
 123

25th International Conference
on Parallel and Distributed Computing
Göttingen, Germany, August 26–30, 2019
Proceedings

Euro-Par 2019:
Parallel ProcessingLN

CS
 1

17
25

AR
Co

SS
Ramin Yahyapour (Ed.)

Lecture Notes in Computer Science 11725

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison, UK
Josef Kittler, UK
Friedemann Mattern, Switzerland
Moni Naor, Israel
Bernhard Steffen, Germany
Doug Tygar, USA

Takeo Kanade, USA
Jon M. Kleinberg, USA
John C. Mitchell, USA
C. Pandu Rangan, India
Demetri Terzopoulos, USA

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Ramin Yahyapour (Ed.)

Euro-Par 2019:
Parallel Processing
25th International Conference
on Parallel and Distributed Computing
Göttingen, Germany, August 26–30, 2019
Proceedings

123

Editor
Ramin Yahyapour
Gesellschaft für wissenschaftliche
Datenverarbeitung mbH Göttingen
Georg-August-Universität Göttingen
Göttingen, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-29399-4 ISBN 978-3-030-29400-7 (eBook)
https://doi.org/10.1007/978-3-030-29400-7

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-9057-4395
https://doi.org/10.1007/978-3-030-29400-7

Preface

This volume contains the papers presented at Euro-Par 2019, the 25th International
European Conference on Parallel and Distributed Computing, held during
August 26–30, 2019, in Göttingen, Germany.

For 25 years, Euro-Par consistently brought together researchers in parallel and
distributed computing. Founded by pioneers as a merger of the three thematically
related European conference series PARLE and CONPAR-VAPP, Euro-Par started
with the aim to create the main annual scientific event on parallel processing in Europe
to be the primary choice of such professionals for the presentation of latest results in
their fields.

A quarter of a century marks a special occasion to look back and recognize
achievements and progress. Since its inception, Euro-Par has been covering all aspects
of parallel and distributed computing, ranging from theory to practice, from the
smallest to the largest parallel and distributed systems and infrastructures, from fun-
damental computational problems to full-fledged applications, from architecture,
compiler, language, and interface design and implementation to tools, support infras-
tructures, and application performance. Euro-Par’s unique organization into topics,
provides an excellent forum for focused technical discussion, as well as interaction with
a large, broad, and diverse audience who are researchers in academic institutions,
public and private laboratories, or commercial stake-holders.

Euro-Par’s topics were always oriented towards novel research issues and the
current state of the art. Most topics became constant entries, while new themes emerged
and were included in the conference. Euro-Par has a tradition of selecting new orga-
nizers and chairs for every edition, leading to fresh ideas and variations while staying
true to the tradition. Organizers and chairs of previous editions support their successors.
In this sense, Euro-Par also promotes networking across national borders, leading to the
unique spirit of Euro-Par.

Previous conferences took place in Stockholm, Lyon, Passau, Southampton,
Toulouse, Munich, Manchester, Paderborn, Klagenfurt, Pisa, Lisbon, Dresden, Rennes,
Las Palmas, Delft, Ischia, Bordeaux, Rhodes, Aachen, Porto, Vienna, Grenoble,
Santiago de Compostela, and Turin.

Thus, Euro-Par in Göttingen followed the well-established format of its predeces-
sors. Euro-Par 2018 successfully added the Chess timer talks and the documentation of
artifacts, which were carried over to Euro-Par 2019. The 25th edition of Euro-Par was
organized with the support of the Georg-August-Universität Göttingen and GWDG.
GWDG serves as the data center of the University and is one of the IT competence
centers of the Max Planck Society. Göttingen hosts - jointly with the
Konrad-Zuse-Institute in Berlin - the North-German Supercomputer (HLRN), and
fosters research in and application of high performance computing. To reflect the
applied aspects of parallel computing, new application oriented tracks and workshops
were included in the Euro-Par 2019 program.

The topics of Euro-Par 2019 were organized into 10 tracks, where topics were
merged for organizational reasons or transferred to other event types, namely:

– Support Tools and Environments
– Performance and Power Modeling, Prediction, and Evaluation
– Scheduling and Load Balancing
– Data Management, Analytics, and Deep Learning
– Cluster and Cloud Computing
– Parallel and Distributed Programming, Interfaces, and Languages
– Multicore and Manycore Parallelism
– Theory and Algorithms for Parallel Computation and Networking
– Parallel Numerical Methods and Applications
– Accelerator Computing for Advanced Applications

Overall, 142 papers were submitted from 40 countries. The number of submitted
papers, the wide topic coverage, and the aim of obtaining high-quality reviews resulted
in a difficult selection process involving a large number of experts. The joint effort
of the members of the Scientific Committee and of the 128 external reviewers resulted
in 560 reviews: 26 papers received three reviews, 97 received four reviews, and 20
received five or more, that is, on average, 3.94 reviews per paper. The accepted papers
were chosen after detailed discussions and finalized during the paper selection meeting,
which took place on April 30, 2019. As a result, 36 papers were selected to be
presented at the conference and published in these proceedings, resulting in a 25, 3%
acceptance rate.

The following two papers were nominated as ‘distinguished’ and presented in a
plenary session: “Radio-Astronomical Imaging: FPGAs vs GPUs” and “Enhancing the
Programmability and Performance Portability of GPU Tensor Operations”.

In addition to the program, we had the pleasure of hosting three keynotes held by:

– Rosa M. Badia, Barcelona Supercomputing Center, Barcelona, Spain
– Michela Taufer, Tickel College of Engineering and Min H. Kao, Department of

Electrical Engineering & Computer Science, Knoxville, Tennessee, USA
– Helmut Grubmüller, Max Planck Institute for Biophysical Chemistry, Theoretical

and Computational Biophysics group, Göttingen, Germany

Euro-Par 2019 included a panel discussion and relaunched a poster session, which
was specifically aimed at ambitious students.

The conference program started with two days of workshops and a tutorial on
specialized topics. Dora Blanco Heras, Christian Boehme, and Ulrich Schwardmann
ensured coordination and organization of this pre-conference event as workshop
co-chairs. A selection of the papers presented at the workshops will be published in
separate proceedings volumes after the conference. The workshop proceedings will
also contain the contributions of the poster session.

vi Preface

We would like to thank the authors and chairs for contributing to the success of
Euro-Par 2019. Similarly, we would like to extend our appreciation to the Euro-Par
2019 Steering Committee for its support. Last but not least, we would like to express
our gratitude to the team at GWDG, whose relentless enthusiasm and effort made this
event possible.

August 2019 Ramin Yahyapour
Ulrich Schwardmann

Christian Boehme

Preface vii

Organization

General Chair

Ramin Yahyapour GWDG - Gesellschaft für wissenschaftliche
Datenverarbeitung mbH Göttingen,
University of Göttingen, Germany

Steering Committee

Full Members

Luc Bougé ENS Rennes, France
Fernando Silva University of Porto, Portugal
Marco Aldinucci University of Turin, Italy
Dora Blanco Heras CiTIUS, Santiago de Compostela, Spain
Emmanuel Jeannot LaBRI-Inria Bordeaux, France
Christos Kaklamanis Computer Technology Institute Patras, Greece
Paul Kelly Imperial College London, UK
Thomas Ludwig University of Hamburg, Germany
Tomàs Margalef University Autonoma of Barcelona, Spain
Wolfgang Nagel Technische Universität Dresden, Germany
Francisco Fernández Rivera CiTIUS, Santiago de Compostela, Spain
Rizos Sakellariou The University of Manchester, UK
Henk Sips Delft University of Technology, The Netherlands
Domenico Talia University of Calabria, Italy
Jesper Larsson Träff Vienna University of Technology, Austria
Denis Trystram Grenoble Institute of Technology, France
Felix Wolf Technische Universität Darmstadt, Germany

Honorary Members

Christian Lengauer University of Passau, Germany
Ron Perrott Oxford e-Research Centre, UK
Karl Dieter Reinartz University of Erlangen-Nürnberg, Germany

Observers

Krzysztof Rzadca University of Warsaw, Poland
Ramin Yahyapour GWDG - Gesellschaft für wissenschaftliche

Datenverarbeitung mbH Göttingen,
University of Göttingen, Germany

Workshops

Dora Blanco Heras University of Santiago de Compostela, Spain
Christian Boehme GWDG - Gesellschaft für wissenschaftliche

Datenverarbeitung mbH Göttingen, Germany
Ulrich Schwardmann GWDG - Gesellschaft für wissenschaftliche

Datenverarbeitung mbH Göttingen, Germany

Logistics

Martina Brücher GWDG - Gesellschaft für wissenschaftliche
Datenverarbeitung mbH Göttingen, Germany

Thomas Otto GWDG - Gesellschaft für wissenschaftliche
Datenverarbeitung mbH Göttingen, Germany

Program Committee

Topic 1: Support Tools and Environments

Global Chair

João M. P. Cardoso University of Porto, Portugal

Local Chair

Michael Gerndt Technical University of Munich, Germany

Chairs

Giovanni Agosta Politecnico di Milano, Italy
Mary Hall University of Utah, USA
Sally McKee Clemson University, USA
Bernd Mohr Jülich Supercomputing Centre (JSC), Germany
Robert Schöne Technische Universität Dresden, Germany
Ana Lucia Varbanescu University of Amsterdam, The Netherlands

Topic 2: Performance and Power Modeling, Prediction and Evaluation

Global Chair

Tan Guangming Chinese Academy of Sciences, Institute of Computing
Technology, China

Local Chair

Andreas Knüpfer Technische Universität Dresden, Germany

x Organization

Chairs

Kaixi Hou Virginia Tech, USA
Jiajia Li Pacific Northwest National Laboratory, USA
Eric Liang Peking University, China
Weifeng Liu China University of Petroleum, China
Hao Wang The Ohio State University, USA
Junmin Xiao Chinese Academy of Sciences, Institute of Computing

Technology, China
Xiaowen Xu IAPCM Beijing, China
Liang Yuan Chinese Academy of Sciences, Institute of Computing

Technology, China
Jidong Zhai Tsinghua University, China
Jing Zhang Virgina Tech, USA
Xiuxia Zhang Chinese Academy of Sciences, Institute of Computing

Technology, China

Topic 3: Scheduling and Load Balancing

Global Chair

Andrei Tchernykh CICESE Centro de Investigación Científica y de
Educación Superior de Ensenada, Mexico

Local Chair

Sascha Hunold Vienna University of Technology, Austria

Chairs

Zhihui Du Tsinghua University, China
Fanny Dufossé Inria Le Chesnay, France
Matthias Mnich Universität Bonn, Germany
Risat Mahmud Pathan Chalmers University of Technology, Sweden
Krzysztof Rzadca University of Warsaw, Poland
Franciszek Seredynski Cardinal Stefan Wyszyński University in Warsaw,

Poland
Bertrand Simon University of Bremen, Germany
Victor V. Toporkov National Research University MPEI, Russia
Nodari Vakhania Universidad Autónoma del Estado de Morelos, Mexico
Frank Werner Otto-von-Guericke-Universität Magdeburg, Germany
Prudence W. H. Wong University of Liverpool, UK

Organization xi

Topic 4: High Performance Architectures and Compilers

Global Chair

Pedro Petersen Moura
Trancoso

University of Gothenburg, Sweden

Local Chair

Matthias Müller RWTH Aachen, Germany

Chairs

Angelos Arelakis ZeroPoint Technologies AB, Sweden
Alexandra Jimborean Uppsala University, Sweden
Nuno Roma Universidade de Lisboa, Portugal
Josef Weidendorfer Technical University of Munich, Germany

Topic 5: Data Management, Analytics and Deep Learning

Global Chair

Alexandru Iosup Vrije Universiteit Amsterdam, The Netherlands

Local Chair

Morris Riedel Jülich Supercomputing Centre (JSC), Germany
and University of Reykjavik, Iceland

Chairs

Zeynep Akata University of Amsterdam, The Netherlands
Jorge Amaya Katholieke Universiteit Leuven, Belgium
Ira Assent Aarhus University, Denmark
Gabriele Cavallaro Jülich Supercomputing Centre (JSC), Germany
Aaron Ding Delft University of Technology, The Netherlands
Dmitry Duplyakin University of Utah, USA
Ernir Erlingsson University of Iceland, Iceland
Jens Henrik Goebbert Jülich Supercomputing Centre (JSC), Germany
Markus Goetz Karlsruhe Institute of Technology (KIT), Germany
Jenia Jitsev Jülich Supercomputing Centre (JSC), Germany
Volodymyr Kindratenko University of Illinois at Urbana-Champaign, USA
Kwo-Sen Kuo Bayesics LLC, USA
Bastian Leibe RWTH Aachen, Germany
Helmut Neukirchen University of Iceland, Iceland
Rahul Ramachandran NASA, USA
Tomas Runarsson University of Iceland, Iceland
Animesh Trivedi Vrije Universiteit Amsterdam, The Netherlands
Alexandru Uta Vrije Universiteit Amsterdam, The Netherlands
Ana Lucia Varbanescu University of Amsterdam, The Netherlands

xii Organization

Laurens Versluis Vrije Universiteit Amsterdam, The Netherlands
Lin Wang Vrije Universiteit Amsterdam, The Netherlands
Xiaoxiang Zhu DLR German Aerospace Center, Technical University

of Munich, Germany

Topic 6: Cluster and Cloud Computing

Global Chair

Anne-Cećile Orgerie CNRS, IRISA Rennes, France

Local Chair

Uwe Schwiegelshohn TU Dortmund, Germany

Chairs

Alexandra Carpen-Amarie Fraunhofer ITWM, Germany
Sebastien Lafond Äbo Akademi University, Finland
Maciej Malawski AGH University of Science and Technology, Poland
Maria S. Perez Universidad Politécnica de Madrid, Spain
Rizos Sakellariou The University of Manchester, UK

Topic 7: Distributed Systems and Algorithms

Global Chair

Dick Epema Delft University of Technology, The Netherlands

Local Chair

Franz-Josef Pfreundt Fraunhofer ITWM, Germany

Chairs

Gyorgy Dan KTH Royal Institute of Technology, Sweden
Asterios Katsifodimos Delft University of Technology, The Netherlands
Stefanie Roos Delft University of Technology, The Netherlands
Francois Taiani University of Rennes, CNRS, Inria, IRISA, France

Topic 8: Parallel and Distributed Programming, Interfaces, and Languages

Global Chair

Sato Mitsuhisa RIKEN, Japan

Local Chairs

Christian Simmendinger T-Systems Stuttgart, Germany
Vicen Beltran Barcelona Supercomputing Center (BSC), Spain

Organization xiii

Chairs

Olivier Aumage Inria Le Chesnay, France
Marc Gonzalez Universitat Politècnica de Catalunya, Spain
Changhee Jung Virginia Tech, USA
Karla Morris Sandia National Laboratories, USA
Alessandro Pellegrini Sapienza University of Rome, Italy
Mirko Rahn Fraunhofer ITWM, Germany
Miwako Tsuji RIKEN, Japan
Tom Vander Aa Exascience Lab at imec, Belgium
Masahiro Yasugi Kyushu Institute of Technology, Japan

Topic 9: Multicore and Manycore Parallelism

Global Chair

Barbara Chapman Stony Brook University, New York, USA

Local Chair

Guido Juckeland Helmholtz-Zentrum Dresden-Rossendorf, Germany

Chairs

Sridutt Bhalachandra Argonne National Laboratory Chicago, USA
Sunita Chandrasekaran University of Delaware, USA
Rudolf Eigenmann University of Delaware, USA
Oscar Hernandez Oak Ridge National Laboratory, USA
Konstantinos Krommydas Intel, USA
Cheng Wang University of Houston, USA
Rengan Xu Dell EMC, USA

Topic 10: Theory and Algorithms for Parallel Computation and Networking

Global Chair

Frédéric Vivien Inria Le Chesnay, France

Local Chair

Henning Meyerhenke Humboldt-Universität zu Berlin, Germany

Chairs

Kamer Kaya Sabancı University, Turkey
Fanny Pascual Université Pierre et Marie Curie, France
Cynthia Phillips Sandia National Laboratories, USA
Peter Sanders Karlsruhe Institute of Technology (KIT), Germany

xiv Organization

Topic 11: Parallel Numerical Methods and Applications

Global Chair

Daniel Kressner École polytechnique fédérale de Lausanne, Switzerland

Local Chair

Cornelia Grabe DLR German Aerospace Center Göttingen, Germany

Chair

Thomas Gerhold DLR German Aerospace Center Göttingen, Germany

Topic 12: Accelerator Computing

Global Chair

Raphael Y. de Camargo Federal University of ABC, Brazil

Local Chair

Christian Plessl Paderborn University, Germany

Chairs

Pedro Diniz INESC TEC, Portugal
Holger Fröning University of Heidelberg, Germany
Francisco Igual Universidad Complutense de Madrid, Spain
Miriam Leeser Northeastern University, USA
Andy Nisbet The University of Manchester, UK

Topic 13: Algorithms and Systems for Bioinformatics

Global Chair

Folker Meyer Argonne National Laboratory Chicago, USA

Local Chair

Alexander Sczyrba University of Bielefeld, Germany

Chairs

Christophe Blanchet CNRS IFB, France
Shane Canon Lawrence Berkeley National Lab, USA
Rob Finn EMBL-EBI, UK
Ananth Grama Purdue University, USA

Organization xv

Topic 14: Algorithms and Systems for Digital Humanities

Global Chair

Iryna Gurevych Technische Universität Darmstadt, Germany

Local Chair

Marco Büchler Leibniz Institute of European History Mainz, Germany

Chairs

Sayeed Choudhury Johns Hopkins University, USA
Eckart de Castilho Technische Universität Darmstadt, Germany
Mark Hedges King’s College London, UK
Andrea Scharnhorst DANS-KNAW, The Netherlands

Additional Reviewers

Tanwir Ahmad
Artur Andrzejak
Eugenio Angriman
Adnan Ashraf
Nikos Athanasis
Bartosz Balis
Daniel Balouek-Thomert
Md Abdullah Shahneous

Bari
Ayon Basumallik
Sergio Bernabé
Anup Bhattacharya
Akshay Bhosale
Marcus Boden
Martin Böhm
Aurelien Bouteiller
Lorenz Braun
Linjin Cai
Louis-Claude Canon
Paris Carbone
Adrián Castelló
Márcio Castro
Imen Chakroun
Stefano Cherubin
Franz Christian Heinrich
Diego Costa
Xuewen Cui

Tony Curtis
Alberto Antonio Del

Barrio García
Alessandro Di Federico
Kostantinos Dogeas
Manuel F. Dolz
Fanny Dufossé
Tim Ehlers
Pietro Fezzardi
Goran Flegar
Holger Fröning
Tobias Frust
Swapnil Gaikwad
Jean-François Gibrat
Marcos Amarís González
Alexander Göke
Markus Götz
Thomas Gruber
Loic Guegan
Amina Guermouche
Andrea Gussoni
Peter Györgyi
Matthias Hauck
Byron Hawkins
Roman Iakymchuk
Aleksandar Ilic
Konstantinos Iordanou

Sergio Iserte
Anshul Jindal
Jophin John
Vasiliki Kalavri
Sudeep Kanur
Jeffrey Kelling
Marek Klonowski
Oliver Knodel
Dušan Knop
Christian Köhler
Martin Kong
Jan Kopanski
Daniel Kowalczyk
Roger Kowalewski
David Kübel
Thomas Lambert
Sebastian Lamm
Bo Li
Lingda Li
Key Liao
Wictor Lund
Alexander Matz
Jan Meizner
Alok Mishra
Clément Mommessin
Mayuri Morais
Grégory Mounié

xvi Organization

Stefan Mueller
Philippe Navaux
João Neto
Simon Omlor
Tim Oosterwijk
Marcus Paradies
Maciej Pawlik
Diego Perdomo
Vladimir Podolskiy
Laura Promberger
Bartlomiej Przybylski
Anna Pupykina
Issam Raïs
Carlos Reaño
Mohamad Rezaei

Crefeda Rodrigues
Javier Rojas Balderrama
Paul Saary
Amit Sabne
Danilo Carastan Santos
Günther Schindler
Scott Schneider
Malte Schwarzkopf
Rong Shi
Osman Seckin Simsek
Sebastian Starke
Athanasios Stratikopoulos
Lauritz Thamsen
Xiaonan Tian
Kim-Anh Tran

Elena Troubitsyna
Denis Trystram
Pedro Valero-Lara
Alexander van der Grinten
Pavel Veselý
Roland Vincze
Jie Wang
Tao Wang
Jianwen Wei
Minhua Wen
Chuan Wu
Jeffrey Young
Felix Zahn
Salah Zrigui
Pawel Zuk

Organization xvii

Keynotes

Complex Workflows Development
in Distributed Computing Infrastructures

Rosa Badia

Workflows and Distributed Computing Group Manager
Barcelona Supercomputing Center (BSC)

rosa.m.badia@bsc.es

Abstract. Distributed computing infrastructures are evolving from traditional
models to environments that involve sensors, edge devices, instruments, etc,
and, as well, high-end computing systems such as clouds and HPC clusters.
A key aspect is how to describe and develop the applications to be executed in
such platforms.
Very often these applications are not standalone, but involve a set of
sub-applications or steps composing a workflow. The trend in these types of
workflows is that the components can be of different nature, combining com-
putationally intensive and data analytics components, for example. The scien-
tists rely on effective environments to describe their workflows and engines and
to manage them in complex infrastructures.
COMPSs is a task-based programming model that enables the development of
workflows that can be executed in parallel in distributed computing platforms.
The workflows that are currently supported may involve different types of tasks,
such as parallel simulations (MPI) or analytics (i.e., written in Python thanks to
PyCOMPSs, the Python binding for COMPSs). COMPSs, through a storage
interface, makes transparent the access to persistent data stored in key-value
databases (Hecuba) or object-oriented distributed storage environments (data-
Clay).
While COMPSs has been developed from its early times for distributed envi-
ronments, we have been extending it to deal with more challenging environ-
ments, with edge devices and components in the fog, that can appear and
disappear. Examples of new features that are considered in these environments
are task failure management and input/output data from streams.
The talk will present an overview of the challenges on workflows’ development
in the mentioned environments and an overview of how it can be tackled with
COMPSs.

Nanomachines at Work: Atomistic Simulations
of Biomolecular Systems

Helmut Grubmüller

Director of the Theoretical and Computational Biophysics
Group at the Max Planck Institute of Biophysical Chemistry, Göttingen

hgrubmu@gwdg.de

Abstract. Without highly specialized ‘nano machines’ - the proteins - no
organism would be able to survive. Almost all functions, e.g. photosynthesis for
energy production in plants, various forms of movement, signal transmission
and information processing, e.g. in the brain, sensor technology, and recogni-
tion, are performed by proteins whose perfection was already very advanced two
billion years ago and often far exceeds that of our organs, not to mention our
current technology.
Atomistic computer simulations of the motion and dynamics of the atoms that
make up the proteins, combined with sophisticated experiments, enable a better
understanding of the underlying functional mechanisms. We are beginning to
realize that, already long ago, evolution ‘invented’ molecular electric motors,
chemical factories, photocells, transformers, accumulators, ‘Castor’ transporters,
and sensors. The lecture gives an overview of the state of the art of atomistic
computer simulations, and what we can learn about how proteins are ‘manu-
factured’ by ribosomes, how antibiotics interfere with bacterial ribosomes, and
how molecular recognition and specific ligand binding works.
We take a more global view on the ‘universe’ of protein dynamics motion
patterns and demonstrate that a systematic coverage of this ‘Dynasome’ allows
one to better predict protein function. Finally, algorithmic challenges concerning
GPU implementation and scalability will be discussed.

Scientific Applications and Heterogeneous
Architectures Data Analytics

and the Intersection of HPC and Edge
Computing

Michela Taufer and Jack Dongarra

Professor in High Performance Computing
Department of Electrical Engineering and Computer Science,

The University of Tennessee, Knoxville
taufer@utk.edu

Abstract. This talk discusses two emerging trends in computing (i.e., the
convergence of data generation and analytics, and the emergence of edge
computing) and how these trends can impact heterogeneous applications.
Next-generation supercomputers, with their extremely heterogeneous resources
and dramatically higher performance than current systems, will generate more
data than we need or, even, can handle. At the same time, more and more data is
generated at the edge, requiring computing and storage to move closer and
closer to data sources. The coordination of data generation and analysis across
the spectrum of heterogeneous systems including supercomputers, cloud com-
puting, and edge computing adds additional layers of heterogeneity to appli-
cations workflows. More importantly, the coordination can neither rely on
manual, centralized approaches as it is predominately done today in HPC nor
exclusively be delegated to be just a problem for commercial Clouds. This talk
presents case studies of heterogeneous applications in precision medicine and
precision farming that expand scientist workflows beyond the supercomputing
center and shed our reliance on large-scale simulations exclusively, for the sake
of scientific discovery.

Contents

Support Tools and Environments

Online Fault Classification in HPC Systems Through Machine Learning 3
Alessio Netti, Zeynep Kiziltan, Ozalp Babaoglu, Alina Sîrbu,
Andrea Bartolini, and Andrea Borghesi

Accelerating Data-Dependence Profiling with Static Hints 17
Mohammad Norouzi, Qamar Ilias, Ali Jannesari, and Felix Wolf

Multi-valued Expression Analysis for Collective Checking 29
Pierre Huchant, Emmanuelle Saillard, Denis Barthou,
and Patrick Carribault

Performance and Power Modeling, Prediction and Evaluation

Towards Portable Online Prediction of Network Utilization Using
MPI-Level Monitoring . 47

Shu-Mei Tseng, Bogdan Nicolae, George Bosilca, Emmanuel Jeannot,
Aparna Chandramowlishwaran, and Franck Cappello

A Comparison of Random Task Graph Generation Methods
for Scheduling Problems . 61

Louis-Claude Canon, Mohamad El Sayah, and Pierre-Cyrille Héam

Hardware Counters’ Space Reduction for Code Region Characterization 74
Jordi Alcaraz, Anna Sikora, and Eduardo César

Combining Checkpointing and Data Compression to Accelerate
Adjoint-Based Optimization Problems . 87

Navjot Kukreja, Jan Hückelheim, Mathias Louboutin, Paul Hovland,
and Gerard Gorman

Scheduling and Load Balancing

Linear Time Algorithms for Multiple Cluster Scheduling and Multiple
Strip Packing . 103

Klaus Jansen and Malin Rau

Scheduling on Two Unbounded Resources with Communication Costs 117
Massinissa Ait Aba, Alix Munier Kordon, and Guillaume Pallez (Aupy)

Improving Fairness in a Large Scale HTC System Through Workload
Analysis and Simulation . 129

Frédéric Azevedo, Dalibor Klusáček, and Frédéric Suter

Toggle: Contention-Aware Task Scheduler for Concurrent
Hierarchical Operations . 142

Saurabh Kalikar and Rupesh Nasre

Load-Balancing for Parallel Delaunay Triangulations 156
Daniel Funke, Peter Sanders, and Vincent Winkler

Design-Space Exploration with Multi-Objective Resource-Aware
Modulo Scheduling . 170

Julian Oppermann, Patrick Sittel, Martin Kumm,
Melanie Reuter-Oppermann, Andreas Koch, and Oliver Sinnen

Implementing YewPar: A Framework for Parallel Tree Search 184
Blair Archibald, Patrick Maier, Robert Stewart, and Phil Trinder

PLB-HAC: Dynamic Load-Balancing for Heterogeneous
Accelerator Clusters . 197

Luis Sant’Ana, Daniel Cordeiro, and Raphael Y. de Camargo

Data Management, Analytics and Deep Learning

Enhancing the Programmability and Performance Portability of GPU
Tensor Operations . 213

Arya Mazaheri, Johannes Schulte, Matthew W. Moskewicz, Felix Wolf,
and Ali Jannesari

Unified and Scalable Incremental Recommenders with Consumed
Item Packs . 227

Rachid Guerraoui, Erwan Le Merrer, Rhicheek Patra,
and Jean-Ronan Vigouroux

Declarative Big Data Analysis for High-Energy Physics: TOTEM
Use Case . 241

Valentina Avati, Milosz Blaszkiewicz, Enrico Bocchi, Luca Canali,
Diogo Castro, Javier Cervantes, Leszek Grzanka, Enrico Guiraud,
Jan Kaspar, Prasanth Kothuri, Massimo Lamanna, Maciej Malawski,
Aleksandra Mnich, Jakub Moscicki, Shravan Murali, Danilo Piparo,
and Enric Tejedor

Clustering as Approximation Method to Optimize
Hydrological Simulations . 256

Elnaz Azmi, Uwe Ehret, Jörg Meyer, Rik van Pruijssen, Achim Streit,
and Marcus Strobl

xxvi Contents

Cluster and Cloud Computing

YOLO: Speeding Up VM and Docker Boot Time by Reducing
I/O Operations . 273

Thuy Linh Nguyen, Ramon Nou, and Adrien Lebre

Parallel and Distributed Programming, Interfaces, and Languages

Celerity: High-Level C++ for Accelerator Clusters 291
Peter Thoman, Philip Salzmann, Biagio Cosenza,
and Thomas Fahringer

Dataflow Execution of Hierarchically Tiled Arrays 304
Chih-Chieh Yang, Juan C. Pichel, and David A. Padua

Scalable FIFO Channels for Programming via Communicating
Sequential Processes . 317

Nikita Koval, Dan Alistarh, and Roman Elizarov

TWA – Ticket Locks Augmented with a Waiting Array. 334
Dave Dice and Alex Kogan

Enabling Resilience in Asynchronous Many-Task Programming Models 346
Sri Raj Paul, Akihiro Hayashi, Nicole Slattengren, Hemanth Kolla,
Matthew Whitlock, Seonmyeong Bak, Keita Teranishi, Jackson Mayo,
and Vivek Sarkar

Multicore and Manycore Parallelism

Avoiding Scalability Collapse by Restricting Concurrency 363
Dave Dice and Alex Kogan

Graph Coloring Using GPUs . 377
Meghana Aparna Sistla and V. Krishna Nandivada

Featherlight Speculative Task Parallelism . 391
Vivek Kumar

One Table to Count Them All: Parallel Frequency Estimation
on Single-Board Computers . 405

Fatih Taşyaran, Kerem Yıldırır, Mustafa Kemal Taş, and Kamer Kaya

Fine-Grained MPI+OpenMP Plasma Simulations: Communication Overlap
with Dependent Tasks . 419

Jérôme Richard, Guillaume Latu, Julien Bigot, and Thierry Gautier

Contents xxvii

Parallel Adaptive Sampling with Almost No Synchronization 434
Alexander van der Grinten, Eugenio Angriman,
and Henning Meyerhenke

Theory and Algorithms for Parallel Computation and Networking

Parallel Streaming Random Sampling . 451
Kanat Tangwongsan and Srikanta Tirthapura

Parallel Numerical Methods and Applications

Cholesky and Gram-Schmidt Orthogonalization for Tall-and-Skinny QR
Factorizations on Graphics Processors . 469

Andrés E. Tomás and Enrique S. Quintana-Ortí

Automatic Exploration of Reduced Floating-Point Representations
in Iterative Methods . 481

Yohan Chatelain, Eric Petit, Pablo de Oliveira Castro,
Ghislain Lartigue, and David Defour

Linear Systems Solvers for Distributed-Memory Machines
with GPU Accelerators . 495

Jakub Kurzak, Mark Gates, Ali Charara, Asim YarKhan,
Ichitaro Yamazaki, and Jack Dongarra

Accelerator Computing

Radio-Astronomical Imaging: FPGAs vs GPUs. 509
Bram Veenboer and John W. Romein

Author Index . 523

xxviii Contents

Support Tools and Environments

Online Fault Classification in HPC
Systems Through Machine Learning

Alessio Netti1,2(B), Zeynep Kiziltan1, Ozalp Babaoglu1, Alina Ŝırbu3,
Andrea Bartolini4, and Andrea Borghesi4

1 Department of Computer Science and Engineering, University of Bologna,
Bologna, Italy

{alessio.netti,zeynep.kiziltan,ozalp.babaoglu}@unibo.it
2 Leibniz Supercomputing Centre, Garching bei München, Germany

alessio.netti@lrz.de
3 Department of Computer Science, University of Pisa, Pisa, Italy

alina.sirbu@unipi.it
4 Department of Electrical, Electronic and Information Engineering,

University of Bologna, Bologna, Italy
{a.bartolini,andrea.borghesi3}@unibo.it

Abstract. As High-Performance Computing (HPC) systems strive
towards the exascale goal, studies suggest that they will experience exces-
sive failure rates. For this reason, detecting and classifying faults in HPC
systems as they occur and initiating corrective actions before they can
transform into failures will be essential for continued operation. In this
paper, we propose a fault classification method for HPC systems based
on machine learning that has been designed specifically to operate with
live streamed data. We cast the problem and its solution within realistic
operating constraints of online use. Our results show that almost perfect
classification accuracy can be reached for different fault types with low
computational overhead and minimal delay. We have based our study on
a local dataset, which we make publicly available, that was acquired by
injecting faults to an in-house experimental HPC system.

Keywords: High-performance computing · Exascale systems ·
Resiliency · Monitoring · Fault detection · Machine learning

1 Introduction

Motivation. Modern scientific discovery is increasingly being driven by compu-
tation [18]. As such, HPC systems have become fundamental “instruments” for
driving scientific discovery and industrial competitiveness. Exascale (1018 oper-
ations per second) is the moonshot for HPC systems and reaching this goal is
bound to produce significant advances in science and technology. Future HPC
systems will achieve exascale performance through a combination of faster pro-
cessors and massive parallelism. With Moore’s Law reaching its limit, the only

c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 3–16, 2019.
https://doi.org/10.1007/978-3-030-29400-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-29400-7_1

4 A. Netti et al.

viable path towards higher performance has to consider switching from increased
transistor density towards increased core count, thus leading to increased fail-
ure rates [6]. Exascale HPC systems not only will have many more cores, they
will also use advanced low-voltage technologies that are more prone to aging
effects [4] together with system-level performance and power modulation tech-
niques, all of which tend to increase fault rates [8]. It is estimated that large
parallel jobs will encounter a wide range of failures as frequently as once every
30 min on exascale platforms [16]. Consequently, exascale performance, although
achieved nominally, cannot be sustained for the duration of applications running
for long periods.

In the rest of the paper, we adopt the following terminology. A fault is defined
as an anomalous behavior at the hardware or software level that can lead to ille-
gal system states (errors) and, in the worst case, to service interruptions (fail-
ures) [10]. Future exascale HPC systems must include automated mechanisms
for masking faults, or recovering from them, so that computations can continue
with minimal disruptions. This in turn requires detecting and classifying faults
as soon as possible since they are the root causes of errors and failures.

Contributions. We propose and evaluate a fault classification method based on
supervised Machine Learning (ML) suitable for online deployment in HPC sys-
tems. Our approach relies on a collection of performance metrics that are readily
available in most HPC systems. The experimental results show that our method
can classify almost perfectly several types of faults, ranging from hardware mal-
functions to software issues and bugs. Furthermore, classification can be achieved
with little computational overhead and with minimal delay, thus meeting real
time requirements. We characterize the performance of our method in a realistic
context similar to online use, where live streamed data is fed to fault classifiers
both for training and for detection, dealing with issues such as class imbalance
and ambiguous states. Most existing studies, on the contrary, rely on extensive
manipulation of data, which is not feasible in online scenarios. Moreover, we
reproduce the occurrence of faults basing on real failure traces.

Our evaluation is based on a dataset that we acquired from an experimental
HPC system (called Antarex) where we injected faults using FINJ, a tool we pre-
viously developed [15]. Making the Antarex dataset publicly available is another
contribution of this paper. Acquiring our own dataset for this study was made
necessary by the fact that commercial HPC system operators are very reluctant
to share trace data containing information about faults in their systems [13].

Related Work. Automated fault detection through system performance metrics
and fault injection has been the subject of numerous studies. However, ML-
based methods using fine-grained monitored data (i.e., sampling once per second)
are more recent. Tuncer et al. [17] propose a framework for the diagnosis of
performance anomalies in HPC systems; however, they do not deal with faults
that lead to errors and failures, which cause a disruption in the computation, but
only with performance anomalies that result in longer runtimes for applications.
Moreover, the data used to build the test dataset was not acquired continuously,

Online Fault Classification in HPC Systems Through Machine Learning 5

but rather in small chunks related to single application runs. Thus it is not
possible to determine the feasibility of this method when dealing with streamed,
continuous data from an online HPC system. A similar work is proposed by
Baseman et al. [2], which focuses on identifying faults in HPC systems through
temperature sensors. Ferreira et al. [9] analyze the impact of CPU interference
on HPC applications by using a kernel-level noise injection framework. Both
works deal with specific fault types, and are therefore limited in scope.

Other authors have focused on using coarser-grained data (i.e., sampling once
per minute) or on reducing the dimension of collected data, while retaining good
detection accuracy. Bodik et al. [5] aggregate monitored data by using finger-
prints, which are built from quantiles corresponding to different time epochs. Lan
et al. [14] discuss an outlier detection framework based on principal component
analysis. Guan et al. [11,12] propose works focused on finding the correlations
between performance metrics and fault types through a most relevant princi-
pal components method. Wang et al. [19] propose a similar entropy-based out-
lier detection framework suitable for use in online systems. These frameworks,
which are very similar to threshold-based methods, are not suitable for detecting
the complex relationships that may exist between different performance metrics
under certain faults. One notable work in threshold-based fault detection is the
one proposed by Cohen et al. [7], in which probabilistic models are used to esti-
mate threshold values for performance metrics and detect outliers. This approach
requires constant human intervention to tune thresholds, and lacks flexibility.

Organization. This paper is organized as follows. In Sect. 2, we describe the
Antarex dataset, and in Sect. 3, we discuss the features extracted from it. In
Sect. 4, we present our experimental results, and we conclude in Sect. 5.

2 The Antarex Dataset

The Antarex dataset contains trace data collected from an HPC system located
at ETH Zurich while it was subjected to fault injections. The dataset is pub-
licly available for use by the community and all the details regarding the test
environment, as well as the employed applications and faults are extensively
documented.1 Due to space limitations, here we only give a short overview.

2.1 Dataset Overview

In order to acquire data, we executed benchmark applications and at the same
time injected faults in a single compute node in the HPC system. The dataset
is divided into two parts: the first includes only the CPU and memory-related
benchmark applications and fault programs, while the second is strictly hard
drive-related. We executed each part in both single-core and multi-core settings,
resulting in 4 blocks of nearly 20GB and 32 days of data in total. The dataset’s

1 Antarex Dataset: https://zenodo.org/record/2553224.

https://zenodo.org/record/2553224

6 A. Netti et al.

Table 1. A summary of the structure for the Antarex dataset.

Dataset
block

Type Parallel Duration Benchmark
programs

Fault programs

Block I CPU-Mem No 12 days DGEMM, HPCC,
STREAM, HPLa

leak, memeater, ddot,
dial, cpufreq, pagefail

Block III Yes

Block II Hard Drive No 4 days IOZone, Bonnie++b ioerr, copy

Block IV Yes
aDGEMM: https://lanl.gov/projects/crossroads/, HPCC: https://icl.cs.utk.edu/hpcc/,
STREAM: https://www.cs.virginia.edu/stream/, HPL: https://software.intel.com/en-us/
articles/intel-mkl-benchmarks-suite
bIOZone: https://iozone.org, Bonnie++: https://coker.com.au/bonnie++/

structure is summarized in Table 1. We acquired the data by continuous stream-
ing, thus any study based on it will easily be reproducible on a real HPC system,
in an online way.

2.2 Experimental Setup for Data Acquisition

The Antarex compute node used for data acquisition is equipped with two Intel
Xeon E5-2630 v3 CPUs, 128 GB of RAM, a Seagate ST1000NM0055-1V4 1TB
hard drive and runs the CentOS 7.3 operating system. The node has a default
Tier-1 computing system configuration. The FINJ tool [15] was used to exe-
cute benchmark applications and to inject faults, in a Python 3.4 environment.
To collect performance metrics, we used the Lightweight Distributed Metric
Service (LDMS) framework [1]. We configured LDMS to sample a variety of
metrics at each second, which come from the meminfo, perfevent, procinter-
rupts, procdiskstats, procsensors, procstat and vmstat plugins. This configuration
resulted in a total of 2094 metrics collected each second. Some of the metrics
are node-level, and describe the status of the node as a whole, others instead are
core-specific and describe the status of one of the 16 available CPU cores.

2.3 Features of the Dataset

FINJ orchestrates the execution of benchmark applications and the injection of
faults by means of a workload file, which contains a list of benchmark and fault-
triggering tasks to be executed at certain times, on certain cores, for certain
durations. For this purpose, we used several FINJ-generated workload files, one
for each block of the dataset. The details regarding the internal mechanisms
driving FINJ are discussed in the associated work by Netti et al. [15].

Workload Files. We used two statistical distributions in the FINJ workload
generator to create the durations and inter-arrival times of the benchmark and
fault-triggering tasks. The benchmark tasks are characterized by duration and
inter-arrival times following normal distributions, and 75% of the dataset’s dura-
tion is spent running benchmarks. Fault-triggering tasks on the other hand are

https://lanl.gov/projects/crossroads/
https://icl.cs.utk.edu/hpcc/
https://www.cs.virginia.edu/stream/
https://software.intel.com/en-us/articles/intel-mkl-benchmarks-suite
https://software.intel.com/en-us/articles/intel-mkl-benchmarks-suite
https://iozone.org
https://coker.com.au/bonnie++/

Online Fault Classification in HPC Systems Through Machine Learning 7

(a) Histogram of fault durations. (b) Histogram of fault inter-arrival times.

Fig. 1. Histograms for fault durations (a) and fault inter-arrival times (b) in the
Antarex dataset compared to the PDFs of the Grid5000 data, as fitted on a Johnson
SU and Exponentiated Weibull distribution respectively. We define the inter-arrival
time as the interval between the start of two consecutive tasks.

modeled using distributions fitted on the Grid5000 host failure trace available on
the Failure Trace Archive.2 In Fig. 1, we show the histograms for the durations
(a) and inter-arrival times (b) of the fault tasks in the workload files, together
with the original distributions fitted from the Grid5000 data.

FINJ generates each task in the workload by picking randomly the respective
application to be executed, from those that are available. This implies that,
statistically, all of the benchmark programs we selected will be subject to all of
the available fault-triggering programs, given a sufficiently-long workload, with
different execution overlaps depending on the starting times and durations of
the specific tasks. Such a task distribution greatly mitigates overfitting issues.
Finally, we do not allow fault-triggering program executions to overlap.

Benchmark Applications. We used a series of well-known benchmark applica-
tions, stressing different parts of the node and providing a diverse environment
for fault injection. Since we limit our analysis to a single machine, we use ver-
sions of the benchmarks that rely on shared-memory parallelism, for example
through the OpenMP library. The benchmark applications are listed in Table 1.

Fault Programs. All the fault programs used to reproduce anomalous conditions
on Antarex are available at the FINJ Github repository [15]. As in [17], each
program can also operate in a low-intensity mode, thus doubling the number
of possible fault conditions. While we do not physically damage hardware, we
closely reproduce several reversible hardware issues, such as I/O and memory
allocation errors. Some of the fault programs (ddot and dial) only affect the
performance of the CPU core they run on, whereas the other faults affect the
entire compute node. The programs and the generated faults are as follows.

2 Failure Trace Archive: http://fta.scem.uws.edu.au/.

http://fta.scem.uws.edu.au/

8 A. Netti et al.

1. leak periodically allocates 16 MB arrays that are never released [17] creating
a memory leak, causing memory fragmentation and severe system slowdown;

2. memeater allocates, writes into and expands a 36 MB array [17], decreasing
performance through a memory interference fault and saturating bandwidth;

3. ddot repeatedly calculates the dot product between two equal-size matrices.
The sizes of the matrices change periodically between 0.9, 5 and 10 times
the CPU cache’s size [17]. This produces a CPU and cache interference fault,
resulting in degraded performance of the affected CPU;

4. dial repeatedly performs floating-point operations over random numbers [17],
producing an ALU interference fault, resulting in degraded performance for
applications running on the same core as the program;

5. cpufreq decreases the maximum allowed CPU frequency by 50% through the
Linux Intel P-State driver.3 This simulates a system misconfiguration or fail-
ing CPU fault, resulting in degraded performance;

6. pagefail makes any page allocation request fail with 50% probability.4 This
simulates a system misconfiguration or failing memory fault, causing perfor-
mance degradation and stalling of running applications;

7. ioerr fails one out of 500 hard-drive I/O operations with 20% probability,
simulating a failing hard drive fault, and causing degraded performance for
I/O-bound applications, as well as potential errors;

8. copy repeatedly writes and then reads back a 400 MB file from a hard drive.
After such a cycle, the program sleeps for 2 s [12]. This simulates an I/O
interference or failing hard drive fault by saturating I/O bandwidth, and
results in degraded performance for I/O-bound applications.

3 Creation of Features

In this section, we explain how a set of features describing the state of the system
for classification purposes was obtained from the metrics collected by LDMS.

Post-Processing of Data. Firstly, we removed all constant metrics (e.g., the
amount of total memory in the node), which were redundant, and we replaced the
raw monotonic counters captured by the perfevent and procinterrupts plug-ins
with their first-order derivatives. Furthermore, we created an allocated metric,
both at the CPU core and node level, and integrated it in the original set. This
metric has a binary value, and defines whether there is a benchmark allocated
on the node or not. Using such a metric is reasonable, since in any HPC system
there is always knowledge of which jobs have computational resources currently
allocated to them. Lastly, for each metric above, at each time point, we added
its first-order derivative to the dataset as proposed by Guan et al. [11].

Feature vectors were then created by aggregating the post-processed LDMS
metrics. Each feature vector corresponds to a 60-s aggregation window and is
related to a specific CPU core. The step between feature vectors is of 10 s. This
3 Intel P-State Driver: https://kernel.org/doc/Documentation/cpu-freq.
4 Linux Fault Injection: https://kernel.org/doc/Documentation/fault-injection.

https://kernel.org/doc/Documentation/cpu-freq
https://kernel.org/doc/Documentation/fault-injection

Online Fault Classification in HPC Systems Through Machine Learning 9

allows for high granularity and quick response times to faults. For each metric,
we computed several indicators of the distribution of the values measured within
the aggregation window [17]. These are the average, standard deviation, median,
minimum, maximum, skewness, kurtosis, and finally the 5th, 25th, 75th and 95th
percentiles. This results in a total of 22 statistical features, including also those
related to the first-order derivatives, for each metric in the dataset. The final
feature vectors contain thus a total of 3168 elements. This number does not
include the metrics collected by the procinterrupts plugin, which were found to
be irrelevant after preliminary testing. All the scripts used to process the data
are available on the FINJ Github repository [15].

Labeling. In order to train classifiers to distinguish between faulty and normal
states, we labeled the feature vectors either according to the fault program (i.e.,
one of the 8 programs presented in Sect. 2.3) running within the corresponding
aggregation window, or “healthy” if no fault was running. The logs produced
by the FINJ tool, which are included in the Antarex dataset, detail the fault
programs running at each time-stamp. In a generic deployment scenario, if users
wish to perform training using data from spontaneous faults in the system, they
need to provide the labels explicitly instead of relying on fault injection.

A single aggregation window may capture multiple system states, making
labeling not trivial. For example, a feature vector may contain “healthy” time
points that are before and after the start of a fault, or even include two different
fault types. We define these feature vectors as ambiguous. By using a short
aggregation window of 60 s, we aim to minimize the impact of such ambiguous
system states on fault detection. Since these cannot be completely removed, we
experiment with two labelling methods. The first method is mode, where all
the labels that appear in the time window are considered. Their distribution
is examined and the label appearing the most is used for the feature vector.
This leads to robust feature vectors, whose label is always representative of the
aggregated data. The second method is recent, in which the label is given by
the state of the system at the most recent time point in the time window. This
could correspond to a fault type or could be “healthy”. Such an approach may
lead to a more responsive fault detection system, where what is detected is the
system state at the moment, rather than the state over the last 60 s.

Detection System Architecture. For our fault detection system, we adopted an
architecture based on an array of classifiers (Fig. 2). Each classifier corresponds
to a specific computing resource type in the node, such as CPU cores, GPUs,
MICs, etc. Each classifier is then trained with feature vectors related to all
resource units of that type, and is able to perform fault diagnoses for all of
them, thus detecting faults both at node level and resource level (e.g., dial and
ddot). To achieve this, the feature vectors for each classifier contain all node-level
metrics for the system, together with resource-specific metrics for the resource
unit being considered. Since each feature vector contains data from one resource
unit at most, this approach has the benefit of limiting the size of feature vectors,
which improves overhead and detection accuracy. This architecture relies on the
assumption that resource units of the same type behave in the same way, and

10 A. Netti et al.

LDMS Data

Core 0
Classifier

Data
Processor

Core 1
Classifier

Core 2
Classifier

Core 3
Classifier
Resource N
Classifier

Resource 1
Classifier

Resource 0
Classifier

R
es

ou
rc

e
0

D
at

a

R
es

ou
rc

e
1

D
at

a

R
es

ou
rc

e
N

D
at

a

Node-level Data

Fig. 2. Architecture of our machine learning-based fault detection system.

that the respective feature vectors can be combined in a coherent set. However,
users can also opt to use separate classifiers for each resource unit of the same
type, overcoming this limitation, without any alteration to the feature vectors
themselves. In our case, the compute node only contains CPU cores. Therefore,
we train one classifier with feature vectors that contain both node-level and
core-level data, for one core at a time.

The classifiers’ training can be performed offline, using labeled data resulting
from normal system operation or from fault injection (as in our case). The trained
classifiers can then be deployed to detect faults on new, streamed data. Due
to this classifier-based architecture, we can only detect one fault at any time.
This design assumption is reasonable for us, as the purpose of our study is to
distinguish between different fault scenarios automatically. In a real HPC system,
although as a rare occurrence, multiple faults may be affecting the same compute
node at the same time. In this case, our detection system would only detect the
fault whose effects on the system are deemed more relevant by the classifier.

4 Experimental Results

We tested a variety of classifiers, trying to correctly detect which of the 8 faults
described in Sect. 2.3 were injected in the HPC node at any point in time of
the Antarex dataset. The environment we used was Python 3.4, with the Scikit-
learn package. We built the test dataset by picking the feature vector of only
one randomly-selected core for each time point. Classifiers were thus trained
with data from all cores, and can compute fault diagnoses for any of them.

We chose 5-fold cross-validation for evaluation of classifiers, using the average
F-score as metric, which corresponds to the harmonic mean between precision
and recall. When not specified, feature vectors are read in time-stamp order.
In fact, while shuffling is widely used in machine learning as it can improve
the quality of training data, such a technique is not well suited to our fault
detection framework. Our design is tailored for online systems, where classifiers
are trained using only continuous, streamed, and potentially unbalanced data as
it is acquired, while ensuring robustness in training so as to detect faults in the

Online Fault Classification in HPC Systems Through Machine Learning 11

(a) Random Forest. (b) Decision Tree.

(c) Neural Network. (d) Support Vector Classifier.

Fig. 3. The classification results on the Antarex dataset, using all feature vectors in
time-stamp order, the mode labeling method, and different classifiers.

near future. Hence, it is very important to assess the detection accuracy without
data shuffling. We reproduce this realistic, online scenario by performing cross-
validation on the Antarex dataset using feature vectors in time-stamp order.
Most importantly, time-stamp ordering results in cross-validation folds, each
containing data from a specific time frame. Only a small subset of the tests is
performed using shuffling for comparative purposes.

4.1 Comparison of Classifiers

For this experiment, we preserved the time-stamp order of the feature vectors
and used the mode labeling method. We included in the comparison a Random
Forest (RF), Decision Tree (DT), Linear Support Vector Classifier (SVC) and
Neural Network (MLP) with two hidden layers, each having 1000 neurons. We
choose these four classifiers because they characterize the performance of our
method well, and omit results on others for space reasons. The results for each
classifier and for each class are presented in Fig. 3. In addition, the overall F-
score is highlighted for each classifier. It can be seen that all classifiers show
very good performance, with F-scores that are well above 0.9. RF is the best
classifier, with an overall F-score of 0.98, followed by MLP and SVC scoring
0.93. The critical point for all classifiers is represented by the pagefail and ioerr
faults, which have substantially worse scores than the others.

We infer that a RF would be the ideal classifier for an online fault detection
system, due to its 5% better detection accuracy, in terms of F-score, over the
others. Additionally, random forests are computationally efficient, and therefore
would be suitable for use in online environments with strict overhead require-
ments. It should be noted that unlike the MLP and SVC classifiers, RF and DT
did not require data normalization. Normalization in an online environment is

12 A. Netti et al.

(a) Mode labeling. (b) Recent labeling.

(c) Mode labeling with shuffling. (d) Recent labeling with shuffling.

Fig. 4. RF classification results, using all feature vectors in time-stamp (top) or shuffled
(bottom) order, with the mode (left) and recent (right) labeling methods.

hard to achieve, as many metrics do not have well-defined upper bounds. To
address this issue, a rolling window-based dynamic normalization approach can
be used [12]. This approach is unfeasible for ML classification, as it can lead to
quickly-degrading detection accuracy and to the necessity of frequent training.
Hence, in the following experiments we will use a RF classifier.

4.2 Comparison of Labeling Methods and Impact of Shuffling

Here we evaluate the two different labeling methods we implemented by using
a RF classifier. The results for classification without data shuffling can be seen
in Figs. 4a for mode and 4b for recent, with overall F-scores of 0.98 and 0.96
respectively, being close to the ideal values. Once again, in both cases the ioerr
and pagefail faults perform substantially worse than the others. This is likely
because both faults have an intermittent nature, with their effects depending
on the hard drive I/O (ioerr) and memory allocation (pagefail) patterns of the
underlying applications, proving more difficult to detect than the other faults.

In Figs. 4c and d, the results with data shuffling enabled are presented for the
mode and recent methods, respectively. Adding data shuffling produces a sensi-
ble improvement in detection accuracy for both of the labeling methods, which
show almost ideal performance for all fault programs, and overall F-scores of 0.99.
Similar results were observed with the other classifiers presented in Sect. 4.1, not
shown here for space reasons. It can also be seen that in this scenario, recent
labeling performs slightly better for some fault types. This is likely due to the
highly reactive nature of such labeling method, which can capture system sta-
tus changes more quickly than the mode method. The greater accuracy (higher
F-score) improvement obtained with data shuffling and recent labeling, compared

Online Fault Classification in HPC Systems Through Machine Learning 13

to mode, indicates that the former is more sensible to temporal correlations in
the data, which may lead to erroneous classifications.

4.3 Impact of Ambiguous Feature Vectors

Here we give insights on the impact of ambiguous feature vectors in the dataset
on the classification process by excluding them from the training and test sets.
Not all results are shown for space reasons. With the RF classifier, overall
F-scores are 0.99 both with and without shuffling, leading to a slightly bet-
ter classification performance compared to the entire dataset. In the Antarex
dataset, around 20% of the feature vectors are ambiguous. With respect to this
relatively large proportion, the performance gap described above is small, which
proves the robustness of our detection method. In general, the proportion of
ambiguous feature vectors in a dataset depends primarily on the length of the
aggregation window, and on the frequency of state changes in the HPC system.
More feature vectors will be ambiguous as the length of the aggregation win-
dow increases, leading to more pronounced adverse effects on the classification
accuracy.

A more concrete example of the behavior of ambiguous feature vectors can
be seen in Fig. 5, where we show the scatter plots of two important metrics (as
quantified by a DT classifier) for the feature vectors related to the ddot, cpufreq
and memeater fault programs, respectively. The “healthy” points, marked in
blue, and the fault-affected points, marked in orange, are distinctly clustered
in all cases. On the other hand, the points representing the ambiguous feature
vectors, marked in green, are sparse, and often fall right between the “healthy”
and faulty clusters. This is particularly evident with the cpufreq fault program
in Fig. 5b.

4.4 Remarks on Overhead

Quantifying the overhead of our fault detection framework is fundamental to
prove its feasibility on a real online HPC system. LDMS is proven to have a
low overhead at high sampling rates [1]. We also assume that the generation of
feature vectors and the classification are performed locally in each node, and
that only the resulting fault diagnoses are sent externally. This implies that the
hundreds of performance metrics we use do not need to be sampled and streamed
at a fine granularity. We calculated that generating a set of feature vectors, one
for each core in our test node, at a given time point for an aggregation window
of 60 s takes on average 340 ms by using a single thread, which includes the I/O
overhead of reading and parsing LDMS CSV files, and writing the output feature
vectors. Performing classification for one feature vector using a RF classifier
takes on average 2 ms. This results in a total overhead of 342 ms for generating
and classifying feature vectors for each 60-s aggregation window, using a single
thread, which is acceptable for online use. Such overhead is expected to be much
lower in a real system, with direct in-memory access to streamed data, since
no CSV files must be processed and therefore no file system I/O is required.

14 A. Netti et al.

(a) ddot. (b) cpufreq.

(c) memeater.

Fig. 5. The scatter plots of two important metrics, as quantified by a DT classifier, for
three fault types. The “healthy” points are marked in blue, while fault-affected points
in orange, and the points related to ambiguous feature vectors in green.

Moreover, as the single statistical features are independent from each other, data
processing can be parallelized on multiple threads to further reduce latency and
ensure load balancing across CPU cores, which is critical to prevent slowdown
for certain applications.

5 Conclusions

We have presented a fault detection and classification method based on machine
learning techniques, targeted at HPC systems. Our method is designed for
streamed, online data obtained from a monitoring framework, which is then
processed and fed to classifiers. Due to the scarcity of public datasets contain-
ing detailed information about faults in HPC systems, we acquired the Antarex
dataset and evaluated our method based on it. Results of our study show almost
perfect classification accuracy for all injected fault types, with negligible compu-
tational overhead for HPC nodes. Moreover, our study reproduces the operating
conditions that could be found in a real online system, in particular those related
to ambiguous system states and data imbalance in the training and test sets.

Online Fault Classification in HPC Systems Through Machine Learning 15

As future work, we plan to deploy our fault detection framework in a large-
scale real HPC system. This will involve the development of tools to aid online
training of machine learning models, as well as the integration in a monitoring
framework such as Examon [3]. We also need to better understand our system’s
behavior in an online scenario. Specifically, since training is performed before
HPC nodes move into production (i.e., in a test environment) we need to char-
acterize how often re-training is needed, and devise a procedure to perform this.

Acknowledgements. A. Netti has been supported by the Oprecomp-Open Trans-
precision Computing project. A. Ŝırbu has been partially funded by the EU project
SoBigData Research Infrastructure — Big Data and Social Mining Ecosystem (grant
agreement 654024). We thank the Integrated Systems Laboratory of ETH Zurich for
granting us control of their Antarex HPC node during this study.

References

1. Agelastos, A., Allan, B., Brandt, J., Cassella, P., et al.: The lightweight distributed
metric service: a scalable infrastructure for continuous monitoring of large scale
computing systems and applications. In: Proceedings of SC 2014, pp. 154–165.
IEEE (2014)

2. Baseman, E., Blanchard, S., DeBardeleben, N., Bonnie, A., et al.: Interpretable
anomaly detection for monitoring of high performance computing systems. In:
Proceedings of the ACM SIGKDD Workshops 2016 (2016)

3. Beneventi, F., Bartolini, A., Cavazzoni, C., Benini, L.: Continuous learning of HPC
infrastructure models using big data analytics and in-memory processing tools. In:
Proceedings of DATE 2017, pp. 1038–1043. IEEE (2017)

4. Bergman, K., Borkar, S., Campbell, D., Carlson, W., et al.: Exascale computing
study: technology challenges in achieving exascale systems. DARPA IPTO, Tech-
nical Report 15 (2008)

5. Bodik, P., Goldszmidt, M., Fox, A., Woodard, D.B., et al.: Fingerprinting the dat-
acenter: automated classification of performance crises. In: Proceedings of EuroSys
2010, pp. 111–124. ACM (2010)

6. Cappello, F., Geist, A., Gropp, W., Kale, S., et al.: Toward exascale resilience:
2014 update. Supercomput. Front. Innovations 1(1), 5–28 (2014)

7. Cohen, I., Chase, J.S., Goldszmidt, M., Kelly, T., et al.: Correlating instrumenta-
tion data to system states: a building block for automated diagnosis and control.
OSDI 4, 16 (2004)

8. Engelmann, C., Hukerikar, S.: Resilience design patterns: a structured approach to
resilience at extreme scale. Supercomputing Front. Innovations 4(3), 4–42 (2017)

9. Ferreira, K.B., Bridges, P., Brightwell, R.: Characterizing application sensitivity
to OS interference using kernel-level noise injection. In: Proceedings of SC 2008,
p. 19. IEEE Press (2008)

10. Gainaru, A., Cappello, F.: Errors and faults. In: Herault, T., Robert, Y. (eds.)
Fault-Tolerance Techniques for High-Performance Computing. CCN, pp. 89–144.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20943-2 2

11. Guan, Q., Chiu, C.C., Fu, S.: CDA: a cloud dependability analysis framework
for characterizing system dependability in cloud computing infrastructures. In:
Proceedings of PRDC 2012, pp. 11–20. IEEE (2012)

https://doi.org/10.1007/978-3-319-20943-2_2

16 A. Netti et al.

12. Guan, Q., Fu, S.: Adaptive anomaly identification by exploring metric subspace
in cloud computing infrastructures. In: Proceedings of SRDS 2013, pp. 205–214.
IEEE (2013)

13. Kondo, D., Javadi, B., Iosup, A., Epema, D.: The failure trace archive: enabling
comparative analysis of failures in diverse distributed systems. In: Proceedings of
CCGRID 2010, pp. 398–407. IEEE (2010)

14. Lan, Z., Zheng, Z., Li, Y.: Toward automated anomaly identification in large-scale
systems. IEEE Trans. Parallel Distrib. Syst. 21(2), 174–187 (2010)

15. Netti, A., Kiziltan, Z., Babaoglu, O., Ŝırbu, A., Bartolini, A., Borghesi, A.: FINJ:
a fault injection tool for HPC systems. In: Mencagli, G., et al. (eds.) Euro-Par
2018. LNCS, vol. 11339, pp. 800–812. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-10549-5 62. https://github.com/AlessioNetti/fault injector

16. Snir, M., Wisniewski, R.W., Abraham, J.A., Adve, S.V., et al.: Addressing failures
in exascale computing. Int. J. High Perform. Comput. Appl. 28(2), 129–173 (2014)

17. Tuncer, O., Ates, E., Zhang, Y., Turk, A., et al.: Online diagnosis of performance
variation in HPC systems using machine learning. IEEE Trans. Parallel Distrib.
Syst. 30(4), 883–896 (2018)

18. Villa, O., Johnson, D.R., Oconnor, M., Bolotin, E., et al.: Scaling the power wall:
a path to exascale. In: Proceedings of SC 2014, pp. 830–841. IEEE (2014)

19. Wang, C., Talwar, V., Schwan, K., Ranganathan, P.: Online detection of utility
cloud anomalies using metric distributions. In: Proceedings of NOMS 2010, pp.
96–103. IEEE (2010)

https://doi.org/10.1007/978-3-030-10549-5_62
https://doi.org/10.1007/978-3-030-10549-5_62
https://github.com/AlessioNetti/fault_injector

Accelerating Data-Dependence Profiling
with Static Hints

Mohammad Norouzi1(B), Qamar Ilias1, Ali Jannesari2, and Felix Wolf1

1 Technische Universitaet Darmstadt, Darmstadt, Germany
{norouzi,wolf}@cs.tu-darmstadt.de, ilias.qamar@gmail.com

2 Iowa State University, Ames, IA, USA
jannesari@iastate.edu

Abstract. Data-dependence profiling is a program-analysis technique
to discover potential parallelism in sequential programs. Contrary to
purely static dependence analysis, profiling has the advantage that it
captures only those dependences that actually occur during execution.
Lacking critical runtime information such as the value of pointers and
array indices, purely static analysis may overestimate the amount of
dependences. On the downside, dependence profiling significantly slows
down the program, not seldom prolonging execution by a factor of 100. In
this paper, we propose a hybrid approach that substantially reduces this
overhead. First, we statically identify persistent data dependences that
will appear in any execution. We then exclude the affected source-code
locations from instrumentation, allowing the profiler to skip them at run-
time and avoiding the associated overhead. At the end, we merge static
and dynamic dependences. We evaluated our approach with 38 bench-
marks from two benchmark suites and obtained a median reduction of
the profiling time by 62% across all the benchmarks.

1 Introduction

Data-dependence analysis is a prerequisite for the discovery of parallelism in
sequential programs. Traditionally, compilers such as PLUTO [1] perform it
statically with the goal of auto-parallelizing loops. However, lacking critical run-
time information such as the value of pointers and array indices, purely static
dependence analysis may overestimate the amount of dependences. This is why
auto-parallelization has not succeeded much beyond the confines of the polyhe-
dral model [2], a theoretical framework for the optimization and, in particular,
parallelization of loops that satisfy certain constraints.

Recently, many tools [3–7] emerged that avoid some of the limits of purely
static analysis. They abandon the idea of fully automatic parallelization and
instead point the user to likely parallelization opportunities, based on data
dependences captured at runtime. They counter the inherent input sensitivity
of such a dynamic approach by running the program with several representative
inputs and by providing weaker correctness guarantees, although their sugges-
tions more than often reproduce manual parallelization strategies. In addition,
c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 17–28, 2019.
https://doi.org/10.1007/978-3-030-29400-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-29400-7_2

18 M. Norouzi et al.

they observed that data dependences in frequently executed code regions that
are subject to parallelization do not change significantly with respect to different
inputs [4–6]. Nonetheless, high runtime overhead, caused by the need to profile
memory accesses during execution, makes them hard to use. Optimizations such
as sampling loop iterations for profiling [8], parallelizing the data-dependence
profiler itself [5,9], and skipping repeatedly executed memory operations [10]
lower the overhead only to a certain degree. To reduce the overhead more sub-
stantially, we take a fundamentally different route. Leveraging the power of prior
static dependence analysis, we exclude those memory accesses from profiling
whose data dependences can already be determined at compile time.

Overall, we follow a hybrid approach. First, we run a static analyzer, PLUTO
in our case, to identify those data dependences that every program execution
must respect. We then run the dependence profiler but refrain from instrument-
ing all memory-access instructions that correspond to these dependences, allow-
ing the profiler to skip them at runtime and avoid the associated overhead.
Furthermore, we transform all data dependences regardless of how they have
been obtained - whether statically or dynamically - into a unified representa-
tion and merge them into one output. Here, we focus on reducing the profiling
overhead. How to use the acquired data dependences to identify parallelization
potential is addressed in related work [4,5,7] and beyond the scope of this paper.
In a nutshell, we make the following specific contributions:

– A hybrid approach to the extraction of data dependences that combines the
advantages of static and dynamic techniques

– An implementation as an extension of the data-dependence profiler of
DiscoPoP [7], although our approach is generic enough to it be implemented
in any data-dependence profiler

– An evaluation with 38 programs from two benchmark suites, showing a
median reduction of the profiling time by 62%

The remainder of the paper is organized as follows. We discuss related work
in Sect. 2. Section 3 presents our approach, followed by an evaluation in Sect. 4.
Finally, we review our achievements in Sect. 5.

2 Related Work

Profiling of memory accesses is a common technique to identify data depen-
dences [4,5,7], but suffers from high runtime overhead, not seldom causing a
slowdown of a factor of 100 or more. A typical method to reduce runtime over-
head is sampling [8], although it does not apply well to data-dependence profiling.
A data dependence is made of two distinct memory accesses and omitting only
one of them is enough to miss a dependence or introduce spurious dependences.

But there are further optimizations available to lower the profiling overhead.
For example, Parwiz [4], a parallelism discovery tool, coalesces contiguous mem-
ory accesses. This lowers the profiling overhead, but only for a subset of the mem-
ory accesses. Kremlin [11], another parallelization recommender system, profiles

Accelerating Data-Dependence Profiling with Static Hints 19

data dependences only within specific code regions. To save memory overhead,
SD3 [5], a dependence profiler, compresses memory accesses with stride patterns.
Moreover, it reduces the runtime overhead by parallelizing the profiler itself. Dis-
coPoP [7] is a parallelism discovery tool that includes a generic data-dependence
profiler [9], which serves as the basis for our implementation. The original ver-
sion of the profiler converts the program into its LLVM-IR representation, after
which it instruments all memory access instructions. A runtime library tracks
the memory accesses during execution. To reduce the memory and runtime over-
head, it records memory accesses in a signature hash table. Moreover, it skips
repeatedly executed memory operations. Like SD3, it runs multiple threads to
reduce the runtime overhead further. Because of its favorable speed with an aver-
age slowdown of 86, we implemented our approach in DiscoPoP, although it is
generic enough to improve the efficiency of any profiler. The main difference to
the optimizations pursued in other tools is the hybrid combination of dynamic
and static dependence analysis.

To obtain data dependences statically, we use PLUTO [1], an auto-
parallelizing compiler for polyhedral loops. PLUTO annotates the beginning and
end of a code section containing a polyhedral loop. The annotated area is called a
SCoP (Static Control Part) and fulfills certain constraints. It has a single entry
and a single exit point and contains only (perfectly-nested) loops with affine
linear bounds [2]. With PLUTO extracting data dependences from SCoPs, we
accelerate subsequent dependence profiling by excluding memory-access oper-
ations that appear in SCoPs from instrumentation, cutting the SCoP-related
profiling overhead.

Another hybrid-analysis framework was proposed by Rus et al. [12]. It tar-
gets the automatic parallelization of loops whose parallelization is not obvious
at compile time. Based on the results of static analysis, they formulate condi-
tions and insert them into the source code. These conditions evaluate at runtime
whether a loop can be parallelized or not. In contrast to their work, our contri-
bution happens at a lower level, where we just collect data dependences, with
the goal of increasing the profiling speed.

3 Approach

Below, we explain our hybrid approach to identify data dependences. Figure 1
shows the basic workflow. Dark boxes highlight our contribution in relation to
the previously isolated static and dynamic dependence analyses. First, we extract
data dependences statically. Based on these dependences, we identify memory-
access instructions that can be eliminated from profiling. The precise elimination
algorithm is explained in Sect. 3.1. The dynamic data-dependence analysis will
then skip these instructions during the profiling process. Finally, we transform
all data dependences we have found – whether of static or dynamic origin – into
a unified representation, whose details we describe in Sect. 3.2, and merge them
into a single output file. Before we proceed to the evaluation in Sect. 4, we also
discuss the relation between the set of data dependences extracted by the hybrid
and the purely dynamic approach in Sect. 3.3.

20 M. Norouzi et al.

Algorithm 1. Exclusion of memory-access instructions from instrumenta-
tion
for each function f ∈ program do

SCoPSet = PLUTO.getSCoPs(f)
for each SCoP s ∈ SCoPSet do

varSet = getV ariables(s)
for each variable var ∈ varSet do

instrument(firstLoadInst(var,s))
instrument(lastLoadInst(var,s))
instrument(firstStoreInst(var,s))
instrument(lastStoreInst(var,s))

Fig. 1. The workflow of our hybrid data-dependence analysis. Dark boxes show our
contributions.

3.1 Reduced Instrumentation

We exclude specific memory-access instructions from instrumentation that
appear inside source code locations from which PLUTO can extract data depen-
dences statically. Algorithm 1 shows the details and can be best understood
when following the examples in Fig. 2.

We first let PLUTO annotate the target program with SCoP directives. In the
example, lines 10 and 65 contain the annotations. Then, we traverse the source
code and mark the variables inside a SCoP. For each variable, we determine its
boundary instructions: the first and the last read and write operation. The first
read and write of the array variable a appear in lines 15 and 20 and the last
read and write in lines 55 and 60, respectively. We instrument only these bound-
ary instructions and mark all other memory-access operations on a variable for
exclusion. The dark box shows the section to be left out for variable a.

Accelerating Data-Dependence Profiling with Static Hints 21

Fig. 2. A SCoP and the memory-access instructions excluded from instrumentation.

If a profiler fails to instrument one of the boundary instructions, it will report
false positive and negative data dependences. False positives are data depen-
dences that are reported but do not exist in the program. Conversely, false nega-
tives are data dependences that exist in the program but are not reported by the
profiler. False positive or negative data dependences that are reported when the
boundary instructions are skipped can adversely influence parallelization recom-
mendations that span across multiple SCoPs. The opportunities inside a SCoP,
however, are not affected because PLUTO extracts all the data dependences
relevant to its parallelization. We profile the boundary instructions not to miss
any data dependences that a purely dynamic method would obtain. In addition,
this avoids false positives and negatives and helps assess parallelization potential
that stretches across SCoPs. Figures 3a and b show situations that create false
negatives. If we exclude the first read in Fig. 3a, the read-after-write (RAW)
dependence between the first read inside the SCoP and the last write preceding
it is not reported. If the first write is eliminated, two types of false negatives will
happen: on the one hand, the write-after-read (WAR) between the first write and
the read before the SCoP (Fig. 3b), and the write-after-write (WAW) between
the first write and the write before the SCoP on the other. Moreover, if we do
not instrument the last read operation on a variable (Fig. 3a), the WAR between
the last read and the write after the SCoP will be ignored. If we exclude the last
write, however, dependences of two types will not be reported: the RAW between
the last write and the read after the SCoP (Fig. 3b) and the WAW between the
last write and the write after the SCoP. Of course, these considerations apply
only to live-out loop variables that are accessed both inside and outside the loop.

22 M. Norouzi et al.

(a) (b) (c) (d)

Fig. 3. Situations that create false negative (a and b) and false positive (c and d) data
dependences when the first and last read and write instructions in a SCoP are not
instrumented (shown in dark circles).

Figures 3c and d show situations that create false positives. Three types of
false positives are reported if the boundary instructions are not instrumented.
Figure 3c shows a false positive RAW between the last write preceding the SCoP
and the first read succeeding it. Figure 3d shows a WAR that will be reported
falsely between the last read before the SCoP and the first write after it. Finally,
the write operations before and after the SCoP, in both figures, create false
positive WAW dependences.

Our analysis excludes memory-access instructions that exist in polyhedral
loops. In the worst case, if there are no polyhedral loops in a program, all instruc-
tions are instrumented and thus, the hybrid approach falls back to the purely
dynamic approach. The overhead of the hybrid approach, in this case, is not
reduced in comparison with the purely dynamic approach.

1 1:60 NOM {RAW 1:60|i} {WAR 1:60|i}

2 1:63 NOM {RAW 1:59|temp1} {RAW 1:67|temp1}

3 1:64 NOM {RAW 1:60|i}

4 1:65 NOM {RAW 1:59|temp1} {RAW 1:67|temp1} {WAR 1:67|temp2}

5 1:66 NOM {RAW 1:59|temp1} {RAW 1:65|temp2} {RAW 1:67|temp1}

6 1:67 NOM {RAW 1:65|temp2} {WAR 1:66|temp1}

7 1:70 NOM {RAW 1:67|temp1}

8 1:74 NOM {RAW 1:41|block}

Fig. 4. A fragment of unified data dependences extracted from a sequential program.

Accelerating Data-Dependence Profiling with Static Hints 23

Algorithm 2. Transformation of data dependences identified by PLUTO
into the unified representation.
for each SCoP scop ∈ SCoPSet do

fileID = findF ileID(scop)
depSet = PLUTO.getDeps(scop)
for each dependence dep ∈ depSet do

varName = getV arName(dep)
sourceLine = findSourceLine(dep)
sinkLine = findSinkLine(dep)
depType = getDataType(dep)
print(fileID : sinkLine depType fileID : sourceLine|varName)

3.2 Unified Representation

A data dependence exists if the same memory location is accessed twice and at
least one of the two accesses is a write. Without loss of generality, one of the
accesses occurs earlier and one later during sequential execution. To store data
dependences, static and dynamic tools use different representations, which we
unify in this paper. A sample of unified data dependences is shown in Fig. 4. We
write a data dependence as a triple <sink, type, source>. type is the depen-
dence type (i.e., RAW, WAR, or WAW). Because they are irrelevant to paral-
lelization and, strictly speaking, do not even constitute a dependence according
to our definition above, most data-dependence profilers do not profile read-after-
read (RAR) dependences, which is why we do not report them either. sink and
source are the source code locations of the later and the earlier memory access,
respectively. sink is specified as a pair <fileID:lineID>, while source is spec-
ified as a triple <fileID:lineID|variableName>. We assign a unique fileID to
each file in a program. Existing profilers, including Parwiz, DiscoPoP, SD3, and
Intel Pin [13], already display data dependences in terms of source-code files,
line numbers, and variable names. Thus, transforming their output to our uni-
fied representation requires little effort.

PLUTO, in contrast, assigns a unique ID to each source-code statement in a
SCoP and reports data dependences based on these IDs. We use Algorithm 2 to
transform the output of PLUTO into the unified representation. First, we find
the fileID of each SCoP, before we retrieve the set of data dependences in a SCoP
from PLUTO. We use the IDs to identify the statements in which the source
and sink of a data dependence appear. Then, we read the source code of the
file to find the line number of the statements. Finally, we determine the type of
the data dependence and the name of the variable involved in it. Unfortunately,
PLUTO does not report data dependences for loop index variables. We apply
use-def analysis to statically identify the types of data dependences for the indices
appearing in SCoPs. We cannot run this analysis for an entire program because
the code beyond the SCoPs may contain pointers that cannot be tracked with
use-def analysis. At the end, we transform the dependences for the loop indices
into the unified representation.

24 M. Norouzi et al.

Once we have collected all data dependences using our portfolio of static and
dynamic methods, we merge them into a joint ASCII file. To reduce the size
of the output, we compress the dependence data, merging all dependences with
the same sink into a single line. Finally, we sort the dependences based on the
sink. The result can be used by parallelism discovery tools to find parallelization
opportunities.

3.3 Hybrid vs. Dynamic Data Dependences

Now, we take a deeper look into the relationship between the set of data depen-
dences extracted by our hybrid approach in comparison to the one produced by
purely dynamic analysis, which is illustrated in Fig. 5. To better understand this
relation, let us consider the listings in the figure. In Fig. 5b, both loops meet the
constraints of the polyhedral model. PLUTO finds data dependences in those
loops and, thus, our hybrid approach excludes the whole conditional block from
profiling. Profilers might execute either the if or the else branch, depending on
the condition k < average, and extract dependences only in the executed part.
Only running the program with two different inputs, each of them causing the
program to take a different branch, however, would allow a profiler to iden-
tify dependences in both parts. In general, the set of hybrid data dependences is

(a)

(b) Both loops are polyhe-
dral

(c) Only the loop in the
else part is polyhedral

(d) Neither loops are poly-
hedral

Fig. 5. (a): The relation between dynamic and hybrid data dependences. H includes
data dependences that are identified via hybrid analysis. D contains data dependences
identified via dynamic analysis with a finite set of inputs. (b) and (c): Two examples
where D ⊆ H. (d) One example where H = D.

Accelerating Data-Dependence Profiling with Static Hints 25

therefore a superset of the set of purely dynamic data dependences (i.e., D ⊆ H).
Figure 5c shows a similar case where the set of hybrid dependences contains the
set of dynamic dependences (i.e., D ⊆ H). There are two loops, but only the one
in the else branch is polyhedral. Again, profilers might miss the dependences in
the polyhedral loop if none of the provided inputs makes the program go through
the else branch. Finally, in Fig. 5d, neither loop is polyhedral. PLUTO does not
extract dependences from either loop and, thus, our approach does not exclude
any instructions from instrumentation. In this case, the set of dependences iden-
tified by our approach is equal to the set of dependences detected by purely
dynamic analysis (i.e., H = D).

In theory, H and D would be different for a program only if a polyhedral
loop recognized by PLUTO was never executed. However, this condition hap-
pens rarely in practice because polyhedral loops constitute hotspots, that is,
they consume major portions of the execution time. As several authors have
shown [4–7], such regions are usually always visited—regardless of the specific
input. Exceptions include, for example, erroneous inputs that cause the program
to terminate prematurely.

4 Evaluation

We conducted a range of experiments to evaluate the effectiveness of our app-
roach. Our test cases are the NAS Parallel Benchmarks 3.3.1 [14] (NPB), a suite
of programs derived from real-world computational fluid-dynamics applications,
and Polybench 3.2 [15], a test suite originally designed for polyhedral compil-
ers. We compiled the benchmarks using clang 3.6.8, which is also used by the
DiscoPoP profiler for program instrumentation. We ran the benchmarks on an
Intel(R) Xeon(R) CPU E5-2650 2.00 GHz with 32Gb of main memory, running
Ubuntu 14.04 (64-bit edition). To profile the benchmarks, we used the inputs the
benchmark designers provided alongside the programs. Our evaluation criteria
are the completeness of the data dependences in relation to purely dynamic pro-
filing and the profiling time. We compared the set of data dependences identified
by the profiler with and without prior static analysis. Because the entire source
code of the benchmarks was visited during the execution with the given inputs,
we observed no difference in the reported data dependences. Following the argu-
ments of Sect. 3.3, however, we believe that higher code-coverage potential makes
our approach generally less input sensitive than purely dynamic methods, a claim
we want to substantiate in a follow-up study.

To measure how much our hybrid method speeds up the profiler, we ran
the benchmarks first with the vanilla version of the DiscoPoP profiler. We ran
each benchmark five times in isolation, recorded the median of the execution
times, and declared it as our baseline. Then, we profiled the benchmarks with
the enhanced version of the profiler, taking advantage of prior static analysis and
reduced instrumentation. Again, we ran each benchmark fives times in isolation
and calculated the median of the execution times, which we then compared with

26 M. Norouzi et al.

our baseline. Table 1 summarizes the relative slowdown caused by the purely
dynamic vs. the hybrid approach for the two benchmark suites. Finally, Fig. 6
presents the relative overhead reduction for each benchmark.

Table 1. Relative slowdown caused by standard DiscoPoP vs. the hybrid approach.

Benchmark suites Standard DiscoPoP Hybrid approach

Min Max Median Min Max Median

Polybench 37.57 144.98 71.67 14.26 47.84 24.42

NPB 18.60 130.50 82.67 18.11 121.09 63.18

All 18.60 144.98 72.28 14.26 121.09 27.32

(a) Polybench

(b) NPB

Fig. 6. Profiling-time reduction relative to the standard DiscoPoP profiler.

Accelerating Data-Dependence Profiling with Static Hints 27

Whether we can reduce the profiling time of a benchmark depends on its
computational pattern. In theory, the more work is done in polyhedral loops, the
more effective our method will be. If a program does not contain such loops, we
fail to reduce the profiling overhead significantly. Notably, our method lowered
the profiling time in all test cases. For four benchmarks in NPB, namely EP, IS,
CG, and MG, we observed only small improvements because there we could not
exclude many instructions from profiling. For all other benchmarks, our approach
was highly effective. We noticed that removing write operations influences the
profiling time more than removing reads; when profiling a write operation we
need to look for both WAW and WAR dependences, whereas we only need to
look for RAW dependence when profiling a read operation. In general, however,
the number of excluded write instructions is less than the number of reads.
Overall, we achieved a median profiling-time reduction by 62%. The size of the
dependence files generated by the hybrid approach for these benchmarks is in
the order of kBs.

5 Conclusion

Our hybrid approach to data-dependence analysis allows the profiler to skip
code locations whose dependences can be extracted statically. Nevertheless, not
to miss any data dependence a purely dynamic method would obtain, we still
profile memory operations at the boundaries of these locations, capturing data
dependences that point into and out of them. We implemented our approach in
a state-of-the-art data-dependence profiler and achieved a median reduction of
the profiling time by 62% across a large set of benchmarks, making it far more
practical than before. Faster profiling will enable the DiscoPoP framework to
identify parallelism in larger and longer running programs. However, in principle,
our method can serve as frontend to any data-dependence profiler. Our specific
PLUTO-based implementation focuses on polyhedral loops, which opens up two
possible avenues to future work. First, we could try to expand the coverage of
the static analysis, exploring dependences outside polyhedral loops. Second, since
polyhedral loops can be easily parallelized statically, we could make parallelism
discovery tools, whose strength lies in more unstructured parallelism outside
such loops, aware of them and make them cooperate with polyhedral tools also
on the level of parallelism discovery and code transformation, exploiting their
advantages while filling their gaps.

Acknowledgement. This work has been funded by the Hessian LOEWE initiative
within the Software-Factory 4.0 project. Additional support has been provided by
the German Research Foundation (DFG) through the Program Performance Engi-
neering for Scientific Software and the US Department of Energy under Grant No.
DE-SC0015524.

References

1. Bondhugula, U.: Pluto - an automatic parallelizer and locality optimizer for affine
loop nests (2015). http://pluto-compiler.sourceforge.net/. Accessed 13 June 2019

http://pluto-compiler.sourceforge.net/

28 M. Norouzi et al.

2. Benabderrahmane, M.W., Pouchet, L.N., Cohen, A., Bastoul, C.: The polyhedral
model is more widely applicable than you think. In: Proceedings of the Conference
on Compiler Construction. CC 2010, Paphos, Cyprus, pp. 283–303, March 2010

3. Wilhelm, A., Cakaric, F., Gerndt, M., Schuele, T.: Tool-based interactive software
parallelization: a case study. In: Proceedings of the International Conference on
Software Engineering. ICSE 2018, Gothenburg, Sweden, pp. 115–123, June 2018

4. Ketterlin, A., Clauss, P.: Profiling data-dependence to assist parallelization: Frame-
work, scope, and optimization. In: Proceedings of the International Symposium
on Microarchitecture. MICRO 1945, Vancouver, B.C., Canada, pp. 437–448,
December 2012

5. Kim, M., Kim, H., Luk, C.K.: SD3: a scalable approach to dynamic data-
dependence profiling. In: Proceedings of the International Symposium on Microar-
chitecture. MICRO 1943, Atlanta, GA, USA, pp. 535–546, December 2010

6. Norouzi, M., Wolf, F., Jannesari, A.: Automatic construct selection and vari-
able classification in OpenMP. In: Proceedings of the International Conference
on Supercomputing. ICS 2019, Phoenix, AZ, USA, pp. 330–342, June 2019

7. Li, Z., Atre, R., Huda, Z.U., Jannesari, A., Wolf, F.: Unveiling parallelization
opportunities in sequential programs. J. Syst. Softw. 117(1), 282–295 (2016)

8. Jimborean, A., Clauss, P., Martinez, J.M., Sukumaran-Rajam, A.: Online dynamic
dependence analysis for speculative polyhedral parallelization. In: Wolf, F., Mohr,
B., an Mey, D. (eds.) Euro-Par 2013. LNCS, vol. 8097, pp. 191–202. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40047-6 21

9. Li, Z., Jannesari, A., Wolf, F.: An efficient data-dependence profiler for sequential
and parallel programs. In: Proceedings of the International Parallel and Distributed
Processing Symposium. IPDPS 2015, Hyderabad, India, pp. 484–493, May 2015

10. Li, Z., Beaumont, M., Jannesari, A., Wolf, F.: Fast data-dependence profiling by
skipping repeatedly executed memory operations. In: Proceedings of the Inter-
national Conference on Algorithms and Architectures for Parallel Processing.
ICA3PP 2015, Zhangjiajie, China, pp. 583–596, November 2015

11. Garcia, S., Jeon, D., Louie, C.M., Taylor, M.B.: Kremlin: rethinking and rebooting
gprof for the multicore age. In: Proceedings of the Conference on Programming
Language Design and Implementation. PLDI 2011, pp. 458–469, June 2011

12. Rus, S., Rauchwerger, L., Hoeflinger, J.: Hybrid analysis: static & dynamic memory
reference analysis. Int. J. Parallel Prog. 31(4), 251–283 (2003)

13. Intel: Pin - a dynamic binary instrumentation tool (2010). https://software.intel.
com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool. Accessed 13 June
2019

14. Bailey, D.H., et al.: The NAS parallel benchmarks. Int. J. Supercomput. Appl.
5(3), 63–73 (1991)

15. Pouchet, L.N.: Polyhedral suite (2011). http://www.cs.ucla.edu/pouchet/
software/polybench/. Accessed 13 June 2019

https://doi.org/10.1007/978-3-642-40047-6_21
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
http://www.cs.ucla.edu/ pouchet/software/polybench/
http://www.cs.ucla.edu/ pouchet/software/polybench/

Multi-valued Expression Analysis
for Collective Checking

Pierre Huchant1,2, Emmanuelle Saillard2(B), Denis Barthou1,2,
and Patrick Carribault3

1 Bordeaux Institute of Technology, University of Bordeaux, LaBRI,
Bordeaux, France

2 Inria, Bordeaux, France
emmanuelle.saillard@inria.fr

3 CEA, DAM, DIF, 91297 Arpajon, France

Abstract. Determining if a parallel program behaves as expected on
any execution is challenging due to non-deterministic executions. Static
analyses help to detect all execution paths that can be executed concur-
rently by identifying multi-valued expressions, i.e. expressions evaluated
differently among processes. This can be used to find collective errors in
parallel programs. In this paper, we propose a new method that com-
bines a control-flow analysis with a multi-valued expressions detection
to find such errors. We implemented our method in the PARCOACH
framework and successfully analyzed parallel applications using MPI,
OpenMP, UPC and CUDA.

1 Introduction

Collective operations and in particular synchronizations are widely used opera-
tions in parallel programs. They are part of languages for distributed parallelism
such as MPI or PGAS (collective communications), shared-memory models like
OpenMP (barriers) and languages for accelerators such as CUDA (synchroniza-
tion within thread blocks, cooperative groups and at warp-level). A valid use
of collective operations requires at least that their sequence is the same for all
threads/processes during a parallel execution. An invalid use (collective error)
leads to deadlocks or undefined memory state that may be difficult to repro-
duce and debug. Indeed, these languages do not require that all processes reach
the same textual collective statement (textual alignment property [1,2]). Find-
ing which collective matches a given collective is needed for collective checking
and requires to analyse the different concurrent execution paths of a parallel
execution.

Aiken and Gay introduced the concept of structural correctness for synchro-
nizations in SPMD programs, based on the notion of multi-valued and single-
valued variables [3]. A variable is said multi-valued if its value is dependent on
the process identifier (single-valued otherwise). A program has structurally cor-
rect synchronization if all processes have the same sequence of synchronization
c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 29–43, 2019.
https://doi.org/10.1007/978-3-030-29400-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-29400-7_3

30 P. Huchant et al.

operations. Thus, if a synchronization is executed conditionally, both branches
of the condition have a synchronization or the condition expression is single-
valued. We can extend the notion of structural correctness to collectives. In this
paper, we propose a novel method to detect collective errors in parallel pro-
grams. It combines an inter-procedural analysis to perform collective matching
and a data-flow analysis to detect multi-valued variables. The first pass finds
control-flow divergence that may lead to collective deadlocks while the second
one filters out the divergences that do not depend on process identifier. We show
on several benchmarks and applications that this combination is more accurate
than the state-of-the-art analyses and resolves some correctness issues. The anal-
ysis has been implemented in the PARallel COntrol flow Anomaly CHecker [4,5]
(PARCOACH) framework and tested on benchmarks and real HPC applications,
using MPI, OpenMP, UPC and CUDA.

Section 2 describes several deadlock situations in parallel programs. Section 3
presents PARCOACH analysis while Sects. 4 and 5 describe our multi-valued
expression detection and its integration in PARCOACH to find collective errors.
Section 6 gives related work on dependence analyses and verification tools.
Section 7 shows experimental results and Sect. 8 concludes our work.

2 Motivation

This section illustrates four possible deadlock situations due to collectives in
MPI, OpenMP, CUDA and UPC as presented in Fig. 1 (from a to d).

The MPI code (Fig. 1a) contains two collectives: MPI Barrier and
MPI Reduce. The call to MPI Barrier at line 17 is performed by all MPI pro-
cesses, whereas the call MPI Reduce in g at line 3 may deadlock. Indeed, variable
n is multi-valued in the condition expression line 14. Odd-ranked processes evalu-
ate the conditional to true and potentially execute the reduce, while even-ranked
ones evaluate it to false, hanging in the MPI Barrier at line 17. On the contrary,
variable s is single-valued. Hence, all processes in g execute the reduce or none.
The goal of our method is to statically report this situation, identifying the
conditional at line 14, and only this one, as a potential cause for mismatched
calls.

According to the OpenMP specification, the same explicit and implicit1 bar-
riers (syntactically) should be executed by all threads. In practice, the OpenMP
runtimes allow the execution of syntactically different barriers, as long as all
threads execute the same number of barriers. The code Fig. 1b is written in
OpenMP. The #pragma omp parallel directive in function f defines r, con-
taining the thread ID (l.10) and s, as private variables. The first barrier line
12 is encountered by all threads as it is in the global control flow. The barrier
line 3 is either executed by all threads of the program or by none of them as s

1 There is an implicit barrier at the end of all worksharing constructs, unless a nowait

clause is specified.

Multi-valued Expression Analysis for Collective Checking 31

is single-valued when entering function g at line 14. Because s becomes multi-
valued at line 15, the barrier line 17 is conditionally executed. This leads to a
deadlock situation if the number of threads is greater than 1 at runtime.

The CUDA code (Fig. 1c) manipulates multidimensional thread IDs through
predefined variables such as threadIdx. In CUDA, synchronizations are valid if
executed by all threads within the same block. Before the first synchronization,
the array tile depends on thread IDs at line 7. As the array is shared among
threads, they all share the same version after the synchronization. The synchro-
nization at line 10 is conditionally executed depending on tile[0]. As this value
does not depend on thread ID, there is no possible deadlock. Depending on the
driver, the third synchronization at line 12 may lead to either a deadlock or
an undefined memory configuration. This bug can be difficult to detect for a
programmer in a real code as this is a silent synchronization error.

1 void g(int s) {
2 if(s > 256)
3 MPI Reduce com, ... ;
4 }
5

6 void f() {
7 int s,r,n;
8 MPI_Comm_size(com ,&s);
9 MPI_Comm_rank(com ,&r);

10 if (r % 2)
11 n = 1;
12 else
13 n = 2;
14 if (n == 1)
15 g(s);
16

17 MPI Barrier com ;
18 }

(a) MPI example

1 void g(int s) {
2 if(s)
3 #pragma omp barrier
4 }
5

6 void f() {
7 int r; int s=1;
8 #pragma omp parallel private(r,s)
9 {

10 r=omp_get_thread_num ();
11 ...
12 #pragma omp barrier
13 ...
14 g(s);
15 s=r%2;
16 if(s)
17 #pragma omp barrier
18 }
19 }

(b) OpenMP example

1 void f(int *data) {
2 __shared__ int tile [];
3 int tid = threadIdx.x;
4 int gid =
5 blockIdx.x*blockDim.x

+tid;
6

7 tile[tid] = data[gid];
8 syncthreads ;
9 if (tile [0])

10 syncthreads ;
11 if (tid)
12 syncthreads ;
13 }

(c) CUDA example

1 void f() {
2 int i=1; j=10;
3 if(MYTHREAD %2){
4 while(i<10){
5 upc barrier; i++;
6 }
7 }else{
8 while(j<20){
9 upc barrier; j++;

10 }
11 }
12 }

(d) UPC example

1 void f() {
2 ...
3 if(x)
4 collective
5 ...
6 if(!x)
7 collective
8

9 }

(e) Not veri-
fiable

Fig. 1. Examples of collective issues and a correct program not verifiable by our
analysis.

32 P. Huchant et al.

The code Fig. 1d is written in Unified Parallel C (UPC), a PGAS language.
The predefined variable MYTHREAD specifies thread index. In this code, because of
the multi-valued expression at line 3, threads with odd ID will call nine barriers
(l.5) while the others will call ten barriers (l.9). Although structurally correct,
this code leads to a deadlock. Our analysis reports all collectives in a loop as
potentially deadlocking. But note that our analysis would return a false positive
if the two loops had the same number of iteration.

A static analysis on the previous codes only detects situations and causes of
possible deadlocks. If the codes are executed with only one process, no deadlock
can happen. Also, our analysis returns a false positive for some correct but
structurally incorrect codes like the example Fig. 1e. In addition to our analysis,
we use PARCOACH instrumentation of programs explained in [5] to handle such
situations.

3 PARCOACH Control-Flow Analysis

Our analysis first uses PARCOACH to find all conditionals (flow-divergences)
that may lead to the execution of different collective sequences.

PARCOACH static analysis relies on the Parallel Program Control Flow
Graph (PPCFG) representation of a program [5]. The PPCFG is a program
control-flow graph (CFG) where nodes are basic blocks and edges represent
the possible flow of control between nodes. To build the PPCFG, PARCOACH
reduces each function control-flow graph and replaces each callsite by the callee
reduced CFG. Then, with a graph traversal of the PPCFG, PARCOACH com-
putes the possible execution order r of each collective c and the iterated post-
dominance frontier (PDF+) for collectives of the same type and order. For a set
of collectives Cr,c, PDF+(Cr,c) corresponds to the control-flow divergences that
may result in the execution or non-execution of a collective in Cr,c. Note that
to handle communicators in MPI programs, PARCOACH analyses the program
for each communicator separately.

4 Multi-valued Expression Detection

PARCOACH finds all conditionals potentially leading to different sequences of
collectives but reports false positives when conditionals do not depend on a multi-
valued expression. This section presents our multi-valued expressions detection.

Enhanced SSA. Our analysis is based on the Static Single Assignment (SSA)
form of the program. In SSA, variables are defined exactly once. Variables
assigned in multiple statements are renamed into new instances, one per state-
ment. This makes explicit def/use chains. When multiple control-flow paths join
in the CFG, renamed variables are combined with a φ-function into a new vari-
able instance. To capture control-flow dependences we compute an enhanced SSA

Multi-valued Expression Analysis for Collective Checking 33

where φ-functions are augmented with their predicates: φ(y1, ..., yk) is trans-
formed into φ(y1, ..., yk, p1, ..., pk) with pi the conditionals responsible for the
choice of the yi. These conditionals are determined by computing the PDF+ of
each argument yi of the φ-function as in [6].

For C-like programs, variables that can be referenced with their address
(address-taken variables), are only manipulated through pointers with load and
store instructions in the SSA form. To compute def/use chains for address-taken
variables, we rely on the principles exposed in flow-sensitive pointer analyses
such as [7,8]: First a points-to analysis is computed to handle potential aliases
among arrays and pointers. Then, each load q = ∗p is annotated with a function
μ(o) for each variable o that may be pointed-to by p to represent a potential
use of o at the load. Likewise, each store ∗p = q is annotated with o = χ(o) for
each variable o that may be pointed-to by p to represent a potential def of o at
the store. There is a special case to consider for shared variables. After synchro-
nization (#pragma omp barrier in OpenMP, syncthreads in CUDA), shared
variables have the same value for all threads. To create a new SSA instance that
no longer depends on the value preceding the barrier, synchronizations are anno-
tated with o = χ() for all shared variables o. Then a context-sensitive Mod-Ref
Analysis is performed to capture inter-procedural uses and def as described in
[9]. The purpose of this analysis is to capture the variables referenced and/or
modified in functions through pointers. Each callsite cs is annotated with μ(o)
for each variable o indirectly referenced in the called function. Similarly, each
callsite is annotated with o = χ(o) to generate a new instance of o for each vari-
able indirectly modified in the called function. For each address-taken variable
referenced or modified in a function, a χ function is inserted at the beginning of
the entry node of the CFG and a μ function is inserted at the end of the exit node
of the CFG to represent their initial and final values. Finally, all address-taken
variables are converted into an SSA form. This results in an augmented SSA with
value and control dependences, and additional statements in SSA describing the
effects of pointer manipulations. All possible def/use chains are built inside the
SSA notation. This simplifies the construction of a dependence graph.

PDCG: Program Data- and Control-Flow Dependence Graph. A
program data- and control-flow dependence graph (PDCG) is built from the
enhanced SSA by connecting the def of each variable with its uses, following
the rules presented in Fig. 2. The PDCG captures inter-procedural dependences
(represented by edges between variables from different functions) but its con-
struction only requires to analyze each function once. This graph is used to
find all variables/expressions that are multi-valued. To that end, we identify the
source statements that generate processes identifier and spread the dependencies
following the edges of the PDCG. The first four rules (from OP to STORE) are
based on the work in [7] using similar notations. Our differences are highlighted
in grey.

OP and PHI rules correspond to straightforward data- and control-flow depen-
dences. For an operation � : z = x op y, the def of x and y at lines �′ and �′′ are

34 P. Huchant et al.

connected to the def of z at line �. For a φ statement � : v3 = φ(v1, v2, ..., pi, ..),
the defs of the old SSA instances v1 and v2 at �1 and �2 are connected to the
def of the new SSA instance v3 at �. For each predicate pi, the def of pi at �3 is
connected to the def of v3 at � to handle the control-flow dependence.

LOAD and STORE rules take into account alias information for load and store
statements. For a load statement � : q = ∗p, the def of each object o at �′′ pointed
to by p is connected to the def of q at �. We also add a link from the def of p at �′

to the def of q at � to denote the dependence of q with the array index. Indeed,
this corresponds to the case where ∗p is in the form of A[e] with e an expression.
If e is multi-valued, then q is multi-valued. Similarly, for each store instruction
� : ∗p = q annotated with [o2 = χ(o1)], the defs of q and p are connected to o2.
However, we do not connect o1 to o2 since we assume that the old value o1 is
overwritten with o2 (strong update).

The CALL rule handles inter-procedural dependences. At each callsite �cs :
r = f(..., p, ...), the def of the effective parameter p is connected to the formal
parameter q in f . Furthermore, the def of the return value x in f is connected
to the def of r at �cs. To handle indirect value-flows for address-taken variables,
given a callsite annotated with [μ(o1)] [o2 = χ(o1)], the def of o1 in the calling
function is connected to o3, the first def of o in f . Similarly, the last def of o in
f denoted o4, is connected to the def of o2 at �cs.

Fig. 2. Building rules for the PDCG.

PHI ELIM and RESET both correspond to edge removal optimizations. After
augmenting φ-nodes with their predicates, false control dependences can appear

Multi-valued Expression Analysis for Collective Checking 35

if every operand of a φ-node denotes the same value. This occurs in par-
ticular when considering two identical function calls in two branches of an
if..then..else construct. Even if these two calls use the same single-valued
parameters, the returned value will still depend on the predicate of the con-
ditional (augmented SSA). To tackle this issue, the PHIELIM rule fuses such φ-
nodes with their operands and disconnects the predicates. In distributed memory,
after a value-sharing collective such as an all-to-all collective, the communicated
buffer has the same value for all processes. This implies that this buffer does not
depend on processes ranks after such collective, whatever its rank-dependence
before the collective. To handle this situation, the RESET rule disconnects the
path from the old SSA instance of the buffer to its new SSA instance after a
value-sharing collective (o1@�2 ↪→ o3@�4 ↪→ o4@�5 ↪→ o2@�cs). The same rule
applies to any value-sharing collective where all processes receive the same result
such as MPI Allreduce or MPI Broadcast.

Finally, to detect collectives that may not be executed by all processes/
threads, we rely on PARCOACH analysis. Each collective c of execution order r
is connected to all conditionals in PDF+(Cr,c) (COND rule).

5 Collective Errors Detection

We use the PDCG to track values and nodes that depend on processes identi-
fiers, flooding the graph from seed functions returning IDs or variables allow-
ing tasks to identify themselves: MPI Comm rank and MPI Group rank in MPI,
omp get thread num for OpenMP. In UPC and CUDA, the seed is a vari-
able: MYTHREAD and threadIdx.*. We use the dependence information from
the PDCG to filter out single-valued conditionals from the PDF+ of potentially
unsafe collectives and thus reduce the number of false positives in PARCOACH.
The augmented SSA takes into account value and control dependencies and the
points-to analysis provides the dependencies through aliases. Note that thanks
to the PDCG, our analysis can be path sensitive: An expression may be multi-
valued or not, depending on the preceding calling context.

Algorithm 1 describes our whole collective errors detection. Step 1 represents
PARCOACH control-flow analysis (see Sect. 3) while steps 2 and 3 respectively
detect multi-valued expressions and build the PDCG (see Sect. 4). Finally, step 4
filters out single-valued conditionals and outputs warnings for potential collective
errors.

