
SCL
Clause Learning from Simple Models

Alberto Fiori1,2 and Christoph Weidenbach1(B)

1 Max Planck Institute for Informatics, Saarland Informatics Campus,
Saarbrücken, Germany

weidenbach@mpi-inf.mpg.de
2 Graduate School of Computer Science, Saarbrücken, Germany

Abstract. Several decision procedures for the Bernays-Schoenfinkel
(BS) fragment of first-order logic rely on explicit model assumptions. In
particular, the procedures differ in their respective model representation
formalisms. We introduce a new decision procedure SCL deciding the
BS fragment. SCL stands for clause learning from simple models. Simple
models are solely built on ground literals. Nevertheless, we show that
SCL can learn exactly the clauses other procedures learn with respect to
more complex model representation formalisms. Therefore, the overhead
of complex model representation formalisms is not always needed. SCL
is sound and complete for full first-order logic without equality.

1 Introduction

There has been intensive research into the development of decision procedures
for the Bernays-Schoenfinkel (BS) first-order clause fragment without equal-
ity [1,3,4,7,9,14,17]. Even classical tableau can be turned into a decision pro-
cedure for BS [2]. The procedures follow three different paradigms. They either
employ an explicit CDCL-style [12] partial model assumption [1,3,4,14], or they
implement an abstraction-refinement approach [9,17], or merely rely on syntactic
restrictions on inferences [7] yielding finite saturations.

The BS fragment is a natural generalization of propositional logic but still
enjoys the finite-model property. Furthermore, any finite BS clause set can be
transformed into a satisfiability equivalent SAT problem by finite instantia-
tion at the price of a, worst case, exponentially larger clause set. For example,
this relationship is used as a reasoning principle in Answer Set Programming
(ASP) [8]. The exponential “overhead” is, in the worst case, unavoidable for any
decision procedure, because BS satisfiability is NEXPTIME-complete [11,15].
This means, worst case, that an explicit model representation gets exponentially
large, or satisfiability testing with respect to the model representation cannot
be done in polynomial time. This justifies and motivates the research for pro-
cedures with different model representation formalisms as well as alternative
approaches through abstraction or saturation. Actually, the leading systems at
recent CASCs [16] have implemented a portfolio containing procedures from all
of the aforementioned paradigms.
c© Springer Nature Switzerland AG 2019
P. Fontaine (Ed.): CADE 2019, LNAI 11716, pp. 233–249, 2019.
https://doi.org/10.1007/978-3-030-29436-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29436-6_14&domain=pdf
https://doi.org/10.1007/978-3-030-29436-6_14

234 A. Fiori and C. Weidenbach

One contribution of this paper is a CDCL-style calculus deciding the BS
fragment and being sound and complete for full first-order logic without equality.
The model representation is simple: it consists of a sequence of ground literals.
It is therefore properly contained in known model representation formalisms [1,
3,4,14]. However, we show that this model representation formalism together
with the respective inference rules is sufficient to learn the very same clauses
as in NRCL [1]. NRCL has one of the most expressive model representation
formalisms. We call the procedure SCL for clause learning from simple models.
The most important computations with respect to a model representation are
the consistent extension of the current trail and the detection of a propagating
literal or a false clause. The currently available procedures can be further divided
into procedures where these computations can be done in polynomial time [3,6]
and procedures where such computations are worst case NP-complete [1,14].1

The advantages of the latter two formalisms are exponentially more compact
model representations where the model representation language of the NRCL
calculus [1] is more general than [3,6,14]. One contribution of this paper is
that for model-driven clause learning, sophisticated model representations are
not needed (Theorem 24). More precisely, we prove that any clause learned
by the NRCL calculus can also be learned by our new SCL calculus, where the
model representation consists of ground literals only. One of the simplest but also
most efficient model representations known with respect to computations. This
result holds for full first-order logic without equality. Model representations for
BS clause sets with respect to ground literals can become exponentially larger
compared to the above-mentioned more sophisticated model representations.
The model size is exponential in the maximal arity of a predicate, which we
will discuss in detail in Sect. 5. The implication of our result is that SCL can be
efficiently used on problems where the ground literal model representation does
not become “too large”, further discussed in Sect. 6.

Another contribution in addition to SCL being sound, complete, and a deci-
sion procedure for the BS fragment is the fact that it only learns non-redundant
clauses with respect to so-called reasonable strategies, see Sect. 3. A clause is
redundant with respect to a clause set, if it is implied by smaller clauses, see
Sect. 2. Non-redundancy is a powerful property: in the BS context, we prove it
NEXPTIME-complete, Theorem 14. Practically, this implies that a clause gen-
erated by SCL with a reasonable strategy does not need to be tested for forward
redundancy, e.g., forward Subsumption. Saturation-based theorem provers spent
a substantial share of their run time on testing forward redundancy.

A third contribution concerning SCL is its ability to simulate resolution,
Sect. 4, Theorem 20. Arbitrary resolution steps may generate redundant clauses,
hence giving up a reasonable strategy is a prerequisite for the simulation. In this
context we also discuss the performance of SCL with respect to proof length,
Sect. 4, following [13].

Finally, we investigate a so called weakly-reasonable strategy, where prop-
agations need not to be exhaustive, specifically unit clauses need not to be

1 For [4] no complexity result has been published so far.

SCL Clause Learning from Simple Models 235

propagated. Although propagating unit clauses is typically a good strategy for
SAT, for the BS fragment this depends already on the actual problem, because
one unit clause may cause exponentially many subsequent propagation steps. In
summary, the weakly-reasonable strategy generates non-redundant clauses with
the exception of unit instances, Theorem 12, and allows for exponentially shorter
proofs compared to a reasonable strategy, which exhausts propagation, Exam-
ple 9. We end the paper with a short summary and discussion of the obtained
results, Sect. 6.

