
Chapter 9
Theory of Estimation-of-Distribution
Algorithms

Martin S. Krejca and Carsten Witt

Abstract Estimation-of-distribution algorithms (EDAs) are general meta-
heuristics used in optimization that represent a more recent alternative to
classical approaches such as evolutionary algorithms. In a nutshell, EDAs
typically do not directly evolve populations of search points but build prob-
abilistic models of promising solutions by repeatedly sampling and selecting
points from the underlying search space. Recently, significant progress has
been made in the theoretical understanding of EDAs. This chapter provides
an up-to-date overview of the most commonly analyzed EDAs and the most
recent theoretical results in this area. In particular, emphasis is put on the
runtime analysis of simple univariate EDAs, including a description of typ-
ical benchmark functions and tools for the analysis. Along the way, open
problems and directions for future research are described.

9.1 Introduction

Optimization is one of the most important fields in computer science, with
many problems being NP-hard and thus not necessarily easy to solve. Hence,
heuristics play a major role, i.e., optimization algorithms that try to yield solu-
tions of good quality in a reasonable amount of time. Research over the past
decades has resulted in many good heuristics being developed for classical
NP-hard problems. Unfortunately, these heuristics are tailored with specific
problems in mind and exploit certain problem-specific properties in order to
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save computation time. Thus, they cannot be used for problems that do not
feature these specific properties.

One alternative to problem-specific heuristics is general-purpose heuristics.
The information about the problem to be optimized that these algorithms
have access to is fairly limited, up to the point that they are only able to
compare the quality of different solutions relatively. This has the advantage
that the problem itself does not have to be formalized but only the quality of
a solution, as the problem formalization is communicated implicitly via the
quality measure to the algorithm. In turn, this results in great reusability of
these algorithms for different problems.

One such class of general-purpose heuristics is evolutionary algorithms
(EAs) [34]. EAs are characterized by creating new solutions from already
generated solutions. Oftentimes, many solutions are stored and only changed
(evolved) locally, preferably discarding bad solutions and saving good ones.
Such algorithms are EAs in the classical sense [60].

The concept of EAs can be broadened if we are less restrictive about
what is being evolved. A similar approach to changing solutions directly is to
instead change the procedure that generates the solutions in the first place.
Thus, a solution-generating mechanism is evolved. Algorithms following this
approach are called estimation-of-distribution algorithms (EDAs) [29, 37, 54,
55]. They are not EAs in the classical sense but can be considered EAs in the
broad sense, as just described.

EDAs have been used very successfully in real-world applications [29, 37,
54, 55] and have recently gathered momentum in the theory community an-
alyzing EAs [10, 20, 22, 36, 38, 63, 66]. The aim of theoretically analyzing
EAs is to provide guarantees for the algorithms and to gain insights into their
behavior in order to optimize the algorithms themselves. Common guaran-
tees include the expected time until an algorithm finds a solution of sufficient
quality, the probability of doing so after a certain time, and the fact that the
algorithm is even able to find desired solutions.

In this chapter, we provide a state-of-the-art overview of the theoretical
results on EDAs for discrete domains, as that is their main field of applica-
tion. To the best of our knowledge, while continuous EDAs exist, no detailed
theoretical analyses have been conducted so far. We present the most com-
monly investigated EDAs and give an outline of the history of their analyses,
providing deep insights into some of the latest results. After reading this, the
reader should be familiar with EDAs in general, the current state of theoret-
ical research, and common tools used for the analyses.

In Section 9.2, we go more into detail about how EDAs work, we introduce
the scenario used in most theoretical papers, and we provide different ways of
classifying EDAs, stating the most commonly analyzed algorithms. Further,
we mention some tools that are often used when deriving results for EDAs.
Then, in Section 9.3, we give a short overview of the most commonly con-
sidered objective functions. In Section 9.4, we discuss the historically older
results of convergence analyses on EDAs. After that, in Section 9.5, we present
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more recent results on EDAs, which consider the actual runtime of an algo-
rithm. We end this article in Section 9.6 with some conclusions and open
problems.

9.2 Estimation-of-Distribution Algorithms

In general, EDAs are problem-agnostic optimization algorithms that store a
probabilistic model over the solution space. This model is the core part of
these algorithms. It implies a probability distribution over the solution space
and is iteratively refined, using samples. Ideally, the model converges to a
state that produces only optimal solutions.

Since EDAs make use of sample sets – called populations – they are quite
similar in this respect to EAs. However, the main difference is that EAs ex-
clusively store a population and progress using solely this information, by
varying samples – called individuals – from the population. Thus, they have
quite a local view of the solution space and advance locally. In contrast, the
probabilistic model of an EDA models most of the time the entire solution
space. Updates to the model are done using the old model as well as a popu-
lation. Hence, EDAs employ a more general view of the solution space than
do classical EAs.

The probabilistic model of an EDA is used as an implicit probability dis-
tribution over the solution space, instead of an explicit distribution. This is
usually done by constraining the distributions that can be modeled and by
factorizing them, i.e., by writing the distribution as a product of marginal
probabilities. Hauschild and Pelikan [29] distinguish between many different
classes of EDAs with respect to how strongly constrained the models are. An
advantage of factorizing a distribution is that it saves a lot of memory, since
an explicit distribution would make it necessary to store a probability for
each solution, which is not feasible. With a factorization, only the factors
have to be stored in memory. However, even then it is possible for the model
to grow to sizes exponential in the input [25].

As mentioned above, EDAs also use populations, like EAs, sampled from
their probabilistic model, in order to update that model. It is up to the EDA
to decide what to do with its population. However, all EDAs theoretically
analyzed so far have in common the fact that they always discard their pop-
ulation after every iteration, valuing the model higher than the population.

In the following, we first state the optimization domain for the EDAs
that we consider in this chapter. Then we discuss different classifications of
EDAs and name various algorithms that fall into the various classes. Last, we
mention the tools that are commonly used in the current theoretical research
on EDAs.
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9.2.1 Scenario

As in the theory of EAs, theoretical analyses of EDAs consider mainly pseudo-
Boolean optimization, i.e., optimization of a function f : {0,1}n→ R, often
referred to as the fitness function. Conventionally, the function value of a bit
string xxx is called the fitness of xxx.

The aspect of an EDA being a general-purpose solver is modeled as a classi-
cal black-box setting, where the algorithm gains problem-specific information
only from querying the fitness function by inputting bit strings and receiving
their respective fitness. In this setting, mostly two different scenarios have
been of major interest.

Convergence analyses. In this historically older topic, EDAs have been
analyzed with respect to the convergence of their probabilistic model, i.e.,
if they succeed at all in optimizing certain fitness functions. We discuss
this scenario in more depth in Section 9.4.

Runtime analyses. A more recent trend is the analysis of an EDA’s run-
time on certain functions. In this scenario, the focus is on the number of
queries needed until an optimum or a solution of sufficient quality is sam-
pled, i.e., the first hitting time of an algorithm sampling such a solution.
Although sampling a desired solution can happen by chance, the analyses
usually entail that the probabilistic model of an EDA makes it very likely
for such a solution to be sampled again. Section 9.5 goes into detail about
this topic.

9.2.2 Classifications of EDAs

Arguably, the most straightforward way of classifying EDAs is with respect
to the power of their underlying probabilistic model. Univariate algorithms
use only a single variable in their model per problem variable.1 In contrast,
multivariate algorithms use more than a single variable to model a problem
variable. Thus, univariate EDAs are not able to capture dependencies between
problem variables, whereas multivariate EDAs are explicitly constructed to
do so.

Pelikan et al [55] give a more fine-grained classification of EDAs, differenti-
ating multivariate EDAs even further with respect to how many dependencies
can be captured by the underlying probabilistic model.

Note that the classification into univariate and multivariate EDAs does
not constrain the populations at all.

1 In our setting of pseudo-Boolean optimization, a problem variable is a position in a bit
string, i.e., one dimension of a hypercube.
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9.2.2.1 Univariate Algorithms

When optimizing a pseudo-Boolean function, univariate EDAs assume inde-
pendence of all of the n different bit positions to be optimized. Under this
assumption, every probability distribution can be factorized into a product
of n different probabilities pppi, collected together in a vector ppp of length n. A
bit string xxx is then sampled by choosing each bit xxxi to be 1 with probability pppi
and 0 otherwise. Since each pppi determines how frequently, in expectation, a 1
is sampled at position i, we call these probabilities frequencies, following the
common naming convention [22]. The vector ppp is then consequently called
the frequency vector.

n-Bernoulli-λ-EDA

Although the class of univariate EDAs does not limit the populations of
the algorithms in any way, the most commonly considered univariate EDAs
discard their entire population after every iteration. Thus, from a theoretical
point of view, a run of a univariate EDA can be modeled as a series (ppp(t))t∈N0
of frequency vectors over the number of iterations t. Usually, ppp(0) models the
uniform distribution by satisfying the condition that ppp

(0)
i = 1/2 for each i.

Friedrich et al [22] capture this class of univariate EDAs in a framework
called the n-Bernoulli-λ-EDA (Algorithm 9.1).

The n-Bernoulli-λ-EDA samples λ individuals in each iteration and per-
forms an update to its frequency vector, using the current frequency vector
as well as all of the just-sampled individuals and their respective fitnesses.
The function performing this update is called the update scheme and fully
characterizes the algorithm.

