
Confluence by Critical Pair Analysis
Revisited

Nao Hirokawa1(B) , Julian Nagele2 , Vincent van Oostrom3 ,
and Michio Oyamaguchi4

1 JAIST, Nomi, Japan
hirokawa@jaist.ac.jp

2 Queen Mary University of London, London, UK
j.nagele@qmul.ac.uk

3 University of Innsbruck, Innsbruck, Austria
Vincent.van-Oostrom@uibk.ac.at

4 Nagoya University, Nagoya, Japan
oyamaguchi@za.ztv.ne.jp

Abstract. We present two methods for proving confluence of left-linear
term rewrite systems. One is hot-decreasingness, combining the paral-
lel/development closedness theorems with rule labelling based on a ter-
minating subsystem. The other is critical-pair-closing system, allowing
to boil down the confluence problem to confluence of a special subsystem
whose duplicating rules are relatively terminating.

Keywords: Term rewriting · Confluence · Decreasing diagrams

1 Introduction

We present two results for proving confluence of first-order left-linear term
rewrite systems, which extend and generalise three classical results: Knuth and
Bendix’ criterion [19] and strong and parallel closedness due to Huet [17]. Our
idea is to reduce confluence of a term rewrite system R to that of a subsystem
C comprising rewrite rules needed for closing the critical pairs of R. In Sect. 3
we introduce hot-decreasingness, requiring that critical pairs can be closed using
rules that are either below those in the peak or in a terminating subsystem C.
In Sect. 4 we introduce the notion of a critical-pair-closing system and present a
confluence-preservation result based on relative termination Cd/R of the dupli-
cating part Cd of C. For the left-linear systems we consider, our first criterion
generalises both Huet’s parallel closedness and Knuth and Bendix’ criterion,
and the second Huet’s strong closedness. In Sect. 5, we assess viability of the
new techniques, reporting on their implementation and empirical results.

Huet’s parallel closedness result relies on the notion of overlap whose geomet-
ric intuition is subtle [1,24], and reasoning becomes intricate for development

Supported by JSPS KAKENHI Grant Number 17K00011 and Core to Core Program.

c© Springer Nature Switzerland AG 2019
P. Fontaine (Ed.): CADE 2019, LNAI 11716, pp. 319–336, 2019.
https://doi.org/10.1007/978-3-030-29436-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29436-6_19&domain=pdf
http://orcid.org/0000-0002-8499-0501
http://orcid.org/0000-0002-4727-4637
http://orcid.org/0000-0002-4818-7383
https://doi.org/10.1007/978-3-030-29436-6_19

320 N. Hirokawa et al.

closedness as covered by Theorem 2. We factor the classical theory of overlaps
and critical pairs through the encompassment lattice in which overlapping redex-
patterns is taking their join and the amount of overlap between redex-patterns
is computed via their meet, thus allowing to reason algebraically about over-
laps. Methodologically, our contribution here is the introduction of the lattice-
theoretic language itself, relevant as it allows one to reason about occurrences of
patterns1 and their amount of (non-)overlap, omnipresent in deduction. Tech-
nically, whereas Huet’s critical pair lemma [17] is well-suited for proving con-
fluence of terminating TRSs, it is ill-suited to do so for orthogonal TRSs. Our
lattice-theoretic results remedy this, allowing to decompose a reduction R both
horizontally (as R1 · R2) and vertically (as R

[x:=R2]
1), enabling both termination

and orthogonality reasoning in confluence proofs (Theorem2).
In the last decade various classical confluence results for term rewrite systems

have been factored through the decreasing diagrams method [28,30] for prov-
ing confluence of abstract rewrite systems, often leading to generalisations along
the way: e.g. Felgenhauer’s multistep labelling [13] generalises Okui’s simulta-
neous closedness [27], the layer framework [12] generalises Toyama’s modular-
ity [33], critical pair systems [16] generalise both orthogonality [31] and Knuth
and Bendix’ criterion [19], and Jouannaud and Liu generalise, among others [20],
parallel closedness, but in a way we do not know how to generalise to develop-
ment closedness [29]. This paper fits into this line of research.2

We assume the reader is familiar with term rewriting [1,9,32] in general and
confluence methods [17,19,30] in particular. Notions not explicitly defined in
this paper can all be found in those works.

2 Preliminaries on Decreasingness and Encompassment

We recall the key ingredients of the decreasing diagrams method for proving con-
fluence, see [20,26,30,32], and revisit the classical notion of critical pair, recast-
ing its traditional account [1,17,19] based on redexes (substitution instances of
left-hand sides) into one based on redex-patterns (left-hand sides).

Decreasingness. Consider an ARS comprising an I-indexed relation → =⋃
�∈I →� equipped with a well-founded strict order �. We refer to {κ ∈ I | � � κ}

by ��, and to �� ∪ �κ by ��, κ. For a subset J of I we define →J as
⋃

�∈J →�.

Definition 1. A diagram for a peak b �← a →κ c is decreasing if its closing
conversion has shape b ↔∗

�� · →=
κ · ↔∗

��,κ · =�← · ↔∗
�κ c. An ARS in this setting

is called decreasing if every peak can be completed into a decreasing diagram.

One may think of decreasing diagrams as combining the diamond property [25,
Theorem 1] (via the steps in the closing conversion with labels �, κ) at the basis

1 Modelled in various ways, via e.g.: tree homomorphisms (tree automata [7]), term-
operations (algebra), context-variables, labelling (rippling [5]), to name a few.

2 For space reasons we have omitted the proof by decreasing diagrams of Theorem 3.

Confluence by Critical Pair Analysis Revisited 321

of confluence of orthogonal systems [6,31], with local confluence diagrams [25,
Theorem 3] (via the conversions with labels ��, κ) at the basis of confluence of
terminating systems [19,21].

Theorem 1 ([28,30]). An ARS is confluent if it is decreasing. Conversely,
every countable ARS that is confluent, is decreasing for some set of indices I.

For the converse part it suffices that the set of labels I is a doubleton, a result
that can be reformulated without referring to decreasing diagrams, as follows.

Lemma 1 ([11]). A countable confluent rewrite relation has a spanning forest.

Here a spanning forest for → is a relation ⊆ → that is spanning (∗ = ↔∗)
and a forest, i.e. deterministic (b a c implies b = c) and acyclic.

Critical Peaks Revisited. We introduce clusters as the structures obtained
after the matching of the left-hand side of a rule in a rewrite step, but before its
replacement by the right-hand side. When proving the aforementioned results in
Sects. 3 and 4, we use them as a tool to analyse overlaps and critical peaks. To
illustrate our notions we use the following running example. We refer to [16,32]
for the notion of multistep.

Example 1. In the TRS R with �(x) :f(f(x))→g(x) the term t = f(f(f(f(a))))
allows the step f(�(f(a))) : t → f(g(f(a))) and multistep �(�(a)) : t ◦−→ g(g(a)).