2 Preliminaries

We assume a first-order language without equality where N denotes a clause
set; C,D denote clauses; L,K,H denote literals; A,B denote atoms; P,Q,R
denote predicates; t, s terms; f, g, h function symbols; a, b, c constants; and x, y, z
variables. Atoms, literals, clauses and clause sets are considered as usual. The
complement of a literal is denoted by the function comp. Semantic entailment
|= is defined as usual where variables in clauses are assumed to be universally
quantified. Substitutions σ, τ are total mappings from variables to terms, where
dom(σ) := {x | xσ �= x} is finite and codom(σ) := {t | xσ = t, x ∈ dom(σ)}.
Their application is extended to literals, clauses, and sets of such objects in the
usual way. A term, atom, clause, or a set of these objects is ground if it does
not contain any variable. A substitution σ is ground if codom(σ) is ground. A
substitution σ is grounding for a term t, literal L, clause C if tσ, Lσ, Cσ is
ground, respectively. A closure is denoted as C · σ and is a pair of a clause C
and a ground substitution σ. The function gnd computes the set of all ground
instances of a literal, clause, or clause set. Note that for BS this set is always
finite, whereas for first-order logic it is infinite, in general. The function mgu
denotes the most general unifier of two terms, atoms, literals. We assume that
any mgu of two terms or literals does not introduce any fresh variables and is
idempotent.

In addition, we assume a well-founded, total, strict ordering ≺ on ground
literals. This ordering is then lifted to clauses and clause sets by its respective
multiset extension. We overload ≺ for literals, clauses, clause sets if the meaning
is clear from the context. The ordering is lifted to the non-ground case via
instantiation: we define C ≺ D if for all grounding substitutions σ it holds
Cσ ≺ Dσ. We define � as the reflexive closure of ≺ and N�C := {D | D ∈
N and D � C}.

Definition 1 (Clause Redundancy). A ground clause C is redundant with
respect to a ground clause set N and an order ≺ if N�C |= C. A clause C is
redundant with respect to a clause set N and an order ≺ if for all C ′ ∈ gnd(C)
C ′ is redundant with respect to ∪D∈N gnd(D).

3 SCL Rules and Properties

The inference rules of SCL are represented by an abstract rewrite system. They
operate on a problem state, a five-tuple (Γ ;N ;U ; k;u) where Γ is a sequence of

236 A. Fiori and C. Weidenbach

annotated ground literals, the trail ; N and U are the sets of initial and learned
clauses; k counts the number of decisions; and u is a status that is either true
�, false ⊥, or a closure C · σ. Literals in Γ are either annotated with a number,
a level; i.e., they have the form Lk meaning that L is the k-th guessed decision
literal, or they are annotated with a closure that propagated the literal to become
true. A ground literal L is of level i with respect to a problem state (Γ ;N ;U ; k;u)
if L or comp(L) occurs in Γ and the first decision literal left from L (comp(L))
in Γ , including L, is annotated with i. If there is no such decision literal then
its level is zero. A ground clause D is of level i with respect to a problem state
(Γ ;N ;U ; k;u) if i is the maximal level of a literal in D; the level of the empty
clause ⊥ is 0. Recall u is a non-empty closure or � or ⊥.

A literal L is undefined in Γ if neither L nor comp(L) occur in Γ . The initial
state for a first-order clause set N is (ε,N, ∅, 0,�). The rules for conflict search
are

Propagate (Γ ;N ;U ; k;�) ⇒SCL (Γ,Lσ(C∨L)·σ;N ;U ; k;�)
provided C ∨ L ∈ (N ∪ U), Cσ is ground and false under Γ , Lσ is undefined in Γ

Decide (Γ ;N ;U ; k;�) ⇒SCL (Γ,Lk+1;N ;U ; k + 1;�)
provided L is a ground literal undefined in Γ

Conflict (Γ ;N ;U ; k;�) ⇒SCL (Γ ;N ;U ; k;D · σ)
provided D ∈ (N ∪ U), Dσ false in Γ for a grounding substitution σ

These rules construct a (partial) model via the trail Γ for N ∪ U until a
conflict, i.e., a false clause with respect to Γ is found. The above rules always
terminate with respect to the BS fragment, but not for first-order logic, in gen-
eral. In the special case of a unit clause L, the rule Propagate actually annotates
the literal L with a closure of itself. So the propagated literals on the trail are
annotated with the respective propagating clause and the decision literals with
the respective level. If a conflict is found, it is resolved by the rules below. Before
any Resolve step, we assume that the respective clauses are renamed such that
they do not share any variables and that the grounding substitutions of closures
are adjusted accordingly.

Skip (Γ,Lδ(C∨L)·δ;N ;U ; k;D · σ) ⇒SCL (Γ ;N ;U ; k;D · σ)
provided comp(Lδ) does not occur in Dσ

Factorize (Γ ;N ;U ; k; (D ∨ L ∨ L′) · σ) ⇒SCL (Γ ;N ;U ; k; (D ∨ L)η · σ)
provided Lσ = L′σ, η = mgu(L,L′)

Resolve (Γ,Lδ(C∨L)·δ;N ;U ; k; (D∨L′)·σ) ⇒SCL (Γ,Lδ(C∨L)·δ;N ;U ; k; (D∨
C)η · σδ)
provided Dσ is of level k, Lδ = comp(L′σ), η = mgu(L, comp(L′))

SCL Clause Learning from Simple Models 237

Backtrack (Γ,Ki+1, Γ ′;N ;U ; k; (D ∨ L) · σ) ⇒SCL (Γ ;N ;U ∪ {D ∨ L}; i;�)
provided Lσ is of level k and Dσ is of level i.

The clause D∨L added by the rule Backtrack to U is called a learned clause.
The empty clause ⊥ can only be generated by rule Resolve or be already present
in N , hence, as usual for CDCL style calculi, the generation of ⊥ together with
the clauses in N ∪ U represent a resolution refutation. The rules for SCL are
applied in a don’t-care style, hence, the calculus offers freedom with respect to
factorization. Literals in the conflict clause can, but do not have to be factorized.
In particular, the Factorize rule may remove duplicate literals. The rule Resolve
does not remove the literal resolved upon from the trail. Actually, Resolve is
applied as long as the rightmost propagated trail literal occurs in the conflict
clause. This literal is eventually removed by rule Skip from the trail.

For example, consider the clause set N = {D = Q ∨ R(a, y) ∨ R(x, b), C =
Q ∨ S(x, y) ∨ P (x) ∨ P (y) ∨ ¬R(x, y)} and a problem state:

(¬P (a)1,¬P (b)2,¬S(a, b)3,¬Q4,¬R(a, b)C·{x�→a,y �→b}, N, ∅, 4,�)

derived by SCL. The rule Conflict is applicable and yields the conflict state

(¬P (a)1,¬P (b)2,¬S(a, b)3,¬Q4, R(a, b)C·{x�→a,y �→b};N ; ∅; 4;D · {x �→ a, y �→ b})

from which we can either learn the clause

C1 = Q ∨ S(x, b) ∨ P (x) ∨ P (b) ∨ S(a, y) ∨ P (a) ∨ P (y)

or the clause

C2 = Q ∨ S(a, b) ∨ P (a) ∨ P (b)

depending on whether we first resolve or factorize. Note that C2 does not sub-
sume C1. Both clauses are non-redundant. In order to learn C1 we need to resolve
twice with R(a, b)C·{x�→a,y �→b}.

