
Chapter 4
Parameterized Complexity Analysis of
Randomized Search Heuristics

Frank Neumann and Andrew M. Sutton

Abstract This chapter compiles a number of results that apply the theory of
parameterized algorithmics to the running-time analysis of randomized search
heuristics such as evolutionary algorithms. The parameterized approach ar-
ticulates the running time of algorithms solving combinatorial problems in
finer detail than traditional approaches from classical complexity theory. We
outline the main results and proof techniques for a collection of randomized
search heuristics tasked to solve NP-hard combinatorial optimization prob-
lems such as finding a minimum vertex cover in a graph, finding a maximum
leaf spanning tree in a graph, and the traveling salesperson problem.

4.1 Introduction

Randomized search heuristics (RSHs) are a class of general-purpose algo-
rithms that are often deployed to tackle hard combinatorial optimization
problems that arise in practice. Instances of practical, real-world problems
are usually structured or restricted in some way, and it is typically assumed
that RSH techniques are successful when the underlying strategy is able to
exploit the structural properties of the resulting search space.

The mathematical analysis of the running time of randomized search
heuristics on discrete optimization problems has advanced in the last decade.
For a wide array of these techniques, rigorous and precise asymptotic bounds
on the performance as a function of problem size are now available. However,

Frank Neumann
Optimisation and Logistics Group, School of Computer Science, The University of Ade-
laide, Adelaide, Australia e-mail: frank.neumann@adelaide.edu.au
Andrew M. Sutton
Department of Computer Science, University of Minnesota Duluth, Duluth, MN, USA
e-mail: amsutton@d.umn.edu

213
B. Doerr, F. Neumann (eds.), Theory of Evolutionary Computation,
Natural Computing Series, https://doi.org/10.1007/978-3-030-29414-4_4

© Springer Nature Switzerland AG 2020

mailto:frank.neumann@adelaide.edu.au
mailto:amsutton@d.umn.edu
https://doi.org/10.1007/978-3-030-29414-4_4
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29414-4_4&domain=pdf

214 Frank Neumann and Andrew M. Sutton

many of these kinds of results are restricted only to toy problems. While
such analyses are useful for gaining an understanding of the general working
principles underlying RSH techniques, it is often not clear how they might be
interpreted in the context of classically hard problems in computer science.

Unless P = NP, the worst-case runtime of an NP-hard problem cannot
be bounded from above by a polynomial in the input size. This is a rather
restrictive view, and it often tells us nothing about the typical behavior of
algorithms on problems that are likely to be encountered in practice. For ex-
ample, many experimental studies confirm that randomized search heuristics
such as evolutionary algorithms (EAs), ant colony optimization, simulated
annealing, and simple hill-climbing perform well on practical instances of
NP-hard problems. An important research question for RSH techniques ap-
plied to combinatorial optimization is: which features of a given instance
determine its hardness, and how do such parameters influence the runtime?

The field of parameterized complexity offers a refinement of classical time
complexity by analyzing the running time of an algorithm not just as a func-
tion of problem size, but also as a function of further parameters of the
input, for example, solution size, structural restrictions, or quality of approx-
imation [12, 15]. The idea is to capture the essence of what makes a problem
instance hard, and try to isolate this hardness to some structural feature of
the instance or its solution. The inevitable combinatorial explosion in the
runtime is confined to a function of this parameter, with only polynomial de-
pendence on the input size. Even large instances may exhibit a very restricted
structure and can be easier to solve, independent of size. Parameterized com-
plexity is therefore an obvious candidate for systematically studying what
features of a particular problem are hard for RSH techniques. It can also
offer advice on what types of problem might be soluble or insoluble by such
approaches, and guide algorithm design. It should be noted that parameter-
ized analysis can also be applied to study the efficiency of modules of an
evolutionary algorithm. A good example is the hypervolume indicator, which
has been widely applied in the area of evolutionary multiobjective optimiza-
tion. Computing the optimal hypervolume is hard when the dimension grows,
and the computation of the hypervolume has been investigated in [5] from a
parameterized and average-case perspective.

Many hard problems have “easy parts” that can be efficiently solved in
order to effectively shrink a problem to its computationally hard core struc-
ture. This can be done by efficiently reducing the problem instance to a
smaller instance (kernelization), or constraining the search tree to a manage-
able size that is still guaranteed to contain a solution (bounded search tree
method). A slower exact algorithm (even brute-force search) can then be run
on the resulting smaller instance or search space. With little to no hope of a
polynomial-time solution, one instead seeks algorithms that can solve a prob-
lem in time that grows polynomially with the problem size, although perhaps
superpolynomially with respect to some instance parameter. In other words,
if the parameter is fixed to be small, the problem class is tractable, even as

4 Parameterized Complexity Analysis of Randomized Search Heuristics 215

its instances grow large. Such a problem class (and corresponding algorithm)
is called fixed-parameter tractable (FPT). A slightly less desirable situation is
an algorithm that runs in so-called slicewise polynomial time (XP). Here the
runtime is a polynomial in the problem size, but a polynomial whose degree
depends on the parameter.

This kind of demarcation into hard and easy components can also be useful
for the analysis of RSH techniques. At the extreme end of the spectrum are
functions such as Needle, whose black-box complexity establishes that no
RSH could even beat simple random sampling in expectation. At the other
extreme are problems from the OneMax class that are solved efficiently by
even very simple approaches. Likely, practical optimization problems lie some-
where between these two extremes, containing some mixture of components
that can be efficiently exploited by randomized search heuristics and compo-
nents that essentially require random sampling. If the hard core component
that demands random sampling is guaranteed to be small by the nature of
the problem class, then RSH techniques can be a reasonable approach. The
theory of parameterized complexity is therefore useful for isolating the struc-
tural features that can be efficiently exploited by RSH techniques from the
hard “core” of a problem, on which an approach must resort to some kind
of stochastic brute-force search behavior such as random walks, lucky jumps,
or explicit restarts.

It should therefore not come as a surprise that analyzing randomized
search heuristics from the perspective of parameterized complexity can lead
to useful theoretical insights into algorithm design. For example, it has been
shown that the specific choice of search operator can directly influence the
fixed-parameter tractability of an algorithm on certain problems, for example,
tree-preserving mutation on the maximum-leaf spanning tree problem [24] or
standard uniform crossover on the closest-string problem [39].

The aim of this chapter is to discuss a number of results in the field of pa-
rameterized complexity applied to RSH techniques. We begin in Section 4.2
by introducing some background and technical details. In Section 4.3, we con-
sider the maximum-leaf spanning tree problem and show that the use of a mu-
tation operator commonly used for spanning trees reduces the XP runtime to
FPT runtime when compared with standard bit mutations. In Section 4.4, we
discuss multiobjective evolutionary algorithms that quickly focus their search
on a kernel of minimum vertex cover instances, and subsequently perform ran-
dom sampling on that kernel, resulting in FPT runtime. Decomposing the
runtime analysis of an algorithm into a set of instance parameters is useful
in its own right to better understand the components of a problem that influ-
ence the behavior of search heuristics. In Section 4.5, we present results on
the maximization of submodular functions under different constraints. These
results derive the expected time that simple evolutionary algorithms need
to produce approximations as a function of both the problem size and ad-
ditional parameters of the input. In Section 4.6, we describe the analysis of
a standard evolutionary algorithm (EA) applied to the Euclidean traveling

216 Frank Neumann and Andrew M. Sutton

salesperson problem (TSP), which bounds the running time in the context
of a well-known TSP parameterization (the number of points interior to the
convex hull). In this case, it is possible to prove that the performance of
the algorithm is bounded by the number of interior points, although this is
not enough to obtain the desired fixed-parameter tractable runtime. On the
other hand, if the EA is allowed to use some problem-specific information
(namely, the cyclic order of points as they appear on the convex hull), it can
explicitly focus its search on a small subset of states. This dramatic search
space reduction yields fixed-parameter tractable runtimes for algorithms on
parameterized TSP instances. We summarize the chapter in Section 4.7 and
briefly discuss some open research problems.

4.2 Parameterized Complexity Analysis

Extending traditional runtime analysis by parameterization requires conduct-
ing a rigorous runtime analysis of an algorithm on a parameterization of a
problem class. A parameterization of a problem class is a mapping of problem
instances into the set of natural numbers. The running time of the algorithm
is then expressed in terms of both the problem size and this extra parameter.

Let L be a language over a finite alphabet Σ. A parameterization of L is
a mapping κ :Σ∗ → N. The corresponding parameterized problem is the pair
(L,κ). For a string x ∈ Σ∗, let k = κ(x) and n = |x|. An algorithm deciding
x∈L in time bounded by ng(k) is called a slicewise polynomial-time algorithm
(or XP algorithm). Here, g : N→ N is an arbitrary but computable function.
An algorithm deciding x ∈ L in time bounded by g(k) ·nO(1) is called a fixed-
parameter tractable (or FPT) algorithm for the parameterization κ. Both
kinds of algorithms run in polynomial time for fixed k, but an XP algorithm
allows the degree of the polynomial to depend on the parameter, while the
degree of the polynomial for the running time is independent of both n and
k for an FPT algorithm.

Randomized search heuristics are typically stochastic processes that are
allowed to run for a certain number of iterations, after which the best-so-far
result is collected and returned. In each iteration, the process keeps a set of
one or more candidate solutions, and evaluates their quality via a fitness or
objective function. The candidate solutions for the next iteration are then
computed using a number of transformation operations.

To analyze this class of algorithm, we consider a random variable T that
measures the number of basic iterations (usually measured in calls to the
objective function) until a solution is first discovered. Here, a solution may
be, depending on the context, an element that maximizes or minimizes the
objective function. This allows us to treat optimization problems in the same
manner as one would treat decision problems. Specifically, given a class of
instances of an optimization problem, for each N one can construct a deci-

4 Parameterized Complexity Analysis of Randomized Search Heuristics 217

sion problem L ⊆ Σ∗ as the set of all instances on which the maximum (or,
minimum) objective function value is at least (or, at most) a particular value.

The quantity E[T] is the expected optimization time, and is the most com-
monly used performance measure in the rigorous runtime analysis of random-
ized search heuristics. We say an algorithm is a Monte Carlo FPT algorithm
for a parameterized problem (L,κ) if it accepts x∈L with probability at least
1/2 in time g(κ(x)) · |x|O(1) and accepts x ̸∈ L with probability zero. Thus,
any randomized search heuristic with a bound E[T] ≤ g(κ(x)) · |x|O(1) on L
can be trivially transformed into a Monte Carlo FPT algorithm by stopping
its execution after 2g(κ(x)) · |x|O(1) iterations.

Note that the parameter is allowed to depend on the input in more or less
an arbitrary way. The selection of a meaningful parameterization depends
strongly on what a “typical” problem instance looks like. In most cases, one
hopes to choose a parameter that is assumed to be small over the set of
problems one wishes to solve. Ideally, the parameter should somehow capture
the source of exponential complexity for the problem [15].