Note that we do not specify a termination criterion. In fact, determining
what a good criterion is may vary between different use cases of the algorithm.
When considering the expected runtime of these algorithms (Section 9.5), we
are interested in the number of fitness function evaluations until an optimal
solution is sampled for the first time.

In many EDAs, if a frequency is either 0 or 1, all bits sampled at the
respective position will be 0 or 1, respectively, and the update scheme will
not change the frequency anymore. To prevent this, the algorithm is usually
modified such that each frequency is only allowed to take values in an interval
[m,1−m] ⊂ [0,1], where m ∈ (0,1/2] is called a margin; the values m and
1−m are called borders. Usually, a margin of 1/n is chosen [7, 10, 50]. In a
scenario with a margin, line 8 of Algorithm 9.1 can be modified as follows:

foreach i ∈ {1, . . . ,n} do

ppp
(t+1)
i ←max

{
m, min

{
1−m, φ

(
ppp(t),

(
xxx,f(xxx)

)
xxx∈D

)
i

}}
;

2 Note that D is a multiset, that is, we allow duplicates.
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Algorithm 9.1: n-Bernoulli-λ-EDA with a given update scheme φ, op-
timizing f

1 t← 0;
2 foreach i ∈ {1, . . . ,n} do ppp

(t)
i ←

1
2 ;

3 repeat
4 D←∅;
5 foreach j ∈ {1, . . . ,λ} do
6 xxx← offspring sampled with respect to ppp(t);
7 D←D∪{xxx}; 2

8 ppp(t+1)← φ
(
ppp(t),

(
xxx,f(xxx)

)
xxx∈D

)
;

9 t← t+1;
10 until termination criterion met;

We will continue to give an overview of the most commonly theoretically
analyzed univariate EDAs and show how they fit into the n-Bernoulli-λ-EDA
framework. We present the algorithms without a margin although they are
commonly analyzed with a margin of 1/n.

Since many of the following examples do not make use of the entire pop-
ulation of size λ (the population size) but select a certain number µ (the
effective population size) of individuals according to their fitness values, we
denote the k-th-best individual as xxx(k), where 1 ≤ k ≤ µ; ties are broken
uniformly at random. Thus, xxx(1) denotes an individual with the best fitness.

UMDA

The arguably easiest update scheme is given by the univariate marginal dis-
tribution algorithm (UMDA; Algorithm 9.2) [49]. It samples λ individuals in
each iteration, of which µ of the best are chosen. Then, each frequency pppi
is set to the relative frequency of 1s at position i in the set of the µ best
individuals, regardless of the current frequency.

The update scheme of UMDA allows it to go from any valid frequency to
any other in a single step if not stuck. Thus, the difference of two consecutive
frequencies ppp

(t)
i and ppp

(t+1)
i can only be trivially bounded by roughly 1. We

call such a difference the step size of the algorithm.

PBIL

A variant of UMDA that has an adjustable step size is the population-based
incremental learning algorithm (PBIL; Algorithm 9.3) [4]. A frequency is up-
dated in a way similar to UMDA, but the new frequency is a convex combi-
nation with parameter ρ of the current frequency and the relative frequencies
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Algorithm 9.2: UMDA with population size λ, effective population
size µ, optimizing f

1 t← 0;
2 foreach i ∈ {1, . . . ,n} do ppp

(t)
i ←

1
2 ;

3 repeat
4 D←∅;
5 foreach j ∈ {1, . . . ,λ} do
6 xxx← offspring sampled with respect to ppp(t);
7 D←D∪{xxx};

8 foreach i ∈ {1, . . . ,n} do ppp
(t+1)
i ← 1

µ

∑µ

k=1xxx
(k)
i ;

9 t← t+1;
10 until termination criterion met;

of 1s at that position. Thus, the step size is now bounded by ρ, and UMDA
is a special case of PBIL with ρ= 1.

Algorithm 9.3: PBIL with population size λ, effective population size µ,
and learning rate ρ, optimizing f

1 t← 0;
2 foreach i ∈ {1, . . . ,n} do ppp

(t)
i ←

1
2 ;

3 repeat
4 D←∅;
5 foreach j ∈ {1, . . . ,λ} do
6 xxx← offspring sampled with respect to ppp(t);
7 D←D∪{xxx};

8 foreach i ∈ {1, . . . ,n} do ppp
(t+1)
i ← (1−ρ)ppp(t)i + ρ

µ

∑µ

k=1xxx
(k)
i ;

9 t← t+1;
10 until termination criterion met;

MMASib

Another important univariate EDA is the max-min ant system with iteration-
best update (MMASib; Algorithm 9.4) [50], which is a special case of PBIL
where we set µ = 1, i.e., where we consider only the best individual in each
iteration. MMASib also falls into the general class of ant colony optimization
(ACO) algorithms [16]. Although ACO spans an entire research topic inde-
pendent of EDAs and is typically not considered to be an EDA, the process of
how it produces solutions iteratively can be viewed as refining a probabilistic
model. Thus, we view ACO as an EDA here.
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ACO considers graphs whose edges are weighted with probabilities, called
pheromones. Additionally, the algorithm uses agents – called ants – that
traverse the graph and thus construct paths. At each vertex v, if a path
needs to be extended, an ant chooses an edge with a certain probability with
respect to the pheromones on all of the outgoing edges of v. After the data
of all ants has been collected, all pheromones decrease (they evaporate) and
then some are increased afterward, usually the ones that are part of the best
solutions constructed.

When pseudo-Boolean optimization is considered, a graph for ACO can be
modeled as a multigraph with n+1 vertices from 0 to n, each vertex having
exactly two outgoing edges to its direct successor (except for vertex n; see
Fig. 9.1). One of these edges is interpreted as a 0, and the other one as a 1.
Each solution is constructed by letting an ant traverse the graph starting at 0
and ending at n. The corresponding edges are then interpreted as a bit string
of length n. Note how the probability of choosing an edge corresponding to
a 1 is equal to an n-Bernoulli-λ-EDA’s frequency for that respective position.

e1,1

e1,0

e2,1

e2,0

e3,1

e3,0

e4,1

e4,0

e5,1

e5,0

v0 v1 v2 v3 v4 v5

Fig. 9.1 The ACO graph for pseudo-Boolean optimization with n= 5 bits.

MMASib is a variant of the max-min ant system algorithm [61] that only
makes an update with respect to the path of the best ant in each iteration,
using a classical update rule in ACO.

Algorithm 9.4: MMASib with population size λ and evaporation fac-
tor ρ, optimizing f

1 t← 0;
2 foreach i ∈ {1, . . . ,n} do ppp

(t)
i ←

1
2 ;

3 repeat
4 D←∅;
5 foreach j ∈ {1, . . . ,λ} do
6 xxx← offspring sampled with respect to ppp(t);
7 D←D∪{xxx};

8 foreach i ∈ {1, . . . ,n} do ppp
(t+1)
i ← (1−ρ)ppp(t)i +ρxxx

(1)
i ;

9 t← t+1;
10 until termination criterion met;
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cGA

An algorithm with a different approach is the compact genetic algorithm
(cGA; Algorithm 9.5) [27]. It samples exactly two individuals in each iteration
and compares their bit values componentwise. If the bits at position i are the
same, the frequency pppi is left unchanged. Otherwise, the frequency is adjusted
by ±1/K, where K is an algorithm-specific parameter, often referred to as
the population size, such that the probability of sampling the bit value of the
fitter individual is higher in the next iteration.

Algorithm 9.5: cGA with population size K, optimizing f

1 t← 0;
2 foreach i ∈ {1, . . . ,n} do ppp

(t)
i ←

1
2 ;

3 repeat
4 D←∅;
5 foreach j ∈ {1,2} do
6 xxx← offspring sampled with respect to ppp(t);
7 D←D∪{xxx};

8 foreach i ∈ {1, . . . ,n} do ppp
(t+1)
i ←max

{
0, min

{
1, ppp(t)i + 1

K

(
xxx(1)−xxx(2)

)}}
;

9 t← t+1;
10 until termination criterion met;

9.2.2.2 Multivariate Algorithms

The class of multivariate EDAs consists of all algorithms that can use multiple
variables to model one problem variable and thus express dependencies. A
compact representation of such dependencies can be modeled as a directed
graph whose vertices are the variables and whose edges denote dependencies
among the variables. For each vertex, the probability distribution conditional
on all its adjacent vertices with an incoming edge (its parents) is stored.
This results in a factorization of the problem space that respects the given
dependencies. Multivariate EDAs can assume a certain dependency model
and learn only the respective (conditional) probabilities of the factorization,
or they can additionally try to learn a model that fits well to the samples.

The factorized distribution algorithm (FDA) [48] falls into the former cate-
gory. It assumes a factorization according to a so-called additively decompos-
able function (ADF), i.e., a function that is a sum of multivariate subfunctions.
For each set of variables per subfunction, FDA creates a metavariable, and
it expresses the objective function (the ADF) with respect to those metavari-
ables. In each iteration, it samples solutions with respect to the factorization,
selects a subset of them, and estimates the conditional probabilities based
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on these samples. Note that FDA is a generalization of the update of UMDA
and coincides with it if no dependencies between the problem variables exist.

