
ENIGMA-NG: Efficient Neural
and Gradient-Boosted Inference

Guidance for E

Karel Chvalovský(B), Jan Jakub̊uv, Martin Suda, and Josef Urban

Czech Technical University in Prague, Prague, Czech Republic
karel@chvalovsky.cz

Abstract. We describe an efficient implementation of given clause selec-
tion in saturation-based automated theorem provers, extending the pre-
vious ENIGMA approach. Unlike in the first ENIGMA implementation
where a fast linear classifier is trained and used together with manually
engineered features, we have started to experiment with more sophisti-
cated state-of-the-art machine learning methods such as gradient boosted
trees and recursive neural networks. In particular, the latter approach
poses challenges in terms of efficiency of clause evaluation, however, we
show that deep integration of the neural evaluation with the ATP data-
structures can largely amortize this cost and lead to competitive real-time
results. Both methods are evaluated on a large dataset of theorem prov-
ing problems and compared with the previous approaches. The resulting
methods improve on the manually designed clause guidance, providing
the first practically convincing application of gradient-boosted and neu-
ral clause guidance in saturation-style automated theorem provers.

1 Introduction

Automated theorem provers (ATPs) have been developed for decades by manu-
ally designing proof calculi and search heuristics. Their power has been growing
and they are already very useful, e.g., as parts of large interactive theorem prov-
ing (ITP) verification toolchains (hammers) [5]. On the other hand, with small
exceptions, ATPs are still significantly weaker than trained mathematicians in
finding proofs in most research domains.

Recently, machine learning over large formal corpora created from ITP
libraries [24,32,42] has started to be used to develop guidance of ATP sys-
tems [2,30,44]. This has already produced strong systems for selecting rele-
vant facts for proving new conjectures over large formal libraries [1,4,13]. More
recently, machine learning has also started to be used to guide the internal search
of the ATP systems. In sophisticated saturation-style provers this has been done

Supported by the ERC Consolidator grant no. 649043 AI4REASON, and by the Czech
project AI&Reasoning CZ.02.1.01/0.0/0.0/15 003/0000466 and the European Regional
Development Fund.

c© Springer Nature Switzerland AG 2019
P. Fontaine (Ed.): CADE 2019, LNAI 11716, pp. 197–215, 2019.
https://doi.org/10.1007/978-3-030-29436-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29436-6_12&domain=pdf
https://doi.org/10.1007/978-3-030-29436-6_12


198 K. Chvalovský et al.

by feedback loops for strategy invention [21,38,43] and by using supervised learn-
ing [19,31] to select the next given clause [35]. In the simpler connection tableau
systems such as LeanCoP [34], supervised learning has been used to choose
the next tableau extension step [25,45] and first experiments with Monte-Carlo
guided proof search [12] and reinforcement learning [26] have been done.1

In this work, we add two state-of-the-art machine learning methods to the
ENIGMA [19,20] algorithm that efficiently guides saturation-style proof search.
The first one trains gradient boosted trees on efficiently extracted manually
designed (handcrafted) clause features. The second method removes the need
for manually designed features, and instead uses end-to-end training of recursive
neural networks. Such architectures, when implemented naively, are typically
expensive and may be impractical for saturation-style ATP. We show that deep
integration of the neural evaluation with the ATP data-structures can largely
amortize this cost, allowing competitive performance.

The rest of the paper is structured as follows. Section 2 introduces saturation-
based automated theorem proving with the emphasis on machine learning.
Section 3 briefly summarizes our previous work with handcrafted features in
ENIGMA and then extends the previously published ENIGMA with addi-
tional classifiers based on decision trees (Sect. 3.3) and simple feature hashing
(Sect. 3.4). Section 4 presents our new approach of applying neural networks for
ATP guidance. Section 5 provides experimental evaluation of our work. We con-
clude in Sect. 6.

2 Automated Theorem Proving with Machine Learning

State-of-the-art saturation-based automated theorem provers (ATPs) for first-
order logic (FOL), such as E [40] and Vampire [28] are today’s most advanced
tools for general reasoning across a variety of mathematical and scientific
domains. Many ATPs employ the given clause algorithm, translating the input
FOL problem T ∪{¬C} into a refutationally equivalent set of clauses. The search
for a contradiction is performed maintaining sets of processed (P ) and unpro-
cessed (U) clauses. The algorithm repeatedly selects a given clause g from U ,
moves g to P , and extends U with all clauses inferred with g and P . This process
continues until a contradiction is found, U becomes empty, or a resource limit is
reached. The size of the unprocessed set U grows quickly and it is a well-known
fact that the selection of the right given clause is crucial for success. Machine
learning from a large number of proofs and proof searches may help guide the
selection of the given clauses.

E allows the user to select a proof search strategy S to guide the proof search.
An E strategy S specifies parameters such as term ordering, literal selection
function, clause splitting, paramodulation setting, premise selection, and, most
importantly for us, the given clause selection mechanism. The given clause selec-
tion in E is implemented using a list of priority queues. Each priority queue stores
1 Other, less immediately relevant, previous work on combining machine learning with

automated theorem proving includes, e.g., [6,8,9,11,39].



ENIGMA-NG: Efficient Neural and Gradient-Boosted Inference 199

all the generated clauses in a specific order determined by a clause weight func-
tion. The clause weight function assigns a numeric (real) value to each clause,
and the clauses with smaller weights (“lighter clauses”) are prioritized. To select
a given clause, one of the queues is chosen in a round robin manner, and the
clause at the front of the chosen queue gets processed. Each queue is additionally
assigned a frequency which amounts to the relative number of clause selections
from that particular queue. Frequencies can be used to prefer one queue over
another. We use the following notation to denote the list of priority queues with
frequencies fi and weight functions Wi:

(f1 ∗ W1, . . . , fk ∗ Wk).

To facilitate machine learning research, E implements an option under which
each successful proof search gets analyzed and outputs a list of clauses annotated
as either positive or negative training examples. Each processed clause that is
present in the final proof is classified as positive. On the other hand, processing
of clauses not present in the final proof was redundant, hence they are classified
as negative. Our goal is to learn such classification (possibly conditioned on the
problem and its features) in a way that generalizes and leads to solving previously
unsolved related problems.

Given a set of problems P, we can run E with a strategy S and obtain positive
and negative training data T from each of the successful proof searches. In this
work, we use three different machine learning methods to learn the clause classi-
fication given by T , each method yielding a classifier or model M. The concrete
structure of M depends on the machine learning method used, as explained in
detailed below. With any method, M provides a function to compute the weight
of an arbitrary clause. This weight function is then used in E to guide further
proof runs.