Example. Figures 3a and c show the enhanced SSA for the MPI code Fig. 1a.
The call to MPI Comm rank is annotated with a χ function to denote the indirect
definition of object o’1 pointed-to by r. This generates a new SSA instance
denoted o’2. Then the object o’2 pointed-to by r is loaded in reg0. Depending
on whether its value is odd or even, the execution flows either to the basic block
labelled if.then or the basic block labelled if.else. These two control-flow
paths join at basic block if.end and a φ-function is inserted to combine the

36 P. Huchant et al.

// STEP 1. PARCOACH Control-flow Analysis
Input: PPCFG, Output:

⋃

r,c

Or,c � Create the set Or,c = PDF+(Cr,c) for each

collective name c of execution order r

// STEP 2. Multi-Valued Expression Detection
Input: SSA, Output: eSSA � Build an enhanced SSA (eSSA) that captures
data- and control-flow dependencies

// STEP 3. PDCG Construction
Input: eSSA, seeds, Output: PDCG � Build a PDCG to find all multi-valued
expressions and variables from seed functions and variables

// STEP 4. Filter-out single-valued conditionals
Input:

⋃

r,c

Or,c, PDCG, Output: O

for c in collective names of execution order r do
for each node n in Or,c do

if n is single-valued in PDCG (there is an edge between c and n in the
PDCG) then

Or,c ← Or,c − n � remove the node
end
O ← O ∪ (c, {Or,c})

end
Output nodes in O as warnings
return O

Algorithm 1. Collective error detection.

values of reg1 and reg2 into variable n. The predicate cmp1 is added to the
φ-function to indicate its value depends on cmp1.

Figure 3b shows the PDCG corresponding to this example. Rectangle nodes
represent collectives. Diamond and circle nodes respectively represent defini-
tions of address-taken and top-level variables (variables never referenced by their
address). The seed function is MPI Comm rank line 7 and the first multi-valued
object is o’2. All library functions have mocked-up CFGs, tagging output values
as multi-valued when necessary. The graph highlights the rank-dependent path
from o’2 to MPI Reduce in g passing through the conditional cmp2 in f.

In this example, the execution of MPI Reduce depends on the value of cmp
in g and the call to g depends on the value of cmp2 in f. Hence, MPI Reduce@�6
is connected to cmp and cmp2. However, there exists no path from o’2 to cmp
as cmp does not depend on processes ranks. The execution of MPI Barrier is
not governed by any conditional. MPI Barrier@�28 is then not connected to any
node in the graph and it cannot be reached from a seed statement. Since the only
collective highlighted in the graph corresponds to MPI Reduce in g and only one
of the two conditionals governing its execution is highlighted, our new analysis
only issues a warning for the multi-valued conditional line 22 in f and the call
to MPI Reduce in g.

Multi-valued Expression Analysis for Collective Checking 37

1 define void f() {
2 entry:
3 s = alloca_o; // object o1
4 r = alloca_o ’;// object o’1
5 MPI_Comm_size(com , s);

[μ(o1)]
6 [o2 = χ(o1)]
7 MPI_Comm_rank(com , r);

[μ(o’1)]
8 [o’2 = χ(o’1)]
9 reg0 = load r [μ(o’2)]

10 rem = reg0 % 2;
11 cmp1 = rem != 0;
12 br cmp1 , if.then , if.else
13 if.then:
14 reg1 = 1;
15 br label if.end
16 if.else:
17 reg2 = 2;
18 br label if.end
19 if.end:
20 n = φ(reg1 , reg2 , cmp1)
21 cmp2 = n == 1;
22 br cmp2 , if.then2 , if.end2
23 if.then2:
24 reg3 = load s; [μ(o2)]
25 g(reg3);
26 br label if.end2
27 if.end2:
28 MPI_Barrier(com);
29 ret void;
30 }

(a) Function f enhanced SSA.

(b) PDCG.

1 define void g(i32 s) {
2 entry:
3 cmp = s > 256
4 br cmp , if.then , if.end
5 if.then:
6 MPI_Reduce(com , ...);
7 br if.end
8 if.end:
9 ret void

10 }

(c) Function g enhanced
SSA.

Fig. 3. Enhanced SSA form of the MPI code Fig. 1a and its corresponding PDCG.

6 Related Work

This section summarizes works on dependence analyses and gives an overview
of existing tools for collective errors detection in parallel programs.

6.1 Dependence Analyses Techniques

Dependence analyses are the cornerstones of many optimizations/analyses in
compilers. For instance, dependences are used for Taint Analysis [10–12] to
determine how program inputs may affect the program execution and exploit
security vulnerabilities, Information Flow Tracking [13–16] to prevent confiden-
tial information from leaking, static Bug Detection [17,18] or code optimization
and parallelization (e.g. the polyhedral model [19]). One of the difficult issues
when computing data dependences is to deal with pointers/memory aliases and
non scalar variables (e.g. arrays, structures). In SVF [7] the authors annotate
load and store instructions with μ and χ functions to transform address-taken
variables into an SSA form. However, they do not take into account the possible
dependence of the pointer itself (through an array index for instance) when they
build the data dependence graph.

38 P. Huchant et al.

Many of the aforementioned analyses only consider data dependences whereas
Slowinska et al. [20] showed that omitting control dependences can be a huge
source of false negative results. In [21], the authors introduced the concept of
Strict Control Dependences to reduce the number of false positives in Taint
Analyses and Lineage Tracing. In Parfait [22] the authors propose to extend
φ-functions with predicates in order to handle control dependences. However,
address-taken variables are not transformed into an SSA form.

6.2 Collective Error Detection Techniques

Static analyses operate on the source code of an application and have the advan-
tage of not requiring execution. They are usually based on model checking and
symbolic program execution, limiting their applicability to small and moderate
sized applications (the number of reachable states to consider is combinatorial).
TASS [23] and CIVL [24] use this approach. They rely on symbolic execution and
require source code annotations to detect collective errors in MPI programs. The
OpenMP Analysis Toolkit (OAT) [25] uses the same method for OpenMP pro-
grams by exploring all program paths under symbolic values. SimGridMC [26]is
a model checker for MPI applications. It uses Dynamic Partial Order Reduction
and State Equality techniques to face the state space explosion problem. UPC-
SPIN [27] generates finite models of UPC programs in the modeling language of
the SPIN model checker. For CUDA programs, we can mention GPUVerify [28]
that statically checks that all threads execute the same barriers syntactically.
Unlike our analysis, the method does not give a precise feedback in case of a
potential error. PARCOACH combines an inter-procedural control-flow analysis
with a selective instrumentation to find MPI and OpenMP collective errors. The
method is limited to control-flow information and returns many false positives.
Our new analysis overcomes this limitation and extends the collective verifica-
tion to other parallel programming models. The method presented by Zhang
and Duesterwald in [1] is the closest to our work. It detects synchronization
errors with an inter-procedural barrier matching technique for SPMD programs
with textually unaligned barriers. Compared to our analysis, this method is only
focused on MPI and OpenMP synchronizations and has no pointer analysis.

Unlike static tools, dynamic tools do not report false positives. However,
they are dependent on the input data set and may miss errors (false negatives).
PARCOACH instruments non verifiable programs to verify if processes/threads
are going to call the same collective at a particular step of execution, preventing
deadlocks from happening. This instrumentation is similar to what dynamic tools
like MUST [29] or UPC-CHECK [30] do. However, the instrumentation starts
with the first collectives that may deadlock, avoiding a full instrumentation of
programs.

Multi-valued Expression Analysis for Collective Checking 39

7 Experimental Results

Our analysis is implemented as a pass in the LLVM framework 3.9 integrated
into the open source software PARCOACH2.

Figures 4 and 5 show the impact of our multi-valued expression analysis on
PARCOACH. Figure 4 displays the percentage of warnings and conditionals fil-
tered out with our multi-valued analysis compared to the initial PARCOACH
analysis on 3 HPC applications (MILC3, Gadget4 and MPI-PHYLIP [31]), 3
mini HPC applications (CoMD and miniAMR from the Mantevo project [32]

Fig. 4. Percentage of warnings and conditionals filtered by our multi-valued analysis.
100% means that the analysis proves the program is collective error free.

Fig. 5. Percentage of collectives potentially deadlocking.

2 PARCOACH is available at https://github.com/parcoach/parcoach.
3 http://www.physics.utah.edu/∼detar/milc/.
4 https://wwwmpa.mpa-garching.mpg.de/gadget/.

https://github.com/parcoach/parcoach
http://www.physics.utah.edu/~detar/milc/
https://wwwmpa.mpa-garching.mpg.de/gadget/

40 P. Huchant et al.

and Hydro5) and 5 widely used benchmarks (HPL6, IOR7, AMG8, NAS IS9,
and the CUDA benchmarks from Rodinia10). In the figure, warnings are col-
lectives that may lead to deadlocks, and conditions correspond to conditionals
governing the execution of unsafe collectives. The initial number of warnings
and conditionals found by PARCOACH is given at the top of each bar. 100%
for a warning bar means that the application is collective error-free (all warn-
ings are removed by our analysis, the code is proved safe), 0% means that our
analysis has no impact. For MILC, 91% of the 498 warnings have been removed.
PARCOACH now reports 45 warnings. As shown in the figure, about half con-
ditionals are filtered out by our analysis for most applications and all warnings
are removed for Coral AMG OMP, MPI IS, UPC IS and Rodinia. Figure 5 gives
the percentage of collectives tagged as potentially deadlocking by our analysis.
The total number of collectives is given at the top of each bar. In the figure,
seven applications have less than 20% of collectives potentially deadlocking.

To highlight the functionality of our analysis, we created a microbenchmark
suite containing programs from multiple sources with correct and incorrect use
of MPI collectives11. We compare the performance of the method presented in
[1] and PARCOACH using our multi-valued analysis (PDCG), SVF and Parfait.

Table 1. Multi-valued detection comparison between the work in [1] and PARCOACH
(PAR.) using our PDCG, SVF and Parfait. FP= false positives, FN= false negative.

Program name Origin Description Deadlock Zhang

et. al [1]

PARCOACH

PDCG SVF Parfait

field-sensitive Hydro Structure with a

multi-valued field

no
FP

FP FP FP

index-dep PAR Use of an array yes
�

� FN �

phi-cond PAR Control-flow

dependence

yes
�

� FN �

pointer-instance PAR Fig. 1b yes
�

� � FP

pointer-alias PAR Use of aliases yes
FN

� � FP

barrierReduce CIVL Collective

mismatch

yes
FN

� � �

barrierScatter CIVL Collective

mismatch

yes
FN

� � �

5 https://github.com/HydroBench/Hydro.
6 http://www.netlib.org/benchmark/hpl.
7 http://www.nersc.gov/research-and-development/apex/apex-benchmarks/ior.
8 https://asc.llnl.gov/CORAL-benchmarks/.
9 http://www.nas.nasa.gov/software/NPB.

10 https://www.cs.virginia.edu/∼skadron/wiki/rodinia/index.php.
11 The microbenchmark suite is available at https://gitlab.inria.fr/parcoach/

microbenchmarks.

https://github.com/HydroBench/Hydro
http://www.netlib.org/benchmark/hpl
http://www.nersc.gov/research-and-development/apex/apex-benchmarks/ior
https://asc.llnl.gov/CORAL-benchmarks/
http://www.nas.nasa.gov/software/NPB
https://www.cs.virginia.edu/~skadron/wiki/rodinia/index.php
https://gitlab.inria.fr/parcoach/microbenchmarks
https://gitlab.inria.fr/parcoach/microbenchmarks

Multi-valued Expression Analysis for Collective Checking 41

Table 1. (continued)

Program name Origin Description Deadlock Zhang

et. al [1]

PARCOACH

PDCG SVF Parfait

BcastReduce bad CIVL Collective

mismatch

yes
FN

� � �

mismatch-barrier PAR Collective

mismatch

yes
�

� � �

mismatch barrier com PAR Collective

mismatch

yes
�

� � �

mismatch barrier nb PAR Collective

mismatch

yes
�

� � �

MPIexample PAR Fig. 1a yes
FN

� FN FN

noerror barrier PAR Correct usage of

barrier

no
�

� � �

not verifiable PAR Fig. 1e no
FP

FP FP FP

loop barrier PAR Fig. 1d yes
�

� � �

Table 1 shows the results. Our analysis always detect collective errors compared
to the others. For the remaining false-positive results, a more precise dependence
analysis is required. This is left for future work.

8 Conclusion

This article presents a new static/dynamic method to verify that a parallel
program has structurally correct collectives. The analysis resorts to an inter-
procedural static analysis that can prove in some cases that a program is free of
collective error. The method has been applied successfully on different languages
and is implemented in PARCOACH. Experiments show that our analysis leads
to significant improvement over existing PARCOACH. Furthermore, through a
more precise use of alias and control dependences, our static analysis outperforms
existing data-flow analyses bringing additional preciseness (removing spurious
dependencies) and correctness (adding missing dependencies).

References

1. Zhang, Y., Duesterwald, E.: Barrier matching for programs with textually
unaligned barriers. In: PPoPP, pp. 194–204. ACM (2007)

2. Jakobsson, A., Dabrowski, F., Bousdira, W., Loulergue, F., Hains, G.: Replicated
synchronization for imperative bsp programs. Procedia Comput Sci. 108, 535–544
(2017). International Conference on Computational Science, ICCS 2017, 12–14
June 2017. Zurich, Switzerland

42 P. Huchant et al.

3. Aiken, A., Gay, D.: Barrier inference. In: Proceedings of the ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages POPL, pp. 342–
354. ACM (1998)

4. Saillard, E., Carribault, P., Barthou, D.: PARCOACH: combining static and
dynamic validation of MPI collective communications. IJHPCA 28(4), 425–434
(2014)

5. Huchant, P., Saillard, E., Barthou, D., Brunie, H., Carribault, P.: PARCOACH
extension for a full-interprocedural collectives verification. In: Second International
Workshop on Software Correctness for HPC Applications (2018)

6. Scholz, B., Zhang, C., Cifuentes, C.: User-input dependence analysis via graph
reachability (2008)

7. Sui, Y., Xue, J.: SVF: Interprocedural Static Value-flow Analysis in LLVM. CC,
pp. 265–266 (2016)

8. Hardekopf, B., Lin, C.: Flow-sensitive pointer analysis for millions of lines of code.
In: CGO, pp. 289–298 (2011)

9. Sui, Y., Ye, D., Xue, J.: Detecting memory leaks statically with full-sparse value-
flow analysis. IEEE Trans. Softw. Eng. 40(2), 107–122 (2014)

10. Arzt, S., et al.: FlowDroid: precise context, flow, field, object-sensitive and lifecycle-
aware taint analysis for android apps. SIGPLAN Not. 49(6), 259–269 (2014)

11. Tripp, O., Pistoia, M., Fink, S.J., Sridharan, M., Weisman, O.: TAJ: effective taint
analysis of web applications. PLDI 44, 87–97 (2009)

12. Shankar, U., Talwar, K., Foster, J.S., Wagner, D.: Detecting format string vulner-
abilities with type qualifiers. In: SSYM (2001)

13. Denning, D.E., Denning, P.J.: Certification of programs for secure information
flow. Commun. ACM 20(7), 504–513 (1977)

14. Heintze, N., Riecke, J.G.: The SLam calculus: programming with secrecy and
integrity. In: POPL, pp. 365–377 (1998)

15. Yin, H., Song, D., Egele, M., Kruegel, C., Kirda, E.: Panorama: capturing system-
wide information flow for malware detection and analysis. In: CCS, pp. 116–127
(2007)

16. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
A. Commun. 21(1), 5–19 (2006)

17. Laguna, I., Schulz, M.: Pinpointing scale-dependent integer overflow bugs in large-
scale parallel applications. In: SC, pp. 19:1–19:12 (2016)

18. Ye, D., Sui, Y., Xue, J.: Accelerating dynamic detection of uses of undefined values
with static value-flow analysis. In: CGO, pp. 154:154–154:164 (2014)

19. Feautrier, P.: Dataflow analysis of array and scalar references. Int. J. Parallel Prog.
20(1), 23–53 (1991)

20. Slowinska, A., Bos, H.: Pointless tainting?: evaluating the practicality of pointer
tainting. In: EuroSys, pp. 61–74 (2009)

21. Bao, T., Zheng, Y., Lin, Z., Zhang, X., Xu, D.: Strict control dependence and its
effect on dynamic information flow analyses. In: ISSTA, pp. 13–24 (2010)

22. Cifuentes, C., Scholz, B.: Parfait: designing a scalable bug checker. In: Proceedings
of the 2008 Workshop on Static Analysis. SAW, pp. 4–11 (2008)

23. Siegel, S.F., Zirkel, T.K.: Automatic formal verification of MPI-based parallel pro-
grams. SIGPLAN Not. 46(8), 309–310 (2011)

24. Siegel, S.F., et al.: Civl: the concurrency intermediate verification language. In:
SC, pp. 1–12, November 2015

25. Ma, H., Diersen, S.R., Wang, L., Liao, C., Quinlan, D., Yang, Z.: Symbolic analysis
of concurrency errors in OpenMP programs. In: PARCO. ICPP, vol. 00, pp. 510–
516 (2013)

Multi-valued Expression Analysis for Collective Checking 43

26. Pham, T.A., Jeron, T., Quinson, M.: Verifying MPI applications with SimGridMC.
In: Correctness (2017)

27. Ali, E.: UPC-SPIN: a framework for the model checking of UPC programs (2011)
28. Betts, A., Chong, N., Donaldson, A., Qadeer, S., Thomson, P.: GPUVerify: a ver-

ifier for GPU Kernels. In: OOPSLA, pp. 113–132. ACM (2012)
29. Hilbrich, T., de Supinski, B.R., Hänsel, F., Müller, M.S., Schulz, M., Nagel, W.E.:

Runtime MPI collective checking with tree-based overlay networks. In: EuroMPI,
pp. 129–134 (2013)

30. Coyle, J., Roy, I., Kraeva, M., Luecke, G.R.: UPC-CHECK: a scalable tool for
detecting run-time errors in Unified Parallel C. Comput. Sci. Res. Dev. 28(2),
203–209 (2013)

31. Ropelewski, A.J., Nicholas Jr., H.B., Gonzalez Mendez, R.R.: MPI-PHYLIP: par-
allelizing computationally intensive phylogenetic analysis routines for the analysis
of large protein families. PLoS ONE 5(11), 1–8 (2010)

32. Heroux, M.A., et al.: Improving Performance via Mini-applications (2009)

Performance and Power Modeling,
Prediction and Evaluation

Towards Portable Online Prediction of Network
Utilization Using MPI-Level Monitoring

Shu-Mei Tseng1(B), Bogdan Nicolae2, George Bosilca3, Emmanuel Jeannot4,
Aparna Chandramowlishwaran1, and Franck Cappello2

1 University of California Irvine, Irvine, USA
{shumeit,amowli}uci.edu

2 Argonne National Laboratory, Lemont, USA
{bnicolae,cappello}@anl.gov

3 University of Tennessee Knoxville, Knoxville, USA
bosilca@icl.utk.edu

4 INRIA Bordeaux, Talence, France
emmanuel.jeannot@inria.fr

Abstract. Stealing network bandwidth helps a variety of HPC runtimes and ser-
vices to run additional operations in the background without negatively affecting
the applications. A key ingredient to make this possible is an accurate prediction
of the future network utilization, enabling the runtime to plan the background
operations in advance, such as to avoid competing with the application for net-
work bandwidth. In this paper, we propose a portable deep learning predictor
that only uses the information available through MPI introspection to construct
a recurrent sequence-to-sequence neural network capable of forecasting net-
work utilization. We leverage the fact that most HPC applications exhibit peri-
odic behaviors to enable predictions far into the future (at least the length of a
period). Our online approach does not have an initial training phase, it continu-
ously improves itself during application execution without incurring significant
computational overhead. Experimental results show better accuracy and lower
computational overhead compared with the state-of-the-art on two representative
applications.

1 Introduction

Network bandwidth is a precious resource on High Performance Computing (HPC) sys-
tems to the point where much of the performance of the applications depend on it [13].
However, HPC applications typically use the network bandwidth at full capacity only
sporadically. This opens a window of opportunity for runtimes and services (that these
applications depend upon) to seamlessly perform operations that require communica-
tion over the network in the background. For example, many applications need to peri-
odically checkpoint to a parallel file system, which might be subject to I/O bottlenecks
and therefore negatively impacts performance and scalability. To avoid this, runtimes
stage the checkpoints first to a local storage and then flushes them in the background to
the parallel file system, hiding the I/O overhead from the application.

c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 47–60, 2019.
https://doi.org/10.1007/978-3-030-29400-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-29400-7_4

48 S.-M. Tseng et al.

In order to take advantage of this window of opportunity, the checkpointing runtime
needs to clearly identify the time intervals when the network is underutilized by the
application. Failing to do so might lead to competition for network bandwidth and could
cause undesired interference that slows down the application (e.g. the flushes to the
parallel file system pushed by the checkpointing runtime compete with the applications’
data exchanges over the same network interfaces).

Therefore, to avoid the competition for network bandwidth, it is necessary to sched-
ule all background operations in such a way that they finish within the window of oppor-
tunity. Unfortunately, the background operations are often non-trivial and take time to
complete and/or cannot be easily suspended and resumed later (e.g. writes to the parallel
file system are outside the control of the checkpointing runtime). Thus, it is important
to be able to predict the network utilization sufficiently early to precisely pinpoint when
and for how long the network bandwidth will stay underutilized to actually create a
usable window of opportunity.

The problem of predicting network utilization is non-trivial for several reasons.
First, it is tedious or impossible to obtain system-level information about the network
utilization because most platforms and vendors expose it through non-standardized per-
formance counters and APIs or do not expose it at all. Second, network utilization is
challenging to reason about in an offline fashion due to the application complexity and
a large number of variables (e.g. platform, input data, system noise, global resources
shared with other users such as a parallel file system, etc) that influence the network
utilization at runtime.

To address these challenges, we propose a solution that combines portable MPI-
level monitoring of network utilization with deep learning based time series forecasting.
The key novelty of our approach is two-fold: (1) we devise a mechanism to approxi-
mate network utilization using only the information available at the MPI-level (which
addresses the portability challenge); (2) we introduce a periodicity-aware deep learn-
ing approach that adapts sequence-to-sequence predictors based on recurrent neural
networks for adaptive online learning. This approach is capable of maintaining high
prediction accuracy with low computational overhead despite variations encountered
during runtime. Although the focus of this work is the prediction of network utiliza-
tion, it is important to note that the basic ideas can be easily extended to predict the
utilization of other resources such as CPU, I/O bandwidth, etc.

We summarize our contributions as follows: (1) we present a series of general design
principles that summarize the key ideas behind our approach (Sect. 3); (2) we show how
to materialize these design principles in practice by introducing an MPI-based network
monitoring infrastructure (Sect. 3.2) and a framework to leverage sequence-to-sequence
predictors efficiently in an online fashion (Sect. 3.4); (3) we evaluate our approach for
two representative HPC applications and show significantly better prediction accuracy
and lower computational overhead compared with state-of-the-art approaches (Sect. 4).

2 Related Work

MPI Monitoring. There are many different ways to monitor the network utilization of
an MPI application. The most common and generic way relies on intercepting MPI API

Towards Portable Online Prediction of Network Utilization 49

calls of interest and delivering aggregated information. PMPI is a high-level customiz-
able profiling layer allowing tools to intercept MPI calls. Communication monitoring
can be achieved by intercepting all MPI communications routines, including point-to-
point, one-sided, and collectives. When such a communication routine is called, the
processes involved (source and destination) as well as the amount of data involved in
the transfer needs to be recorded. In addition to the overheads necessary to get infor-
mation about the amount of data involved in communications, this approach cannot
differentiate between point-to-point and collective data, as it is impossible to determine
how the collective calls are implemented using point-to-point communications. One of
the major advantages of PMPI is the existence of many stand-alone monitoring libraries,
such as mpiP [27], Score-P [19], and DUMPI [3].

At a different level in the software stack, PERUSE [9,18] allows the application to
register callbacks that will be triggered at critical moments in the point-to-point request
lifetime. This method provides opportunities to gather low-level information about MPI
messages, including the number of unexpected messages, matching cost, payload type
(i.e. point-to-point or collectives), etc. Unfortunately, this technique has failed to attract
support from the MPI standardization body, and, as a result, support in widely used MPI
implementations is almost non-existent.

Time Series Analysis/Forecasting. Traditional statistical models like Autoregressive
Integrated Moving Average (ARIMA) have been widely used for the purpose of time
series forecasting in the context of HPC applications. Prior work such as [24,25] intro-
duce a framework for online modeling and prediction of I/O operations to enable
prefetching. Other efforts use ARIMA-based models to forecast CPU, memory, and
network utilization to facilitate better resource allocation and load balancing [20].

Due to the successful application of deep learning techniques in various domains
such as natural language processing [12] and language translation [17,23] that require
predictions of what elements are likely to follow in a sequence, such techniques are
increasingly being considered in the context of time series forecasting. Sequence-to-
sequence (seq2seq) models are particularly popular in this context. Kuznetsov and
Mariet [21] provide a theoretical analysis and compare seq2seq with other classical
time series models. Moreover, they also provide some quantitative guidance on how to
choose different modeling approaches. One of the limitations of seq2seq is the prede-
termined output sequence length. Harmon and Klabjan [15] address this problem by
making the network predict the dynamic length of the outputs. However, none of these
approaches address the problem of efficient online learning. To the best of our knowl-
edge, this paper is the first to address the problem of portable prediction of network
utilization using online deep learning specifically tailored to the requirements of HPC
applications.

3 System Design

In this section, we introduce the high-level design principles of our proposed approach,
discuss the methodology, and provide a detailed description of the experimental proto-
type implemented to illustrate the benefits of our design on real applications.

50 S.-M. Tseng et al.

3.1 Design Principles

Our system design is based on the following three principles.

Portable MPI-Level Monitoring. To solve the problem of portable monitoring, we pro-
pose to capture the network utilization directly from the communication library, in this
context MPI. While we could get more information about the internal state of data
transfers (one-sided and two-sided messages, as well as the state of all non-blocking
communications) we restraint ourselves to the smallest subset of pertinent information:
the number of bytes sent by each rank using MPI messages (which is of interest for
HPC applications because it represents the majority of network traffic). We use this
information to estimate the global network utilization imposed by the target applica-
tion. However, having an accurate counting of the number of bytes sent is currently
non-trivial to capture for two main reasons. (1) Messages exchanged by ranks do not
necessarily go over the network (e.g., ranks co-located on the same node use shared
memory). (2) Messages are not only generated by direct point-to-point communication
initiated by the application but they are also generated by one-sided communications
or collective operations (which often leads to complex patterns deep in the MPI library
implementation). In addition, the number of bytes sent by MPI is a lower bound on the
network utilization, as the network interface introduces additional overhead (headers,
etc.). Section 3.2 details how we address these challenges.

Low-Overhead Online Learning. Based on the network utilization estimates obtained
at the MPI-level, we propose an adaptive online learning approach that continuously
refines the quality of the predictions as more monitoring information becomes available.
This approach has two advantages. (1) There is no need to perform separate training
offline based on the network utilization observed in the previous runs (which may be
difficult to obtain and/or unavailable if it is the first run). Therefore, it is robust to
inaccurate predictions due to variations in the application configuration or input data
used in subsequent runs which have a significant impact on the communication pattern.
(2) It facilitates more accurate predictions by dynamically adapting to the variations
that are naturally occurring during the same run (e.g. system noise, shared resources
with other users such as a parallel file system, etc.).

Periodicity-Aware Forecasting. A large majority of HPC applications exhibit a repet-
itive communication pattern, which implicitly leads to a repetitive pattern of network
utilization. Given the need to predict network utilization as far as possible in the future
to enable background services to schedule their operations in advance, we argue that the
most useful prediction needs to cover at least the duration of one period. To this end, we
propose a periodicity-aware approach that employs a recurrent neural network specif-
ically designed for online sequence to sequence forecasting. We discuss the proposed
solution in detail in Sect. 3.4.

3.2 Portable MPI-Level Monitoring

Our MPI-level monitoring is based on previous work to design a portable monitor-
ing interface in OpenMPI [7]. We take advantage of the modular implementation of
OpenMPI [5], to add support for a dynamically activated communication monitoring
module. This module can be activated at runtime and distinguishes between several

Towards Portable Online Prediction of Network Utilization 51

types of MPI traffic such as point-to-point, one-sided, and collectives and creates a
global heatmap by recording, for each rank, the number of bytes and the number of
messages sent to any other rank. Note that the recording is done after the collectives
have been decomposed into point-to-point messages, providing a more precise picture
of overall transfers. Therefore, the monitoring sees the impact of the algorithm imple-
menting the collective.

We design a high-level abstraction called monitoring session that integrates the
capability of the new MPI T tools support in MPI. Once created, a monitoring ses-
sion can be started, stopped, resumed, and reset. Several sessions can simultaneously
coexist, allowing for independent monitoring of different parts of the code. For the pur-
pose of our monitoring needs, and in order to guarantee timely monitoring information
each MPI rank launches, on initialization, a separate background thread that starts a
monitoring session. At regular intervals (e.g., every second), this thread stops the mon-
itoring session, reads the number of bytes sent by all ranks during the previous interval
and then resets and resumes the session. Using this approach, we can obtain a history
of the number of bytes sent per time unit for each rank.

However, to estimate the network utilization of a node, it is not enough to count the
traffic for each process located on the node but instead we need to aggregate the number
of bytes sent by each rank to other ranks that are not co-located on the same node.
This is necessary because, at least in OpenMPI, co-located ranks use a different low-
level communication substrate, i.e. shared memory for communication. To efficiently
perform this aggregation, we create a 2-level hierarchy with local and remote peers
and a designated leader on each node to aggregate the information from the other co-
located ranks. This is done by creating a local MPI communicator on each node that
includes all ranks sharing the node. The MPI process with the lowest rank in the local
communicator become the leader, and is in charge of collecting the monitoring data.
An MPI reduce operation collects the information from the other co-located ranks on
the leader. Then, the leader sums up the number of bytes sent to all the ranks that do
not have a corresponding rank in the local communicator. This way, only the bytes
that need to pass over the network (and could therefore interfere with other operations
that generate network traffic) are counted. This is an approximation of the network
utilization per time unit which we subsequently use for forecasting.

3.3 Sequence-to-Sequence Recurrent Neural Networks (Seq2Seq)

Recurrent neural networks (RNNs) are a type of neural networks that contain loops.
Unlike convolutional neural networks (CNNs), which are feed-forward (i.e., the infor-
mation only passes through the network in one direction), these loops enable RNNs
to capture sequence dependencies. However, conventional RNNs [6,16] have a major
limitation in the form of exploding/vanishing gradient in the training stage, which
makes them unable to handle long-term dependencies accurately. To address this issue,
long short term memory networks (LSTMs) [16] and gated recurrent unit networks
(GRUs) [11] have been proposed. They are special types of RNNs that solve this issue
by controlling what information is propagated into its internal state and what informa-
tion is forgotten.

52 S.-M. Tseng et al.

RNN

Encoder Vector

h2

Encoder Decoder

RNN RNN
h3

x1

h1

x2 x3

RNN
h5

RNN RNN
h6

NULL y1 y2

y1 y2 y3

Fig. 1. Encoder-decoder diagram of the seq2seq model.

The sequence-to-sequence model (seq2seq) [23] is a particular instance of RNNs
which can make use of LSTMs and GRUs as its recurrent units. Initially proposed in
the context of natural language processing [23], the seq2seqmodel is now being used for
a variety of other applications (e.g., speech recognition [10] and video captioning [26]).
The model is composed of two components: an encoder and a decoder, as illustrated in
Fig. 1. The input sequence is fed into the encoder one element at a time (e.g., x1,x2,x3).
Each recurrent unit in the encoder is a typical recurrent neural network which computes
its hidden state using the hidden state of its predecessor and the current input (e.g., h3
is computed using h2 and x2). The last hidden state of the input sequence is known as
a thought vector and is used as the initial state of the decoder. It aims to encapsulate
all the information from the input sequence to make the prediction of the decoder more
accurate. Unlike the recurrent units in the encoder, the recurrent units of the decoder use
both the previous hidden state and the last predicted output to obtain the new hidden
state (e.g., h6 is computed using h5 and y1).

For the purpose of our work, we leverage the same idea for network utilization
prediction. We train the model with recent utilization patterns that are represented as
time series. The encoder is fed one part of the time series, while the decoder is fed the
other part. After training the model with multiple such time series, it learns to “translate”
from a recent history of observations into a likely future evolution.

3.4 Online Periodicity-Aware Forecasting Using seq2seq RNNs

The key novelty of this paper is to adapt seq2seq for use as an online learning tool. This
is a difficult problem because our model does not have a separate training phase (as is
the case with traditional machine learning) and needs to learn on-the-fly as the applica-
tion is progressing. This also places a strict requirement to be capable of continuously
updating the model with low computational overhead.

To address this issue, we introduce the following approach, which is illustrated
in Fig. 2. A history of the network utilization that is large enough to cover the most
recent h repetitive patterns is kept, where h is the history size. We call the time series
corresponding to a repetitive pattern an epoch. Using h epoch as training input helps
the learning process account for potential variations between the most recent epochs.
We assume the periodicity of the network utilization (and therefore the length of an
epoch) is either known in advance or can be determined using an FFT-based approach

Towards Portable Online Prediction of Network Utilization 53

(applied at key points during the application runtime when sufficient monitoring infor-
mation is available, e.g., after the first checkpoint request).

The model is valid within the scope of a specific application run and starts with
no initial history. After the history has accumulated two epochs, the initial training is
performed by feeding the first epoch to the encoder and the second to the decoder. We
perform this initial training over multiple iterations to reinforce this first pattern. At this
point, we can make the first prediction of the third epoch.

Predict network
traffic from
epoch 2 to 3

epoch 2 epoch 3 epoch 4 epoch 5 Timeepoch i0

Update
seq2seq model

History
buffer

h = 2 epochs

Feed new data

Predict network
traffic from
epoch 3 to 4

Update
seq2seq model

History
buffer

h = 3 epochs

Feed new data

Predict network
traffic from
epoch 4 to 5

Update
seq2seq model

History
buffer

h = 4 epochs

Feed new data

Predict network
traffic from
epoch 5 to 6

Update
seq2seq model

History
buffer

h = 4 epochs

Feed new data

Predict network
traffic from

epoch i to i+1

Update
seq2seq model

History
buffer

h = 4 epochs

Feed new data

Discard the first
epoch from history
and add new data

Fig. 2. Evolution of the online seq2seq predictor with the history size, h= 4 · epochs.

Then, we wait until a new epoch is available and append this epoch to the history
(which is truncated to keep only the last h epochs), as shown in Fig. 2. As the applica-
tion is progressing, the model is retrained using a sliding window learning approach.
Specifically, we pass over the new history in increments of one time step using a win-
dow size equal to two epochs. For each such window, the first and second epoch are
fed to the encoder and decoder, respectively, in a similar way as the initial training is
performed. Again, to reinforce the pattern, we repetitively pass over the history for k
iterations. k is determined in an adaptive fashion based on two criteria: (1) the loss of
the current iteration is smaller than the loss of each of the last p iterations (to avoid
oscillation around a local optimum and to avoid unnecessary computational overhead
when the loss is small); (2) a predefined number of iterations q is reached (to avoid too
much overhead when convergence is slow). The entire process is then repeated when-
ever a new epoch is available. Independent of online learning, the model can be used at
any moment during the runtime to predict the next epoch.

3.5 Implementation Details

We implemented our approach on top of OpenMPI version 4.1.0a1, which includes
support for low-level monitoring of bytes sent from one rank to every other rank.
We implemented the monitoring session as a library that exposes a convenient high-
level API. This is then used by a separate thread spawned in each MPI rank. To cre-
ate a local communicator that includes all ranks co-located on the same node, we use
MPI Comm split type using theMPI COMM TYPE SHARED flag. To perform the aggre-
gation on the leader, we use an in-place reduce operation on the local communicator.

54 S.-M. Tseng et al.

To find out what ranks are remote, the leader usesMPI Group translate ranks. The online
predictor described in Sect. 3.4 is implemented in Python and it uses TensorFlow 1.0 as
the backend.

4 Experimental Results

4.1 Experimental Setup

We ran our experiments on the Grid’5000 testbed. For this paper, we use 16 nodes
of the parapluie cluster. Each node is equipped with an AMD Opteron 6164 HE CPU
(12 cores), 48 GB RAM, and two network interfaces: Intel 82576 1 Gbps Ethernet
and Mellanox MT25418 20 Gbps Infiniband. We use the Infiniband network interface
since it’s a common high-end networking technology adopted on many supercomputing
machines.

4.2 Methodology

To measure the effectiveness of our approach, we perform the following steps. First,
we instrument an HPC application to monitor the network utilization at the MPI-level,
using the approach described in Sect. 3.2.

Second, we run the application on all 16 nodes with a representative use case that
generates an inter-node communication pattern specific to the application. We log the
network utilization (expressed in MB/s) at the granularity of one second, creating a
time series that includes both the value reported by the MPI-level monitoring, as well
as the corresponding value reported by the performance counters available through the
sys\class operating system interface (henceforth referred to as system-level).

Third, we take a representative log file from one of the nodes (all nodes exhibit
similar behavior for the applications we study, which are detailed below) and simulate
online learning based on it. We focus on three aspects: (1) the accuracy of the MPI-
level monitoring vs. system-level monitoring; (2) the accuracy of the predictions that
are made by online learning using MPI-level monitoring vs. actually observed system-
level values; (3) computational overhead of online learning.

This process is illustrated in Fig. 3. The log file contains the timestamp of the net-
work utilization data, the node id, the number of bytes reported by the MPI-level mon-
itoring approach, and the number of bytes obtained from system-level monitoring.

The accuracy is measured using two representative metrics widely used in time
series analytic: mean squared error (MSE) and dynamic time warping (DTW). Both
metrics quantify the distance between two time series, which in our case is the predic-
tion vs. the actual system-level time series. For MSE, we use a standard implementation
(available in the numpy library). For DTW, we use an optimized implementation (Fast-
DTW) based on a linear algorithm [22].

We use two representative applications in our experiments: (1) HACC [14], a com-
plex framework that simulates the mass evolution of the universe using particle-mesh
techniques. HACC splits the force calculation into a specially designed grid-based

Towards Portable Online Prediction of Network Utilization 55

FFT Online seq2seq predictor

[1.94] node 0: n_msg = 154279; bytes = 188064936; sys_bytes = 52880636
[3.11] node 0: n_msg = 48261; bytes = 423129600; sys_bytes = 109415470

[12.92] node 0: n_msg = 56280; bytes = 193536; sys_bytes = 27437

Network
utilization

log file

MPI-level
monitoring

System-level
monitoring

Application
execution

Extract period of
time series data

Extract time series data from
network utilization file

Fig. 3. Experimental methodology.

long/medium range spectral particle-mesh component that is common to all architec-
tures, and an architecture-specific short-range solver. HACC generates a regular com-
munication pattern, which is typical of a large class of HPC applications. (2) AMG [4], a
parallel algebraic multigrid solver for linear systems arising from problems on unstruc-
tured grids. It is derived directly from the BoomerAMG solver in the hypre library, a
large linear solver library that is being developed in the Center for Applied Scientific
Computing (CASC) at LLNL. AMG is part of the ECP proxy application suite [2] and
exhibits a highly dynamic communication pattern that is difficult to predict. For more
details, please consult the artifact that accompanies this paper [1].

4.3 Monitoring Accuracy

Before being able to confidently use the data reported by the monitoring to train the
RNN we need to quantify how accurate our MPI-level monitoring solution is compared
to a system-level solution, in order to understand what trade-off is necessary to achieve
the much desired portability that enables users to avoid implementing a custom moni-
toring solution specific for each platform.

To this end, we compare the time series from the log files in Figs. 4(a) and (b).
As we can observe visually, for HACC (Fig. 4(a)) the difference between MPI-level
and system-level is negligible. On the other hand, for AMG (Fig. 4(b)) there are slight
discrepancies introduced by delays between the moment when MPI queues messages
to be sent to the network interface and the moment when the network interface actually
sends them. Given the high dynamicity of the communication pattern, this is expected.

Table 1. Mean squared error and fast dynamic time warping of MPI- vs. system-level network
utilization (lower is better). Normalized version included for easier comparison (lower is better).

Application MSE FastDTW Norm-MSE Norm-FastDTW

HACC 36.35 376.75 0.0001 0.59

AMG 0.0074 4.57 0.07 14.23

56 S.-M. Tseng et al.

(a) HACC (b) AMG

Fig. 4. Monitoring accuracy: MPI- vs. system-level network utilization measured every second.

Quantitatively, Table 1 details the MSE and FastDTW for both applications, both in
raw and normalized form. The normalized form is calculated by scaling the values of
the time series to the interval [0,1]. As expected, it reveals a much better accuracy for
HACC than for AMG. The raw form is interesting to note for subsequent comparison
with the accuracy of the prediction, which is based on the MPI-level monitoring and
thus subject to the errors introduced by it.

4.4 Prediction Accuracy

Based on the accuracy of the collected monitoring data, we can study how accurate the
predictions of our proposed approach (henceforth referred to as OnlineS2S) is compared
with the actual values reported at the system-level. To this end, we simulate online
learning as follows. First, we determine the periodicity of the communication pattern
(as discussed in Sect. 3.4). For HACC, the periodicity is 60 s, while for AMG, the peri-
odicity is 20 s. Then, we set the epoch for training of our model to be equal to the
periodicity. Our goal is to successfully predict one epoch in advance at every moment
during the application runtime. To achieve this, we adopt the following approach: for
each timestamp t in the time series, we predict the network utilization at t + epoch,
then update the history and the model as detailed in Sect. 3.4. Then, we plot the result-
ing time series together with its system-level counterpart. We fix p = 5, q = 100, and
h= 5 · epochs.

We compare our approach against ARIMA [8], a popular method used in time series
forecasting that combines an autoregressive (AR) with a moving average (MA) model.
We also adopt the sliding window approach for ARIMA, updating the model and history
as t increases. We use a standard implementation of ARIMA that is available as part of
the statsmodel Python package.

The results are shown in Figs. 5(a) and (b) where the superior quality of the pre-
diction of OnlineS2S vs. ARIMA is clearly visible. In the case of HACC (Fig. 5(a)),
the spikes are accurately predicted by our approach both in terms of time and ampli-
tude. On the other hand, ARIMA exhibits a delay in the prediction of the spikes, which
means a background service relying on such predictions will incorrectly assume the

Towards Portable Online Prediction of Network Utilization 57

(a) HACC (b) AMG

Fig. 5. Prediction accuracy: Estimated network utilization one epoch in the future (OnlineS2S vs.
ARIMA) compared with actual system-level utilization measured at the same moment.

application will not communicate when it actually does, potentially scheduling its own
network I/O at the same time and therefore causing interference. Also, the amplitude of
the predictions exhibits noticeable inaccuracies. In the case of AMG (Fig. 5(b)), both
predictions show a visible under-estimation of the network utilization. However, in the
case of ARIMA, the under-estimation is significantly larger.

Table 2.Mean squared error and fast dynamic time warping ofOnlineS2S and ARIMA predicted
network utilization vs. actual system-level utilization (lower is better). Relative improvement of
OnlineS2S vs. ARIMA included for easier comparison (higher is better).

HACC MSE FastDTW AMG MSE FastDTW

OnlineS2S 6194 2737 OnlineS2S 0.00797 4.77

ARIMA 14433 4344 ARIMA 0.0168 7.14

Relative 2.3× 1.6× Relative 2.11× 1.5×

Table 2 shows the MSE and FastDTW for both applications. In addition to the raw
values, we calculate the relative improvement (values for ARIMA divided by values
for OnlineS2S) for easier comparison. As we can observe, OnlineS2S has more than 2×
smaller MSE and 1.5× smaller FastDTW. Thus, our approach consistently outperforms
ARIMA in both typical and highly dynamic HPC network utilization scenarios.

4.5 Computational Overhead

Our last study focuses on the computational overhead required to perform the online
learning during the application runtime. This is an important aspect, because online
learning may cause interference with the CPU utilization of the application.

To estimate the severity of the interference, we record the time required to update the
model as we pass from one epoch to another (which we refer to as sequence number).

58 S.-M. Tseng et al.

In the worst case scenario, the application will use the CPUs at 100% for the entire
duration of the epoch. Assuming that the update of the model will also use the CPUs at
100%, the worst case overhead is the time required for the update divided by the length
of the epoch.

(a) HACC (b) AMG

Fig. 6. Computational overhead: Time required to process an epoch (lower is better).

The time needed for each epoch are shown in Figs. 6(a) and (b). For HACC,
OnlineS2S has a higher initial overhead but quickly stabilizes after two epochs and is
consistently 2.5× faster than ARIMA. Since the epoch is 60 s in this case, this means
OnlineS2S can achieve a worst-case overhead of less than 3%, whereas ARIMA is closer
to 7%. In the case of AMG, OnlineS2S is much faster from the beginning and stabilizes
at a point where it is at least 5× faster than ARIMA. Since the epoch is 20 s in this case,
the worst-case overhead for OnlineS2S is 2.5% and more than 10% for ARIMA. With
such high worst-case overhead, we conclude that ARIMA may be unfeasible to adopt
for online prediction, especially for applications that exhibit small epochs.

5 Conclusions

This paper introduced an online prediction approach for network utilization specifi-
cally designed for HPC applications that exhibit periodic communication behavior. It is
based on the idea of combining a mechanism to approximate network utilization at the
MPI-level in a portable fashion with a deep learning approach that adapts sequence-to-
sequence predictors based on recurrent neural networks for adaptive online learning.

We evaluated the accuracy and computational overhead of our approach experimen-
tally on two representative HPC applications. We show that our approach is consistently,
at least twice as accurate and at least twice as fast compared with state-of-the-art pre-
diction approaches based on traditional time series analysis.

Encouraged by these results, we plan to broaden the scope of our work in future
efforts. Specifically, there are several promising directions. First, we will run new exper-
iments to measure the actual computational overhead of online learning when inte-
grated with the HPC applications (as opposed to the worst case scenario we studied in

Towards Portable Online Prediction of Network Utilization 59

this paper). Second, we will evaluate the actual benefits of leveraging predictions of
network utilization to improve asynchronous checkpointing.

Acknowledgments. This research was supported by the Exascale Computing Project (17-SC-
20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration. This material was based upon work supported by the
U.S. Department of Energy, Office of Science, under contract DE-AC02-06CH11357, and by
the National Science Foundation under Grant No. #1664142. The experiments presented in this
paper were carried out using the Grid’5000/ALADDIN-G5K experimental testbed, an initiative
of the French Ministry of Research through the ACI GRID incentive action, INRIA, CNRS and
RENATER and other contributing partners (see http://www.grid5000.fr/).

References

1. Accompanying artifact. https://doi.org/10.6084/m9.figshare.8491058
2. ECP proxy applications project. https://proxyapps.exascaleproject.org/ecp-proxy-apps-

suite/
3. Adalsteinsson, H., Cranford, S., Evensky, D.A., Kenny, J.P., Mayo, J., Pinar, A., Janssen,

C.L.: A simulator for large-scale parallel computer architectures. Int. J. Distrib. Syst. Tech-
nol. 1(2), 57–73 (2010)

4. Baker, A.H., Falgout, R.D., Kolev, T.V., Yang, U.M.: Multigrid smoothers for ultraparallel
computing. SIAM J. Sci. Comput. 33(5), 2864–2887 (2011)

5. Barrett, B., Squyres, J.M., Lumsdaine, A., Graham, R.L., Bosilca, G.: Analysis of the com-
ponent architecture overhead in Open MPI. In: EuroPVM/MPI 2005: 12th European Parallel
Virtual Machine and Message Passing Interface Users’ Group Meeting, Sorrento, Italy, pp.
175–182 (2005)

6. Bengio, Y., Simard, P., Frasconi, P., et al.: Learning long-term dependencies with gradient
descent is difficult. IEEE Trans. Neural Networks 5(2), 157–166 (1994)

7. Bosilca, G., Foyer, C., Jeannot, E., Mercier, G., Papauré, G.: Online dynamic monitoring
of MPI communications. In: Rivera, F.F., Pena, T.F., Cabaleiro, J.C. (eds.) Euro-Par 2017.
LNCS, vol. 10417, pp. 49–62. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
64203-1 4

8. Box, G.E., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis: Forecasting
and Control. Wiley, Hoboken (2015)

9. Brown, K.A., Domke, J., Matsuoka, S.: Tracing data movements within MPI collectives. In:
EuroMPI 2014: Proceedings of the 21st European MPI Users’ Group Meeting, Kyoto, Japan,
pp. 117:117–117:118 (2014)

10. Chiu, C.C., et al.: State-of-the-art speech recognition with sequence-to-sequence models.
In: ICASSP 2018: 2018 IEEE International Conference on Acoustics. Speech and Signal
Processing, Calgary, AB, Canada, pp. 4774–4778 (2018)

11. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical
machine translation. In: EMNLP 2014: 2014 Conference on Empirical Methods in Natural
Language Processing, Doha, Qatar, pp. 1724–1734 (2014)

12. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural lan-
guage processing (almost) from scratch. J. Mach. Learn. Res. 12(Aug), 2493–2537 (2011)

13. Gerber, R., et al.: Crosscut report: exascale requirements reviews, March 9–10, 2017-tysons
corner, virginia. An office of science review sponsored by: advanced scientific computing
research, basic energy sciences, biological and environmental research, fusion energy sci-
ences, high energy physics, nuclear physics. Technical report, Oak Ridge National Lab.
(ORNL) (2018)

http://www.grid5000.fr/
https://doi.org/10.6084/m9.figshare.8491058
https://proxyapps.exascaleproject.org/ecp-proxy-apps-suite/
https://proxyapps.exascaleproject.org/ecp-proxy-apps-suite/
https://doi.org/10.1007/978-3-319-64203-1_4
https://doi.org/10.1007/978-3-319-64203-1_4

60 S.-M. Tseng et al.

14. Habib, S., Morozov, V., Frontiere, N., Finkel, H., Pope, A., Heitmann, K.: HACC: extreme
scaling and performance across diverse architectures. In: SC 2013: 2013 International Con-
ference on High Performance Computing. Networking, Storage and Analysis, Denver, USA,
pp. 1–10 (2013)

15. Harmon, M., Klabjan, D.: Dynamic prediction length for time series with sequence to
sequence networks. arXiv preprint arXiv:1807.00425 (2018)

16. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780
(1997)

17. Jean, S., Cho, K., Memisevic, R., Bengio, Y.: On using very large target vocabulary for
neural machine translation. In: ACL-IJCNLP 2015: 53rd Annual Meeting of the Association
for Computational Linguistics and 7th International Joint Conference on Natural Language
Processing, Beijing, China, pp. 1–10 (2015)

18. Keller, R., Bosilca, G., Fagg, G., Resch, M., Dongarra, J.J.: Implementation and usage of the
PERUSE-interface in Open MPI. In: EuroPVM/MPI 2006: 13th European Parallel Virtual
Machine/Message Passing Interface Users’ Group Meeting, Bonn, Germany, pp. 347–355
(2006)

19. Knüpfer, A., et al.: Score-P: a joint performance measurement run-time infrastructure for
periscope, scalasca, TAU, and vampir. In: 5th International Workshop on Parallel Tools for
High Performance Computing, Dresden, Germany, pp. 9–91 (2012)

20. Kumar, A.S., Mazumdar, S.: Forecasting HPC workload using ARMA models and SSA. In:
ICIT 2016: 2016 International Conference on Information Technology, Bhubaneswar, India,
pp. 294–297 (2016)

21. Kuznetsov, V., Mariet, Z.: Foundations of sequence-to-sequence modeling for time series.
arXiv preprint arXiv:1805.03714 (2018)

22. Salvador, S., Chan, P.: Toward accurate dynamic time warping in linear time and space.
Intell. Data Anal. 11(5), 561–580 (2007)

23. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In:
NIPS 2014: 27th Annual Conference on Neural Information Processing Systems, Montreal,
Quebec, Canada, pp. 3104–3112 (2014)

24. Tran, N., Reed, D.A.: ARIMA time series modeling and forecasting for adaptive I/O
prefetching. In: ICS 2001: Proceedings of the 15th International Conference on Supercom-
puting, Sorrento, Italy, pp. 473–485 (2001)

25. Tran, N., Reed, D.A.: Automatic ARIMA time series modeling for adaptive I/O prefetching.
IEEE Trans. Parallel Distrib. Syst. 15(4), 362–377 (2004)

26. Venugopalan, S., Rohrbach, M., Donahue, J., Mooney, R., Darrell, T., Saenko, K.: Sequence
to sequence-video to text. In: ICCV 2015: 2015 IEEE International Conference on Computer
Vision, Santiago, Chile, pp. 4534–4542 (2015)

27. Vetter, J.S., McCracken, M.O.: Statistical scalability analysis of communication operations
in distributed applications. In: PPoPP 2001: Proceedings of the 8th ACM SIGPLAN Sym-
posium on Principles and Practices of Parallel Programming, Snowbird, Utah, USA, pp.
123–132 (2001)

http://arxiv.org/abs/1807.00425
http://arxiv.org/abs/1805.03714

A Comparison of Random Task Graph
Generation Methods for Scheduling

Problems

Louis-Claude Canon(B), Mohamad El Sayah,
and Pierre-Cyrille Héam

FEMTO-ST Institute, CNRS,
Univ. Bourgogne Franche-Comté, Besançon, France

{louis-claude.canon,mohamad.el sayah,

pierre-cyrille.heam}@univ-fcomte.fr

Abstract. How to generate instances with relevant properties and
without bias remains an open problem of critical importance to com-
pare heuristics fairly. When scheduling with precedence constraints, the
instance is a task graph that determines a partial order on task execu-
tions. To avoid selecting instances among a set populated mainly with
trivial ones, we rely on properties such as the mass, which measures how
much a task graph can be decomposed into smaller ones. This property
and an in-depth analysis of existing random instance generators establish
the sub-exponential generic time complexity of the studied problem.

1 Introduction

How to correctly evaluate the performance of computing systems has been a
central question for a long time [15]. Among the arsenal of available evalua-
tion methods, relying on random instances allows comparing strategies in many
diverse situations. However, random generation methods are prone to bias, which
prevents a fair empirical assessment. Studying the problem characteristics to con-
strain the uniform generation on a category of difficult instances is thus critical.

In the context of parallel systems, instances for numerous multiprocessor
scheduling problems contain the description of an application to be executed on
a platform [17]. This study focuses on scheduling problems requiring a Directed
Acyclic Graph (DAG) as part of the input. Such a DAG represents a set of tasks
to be executed in a specific order given by precedence constraints. While this
work studies the DAG structure for several scheduling problems, it illustrates
and analyzes existing generators in light of a specific problem with unitary costs
and no communication. This simple yet difficult problem emphasizes the effect
of the DAG structure on the performance of scheduling heuristics.

After exposing related works in Sect. 2, Sect. 3 lists DAG properties and cov-
ers scheduling and random generation concepts. Section 4 analyzes the proposed
properties on a set of special DAGs. Section 5 provides an in-depth analysis
of existing random generators supported by consistent empirical observations.
c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 61–73, 2019.
https://doi.org/10.1007/978-3-030-29400-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-29400-7_5

62 L.-C. Canon et al.

Finally, Sect. 6 studies the impact of these methods and the DAG properties on
scheduling heuristics. A more detailed version of these results is also available in
the extended version [4].

2 Related Work

Our approach is similar to the one followed in [6], which consists in studying
the properties of randomly generated DAGs before comparing the performance
of scheduling heuristics. Three properties are measured and analyzed for each
studied generator: the length of the longest path, the distribution of the output
degrees and the number of edges. The authors consider five random generators:
two variants of the Erdős-Rényi algorithm, one layer-by-layer variant, the ran-
dom orders method and the Fan-in/Fan-out method. Finally, for each generator,
the paper compares the performance of four scheduling heuristics. The results
are consistent with the observations done in Sect. 5 (Figs. 1, 3 and 4) for the
length and the number of edges.

Many tools have been proposed in the literature to generate DAGs in the
context of scheduling in parallel systems. TGFF (Task Graphs For Free) is the
first tool proposed for this purpose [7]. This tool relies on a number of parameters
related to the task graph structure. The task graph is constructed by creating
a single-vertex graph and then incrementally augmenting it. Until the number
of vertices in the graph is greater than or equal to the minimum number of
vertices, this approach randomly alternates between two phases: the expansion
of the graph and its contraction. The main goal of TGFF is to gain more control
over the input and output degrees of the tasks.

DAGGEN was later proposed to compare heuristics for a specific problem [8].
This tool relies on a layer-by-layer approach with four parameters in addition to
the number of vertices. The number of elements per layer is uniformly drawn in
an interval determined by the width parameter and with a range determined by
the regularity parameter. Lastly, edges are added between layers separated by a
maximum number of layers determined by the jump parameter. For each vertex,
the method adds a uniform number of predecessors in an interval determined by
the density parameter.

GGen has been proposed to unify the generation of DAGs by integrating
existing methods [6]. The tool implements two variants of the Erdős-Rényi algo-
rithm, one layer-by-layer variant, the random orders method and the Fan-in/Fan-
out method. It also generates DAGs derived from classical parallel algorithms
such as the recursive Fibonacci function, the Strassen multiplication algorithm,
etc.

The Pegasus workflow generator1 can be used to generate DAGs from several
scientific applications [16] such as Montage, CyberShake, Broadband, etc. XL-
STaGe2 produces layer-by-layer DAGs using a truncated normal distribution to
distribute the vertices to the layers [3]. This tool inserts edges with a probability
1 https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator.
2 https://github.com/nizarsd/xl-stage.

https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
https://github.com/nizarsd/xl-stage

A Comparison of Random Task Graph Generation Methods 63

that decreases as the number of layers between two vertices increases. A tool
named RandomWorkflowGenerator3 implements a layer-by-layer variant [12].

3 Background

Directed Acyclic Graphs. Let D = (V,E) be a Directed Acyclic Graph
(DAG), where V is a finite set of vertices and E ⊆ V × V is the set of edges,
such that there is no cycle in the graph. The length of a DAG is defined as
the maximum number of vertices in any path in this DAG and is noted len
or k. The depth of a vertex v in a DAG is inductively defined by: if v has no
predecessor, then its depth is 1; otherwise, the depth of v is one plus the maxi-
mum depth of its predecessors. The shape decomposition of a DAG is the tuple
(X1,X2, . . . , Xk) where Xi is the set of vertices of depth i. The shape of the
DAG is the tuple (|X1|, . . . , |Xk|). The maximum (resp. minimum) value of the
|Xi| is called the maximum shape (resp. minimum shape) of the DAG. Com-
puting the shape decomposition and the shape of a DAG is easy. If |Xi| = 1,
the unique vertex of Xi is called a bottleneck vertex. A block is a subset of
vertices of the form ∪i<j<i+�Xj with � > 1 where Xi is either a singleton or
i = 0, Xi+� is either a singleton or i + � = k + 1, and for each i < j < i + �,
|Xj | �= 1. We denote by massabs(B) the cardinal of B = ∪i<j<i+�Xj and by
massabs(D) = max{massabs(B) | B is a block} the absolute mass of D. The
relative mass, or simply the mass, is given by mass(D) = massabs(D)

n .
The transitive reduction of a DAG D [2] is the DAG DT for which: DT has

a directed path between u and v iff D has a directed path between u and v;
there is no graph with fewer edges than DT that satisfies the previous property.
Intuitively, this operation consists in removing redundant edges.

Among dozens of DAG properties, we measure the following ones on the
transitive reduction of each DAG D: the number of edges m, maximum degree
degmax and degree Coefficient of Variation4 degCV. For these properties, we
specify they are measured on a transitive reduction (e.g. m(DT) for the number
of edges). Moreover, we measure the length, the mean shape shmean, the shape
CV shCV and the mass. The last measured property is the number of edges in D.

Scheduling. We consider a classic problem in parallel systems noted P |pj =
1, prec|Cmax in Graham’s notation [11]. The objective consists in scheduling a set
of tasks on homogeneous processors such as to minimize the overall completion
time. The dependencies between tasks are represented by a precedence DAG:
before starting its execution, all the predecessors of a task must complete their
executions. The execution cost pj of task j on any processor is unitary and there
are no costs on the edges (i.e. no communication). A schedule defines on which
processor and at which date each task starts executing such that no processor
executes more than one task at any time and all precedence constraints are met.
The problem consists in finding the schedule with the minimum makespan.

3 https://github.com/anubhavcho/RandomWorkflowGenerator.
4 The CV is the ratio of the mean degree to the degree standard deviation.

https://github.com/anubhavcho/RandomWorkflowGenerator

64 L.-C. Canon et al.

This problem is strongly NP-hard [25], while it is polynomial when there are
no precedence constraints, which means the difficulty comes from the depen-
dencies. Many polynomial heuristics have been proposed for this problem (see
Sect. 6). With specific instances, such heuristics may be optimal. This is the
case when the width does not exceed the number of processors, which leads to
a potentially large length. Any task can thus start its execution as soon as it
becomes available. This paper explores how DAG properties are impacted by the
generation method with the objective to control them to avoid easy instances.

Although this paper studies random DAGs with heuristics for the specific
problem P |pj = 1, prec|Cmax, generated DAGs can be used for many scheduling
problems with precedence constraints. While avoiding specific instances depend-
ing on their width and length is relevant for many scheduling problems, it is
not necessary the case for all of them. For instance, with non-unitary pro-
cessing costs, instances with large width and small length are difficult because
the problem is strongly NP-Hard even in the absence of precedence constraints
(P ||Cmax)[10].

Mass and Scheduling. Consider a DAG D = (V,E) whose minimum shape
is 1; there exists a bottleneck vertex v such that the shape of the DAG is of
the form (X1, . . . , X�, {v},X�+1, . . . , Xk). The scheduling problem for D can be
decomposed into two subproblems. Using recursively this decomposition, the
initial problem can be decomposed into nc +1 independent scheduling problems,
where nc is the number of bottleneck vertices.

Applying a brute force algorithm for the scheduling problems computes the
optimal results in a time T ≤ ncTm, where Tm is the maximum time required to
solve the problem on a DAG with massabs(D) vertices. Since exponential brute
force exact approaches exist, it follows that if massabs(D) = O(logk n) for a con-
stant k, then an optimal solution of the scheduling problem can be computed in
sub-exponential time. Consequently, scheduling heuristics are irrelevant for task
graph with polylogarithmic absolute mass. Similarly, the same arguments work
to claim that interesting instances for the scheduling problem must have quite
a large absolute mass (not in o(n)). It is therefore preferable to have instances
with no or few bottleneck vertices, that is a unitary mass.

The relevance of the mass property is limited to the class of scheduling prob-
lems that contains all problems for which the instance can be cut into indepen-
dent subinstances.

4 Analysis of Special DAGs

To analyze the properties described in the previous section, we introduce in
Table 1 a collection of special DAGs. The first three DAGs (Dempty, Dcomplete

and Dchain) constitutes extreme cases in terms of precedence. The next two
DAGs (Dout-tree and Dcomb), to which we can add the reversal of the complete
binary tree (Din-tree = DR

out-tree), are examples of binary tree DAGs. The last
three DAGs (Dbipartite, Dsquare and Dtriangular) are denser with more edges and
with a compromise between the length and the width for these last two DAGs.

A Comparison of Random Task Graph Generation Methods 65

Table 1. Special DAGs.

noitatneserpernoitpircsedemaN

Empty (Dempty) no edge

Complete (Dcomplete) maximum number of edges

Chain (Dchain)
transitive reduction of the com-
plete DAG

Complete binary tree
(Dout-tree)

each non-leaf/non-root vertex
has a unique predecessor and
two successors

Comb (Dcomb)
a chain where each non-leaf ver-
tex has an additional leaf succes-
sor

Complete bipartite
(Dbipartite)

n
2

vertices connected to n
2

ver-
tices

Complete layer-by-
layer square (Dsquare)

similar to the complete bipartite
with

√
n layers of size

√
n

Complete layer-
by-layer triangular
(Dtriangular)

similar to the complete layer-by-
layer square but the size of each
new layer increases by 1

Table 2 illustrates the properties for these special DAGs. The most extreme
values are reached with the empty and complete DAGs for the length, number
of edges, mass and mean shape. When considering only transitive reductions
(i.e. when discarding the complete DAG), the maximum value for the maximum
degree is n with a fork or a join (the bipartite DAG reaches half this value).
Proposition 1 states that the maximum number of edges among all transitive
reductions is

⌊
n2

4

⌋
(reached with the bipartite DAG).

Proposition 1. The maximum number of edges among all transitive reductions
of size n is

⌊
n2

4

⌋
.

Proof. Transitive reductions do not contain triangle (i.e. clique of size three),
otherwise there is either a cycle or a redundant edge. By Mantel’s Theorem
[20], the maximum number of edges in a n-vertex triangle-free graph is

⌊
n2

4

⌋
.

66 L.-C. Canon et al.

Table 2. Approximate properties of special DAGs (negligible terms are discarded for
clarity). The exact properties are given in the extended version [4].

DAG len m m(DT) mass shmean shCV degmax(DT) degCV

Dempty 1 0 0 1 n 0 0 0

Dcomplete n n2
2 n 0 1 0 2 1√

2n

Dchain n n n 0 1 0 2 1√
2n

Dout-tree Din-tree log2(n) n n 1 n
log2(n)

√
log2(n+1)

3 3 1
2

Dcomb
n
2 n n 1 2 1√

2n
3 1

2

DR
comb

n
2 n n 1

2 2
√

n
8 3 1

2

Dbipartite 2 n2
4

n2
4 1 n

2 0 n
2 0

Dsquare
√

n n
√

n n
√

n 1
√

n 0 2
√

n 1√
2

√
n

Dtriangular
√
2n 2n

√
2n

3
2n

√
2n

3 1
√

n
2

1√
3

2
√
2n 1

2
√

2

This is the case for the complete bipartite DAG because the number of edges is
n2

4 =
⌊

n2

4

⌋
when n is even and n2−1

4 =
⌊

n2

4

⌋
when n is odd.

5 Analysis of Existing Generators

Random Generation of Triangular Matrices. This approach is based on
the Erdős-Rényi algorithm [9] with parameter p: an upper-triangular adjacency
matrix is randomly generated. For each pair of vertices (i, j) with i < j, there
is an edge from i to j with an independent probability p. The approach is not
uniform. For instance, a random generator that is uniform over all the DAGs

shmean shCV degmax(DT) degCV(DT)

len m m(DT) mass

0
0.2

5 0.5 0.7
5 1 0

0.2
5 0.5 0.7

5 1 0
0.2

5 0.5 0.7
5 1 0

0.2
5 0.5 0.7

5 1

0.0
0.4
0.8
1.2

0
1
2
3
4
5

0
100
200
300
400

2.5
5.0
7.5

10.0
12.5

0
1000
2000
3000
4000
5000

0.0
0.3
0.6
0.9

0
25
50
75

100

0
10
20
30
40
50

Probability p

V
al

ue

Fig. 1. Properties of 300 DAGs of size n = 100 generated with probability p uni-
formly drawn between 0 and 1 (Erdős-Rényi algorithm). Red lines correspond to formal
bounds. (Color figure online)

A Comparison of Random Task Graph Generation Methods 67

generates the empty DAG with probability 1/25. With p = 0.5, the Erdős-Rényi
algorithm generates the empty DAG with probability 1/8.

Figure 1 shows the effect of the probability parameter p on the properties of
the generated DAGs. The most remarkable effect can be seen for the number
of edges in the transitive reduction m(DT). This property shows that after a
maximum around p = 0.10, adding more edges with higher probabilities leads to
redundant dependencies and simplifies the structure of the DAG by making it
longer. A formal result in the extended version [4, Proposition 4] confirms this
effect. DAGs generated with a probability below 5% are almost empty and most
edges are not redundant. These DAGs lead to a simplistic scheduling process
that consists in starting each task on a critical path as soon as possible and then
distributing a large number of independent tasks. Analogously, DAGs generated
with probabilities p greater than 15% contain many edges that simplify the DAG
structure by increasing the length and thus reducing the mean shape (recall that
with a small width, the problem is easy). At the same time, the mass decreases
continuously, allowing the problem to be divided into smaller problems.

The effect of probability p illustrates the compromise between the length and
mean shape to avoid simplistic instances that are easily tackled.

Uniform Random Generation. One way to uniformly generate elements con-
sists in using a classical recursive/counting approach [22] based on generating
functions. This counting approach relies on recursively counting the number of
DAGs with a given number of source vertices, that is vertices with no in-going
edges. See [4, Section 5.2] for a complete algorithm that uniformly generates
random DAGs with this approach.

shmean shCV degmax(DT) degCV(DT)

len m m(DT) mass

50 10
0

15
0

20
0 50 10

0
15

0
20

0 50 10
0

15
0

20
0 50 10

0
15

0
20

0

0.1
0.2
0.3
0.4

0.20
0.25
0.30
0.35
0.40
0.45

0

100

200

300

3
4
5
6
7

0
2500
5000
7500

10000

0.2

0.3

0.4

0.5

0

50

100

1.2
1.4
1.6

Number of vertices n

V
al

ue

Fig. 2. Properties of DAGs generated by the recursive algorithm for each size n between
10 and 200. Red lines correspond to formal results. (Color figure online)

68 L.-C. Canon et al.

Figure 2 depicts the effect of the number of vertices on the selected DAG
properties. The length closely follows the function 3n

2 . This effect is consistent
with a theoretical result stating that the expected number of source vertices sh1

in a uniform DAG is asymptotically 1.488 as n → ∞ [19]. This implies that
the expected value for each shape element is close to this value by construction
of the shape, which makes the DAG an easy instance for scheduling problems.
Moreover, the number of edges m is almost indistinguishable from the function
n2

4 , which is indeed the average number of edges in a uniform DAG [21, Theorem
2]. We finally observe that the mass decreases as the size n increases. This is
confirmed by the following result (proved in the extended version [4]):

Theorem 1. Let D be a DAG uniformly and randomly generated among the
labeled DAGs with n vertices. One has P(massabs(D) ≥ log4(n)) → 0 when
n → +∞.

Therefore, the mass converges to zero as the size n tends to infinity. As
shown in Sect. 3, such instances can be decomposed into independent problems
and efficiently solved with a brute force strategy. This leads to a sub-exponential
generic time complexity with uniform instances.

Random Orders. The random orders method derives a DAG from randomly
generated orders [26]. The first step consists in building K random permutations
of n vertices. Each of these permutations represents a total order on the vertices,
which is also a complete DAG with a random labeling. Intersecting these com-
plete DAGs by keeping an edge iff it appears in all DAGs with the same direction
leads to the final DAG.

shmean shCV degmax(DT) degCV(DT)

len m m(DT) mass

2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14

0.875
0.900
0.925
0.950
0.975
1.000

0
2
4
6

0
100
200
300
400
500

0
10
20
30
40

0

1000

2000

0.0
0.3
0.6
0.9

5
10
15
20

25
50
75

100

Number of permutations K

V
al

ue

Fig. 3. Properties of 420 DAGs of size n = 100 generated by the random orders algo-
rithm for each K between 2 and 15. Red lines correspond to formal results. (Color
figure online)

A Comparison of Random Task Graph Generation Methods 69

Figure 3 shows the effect of the number of permutations K on the DAG
properties with boxplots5. The extreme cases K = 1 and K → ∞ are discarded
from the figure for clarity. They correspond to the chain and the empty DAG,
respectively. The number of permutations quickly constrains the length. For
instance, the length is already between 15 and 20 when K = 2 and at most
5 when K ≥ 5. A formal analysis suggests that the length is almost surely in
O(n1/K) [26, Theorem 3], which is consistent with our observation. Moreover,
the mass is always close to one for K > 1.

Layer-by-Layer. The layer-by-layer method was first proposed by [1] but popu-
larized later by the introduction of the STG data set [23]. This method produces
DAGs in which vertices are distributed in layers and vertices belonging to the
same layer are independent. This section analyzes the effect of three parameters
(size n, number of layers k and connectivity probability p) using the following
variant inspired from [6,12]. First, k vertices are affected to distinct layers to
prevent any empty layer. Then, the remaining n − k vertices are distributed
to the layers using a balls into bins approach (i.e. a uniformly random layer is
selected for each vertex). For each vertex not in the first layer, a random parent
is selected among the vertices from the previous layer to ensure that the layer
of any vertex equals its depth. Finally, random edges are added by connecting
any pair of vertices from distinct layers from top to bottom with probability p.

This method always generates DAGs with a length equal to k and mean shape
equal to n/k. Moreover, when all layers have the same size n/k, the expected
number of edges is E(m) = n

(
1 − 1

k

) (
p

(
n
2 − 1

)
+ 1

)
and the expected number of

edges in the transitive reduction is E(m(DT)) ≥ p(k−1)
(

n
k

)2+(1−p)n
(
1 − 1

k

)
.

Figure 4 represents the effect of the number of layers k. The numbers of edges
in the DAG and its transitive reduction are close to the expected values for the
case when all layers have the same size n/k. Finally, the mass is unitary when
there are at least two balls in each bin. Since there is initially one ball per bin,
this occurs when there is at least one of the n − k additional balls in each of
the k bin. Using a bound for the coupon collector problem [18, Proposition 2.4],
this occurs with probability greater than 0.5 when 	k log(2k)
 + k < n, which is
the case for k ≤ 20 when n = 100. This is consistent with Fig. 4 where the mass
becomes non-unitary around this value.

To avoid non-unitary mass, the layer-by-layer method can be adapted to
ensure that each layer has two vertices initially. For instance, we can rely on a
uniform distribution between two and a maximum value, or on a balls into bins
approach with two balls per bin initially.

5 Each boxplot consists of a bold line for the median, a box for the quartiles, whiskers
that extend at most to 1.5 times the interquartile range from the box and additional
points for outliers.

70 L.-C. Canon et al.

shmean shCV degmax(DT) degCV(DT)

len m m(DT) mass

1 10 100 1 10 100 1 10 100 1 10 100

0.00
0.25
0.50
0.75
1.00

0.1
0.2
0.3
0.4
0.5

0

500

1000

0
10
20
30
40
50

0

1000

2000

0.0

0.2

0.4

0.6

0
25
50
75

100

0
25
50
75

100

Number of layers k

V
al

ue

Fig. 4. Properties of 300 DAGs of size n = 100 generated by the layer-by-layer algo-
rithm with probability p = 0.5 and a number of layers k randomly drawn between 1
and 100 (uniformly on the logarithmic scale). Red lines correspond to formal results.
(Color figure online)

6 Evaluation on Scheduling Algorithms

Generating random task graphs allows the assessment of existing scheduling
algorithms in different contexts. Numerous heuristics have been proposed for the
problem denoted P |pj = 1, prec|Cmax or generalizations of this problem. Such
heuristics rely on different principles. Some simple strategies, like MinMin [14,
Algorithm D], execute available tasks on the processors that minimize completion
time without considering precedence constraints. In contrast, many heuristics
sort tasks by criticality and schedule them with the Earliest Finish Time (EFT)
policy. This is the case for both HEFT [24] and HCPT [13]. HEFT first computes
the upward rank of each task, which can be seen as a reverse depth, and then
consider tasks by decreasing order of their upward ranks. Backfilling is performed
following an insertion policy. In contract, HCPT starts by considering any task
on a critical path by decreasing order of their depth. The objective is to prioritize
the ancestors of such tasks and in particular when their depths are large.

Figure 5 shows the absolute difference between MinMin, HEFT and HCPT for
each generator covered in Sect. 5. Despite guaranteeing an unbiased generation,
instances built with the recursive algorithm fail to discriminate heuristics except
when there are two processors. Recall that the mean shape is close to 1.5 for such
DAGs and few processors are sufficient to obtain a makespan equal to the DAG
length (i.e. an optimal schedule). In contrast, instances built with the random
orders algorithm lead to different performance for each scheduling heuristics.
However, this generator has no uniformity guarantee and its discrete parameter
K limits the diversity of generated DAGs. Finally, the last two algorithms fail
to highlight a significant difference between MinMin and HEFT even though

A Comparison of Random Task Graph Generation Methods 71

|P | = 2 |P | = 3 |P | = 5 |P | = 7 |P | = 10
E

rd.-R
.

R
ecur.

R
.
ord.

L
ayered

0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

HEFT
MinMin
HCPT

HEFT
MinMin
HCPT

HEFT
MinMin
HCPT

HEFT
MinMin
HCPT

Absolute makespan difference

H
eu

ri
st

ic

Fig. 5. Difference between the makespan obtained with any heuristic and the best value
among the three heuristics for each instance. Each boxplot represents the results for
300 DAGs of size n = 100 built with the following algorithms: Erdős-Rényi (p = 0.15),
recursive, random orders (K = 3) and layer-by-layer (p = 0.5 and k = 10). Costs are
unitary and |P | represents the number of processors.

the former scheduling heuristic can be expected to be inferior to the latter as it
discards the DAG structure.

To support these observations, we analyze below the maximum difference
between the makespan obtained with HEFT and the ones obtained with the other
two heuristics. Because it lacks any backfilling mechanism, HCPT performs worse
than HEFT with an instance composed of the following two elements. First, a
chain of length k with |P | − 1 additional tasks with predecessor the (k − 2)th
task of the chain and successor the kth task of the chain. The second element is
a chain of length k − 1. HCPT schedules the first element and then the second
one afterward, leading to a makespan of 2k − 1 whereas the optimal one is k.
With our settings, the difference from HEFT with this instance is greater than
or equal to 45. Moreover, MinMin also performs worse with specific instances.
Consider the ad hoc instances considered in [5] each consisting of one chain of
length k and a set of k(|P | − 1) independent tasks. Discarding the information
about critical tasks prevents MinMin from prioritizing tasks from the chain.
With n = 100 tasks and with |P | ≤ 10, the worst-case absolute difference can
be greater than or equal to 9. It is interesting to analyze the properties of these
difficult instances for MinMin. Each DAG is characterized by a length equal to
len = n

|P | and a number of edges in the transitive reduction m(DT) = len − 1.
Moreover, worst-case DAGs for HCPT are characterized by a large length and
width.

72 L.-C. Canon et al.

These experiments illustrate the need for better generators that control mul-
tiple properties while avoiding any generation bias. In particular, they highlight
the need for a generator that uniformly samples all existing DAGs with a given
size n, number of edges m, m(DT), length, width, and with a unitary mass.

7 Conclusion

This work contributes in multiple ways to the final objective of uniformly gener-
ating random DAGs belonging to a category of instances with desirable charac-
teristics. First, we select eight DAG properties, among which the mass quantifies
how much an instance can be decomposed into smaller ones. Second, existing
random generators are formally analyzed and empirically assessed with respect
to the selected properties. Establishing the sub-exponential generic time com-
plexity for decomposable scheduling problems with uniform DAGs constitutes
the most noteworthy result of this paper. Last, we study how the generators
impact scheduling heuristics with unitary costs.

The relevance of many other properties such as the number of critical tasks
need to be investigated further. Moreover, extending current results to instances
with communications represents a challenging perspective. Finally, adapting
properties to instances with non-unitary costs is left to future work.

Data Availability Statement. The datasets generated and/or analyzed during the
current study are available in the Figshare repository: https://doi.org/10.6084/m9.
figshare.8397623.

References

1. Adam, T.L., Chandy, K.M., Dickson, J.: A comparison of list schedules for parallel
processing systems. Commun. ACM 17(12), 685–690 (1974)

2. Aho, A.V., Garey, M.R., Ullman, J.D.: The transitive reduction of a directed graph.
SIAM J. Comput. 1(2), 131–137 (1972)

3. Campos, P., Dahir, N., Bonney, C., Trefzer, M., Tyrrell, A., Tempesti, G.: Xl-stage:
a cross-layer scalable tool for graph generation, evaluation and implementation. In:
2016 International Conference on Embedded Computer Systems: Architectures,
Modeling and Simulation (SAMOS), pp. 354–359. IEEE (2016)

4. Canon, L.C., El Sayah, M., Héam, P.C.: A comparison of random task graph gen-
eration methods for scheduling problems. arXiv preprint arXiv:1902.05808 (2019)

5. Canon, L.-C., Marchal, L., Simon, B., Vivien, F.: Online scheduling of task graphs
on hybrid platforms. In: Aldinucci, M., Padovani, L., Torquati, M. (eds.) Euro-Par
2018. LNCS, vol. 11014, pp. 192–204. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96983-1 14

6. Cordeiro, D., Mounié, G., Perarnau, S., Trystram, D., Vincent, J.M., Wagner, F.:
Random graph generation for scheduling simulations. In: ICST, p. 60 (2010)

7. Dick, R.P., Rhodes, D.L., Wolf, W.: TGFF: task graphs for free. In: International
workshop on Hardware/software codesign, pp. 97–101. IEEE (1998)

https://doi.org/10.6084/m9.figshare.8397623
https://doi.org/10.6084/m9.figshare.8397623
http://arxiv.org/abs/1902.05808
https://doi.org/10.1007/978-3-319-96983-1_14
https://doi.org/10.1007/978-3-319-96983-1_14

A Comparison of Random Task Graph Generation Methods 73

8. Dutot, P.F., N’takpé, T., Suter, F., Casanova, H.: Scheduling parallel task graphs
on (almost) homogeneous multicluster platforms. IEEE TPDS 20(7), 940–952
(2009)

9. Erdős, P., Rényi, A.: On random graphs I. Publ. Math. Debrecen 6, 290–297 (1959)
10. Garey, M., Johnson, D.: Strong NP-completeness results: motivation, examples,

and implications. J. Assoc. Comput. Mach. 25(3), 499–508 (1978)
11. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R.: Optimization and

approximation in deterministic sequencing and scheduling: a survey. Ann. Discret.
Math. 5, 287–326 (1979)

12. Gupta, I., Choudhary, A., Jana, P.K.: Generation and proliferation of random
directed acyclic graphs for workflow scheduling problem. In: International Confer-
ence on Computer and Communication Technology, pp. 123–127. ACM (2017)

13. Hagras, T., Janecek, J.: A simple scheduling heuristic for heterogeneous computing
environments. In: ISPDC, p. 104. IEEE (2003)

14. Ibarra, O.H., Kim, C.E.: Heuristic algorithms for scheduling independent tasks on
nonidentical processors. J. ACM 24(2), 280–289 (1977)

15. Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for
Experimental design, measurement, simulation, and modeling. Wiley, Hoboken
(1990)

16. Juve, G., Chervenak, A., Deelman, E., Bharathi, S., Mehta, G., Vahi, K.: Char-
acterizing and profiling scientific workflows. Future Gener. Comput. Syst. 29(3),
682–692 (2013)

17. Leung, J.Y.: Handbook of Scheduling: Algorithms, Models, and Performance Anal-
ysis. CRC Press, Boca Raton (2004)

18. Levin, D.A., Peres, Y.: Markov Chains and Mixing Times, vol. 107. American
Mathematical Society, Providence (2017)

19. Liskovets, V.: On the number of maximal vertices of a random acyclic digraph.
Theory Probab. Appl. 20(2), 401–409 (1975)

20. Mantel, W.: Problem 28. Wiskundige Opgaven 10(60–61), 320 (1907)
21. Melançon, G., Dutour, I., Bousquet-Mélou, M.: Random generation of directed

acyclic graphs. Electron. Not. Discrete Math. 10, 202–207 (2001)
22. Robinson, R.W.: Counting labeled acyclic digraphs. In: Harray, F. (ed.) New Direc-

tions in the Theory of Graphs, pp. 239–273. Academic Press, New York (1973)
23. Tobita, T., Kasahara, H.: A standard task graph set for fair evaluation of multi-

processor scheduling algorithms. J. Sched. 5(5), 379–394 (2002)
24. Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity

task scheduling for heterogeneous computing. IEEE TPDS 13(3), 260–274 (2002)
25. Ullman, J.: NP-complete scheduling problems. J. Comput. System Sci. 10, 384–393

(1975)
26. Winkler, P.: Random orders. Order 1(4), 317–331 (1985)

Hardware Counters’ Space Reduction
for Code Region Characterization

Jordi Alcaraz(B) , Anna Sikora , and Eduardo César

Universitat Autònoma de Barcelona, Cerdanyola (Barcelona), Spain
{jordi.alcaraz,anna.sikora,eduardo.cesar}@uab.cat

Abstract. This work proposes that parallel code regions in an OpenMP
application can be characterized using a signature composed by the val-
ues of a set of hardware performance counters. Our proposal is aimed
towards dynamic tuning and, consequently, the metrics must be col-
lected at execution time, which limits the number of metrics that can
be measured. Therefore, our main contribution is the definition of a
methodology to determine a reduced set of hardware performance coun-
ters that can be measured at application’s execution time and that still
contains enough information to characterize a parallel region. The pro-
posed methodology is based on principal component analysis and linear
correlation analysis. Preliminary results show that it can be used to suc-
cessfully reduce the number of hardware counters needed to characterize
a parallel region, and that this set of counters can be measured at run
time with high accuracy and low overhead using counter multiplexing.

Keywords: Performance analysis · Hardware counters ·
Parallel/distributed applications

1 Introduction

Performance analysis and tuning of parallel applications is becoming a more
and more complicated task, even for expert developers, because the increasing
heterogeneity and complexity of current HPC systems. Performance problems
in such systems may be produced by several different, and sometimes hard to
relate, causes that make it difficult to find the way to solve them. Logically, this
difficulty is exacerbated when performance analysis and tuning process is done
automatically and dynamically during the application execution.

Identifying performance problems requires to gather the appropriate metrics
to find the causes of the bottleneck. At the processor level, the hardware perfor-
mance counters are a powerful source of information. This mechanism provides
metrics about the utilization of different system resources, such as access pattern
to the memory hierarchy, executed instructions and their type, etc.

This work has the support of the Ministerio de Economı́a, Industria y Competitividad
MINECO-SPAIN under contract TIN2017-84553-C2-1-R and by the Generalitat de
Catalunya GenCat-DIUiE (GRR) with the project 2017-SGR-313.

c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 74–86, 2019.
https://doi.org/10.1007/978-3-030-29400-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_6&domain=pdf
http://orcid.org/0000-0002-9640-6763
http://orcid.org/0000-0003-0090-4109
http://orcid.org/0000-0002-9729-8557
https://doi.org/10.1007/978-3-030-29400-7_6

Hardware Counters’ Space Reduction for Code Region Characterization 75

The main hypothesis of this work is that, at the processor level, the values
of the performance counters can be used to identify and characterize a parallel
region during execution time. This set of values can be defined as the signature
of a parallel region. This signature can be used at a later time to identify which
kind of region the application is executing and to apply the appropriate tuning
strategy depending on the behaviour explained by the signature.

In the case of OpenMP applications, hardware performance counters can be a
good way to find which resources are being stressed and find possible solutions to
improve performance [6]. We believe that hardware performance counters, such
as cache misses, cycles per instruction, number of instructions executed, and
others, can be used to identify and describe the execution of a parallel region.

However, current processors include an elevate number of hardware perfor-
mance counters, for example, the Intel R© i7 7700 includes up to 170 different
counters, but only a few can be recorded simultaneously. Consequently, getting
the values of all available counters for every parallel region can be costly or even
unfeasible.

In this paper, we propose a method to reduce the number of hardware per-
formance counters and characterize regions in OpenMP parallel applications at
execution time with the help of counter multiplexing. This methodology will be
based on (i) correlation analysis to find redundancy in the metrics provided by
different counters, and (ii) principal component analysis to show that the signa-
ture composed by the values of a set of hardware performance counters can be
used to characterize different parallel regions.

The remainder of this work is organized as follows. Section 2 introduces the
mechanisms and techniques that are used in the proposed methodology. Next,
Sect. 3 describes the methodology, which is the main contribution of this paper.
Then, Sect. 4 shows the experimentation conducted to assess the methodology.
Section 5 discusses relevant related work. Finally, Sect. 6 concludes this work and
introduces future lines.

2 Background

This section introduces the mechanisms and techniques used in this paper to
obtain the metrics to compute the signature for characterizing parallel regions
and to reduce the number of hardware performance counters needed for com-
puting this signature.

2.1 Hardware Performance Counters

Hardware performance counters are a set of special-purpose registers built into
the processor to store the counts of hardware-related activities within the system,
such as branch operations (branches taken or not, successfully predicted or not,
etc.), memory accesses, cache misses, cycles stalled, instructions executed, and
other metrics.

76 J. Alcaraz et al.

There are factors, such as the number of available special-purpose registers,
that limit the number and groups of hardware performance counters that can
be read at the same time. To overcome these limitations and collect the values
of more counters, the application can be executed multiple times or counter
multiplexing can be applied [3].

On the one hand, if the application is executed multiple times to measure
hardware counters by groups, the measurement accuracy is high but the total
execution time is multiplied by the number of executions needed. In the case
of applications with long execution time, this approach is not feasible because
of the required time. Moreover, this approach cannot be applied in the case of
dynamic tuning as the performance problems have to be detected and solved at
run-time.

On the other hand, this limitation can be overcome by multiplexing the usage
of the counter registers over time (timesharing) among a large number of per-
formance events. This approach has the advantage of executing the application
once, but introduces some overhead due to counter swapping and recording. In
addition, the metrics’ precision is reduced because the final value of each counter
is estimated using the partial values obtained in each time interval.

The most used tool to read hardware performance counters is Performance
Application Programming Interface (PAPI) [5]. It grants an easy way to access
hardware performance counters and allows for application profiling with counter
multiplexing. In addition, it has been integrated [2], among many other tools,
in MATE [11], which is a dynamic analysis and tuning environment that we are
planning to use in the near future to implement a tuning strategy relaying in a
counter-based application characterization.

2.2 Principal Component Analysis

In some cases, it can be difficult to obtain visual information from a set of obser-
vations of a big number of, possibly correlated, variables. Principal Component
Analysis (PCA) is an analysis method that applies an orthogonal transformation
that converts these observations into a set of linearly uncorrelated values called
principal components. The first component explains the greatest possible frac-
tion of the data variability, the second component the second greatest fraction,
and so on and so forth. In this way, the components that explain smaller fractions
of the data variability can be ignored, thus, reducing the data dimensionality [9].

Consequently, this method projects the data in a new coordinate system
that highlights its variability and allows for eliminating the less informative
dimensions, facilitating the exploration of this data.

2.3 Linear Correlation Analysis

Linear Correlation Analysis is a statistical evaluation to measure relationships
or connections between two numerical and continuous variables.

This analysis finds a pair of linear transformations where the correlation
coefficient between the variables is maximized [1].

Hardware Counters’ Space Reduction for Code Region Characterization 77

The output of the correlation analysis is a correlation coefficient in the range
[−1, 1]. There are three perfect scenarios depending on the value of the correla-
tion coefficient:

– Correlated (value 1). The two variables are in a perfect increasing linear
relationship.

– Not correlated (value 0). There is no linear relationship between the two
variables.

– Anti-correlated (value −1). There is a perfect decreasing linear relationship.

In the case of two variables with a perfect linear relationship, be it increasing
or decreasing, the value of one variable can be calculated if the appropriate linear
transformation is applied to the value of the other variable.

3 Methodology

In this section, based on the mechanisms and techniques explained in Sect. 2,
we propose a methodology for reducing the number of hardware performance
counters used to characterize OpenMP parallel regions.

Figure 1 shows a schematic representation of this methodology, which consists
of the following steps:

1. Hardware performance data collection (Sect. 3.1). In this step the data to
analyze is obtained and saved in a database.

2. Data exploration (Sect. 3.2). PCA is used to check if the data can be classified
visually.

3. Hardware performance counter reduction (Sect. 3.3). Correlation analysis is
applied and variables with a high correlation coefficient are discarded. Then,
we go back to step 2 to validate if the space reduction still allows for correctly
characterizing the parallel region.

1. Hardware
Performance Data

Collection
2. Data Exploration

3. Hardware
Performance Counter

Reduction

Fig. 1. Reduction of hardware performance counter space.

The advantages of eliminating redundancy and, hence, reducing the number
of variables, are:

– Higher hardware counter measuring precision. If there are less hardware coun-
ters to measure, less groups are created for multiplexing, resulting in more
measuring time for each group.

78 J. Alcaraz et al.

– Improved learning accuracy and reduced overfitting potential [12]. In machine
learning and data mining, models tend to require more input data to avoid
overfitting as the number of variables increases.

– Lower computational cost. Collecting less variables reduces the overhead gen-
erated by the data collection and the time required for the analysis.

3.1 Step 1: Hardware Performance Data Collection

We have decided to use PAPI’s preset events because these hardware perfor-
mance counters are typically available in processors for multiple platforms.
Therefore, in the first place, the available preset events are obtained with the
papi avail command.

Next, groups of hardware counters are created taking into account the max-
imum number of events that can be read at the same time in one processor and
if they can be accessed simultaneously. The command papi event chooser is
used to check the compatibility of each group of events.

A set of code templates, representing different parallel region structures, has
been developed with the objective of gathering data for a wide range of OpenMP
parallel regions representative of real cases.

Each created group of hardware counters is measured for multiple executions
of these templates using different combinations of compilation flags and input
data sizes (template’s configuration). In this way we are gathering data for dif-
ferent object code translations and memory access patterns associated to the
same parallel region structure. The total number of executions for generating
the performance database can be calculated using expression 1.

executions = created groups∗data sizes∗flag combinations∗repetitions (1)

Each variable in the database should be normalized before the exploration
and reduction steps in order to facilitate data visualization and future usage of
machine learning techniques.

We have adjusted the values of each variable in the range [0,1], dividing each
recorded value by the maximum value of the corresponding variable.

Bottom line, the result of this step is a database containing the normalized
data obtained after executing the templates.

3.2 Step 2: Data Exploration

We use PCA for visualizing data and validating the reduction of hardware per-
formance counters done with correlation analysis.

PCA is applied to the normalized data resulting from step 1, which produces
a new data set where variables have been transformed into principal components.
With this transformation, we can check how much variance of the data is repre-
sented by each principal component and determine the minimum dimensionality
needed to visualize the data without losing significant information.

Hardware Counters’ Space Reduction for Code Region Characterization 79

With the help of PCA’s dimensionality reduction we can plot the new data
representation and easily check if the resulting data of the execution of each code
template is visually distinguishable from the others. In addition, if a new point
is inserted into the plot, it should be easy to identify to which code template
and template’s configuration the new point belongs to.

Moreover, PCA may also hint relationships between different hardware coun-
ters. Analyzing the weights of each variable in a principal component may indi-
cate that some counters contribute evenly to the component (if they have similar
weights), this could mean that both variables are related. Consequently, special
attention shall be given to these hardware counters in the reduction step.

Summarizing, in this step we obtain a new representation of the data with
fewer dimensions. The adequate visualization of this representation indicates if
the available data can be used to distinguish between different parallel region
templates. In addition, PCA may also hint counters that are likely to be corre-
lated.

3.3 Step 3: Hardware Performance Counter Reduction

If two hardware performance counters (variables) are completely correlated, one
of them can be considered redundant [14] and can be discarded.

Therefore, this step consists in performing a linear correlation analysis over
the normalized data produced in step 1. This analysis produces a square sym-
metric matrix with the correlation coefficients between every pair of counters.
From this matrix, we will assume that, in general, variables with a correlation
coefficient close to 1 are linearly dependent and can be considered for discarding.

With the results obtained from the correlation analysis, we will check if a
logical relationship can be established between counters with high correlation.
We verify which hardware performance counters are accessed by the two events
and analyze if they describe the same behaviour. For example, if the analysis
tells us that L1 cache misses is highly correlated to branch instructions, this
correlation is not logical and both counters are preserved, but if it tells us that
double point operations and double point instructions are correlated, a logical
relationship can be established and one of the two counters can be discarded.

Finally, if there are discarded counters the corresponding columns of the
database are eliminated, generating a new database with a smaller number of
variables. In this case, we go back to step 2 using the reduced database. On
the contrary, if no counters have been discarded then the current database is
considered to be the smallest set of data characterizing all the executions of the
considered templates.

4 Experimentation

This section presents the results obtained using the proposed methodology on
a specific set of templates. In addition, to show that these results effectively
characterize the considered code regions, the values of the reduced set of counters

80 J. Alcaraz et al.

are used for training a neural network for recognizing parallel region templates
independently of the template’s configuration.

We have used the parallel regions included in the STREAM benchmark [10]
as the set of templates for our experimentation because they approximate the
behaviour of multiple memory bound real OpenMP applications.

STREAM has four patterns with different number of operations and memory
access pattern:

– COPY. One vector is copied into another, there are no arithmetic operations
involved, just one read and one store.

– SCALE. The multiplication of the elements of a vector by a scalar is stored
into another vector. There is one multiplication, one read and one store.

– SUM. The addition of two vectors is stored in a third vector. There is one
addition, two reads and one store.

– TRIAD. It combines SUM and SCALE, adding a vector multiplied by a scalar
to another vector. There are two operations (addition and multiplication), two
reads and one store.

The hardware used in the experimentation is a DELL T7500. This machine
has two Xeon E5645 processors with six multi-threaded cores per processor. Its
memory hierarchy is composed by a 256KB L2 and a 12MB L3 caches in each
processor, and 96GB of main memory.

Step 1 of the proposed methodology indicates that we must obtain the preset
events for the target processor and determine the valid groups. PAPI reports 58
available preset events for the Xeon E5645. The measurable event types and the
number of counters for each type are the following:

– Branches→7
– Cache L1→8
– Cache L2→16

– Cache L3→10
– TLB→3
– Cycles→3

– Operations→3

– Instructions→8

Next, we must execute all the combinations of the selected templates (4),
created groups of counters (12), data sizes (from 3KB to 4.5GB, using 56 different
sizes), compiler flags (O0 and O2), and number of repetitions (1,000); normalize
the results; and build the performance database. According to expression 1, there
are 1,344,000 executions for each template, which are used to build the 448,000
entries (58 columns each) of the performance database.

Then, we can proceed with step 2 of the methodology and apply PCA to the
normalized database. Figure 2(b) shows the visualization of the data for the first
and second principal components, which explain more than 89% of the data’s
variance. The different STREAM templates can be distinguished even in this
two-dimensional plot, indicating that our main hypothesis is true for this set of
templates.

Using the PCA’s results to get hints about counters’ significance, we real-
ized that the events related to the instructions cache (18) depend more on the
code generated by the compiler than on the behaviour of the application. This
allows to make a first reduction of the number of columns of the performance

Hardware Counters’ Space Reduction for Code Region Characterization 81

(a) Correlation matrix (b) PCA

Fig. 2. Correlation matrix and PCA with the full list of hardware counters.

database to 40. After discarding these counters, the PCA analysis showed a small
improvement in the proportion of the variance explained by the first principal
components.

Table 1 shows the cumulative variance explained by the principal components
for all available hardware counters (58) and the results removing those related
to the instruction cache.

Table 1. Comparison of the cumulative variance before and after removing hardware
counters related to instruction cache.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11

All 79.17 89.14 91.73 93.73 94.94 96.01 96.87 97.63 98.21 98.72 99.22

No Inst-Cache 80.68 89.29 92.74 95.61 97.2 98.21 98.98 99.52 99.88 99.96 99.99

Next, we can go to step 3 of the methodology and perform a linear correlation
analysis on the normalized database. Figure 2(a) shows the correlation matrix
where darker points indicate a stronger correlation between a pair of hardware
counters. Based on this matrix, we analyze the strongest correlations and decide
which counters can be discarded.

For example, we discarded the hardware counter total cycles (TOT CYC)
because it is completely correlated to reference cycles (REF CYC). We decided
to keep reference cycles as it uses a reference clock instead of the clock of the
CPU which can change depending on features such as Intel’s turbo boost.

We also have discarded different hardware counters that access the same
resource. This is the case of the single point vectorization (VEC SP) and double
point vectorization (VEC DP) counters that read the same register, which counts
the number of SIMD instructions.

82 J. Alcaraz et al.

In other cases, we found that some events where the addition or combination
of multiple events. As for example, the branch instructions counter (BR INS) is
the addition of conditional and unconditional branch instructions ones (BR CN
and BR UCN, respectively), so, we can discard the first one.

Summarizing, after this analysis, we end up with 20 hardware performance
counters, distributed in the following way:

– Branches→4
– Cache L1→3
– Cache L2→2

– Cache L3→2
– TLB→1
– Cycles→1

– Operations→3

– Instructions→4

After completing the 3 steps of the methodology, we go back to step 2 because
the number of counters has been significantly reduced. This means that PCA
must be applied to the new database to show that the remaining counters still
characterize the considered templates. Figure 3(b) shows the visualization of the
data for the first and second principal components, which explain more than
88% of the data variance. It can be seen that the templates can still be clearly
distinguished using this reduced set of counters.

Table 2 shows that the data variance explained by the first principal compo-
nents is similar to the one obtained when considering the whole set of counters.

Table 2. Cumulative variance with the reduced list of hardware performance counters.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11

Reduced list 76.44 88.31 92.15 95.41 97.28 98.81 99.49 99.89 99.96 99.98 99.995

Finally, we perform a new linear correlation analysis (step 3) to decide if the
set of counters can be furtherly reduced.

Figure 3(a) shows the obtained correlation matrix with some dark points still
indicating strong correlations between pairs of counters. However, after analyz-
ing them, no logical relationship can be established between the corresponding
counters. For example, L2 storage misses (L2 STM) is not logically related to
branches taken (BR TKN), so, both counters are kept despite they are highly cor-
related.

Consequently, as far as no new counters have been discarded, the perfor-
mance database including 20 counters is regarded as the smallest set of data
that characterizes the considered templates.

Our motivation for proposing a methodology to find a reduced number of
hardware performance counters was based on the fact that current processors
include a significant number of counters and measuring all of them at execution
time can be costly or even unfeasible. Now, we want to illustrate this claim using
the experiment described previously.

On the one hand, for several templates, multiplexing the full list of hardware
performance counters lead to erroneous values (sometimes negative ones) because

Hardware Counters’ Space Reduction for Code Region Characterization 83

(a) Correlation matrix (b) PCA

Fig. 3. Correlation matrix and PCA analysis with reduced list of hardware counters.

the execution time was not long enough, so, basically, it is not feasible to measure
all the counters using the considered templates.

On the other hand, in the case of the reduced list of hardware counters,
we were able to assess the precision of the measured metrics and the overhead
for obtaining them. The overhead for regions with execution time around a few
seconds is of up to 10 milliseconds, and for regions with execution time of less
than a second it is of up to 4 milliseconds. This overhead includes the time for
setting up the methods to count events, and the time for collecting the counters
and multiplexing the groups of counters. As for the precision, in the cases of
execution times of less than a second, the precision of multiplexing groups of
counters is in some cases low, the accuracy is between 90% and 99%, and uncon-
ditional branches are not properly estimated. For longer executions (execution
time higher than one second), the accuracy increases to more than 99%.

Finally, the main hypothesis behind our work is that a parallel region can
be characterized by the signature composed by the values of a set of hardware
performance counters. The results of PCA seem to corroborate it, but we want to
add more evidence for this claim using the results of the presented experiment.

To do so, we have trained a simple artificial neural network with one hidden
layer using the database with 20 counters produced by applying the proposed
methodology. This database has been divided into two subsets, one for training
the network (432,000 entries) and another for validating it (the remaining 16,000
entries). The validation set is built with the entries corresponding to 2 of the 56
different input data sizes, i.e., 4(templates)×2(compilerflags)×2(datasizes)×
1, 000(repetitions).

After training the network for ten epochs, it gets an accuracy of up to 99.98%
for the validation set. These results are relevant for two reasons, on the one hand,
they provide the evidence we were looking for and, on the other hand, they hint
that the signatures of parallel regions can be used in machine learning techniques.

84 J. Alcaraz et al.

5 Related Work

Several proposals share our objective of characterizing code regions although, in
most cases, this characterization is aimed at detecting phases in the execution
of a program to determine when the behaviour of the application changes.

Bhattacharyya et al. [4] characterized phases in cloud applications using exe-
cution snapshots. Each snapshot has information regarding sets of functions in
the thread-dumps, the program memory’s usage and the use of the CPU. PCA
is used to detect outliers and identify when there is a different phase in the
program’s execution.

Ziedan et al. [15] also identified and classified phases in the application, in
this case, their proposal tracks changes in the L2 cache access pattern. This
methodology creates a Cache Access Signature Vector with information about
accessed positions and their intensity for each interval. One interval is defined
by a fixed number of instructions.

