
Chapter 3
Complexity Theory for Discrete
Black-Box Optimization Heuristics

Carola Doerr

Abstract A predominant topic in the theory of evolutionary algorithms and,
more generally, theory of randomized black-box optimization techniques is
running-time analysis. Running-time analysis is aimed at understanding the
performance of a given heuristic on a given problem by bounding the number
of function evaluations that are needed by the heuristic to identify a solution
of a desired quality. As in general algorithms theory, this running-time per-
spective is most useful when it is complemented by a meaningful complexity
theory that studies the limits of algorithmic solutions.

In the context of discrete black-box optimization, several black-box com-
plexity models have been developed to analyze the best possible performance
that a black-box optimization algorithm can achieve on a given problem. The
models differ in the classes of algorithms to which these lower bounds apply.
This way, black-box complexity contributes to a better understanding of how
certain algorithmic choices (such as the amount of memory used by a heuris-
tic, its selective pressure, or properties of the strategies that it uses to create
new solution candidates) influence performance.

In this chapter we review the different black-box complexity models that
have been proposed in the literature, survey the bounds that have been ob-
tained for these models, and discuss how the interplay of running-time ana-
lysis and black-box complexity can inspire new algorithmic solutions to well-
researched problems in evolutionary computation. We also discuss in this
chapter several interesting open questions for future work.

Carola Doerr
Sorbonne Université, CNRS, LIP6, Paris, France

133
B. Doerr, F. Neumann (eds.), Theory of Evolutionary Computation,
Natural Computing Series, https://doi.org/10.1007/978-3-030-29414-4_3

© Springer Nature Switzerland AG 2020

https://doi.org/10.1007/978-3-030-29414-4_3
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29414-4_3&domain=pdf

134 Carola Doerr

3.1 Introduction and Historical Remarks

One of the driving forces in theoretical computer science is the fruitful in-
terplay between complexity theory and the theory of algorithms. While the
former measures the minimum computational effort that is needed to solve
a given problem, the latter is aimed at designing and analyzing efficient al-
gorithmic solutions which prove that a problem can be solved with a certain
computational effort. When, for a problem, the lower bounds on the resources
needed to solve it are identical to (or not much smaller than) the upper
bounds attained by some specific algorithm, we can be certain that we have
an (almost) optimal algorithmic solution to this problem. Big gaps between
lower and upper bounds, in contrast, indicate that more research effort is
needed to understand the problem: it may be that more efficient algorithms
for the problem exist, or that the problem is indeed “harder” than what the
lower bound suggests.

Many different complexity models coexist in the theoretical computer sci-
ence literature. The arguably most classical one measures the number of
arithmetic operations that an algorithm needs to perform on the problem
data until it obtains a solution for the problem. A solution can be a “yes/no”
answer (a decision problem), a classification of a problem instance according
to some criteria (a classification problem), a vector of decision variables that
maximize or minimize some objective function (an optimization problem), etc.
In the optimization context, we are typically interested only in algorithms
that satisfy some minimal quality requirements such as a guarantee that the
suggested solutions (“the output” of the algorithm) are always optimal or are
optimal with some large enough probability, or that they are not worse than
an optimal solution by more than some additive or multiplicative factor C,
etc.

In the white-box setting, in which the algorithms have full access to the
data describing the problem instance, complexity theory is a well-established
and very intensively studied research objective. In black-box optimization,
where the algorithms do not have access to the problem data and can learn
about the problem at hand only through the evaluation of potential solu-
tion candidates, complexity theory is a much less present topic, with rather
large fluctuations in the number of publications. In the context of heuris-
tic solutions to black-box optimization problems, which is the topic of this
book, complexity theory has been systematically studied only since 2010, us-
ing the notion of black-box complexity. Luckily, black-box complexity theory
can build on results in related research domains such as information theory,
discrete mathematics, cryptography, and others.

In this chapter, we review the state of the art in this currently very active
area of research, which is concerned with bounding the best possible perfor-
mance that an optimization algorithm can achieve in a black-box setting.

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 135

3.1.1 Black-Box vs. White-Box Complexity

Most of the traditional complexity measures assume that the algorithms have
access to the problem data, and count the number of steps that are needed
until the algorithm outputs a solution. In the black-box setting, these com-
plexity measures are not very meaningful, as the algorithms are asked to
optimize a problem without having direct access to it. As a consequence, the
performance of a black-box optimization algorithm is therefore traditionally
measured by the number of function evaluations that the algorithm does until
it queries for the first time a solution that satisfies some specific performance
criteria. In this book, we are mostly interested in the expected number of
evaluations needed until an optimal solution is evaluated for the first time. It
is therefore natural to define black-box complexity as the minimum number
of function evaluations that any black-box algorithm needs to perform, on
average, until it queries an optimal solution for the first time.

We typically consider classes of problems, for example, the set of traveling
salesperson instances of planar graphs with integer edge weights. For such
a class F ⊆ {f : S → R} of problem instances, we take a worst-case view
and measure the expected number of function evaluations that an algorithm
needs to optimize any instance f ∈ F . That is, the black-box complexity
of a problem F is infA supf∈F E[T (A,f)], the best (among all algorithms
A) worst-case (among all problem instances f) expected number E[T (A,f)]
of function evaluations that are needed to optimize any f ∈ F . A formal
definition will be given in Section 3.2.

The black-box complexity of a problem can be very different from its white-
box counterpart. We will discuss, for example, in Sections 3.2.4 and 3.6.3.5
the fact that there are a number of NP-hard problems whose black-box com-
plexity is of small polynomial order.

3.1.2 Motivation and Objectives

The ultimate objective of black-box complexity is to support the investigation
and design of efficient black-box optimization techniques. This is achieved in
several complementary ways.

A first benefit of black-box complexity is that it enables the above-
mentioned evaluation of how well we have understood a black-box optimiza-
tion problem, and how suitable the state-of-the-art heuristics are. Where large
gaps between lower and upper bounds exist, we may want to explore alter-
native algorithmic solutions, in the hope of identifying more efficient solvers.
Where the lower and upper bounds match or are close, we can stop striving
for more efficient algorithms.

Another advantage of black-box complexity studies is that they allow us to
investigate how certain algorithmic choices influence the performance: By re-

136 Carola Doerr

stricting the class of algorithms under consideration, we can judge how these
restrictions increase the complexity of a black-box optimization problem. In
the context of evolutionary computation, interesting restrictions include the
amount of memory that is available to the algorithms, the number of solutions
that are sampled in every iteration, the way new solution candidates are gen-
erated, the selection principles according to which it is decided which search
points to keep for future reference, etc. Comparing the unrestricted with the
restricted black-box complexity of a problem (i.e. its black-box complexity
with respect to all versus that with respect to a subclass of all algorithms)
quantifies the performance loss caused by these restrictions. This way, we can
understand, for example, the effects of not storing the set of all previously
evaluated solution candidates, but only a small subset.

The black-box complexity of a problem can be significantly smaller than
the performance of a best known ‘standard’ heuristic. In such cases, the small
complexity is often attained by a problem-tailored black-box algorithm, which
is not representative of common black-box heuristics. Interestingly, it turns
out that we can nevertheless learn from such highly specific algorithms, as
they often incorporate some ideas that could be beneficial far beyond the
particular problem at hand. As we shall demonstrate in Section 3.9, even for
very well-researched optimization problems, such ideas can give rise to the
design of novel heuristics which are provably more efficient than standard
solutions. This way, black-box complexity serves as a source of inspiration
for the development of novel algorithmic ideas that lead to the design of
better search heuristics.

3.1.3 Relationship to Query Complexity

As indicated above, black-box complexity is studied in several different con-
texts, which reach far beyond evolutionary computation. In the 1960s and
1970s, for example, this complexity measure was very popular in the context
of combinatorial games, such as coin-weighing problems of the type “given n
coins of two different types, what is the minimum number of weighings that is
needed to classify the coins according to their weight?” Interpreting a weigh-
ing as a function evaluation, we see that such questions can be formulated as
black-box optimization problems.

Black-box complexity also plays an important role in cryptography, where
a common research question concerns the minimum amount of information
that suffices to break a secret code. Quantum computing, communication
complexity, and information theory are other research areas where (variants
of) black-box complexity are intensively studied performance measures. While
in these settings the precise model is often not exactly identical to a model
of the kind we are faced with in black-box optimization, some of the tools
developed in these related areas can be useful in our context.

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 137

A significant part of the literature studies the performance of determinis-
tic algorithms. Randomized black-box complexities are much less understood.
They can be much smaller than their deterministic counterparts. Since de-
terministic algorithms form a subclass of randomized ones, any lower bound
proven for the randomized black-box complexity of a problem also applies
to any deterministic algorithm. In some cases, a strict separation between
deterministic and randomized black-box complexities can be proven. This
is the case for the LeadingOnes function, as we shall briefly discuss in
Section 3.3.6. For other problems, the deterministic and randomized black-
box complexities coincide. Characterizing those problems for which access to
random bits can provably decrease the complexity is a wide-open research
question.

In several contexts, in particular the research domains mentioned above,
black-box complexity is typically referred to as query or oracle complexity,
with the idea that the algorithms do not evaluate the function values of
the solution candidates themselves but rather query them from an oracle.
This interpretation is mostly identical to the black-box scenario classically
considered in evolutionary computation.

3.1.4 Scope of This Chapter

In this chapter, as in the remainder of this book, we restrict our attention
to discrete optimization problems, i.e., the maximization or minimization
of functions f : S → R that are defined over finite search spaces S. As in
the previous chapters, we will mostly deal with the optimization of pseudo-
Boolean functions f : {0,1}n → R, permutation problems f : Sn → R, and
functions f : [0..r−1]n → R defined for strings over an alphabet of bounded
size, where, here and in the following, we use the following abbreviations:
[0..r−1] := {0,1, . . . , r−1} represents the set of non-negative integers smaller
than r, [n] := {1,2, . . . ,n}, and Sn represents the set of all permutations (one-
to-one maps) σ : [n]→ [n].

We point out that black-box complexity notions are also studied for infinite
search spaces S. In the context of continuous optimization problems, studies
of black-box complexity are aimed at bounding the best possible convergence
rates that a derivative-free black-box optimization algorithm can achieve,
see [57, 86] for examples.

3.1.5 Target Audience and Complementary Material

This chapter is written with a reader in mind who is familiar with black-
box optimization, and who brings with them some background in theoretical

138 Carola Doerr

running-time analysis. We will give an exhaustive survey of existing results.
Where appropriate, we provide proof ideas and discuss some historical de-
velopments. Readers interested in a more gentle introduction to the basic
concepts of black-box complexity are referred to [61]. A slide presentation on
selected aspects of black-box complexity, along with a summary of complexity
bounds known back in spring 2014, can be found in the tutorial [20].

3.1.6 Overview of the Content

Black-box complexity is formally defined in Section 3.2. We also provide
there a summary of useful tools. In Section 3.2.4 we discuss why classical
complexity statements such as NP-hardness results do not necessarily imply
hardness in the black-box complexity model.

In Sections 3.3-3.7 we review the different black-box complexity models
that have been proposed in the literature. For each model, we discuss the
main results that have been achieved for it. For several benchmark problems,
including most notably OneMax, LeadingOnes, and Jump, but also combi-
natorial problems such as the minimum spanning tree problem and shortest-
paths problems, bounds have been derived for various complexity models.
For OneMax and LeadingOnes, we compare these different bounds in Sec-
tion 3.8, to summarize where gaps between upper and lower bounds exist, and
to highlight the increasing complexities imposed by the restrictive models.

We will demonstrate in Section 3.9 that the complexity-theoretic view of
black-box optimization can inspire the design of more efficient optimization
heuristics. This is made possible by questioning some of the state-of-the-art
choices that are made in evolutionary computation and neighboring disci-
plines.

Finally, we show in Section 3.10 that research efforts originally motivated
by the study of black-box complexity have yielded improved bounds for long-
standing open problems in classical computer science.

In Section 3.11, we conclude this chapter with a summary of open questions
and problems in discrete black-box complexity and directions for future work.

3.2 The Unrestricted Black-Box Model

In this section we introduce the most basic black-box model, which is the
unrestricted one. This model contains all black-box optimization algorithms.
Any lower bound in this model therefore immediately applies to any of the
restricted models which we discuss in Sections 3.4-3.7. We also discuss in
this section some useful tools for the analysis of black-box complexity and

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 139

Fig. 3.1 In the unrestricted black-box model, the algorithm can store the full history
of previously queried search points. For each of these already evaluated candidate solu-
tions x, the algorithm has access to its absolute function value f(x) ∈ R. There are no
restrictions on the structure of the distributions D from which new solution candidates
are sampled.

demonstrate that the black-box complexity of a problem can be very different
from its classical white-box complexity.

The unrestricted black-box model was introduced by Droste, Jansen, We-
gener in [54]. The only assumption that it makes is that the algorithms do
not have any information about the problem at hand other than the fact
that it stems from some function class F ⊆ {f : S → R}. The only way an
unrestricted black-box algorithm can learn about the instance f is by eval-
uating the function values f(x) of potential solution candidates x ∈ S. We
can assume that the evaluation is done by some oracle, from which f(x) is
queried. In the unrestricted model, the algorithms can update after any such
query the strategy by which the next search point(s) are generated. In this
book, we are mostly interested in the performance of randomized black-box
heuristics, so that these strategies are often probability distributions over the
search space from which the next solution candidates are sampled. This pro-
cess continues until an optimal search point x ∈ argmaxf is queried for the
first time.

The algorithms that we are interested in are thus those that maintain a
probability distribution D over the search space S. In every iteration, a new
solution candidate x is sampled from this distribution and the function value
f(x) of this search point is evaluated. After this evaluation, the probability
distribution D is updated according to the information gathered through the
sample (x,f(x)). The next iteration starts again by sampling a search point
from this updated distribution D, and so on. This structure is summarized
in Algorithm 3.1, which models unrestricted randomized black-box algorithms.
A visualization is provided in Fig. 3.1.

Note that in Algorithm 3.1, in every iteration only one new solution candi-
date is sampled. In contrast, many evolutionary algorithms and other black-
box optimization techniques generate and evaluate several search points in
parallel. It is not difficult to see that lower bounds obtained for the un-
restricted black-box complexity described here apply immediately to such
population-based heuristics, since an unrestricted algorithm is free to ignore

140 Carola Doerr

Algorithm 3.1: Blueprint of an unrestricted randomized black-box al-
gorithm

1 Initialization: Sample x(0) according to some probability distribution D(0) over
S and query f(x(0));

2 Optimization: for t= 1,2,3, . . . do
3 Depending on

(
(x(0),f(x(0))), . . . ,(x(t−1),f(x(t−1)))

)
choose a probability

distribution D(t) over S and sample x(t) according to D(t);
4 Query f(x(t));

information obtained from previous iterations. As will be commented on in
Section 3.7.2, the parallel black-box complexity of a function can be (much)
larger than its sequential variant. Taking this idea to the extreme, i.e., requir-
ing the algorithm to neglect information obtained through previous queries
yields so-called nonadaptive black-box algorithms. A prime example for a
nonadaptive black-box algorithm is random sampling (with and without rep-
etitions). Nonadaptive algorithms play only a marginal role in evolutionary
computation. From a complexity point of view, however, it can be interest-
ing to study how much adaptation is needed for an efficient optimization;
see also the discussions in Sections 3.3.2 and 3.10. For most problems, the
adaptive and nonadaptive complexity differ by large factors. For some other
problems, however, the two complexity notions coincide; see Section 3.3.1 for
an example.

Note also that unrestricted black-box algorithms have access to the full his-
tory of previously evaluated solutions. The effects of restricting the available
memory to a population of a certain size will be the focus of the memory-
restricted black-box models discussed in Section 3.4.

In line 3 of Algorithm 3.1 we do not specify how the probability distribution
D(t) is chosen. Thus, in principle, the algorithm can spend significant time
on choosing this distribution. This can result in small polynomial black-box
complexities for NP-hard problems; see Section 3.2.4. Droste, Jansen, and
Wegener [54] therefore suggested restricting the set of algorithms to those
that execute the choice of the distributions D(t) in a polynomial number of
algebraic steps (i.e., polynomial time in the input length, where “time” refers
to the classically considered complexity measure). They called this model the
time-restricted model. In this chapter, we will not study this time-restricted
model. That is, we allow the algorithms to spend arbitrary time on the choice
of the distributions D(t). This way, we obtain very general lower bounds.
Almost all upper bounds stated in this chapter nevertheless apply also to the
time-restricted model. The polynomial bounds for NP-hard problems form,
of course, an exception to this rule.

We comment, finally, on the fact that Algorithm 3.1 runs forever. As we
have seen in previous chapters in this book, the pseudocode in Algorithm 3.1
is a common representation of black-box algorithms in the theory of heuris-

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 141

tic optimization. Not specifying the termination criterion is justified by our
performance measure, which is the expected number of function evaluations
that an algorithm performs until (and including) the first iteration in which
an optimal solution is evaluated; see Definition 3.2.1 below. Other perfor-
mance measures for black-box heuristics have been discussed in the liter-
ature [11, 34, 65], but in the realm of black-box complexity, the average
optimization time is still the predominant performance indicator. See Sec-
tion 3.11 for a discussion of the possibility of extending existing results to
other, possibly more complex performance measures.

3.2.1 Formal Definition of Black-Box Complexity

In this section, we give a very general definition of black-box complexity.
More precisely, we formally define the black-box complexity of a class F of
functions with respect to some class A of algorithms. The unrestricted black-
box complexity will be the complexity of F with respect to all black-box
algorithms that follow the blueprint provided in Algorithm 3.1.

For a black-box optimization algorithm A and a function f : S → R, let
T (A,f) ∈ R∪{∞} be the number of function evaluations that algorithm A
does until and including the evaluation in which it evaluates for the first
time an optimal search point x ∈ argmaxf . As in previous chapters, we call
T (A,f) the running time of A for f or, synonymously, the optimization time
of A for f . When A is a randomized algorithm, T (A,f) is a random variable
that depends on the random decisions made by A. We are mostly interested
in its expected value E[T (A,f)].

With this performance measure in place, the definition of the black-box
complexity of a class F of functions S → R with respect to some class A of
algorithms now follows the usual approach in complexity theory.

Definition 3.2.1. For a given black-box algorithm A, the A-black-box com-
plexity of F is

E[T (A,F)] := sup
f∈F

E[T (A,f)],

the worst-case expected running time of A on F .
The A-black-box complexity of F is

E[T (A,F)] := inf
A∈A

E[T (A,F)],

the minimum (“best”) complexity among all A ∈ A for F .

Thus, formally, the unrestricted black-box complexity of a problem class
F is E[T (A,F)], where A is the collection of all unrestricted black-box algo-
rithms, i.e., all algorithms that can be expressed in the framework of Algo-
rithm 3.1.

142 Carola Doerr

The following lemma formalizes the intuition that every lower bound for
the unrestricted black-box model also applies to any restricted black-box
model.

Lemma 3.2.2. Let F ⊆ {f : S → R}. For every collection A′ of black-box
optimization algorithms for F , the A′-black-box complexity of F is at least
as large as its unrestricted black-box complexity.

Formally, this lemma holds because A′ is a subclass of the set A of all un-
restricted black-box algorithms. The infimum in the definition of E[T (A′,F)]
is therefore taken over a smaller class, thus giving values that are at least as
large as E[T (A,F)].

3.2.2 Tools for Proving Lower Bounds

Lemma 3.2.2 shows that the unrestricted black-box complexity of a class F
of functions is a lower bound for the performance of any black-box algorithm
on F . In other words, no black-box algorithm can optimize F more effi-
ciently than what the unrestricted black-box complexity of F indicates. We
are therefore particularly interested in proving lower bounds for the black-box
complexity of a problem. This is the topic of this section.

To date, the most powerful tool to prove lower bounds for randomized
query complexity models such as our unrestricted black-box model is the so-
called minimax principle of Yao [88]. In order to discuss this principle, we first
need to recall that we can interpret every randomized unrestricted black-box
algorithm as a probability distribution over deterministic algorithms. In fact,
randomized black-box algorithms are often defined this way.

Deterministic black-box algorithms are those for which the probability dis-
tributions in line 3 of Algorithm 3.1 are one-point distributions. That is, for
every t and for every sequence

(
(x(0),f(x(0))), . . . ,(x(t−1),f(x(t−1)))

)
of previous queries, there exists a search point s ∈ S such
that D(t)

((
(x(0),f(x(0))), . . . ,(x(t−1),f(x(t−1)))

))
(s) = 1 and

D(t)
((

(x(0),f(x(0))), . . . ,(x(t−1),f(x(t−1)))
))

(y) = 0 for all y ̸= s. In
other words, we can interpret deterministic black-box algorithms as decision
trees. A decision tree for a class F of functions is a rooted tree in which the
nodes are labeled by the search points that the algorithm queries. The first
query is the label of the root node, say x(0). The edges from the root node to
its neighbors are labeled with the possible objective values {g(x(0)) | g ∈ F}.
After evaluating f(x(0)), the algorithm follows the (unique) edge {x(0),x(1)}
which is labeled with the value f(x(0)). The next query is the label of the
endpoint x(1) of this edge. We call x(1) a level-1 node. The level-2 neighbors
of x(0) (i.e., all neighbors of x(1) except the root node x(0)) are the potential
search points to be queried in the next iteration. As before, the algorithm

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 143

chooses as the next query the neighbor x(2) of x(1) to which the unique
edge labeled with the value f(x(1)) leads. This process continues until an
optimal search point has been queried. The optimization time T (A,f) of the
algorithm A on the function f equals the depth of this node plus one (the
“plus one” accounts for the evaluation of the root node).

We can easily see that, in this model, it does not make sense to query the
same search point twice. Such a query would not reveal any new information
about the objective function f . For this reason, on every rooted path in the
decision tree, every search point appears at most once. This shows that the
depth of the decision tree is bounded by |S|−1. The width of the tree, however,
can be as large as the size of the set F(S) := {g(s) | g ∈ F ,s ∈ S}, which can
be infinite or even uncountable, for example, if F equals the set of all linear
or monotone functions f : {0,1}n →R. As we shall see below, Yao’s minimax
principle can only be applied to problems for which F(S) is finite. Luckily, it
is often possible to identify subclasses F ′ of F for which F ′(S) is finite and
whose complexity is identical to or not much smaller than that of the whole
class F .

When S and F(S) are finite, the number of (nonrepetitive) deterministic
decision trees, and hence the number of deterministic black-box algorithms
for F , is finite. In this case, we can apply Yao’s minimax principle. This the-
orem, intuitively speaking, allows us to restrict our attention to bounding
the expected running time E[T (A,f)] of a best possible deterministic algo-
rithm A on a random instance f taken from F according to some probability
distribution p. By Yao’s minimax principle, this best possible expected run-
ning time is a lower bound for the expected performance of a best possible
randomized algorithm on an arbitrary input. In our words, it is thus a lower
bound on the unrestricted black-box complexity of the class F .

Analyzing deterministic black-box algorithms is often considerably easier
than directly bounding the performance of any possible randomized algo-
rithm. An a priori challenge in applying this theorem is the identification of
a probability distribution p on F for which the expected optimization time
of a best possible deterministic algorithm is large. Luckily, for many appli-
cations some rather simple distributions on the inputs suffice, for example
the uniform distribution, which assigns equal probability to each problem
instance f ∈ F . Another difficulty in the application of the theorem is the
above-mentioned identification of subclasses F ′ of F for which F ′(S) is finite.

Formally, Yao’s minimax principle reads as follows.

Theorem 3.2.3 (Yao’s minimax principle). Let Π be a problem with a
finite set I of input instances (of a fixed size) permitting a finite set A of
deterministic algorithms. Let p be a probability distribution over I and let q
be a probability distribution over A. Then,

min
A∈A

E[T (Ip,A)]≤max
I∈I

E[T (I,Aq)] ,

144 Carola Doerr

where Ip denotes a random input chosen from I according to p, Aq denotes
a random algorithm chosen from A according to q, and T (I,A) denotes the
running time of algorithm A on input I.

The formulation of Theorem 3.2.3 is taken from the book by Motwani and
Raghavan [77], where an extended discussion of this principle can be found.

A straightforward but still quite handy application of Yao’s minimax prin-
ciple gives the following lower bound.