Here f(�(f(a))) and �(�(a)) are so-called proofterms, terms representing proofs
of rewritability in rewriting logic [22,32]. The source of a proofterm can be
computed by the 2nd-order substitution src of the left-hand side of the rule
for the rule symbol3 f(�(f(a)))src = f(�(f(a)))��:=λx.f(f(x))� = f(f(f(f(a)))),
and, mutatis mutandis, the same for the target via tgt. Proofclusters, introduced
here, abstract from such proofterms by allowing to represent the matching and
substitution phases of multisteps as well, by means of let-expressions.

Example 2. The multistep in Example 1 comprises three phases [28, Chapter 4]:

1. letX,Y =λx.f(f(x)), λy.f(f(y)) inX(Y (a)) denotes matching f(f(x)) twice;
2. letX,Y =λx.�(x), λx.�(x) inX(Y (a)) denotes replacing by � twice;
3. letX,Y =λx.g(x), λx.g(x) inX(Y (a)) denotes substituting g(x) twice.

To represent these we assume to have proofterms t, s, u, . . . over a signature com-
prising function symbols f, g, h, . . ., rule symbols �, θ, η, . . ., 2nd-order variables
X,Y,Z, . . ., all having natural number arities, and 1st-order variables x, y, z, . . .
(with arity 0).We call proofterms without 2nd-order variables or rule symbols,
1st-order proofterms respectively terms, ranged over by M , N , L,

3 src can be viewed as tree homomorphism [7], or as a term algebra �Lhs(t) = �[x :=t].

322 N. Hirokawa et al.

Definition 2. A proofcluster is a let-expression letX = Q in t, where

– X is a vector X1, . . . , Xn of (pairwise distinct) second-order variables;
– Q is a vector of length n of closed λ-terms Qi = λxi .si, where si is a

proofterm and the length of the vector xi of variables is the arity of Xi;
and

– t is a proofterm, the body, with its 2nd-order variables among X.

Its denotation �letX = Q in t� is t�X :=Q�. It is a cluster if s1, . . . , sn, t are terms.

We let ς, ζ, ξ, . . . range over (proof)clusters. They denote (proof)terms.

Example 3. Using ς, ζ, ξ for the three let-expressions in Example 2, each is
a proofcluster and ς, ξ are clusters. Their denotations are the term �ς� =
f(f(f(f(a)))) = t, proofterm �ζ� = �(�(a)), and term �ξ� = g(g(a)).

We assume the usual variable renaming conventions, both for the 2nd-order ones
in let-binders and the 1st-order ones in λ-abstractions. We say a proofcluster ς is
linear if every (let or λ) binding binds exactly once, and canonical [23] if, when
a binding variable occurs to the left of another such (of the same type), then
the first bound occurrence of the former occurs before that of the latter in the
pre-order walk of the relevant proofterm.

Example 4. Let ζ ′ and ξ′ be the clusters letX = λx.f(f(x)) inX(X(a)) and
letX,Y = λyz.f(f(y)), λx.f(f(x)) inY (X(a, f(a))). Each of ς, ζ ′, ξ′ denotes t
in Example 1. The cluster ς is linear and canonical, ζ ′ is canonical but not linear
(X occurs twice in the body), and ξ′ is neither linear (z does not occur in f(y))
nor canonical (Y occurs outside of X in the body).

We adopt the convention that absent λ-binders are inserted linearly, canonically;
letX = f(f(x)) inX(X(a)) is ζ ′. Clusters witness encompassment ·� [9].

Proposition 1. t ·� s iff ∃u,X s.t. �letX = s inu� = t and X occurs once in u.

We define the size ‖t‖ of a proofterm t in a way that is compatible with encom-
passment. Formally, ‖t‖ is the pair comprising the number of non-1st-order-
variable symbols in t, and the sum over the 1st-order variables x, of the square
of the number of occurrences of x in t. Then ‖t‖ > ‖s‖ if t ·� s, where we (ab)use
> to denote the lexicographic product of the greater-than relation with itself,
e.g. ‖g(a, a)‖ = (3,0) > ‖g(x, x)‖ = (1,4) > ‖g(x, y)‖ = (1,2). For a proofcluster
ς given by letx = s in t its pattern-size �ς� is

∑
i‖si‖ (adding component-wise,

with empty sum (0,0)) and its body-size �ς� is ‖t‖. Encompassment ·� is at the
basis of the theory of reducibility [7, Section 3.4.2]: t is reducible by a rule � → r
iff t ·� �. For instance, letX = f(f(x)) in f(X(f(a))) is a witness to reducibility
of t in Example 1. We call it, or simply f(f(x)), a pattern in t.

Definition 3. Let ς be a canonical linear proofcluster letX = s in t with term t.
We say ς is a multipattern if each si is a non-variable 1st-order term, and ς is
a multistep if each si has shape �(x), i.e. a rule symbol applied to a sequence of
pairwise distinct variables. If X has length 1 we drop the prefix ‘multi’.

Confluence by Critical Pair Analysis Revisited 323

We use Φ, Ψ,Ω, . . . to range over multisteps, and φ, ψ, ω, . . . to range over steps.
Taking their denotation yields the usual multistep [16,32] and step ARSs ◦−→
and → underlying a TRS R. These can be alternatively obtained by first applying
src and tgt (of which only the former is guaranteed to yield a multipattern, by
left-linearity) and then taking denotations: �Φsrc� = �Φ�src and �Φtgt� = �Φ�tgt.
Pattern- and body-sizes of multipatterns are compositional.

Proposition 2. For multipatterns ς,ς if ς = ς
[x:=ς]
0 with each variable among

x occurring once in the body of ς0, then �ς� =
∑

iςi, and �ς� � �ςi� for all i,
with strict inequality holding in case the substitution is not a bijective renaming.
Here multipattern-substitution substitutes in the body and combines let-bindings.

Multipatterns are ordered by refinement �.

Definition 4. Let ς and ζ be multipatterns letX = s in t and letY = u inw. We
say ς refines ζ and write ς � ζ, if there is a 2nd-order substitution σ on Y with
wσ = t and �letX = s inYi(yi)σ� = ui for all i, with yi the variables of ui.

Example 5. We have ς � ς ′ with ς ′ being letZ = f(f(f(f(z)))) inZ(a), and
ς as in Example 3, as witnessed by the 2nd-order substitution mapping Z to
λx.X(Y (x)).

Lemma 2. � is a finite distributive lattice [8] on multipatterns denoting a 1st-
order term t, with least element ⊥ the empty let-expression let = in t, and great-
est element � of shape letX = t′ inX(x) with x the vector of variables in t.