Fang et al. [8] generated signatures of the execution to detect phases. The
signatures include information regarding cache miss rates, branch miss rates and
IPC. Phases are classified using their signature and comparing it to a signature
table in order to find if there is a new phase or the phase was executed before.

Chetsa et al. [7] detected application phases using execution vectors. These
vectors include information about hardware performance counters, transmitted
network bytes and disk usage. This methodology uses only general purpose coun-
ters to avoid redundancy (retired instructions, L3 cache references and misses,
branch instructions and branch misses).

The explained methodologies sample the application in blocks of instructions
to find changes in the behaviour of the application, while in our case we want to
classify parallel code regions that have been identified in the code.

Another approach to generate signatures was developed by Wong et al. [13]
for message passing applications. The execution of the application is divided in
blocks depending on communication, instead of instructions, and the signature
is generated using the communications (patterns and volume) and computa-
tional time. In this case, hardware performance counters are not used and the
methodology is designed only for message passing applications.

6 Conclusion and Future Work

Considering the hypothesis that a parallel region can be characterized by the
values of a set of hardware counters (region signature) as the starting point of
this work, we have developed a methodology to reduce the variables (counters) of
this set in order to be able to measure them at execution time with the adequate
precision.

The proposed methodology, based on PCA and linear correlation analysis,
has been tested using a limited set of representative OpenMP templates on
a specific machine with 58 preset counters. This evaluation has shown that
(i) the number counters included in the signature can be reduced following the

Hardware Counters’ Space Reduction for Code Region Characterization 85

methodology steps; (ii) that the reduced set can be measured at execution time
using counter multiplexing, while measuring the full set was unfeasible; and that
the resulting performance database could be used to identify the templates with
high accuracy.

Currently, we are extending the set of templates with new parallel regions
code patterns and also working on strategies for automatically and dynamically
identifying and solving performance problems associated to these regions.

References

1. Akaho, S.: A kernel method for canonical correlation analysis. In: Proceedings of
the International Meeting of the Psychometric Society. IMPS 2001. Springer-Verlag
(2001)

2. Alcaraz, J., Sikora, A., Cesar, E.: Dynamic tuning of openmp memory bound appli-
cations in multisocket systems using mate. In: Proceedings of the 47th International
Conference on Parallel Processing Companion. ICPP 2018, pp. 37:1–37:10. ACM
(2018)

3. Azimi, R., Stumm, M., Wisniewski, R.W.: Online performance analysis by sta-
tistical sampling of microprocessor performance counters. In: Proceedings of the
19th Annual International Conference on Supercomputing. ICS 2005, pp. 101–110.
ACM, New York (2005)

4. Bhattacharyya, A., Sotiriadis, S., Amza, C.: Online phase detection and charac-
terization of cloud applications. In: 2017 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), pp. 98–105, December 2017

5. Browne, S., Deane, C., Ho, G., Mucci, P.: Papi: a portable interface to hardware
performance counters. In: Proceedings of Department of Defense HPCMP Users
Group Conference, 06 1999

6. Caubet, J., Gimenez, J., Labarta, J., DeRose, L., Vetter, J.: A dynamic trac-
ing mechanism for performance analysis of openmp applications. OpenMP Shared
Memory Parallel Programming, p. 53 (2001)

7. Chetsa, G.L.T., Lefevre, L., Pierson, J.M., Stolf, P., da Costa, G.: A user friendly
phase detection methodology for hpc systems’ analysis. In: Proceedings of the
2013 IEEE International Conference on Green Computing and Communications
and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing,
pp. 118–125. IEEE Computer Society, Washington, DC (2013)

8. Fang, Z., Li, J., Zhang, W., Li, Y., Chen, H., Zang, B.: Improving dynamic predic-
tion accuracy through multi-level phase analysis. In: Proceedings of the 13th ACM
SIGPLAN/SIGBED International Conference on Languages, Compilers, Tools and
Theory for Embedded Systems, pp. 89–98. LCTES 2012, New York (2012)

9. Lovric, M. (ed.): Principal Component Analysis, pp. 1094–1096. Springer,
Heidelberg (2011)

10. Mccalpin, J.: Memory bandwidth and machine balance in current high perfor-
mance computers. In: IEEE Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter, pp. 19–25 (1995)

11. Morajko, A., Caymes-Scutari, P., Margalef, T., Luque, E.: Mate: monitoring, anal-
ysis and tuning environment for parallel/distributed applications. Concurrency
Comput. Pract. Experience 19(11), 1517–1531 (2007)

12. Tang, J., Alelyani, S., Liu, H.: Feature selection for classification: a review. Data
classification: Algorithms and Applications, p. 37 (2014)

86 J. Alcaraz et al.

13. Wong, A., Rexachs, D., Luque, E.: Parallel application signature. In: 2009 IEEE
International Conference on Cluster Computing and Workshops, pp. 1–4, August
2009

14. Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and redundancy.
J. Mach. Learn. Res. 5, 1205–1224 (2004)

15. Ziedan, I., Serag, S., Shehata, H.: A run-time program phase detection technique
for optimizing per-phase l2 cache demand. Egypt. Int. J. Eng. Sci. Technol. 20,
1–9 (2016)

Combining Checkpointing and Data
Compression to Accelerate Adjoint-Based

Optimization Problems

Navjot Kukreja1(B), Jan Hückelheim1, Mathias Louboutin2, Paul Hovland3,
and Gerard Gorman1

1 Imperial College London, London, UK
nkukreja@imperial.ac.uk

2 Georgia Institute of Technology, Atlanta, GA, USA
3 Argonne National Laboratory, Lemont, IL, USA

Abstract. Seismic inversion and imaging are adjoint-based optimiza-
tion problems that process up to terabytes of data, regularly exceeding
the memory capacity of available computers. Data compression is an
effective strategy to reduce this memory requirement by a certain factor,
particularly if some loss in accuracy is acceptable. A popular alternative
is checkpointing, where data is stored at selected points in time, and val-
ues at other times are recomputed as needed from the last stored state.
This allows arbitrarily large adjoint computations with limited memory,
at the cost of additional recomputations.

In this paper, we combine compression and checkpointing for the first
time to compute a realistic seismic inversion. The combination of check-
pointing and compression allows larger adjoint computations compared
to using only compression, and reduces the recomputation overhead sig-
nificantly compared to using only checkpointing.

Keywords: Checkpointing · Compression · Adjoints · Inversion ·
Seismic

1 Introduction

1.1 Adjoint-Based Optimization

Adjoint-based optimization problems typically consist of a simulation that is run
forward in simulation time, producing data that is used in reverse order by a
subsequent adjoint computation that is run backwards in simulation time. Many
important numerical problems in science and engineering use adjoints and follow
this pattern.

Since the data for each of the computed timestep in the forward simulation
will be used later in the adjoint computation, it would be prudent to store it
in memory until it is required again. However, the total size of this data can

c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 87–100, 2019.
https://doi.org/10.1007/978-3-030-29400-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_7&domain=pdf
https://doi.org/10.1007/978-3-030-29400-7_7

88 N. Kukreja et al.

often run into tens of terabytes, exceeding the memory capacity of most com-
puter systems. Previous work has studied recomputation or data compression
strategies to work around this problem. In this paper we investigate a combina-
tion of compression and recomputation.

1.2 Example Adjoint Problem: Seismic Inversion

Seismic inversion typically involves the simulation of the propagation of seismic
waves through the earth’s subsurface, followed by a comparison with data from
field measurements. The model of the subsurface is iteratively improved by min-
imizing the misfit between simulated data and field measurement in an adjoint
optimization problem [18]. The data collected in an offshore survey typically
consists of a number of “shots” - each of these shots corresponding to different
locations of sources and receivers. Often the gradient is computed for each of
these shots independently on a single cluster compute node, and then collated
across all the shots to form a single model update. The processing across shots
is thereby easily parallelized and requires only little communication, followed by
a long period of independent computation (typically around 10–100 min). Since
the number of shots is typically of the order of 104, clusters can often be fully
utilized even if individual shots are only processed on a single node.

1.3 Memory Requirements

A number of strategies have been studied to cope with the amount of data
that occurs in adjoint computations - perhaps the simplest is to store all data
to a disk, to be read later by the adjoint pass in reverse order. However, the
computation often takes much less time than the disk read and write, hence
leaving disk speed as a bottleneck.

Domain decomposition, where a single shot may be distributed across more
than one node, is often used not only to distribute the computational workload
across more processors, but also across more memory. While this strategy is very
powerful, the number of compute nodes and therefore the amount of memory
that can be used efficiently is limited, for example by communication overheads
that start to dominate as the domain is split into increasingly small pieces.
Secondly, this strategy can be wasteful if the need for memory causes more
nodes to be used than can be completely utilized for computation. Lastly, this
method is not well suited for cloud-based setups since it can complicate the setup
and performance will suffer due to the slow inter-node communication.

Checkpointing is yet another strategy to reduce the memory overhead. Only
a subset of the timesteps during the forward pass is stored. Other timesteps
are recomputed when needed by restarting the forward pass from the last avail-
able stored state. We discuss this strategy in Sect. 3. Previous work has applied
checkpointing to seismic imaging and inversion problems [9,20]. An alternative
is data compression, which is discussed in Sect. 2.

In this paper, we extend the previous studies by combining checkpointing and
compression. This is obviously useful when the data does not fit in the available

Combining Checkpointing and Data Compression 89

memory even after compression, for example for very large adjoint problems,
or for problems where the required accuracy limits the achievable compression
ratios.

Compared to the use of only checkpointing without compression, this com-
bined method often improves performance. This is a consequence of the reduced
size of stored timesteps, allowing more timesteps to be stored during the forward
computation. This in turn reduces the amount of recomputation that needs to be
performed. On the other hand, the compression and decompression itself takes
time. The answer to the question “does compression pay off?”, depends on a
number of factors including - available memory, the required precision, the time
taken to compress and decompress, and the achieved compression factors, and
various problem specific parameters like computational intensity of the kernel
involved in the forward and adjoint computations, and the number of timesteps.

Hence, the answer to the compression question depends not only on the
problem one is solving (within seismic inversion, there are numerous variations
of the wave equation that may be solved), but also the hardware specifics of the
machine on which it is being solved. In fact, as we will see in Sect. 5, the answer
might even change during the solution process of an individual problem. This
brings up the need to predict whether compression pays off in a given scenario,
without incurring significant overheads in answering this question. To this end,
we present a performance model that answers that question.

1.4 Summary of Contributions

In this paper, we study

– the use of different compression algorithms to seismic data including six loss-
less and a lossy compression algorithm for floating point data,

– a performance model for checkpointing alone, taking into account the time
taken to read and write checkpoints, and

– an online performance model to predict whether compression would speed up
an optimization problem.

2 Compression Algorithms

Data compression is increasingly used to reduce the memory footprint of sci-
entific applications. This has been accelerated by the advent of special pur-
pose compression algorithms for floating-point scientific data, such as ZFP or
SZ [10,14].

Lossless algorithms guarantee that the exact original data can be recovered
during decompression, whereas lossy algorithms introduce an error, but often
guarantee that the error does not exceed certain absolute or relative error met-
rics. Typically, lossy compression is more effective in reducing the data size.
Most popular compression packages offer various settings that allow a tradeoff
between compression ratio, accuracy, and compression and decompression time.

90 N. Kukreja et al.

Another difference we observed between lossless and lossy compression algo-
rithms was that the lossless compression algorithms we evaluated tended to inter-
pret all data as one-dimensional series only while SZ and ZFP, being designed for
scientific data, take the dimensionality into account directly. This makes a dif-
ference in the case of a wavefield, for example, where the data to be compressed
corresponds to a smoothly varying function in (two or) three dimensions and
interpreting this three-dimensional data as one-dimensional would completely
miss the smoothness and predictability of the data values.

It is worth noting that another data reduction strategy is to typecast values
into a lower precision format, for example, from double precision to single preci-
sion. This can be seen as a computationally cheap lossy compression algorithm
with a compression ratio of 2.

Perhaps counterintuitively, compression can not only reduce the memory
footprint, but also speed up an application. Previous work has observed that the
compression and decompression time can be less than the time saved from the
reduction in data that needs to be communicated across MPI nodes or between
a GPU and a host computer [17].

One way of using compression in adjoint-based methods is to compress all
timesteps during the forward pass. If the compression ratio is sufficient to fit
the compressed data in memory, compression can serve as an alternate strategy
to checkpointing. Previous work has discussed this in the context of computa-
tional fluid dynamics [7,16] and seismic inversion using compression algorithms
specifically designed for the respective applications [6,8].

Since the time spent on compressing and decompressing data is often non-
negligible, this raises the question whether the computational time is better spent
on this compression and decompression, or on the recomputation involved in the
more traditional checkpointing approach. This question was previously answered
to a limited extent for the above scenario where compression is an alternative
to checkpointing, in a specific application [7]. We discuss this in more detail in
Sect. 4.

2.1 Lossless Compression

Blosc is a library that provides optimized high-performance implementations
of various lossless compressors, sometimes beyond their corresponding reference
implementations [2]. For our experiments we use this library through its python
interface. The library includes implementations for six different lossless compres-
sion algorithms, namely ZLIB, ZSTD, BLOSCLZ, LZ4, LZ4HC and Snappy. All
these algorithms look at the data as a one-dimensional stream of bits and at
least the blosc implementations have a limit on the size of the one-dimensional
array that can be compressed in one call. Therefore we use the python package
blosc-pack, which is a wrapper over the blosc library, to implement chunking, i.e.
breaking up the stream into chunks of a chosen size, which are compressed one
at a time.

Combining Checkpointing and Data Compression 91

2.2 Lossy Compression

We use the lossy compression package ZFP [14] written in C. To use ZFP from
python, we developed a python wrapper for the reference implementation of
ZFP1. ZFP supports three compression modes, namely fixed tolerance, fixed
precision and fixed rate. The fixed-tolerance mode limits the absolute error, while
the fixed-precision mode limits the error as a ratio of the range of values in the
array to be compressed. The fixed-rate mode achieves a guaranteed compression
ratio requested by the user, but does not provide any bounds on accuracy loss.

The fixed-rate mode could make our implementation more straightforward
by offering a predictable size of compressed checkpoints, but the lack of error
bounds makes this option less attractive. Moreover, ZFP claims to achieve the
best “compression efficiency” in the fixed-tolerance mode, and we thus chose to
focus on this mode.

SZ [10] is a more recently developed compression library, also focussed on
lossy compression of floating-point scientific data, also developed in C. While we
have also written a python wrapper for the reference implementation of SZ2, a
thorough comparison of ZFP and SZ remains future work.

3 Checkpointing Performance Model

As previously mentioned, checkpointing is a strategy to store selected timesteps,
and recompute others when needed. The question which checkpoints should be
stored to get the best tradeoff between recomputation time and memory foot-
print was answered in a provably optimal way by the Revolve checkpointing algo-
rithm [11]. Revolve makes certain assumptions, for example that all timesteps
have the same compute cost and storage size, the number of timesteps is known
a priori, and there is only one level of memory (e.g. RAM) that is restricted
in size, but very fast. Other authors have subsequently developed extensions to
Revolve that are optimal under different conditions [4,19]. We focus in this paper
on the classic Revolve algorithm, and store all checkpoints in RAM.

In this section, we build on the ideas introduced in [19] to build a performance
model that predicts the runtime of an adjoint computation using Revolve check-
pointing. We call the time taken by a single forward computational step CF and
correspondingly, the time taken by a single backward step CR. For a simulation
with N timesteps, the minimum wall time required for the full forward-adjoint
evaluation is given by

TN = CF · N + CR · N (1)

If the size of a single timestep in memory is given by S, this requires a memory
of at least size S · N. If sufficient memory is available, no checkpointing or
compression is needed.

If the memory is smaller than S ·N, Revolve provides a strategy to solve for
the adjoint field by storing a subset of the N total checkpoints and recompute
1 To be released open source on publication.
2 Also to be released open source upon publication.

92 N. Kukreja et al.

the remaining ones. The overhead introduced by this method can be broken
down into the recomputation overhead OR and the storage overhead OS . The
recomputation overhead is the amount of time spent in recomputation, given by

OR(N,M) = p(N,M) · CF, (2)

where p(N,M) is the minimum number of recomputed steps from [11], given as

p(N,M) =

⎧
⎨

⎩

N(N − 1)/2, if M = 1
min

1<= ˜N<=N
{Ñ + p(Ñ ,M) + p(N − Ñ ,M − 1)}, if M > 1 (3)

where M is the number of checkpoints that can be stored in memory. Note that
for M ≥ N , OR would be zero. For M < N , OR grows rapidly as M is reduced
relative to N.

In an ideal implementation, the storage overhead OS might be zero, since the
computation could be done “in-place”, but in practice, checkpoints are generally
stored in a separate section of memory and they need to be transferred to a
“computational” section of the memory where the computation is performed,
and then the results copied back to the checkpointing memory. This copying is a
common feature of checkpointing implementations, and might pose a non-trivial
overhead when the computation involved in a single timestep is not very large.
This storage overhead is given by:

OSR(N,M) = W(N,M) · S
B

+ N · S
B

(4)

where W is the total number of times Revolve writes checkpoints for a single
run, N is the number of times checkpoints are read, and B is the bandwidth at
which these copies happen. The total time to solution becomes

TR = CF · N + CR · N + OR(N,M) + OSR(N,M) (5)

4 Performance Model Including Compression

By using compression, the size of each checkpoint is reduced and the number of
checkpoints available is increased (M in Eq. 3). This reduces the recomputation
overhead OR, while at the same time adding overheads related to compression
and decompression in OS . To be beneficial, the reduction in OR must offset the
increase in OSR, leading to an overall decrease in the time to solution T .

Our performance model assumes that the compression algorithm behaves
uniformly across the different time steps of the simulation, i.e. that we get the
same compression ratio, compression time and decompression time, no matter
which of the N possible checkpoints we try to compress/decompress. The storage
overhead now becomes

OSR(N,M) =W(N,M · F) ·
(

S
F · B + tc

)

+ N ·
(

S
F · B + td

) (6)

Combining Checkpointing and Data Compression 93

where F is the compression ratio (i.e. the ratio between the uncompressed and
compressed checkpoint), and tc and td are compression and decompression times,
respectively. At the same time, the recomputation overhead decreases because
F times more checkpoints are now available.

5 Acceptable Errors and Convergence

Our performance model is agnostic of the specific optimization problem being
solved. We envision it being used in a generic checkpointing runtime that man-
ages the checkpointed execution of an optimization problem, and accepts an
acceptable error tolerance as an input parameter for each gradient evaluation
and determines whether or not compression can pay off for that iteration. For
this reason, we do not discuss in this paper whether or not a certain accuracy is
acceptable for any given application.

We note that there is some previous work in this area, discussing for example
the effect of bounded pointwise errors in a multi-dimensional field on computed
numerical derivatives, for ZFP [1]. In the context of seismic inversion, other
work discusses accuracy requirements in optimization loops, and notes that high
accuracy is only needed when already close to a minimum [6,13]. There has been
previous work on choosing the most appropriate compression algorithm under
some circumstances [21]., and work that addresses convergence guarantees of
trust-region based optimization methods in the presence of gradients that are
only known with a probability p [5].

Despite all this previous work, for most practical adjoint optimization appli-
cations, the relationship between accuracy (whether caused by roundoff, com-
pression or truncation errors) and convergence remains a field of ongoing
research.

6 Problem and Test Case

We use Devito [15] to solve forward and adjoint wave equation problems. Devito
is a domain-specific language that enables the rapid development of finite-
difference solvers from a high-level description of partial differential equations.
The simplest version of the seismic wave equation is the acoustic isotropic wave
equation defined as:

m(x)
∂2u(t, x)

∂t2
− ∇2u(t, x) = q(t, x), (7)

where m(x) = 1
c2(x) is the squared slowness, c(x) the spatially dependent speed

of sound, u(t, x) is the pressure wavefield, ∇2u(t, x) denotes the laplacian of the
wavefield and q(t, x) is a source term.

The solution to Eq. 7 forms the forward problem. The seismic inversion prob-
lem minimizes the misfit between simulated and observed signal given by:

min
m

φs(m) =
1
2

‖dsim − dobs‖22 . (8)

94 N. Kukreja et al.

We call the kernel derived from a basic finite difference formulation of Eq. 7,
the OT2 kernel because it is second-order accurate in time. We also use another
formulation from [15], which is 4th-order accurate in time. We call this the OT4
kernel.

This optimization problem is usually solved using gradient based methods
such as steepest descent, where the gradient is computed using the adjoint-state
method.

The values of m(x) used in this work are derived from the Overthrust
model [3] over a grid of 287 × 881 × 881 points, including an absorbing layer
of 40 points on each side. The grid spacing is 25 m in space. The propagation
time is 4 s that corresponds to 2526 timesteps. The wave field at the final time
is shown in Fig. 2a. The uncompressed size of this single time step field is just
under 900 MB. If one were to store all the timesteps, this would require 2.3 TB
of memory.

To implement Revolve with Devito, we use pyRevolve [12] which is a python
library to manage the execution of checkpointed adjoint computations. The per-
formance model in Sect. 3 assumes that the implementation is similar to pyRe-
volve, which stores a checkpoint by copying a portion of the operator’s working
memory to the checkpointing memory and similarly loads a checkpoint by copy-
ing from the checkpointing memory to the operator’s working memory.

For benchmarking we used a dual-socket Intel(R) Xeon(R) Platinum 8180M
@ 2.50 Ghz (28 cores each) (skylake).

7 Results and Discussion

Fig. 1. Compression ratios achieved on compressing different time steps. Every
timestep from 1 to 2526 was compressed and plotted.

To understand the compressibility of the data produced in a typical wave-
propagation simulation, we ran a simulation as per the setup described in Sect. 6,
and tried to compress every single timestep. For this we chose ZFP in fixed tol-
erance mode at some arbitrary tolerance level. We noted the compression ratios
achieved at every timestep. As Fig. 1 shows, the initial timesteps are much easier
to compress than the later ones. This is not surprising since most wave simula-
tions start with the field at rest, i.e. filled with zeros. As the wave reaches more

Combining Checkpointing and Data Compression 95

parts of the domain, the field becomes less compressible until it achieves a stable
state when the wave has reached most of the domain.

If the simulation had started with the field already oscillating in a wave, it is
likely that the compressibility curve for that simulation would be flat. This tells
us that the compressibility of the last timestep of the solution is representative
of the worst-case compressibility and hence we used the last timestep as our
reference for comparison of compression in the rest of the analysis.

Table 1. Some results from trying out all possible compressors and settings in blosc.
We selected the best compression ratio seen for each compressor. “Setting” here is the
choice between speed and compression, where 0 is fastest and 9 is highest compression.

Compressor Chunk size
(bytes)

Shuffle
Mode

Setting Compression
time (ms)

Decompression
time (ms)

Compression
Ratio

BloscLZ 1048576 SHUFFLE 6 4249.44 1288.86 1.188

LZ4 2965280 SHUFFLE 4 1371.26 920.98 1.199

LZ4HC 2097152 SHUFFLE 8 31245.16 926.69 1.265

ZLib 524288 SHUFFLE 7 30218.81 2470.04 1.291

ZStd 524288 SHUFFLE 9 117238.76 1477.34 1.312

Table 1 shows the compression ratios and times for a few different lossless
compressors and their corresponding settings. As can be seen, the compression
factors achieved, and the time taken to compress and decompress can vary sig-
nificantly, but it is hard to say whether this compression could be used to speed
up the inversion problem.

Figure 3a shows compression ratios for different tolerance settings for the
fixed-tolerance mode of ZFP. The point highlighted here was the setting used
to compress all timesteps in Fig. 1. Figure 2b shows the spatial distribution of
the errors after compression and decompression, compared to the original field,
for this setting. Table 3b shows the effect of different levels of pointwise absolute
error on the overall error in the gradient evaluation. We can see that the error
in the gradient evaluation does not explode.

To validate the revolve-only performance model, Fig. 4a shows the predicted
runtime for a variety of peak memory constraints along with measured runtime
for the same scenario. Figure 4b shows a comparison of predicted and measured
runtimes for the OT2 kernel with compression enabled. Figure 4c repeats this
experiment for the OT4 kernel which has a higher computational complexity. It
can be seen that the model is able to predict the real performance very closely
in all three cases.

We have now seen that the performance model from Sect. 4 is effective at pre-
dicting the runtime of adjoint computations. To study the performance model,
we first visualize it along the axis of available memory, comparing the predicted
performance of the chosen compression scheme with the predicted performance
of a Revolve-only adjoint implementation. This is shown in Fig. 5 where we

96 N. Kukreja et al.

(a) Reference wavefield for compression and
decompression.

(b) Errors introduced during compres-
sion and decompression using the fixed-
tolerance mode.

Fig. 2. This field was formed after a Ricker wavelet source was placed at the surface of
the model and the wave propagated for 2500 timesteps. This is a vertical (x-z) cross-
section of a 3D field, taken at the y source location. It is interesting to note that the
errors are more or less evenly distributed across the domain with only slight variations
corresponding to the wave amplitude (from Figure a). A small block-like structure
characteristic of ZFP can be seen.

(a) Effect of tolerance on Compression Ra-
tio

Tolerance Gradient error
0.1 662.905
0.01 70.619
0.001 10.485
0.0001 0.763
10−5 0.194
10−6 0.154
10−7 0.151

(b) Effect of tolerance on Gradient error

Fig. 3. Effect of tolerance settings of ZFP in fixed-tolerance mode on Compression
ratio (left) and final gradient evaluation (right). We define compression ratio as the
ratio between the size of the uncompressed data and the compressed data. The dashed
line represents no compression. The highlighted point corresponds to the setting used
for the other results here unless otherwise specified. The gradient error (right) is the
2-norm of the error tensor in the gradient, as compared with an exact computation.

can distinguish three different scenarios, depending on the amount of available
memory.

1. If the memory is insufficient even with compression to store the entire tra-
jectory, one can either use checkpointing only, or combine checkpointing with
compression. This is the left section of the figure.

2. If the available memory is not sufficient to store the uncompressed trajectory,
but large enough to store the entire compressed trajectory, we compare two
possible strategies: Either use compression only, or use checkpointing only.
This is the middle section of the figure.

3. If the available system memory is large enough to hold the entire uncom-
pressed trajectory, neither compression nor checkpointing is necessary. This
is the right section of the figure.

Combining Checkpointing and Data Compression 97

The second scenario was studied in previous work [7], while the combined
method is also applicable to the first scenario, for which previous work has only
used checkpointing without compression.

We can identify a number of factors that make compression more likely to
be beneficial compared to pure checkpointing: A very small system memory size
and a large number of time steps lead to a rapidly increasing recompute factor,

(a) OT2, No compression (b) OT2, Compression (c) OT4, Compression

Fig. 4. Predicted vs measured runtimes for two different kernels (OT2 and OT4),
with and without compression. This shows that the performance model can predict
the runtime effectively. The compression setting used was ZFP with absolute error
tolerance set to 10−6

Fig. 5. The speedups predicted by the performance model for varying memory. The
baseline (1.0) is the performance of a Revolve-only implementation under the same
conditions. The different curves represent kernels with differing compute times (repre-
sented here as a factor of the sum of compression and decompression times). The first
vertical line at 53GB marks the spot where the compressed wavefield can completely fit
in memory and Revolve is unnecessary if using compression. The second vertical line at
2.2 TB marks the spot where the entire uncompressed wavefield can fit in memory and
neither Revolve nor compression is necessary. The region to the right is where these
optimizations are not necessary or relevant. The middle region has been the subject of
past studies using compression in adjoint problems. The region to the left is the focus
of this paper.

98 N. Kukreja et al.

and compression can substantially reduce this recompute factor. This can be
seen in Figs. 5 and 6b.

(a) Varying Compute (b) Varying timesteps

Fig. 6. The speedups predicted by the performance model for varying compute cost
(left) and number of timesteps (right). The baseline (1.0) is the performance of a
Revolve-only implementation under the same conditions. The benefits of compression
drop rapidly if the computational cost of the kernel that generated the data is much
lower than the cost of compressing the data. For increasing computational costs, the
benefits are bounded. It can be seen that compression becomes more beneficial as the
number of timesteps is increased.

The extent to which the recompute factor affects the overall runtime also
depends on the cost to compute each individual time step. If the compute cost
per time step is large compared to the compression and decompression cost,
then compression is also likely to be beneficial, as shown in Fig. 6a. As the time
per time step increases and the compression cost becomes negligible, we observe
that the ratio between the runtime of the combined method and that of pure
checkpointing is only determined by the difference in recompute factors.

8 Conclusions and Future Work

We used compression to reduce the computational overhead of checkpointing in
an adjoint computation used in seismic inversion. We developed a performance
model that computes whether or not the combination of compression and check-
pointing will outperform pure checkpointing or pure compression in a variety
of scenarios, depending on the available memory size, computational intensity
of the application, and compression ratio and throughput of the compression
algorithm. In future work, we plan to extend this work by

– further exploring the relationship between pointwise error bounds in com-
pression and the overall error of the adjoint gradient evaluation,

– extending our performance model to support non-uniform compression ratios,
as would be expected for example if the initial wave field is smoother and
therefore more easily compressible,

Combining Checkpointing and Data Compression 99

– studying strategies where different compression settings (or even no compres-
sion) is used for a subset of time steps,

– exploring compression and multi-level checkpointing, including SSD or hard
drives in addition to RAM storage,

– and finally by developing checkpointing strategies that are optimal even if
the size of checkpoints post-compression varies and is not known a priori.

Acknowledgments. This work was funded by the Intel Parallel Computing Centre at
Imperial College London and EPSRC EP/R029423/1. This work was supported by the
U.S. Department of Energy, Office of Science, Office of Advanced Scientific Comput-
ing Research, Applied Mathematics and Computer Science programs under contract
number DE-AC02-06CH11357. We would also like to acknowledge the support from
the SINBAD II project and the member organizations of the SINBAD Consortium.

We gratefully acknowledge the computing resources provided and operated by the
Joint Laboratory for System Evaluation (JLSE) at Argonne National Laboratory.

This paper benefited from discussions with Kaiyuan Huo, Fabio Luporini, Thomas
Matthews, Paul Kelly, Oana Marin.

References

1. https://computation.llnl.gov/projects/floating-point-compression/zfp-and-
derivatives

2. Alted, F.: Why modern cpus are starving and what can be done about it. Comput.
Sci. Eng. 12(2), 68 (2010)

3. Aminzadeh, F., Burkhard, N., Long, J., Kunz, T., Duclos, P.: Three dimensional
SEG/EAGE models–an update. Lead. Edge 15(2), 131–134 (1996)

4. Aupy, G., Herrmann, J., Hovland, P., Robert, Y.: Optimal multistage algorithm
for adjoint computation. SIAM J. Sci. Comput. 38(3), C232–C255 (2016)

5. Blanchet, J., Cartis, C., Menickelly, M., Scheinberg, K.: Convergence rate analysis
of a stochastic trust region method for nonconvex optimization. arXiv preprint
arXiv:1609.07428 (2016)

6. Boehm, C., Hanzich, M., de la Puente, J., Fichtner, A.: Wavefield compression for
adjoint methods in full-waveform inversion. Geophysics 81(6), R385–R397 (2016)

7. Cyr, E.C., Shadid, J., Wildey, T.: Towards efficient backward-in-time adjoint com-
putations using data compression techniques. Comput. Methods Appl. Mech. Eng.
288, 24–44 (2015)

8. Dalmau, F.R., Hanzich, M., de la Puente, J., Gutiérrez, N.: Lossy data compression
with DCT transforms. In: EAGE Workshop on High Performance Computing for
Upstream (2014)

9. Datta, D., Appelhans, D., Evangelinos, C., Jordan, K.: An asynchronous two-level
checkpointing method to solve adjoint problems on hierarchical memory spaces.
Comput. Sci. Eng. 20(4), 39–55 (2018)

10. Di, S., Tao, D., Liang, X., Cappello, F.: Efficient lossy compression for scientific
data based on pointwise relative error bound. IEEE Trans. Parallel Distrib. Syst.
30(2), 331–345 (2018)

11. Griewank, A., Walther, A.: Algorithm 799: revolve: an implementation of check-
pointing for the reverse or adjoint mode of computational differentiation. ACM
Trans. Math. Softw. (TOMS) 26(1), 19–45 (2000)

https://computation.llnl.gov/projects/floating-point-compression/zfp-and-derivatives
https://computation.llnl.gov/projects/floating-point-compression/zfp-and-derivatives
http://arxiv.org/abs/1609.07428

100 N. Kukreja et al.

12. Kukreja, N., Hückelheim, J., Lange, M., Louboutin, M., Walther, A., Funke, S.W.,
Gorman, G.: High-level python abstractions for optimal checkpointing in inversion
problems. arXiv preprint arXiv:1802.02474 (2018)

13. van Leeuwen, T., Herrmann, F.J.: 3d frequency-domain seismic inversion with
controlled sloppiness. SIAM J. Sci. Comput. 36(5), S192–S217 (2014)

14. Lindstrom, P.: Fixed-rate compressed floating-point arrays. IEEE Trans. Visual
Comput. Graphics 20(12), 2674–2683 (2014)

15. Louboutin, M., Lange, M., Luporini, F., Kukreja, N., Witte, P.A., Herrmann,
F.J., Velesko, P., Gorman, G.J.: Devito: an embedded domain-specific language
for finite differences and geophysical exploration. CoRR abs/1808.01995, August
2018. https://arxiv.org/abs/1808.01995

16. Marin, O., Schanen, M., Fischer, P.: Large-scale lossy data compression based on
an a priori error estimator in a spectral element code. Technical report, ANL/MCS-
P6024-0616 (2016)

17. O’Neil, M.A., Burtscher, M.: Floating-point data compression at 75 gb/s on a GPU.
In: Proceedings of the Fourth Workshop on General Purpose Processing on Graph-
ics Processing Units. ACM (2011). https://doi.org/10.1145/1964179.1964189

18. Plessix, R.E.: A review of the adjoint-state method for computing the gradient of a
functional with geophysical applications. Geophys. J. Int. 167(2), 495–503 (2006)

19. Stumm, P., Walther, A.: Multistage approaches for optimal offline checkpointing.
SIAM J. Sci. Comput. 31(3), 1946–1967 (2009)

20. Symes, W.W.: Reverse time migration with optimal checkpointing. Geophysics
72(5), SM213–SM221 (2007)

21. Tao, D., Di, S., Liang, X., Chen, Z., Cappello, F.: Optimizing lossy compression
rate-distortion from automatic online selection between sz and zfp. arXiv preprint
arXiv:1806.08901 (2018)

http://arxiv.org/abs/1802.02474
https://arxiv.org/abs/1808.01995
https://doi.org/10.1145/1964179.1964189
http://arxiv.org/abs/1806.08901

Scheduling and Load Balancing

Linear Time Algorithms for Multiple
Cluster Scheduling and Multiple Strip

Packing

Klaus Jansen and Malin Rau(B)

Institut für Informatik, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
{kj,mra}@informatik.uni-kiel.de

Abstract. We study the Multiple Cluster Scheduling problem and the
Multiple Strip Packing problem. For both problems, there is no algo-
rithm with approximation ratio better than 2 unless P = NP. In this
paper, we present an algorithm with approximation ratio 2 and running
time O(n) for both problems for N > 2 (and running time O(n log(n)2)
for N = 2). While a 2 approximation was known before, the running
time of the algorithm is at least Ω(n256) in the worst case. Therefore, an
O(n) algorithm is surprising and the best possible.

While the above result is strong from a theoretical point of view, it
might not be very practical due to a large hidden constant caused by
calling an AEPTAS with a constant ε ≥ 1/8 as subroutine. Neverthe-
less, we point out that the general approach of finding first a schedule on
one cluster and then distributing it onto the other clusters might come
in handy in practical approaches. We demonstrate this by presenting a
practical algorithm with running time O(n log(n)), without hidden con-
stants, that is an approximation algorithm with ratio 9/4 if the number
N of clusters is dividable by 3 and bounded by 9/4 + 3

4N
otherwise.

1 Introduction

In the optimization problem Multiple Cluster Scheduling (MCS), we are given
n ∈ N parallel jobs J and N ∈ N clusters. Each cluster consists of m ∈ N

identical machines and each job j ∈ J has a processing time p(j) ∈ N and a
machine requirement q(j) ∈ N≤m. A schedule S = (σ, ρ) of the jobs consists of
two functions σ : J → N which assigns jobs to starting points and ρ : J →
{1, . . . N}, which assigns jobs to the clusters. The objective is to find a feasible
schedule of all the jobs, which minimizes the makespan, i.e., which minimizes
max{p(j) + σ(j)|j ∈ J }. A schedule is feasible if at every time τ ∈ N and any
Cluster i ∈ N the number of used machines is bounded by m, i.e., if

∑

j∈J ,σ(j)≤τ<σ(j)+p(j),ρ(j)=i

q(j) ≤ m ∀i ∈ {1, . . . , N}, τ ∈ N.

Research was supported by German Research Foundation (DFG) project JA 612/20-1.

c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 103–116, 2019.
https://doi.org/10.1007/978-3-030-29400-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_8&domain=pdf
http://orcid.org/0000-0002-5710-560X
https://doi.org/10.1007/978-3-030-29400-7_8

104 K. Jansen and M. Rau

If the number of clusters is bounded by one, the problem is called Parallel Task
Scheduling (PTS). We can assume that n > N since otherwise an optimal sched-
ule would place each job alone on one cluster and thus the problem is not hard.

The other considered problem is a closely related variant of MCS called
Multiple Strip Packing (MSP). The difference is that the jobs have to be allocated
on contiguous machines. We are given n ∈ N rectangular items I and N ∈ N

strips (also called clusters). Each strip has an infinite height and the same width
W ∈ N. Each item i ∈ I has a width w(i) and a height h(i). The objective is to
find a feasible packing of the items into the strips such that the packing height
is minimized. A packing is feasible if all the items are placed overlapping free
into the strips. If the number of strips is bounded by one, the problem is called
Strip Packing (SP).

Strip Packing and Parallel Task Scheduling are classical optimization prob-
lems and the extension of these problems to multiple strips or clusters comes
natural. Moreover, these problems can be motivated by real world problems.
One example, as stated in [16], is the following: In operating systems, Multiple
Strip Packing (MSP) arises in the computer grid and server consolidation [10]. In
the system supporting server consolidation on many-core chip multi processors,
multiple server applications are deployed onto virtual machines. Every virtual
machine is allocated several processors and each application might require a
number of processors simultaneously. Hence, a virtual machine can be regarded
as a cluster and server applications can be represented as parallel tasks. Sim-
ilarly, in the distributed virtual machines environment, each physical machine
can be regarded as a strip while virtual machines are represented as rectangles.
It is quite natural to investigate the packing algorithm by minimizing the max-
imum height of the strips. This is related to the problem of maximizing the
throughput, which is commonly used in the area of operating systems.

In this paper, we consider approximation algorithms for MCS and MSP. We
say an approximation algorithm A has an (absolute) approximation ratio α, if for
each instance I of the problem it holds that A(I) ≤ αOPT(I), where A(I) is the
objective value obtained by the algorithm A while OPT(I) denotes the optimal
objective value for the instance I. Note that in this paper we will denote by
OPT(I) (or only OPT) both: the optimal objective value and an optimal solution
for an instance I. A family of algorithms with approximation ratio (1+ε) is called
polynomial time approximation scheme (PTAS), and a PTAS whose running
time is bounded by a polynomial in both the input length SIZE(I) and 1/ε is
called fully polynomial time approximation scheme (FPTAS). If the running time
of a PTAS is bounded by a function of the form poly(SIZE(I))·f(1/ε), where f is
an arbitrary function, we say the running time is efficient and call it an efficient
PTAS or EPTAS. An algorithm A has an asymptotic approximation ratio α if
there is a constant c such that A(I) ≤ αOPT(I)+ c and we denote a polynomial
time approximation scheme with respect to the asymptotic approximation ratio
as an A(E)PTAS.

MCS and MSP cannot be approximated better than 2 unless P = NP, see [16].
On the other hand, the best algorithms so far are 2-approximations, see [2] for
MSP and [9] for MCS. Both algorithms have a large worst case running time of

Linear Time Algorithms for MCS and MSP 105

Ω(n256) since they uses an algorithm with running time nΩ(1/ε1/ε) with constant
ε = 1/4 as a subroutine. Because of this running time, efforts have been made to
speed up the running time in expense of the approximation ratio, see for example
[11] and [3]. For MCS and MSP, we present 2-approximations with a drastically
improved running time with regard to the O-notation.

Theorem 1. There are algorithms for MCS and MSP with approximation ratio
2 and running time O(n) if N > 2, running time O(n log(n)) if N ∈ {1, 2} for
MCS and running time O(n log2(n)/ log(log(n))) if N ∈ {1, 2} for MSP.

The running time of these algorithms is the best possible from a theoretical
point of view with respect to the O-notation for N ≥ 3. Since we need to assign
a start point to each job, we cannot assume that there is an algorithm for MCS
with running time strictly faster than Ω(n). To achieve these results, we use an
AEPTAS for the optimization problem PTS and SP as a subroutine respectively.
Regarding PTS, we improved the running time of an algorithm by Jansen [6]
and developed an AEPTAS. For SP, we find an AEPTAS as well. However the
running time depending on 1/ε is worse than in the AEPTAS for PTS. Note
that this algorithm is the first AEPTAS for SP that has an additive term of
hmax := max{h(i) | i ∈ I}. The best algorithm so far with additive term hmax is
an APTAS, see [8].

Theorem 2. There are AEPTASs for PTS and SP with running time O(n) ·
Oε(1) and additive term pmax := max{p(j) | j ∈ J } or hmax respectively.

These algorithms can be used to find an AEPTAS for MCS and MSP by
cutting the solution for one cluster or strip into segments of height (1 + ε)OPT.
The jobs overlapping these cuts on the top add further pmax to the approximation
ratio resulting in an AEPTAS with additive term pmax.

Theorem 3. There are AEPTASs for for MCS and MSP with running time
O(n) · Oε(1) and additive term pmax or hmax respectively.

The algorithms from Theorem 1 use the algorithms from Theorem2 as sub-
routines with a constant value ε = 1/8 if N = 2, ε = 1/5 if N = 5, and
ε ∈ [1/4, 1/3] otherwise. As a result, the running time of the algorithm can be
rather large, while the O-notation suggests otherwise since it hides all the con-
stants. Due to this fact, we have developed a truly fast algorithm where the most
expensive part is sorting the jobs. However, this improved running time yields a
slight loss in the approximation factor.

Theorem 4. There is a fast O(n log(n)) algorithm for MCS with approximation
ratio 9/4 if N = 3i, (9i+5)/(4i+2) ≤ 9/4+ 3

8N if N = 3i+1, and (9i+10)/(4i+
4) ≤ 9/4 + 3

4N if N = 3i + 2 for some i ∈ N.

Note that the approximation ratio of the algorithm from Theorem4 is worse
than 7/3 for the cases that N ∈ {2, 5} and exactly 7/3 for the case that N ∈
{4, 8}. However for each other N , the algorithm beats the approximation ratios
of the previous fast algorithms.

106 K. Jansen and M. Rau

Table 1. Overview of the results for MCS and MSP.

Problem Ratio Remarks Source

MCS, MSP 2 + ε Needs solving of Scheduling on Identical
Machines with ratio 1 + ε/2

[16]

MCS 2 Worst case running time at least Ω(n256);
can handle clusters with different sizes

[9]

MSP 2 Worst case running time at least Ω(n256) [2]

MCS, MSP AFPTAS Additive constant in O(1/ε2), and O(1) for
large values for N

[2]

MCS 3 Fast algorithm that can handle clusters with
different sizes

[11]

MCS 5/2 Fast algorithm [3]

MCS 7/3 Fast algorithm [3]

MCS 2 Fast algorithm; requires
maxj∈J q(j) ≤ 1/2 · m

[3]

MCS, MSP 2 N ≥ 3: running time O(n); N = 2: running
time O(n log(n)) for MCS, O(n log2(n)) for
MSP

This paper

MCS, MSP AEPTAS Additive term pmax; linear in n This paper

MCS 9/4 If N mod 3 = 0 or if N is large This paper

PTS, SP AEPTAS Additive term pmax; linear in n This paper

Related Work. We summarize the results for the variant of MCS and MSP
studied in this paper in Table 1. Furthermore, MCS has been studied for the case
that clusters do not need to have the same number of machines. It is still NP -
hard to approximate this problem better than 2 [17]. Moreover, it was proven in
[11] and [13] that the List Schedule cannot guarantee a constant approximation
ratio for this problem. The first algorithm was presented by Tchernykh et al.
[13] and has an approximation ratio of 10. This ratio was improved to a 3-
approximation by Schwiegelshohn et al. [11], which is given by an online non-
clairvoyant algorithm where the processing times are not known beforehand.
Later, the algorithm was extended by Tchernykh et al. [14] to the case where
jobs have release dates changing the approximation ratio to 2e + 1. Bougeret
et al. [1] developed an algorithm with approximation ratio 2.5 for this case.
This algorithm needs the constraint that the largest machine requirement of
a job is smaller than the smallest number of machines available in any given
cluster. This ratio was improved by Dutot et al. [4] by presenting an algorithm
with approximation ratio (2 + ε). The currently best algorithm for this problem
matches the lower bound of 2 [9], but has a large running time of Ω(n256).

Methodology. The O(n) algorithm consists of two steps. First, we use an AEP-
TAS for MCS or MSP to find a schedule on two clusters, one with makespan
at most (1 + ε)NOPT and the other with makespan at most pmax or hmax

respectively. This schedule on the two clusters is then distributed onto the N

Linear Time Algorithms for MCS and MSP 107

clusters using a new partitioning technique. This partitioning technique is the
main accomplishment of this paper and presented in Sect. 2. The AEPTASs for
MCS and MSP are excluded from this extended abstract and can be found in
the full version [7]. In Sect. 3, we present the algorithm from Theorem 4 that
finds an approximation without the need to call the AEPTAS as a subroutine
but uses the partitioning technique as well.

2 Partitioning Technique

In this section, we describe the central idea which leads to a linear running time
algorithm. Indeed this technique can be used for any problem setting where there
is an AEPTAS with approximation ratio (1+ε)OPT+pmax for the single cluster
version. In this context, pmax is the largest occurring size in the minimization
dimension, e.i. it stands for hmax in the MSP problem.

Note that MSP can be interpreted as a scheduling problem, where the jobs
have to be scheduled on contiguous machines by calling the items jobs (where the
processing time corresponds to the height) and calling the strips clusters. Hence,
in this section, we will speak of jobs and clusters for both problem settings MCS
and MSP. In this spirit, we define the work of a job j as W(j) := p(j) · q(j) and
the work of a set of jobs J ′ as W(J ′) :=

∑
j∈J ′ W(j).

The basic idea of the algorithm can be summarized as follows. Instead of
scheduling the jobs on N clusters, we first schedule them on only two clusters
C1 and C2. In a second step, we distribute the scheduled jobs to the N clusters.
In the following, let OPT be the height of an optimal schedule on N clusters for
a given instance I. Hence, there exists a schedule on one cluster with makespan
at most N ·OPT. In the following we will assume that there is an algorithm Alg
which schedules the jobs on two clusters C1 and C2 such that the makespan of
C1 is at most (1 + ε)N · OPT and C2 has a makespan of at most OPT. The
algorithm mentioned in Theorem2 is an example of such an algorithm. It has an
approximation ratio of (1 + ε)OPT + pmax since there is a set of jobs, which are
added to the end of the schedule, all starting at the same time. Instead adding
them on the end of the schedule, we can schedule them on cluster C2 instead
(all starting at the same time).

The case N > 2

The case N > 2 differs from the case N = 2 with regard to the partitioning
technique and the running time.

Lemma 1. Let C1 and C2 be two clusters both with m machines. Let Alg be
an algorithm that schedules the jobs on two clusters C1 and C2 such that the
makespan of C1 is at most (1 + ε)NOPT and C2 has a makespan of at most
OPT with running time of O(n · f(ε)).

We can find a schedule on N > 2 clusters with makespan 2OPT in O(n+n ·
f(�N/3�/N)) = O(n) operations. (Note that �N/3�/N ∈ [1/5, 1/3], and hence
can be handled as a constant)

108 K. Jansen and M. Rau

C1

Type:

pr
oc
es
in
g
ti
m
e

4TA

6TA

8TA ≤ 8OPT

1
A

2
A

3
A

4
A

5
B

C2

6

Fig. 1. An example for N = 3i and i = 2. The schedule generated on C1 can be seen
on the left followed by its partition onto the 6 clusters. The schedule on C1 has a height
of at most (N + �N/3�)OPT ≤ 8OPT. We get four clusters of type A, namely clusters
1 to 4, and one cluster of type B, namely cluster 5 which contains the jobs cut by the
two horizontal lines at 2TA and 4TA. Cluster 6 contains the jobs cut by the horizontal
line at 6TA and the jobs from cluster C2 that remain their relative position.

In the following, we will describe how to distribute a schedule given by Alg to
N new clusters, and which value we have to choose for ε in Alg to get the desired
approximation ratio of 2. The partitioning algorithm distinguishes three cases:
N = 3i,N = 3i + 1 and N = 3i + 2 for some i ∈ N≥1 and chooses the value for
ε dependent on this N , such that ε ∈ [1/5, 1/3]. In the following, when speaking
of a schedule the processing time is on the vertical axis while the machines are
displayed on the horizontal axis, see Fig. 1.

In the following distributing algorithm, we draw horizontal lines at each
multiple of 2TA, where TA ≤ OPT is a value which depends on the makespan of
the schedule defined by Alg and will be specified dependent on N later. We say
a job j is cut by a horizontal line at i · 2TA if it starts before and ends after it,
i.e. if σ(j) < i · 2TA < σ(j) + p(j). Let i ∈ N and consider the jobs which start
at or after 2iTA and end at or before 2(i + 1)TA. We remove these jobs from C1

and schedule them on a new cluster while maintaining their relative position.
We say these new clusters have type A. Obviously the makespan of this cluster
is bounded by 2TA ≤ 2OPT. Next, consider the set of jobs cut by the horizontal
line at 2iTA. These jobs have a processing time of at most pmax ≤ OPT and can
be scheduled at the same time without violating any constraint, since they are
already scheduled next to each other. We schedule two of these sets of jobs in a
new cluster with makespan 2pmax ≤ 2OPT by letting the first set start at 0 and
the second start at pmax. We say, these clusters have type B.

Case 1: N = 3i. If N = 3i, we choose ε := �N/3�/N = 1/3. As a consequence,
the schedule on C1 given by Alg has a makespan of T ≤ (4/3)NOPT = 4iOPT
and we define TA := T/(4i) ≤ OPT. We partition the given schedule as described
above. Since it has a height of 4iTA, we get 2i clusters of type A each with
makespan at most 2TA ≤ 2OPT, see Fig. 1. There are 4iTA/(2TA) − 1 = 2i − 1

Linear Time Algorithms for MCS and MSP 109

C1

Type:

2TA

4TA

5TA

1
A

2
A

3
B

C2

4

Fig. 2. An example for N = 3i + 1 and i = 1. The makespan of the schedule on C1 is
bounded by (N + �N/3�)OPT = 5OPT. Hence, we get two clusters of type A, namely
cluster 1 and 2, and one cluster of type B, see cluster 3. It contains the jobs cut by
the horizontal lines at 2TA and 4TA. Cluster 4 contains the jobs which are completely
scheduled between 4TA and 5TA as well as the jobs from cluster C2.

lines at multiples of 2TA that have the possibility to cut jobs. Hence, we get⌊
2i−1
2

⌋
= i − 1 clusters of type B since each cluster of type B contains two sets

of jobs cut by such a horizontal line. The jobs intersecting the last line can be
scheduled on one new cluster with makespan pmax ≤ OPT. On this last cluster
after the point in time pmax, we schedule the jobs from the cluster C2. Remember,
the schedule on C2 has a makespan of at most OPT and, hence, the makespan
of this last cluster is bounded by 2OPT as well. In total, we have partitioned
the schedule into 2i + i − 1 + 1 = 3i = N clusters each with makespan at most
2OPT.

Case 2: N = 3i + 1. If N = 3i + 1 for some i ∈ N, we choose ε := �N/3�/N =
i/(3i + 1) ≥ 1/4. As a result, the makespan of C1 generated by the algorithm
Alg is given by T ≤ (1 + i/(3i + 1))NOPT = (4i + 1)OPT and we define
TA := T/(4i + 1) ≤ OPT. There are 	(4i + 1)/2
 − 1 = 2i multiples of 2TA

smaller than (4i + 1)TA, see Fig. 2. Above the last multiple of 2TA smaller than
(4i + 1)TA namely 4iTA, the schedule has a height of at most TA ≤ OPT left.
Hence using the above-described partitioning technique, we generate 2i clusters
of type A. The jobs intersecting the 2i multiples of 2TA can be placed into i
clusters of type B. We have left the jobs above 4iTA, which can be scheduled in
a new cluster with makespan TA ≤ OPT. Last, we place the jobs from cluster
C2 on top of the schedule in the new cluster, such that it has a makespan of
at most TA + OPT ≤ 2OPT in total. Altogether, we have distributed the given
schedule on 2i+ i+1 = 3i+1 = N clusters each with makespan at most 2OPT.

Case 3: N = 3i+2. If N = 3i+2, we choose ε = �N/3�/N = i/(3i+2) ≥ 1/5:
As a result, the makespan on C1 generated by Alg is bounded by T ≤ (1+i/(3i+
2))NOPT = (4i + 2)OPT and we define TA := T/(4i + 2) ≤ OPT. Thus, there
are (4i + 2)/2 − 1 = 2i vertical lines at the multiples of 2TA, which are strictly
larger than 0 and strictly smaller than (4i + 2)TA, see Fig. 3. As a consequence,
we construct 2i + 1 clusters of type A and i clusters of type B. The cluster C2

defines one additional cluster of this new schedule. In total, we have a schedule
on 2i + 1 + i + 1 = N clusters with makespan bounded by 2OPT.

110 K. Jansen and M. Rau

C1

Type:

2TA

4TA

6TA

1
A

2
A

3
A

4
B

C2

5

Fig. 3. An example for N = 3i + 2 and i = 1. The total height of the schedule on C1

is bounded by (N + �N/3�)OPT = 6OPT. We get three clusters of type A namely 1,
2, and 3. Furthermore, we get one cluster of type B namely cluster number 4 which
contains the jobs cut by the horizontal lines at 2TA and 4TA. The cluster C2 builds its
own cluster, see cluster 5.

This distribution can be made in O(n) steps since we have to relocate each
job at most once. Therefore the algorithm has a running time of at most O(n +
n · f(�N/3�/N)) = O(n) since �N/3�/N is a constant of size at least 1/5. This
concludes the proof of Lemma 1.

The case N = 2

To find a distribution for this case, we need to make a stronger assumption to
the solution of the algorithm Alg. Namely, we assume that the second cluster C2

has just εm machines. As a consequence, the total work of the jobs contained
on C2 is bounded by εmOPT.

Lemma 2. Let C1 and C2 be two clusters with m and �εm� machines respec-
tively. Let Alg be an algorithm that schedules the jobs on two clusters C1 and C2

such that the makespan of C1 is at most (1+ε)NOPT and C2 has a makespan of
at most OPT with running time of O(n ·f(ε)). Furthermore, let Alg2 be an algo-
rithm that finds for the single cluster variant a schedule or packing with height
at most 2 · max{W(J)/m, pmax} in Op(Alg2(J ,m,N)) operations.

We can find a schedule on N = 2 clusters with makespan 2OPT in

Op(Alg2(J ,m,N)) + O(n · f(1/8)) = Op(Alg2(J ,m,N)) + O(n)

operations.

Consider a schedule given by Alg on the clusters C1 and C2 for some ε > 0.
We denote by J (C1) the set of jobs scheduled on C1 and by J (C2) the set of jobs
scheduled on C2. The schedule on cluster C1 has a makespan of T ≤ (1+ε)2OPT.
We assume that T > 2pmax since otherwise we have T ≤ 2OPT and do not need
to reorder the schedule any further. We draw horizontal lines at εT and at T −εT
and define two sets of jobs J1 and J2. The set J1 contains all jobs starting before

Linear Time Algorithms for MCS and MSP 111

T/2

T − εT
T ≤ 2(1 + ε)OPT

εT

m
C1

OPT

εm
C2

Fig. 4. An example for a schedule on C1 and C2 for the case that N = 2. The dark
gray areas on the bottom represent the jobs inside the set J1 while the dark gray areas
on the top represent the jobs contained in the set J2.

εT and J2 contains all jobs ending after T−εT , see Fig. 4. Since T ≤ (1+ε)2OPT,
we have that (1 − ε)T < 2OPT. Furthermore, J1 and J2 are disjoint if ε ≤ 1/4
since pmax ≤ T/2 and therefore εT + pmax ≤ T/4 + T/2 ≤ 3/4T ≤ (1 − ε)T . The
total work of the jobs is bounded by 2OPTm and, hence, W(J)/(2m) ≤ OPT .
We distinguish two cases:

Case 1: W(J1) ≤ (1 − ε)W(J)/2 or W(J2) ≤ (1 − ε)W(J)/2. Let w.l.o.g
W(J2) ≤ (1 − ε)W(J)/2 ≤ (1 − ε)mOPT. We remove all jobs in J2 from the
cluster C1. As a result this cluster has a makespan of (1 − ε)T < 2OPT. The
total work of the jobs contained in C2 combined with the jobs in J2 is at most
mOPT, i.e. W(J (C2)∪J2) ≤ m·OPT. Therefore, we can use the algorithm Alg2
(for example the List-Scheduling algorithm by Garay and Graham [5]) to find
a schedule with makespan at most 2max{pmax,W(J (C2) ∪ J2)/m} ≤ 2OPT.
Hence, we can find a schedule on two clusters in at most Op(Alg2(J ,m,N)) +
O(n · f(ε)) for this case.

Case 2: W(J1) > (1−ε)W(J)/2 and W(J2) > (1−ε)W(J)/2. Consider the set
of jobs J3 scheduled on C1 but not contained in J1 or J2. Since the total work
of the jobs is at most W(J) ≤ mOPT it holds that W(J3) ≤ W(J) − W(J1) −
W(J2) = εW(J) ≤ 2εmOPT. We define J4 as the set of jobs ending at or before
εT and J5 as the set of jobs starting at or after (1 − ε)T . Both sets have a total
work of at most εmT ≤ 2(ε+ε2)mOPT and therefore W(J3∪J4∪J5∪J (C2)) ≤
(7ε + 4ε2)mOPT. If ε = 1

8 , these jobs have a total work of at most mOPT and
are scheduled with the algorithm Alg2 to find a schedule on one cluster with
makespan at most 2max{pmax,W(J3 ∪ J4 ∪ J5 ∪ J (C2))/m} ≤ 2OPT.

To this point, we have scheduled all jobs except the ones cut by the line εT
and the jobs cut by the line (1 − ε)T . We schedule them in the second cluster
by starting all the jobs cut by the first line at start point 0 and the second set
of jobs at the start point pmax ≤ OPT. Note that the partition into the sets
J1, . . . ,J5 can be done in O(n) and hence the partitioning step is dominated
by the running time of the algorithm Alg2. Since we have to choose ε = 1/8

112 K. Jansen and M. Rau

in both cases for N = 2, we can bound the running time of the algorithm by
Op(Alg2(J ,m,N)) + O(n · f(1/8)) = Op(Alg2(J ,m,N)) + O(n) in this case.

This concludes the proof of Lemma 2. However, to prove Theorem 1, we need
to prove the existence of the algorithm Alg, which finds the schedule on the
clusters C1 and C2. We refer to the full version for this proof. Note that for
Alg2, we use Steinbergs-Algorithm [12] in the case of SP. It has a running time
that is bounded by O(n log2(n)/ log(log(n))). On the other hand for PTS, we use
the List-Scheduling algorithm by Garay and Graham [5], which was optimized
by Turek et al. [15] to have a running time of O(n log(n)).

Corollary 1. For all N ≥ 3, given a schedule on two clusters C1 and C2 such
that the makespan of C1 is at most (1+�N/3�/N)NOPT and C2 has a makespan
of at most OPT, we can find a schedule on N clusters with makespan at most
2OPT in at most O(n) additional steps.

This corollary is a direct conclusion of the Lemma 1. As a result, instead of
the AEPTAS, first, we can try to use any heuristic or other (fast) approximation
algorithm: Given a schedule by any heuristic, remove all the jobs that end after
the point in time where the last job starts and place them on the cluster C2

by starting them all at the same time. The schedule on C2 obviously has a
makespan bounded by pmax ≤ OPT. Next, check whether the residual schedule
on C1 has a makespan of at most (1 + �N/3�/N)NOPT. For example, compare
the makespan T on C1 to the lower bound on the optimal makespan L :=
max{pmax,W(J)/m, p(J>m/2)}, where J>m/2 is the set of all jobs with machine
requirement larger than m/2. If the makespan T is small enough, i.e., if T ≤ (1+
�N/3�/N)L use the partitioning technique to find a 2-approximation. Otherwise,
use the corresponding AEPTAS presented in the full version.

3 A Faster Algorithm for a Practical Number of Jobs

In the algorithm described above, we have a running time of O(n), but the hid-
den constant can be extremely large. Hence, in practical applications it might
be more beneficial to use an algorithm with running time O(n log(n)) or O(n2),
to find an αOPT+pmax approximation for Parallel Task Scheduling (PTS), that
does not have any hidden constants. For N ∈ N \ {2, 5}, we use ε ∈ [1/4, 1/3]
and hence a fast poly(n) algorithm without large hidden constants and approx-
imation ratio (5/4)OPT + pmax would be a significant improvement for the
vast majority of cluster numbers. Even an algorithm with approximation ratio
(4/3)OPT + pmax would speed up the algorithm for one third of all the possible
instances, namely all the instances where the number of clusters is dividable by
three. To this point, we did find neither of the algorithms, and leave this as an
open question. Instead, we present a fast algorithm with approximation ratio
(3/2)OPT + pmax. This algorithm for PTS leads to an algorithm for MCS with
approximation ratio 9/4 for all instances where N mod 3 = 0.

Linear Time Algorithms for MCS and MSP 113

m/2m/3 2
3
m

τ

τ

T

a

b

Fig. 5. A placement of the jobs with processing time larger than m/3. Above τ ′ the
jobs are stacked in decreasing order of their machine requirement (width) since the
algorithm places the jobs which have the largest fitting machine requirement first.

Lemma 3. There is an algorithm for PTS with approximation guarantee of
(3/2)OPT + pmax and running time O(n log(n)). This schedule can be divided
into two clusters C1 and C2, where the schedule on C1 has a makespan of at
most (3/2)OPT and the makespan of C2 is bounded by pmax.

Due to space limitations, we present an overview of the algorithm, but discard
the proof of correctness. We refer to the full version for the proof, see [7]. This
algorithm uses the following optimized variant of List-Scheduling: Starting at
time τ = 0 for every endpoint of a job, schedule the widest job that can be
started at this point if there is one; otherwise, go to the next endpoint and
proceed as before. The first part of the algorithm can be summarized as follows:

1. For a given set of jobs J , first consider the jobs j ∈ J with q(j) ∈ [m/3,m]
and sort them by decreasing size of the machine requirement q(j).

2. We stack all the jobs j ∈ J with q(j) > m/2 ordered by their machine
requirement such that the largest starts at time 0, see Fig. 5.

3. Look at the job with the smallest requirement of machines larger than m/3
and place it at the first possible point in the schedule next to the jobs with
machine requirement larger than m/2. We call this point in time τ .

4. Schedule all the other jobs with machine requirement at least m/3 with the
optimized List-Schedule starting at τ . The List-Schedule includes the end-
points of the already scheduled jobs.

Let τ ′ be the point in time, where the last job j with q(j) > m/2 ends.
Furthermore, let T ′ be the last point in the schedule where two jobs are processed
and define T := max{T ′, τ ′}. Additionally, we define τ ′′ to be the first point in
time where both jobs scheduled at τ ′ have ended. We claim that T ≤ OPT
and refer to the long version for the proof. If there are no jobs with machine
requirement at most m/3, we do not need to add further steps and have found
a schedule with approximation guarantee OPT + pmax.

Let a be the total processing time before T , where only one job is scheduled,
and let b be the total processing time, where exactly two jobs are scheduled.
We will consider two cases: a > b and a ≤ b. In the first case, we have to

114 K. Jansen and M. Rau

dismantle the current schedule, while in the second case this is not necessary.
We summarize the second part of the algorithm as follows:

5. Find a and b
6. If a > b, dismantle the schedule and stack all the jobs with machine require-

ment larger than m/3 on top of each other, sorted by machine requirement
such that the widest one starts at 0. Schedule the residual jobs with the
modified List-Schedule starting at 0 and using the endpoints of all jobs.

7. Else if a ≤ b, determine τ ′′ and use the optimized List-Schedule to schedule
the remaining starting at τ ′′ while using the endpoints of all scheduled jobs.

Last, we describe how to partition this schedule into the schedule on the
clusters C1 and C2. In the described algorithm, the additional pmax is added
by the last started job. To partition this schedule such that it is scheduled on
the two clusters C1 and C2, look at the starting time ρ of the last started job.
Remove this job and all the jobs which end strictly after ρ and place them into
the second cluster C2, starting at the same time. The resulting schedule on C2

has a height of at most pmax. Leave the residual jobs untouched and declare the
cluster as C1. The schedule up to ρ has a height of at most (3/2)OPT.

3.1 Proof of Theorem4

In this section, we prove Theorem 4. We start with the schedule given by the
(3/2)OPT + pmax algorithm from Lemma 3 and its partition onto the two clus-
ters C1 and C2. To partition the schedule on C1 onto the different clusters, we
differentiate the three cases N = 3i, N = 3i + 1 and N = 3i + 2.

Case 1: N = 3i In this case, the schedule on C1 has a height of T ≤ (9i/2)OPT.
We partition it into 2i parts of equal height T/(2i) ≤ (9/4)OPT. During this
partition step, we cut the schedule 2i − 1 times. The jobs intersected by a cut
have to be scheduled separately using height pmax. Together with the jobs in C2,
we have 2i sets of jobs with height bounded by pmax and machine requirement
bounded by m. We schedule these sets pairwise on i additional clusters analo-
gously to the clusters of type B in Sect. 2. In total, we use 3i = N clusters and
the largest one has a height of at most (9/4)OPT = 2.25OPT.

Case 2: N = 3i + 1 In this case, the schedule on C1 has a height of T ≤
(3(3i+1)/2)OPT = ((9i+3)/2)OPT. We partition the schedule into 2i parts of
equal height and one part with a smaller height. On top of this part, we schedule
the jobs from C2. Let TA := (2/(9i+3))T ≤ OPT. We define the height of the 2i
parts as ((9i+5)/(4i+2))TA and the height of the last part as ((5i+3)/(4i+2))TA.
It is easy to verify the 2i · (9i + 5)/(4i + 2) · TA + (5i + 3)/(4i + 2) · TA = T
and, hence, we have partitioned the complete schedule on C1. By partitioning
the schedule on C1 into these parts, we have cut the schedule 2i times. Therefore
together with the jobs on C2, we have to schedule 2i+1 parts of height pmax. We
schedule C2 on the cluster with current makespan ((5i+3)/(4i+2))TA resulting
in a schedule of height ((5i + 3)/(4i + 2))TA + pmax ≤ ((9i + 5)/(4i + 2))OPT,

Linear Time Algorithms for MCS and MSP 115

(since pmax ≤ OPT). We pair the other 2i parts and schedule them on i distinct
clusters. In total, we generate 2i+1+ i = 3i+1 cluster and the largest occurring
makespan is bounded by ((9i + 5)/(4i + 2))OPT.

Case 3: N = 3i + 2 In this case, the schedule on C1 has a height of T ≤
(3(3i+2)/2)OPT = ((9i+6)/2)OPT. We partition this schedule into 2i+1 parts
of equal height and one part with a smaller height. On top of this part, we will
schedule two parts with processing time pmax. Let TA := (2/(9i + 6))T ≤ OPT.
The first 2i + 1 parts of C1 have a height of ((9i + 10)/(4i + 4))TA and the
last part has a height of at most ((i + 2)/(4i + 4))TA. It is easy to verify that
(2i + 1)((9i + 10)/(4i + 4))TA + ((i + 2)/(4i + 4))TA = ((9i + 6)/2)TA = T and,
hence, we have scheduled all parts of C1. Since ((i + 2)/(4i + 4))TA + 2pmax ≤
((9i + 10)/(4i + 4))OPT, we can schedule two parts with processing time at
most pmax on this cluster. We have cut the schedule on C1 exactly 2i + 1 times.
Together, with the jobs from C2 there are 2i + 2 parts with processing time
at most pmax. Since we already have scheduled two of these parts, we pair the
residual 2i parts and generate i new clusters with makespan at most 2pmax. In
total, we generated 2i+2+i = 3i+2 clusters and the largest makespan occurring
on the clusters is bounded by ((9i + 10)/(4i + 4))OPT.

For each of the three cases N = 3i, N = 3i + 1, and N = 3i + 2, we have
presented a partitioning strategy which partitions the schedule from clusters
C1 and C2 onto N clusters such that each cluster has a makespan of at most
(9/4)OPT, ((9i+5)/(4i+2))OPT or ((9i+10)/(4i+4))OPT respectively. Hence,
we have proven Theorem 4.

4 Conclusion

In this paper, we presented an algorithm for Multiple Cluster Scheduling (MCS)
and Multiple Strip Packing (MSP) with best possible absolute approximation
ratio of 2 and best possible running time O(n) for the case N ≥ 3. Still open
remains the question if for the case N = 2 the running time of O(n log(n))
or O(n log2(n)/(log(log(n))) for MCS and MSP respectively can be improved
to O(n). Furthermore, we presented a truly fast algorithm for Multiple Cluster
Scheduling (MCS) with running time O(n log(n)) that does not have any hidden
constants. Since the running time of the O(n) algorithm hides large constants,
it would be interesting to improve the running time of the underlying AEPTAS
or even to find a fast algorithm with approximation guarantee (5/4)OPT+pmax.

References

1. Bougeret, M., Dutot, P.-F., Jansen, K., Otte, C., Trystram, D.: A fast
5/2-approximation algorithm for hierarchical scheduling. In: D’Ambra, P.,
Guarracino, M., Talia, D. (eds.) Euro-Par 2010. LNCS, vol. 6271, pp. 157–167.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15277-1 16

https://doi.org/10.1007/978-3-642-15277-1_16

116 K. Jansen and M. Rau

2. Bougeret, M., Dutot, P., Jansen, K., Robenek, C., Trystram, D.: Approximation
algorithms for multiple strip packing and scheduling parallel jobs in platforms.
Discrete Math. Alg. Appl. 3(4), 553–586 (2011)

3. Bougeret, M., Dutot, P., Trystram, D., Jansen, K., Robenek, C.: Improved approxi-
mation algorithms for scheduling parallel jobs on identical clusters. Theor. Comput.
Sci. 600, 70–85 (2015)

4. Dutot, P., Jansen, K., Robenek, C., Trystram, D.: A (2 + ε)-approximation for
scheduling parallel jobs in platforms. In: Proceedings of the 19th Euro-Par, Aachen,
Germany, August 26–30, 2013, pp. 78–89 (2013)

5. Garey, M.R., Graham, R.L.: Bounds for multiprocessor scheduling with resource
constraints. SIAM J. Comput. 4(2), 187–200 (1975)

6. Jansen, K.: A (3/2+ε) approximation algorithm for scheduling moldable and non-
moldable parallel tasks. In: Proceedings of the 24th ACM SPAA, Pittsburgh, PA,
USA, June 25–27, pp. 224–235 (2012)

7. Jansen, K., Rau, M.: Linear time algorithms for multiple cluster scheduling and
multiple strip packing. CoRR, abs/1902.03428 (2019)

8. Jansen, K., Solis-Oba, R.: Rectangle packing with one-dimensional resource aug-
mentation. Discrete Optim. 6(3), 310–323 (2009)

9. Jansen, K., Trystram, D.: Scheduling parallel jobs on heterogeneous platforms.
Electron. Notes Discrete Math. 55, 9–12 (2016)

10. Marty, M.R., Hill, M.D.: Virtual hierarchies to support server consolidation. In:
Proceedings of the 34th ISCA, June 9–13, San Diego, California, USA, pp. 46–56
(2007)

11. Schwiegelshohn, U., Tchernykh, A., Yahyapour, R.: Online scheduling in grids. In:
Proceedings of the 22nd IEEE IPDPS, Miami, Florida USA, April 14–18, 2008,
pp. 1–10 (2008)

12. Steinberg, A.: A strip-packing algorithm with absolute performance bound 2. SIAM
J. Comput. 26(2), 401–409 (1997)

13. Tchernykh, A., Ramı́rez, J.M., Avetisyan, A., Kuzjurin, N., Grushin, D., Zhuk, S.:
Two level job-scheduling strategies for a computational grid. In: Wyrzykowski, R.,
Dongarra, J., Meyer, N., Waśniewski, J. (eds.) PPAM 2005. LNCS, vol. 3911, pp.
774–781. Springer, Heidelberg (2006). https://doi.org/10.1007/11752578 93

14. Tchernykh, A., Schwiegelshohn, U., Yahyapour, R., Kuzjurin, N.: On-line hier-
archical job scheduling on grids with admissible allocation. J. Scheduling 13(5),
545–552 (2010)

15. Turek, J., Wolf, J.L., Yu, P.S.: Approximate algorithms scheduling parallelizable
tasks. In: Proceedings of the 4th (SPAA), pp. 323–332 (1992)

16. Ye, D., Han, X., Zhang, G.: Online multiple-strip packing. Theor. Comput. Sci.
412(3), 233–239 (2011)

17. Zhuk, S.: Approximate algorithms to pack rectangles into several strips. Discrete
Math. Appl. DMA 16(1), 73–85 (2006)

https://doi.org/10.1007/11752578_93

Scheduling on Two Unbounded Resources
with Communication Costs

Massinissa Ait Aba1(B), Alix Munier Kordon2, and Guillaume Pallez (Aupy)3

1 CEA, LIST, Computing and Design Environment Laboratory, Palaiseau, France
Massinissa.aitaba@cea.fr

2 Sorbonne Université, CNRS-UMR 7606 LIP6, Paris, France
Alix.Munier@lip6.fr

3 Inria, Labri & University of Bordeaux, Talence, France
guillaume.pallez@inria.fr

Abstract. Heterogeneous computing systems are popular and power-
ful platforms, containing several heterogeneous computing elements (e.g.
CPU+GPU). In this work, we consider a platform with two types of
machines, each containing an unbounded number of elements. We want
to execute an application represented as a Directed Acyclic Graph (DAG)
on this platform. Each task of the application has two possible execution
times, depending on the type of machine it is executed on. In addition we
consider a cost to transfer data from one platform to the other between
successive tasks. We aim at minimizing the execution time of the DAG
(also called makespan). We show that the problem is NP-complete for
graphs of depth at least three but polynomial for graphs of depth at most
two. In addition, we provide polynomial-time algorithms for some usual
classes of graphs (trees, series-parallel graphs).

Keywords: Scheduling · DAG · Makespan · Heterogeneous platform

1 Introduction

In this work we revisit the work by Barthou and Jeannot [1]. We consider that
we have two platforms, each with an unbounded number of processors. We want
to execute an application represented as a Directed Acyclic Graph (DAG) using
these two platforms. Each task of the application has two possible execution
times, depending on the platform it is executed on. Finally, there is a cost to
transfer data from one platform to another one between successive tasks.

In their work, Barthou and Jeannot [1] considered that each task could be
executed on both platforms and were able to compute in polynomial time an
optimal schedule. Here we study the problem where tasks cannot be re-executed.
While this problem arises more from a theoretical understanding of the process,
we can envision several directions linked to the usage of parallel machines where
it could be useful, in High-Performance Computing or Cloud Computing.

In High-Performance Computing, one has to deal with simulations using
millions of nodes. These simulations run on machines consisting often of either
c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 117–128, 2019.
https://doi.org/10.1007/978-3-030-29400-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_9&domain=pdf
https://doi.org/10.1007/978-3-030-29400-7_9

118 M. Ait Aba et al.

homogeneous, or of two types of nodes (e.g. CPU+GPU)1. These simulations
generates huge volume of data, saturating access to the Parallel File System. A
recent technique to deal with this data is to analyze it in-situ [2], that is, while
it is generated. This analysis can be done both on CPUs or GPUs, with a cost
to move data around. It uses fewer nodes than the simulation by many orders
of magnitude, and the only constraint is not to decelerate the main simulation.
Hence one will allocate as many nodes as needed to these analysis (hence almost
an unbounded number).

Another motivation in the context of Big-Data Analytics is the concept of
Geo-Distributed Data-centers [3]. Information for each jobs is located in dif-
ferent data-centers, and the main cost is to move data-around. The number of
nodes in each data-center is less an issue. Furthermore in Big-Data analytics, the
data-dependencies of the graph are often linked to Map-Reduce-like applications
(Hadoop, Spark etc), also called Bi-Partite Graph. This is a more general version
of our problem where we have k instead of 2 unbounded resources.

Related Work: Recently, the problem of scheduling jobs on hybrid parallel
platforms (k types of homogeneous machines) has attracted a lot of attention.
Due to lack of space we focus on those work closest to us. More details are
available in the companion report of this work [4].

The most commonly studied problem is the one when k = 2 (typically
CPU/GPU platforms) with the objective of minimizing the makespan. The prob-
lem is in NP even when the number of each resource is bounded. In this case,
several families of approximation algorithms have been studied, see for example
Ait Aba et al. [5] for general graphs, or Kedad-Sidhoum et al. [6] and Marchal
et al. [7] for independent tasks.

In the context of an unlimited number of processors, to limit the size of
the description of the problem, one needs to consider a limited number of per-
formance profile (computation/communication costs). Indeed otherwise if the
size of the problem is not bounded, (almost) any algorithm is polynomial in
the size of the instance. If there are no communication delays, the problem is
trivial, where each task is simply assigned to the fastest machine. In the case
where all processors have the same processing power and there is a cost for any
communication the problem remains NP-complete. Darbha and Agrawal [8] pro-
vide an optimal solution TDS (Task Duplication based Scheduling) when the
communications are not too large w.r.t the computation costs. Later, Park and
Choe [9] extended this work when the communications are significantly larger
than computations.

The closest to our work is the work of Barthou and Jeannot [1] who studied
the problem of minimizing the makespan on two unbounded hybrid platform.
They provide a Θ(4|E| + 2|V |) polynomial-time algorithm when duplication of
jobs is allowed (namely, each job is executed on both platforms as soon as pos-
sible). They further discuss a possible extension of their work to the case where
the number of processors of each type is limited by differentiating the allocation
1 See for example the supercomputers at Argonne National Laboratory https://www.

alcf.anl.gov/computing-resources (Accessed 09/2018).

https://www.alcf.anl.gov/computing-resources
https://www.alcf.anl.gov/computing-resources

Scheduling on Two Unbounded Resources with Communication Costs 119

part (using their algorithm) and the scheduling part. While the problem with
duplication makes sense when the number of processors is unbounded to reduce
the makespan, it may lead to other problems, such as additional energy con-
sumption and significant memory footprint, hence motivating our study without
duplication.

Finally, there is a wide range of heuristic solutions to the problem of CPU-
GPU. They can be roughly partitioned in two classes: clustering algorithms and
list-scheduling algorithms. Clustering algorithms [10] usually provide good solu-
tions for communication-intensive graphs by scheduling heavily communicating
tasks onto the same processor. List-scheduling heuristics such as HEFT [11] often
have no performance guarantee with communication costs, but allow to handle
a limited number of processors.

Results: Our main contributions are the following. We formalize the model in
Sect. 2, and show that the problem is NP-complete for graphs of depth at least
three but polynomial for graphs of depth at most two. We show that the problem
cannot be approximated to a factor smaller than 3/2 unless P = NP. Then, we
provide polynomial-time algorithms for several classes of graphs. Those results
are presented in Sect. 3. Finally, in Sect. 4, we provide concluding remarks and
future directions.

2 Model

An application is represented by a Directed Acyclic Graph (DAG) G = (V,E),
such that for all (v1, v2) ∈ E, v2 cannot start its execution before the end of
the execution of v1. We consider a parallel platform of two types of machines:
machines of type A and machines of type B. For each type of machine we consider
that there are an unbounded number of them.

We define two cost functions: tA : V → R+ (resp. tB : V → R+) that define
the time to execute a task v ∈ V on a machine of type A (resp. B).

We also define two communication cost functions: cAB : E → R+ (resp.
cBA : E → R+), such that for all (v1, v2) ∈ E, if v1 is scheduled on a machine
of type A (resp. B) and v2 is scheduled on a machine of type B (resp. A), then
v2 needs to wait cAB(v1, v2) (resp. cBA(v1, v2)) units of time after the end of the
execution of v1 to start its execution. We assume that there is no communication
cost within a platform of a given type (cAA = cBB = 0).

The goal is to find a schedule of each task that minimizes the execution time
(or makespan). Since there is an unbounded number of processors of each type,
it corresponds to finding an allocation σ : V → {A,B} of all tasks on each type
of processors. For an allocation σ and a path p = v1 → v2 → · · · → vp of G, we
define the length of the path

len(p, σ) = tσ(v1)(v1) + cσ(v1)σ(v2)(v1, v2) + tσ(v2)(v2) + · · · + tσ(vp)(vp).

The makespan is then obtained by computing the longest path of the graph G
including the corresponding duration of the tasks and the computations costs:
MS(G, σ) = maxp∈{paths of G} len(p, σ).

120 M. Ait Aba et al.

3 Results

In this section, we start by showing that the problem is strongly NP-complete
for graph of depth 3, before providing some algorithms for specific graphs.

3.1 Complexity

Theorem 1. The problem of deciding whether an instance of our main problem
has a schedule of length 2 is strongly NP-complete even for graphs of depth 3.

We perform the reduction from the 3-Satisfiability (3-SAT) problem
which is known to be strongly NP-complete [12,13]: given C1, · · · , Cm be a
set of disjunctive clauses where each clause contains exactly three literals over
X = {x1, · · · , xn} a set of boolean variables. Is there a truth assignment to X
such that each clause is satisfied?

In the following, we write each clause Ci = x̃i1∨x̃i2∨x̃i3 where (xi1 , xi2 , xi3) ∈
X3, and x̃k = xk or x̄k. We are looking for a truth assignment such that

∧m
i=1 Ci

is true.

Proof. From an instance I1 of 3-SAT: C1, · · · , Cm over {x1, · · · , xn}, we con-
struct the following instance I2 for our problem.

For all i ∈ {1, · · · , n}, we define 2 tasks v0
i and v∞

i , and an edge (v0
i , v∞

i).
Then for each clause Ci = x̃i1 ∨ x̃i2 ∨ x̃i3 , 3 tasks vi

i1
, vi

i2
, vi

i3
are created and the

following set of edges: {(vi
i1

, vi
i2

), (vi
i2

, vi
i3

), (vi
i1

, v∞
i1

), (v0
i2

, vi
i2

), (v0
i3

, vi
i3

)}. For any
j ∈ {1, · · · , n}, v�

j denotes the set of all the instanciations of xj in G.
Overall, the graph G = (V,E) of depth 3 has 2n + 3m vertices and n + 5m

edges.
We then define the execution and communication costs that can be writ-

ten in unit size: ∀j ∈ {1, · · · , n}, tA(v∞
j) = tB(v∞

j) = tA(v0
j) = tB(v0

j) = 0
and cAB(v0

j , v∞
j) = cBA(v0

j , v∞
j) = 3. For all edges (vi

j , v
∞
j), (v0

j′ , vi′
j′) ∈ E, we

add the communication costs cAB(vi
j , v

∞
j) = cBA(vi

j , v
∞
j) = cAB(v0

j′ , vi′
j′) =

cBA(v0
j′ , vi′

j′) = 3. Then for Ci = x̃i1 ∨ x̃i2 ∨ x̃i3 we define the time costs:

tA(vi
ij) = 1 − tB(vi

ij) =

{
1 if x̃ij = x̄ij

0 if x̃ij = xij

(1)

and we set cAB(vi
i1

, vi
i2

) = cBA(vi
i1

, vi
i2

) = cAB(vi
i2

, vi
i3

) = cBA(vi
i2

, vi
i3

) = 0.
Finally, in the instance I2, we want to study whether there exists a schedule

σ whose makespan is not greater than 2.
We show an example in Fig. 1 of the construction of the graph. Here, the

clause C1 = x1 ∨ x̄4 ∨ x2 is associated with the vertices v1
1 , v1

4 and v1
2 and

the arcs set {(v1
1 , v

1
4), (v

1
4 , v

1
2), (v

1
1 , v

∞
1), (v0

4 , v
1
4), (v

0
2 , v

1
2)}. Moreover, tA(v1

1) =
tA(v1

2) = 0, tA(v1
4) = 1, tB(v1

1) = tB(v1
2) = 1 and tB(v1

4) = 0. Note that
v�
1 = {v0

1 , v
∞
1 , v1

1 , v
2
1 , v

3
1}, v�

2 = {v0
2 , v

∞
2 , v1

2 , v
3
2}, v�

3 = {v0
3 , v

∞
3 , v2

3 , v
3
3} and

v�
4 = {v0

4 , v
∞
4 , v1

4 , v
2
4}.

Scheduling on Two Unbounded Resources with Communication Costs 121

v1
1 v1

2v1
4

v2
3 v2

4 v2
1

v3
1 v3

2 v3
3

v0
1 v∞

1

v0
2 v∞

2

v0
3 v∞

3

v0
4 v∞

4

Fig. 1. Transformation of (x1 ∨ x̄4 ∨x2)
∧

(x̄3 ∨ x̄4 ∨x1)
∧

(x1 ∨x2 ∨x3) (m = 3 clauses,
n = 4 variables) into the associated graph G = (V, E).

Let S be the set of schedules such that, ∀σ ∈ S, all tasks from v�
j are sched-

uled by the same type of machines, i.e, for any couple (vα
j , vβ

j) ∈ v�
j ×v�

j , σ(vα
j) =

σ(vβ
j). The next lemmas provide dominance properties on feasible schedules

of I2:

Lemma 1. Any feasible solution σ of I2 belongs to S.
Proof. Let us suppose by contradiction that a feasible solution σ �∈ S. Two cases
must then be considered:

– If there exists j ∈ {1, · · · , n} with σ(v0
j) �= σ(v∞

j), then there is a communi-
cation delay of 3 between them and len(v0

j → v1
j , σ) = 3.

– Otherwise, ∀j ∈ {1, · · · , n}, σ(v0
j) = σ(v∞

j). Thus, there exists a task vi
j

with σ(vi
j) �= σ(v0

j). If vi
j is associated to the first term of the clause Ci,

then (v0
j , vi

j) ∈ E and len(v0
j → vi

j , σ) = 3. Otherwise, (vi
j , v

∞
j) ∈ E and

len(vi
j → v∞

j , σ) = 3.

The makespan of σ is at least 3 in both cases, the contradiction.

Lemma 2. For any schedule σ ∈ S, MS(G, σ) = maxi∈{1,··· ,m} len(vi
i1

→
vi

i2
→ vi

i3
, σ).

Proof. To do this, we study the length of paths of G.

– Let j ∈ {1, · · · , n}, len(v0
j → v∞

j , σ) = 0 since σ(v0
j) = σ(v∞

j).
– Let i ∈ {1, · · · ,m} associated with the clause Ci = x̃i1 ∨ x̃i2 ∨ x̃i3 :

1. Let us consider first the path vi
i1

→ v∞
i1

. By Lemma 1, σ(vi
i1

) = σ(v∞
i1

)
and thus cσ(vi

i1
)σ(v∞

i1
)(vi

i1
, v∞

i1
) = 0. Since len(v∞

i1
, σ) = 0,

len(vi
i1 → v∞

i1 , σ) = len(vi
i1 , σ) ≤ len(vi

i1 → vi
i2 → vi

i3 , σ).

122 M. Ait Aba et al.

2. Let us consider now the path v0
i2

→ vi
i2

→ vi
i3

. Similarly, σ(v0
i2

) = σ(vi
i2

)
hence

len(v0
i2 → vi

i2 → vi
i3 , σ) = len(vi

i2 → vi
i3 , σ) ≤ len(vi

i1 → vi
i2 → vi

i3 , σ).

3. Lastly, for the path (v0
i3

→ vi
i3

), since σ(v0
i3

) = σ(vi
i3

),

len(v0
i3 → vi

i3 , σ) = len(vi
i3 , σ) ≤ len(vi

i1 → vi
i2 → vi

i3 , σ),

which concludes the lemma.

Assume that λ is a solution of I1, Let us show that the schedule defined as
follow, ∀j ∈ {1, · · · , n}, ∀vα

j ∈ v�
j ,

σλ : vα
j �→

{
A if λ(xj) = 1
B if λ(xj) = 0

has a makespan not greater than 2 and thus is a solution. Following Lemma 2,
we must prove that ∀i ∈ {1, · · · , n}, len(vi

i1
→ vi

i2
→ vi

i3
, σλ) ≤ 2.

For any clause Ci = x̃i1 ∨ x̃i2 ∨ x̃i3 , since λ(Ci) = 1, there exists j ∈ {1, 2, 3}
such that λ(x̃ij) = 1. Two cases must be considered:

1. If x̃ij = xij , then by definition tA(vi
ij

) = 0. Since λ(xij) = 1, σλ(vi
ij

) = A
and thus len(vi

ij
, σλ) = tA(vi

ij
) = 0.

2. Otherwise, x̃ij = x̄ij and tB(vi
ij

) = 0. Now, as λ(xij) = 0, σλ(vi
ij

) = B and
thus len(vi

ij
, σλ) = tB(vi

ij
) = 0.

len(vi
ij

, σλ) = 0 in both cases, so len(vi
i1

→ vi
i2

→ vi
i3

, σλ) ≤ 2.

Assume now that we have a solution σof I2,let us show that λσ(xj) = [σ(v∞
j) =

A]is a solution to I1.
Following Lemma 1, σ ∈ S. Moreover, for any clause Ci = x̃i1 ∨ x̃i2 ∨ x̃i3 ,

the corresponding path of G verifies len(vi
i1

→ vi
i2

→ vi
i3

, σ) ≤ 2. Thus, there is
j ∈ {1, 2, 3} with len(vi

ij
, σ) = 0. Two cases must be considered:

1. If x̃ij = xij then by definition tA(vi
ij

) = 0 and tB(vi
ij

) = 1. So, σ(vi
ij

) = A
and thus λσ(xij) = 1.

2. Else, x̃ij = x̄ij and thus tA(vi
ij

) = 1 and tB(vi
ij

) = 0. So, σ(vi
ij

) = B and thus
λσ(x̄ij) = 1.

So, at least one term of Ci is true following λσ, λσ is then a solution to I1.
This concludes the proof that the problem is strongly NP-complete.

Corollary 1. There is no polynomial-time algorithm for the problem with a
performance bound smaller than 3

2 unless P = NP.

Proof. By contradiction, let us suppose that there exists a polynomial-time algo-
rithm with a performance ratio ρ < 3

2 . This algorithm can be used to decide the
existence of a schedule a length at most 2 for any instance I. We deduce that
there exists a polynomial time algorithm to decide the existence of a schedule of
length strictly less than 3, which contradicts Theorem 1.

Scheduling on Two Unbounded Resources with Communication Costs 123

3.2 Polynomial Algorithms

Bi-partite Graphs. We have shown that the problem is NP-hard if the graph
has depth 3. The natural question that arises is whether it is already NP-hard
for graphs of lower depth. We show that it can be solved in polynomial time for
graphs of depth 2 (bipartite graphs).

Theorem 2. BiPartAlgo(G) described below provides an optimal solution in
polynomial time with a complexity of Θ(n|E|) when G has depth 2.

Observe that in the case of a bipartite graph G = (V,E), the paths are
exactly the edges of G. The intuition of the algorithm is then to compute first
the makespan of all possible allocations for all edges, and then to remove pairs
associated to forbidden allocations.

For any edge (i, j) ∈ E, 4 allocations are possible: (σ(i), σ(j)) ∈ {A,B}2 =
{(A,A), (A,B), (B,A), (B,B)}. We define the set of quintuplet of all these allo-
cations:

WgPaths =
{

(len(i → j, σ), i, j, σi, σj)
∣
∣

(i, j) ∈ V, (σ(i), σ(j)) ∈ {A, B}2, σ(i) = σi, σ(j) = σj

}
.

This set can be constructed in linear time by a simple iteration through all the
edges of the graph by a procedure that we call MkWgPaths(V,E).

Finally to minimize the makespan, we iteratively remove from WgPaths the
allocations that would maximize the makespan and check that there still exists
a possible schedule.

Algorithm 1. Polynomial algorithm for G = (V,E) a bipartite graph
1: procedure BiPartAlgo(G)
2: WgPaths ← MkWgPaths(G)
3: Palg ← True; Ptmp ← True /* Two clauses with n variables */

4: for
(
tσiσj , i, j, σi, σj

) ∈ WgPaths, by decreasing value of tσiσj do
5: Ptmp ← Palg ∧ (

(σ(i) �= σi) ∨ (σ(j) �= σj)
)

6: if Ptmp is not satisfiable then Break end if
7: Palg ← Ptmp

8: end for
9: σ(1), · · · , σ(n) ← Solve(Palg) /* Using a 2-SAT solver*/

10: end procedure

In the rest, we use the following notation for a schedule σ and a time D:

WP(D) =
{
(i, j, σi, σj) s.t.

(
tσiσj

, i, j, σi, σj

) ∈ WgPaths and tσiσj
> D

}

PD(σ) =
∧

(i,j,σi,σj)∈WP(D)

[(σ(i) �= σi) ∨ (σ(j) �= σj)]

Intuitively, WP(D) is the set of paths and allocations of length greater than D.

124 M. Ait Aba et al.

Lemma 3. Let σ be a schedule of makespan D, then PD(σ) is satisfied.

This result is a direct consequence of the fact that there should be no path of
length greater than D. Hence for (i, j, σi, σj) ∈ WP(D), we know that we do not
have simultaneously in the schedule (σ(i) = σi) and (σ(j) = σj). Hence,

¬
∨

(i,j,σi,σj)∈WP(D)

[(σ(i) = σi) ∧ (σ(j) = σj)]

=
∧

(i,j,σi,σj)∈WP(D)

[(σ(i) �= σi) ∨ (σ(j) �= σj)] = PD(σ) (2)

Proof. (Proof of Theorem 2). Consider an instance G of the problem. Let
Dalg be the deadline of the schedule returned by BiPartAlgo(G). Clearly,
Dalg = max(i,j)∈E(tσ(i)(i)+cσ(i)σ(j)(i, j)+tσ(j)(j)). Let Palg be the set of clauses
computed by it (line 9). Let Walg = {(i, j, σi, σj)|(tσiσj

, i, j, σi, σj) ∈ WgPaths}
s.t. Palg =

∧
(i,j,σi,σj)∈Walg

[(σ(i) �= σi) ∨ (σ(j) �= σj)]. Then by construction of
Palg, we have the following properties:

1. For all ε > 0, WP(Dalg) ⊂ Walg ⊂ WP(Dalg−ε), because we add paths by
decreasing value of makespan (line 4).

2. There exists (Dalg, i0, j0, σi0 , σj0) ∈ WgPaths such that Palg is satisfiable and
Palg

∧
[(σ(i0) �= σi0) ∨ (σ(j0) �= σj0)] is not satisfiable. This is the stopping

condition on line 6.

We show the optimality of Algorithm 1 by contradiction. If it is not opti-
mal, then Dopt < Dalg, and Walg ∪ (i0, j0, σi0 , σj0) ⊂ WP(Dopt). Furthermore,
according to Lemma 3, PDopt(σopt) is satisfied, hence σopt is also a solution to
Palg

∧
[(σ(i0) �= σi0) ∨ (σ(j0) �= σj0)]. This contradicts the fact that it does not

admit a solution hence contradicting the non-optimality.
Finally, the complexity of MkWgPaths(V,E) is Θ(|E|). In Algorithm 1, we

unwind the loop for (line 4) 4|E| times, and we verify if Ptmp is satisfiable in
line 6 with a complexity of Θ(n + k) where k is the number of clauses is Ptmp.
Since the number of iterations is bounded by 3|E|, the complexity of Algorithm 1
is O(|E|2).

Out-Tree Graphs. We assume now that the DAG G = (V,E) is an out-tree rooted
by r ∈ V . For any task u ∈ V , the sub-tree rooted by u is the sub-graph Gu of
G which vertices are u and the descendants of u.

For any task u ∈ V , let us denote by DA(u) (resp. DB(u)) the lower bound
of the minimal makespan of Gu assuming that σ(u) = A (resp. σ(u) = B). Let
us suppose that the arc (u, v) ∈ E. Observe that, if DA(v) ≤ cAB(u, v)+DB(v),
then DA(u) ≥ tA(u) + DA(v). In the opposite, DA(u) ≥ tA(u) + cAB(u, v) +
DB(v) and thus DA(u) ≥ tA(u) + min(DA(v), cAB(u, v) + DB(v)). Similarly,
DB(u) ≥ tB(u) + min(DB(v), cBA(u, v) + DA(v)).

For any task u ∈ V , we set Γ+(u) = {v ∈ V, (u, v) ∈ E}. For any allocation
function σ, let σ̄(u) = A if σ(u) = B, σ̄(u) = B otherwise. Then, for any task u ∈
V , we get Dσ(u)(u) = tσ(u)(u)+maxv∈Γ+(u) min(Dσ(u)(v), cσ(u)σ̄(u) +Dσ̄(u)(v)).

Scheduling on Two Unbounded Resources with Communication Costs 125

Theorem 3. For an out-tree graph G = (V,E) rooted by r ∈ V , an allocation σ
may be built such that the corresponding schedule of length D(r) verifies D(r) =
min(DA(r),DB(r)) and thus is optimal.

Proof. Let us suppose that lower bounds DA(u) and DB(u) for u ∈ V are given.
Let us define the allocation σ as σ(r) = A if DA(r) ≤ DB(r) and σ(r) = B
in the opposite. For any task v �= r with (u, v) ∈ E, we set σ(v) = σ(u) if
Dσ(u)(v) < Dσ̄(u)(v) + cσ(u)σ̄(u)(u, v), and σ(v) = σ̄(u) otherwise.

For any task u, we prove that the length D(u) of the schedule of Gu for the
allocation σ verifies D(u) = Dσ(u)(u). If u is a leaf, D(u) = tσ(u)(u) = Dσ(u)(u).

Now, let suppose that Γ+(u) �= ∅. By definition, for any arc (u, v) ∈ E, if
σ(u) = σ(v), cσ(u)σ(v)(u, v) = 0. Then, if we set Δσ(u, v) = D(v)+cσ(u)σ(v)(u, v),
we get by induction Δσ(u, v) = Dσ(v)(v) + cσ(u)σ(v)(u, v) and by definition of
σ, Δσ(u, v) = min(Dσ(u)(v),Dσ̄(u)(v) + cσ(u)σ̄(u)(u, v)). Now, D(u) = tσ(u)(u) +
maxv∈Γ+(u) Δσ(u, v) and thus by definition of Dσ(u), D(u) = Dσ(u), which con-
cludes the proof.

A polynomial time algorithm of time complexity Θ(n) can be deduced by com-
puting first DA, DB and then σ.

Example 1. Let us consider as example the out-tree pictured by Fig. 2. Figure 3
shows the lower bound DA and DB and a corresponding optimal schedule.

1

2 3

4 5 6 7 8

v ∈ V tA(v) tB(v)
1 2 3
2 3 2
3 4 2
4 5 2
5 3 3
6 5 1
7 2 5
8 3 1

a ∈ E cAB(a) cBA(a)
(3, 8) 2 3
(3, 7) 3 3
(3, 6) 3 4
(2, 4) 2 2
(2, 5) 3 2
(1, 2) 1 4
(1, 3) 4 3

Fig. 2. An out-tree G, duration of tasks and communication costs.

Series-Parallel Graphs. Let us consider a two terminal Series Parallel digraph
(2SP in short) as defined in [14,15]. Each element of this class has a unique
source s and a unique sink t with s �= t. It is formally defined as follows where
G and H are two 2SP graphs.

– The arc (s, t) ∈ 2SP ;
– The series composition of G and H is denoted by G.H and is built by identi-

fying the sink of G with the source of H;
– The parallel composition is denoted by G + H and identifies respectively the

sinks and the sources of the two digraphs.

Figure 4 pictures a 2SP graph and its associated decomposition tree.

126 M. Ait Aba et al.

v ∈ V DA(u) DB(u)
1 10 10
2 7 5
3 8 7
4 5 2
5 3 3
6 5 1
7 2 5
8 3 1

A

B

1 3 7

2 4 8

5 6

Fig. 3. Lower bounds DA and DB. An optimal schedule is presented for the allocation
σ(1) = A, σ(2) = B, σ(3) = A, σ(4) = B, σ(5) = B, σ(6) = B, σ(7) = A and σ(8) = B.

1

2

3

4

5

+
. .

+

.

(1, 2) (2, 3)

(1, 3)

(3, 5) (1, 4) (4, 5)

Fig. 4. A 2SP graph and its associated decomposition tree. Leaves correspond to arcs,
while internal nodes are series or parallel compositions.

For any element G ∈ 2SP with a source s and a sink t and for any couple
(α, β) ∈ {A,B}2, let us denote by Dαβ(G) a lower bound defined as follows of
the minimum length of a schedule of G with σ(s) = α and σ(t) = β. For any
graph G with a unique arc e = (s, t), for any couple (α, β) ∈ {A,B}2,

Dαβ(G) =
{

tα(s) + tβ(t) + cαβ(s, t) if α �= β
tα(s) + tβ(t) otherwise.

Now, if G and H are two 2SP , then for the series composition, we set Dαβ(G.H) =
minγ∈{A,B}(Dαγ(G)+Dγβ(H)− tγ(t)) where t is the sink of G. Similarly, for the
parallel composition, we set Dαβ(G + H) = max(Dαβ(G),Dαβ(H)).

We define the allocation function σ associated with a 2SP graph G and the
corresponding length D(G) as follows. We set D(G) = min(α,β)∈{A,B}2(Dαβ(G)).
We also set σ(s) and σ(t) the allocation function of the source and the sink of G
as D(G) = Dσ(s)σ(t)(G). Now, for any series composition, let us suppose that s
and t (resp. s′ and t′) are the source and the sink of G (resp. H). We also suppose
that σ(s) and σ(t′) are fixed. Then, for G.H, t = s′ and we get σ(t) = γ ∈ {A,B}
such that D(G.H) = Dσ(s)σ(t)(G) + Dσ(s′)σ(t′)(H) − tσ(t)(t).

If G is a 2SP graph of source s and sink t, any vertex v ∈ V − {s, t} is
involved in a series composition, and thus σ is completely defined.

Scheduling on Two Unbounded Resources with Communication Costs 127

Theorem 4. For any 2SP graph G of source s and sink t, D(G) = Dσ(s)σ(t)(G).

Proof. The equality is clearly true if G is an arc (s, t). Indeed, we get in this case
D(G) = min(α,β)∈{A,B}2(Dαβ(G)) = Dσ(s)σ(t)(G).

Now, let us suppose that s and t (resp. s′ and t′) are the source and the
sink of G (resp. H) and that D(G) = Dσ(s)σ(t)(G) and D(H) = Dσ(s′)σ(t′)(H).
For a parallel composition, D(G + H) = max(Dσ(s)σ(t)(G),Dσ(s′)σ(t′)(H)) =
Dσ(s)σ(t)(G + H) as s = s′ and t = t′.

For the series composition, D(G.H) = D(G) + D(H) − tσ(t)(t) =
Dσ(s)σ(t)(G.H), since t = s′, which concludes the proof.

Corollary 2. A polynomial-time algorithm of time complexity Θ(|E|) can be
deduced by computing lower bounds Dαβ, (α, β) ∈ {A,B}2 for each graph issued
from the decomposition of G and a corresponding allocation σ.

