred
gtgl |n>1(1) The limit of times a symbol should appear in input

formulae to be identified as a goal symbol

Ezxperimental Setup. We use two sets of benchmarks from SMT-LIB from the
UFDT and UFDTLIA logics where UF stands for Uninterpreted Functions, DT
stands for DataTypes and LIA stands for Linear Integer Arithmetic; we do
not consider AUFDTLIA as it does not contain problems interesting for induc-
tion. UFDT counsists of 4376 problems known not to be satisfiable (we excluded
problems either marked as, or found to be, satisfiable during experiments) and
UFDTLIA consists of 303 problems that formed the TIP benchmark set in 2015
as used in [16]. Experiments are run on StarExec [20].

! See https://github.com/vprover /vampire.

https://github.com/vprover/vampire

490 G. Reger and A. Voronkov

6.1 Research Questions

In this section we look at two research questions that naturally arise in our work.

Which Options are Useful? Given the set of introduced options, we would like
to know which will be useful in general. Vampire is a portfolio solver and would
normally run a series of strategies combining different options. Therefore, any
options able to solve problems uniquely may be useful for a portfolio mode.
Table 3 compares the option values across the SMT-LIB problems. All option
values with the exception of --sik three and non-zero values for indmd solve
some problems uniquely. For each option there is a clear choice for default value.
The fact that non-zero values for indmd were not useful in general suggests that
there was not a problem with an explosion of iterative induction steps. This
is most likely due to the fact that clause selection will favour a breadth-first
exploration of the space. The solved problems did not rely heavily on inferring
goal symbols or selection via special symbols. This suggests that the problems
of interest either had shallow proofs that followed quickly from the input, or
contained few relevant symbols for induction.

Table 3. Comparing option values.

Value ‘ Count ‘ Unique | Value ‘ Count ‘ Unique | Value ‘ Count ‘ Unique
sik indmd indc

one 3088 |20 0 3096 |37 all 3069 | 104
two 3028 |3 1 3044 |0 goal 2989 |7
three | 3019 |0 2 3051 |0 goal_plus | 2985 |1

all 3043 |2 3 3048 |0

indu indn gtg

on 3095 |43 on 3088 |50 on 2992 |27

off 3053 |1 off |3046 |8 off 3069 | 104

What Do the Proofs Look Like? We ran Vampire in a portfolio mode using the
additional options -sik one -indm O -indc all on the SMT-LIB UFDTLIA
problem set and recorded (i) the number of induction inferences appearing in
proofs, and (ii) the maximum depth of these inductions. The results are in
Table 4. In the majority of cases only a few induction steps are used but there
are 11 problems where more than 10 inductions are required and the proof
of induction-vmcai2015/1leon/heap-goal3.smt2 uses 145 induction steps. As
suggested above, induction is relatively shallow with the maximum depth in
proofs being 6 and most necessary inductions not being nested.

Induction in Saturation-Based Proof Search 491

Table 4. Statistics from 165 successful problems in UFDTLIA.

Number of induction|Count
gnferences v Max induction depth|Count

1 84
1 82

2 25
2 16

3 4
3 6

4 3
5 2 6 1
10-50 7
50-145 4

6.2 Comparative Evaluation

We compare the new techniques to CVC4 on the SMT-LIB benchmarks in
Table 5 running both solvers with and without induction. We currently restrict
our attention to CVC4 as this is the only solver available that runs on these
problems and supports induction (Z3 does not support induction). It is worth
noting that CVC4 was reported comparable to Zipperposition in [4] but has
improved considerably in the meantime.

Table 5. Comparative results with CVC4 on SMT-LIB benchmarks.

Logic Size | No induction With induction
CVC4 | Vampire | CVC4 | Vampire
UFDT 4376 | 2270 | 2226 (2) | 2275 (5) | 2294 (37)
UFDTLIA | 303 |69 76 224 (69) | 165 (9)

Overall CVC4 solves more problems but Vampire solves 48 problems that
CVC4 (or any other solver) does not. We consider it an impressive result for
a first implementation and believe that Vampire will solve many more previ-
ously unsolved problems when more heuristics, options and induction axioms
are implemented.

It is interesting to note that the majority of problems are solvable without
induction, suggesting the need for better benchmarks. However, we also observe
that Vampire will commonly use induction to solve a problem more quickly
even when induction is not required. This is also a very interesting observation
since normally the addition of new rules other than simplification slows down
saturation theorem provers.