The goal of applying parameterized complexity analysis to the field of
randomized search heuristics is thus to somehow understand how much in-
formation from the fitness function can be exploited in more detail. At the
worst extreme, there is no exploitable information in the fitness of solutions
at all (i.e., the fitness of a solution tells us nothing about its relationship to a
global optimum), and we are in a blind Needle-like case. Any RSH technique
that employs such a fitness function must then rely entirely on getting lucky
enough to stumble on an optimal solution. However, as previously mentioned,
for most realistic problems we conjecture that there exists some structure in
the fitness function that can be implicitly used by the RSH technique. Pa-
rameterized analysis can be seen as a technique that allows us to inspect the
fitness function to assist in bounding how much “luck” is required to solve
the problem.

4.3 Maximum-Leaf Spanning Trees

The classical minimum spanning tree problem, which can be solved in poly-
nomial time by well-known deterministic algorithms such as those of Kruskal
and Prim, has gained significant attention in the evolutionary computation
literature [11, 32]. This includes the investigations of Witt [43], who consid-
ered an additional structural parameter of the given graph. He gave an upper
bound on the runtime of simple evolutionary algorithms for the minimum
spanning tree problem that depends on the circumference of the given graph.
We will not present the details here, as the focus of this chapter is on NP-hard
problems. We instead refer the interested reader to the original articles.

We start our investigations by considering an NP-hard variant of a span-
ning tree problem where the choice of mutation operator affects the parame-

218 Frank Neumann and Andrew M. Sutton

terized runtime. Specifically, the commonly used standard bit mutation oper-
ation results in XP runtime, whereas a mutation operator that creates feasible
solutions produces FPT runtime.

The problem we consider is the maximum-leaf spanning tree problem, and
we summarize the results given in [24]. Given an undirected, connected graph
G= (V,E), the goal is to find a spanning tree T ∗ of G such that the number
of leaves is maximum.

The authors of [24] considered two simple evolutionary algorithms that
differ in the choice of the mutation operator. The first algorithm uses a general
mutation operator carrying out standard bit mutations, and the second is
specific to spanning tree problems. Both algorithms start with an arbitrary
spanning tree T of G. We denote by m the number of edges in G, and by
ℓ(T) the number of leaves of the spanning tree T . A new solution is accepted
only if it is a spanning tree whose number of leaves is at least as high as the
number of leaves in the current solution. The algorithm called the Generic
(1+1) EA is given in Algorithm 4.1.

Algorithm 4.1: Generic (1+1) EA
1 Choose a spanning tree of T uniformly at random;
2 repeat forever
3 Produce T ′ by swapping each edge of T independently with probability 1/m;
4 if T ′ is a tree and ℓ(T ′)≥ ℓ(T) then T ← T ′;

Swapping an edge in the mutation step of the Generic (1+1) EA means
that if an edge is present in T then it is not contained in T ′ with probability
1/m. On the other hand, if an edge is not present in T then it is contained
in T ′ with probability 1/m. An edge does not change from T to T ′ with
probability 1−1/m in each mutation step, independently of the other edges.

The mutation operator of Algorithm 4.1 does not necessarily create an
offspring that is a tree. If the offspring is not a tree, then this individual is
discarded, as it represents an infeasible solution.

The second algorithm we consider is called the Tree-Based (1+1) EA and is
illustrated in Algorithm 4.2. This approach uses a problem-specific mutation
operator that ensures valid solutions, i.e., spanning trees. It is well known
that, given a spanning tree T , a new spanning tree T ′ can be created by
introducing an edge e ∈E \T and removing an edge from the resulting cycle.
Mutation operators based on this idea are commonly used when applying
evolutionary algorithms to NP-hard spanning tree problems.

Our goal is to point out the differences between the two algorithms. To do
this, we compare the expected optimization time E[T] of the two algorithms.
This shows that the problem-specific mutation operator of Algorithm 4.2
makes the difference between a fixed-parameter evolutionary algorithm and

4 Parameterized Complexity Analysis of Randomized Search Heuristics 219

Algorithm 4.2: Tree-Based (1+1) EA
1 Choose an arbitrary spanning tree T of G;
2 repeat forever
3 Choose S according to a Poisson distribution with parameter λ= 1 and

perform sequentially S random edge-exchange operations to obtain a
spanning tree T ′. A random exchange operation applied to a spanning tree
T̃ chooses an edge e ∈E \ T̃ uniformly at random. The edge e is inserted and
one randomly chosen edge of the cycle in T̃ ∪{e} is deleted;

4 if ℓ(T ′)≥ ℓ(T) then T ← T ′;

r vertices

x

y
ui

vi

Fig. 4.1 Local optimum, shown with dashed edges, and global optimum, shown with
dotted edges; shared edges are drawn solid.

an evolutionary algorithm that cannot compute an optimal solution in ex-
pected FPT time.

For the Generic (1+1) EA, the authors of [24] gave a lower bound which
showed that the algorithm cannot solve the problem in FPT time. They
considered the graph given in Fig. 4.1. The instance contains a local optimum,
which has a distance to the global optimum in terms of the number of edges
that have to be exchanged. The number of these edge exchanges depends on
the number of nodes, r, the magnitude of which can be chosen to make it
hard or easy to escape from the local optimum.

Formally, our graph, called Gloc (see Fig. 4.1) contains two components
consisting of r vertices each. In component i, 1 ≤ i ≤ 2, two vertices ui and
vi are connected to all the other vertices in that component. The vertex ui
is connected to vertex x, which lies outside the component. Similarly, vertex
vi is connected to vertex y. In addition, x and y share an edge. The graph is
completed by attaching a path of n−2r−2 vertices to the vertex x. A tree
has to contain all the edges of the path attached to x. In addition, at least
one of the edges {ui,x} and {vi,y} has to be chosen for each i. For a given
component, the maximum number of possible leaves is at most r− 1. This

220 Frank Neumann and Andrew M. Sutton

can be obtained by attaching all nodes of the component either to ui or to
vi.

The graph contains a local optimum Tlopt which consists of all edges at-
tached to the vertices vi, 1≤ i≤ 2, the edge {x,y}, and all path edges. The
global optimum Topt consists of all edges attached to the vertices ui, 1≤ i≤ 2,
the edge {x,y}, and all path edges. Compared with Tlopt, Topt has an extra
leaf, namely the vertex y. However, Tlopt and Topt differ by 4(r− 1), edges
which make it hard for the algorithms under consideration to obtain Topt if
Tlopt has been produced before.

Tlopt can only by improved by swapping at least 2(r− 2) edges, as all
nonsolid edges adjacent to at least one node vi need to be swapped to reach
an improvement. As each bit corresponding to an edge of the graph is flipped
with probability 1/m in the Generic (1+1) EA, the following lower bound on
the expected optimization time of the Generic (1+1) EA is obtained.

Theorem 4.3.1. The expected optimization time of the Generic (1+1) EA
on Gloc is lower bounded by (m/c)2(r−2) where c is an appropriate constant.

Using the same arguments, a lower bound of ((r−2)/c)r−2 where c is an
appropriate constant, has been given for the Tree-Based (1+1) EA. Again
the bound considers the time to improve the locally optimal solution, which
requires r− 2 edge exchanges. The mutation operator of the Tree-Based
(1+1) EA has the benefit that a spanning tree is always created by introduc-
ing an edge and removing an edge from the resulting cycle, which results in a
lower bound that is smaller than the one obtained for the Generic (1+1) EA.
In terms of upper bounds, the Tree-Based (1+1) EA runs in FPT time when
the value of an optimal solution k is the parameter.

The proof of the main result builds on the following lemma, which upper
bounds the number of edges and the number of nodes of degree at least three
as a function of k.

Lemma 4.3.2. Any connected graph G on n nodes and with a maximum
number of k leaves in any spanning tree has at most n+5k2−7k edges and
at most 10k−14 nodes of degree at least three.

Each spanning tree has n−1 edges, which implies that the number of edge
exchanges to obtain a maximum-leaf spanning tree from any spanning tree
is n+5k2−7k− (n−1)≤ 5k2. Furthermore, a nonoptimal spanning tree can
be improved by removing an edge of degree two from the cycle. The number
of nodes of degree at least 3 is at most 10k−14, which gives a lower bound of
1/20k on the probability of removing an edge of degree two from the cycle.

The upper bound for the Tree-Based (1+1) EA is given in the following
theorem, and the proof uses the arguments stated above.

Theorem 4.3.3. If the maximum number of leaf nodes in any spanning tree
of G is k, then the Tree-Based (1+1) EA finds an optimal solution in expected
time O(215k2 logk).

4 Parameterized Complexity Analysis of Randomized Search Heuristics 221

4.4 Minimum Vertex Cover

The minimum vertex cover problem is an important classical NP-hard com-
binatorial optimization problem. Given an undirected connected graph G =
(V,E), the task is to find a minimum set of vertices V ′ ⊆ V such that each
edge e ∈ E is covered by one of the chosen nodes, i.e., e∩V ′ ̸= ∅ holds for
each e ∈ E. A set of vertices V ′ covering each edge e ∈ E is called a vertex
cover.

Using a binary variable xi for each vertex vi ∈V , the minimum vertex cover
problem can be formulated as the following integer linear program (ILP):

minimize
n∑

i=1
xi

subject to xi+xj ≥ 1, ∀{i, j} ∈ E,

xi ∈ {0,1}, 1≤ i≤ n.

The linear program (LP) relaxation is obtained by relaxing the requirement
xi ∈ {0,1} to xi ∈ [0,1],1≤ i≤ n

The vertex cover problem is the most prominent problem in the area of
parameterized complexity. As stated before, this area usually deals with de-
cision problems. In the case of the vertex cover problem, one asks whether a
given graph G has a vertex cover of at most k nodes.

Earlier studies [16, 33] on the performance of the (1+1) EA have shown
that this algorithm may get stuck in the smaller component of a complete
bipartite graph when the two partitions have different sizes. Escaping this
local optimum requires the algorithm to flip all bits belonging to the global
optimum at once, and therefore has a waiting time of Ω(nOPT), where OPT is
the value of an optimal solution. Furthermore, if the two partitions V1 and V2
of the bipartite graph are extremely unbalanced, say |V1|=nε and |V2|=n1−ε,
where ε > 0 is an arbitrary small constant, then the approximation ratio
achieved by getting stuck in a local optimum is only n1−ε/nε = n1−2ε and
can therefore be made very close to the trivial approximation achieved by
selecting all vertices of the given graph.

4.4.1 Global SEMO

We consider the search space {0,1}n, where each bit xi of a search point x
corresponds to a vertex vi of the given graph G. The vertex vi is chosen in
the solution x iff xi = 1. The task is to find a solution x with a minimum
number of vertices that covers all edges. This motivates us to introduce a
fitness function based on the number of edges left uncovered by x.

222 Frank Neumann and Andrew M. Sutton

We denote by E(x) the set of edges covered by the cover x, i.e., E(x) :=
{e | e∩Vx ̸= ∅}, where Vx := {vi | xi = 1,1 ≤ i ≤ n} is the subset of vertices
chosen by x.