Another approach that also uses metavariables is the extended compact ge-
netic algorithm (ECGA) [28]. Differently from FDA, a metavariable of ECGA
represents multiple variables at once (i.e., it is assumed that such variables
are strongly correlated). In each iteration, the algorithm starts by placing
each problem variable into its own class. Then, it greedily merges two classes
such that a certain metric (the so-called Bayesian information criterion) is
maximized, using samples from the current model. If no further improvement
can be made, the merging process stops and the algorithm uses the newly
created model.

The easiest of the multivariate cases is the one where each variable can
be at most dependent on one other variable, i.e., a bivariate setting, and the
arguably easiest probabilistic model in such a setting is a path. This model
is used in the mutual-information-maximization input clustering (MIMIC)
algorithm introduced by De Bonet et al [11]. The idea of the underlying model
is to construct a path that minimizes the Kullback–Leibler divergence with
respect to the bivariate setting, i.e., to find a permutation that can explain
the sample data best. However, since there are n! possible permutations for n
variables, the authors of [11] suggest a greedy approach that makes use of the
empirical entropies, i.e., the entropies of the sample data. First, a variable
with minimum entropy is chosen as the start vertex of the path. Then, the
path is continued by choosing a node that has minimum conditional entropy
with respect to the currently last vertex in the path.

The bivariate marginal distribution algorithm (BMDA) [52] uses a some-
what similar approach. However, it does not consider paths as its model for
dependency graphs but rather a forest of rooted trees. In order to deter-
mine which variables are dependent on which other variables, the Pearson’s
chi-squared statistic is used as an indicator. If the indicator is too low, the cor-
responding variables are considered independent. The forest is then created
greedily very similarly to regular algorithms for maximum spanning trees:
iteratively, a vertex is added to one of the trees that has maximum Pearson
chi-squared value.

The Bayesian optimization algorithm (BOA) [53] is a very general multi-
variate EDA and constructs an arbitrary dependency graph with respect to a
metric of choice. If wanted, the degree of incoming edges, i.e., the number of
dependent variables, can be limited. Pelikan et al [53] proposed the Bayesian
Dirichlet metric as one possibility to determine the quality of a dependency
graph, and they stated that the general problem of finding an optimal graph is
NP-hard. Thus, they suggested greedy algorithms or heuristics for efficiently
creating good graphs.
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9.2.2.3 Other Classifications

Another approach to classifying EDAs is to differentiate them not by how
many dependencies they can model but by certain invariances that their
probabilistic models may have.

One such classification stems from the theory of EAs and was introduced
by Lehre and Witt [39]. These authors considered a new black-box complexity
known as unbiased black-box complexity in order to prove tighter lower bounds
for commonly analyzed EAs. This definition is so general that it applies to
any black-box algorithm optimizing pseudo-Boolean functions, thus including
EDAs.

Unbiased black-box complexity considers black-box algorithms optimizing
perturbations of the hypercube, where a perturbation is any isometric auto-
morphism of the hypercube.3 For example, cyclically shifting a bit string by
one position to the right and changing the value of the first bit in the result
is an isometric automorphism.

Given a fitness function and a perturbed variant of it, a black-box algo-
rithm is said to be unbiased if the queries to the black box in the perturbed
setting are the same as the queries in the unperturbed setting when inverted
with respect to the perturbation. Thus, an unbiased algorithm does not favor
certain positions over other positions or 1s over 0s, or vice versa, i.e., it has
no bias in this respect.

When considering general-purpose algorithms, unbiasedness is a nice prop-
erty to have, as it certifies that the algorithm has no bias with respect to the
encoding of the search space. However, when considering certain problems,
different values may have a strict, different meaning, such that unbiasedness
with respect to those values does not make sense.

All of the EDAs presented in Section 9.2.2.1 are unbiased when uniform
tie-breaking is used.

A seemingly similar but unrelated property that many EDAs feature is that
their probabilistic model does not change, in expectation, if all samples have
the same fitness, i.e., there is no signal from the fitness function. Friedrich
et al [22] called this property balanced, with respect to the n-Bernoulli-λ-EDA.
However, this property had already been considered before by Shapiro [58],
albeit with different terminology.

Although balancedness seems beneficial at first glance, it actually leads to
the probabilistic model converging to one of the corners of the hypercube [22,
58]. This is a general problem of martingales, i.e., random processes that do
not change in expectation, with a bounded range, which will eventually end
up at the bounds of their range. This means that balancedness implies a bias
toward outer regions of the hypercube, also called genetic drift [3], as this is
an inherent drift due to the genotypes of the sampled population. In order

3 The isometric automorphisms of the hypercube are all isomorphisms that permute any
positions and may change a value of x to 1−x at any position.
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to overcome this bias and optimize successfully, the drift due to selection
introduced by the fitness function has to be larger than the genetic drift.

Different approaches have been suggested in order to prevent an EDA’s
probabilistic model from quickly converging to a corner of the hypercube.
Shapiro [58] proposed to reject updates made to the probabilistic model with
a probability equal to the ratio of going from one model to the other. This
has the advantage that the resulting implicit distribution is the uniform dis-
tribution over the hypercube. However, the transition probabilities have to
be known and computed in order to get the correct rejection probabilities.
Another approach proposed by Shapiro [58] and also by Friedrich et al [22]
is to introduce an artificial bias that counteracts the one introduced by the
balancedness.

In the context of balancedness, Friedrich et al [22] introduced another
concept, which they called stable. An n-Bernoulli-λ-EDA is stable if the limit
distribution of each frequency, when no fitness signal is received, is unimodal
with its maximum at 1/2. This means that a stable n-Bernoulli-λ-EDA has
a bias toward the center of the hypercube. These authors showed that this
concept is mutually exclusive with an n-Bernoulli-λ-EDA being balanced, as
such an EDA has a bias toward the corners of the hypercube. The stable
property is similar to the concept of an EDA’s limit distribution being the
uniform distribution, as considered by Shapiro [58].

9.2.3 Tools for Analyzing EDAs Theoretically

Most of the theoretical results on EDAs consider univariate algorithms, as
we explain in Section 9.5. Thus, tools that make use of independent events
are commonly used. However, that does not limit the use of these tools to
the univariate case. Especially, drift analysis, which we present later in this
section, can be applied in any setting.

Many proofs make use of classical probabilistic concentration bounds, such
as Markov’s inequality, Chebyshev’s inequality, or, most importantly, Cher-
noff bounds [44]. The latter are used very frequently, since the sampling pro-
cess of a univariate EDA is usually done independently of the other samples.
Thus, such a bound can be applied.

Since the theory of EDAs usually considers first hitting times, more spe-
cialized tools suited for that purpose are used as well. One such tool is the
coupon collector problem [45], which gives highly concentrated first-hitting-
time results if a certain number of events with low probability have to occur
to reach the target. For EDAs, this can be thought of as a certain number
of factors of the probabilistic model being at the wrong end of their spec-
trum, thus slowing down optimization, since they need to be changed for the
optimization process to succeed.
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Another tool for determining first hitting times, and the most prominent
one when looking at the theory of EAs and EDAs in general, is drift theory.
It is loosely akin to the potential method in complexity theory. To apply
drift theory, one needs to define a potential that maps the stochastic process
into the reals. Then, the expected difference between two consecutive steps
of the process is considered: the drift. This can be thought of as the expected
velocity of the process. If the drift can be bounded, the expected hitting time
of the process reaching a target is easily deducible, i.e., if there is a known
bias in the process toward a certain direction, the first hitting time can easily
be bounded.

We now state the three most commonly used drift theorems. The most
general theorem with respect to the prerequisites of the process – the additive
drift theorem (Theorem 9.2.1) – was stated by He and Yao [30]. However, the
ideas used date back to Wald’s equation [65].

Theorem 9.2.1 (additive drift [30, 31]). Let (Xt)t∈N0 be random vari-
ables over a bounded space S ⊆R≥0 containing 0, and let T =min{t |Xt = 0}.

If there is a constant δ > 0 such that, for all t < T , E[Xt−Xt+1 |Xt]≥ δ,
then

E[T |X0]≤
X0
δ

.

And if there is a δ > 0 such that, for all t < T , E[Xt−Xt+1 |Xt]≤ δ, then

E[T |X0]≥
X0
δ

.

The additive drift theorem can be applied when the expected difference
between two potentials is known. However, oftentimes it is easier to de-
termine the expected difference conditional on the current potential, i.e.,
E[Xt −Xt+1 | Xt]. Owing to the law of total expectation, a lower bound
on the conditional expected value is also a lower bound on the unconditional
one.

A theorem more suited to processes whose potential changes at least lin-
early with respect to the current potential is the following multiplicative drift
theorem.

Theorem 9.2.2 (multiplicative drift [14]). Let (Xt)T∈N0 be nonnegative
random variables over R, each with finite expectation, and let T = min{t |
Xt < 1}.

If there is a constant δ > 0 such that, for all t < T , E[Xt−Xt+1 |Xt]≥ δXt,
then

E[T |X0]≤
1+ lnX0

δ
.

The multiplicative drift theorem is not well suited if the difference in po-
tential is dependent on the current potential but not in a linear fashion. Such
cases are covered by the following variable drift theorem. However, note that



418 Martin S. Krejca and Carsten Witt

all these theorems assume that the difference in potential does not increase
when one gets closer to the goal.

Theorem 9.2.3 (variable drift [35, 43]). Let (Xt)t∈N0 be nonnegative
random variables over a bounded space S ⊆ R≥0 containing 1, each with
finite expectation, and let T =min{t |Xt < 1}.

