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11.1	 �Acute Respiratory Distress 
Syndrome

Acute respiratory distress syndrome (ARDS) is a 
high-mortality syndrome that develops following 
an infection or trauma, leading to a dysregulated 
inflammatory response in the lung that can cause 
tissue remodeling, pulmonary dysfunction, and 
death [1]. ARDS is characterized by acute respi-
ratory failure caused by an increase of fluids in 
the alveolar space. The breakdown of the immune 
response increases the permeability of the epithe-

lial–endothelial barrier. This results in an 
increased filtration of protein-rich fluid from the 
vascular system into the alveolar spaces, with a 
subsequent lung edema and a decrease in the 
ability of gas exchange [2].

ARDS develops as a localized lung response 
that could have multiple origins including pneu-
monia, systemic sepsis, major surgery, or multi-
ple trauma. Patients with ARDS have an acute 
onset of symptoms like severe chest pain and a 
decrease in their pulmonary function associated 
to pulmonary infiltrates in the X-ray, indicative of 
pulmonary edema. These symptoms usually 
appear after the first week of the injury [3].

ARDS accounts for more than 10% of inten-
sive care unit (ICU) admissions worldwide and 
has a mortality rate of about 40% [4]. ARDS 
results in a diminished quality of life and lung 
function; and survivors often have long-term 
neuromuscular, cognitive, and psychological 
symptoms. Additionally, long hospitalization, 
ICU, and increased use of health care services 
after hospital discharge have enormous socioeco-
nomical cost [5, 6].

Despite several decades of research, there is 
no disease-modifying therapy for ARDS. Because 
the mechanisms driving lung injury are complex 
and diverse, pharmacological treatments often 
fail, suggesting that targeting a single mediator or 
pathway is not enough to achieve therapeutic 
effects. As an alternative, after their use in several 
preclinical models of ARDS, cell-based therapies 
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with mesenchymal stem/stromal cells (MSCs) 
are promising, as they can target multiple cellular 
and extracellular impairments associated with 
ARDS simultaneously [7].

11.2	 �Pathology of ARDS

There are multiple initiation agents for ARDS, 
from microorganism invasion (bacteria or viral) 
to mechanical stressors, that result from mechan-
ical ventilation [8]. Beyond the initial trigger, 
aging, like in any other lung diseases, there is an 
impaired capacity of the lung to recover. In sev-
eral animal models, when we compared aged 
with young, there was an increase in the morbid-
ity and mortality as a consequence of an altered 
inflammatory response [9–11].

Immune activation results in the release of pro-
inflammatory cytokines and chemokines with a 
primary influx of neutrophils into the alveolar 
space, leading to the release of metalloproteinases 
(MMP), myeloperoxidases (MPO), collagenase, 
and the generation of reactive oxygen species 
(ROS) [12]. This activates and attracts macro-
phages and lymphocytes to the site of injury with 
a sequent release of inflammatory cytokines 
including IL-6, IL-8, IL-1β, and TNFα [13].

In physiological situations, anti-inflammatory 
mediators act to limit the inflammatory cascade 
and control the tissue damage. ROS serves mul-
tiple functions such as killing phagocytosed 
microorganism, or the removal of cell debris and 
signaling. However, high and persistent levels of 
ROS, MMPs, and MPOs cause tissue necrosis, 
injury, and destruction [14]. The controlling feed-
back mechanism seems to be impaired during the 
onset of sepsis, which leads to a persistent inflam-
matory response after the resolution of the initial 
insult [15].

Along with the production of proinflamma-
tory cytokines, other factors are secreted such as 
endothelin-1 (EDN1), angiotensin-2 (AGT-II), 
and phospholipase A2 (PLA2), which increase 
vascular permeability [16, 17]. The disruption of 
epithelial–endothelial barriers leads to a disrup-
tion of the alveolar clearance and production of 
surfactant [18]. Edema accumulates in the alveoli 

though the increase permeability of epithelial and 
endothelial barriers and the decrease in alveolar 
fluid clearance. Measurements of the protein con-
tent in BAL fluid provide an estimate of the alve-
olar changes and could be used as an indicator of 
the prognosis of the patient [19]. There is an ini-
tial phase of fluid accumulation followed by a 
proliferation phase, which is characterized by the 
increase of type II alveolar cells (AEC-II), fibro-
blast, myofibroblast, and matrix deposition. If the 
inflammation persists, then there is a disorga-
nized repair that could lead to fibrosis [20, 21].

