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Abstract. Computing the Delaunay triangulation (DT) of a given point
set in R

D is one of the fundamental operations in computational geom-
etry. Recently, Funke and Sanders [11] presented a divide-and-conquer
DT algorithm that merges two partial triangulations by re-triangulating
a small subset of their vertices – the border vertices – and combin-
ing the three triangulations efficiently via parallel hash table lookups.
The input point division should therefore yield roughly equal-sized par-
titions for good load-balancing and also result in a small number of
border vertices for fast merging. In this paper, we present a novel divide-
step based on partitioning the triangulation of a small sample of the
input points. In experiments on synthetic and real-world data sets, we
achieve nearly perfectly balanced partitions and small border triangu-
lations. This almost cuts running time in half compared to non-data-
sensitive division schemes on inputs exhibiting an exploitable underlying
structure.

1 Introduction

The Delaunay triangulation (DT) of a given point set in R
D has numerous

applications in computer graphics, data visualization, terrain modeling, pattern
recognition and finite element methods [15]. Computing the DT is thus one
of the fundamental operations in geometric computing. Therefore, many algo-
rithms to efficiently compute the DT have been proposed (see survey in [23]) and
well implemented codes exist [13,20]. With ever increasing input sizes, research
interest has shifted from sequential algorithms towards parallel ones.

Recently, we presented a novel divide-and-conquer (D&C) DT algorithm
for arbitrary dimension [11] that lends itself equally well to shared and dis-
tributed memory parallelism and thus hybrid parallelization. While previous
D&C DT algorithms suffer from a complex – often sequential – divide or merge
step [8,17], our algorithm reduces the merging of two partial triangulations to
re-triangulating a small subset of their vertices – the border vertices – using the
same parallel algorithm and combining the three triangulations efficiently via
hash table lookups. All steps required for the merging – identification of rele-
vant vertices, triangulation and combining the partial DTs – are performed in
parallel.
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The division of the input points in the divide-step needs to address a twofold
sensitivity to the point distribution: the partitions need to be approximately
equal-sized for good load-balancing, while the number of border vertices needs to
be minimized for fast merging. This requires partitions that have many internal
Delaunay edges but only few external ones, i. e. a graph partitioning of the DT
graph. In this paper we propose a novel divide-step that approximates this graph
partitioning by triangulating and partitioning a small sample of the input points,
and divides the input point set accordingly.

The paper is structured as follows: we review the problem definition, related
work on partitioning for DT algorithms and our D&C DT algorithm from [11] in
Sect. 2. Subsequently, our proposed divide-step is described in Sect. 3, along with
a description of fast intersection tests for the more complexly shaped partition
borders and implementation notes. We evaluate our algorithms in Sect. 4 and
close the paper with conclusions and an outlook on future work in Sect. 5.

2 Preliminaries

2.1 Delaunay Triangulations

Given a D-dimensional point set P = {p1, p2, . . . , pn} ⊂ R
D for all i ∈ {1, . . . , n},

a triangulation T (P) is a subdivision of the convex hull of P into D-simplices
such that the set of vertices of T (P) coincides with P and any two simplices of
T intersect in a common D − 1 facet or not at all. The union of all simplices
in T (P) is the convex hull of point set P. A Delaunay triangulation DT (P) is
a triangulation of P such that no point of P is inside the circumhypersphere of
any simplex in DT (P). The DT of n points can be computed in O (n log n) time
for D = 2 and O(n� D

2 �) time for D ≥ 3.

2.2 Related Work

Many algorithms for the parallel construction of the DT of a given point set have
been proposed in the literature. They generally fall into one of two categories:
parallel incremental insertion and D&C approaches. We will focus on a review of
the divide-step of the latter. A more comprehensive discussion of both algorithm
types is given in [11].