Theorem 3.2.4 (simple information-theoretic lower bound, Theo-
rem 2 in [54]). Let S be finite. Let F be a set of functions {f : S → R}
such that for every s ∈ S there exists a function fs ∈ F for which the size of
fs(S) := {fs(x) | x∈ S} is bounded by k and for which s is a unique optimum,
i.e., argmaxfs = {s} and |fs(S)| ≤ k. The unrestricted black-box complexity
of F is at least ⌈logk(|S|)⌉−1.

To prove Theorem 3.2.4 it suffices to select for every s ∈ S one function
fs as in the statement and to consider the uniform distribution over the set
{fs | s ∈ S}. Every deterministic black-box algorithm that eventually solves
any instance fs has to have at least one node labeled s. We therefore need
to distribute all |S| potential optima on the decision tree that corresponds to
this deterministic black-box algorithm. Since the outdegree of every node is
bounded from above by k, the average distance from a node to the root is at
least ⌈logk(|S|)⌉−2.

An informal interpretation of Theorem 3.2.4, which in addition ignores
the rounding of the logarithms, is as follows. In the setting of Theorem 3.2.4,
optimizing a function fs corresponds to learning s. A binary encoding of the
optimum s requires log2(|S|) bits. With every query, we obtain at most log2(k)
bits of information, namely, the number of bits needed to encode which of the
at most k possible objective values is assigned to the queried search point. We
therefore need to query at least log2(|S|)/ log2(k) = logk(|S|) search points
to obtain the information that is required to decode s. This “hand-wavy”
interpretation often gives a good first idea of the lower bounds that can be
proven by Theorem 3.2.4.

This intuitive proof for Theorem 3.2.4 shows that it works best if at every
search point exactly k answers are possible, and each of them is equally likely.
This situation, however, is not typical for black-box optimization processes,
where usually only a (possibly small) subset of function values are likely to
appear next. As a rule of thumb, the larger the difference of the potential
function value from the function value of the current best solution, the less
likely an algorithm is to obtain it in the next iteration. Such transition prob-
abilities are not taken into account in Theorem 3.2.4. The theorem also does
not cover very well the situation in which, at a certain step, fewer than k
answers are possible. Even for fully symmetric problem classes, this situation
is likely to appear in the later parts of the optimization process, where those
problem instances that are still aligned with all previously evaluated function
values all map the next query to one out of fewer than k possible function

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 145

values. Covering these two shortcomings of Theorem 3.2.4 is one of the main
challenges in black-box complexity. One step in this direction is the matrix
lower bound theorem presented in [9] and the subsequent publication [7]. As
also acknowledged there, however, the verification of the conditions under
which these two generalizations apply is often quite tedious, so that the two
methods are unfortunately not yet easily and very generally applicable. So
far, they have been used to derive lower bounds for the black-box complex-
ity of the OneMax and the Jump benchmark functions; see Sections 3.3.2
and 3.3.7.

Another tool that will be very useful in the subsequent sections is the fol-
lowing theorem, which allows us to transfer lower bounds proven for a simpler
problem to a problem that is derived from it by a composition with another
function. Most notably, it allows us to bound the black-box complexity of
functions of unitation (i.e; functions for which the function value depends
only on the number of ones in the string) by that of the OneMax problems.
We will apply this theorem to show that the black-box complexity of the
jump functions is at least as large as that of OneMax; see Section 3.3.7.

Theorem 3.2.5 (generalization of Theorem 2 in [28]). For all problem
classes F , all classes of algorithms A, and all maps g : R→ R that are such
that for all f ∈F it holds that {x | g(f(x)) optimal}= {x | f(x) optimal} the
A-black-box complexity of g(F) := {g ◦ f | f ∈ F} is at least as large as that
of F .

The intuition behind Theorem 3.2.5 is that with a knowledge of f(x), we
can compute g(f(x)), so that every algorithm that optimizes g(F) can also
be used to optimize F , by evaluating the f(x) values, feeding g(f(x)) to the
algorithm, and querying the solution candidates that this algorithm suggests.

3.2.3 Tools to Prove Upper Bounds

We now present general upper bounds for the black-box complexity of a
problem. We recall that, by definition, a small upper bound for the black-
box complexity of a problem F shows that there exists an algorithm which
solves every problem instance f ∈ F efficiently. When the upper bound for a
problem is smaller than the expected performance of well-understood search
heuristics, the question of whether these state-of-the-art heuristics can be
improved or whether the unrestricted black-box model is too generous arises.

The simplest upper bound for the black-box complexity of a class F of
functions is the expected performance of random sampling without repeti-
tions.

Lemma 3.2.6. For every finite set S and every class F ⊂ {f : S → R} of
real-valued functions over S, the unrestricted black-box complexity of F is at
most (|S|+1)/2.

146 Carola Doerr

This simple bound can be tight, as we shall discuss in Section 3.3.1. A
similarly simple upper bound is presented in the next subsection.

3.2.3.1 Function Classes vs. Individual Instances

In all of the above we have discussed the black-box complexity of a class of
functions, and not of individual problem instances. This is justified by the
following observation, which also explains why in the following we will usually
consider generalizations of the benchmark problems typically studied in the
theory of randomized black-box optimization.

Lemma 3.2.7. For every function f : S →R, the unrestricted black-box com-
plexity of the class {f} that consists only of f is one. The same holds for any
class F of functions that all have their optimum at the same point, i.e., for
which there exists a search point x ∈ S such that, for all f ∈F , x ∈ argmaxf
holds.

More generally, if F is a collection of functions f :S→R and X ⊆S is such
that for all f ∈F there exists at least one point x∈X such that x∈ argmaxf ,
the unrestricted black-box complexity of F is at most (|X|+1)/2.

For every finite set F of functions, the unrestricted black-box complexity
is bounded from above by (|F|+1)/2.

The proof of this lemma is quite straightforward. For the first statement,
the algorithm which queries any point in argmaxf in the first query certifies
this bound. Similarly, the second statement is certified by the algorithm that
queries x in the first iteration. The algorithm which queries the points in
X in random order proves the third statement. Finally, note that the third
statement implies the fourth by letting X be the set that contains, for each
function f ∈ F , one optimal solution xf ∈ argmaxf .

Lemma 3.2.7 indicates that function classes F for which ∪f∈F argmaxf
or, more precisely, for which a small set X as in the third statement of
Lemma 3.2.7 exists are not very interesting research objects in the unre-
stricted black-box model. We therefore typically choose generalizations of
the benchmark problems in such a way that any set X which contains for
each objective function f ∈F at least one optimal search point has to be large.
We shall often even have |X| = |F|, i.e., the optima of any two functions in
F are pairwise different.

We will see in Section 3.6 that Lemma 3.2.7 does not apply to all of the
restricted black-box models. In fact, in the unary unbiased black-box model
considered there, the black-box complexity of a single function can be of order
n logn. That is, even if the algorithm “knows” where the optimum is, it may
still need Ω(n logn) steps to generate it.

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 147

3.2.3.2 Upper Bounds via Restarts

In several situations, rather than bounding the expected optimization time
of a black-box heuristic, it can be easier to show that the probability that it
solves a given problem within s iterations is at least p. If p is large enough
(for an asymptotic bound, it suffices that this success probability is constant),
then a restarting strategy can be used to obtain upper bounds on the black-
box complexity of the problem. Either the algorithm is finished after at most
s steps, or it is initialized from scratch, independently of all previous runs.
This way, we obtain the following lemma.

Lemma 3.2.8 (Remark 7 in [37]). Suppose for a problem F that there
exists an unrestricted black-box algorithm A that, with constant success prob-
ability, solves any instance f ∈F in s iterations (that is, it queries an optimal
solution within s queries). Then the unrestricted black-box complexity of F is
at most O(s).

Lemma 3.2.8 also applies to almost all of the restricted black-box models
that we will discuss in Sections 3.4-3.7. In general, it applies to all black-box
models in which restarts are allowed. It does not apply to the (strict version
of the) elitist black-box model, which we discuss in Section 3.7.4.

3.2.4 Polynomial Bounds for NP-Hard Problems

Our discussion in Section 3.1.1 indicates that the classical complexity no-
tions developed for white-box optimization and decision problems are not
very meaningful in the black-box setting. This is impressively demonstrated
by a number of NP-hard problems that have a small polynomial black-box
complexity. We present such an example here, taken from [54, Section 3].

One of the best-known NP-complete problems is MaxClique. For a given
graph G=(V,E) of |V |=n nodes and for a given parameter k, it asks whether
there exists a complete subgraph G′ = (V ′ ⊆ V,E′ := E ∩{{u,v} ∈ E | u,v ∈
V ′}) of size |V ′| ≥ k. A complete graph is a graph in which every two vertices
are connected by a direct edge between them. The optimization version of
MaxClique asks us to find a complete subgraph of the largest possible size.
A polynomial-time optimization algorithm for this problem implies P=NP.

The unrestricted black-box complexity of MaxClique is, however, only
of order n2. This bound can be achieved as follows. In the first

(n
2
)
queries,

the algorithm queries the presence of individual edges. This way, it learns the
structure of the problem instance. From this information, all future solution
candidates can be evaluated without any oracle queries. That is, a black-
box algorithm can now compute an optimal solution offline, i.e., without
the need for further function evaluations. This offline computation may take
exponential time, but in the black-box complexity model, we do not charge

148 Carola Doerr

the algorithm for the time needed between two queries. The optimal solution
of the MaxClique instance can be queried in the

((n
2
)
+1

)
-st query.

Theorem 3.2.9 (Section 3 in [54]). The unrestricted black-box complexity
of MaxClique is at most

(n
2
)
+1 and thus O(n2).

Several similar results can be obtained. For most of the restricted black-
box complexity models this has been explicitly done; see also Section 3.6.3.5.

One way to avoid such small complexities would be to restrict the time
that an algorithm can spend between any two queries. This suggestion was
made in [54]. In our opinion, this requirement would, however, carry a few
disadvantages such as a mixture of different complexity measures. We will
therefore, in this chapter, not explicitly verify that the algorithms run in
polynomial time. Most upper bounds are nevertheless easily seen to be ob-
tained by polynomial-time algorithms. Where polynomial bounds are proven
for NP-hard problems, there must be at least one iteration for which the
respective algorithm, according to today’s knowledge, needs excessive time.

3.3 Known Black-Box Complexities in the Unrestricted
Model

We survey existing results for the unrestricted black-box model, and proceed
by problem type. For each benchmark problem considered, we first introduce
its generalization to classes of similar problem instances. We discuss which
of characteristics of the original problem are maintained in these general-
izations. We will see that for some classical benchmark problems, different
generalizations have been proposed in the literature.

3.3.1 Needle

Our first benchmark problem is an example that shows that the simple upper
bound given in Lemma 3.2.6 can be tight. The function that we generalize
is the Needle function, which assigns 0 to all search points s ∈ S except for
one distinguished optimum, which has a function value of one. In order to
obtain the above-mentioned property that every function in the generalized
class has a different optimum than any other function (see the discussion
after Lemma 3.2.7), while at the same time maintaining the characteristics
of the problem, the following generalization is made. For every s ∈ S, we let
fs : S → R be the function which assigns the function value 1 to the unique
optimum s ∈ S and 0 to all other search points x ̸= s. We let Needle(S) :=
{fs | s ∈ S} be the set of all such functions.

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 149

Confronted with such a function fs, we do not learn anything about the
target string s until we have found it. It seems quite intuitive that the best we
can do in such a case is to query search points at random, without repetitions.
That this is indeed optimal is the statement of the following theorem, which
can be easily proven by Yao’s minimax principle applied to Needle(S) with
the uniform distribution.

Theorem 3.3.1 (Theorem 1 in [54]). For every finite set S, the unre-
stricted black-box complexity of Needle(S) is (|S|+1)/2.

3.3.2 OneMax

The best-studied benchmark function in the theory of randomized black-box
optimization is certainly OneMax. OneMax assigns to each bit string x of
length n the number

∑n
i=1xi of ones in it. The natural generalization of this

particular function to a nontrivial class of functions is as follows.

Definition 3.3.2 (OneMax). For all n ∈ N and all z ∈ {0,1}n let

OMz : {0,1}n → [0..n],x 7→ OMz(x) = |{i ∈ [n] | xi = zi}|,

the function that assigns to each length-n bit string x the number of bits
in which x and z agree. Being the unique optimum of OMz, the string z is
called its target string.

We refer to OneMaxn := {OMz | z ∈ {0,1}n} as the set of all (generalized)
OneMax functions. We will often omit the subscript n.

We easily observe that, for every n, the original OneMax function OM
counting the number of ones corresponds to OM(1,...,1). It is, furthermore,
not difficult to prove that, for every z ∈ {0,1}n, the fitness landscape of OMz

is isomorphic to that of OM. This can be seen by observing that OMz(x) =
OM(x⊕z⊕(1, . . . ,1)) for all x,z ∈ {0,1}n, which shows that OMz =OM◦αz

for the Hamming automorphism αz : {0,1}n → {0,1}n,x 7→ x⊕ z⊕ (1, . . . ,1).
As we shall discuss in Section 3.6, a Hamming automorphism is a one-to-
one map α : {0,1}n → {0,1}n such that for all x and all z the Hamming
distance between x and z is identical to that between α(x) and α(z). This
shows that the generalization of OM to functions OMz preserves its problem
characteristics. In essence, the generalization is just a “relabeling” of the
search points.

3.3.2.1 The Unrestricted Black-Box Complexity of OneMax

With Definition 3.3.2 at hand, we can study the unrestricted black-box com-
plexity of this important class of benchmark functions.

150 Carola Doerr

Interestingly, it turns out that the black-box complexity of OneMaxn

has been studied in several different contexts, long before Droste, Jansen,
and Wegener introduced black-box complexity. In fact, Erdős and Rényi [55]
as well as several other authors studied it in the early 1960s, inspired by a
question about so-called coin-weighing problems.

In our terminology, Erdős and Rényi [55] showed that the unrestricted
black-box complexity of OneMax is at least (1− o(1))n/ log2(n) and at
most (1 + o(1)) log2(9)n/ log2(n). The upper bound was improved to (1 +
o(1))2n/ log2(n) in [10, 73, 74]. Identical or weaker bounds have been proven
several times in the literature. Some publications appeared at the same time
as the work of Erdős and Rényi (see the discussion in [6]), and some much
later [2, 6, 54].

Theorem 3.3.3 ([10, 55, 73, 74]). The unrestricted black-box complexity
of OneMax is at least (1−o(1))n/ log2(n) and at most (1+o(1))2n/ log2(n).
It is thus Θ(n/ logn).

The lower bound in Theorem 3.3.3 follows from Yao’s minimax principle,
applied to OneMaxn with the uniform distribution. Informally, we can use
the arguments given after Theorem 3.2.4: since the optimum can be anywhere
in {0,1}n, we need to learn the n bits of the target string z. With each function
evaluation, we receive at most log2(n+1) bits of information, namely the
objective value, which is an integer between 0 and n. We therefore need at
least (roughly) n/ log2(n+1) iterations. Using Theorem 3.2.4, this reasoning
can be turned into a formal proof.

The upper bound given in Theorem 3.2.4 is quite interesting because it is
obtained by a very simple strategy. Erdős and Rényi showed that O(n/ logn)
bit strings sampled independently and uniformly at random from the hyper-
cube {0,1}n have a high probability of revealing the target string. That is,
an asymptotically optimal unrestricted black-box algorithm for OneMax can
just sample O(n/ logn) random samples. From these samples and the corre-
sponding objective values, the target string can be identified without further
queries. Its computation, however, may not be possible in polynomial time.
The fact that OneMaxn can be optimized in O(n/ logn) queries also in poly-
nomial time was proven in [6].1 The reader interested in a formal analysis of
the strategy used by Erdős and Rényi may refer to Section 3 of [35], where a
detailed proof of the O(n/ logn) random sampling strategy is presented.

In the context of learning, it is interesting to note that the random sam-
pling strategy of Erdős and Rényi is nonadaptive, i.e., the t-th search point
does not depend on the previous t− 1 evaluations. In the black-box con-
text, a last query, in which the optimal solution is evaluated, is needed. This
query certainly depends on the previous O(n/ logn) evaluations, but note

1 Bshouty [6] mentions that also the constructions of Lindström [73, 74] and Cantor and
Mills [10] can be done in polynomial time. But this was not explicitly mentioned in the
latter publications. The method of Bshouty also has the advantage that it generalizes
to OneMax functions over alphabets larger than {0,1}; see also Section 3.10.

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 151

that here we know the answer to this evaluation already (with high proba-
bility). For nonadaptive strategies, learning z with (1+o(1))2n/ logn queries
is optimal [55]. The intuitive reason for this lower bound is that a random
guess typically has an objective value close to n/2. More precisely, instead
of using the whole range of n+1 possible answers, almost all function values
are in an O(

√
n) range around n/2, giving, very informally, the lower bound

log2(n)/ log2(O(
√
n)) =Ω(2n/ logn).

Using the probabilistic method (or the constructive result of Bshouty [6]),
the random sampling strategy can be derandomized. This derandomization
says that for every n, there is a sequence of t=Θ(n/ logn) strings x(1), . . . ,x(t)
such that the objective values OMz(x(1)), . . . ,OMz(x(t)) uniquely determine
the target string z. Such a derandomized version will be used in later parts
of this chapter, for example, in the context of the k-ary unbiased black-box
complexity of OneMax studied in Section 3.6.3.2.

Theorem 3.3.4 (from [55] and others). For every n there is a sequence
x(1), . . . ,x(t) of t=Θ(n/ logn) bit strings such that for every two length-n bit
strings y ̸= z there exists an index i with OMz(x(i)) ̸= OMy(x(i)).

For some very concrete OneMax instances, i.e., for instances of bounded
dimension n, very precise bounds for the black-box complexity are known;
see [7] and the pointers in [29, Section 1.4] for details. Here, in this chapter,
we are only concerned with the asymptotic complexity of OneMaxn with
respect to the problem dimension n. Unsurprisingly, this benchmark problem
will also be studied in almost all of the restricted black-box models that
we describe in the subsequent sections. A summary of known results can be
found in Section 3.8.

3.3.3 BinaryValue

Another intensively studied benchmark function is the binary-value function
BV(x) :=

∑n
i=1 2i−1xi, which assigns to each bit string the value of the bi-

nary number it represents. As 2i >
∑i

j=1 2j−1, the bit value of the bit i+1
dominates the effect of all bits 1, . . . , i on the function value.

Two straightforward generalizations of BV to function classes exist. The
first one is the collection of all functions

BVz : {0,1}n → [0..2n],x 7→
n∑

i=1
2i−11(xi,zi),

where 1(a,b) := 1 if and only if a = b, and 1(a,b) := 0 otherwise. In light of
Definition 3.3.2, this may seem like a natural extension of BV to a class of
functions. It also satisfies our sought condition that for any two functions
BVz ̸= BVz′ the respective optima z and z′ differ, so that the smallest set

152 Carola Doerr

containing its optimum for each function is the full n-dimensional hypercube
{0,1}n. However, we can easily see that the unrestricted black-box complexity
of the set BinaryValue∗

n := {BVz | z ∈ {0,1}n} so defined is very small.

Theorem 3.3.5 (Theorem 4 in [54]). The unrestricted black-box complex-
ity of BinaryValue∗

n is 2−2−n.

Proof. The lower bound follows from observing that, for an instance BVz

for which z is chosen uniformly at random, the probability of querying the
optimum z in the first query is 2−n. In all other cases, at least two queries
are needed.

For the upper bound, we only need to observe that for any two target
strings z ̸= z′ and for every search point x ∈ {0,1}n we have BVz(x) ̸=
BVz′(x). More precisely, it is easy to see that from BVz(x) we can eas-
ily determine for which bits i ∈ [n] the bit value of xi is identical to zi. This
shows that by querying the objective value of a random string in the first
query we can compute the optimum z, which we query in the second itera-
tion if the first value is not already optimal. ⊓⊔

Theorem 3.3.5 is possible because the objective values disclose a lot of infor-
mation about the target string. A second generalization of BV has therefore
been suggested in the literature. In light of the typical behavior of black-box
heuristics, which do not discriminate between bit positions, and in particu-
lar with respect to the unbiased black-box model defined in Section 3.6, this
variant seems to be the more “natural” choice in the context of evolutionary
algorithms. This second generalization of BV collects together all functions
BVz,σ, defined as

BVz,σ : {0,1}n → N0,x 7→
n∑

i=1
2i−1δ(xσ(i),zσ(i)) .

Denting by σ(x) the string (xσ(1) . . .xσ(n)), we easily see that BVz,σ(x) =
BV

(
σ(x⊕z⊕(1, . . . ,1))

)
, thus showing that the class {BVz,σ | z ∈ {0,1}n,σ ∈

Sn} can be obtained from BV by composing it with an ⊕-shift of the bit
values and a permutation of the indices i ∈ [n]. Since z = argmaxBVz,σ, we
call z the target string of BVz,σ. Similarly, we call σ the target permutation
of BVz,σ.

Going through the bit string one by one, i.e., flipping one bit at a time,
shows that at most n+1 function evaluations are needed to optimize any
BVz,σ instance. This simple upper bound can be improved by observing that
for each query x and for each i∈ [n] we can derive from BVz,σ(x) whether or
not xσ(i) = zσ(i), even if we cannot yet locate σ(i). Hence, all we need to do
is to identify the target permutation σ. This can be done by a binary search,
which gives the following result.

Theorem 3.3.6 (Theorem 16 in [44]). The unrestricted black-box complex-
ity of BinaryValuen := {BVz,σ | z ∈ {0,1}n,σ ∈ Sn} is at most ⌈log2n⌉+2.

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 153

In a learning-related sense, in which we want to learn both z and σ, the
bound in Theorem 3.3.6 is tight, as, informally, the identification of σ requires
us to learn Θ(log(n!)) = Θ(n logn) bits, while with every query we obtain
log2(2n) = n bits of information. In our optimization context, however, we do
not necessarily need to learn σ in order to optimize BVz,σ. A similar situation
will be discussed in Section 3.3.6, where we study the unrestricted black-box
complexity of LeadingOnes. For LeadingOnes, it can be formally proven
that the complexities of optimization and learning are identical (up to at
most n queries). We are not aware of any formal statement showing whether
or not a similar argument holds for the class BinaryValuen.

3.3.4 Linear Functions

OM and BV are representatives of the class of linear functions f : {0,1}n →
R,x 7→

∑n
i=1 fixi. We can generalize this class in the same way as above to

obtain the collection

Linearn :=
{
fz : {0,1}n → R,x 7→

n∑
i=1

fi1(xi,zi) | z ∈ {0,1}n
}

of generalized linear functions. OneMaxn and BinaryValuen are both con-
tained in this class.

Not much is known about the black-box complexity of this class. The only
known bounds are summarized by the following theorem.

Theorem 3.3.7 (Theorem 3.3.3 above and Theorem 4 in [54]). The
unrestricted black-box complexity of the class Linearn is at most n+1 and
at least (1−o(1))n/ log2n.

The upper bound is attained by an algorithm that starts with a random or
a fixed bit string x and flips one bit at a time, using the better of the parent
and the offspring as the starting point for the next iteration. A linear lower
bound seems likely, but has not been formally proven.

3.3.5 Monotone and Unimodal Functions

For the sake of completeness, we mention that the class Linearn is a subclass
of the class of generalized monotone functions.

Definition 3.3.8 (monotone functions). Let n ∈ N and let z ∈ {0,1}n.
A function f : {0,1}n → R is said to be monotone with respect to z if for
all y,y′ ∈ {0,1}n with {i ∈ [n] | yi = zi} ⊊ {i ∈ [n] | y′i = zi} it holds that

154 Carola Doerr

f(y) < f(y′). The class Monotonen contains all such functions that are
monotone with respect to some z ∈ {0,1}n.

The above-mentioned algorithm which flips one bit at a time (see the
discussion after Theorem 3.3.7) solves any of these instances in at most n+1
queries, giving the following theorem.

Theorem 3.3.9. The unrestricted black-box complexity of the class
Monotonen is at most n+1 and at least (1−o(1))n/ log2n.

Monotone functions are instances of so-called unimodal functions. A func-
tion f is unimodal if and only if for every nonoptimal search point x there
exists a direct neighbor y of x with f(y)> f(x). The unrestricted black-box
complexity of this class of unimodal functions was studied in [54, Section 8],
where a lower bound that depends on the number of different function values
that the objective functions can map to was presented.

3.3.6 LeadingOnes

After OneMax, probably the second most investigated function in the theory
of discrete black-box optimization is the leading-ones function LO : {0,1}n →
[0..n], which assigns to each bit string x the length of the longest prefix of
ones, i.e., LO(x) := max{i ∈ [0..n] | ∀j ∈ [i] : xj = 1}. Like for BinaryValue,
two generalizations have been studied, an ⊕-invariant version and an ⊕- and
permutation-invariant version. As a consequence of the unbiased black-box
complexity model which we will discuss in Section 3.6, the latter is the more
frequently studied.