Proof (Idea). Although showing that � is reflexive and transitive is easy, showing
anti-symmetry or existence of/constructions for meets � and joins �, directly is
not. Instead, it is easy to see that each multipattern letX = s in t is determined
by the set of the (non-empty, convex,4 pairwise disjoint) sets of node positions
of its patterns si in t, and vice versa. For instance, the multipatterns ς and
ς ′ in Example 5 are determined by {{ε, 1}, {1·1, 1·1·1}} and {{ε, 1, 1·1, 1·1·1}}.
Viewing multipatterns as sets in that way ς � ζ iff ∀P ∈ ς, ∃Q ∈ ζ with P ⊆ Q.
Saying P,Q ∈ ς ∪ ζ have overlap if P ∩ Q �= ∅, denoted by P �Q, characterising
meets and joins now also is easy: ς � ζ = {P ∩Q | P ∈ ς, Q ∈ ζ, and P �Q}, and
ς � ζ = {⋃ P� | P ∈ ς ∪ ζ}, where P� = {Q∈ ς ∪ ζ | P �∗

Q}, i.e. the sets connected
to P by successive overlaps. On this set-representation � can be shown to be a
finite distributive lattice by set-theoretic reasoning, using that the intersection
of two overlapping patterns is a pattern again5. For instance, ⊥ is the empty set
and � is the singleton containing the set of all non-variable positions in t. ��
The (proof of the) lemma allows to freely switch between viewing multisteps and
multipatterns as let-expressions and as sets of sets of positions, and to reason
about (non-)overlap of multipatterns and multisteps in lattice-theoretic terms.

4 Here convex means that for each pair of positions p,q in the set, all positions on the
shortest path from p to q in the term tree are also in the set, cf. [32, Definition 8.6.21].

5 This fails for, e.g., connected graphs; these may fall apart into non-connected ones.

324 N. Hirokawa et al.

We show any multistep Φ can be decomposed horizontally as φ followed by Φ/φ
for any step φ∈Φ [16,29], and vertically as some vector Φ substituted in a prefix
Φ0 of Φ, and that peaks can be decomposed correspondingly.

Definition 5. For a pair of multipatterns ς,ζ denoting the same term its
amount of overlap6 and non-overlap is ς�ζ = �ς�ζ� respectively ς�ζ = �ς�ζ�,
we say ς,ζ is overlapping if ς � ζ �= ⊥, and critically overlapping if moreover
ς � ζ = � and �ς� = �ζ� is linear. This extends to peaks s Φ ◦←− t ◦−→Ψ u via Φsrc

and Ψ src.

Note ς,ζ is overlapping iff ς �ζ �= (0,0). Critical peaks s φ← t →ψ u are classified
by comparing the root-positions pφ, pψ of their patterns with respect to the prefix
order ≺o , into being outer–inner (pφ ≺o pψ), inner–outer (pψ ≺o pφ), or overlay
(pψ = pφ), and induce the usual [1,9,17,19,26,32] notion of critical pair (s,u).7

Definition 6. A pair (ς ′,ζ ′) of overlapping patterns such that ς ′, ζ ′ are in the
multipatterns ς, ζ with � = ς � ζ, is called inner, if it is minimal among all
such pairs, comparing them in the lexicographic product of ≺o with itself, via
the root-positions of their patterns, ordering these themselves first by �o. This
extends to pairs of steps in peaks of multisteps via src.

Proposition 3. If (φ,ψ) is an inner pair for a critical peak Φ ◦←− · ◦−→Ψ , and
φ ∈ Φ, ψ ∈ Ψ contract redexes at the same position, then φ = Φ and ψ = Ψ .

For patterns and peaks of ordinary steps, their join being top, entails they are
overlapping, and the patterns in a join are joins of their constituent patterns.

Proposition 4. Linear patterns ς,ζ are critically overlapping iff ς � ζ = �.

Lemma 3. If ξ = ς �ζ and ς, ζ � ξ are witnessed by the 2nd-order substitutions
σ, τ , for multipatterns ς and ζ given by letX = t inM and letY = s inN , then
for all let-bindings Z = u of ξ, �u = (letX = t inZ(z)σ)� (letY = s inZ(z)τ).

Lemma 4 (Vertical). A peak s Φ ◦←− t ◦−→Ψ u of overlapping multisteps either
is critical or it can be vertically decomposed as:

s
[x:=s]
0 Φ

[x :=Φ]
0

◦←− t
[x:=t]
0 ◦−→

Ψ
[x :=Ψ]
0

u
[x:=u]
0

for peaks si Φi
◦←− ti ◦−→Ψi

ui with Φ�Ψ � Φi �Ψi and Φ�Ψ > Φi �Ψi, for all i.

Let Φ, Ψ in s Φ ◦←− t ◦−→Ψ u be given by letX =�(x) inM and letY =θ(y) inN ,
for rules �i(xi) : �i → ri and θj(yj) : gj → dj . Lemma 2 entails that if Φ, Ψ are
non-overlapping their patterns are (pairwise) disjoint, so that the join Φsrc �Ψ src

is given by taking the (disjoint) union of the let-bindings: letXY = �g inL for
some L such that L�Y :=g� = M and L�X :=�� = N . We define the join8 Φ�Ψ and
6 For the amount of overlap for redexes in parallel reduction ��−→, see e.g. [1,17,24].
7 We exclude neither overlays of a rule with itself nor pairs obtained by symmetry.
8 This does not create ambiguity with joins of multipatterns since if Φ �= Ψ , then

�Φ� �= �Ψ� unless the let-bindings of both are empty, so both are bottom.

Confluence by Critical Pair Analysis Revisited 325

residual Φ/Ψ by letXY = �(x)θ(y) inL respectively letX = �(x) inL�Y :=d�,
where, as substituting the right-hand sides d may lose being linear and canonical,
we implicitly canonise and linearise the latter by reordering and replicating let-
bindings. Then t ◦−→Φ�Ψ · Φ/Ψ ◦←− u, giving rise to the classical residual theory [2,
4,6,18], see [32, Section 8.7]. We let φ ∈ Φ abbreviate ∃Ψ.Φ = φ � Ψ .

Example 6. The steps φ and ψ given by letX = λx.�(x) inX(f(f(a))) respec-
tively letX = λx.�(x) in f(f(Y (a))), are non-overlapping, φ, ψ ∈ ζ, φ � ψ = ζ,
and f(f(g(a))) ◦−→φ/ψ g(g(a)), for ζ and � as in Example 3.

Lemma 5 (Horizontal). A peak t Φ ◦←− · ◦−→Ψ s of multisteps either

1. is non-overlapping and then t ◦−→Ψ/Φ · Φ/Ψ ◦←− s, with the rule symbols occur-
ring in Ψ/Φ contained in Ψ (and those in Φ/Ψ contained in Φ); or

2. it can be horizontally decomposed: t Φ/φ ◦←− · φ← · →ψ · ◦−→Ψ/ψ s for some
peak φ← · →ψ of overlapping steps φ ∈ Φ and ψ ∈ Ψ .

The above allows to refactor the proof of the critical pair lemma [17, Lemma 3.1]
for left-linear TRSs, as an induction on the amount of non-overlap between the
steps in the peak, such that the critical peaks form the base case:

Lemma 6. A left-linear TRS is locally confluent if all critical pairs are joinable.

Proof. We show every peak =
φ← · →=

ψ of empty or single steps is joinable, by
induction on the amount of non-overlap (φ � ψ) ordered by >. We distinguish
cases on whether φ, ψ are overlapping (φ � ψ �= (0,0)) or not. If φ, ψ do not
have overlap, in particular when either φ or ψ is empty, then we conclude by
Lemma 5(1). If φ, ψ do have overlap, then by Lemma4 the peak either

– is critical and we conclude by assumption; or
– can be (vertically) decomposed into smaller such peaks =

φi
←·→=

ψi
. Since these

are >-smaller, the induction hypothesis yields them joinable, from which we
conclude by reductions and joins being closed under composition. ��

Remark 1. Apart from enabling our proof of Theorem2 below, we think this
refactoring is methodologically interesting, as it extends to (parallel and) simul-
taneous critical pairs, then yielding, we claim, simple statements and proofs of
confluence results [13,27] based on these and their higher-order generalisations.