The first property we prove about SCL is soundness. We prove it via the
notion of a sound state.

Definition 2 (Sound States). A state (Γ ;N ;U ; k;u) is sound if the following
conditions hold

1. Γ is a consistent sequence of annotated ground literals,
2. for each decomposition Γ = Γ1, LσC∨L·σ, Γ2 we have that Cσ is false under

Γ1 and Lσ is undefined under Γ1, C ∨ L ∈ (N ∪ U),
3. for each decomposition Γ = Γ1, L

k, Γ2 we have that L is undefined in Γ1,
4. N |= U ,
5. if u = C · σ then Cσ is false under Γ and N |= C.

Note that an initial state (ε,N, ∅, 0,�) is sound. A rule is sound if it maps
sound states to sound states.

238 A. Fiori and C. Weidenbach

Theorem 3 (Soundness of SCL). The rules of SCL are sound, hence SCL
starting with an initial state is sound.

Proof. (Idea) By induction on the length of an SCL derivation and a case analysis
for the different rules preserving soundness of states. ��

Next we introduce regular and weakly-regular runs. Regular runs always
generate non-redundant clauses, but require exhaustive propagation. Weakly-
regular runs do not require exhaustive propagation and almost always generate
non-redundant clauses except for instances of unit clauses. However, although
exhaustive propagation is typically done in CDCL style SAT, already for the
BS fragment it should not always be preferred, because unit clauses can have
already exponentially many ground instances.

Definition 4 (Regular States). A state (Γ ;N ;U ; k;u) is regular if and only
if the following hold:

1. for every decomposition Γ = Γ1, L
k, Γ2 there is no clause in N ∪U that could

propagate from Γ1,
2. for each decomposition Γ = Γ1, L, Γ2 where L may be either propagated or

decided, there is no clause from gnd(N ∪ U) false under Γ1.

Definition 5 (Weakly-Regular States). A state (Γ ;N ;U ; k;u) is weakly-
regular if and only if the following hold:

1. for every decomposition Γ = Γ1, L
k, Γ2 there is no non-unit clause in N ∪ U

that could propagate from Γ1,
2. for each decomposition Γ = Γ1, L, Γ2 where L may be either propagated or

decided, there is no clause from gnd(N ∪ U) false under Γ1.

Some of the below results hold both for regular and weakly-regular states or
runs. In this case we write “(weakly-) regular” meaning both cases.

Theorem 6 (Correct Termination). If no rules are applicable to a (weakly-)
regular state (Γ ;N ;U ; k;u) then either u = ⊥ and N is unsatisfiable or N is
satisfiable and Γ |= N .

Proof. For a state (Γ ;N ;U ; k;u) where u �∈ {�,⊥}, one of the rules Resolve,
Skip, Factorize or Backtrack is applicable. If the top level literal is a propagated
literal then either Resolve or Skip are applicable. If the top level literal is a
decision then one of the rules Backtrack or Factorize is applicable. If u = � and
Propagate, Decide, and Conflict are not applicable it means that there are no
undefined ground literals in Γ , so Γ |= N . ��
Definition 7 (Regular Runs). A derivation of regular states is regular or a
regular run if the rules Conflict and Propagate are always applied before all other
rules in decreasing order of priority.

Definition 8 (Weakly-Regular Runs). A derivation of regular states is
weakly-regular or a weakly-regular run if the following conditions hold:

SCL Clause Learning from Simple Models 239

1. Conflict has higher priority than all other rules,
2. if Conflict is not applicable and we can apply Propagate to a non-unit clause

then Propagate has higher priority than any other rule,
3. Decide never adds a literal L to the trail if comp(L) is a unit clause in gnd(N∪

U),
4. Resolve has higher priority than Backtrack if the current conflict clause is

subsumed in N by a unit clause.

Example 9 (Comparing Proof Length of Regular and Weakly-Regular Runs).
Proofs generated by weakly-regular runs can be exponentially shorter than proofs
generated by regular runs. Consider the simple BS clause set

N = {R(x1, . . . , xn, a, b), P ∨ Q,P ∨ ¬Q,¬P ∨ Q,¬P ∨ ¬Q}.

A weakly-regular run can ignore generating the 2n different ground instances of
R(x1, . . . , xn, a, b) and directly proceed in refuting the propositional part of N in
the usual CDCL style by starting with a decision on P or Q. For the example it
is obvious that the instances of R(x1, . . . , xn, a, b) can be ignored, but in general
it is not. This phenomenon already occurs for NP-complete problems: when
deciding linear integer arithmetic in a CDCL style, exhaustive propagation is
not required by respective calculi for the very same reason [5].

Definition 10 (State Induced Ordering). Let (L1, L2, . . . , Ln;N ;U ; k;u) be
a sound state of SCL where the annotations of the Li are ignored. The trail
induces a total well-founded strict order on the defined literals by

L1 ≺Γ comp(L1) ≺Γ L2 ≺Γ comp(L2) ≺Γ · · · ≺Γ Ln ≺Γ comp(Ln).

We extend ≺Γ to a strict total order on all literals where all undefined lit-
erals are larger than comp(Ln). We also extend ≺Γ to a strict total order on
ground clauses by multiset extension and also on multisets of ground clauses and
overload ≺Γ for all these cases. With �Γ we denote the reflexive closure of ≺Γ .

Theorem 11 (Learned Clauses in Regular Runs). Let (Γ ;N ;U ; k;C0 ·σ0)
be the state resulting from the application of Conflict in a regular run and let C
be the clause learned at the end of the conflict resolution, then C is not redundant
with respect to N ∪ U and ≺Γ .

Proof. Consider the following fragment of a derivation learning a clause:

⇒Conflict
SCL (Γ ;N ;U ; k;C0 · σ0) ⇒{Skip, Fact., Res.}∗

SCL (Γ ′;N ;U ; k;C · σ) ⇒Backtrack
SCL .

By soundness N∪ |= C and Cσ is false under both Γ and Γ ′. We prove that
Cσ is non-redundant.