Aggarwal et al. [1] propose the first parallel D&C DT algorithm. They par-
tition the input points along a vertical line into blocks, which are triangulated
in parallel and then merged sequentially. The authors do not prescribe how to
determine the location of the splitting line. Cignoni et al. [8] partition the input
along cutting (hyper)planes and firstly construct the simplices of the triangula-
tion crossing those planes before recursing on the two partitions. The remaining
simplices can be created in parallel in the divided regions without further merg-
ing. The authors mention that the regions should be of roughly equal cardinality,
but do not go into the details of the partitioning. Chen [5] and Lee et al. [17]
explicitly require splitting along the median of the input points. Whereas the
former uses classical splitting planes, the latter traces the splitting line with
Delaunay edges, thus eliminating the need for later merging.
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The subject of input partitioning has received more attention in the mesh-
ing community. A mesh of a point set P is a triangulation of every point in
P and possibly more – so called Steiner points – to refine the triangulation.
Chrisochoides [6] surveys algorithms for parallel mesh generation and differen-
tiates between continuous domain decomposition – using quad- or oct-trees –
and discrete domain decomposition using an initial coarse mesh that is parti-
tioned into submeshes, trying to minimize the surface-to-volume ratio of the
submeshes.Chrisochoides and Nave [7] propose an algorithm that meshes the
subproblems via incremental insertion using the Bowyer-Watson algorithm.

2.3 Parallel Divide-and-Conquer DT Algorithm

Recently, we presented a parallel D&C algorithm for computing the DT of a given
point set [11]. Our algorithm recursively divides the input into two partitions
which are triangulated in parallel. The contribution lies in a novel merging step
for the two partial triangulations which re-triangulates a small subset of their
vertices and combines the three triangulations via parallel hash table lookups.
For each partial triangulation the border is determined, i. e. the simplices whose
circumhypersphere intersects the bounding box of the other triangulation. The
vertices of those border simplices are then re-triangulated to obtain the border
triangulation. The merging proceeds by combining the two partial triangulations,
stripping the original border simplices and adding simplices from the border
triangulation iff (i) they span multiple partitions; or (ii) are contained within
one partition but exist in the same form in the original triangulation.

The algorithm’s sensitivity to the input point distribution is twofold: the
partitions need to be of equal size for good load-balancing between the avail-
able cores and the number of simplices in the border needs to be minimized
in order to reduce merging overhead. As presented in [11], the algorithm splits
the input into two partitions along a hyperplane. Three strategies to choose the
splitting dimension are proposed: (i) constant, predetermined splitting dimen-
sion; (ii) cyclic choice of the splitting dimension – similar to k-D trees; or (iii)
dimension with largest extend. This can lead to imbalance in the presence of
non-homogeneously structured inputs, motivating the need for more sophisti-
cated partitioning schemes.

3 Sample-Based Partitioning

In this paper, we propose more advanced strategies for partitioning the input
points than originally presented in [11]. The desired partitioning addresses both
data sensitivities of our algorithm. The underlying idea is derived from sample
sort: gain insight into the input distribution from a (small) sample of the input.
Algorithm 1 describes our partitioning procedure. A sample PS of η(n) points is
taken from the input point set P of size n and triangulated to obtain DT (PS).
A similar approach can be found in Delaunay hierarchies, where the sample
triangulation is used to speed up point location queries [10].



Load-Balancing for Parallel Delaunay Triangulations 159

Algorithm 1. partitionPoints(P, k): partition input into k partitions.
Input: points P = {p1, . . . , pn} with pi ∈ R

D, number of partitions k
Output: partitioning

(
P1 . . . Pk

)

1: PS ← choose η(n) from P uniformly at random � η(n) sample size
2: T ← Delaunay(PS)
3: G = (V, E, ω) with V = PS , E = T and weight function ω
4:

(
V1 . . . Vk

) ← partition(G) � partition graph
5:

(
P1 . . . Pk

) ← (
∅ . . . ∅

)

6: parfor p ∈ P do
7: vn ← arg minv∈PS

||p − v|| � find nearest sample point to p
8: Pi ∪= p with i ∈ [1 . . . k] : vn ∈ Vi � assign p to vn’s partition

9: return
(
P1 . . . Pk

)

Instead, we transform the DT into a graph G = (V,E, ω), with V being equal
to the sample point set PS and E containing all edges of DT (PS). The resulting
graph is then partitioned into k blocks using a graph partitioning tool.

The choice of the weight function ω influences the quality of the resulting
partitioning. As mentioned in Sect. 2.3, the D&C algorithm is sensitive to the
balance of the blocks as well as the size of the border triangulation. The former is
ensured by the imbalance parameter ε of the graph partitioning, which guaran-
tees that for all partitions i: |Vi| ≤ (1+ ε)� |V |

k �. The latter needs to be addressed
by the edge weight function ω of the graph. In order to minimize the size of the
border triangulation, dense regions of the input points should not be cut by the
partitioning. Sparse regions of the input points result in long Delaunay edges in
the sample triangulation. As graph partitioning tries to minimize the weight of
the cut edges, edge weights need to be inversely related to the Euclidean length
of the edge. In Sect. 4.1 we evaluate several suitable edge weight functions.