The fact that the UFDTLIA benchmarks are a version of TTP allows us to
indirectly compare to other inductive theorem provers. Table6 uses historical
data from the literature to show that Vampire is competitive with these solvers
but does not perform as well in general. This can be explained by missing features
specialised for induction that have not yet been implemented in Vampire.

492 G. Reger and A. Voronkov

Table 6. Using published data to compare to induction provers. Data for CVC4 and
Vampire taken from our experiments, other data taken from [23].

CLAM | HipSpec | Zeno | Pirate | ACL2s | IsaPlanner | Dafny | CVC4 | Vampire
isaplanner | - 80 82 87 74 47 45 71 58
clam 41 47 21 47 - - - 41 29

7 Related Work

We focus on ezplicit induction approaches, rather than implicit induction, e.g.
the inductionless induction [3] approach. Within this we identify two areas of
relevant work - the specialised area of inductive theorem proving and the general
approach of extending first-order theorem provers with induction.

Tools that use theorem provers as backends often include induction hypothe-
ses in the input. For example, Dafny was extended to wrap SMT solvers with
an induction layer inserting useful induction hypotheses [11] within Dafny.

There are a number of inductive theorem provers such as ACL2 [7], IsaPlan-
ner [5], Zeno [19], and Hipspec [2] that differ in architecture fro our approach.
ACL2 relies on a special procedure for deciding when to apply induction, Hip-
Spec is based on a technique called theory ezploration and IsaPlanner and Zeno
follow a top-down approach. Therefore, in these other techniques most of the
proof search effort is dedicated to deciding where to apply induction (as it is
quite costly) whereas our approach is less guided in this sense but induction
is, in some sense, cheap. In general, inductive solvers are well suited to prob-
lems that require complex induction but only require relatively simple reasoning
otherwise. Our focus is the converse case.

The main previous attempt to extend a saturation-based superposition theo-
rem prover with induction is in Zipperposition by Cruanes [4]. This approach is
formulated for (generally defined) structural induction over inductive datatypes.
The main difference between this previous work and ours is the way in which [4]
puts together datatype reasoning, inductive reasoning, and reasoning by cases
using AVATAR, whereas our work keeps all three parts separate. As a result,
our approach is more general; our definition of induction does not depend on
inductive datatypes and works without AVATAR, so it can be with little effort
added to existing saturation theorem provers. For example, our generality results
in the ability to implement well-founded induction.

Although we do note that Cruanes explores heuristics for where to apply
induction from the broader inductive theorem proving literature that we have
not yet explored.

Finally, we note that the experimental results of [4] have a different focus
from our own as they focus on problems suited for inductive theorem provers
whereas our research (and our experiments) focus on problems requiring a little
bit of induction and a lot of complex first-order reasoning.

Another approach [23] wraps superposition-based proof search in an extra
process that iteratively explores the space of possible inductions. There has also

Induction in Saturation-Based Proof Search 493

been work on incorporating induction for natural numbers into the superposition
calculus [8]. CVC4 has been extended with a set of techniques for induction [16].
There rules are similar to ours but the setting is different as CVC4 is a DPLL(T)-
based SMT solver using quantifier instantiation to handle quantifiers.

8 Conclusion

In this paper we introduce a new method for integrating induction into a
saturation-based theorem prover using superposition. Our approach utilises the
clause-splitting framework for case splitting. Experimental results show that the
new options allow us to solve many problems requiring complex (e.g. nested)
inductions.

Acknowledgements. We thank Andrew Reynolds for helping with obtaining CVC4
results.

References

1. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB) (2016). www.SMT-LIB.org

2. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: Automating inductive
proofs using theory exploration. In: Bonacina, M.P. (ed.) CADE 2013. LNCS
(LNAI), vol. 7898, pp. 392-406. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38574-2_27

3. Comon, H.: Inductionless induction. In: Handbook of Automated Reasoning (in 2
vols.), pp. 913-962 (2001)

4. Cruanes, S.: Superposition with structural induction. In: Dixon, C., Finger, M.
(eds.) FroCoS 2017. LNCS (LNAI), vol. 10483, pp. 172-188. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66167-4_10

5. Dixon, L., Fleuriot, J.: Higher order rippling in ISAPLANNER. In: Slind, K., Bunker,
A., Gopalakrishnan, G. (eds.) TPHOLs 2004. LNCS, vol. 3223, pp. 83-98. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30142-4_7