Kratsch and Neumann [25] considered two fitness functions for minimum
vertex cover. The first fitness function was

f1(x) = (|x|1,u(x)),

where |x|1 = |{i : xi = 1}| corresponds to the number of chosen vertices and
u(x) := |E \E(x)| is the number of edges left uncovered by x. Note that u(x)
is useful for directing the search process towards a feasible solution, i.e., a
solution x for which u(x)= 0 holds. This function had already been considered
in [16] in the context of approximations.

In addition, the authors of [25] examined a second fitness function that uses
additional information obtained from a linear program. Let G(x) = (V,E \
E(x)) be the graph obtained from G by removing all edges covered by nodes
in x. We also consider the fitness function

f2(x) = (|x|1,LP (x)),

where LP (x) denotes the optimum value of the relaxed vertex cover ILP for
G(x), i.e., the cost of an optimal fractional vertex cover of G(x).

Algorithm 4.3: Global SEMO
1 Choose an initial solution x ∈ {0,1}n uniformly at random;
2 Determine f(x) and initialize P ←{x};
3 repeat forever
4 Choose x ∈ P randomly;
5 Create x′ by flipping each bit of x independently with probability 1/n;
6 Determine f(x′);
7 if ∃x′′ ∈ P, f(x′′)≤ f(x′) and f(x′′) ̸= f(x′) then
8 P is unchanged
9 else

10 exclude all x′′ where f(x′)≤ f(x′′) from P and add x′ to P

The multiobjective approach uses the Global SEMO algorithm (see Al-
gorithm 4.3). The algorithm starts with a bit string chosen uniformly at
random. In each iteration, one individual x of the current population P is
selected uniformly at random and undergoes standard bit mutation to pro-
duce an offspring x′. The offspring x′ is added to the population iff it is not
strictly dominated by any other individual in P . In this case, all individuals
in P that are (weakly) dominated by x′ are removed from P . We will exam-
ine Global SEMO for the minimum vertex cover problem in this section and

4 Parameterized Complexity Analysis of Randomized Search Heuristics 223

for maximization in several different types of problem involving submodular
functions in the next section.

When minimizing the number of uncovered edges and the number of cho-
sen vertices at the same time, Global SEMO achieves an approximation to
within a factor of O(logn) for the minimum vertex cover problem. These re-
sults may be generalized to the wider class of set cover problems. Kratsch
and Neumann [25] have used a modification of Global SEMO (called Global
SEMOalt) and shown that their approach computes an optimal solution in
FPT time.

Algorithm 4.4: Alternative mutation operator in Global SEMOalt

1 Let U(x)⊆ E denote the set of edges that are not covered by x;
2 Let S(x)⊆ {1, . . . ,n} denote the vertices that are incident on the edges in U(x);
3 Choose b ∈ {0,1} uniform at random;
4 if b= 0 or S(x) = ∅ then
5 flip each bit of x independently with probability 1/n
6 else
7 flip each bit of S(x) independently with probability 1/2;
8 flip each bit of {1, . . . ,n}\S(x) independently with probability 1/n

The results presented rely on an alternative mutation operator (see Algo-
rithm 4.4) that has the ability to perform bit flips with a high probability if
the corresponding node is adjacent to at least one uncovered edge (line 7 of
Algorithm 4.4). This allows the algorithm to perform random sampling on
the subgraph consisting of the uncovered edges. If this subgraph constitutes a
kernel of the problem, the random sampling process is similar to a brute-force
search on the kernel. We will summarize those results in the following.

We outline the results for the algorithms introduced in this section, but
should also mention that the vertex cover problem has been subject to further
parameterized analyses in the context of randomized search heuristics. For
example, the investigations of the vertex cover problem that we present in
this section have been extended to the weighted vertex cover problem [35].
Gao et al. [18] have studied random initialization heuristics as well as local
search algorithms in terms of parameterized complexity and approximation.
Furthermore, the vertex cover problem has been analyzed in dynamic settings
where edges can be removed from or added to the graph [34].

4.4.2 Parameterized Analysis

The first parameterized result in the context of optimal vertex covers consid-
ers Global SEMOalt together with the objective function f1, which uses the
number of uncovered edges as the second objective. The population size of

224 Frank Neumann and Andrew M. Sutton

the algorithm is upper bounded by n+1, as the main objective (number of
chosen nodes) can only take on that many different values. The same upper
bound on the population size is applied when using f2.

The first analysis relies on the following basic insight. Let OPT be the value
of an optimal solution; then an optimal solution has to include all nodes of
degree at least OPT+1. This is based on the simple observation that if a node
v of degree OPT+1 is not selected, all neighbors of v have to be selected,
resulting in a nonoptimal solution.

Theorem 4.4.1. The expected optimization time of Global SEMOalt for the
minimum vertex cover problem using the fitness function f1 is upper bounded
by O(OPT ·n4+n ·2OPT+OPT2).

The proof of the theorem proceeds in several different phases. First, the
expected time until the search point 0n is included in the population is an-
alyzed. The proof for this part focuses on selecting the individual with the
smallest number of 1-bits, which happens with probability at least 1/(n+1),
as the number of different values for |x|1 is at most n+1. Producing a solu-
tion with a smaller number of 1-bits is always accepted, and the problem can
be seen as maximizing the number of 0-bits, slowed down by a population
of size at most n+1. Hence, after an expected number of O(n2 logn) steps
of Global SEMO or Global SEMOalt using f1 or f2, the search point 0n is
included in the population.

We now consider f1 and assume that the search point 0n is already in-
cluded in the population. Subsequently, the expected number of steps where
the population does not contain a solution x for f1 that is a kernel for the
problem is upper bounded by O(OPT ·n4). For f1, x is a kernel iff the vertices
chosen by x constitute a subset of an optimal solution and the maximum de-
gree of G(x) is at most OPT. In order to upper bound the number of steps
where the population does not contain a solution x that is a kernel, a potential
function with O(n2OPT) different values is taken into account that measures
the population with respect to the number of uncovered edges that its in-
dividuals have. It can be shown that the potential can always be improved
with probability at least Ω(1/n2) if no kernel is contained in the population.
As the potential cannot increase, the expected number of steps where the
population does not contain a kernel is O(n4 ·OPT)

Denoting by x̂ the resulting vertex cover, the kernel instance G(x̂) has
at most OPT2+OPT nonisolated nodes. In this case, the alternative muta-
tion operator is able to produce the optimal solution from x̂ in expected time
O(n ·2OPT+OPT2). In this upper bound, the factor n accounts for selecting the
individual x̂ with probability at least 1/(n+1) and the term O(2OPT+OPT2)
accounts for mutating this individual into an optimal solution. The exponen-
tial component of the runtime arises from the waiting time to make a lucky
random jump, but this jump is now required only on a reasonably small
kernel instance.

4 Parameterized Complexity Analysis of Randomized Search Heuristics 225

The runtime bound can be improved if the value of an optimal linear
program LP (x) for the graph G(x) consisting only of the uncovered edges is
used as the second criterion, leading to the fitness function f2. The goal is to
minimize the penalty LP (x), and we have LP (x) = 0 iff x is a vertex cover.

The analysis is based on the following result of Nemhauser and Trotter [31],
who proved a very strong relation between optimal fractional vertex covers
and minimum vertex covers.

Theorem 4.4.2. Let x∗ be an optimal fractional vertex cover and let P0,P1 ⊆
V be the vertices whose corresponding components of x∗ are 0 or 1, respec-
tively. Then there exists a minimum vertex cover that contains P1 and no
vertex of P0.

Theorem 4.4.2 implies that one can take all vertices set to 1 in an optimal
fractional vertex cover and reduce the size of the problem in this way. Fur-
thermore, it is well known that every basic feasible solution x of the vertex
cover LP relaxation is half-integral, i.e., we have x ∈ {0,1/2,1}n [4]. Using
these properties, the following result has been shown.

Theorem 4.4.3. The expected optimization time of Global SEMOalt for the
minimum vertex cover problem using the fitness function f2 is upper bounded
by O(n2 · logn+OPT ·n2+n ·4OPT).

We now explain the key ideas of the proof. We already know that the pop-
ulation contains the search point 0n after an expected number of O(n2 logn)
steps. After 0n has been included in the population, the number of steps
where the population does not contain a kernel is investigated. For f2, a solu-
tion x is a kernel iff LP (x) =LP (0n)−|x|1 and each optimal fractional vertex
cover assigns 1/2 to each nonisolated vertex of G(x). The number of steps
where P does not contain such a kernel x after 0n has been included in the
population can be bounded by O(OPT ·n2) using the following arguments.
Solutions with objective value (r,LP (0n)− r) are Pareto optimal. The proof
proceeds by considering the solution x with objective vector (r,LP (0n)− r)
and the largest value of r in the population. If x is not a kernel, that x
can be chosen for mutation with a probability of at least 1/(n+1) and one
specific bit can be flipped with a probability of at least 1/(en) to produce a
Pareto-optimal offspring x′ with objective vector (r+1,LP (0n)− r−1). As
the value of the LP is upper bounded by OPT, at most OPT of such steps
can happen. This upper bounds the number of additional steps (after 0n has
been included in the population) by O(n2 ·OPT).

Let x̂ be the kernel with objective vector (r,LP (0n)− r), where r is the
maximum such that all nonisolated vertices of G(x) obtain a value of 1/2 in
LP (x̂). G(x̂) has at most 2(OPT−|x̂|1)≤ 2 ·OPT nonisolated vertices, as the
vertices that are chosen belong to an optimal solution and every nonisolated
vertex contributes 1/2 to the LP value. The expected time to produce an
optimal solution after a kernel x̂ has been included in the population is O(n ·

226 Frank Neumann and Andrew M. Sutton

22·OPT) =O(n ·4OPT), as the optimal solution can be obtained by choosing x̂
for mutation and flipping exactly the bits corresponding to the nonisolated
nodes of an optimal solution while not flipping the remaining bits.

Kratsch and Neumann have also given the following trade-off results
with respect to runtime and approximation. These results show the previ-
ous FPT time bound (ε = 0), as well as that Global SEMOalt achieves a
2-approximation (ε= 1) in expected polynomial time.

Theorem 4.4.4. Using the fitness function f2, the expected number of itera-
tions of Global SEMOalt until it has generated a (1+ ε)-approximate vertex
cover, i.e., a solution of fitness (r,0) with r ≤ (1+ ε) ·OPT, is O(n2 · logn+
OPT ·n2+n ·4(1−ε)·OPT).

The proof of Theorem 4.4.4 uses the same kernelization arguments as the
proof of Theorem 4.4.3. Once a solution x̂ that is a kernel of the problem
has been produced, it is shown that if x̂ is selected for mutation then it will
mutate with probability Ω((1/4)(1−ε)·OPT′) into a solution x′ for which

|x′|1+2 ·LP (x′)≤ (1+ε) ·OPT

holds. Such a solution x′ can be turned into a vertex cover by single mutation
steps that reduce LP (x) by at least 1/2 while increasing the size of the vertex
cover by one, leading to a vertex cover of size at most (1+ε) ·OPT.