Definition 3.3.10 (LeadingOnes function classes). Let n ∈ N. For any
z ∈ {0,1}n, let

LOz : {0,1}n → N,x 7→max{i ∈ [0..n] | ∀j ∈ [i] : xj = zj} ,

the length of the maximal joint prefix of x and z. Let LeadingOnes∗n :=
{LOz | z ∈ {0,1}n} .

For z ∈ {0,1}n and σ ∈ Sn, let

LOz,σ : {0,1}n → N,x 7→max{i ∈ [0..n] | ∀j ∈ [i] : xσ(j) = zσ(j)} ,

the maximal joint prefix of x and z with respect to σ. The set LeadingOnesn
is the collection of all such functions, i.e.,

LeadingOnesn := {LOz,σ | z ∈ {0,1}n,σ ∈ Sn} .

The unrestricted black-box complexity of the set LeadingOnes∗n is easily
seen to be around n/2. This is the complexity of the algorithm which starts

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 155

with a random string x and, given an objective value of LOz(x), replaces x
by the string that is obtained from x by flipping the LOz(x)+1-st bit in x.
The lower bound is a simple application of Yao’s minimax principle to the
uniform distribution over all possible problem instances. It is crucial here
to note that the algorithms do not have any information about the “tail”
(zj . . .zn) until they have seen for the first time a search point of function
value at least j−1.

Theorem 3.3.11 (Theorem 6 in [54]). The unrestricted black-box com-
plexity of the set LeadingOnes∗n is n/2± o(n). The same holds for the set
{LOz,σ | z ∈ {0,1}n}, for any fixed permutation σ ∈ Sn.

The unrestricted black-box complexity of LeadingOnesn is also quite
well understood.

Theorem 3.3.12 (Theorem 4 in [1]). The unrestricted black-box complex-
ity of LeadingOnesn is Θ(n log logn).

Both the upper and the lower bounds in Theorem 3.3.12 are quite involved.
For the lower bound, Yao’s minimax principle is applied to the uniform dis-
tribution over the instances LOz,σ with zσ(i) := (i mod 2), i= 1, . . . ,n. Infor-
mally, this choice indicates that the complexity of the LeadingOnes problem
originates in the difficulty of identifying the target permutation. Indeed, as
soon as we know the permutation, we need at most n+1 queries to identify
the target string z (and only around n/2 on average, by Theorem 3.3.11). To
measure the amount of information that an algorithm can have about the
target permutation σ, a potential function is designed that maps each search
point x to a real number. To prove the lower bound in Theorem 3.3.12, it
is necessary to show that, for every query x, the expected increase in this
potential is not very large. Using drift analysis, this can be used to bound
the expected time needed to accumulate the amount of information needed
to uniquely determine the target permutation.

The proof of the upper bound will be sketched in Section 3.6.3.3, in the
context of the unbiased black-box complexity of LeadingOnesn.

It may be interesting to note that the O(n log logn) bound in Theo-
rem 3.3.12 cannot be achieved by deterministic algorithms. In fact, Theo-
rem 3 in [1] states that the deterministic unrestricted black-box complexity of
LeadingOnesn is Θ(n logn).

3.3.7 Classes of Jump Functions

Another class of popular pseudo-Boolean benchmark functions is that of so-
called “jump” functions. In black-box complexity, this class is currently one
of the most intensively studied problems, with a number of surprising results,
which in addition carry some interesting ideas for potential refinements of

156 Carola Doerr

state-of-the-art heuristics. For this reason, we discuss this class in more detail,
and compare the known complexity bounds with running-time bounds for
some standard and recently developed heuristics.

For a nonnegative integer ℓ, the function Jumpℓ,z is derived from the
OneMax function OMz with target string z ∈ {0,1}n by “blanking out” any
useful information within the strict ℓ-neighborhood of the optimum z and its
bitwise complement z̄, by giving all these search points a fitness value of 0.
In other words,

Jumpℓ,z(x) :=

n if OMz(x) = n,

OMz(x) if ℓ < OMz(x)< n− ℓ,

0 otherwise.
(3.3.1)

This definition is mostly similar to the two definitions used in [53, 71] that
we shall discuss below, which do not fully agree.

3.3.7.1 Known Running-Time Bounds for Jump Functions

We summarize here the known running-time results for the optimization of
jump functions via randomized optimization heuristics. The reader interested
only in black-box complexity results can skip this section.

Droste, Jansen, and Wegener [53] analyzed the optimization time of the
(1+1) EA on jump functions. From this work, it is not difficult to see that
the expected running time of the (1+1) EA on Jumpℓ,z is Θ(nℓ+1), for all
ℓ ∈ {1, . . . ,⌊n/2⌋ − 1} and all z ∈ {0,1}n. This running time is dominated
by the time needed to “jump” from a local optimum x with function value
OMz(x) = n− ℓ−1 to the unique global optimum z.

The fast genetic algorithm proposed in [39] significantly reduces this run-
ning time by using a generalized variant of standard bit mutation, which
goes through its input and flips each bit independently with probability c/n.
By choosing in every iteration the expected step size c in this mutation rate
c/n from a power-law distribution with exponent β (more precisely, in every
iteration, c is chosen independently of all previous iterations, and indepen-
dently of the current state of the optimization process), an expected run-
ning time of O(ℓβ−0.5((1+ o(1))e/ℓ)ℓnℓ) on Jumpℓ,z is achieved, uniformly
for all jump sizes ℓ > β−1. This is only a polynomial factor worse than the
((1+o(1))e/ℓ)ℓnℓ expected running time of a (1+1) EA which for every jump
size ℓ uses a bit flip probability of ℓ/n, which is the optimal static choice.

Dang and Lehre [17] showed an expected running time of O((n/c)ℓ+1)
for a large class of nonelitist population-based evolutionary algorithms with
mutation rate c/n, where c is supposed to be a constant.

Jump functions were originally studied to investigate the usefulness of
crossover, i.e., the recombination of two or more search points into a new
solution candidate. In [64], a (µ+1) genetic algorithm using crossover was

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 157

shown to optimize any Jumpℓ,z function in an expected number O(µn2(ℓ−
1)3+4ℓ−1/pc) of function evaluations, where pc < 1/(c(ℓ−1)n) denotes the
(artificially small) probability of doing a crossover. In [18] it was shown that
for more “natural” parameter settings, most notably those with a nonvan-
ishing probability of crossover, a standard (µ+1) genetic algorithm which
uses crossover followed by mutation has an expected O(nℓ logn) optimiza-
tion time on any Jumpℓ,z function, which is a gain by a factor O(n/ logn)
over the above-mentioned bound for the standard (1+1) EA. In [16] it was
shown that significant performance gains can be achieved by the usage of
diversity mechanisms. We refer the interested reader to Chapter 7.6 of this
book for a more detailed description of these mechanisms and running-time
statements; see in particular Sections 8.4.4 and 8.4.5.

3.3.7.2 The Unrestricted Black-Box Complexity of Jump
Functions

From the definition in (3.3.1), we can easily see that for every n ∈ N and for
all ℓ∈ [0..n/2] there exists a function f : [0..n]→ [0..n] such that Jumpℓ,z(x) =
f(OMz(x)) for all z,x ∈ {0,1}n. By Theorem 3.2.5, we therefore obtain the
result that for every class A of algorithms and for all ℓ, the A-black-box
complexity of Jumpℓ,n := {Jumpℓ,z | z ∈ {0,1}n} is at least as large as that
of OneMaxn. Quite surprisingly, it turns out that this bound can be met
for a broad range of jump sizes ℓ. Building on work [28] on the unbiased
black-box complexity of jump functions (see Section 3.6.3.4 for a detailed
description of the results proven in [27]), the following bounds were obtained
in [9].

Theorem 3.3.13 ([9]). For ℓ < n/2−
√
n log2n, the unrestricted black-box

complexity of Jumpℓ,n is at most (1 + o(1))2n/ log2n, while for n/2−√
n log2n ≤ ℓ < ⌊n/2⌋−ω(1) it is at most (1+ o(1))n/ log2(n− 2ℓ) (where,

in this latter bound, ω(1) and o(1) refer to n−2ℓ→∞).
For the extreme case of ℓ= ⌊n/2⌋−1, the unrestricted black-box complexity

of Jumpℓ,n is n+Θ(
√
n).

For all ℓ and every odd n, the unrestricted black-box complexity of Jumpℓ,n

is at least ⌊logn−2ℓ+1
2

(
2n−2(n− 2ℓ− 1)+1

)
⌋− 2

n−2ℓ−1 . For even n, it is at

least ⌊logn−2ℓ+2
2

(
1+2n−1 (n−2ℓ)2

n−2ℓ−1
)
⌋− 2

n−2ℓ .

The proofs of the results in Theorem 3.3.13 are built to a large extent
on the techniques used in [28], which we shall discuss in Section 3.6.3.4. In
addition to these techniques, [9] introduced a matrix lower-bound method,
which allows one to prove stronger lower bounds than the simple information-
theoretic result presented in Theorem 3.2.4 by taking into account the fact
that the “typical” information obtained through a function evaluation can be

158 Carola Doerr

much smaller than what the whole range {f(s) | s ∈ S} of possible f -values
suggests.

Note that even for the case of “small” ℓ < n/2−
√
n log2, the region around

the optimum in which the function values are zero is actually quite large. This
plateau contains 2(1−o(1))n points and has a diameter that is linear in n.

For the case of the extreme jump functions, note also that, apart from the
optimum, only the points x with OMz(x) = ⌊n/2⌋ and OMz(x) = ⌈n/2⌉ have
a nonzero function value. It is thus quite surprising that these functions can
nevertheless be optimized so efficiently. We shall see in Section 3.6.3.4 how
this is possible.

One may wonder why, in the definition of Jumpℓ,n, we have fixed the
jump size ℓ, as in this way it is “known” to the algorithm. It has been argued
in [38] that the algorithms can learn ℓ efficiently, if this is needed; in some
cases, including those of small ℓ-values, knowing ℓ may not be needed to
achieve the above-mentioned optimization times. Whether or not knowledge
of ℓ is needed can be decided adaptively.

3.3.7.3 Alternative Definitions of Jump Functions

Following up on results for the so-called unbiased black-box complexity of
jump functions [28] (see Section 3.6.3.4), Jansen [62] proposed an alternative
generalization of the classical jump function considered in [53]. To discuss
this extension, we recall that the jump function analyzed in [53, Definition
24] is the (1, . . . ,1) version of the maps fℓ,z that assign to every length-n bit
string x the function value

fℓ,z(x) :=

ℓ+n if OMz(x) = n,

ℓ+OMz(x) if OMz(x)≤ n− ℓ,

n−OMz(x) otherwise.

We first describe the motivation behind the extension considered in the
definition given by Equation (3.3.1). To this end, we first note that in the un-
restricted black-box complexity model, fℓ,z can be very efficiently optimized
by searching for the bitwise complement z̄ of z and then inverting this string
to the optimal search point z. Note also that, in this definition, the region
around the optimum z provides more information than the functions Jumpℓ,z

defined via (3.3.1). When we are interested in bounding the expected opti-
mization time of classical black-box heuristics, this additional information
most often does not pose any problems. But, for our sought black-box com-
plexity studies, this information can make a crucial difference. Lehre and
Witt [71] therefore designed a different set of jump functions consisting of
maps gℓ,z that assign to each x the function value

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 159

gℓ,z(x) :=

n if OMz(x) = n,

OMz(x) if ℓ < OMz(x)≤ n− ℓ,

0 otherwise.

The definition in Equation (3.3.1) is mostly similar to this definition of Lehre
and witt, with the only difference being the function values for bit strings
x with OMz(x) = n− ℓ. Note that in (3.3.1) the sizes of the “blanked-out
areas” around the optimum and its complement are equal, while for gℓ,z the
area around the complement is larger than that around the optimum.

As mentioned, Jansen [62] introduced yet another version of the jump
function. His motivation was that the spirit of the jump function is to “[lo-
cate] an unknown target string that is hidden in some distance to points a
search heuristic can find easily”. Jansen’s definition also has black-box com-
plexity analysis in mind. For a given z ∈ {0,1}n and a search point x∗ with
OMz(x∗)> n− ℓ, his jump function hℓ,z,x∗ assigns to every bit string x the
function value

hℓ,z,x∗(x) :=

n+1 if x= x∗,

n−OMz(x) if n− ℓ < OMz(x)≤ n and x ̸= x∗,

ℓ+OMz(x) otherwise.

Since these functions do not reveal information about the optimum other
than its ℓ-neighborhood, the unrestricted black-box complexity of the class
{hℓ,z,x∗ | z ∈ {0,1}n,OMz(x∗)>n−ℓ} is

(∑ℓ−1
i=0

(n
i

)
+1

)
/2 [62, Theorem 4].

This bound also holds if z is fixed to be the all-ones string, i.e., if we consider
the unrestricted black-box complexity of the class {hℓ,(1,...,1),x∗ | OMz(x∗)>
n−ℓ}. For constant ℓ, the black-box complexity of this class of jump functions
is thus Θ(nℓ−1), very different from the results for the unrestricted black-box
complexity of the Jumpℓ,z functions considered above. In contrast to the
latter, the expected optimization times stated for crossover-based algorithms
in Section 3.3.7.1 above do not necessarily apply to the functions hℓ,z,x∗ ,
as for these functions the optimum x∗ is not located in the middle of the
ℓ-neighborhood of z.

3.3.8 Combinatorial Problems

The results described above are mostly concerned with benchmark functions
that were introduced to study some particular features of typical black-box
optimization techniques, for example, their hill-climbing capabilities (via the
OneMax function) or their ability to jump a plateau of a certain size (this is
the focus of the jump functions). Running-time analysis, of course, also stud-
ies more “natural” combinatorial problems, such as satisfiability problems,

160 Carola Doerr

partition problems, scheduling, and graph-based problems such as routing,
vertex cover, and MaxCut, see [79] for a survey of running-time results for
combinatorial optimization problems.

Apart from a few results for combinatorial problems derived in [54],2 the
first publication to present a systematic investigation of the black-box com-
plexities of combinatorial optimization problems was [37]. In that publication,
the two well-known problems of finding a minimum spanning tree (MST) in
a graph and the single-source shortest-paths problem (SSSP) were considered.
The study revealed that, for combinatorial optimization problems, the pre-
cise formulation of the problem can make a decisive difference. Modeling such
problems therefore needs be done with care.

We will not be able to summarize all results proven in [37], but the follow-
ing summarizes the most relevant ones for the unrestricted black-box model.
[37] also studies the MST and the SSSP problem in various restricted black-
box models: more precisely, in the unbiased black-box model (see Section 3.6),
the ranking-based model (Section 3.5) and combinations thereof. We will
briefly discuss results for the unbiased case in Sections 3.6.3.6 and 3.6.4.1.

3.3.8.1 Minimum Spanning Trees

For a given graph G = (V,E) with edge weights w : E → R, the minimum
spanning tree problem asks us to find a connected subgraph G′ = (V,E′)
of G such that the sum

∑
e∈E′ w(e) of the edge weights in G′ is mini-

mized. This problem has a natural bit string representation. Letting m := |E|,
we can fix an enumeration ν : [m] → e. In this way, we can identify a
length-m bit string x= (x1, . . . ,xm) with the subgraph Gx := (V,Ex), where
Ex := {ν(i) | i ∈ [m] with xi = 1} is the set of edges i for which xi = 1. Using
this interpretation, the MST problem can be modeled as a pseudo-Boolean
optimization problem f : {0,1}m → R; see [79] for details. This formulation
is one of the two most common formulations of the MST problem in the
evolutionary computation literature. The other common formulation uses a
biobjective fitness function f : {0,1}m → R2; the first component maps each
subgraph to its number of connected components, while the second compo-
nent measures the total weight of the edges in this subgraph. In the unre-
stricted black-box model, the two formulations are almost equivalent.3

Theorem 3.3.14 (Theorems 10 and 12 in [37]). For the biobjective and
the single-objective formulation of the MST problem on an arbitrary connected
2 More precisely, the following combinatorial problems were studied in [54]: MaxClique
(Section 3), Sorting (Section 4), and the single-source shortest-paths problem (Sections
4 and 9).
3 Note that this is not the case for the ranking-based model discussed in Section 3.5, since
here it can make a decisive difference whether two rankings for the two components of
the biobjective function are reported or whether this information is condensed further
into one single ranking.

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 161

graph of n nodes and m edges, the unrestricted black-box complexity is strictly
larger than n−2 and at most 2m+1.

These bounds also apply if, instead of absolute function values f(x), only
their rankings are revealed; in other words, the ranking-based black-box com-
plexity (which will be introduced in Section 3.5) of the MST problem is also
at most 2m+1.

The upper bound is shown by first learning the order of the edge weights
and then testing, in increasing order of the edge weights, whether or not
the inclusion of the corresponding edge forms a cycle or not. This way, the
algorithm imitates the well-known MST algorithm of Kruskal.

The lower bound of Theorem 3.3.14 is obtained by applying Yao’s minimax
principle with a probability distribution on the problem instances that sam-
ples uniformly at random a spanning tree, gives weight 1 to all of its edges,
and gives weight 2 to all other edges. By Cayley’s formula, the number of
spanning trees on n vertices is nn−2. In intuitive terms, a black-box algorithm
solving the MST problem therefore needs to learn (n− 2) log2n bits. Since
each query reveals a number between 2k−n+1 and 2k (k being the number
of edges included in the corresponding graph), it provides at most log2n bits
of information. Hence, in the worst case, we get a running time of at least
n−2 iterations. To turn this intuition into a formal proof, a drift theorem is
used to show that in each iteration the number of consistent possible trees
decreases by factor of at most 1/n.

3.3.8.2 Single-Source Shortest Paths

For the SSSP problem, which asks us to connect all vertices of an edge-
weighted graph to a distinguished source node through a path of smallest total
weight, several formulations coexist. The first one, which was also considered
in [54], uses the following multicriteria objective function. An algorithm can
query arbitrary trees on [n] and the objective value of any such tree is an
(n− 1)-tuple of the distances of the n− 1 nonsource vertices to the source
s = 1 (if an edge is traversed which does not exist in the input graph, the
entry in the tuple is ∞).

Theorem 3.3.15 (Theorems 16 and 17 in [37]). For arbitrary connected
graphs with n vertices and m edges, the unrestricted black-box complexity of
the multiobjective formulation of the SSSP problem is n− 1. For complete
graphs, it is at least n/4 and at most ⌊(n+1)/2⌋+1.

Theorem 3.3.15 improves on the previous n/2 lower and the 2n−3 upper
bound given in [54, Theorem 9]. For the general case, the proof of the upper
bound imitates Dijkstra’s algorithm by first connecting all vertices to the
source, then all but one of the vertices to the vertex of lowest distance to the
source, then all but the two of lowest distance to the vertex of second lowest

162 Carola Doerr

distance, and so on, fixing one vertex with each query. The lower bound
is an application of Yao’s minimax principle to a bound on deterministic
algorithms, which is obtained through an additive drift analysis.

For complete graphs, it is essentially shown that the problem instance
can be learned with ⌊(n+1)/2⌋ queries, while the lower bound is again a
consequence of Yao’s minimax principle.

The bound in Theorem 3.3.15 is not very satisfactory as already the size
of the input is Ω(m). The discrepancy is due to the large amount of infor-
mation that the objective function reveals about the problem instance. To
avoid such low black-box complexities, and to shed a better light on the
complexity of the SSSP problem, [37] considered also an alternative model
for the SSSP problem, in which a representation of a candidate solution is
a vector (ρ(2), . . . ,ρ(n)) ∈ [n]n−1. Such a vector is interpreted such that the
predecessor of node i is ρ(i) (the indices run from 2 to n to match the indices
with the labels of the nodes - node 1 is the source node to which a shortest
path is sought). With this interpretation, the search space becomes the set
S[2..n] of permutations of [2..n], i.e., S[2..n] is the set of all one-to-one maps
σ : [2..n]→ [2..n]. For a given graph G, the single-criterion objective function
fG is defined by assigning to each candidate solution (ρ(2), . . . ,ρ(n)) the func-
tion value

∑n
i=2 di, where di is the distance of the i-th node to the source

node. If an edge - including loops - is traversed which does not exist in the
input graph, di is set to n times the maximum weight wmax of any edge in
the graph.

Theorem 3.3.16 (Theorem 18 in [37]). The unrestricted black-box com-
plexity of the SSSP problem with the single-criterion objective function is at
most

∑n−1
i=1 i= n(n−1)/2.

As in the multiobjective case, the bound in Theorem 3.3.16 is obtained
by imitating Dijkstra’s algorithm. In the single-objective setting, adding the
i-th node to the shortest-path tree comes at a cost of at most n− i function
evaluations.

3.4 Memory-Restricted Black-Box Complexity

As mentioned in the previous section, as early as in the first publication on
black-box complexity [54] it was noted that the unrestricted model can be too
generous in the sense that it includes black-box algorithms that are highly
problem-tailored and whose expected running time is much smaller than that
of typical black-box algorithms. One potential reason for such a discrepancy
is the fact that unrestricted algorithms are allowed to store and to access
the full search history, while typical heuristics store only a subset (“popula-
tion” in evolutionary computation) of previously evaluated samples and their
corresponding objective values. Droste, Jansen, and Wegener [54] therefore

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 163

Algorithm 3.2: The (µ+λ) memory-restricted black-box algorithm for
optimizing an unknown function f : S → R

1 Initialization:
2 X←∅;
3 Choose a probability distribution D(0) over Sµ, sample from it

x(1), . . . ,x(µ) ∈ S, and query f(x(1)), . . . ,f(x(µ));
4 X←

{(
x(1),f(x(1))

)
, . . . ,

(
x(µ),f(x(µ))

)}
;

5 Optimization: for t= 1,2,3, . . . do
6 Depending only on the multiset X choose a probability distribution D(t) over

Sλ, sample from it y(1), . . . ,y(λ) ∈ S, and query f(y(1)), . . . ,f(y(µ));
7 Set X←X ∪

{(
y(1),f(y(1))

)
, . . . ,

(
y(µ),f(y(λ))

)}
;

8 for i= 1, . . . ,λ do Select (x,f(x)) ∈X and update X←X \{(x,f(x))};

suggested adjusting the unrestricted black-box model to reflect this behavior.
In their memory-restricted model of size µ,4 the algorithms can store up to
µ pairs (x,f(x)) of previous samples. Based only on this information, they
decide on the probability distribution D from which the next solution candi-
date is sampled. Note that this also implies that the algorithm does not have
any iteration counter or any other information about the time elapsed so far.
Regardless of how many samples have been evaluated already, the sampling
distribution D depends only on the µ pairs

(
x(1),f(x(1))

)
, . . . ,

(
x(µ),f(x(µ))

)
stored in the memory.

We extend this model to a (µ+λ) memory-restricted black-box model, in
which the algorithms have to query λ solution candidates in every round; see
Algorithm 3.2 and Fig. 3.2. Following Definition 3.2.1, the (µ+λ) memory-
restricted black-box complexity of a function class F is the black-box com-
plexity with respect to the class A of all (µ+λ) memory-restricted black-box
algorithms.

The memory-restricted model of size µ corresponds to the (µ+1) memory-
restricted one, in which only one search point needs to be evaluated per round.
Since this variant with λ = 1 allows the highest degree of adaptation, it is
not difficult to verify that for all µ ∈N and for all λ > 1 the (µ+λ) memory-
restricted black-box complexity of a problem F is at least as large as its
(µ+1) black-box complexity. The effects of larger λ have been studied in a
parallel black-box complexity model, which we will discuss in Section 3.7.2.

While it seems intuitive that larger memory sizes yield smaller optimiza-
tion times, this is not necessarily true for all functions. Indeed, the following
discussion shows that memory is not needed for the efficient optimization of
OneMax.

4 In the original publication [54], a memory-restricted algorithm of size µ was called a
black-box algorithm with size bound µ.

164 Carola Doerr

Fig. 3.2 In the (µ+λ) memory-restricted black-box model, the algorithm can store
up to µ previously evaluated search points and their absolute function values. In each
iteration, it queries the function values of λ new solution candidates. It then has to
decide which of the µ+λ search points to keep in the memory for the next iteration.