Assume there is an S ⊆ gnd(N ∪ U)�Γ Cσ s.t. S |= Cσ. There is a clause
D ∈ S false under Γ , S �Γ {Cσ} and Cσ �∈ S. All clauses in S have a defined
truth value (as all undefined literals are greater than all defined literals) and if
Γ |= S then Γ |= Cσ, a contradiction.

240 A. Fiori and C. Weidenbach

We distinguish whether the two trails Γ and Γ ′ are equal or Γ ′ is a strict
prefix of Γ .

If Γ �= Γ ′ then at least one Skip application was performed during conflict
resolution, so Cσ does not contain the rightmost literal of Γ and since D ≺Γ Cσ
neither does D. So at a previous point in the derivation there must be a conflict
search state such that D was false under the current trail but was not chosen as
conflict instance, a contradiction to the exhaustive application of Conflict.

If Γ = Γ ′ we distinguish two sub-cases according to whether the rightmost
literal in Γ is the result of a Decision or a Propagation.

If the rightmost literal of Γ = Γ ′′, Lk is a decision literal, then D is either
true in Γ ′′ or has at least two literals undefined or of level k. Since D must be
false under Γ , D must have two or more occurrences of literals undefined under
Γ or of comp(L). Since Cσ has no undefined literal and exactly one occurrence
of comp(L) we have a contradiction with D ≺Γ Cσ.

If Γ = Γ ′′, LC′·δ then at most one literal in Cσ is of level k and all other
literals, if any, are of level at most k − 1. Moreover, D is also either true in Γ ′′

or has at least two literals undefined under Γ ′′ or of level k or k = 0. Backtrack
requires the presence of at least one decision literal on the trail and so k > 0 so
D must have at least two literals of level k. If both of those literal are different
from comp(L) then by regularity, we would have applied Conflict instead of
Propagate on the trail Γ ′′. So at least one of the literals of level k in D must be
comp(L). Simple case analysis shows that under these conditions Cσ ≺Γ D, a
contradiction. ��
Theorem 12 (Learned Clauses in Weakly-Regular Runs). Let the state
(Γ ;N ;U ; k;C0 · σ0) the result of a Conflict application in a weakly-regular run
and let C be the clause learned at the end of the conflict resolution, then C is
not redundant w.r.t. N ∪ U and ≺Γ or C is an instantiation of a unit clause in
N ∪ U .

Proof. Consider the following fragment of a derivation learning a clause:

⇒Conflict
SCL (Γ ;N ;U ; k;C0 · σ0) ⇒{Skip, Fact., Res.}∗

SCL (Γ ′;N ;U ; k;C · σ) ⇒Backtrack
SCL .

By soundness N ∪ U |= C and Cσ is false under both Γ and Γ ′. We need
to prove that there exists a ground instantiation of C that is non-redundant or
that C is unit; we assume that C is not a unit and prove by contradiction that
Cσ is non-redundant.

Assume there is an S ⊆ gnd(N ∪ U)�Γ Cσ s.t. S |= C. There is a clause
D ∈ S false under Γ ; indeed since S ≺Γ {Cσ} all clauses in S have a defined
truth value and if all clauses in S were to be true under Γ we would also have
that Cσ would be true under Γ by transitivity of entailment.

We distinguish whether the two trails Γ and Γ ′ are equal or Γ ′ is a strict
prefix of Γ .

If Γ �= Γ ′ then rule Skip was applied at least once during conflict resolution,
so Cσ does not contain the rightmost literal of Γ and since D ≺Γ Cσ neither
does D. So at a previous point in the derivation there must be a conflict search

SCL Clause Learning from Simple Models 241

state such that D was false under the current trail but was not chosen as conflict
instance, a contradiction to the exhaustive application of Conflict.

If Γ = Γ ′ we distinguish two sub-cases according to whether the rightmost
literal in Γ is the result of a Decision or a Propagation.

If the rightmost literal of Γ = Γ ′′, Lk is a decision literal then D is either
true in Γ ′′, a unit clause, or has at least two literals undefined or of level k. If
D is a unit clause then it must be true or undefined in Γ ′′, and since decisions
are restricted to never falsify unit clauses D cannot be false in Γ ′′. Otherwise, D
must have two or more occurrences of literals undefined under Γ ′′ or of comp(L).
Since Cσ has no undefined literal and exactly one occurrence of comp(L), we
have a contradiction with D ≺Γ Cσ.

If Γ = Γ ′′, LC′·δ then at most one literal in Cσ is of level k and all other
literals, if any, are of level at most k − 1, moreover D is either true in Γ ′′, a unit
clause, or has at least two literals undefined or of level k. Under these conditions
D ≺Γ Cσ and Γ |= ¬D imply D = ¬L and Cσ = C ′′ ∨ ¬L, but then the next
rule cannot be a Backtrack as by weak regularity Resolve would have higher
priority. ��
Proposition 13. All regular runs are weakly-regular runs.

Proof. There are four conditions that a weakly-regular run needs to satisfy. A
regular run clearly respects the first two conditions, so we prove that regular runs
respect the last two. In a regular run Propagate has always higher priority than
Decide, so whenever we could decide a literal L s.t. comp(L) ∈ gnd(N ∪ U) the
literal comp(L) must have already been propagated and so L is not undefined.
By Theorem 11 whenever we can apply Backtrack the conflict clause is not
redundant in N and so not subsumed in N . ��
Theorem 14 (BS Non-redundancy is NEXPTIME-Complete). Decid-
ing non-redundancy of a BS clause C with respect to a finite BS clause set N�C

is NEXPTIME-Complete.

Proof. We only show hardness, because containment of the problem in NEXP-
TIME is obvious. To this end, let N = {C1, . . . , Cn} be an arbitrary, finite BS
clause set. We consider an LPO ordering ≺LPO. Next we add two fresh predicates
of arity zero, P,Q with P ≺LPO Q, where P , Q are larger in the LPO precedence
than any other symbol from N . Then obviously N is satisfiable iff the finite BS
clause set N ′ = {P,Q,C1 ∨¬Q,C2 ∨¬P,C3, . . . , Cn} is satisfiable. Furthermore,
the clause ¬P ∨ ¬Q is ≺LPO larger than any clause in N ′ \ {P,Q}. The clause
¬P ∨ ¬Q is non-redundant with respect to N ′ \ {P,Q} iff N ′ is satisfiable. ��
Theorem 15 (Termination). If N is a clause set and gnd(N) is finite then
any (weakly-) regular run of SCL terminates.