11.3	 �MSCs in the Treatment 
of ARDS

MSCs constitute a great option for the treatment 
of ARDS because of their ability to regulate the 
immune response, enhance the phagocytic clear-
ance of bacteria and secrete factors that regulate 
the capillary–alveolar barrier. Additionally, 
MSCs appeared immune-privileged with low lev-
els of type I HLA antigens in their surface, which 
allows them to escape from the patient’s immune 
response [22, 23]. This represents an important 
advantage that allows the therapeutic use of allo-
genic MSC [24].

MSC could exert their effect through cell 
contact-dependent mechanisms and by the 
release of soluble factors. This chapter summa-
rizes all the processes by which MSCs could be 
beneficial in the treatment of ARDS (Fig. 11.1) 
and the preclinical animal models of lung injury 
in which these have been tested.

11.4	 �Mechanism of Action of MSC

Tracking MSC engraftment has been possible 
using MSC expressing GFP or labeled with PKH 
allowing the localization of the cells by fluores-
cent imaging [25–27]. There is considerable vari-
ety in the number of cells homing into the lungs. 
We have demonstrated an early retention in the 
lung of MSCs in large animal models of acute 
lung injury independent of the way cells were 
delivered [28]. However, it is well accepted that 
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by using colocalization of surface markers, 
infused MSCs that localize in the lung are not dif-
ferentiating into any other cell type, including 
alveolar or airway epithelial cells, fibroblasts, or 
endothelial cells. The actual knowledge suggest 
that most of the presence of MSCs observed in 
the LPS model of lung injury reflects a transient 
process [29] and that the protective effect seen 
with MSC therapy does not require MSC differ-
entiation into any cell type [14]. Engineered 
MSC to overexpress important genes for the epi-
thelial lineage like angiopoietin [30], ROR2 [31] 
or β-catenin [32] showed an enhanced differenti-
ation capacity in vitro, but there was no engraft-
ment and differentiation in in  vivo models of 
LPS-induced acute lung injury.

Despite the initial interest in the multipotent 
properties of the MSCs, engraftment and differ-
entiation in the lung [14, 33], their beneficial 
effect more likely derives from their capacity to 

be recruited by the sites of injury, interact with 
the host cells, and secrete soluble factors known 
as the secretome [34]. The MSC secretome is 
dynamic and could vary depending on the MSC 
source or the type of lung injury. It includes an 
extended array of bioactive molecules compris-
ing cytokines, chemokines, growth factors, 
angiogenic factors, and microvesicles [2]. 
Table 11.1 summarizes the described molecules 
of the secretome and their main functions.

11.4.1	 �MSCs Reduce Endothelial 
and Epithelial Permeability

The integrity of the microvascular endothelium is 
essential to avoid the influx of protein-rich fluid 
from the circulation to the alveolar space. In 
addition to the generated edema, this permeabili-
zation comes with inflammatory cytokines and 
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cells which may further aggravate the ability of 
the endothelium to reduce edema [33]. Several 
MSC-secreted factors have the capacity of regu-
late the alveolar microvasculature reducing its 
permeability.

Angiopoietin-1 (Ang-1) is a ligand for endo-
thelial Tie2 receptor activating the NF-κB path-
way to prevent the formation, on AEC-II, of actin 
stress fibers and preserve the localization of clau-
din-18 [73]. Ang-1 has been shown to promote 
endothelial survival, reduce endothelial permea-
bility, and inhibit leukocyte interactions by modi-
fying cell adhesion molecules and cell junctions 
[36, 74, 75]. Engineered MSCs overexpressing 
Ang-1 further reduce protein content, albumin, 

and immune cells in BAL [35, 76, 77]. MSC cul-
ture in proinflammatory conditions enhances 
their capacity to produce Ang-1. Also, when 
Ang-1 was blocked with siRNA, MSCs no longer 
prevented epithelial permeabilization [73].

Keratinocyte growth factor (KGF), also known 
as fibroblast growth factor 7 (FGF7), is a critical 
factor for epithelial repair and stimulating epithe-
lial cell proliferation [41]. Animal models of ALI, 
such as by administration of α-naphthylthiourea 
[37, 52] P. aeruginosa [78] or ventilator-induced 
lung injury [39], have shown the ability of KGF to 
reduce alveolar edema. Engineered MSCs over-
expressing KGF improve microvascular permea-
bility, reduce proinflammatory cytokines (IL-1β 