4.5 Submodular Functions with Constraints

Submodular functions constitute a broad class of interesting problems. A
function f : 2X →R is submodular iff f(A∪B)+f(A∩B)≤ f(A)+f(B) for
all A,B ⊆X. In the context of optimizing a submodular function f , we will
often consider the incremental value of adding a single element, leading to an
equivalent definition. We denote by Fi(A) = f(A∪{i})− f(A) the marginal
value of i with respect to A. A function f is submodular iff Fi(A) ≥ Fi(B)
for all A⊆B ⊆X and i ∈X \B.

We consider the problem of maximizing a given submodular function
f . The problem is NP-hard, as it generalizes many NP-hard combinato-
rial optimization problems, such as maximum cut [14, 19] and several oth-
ers [1, 7, 14, 21], The class of submodular functions also includes the class
of linear functions that have been well studied in the area of theory of evo-
lutionary computation. Friedrich and Neumann [17] have analyzed the max-
imization of submodular functions with different constraints and carried out
runtime analyses depending on the parameters of the given constraint. We
will summarize the results in this section.

Friedrich and Neumann considered the maximization of a given submodu-
lar function f under a given set of matroid constraints. A matroid is a pair

4 Parameterized Complexity Analysis of Randomized Search Heuristics 227

(X,I) composed of a ground set X and a nonempty collection I of subsets
of X satisfying (1) if A ∈ I and B ⊆ A then B ∈ I and, (2) if A,B ∈ I and
|A|> |B| then B+x ∈ I for some x ∈A\B. The sets in I are called indepen-
dent, and the rank of a matroid is the size of any maximal independent set.
We will consider several different classes of submodular functions together
with different types of matroid constraints.

Friedrich and Neumann analyzed the (1+1) EA and Global SEMO as base-
line algorithms. For the (1+1) EA, the fitness function h(x) = (v(x),f(x))
was considered. Here, v(x) measures the constraint violation of x. General-
izing the fitness function used by Reichel and Skutella [37] for the intersec-
tion of two matroids, they considered problems with k matroid constraints
M1, . . . ,Mk,

v(x) = k · |x|1−
k∑

j=1
rj(x),

where rj(x) denotes the rank of x in matroid Mj , i.e.,

rj(X) = max{|Y | : Y ⊆X,Y ∈ Ij}

for the set X given by x.
We have v(x) = 0 iff x is a feasible solution and v(x) > 0 otherwise. The

function h(x) is optimized in lexicographic order, i.e.,

h(y)≥ h(x) holds iff (v(y)< v(x))∨ (v(y) = v(x)∧f(y)≥ f(x)).

We denote by F the set of feasible solutions. For Global SEMO, Friedrich and
Neumann set z(x) = f(x) iff x∈F and z(x) =−1 iff x ̸∈F and considered the
multiobjective problem g(x) := (z(x), |x|0), where |x|0 =

∑n
i=1(1−xi) denotes

the number of 0-bits in the given bit string x. Adding the number of 0-bits
as the second objective to be maximized forces the empty set to be Pareto
optimal, and allows the algorithm to construct solutions greedily.

4.5.1 Monotone Functions with Uniform Constraints

We now summarize the results for the special class of monotone submodular
functions under one uniform matroid constraint. A function f is monotone iff
f(A)≤ f(B) for all A⊆B. A uniform matroid constraint of size r means that
a set is feasible iff it consists of at most r elements, i.e., I = {A⊆X : |A| ≤ r}.

A key property of Global SEMO that is often employed in theoretical ana-
lysis is that it constructs solutions in a manner similar to a greedy algorithm.
Furthermore, the population size can be bounded by n+1, as the number
of different objective values for the second objective is n+1. This implies
that one particular individual that is needed for the analysis is selected with

228 Frank Neumann and Andrew M. Sutton

probability Ω(1/n). The algorithm removes elements in order to maximize
the number of zeros. Using the number of zeros as the second objective im-
plies that the algorithm maintains a population where the solution with the
smallest number of elements is never removed. Furthermore, each solution
that has a smaller number of selected elements than the solutions previously
found is included in the population. Eventually, this leads to a population
which includes the solution consisting of the empty set. In terms of the first
objective (the overall goal function), the algorithm tries to maximize its ob-
jective value in a greedy manner. It does so by adding elements that provide
the largest benefit to a current solution. Putting these arguments together,
the following approximation result can be obtained for Global SEMO and the
maximization of monotone submodular functions with a uniform constraint.

Theorem 4.5.1. The expected time until Global SEMO has obtained a (1−
1/e)-approximation for a monotone submodular function f under a uniform
constraint of size r is O(n2 (logn+ r)).

The proof of the theorem uses the fact that the population size is always
bounded by n+1 and therefore one particular individual is selected with prob-
ability at least 1/(n+1) in each step. The first phase of the proof shows that
the empty set, represented by the bit string 0n, is included in the population
in expected time O(n2 logn). Similarly to the analysis for vertex cover in the
previous section, this bound is obtained by considering the factor O(n) for
the population size and bounds on a coupon collector process for maximizing
the number of 0-bits. The O(n2r) term accounts for the greedy process where
the correct individual in the population is selected with probability Ω(1/n)
and the appropriate greedy step is applied to this individual with probabil-
ity Ω(1/n). Finally, there are at most r of these steps, as no more than r
elements can be inserted owing to the given constraint. The approximation
ratio follows from the greedy process.

4.5.2 Monotone Submodular Functions under Matroid
Constraints

Now we take a look at more complex problems. Again we consider monotone
submodular functions but with k matroid constraints. The algorithm that we
consider is the (1+1) EA. The number of these matroid constraints is the
important parameter that we consider and it determines the approximation
ratio that is achieved, as well as the exponent of the runtime. Furthermore,
there is a parameter p ≥ 1 that allows for a fixed value of k to trade off the
approximation quality and runtime of the algorithm.

Theorem 4.5.2. For any integers k ≥ 2, p ≥ 1 and a real value ε > 0,
the expected time until the (1+1) EA has obtained a (1/(k + 1/p+ ε))-

4 Parameterized Complexity Analysis of Randomized Search Heuristics 229

approximation for any monotone submodular function f under k matroid
constraints is O

(
1
ε ·n

2p(k+1)+1 ·k · logn
)

.

We summarize the main ideas of the proof here. The first part of the proof
consists of showing that the algorithm reaches a feasible solution x with
f(x)≥ OPT/n. The expected time until the (1+1) EA has obtained such a
solution can be upper bounded by O(nk+1). To attain this bound, the proof
first argues that the (1+1) EA obtains a feasible solution in expected time
O(kn(logk+logn)) by using the fitness level method applied to the value of
the penalty v(x). Afterwards, it is shown that, from any feasible solution x,
a feasible solution y with f(x) ≥ OPT/n can be obtained by flipping k+1
specific bits. The expected waiting time for this event is O(nk+1).

A p-exchange operation applied to the current solution x introduces at
most 2p new elements and deletes at most 2kp elements of x. A solution y
that can be obtained from x by a p-exchange operation is called a p-exchange
neighbor of x. According to [27], every solution x for which there exists no
p-exchange neighbor y with f(y) ≥ (1+ ε

n(k+1)) · f(x) is a (1/(k+1/p+ ε))-
approximation for any monotone submodular function. So, the proof works
by analyzing the time until a feasible solution has been obtained. Afterwards,
it uses the fact that there is still a p-exchange neighbor unless the desired
approximation quality has already been obtained.

4.5.3 Symmetric Submodular Functions under Matroid
Constraints

We now summarize the main result for Global SEMO for the optimization of
symmetric submodular functions under k matroid constraints. The following
theorem makes use of the greedy and local search ability that the algorithm
Global SEMO has.

Theorem 4.5.3. The expected number of iterations until Global SEMO at-
tains a

(
1

(k+2)(1+ε)

)
-approximation for any symmetric submodular function

under k matroid constraints is O
(1
εn

k+6 logn
)
, for any constant ε > 0.

The analysis makes use of the following result in [26], which shows that
there are always locally improving steps as long as the desired approximation
quality has not been obtained.

Lemma 4.5.4. Let x be a solution such that no solution with fitness at
least

(
1+ ε

n4
)
· f(x) can be achieved by deleting one element or by inserting

one element and deleting at most k elements. Then x is a
(

1
(k+2)(1+ε)

)
-

approximation.

230 Frank Neumann and Andrew M. Sutton

The proof of Theorem 4.5.3 uses this lemma together with the fact that
Global SEMO introduces the search point 0n into the population after an
expected number of O(n2 logn) steps. As the search point 0n is Pareto opti-
mal, it stays in the population once it has been introduced. Selecting 0n for
mutation and inserting the element that leads to the largest increase in the
f -value produces a solution y with f(y)≥OPT/n. The reason for this is that
the number of elements is limited by n and that f is submodular. Global
SEMO will also always have a solution with the largest f -value obtained so
far in the population. Selecting this solution x for mutation and flipping at
most k+1 specific bits according to Lemma 4.5.4 produces a solution y with
f(y)≥

(
1+ ε

n4
)
·f(x) as long as x does not yet have the desired approxima-

tion quality. The expected waiting time for this event is O(nk+2), as at most
k+1 specific bits of x have to be flipped and the population size is at most
n+1.

The number of steps that improve the solution with the largest f -value
needed in order to achieve the desired

(
1

(k+2)(1+ε)

)
-approximation is upper

bounded by
log(1+ ε

n4
) OPT
OPT/n =O

(
1
ε
n4 logn

)
which implies that the expected time to achieve a

(
1

(k+2)(1+ε)

)
-

approximation is O
(1
εn

k+6 logn
)
.

4.6 Euclidean TSP

Given a set of n points V = {v1,v2, . . . ,vn} in the plane, the objective of the
Euclidean TSP is to find a permutation π : V → V that minimizes the cost
function

c(π) =
n∑

i=1
d(vπ(i),vπ(i+1)), (4.6.1)

where d(vi,vj) denotes the Euclidean distance separating the points vi and vj
and arithmetic is taken to be modulo n. The Euclidean TSP is NP-hard, but
can be approximated to within a factor (1+ε) for every fixed ε in polynomial
time [2].

It is convenient to consider the complete undirected graph G= (V,E) and
define the Hamiltonian cycle C(π) ⊆ E induced by the edges followed by a
given permutation π:

C(π) = {{vπ(1),vπ(2)},{vπ(2),vπ(3)}, . . . ,{vπ(n−1),vπ(n)},{vπ(n),vπ(1)}}.

We will refer to the cycle C(π) as a tour.

4 Parameterized Complexity Analysis of Randomized Search Heuristics 231

Iterative improvement methods rely on the iterated exchange of a small
number of edges and are powerful approaches for solving large-scale TSP
instances in practice. These heuristics move through the space of candidate
solutions by repeatedly applying move or mutation operators to pivot be-
tween tours. For the TSP, this is typically some variant of the powerful k-opt
operation. The k-opt move considers some candidate tour C(π), and deletes k
mutually disjoint edges and reassembles the remaining fragments into a new
valid tour C(π′). The operation induces a neighborhood structure on the
search space of tours, and thus serves as a strong and easy-to-implement lo-
cal search operator. However, instances exist where this approach is provably
inefficient. For example, local search algorithms employing a k-opt neigh-
borhood operator can take exponential time even to find a locally optimal
solution [6]. This even holds for the Euclidean case [13].