3 Confluence by Hot-Decreasingness

Linear TRSs have a critical-pair criterion for so-called rule-labelling [16,30,35]:
If all critical peaks are decreasing with respect to some rule-labelling, then the
TRS is decreasing, hence confluent. We introduce the hot-labelling extending
that result to left-linear TRSs. To deal with non-right-linear rules we make use
of a rule-labelling for multisteps that is invariant under duplication, cf. [13,35].

326 N. Hirokawa et al.

Remark 2. Näıve extensions fail. Non-left-linear TRSs need not be confluent
even without critical pairs [32, Exercise 2.7.20]. That non-right-linear TRSs need
not be confluent even if all critical peaks are decreasing for rule-labelling, is
witnessed by [16, Example 8].

Definition 7. For a TRS R, terminating subsystem C ⊆ R, and labelling of
R − C-rules into a well-founded order �, hot-labelling L̊ maps a multistep Φ :
t ◦−→R s

– to the term t if Φ contains C-rules only; and
– to the set of �-maximal R − C-rules in Φ otherwise.

The hot-order �̊ relates terms by →+
C , sets by �mul, and all sets to all terms.

Note �̊ is a well-founded order as series composition [3] of →+
C and �mul, which

are well-founded orders by the assumptions on C and �. Taking the set of
maximal rules in a multistep makes hot-labelling invariant under duplication.
As with the notation ��, we denote {κ | � �̊ κ} by �̊�, and {κ | � �̊ κ} by �̊��.

Definition 8. A TRS R is hot-decreasing if its critical peaks are decreasing
for the hot-labelling, for some C and �, such that each outer–inner critical peak
�← · → for label �, is decreasing by a conversion of shape (oi): ↔∗

�̊�
·

�̊�� ◦←−.

Theorem 2. A left-linear TRS is confluent, if it is hot-decreasing.

Before proving Theorem2, we give (non-)examples and special cases.

Example 7. Consider the left-linear TRS R:

�1: nats → 0 : inc(nats) �3: inc(x : y) → s(x) : inc(y) �5: hd(x : y) → x
�2: d(x) → x : (x : d(x)) �4: inc(tl(nats)) → tl(inc(nats)) �6: tl(x : y) → y

By taking C = ∅, labelling rules by themselves, and ordering �4 � �1, �3, �6 the
only critical peak {�4}← · →{�1} can be completed into the decreasing diagram:

tl(inc(nats)) inc(tl(nats)) inc(tl(0 : inc(nats)))

tl(inc(0 : inc(nats))) tl(s(0) : inc(inc(nats)) inc(inc(nats))

{�4} {�1}{�1}

{�3} {�6}

{�6}

Since the peak is outer–inner, the closing conversion must be of (oi)-shape
↔∗

�̊{�4} ·
�̊�{�4} ◦←−. It is, so the system is confluent by Theorem 2.

Example 8. Consider the left-linear confluent TRS R:

�1: f(a, a) → b �3: f(c, x) → f(x, x) �5: f(c, c) → f(a, c)
�2: a → c �4: f(x, c) → f(x, x)

Since b is an R-normal form, the only way to join the outer–inner critical peak
b �1← f(a, a) →�2 f(c, a) is by a conversion starting with a step b �1← f(a, a).
As its label must be identical to the same step in the peak, not smaller, whether

Confluence by Critical Pair Analysis Revisited 327

we choose �1 to be in C or not, the peak is not hot-decreasing, so Theorem 2
does not apply.

That hot-decreasingness in Theorem 2 cannot be weakened to (ordinary)
decreasingness, can be seen by considering R′ obtained by omitting �5 from R.
Although R′ is not confluent [16, Example 8], by taking C = ∅ and �1 � �3, �4,
we can show that all critical peaks of R′ are decreasing for the hot-labelling.

A special case of Theorem 2, is that a left-linear terminating TRS is conflu-
ent [19], if each critical pair is joinable, as can be seen by setting C = R.

Corollary 1. A left-linear development closed TRS is confluent [29, Corol-
lary 24].

Proof. A TRS is development closed if for every critical pair (t,s) such that t is
obtained by an outer step, t ◦←− s holds. Taking C = ∅ and labelling all rules the
same, say by 0, yields that each outer–inner or overlay critical peak is labelled as
t {0}← · →{0} s, and can be completed as t {0} ◦←− s, yielding a hot-decreasing
diagram of (oi)-shape. We conclude by Theorem 2. ��
The proof of Theorem2 uses the following structural properties of decreasing
diagrams specific to the hot-labelling. The labelling was designed so they hold.

Lemma 7. 1. If the peak s � ◦←− t ◦−→κ u is hot-decreasing, then it can be
completed into a hot-decreasing diagram of shape s ↔∗

�̊�
s′ ◦−→κ s′′ ↔∗

�̊�κ
u′′

� ◦←− u′ ↔∗
�̊κ

u such that the 1st-order variables in all terms in the diagram
are contained in those of t.

2. If the multisteps Φ, Ψ in the peak s Φ ◦←− t ◦−→Ψ u are non-overlapping, then
the valley s ◦−→Ψ/Φ · Φ/Ψ ◦←− u completes it into a hot-decreasing diagram.

3. If the peak s ◦←− t ◦−→ u and vector of peaks s ◦←− t ◦−→ u have hot-
decreasing diagrams, so does the composition s[x:=s] ◦←− t[x:=t] ◦−→ u[x:=u].

The proof of Theorem2 refines our refactored proof (see Lemma 6) of Huet’s
critical pair lemma, by wrapping the induction on the amount of non-overlap
(�) between multisteps, into an outer induction on their amount of overlap (�).

Proof (of Theorem 2). We show that every peak s Φ ◦←− t ◦−→Ψ u of multisteps
Φ and Ψ can be closed into a hot-decreasing diagram, by induction on the pair
(Φ�Ψ,Φ�Ψ) ordered by the lexicographic product of > with itself. We distinguish
cases on whether or not Φ and Ψ have overlap.

If Φ and Ψ do not have overlap, Lemma 5(1) yields s ◦−→Ψ/Φ · Φ/Ψ ◦←− u. This
valley completes the peak into a hot-decreasing diagram by Lemma 7(2).

If Φ and Ψ do have overlap, then we further distinguish cases on whether or
not the overlap is critical.

If the overlap is not critical, then by Lemma4 the peak can be vertically
decomposed into a number of peaks between multisteps Φi, Ψi that have an
amount of overlap that is not greater, Φ � Ψ � Φi � Ψi, and a strictly smaller
amount of non-overlap Φ � Ψ > Φi � Ψi. Hence the I.H. applies and yields that
each such peak can be completed into a hot-decreasing diagram. We conclude by
vertically recomposing them yielding a hot-decreasing diagram by Lemma 7(3).