Given the partitions of the sample vertices (V1 . . . Vk), the partitioning needs
to be extended to the entire input point set. The dual of the Delaunay triangu-
lation of the sample point set – its Voronoi diagram – defines a partitioning of
the Euclidean space R

D in the following sense: each point pS,i of the sample is
assigned to a partition j ∈ [1 . . . k]. Accordingly, its Voronoi cell with respect to
PS defines the sub-space of R

D associated with partition j. In order to extend
the partitioning to the entire input point set, each point p ∈ P is assigned to
the partition of its containing Voronoi cell.

All steps in Algorithm 1 can be efficiently parallelized. Sanders et al. [18]
present an efficient parallel random sampling algorithm. The triangulation of
the sample point set PS could be computed in parallel using our DT algo-
rithm recursively. However, as the sample is small, a fast sequential algo-
rithm is typically more efficient. Graph conversion is trivially done in parallel
and Akhremtsev et al. [2] present a state-of-the-art parallel graph partitioning
algorithm. The parallelization of the assignment of input points to their respec-
tive partitions is explicitly given in Algorithm 1.
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(a) cycle (b) direct k-way (c) recursive bisection

Fig. 1. Example of a two-dimensional partitioning with four partitions for 10000 points
and a sample size of 1000.

3.1 Recursive Bisection and Direct k-way Partitioning

Two possible strategies exist to obtain k partitions from a graph: direct k-way
partitioning and recursive bisection. For the latter, the graph is recursively par-
titioned into k′ = 2 partitions log k times. In the graph partitioning community,
Simon and Teng [22] prove that recursive bisection can lead to arbitrarily bad
partitions and Kernighan and Lin [14] confirm the superiority of direct k-way
partitioning experimentally. However, recursive bisection is still widely – and
successfully – used in practice (e. g. for initial partitioning in KaHIP [19]). We
therefore consider both strategies to obtain k partitions for our DT algorithm.

The partitioning schemes originally proposed in [11] can be seen as recursive
bisection: the input is recursively split along the median. The splitting dimension
is chosen in a cyclic fashion, similiar to k-D trees. Figure 1a shows an example.

Similarly, our new partitioning algorithm can be applied log k times, at each
step i drawing a new sample point set PS,i, triangulating and partitioning PS,i,
and assigning the remaining input points to their respective partition. As in
the original scheme, this leads to k − 1 merge steps, entailing k − 1 border
triangulations. In the sample-based approach however, the partitioning avoids
cutting dense regions of the input, which would otherwise lead to large and
expensive border triangulations; refer to Fig. 1c.

Using direct k-way partitioning, only one partitioning and one merge step is
required. The single border point set will be larger, with points spread through-
out the entire input area. This however, allows for efficient parallelization of the
border triangulation step using our DT algorithm recursively. Figure 1b depicts
an example partitioning.

For a fair comparison, we also implemented a variant of the original cyclic par-
titioning scheme, where all leaf nodes of the recursive bisection tree are merged
in a single k-way merge step. This allows us to determine, whether any runtime
gains are due to the k-way merging or due to our more sophisticated data-
sensitive partitioning.
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3.2 Geometric Primitives

Our D&C algorithm [11] mostly relies on combinatorial computations on hash
values except for the base case computations and the detection of the border
simplices. The original partitioning schemes always result in partitions defined by
axis-aligned bounding boxes. Therefore, the test whether the circumhypersphere
of a simplex intersects another partition can be performed using the fast box-
sphere overlap test of Larsson et al. [16]. However, using the more advanced
partitioning algorithms presented in this paper, this is no longer true. Therefore
the geometric primitives to determine the border simplices need to be adapted
to the more complexly shaped partitions. The primitives need to balance the
computational cost of the intersection test itself with the associated cost for
including non-essential points in the border triangulation.