The convex hull of V is the smallest convex set containing V . A point
v ∈ V is called an inner point if v lies in the interior of the convex hull of V .
We denote by Inn(V)⊂ V the set of inner points of V , and define Out(V) :=
V \ Inn(V). The TSP parameterized by k = Inn(V) is in FPT. Specifically,
Deĭneko et al. [9] showed that if a Euclidean TSP instance with n vertices
has k vertices interior to the convex hull, there is a dynamic programming
FPT algorithm. Other parameterizations are not as propitious; for example,
finding a local optimum in the k-opt neighborhood for the metric TSP is
hard for W[1] [28]. FPT ⊆ W[1], but the containment is conjectured to be
proper [15], in which case no such FPT algorithm can exist.

Parameterized results for evolutionary algorithms for the Euclidean TSP
have been developed in a series of papers [29, 30, 40, 41] in the context of
the inner-point parameterization of Deĭneko et al. [9]. We also would like to
mention that the generalized traveling salesperson problem has been investi-
gated in the context of parameterized complexity. In this problem, the cities
belong to different clusters and the goal is to compute a shortest tour that
visits each cluster exactly once. We refer the interested reader for details of
the generalized TSP to Corus et al. [8].

The remainder of this section sketches these results, starting with the set-
ting in which the algorithm is oblivious to problem-specific information (other
than the cost of a tour) and ending with algorithms that exploit problem-
specific structure.

4.6.1 Black-Box Algorithms

In the black-box setting, heuristics are not allowed any access to domain-
specific knowledge about the instance other than the cost of a tour. For
Euclidean TSP instances with k = Inn(V) inner points, it is possible to show
that the (µ+λ) EA generates an optimal solution in slicewise polynomial time
(that is, in time ng(k), where g depends only on k). Later, in Section 4.6.2,

232 Frank Neumann and Andrew M. Sutton

we will discuss how it is possible to improve this to FPT time when domain
knowledge is incorporated into the design of the algorithm.

The 2-opt operator mentioned above corresponds to segment reversal in
the linear form of the corresponding tour permutation. We refer to the 2-
opt operation as the inversion operation and illustrate it in Fig. 4.2. We
consider random local search (RLS), defined in Algorithm 4.5, and the (µ+
λ) EA, defined in Algorithm 4.6. Note that RLS maintains a population of
size one, and performs exactly one inversion operation in each iteration. On
the other hand, the (µ+λ) EA maintains a population of µ permutations
and produces λ offspring in each generation by applying Poisson mutation
(see Function mutate).

Definition 4.6.1. The inversion operation σI
ij transforms permutations into

one another by segment reversal in their linear forms.
A permutation x is transformed into a permutation σI

ij [x] by inverting
the subsequence of the linear form of x from position i to position j, where
1≤ i < j ≤ n:

x= (x(1), . . . ,x(i−1),x(i),x(i+1), . . . ,x(j−1),x(j),x(j+1), . . . ,x(n)),
σI
ij [x] = (x(1), . . . ,x(i−1),x(j),x(j−1), . . . ,x(i+1),x(i),x(j+1), . . . ,x(n)).

x(i−1)

x(j)

x(j−1)

x(j+1)

x(i)

x(i+1)

x(1)

x(n)

x(i−1)

x(j)

x(j−1)

x(j+1)

x(i)

x(i+1)

x(1)

x(n)

Fig. 4.2 The effect of the inversion operation σI
ij on a tour. Inverting a subsequence

in the permutation representation corresponds to a 2-opt move in which a pair of edges
in the current tour is replaced by a pair of edges not in the tour.

We also consider the permutation jump operator studied by Scharnow,
Tinnefeld, and Wegener [38] in the context of sorting problems.

Definition 4.6.2. The jump operation σJ
ij transforms permutations into one

another by position shifts in their linear form. A permutation x is transformed
into a permutation σJ

ij [x] by moving the element in position i in the linear
form of x into position j in the linear form of σJ

ij [x] while the other elements

4 Parameterized Complexity Analysis of Randomized Search Heuristics 233

between position i and position j are shifted in the appropriate direction.
Without loss of generality, suppose i < j. Then,

x= (x(1), . . . ,x(i−1),x(i),x(i+1), . . . ,x(j−1),x(j),x(j+1), . . . ,x(n)),
σJ
ij [x] = (x(1), . . . ,x(i−1),x(i+1), . . . ,x(j−1),x(j),x(i),x(j+1), . . . ,x(n)).

Algorithm 4.5: Randomized local search (RLS)
1 Choose a random permutation x on V ;
2 repeat forever
3 choose a random distinct pair of elements (i, j) from [n];
4 y← σI

ij [x];
5 if f(y)≤ f(x) then x← y;

Function mutate(x)
1 y← x;
2 draw s from a Poisson distribution with unit expectation;
3 perform s+1 random inversion operations on y;
4 return y;

Algorithm 4.6: The (µ+λ) EA
1 Choose a multiset P of µ random permutations on V ;
2 repeat forever
3 P ′←{};
4 repeat λ times
5 choose x uniformly at random from P ;
6 y← mutate(x);
7 P ′← P ′⊎{y};
8 P ← select(P ⊎P ′) ;

Every tour C(π), for all permutations π on V , corresponds to a set of
edges that describe a closed polygon in the plane. If V is noncollinear (no
three points are collinear), the vertices on the boundary of the convex hull
of V appear in their cyclic order in a minimum-cost tour, and no edge is
intersecting [36]. When a tour contains a pair of edges that intersect at a point
p, those edges form the diagonals of a convex quadrilateral. The interior edges
of this figure describe nondegenerate triangles in the Euclidean plane. Thus,
as long as no three points are collinear, removing these edges and replacing

234 Frank Neumann and Andrew M. Sutton

them with the corresponding nonintersecting edges results in a strictly shorter
tour. This is illustrated in Fig. 4.3.

u

s

t

v

p

Tour path Tour path

Fig. 4.3 Removing the intersecting edges (s, t) and (u,v) and reconnecting the two
disconnected tour path segments with edges (s,v) and (u,t) results in a strictly shorter
tour.

4.6.1.1 Avoiding Arbitrarily Small Improvements

Worst-case proofs for 2-opt on the TSP exploit the fact that when points
are allowed in arbitrary positions, the smallest change in fitness between
neighboring solutions can be made arbitrarily small [13]. This allows the
possibility of exponential-length paths between a candidate solution and a
reachable local optimum. Sutton and Neumann [40] circumvented this is by
imposing bounds on the angles between points. A set of points V is angle-
bounded by ε for some 0< ε< π/2 if, for any three points u,v,w ∈ V , 0< ε<
θ<π−ε, where θ denotes the angle formed by the line from u to v and the line
from v to w. Under this condition, the runtime bound depends on the angle
bound ε, and so we may consider it as an additional parameterization of the
instance. This is also applicable to the class of TSP instances whose points are
embedded in an m×m grid (with the further restriction that no three points
are collinear). This kind of quantization can result when the coordinates of
each point are rounded to the nearest value in a set ofm equidistant values. In
these cases, the changes in cost between neighboring solutions can be bounded
from below, avoiding exponentially long improvement chains to reach a local
optimum.

Definition 4.6.3. Let V be a set of points angle-bounded by ε. We define

A(ε) =
(
dmax
dmin

−1
)(

cos(ε)
1− cos(ε)

)
where dmax and dmin denote the maximum and minimum Euclidean distances,
respectively, between points in V .

4 Parameterized Complexity Analysis of Randomized Search Heuristics 235

Quantized instances yield a more meaningful interpretation of A(ε), as is
captured by the following proposition.

Proposition 4.6.4. Let V be a set of points embedded in an m×m grid with
no three points collinear. Then V is angle-bounded by ε such that

A(ε) =m5.

Proposition 4.6.4 follows from Definition 4.6.3 and the fact that V is angle-
bounded by arctan

(
1/(2(m−2)2)

)
and dmax =O(m).

4.6.1.2 Instances in Convex Position

A set of points V are in convex position when Inn(V) = ∅. In this case, we
must wait only for the process to remove all intersecting edges. Upper bounds
on the time until RLS and the (µ+λ) EA have removed all such edges (and
thus produced an optimal tour) can be expressed as a function of the angle-
bounding function A. More conveniently, when an instance is embedded in
an m×m grid, both processes can solve the instance in time polynomial in
both n and m.

Theorem 4.6.5. Let V be a set of planar points in convex position angle-
bounded by ε. The expected time for RLS to solve the TSP on V is O(n3A(ε)),
where A is as defined in Definition 4.6.3.

The proof of Theorem 4.6.5 relies on the fact that any 2-opt move that
replaces a pair of intersecting edges with a pair of nonintersecting edges in
an angle-bounded instance results in an improvement of the tour by at least

2dmin (1− cos(ε))/(cos(ε)) . (4.6.2)

Any pair of intersecting edges can be removed with a particular 2-opt opera-
tion (each of which occurs with probability Ω(n−2)), and thus we can derive
a straightforward bound on the waiting time until all such intersections have
been removed.

Theorem 4.6.6. Let V be a set of planar points in convex position angle-
bounded by ε. The expected number of fitness evaluations needed by the (µ+
λ) EA using 2-opt mutation to solve the TSP on V is bounded from above by
O
(
n ·A(ε) ·max

{
µn2,λ

})
, where A is as defined in Definition 4.6.3.

The proof of Theorem 4.6.6 is similar to the proof of Theorem 4.6.5, ex-
cept that we must account for any slowdown incurred by selecting from a
population. Specifically, the probability that at least one of the λ offspring
improves on the current best-so-far point is at least 1−

(
1− 1

µen(n−1)/2

)λ
.

When λ≥ µn(n−1)/2, an intersection is removed with constant probability

236 Frank Neumann and Andrew M. Sutton

in each generation and we must wait only O(nA(ε)) generations to find an
intersection-free tour (owing to the improvement guarantee from (4.6.2)). On
the other hand, when λ < µen(n−1)/2, the improvement probability can be
as low as λ/(µen2). The runtime bound follows by accounting for this and
the extra µ+λ fitness evaluations that need to occur in each generation.

4.6.1.3 Bounded Number of Inner Points

The polynomial-time results on angle-bounded instances in convex position
raise the question of what kind of influence the number of inner points can
have on the running time of the above-mentioned algorithms. In this section,
we discuss how the Euclidean TSP parameterized by the number of inner
points can be solved in slicewise polynomial time in the black-box setting.

Theorem 4.6.7. Let V be a set of points angle-bounded by ε such that
|Inn(V) | = k. The expected number of fitness evaluations needed for the
(µ+ λ) EA using 2-opt mutation to solve the TSP on V is bounded from
above by

O
(
n ·A(ε) ·max

{
µn2,λ

}
+µn4k(2k−1)!