If there exists a monotonically increasing function h : R≥0 → R≥0 such
that 1/h is integrable and, for all t < T , E[Xt−Xt+1 |Xt]≥ h(Xt), then

E[T |X0]≤
1

h(1)
+
∫ X0

1

1
h(x)

dx.

The drift theorems above have been formulated in a simple, easy-to-read
form that covers the most typical scenarios in which they are applied. How-
ever, more general drift theorems can be obtained [40, 41]; for example, to
apply Theorem 9.2.1 in unbounded state spaces, to apply Theorems 9.2.2
and 9.2.3 with respect to arbitrary minimum states smin > 0 in the definition
of T instead of state 1, and to allow processes adapted to arbitrary stochastic
filtrations instead of the natural one implicit in the formulations above. These
generalizations come partly at the cost of more complicated theorem state-
ments, and sometimes require some additional technical assumptions about
the underlying stochastic process.

9.3 Common Fitness Functions

The most commonly analyzed pseudo-Boolean functions for EDAs are
OneMax [46] and LeadingOnes [56]. However, other functions have also
been analyzed [6, 7], with BinVal being the most prominent one of
them [17, 48].

OneMax counts the number of 1s in a bit string. Thus, the unique opti-
mum is the all-1s bit string:

OneMax(xxx) :=
n∑

i=1
xxxi. (9.1)

This function can be generalized to a class of functions, each having a target
bit string aaa – which denotes the unique global optimum – and yielding the
number of incorrectly set bits. Note that any unbiased algorithm, as intro-
duced in Section 9.2.2.3, behaves on OneMax exactly as on the generalized
version.

The OneMax function class is used to analyze how well an EDA performs
as a hill climber. The usual expected runtime of an EDA on this function is
Θ(n logn) [36, 38, 63, 66].
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Whereas OneMax is oftentimes considered to be the easiest pseudo-
Boolean function, BinVal is said to be the hardest [17]. In contrast to
OneMax, where all bits are equally weighted, BinVal uses exponentially
scaled weights on its bit positions:

BinVal(xxx) :=
n∑

i=1
2n−ixxxi. (9.2)

That means that BinVal represents value of a bit string interpreted as a
binary unsigned integer.

Since the sum of all powers of 2 up to an exponent j is less than 2j,
BinVal can be interpreted as a lexicographic order on the hypercube, where
lexicographically greater bit strings have a better fitness.

As with OneMax, in its general form, the global optimum of BinVal is
any bit string aaa, and the fitness of any bit string is the weight of the respective
index if the bit value is the same as that of aaa, and it is 0 otherwise.

LeadingOnes yields the number of consecutive 1s in a bit string, starting
from the left:

LeadingOnes(xxx) :=
n∑

i=1

i∏
j=1

xxxj . (9.3)

As with OneMax, the unique global optimum is the all-1s bit string. In
its general version, the function yields the number of consecutively correctly
chosen bits with respect to a fixed permutation π and a target bit string aaa.

LeadingOnes is used to analyze how an EDA copes with dependencies
between the bits. The known expected runtime of certain EDAs on this func-
tion is O(n2) [10], which is compliant with the usual upper bound for EAs
on this function [1].

9.4 Convergence Analyses

The earliest theoretical studies of EDAs focused mostly on their convergence,
and were similar in style to the research that had been done for evolutionary
algorithms in the 1990s [56, 64]. More precisely, it was studied how an algo-
rithm behaves in the limit t→∞, i.e., if the algorithm is allowed to run for
an arbitrary amount of time. If optimal solutions will be found in this limit,
the algorithm is considered effective.

Almost all convergence analyses of EDAs consider univariate models. An
early publication by Höhfeld and Rudolph [32] studied the vector of frequen-
cies ppp(t) in PBIL using a Markov chain model and rigorously proved that
if µ = 1 < λ and ρ > 0, it will converge in expectation to some solution
xxx∗ = (xxx∗1, . . . ,xxx∗n); more precisely, E[ppp(t)i ]→ xxx∗i as t→∞. This solution need
not be an optimal one but may correspond to a local optimum to which
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the search process is led in the very first steps. If the fitness function f is
a linear pseudo-Boolean function, then in fact E[ppp(t)i ]→ xxx∗i with respect to
the optimal solution xxx∗. This includes classical benchmark functions such as
OneMax. However, as pointed out by Shapiro [58], convergence in expecta-
tion does not imply that PBIL eventually will sample the optimum of such
functions. In fact, genetic drift may lock frequencies to values that make it
impossible to sample the optimum.

PBIL was also theoretically analyzed by González et al [26] using a dynam-
ical systems model. Convergence of the model to local optima of the fitness
functions was proven for µ= 1, and it was argued that the actual PBIL will
resemble the model if ρ is chosen sufficiently close to 0. Hence, the approach
does not make predictions for high learning rates ρ, in particular, it excludes
the special case of ρ= 1 as used in UMDA.

Several subsequent publications have considered UMDA and its general-
ization FDA. Mühlenbein and Mahnig [47] also used an approach similar
to dynamical systems theory to derive a quantitative statement about the
behavior of the frequencies in FDA and UMDA over time. In fact, both
fitness-proportionate and the usual truncation selection (take the best µ out
of λ individuals) were considered. Specifically, for the classical UMDA on
OneMax, they derived the result that, roughly,

ppp
(t+1)
i ≈ ppp

(t)
i + I√

n

√
ppp
(t)
i

(
1−ppp

(t)
i

)
, (9.1)

where I is the so-called selection intensity, which is determined from the ratio
µ/λ and can be thought of as being constant. By solving a differential equa-
tion, the formula can be turned into an approximation to the expected fre-
quency at time t. Interestingly, (9.1) resembles a rigorous statement about the
drift of the frequencies that was recently proven in [66] and is crucial for upper
bounds on the runtime; see a more detailed discussion in Section 9.5.2.1.

A more comprehensive convergence study of FDA was done by Mühlenbein
and Mahnig [48]. As a general assumption, the FDA is instantiated with
the correct decomposition of an additively decomposable function f(x) =∑k

i=1 f(Xj), where Xj ⊂{1, . . . ,n}, into its subfunctions. Then the algorithm
will compute a probabilistic model, comprising unconditional and conditional
frequencies from the sampled search points. Strong results are obtained if
a fitness-proportionate selection scheme called Boltzmann selection is used.
Under some assumptions about the initial population, the algorithm will
converge to a distribution that is uniform on the set of optimal solutions. The
drawback of this result is that Boltzmann selection is computationally very
expensive. For the usual truncation selection, results building on simplifying
assumptions were obtained. Moreover, using infinite-population models, the
paper derived quantitative statements similar to (9.1) about the time for a
frequency of UMDA to converge to its optimum value, regarding OneMax
and BinVal.



9 Theory of Estimation-of-Distribution Algorithms 421

In the 2000s, rigorous convergence proofs of FDA (including UMDA) with
fitness-proportionate [72] and truncation selection [71] followed. To study the
regions of convergence and their stability, this research was supplemented by
a fixed-point analysis for UMDA and FDA with 2-tournament selection in
[70]. It turns out that FDA, given an appropriate decomposition of a non-
linear function, converges under milder assumptions about the starting pop-
ulation than UMDA. Roughly, this indicates that a multivariate model, as
used in FDA, can be superior to a univariate model, to which UMDA is re-
stricted. However, the analyses in [70–72] also make the assumption of an
infinite population size, which was very common in early convergence analy-
ses of nature-inspired algorithms [64]. Infinite populations simplify the ana-
lysis, since certain stochastic effects leading to a deviation from the expected
behavior, so-called fluctuations such as genetic drift, vanish under this as-
sumption. Often this type of analysis has been accompanied by experiments,
which support the validity of the statements for finite population sizes also.
Theoretically motivated research often demands rigorous statements that also
hold for finite populations, see the following sections on runtime analysis.

A more recent publication by Wu and Kolonko [68] presented a conver-
gence analysis of a so-called generalized cross-entropy optimization algorithm.
The algorithm generalizes PBIL by adding so-called feasibility information
to elements of the search space. This information corresponds to the heuris-
tic information used in ACO [15]. It was shown, for constant ρ and under
different assumptions about the feasibility information, that the algorithm
may stagnate in suboptimal points owing to genetic drift. However, for a
time-dependent update scheme, almost sure convergence to a set of solutions
that may include optimal points was proven. Finally, an initial runtime ana-
lysis on LeadingOnes was presented. However, this specific result has been
superseded by more detailed analyses in a follow-up paper [69], discussed
below.

To conclude this overview of convergence analyses, we mention a very
recent publication by Ollivier et al [51]. They introduced the information-
geometric optimization (IGO) algorithm, which is a very general EDA frame-
work derived from three invariance properties: invariance under the parame-
terization of the search space, invariance under the parameterization of the
probabilistic model, and invariance under monotone transformations of the
fitness function. This means that IGO does not care about the encoding of
the search space, the probabilistic model, or absolute fitness values. These au-
thors showed that IGO results in a general EDA that encompasses PBIL and
cGA when it is used on the discrete hypercube, considering Poisson binomial
distributions. Further, they considered a time-continuous infinite-population
version of IGO, which they called IGO flow, in the setting of linear pseudo-
Boolean optimization and proved that it always converges to the optimum if
the probabilistic model is not ill-initialized, i.e., none of the probabilities are
initialized such that sampling the optimum is impossible.
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9.5 Runtime Analyses

In contrast to convergence results as described in Section 9.4, the focus of
runtime analyses is the number of iterations until an algorithm samples a solu-
tion of sufficient quality for the first time, usually an optimum. Normally, the
analyses consider both the expected number of iterations and concentration
results.