3.4.1 OneMax

Droste, Jansen, and Wegener conjectured in [54, Section 6] that the (1+1)
memory-restricted black-box complexity of OneMax is O(n logn), in the be-
lief that Randomized Local Search and the (1+1) EA are asymptotically
optimal representatives of this class. This conjecture was refuted in [42],
where a linear upper bound was presented. This bound was reduced further
to O(n/ logn) in [43], showing that even the most restrictive version of the
memory-restricted black-box model does not increase the asymptotic com-
plexity of OneMax. By the lower bound presented in Theorem 3.3.3, the
O(n/ logn) bound is asymptotically best possible.

Theorem 3.4.1 (Theorem 1 in [43]). The (1+1) memory-restricted black-
box complexity of OneMax is Θ(n/ logn).

The proof of Theorem 3.4.1 makes use of the O(n/ logn) unrestricted
strategy of Erdős and Rényi. To respect the memory restriction, the algo-
rithm achieving the O(n/ logn) expected optimization time works in rounds.
In every round, a substring of size s :=

√
n of the target string z is iden-

tified, using O(s/ logs) queries. The algorithm alternates between query-
ing a string to obtain new information and queries which are used only
to store the function value of the last query in the current memory. This
works only if sufficiently many bits are available in the guessing string to
store this information. It was shown that O(n/ logn) bits suffice. These last
remaining O(n/ logn) bits of z are then identified with a constant num-
ber of guesses per position, giving an overall expected optimization time
of O(n/s)O(s/ logs)+O(n/ logn) =O(n/ logn).

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 165

3.4.2 Difference with Respect to the Unrestricted
Model

In light of Theorem 3.4.1, it is interesting to find examples for which the (µ+
1) memory-restricted black-box complexity is strictly (and potentially much)
larger than its ((µ+1)+1) memory-restricted complexity. This question was
addressed in [82].

In the first step, it was shown that having a memory of one can make a
decisive difference compared with not being able to store any information
at all. In fact, it is easily seen that without any memory, for every function
class F that for every s ∈ S contains a function fs such that s is the only
optimal solution of fs, the best one can do without any memory is random
sampling, resulting in an expected optimization time of |S|. Assume now that
there is a (fixed) search point h∈ S where a hint is given, in the sense that for
all s ∈ S the objective value fs(h) uniquely determines where the optimum s
is located. Then, clearly, the (1+1) memory-restricted algorithm which first
queries h and then, based on (h,fs(h)), queries s solves any problem instance
fs in at most two queries.

This idea can be generalized to a class of functions with two hints hidden
in two different distinguished search points h1 and h2. Only the combina-
tion of (h1,fs(h1)) with (h2,fs(h2)) defines where the optimum s is located.
This way, the (2+ 1) memory-restricted black-box complexity of this class
F(h1,h2) is at most three, while its (1+1) memory-restricted complexity is
at least (S+1)/2. For, say, S = {0,1}n we thus see that the discrepancies
between the (0+1) memory-restricted black-box complexity of a problem F
and its (1+1) memory-restricted complexity can be exponential, and so can
be the difference between the (1+1) memory-restricted black-box complex-
ity and the (2+1) memory-restricted complexity. We are not aware of any
generalization of this result to arbitrary values of µ.

Theorem 3.4.2 ([82]). There are classes of functions F(h) ⊂ {f | f :
{0,1}n → R} and F(h1,h2)⊂ {f | f : {0,1}n → R} such that

• the (0+1) memory-restricted black-box complexity of F(h) is exponential
in n, while its (1+1) memory-restricted black-box complexity is at most
two, and

• the (1+ 1) memory-restricted black-box complexity of F(h1,h2) is expo-
nential in n, while its (2+1) memory-restricted black-box complexity is at
most three.

Storch [82] also presented a class of functions that is efficiently optimized
by a standard (2+1) genetic algorithm, which is a (2+1) memory-restricted
black-box algorithm, in O(n2) queries on average, while its (1+1) memory-
restricted black-box complexity is exponential in n. This function class is built
around so-called royal road functions, the main idea being that the genetic

166 Carola Doerr

algorithm is guided towards the two “hints” between which the unique global
optimum is located.

3.5 Comparison- and Ranking-Based Black-Box
Complexity

Many standard black-box heuristics do not take advantage of knowing ex-
act objective values. Instead, they use these function values only to rank
the search points. This ranking determines the next steps, so that the ab-
solute function values are not needed. Such algorithms are often referred
to as comparison-based or ranking-based. To understand their efficiency
comparison-based and ranking-based black-box complexity models were sug-
gested in [44, 57, 86].

3.5.1 The Ranking-Based Black-Box Model

In the ranking-based black-box model, the algorithms receive a ranking of the
search points currently stored in the memory of the population. This ranking
is defined by the objective values of these points.

Definition 3.5.1. Let S be a finite set, let f : S → R be a function, and let
C be a subset of S. The ranking ρ of C with respect to f assigns to each
element c ∈ C the number of elements in C with a smaller f -value plus 1,
formally, ρ(c) := 1+ |{c′ ∈ C |f(c′)< f(c)}|.

Note that two elements with the same f -value are assigned the same rank-
ing.

In the ranking-based black-box model without memory restriction, an al-
gorithm thus receives with every query a ranking of all previously evaluated
solution candidates, while, in the memory-restricted case, naturally, only the
ranking of those search points currently stored in the memory is revealed.
To be more precise, the ranking-based black-box model without memory re-
striction subsumes all algorithms that can be described via the scheme of
Algorithm 3.3. Fig. 3.3 illustrates these ranking-based black-box algorithms.

Likewise, the (µ+ λ) memory-restricted ranking-based model contains
those (µ+λ) memory-restricted algorithms that follow the blueprint in Algo-
rithm 3.4; Fig. 3.4 illustrates this pseudocode.

These ranking-based black-box models capture many common search
heuristics, such as (µ+λ) evolutionary algorithms, some ant colony optimiza-
tion algorithms (e.g., simple versions of the Max-Min Ant Systems analyzed
in [68, 78]), and Randomized Local Search. They do not include algorithms

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 167

Fig. 3.3 A ranking-based black-box algorithm without memory restriction can store all
previously evaluated search points. Instead of knowing their function values, it only has
access to the ranking of the search points induced by the objective function f . Based on
this, it decides upon a distribution D from which the next search point is sampled.

Algorithm 3.3: Blueprint of a ranking-based black-box algorithm with-
out memory restriction

1 Initialization:
2 Sample x(0) according to some probability distribution D(0) over S;
3 X←{x(0)};
4 Optimization: for t= 1,2,3, . . . do
5 Depending on {x(0), . . . ,x(t−1)} and its ranking ρ(X,f) with respect to f ,

choose a probability distribution D(t) on S and sample from it x(t);
6 X←X ∪{x(t)};
7 Query the ranking ρ(X,f) of X induced by f ;

Algorithm 3.4: The (µ+λ) memory-restricted ranking-based black-box
algorithm for maximizing an unknown function f : {0,1}n → R

1 Initialization:
2 X←∅;
3 Choose a probability distribution D(0) over Sµ and sample from it

X = {x(1), . . . ,x(µ)} ⊆ S;
4 Query the ranking ρ(X,f) of X induced by f ;
5 Optimization: for t= 1,2,3, . . . do
6 Depending only on the multiset X and the ranking ρ(X,f) of X induced by f

choose a probability distribution D(t) on Sλ and sample from it
y(1), . . . ,y(λ);

7 Set X←X ∪{y(1), . . . ,y(λ)} and query the ranking ρ(X,f) of X induced by f ;
8 for i= 1, . . . ,λ do Based on X and ρ(X,f) select a (multi)subset Y of X of

size µ and update X← Y ;

with fitness-dependent parameter choices, such as fitness-proportional muta-
tion rates or fitness-dependent selection schemes.

168 Carola Doerr

Fig. 3.4 A (µ+λ) memory-restricted ranking-based black-box algorithm can store up
to µ previously evaluated search points and the ranking of this population induced by
the objective function f . Using only this information, λ new solution candidates are
sampled in each iteration and the ranking of the (µ+λ) points is revealed. Based on
this ranking, the algorithm needs to select which µ points to keep in the memory.

Surprisingly, the unrestricted and the nonmemory-restricted ranking-
based black-box complexities of OneMax coincide in asymptotic terms; the
leading constants may be different.

Theorem 3.5.2 (Theorem 6 in [44]). The ranking-based black-box com-
plexity of OneMax without memory restriction is Θ(n/ logn).

The upper bound for OneMax is obtained by showing that, for a suffi-
ciently large sample base, a median search point x (i.e., a search point for
which half of the search points have a ranking that is at most as large as that
of x and the other half of the search points have a ranking that is at least as
large as that of x) is very likely to have n/2 correct bits. It was shown fur-
thermore that with O(n/ logn) random queries, each of the function values in
the interval [n/2−κ

√
n,n/2+κ

√
n] appears at least once. This information

is used to translate the ranking of the random queries into absolute function
values, for those solution candidates y for which OMz(y) lies in the interval
[n/2−κ

√
n,n/2+κ

√
n]. The proof is then concluded by showing that it suf-

fices to consider only these samples in order to identify the target string z of
the problem instance OMz.

For BinaryValue, in contrast, it makes a substantial difference whether
absolute or relative objective values are available.

Theorem 3.5.3 (Theorem 17 in [44]). The ranking-based black-box com-
plexity of BinaryValuen and BinaryValue∗

n is strictly larger than n− 1,
even when the memory is not bounded.

This lower bound of n−1 is almost tight. In fact, an n+1 ranking-based al-
gorithm is easily obtained by starting with a random initial search point and
then, from left to right, flipping exactly one bit in each iteration. The rank-
ing uniquely determines the permutation σ and the string z of the problem
instance BVz,σ.

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 169

Theorem 3.5.3 can be shown with Yao’s minimax principle applied to the
uniform distribution over the problem instances. The crucial observation is
that when optimizing BVz,σ with a ranking-based algorithm, from t samples
we can learn at most t− 1 bits of the hidden bit string z, and not Θ(t log t)
bits as one might guess from the fact that there are t! permutations of the
set [t].

This last intuition, however, gives a very general lower bound. Intuitively,
if F is such that every z ∈ {0,1}n is the unique optimum for a function fz ∈F ,
and we learn only the ranking of the search points evaluated so far, then for
the t-th query we learn at most log2(t!) =Θ(t log t) bits of information. Since
we need to learn n bits in total, the ranking-based black-box complexity of
F is of order at least n/ logn.

Theorem 3.5.4 (Theorem 21 in [44]). Let F be a class of functions such
that each f ∈F has a unique global optimum and such that for all z ∈ {0,1}n
there exists a function fz ∈ F with {z} = argmaxfz. Then the unrestricted
ranking-based black-box complexity of F is Ω(n/ logn).

Results for the ranking-based black-box complexity of the two combinato-
rial problems MST and SSSP have been derived in [37]. Some of these bounds
were mentioned in Section 3.3.8.

3.5.2 The Comparison-Based Black-Box Model

In the ranking-based model, the algorithms receive for every query quite a
lot of information, namely the full ranking of the current population and its
offspring. One may argue that some evolutionary algorithms use even less
information. Instead of considering the full ranking, they base their decisions
on a few selected points only. This idea is captured in the comparison-based
black-box model. In contrast to the ranking-based model, here only the rank-
ing of the queried points is revealed. In this model it can therefore make
sense to query a search point more than once, to compare it with a differ-
ent offspring, for example. Fig. 3.5 illustrates the (µ+λ) memory-restricted
comparison-based black-box model. A comparison-based model without mem-
ory restriction is obtained by setting µ=∞.

We will not detail this model further, as it has received only marginal
attention so far in the black-box complexity literature. We note, however,
that Teytaud and co-authors [57, 86] have presented some very general lower
bounds for the convergence rate of comparison-based and ranking-based evo-
lutionary strategies in continuous domains. From these studies, results for the
comparison-based black-box complexity of problems defined over discrete do-
mains can be obtained. These bounds, however, seem to coincide with the
information-theoretic ones that can be obtained through Theorem 3.2.4.

170 Carola Doerr

Fig. 3.5 A (µ+λ) memory-restricted comparison-based black-box algorithm can store
up to µ previously evaluated search points and the comparison of these points that have
been learned through previous queries. In the next iteration, λ solution candidates are
queried, possibly containing some of the current population. Only the ranking of the µ
queried points is revealed. Based on this ranking and the previous information about
the relative fitness values, the algorithm needs to select which µ points to keep in the
memory.

3.6 Unbiased Black-Box Complexity

As previously commented, the quest to develop a meaningful complexity the-
ory for evolutionary algorithms and other black-box optimization heuristics
seemed to have come to an early end after 2006, the only publication which
picked up on this topic being that of Anil and Wiegand on the unrestricted
black-box complexity of OneMax [2] (see Section 3.3.2). In 2010, the situ-
ation changed drastically. Black-box complexity was revived by Lehre and
Witt in [71] (a journal version appeared as [72]). To overcome the drawbacks
of the previous unrestricted black-box model, they restricted the class of
black-box optimization algorithms in a natural way that still covers a large
class of the classically used algorithms.

In their unbiased black-box complexity model, Lehre and Witt considered
pseudo-Boolean optimization problems F ⊆ {f : {0,1}n → R}. The unbiased
black-box model requires that all solution candidates must be sampled from
distributions that are unbiased. In the context of pseudo-Boolean optimiza-
tion, unbiasedness means that the distribution cannot discriminate between
bit positions 1,2, . . . ,n nor between the bit entries 0 and 1; a formal definition
will be given in Sections 3.6.1 and 3.6.2. The unbiased black-box model also
admits a notion of arity. A k-ary unbiased black-box algorithm is one that em-
ploys only such variation operators that take up to k arguments. This allows
one, for example, to talk about mutation-only algorithms (unary unbiased
algorithms) and to study the potential benefits of recombining previously
sampled search points through distributions of higher arity.

In a crucial difference from the memory-restricted model, in the pure ver-
sion of the unbiased black-box model the memory is not restricted. That is,
the k search points that form the input for the k-ary variation operator can
be any random or previously evaluated solution candidate. As in the case of

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 171

the comparison- and the ranking-based black-box models, combined unbiased
memory-restricted models have also been studied; see Section 3.7.

Before we formally introduce unbiased black-box models for pseudo-
Boolean optimization problems in Section 3.6.2, we define and discuss in
Section 3.6.1 the concept of unbiased variation operators. Known black-box
complexities in the unbiased black-box models are surveyed in Section 3.6.3.
In Section 3.6.4 we present extensions of the unbiased black-box models to
search spaces different from {0,1}n.

3.6.1 Unbiased Variation Operators

In order to formally define the unbiased black-box model, we first introduce
the notion of k-ary unbiased variation operators. Informally, a k-ary unbiased
variation operator takes as input up to k search points. It samples a new point
z ∈ {0,1}n by applying some procedure to these previously evaluated solution
candidates that treats all bit positions and the two bit values in an equal way.

Definition 3.6.1 (k-ary unbiased variation operator). Let k ∈ N. A k-
ary unbiased distribution (D(. | y(1), . . . ,y(k)))y(1),...,y(k)∈{0,1}n is a family of
probability distributions over {0,1}n such that for all inputs y(1), . . . ,y(k) ∈
{0,1}n the following two conditions hold:

(i) ∀x,z ∈ {0,1}n :D(x | y(1), . . . ,y(k)) =D(x⊕z | y(1)⊕z, . . . ,y(k)⊕z) ,

(ii)∀x ∈ {0,1}n∀σ ∈ Sn :D(x | y(1), . . . ,y(k)) =D(σ(x) | σ(y(1)), . . . ,σ(y(k))) .

We refer to the first condition as ⊕-invariance and to the second as permu-
tation invariance. A variation operator that creates an offspring by sampling
from a k-ary unbiased distribution is called a k-ary unbiased variation oper-
ator.

To get some intuition about unbiased variation operators, we now summa-
rize a few characterizations and consequences of Definition 3.6.1.

We first note that the combination of ⊕- and permutation invariance can
be characterized as invariance under Hamming automorphisms. A Hamming
automorphism is a one-to-one map α : {0,1}n →{0,1}n that satisfies the con-
dition that for any two points x,y ∈ {0,1}n their Hamming distance H(x,y)
is equal to the Hamming distance H(α(x),α(y)) of their images. A formal
proof of the following lemma can be found in [37, Lemma 3].

Lemma 3.6.2. A distribution D(· | x1, . . . ,xk) is unbiased if and only if, for
all Hamming automorphisms α : {0,1}n → {0,1}n and for all bit strings
y ∈ {0,1}n, the probability D(y | x1, . . . ,xk) of sampling y from (x1, . . . ,xk)
equals the probability D(α(y) | α(x1), . . . ,α(xk)) of sampling α(y) from
(α(x1), . . . ,α(xk)).

172 Carola Doerr

It is not difficult to see that the only 0-ary unbiased distribution over
{0,1}n is the uniform one.

1-ary operators, also called unary operators, are sometimes referred to as
mutation operators, in particular in the field of evolutionary computation.
Standard bit mutation, as used in several (µ+λ) EAs and (µ+λ) EAs, is
a unary unbiased variation operator. The random bit flip operation used
by RLS, which chooses at random a bit position i ∈ [n] and replaces the
entry xi by the value 1− xi, is also unbiased. In fact, all unary unbiased
variation operators are of a very similar type, as the following definition and
lemma, taken from [31], show. These results can be derived from a more
general description of unbiased operators offered in [37], which characterizes
unbiased operations on arbitrary search spaces. When restricted to pseudo-
Boolean optimization, we obtain the following geometric interpretation.

Definition 3.6.3. Let n ∈ N and r ∈ [0..n]. For every x ∈ {0,1}n, let flipr
be the variation operator that creates an offspring y from x by selecting r
positions i1, . . . , ir in [n] uniformly at random (without replacement), setting
yi := 1−xi for i ∈ {i1, . . . , ir}, and copying yi := xi for all other bit positions
i ∈ [n]\{i1, . . . , ir}.

Using this definition, unary unbiased variation operators can be character-
ized as follows.

Lemma 3.6.4 (Lemma 1 in [31]). For every unary unbiased variation
operator (p(·|x))x∈{0,1}n , there exists a family of probability distributions
(rp,x)x∈{0,1}n on [0..n] such that for all x,y ∈ {0,1}n the probability p(y|x)
that (p(·|x))x∈{0,1}n samples y from x equals the probability that the routine
first samples a random number r from rp,x and then obtains y by applying
flipr to x. On the other hand, each such family of distributions (rp,x)x∈{0,1}n
on [0..n] induces a unary unbiased variation operator.

From this characterization, we can easily see that neither the somatic con-
tiguous hypermutation operator used in artificial immune systems (which
selects a random position i ∈ [n] and a random length ℓ ∈ [n] and flips the
ℓ consecutive bits in positions i, i+1 mod n, . . . , i+ ℓ mod n; see [15, Algo-
rithm 3]), nor the asymmetric nor the position-dependent mutation operators
considered in [63] and [12, 27], respectively, are unbiased.

2-ary operators, also called binary operators, are often referred to as
crossover operators. A prime example of a binary unbiased variation op-
erator is uniform crossover. Given two search points x and y, the uniform
crossover operator creates an offspring z from x and y by choosing, inde-
pendently for each index i ∈ [n], the entry zi ∈ {xi,yi} uniformly at random.
In contrast, the standard one-point crossover operator - which, given two
search points x,y ∈ {0,1}n picks uniformly at random an index k ∈ [n] and
outputs from x and y one or both of the two offspring x′ := x1 . . .xkyk+1 . . .yn
and y′ := y1 . . .ykxk+1 . . .xn - publicationsis not permutation-invariant, and
therefore not an unbiased operator.

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 173

Fig. 3.6 In the k-ary unbiased black-box model, the algorithm can store the full query
history. For every already evaluated search point x, the algorithm has access to the ab-
solute function value f(x) ∈R. The distributions D from which new solution candidates
are sampled have to be unbiased. They can depend on up to k previously evaluated
solution candidates.

Some publications refer to the unbiased black-box model allowing variation
operators of arbitrary arity as the ∗-ary unbiased black-box model. Black-box
complexities in the ∗-ary unbiased black-box model are of the same asymp-
totic order as those in the unrestricted model. This has been formally shown
in [81], for a general notion of unbiasedness that is not restricted to pseudo-
Boolean optimization problems (see Definition 3.6.16).

Theorem 3.6.5 (Corollary 1 in [81]). The ∗-ary unbiased black-box com-
plexity of a problem class F is the same as its unrestricted black-box complex-
ity.

Apart from [81], most research on the unbiased black-box model assumes
a restriction on the arity of the variation operators. We therefore concentrate
in the remainder of this chapter on such restricted settings.

3.6.2 The Unbiased Black-Box Model for
Pseudo-Boolean Optimization

With Definition 3.6.1 and its characterizations at hand, we can now introduce
the unbiased black-box models. The k-ary unbiased black-box model covers
all algorithms that follow the blueprint of Algorithm 3.5. Fig. 3.6 illustrates
these algorithms. As in previous sections, the k-ary unbiased black-box com-
plexity of some class of functions F is the complexity of F with respect to all
k-ary unbiased black-box algorithms.

As Fig. 3.6 indicates, it is important to note that in line 3 of Algorithm 3.5
the k selected previously evaluated search points x(i1), . . . ,x(ik) do not nec-
essarily have to be the k immediately previously queried ones. That is, the
algorithm can store and is allowed to choose from all previously sampled
search points.

174 Carola Doerr

Algorithm 3.5: Scheme of a k-ary unbiased black-box algorithm
1 Initialization: Sample x(0) ∈ {0,1}n uniformly at random and query f(x(0));
2 Optimization: for t= 1,2,3, . . . do
3 Depending on

(
f(x(0)), . . . ,f(x(t−1))

)
choose up to k indices

i1, . . . , ik ∈ [0..t−1] and a k-ary unbiased distribution
(D(· | y(1), . . . ,y(k)))y(1),...,y(k)∈{0,1}n ;

4 Sample x(t) according to D(· | x(i1), . . . ,x(ik)) and query f(x(t));

Note further that for all k ≤ ℓ, each k-ary unbiased black-box algorithm is
contained in the ℓ-ary unbiased black-box model. This is due to the fact that
we do not require the indices to be pairwise distinct.

The unary unbiased black-box model captures most of the commonly used
mutation-based algorithms, such as the (µ+λ) EA and the (µ,λ) EA, Sim-
ulated Annealing, the Metropolis algorithm, and Randomized Local Search.
The binary unbiased model subsumes many traditional genetic algorithms,
such as the (µ+λ) GAs and the (µ,λ) GAs using uniform crossover. As we
shall discuss in Section 3.9, the (1 + (λ,λ)) GA introduced in [25] is also
binary unbiased.

As a word of warning, we note that in [85] and [87] lower bounds are proven
for what the authors of those publications call mutation-based algorithms.
Their definitions are more restrictive than what Algorithm 3.5 proposes. The
lower bounds proven in [85, 87] therefore do not (immediately) apply to the
unary unbiased black-box model. A comparison of Theorem 12 in [85] and
Theorem 3.1(5) in [87] with Theorem 9 in [31] shows that there can be substan-
tial differences (in this case, a multiplicative factor ≈ e in the lower bound for
the complexity of OneMax with respect to all mutation-based and all unary
unbiased black-box algorithms, respectively). One of the main differences be-
tween the different models is that in [85, 87] only algorithms using standard
bit mutation are considered. This definition excludes algorithms such as RLS
for which the radius r fed into the variation operator flipr is deterministic and
is thus not sampled from a binomial distribution Bin(n,p). When using the
term “mutation-based algorithms,” we should therefore always make precise
which algorithmic framework we are referring to. Here, in this chapter, we
will exclusively refer to the unary unbiased black-box algorithms defined via
Algorithm 3.5.

3.6.3 Existing Results for Pseudo-Boolean Problems

In this section we survey existing bounds for the unbiased black-box com-
plexity of several classical benchmark functions. As in previous sections, we
proceed by function class, and not in historical order.

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 175

3.6.3.1 Functions with a Unique Global Optimum

As discussed in Section 3.2.3.1, the unrestricted black-box complexity of every
function class F = {f} containing only one function f is one, certified by
the algorithm that simply queries a point x ∈ argmaxf in the first step.
The situation is different in the unbiased black-box model, as the following
theorem reveals.

Theorem 3.6.6 (Theorem 6 in [71]). Let f : {0,1}n → R be a function
that has a single global optimum (i.e., in the case of maximization, the size
of the set argmaxf is one). The unary unbiased black-box complexity of f is
Ω(n logn).