Table 11.1  Secretome of the MSCs and their therapeutic actions against ARDS

Molecule Mechanism of action
Reduce endothelial–epithelial permeability
Angiopoietin-1 (Ang-1) [35, 36] Promotes endothelial survival, reduces permeability, and inhibits 

leukocyte interactions
Keratinocyte growth factor (KGF) [37–41] Promotes epithelial proliferation, may be attribute for the promotion 

of AEC-II and the production of surfactant
Hepatocyte growth factor (HGF) [42–46] Preserve integrity of the endothelium
Sphingosine-1-phosphate (S1P) [47, 48] Enhances the resistance of the endothelial barrier and reduces the 

levels of TNFα
Vascular endothelial growth factor (VEGF) 
[45, 49–51]

Reduces lung permeability, protects endothelium from apoptosis, 
controls inflammation, and facilitates VE-cadherin recovery

Alveolar fluid clearance
KGF [37–41] Increases trafficking of sodium transport proteins to the cell surface, 

reduces aquaporin 5 expression, and increases epithelial repair
Fibroblast growth factor 7 (FGF7) [52] Increases expression of sodium channels
Epithelial growth factor (EGF) [53, 54] Stimulates the proliferation of epithelial cells, increases sodium 

channels and Na-K-ATPase function
TGF-β [55, 56] Increases activity of the sodium channels
Immune response regulation
IL-4 [57, 58] Anti-inflammatory cytokine inhibiting type I responses
IL-10 [59, 60] Anti-inflammatory cytokine inhibiting neutrophil recruitment and 

activation
IL-13 [61] Anti-inflammatory cytokine
IL-1rN [62] Competes with IL-1β receptor binding, inhibiting its effects
Prostaglandin E2 [63, 64] Stimulates macrophages to produce IL-10
KGF [37, 41] Induces the secretion of granulocyte–macrophage colony-stimulating 

factor that increases alveolar macrophage phagocytosis and inhibits 
macrophage apoptosis

TNF-stimulated gene protein 6 (KGF6) [65, 
66]

Anti-inflammatory cytokine

Bacterial clearance
β-Defensin 2 (BD2) [67] Inhibits bacterial growth in vitro
LL-37 [68, 69] Antibacterial, antifungal, and antiviral properties
Lipocalin-2 [70–72] Regulates chemokines such as CXCL9 to reduce inflammation in front 

bacterial infections
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and TNFα), and increase the anti-inflammatory 
response (IL-10). The underlying mechanism is 
not completely understood but may be attributed 
to the promotion of AEC-II cells and the produc-
tion of surfactant [41].

Hepatocyte growth factor (HGF) was found to 
preserve integrity of pulmonary endothelium 
though the inhibition of Rho GTPase, prevent the 
actin stress fiber formation, and preserve the gaps 
between endothelial cells [39, 42]. Sphingosine-
1-phosphate (S1P) enhances the resistance of the 
endothelial barrier. This mechanism seems to be 
dependent of the capacity to inhibit leukocyte 
permeability as well as reduce levels of TNFα 
[47, 48]. Vascular endothelial growth factor 
(VEGF) has been described to reduce lung per-
meability, protect endothelium from apoptosis, 
control inflammation, and facilitate VE-cadherin 
recovery. Knockdown of VEGF in MSCs con-
firms these activities as these cells present 
reduced therapeutic activity on ALI models [51].

11.4.2	 �Alveolar Fluid Clearance, AFC

Alveolar fluid clearance (AFC) is the capacity of 
the lung epithelium to remove alveolar fluid dur-
ing pulmonary edema. This process is mediated 
through sodium channels, aquaporin, and 
sodium-potassium adenosine triphosphatase 
Na-K-ATPase [43]. Many conditions such as 
high-volume mechanical ventilation, live bacte-
ria, or proinflammatory cytokines can reduce 
AFC [79, 80]. The compromised capacity of AFC 
is used as prognostic value to determine morbid-
ity and mortality [80]. Both AEC-I and AEC-II 
are involved in AFC during pulmonary edema. 
AEC-I has the highest permeability to water, 
potentially through aquaporin, which supports its 
role in ion transport [81–83]. Na-K-ATPase is 
expressed in both AEC-I and AEC-II and has a 
critical role in alveolar fluid reabsorption, where 
the sodium transport is followed by outflux of 
water in an isosmolar manner [84, 85].

Studies with intra-bronchia administration of 
LPS in ex-vivo perfused lungs revealed a marked 
decrease in AFC, and mechanisms dependent on 
the blood presence suggest that immune cell are 

required for the injurious effect of the LPS. MSCs, 
or their conditioned media (CM), normalized 
AFC in a KGF-dependent manner as siRNA for 
KGF reduced the therapeutic effect of the MSCs 
[86]. KGF increases fluid transported across the 
alveolar epithelium through increased trafficking 
of sodium transport proteins to the cell surface 
[87, 88]. KGF also has important functions 
reducing the expression of aquaporin 5 and 
avoiding the transdifferentiation of AEC-II 
toward AEC-I [38]. Another group described that 
KGF effects on AFC are mediated through an 
increased rate of epithelial repair, cell adherence, 
and migration [40].