We propose three intersection tests:1 (i) each partition is crudely approxi-
mated with an axis-aligned bounding box and the fast intersection test of Larsson
et al. [16] is used to determine the simplices that belong to the border of a par-
tition. While computationally cheap, the bounding box can overestimate the
extent of a partition. (ii) for each partition it is determined which cells of a
uniform grid are occupied by points from that partition. This allows for a more
accurate test whether a given simplex s of partition i intersects with partition
j by determining whether any of j’s occupied grid cells are intersected by the
circumhypersphere of s, again using the box-sphere intersection test [16]. To
further accelerate the intersection test we build an AABB tree [4] on top of
the grid data structure. (iii) to exactly determine the necessary points for the
border triangulation we use the previous test to find the grid cells of partition
j intersected by the circumhypersphere of s and then use an adaptive precision
inSphere-test [21] for all points contained in these cells to test whether s vio-
lates the Delaunay property and thus its vertices need to be added to the border
triangulation.

4 Evaluation

Batista et al. [3] propose three input point distributions to evaluate the perfor-
mance of their DT algorithm: n points distributed uniformly (a) in the unit cube;
(b) on the surface of an ellipsoid; and (c) on skewed lines. Furthermore, Lee et al.
[17] suggest normally distributed input points around (d) the center of the unit
cube; and (e) several “bubble” centers, distributed uniformly at random within
the unit cube. We furthermore test our algorithm with a real world dataset from
astronomy. The Gaia DR2 catalog [9] contains celestial positions and the appar-
ent brightness for approximately 1.7 billion stars. Additionally, for 1.3 billion of
those stars, parallaxes and proper motions are available, enabling the computa-
tion of three-dimensional coordinates. As the image next to Table 1 shows, the
data exhibits clear structure, which can be exploited by our partitioning strategy.
We use a random sample of the stars to evaluate our algorithm. All experiments

1 For a more detailed description of the primitives we refer to the technical report [12].
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Table 1. Input point sets and their resulting triangulations. Running times are
reported for k = t = 16, parallel KaHIP, η(n) =

√
n, grid-based intersection test

with cG = 1 and logarithmic edge weights. The image on the right shows an Aitoff
projection of a random sample of 25000 sources from the Gaia DR2 dataset.

Dataset Points Simplices simplices
point Runtime

uniform 50 000 000 386 662 755 7.73 164.6 s
normal 50 000 000 390 705 843 7.81 162.6 s
ellipsoid 500 000 23 725 276 4.74 88.6 s
lines 10 000 71 540 362 7154.04 213.3 s
bubbles 50 000 000 340 201 778 6.80 65.9 s

Gaia DR2 50 000 000 359 151 427 7.18 206.9 s

Table 2. Parameters of our algorithm (top) and conducted experiments (bottom).

Parameter Values

Sample size η(n) 1%, 2 %, log n,
√

n

KaHIP configuration strong, eco, fast, parallel

Edge weight ω(e) constant, inverse, log, linear

Geometric primitive bbox, exact, grid with cell sizes cG = [ 1
2
, 1, 2]

Partitions k 1, 2, 4, . . . , 64

Threads t t = k

Points n [1, 5, 10, 25, 50] · 106 a

Distribution see Table 1
a Unless otherwise stated in Table 1

are performed in three-dimensional space (D = 3). Table 1 gives an overview of
all input point sets, along with the size of their resulting triangulation.

The algorithm was evaluated on a machine with dual Intel Xeon E5-2683 16-
core processors and 512 GiB of main memory. The machine is running Ubuntu
18.04, with GCC version 7.2 and CGAL version 4.11.

Implementation Notes: We integrated our divide-step into the implementa-
tion of [11], which is available as open source.2 We use KaHIP [19] and its parallel
version [2] as graph partitioning tool. The triangulation of the sample point set
is computed sequentially using CGAL [13] with exact predicates.3

4.1 Parameter Studies

The parameters listed in Table 2 can be distinguished into configuration
parameters of our algorithm and parameter choices for our experiments. In our
parameter study we examine the configuration parameters of our algorithm and
2 https://git.scc.kit.edu/dfunke/DelaunayTriangulation.
3 CGAL::Exact predicates inexact constructions kernel.

https://git.scc.kit.edu/dfunke/DelaunayTriangulation
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determine robust choices for all inputs. The parameter choice influences the
quality of the partitioning with respect to partition size deviation and number
of points in the border triangulation. As inferior partitioning quality will result
in higher execution times, we use it as indicator for our parameter tuning. We use
the uniform, normal, ellipsoid and random bubble distribution for our parameter
tuning and compare against the originally proposed cyclic partitioning scheme
for reference. Due to space constrains we refer to the technical report [12] for
an in-depth discussion of each parameter individually and only present a short
summary here.