Proof. Any infinite run learns infinitely many clauses. Firstly, for a regular run,
by Theorem 11, all learned clauses are non-redundant. The number of different
ground clauses and literals is finite. So there is no infinite regular run. Sec-
ondly, for weakly-regular runs, the learned clause is either non-redundant, or an

242 A. Fiori and C. Weidenbach

instance of a unit clause from N or from the set of learned clauses. However,
there are also only finitely many instances of unit clauses from N . So there is no
infinite weakly-regular run. ��
Theorem 16 (SCL Refutational Completeness). If N is unsatisfiable,
then there is a (weakly-) regular run of SCL deriving ⊥.

Proof. If N is unsatisfiable, then as a consequence of Herbrand’s Theorem there
is a finite set of ground instances N ′ from N that is unsatisfiable. Now restrict
the rules Decide and Propagate to ground literals from N ′. By Theorems 15 and
6 any (weakly-) regular run on this restriction derives ⊥. ��
Theorem 17 (SCL decides the BS fragment). SCL restricted to weakly-
regular runs decides satisfiability of a BS clause set.

Proof. There are only finitely many ground instances of a BS clause set. Follow-
ing the proof of Theorem 15, any SCL (weakly-) regular run will terminate on a
BS clause set. ��

4 Simulating Resolution by SCL

It is well-known that resolution inferences may generate redundant clauses.
Therefore, by Theorems 11 and 12 (weakly-) regular runs cannot simulate reso-
lution. However, the SCL calculus is still flexible enough to simulate arbitrary
resolution inferences that do not result in tautologies by a non-regular strategy.

Lemma 18 (SCL Simulates Resolution). Let N be a clause set, C = C ′∨H
and D = D′ ∨ H ′ be clauses in N such that C ′ and D′ are non-empty, η =
mgu(H, comp(H ′)) exists, the literals H and H ′ are not duplicated in either C
or D and the three clauses Cη, Dη and (C ′ ∨ D′)η are not tautologies. Then,
there is an SCL run starting from the state (ε;N ; ∅; 0;�) where the first learned
clause is (C ′ ∨ D′)η.

Proof. Let θ be a grounding substitution on the variables of Cη and Dη such that
distinct literals are mapped to distinct ground literals, also let {L1, . . . , Ln} =
(C ′ ∨ D′)ηθ.

We can start our derivation with n Decisions where at the i-th step we
decide the literal comp(Li) to obtain the state (K1

1 , . . . ,Kn
n ;N ;U ;n;�), Ki =

comp(Li). This is possible as (C ′ ∨ D′) is not a tautology.
Hηθ is still undefined but every other literal in C ′ηθ is falsified under the

current trail; so in the next step we can propagate Hηθ on the trail.

(K1
1 , . . . ,Kn

n ;N ; ∅;n;�) ⇒Propagate
SCL (K1

1 , . . . ,Kn
n ,HηθC′∨H·ηθ;N ; ∅;n;�)

Now the rule Conflict is applicable to (D′ ∨ H ′)ηθ resulting in

(K1
1 , . . . ,Kn

n ,HηθC′∨H·ηθ;N ; ∅;n;D′ ∨ H ′ · ηθ).

SCL Clause Learning from Simple Models 243

We apply Resolve once and we reach the state

(K1
1 , . . . ,Kn

n ;N ; ∅;n; (C ′ ∨ D′)η · θ).

From this state we can backtrack to

(K1
1 , . . . ,Kk

k ;N ; {(C ′ ∨ D′)η}; k;�).

��
Lemma 19 (SCL Simulates Factoring). Let N be a clause set, C = C ′ ∨
H ∨H ′ a non-tautological clause with unifiable literals H and H ′. There is a run
starting from the state (ε;N ; ∅; 0;�) where the first learned clause is (C ′ ∨ H)η
where η = mgu(H,K).

Proof. Let {L1, . . . , Lk} = Cη and let ρ be a grounding of C injective
on the literals of Cη. By applying Decide k times we can reach a state
(K1

1ρ, . . . ,Kk
kρ;N ; ∅; k;�), Ki = comp(Li), from which we can apply rule Con-

flict to Cηρ resulting in (K1
1ρ, . . . ,Kk

kρ;N ; ∅; k;C · ηρ). Now we can factorize
H and H ′, deriving ⇒Factorize

SCL (K1
1ρ, . . . ,Kk

kρ;N ; ∅; k; (C ′ ∨ H)η · ρ) and, finally,
backtrack and learn (C ′ ∨ H)η. ��

In order to simulate an overall refutation of the resolution calculus, an addi-
tional Restart rule is needed. Note that tautologies can be ignored in refutations
by the resolution calculus.

Restart (Γ ;N ;U ; k;�) ⇒SCL (ε;N ;U ; 0;�)
provided Γ �|= N

Theorem 20 (SCL Simulates the Resolution Calculus). SCL together
with the Restart rule can simulate a resolution refutation by a non-regular strat-
egy.

Proof. By Lemmas 18 and 19. ��
Consider another example, taken from [13], where exhaustive propagation

leads to exponentially longer proofs compared to the shortest resolution proof.
Let i be a positive integer and consider the clause set N i with one predicate P
of arity i consisting of the following clauses, where we write x̄, 0̄ and 1̄ to denote
sequences of the appropriate length of variables and constants to meet the arity
of P :

P (0̄) ¬P (1̄)

and i clauses of the form

¬P (x̄, 0, 1̄) ∨ P (x̄, 1, 0̄)

where the length of 1̄ varies between 0 and i − 1. The example encodes an i-bit
counter. A regular run of SCL (NRCL) on this clause set would find a conflict

244 A. Fiori and C. Weidenbach

after O(2i) propagations without any application of Decide. For example, for
i = 4 we get the clauses of N4:

1 : P (0, 0, 0, 0)
2 : ¬P (x1, x2, x3, 0) ∨ P (x1, x2, x3, 1)
3 : ¬P (x1, x2, 0, 1) ∨ P (x1, x2, 1, 0)
4 : ¬P (x1, 0, 1, 1) ∨ P (x1, 1, 0, 0)
5 : ¬P (0, 1, 1, 1) ∨ P (1, 0, 0, 0)
6 : ¬P (1, 1, 1, 1)

For this clause set a regular SCL (NRCL) generates all unit clauses from
P (0, 0, 0, 0) to P (1, 1, 1, 1) via 24 applications of Propagate, then finds a conflict
with clause 6 and then uses 24 times Resolve to end up in ⊥.