328 N. Hirokawa et al.

If the overlap is critical, then by Lemma5 the peak can be horizontally decom-
posed as s Φ/φ ◦←− s′

φ← t →ψ u′ ◦−→Ψ/ψ u for some peak s′
φ← t →ψ u′ of

overlapping steps φ ∈ Φ and ψ ∈ Ψ , i.e. such that Φ = φ � Φ′ Ψ = ψ � Ψ ′ for
some Φ′, Ψ ′. We choose (φ,ψ) to be inner among such overlapping pairs (see
Definition 6), assuming w.l.o.g. that pφ �o pψ for the root-positions pφ,pψ of
their patterns. We distinguish cases on whether or not pφ is a strict prefix of pψ.

If pφ = pψ, then φ = Φ and ψ = Ψ by Proposition 3, so the peak is overlay,
from which we conclude since such peaks are hot-decreasing by assumption.

Suppose pφ ≺o pψ. We will construct a hot-decreasing diagram D for the peak
s Φ ◦←− t ◦−→Ψ u out of several smaller such diagrams as illustrated in Fig. 1,
using the multipattern ς = Φsrc�ψsrc as a basic building block; it has as patterns
those of Φ′ and the join of the patterns of φ, ψ. To make ς explicit, unfold Φ and
Ψ to let-expressions letX = �(x) inM respectively letY = θ(y) inN , for rules
of shapes �i(xi) : �i → ri and θj(yj) : gj → dj . We let X = X ′X and Y = Y ′Y
be such that X and Y are the 2nd-order variables corresponding to φ ∈ Φ and
ψ∈Ψ for rules �(x) :�→r and θ(y) :g→d. By the choice of (φ,ψ) as inner, φsrc is
the unique pattern in Φsrc overlapping ψsrc. As a consequence we can write ς as
letX ′Z = �′t̂ inL, for some pattern t̂, the join of the patterns of φ,ψ, such that σ
maps Z to a term of shape X(gψ) as φ is the outer step, and τ maps it to a term
of shape C[Y (�φ)],9 where σ, τ witness Φsrc, ψsrc � ς. That the other 2nd-order
variables are X ′ follows by σ being the identity on them (their patterns do not
overlap ψ), and that these are bound to the patterns �′ by τ mapping them to
1st-order terms (only Z can be mapped to a non-1st-order term).

Fig. 1. Outer–inner critical peak construction

9 C is a prefix of the left-hand side � of �. For instance, for a peak from f(g(a)) between
� : f(g(a)) → . . . and θ : g(x) → . . ., Z is mapped by σ to X() and by τ to f(Y (a)).

Confluence by Critical Pair Analysis Revisited 329

We start with constructing a hot-decreasing diagram D̊ for the critical peak
ŝ φ̂← t̂ →ψ̂ û encompassed by the peak between φ and ψ, as follows. We set φ̂

and ψ̂ to letX = �(x) inZ(z)σ respectively letY = θ(y) inZ(z)τ . This yields a
peak as desired, which is outer–inner as pφ̂ ≺o pψ̂ by pφ ≺o pψ, and critical by
Lemma 3, hence by the hot-decreasingness assumption, it can be completed into a
hot-decreasing diagram D̂ by a conversion of (oi)-shape: ŝ ↔∗

�̊L̊(φ̂)
ŵ

�̊�L̊(φ̂) ◦←− û.

Below we refer to its conversion and multistep as Ψ̂ and Φ̂. Based on D̂ we
construct a hot-decreasing diagram D′ (Fig. 1, left) for the peak s Φ ◦←− t →ψ u′

by constructing a conversion Ψ̂↑ : s ↔∗ w′′ and a multistep Φ′ ⊕ Φ̂ : u′ ◦−→ w′′,
with their composition (reversing the latter) of (oi)-shape.

The conversion Ψ̂↑ : s ↔∗ w′′ is constructed by lifting the closing conver-
sion Ψ̂ of the diagram D̂ back into ς. Formally, for any multistep Ω̂ given by
let Ẑ = η(w) in L̂ for rules ηk(wk), occurring anywhere in Ψ̂ , we define its lifting
Ω̂↑ to be let Ẑ = η(w) inL[X ′,Z:=r ′,L̂]. That is, we update ς by substituting10

both Ω̂ (for Z, instead of binding that to t̂) and the right-hand sides r′ in its
body. Because right-hand sides r need not be linear, the resulting proofclusters
may have to be linearised (by replicating let-bindings) first to obtain multisteps.
This extends to terms p by p↑ = �(let = in p)↑�. That this yields multisteps and
terms that connect into a conversion s = ŝ↑ ↔∗

Ψ̂↑ ŵ↑ = w′′ as desired follows by

computation. E.g., s = M [X ′,X:=r ′,r] = L[X ′,Z:=r ′,ŝ] = ŝ↑ using that σ witnesses
Φsrc � ς so that M = Lσ and ŝ = �letX = r inZ(z)σ�. That the labels in Ψ̂↑ are
strictly below L̊(Φ) follows for set-labels from that lifting clearly does not intro-
duce rule symbols and from that labels of rule symbols in Ψ̂ are, by assumption,
strictly below the label of the rule � of φ. In case Φ is term-labelled, by t, it
follows from closure of →C-reduction under lifting (which also contracts Φ′).

The multistep Φ′ ⊕ Φ̂ :u′ ◦−→ w′′ is the combination of the multisteps Φ′ (the
redex-patterns in Φ other than φ) and Φ̂, lifting the latter into ς. For Φ̂ : û ◦−→
ŵ given by let X̂ = �̂(x̂) in M̂ , it is defined as letX ′X̂ = �(x)′�̂(x̂) inL[Z:=M̂].
Per construction it only contracts rules in Φ′, Φ̂, so has a label in �̊�L̊(Φ) by
Φ = φ � Φ′ and the label of Φ̂ is in �̊�L̊(φ̂) by the (oi)-assumption. That Φ′ ⊕
Φ̂ : u′ ◦−→ w′′ follows again by computation, e.g. �letX ′X̂ = r′r̂ inL[Z:=M̂]� =
L[X ′,Z:=r ′,M̂ [X̂ :=r̂]] = L[X ′,Z:=r ′,ŵ] = ŵ↑ = w′′.

Finally, applying the I.H. to the peak w′′
Φ′⊕Φ̂ ◦←− u′ ◦−→Ψ/ψ u yields

some hot-decreasing diagram DIH (Fig. 1, right). Prefixing Ψ̂↑ to its closing
conversion between w′′ and u, then closes the original peak s Φ ◦←− t ◦−→Ψ u
into a hot-decreasing diagram D, because labels of steps in Ψ̂↑ are in �̊L̊(Φ),
L̊(Φ) �̊ L̊(Φ′ ⊕ Φ̂) as seen above, and L̊(Ψ) �̊ L̊(Ψ/ψ). The I.H. applies
since Φ � Ψ > (Φ′ ⊕ Φ̂) � (Ψ/ψ): To see this, we define L′ = L[Z ′:=�′] and
F ′ = let X̂ = �̂ inL′[Z:=M̂] and collect needed ingredients (the joins are disjoint):

10 For this to be a valid 2nd-order substitution, the 1st-order variables of Ω̂ (L̂) must
be contained in those of t̂, which we may assume by Lemma 7(1).