A model M can be used in E in different ways. We use two methods to
combine M with a strategy S. Either (1) we use M to select all the given clauses,
or (2) we combine M with the given clause guidance from S so that roughly half
of the clauses are selected by M. We denote the resulting E strategies as (1)
S � M, and (2) S ⊕ M. The two strategies are equal up to the priority queues
for given clause selection which are changed (�) as follows.

in S � M : (f1 ∗ W1, . . . , fk ∗ Wk) � (1 ∗ M),
in S ⊕ M : (f1 ∗ W1, . . . , fk ∗ Wk) � ((

∑
fi) ∗ M, f1 ∗ W1, . . . , fk ∗ Wk).

The strategy S ⊕M usually performs better in practice as it helps to counter
overfitting by combining powers with the original strategy S. The strategy S�M
usually provides additional proved problems, gaining additional training data,
and it is useful for the evaluation of the training phase. When S � M performs
better than S, it indicates that M has learned the training data well. When it
performs much worse, it indicates that M is not very well-trained. The strategy
S ⊕ M should always perform better than S, otherwise the guidance of M is
not useful. Additional indication of successful training can be obtained from the
number of clauses processed during a successful proof search. The strategy S�M



200 K. Chvalovský et al.

should run with much fewer processed clauses, in some cases even better than
S ⊕ M, as the original S might divert the proof search. In the best case, when
M would learn to guide for certain problem perfectly, the number of processed
clauses would not need to exceed the length of the proof.

It is important to combine a model M only with a “compatible” strategy
S. For example, let us consider a model M trained on samples obtained with
another strategy S0 which has a different term ordering than S. As the term
ordering can change term normal forms, the clauses encountered in the proof
search with S might look quite different from the training clauses. This may be
an issue unless the trained models are independent of symbol names, which is
not (yet) our case. Additional complications might arise as term orderings and
literal selection might change the proof space and the original proofs might not
be reachable. Hence we only combine M with the strategy S which provided the
examples on which M was trained.

3 ATP Guidance with Handcrafted Clause Features

In order to employ a machine learning method for ATP guidance, first-order
clauses need to be represented in a format recognized by the selected learning
method. A common approach is to manually extract a finite set of various prop-
erties of clauses called features, and to encode these clause features by a fixed-
length numeric vector. Various machine learning methods can handle numeric
vectors and their success heavily depends on the selection of correct clause fea-
tures. In this section, we work with handcrafted clause features which, we believe,
capture information important for ATP guidance.

ENIGMA [19,20] is our efficient learning-based method for guiding given
clause selection in saturation-based ATPs. Sections 3.1 and 3.2 briefly summa-
rizes our previous work. Sections 3.3 and 3.4 describe extensions, first presented
in this work.

3.1 ENIGMA Clause Features

So far the development of ENIGMA has focused on fast and practically usable
methods, allowing E users to directly benefit from our work. Various possible
choices of efficient clause features for theorem prover guidance have been exper-
imented with [19,20,26,27]. The original ENIGMA [19] uses term-tree walks
of length 3 as features, while the second version [20] reaches better results by
employing various additional features. In particular, the following types of fea-
tures are used (see [19, Sec. 3.2] and [20, Sec. 2] for details):

Vertical Features are (top-down-)oriented term-tree walks of length 3. For
example, the unit clause P (f(a, b)) contains only features (P, f, a) and
(P, f, b).

Horizontal Features are horizontal cuts of a term tree. For every term
f(t1, . . . , tn) in the clause, we introduce the feature f(s1, . . . , sn) where si
is the top-level symbol of ti.



ENIGMA-NG: Efficient Neural and Gradient-Boosted Inference 201

Symbol Features are various statistics about clause symbols, namely, the num-
ber of occurrences and the maximal depth for each symbol.

Length Features count the clause length and the numbers of positive and
negative literals.

Conjecture Features embed information about the conjecture being proved
into the feature vector. In this way, ENIGMA can provide conjecture-
dependent predictions.

Since there are only finitely many features in any training data, the features
can be serially numbered. This numbering is fixed for each experiment. Let n
be the number of different features appearing in the training data. A clause C
is translated to a feature vector ϕC whose i-th member counts the number of
occurrences of the i-th feature in C. Hence every clause is represented by a sparse
numeric vector of length n.

With conjecture features, instead of using the vector ϕC of length n, we use
a vector (ϕC , ϕG) of length 2n where ϕG contains the features of the conjecture
G. For a training clause C, G corresponds to the conjecture of the proof search
where C was selected as a given clause. When classifying a clause C during
proof search, G corresponds to the conjecture currently being proved. When
the conjecture consists of several clauses, their vectors are computed separately
and then summed (except for features corresponding to maxima, such as the
maximal symbol depth, where maximum is taken instead).

3.2 ATP Guidance with Fast Linear Classifiers

ENIGMA has so far used simple but fast linear classifiers such as linear SVM
and logistic regression efficiently implemented by the LIBLINEAR open source
library [10]. In order to employ them, clause representation by numeric feature
vectors described above in Sect. 3.1 is used. Clausal training data T are trans-
lated to a set of fixed-size labeled vectors. Each (typically sparse) vector of length
n is labeled either as positive or negative.

The labeled numeric vectors serve as an input to LIBLINEAR which, after
the training, outputs a model M consisting mainly of a weight vector w of length
n. The main cost in classifying a clause C consists in computing its feature vector
ϕC and its dot product with the weight vector p = ϕC ·w. ENIGMA the assigns
to the positively classified clauses (i.e., p ≥ 0) a chosen small weight (1.0) and a
higher weight (10.0) to the negatively classified ones (i.e., p < 0). This weight is
then used inside E to guide given clause selection as described in Sect. 2.

The training data obtained from the proof runs are typically not balanced
with respect to the number of positive and negative examples. Usually, there
are many more negative examples and the method of Accuracy-Balancing Boost-
ing [20] was found useful in practice to improve precision on the positive training
data. This is done as follows. Given training data T we create a LIBLINEAR
classifier M, test M on the training data, and collect the positives mis-classified
by M. We then repeat (boost) the mis-classified positives in the training data,
yielding updated T1 and an updated classifier M1. We iterate this process, and



202 K. Chvalovský et al.

with every iteration, the accuracy on the positive samples increases, while the
accuracy on the negatives typically decreases. We finish the boosting when the
positive accuracy exceeds the negative one. See [20, Sec. 2] for details.