4 Future Directions

With this work we have studied the problem of scheduling a Directed Acyclic
Graph on an unbounded hybrid platform. Specifically our platform consists of
two machines, each with an unbounded number of resources. Moving data from
one machine to the other one has a communication cost. We have shown the
intractability of the problem by reducing this problem to the 3-satisfiability
problem. We have shown that there does not exist 3/2-approximation algorithms
unless P=NP. We have further provided some polynomial time algorithms for
special cases of graphs. While this model seems very theoretical, we can see
several applications both in High-Performance Computing (In-Situ analysis) and
in Big Data analytics in the cloud (Geo-distributed data-Centers).

There are several extensions that we can see to this work. In the context
of two unbounded platforms, it would be interesting to find some polynomial
time algorithms with proven bounds to the optimal. We do not expect to be
able to find one in the general case, but we hope that with some constraints
between the communication costs and computation cost (as is often done in the
context of scheduling DAGs with communications), one may able to find such
algorithms. We plan then to evaluate these algorithms with In-Situ frameworks.
Finally, another direction we are interested by is a version of this problem where
only one machine has an unbounded number of resources, and where the data is
located on the other one. For example in the context of smartphone applications,
we can model the frontend/backend context where the phone (Machine 1) has
a limited number of available processors, but can rely on sending some of the
computation on a backend machine (cloud-based), with an unbounded number of
processors. Similarly to here, the problem is a data and communication problem:
given the cost to transfer data from one machine to the other one, what is the
most efficient strategy.

128 M. Ait Aba et al.

References

1. Barthou, D., Jeannot, E.: SPAGHETtI: scheduling/placement approach for task-
graphs on HETerogeneous archItecture. In: Silva, F., Dutra, I., Santos Costa,
V. (eds.) Euro-Par 2014. LNCS, vol. 8632, pp. 174–185. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-09873-9 15

2. Dorier, M., Dreher, M., Peterka, T., Wozniak, J.M., Antoniu, G., Raffin, B.:
Lessons learned from building in situ coupling frameworks. In: Proceedings of the
First Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis
and Visualization, pp. 19–24. ACM (2015)

3. Zhou, A.C., Ibrahim, S., He, B.: On achieving efficient data transfer for graph
processing in geo-distributed datacenters. In: 2017 IEEE 37th International Con-
ference on Distributed Computing Systems (ICDCS), pp. 1397–1407 (2017)

4. Ait Aba, M., Aupy, G., Munier-Kordon, A.: Scheduling on two unbounded
resources with communication costs. Inria, Research Report RR-9264, Mar 2019.
https://hal.inria.fr/hal-02076473

5. Ait Aba, M., Zaourar, L., Munier, A.: Approximation algorithm for schedul-
ing applications on hybrid multi-core machines with communications delays. In:
IPDPSW. IEEE (2018)

6. Kedad-Sidhoum, S., Monna, F., Mounié, G., Trystram, D.: A family of scheduling
algorithms for hybrid parallel platforms. Int. J. Found. Comput. Sci. 29(01), 63–90
(2018)

7. Marchal, L., Canon, L.-C., Vivien, F.: Low-cost approximation algorithms for
scheduling independent tasks on hybrid platforms. Ph.D. dissertation, Inria-
Research Centre Grenoble-Rhône-Alpes (2017)

8. Darbha, S., Agrawal, D.P.: Optimal scheduling algorithm for distributed-memory
machines. IEEE Trans. Parallel Distrib. Syst. 9(1), 87–95 (1998)

9. Park, C.-I., Choe, T.-Y.: An optimal scheduling algorithm based on task duplica-
tion. In: 2001 Proceedings, Eighth International Conference on Parallel and Dis-
tributed Systems, ICPADS 2001, pp. 9–14. IEEE (2001)

10. Boeres, C., Rebello, V.E., et al.: A cluster-based strategy for scheduling task on
heterogeneous processors. In: 2004 16th Symposium on Computer Architecture
and High Performance Computing, SBAC-PAD 2004, pp. 214–221. IEEE (2004)

11. Topcuoglu, H., Hariri, S., Wu, M.-Y.: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst.
13(3), 260–274 (2002)

12. Garey, M.R., Johnson, D.S.: Complexity results for multiprocessor scheduling
under resource constraints. SIAM J. Comput. 4(4), 397–411 (1975)

13. Karp, R.M.: Reducibility among combinatorial problems. Complexity of Computer
Computations, pp. 85–103. Springer, Boston (1972). https://doi.org/10.1007/978-
1-4684-2001-2 9

14. Valdes, J., Tarjan, R., Lawler, E.: The recognition of series parallel digraphs. SIAM
J. Comput. 11(2), 298–313 (1982). https://doi.org/10.1137/0211023

15. Schoenmakers, B.: A new algorithm for the recognition of series parallel graphs,
series, CWI report. CS-R, CWI (1995)

https://doi.org/10.1007/978-3-319-09873-9_15
https://hal.inria.fr/hal-02076473
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1137/0211023

Improving Fairness in a Large Scale HTC
System Through Workload Analysis

and Simulation

Frédéric Azevedo1, Dalibor Klusáček2(B), and Frédéric Suter1

1 IN2P3 Computing Center / CNRS,
Lyon-Villeurbanne, France

{frederic.azevedo,frederic.suter}@cc.in2p3.fr
2 CESNET a.l.e., Prague, Czech Republic

klusacek@cesnet.cz

Abstract. Monitoring and analyzing the execution of a workload is at
the core of the operation of data centers. It allows operators to verify
that the operational objectives are satisfied or detect and react to any
unexpected and unwanted behavior. However, the scale and complexity
of large workloads composed of millions of jobs executed each month
on several thousands of cores, often limit the depth of such an analysis.
This may lead to overlook some phenomena that, while not harmful at
a global scale, can be detrimental to a specific class of users.

In this paper, we illustrate such a situation by analyzing a large High
Throughput Computing (HTC) workload trace coming from one of the
largest academic computing centers in France. The Fair-Share algorithm
at the core of the batch scheduler ensures that all user groups are fairly
provided with an amount of computing resources commensurate to their
expressed needs. However, a deeper analysis of the produced schedule,
especially of the job waiting times, shows a certain degree of unfairness
between user groups. We identify the configuration of the quotas and
scheduling queues as the main root causes of this unfairness. We thus
propose a drastic reconfiguration of the system that aims at being more
suited to the characteristics of the workload and at better balancing
the waiting time among user groups. We evaluate the impact of this
reconfiguration through detailed simulations. The obtained results show
that it still satisfies the main operational objectives while significantly
improving the quality of service experienced by formerly unfavored users.

1 Introduction

The analysis of workload traces is a common approach to understand and opti-
mize the behavior of the system that manages the access to resources and the
execution of jobs in a data center, i.e., the batch scheduling system. Most of the
historical workload traces available in the Parallel Workload Archive (PWA)[6]
were originally studied with such an objective in mind. More recently, a method-
ology to characterize HPC workloads and assess their heterogeneity based on
the analysis of the workloads executed over a year on three systems deployed
at NERSC was proposed in [12]. This study not only helps to understand the
c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 129–141, 2019.
https://doi.org/10.1007/978-3-030-29400-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_10&domain=pdf
https://doi.org/10.1007/978-3-030-29400-7_10

130 F. Azevedo et al.

behavior of current HPC systems but can also be used to develop new scheduling
strategies for the forthcoming exascale systems. Similar studies mixing the char-
acterization, modeling, and prediction of HPC workloads have been proposed
in [5,17]. In [8], the authors proposed a complete reconfiguration of their batch
scheduling systems, including the definition of the scheduling queues, based on a
thorough analysis of the workload characteristics and detailed simulations. The
effects of this reconfiguration have then been analyzed in [9].

The common point of all the aforementioned studies is to consider HPC work-
loads that are composed of parallel jobs spanning over multiple cores and multi-
ple nodes. In this paper we study a large High Throughput Computing (HTC)
workload trace coming from the Computing Center of the National Institute of
Nuclear Physics and Particle Physics (CC-IN2P3)[14] which is one of the largest
academic computing centers in France. One of the main characteristics of this
workload trace is that it is composed of a vast majority of jobs running on only
one core, i.e., Monte-Carlo simulations and analyzes made on experimental data.
This trace is also much larger than HPC traces with nearly 3,000,000 jobs exe-
cuted every month on 33,500 cores. Finally, this workload captures a mix of two
different types of submissions. As one of the twelve Tier-1 centers engaged in the
processing of the data produced by the Large Hadron Collider (LHC) at CERN,
half of job submissions come from an international computing grid through a
complex middleware stack. The other half is directly submitted to the batch
scheduling system by users belonging to more than 70 scientific collaborations.

In a previous work, we described the process of simplification of the oper-
ation of this infrastructure by reducing the “human-in-the-loop” component in
scheduling decisions [2]. The main contribution of this paper is that we conduct
a thorough analysis of the workload processed at a real large scale HTC system
to show that the current system configuration tends to favor the jobs coming
through the grid. The fair-share algorithm implemented by the scheduler is thus
not as fair as it seems. Indeed, jobs submitted by local users suffer from a signif-
icantly higher waiting time. Based on our observations, we propose and evaluate
through simulation a drastic modification of the quotas and the configuration
of the scheduling queues that aims at further improving the fairness of the pro-
duced schedule. The obtained results show that it still guarantees the satisfaction
of the main operational objectives while significantly improving the quality of
service experienced by the formerly unfavored users. To ensure the reproduction
and further investigation of the presented results, and thus favor Open Science,
we made our large workload trace available to the scientific community [3].

This paper is organized as follows. Section 2 describes the computing infras-
tructure operated at CC-IN2P3 with details about the hardware, configuration of
the batch scheduling systems, and operational constraints. In Sect. 3 we present
and discuss the main characteristics of the workload executed on this infras-
tructure. Section 4 details the proposed modification of the system configuration
and evaluates its impact on the quality of service and fairness experienced by the
submitted jobs. Section 5 briefly explains how we produce and make available
the workload trace used in this work. Finally, we conclude this paper and detail
future work directions in Sect. 6.

Improving Fairness in a Large Scale HTC System 131

Table 1. Characteristics of the nodes in the CC-IN2P3’s HTC computing farm.

Model Nodes Cores/Node Memory/Node Cores

Xeon E5-2650 v4 2.20GHz 232 48 144 GB 11,136

Xeon Silver 4114 2.20GHz 240 40 128 GB 9,600

Xeon E5-2680 v2 2.80GHz 149 40 128 GB 5,960

Xeon E5-2680 v3 2.50GHz 124 48 144 GB 5,952

Xeon E5-2670 0 2.60GHz 24 32 96 GB 768

Xeon Silver 4114 2.20GHz 1 40 1,512 GB 40

Total 770 33,456

2 System Description

The IN2P3 Computing Center [14] is one of the largest academic computing
centers in France. At the time of writing of this article, the CC-IN2P3 provides
its users with about 33,500 virtual cores (i.e., hyper-threading is activated) on
770 physical nodes, whose characteristics are given in Table 1. In addition to this
HTC computing farm, the CC-IN2P3 also offers resources for parallel, GPU-
based, large memory, and interactive jobs that we ignored in this study.

These resources are managed by Univa Grid Engine (UGE v8.4.4)[16] which
implements the Fair Share Scheduler first described in [7] and thus assigns pri-
orities to all the unscheduled jobs to determine their order of execution. These
priorities directly derive from the resources pledges expressed by the different
user groups. As detailed in [2], each group has to provide an estimation of its
computing needs as an amount of work, expressed in Normalized HS06.hours[11],
to be done during each quarter of the following year. Once arbitration has been
done with regard to the total available computing power, the respective share
that has to be allocated to each group is converted into a consumption objective
used by UGE to determine a fair-share schedule. This algorithm addresses one
of the two main operational objectives of the CC-IN2P3: ensure that each user
group is served according to its expressed resource request for the year.

In addition to this central scheduling algorithm, resources are organized in
queues whose characteristics are given in Table 2. These queues are listed in the
order in which they are considered by the job scheduler. They mainly differ by
maximum allowed duration, both in terms of wallclock and CPU times, available
memory and scratch disk space per job, and the type of jobs allowed to enter
the queue, i.e., sequential or multi-core (denoted by the mc- prefix).

The long queues can both access the entire infrastructure. As it will be shown
in Sect. 3, these two queues have to absorb the bulk of the workload. However,
jobs are not really distinguished by their execution time in this configuration,
with a minimal limit on execution time set to 48 CPU hours (or 58 hours) for
all jobs. The huge queues are intended to jobs that need more memory or disk
space while the access to the longlasting queues is limited to certain user groups.

132 F. Azevedo et al.

Table 2. Names and upper limits (per job) of the queues. Queues are listed in the
order in which they are considered by the job scheduler.

Queue name CPU time Time Memory File size Pool size (in cores)

mc-long 48 h 58 h 3.6 GB 30GB 33,456 (100%)

mc-huge 72 h 86 h 8 GB 30GB 9,040 (27%)

mc-longlasting 202 h 226 h 3 GB 30GB 19,800 (59%)

long 48 h 58 h 4 GB 30GB 33,456 (100%)

huge 72 h 86 h 10 GB 110GB 10,418 (31%)

longlasting 168 h 192 h 4 GB 30GB 3,931 (12%)

We also see that all queues combined could virtually access more than three
times the actual number of available cores. This configuration aims at achieving
the highest possible utilization of the resources which is the second main oper-
ational objective of the center. Indeed, this ensures that load variations in the
different scheduling queues cannot lead to leaving some cores idle.

Another important operational constraint of this system is related to the
access to storage subsystems. High Energy Physics is a data-driven science, hence
most of the jobs rely on locally stored data. Some user groups exhibit heavy
I/O patterns that may become harmful to the storage subsystems in the worst
case scenario where many jobs from these groups are executed concurrently. To
prevent an overload of the storage subsystem, the number of concurrent jobs
can be limited to a safe number for some groups by setting Resource Quota
Sets (RQSs). The downside of this method is that it may increase the number of
waiting jobs when this limit is reached. In such a case, operators can dynamically
and temporarily modify the RQSs if the storage subsystems can cope with the
extra load.

3 Workload Analysis

In this section we describe the main characteristics of the workload processed in
November 2018 at CC-IN2P3. Over this month, 2,669,401 jobs were executed on
the 33,456 available cores (or slots in the UGE vocabulary). We distinguish two
sub-workloads depending on whether jobs are submitted to the batch system by
Local users (1,174,078 jobs) or through a Grid middleware (1,495,323 jobs).

Figure 1 shows how many slots are simultaneously used. The dashed line
indicates the total number of available slots while solid lines respectively show
the overall utilization and which part of it comes from Grid and Local jobs.

This figure show that the main operational objective of the CC-IN2P3 is
achieved with a global utilization well over 90%. We also see that this utilization
is dominated by Grid jobs that use 3.45 times more slots than Local jobs while
there are only 1.27 times more jobs coming through the grid than submitted
by local users. About 28% of Grid jobs are multi-core, while 98% of Local jobs

Improving Fairness in a Large Scale HTC System 133

0

10000

20000

30000

11/01 11/04 11/07 11/10 11/13 11/16 11/19 11/22 11/25 11/28 12/01

N
um

be
r o

f u
se

d
sl

ot
s Local

Grid
Local+Grid

Fig. 1. Utilization of the resources, in terms of slots, over the considered period. The
dashed line indicates the number of available slots, the other lines show the global
utilization and the respective contributions of Local and Grid jobs.

request only one core for their execution. There were less than 17,000 multi-core
Local jobs submitted over the considered 1-month period which required at most
16 cores. Most of multi-core Grid jobs fall in two categories. First, production
jobs submitted by two LHC experiments (ATLAS and CMS) always require
8 cores. Second, two-core short-lived probe jobs are periodically submitted to
check for site availability. They represent about 5% of the multi-core Grid jobs.

These two sub-workloads show several additional differences. The first one
pertains to the expressed job duration. Figure 2 (left) shows a cumulative distri-
bution function of the requested CPU time for Local and Grid jobs. There are
only three values for the Grid jobs which correspond to the queue upper limits on
CPU time (i.e., 48, 72, and 192 CPU hours). These predefined requirements are
automatically added at the level of the Computing Element, i.e., the interface to
the resources of a Grid site. The rationale is that most of the user groups that
submit their jobs through the Grid manage their own workloads with pilot jobs
[15]. Local jobs show a larger diversity in their CPU time requirements, even
though about 35% of the jobs either require the upper limits of the queues or
do not express any requirements. We also observe that a large fraction of Local
jobs expresses requirements that are much lower than the queues upper limits.
Nearly 40% of the jobs explicitly announce that they run for less than 12 hours
but fall in the same queue as jobs potentially running for two days.

0%

25%

50%

75%

100%

0 2 4 6 12 24

Pe
rc

en
ta

ge
 o

f j
ob

s

48 72 96 168

Grid
Local

Requested CPU Time (in hours)

0%

25%

50%

75%

100%

0 1 2 4

Pe
rc

en
ta

ge
 o

f j
ob

s

6 12 24 48 72

Grid
Local

Run Time (in hours)

Fig. 2. Cumulative distribution functions of local and Grid jobs requested (left) and
consumed (right) run times.

134 F. Azevedo et al.

0%

25%

50%

75%

100%

0 1 2 4 6 12 24
Wait Time (in hours)

Pe
rc

en
ta

ge
 o

f j
ob

s

Grid
Local

Fig. 3. Cumulative distribution functions of local and Grid jobs wait time.

Figure 2 (right) shows the cumulative distribution functions of the actual run
times of Local and Grid jobs. We can see that the distribution of job duration
is very similar for both sub-workloads with a large proportion of jobs running
for less than four hours. There is thus an important discrepancy between the
characteristics of the jobs in terms of execution time and both the expression of
requirements and the configuration of the scheduling queues.

Another important difference between the two sub-workloads is about how
fast jobs can start their execution, i.e., how much time jobs have to wait in
queues before starting. Figure 3 shows the cumulative distribution function of
this waiting time for Local and Grid Jobs. We can see that while 99% of the
jobs wait for less than a day, Local jobs tend to wait much more than Grid jobs.
Indeed, more than 75% of the Grid jobs but only 50% of the Local wait for less
than one hour. To understand the origin of such a discrepancy, we analyze the
evolution of the number of jobs waiting in the queues over the considered period.
Figure 4 shows this evolution which confirms that there are much more Local jobs
waiting than Grid Jobs. On average, there are about 1,650 waiting Grid jobs but
nearly 5,600 waiting Local jobs. More importantly, while the maximum number
of waiting Grid jobs is always less than 4,000, there can be more than 40,000
Local jobs waiting in queues. Several factors can explain this difference.

0

10000

20000

30000

40000

11/01 11/04 11/07 11/10 11/13 11/16 11/19 11/22 11/25 11/28 12/01

N
um

be
r o

f w
ai

tin
g

jo
bs Local

Grid

Fig. 4. Evolution of the number of waiting local and Grid jobs.

Improving Fairness in a Large Scale HTC System 135

0

25

50

75

100

125

0 3 6 9 12 15 18 21 24
Time of day

N
um

be
r o

f s
ub

m
itt

ed
 jo

bs
 (x

10
00

)
Local
Grid

●

●

●●
● ● ●●● ●

●

●

●●●

●

●●●●●

●

●●● ●●
●

0

4000

8000

12000

11/08 11/11 11/14 11/17 11/20 11/23 11/26 11/29
Submission date

N
um

be
r o

f s
ub

m
is

si
on

s
pe

r h
ou

r

Fig. 5. Daily arrival rate for local and Grid jobs on week days (left). Dashed lines
depict the average number of submissions per hour. Submission pattern of a specific
user group (right). Triangles correspond to submission bursts.

First, they clearly differ by their submission patterns. Figure 5 (left) shows
the daily arrival rates for Local and Grid jobs. The dashed lines depict the
average number of submissions per hour which is quite similar for the two sub-
workloads (respectively 40,666 and 45,695 jobs per hour). However, we clearly
observe two different submission patterns. Local jobs follow a traditional “work-
ing hours” pattern, while Grid jobs are submitted at an almost constant rate.

Figure 5 (right) shows the submission pattern of a specific user group that
leverages the “array job” feature of UGE that enables the submission of up to
10,000 related jobs in a single command. Then we clearly observe burst sub-
missions which are typical and correspond to “production” periods. They are
usually followed by “result analysis” periods of lower activity. The combination
of these general and specific submission patterns amplifies the difference in the
number of waiting jobs with Grid submissions that are controlled upstream by
monitoring and the use of pilot jobs.

The other factors that contribute to the observed discrepancy are that the
groups submitting jobs through the Grid have the highest priorities in the fair-
share computation, they are the main source of multi-core jobs that benefit of
higher priorities on the mc-* queues, and more stringent RQSs are set for Local
users thus limiting the number of concurrent running jobs.

4 Revisiting the Configuration of the Batch System

The analysis conducted in the previous section confirmed that the main oper-
ational objectives, i.e., a maximal utilization of the computing resources and
the respect of a fair sharing of resources derived from the pledges made by the
different user groups, were achieved. However, we also observed that the overall
fairness provided by the scheduling algorithm hides a more unfair behavior that
has been overlooked by operators. We showed in Fig. 3 that jobs submitted by
Local users wait much more than Grid jobs.

136 F. Azevedo et al.

Some of the root causes of these larger waiting times for Local jobs, i.e., higher
submission rates during the day, and burst submissions, can not be solved by the
scheduling system, but we believe that the current configuration of the system
amplifies the effects of these peaks in Local job submission.

The primary job discrimination factor currently used is whether a job is
sequential or multi-core. Our analysis showed that 96% of the multi-core jobs
are Grid jobs. Moreover, the queues dedicated to multi-core jobs have a higher
priority and the mc-long has access to the entire set of cores. Then, an important
fraction of Grid jobs (27%) is privileged with regard to the rest of the workload.
A second important factor is that the user groups with the biggest shares are
the main source of grid jobs, hence increasing the priority gap with Local jobs.
Finally, while local jobs express an estimation of their execution time, the current
configuration of scheduling queues does not leverage this information.

To better reflect the respective characteristics of the two identified sub-
workloads and increase fairness by better balancing the waiting times across jobs,
we propose a new configuration of the scheduling queues described in Table 3.

The first three queues are dedicated to Local jobs and are considered in
increasing order of expressed job duration. Moreover, the shorter the jobs are in
a queue, the more resources the corresponding queue can access. Indeed, short
jobs will quickly release resources, and thus can use more slots at a given time
without harming the overall throughput. Then, all the Grid jobs are now placed
in a single dedicated grid queue. By considering this queue after those for Local
jobs, we give a higher priority to Local jobs and then reduce their waiting times.
Finally, we merged the queues for jobs with special requirements to remove
the sequential/multi-core distinction. The number of slots a queue can access
has been empirically chosen based on the utilization shown in Fig. 1. We aim
at having a good tradeoff between preventing queue overload and ensuring a
maximal utilization even under load variations within the sub-workloads.

To assess the impact of these modifications on the overall utilization and
the waiting times experienced by jobs, we implemented a simulator using the
Alea job scheduling simulator [1,10] which is based on the GridSim toolkit [13].
Alea allows for detailed simulations, supports several mainstream scheduling

Table 3. Names and upper limits (per job) of the queues in the new configuration.
Queues are listed in the order in which they are considered by the job scheduler.

Queue name CPU time Time Memory File size Pool size (in cores)

local-short 6 h 7 h 4G 30 G 20,000 (59.8%)

local-medium 24 h 28 h 4G 30 G 15,000 (44.8%)

local-long 48 h 58 h 4G 30 G 10,000 (29.9%)

grid 48 h 58 h 3.6 G 30 G 25,000 (74.7%)

huge 72 h 86 h 10G 110 G 10,000 (29.9%)

longlasting 202 h 226 h 3G 30 G 5,000 (14.9%)

Improving Fairness in a Large Scale HTC System 137

Table 4. Distribution of job waiting times.

Workload Scenario Average Percentiles Maximum

50th 75th 90th

Grid Baseline 1 h 10m 0 s 8 m 18 s 1 h 18 m 15d 21 h 54 m

Modified 1 h 45m 0 s 14 m 2 h 2 m 14d 4 h 33 m

Local Baseline 2 h 3m 4 m 30 s 1 h 40 m 6 h 40 m 11d 21 h 41 m

Modified 1 h 58m 8 s 1 h 10 m 6 h 20 m 4d 19 h 6 m

algorithms (e.g., FCFS, variants of Backfilling, Fair-Share) and commonly used
system restrictions such as queue limits and quotas. We implemented two vari-
ants of the scheduling system. The first one constitutes a baseline and aims at
reproducing the current configuration of the system. It uses the same queue
definitions, shares, and RQSs as those used by UGE. Moreover the simulation
starts with a set of “dummy” jobs running to mimic the state of the system on
Nov. 1, 2018 at 12 am. The modified variant only differs by the definitions of
the scheduling queues to use those presented in Table 3. We compare in Table 4
the distribution of waiting times in the two sub-workloads in the baseline and
modified simulated schedules.

The proposed modification achieves its objectives. The average waiting time
which was almost two times shorter for Grid jobs than for Local jobs is now more
balanced, yet still shorter for Grid jobs. The median and third quartile values
show that for a large fraction of Grid jobs, the impact of our modification is
negligible, i.e., an increase of 6 min only, while the waiting times of Local jobs is
reduced by half an hour. At the 90th percentile, the waiting of Grid jobs almost
doubles, but remains three times less than that of the Local jobs. Finally, our
modification reduces the maximum waiting time for both sub-workloads with a
noticeable reduction of one week for the most waiting Local job.

Then we verify in Fig. 6 that both variants of the simulator can reproduce
the main trends of the original schedule for each sub-workload, even though it

Local

Grid

11/01 11/04 11/07 11/10 11/13 11/16 11/19 11/22 11/25 11/28 12/01

0

10000

20000

30000

0

5000

10000

15000

N
um

be
r o

f u
se

d
sl

ot
s

UGE
Alea (Baseline)
Alea (Modified)

Fig. 6. Actual (UGE) and simulated (Alea) resource utilization, in slots, for Grid (top)
and Local (bottom) jobs.

138 F. Azevedo et al.

Table 5. Impact of RQS relaxation on job waiting times.

Workload Scenario Average Percentiles Maximum

50th 75th 90th

Grid Conservative 1 h 53 m 0 s 16 m 2 h 21 m 13d 15 h 21 m

Extreme 1 h 57 m 4 s 17 m 41 s 2 h 47 m 14d 4 h 41 m

Local Conservative 1 h 39 m 2 s 45 m 40 s 5 h 8 m 3d 16 h 58 m

Extreme 1 h 14 m 1 s 21 m 55 s 2 h 30 m 3d 23 h 11 m

does not capture all the configuration parameters of the real system. We can
see that the baseline version can be used to evaluate the impact of the proposed
modification and that the proposed modification achieves a very similar overall
utilization and thus does not compromise the main operational objective.

We also propose to investigate the impact of a relaxation of the RQSs that
are applied to local user groups and limit their access to resources. We make
the assumption that the bigger is the original RQS, the bigger an acceptable
increase can be. Indeed, a group constrained to use very few resources is more
likely to cause I/O issues than a group allowed to use a large number of slots. We
thus classify local user groups in three categories (i.e., 0–5%, 5–10%, and 10+%)
according to the fraction of resources they can use. We propose two scenarios:
a conservative one in which RQSs are respectively increased by 5%, 10% and
20%, and an extreme scenario in which increases are of 100%, 200%, and 300%.
Table 5 shows a further reduction of the waiting time of Local jobs with a mod-
erate impact on Grid Jobs. The extreme relaxation leads to the fairest schedule
with similar waiting times up to the 90th percentile. However, it may be too
extreme to be accepted by the system administrators. From these experiments,
we can conclude that the new scheduling queues in Table 3. combined with a
conservative relaxation of the RQSs is a good candidate for production.

5 Workload Trace Production and Availability

The workload trace used in this work has been produced by extracting and
combining information from different tables of the Accounting and Reporting
Console (ARCo) of Univa Grid Engine. We first curated and anonymized the
data and then converted the trace into the Standard Workload Format (SWF)[4]
used by the PWA [6]. As this format does not allow us to log shares or RQSs, we
accompany the trace with additional files. To ensure the reproduction and further
investigation of the presented results, we made an experimental artifact that
comprises the workload trace, its additional files, the code of the simulator, the
simulation results and a companion document describing the data analyses [3].

Improving Fairness in a Large Scale HTC System 139

6 Conclusion and Future Work

The operation of a large data center is a complex task which is usually driven by a
few selected operational objectives. In the case of the IN2P3 Computing Center,
these objectives are to ensure a maximal utilization of the computing farm and
the respect of a sharing of the resources proportional to the requests expressed
for the year by the different user groups. To meet these objectives, operators
rely on the implementation of the Fair-Share algorithm proposed by the Univa
Grid Engine batch scheduling system and benefit from the main characteristic
of the processed workload to be composed of a vast majority of sequential jobs.

Thanks to the batch scheduling system, the objective of an overall fairness
across user groups, in terms of resource utilization, is achieved. However, the
deeper analysis of the workload and its processing that we proposed in this
paper showed that the current configuration of the system leads to a significant
unfairness, in terms of job waiting time. We identified the root causes of this
unfairness and proposed a pragmatic reconfiguration of the scheduling queues
and quotas to address this issue. Detailed simulations of the original and modified
configurations show that the proposed modifications better balance the waiting
times across jobs without hindering the overall utilization of the system. The
main operational objective is thus still achieved and the quality of service is
improved for local users. Jobs submitted through the grid, which were previously
favored now experience waiting times on par with those of the local jobs.

We are aware that the presented analysis and proposed optimizations are
tightly coupled to the very specific use case of the CC-IN2P3. The applicability
of our findings to other systems can thus be legitimately questioned. However,
we believe that two important and more general lessons can be drawn from this
study. First, the behavior and performance of a job and resource management
system are not only driven by the sole scheduling algorithm. This central com-
ponent is the most studied in the job scheduling literature, but we shown that
other components such as the scheduling queues and resource quotas can be key
factors too and have to be included in performance studies. Second, the config-
uration of a batch system is a slowly evolving process and decisions made at a
given time may last beyond an important evolution of the workload and impede
the operation. Regular analyses of the workload and revisits of the system con-
figuration should thus be seen as good operation practices.

As future work, we would like to improve the simulator to better mimic the
behavior of the system in production. A faithful replay of the original work-
load will allow us to better measure the impact of potential modifications of
the system, and thus ensure that these modifications can be safely applied in
production. We also plan to refine the configurations of the queues and inves-
tigate which parameters could be further tuned, e.g., handle array jobs more
specifically, to improve the quality of service experienced by CC-IN2P3’s users.

140 F. Azevedo et al.

Acknowledgements. We kindly acknowledge the support provided by Meta-
Centrum under the program LM2015042 and the project Reg. No. CZ.02.1.01/
0.0/0.0/16 013/0001797 co-funded by the Ministry of Education, Youth and Sports
of the Czech Republic. We also thank L. Gombert, N. Lajili, and O. Aidel for their
kind help.

References

1. ALEA 4: Job scheduling simulator, Feb 2019. https://github.com/aleasimulator
2. Azevedo, F., Gombert, L., Suter, F.: Reducing the human-in-the-loop component

of the scheduling of large HTC workloads. Job Scheduling Strategies for Parallel
Processing. Lecture Notes in Computer Science, vol. 11332. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-10632-4 3

3. Azevedo, F., Klusáček, D., Suter, F.: Companion of the improving fairness in a
large scale HTC system through workload analysis and simulation article (2019).
https://doi.org/10.6084/m9.figshare.8427785

4. Chapin, S.J., et al.: Benchmarks and standards for the evaluation of parallel job
schedulers. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1999. LNCS, vol. 1659,
pp. 67–90. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-47954-6 4

5. Emeras, J., Varrette, S., Guzek, M., Bouvry, P.: Evalix: classification and pre-
diction of job resource consumption on HPC platforms. In: Desai, N., Cirne, W.
(eds.) JSSPP 2015-2016. LNCS, vol. 10353, pp. 102–122. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-61756-5 6

6. Feitelson, D., Tsafrir, D., Krakov, D.: Experience with using the parallel workloads
archive. J. Parallel Distrib. Comput. 74(10), 2967–2982 (2014)

7. Kay, J., Lauder, P.: A fair share scheduler. Commun. ACM 31(1), 44–55 (1988)
8. Klusáček, D., Tóth, Š.: On interactions among scheduling policies: finding efficient

queue setup using high-resolution simulations. In: Silva, F., Dutra, I., Santos Costa,
V. (eds.) Euro-Par 2014. LNCS, vol. 8632, pp. 138–149. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-09873-9 12

9. Klusáček, D., Tóth, Š., Podolńıková, G.: Real-life experience with major reconfig-
uration of job scheduling system. In: Desai, N., Cirne, W. (eds.) JSSPP 2015-2016.
LNCS, vol. 10353, pp. 83–101. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-61756-5 5

10. Klusáček, D., Tóth, V., Podolńıková, G.: Complex job scheduling simulations with
ALEA 4. In: Proceedings of the 9th EAI International Conference on Simulation
Tools and Techniques (Simutools 2016). pp. 124–129. ICST, Prague, Czech Repub-
lic (2016)

11. Michelotto, M., et al.: A comparison of HEP code with SPEC 1 benchmarks on
multi-core worker nodes. J. Phys.: Conf. Ser. 219(5), 052009 (2010)

12. Rodrigo, G., Östberg, P., Elmroth, E., Antypas, K., Gerber, R., Ramakrishnan, L.:
Towards understanding HPC users and systems: a NERSC case study. J. Parallel
Distrib. Comput. 111, 206–221 (2018)

13. Sulistio, A., Cibej, U., Venugopal, S., Robic, B., Buyya, R.: A toolkit for modelling
and simulating data grids: an extension to GridSim. Concurrency Comput.: Pract.
Experience 20(13), 1591–1609 (2008)

14. The IN2P3 /CNRS Computing Center. http://cc.in2p3.fr/en/
15. Turilli, M., Santcroos, M., Jha, S.: A comprehensive perspective on pilot-job sys-

tems. ACM Comput. Surv. 51(2), 43:1–43:32 (2018)

https://github.com/aleasimulator
https://doi.org/10.1007/978-3-030-10632-4_3
https://doi.org/10.6084/m9.figshare.8427785
https://doi.org/10.1007/3-540-47954-6_4
https://doi.org/10.1007/978-3-319-61756-5_6
https://doi.org/10.1007/978-3-319-09873-9_12
https://doi.org/10.1007/978-3-319-61756-5_5
https://doi.org/10.1007/978-3-319-61756-5_5
http://cc.in2p3.fr/en/

Improving Fairness in a Large Scale HTC System 141

16. Univa Corporation: Grid Engine. http://www.univa.com/products/
17. You, H., Zhang, H.: Comprehensive workload analysis and modeling of a petascale

supercomputer. In: Cirne, W., Desai, N., Frachtenberg, E., Schwiegelshohn, U.
(eds.) JSSPP 2012. LNCS, vol. 7698, pp. 253–271. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-35867-8 14

http://www.univa.com/products/
https://doi.org/10.1007/978-3-642-35867-8_14

Toggle: Contention-Aware Task Scheduler
for Concurrent Hierarchical Operations

Saurabh Kalikar(B) and Rupesh Nasre

CSE, IIT Madras, Chennai, India
{saurabhk,rupesh}@cse.iitm.ac.in

Abstract. Rooted hierarchies are efficiently operated on using hierar-
chical tasks. Effective synchronization for hierarchies therefore demands
hierarchical locks. State-of-the-art approaches for hierarchical locking
are unaware of how tasks are scheduled. We propose a lock-contention
aware task scheduler which considers the locking request while assigning
tasks to threads. We present the design and implementation of Toggle,
which exploits nested intervals and work-stealing to maximize through-
put. Using widely used STMBench7 benchmark, a real-world XML hier-
archy, and a state-of-the-art hierarchical locking protocol, we illustrate
that Toggle considerably improves the overall application throughput.

1 Introduction

Managing concurrent data structures efficiently is challenging as well as error-
prone. Due to irregular memory accesses, the access pattern cannot be precisely
captured at compile time. Such a data-driven behavior necessitates runtime
thread-coordination. For synchronizing across threads, logical locks continue to
be prevalent for concurrent data structures.

We work with hierarchies; a hierarchy is a rooted directed graph wherein
nodes at a level control or contain all the reachable nodes at the levels below.
Such hierarchies are quite useful in modeling relations such as manager-employee.
Our motivation arises from the use of hierarchies to store data in relational
databases. For instance, Oracle database is composed of several tablespaces, each
of which contains several datafiles. Each datafile, in turn, may host several tables,
and each table may contain multiple rows where data is stored [12]. Similarly,
Sybase database uses the hierarchy of database, extents, tables, datapages and
rows [14]. The hierarchy is layered according to the containment property. Thus,
a table is completely contained into an extent. Concurrent updates to part of
the database requires thread synchronization. For instance, for answering range
queries [11], the concurrency mechanism in the database server acquires locks on
multiple rows. Two transactions accessing overlapping ranges (e.g., rows 10..20
and rows 15..25) may be allowed concurrent execution if their accesses are com-
patible (both are reads, for instance).

Existing hierarchical locking protocols such as intention locks [3]
exploit this containment property for detection of conflicting lock-requests.
c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 142–155, 2019.
https://doi.org/10.1007/978-3-030-29400-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_11&domain=pdf
https://doi.org/10.1007/978-3-030-29400-7_11

Toggle: Contention-Aware Task Scheduler 143

However, due to the requirement of multiple traversals (from root to the nodes
being locked), intention locks are expensive for non-tree structures (such as
DAGs). The state-of-the-art approaches [6,8] improve upon intention locks by
making use of interval numbering. These approaches assign numeric intervals to
nodes while respecting their hierarchical placement. The intervals can be quickly
consulted for locking requests, leading to fast conflict-detection and improved
throughput.

Unfortunately, the state-of-the-art approaches do not coordinate with the
task scheduler. Thus, the task scheduler does not know how threads process hier-
archical lock requests, and the threads do not know how various tasks (involving
lock requests) get assigned to them by the scheduler. Such a lack of coordination
forces the task scheduler to use uniform schemes across threads – for instance,
using round-robin scheduling for assigning tasks to threads. While round-robin
mechanism is fair, it is oblivious to locking requests and works well only when
the requests are spread uniformly across the hierarchy. In practice, however,
some parts of the hierarchy are more frequently accessed while several parts
witness infrequent accesses. This gives rise to skewed access pattern, which also
evolves over time (that is, different data records get more frequently accessed
over time). To cater to these changes, it is crucial to marry lock management
with task scheduling. Thus, the worker threads can provide information on how
the locking requests are spread in the hierarchy, and how loaded each thread is.
On the other hand, the task scheduler can distribute tasks to threads based on
the feedback received from the worker threads – to improve overall throughput.

Making the lock manager talk to the task scheduler is challenging and involves
several design changes to a traditional scheduler. Our primary contribution in
this work is to motivate the need for those design decisions and to illustrate how
those can be efficiently implemented. In particular,

– We propose Toggle, a novel hashing-based task-scheduling policy for hier-
archies. Built upon the interval numbering, such a policy allows the task
scheduler to quickly assign a task to a thread.

– We design and implement a communication protocol for threads using a
lightweight concurrent data structure.

– We illustrate the effectiveness of our proposal by incorporating the design
into STMBench7. Our proposal improves the overall throughput by 22%.

2 Background and Motivation

Hierarchy is a special linked data-structure where each child node exhibits a con-
tainment relationship with its parents. For instance, in a hierarchy of employees
within an organization, an edge from a project-manager to its team-member
indicates a containment relationship. Hierarchical structures are often operated
on using hierarchical operations which work on sub-hierarchies. For instance, an
operation “bulk updates to a particular department in an organization” accesses
the sub-hierarchy rooted at the department. Traditional fine-grained locking
necessitates locking each node in this sub-hierarchy that gets accessed by the

144 S. Kalikar and R. Nasre

Fig. 1. Sample hierarchy. Numbers at nodes represent subsuming intervals.

bulk operation. As the hierarchy size grows, fine-grained locking is prohibitive
from efficiency perspective. Therefore, hierarchical or multi-granularity locking
(MGL) have been proposed. MGL at a node semantically allows the whole sub-
hierarchy rooted at that node to be locked. In the extreme case, locking the
root of the hierarchy locks the whole hierarchy. For instance, Fig. 1 represents a
sample hierarchy wherein locking the node E locks nodes E, H, J and K. MGL
is an efficient way to ensure race-free access for hierarchical operations. Var-
ious approaches towards implementing multiple-granularity locking have been
proposed in the literature [2,3,6,8].

Existing MGL techniques lack coordination between thread scheduling and
lock management. For instance, consider two threads operating on nodes B and
D in Fig. 1. Due to MGL protocol, they both semantically try to lock the common
node H. If the accesses are non-compatible (e.g., both are writes) then only one
thread should be able to succeed in acquiring the lock, while the other must wait.
As an aftereffect, the two operations get executed sequentially. If this is known
to the scheduler, it may decide to assign the two operations to the same thread,
reducing the contention and improving the throughput. In absence of such a
knowledge, the scheduler may make suboptimal decisions while assigning tasks
to threads. In fact, as we illustrate in our experimental evaluation, round-robin
scheduling, which is fair and achieves good load balance, does not perform very
well for hierarchical operations. This is because the load balance is achieved with
respect to the number of tasks executed by a thread, rather than the amount
of work done, which is dependent on both the sub-hierarchy size as well as the
amount of contention.

3 Toggle: Contention-Aware Scheduler

In this section, we describe the design of our task scheduler. A task, denoted as
X : (Op,L) which consists of a set of operations (Op) to be performed atomically
on the shared hierarchy and a set of lock objects L to be acquired at the beginning
of the task. The execution of tasks follows standard 2-phase locking protocol in
which all the required locks are acquired at the beginning and released at the
end of the operation. Every hierarchical lock object li ∈ L can be represented

Toggle: Contention-Aware Task Scheduler 145

by its reachable leaf level locks. For instance, in Fig. 1, node B represents a set
of nodes H, I, J and K. We define a set of leaf level locks for set L as,

Leaf(L) =
⋃

li∈L{x | xis leaf node and reachable from li }
Any pair of tasks say, X1 : (Op1, L1) and X2 : (Op2, L2), are classified into

two types: independent tasks and conflicting tasks. Two tasks are independent
iff Leaf(L1) ∩ Leaf(L2) = φ, i.e., they do not access any common node in the
hierarchy; otherwise they conflict. Scheduling two conflicting tasks to different
threads may degrade performance due to the overhead of lock contention.

3.1 Representing Hierarchy as a System of Nested Intervals

Traversing lock hierarchy to compute the set of leaf level locks using reachability
information is costly. To avoid such traversals, the hierarchies are pre-processed
to compute and store the reachability information. One of the techniques for
encoding reachability is using nested intervals where each node in the hierarchy
keeps track of their leaf level descendents as an interval [6,7]. For example, in
Fig. 1, nodes H, I, J , K are reachable from B. Initially each leaf node is assigned
with a unique interval range H: [1, 1], I: [2, 2] and so on. Each internal node
maintains its interval range such that the range subsumes the interval range
of every reachable leaf node (e.g. D: [1, 2]). We build upon these intervals to
compute leaf lock set L for quick classification and scheduling of tasks.

3.2 Concurrent Data Structure for Task Classification
and Scheduling

A global task pool maintains a list of pending tasks to be executed. A worker
thread picks one task at a time from the global task pool and executes it on
the physical core. In absence of a proper scheduler, the allocation of a task to
a thread happens arbitrarily depending on the order in which worker threads
extract the next available tasks. Therefore, multiple threads can get blocked
simultaneously based on the locking requests.

task Task Scheduler

A

B

Host: T0 Host: T1

A

B

A

B

task task task

Fig. 2. Scheduler design: A and B represent outer and inner buckets resp.

146 S. Kalikar and R. Nasre

Our proposed scheduler assigns a task to appropriate worker thread to avoid
lock contention. Figure 2 shows the data structure used for task organization.
The data structure contains a list of hash buckets. The size of the list is equal
to the number of worker threads in the system. Every leaf node in the hierarchy
is hashed to a specific bucket in the list. Consider there are 100 leaf node in
the hierarchy indexed from 0 to 99 (during pre-processing) and there are 5 hash
buckets in the list. Therefore, each bucket represents a range of 20 hierarchical
nodes ([0–19], [20–39], ...). The scheduler, after extracting a task from the com-
mon task pool, analyzes the task by its set of lock objects. The scheduler inserts
the task into one of the buckets as follows: if all the leaf level lock objects of the
task fall into the range of a single bucket then insert the task in that bucket. Oth-
erwise (request spans multiple buckets), insert the task into the bucket having
the smallest bucket id. For instance, the hierarchy in Fig. 1 has 7 leaf nodes and
say there are 2 hash buckets in the list, i.e., bucket 0 with range [0, 3] and bucket
1 with range [4, 6]. A task with lock set containing node D falls into bucket 0
as the leaf level locks H [1, 1] and I [2, 2], both fall into the range of bucket 0.
On the other hand, if a locking request contains nodes J and G, then the leaf
locks span both the buckets. In this case, the task gets inserted into the bucket
with the least bucket id, i.e., bucket 0 (to ensure deterministic behavior). In the
case of a task spanning multiple buckets, we maintain a bit mask of size equal
to the total number of buckets with a bit set for each overlapping bucket. As
the probability of two tasks within a bucket being conflicting is high, we assign
one host thread to each bucket and mark it as primary responsible thread for
executing the tasks. This imposes a sequential ordering among the tasks within
a bucket which helps us minimizing the unnecessary lock contention.

3.3 Modified Locking Policy

Tasks are spread across buckets, and each bucket is served by a thread. The
invariant the scheduler tries to maintain is that tasks in different buckets are
independent. This invariant can allow a thread to operate on the nodes within
its bucket without taking locks, since the conflicting requests are now spaced
temporally. Unfortunately, this is violated by the locking requests that span
buckets. While executing a multi-bucket task, the worker thread acquires locks
(using bitmask) on all the overlapping buckets. This ensures safety of the con-
current operation across buckets.

3.4 Nested Bucketing

The approach discussed so far works well when the incoming tasks are uniformly
distributed across the hierarchy, wherein each worker thread receives almost
the same amount of work. However, for skewed distribution, the tasks are non-
uniformly distributed across buckets, leaving some threads idle. In an extreme
case, all the tasks may get scheduled to a single thread leading to completely
sequential execution. Two tasks scheduled to a single bucket are not always
conflicting and they can be run in parallel. To mitigate such effects, Toggle

Toggle: Contention-Aware Task Scheduler 147

Algorithm 1. Toggle Protocol
Input: Bucket B

1 count ← 0
2 while there are tasks to execute do
3 if B.OuterBucket is not empty then
4 Task t ← ExtractTaskFromOuterBucket()
5 if t spans single inner bucket then
6 call InnerBucket.insert(t)
7 if InnerBucket.size() ≥ Threshold then
8 call SwitchToInnerBucket()

9 else
/* Task spans multiple inner buckets */

10 call Execute(t)
11 count ← count + 1
12 if count ≥ DelayThreshold then
13 call SwitchToInnerBucket()
14 count ← 0

15 else
16 if InnerBucket is not empty then call SwitchToInnerBucket()
17 else call StealRemoteTask()
18

divides each bucket into two sub-parts: outer bucket A and inner bucket B, as
shown in Fig. 2. Algorithm 1 presents the detailed protocol to be followed by
each worker thread. While executing the tasks from the outer part of bucket,
the host thread checks whether the task can be moved into one of the inner
buckets (according to the hash range of inner buckets – line 12). If yes, the host
thread removes the task from the outer bucket, and schedules its execution from
the inner bucket. After every few cycles of tasks (line 7), the host toggles the
mode of execution from outer to inner buckets. An invariant strictly enforced is
that the inner bucket tasks are single-bucket tasks. Therefore, two tasks from
two inner-buckets never overlap. Once the host thread changes its execution
mode to inner bucket (line 8, 13, 16), it also allows other non-host threads to
steal tasks from the inner bucket. Note that, no two threads execute tasks from
the same inner bucket. This achieves good load balancing in the case of skewed
distributions, and no thread remains idle for long.

3.5 Task Stealing

Worker threads can execute tasks from the inner buckets of remote threads if
the worker thread is idle. In Algorithm 1, each worker thread starts stealing
(line 17) if both outer and inner buckets are empty. While stealing, the worker
thread iterates over remote buckets and checks whether any of the host threads

148 S. Kalikar and R. Nasre

are operating on inner bucket. If yes, it coordinates with the host thread to finish
its task from inner bucket by picking one inner bucket at a time. However, while
stealing, we need a proper thread synchronization for checking the status of the
host thread and picking inner buckets.

3.6 Thread Communication

Every host thread maintains a flag indicating one of the execution states, namely,
outer or inner. The worker, by default, executes tasks from the outer bucket.
According to the protocol mentioned in Algorithm 1, whenever the host changes
its state from the outer-bucket to the inner-bucket by reseting the flag, it broad-
casts the message to all the threads. Any remote thread trying to steal the work,
has to wait till the host thread toggles its state to inner bucket and is disal-
lowed from stealing from the inner bucket when the host thread is operating on
the outer bucket. Maintaining this protocol ensures that there are no conflicts
between the remote thread and the host thread. Once the first condition of the
toggle state is satisfied, remote threads are allowed to pick any one of the inner
buckets and start executing the tasks one-by-one. However, as multiple threads
steal in parallel, Toggle enforces (using atomic instructions) that one bucket gets
picked by maximum one thread.

Algorithm 2 presents our lock-free implementation of communication mech-
anism and the task execution at the inner buckets. Variables ToggleFlag and
Atomic Counter are associated with each hash bucket, and are shared across
threads. Host thread initializes these variables while switching the execution
mode (lines 2, 3). All the remote threads check the state of these variables at
the entry point and enter only when the state of the host thread has changed
to inner and there is at least one inner bucket available for stealing (line 8).
Instead of using heavyweight locks, we use relatively lightweight memory-fence
instructions and atomic increment instructions at lines 4, 5, 7. The calls to
memory fence(release) and memory fence(acquire) ensure that the values
of the atomic counter and the ToggleFlag are written/read directly to/from the
main memory (and not from the caches with stale data). Remote as well as host
threads atomically and repetitively pick one inner bucket at a time (by incre-
menting the Atomic Counter) till all the inner buckets become empty. Finally,
the host thread resets the shared variables and returns to the execution of the
outer bucket.

4 Experimental Evaluation

All our experiments are carried out on an Intel Xeon E5-2650 v2 machine with 32
cores clocked at 2.6 GHz having 100 GB RAM running CentOS 6.5 and 2.6.32-431
kernel. We implement our scheduler as part of STMBench7 [4], a widely used
benchmark for the evaluation of synchronization mechanisms for hierarchical
structures. STMBench7 represents an application operating on a complex real-
world hierarchy consisting of various types of hierarchical nodes, such as mod-
ules→assemblies→complex assemblies→composite-parts and finally atomic parts

Toggle: Contention-Aware Task Scheduler 149

Algorithm 2. Thread communication in Toggle

Input: Bucket B, Thread T
1 if T == B.HostThreadId then
2 B.Atomic Counter ← 0
3 B.ToggleFlag ← inner
4 MyInnerBucketId ← atomic increment(Atomic Counter)
5 memory fence(release)

6 else
7 memory fence(acquire)
8 if B.ToggleFlag == outer OR B.Atomic Counter > MaxInnerBucketId

then
9 return

10 MyInnerBucketId ← atomic increment(B.Atomic Counter)

11 while MyInnerBucketId ≤ MaxInnerBucketId do
12 while MyInnerBucket is not empty do
13 Task t ← ExtractTask()
14 call Execute(t)

15 MyInnerBucketId ← atomic increment(B.Atomic Counter)

16 if T == B.HostThreadId then
17 wait till all remote threads finish their respective tasks
18 B.ToggleFlag ← outer
19 memory fence(release)

at the leaf level. The operations accessing different parts of the hierarchy are
defined to evaluate various synchronization aspects. We evaluate Toggle against
four different locking mechanisms: two from STMBench7 (namely, coarse-grained
and medium-grained), and two MGL-based techniques: DomLock [6] and Num-
Lock [8].

We also use a real-world hierarchical dataset, tree-bank [15], (available in
XML format) having 2.4 million nodes. For stress-testing our approach, we use
a synthetically generated hierarchy having k-ary tree structure of 1 million nodes
to study the effect of various parameters. A command-line argument skewness
controls the probability of an operation accessing certain parts of the hierarchy.

4.1 STMBench7

Figure 3(a) shows the overall throughput achieved on STMBench7 by differ-
ent locking mechanisms. In STMBench7, each parallel thread iteratively picks
one operation at a time from a common pool. This mimics a fair round-robin
task scheduling policy. Our scheduler operates on top of the worker threads
and assigns tasks at runtime. In Fig. 3(a), x-axis shows the number of paral-
lel threads and y-axis is the throughput (tasks/second) across all threads. We
primarily compare with DomLock and NumLock, and extend them with our
scheduler. Across all threads, Toggle achieves maximum throughput compared

150 S. Kalikar and R. Nasre

to coarse-grained, medium-grained, DomLock, and NumLock. This is primarily
due to reduced lock contention. NumLock is an improved version of DomLock
with optimal locking choices. We plug Toggle with NumLock; Toggle improves
overall throughput with NumLock as well. We observe that the STMBench7 oper-
ations access certain part of hierarchy frequently. Every operation accessing such
a subset of nodes gets sequentialized irrespective of the thread performing the
operation. The scheduler dynamically detects such sequential bottleneck among
the tasks and assigns them to only few threads letting other threads remain idle.
In our experiments, the maximum throughput is achieved with the configura-
tion of only four parallel threads. Overall, Toggle achieves 44%, 22% and 10%
more throughput compared to coarse-grained, medium-grained and DomLock
respectively.

(a) (b)

Fig. 3. (a) Comparison with STMBench7 (b) Effect on XML hierarchy

4.2 XML Hierarchy

We also evaluate our technique on tree-bank, a real-world hierarchical dataset
available in XML format [15]. The hierarchy represents a non-uniform structure
consisting of 2,437,666 nodes with maximum depth of 36 and average depth
of 7.87 levels. We perform parallel tasks on the hierarchy where tasks access
hierarchical nodes with equal probability. The tasks are diverse in nature: Some
tasks exhibit skewed access whereas others are equally distributed. Tasks also
vary with respect to the size of critical sections, i.e., some tasks spend less
time in critical sections representing short transactions and while some are long
transactions. We maintain the ratio of read:write operations as 7:3. Figure 3(b)
shows the throughput gain of our scheduler with a fair round-robin scheduler.
We observe that, our scheduler yields 16% more throughput and scales well with
the number of threads whereas round-robin fails to scale due to lock-contention.

4.3 Effect of Skewness

We use our stress-test implementation to evaluate the effect of various parame-
ters on the performance of Toggle. Figure 4 shows the overall throughput with 16
parallel threads with different levels of skewness. The x-axis shows the skewness
index; skewness = 1 indicates uniform random distribution. As we increase the

Toggle: Contention-Aware Task Scheduler 151

(a) Average case (b) Worst case

Fig. 4. Throughput improvement with Toggle

skewness index on x-axis, the access pattern becomes more localized to certain
part of the hierarchy. For instance, skewness = 2 indicates two disjoint sub-
sets of hierarchy nodes and any task can access nodes within only one subset.
Figure 4(a) shows that the maximum throughput improvement is obtained with
the most skewed and localized access pattern. Toggle achieves more through-
put than round-robin scheduling because the conflicting tasks gets assigned to
particular buckets according to the hash ranges of buckets.

It is crucial to handle the worst-case scenario for the task scheduling. As
Toggle assigns tasks according to the bucket range and the host thread executes
them sequentially, it is possible that every task falls into a single bucket leaving
all other buckets empty. Note that, the tasks from one bucket may not conflict
and may exhibit concurrency. We evaluate this scenario by forcing tasks to access
multiple nodes from one particular range. In Fig. 4(b), x-axis shows the num-
ber of nodes a task is operating on and y-axis shows throughput (log-scale) for
round-robin and Toggle. As we keep on increasing the value on x-axis, the prob-
ability of conflicts becomes very high. The throughput obtained using Toggle is
consistently better than round-robin because of two reasons. First, even though
the tasks get assigned to single bucket, the host thread allows other threads to
steal tasks from the inner-buckets, utilizing available parallelism. Second, indi-
vidual threads do not execute conflicting tasks, therefore they do not introduce
extra lock contention. However, for tasks accessing only one node, (i.e., at x-axis
value = 1), every task is guaranteed to be independent except the two tasks
accessing exactly the same node. In this case, even though Toggle assigns all
the tasks to a single thread and internally allows other threads to steal tasks,
it fails to achieve better throughput because of synchronization cost involved
in stealing. This is the only case where round-robin scheduling performs better
than Toggle (although round-robin is also suboptimal for this scenario). Figure 4
shows the throughput with DomLock. The results with NumLock are omitted
from Fig. 4(b) as both plots coincide due to the logscale.

4.4 Effect of Task Stealing

In this section, we compare the effect of scheduling in terms of resource utiliza-
tion. As we discussed in the previous section, round-robin and Toggle achieve

152 S. Kalikar and R. Nasre

(a) Random distribution (b) Skewed distribution

Fig. 5. Effect of task-stealing

similar throughput for random distribution. Figure 5(a) shows the work-load
distribution across worker threads (threadIDs 0..13) for round-robin, Toggle
without and with task stealing. Out of total 16 threads, remaining two threads
are reserved: threadID 14 is a task-generator and threadID 15 is Toggle task-
scheduler. x-axis represents different thread IDs and the y-axis represents the
number of tasks executed by each thread. The obtained throughput with each
scheduling policy is shown along with the legends. We observe that, in round-
robin scheduling, every thread execute nearly equal number of tasks. However,
for Toggle, threads with smaller IDs execute more tasks than the other. In fact,
half of the threads remain idle. Despite this, the obtained throughput is better
than round-robin. Note that the work-load distribution gradually decreases with
the higher thread IDs. This happens because the tasks accessing nodes from a
random distribution generally span multiple buckets, but our scheduler assigns
such multi-bucket tasks to smaller thread IDs. Moreover, there is almost no scope
for task stealing in the case of random distribution, as Toggle with and without
stealing executes a similar number of tasks and achieves equal throughput.

Unlike this, for a skewed distribution, task stealing plays important role in
performance improvement. Figure 5(b) shows tasks distribution across threads
for the configuration of the worst-case scenario with every task accessing exactly
2 nodes. In absence of task stealing, each task gets assigned to a single bucket
and each of them is executed sequentially, still achieving better throughput
than round-robin scheduling. However, permitting other threads to steal tasks
from remote buckets, we achieve further improvement in the overall throughput
(shown with the legends). This shows the importance of task stealing in skewed
distributions, which is prevalent in real-world scenarios. Our scheduler dynami-
cally enables and disables task stealing based on the run-time load distribution.

4.5 Effect of Hierarchy Size

Figure 6(a) shows the throughput against different hierarchy sizes, from 100 to 1
million nodes. As we see, parallel operations on a smaller hierarchy are likely to
get blocked. Toggle achieves throughput gain even in high-contention scenario.
As we increase the hierarchy size, Toggle consistently outperforms DomLock.

Toggle: Contention-Aware Task Scheduler 153

(a) Scalability with the hierarchy size (b) Effect on cache references

Fig. 6. Effect of hierarchy size on throughput and cache misses

We also see the benefit of scheduling in terms of caching. A worker thread
primarily executes operations within its bucket. Tasks within a bucket are mostly
conflicting, i.e., access same nodes, therefore it avoids extra cache misses as the
data would be available in processors private cache. As we increase the hierarchy
size, the bucket ranges become wider. The tasks in such a wider bucket are less
likely to be conflicting, therefore for every task, accessing new nodes leads to
cache miss. In Fig. 6(b), this effect is visible for large sized hierarchies.

5 Related Work

Hierarchical locking is imposed in many ways. Traditionally, in database context,
hierarchical locking is implemented as multiple granularity locks using intention
locks [3] at ancestor nodes. However, in multi-threads applications, threads get
contended while acquiring these intention locks. DomLock [6] solves this problem
by dominator locking using nested intervals. NumLock [8] further improves by
generating optimal hierarchical locking combination. Our task scheduler can be
used with any of these hierarchical locking protocols. Similar to the idea of
interval locking, key-range locking [9,10] is in databases locks a range of records
satisfying certain predicates. In this case, key-range lock guards not only the
keys present in the databases but also any phantom insertions. However, it is
not a hierarchical locking technique. Although Toggle works with hierarchical
locking, it can be tuned to work with key-range locking as well.

Task scheduling has been the topic of interest in many domains. Hugo Rito et
al. proposed ProPS [13], a fine-grained pessimistic scheduling policy for STMs.
ProPS also used STMBench7 for evaluating different STM implementations. We
use it for evaluating Toggle over locking techniques. Several techniques have been
proposed for scheduling task DAGs where nodes represent tasks and directed
edges are precedence relation. Zhao et al. [5] proposed a policy for scheduling
multiple task DAGs on heterogeneous systems. Cui et al. [1] present a lock-
contention-aware scheduler at the kernel level. However, none of the schedulers
addresses the challenges with lock-contention for hierarchical locks.

154 S. Kalikar and R. Nasre

6 Conclusion

We presented Toggle, a contention-aware task scheduler for hierarchies. It coor-
dinates with the lock manager for scheduling tasks to maximize throughput,
using nested bucketing and work-stealing. Using large hierarchies and STM-
Bench7 benchmarks, we illustrated the effectiveness of Toggle, which consider-
ably improves the average throughput over DomLock.

7 Data Availability Statement and Acknowledgments

We thank all the reviewers whose comments improved the quality of the paper
substantially. The artifacts of the work have been successfully evaluated and are
available at: https://doi.org/10.6084/m9.figshare.8496464.

References

1. Cui, Y., Wang, Y., Chen, Y., Shi, Y.: Lock-contention-aware scheduler: a scalable
and energy-efficient method for addressing scalability collapse on multicore sys-
tems. ACM Trans. Archit. Code Optim. 9(4), 44:1–44:25 (2013). https://doi.org/
10.1145/2400682.2400703

2. Ganesh, K., Kalikar, S., Nasre, R.: Multi-granularity locking in hierarchies with
synergistic hierarchical and fine-grained locks. In: Aldinucci, M., Padovani, L.,
Torquati, M. (eds.) Euro-Par 2018. LNCS, vol. 11014, pp. 546–559. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96983-1 39

3. Gray, J.N., Lorie, R.A., Putzolu, G.R.: Granularity of locks in a shared data base.
In: VLDB. pp. 428–451. ACM, New York (1975)

4. Guerraoui, R., Kapalka, M., Vitek, J.: STMBench7: a benchmark for software
transactional memory. In: Proceedings of the 2Nd ACM SIGOPS/EuroSys Euro-
pean Conference on Computer Systems 2007, pp. 315–324. EuroSys 2007, ACM,
New York (2007). https://doi.org/10.1145/1272996.1273029

5. Zhao, H., Sakellariou, R.: Scheduling multiple dags onto heterogeneous systems. In:
Proceedings 20th IEEE International Parallel Distributed Processing Symposium,
p. 14. April 2006

6. Kalikar, S., Nasre, R.: Domlock: a new multi-granularity locking technique for
hierarchies. In: Proceedings of the 21st ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pp. 23:1–23:12. PPoPP 2016, ACM, New
York (2016). https://doi.org/10.1145/2851141.2851164

7. Kalikar, S., Nasre, R.: DomLock: a new multi-granularity locking technique for
hierarchies. ACM Trans. Parallel Comput. 4(2), 7:1–7:29 (2017)

8. Kalikar, S., Nasre, R.: NumLock: towards optimal multi-granularity locking in
hierarchies. In: Proceedings of the 47th International Conference on Parallel Pro-
cessing, pp. 75:1–75:10. ICPP 2018, ACM, New York (2018). https://doi.org/10.
1145/3225058.3225141

9. Lomet, D., Mokbel, M.F.: Locking key ranges with unbundled transaction services.
Proc. VLDB Endow. 2(1), 265–276 (2009)

10. Lomet, D.B.: Key range locking strategies for improved concurrency. In: Proceed-
ings of the 19th International Conference on Very Large Data Bases, pp. 655–664.
VLDB 1993, Morgan Kaufmann Publishers Inc., San Francisco (1993)

https://doi.org/10.6084/m9.figshare.8496464
https://doi.org/10.1145/2400682.2400703
https://doi.org/10.1145/2400682.2400703
https://doi.org/10.1007/978-3-319-96983-1_39
https://doi.org/10.1145/1272996.1273029
https://doi.org/10.1145/2851141.2851164
https://doi.org/10.1145/3225058.3225141
https://doi.org/10.1145/3225058.3225141

Toggle: Contention-Aware Task Scheduler 155

11. MSDN: Sql server 2016 database engine (2015). https://msdn.microsoft.com/en-
us/library/ms187875.aspx

12. Oracle: Oracle database 10g r2 (2015). http://docs.oracle.com/cd/B19306 01/
index.htm

13. Rito, H., Cachopo, J.: ProPS: a progressively pessimistic scheduler for software
transactional memory. In: Silva, F., Dutra, I., Santos Costa, V. (eds.) Euro-Par
2014. LNCS, vol. 8632, pp. 150–161. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-09873-9 13

14. Sybase: Adaptive server enterprise: Performance tuning and locking (2003). http://
infocenter.sybase.com/help/topic/com.sybase.help.ase 12.5.1/title.htm

15. Treebank: Xml data repository (2002). http://aiweb.cs.washington.edu/research/
projects/xmltk/xmldata/www/repository.html

https://msdn.microsoft.com/en-us/library/ms187875.aspx
https://msdn.microsoft.com/en-us/library/ms187875.aspx
http://docs.oracle.com/cd/B19306_01/index.htm
http://docs.oracle.com/cd/B19306_01/index.htm
https://doi.org/10.1007/978-3-319-09873-9_13
https://doi.org/10.1007/978-3-319-09873-9_13
http://infocenter.sybase.com/help/topic/com.sybase.help.ase_12.5.1/title.htm
http://infocenter.sybase.com/help/topic/com.sybase.help.ase_12.5.1/title.htm
http://aiweb.cs.washington.edu/research/projects/xmltk/xmldata/www/repository.html
http://aiweb.cs.washington.edu/research/projects/xmltk/xmldata/www/repository.html

Load-Balancing for Parallel Delaunay
Triangulations

Daniel Funke(B), Peter Sanders, and Vincent Winkler

Karlsruhe Institute of Technolgy, Karlsruhe, Germany
{funke,sanders}@kit.edu, vincent.winkler@student.kit.edu

Abstract. Computing the Delaunay triangulation (DT) of a given point
set in R

D is one of the fundamental operations in computational geom-
etry. Recently, Funke and Sanders [11] presented a divide-and-conquer
DT algorithm that merges two partial triangulations by re-triangulating
a small subset of their vertices – the border vertices – and combin-
ing the three triangulations efficiently via parallel hash table lookups.
The input point division should therefore yield roughly equal-sized par-
titions for good load-balancing and also result in a small number of
border vertices for fast merging. In this paper, we present a novel divide-
step based on partitioning the triangulation of a small sample of the
input points. In experiments on synthetic and real-world data sets, we
achieve nearly perfectly balanced partitions and small border triangu-
lations. This almost cuts running time in half compared to non-data-
sensitive division schemes on inputs exhibiting an exploitable underlying
structure.

1 Introduction

The Delaunay triangulation (DT) of a given point set in R
D has numerous

applications in computer graphics, data visualization, terrain modeling, pattern
recognition and finite element methods [15]. Computing the DT is thus one
of the fundamental operations in geometric computing. Therefore, many algo-
rithms to efficiently compute the DT have been proposed (see survey in [23]) and
well implemented codes exist [13,20]. With ever increasing input sizes, research
interest has shifted from sequential algorithms towards parallel ones.

Recently, we presented a novel divide-and-conquer (D&C) DT algorithm
for arbitrary dimension [11] that lends itself equally well to shared and dis-
tributed memory parallelism and thus hybrid parallelization. While previous
D&C DT algorithms suffer from a complex – often sequential – divide or merge
step [8,17], our algorithm reduces the merging of two partial triangulations to
re-triangulating a small subset of their vertices – the border vertices – using the
same parallel algorithm and combining the three triangulations efficiently via
hash table lookups. All steps required for the merging – identification of rele-
vant vertices, triangulation and combining the partial DTs – are performed in
parallel.

c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 156–169, 2019.
https://doi.org/10.1007/978-3-030-29400-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_12&domain=pdf
https://doi.org/10.1007/978-3-030-29400-7_12

Load-Balancing for Parallel Delaunay Triangulations 157

The division of the input points in the divide-step needs to address a twofold
sensitivity to the point distribution: the partitions need to be approximately
equal-sized for good load-balancing, while the number of border vertices needs to
be minimized for fast merging. This requires partitions that have many internal
Delaunay edges but only few external ones, i. e. a graph partitioning of the DT
graph. In this paper we propose a novel divide-step that approximates this graph
partitioning by triangulating and partitioning a small sample of the input points,
and divides the input point set accordingly.

The paper is structured as follows: we review the problem definition, related
work on partitioning for DT algorithms and our D&C DT algorithm from [11] in
Sect. 2. Subsequently, our proposed divide-step is described in Sect. 3, along with
a description of fast intersection tests for the more complexly shaped partition
borders and implementation notes. We evaluate our algorithms in Sect. 4 and
close the paper with conclusions and an outlook on future work in Sect. 5.

2 Preliminaries

2.1 Delaunay Triangulations

Given a D-dimensional point set P = {p1, p2, . . . , pn} ⊂ R
D for all i ∈ {1, . . . , n},

a triangulation T (P) is a subdivision of the convex hull of P into D-simplices
such that the set of vertices of T (P) coincides with P and any two simplices of
T intersect in a common D − 1 facet or not at all. The union of all simplices
in T (P) is the convex hull of point set P. A Delaunay triangulation DT (P) is
a triangulation of P such that no point of P is inside the circumhypersphere of
any simplex in DT (P). The DT of n points can be computed in O (n log n) time
for D = 2 and O(n� D

2 �) time for D ≥ 3.

2.2 Related Work

Many algorithms for the parallel construction of the DT of a given point set have
been proposed in the literature. They generally fall into one of two categories:
parallel incremental insertion and D&C approaches. We will focus on a review of
the divide-step of the latter. A more comprehensive discussion of both algorithm
types is given in [11].

Aggarwal et al. [1] propose the first parallel D&C DT algorithm. They par-
tition the input points along a vertical line into blocks, which are triangulated
in parallel and then merged sequentially. The authors do not prescribe how to
determine the location of the splitting line. Cignoni et al. [8] partition the input
along cutting (hyper)planes and firstly construct the simplices of the triangula-
tion crossing those planes before recursing on the two partitions. The remaining
simplices can be created in parallel in the divided regions without further merg-
ing. The authors mention that the regions should be of roughly equal cardinality,
but do not go into the details of the partitioning. Chen [5] and Lee et al. [17]
explicitly require splitting along the median of the input points. Whereas the
former uses classical splitting planes, the latter traces the splitting line with
Delaunay edges, thus eliminating the need for later merging.

158 D. Funke et al.

The subject of input partitioning has received more attention in the mesh-
ing community. A mesh of a point set P is a triangulation of every point in
P and possibly more – so called Steiner points – to refine the triangulation.
Chrisochoides [6] surveys algorithms for parallel mesh generation and differen-
tiates between continuous domain decomposition – using quad- or oct-trees –
and discrete domain decomposition using an initial coarse mesh that is parti-
tioned into submeshes, trying to minimize the surface-to-volume ratio of the
submeshes.Chrisochoides and Nave [7] propose an algorithm that meshes the
subproblems via incremental insertion using the Bowyer-Watson algorithm.

2.3 Parallel Divide-and-Conquer DT Algorithm

Recently, we presented a parallel D&C algorithm for computing the DT of a given
point set [11]. Our algorithm recursively divides the input into two partitions
which are triangulated in parallel. The contribution lies in a novel merging step
for the two partial triangulations which re-triangulates a small subset of their
vertices and combines the three triangulations via parallel hash table lookups.
For each partial triangulation the border is determined, i. e. the simplices whose
circumhypersphere intersects the bounding box of the other triangulation. The
vertices of those border simplices are then re-triangulated to obtain the border
triangulation. The merging proceeds by combining the two partial triangulations,
stripping the original border simplices and adding simplices from the border
triangulation iff (i) they span multiple partitions; or (ii) are contained within
one partition but exist in the same form in the original triangulation.

The algorithm’s sensitivity to the input point distribution is twofold: the
partitions need to be of equal size for good load-balancing between the avail-
able cores and the number of simplices in the border needs to be minimized
in order to reduce merging overhead. As presented in [11], the algorithm splits
the input into two partitions along a hyperplane. Three strategies to choose the
splitting dimension are proposed: (i) constant, predetermined splitting dimen-
sion; (ii) cyclic choice of the splitting dimension – similar to k-D trees; or (iii)
dimension with largest extend. This can lead to imbalance in the presence of
non-homogeneously structured inputs, motivating the need for more sophisti-
cated partitioning schemes.

3 Sample-Based Partitioning

In this paper, we propose more advanced strategies for partitioning the input
points than originally presented in [11]. The desired partitioning addresses both
data sensitivities of our algorithm. The underlying idea is derived from sample
sort: gain insight into the input distribution from a (small) sample of the input.
Algorithm 1 describes our partitioning procedure. A sample PS of η(n) points is
taken from the input point set P of size n and triangulated to obtain DT (PS).
A similar approach can be found in Delaunay hierarchies, where the sample
triangulation is used to speed up point location queries [10].

Load-Balancing for Parallel Delaunay Triangulations 159

Algorithm 1. partitionPoints(P, k): partition input into k partitions.
Input: points P = {p1, . . . , pn} with pi ∈ R

D, number of partitions k
Output: partitioning

(
P1 . . . Pk

)

1: PS ← choose η(n) from P uniformly at random � η(n) sample size
2: T ← Delaunay(PS)
3: G = (V, E, ω) with V = PS , E = T and weight function ω
4:

(
V1 . . . Vk

) ← partition(G) � partition graph
5:

(
P1 . . . Pk

) ← (
∅ . . . ∅

)

6: parfor p ∈ P do
7: vn ← arg minv∈PS

||p − v|| � find nearest sample point to p
8: Pi ∪= p with i ∈ [1 . . . k] : vn ∈ Vi � assign p to vn’s partition

9: return
(
P1 . . . Pk

)

Instead, we transform the DT into a graph G = (V,E, ω), with V being equal
to the sample point set PS and E containing all edges of DT (PS). The resulting
graph is then partitioned into k blocks using a graph partitioning tool.

The choice of the weight function ω influences the quality of the resulting
partitioning. As mentioned in Sect. 2.3, the D&C algorithm is sensitive to the
balance of the blocks as well as the size of the border triangulation. The former is
ensured by the imbalance parameter ε of the graph partitioning, which guaran-
tees that for all partitions i: |Vi| ≤ (1+ ε)� |V |

k �. The latter needs to be addressed
by the edge weight function ω of the graph. In order to minimize the size of the
border triangulation, dense regions of the input points should not be cut by the
partitioning. Sparse regions of the input points result in long Delaunay edges in
the sample triangulation. As graph partitioning tries to minimize the weight of
the cut edges, edge weights need to be inversely related to the Euclidean length
of the edge. In Sect. 4.1 we evaluate several suitable edge weight functions.

Given the partitions of the sample vertices (V1 . . . Vk), the partitioning needs
to be extended to the entire input point set. The dual of the Delaunay triangu-
lation of the sample point set – its Voronoi diagram – defines a partitioning of
the Euclidean space R

D in the following sense: each point pS,i of the sample is
assigned to a partition j ∈ [1 . . . k]. Accordingly, its Voronoi cell with respect to
PS defines the sub-space of R

D associated with partition j. In order to extend
the partitioning to the entire input point set, each point p ∈ P is assigned to
the partition of its containing Voronoi cell.

All steps in Algorithm 1 can be efficiently parallelized. Sanders et al. [18]
present an efficient parallel random sampling algorithm. The triangulation of
the sample point set PS could be computed in parallel using our DT algo-
rithm recursively. However, as the sample is small, a fast sequential algo-
rithm is typically more efficient. Graph conversion is trivially done in parallel
and Akhremtsev et al. [2] present a state-of-the-art parallel graph partitioning
algorithm. The parallelization of the assignment of input points to their respec-
tive partitions is explicitly given in Algorithm 1.

160 D. Funke et al.

(a) cycle (b) direct k-way (c) recursive bisection

Fig. 1. Example of a two-dimensional partitioning with four partitions for 10000 points
and a sample size of 1000.

3.1 Recursive Bisection and Direct k-way Partitioning

Two possible strategies exist to obtain k partitions from a graph: direct k-way
partitioning and recursive bisection. For the latter, the graph is recursively par-
titioned into k′ = 2 partitions log k times. In the graph partitioning community,
Simon and Teng [22] prove that recursive bisection can lead to arbitrarily bad
partitions and Kernighan and Lin [14] confirm the superiority of direct k-way
partitioning experimentally. However, recursive bisection is still widely – and
successfully – used in practice (e. g. for initial partitioning in KaHIP [19]). We
therefore consider both strategies to obtain k partitions for our DT algorithm.

The partitioning schemes originally proposed in [11] can be seen as recursive
bisection: the input is recursively split along the median. The splitting dimension
is chosen in a cyclic fashion, similiar to k-D trees. Figure 1a shows an example.

Similarly, our new partitioning algorithm can be applied log k times, at each
step i drawing a new sample point set PS,i, triangulating and partitioning PS,i,
and assigning the remaining input points to their respective partition. As in
the original scheme, this leads to k − 1 merge steps, entailing k − 1 border
triangulations. In the sample-based approach however, the partitioning avoids
cutting dense regions of the input, which would otherwise lead to large and
expensive border triangulations; refer to Fig. 1c.

Using direct k-way partitioning, only one partitioning and one merge step is
required. The single border point set will be larger, with points spread through-
out the entire input area. This however, allows for efficient parallelization of the
border triangulation step using our DT algorithm recursively. Figure 1b depicts
an example partitioning.

For a fair comparison, we also implemented a variant of the original cyclic par-
titioning scheme, where all leaf nodes of the recursive bisection tree are merged
in a single k-way merge step. This allows us to determine, whether any runtime
gains are due to the k-way merging or due to our more sophisticated data-
sensitive partitioning.

Load-Balancing for Parallel Delaunay Triangulations 161

3.2 Geometric Primitives

Our D&C algorithm [11] mostly relies on combinatorial computations on hash
values except for the base case computations and the detection of the border
simplices. The original partitioning schemes always result in partitions defined by
axis-aligned bounding boxes. Therefore, the test whether the circumhypersphere
of a simplex intersects another partition can be performed using the fast box-
sphere overlap test of Larsson et al. [16]. However, using the more advanced
partitioning algorithms presented in this paper, this is no longer true. Therefore
the geometric primitives to determine the border simplices need to be adapted
to the more complexly shaped partitions. The primitives need to balance the
computational cost of the intersection test itself with the associated cost for
including non-essential points in the border triangulation.

We propose three intersection tests:1 (i) each partition is crudely approxi-
mated with an axis-aligned bounding box and the fast intersection test of Larsson
et al. [16] is used to determine the simplices that belong to the border of a par-
tition. While computationally cheap, the bounding box can overestimate the
extent of a partition. (ii) for each partition it is determined which cells of a
uniform grid are occupied by points from that partition. This allows for a more
accurate test whether a given simplex s of partition i intersects with partition
j by determining whether any of j’s occupied grid cells are intersected by the
circumhypersphere of s, again using the box-sphere intersection test [16]. To
further accelerate the intersection test we build an AABB tree [4] on top of
the grid data structure. (iii) to exactly determine the necessary points for the
border triangulation we use the previous test to find the grid cells of partition
j intersected by the circumhypersphere of s and then use an adaptive precision
inSphere-test [21] for all points contained in these cells to test whether s vio-
lates the Delaunay property and thus its vertices need to be added to the border
triangulation.

4 Evaluation

Batista et al. [3] propose three input point distributions to evaluate the perfor-
mance of their DT algorithm: n points distributed uniformly (a) in the unit cube;
(b) on the surface of an ellipsoid; and (c) on skewed lines. Furthermore, Lee et al.
[17] suggest normally distributed input points around (d) the center of the unit
cube; and (e) several “bubble” centers, distributed uniformly at random within
the unit cube. We furthermore test our algorithm with a real world dataset from
astronomy. The Gaia DR2 catalog [9] contains celestial positions and the appar-
ent brightness for approximately 1.7 billion stars. Additionally, for 1.3 billion of
those stars, parallaxes and proper motions are available, enabling the computa-
tion of three-dimensional coordinates. As the image next to Table 1 shows, the
data exhibits clear structure, which can be exploited by our partitioning strategy.
We use a random sample of the stars to evaluate our algorithm. All experiments

1 For a more detailed description of the primitives we refer to the technical report [12].

162 D. Funke et al.

Table 1. Input point sets and their resulting triangulations. Running times are
reported for k = t = 16, parallel KaHIP, η(n) =

√
n, grid-based intersection test

with cG = 1 and logarithmic edge weights. The image on the right shows an Aitoff
projection of a random sample of 25000 sources from the Gaia DR2 dataset.

Dataset Points Simplices simplices
point Runtime

uniform 50 000 000 386 662 755 7.73 164.6 s
normal 50 000 000 390 705 843 7.81 162.6 s
ellipsoid 500 000 23 725 276 4.74 88.6 s
lines 10 000 71 540 362 7154.04 213.3 s
bubbles 50 000 000 340 201 778 6.80 65.9 s

Gaia DR2 50 000 000 359 151 427 7.18 206.9 s

Table 2. Parameters of our algorithm (top) and conducted experiments (bottom).

Parameter Values

Sample size η(n) 1%, 2 %, log n,
√

n

KaHIP configuration strong, eco, fast, parallel

Edge weight ω(e) constant, inverse, log, linear

Geometric primitive bbox, exact, grid with cell sizes cG = [1
2
, 1, 2]

Partitions k 1, 2, 4, . . . , 64

Threads t t = k

Points n [1, 5, 10, 25, 50] · 106 a

Distribution see Table 1
a Unless otherwise stated in Table 1

are performed in three-dimensional space (D = 3). Table 1 gives an overview of
all input point sets, along with the size of their resulting triangulation.

The algorithm was evaluated on a machine with dual Intel Xeon E5-2683 16-
core processors and 512 GiB of main memory. The machine is running Ubuntu
18.04, with GCC version 7.2 and CGAL version 4.11.

Implementation Notes: We integrated our divide-step into the implementa-
tion of [11], which is available as open source.2 We use KaHIP [19] and its parallel
version [2] as graph partitioning tool. The triangulation of the sample point set
is computed sequentially using CGAL [13] with exact predicates.3

4.1 Parameter Studies

The parameters listed in Table 2 can be distinguished into configuration
parameters of our algorithm and parameter choices for our experiments. In our
parameter study we examine the configuration parameters of our algorithm and
2 https://git.scc.kit.edu/dfunke/DelaunayTriangulation.
3 CGAL::Exact predicates inexact constructions kernel.

https://git.scc.kit.edu/dfunke/DelaunayTriangulation

Load-Balancing for Parallel Delaunay Triangulations 163

determine robust choices for all inputs. The parameter choice influences the
quality of the partitioning with respect to partition size deviation and number
of points in the border triangulation. As inferior partitioning quality will result
in higher execution times, we use it as indicator for our parameter tuning. We use
the uniform, normal, ellipsoid and random bubble distribution for our parameter
tuning and compare against the originally proposed cyclic partitioning scheme
for reference. Due to space constrains we refer to the technical report [12] for
an in-depth discussion of each parameter individually and only present a short
summary here.

Our experiments show, that a sample size of η(n) =
√

n balances the approxi-
mation quality of a partitioning of the final triangulation with the runtime for the
sample triangulation. Considering edge weights, dense regions of the input point
set are reflected by many short edges in the sample triangulation. Therefore,
even constant edge weights result in a sensible partitioning. However, logarith-
mic edge weights4 are better when there is an exploitable structure in the input
points. For KaHIP we chose the parallel configuration as default as it requires a
similar runtime to the eco configuration while achieving a cut only slightly worse
then strong. The grid-based intersection test with a cell size of cG = 1 shows
the best trade-off between accuracy – i. e. only essential simplices are included
in the border triangulation – and runtime for the geometric primitive itself.

4.2 Partitioning Quality

Given a graph partitioning
(
V1 . . . Vk

)
, its quality is defined by the weight of

its cut,
∑

e∈C ω(e) for C := {e = (u, v), e ∈ E and u ∈ Vi, v ∈ Vj with i 	= j}.
As mentioned in Sect. 3, the balance of the graph partitioning is ensured by the
imbalance parameter ε, |Vi| ≤ (1 + ε)� |V |

k � for all i ≤ k. When the partitioning
of the sample triangulation is extended to the entire input set, this guarantee
no longer holds. We therefore study two quality measures: (i) the deviation from
the ideal partition size and (ii) the coefficient of variation of the partition sizes.
Due to space constraints we only discuss the latter measure for two of our input
distributions here. We refer to the technical report [12] for the full discussion.

The coefficient of variation cv of the partition sizes pi, i ≤ k, is given by

cv =
σ

μ
=

√∑
i≤k(pi−µ)2

k−1
∑

i≤k pi

k

.

Figure 2 shows cv for two different sample sizes and two of our input distri-
butions.. For all distributions, our sample-based partitioning scheme robustly
achieves a cv of ≈6 % and ≈12 % for sample sizes

√
n and 0.01n, respectively.

Both lie above the chosen imbalance of the graph partitioning of ε = 5 %, as
expected. The larger sample size not only decreases the average imbalance but
also its spread for various random seeds. Moreover, the deficits of the original

4 ω(e = (v, w)) = − log d(v, w) width d(·) denoting the Euclidean distance.

164 D. Funke et al.

1.00.1 5.02.50.5
number of points ×107

0.0

0.1

0.2

0.3

0.4

0.5

0.6

co
effi

ci
en

t
of

va
ri

at
io

n

random bubbles rec. bipart.
cycle
k-way

1.00.1 5.02.50.5
number of points ×107

0.00

0.02

0.04

0.06

0.08

co
effi

ci
en

t
of

va
ri

at
io

n

uniform rec. bipart.
cycle
k-way

(a) sample size η(n) = 0.01n

1.00.1 5.02.50.5
number of points ×107

0.0

0.1

0.2

0.3

0.4

0.5

0.6

co
effi

ci
en

t
of

va
ri

at
io

n

random bubbles rec. bipart.
cycle
k-way

1.00.1 5.02.50.5
number of points ×107

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175
co

effi
ci

en
t

of
va

ri
at

io
n

uniform rec. bipart.
cycle
k-way

(b) sample size η(n) =
√

n

Fig. 2. Coefficient of variation of the partition sizes for k = t = 16, parallel KaHIP,
logarithmic edge weights and grid-based intersection test with cG = 1.

cyclic partitioning scheme become apparent: whereas it works exceptionally well
for uniformly distributed points, it produces inferior partitions in the presence of
an underlying structure in the input, as found for instance in the random bubble
distribution.

In total, our recursive algorithm triangulates more than the number of input
points due to the triangulation of the sample points, and the triangulation(s)
of the border point set(s). We quantify this in the overtriangulation factor oDT ,
given by

oDT :=
|P| +

∑ |PS | +
∑ | vertices(B)|

|P| .

B is the set of border simplices determined by our D&C algorithm. For direct
k-way partitioning, only one sample and one border triangulation are necessary;
for recursive bisectitioning there are a total of k − 1 of each. Figure 3 shows the
overtriangulation factor a fixed choice of KaHIP configuration, edge weight and
two different sample sizes and two of our input distributions. For all distributions,
the larger sample size reduces the oversampling factor. As the partitioning of
the larger sample DT more closely resembles the partitioning of the full DT,

Load-Balancing for Parallel Delaunay Triangulations 165

1.00.1 5.02.50.5
number of points ×107

1.025

1.050

1.075

1.100

1.125

1.150

1.175

ov
er

tr
ia

ng
ul

at
io

n
random bubbles rec. bipart.

cycle
k-way

1.00.1 5.02.50.5
number of points ×107

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

ov
er

tr
ia

ng
ul

at
io

n

uniform rec. bipart.
cycle
k-way

(a) sample size η(n) = 0.01n

1.00.1 5.02.50.5
number of points ×107

1.02

1.04

1.06

1.08

1.10

ov
er

tr
ia

ng
ul

at
io

n

random bubbles rec. bipart.
cycle
k-way

1.00.1 5.02.50.5
number of points ×107

1.05

1.10

1.15

1.20

1.25

1.30

ov
er

tr
ia

ng
ul

at
io

n

uniform rec. bipart.
cycle
k-way

(b) sample size η(n) =
√

n

Fig. 3. Overtriangulation factor for k = t = 16, parallel KaHIP, logarithmic edge
weights and grid-based intersection test with cG = 1.

the number of points in the border triangulation is reduced. For the random
bubble distribution, the overtriangulation factor is on par or below that of the
original cyclic partitioning scheme. For the uniform distribution, our new divide-
step suffers from the jagged border between the partitions compared to the
smooth cut produced by the cyclic partitioning scheme. This results in more
circumhyperspheres intersecting another partition and thus the inclusion of more
points in the border triangulation. Our experiments with the exact intersection
test primitive confirm this notion.

4.3 Runtime Evaluation

We conclude our experiments with a study of the runtime of our D&C algorithm
with the new sample-based divide step against the originally proposed cyclic
division strategy, its k-way variant – called “flat cycle” – as well as the parallel
incremental insertion algorithm of CGAL. Figure 4 shows the total triangulation
time for our fixed choice of configuration parameters.

166 D. Funke et al.

0 1 2 3 4 5
number of points ×107

0

25

50

75

100

125

150

175

ru
nt

im
e
[s
]

random bubbles

125

150

175

]]
rec. bipart.
cycle
cgal-par
k-way
cycle (flat)

0 1 2 3 4 5
number of points ×107

0

50

100

150

200

250

ru
nt

im
e
[s
]

uniform

200

250

]]

rec. bipart.
cycle
cgal-par
k-way
cycle (flat)

0 1 2 3 4 5
number of points ×107

0

200

400

600

800

1000

1200

1400

ru
nt

im
e
[s
]

Gaia

1000

1200

1400

]]

rec. bipart.
cycle
cgal-par
k-way
cycle (flat)

321 2 4 8 6416
threads

0

1

2

3

4

5

6

7

sp
ee

du
p 5

6

7

5

rec. bipart.
cycle
cgal-par
k-way
cycle (flat)

1 2 4
0

1

4

Gaia
random bubbles
uniform

(a) patch bubble (b) uniform

(c) Gaia (d) speedup

Fig. 4. Runtime evaluation for k = t = 16, parallel KaHIP, η(n) =
√

n, grid-based
intersection test with cG = 1 and logarithmic edge weights. Absolute speedup over
sequential CGAL for k = t and all distributions tested with 50 × 106 points.

Direct k-way partitioning performs best on the random bubbles distribution,
with a speedup of up to 50% over the cyclic partitioning scheme. Considering the
flattened cycle partitioner, a small fraction of this speedup can be attributed to
the k-way merging, however the larger fraction is due to the data sensitivity of the
sample-based scheme. CGAL’s parallel incremental insertion algorithm requires
locking to avoid race conditions. It therefore suffers from high contention in the
bubble centers, resulting in a high variance of its runtime and a 350% speedup
for our approach. For uniformly distributed points, our new divide-step falls
behind the cyclic partitioning scheme as there is no structure to exploit in the
input data and due to the higher overtriangulation factor of oDT = 1.15 for
k-way partitioning compared to oDT = 1.05 for cyclic partitioning. As discussed
in the previous section, the higher overtriangulation factor is caused by the
jagged border between the partitions, resulting in a larger border triangulation
and consequently also in higher merging times, as seen in Fig. 5b.

Of particular interest is the scaling behavior of our algorithm with an
increasing number of threads. Figure 4d shows a strong scaling experiment.

Load-Balancing for Parallel Delaunay Triangulations 167

0 10 20 30
runtime [s]

rec. bipart.

k-way

cycle

cycle (flat)

random bubbles

(a) patch bubble

0 10 20 30 40 50 60
runtime [s]

rec. bipart.

k-way

cycle

cycle (flat)

uniform

(b) uniform

sampling
sample triangulation

graph partitioning
point assignment

base triangulation
border triangulation

merge
remainder

Fig. 5. Runtime breakdown for k = t = 16, parallel KaHIP, η(n) =
√

n, grid-based
intersection test with cG = 1 and logarithmic edge weights.

The absolute speedup of an algorithm A over the sequential CGAL algorithm is
given by SpeedupA(t) := TCGAL

TA(t) for t threads.
In the presence of exploitable input structure – such as for the random bubble

distribution – direct k-way partitioning scales well on one physical processor
(up to 16 cores). It clearly outperforms the original cyclic partitioning scheme
and the parallel DT algorithm of CGAL. Nevertheless, it does not scale well
to two sockets (t > 16 threads) and hyper-threading (t > 32 threads). The
overtriangulation factor of 1.19 for 64 threads compared to 1.015 for 16 suggests
that the size of the input is not sufficient to be efficiently split into 64 partitions.

Considering our real world dataset, the direct k-way partitioning scheme also
exhibits the best scaling behavior. As illustrated in the image next to Table 1,
the dataset comprises a large dense ring accompanied by several smaller isolated
regions. This can be exploited to reduce border triangulation sizes and achieve
a speedup, compared to the slowdown for the cyclic partitioning scheme and
CGAL’s parallel algorithm. The former is due to large border triangulations in
the central ring, whereas the latter suffers from contention in the central region.

Clearly, direct k-way partitioning outperforms recursive bisection in every
configuration. Following the theoretical considerations in Sect. 3.1 regarding the
number of merge-steps required, this is to be expected. A measure to level the
playing field would be to only allow for η(n) total number of sample points on
all levels, i. e. adjust the sample size on each level of the recursion according the
expected halving of the input size.

Figure 5 shows a breakdown of the algorithm runtime for our fixed choice of
configuration parameters. The sample-based partitioning requires 30% to 50%
more runtime than the cyclic scheme. For favorable inputs with an exploitable
structure, this additional runtime is more than mitigated by faster merging.

168 D. Funke et al.

5 Conclusions

We present a novel divide-step for the parallel D&C DT algorithm presented
in [11]. The input is partitioned according to the graph partitioning of a Delaunay
triangulation of a small input point sample. The partitioning scheme robustly
delivers well-balanced partitions for all tested input point distributions. For input
distributions exhibiting an exploitable underlying structure, it further leads to
small border triangulations and fast merging. On favorable inputs, we achieve
almost a factor of two speedup over our previous partitioning scheme and over
the parallel DT algorithm of CGAL. These inputs include synthetically generated
data sets as well as the Gaia DR2 star catalog. For uniformly distributed input
points, the more complex divide-step incurs an overall runtime penalty compared
to the original approach, opening up two lanes of future work: (i) smoothing the
border between the partitions to reduce the overtriangulation factor, and/or (ii)
an adaptive strategy that chooses between the classical partitioning scheme and
our new approach based on easily computed properties of the chosen sample
point set, before computing its DT. The sample-based divide step can also be
integrated into our distributed memory algorithm presented in [11], where the
improved load-balancing and border size reduces the required communication
volume for favorable inputs.

Acknowledgments. The authors gratefully acknowledge the Deutsche Forschungs-
gemeinschaft (DFG) who partially supported this work under grants SA 933/10-2 and
SA 933/11-1.

References

1. Aggarwal, A., Chazelle, B., Guibas, L.: Parallel computational geometry. Algorith-
mica 3(1), 293–327 (1988)

2. Akhremtsev, Y., Sanders, P., Schulz, C.: High-quality shared-memory graph parti-
tioning. In: Aldinucci, M., Padovani, L., Torquati, M. (eds.) Euro-Par 2018. LNCS,
vol. 11014, pp. 659–671. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-96983-1 47

3. Batista, V.H., Millman, D.L., Pion, S., Singler, J.: Parallel geometric algorithms
for multi-core computers. Comp. Geom. 43(8), 663–677 (2010)

4. van den Bergen, G.: Efficient collision detection of complex deformable models
using aabb trees. J. Graph. Tools 2(4), 1–13 (1997)

5. Chen, M.B.: The merge phase of parallel divide-and-conquer scheme for 3D Delau-
nay triangulation. In: International Symposium on Parallel and Distributed Pro-
cessing with Applications (ISPA), pp. 224–230, IEEE (2010)

6. Chrisochoides, N.: Parallel mesh generation. Numerical Solution of Partial Differ-
ential Equations on Parallel Computers. LNCS, vol. 51, pp. 237–264. Springer,
Berlin (2006). https://doi.org/10.1007/3-540-31619-1 7

7. Chrisochoides, N., Nave, D.: Simultaneous mesh generation and partitioning for
Delaunay meshes. Math. Comput. Sim. 54(4), 321–339 (2000)

8. Cignoni, P., Montani, C., Scopigno, R.: DeWall: a fast divide and conquer Delaunay
triangulation algorithm in Ed. CAD 30(5), 333–341 (1998)

https://doi.org/10.1007/978-3-319-96983-1_47
https://doi.org/10.1007/978-3-319-96983-1_47
https://doi.org/10.1007/3-540-31619-1_7

Load-Balancing for Parallel Delaunay Triangulations 169

9. Collaboration, G.: Gaia data release 2. summary of the contents and survey prop-
erties. arXiv (abs/1804.09365) (2018)

10. Devillers, O.: The Delaunay hierarchy. Int. J. Found. Comput. Sci. 13(02), 163–180
(2002)

11. Funke, D., Sanders, P.: Parallel d-d Delaunay triangulations in shared and dis-
tributed memory. In: ALENEX, pp. 207–217, SIAM (2017)

12. Funke, D., Sanders, P., Winkler, V.: Load-Balancing for Parallel Delaunay Trian-
gulations. arXiv (abs/1902.07554) (2019)

13. Hert, S., Seel, M.: dD convex hulls and delaunay triangulations. In: CGAL User
and Reference Manual, CGAL Editorial Board, 4.7 edn. (2015)

14. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs.
Bell Syst. Techn. J. 49(2), 291–307 (1970)

15. Kohout, J., Kolingerová, I., Žára, J.: Parallel Delaunay triangulation in E2 and E3
for computers with shared memory. Par. Comp. 31(5), 491–522 (2005)

16. Larsson, T., Akenine-Möller, T., Lengyel, E.: On faster sphere-box overlap testing.
J. Graph., GPU, Game Tools 12(1), 3–8 (2007)

17. Lee, S., Park, C.I., Park, C.M.: An improved parallel algorithm for Delaunay tri-
angulation on distributed memory parallel computers. Parallel Process. Lett. 11,
341–352 (2001)

18. Sanders, P., Lamm, S., Hübschle-Schneider, L., Schrade, E., Dachsbacher, C.:
Efficient parallel random sampling - vectorized, cache-efficient, and online. ACM
Trans. Math. Softw. 44(3), 29:1–29:14 (2018)

19. Sanders, P., Schulz, C.: Think locally, act globally: highly balanced graph parti-
tioning. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA
2013. LNCS, vol. 7933, pp. 164–175. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38527-8 16

20. Shewchuk, J.: Triangle: engineering a 2D quality mesh generator and Delaunay
triangulator. Appl. Comp. Geom. Towards Geom. Eng. 1148, 203–222 (1996)

21. Shewchuk, J.: Adaptive precision floating-point arithmetic and fast robust geomet-
ric predicates. Disc. Comp. Geom. 18(3), 305–363 (1997)

22. Simon, H.D., Teng, S.H.: How good is recursive bisection? J. Sci. Comput. 18(5),
1436–1445 (1997)

23. Su, P., Drysdale, R.L.S.: A comparison of sequential delaunay triangulation algo-
rithms. In: Symposium on Computing Geometry (SCG), pp. 61–70, ACM (1995)

https://doi.org/10.1007/978-3-642-38527-8_16
https://doi.org/10.1007/978-3-642-38527-8_16

Design-Space Exploration
with Multi-Objective Resource-Aware

Modulo Scheduling

Julian Oppermann1(B) , Patrick Sittel2 , Martin Kumm3 ,
Melanie Reuter-Oppermann4 , Andreas Koch1 , and Oliver Sinnen5

1 Embedded Systems and Applications Group, Technische Universität Darmstadt,
Darmstadt, Germany

{oppermann,koch}@esa.tu-darmstadt.de
2 Circuits and Systems Group, Imperial College London, London, UK

psittel@ic.ac.uk
3 Faculty of Applied Computer Science, University of Applied Sciences Fulda,

Fulda, Germany
martin.kumm@cs.hs-fulda.de

4 Discrete Optimization and Logistics Group, Karlsruhe Institute of Technology,
Karlsruhe, Germany

melanie.reuter@kit.edu
5 Parallel and Reconfigurable Computing Lab, University of Auckland,

Auckland, New Zealand
o.sinnen@auckland.ac.nz

Abstract. Many of today’s applications in parallel and concurrent com-
puting are deployed using reconfigurable hardware, in particular field-
programmable gate arrays (FPGAs). Due to the complexity of modern
applications and the wide spectsrum of possible implementations, manual
design of modern custom hardware is not feasible. Computer-aided design
tools enable the automated transformation of high-level descriptions into
hardware. However, the efficient identification of Pareto-optimal solu-
tions to trade-off between resource utilisation and throughput is still an
open research topic. Combining resource allocation and modulo schedul-
ing, we propose a new approach for design-space exploration of cus-
tom hardware implementations. Using problem-specific rules, we are able
to exclude obviously dominated solutions from the design space before
scheduling and synthesis. Compared to a standard, multi-criteria optimi-
sation method, we show the benefits of our approach regarding runtime
at the design level.

1 Introduction

The use of reconfigurable platforms including field-programmable gate arrays
(FPGAs) is common for hardware acceleration in the area of applied and
high-performance embedded computing. Compared to costly and inflexible

c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 170–183, 2019.
https://doi.org/10.1007/978-3-030-29400-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_13&domain=pdf
http://orcid.org/0000-0002-8073-720X
http://orcid.org/0000-0003-2896-3709
http://orcid.org/0000-0002-8593-3138
http://orcid.org/0000-0003-2231-7749
http://orcid.org/0000-0002-1164-3082
https://doi.org/10.1007/978-3-030-29400-7_13

DSE with Modulo Scheduling 171

application-specific integrated circuits, FPGAs provide relatively high through-
put and low power implementations while enabling rapid-prototyping [4]. Due
to the exponential rise of complexity of digital systems and FPGA capacity, the
process of manually implementing specifications in hardware is inefficient regard-
ing design time and quality [5]. To overcome this, high-level synthesis (HLS) can
be applied to automatically transform behavioural descriptions into hardware.
The three main steps of HLS are resource allocation, operation scheduling and
binding [9]. In the allocation step, physical resources are determined. Using only
the allocated resources, the scheduling step assigns execution times, usually in
clock cycles, to every operation such that no data dependency is violated. Next,
the operations are bound to specific functional units in hardware. Finally, the
high-level input description is transformed into a hardware description language
(HDL) representation that implements the operations, memory interfacing and
data flow control at the register-transfer level.

The scheduling phase is crucial for the accelerator’s performance, and is
therefore typically the most time-consuming step in this process. Using con-
ventional scheduling algorithms, the achievable throughput is reciprocally pro-
portional to the determined schedule length (latency). The throughput can be
increased by using modulo scheduling, which interleaves successive schedules [15].
Usually allocation, scheduling and binding are performed sequentially in order
to reduce design time. This limits the number and quality of trade-off points in
the design space. Detaching resource allocation from scheduling, state-of-the-art
modulo schedulers only determine a single solution without providing any infor-
mation about trade-offs or resource saving opportunities [3,12]. The research
question of how to use resource allocation and scheduling efficiently to obtain
Pareto-optimal trade-off points, remains open. Enumerating all possible alloca-
tions and scheduling each of them typically leads to prohibitively long runtimes.
Fan et al. proposed cost-sensitive modulo scheduling [8] to synthesise the small-
est (in terms of resource use) accelerator for a loop at a given, externally specified
initiation interval. While their goal is similar to ours, they compute the num-
ber of functional units before scheduling using heuristic rules, whereas we can
minimise the allocation as part of an exact scheduling formulation. We can thus
handle the situation where the trivial resource allocation is infeasible for a given
interval. The only published formulation that includes the minimisation of allo-
cated resources in a modulo scheduling formulation is the one proposed by Š̊ucha
and Hanzálek [18]. The above works did not address design-space exploration
(DSE), however.