330 N. Hirokawa et al.

D = Φsrc = (letX′ = �′ inL[Z:=t̂]) � φsrc = Φ′src � φsrc

E = Ψ src = (letY ′ = g′ inN [Y :=g]) � ψsrc = Ψ ′src � ψsrc

D′ = (Φ′ ⊕ Φ̂)src = (letX ′ = �′ inL[Z:=û]) � F ′

E′ = (Ψ/ψ)src = letY ′ = g′ inN [Y :=d]

Using these one may reason with sets of patterns (not let-expressions as t �= s′;
the sets are positions in both t,s′) as follows, relying on distributivity:

(D � E) � (D− � E) = (D− � E′) = (D′
+ � E′) � (D′ � E′) (1)

where F is the singleton {{p∈φsrc | pψ � p}} having all positions in φ not below
ψ’s root, D− = Φ′src � F , and D′

+ = (D′ − F ′) � F . ��

4 Confluence by Critical-Pair Closing Systems

We introduce a confluence criterion based on identifying for a term rewrite sys-
tem R a subsystem C such that every R-critical peak can be closed by means
of C-conversions, rendering the rules used in the peak redundant.

Definition 9. A TRS C is critical-pair closing for a TRS R, if C is a subsystem
of R (namely C ⊆ R) and s ↔∗

C t holds for all critical pairs (s,t) of R.

We phrase the main result of this section as a preservation-of-confluence result.
We write →S/R for 	R · →S · 	R , and if it is terminating, S/R is said to be
(relatively) terminating. By Cd we denote the set of all duplicating rules in C.

Theorem 3. If C is a critical-pair-closing system for a left-linear TRS R such
that Cd/R is terminating, then R is confluent if C is confluent.

Any left-linear TRS is critical-pair-closing for itself. However, the power of the
method relies on choosing small C. Before proving Theorem3, we illustrate it
by some (non-)examples and give a special case.

Example 9. Consider again the TRS R in Example 7. As we observed, the only
critical pair originating from �4 and �1 is closed by →�1 ·→�3 ·→�6 · �6←. So the
subsystem C = {�1, �3, �6} is a critical-pair-closing system for R. As all C-rules
are linear, Cd/R is vacuously terminating. Thus, by Theorem 3 it is sufficient
to show confluence of C. Because C has no critical pairs, the empty TRS ∅ is a
critical-pair-closing TRS for C. As ∅/C is terminating, confluence of C follows
from that of ∅, which is trivial.

Observe how confluence was shown by successive applications of the theorem.

Remark 3. In our experiments (see Sect. 5), 3
4 of the TRSs proven confluent by

means of Theorem 3 used more than 1 iteration, with the maximum number of
iterations being 6. For countable ARSs (see Corollary 2 below) 1 iteration suffices,
which can be seen by setting C to the spanning forest obtained by Lemma1. This
provides the intuition underlying rule specialisation in Example 15 below.

Confluence by Critical Pair Analysis Revisited 331

Example 10. Although confluent, the TRS R in Example 8 does not have any
confluent critical-pair-closing subsystem C such that Cd/R is terminating, not
even R itself: Because of b being in normal form in the critical pair induced by
b �1← f(a, a) →�2 f(a, c), any such subsystem must contain �4, as one easily
verifies, but �4 is both duplicating and non-terminating (looping).

Note that the termination condition of Cd/R cannot be omitted from The-
orem 3. Although the TRS R′ in Example 8 is not confluent, it admits the con-
fluent critical-pair-closing system {�1, �3, �4}.

Remark 4. The example is taken from [16] where it was used to show that
decreasingness of critical peaks need not imply that of all peaks, for rule
labelling. That example, in turn was adapted from Lévy’s TRS in [17] show-
ing that strong confluence need not imply confluence for left-linear TRSs.

Example 11. For self-joinable rules, i.e. rules that are self-overlapping and whose
critical pairs need further applications of the rule itself to join, Theorem3 is
not helpful since the critical-pair-closing system C then contains the rule itself.
Examples of self-joinable rules are associativity (x · y) · z → x · (y · z) and self-
distributivity (x ·y) ·z → (x ·z) · (y ·z), with confluence of the latter being known
to be hard (currently no tool can handle it automatically).11

The special case we consider is that of TRSs that are ARSs, i.e. where all
function symbols are nullary. The identification is justified by that any ARS
in the standard sense [26,32] can be presented as →R for the TRS R having a
nullary symbol for each object, and a rule for each step of the ARS. Since ARSs
have no duplicating rules, Theorem3 specialises to the following result.

Corollary 2. If C is critical-pair-closing for ARS R, R is confluent if C is.

Example 12. Consider the TRS R given by c → a′ → a → b and a → a′ → c. It
is an ARS having the critical-pair-closing system C given by the first part c →
a′ → a → b. Since C is orthogonal it is confluent by Corollary 2, so R is confluent
by the same corollary. In general, a confluent ARS may have many non-confluent
critical-pair-closing systems. Requiring local confluence is no impediment to that:
The subsystem C′ of R obtained by removing c → a′ allows to join all R-critical
peaks, but is not confluent; it simply is Kleene’s example [32, Figure 1.2] showing
that local confluence need not imply confluence.

For Cd/R to be vacuously terminating it is sufficient that all rules are linear.

Example 13. Consider the linear TRS R consisting of ρ1 : f(x) → f(f(x)),
ρ2 : f(x) → g(x), and ρ3 : g(x) → f(x). The subsystem C = {ρ1, ρ3} is critical-
pair-closing and has no critical pairs, so R is confluent.

From the above it is apparent that, whereas usual redundancy-criteria are based
on rules being redundant, the theorem gives a sufficient criterion for peaks of
steps being redundant. This allows one to leverage the power of extant confluence
methods. Here we give a generalisation of Huet’s strong closedness theorem [17]
as a corollary of Theorem3.
11 See problem 127 of http://cops.uibk.ac.at/results/?y=2019-full-run&c=TRS.

http://cops.uibk.ac.at/results/?y=2019-full-run&c=TRS

332 N. Hirokawa et al.

Definition 10. A TRS R is strongly closed [17] if s 	R · =
R← t and s →=

R

· R
 t hold for all critical pairs (s,t).

Corollary 3. A left-linear TRS R is confluent if there exists a critical-pair-
closing system C for R such that C is linear and strongly closed.

Example 14. Consider the linear TRS R:

�1: h(f(x, y)) → f(h(r(x)), y) �2: f(x, k(y, z)) → g(p(y), q(z, x))
�3: h(q(x, y)) → q(x, h(r(y))) �4: q(x, h(r(y))) → h(q(x, y))
�5: h(g(x, y)) → g(x, h(y))
�6: a(x, y, z) → h(f(x, k(y, z))) �7: a(x, y, z) → g(p(y), q(z, h(r(x))))

C = {�1, . . . , �5} is critical-pair-closing for R, since the R-critical peak
between �6 and �7 can be C-closed: h(f(x, k(y, z))) →�1 f(h(r(x)), k(y, z)) →�2

g(p(y), q(z, h(r(x)))). Because C is strongly closed and also linear, confluence of
R follows by Corollary 3.