)
,

and the expected optimization time for the (1+1) EA is

O
(
n3 ·A(ε)+n4k(2k−1)!

)
.

Theorem 4.6.7 can be proved by partitioning the amount of time the
(µ+ λ) EA spends on tours that contain intersections and tours that do
not contain intersections. In particular, let x(t) be the best-so-far tour found
by generation t of the (µ+λ) EA. If C(x(t)) contains a pair of intersecting
edges, the probability of the EA creating a strictly improving tour via a 2-opt
mutation on x(t) is bounded from below. Moreover, the angle-boundedness of
the instance guarantees an additional lower bound on the amount of actual
fitness improvement when such a mutation occurs. Hence, the total expected
time that the process spends on tours with intersecting edges is bounded as
in Theorem 4.6.6.

In the case where x(t) contains no intersecting edges, the vertices on the
boundary of the convex hull must appear in x(t) in their correct cyclic order
for a minimum-cost tour [36]. An optimal tour can then be produced from
x(t) by rearranging the points in Inn(V) to the correct positions. Poisson
mutation (see Function mutate) is capable of performing this rearrangement
by selecting at most 2|Inn(V) |= 2k specific inversion operations. This occurs
with probability at least

1
en4k(2k−1)!

,

4 Parameterized Complexity Analysis of Randomized Search Heuristics 237

which yields a simple upper bound on the waiting time to jump from an
intersection-free tour to an optimal solution. The claim then follows by care-
fully accounting for the correct parent selection probabilities and summing
the bounds on the expected time spent on tours with intersections and nonop-
timal intersection-free tours.

4.6.1.4 Mixed-Mutation Strategies

The proofs of the theorems in the preceding sections rely on the inversion
operator to construct an intersection-free tour, but then rely on the inversion
operator to simulate a jump operation in order to transform the intersection-
free tour into an optimal solution. The analysis can be improved by relying
on a mixed-mutation strategy (see Function mixed-mutation) that performs
a mixture of both inversion and jump operations, each with constant prob-
ability. This improves the upper bound on the running time by a factor of
Ω
(
n2k(2k−1)!/(k−1)!

)
.

Function mixed-mutation(x)
1 y← x;
2 draw r from a uniform distribution on the interval [0,1];
3 draw s from a Poisson distribution with unit expectation;
4 if r < 1/2 then perform s+1 random inversion operations on y;
5 else perform s+1 random jump operations on y;
6 return y;

Theorem 4.6.8. Let V be a set of points angle-bounded by ε such that
|Inn(V) | = k. The expected number of fitness evaluations needed for the
(µ+λ) EA using mixed mutation to solve the TSP on V is bounded from
above by

O
(
n ·A(ε) ·max

{
µn2,λ

}
+µn2k(k−1)!

)
,

and the expected optimization time for the (1+1) EA is bounded from above
by

O
(
n3 ·A(ε)+n2k(k−1)!

)
.

The proof is similar to the proof of Theorem 4.6.7. With mixed mutation,
a 2-opt operation still occurs with constant probability, so the likelihood of
a sufficient improvement is asymptotically equivalent to the case of Theo-
rem 4.6.7. A jump operation occurs also with constant probability, but the
probability that such an operation jumps to an optimal solution (by correctly
rearranging the positions of the points in Inn(V)) is bounded from below by

238 Frank Neumann and Andrew M. Sutton

Ω

(
1

n2k(k−1)!

)
.

4.6.2 FPT Evolutionary Algorithms

In the case where search heuristics have access to problem-specific informa-
tion, FPT results are also available. Specifically, we consider heuristics that
have access to both fitness values and the cyclic ordering of the points on the
convex hull. This ordering can be precomputed in polynomial time [20] and
stored so that it is available to the heuristic at any time.

4.6.2.1 A Population-Based Approach

Building on a previous study of Theile [42], Sutton et al. [41] constructed a
population-based evolutionary algorithm that efficiently solves the Euclidean
TSP when the number of inner points is not too large. They showed that
a small modification to Theile’s (µ+1) EA that carefully maintains the in-
variant that the points in Out(V) remain in correct convex-hull order for
each individual results in an FPT evolutionary algorithm for the inner-point
parameterization of the Euclidean TSP.

The EA maintains a large population of permutations on subtours in the
graph G= (V,E) (a subtour is a Hamiltonian cycle on a subset of V). In each
generation, a new offspring is created via a specialized mutation operator
that extends the subtour by incorporating an additional randomly chosen
vertex, and a modified truncation selection is applied that chooses the best
individual for a subtour. The EA can be seen as an evolutionary approach to
dynamic programming, the framework for which was presented in [10].

For a set of n points V in the plane with |Inn(V) | = k, we denote by
γ := (p1,p2, . . . ,pn−k) a linear order on the points of Out(V) such that for
all i ∈ {1, . . . ,n−k}, pi and pi+1 are adjacent on the boundary of the convex
hull of V . For any subset U ⊆ V , a permutation on U is a bijection x : U →U .
We say that a permutation x on U ⊆ V is γ-respecting if and only if, for
all pi,pj ∈ U , x−1(pi)< x−1(pj) =⇒ i < j. We call U the ground set of the
permutation x on U . We refer to the first element x(1) in the linear order of
such a permutation as the head vertex and the last element x(|U |) as the tail
vertex.

The (µ+λ) EA maintains a population P of γ-respecting permutations on
subsets of V . For each subset S ⊆ Inn(V) and each i ∈ [n−k], the population
P contains permutations on the ground set S ∪ {p1,p2, . . . ,pi}. There are
(|S|+ i)! possible permutation on this ground set. If we were to allow all of
them in the population, |P | would be exponential in n. Hence, the key to the
FPT running time of the EA is the realization that in an optimal solution, the

4 Parameterized Complexity Analysis of Randomized Search Heuristics 239

points in Out(V)must always appear in their order around the hull. Therefore
it is wasteful to consider permutations that are not γ-respecting.

To exploit this, for each possible ground set S ∪{p1,p2, . . . ,pi}, the popu-
lation contains exactly |S|+1 γ-respecting permutations on that ground set,
one for each possible unique tail vertex from the ground set. Specifically, for
every S ⊆ Inn(V) and every i ∈ [n− k] there is a permutation x for every
r ∈ S∪{pi} such that

(a) the head vertex of x is x(1) = p1,
(b) the tail vertex of x is x(|S|+ i) = r, and
(c) x is γ-respecting.

We denote a permutation over the ground set S ∪ {p1,p2, . . . ,pi} with tail
vertex r by x(i,S,r). The corresponding subtour of a x(i,S,r) is a cycle (x(1) =
p1,vx(2), . . . ,vx(|S|+i−1), r,p1) that starts at p1 and runs through each point
of the ground set U exactly once (the i points of Out(V) are visited in the
order in which they appear in γ). Finally, the cycle visits r before returning
to p1. An illustration of a subtour for an example permutation x(i,S,r) on a
small ground set is depicted in Fig. 4.4. The fitness function utilized by the
(µ+λ) EA is simply the cost of the subtour of an individual:

f(x(i,S,r)) =
|S|+i∑
j=1

d(vx(j),vx(j+1)), (4.6.3)

where the summation indices are taken to be modulo |S|+ i.
For any given S ⊆ Inn(V), there are n−k ways to construct a ground set

(by choosing i) and |S|+1 ways to choose the tail vertex from S∪{pi}. The
total number of individuals in the population is thus

µ= |P |= (n−k)
k∑

s=0

(
k

s

)
(s+1) =O(2kkn).

The specially designed mutation operator extends a permutation x =
x(i,S,r) by adding exactly one new point to its ground set, preserving the
validity constraints. In particular, a vertex v is chosen uniformly at random
from the remaining vertices in (Inn(V)\S)∪{pi+1}.1 A new permutation x′

is constructed from x by concatenating v with the linear order described by
x; that is, for j ∈ {1, . . . , |S|+ i+1},

x′(j) =

{
v if j = |S|+ i+1,
x(j) otherwise.

Thus x′ is a permutation over the ground set S∪r and uses v as the new tail
vertex:
1 We have abused notation slightly by taking {p|Out(V)|+1} to mean ∅.

240 Frank Neumann and Andrew M. Sutton

Convex hull

p1

p2

p3
p4

p5

p6

u

v

r

Fig. 4.4 The subtour defined by the permutation x(i,S,r) = (p1,u,p2,v,p3,p4, r) where
S = {u,v,r} and i= 4. The positions of the points pi ∈Out(V) in the linear order of the
permutation respect their cyclic order around the convex hull.

x′ =

{
x′(i,S∪{v},v) if v ∈ Inn(V),
x′(i+1,S,v) if v = pi+1.

When i = n− k and S = Inn(V), the mutation operator has no effect, since
the ground set cannot be extended for such an individual.

In each generation of the (µ+λ) EA, λ individuals are selected uniformly
at random from P . For each selected individual x, an offspring is generated
by composing the mutation operator described above s+1 times, where s is
drawn from a Poisson distribution with unit expectation. Survival selection
proceeds by ensuring that each mutated offspring may replace only the in-
dividual in the parent population with the same ground set and tail vertex,
and this replacement occurs only when the fitness of the offspring is at least
as good as the fitness of the corresponding parent. In this way, the surviving
population maintains the invariant that each valid combination of ground set
and tail vertex is represented exactly once.

Theorem 4.6.9. Let V be a set of n points in the Euclidean plane with
|Inn(V) |= k. After O(max{2kk2n2λ−1,n}) generations, the (µ+λ) EA solves
the TSP on V to optimality in expectation and with probability 1−e−Ω(n).

Note that this bound translates to O(max{2kk2n2,λn}) fitness evalua-
tions in expectation, by taking the random numbers counting fitness eval-
uations and generations to be Tf and Tg, respectively, and noting that for
Algorithm 4.7, E[Tf] = µ+λE[Tg]. The proof of Theorem 4.6.9 proceeds by
bounding the time it takes to increase the set of optimal subtours in the
population. In particular, we say that a population is solved to order m when
it contains an individual permutation on a ground set of size m that corre-
sponds to an optimal subtour on that ground set. Obviously, such subtours
are never lost (since they cannot be replaced by a suboptimal subtour), and

4 Parameterized Complexity Analysis of Randomized Search Heuristics 241

Algorithm 4.7: (µ+λ) EA
1 P ←∅;
2 foreach i ∈ {1, . . . ,n−k} do
3 foreach S ⊆ Inn(V) do
4 foreach r ∈ S∪pi do
5 x← a permutation on the ground set S∪{p1,p2, . . . ,pi} such that

x(|S|+ i) = r and x respects γ;
6 P ← P ∪x;

7 repeat forever
8 P ′←{};
9 repeat λ times

10 Select an individual z← x(i,S,r) ∈ P uniformly at random;
11 Draw s from a Poisson distribution with unit expectation;
12 Generate z′← x(i′,S′,r′) by applying the mutation operator s+1 times;
13 Let f(z′) be the cost of TSP tour generated by z′;
14 P ′← P ′∪z′;

/* truncation selection based on the same ground set */
15 foreach offspring z′ in P ′ do
16 Let z′′← x(i′,S′r′) ∈ P be an individual defined on the same ground set

as z′ having the same end vertex if such an individual exists in the
population;

17 if f(z′)≤ f(z′′) then P ← P ∪z′ \z′′;

the initial population is solved to order 1 since it contains the individual
x(p1,∅,p1). The claim follows by bounding the probability of a transforma-
tion from a population solved to order m to one solved to order m+1, and
subsequently taking the waiting time to get a population solved to order n.