In this work, we make the following contributions. Firstly, we establish a
formal definition and a framework for resource-aware modulo schedulers, dis-
cussing the necessary changes required to make existing, exact formulations
suitable for multi-objective, resource-aware optimisation. Secondly, we discuss
how to apply a standard method from multi-criteria optimisation, and propose
a novel problem-specific approach compatible with our extended formulations.
Our evaluation shows that the problem-specific approach outperforms the stan-
dard method in terms of both overall runtime and number of trade-off points.

172 J. Oppermann et al.

2 Scheduling Framework

At the beginning of an HLS flow, an intermediate data flow graph (DFG) rep-
resentation is constructed from the input loop description, modelling the opera-
tions that constitute the computation as vertices, and the data flow and other
precedence relationships between the operations as edges. In contrast to general-
purpose processors, HLS tools employ a spatial approach to computation, mean-
ing that in the extreme case, an individual operator is instantiated for each oper-
ation. However, as each operator occupies a certain amount of an FPGA device’s
finite number of resources, an HLS compiler can choose to share operators among
several operations in different time steps.

+

×
×

×
×

+

+

+

c1

c2

c3

c4

4

Fig. 1. Data flow graph of example.

Figure 1 shows an example DFG which we use to further illustrate the prob-
lem and introduce our notation. The DFG contains four multiplications and four
additions which are represented as vertices. The result of operation 3 is delayed
by four iterations (edge marked with ‘4’) and fed back into the input of opera-
tion 1. There are different ways to schedule the execution of the operations, as
illustrated in Fig. 2. Figure 2(a) shows one extreme where a separate operator
is instantiated for each operation. It takes five time steps to compute one itera-
tion, i.e. the result of operation 4, due to the data dependencies illustrated by the
non-shaded parts. However, with modulo scheduling, each operator can accept
new operands in each time step such that up to five iterations are processed
concurrently as represented by the different colours. Since a new iteration can
be initiated at operation 1 at every time step, the initiation interval (II) is equal
to one. Figure 2(b) shows the other extreme where only one instance is used per
operator type. Here, it takes eight time steps to compute one result value, but
new iterations can be initiated every II = 4 time steps. Usually, several solu-
tions exist between these extremes providing trade-offs between throughput and
resource utilisation.

DSE with Modulo Scheduling 173

Fig. 2. Two example schedules of DFG in Fig. 1 with (a) eight parallel operators and
II = 1 and (b) two parallel operators and II = 4

2.1 Formal Definitions

We now introduce the necessary terms and notations used throughout the paper,
starting with the definition of the resource-aware modulo scheduling (RAMS)
problem. The target device is abstracted to the different types of low-level
resources R, and the number of elements Nr available of each resource r ∈ R.
Typical resources include lookup tables (LUTs), digital signal-processing blocks
(DSPs), and memory elements such as flip-flops and on-chip block RAM. The
set of operator types Q is derived from the HLS tool’s library, which usu-
ally provides modules for the basic arithmetic/logic functionality, as well as
ports to random-access memories. Each instance of operator type q performs
a single function that takes lq time steps to complete, and has an associated
demand nq,r ∈ N0 in terms of the device’s resources r ∈ R. Most operator
types are simple enough to implement on FPGAs to have nq,r � Nr regard-
ing all resources. Therefore, it is reasonable for the HLS tool to treat them as
practically unlimited, i.e. instantiate as many operators as needed. In contrast,
operators whose resource demands exceed a certain threshold are candidates to
be time-multiplexed by the HLS tool. Their types constitute the set of shared
operator types Q̂ ⊆ Q. While the concrete threshold is tool-dependent, we
assume that the resource demand of the multiplexing logic required for shar-
ing is negligible in comparison to the resource demands of shared operators.
Accordingly, integer addition is the canonical example for an unlimited operator

174 J. Oppermann et al.

type, whereas floating-point division would be a typical shared operator type.
We assume that shared operators can accept new input data, i.e. coming from
a different operation, at every time step.

The sets of operations O and edges E = {(i→j)} ⊆ O ×O together form the
dependence graph, which represents the semantics of the computation. In our
model, each operation i ∈ O maps to exactly one operator type. For notational
convenience, we introduce the sets Oq that contain all operations using a specific
operator type q. Each dependence edge (i→j) models a precedence relationship
between the operations i, j ∈ O, and is associated with two integer attributes.
The delay δij mandates additional time steps between the completion time of i
and the start time of j. The distance βij expresses how many iterations later the
precedence has to be satisfied. We call edges with a non-zero-distance backedges.
The dependence graph may contain cycles that include at least one backedge.
The example of Fig. 1 contains one backedge: that between operation 3 to oper-
ation 1. We denote the sum of i’s operator type’s latency and the edge delay as
dij . In addition, we may optionally limit the maximum schedule length (latency)
U ∈ N0.

A solution S to the RAMS problem consists of an initiation interval IIS ,
an allocated number of instances aS

q for all operator types q ∈ Q that together
form an allocation AS , and a start time tSi for all operations i ∈ O, i.e. the
schedule. Note that for all unlimited operator types q′ ∈ Q \ Q̂, the allocation
is fixed to aS

q′ = |Oq′ |. We define the solution’s utilisation of resource r as:

ηr(AS) =
∑

q∈Q

aS
q · nq,r (1)

Any feasible solution S must satisfy the following constraints

tSi + dij ≤ tSj + βij · IIS ∀(i→j) ∈ E (2)
∣∣{i ∈ Oq : tSi mod IIS = m}∣∣ ≤ aS

q ∀q ∈ Q̂ and m ∈ [0, IIS − 1] (3)

ηr(AS) ≤ Nr ∀r ∈ R (4)

where constraints (2) assert that all dependence edges are honoured, (3) state
that no operator type shall be oversubscribed and (4) ensure that the allocation
does not exceed the target device’s limits.

In our setting, two competing objectives exist, i.e. the minimisation of the
initiation interval (II), and the minimisation of the resource utilisation (RU):

fII(S) = IIS fRU(S) =
1

|R|
∑

r∈R

ηr(AS)
Nr

(5)

As no universally applicable weighting exists, we seek to compute a set S of
Pareto-optimal solutions with different trade-offs between the two objectives, and
refer to this endeavour as the multi-objective resource-aware modulo scheduling
(MORAMS) problem. A solution S ∈ S is Pareto-optimal if it is not dominated
by any other solution, i.e. �S′ ∈ S with (fII(S′), fRU(S′)) < (fII(S), fRU(S)).

DSE with Modulo Scheduling 175

2.2 Bounds

The solution space for the MORAMS problem can be confined by simple bounds
derived from the problem instance.

We define the minimum allocation A⊥ to contain a⊥
q = 1 instances for each

shared operator type q ∈ Q, and a⊥
q′ = |Oq′ | instances for each unlimited type

q′ ∈ Q \ Q̂. Note that the minimum allocation may be infeasible for any II if
a MORAMS instance contains backedges, or an additional latency constraint is
given. We assume that ηr(A⊥) ≤ Nr, regarding all resources r, as otherwise the
problem instance is trivially infeasible.

Fig. 3. Template model for resource-aware modulo scheduling

The maximum allocation A� models how many operators of a particular type
would fit on the device if all other operator types were fixed at their minimum
allocation. Formally, we define, for each q ∈ Q̂:

a�
q = min

{
1︸︷︷︸
(a)

+ min
r∈R:nq,r>0

⌊
Nr − ηr(A⊥)

nq,r

⌋

︸ ︷︷ ︸
(b)

, |Oq|
︸︷︷︸
(c)

}
(6)

Here, (a) represents the one q-instance already considered in the minimum allo-
cation, (b) models how many extra q-instances would fit using the remaining
elements of resource r, i.e. when subtracting the r-utilisation of the minimum
allocation. Lastly, (c) limits the allocation to its trivial upper bound, i.e. the
number of operations that use q. For completeness, we set a�

q′ = |Oq′ | for the
remaining, unlimited operator types q′ ∈ Q \ Q̂.

The minimum initiation interval II⊥ is usually defined (e.g. in [15]) as
II⊥ = max{II⊥rec, II

⊥
res}, i.e. the maximum of the recurrence-constrained mini-

mum II and the resource-constrained minimum II. II⊥rec is induced by (2) and
the recurrences (cycles) in the dependence graph, while II⊥res follows from (3):

II⊥res = max
q∈Q̂

⌈ |Oq|
a�
q

⌉
(7)

The upper bound for the initiation interval II� is obtained by scheduling the
instance with a non-modulo scheduler that uses heuristic resource constraints
according to the minimum allocation.

176 J. Oppermann et al.

3 ILP Formulations for the RAMS Problem

The template formulation in Fig. 3 illustrates how ILP-based modulo schedul-
ing formulations can be made resource-aware with small changes. In principle,
it suffices to replace formerly constant limits in the base formulation with inte-
ger decision variables modelling the allocation. For notational convenience, we
consider these variables to be part of an intermediate solution X. Then, one
would minimise the ILP according to the objective function fRU(X). The spe-
cific changes required to extend state-of-the-art schedulers are described in the
following.

Formulation by Eichenberger and Davidson. The formulation by Eichen-
berger and Davidson (abbreviated here as ED) limits the use of an operator (Mq,
in their notation) per modulo slot only on the right-hand sides of constraints (5)
[7]. Replacing Mq by the appropriate allocation variables and the objective are
thus the only changes required to their model.

Formulation by Š̊ucha and Hanzálek. The formulation by Š̊ucha and
Hanzálek (SH), is the only formulation for which a resource-aware extension
was already proposed [18]. We reimplemented their unit-processing time formu-
lation to be used in our MORAMS approach. Note though that we needed to
use the weaker form of their constraints (9), i.e. before applying their Lemma 1,
as otherwise the number of constraints would need to be adapted according to
the dynamic values of the allocation decision variables (m1 in their notation),
which is not possible in ILPs.

Formulation by Oppermann et al. The Moovac formulation (MV) by
Oppermann et al. was presented in two variants: Moovac-S, which is a single-II
scheduler, and Moovac-I, which models the initiation interval as a decision vari-
able [12]. The changes needed to make them resource-aware are the same for
both, however. Note that the formulation, as presented in [12], does compute a
binding, i.e. mapping of operations to concrete operators, in contrast to the ED
and SH formulations, which only ensure that no more than the allocated number
of operators are used in each modulo congruence class. For a fairer comparison,
we adapted Š̊ucha and Hanzálek’s idea of counting the modulo slot conflicts
among the operations competing for the same shared operator type. To this
end, we drop the variables ri (in their notation) and the constraints (M3-M5),
(M9) and (M11) from the formulation, and instead add the following constraints
(again, in their notation):

∑

j∈Lk,i �=j

1 − μij − μji ≤ ak − 1 ∀i ∈ Lk (8)

The binary variables μij and μji are both zero iff operations i and j occupy the
same congruence class. The formulation can be made resource-aware by replacing
the parameter ak with the appropriate allocation variable.

DSE with Modulo Scheduling 177

4 Approaches for the MORAMS Problem

In the following, we discuss two different approaches to solve the MORAMS
problem, i.e. computing a set S of Pareto-optimal solutions regarding fII(X)
and fRU(X), with the help of the RAMS formulations described above.

4.1 ε-Approach

The ε-approach is a standard method from the multi-criteria optimisation field
[6]. Its core idea, given two objectives, is to optimise for only one objective and
add a constraint for the other. In order to apply the method for solving the
MORAMS problem, we need to employ a RAMS formulation where all com-
ponents of a solution are decision variables, such as the Moovac-I formulation
with the extensions discussed above. The approach starts with determining an
extreme point by one objective, fII(X) in our case, and determining the value
for the other, i.e. the resource utilisation fRU(X). For the next iteration, a con-
straint forcing the resource utilisation to be less than current value minus an ε,
is added, and the model is again solved with the II minimisation objective. We
use ε = minr∈R

1
Nr·|R| , i.e. the smallest possible decrease in the objective value

according to the device resources. This algorithm is iterated until the succes-
sively stronger ε-constraints prevent any new feasible solution to be discovered.
We deviate slightly from the standard method by lexicographically minimising
both the II and the resource utilisation, to ensure that we obtain the small-
est possible allocation for each interval. As a bonus, we know that the II will
increase in each iteration, and encode this insight in the form of a second, non-
standard ε-constraint regarding fII(X). We only accept ILP solutions that were
proven to be optimal by the solver, as suboptimal solutions could yield domi-
nated MORAMS solutions and interfere with the convergence of the algorithm.
Conversely, the returned set of solutions S is guaranteed to only contain Pareto-
optimal solutions, thus no post-filtering is needed.

4.2 Iterative Approach

As an alternative to the ε-approach that requires the II to be a decision variable,
we propose an iterative approach, in which the II is a constant for each iteration,
to tackle the MORAMS problem. This approach is outlined in Algorithm 1. We
choose successively larger candidate IIs from the range of possible intervals (Line
3), construct the ILP parameterised to that II, solve it with the resource utili-
sation objective (Line 6) and, given that the ILP solver has proven optimality,
retrieve and record the solution (lines 11–13). We stop the exploration if the
solver returns either no solution, or a suboptimal one, due to a violated time
limit. Note that the resulting set of solutions can contain dominated solutions.
While filtering out these solutions after scheduling (Line 16) is easy, significant
time may be wasted in computing them. To this end, we propose two heuris-
tic rules to skip scheduling attempts that would result in obviously dominated
solutions.

178 J. Oppermann et al.

Algorithm 1. Iterative approach to the RAMS problem
1: Let ILP be an exact modulo scheduling formulation with a candidate interval IIX

(a parameter), and decision variables aX
q ∀q ∈ Q and tXi ∀i ∈ O. Consider the

candidate II and the decision variables as part of an intermediate solution X.
2: S ← ∅ ; S−1 ← null
3: for IIX ∈ [II⊥, II�] do � Iterate in ascending order

4: if S−1 �= null and ∀q ∈ Q̂ : aS−1

q =
⌈ |Oq|

IIX

⌉
then

5: continue with next candidate II to skip obviously dominated solutions

6: ILP.construct(IIX) ; ILP.solveWithObjective(fRU(X))

7: if solver status is “infeasible” then
8: S−1 ← null ; continue with next candidate II
9: else if solver status is not “optimal” then

10: stop exploration

11: S ← new solution
12: IIS ← IIX ; aS

q ← ILP.value(aX
q) ∀q ∈ Q ; tSi ← ILP.value(tXi) ∀i ∈ O

13: S ← S ∪ {S} ; S−1 ← S
14: if AS = A⊥ then
15: stop exploration, as minimal allocation is achieved

16: return FilterDominatedSolutions(S)

The first rule is shown in lines 4–5. We already used the feasibility constraint
in (3) to establish a static lower bound for the II. However, with knowledge
of the current interval IIX , we can also use it to derive a lower bound for the
allocation of each shared operator type q ∈ Q̂. Recall that each q-instance can
only accommodate IIX operations, which yields:

aX
q ≥

⌈ |Oq|
IIX

⌉
(9)

We call an allocation AX trivial for an IIX if all aX
q are equal to the right-hand

side of (9).
Now, we can skip the current candidate II if the previously computed allo-

cation AS−1
is equivalent to the trivial allocation for IIX , because it cannot be

improved with respect to the previous solution. Li et al. used a similar rule to fil-
ter candidate IIs’ based on the respective trivial allocations [11]. However, their
definition disregards the possibility that these allocations may be infeasible, and
therefore can lead to incorrectly excluded candidate IIs.

The second rule (lines 14–15) stops the exploration if the minimum allocation
A⊥ is achieved. All remaining solutions would be dominated by the current
solution because the allocation cannot be improved further, and those solutions
would have larger IIs. Note that both rules can only be applied if the respective
minimal allocations are feasible, which may not be the case in the presence of
deadlines imposed by either backedges or latency constraints.

DSE with Modulo Scheduling 179

Table 1. Complexity of problem instances

Min Median Mean Max

operations 14 49 104 1374

shared operations 0 4 16 416

edges 17 81 237 4441

backedges 0 3 23 1155

4.3 Dynamic Lower Bound for the Allocation

In order to make it easier for the ILP solver to prove that it has reached the
optimal allocation for the current II, we propose to include bound (9) in the
models. When using the iterative approach, we can simply add it as a linear
constraint to the formulation, since IIX is a constant. For the ε-approach, (9)
would be a quadratic constraint. To linearise it, we introduce binary variables
IIXπ with IIXπ = 1 ⇔ IIX = π for π ∈ [II⊥, II�], adding the following linear
constraints to the formulation:

aX
q ≥

⌈ |Oq|
π

⌉
· IIXπ ∀π ∈ [II⊥, II�] (10)

5 Evaluation

We evaluated the presented MORAMS approaches on a set of 204 realistic test
instances. These modulo scheduling problems were extracted from two different
HLS environments: 16 instances originate from Simulink models compiled by
the Origami HLS project [2], whereas 188 instances represent loops from the
well-known C-based HLS benchmark suites CHStone [10] and MachSuite [16].
The latter were compiled by the Nymble C-to-hardware compiler as described
in [13], using an operator library from the Bambu HLS framework [14]. Table 1
summarises the instances’ complexity. Our target device was the Xilinx Zynq
XC7Z020, a popular low-cost FPGA found on several evaluation boards. As
resources, we model its number of lookup tables (53200), DSP slices (220), and,
specifically for the C-based benchmark instances, assume the availability of up to
16 memory ports that can be used to either read from or write to an address
space shared with the ARM CPU-based host system of the Zynq device.

We performed the proposed design-space exploration using Gurobi 8.1 as ILP
solver on 2×12-core Intel Xeon E5-2680 v3 systems running at 2.8 GHz with 64
GiB RAM. The schedulers were allowed to use up to 8 threads, 6 hours wall-
clock time and 16 GiB of memory per instance. We report each instance’s best
result from two runs, considering first the number of solutions, and then the
accumulated runtime of the exploration.

In modulo schedulers, the II can be much lower than its latency. However,
the latency should not be unbounded and there exist latency critical applications

180 J. Oppermann et al.

(like in closed control loops) where a low latency is important in addition to a
low II. Hence, we consider the latency as a separate user constraint. As this
can significantly influence the results, we scheduled our test instances subject to
three different latency constraints that cover the whole spectrum of cases: The
strongest constraint is to limit the schedule length U to the length of the critical
path UCP. Using II�, i.e. the length of a non-modulo schedule with heuristic
resource constraints, relaxes the operations’ deadlines slightly. Lastly, we adapt
the loose but conservative bound UIm from [12] to the maximum allocation, which
by construction does not exclude any modulo schedule with minimal length.

Fig. 4. Trade-off points for instance splin pf, computed with the iterative approach

Let SC be the set of solutions computed by a particular approach. We dis-
tinguish the set of Pareto-optimal solutions S and dominated solutions SD with
SC = S ∪ SD. Additionally, we define the set ST ⊆ S of trivial solutions, i.e.
solutions with the trivial allocation for their respective II.

Figure 4 illustrates these metrics and the shape of the solution space resulting
from the exploration with our iterative approach for the instance representing the
Simulink model splin pf. We picked this particular instance because it behaves
differently under the three latency constraints, and showcases the effects of our
heuristic rules. In the case U = UCP, many dominated solutions were com-
puted because the minimal allocation A⊥ was not feasible, and consequently,
the early-termination rule (Lines 14–15) in Algorithm 1 was not applicable.
Also, the candidate-skipping rule (Lines 4–5) was only able to skip candidate IIs
6–7. For U = II�, the situation was significantly relaxed, as we only computed
one dominated solution at II = 8, and were able stop the exploration at II = 9.
Lastly, with U = UIm, all solutions were trivial, and no extra dominated solu-
tions were computed. The equivalent plots for the ε-approach, which we omit
here for brevity, only contain the orange-coloured Pareto-optimal solutions by
construction. All approaches completed the exploration for splin pf within three
seconds of runtime.

DSE with Modulo Scheduling 181

The results of the exploration across all 204 test instances are summarised
in Table 2 for the ε-approach of Sect. 4.1, as well as the iterative approach of
Sect. 4.2 together with the ED, SH or MV formulations. The scheduler runtimes
are accumulated in the columns “RT [h]” to give intuition into the computational
effort required by the different approaches. Note that in practice, one would not
need to schedule a set of instances sequentially. We then count the number of
solutions in the aforementioned categories.

According to the complete exploration, the clear winner is the resource-aware
ED formulation within our problem-specific, iterative approach, as it computes
the most Pareto-optimal solutions (columns “|S|”) in the least amount of time
(columns “RT [h]”), across all latency constraints, by a large margin. The SH for-
mulation performs slightly better than the Moovac formulation in the MORAMS
setting. We observe that for the tightest latency constraint UCP, fewer trivial
allocations are feasible than for the other bounds, which causes the iterative
approaches to compute |SC | � |S|, due to the non-applicability of the heuristic
tweaks in Algorithm 1. On the other hand, the fact that |S| > |ST | demonstrates
that only considering solutions with the trivial allocation for the respective II
(e.g. as suggested in [8]) would, in general, not be sufficient to perform a complete
exploration.

Table 2. Design-space exploration results for 204 instances

U ≤ UCP U ≤ II� U ≤ UIm

Method RT [h] |SC | |S| |ST | RT [h] |SC | |S| |ST | RT [h] |SC | |S| |ST |
ε-app 12.2 285 285 168 48.4 372 372 302 70.6 321 321 290

ED (iter) 2.4 1510 290 170 26.4 498 453 381 34.9 441 422 382

SH (iter) 16.2 1502 289 170 48.1 448 412 341 47.7 416 408 371

MV (iter) 16.0 1492 289 170 48.2 422 379 308 54.3 353 346 312

RT [h] = “total runtime in hours”. SC , S, ST = “computed, Pareto-optimal, trivial solutions”.

By design, the ε-approach computes only the Pareto-optimal solutions,
regardless of the latency constraint (columns “|SC |” ≡ “|S|”). However, this
benefit is apparently outweighed by the additional complexity introduced by
modelling the II as a decision variable in the Moovac-I formulation, causing the
ε-approach to be outperformed by the ED formulation.

6 Conclusion and Outlook

We presented a framework to perform a scheduler-driven design-space explo-
ration in the context of high-level synthesis. Despite of leveraging ILP-based
modulo scheduling formulations, the MORAMS problem can be tackled in a
reasonable amount of time, and yields a variety of throughput vs. resource utili-
sation trade-off points. An open-source implementation of the proposed iterative

182 J. Oppermann et al.

MORAMS approach, as well as the test instances used in the evaluation, are
available as part of the HatScheT scheduling library [1].

We believe that this work can serve as the foundation for the development
of heuristic approaches, as well as an environment to investigate binding-aware
objective functions, such as register minimisation [17], or balancing the workload
of the allocated operators for interconnect optimisation.

It could also be investigated, if the formulation by Eichenberger and David-
son, which already yielded the best results with our proposed, iterative approach,
can be sped up further by applying a problem-reduction technique [13].

Acknowledgements. The authors would like to thank James J. Davis for providing
detailed feedback regarding the clarity of this paper. The experiments for this research
were conducted on the Lichtenberg high-performance computing cluster at TU Darm-
stadt.

References

1. HatScheT - Project Website (2019). http://www.uni-kassel.de/go/hatschet
2. Origami HLS - Project Website (2019). http://www.uni-kassel.de/go/origami
3. Canis, A., Brown, S.D., Anderson, J.H.: Modulo SDC scheduling with recurrence

minimization in high-level synthesis. In: 24th International Conference on Field
Programmable Logic and Applications (2014)

4. Chen, F., et al.: Enabling FPGAs in the Cloud. In: Proceedings of the 11th ACM
Conference on Computing Frontiers (2014)

5. De Michell, G., Gupta, R.K.: Hardware/software co-design. Proc. IEEE 85, 3
(1997)

6. Ehrgott, M.: Multicriteria Optimization, 2nd edn, p. 323. Springer, Berlin (2005).
https://doi.org/10.1007/3-540-27659-9

7. Eichenberger, A.E., Davidson, E.S.: Efficient formulation for optimal modulo
schedulers. In: Proceedings of the ACM SIGPLAN 1997 Conference on Program-
ming Language Design and Implementation, Las Vegas, USA (1997)

8. Fan, K., Kudlur, M., Park, H., Mahlke, S.A.: Cost sensitive modulo scheduling
in a loop accelerator synthesis system. In: 38th Annual IEEE/ACM International
Symposium on Microarchitecture, Barcelona, Spain (2005)

9. Gajski, D.D., Dutt, N.D., Wu, A.C., Lin, S.Y.: High-level synthesis: Introduction
to Chip and System Design (2012)

10. Hara, Y., Tomiyama, H., Honda, S., Takada, H.: Proposal and quantitative analysis
of the chstone benchmark program suite for practical c-based high-level synthesis.
JIP 17, 242–254 (2009)

11. Li, P., Zhang, P., Pouchet, L., Cong, J.: Resource-aware throughput optimization
for high-level synthesis. In: Proceedings of the 2015 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA (2015)

12. Oppermann, J., Reuter-Oppermann, M., Sommer, L., Koch, A., Sinnen, O.: Exact
and practical modulo scheduling for high-level synthesis. ACM Trans. Reconfig-
urable Technol. Syst. 12(2), 1–26 (2019)

13. Oppermann, J., Reuter-Oppermann, M., Sommer, L., Sinnen, O., Koch, A.: Depen-
dence graph preprocessing for faster exact modulo scheduling in high-level synthe-
sis. In: 28th International Conference on Field Programmable Logic and Applica-
tions, Dublin, Ireland (2018)

http://www.uni-kassel.de/go/hatschet
http://www.uni-kassel.de/go/origami
https://doi.org/10.1007/3-540-27659-9

DSE with Modulo Scheduling 183

14. Pilato, C., Ferrandi, F.: Bambu: a modular framework for the high level synthe-
sis of memory-intensive applications. In: 23rd International Conference on Field
programmable Logic and Applications, Porto, Portugal (2013)

15. Rau, B.R.: Iterative modulo scheduling. Int. J. Parallel Program. 24(1), 3–64
(1996)

16. Reagen, B., Adolf, R., Shao, Y.S., Wei, G., Brooks, D.M.: MachSuite: benchmarks
for accelerator design and customized architectures. In: IEEE International Sym-
posium on Workload Characterization, Raleigh, USA (2014)

17. Sittel, P., Kumm, M., Oppermann, J., Möller, K., Zipf, P., Koch, A.: ILP-based
modulo scheduling and binding for register minimization. In: 28th International
Conference on Field Programmable Logic and Applications, Dublin, Ireland (2018)

18. Sucha, P., Hanzalek, Z.: A cyclic scheduling problem with an undetermined number
of parallel identical processors. Comp. Opt. Appl. 48(1), 71–90 (2011)

Implementing YewPar: A Framework
for Parallel Tree Search

Blair Archibald1(B) , Patrick Maier3 , Robert Stewart2 ,
and Phil Trinder1

1 School of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK
{Blair.Archibald,Phil.Trinder}@Glasgow.ac.uk

2 Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, UK
3 Department of Computing, Sheffield Hallam University, Sheffield, UK

Abstract. Combinatorial search is central to many applications yet
hard to parallelise. We argue for improving the reuse of parallel searches,
and present the design and implementation of a new parallel search
framework. YewPar generalises search by abstracting search tree gener-
ation, and by providing algorithmic skeletons that support three search
types, together with a set of search coordination strategies. The eval-
uation shows that the cost of YewPar generality is low (6.1%); global
knowledge is inexpensively shared between workers; irregular tasks are
effectively distributed; and YewPar delivers good runtimes, speedups and
efficiency with up to 255 workers on 17 localities.

Keywords: Exact combinatorial search · Parallel search · HPX

1 Introduction

Exact combinatorial search is essential to a wide range of applications including
constraint programming, graph matching, and computer algebra. Combinatorial
problems are solved by systematically exploring a search space, and doing so
is computationally hard both in theory and in practice, encouraging the use of
approximate algorithms.

Alternatively, exact search can be parallelised to reduce execution time. Par-
allel search is, however, extremely challenging due to huge and highly irregular
search trees, and the need to preserve search heuristics. The state of the art is
parallel searches that (1) are single purpose, i.e. for a specific search application,
e.g. Embarrassingly Parallel Search [12] supports constraint programming only;
and (2) use hand crafted parallelism, e.g parallel MaxClique [13], with almost no
reuse of parallelism between search applications. Hence typically an application
is parallelised just once in an heroic effort.

We provide a high-level approach to parallel search that allows non-expert
users to benefit from increasing CPU core counts. Specifically YewPar supports
algorithmic skeletons that provide reusable implementations of common parallel
search patterns.
c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 184–196, 2019.
https://doi.org/10.1007/978-3-030-29400-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_14&domain=pdf
http://orcid.org/0000-0003-3699-6658
http://orcid.org/0000-0002-7051-8169
http://orcid.org/0000-0003-0365-693X
http://orcid.org/0000-0003-0190-7010
https://doi.org/10.1007/978-3-030-29400-7_14

YewPar: A Parallel Search Framework 185

Contributions. We present for the first time the design (Sect. 3) and implementa-
tion (Sect. 4) of YewPar, a new C++ parallel search framework. YewPar provides
both high-level skeletons and low-level search specific schedulers and utilities
to deal with the irregularity of search and knowledge exchange between work-
ers. YewPar uses the HPX library for distributed task-parallelism [11], allowing
search on multi-cores, clusters, HPC etc.

A novel element of YewPar is the depth-pool, a search-specific distributed
workpool that aims to preserve search heuristics. We describe the depth-pool
and show average runtime performance very similar to the widely-used deque,
yet dramatically reduced variance for some searches (Sect. 5).

We evaluate YewPar using around 15 instances of two search applications
covering two search types. The applications are evaluated on standard challenge
instances, e.g. the DIMACS benchmark suite [10]. We investigate how YewPar
shares knowledge between search threads (workers), and how effectively it scales
from 15 to 255 workers, on a Beowulf cluster. The sequential YewPar overheads
are low, with a mean 6.1% slowdown compared to a hand-coded sequential imple-
mentation.

2 Existing Search Approaches

a b

c

d

ef

g

h

... e {}f {a,d,g}

a {d,g}

c {a,b,e}

}b{a }{b }{e

b {} d {g} g {}

d {g} g {}

g {}

g {}

ε

Fig. 1. MaxClique: graph with maximum clique {a, d, f, g} and search tree

Conceptually exact combinatorial search proceeds by generating and traversing
a tree representing alternative options. In practice the trees are huge and grow
exponentially, e.g. 378×1012 nodes at depth 67 with a growth rate of 1.62 in [9],
and as such are not materialised fully during search.

There are three main search types: enumeration, which searches for all solu-
tions matching some property, e.g. all maximal cliques in a graph; decision,
which looks for a specific solution, e.g. a clique of size k; or optimisation, which
finds a solution that minimises/maximises an objective function, e.g. finding a
maximum clique. To illustrate, Fig. 1 shows a small graph, and a fragment of
the search tree generated during a maximum clique search. The search proceeds
depth-first, repeatedly adding nodes to extend the current clique. After exploring

186 B. Archibald et al.

the subtree rooted at c it backtracks to explore the subtree rooted at f , which
comes heuristically after c.

Although decades of algorithmic research have developed search heuristics
that minimise search time, the scale of the search trees mean that many can
take days to solve [9]. Alongside algorithmic improvements, parallel search is
often used to increase the range of problems that can be practically solved.

Parallel search comes in three main variants: parallel node processing, where
children of a node are generated in parallel; portfolio methods, where multiple
sequential searches (with differing strategies) race to find an optimal solution;
and space-splitting, where distinct areas of the search tree are searched in parallel.
Space-splitting search follows a task parallel approach, where a task searches a
given subtree. We focus on space-splitting techniques as they are application
independent and scalable, making them ideal for general purpose frameworks
such as YewPar.

There are three main work generation approaches for tree search:

(1) Static work generation, as in embarrassingly parallel search [12], creates
all tasks at startup and stores them in a (global) workpool, where they are
picked up by idle workers. To balance load these approaches need to generate
vastly more tasks than the number of workers, which increases startup cost.
(2) Periodic work generation intersperses search with work generation. In
mts [4], for example, workers that do not complete a task within a given bud-
get (e.g. time, or number of nodes traversed) stop and store their unexplored
subtrees in a workpool, where idle workers will pick them up.
(3) On-demand work generation bypasses workpools; instead idle workers
steal unexplored subtrees directly from other workers. Abu-khzam et al. [1]
show such techniques to be highly scalable e.g. up to 131,072 workers.

The Need for a New Search Framework. Many existing parallel search
approaches were designed for a single application, with search code intertwined
with parallelism code, limiting reuse. Frameworks that support multiple search
applications often only support a single work generation approach, yet no app-
roach works best for all applications, making it difficult to choose an appropriate
framework [2].

YewPar solves this by providing a more general, i.e. more reusable approach
for parallel search, supporting all of the above work generation approaches, i.e.
static, periodic and on-demand. A user writes their application once and has
access to a library of parallel skeletons that realise common parallel search pat-
terns. Importantly, the user never writes code for parallelisation, making it easy
to port existing sequential search applications and experiment with the different
parallelism configurations that YewPar provides.

While existing task-parallel frameworks such as Cilk [8] appear to provide
suitable parallelism, key aspects of their implementations are entirely inappro-
priate for search. For example, deque-based work-stealing can break heuristic
search orderings [13], and the common assumption that the number of tasks in
a workpool is a good measure of load is invalid when learned knowledge during

YewPar: A Parallel Search Framework 187

Depth-Bounded
Stack-Stealing

Budget
. . .

Enumeration
Decision

Optimisation

Search Skeleton = Search Coordination + Search Type

BudgetDecision
DepthBoundedEnumeration

. . .

Clique Search
Numerical Semigroups

. . .

Search Application = Search Skeleton + Lazy Node Generator

Fig. 2. Creating search skeletons and applications

search is globally distributed, pruning search tasks. YewPar instead provides
parallel coordinations and a workpool that are all specialised for search.

3 YewPar Design

YewPar parallelises tree search using distributed task parallelism that adapts
to the dynamic and irregular nature of search, and enables scaling on common
distributed-memory platforms.

Users construct search applications by combining a YewPar search skeleton
with a lazy node generator that they implement to characterise their search
problem, as shown in Fig. 2. The lazy node generator specifies how to generate
the search tree on demand and in which order to traverse the tree. Each skeleton
comprises a search coordination, e.g. Depth-Bounded (Sect. 3.1), and a search
type, e.g Decision. For example, YewPar’s DepthBoundedEnumeration skeleton
statically generates work and enumerates the search space. The skeleton library
is extensible, allowing new search coordination methods to be added.

3.1 Search Coordination Methods

During a search potentially any node in the search tree may be converted to
a task, but to minimise search time it is critical to choose heuristically a good
node. We follow existing work e.g. [14], using search heuristics, as encoded in
the lazy node generator, and select subtrees close to the root as we expect these
to be large; minimising scheduling overheads.

YewPar provides a range of standard search coordinations. A novel paral-
lel operational semantics for each coordination is provided in Chapter 4 of [2].
Sequential coordination is provided for reference and simply searches the tree
without generating any tasks.

Depth-Bounded coordination implements semi-static work generation by con-
verting all nodes below a user-defined cut-off depth (dcutoff) into tasks and plac-
ing them in a workpool. New tasks are generated throughout the computation as
subtrees with nodes below dcutoff are stolen rather than being generated upfront.

188 B. Archibald et al.

Fig. 3. YewPar system stack

Budget coordination uses periodic work generation. On stealing a new task,
a worker is given a user-defined backtrack budget. If the worker reaches the back-
tracking limit before completing the task, it offloads all unexplored subtrees at
the lowest depth, i.e. closest to the root, into a workpool, before resetting the
budget and continuing to search the remaining subtrees.

Stack-Stealing coordination provides on-demand work generation, triggered
by work-stealing, similar to [1]. On receiving a steal request, the victim ships
the lowest unexplored subtree from its own stack to the thief. Victim selection is
random but biased to favour local over remote steals in order to minimise steal
latency. YewPar combines work-stealing with work-pushing on startup in order
to distribute tasks quickly.

4 YewPar Implementation

YewPar1 is C++ parallel search framework. It supports the parallel algorith-
mic skeletons of Sect. 3 and provides low-level components such as schedulers,
workpools, and global knowledge management so that new skeletons can be cre-
ated. For efficiency and type safety, YewPar uses C++ templates to compile
search applications. This specialises code to the specific application types, e.g.
the node type, and enables type directed optimisations.

For distributed-memory parallelism YewPar uses HPX [11], a library designed
for Exascale computing (1018 FLOPS). Figure 3 shows the YewPar system stack.
The implementation achieves scalability using asynchronous task-parallelism and
lightweight, user-space threads (HPX-threads). Distributed load management
has been implemented directly in YewPar as HPX does not provide it. Crucially
the load management aims to maintain search order heuristics (Sect. 5).

HPX is selected as the distributed task library as it does not require a bespoke
compiler and provides APIs for user-level access to tasks, futures, schedulers etc.
1 https://github.com/BlairArchibald/YewPar.

https://github.com/BlairArchibald/YewPar

YewPar: A Parallel Search Framework 189

Alternatively, parallel languages with distributed tasks could also be used, such
as Chapel [6] or X10 [7].

Application-Level Scheduling: YewPar divides operating system threads,
one per physical core, into two types: (1) worker threads that run the schedul-
ing loop until they are terminated, and (2) HPX manager threads. YewPar
has one HPX manager thread per locality for processing of active messages,
synchronisation, and PGAS updates. In order to minimise latency, YewPar also
reserves one CPU core for this manager thread.

Distributed Scheduling Policies. Conceptually, idle workers request new
tasks from a scheduling policy, that is determined by the coordination method,
for example Depth-Bounded relies on a workpool whereas Stack-Stealing does
not. Policies communicate directly with HPX to either push work to remote
localities, or receive stolen tasks from other localities. Two scheduling policies
are currently available, more could be added.

1. The distributed workpool policy, used by Depth-Bounded and Budget,
features one workpool per locality that stores all locally generated tasks.
Steals, both local and remote, are directed to the workpool, which aims to
serve thiefs tasks in heuristic order (Sect. 5).

2. The pickpocket policy, used by Stack-Stealing, has no workpools as Stack-
Stealing generates tasks only on demand. Instead, there is a special compo-
nent per locality, the pickpocket. Steals, both local and remote, are directed
to the pickpocket, which requests an unexplored subtree from a busy local
worker and serves it to the thief. Like the workpool, the pickpocket aims to
pick unexplored subtrees in heuristic order.

Both policies follow the same victim selection strategy when stealing. Victims
are chosen at random, with two provisos: (1) Local steals take priority; remote
steals are attempted only if there is no work locally. (2) Remote steals are biased
towards the victim of the most recent successful steal, in the hope that it still
has more work.

Global Knowledge Management. Current search results are shared between
workers. YewPar provides each locality with a registry that shares search specific
variables – for example current bounds and skeleton parameters – between all
workers of a locality. Although primary access to this state is local, it supports
global updates via active messages, e.g. when receiving improved bounds.

The global incumbent object, e.g. the current solution for a decision/
optimisation problem, is stored in HPX’s Partitioned Global Address Space
(PGAS) making it accessible to any worker. On receiving an update message
the incumbent checks that no better solution has been found and, if so, updates
the stored solution and broadcasts the new bound to all localities. Section 6.2
shows that one global object suffices due to the infrequent and irregular access
patterns.

190 B. Archibald et al.

5 Depth-Pool: A Workpool that Respects Search
Heuristics

The performance of many tree searches depends heavily on a search heuristic that
prescribes the order the search tree is traversed, aiming to find good solution(s)
quickly and to minimise the search space through pruning. Failure to follow a
good heuristic can cause detrimental search anomalies where large parts of the
search tree are traversed that could have been pruned [5].

Workpool choice is key to ensuring search heuristics are maintained. Most
work-stealing workpools use deques, where local steals pick the youngest tasks
from one end, and remote steals pick the oldest tasks from the other. This works
well for divide-and-conquer workloads, as Cilk [8] has shown, but not for tree
searches that depend on heuristics [13]. The reason is that deque-based workpools
do not maintain heuristic orderings; worse still the steal policy selects tasks that
are heuristically unfavourable.

Fully respecting heuristic orderings entirely eliminates search anomalies but
centralises task selection, severely limiting scalability [3]. At larger scale, a dis-
tributed workpool is needed that (1) preserves heuristic ordering as far as pos-
sible, (2) biases remote steals towards big tasks (i.e. subtrees close to the root),
and (3) has low steal latency. Low steal latency is crucial since standard latency
hiding techniques such as task pre-fetching disrupt the heuristic ordering. To
this end, we propose a new workpool, the depth-pool, illustrated in Fig. 4.

The central data structure is an array of first-in-first-out (FIFO) queues. The
array is indexed by the depth in the search tree, i.e. the i-th queue holds tasks
spawned at depth i. The depth-pool biases remote steals towards the root of
the tree, where tasks are likely bigger, while biasing local steals to the deepest
depth, thereby improving locality. By using FIFO queues the heuristic ordering
is maintained at each depth, which avoids the heuristically poor choices made
by deque-based scheduling. Steal latency is low as a HPX manager thread is
available to handle steals.

As the depth-pool is more complex than a deque, one might expect higher
overheads, but maintaining the search heuristics should reduce runtime variance.
All of the results in the following section use the depthpool, and show good
performance. Moreover, a direct comparison of depth-pools and deques for 7
instances of two search applications shows very similar performance, with depth-
pool delivering dramatically lower variance in at least one instance (Figure 6.6
of [2]).

T 1
1 T 2

2 T 3
3

T 4
0 T 5

1 T 6
2 T 7

3

T 8
0

Depth

Remote Steal

Local Steal

Fig. 4. Depth-pool structure. T 1
0 is a task with id 1 and heuristic position 0. Lower

implies better heuristic position.

YewPar: A Parallel Search Framework 191

6 Evaluation

We evaluate YewPar performance on a cluster of 17 localities each with dual
8-core Intel Xeon E5-2640v2 CPUs (2 Ghz; no hyper-threading), 64 GB of RAM
and running Ubuntu 14.04.3 LTS. Datasets underpinning the experiments are
available online2.

Input datasets, e.g. particular graphs, to search applications are known as
instances. YewPar is evaluated in [2] with 25 instances across seven search appli-
cations that cover all three search types. Here we report results for a selection of
instances of the following two state-of-the-art search applications covering two
search types.

MaxClique searches a graph for the largest set of vertices (optimisation
search) where each vertex is adjacent to all other vertices in the set. We imple-
ment Prosser’s MCSa1 algorithm [15], as sketched in Fig. 1. The instances are
drawn from the DIMACS benchmark suite [10].

Numerical Semigroups (NS) enumerates the numerical semigroups with a
genus ≤ g. A numerical semigroup is defined over the set of natural numbers with
a set of numbers removed (holes) such that the remaining set still forms a semi-
group under addition. The genus of a numerical semigroup is the number of holes.
The implementation is closely based on, and uses the efficient bit representation
for semigroups, of [9]. Each step in the search removes a number from the group
generator and adds additional elements to maintain the group property.

Section 6.1 compares YewPar sequential performance with a state-of-the-art
MaxClique solver. However parallel performance comparisons are made only
with other YewPar implementations as no other parallel comparator is available.
That is, there is no other system that allows both MaxClique and Numerical
Semigroups to be implemented, nor is there another distributed-memory parallel
version of the MCSa1 algorithm [3].

6.1 Skeleton Overheads

The generality of the YewPar skeletons incurs performance overheads compared
with search specific implementations. For example lazy node generation requires
that nodes are duplicated rather than updated in place. Compared with hand
written sequential clique search, YewPar shows low overheads with a geometric
mean overhead of only 6.1% across 21 DIMACS MaxClique instances (Table 6.1
of [2]).

6.2 Global Knowledge Exchange

Searches share global knowledge, e.g. the current incumbent in an optimisation
search, and YewPar uses HPX’s broadcasts and PGAS to do so. We evaluate
the performance implications using MaxClique instances on 255 workers (17
localities) with Depth-Bounded coordination and dcutoff = 2.

2 https://doi.org/10.5281/zenodo.3240291.

https://doi.org/10.5281/zenodo.3240291

192 B. Archibald et al.

br
oc

k4
00

1

br
oc

k4
00

2

br
oc

k4
00

3

br
oc

k4
00

4

br
oc

k8
00

1

br
oc

k8
00

2

br
oc

k8
00

3

br
oc

k8
00

4

p
ha

t5
00

-3

p
ha

t7
00

-3

sa
nr

40
0

0.
70

50

100

150

2.19s

2.01s

1.28s

0.89s

23.74s

22.66s15.25s

12.32s

1.15s

9.85s

0.94s

Instance

In
cu

m
be

nt
U

pd
at

es

Depth-Bounded Incumbent Updates: 255 Workers

Successful Unsuccessful

(a) Total incumbent updates.
Total runtime shown above.

0 1,000 2,000 3,000 4,000 5,000

brock400 1

sanr400 0.7

brock400 3

brock800 1

p hat500-3

p hat700-3 (×8s)

(×24s)

Time (ms)

Incumbent Update Time: 255 Workers

Unsuccessful Successful

(b) Time of incumbent updates. ×
represents final running time.

Fig. 5. Incumbent updates.

Figure 5a shows the mean number of attempted incumbent updates (to the
nearest integer) for each instance. Failure to update occurs when a better solu-
tion was found before the update message arrived. For most instances, regard-
less of their runtime, the total number of updates is small: often less than 50.
In instances with more updates, a greater proportion are unsuccessful. More-
over Fig. 5b shows how most updates occur early in the search.

While the number of successful updates is bounded by the size of the max-
imum clique, the variation in the number of successful and unsuccessful steals
is instance specific and depends, for example, on how many branches near the
start of the search report similar incumbent values (before bound propagation
occurs). This non-predictability is a key challenge in parallel search.

Given the small amount of global knowledge exchanged, YewPar’s approach
combining PGAS and broadcast is appropriate and likely scales beyond the cur-
rent architecture. Crucially, although message delays may reduce performance,
they do not affect the correctness of the search.

6.3 Work-Stealing Performance

Effective work-stealing is crucial to obtaining good performance in task paral-
lel search. We investigate this using three representative MaxClique instances,
brock400 1, brock800 4 and brock400 3, to show that performance portability is
achievable. We report results from a single execution on 8 localities with Depth-
bounded, Stack-Stealing, and Budget search coordinations.

Figure 6a shows the number of spawns, and local/distributed steals per local-
ity for brock400 1 with Depth-Bounded coordination. A uniform distribution of
tasks across localities is unlikely given the huge variance in task runtime. Rather,
YewPar effectively ensures that all localities have work, i.e. almost all localities
have 2000+ tasks.

YewPar: A Parallel Search Framework 193

0 1 2 3 4 5 6 7
0

2,000

4,000

6,000

Locality

Sp
aw

ns

0 1 2 3 4 5 6 7
0

2,000

4,000

6,000

Locality

L
oc

al
St

ea
ls

Sucessful Failed

0 1 2 3 4 5 6 7
0

200

400

600

Locality

D
is

tr
ib

ut
ed

St
ea

ls

Sucessful Failed

(a) brock400 1: Depth-Bounded coordination with cut-off depth 2.

0 1 2 3 4 5 6 7
0

2,000

4,000

6,000

Locality

L
oc

al
St

ea
ls

Sucessful Failed

0 1 2 3 4 5 6 7
0

2,000

4,000

6,000

Locality

D
is

tr
ib

ut
ed

St
ea

ls

Sucessful Failed

(b) brock800 4: Stack-Stealing coordination.

0 1 2 3 4 5 6 7
0

2,000

4,000

6,000

8,000

Locality

Sp
aw

ns

0 1 2 3 4 5 6 7
0

2,000

4,000

6,000

Locality

L
oc

al
St

ea
ls

Sucessful Failed

0 1 2 3 4 5 6 7
0

1,000

2,000

3,000

Locality

D
is

tr
ib

ut
ed

St
ea

ls

Sucessful Failed

(c) brock400 3: Budget coordination limiting tasks to 106 backtracks.

Fig. 6. Sample per-locality work generation and stealing statistics.

Tasks are well distributed across the localities as they are spawned during
the search rather than upfront. A large proportion of the steals occur locally
as there are many localities with < 500 distributed steals. YewPar handles the
large numbers of tasks efficiently, scheduling and running 26924 tasks in 3.5s
(7692 tasks per second).

Figure 6b summarises the work-stealing statistics for brock800 4 with Stack-
Stealing coordination. As work is generated on demand, there is no spawn count.
As steals can occur at any depth in the search tree many local steals are suc-
cessful. Locality 0 steals little, probably because it holds the largest tasks.

Figure 6c summarises work-stealing statistics for brock800 4 with Budget
coordination. Like Depth-Bounded the work is well spread across the localities,
with almost all having 2000+ tasks. Locality 4 has relatively few tasks despite
stealing successfully, and we infer that most of the tasks stolen are small.

In summary, YewPar efficiently handles searches with thousands of tasks
spread over 120 workers. All search coordinations work well with MaxClique

194 B. Archibald et al.

1 2 4 8 16 17

100

200

300

400

500

Localities

R
un

ti
m

e
(s

)

1 2 4 8 16 17

1
2

4
8

12
17

Sp
ee

du
p

(R
el

1
L
oc

al
it
y)

Maximum Clique, brock800 2, Scaling

1 2 4 8 16 17

100

200

300

400

500

Localities

R
un

ti
m

e
(s

)

1 2 4 8 16 17

1 2
4

8
12

17
24

32

Sp
ee

du
p

(R
el

1
L
oc

al
it
y)

Maximum Clique, brock800 3, Scaling

Depth-Bounded (dcutoff = 2) Stack-Stealing Budget (budget = 107) Ideal

Fig. 7. Scaling performance of MaxClique. Error bars show min/max runtimes.

ensuring a sufficient number of tasks per locality despite the high degree of
irregularity common in search applications.

6.4 Scalability of YewPar

To investigate scalability we evaluate the runtimes and relative speedups of large
instances of both MaxClique instances and Numerical Semigroups on 255 workers
across 17 localities. Speedup is relative to a single locality with 15 workers as
one worker runs take a significant time, i.e. around 2–3 hours per instance.

Figure 7 shows the runtime and relative speedup for the three search coordi-
nations on two MaxClique instances. Depth-Bounded is best with a super-linear
speedup, caused by subtree pruning, of 31.0 on 16 localities. We deduce that
tasks searching subtrees at dcutoff are generally long running. In comparison,
Stack-Stealing and Budget are slower as they interrupt search more frequently.

Parameter values like dcutoff and budget can have a large impact of parallel
performance (see 6.5 and 6.7 of [2]). Techniques that guide users to chose good,
or low-risk, values remains an open problem.

Figure 8 shows the runtime and relative speedups of Numerical Semigroups.
Budget is best with a maximum speedup of 15.4 on 17 localities. Depth-Bounded
performs worst, timing out after 30 min regardless of the number of workers.
This illustrates the need for a search framework like YewPar to provide multiple
search coordinations that are suitable for different search applications; allowing

YewPar: A Parallel Search Framework 195

1 2 4 8 16 17

0

200

400

600

800

Localities

R
un

ti
m

e
(s

)

1 2 4 8 16 17

1
2

4
8

12
17

Sp
ee

du
p

(R
el

1
L
oc

al
it
y)

Numerical Semigroups, g = 50, Scaling

Stack-Stealing (chunked) Budget (budget = 107) Ideal

Fig. 8. Scaling performance of Numerical Semigroups. Error bars show min/max
runtimes.

it to often achieve an average efficiency of >50% even for these highly irregular
computations.

7 Conclusion

Parallel combinatorial search is challenging and we argue for improving the reuse
of parallel searches. For this purpose we present the design and implementation
a new parallel search framework. YewPar generalises search by abstracting the
search tree generation, and by providing algorithmic skeletons that support three
search types, and a set of standard search coordination strategies. A novel feature
is the depth-pool, a new distributed workpool that preserves search heuristics to
minimise runtime variance.

Evaluating YewPar on around 15 instances of two search applications (Max-
Clique and Numerical Semigroups) demonstrates its generality and effectiveness.
The cost of YewPar generality is low: averaging 6.1% compared with a spe-
cific implementation. Moreover global knowledge is inexpensively shared between
search tasks; the irregular tasks are effectively distributed; and YewPar delivers
good runtimes, speedups and efficiency with up to 255 workers on 17 locations.

Acknowledgments. Work supported by UK EPSRC Grants: S4: Science of Sensor
Systems Software (EP/N007565/1); Border Patrol: Improving Smart Device Security
through Type-Aware Systems Design (EP/N028201/1); AJITPar: Adaptive Just-In-
Time Parallelisation (EP/L000687); and CoDiMa (EP/M022641). We also thank Greg
Michaelson and the anonymous reviewers for their helpful comments.

References

1. Abu-Khzam, F.N., Daudjee, K., Mouawad, A.E., Nishimura, N.: On scalable paral-
lel recursive backtracking. J. Parallel Distrib. Comput. 84, 65–75 (2015). https://
doi.org/10.1016/j.jpdc.2015.07.006

https://doi.org/10.1016/j.jpdc.2015.07.006
https://doi.org/10.1016/j.jpdc.2015.07.006

196 B. Archibald et al.

2. Archibald, B.: Skeletons for Exact Combinatorial Search at Scale. Ph.D. thesis,
University of Glasgow (2018). http://theses.gla.ac.uk/id/eprint/31000

3. Archibald, B., Maier, P., McCreesh, C., Stewart, R.J., Trinder, P.: Replicable par-
allel branch and bound search. J. Parallel Distrib. Comput. 113, 92–114 (2018).
https://doi.org/10.1016/j.jpdc.2017.10.010

4. Avis, D., Jordan, C.: MTS: a light framework for parallelizing tree search codes.
CoRR abs/1709.07605 (2017). http://arxiv.org/abs/1709.07605

5. de Bruin, A., Kindervater, G.A.P., Trienekens, H.W.J.M.: Asynchronous parallel
branch and bound and anomalies. In: Ferreira, A., Rolim, J. (eds.) IRREGULAR
1995. LNCS, vol. 980, pp. 363–377. Springer, Heidelberg (1995). https://doi.org/
10.1007/3-540-60321-2 29

6. Chamberlain, B.L., Callahan, D., Zima, H.P.: Parallel programmability and
the chapel language. IJHPCA 21(3), 291–312 (2007). https://doi.org/10.1177/
1094342007078442

7. Charles, P., et al.: X10: an object-oriented approach to non-uniform cluster com-
puting. In: Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2005,
16–20 October 2005, San Diego, CA, USA. pp. 519–538. https://doi.org/10.1145/
1094811.1094852

8. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the cilk-5 multi-
threaded language. In: PLDI. pp. 212–223 (1998). https://doi.org/10.1145/277650.
277725

9. Fromentin, J., Hivert, F.: Exploring the tree of numerical semigroups. Math. Comp.
85(301), 2553–2568 (2016). https://doi.org/10.1090/mcom/3075

10. Johnson, D.J., Trick, M.A. (eds.): Cliques, Coloring, and Satisfiability: Second
DIMACS Implementation Challenge, Workshop, 11–13 October 1993. AMS (1996)

11. Kaiser, H., Heller, T., Adelstein-Lelbach, B., Serio, A., Fey, D.: HPX: a task based
programming model in a global address space. In: PGAS. pp. 6:1–6:11 (2014).
https://doi.org/10.1145/2676870.2676883

12. Malapert, A., Régin, J.C., Rezgui, M.: Embarrassingly parallel search in constraint
programming. J. Artif. Intell. Res. 57, 421–464 (2016)

13. McCreesh, C., Prosser, P.: The shape of the search tree for the maximum clique
problem and the implications for parallel branch and bound. TOPC 2(1), 8:1–8:27
(2015). https://doi.org/10.1145/2742359

14. Pietracaprina, A., Pucci, G., Silvestri, F., Vandin, F.: Space-Efficient Parallel Algo-
rithms for Combinatorial Search Problems. CoRR abs/1306.2552 (2013). http://
arxiv.org/abs/1306.2552

15. Prosser, P.: Exact algorithms for maximum clique: a computational study. Algo-
rithms 5(4), 545–587 (2012). https://doi.org/10.3390/a5040545

http://theses.gla.ac.uk/id/eprint/31000
https://doi.org/10.1016/j.jpdc.2017.10.010
http://arxiv.org/abs/1709.07605
https://doi.org/10.1007/3-540-60321-2_29
https://doi.org/10.1007/3-540-60321-2_29
https://doi.org/10.1177/1094342007078442
https://doi.org/10.1177/1094342007078442
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1145/277650.277725
https://doi.org/10.1145/277650.277725
https://doi.org/10.1090/mcom/3075
https://doi.org/10.1145/2676870.2676883
https://doi.org/10.1145/2742359
http://arxiv.org/abs/1306.2552
http://arxiv.org/abs/1306.2552
https://doi.org/10.3390/a5040545

PLB-HAC: Dynamic Load-Balancing
for Heterogeneous Accelerator Clusters

Luis Sant’Ana1, Daniel Cordeiro2, and Raphael Y. de Camargo1(B)

1 Federal University of ABC, Santo André, Brazil
2 University of São Paulo, São Paulo, Brazil

raphael.camargo@ufabc.edu.br

Abstract. Efficient usage of Heterogeneous clusters containing combi-
nations of CPUs and accelerators, such as GPUs and Xeon Phi boards
requires balancing the computational load among them. Their relative
processing speed for each target application is not available in advance
and must be computed at runtime. Also, dynamic changes in the envi-
ronment may cause these processing speeds to change during execution.
We propose a Profile-based Load-Balancing algorithm for Heterogeneous
Accelerator Clusters (PLB-HAC), which constructs a performance curve
model for each resource at runtime and continuously adapt it to chang-
ing conditions. It dispatches execution blocks asynchronously, preventing
synchronization overheads and other idleness periods due to imbalances.
We evaluated the algorithm using data clustering, matrix multiplica-
tion, and bioinformatics applications and compared with existing load-
balancing algorithms. PLB-HAC obtained the highest performance gains
with more heterogeneous clusters and larger problems sizes, where a more
refined load-distribution is required.

1 Introduction

Heterogeneous clusters, containing different combinations of CPUs and accelera-
tors, such as GPUs and Intel MIC boards, are becoming increasingly widespread.
In order to achieve the best performance offered by these clusters, scientific appli-
cations must take into account the relative processing speed of each processor
unit and balance the computational load accordingly.

For data-parallel applications, it is necessary to determine an appropriate
data (task) division among the CPUs and accelerators. A division of the load
based on simple heuristics, such as the number of cores in the GPU is usually
ineffective [5]. Another solution is to use simple algorithms for task dispatching,
such as greedy algorithms, where tasks are dispatched to the devices as soon as
the devices become available. Such heuristics are fast and straightforward, but
result in suboptimal distributions.

A more elaborate and precise load-balancing algorithm causes a higher over-
head, but a better task distribution can compensate for the overhead. For
instance, it is possible to determine the performance profiles for each GPU type

c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 197–209, 2019.
https://doi.org/10.1007/978-3-030-29400-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_15&domain=pdf
https://doi.org/10.1007/978-3-030-29400-7_15

198 L. Sant’Ana et al.

and application task and use it to determine the amount of work given to each
GPU. This profiling can be statically computed, before the execution of the
application [5], or dynamically computed at runtime [1,3,10].

We present a Profile-based Load-Balancing algorithm for Heterogeneous
Accelerator Clusters (PLB-HAC), which improves PLB-HeC [10] by removing
synchronization phases, enhancing the rebalancing mechanism, and including
support for Xeon Phi accelerators. The algorithm uses performance informa-
tion gathered at runtime in order to devise a performance model customized
for each processing device. The algorithm is implemented inside the StarPU
framework [2], easing its use both on legacy applications and novel ones.

2 Related Work

In this work, we focus on the development of a dynamic algorithm with adapt-
ability, through the use of performance models based on the processing capacity.
Acosta et al. [1] proposed an algorithm for GPUs where processors record their
individual execution time on periodical synchronization, to asymptotically gen-
erate the RP (Relative Power) of the processors. The main drawbacks are that
asymptotic convergence causes suboptimal load distributions during several iter-
ations and frequent synchronizations further slow down application execution.

In another work, Zhong et al. [11] use the concept of logical processors to
model GPU-CPU hybrid systems. The workload is split using an FPM (Func-
tional Performance Model) that provides a detailed performance model. The
approach is limited because it requires prior information about the problem to
set up the model parameters.

Heterogeneous Dynamic Self-Scheduler (HDSS) [3] is a dynamic load-bal-
ancing algorithm for heterogeneous GPU clusters. In an adaptive phase, it deter-
mines weights that reflect the speed of each GPU, which it uses to divide the
work among GPUs in the remaining iterations. The performance model is specific
to GPUs and the use of a simple weight per GPU limits the data distribution.
Finally, it does not adjust the data distribution during the execution phase and
synchronizations in the adaptive phase slow down application execution.

Kaleen et al. [8] proposed the naive algorithm, which executes in two phases:
profiling and execution. In the profiling phase, the algorithm determines the pro-
cessing rate Gr of GPUs and Cr of CPUs, which are used for data distribution in
the execution phase. A second algorithm, called asymmetric algorithm, reduces
the overhead of the initial phase by sharing a pool of work between CPU and
GPU. Their approach is suited for CPUs and GPUs and reduces synchroniza-
tions, but the obtained performance can degrade in case of changes during the
execution phase.

PLB-HeC [10] performs dynamic load-balancing in two phases for clusters
with CPUs and GPUs. The first phase constructs the performance model using
profiling, while in the second blocks of the selected sizes are dispatched to the
processing units. It differs from previous approaches in that it models the pro-
cessors (CPUs and GPUs) using a system of nonlinear equations to improve the

PLB-HAC: Dynamic Load-Balancing for Heterogeneous Accelerator Clusters 199

Fig. 1. Overview of the load-balancing algorithm, including the performance model
evaluation, block distribution, and task execution.

accuracy of block size distributions. However, it still contains several synchro-
nization steps, which slowdowns application execution.

Our proposed algorithm addresses the limitations of previous dynamic load-
balancing algorithms. It uses the same approach of solving a system of nonlin-
ear equations from PLB-HeC, but it has no explicit or implicit synchronization
between processors within the training and execution phases. Moreover, it per-
forms a progressive refinement of the performance models for the processors
during the entire execution, which allows it to adapt to changes in the execution
environment. Idle periods that could still result from imperfect load-balancing
are filled with smaller blocks of the correct size. Finally, it supports several
classes of processing devices, including CPUs, GPUs, and Xeon Phi boards.

3 Proposed Algorithm

In a typical data-parallel application, data is divided into blocks that can be
concurrently processed by multiple threads, in a process called domain decom-
position [6]. The results are then merged, and the application can proceed to
its next phase. The goal of the PLB-HAC algorithm is to find a near-optimal
distribution of the size of data blocks assigned to threads located on each CPU
and accelerator in the system. We use the term Processing Unit (PU) to refer
to both CPUs, GPUs and Xeon Phi coprocessors.

PLB-HAC generates and evaluates performance models of PUs and determine
the optimal block size distribution, which is shown in the “Model Evaluation”
box in Fig. 1. The list of block sizes is sent (2) to the application, which sends the
data blocks for execution in the assigned PUs (3), together with the execution
code for that PU. The PUs process the data blocks and return the results to the

200 L. Sant’Ana et al.

ŷ = 0.0233 + 1.11 × 10−8 x + 1.23 × 10−16 x2 R2 = 0.96

0.00

0.25

0.50

0.75

1.00

1.25

0e+00 2e+07 4e+07 6e+07
Block Size(KB)

Ti
m

e(
s)

GRN (CPU)

ŷ = 0.000689 + 6.75 × 10−10 x + 2.89 × 10−16 x2 R2 = 0.99

0.0

0.3

0.6

0.9

0e+00 2e+07 4e+07 6e+07
Block Size(KB)

Ti
m

e(
s)

GRN (GPU)

ŷ = − 0.00432 + 8.04 × 10−10 x + 2.64 × 10−16 x2 R2 = 1

0.00

0.25

0.50

0.75

1.00

0e+00 2e+07 4e+07 6e+07
Block Size(KB)

Ti
m

e(
s)

MM (CPU)

ŷ = 0.00946 + 8.68 × 10−10 x + 3.3 × 10−16 x2 R2 = 0.91

0.0

0.5

1.0

0e+00 2e+07 4e+07 6e+07
Block Size(KB)

Ti
m

e(
s)

MM (GPU)

Fig. 2. Execution times and performance models for the GPU and CPU implementa-
tions of the k-means and matrix multiplication applications.

application (4) and the execution time of the block to PLB-HAC (5), which are
used to improve the performance model.

The mechanics of data and code migration can be managed by a framework
such as StarPU and Charm++, where a user is presumed to implement only
the task code. The remaining of this section discuss the implementation of the
“Model Evaluation” from Fig. 1 in PLB-HAC in a framework-agnostic way and
the next section show how the algorithm can be integrated to StarPU.

3.1 Processing Unit Performance Modeling

The algorithm devises a performance model for each processing unit based on
execution time measurements. The algorithm constructs two functions Fp[x] and
Gp[x], representing the amount of time a processing unit p spends processing and
transmitting a block of size x, respectively. These functions are generated in a
training phase, where the algorithm first assigns a block of size xinit—initially
defined by the user—to be processed by each PU. The unit that finishes first
receives a second block of size 2 ∗ xinit, while each other PU p receives a block
of size equal to 2 ∗ xinit ∗ R, where R is the ratio between the time spent by the
fastest unit and the time spent by unit p. The idea is to balance the load better,
preventing a long delay between the finish times of the different processing units.

The measured execution and data transfer times for each new block and
PU are used to create the performance model. The algorithm performs a linear
regression to determine the execution time functions Fp[x] that better fit the

PLB-HAC: Dynamic Load-Balancing for Heterogeneous Accelerator Clusters 201

existing pairs (x, tx) using the least squares method. The same is done for Gp[x],
but using the data transfer times. The curve is initially fitted using two points
and after each new iteration, another point is added to the model, resulting
in better models. This calculation is done in the first CPU that finishes the
execution of its assigned block. The algorithm performs a linear regression of
the form:

Fp[x] = a1f1(x) + a2f2(x) + ... + anfn(x) (1)

where fi(x) are functions from the set x, x2, x3, ex, lnx, and the combinations
x · ex and x · ln x. This set should contemplate the vast majority of applica-
tions, but other functions can be included if necessary. Figure 2 shows sample
processing time measurements and model fittings for a GPU and a CPU for dif-
ferent block sizes on two different applications. For the Gp[x] function, we used
an equation of the form:

Gp[x] = a1x + a2 (2)

where the linear coefficient a1 represents the network and PCIe bandwidths,
and a2 the network and system latency. We assume that the data transfer delay
increases linearly with data size, which should be a valid approximation for
compute-bound applications.

3.2 Block Size Selection

The proposed algorithm determines the block size assigned to each processing
unit with the objective that all PUs have the same execution time. Consider that
we have n processing units and input data of size normalized to 1. The algorithm
assigns a data chunk of size xp ∈ [0, 1] for each processing unit p = 1, ..., n,
corresponding to a fraction of the input data, such that

∑n
p=1 xp = 1. We denote

as Ep(xp) the execution time of task E in the processing unit p, for input of
size xp. To distribute the work among the processing units, we find a set of
values (xp)ni=1 that minimizes the system of fitted curves for all processing units,
determined in the training phase, while keeping the same execution time for all
units. The full set of equations are given by:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

E1(x1) = F1(x1) + G1(x1)
E2(x2) = F2(x2) + G2(x2)
. . .
En(xn) = Fn(xn) + Gn(xn)
E1(x1) = E2(x2) = · · · = En(xn)∑n

p=1 xp = 1

(3)

The equation system is solved applying an interior point line search filter
method [9], which finds the minimum solution of a convex equation set, subject to
a set of constraints, by traversing the interior of its feasible region. The solution
of the equation system results in a block size xp for each processing unit p. The
block size is rounded to the closest valid application data block size, so that all
units will spend approximately the same processing time executing their blocks.
We also use a minimum block size that does not underutilize the GPUs.

202 L. Sant’Ana et al.

Fig. 3. PLB-HAC execution example. The number inside boxes represents the block
sizes assigned to units, M represents model evaluation to determine block sizes. Shaded
boxes are regular assigned blocks and white boxes are gap filling blocks.

3.3 Execution Phase

The execution phase is asynchronous. Tasks of size xp, determined at the training
phase, are sent to each PU p. When a PU notifies the scheduler that it finished
executing a task, the measured performance is added to the set of points of the
performance model and another task of size xp is sent to the PU.

The task size xp is updated at the end of each “virtual step”, which occurs
when all PUs finish the execution of their assigned blocks. During the update, the
first CPU to become idle solves the equation system (3)—using all the execution
time measurements collected from each unit—to determine the block size xp for
each processing unit p. No synchronization is required since the scheduler uses
the most recent already available xp when assigning a block size to PU p.

Two other mechanisms improve the load-balancing process. The first one is
a gap-filling mechanism, used if a processing unit finishes the execution of its
assigned block earlier than expected. The algorithm provides a new block to fill
the gap between the predicted and actual execution time that a unit needed
to process its last block. We used a default threshold of 400 ms, which can
be changed by the user. The second mechanism is a gradual decrease in block
sizes after 70% of the application data was processed, with the goal of reducing
possible unbalances at the end of the execution. The decrease is by a constant
factor α = 0.1, and the user can adjust this factor to suit the application better.

Figure 3 shows an execution example of four heterogeneous PUs (A, B, C,
and D). At the left of the first vertical dashed line is the training phase, where
blocks of size 1 are sent to each PU. Machine A finishes processing its block
first and receives a new block of size 2, while others receive smaller blocks. A
synchronization then takes place and the first complete model is generated. This
is the only synchronization step in the entire execution. Between the dashed
lines is the execution phase, with several virtual steps. At the beginning of each
virtual step, the first unit to finish the last step evaluates a new model. Unit A
also receives a gap-filling block. Near the end of the execution, the blocks are
progressively reduced in size until there is no more data to process.

PLB-HAC: Dynamic Load-Balancing for Heterogeneous Accelerator Clusters 203

3.4 Complete Algorithm

Algorithm 1 shows the pseudocode of the PLB-HAC algorithm. The function
FinishedTaskExecution is a callback function, invoked when a processing unit
finishes a task. It receives the finish time (finishT ime) and the processing unit
identifier (proc). If there is still data left to be processed, it first checks if the
finish time of the application was smaller than the gapThreshold, in which case
it sends a new block to fill the gap between the predicted and finished time.
Otherwise, it calls PLB-HAC to determine the next block size.

Algorithm 1. Compute the performance model for each processing unit
X : global vector
function PLB-HAC(proc)
firstProc ← firstProcessVirtualStep(proc);
if proc == firstProc then

fitV alues ← determineModel()
X ← solveEquationSystem(fitV alues);
if assignedData ≥ 0.7 * totalData then

X ← X * k;
end if
assignedData ← assignedData + sum(X);

end if
distributeTask(X[proc], proc);

function FinishedTaskExecution(proc, finishT ime)
if assignedData ≤ totalData then

if finishedT ime / predictedT ime ≤ gapThreshold then
assignedData ← assignedData + determineGapBlockSize();
distributeTask(X, proc);

else
PLB-HAC();

end if
end if

Function PLB-HAC first calls firstProcessVirtualStep, which keeps track
of the PU’s current virtual step and returns the identifier firstProc of the first
unit to enter the current virtual step. If the calling unit is firstProc, it first
determines a new performance model for all units using the determineModel
function, which returns a structure fitV alues containing the model. Function
solveEquationSystem then solves the system of equations (3) and returns the
best distribution of block sizes for each PU in X. Finally, if 70% of all data was
already processed, the algorithm decreases the block size by multiplying it by
k, a constant that defines the rate of block size reduction. At the end of the
function, function distributeTask is called, which sends the data block of the
determined size to the unit.

204 L. Sant’Ana et al.

4 Implementation

The PLB-HAC algorithm was implemented in C++ over StarPU [2], a frame-
work for parallel programming that supports hybrid architectures. StarPU is
based on the concept of codelets, which describe computational kernels that can
be implemented on multiple architectures.

For comparison sake, we also implemented two other load-balancing algo-
rithms: greedy and HDSS [3]. The greedy algorithm divides the input set in pieces
and assigns each piece to the first available processing unit. HDSS was imple-
mented using minimum square estimation to determine the weights and divided
into two phases: adaptation and completion phase. We used the IPOPT [9]
(Interior Point OPTimizer) library to solve the equations systems produced by
Eq. (3).

4.1 Applications

We used three applications to evaluate the PLB-HAC algorithm: a matrix
multiplication (MM) application, a gene regulatory network (GRN) infer-
ence [4] application, and a clustering algorithm, the K-Means. Each application
was implemented as a pair of codelets, containing optimized GPU and CPU
implementations.

The MM application distributes a copy of the matrix A to all PUs and divides
matrix B among the PUs according to the load-balancing scheme. We used an
optimized version from the CUBLAS 4.0 library. Multiplication of two n × n
matrices has complexity O(n3).

Gene Regulatory Network (GRN) inference [4] is a bioinformatics problem in
which gene interactions must be deduced from gene expression data. It depends
on an exhaustive search of the gene subset with a given cardinality that best
predicts a target gene. The division of work consisted of distributing the gene
sets that are evaluated by each processor. The complexity of the algorithm is
known to be O(n3), where n is the number of genes.

K-means clustering is a popular method for cluster analysis which parti-
tions n observations into k clusters. The problem can be exactly solved in time
O(ndk+1), where n is the number of entities to be clustered and d is the input
dimensionality [7].

5 Results

We used five machines with different PU configurations (Table 1). We considered
five scenarios: one machine (A); two machines (A, B); three machines (A, B, and
C); four machines (A, B, C, and D) and five machines (A, B, C, D, and E). For
GPUs, we launched kernels with 1 thread block per Stream Multiprocessors
(SMs). For the CPUs and Xeon Phi, we created one thread per (virtual) core.

PLB-HAC: Dynamic Load-Balancing for Heterogeneous Accelerator Clusters 205

Fig. 4. Speedup (compared to the optimum execution) for the Matrix Multiplication
(MM), Gene Regulatory Network (GRN) inference application and K-Means algorithm,
using different number of machines and input sizes.

Table 1. Machine configurations

Machines Description

PU type Model Core count Cache/throughput Memory

A CPU Intel i7 - 5930K 6 cores @ 3.5GHz 15MB cache 32GB

GPU Quadro K5200 2304 cores 192GB/s 8GB

B CPU Intel i7 - 5930K 6 cores @ 3.5GHz 15MB cache 32GB

GPU GTX 970 1667 cores 224GB/s 4GB

Xeon Phi 3120 series 57 cores 240GB/s 6GB

C CPU Intel Xeon E-2620 6 cores @ 2.10GHz 15MB cache 32GB

GPU Quadro K620 384 cores 29GB/s 2GB

D CPU Intel i7-4930k 6 cores @ 3.40GHz 12MB cache 32GB

GPU GPU Titan 2688 cores 288.4GB/s 6GB

E CPU Intel Xeon E-2620 6 cores @ 2.10GHz 15MB cache 32GB

GPU Quadro K620 384 cores 29GB/s 2GB

Xeon Phi 3120 series 57 cores 240GB/s 6GB

5.1 Application Speedup

Figure 4 shows the average of 10 runs of each algorithm. Lines labeled “Opti-
mum” show results for the optimal load balancing, obtained empirically by brute
force searching. We used the same initial block size for both PLB-HAC, PLB-
HeC, and HDSS, with 1024 elements.

206 L. Sant’Ana et al.

Fig. 5. (a) Percentage of idle time for each PU class (CPU, GPU, and Xeon Phi) in the
five machines (colored bars), when using the HDSS (H) and PLB-HAC (P) algorithms
for each application. (b) The block size ratio distributed to each PU in the five machines
for the Optimal (O), HDSS (H) and PLB-HAC (P) distributions.

With three or more machines, PLB-HAC algorithm approximates the opti-
mal curve and exceeds the performance of the compared algorithms. The cost
involved in the calculation of the block size distribution (about 100 ms per iter-
ation), is mitigated by the better distribution of blocks. The behavior is similar
for all three applications evaluated, with PLB-HAC performing better in more
heterogeneous environments.

With one machine, PLB-HAC exhibited lower performance than HDSS and
Greedy. For HDSS, the overhead from the model generation occurs only once,
at the end of the adaptive phase. Note that PLB-HAC has a better performance
than PLB-HeC due to the removal of the synchronization steps.

5.2 Block Size Distribution

We compared the distribution of block sizes among the PUs. Figure 5b shows the
results for a matrix of 65,536 elements for matrix multiplication, 140,000 genes
for GRN and 500,000 points for k-means. We used the five machines A, B, C,
D, and E. The values represent the ratio of the total data allocated on a single
step to each CPU/GPU processor, normalized so that total size is equal to 100.
We considered the block sizes generated at the end of the training phase for the
algorithm PLB-HAC, and at the end of phase 1 for the HDSS algorithm. We
performed 10 executions and present the average values and standard deviations.
The standard deviation values are small, showing that all algorithms are stable
through different executions.

The PLB-HAC algorithm produced a distribution that was qualitatively more
similar to the optimum algorithm than HDSS, with proportionally smaller blocks
allocated to CPUs and larger blocks to GPUs. We attribute this difference to
the use of a performance curve model by PLB-HAC, in contrast to the use of

PLB-HAC: Dynamic Load-Balancing for Heterogeneous Accelerator Clusters 207

the simpler linear weighted means from a set of performance coefficients done
by HDSS.

5.3 Processing Unit Idleness

We also measured the percentage of time that each CPU and GPU was idle dur-
ing application execution, using the same experimental setup from the block size
distribution experiment. At each task submission round, we recorded the time
intervals where each processing unit remained idle. We executed each application
with each load-balancing algorithm 10 times.

Figure 5a shows that HDSS produced larger processing unit idleness than
PLB-HAC in all scenarios. This idleness occurred mainly in the first phase of
HDSS, where non-optimal block sizes are used to estimate the computational
capabilities of each processing unit. PLB-HAC prevents these idleness periods
in the initial phase by starting to adjust the block sizes after the submission of
the first block, significantly reducing the idleness generated on this phase.

Another measured effect is that with larger input sizes—which are the most
representative when considering GPU clusters—the percentage of idleness time
was smaller. This occurred mainly because the time spent in the initial phase,
where most of the idleness time occurs, was proportionally smaller when com-
pared to the total execution time. This effect is evident when comparing the idle
times of the matrix multiplication application with 4,096 and 65,536 elements
for the PLB-HAC algorithm.

Incorrect block size estimations also produce idleness in the execution phase
of the algorithms, especially in the final part, since some processing units may
finish their tasks earlier than others. HDSS and PLB-HAC prevent part of this
idleness using decreasing block size values during the execution.

5.4 Adaptability

We evaluated the adaptability of PLB-HAC to situations where the resource
state changes during application execution. For instance, an external applica-
tion could be started in some of the machines where the PLB-HAC managed
application is executing.

We used two machines (A and B), with one CPU and GPU on each. They
are initially idle, and we start the execution of the MM application. After 142 s,
we start the execution of a CUDA-based GRN application at machine A, which
competes for GPU resources. PLB-HAC detects that executions at GPU A are
taking longer and reduces the block size for this GPU, as shown in Fig. 6a.
Conversely, the block size for GPU B is increased, compensating the reduction
in GPU A. Figure 6b shows a scenario where we start a render application in
GPU A after 142 s. Note that the PLB-HAC reduces the block size to GPU A
to near zero while increasing the block size of GPU B.

It is important to note that the adaptation was fast, with the block size falling
from 2500 KB to 1188 KB within 38 s in the first case (a) and from 2500 KB to

208 L. Sant’Ana et al.

Fig. 6. Evolution of the block size distribution for two machines (A and B) in the
presence of a competing process, which is started at GPU A at instant 142 s, denoted
by the vertical line.

320 KB in 43 s in the second case (b). Also note the decrease of block sizes at
the end of the execution, which is a result of PLB-HAC policy of distributing
smaller blocks at the end of the execution, avoiding possible load unbalances
that could occur at this phase.

6 Conclusions

In this paper, we presented PLB-HAC, a novel algorithm for dynamic load-bal-
ancing of domain decomposition applications executing on clusters of heteroge-
neous CPUs, GPUs and Xeon-Phi. It performs a profile-based online estimation
of the performance curve for each processing unit and selects the block size dis-
tribution among processing units solving a non-linear system of equations. We
used three real-world applications in the fields of linear algebra, bioinformatics,
and data clustering and showed that our approach decreased the application
execution time when compared to other dynamic algorithms.

Experiments showed that PLB-HAC performed better for higher degrees of
heterogeneity and larger problem sizes, where a more refined load-distribution
is required. The PLB-HAC was implemented on top of the well-known StarPU
framework, which allows its immediate use for several existing applications and
an easier development cycle for new applications.

As future work, we need to evaluate the scalability of PLB-HAC by executing
experiments with applications that require hundreds or thousands of processing
units. Another point is to extend the method to work with applications that
have multiple kernels.

Acknowledgment. The authors would like to thank UFABC and FAPESP (Proc.
n. 2013/26644-1) for the financial support, Fabrizio Borelli for providing the GRN
application and Samuel Thibalt for helping with StarPU. This research is part of the
INCT of the Future Internet for Smart Cities funded by CNPq proc. 465446/2014-0,
Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior – Brasil (CAPES) –
Finance Code 001, FAPESP proc. 14/50937-1, and FAPESP proc. 15/24485-9.

PLB-HAC: Dynamic Load-Balancing for Heterogeneous Accelerator Clusters 209

References

1. Acosta, A., Blanco, V., Almeida, F.: Towards the dynamic load balancing on het-
erogeneous multi-GPU systems. In: 2012 IEEE 10th International Symposium on
Parallel and Distributed Processing with Applications (ISPA), pp. 646–653 (2012)

2. Augonnet, C., Thibault, S., Namyst, R.: StarPU: a runtime system for schedul-
ing tasks over accelerator-based multicore machines. Technical report RR-7240,
INRIA, March 2010

3. Belviranli, M.E., Bhuyan, L.N., Gupta, R.: A dynamic self-scheduling scheme for
heterogeneous multiprocessor architectures. ACM Trans. Arch. Code Optim. 9(4),
57:1–57:20 (2013)

4. Borelli, F.F., de Camargo, R.Y., Martins Jr., D.C., Rozante, L.C.: Gene regu-
latory networks inference using a multi-GPU exhaustive search algorithm. BMC
Bioinform. 14(18), 1–12 (2013)

5. de Camargo, R.: A load distribution algorithm based on profiling for heteroge-
neous GPU clusters. In: 2012 Third Workshop on Applications for Multi-Core
Architectures (WAMCA), pp. 1–6 (2012)

6. Gropp, W.D.: Parallel computing and domain decomposition. In: Fifth Interna-
tional Symposium on Domain Decomposition Methods for Partial Differential
Equations, Philadelphia, PA (1992)

7. Inaba, M., Katoh, N., Imai, H.: Applications of weighted Voronoi diagrams and
randomization to variance-based k-clustering. In: Proceedings of the Tenth Annual
Symposium on Computational Geometry, pp. 332–339. ACM (1994)

8. Kaleem, R., Barik, R., Shpeisman, T., Lewis, B.T., Hu, C., Pingali, K.: Adaptive
heterogeneous scheduling for integrated GPUs. In: Proceedings of the 23rd Inter-
national Conference on Parallel Architectures and Compilation, PACT 2014, pp.
151–162. ACM, New York (2014). https://doi.org/10.1145/2628071.2628088

9. Nocedal, J., Wächter, A., Waltz, R.: Adaptive barrier update strategies for nonlin-
ear interior methods. SIAM J. Optim. 19(4), 1674–1693 (2009). https://doi.org/
10.1137/060649513

10. Sant’Ana, L., Cordeiro, D., Camargo, R.: PLB-HeC: a profile-based load-balancing
algorithm for heterogeneous CPU-GPU clusters. In: 2015 IEEE International Con-
ference on Cluster Computing, pp. 96–105, September 2015. https://doi.org/10.
1109/CLUSTER.2015.24

11. Zhong, Z., Rychkov, V., Lastovetsky, A.: Data partitioning on heterogeneous multi-
core and multi-GPU systems using functional performance models of data-parallel
applications. In: 2012 IEEE International Conference on Cluster Computing
(CLUSTER), pp. 191–199, September 2012. https://doi.org/10.1109/CLUSTER.
2012.34

https://doi.org/10.1145/2628071.2628088
https://doi.org/10.1137/060649513
https://doi.org/10.1137/060649513
https://doi.org/10.1109/CLUSTER.2015.24
https://doi.org/10.1109/CLUSTER.2015.24
https://doi.org/10.1109/CLUSTER.2012.34
https://doi.org/10.1109/CLUSTER.2012.34

Data Management, Analytics and Deep
Learning

Enhancing the Programmability
and Performance Portability
of GPU Tensor Operations

Arya Mazaheri1(B), Johannes Schulte1, Matthew W. Moskewicz2, Felix Wolf1,
and Ali Jannesari3

1 Technische Universität Darmstadt,
Darmstadt, Germany

{mazaheri,wolf}@cs.tu-darmstadt.de,
j schulte@outlook.com

2 Deepscale Inc., Mountain View, CA, USA
moskewcz@deepscale.ai

3 Iowa State University, Ames, IA, USA
jannesari@iastate.edu

Abstract. Deep-learning models with convolutional networks are
widely used for many artificial-intelligence tasks, thanks to the increas-
ing adoption of high-throughput GPUs, even in mobile phones. CUDA
and OpenCL are the two largely used programming interfaces for access-
ing the computing power of GPUs. However, attaining code portabil-
ity has always been a challenge, until the introduction of the Vulkan
API. Still, performance portability is not necessarily provided. In this
paper, we investigate the unique characteristics of CUDA, OpenCL, and
Vulkan kernels and propose a method for abstracting away syntactic dif-
ferences. Such abstraction creates a single-source kernel which we use for
generating code for each GPU programming interface. In addition, we
expose auto-tuning parameters to further enhance performance portabil-
ity. We implemented a selection of convolution operations, covering the
core operations needed for deploying three common image-processing
neural networks, and tuned them for NVIDIA, AMD, and ARM Mali
GPUs. Our experiments show that we can generate deep-learning ker-
nels with minimal effort for new platforms and achieve reasonable per-
formance. Specifically, our Vulkan backend is able to provide competitive
performance compared to vendor deep-learning libraries.

Keywords: GPU · Deep learning · Performance portability

1 Introduction

Differences across GPU architectures and programming interfaces, such as
CUDA and OpenCL, make the efficient execution of tensor operations, the con-
stituents of convolutional neural networks (CNN), a challenging task. While
CUDA works only on NVIDIA devices, the latter has been designed with
portability in mind to run on any OpenCL compatible device. Nonetheless,
c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 213–226, 2019.
https://doi.org/10.1007/978-3-030-29400-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_16&domain=pdf
https://doi.org/10.1007/978-3-030-29400-7_16

214 A. Mazaheri et al.

performance is not necessarily portable [4]. Furthermore, some vendors, such
as NVIDIA, are reluctant to fully support OpenCL as they see it as a rival to
their own standard. This becomes even worse on a number of mobile GPUs for
which there is no official support.

The Khronos group released a new programming API called Vulkan [19] along
with an intermediate language named SPIR-V [18] to address the portability of
GPU programs. Vulkan is inherently a low-level graphics and compute API,
much closer to the behavior of the hardware, and claims to be cross-platform
yet efficient on modern GPUs. Unlike others, Vulkan is supported by all major
mobile and desktop GPUs. This single feature makes Vulkan a more attrac-
tive programming interface compared with OpenCL, not to mention its unique
low-level optimizations. However, such worthwhile features come at a price, as
it requires significantly higher programming effort. Particularly for newcomers,
rewriting their code with Vulkan is a cumbersome task.

CNN inference frameworks such as TVM [1], PlaidML [7], and Tensor Com-
prehensions [20], which provide support for coding new tensor operations, have
been optimized in many ways that allow a more efficient use of the underly-
ing hardware. Important steps in that regard were the use of compiler tech-
niques [7,20] as well as device-specialized kernels written in shader assembly
instead of high-level programming languages [2] or platform-independent inter-
mediate representations. However, implementations that work on multiple plat-
forms are often optimized for certain architectures or vendors. This reduces the
portability and performance predictability of CNN execution on server-/desktop-
grade GPUs and mobile GPUs alike.

In this paper, we conduct a comparative analysis of CUDA, OpenCL, and
Vulkan, which we call target APIs in the rest of the paper. We then use the out-
come to extend Boda [13], a CNN inference framework, and propose an abstrac-
tion layer that enables GPU tensor code generation using any of the target
APIs. Equipped with meta-programming and auto-tuning, our code generator
can create multiple implementations and select the best performing version on
a given GPU. Therefore, we enhance programmability and provide better per-
formance portability with code auto-tuning. Our experiments show that our
approach eases the overall burden of targeting NVIDIA, AMD and Mali GPUs
while achieving modest performance. We also achieve competitive performance
using Vulkan in comparison to existing deep-learning vendor libraries. In some
cases, our method achieved higher speedups, by up to 1.46× and 2.28× rela-
tive to cuDNN and AMD’s MIOpen libraries. In essence, this paper makes the
following major contributions:

– Programmability comparison of CUDA, OpenCL, and Vulkan code
– CUDA, OpenCL, and Vulkan code generation using an abstract single-source

approach, which reduces the required programming effort by up to 98%
– Acceleration of convolution layers using Vulkan’s new features such as kernel

batching
– Performance portability analysis of our code generator for each of the three

programming interfaces on latest architectures, including mobile GPUs

Programmability and Performance Portability of GPU Tensor Operations 215

In the remainder of the paper, we first provide a comparative code analysis for
the target APIs. Then, in Sect. 3 our code generation method will be introduced,
followed by an evaluation in Sect. 4. A concise review of related works is presented
in Sect. 5. Finally, we conclude the paper in Sect. 6.

2 Comparison of CUDA, OpenCL, and Vulkan

CUDA and OpenCL share a range of core concepts, such as the platform, mem-
ory, execution, and programming model. Furthermore, their syntax and built-in
functions are fairly similar to each other. Thus, it is relatively straightforward to
convert a CUDA to an OpenCL program, and vice versa [5,9]. On the other hand,
Vulkan does not fully conform to CUDA and OpenCL standards, as it is geared
both towards general-purpose computation and graphics while being portable
and efficient. Various OpenCL offline compilers exist for converting C code to an
intermediate language, from which later platform-specific assembly code can be
easily generated. In contrast, Vulkan is able to target different platforms using
a single input code and SPIR-V, a new platform-independent intermediate rep-
resentation for defining shaders and compute kernels. Currently, SPIR-V code
can be generated from HLSL, GLSL and C with OpenCL.

Vulkan has been designed from scratch with asynchronous multi-threading
support [10,16]. Moreover, each Vulkan-capable device exposes one or more
queues that can also process work asynchronously to each other. Each queue
carries a set of commands and acts as a gateway to the execution engine
of a device. These commands can represent many actions, from data transfer
and compute-shader execution to draw commands. Each command specifies the
requested action along with input/output data. The information about the avail-
able actions and the corresponding data is encapsulated in a so-called pipeline.
This pipeline is then bound to a command buffer, which represents a sequence of
commands that should be sent in batches to the GPU. These buffers are created
prior to execution and, to save in time, can be submitted to a queue for execu-
tion as many times as required. Creating command buffers is a time-consuming
task. Therefore, the host code often employs multiple threads, working asyn-
chronously, to construct command buffers in parallel. Once finished, a thread
may submit these command buffers to a queue for execution. Right after the
submission, the commands within a command buffer execute without any inter-
ruption in order or out of order—depending on the ordering constraints.

Despite these conceptual design differences, we prepared a mapping for the
key concepts within each API in terms of memory regions and execution models
in Table 1. The table shows that the memory hierarchy abstractions of the three
interfaces are quite similar. Figure 1 illustrates the kernel execution space of the
target APIs in more detail. Each point in the space is occupied by a thread/work-
item/invocation. Each item is an execution instance of the kernel, with multiple
of them combined into a thread block or group. The whole execution space is
called grid or NDRange. Note that this mapping only covers the concepts shared
among these APIs and does not fully cover the features of Vulkan.

216 A. Mazaheri et al.

Table 1. A comparison of the terminology used
in CUDA, OpenCL, and Vulkan

CUDA OpenCL Vulkan (SPIR-V)

Memory

region

Global mem. Global mem. CrossWorkGroup,

Uniform

Constant mem. Constant mem. UniformConstant

Texture mem. Constant mem. PushConstant

Shared mem. Local mem. Workgroup

Registers Private memory Private memory

Execution

model

Thread Work-item Invocation

Thread block Work-group Workgroup

Grid NDRange NDRange
Fig. 1. Kernel execution space for
(1) CUDA, (2) OpenCL, and (3)
Vulkan

Further comparison shows that Vulkan is more explicit in nature rather than
depending on hidden heuristics in the driver. Vulkan provides a more fine-grained
control over the GPU on a much lower level. This enables programmers to
enhance performance across many platforms. Even though such privilege comes
with an extra programming effort, this feature can immensely increase the over-
all performance. Operations such as resource tracking, synchronization, memory
allocation, and work submission internals benefit from being exposed to the user,
which makes the application behavior more predictable and easier to control.
Similarly, unnecessary background tasks such as error checking, hazard track-
ing, state validation, and shader compilation are removed from the runtime and
instead can be done in the development phase, resulting in lower driver overhead
and less CPU usage [10] compared with other APIs.

Particularly, synchronization mechanisms require the developer to be explicit
about the semantics of the application but in return save a significant amount
of overhead. While other APIs tend to insert implicit synchronization primitives
between invocations and constructs, such as kernel executions and buffer reads,
Vulkan is by default asynchronous. All synchronization between kernels or buffer
I/O must be added explicitly to their respective command buffer via built-in
synchronization primitives, including fences, barriers, semaphores, and events.
Therefore, if no synchronization is required, we can strictly avoid the overhead
of such operations.

Another difference is how Vulkan allocates memory, both on the host and
the device. While CUDA and OpenCL often provide a single device buffer type
and primitive functions for copying data between the host and device buffers,
Vulkan puts the programmer in full control of memory management, including
buffer creation, buffer type selection, memory allocation, and buffer binding.
Furthermore, by making an explicit distinction between host-transparent device
buffers and device-local buffers, we can implement explicit staging buffers or
decide if they are not necessary—either because the amount of I/O to the buffer
is negligible or because host memory and device memory are actually shared, as

Programmability and Performance Portability of GPU Tensor Operations 217

Fig. 2. A SGEMM kernel implemented with CUDA, OpenCL, and Vulkan (GLSL).
Numbers on the left denote: (1) function declaration, (2) kernel arguments and data
layout, (3) API-specific keywords, (4) shared-memory allocation.

it is the case on many mobile platforms. Such explicit querying and handling of
the underlying hardware can reduce unnecessary work and utilize the hardware
more efficiently.

Programming Conventions. In contrast to other APIs, Vulkan has its own
programming conventions. Therefore, code similarities might not seem obvious
at the first glance. Figure 2 shows a näıve matrix-multiplication kernel imple-
mented using each programming interface. For Vulkan, we chose GLSL as our
kernel language because of its better compatibility. We trimmed off some parts
of the code for brevity. Regions with the same color and number share the same
functionality. Syntactically, GLSL is similar to OpenCL and CUDA. However,
GLSL is more restricted in certain ways, which requires rewriting some parts of
the code. The biggest three differences are:

– Arguments to a kernel are not declared in the function header. Instead, they
are declared in the global scope as so-called bindings, which can then be set
with Vulkan. The compiler expects the entry function for the kernel to take no
arguments. However, accessing the arguments within the kernel is the same
as in other APIs.

– Workgroup dimensions have to be defined in the kernel and not in the host
code. Each workgroup contains many work items or compute-shader invoca-
tions.

– GLSL does not provide explicit support for pointer objects. Instead, all point-
ers are represented as arrays of undefined length.

– Shared-memory objects are not declared within the kernel body. Instead, they
are defined in the bindings.

Due to the conceptual discrepancies between Vulkan and the other APIs,
the host code of Vulkan is radically different. For example, we can create a

218 A. Mazaheri et al.

Fig. 3. The workflow behind our approach. Highlighted (dark) boxes denote the exten-
sions in the Boda framework.

simple buffer in CUDA (cudaMalloc) or OpenCL (clCreateBuffer) with a
single line of code. To create the same buffer in Vulkan, we have to: (1) create a
buffer object, (2) get the memory requirements for that object, (3) decide which
memory heap to use, (4) allocate memory on the selected heap, and (5) bind
the buffer object to the allocated memory. This requires more than 40 lines of
code. Clearly, host code programming in Vulkan is proportionally more complex,
which stems from its explicit nature. Such code verbosity not only increases the
programming effort but also makes the code more error-prone.

3 Code Generation

To generate tensor kernels, we use Boda [13] as the main engine. Boda is a CNN
inference framework that uses template meta-programming to generate efficient
GPU tensor code. Relying only on meta-programming made Boda a lightweight
framework with minimal external software dependencies. The major required
software packages comprise a C++ compiler, Python for building Boda itself,
and a compatible GPU backend compiler, such as NVCC, Clang with OpenCL
enabled, or GLSL to compile GPU tensor codes. We extended this framework by
adding new components to provide Vulkan backend support as well as a kernel-
abstraction layer to generate GPU code for each target API. Figure 3 depicts
a high-level overview of our method. In the following, we will explain the key
components.

MetaGPU Abstraction Layer. Considering the code discrepancies among
the target APIs (see Fig. 2), we propose MetaGPU, a compatibility layer over
our target APIs. It abstracts away the syntactic differences for the basic GPU
programming concepts shared by our target APIs. We did not want to invent a
new language because it creates additional learning overhead for programmers.
Instead, we keep the coding convention very similar to CUDA and OpenCL
and simply ask the user to separate the code into three regions using #pragma
directives, similar to OpenMP. Figure 4 shows a MetaGPU code sample.

1. Tuning parameters: The first region defines tuning parameters. We can either
access them in the kernel code or in the host program.

Programmability and Performance Portability of GPU Tensor Operations 219

Fig. 4. A trivial sample of MetaGPU code.

Table 2. The list of pre-defined keywords in the kernel body alongside their corre-
sponding value within each target API.

CUDA OpenCL Vulkan

GLOB ID 1D blockDim.x*blockIdx.x+threadIdx.x get global id(0) gl GlobalInvocationID.x

LOC ID 1D threadIdx.x get local id(0) gl LocalInvocationID.x

GRP ID 1D blockIdx.x get group id(0) gl WorkGroupID.x

LOC SZ 1D blockDim.x get local size(0) gl WorkGroupSize.x

BARRIER SYNC syncthreads() barrier(CLK LOCAL MEM FENCE) barrier()

2. Data layout: The kernel arguments and required memories which need to be
allocated in the shared memory are defined within this region. Additionally,
the scope of each argument should be defined with any of in, out or smem
keywords.

3. Kernel body: As the name suggests, this region contains the actual kernel
logic. A subtle difference is that using pointers is not allowed. Furthermore,
the user has to use pre-defined keywords for accessing the GPU threads, work-
groups and synchronization barriers. Table 2 shows the list of keywords and
their corresponding string in each target API. MetaGPU also supports tem-
plate meta-programming to generate adaptive code. Template placeholders
are defined by %(placeholder name)% and, using Boda, the user can popu-
late them with C instructions or any desired string. Such a feature can help
dynamically generate code and unroll loops to further improve performance.

Code Generation. We first parse the input MetaGPU code and extract the
three regions. The tuning parameters can later be used for auto-tuning. Then,
the data layout of the kernel is parsed to find out the kernel arguments for
CUDA/OpenCL code and the bindings for Vulkan GLSL code. Based on the
target programming interface, we can then generate the kernel by generating
corresponding argument declarations and merging them with the kernel body.
All those template placeholders and abstract keywords will be replaced by their
values as well.

We also added Vulkan support to Boda by creating a new backend to support
host programming. All the required buffers, synchronizations, and timings will
be handled by the Vulkan backend within Boda. Therefore, the end user does
not have to write any host code using Vulkan. Since the programming effort of

220 A. Mazaheri et al.

Vulkan is very high, this feature will greatly enhance programmer productivity.
Furthermore, we use the kernel batching feature in Vulkan and submit up to eight
compute shaders at once to the GPU. We believe that this simple optimization
will greatly reduce the kernel-invocation overhead.

Auto-tuning. Tensor operations have a wide range of possible input sizes
and parameters. It is generally difficult, even with meta-programming, to write
code that runs well across more than a limited range of input sizes. Such
tuning parameters might control thread blocking, memory access patterns, or
load/store/compute vector widths. Thus, the auto-tuner automatically searches
the tuning space to find the right values for the given tuning knobs in the
MetaGPU code and even across different implementation variants. This is an
important step towards higher performance portability.

The key feature of our autotuning method is automatic per-platform variant
selection and automated sweeping over tuning parameters. Currently, we apply
a simple brute-force search over a fixed set of configurations, combined with a
heuristic parameter selection method, to reduce the search space to a tractable
size.

4 Experimental Results

To evaluate the programmability and performance portability of our approach,
we selected a range of convolution operations and generated the corresponding
GPU code for each of the target APIs. We extracted 43 unique convolutions
from AlexNet, Network-in-Network, and the InceptionV1 networks, which have
(1) a batch size of five, and (2) more than 1e8 FLOPS. The rationale behind this
selection is that we wanted these convolutions to model a streaming deployment
scenario with high computational load but some latency tolerance. The exact
specifications for each of these 43 convolutions can be found in Table 3.

For the sake of precision, we measured the execution times using GPU timers.
Furthermore, to counter run-to-run variation, we executed each kernel five times
and reported the average of the runtimes we obtained. Because Vulkan GPU
timers were not supported on our mobile platform, we had to use its CPU timers
instead. All the average speedups reported across the convolutions are computed
using the geometric mean. Our evaluation artifacts, including source code and
instructions on how to rerun the experiments, are available on Figshare [11].

Experimental Setup. We chose NVIDIA GTX 1080 Ti and AMD Radeon
RX 580, two recent desktop GPUs. We also used a mobile platform based on
the Hikey 960 development kit, which contains an ARM Mali-G71 MP8 GPU.
Table 4 summarizes the configuration details of the target platforms.

Programmability and Performance Portability of GPU Tensor Operations 221

Table 3. KSZ, S, OC and B are the kernel size, stride, number of output channels, and
batch size of each convolution operation. in and out are the sizes of input and output,
specified as y × x× chan; FLOPs is the per-operation FLOP count.