Epithelial growth factor (EGF) stimulates the 
proliferation of epithelial cells, increases sodium 
channels and Na-K-APase function in in  vitro 
alveolar epithelial cultures [54]. An in  vivo rat 
model with aerosolized EGF showed an increase 
in active sodium transport, Na-K-ATPase activ-
ity, and lung fluid clearance [53]. Rat models 
with instilled TGF-β increase alveolar fluid clear-
ance in a time-dependent and dose-dependent 
manner. This increase of alveolar clearance is 
driven by an increased activity of the sodium 
channels [55].

11.4.3	 �Immune Response Regulation

MSCs constitutively do not exert their immuno-
modulatory properties but instead have to be 
“primed” by inflammatory mediators [89]. In the 
context of ARDS, the acute inflammation drives 
this “priming” of the MSCs, activating their 
immunomodulatory properties [24]. MSCs were 
found to protect tissue damage from extraordi-
nary inflammation by downregulate the expres-
sion of proinflammatory cytokines as IL-6, IL-8 
IL-1β, IFNɣ, and TNFα and through the produc-
tion of anti-inflammatory cytokines such a IL-4, 
IL-10, or IL-13 [71, 79, 90, 91]. Additionally, 
MSCs produce IL-1rN which is a cytokine that 
competes with IL-1β receptor binding, thus 
inhibiting its effects [62].

Several in vitro and in vivo studies have dem-
onstrated that MSCs have several effects over the 
innate immune system. They can influence the 
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maturation of the dendritic cells (DC) [92], 
increase the phagocytic capacity of monocytes 
[93–95], neutrophils [96–98], and modify macro-
phage toward immunomodulatory M2 phenotype 
[99, 100]. MSCs secrete prostaglandin E2 that 
then stimulates macrophages and monocytes to 
produce the anti-inflammatory cytokine IL-10 
[101]. IL-10 has been reported to inhibit the roll-
ing, adhesion, and transepithelial migration of 
neutrophils, thus resulting critical downstream in 
the MSC therapeutic effects [13, 102]. MSCs 
produce KGF that induces the secretion of granu-
locyte–macrophage colony-stimulating factor 
that increases alveolar macrophage phagocytosis 
[103]. KGF also inhibits macrophage apoptosis 
through a downregulation of the β-catenin path-
way that increases Bcl-2 and decreases BAX and 
caspase-3 [104].

MSCs also can modulate the adaptive immune 
response. MSCs suppress B cell proliferation and 
terminal differentiation [105], suppress T cell 
proliferation [102, 106, 107], induce a switch 
from Th1 proinflammatory response to Th2 
response, and finally increase the number of T 
regulatory cells [108]. MSCs secrete idoleamine 
2,3-dioxygenase (IDO) upon stimulation with 
IFNɣ. IDO activity results in tryptophan deple-
tion and kynurenine production that inhibits T 
cell proliferation [109]. TNF-stimulated gene 
protein 6 (KGF6) is another contributor to the 
immunomodulatory effects of the MSCs. In lung 
injury models, MSCs upregulate KGF6 that binds 
IL-8, blocking its function [66]. Blockage of 
KGF6 by siRNA completely reverses MSCs’ 
anti-inflammatory properties [65].

It is important to note that while MSCs secrete 
an extensive range of anti-inflammatory cyto-
kines, they also have the capacity to produce sev-
eral proinflammatory cytokines such as IL-6 and 
IL-8. The production of these cytokines has been 
associated with poor outcomes in ARDS patients 
[110, 111]; however, there is new evidence that 
suggests a role of these cytokines in the MSC 
therapeutic effect. IL-6 is usually implicated in 
proinflammatory responses, but apparently, it 
could have promiscuous functions [112–114]. It 
is not clear how IL-6 induces therapeutic effects, 
but its inhibition in lung injury models dimin-

ished the MSC therapeutic effect [115]. The role 
of IL-8 is not clear but there is evidence suggest-
ing that IL-8 promotes the production of VEGF 
that promotes angiogenic effects [50].