Instead a short resolution refutation can be obtained by

2.2 Res 3.1 7 : ¬P (x1, x2, 0, 0) ∨ P (x1, x2, 1, 0)
7.2 Res 2.1 8 : ¬P (x1, x2, 0, 0) ∨ P (x1, x2, 1, 1)
8.2 Res 4.1 9 : ¬P (x1, 0, 0, 0) ∨ P (x1, 1, 0, 0)
9.2 Res 8.1 10 : ¬P (x1, 0, 0, 0) ∨ P (x1, 1, 1, 1)
10.2 Res 5.1 11 : ¬P (0, 0, 0, 0) ∨ P (1, 0, 0, 0)
11.2 Res 10.1 12 : ¬P (0, 0, 0, 0) ∨ P (1, 1, 1, 1)
12.1 Res 6.1 13 : ⊥

In general, O(2i) many resolution steps are sufficient to refute N i. The above
resolution proof cannot be simulated by an SCL weakly-regular run. As soon as
we decide a ground literal [¬]P (. . .) propagation using the two literal clauses
yields a conflict with either ¬P (1, 1, 1, 1) or P (0, 0, 0, 0). The above resolution
proof can only be simulated by a non-regular SCL run, Theorem 20. It is an
open problem to find a notion of regularity that both guarantees non-redundant
clause learning and can simulate resolution proofs of the above type.

5 Simulating NRCL by SCL

In this section we show that even under the restriction of a ground trail, SCL
can generate any clause learned by NRCL. In the worst case, the trail generated
by SCL may be exponentially longer than the NRCL trail, see Example 25. We
use Γ, Γ1, Γ2 to denote SCL trails and Γ ′, Γ ′

1, Γ
′
2 to denote NRCL trails.

The ordering ≺Γ ′ is defined as in [1] and concerning NRCL we exactly stick
to the notions from [1]. Nevertheless, the most important notions from NRCL
are recalled below.

Definition 21 (Constrained Clauses [1]). A constrained clause (C · σ;π) is
a pair of a closure C ·σ and a constraint π of the form

∧n
i=0 �si �= �ti where �si and

�ti are tuples of terms of equal length. The set of ground instances of (C · σ;π)
denoted as gnd(C · σ;π) is {Cσδ | Cσδ ∈ gnd(Cσ) and πδ is true}. A constraint
π =

∧n
i=0 �si �= �ti is true if for all 0 ≤ i ≤ n �si and �ti are not unifiable. A ground

SCL Clause Learning from Simple Models 245

clause C ′ is covered by a constrained clause (C · σ;π) if C ′ ∈ gnd(C · σ;π). We
similarly define constrained literals (L · σ;π) and say that a ground literal L′ is
defined true by (L ·σ;π) if it is covered by (L ·σ;π) and defined false if it covered
by (comp(L) · σ;π).

Definition 22 (State induced ordering in NRCL [1]). A ground literal
L is defined under a trail Γ ′ if L or comp(L) is covered by some con-
strained literals L′ in Γ ′. Such a literal is necessarily unique and is denoted
by def(L). Given two defined ground literals L1, L2 we say L1 ≺Γ ′ L2 if
Γ ′ = Γ ′

0,def(L1), Γ ′
1,def(L2), Γ ′

2.

The proof of the simulation is done in two steps. Firstly, we show that we
can generate via SCL a suitable ground instance of any NRCL trail, Lemma 23.
Then we show that on this basis, we can actually learn exactly the clause NRCL
learns, Theorem 24.

Lemma 23 (Simulating the NRCL Trail). Let (Γ ′;N ;U ; k;�) be a regular
state in an NRCL run and let ≺0 be a total order on ground literals compatible
with ≺Γ ′ . Then there is an SCL derivation starting from (ε;N ;U ; 0;�) which
produces a trail Γ such that for any ground literal L, L is true, false, undefined
under Γ if and only if it is so under Γ ′, and for all ground literals L1, L2 ∈
gnd(Γ ′): L1 ≺Γ L2 if and only if L1 ≺0 L2. We call Γ a grounding of Γ ′.

Proof. By induction on the length of Γ ′. If Γ ′ = ε then we choose Γ = ε satisfying
the conjecture. If Γ ′ = Γ ′

1, (L;σ;π)k then all ground literals gnd(L;σ;π) are
undefined in Γ1 so we can simply decide every literal in gnd(L;σ;π) in increasing
order according to ≺Γ ′ to obtain a trail Γ2 that clearly satisfies the conjecture.
If the rightmost literal of Γ ′ is a propagation then we apply Propagate instead
of Decide on the SCL trail. ��

A consequence of Lemma 23 is that SCL can simulate the derivation of ⊥
from a state without decisions. So this needs not to be considered anymore.
The most sophisticated rule of NRCL to be considered for the simulation is
Backjump, because its side conditions are substantially different from the side
conditions of the SCL Backtrack rule.

Backjump (Γ,Kk′
, Γ ′;N ;U ; k; (C · σ;π)) ⇒NRCL (Γ,Kk′

;N ;U ∪ {C}; k′;�)
provided one of the following conditions hold (i) k = 0 and C = ⊥, (ii) k > 0, all
ground clauses covered by (Cσ;π) have exactly one literal of level k and (Cσ;π)
has no false instances under Γ (iii) k > 0, the right-most element of Γ ′ is a
decision, some ground clauses covered by (Cσ;π) have two or more literals of
level k, (Cσ;π) has no false instances under Γ and Factorize cannot be applied.

Theorem 24 (SCL Simulates NRCL). If from an NRCL conflict state we
can learn a clause C �= ⊥, then we can learn the same clause C from a grounding
of that state by SCL.

246 A. Fiori and C. Weidenbach

Proof. Let w′
1 = (Γ ′

1;N ;U ; k; (C1;σ1;π1)) be an NRCL conflict state from which
we learn the clause C. We prove by induction on the length of conflict resolution
that there exists an SCL state w1 = (Γ1;N ;U ; k;C1 · δ1) obtained by grounding
w′

1 from which we can learn C.
As a base case, we prove that if we can apply Backjump to an NRCL

state (Γ ′
2;N ;U ; k′; (C2;σ2;π2)) then we can also apply Backtrack to a grounding

(Γ2;N ;U ; k;C2 · δ2). In particular, we choose δ2 = σ2ρ where ρ is an injective
mapping from the variables of C2 to a set of fresh constants. If we can apply
Backjump in NRCL then one of the three cases of the rule applies. We consider
them separately. The first case cannot apply as we have assumed a clause differ-
ent from ⊥. The second case implies that we can backtrack to the very same level
via SCL. For the third case, we note that in SCL there is no equivalent of the
concept of blocking decisions or blocking clauses as they can only arise when a
decision defines multiple ground literals. In SCL all literals defined by decisions
in a conflict clause have different levels and thus we can always apply Backtrack
from any grounding of the conflict clause if the third case of Backjump applies.