KSZ S OC B in out FLOPs

5 1 32 5 28 × 28 × 16 28 × 28 × 32 1.00352e+08

5 1 64 5 14 × 14 × 32 14 × 14 × 64 1.00352e+08

1 1 256 5 7 × 7 × 832 7 × 7 × 256 1.04366e+08

1 1 112 5 14 × 14 × 512 14 × 14 × 112 1.12394e+08

1 1 128 5 14 × 14 × 512 14 × 14 × 128 1.28451e+08

1 1 64 5 28 × 28 × 256 28 × 28 × 64 1.28451e+08

1 1 64 5 56 × 56 × 64 56 × 56 × 64 1.28451e+08

1 1 128 5 14 × 14 × 528 14 × 14 × 128 1.32465e+08

1 1 144 5 14 × 14 × 512 14 × 14 × 144 1.44507e+08

1 1 96 5 28 × 28 × 192 28 × 28 × 96 1.44507e+08

1 1 384 5 7 × 7 × 832 7 × 7 × 384 1.56549e+08

1 1 160 5 14 × 14 × 512 14 × 14 × 160 1.60563e+08

1 1 160 5 14 × 14 × 528 14 × 14 × 160 1.65581e+08

1 1 4096 5 1 × 1 × 4096 1 × 1 × 4096 1.67772e+08

1 1 192 5 14 × 14 × 480 14 × 14 × 192 1.80634e+08

5 1 128 5 14 × 14 × 32 14 × 14 × 128 2.00704e+08

3 1 320 5 7 × 7 × 160 7 × 7 × 320 2.25792e+08

1 1 384 5 13 × 13 × 384 13 × 13 × 384 2.49201e+08

1 1 128 5 28 × 28 × 256 28 × 28 × 128 2.56901e+08

1 1 256 5 14 × 14 × 528 14 × 14 × 256 2.64929e+08

1 1 96 5 54 × 54 × 96 54 × 54 × 96 2.68739e+08

3 1 384 5 7 × 7 × 192 7 × 7 × 384 3.2514e+08

3 1 208 5 14 × 14 × 96 14 × 14 × 208 3.52236e+08

1 1 1000 5 6 × 6 × 1024 6 × 6 × 1000 3.6864e+08

1 1 1024 5 6 × 6 × 1024 6 × 6 × 1024 3.77487e+08

6 1 4096 5 6 × 6 × 256 1 × 1 × 4096 3.77487e+08

3 1 224 5 14 × 14 × 112 14 × 14 × 224 4.42552e+08

1 1 256 5 27 × 27 × 256 27 × 27 × 256 4.77757e+08

3 1 256 5 14 × 14 × 128 14 × 14 × 256 5.78028e+08

5 1 96 5 28 × 28 × 32 28 × 28 × 96 6.02112e+08

3 1 288 5 14 × 14 × 144 14 × 14 × 288 7.31566e+08

3 1 128 5 28 × 28 × 96 28 × 28 × 128 8.67041e+08

3 1 320 5 14 × 14 × 160 14 × 14 × 320 9.03168e+08

11 4 96 5 224 × 224 × 3 54 × 54 × 96 1.01617e+09

11 4 96 5 227 × 227 × 3 55 × 55 × 96 1.05415e+09

7 2 64 5 224 × 224 × 3 112 × 112 × 64 1.18014e+09

3 1 1024 5 6 × 6 × 384 6 × 6 × 1024 1.27402e+09

3 1 256 5 13 × 13 × 384 13 × 13 × 256 1.4952e+09

3 1 384 5 13 × 13 × 256 13 × 13 × 384 1.4952e+09

3 1 192 5 28 × 28 × 128 28 × 28 × 192 1.73408e+09

3 1 384 5 13 × 13 × 384 13 × 13 × 384 2.24281e+09

3 1 192 5 56 × 56 × 64 56 × 56 × 192 3.46817e+09

5 1 256 5 27 × 27 × 96 27 × 27 × 256 4.47898e+09

222 A. Mazaheri et al.

Table 4. Experimental setup.

Nvidia GTX 1080Ti AMD RX 580 ARM Mali G71 MP8

OS Ubuntu 16.04 64-bit Android 7.0

CPU Intel Xeon Gold 6126, 12Core @ 2.6GHz 4 Cortex A73+4 Cortex A53

Host Memory 64GB 3GB LPDDR4 SDRAM

GPU Memory 11GB GDDR5X 8GB GDDR5 -

Driver Linux Display Driver 410.66 AMDGPU-PRO Driver 17.40 Native driver

CUDA CUDA 10.0 - -

OpenCL OpenCL 1.2 OpenCL 2.0 OpenCL 2.0

Vulkan SDK Vulkan 1.1.97 Vulkan 1.1.97 Vulkan 1.1.97

Table 5. Lines-of-code comparison for different convolution implementations alongside
computed effort metric.

LOCMetaGPU LOCCUDA LOCOpenCL LOCV ulkan LOCTotalUniqueLines Effort

Direct convolution 113 562 631 1137 2330 4.84
Tiled convolution 115 548 618 1119 2285 5.03
GEMM convolution 89 1103 1172 1666 3941 2.25
1x1 convolution 160 1190 1259 1761 4210 3.80

Programmability Analysis. Our method offers performance portability while
easing the burden of rewriting the program for each API. However, to quanti-
tatively evaluate the programming effort required to generate efficient deep-
learning kernels, we propose a metric based on total lines of code. Inspired
by Memeti et al. [12], we use clock to determine the lines of MetaGPU code
LOCMetaGPU and the total unique lines of code LOCTotalUniqueLines needed to
be written for our target APIs to provide code portability. We then define the
programming effort as follows.

Effort[%] = (LOCMetaGPU/LOCTotalUniqueLines) × 100 (1)

In most CNN frameworks, including Boda, multiple convolution variants
exist, each specialized for a specific case. For instance, Boda provides direct,
tiled, GEMM, and 1 × 1 convolution variants. We counted the LOCs for each
variant and target API. The results are shown in Table 5. For a fair program-
ming effort analysis, we used total unique lines between all the target APIs. The
results indicate that using our method requires on average 8% of the total effort
needed to implement the code with all of the target APIs.

Performance Portability Analysis. We now present per-convolution-
operation runtime results across hardware targets and programming interfaces
to illustrate the performance portability of our method. We sorted the operations
by FLOP count, a reasonable proxy for the difficulty of the operations.

A runtime comparison of CUDA, OpenCL, and Vulkan on our benchmark
set of operations is given in Fig. 5. All runtimes are for running each operation

Programmability and Performance Portability of GPU Tensor Operations 223

using the best function generated by our method for that operation, selected
by auto-tuning. The implementations are the same and only the backend API
is different. We also added cuDNN runtimes as the baseline to show the per-
formance of our method relative to the highly-tuned vendor CNN library. The
results clearly show that our Vulkan backend often yields lower runtime in com-
parison to the other two, and closer to cuDNN’s performance. We believe that
this is owed to kernel batching and the optimizations provided by Vulkan. Note
that we are slower especially in cases with 3 × 3 kernel sizes, where cuDNN is
using Winograd convolution, which we have not yet implemented. On average,
Vulkan outperformed CUDA and OpenCL kernels by a factor of 1.54 and 1.86,
respectively. Although cuDNN was able to operate 1.38× faster than Vulkan, we
noticed that in some cases, Vulkan can be up to 1.46× faster than cuDNN.

Figure 6 compares the runtimes of our benchmark using OpenCL and Vulkan
on the AMD GPU. We also show MIOpen runtimes as the baseline to show
the performance of our method relative to the optimized AMD CNN library.
Again, we notice that Vulkan outperforms OpenCL by a factor of 1.51 on aver-
age. Presumably benefiting from Winograd convolutions and a highly-optimized
MIOpenGEMM, MIOpen performs better than our Vulkan implementation for

Fig. 5. The runtime comparison of kernels generated by our method and cuDNN vendor
library on Nvidia GTX 1080 Ti.

Fig. 6. The runtime comparison of kernels generated by our method and the MIOpen
vendor library on AMD Radeon RX 580.

224 A. Mazaheri et al.

25 out of 43 operations. For the 18 remaining operations, however our Vulkan
version runs up to 2.28× faster than MIOpen.

Together, Figs. 5 and 6 illustrate that we were able to achieve competitive
performance compared to the vendor libraries on two different platforms. This
observation confirms that our method achieves good performance portability. To
further validate the effect of auto-tuning on performance portability, we executed
the Vulkan code generated by our backend with and without auto-tuning. The
final results after selecting the right variant and tuning parameters are shown in
Fig. 7. Note that runtimes are reported using CPU timers, because Vulkan GPU
timestamps are not supported on Mali G71. Auto-tuning requires much less
effort than manual tuning and improves performance significantly—on average
by a factor of 3.11.

Fig. 7. Vulkan performance with and without auto-tuning on Mali G71.

5 Related Work

With the increasing popularity of GPUs, several authors compared CUDA and
OpenCL programming models [3–5,8,9,12,15,17], but none of them studied
Vulkan. Karimi et al. [8] and Fang et al. [5] compared CUDA with OpenCL,
focusing on their performance on conventional desktop GPUs. Du et al. [4] were
among the first who studied OpenCL performance portability and showed that
performance is not necessarily portable across different architectures. In contrast
to these studies, we carried out our experiments on recent architectures and
included mobile GPUs to augment the performance portability analysis. Kim
et al. [9] proposed a one-to-one translation mechanism for converting CUDA
to OpenCL kernels, but they do not employ any meta-programming and code
generation to achieve higher efficiency as we do. To the best of our knowledge,
VComputeBench [10] is the only work which investigates Vulkan from the com-
pute perspective and proposes it as a viable cross-platform GPGPU program-
ming model. However, the authors concentrated more on creating a benchmark
suite and did not provide a method for code translation and enhancing perfor-
mance portability.

Programmability and Performance Portability of GPU Tensor Operations 225

The amount of work published on the portable execution of CNNs as well
as the use of Vulkan in this context is very limited. In recent years, a number
of tensor compilers and frameworks, such as PlaidML [7], Tensor Comprehen-
sions [20], TVM [1], DeepMon [6], and Boda [13,14] have been introduced to
address the portability issue of deep-learning frameworks using code generation
and compiler optimizations. However, none of them are able to generate code for
our target APIs using a single-source approach for the kernel definition. PlaidML
and Tensor Comprehension do not support Vulkan at all. TVM and DeepMon are
able to generate Vulkan code, but they require different input code for each pro-
gramming model, demanding extra programming effort to introduce new tensor
operations. Boda, on the other hand, has a compatibility layer on top of OpenCL
and CUDA. Its approach is based on writing lowest-common-denominator code
that is compatible between the two and uses macro definitions to abstract away
syntactic differences. However, because of its larger code divergence such an
approach is definitely not extendable to include Vulkan as well.

6 Conclusion and Outlook

This paper presents a comparative analysis of the GPU programming interfaces
CUDA, OpenCL, and Vulkan. We let this comparison guide us in developing a
method for generating tensor GPU kernels coded in any of those APIs from a sin-
gle source that abstracts away the syntactic differences between these APIs. We
implemented our approach in a state-of-the-art CNN inference framework called
Boda and analyzed the programmability and performance portability of the gen-
erated kernels. Based on our experiments, our method reduces the programming
effort by 98% when code portability between different APIs is demanded. Fur-
thermore, we showed that Vulkan offers better performance compared with other
APIs on our convolution benchmarks and sometimes performs better than CNN
vendor libraries.

Acknowledgment. This research has been supported by the Klaus Tschira Founda-
tion, the Hessian LOEWE initiative within the Software-Factory 4.0 project, and the
German Research Foundation (DFG) through the Program Performance Engineering
for Scientific Software.

References

1. Chen, T., et al.: TVM: an automated end-to-end optimizing compiler for deep
learning. In: 13th USENIX Symposium on Operating Systems Design and Imple-
mentation, OSDI 2018, pp. 578–594 (2018)

2. Chetlur, S., et al.: cuDNN: efficient primitives for deep learning. arXiv preprint
arXiv:1410.0759 (2014)

3. Da Silva, H.C., Pisani, F., Borin, E.: A comparative study of SYCL, OpenCL,
and OpenMP. In: Proceedings of International Symposium on Computer Architec-
ture and High-Performance Computing Workshops, SBAC-PADW 2016, pp. 61–66.
IEEE (2016)

http://arxiv.org/abs/1410.0759

226 A. Mazaheri et al.

4. Du, P., Weber, R., Luszczek, P., Tomov, S., Peterson, G., Dongarra, J.: From
CUDA to OpenCL: towards a performance-portable solution for multi-platform
GPU programming. Parallel Comput. 38(8), 391–407 (2012)

5. Fang, J., Varbanescu, A.L., Sips, H.: A comprehensive performance comparison
of CUDA and OpenCL. In: Proceedings of International Conference on Parallel
Processing (ICPP), pp. 216–225. IEEE (2011)

6. Huynh, L.N., Lee, Y., Balan, R.K.: DeepMon: mobile GPU-based deep learning
framework for continuous vision applications. In: Proceedings of 15th Annual Inter-
national Conference on Mobile Systems, Applications, and Services, MobiSys 2017,
pp. 82–95. ACM (2017)

7. Intel: PlaidML (2019). https://www.intel.ai/plaidml
8. Karimi, K., Dickson, N.G., Hamze, F.: A performance comparison of CUDA and

OpenCL. arXiv preprint arXiv:1005.2581 (2010)
9. Kim, J., Dao, T.T., Jung, J., Joo, J., Lee, J.: Bridging OpenCL and CUDA: a

comparative analysis and translation. In: Proceedings of International Conference
for High Performance Computing, Networking, Storage and Analysis, SC 2015, pp.
1–12. ACM (2015)

10. Mammeri, N., Juurlink, B.: VComputeBench: a Vulkan benchmark suite for
GPGPU on mobile and embedded GPUs. In: Proceedings of International Sympo-
sium on Workload Characterization, IISWC 2018, pp. 25–35. IEEE (2018)

11. Mazaheri, A., Schulte, J., Moskewicz, M., Wolf, F., Jannesari, A.: Artifact Evalu-
ation (2019). https://doi.org/10.6084/m9.figshare.8490146

12. Memeti, S., Li, L., Pllana, S., Ko�lodziej, J., Kessler, C.: Benchmarking OpenCL,
OpenACC, OpenMP, and CUDA: programming productivity, performance, and
energy consumption. In: Proceedings of Workshop on Adaptive Resource Manage-
ment and Scheduling for Cloud Computing, pp. 1–6. ACM (2017)

13. Moskewicz, M.W., Jannesari, A., Keutzer, K.: A metaprogramming and auto-
tuning framework for deploying deep learning applications. arXiv preprint
arXiv:1611.06945 (2016)

14. Moskewicz, M.W., Jannesari, A., Keutzer, K.: Boda: a holistic approach for imple-
menting neural network computations. In: Proceedings of International Conference
on Computing Frontier, CF 2017, pp. 53–62. ACM (2017)

15. Sachetto Oliveira, R., et al.: Comparing CUDA, OpenCL and OpenGL implemen-
tations of the cardiac monodomain equations. In: Wyrzykowski, R., Dongarra, J.,
Karczewski, K., Waśniewski, J. (eds.) PPAM 2011. LNCS, vol. 7204, pp. 111–120.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31500-8 12

16. Sampson, A.: Let’s fix OpenGL. In: Leibniz International Proceedings in Infor-
matics, LIPIcs 2017, vol. 71. Schloss Dagstuhl, Leibniz-Zentrum füer Informatik
(2017)

17. Su, C.L., Chen, P.Y., Lan, C.C., Huang, L.S., Wu, K.H.: Overview and comparison
of OpenCL and CUDA technology for GPGPU. In: Proceedings of Asia Pacific
Conference on Circuits and Systems, APCCAS 2012, pp. 448–451. IEEE (2012)

18. The Khronos Group: Khronos SPIR-V registry (2019). https://www.khronos.org/
registry/spir-v

19. The Khronos Group: Khronos Vulkan registry (2019). https://www.khronos.org/
registry/vulkan

20. Vasilache, N., et al.: Tensor comprehensions: framework-agnostic high-performance
machine learning abstractions. arXiv preprint arXiv:1802.04730 (2018)

https://www.intel.ai/plaidml
http://arxiv.org/abs/1005.2581
https://doi.org/10.6084/m9.figshare.8490146
http://arxiv.org/abs/1611.06945
https://doi.org/10.1007/978-3-642-31500-8_12
https://www.khronos.org/registry/spir-v
https://www.khronos.org/registry/spir-v
https://www.khronos.org/registry/vulkan
https://www.khronos.org/registry/vulkan
http://arxiv.org/abs/1802.04730

Unified and Scalable Incremental
Recommenders with Consumed Item Packs

Rachid Guerraoui1, Erwan Le Merrer2(B), Rhicheek Patra3,
and Jean-Ronan Vigouroux4

1 EPFL, Lausanne, Switzerland
Rachid.Guerraoui@epfl.ch

2 Univ Rennes, Inria, CNRS, IRISA, Rennes, France
erwan.le-merrer@inria.fr

3 Oracle Labs, Zurich, Switzerland
rhicheek.patra@oracle.com
4 Technicolor, Rennes, France

jean-ronan.vigouroux@technicolor.com

Abstract. Recommenders personalize the web content using collabora-
tive filtering to relate users (or items). This work proposes to unify user-
based, item-based and neural word embeddings types of recommenders
under a single abstraction for their input, we name Consumed Item Packs
(CIPs). In addition to genericity, we show this abstraction to be com-
patible with incremental processing, which is at the core of low latency
recommendation to users. We propose three such algorithms using CIPs,
analyze them, and describe their implementation and scalability for the
Spark platform. We demonstrate that all three provide a recommenda-
tion quality that is competitive with three algorithms from the state-of-
the-art.

Keywords: Implicit recommenders · Incremental updates ·
Parallelism · Spark

1 Introduction

Recent recommender systems exploit implicit feedback [1–3] (i.e., they do not
leverage ratings collected from users), and show competitive results with Singu-
lar Value Decomposition (SVD) based recommenders [4]. They aim at uncover-
ing high-order relations between consumed items. Each paper proposes a spe-
cific algorithm, with an arbitrary definition of sequences of consumed items.
Our motivation is to investigate the existence of a higher level abstraction
for sequences of consumed items, and algorithms for dealing with it. Such an
abstraction, we name a Consumed Item Pack (CIP), allows to reason about and
to propose sequence-aware algorithms within the same framework, capable of
addressing implicit recommendation.

The challenges are threefold. (i) We first have to highlight that the notion of
CIP captures the analogous consumption pattern of users (e.g., the one exposed
c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 227–240, 2019.
https://doi.org/10.1007/978-3-030-29400-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_17&domain=pdf
https://doi.org/10.1007/978-3-030-29400-7_17

228 R. Guerraoui et al.

in [1]). (ii) The second challenge is the computational complexity of the pro-
posed algorithms in the CIP framework. Leveraging CIPs for building implicit
recommenders is not immediate, for the computation time can easily become pro-
hibitive given the size of user consumption logs in production systems. This is for
instance the case in the previously introduced sequential approach HOSLIM [1],
where algorithmic tractability is at stake. Section 2 presents three CIP based
algorithms. Concerning memory-based Collaborative Filtering (CF), we show
in Subsect. 2.1 (resp. Subsect. 2.2) how to build a CIP based similarity metric
that is incremental, which helps in designing an implicit user-based (resp. item-
based) recommender that scales while providing good recommendation quality.
Moreover, we also present a model-based CF technique incorporating CIPs in
Subsect. 2.3, which leverages neural word embeddings [5]. We demonstrate that
our techniques scale with an increasing number of computing nodes while achiev-
ing a speedup comparable to Spark’s Alternating Least Squares (ALS) recom-
mender from the MLlib library. (iii) These proposed implicit algorithms have to
provide an accuracy that is at least comparable with classic CF recommenders,
in order to be adopted in practice. For assessing their performance, we then con-
duct a comparison with an explicit SVD-based recommender [4], with an implicit
one [6], as well as with a recent state-of-the-art algorithm [7] incorporating both
implicit and explicit techniques.

Consumed Item Packs. Our CIPs relate to high order relations between items
enjoyed by a user. Some previous works such as HOSLIM [1], considered the
consumption of items by the same user as the basis for implicit recommendation.
HOSLIM places the so called user-itemsets (implicit feedback) in a matrix, and
then computes the similarity of jointly consumed items over the whole user
history (that leads to the optimal recommendation quality). High-order relations
are sought in principle, but due to the tractability issue of this approach (for
m items and order k: O(mk) combinations of the items are enumerated and
tested for relevance), authors limit computations only to pairs of items. Recently,
Barkan et al. proposed to consider item-item relations using the model of word
embeddings in their technical report [2]. Our work generalizes the notion of
implicit item relations, based on consumption patterns.

To get access to useful information from service logs, we define the CIP data
structure. CIPs are extracted from users’ consumption patterns, and allow us
to compute the similarity between those users (or items consumed by them). A
user’s profile is composed of multiple CIPs. The notion of CIP is then instanti-
ated in three different algorithms: in a user-based algorithm (Subsect. 2.1), in an
item-based one (Subsect. 2.2) and in a word embedding based one (Subsect. 2.3).

To make things more precise, consider a set of m users U = {u1, u2, ..., um}
and a set of n items from a product catalog I = {i1, i2, ..., in}. The transaction
history of a user u, consists of a set of pairs of the form 〈i, tui〉 (where u consumed
an item i at a time tu,i), extracted from service logs. We denote u’s profile as
Pu, which consists of the time-ordered items in the log. CIPs are composed of
items: each CIP ∈ I∗. The order of the items in a given user’s CIP represents

Unified and Scalable Incremental Recommenders with Consumed Item Packs 229

their relative appearance in time, the leftmost symbol being the oldest one:
CIPu = [i1, i2, i3, ..., ik] such that tu,i1 < tu,i2 < ... < tu,ik .

A CIP then represents the items consumed by a user over a predefined period
of time. Using such a data structure, one can devise a similarity measure sim :
I∗ × I∗ → R

+ between two CIPs, that captures the proximity between users
(or items) as we explain it in the next section.

2 CIP Based Algorithms

The core claim of this paper is that the notion of CIP is general enough to
capture different types of algorithms that rely on sequences of items. In the
next three subsections, we present novel algorithms that determine CIP based
similarities and leverage sequence of items for recommendation. To illustrate
the generality of CIPs, the last subsection shows how a previously introduced
algorithm (FISM [3]) is captured by the CIP framework.

2.1 CIP-u: A User-Based Recommender

CIP-u is an incremental algorithm that maintains a user-user network where
each user is connected to the most similar K other users. CIP-u exploits users’
CIPs, and accepts batches of items freshly consumed by users (i.e., last logged
transactions on the service) to update this network.

P l
u denotes the profile of a user u till the lth update of her consumed items,

while CIPl+1
u denotes the batch of new items consumed by her since the last

batch update. Assuming P l
u = i1i2...ik and CIPl+1

u = ik+1ik+2...in, we can
denote the profile of a user u after the (l+1)th iteration as P l+1

u = P l
u ∪CIPl+1

u .
Note that ∪ is an order preserving union here.

Before we provide the similarity measure to compare users, we introduce
some preliminary definitions. We first introduce the notion of hammock distance
between a pair of items in the profile of a given user u.

Definition 1 (Hammock distance). The hammock distance between a
pair of items (i, j) in Pu, denoted by Hu(i, j), is the number of hops between
them.

For instance, in Pu = [i14, i3, i20, i99, i53, i10, i25], Hu(i14, i99) = 3.

Definition 2 (Hammock pairs). Given two users u and v, their hammock
pairs HPu,v are the set of distinct item pairs both present in Pu and in Pv, under
the constraint that the number of hops between pairs is at most δH .

HPu,v = {(i, j) | Hu(i, j) ≤ δH ∧ Hv(i, j) ≤ δH ∧ i 	= j}
Hyper-parameter δH denotes the hammock threshold and serves the purpose of
tuning the CIP based latent feature considered between related items.

Let [] denote the Iverson bracket: [P] = 1 if P is True, 0 otherwise. From
hammock pairs, we derive the similarity of two users with regards to their CIPs:

230 R. Guerraoui et al.

Definition 3 (Similarity measure for user-based CIP). The simi-
larity between two users u and v is defined as a function of the cardinality of the
set of hammock pairs between them:

simCIP-u(u, v) = 1 − (1 − [Pu = Pv]) · e−|HPu,v| (1)

We obtain simCIP-u ∈ [0, 1], with the boundary conditions, simCIP-u = 0 if
the two users have no pair in common (|HPu,v| = 0 and [Pu = Pv] = 0), while
simCIP-u = 1 if their CIPs are identical ([Pu = Pv] = 1).

Incremental Updates. CIP-u enables incremental updates, in order to conve-
niently reflect the latest users’ consumption in recommendations without requir-
ing a prohibitive computation time. CIP-u processes batches of events (con-
sumed items) at regular intervals and updates the similarity measure for pairs
of users. Cu,v denotes the set of items common in the profiles of two users u and
v. More precisely, after the lth iteration, we obtain: Cl

u,v = P l
u ∩ P l

v. Then, at
the (l + 1)th iteration, we get:

Cl+1
u,v = P l+1

u ∩ P l+1
v = (P l

u ∪ CIPl+1
u) ∩ (P l

v ∪ CIPl+1
v) = (P l

u ∩ P l
v) ∪ (P l

u ∩
CIPl+1

v)∪ (P l
v ∩CIPl+1

u)∪ (CIPl+1
u ∩CIPl+1

v) = Cl
u,v ∪ ΔCl+1

u,v , where ΔCl+1
u,v =

(P l
u∩CIPl+1

v)∪(P l
v∩CIPl+1

u)∪(CIPl+1
u ∩CIPl+1

v). Note that the time complexity
of this step is O((|P l

u|+ |CIPl+1
v |)+(|P l

v|+ |CIPl+1
u |)), where |CIPl+1

u |, |CIPl+1
v |

are bounded by the number of events, say Q, after which the batch update will
take place. Hence, the time complexity is O(n + Q) = O(n), where n denotes
the total number of items, and when Q is a constant (and Q << n as expected
in a system built for incremental computation).

We next incrementally compute the new hammock pairs. ΔHPu,v denotes
the set of new hammock pairs for users u and v. Computation is performed
as follows: ΔHPu,v = {(i, j) | (i ∈ Cl

u,v, j ∈ ΔCl+1
u,v) ∧ (i ∈ ΔCl+1

u,v , j ∈
ΔCl+1

u,v) ∧ Hu(i, j) ≤ δH ∧ Hv(i, j) ≤ δH}.
The time complexity of this step is O(|Cl

u,v| · |ΔCl+1
u,v |), where |ΔCl+1

u,v | is
bounded by the number of events after which the batch update takes place (Q).
Hence, the time complexity is also of O(n · Q) = O(n).

Finally, the similarities are computed leveraging the cardinality of the com-
puted incremental hammock pairs. More precisely, we compute the updated sim-
ilarity on-the-fly between a pair of users u and v after the (l + 1)th iteration as
follows: siml+1

u,v = 1 − (1 − [P l+1
u = P l+1

v]) · e−|HPl
u,v+ΔHPu,v|.

Hence, the similarity computation between one user and all m others is
O(nm). In CIP-u, we retain a small number K of the most similar users (where
K << m) per given user. Selecting the top-K similar users for collaborative fil-
tering based on their similarity requires sorting, which induces an additional
O(m logm). The total complexity is O(nm) + O(m logm) = O(nm) (since
n >> logm). Note that classic explicit collaborative filtering algorithms (user or
item-based) have same time complexity for periodically updating their recom-
mendation models. Note that complexity for the top-K neighbors can be reduced
further to O(n) by using biased sampling and iteratively updating neighbors [8].

Unified and Scalable Incremental Recommenders with Consumed Item Packs 231

2.2 CIP-i: An Item-Based Recommender

CIP-i is also an incremental algorithm that processes user consumption events
in CIPs, to update its item-item network. Similar to CIP-u, we also leverage
the notion of user profiles: a profile of a user u is noted Pu, and is composed of
one or more disjoint CIPs. We use multiple CIPs in a user profile to model her
consumption pattern. CIPs are separated based on the timestamps associated
with the consumed items: two consecutive CIPs are disjoint if the former’s last
and latter’s first items are separated in time by a given interval δ.

Definition 4 (CIP partitions in a user profile). Let ik and ik+1

denote two consecutive consumption events of a user u, with consumption times-
tamps tu,ik and tu,ik+1 , such that tu,ik ≤ tu,ik+1 . Given ik belongs to CIPl

u, item
ik+1 is added to CIPl

u if tu,ik+1 ≤ tu,ik + δ. Otherwise ik+1 is added as the first
element in a new CIPl+1

u .

These CIPs are defined as δ-distant. The rationale behind the creation of
user profiles composed of CIPs is that each CIP is intended to capture the
semantic taste of a user within a consistent consumption period.

With i <CIP j denoting the prior occurrence of i before j in a given CIP,
and the inverse hammock distance εu(i, j) being a penalty function for distant
items in a CIPu (e.g., εu(i, j) = 1

Hu(i,j)
), we express a similarity measure for

items, based on those partitioned user profiles, as follows.

Definition 5 (Similarity measure for item-based CIP). Given a
pair of items (i, j), their similarity is:

simCIP-i(i, j) =
∑

u

∑|l|u
l=1[(i, j) ∈ CIPl

u ∧ i <CIP j](1 + εu(i, j))

2 · max{∑
u

∑|l|u
l=1[i ∈ CIPl

u],
∑

u

∑|l|u
l=1[j ∈ CIPl

u]}
=

scoreCIP-i(i, j)
2 · max{cardV (i), cardV (j)} ,

(2)

with |l|u the number of CIPs in u’s profile, and [] the Iverson bracket.

This reflects the number of close and ordered co-occurrences of items i and j over
the total number of occurrences of both items independently: simCIP-i(i, j) = 1
if each appearance of i is immediately followed by j in the current CIP. Con-
trarily, simCIP-i(i, j) = 0 if there is no co-occurrence of those items in any
CIP. Furthermore, we denote the numerator term as scoreCIP-i(i, j) and the
denominator term as a function of cardV (i) and cardV (j) sub-terms for Eq. 2,
where cardV (i) =

∑
u

∑|l|u
l=1[i ∈ CIPl

u]. As shown in Algorithm1, we can update
scoreCIP-i(i, j) and cardV (i) terms incrementally. Finally, we compute the sim-
ilarity on-the-fly with the scoreCIP-i(i, j) and cardV (i) terms.

Incremental Updates. CIP-i processes users’ recent CIPs scanned from users’
consumption logs. Score values (scoreCIP-i) are updated (Algorithm1). We

232 R. Guerraoui et al.

require an item-item matrix to maintain the score values, as well as a n-
dimensional vector that maintains the current number of occurrences of each
item.

After the update of the score values, the algorithm terminates by updating
a data structure containing the top-K closest items for each given item, lever-
aging the score matrix and the cardinality terms for computing the similarities
on-the-fly.

Algorithm 1. Incremental Updates for Item Pairs.
Require: CIPu � last δ-distant CIP received for user u
1: scoreCIP-i[][] � item-item score matrix, initialized to 0
2: cardV �n-dim. vector of appearance cardinality of items
3: for item i in CIPu do
4: cardV (i) = cardV (i) + 1
5: for item j in CIPu do
6: if i �= j then
7: ε(i, j) = ε(j, i) = 1

Hu(i,j)

8: if i <CIP j then
9: scoreCIP-i[i][j]+=(1 + ε(i, j))

10: else
11: scoreCIP-i[j][i]+=(1 + ε(j, i))

The complexity of Algorithm1 depends on the maximum tolerated size of
incoming CIPs. As one expects an incremental algorithm to receive relatively
small inputs as compared to the total dataset size, the final complexity is com-
patible with online computation: e.g., if the largest CIP allowed has cardinality
|CIP| = O(log n), then run-time complexity is poly-logarithmic.

2.3 DeepCIP: An Embedding-Based Recommender

In this subsection, we present an approach based on machine learning, inspired
by Word2Vec [2,5]. This approach relies on word embedding, transposed to
items. We specifically adapt this concept to our CIP data structure.

Neural word embeddings, introduced in [5,9], are learned vector representa-
tions for each word from a text corpus. These neural word embeddings are useful
for predicting the surrounding words in a sentence. A common approach is to use
a multi-layer Skip-gram model with negative sampling. The objective function
minimizes the distance of each word with its surrounding words within a sen-
tence while maximizing the distances to randomly chosen set of words (negative
samples) that are not expected to be close to the target. This is an objective
quite similar to ours as it enables to compute proximity between items in the
same CIP. With DeepCIP, we feed a Skip-gram model with item-pairs in CIPs
where each CIP is as usual an ordered set of items (similar to the instantiation
in CIP-i). More precisely, CIPs are δ-distant as instantiated in Subsect. 2.2.

Unified and Scalable Incremental Recommenders with Consumed Item Packs 233

DeepCIP trains the neural network with pairs of items at a distance less than a
given window size within a CIP. This window size corresponds to the notion of
hammock distance (defined in Subsect. 2.1) where the distance hyper-parameter
δH is defined by the window size. More formally, given a sequence of T train-
ing items’ vectors i1, i2, i3, ..., iT , and a maximum hammock distance of k, the
objective of the DeepCIP model is to maximize the average log probability:

1
T

T−k∑

t=k

log P (it|it−k,, it−1, it+1,, it+k). (3)

The Skip-gram model is employed to solve the optimization objective 3, where
the weights of the model are learned using back-propagation and stochastic gra-
dient descent. We implement DeepCIP using asynchronous stochastic gradient
descent (Downpour-SGD [10]). Downpour-SGD enables distributed train-
ing for the Skip-gram model on multiple machines by leveraging asynchronous
updates from them. We use a publicly-available deep learning framework [11]
which implements Downpour-SGD in a distributed setting. More precisely,
DeepCIP trains the model using Downpour-SGD on the recent CIPs thereby
updating the model incrementally.

DeepCIP uses a most_similar functionality to select items to recommend to
a user, using as input recently consumed items (the current CIP). We compute
a CIP vector using the items in the given CIP and then use this vector to
find most similar other items. More precisely, the most_similar method uses the
cosine similarity between a simple mean of the projection weight vectors of the
recently consumed items (i.e., items in a user’s most recent CIP) and the vectors
for each item in the database.

Incremental Updates. Online machine learning is performed to update a model
when data becomes available. The DeepCIP model training is performed in an
online manner [12], in which the model is updated using the recent CIPs. Online
machine learning is crucial for recommendation systems, as it is necessary for the
algorithm to dynamically adapt to new temporal patterns [13] in the data. Hence,
the complexity of the model update is dependent on the number of new CIPs
received along with the hyper-parameters for the learning algorithm (primarily:
the Skip-gram model parameters, the dimensionality of item vectors, the number
of training iterations, and the hammock distance).

2.4 The FISM Algorithm Under CIPs

We now demonstrate that the CIP framework can incorporate the state-of-
art sequence-based algorithm FISM [3] (standing for Factored Item Similarity
Models), in order to illustrate the generality of the CIP notion. In FISM, the
item-item similarity is computed as a product of two low-ranked matrices P ∈
Rm×k and Q ∈ Rm×k where k << m. More precisely, the item-item similarity
between any two items is defined as sim(i, j) = pjqT

i where pj ∈ P and qi ∈ Q.

234 R. Guerraoui et al.

Finally, the recommendation score for a user u on an unrated item i (denoted
by r̄ui) is calculated as an aggregation of the items that have been rated by u:

r̄ui = bu + bi + (n+
u)

−α
∑

j∈R+
u

pjqT
i , (4)

where R+
u is the set of items rated by user u (note that FISM do not leverage

ratings, but only the fact that a rated item has been consumed by definition), bu

and bi are the user and item biases, pj and qi are the learnt item latent factors,
n+

u is the number of items rated by u, and α is a user specified parameter
between 0 and 1. Moreover, term (n+

u)
−α in Eq. 4 is used to control the degree of

agreement between the items rated by the user with respect to their similarity
to the item whose rating is being estimated (i.e., item i).

We now present how Eq. 4 is adapted to fit into the CIP notion. For a user u,
her profile (Pu) consists of |l|u different CIPs (similar to the notations introduced
for Eq. 4). Equation 4 is rewritten with CIPs as:

r̄ui = bu + bi + (|∪|l|u
k=1CIPk

u|)−α

|l|u∑

k=1

∑

j∈CIPk
u

pjqT
i , (5)

where |·| denotes the cardinality. We substitute consumed items by CIP struc-
tures; this last transformation shows that indeed CIPs incorporates the FISM
definition of item sequences. We also note that due to the CIPs, the terms in
Eq. 5 could be incrementally updated, similarly to CIP-u and CIP-i, by incor-
porating the latest CIP of user u.

3 Implementation with Spark and Evaluation

We first note that we open sourced our algorithms on GitHub [14]. We consider
Apache Spark [15] as our framework for the computation of recommendations.
Spark is a cluster computing framework for large-scale data processing; it pro-
vides several core abstractions, namely Resilient Distributed Datasets (RDDs),
parallel operations and shared variables. We now introduce the RDDs adapted to
our CIP-based algorithms.

RDDs for CIP-u. We store the collected information into three primary RDDs
as follows. UsersRDD stores the information about the user profiles. User-
SimRDD stores the hammock pairs between all pairs of users. The pairwise
user similarities are computed using a transformation operation over this RDD.
UserTopKRDD stores the K most similar users.

During each update step in CIP-u, after Q consumption events, the new
events are stored into a DeltaProfiles RDD, which is broadcast to all the
executors using the broadcast abstraction of Spark. Then, the hammock pairs
between users are updated (in UserSimRDD) and consequently transformed to
pairwise user similarities using Eq. 1. Finally, CIP-u updates the top-K neigh-
bors (UserTopKRDD) based on the updated similarities.

Unified and Scalable Incremental Recommenders with Consumed Item Packs 235

RDDs for CIP-i Two Primary RDDs Are Used. ItemSimRDD stores score val-
ues between items. The pairwise item similarities are computed using a trans-
formation operation over this RDD. ItemTopKRDD stores the K most similar
items for each item based on the updated similarities.

During each update step in CIP-i, the item scores are updated incorporating
the received CIP using Algorithm1 in the ItemSimRDD, and consequently the
pairwise item similarities are also revised using Eq. 2. CIP-i computes the top-K
similar items and updates the ItemTopKRDD at regular intervals.

RDDs for DeepCIP. We implement the DeepCIP using the DeepDist deep
learning framework [11] which accelerates model training by providing asyn-
chronous stochastic gradient descent (Downpour-SGD) for Spark data. Deep-
CIP implements a standard master-workers parameter server model [10]. On
the master node, the CIPsRDD stores the recent CIPs aggregated from the
user transaction logs preserving the consumption order. Worker nodes fetch the
model from the master before processing each partition, and send back the
gradient updates. The master node performs the stochastic gradient descent
asynchronously using the updates sent by the worker nodes. Finally, DeepCIP
predicts the most similar items to a given user, based on its most recent CIP.

3.1 Experimental Setup

For our experiments, we use a deployment of the Spark large-scale processing
framework [15]. We launch Spark as Standalone, with 19 executors each with 5
cores for a total of 96 cores in the cluster.

We then use the Grid5000 testbed to launch a Spark cluster consisting of 20
machines on Hadoop YARN, for the scalability experiments. Machines host an
Intel Xeon CPU E5520@ 2.26GHz.

Datasets and Evaluation Scheme. We use real-world traces from the Movielens
movie recommendation website (ML-100K, ML-1M) [16], as well as from the
Ciao [17] product review website. Those traces contain users’ ratings for movies
they enjoyed (ratings vary from 1 to 5). Note that the ratings are only leveraged
for the explicit (rating-based) SVD recommender we use as a competitor.

The dataset is sorted based on the Unix timestamps associated with the
rating events. Then, the sorted dataset is replayed to simulate the temporal
behavior of users. We measure the recommendation quality as follows: we divide
the sorted dataset into a training set, a validation set and a test set. The training
set is used to train our CIP based models, whereas the validation set is used
to tune the hyper-parameters of the models. For each event in the test set (or
rating when applied to the explicit recommender), a set of top recommendations
is selected as the recommendation set with size denoted as N .

Competitors. We compare the recommendation quality of our three algorithms
with the following three competitors:

236 R. Guerraoui et al.

Fig. 1. Result quality (precision) for CIP-based algorithms and competitors.

Matrix factorization (SVD). Matrix factorization techniques map both users
and items to a joint latent factor space, such that ratings are modeled as inner
products in that space. We use a publicly available library (Python-recsys [18])
for evaluations.
Implicit time-based recommender (TB-W5). A popular time-based recom-
mender is providing recommendations without the need for explicit feedback [6].
Pseudo ratings are built from the collected implicit feedback based on temporal
information (user purchase-time and item launch-time). We use the best per-
forming variant: W5 (fine-grained function with five launch-time groups and five
purchase-time groups).
Markov chain-based recommender (MCRec). We compare with a recent
recommender which combines matrix factorization and Markov-chains [7] to
model personalized sequential behavior. We use a publicly available library [19]
for the evaluation. We do not compare with FISM [3], as it is empirically shown
to be outperformed by the Markov-chain based algorithm [7].

3.2 Comparison with Competitors

We refer to our technical report [20] for an in-depth exploration of parameters
for our three CIP based algorithms. We obtained the following optimal setting
for the hyper-parameters of those algorithms. For CIP-u: we set δH = 10 for
ML-100K, δH = 30 for ML-1M, and δH = 10 for Ciao to attain the best possible
quality; model size is set to K = 50. For CIP-i we set δ = 1min for ML-100K,
δ = 1min for ML-1M, and δ = 100min for Ciao; model size is set to K = 30.
Finally for DeepCIP we set δ = 1min for ML-100K, δ = 1min for ML-1M, and
δ = 100min for Ciao. We set the window size (W) to 5 for all three datasets.

The recommendation quality of all six evaluated algorithms in terms of pre-
cision (N = 10) is shown in Fig. 1. We draw the following observations:

(a) Regarding our three algorithms, DeepCIP always outperforms CIP-i, which
in turn is always outperforming CIP-u (except on the Top-5 result on the
Ciao dataset, which is due to the relatively limited number of recommenda-
tions).

Unified and Scalable Incremental Recommenders with Consumed Item Packs 237

(b) The CIP based algorithms outperform TB-W5 on all three datasets. For
example, consider the top-10 recommendations in the ML-1M dataset:
CIP-u provides around 1.82× improvement in the precision, CIP-i provides
around 2.1× improvement, and DeepCIP provides around 2.4× improve-
ment.

(c) The CIP-u algorithm performs on par with MCRec, as well as with the
SVD technique. CIP-i overcomes MCRec on all three scenarios, sometimes
only by a short margin (ML-1M). Most notably, DeepCIP outperforms all
other approaches significantly. For example, consider the top-10 recommen-
dations in the ML-1M dataset: DeepCIP provides 2.4× improvement over
TB-W5, 1.29× improvement over MCRec, and 1.31× improvement over
the matrix factorization algorithm. The reason behind this improvement is
that DeepCIP considers, for any given item, the packs of items at a distance
dependent on the defined window size, whereas MCRec only considers item
pairs in the sequence of chain states (i.e., has a more constrained learning).
Note that the precision of the SVD algorithm on Movielens (11% to 12%)
is consistent with other standard quality evaluation benchmarks for state-
of-the-art recommenders [21].

These results show the existence of the latent information contained in closely
consumed items, accurately captured by the CIP structure. It is consistent for
DeepCIP to perform well in this setting: the original Word2Vec concept cap-
tures relations among words w.r.t. their proximity in a given context. DeepCIP
captures item proximity w.r.t. their consumption time.

3.3 Scalability of the CIP Based Algorithms

We evaluate the scalability of our algorithms while increasing the Spark clus-
ter size from one machine to a maximum of 20 machines. Furthermore, we
also compare the speedup achieved by a matrix factorization technique (ALS)

Fig. 2. Spark cluster size effects on computation speedup.

238 R. Guerraoui et al.

implemented in the publicly available MLlib library for Spark. We use 50 Spark
partitions.1

Figure 2 depicts a sublinear increase in speedup while increasing the num-
ber of machines, on both datasets. The sublinearity in the speedup is due to
communication overheads in Spark with the increasing number of machines.
The speedup on ML-1M is higher due to more computations being required for
larger datasets and higher utilization of the cluster. The speedup for CIP-i
is similar for both datasets as its time complexity depends on the CIP size
(Algorithm1). DeepCIP scales well due to the distributed asynchronous
stochastic gradient descent (Downpour-SGD) for training the Skip-gram
model, where more gradient computations are executed asynchronously in par-
allel with the increasing number of nodes. CIP-u and DeepCIP scale better
than ALS.

4 Related Work

CIP-based algorithms belong to the category of recommenders using implicit
feedback from users. HOSLIM [1] proposes to compute higher order relations
between items in consumed itemsets; those relations are the ones that maxi-
mize the recommendation quality, but without notions of temporality in item
consumption. The proposed algorithm is time-agnostic, and does not scale for
orders superior to pairs of items. Moreover, it is not designed to efficiently incor-
porate freshly consumed items and faces computational intractability. Barkan
et al. present Item2Vec in their technical report [2], that also uses skip-gram
with negative sampling to retrieve items’ relations w.r.t their context in time.
Besides the fact that their implementation does not scale on multiple machines
due to the use of synchronous stochastic gradient descent, the technical report
evaluates algorithms on private datasets. Implicit feedback has been used for
multiple applications: e.g., in search engines, where clicks are tracked [22].
SPrank [23] leverages semantic descriptions of items, gathered in a knowledge
base available on the web. Koren et al. [24] have shown that implicit TV switch-
ing actions are valuable enough for recommendation. Within implicit based rec-
ommenders, the notion of “time” has been exploited in various ways since it
is a crucial implicit information collected by all services. Baltrunas et al. pre-
sented a technique [25] similar to CIP where a user profile is partitioned into
micro-profiles; still, explicit feedback is required for each of these micro-profiles.
Time window (or decay) filtering is applied to attenuate recommendation scores
for items with a small purchase likelihood at the moment a user might view
them [26]. While such an approach uses the notion of time in transaction logs, it
still builds on explicit ratings for computing the basic recommendation scores.
Finally, Lee et al. [6] introduced a fully implicit feedback based approach, that
weights new items if users are sensitive to the item’s launch times; we compared
to [6] and demonstrated a better performance.
1 Please refer to our technical report [20] for a detailed study of the scalability of CIP

based algorithms facing a varying number of partitions.

Unified and Scalable Incremental Recommenders with Consumed Item Packs 239

5 Conclusion

In an effort for a detailed and scalable proposal for generalizing such a direction,
we presented two memory-based and one model-based recommendation algo-
rithms exploiting the implicit notion of consumed item packs. We made them
available on GitHub [14]. We have shown this framework to incorporate a state-
of-the-art approach. In our experiments, CIP based algorithms provided a better
recommendation quality than the widespread SVD-based approach [4], as well
as implicit ones leveraging consumption times [6] or consumption sequences [7].
Importantly for deployments, those fits the incremental nature of collected data,
to leverage freshly consumed items.

References

1. Christakopoulou, E., Karypis, G.: HOSLIM: higher-order sparse linear method for
top-n recommender systems. In: PAKDD (2014)

2. Barkan, O., Koenigstein, N.: Item2vec: neural item embedding for collaborative
filtering. CoRR abs/1603.04259 (2016)

3. Kabbur, S., Ning, X., Karypis, G.: FISM: factored item similarity models for top-n
recommender systems. In: KDD (2013)

4. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42(8), 30–37 (2009)

5. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. CoRR abs/1301.3781 (2013)

6. Lee, T.Q., Park, Y., Park, Y.-T.: An empirical study on effectiveness of temporal
information as implicit ratings. Expert. Syst. Appl. 36(2), 1315–1321 (2009)

7. McAuley, J., Ruining, H.: Fusing similarity models with Markov chains for sparse
sequential recommendation. In: ICDM (2016)

8. Boutet, A., Frey, D., Guerraoui, R., Kermarrec, A.-M., Patra, R.: HyRec: leverag-
ing browsers for scalable recommenders. In: Middleware (2014)

9. Bengio, Y., Ducharme, R., Vincent, P., Janvin, C.: A neural probabilistic language
model. J. Mach. Learn. Res. 3, 1137–1155 (2003)

10. Dean, J., et al.: Large scale distributed deep networks. In: NIPS (2012)
11. DeepDist: lightning-fast deep learning on spark. http://deepdist.com/
12. Fontenla-Romero, Ó., Guijarro-Berdiñas, B., Martinez-Rego, D., Pérez-Sánchez,

B., Peteiro-Barral, D.: Online machine learning. In: Efficiency and Scalability
Methods for Computational Intellect, p. 27 (2013)

13. Chen, C., Yin, H., Yao, J., Cui, B.: TeRec: a temporal recommender system over
tweet stream. In: VLDB (2013)

14. CIP-based implicit recommenders: GitHub code repo. https://github.com/rpatra/
CIP

15. Apache spark. https://spark.apache.org/
16. Movielens. http://grouplens.org/datasets/movielens/
17. Ciao. http://www.ciao.com/
18. Python recsys. https://pypi.python.org/pypi/python-recsys/0.2
19. Sequence-based recommendations: GitHub code repo. https://github.com/

rdevooght/sequence-based-recommendations
20. Guerraoui, R., Le Merrer, E., Patra, R., Vigouroux, J.: Sequences, items and latent

links: recommendation with consumed item packs. CoRR abs/1711.06100 (2017)

http://deepdist.com/
https://github.com/rpatra/CIP
https://github.com/rpatra/CIP
https://spark.apache.org/
http://grouplens.org/datasets/movielens/
http://www.ciao.com/
https://pypi.python.org/pypi/python-recsys/0.2
https://github.com/rdevooght/sequence-based-recommendations
https://github.com/rdevooght/sequence-based-recommendations

240 R. Guerraoui et al.

21. Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on
top-n recommendation tasks. In: RecSys (2010)

22. Craswell, N., Szummer, M.: Random walks on the click graph. In: SIGIR (2007)
23. Ostuni, V.C., Di Noia, T., Di Sciascio, E., Mirizzi, R.: Top-n recommendations

from implicit feedback leveraging linked open data. In: RecSys (2013)
24. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback

datasets. In: ICDM (2008)
25. Baltrunas, L., Amatriain, X.: Towards time-dependant recommendation based on

implicit feedback. In: CARS (2009)
26. Gordea, S., Zanker, M.: Time filtering for better recommendations with small and

sparse rating matrices. In: Benatallah, B., Casati, F., Georgakopoulos, D., Bar-
tolini, C., Sadiq, W., Godart, C. (eds.) WISE 2007. LNCS, vol. 4831, pp. 171–183.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76993-4_15

https://doi.org/10.1007/978-3-540-76993-4_15

Declarative Big Data Analysis for
High-Energy Physics: TOTEM Use Case

Valentina Avati1, Milosz Blaszkiewicz1, Enrico Bocchi2, Luca Canali2,
Diogo Castro2, Javier Cervantes2, Leszek Grzanka1, Enrico Guiraud2,

Jan Kaspar2, Prasanth Kothuri2, Massimo Lamanna2, Maciej Malawski1(B),
Aleksandra Mnich1, Jakub Moscicki2, Shravan Murali2, Danilo Piparo2,

and Enric Tejedor2

1 AGH Universtity of Science and Technology, Krakow, Poland
{grzanka,malawski}@agh.edu.pl

2 CERN, 1211 Geneva 23, Switzerland
{enrico.bocchi,luca.canali,diogo.castro,javier.cervantes,enrico.guiraud,

jan.kaspar,prasanth.kothuri,massimo.lamanna,jakub.moscicki,

shravan.murali,danilo.piparo,enric.tejedor}@cern.ch

Abstract. The High-Energy Physics community faces new data pro-
cessing challenges caused by the expected growth of data resulting from
the upgrade of LHC accelerator. These challenges drive the demand for
exploring new approaches for data analysis. In this paper, we present a
new declarative programming model extending the popular ROOT data
analysis framework, and its distributed processing capability based on
Apache Spark. The developed framework enables high-level operations
on the data, known from other big data toolkits, while preserving com-
patibility with existing HEP data files and software. In our experiments
with a real analysis of TOTEM experiment data, we evaluate the scala-
bility of this approach and its prospects for interactive processing of such
large data sets. Moreover, we show that the analysis code developed with
the new model is portable between a production cluster at CERN and
an external cluster hosted in the Helix Nebula Science Cloud thanks to
the bundle of services of Science Box.

Keywords: High-Energy Physics · Distributed data analysis ·
Apache Spark · Scalability

1 Introduction

The High-Energy Physics (HEP) community of thousands of researchers around
the world processing massive amounts of data has always been renown for driv-
ing the development of distributed processing tools and infrastructures. Regard-
ing the tools, the predominant software toolkit for data analysis is ROOT [6].
ROOT provides all the functionalities required to deal with big data processing,
statistical analysis, visualisation and storage. To give an idea of its importance,

c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 241–255, 2019.
https://doi.org/10.1007/978-3-030-29400-7_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_18&domain=pdf
https://doi.org/10.1007/978-3-030-29400-7_18

242 V. Avati et al.

all the data collected so far by the Large Hadron Collider (LHC), the particle
accelerator hosted at CERN, is stored in ROOT format (around 1 EB). Regard-
ing the infrastructures, batch processing on clusters and grid technologies are
the typical means of operations on HEP data.

On the other hand, recent developments in commercial big data processing
tools and infrastructures, which include toolkits such as Apache Spark [19] and
cloud computing, show the importance of high-level interfaces and user-friendly
APIs to exploit the full potential of new data analysis infrastructures. This
becomes even more apparent with the upgrades of the LHC experiments fore-
seen for Run III [2] and High-Luminosity LHC (HL-LHC) [3] and the consequent
increase in the amount and complexity of data to be collected and processed.
Specifically, the HL-LHC will operate at at least 10 times higher data rate than
the current machine. With such an increased demand for data storage and pro-
cessing, together with the need for more user-friendly analysis tools, investigating
new approaches for big data analysis, become an important research problem.

To address this challenge, we present, in this paper, a new declarative pro-
gramming model of ROOT, called RDataFrame, and its distributed processing
backend based on Apache Spark. The developed framework enables high-level
operations on the data, while preserving performance, scalability and compat-
ibility with existing HEP data files and software. Specifically, while using the
parallel processing of Spark, optimized C++ code runs on the backend, reading
ROOT files directly, and uses the wide set of existing ROOT tools for creating
high quality histograms, plots and statistical analysis calculations.

In order to evaluate the developed framework, we present our experience
with porting a real production analysis of 4.7 TB data from the TOTEM [8]
experiment at LHC. With dedicated experiments on the Helix Nebula Cloud and
a production Spark cluster at CERN, we show the (1) correctness of the results,
(2) scalability of this approach, (3) prospects for interactivity with the use of
ScienceBox [7], and (4) portability of the high-level code across infrastructures.

2 Related Work

Apache Spark [19] is probably the most popular, open-source framework for dis-
tributed analysis on clusters, providing scalability and fault tolerance capacity.
Its Directed Acyclic Graph (DAG) and task schedulers features allow for the
deployment of data transformation operations such as filtering and reductions
in a scalable way on large clusters. In this work, we leverage these features to
parallelize and scale ROOT jobs across a cluster.

Several approaches to usage of big data tools in HEP have been proposed.
The main challenges come from the fact that ROOT is based on C++ and relies
heavily on its native objects for data serialization into its specific data format,
while tools such as Spark are Java based.

One of the approaches [18] is thus to transform the ROOT input data to
HDF5 format before porting the analysis code from ROOT C++ to Spark oper-
ations. This has the advantage of allowing usage of standard HDF5 libraries and

Declarative Big Data Analysis for High-Energy Physics: TOTEM Use Case 243

Fig. 1. Layout of a columnar ROOT dataset.

common Spark operations. Limitations come from the fact that data need to
be converted first, and then stored for processing, however our approach allows
unmodified input ROOT files to be used.

A different approach consists of reading ROOT files into the native Spark
structures. It can be done using the Spark-Root connector developed by the
CMS Big Data project [10]. This approach requires data processing jobs to be
written using native Spark Dataframe APIs, which has the advantage of being
compatible with popular big data toolkits, at the cost of the effort needed to
re-implement all the code in a new programming language. Moreover, perfor-
mance overheads of the code running in Java Virtual Machine may become
non-negligible in comparison to direct usage of C++ as we propose.

In addition to Java-based frameworks, other toolkits such as Python’s Dask
[1] could be used. The framework allows running the same analysis at the local
machine as well as at the cluster with minimal changes to the code. Unfortu-
nately, those benefits come at a certain price. Dask requires the developer to
go very deep into the technical details of the parallelization, adding another
responsibility for the developer, in this case the physicist.

We should also mention here earlier approaches [12] of using Hadoop for
implementing HEP data analysis using MapReduce model. Their experience
shows that using HDFS for data storage can reduce network I/O thanks to
using data locality. In our approach, we directly use EOS, a standard storage at
CERN, which does not take advantage of data locality as with HDFS, but still
provides a good scalability.

3 Declarative Data Analysis with ROOT RDataFrame

3.1 From Imperative to Declarative: RDataFrame

A ROOT file can contain multiple properties of every collision event, arranging
them in a columnar format. A typical ROOT dataset is therefore similar to a
table whose column values – the event properties – can vary from floating point
numbers to arbitrarily complex objects and nested structures (Fig. 1).

244 V. Avati et al.

Fig. 2. RDataFrame design integration with the processing of ROOT datasets.

Traditionally, HEP analysis programs have been based on an loop over a
ROOT dataset, where the properties of an event are read at every iteration and
information is aggregated in some way for later analysis (e.g. filling histograms
with some physics quantities). This corresponds to a more imperative program-
ming approach, where users explicitly manage the reading and processing of a
dataset via interfaces offered by ROOT. Such interfaces provide more control
over the whole process but, at the same time, they can make programs more
error-prone, since the user deals with lower-level details in longer programs,
which can hinder their programming productivity.

More recently, ROOT has proposed a new interface for data analysis,
called RDataFrame (formerly known as TDataFrame) [13], whose objective
is twofold:

– Providing a high-level interface for data analysis that overcomes the produc-
tivity issues mentioned above, making it simpler for physicists to express their
analyses, and to focus on physics rather than on implementation.

– Opening the door to runtime optimisations, such as parallelisation, thanks to
a declarative expressing the analysis, stating what to do but not how.

Therefore, in a similar vein to other modern data analysis frameworks such as
Apache Spark’s DataFrames [19] and Python’s data analysis library pandas [15],
RDataFrame exposes a declarative API designed to be easy to use correctly and
hard to use incorrectly. Novel elements introduced by RDataFrame are the choice
of programming language (C++, although it provides a Python interface too),
the integration of just-in-time compilation of user-defined expressions to make
analysis definition concise and a tight integration with the rest of the ROOT.

An RDataFrame program basically expresses a set of operations to be applied
on a dataset. At runtime, the implementation reads from a columnar data format
via a data source, applies the required operations to the data (i.e. selects rows
and/or defines new columns) and produces results (i.e. data reductions like his-
tograms, new ROOT files, or any other user-defined object). Figure 2 illustrates
this process, while Fig. 3 shows an example of an RDataFrame program.

Declarative Big Data Analysis for High-Energy Physics: TOTEM Use Case 245

3.2 Local Parallelisation

The abstraction provided by the RDataFrame programming model paves the
way for crucial run time optimisations that can potentially lead physicists to
their results faster. Indeed, the future requirements of the LHC, introduced in
Sect. 1, make it necessary not only to simplify the programming of analyses, but
also to exploit the underlying resources in the most efficient way possible.

Fig. 3. Example of a simple RDataFrame application. The first line, which is optional,
enables the implicit parallelisation of the program, as explained in Sect. 3.2.

User-transparent task-based parallelism has been a goal of RDataFrame since
its inception, as detailed by [13]. A sequential RDataFrame program can be easily
parallelised just by adding one line, as shown in Fig. 3. When the implicit multi-
threading mode is activated, RDataFrame concurrently reads chunks of data
from the source and spreads the work among multiple threads, which will apply
the required operations to their fragment. Moreover, a reduction step to obtain
the final results is also performed under the hood at the end.

3.3 Distributed Parallelisation

This paper presents a new python library built on top of ROOT RDataFrame
that extends its parallelisation scheme, allowing not only local cores but also a
set of distributed resources to be exploited. Moreover, in order to go from local
to distributed, no changes are required to the application, since the library offers
the same API as the RDataFrame Python interface. The extension to C++ will
be investigated in the future.

The modular design of the distributed RDataFrame is presented in Fig. 4,
where the application generates a computation graph that reflects the set of
operations applied on the input dataset. Underneath, multiple backends can be
implemented for either local or distributed execution. Regarding the latter, a
Spark backend has been developed to be able to exploit Spark clusters.

When starting an RDataFrame application, the Spark backend inspects the
metadata of the input dataset to know about its total number of rows (or entries).
This dataset can correspond to one or more ROOT files, which are typically
stored on CERN’s mass storage system, EOS [16]. With the information about
the number of entries and the available resources, the Spark backend creates

246 V. Avati et al.

Fig. 4. Applications that use RDataFrame can run both on local and distributed
resources thanks to its multiple backends.

Fig. 5. The Spark backend of RDataFrame launches a map-reduce computation, where
mapper tasks read ranges of entries and apply the computation graph to them, before
a reduce phase aggregates the final results.

logical ranges of entries, which represent the partitioning of the data. After that,
it launches a map-reduce computation where every mapper task will process a
given range of entries. Thus, the mapper code receives the lower and upper
boundaries of its range and uses the ROOT I/O libraries to read the entries of
that particular range (e.g. remotely from EOS). Then, it applies the RDataFrame
computation graph to its entries and generates partial results, which are finally
merged during a reduce phase. This whole process is illustrated in Fig. 5.

It is worth pointing out that, even if the RDataFrame program is written
in Python, most of the computation happens in C++, which is the language in
which RDataFrame is implemented. The Python interface of ROOT just provides
a thin layer on top of its C++ libraries (for I/O, histogramming, etc.).

3.4 Data Management

Moreover, our framework does not need any interface between Java and C++
code since the Spark runtime does not manage the input data but instead it is
the ROOT C++ library that reads remotely that data. As a result, no reading
is involved in the Java layer. On this approach, Spark is only used as a task
scheduler: creation of the map-reduce tasks to be run on the remote workers
and the coordination the tasks. At runtime, each worker spawns its own Python
subprocess, which in turn uses C++ code to run the actual processing.

Declarative Big Data Analysis for High-Energy Physics: TOTEM Use Case 247

Furthermore, the implementation of RDataFrame has been optimised to be
as efficient as possible when reading the input data in the mapper tasks: only
the entries of the assigned range are considered and only the columns that are
actually used in the RDataFrame computation graph are read and internally
cached.

4 TOTEM Analysis Use Case

The physics analysis we used in the evaluation is the analysis of the elastic scat-
tering data gathered by the TOTEM experiment in 2015 during a special LHC
run. The dataset comprises 1153 files totalling 4.7 TB of data in ROOT Ntuple
format, and stores 2.8 Billion events representing proton-proton collisions. The
choice of TOTEM data was in part motivated by the fact that TOTEM is a
relatively small experiment: the test dataset was fully available on EOS (not
distributed on the grid). Moreover, a small collaboration facilitated the direct
interactions between physicists doing analysis, software engineers and students
supporting their work, data administrators granting access rights, and ROOT
team developing RDataFrame, as well as CERN IT team responsible for cloud
and Spark setup.

4.1 Original Analysis

The original analysis was written using the ROOT framework and includes 2
stages: (1) data reduction, and (2) filtering based on physics cuts. It followed a
traditional approach of implementing an imperative processing loop. The first
stage is a simple filtering which rejects a majority of input entries. The remaining
set is subject to more complex computations. The output is a set of one and two
dimensional histograms representing distributions of interesting trends.

4.2 Porting of Analysis to RDataFrame

The conversion from ROOT C++ code to the new RDataFrame interface is
a required preparation step before running the analysis on Spark. Unlike [18],
the input data for this analysis can keep the original format and still be run
on Spark, as the RDataFrame interface delegates every I/O operations to the
ROOT internals. While the original code has to be adapted to the new pro-
gramming paradigm offered by RDataFrame, all operations can be reused since
RDataFrame is part of ROOT. Consequently, all C++ headers, data structures
and custom functions defined by users can be adopted from the original analy-
sis with minimal changes on the new version. As a result, the migration of the
existing analysis to the new interface requires significantly less effort than using
e.g. Scala language (native for Spark) where everything needs to be rewritten.

248 V. Avati et al.

Fig. 6. Dynamic library loading mechanism with ROOT

Dealing with C++ Code from Python. As stated in Sect. 3.1, RDataFrame
exposes a Python interface with support for all methods available in C++.
Therefore, every line of the original C++ code can be expressed with an equiva-
lent Python syntax keeping the same functionality. Besides, manipulating C++
code from Python benefits from a simpler and quicker interface while still getting
a level of performance closer to C++ than raw Python. These advantages do not
come for free as all C++ expressions on the Python interface will be just-in-time
compiled to C++, leading to a known overhead which may vary depending on
the use-case. On the other hand, this Python interface lowers the hurdles to run
C++ code on Spark clusters. Libraries and C++ headers defined on the original
code can be reused as shown in Listing 1.1.

1 ROOT.gInterpreter.Declare(’#include "common algorithms.h"’)
2 ...
3 f1 = rdf.Filter("!SkipTime(time)")

Listing 1.1. Equivalent example of Listing 1.2 with RDataFrame

SkipTime is defined in the common algorithms.h which is written in C++.
Before starting the computation, the string !SkipTime(time) is compiled by
the ROOT C++ Interpreter and ready to be called during the execution.

This process can be slightly improved by providing compiled libraries rather
than just headers, thereby saving one step to the interpreter. In this regard, all
headers ought to be modified to keep only structs and function definitions while
real implementations go to a different source file. These two files can be later
compiled into a shared library and injected to Python. Figure 6 illustrates an
example of this mechanism.

From an Imperative to a Declarative Model. Following a declarative pro-
gramming model rapidly reduce the verbosity of the code compared to the imper-
ative version where half of the lines are boilerplate. Listings 1.2 and 1.3 show a

Declarative Big Data Analysis for High-Energy Physics: TOTEM Use Case 249

simplified example of filling a histogram written in both ways. The first list-
ing requires the creation of temporal variables (rp L 1 N, rp L 2 N, rp L 2 F)
to store the values read from the dataset (lines 9–14) using manual memory
assignments. Then, the iteration over all the dataset entries needs to be speci-
fied in form of a for loop. Finally, a histogram, previously created, is filled with
the valid entries, which are filtered by a IsValidEntry function. In contrast,
the RDataFrame version (Listing 1.3) just specifies the required actions rather
than the real implementation, hence it circumvents the necessity of temporal
variables, explicit loops and manual memory assignments.

1 // Input data with all events
2 TChain data = new TChain(TotemData);
3

4 // Custom object with Totem data structure
5 rp L 1 N = new TotemDataStructure();
6 rp L 2 N = new TotemDataStructure();
7 rp L 2 F = new TotemDataStructure();
8

9 // Read three columns
10 data−>SetBranchStatus("track rp 5.∗", 1);
11 data−>SetBranchAddress("track rp 5.", &rp L 1 N);
12 ...
13 data−>SetBranchStatus("track rp 25.∗", 1);
14 data−>SetBranchAddress("track rp 25.", &rp L 2 F);
15

16 // Loop over all entries
17 long int ev index = 0;
18 for (; ev index < data−>GetEntries() ; ev index++){
19 // Assigns entry values to corresponding custom objects
20 data−>GetEvent(ev index);
21 if (IsValidEntry(rp L 1 N, rp L 1 N, rp L 2 F...)
22 histogram−>Fill(rp L 1 N);
23 }

Listing 1.2. Reading from file, selection of branches and filtering in the original
analysis

1 rdf = ROOT.ROOT.RDataFrame(TotemData)
2 histo = rdf.Filter(IsValidEntry, {"track rp 5",
3 "track rp 21",
4 "track rp 26"})
5 .Histo1D("track rp 5");

Listing 1.3. Equivalent example of Listing 1.2 with RDataFrame

The original analysis codebase written in ROOT C++ has around 4000 lines
of code. Approximately 60% of this code describes the main process of the anal-
ysis, so-called the event-loop, while the remaining 40% defines data structures,
algorithms and global parameters on headers files.

250 V. Avati et al.

The code corresponding to the main process was completely rewritten with
the new RDataFrame interface, leading to a 76% reduction of the code length,
applying similar changes to the ones describes in Listings 1.2 and 1.3. The 40%
of the code corresponding to header files can be reused by RDataFrame without
any conversion, since it can be loaded by the ROOT C++ Interpreter and used
from RDataFrame at runtime.

Besides decreasing the amount of code, local executions of the analysis
expressed in RDataFrame Python code on a single core showed that it per-
forms three times faster than the original version. Although it has not been
properly analysed, one possible reason for this difference in performance may
be the presence of inefficiencies on the original code that are repeated on every
event loop. This demonstrates that the fact of using a high-level interface based
on Python does not add any major overhead for this analysis since underneath
the real computation runs on C++.

5 Evaluation – Interactive Data Analysis in the Cloud

The main objective of our evaluation was to verify that the proposed
RDataFrame framework can handle the workload of real physics data analysis.
We used the TOTEM experiment dataset as described in Sect. 4. Our experi-
ments were designed to demonstrate (1) the correctness of obtained results, (2)
the scalability of parallel processing along with the increasing number of cores,
(3) the interactivity provided by the user interface and the reduced comput-
ing times, and (4) the code portability between clusters located at CERN and
on the Open Telekom Cloud (T-Systems), the latter being provided exclusively
for our experiments thanks to the Helix Nebula initiative [11] (referred to as
HNSciCloud).

5.1 Science Box Software Bundle

To achieve portability and interactivity, we used the Science Box software bun-
dle [7]. As described in [4], the main components are:

– EOS [16], the distributed storage system used to host all physics data at
CERN. A dedicated EOS instance hosting a subset of the TOTEM experiment
data is deployed on the HNSciCloud.

– SWAN [17], a web-based platform to perform interactive data analysis. It
builds on top of Jupyter notebooks by integrating the ROOT analysis frame-
work and the computational power of Spark clusters.

– A dedicated Spark cluster accessible from the SWAN notebook interface.
– CERNBox [14], the synchronization and sharing service for personal and sci-

entific files that uses EOS as storage backend.

All the Science Box services run in containers orchestrated by Kubernetes
with the only exception of Spark, which runs on VMs with Cloudera Manager.

Declarative Big Data Analysis for High-Energy Physics: TOTEM Use Case 251

5.2 Testbed Details

The testbed used for the physics analysis consisted of two independent clusters:

– Analytix, a general purpose Hadoop and Spark cluster located at CERN that
is used as a shared resource for various analytics jobs.

– the Spark cluster deployed on the HNSciCloud.

All the performance and scalability experiments were executed on the cluster on
the HNSciCloud. It consists of 57 nodes of 32 cores and 128 GiB each, giving a
total of 1,824 vCPUs and 7296 GiB of memory. The cluster was equipped with
21.5 TiB of storage, out of which 16.4 TiB were available to EOS (the actual
space available is 8.2 TiB due to the replica 2 layout of stored files). Network
connectivity among the different Science Box containers and the Spark cluster
was provided by general purpose 10 Gigabit Ethernet interfaces.

5.3 Correctness

One of the most important requirements for physicists was to make sure that
the analysis re-implemented in RDataFrame produces the same results as the
original one. First, all the output histograms and their main statistics (mean and
standard deviation) have been compared with the help of physicists and ROOT
experts. Second, a set of scripts was developed to automate the comparison of
resulting outputs [9]. These checks confirmed that the results are correct. We
also observed that the way ROOT displays the number of entries in weighted
histograms may be misleading, since it depends on the number of partitions, but
it is a known issue and does not influence the other physics results. For more
details, we refer to the report [5].

5.4 Scalability

The main goal of these experiments was to measure the performance and parallel
scalability of the analysis running on Spark depending on the number of CPU
cores. We conducted multiple experiments in order to identify the bottlenecks
and tune the Spark configuration, e.g. the number of partitions, executors per
node and worker reuse policy. From these experiments it turned out that the
best configuration is to use one Spark executor per node and the number of
partitions data is divided into should be equal to the number of cores allocated.

Here we report on the results of the largest run, when we allocated up to 1470
cores total and we varied the number of partitions, which limited the number
of cores actually used. In order to measure the effect of Python worker restart
policy in Spark, which may affect the performance for larger deployments, we
include two series of data contrasting the results obtained when using a fixed
number of Python workers that do not fork() a process for every task (i.e.,
spark.python.worker.reuse = True) against the ones obtained when forking
(i.e., spark.python.worker.reuse = False).

252 V. Avati et al.

The results are shown in Fig. 7. As we can see, the policy of reusing workers
gives better results for larger number of cores. The best computing time achieved
was 1 min 43 s at 736 cores, while on 16 cores it was 34 min 15 s and on 1 core
8 h 15 min 20 s. It results in a best speedup of about 280x compared to single
core execution, but we observe that beyond 800 cores the execution time begins
to grow. This shows that we reached the limits of parallelism for this particular
analysis application. The scalability limits can be attributed to: (a) overheads
during start-up time and work distribution, (b) not ideal load balancing of com-
puting tasks, and (c) possible memory leaks in the current implementation of
the framework. We expect that two former issues may become less pronounced
when dealing with larger data sets, while the latter will be investigated in further
development.

100

200

500

1000

1500
2000

16 32 64 128 256 512 1024
Cores

Ti
m

e
in

 s
ec

on
ds

Type
Restart

Reuse

20

50

100

200
250

16 32 64 128 256 512 1024
Cores

S
pe

ed
−u

p

Type
Restart

Reuse

Fig. 7. Execution time and speedup versus the number of CPU cores used for the two
configuration options of spark.python.worker.reuse.

5.5 Interactivity

One of the challenges we addressed is to examine whether it is possible to perform
an interactive data analysis of the full 4.7 TB dataset at a large scale. We consider
two relevant aspects: (1) the provisioning of user interfaces to run code and
visualize the results interactively, and (2) the reduction of the computing time
to consider the waiting time acceptable. According to the collected results, we
argue that we have shown interactivity in both aspects. (1) was achieved by using
the SWAN interface so that the whole analysis was implemented and executed
via Jupyter notebook (see repo: [9]). SWAN together with ScienceBox builds on
top of Jupyter, providing such additional features as notebook sharing between
users of CERNBox, integration with Spark provides interactive monitoring of job
progress directly in the notebook, and direct access to CERN resources (Spark
clusters, EOS). (2) was achieved by reducing the computing time below 2 min,

Declarative Big Data Analysis for High-Energy Physics: TOTEM Use Case 253

as discussed in Sect. 5.4. While interactivity is not simple to quantify, we are
convinced that our approach is a big step towards interactivity compared to
traditional batch processing, which takes hours or even days and requires the
use of multiple command-line tools and intermediate copies of data.

5.6 Portability

Implementing the analysis in the RDataFrame model and the components
described in Sect. 5.1 allowed us to achieve transparent portability of the code
across two infrastructures, namely the Analytix cluster at CERN and the Spark
cluster at HNSciCloud. In particular, the whole dataset was replicated on the
EOS instance at HN with the same directory structure, so that the same paths
to data files could be used in both clusters. Next, the same version of SWAN
was deployed on both clusters and local files could be synchronized via CERN-
Box. Thanks to this setup, the same Jupyter Notebook [9] could be executed
on both clusters. We emphasize that our solution is not specific to the HNSci-
Cloud but it can be used on any public cloud infrastructures or private Open-
Stack clouds. Specifically, services provided through Science Box can be deployed
on any Kubernetes cluster or Kubernetes-based container orchestration engine,
while the Spark cluster can be deployed on commodity virtual machines.

6 Conclusions

In this paper, we presented recent developments in the data analysis frame-
works for HEP community. The declarative RDataFrame extension to the pop-
ular ROOT toolkit allowed us to transparently parallelize the data analysis pro-
cess using Apache Spark, while still preserving compatibility with the existing
ecosystem of tools. Moreover, by the usage of Science Box Tools we were able to
perform the whole analysis interactively with modern Web-based notebooks.

We consider the results of our evaluation very promising to the HEP com-
munity planning their data analysis for the future experiments expecting higher
data volumes. We have shown that the framework works correctly on a real
analysis of 4.7 TB of data from the TOTEM experiment, and that thanks to
distributed processing we can reduce the computing time to less than 2 min.
The analysis we used for evaluation was not simplified by any means, and we
can consider it as representative for typical data processing in HEP. Other, more
complex analysis programs sometimes use external numerical libraries (e.g. for
integration, approximation, etc.), but as they are available for use with Python
or C++, we foresee no major issues with their integration in our framework.

Our results are important also to other scientific or commercial data analysis
applications. We have shown that it is possible to combine efficient widespread
High-Energy Physics C++ libraries with a Java- and Python-based Apache
Spark platform. Moreover, a combination of open source tools that comprise the
Science Box environment can be dynamically deployed in an external cloud, pro-
viding additional resources for similar big data science and engineering projects.

254 V. Avati et al.

Future work includes studies on performance with the larger data sets or the
multi-user and multi-application workloads, including comparisons with other
solutions described in Sect. 2. We also plan to investigate other emerging frame-
works and infrastructures, such as serverless or containerized clouds.

Acknowledgments. This work was supported in part by the Polish Ministry of Sci-
ence and Higher Education, grant DIR/WK/2018/13.

References

1. Python Dask. http://docs.dask.org/en/latest/why.html
2. Alves Jr., A.A., et al.: A roadmap for HEP software and computing R&D for the

2020s. Technical report HSF-CWP-2017-001, December 2017. http://cds.cern.ch/
record/2298968

3. Apollinari, G., et al.: High-Luminosity Large Hadron Collider (HL-LHC): Technical
Design Report V. 0.1. CERN Yellow Reports: Monographs. CERN, Geneva (2017).
https://cds.cern.ch/record/2284929

4. Avati, V., et al.: Big data tools and cloud services for high energy physics analysis
in TOTEM experiment. In: 2018 IEEE/ACM International Conference on Utility
and Cloud Computing Companion, Zurich, Switzerland, 17–20 December 2018, pp.
5–6 (2018). https://doi.org/10.1109/UCC-Companion.2018.00018

5. Blaszkiewicz, M., Mnich, A.: Interactive data analysis of data from high energy
physics experiments using Apache Spark. Technical report (2019). http://cds.cern.
ch/record/2655457. BSc Thesis Presented 2019

6. CERN: ROOT a data analysis framework (2018). https://root.cern.ch
7. CERN: Science Box (2018). https://sciencebox.web.cern.ch
8. CERN: The TOTEM Experiment (2018). https://totem.web.cern.ch
9. Cervantes, J.: Rdataframe-totem repository (2018). https://github.com/

JavierCVilla/RDataFrame-Totem/
10. Cremonesi, M., et al.: Using big data technologies for HEP analysis. https://

indico.cern.ch/event/587955/contributions/2937521/attachments/1684310/
2707721/chep bigdata.pdf

11. Gasthuber, M., Meinhard, H., Jones, R.: HNSciCloud - overview and technical
challenges. J. Phys. Conf. Ser. 898(5), 052040 (2017). 5 p. http://cds.cern.ch/
record/2297173

12. Glaser, F., Neukirchen, H., Rings, T., Grabowski, J.: Using MapReduce for high
energy physics data analysis. In: 2013 IEEE 16th International Conference on
Computational Science and Engineering, pp. 1271–1278 (2013). https://doi.org/
10.1109/CSE.2013.189

13. Guiraud, E., Naumann, A., Piparo, D.: TDataFrame: functional chains for ROOT
data analyses (2017). https://doi.org/10.5281/zenodo.260230

14. Mascetti, L., Labrador, H.G., Lamanna, M., Moscicki, J., Peters, A.: CERNBox +
EOS: end-user storage for science. J. Phys. Conf. Ser. 664(6), 062037 (2015). 6 p

15. McKinney, W., et al.: Data structures for statistical computing in Python. In:
Proceedings of the 9th Python in Science Conference, Austin, TX, vol. 445, pp.
51–56 (2010)

16. Peters, A., Sindrilaru, E., Adde, G.: EOS as the present and future solution
for data storage at CERN. J. Phys. Conf. Ser. 664(4), 042042 (2015). 7 p.
http://cds.cern.ch/record/2134573

http://docs.dask.org/en/latest/why.html
http://cds.cern.ch/record/2298968
http://cds.cern.ch/record/2298968
https://cds.cern.ch/record/2284929
https://doi.org/10.1109/UCC-Companion.2018.00018
http://cds.cern.ch/record/2655457
http://cds.cern.ch/record/2655457
https://root.cern.ch
https://sciencebox.web.cern.ch
https://totem.web.cern.ch
https://github.com/JavierCVilla/RDataFrame-Totem/
https://github.com/JavierCVilla/RDataFrame-Totem/
https://indico.cern.ch/event/587955/contributions/2937521/attachments/1684310/2707721/chep_bigdata.pdf
https://indico.cern.ch/event/587955/contributions/2937521/attachments/1684310/2707721/chep_bigdata.pdf
https://indico.cern.ch/event/587955/contributions/2937521/attachments/1684310/2707721/chep_bigdata.pdf
http://cds.cern.ch/record/2297173
http://cds.cern.ch/record/2297173
https://doi.org/10.1109/CSE.2013.189
https://doi.org/10.1109/CSE.2013.189
https://doi.org/10.5281/zenodo.260230
http://cds.cern.ch/record/2134573

Declarative Big Data Analysis for High-Energy Physics: TOTEM Use Case 255

17. Piparo, D., Tejedor, E., Mato, P., Mascetti, L., Moscicki, J., Lamanna, M.: SWAN:
a service for interactive analysis in the cloud. Future Gener. Comput. Syst.
78(CERN–OPEN–2016–005), 1071–1078 (2016). 17p. http://cds.cern.ch/record/
2158559

18. Sehrish, S., Kowalkowski, J., Paterno, M.: Spark and HPC for high energy physics
data analyses. In: Proceedings, 31st IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), Orlando, Florida, USA, 29 May–2
June 2017, pp. 1048–1057 (2017). https://doi.org/10.1109/IPDPSW.2017.112

19. The Apache Software Foundation: Apache Spark (2018). https://spark.apache.org/

http://cds.cern.ch/record/2158559
http://cds.cern.ch/record/2158559
https://doi.org/10.1109/IPDPSW.2017.112
https://spark.apache.org/

Clustering as Approximation Method
to Optimize Hydrological Simulations

Elnaz Azmi1(B) , Uwe Ehret2 , Jörg Meyer1 , Rik van Pruijssen2 ,
Achim Streit1 , and Marcus Strobl1

1 Steinbuch Centre for Computing, Karlsruhe Institute of Technology,
Karlsruhe, Germany

{elnaz.azmi,joerg.meyer2,achim.streit,marcus.strobl}@kit.edu
2 Institute of Water and River Basin Management,

Karlsruhe Institute of Technology, Karlsruhe, Germany
{uwe.ehret,rik.pruijssen}@kit.edu

Abstract. Accurate water-related predictions and decision-making
require a simulation of hydrological systems in high spatio-temporal res-
olution. However, the simulation of such a large-scale dynamical sys-
tem is compute-intensive. One approach to circumvent this issue, is to
use landscape properties to reduce model redundancies and computa-
tion complexities. In this paper, we extend this approach by applying
machine learning methods to cluster functionally similar model units
and by running the model only on a small yet representative subset of
each cluster. Our proposed approach consists of several steps, in par-
ticular the reduction of dimensionality of the hydrological time series,
application of clustering methods, choice of a cluster representative, and
study of the balance between the uncertainty of the simulation output of
the representative model unit and the computational effort. For this pur-
pose, three different clustering methods namely, K-Means, K-Medoids
and DBSCAN are applied to the data set. For our test application, the
K-means clustering achieved the best trade-off between decreasing com-
putation time and increasing simulation uncertainty.

Keywords: Clustering · Time series analysis · K-Means ·
K-Medoids · DBSCAN · Simulation optimization

1 Introduction

The simulation of hydrological systems and their interactions needs an advanced
modeling of water-, energy- and mass cycles in high spatio-temporal resolution
[20]. This kind of modeling is used to support water-related predictions and
decision making. Such a high-resolution, distributed and physically based mod-
eling demands high performance computing (HPC) and parallel processing of
the model units to function fast and efficiently [10,13,14]. However, parallel
running of such models is challenging for domain scientists, since the interac-
tions among the model units are not strictly independent. Either one can run
c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 256–269, 2019.
https://doi.org/10.1007/978-3-030-29400-7_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_19&domain=pdf
http://orcid.org/0000-0002-0073-8940
http://orcid.org/0000-0003-3454-8755
http://orcid.org/0000-0003-0861-8481
http://orcid.org/0000-0002-9337-2246
http://orcid.org/0000-0002-5065-469X
http://orcid.org/0000-0001-8265-227X
https://doi.org/10.1007/978-3-030-29400-7_19

Clustering as Approximation Method to Optimize Hydrological Simulations 257

the processes parallel e.g by using a Message Passing Interface (MPI) for com-
munication and exchange of data between processes, or one can run processes of
independent model units in parallel and the processes of dependent model units
sequentially. Furthermore, development, testing, execution and update of such a
model on HPC Clusters involve potentially a large configuration overhead and
require advanced programming expertise of domain scientists. The main aim of
this work is to reduce the computational effort of the model, and in addition,
to discover underlying patterns of the hydrological systems [5]. The remainder
of this paper is structured as follows: Sect. 2 provides further information about
the study background, Sect. 3 is a survey of related work, the proposed approach
is explained in Sect. 4. In Sect. 5, the processing results are presented, Sect. 6 is
about the implementation environment and the conclusions are drawn in Sect. 7.

2 Background

2.1 Hydrological Model

In this paper we apply our methods on the CAOS (Catchment as Organized
Systems) model proposed by Zehe et al. [20]. This model simulates water related
dynamics in the lower mesoscale catchments (few tens to few hundreds of square
kilometers). The CAOS model provides a high-resolution and distributed process
based simulation of water- and energy fluxes in the near surface atmosphere, the
earth’s surface and subsurface. These simulations are generally applicable in the
field of hydrological research, agricultural water demand estimation and erosion
protection or flood forecasting. The landscape is represented by model elements
organized in three major hierarchy levels (Fig. 1). The smallest model elements
are soil columns referred to as Elementary Functional Units (EFUs). Each EFU is
composed of Soilsurface, Soillayers, Macropores (vertical cracks) and Vegetation.
In an EFU, all vertical water movements (infiltration, vertical soil water flow,
and evapotranspiration) are modelled. On the second hierarchy level, Hillslope
model elements contain and connect all EFUs along the downhill path from a

Catchment Hillslope EFU

sreyaLli oS

Fig. 1. Simplified hierarchy of the CAOS model units (modified after [20]). (Color
figure online)

258 E. Azmi et al.

ridge line to a river. In a Hillslope, all lateral, downhill flow processes (surface
flow and groundwater flow) are modelled in network-like flow structures called
rills on the surface and pipes in the subsurface (blue lines in Fig. 1, middle and
right sketch). A catchment model element finally contains all Hillslopes, i.e. the
drainage area up to a point of interest at a river. In a catchment, all processes of
lateral water transport in a river are modelled. EFUs within the same Hillslope
may interact due to backwater effects. Hillslopes act completely independent of
each other. Before executing the hydrologic simulation, the catchment is divided
into Hillslopes based on the flow network derived from a Digital Elevation Model
(DEM). Hillslopes are then subdivided in laterally connected EFUs (Fig. 1). The
hierarchy of model elements can be abstracted into a network model [5] to profit
the advantages of such a representation of objects and their relationships.

2.2 Study Case

The study area used to develop and test the hydrological model is the Attert
catchment in the Grand Duchy of Luxembourg. Since the computation of the
hydrological model is time consuming, a representative subset of the Attert
catchment, the Wollefsbach catchment, is used for the initial development
(Fig. 2). To give an insight into the required simulation time, we executed the
CAOS model of the Wollefsbach catchment for January 2014 in 5-min resolution
on a single core system. The properties, main structure statistics, and execution
time are presented in Table 1. The simulation execution time of the whole Attert
catchment has not been determined yet.

Fig. 2. Digital Elevation Model of the
Attert catchment (brown line) and the
Wollefsbach catchment (current study case,
red dashed line). (Color figure online)

Table 1. Case study properties.

Catchment Attert Wollefsbach

Area 247 km2 4.5 km2

Hillslopes 9716 232

Run time - 50.6 h

Clustering as Approximation Method to Optimize Hydrological Simulations 259

3 Related Work

Environmental scientists mostly use classification and clustering methods in
order to detect patterns in data sets, make decisions and extract the required
information by using similarity measurements [3,15,18,19]. [19] studied K-
means, Clara, HClust and Fuzzy clustering algorithms to analyze the uncertainty
of weather situations. The proposed method reduced the RMSE of point fore-
casts by up to 10%. In order to predict the minimum and maximum of weather
parameters like temperature and humidity, [17] compared the application of K-
means and Hierarchical clustering using internal validation measures. [18] used
spectral clustering to determine regions of coherent precipitation regime. They
obtained spatial patterns of the precipitation regions that provide a new hydro-
climatological insight to understand the hydrological systems. Furthermore, time
series is one of the main input data types in environmental science [6] and dealing
with these data requires additional preprocessing like dimensionality reduction
and distance measurement [1].

4 Methodology

In order to speed up the simulation, we introduce a two-step approach. The
first step is to apply an elementary parallelization on the independent model
elements level (Hillslopes) and execute the simulation on multi-core processors
[5]. The simulation has been run for the Wollefsbach catchment for the duration
of one month (January, 2014). The model time resolution of the Hillslope out-
puts (flux drainage to River) is set to five minutes. Since the simulation code
is being developed in MathWorks Matlab, for the elementary parallelization, we
have used its parfor functionality. The average execution time of the parallel
simulation with a 16-cores processor is 5.4 h, which is a 9.4 times speedup in
comparison to the sequential run. The second step of our method can be cat-
egorized into Model Order Reduction techniques [8] which is the focus of this
paper. Such techniques aim to reduce the computational costs by dimensionality
reduction and by computing an approximation of the original model. We exploit
the hydrological similarity [9] to reduce the model complexity and computation
efforts as a result. The underlying idea of our approach is that similar model
units function similarly if departing from similar initial states and being exposed
to similar forcing (rainfall or radiation). To realize that we apply clustering algo-
rithms to cluster functionally similar model units. The studied model units are
Hillslopes (the model units without exchange between individuals). Then we run
the simulation only on the representative of each cluster and map the output
to the other members of every cluster. The uncertainty of the approximation
can be controlled by the number of clusters and the corresponding computation
time.

260 E. Azmi et al.

5 Processing Results

In this work, the initial clustering which defines the initial state of the simulation
model units is introduced. We use the time series of discharge from Hillslope
model elements obtained from a drainage test (Fig. 3). In the drainage test, the
simulation model is executed for all of the Hillslopes initiated with full storage
of water. In other words, at the beginning of the test, the Hillslopes are full of
water up to their maximum capacity and drain over time. The test is applied
on the Wollefsbach catchment and starts from an arbitrary time (in this case,
January; Fig. 3) and lasts until the drainage of Hillslopes reaches a predefined
boundary (Equilibrium). This time duration is called Time to Equilibrium (TE)
of the Hillslopes. During the test no forcing factor is being applied. These time
series are integral signatures of Hillslope size, slope, soil (Hillslope structure)
and drainage properties, which we then express by two key features that are TE
and Active Storage (AS). The second feature, AS extracted from drainage test
is the accumulated volume of water flowing out of a Hillslope at each time step
normalized to the initial Total Storage of that Hillslope. The time series are used
as the input data of our approach (Fig. 4).

Fig. 3. Time series of Total Storage (total water volume) of Hillslopes at each time
step; Each line represents a single Hillslope.

5.1 Dimensionality Reduction

Considering the input time series shown in Fig. 4, we extract the features describ-
ing their characteristics. The hydrologically meaningful features are AS of each
Hillslope at the TE and the gradient of the first time step of the time series called

Clustering as Approximation Method to Optimize Hydrological Simulations 261

Fig. 4. Time series of AS ; Each line represents a single Hillslope.

1st-Gradient, because the speed of drainage especially at the first steps of the
test, characterizes the Hillslopes. Other features describing the time series are
mathematical moments that express the shape of the distribution. We extracted
the four moments Mean, Variance, Skewness and Kurtosis. Thus initially, we
have overall a seven-dimensional feature set. Then, each feature set of all Hill-
slopes are normalized to standard deviation (σ) of that feature set. Dimension-
ality reduction is an important method to reduce computation complexity. For
further dimensionality reduction, we filter highly correlated, i.e. redundant fea-
tures. Principally, highly correlated features carry similar information so we can
reduce them to only one feature. Here, the Pearson correlation coefficient was
calculated for each pair of the extracted features (Fig. 5). The Pearson value
ranges from −1 to 1 where 1 defines the total positive linear correlation, 0 is
the no linear correlation and −1 is for total negative linear correlation [16]. Our
extracted features are mostly non or positively correlated. Since AS and TE are
our hydrological key features, we filter the features that are highly correlated
with these two. Regarding Fig. 5, Mean, Variance and AS fit to our exclusion
criteria. Therefore, we filter Mean and Variance from our feature set and keep
AS. There is no pair of features with highly negative correlation. Finally, we have
a five-dimensional feature set consisting of Skewness, Kurtosis, 1st-Gradient, AS
and TE.

262 E. Azmi et al.

Fig. 5. Pearson correlation coefficient of the features from AS time series.

5.2 Clustering

Having a feature set as input data, we continue our approach with the application
of popular conventional clustering methods namely K-means, K-medoid and
DBSCAN and present their efficiency in our use case.

Application of K-Means Clustering. The only required parameter for the
K-means algorithm is the number of clusters (K). In order to determine K,
there exists the conventional elbow method to define the optimal number of
K using the total within-cluster sum of squares (WSS) or the average distance
to centroid [11]. This method is useful in cases where K should be determined
only based on the location of the points to be clustered. However, there might
be additional constraints suggesting K. In this work, we propose an approach
that considers the uncertainty of the simulation introduced by the clustering
approach. There is a balance between the number of clusters, K, and the hydro-
logical model uncertainty, based on the RMSE and the simulation computation
time of Hillslopes. We determine K with a small yet representative catchment
(Wollefsbach) to apply it to the bigger catchment (Attert). Thus, the K parame-
ter can be selected according to the criteria of the hydrologist. Initially, we apply
the K-means clustering with varying number of K. Then the RMSE is calcu-
lated within each cluster between the cluster members and the representative
of that cluster. We define the cluster representative as the Medoid data point
whose average dissimilarity to other points in the cluster is minimal. Formally,
the Medoid of x1, x2, · · · , xn as members of each cluster is defined as [12]:

xmedoid = argminy∈{x1,x2,··· ,xn}
n∑

i=1

d(y, xi), (1)

Clustering as Approximation Method to Optimize Hydrological Simulations 263

where d(y, xi) is the distance function between y and the ist x. RMSE is the
standard deviation of the prediction errors. Formally, RMSE is [7]:

RMSE =

√√√√
N∑

i=1

(zfi − zoi)2/N, (2)

where N is the sample size, zfi are the predicted values and zoi are the observed
values. According to this, the RMSE measure was calculated between the AS
time series of the cluster members and the representative of that cluster. Thus,
there is one RMSE measurement per Hillslope for each K variation. Finally, the
total RMSE measure of all Hillslopse is calculated and plotted in Fig. 6 using
the following equation:

σtotalRMSE =

√√√√
P∑

i=1

(RMSEi)2, (3)

where P is the number of data points in the feature set. In order to find the
optimal number of K, we use the trade-off between the RMSE measurement
and sum of the computation time of representative Hillslopes of each cluster.
According to our methodology, the simulation is applied only on the repre-
sentative Hillslopes and sum of their computation time is calculated for each

Fig. 6. RMSE and representative Hillslopes computation time for varying Ks using
K-means clustering. The gray markers show the original values and the curves in red
and green represent their smoothed trend. (Color figure online)

264 E. Azmi et al.

number of K. The results of this experiment are shown in Fig. 6, where the hor-
izontal axis represents the number of clusters and the vertical axis, the RMSE
measurement and sum of the computation time of representative Hillslopes of
each cluster normalized by Min-Max normalization. Evidently, as the number of
clusters raises, the corresponding RMSE decreases while the computation time
increases (Fig. 6). The main goal of our approach is to achieve the best trade-
off between computation time and simulation uncertainty. In Fig. 6, a range of
the intended compromise between RMSE and computation time is recognizable
where the curves intersect. As K-means places the initial centeroids randomly,
the output of its executions with the same number of K differs slightly. Thus,
the intended compromise occurs where 32 < K < 42, 11.8% < RMSE < 14.2%
of the maximum RMSE = 39.2 and the computation time ranges from 10.3%
to 16.2% of total computation time (31.8 days). As an example, the spatial dis-
tribution of the K-means clustering at K = 37 which corresponds to the best
compromise between RMSE and computation time in Wollefsbach catchment is
shown in Fig. 7. Each color indicates a cluster and the number of its members
can be found in the legend of map. All the single member clusters are shown
in blue, which are single Hillslopes that do not fit into the other clusters. The
map shows a valid Hillslopes clustering, considering the hydrological parameters
like the structure, size and location of the Hillslopes. Generally, the overhead of
running such a clustering during the simulation is negligible.

Application of K-Medoids Clustering. Another variant of K-means is
the K-medoids algorithm that uses the actual data points as cluster centers.
It receives the number of clusters (K) and the distance matrix of points as
input parameters. We have used the K-medoid source code available at [2].

1
11
6
17
38
3
6
9
4
3
4
14
13
16
16
9
2
4
18
9
13

Cluster Member Count

Fig. 7. Spatial distribution of K-means clusters at K = 37 applied on Wollefsbach
catchment. All single member clusters are shown in dark blue. (Color figure online)

Clustering as Approximation Method to Optimize Hydrological Simulations 265

The algorithm was run for variable number of K and the results are shown in
Fig. 8. The plot indicates that the intended compromise range between RMSE
and computation time occurs where 58 < K < 78, 16.8% < RMSE < 34.7%
of the maximum RMSE = 31.8 and the related computation time is between
22.7% and 33.8% of the maximum computation time (31.8 days).

Fig. 8. RMSE and representative Hillslopes computation time for varying Ks using
K-medoids clustering. The gray markers show the original values and the curves in red
and green represent the smoothed trend. (Color figure online)

Application of DBSCANClustering. DBSCAN clustering requires two main
parameters as input, namely Eps and MinPts. In order to find a set of opti-
mal parameters, DBSCAN clustering is applied on a different range of Eps and
MinPts. The same method of determining and visualizing RMSE with the com-
putation time described in Sect. 5.2 is used with DBSCAN clustering. For each set
of parameters, the number of clusters is calculated. Noise clusters are considered
as one cluster in the whole number of clusters. The results shown in Fig. 9 indi-
cate that the intended compromise range between RMSE and computation time
is achieved where the number of clusters ranges between 51−62, 0.3 < Eps < 0.7,
1 < MinPts < 21, the RMSE is between 14.5% and 31.4% of maximum RMSE
(38.6) and the computation time is in range of 17.9% and 23% of the maximum
computation time (31.8 days). The direct comparison of the three applied meth-
ods is illustrated in Fig. 10, which clearly shows that the K-means clustering per-
forms better for the studied case and features the lowest RMSE for up to 18 days
of computation. A summary of all results are available in Table 2.

266 E. Azmi et al.

Fig. 9. RMSE and representative Hillslopes computation time for variable Eps and
MinPts using DBSCAN clustering. Some of the DBSCAN parameters’ combination
generate the same number of clusters.

Fig. 10. Comparison of the RMSE and computation time of all analyses.

Clustering as Approximation Method to Optimize Hydrological Simulations 267

Table 2. Parameters and achievements of different clustering methods

Parameters K-Means K-Medoids DBSCAN

K (# clusters) 32–42 58–78 51–62

Eps - - 0.3–0.7

MinPts - - 1–21

RMSE (%) 11.8–14.2 16.8–34.7 14.5–31.4

Max RMSE 39.2 31.8 38.6

Computation time (%) 10.3–16.2 22.7–33.8 17.9–23

Max computation time (d) 31.8 31.8 31.8

6 Implementation Environment

All the analysis methods are implemented in Python and executed on a computer
with Ubuntu 16.04.4 LTS operating system running the Linux kernel 4.4.0-127-
generic and a four-core 64-bit Intel(R) Core(TM) i5-6300U CPU @ 2.40 GHz
processor. The benchmarking of simulation model parallelization has been done
on a computer with Red Hat Enterprise Linux Server release 7.4 running the
linux kernel 3.10.0-693.11.6.el7.x86 64 and a 16-core Intel(R) Xeon(R) CPU E5-
2640 v2 @ 2.00 GHz processor. All scripts, data files and requirements of the
analyses are available as a gitlab repository named “hyda” [4].

7 Conclusions and Future Work

In this work we introduced an approach to make use of landscape properties
to reduce computational redundancies in hydrological model simulations. We
applied three different clustering methods namely, K-Means, K-Medoids and
DBSCAN on the time series data from a study case in hydrology. According
to the results, the K-means clustering functions better than the other applied
clustering methods. It achieves the intended compromise between RMSE and
Hillslopes computation time in a range of 11.8% < RMSE < 14.2% and
10.3% < computation time < 16.2%. The K-means clustering requires a smaller
number of clusters and consequently lower representative Hillslopes computation
time in comparison to the other studied clustering methods. Considering the
16.8% < RMSE < 34.7% and 22.7% < computation time < 33.8%, K-medoids
clustering shows worse performance than the other two methods. DBSCAN clus-
tering has promising results also not pleasing as the K-means method. The main
challenge of applying DBSCAN is to find an intended balance of both Eps and
MinPts parameters. As a future work, the methods will be applied on the whole
Attert catchment simulations and as a forward step the clustering approach will
be extended to consider also forcing in the simulation model.