Theorem 3.6.6 gives an Ω(n logn) lower bound on the unary unbiased
black-box complexity of several standard benchmark functions, such as
OneMax and LeadingOnes. We shall see below that for some of these
classes, including OneMax, this bound is tight, since it is met by different
unary unbiased heuristics, such as the (1+1) EA or RLS. For other classes,
including LeadingOnes, the lower bound can be improved through problem-
specific arguments.

The proof of Theorem 3.6.6 uses multiplicative drift analysis. To this end,
the potential P (t) of an algorithm at time t is defined as the smallest Ham-
ming distance from any of the previously queried search points x(1), . . . ,x(t)

to the unique global optimum z or its bitwise complement z̄. The algorithm
has identified z (or its complement) if and only if P (t) = 0. The distance to z̄
needs to be considered, as the algorithm that first identifies z̄ and then flips
all bits obtains z from z̄ in only one additional query. As we have discussed
for jump functions in Section 3.3.7, for some functions it can be substantially
easier to identify z̄ than to identify z itself. This is true in particular if there
are paths leading to z̄, such as in the original jump functions fℓ,z discussed in
Section 3.3.7.3. The key step in the proof of Theorem 3.6.6 is to show that in
one iteration P (t) decreases by at most 200P (t)/n, in expectation, provided
that P (t) is between c log logn (for some positive constant c> 0) and n/5. Put
differently, in this case E[P (t)−P (t+1) | P (t)]≤ δP (t) for δ := 200/n. It can
be shown, furthermore, that the probability of making very large gains in
potential is very small. These two statements allow the application of a mul-
tiplicative drift theorem, which bounds the total expected optimization time
by Ω((log(n/10)− log log(n))/δ) = Ω(n logn), provided that the algorithm
reaches a state t with P (t) ∈ (n/10,n/5]. A short proof that every unary un-
biased black-box algorithm reaches such a state with probability 1− e−Ω(n)

then concludes the proof of Theorem 3.6.6.

176 Carola Doerr

3.6.3.2 OneMax

The Unary Unbiased Black-Box Complexity of OneMax

Since OneMax is a unimodal function, the lower bound of Theorem 3.6.6
certainly applies to that function, thus showing that no unary unbiased
black-box optimization can optimize OneMax faster than in expected time
Ω(n logn). This bound is attained by several classical heuristics, such as RLS,
the (1+1) EA, and others. While the (1+1) EA has an expected optimiza-
tion time of (1± o(1))en ln(n) [32, 85], that of RLS is only (1± o(1))n ln(n).
More precisely, it is n ln(n/2)+γn± o(1) [23], where γ ≈ 0.5772156649 . . . is
the Euler-Mascheroni constant. The unary unbiased black-box complexity of
OneMax is just slightly smaller than this term. It was slightly improved by
an additive

√
n logn term in [69] through iterated initial sampling. In [31], the

following very precise bound for the unary unbiased black-box complexity of
OneMax was shown. It is smaller than the expected running time of RLS by
an additive term that is between 0.138n±o(n) and 0.151n±o(n). It was also
proven in [31] that a variant of RLS that uses fitness-dependent neighbor-
hood structures attains this optimal bound, up to additive o(n) lower-order
terms.

Theorem 3.6.7 (Theorem 9 in [31]). The unary unbiased black-box com-
plexity of OneMax is n ln(n)−cn±o(n) for a constant c between 0.2539 and
0.2665.

The Binary Unbiased Black-Box Complexity of OneMax

When Lehre and Witt initially defined the unbiased black-box model, they
conjectured that also the binary black-box complexity of OneMax was
Ω(n logn) [P.K. Lehre, personal communication in 2010]. In light of our un-
derstanding of the role and usefulness of crossover in black-box optimization,
such a bound would have indicated that crossover cannot be beneficial for
simple hill-climbing tasks. Given that in 2010 all results seemed to indicate
that it was at least very difficult, if not impossible, to rigorously prove any
advantages of crossover for problems with smooth fitness landscapes, this
conjecture came along very naturally. It was, however, soon refuted. In [35],
a binary unbiased algorithm was presented that achieves linear expected run-
ning time on OneMax.

Theorem 3.6.8 (Theorem 9 in [35]). The binary unbiased black-box com-
plexity of OneMax and that of any other monotone function is at most linear
in the problem dimension n.

This bound is attained by the algorithm that keeps in the memory two
strings x and y that agree in those positions for which the optimal entry

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 177

has been identified already, and which differ in all other positions. In every
iteration, the algorithm flips a fair random coin and, depending on the out-
come of this coin flip, flips exactly one bit in x or one bit in y. The bit to
be flipped is chosen uniformly at random from those bits in which x and y
disagree. The offspring so created replaces its parent if and only if its function
value is larger. In this case, the Hamming distance between x and y reduces
by one. Since the probability of choosing the right parent equals 1/2, it is
not difficult to show that, with high probability, for all constants ε > 0, this
algorithm optimizes OneMax within at most (2+ ε)n iterations. Together
with Lemma 3.2.8, this proves Theorem 3.6.8.

A drawback of this algorithm is that it is very problem-specific, and it
has been an open question whether or not a “natural” binary evolutionary
algorithm can achieve an o(n logn) (or better) expected running time on
OneMax. This question was answered affirmatively in [25] and [21], as we
shall discuss in Section 3.9.

Whether or not the linear bound in Theorem 3.6.8 is tight remains an open
problem. In general, proving lower bounds for unbiased black-box models of
arities larger than one remains one of the biggest challenges in black-box
complexity theory. Owing to the greatly enlarged computational power of
black-box algorithms using higher-arity operators, proving lower bounds in
these models seems to be significantly harder than in the unary unbiased
model. As a matter of fact, the best lower bound that we have for the binary
unbiased black-box complexity of OneMax is the Ω(n/ logn) one stated in
Theorem 3.3.3, and not even constant-factor improvements of this bound
exist.

The k-Ary Unbiased Black-Box Complexity of OneMax

In [35], a general bound for the k-ary unbiased black-box complexity of
OneMax of order n/ logk was presented (see Theorem 9 in [35]). This bound
has been improved in [45].

Theorem 3.6.9 (Theorem 3 in [45]). For every 2 ≤ k ≤ logn, the k-ary
unbiased black-box complexity of OneMax is of order at most n/k. For
k ≥ logn, it is Θ(n/ logn).

Note that for k ≥ logn, the lower bound in Theorem 3.6.9 follows from
the Ω(n/ logn) unrestricted black-box complexity of OneMax discussed in
Theorem 3.3.3.

The main idea used to achieve the results of Theorem 3.6.9 can be easily
described. For a given k, the bit string is split into blocks of size k−2. This
has to be done in an unbiased way, so that the “blocks” are not consecutive
bit positions, but some random k−2 positions not previously optimized. Sim-
ilarly to the binary case, two reference strings x and y are used to encode
which k−2 bit positions are currently under investigation, namely the k−2

178 Carola Doerr

bits in which x and y disagree. Using the same encoding, two other strings x′
and y′ store which bits have been optimized already, and which ones have not
been investigated so far. To optimize the k− 2 bits in which x and y differ,
the derandomized version of the result of Erdős and Rényi (Theorem 3.3.4)
is used. Applied in our context, this result states that there exists a sequence
of Θ(k/ logk) queries which uniquely determines the entries in the k−2 po-
sitions. Since Θ(n/k) such blocks need to be optimized, the claimed total
expected optimization time of Θ(n/ logk) follows. Some technical difficulties
need to be overcome to implement this strategy in an unbiased way. To this
end, in [45] a generally applicable encoding strategy was presented that with
k-ary unbiased variation operators simulates a memory of 2k−2 bits that can
be accessed in an unrestricted fashion.

3.6.3.3 LeadingOnes

The Unary Unbiased Black-Box Complexity of LeadingOnes

Since LeadingOnes is a classic benchmark problem, unsurprisingly, Lehre
and Witt had already presented in [72] a first bound for the unbiased black-
box complexity of this function.

Theorem 3.6.10 (Theorem 2 in [72]). The unary unbiased black-box com-
plexity of LeadingOnes is Θ(n2).

Theorem 3.6.10 can be proven by drift analysis. To this end, in [72] a
potential function was defined that maps the state of the search process at
time t (i.e., the sequence {

(
x(1),f(x(1))

)
, . . . ,

(
x(t),f(x(t))

)
} of the pairs of

search points evaluated so far and their respective function values) to the
largest number of initial ones and initial zeros in any of the t+1 strings
x(1), . . . ,x(t). It was then shown that a given potential k cannot increase
in one iteration by more than an additive term 4/(k+1), in expectation,
provided that k is at least n/2. Since with probability at least 1−e−Ω(n) any
unary unbiased black-box algorithm reaches a state in which the potential
is between n/2 and 3n/4, and since from this state a total potential of at
least n/4 must be gained, the claimed Ω(n2) bound follows from a variant of
the additive drift theorem. More precisely, using these bounds, the additive
drift theorem shows that the total optimization time of any unary unbiased
black-box algorithm is at least (n/4)/

(
4/(n/2))

)
=Ω(n2).

The Binary Unbiased Black-Box Complexity of LeadingOnes

Similarly to the case of OneMax, the binary unbiased black-box complexity
of LeadingOnes is much smaller than its unary counterpart.

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 179

Theorem 3.6.11 (Theorem 14 in [35]). The binary unbiased black-box
complexity of LeadingOnes is O(n logn).

The algorithm achieving this bound borrows its main idea from the bi-
nary unbiased algorithm used to optimize OneMax in linear time, which
we described after Theorem 3.6.8. We recall that the key strategy was to
use two strings to encode those bits that have been optimized already. In
the O(n logn) algorithm for LeadingOnes, this approach is combined with
a binary search for the (unique) bit position that needs to be flipped next.
Such a binary search step requires O(logn) steps in expectation. Iterating it
n times gives the claimed O(n logn) bound.

As in the case of OneMax, it is not known whether or not the bound
in Theorem 3.6.11 is tight. The best known lower bound is the Ω(n log logn)
one for the unrestricted black-box model discussed in Theorem 3.3.12.

The Complexity of LeadingOnes in Unbiased Black-Box Models of Higher
Arity

The O(n logn) bound presented in Theorem 3.6.11 reduces further to at most
O(n log(n)/ log logn) in the ternary unbiased black-box model.

Theorem 3.6.12 (Theorems 2 and 3 in [41]). For every k ≥ 3, the k-
ary unbiased black-box complexity of LeadingOnes is of order at most
n log(n)/ log logn. This bound also holds in the combined k-ary unbiased
ranking-based black-box model, in which instead of absolute function values
the algorithm can make use only of the ranking of the search points induced
by the optimization problem instance f .

The algorithm that certifies the upper bound in Theorem 3.6.12 uses
the additional power gained through the larger arity to parallelize the bi-
nary search of the binary unbiased algorithm described after Theorem 3.6.11.
More precisely, the optimization process is split into phases. In each phase,
the algorithm identifies the entries of up to k := O(

√
logn) positions. It can

be shown that each phase takes O(k3/ logk2) steps in expectation. Since
there are n/k phases, a total expected optimization time of O(nk2/ logk2) =
O(n log(n)/ log logn) follows.

The idea of parallelizing the search for several indices was later taken up
and further developed in [1], where an iterative procedure with overlapping
phases was used to derive the asymptotically optimal Θ(n log logn) unre-
stricted black-box algorithm that proves Theorem 3.3.12.

It seems plausible that higher arities allow a larger degree of parallelization,
but no formal proof of this intuition exists. In the context of LeadingOnes,
it would be interesting to derive a lower bound on the smallest value of
k such that an asymptotically optimal k-ary unbiased Θ(n log logn) black-
box algorithm for LeadingOnes exists. As a first step towards answering

180 Carola Doerr

this question, the encoding and sampling strategies sketched above could be
applied to the algorithm presented in [1], to understand the smallest arity
needed to implement this algorithm in an unbiased way.

3.6.3.4 Jump Functions

Jump functions are benchmark functions, which are observed to be difficult
for evolutionary approaches because of their large plateaus of constant and
low fitness around the global optimum. One would expect that this would be
reflected in the unbiased black-box complexity, at least in the unary model.
Surprisingly, this is not the case. In [28], it was shown that even extreme
jump functions that reveal only the three different fitness values 0, n/2, and
n have a small polynomial unary unbiased black-box complexity. That is, they
can be optimized quite efficiently by unary unbiased approaches. This result
indicates that efficient optimization is not necessarily restricted to problems
for which the function values reveal a lot of information about the instance
at hand.

As discussed in Section 3.3.7, the literature is not unanimous with respect
to how to generalize the jump function defined in [53] to a problem class. The
results stated in the following apply to the jump function defined in (3.3.1). In
the unbiased black-box model, we can assume without loss of generality that
the underlying target string is the all-ones string (1, . . . ,1). That is, to simplify
our notation, we drop the subscript z and assume that for every ℓ < n/2 we
consider the function that assigns to every x ∈ {0,1}n the function value

Jumpℓ(x) :=

n if |x|1 = n,

|x|1 if ℓ < |x|1 < n− ℓ,

0 otherwise.

The results in [28] cover a broad range of different combinations of jump
sizes ℓ and arities k.

Short jump Long jump Extreme jump
Arity ℓ=O(n1/2−ε) ℓ= (1/2−ε)n ℓ= n/2−1
k = 1 Θ(n logn) O(n2) O(n9/2)
k = 2 O(n) O(n logn) O(n logn)

3≤ k ≤ logn O(n/k) O(n/k) Θ(n)

Table 3.1 Known bounds for the unbiased black-box complexity of Jumpℓ

Theorem 3.6.13 ([28]). Table 3.1 summarizes the known bounds for the
unbiased black-box complexity of Jumpℓ in the different models.

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 181

To discuss the bounds in Theorem 3.6.13, we proceed by problem type.
Almost all proofs are rather involved, and so we sketch here only the main
ideas.

Short Jumps, i.e., ℓ=O(n1/2−ε)

A comparison with the bounds discussed in Section 3.6.3.2 shows that the
bounds for the k-ary unbiased black-box complexities of short jump functions
stated above are of the same order as those for OneMax (which can be
seen as a jump function with parameter ℓ= 0). In fact, it was shown in [28,
Lemma 3] that a black-box algorithm having access to a jump function with
ℓ=O(n1/2−ε) can retrieve (with high probability) the true OneMax value of
a search point using only a constant number of queries. The other direction is
of course also true, since from the OneMax value we can compute the Jumpℓ

value without further queries. This implies that the black-box complexities of
short jump functions are of the same asymptotic order as those of OneMax.
Any improved bound for the k-ary unbiased black-box complexity OneMax
therefore immediately carries over to short jump functions.

The fact that the Θ(n logn) bound for the unary unbiased black-box com-
plexity carries over to so-called Plateau functions, which assign to all sub-
optimal solutions of Hamming distance at most ℓ the same function value
n− ℓ−1 and are identical to Jump otherwise, has been discussed in [3].

Long Jumps, i.e., ℓ= (1/2−ε)n

Despite the fact that the above-mentioned Lemma 3 in [28] can probably
not be directly extended to long jump functions, the bounds for arities k ≥ 3
nevertheless coincide with those for OneMax. In fact, it was shown in [28,
Theorem 6] that for all ℓ < (1/2− ε)n and for all k ≥ 3 the k-ary unbiased
black-box complexity of Jumpℓ is at most of the same asymptotic order as the
(k−2)-ary unbiased black-box complexity of OneMax. For k > 3, this proves
the bounds stated in Theorem 3.6.13. The linear bound for k=3 follows from
the case of extreme jumps.

A key ingredient for the bound on the unary unbiased black-box complex-
ity of long jump functions is a procedure that samples a number of neighbors
at some fixed distance d and studies the empirical expected function values
of these neighbors to decide upon the direction in which the search for the
global optimum is continued. More precisely, it uses the samples to estimate
the OneMax value of the currently investigated search point. Strong concen-
tration bounds are used to bound the probability that this approach gives an
accurate estimation of the correct OneMax values.

The O(n logn) bound for the binary unbiased black-box complexity of long
jump functions follows from its extreme analogue.

182 Carola Doerr

Extreme Jump, i.e., ℓ= n/2−1

The work [28] first considered the ternary unbiased black-box complexity of
the extreme jump function. A strategy that allowed individual bits to be
tested was derived. Testing each bit individually in an efficient way (using
the encoding strategies originally developed in [35] and described in Sec-
tion 3.6.3.2 above) gives the linear bound.

In the binary case, the bits cannot be tested as efficiently anymore. The
main idea is nevertheless to flip individual bits and to test whether the flip was
in a “good” or a “bad” direction. This test is done by estimating the distance
to a reference string with n/2 ones. Implementing this strategy in O(n logn)
queries requires one to overcome a few technical difficulties imposed by the
restriction of sampling only from binary unbiased distributions, resulting in
a rather complex bookkeeping procedure, and a rather technical proof 4.5
pages long.

Finally, the polynomial unary unbiased black-box complexity of the ex-
treme jump function can be proven as follows. Similarly to the cases discussed
above, individual bits are flipped in a current “best” solution candidate x. A
sampling routine is used to estimate whether the bit flip was in a “good” or a
“bad” direction, i.e., whether it created a string that was closer to the global
optimum or to its bitwise complement than the previous string. The sampling
strategy works as follows. Depending on the estimated parity of |x|1, exactly
n/2 or n/2−1 bits are flipped in x. The fraction of offspring so created with
function value n/2 (the only value that is “visible” apart from that of the
global optimum) is recorded. This fraction depends on the distance from x to
the global optimum (1, . . . ,1) or its complement (0, . . . ,0) and is slightly dif-
ferent for different distances. A key step in the analysis of the unary unbiased
black-box complexity of the extreme jump function is therefore a proof that
shows that a polynomial number of such samples are sufficient to determine
the OneMax value of x with sufficiently large probability.

Comments on the Upper Bounds in Theorem 3.6.13

Note that even for long jump functions, the search points having a func-
tion value of 0 form plateaus around the optimum (1, . . . ,1) and its com-
plement (0, . . . ,0) of exponential size. For the extreme jump function, all
but a Θ(n−1/2) fraction of the search points form one single fitness plateau.
Problem-unspecific black-box optimization techniques will therefore typically
not find the optimum of long and extreme jump functions in subexponential
time.

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 183

Lower Bound

The Ω(n logn) lower bound in Theorem 3.6.13 follows from the more general
result discussed in Theorem 3.2.5 and the Ω(n logn) bound for OneMax in
the unary unbiased black-box model, which we discussed in Section 3.6.3.2.
Note also that Theorem 3.2.5, together with the Ω(n/ logn) unrestricted
black-box complexity of OneMax, implies a lower bound for Jumpℓ of the
same asymptotic order (for all values of ℓ). The linear lower bound for the
extreme jump function can be easily proven by the information-theoretic
arguments presented in Theorem 3.2.4. Intuitively, the algorithm needs to
learn a linear number of bits, while it receives only a constant number per
function evaluation.

Insights from These Bounds and Open Questions

The proof sketches provided above highlight the fact that one of the key nov-
elties presented in [28] are the sampling strategies that are used to estimate
the OneMax values of a current string of interest. The idea of accumulating
some statistical information about the fitness landscape could be an interest-
ing concept for the design of novel heuristics, in particular for optimization
in the presence of noisy function evaluations or for dynamic problems, which
change over time.

3.6.3.5 Number Partition

Number partition is one of the best-known NP-hard problems. Given a set
S ⊂Nn of n positive integers, this partition problem asks us to decide whether
or not it is possible to split S into two disjoint subsets such that the sums
of the integers in these two subsets are identical, i.e., whether or not two
disjoint subsets S1 and S2 of S with S1 ∪S2 = S and

∑
s∈S1

s =
∑

s∈S2
s

exist. The optimization version of partition asks us to split S into two disjoint
subsets such that the absolute discrepancy

∣∣∑
s∈S1

s−
∑

s∈S2
s
∣∣ is as small

as possible.
In [26], a subclass of partition was studied in which the integers in S are

pairwise different. The problem remains NP-hard under this assumption. It is
thus unlikely that it can be solved efficiently. For two different formulations of
this problem (using a signed and an unsigned function assigning to each par-
tition S1,S2 of S the discrepancy

∑
s∈S1

s−
∑

s∈S2
s or the absolute value of

this expression, respectively), it was shown that the unary unbiased black-box
complexity of this subclass is nevertheless of small polynomial order. More
precisely, it was shown that there are unary unbiased black-box algorithms
that need only O(n logn) function evaluations to optimize any Partition̸=
instance. The proof techniques are very similar to the ones presented in Sec-

184 Carola Doerr

tion 3.2.4: the algorithm achieving the O(n logn) expected optimization time
first uses O(n logn) steps to learn the problem instance at hand. After some
(possibly – and probably – nonpolynomial-time) offline computation of an
optimal solution for this instance, this optimum is then created via an ad-
ditional O(n logn) function evaluations, needed to move the integers of the
partition instance to the right subset. Learning and moving the bits can be
done in linear time in the unrestricted model. The factor logn stems from the
fact that here, in this unary unbiased model, in every iteration a random bit
is moved, so that a coupon collector process results in a logarithmic overhead.

This result and those for the different versions of jump functions described
in Section 3.6.3.4 show that the unary unbiased black-box complexity can
be much smaller than the typical performance of mutation-only black-box
heuristics. This indicates that the unary unbiased black-box model does not
always give a good estimation of the difficulty of a problem when optimized
by mutation-based algorithms. As we shall discuss in Section 3.7, a possible
direction to obtain more meaningful results could be to restrict the class of
algorithms even further, for example through bounds on the memory size or
the selection operators.

3.6.3.6 Minimum Spanning Trees

Having a formulation over the search space {0,1}m, the minimum spanning
tree problem considered in Section 3.3.8.1 can be directly studied in the un-
biased black-box model proposed by Lehre and Witt. The following theorem
summarizes the bounds proven in [37] for this problem. We see here that [37]
also studied the black-box complexity of a model that combines the restric-
tions imposed by the ranking-based and the unbiased black-box models. We
will discuss this model in Section 3.7 but, for the sake of brevity, will state
the bounds now for this combined model.

Theorem 3.6.14 (Theorem 10 in [37]). The unary unbiased black-box
complexity of the MST problem is O(mn log(m/n)) if there are no duplicate
weights, and O(mn logn) if there are. The ranking-based unary unbiased
black-box complexity of the MST problem is O(mn logn). Its ranking-based
binary unbiased black box-complexity is O(m logn) and its ranking-based 3-
ary unbiased black-box complexity is O(m).

For every k, the k-ary unbiased black-box complexity of MST for m edges
is at least as large as the k-ary unbiased black-box complexity of OneMaxm.

As in the unrestricted case of Theorem 3.3.14, the upper bounds in The-
orem 3.6.14 are obtained by modifying Kruskal’s algorithm to fit the black-
box setting at hand. For the lower bound, the path P on m+1 vertices
with unit edge weights shows that OneMaxm is a subproblem of the MST
problem. More precisely, for all bit strings x ∈ {0,1}m, the function value

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 185

f(x) = (OneMaxm(x),m+1−OneMaxm(x)) of the associated MST fitness
function reveals the OneMax value of x.

3.6.3.7 Other Results

Motivated to introduce a class of functions for which the unary unbiased
black-box complexity is Θ(2m) for some parameter m that can be scaled
between 1 and n, Lehre and Witt introduced in [72] the following function:

OM-Needle : {0,1}n → [0..n],x 7→
n−m∑
i=1

xi+
n∏

i=1
xi.

It is easily seen that this function has its unique global optimum in the
all-ones string (1, . . . ,1). All other search points whose first n−m entries
are equal to one are located on a plateau of function value n−m. In the
unbiased model, this part is thus similar to the Needle functions discussed
in Section 3.3.1. Lehre andWitt showed that for 0≤m≤n the unary unbiased
black-box complexity of this function is at least 2m−2 [72, Theorem 3]. Note
that this function is similar in flavor to the version of the jump function
proposed in [62] (see Section 3.3.7.3).

3.6.4 Beyond Pseudo-Boolean Optimization: Unbiased
Black-Box Models for Other Search Spaces

In this section we discuss an extension of the pseudo-Boolean unbiased black-
box model of Lehre and Witt [72] to more general search spaces. To this end,
we first recall from Definition 3.6.1 that the unbiased model is defined through
a set of invariances that must be satisfied by the probability distributions from
which unbiased algorithms sample their solution candidates. It is therefore
quite natural to first generalize the notion of an unbiased operator in the
following way.