3.3 ATP Guidance with Gradient Boosted Trees

Fast linear classifiers together with well-designed features have been used with
good results for a number of tasks in areas such as NLP [23]. However, more
advanced learning models have been recently developed, showing improved per-
formance on a number of tasks, while maintaining efficiency. One such method is
gradient boosted trees and, in particular, their implementation in the XGBoost
library [7]. Gradient boosted trees are ensembles of decision trees trained by tree
boosting.

The format of the training and evaluation data used by XGBoost is the
same as the input used by LIBLINEAR (sparse feature vectors). Hence, we use
practically the same approach for obtaining the positive and negative training
examples, extracting their features, and clause evaluation during proof runs as
described in Sects. 3.1 and 3.2. XGBoost, however, does not require the accuracy-
balancing boosting. This is because XGBoost can deal with unbalanced training
data by setting the ratio of positive and negative examples.2

The model M produced by XGBoost consists of a set (ensemble [37]) of deci-
sion trees. The inner nodes of the decision trees consist of conditions on feature
values, while the leafs contain numeric scores. Given a vector ϕC representing a
clause C, each tree in M is navigated to a unique leaf using the values from ϕC ,
and the corresponding leaf scores are aggregated across all trees. The final score
is translated to yield the probability that ϕC represents a positive clause. When
using M as a weight function in E, the probabilities are turned into binary clas-
sification, assigning weight 1.0 for probabilities ≥ 0.5 and weight 10.0 otherwise.
Our experiments with scaling of the weight by the probability did not yet yield
improved functionality.

3.4 Feature Hashing

In the previous version of ENIGMA, the vectors representing clauses had always
length n where n is the total number of features in the training data T (or 2n with
conjecture features). Experiments revealed that both LIBLINEAR and XGBoost
are capable of dealing with vectors up to the length of 105 with a reasonable
performance. This might be enough for smaller benchmarks, but with the need
to train on bigger training data, we might need to handle much larger feature
sets. In experiments with the whole translated Mizar Mathematical Library [42],
the feature vector length can easily grow over 106. This significantly increases
both the training and the clause evaluation times. To handle such larger data
sets, we have implemented a simple hashing method to decrease the dimension
of the vectors.

2 We use the XGBoost parameter scale pos weight.



ENIGMA-NG: Efficient Neural and Gradient-Boosted Inference 203

Instead of serially numbering all features, we represent each feature f by a
unique string and apply a general-purpose string hashing function to obtain a
number nf within a required range (between 0 and an adjustable hash base).
The value of f is then stored in the feature vector at the position nf . If different
features get mapped to the same vector index, the corresponding values are
summed up.

We use the following hashing function sdbm coming from the open source
SDBM project. Given a string s, the value hi is computed for every character as
follows:

hi = si + (hi−1 � 6) + (hi−1 � 16) − hi−1

where h0 = 0, si is the ASCII code of the character at the i-th position, and the
operation � stands for a bit shift. The value for the last character is computed
with a fixed-size data type (we use 64-bit unsigned integers) and this value
modulo the selected hash base is returned. We evaluate the effect of the selected
hashing function later in Sect. 5.

4 Neural Architecture for ATP Guidance

Although the handcrafted clause features described in Sect. 3.1 lead to very good
results, they naturally have several limitations. It is never clear whether the
selected set of features is the best available given the training data. Moreover,
a rich set of features can easily lead to long sparse vectors and thus using them
for large corpora requires the use of dimensionality reduction techniques (c.f.
Sect. 3.4). Hence selecting the features automatically is a natural further step.

Among various techniques used to extract features fully automatically, neural
networks (NN) have recently become the most popular thanks to many successful
applications in, e.g., computer vision and natural language processing. There
have been several attempts to use NNs for guiding ATPs. However, such attempts
have so far typically suffered from a large overhead needed to evaluate the used
NN [31], making them impractical for actual proving.

A popular approach for representing tree-structured data, like logical formu-
lae, is based on recursive NNs [16]. The basic idea is that all objects (tree nodes,
subterms, subformulas) are represented in a high dimensional vector space and
these representations are subject to learning. Moreover, the representation of
more complex objects is a function of representations of their arguments. Hence
constants, variables, and atomic predicates are represented as directly learned
vectors, called vector embeddings. Assume that all such objects are represented by
n-dimensional vectors. For example, constants a and b are represented by learned
vectors va and vb, respectively. The representation of f(a, b) is then produced by
a learned function (NN), say vf , that has as an input two vectors and returns
a vector; hence vf (va, vb) ∈ Rn. Moreover, the representation of P (f(a, b), a)
is obtained similarly, because from our point of view a representation is just a
function of arguments. Therefore we have



204 K. Chvalovský et al.

vf : Rn × · · · × Rn

︸ ︷︷ ︸
k-times

→ Rn for every k-ary, k ≥ 0, function symbol f ,

vP : Rn × · · · × Rn

︸ ︷︷ ︸
k-times

→ Rn for every k-ary, k ≥ 0, predicate symbol P ,

in our language. We treat all variables as a single symbol, i.e., we always represent
a variable by a fixed learned vector, and similarly for Skolem names. This is
in line with how the ENIGMA features are constructed and thus allows for a
more straightforward comparison. We also replace symbols that appear rarely
(fewer than 10 times) in our training set by a representative, e.g., all rare binary
functions become the same binary function. Loosely speaking, we learn a general
binary function this way. Because we treat equality and negation as learned
functions, we have described how a representation of a literal is produced.

We could now produce the representation of clauses by assuming that dis-
junction is a binary connective, however, we instead use a more direct approach
and we treat clauses directly as sequences of literals. Recurrent neural networks
(RNN) are commonly used to process arbitrary sequences of vectors. Hence we
train an RNN, called Cl , that consumes the representations of literals in a clause
and produces the representation of the clause, Cl : Rn × · · · × Rn → Rn.

Given a representation of a clause we could learn a function that says whether
the clause is a good given clause. However, without any context this may be hard
to decide. As in ENIGMA and [31], we introduce more context into our setting
by using the problem’s conjecture. The negated conjecture is translated by E
into a set of clauses. We combine the vector representations of these clauses by
another RNN, called Conj and defined by Conj : Rn × · · · × Rn → Rn.

Now that we know how to represent a conjecture and a given clause by a
vector, we can define a function that combines them into a decision, called Fin
and defined by Fin : Rn × Rn → R2. The two real values can later be turned
into probabilities of whether the clause will (will not) be useful, see Sect. 4.2.