Remark 5. Neither of the TRSs in Examples 13 and 14 is strongly closed. The
former not, because f(f(x)) 	R · =

R← g(x) does not hold, and the latter not
because g(p(y), q(z, h(r(x)))) 	R · =

R← h(f(x, k(y, z))) does not hold.

Having illustrated the usefulness of Theorem3, we now present its proof. In
TRSs there are two types of peaks: overlapping and non-overlapping ones. As
Example 10 shows, confluence criteria only addressing the former need not gen-
eralise from ARSs to TRSs. Note that one of the peaks showing non-confluence
of R′, the one between �2 and �3 (�4), is non-overlapping. Therefore, restricting
to a subsystem without �2 can only provide a partial analysis of confluence of
R′; the (non-overlapping) interaction between C and R−C is not accounted for,
and indeed that is fatal here. The intuition for our proof is that the problem is
that the number of such interactions is unbounded due to the presence of the
duplicating and non-terminating rule �3 (and �4) in C, and that requiring ter-
mination of Cd/R bounds that number and suffices to regain confluence. This
is verified by showing that 	C · ◦−→R has the diamond property.

Lemma 8. Let →A =
⋃

a∈I →a be a relation equipped with a well-founded order
� on a label set I, and let →B be a confluent relation with →B ⊆ 	A. The
relation →A is confluent if

1. a← · →b ⊆ (→A · A←) ∪ ⋃
{a,b}	mul{a′,b′}(a′← · ↔∗

B · →b′) for all a, b ∈ I; and
2. a← · →B ⊆ (B · a←) ∪ ⋃

a	a′(B · a′← · ↔∗
B) for all a ∈ I.

Here �mul stands for the multiset extension of �.

Proof (Sketch). Let � = 	B · →A . We claim that a← · →m
B · n

B← · →b ⊆ � · �
holds for all labels a, b and numbers m,n � 0. The claim is shown by well-
founded induction on ({a, b},m + n) with respect to the lexicographic product
of �mul and the greater-than order > on N. Thus, the diamond property of �
follows from the claim and confluence of B. As →A ⊆ � ⊆ 	A , we conclude
confluence of A by e.g. [32, Proposition 1.1.11].

Confluence by Critical Pair Analysis Revisited 333

Proof (of Theorem 3 by Lemma 8). Let I comprise pairs of a term and a natural
number, and define t →(t̂,n) s if t̂ 	R t ◦−→R s with n the maximal length of
a development of the multistep,12 and →B = →C, in Lemma 8. As well-founded
order � on indices we take the lexicographic product of Cd/R and greater-than
>. We only present the interesting case, leaving the others to the reader:

– Suppose s (t̂,n)← t →C u where the steps do not have overlap. Then by
Lemma 5(1), s ◦−→C · R ◦←− u, so s 	C · R ◦←− u. Distinguish cases on the
type of the C-rule employed in t →C u.
If the rule is duplicating, then s 	C · (u,m)← u for m the maximal length of a
development of the ◦−→R-step from u, and condition 2 is satisfied as t →Cd

u
implies (t̂,n) � (u,m).
If the rule is non-duplicating, then s 	C · (t̂,n)← u as t̂ 	R t →R u by
assumption and the length of the maximal development of the residual multi-
step does not increase when projecting over a linear rule. Again, condition 2
is satisfied. ��

5 Implementation and Experiments

The presented confluence techniques have been implemented in the confluence
tool Saigawa version 1.12 [14]. We used the tool to test the criteria on 432 left-
linear TRSs in COPS [15] Nos. 1–1036, where we ruled out duplicated problems.
Out of 432 systems, 224 are known to be confluent and 173 are non-confluent.

We briefly explain how we automated the presented techniques. As illustrated
in Example 9, Theorem 3 can be used as a stand-alone criterion. The condition
s →∗

R · =
R← t of strong closedness is tested by s →�5

R · =
R← t. For a critical

peak s ← · → t of C, hot-decreasingness is tested by s 	C · C
 t. For any
other critical peak s �← · → t, we test the disjunction of s →�5

�̊�
·

�̊�� ◦←− t and
s 	C ·

�̊�� ◦←− t if it is outer–inner one, and if it is overlay, the disjunction of
s →�5

�̊�
·

�̊�� ◦←− t and s 	C · C
 t is used. Order constraints for hot-labeling are
solved by SMT solver Yices [10]. For proving (relative) termination we employ
the termination tool NaTT version 1.8 [34]. Finally, suitable subsystems C used
in our criteria are searched by enumeration.

Table 1 gives a summary of the results.13 The tests were run on a PC equipped
with Intel Core i7-8500Y CPU (1.5 GHz) and 16 GB memory using a timeout of
60 seconds. For the sake of comparison we also tested Knuth and Bendix’ theorem
(kb), the strong closedness theorem (sc), and development closedness theorem
(dc). As theoretically expected, they are subsumed by their generalizations.

6 Conclusion and Future Work

We presented two methods for proving confluence of TRSs, dubbed critical-pair-
closing systems and hot-decreasingness. We gave a lattice-theoretic characterisa-
tion of overlap. Since many results in term rewriting, and beyond, are based on
12 By the Finite Developments Theorem lengths of such developments are finite [32].
13 Detailed data are available from: http://www.jaist.ac.jp/project/saigawa/19cade/.

http://www.jaist.ac.jp/project/saigawa/19cade/

334 N. Hirokawa et al.

Table 1. Experimental results

Theorem2 Theorem3 Corollary 3 kb dc sc
proved (# timeouts) 101 (46) 81 (24) 94 (15) 45 (18) 34 (1) 62 (1)

reasoning about overlap, which is notoriously hard [24], we expect that formal-
ising our characterisation could simplify or even enable formalising them. We
expect that both methods generalise to commutation, extend to HRSs [21], and
can be strengthened by considering rule specialisations.

Example 15. Analysing the TRS R of Example 10 one observes that for clos-
ing the critical pairs only (non-duplicating) instances of the duplicating
rules �3 and �4 are used. Adjoining these specialisations allows the method
to proceed: Adjoining �3(a) : f(c, a) → f(a, a) and �4(a) : f(a, c) → f(a, a)
to R yields a (reduction-equivalent) TRS having critical-pair-closing system
{�1, �3(a), �4(a), �5}. Since this is a linear system without critical pairs, it is
confluent, so R is as well.