Our experiments show, that a sample size of η(n) =
√

n balances the approxi-
mation quality of a partitioning of the final triangulation with the runtime for the
sample triangulation. Considering edge weights, dense regions of the input point
set are reflected by many short edges in the sample triangulation. Therefore,
even constant edge weights result in a sensible partitioning. However, logarith-
mic edge weights4 are better when there is an exploitable structure in the input
points. For KaHIP we chose the parallel configuration as default as it requires a
similar runtime to the eco configuration while achieving a cut only slightly worse
then strong. The grid-based intersection test with a cell size of cG = 1 shows
the best trade-off between accuracy – i. e. only essential simplices are included
in the border triangulation – and runtime for the geometric primitive itself.

4.2 Partitioning Quality

Given a graph partitioning
(
V1 . . . Vk

)
, its quality is defined by the weight of

its cut,
∑

e∈C ω(e) for C := {e = (u, v), e ∈ E and u ∈ Vi, v ∈ Vj with i 	= j}.
As mentioned in Sect. 3, the balance of the graph partitioning is ensured by the
imbalance parameter ε, |Vi| ≤ (1 + ε)� |V |

k � for all i ≤ k. When the partitioning
of the sample triangulation is extended to the entire input set, this guarantee
no longer holds. We therefore study two quality measures: (i) the deviation from
the ideal partition size and (ii) the coefficient of variation of the partition sizes.
Due to space constraints we only discuss the latter measure for two of our input
distributions here. We refer to the technical report [12] for the full discussion.

The coefficient of variation cv of the partition sizes pi, i ≤ k, is given by

cv =
σ

μ
=

√∑
i≤k(pi−µ)2

k−1
∑

i≤k pi

k

.

Figure 2 shows cv for two different sample sizes and two of our input distri-
butions.. For all distributions, our sample-based partitioning scheme robustly
achieves a cv of ≈6 % and ≈12 % for sample sizes

√
n and 0.01n, respectively.

Both lie above the chosen imbalance of the graph partitioning of ε = 5 %, as
expected. The larger sample size not only decreases the average imbalance but
also its spread for various random seeds. Moreover, the deficits of the original

4 ω(e = (v, w)) = − log d(v, w) width d(·) denoting the Euclidean distance.
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Fig. 2. Coefficient of variation of the partition sizes for k = t = 16, parallel KaHIP,
logarithmic edge weights and grid-based intersection test with cG = 1.

cyclic partitioning scheme become apparent: whereas it works exceptionally well
for uniformly distributed points, it produces inferior partitions in the presence of
an underlying structure in the input, as found for instance in the random bubble
distribution.

In total, our recursive algorithm triangulates more than the number of input
points due to the triangulation of the sample points, and the triangulation(s)
of the border point set(s). We quantify this in the overtriangulation factor oDT ,
given by

oDT :=
|P| +

∑ |PS | +
∑ | vertices(B)|

|P| .

B is the set of border simplices determined by our D&C algorithm. For direct
k-way partitioning, only one sample and one border triangulation are necessary;
for recursive bisectitioning there are a total of k − 1 of each. Figure 3 shows the
overtriangulation factor a fixed choice of KaHIP configuration, edge weight and
two different sample sizes and two of our input distributions. For all distributions,
the larger sample size reduces the oversampling factor. As the partitioning of
the larger sample DT more closely resembles the partitioning of the full DT,
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Fig. 3. Overtriangulation factor for k = t = 16, parallel KaHIP, logarithmic edge
weights and grid-based intersection test with cG = 1.

the number of points in the border triangulation is reduced. For the random
bubble distribution, the overtriangulation factor is on par or below that of the
original cyclic partitioning scheme. For the uniform distribution, our new divide-
step suffers from the jagged border between the partitions compared to the
smooth cut produced by the cyclic partitioning scheme. This results in more
circumhyperspheres intersecting another partition and thus the inclusion of more
points in the border triangulation. Our experiments with the exact intersection
test primitive confirm this notion.

4.3 Runtime Evaluation

We conclude our experiments with a study of the runtime of our D&C algorithm
with the new sample-based divide step against the originally proposed cyclic
division strategy, its k-way variant – called “flat cycle” – as well as the parallel
incremental insertion algorithm of CGAL. Figure 4 shows the total triangulation
time for our fixed choice of configuration parameters.
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Fig. 4. Runtime evaluation for k = t = 16, parallel KaHIP, η(n) =
√

n, grid-based
intersection test with cG = 1 and logarithmic edge weights. Absolute speedup over
sequential CGAL for k = t and all distributions tested with 50 × 106 points.