Definition 3.6.15 (Definition 1 in [37]). Let k ∈ N, let S be some arbi-
trary set, and let G be a set of bijections on S that forms a group, i.e., a
set of one-to-one maps g : S → S that is closed under composition (· ◦ ·) and
under inversion (·)−1. We call G the set of invariances.

A k-ary G-unbiased distribution is a family of probability distributions(
D(· |y1, . . . ,yk)

)
y1,...,yk∈S

over S such that for all inputs y1, . . . ,yk ∈ S the
condition

∀x ∈ S ∀g ∈ G :D(x | y1, . . . ,yk) =D(g(x) | g(y1), . . . ,g(yk))

186 Carola Doerr

holds. An operator sampling from a k-ary G-unbiased distribution is called a
k-ary G-unbiased variation operator.

For S := {0,1}n and when G is the set of Hamming automorphisms, it is
not difficult to verify that Definition 3.6.15 extends Definition 3.6.1. A k-ary
G-unbiased black-box algorithm is one that samples all search points from
k-ary G-unbiased variation operators.

In [81], Rowe and Vose gave the following very general, but rather indirect,
definition of unbiased distributions.

Definition 3.6.16 (Definition 2 in [81]). Let F be a class of functions
from a search space S to some set Y . We say that a one-to-one map α : S→ S
preserves F if, for all f ∈ F , it holds that f ◦α ∈ F . Let Π(F) be the class
of all such F-preserving bijections α.

A k-ary generalized unbiased distribution (for F) is a k-aryΠ(F)-unbiased
distribution.

It was argued in [81] that Π(F) in fact forms a group, so that Defini-
tion 3.6.16 satisfies the requirements of Definition 3.6.15.

To apply the framework of Definition 3.6.16, one has to make precise the set
of invariances covered by the classΠ(F). This can be quite straightforward in
some cases [81] but may require some more effort in others [37]. In particular,
it is often inconvenient to define the whole family of unbiased distributions
from which a given variation operator originates. Luckily, in many cases this
effort can be considerably reduced, to proving only the unbiasedness of the
variation operator itself. The following theorem demonstrates this for the
case S = [n]n−1, which is used, for example, in the single-source shortest-
path problem considered in the next subsection. In this case, condition (ii)
in the theorem states that it suffices to show the k-ary G-unbiasedness of the
distribution Dz, without making precise the whole family of distributions
associated to it.

Theorem 3.6.17. Let G be a set of invariances, i.e., a set of permutations
of the search space S = [n]n−1 that form a group. Let k ∈ N, and let z =
(z1, . . . ,zk) ∈ Sk be a k-tuple of search points. Let

G0 := {g ∈ G | g(zi) = zi for all i ∈ [k]}

be the set of all invariances that leave z1, . . . ,zk fixed.
Then, for any probability distribution Dz on [n]n−1, the following two

statements are equivalent.

(i) There exists a k-ary G-unbiased distribution (D(· |y))y∈Sk on S such that
Dz =D(· |z).

(ii) For every g ∈ G0 and for all x ∈ S, it holds that Dz(x) =Dz(g(x)).

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 187

3.6.4.1 Alternative Extensions of the Unbiased Black-Box Model
for the SSSP problem

As discussed in Section 3.3.8.2, several formulations of the single-source
shortest-path problem (SSSP) coexist. In the unbiased black-box setting, the
multicriteria formulation is not very meaningful, as the function values ex-
plicitly distinguish between the vertices, so that treating them in an unbiased
fashion seems unreasonable. For this reason, in [37] only the single-objective
formulation was investigated in the unbiased black-box model. Note that for
this formulation, the unbiased black-box model for pseudo-Boolean functions
needs to be extended to the search space S[2..n]. The work [37] discussed
three different extensions:

(a) a structure-preserving unbiased model in which, intuitively speaking, the
operators do not consider the labels of different nodes, but only their local
structure (e.g., the size of their neighborhoods);

(b) the generalized unbiased model proposed in [81] (this model follows the
approach presented in Section 3.6.4 above); and

(c) a redirecting unbiased black-box model in which, intuitively, a node may
choose to change its predecessor in the shortest-path tree but, if it decides
to do so, then all possible predecessors must be equally likely to be chosen.

Whereas all three notions a priori seem to capture different aspects of what
unbiasedness in the SSSP problem could mean, two of them were shown to
be too powerful. More precisely, it was shown that even the unary structure-
preserving unbiased black-box complexity of SSSP and the unary generalized
unbiased black-box complexity are almost identical to the unrestricted black-
box complexity. The three models were proven to differ by at most one query
in [37, Theorem 25 and Corollary 32].

It was then shown that the redirecting unbiased black-box model yields
more meaningful black-box complexities.

Theorem 3.6.18 (Corollary 28, Theorem 29, and Theorem 30
in [37]). The unary ranking-based redirecting unbiased black-box complex-
ity of SSSP is O(n3). Its binary ranking-based redirecting unbiased black-box
complexity is O(n2 logn). For all k ∈ N, the k-ary redirecting unbiased black-
box complexity of SSSP is Ω(n2).

The unary bound is obtained by a variant of RLS which, in every step,
redirects one randomly chosen node to a random predecessor. For the binary
bound, the problem instance is learned in a two-phase step. An optimal so-
lution is then created by an imitation of Dijkstra’s algorithm. For the lower
bound, drift analysis can be used to prove that every redirecting unbiased
algorithm needs Ω(n2) function evaluations to reconstruct a given path on n
vertices.

188 Carola Doerr

3.7 Combined Black-Box Complexity Models

The black-box models discussed in the previous sections either study the
complexity of a problem with respect to all black-box algorithms (in the un-
restricted model) or restrict the class of algorithms with respect to one partic-
ular feature of common optimization heuristics, such as the size of their mem-
ory, their selection behavior, or their sampling strategies. As we have seen,
many classical black-box optimization algorithms are members of several of
these classes. At the same time, a nonnegligible number of the upper bounds
stated in the previous sections can, to date, be certified only by algorithms
that satisfy an individual restriction, but clearly violate other requirements
that are not controlled by the respective model. In the unbiased black-box
model, for example, several of the upper bounds are obtained by algorithms
that make use of a rather large memory size. It is therefore natural to ask if
and how the black-box complexity of a problem increases if two or more of
the different restrictions proposed in the previous sections are combined in a
new black-box model. This is the focus of this section, which surveys results
obtained in such combined black-box complexity models.

3.7.1 Unbiased Ranking-Based Black-Box Complexity

Even some of the very early publications on the unbiased black-box model
considered a combination with the ranking-based model. In fact, the binary
unbiased algorithm in [35], which solves OneMax with Θ(n) queries on aver-
age, uses only comparisons, and does not make use of knowledge of absolute
fitness values. It was shown in [44] that, also, the other upper bounds for
the k-ary black-box complexity of OneMax proven in [35] hold also in the
ranking-based version of the k-ary unbiased black-box model.

Theorem 3.7.1 (Theorem 6 and Lemma 7 in [44]). The unary unbiased
ranking-based black-box complexity of OneMaxn is Θ(n logn). For constant k,
the k-ary unbiased ranking-based black-box complexity of OneMaxn and that
of every strictly monotone function is at most 4n−5. For 2≤ k≤ n, the k-ary
unbiased ranking-based black-box complexity of OneMaxn is O(n/ logk).

In light of Theorem 3.6.9, it seems plausible that the upper bounds for the
case 2≤ k ≤ n can be reduced to O(n/k), but we are not aware of any result
proving such a claim.

Also, the binary unbiased algorithm achieving an expected O(n logn) op-
timization time on LeadingOnes uses only comparisons.

Theorem 3.7.2 (follows from the proof of Theorem 14 in [35]; see
Theorem 3.6.11). The binary unbiased ranking-based black-box complexity
of LeadingOnes is O(n logn).

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 189

For the ternary black-box complexity we have mentioned already in The-
orem 3.6.12 that the O(n log(n)/ log logn) bound also holds in the ranking-
based version of the ternary unbiased black-box model.

For the two combinatorial problems MST and SSSP, it has already been
mentioned in Theorems 3.6.14 and 3.6.18 that the bounds hold also in models
in which we require the algorithms to base all decisions on only the ranking
of previously evaluated search points, and not on absolute function values.

3.7.2 Parallel Black-Box Complexity

The (unary) unbiased black-box model was also the starting point for the
authors of [4], who introduced a black-box model to investigate the effects of
a parallel optimization. Their model can be seen as a unary unbiased (∞+λ)
memory-restricted black-box model. More precisely, their model covers all
algorithms following the scheme of Algorithm 3.6.

The model covers the (µ+λ) EA and the (µ,λ) EA, cellular evolutionary
algorithms, and unary unbiased evolutionary algorithms working in the island
model. The restriction to unary unbiased variation operators can of course
be relaxed to obtain general models for λ-parallel k-ary unbiased black-box
algorithms.

We see that Algorithm 3.6 forces the algorithm to query λ new solution
candidates in every iteration. Thus, intuitively, for every two positive integers
k and ℓ with k/ℓ ∈ N and for all problem classes F , the ℓ-parallel unary
unbiased black-box complexity of F is at most as large as its k-parallel unary
unbiased black-box complexity.

Algorithm 3.6: A blueprint for λ-parallel unary unbiased black-box
algorithms for the optimization of an unknown function f : S → R

1 Initialization:
2 for i= 1, . . . ,µ do Sample x(i,0) uniformly at random from S and

query f
(
x(i,0)

)
;

3 I ← {f
(
x(1,0)

)
, . . . ,f

(
x(λ,0)

)
};

4 Optimization: for t= 1,2,3, . . . do
5 for i= 1, . . . ,λ do
6 Depending only on the multiset I choose a pair of indices

(j,ℓ) ∈ [λ]× [0..t−1];
7 Depending only on the multiset I choose a unary unbiased probability

distribution D(i,t)(·) on S, sample x(i,t)←D(i,t)(x(j,ℓ)) and
query f

(
x(i,t)

)
;

8 I ← I ∪{f
(
x(1,t)

)
, . . . ,f

(
x(λ,t)

)
};

190 Carola Doerr

The following bounds for the λ-parallel unary unbiased black-box complex-
ity are known.

Theorem 3.7.3 (Theorems 1, 3 and 4 in [4]). The λ-parallel unary un-
biased black-box complexity of LeadingOnes is Ω

(
λn

max{1,log(λ/n)} +n2). It
is of order at most λn+n2.

For any λ≤ e
√
n, the λ-parallel unary unbiased black-box complexity of any

function having a unique global optimum is Ω
(

λn
log(λ) +n logn

)
. This bound

is asymptotically tight for OneMax.

For LeadingOnes, the upper bound is attained by a (1+λ) EA investi-
gated in [70]. The lower bound was shown by means of drift analysis, building
upon the arguments used in [72] to prove Theorem 3.6.10.

For OneMax, a (1+ λ) EA with fitness-dependent mutation rates was
shown to achieve an O

(
λn

log(λ) + n logn
)
expected optimization time in [4,

Theorem 4]; see Chapter 5.6 for details.
The lower bound for the λ-parallel unary unbiased black-box complexity of

functions having a unique global optimum uses additive drift analysis. The
proof is similar to the proof of Theorem 3.6.6 in [72], but requires a very
precise tail bound for hypergeometric variables (Lemma 2 in [4]).

3.7.3 Distributed Black-Box Complexity

To study the effects of the migration topology on the efficiency of distributed
evolutionary algorithms, the λ-parallel unary unbiased black-box model was
extended in [5] to a distributed version, in which islands exchange their ac-
cumulated information along a given graph topology. Commonly employed
topologies are the complete graph (in which all nodes exchange information
with each other), the ring topology, the grid of equal side lengths, and the
torus. [5] presents an unrestricted and a unary unbiased version of the dis-
tributed black-box model. In this context, it is interesting to study how the
black-box complexity of a problem increases with sparser migration topolo-
gies or with the infrequency of migration. The model of [5] allows all nodes
to share all the information that they have accumulated so far. Another in-
teresting extension of the distributed model would be to study the effects
of bounding the amount of information that can be shared in any migration
phase. We will not present the model, nor all results obtained in [5], in de-
tail. The main result which is interpretable and comparable to the others
presented in this chapter is summarized by the following theorem.

Theorem 3.7.4 (Table 1 in [5]). The λ-distributed unary unbiased black-
box complexity of the class of all unimodal functions with Θ(n) different
function values satisfies the bounds stated in Table 3.2. The lower bound for

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 191

Ring Topology Grid/Torus Complete Topology
Upper Bound O(λn3/2+n2) O(λn4/3+n2)

Θ(λn+n2)Lower Bound Ω(λn+λ2/3n5/3+n2) Ω(λn+λ3/4n3/2+n2)
Table 3.2 The λ-distributed unary unbiased black-box complexity of the class of all
unimodal functions with Θ(n) different function values

the grid applies to arbitrary side lengths, while the upper bound holds for the
grid with

√
λ islands in each of the two dimensions.

The upper bounds in Theorem 3.7.4 are achieved by a parallel (1+1) EA,
in which every node migrates its complete information after every round. The
lower bounds were shown to hold even for a subproblem called the “random
short path,” which is a collection of problems which all have a global optimum
in some point with exactly n/2 ones. A short path of Hamming-1 neighbors
leads to this optimum. The paths start at the all-ones string. Search points
that do not lie on the path lead the optimization process towards the all-ones
string; their objective values equal the number of ones in the string.

3.7.4 Elitist Black-Box Complexity

One of the most relevant questions in black-box optimization is how to avoid
getting stuck in local optima. Essentially, two strategies have been developed.

• Nonelitist selection. The first idea is to allow the heuristics to direct
their search towards search points that are, a priori, less favorable than
the current best solutions in the memory. This can be achieved, for ex-
ample, by accepting into the memory (“population”) search points with
function values that are smaller than the current best solutions. We re-
fer to such selection procedures as nonelitist selection. Nonelitist selection
is used, for example, in the Metropolis algorithm [75], Simulated Anneal-
ing [66], and, more recently, the biology-inspired “Strong Selection, Weak
Mutation” framework [80].

• Global sampling. A different strategy to overcome local optima is global
sampling. This approach is used, most notably, by evolutionary and genetic
algorithms, but also by swarm optimizers such as ant colony optimization
techniques [52] and estimation-of-distribution algorithms (EDAs, see Chap-
ter 7 in this book). The underlying idea of global sampling is to select new
solution candidates not only locally in some predefined neighborhood of
the current population, but also to reserve some positive probability to
sample far away from these solutions. Very often, a truly global sampling
operation is used, in which every point x ∈ S has a positive probability
of being sampled. This probability typically decreases with increasing dis-

192 Carola Doerr

Fig. 3.7 A (µ+λ) elitist black-box algorithm stores the µ previously evaluated search
points of largest function value (ties broken arbitrarily or according to some specified
rule) and the ranking of these points induced by f . Based on this information, it decides
upon a strategy according to which the next λ search points are sampled. From the
µ+λ parent and offspring solutions, those µ search points that have the largest function
values form the population for the next iteration.

tance to the current best solutions. Standard bit mutation with bit flip
probabilities p < 1/2 is such a global sampling strategy.

Global sampling and nonelitist selection can certainly be combined, and
several attempts in this direction have been made. The predominant selec-
tion strategy used in combination with global sampling, however, is trunca-
tion selection. Truncation selection is a natural implementation of Darwin’s
“survival of the fittest” paradigm in an optimization context: given a collec-
tion P of search points and a population size µ, truncation selection chooses
from P the µ search points of largest function values and discards the others,
breaking ties arbitrarily or according to some rule such as favoring offspring
over parents or favoring genotypic or phenotypic diversity.

To understand the influence that this elitist selection behavior has on the
performance of black-box heuristics, the elitist black-box model was intro-
duced in [46] (a journal version has appeared as [49]). The elitist black-box
model combines features of the memory-restricted and the ranking-based
black-box models with an enforced truncation selection. More precisely, the
(µ+λ) elitist black-box model covers all algorithms that follow the pseudo-
code in Algorithm 3.7. We use here an adaptive initialization phase. A non-
adaptive version, as in the (µ+λ) memory-restricted black-box model, can
also be considered. This and other subtleties such as the tie-breaking rules
for search points of equal function values can result in different black-box
complexities. It is therefore important to make very precise the model with
respect to which a bound is claimed or shown to hold.

The elitist black-box model covers, in particular, all (µ+λ) EAs, RLS, and
other hill climbers. It does not cover algorithms using nonelitist selection rules
such as Boltzmann selection, tournament selection, or fitness-proportional se-
lection. Figure 3.7 illustrates the (µ+λ) elitist black-box model. As a seem-
ingly subtle but possibly influential difference from the parallel black-box
complexities introduced in Section 3.7.2, note that in the elitist black-box

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 193

Algorithm 3.7: The (µ+λ) elitist black-box algorithm for maximizing
an unknown function f : S → R

1 Initialization:
2 X←∅;
3 for i= 1, . . . ,µ do
4 Depending only on the multiset X and the ranking ρ(X,f) of X induced

by f , choose a probability distribution D(i) over S and sample from it
x(i);

5 Set X←X ∪{x(i)} and query the ranking ρ(X,f) of X induced by f ;
6 Optimization: for t= 1,2,3, . . . do
7 Depending only on the multiset X and the ranking ρ(X,f) of X induced by f

choose a probability distribution D(t) on Sλ and sample from it
y(1), . . . ,y(λ) ∈ S;

8 Set X←X ∪{y(1), . . . ,y(λ)} and query the ranking ρ(X,f) of X induced by f ;
9 for i= 1, . . . ,λ do Select x ∈ argminX and update X←X \{x};

model the offspring sampled in the optimization phase do not need to be in-
dependent of each other. If, for example, an offspring x is created by crossover,
in the (µ+λ) elitist black-box model with λ≥ 2 we allow another offspring y
to be created from the same parents, whose entries yi in those positions i in
which the parents do not agree equal 1−xi. These two offspring are obviously
not independent of each other. It is nevertheless required in the (µ+λ) elitist
black-box model that the λ offspring are created before any evaluation of the
offspring happens. That is, the k-th offspring may not depend on the ranking
or fitness of the first k−1 offspring.

In addition to combining several features of previous black-box models,
the elitist black-box model can be further restricted to cover only those eli-
tist black-box algorithms that sample from unbiased distributions. For this
unbiased elitist black-box model, we require that the distribution p(t) in line 7
of Algorithm 3.7 is unbiased (in the sense of Section 3.6). Some of the results
mentioned below also hold for this more restrictive class.

3.7.4.1 Nonapplicability of Yao’s Minimax Principle

An important difficulty in the analysis of elitist black-box complexities is the
fact that Yao’s minimax principle (Theorem 3.2.3) cannot be directly applied
to the elitist black-box model, since in this model the previously exploited
fact that randomized algorithms are convex combinations of deterministic
ones does not apply; see [49, Section 2.2] for an illustrated discussion. As
discussed in the previous sections, Yao’s minimax principle is the most im-
portant tool for proving lower bounds in the black-box complexity context,
and we can hardly do without it. A natural workaround that allows us to

194 Carola Doerr

nevertheless employ this technique is to extend the collection A of elitist
black-box algorithms to some superset A′ in which every randomized algo-
rithm can be expressed as a probability distribution over deterministic ones.
A lower bound shown for this broader class A′ applies trivially to all elitist
black-box algorithms. Finding extensions A′ that do not decrease the lower
bounds by too much is the main difficulty to be overcome in this strategy.

3.7.4.2 Exponential Gaps to Previous Models

In [49, Section 3], it was shown that even for quite simple function classes
there can be an exponential gap between the efficiency of elitist and noneli-
tist black-box algorithms; and this applies even in the very restrictive (1+1)
unary unbiased elitist black-box complexity model. This shows that heuris-
tics can sometimes benefit quite crucially from eventually giving preference
to search points of fitness inferior to that of the current best search points.
The underlying intuition for these results is that elitist algorithms do not
work very well if there are several local optima that the algorithm needs to
explore in order to determine the best one of them.

3.7.4.3 The Elitist Black-Box Complexity of OneMax

As we have discussed in Sections 3.4 and 3.5, respectively, the (1+1) memory-
restricted and the ranking-based black-box complexity of OneMax are only
of order n/ logn. In contrast, it is easy to see that the combined (1+1)
memory-restricted ranking-based black-box model does not allow algorithms
that are faster than linear in n, as can easily be seen by standard information-
theoretic considerations. In [47] (a journal version has appeared as [50]) it
was shown that this linear bound is tight. Whether or not it applies to the
(1+1) elitist model remains unsolved, but it was shown in [50] that the ex-
pected time needed to optimize OneMax with probability at least 1− ε is
linear for every constant ε > 0. This is the so-called Monte Carlo black-box
complexity, which we shall briefly discuss in Section 3.11. The following theo-
rem summarizes the bounds presented in [50]. Without detailing this further,
we note that [50, Section 9] also introduced and studied a comma-variant of
the elitist black-box model.

Theorem 3.7.5 ([50]). The (1+1) memory-restricted ranking-based black-
box complexity of OneMax is Θ(n).

For 1< λ < 2n1−ε , ε > 0 being an arbitrary constant, the (1+λ) memory-
restricted ranking-based black-box complexity of OneMax is Θ(n/logλ) (in
terms of generations), while for µ= ω(log2(n)/ log logn) its (µ+1) memory-
restricted ranking-based black-box complexity is Θ(n/logµ).

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 195

For every constant 0<ε< 1, there exists a (1+1) elitist black-box algorithm
that finds the optimum of any OneMax instance in time O(n) with probability
at least 1−ε, and this running time is asymptotically optimal.

For constant µ, the (µ+1) elitist black-box complexity of OneMax is at
most n+1.

For δ > 0, C > 0, 2 ≤ λ < 2n1−δ , and a suitably chosen ε =
O(log2(n) log log(n) log(λ)/n), there exists a (1+λ) elitist black-box algorithm
that needs at most O(n/logλ) generations to optimize OneMax with proba-
bility at least 1−ε.

For µ= ω(log2(n)/log logn)∩O(n/logn) and every constant ε > 0, there is
a (µ+1) elitist black-box algorithm optimizing OneMax in time Θ(n/logµ)
with probability at least 1−ε.

There exists a constant C > 1 such that for µ≥Cn/logn, the (µ+1) elitist
black-box complexity is Θ(n/logn).

3.7.4.4 The Elitist Black-Box Complexity of LeadingOnes

The (1+1) elitist black-box complexity of LeadingOnes was studied in [48]
(a journal version has appeared as [51]). Using the approach sketched in
Section 3.7.4.1, the following result was derived.

Theorem 3.7.6 (Theorem 1 in [51]). The (1+1) elitist black-box complex-
ity of LeadingOnes is Θ(n2). This bound holds also in the case where the
algorithms have access to (and can make use of) the absolute fitness values of
the search points in the population, and not only their rankings, i.e., in the
(1+1) memory-restricted black-box model with enforced truncation selection.

The (1+1) elitist black-box complexity of LeadingOnes is thus consid-
erably larger than its unrestricted black-box complexity, which is known to
be of order n log logn, as discussed in Theorem 3.3.12.

It is well known that the quadratic bound in Theorem 3.7.6 is matched by
classical (1+1)-type algorithms such as the (1+1) EA, RLS, and others.

3.7.4.5 The Unbiased Elitist Black-Box Complexity of Jump
Functions

Some shortcomings of previous models can be eliminated when they are com-
bined with an elitist selection requirement. This was shown in [49] for the
Jumpk function already discussed.

Theorem 3.7.7 (Theorem 9 in [49]). For k=0, the unary unbiased (1+1)
elitist black-box complexity of Jumpk is Θ(n logn). For 1≤ k ≤ n

2 −1, it is of
order

(n
k+1

)
.

196 Carola Doerr

Model Lower bound Upper bound
Unrestricted Θ(n/logn)
Unbiased, arity 1 Θ(n logn)
Unbiased, arity 2≤ k ≤ logn Ω(n/logn) O(n/k)
Ranking-based (unrestricted) Θ(n/logn)
Ranking-based unbiased, arity 1 Θ(n logn)
Ranking-based unbiased, arity 2≤ k ≤ n Ω(n/logn) O(n/ logk)
(1+1) comparison-based Θ(n)
(1+1) memory-restricted Θ(n/logn)
λ-parallel unbiased, arity 1 Θ

(
λn

log(λ) +n logn
)

(1+1) elitist Las Vegas Ω(n) O(n logn)
(1+1) elitist logn/n-Monte Carlo Θ(n)
(2+1) elitist Monte Carlo/Las Vegas Θ(n)
(1+λ) elitist Monte Carlo (# generations) Θ(n/logλ)
(µ+1) elitist Monte Carlo Θ(n/logµ)
(1,λ) elitist Monte Carlo/Las Vegas (# generations) Θ(n/logλ)

Table 3.3 Summary of known black-box complexities of OneMaxn in the different
black-box complexity models

The bound in Theorem 3.7.7 is nonpolynomial for k= ω(1). This is in con-
trast to the unary unbiased black-box complexity of Jumpk, which, according
to Theorem 3.6.13, is polynomial even for extreme values of k.