In this section, we first give an in-depth overview of the history of runtime
analyses on EDAs, ending with a very detailed discussion of the most recent
results. These results are summarized in Table 9.1. Then, we consider noisy
scenarios, i.e., scenarios where the fitness function is perturbed by some kind
of noise, usually as an additive term to the original fitness. In this setting,
every time a solution is evaluated, the noise is drawn again and independently
of any prior noise, and the goal is to optimize the underlying unperturbed
function despite the noise.

9.5.1 Early Results

We start with a discussion of the first publications addressing runtime aspects
of EDAs, which date back to the early 2000s. Although some of the runtime
bounds proven in these publications can now be improved with state-of-the-
art methods, the analyses already point out typical scenarios and challenges
in the runtime behavior of EDAs, in particular regarding genetic drift. Also
they give insights into fundamental properties of EDAs that distinguish them
from other nature-inspired algorithms such as EAs.

9.5.1.1 First Steps Towards Runtime Analyses

As pointed out above, rigorous runtime analyes must avoid the infinite-
population model and derive statements for populations of finite size. How-
ever, the finiteness comes at a cost: if very small populations are used, there is
a high risk of genetic drift and premature convergence in suboptimal regions
of the search space. In a series of publications, Shapiro [57–59] addressed
sources of genetic drift in EDAs, quantified its impact, and proposed mea-
sures to avoid it. In [58], he pointed out that the probability distribution
evolved by an EDA may converge to suboptimal points and, using a dynam-
ical systems approach, determined

√
n as the minimum population size for

UMDA to avoid genetic drift on the OneMax problem, and even exponen-
tial sizes for Needle. Later, Sudholt and Witt [63] and Krejca and Witt [36]
gave rigorous proofs of the fact that genetic drift can happen up to popula-
tion sizes of O(

√
n logn) in cGA and UMDA. Alternatively, for PBIL, the

learning rate ρ may be reduced to counteract genetic drift. Using a dynami-
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cal systems approach, Shapiro [57] derived the result that the learning rate
should be O(1/

√
n) and O(2−n) to avoid genetic drift on the OneMax and

Needle functions, respectively.
In [59], Shapiro also gave a rigorous theorem on the speed at which genetic

drift moves the probabilistic model belonging to a specific class of EDAs
called SML-EDA (including UMDA) into suboptimal regions. Also, a rigorous
bound Ω(2n/2/

√
n) was determined for the population size required to make

genetic drift on Needle unlikely.
Finally, in [58, p. 115], early conjectures about the runtime of UMDA ap-

peared. More precisely, the paper reported an experimental determination of
a runtime of Θ(λ

√
n) for UMDA on OneMax (given that λ is asymptoti-

cally larger than
√
n). This bound was rigorously proven in [66]. However, it

should be noted that Shapiro’s UMDA slightly differs from the standard.

9.5.1.2 First Runtime Analyses

The first rigorous runtime analysis of an EDA was given by Droste [17].
He considered cGA without borders and proved the general lower bound
Ω(K

√
n) for its expected runtime on all linear functions. Using classical drift

analysis and Chernoff bounds, Droste also proved the bound O(K
√
n) for

OneMax, using K =Ω(n1/2+ε), i.e., slightly above the threshold stated by
Shapiro [58]. This bound becomes O(n1+ε) for the smallest K covered by his
analysis. Finally, Droste argued that BinVal is more difficult to optimize
than OneMax and asymptotically most difficult within the class of linear
functions by proving that cGA without borders takes time O(Kn) with at
least constant probability on this function if K = Ω(n1+ε), and expected
time at least Ω(Kn). The upper bound is O(n2+ε) for the smallest possible
K allowed. However, the lower bound Ω(Kn) does not come with a minimum
value for K.

The results for OneMax were recently refined by Sudholt and Witt [63],
using more advanced tools. In particular, all of Droste’s upper bounds ap-
ply Chernoff bounds to show that genetic drift is unlikely; more precisely,
he showed that the probability of a frequency dropping below 1/3 during
the optimization is superpolynomially small. Using a negative drift theorem,
the upper bound was improved from O(n1+ε) to O(n logn) in [63]. See Sec-
tion 9.5.2.1 for more details. Regarding BinVal, a very recent analysis by
Witt [67] proved Droste’s conjecture that the function is harder to optimize
than OneMax, since the expected optimization time of cGA on BinVal is
Ω(n2) no matter how K is chosen. The idea of the analysis is to show, for
all K = o(n), that genetic drift will lock many frequencies to 0 before the
optimum can be found.

The results discussed in the previous two paragraphs are summarized in
the following theorem.
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Theorem 9.5.1 ([17, 67]). Choosing K = n1+ε for some constant ε > 0,
the runtime of cGA without borders on BinVal is bounded by O(Kn) with
probability Ω(1). Moreover, the expected runtime of cGA with and without
borders on BinVal is bounded from below by Ω(min{n2,Kn}).

In the years following Droste’s seminal work, runtime analysis focused
more on UMDA and variants thereof. The first runtime analysis of a UMDA
variant was given by Chen et al [5], who studied the LeadingOnes function
and a modification called TrapLeadingOnes. An expected optimization
time of O(λn) of UMDA on LeadingOnes was derived under the so-called
no-random-error assumption, which is similar to an infinite-population model
and basically eliminates genetic drift. These authors also showed that Trap-
LeadingOnes, which starts out in the same way as LeadingOnes but re-
quires an almost complete change of the probabilistic model for the EDA to
reach the global optimum, yields expected exponential optimization time for
UMDA, using 2-tournament selection instead of the usual truncation selec-
tion. Moreover, a generalization of UMDA similar to PBIL was considered,
but it turned out that the strongest bounds apply for UMDA.

Strictly speaking, Chen et al [5] only derived runtime bounds for a model
of UMDA. In subsequent work [7], they therefore supplemented these with
a rigorous proof of the fact that UMDA, when appropriate borders for the
frequencies are used, with high probability requires superpolynomial time
to optimize TrapLeadingOnes. Similarly to Droste’s early work, Chernoff
bounds were applied to show that the frequencies do not deviate much from
their expected behavior, i.e., do not exhibit strong genetic drift. For the
Chernoff bounds to be sufficiently strong, unusually large population sizes
such as λ=Ω(n2+ε) are required.

This approach was successfully picked up and extended in a more compre-
hensive journal publication [8]. Using λ = Ω(n2+ε) again, the authors of [8]
showed that UMDA without borders optimizes LeadingOnes in time O(λn)
with overwhelming probability. Furthermore, the utility of appropriately set
frequency borders was shown on a modification called BVLO, where the
fitness landscape requires the frequency of the last bit to be changed from
one extremal value to the other one. Here, UMDA with borders has expected
polynomial runtime, whereas UMDA without borders will with overwhelming
probability be stuck at nonoptimal solutions.

Finally, using similar proof techniques, in particular Chernoff bounds,
Chen et al [6] presented a constructed example function called Substring,
on which simple EDAs and simple evolutionary algorithms behave fundamen-
tally differently. More precisely, it was proven that the (1+1) EA with any
mutation probability c/n, where c > 0 is constant, with overwhelming prob-
ability needs exponential time to find the optimum of the function, while
UMDA using λ= Ω(n2+ε) and λ/µ= O(1) finds with very high probability
the optimum in time O(λn). Specifically, it is beneficial for the optimization
that UMDA can sample search points with high variances as long as all fre-
quencies are close to 1/2. The (1+1) EA always samples with low variance in
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the vicinity of the best-so-far solution, which is detrimental with the specific
example function.

9.5.2 Recent Advances

Only very few runtime analyses of EDAs were published in the years 2010–
2014, most notably [50, 68]. Starting from 2015, this research area gained
significant momentum again (see, e.g., [10, 20, 21]). We now discuss the lat-
est results in runtime analysis of EDAs. They mostly consider the standard
benchmark function for EAs: OneMax. Using and advancing the toolbox for
the analysis, matching upper and lower bounds have been proven, giving a
tight runtime result that allows a direct comparison of the performance of
EDAs with other nature-inspired algorithms.

9.5.2.1 Upper Bounds for OneMax

Interestingly, early runtime analyses of EDAs focused more on variants of
LeadingOnes instead of OneMax, which is the most commonly consid-
ered example function in evolutionary computation. In fact, the first runtime
analysis of UMDA on OneMax was not published until 2015 [10]. A pos-
sible explanation is that the hierarchical structure of LeadingOnes makes
it more accessible to a runtime analysis than OneMax: if the best-so-far
LeadingOnes value is k and the frequencies of the first k bits all have
attained their maximum value, it is likely to sample only 1s there, which
is typically needed for an improvement of the best function value seen. In
contrast, there is no direct relationship between the OneMax value and fre-
quencies at specific bits. Also, modern runtime analyses of UMDA [10, 38]
reveal that a proof of runtime bounds for LeadingOnes can be relatively
short and simple once the case of OneMax has been understood.