11.4.4	 �Enhancement of Bacterial 
Clearance

MSCs attenuate bacterial sepsis directly by anti-
microbial peptides secretion and by enhancement 
of macrophage phagocytosis [116]. MSCs stimu-
lated by the presence of bacteria released 
β-defensin 2 (BD2) [67], LL-37 [68, 69] and 
lipocalin-2 [71]. BD2 is upregulated in the pres-
ence of bacteria through TLR2 and TLR4 path-
ways, inhibiting bacterial growth in  vitro [67]. 
LL-37 is a cathelicidin peptide with antibacterial, 
antifungal, and antiviral properties [68, 117]. 
Lipocalin-2 is known to act on mucosal cells dur-
ing pulmonary infection to regulate chemokines 
such as CXCL9 to reduce inflammation in front 
bacterial infections [70, 72, 117].

CM from stimulated MSC was found to con-
tain high levels of antimicrobial peptides and to 
inhibit bacterial growth. However, when treated 
with inhibitors of these peptides, the effect was 
abolished. Animal models of lung injury show a 
reduced bacterial growth in the lung homogenates 
on the animals treated with MSCs. This effect was 
decreased if a neutralizing antibody against LL-37 
was administered with the MSCs [92]. Similar 
observations were done blocking the TLR2 and 
TLR4 and thus the production of BD2 [67].

11.4.5	 �Transfer and Rescue 
of Mitochondrial Function 
in Target Cells

MSCs could contribute to rescue mitochondrial 
function in epithelial cells containing nonfunc-
tional mitochondria [118, 119]. In vitro imaging 
reveals the formation of connexin-43-gap junc-
tions between MSC and alveolar epithelial cells, 
allowing the transport of mitochondria to the 
LPS-injured epithelium. This resulted in 
increased ATP levels that rescued the surfactant 
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secretion by AEC-II leading to reduce alveolar 
permeability and reduced mortality. An endo-
toxin lung injury model treated with instilled 
MSCs confirmed this mitochondrial transfer to 
the injured epithelium, leading to the restoration 
of its function. This rescue mechanism was abro-
gated when MSCs with dysfunctional mitochon-
dria were instilled, supporting its role in restoring 
the lung epithelium [25]. As described in more 
detail in Chap. 4, another group found that the 
mitochondria were transferred through nano-
tubes, which was upregulated by the Rho-GTPase 
Miro1 [120].

Mitochondrial transfer to macrophages has 
also been described in vitro through the formation 
of tunneling nanotubes. Mitochondrial transfer 
enhanced macrophage oxidative phosphorylation 
and phagocytosis. The blockage of the tunneling 
nanotubes formation completely abolished the 
MSC effect on macrophages [121, 122].

11.5	 �Preclinical Models of MSCs 
in ARDS

11.5.1	 �Animal Models of ARDS 
Treated with MSCs

The therapeutic efficacy of MSCs in the treat-
ment of lung injury has been demonstrated in 
numerous animal models. Most of the studies 
have been performed in mouse or rat models and 
large animal models using swine [145, 146] or 
sheep [147, 148]. Acute lung injury is mainly 
induced through infection with endotoxin or live 
bacteria, and via cecal ligation and puncture driv-
ing sepsis. Rat models are preferred for the study 
of ventilator induced lung injury. There is lot of 
variability in dose, timing, route of administra-
tion, and source of MSCs, but all the studies 
found an improvement of the injury. Table 11.2 
shows the main findings in animal models of 
ARDS using MSCs.

Animal models have shown the potential of 
using MSCs as a treatment therapy for ARDS. A 
recent study compared the therapeutic potential 
and the distribution of the MSCs with different 
administration routes in a large animal model of 

acute lung injury. Endobronchial and intravenous 
administration of MSCs have similar rates of lung 
retention at 5 h post administration and recovery 
of arterial oxygenation in equal extent [28].

Most of the studies performed showed histo-
logical improvements upon MSC treatment with 
reduction of the inflammation, edema, and lung 
injury with reduced collagen deposition [29, 65, 
69, 71, 94, 108, 123–138]. At the endothelial–
epithelial level, the alveolar barrier is better 
maintained in the animals treated with MSCs, 
with lower levels of protein in the BAL [65, 123, 
129, 135–137, 139, 140]. In vivo, MSCs display 
immunomodulatory properties modifying the 
lung immune response. At molecular levels, 
MSC are able to shift the cytokine profile from 
the pro-inflammatory status in ARDS toward a 
more anti-inflammatory one [124, 128, 131, 133, 
135, 136, 138, 140, 141]. At the cellular level, 
MSCs promote a T regulatory lymphocyte 
response [108], increasing phagocytic activity of 
macrophages [69, 101, 127, 129] and reducing 
the neutrophil numbers [8, 125, 127, 131, 136]. 
All these modifications of the immune response 
control the inflammation and preserve the lung 
tissue integrity. Also, MSC perform antimicro-
bial properties promoting phagocytosis and bac-
terial killing by the secretion of LL37 peptide 
[69] or lipocalin [71, 94]. In addition, MSC have 
showed antioxidant effects in  vivo, preserving 
plasma levels of cysteine and glutathione redox 
state after endotoxin administration [126, 149].