Although all the representations have been vectors in Rn, this is an unnec-
essary restriction. It suffices if the objects of the same type are represented by
vectors of the same length. For example, we have experimented with Conj where
outputs are shorter (and inputs to Fin are changed accordingly) with the aim
to decrease overfitting to a particular problem.

4.1 Neural Model Parameters

The above mentioned neural model can be implemented in many ways. Although
we have not performed an extensive grid search over various variants, we can
discuss some of them shortly. The basic parameter is the dimension n of the
vectors. We have tried various models with n ∈ {8, 16, 32, 64, 128}. The functions
used for vf and vP can be simple linear transformations (tensors), or more
complex combinations of linear and nonlinear layers. An example of a frequently
used nonlinearity is the rectified linear unit (ReLU), defined by max(0, x).3

3 Due to various numerical problems with deep recursive networks we have obtained
better results with ReLU6, defined by min(max(0, x), 6), or tanh.



ENIGMA-NG: Efficient Neural and Gradient-Boosted Inference 205

For Cl and Conj we use (multi-layer) long short-term memory (LSTM) RNNs
[18]. We have tried to restrict the output vector of Conj to m = n

2 or m = n
4 to

prevent overfitting with inconclusive results. The Fin component is a sequence of
alternating linear and nonlinear layers (ReLU), where the last two linear layers
are Rn+m → R

n
2 and R

n
2 → R2.

4.2 ATP Guidance with Pytorch

We have created our neural model using the Pytorch library and integrated it
with E using the library’s C++ API.4 This API allows to load a previously
trained model saved to a file in a special TorchScript format. We use a separate
file for each of the neural parts described above. This includes computing of
the vector embeddings of terms, literals, and clauses, as well as the conjecture
embedding Conj summarizing the conjecture clauses into one vector, and finally
the part Fin, which classifies clauses into those deemed useful for proving the
given conjecture and the rest.

We have created a new clause weight function in E called TorchEval which
interfaces these parts and can be used for evaluating clauses based on the neural
model. One of the key features of the interface, which is important for ensuring
reasonable evaluation speed, is caching of the embeddings of terms and literals.
Whenever the evaluation encounters a term or a literal which was evaluated
before, its embedding is simply retrieved from the memory in constant time
instead of being computed from the embeddings of its subterms recursively. We
use the fact that terms in E are perfectly shared and thus a pointer to a particular
term can be used as a key for retrieving the corresponding embedding. Note
that this pervasive caching is possible thanks to our choice of recursive neural
networks (that match our symbolic data) and it would not work with naive use of
other neural models such as convolutional or recurrent networks without further
modifications.

The clause evaluation part of the model returns two real outputs x0 and x1,
which can be turned into a probability that the given clause will be useful using
the sigmoid (logistic) function:

p =
1

1 + e(x0−x1)
. (1)

However, for classification, i.e. for a yes-no answer, we can just compare the two
numbers and “say yes” whenever

x0 < x1. (2)

After experimenting with other schemes that did not perform so well,5 we made
TorchEval return 1.0 whenever condition (2) is satisfied and 10.0 otherwise.

4 https://pytorch.org/cppdocs/.
5 For instance, using the probability (1) for a more fine-grained order on clauses dic-

tated by the neural model.

https://pytorch.org/cppdocs/


206 K. Chvalovský et al.

This is in accord with the standard convention employed by E that clauses with
smaller weight should be preferred and also corresponds to the ENIGMA app-
roach. Moreover, E implicitly uses an ever-increasing clause id as a tie breaker, so
among the clauses within the same class, both TorchEval and ENIGMA behave
as FIFO.

Another performance improvement was obtained by forcing Pytorch to use
just a single core when evaluating the model in E. The default Pytorch setting
was causing degradation of performance on machines with many cores, probably
by assuming by default that multi-threading will speed up frequent numeric
operations such as matrix multiplication. It seems that in our case, the overhead
for multi-threading at this point might be higher than the gain.

5 Experimental Evaluation

We experimentally evaluated the three learning-based ATP guidance methods
on the MPTP2078 benchmark [1].6 MPTP2078 contains 2078 problems coming
from the MPTP translation [42] of the Mizar Mathematical Library (MML)
[3] to FOL. The consistent use of symbol names across the MPTP corpus is
crucial for our symbol-based learning methods. We evaluated ATP performance
with a good-performing baseline E strategy, denoted S, which was previously
optimized [22] on Mizar problems (see AppendixA for details).

Section 5.1 provides details on model training and the hyperparameters used,
and analyzes the most important features used by the tree model. The model
based on linear regression (Sect. 3.2) is denoted Mlin, the model based on deci-
sion trees (Sect. 3.3) is denoted Mtree, and the neural model (Sect. 4) is denoted
Mnn. Sections 5.2 and 5.3 evaluate the performance of the models both by stan-
dard machine learning metrics and by plugging them into the ATPs. Section 5.4
evaluates the effect of the feature hashing described in Sect. 3.4.

All experiments were run on a server with 36 hyperthreading Intel(R)
Xeon(R) Gold 6140 CPU @ 2.30 GHz cores, with 755 GB of memory available
in total. Each problem is always assigned one core. For training of the neural
models we used NVIDIA GeForce GTX 1080 Ti GPUs. As described above, nei-
ther GPU nor multi-threading was, however, employed when using the trained
models for clause evaluation inside the ATP.

5.1 Model Training, Hyperparameters and Feature Analysis

We evaluated the baseline strategy S on all the 2078 benchmark problems with
a fixed CPU time limit of 10 s per problem.7 This yielded 1086 solved problems
and provided the training data for the learning methods as described in Sect. 2.
For Mlin and Mtree, the training data was translated to feature vectors (see
6 The benchmark can be found at https://github.com/JUrban/MPTP2078. For all the

remaining materials for reproducing the experiments please check out the repository
https://github.com/ai4reason/eprover-data/tree/master/CADE-19.

7 This appears to be a reasonable waiting time for, e.g., the users of ITP hammers [5].

https://github.com/JUrban/MPTP2078
https://github.com/ai4reason/eprover-data/tree/master/CADE-19


ENIGMA-NG: Efficient Neural and Gradient-Boosted Inference 207

Sect. 3) which were then fed to the learner. For Mnn we used the training data
directly without any feature extraction.