268 E. Azmi et al.

References

1. Aghabozorgi, S., Shirkhorshidi, A.S., Wah, T.Y.: Time-series clustering-a decade
review. Inf. Syst. 16–38 (2015). https://doi.org/10.1016/j.is.2015.04.007

2. Alspaugh, S.: k-medoids clustering, May 2018. https://github.com/salspaugh/
machine learning/blob/master/clustering/kmedoids.py

3. Arroyo, Á., Tricio, V., Corchado, E., Herrero, Á.: A comparison of clustering tech-
niques for meteorological analysis. In: 10th International Conference on Soft Com-
puting Models in Industrial and Environmental Applications, pp. 117–130 (2015)

4. Azmi, E.: Hydrological data analysis, August 2018. https://gitlab.com/elnazazmi/
hyda

5. Azmi, E.: On using clustering for the optimization of hydrological simulations. In:
2018 IEEE International Conference on Data Mining Workshops (ICDMW), pp.
1495–1496 (2018). https://doi.org/10.1109/ICDMW.2018.00215

6. Bărbulescu, A.: Studies on Time Series Applications in Environmental Sciences,
vol. 103. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30436-6

7. Barnston, A.G.: Correspondence among the correlation, RMSE, and Heidke fore-
cast verification measures; refinement of the Heidke score. Weather Forecast. 7,
699–709 (1992)

8. Benner, P., Faßbender, H.: Model order reduction: techniques and tools. In: Bail-
lieul, J., Samad, T. (eds.) Encyclopedia of Systems and Control, pp. 1–10. Springer,
London (2013). https://doi.org/10.1007/978-1-4471-5058-9

9. Ehret, U., Zehe, E., Scherer, U., Westhoff, M.: Dynamical grouping and represen-
tative computation: a new approach to reduce computational efforts in distributed,
physically based modeling on the lower mesoscale. Presented at the AGU Chapman
Conference, 23–26 September 2014 (Abstract 2093) (2014)

10. Jones, J.E., Woodward, C.S.: Newton-Krylov-multigrid solvers for large-scale,
highly heterogeneous, variably saturated flow problems. Adv. Water Resour. 763–
774 (2001). https://doi.org/10.1016/S0309-1708(00)00075-0

11. Kassambara, A.: Practical Guide to Cluster Analysis in R: Unsupervised Machine
Learning, vol. 1 (2017)

12. Kaufman, L., Rousseeuw, P.: Clustering by means of Medoids. In: Statistical Data
Analysis Based on the L1–Norm and Related Methods (1987)

13. Kollet, S.J., et al.: Proof of concept of regional scale hydrologic simulations
at hydrologic resolution utilizing massively parallel computer resources. Water
Resour. Res. (4) (2010). https://doi.org/10.1029/2009WR008730

14. Maxwell, R., Condon, L., Kollet, S.: A high-resolution simulation of groundwater
and surface water over most of the continental US with the integrated hydrologic
model ParFlow V3. Geosci. Model Dev. 923 (2015). https://doi.org/10.5194/gmd-
8-923-2015

15. Netzel, P., Stepinski, T.: On using a clustering approach for global climate
classification? J. Climate 3387–3401 (2016). https://doi.org/10.1175/JCLI-D-15-
0640.1

16. Pearson, K.: VII. Mathematical contributions to the theory of evolution. III.
Regression, heredity, and panmixia. Philos. Trans. R. Soc. A 253–318 (1896).
https://doi.org/10.1098/rsta.1896.0007

17. Shobha, N., Asha, T.: Monitoring weather based meteorological data: clustering
approach for analysis. In: 2017 International Conference on Innovative Mechanisms
for Industry Applications (ICIMIA), pp. 75–81 (2017). https://doi.org/10.1109/
ICIMIA.2017.7975575

https://doi.org/10.1016/j.is.2015.04.007
https://github.com/salspaugh/machine_learning/blob/master/clustering/kmedoids.py
https://github.com/salspaugh/machine_learning/blob/master/clustering/kmedoids.py
https://gitlab.com/elnazazmi/hyda
https://gitlab.com/elnazazmi/hyda
https://doi.org/10.1109/ICDMW.2018.00215
https://doi.org/10.1007/978-3-319-30436-6
https://doi.org/10.1007/978-1-4471-5058-9
https://doi.org/10.1016/S0309-1708(00)00075-0
https://doi.org/10.1029/2009WR008730
https://doi.org/10.5194/gmd-8-923-2015
https://doi.org/10.5194/gmd-8-923-2015
https://doi.org/10.1175/JCLI-D-15-0640.1
https://doi.org/10.1175/JCLI-D-15-0640.1
https://doi.org/10.1098/rsta.1896.0007
https://doi.org/10.1109/ICIMIA.2017.7975575
https://doi.org/10.1109/ICIMIA.2017.7975575

Clustering as Approximation Method to Optimize Hydrological Simulations 269

18. Türkeş, M., Tatlı, H.: Use of the spectral clustering to determine coherent pre-
cipitation regions in Turkey for the period 1929–2007. Int. J. Climatol. 2055–2067
(2011). https://doi.org/10.1002/joc.2212

19. Zarnani, A., Musilek, P., Heckenbergerova, J.: Clustering numerical weather fore-
casts to obtain statistical prediction intervals. Meteorol. Appl. 605–618 (2014).
https://doi.org/10.1002/met.1383

20. Zehe, E., et al.: HESS opinions: from response units to functional units: a ther-
modynamic reinterpretation of the HRU concept to link spatial organization and
functioning of intermediate scale catchments. Hydrol. Earth Syst. Sci. 4635–4655
(2014). https://doi.org/10.5194/hess-18-4635-2014

https://doi.org/10.1002/joc.2212
https://doi.org/10.1002/met.1383
https://doi.org/10.5194/hess-18-4635-2014

Cluster and Cloud Computing

YOLO: Speeding Up VM and Docker
Boot Time by Reducing I/O Operations

Thuy Linh Nguyen1, Ramon Nou2(B), and Adrien Lebre1(B)

1 IMT Atlantique, Inria, LS2N, Nantes, France
{thuy-linh.nguyen,adrien.lebre}@inria.fr

2 Barcelona Supercomputing Center (BSC), Barcelona, Spain
ramon.nou@bsc.es

Abstract. Although this comes as a surprise, the time to boot a Docker-
based container can last as long as a virtual machine in high consolidated
cloud scenarios. Because this time is critical as boot duration defines how
an application can react w.r.t. demands’ fluctuations (horizontal elastic-
ity), we present in this paper the YOLO mechanism (You Only Load
Once). YOLO reduces the number of I/O operations generated during
a boot process by relying on a boot image abstraction, a subset of the
VM/container image that contains data blocks necessary to complete the
boot operation. Whenever a VM or a container is booted, YOLO inter-
cepts all read accesses and serves them directly from the boot image,
which has been locally stored on fast access storage devices (e.g., mem-
ory, SSD, etc.). In addition to YOLO , we show that another mechanism
is required to ensure that files related to VM/container management
systems remain in the cache of the host OS. Our results show that the
use of these two techniques can speed up the boot duration 2–13 times
for VMs and 2 times for containers. The benefit on containers is limited
due to internal choices of the docker design. We underline that our pro-
posal can be easily applied to other types of virtualization (e.g., Xen)
and containerization because it does not require intrusive modifications
on the virtualization/container management system nor the base image
structure.

Keywords: Virtualization · Containerization · Boot duration

1 Introduction

The promise of the elasticity of cloud computing brings the benefits for clients
of adding and removing new VMs in a manner of seconds. However, in reality,
users may have to wait several minutes to get a new environment in public
IaaS clouds [10] such as Amazon EC2, Microsoft Azure or RackSpace. Such
long startup duration has a strong negative impact on services deployed in a
cloud system. For instance, when an application (e.g., a web service) faces peak
demands, it is important to provide additional resources as fast as possible to

c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 273–287, 2019.
https://doi.org/10.1007/978-3-030-29400-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_20&domain=pdf
https://doi.org/10.1007/978-3-030-29400-7_20

274 T. L. Nguyen et al.

prevent loss of revenue for this service. DevOps expects that the use of container
technologies such as Docker [11] would tackle such issues. However as discussed
in this article, provisioning a container can last as long as a VM under high
consolidated scenarios. Therefore, the startup time of VMs or containers plays
an essential role in provisioning resources in a cloud infrastructure.

Two parts should be considered for the startup: (i) the time to transfer
the VM/container image from the repository to the selected compute node and
(ii) the time to perform the boot process. While a lot of efforts focused on
mitigating the penalty of the image transferring time for VMs [7,16,17] as well
as Docker [6,12], only a few works addressed the boot duration challenge for
VMs [8,18,23] and to the best of our knowledge, none for containers. The process
to boot a VM (or a container) leads to I/O and CPU operations that should
be handled by the compute node. As a consequence, the duration of the boot
process depends on the effective system load, in particular, the interference on
the I/O path [13,14,21].

To deal with the aforementioned limitation, we investigated in this article the
use of cache strategies that allow us to mitigate the number of I/O operations and
thus to reduce the boot time. Concretely, we consolidated previous observations
which have shown that only a small portion of the image is required to complete
the VM boot process [15,17,23]. More precisely, we analyzed the I/O operations
that occur during a boot process of a VM and a container. This analysis enabled
us to conclude that (i) like VMs, containers only require to access a small part
of the image to complete the boot process and (ii) unlike VMs, the amount
of manipulated data for a container is much smaller in comparison to the I/O
operations performed by the container management system itself.

Leveraging these results, we designed YOLO (You Only Load Once) as an
agnostic mechanism to cache the data of a VM/container image that are manda-
tory to complete the boot operation: For each VM/container image, we construct
a boot image, i.e., a subset of the image that contains the mandatory data needed
for booting the environment, and store it on a fast access storage device (memory,
SSD, etc.) on each compute node. When a VM/container boot process starts,
YOLO transparently loads the corresponding boot image into the memory and
serves all I/O requests directly. In terms of storage requirements, the size of a
boot image is in the average of 50 MB and 350 MB for respectively Linux and
Windows VMs (storing boot images for the 900+ VM images from the Google
Cloud platform would represent 40 GB, which is acceptable to be locally stored
on each compute node). Regarding container technologies, the size of a boot
image is much smaller with an average of 5 MB. For the I/O operations that are
related to the VM/container management system, we simply use the vmtouch [4]
program that enables to lock specific pages in the Linux system. We underline
that using vmtouch for boot images is not relevant as it will be not acceptable
to populate the cache with all possible boot images.

By mitigating the I/O operations that are mandatory to boot a VM or a
container, YOLO can reduce the boot duration 2–10 times for VM and 2 times
for containers according to the system load conditions.

YOLO: Speeding Up VM and Docker Boot Time 275

The rest of this paper is organized as follows. Section 2 gives background
elements regarding VM/container boot operations. Section 3 introduces YOLO .
Section 4 describes the setup for all of our experiments. Sections 5 and 6 dis-
cuss the results we obtained. Section 7 deals with related works. Finally, Sect. 8
concludes the article and highlights future works.

2 Background

In this section, we give the background about QEMU-KVM and Docker that
we used to perform our analysis, we choose these two virtualization solutions
because of their wide used. For each technique, we first describe the boot process
so that readers can understand clearly different steps of the boot operation.
Second, we discuss the types of virtual disks that can be used in a QEMU/KVM-
based or a Docker environment. Finally, we give details regarding access patterns
and amount of manipulated data that a VM or a container performed during a
boot operation.

2.1 QEMU-KVM Virtual Machine

Boot Process. The boot operation of a VM is managed by the QEMU-KVM
hypervisor that is in charge of creating the virtual abstraction of the machine
(e.g., CPU, memory, disks, etc.) and launching the boot process. The boot pro-
cess follows the usual workflow: first, the BIOS of the VM checks all devices
and tests the system, then it loads the boot loader into memory and gives it
the control. The boot loader (GRUB, LILO, etc.) is responsible for loading the
guest kernel. Finally, the guest kernel invokes the init script that starts major
services such as SSH. A QEMU-KVM VM can rely on two different VM Disk as
discussed in the following.

Fig. 1. Two types of VM disk

276 T. L. Nguyen et al.

VM Images. QEMU offers two strategies to create a VM disk image from the
VMI (a.k.a. the VM base image). For the sake of simplicity, we call them shared
image and no shared image strategies. Figure 1 illustrates these two strategies.
In the shared image strategy, the VM disk is built on top of two files: the backing
and the QCOW (QEMU Copy-On-Write) files. The backing file is the base image
that can be shared between several VMs while the QCOW file is related to a
single VM and contains all write operations that have been previously performed.
When a VM performs read requests, the hypervisor first tries to retrieve the
requested data from the QCOW and if not it forwards the access to the backing
file. In the no shared image strategy, the VM disk image is cloned fully from
the base image and all read/writes operations executed from the VM will be
performed on this standalone disk.

Amount of Manipulated Data. To identify the amount of data that is manip-
ulated during VM boot operations, we performed a first experiment that con-
sisted in booting up to 16 VMs simultaneously on the same compute node.
We used QEMU/KVM (QEMU-2.1.2) as the hypervisor, VMs are created from
the 1.2 GB Debian image (Debian 7, Linux-3.2) with writethrough cache mode
(i.e., each write operation is reported as completed only when the data has been
committed to the storage device).

Fig. 2. The amount of manipulated data during boot operations (reads/writes)

Figure 2 reveals the amount of read/write data. Although the VMs have been
created from a VMI of 1.2 GB, booting 1 VM only needs to read around 50 MB
from kernel files in both cases of shared image and no shared image. In addition
to confirming previous studies regarding the small amount of mandatory data
w.r.t. the size of the VMI [17], this experiment shows that booting simultaneously
several instances of the same VM leads to the different amount of manipulated
data according to the disk strategy. When the VMs share the same backing file
(Fig. 2a), the different boot process benefit from the cache and the total amount
of read data stays approximately around 50 MB whatever the number of VMs
started (the mandatory data has to be loaded only once and stays into the

YOLO: Speeding Up VM and Docker Boot Time 277

cache for later accesses). When the VMs rely on different VM disks (Fig. 2b),
the amount of read data grows linearly since each VM has to load 50 MB data
for its own boot process. Regarding write accesses, both curves follow the same
increasing trend. However, the amount of manipulated data differs: the shared
image strategy writes 10 MB data when booting one VM and 160 MB for booting
16 VMs while the no shared image strategy slightly rises from 2 MB to 32 MB.
The reason why the shared image strategy writes 5 times more data is due to
the “copy-on-write” mechanism: when a VM writes less than cluster size of the
QCOW file (generally 64 kB), the missing blocks should be read from the backing
file, modified with the new data and written into that QCOW file [5].

In addition to reading from the base image, the QEMU-KVM process
(i.e., the daemon in charge of handling the boot request) has to load into the
memory a total of 23 MB. This amount of data correspond to host libraries and
the QEMU binary file. The write operations performed by the QEMU-KVM
process are negligible (a few KBytes).

2.2 Docker Container

Boot Process. Although we use the words Docker boot process in comparison
with the virtualization system terminology, it is noteworthy that a Docker con-
tainer does not technically boot, but rather start. Booting a docker starts when
the dockerd daemon receives the container starting request from the client. After
verifying that the associated image is available, dockerd prepares the container
layer structure, initializes the network settings, performs several tasks related to
the specification of the container and finally gives the control to the containerd
daemon. containerd is in charge of starting the container and managing its life
cycle.

Docker Images. From the storage viewpoint a docker container is composed
of two layers: the image layer and the container layer (a.k.a. the lowerdir and
uppperdir files). These two layers can be seen as the backing and COW files
in the VM terminology. The image layer is a read-only file that can be shared
between multiple containers. The container layer contains differences w.r.t. the
base image for each container. The unified view of the two directories is exposed
as the merged union mount that is mounted into the container thanks to the
overlayfs file system. This file system implements the copy-on-write strategy.

Amount of Manipulated Data. Although the order of magnitude differs,
the amount of manipulated data when booting several times the same container
follows the same trend of VMs sharing the same backing file: thanks to the
cache, the amount of read data is constant. However, at the opposite of VMs, we
observed that the significant part of read accesses when booting one container
is related to the host directories and not the docker image. In other words,
loading the docker binaries (docker, docker-containerd-shim and docker-runc),
their associated libraries and configuration files represent much more Bytes than

278 T. L. Nguyen et al.

the I/O accesses that are performed on the docker image. Table 1 gives the
details for different kinds of containers. Regarding the write operations, they are
related to the creation of the container layer and the union mount. Although
this amount is not significant w.r.t read operations, we noticed that the creation
of the merge union mount point is a synchronous process: the docker daemon
has to wait the completion of this action before progressing in the boot process.
This is an important point as the more competition we will have on the I/O
path, the longer will be the time to start the container.

Table 1. The amount of read data during a docker boot process

Host OS Docker image

debian 62.9 MB 3.7 MB

ubuntu 62.6 MB 4.1 MB

redis 61.8 MB 8.2 MB

postgres 60.1 MB 24.4 MB

3 YOLO Overview

Booting a VM or a container leads to a significant number of I/O operations.
Because these operations can interfere with each other, in particular, in high
consolidated scenarios, it is critical to mitigate them as much as possible. For
such a purpose, we implement YOLO as a first mechanism to limit the impact
of I/O operations related to the VM or container image on the boot duration. In
the following, we give an overview of YOLO foundations and its implementation.
First, we explain how boot images are created. Second, we introduce how yolofs,
our custom file system, intercepts I/O requests to speed up a boot process.

3.1 YOLO Boot Image

YOLO relies on the boot image abstraction, i.e., a subset of the VM (or con-
tainer) image that corresponds to the data mandatory to complete the boot
operation. To create a boot image, we capture all read requests generated when
we boot completely a VM (or respectively a container). Each read request has:
(i) a file descriptor with file path and file name, (ii) an offset which is the begin-
ning logical address to read from, and (iii) a length that is the total length of
the data to read. For each read request, we calculate the list of all block id to
be read by using the offset and length information and we record the block id
along with the data of that block. In the end, a boot image contains a dictio-
nary of key-value pairs in which the key is the pair (file name, block id) and the
value is the content of that block. Therefore, with every read request on the VM
(or container) image, we can use the pair (file name, block id) to retrieve the
corresponding data of that block.

YOLO: Speeding Up VM and Docker Boot Time 279

To avoid generating I/O contention with other operations, boot images
should be stored on dedicated devices for yolofs, which can be either local storage
devices (preferably SSD), remote attached volumes or even memory. To give an
order of magnitude, we created the boot images for 900+ available VMIs from
Google Cloud and the result depicts that the space needed to store all these
boot images is around 40 GB, which is less than 3% of the original size of all
VMIs (1.34 TB). Storing such an amount on each compute node looks to us an
acceptable tradeoff.

3.2 yolofs

To serve all the read requests from the boot image instead of the VM or container
image, we developed a new FUSE file system, entitled yolofs. In addition to not
being intrusive, recent analysis [19] confirmed that the small overhead of FUSE
for read requests is acceptable.

dedicated
storage device

U
se

r
Sp

ac
e

K
er

ne
l S

pa
ce

VM/
Dockers

VFS
page cache

ext4 overlayfs ...

FUSE

yolofs

block devices

read
write

H
ar

dw
ar

e

1

2

3

4

5

6

7

 /storage/
 ├ CoW file

 /fuse/
 ├ base image

Fig. 3. yolofs read/write data flow

Figure 3 depicts the workflow of yolofs along with the read/write data flow
for a QEMU-KVM VM or a Docker container. yolofs is executed as a daemon on
each compute node (that is before any boot operation). When a VM/container
issues read operations on its base image, which is linked to our mounted yolofs
file system, the VFS routes the operation to the FUSE’s kernel module, and
yolofs will process it (i.e., Step 1, 2, 3 of the read flow). yolofs then returns the
data directly from the boot image (Step 4). If the boot image is not already

280 T. L. Nguyen et al.

into the memory, yolofs will load it from its dedicated storage device to the
memory. Whenever the VM/docker wants to access data that is not available in
the boot image, yolofs redirects the request to the kernel-based file system to
read the data from the disk (Step 5, 6, and 7 of the read flow). Regarding write
operations, they are not handled by yolofs and are forwarded normally to the
corresponding COW file (the write flow in Fig. 3).

4 Experimental Protocol

In this section, we discuss our experiment setup and scenarios. The code of
YOLO as well as the set of scripts we used to conduct the experiments are
available on public git repositories1. We underline that all experiments have
been made in a software-defined manner so that it is possible to reproduce them
on other testbeds (with slight adaptations in order to remove the dependency to
Grid’5000). We have two sets of experiments for both VMs and containers. The
first set is aimed to evaluate how YOLO behaves compared to the traditional
boot process when the VM/container disks are locally stored (HDD and SSD).
The second set investigates the impact of collocated I/O intensive workloads on
the boot duration.

4.1 Experimental Conditions

Experiments have been performed on top of the Grid’5000 Nantes cluster [1].
Each physical node has 2 Intel Xeon E5-2660 CPUs (8 physical cores each) run-
ning at 2.2 GHz; 64 GB of memory, a 10 Gbit Ethernet network card and one
of two kinds of storage devices: (i) HDD with 10000 rpm Seagate Savvio 200 GB
(150 MB/s throughput) and (ii) SSD with Toshiba PX02SS 186 GB (346 MB/s
throughput). Regarding the VMs’ configuration, we used the QEMU-KVM
hypervisor (Qemu-2.1.2 and Linux-3.2) with virtio enabled (network and disk
device drivers). VMs have been created with 1 vCPU and 1 GB of memory and
a disk using QCOW2 format with the writethrough cache mode. For container,
we used Docker (18.06.3-ce) with overlay2 storage driver. Each VM/container
has been assigned to a single core to avoid CPU contention and prevent non-
controlled side effects. The I/O scheduler of VMs and the host is CFQ. We
underline that all experiments have been repeated at least ten times to get sta-
tistically significant results.

VM boot time: we assumed that a VM is ready to be used when it is possible
to log into it using SSH. This information can be retrieved by reading the system
log, and it is measured in milliseconds. To avoid side effect due to the starting
of other applications, SSH has been configured as the first service to be started.

Docker container boot time: the main idea behind a container is running
applications in isolation from each other. For this reason, docker boot duration
is measured as the time to get a service runs inside a docker.

1 https://github.com/ntlinh16/vm5k.

https://github.com/ntlinh16/vm5k

YOLO: Speeding Up VM and Docker Boot Time 281

4.2 Boot Time Methodologies

We considered three boot policies as depicted as follow:

– all at once: using a normal boot process we boot all VMs/dockers at the same
time (the time we report is the maximum boot time among all VMs/dockers).

– YOLO: All VMs/dockers have been started at the same time, and when
a VM/docker needs to access the boot data, YOLO will serve them. We
underline that boot images have been preloaded into the YOLO memory
before starting a boot process. This way enables us to emulate a non volatile
device. While we agree that there might be a small overhead to copy from
the non-volatile device to the YOLO memory, we believe that doing so is
acceptable as (i) the amount of manipulated boot images in our experiments
is just 50 MB for a VM or 5 MB for a container and (ii) the overhead to
load simultaneously 16 boot images from a dedicated SSD is less than 1%, as
depicted in Fig. 4.

– YOLO + vmtouch: we use vmtouch to enforce QEMU and Docker daemon
data to stay in the cache before we boot VMs/dockers by using YOLO .

0

2

4

6

8

1 4 7 10 13 16
Number of VMs

B
o

o
t

T
im

e
(s

)

boot images on memory

boot images on SSD

Fig. 4. Overhead of serving boot’s I/O requests from the memory vs. a dedicated SSD

5 VM Boot Time Analysis

5.1 Booting Multiple VMs Simultaneously

For the first experiment, we investigated the time to boot up to 16 VMs in
parallel using three boot policies mentioned above. With all at once policy,
we used two different VM disk strategies: shared image and no shared image
(see Sect. 2). There is no different between these VM disk strategies for YOLO
because all necessary data for the boot process is already served by YOLO . Our
goal was to observe multiple VMs deployment scenarios from the boot operation
viewpoint.

Figure 5 shows the time to boot up to 16 VMs on a cold environment (i.e.,
there is no other VMs running on the compute node). On HDD (Fig. 5a), the

282 T. L. Nguyen et al.

0

20

40

60

80

100

1 4 7 10 13 16
Number of VMs

B
o

o
t

T
im

e
(s

)

no shared disk shared disk

YOLO YOLO + vmtouch

(a) HDD

0

1

2

3

4

5

1 4 7 10 13 16
Number of VMs

B
o

o
t

T
im

e
(s

)

no shared disk shared disk

YOLO YOLO + vmtouch

(b) SSD

Fig. 5. Time to boot multiple VMs with shared and no shared disks

all at once boot policy with no shared image disk has the longest boot duration
because VMs perform read and write I/O operations at the same time for their
boot processes on different VM disks. This behavior leads to I/O contentions:
the more VMs started simultaneously, the less I/O throughput can be allocated
to each VM. Because read operations of boot process access the same backing file
for VMs with shared image disks, the boot duration is noticeably faster than the
VMs with no shared image disks. Using YOLO speeds up the boot time (from
4–13 times) since VMs always get benefit from the cache for reading mandatory
data. YOLO + vmtouch has basically the same performance as YOLO alone
because time to load the additional read data for qemu beside boot data from
VMI is not significant. On SSD (Fig. 5b), the boot time of several VMs is mostly
constant for all boot policies. The I/O contention generated during the boot
process on SSD is not significant enough to observe performance penalties (the
I/O throughput of the SSD is much higher than HDD).

5.2 Booting One VM Under I/O Contention

This experiment aims to understand the effect of booting a VM in a high-
consolidated environment. We defined two kinds of VMs:

– eVM (experimenting VM), which is used to measure the boot time;
– coVM (collocated VM), which is collocated on the same compute node to run

competitive workloads.

We measured the boot time of one eVM while the n coVMs (n ∈ [0, 15])
are running the I/O workloads by using the command stress2. Each coVM
utilises a separate physical core to avoid CPU contention with the eVM while
running the Stress benchmark. The I/O capacity is gradually used up when we
increase the number of coVMs. There is no difference between VMs with no

2 http://people.seas.harvard.edu/apw/stress/.

http://people.seas.harvard.edu/apw/stress/

YOLO: Speeding Up VM and Docker Boot Time 283

shared image and shared image disks because we measure the boot time of only
one eVM. Hence, we simply started one eVM with the normal boot process.

Figure 6 shows the boot time of one eVM under an I/O-intensive scenario.
YOLO delivers significant improvements in all cases. On HDD, booting only one
eVM lasts up to 2 min by using the normal boot policy. Obviously, YOLO speeds
up boot duration much more than the normal one because the data is loaded
into the cache in a more efficient way. YOLO + vmtouch can further improves
the boot time by preloading the data for the VM management system.

Fig. 6. Boot time of 1 VM (with shared image disk, write through cache mode) under
I/O contention environment

The same trend can be found on SSD in Fig. 6b where the time to boot
the eVM increased from 3 to 20 s for the normal strategy, and from 3 to 4 s
for YOLO . YOLO is up to 4 times faster than all at once policy under I/O
contention of 15 coVMs.

6 Docker Container Boot Time Analysis

6.1 Booting Multiple Distinct Containers Simultaneously

Similarly to VMs, we discuss in this paragraph the time to boot several dif-
ferent containers simultaneously. Figure 7 presents the results. Although YOLO
reduces the time to boot containers, the time increases more significantly in
comparison to VMs. This is due to the write operations that need to be com-
pleted as explained in Sect. 2.2. Understanding how such writes can be handled
more efficiently is let as future works. Overall, YOLO enables the improvement
of the boot time by a factor 2 in case of HDD (Fig. 7a). The trend for SSD is
similar to the VM one: there is not enough competition on the I/O path to see
an improvement.

284 T. L. Nguyen et al.

Fig. 7. Boot time of different docker containers on different storage devices

6.2 Booting One Docker Container Under I/O Contention

In this paragraph, we discuss the time to boot a container under I/O contention.
Figure 8 depicts the results: the boot time is increasing until it becomes quite
stable. When a container is started, Docker needs to generate the container layer
with all the directories structure for that container. As mentioned, this action
generates write operations on the host disk, which suffer from the I/O competi-
tion. Although YOLO and YOLO + vmtouch help mitigate the read operations,
Docker still waits for the finalization of the container layer to continue its boot
process. Therefore, the gain of YOLO is much smaller than for VMs.

Fig. 8. Boot time of one debian docker container under I/O contention

7 Related Work

To improve Docker startup time, most works only tackle the image pulling chal-
lenge of Docker because they assume that the container boot time is negligi-
ble. However, improving the docker image pulling is out of scope of this article.

YOLO: Speeding Up VM and Docker Boot Time 285

To the extent of our knowledge, our work is the first one to take into account the
boot duration of a Docker container. Meanwhile, there are some solutions that
improved the VM boot time, which utilize two main methods: cloning techniques
or suspend/resume capabilities of VMs.

Kaleidoscope [2], SnowFlock [9] and Potemkin [20] are similar systems that
can start stateful VMs by cloning them from a parent VM. While Potemkin
marks a parent VM memory pages as copy-on-write and shares these states
to all child VMs, SnowFlock utilises lazy state replication to fork child VMs
and Kaleidoscope has introduced a novel VM state replication technique that
can speed up VM cloning process by identifying semantically related regions of
states. These systems clone new VMs from a live VM so that they have to keep
many VMs alive for the cloning process. Another downside is that the cloned
VMs have to be reconfigured because they are the exact replica of the original
VM so they have the same configuration parameters like MAC address as the
original one.

Other works [3,8,22] attempt to speed up VM boot time by suspending the
entire state of a VM and resuming when necessary, which leads to a storage
challenge. VMThunder+ [23] boots a VM then hibernates it to generate the
persistent storage of VM memory data and then use this to quickly resume a
VM to the running state. The authors use hot plug technique to re-assign the
resource of VM. However, they have to keep the hibernate file in the SSD devices
to accelerate the resume process. Razavi et al. [18] introduce prebaked µVMs,
a solution based on lazy resuming technique to start a VM efficiently. To boot
a new VM, they restore a snapshot of a booted VM with minimal resources
configuration and use their hot-plugging service to add more resources for VMs
based on client requirements. However, The authors only evaluated their solution
by booting one VM with µVMs on a SSD device.

8 Conclusion

Starting a new VM or container in a cloud infrastructure depends on the time
to transfer the base image to the compute node and the time to perform the
boot process itself. According to the consolidation rate on the compute node,
the time to boot a VM (or a container) can reach up to one minute and more.
In this work, we investigate how the duration of a boot process can be reduced.
Preliminary studies showed that booting a VM (or container) generates a large
amount of I/O operations. To mitigate the overhead of these operations, we
proposed YOLO . YOLO relies on the boot image abstraction which contains
all the necessary data from a base image to boot a VM/container. Boot images
are stored on a dedicated fast efficient storage device and a dedicated FUSE-
based file system is used to load them into memory to serve boot I/O read
requests. We discussed several evaluations that show the benefit of YOLO in
most cases. In particular, we showed that booting a VM with YOLO is at least
2 times and in the best case 13 times faster than booting a VM in the normal
way. Regarding containers, YOLO improvements are limited to 2 times in the

286 T. L. Nguyen et al.

best case. Although such a gain is interesting, we claim that there is space for
more improvements. More precisely, we are investigating how the creation of the
container layer can be performed in a more efficient manner in order to mitigate
the dependencies of the write requests with respect to the storage layer.

Acknowledgment. All experiments presented in this paper were carried out using the
Grid’5000 testbed, supported by a scientific interest group hosted by Inria and including
CNRS, RENATER and several Universities as well as other organizations (see https://
www.grid5000.fr). This work is also a part of the BigStorage project, H2020-MSCA-
ITN-2014-642963, funded by the European Commission within the Marie Sklodowska-
Curie Actions framework. This work was partially supported by the Spanish Ministry of
Science and Innovation under the TIN2015–65316 grant, the Generalitat de Catalunya
undercontract 2014–SGR–1051.

References

1. Balouek, D., et al.: Adding virtualization capabilities to the Grid’5000 testbed.
In: Ivanov, I.I., van Sinderen, M., Leymann, F., Shan, T. (eds.) CLOSER 2012.
CCIS, vol. 367, pp. 3–20. Springer, Cham (2013). https://doi.org/10.1007/978-3-
319-04519-1 1

2. Bryant, R., et al.: Kaleidoscope: cloud micro-elasticity via VM state coloring. In:
EuroSys 2011, pp. 273–286. ACM (2011)

3. De, P., Gupta, M., Soni, M., Thatte, A.: Caching VM instances for fast VM pro-
visioning: a comparative evaluation. In: Kaklamanis, C., Papatheodorou, T., Spi-
rakis, P.G. (eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 325–336. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-32820-6 33

4. Doug, H.: vmtouch: the Virtual Memory Toucher. https://hoytech.com/vmtouch/
5. Garcia, A.: Improving the performance of the QCOW2 format. https://events.

static.linuxfound.org/sites/events/files/slides/kvm-forum-2017-slides.pdf
6. Harter, T., et al.: Slacker: fast distribution with lazy docker containers. In: FAST

2016, pp. 181–195 (2016)
7. Jeswani, D., Gupta, M., De, P., Malani, A., Bellur, U.: Minimizing latency in

serving requests through differential template caching in a cloud. In: IEEE CLOUD
2012, pp. 269–276. IEEE (2012)

8. Knauth, T., Fetzer, C.: DreamServer: truly on-demand cloud services. In: ACM
SYSTOR 2014. ACM (2014)

9. Lagar-Cavilla, H.A., et al.: SnowFlock: rapid virtual machine cloning for cloud
computing. In: EuroSys 2009, pp. 1–12. ACM (2009)

10. Mao, M., Humphrey, M.: A performance study on the VM startup time in the
cloud. In: IEEE CLOUD 2012, pp. 423–430. IEEE (2012)

11. Merkel, D.: Docker: lightweight Linux containers for consistent development and
deployment. Linux J. 2014(239), 2 (2014)

12. Nathan, S., Ghosh, R., Mukherjee, T., Narayanan, K.: CoMICon: a co-operative
management system for docker container images. In: IEEE IC2E 2017, pp. 116–126
(2017)

13. Nguyen, T.L., Lèbre, A.: Virtual machine boot time model. In: IEEE PDP 2017,
pp. 430–437. IEEE (2017)

14. Nguyen, T.L., Lèbre, A.: Conducting thousands of experiments to analyze VMs,
dockers and nested dockers boot time. Technical report (2018)

https://www.grid5000.fr
https://www.grid5000.fr
https://doi.org/10.1007/978-3-319-04519-1_1
https://doi.org/10.1007/978-3-319-04519-1_1
https://doi.org/10.1007/978-3-642-32820-6_33
https://hoytech.com/vmtouch/
https://events.static.linuxfound.org/sites/events/files/slides/kvm-forum-2017-slides.pdf
https://events.static.linuxfound.org/sites/events/files/slides/kvm-forum-2017-slides.pdf

YOLO: Speeding Up VM and Docker Boot Time 287

15. Nicolae, B., Cappello, F., Antoniu, G.: Optimizing multi-deployment on clouds
by means of self-adaptive prefetching. In: Jeannot, E., Namyst, R., Roman, J.
(eds.) Euro-Par 2011. LNCS, vol. 6852, pp. 503–513. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-23400-2 46

16. Nicolae, B., Rafique, M.M.: Leveraging collaborative content exchange for on-
demand VM multi-deployments in IaaS clouds. In: Wolf, F., Mohr, B., an Mey, D.
(eds.) Euro-Par 2013. LNCS, vol. 8097, pp. 305–316. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40047-6 32

17. Razavi, K., Kielmann, T.: Scalable virtual machine deployment using VM image
caches. In: SC 2013, p. 65. ACM (2013)

18. Razavi, K., Van Der Kolk, G., Kielmann, T.: Prebaked µVMs: scalable, instant
VM startup for IAAS clouds. In: IEEE ICDCS 2015, pp. 245–255. IEEE (2015)

19. Vangoor, B.K.R., Tarasov, V., Zadok, E.: To FUSE or not to FUSE: performance
of user-space file systems. FAST 2017, 59–72 (2017)

20. Vrable, M., et al.: Scalability, fidelity, and containment in the Potemkin virtual
honeyfarm. In: ACM SOSP 2005, vol. 39, pp. 148–162. ACM (2005)

21. Wu, R., et al.: A reference model for virtual machine launching overhead. IEEE
Trans. Cloud Comput. 4(3), 250–264 (2016)

22. Zhang, I., Denniston, T., Baskakov, Y., Garthwaite, A.: Optimizing VM check-
pointing for restore performance in VMware ESXi. In: USENIX Annual Technical
Conference, pp. 1–12 (2013)

23. Zhang, Z., Li, D., Wu, K.: Large-scale virtual machines provisioning in clouds:
challenges and approaches. Front. Comput. Sci. 10(1), 2–18 (2016)

https://doi.org/10.1007/978-3-642-23400-2_46
https://doi.org/10.1007/978-3-642-40047-6_32

Parallel and Distributed Programming,
Interfaces, and Languages

Celerity: High-Level C++ for Accelerator
Clusters

Peter Thoman1(B), Philip Salzmann1, Biagio Cosenza2,
and Thomas Fahringer1

1 University of Innsbruck, 6020 Innsbruck, Austria
{petert,psalz,tf}@dps.uibk.ac.at

2 Technical University of Berlin, 10623 Berlin, Germany
cosenza@tu-berlin.de

Abstract. In the face of ever-slowing single-thread performance growth
for CPUs, the scientific and engineering communities increasingly turn to
accelerator parallelization to tackle growing application workloads. Exist-
ing means of targeting distributed memory accelerator clusters impose
severe programmability barriers and maintenance burdens.

The Celerity programming environment seeks to enable developers
to scale C++ applications to accelerator clusters with relative ease,
while leveraging and extending the SYCL domain-specific embedded lan-
guage. By having users provide minimal information about how data is
accessed within compute kernels, Celerity automatically distributes work
and data.

We introduce the Celerity C++ API as well as a prototype imple-
mentation, demonstrating that existing SYCL code can be brought to
distributed memory clusters with only a small set of changes that follow
established idioms. The Celerity prototype runtime implementation is
shown to have comparable performance to more traditional approaches
to distributed memory accelerator programming, such as MPI+OpenCL,
with significantly lower implementation complexity.

1 Introduction

As Moore’s Law is dying [5], end-users in many computational domains are turn-
ing to increasingly sophisticated parallelization methods in order to see speedups
in their workloads. One particularly promising avenue is GPU computing, which
leverages the high peak performance and energy efficiency of GPUs – or, more
generally, accelerators – to implement suitable algorithms. To achieve even bet-
ter performance and to tackle larger workloads, targeting a compute cluster of
accelerators can be highly beneficial.

While these considerations seem straightforward from a hardware-centric,
parallelism expert perspective, in practical use the programmability of such sys-
tems is a significant hindrance to their broader adoption in domain sciences [9].
Targeting accelerators requires an accelerator-specific API and programming
model, and the most widespread vendor-agnostic option, OpenCL [12], assumes
c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 291–303, 2019.
https://doi.org/10.1007/978-3-030-29400-7_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_21&domain=pdf
https://doi.org/10.1007/978-3-030-29400-7_21

292 P. Thoman et al.

familiarity with low-level hardware details and imposes significant implementa-
tion effort and maintenance overhead. When targeting clusters, these issues are
compounded by the additional requirement of managing distributed-memory
semantics, usually by leveraging MPI [10] for explicit message passing.

Not only does this type of software stack impose programmability and main-
tenance challenges, it also greatly reduces flexibility in optimizing and adapting
a given program for current and future hardware architectures by hard-coding
data and work distribution strategies.

Celerity aims to address these shortcomings, while keeping the barrier of
adoption for users at a minimum. To this end, the basis of Celerity is SYCL [13],
an open industry standard for programming arbitrary OpenCL devices using
modern high-level C++. Celerity automates the parallelization of SYCL pro-
grams across heterogeneous computing clusters, opting to provide reasonable
defaults and performance for domain scientists, while leaving room for man-
ual tuning on a per-application basis. In this work we focus specifically on the
programmability goals of Celerity, with our central contributions comprising:

– The Celerity API extending industry-standard SYCL programs to distributed
memory with minimal programmer overhead, by introducing the concept of
custom data requirement functors and a virtual global queue.

– A prototype runtime implementation based on a multi-level task graph, which
is implicitly generated and distributed during the execution of a Celerity
program.

– An evaluation of this API and prototype runtime implementation from
both programmability and performance perspectives, compared to traditional
MPI+OpenCL and state-of-the-art MPI+SYCL implementations.

2 Related Work

The increasing prevalence of parallelism in all application domains has warranted
significant research into how the scheduling and partitioning of parallel codes
can be automated [14]. In this section we summarize a number of languages and
libraries which relate to the goals of Celerity.

Charm++ [7] is a task-based distributed runtime system and C++ language
extension. Its global shared address space execution model allows executing asyn-
chronous functions on distributed objects called chares, which may reside on a
local or remote processor and which are transparently invoked through internally
passed messages. Charm++ supports GPUs with a GPU Manager component,
but is not natively designed for accelerator clusters. Furthermore, somewhat
reducing programmability, a so-called interface definition file has to be provided
for user-defined classes.

StarPU [2] is a task-based runtime system that provides data management
facilities and sophisticated task scheduling algorithms for heterogeneous plat-
forms, with the ability to easily implement custom schedulers. Its API is how-
ever still relatively low-level, and does not provide multi-node distributed mem-
ory parallelism out of the box. While it does feature facilities to integrate with

Celerity: High-Level C++ for Accelerator Clusters 293

MPI, even automatically transferring data between nodes based on specified
task requirements [1], the splitting and distribution of work still remains the
responsibility of the user.

OmpSs [6], another task-based runtime system and compiler extension, builds
on top of the well-established OpenMP standard. Using extended OpenMP
#pragma directives to express data dependencies between tasks allows for asyn-
chronous task parallelism. The ability to provide different implementations
depending on the target device enables OmpSs to also support heterogeneous
hardware. By annotating functions that wrap MPI communications with infor-
mation about their data dependencies, effectively turning them into tasks as well,
OmpSs can integrate them into the task graph and interleave OpenMP computa-
tions with MPI data transfers. However, the runtime itself has no explicit notion
of MPI and thus again all work splitting and distribution decisions are offloaded
to the user.

PHAST [11] is a heterogeneous high-level C++ library for programming
multi- and many-core architectures. It features data containers for different
dimensionalities and provides various STL-like parallel algorithms that can
operate on said containers. Additionally, custom kernel functors are supported
through a set of macros that wrap function headers and bodies. It does not
feature any facilities for targeting distributed memory systems.

The Kokkos C++ library [4] allows thread parallel execution on many-
core devices and attempts to provide performance portability by automatically
adjusting data layouts of multidimensional arrays to fit the access patterns of
a target device. It does not provide any facilities for distributed memory paral-
lelism (i.e., everything has to be done manually), and it is again a rather low-level
approach.

Legion [3] allows for even more flexibility by describing data accessed by
tasks in terms of logical regions, while delegating decisions about how to lay
them out in physical memory, alongside the decision of where to run tasks, to a
(potentially user-provided) mapper. Logical regions and associated tasks can be
partitioned and executed across heterogeneous clusters, with Legion taking care
of ensuring data coherence between nodes. Again, partitioning decisions as well
as the mapping of tasks to devices are delegated to the user.

While each of these approaches is well-suited to particular use cases, none of
them with the exception of Legion and PHAST were natively designed for accel-
erator computing. Crucially, they all operate on a lower level of abstraction and
thus require higher implementation effort compared to Celerity when targeting
distributed memory accelerator clusters.

3 The Celerity System

Figure 1 gives a high-level overview of the entire Celerity system. At its core, the
project extends the ease of use of the SYCL domain-specific embedded language
to distributed clusters. While execution of shared memory parallel kernels is
still handled by the SYCL runtime on each individual worker node, the Celerity

294 P. Thoman et al.

Fig. 1. A bird’s-eye view of the Celerity system.

runtime acts as a wrapper around each compute process, handling inter-node
communication and scheduling.

The central components making this possible are Celerity’s user-facing API,
and its multi-pass execution process at runtime. The latter allows the distributed
system to gain a shared understanding of the program being executed and auto-
matically distribute kernel executions while ensuring that their data require-
ments are fulfilled.

3.1 The Programming Interface

1 sycl:: queue queue;
2

3 sycl::buffer <float , 2> buf_a(hst_a.data(), sycl::range <2>(512, 512));
4 sycl::buffer <float , 2> buf_b(hst_b.data(), sycl::range <2>(512, 512));
5 sycl::buffer <float , 2> buf_c(sycl::range <2>(512, 512));
6

7 queue.submit ([&](sycl:: handler& cgh) {
8 auto r_a = buf_a.get_access <acc::read >(cgh);
9 auto r_b = buf_b.get_access <acc::read >(cgh);

10 auto w_c = buf_c.get_access <acc::write >(cgh);
11 cgh.parallel_for <class my_kernel_name >(sycl::range <2>(512, 512),
12 [=](sycl::item <2> itm) {
13 w_c[itm] = r_a[itm] + r_b[itm];
14 });
15 });

Listing 1. A simple SYCL program that adds up two buffers.

Listing 1 illustrates the main portions of a simple SYCL program. Note
that SYCL-related types are marked in orange, and that we assume a prologue
of namespace sycl = cl::sycl and using acc = sycl::access::mode in all
our examples for brevity. At its core, a SYCL program consists of a queue used
to submit commands to a compute device, as well as data structures such as
buffers, and the kernels which operate on them.

Lines 3 through 5 define three two-dimensional float buffers of size 512 ×
512, the first two of which are being initialized using existing host data. On line
7, a so-called command group is submitted to the execution queue. Command
groups serve as wrappers for device kernel calls, allowing the specification of
data access requirements as well as the kernel code that operates on said data

Celerity: High-Level C++ for Accelerator Clusters 295

in one place, tied together by the command group handler cgh. This handler
is passed as an argument into the C++ lambda expression constituting the
command group, and is used to request device accessors on lines 8 through
10. Accessors concisely express the intent of the subsequent operation (reading,
writing, or both), allowing the SYCL runtime to determine dependencies between
subsequent kernel invocations and schedule data transfers required to ensure data
coherence between the host and device.

In this particular command group, read access to buffers buf_a and buf_b
is requested over their entire range. Conversely, write access is requested for

buffer buf_c. Finally, on lines 11 through 15 the actual kernel is specified: A
simple sum of the two read-buffers is computed. Note that each kernel has to be
invoked using a template method such as parallel_for<class kernel_name>
which uses a unique tag-type to allow linking of the intermediate representation
of a kernel – which potentially is generated in a separate, implementation-defined
compilation step – to the kernel invocation in the host program.

1 celerity :: distr_queue queue;
2

3 celerity ::buffer <float , 2> buf_a(hst_a.data(),sycl::range <2>(512, 512));
4 celerity ::buffer <float , 2> buf_b(hst_b.data(),sycl::range <2>(512, 512));
5 celerity ::buffer <float , 2> buf_c(sycl::range <2>(512, 512));
6

7 queue.submit ([=](celerity :: handler& cgh) {
8 auto one_to_one = celerity :: access:: one_to_one <2>();
9 auto r_a = buf_a.get_access <acc::read >(cgh , one_to_one);

10 auto r_b = buf_b.get_access <acc::read >(cgh , one_to_one);
11 auto w_c = buf_c.get_access <acc::write >(cgh , one_to_one);
12 cgh.parallel_for <class my_kernel_name >(sycl::range <2>(512, 512),
13 [=](sycl::item <2> itm) {
14 w_c[itm] = r_a[itm] + r_b[itm];
15 });
16 });

Listing 2. The same program as shown in Listing 1, now using the Celerity API.

Listing 2 shows the Celerity version of the program previously seen in List-
ing 1. The first observation of note is that the overall structure of the two pro-
grams is quite similar. While some objects now live under the celerity names-
pace, we still have buffers, a queue and a command group containing buffer
accessors as well as a kernel invocation. In fact, whenever possible, the original
objects from the sycl namespace are used, allowing for code to be migrated to
Celerity with minimal effort. Since unlike SYCL, Celerity may call command
groups multiple times during a user program’s execution – as will be discussed
in Sect. 3.2 – it is recommended to capture all required buffers by value rather
than reference, as can be seen on line 7.

Notice the lack of typical indicators of a distributed memory parallel pro-
gram, such as the notion of a local rank and the total number of nodes run-
ning. Nonetheless, given this program, the Celerity runtime is able to distribute
the workload associated with kernel my_kernel_name to any number of workers
dynamically at runtime.

This is made possible in large parts by one of Celerity’s most significant
API additions: So-called range mappers specify the data access behavior of each

296 P. Thoman et al.

kernel and are provided as the final parameter to Celerity’s get_access() calls
on lines 9 through 11.

Specifying Data Requirements. When Celerity workers execute disjunct parts of
the same logical kernel in parallel, they typically each require different portions
of some input data. Distributing full buffers to each node and compute device is
theoretically valid, but clearly untenable in terms of performance due to poten-
tially redundant data transfers. Furthermore, a different part of the result is
produced on each worker, a fact that needs to be taken into consideration when
deciding on how to use their output in subsequent computations.

What is required is a flexible and minimally invasive method of specifying
exactly what data requirements a kernel has, in a way that is independent of
data distribution and work scheduling. In Celerity this is accomplished by range
mappers, which are arbitrary functors with the following signature:

(celerity::chunk<KD>) -> celerity::subrange<BD>

Here, a celerity::chunk<KD> specifies an N-dimensional chunk of a kernel,
containing an offset, a range, and a global size. The offset and range of a chunk
depend on how the Celerity runtime decides to distribute a kernel across worker
nodes, i.e., each chunk represents a portion of the execution of a kernel, each
assigned to a particular worker node. A chunk is then mapped to a celerity::
subrange<BD>, which specifies the offset and range of a data buffer the kernel
chunk will operate on. KD and BD can differ: a 2D kernel may for example access
data stored in a 1D buffer.

1 queue.submit ([=](celerity :: handler& cgh) {
2 auto i_r = input.get_access <acc::read >(cgh , celerity :: access::

one_to_one <2>());
3 auto o_w = output.get_access <acc::write >(cgh ,
4 [](celerity ::chunk <2> chnk) -> celerity ::subrange <2> {
5 return { { chnk.offset[1], chnk.offset [0] },
6 { chnk.range[1], chnk.range [0] } };
7 });
8 cgh.parallel_for <class transpose >(sycl::range <2>(128, 256),
9 [=](sycl::item <2> itm) {

10 auto idx = sycl::id <2>(itm[1], itm [0]);
11 o_w[idx] = i_r[itm];
12 });
13 });

Listing 3. Range mapper for computing a matrix transpose.

Listing 3 shows how a range mapper can be used to specify data requirements
for a simple matrix transpose. Implemented on lines 4 through 7, this range
mapper specifies that for any input matrix of size n × m, the kernel will write
to an output matrix of size m × n. Crucially, it also specifies that for any given
submatrix of size p × q at location (i, j) with i + p ≤ n, j + q ≤ m, it will write
to the corresponding output submatrix of size q × p at location (j, i).

Note that the range mapper merely acts as a contract of how data is going to
be accessed, and does not affect the actual kernel in any way. The index-reversal

Celerity: High-Level C++ for Accelerator Clusters 297

and subsequent assignment on lines 10 and 11 is where the actual transpose
is computed. Given this range mapper, regardless of the number of workers
executing the kernel (i.e., the number of chunks the kernel is split into), it is
always clear where which parts of the resulting matrix are computed. Likewise,
the Celerity runtime also knows exactly what parts of the input matrix each
worker node requires in order to produce the transpose. While in Listing 3 a
matrix of size 128×256 is transposed to a 256×128 matrix, notice how this size
is not relevant to the range mapper definition itself. This allows both users and
library authors to write mappers in a generic and reusable way.

Built-in Range Mappers. The Celerity API provides several built-in range
mappers for common data access patterns. One that is very frequently used,
celerity::access::one_to_one, can be seen in both Listings 2 and 3. This
range mapper specifies that a kernel, for every individual work item, will access
a buffer only at that same global index. In Listing 3 this means that to compute
the “result” for work item (i, j), the kernel will access the input matrix at index
(i, j) as well – while writing to the output matrix at index (j, i), as specified by
the custom mapper described previously.

Fig. 2. Example inputs and outputs for three built-in range mappers, in this case
applied to 2-dimensional kernels and buffers.

Figure 2 illustrates three additional range mappers currently provided by the
Celerity API. Thick lines indicate the input chunk, colored areas the associated
output subrange (i.e., the accessed portion of a buffer). Each color corresponds
to a different configuration of a range mapper. The slice range mapper allows
extending the range of a chunk along one dimension indefinitely, thus selecting
an entire slice of a buffer in that dimension. A common use case for this is
matrix multiplication. The neighborhood range mapper allows selecting a given
border around a chunk, a pattern that is commonly encountered in stencil codes.
Finally, the fixed range mapper always returns a given, fixed subrange of a
buffer, regardless of the input chunk. This can be useful when each worker needs
to read the same input buffer, e.g. a mask when applying a discrete convolution.

298 P. Thoman et al.

3.2 The Prototype Runtime System

The Celerity runtime system is a multi-threaded application built on top of
SYCL and MPI that runs in concert with a user-defined program in a single pro-
gram multiple data (SPMD) fashion. It uses a master/worker execution model,
where the master node is responsible for scheduling all the distributed work.
Worker nodes encapsulate the available accelerator hardware (i.e., one worker
is spawned per accelerator). They asynchronously receive commands from the
master node and execute them as soon as possible.

Commands are lightweight asynchronous operations such as the execution of
a certain chunk of a kernel, or initiating a data transfer with another worker.
The master node generates commands as part of a graph and includes depen-
dency information within the directives sent to each worker. This allows workers
to execute commands as soon as all of their dependencies are satisfied. The
resources that they operate on, i.e. kernels and buffers, are identified by unique
numerical IDs within the lightweight command data structure. To enable this,
each worker, as well as the master node, has an implicit shared understanding
of what any particular ID refers to. This is possible because each Celerity pro-
cess executes the exact same user code, deterministically assigning IDs to newly
created objects.

To allow for Celerity to retain the familiar SYCL syntax for specifying kernels
using command groups, without performing lots of duplicated computational
work on each worker node, certain parts of a Celerity program are executed
twice, in a process we call multi-pass execution.

In the pre-pass, command groups are executed solely to collect their defining
properties, such as buffer accesses and their range mappers, as well as the global
size of a kernel and the kernel function itself. Using this information, the master
node constructs a task graph that respects consumer/producer relationships and
other data dependencies between subsequent kernel executions. From this, it
then generates the more fine grained command graph which contains commands
assigned to particular workers. Once a kernel execution command is received
by a worker, it then executes the corresponding command group a second time.
During this live-pass, the actual computation on the device takes place. However,
instead of using the global size provided by the user, it is transparently executed
on the chunk assigned by the master node.

While the pre-pass is performed immediately upon first encounter of a com-
mand group within a user program, the Celerity runtime needs to be able to
defer the live-pass to a later point in time in order to schedule additional work
ahead. If that were not the case, each command group would act as an implicit
global barrier, which is highly undesirable. This in turn means that Celerity has
to retain command groups internally to be able to execute the live-pass at a
later point in time, independently of the user program’s execution flow. As the
combination of C++11 lambda closures and this deferred execution can cause
hard to diagnose lifetime bugs, we recommend to only capture parameters by
value. While this is currently being enforced through static assertions, more

Celerity: High-Level C++ for Accelerator Clusters 299

sophisticated diagnostics enabled by compiler extensions might be explored in
the future.

It is crucial to note that pre-pass and live-pass execution, as well as task and
command graph generation all occur asynchronously – and, in fact, at the same
time in any non-trivial program. Most importantly, this means that worker nodes
can execute their local command graphs, performing computations and peer-
to-peer data transfers, completely independently of the main task generation
process. In practice, this system ensures that Celerity imposes no bandwidth
overhead compared to a fully decentralized approach, and no latency overhead
outside of a startup phase during which the initial commands are generated.

4 Evaluation

This section evaluates Celerity as a framework for writing distributed memory
accelerator applications. To this end, we compare the Celerity implementation
of three programs with more traditional implementations.

The example programs highlighted in this chapter are: (i) MatMul, a sequence
of dense matrix-matrix multiplications, (ii) Pendulum, which simulates the
behavior of a pendulum swinging across a board with an arrangement of mag-
nets, and (iii) WaveSim, a simulation of the 2D wave equation. For each of these
programs, we compare a Celerity version with a MPI+SYCL version representing
the current state of the art. For MatMul, we additionally consider a traditional
MPI+OpenCL variant, to verify that SYCL performs equally to this baseline.

4.1 Programmability

To estimate and compare the differences of each implementation from a pro-
grammer’s point of view, we present two different metrics. First, the widely
employed cyclomatic complexity [8] measures code complexity in terms of the
number of linearly independent paths of execution a program could take. It is
computed using the pmccabe command-line utility, which is available for many
Linux distributions. As a somewhat simpler – but perhaps more immediately
apprehensible – metric, the number of non-comment lines of code (NLOC) is
provided. Note that all non-essential code, such as selection of compute devices,
instrumentation, and result verification is excluded from these metrics. The for-
mer two need to be performed manually for the classical implementations while
they are included in Celerity, and the latter is the same across all versions.

Figure 3 summarizes the programmability metrics for all three applications.
Note that across all programs and both metrics, there is a very significant
decrease in implementation complexity of about factor 2 going from MPI+SYCL
to Celerity. This is primarily caused by eliminating the need for most traditional
trappings associated with distributed memory programming, including manual
work and data distribution as well as data synchronization. The smallest differ-
ence is observed in NLOC for Pendulum, which is due to the fact that there is

300 P. Thoman et al.

MatMul Pendulum WaveSim

10

20

30

9

6

1616

13

29

20

C
yc
lo
m
at
ic

C
om

pl
ex
it
y

Celerity MPI+SYCL MPI+OpenCL

MatMul Pendulum WaveSim

50

100

150

200

66
51

96

127

88

190

149

N
L
O
C

Fig. 3. Comparison of programmability metrics.

no data redistribution required in this algorithm outside of the initial conditions
and final aggregation.

When considering the MPI+OpenCL version for MatMul, we see that there
is a further increase in implementation effort associated with the lower-level
OpenCL API compared to the high-level SYCL, although a less significant one
than what is required for distributed memory.

4.2 Performance

While Sect. 4.1 demonstrates the significant programmability advantages con-
ferred by Celerity compared to state-of-the-art methods, these advantages would
be relatively meaningless if they came at a large general loss in performance
potential. Therefore, although the current Celerity runtime implementation is
still only a prototype, we provide some initial benchmarks in this section which
demonstrate its performance.

Table 1. Per-node specification for the benchmarking system.

Host AMD Ryzen Threadripper 2920X 12-Core, 32 GB DDR4 RAM

GPUs 4x Nvidia RTX 2070

Interconnect 10 Gigabit Ethernet

Software Ubuntu 18.04; OpenMPI 4.0.0; GPU driver 410.79; hipSYCL 0.7.9

All benchmarks were executed on a small cluster comprised of 8 GPUs, situ-
ated in two distinct but otherwise identical machines with 4 GPUs each. Thus,
all runs using 4 GPUs or less are on a single machine, while runs with 8 GPUs
utilize both. Table 1 summarizes the hardware of each machine, as well as the

Celerity: High-Level C++ for Accelerator Clusters 301

software stack used for this evaluation. For each benchmark, the workload is
statically distributed in a uniform fashion, i.e., no load-balancing strategies are
employed. Figure 4 illustrates the speedup achieved by each application scaling
from 1 to 8 GPUs (corresponding to 2304 to 18432 CUDA cores). The results
presented are based on the median of 5 benchmark runs for each configuration.

Before discussing the individual results, note that we do not include the
MPI+OpenCL version of MatMul in this chart. Its performance is exactly equiv-
alent to the MPI+SYCL version and is therefore omitted for clarity.

1 2 4 8
1

2

4

8

MatMul

Sp
ee
du

p

Celerity MPI+SYCL

1 2 4 8
1

2

4

8

Pendulum

Number of GPUs
1 2 4 8

1

2

4

8

WaveSim

Fig. 4. Speedup for 1 to 8 GPUs of Celerity compared to manual MPI+SYCL.

Evidently, Celerity offers performance comparable to the manual distributed
memory accelerator implementation in all three applications benchmarked. This
is most apparent in Pendulum, which shows the exact same speedup for both
variants. This is a result of the absence of intermediate data transfers resulting
in a relative lack of network transmission impact on the overall execution time.

For MatMul, Celerity shows equivalent behavior up to 4 GPUs, but slightly
worse scaling to 8 GPUs. We have examined this drop in efficiency and deter-
mined that it is due to the manual MPI version leveraging collective communi-
cation for data transfers in between individual matrix multiplications, while the
Celerity prototype currently performs point-to-point communication. This is a
quality-of-implementation issue rather than an inherent feature of our approach,
and we intend to improve on this behavior in future work.

Finally, WaveSim actually demonstrates better scaling from 4 to 8 GPUs in
its Celerity variant than it does in MPI+SYCL. This stencil-like code is relatively
latency-sensitive, as ghost cells need to be exchanged after every time step. The
Celerity version benefits from the fact that all (automatic) data distribution
is inherently implemented asynchronously in our runtime system. While the
MPI+SYCL version could also be made entirely asynchronous, likely resulting in
similar performance, this would further increase its implementation complexity
in the metrics discussed in Sect. 4.1.

302 P. Thoman et al.

5 Conclusion

In this work we have introduced the Celerity API for programming distributed
memory accelerator clusters. It builds on the SYCL industry standard, and
allows extending existing single-GPU programs to GPU clusters with a minimal
set of changes, while shielding the user from much of the complexity associated
with work and data distribution on clusters.

This is achieved by (i) a concise API extension focusing on flexible, reusable
range mapper functors, (ii) a multi-pass runtime execution model which builds
an implicit, shared understanding of the data and work primitives – buffers and
kernel invocations – involved in the computation at runtime, and (iii) a fully
asynchronous execution environment implementation for this model.

In concrete terms, programmability metrics show significant ease of imple-
mentation advantages for our approach compared to state-of-the-art MPI+SYCL
combinations, with improvements around factor 2 in both cyclomatic complexity
as well as lines of code. This advantage is even more pronounced when comparing
against a more traditional MPI+OpenCL implementation version.

Crucially, these programmability advances do not come at a significant per-
formance overhead. Execution times for the Celerity implementation versions are
comparable to their respective manual distributed memory accelerator versions
in all programs tested, with minor advantages and disadvantages in individual
benchmarks.

The approach introduced in Celerity enables a broad spectrum of future
research. On the API level, even more concise or domain-specific abstractions
can be introduced to further improve ease of use for domain scientists. Inde-
pendently – and without requiring any change to the input programs – the
efficiency of the runtime system can be increased, by e.g. introducing command
graph optimizations which gather individual transfers into collective operations,
or by improving scheduling for kernels with non-uniform workloads.

Acknowledgments. This research has been partially funded by the FWF (I 3388)
and DFG (CO 1544/1-1, project number 360291326) as part of the CELERITY project.

References

1. Agullo, E., et al.: Achieving high performance on supercomputers with a sequential
task-based programming mode. lIEEE Trans. Parallel Distrib. Syst. (2017)

2. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurr. Com-
put. Pract. Exp. 23(2), 187–198 (2011)

3. Bauer, M., Treichler, S., Slaugther, E., Aiken, A.: Legion: expressing locality and
independence with logical regions. In: 2012 International Conference for High Per-
formance Computing, Networking, Storage and Analysis (SC). IEEE (2012)

4. Carter Edwards, H., Trott, C.R., Sunderland, D.: Kokkos: enabling manycore per-
formance portability through polymorphic memory access patterns. J. Parallel Dis-
trib. Comput. 74(12), 3202–3216 (2014)

Celerity: High-Level C++ for Accelerator Clusters 303

5. Courtland, R.: Gordon Moore: The Man Whose Name Means Progress
(2015). https://spectrum.ieee.org/computing/hardware/gordon-moore-the-man-
whose-name-means-progress

6. Duran, A., et al.: OmpSs: a proposal for programming heterogeneous multi-core
architectures. Parallel Process. Lett. 21(02), 173–193 (2011)

7. Kale, L.V., Krishnan, S.: CHARM++: a portable concurrent object oriented sys-
tem based on C++. In: Proceedings of the Eighth Annual Conference on Object-
Oriented Programming Systems, Languages, and Applications, vol. 10, pp. 91–108
(1993)

8. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. SE-2(4), 308–320
(1976)

9. Meade, A., Deeptimahanti, D.K., Buckley, J., Collins, J.J.: An empirical study
of data decomposition for software parallelization. J. Syst. Softw. 125, 401–416
(2017)

10. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard,
Version 3.1 (2015). https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

11. Peccerillo, B., Bartolini, S.: PHAST library – enabling single-source and high per-
formance code for GPUs and multi-cores. In: Smari, W.W. (ed.) 2017 International
Conference on High Performance Computing and Simulation, pp. 715–718. IEEE,
Piscataway (2017)

12. The Khronos Group: The OpenCL Specification, Version 1.2 Revision 19 (2012).
https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf

13. The Khronos Group: SYCL Specification, Version 1.2.1 Revision 3 (2018). https://
www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf

14. Thoman, P., et al.: A taxonomy of task-based parallel programming technologies
for high-performance computing. J. Supercomput. 74(4), 1422–1434 (2018)

https://spectrum.ieee.org/computing/hardware/gordon-moore-the-man-whose-name-means-progress
https://spectrum.ieee.org/computing/hardware/gordon-moore-the-man-whose-name-means-progress
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf
https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf
https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf

Dataflow Execution of Hierarchically
Tiled Arrays

Chih-Chieh Yang1(B), Juan C. Pichel2, and David A. Padua3

1 IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA
chih.chieh.yang@ibm.com

2 CiTIUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
juancarlos.pichel@usc.es

3 University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
padua@illinois.edu

Abstract. As the parallelism in high-performance supercomputers con-
tinues to grow, new programming models become necessary to maintain
programmer productivity at today’s levels. Dataflow is a promising exe-
cution model because it can represent parallelism at different granularity
levels and to dynamically adapt for efficient execution. The downside is
the low-level programming interface inherent to dataflow. We present
a strategy to translate programs written in Hierarchically Tiled Arrays
(HTA) to the dataflow API of Open Community Runtime (OCR) sys-
tem. The goal is to enable program development in a convenient notation
and at the same time take advantage of the benefits of a dataflow run-
time system. Using HTA produces more comprehensive codes than those
written using the dataflow runtime programming interface. Moreover,
the experiments show that, for applications with high asynchrony and
sparse data dependences, our implementation delivers superior perfor-
mance than OpenMP using parallel for loops.

Keywords: Parallel programming · Dataflow ·
High-level programming abstraction · Parallel algorithm

1 Introduction

Over the last decade, the pursuit of system performance has moved from increas-
ing processor frequency to increasing the number of processing cores so that
today’s supercomputers can contain millions of cores [24]. This number is likely
to increase significantly as we move to exascale systems. New notations will be

This material is based upon work supported by the Department of Energy [Office of Sci-
ence] under awards DE-SC0008716 and DE-SC0008717, the National Science Founda-
tion under award 1533912, MINECO under award RTI2018-093336-B-C21, the Xunta
de Galicia under award ED431C 2018/19, and the European Regional Development
Fund.

c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 304–316, 2019.
https://doi.org/10.1007/978-3-030-29400-7_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_22&domain=pdf
https://doi.org/10.1007/978-3-030-29400-7_22

Dataflow Execution of Hierarchically Tiled Arrays 305

necessary for these future systems to keep the complexity of parallel program-
ming at a manageable level. Such notations will rely on runtime systems [10]
that create a simplified machine model and can better deal with applications
whose performances depend on various dynamic decisions, such as scheduling
and data movements.

Dataflow is a promising model for runtime systems. In a conceptually simple
notation, it captures multiple levels of parallelism needed for efficient execution
on exascale systems. It uses task graphs where tasks (i.e. sequential code seg-
ments) are represented by nodes and can be scheduled to execute as soon as
their incoming data dependences (represented by the graph edges) are satisfied.
Compared with conventional models which rely on programmers use of control
dependences, a dataflow model utilizes inherent parallelism in programs nat-
urally. Although implementations of such model [2,4,6,15–17,20] have shown
great potential for exploiting parallelism, many of them lack high-level program-
ming abstractions to attract programmers. To program using a native dataflow
notation is a daunting task, because its programming style is unfamiliar and the
learning curve is steep. Moreover, even when one learns to program in this way,
the resulting codes could contain numerous dependence edges and lack structure,
making these codes difficult to debug and maintain.

In this paper, we propose using Hierarchically Tiled Arrays (HTA) [1,5,11,12]
as high-level abstractions to exploit the benefits provided by dataflow runtime
systems, while helping productivity with a familiar programming interface for
those trained to program in conventional notations. We implemented a fully
functional HTA library on top of the dataflow-based Open Community Run-
time (OCR) [8,17], and show through experiments that our design preserves the
benefits of OCR while removing the need to program in the task graph notation.

The remainder is organized as follows. Section 2 gives an overview of the pro-
gramming model HTA and OCR, the dataflow runtime system of our choice.
Section 3 describes the design and implementation of HTA as a library on
top of OCR (HTA-OCR). Section 4 presents the performance evaluation of our
HTA implementation using various benchmark applications. The related work is
described in Sect. 5. Finally, the conclusions are presented in Sect. 6.

2 Background

2.1 Overview of Hierarchically Tiled Arrays

An HTA program can be conceived as a sequential program containing oper-
ations on tiled arrays or sub-arrays. With HTA, programmers express parallel
computations as tiled array operations. Because tiles are a first class object, the
HTA notation facilitates the control of locality, which is of great importance
today and will be even more so for future exascale systems.

By expressing computations in terms of high-level tiled array operations, pro-
grammers can focus on designing algorithms for maximal parallelism and better
data locality and leave the mapping to the target machine and runtime system,

306 C.-C. Yang et al.

1 HTA A(2, /*dimension*/
2 2, /*levels*/
3 Tuple(N, N), /*flat array size*/
4 Tuple(X, X)); /*tiling */
5 HTA B(A.shape()), C(A.shape());
6 A.init(RANDOM); B.init(RANDOM); C.init(RANDOM);
7 for(k = 0; k < X; k++) {
8 for(i = 0; i < X; i++) {
9 C(i,{0:X-1}) += A(i,k) * B(k,{0:X-1}); }}

Listing 1. Example of tiled matrix-matrix multiplication in HTA.

including synchronization operations, to the HTA implementation which, for the
one reported here, took the form of a library.

In HTA, programmers explicitly express parallelism by choosing the tiling
(i.e. partitioning a flat array into tiles) of arrays. Multilevel tiling can be used,
and each level can be tiled for different purposes. For example, there can be
a top-level tiling for coarse-grain parallelism, a second-level tiling for fine-grain
parallelism, and a third level for data locality in the cache.

An example of an HTA program in C++-like syntax is given in Listing 1.
The code first constructs three HTAs, A, B and C. Each of them is an N×N array
partitioned into X×X tiles. A, B and C are initialized, and then a two-level nested
for loop performs tiled matrix-matrix multiplication. The parenthesis operator
represent tile accesses and the curly braces represent array range selections.
For instance, C(i,{0:X-1}) selects the ith row of tiles in C. The operator *

performs a matrix multiplication of two tiles. In this code segment, the creation,
initialization, multiplication and addition assignment are HTA operations, and
the control loops are sequential statements. There are plenty of parallelization
opportunities, but the exact way is hidden from the user in the HTA library
implementation of operations and memory access.

It has been shown [5] that HTA programs are expressive and concise. It is
particularly convenient to parallelize an existing sequential program by replacing
parallelizable computations such as for loops with operations on tiled arrays.
Even without existing sequential code, using HTA facilitates building parallel
applications from scratch. HTA programs are also more portable, since they are
written in high-level abstractions without machine dependent details.

2.2 Overview of Open Community Runtime

Open Community Runtime (OCR) is a product of the X-Stack Traleika Glacier
project [18] funded by Department of Energy of the US government. Its goal is
to provide a task-based execution model for future exascale machines through
software and hardware co-design.

In OCR, computations are represented as directed acyclic graphs where nodes
are event driven tasks (EDTs, called simply tasks hereafter) that operate on relo-
catable data. The OCR API provides functions to create objects including tasks,
events, and data blocks. Tasks represent computation, data blocks represent data

Dataflow Execution of Hierarchically Tiled Arrays 307

used or produced in the computation, and events are used to describe either data
or control dependences between tasks.

The execution of OCR tasks is dictated by events. Tasks are not scheduled
for execution immediately after their creation. Instead, at creation, an OCR
task is placed in a queue, and the runtime system keeps track of its incoming
dependences. When all the incoming dependences of an OCR task are satisfied,
the task becomes ready and the runtime system can schedule it for execution.
Tasks run to completion without ever being blocked, since all the data needed
for the computation is available when they are scheduled.

Since task execution depends only on data blocks passed to tasks and not
on data in the call stack or global heap objects, OCR runtime system can freely
relocate tasks, as long as the data blocks needed can be accessed at the place of
execution. The fact that both tasks and data blocks are relocatable makes it pos-
sible for the runtime system to make dynamic scheduling decisions for workload
distribution, energy saving, and various other optimizations. This saves applica-
tion programmers from having to optimize application code with machine specific
details. However, to program directly using the OCR programming interface, one
has to formulate computations as a dataflow task graph. It is a verbose way of
programming since every task and dependence have to be explicitly specified. It
is also difficult to maintain and debug code written in such fashion. In the next
section, we explain how this weakness can be overcome by bridging the gap with
HTA.

3 Design and Implementation of HTA-OCR

In this section, we describe the main ideas behind our HTA library implemented
on top of OCR. We call this library HTA-OCR. Our goal is to take advantage
of both the programmability of HTA and the performance benefits of OCR’s
dependence-driven execution. Interested readers can find more details in [26].

3.1 Program Execution

An HTA-OCR program starts with a master task which executes the program
sequentially except for HTA operations that are typically executed in paral-
lel. The library routine implementing an HTA operation analyzes the operands
(HTA tiles) and determines the data dependences (if any) of the subtasks per-
forming operation. Then, the routine invokes OCR routines to create the sub-
tasks and specifies their dependences in the form of OCR events. If it does not
depend on the results of the subtasks, the master task then continues executing
subsequent statements of the HTA program without waiting for the subtasks to
complete, possibly overlapping execution with the subtasks.

Figure 1 shows a two-statement code segment and its dataflow task execution.
The program operates on three 1-D HTAs, each containing tiles. The first state-
ment assigns the content of B tiles to the corresponding tiles of A. The second
performs another assignment from the tiles of A to those of C. Obviously, there

308 C.-C. Yang et al.

Fig. 1. HTA-OCR task graphs of assignment operations. The thick blue arrow repre-
sents the master task execution; The blue circles represent subtasks; The dotted blue
thin arrows represent subtask creations; The orange thin arrows represent the data
dependences between tasks. (Color figure online)

are flow dependences between the two statements. The right-hand side of the
figure, shows the dynamically constructed task graph. The master task is rep-
resented as a thick blue arrow to show that its execution typically spans longer
than other subtasks, represented as circles. The dotted blue thin arrows represent
subtask creations, and the orange thin arrows represent the data dependences
between tasks. When the master task executes the first statement, three sub-
tasks are spawned and each copies one tile of B to the corresponding tile of A.
Next, three more subtasks are spawned for the second statement. The second
group of subtasks have incoming data dependences (the continuous arrows) from
the first group due to the flow dependences on the tiles of A.

OCR shared memory implementation manages multiple worker threads upon
which tasks can be scheduled. As soon as the incoming dependences of a subtask
are satisfied, it is ready and can be scheduled for execution. The worker threads
use a work-stealing scheduling algorithm so that tasks can be stolen by other
threads for load balancing. To best utilize computing resources, the program
should generate abundant subtasks that have sparse dependence edges among
them, so that there is a higher probability of having numerous ready tasks to be
scheduled at any given time.

3.2 Data Dependences

In the execution style described above, parallel tasks spawn dynamically with
their dependences discovered by the master task examining and updating access
record of HTA tiles. Non-HTA variables of global scope are always assigned
in the master task. On the other hand, HTAs are only assigned in subtasks.
Considering the two types of variables, data dependences exist whenever, in
program order, a location is first written and then read or written, or is first
read and then written. Four different cases exist:

1. The assignment to an HTA tile depends on some non-HTA variable accessed
previously by the master task.

2. The assignment to a non-HTA variable depends on some non-HTA variable
accessed previously by the master task.

Dataflow Execution of Hierarchically Tiled Arrays 309

3. The assignment to a non-HTA variable depends on some HTA accessed by a
previous HTA operation.

4. The assignment to an HTA tile depends on some HTA accessed by a previous
HTA operation.

In Case 1, the data dependence is resolved automatically, since the master
task would have evaluated the non-HTA variable at the spawning point of the
subtask to compute the HTA. Thus, the variable can be passed by value into the
subtask. Similarly, in Case 2, the data dependence is guaranteed to be resolved
because non-HTA variables are always evaluated by the master task in program
order. In Case 3, the non-HTA variable assignment has data dependence on the
completion of subtasks. Since in OCR, block-waiting for tasks is not supported,
we implemented a split-phase continuation mechanism, explained in 3.3. In Case
4, the new subtasks must wait for the results of previous subtasks, and therefore
data dependence arcs must be created. For this case, we developed a tile-based
dependence tracking mechanism which utilizes access record of HTA tiles to
ensure that tasks using the same HTAs always access them in the correct order
respecting the data dependences.

3.3 Split-Phase Continuation

During program execution, the master task sometimes must wait for the results
of a subtask. When it discovers incoming dependences from subtasks, it creates a
new continuation task which is a clone of itself, and passes the original program
context (including the program stack, the register file, and the program counter)
to the clone, along with a list of new dependence events. As a result, the runtime
system will only schedule the continuation task after both the original master
task completes and the new incoming data dependences are satisfied. When it
starts, it restores the program context and then continues the execution with
new inputs.

Fig. 2. Split-phase continuation. The thick blue arrow representing the master task
execution which splits into two phases due to the new dependences on the reduction
results. The continuation resumes executing the main program when it receives the
reduction results. (Color figure online)

310 C.-C. Yang et al.

Consider a reduction on a 1-D HTA of three tiles, illustrated in Fig. 2. The
master task (Phase 1) spawns three subtasks and each sequentially performs
reduction on its assigned tile to get a single scalar value. Since the number of
subtasks is small, the three scalar values are sent directly to the continuation
task (Phase 2) to be reduced to the final result. If the number of leaf tiles are
large, a parallel tree reduction can be used.

4 Experiments

Table 1. List of benchmarks.

Source Benchmark

Hand-coded Cholesky

Teraflux [9] Sparse LU

NAS parallel benchmarks [3] EP, IS, LU, FT, MG, CG

We evaluate our HTA-OCR shared memory implementation using several bench-
marks listed in Table 1. The baseline are OpenMP versions of these programs that
use parallel loops as the only parallel construct. We use this baseline in two ways.
First, for the first two benchmarks in Table 1, the baseline implementation helps
us assess the benefit of overlapping subtasks from different vector assignments
which are implemented as separate parallel loops in the OpenMP versions. Since
OpenMP parallel loops execute a barrier at the end, this overlap is not possible
in OpenMP and therefore the overlap is the reason for performance advantage
of the HTA version. Second, for the NAS Parallel Benchmarks, the OpenMP
implementation helps us evaluate the efficiency of our implementation. Because
in the NAS Parallel Benchmarks the overlapping of subtasks from different array
operations is very limited, and therefore differences in performance between the
HTA-OCR and the OpenMP versions is efficiency of the implementation. The
experiments are on a single-node with four Intel Xeon E7-4860 processors, each
has ten cores. We use up to forty worker threads so that each thread binds to a
dedicated core without hyperthreading. Our purpose is to compare the execution
models, so we timed major computation and excluded initial setup.

4.1 Tiled Dense Cholesky Factorization

Cholesky factorization takes as input a Hermitian positive-definite matrix and
decomposes it into a lower triangular matrix and its conjugate transpose. We use
a tiled Cholesky fan-out algorithm. Intel MKL sequential kernels are used for tile-
by-tile multiplication and tile triangular decomposition. The OpenMP version
(Listing 2) factorizes a diagonal tile (Line 3), and uses the result to update the
tiles of the same column in the lower triangular matrix (Line 5–6). The submatrix
tiles in the lower triangular matrix are then updated using the results of the

Dataflow Execution of Hierarchically Tiled Arrays 311

1 for(int k = 0; k < n; k++) {
2 int numGEMMS = (n-k)*(n-k-1)/2;
3 POTRF(&A[k*n+k]);
4 #pragma omp parallel for schedule(dynamic, 1)
5 for(int i = k+1; i < n; i++)
6 TRSM(&A[i*n+k], &A[k*n+k]);
7 #pragma omp parallel for schedule(dynamic, 1)
8 for(int x = 0; x < numGEMMS; x++) {
9 int i, j;

10 GET_I_J(x, k+1, n, &i, &j);
11 if(i == j) SYRK(&A[j*n+j], &A[j*n+k]);
12 else GEMM(&A[i*n+j], &A[i*n+k], &A[j*n+k]);}}

Listing 2. Tiled dense Cholesky factorization in OpenMP.

1 for(int k = 0; k < n; k++) {
2 map(POTRF, A(k, k));
3 map(TRSM, A({k+1:n-1}, k), A(k, k));
4 for(int j = k+1; j < n; j++) {
5 map(SYRK, A(j, j), A(j, k));
6 map(GEMM, A({j+1:n-1},j),A({j+1:n-1},k),A(j,k));}}

Listing 3. Tiled dense Cholesky factorization in HTA-OCR.

(a) 3200× 3200 matrix, tile size 200× 200 (b) 6400× 6400 matrix, tile size 400× 400

Fig. 3. Tiled dense Cholesky factorization results.

column tiles as input (Line 9–12). The updates in different parallel for loops have
an implicit barrier in-between, and a k loop iteration blocks before all updates
of the previous loop iteration complete. The HTA-OCR version (Listing 3) has
a similar program structure, but it replaces the parallel for loops with the map()

operations and array range selection, resulting in more concise code. During
execution, the master task discovers dependences and constructs task graphs
dynamically. No implicit global synchronization barriers are necessary.

In Fig. 3, we use two different problem sizes with the same partition of 16×16
tiles and plot the speedup over sequential execution under various number of
worker threads. In both settings, the task granularity is large, and the curves

312 C.-C. Yang et al.

are similar. The HTA-OCR version has better speedup overall and scales bet-
ter. It is about 1.5× faster at higher thread counts. As mentioned above, its
advantage comes from eliminating the barriers which allows not only the tasks
in the two different inner loops but also in the different outermost loop iterations
to overlap. In contrast, implicit global synchronization barriers in the OpenMP
version prevent task executions from overlapping even when required input data
is ready, resulting in lower compute resource utilization.

4.2 Tiled Sparse LU Factorization

LU factorization converts a matrix A into the product of a lower triangular
matrix L and an upper triangular matrix U. Adapted from the sparse LU code
in Teraflux project [9], Listing 4 shows the HTA-OCR implementation. An outer
k loop contains four steps:

1. At Line 2, DIAG factors the diagonal tile A(k,k) into the lower triangular part
A(k,k).lt and the upper triangular part A(k,k).ut.

2. At Line 3, ROW_UPDATE solves X for the equation A(k,j)=A(k,k).lt*X for
j = k+1 to n-1.

3. At Line 4, COL_UPDATE solves X for for the equation A(i,k)=X*A(k,k).ut for
i = k+1 to n-1.

4. At Line 5–8, SM_UPDATE updates each tile in the submatrix
A(i,j)-=A(i,k)*A(k,j) if neither of A(i,k) and A(k,j) is all-zero.

1 for (k=0; k<n; k++) {
2 map(DIAG,A(k,k));
3 map(ROW_UPDATE ,A(k,{k+1:n-1}),A(k,k));
4 map(COL_UPDATE ,A({k+1:n-1},k),A(k,k));
5 for(i=k+1; i<n; i++)
6 if (A(i,k) != NULL)
7 for (j=k+1; j<n; j++)
8 if (A(k,j)!= NULL) map(SM_UPDATE ,A(i,j),A(i,k),A(k,j));}

Listing 4. Parallel tiled sparse LU factorization in HTA-OCR.

The operations within a step are fully independent, but data dependences
exist between different steps. There are also dependences across iterations of
the k loop. The HTA-OCR library can dynamically construct a dataflow task
graph by discovering the data dependences without user explicitly stating the
dependences. Compared with Cholesky factorization in Sect. 4.1, the computa-
tion graph of LU factorization can be more complex, but the sparseness elim-
inates some nodes and dependence edges that would exist for the dense case.
The OpenMP version uses a parallel for loop for each step and relies on implicit
global barriers for the correctness.

The results of two problem sizes are shown in Fig. 4, both with 16 × 16 tiles
and tile sizes are 100 × 100 and 200 × 200 respectively. Similar to the results

Dataflow Execution of Hierarchically Tiled Arrays 313

(a) 1600× 1600 matrix, tile size 100× 100 (b) 3200× 3200 matrix, tile size 200× 200

Fig. 4. Tiled sparse LU factorization results.

of tiled Cholesky factorization in Sect. 4.1, the HTA-OCR version shows greater
scalability. It is close to 2× faster under forty threads. The advantages come
from having no global barriers that may over-restrict task overlapping, just as
in Cholesky factorization.

4.3 NAS Parallel Benchmarks

NAS (Numerical Aerodynamic Simulation) Parallel Benchmarks [3] are created
by NASA for evaluating the performance of parallel supercomputers. We imple-
mented six of them in HTA-OCR and observed the strong scaling results of class
C as shown in Fig. 5. We plot the ratio of the HTA-OCR execution time over the
OpenMP counterpart under the same number of threads. Most of them have a
workload consists of regular computations that can be evenly divided easily and
use global synchronizations. Because there is little opportunity for overlapping
the execution of subtasks from different HTA statements, the main difference in
performance between the HTA-OCR implementations and their OpenMP coun-
terparts is overhead of execution. As can be seen in Fig. 5, in practically all cases
there is less than 20% difference in performance and in some cases the HTA-OCR
version is faster. We conclude that the performance of our experimental HTA-
OCR implementation is competitive with that of the mature (an likely highly
optimized) OpenMP library [13].

4.4 Summary of Experiments

For dense Cholesky factorization and sparse LU factorization, HTA-OCR shows
superior performance than OpenMP. While HTA-OCR program complexity is
similar to OpenMP, the dataflow runtime system can utilize CPUs effectively for
the abundant asynchronous subtasks and their sparse data dependences. In con-
trast, OpenMP implicit barriers restrict task overlapping and this results in bad
performance. Note that, if OpenMP Tasking is used instead of parallel loops, it

314 C.-C. Yang et al.

Fig. 5. NAS Parallel Benchmark results (Class C).

is possible to express the dataflow graph and execute in a data driven fashion. It
would have comparable performance as HTA-OCR, but its code would be more
cumbersome, since explicit data dependence annotations are needed. For the
NAS Parallel Benchmarks, HTA-OCR shows decent results close to OpenMP.
In most cases, the performance difference is within 20%. The HTA-OCR perfor-
mance does not always surpass OpenMP, because the benchmarks mostly have
easily-balanced workloads and bulk-synchronous execution which are ideal for
OpenMP.

In all of our experiments, we present strong scaling results. The task man-
agement overhead (spawning, event satisfaction, scheduling, . . . , etc) in OCR is
significantly larger than the that of parallel loops in OpenMP. This makes HTA-
OCR performance more sensitive to task granularity. To achieve good parallel
efficiency, the task granularity has to be large enough to amortize the overhead.
However, in strong scaling, as we use more threads, we partition a fixed-sized
problem into more tiles and thus increasing task management overhead while
decreasing task granularity. Devoting more future efforts into improving task
overhead is crucial for the success of the dataflow runtime systems.

5 Related Work

OCR is based on the codelet model [14,27]. This model incorporates some of the
ideas and advantages of the macro-dataflow models [23], where the granularity is
defined not at the instruction level but a coarser grain one, and also of the hybrid
dataflow/Von Neumman EARTH system [25]. Similarly, PaRSEC [6] is another
runtime system that adopts dataflow model for coarse-grain task executions.

The Concurrent Collection (CnC) model [7] is a high-level programming
model implemented upon both Habanero [21] and Intel Threading Building
Blocks [22], and it is inspired by dynamic dataflow.

Charm++ [15] is a programming paradigm that also adapts the dataflow
execution model for its runtime system design. Charm++ provides an object

Dataflow Execution of Hierarchically Tiled Arrays 315

oriented programming interface, thus it might be more suitable for application
programmers to develop large parallel applications than OCR.

Based on the encouraging results of SMPSs [19], OpenMP Tasking was
extended to support data dependent tasks. The expressible data dependences
are limited to tasks within the same parallel section. In comparison, HTA-OCR
tasks are not confined within parallel sections.

Legion [4] lets user write programs by decomposing application data into
logical regions and explicitly spawning asynchronous tasks that operate on the
regions. A software out-of-order processor dynamically infer data dependences.
In terms of programming abstraction, Legion is lower-level than HTA, as parallel
tasks are implicitly created in HTA.

6 Conclusions

This paper presents the design and implementation of the HTA programming
model for execution on top of a dataflow runtime. Our work is among the first
attempts to provide high-level programming abstractions upon dataflow runtime
systems. We propose a strategy to map HTA programs onto dataflow task graphs,
and we implemented the design as a fully functional HTA-OCR library whose
important mechanisms were also discussed in detail. While our work describes
data dependences in parallel programs among array tiles, we believe that our
strategy can be extended to support other data structures, such as parallel sets,
to provide a general-purpose programming paradigm. For performance evalua-
tion, a variety of benchmarks were implemented using the HTA-OCR API and
the experiments were conducted. The results show great promises of using HTA
as programming abstractions upon dataflow runtime systems for its programma-
bility and its ability to preserve the benefits from dataflow execution.

References

1. Andrade, D., Fraguela, B.B., Brodman, J., Padua, D.: Task-parallel versus data-
parallel library-based programming in multicore systems. In: 17th Euromicro Inter-
national Conference on Parallel, Distributed and Network-based Processing, pp.
101–110 (2009)

2. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: Starpu: a unified platform
for task scheduling on heterogeneous multicore architectures. Concurr. Comput.
Pract. Exp. 23(2), 187–198 (2011)

3. Bailey, D., et al.: The NAS parallel benchmarks. Int. J. High Perform. Comput.
Appl. 5(3), 63–73 (1991)

4. Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: expressing locality and
independence with logical regions. In: International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis, p. 66 (2012)

5. Bikshandi, G., et al.: Programming for parallelism and locality with hierarchically
tiled arrays. In: 11th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pp. 48–57 (2006)

6. Bosilca, G., et al.: Parsec: exploiting heterogeneity to enhance scalability. Comput.
Sci. Eng. 15(6), 36–45 (2013)

316 C.-C. Yang et al.

7. Budimlic, Z., et al.: Concurrent collections. Sci. Prog. 18(3–4), 203–217 (2010)
8. Budimlic, Z., et al.: Characterizing application execution using the open commu-

nity runtime. In: International Workshop on Runtime Systems for Extreme Scale
Programming Models and Architectures, in conjunction with SC15 (2015)

9. Consortium, T.: Teraflux applications (2017). https://svn.teraflux.eu/svnpub/
apps/, Accessed 04 June 2017

10. Da Costa, G., et al.: Exascale machines require new programming paradigms and
runtimes. Supercomput. front. Innovations 2(2), 6–27 (2015)

11. Fraguela, B., et al.: The hierarchically tiled arrays programming approach. In: 7th
Workshop on Languages, Compilers, and Run-time Support for Scalable Systems,
pp. 1–12 (2004)

12. Fraguela, B., et al.: Optimization techniques for efficient HTA programs. Parallel
Comput. 38(9), 465–484 (2012)

13. Free Software Foundation: Gomp - an openmp implementation for GCC. https://
www.gnu.org/software/gcc/projects/gomp/, Accessed 01 Feb 2019

14. Gao, G.R., Zuckerman, S., Suetterlein, J.: Toward an execution model for extreme-
scale systems - runnemede and beyond, May 2011

15. Kale, L.V., Krishnan, S.: Charm++: a portable concurrent object oriented system
based on c++. In: Proceedings of the Conference on Object Oriented Programming
Systems, Languages and Applications, pp. 91–108 (1993)

16. Lauderdale, C., et al.: Swarm: A Unified Framework for Parallel-for, Task Dataflow,
and Distributed Graph Traversal. ET International Inc., Newark (2013)

17. Mattson, T., et al.: The open community runtime: a runtime system for extreme
scale computing. In: High Performance Extreme Computing Conference, pp. 1–7
(2016)

18. Modelado Foundation: Traleika glacier project (2018). https://wiki.modelado.org/
Traleika Glacier, Accessed 01 Oct 2018

19. Perez, J.M., Badia, R.M., Labarta, J.: A dependency-aware task-based program-
ming environment for multi-core architectures. In: International Conference on
Cluster Computing, pp. 142–151 (2008)

20. Planas, J., Badia, R.M., Ayguadé, E., Labarta, J.: Hierarchical task-based pro-
gramming with starss. Int. J. High Perf. Comput. Appl. 23(3), 284–299 (2009)

21. Barik, R., et al.: The Habanero multicore software research project. In: Proceedings
of the 24th ACM SIGPLAN Conference Companion on Object Oriented Program-
ming Systems Languages and Applications. pp. 735–736 (2009)

22. Reinders, J.: Intel Threading Building Blocks, 1st edn. O’Reilly & Associates Inc,
Sebastopol (2007)

23. Sarkar, V., Hennessy, J.: Partitioning parallel programs for macro-dataflow. In:
ACM Conference on LISP and Functional Programming, pp. 202–211 (1986)

24. Strohmaier, E., Dongarra, J., Simon, H., Meuer, M.: Top500 list (2008). https://
www.top500.org/, Accessed 01 Oct 2018

25. Theobald, K.B.: EARTH: and effcient architecture for running threads. Ph.D. the-
sis, McGill University, Montreal, Canada (1999)

26. Yang, C.C.: Hierarchically Tiled Arrays as High-Level Programming Abstractions
for Dataflow Runtime Systems. Ph.D. thesis, University of Illinois at Urbana-
Champaign (2017)

27. Zuckerman, S., Suetterlein, J., Knauerhase, R., Gao, G.R.: Using a codelet pro-
gram execution model for exascale machines: position paper. In: 1st International
Workshop on Adaptive Self-Tuning Computing Systems for the Exaflop Era, pp.
64–69 (2011)

https://svn.teraflux.eu/svnpub/apps/
https://svn.teraflux.eu/svnpub/apps/
https://www.gnu.org/software/gcc/projects/gomp/
https://www.gnu.org/software/gcc/projects/gomp/
https://wiki.modelado.org/Traleika_Glacier
https://wiki.modelado.org/Traleika_Glacier
https://www.top500.org/
https://www.top500.org/

Scalable FIFO Channels for Programming
via Communicating Sequential Processes

Nikita Koval1,2(B), Dan Alistarh1,
and Roman Elizarov2

1 IST Austria, Klosterneuburg, Austria
dan.alistarh@ist.ac.at

2 JetBrains, Saint Petersburg, Russia
ndkoval@ya.ru, elizarov@gmail.com

Abstract. Traditional concurrent programming involves manipulating
shared mutable state. Alternatives to this programming style are commu-
nicating sequential processes (CSP) and actor models, which share data
via explicit communication. These models have been known for almost
half a century, and have recently had started to gain significant trac-
tion among modern programming languages. The common abstraction for
communication between several processes is the channel. Although chan-
nels are similar to producer-consumer data structures, they have different
semantics and support additional operations, such as the select expres-
sion. Despite their growing popularity, most known implementations of
channels use lock-based data structures and can be rather inefficient.

In this paper, we present the first efficient lock-free algorithm for
implementing a communication channel for CSP programming. We pro-
vide implementations and experimental results in the Kotlin and Go
programming languages. Our new algorithm outperforms existing imple-
mentations on many workloads, while providing non-blocking progress
guarantee. Our design can serve as an example of how to construct gen-
eral communication data structures for CSP and actor models.

Keywords: Concurrency · Synchronous queue · Rendezvous channel ·
Lock-freedom · Scalability

1 Introduction

Programming via communicating sequential processes (CSP) was introduced by
Hoare [18] almost half a century ago, and has had significant research and practical
impact [10]. In particular, many modern programming languages, such as Go [8],
Kotlin [4], Scala [25], and Rust [9] provide support for this programming paradigm,
as an alternative, or complement, to synchronization via shared memory.

Very roughly, programs in CSP can be seen as a parallel composition of sequen-
tial processes, communicating with each other via synchronous message-passing.1
The CSP paradigm is built around channels, which provide the basic communi-
cation and synchronization mechanisms between the computational processes.
1 CSP is broadly similar to the actor model [12], with key distinctions in terms of the

basic assumptions regarding process identities and synchronization.

c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 317–333, 2019.
https://doi.org/10.1007/978-3-030-29400-7_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_23&domain=pdf
https://doi.org/10.1007/978-3-030-29400-7_23

318 N. Koval et al.

To efficiently support CSP programming on modern multi-threaded multi-
processors, it is critical to be able to implement fast, scalable channels, support-
ing the CSP semantics. Naively, concurrent channels can be seen as a classic
instance of first-in-first-out (FIFO) queues, which have been extensively stud-
ied in shared-memory programming [17]. Yet, CSP channels typically require
additional, non-trivial semantics, which are not easy to pigeonhole in the clas-
sic producer-consumer data structure definitions, and their usage scenarios can
vary broadly. One such example is commonly-used the select expression, by
which a process can register operations in a set of channels, returning on the
first operation that succeeds.

Different programming language implementations fill this implementation
gap by “brewing” their own FIFO channel implementations, either indepen-
dently, or adapting ideas present in the concurrency literature. Most implemen-
tations, including Go [8] and Rust [9], rely on lock-based designs. In particular,
they rely on careful combinations of fine-grained and coarse-grained synchroniza-
tion to implement the complex channel semantics. One notable exception is the
Kotlin coroutines library [4], which implements a complex producer-consumer
data structure, based on a doubly-linked list design [31]. Unfortunately, this
implementation is known to allow for live-lock in certain corner cases [5]. Another
one exception is SynchronousQueue in Java [27], which is based on Michael-
Scott queue [23]; however, it does not support the select expression.

Contribution. In this work, we revisit the question of implementing an efficient
channel with CSP semantics. We provide the first linearizable, lock-free imple-
mentation of a rendezvous channel supporting send, receive, and select
operations, that is fast in both contended and uncontended scenarios, and can
be extended to implement CSP semantics as specified by various programming
languages.

Our design builds on ideas from previous work on lock-free FIFO queues,
e.g. [11,23,27]. Our base data structure is similar to the Michael-Scott queue, but
where nodes are segments, which can accommodate multiple waiting operations
of either send or receive type.

We non-trivially extend this blueprint to support extended semantics in a
wide range of contended and uncontended scenarios. Specifically, we add effi-
cient support for select operations, which can wait on operation in a set of
channels, via a customized implementation of descriptors [14]. A novel feature
of our mechanism is that it permits physical removal of elements from the mid-
dle of a queue-like structure in O(1) amortized operations, which is required for
an implementation of the select expression. The proposed algorithm is quite
general, in that it can be adapted to other synchronization primitives for CSP
programming, such as buffered channels, mutexes, and semaphores.

We validate our algorithm with efficient implementations of our channel in
Go and Kotlin. Our algorithm can provide comparable performance relative to
the lock-based Go implementation in a range of scenarios, and outperforms it
by up to 2× in terms of average time per operation. Our Kotlin implementation
significantly outperforms the existing library implementation [4], especially the
select expression. It speeds up the send and receive operations by up to
2× for the most part, and by a couple of magnitude in certain scenarios; the
select expression is faster by up to 10×.

Scalable FIFO Channels for Programming via CSP 319

2 Channel Semantics

The rendezvous channel is the main abstraction for message passing protocols
used in both CSP and actor programming models. Intuitively, in this abstraction,
there are two types of processes, producers and consumers, which perform a
rendezvous handshake as a part of their protocol. This section describes the
channel semantics and its API, which is shown in Listing 1. In the following,
we assume that threads are either producers, which perform send requests, or
consumers, which perform receive requests.
1 class Channel {
2 fun send(element: Any)
3 fun receive(): Any
4 }
5

6 fun select(alternatives: SelectAlt[])

7 class SelectAlt(
8 val channel: Channel,
9 val element: Any?, // null for receive

10 val action: fun(Any?)
11)

Listing 1. Rendezvous channel API

Send and Receive Semantics. In order for a producer to “send” an ele-
ment, it has to perform a rendezvous handshake with a consumer, to which it
passes this element. The consumer semantics are symmetric. At the same time,
we assume first-in-first-out (FIFO) guarantees, meaning that all requests in a
channel should be processed in the order of arrival.

At the operational level, the rendezvous channel is essentially a queue of wait-
ing processes, where each request atomically checks if the queue has processes of
the opposite type, and either removes the first one and resumes it, or adds itself
to the queue and suspends. Practical systems offer an efficient way to suspend
a process waiting for a request, and resume it after that. This mechanism is
described in Sect. 4.

The select Expression. Channels in the CSP programming model usually
support selection among several alternates. This expression is usually called
select and it makes possible to await multiple send or receive invocations
on different channels, and select the first one which becomes available. At the
same time, the chosen process should be removed from the other waiting queues.
The classic select expression checks the alternatives in the enumeration order,
while the unbiased version uses a random order [4,8]. For simplicity, we assume
an arbitrary order on alternatives, but the proposed algorithm does not rely on
this restriction and can be easily modified to support any ordering strategy.

Programming languages take different approaches for defining the select
expression. For example, Go supports it as a built-in feature [8], while Kotlin
implements it in the Kotlin Coroutines library providing a domain specific lan-
guage (DSL) for the select declaration [4]. For this paper we use a DSL-based
API, which can be used for built-in expression implementation as well.

To describe alternatives, we use the SelectAlt class, which specifies a chan-
nel, an element to be sent (null is used for receiving), and an action to be
executed with the received element (null is passed when sending) in case this
alternative is selected. The selection algorithm can be implemented as an exter-
nal select function taking an array of alternatives. Listing 2 shows an example
usage of this API.

320 N. Koval et al.

1 ch1 := Channel(), ch2 := Channel()
2 select(
3 SelectAlt(ch1, 42, { _ -> println("Sent 42") }),
4 SelectAlt(ch2, null, { res -> println("Received $res") })
5)

Listing 2. Example of the select expression usage. This code either sends “42” to
the first channel or receives an element from the second one.

3 Related Work

3.1 Coroutines and Actors

Two basic parallel programming models use message passing for synchronization:
actors [12] and coroutines [20]. The second one is also known as green threads
and fibers. Roughly, an actor can be represented as a coroutine associated with
a channel, to which other actors can send messages, and from which this actor
can receive them. In contrast to actors, coroutines use channels directly and can
perform the select expression on them.

Several modern programming languages and libraries use one of these models.
For example, Go [8], Kotlin [4], Clojure [7], Rust [9], and project Loom for
Java [6] use coroutines, while Erlang [3] and Akka [2] use the actor model; all
of them have their own channel implementations. Almost all solutions we are
aware of use locks in order to support a waiting queue, and perform the select
expression using fine-grained synchronization on these locks. These approaches
are fundamentally blocking.

To our knowledge, the only non-blocking channel implementation is a part
of the Kotlin coroutines library [4], which is lock-free. Here, the waiting queue
is implemented using a modified instance of the doubly-linked list designed by
Sundell and Tsigas [31], and Harris descriptors [14] to ensure the atomicity. The
resulting implementation is extremely complex, and shows significant overhead,
as we show in the experimental section. Moreover, it is known that Kotlin’s
lock-free algorithm for a correctness bug, and can get into a livelock [5]. This
makes our solution for the select expression the first lock-free implementation
to support such semantics.

3.2 Producer-Consumer Data Structures

Fair Synchronous Queues. Among classic data structures, synchronous
queues are probably closest to channels in terms of semantics. They support
send and receive operations, which wait for a rendezvous. The main differ-
ence is that they do not support the select expression. Hanson suggested an
algorithm based on three semaphores [13], which was improved in Java 5 using
a global lock and wait-notify mechanism in order to make a rendezvous.

Java 6 implements a lock-free algorithm suggested by Scherer, Lea, and Scott
[27]. Their solution is based on Michael-Scott lock-free queue [23]; we use a
similar technique for maintaining the waiting queue.

Reference [19] presents an improved general scheme for implementing non-
blocking dual containers. Their approach leverages the LCRQ non-blocking
queue design [24] in a clever way, to implement a rendezvous mechanism. While

Scalable FIFO Channels for Programming via CSP 321

this approach is quite interesting and efficient in practice, it requires access to
double-width atomic primitives, which are only supported by Intel CPUs. This
makes the code non-portable: for instance, it would prevent implementation in
both Java/Kotlin and Go. Therefore, we cannot apply it in our setting.

Unfair Synchronous Queues. Scherer, Lea, and Scott also propose unfair
but scalable synchronous queue, which is based on a stack instead of a queue
[27]. However, this approach still induces a sequential bottleneck on the stack.
To work around a single point of synchronization, Afek, Korland, Natanzon,
and Shavit introduced elimination-diffraction trees [11]. In this solution, each
request goes through a binary tree, in which internal nodes are balancer objects
[30], and leaves are synchronous queues.

Another approach to reducing contention is flat combining [15], which was
applied to unfair synchronous queue problem by Hendler et al. [16].

Elimination. One more way to reduce contention is using elimination, which
was firstly applied for stacks [29] by Shavit and Touitou. They observed that
concurrent push and pop operations can be eliminated preserving atomicity by
having the push operation pass directly to pop, without modifying the stack.
Scherer, Lea, and Scott use elimination in their exchanger algorithm [26], where
there is only one type of request and so a rendezvous happens between any two
threads that show up. In case of channels, not all pairings are allowed, so their
approach is not applicable for our problem.

4 Preliminaries

Coroutines Management. To implement send and receive operations, we
need to have an ability to store the current coroutine somewhere and suspend
it, after what an opposite operation can resume it. It is worth noting that some
libraries use another approach and store continuation, which has the required
information for resuming. Nevertheless, both approaches are equivalent for our
purpose and should provide the described above functionality.

The algorithm presented in the paper uses definitions from Listing 3. The
Coroutine class represents a coroutine and new fields can be inserted into it for
synchronization. To get the current coroutine, we use the curCor function. The
park and unpark methods are used for suspending and resuming the coroutine
respectively. As well as in the native thread park mechanism, we assume that
park returns without suspension if unpark has been called before. However,
in case of suspension, park does not block the current thread, but schedules to
another waiting coroutine.

Not all environments provide such contracts. For example, in Go language
gopark (park) invocation should always happen before goready (unpark) invo-
cation. This solution is sufficient for the lock-based algorithm, but can be also
easily extended to support the required contract by providing an appropriate
implementation of park on top of gopark.

In order to send an element to a suspended coroutine, we suggest adding a
special field into Coroutine class, which stores the result. This way, in case

322 N. Koval et al.

of resuming a coroutine, we use resume method which stores the result in this
field and unparks the coroutine. From the other side, to suspend and return this
result we use suspendAndGetResult, which parks the current coroutine and
returns the previously stored result right after it was unparked.