6. Gupta, A., Kovécs, L., Kragl, B., Voronkov, A.: Extensional crisis and proving
identity. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp.
185-200. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6_14

7. Kaufmann, M., Strother Moore, J., Manolios, P.: Computer-Aided Reasoning: An
Approach. Kluwer Academic Publishers, Norwell (2000)

8. Kersani, A., Peltier, N.: Combining superposition and induction: a practical real-
ization. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS
(LNAI), vol. 8152, pp. 7-22. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40885-4_2

9. Kovécs, L., Robillard, S., Voronkov, A.: Coming to terms with quantified reasoning,.
SIGPLAN Not. 52(1), 260-270 (2017)

10. Kovécs, L., Voronkov, A.: First-order theorem proving and VAMPIRE. In: Shary-
gina, N.; Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1-35. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39799-8_1

www.SMT-LIB.org
https://doi.org/10.1007/978-3-642-38574-2_27
https://doi.org/10.1007/978-3-642-38574-2_27
https://doi.org/10.1007/978-3-319-66167-4_10
https://doi.org/10.1007/978-3-540-30142-4_7
https://doi.org/10.1007/978-3-319-11936-6_14
https://doi.org/10.1007/978-3-642-40885-4_2
https://doi.org/10.1007/978-3-642-40885-4_2
https://doi.org/10.1007/978-3-642-39799-8_1

494

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

G. Reger and A. Voronkov

Leino, K.R.M.: Automating induction with an SMT solver. In: Kuncak, V.,
Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 315-331. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-27940-9_21

Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson,
A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, chap. 7, pp.
371-443. Elsevier Science (2001)

Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Hand-
book of Automated Reasoning (in 2 vols.), pp. 335-367 (2001)

Reger, G., Bjgrner, N., Suda, M., Voronkov, A.: AVATAR modulo theories. In: 2nd
Global Conference on Artificial Intelligence, GCAI 2016. EPiC Series in Comput-
ing, vol. 41, pp. 39-52. EasyChair (2016)

Reger, G., Suda, M., Voronkov, A.: New techniques in clausal form generation.
In: 2nd Global Conference on Artificial Intelligence, GCAI 2016. EPiC Series in
Computing, vol. 41, pp. 11-23. EasyChair (2016)

Reynolds, A., Kuncak, V.: Induction for SMT solvers. In: D’Souza, D., Lal, A.,
Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 80-98. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46081-8_5

Rybina, T., Voronkov, A.: A decision procedure for term algebras with queues.
ACM Trans. Comput. Logic 2(2), 155-181 (2001)

Schulz, S.: E - a brainiac theorem prover. AI Commun. 15(2-3), 111-126 (2002)
Sonnex, W., Drossopoulou, S., Eisenbach, S.: Zeno: an automated prover for prop-
erties of recursive data structures. In: Flanagan, C., Konig, B. (eds.) TACAS 2012.
LNCS, vol. 7214, pp. 407-421. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-28756-5_28

Stump, A., Sutcliffe, G., Tinelli, C.: StarExec, a cross community logic solving
service (2012). https://www.starexec.org

Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom.
Reason. 43(4), 337-362 (2009)

Voronkov, A.: AVATAR: the architecture for first-order theorem provers. In: Biere,
A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 696-710. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-08867-9_46

Wand, D.: Superposition: types and induction. (Superposition: types et induction).
Ph.D. thesis, Saarland University, Saarbriicken, Germany (2017)

Weidenbach, C.: Combining superposition, sorts and splitting. In: Robinson, A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. II, chap. 27, pp.
1965-2013. Elsevier Science (2001)

https://doi.org/10.1007/978-3-642-27940-9_21
https://doi.org/10.1007/978-3-662-46081-8_5
https://doi.org/10.1007/978-3-642-28756-5_28
https://doi.org/10.1007/978-3-642-28756-5_28
https://www.starexec.org
https://doi.org/10.1007/978-3-319-08867-9_46

	Induction in Saturation-Based Proof Search
	1 Introduction
	2 Preliminaries
	3 Performing Induction
	3.1 General Approach
	3.2 Structural Induction
	3.3 Well-Founded Induction
	3.4 Inductive Strengthening
	3.5 Comparing the Approaches with an Example

	4 Selecting Where to Apply Induction
	4.1 Goal-Directed Search
	4.2 Inferring Goal Clause(s)

	5 Case Splitting for Free
	6 Experimental Evaluation
	6.1 Research Questions
	6.2 Comparative Evaluation

	7 Related Work
	8 Conclusion
	References