Training Data and Training of Linear and Tree Models: The training
data consisted of around 222 000 training samples (21 000 positives and 201
000 negatives) with almost 32 000 different ENIGMA features. This means that
the training vectors for Mlin and Mtree had dimension close to 64 000,8 and
so had the output weight vector of Mlin. For Mtree, we reused the parameters
that performed well in the ATPBoost [36] and rlCoP [26] systems and pro-
duced models with 200 decision trees, each with maximal depth 9. The resulting
models—both linear and boosted trees—were about 1MB large in their native
representation. The training time for Mlin was around 8 min (five iterations of
accuracy-balancing boosting), and approximately 5 min for Mtree. Both of them
were measured on a single CPU core. During the boosting of Mlin, the positive
samples were extended from 21k to 110k by repeating the mis-classified vectors.

Learned Tree Features: The boosted tree model Mtree allows computing
statistics of the most frequently used features. This is an interesting aspect that
goes in the direction of explainable AI. The most important features can be ana-
lyzed by ATP developers and compared with the ideas used in standard clause
evaluation heuristics. There were 200 trees in Mtree with 20215 decision nodes
in total. These decision nodes refer to only 3198 features out of the total 32000.
The most frequently used feature was the clause length, used 3051 times, followed
by the conjecture length, used 893 times, and by the numbers of the positive
and negative literals in the clauses and conjectures. In a crude way, the machine
learning here seems to confirm the importance assigned to these basic metrics
by ATP researchers. The set of top ten features additionally contains three sym-
bol counts (including “∈” and “⊆”) and a vertical feature corresponding to a
variable occurring under negated set membership ∈ (like in “x �∈ ·” or “· �∈ x”).
This seems plausible, since the Mizar library and thus MPTP2078 are based on
set theory where membership and inclusion are key concepts.

Neural Training and Final Neural Parameters: We tried to improve the
training of Mnn by randomly changing the order of clauses in conjectures, literals
in clauses, and terms in equalities. If after these transformations a negative
example pair (C,G) was equivalent to a positive one, we removed the negative
one from the training set. This way we reduced the number of negative examples
to 198k. We trained our model in batches9 of size 128 and used the negative log-
likelihood as a loss function (the learning rate is 10−3), where we applied log-
softmax on the output of Fin. We weighted positive examples more to simulate
a balanced training set. All symbols of the same type and arity that have less
than 10 occurrences in the training set were represented by one symbol. We set
the vector dimension to be n = 64 for the neural model Mnn and we set the
output of Conj to be m = 16. All the functions representing function symbols

8 Combining the dimensions for the clause and the conjecture.
9 Moreover, we always try to put examples with the same conjecture G into the same

batch to share the time for recomputing the representation of G.



208 K. Chvalovský et al.

Table 1. True Positive Rate (TPR) and True Negative Rate (TNR) on training data.

Mlin Mtree Mnn

TPR 90.54% 99.36% 97.82%

TNR 83.52% 93.32% 94.69%

and predicates were composed of a linear layer and ReLU6. Fin was set to be a
sequence of linear, ReLU, linear, ReLU, and linear layers. The training time for
Mnn was around 8 min per epoch and the model was trained for 50 epochs. Note
that we save a model after each epoch and randomly test few of these generated
models and select the best performing one (in our case the model generated after
35 epochs).

5.2 Evaluation of the Model Performance

Training Performance of the Models: We first evaluate how well the indi-
vidual models managed to learn the training data. Due to possible overfitting,
this is obviously used only as a heuristic and the main metric is provided by
the ultimate ATP evaluation. Table 1 shows for each model the true positive
and true negative rates (TPR, TNR) on the training data, that is, the percent-
age of the positive and negative examples, classified correctly by each model.10

The highest TPR, also called sensitivity, is achieved by Mtree while the highest
TNR, also called specificity, by Mnn. As expected, the accuracy of the linear
model is lower. Its main strength seems to come from the relatively high speed
of evaluation (see below).

ATP Performance of the Models: Table 2 shows the total number of prob-
lems solved by the four methods. For each learning-based model M, we always
consider the model alone (S � M) and the model combined equally with S
(S ⊕ M). All methods are using the same time limit, i.e., 10 s. This is our
ultimate “real-life” evaluation, confirming that the boosted trees indeed outper-
form the guidance by the linear classifier and that the recursive neural network
and its caching implementation is already competitive with these methods in
real time. The best method S ⊕ Mtree solves 15.7% more problems than the
original strategy S, and 3.8% problems more than the previously best linear
strategy S ⊕ Mlin.11 Table 2 provides also further explanation of these aggre-
gated numbers. We show the number of unique solutions provided by each of
the methods and the difference to the original strategy. Table 3 shows how useful
are the particular methods when used together. Both the linear and the neural

10 For Mlin, we show the numbers after five iterations of the boosting loop (see
Sect. 3.2). The values in the first round were 40.81% for the positive and 98.62%
for the negative rate.

11 We have also measured how much S benefits from increased time limits. It solves
1099 problems in 20 s and 1137 problems in 300 s.



ENIGMA-NG: Efficient Neural and Gradient-Boosted Inference 209

Table 2. Number of problems solved (and uniquely solved) by the individual models.
S+ and S− indicate the number of problems gained and lost w.r.t. the baseline S.

S S � Mlin S ⊕ Mlin S � Mtree S ⊕ Mtree S � Mnn S ⊕ Mnn

Solved 1086 1115 1210 1231 1256 1167 1197

Unique 0 3 7 10 15 3 2

S+ 0 +119 +138 +155 +173 +114 +119

S− 0 −90 −14 −10 −3 −33 −8

Table 3. The greedy sequence—methods sorted by their greedily computed contribu-
tion to all the problems solved.

S ⊕ Mtree S ⊕ Mlin S � Mnn S � Mtree S � Mlin S ⊕ Mnn S
Addition 1256 33 13 11 3 2 0

Total 1256 1289 1302 1313 1316 1318 1318

models complement the boosted trees well, while the original strategy is made
completely redundant.

Testing Performance of the Models on Newly Solved Problems: There
are 232 problems solved by some of the six learning-based methods but not by
the baseline strategy S. To see how the trained models behave on new data,
we again extract positive and negative examples from all successful proof runs
on these problems. This results in around 31 000 positive testing examples and
around 300 000 negative testing examples.

Table 4 shows again for each of the previously trained models the true positive
and true negative rates (TPR, TNR) on these testing data. The highest TPR
is again achieved by Mtree and the highest TNR by Mnn. The accuracy of
the linear model is again lower. Both the TPR and TNR testing scores are
significantly lower for all methods compared to their training counterparts. TPR
decreases by about 15% and TNR by about 20%. This likely shows the limits of
our current learning and proof-state characterization methods. It also points to
the very interesting issue of obtaining many alternative proofs [29] and learning
from them. It seems that just using learning or reasoning is not sufficient in our
AI domain, and that feedback loops combining the two multiple times [36,44]
are really necessary for building strong ATP systems.