For the inductive step, consider a rule application (Γ ′
1;N ;U ; k′; (C1;σ1;π1))

⇒NRCL (Γ ′
2;N ;U ; k′; (C2;σ2;π2)) in a conflict resolution. For any ground-

ing (Γ2;N ;U ; k;C2 · δ2) of (Γ ′
2;N ;U ; k′; (C2;σ2;π2)) we build a grounding

(Γ1;N ;U ; k; C1 · δ1) of (Γ ′
1;N ;U ; k′; (C1;σ1;π1)) from which we can still learn

the clause C. In particular we will need to define Γ1 and δ1 in terms of
(Γ2;N ;U ; k;C2 · δ2)

Case Resolve: we consider the NRCL rule application

(Γ ′
1, (L0;σ0;π0)C0∨L0 ;N ;U ; k′; (C1 ∨ L1;σ1;π1))

⇒Resolve
NRCL (Γ ′

2, (L0;σ0;π0)C0∨L0 ;N ;U ; k′; (C2;σ2;π2))

by the conditions of Resolve in NRCL we have

1. there exists η0 = mgu(comp(L0), L1)
2. there exists η = mgu(comp(L0)σ0, L1σ1)
3. η0σ2 = σ1σ0η
4. C2 = (C1 ∨ C0)η0

and from the grounding we have δi = σiδ
′
i for some δ′

i, i = 0, 1, 2. It is clear that
any grounding substitution δ2 on the variables of (C1 ∨ C0)η0 can be induced
by choosing opportune grounding substitutions δ0 and δ1. In particular, we can
define δi for i = 0, 1 as the restriction of η0δ2ρ to the variables of Ci∨Li where ρ is
a grounding on var(L0η0, L1η0) \ var(C0η0, C1η0). If there is a grounding ρ such
that L0η0δ2ρ is undefined in Γ2 then we define Γ1 as Γ2, L0η0δ2ρ

C0∨L0·η0δ2ρ.
If such a substitution ρ does not exist then the literal L0ρ

′C0∨L0·ρ′
is already

defined in Γ2 obtained from grounding the same literal (L0;σ0;π0)C0∨L0 ; we can
then define Γ1 equal to Γ2 and resolve once more with the literal L0ρ

′C0∨L0·ρ′
.

Case Factorize: we consider the NRCL rule application

(Γ ′
1, (L0;σ0;π0)C0∨L0 ;N ;U ; k′; (C1 ∨ L1 ∨ L′

1;σ1;π1))

⇒Factorize
NRCL (Γ ′

2, (L0;σ0;π0)C0∨L0 ;N ;U ; k′; (C2 ∨ L2;σ2;π2))

SCL Clause Learning from Simple Models 247

by the conditions on Factorize in NRCL we have
1. there exists η0 = mgu(L1, L

′
1)

2. C2 = C1η0 and L2 = L1η0
3. there exists η = mgu(comp(L0)σ0, L1σ1, L

′
1σ1)

4. η0σ2 = σ1η

and from the grounding we have δi = σiδ
′
i. We can define δ1 = η0δ2 which

produces an acceptable grounding of (C1 ∨ L1 ∨ L′
1;σ1;π1) as η0δ2 = η2σ2 and

so δ1 = σ1δ
′
1 for δ′

1 = ηδ′
2. We can, moreover, define Γ1 = Γ2 as in SCL Factorize

is not restricted to the rightmost literal.
Case Skip: we consider the NRCL rule application

(Γ ′
1, (L0;σ0;π0)C0∨L0 ;N ;U ; k′; (C1;σ1;π1))

⇒Skip
NRCL (Γ ′

2;N ;U ; k′; (C2 ∨ L2;σ2;π2)).

We can simply define (Γ1;N ;U ; k;C1 · δ1) = (Γ2;N ;U ; k;C2 · δ2) where Fac-
torize is independent from the trail in SCL and the induction step for Resolve
can add any needed literal. ��
Example 25 (SCL Trails may be Exponentially Longer). Consider an unsatisfi-
able clause set

Nn =

⎧
⎪⎨

⎪⎩

Qn(x1, . . . , xn)

¬Qi+1(x1, . . . , xi, 0) ∨ ¬Qi+1(x1, . . . , xi, 1) ∨ Qi(x1, . . . , xi) if 0 ≤ i < n

¬Q0

NRCL can refute the clause set Nn at level k = 0 in linear time by building
through rule Propagate the trail ¬Q0, Qn(x1, . . . , xn), Qn−1(x1, . . . , xn−1), . . . ,
Q1(x1), where we do not show the clauses annotated to the literals, result-
ing in a conflict with ¬Q1(1) ∨ ¬Q1(0) ∨ Q0. For SCL all ground instances of
the Qi(x1, . . . , xi) have to be enumerated and there are 2i many such ground
instances for each Qi.

Another relevant aspect is whether the SCL run constructed in Theorem 24
is (weakly-) regular. The example below shows it is not, in general, however at
least for the example below, it is the case that SCL can actually learn a more
general clause by a regular run.

Example 26 (Simulating SCL Runs are not (Weakly-) Regular). Consider the
clauses

Q(x) ∨ ¬P (x) P (x) ∨ P (a) ∨ P (b) ∨ P (c) P (a) ∨ ¬P (b)
P (b) ∨ ¬P (c) P (c) ∨ ¬P (a)

In NRCL we can decide the literal ¬Q(x), propagate ¬P (x) and result in a
conflict with P (x) ∨ P (a) ∨ P (b) ∨ P (c). After factorization and resolution with
Q(x)∨¬P (x), NRCL learns the clause Q(a)∨Q(b)∨Q(c). This clause cannot be
learned with a (weakly-) regular run in SCL. After deciding any ground instance
of ¬Q(x), immediately all ground literals ¬P (a), ¬P (b), ¬P (c) are propagated
through the two literal clauses. Now the conflict does not only rely on the first two
clauses but also involves the two literal clauses. After resolution and factoring
steps, if SCL started with ¬Q(a) it eventually learns the clause Q(a) which
makes the NRCL learned clause Q(a) ∨ Q(b) ∨ Q(c) redundant.