4.6.2.2 Inner-Point Permutations

As we saw in Section 4.6.2.1, incorporating domain knowledge into the design
of an EA can allow us to create a randomized FPT algorithm for a particular
parameterization of the Euclidean TSP. Algorithm 4.7, however, potentially
needs a large population, specifically µ = O(2kkn). Another approach is to
keep a small population and use an EA to search for the optimal ordering on
the inner points. Specifically, we let γ = (p1,p2, . . . ,pn−k) be the fixed order
of points in Out(V) as they appear on the convex hull. For any permutation
x : Inn(V)→ Inn(V), it is straightforward to compute the value of the optimal
tour through Inn(V) and Out(V) respecting the order of both γ and x. The
naive approach is to try all O(nk) possible ways of merging the linear orders
of the permutations γ and x. This would violate our FPT requirement, since
the parameter appears in the power of the polynomial. Instead, to preserve

242 Frank Neumann and Andrew M. Sutton

our FPT conditions, we can directly use a dynamic programming approach
to compute the fitness of the permutation x on Inn(V).

We define two (n−k)× (k+1) matrices FOut and F Inn, where FOut[i, j]
(or F Inn[i, j]) stores the value of the minimum-weight subtour of all tours
through points p1,p2, . . . ,pi and x(1),x(2), . . . ,x(j) such that they respect
the orders of both γ and x, and they end on an outer point (or inner point,
respectively). Then the optimal tour given the permutations γ and x is

Dyn(x) = min{FOut[n−k,k]+d(pn−k,p1),F Inn[n−k,k]+d(x(k),p1)}.

Taking the boundary case as FOut[1,0] = 0 (the subtour consisting only of
p1), we can compute

F Inn[i, j] = min{FOut[i, j−1]+d(pi,x(j)),F Inn[i, j−1]+d(x(j−1),x(j))}

for i ∈ {1,2, . . . ,n−k} and j ∈ {1, . . . ,k}, and

FOut[i, j] = min{FOut[i−1, j]+d(pi−1,pi),F Inn[i−1, j]+d(x(j),pi)}

for i ∈ {2,3, . . . ,n−k} and j ∈ {0, . . . ,k}. Entries that do not correspond to
valid subtours, namely FOut[1, j] for j ≥ 1 (since the tour cannot end on p1
and then return to p1) and F Inn[i,0] for i≥ 1 (since a subtour cannot end on
an inner point when the inner-point set is empty), are set to ∞.

The two F matrices can be computed in O(nk) time using dynamic pro-
gramming. Thus, the time complexity of the fitness evaluation of Dyn(x) is
O(nk).

Algorithm 4.8: (µ+λ) EAk

1 Choose a multiset P of µ random permutations on V ;
2 repeat forever
3 P ′←{};
4 repeat λ times
5 Choose x uniformly at random from P ;
6 Draw s from a Poisson distribution with unit expectation;
7 Construct x′ from x by applying s+1 random basic operations;
8 Let f(x′) be Dyn(x′);
9 P ′← P ′∪x′;

10 P ← select(P ⊎P ′) ;

Theorem 4.6.10. Let V be a set of n points in the Euclidean plane with
|Inn(V) | = k. Assuming λ = O(µ), the (µ+ λ) EAk solves the TSP on V
using at most O(µ+(k−1)!k2k) fitness evaluations with the jump operation
as the basic mutation operation. This bound can be improved to O(µ+(k−

4 Parameterized Complexity Analysis of Randomized Search Heuristics 243

2)!k2k−2) by using 2-opt mutation. Moreover, each fitness evaluation has time
complexity O(nk).

Note that we state the theorem slightly differently than in [41], in which the
expected number of generations was proved to be O(max{(k−1)!k2kλ−1,1})
for jumps and O(max{(k−2)!k2k−2λ−1,1}) for 2-opt mutation. The bounds
stated in Theorem 4.6.10 follow by noting that the number of fitness evalua-
tions in Tg generations of Algorithm 4.8 is µ+λTg, and the added assumption
about λ. The proof of Theorem 4.6.10 relies again on the probability that a
given mutation correctly arranges the inner points. Since the mutation oper-
ation performs s+1 random basic operations, where s is Poisson distributed,
the probability that it performs ℓ basic operations is e−1/(ℓ−1)!. On a per-
mutation of length k, a distinct jump (or 2-opt) move is chosen uniformly
at random with probability at least k−2, so the probability that a specific
sequence of ℓ basic operations occurs is at least

p(k,ℓ) = 1
e(ℓ−1)!k2ℓ

.

Therefore, the waiting time to create a globally optimal offspring is bounded
by the diameter of the search space induced by the mutation operator. For 2-
opt, this bound is at most k−1 [3], and for the jump operation, the bound is k.
In the case of jump, the probability that at least one of the λ offspring created
in any generation is optimal is at least 1− (1−p(k,k))λ ≥min{λp(k,k),1−
e−1}. The claim follows from a standard waiting-time argument. We improve
the bound for 2-opt by substituting p(k,k− 1) in the above transformation
probability.

4.7 Conclusion

In this chapter, we have presented an outline of recent results on the param-
eterized complexity analysis of randomized search heuristics. This approach
of incorporating additional salient parameters into running-time analysis al-
lows a finer-grained understanding of the influence of problem structure on
the behavior of these general-purpose optimization techniques.

We have seen that a parameterized analysis can illuminate the inherent
efficiency of particular search operators, as well as reveal the difficult compo-
nents that might arise in the search space of a problem instance. This is the
case for the maximum-leaf spanning tree problem. On graphs where k is the
maximum number of leaves in a spanning tree, a tree-preserving mutation op-
erator guarantees that the (1+1) EA can find such a tree in fixed-parameter
tractable time O(215k2 logk). This is in contrast to standard mutation, for
which there exist graphs with m edges requiring (m/c)Ω(k) steps.

244 Frank Neumann and Andrew M. Sutton

We have also observed that the concept of kernelization from the theory
of parameterized complexity can be useful. Multiobjective algorithms using a
specialized mutation operator can focus the search on a problem kernel of the
vertex cover problem, leading to an FPT running time. We have explored how
parameterized analysis can help to strengthen an understanding of the com-
ponents of very general problem classes on simple evolutionary algorithms.
This is the case, for example, with the maximization of submodular functions
under different constraints.

For the Euclidean TSP, the inner-point parameterization of Deĭneko et
al. [9] illuminates the difficulty for RSH techniques arising from the number
of points that lie inside the convex hull of the instance. This informs the
design of FPT problem-specific evolutionary algorithms, but so far the best
known black-box analysis for this parameterization remains in XP time. An
open problem is therefore either to prove that this is a lower bound for the
parameterization, or to improve the upper bound to FPT time.

Traditional running-time analyses of randomized search heuristics on some
artificial benchmark functions have already implicitly used a parameterized
perspective. One clear example is for the Jump function, the running time
analysis of which is typically parameterized by the jump-gap size (k) and
the string length (n). Indeed, the running-time dichotomy between mutation-
only evolutionary algorithms (Ω(nk) [22]) and recombinant evolutionary al-
gorithms (O(4k poly(n)) [22, 23]) already exhibits an “FPT-like” flavor. The
application of parameterized analysis to running-time analysis of random-
ized search heuristics on combinatorial optimization problems with well-
established parameterizations from the classical community is therefore a
very natural research direction.

Perhaps the most significant research requirement is the need for good
problem parameterizations. This requires theoreticians to work closely with
practitioners in order to understand what problem components are the most
meaningful and relevant in the real world, i.e., what features are most likely to
be manifested (or be restricted) in practice, and what problem characteristics
might be exploitable by different techniques. This emphasizes the importance
of a strong and vibrant relationship between theory and practice.

References

[1] Ageev, A.A., Sviridenko, M.: An 0.828-approximation algorithm for the
uncapacitated facility location problem. Discrete Applied Mathematics
93(2-3), 149–156 (1999)

[2] Arora, S.: Polynomial time approximation schemes for Euclidean trav-
eling salesman and other geometric problems. J. ACM 45(5), 753–782
(1998). DOI 10.1145/290179.290180. URL http://doi.acm.org/10.
1145/290179.290180

http://doi.acm.org/10.1145/290179.290180
http://doi.acm.org/10.1145/290179.290180

4 Parameterized Complexity Analysis of Randomized Search Heuristics 245

[3] Bafna, V., Pevzner, P.A.: Genome rearrangements and sorting by rever-
sals. SIAM Journal of Computing 25(2), 272–289 (1996)

[4] Balinski, M.L.: On maximum matching, minimum covering and their
connections. In: Proceedings of the Princeton Symposium on Mathe-
matical Programming, pp. 434–445 (1970)

[5] Bringmann, K., Friedrich, T.: Parameterized average-case complexity of
the hypervolume indicator. In: C. Blum, E. Alba (eds.) Proceedings
of the Genetic and Evolutionary Computation Conference, pp. 575–582.
ACM (2013). DOI 10.1145/2463372.2463450. URL http://doi.acm.
org/10.1145/2463372.2463450

[6] Chandra, B., Karloff, H., Tovey, C.: New results on the old k-opt algo-
rithm for the traveling salesman problem. SIAM Journal on Computing
28(6), 1998–2029 (1999)

[7] Cornuejols, G., Fisher, M., Nemhauser, G.L.: On the uncapacitated lo-
cation problem. In: Studies in Integer Programming, Annals of Discrete
Mathematics, vol. 1, pp. 163 – 177. Elsevier (1977)

[8] Corus, D., Lehre, P.K., Neumann, F., Pourhassan, M.: A parame-
terised complexity analysis of bi-level optimisation with evolutionary
algorithms. Evolutionary Computation 24(1), 183–203 (2016). DOI
10.1162/EVCO_a_00147. URL https://doi.org/10.1162/EVCO_a_
00147

[9] Deĭneko, V.G., Hoffman, M., Okamoto, Y., Woeginger, G.J.: The travel-
ing salesman problem with few inner points. Operations Research Letters
34, 106–110 (2006)

[10] Doerr, B., Eremeev, A.V., Neumann, F., Theile, M., Thyssen, C.: Evo-
lutionary algorithms and dynamic programming. Theoretical Computer
Science 412(43), 6020–6035 (2011)

[11] Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Al-
gorithmica 64(4), 673–697 (2012)

[12] Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer
(1999)

[13] Englert, M., Röglin, H., Vöcking, B.: Worst case and probabilistic analy-
sis of the 2-opt algorithm for the TSP. In: Proceedings of the Eighteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1295–1304.
Society for Industrial and Applied Mathematics (2007)