5.3 Speed of Clause Evaluation by the Learned Models

The number of generated clauses reported by E can be used as a rough estimate
of the amount of work done by the prover. If we look at this statistic for those
runs that timed out—i.e., did not find a proof within the given time limit—we
can use it to estimate the slowdown of the clause processing rate incurred by
employing a machine learner inside E. (Note that each generated clause needs
to be evaluated before it is inserted on the respective queue.)



210 K. Chvalovský et al.

Table 4. True Positive Rate (TPR) and True Negative Rate (TNR) on testing data
from the newly solved 232 problems.

Mlin Mtree Mnn

TPR 80.54% 83.35% 82.00%

TNR 62.28% 72.60% 76.88%

Table 5. The ASRPA and NSRGA ratios. ASRPA are the average ratios (and standard
deviations) of the relative number of processed clauses with respect to S on problems
on which all runs succeeded. NSRGA are the average ratios (and standard deviations)
of the relative number of generated clauses with respect to S on problems on which all
runs timed out. The numbers of problems were 898 and 681, respectively.

S S � Mlin S ⊕ Mlin S � Mtree S ⊕ Mtree S � Mnn S ⊕ Mnn

ASRPA 1 ± 0 2.18 ± 20.35 0.91 ± 0.58 0.60 ± 0.98 0.59 ± 0.36 0.59 ± 0.75 0.69 ± 0.94

NSRGA 1 ± 0 0.61 ± 0.52 0.56 ± 0.35 0.42 ± 0.38 0.43 ± 0.35 0.06 ± 0.08 0.07 ± 0.09

Complementarily, the number of processed clauses when compared across
those problems on which all runs succeeded may be seen as an indicator of how
well the respective clause selection guides the search towards a proof (with a
perfect guidance, we only ever process those clauses which constitute a proof).12

Table 5 compares the individual configurations of E based on the seven eval-
uated models with respect to these two metrics. To obtain the shown values,
we first normalized the numbers on per problem basis with respect to the result
of the baseline strategy S and computed an average across all relevant prob-
lems. The comparison of thus obtained All Solved Relative Processed Average
(ASRPA) values shows that, except for S�Mlin (which has a very high standard
deviation), all other configurations on average manage to improve over S and
find the corresponding proofs with fewer iterations of the given clause loop. This
indicates better guidance towards the proof on the selected benchmarks.

The None Solved Relative Generated Average (NSRGA) values represent
the speed of the clause evaluation. It can be seen that while the linear model
is relatively fast (approximately 60% of the speed of S), followed closely by the
tree-based model (around 40%), the neural model is more expensive to evaluate
(achieving between 6% and 7% of S).

We note that without caching, NSRGA of S ⊕Mnn drops from 7.1% to 3.6%
of the speed of S. Thus caching currently helps to approximately double the
speed of the evaluation of clauses with Mnn.13 It is interesting and encouraging
that despite the neural method being currently about ten times slower than the
linear method—and thus generating about ten times fewer inferences within the

12 This metric is similar in spirit to given clause utilization introduced by Schulz and
Möhrmann [41].

13 Note that more global caching (of, e.g., whole clauses and frequent combinations
of literals) across multiple problems may further amortize the cost of the neural
evaluation. This is left as future work here.



ENIGMA-NG: Efficient Neural and Gradient-Boosted Inference 211

10 s time limit used for the ATP evaluation—the neural model already manages
to outperform the linear model in the unassisted setting. I.e., S �Mnn is already
better than S � Mlin (recall Table 2), despite the latter being much faster.

5.4 Evaluation of Feature Hashing

Finally, we evaluate the feature hashing described in Sect. 3.4. We try different
hash bases in order to reduce dimensionality of the vectors and to estimate the
influence on the ATP performance. We evaluate on 6 hash bases from 32k (215),
16k (214), down to 1k (210). For each hash base, we construct models Mlin and
Mtree, we compute their prediction rates, and evaluate their ATP performance.

With the hash base n, each feature must fall into one of n buckets. When the
number of features is greater than the base—which is our case as we intend to
use hashing for dimensionality reduction—collisions are inevitable. When using
hash base of 32000 (ca 215) there are almost as many hashing buckets as there are
features in the training data (31675). Out of these features, ca 12000 features are
hashed without a collision and 12000 buckets are unoccupied. This yields a 40%
probability of a collision. With lower bases, the collisions are evenly distributed.

Lower hash bases lead to larger loss of information, hence decreased perfor-
mance can be expected. On the other hand, dimensionality reduction sometimes
leads to better generalization (less overfitting of the learners). Also, the evalua-
tion in the ATP can be done more efficiently in a lower dimension, thus giving
the ATP the chance to process more clauses. The prediction rates and ATP
performance for models with and without hashing are presented in Table 6. We
compute the true positive (TPR) and negative (TNR) rates as in Sect. 5.1, and
we again evaluate E’s performance based on the strategy S in the two ways (�
and ⊕) as in Sect. 5.2. The best value in each row is highlighted. Both models
perform comparably to the version without hashing even when the vector dimen-
sion is reduced to just 25%, i.e. 8k. With reduction to 1000 (32x), the models
still provide a decent improvement over the baseline strategy S, which solved
1086 problems. The Mtree model deals with the reduction slightly better.

Table 6. Effect of feature hashing on prediction rates and ATP performance.

Model\hash size Without 32k 16k 8k 4k 2k 1k

Mlin TPR [%] 90.54 89.32 88.27 89.92 82.08 91.08 83.68

TNR [%] 83.52 82.40 86.01 83.02 81.50 76.04 77.53

S � M 1115 1106 1072 1078 1076 1028 938

S ⊕ M 1210 1218 1189 1202 1189 1183 1119

Mtree TPR [%] 99.36 99.38 99.38 99.51 99.62 99.65 99.69

TNR [%] 93.32 93.54 93.29 93.69 93.90 94.53 94.88

S � M 1231 1231 1233 1232 1223 1227 1215

S ⊕ M 1256 1244 1244 1256 1245 1236 1232



212 K. Chvalovský et al.

Interestingly, the classification accuracy of the models (again, measured only
on the training data) seems to increase with the decrease of hash base (especially
for Mtree). However, with this increased accuracy, the ATP performance mildly
decreases. This could be caused by the more frequent collisions and thus learning
on data that has been made less precise.