References

1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

2. Barendregt, H.: The Lambda Calculus: Its Syntax and Semantics, Studies in Logic
and the Foundations of Mathematics, vol. 103. North-Holland (1985)

3. Bechet, D., de Groote, P., Retoré, C.: A complete axiomatisation for the inclusion
of series-parallel partial orders. In: Comon, H. (ed.) RTA 1997. LNCS, vol. 1232,
pp. 230–240. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62950-
5 74

4. Boudol, G.: Computational semantics of term rewriting systems. In: Nivat, M.,
Reynolds, J. (eds.) Algebraic Methods in Semantics, pp. 169–236. Cambridge Uni-
versity Press (1985)

5. Bundy, A., Basin, D., Hutter, D., Ireland, A.: Rippling: meta-level guidance for
mathematical reasoning. In: Cambridge Tracts in Theoretical Computer Science,
Cambridge University Press (2005). https://doi.org/10.1017/CBO9780511543326

6. Church, A., Rosser, J.: Some properties of conversion. Transact. Am. Math. Soc.
39, 472–482 (1936)

7. Comon, H., et al.: Tree Automata Techniques and Applications (2007). http://
www.grappa.univ-lille3.fr/tata

8. Davey, B., Priestley, H.: Introduction to Lattices and Order. Cambridge University
Press, Cambridge (1990)

9. Dershowitz, N., Jouannaud, J.P.: Rewrite systems. In: van Leeuwen, J. (ed.) Hand-
book of Theoretical Computer Science, vol. B, Formal Models and Semantics, pp.
243–320. Elsevier (1990)

10. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-
9 49

https://doi.org/10.1007/3-540-62950-5_74
https://doi.org/10.1007/3-540-62950-5_74
https://doi.org/10.1017/CBO9780511543326
http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49

Confluence by Critical Pair Analysis Revisited 335

11. Endrullis, J., Klop, J., Overbeek, R.: Decreasing diagrams with two labels are
complete for confluence of countable systems. In: Proceedings of 3rd FSCD. LIPIcs,
vol. 108, pp. 14:1–14:15 (2018). https://doi.org/10.4230/LIPIcs.FSCD.2018.14

12. Felgenhauer, B., Middeldorp, A., Zankl, H., van Oostrom, V.: Layer systems for
proving confluence. ACM Transact. Computat. Logic 16, 1–32 (2015)

13. Felgenhauer, B.: Labeling multi-steps for confluence of left-linear term rewrite sys-
tems. In: Tiwari, A., Aoto, T. (eds.) Proceedings of 4th IWC, pp. 33–37 (2015)

14. Hirokawa, H., Klein, D.: Saigawa: A confluence tool. In: Proceedings of 1st IWC,
p. 49 (2012). http://www.jaist.ac.jp/project/saigawa/

15. Hirokawa, N., Nagele, J., Middeldorp, A.: Cops and CoCoWeb: infrastructure for
confluence tools. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018.
LNCS (LNAI), vol. 10900, pp. 346–353. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-94205-6 23

16. Hirokawa, N., Middeldorp, A.: Decreasing diagrams and relative termination. J.
Autom. Reasoning 47(4), 481–501 (2011)

17. Huet, G.: Confluent reductions: abstract properties and applications to term rewrit-
ing systems. J. ACM 27(4), 797–821 (1980)

18. Huet, G., Lévy, J.J.: Computations in orthogonal rewriting systems, I. In: Lassez,
J.L., Plotkin, G. (eds.) Computational Logic: Essays in Honor of Alan Robinson,
chap. 11. The MIT Press (1991)

19. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech,
J. (ed.) Computational Problems in Abstract Algebra, Proceedings of a Conference
held at Oxford under the Auspices of the Science Research Council Atlas Computer
Laboratory, 29 August–2 September 1967. pp. 263–297 (1970)

20. Liu, J.L.: Propriétés de Confluence des Règles de Réécriture par des Diagrammes
Décroissants. Ph.D. thesis, Tsinghua University and l’Université Paris-Saclay
préparée à l’École Polytechnique (2016)

21. Mayr, R., Nipkow, T.: Higher-order rewrite systems and their confluence. Theoret.
Comput. Sci. 192(1), 3–29 (1998). https://doi.org/10.1016/S0304-3975(97)00143-
6

22. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. The-
oret. Comput. Sci. 96, 73–155 (1992)

23. Métivier, Y.: About the rewriting systems produced by the Knuth–Bendix com-
pletion algorithm. Inf. Process. Lett. 16(1), 31–34 (1983)

24. Nagele, J., Middeldorp, A.: Certification of classical confluence results for left-
linear term rewrite systems. In: Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS,
vol. 9807, pp. 290–306. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
43144-4 18

25. Newman, M.: On theories with a combinatorial definition of equivalence. Ann.
Math. 43(2), 223–243 (1942)

26. Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, Heidelberg (2002).
https://doi.org/10.1007/978-1-4757-3661-8

27. Okui, S.: Simultaneous critical pairs and Church-Rosser property. In: Nipkow, T.
(ed.) RTA 1998. LNCS, vol. 1379, pp. 2–16. Springer, Heidelberg (1998). https://
doi.org/10.1007/BFb0052357

28. van Oostrom, V.: Confluence for Abstract and Higher-Order Rewriting. Ph.D.
thesis, Vrije Universiteit, Amsterdam, March 1994

29. van Oostrom, V.: Developing developments. Theoret. Comput. Sci. 175(1), 159–
181 (1997)

https://doi.org/10.4230/LIPIcs.FSCD.2018.14
http://www.jaist.ac.jp/project/saigawa/
https://doi.org/10.1007/978-3-319-94205-6_23
https://doi.org/10.1007/978-3-319-94205-6_23
https://doi.org/10.1016/S0304-3975(97)00143-6
https://doi.org/10.1016/S0304-3975(97)00143-6
https://doi.org/10.1007/978-3-319-43144-4_18
https://doi.org/10.1007/978-3-319-43144-4_18
https://doi.org/10.1007/978-1-4757-3661-8
https://doi.org/10.1007/BFb0052357
https://doi.org/10.1007/BFb0052357

336 N. Hirokawa et al.

30. van Oostrom, V.: Confluence by decreasing diagrams. In: Voronkov, A. (ed.) RTA
2008. LNCS, vol. 5117, pp. 306–320. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-70590-1 21

31. Rosen, B.: Tree-manipulating systems and Church-Rosser theorems. J. ACM 20,
160–187 (1973)

32. Terese: Term Rewriting Systems. Cambridge University Press (2003)
33. Toyama, Y.: On the Church-Rosser property for the direct sum of term rewriting

systems. J. ACM 34(1), 128–143 (1987)
34. Yamada, A., Kusakari, K., Sakabe, T.: Nagoya termination tool. In: Dowek, G.

(ed.) RTA 2014. LNCS, vol. 8560, pp. 466–475. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08918-8 32

35. Zankl, H., Felgenhauer, B., Middeldorp, A.: Labelings for decreasing diagrams. J.
Autom. Reasoning 54(2), 101–133 (2015)

https://doi.org/10.1007/978-3-540-70590-1_21
https://doi.org/10.1007/978-3-540-70590-1_21
https://doi.org/10.1007/978-3-319-08918-8_32
https://doi.org/10.1007/978-3-319-08918-8_32

	Confluence by Critical Pair Analysis Revisited
	1 Introduction
	2 Preliminaries on Decreasingness and Encompassment
	3 Confluence by Hot-Decreasingness
	4 Confluence by Critical-Pair Closing Systems
	5 Implementation and Experiments
	6 Conclusion and Future Work
	References