Results for cGA and MMASib

Before we describe the advances made in the runtime analysis of UMDA in
more detail, we discuss the state of the art for the simpler EDAs MMASib and
cGA. As mentioned above, Droste [17] showed that cGA typically optimizes
OneMax in time O(n1+ε), using K = n1/2+ε. His variant of cGA does not
use any borders on the frequencies, which is why he used a comparatively
large K to make convergence of a frequency to 0 by genetic drift sufficiently
unlikely. More recent analyses of cGA and also other EDAs such as UMDA
mostly impose borders {1/n,1− 1/n} on the frequencies, as mentioned in
Section 9.2.2.1. Using a more careful analysis of the stochastic behavior of
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frequencies, the classical O(n logn) runtime can be obtained, as shown in the
following summary of theorems.

Theorem 9.5.2 ([50, 63]). If ρ ≤ 1/(cn1/2 logn) for a sufficiently large
constant c > 0 and ρ ≥ 1/poly(n), then MMASib (with borders) optimizes
OneMax in expected time O(

√
n/ρ). For ρ = 1/(cn1/2 logn), the runtime

bound is O(n logn).
The expected optimization time of cGA (with borders) on OneMax with

K ≥ c
√
n logn for a sufficiently large c > 0 and K =poly(n) is O(

√
nK). This

is O(n logn) for K = c
√
n logn.

Theorem 9.5.2 makes statements for two slightly different EDAs but the
proofs of these statements follow roughly the same structure. Crucially, the
effect of genetic drift is bounded: in the given time bound, for example,
O(
√
nK) generations, the expected number of frequencies that drop be-

low 1/3 is proven to be polynomially small, for example, O(1/n2). Such a
statement is typically obtained from a negative drift theorem. Next, the drift
of frequencies towards 1 induced by selection (the so-called bias) is analyzed.
It turns out that this bias is at least proportional to the sampling variance
of the EDA: roughly, each frequency pppi increases by an expected amount
O
(
pppi(1−pppi)/(K

√∑n
j=1 pppj)

)
in each generation. An analysis of this variable

drift, using the variable drift theorem, then gives the desired runtime bound.
(As variable drift analysis was not available to Neumann et al [50], a unified
and simpler proof of the statement for MMASib was given in [63].) In the
unlikely event that a frequency has reached the wrong border 1/n owing to
genetic drift, an event of probability Ω(1/n) is sufficient to lift the frequency
again, which is absorbed into the total runtime owing to the low expected
number of such bad frequencies.

First Phase Transition Around
√
n logn

Theorem 9.5.2 requires K ≥ c
√
n logn. Recent research reveals that cGA

in fact exhibits a phase transition in the regime Θ(
√
n logn), similarly to

MMASib. If K ≤ c′
√
n logn for a sufficiently small constant c′ > 0, then ge-

netic drift will outweigh the drift due to selection such that a significant
number of frequencies will drop to the lower border. In this case, classical
arguments about coupon collector processes show that the runtime must be
at least Ω(n logn); see more arguments below, in Section 9.5.2.2, on lower
bounds. There are no upper bounds on the runtime of cGA and MMASib
in the regime corresponding to K ≤ c′

√
n logn, but it is conjectured that

bounds resembling the existing ones for UMDA (see Theorems 9.5.3 and 9.5.4
below) can be obtained if K ∈ [c1 logn,c2

√
n logn] for appropriate constants

c1, c2 > 0.
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Results for UMDA

We complete this discussion of upper bounds with a review of recent advance-
ments for UMDA. As mentioned, Dang and Lehre [10] were the first to prove
upper bounds for UMDA on OneMax. If λ ≥ c logn for a sufficiently large
constant c > 0 and λ≥ 13eµ/(1− c′) for an arbitrarily small constant c′ > 0,
then the expected runtime of UMDA on OneMax is O(nλ logλ). Hence,
plugging in the smallest value of λ allowed in the statement, the bound is
O(n logn log logn), i.e., slightly above the O(n logn) bound discussed above
with respect to cGA and MMASib.

Dang and Lehre used a powerful proof technique to obtain their bound.
Interestingly, the so-called level-based theorem [9], which was originally de-
veloped for the analysis of population-based evolutionary algorithms, can be
applied in this context. It was shown how the truncation selection of the
best µ out of λ individuals leads to a reasonable chance of improving the
best-so-far OneMax value and allows one to satisfy the other conditions
of the level-based theorem with certain parameter settings. As a side-result,
using the same proof technique, the bound O(nλ+n2) with respect to the
LeadingOnes function was also obtained. Somewhat unusually, these proofs
mostly consider populations instead of analyzing the values of single frequen-
cies. For this to work, it is necessary that a frequency vector can be translated
more or less unambiguously back into the population from which it was com-
puted. This is possible in UMDA but not even in the slight generalization
PBIL, where a frequency vector depends on the history of previous popula-
tions.

Obviously, the proof of the above-mentioned O(n logn log logn) bound im-
mediately raised the question of whether this was the best possible runtime
of UMDA on OneMax. Recently, two independent improvements of the
bound were presented. The first one, due to Lehre and Nguyen [38], builds
on a refinement of the level-based analysis, carefully using properties of the
Poisson–binomial distribution, and is summarized by the following theorem.
We emphasize that UMDA always refers to the algorithm with borders 1/n
and 1− 1/n on the frequencies, i.e., Algorithm 9.2 extended by a step that
narrows all frequencies down to the interval [1/n,1−1/n].

Theorem 9.5.3 ([38]). For some constant a > 0 and any constant c ∈ (0,1),
UMDA (with borders) with a parent population size a lnn ≤ µ ≤

√
n(1− c)

and an offspring population size λ≥ (13e)µ/(1−c) has expected optimization
time O(nλ) on OneMax.

Hence, Theorem 9.5.3 proves that the runtime of UMDA is O(n logn)
for an appropriate choice of the parameters. This is tight owing to the
recent lower bound Ω(n logn) discussed below in Section 9.5.2.2. Interest-
ingly, the set of appropriate choices for the O(n logn) behavior is confined
to λ = Θ(logn), which corresponds to a parameter choice below the above-
mentioned phase transition, i.e., a choice where the algorithm exhibits severe
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genetic drift. Also, the theorem includes a limit on µ, which is exactly in the
regime of the phase transition. For greater values of µ and λ, Witt [66] in-
dependently derived runtime bounds (see the following theorem); this result
also includes the regime covered by Lehre and Nguyen [38], albeit with an
assumption about the ratio λ/µ.

Theorem 9.5.4 ([66]).

(a) Let λ = (1+β)µ for an arbitrary constant β > 0 and let µ ≥ c
√
n logn

for some sufficiently large constant c > 0. Then the optimization time
of UMDA, both with and without borders, on OneMax is bounded from
above by O(λ

√
n) with probability Ω(1). For UMDA with borders, the

expected optimization time is also bounded in this way.
(b) Let λ = (1+β)µ for an arbitrary constant β > 0 and let µ ≥ c logn for

a sufficiently large constant c > 0 as well as µ= o(n). Then the expected
optimization time of UMDA with borders on OneMax is O(λn). For
UMDA without borders, it is infinite with high probability if µ< c′

√
n logn

for a sufficiently small constant c′ > 0.

The two statements of Theorem 9.5.4 reflect the above-mentioned phase
transition. For µ≥ c

√
n logn, as required in the first statement, the behavior

is similar to that underlying Theorem 9.5.2 with respect to cGA and MMASib.
Frequencies move smoothly towards the upper border, and it is unlikely that
frequencies will exhibit genetic drift towards smaller values than 1/3. Hence,
it is unlikely as well that UMDA without borders will get stuck with fre-
quencies at 0. The runtime O(n logn) is obtained for λ = c

√
n logn for an

appropriately large constant c > 0.
The second statement of Theorem 9.5.4 applies to a case where genetic drift

is likely, but frequencies that have hit the lower border 1/n have a reasonable
chance to recover in the given time span, which is O(nλ) instead of only
O(
√
nλ) now. In fact, the analysis carefully considers the drift of frequencies

from the lower towards the upper border and analyzes the probability that a
frequency leaves its upper border again. To do so, a very careful analysis of
the bias introduced by selecting the best µ individuals is required. Without
such selection, a single frequency would correspond to a so-called martingale,
but, owing to selection, there is a small drift upwards, similarly to what we
described with respect to cGA above. Hence, the proof of Theorem 9.5.4
also gives insights into the stochastic process described by single frequencies.
It is more involved than that for cGA since UMDA can change frequencies
globally instead of only by ±1/K. The runtime O(n logn) can be obtained
again, this time for λ= c

√
n logn.

It is worth pointing out that Theorems 9.5.3 and 9.5.4 make nonoverlap-
ping statements. Theorem 9.5.4 also applies to λ above the phase transition
and describes a transition of O(nλ) to O(n

√
λ) in the runtime. However, it

crucially assumes λ = (1+Θ(1))µ in both statements, an assumption that
was also useful in earlier analyses of EDAs [59] but restricts the generality of
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the statements. In contrast, Theorem 9.5.3 applies to settings such as µ= 1,
λ = c logn and shows the O(n logn) bound also for this somewhat extreme
choice of parameters.