6 Conclusions and Future Work

We have described an efficient implementation of gradient-boosted and recursive
neural guidance in E, extending the ENIGMA framework. The tree-based mod-
els improve on the previously used linear classifier, while the neural methods
have, for the first time, been shown practically competitive and useful, by using
extensive caching corresponding to the term sharing implemented in E. While
this is clearly not the last word in this area, we believe that this is the first prac-
tically convincing application of gradient-boosted and neural clause guidance in
saturation-style automated theorem provers.

There are a number of future directions. For example, research in better proof
state characterization of saturation-style systems has been started recently [14,
15] and it is likely that evolving vectorial representations of the proof state will
further contribute to the quality of the learning-based guidance. Our recursive
neural model is just one of many, and a number of related and combined models
can be experimented with.

A Strategy S from Experiments in Sect. 5

The following E strategy has been used to undertake the experimental evalu-
ation in Sect. 5. The given clause selection strategy (heuristic) is defined using
parameter “-H”.

--definitional-cnf=24 --split-aggressive --simul-paramod -tKBO6 -c1 -F1

-Ginvfreq -winvfreqrank --forward-context-sr --destructive-er-aggressive

--destructive-er --prefer-initial-clauses -WSelectMaxLComplexAvoidPosPred

-H’(1*ConjectureTermPrefixWeight(DeferSOS,1,3,0.1,5,0,0.1,1,4),

1*ConjectureTermPrefixWeight(DeferSOS,1,3,0.5,100,0,0.2,0.2,4),

1*Refinedweight(ConstPrio,4,300,4,4,0.7),

1*RelevanceLevelWeight2(PreferProcessed,0,1,2,1,1,1,200,200,2.5,

9999.9,9999.9),

1*StaggeredWeight(DeferSOS,1),

1*SymbolTypeweight(DeferSOS,18,7,-2,5,9999.9,2,1.5),

2*Clauseweight(ConstPrio,20,9999,4),

2*ConjectureSymbolWeight(DeferSOS,9999,20,50,-1,50,3,3,0.5),

2*StaggeredWeight(DeferSOS,2))’



ENIGMA-NG: Efficient Neural and Gradient-Boosted Inference 213

References

1. Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., Urban, J.: Premise selection
for mathematics by corpus analysis and kernel methods. J. Autom. Reason. 52(2),
191–213 (2014)

2. Alemi, A.A., Chollet, F., Eén, N., Irving, G., Szegedy, C., Urban, J.: DeepMath -
deep sequence models for premise selection. In: Lee, D.D., Sugiyama, M., Luxburg,
U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing
Systems 29: Annual Conference on Neural Information Processing Systems 2016,
Barcelona, Spain, 5–10 December 2016, pp. 2235–2243 (2016)

3. Bancerek, G., et al.: Mizar: state-of-the-art and beyond. In: Kerber, M., Carette, J.,
Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015. LNCS (LNAI), vol. 9150, pp.
261–279. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20615-8 17

4. Blanchette, J.C., Greenaway, D., Kaliszyk, C., Kühlwein, D., Urban, J.: A learning-
based fact selector for Isabelle/HOL. J. Autom. Reason. 57(3), 219–244 (2016)

5. Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED.
J. Formalized Reason. 9(1), 101–148 (2016)

6. Bridge, J.P., Holden, S.B., Paulson, L.C.: Machine learning for first-order theorem
proving - learning to select a good heuristic. J. Autom. Reason. 53(2), 141–172
(2014)

7. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: KDD, pp.
785–794. ACM (2016)

8. Denzinger, J., Fuchs, M., Goller, C., Schulz, S.: Learning from previous proof expe-
rience. Technical report AR99-4, Institut für Informatik, Technische Universität
München (1999)

9. Ertel, W., Schumann, J.M.P., Suttner, C.B.: Learning heuristics for a theorem
prover using back propagation. In: Retti, J., Leidlmair, K. (eds.) 5. Österreichische
Artificial Intelligence-Tagung. INFORMATIK, vol. 208, pp. 87–95. Springer, Hei-
delberg (1989). https://doi.org/10.1007/978-3-642-74688-8 10

10. Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J.: LIBLINEAR: a
library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)

11. Färber, M., Brown, C.: Internal guidance for satallax. In: Olivetti and Tiwari [33],
pp. 349–361

12. Färber, M., Kaliszyk, C., Urban, J.: Monte Carlo tableau proof search. In: de
Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 563–579. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63046-5 34

13. Gauthier, T., Kaliszyk, C.: Premise selection and external provers for HOL4.
In: Certified Programs and Proofs (CPP 2015) (2015). https://doi.org/10.1145/
2676724.2693173

14. Goertzel, Z., Jakub̊uv, J., Schulz, S., Urban, J.: ProofWatch: watchlist guidance
for large theories in E. In: Avigad, J., Mahboubi, A. (eds.) ITP 2018. LNCS, vol.
10895, pp. 270–288. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
94821-8 16

15. Goertzel, Z., Jakubuv, J., Urban, J.: ProofWatch meets ENIGMA: first experi-
ments. In: Barthe, G., Korovin, K., Schulz, S., Suda, M., Sutcliffe, G., Veanes, M.
(eds.) LPAR-22 Workshop and Short Paper Proceedings. Kalpa Publications in
Computing, vol. 9, pp. 15–22. EasyChair (2018)

16. Goller, C., Küchler, A.: Learning task-dependent distributed representations by
backpropagation through structure. In: Proceedings of International Conference
on Neural Networks (ICNN 1996), vol. 1, pp. 347–352, June 1996

https://doi.org/10.1007/978-3-319-20615-8_17
https://doi.org/10.1007/978-3-642-74688-8_10
https://doi.org/10.1007/978-3-319-63046-5_34
https://doi.org/10.1145/2676724.2693173
https://doi.org/10.1145/2676724.2693173
https://doi.org/10.1007/978-3-319-94821-8_16
https://doi.org/10.1007/978-3-319-94821-8_16


214 K. Chvalovský et al.

17. Gottlob, G., Sutcliffe, G., Voronkov, A. (eds.): Global Conference on Artificial
Intelligence, GCAI 2015, Tbilisi, Georgia, 16–19 October 2015. EPiC Series in
Computing, vol. 36. EasyChair (2015)

18. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9,
1735–1780 (1997)

19. Jakub̊uv, J., Urban, J.: ENIGMA: efficient learning-based inference guiding
machine. In: Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds.)
CICM 2017. LNCS (LNAI), vol. 10383, pp. 292–302. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-62075-6 20