11.5.1.1	 �Development of Genetically 
Modified MSCs

MSCs’ capacity to migrate to the sites of inflam-
mation makes them an attractive factor for gene-
based therapy [150]. Overexpression of specific 
genes in MSCs can be used to enhance their ther-
apeutic effects [25]. Most of the approaches are 
directed to increase their regenerative potential or 
their immunomodulatory capacity.

Administered MSCs overexpressing KGF 
improve pulmonary microvascular permeability, 
reducing the lung injury in the model of LPS-
induced lung injury [41]. VEGF-overexpressing 
MSCs protect the endothelium from apoptosis, 
reducing the permeability and edema [51]. The 
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expression of HGF makes MSC to protect adher-
ent junctions, VE-cadherin of the epithelium and 
reduce apoptosis, preserving lung architecture 
[46]. β-Catenin-overexpressing MSC improves 
alveolar permeability, promoting the differentia-
tion of lung precursors into AEC-II [32]. 
Engineered MSCs targeting the immune system 
have been modified to express anti-inflammatory 
molecules or to alter the expression of chemo-
kines. MSCs overexpressing prostaglandin recep-
tor [63], IL-10 [151], or IL-1rl1 [152] induce a 
strong shift in the cytokine profile toward an anti-
inflammatory response, reducing lung inflamma-
tion and edema. Finally, MSCs with altered 
expression of chemokine receptors show a 
reduced accumulation in the lung of inflamma-
tory cells and mediators [153].

All the previous studies described the effects 
of the MSC in acute lung injury when adminis-
tered at the initiation of the injury, but adminis-
tration of MSCs once the injury is already 
performed did not show significant therapeutic 

effects [154]. MSCs overexpressing the microR-
NAs let-7d (antifibrotic) or miR-154 (profibrotic) 
were administered 7 days after bleomycin instil-
lation. Mice treated with let-7d expressing MSCs 
were found to recover quicker from the initial 
weight loss, while those untreated or treated with 
miR-154 had the lowest survival rate, although 
no fibrotic differences were found in the lung tis-
sue. The effect was more immunomodulatory, 
altering the pattern of cytokines and the leuko-
cyte infiltration [155].

11.5.1.2	 �Pretreatment of the MSCs 
to Enhance Their Potential

MSCs’ immunomodulatory effects vary depend-
ing on the immune microenvironment [156, 157]. 
The therapeutic effect achieved varies greatly 
between different studies and one possible expla-
nation could be the resting status of the MSC. The 
immunosuppressive function of the MSC is 
enhanced by the presence of pro-inflammatory 
cytokines such as IFNɣ, TNFα, IL-1α, or IL-1β 

Table 11.2  Main therapeutic findings in animal models of ARDS

Lung findings BAL findings Plasma findings
Physiological changes
Prevention of lung inflammation, injury, and 
edema [29, 65, 69, 71, 94, 108, 123–138]
Increased adhesion molecule-1 and vascular 
cell adhesion molecule-1 [134, 139]
Increased antioxidant and reduced 
glutathione [126]
Reduced elastase [129, 135–137, 139]
Reduced collagen [129]
Increased KGF [139]
Mitochondrial transfer [25]

Reduced protein content [65, 123, 
140]

Improved oxygenation [135, 137]

Anti-inflammatory
Cytokines: IL-1β, TNFα, and IL-6 [124, 
128, 131, 133, 135, 136, 138, 140, 141]
Increased anti-inflammatory cytokines: 
IL-10 and IL-1RN [130, 131, 133, 135, 138, 
140]
Reduced neutrophils [8, 125, 127, 131, 136]
Reprogramming of macrophages to M2 [69, 
101, 127, 129]
Increased Tregs [108]

Cytokines: TNFα, MIP2, IL-1β, 
and IL-6 [65, 123, 124, 130, 137, 
139, 140, 142]
Increased IL-10 [123, 142]
Reduced neutrophils [65, 124, 
137]
Reduced cell count [130, 137, 
139, 140, 142]

Decreased expression of IL-1β, 
TNFα, and MIP2 [8, 29, 123, 124, 
132, 141, 143]
Increased expression of IL-10 [8, 
143]
Increased phagocytic activity of 
monocytes [141]

Antimicrobial
Promotion of phagocytosis and bacterial 
killing [68, 69, 124, 141]
Reduced viral load [13, 144]
Increased LL37 in rat lungs [69]

Reduced bacterial growth [68]
Increased LL37 [68]
Enhanced bacterial clearance by 
production of lipocalin-2 [71, 94]

Reduced bacterial counts [141]
Increased LL37 [69]
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[158], while the presence of anti-inflammatory 
cytokines like IL-10 abrogates their suppressive 
effect and even induces the production of pro-
inflammatory cytokines [159–161].