We conclude this discussion of upper bounds by summarizing a recent
study by Wu et al [69], who presented the first runtime analysis of PBIL
(called the cross-entropy (CE) method in their paper). Using µ = n1+ε logn
for some constant ε > 0 and λ= ω(µ), they obtained the result that the run-
time of PBIL on OneMax is O(λn1/2+ε/3/ρ) with overwhelming probability.
Hence, if ρ=Ω(1), including the special case ρ= 1, where PBIL collapses to
UMDA, a runtime bound of O(n3/2+(4/3)ε logn) holds, i.e., slightly above
n3/2. In light of the detailed analyses of UMDA presented above, one may
conjecture that this bound is not tight even if ρ< 1 is used, i.e., PBIL actually
uses its learning approach to include solutions from several previous gener-
ations in the probabilistic model. In addition to that, a bound of the type
O(n2+ε) on LeadingOnes is obtained if ρ=Ω(1), µ=nε/2 and λ=Ω(n1+ε).
Technically, Wu et al [69] used concentration bounds such as Chernoff bounds
to bound the effect of genetic drift, as well as anti-concentration results, in
particular for the Poisson–binomial distribution, to obtain their statements.
All bounds hold with high probability only, since PBIL is formulated without
borders. Probably, using a more detailed analysis of genetic drift and apply-
ing modern drift theorems, the bound for LeadingOnes can be improved
to an expected O(n2) runtime for all ρ = Ω(1), provided that the classical
borders {1/n,1−1/n} are used.

9.5.2.2 Lower Bounds for OneMax

Deriving lower bounds on the runtime of EDAs is often more challenging
than deriving upper bounds. Roughly, most existing approaches show that
the probabilistic model is not sufficiently adjusted towards the set of optimal
solutions within a given time span. A relatively straightforward approach re-
lates the runtime to the strength of updates in the algorithm. With respect
to simple univariate algorithms such as cGA and UMDA, one can show that
frequencies do not increase by more than 1/K (with probability 1) or O(1/µ)
(in expectation, assuming λ= (1+Θ(1))µ) in a step. This naturally leads to
a lower bound of Ω(K) or Ω(µ), respectively, on the runtime on OneMax.
However, the bound is weak, as it pessimistically assumes that each genera-
tion changes frequencies in the right direction. More detailed analyses reveal
that cGA, in the early phases of the optimization process, has only a prob-
ability of O(1/

√
n) of performing a step where the two offspring differ in

fewer than two bits, i.e., the probability that the outcome of a certain bit
is relevant for selection is then only O(1/

√
n) [63]. Similar results can be

obtained for UMDA [36]. Thus, each bit only moves by up to an expected
amount of O(1/(K

√
n)) or O(1/(µ

√
n)), respectively, per generation. Then

a drift analysis translates this into the lower bounds Ω(K
√
n) and Ω(µ

√
n)
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that appear in the following theorems. The first bound was already known
for cGA without borders from Droste’s work [17].

Theorem 9.5.5 ([63]). The optimization time of cGA (with borders) with
K ≤ poly(n) on OneMax is Ω(K

√
n+n logn) with high probability and in

expectation.

Theorem 9.5.6 ([36]). Let λ = (1+β)µ for some constant β > 0 and λ ≤
poly(n). Then the expected optimization time of UMDA on OneMax is
Ω(µ
√
n+n logn) (both with and without borders).

Sudholt and Witt [63] also stated Theorem 9.5.5 in an analogous fashion
for MMASib, with the parameter K replaced by 1/ρ. As its working principle
is rather similar to that of cGA, we do not discuss MMASib further in this
section.

The lower bounds Ω(K
√
n) and Ω(µ

√
n) we have illustrated so far are

very weak if K and µ, respectively, are small. In fact, they can be even worse
than the bounds Ω(n/logn) that follow from black-box complexity [18]. Until
2016, it was not clear whether the runtime of these simple EDAs was also
bounded by Ω(n logn) or whether they could possibly optimize OneMax in
o(n logn) time and hence be faster than simple evolutionary algorithms. A
negative answer was given by the two above theorems, both of which also
contain an Ω(n logn) term.

The proof of the bound Ω(n logn) is technically demanding. It relies on
the following strategy:
(a) Show that with high probability several frequencies, for example

√
n of

them, reach the lower border before the optimum is sampled. This re-
quires a detailed analysis of the stochastic behavior of several dependent,
single frequencies instead of considering merely the sum Pt :=

∑n
i=1 ppp

(t)
i

of the frequencies, whose stochastic behavior is already quite well under-
stood and can relatively easily be analyzed by drift analysis, as sketched
in the paragraph following Theorem 9.5.2. In fact, in the detailed analysis
of single frequencies, it is even required to show that some frequencies
walk to the lower border while most other frequencies do not move up
too far to the upper border; otherwise one cannot rule out with suffi-
ciently high probability the possibility that the optimum is sampled in
the meantime.

(b) Once polynomially many frequencies have reached the lower border 1/n,
a so-called coupon collector effect arises. A relatively straighforward gen-
eralization of the coupon collector theorem [44, 45] to the case where still
polynomially many bits have to be corrected, where a correction is made
with probability at most 1/n, yields the following statement: Assume
cGA reaches a situation where at least Ω(nε) frequencies attain the lower
border 1/n. Then, with high probability and in expectation, the remain-
ing optimization time is Ω(n logn). The underlying modification of the
coupon collector theorem may be called folklore in probability theory,
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but is interesting for its own sake: collecting the last nε coupons takes
asymptotically the same time as collecting them all.
A major effort is required to flesh out the behavior sketched in item (a)

above. Roughly speaking, one exploits the fact that frequencies behave simi-
larly to a martingale and can walk to the lower border owing to genetic drift.
However, the effect of genetic drift is dependent on many factors. When
all frequencies have reached a border, genetic drift is much less pronounced
than in situations where many frequencies are close to the median value 1/2
(which is initially the case). To handle this dependency on time, it has to be
shown that some frequencies move unusually fast, which means faster than
the expected time, to the lower border while the majority of the frequencies
is still at a medium value. More precisely, the proofs approximate the hitting
time of the lower border by a normally distributed random variable, which is
not sharply concentrated around the mean and exhibits exactly the desired
reasonable probability of deviating from the mean. Additionally, the drift
analysis features a novel use of potential functions that smooth out the vari-
ances of the movements of frequencies, which would be place-dependent and
not applicable to the approximation by a normal distribution otherwise.

Second Phase Transition Around logn

Not much research has been done on very small values of the population
size λ and K in UMDA and cGA, corresponding to very large ρ in MMASib.
Neumann et al [50] gave an exponential bound on the runtime of MMASib
if ρ≥ c/ logn, indicating a second phase transition in behavior around logn.
Roughly speaking, if the set of possible values for a frequency becomes less
than logn, then the scale is too coarse for the probabilistic model to adjust
slowly towards the set of optimal solutions. For example, even after a fre-
quency has reached its maximum 1− 1/n once, an unlucky step may lead
to a drastic decline in frequency which, on average, cannot be recovered in
polynomial time. It is conjectured that cGA and UMDA will not optimize
OneMax in polynomial time either if K ≤ c logn or if λ≤ c logn, respectively,
for a small constant c > 0.

Major Open Problems

Even if we ignore the values below logn corresponding to the second phase
transition just mentioned, the lower bounds given in Theorems 9.5.5 and
9.5.6 still do not give a complete picture of the runtime of the algorithms on
OneMax. For example, for µ in the medium regime between the phase tran-
sitions, i.e., when µ is both ω(logn) and o(

√
n logn), it is not clear whether a

lower bound of the kind Ω(µn) (which would match the upper bound given
above in Theorem 9.5.4) or any other runtime ω(n logn) holds. It is an open
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problem to prove tight bounds on the runtime of simple EDAs in this medium
regime. As usual, we expect analyses to be harder for UMDA than for cGA,
as the former algorithm can change frequencies in a global way, while the
latter only changes them locally by ±1/K.

Some progress on the way to tight bounds has been made very recently
by Lengler et al. [42], who proved a lower bound of Ω(K1/3n+n logn) on
the expected optimization time of the cGA if K = O(n1/2/(logn log logn)).
Hence, the expected optimization time will be Ω(n7/6/(logn log logn)) for
K =O(n1/2/(logn log logn)), while it is bounded from above by O(n logn) for
K = cn1/2 if c is chosen as a sufficiently large constant. Hence, the runtime
seems to depend in a multimodal way on K. Nevertheless, this still remains
a conjecture, since there are no upper bounds on the runtime of the cGA for
K = o(n1/2); there are only upper bounds for the UMDA if λ= o(n1/2) that
support this conjecture.

A summary of proven upper and conjectured bounds on the runtime of
UMDA on OneMax is displayed in Fig. 9.2. We believe that similar results
hold for cGA and MMASib, with λ replaced by K and 1/ρ, respectively.

λ0 logn √
n logn

Runtime
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)

O(λ
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(proven) O(λ
√
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(proven)

Fig. 9.2 Picture of runtime bounds with UMDA on OneMax, assuming λ = (1 +
Θ(1))µ.