3.8 Summary of Known Black-Box Complexities for
OneMax and LeadingOnes

For better identification of open problems concerning the black-box com-
plexity of the two benchmark functions OneMax and LeadingOnes, we
summarize the bounds that have been presented in previous sections.

Table 3.3 summarizes the known black-box complexities of OneMaxn in
the different models. The bound for the λ-parallel black-box model assumes
λ ≤ e

√
n. The bounds for the (1 + λ) and the (1,λ) elitist model assume

1<λ< 2n1−ε for some ε> 0. Finally, the bound for the (µ+1) model assumes
that µ= ω(log2n/log logn) and µ≤ n.

Table 3.4 summarizes the known black-box complexities of
LeadingOnesn. The upper bounds for the unbiased black-box models
also hold in the ranking-based variants.

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 197

Model Lower bound Upper bound
unrestricted Θ(n log logn)
unbiased, arity 1 Θ(n2)
unbiased, arity 2 Ω(n log logn) O(n logn)
unbiased, arity ≥ 3 Ω(n log logn) O(n log(n)/ log logn)
λ-parallel unbiased, arity 1 Ω

(
λn

log(λ/n) +n2) O(λn+n2)
(1+1) elitist Ω(n2) O(n2)

Table 3.4 Summary of known black-box complexities of LeadingOnesn in the different
black-box complexity models

3.9 From Black-Box Complexity to Algorithm Design

In the previous sections, the focus of our attention has been on comput-
ing performance limits for black-box optimization heuristics. In some cases,
for example for OneMax in the unary unbiased black-box model and for
LeadingOnes in the (1+1) elitist black-box model, we have obtained lower
bounds that are matched by the performance of well-known standard heuris-
tics such as RLS or the (1+1) EA. For several other models and problems,
however, we have obtained black-box complexities that are much smaller than
the expected running times of typical black-box optimization techniques. As
discussed in the introduction, two possible reasons for this discrepancy exist.
Either the respective black-box models do not capture very well the complex-
ity of the problems for heuristic approaches, or there are ways to improve
classical heuristics by novel design principles.

In the case of the restrictive models discussed in Sections 3.4-3.7, we have
seen that there is some truth in the first possibility. For several optimiza-
tion problems, we have seen that their complexity increases if the class of
black-box algorithms is restricted to subclasses of heuristics that all share
some properties that are commonly found in state-of-the-art optimization
heuristics. Here, in this section, we shall demonstrate that this is neverthe-
less not the end of the story. We discuss two examples where a discrepancy
between black-box complexity and the performance of classical heuristics
can be observed, and we show how the analysis of typically rather artificial
problem-tailored algorithms can inspire the design of new heuristics.

3.9.1 The (1+(λ,λ)) Genetic Algorithm

Our first example is a binary unbiased algorithm, which optimizes OneMax
more efficiently than any classical unbiased heuristic, and provably faster
than any unary unbiased black-box optimizer.

198 Carola Doerr

We recall from Theorems 3.6.7 and 3.6.8 that the unary unbiased black-box
complexity of OneMaxn is Θ(n logn), while its binary unbiased black-box
complexity is only O(n). The linear-time algorithm flips one bit at a time,
and uses a simple but clever encoding to store which bits have been flipped
already. In this way, it is a rather problem-specific algorithm, since it “knows”
that a bit that has been tested already does not need to be tested again. The
algorithm is therefore not very suitable for nonseparable problems, where the
influence of an individual bit depends on the value of several or all other bits.

Until recently, all existing running-time results have indicated that general-
purpose unbiased heuristics need Ω(n logn) function evaluations to optimize
OneMax, so that the question of whether the binary unbiased black-box
model is too “generous” arose. In [21, 25] this question was answered nega-
tively, through the presentation of a novel binary unbiased black-box heuris-
tic that optimizes OneMax in expected linear time. This algorithm is the
(1+(λ,λ)) GA. Since the algorithm itself will be discussed in more detail in
Chapter 5.6, we present here only the main ideas behind it.

Disregarding some technical subtleties, one observation that we can make
when considering the linear-time binary unbiased algorithm for OneMax is
that when it test the value of a bit, the amount of information that it obtains
is the same whether or not the offspring has a better function value. In other
words, the algorithm benefits equally from offspring that are better or worse
than the previously best. A similar observation applies to all of the O(n/ logn)
algorithms for OneMax discussed in Sections 3.3-3.7. These algorithms do
not strive to sample search points of large objective value, but rather aim at
maximizing the amount of information that they can learn about the problem
instance at hand. This way, they benefit substantially also from those search
points that are (much) worse than other ones already evaluated.

Most classical black-box heuristics are different. They store only the best
solutions so far, or use inferior search points only to create diversity in the
population. Thus, in general, they are not very efficient in learning from
“bad” samples (where we consider a search point to be “bad” if it has a small
function value). When a heuristic is close to a local or a global optimum
(in the sense that it has identified search points that are not far from these
optima), it samples, in expectation, a fairly large number of search points that
are wore than the current best solutions. Not learning from these offspring
results in a significant number of “wasted” iterations, from which the heuristic
does not benefit. This observation was the starting point for the development
of the (1+(λ,λ)) GA.

Since the unary unbiased black-box complexity of OneMax is Ω(n logn),
it was clear in the development of the (1+(λ,λ)) GA that an o(n logn) un-
biased algorithm must be at least binary. This led to the question of how
recombination can be used to learn from inferior search points. The follow-
ing idea emerged. For illustration purposes, assume that we have identified a
search point x of function value OMz(x) = n−1. From the function value, we
know that there exists exactly one bit that we need to flip in order to obtain

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 199

the global optimum z. Since we want to be unbiased, the best mutation seems
to be a random 1-bit flip. This has a probability 1/n of returning z. If we
were to do this until we identified z, the expected number of samples would
be n, and even if we stored which bits had been flipped already, we would
need n/2 samples on average.

Assume now that, in the same situation, we flip ℓ > 1 bits of x. Then, with
a probability that depends on ℓ, we may have only flipped already optimized
bits (i.e., bits in positions i for which xi = zi) to 1− zi, thus resulting in
an offspring of function value n− 1− ℓ. However, the probability that the
position j in which x and z differ is among the ℓ positions is ℓ/n. If we
repeat this experiment some λ times, independently of each other and always
starting with x as the “parent,” then the probability that j has been flipped
in at least one of the offspring is 1− (1− ℓ/n)λ. For moderately large ℓ and
λ, this probability is sufficiently large for us to assume that among the λ
offspring there is at least one in which j has been flipped. Such an offspring
is distinguished from the others by a function value of n− 1− (ℓ− 1)+1 =
n−ℓ+1 instead of n−ℓ−1. Assume that there is one such offspring x′ among
the λ independent samples created from x. When we compare x′ with x, they
differ in exactly ℓ positions. In ℓ−1 of these, the entry of x equals that of z.
Only in the j-th position is the situation reversed: x′j = zj ̸= xj . We would
therefore like to identify this position j, and to incorporate the bit value x′j
into x.

So far, we have used only mutation, which is a unary unbiased operation.
At this point, we want to compare and merge two search points, which is one
of the driving motivations behind crossover. Since x clearly has more “good”
bits than x′, a uniform crossover, which takes for each position i its entry
uniformly at random from either of its two parents, does not seem to be a
good choice. We would like to add some bias to the decision-making process,
in favor of choosing the entries of x. This yields a biased crossover, which
takes for each position i its entry yi from x′ with some probability p < 1/2,
and from x otherwise. The hope is to choose p in such a way that in the end
only good bits are chosen. Where x and x′ are identical, there is nothing to
worry about, as these positions are correct already (and, in general, we have
no indication to flip the entry in this position). So, we only need to look at
those ℓ positions in which x and x′ differ. The probability of making only
good choices, i.e., of selecting ℓ−1 times the entry from x and, only for the
j-th position, the entry from x′ equals p(1−p)ℓ−1. This probability may not
be very large, but when we do λ independent trials again, the probability of
having created z in at least one of the trials equals 1− (1−p(1−p)ℓ−1)λ. As
we shall see, for suitable values of the parameters p, λ, and ℓ, this expression
is sufficiently large to gain over the O(n) strategies discussed above. Since
we want to sample exactly one out of the ℓ bits in which x and x′ differ, it
seems intuitive to set p= 1/ℓ; see the discussion in [25, Section 2.1].

Before we summarize the main findings, let us briefly reflect on the struc-
ture of the algorithm. In the mutation step, we have created λ offspring from x,

200 Carola Doerr

by a mutation operator that flips ℓ random bits in x. This is a unary unbiased
operation. From these λ offspring, we have selected one offspring x′ with the
largest function value among all offspring (with ties broken at random). In
the crossover phase, we have then created λ offspring again, by recombining
x and x′ using a biased crossover. This biased crossover is a binary unbiased
variation operator. The algorithm now chooses from these λ recombined off-
spring one that has the largest function value (for OneMax, ties can again
be broken at random, but for other problems it can be better to favor individ-
uals that are different from x; see [25, Section 4.3]). This selected offspring y
replaces x if it is at least as good as x, i.e., if f(y)≥ f(x).

We see that we have employed only unbiased operations, and that the
largest arity in use is two. Both of the variation operators, mutation and
biased crossover, are standard operators in the evolutionary computation
literature. What is novel is that crossover is used as a repair mechanism, and
after the mutation step.

We also see that this algorithm is ranking-based, and even comparison-
based in the sense that it can be implemented in a way in which, instead of
querying absolute function values, only a comparison of the function values
of two search points is asked for. Using information-theoretic arguments as
described in Section 3.2.2, it is then not difficult to show that for any (adap-
tive or nonadaptive) parameter setting the best expected performance of the
(1+(λ,λ)) GA on OneMaxn is at least linear in the problem dimension n.

The following theorem summarizes some of the results on the expected
running time of the (1+ (λ,λ)) GA on OneMax. An exhaustive discussion
of these results can be found in [24]. The fitness-dependent and self-adjusting
choice of the parameters will also be discussed in Section 6.5.2.1 in this book.

Theorem 3.9.1 (from [19, 21, 22, 25]). The (1+ (λ,λ)) GA is a binary
unbiased black-box algorithm. For a mutation strength ℓ sampled from the
binomial distribution Bin(n,k/n) and a crossover bias p= 1/k, the following
holds:

• For k = λ = Θ(
√

log(n) log log(n)/ log log log(n)) the expected
optimization time of the (1 + (λ,λ)) GA on OneMaxn is
O(n

√
log(n) log log log(n)/ log log(n)).

• No static parameter choice of λ ∈ [n], k ∈ [0..n], and p ∈ [0,1] can give a
better expected running time.

• There exists a fitness-dependent choice of λ and k = λ such that the (1+
(λ,λ)) GA has a linear expected running time on OneMax.

• A linear expected running time can also be achieved by a self-adjusting
choice of k = λ.

Note that these results answer one of the most prominent long-standing
open problems in evolutionary computation: the usefulness of crossover in
an optimization context. Previous and other recent examples exist where
crossover has been shown to be beneficial [16, 18, 33, 36, 40, 56, 64, 83, 84],

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 201

but in all of these publications, either nonstandard problems or operators
were considered or the results hold only for uncommon parameter settings,
or substantial additional mechanisms such as diversity-preserving selection
schemes are needed to make crossover really work. To our knowledge, Theo-
rem 3.9.1 is thus the first example that proves advantages of crossover in a
natural algorithmic setting for a simple hill-climbing problem.

Without going into detail, we mention that the (1+ (λ,λ)) GA has also
been analyzed on a number of other benchmark problems, both by theoret-
ical [8] and by empirical [25, 58, 76] means. These results indicate that the
concept of using crossover as a repair mechanism can be useful far beyond
OneMax.

3.9.2 Randomized Local Search with Self-Adjusting
Mutation Strengths

Another example highlighting the impact that black-box complexity studies
can have on the design of heuristic optimization techniques was presented
in [30]. This work built on [31], where the tight bound for the unary unbiased
black-box complexity of OneMax stated in Theorem 3.6.7 was presented.
This bound is attained, up to an additive difference that is sublinear in n, by
a variant of RLS that in each iteration chooses a value r that depends on the
function value OMz(x) of the current best search point x and then uses the
flipr variation operator introduced in Definition 3.6.3 to create an offspring y.
The offspring y replaces x if and only if OMz(y)≥ OMz(x). The dependence
of r on the function value OMz is rather complex and difficult to compute
directly; see the discussion in [31]. Quite surprisingly, a self-adjusting choice of
r is capable of identifying the optimal mutation strengths r in all but a small
fraction of the iterations. This way, RLS with this self-adjusting parameter
choice achieves an expected running time on OneMax that is only worse by
an additive o(n) term than that of the theoretically optimal unary unbiased
black-box algorithm.

The algorithm in [30] will be discussed in Section 5.6 of this book. In the
context of black-box optimization, it is interesting to note that the idea of
taking a closer look at self-adjusting parameter choices, as well as our ability
to investigate the optimality of such nonstatic parameter choices, is deeply
rooted in the study of black-box complexities.

3.10 From Black-Box Complexity to Mastermind

In [29], the black-box complexity studies for OneMax were extended to the
following generalization of OneMax to functions over an alphabet of size k.

202 Carola Doerr

For a given string z ∈ [0..k−1]n, the Mastermind function fz assigns to each
search point x ∈ [0..k− 1]n the number of positions in which x and z agree.
Thus, formally,

fz : [0..k−1]n → R,x 7→ |{i ∈ [n] | xi = zi}|.

The collection {fz | z ∈ [0..k− 1]n} of all such Mastermind functions forms
the Mastermind problem of n positions and k colors.

The Mastermind problem models the homonymous board game, which
was very popular in North America and in the western parts of Europe in
the 1970s and 1980s. More precisely, it models a variant of this game, as in
the original Mastermind game information is provided also about colors xi
that appear in z but not in the same position i; see [29] for details and results
about this Mastermind variant using black and white pegs.

Mastermind and similar guessing games were studied in the computer
science literature long before the release of Mastermind as a commercial board
game. As we have discussed in Section 3.3, the case of k = 2 colors (this is
the OneMax problem) had already been considered by Erdős and Rényi and
several other authors in the early 1960s. These authors were mostly interested
in the complexity- and information-theoretic aspects of this problem, and/or
its cryptographic nature. The playful character of the problem, in turn, was
the motivation of Knuth [67], who computed an optimal strategy that solves
any Mastermind instance with n = 4 positions and k = 6 colors in at most
five guesses.

The first to study the general case with arbitrary values of k was Chvá-
tal [14].

Theorem 3.10.1 (Theorem 1 in [14]). For every k ≥ 2 the unrestricted
black-box complexity of the Mastermind game with n positions and k col-
ors is Ω(n logk/ logn). For ε > 0 and k ≤ n1−ε, it is at most (2+ ε)n(1+
2logk)/ log(n/k).

Note that for k ≤ n1−ε, ε > 0 being a constant, Theorem 3.10.1 gives an
asymptotically tight bound of Θ(n logk/ logn) for the k-color, n-position Mas-
termind game. Similarly to the random guessing strategy of Erdős and Rényi,
it is sufficient to perform this many random queries, chosen independently
and uniformly at random from [0..k−1]n. That is, no adaptation is needed
for such combinations of n and k to learn the secret target vector z.

The situation changes for the regime around k = n, which was the fo-
cus of several subsequent publications [13, 59, 60]. These publications all
showed bounds of order n logn for the k= n Mastermind problem. Originally
motivated by the study of black-box complexities for randomized black-box
heuristics, these bounds were improved to O(n log logn) in [29].

Theorem 3.10.2 (Theorem 2.1 in [29]). For Mastermind with n posi-
tions and k = Ω(n) colors, the unrestricted black-box complexity of the n-

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 203

position, k-color Mastermind game is O(n log logn+ k). For k = o(n), it is
O
(
n log

(
logn

log(n/k)

))
.

Like theO(n/ logn) bound for the case k=2, the bounds in Theorem 3.10.2
can be achieved by deterministic black-box algorithms [29, Theorem 2.3]. On
the other hand, and unlike the situation considered in Theorem 3.10.1, it can
be shown that any (deterministic or randomized) o(n logn) algorithm for the
Mastermind game with k = Θ(n) colors has to be adaptive, showing that in
this regime adaptive strategies are indeed more powerful than nonadaptive
ones.

Theorem 3.10.3 (Theorem 4.1 and Lemma 4.2 in [29]). The nonadap-
tive unrestricted black-box complexity of the Mastermind problem with n posi-
tions and k colors is Ω

(
n logk

max{log(n/k),1}

)
. For k = n, this bound is tight, i.e.,

the nonadaptive unrestricted black-box complexity of the Mastermind problem
with n positions and n colors is Θ(n logn).

Whether or not the O(n log logn) upper bound in Theorem 3.10.2 can be
further improved remains a – seemingly quite challenging – open problem. To
date, the best known lower bound is the linear one reported in [14]. Some nu-
merical results for different values of k= n can be found in [7], but extending
these numbers to asymptotic results may require a substantially new idea or
technique for proving lower bounds in the unrestricted black-box complexity
model.

3.11 Conclusion and Selected Open Problems

In this chapter we have surveyed theory-driven approaches that shed light
on the performance limits of black-box optimization techniques such as local
search strategies, nature-inspired heuristics, and pure random search. We
have presented a detailed discussion of existing results for these black-box
complexity measures. We now highlight a few avenues for future work in this
young research discipline.

3.11.1 Extension to Other Optimization Problems

In line with the existing literature, our focus has been on classes of classical
benchmark problems such as the OneMax, LeadingOnes, Jump, MST,
and SSSP problems, since for these problems we can compare the black-
box complexity results with known running-time results for well-understood
heuristics. As with running-time analysis, it would be highly desirable to
extend these results to other problem classes.

204 Carola Doerr

3.11.2 Systematic Investigation of Combined
Black-Box Models

In the years before around 2013, most research on black-box complexity was
centered around the question of how individual characteristics of state-of-the-
art heuristics influence their performance. With this aim in mind, various
black-box models have been developed that each restrict the algorithms with
respect to some specific property, for example their memory size, or the prop-
erties of their variation operators or of the selection mechanisms in use. Since
2013 we have observed an increasing interest in combining two or more such
restrictions to obtain a better picture of what is needed to design algorithms
that significantly excel over existing approaches. A systematic investigation
of such combined black-box models constitutes one of the most promising
avenues for future research.

3.11.3 Tools to Derive Lower Bounds

To date, the most powerful technique to prove lower bounds on the black-
box complexity of a problem is the information-theoretic approach, most
notably in the form of Yao’s minimax principle, and the simple information-
theoretic lower bound presented in Theorem 3.2.4. Refined variants of this
theorem have been designed to capture the situation in which the number
of possible function values depends on the state of the optimization process,
or where the probabilities for different objective values are nonhomogeneous.
Unfortunately, either the verification that the conditions under which these
theorems apply or the computation of a closed expression that summarizes
the resulting bounds is often very tedious, making these extensions rather
difficult to apply. Alternative tools for the derivation of lower bounds in
black-box complexity contexts form another of the most desirable directions
for future work.

In particular, for the k-ary unbiased black-box complexity with arities
k ≥ 2, we do not have any model-specific lower bounds. We therefore do not
know, for example, if the linear bound on the binary unbiased black-box
complexity of OneMaxn or the O(n logn) bound on the binary unbiased
black-box complexity of LeadingOnesn is tight, or whether the power of
recombination is even larger than what these bounds, in comparison with
the unary unbiased black-box complexities, indicate.

Another specifically interesting problem is raised by the Ω(n2) lower
bound on the (1+1) elitist black-box complexity of LeadingOnesn presented
in Theorem 3.7.6. It has been conjectured in [51, Section 4] that this bound
holds even for the (1+1) memory-restricted setting. A more systematic in-
vestigation of lower bounds for memory-restricted black-box models would

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 205

help us to understand better the role of large populations in evolutionary
computation, a question that is not very well understood to date.

3.11.4 Beyond Worst-Case Expected Optimization
Time as Unique Performance Measure

Black-box complexity, as introduced in this chapter, takes the worst-case ex-
pected optimization time as the performance measure. This measure reduces
the whole optimization procedure to one single number. This, naturally, has
several disadvantages. The same critique applies to running-time analysis in
general, which is very much centered around this single performance mea-
sure. Complementary performance indicators such as fixed-budget (see [65])
and fixed-target (see [11]) results have been proposed in the literature, but
unfortunately have not yet attracted significant attention. Since these mea-
sure give a better picture of the anytime behavior of black-box optimization
techniques, we believe that an extension of existing black-box complexity re-
sults to such anytime statements would make it easier to communicate and
to discuss the results with practitioners, for whom the anytime performance
is often at least as important as the expected optimization time.

In the same context, one may ask if the expected optimization time should
be the only measure considered. Clearly, when the optimization time T (A,f)
of an algorithm A on a function f is highly concentrated, its expectation is
often very similar to its median, and is in particular of the same or similar
asymptotic order. Such concentration can be observed for the running time
of classical heuristics on most of the benchmark problems considered in this
chapter. At the same time, it is also not very difficult to construct problems
for which such a concentration provably does not hold. In particular, for
multimodal problems, in which two or more local optima exist, the running
time is often not concentrated. In [49, Section 3] examples were presented
for which the probability of finding a solution within a small polynomial
given bound is rather large, but where – owing to excessive running times
in the remaining cases – the expected optimization time is very large. This
motivated the authors of [49] to introduce the concept of p-Monte Carlo
black-box complexity. The p-Monte Carlo black-box complexity of a class F
of functions measures the time it takes to optimize any problem f ∈ F with
failure probability at most p. It was shown that even for small p, the p-
Monte Carlo black-box complexity of a function class F can be smaller by
an exponential factor than its traditional (expected) black-box complexity,
which is referred to as the Las Vegas black-box complexity in [49].

Acknowledgements This work was supported by a public grant as part of the In-
vestissement d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH, in a

206 Carola Doerr

joint call with the Gaspard Monge Program for optimization, operations research, and
their interactions with data sciences.