An early study assessing the role of the micro-
environment in the treatment of acute lung injury 
with MSCs showed the importance of the expres-
sion of TLR4 on the MSCs. TLR4 expression of 
MSCs is essential for the release of prostaglandin 
E2 upon activation by LPS or TNFα. MSCs lack-
ing the genes for TLR4 or their downstream 
mediators are unable to produce prostaglandin 
E2 and activate macrophages to produce IL-10 in 
a mouse model of acute lung injury [101].

Rojas et al. showed that MSC treatment with 
serum from ARDS patients containing pro-
inflammatory cytokines increases their immuno-
modulatory function with higher production of 
IL-10 and IL-1β receptor agonist. Pretreated 
MSCs have an enhanced protective capacity, 
reducing lung injury, edema, and accumulation 
of pro-inflammatory cells and cytokines in a 
mouse model of acute lung injury [130].

The time point at which MSCs are adminis-
tered seems to be crucial. Only MSCs injected at 
the time of inducing the lung injury have shown 
to have therapeutic effect, even though they could 
lose all the antifibrotic properties when adminis-
tered long after the injury [154]. One of the pos-
sible mechanisms responsible for the shift in 
their function is the microenvironment of the 
injured lung. In a mouse model of irradiated 
lungs, TGF-β expression was incremented in the 
damaged lungs, and in  vitro the cytokines 
released by the lung injured cells inhibited the 
differentiation of the MSC into epithelial cells 
[162]. A recent study of acute lung injury by acid 
instillation revealed that treatment with MSC 
worsens the acid effects, driving a fibrotic pro-
cess. This process seemed to be mediated by the 
presence of IL-6 and fibronectin in the microen-
vironment, which could be driving a senescence-
associated phenotype on the MSCs. The fibrotic 
effect was reversed when the MSC were engi-
neered to overexpress IL-10 or HGF neutralizing 
both in  vivo in mouse models of HCl and 
ventilator-induced lung injury [163].

Another factor that could influence the thera-
peutic effect achieved is the aging status of the 

MSCs. MSCs isolated from aged individuals 
have reduced expression of cytokine and chemo-
kine receptors that impair their migration and 
activation, failing to reduce inflammation in a 
mouse model of acute lung injury [164].

11.5.1.3	 �Alternative Sources of MSCs 
Than Bone Marrow

Traditionally, MSCs obtained from bone marrow 
have been used in most of the preclinical and 
translational studies. However, there is a growing 
number of studies using adipose and umbilical 
cord blood (UC-MSC) as potentially more plenti-
ful sources. MSCs from different sources exhibit 
different receptors and immunomodulatory prop-
erties, which may cause differential therapeutic 
effect on ARDS, but overall, animal models have 
shown beneficial outcomes [165–171].

UC-MSCs have shown higher proliferative 
rates and lower expression of senescence markers 
than BM-MSCs which could reflect a more mul-
tipotent capacity [165]. UC-MSCs have great 
immunomodulatory capacity in mouse models of 
acute lung injury, inducing a shift toward a regu-
latory immune response with increasing levels of 
IL-10 and phagocytic macrophages [60, 64]. At 
the regenerative level, UC-MSCs attenuate lung 
injury, preserving vascular permeability and pro-
tecting from apoptosis [56, 172, 173].

Adipose MSCs have the advantage of their 
availability and easy isolation. Adipose MSCs 
have shown immunomodulatory properties in ani-
mal models of acute lung injury reducing inflam-
mation, leukocyte infiltrate and modifying the 
cytokine profile toward an anti-inflammatory 
response [59, 174–176]. Recently, other studies 
have appeared using stem cells from pulp and peri-
odontal ligament or menstrual stem cells, showing 
improvement of alveolar epithelial permeability 
and reducing pro-inflammatory cells and cyto-
kines in LPS-induced ARDS models [177, 178].

11.5.1.4	 �Use of Soluble Factors 
Generated by MSCs

Microvesicles (MV) are small circular membrane 
fragments that are shed from the cell surface or 
released from the endosomal membrane and play 
an important role in cell communication. This 
communication system has emerged early during 
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evolution and serves as template in the further 
development of intercellular interaction mecha-
nisms. MV can transfer specific genes, miRNAs, 
or small organelles, including mitochondria, 
from the MSC to the injured target cell through 
the connexin-43 gap junction channels.