20. Jakub̊uv, J., Urban, J.: Enhancing ENIGMA given clause guidance. In: Rabe, F.,
Farmer, W.M., Passmore, G.O., Youssef, A. (eds.) CICM 2018. LNCS (LNAI),
vol. 11006, pp. 118–124. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-96812-4 11

21. Jakub̊uv, J., Urban, J.: Hierarchical invention of theorem proving strategies. AI
Commun. 31(3), 237–250 (2018)

22. Jakubuv, J., Urban, J.: BliStrTune: hierarchical invention of theorem proving
strategies. In: Bertot, Y., Vafeiadis, V. (eds.) Proceedings of the 6th ACM SIG-
PLAN Conference on Certified Programs and Proofs, CPP 2017, Paris, France,
16–17 January 2017, pp. 43–52. ACM (2017)

23. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text
classification. In: Proceedings of the 15th Conference of the European Chapter of
the Association for Computational Linguistics, Short Papers, vol. 2, pp. 427–431.
Association for Computational Linguistics, April 2017

24. Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck. J.
Autom. Reason. 53(2), 173–213 (2014)

25. Kaliszyk, C., Urban, J.: FEMaLeCoP: fairly efficient machine learning connection
prover. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015.
LNCS, vol. 9450, pp. 88–96. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48899-7 7

26. Kaliszyk, C., Urban, J., Michalewski, H., Olsák, M.: Reinforcement learning of
theorem proving. In: Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K.,
Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, Canada, Montréal, 3–8 December 2018, pp. 8836–8847 (2018)

27. Kaliszyk, C., Urban, J., Vyskocil, J.: Efficient semantic features for automated
reasoning over large theories. In: IJCAI, pp. 3084–3090. AAAI Press (2015)

28. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39799-8 1

29. Kuehlwein, D., Urban, J.: Learning from multiple proofs: first experiments. In:
Fontaine, P., Schmidt, R.A., Schulz, S. (eds.) PAAR-2012. EPiC Series, vol. 21,
pp. 82–94. EasyChair (2013)

30. Kühlwein, D., van Laarhoven, T., Tsivtsivadze, E., Urban, J., Heskes, T.: Overview
and evaluation of premise selection techniques for large theory mathematics. In:
Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol.
7364, pp. 378–392. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-31365-3 30

31. Loos, S.M., Irving, G., Szegedy, C., Kaliszyk, C.: Deep network guided proof search.
In: Eiter, T., Sands, D. (eds.) LPAR-21, 21st International Conference on Logic for
Programming, Artificial Intelligence and Reasoning, Maun, Botswana, 7–12 May
2017. EPiC Series in Computing, vol. 46, pp. 85–105. EasyChair (2017)

https://doi.org/10.1007/978-3-319-62075-6_20
https://doi.org/10.1007/978-3-319-96812-4_11
https://doi.org/10.1007/978-3-319-96812-4_11
https://doi.org/10.1007/978-3-662-48899-7_7
https://doi.org/10.1007/978-3-662-48899-7_7
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/978-3-642-31365-3_30
https://doi.org/10.1007/978-3-642-31365-3_30


ENIGMA-NG: Efficient Neural and Gradient-Boosted Inference 215

32. Meng, J., Paulson, L.C.: Translating higher-order clauses to first-order clauses. J.
Autom. Reason. 40(1), 35–60 (2008)

33. Olivetti, N., Tiwari, A. (eds.): IJCAR 2016. LNCS (LNAI), vol. 9706. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-40229-1

34. Otten, J., Bibel, W.: leanCoP: lean connection-based theorem proving. J. Symb.
Comput. 36(1–2), 139–161 (2003)

35. Overbeek, R.A.: A new class of automated theorem-proving algorithms. J. ACM
21(2), 191–200 (1974)

36. Piotrowski, B., Urban, J.: ATPboost: learning premise selection in binary setting
with ATP feedback. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018.
LNCS (LNAI), vol. 10900, pp. 566–574. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-94205-6 37

37. Polikar, R.: Ensemble based systems in decision making. IEEE Circuits Syst. Mag.
6(3), 21–45 (2006)

38. Schäfer, S., Schulz, S.: Breeding theorem proving heuristics with genetic algorithms.
In: Gottlob et al. [17], pp. 263–274

39. Schulz, S.: Learning search control knowledge for equational deduction. DISKI,
vol. 230. Infix Akademische Verlagsgesellschaft (2000)

40. Schulz, S.: E - a brainiac theorem prover. AI Commun. 15(2–3), 111–126 (2002)
41. Schulz, S., Möhrmann, M.: Performance of clause selection heuristics for saturation-

based theorem proving. In: Olivetti and Tiwari [33], pp. 330–345
42. Urban, J.: MPTP 0.2: design, implementation, and initial experiments. J. Autom.

Reason. 37(1–2), 21–43 (2006)
43. Urban, J.: BliStr: the blind strategymaker. In: Gottlob et al. [17], pp. 312–319
44. Urban, J., Sutcliffe, G., Pudlák, P., Vyskočil, J.: MaLARea SG1 - machine learner

for automated reasoning with semantic guidance. In: Armando, A., Baumgartner,
P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 441–456. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-71070-7 37

45. Urban, J., Vyskočil, J., Štěpánek, P.: MaLeCoP machine learning connection
prover. In: Brünnler, K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS (LNAI),
vol. 6793, pp. 263–277. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22119-4 21

https://doi.org/10.1007/978-3-319-40229-1
https://doi.org/10.1007/978-3-319-94205-6_37
https://doi.org/10.1007/978-3-319-94205-6_37
https://doi.org/10.1007/978-3-540-71070-7_37
https://doi.org/10.1007/978-3-642-22119-4_21
https://doi.org/10.1007/978-3-642-22119-4_21

	ENIGMA-NG: Efficient Neural and Gradient-Boosted Inference Guidance for E
	1 Introduction
	2 Automated Theorem Proving with Machine Learning
	3 ATP Guidance with Handcrafted Clause Features
	3.1 ENIGMA Clause Features
	3.2 ATP Guidance with Fast Linear Classifiers
	3.3 ATP Guidance with Gradient Boosted Trees
	3.4 Feature Hashing

	4 Neural Architecture for ATP Guidance
	4.1 Neural Model Parameters
	4.2 ATP Guidance with Pytorch

	5 Experimental Evaluation
	5.1 Model Training, Hyperparameters and Feature Analysis
	5.2 Evaluation of the Model Performance
	5.3 Speed of Clause Evaluation by the Learned Models
	5.4 Evaluation of Feature Hashing

	6 Conclusions and Future Work
	A Strategy S from Experiments in Sect.5
	References