[14] Feige, U., Goemans, M.X.: Approximating the value of two power proof
systems, with applications to MAX 2SAT and MAX DICUT. In: Third
Israel Symposium on Theory and Computing Systems (ISTCS), pp. 182–
189 (1995)

[15] Flum, J., Grohe, M.: Parameterized complexity theory. Springer-Verlag
(2006)

[16] Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Approx-
imating covering problems by randomized search heuristics using multi-
objective models. Evolutionary Computation 18(4), 617–633 (2010)

http://doi.acm.org/10.1145/2463372.2463450
http://doi.acm.org/10.1145/2463372.2463450
https://doi.org/10.1162/EVCO_a_00147
https://doi.org/10.1162/EVCO_a_00147

246 Frank Neumann and Andrew M. Sutton

[17] Friedrich, T., Neumann, F.: Maximizing submodular functions under
matroid constraints by evolutionary algorithms. Evolutionary Compu-
tation 23(4), 543–558 (2015). DOI 10.1162/EVCO_a_00159. URL
https://doi.org/10.1162/EVCO_a_00159

[18] Gao, W., Friedrich, T., Neumann, F.: Fixed-parameter single objective
search heuristics for minimum vertex cover. In: J. Handl, E. Hart, P.R.
Lewis, M. López-Ibáñez, G. Ochoa, B. Paechter (eds.) Proceedings of
the Fourteenth International Conference on Parallel Problem Solving
from Nature, Lecture Notes in Computer Science, vol. 9921, pp. 740–
750. Springer (2016). DOI 10.1007/978-3-319-45823-6_69. URL https:
//doi.org/10.1007/978-3-319-45823-6_69

[19] Goemans, M.X., Williamson, D.P.: Improved approximation algorithms
for maximum cut and satisfiability problems using semidefinite program-
ming. Journal of the ACM 42(6), 1115–1145 (1995)

[20] Graham, R.L.: An efficient algorithm for determining the convex hull
of a finite planar set. Information Processesing Letters 1(4), 132–133
(1972). DOI 10.1016/0020-0190(72)90045-2. URL https://doi.org/
10.1016/0020-0190(72)90045-2

[21] Håstad, J.: Some optimal inapproximability results. Journal of the ACM
48(4), 798–859 (2001)

[22] Jansen, T., Wegener, I.: The analysis of evolutionary algorithms: A proof
that crossover really can help. Algorithmica 34(1), 47–66 (2002)

[23] Kötzing, T., Sudholt, D., Theile, M.: How crossover helps in pseudo-
Boolean optimization. In: Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 989–996 (2011)

[24] Kratsch, S., Lehre, P.K., Neumann, F., Oliveto, P.S.: Fixed parameter
evolutionary algorithms and maximum leaf spanning trees: A matter of
mutation. In: R. Schaefer, C. Cotta, J. Kolodziej, G. Rudolph (eds.)
Proceedings of the Eleventh Conference on Parallel Problem Solving
from Nature, Lecture Notes in Computer Science, vol. 6238, pp. 204–
213. Springer-Verlag (2010)

[25] Kratsch, S., Neumann, F.: Fixed-parameter evolutionary algorithms
and the vertex cover problem. Algorithmica 65(4), 754–771 (2013).
DOI 10.1007/s00453-012-9660-4. URL https://doi.org/10.1007/
s00453-012-9660-4

[26] Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Non-monotone
submodular maximization under matroid and knapsack constraints. In:
Proceedings of the Forty-First Annual ACM Symposium on Theory of
Computing, pp. 323–332 (2009)

[27] Lee, J., Sviridenko, M., Vondrák, J.: Submodular maximization over
multiple matroids via generalized exchange properties. Mathematics of
Operations Research 35(4), 795–806 (2010)

[28] Marx, D.: Searching the k-change neighborhood for TSP is W[1]-
hard. Operations Research Letters 36(1), 31–36 (2008). DOI 10.1016/

https://doi.org/10.1162/EVCO_a_00159
https://doi.org/10.1007/978-3-319-45823-6_69
https://doi.org/10.1007/978-3-319-45823-6_69
https://doi.org/10.1016/0020-0190(72)90045-2
https://doi.org/10.1016/0020-0190(72)90045-2
https://doi.org/10.1007/s00453-012-9660-4
https://doi.org/10.1007/s00453-012-9660-4

4 Parameterized Complexity Analysis of Randomized Search Heuristics 247

j.orl.2007.02.008. URL http://www.sciencedirect.com/science/
article/pii/S0167637707000302

[29] Nallaperuma, S., Sutton, A.M., Neumann, F.: Fixed-parameter evolu-
tionary algorithms for the Euclidean traveling salesperson problem. In:
IEEE Congress on Evolutionary Computation (CEC’13), pp. 2037–2044.
IEEE (2013)

[30] Nallaperuma, S., Sutton, A.M., Neumann, F.: Parameterized complexity
analysis and more effective construction methods for ACO algorithms
and the Euclidean traveling salesperson problem. In: Proceedings of
the IEEE Congress on Evolutionary Computation, pp. 2045–2052. IEEE
(2013). DOI 10.1109/CEC.2013.6557810. URL http://dx.doi.org/10.
1109/CEC.2013.6557810

[31] Nemhauser, G.L., Trotter, L.E.: Vertex packings: Structural properties
and algorithms. Mathematical Programming 8, 232–248 (1975)

[32] Neumann, F., Wegener, I.: Randomized local search, evolutionary algo-
rithms, and the minimum spanning tree problem. Theoretical Computer
Science 378(1), 32–40 (2007)

[33] Oliveto, P.S., He, J., Yao, X.: Analysis of the (1+1) EA for finding
approximate solutions to vertex cover problems. IEEE Trans. Evolution-
ary Computation 13(5), 1006–1029 (2009). DOI 10.1109/TEVC.2009.
2014362. URL https://doi.org/10.1109/TEVC.2009.2014362

[34] Pourhassan, M., Gao, W., Neumann, F.: Maintaining 2-approximations
for the dynamic vertex cover problem using evolutionary algorithms.
In: Proceedings of the Conference on Genetic and Evolutionary Com-
putation, GECCO ’15, pp. 903–910. ACM, New York, NY, USA (2015).
DOI 10.1145/2739480.2754700. URL http://doi.acm.org/10.1145/
2739480.2754700

[35] Pourhassan, M., Shi, F., Neumann, F.: Parameterized analysis of multi-
objective evolutionary algorithms and the weighted vertex cover prob-
lem. In: Proceedings of the Fourteenth International Conference of
Parallel Problem Solving from Nature, pp. 729–739. Springer Interna-
tional Publishing (2016). DOI 10.1007/978-3-319-45823-6_68. URL
https://doi.org/10.1007/978-3-319-45823-6_68

[36] Quintas, L.V., Supnick, F.: On some properties of shortest Hamiltonian
circuits. The American Mathematical Monthly 72(9), 977–980 (1965)

[37] Reichel, J., Skutella, M.: Evolutionary algorithms and matroid optimiza-
tion problems. Algorithmica 57(1), 187–206 (2010)

[38] Scharnow, J., Tinnefeld, K., Wegener, I.: The analysis of evolutionary
algorithms on sorting and shortest paths problems. Journal of Mathe-
matical Modelling and Algorithms 3(4), 349–366 (2004)

[39] Sutton, A.M.: Crossover can simulate bounded tree search on a
fixed-parameter tractable optimization problem. In: H.E. Aguirre,
K. Takadama (eds.) Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 1531–1538. ACM (2018). DOI 10.

http://www.sciencedirect.com/science/article/pii/S0167637707000302
http://www.sciencedirect.com/science/article/pii/S0167637707000302
http://dx.doi.org/10.1109/CEC.2013.6557810
http://dx.doi.org/10.1109/CEC.2013.6557810
https://doi.org/10.1109/TEVC.2009.2014362
http://doi.acm.org/10.1145/2739480.2754700
http://doi.acm.org/10.1145/2739480.2754700
https://doi.org/10.1007/978-3-319-45823-6_68

248 Frank Neumann and Andrew M. Sutton

1145/3205455.3205598. URL http://doi.acm.org/10.1145/3205455.
3205598

[40] Sutton, A.M., Neumann, F.: A parameterized runtime analysis of evolu-
tionary algorithms for the Euclidean traveling salesperson problem. In:
Proceedings of the Twenty-Sixth Conference on Artificial Intelligence
(AAAI’12), pp. 1105–1111. AAAI Press (2012)

[41] Sutton, A.M., Neumann, F., Nallaperuma, S.: Parameterized runtime
analyses of evolutionary algorithms for the planar Euclidean travel-
ing salesperson problem. Evolutionary Computation 22(4), 595–628
(2014). DOI 10.1162/EVCO_a_00119. URL https://doi.org/10.
1162/EVCO_a_00119

[42] Theile, M.: Exact solutions to the traveling salesperson problem by
a population-based evolutionary algorithm. In: C. Cotta, P. Cowling
(eds.) Evolutionary Computation in Combinatorial Optimization, Lec-
ture Notes in Computer Science, vol. 5482, pp. 145–155. Springer-Verlag
(2009). DOI 10.1007/978-3-642-01009-5_13. URL http://dx.doi.org/
10.1007/978-3-642-01009-5_13

[43] Witt, C.: Revised analysis of the (1+1) EA for the minimum spanning
tree problem. In: D.V. Arnold (ed.) Genetic and Evolutionary Com-
putation Conference, GECCO ’14, Vancouver, BC, Canada, July 12-16,
2014, pp. 509–516. ACM (2014). DOI 10.1145/2576768.2598237. URL
http://doi.acm.org/10.1145/2576768.2598237

http://doi.acm.org/10.1145/3205455.3205598
http://doi.acm.org/10.1145/3205455.3205598
https://doi.org/10.1162/EVCO_a_00119
https://doi.org/10.1162/EVCO_a_00119
http://dx.doi.org/10.1007/978-3-642-01009-5_13
http://dx.doi.org/10.1007/978-3-642-01009-5_13
http://doi.acm.org/10.1145/2576768.2598237

	Chapter 4 Parameterized Complexity Analysis of Randomized Search Heuristics
	4.1 Introduction
	4.2 Parameterized Complexity Analysis
	4.3 Maximum-Leaf Spanning Trees
	4.4 Minimum Vertex Cover
	4.4.1 Global SEMO
	4.4.2 Parameterized Analysis

	4.5 Submodular Functions with Constraints
	4.5.1 Monotone Functions with Uniform Constraints
	4.5.2 Monotone Submodular Functions under Matroid Constraints
	4.5.3 Symmetric Submodular Functions under Matroid Constraints

	4.6 Euclidean TSP
	4.6.1 Black-Box Algorithms
	4.6.1.1 Avoiding Arbitrarily Small Improvements
	4.6.1.2 Instances in Convex Position
	4.6.1.3 Bounded Number of Inner Points
	4.6.1.4 Mixed-Mutation Strategies

	4.6.2 FPT Evolutionary Algorithms
	4.6.2.1 A Population-Based Approach
	4.6.2.2 Inner-Point Permutations

	4.7 Conclusion
	References