MSC have demonstrated to have therapeutic 
effects in in  vivo animal models but little is 
known about their long-term side effects, includ-
ing the possibility of becoming tumorigenic. 
Given that the MSCs’ therapeutic effect depends 
on the release of soluble factors, the in vivo use 
of MV represents an alternative and safer 
approach. Analysis of the RNA of microvesicles 
derived from MSCs revealed mRNAs associated 
with transcription, proliferation, immune cell 
regulation, and microRNiAs as well.

Intra-tracheal instillation of MSC-derived MV 
reduces edema and alveolar protein levels in 
mouse models of acute lung injury [179]. MV 
also show anti-inflammatory properties reducing 
neutrophils and inflammatory macrophages. A 
partial therapeutic effect of MSC MV depends on 
KGF, as KGF siRNA pretreatment of MSCs par-
tially eliminated their therapeutic benefits [180]. 
Further studies show that the MV-dependent 
activity is mediated by CD44 receptors, promot-
ing internalization of MV into monocytes, result-
ing in a decreased expression of inflammatory 
cytokines [181].

11.5.2	 �Ex-Vivo Lung Perfusion (EVLP) 
Models

Ex-vivo lung perfusion (EVLP) offers a unique 
opportunity for in situ testing of the effects of 
MSCs. EVLP was originally developed as a treat-
ment to increase the number of lungs available 
for transplantation. Nowadays it is not only a way 
to improve unacceptable lungs for transplanta-
tion, but it also represents an excellent research 
tool as a preclinical model for in situ testing 
[182]. Several groups have developed models of 
acute lung injury [86, 103, 183] in which the 
effect of MSCs was studied [86, 103, 184, 185].

A study conducted on pigs looked at the opti-
mal route and dose for the MSCs. Intravascular 

delivery of MSC showed better outcomes that 
intratracheal administration and the optimal dose 
was of 5  ×  106 MSC per kilogram of animal 
[184]. Early studies using MSCs in human lung 
grafts were focused on testing their capacity to 
restore the AFC in lungs that were unsuitable for 
transplantation. Intravenous administration of 
MSC restored AFC in injured lungs in a mecha-
nism dependent on KGF [185].

A couple of groups have developed models of 
ARDS to study the disease in human lung grafts. 
Treatment with MSC reduces edema, improves 
AFC, and restores epithelial barrier permeability 
in ex vivo perfuse human lungs injured with E. 
coli endotoxin. The beneficial effect on endo-
toxin injured lung was almost abolished when the 
MSCs or their conditioned media (CM) was 
treated with KGF siRNA [86]. The treatment 
with MSC in a model of pneumonia using live 
bacteria restored AFC, reduced inflammation, 
and increased bacterial killing through increased 
macrophage phagocytosis. KGF was shown as 
one of the main factors protecting monocytes 
from apoptosis and increasing bacterial clearance 
[103]. A recent study used MSC in combination 
with extracorporeal membrane oxygenation 
(ECMO) after inoculation of E. coli endotoxin in 
a sheep model. The combination of the MSC and 
the ECMO treatment showed better histopathol-
ogy changes with less inflammation [186].

The use of MSCs microvesicles has a positive 
result as well in the treatment of injured lung 
grafts. Human MSCs derived microvesicles have 
been used to recover lungs rejected for lung 
transplantation by increasing AFC and improving 
airway and hemodynamic parameters [187]. In 
another study, treatment of ex-vivo lung perfu-
sion model of bacterial pneumonia with MSC 
microvesicles increased AFC, reducing protein 
permeability and bacterial load [188].

In summary, since the description of the pro-
tective effect of the administration of MSCs to 
mice with induced ARDS [29, 123], several 
research groups have confirmed this observation 
on small and large animal models and more 
recently in the EVLP in which ARDS is induced 
in human lungs. The proposed mechanisms by 
which MSCs can induce protection are multiple, 
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some described in the present chapter. However, 
there is consensus that engraftment in the lung 
and differentiation into lung cells does not occurs. 
More recently, data generated from approved 
clinical trials, conducted by several academic 
institutions, demonstrated that the use of MSCs is 
safe and, in some cases, with demonstrated pro-
tection in patients with ARDS. There is still more 
research needed to determine the appropriate 
source of MSCs, route and time of administra-
tion, and the generation of modified MSCs in 
which the protective potential is enhanced.
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