Direct k-way partitioning performs best on the random bubbles distribution,
with a speedup of up to 50% over the cyclic partitioning scheme. Considering the
flattened cycle partitioner, a small fraction of this speedup can be attributed to
the k-way merging, however the larger fraction is due to the data sensitivity of the
sample-based scheme. CGAL’s parallel incremental insertion algorithm requires
locking to avoid race conditions. It therefore suffers from high contention in the
bubble centers, resulting in a high variance of its runtime and a 350% speedup
for our approach. For uniformly distributed points, our new divide-step falls
behind the cyclic partitioning scheme as there is no structure to exploit in the
input data and due to the higher overtriangulation factor of oDT = 1.15 for
k-way partitioning compared to oDT = 1.05 for cyclic partitioning. As discussed
in the previous section, the higher overtriangulation factor is caused by the
jagged border between the partitions, resulting in a larger border triangulation
and consequently also in higher merging times, as seen in Fig. 5b.

Of particular interest is the scaling behavior of our algorithm with an
increasing number of threads. Figure 4d shows a strong scaling experiment.
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Fig. 5. Runtime breakdown for k = t = 16, parallel KaHIP, η(n) =
√

n, grid-based
intersection test with cG = 1 and logarithmic edge weights.

The absolute speedup of an algorithm A over the sequential CGAL algorithm is
given by SpeedupA(t) := TCGAL

TA(t) for t threads.
In the presence of exploitable input structure – such as for the random bubble

distribution – direct k-way partitioning scales well on one physical processor
(up to 16 cores). It clearly outperforms the original cyclic partitioning scheme
and the parallel DT algorithm of CGAL. Nevertheless, it does not scale well
to two sockets (t > 16 threads) and hyper-threading (t > 32 threads). The
overtriangulation factor of 1.19 for 64 threads compared to 1.015 for 16 suggests
that the size of the input is not sufficient to be efficiently split into 64 partitions.

Considering our real world dataset, the direct k-way partitioning scheme also
exhibits the best scaling behavior. As illustrated in the image next to Table 1,
the dataset comprises a large dense ring accompanied by several smaller isolated
regions. This can be exploited to reduce border triangulation sizes and achieve
a speedup, compared to the slowdown for the cyclic partitioning scheme and
CGAL’s parallel algorithm. The former is due to large border triangulations in
the central ring, whereas the latter suffers from contention in the central region.

Clearly, direct k-way partitioning outperforms recursive bisection in every
configuration. Following the theoretical considerations in Sect. 3.1 regarding the
number of merge-steps required, this is to be expected. A measure to level the
playing field would be to only allow for η(n) total number of sample points on
all levels, i. e. adjust the sample size on each level of the recursion according the
expected halving of the input size.

Figure 5 shows a breakdown of the algorithm runtime for our fixed choice of
configuration parameters. The sample-based partitioning requires 30% to 50%
more runtime than the cyclic scheme. For favorable inputs with an exploitable
structure, this additional runtime is more than mitigated by faster merging.
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5 Conclusions

We present a novel divide-step for the parallel D&C DT algorithm presented
in [11]. The input is partitioned according to the graph partitioning of a Delaunay
triangulation of a small input point sample. The partitioning scheme robustly
delivers well-balanced partitions for all tested input point distributions. For input
distributions exhibiting an exploitable underlying structure, it further leads to
small border triangulations and fast merging. On favorable inputs, we achieve
almost a factor of two speedup over our previous partitioning scheme and over
the parallel DT algorithm of CGAL. These inputs include synthetically generated
data sets as well as the Gaia DR2 star catalog. For uniformly distributed input
points, the more complex divide-step incurs an overall runtime penalty compared
to the original approach, opening up two lanes of future work: (i) smoothing the
border between the partitions to reduce the overtriangulation factor, and/or (ii)
an adaptive strategy that chooses between the classical partitioning scheme and
our new approach based on easily computed properties of the chosen sample
point set, before computing its DT. The sample-based divide step can also be
integrated into our distributed memory algorithm presented in [11], where the
improved load-balancing and border size reduces the required communication
volume for favorable inputs.
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