References

[1] Afshani, P., Agrawal, M., Doerr, B., Doerr, C., Larsen, K.G., Mehlhorn,
K.: The query complexity of finding a hidden permutation. In: Space-
Efficient Data Structures, Streams, and Algorithms - Papers in Honor
of J. Ian Munro on the Occasion of His 66th Birthday, Lecture Notes in
Computer Science, vol. 8066, pp. 1–11. Springer (2013)

[2] Anil, G., Wiegand, R.P.: Black-box search by elimination of fitness func-
tions. In: Proc. of Foundations of Genetic Algorithms (FOGA’09), pp.
67–78. ACM (2009)

[3] Antipov, D., Doerr, B.: Precise runtime analysis for plateaus. In: Proc.
of Parallel Problem Solving from Nature (PPSN’18), Lecture Notes in
Computer Science, vol. 11102, pp. 117–128. Springer (2018)

[4] Badkobeh, G., Lehre, P.K., Sudholt, D.: Unbiased black-box complexity
of parallel search. In: Proc. of Parallel Problem Solving from Nature
(PPSN’14), Lecture Notes in Computer Science, vol. 8672, pp. 892–901.
Springer (2014)

[5] Badkobeh, G., Lehre, P.K., Sudholt, D.: Black-box complexity of parallel
search with distributed populations. In: Proc. of Foundations of Genetic
Algorithms (FOGA’15), pp. 3–15. ACM (2015)

[6] Bshouty, N.H.: Optimal algorithms for the coin weighing problem with
a spring scale. In: Proc. of the 22nd Conference on Learning Theory
(COLT’09). Omnipress (2009)

[7] Buzdalov, M.: An algorithm for computing lower bounds for unrestricted
black-box complexities. In: Companion Material for Proc. of Genetic and
Evolutionary Computation Conference (GECCO’16), pp. 147–148. ACM
(2016)

[8] Buzdalov, M., Doerr, B.: Runtime analysis of the (1+ (λ,λ)) Genetic
Algorithm on random satisfiable 3-CNF formulas. In: Proc. of Genetic
and Evolutionary Computation Conference (GECCO’17), pp. 1343–1350.
ACM (2017)

[9] Buzdalov, M., Doerr, B., Kever, M.: The unrestricted black-box com-
plexity of jump functions. Evolutionary Computation 24(4), 719–744
(2016). DOI 10.1162/EVCO_a_00185. URL https://doi.org/10.
1162/EVCO_a_00185

[10] Cantor, D.G., Mills, W.H.: Determining a subset from certain combina-
torial properties. Canadian Journal of Mathematics 18, 42–48 (1966)

[11] Carvalho Pinto, E., Doerr, C.: Discussion of a more practice-aware run-
time analysis for evolutionary algorithms. In: Proc. of Artificial Evo-

https://doi.org/10.1162/EVCO_a_00185
https://doi.org/10.1162/EVCO_a_00185

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 207

lution (EA’17), pp. 298–305 (2017). URL https://ea2017.inria.fr/
/EA2017_Proceedings_web_ISBN_978-2-9539267-7-4.pdf

[12] Cathabard, S., Lehre, P.K., Yao, X.: Non-uniform mutation rates for
problems with unknown solution lengths. In: Proc. of Foundations of
Genetic Algorithms (FOGA’11), pp. 173–180. ACM (2011)

[13] Chen, Z., Cunha, C., Homer, S.: Finding a hidden code by asking ques-
tions. In: Proc. of the 2nd Annual International Conference on Comput-
ing and Combinatorics (COCOON’96), pp. 50–55. Springer (1996)

[14] Chvátal, V.: Mastermind. Combinatorica 3, 325–329 (1983)
[15] Corus, D., He, J., Jansen, T., Oliveto, P.S., Sudholt, D., Zarges, C.:

On easiest functions for mutation operators in bio-inspired optimisation.
Algorithmica 78, 714–740 (2017). DOI 10.1007/s00453-016-0201-4. URL
https://doi.org/10.1007/s00453-016-0201-4

[16] Dang, D., Friedrich, T., Kötzing, T., Krejca, M.S., Lehre, P.K., Oliveto,
P.S., Sudholt, D., Sutton, A.M.: Escaping local optima with diversity
mechanisms and crossover. In: Proc. of Genetic and Evolutionary Com-
putation Conference (GECCO’16), pp. 645–652. ACM (2016)

[17] Dang, D., Lehre, P.K.: Runtime analysis of non-elitist populations: From
classical optimisation to partial information. Algorithmica 75, 428–461
(2016). DOI 10.1007/s00453-015-0103-x. URL https://doi.org/10.
1007/s00453-015-0103-x

[18] Dang, D.C., Friedrich, T., Kötzing, T., Krejca, M.S., Lehre, P.K.,
Oliveto, P.S., Sudholt, D., Sutton, A.M.: Escaping local optima using
crossover with emergent diversity. IEEE Transactions on Evolutionary
Computation 22(3), 484–497 (2018)

[19] Doerr, B.: Optimal parameter settings for the (1+ (λ,λ)) genetic algo-
rithm. In: Proc. of Genetic and Evolutionary Computation Conference
(GECCO’16), pp. 1107–1114. ACM (2016)

[20] Doerr, B., Doerr, C.: Black-box complexity: from complexity theory to
playing Mastermind. In: Companion Material for Proc. of Genetic and
Evolutionary Computation Conference (GECCO’14), pp. 623–646. ACM
(2014). URL http://doi.acm.org/10.1145/2598394.2605352

[21] Doerr, B., Doerr, C.: Optimal parameter choices through self-
adjustment: Applying the 1/5-th rule in discrete settings. In: Proc. of
Genetic and Evolutionary Computation Conference (GECCO’15), pp.
1335–1342. ACM (2015)

[22] Doerr, B., Doerr, C.: A tight runtime analysis of the (1+(λ,λ)) genetic
algorithm on OneMax. In: Proc. of Genetic and Evolutionary Computa-
tion Conference (GECCO’15), pp. 1423–1430. ACM (2015)

[23] Doerr, B., Doerr, C.: The impact of random initialization on the runtime
of randomized search heuristics. Algorithmica 75, 529–553 (2016). URL
https://doi.org/10.1007/s00453-015-0019-5

[24] Doerr, B., Doerr, C.: Optimal static and self-adjusting parameter choices
for the (1+(λ,λ)) genetic algorithm. Algorithmica 80, 1658–1709 (2018)

https://ea2017.inria.fr//EA2017_Proceedings_web_ISBN_978-2-9539267-7-4.pdf
https://ea2017.inria.fr//EA2017_Proceedings_web_ISBN_978-2-9539267-7-4.pdf
https://doi.org/10.1007/s00453-016-0201-4
https://doi.org/10.1007/s00453-015-0103-x
https://doi.org/10.1007/s00453-015-0103-x
http://doi.acm.org/10.1145/2598394.2605352
https://doi.org/10.1007/s00453-015-0019-5

208 Carola Doerr

[25] Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to design-
ing new genetic algorithms. Theoretical Computer Science 567, 87–104
(2015)

[26] Doerr, B., Doerr, C., Kötzing, T.: The unbiased black-box complexity
of partition is polynomial. Artificial Intelligence 216, 275–286 (2014).
URL https://doi.org/10.1016/j.artint.2014.07.009

[27] Doerr, B., Doerr, C., Kötzing, T.: Solving problems with unknown solu-
tion length at (almost) no extra cost. In: Proc. of Genetic and Evolution-
ary Computation Conference (GECCO’15), pp. 831–838. ACM (2015).
URL http://doi.acm.org/10.1145/2739480.2754681

[28] Doerr, B., Doerr, C., Kötzing, T.: Unbiased black-box complexities of
jump functions. Evolutionary Computation 23, 641–670 (2015). URL
https://doi.org/10.1162/EVCO_a_00158

[29] Doerr, B., Doerr, C., Spöhel, R., Thomas, H.: Playing Mastermind with
many colors. Journal of the ACM 63, 42:1–42:23 (2016). URL http:
//dl.acm.org/citation.cfm?id=2987372

[30] Doerr, B., Doerr, C., Yang, J.: k-bit mutation with self-adjusting k out-
performs standard bit mutation. In: Proc. of Parallel Problem Solving
from Nature (PPSN’16), Lecture Notes in Computer Science, vol. 9921,
pp. 824–834. Springer (2016)

[31] Doerr, B., Doerr, C., Yang, J.: Optimal parameter choices via precise
black-box analysis. In: Proc. of Genetic and Evolutionary Computation
Conference (GECCO’16), pp. 1123–1130. ACM (2016)

[32] Doerr, B., Fouz, M., Witt, C.: Quasirandom evolutionary algo-
rithms. In: Proc. of Genetic and Evolutionary Computation Confer-
ence (GECCO’10), pp. 1457–1464. ACM (2010). DOI 10.1145/1830483.
1830749. URL http://doi.acm.org/10.1145/1830483.1830749

[33] Doerr, B., Happ, E., Klein, C.: Crossover can provably be useful in evolu-
tionary computation. Theoretical Computer Science 425, 17–33 (2012)

[34] Doerr, B., Jansen, T., Witt, C., Zarges, C.: A method to derive fixed
budget results from expected optimisation times. In: Proc. of Genetic
and Evolutionary Computation Conference (GECCO’13), pp. 1581–1588.
ACM (2013). DOI 10.1145/2463372.2463565. URL http://doi.acm.
org/10.1145/2463372.2463565

[35] Doerr, B., Johannsen, D., Kötzing, T., Lehre, P.K., Wagner, M., Winzen,
C.: Faster black-box algorithms through higher arity operators. In: Proc.
of Foundations of Genetic Algorithms (FOGA’11), pp. 163–172. ACM
(2011)

[36] Doerr, B., Johannsen, D., Kötzing, T., Neumann, F., Theile, M.: More
effective crossover operators for the all-pairs shortest path problem. The-
oretical Computer Science 471, 12–26 (2013)

[37] Doerr, B., Kötzing, T., Lengler, J., Winzen, C.: Black-box complexities
of combinatorial problems. Theoretical Computer Science 471, 84–106
(2013)

https://doi.org/10.1016/j.artint.2014.07.009
http://doi.acm.org/10.1145/2739480.2754681
https://doi.org/10.1162/EVCO_a_00158
http://dl.acm.org/citation.cfm?id=2987372
http://dl.acm.org/citation.cfm?id=2987372
http://doi.acm.org/10.1145/1830483.1830749
http://doi.acm.org/10.1145/2463372.2463565
http://doi.acm.org/10.1145/2463372.2463565

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 209

[38] Doerr, B., Kötzing, T., Winzen, C.: Too fast unbiased black-box algo-
rithms. In: Proc. of Genetic and Evolutionary Computation Conference
(GECCO’11), pp. 2043–2050. ACM (2011)

[39] Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algo-
rithms. In: Proc. of Genetic and Evolutionary Computation Conference
(GECCO’17), pp. 777–784. ACM (2017). DOI 10.1145/3071178.3071301.
URL http://doi.acm.org/10.1145/3071178.3071301

[40] Doerr, B., Theile, M.: Improved analysis methods for crossover-based
algorithms. In: Proc. of Genetic and Evolutionary Computation Confer-
ence (GECCO’09), pp. 247–254. ACM (2009)

[41] Doerr, B., Winzen, C.: Black-box complexity: Breaking the O(n logn)
barrier of LeadingOnes. In: Artificial Evolution (EA’11), Revised Se-
lected Papers, Lecture Notes in Computer Science, vol. 7401, pp. 205–
216. Springer (2012)

[42] Doerr, B., Winzen, C.: Memory-restricted black-box complexity of
OneMax. Information Processing Letters 112(1-2), 32–34 (2012). URL
https://doi.org/10.1016/j.ipl.2011.10.004

[43] Doerr, B., Winzen, C.: Playing Mastermind with constant-size memory.
Theory of Computing Systems 55, 658–684 (2014). URL https://doi.
org/10.1007/s00224-012-9438-8

[44] Doerr, B., Winzen, C.: Ranking-based black-box complexity. Al-
gorithmica 68, 571–609 (2014). URL https://doi.org/10.1007/
s00453-012-9684-9

[45] Doerr, B., Winzen, C.: Reducing the arity in unbiased black-box com-
plexity. Theoretical Computer Science 545, 108–121 (2014). URL
https://doi.org/10.1016/j.tcs.2013.05.004

[46] Doerr, C., Lengler, J.: Elitist black-box models: Analyzing the impact of
elitist selection on the performance of evolutionary algorithms. In: Proc.
of Genetic and Evolutionary Computation Conference (GECCO’15), pp.
839–846. ACM (2015). URL http://doi.acm.org/10.1145/2739480.
2754654

[47] Doerr, C., Lengler, J.: OneMax in black-box models with several restric-
tions. In: Proc. of Genetic and Evolutionary Computation Conference
(GECCO’15), pp. 1431–1438. ACM (2015)

[48] Doerr, C., Lengler, J.: The (1+1) elitist black-box complexity of
LeadingOnes. In: Proc. of Genetic and Evolutionary Computation
Conference (GECCO’16), pp. 1131–1138. ACM (2016). URL http:
//doi.acm.org/10.1145/2908812.2908922

[49] Doerr, C., Lengler, J.: Introducing elitist black-box models: When does
elitist behavior weaken the performance of evolutionary algorithms? Evo-
lutionary Computation 25 (2017). DOI 10.1162/evco_a_00195. URL
https://doi.org/10.1162/evco_a_00195

[50] Doerr, C., Lengler, J.: OneMax in black-box models with several restric-
tions. Algorithmica 78, 610–640 (2017). URL https://doi.org/10.
1007/s00453-016-0168-1

http://doi.acm.org/10.1145/3071178.3071301
https://doi.org/10.1016/j.ipl.2011.10.004
https://doi.org/10.1007/s00224-012-9438-8
https://doi.org/10.1007/s00224-012-9438-8
https://doi.org/10.1007/s00453-012-9684-9
https://doi.org/10.1007/s00453-012-9684-9
https://doi.org/10.1016/j.tcs.2013.05.004
http://doi.acm.org/10.1145/2739480.2754654
http://doi.acm.org/10.1145/2739480.2754654
http://doi.acm.org/10.1145/2908812.2908922
http://doi.acm.org/10.1145/2908812.2908922
https://doi.org/10.1162/evco_a_00195
https://doi.org/10.1007/s00453-016-0168-1
https://doi.org/10.1007/s00453-016-0168-1

210 Carola Doerr

[51] Doerr, C., Lengler, J.: The (1+1) elitist black-box complexity
of LeadingOnes. Algorithmica 80, 1579–1603 (2018). DOI
10.1007/s00453-017-0304-6. URL https://doi.org/10.1007/
s00453-017-0304-6

[52] Dorigo, M., Stützle, T.: Ant colony optimization. MIT Press (2004)
[53] Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolu-

tionary algorithm. Theoretical Computer Science 276, 51–81 (2002)
[54] Droste, S., Jansen, T., Wegener, I.: Upper and lower bounds for random-

ized search heuristics in black-box optimization. Theory of Computing
Systems 39, 525–544 (2006)

[55] Erdős, P., Rényi, A.: On two problems of information theory. Mag-
yar Tudományos Akadémia Matematikai Kutató Intézet Közleményei 8,
229–243 (1963)

[56] Fischer, S., Wegener, I.: The Ising model on the ring: Mutation versus
recombination. In: Proc. of Genetic and Evolutionary Computation Con-
ference (GECCO’04), Lecture Notes in Computer Science, vol. 3102, pp.
1113–1124. Springer (2004)

[57] Fournier, H., Teytaud, O.: Lower bounds for comparison based evolution
strategies using VC-dimension and sign patterns. Algorithmica 59, 387–
408 (2011)

[58] Goldman, B.W., Punch, W.F.: Fast and efficient black box optimization
using the parameter-less population pyramid. Evolutionary Computa-
tion 23, 451–479 (2015)

[59] Goodrich, M.T.: On the algorithmic complexity of the Mastermind game
with black-peg results. Information Processing Letters 109, 675–678
(2009)

[60] Jäger, G., Peczarski, M.: The number of pessimistic guesses in general-
ized black-peg Mastermind. Information Processing Letters 111, 933–
940 (2011)

[61] Jansen, T.: Black-box complexity for bounding the performance
of randomized search heuristics. In: Y. Borenstein, A. Moraglio
(eds.) Theory and Principled Methods for the Design of Meta-
heuristics, Natural Computing Series, pp. 85–110. Springer (2014).
DOI 10.1007/978-3-642-33206-7_5. URL https://doi.org/10.1007/
978-3-642-33206-7_5

[62] Jansen, T.: On the black-box complexity of example functions: The
real jump function. In: Proc. of Foundations of Genetic Algorithms
(FOGA’15), pp. 16–24. ACM (2015)

[63] Jansen, T., Sudholt, D.: Analysis of an asymmetric mutation operator.
Evolutionary Computation 18, 1–26 (2010). DOI 10.1162/evco.2010.18.
1.18101. URL https://doi.org/10.1162/evco.2010.18.1.18101

[64] Jansen, T., Wegener, I.: The analysis of evolutionary algorithms - a proof
that crossover really can help. Algorithmica 34, 47–66 (2002)

https://doi.org/10.1007/s00453-017-0304-6
https://doi.org/10.1007/s00453-017-0304-6
https://doi.org/10.1007/978-3-642-33206-7_5
https://doi.org/10.1007/978-3-642-33206-7_5
https://doi.org/10.1162/evco.2010.18.1.18101

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 211

[65] Jansen, T., Zarges, C.: Performance analysis of randomised search heuris-
tics operating with a fixed budget. Theoretical Computer Science 545,
39–58 (2014). URL https://doi.org/10.1016/j.tcs.2013.06.007

[66] Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated
annealing. Science 220(4598), 671–680 (1983)

[67] Knuth, D.E.: The computer as Master Mind. Journal of Recreational
Mathematics 9, 1–5 (1977)

[68] Kötzing, T., Neumann, F., Sudholt, D., Wagner, M.: Simple max-min
ant systems and the optimization of linear pseudo-boolean functions. In:
Proc. of Foundations of Genetic Algorithms (FOGA’11), pp. 209–218.
ACM (2011). DOI 10.1145/1967654.1967673. URL http://doi.acm.
org/10.1145/1967654.1967673

[69] de Perthuis de Laillevault, A., Doerr, B., Doerr, C.: Money for noth-
ing: Speeding up evolutionary algorithms through better initializa-
tion. In: Proc. of Genetic and Evolutionary Computation Conference
(GECCO’15), pp. 815–822. ACM (2015). URL http://doi.acm.org/
10.1145/2739480.2754760

[70] Lässig, J., Sudholt, D.: Analysis of speedups in parallel evolutionary
algorithms and (1+λ) EAs for combinatorial optimization. Theoretical
Computer Science 551, 66–83 (2014). DOI 10.1016/j.tcs.2014.06.037.
URL https://doi.org/10.1016/j.tcs.2014.06.037

[71] Lehre, P.K., Witt, C.: Black-box search by unbiased variation. In: Proc.
of Genetic and Evolutionary Computation Conference (GECCO’10), pp.
1441–1448. ACM (2010)

[72] Lehre, P.K., Witt, C.: Black-box search by unbiased variation. Algorith-
mica 64, 623–642 (2012)

[73] Lindström, B.: On a combinatory detection problem i. Mathematical
Institute of the Hungarian Academy of Science 9, 195–207 (1964)

[74] Lindström, B.: On a combinatorial problem in number theory. Canadian
Mathematical Bulletin 8, 477–490 (1965)

[75] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H.,
Teller, E.: Equation of state calculations by fast computing machines.
The Journal of Chemical Physics 21, 1087–1092 (1953)

[76] Mironovich, V., Buzdalov, M.: Hard test generation for maximum flow al-
gorithms with the fast crossover-based evolutionary algorithm. In: Com-
panion Material for Proc. of Genetic and Evolutionary Computation
Conference (GECCO’15), pp. 1229–1232. ACM (2015)

[77] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge Uni-
versity Press (1995)

[78] Neumann, F., Witt, C.: Runtime analysis of a simple ant colony opti-
mization algorithm. Algorithmica 54, 243–255 (2009)

[79] Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Op-
timization – Algorithms and Their Computational Complexity. Springer
(2010)

https://doi.org/10.1016/j.tcs.2013.06.007
http://doi.acm.org/10.1145/1967654.1967673
http://doi.acm.org/10.1145/1967654.1967673
http://doi.acm.org/10.1145/2739480.2754760
http://doi.acm.org/10.1145/2739480.2754760
https://doi.org/10.1016/j.tcs.2014.06.037

212 Carola Doerr

[80] Paixão, T., Pérez Heredia, J., Sudholt, D., Trubenová, B.: Towards a
runtime comparison of natural and artificial evolution. Algorithmica 78,
681–713 (2017)

[81] Rowe, J., Vose, M.: Unbiased black box search algorithms. In: Proc.
of Genetic and Evolutionary Computation Conference (GECCO’11), pp.
2035–2042. ACM (2011)

[82] Storch, T.: Black-box complexity: Advantages of memory usage. Infor-
mation Processing Letters 116(6), 428–432 (2016). DOI 10.1016/j.ipl.
2016.01.009. URL https://doi.org/10.1016/j.ipl.2016.01.009

[83] Sudholt, D.: Crossover is provably essential for the Ising model on
trees. In: Proc. of Genetic and Evolutionary Computation Conference
(GECCO’05), pp. 1161–1167. ACM Press (2005)

[84] Sudholt, D.: Crossover speeds up building-block assembly. In: Proc. of
Genetic and Evolutionary Computation Conference (GECCO’12), pp.
689–702. ACM (2012)

[85] Sudholt, D.: A new method for lower bounds on the running time of evo-
lutionary algorithms. IEEE Transactions on Evolutionary Computation
17, 418–435 (2013)

[86] Teytaud, O., Gelly, S.: General lower bounds for evolutionary algorithms.
In: Proc. of Parallel Problem Solving from Nature (PPSN 2006), Lecture
Notes in Computer Science, vol. 4193, pp. 21–31. Springer (2006)

[87] Witt, C.: Tight bounds on the optimization time of a randomized search
heuristic on linear functions. Combinatorics, Probability & Computing
22, 294–318 (2013)

[88] Yao, A.C.C.: Probabilistic computations: Toward a unified measure of
complexity. In: Proc. of Foundations of Computer Science (FOCS’77),
pp. 222–227. IEEE (1977)

https://doi.org/10.1016/j.ipl.2016.01.009

	Chapter 3 Complexity Theory for Discrete Black-Box Optimization Heuristics
	3.1 Introduction and Historical Remarks
	3.1.1 Black-Box vs. White-Box Complexity
	3.1.2 Motivation and Objectives
	3.1.3 Relationship to Query Complexity
	3.1.4 Scope of This Chapter
	3.1.5 Target Audience and Complementary Material
	3.1.6 Overview of the Content

	3.2 The Unrestricted Black-Box Model
	3.2.1 Formal Definition of Black-Box Complexity
	3.2.2 Tools for Proving Lower Bounds
	3.2.3 Tools to Prove Upper Bounds
	3.2.3.1 Function Classes vs. Individual Instances
	3.2.3.2 Upper Bounds via Restarts

	3.2.4 Polynomial Bounds for NP-Hard Problems

	3.3 Known Black-Box Complexities in the Unrestricted Model
	3.3.1 Needle
	3.3.2 OneMax
	3.3.2.1 The Unrestricted Black-Box Complexity of OneMax

	3.3.3 BinaryValue
	3.3.4 Linear Functions
	3.3.5 Monotone and Unimodal Functions
	3.3.6 LeadingOnes
	3.3.7 Classes of Jump Functions
	3.3.7.1 Known Running-Time Bounds for Jump Functions
	3.3.7.2 The Unrestricted Black-Box Complexity of Jump Functions
	3.3.7.3 Alternative Definitions of Jump Functions

	3.3.8 Combinatorial Problems
	3.3.8.1 Minimum Spanning Trees
	3.3.8.2 Single-Source Shortest Paths

	3.4 Memory-Restricted Black-Box Complexity
	3.4.1 OneMax
	3.4.2 Difference with Respect to the Unrestricted Model

	3.5 Comparison- and Ranking-Based Black-Box Complexity
	3.5.1 The Ranking-Based Black-Box Model
	3.5.2 The Comparison-Based Black-Box Model

	3.6 Unbiased Black-Box Complexity
	3.6.1 Unbiased Variation Operators
	3.6.2 The Unbiased Black-Box Model for Pseudo-Boolean Optimization
	3.6.3 Existing Results for Pseudo-Boolean Problems
	3.6.3.1 Functions with a Unique Global Optimum
	3.6.3.2 OneMax
	3.6.3.3 LeadingOnes
	3.6.3.4 Jump Functions
	3.6.3.5 Number Partition
	3.6.3.6 Minimum Spanning Trees
	3.6.3.7 Other Results

	3.6.4 Beyond Pseudo-Boolean Optimization: Unbiased Black-Box Models for Other Search Spaces
	3.6.4.1 Alternative Extensions of the Unbiased Black-Box Model for the SSSP problem

	3.7 Combined Black-Box Complexity Models
	3.7.1 Unbiased Ranking-Based Black-Box Complexity
	3.7.2 Parallel Black-Box Complexity
	3.7.3 Distributed Black-Box Complexity
	3.7.4 Elitist Black-Box Complexity
	3.7.4.1 Nonapplicability of Yao’s Minimax Principle
	3.7.4.2 Exponential Gaps to Previous Models
	3.7.4.3 The Elitist Black-Box Complexity of OneMax
	3.7.4.4 The Elitist Black-Box Complexity of LeadingOnes
	3.7.4.5 The Unbiased Elitist Black-Box Complexity of Jump Functions

	3.8 Summary of Known Black-Box Complexities for OneMax and LeadingOnes
	3.9 From Black-Box Complexity to Algorithm Design
	3.9.1 The (1+(λ,λ)) Genetic Algorithm
	3.9.2 Randomized Local Search with Self-Adjusting Mutation Strengths

	3.10 From Black-Box Complexity to Mastermind
	3.11 Conclusion and Selected Open Problems
	3.11.1 Extension to Other Optimization Problems
	3.11.2 Systematic Investigation of Combined Black-Box Models
	3.11.3 Tools to Derive Lower Bounds
	3.11.4 Beyond Worst-Case Expected Optimization Time as Unique Performance Measure

	References