We have carried out experiments for UMDA on OneMax to gain some
empirical insights into the relationship between λ and the runtime. The algo-
rithm was implemented in the C programming language using the WELL512a
random number generator. The problem size was set to n = 2000, λ was in-
creased from 14 to 350 in steps of size 2, µ was set to λ/2, and, owing to the
high variance of the runs, especially for small λ, an average was taken over
3000 runs for every setting of λ. The left-hand side of Fig. 9.3 demonstrates
that the runtime in fact shows a multimodal dependence on λ. Starting from
very high values, it has a minimum at λ≈ 20 and then increases again up to
λ ≈ 70. Thereafter it falls again up to λ ≈ 280, and finally increases rather
steeply for the rest of the range. The right-hand side also illustrates that the
number of times the lower border is hit seems to decrease exponentially with
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λ. The phase transition where the behavior of frequencies turns from chaotic
into stable is empirically located somewhere between 250 and 300.
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Fig. 9.3 Left-hand side: empirical runtime of UMDA on OneMax, right-hand side:
number of hits of lower border; for n= 2000, λ∈ {14,16, . . . ,350}, µ= λ/2, and averaged
over 3000 runs

9.5.2.3 New Advances in Tackling Genetic Drift

Genetic drift slows down optimization because it basically adds a random
signal to the objective function. One reason why this impacts the algorithms
is their myopic behavior: they have to perform an update to their frequencies
based only on information from the current iteration. Especially if this sample
size is small, such as for cGA or MMASib, the amount of information gained
during a single iteration may be too small to perform a sensible decision with
respect to the update.

In order to counteract such ill-informed updates, Doerr and Krejca [12]
proposed a new EDA that tries to reduce the number of incorrect frequency
updates by relying not only on information from a single iteration but also
information from multiple previous iterations. Their significance-based cGA
(sig-cGA) stores a frequency vector, like an n-Bernoulli-λ-EDA, but addition-
ally also stores a history Hi for each bit position i. In each iteration, only
two offspring are sampled, and the bits of the better individual are saved in
the respective histories. Then the algorithm checks, for each history, whether
a significance occurs, that is, whether the number of 1s or 0s saved is drasti-
cally more than expected when assuming that each 1 occurs with probability
pppi. The level of confidence can be regulated by a parameter called ε. If a
significance of 1s is detected at a position, the respective frequency is set to
1−1/n; if a significance of 0s is detected, the frequency is set to 1/n; other-
wise, the frequency is left unchanged. Overall, the algorithm uses only three



434 Martin S. Krejca and Carsten Witt

different frequency values: 1−1/n, 1/2, and 1/n, where 1/2 is used only as a
starting value – if a frequency once takes a value different from 1/2, it never
returns.

This significance-based approach allows sig-cGA, at the beginning of an
optimization, to keep frequencies at 1/2 until there is statistical proof that
another value would be more beneficial. Thus, it can be thought of as an algo-
rithm that is both balanced and stable.4 The usefulness of this approach was
shown by proving that this algorithm optimizes OneMax and LeadingOnes
both in time O(n logn) in expectation and with high probability, which has
not been proven for any other EA or EDA before [12].

9.5.3 Noisy Settings

In real-world optimization, the evaluation of a solution often involves a degree
of uncertainty due to inaccuracies in the evaluation process. We call this
uncertainty in the fitness noise. Since EDAs, as general-purpose heuristics,
build on this inaccurate information, it is interesting to analyze how they
perform when faced with noise.

Most EDA scenarios with noise consider ACO variants on single-
destination shortest-path problems, mostly not in the context of EDAs at
all [13, 19, 33, 62]. However, some results have analyzed pseudo-Boolean op-
timization [23, 24].

9.5.3.1 Combinatorial Optimization

Horoba and Sudholt [33] considered an acyclic weighted graph and were inter-
ested in finding a shortest path from each vertex to a single given destination.
The noise was modeled by drawing a random nonnegative value η per edge
weight w, possibly dependent on the edge, and its new weight w′ was de-
termined by w′ = w(1+ η). Thus, depending on the distribution of η, large
weights increase more than small weights. The algorithm of interest was an
ACO variant. This constructs paths from each node to the destination, using
the perturbed weights and choosing an edge with a probability related to
its pheromone value with respect to the pheromones of all competing edges.
The algorithm compares each constructed path with the currently best-so-far
solution per node without reevaluation. That means that the best-so-far so-
lutions, as well as their possibly perturbed weights, are stored and used for
lookup.

These authors provided instances in which the algorithm does not find a
desired approximation within polynomial time with high probability. This is
4 Since sig-cGA is not an n-Bernoulli-λ-EDA (owing to the histories that store data
from multiple iterations), the actual definitions of balanced and stable do not apply.
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due to the best-so-far solution not being reevaluated. Thus, if a nonoptimal
path is evaluated to be very good by chance, it will get reinforced many times,
making it more unlikely that the algorithm will sample other paths that, addi-
tionally, have to be evaluated even better. However, these authors also proved
that optimization will succeed if the noise follows the same distribution for
every edge.

Sudholt and Thyssen [62] extended the results of Horoba and Sudholt [33]
by considering a larger range of noise distributions, showing how long it takes
to approximate optimal solutions or even when optimization succeeds.

Doerr et al [13] considered a similar scenario to the one analyzed by Horoba
and Sudholt [33], the difference being that the weights of the graphs were
purely random, i.e., there was no groundtruth to rely on. This setting makes
it harder to define what an optimal solution actually is.

The authors of [13] first considered a multigraph consisting of two nodes
with multiple edges between those nodes. They called an edge preferred if
its probability of being shorter than any other edge from the same vertex
was at least 1/2+ δ, where δ > 0 is a constant, and they stated how this
scenario relates to armed-bandit settings. Using the same ACO algorithm
as Horoba and Sudholt [33] but reevaluating the best-so-far solution each
iteration, they gave an upper bound on the expected time until the pheromone
on the preferred edge was maximal. They then provided examples of weight
distributions that result in an edge being preferred. The paper concludes with
a more general graph setting that assumes that there exists an inductively
defined set of edges S, starting at a given node, such that each edge that
extends paths using edges from S is preferred. The authors of the paper gave
an upper bound, in the case where S is a tree, on the expected time until the
ACO variant considered maximizes the pheromones on all of the edges in S.

Feldmann and Kötzing [19] analyzed the same setting as Doerr et al [13]
but investigated another ACO variant: MMAS-fp. This algorithm does not
store best-so-far solutions but always makes an update with respect to the
current samples; however, the update is done with respect to each sample’s
fitness. Thus, good solutions yield larger changes in the update than bad
solutions. The authors of [19] explained the difference in this approach with
respect to those of Horoba and Sudholt [33] and Doerr et al [13] by saying
that MMAS-fp optimizes paths that are shortest in expectation. They proved
this claim by providing upper bounds on the expected number of iterations
until MMAS-fp finds expected shortest paths in graphs where, for each node,
the difference between the expected lengths of different outgoing edges can
be lower-bounded by a value δ > 0, which influences the runtime.

9.5.3.2 Pseudo-Boolean Optimization

Friedrich et al [23] (conference version [21]) also considered MMAS-fp, just
like Feldmann and Kötzing [19], but in the setting of optimizing linear pseudo-
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Boolean functions. The noise was mostly modeled as Gaussian additive pos-
terior noise, i.e., when evaluating the fitness of an individual, a normally
distributed random variable is added to the fitness, every time anew and
independently. Friedrich et al [23] showed that MMAS-fp scales gracefully
in this scenario. That means that, for every polynomially bounded variance
of the noise, there is a configuration of MMAS-fp such that the runtime is
polynomially bounded as well. Since the runtime results hold with high prob-
ability, by performing an uninformed binary search using restarts, the correct
variance of a problem with Gaussian noise can be guessed correctly within
polynomial time. Thus, MMAS-fp can be modified such that the runtime is,
with high probability, polynomial if the variance of the noise is.

Additionally, the authors of [23] extended their results to posterior noise
other than Gaussian. Further, they considered a prior noise model where,
before evaluating the fitness of an individual, a uniformly randomly chosen
bit is flipped. In both of these settings, they proved that the algorithm scales
gracefully.

Friedrich et al [24] (conference version [20]) also considered cGA under the
Gaussian additive posterior noise model. As for MMAS-fp, they proved that
the algorithm scales gracefully. Further, they showed that the (µ+1) EA,
a commonly analyzed EA, does not scale gracefully. Both of the results of
Friedrich et al [23, 24] suggest that EDAs are inherently more tolerant to noise
than standard EAs, as the EDAs did not need to be modified to cope with
noise, except for choosing correct parameters. These authors also compared
the restart version of cGA with an approach that uses resampling in order to
basically remove the noise in the fitness, as described by Akimoto et al [2].
Since the number of resamples is closely tied to the noise’s variance, the cGA
variant using restarts instead of resampling emerges victorious.

9.6 Conclusions and Open Problems

We have given an overview of the state of the art in the theory of discrete
EDAs, where the most recent research surpasses convergence analyses and
instead deals with the runtime of especially simple univariate EDAs such as
cGA, UMDA, and PBIL. In this domain, increasingly precise results have
been obtained with respect to well-established benchmark problems such as
OneMax, but, as we have emphasized in this chapter, there are several open
problems even for this simple problem. In particular, a complete picture of
the runtime of the simple EDAs depending on their parameters is still miss-
ing. We think that further results for benchmark functions will give insight
into the right choice of specific EDAs, including the choice of parameters such
as the population size and the borders on the frequencies depending on the
problem characteristics. We also expect that this research will lead to runtime
results and advice on the choice of algorithms and parameters with respect
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to more practically relevant combinatorial optimization problems. Here in
particular, noisy settings or, more generally, optimization under uncertainty
seem to represent scenarios where EDAs can outperform classical evolution-
ary algorithms. Also, the combinatorial structure may favor the application
of multivariate EDAs, a type of EDA for which almost no theoretical results
exist yet.
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