248 A. Fiori and C. Weidenbach

6 Conclusion

The contributions of this paper are: (i) a sound, complete, SCL calculus for
full first-order logic learning non-redundant clauses with respect to regular runs,
(ii) weakly-regular runs do not exhaustively propagate unit clauses but still learn
non-redundant clauses except for unit instances, (iii) the used notion of non-
redundancy is NEXPTIME-complete for the BS fragment, (iv) SCL simulates
resolution by non-regular runs, (v) SCL simulates NRCL by non-regular runs,
(vi) exhaustive propagation is not always a good strategy for the BS fragment
and beyond, and (vii) SCL is a decision procedure for the BS fragment.

The price for the simple SCL models is that trails can be exponentially
longer compared to trails of calculi with more expressive model representation
languages. For a BS clause set N the overall trail size is bound by mrk where
k is the maximal arity of a predicate in N , m the number of predicates, and r
the number of constant symbols in N . Exploiting the actual recursive structure
of N this bound can be further refined for a specific problem [10]. So in a
simple preprocessing step, it can be checked whether an SCL trail potentially
becomes “too large”. Then a procedure can either start with a more expressive
trail language [1,3,4,7,9,14,17] or dynamically decide to switch the trail model
representation formalism. In practice, there are many interesting problems where
the maximal predicate arity is not larger than three and there are not “too many”
constants. Recall that all our examples inducing an exponentially growing trail
or an exponentially growing proof length include the encoding of some type of
binary counter.

Although SCL with a regular strategy and also all other calculi with exhaus-
tive propagation cannot simulate resolution, the resolution calculus has also
drawbacks. Worst case, the resolution calculus may generate more clauses, even
in a terminating setting [7], than there are potential ground model assumptions
as they are explored by SCL. Still one open question is whether the advantages
of resolution and SCL can be combined: learning only non redundant clauses via
partial model assumptions and being able to simulate non-redundant resolution
inferences, in general. Such a result would unify both paradigms.

Acknowledgments. This work was funded by DFG grant 389792660 as part of
TRR 248.

References

1. Alagi, G., Weidenbach, C.: NRCL - a model building approach to the Bernays-
Schönfinkel fragment. In: Lutz, C., Ranise, S. (eds.) FroCoS 2015. LNCS (LNAI),
vol. 9322, pp. 69–84. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24246-0 5

2. Baumgartner, P.: Hyper tableau—the next generation. In: de Swart, H. (ed.)
TABLEAUX 1998. LNCS (LNAI), vol. 1397, pp. 60–76. Springer, Heidelberg
(1998). https://doi.org/10.1007/3-540-69778-0 14

http://perspicuous-computing.science
https://doi.org/10.1007/978-3-319-24246-0_5
https://doi.org/10.1007/978-3-319-24246-0_5
https://doi.org/10.1007/3-540-69778-0_14

SCL Clause Learning from Simple Models 249

3. Baumgartner, P., Fuchs, A., Tinelli, C.: Lemma learning in the model evolution cal-
culus. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246,
pp. 572–586. Springer, Heidelberg (2006). https://doi.org/10.1007/11916277 39

4. Bonacina, M.P., Plaisted, D.A.: Semantically-guided goal-sensitive reasoning:
model representation. J. Autom. Reason. 56(2), 113–141 (2016)

5. Bromberger, M., Sturm, T., Weidenbach, C.: Linear integer arithmetic revisited.
In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp.
623–637. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21401-6 42

6. Fermüller, C.G., Pichler, R.: Model representation over finite and infinite signa-
tures. J. Log. Comput. 17(3), 453–477 (2007)

7. Hillenbrand, T., Weidenbach, C.: Superposition for bounded domains. In:
Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics.
LNCS (LNAI), vol. 7788, pp. 68–100. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-36675-8 4

8. Kaufmann, B., Leone, N., Perri, S., Schaub, T.: Grounding and solving in answer
set programming. AI Mag. 37(3), 25–32 (2016)

9. Korovin, K.: Inst-Gen – a modular approach to instantiation-based automated
reasoning. In: Voronkov, A., Weidenbach, C. (eds.) Programming Logics. LNCS,
vol. 7797, pp. 239–270. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-37651-1 10

10. Korovin, K.: Non-cyclic sorts for first-order satisfiability. In: Fontaine, P., Ringeis-
sen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS (LNAI), vol. 8152, pp. 214–228.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40885-4 15

11. Lewis, H.R.: Complexity results for classes of quantificational formulas. J. Comput.
Syst. Sci. 21(3), 317–353 (1980)

12. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving sat and sat modulo theories:
from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL (T). J.
ACM 53, 937–977 (2006)

13. Navarro, J.A., Voronkov, A.: Proof systems for effectively propositional logic. In:
Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI),
vol. 5195, pp. 426–440. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-71070-7 36

14. Piskac, R., de Moura, L.M., Bjørner, N.: Deciding effectively propositional logic
using DPLL and substitution sets. J. Autom. Reason. 44(4), 401–424 (2010)

15. Plaisted, D.A.: Complete problems in the first-order predicate calculus. J. Comput.
Syst. Sci. 29, 8–35 (1984)

16. Sutcliffe, G.: The CADE ATP system competition - CASC. AI Mag. 37(2), 99–101
(2016)

17. Teucke, A., Weidenbach, C.: First-order logic theorem proving and model building
via approximation and instantiation. In: Lutz, C., Ranise, S. (eds.) FroCoS 2015.
LNCS (LNAI), vol. 9322, pp. 85–100. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-24246-0 6

https://doi.org/10.1007/11916277_39
https://doi.org/10.1007/978-3-319-21401-6_42
https://doi.org/10.1007/978-3-642-36675-8_4
https://doi.org/10.1007/978-3-642-36675-8_4
https://doi.org/10.1007/978-3-642-37651-1_10
https://doi.org/10.1007/978-3-642-37651-1_10
https://doi.org/10.1007/978-3-642-40885-4_15
https://doi.org/10.1007/978-3-540-71070-7_36
https://doi.org/10.1007/978-3-540-71070-7_36
https://doi.org/10.1007/978-3-319-24246-0_6
https://doi.org/10.1007/978-3-319-24246-0_6

	SCL Clause Learning from Simple Models
	1 Introduction
	2 Preliminaries
	3 SCL Rules and Properties
	4 Simulating Resolution by SCL
	5 Simulating NRCL by SCL
	6 Conclusion
	References