1 class Coroutine {
2 ...
3 var result: Any?
4 }
5
6 fun curCor(): Coroutine
7
8 fun park()
9 fun unpark(c: Coroutine)

10

11 fun resume(c: Coroutine, res: Any?) {
12 c.result = res
13 unpark(c)
14 }
15
16 fun suspendAndGetResult(): Any? {
17 c := curCor()
18 park(c)
19 return c.result
20 }

Listing 3. Coroutines management primitives

Lock-Freedom. When discussing progress guarantees, we assume that the pro-
vided park, unpark, and curCor functions are lock-free. In case of park, this
means that the current thread parks the current coroutine and schedules another
one in a lock-free way.

Taking into account that the channel is a blocking data structure by design
(sender waits for a receiver and vice versa), it is possible to guarantee lock-
freedom for a part of the algorithm only. Similar to the dual data structures
formalism [28], we split every operation into two parts. At first, it atomically
checks for an opposite coroutine in the waiting queue and either removes it or
adds the current one. Secondly, in case of adding to the waiting queue (or adding
to all waiting queues in select statement), it parks the current coroutine and
waits for an unpark invocation. Thus, we guarantee lock-freedom for the first
part only, which essentially does all the synchronization.

Memory Model and Atomic Primitives. For simplicity of exposition, we
assume a sequentially-consistent memory model, although our implementations
work under the practical, weaker models. The presented algorithm requires only
compare-and-set (CAS) primitive in addition to the standard read and write.
It is denoted as CAS(&p, old, new), and atomically checks that the value
located by address p equals to old and changes it to new. It returns false if
the check fails and true otherwise.

Memory Reclamation. We assume that run-time environment supports
garbage collection, which is true for Kotlin and Go. However, this assumption is
mostly for simplicity of exposition. Reclamation techniques like hazard pointers
[22] can be used in other environments.

Scalable FIFO Channels for Programming via CSP 323

5 Algorithm Description

Overview. Similarly to the rendezvous channel specification, our algorithm
maintains a waiting queue, which is loosely based on the Michael-Scott [23]
queue design. However, our waiting queue stores several waiters in each node, and
supports a more complex channel contracts, including the select expression.
This section describes the proposed algorithm iteratively. At first, the basic
algorithm for send and receive operations is discussed; after that, we extend
the algorithm in order to support the select expression.

5.1 Channel Structure Overview

Essentially, our algorithm implements a fair synchronous queue, which stores
several waiting processes in each node, and supports the select expression. The
data structure corresponding to the proposed algorithm is shown in Listing 4.

The overall structure of the channel is represented as a Michael-Scott lock-
free queue [23], using head and tail pointers to Node instances. However, instead
of dynamically creating a new Node for each operation to be waited on, our Node
has a fixed-size waiters array of NODE SIZE structures of Waiter type. The
Waiter structure represents either a waiting receiver (if its el field is a special
marker element RECEIVE EL) or a waiting sender (when el field is the element
that is being sent which is neither the marker nor null), together with the
reference to the corresponding coroutine in the cor field. Initially, all items in
the waiters array are filled with null values (both el and cor fields). Every
instance of Node has a unique integer id that is equal to zero for the first node.
When a new node is added to the next pointer, the invariant is maintained that
node.next.id = node.id + 1.

In contrast to the synchronous queue algorithm by Scherer et al. [27], our
channel has global enqIdx and deqIdx which indicate the current position
to enqueue a new waiter and to dequeue the oldest one correspondingly. These
positions are monotonically increasing 64-bit integer counters, their value mod-
ulo SEGMENT SIZE indicate an offset in waiters array, while the remainder
modulo SEGMENT SIZE corresponds to the id of the corresponding Node.

While updating these indices, we maintain the invariant that deqIdx ≤
enqIdx, and these indices are equal when the channel is empty. An additional
invariant is that the first waiter slot in waiters array of a node is always
occupied when this node is added to the queue. To maintain this invariant, the
initial values of deqIdx and enqIdx start with one. In practical applications,
64-bit counters are big enough as to never overflow. In effect, with a linked list
of Node structures we are modelling an array-based queue of unbounded size,
where each node is a segment of this array.

Similarly to the LCRQ algorithm [24], and unlike the synchronous queue
[27] and Michael-Scott [23] algorithms, both send and receive operations are
linearized on the writes of the el field to the corresponding Waiter slot in the
node. Lock-freedom is guaranteed in a similar way to LCRQ.

324 N. Koval et al.

5.2 The send and receive Operations

Send and receive operations follow almost identical algorithm steps. They both
look for a potential rendezvous with a waiter of the opposite type (send
rendezvous-es with receive, and vice versa) or add themselves as a new waiter.
This complex operation has to be performed atomically with respect to other
operations, maintaining the invariant that the queue contains waiters of one
type only (either senders or receivers), or is empty. The only difference between
send and receive is that on rendezvous send transfers its element to the waiting
receive, while receive does the opposite. So, in the following explanation
we consider algorithm for the send operation only.

1 class Node {
2 val id: Long // initialized on creation
3 val waiters: Waiter[SEGMENT_SIZE]
4 var next: Node? = null
5 }
6 struct Waiter {
7 var cor: Coroutine? = null
8 var el: Any? = null // element
9 }

10 class Channel {
11 var enqIdx: Long = 1 // enqueue index
12 var deqIdx: Long = 1 // dequeue index
13 var head, tail: Node
14

15 Channel() {
16 head = tail = Node{ id: 0 }
17 }
18 }

Listing 4. Data structures for the channel

High-Level Overview. The pseudo-code for send operation is presented in
Listing 5. Without interference from other threads, the send algorithm proceeds
as follows. First, it reads both enqIdx and deqIdx (in this order) and checks if
the queue is empty, adding itself to the queue in this case. If the queue contains
waiters, it reads the first element and checks if it has the opposite type (if it is
a send operation—the opposite type is receive). If a rendezvous is possible,
it removes the first waiter from the queue and makes the rendezvous, resuming
the corresponding coroutine with the specified element, terminating after that.
Otherwise, the queue contains waiters of the same send type and the current
coroutine is added to the queue as a new waiter. The whole send operation
is enclosed in an infinite loop to retry when interference from other threads is
detected.

Adding to the Waiting Queue. The algorithm to add to the waiting queue
is presented in function addToQueue. The enqIdx for this operation has been
already read in the beginning of the algorithm, and references the slot to which
the waiter information is going to be written to. At first, the algorithm reads the
tail pointer of the waiting queue, which references the last Node in it. There
are two cases here: if a slot is in this last node then storeWaiter function is
used, otherwise a new node is created using the addNewNode function.

When storing the waiter information to the last node, we increment the
global enqIdx first, then write the current coroutine, then write the element.
The storing of the element is the linearization point of the operation.

Scalable FIFO Channels for Programming via CSP 325

1 fun send(el: Any) = while (true) {
2 enqIdx := this.enqIdx;
3 deqIdx := this.deqIdx
4 // Are enqIdx and deqidx consistent?
5 if (enqIdx < deqIdx) continue
6 // Is the queue empty?
7 if (deqIdx == enqIdx) {
8 if (addToQueue(enqIdx, element)) {
9 park()

10 return
11 } else continue
12 }
13 head := this.head // read head
14 // Is the state consistent?
15 if (deqIdx / SEGMENT_SIZE < head.id)
16 // deqIdx is inconsistent
17 // with head
18 continue
19 if (deqIdx / SEGMENT_SIZE > head.id) {
20 // head is outdated,
21 // move it forward
22 CAS(&this.head, head, head.next)
23 continue
24 }
25 // Read the first element
26 idxInNode := deqIdx % SEGMENT_SIZE
27 firstEl := readEl(head, idxInNode)
28 if (firstEl == BROKEN) {
29 // The slot is broken, skip it
30 CAS(&this.deqIdx, deqIdx, deqIdx + 1)
31 continue
32 }
33 if (firstEl == RECEIVE_EL) {
34 // Try to make a rendezvous
35 if (resumeWaiter(head, deqIdx, elem))
36 return
37 } else {
38 // Try to add to the queue
39 if (addToQueue(enqIdx, element)) {
40 park()
41 return
42 }
43 }
44 }
45
46 fun resumeWaiter(head: Node, i: Int,
47 el: Any): Bool {
48 if (!CAS(&this.deqIdx, i, i + 1))
49 return false
50 w := head.waiters[i] // read slot
51 head.waiters[i] = null // clear
52 resume(w.cor, el)
53 return true
54 }

55 fun addToQueue(i: Int, el: Any): Bool {
56 tail := this.tail // read tail
57 // Is the state consistent?
58 if (tail.id > i / SEGMENT_SIZE)
59 return false
60 if (tail.id == i / SEGMENT_SIZE &&
61 i % SEGMENT_SIZE == 0)
62 CAS(&this.enqIdx, i, i + 1)
63 // Either store to the tail
64 // or create a new node
65 if (i % SEGMENT_SIZE != 0)
66 return storeWaiter(tail, enqIdx, el)
67 else
68 return addNewNode(tail, enqIdx, el)
69 }
70
71 fun addNewNode(tail: Node, i: Int,
72 el: Any): Bool {
73 while (true) {
74 tailNext := tail.next
75 if (tailNext != null) {
76 // Help another thread
77 CAS(&this.tail, tail, tailNext)
78 CAS(&this.enqIdx, i, i + 1)
79 return false
80 }
81 newTail := Node {id: tail.id + 1}
82 newTail.waiters[0].el = el
83 newTail.waiters[0].cor = curCor()
84 if (CAS(&tail.next, null, newTail) {
85 // Others can help us
86 CAS(&this.tail, tail, newTail)
87 CAS(&this.enqIdx, i, i + 1)
88 return true
89 } else continue
90 }
91 }
92
93 fun storeWaiter(tail: Node, i: Int,
94 el: Any): Bool {
95 if (CAS(&this.enqIdx, i, i + 1))
96 return false
97 tail.waiters[enqIdx].cor = curCor()
98 if (CAS(&tail.waiters[i].el, null, el))
99 return true

100 tail.waiters[i].cor = null
101 return false
102 }
103
104 fun readEl(n: Node, i: Int): Any? {
105 el := n.waiters[i].el
106 if (el != null) return el
107 if (CAS(&n.waiters[i].el, null, BROKEN)
108 return
109 else return n.waiters[i].el
110 }

Listing 5. Algorithm for send, without the select expression support

When a new node is created, our algorithm uses the same logic as the Michael-
Scott queue: it creates a new node with the current coroutine and element as the
first waiter, changes the next field of the current tail, and updates the tail
field. The linearization point here is update of the next field, as in Michael-
Scott queue. Subsequent updates of the tail only maintain queue consistency,
and other concurrent operations can help updating it. In our algorithm, we also
maintain the global enqIdx similarly to how the tail pointer is maintained in

326 N. Koval et al.

the Michael-Scott queue. We update the enqIdx after the tail is updated. In
case of concurrent execution, other operations can help with this update as well.

Rendezvous. The algorithm for rendezvous is presented as function
resumeWaiter. In this case, the first element is already read, and we only
need to increment the deqIdx to remove it from the queue. The successful CAS
of deqIdx linearizes this operation.

Reading an Element. When a new waiter is added to the queue, enqIdx
is incremented, which signals that the queue is non-empty. After that, another
thread can try to remove a waiter from this slot in waiters array, while the
element was not written there yet. We cannot wait for the writer to write an
element in a lock-free algorithm, so if the thread reads the null element, it
does a CAS from null to a special BROKEN marker to “poison” this slot (see
readEl function). On the other hand, the writer attempts to CAS from null
to the element, and aborts the operation on encountering a broken slot. This
solution is similar to LCRQ [24]. Two threads can repeatedly interfere with
each other, which would render this algorithm obstruction-free if the waiters
array were unbounded. However, the waiters array is bounded, and will be
ultimately be filled with broken slots, triggering the creation of a new node with
the already stored waiter, which proceeds as in the Michael-Scott algorithm and
guarantees lock-freedom.

Concurrency. In order to preserve consistency of the data structure, all mod-
ifications before linearization points are performed using CAS, restarting on
failures. Modifications after linearization points also use CAS, but do not retry
on failures, as other threads can detect such inconsistencies and help fix them.

To check that the state is consistent, after reading the enqIdx and deqIdx
fields, we check that enqIdx ≥ deqIdx. If this condition does not hold, it
means that indices were updated by concurrent operations in between reading
of enqIdx and deqIdx. In this case, we retry the operation immediately, to
re-read a consistent pair of indices. However, a consistent pair of indices can still
point to wrong slots by the time we come to reading or writing them, due to
concurrent operations.

We first consider the case when the send operation decides to add itself
as a waiter to the queue, invoking addToQueue. This invocation succeeds and
returns true only if enqIdx is not updated concurrently. Because enqIdx read
is the very first action in the send algorithm, concurrent operations could only
have removed elements from the waiting queue, incrementing deqIdx. However,
removing elements from the queue does not invalidate the decision to add a new
waiter to the queue: a new waiter is added when the queue either contains waiters
of the same type, or is empty.

In the case when send decides to make a rendezvous and invokes
resumeWaiter, the first action of it is to increment deqIdx using CAS, to
ensure it is not updated by concurrent operations. The first resumeWaiter
to successfully perform this CAS claims this slot. This successful CAS is a lin-
earization point for send operation in this case.

Scalable FIFO Channels for Programming via CSP 327

5.3 The select Expression

A high-level algorithm for the select expression is presented in Listing 6 and
proceeds in several phases. Each select instance is internally represented by
SelectOp class, which contains the current coroutine (cor field) and the cur-
rent state of this select instance (state field). In the first registration phase
the select instance is added to all the corresponding channels as a waiter, simi-
larly to the plain send and receive operations. During this phase, it can make
a rendezvous with another waiter, become selected, and jump to the removing
phase. If the registration phase completes without rendezvous, then this select
is in the waiting phase until another coroutine makes a rendezvous with it by
performing an opposite operation. After that the removing phase starts, during
which all the registered waiters for this select instance are removed from the
corresponding channels to avoid memory leaks.

Registration. In the registration phase, the select instance is registered in
each channel sequentially, using regSelect function in Listing 6. It uses a sim-
ilar algorithm as for the simple send and receive operations, but instead
of adding the current coroutine to the waiting queue, the reference to the
SelectOp object is stored. If it makes a rendezvous with an opposite oper-
ation, we should change the state of this SelectOp object from PENDING to
the corresponding channel atomically, via CAS, as shown on Fig. 1. This CAS
can fail if another coroutine has already made a rendezvous with this select,
due to a possibility that this select instance is already stored as a waiter in
other channels. Due to this fact, we also cannot linearize on deqIdx increment:
this increment claims the slot, but the select instance can fail on doing a ren-
dezvous if it is already selected. Therefore, we change the el waiter field life-cycle
(see Fig. 2) and linearize on performing a successful CAS from Element state to
DONE. This change allows updating deqIdx lazily. However, with this change
we have to update two fields atomically: the state of this select instance and
the corresponding el field; this successful update is a linearization point of per-
formed by this select rendezvous. For this, we use descriptors (SelectDesc
state in Fig. 2) similarly to the Harris lock-free multi-word CAS [14]. Like in the
Harris algorithm, concurrent operations that encounter a descriptor in the el
field help to complete the operation it describes.

Rendezvous with select. Simple send and receive operations should
atomically change the select instance state from PENDING to the correspond-
ing channel, what is a linearization point of successful rendezvous with select.

A rendezvous between two select-s is more complicated, it requires updat-
ing both their states from PENDING to the corresponding channels, as well as
the update in el field. Like in the registration phase we use descriptors, and
update states to a SelectDesc at the beginning of the possible rendezvous
(see Fig. 1), processing the descriptor after that. It is known by the Harris paper
that we have to always set descriptors in the same order to avoid livelocks. For
this, we introduce an unique id field in SelectOp, and order select instances
using it.

328 N. Koval et al.

Fig. 1. Life-cycle of the state
in select instance (see
SelectOp).

Fig. 2. Life-cycle of the el field
in waiter slot. Broken slot is rep-
resented as a waiter with a spe-
cial BROKEN token in el field.

The Removing Phase. During the removing phase, we clean the correspond-
ing waiter fields and remove a node if it is full of processed waiter cells; the
number of cleaned waiters is maintained via an atomic counter, separately for
each node. When this counter reaches SEGMENT SIZE, we consider the node to
be cleaned and logically removed from the queue. We physically remove the node
from the Michael-Scott queue using remove function presented in Listing 7.

To perform removing in constant time, we add a new prev field into Node,
which references the previous node and is initialized to the current tail when it
is added to the queue. That helps us to remove nodes from the middle of the
queue; however, we forbid removing head and tail. If the node to be removed is
head, it is going to be removed after the constant number of increments due to
the head moving forward in the Michael-Scott algorithm. At the same time, if
the tail is fully cleaned, it is not considered as logically removed; it is going to
be removed from the queue right after a new tail node is added.

When remove operations do not interfere, we first get the previous and next
nodes, and then change their next (for the previous node) and prev (for the
next one) links to each other. Our construction guarantees that neither of these
prev and next links are not null when the node is neither head nor tail.

However, remove operations on neighbour nodes can interfere with each other
and head or tail updates. In order to ensure correctness, we update prev field
to the closest node of lower id that has not yet been cleaned, and the next field
to the closest non-cleaned node of larger id. This way, concurrent operations
cannot break linked list invariants and effectively help each other to move the
prev and next references after logical removal, moving them to the left and to
the right respectively (methods movePrevToLeft and moveNextToRight in
Listing 7, they update prev and next pointers if the passed node has lower or
greater id respectively), to physically remove all cleaned nodes from the list.

Scalable FIFO Channels for Programming via CSP 329

1 fun remove(n: Node) {
2 next := n.next;
3 prev := n.prev
4 // check if this segment is not tail
5 if (next == null)
6 return
7 // check if this segment is not head
8 if (prev == null)
9 return

10 // Link next and prev
11 prev.moveNextToRight(next)
12 next.movePrevToLeft(prev)
13 // Help other threads
14 if (prev.cleaned == SEGMENT_SIZE)
15 prev.remove()
16 if (next.cleaned == SEGMENT_SIZE)
17 next.remove()
18 }

Listing 7. Removing empty node from the queue

We also need to ensure that these previous and next nodes are not logically
removed, so we check this invariant after the re-linking and help with removing
these previous and next nodes if needed.

6 Evaluation

We implemented the proposed rendezvous channel algorithm in Kotlin and
Go [21]. As a comparison point, we use the optimized implementations pro-
vided by the languages; for Kotlin, we also implement and compare against the
fair synchronous queue algorithm by Scherer et al. [27].

Go synchronizes channel operations via a coarse lock, and implements a fine-
grained locking algorithm for the select expression. In Kotlin, all channel
operations are lock-free, and use a concurrent doubly linked list, alongside with
a descriptor for each operation, which is stored into the list head field and there-
fore forces other threads to help with the operation first. This way, all operations
on a given channel are executing almost sequentially. The fair synchronous queue
presented of Scherer et al. [27] is based on the classic Michael-Scott queue algo-
rithm [23]. It is lock-free, but does not support the select expression.

Benchmarks. Our initial set of experiments consider a single channel to which
coroutines apply a series of send and receive operations. To increase the
parallelism level, we increase the maximum number of threads for the coroutines
scheduler. We use the following three benchmarks to evaluate the performance:

– Multiple-producer single-consumer: This scenario simulates a channel associ-
ated with an actor, and shows the potential of using the proposed algorithms
in actor-like scenarios. We have the same number of coroutines as the number
of threads.

– Multiple-producer multiple-consumer: This is a standard benchmark for
queue-like data structures. We again have the same number of coroutines
as the number of threads.

– Multiple-producer multiple-consumer with a thousand coroutines. In CSP pro-
gramming, it is often the case that one has significantly more coroutines than
the number of cores (“oversubscription”). We therefore examine this scenario
as well.

To benchmark the select expression, we use the same benchmarks, but
where all operations inside the select expression receive from an empty
coroutine-local channel at the same time. This benchmark simulates checking

330 N. Koval et al.

if the coroutine should be cancelled or not by trying to receive a special token
from a specific additional channel. This is a widely used pattern in producer-
consumer scenarios [1].

Methodology. To avoid artificial long run scenarios [23], we simulate some
amount of work between operations. Specifically, we have threads consume 100
CPU cycles in an non-contended local loop, which decreases the contention on
the channel. Result trends are similar for higher values of this “backoff” term, but
tend to have high variance, induced by contention, for much smaller values. We
measure the time it takes to send 106 elements over each channel implementation,
averaged over 10 runs. This time is then divided by the number of operations,
to obtain the results shown. In our algorithm, we have chosen a NODE SIZE size
of 32, based on some minimal tuning.

Platform. We used a server with 4 Intel Xeon Gold 6150 (Skylake) sockets, each
socket has 18 2.70 GHz cores, each of which multiplexes 2 hardware threads, for
a total of 144 hardware threads.

6.1 Experimental Results

Figure 3 shows the experimental results on different benchmarks. We compare
our algorithm with Go (top) and Kotlin coroutines (bottom). In addition, we
compare with the fair synchronous queue of Scherer et al. [27], implemented in
Kotlin, the results of which are presented on the bottom-side graphs as well. We
split the analysis of the results into two parts, considering the performance of
plain send and receive operations, and the select expression.

Fig. 3. Performance of the proposed channel algorithm compared against Go and
Kotlin rendezvous channels, and the FIFO synchronous queue algorithm by Scherer
et al. The results of the select expression are shown on the same plots, but with the
suffix select in line titles and using dimmed colors.

Send and receive Performance. Our algorithm outperforms the Go imple-
mentation in all benchmarks and shows similar performance in the single thread

Scalable FIFO Channels for Programming via CSP 331

case. A little loss of performance at more than 64 scheduler threads in multi-
producer multi-consumer benchmarks is explained by the fact that our algorithm
is more complicated to ensure lock-freedom, and therefore suffers in terms of
cache performance under high contention.

Kotlin Coroutines implementation of send and receive works similarly in
the single-consumer scenario and is outperformed by our algorithm in all other
benchmarks, especially at high thread count. This happens because Kotlin uses
a considerably more complex doubly-linked list with descriptors under the hood.
Our benchmarks do not show the garbage collection overhead, which should also
be decreased significantly with our algorithm.

We found that the baseline Kotlin implementation performed particularly
badly for large number of coroutines (see Fig. 3, bottom middle). We believe
these bad results are due to the recursive helping mechanism employed by this
implementation.

Our algorithm for send and receive improves on the fair synchronous
queue by Scherer et al., and shows superior results for all benchmarks. One
main difference comes from the fact that we are using a node for several items,
which decreases the number of allocations and possible cache misses.

The select Expression Performance. Go’s implementation uses a lock-
based algorithm. In our setup, compared with simple send and receive oper-
ations, the ‘select’ operation needs to acquire an extra lock for another channel
without contention. In contrast, our algorithm needs to create a descriptor for
each such operation, and perform an additional CAS operations to update the
SelectOp.state field. Our algorithm also requires a concurrent version of
park/unpark primitives, which also does an additional CAS and degrades the
performance. This explains a bit higher cost of our algorithm in low-contended
scenarios (≤4 threads). However, because of no other difference compared with
the plain ‘send’ and ‘receive’ operations, our algorithm shows the same per-
formance trend with increasing the number of threads, and outperforms Go’s
implementation by up to 2×.

Our algorithm outperforms the lock-free Kotlin baseline implementation in
all scenarios. It does so significantly at large thread counts and shows a bit better
results on smaller thread counts. Similarly to the simple send and receive
operations analysis, we believe, that so bad Kotlin’s implementation behavior
on large number of threads is a consequence of a lot of helping.

7 Discussion and Future Work

We have presented the first lock-free implementation of a channel supporting
complete CSP semantics. Our design is built on several good ideas introduced
in the context of lock-free ordered data structures, and introduces some new
techniques to handle CSP semantics, in particular, the select expression and
removing from the middle of a queue-like structure as a part of it. Our implemen-
tations [21] in Kotlin and Go outperform the existing baselines and show much
better scalability, especially for the select expression. We also believe that
it is possible to achieve better performance since our implementations are not
as good optimized as Go and Kotlin Coroutines ones. In future work, we aim
to study further optimizations for our algorithm in the high-contention case,

332 N. Koval et al.

and extend support for additional semantics, such as operation cancellation and
channel closing.

References

1. Go Concurrency Patterns: Pipelines and cancellation - The Go Blog (2014).
https://blog.golang.org/pipelines

2. Akka (2018). https://akka.io/
3. Erlang Programming Language (2018). http://www.erlang.org/
4. Kotlin Coroutines (2018). https://github.com/Kotlin/kotlin-coroutines
5. Livelock bug in the Kotling Coroutine Implementation (2018). https://github.com/

Kotlin/kotlinx.coroutines/issues/504
6. OpenJDK: Loom (2018). http://openjdk.java.net/projects/loom/
7. The Clojure Programming Language (2018). https://clojure.org/
8. The Go Programming Language (2018). https://golang.org/
9. The Rust Programming Language (2018). https://www.rust-lang.org/

10. Abdallah, A.E.: Communicating Sequential Processes. The First 25 Years. Sym-
posium on the Occasion of 25 Years of CSP, London, UK, 7–8 July 2004. Revised
Invited Papers, vol. 3525. Springer, Heidelberg (2005). https://doi.org/10.1007/
b136154

11. Afek, Y., Korland, G., Natanzon, M., Shavit, N.: Scalable producer-consumer pools
based on elimination-diffraction trees. In: D’Ambra, P., Guarracino, M., Talia, D.
(eds.) Euro-Par 2010. LNCS, vol. 6272, pp. 151–162. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15291-7 16

12. Agha, G.A.: Actors: a model of concurrent computation in distributed systems.
Technical report, Massachusetts Inst of Tech Cambridge Artificial Intelligence Lab
(1985)

13. Hanson, D.R.: C Interfaces and Implementations: Techniques for Creating Reusable
Software. Addison-Wesley Longman Publishing Co., Inc., Boston (1996)

14. Harris, T.L., Fraser, K., Pratt, I.A.: A practical multi-word compare-and-swap
operation. In: Malkhi, D. (ed.) DISC 2002. LNCS, vol. 2508, pp. 265–279. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-36108-1 18

15. Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Flat combining and the
synchronization-parallelism tradeoff. In: Proceedings of the Twenty-Second Annual
ACM Symposium on Parallelism in Algorithms and Architectures, pp. 355–364.
ACM (2010)

16. Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Scalable flat-combining based syn-
chronous queues. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol.
6343, pp. 79–93. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
15763-9 8

17. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann, San Francisco (2011)

18. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978)

19. Izraelevitz, J., Scott, M.L.: Generality and speed in nonblocking dual containers.
ACM Trans. Parallel Comput. 3(4), 22:1–22:37 (2017). https://doi.org/10.1145/
3040220. http://doi.acm.org/10.1145/3040220

20. Kahn, G., MacQueen, D.: Coroutines and networks of parallel processes (1976)
21. Koval, N., Alistarh, D., Elizarov, R.: Channel implementations in go and kotlin.

https://doi.org/10.6084/m9.figshare.8586311
22. Michael, M.M.: Hazard pointers: safe memory reclamation for lock-free objects.

IEEE Trans. Parallel Distrib. Syst. 6, 491–504 (2004)

https://blog.golang.org/pipelines
https://akka.io/
http://www.erlang.org/
https://github.com/Kotlin/kotlin-coroutines
https://github.com/Kotlin/kotlinx.coroutines/issues/504
https://github.com/Kotlin/kotlinx.coroutines/issues/504
http://openjdk.java.net/projects/loom/
https://clojure.org/
https://golang.org/
https://www.rust-lang.org/
https://doi.org/10.1007/b136154
https://doi.org/10.1007/b136154
https://doi.org/10.1007/978-3-642-15291-7_16
https://doi.org/10.1007/3-540-36108-1_18
https://doi.org/10.1007/978-3-642-15763-9_8
https://doi.org/10.1007/978-3-642-15763-9_8
https://doi.org/10.1145/3040220
https://doi.org/10.1145/3040220
http://doi.acm.org/10.1145/3040220
https://doi.org/10.6084/m9.figshare.8586311

Scalable FIFO Channels for Programming via CSP 333

23. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and block-
ing concurrent queue algorithms. In: Proceedings of the Fifteenth Annual ACM
Symposium on Principles of Distributed Computing, pp. 267–275. ACM (1996)

24. Morrison, A., Afek, Y.: Fast concurrent queues for x86 processors. In: ACM SIG-
PLAN Notices, vol. 48, pp. 103–112. ACM (2013)

25. Odersky, M., et al.: The scala language specification (2007)
26. Scherer III, W.N., Lea, D., Scott, M.L.: A scalable elimination-based exchange

channel. In: SCOOL 2005, p. 83 (2005)
27. Scherer III, W.N., Lea, D., Scott, M.L.: Scalable synchronous queues. In: Proceed-

ings of the Eleventh ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pp. 147–156. ACM (2006)

28. Scherer III, W., Scott, M.: Nonblocking concurrent objects with condition syn-
chronization. In: Proceedings of the 18th International Symposium on Distributed
Computing (2004)

29. Shavit, N., Touitou, D.: Elimination trees and the construction of pools and stacks:
preliminary version. In: Proceedings of the Seventh Annual ACM Symposium on
Parallel Algorithms and Architectures, pp. 54–63. ACM (1995)

30. Shavit, N., Zemach, A.: Combining funnels: a dynamic approach to software com-
bining. J. Parallel Distrib. Comput. 60(11), 1355–1387 (2000)

31. Sundell, H., Tsigas, P.: Lock-free and practical doubly linked list-based deques
using single-word compare-and-swap. In: Higashino, T. (ed.) OPODIS 2004. LNCS,
vol. 3544, pp. 240–255. Springer, Heidelberg (2005). https://doi.org/10.1007/
11516798 18

https://doi.org/10.1007/11516798_18
https://doi.org/10.1007/11516798_18

TWA – Ticket Locks Augmented
with a Waiting Array

Dave Dice(B) and Alex Kogan

Oracle Labs, Burlington, MA, USA
{dave.dice,alex.kogan}@oracle.com

Abstract. The classic ticket lock is simple and compact, consisting
of ticket and grant fields. Arriving threads atomically fetch-and-
increment ticket to obtain an assigned ticket value, and then wait for
grant to become equal to that value, at which point the thread holds
the lock. The corresponding unlock operation simply increments grant.
This simple design has short code paths and fast handover (transfer of
ownership) under light contention, but may suffer degraded scalability
under high contention when multiple threads busy wait on the grant

field – so-called global spinning.
We propose a variation on ticket locks where long-term waiting

threads – those with an assigned ticket value far larger than grant

– wait on locations in a waiting array instead of busy waiting on the
grant field. The single waiting array is shared among all locks. Short-
term waiting is accomplished in the usual manner on the grant field.
The resulting algorithm, TWA, improves on ticket locks by limiting the
number of threads spinning on the grant field at any given time, reducing
the number of remote caches requiring invalidation from the store that
releases the lock. In turn, this accelerates handover, and since the lock
is held throughout the handover operation, scalability improves. Under
light or no contention, TWA yields performance comparable to the classic
ticket lock. Under high contention, TWA is substantially more scalable
than the classic ticket lock, and provides performance on par or beyond
that of scalable queue-based locks such as MCS by avoiding the com-
plexity and additional accesses incurred by the MCS handover operation
while also obviating the need for maintaining queue elements.

We provide an empirical evaluation, comparing TWA against ticket
locks and MCS for various user-space applications, and within the Linux
kernel.

Keywords: Locks · Mutexes · Mutual exclusion · Synchronization ·
Concurrency control

1 Introduction

The classic ticket lock [16,17] is compact and has a very simple design. The
acquisition path requires only one atomic operation – a fetch-and-add to incre-
ment the ticket – and the unlock path requires no atomics. Under light or no
c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 334–345, 2019.
https://doi.org/10.1007/978-3-030-29400-7_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_24&domain=pdf
http://orcid.org/0000-0001-9164-7747
http://orcid.org/0000-0002-4419-4340
https://doi.org/10.1007/978-3-030-29400-7_24

TWA – Ticket Locks Augmented with a Waiting Array 335

contention, the handover latency, defined as the time between the call to unlock
and the time a successor is enabled to enter the critical section, is low. Handover
time impacts the scalability as the lock is held throughout handover, increasing
the effective length of the critical section [11]. A ticket lock is in unlocked state
when ticket and grant are equal. Otherwise the lock is held, and the number
of waiters is given by ticket - grant - 1. Ignoring numeric rollover, grant
always lags or is equal to ticket. The increment operation in unlock either
passes ownership to the immediate successor, if any, and otherwise sets the state
to unlocked.

Ticket locks suffer, however, from a key scalability impediment. All threads
waiting for a particular lock will busy wait on that lock’s grant field. An unlock
operation, when it increments grant, invalidates the cache line underlying grant
for all remote caches where waiting threads are scheduled. In turn, this nega-
tively impacts scalability by retarding the handover step. Ticket locks use global
spinning, as all waiting threads monitor the central lock-specific grant variable.

1 2 5 10 20 50

0
50

10
0

15
0

Threads

U
pd

at
e

th
ro

ug
hp

ut
 r

at
e

: M
 w

rit
es

/s
ec

Fig. 1. Invalidation diameter

In Fig. 1 we show the impact of
readers on a single writer. We refer
to the number of participating caches
as the invalidation diameter [8]. The
Invalidation Diameter benchmark
spawns T concurrent threads, with T
shown on the X-axis. A single writer
thread loops, using an atomic fetch-
and-add primitive to update a shared
location. The other T − 1 threads are
readers. They loop, fetching the value
of that location. The shared variable is
sequestered to avoid false sharing and
is the sole occupant of its underlying cache sector. We present the throughput
rate of the writer on the Y-axis. As we increase the number of concurrent readers,
the writer’s progress is slowed. This scenario models the situation in ticket locks
where multiple waiting threads monitor the grant field, which is updated by the
current owner during handover. The benchmark reports the writer’s throughput
at the end of a 10 s measurement interval. The data exhibited high variance due
to the NUMA placement vagaries of the threads and the home node of the vari-
able. As such, for each data point show, we took the median of 100 individual
runs, reflecting a realistic set of samples. The system-under-test is described in
detail in Sect. 4.

The MCS lock [16] is the usual alternative to ticket locks, performing better
under high contention, but also having a more complex path and often lagging
behind ticket locks under no or light contention. In MCS, arriving threads use
an atomic operation to append an element to a queue of waiting threads, and
then busy wait on a field in that element. The lock’s tail variable is explicit and
the head – the current owner – is implicit. When the owner releases the lock it
reclaims the element it originally enqueued and sets the flag in the next element,
passing ownership. Specifically, to convey ownership, the MCS unlock operator

336 D. Dice and A. Kogan

must identify the successor, if any, and then store to the location where the
successor busy waits. The handover path is longer than that of ticket locks and
accesses more distinct shared locations. MCS uses so-called local waiting where
at most one thread is waiting on a given location at any one time. As such, an
unlock operation will normally need to invalidate just one location – the flag
where the successor busy waits. Under contention, the unlock operator must
fetch the address of the successor node from its own element, and then store
into the flag in the successor’s element, accessing two distinct cache lines, and
incurring a dependent access to reach the successor. In the case of no contention,
the unlock operator must use an atomic compare-and-swap operator to detach
the owner’s element.

Ticket locks and TWA require no such indirection or dependent accesses in
the unlock path and also avoid the need for queue elements and the management
thereof. The queue of waiting threads is implicit in ticket locks and TWA, and
explicit in MCS. MCS, ticket locks and TWA all provide strict FIFO admission
order.

Ticket locks are usually a better choice under light or no contention, while
MCS locks are more suitable under heavy contention [2,3]. By employing a
waiting array for long-term waiting, TWA achieves the best of the two worlds, as
demonstrated by our empirical evaluation with multiple user-space applications
and within the Linux kernel.

2 The TWA Algorithm

TWA builds directly on ticket locks. We add a new waiting array for long-term
waiting. The array is shared amongst all threads and TWA locks in an address
space. Arriving threads use an atomic fetch-and-increment instruction to advance
the ticket value, yielding the lock request’s assigned ticket value, and then fetch
grant. If the difference is 0 then we have uncontended acquisition and the thread
may enter the critical section immediately. (This case is sometimes referred to as
the lock acquisition fast-path). Otherwise TWA compares the difference to the
LongTermThreshold parameter. If the difference exceeds LongTermThreshold
then the thread enters the long-term waiting phase. Otherwise control proceeds
to the short-term waiting phase, which is identical to that of normal ticket locks;
the waiting thread simply waits for grant to become equal to the ticket value
assigned to the thread. While LongTermThreshold is a tunable parameter in
our implementation, we found a value of 1 to be suitable for all environments,
ensuring that only the immediate successor waits in short-term mode. All data
reported below uses a value of 1.

A thread entering the long-term waiting phase first hashes its assigned ticket
value to form an index into the waiting array. Using this index, it then fetches
the value from the array and then recheck the value of grant. If the observed
grant value changed, it rechecks the difference between that new value and its
assigned ticket value, and decides once again on short-term versus long-term
waiting. If grant was unchanged, the thread then busy waits for the waiting

TWA – Ticket Locks Augmented with a Waiting Array 337

array value to change, at which point it reevaluates grant. When grant is found
to be sufficiently near the assigned ticket value, the thread reverts to normal
short-term waiting. The values found in the waiting array have no particular
meaning, except to conservatively indicate that a grant value that maps to that
index has changed, and rechecking of grant is required for waiters on that index.

The TWA unlock operator increments grant as usual from U to U + 1 and
then uses an atomic operator to increment the location in the waiting array that
corresponds to threads waiting on ticket value U + 1 + LongTermThreshold,
notifying long-term threads, if any, that they should recheck grant. An atomic
operation is necessary as the location may be subject to hash collisions. We
observe that this change increases the path length in the unlock operator, but
crucially the store that effects handover, which is accomplished by a non-atomic
increment of grant, happens first. Given a LongTermThreshold value of 1, we
expect at most one thread, the immediate successor, to be waiting on grant.
Updating the waiting array occurs after handover and outside the critical section.

All our experiments use a waiting array with 4096 elements, although ide-
ally, we believe the waiting array should be sized as a function of the number
of CPUs in the system. Hash collisions in the table are benign, at worst causing
unnecessary rechecking of the grant field. Our hash function is cache-aware and
intentionally designed to map adjacent ticket values to different 128-byte cache
sectors underlying the waiting array, to reduce false sharing among long-term
waiters. We multiply the ticket value by 127, EXCLUSIVE-OR that result with the
address of the lock, and then mask with 4096 − 1 to form an index into the
waiting array. We selected a small prime P = 127 to provide the equidistribu-
tion properties of a Weyl sequence [15]. We include the lock address into our
deterministic hash to avoid the situation where two locks might operate in an
entrained fashion, with ticket and grant values moving in near unison, and thus
suffer from excessive inter-lock collisions. A given lock address and ticket value
pair always hashes to the same index.

TWA leaves the structure of the ticket lock unchanged, allowing for easy
adoption. As the instance size remains the same, the only additional space cost
for TWA is the waiting array, which is shared over all locks, reflecting a one-time
space cost.

The TWA fast-path for acquisition remains unchanged relative to ticket locks.
The unlock path adds an increment of the waiting array, to notify long-term
waiters, if any. that they should transition from long-term to short-term wait-
ing. We note that TWA doesn’t reduce overall coherence traffic, but does act
to reduce coherence traffic in the critical handover path, constraining the inval-
idation diameter of the store in unlock that accomplishes handover. TWA thus
captures the desirable performance aspects of both MCS locks and ticket locks.

Listing 1.1 depicts a pseudo-code implementation of the TWA algorithm.
Lines 7 through 16 reflect the classic ticket lock algorithm and lines 20 through
71 show TWA. TWA extends the existing ticket lock algorithm by adding lines
41 through 57 for long-term waiting, and line 71 to notify long-term waiters to
shift to classic short-term waiting.

338 D. Dice and A. Kogan

Listing 1.1: Simplified Python-like Implementation of TWA
1 ## Classic Ticket Lock
2

3 class TicketLock :
4 int Ticket = 0 ## Next ticket to be assigned
5 int Grant = 0 ## "Now Serving"
6

7 TicketAcquire (TicketLock * L) :
8 ## Atomic fetch -and -add on L.Ticket
9 auto tx = FetchAdd (L.Ticket , 1)

10 while tx != L.Grant :
11 Pause()
12

13 TicketRelease (TicketLock * L) :
14 ## succession via direct handoff ...
15 ## Increment does not require atomic instructions
16 L.Grant += 1
17

18 ## ===
19

20 ## TWA : Ticket lock augmented with waiting array
21

22 ## tunable parameters
23 ## short -term vs long -term proximity threshold
24 LongTermThreshold = 1 |
25 ArraySize = 4096 |
26

27 ## Global variables :
28 ## Long -term waiting array , initially all 0
29 ## Shared by all locks and threads in the address space
30

31

32 uint64_t WaitArray [ArraySize] |
33

34 TWAAcquire (TWA * L) :
35 auto tx = FetchAdd (L.Ticket , 1)
36 auto dx = tx - L.Grant
37 if dx == 0 :
38 ## fast -path return - uncontended case
39 return
40

41 ## slow path with contention -- need to wait |
42 ## Select long -term vs short -term based on the number |
43 ## of threads waiting in front of us |
44 if dx > LongTermThreshold : |
45 ## long -term waiting via WaitArray |
46 auto at = Hash(L, tx) |
47 for |
48 auto u = WaitArray[at] |
49 dx = tx - L.Grant |
50 assert dx >= 0 |
51 if dx <= LongTermThreshold : break |
52 while WaitArray[at] == u : |
53 Pause() |
54 ## This waiting thread is now "near" the front of |
55 ## the logical queue of waiting threads |
56 ## Transition from long -term waiting to |
57 ## short -term waiting |
58

59 ## classic short -term waiting on L.Grant field
60 while L.Grant != tx :
61 Pause()
62

63 TWARelease (TWA * L) :
64 ## Notify immediate successor , if any
65 ## such threads will be in short -term waiting phase
66 ## non -atomic increment
67 auto k = ++ L.Grant
68

69 ## Notify long -term waiters |
70 ## atomic increment required |
71 FetchAdd (WaitArray[Hash(L,k + LongTermThreshold)], 1)|

TWA – Ticket Locks Augmented with a Waiting Array 339

2.1 Example Scenario – TWA in Action

1 Initially the lock is in unlocked state with Ticket and Grant both 0.
2 Thread T1 arrives at Listing 1.1 line 34 attempting to acquire the lock. T1

increments Ticket from 0 to 1, and the atomic FetchAdd operator returns
the original value of 0 into the local variable tx, which holds the assigned
ticket value for the locking request. At line 36 T1 then fetches Grant observ-
ing a value of 0. Since tx equals that fetched value, we have uncontended
lock acquisition. T1 now holds the lock and can enter the critical section
immediately, without waiting, via the fast path at line 39.

3 Thread T2 now arrives and tries to acquire the lock. The FetchAdd operator
advances Ticket from 1 to 2 and returns 1, the assigned ticket, into tx at
line 35. T2 fetches Grant and notes that tx differs from that value by 1.
The dx variable holds that computed difference, which reflects the number
of threads between the requester and the head of the logical queue, which
is the owner. T2 has encountered contention and must wait. The difference
is only 1, and T2 will be the immediate successor, so T2 proceeds to line
60 for short-term waiting similar to that used in classic ticket locks shown
at line 10. T2 waits for the Grant field to become 1.

4 Thread T3 arrives and advances Ticket from 2 to 3, with the FetchAdd oper-
ator returning 2 as the assigned ticket. The difference between that value (2)
and the value of Grant(0) fetched at line 64 exceeds the LongTermThreshold
(1), so T3 enters the path for long-term waiting at line 49. T3 hashes its
observed ticket value of 2 into an index at, say 100, in the long-term waiting
array and then fetches from WaitArray[at] observing U . To recover from
potential races with threads in the unlock path, T3 rechecks that the Grant
variable remains unchanged (0) at line 49 and that the thread should con-
tinue with long-term waiting. Thread T3 busy waits at lines 52–53 on the
WaitArray value.

5 Thread T4 arrives, advances Ticket from 3 to 4, obtaining a value in its tx
variable of 3. Similar to T3, T4 enters the long-term. T4 hashes its assigned
ticket value of 3 yielding an index of, say, 207, and fetches WaitArray[207]
observing V . T4 then busy waits, waiting for WaitArray[207] to change
from V to any other value.

6 Thread T1 now releases the lock, calling TWARelease at line 63. T1 incre-
ments Grant from 0 to 1 at line 67, passing ownership to T2 and sets local
variable k to the new value (1).

7 Thread T2 waiting at lines 60–61 notices that Grant changed to match its
tx value. T2 is now the owner and may enter the critical section.

8 Thread T1, still in TWARelease at line 71 then hashes k +
LongTermThreshold (the sum is 2) to yield index 100 and then increments
WaitArray[100] from U to U + 1.

9 Thread T3 waiting at lines 52–53 observes that change, rechecks Grant, sees
that it is close to being granted ownership, exits the long-term waiting loop
and switches to classic short-term waiting at lines 60–61. T1 has promoted
T3 from long-term to short-term waiting in anticipation of the next unlock
operation, to eventually be performed by T2.

340 D. Dice and A. Kogan

10 Thread T1 now exits the TWARelease operator.

11 Thread T2 is the current owner, thread T3 is waiting in short-term mode,
and thread T4 is waiting in long-term mode.

3 Related Work

Mellor-Crummey and Scott [16] proposed ticket locks with proportional backoff.
Waiting threads compare the value of their ticket against the grant field. The
difference reflects the number of intervening threads waiting. That value is then
multiplied by some tunable constant, and the thread delays for that period before
rechecking grant. The constant is platform- and load-dependent, and requires
tuning. While this approach may decrease the futile polling rate on grant, it does
not decrease the invalidation diameter. TWA and ticket locks with proportional
backoff both make a distinction among waiting threads based on their relative
position in the queue.

Partitioned Ticket Locks [9] augment each ticket lock with a constant-length
private array of grant fields, allowing for semi-local waiting. Critically, the array
is not shared between locks, and to avoid false sharing within the array, the mem-
ory footprint of each lock instance is significantly increased. Anderson’s array-
based queueing lock [1] is also based on ticket locks. It employs a waiting array
for each lock instance, sized to ensure there is at least one array element for each
potentially waiting thread, yielding a potentially large footprint. The maximum
number of participating threads must be known in advance when initializing the
array. Such dynamic sizing also makes static allocation of Anderson’s locks more
difficult than would be the case for a lock with a fixed size, such as TWA.

Various authors [2,12] have suggested switching adaptively between MCS
and ticket locks depending on the contention level. While workable, this adds
considerable algorithmic complexity, particularly for the changeover phase, and
requires tuning. Lim [13] suggested a more general framework for switching locks
at runtime.

4 Empirical Evaluation

Unless otherwise noted, all data was collected on an Oracle X5-2 system. The sys-
tem has 2 sockets, each populated with an Intel Xeon E5-2699 v3 CPU running
at 2.30 GHz. Each socket has 18 cores, and each core is 2-way hyperthreaded,
yielding 72 logical CPUs in total. The system was running Ubuntu 18.04 with
a stock Linux version 4.15 kernel, and all software was compiled using the pro-
vided GCC version 7.3 toolchain at optimization level “-O3”. 64-bit C or C++
code was used for all experiments. Factory-provided system defaults were used
in all cases, and Turbo mode [18] was left enabled. In all cases default free-
range unbound threads were used. TWA is trivial to implement in C++ with
std::atomic<> primitives.

TWA – Ticket Locks Augmented with a Waiting Array 341

We implemented all user-mode locks within LD PRELOAD interposition
libraries that expose the standard POSIX pthread mutex t programming inter-
face. The framework was made available by Dice et al. [10]. This allows us to
change lock implementations by varying the LD PRELOAD environment vari-
able and without modifying the application code that uses locks. The C++
std::mutex construct maps directly to pthread mutex primitives, so interpo-
sition works for both C and C++ code. All busy-wait loops used the Intel PAUSE
instruction for polite waiting.

We use a 128 byte sector size on Intel processors for alignment to avoid false
sharing. The unit of coherence is 64 bytes throughout the cache hierarchy, but
128 bytes is required because of the adjacent cache line prefetch facility where
pairs of lines are automatically fetched together.

4.1 MutexBench

The MutexBench benchmark spawns T concurrent threads. Each thread loops
as follows: acquire a central lock L; execute a critical section; release L; execute
a non-critical section. At the end of a 10 s measurement interval the benchmark
reports the total number of aggregate iterations completed by all the threads. We
show the median of 5 independent runs in Fig. 2. The critical section advances a
C++ std::mt19937 pseudo-random generator (PRNG) 4 steps. The non-critical
section uses that same PRNG to compute a value distributed uniformly in [0, 200)
and then advances the PRNG that many steps. To facilitate comparison of the
algorithms, the X-axis is logarithmic and the Y-axis is offset to the minimum
score.

As seen in the figure, ticket locks performs the best up to 6 threads, with TWA
lagging slightly behind. As we further increase the thread count, however, ticket
locks fail to scale. MCS provides stable asymptotic performance that surpasses
ticket locks at 24 threads. TWA manages to always outperform MCS, freeing
the developer from making a choice between MCS locks and ticket locks.

1 2 5 10 20 50

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Threads

A
gg

re
ga

te
 th

ro
ug

hp
ut

 r
at

e
: M

 s
te

ps
/s

ec

MCS
TKT
TWA

Fig. 2. MutexBench

1 2 5 10 20 50

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Threads

A
gg

re
ga

te
 th

ro
ug

hp
ut

 r
at

e
: M

 s
te

ps
/s

ec

MCS
TKT
TWA

Fig. 3. throw

342 D. Dice and A. Kogan

4.2 throw

The “throw” benchmark launches T threads, each of which loop, executing the
following line of C++ code:

try { throw 20 ;} catch (int e) {}.
Naively, this construct would be expected to scale linearly, but the C++ run-
time implementation acquires mutexes that protect the list of dynamically loaded
modules and their exception tables. The problem is long-standing and has proven
difficult to fix given the concern that some applications might have come to
depend on the serialization1. At the end of a 10 s measurement interval the bench-
mark reports the aggregate number of loops executed by all threads. Throw-catch
operations are performed back-to-back with no intervening delay. In Fig. 3 we
observe that performance drops significantly between 1 and 2 threads. There is
little or no benefit from multiple threads, given that execution is largely seri-
alized, but coherent communication costs are incurred. As we increase beyond
two threads performance improves slightly, but never exceeds that observed at
one thread. Beyond 2 threads, the shape of the graph recapitulates that seen in
MutexBench.

4.3 libslock stress latency

Figure 4 shows the performance of the “stress latency” benchmark from [7]2. The
benchmark spawns the specified number of threads, which all run concurrently
during a 10 s measurement interval. Each thread iterates as follows: acquire a
central lock; execute 200 loops of a delay loop; release the lock; execute 5000
iterations of the same delay loop. The benchmark reports the total number of
iterations of the outer loop.

1 2 5 10 20 50

15
00

00
20

00
00

30
00

00

Threads

A
gg

re
ga

te
 th

ro
ug

hp
ut

 r
at

e
: o

ps
/s

ec

MCS
TKT
TWA

Fig. 4. libslock stress latency

1 2 5 10 20 50

80
00

00
10

00
00

0
14

00
00

0

Threads

A
gg

re
ga

te
 th

ro
ug

hp
ut

 r
at

e
: o

ps
/s

ec

MCS
TKT
TWA

Fig. 5. LevelDB readrandom

1 https://patchwork.ozlabs.org/patch/652301/.
2 We use the following command line: ./stress latency -l 1 -d 10000 -a 200 -n threads
-w 1 -c 1 -p 5000.

https://patchwork.ozlabs.org/patch/652301/

TWA – Ticket Locks Augmented with a Waiting Array 343

4.4 LevelDB readrandom

In Fig. 5 we used the “readrandom” benchmark in LevelDB version 1.20
database3 varying the number of threads and reporting throughput from the
median of 5 runs of 50 s each. Each thread loops, generating random keys and
then trying to read the associated value from the database. We first populated
a database4 and then collected data5. We made a slight modification to the
db bench benchmarking harness to allow runs with a fixed duration that reported
aggregate throughput. Ticket locks exhibit a very slight advantage over MCS and
TWA at low threads count after which ticket locks fade and TWA matches or
exceeds the performance of MCS. LevelDB uses coarse-grained locking, protect-
ing the database with a single central mutex: DBImpl::Mutex. Profiling indicates
contention on that lock via leveldb::DBImpl::Get().

4.5 RocksDB readwhilewriting

We next present results in Fig. 6 from the RocksDB6 version 5.14.2 database run-
ning the “readwhitewriting” benchmark which has one fixed writer thread and a
variable number of readers. The benchmark is similar to the form found in Lev-
elDB, above, but the underlying database allows more concurrency and avoids
the use of a single central lock. We intentionally use a command-line configured
to stress the locks that protect the sharded LRU cache, causing contention in
LRUShard::lookup()7.

1 2 5 10 20 50

50
00

00
15

00
00

0
25

00
00

0
35

00
00

0

Threads

A
gg

re
ga

te
 th

ro
ug

hp
ut

 r
at

e
: o

ps
/s

ec

MCS
TKT
TWA

Fig. 6. RocksDB readwhilewriting

1 2 5 10 20 50

0.
10

0.
15

0.
20

0.
25

0.
30

Threads

A
gg

re
ga

te
 th

ro
ug

hp
ut

 r
at

e
: M

 a
cq

ui
re

s/
se

c

QSpinlock
TKT
TWA

Fig. 7. LockTorture

3 leveldb.org.
4 db bench —threads=1 —benchmarks=fillseq —db=/tmp/db/.
5 db bench —threads=threads —benchmarks=readrandom
—use existing db=1 —db=/tmp/db/ —duration=50.

6 rocksdb.org.
7 db bench —duration=200 —threads=threads
—benchmarks=readwhilewriting —compression type=none
—mmap read=1 —mmap write=1 —cache size=100000
—cache numshardbits=0 —sync=0 —verify checksum=0.

http://www.leveldb.org
http://www.rocksdb.org

344 D. Dice and A. Kogan

4.6 Linux Kernel locktorture

We ported TWA into the Linux kernel environment and evaluated its perfor-
mance with the locktorture benchmark8. Locktorture is distributed as a part
of the Linux kernel and is implemented as a loadable kernel module. The bench-
mark spawns a specified number of threads, each of which loops, contending for
a central lock. We used locktorture to compare TWA, classic ticket locks, and
the default kernel qspinlock.

The Linux qspinlock construct [4,5,14] is a compact 32-bit lock, even on
64-bit architectures. The low-order bits of the lock word constititue a simple
test-and-set lock while the upper bits encode the tail of an MCS chain. In order
to fit into a 32-bit work – a critical requirement – the chain is formed by logical
CPU identifiers instead of traditional MCS queue node pointers. The result is a
hybrid of MCS and test-and-set9. We note that qspinlocks replaced classic ticket
locks as the kernel’s primary low-level spin lock mechanism in 2014, and ticket
locks replaced test-and-set locks, which are unfair and allow unbounded bypass,
in 2008 [6].

The average critical section duration used by locktorture is a function
of the number of concurrent threads. In order to use the benchmark to mea-
sure and report scalability, we augmented it to parameterize the critical and
non-critical section durations, which are expressed as steps of the thread-local
pseudo-random number generator provided in the locktorture infrastructure.
We used 20 steps for the critical section. Each execution of the non-critical
section computes a uniformly random distributed number in [0− 400) and then
steps the local random number generator that many iterations. At the end of a
run (lasting 30 s in our case), the total number of lock operations performed by
all threads is reported. We report the median of 7 such runs in Fig. 7.

As we can see in Fig. 7, classic ticket locks perform well at low conconcurrency
but fade as the number of threads increases. TWA performs the same or slightly
better than qspinlock, although TWA is far simpler10.

5 Conclusion

TWA is a straightforward extension to classic ticket locks, providing the best
performance properties of ticket locks and MCS locks. Like ticket locks, it is
simple, compact, and has a fixed memory footprint. The key benefit conferred
by TWA arises from improved transfer of ownership (handover) in the unlock
path, by reducing the number of threads spinning on the grant field at any given
time. Even though TWA increases the overall path length in the unlock operation,
adding an atomic fetch-and-increment operation compared to the classic ticket
lock, it decreases the effective critical path duration for contended handover.
8 https://www.kernel.org/doc/Documentation/locking/locktorture.txt.
9 https://github.com/torvalds/linux/blob/master/kernel/locking/qspinlock.c.

10 An extended version of this paper is available at https://arxiv.org/abs/1810.01573,
where we apply various complexity measures to compare ticket locks, qspinlock, and
TWA.

https://www.kernel.org/doc/Documentation/locking/locktorture.txt
https://github.com/torvalds/linux/blob/master/kernel/locking/qspinlock.c
https://arxiv.org/abs/1810.01573

TWA – Ticket Locks Augmented with a Waiting Array 345

References

1. Anderson, T.E.: The performance of spin lock alternatives for shared-money mul-
tiprocessors. IEEE Trans. Parallel Distrib. Syst. (1990). https://doi.org/10.1109/
71.80120

2. Antić, J., Chatzopoulos, G., Guerraoui, R., Trigonakis, V.: Locking made easy. In:
Proceedings of the 17th International Middleware Conference, Middleware 2016.
ACM (2016). http://doi.acm.org/10.1145/2988336.2988357

3. Boyd-Wickizer, S., Kaashoek, M.F., Morris, R., Zeldovich, N.: Non-scalable locks
are dangerous. In: Ottawa Linux Symposium (OLS) (2012). https://www.kernel.
org/doc/ols/2012/ols2012-zeldovich.pdf

4. Corbet, J.: Cramming more into struct page, 28 August 2013. https://lwn.net/
Articles/565097. Accessed 01 Oct 2018

5. Corbet, J.: MCS locks and qspinlocks, 11 March 2014. https://lwn.net/Articles/
590243. Accessed 12 Sept 2018

6. Corbet, J.: Ticket spinlocks, 6 February 2008. https://lwn.net/Articles/267968.
Accessed 12 Sept 2018

7. David, T., Guerraoui, R., Trigonakis, V.: Everything you always wanted to know
about synchronization but were afraid to ask. In: SOSP (2013). http://doi.acm.
org/10.1145/2517349.2522714

8. Dice, D.: Malthusian locks. In: Proceedings of the Twelfth European Conference
on Computer Systems, EuroSys 2017 (2017). http://doi.acm.org/10.1145/3064176.
3064203

9. Dice, D.: Brief announcement: a partitioned ticket lock. In: Proceedings of the
Twenty-third Annual ACM Symposium on Parallelism in Algorithms and Archi-
tectures, SPAA 2011 (2011). http://doi.acm.org/10.1145/1989493.1989543

10. Dice, D., Marathe, V.J., Shavit, N.: Lock cohorting: a general technique for design-
ing NUMA locks. ACM Trans. Parallel Comput. (2015). http://doi.acm.org/10.
1145/2686884

11. Eyerman, S., Eeckhout, L.: Modeling critical sections in Amdahl’s law and its
implications for multicore design. In: ISCA. ACM (2010). http://doi.acm.org/10.
1145/1815961.1816011

12. Ha, P.H., Papatriantafilou, M., Tsigas, P.: Reactive spin-locks: a self-tuning app-
roach. In: 8th International Symposium on Parallel Architectures, Algorithms and
Networks, ISPAN 2005 (2005). https://doi.org/10.1109/ISPAN.2005.73

13. Lim, B.H., Agarwal, A.: Reactive synchronization algorithms for multiprocessors.
In: Proceedings of the Sixth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS VI. ACM (1994).
http://doi.acm.org/10.1145/195473.195490

14. Long, W.: qspinlock: introducing a 4-byte queue spinlock implementation, 31 July
2013. https://lwn.net/Articles/561775. Accessed 19 Sept 2018

15. Marsaglia, G.: Xorshift RNGs. J. Stat. Softw. (2003). https://doi.org/10.18637/jss.
v008.i14. https://www.jstatsoft.org/v008/i14

16. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Trans. Comput. Syst. (1991). http://doi.
acm.org/10.1145/103727.103729

17. Reed, D.P., Kanodia, R.K.: Synchronization with eventcounts and sequencers.
Commun. ACM (1979). http://doi.acm.org/10.1145/359060.359076

18. Verner, U., Mendelson, A., Schuster, A.: Extending Amdahl’s law for multicores
with turbo boost. IEEE Comput. Arch. Lett. (2017). https://doi.org/10.1109/LCA.
2015.2512982

https://doi.org/10.1109/71.80120
https://doi.org/10.1109/71.80120
http://doi.acm.org/10.1145/2988336.2988357
https://www.kernel.org/doc/ols/2012/ols2012-zeldovich.pdf
https://www.kernel.org/doc/ols/2012/ols2012-zeldovich.pdf
https://lwn.net/Articles/565097
https://lwn.net/Articles/565097
https://lwn.net/Articles/590243
https://lwn.net/Articles/590243
https://lwn.net/Articles/267968
http://doi.acm.org/10.1145/2517349.2522714
http://doi.acm.org/10.1145/2517349.2522714
http://doi.acm.org/10.1145/3064176.3064203
http://doi.acm.org/10.1145/3064176.3064203
http://doi.acm.org/10.1145/1989493.1989543
http://doi.acm.org/10.1145/2686884
http://doi.acm.org/10.1145/2686884
http://doi.acm.org/10.1145/1815961.1816011
http://doi.acm.org/10.1145/1815961.1816011
https://doi.org/10.1109/ISPAN.2005.73
http://doi.acm.org/10.1145/195473.195490
https://lwn.net/Articles/561775
https://doi.org/10.18637/jss.v008.i14
https://doi.org/10.18637/jss.v008.i14
https://www.jstatsoft.org/v008/i14
http://doi.acm.org/10.1145/103727.103729
http://doi.acm.org/10.1145/103727.103729
http://doi.acm.org/10.1145/359060.359076
https://doi.org/10.1109/LCA.2015.2512982
https://doi.org/10.1109/LCA.2015.2512982

Enabling Resilience in Asynchronous
Many-Task Programming Models

Sri Raj Paul1(B), Akihiro Hayashi2,
Nicole Slattengren3, Hemanth Kolla3,

Matthew Whitlock3, Seonmyeong Bak1,
Keita Teranishi3, Jackson Mayo3,

and Vivek Sarkar1

1 Georgia Institute of Technology, Atlanta, GA, USA
{sriraj,sbak5,vsarkar}@gatech.edu
2 Rice University, Houston, TX, USA

ahayashi@rice.edu
3 Sandia National Laboratories, Livermore, CA, USA

{nlslatt,hnkolla,mwhitlo,knteran,jmayo}@sandia.gov

Abstract. Resilience is an imminent issue for next-generation plat-
forms due to projected increases in soft/transient failures as part of
the inherent trade-offs among performance, energy, and costs in system
design. In this paper, we introduce a comprehensive approach to enabling
application-level resilience in Asynchronous Many-Task (AMT) program-
ming models with a focus on remedying Silent Data Corruption (SDC)
that can often go undetected by the hardware and OS. Our approach
makes it possible for the application programmer to declaratively express
resilience attributes with minimal code changes, and to delegate the com-
plexity of efficiently supporting resilience to our runtime system. We
have created a prototype implementation of our approach as an exten-
sion to the Habanero C/C++ library (HClib), where different resilience
techniques including task replay, task replication, algorithm-based fault
tolerance (ABFT), and checkpointing are available. Our experimental
results show that task replay incurs lower overhead than task replica-
tion when an appropriate error checking function is provided. Further,
task replay matches the low overhead of ABFT. Our results also demon-
strate the ability to combine different resilience schemes. To evaluate the
effectiveness of our resilience mechanisms in the presence of errors, we
injected synthetic errors at different error rates (1.0%, and 10.0%) and
found modest increase in execution times. In summary, the results show
that our approach supports efficient and scalable recovery, and that our

Sandia National Laboratories is a multimission laboratory managed and operated by
National Technology & Engineering Solutions of Sandia, LLC, a wholly owned sub-
sidiary of Honeywell International Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration (NNSA) under contract DE-NA0003525. This work
was funded by NNSA’s Advanced Simulation and Computing (ASC) Program. This
paper describes objective technical results and analysis. Any subjective views or opin-
ions that might be expressed in the paper do not necessarily represent the views of the
U.S. Department of Energy or the United States Government.

c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 346–360, 2019.
https://doi.org/10.1007/978-3-030-29400-7_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_25&domain=pdf
https://doi.org/10.1007/978-3-030-29400-7_25

Enabling Resilience in Asynchronous Many-Task Programming Models 347

approach can be used to influence the design of future AMT program-
ming models and runtime systems that aim to integrate first-class sup-
port for user-level resilience.

Keywords: Resilience · AMT runtimes · Habanero C/C++

1 Introduction

High performance computing plays a critical role in the advancement of science
and engineering through simulations of large complex systems. Due to the insa-
tiable demand for increased computing capability, multiple nations have com-
mitted to the development of exascale supercomputers. One of the major new
challenges in exascale computing is the projected increases in silent data corrup-
tions (SDC) [7], which are unexpected alterations in computation or data that
can occur undetected. In such cases, application and software level mechanisms
can play an essential role in improving application resilience.

The most popular resilience technique for application users today is coor-
dinated checkpoint and restart (C/R) typically with bulk-synchronous paral-
lel programming models [21], which involves global coordination of processing
elements (PEs) for identifying a consistent global application state. However,
this global recovery model is better suited for hard failures, and suffers from
excessive performance overheads when global recovery is triggered for transient
local failures. However, a majority of application failures are attributed to local
node/process failure as reported by [21], with the recognition that recovery
can potentially be applied only to the corrupted processes and data without
requiring global coordination. Another example of local recovery is Containment
Domains (CDs) [8], which provide an abstraction of error detection and correc-
tion to a local boundary intended for efficient and transparent recovery of HPC
applications.

Asynchronous many-task (AMT) programming models [2–5,9,17,20] are
intended for managing the increasing complexity of node architectures and het-
erogeneity. These frameworks decompose an application program into small,
transferable units of work (many tasks) with associated inputs (dependencies
or data blocks) rather than simply decomposing the application at the process
level (MPI ranks). The term, ‘many-task’, encompasses the idea that the applica-
tion is decomposed into many transferable or migratable units of data/work, to
enable the overlap of communication and computation as well as asynchronous
load balancing strategies. We believe that the AMT foundations of transferable
units and dynamic load balancing are also conducive to supporting fault tol-
erance. Specifically, we claim that AMT models are better suited to enabling
local error recovery in next-generation platforms than bulk-synchronous mod-
els, since AMT models provide explicit abstractions of data and tasks, i.e., (1) a
task represents a small piece of program execution, (2) failures are manifested as
failed or lost tasks, and (3) failures can typically be remediated using lightweight
mechanisms such as task replay.

348 S. R. Paul et al.

In this paper, we introduce a comprehensive approach to enabling resilience
in AMT programming models. While some of the prior approaches discuss differ-
ent resilience techniques including task replay, task replication, algorithm-based
fault tolerance (ABFT [15]), and checkpoint/restart for different AMT program-
ming models such as OmpSs [24] and PaRSEC [6], they are usually limited to a
specific technique or to a specific application domain. Our approach complements
existing checkpoint/restart mechanisms with reusable APIs to enable abstrac-
tion of data and program execution to map to multiple resilience patterns, and
compositions thereof. To the best of our knowledge, this is the first work to dis-
cuss the design, implementation, and evaluation of a unified programming model
that supports multiple resilience techniques.

Specifically, this paper makes the following contributions:

1. Programming model extensions to enable resilience techniques from past work
(replay, replication, ABFT, checkpoint/restart) for AMT applications.

2. Support for arbitrary compositions of the extensions in 1.
3. Unified execution of resilient and non-resilient tasks in a single framework.
4. Implementation of our approach as extensions to the Habanero-C/C++

library for many-task parallelism.
5. Comprehensive performance evaluation of our implementation with synthetic

error rates, and analysis of the results.

2 Design

A key question for any resilience design is to identify a program location at which
we can perform error checking and recovery. For AMT programming models, the
task boundary provides an ideal location around which resilience can be imple-
mented. The task constructs that are of our interest do not involve internal
synchronization, i.e., once a task is started, it runs to completion without block-
ing or waiting for other tasks or data. This implies that a task can start only after
it acquires all its inputs, and that we can publish the results once it is finished;
therefore, the task boundary provides a natural fit as the location around which
resilience can be implemented, without worrying about internal task states or
the global application state.

Once the program location around which resilience can be implemented is
identified, the next step is to identify the data that needs to be checked to
ensure correctness. A trivial choice is to ensure the integrity of the entire data
used in the program, but this could be very expensive to implement and also
unnecessary. The next obvious choice is to look at data that is going to be used
past the task boundary, i.e. the task outputs. It is common for task-based run-
times to discourage the use of global variables for communicating data between
tasks, and instead use built-in constructs for task inputs and outputs. For exam-
ple, Legion [3] uses Logical regions, and Open-Community-Runtime (OCR) [20]
uses Data-blocks to share data between tasks. C++11 includes promise and
future constructs to enable transfer of data between tasks along with synchro-
nization to avoid data races. A promise is a thread-safe container that uses

Enabling Resilience in Asynchronous Many-Task Programming Models 349

single-assignment semantics to fill its value. The filled value can be read using
a read-only handle called a future. promise and future together enable point-
to-point synchronization between one source task to many sink tasks. Thus, if
the application programmer uses only promise-future pairs to perform commu-
nication between tasks, then the data in the promise objects becomes the live
data at the task boundaries. Thus, we have identified both the program location
and data that needs to be checked to enable resilience for applications based on
AMT runtimes. Errors in the global state can be handled by other global recov-
ery approaches; our approach is still beneficial in such cases because its support
for local recovery for tasks enables more scalable and efficient resilience relative
to the use of global recovery everywhere.

We assume, that for the same inputs, the task generates promises with data
that is within some known range. Tasks do not need to be entirely deterministic
- random numbers, etc. can be used within tasks so long as errors within the
margin of the randomization’s effect are permissible.

2.1 Resilient API Specifications

To reiterate, the key components of our approach to enable resilience in AMT
runtimes are tasks and promise/futures. This section discusses our resilient API
design. In short, we identified appropriate software abstractions that allow pro-
grammers to easily enable/disable different resilience techniques while keeping
the original program mostly unchanged. In the following listings, we use async
as a generic construct that creates an asynchronous task with a user-provided
lambda expression, and async await is a variant of async that can wait on one
or more futures.

First, as a baseline implementation without resilience, Listing 1.1 shows a
code example where the function operation val() in Line 17 creates an asyn-
chronous task waiting on the completion of two tasks, namely read first val()
and read second val(). As shown in Lines 8 and 14, a future is satisfied by
performing a put operation on the corresponding promise. Once the promises
are satisfied, the operation val() task which depends on the two promises is
scheduled for execution. After the completion of the task, the result (res) is
printed in the print result() task.

Listing 1.1. A baseline non-resilient
AMT program to perform an operation on
two asynchronously generated values.

1 auto val1_dep = new promise();
2 auto val2_dep = new promise();
3 auto res_dep = new promise();
4
5 void read_first_val() {
6 async([=] {
7 val1 = new value(get_val_from_src());
8 val1_dep->put(val1);
9 }); // async

10
11 void read_second_val() {
12 async ([=] {
13 val2 = new value(get_val_from_src());
14 val2_dep->put(val2);
15 }); // async

16
17 void operation_val() {
18 async_await ([=] {
19 val1 = get_value(val1_dep);
20 val2 = get_value(val2_dep);
21 res = new value(op(val1, val2));
22 res_dep->put(res);
23 }, val1_dep->get_future()
24 , val2_dep->get_future());//async
25 }
26
27 void print_result() {
28 async_await ([=] {
29 res = get_value(res_dep);
30 print(res);
31 }, res_dep->get_future()); // async
32 }

Task Creation
Satisfying a promise
Waiting on a promise

350 S. R. Paul et al.

Replication. Task replication is aimed at proactive reliability enhancement by
executing the same task multiple times, assuming that the majority of the repli-
cas produce the same output for determining correctness. The obvious drawback
is the increase in computational cost, but it is still effective in situations where
a few tasks in a critical path of the task graph may leave the computing system
underutilized. The replication overhead can be reduced by selective replication
to control the trade-offs between reliability and performance penalties.

Since task replication is based on equality checking of the outputs of the
replica tasks, the runtime can internally take care of performing the replication
and equality checking. There is no need for the user to provide any additional
information other than the equality checking operator for each data type used.
Also, the task APIs should include a mechanism to communicate the result of
equality checking. This can be done using a promise that will have a value of
1 for success and 0 for failure. The replication version of the operation val()
task from Listing 1.1 is shown Listing 1.2. We can see that the only modification
required in user code is to change the name of the task creation API and add a
parameter, the err dep promise which tells whether a majority of the replicas
produced the same output.

The only data that gets propagated to dependent tasks are those that are
put to a promise. With non-resilient tasks, dependent tasks get scheduled for
execution once the necessary put operations have been performed. In order to
prevent errors discovered in replication from propagating to dependent tasks,
we do not publish any put operations from a replicated task until the equality
checking of the replicas succeed.

Listing 1.2. Resilient AMT program
based on replication to perform an oper-
ation on two asynchronously generated
values.

1 auto err_dep = new promise();
2
3 void operation_val() {
4 replication::async_await_check ([=] {
5 val1 = get_value(val1_dep);
6 val2 = get_value(val2_dep);
7 res = new value(op(val1, val2));
8 res_dep->put(res)
9 }, err_dep ,

10 val1_dep->get_future(),
11 val2_dep->get_future());//async
12 }
13
14 void print_result() {
15 async_await([=] {
16 recoverable = get_value(err_dep);
17 if (recoverable == 0) exit(1);
18 res = get_value(res_dep);
19 print(res);
20 }, res_dep->get_future(),
21 err_dep->get_future()); // async
22 }

The task replication construct
A promise with a failure status

Listing 1.3. Resilient AMT program
based on replay to perform an operation
on two asynchronously generated values.

1 bool err_chk_func (void *data) {
2 if (data is good) return true;
3 else return false;
4 }
5
6 auto err_dep = new promise();
7 void *chk_data = nullptr;
8
9 void operation_val() {

10 replay::async_await_check} ([=]{
11 val1 = get_value(val1_dep);
12 val2 = get_value(val2_dep);
13 res = new value(op(val1, val2));
14 res_dep->put(res);
15 chk_data = res;
16 }, err_dep, err_chk_func , chk_data ,
17 val1_dep->get_future(),
18 val2_dep->get_future()); // async
19 }

The task replay construct
User-defined error checking function
Arguments to the error checking

Replay. Task replay is a natural extension of Checkpoint/Restart for the con-
ventional execution models. Instead of applying a rollback of the entire pro-
gram, as few as one tasks are replayed when an error is detected. Task replay is

Enabling Resilience in Asynchronous Many-Task Programming Models 351

more sophisticated than replication but has much less overhead. In this form of
resilience, the task is replayed (up to N times) on the original input if its execu-
tion resulted in some errors. Compared to replication, the application program-
mer needs to provide an error checking function so that the runtime can use it to
check for errors. User-visible abstraction for a replay task is to extend the task
creation API to include an error checking function and data on which that func-
tion operates. The application programmer needs to fill the data (chk data) that
needs to be checked for errors using the error checking function (err chk func).
The replay version of the operation val() task from Listing 1.2 is shown List-
ing 1.3. Similar to Replication tasks, Replay tasks also do not publish the output
until error checking succeeds.

Algorithm-Based Fault Tolerance (ABFT). Algorithm-based fault toler-
ance (ABFT) mitigates failures using algorithm or application specific knowl-
edge to correct data corruptions and computation errors. One of the seminal
papers [15] introduced checksums that are embedded into the matrix and vector
operators in parallel dense matrix computations to enable runtime error detec-
tion and correction. By using the numerical properties of the algorithm, ABFT
uses checksums or provides alternative formulations to recover from an error thus
ensuring forward progress without redoing the whole computation. Thus the API
designed for an ABFT task should provide a facility to check for errors and if
there is an error, a way to recover from it. Therefore, the user level abstraction
to include ABFT is to extend the replay task API with a recovery facility as
shown in Listing 1.4.

Listing 1.4. Resilient ABFT task signature containing the error correction mechanism.
1 abft::async_await_check ([=] {
2 actual computation
3 }, err_dep, err_chk_func, chk_data,
4 err_correction_func , futures);

The ABFT construct
User-defined error correction function

Checkpoint/Restart (C/R). Checkpointing involves the saving of interme-
diate program state/outputs on to secure storage so that in case of failure, the
application can be restarted from the point when the checkpoint was taken rather
than from the beginning of the program’s execution. From the context of task-
based runtimes, once the error/equality checking succeeds at the boundary of a
task, the output data can be checkpointed. Later in some following task, if all
other resilience techniques fail, it can re-fetch the input data from the checkpoint
and execute again.

Checkpointing can be added to any of the resilient tasks listed above. A
proposed user level abstraction for a checkpoint task created by extending the
replay task is shown in Listing 1.5. The only addition is to specify where to store
the checkpoint data using the set archive store API as shown in Line 13. In
our current preliminary implementation, we keep a copy of the checkpoint in
the memory itself, as in diskless checkpointing [22]. Efficiently performing these
checkpoints and their performance evaluation is a topic for future work.

352 S. R. Paul et al.

Listing 1.5. Resilient AMT program based on replay to perform an operation on two
asynchronously generated values and also checkpoints the results.

1 void operation_val() {
2 checkpoint::async_await_check ([=] {
3 val1 = get_value(val1_dep);
4 val2 = get_value(val2_dep);
5 res = new value(op(val1, val2));
6 res_dep->put(res);
7 chk_data = res;
8 }, err_dep, err_chk_func, chk_data,
9 val1_dep->get_future(),

10 val2_dep->get_future()); // async
11 }
12
13 set_archive_store(storage object);

The checkpoint/restart construct
The checkpoint API that specifies where to store the checkpoint data
(invoked just once, before async_await_check)

2.2 Memory Management

C++ requires the user to perform memory management; i.e., the application
programmer needs to explicitly free any data that is allocated in the heap mem-
ory. This could be reasonable to manage in normal AMT programs, but when
we introduce resilience techniques manual deallocation poses certain challenges.

Many resilience techniques involve multiple executions of the task to get the
correct results. This would mean that the user needs to keep track of the good or
bad executions of the task. For the good runs, the data generated by a task would
be used later in some consumer tasks; therefore, they need to be deallocated
only after the consumption of the data. For bad runs, there is no need for the
data created in the task and, therefore, they need to be deallocated at the end
of the producer task itself. Keeping track of good or bad runs and selectively
deallocating memory would create unnecessary complexity in the application
code.

Therefore, to reduce the user’s burden of manual memory management, we
decided to add the reference counting capability that deallocates the data auto-
matically once its use is over. Since data is being transferred between tasks using
promise and future, reference counting is added by extending the promise to
include the reference count. Ideally, the reference count specifies the number
of tasks dependent on the future associated with the promise. The reference
count is passed on to a promise when it is created. In other words, a reference
count N specifies that only N tasks consume data from the given promise, and
therefore the promise and the associated data can be freed once N tasks have
used it.

3 Implementation

In this section, we discuss the implementation of our resilient-AMT prototype [1],
extended from the Habanero C++ library (HClib) [11]. An overview of HClib
and its runtime capability are discussed in Sect. 3.1 followed by efforts for the
extension of HClib.

Enabling Resilience in Asynchronous Many-Task Programming Models 353

3.1 HClib

HClib [11] is a lightweight, work-stealing, task-based programming model and
runtime that focuses on offering simple tasking APIs with low overhead [13]
task creation. HClib is entirely library-based (i.e. does not require a custom
compiler) and supports both a C and C++ API. HClib’s runtime consists of
a persistent thread pool, across which tasks are load balanced using lock-free
concurrent dequeues. At the user-visible API level, HClib exposes several useful
programming constructs. A brief summary of the relevant APIs is as follows. The
hclib::launch() API initializes the HClib runtime, including spawning runtime
threads. The async([] { body; }) API creates a dynamic task executing body
provided as a C++ lambda expression; this API optionally allows the inclusion
of parameters that specify precondition events thereby supporting event-driven
execution for tasks when so desired (i.e., the async await()). The finish([] {
body; }) API waits for all tasks created in body, including transitively spawned
tasks, before returning.

3.2 Enabling Resilience in HClib

We extended HClib to include the resilience constructs (Sect. 2.1), and the ref-
erence counting capability (Sect. 2.2).

As mentioned in Sect. 2.1, to hold the put operations until equality checking
succeeds, we need additional space within the promise. The normal promise
can hold only one value that had been added to it using the put operation. For
replication, however, all replicas perform the put operation and, therefore, we
need N locations within the promise rather than one. To accommodate this,
we extended the reference counting promise with an array to store N values
so that we can perform majority voting among them. During a put operation
inside a replication task, the ith replica stores the value in the ith location of the
array. Similarly for replay or ABFT tasks, to hold the output inside the promise
until it is published, we extended the reference counting promise to include a
temporary storage. Unlike replication, which requires an array of temporary
storage, a replay and ABFT promise needs only one temporary storage space
since the replay happens sequentially.

We need to collect all the put operations within the resilient tasks so that
they can be checked for errors after all replicas finish. For this purpose, we
extended HClib with task-local storage. Each put operation in the replica with
index zero (we assume all replicas perform the same put operations) adds the
associated promise to the task-local storage. Finally, while merging the results
from the replicas, we fetch the promises from the task-local storage and check for
equality on the data attached to those promises using an equivalence operator
the user provides.

354 S. R. Paul et al.

4 Evaluation

This section presents the results of an empirical evaluation of our runtime sys-
tem, mostly on a single-node platform with a few experiments on a multi-node
platform to show its viability in a distributed environment.

Machine: We present the results on the Cori supercomputer located at NERSC,
in which each node has two sockets, each of which has 16-core Intel Xeon E5-
2698 v3 CPUs at 2.30 GHz. Cori uses Cray Aries interconnect with Dragonfly
topology having a global peak bisection bandwidth is 45.0 TB/s. We used GCC
7.3.0 compiler for building the library and most benchmarks and Intel Compiler
18.0.1 for benchmarks that require MKL support.

Benchmarks: Our first benchmark is the stencil 1D benchmark that solves lin-
ear advection (a hyperbolic PDE). We implemented this using the Lax-Wendroff
3-point stencil. In this benchmark, we use 128 tiles of size 16,000 doubles, 128
time steps per iteration (each task advances its assigned tile 128 time steps), and
8,192 iterations. For our next benchmark, we solve heat diffusion (a parabolic
PDE) on a 3D domain with periodic boundary conditions using a 7-point stencil.
Here we use 163 cubes, each representing a subdomain of size 323, and run for
1,024 iterations. Our next benchmark is a tiled version of Conjugate Gradient
(CG), which is an iterative method for solving sparse systems of linear equa-
tions. A square matrix from the “SuiteSparse” collection (52,804 rows/columns,
5,333,507 non-zeros) was set up with the CG method with 128 tiles and 500 iter-
ations. Our fourth benchmark is the Smith-Waterman algorithm that performs
local sequence alignment, which is widely used for determining similar regions
between two strings of nucleic acid sequences. We use two input strings of sizes
185,600 and 192,000, divided among 4,096 tiles arranged as 64× 64. Our last
benchmark is the Cholesky decomposition algorithm, which is used primarily to
find the numerical solution of linear equations. Here we decompose a matrix of
size 24,000× 24,000 into tiles of size 400× 400. We report the average of five
runs for each experiment.

For the stencil benchmarks, we can detect corruption anywhere on a subdo-
main using physics-based checksums because conservation requires that the sum
of values over the subdomain only changes by the flux through the subdomain
boundary. For the Conjugate gradient and Smith-waterman benchmarks, there
are not any sophisticated error detection mechanisms, so we simply return true,
implying no error occurred. In the case when we want to inject faults, we pick a
few instances of the error checking function to return false. Error-checking func-
tions are expected to be domain/application dependent and are not the subject
of this paper, and we emulate the scenario arising from a prescribed fault rate.
The design of checksums for Cholesky decomposition is based on the work by
Cao [6].

Enabling Resilience in Asynchronous Many-Task Programming Models 355

Fig. 1. Comparison of execution times of
different resilience schemes on the five
benchmarks without faults.

Fig. 2. Comparison of execution times
of the stencil benchmarks while mixing
replay and replication with percent of
replication shown.

4.1 Performance Numbers Without Failures

Single Resilience Technique. To show the overhead of the resilient runtime,
the execution time of the five benchmarks using various resilience techniques
without failures is shown in Fig. 1. For all the benchmarks, we used replay and
replication to enable resilience. For the Cholesky benchmark, in addition to
replay and replication, we included ABFT. From the figure, we can see that for
the stencil benchmarks, some additional time is required for the replay variant
compared to the baseline. For the stencil 1D benchmark, this accounts for less
than 5% overhead whereas in stencil 3D the overhead is around 8%. A close
examination reveals the overhead includes both the computation of the checksum
and additional overhead from the replay runtime. For the Conjugate gradient
benchmark, the replay runtime incurs an overhead of less than 10%. For the
Smith-Waterman and Cholesky benchmarks, we did not notice any significant
overhead while using replay. For the Cholesky benchmark, we also enabled ABFT
and found that the time required for ABFT is comparable to that of replay.

When replication is used, we can see that the execution time increases for
all the benchmarks. We expected the time to double because, in the absence
of faults, duplication of the tasks occurs. However, for a few benchmarks, the
execution time was significantly less than double primarily due to L3 cache reuse.

Mixing Resilience Techniques. To illustrate that the various resilience tech-
niques can be seamlessly combined, we also tried to mix replay and replication
in the stencil benchmarks. On one end, the application only uses replay, and
on the other end, it uses just replication. In between, the amount of replica-
tion is increased in increments of 20%. Figure 2 shows that the execution time
increases linearly while mixing replay and replication. This implies that the
increase directly corresponds to the additional cost for running replication and
thus no additional overhead is involved.

356 S. R. Paul et al.

Fig. 3. Comparison of percentage of
change in execution times w.r.t baseline
of different resilience schemes with faults
injected at 1% and 10% rate.

Fig. 4. Weak scaling of Stencil 1D with
different number of nodes and resilience
schemes with no fault injection

4.2 Performance Numbers with Failures

To check the effectiveness of our resilience mechanisms in the presence of soft
errors, we ran all the benchmarks while introducing errors. We injected errors
at a rate of 1% and 10%. Here, 10% implies that an error is injected into 10% of
the total tasks. Figure 3 shows the execution time for various benchmarks and
resilience techniques in the presence of faults. Here, also, we can see that the
increase in execution time closely follows the amount of failure occurred. For the
10% failure rate, in most cases, the increase in execution time is also around
10%. Failures do not cause much time increase in case of ABFT because the
ABFT error correction is very lightweight compared to others.

4.3 Performance Numbers on Multiple Nodes

We run some preliminary experiments using stencil 1D with multiple nodes using
MPI to measure the overhead of our implementation in multi-node environ-
ments1. We ran weak scaling of Stencil 1D by only increasing the number of
tiles while keeping the same configuration of other parameters as the exper-
iment on a single node. In Fig. 4, we can see some performance degradation
because of internode communication during a two-node run. However, the repli-
cation scheme worked well without degrading performance significantly because
the communication incurred by MPI routines is overlapped with the replicated
execution of tasks. For runs without resilience or with replay, MPI routines are
called only when the original task or replayed task generates correct results,
which causes a delay because it cannot be overlapped with other tasks. Thus,
the execution time of such runs increases with more nodes.

1 There is no resilience across nodes. We provide only single-node resilience and use
MPI for communication. Resilience across nodes is part of future work.

Enabling Resilience in Asynchronous Many-Task Programming Models 357

5 Related Work

Task Replication: Subasi et al. [25] study a combination of task replication
and checkpoint/restart for a task-parallel runtime, OmpSs [9]. Their checkpoint
API is integrated with the input data parameters of OmpSs directives to pro-
tect the task input. They also suggested deferring launch of the third replica
until duplicated tasks report a failure. However, the mixing with other resilience
techniques and analysis of the performance penalties are yet to be studied.

Task Replay: Subasi et al. [24] also study a combination of task replay and
checkpoint/restart for OmpSs. As with task replication, checkpoint/restart is
utilized for preserving the input of tasks. During the execution of a task, errors
notified by the operating system trigger a replay of the task using the input data
stored in the checkpoint. Cao et al. [6] has a similar replay model. However, the
drawback of these approaches is a lack of mitigation for failure propagation, as
they assume reliable failure detection support, e.g., by the operating system,
which is not always available. Our approach provides a general interface that
allows user-level failure detection.

ABFT: Cao et al. [6] also discuss an algorithm-based fault tolerance for tiled
Cholesky factorization [16] in the PaRSEC runtime. However, they do not dis-
cuss their user-visible APIs in terms of general applicability, while our approach
provides a general support for ABFT.

6 Conclusions and Future Work

The traditional checkpoint/restart (C/R) approach for resilience was designed to
support the bulk-synchronous MPI programming model under the assumption
that failure is a rare event. However, C/R is not well suited for supporting
higher-frequency soft errors or unexpected performance anomalies. The resilient-
AMT idea for applications mitigates the shortcoming of traditional C/R, so as
to support scalable failure mitigation. Task decomposition allows localization
and isolation of failures in the resilient-AMT framework, and thus keeps the
recovery inexpensive. Our work realizes the four resilience programming concepts
suggested by Heroux [14]. Task boundary helps to perform Local Failure Local
Recovery for scalable application recovery. The task replication and replay APIs
allow selective reliability; the use of replication and replay on individual tasks
can be at the user’s discretion. The task replay and ABFT APIs enable skeptical
programming, which can incorporate inexpensive user-defined error detection.
The response to an error is either task replay (rollback) or recovery (application-
specific correction). The AMT execution model relaxes the assumption of
bulk-synchrony of conventional parallel programs.

In the future, we would like to extend our resilient-AMT approach to support
both intra-node and inter-node resilience (MPI based communication). Another
direction is to combine both replication and replay mechanisms in an “eager
replay” approach. During eager replay, if extra resources are available, the replay

358 S. R. Paul et al.

task can run multiple copies instead of waiting for the task to finish and select
the correct output from the replicas using a selection function. Our current
approach also depends on the use of a user-provided equals function to check
for equivalence of data which could be automated using a compiler. Although
we support the use of nested non-resilient tasks within a resilient task, nesting
of resilient tasks is a topic of future research. Also the restriction of side-effect
free tasks can be relaxed by using idempotent regions as task boundaries [19].
Our current approach only supports one level of checkpointing, with access to
checkpoints of parent tasks. If that execution fails again, we may need to recover
from checkpoints of further ancestors (multi-level checkpointing), as part of our
future work. Another direction is to study the characteristics of faults [18,23]
and perform fault injection [10,12] to efficiently and extensively cover them.

Data Availability Statement. The datasets and code generated during and/or anal-
ysed during the current study are available through the Figshare repository: https://
doi.org/10.6084/m9.figshare.8485994.

References

1. HClib Resilience Branch. https://github.com/srirajpaul/hclib/tree/feature/
resilience. Accessed 14 June 2019

2. Augonnet, C., et al.: StarPU: a unified platform for task scheduling on hetero-
geneous multicore architectures. Concurr. Comput. Pract. Exp. 23(2), 187–198
(2011). https://doi.org/10.1002/cpe.1631

3. Bauer, M., et al.: Legion: expressing locality and independence with logical regions.
In: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, SC 2012, pp. 66:1–66:11 (2012). https://doi.
org/10.1109/SC.2012.71

4. Bennett, J., et al.: ASC ATDM level 2 milestone #5325: asynchronous many-task
runtime system analysis and assessment for next generation platform. Technical
report SAND2015-8312, Sandia National Laboratories, September 2015

5. Bosilca, G., et al.: PaRSEC: exploiting heterogeneity to enhance scalability. Com-
put. Sci. Eng. 15(6), 36–45 (2013). https://doi.org/10.1109/MCSE.2013.98

6. Cao, C., et al.: Design for a soft error resilient dynamic task-based runtime. In: 2015
IEEE International Parallel and Distributed Processing Symposium, pp. 765–774,
May 2015. https://doi.org/10.1109/IPDPS.2015.81

7. Cappello, F., et al.: Toward exascale resilience: 2014 update. Supercomput. Front.
Innov. Int. J. 1(1), 5–28 (2014). https://doi.org/10.14529/jsfi140101

8. Chung, J., et al.: Containment domains: a scalable, efficient, and flexible resilience
scheme for exascale systems. In: Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, SC 2012, pp.
58:1–58:11 (2012). https://doi.org/10.1109/SC.2012.36

9. Fernández, A., Beltran, V., Martorell, X., Badia, R.M., Ayguadé, E., Labarta, J.:
Task-based programming with OmpSs and its application. In: Lopes, L., et al.
(eds.) Euro-Par 2014. LNCS, vol. 8806, pp. 601–612. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-14313-2 51

https://doi.org/10.6084/m9.figshare.8485994
https://doi.org/10.6084/m9.figshare.8485994
https://github.com/srirajpaul/hclib/tree/feature/resilience
https://github.com/srirajpaul/hclib/tree/feature/resilience
https://doi.org/10.1002/cpe.1631
https://doi.org/10.1109/SC.2012.71
https://doi.org/10.1109/SC.2012.71
https://doi.org/10.1109/MCSE.2013.98
https://doi.org/10.1109/IPDPS.2015.81
https://doi.org/10.14529/jsfi140101
https://doi.org/10.1109/SC.2012.36
https://doi.org/10.1007/978-3-319-14313-2_51

Enabling Resilience in Asynchronous Many-Task Programming Models 359

10. Georgakoudis, G., et al.: Refine: realistic fault injection via compiler-based instru-
mentation for accuracy, portability and speed. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
SC 2017, pp. 29:1–29:14 (2017). https://doi.org/10.1145/3126908.3126972

11. Grossman, M., et al.: A pluggable framework for composable HPC schedul-
ing libraries. In: 2017 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pp. 723–732 (2017). https://doi.org/10.1109/
IPDPSW.2017.13

12. Guan, Q., et al.: F-sefi: a fine-grained soft error fault injection tool for profil-
ing application vulnerability. In: 2014 IEEE 28th International Parallel and Dis-
tributed Processing Symposium, pp. 1245–1254 (2014). https://doi.org/10.1109/
IPDPS.2014.128

13. Hayashi, A., et al.: Chapel-on-X: exploring tasking runtimes for PGAS languages.
In: ESPM2 2017, pp. 5:1–5:8. ACM, New York (2017). https://doi.org/10.1145/
3152041.3152086

14. Heroux, M.A.: Toward Resilient Algorithms and Applications (2014). http://arxiv.
org/abs/1402.3809

15. Huang, K.H., Abraham, J.A.: Algorithm-based fault tolerance for matrix opera-
tions. IEEE Trans. Comput. C-33(6), 518–528 (1984). https://doi.org/10.1109/
TC.1984.1676475

16. Jeannot, E.: Performance analysis and optimization of the tiled Cholesky factor-
ization on NUMA machines. In: Proceedings of the 2012 Fifth International Sym-
posium on Parallel Architectures, Algorithms and Programming, PAAP 2012, pp.
210–217 (2012). https://doi.org/10.1109/PAAP.2012.38

17. Kaiser, H., et al.: Parallex an advanced parallel execution model for scaling-
impaired applications. In: 2009 International Conference on Parallel Processing
Workshops, pp. 394–401 (2009). https://doi.org/10.1109/ICPPW.2009.14

18. Li, D., et al.: Classifying soft error vulnerabilities in extreme-scale scientific appli-
cations using a binary instrumentation tool. In: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis,
SC 2012, pp. 57:1–57:11 (2012). https://doi.org/10.1109/SC.2012.29

19. Liu, Q., et al.: Compiler-directed lightweight checkpointing for fine-grained guar-
anteed soft error recovery. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2016, pp. 20:1–
20:12 (2016). https://doi.org/10.1109/SC.2016.19

20. Mattson, T.G., et al.: The open community runtime: a runtime system for extreme
scale computing. In: 2016 IEEE High Performance Extreme Computing Conference
(HPEC), pp. 1–7, September 2016. https://doi.org/10.1109/HPEC.2016.7761580

21. Moody, A., et al.: Design, modeling, and evaluation of a scalable multi-level check-
pointing system. In: Proceedings of the 2010 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis, SC 2010, pp.
1–11 (2010). https://doi.org/10.1109/SC.2010.18

22. Plank, J.S., Li, K., Puening, M.A.: Diskless checkpointing. IEEE Trans. Parallel
Distrib. Syst. 9(10), 972–986 (1998). https://doi.org/10.1109/71.730527

23. Shantharam, M., et al.: Characterizing the impact of soft errors on iterative meth-
ods in scientific computing. In: Proceedings of the International Conference on
Supercomputing, ICS 2011, pp. 152–161 (2011). https://doi.org/10.1145/1995896.
1995922

https://doi.org/10.1145/3126908.3126972
https://doi.org/10.1109/IPDPSW.2017.13
https://doi.org/10.1109/IPDPSW.2017.13
https://doi.org/10.1109/IPDPS.2014.128
https://doi.org/10.1109/IPDPS.2014.128
https://doi.org/10.1145/3152041.3152086
https://doi.org/10.1145/3152041.3152086
http://arxiv.org/abs/1402.3809
http://arxiv.org/abs/1402.3809
https://doi.org/10.1109/TC.1984.1676475
https://doi.org/10.1109/TC.1984.1676475
https://doi.org/10.1109/PAAP.2012.38
https://doi.org/10.1109/ICPPW.2009.14
https://doi.org/10.1109/SC.2012.29
https://doi.org/10.1109/SC.2016.19
https://doi.org/10.1109/HPEC.2016.7761580
https://doi.org/10.1109/SC.2010.18
https://doi.org/10.1109/71.730527
https://doi.org/10.1145/1995896.1995922
https://doi.org/10.1145/1995896.1995922

360 S. R. Paul et al.

24. Subasi, O., et al.: NanoCheckpoints: a task-based asynchronous dataflow frame-
work for efficient and scalable checkpoint/restart. In: 2015 23rd Euromicro Inter-
national Conference on Parallel, Distributed, and Network-Based Processing, pp.
99–102. https://doi.org/10.1109/PDP.2015.17

25. Subasi, O., et al.: Designing and modelling selective replication for fault-tolerant
HPC applications. In: 2017 17th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID), pp. 452–457, May 2017. https://doi.org/
10.1109/CCGRID.2017.40

https://doi.org/10.1109/PDP.2015.17
https://doi.org/10.1109/CCGRID.2017.40
https://doi.org/10.1109/CCGRID.2017.40

Multicore and Manycore Parallelism

Avoiding Scalability Collapse
by Restricting Concurrency

Dave Dice(B) and Alex Kogan(B)

Oracle Labs, Burlington, MA, USA
{dave.dice,alex.kogan}@oracle.com

Abstract. Saturated locks often degrade the performance of a mul-
tithreaded application, leading to a so-called scalability collapse prob-
lem. This problem arises when a growing number of threads circulating
through a saturated lock causes the overall application performance to
fade or even drop abruptly. This problem is particularly (but not solely)
acute on oversubscribed systems (systems with more threads than avail-
able hardware cores).

In this paper, we introduce GCR (generic concurrency restriction), a
mechanism that aims to avoid the scalability collapse. GCR, designed
as a generic, lock-agnostic wrapper, intercepts lock acquisition calls, and
decides when threads would be allowed to proceed with the acquisition
of the underlying lock. Furthermore, we present GCR-NUMA, a non-
uniform memory access (NUMA)-aware extension of GCR, that strives
to ensure that threads allowed to acquire the lock are those that run on
the same socket.

The extensive evaluation that includes more than two dozen locks,
three machines and three benchmarks shows that GCR brings substan-
tial speedup (in many cases, up to three orders of magnitude) in case of
contention and growing thread counts, while introducing nearly negligi-
ble slowdown when the underlying lock is not contended. GCR-NUMA
brings even larger performance gains starting at even lighter lock con-
tention.

Keywords: Locks · Scalability · Concurrency restriction · NUMA

1 Introduction

The performance of applications on multi-core systems is often harmed by sat-
urated locks, where at least one thread is waiting for the lock. Prior work
has observed that as the number of threads circulating through a saturated
lock grows, the overall application performance often fades or even drops
abruptly [2,7,16,17], a behavior called scalability collapse [7]. This happens
because threads compete over shared system resources, such as computing cores
and last-level cache (LLC). For instance, the increase in the number of distinct
threads circulating through the lock typically leads to increased cache pressure,

c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 363–376, 2019.
https://doi.org/10.1007/978-3-030-29400-7_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_26&domain=pdf
http://orcid.org/0000-0001-9164-7747
http://orcid.org/0000-0002-4419-4340
https://doi.org/10.1007/978-3-030-29400-7_26

364 D. Dice and A. Kogan

resulting in cache misses. At the same time, threads waiting for the lock consume
valuable resources and might preempt the lock holder from making progress with
its execution under lock, exacerbating the contention on the lock even further.

Fig. 1. Microbenchmark performance
with different locks on a 2-socket machine
with 20 hyper-threads per socket.

An example for scalability collapse
can be seen in Fig. 1 that depicts
the performance of a key-value map
microbenchmark with three popular
locks on a 2-socket x86 machine fea-
turing 40 logical CPUs in total (full
details of the microbenchmark and the
machine are provided later). The shape
and the exact point of the perfor-
mance decline differ between the locks,
yet all of them are unable to sustain
peak throughput. With the Test-Test-
Set lock, for instance, the performance
drops abruptly when more than just a few threads are used, while with the MCS
lock [21] the performance is relatively stable up to the capacity of the machine
and collapses once the system gets oversubscribed (i.e., has more threads avail-
able than the number of cores). Note that one of the locks, MCS-TP, was designed
specifically to handle oversubscription [14], yet its performance falls short of the
peak.

It might be tempting to argue that one should never create a workload where
the underlying machine is oversubscribed, pre-tuning the maximum number of
threads and using a lock, such as MCS, to keep the performance stable. We note
that in modern component-based software, the total number of threads is often
out of the hands of the developer. A good example would be applications that
use thread pools, or even have multiple mutually unaware thread pools. Fur-
thermore, in multi-tenant and/or cloud-based deployments, where the resources
of a physical machine (including cores and caches) are often shared between
applications running inside virtual machines or containers, applications can run
concurrently with one another without even being aware that they share the
same machine. Thus, limiting the maximum number of threads by the num-
ber of cores does not help much. Finally, even when a saturated lock delivers a
seemingly stable performance, threads spinning and waiting for the lock consume
energy and take resources (such as CPU time) from other, unrelated tasks1.

In this paper we introduce generic concurrency restriction (GCR) to deal
with the scalability collapse. GCR operates as a wrapper around any exist-
ing lock (including POSIX pthread mutexes, and specialized locks provided by
an application). GCR intercepts calls for a lock acquisition and decides which
threads would proceed with the acquisition of the underlying lock (those threads
are called active) and which threads would be blocked (those threads are called
passive). Reducing the number of threads circulating through the locks improves
cache performance, while blocking passive threads reduces competition over CPU

1 We also discuss other waiting policies and their limitations later in the paper.

Avoiding Scalability Collapse by Restricting Concurrency 365

time, leading to better system performance and energy efficiency. To avoid star-
vation and achieve long-term fairness, active and passive threads are shuffled
periodically. We note that the admission policy remains fully work conserving
with GCR. That is, when a lock holder exits, one of the waiting threads will be
able to acquire the lock immediately and enter its critical section.

In this paper we also show how GCR can be extended into a non-uniform
access memory (NUMA) setting of multi-socket machines. In those settings,
accessing data residing in a local cache is far cheaper than accessing data in a
cache located on a remote socket. Previous research on locks tackled this issue by
trying to keep the lock ownership on the same socket [3,9,10,23], thus increasing
the chance that the data accessed by a thread holding the lock (and the lock
data as well) would be cached locally to that thread. The NUMA extension of
GCR, called simply GCR-NUMA, takes advantage of that same idea by trying to
keep the set of active threads composed of threads running on the same socket.
As a by-product of this construction, GCR-NUMA can convert any lock into a
NUMA-aware one.

We have implemented GCR (and GCR-NUMA) in the context of the LiTL
library [13,20], which provides the implementation of over two dozen various
locks. We have evaluated GCR with all those locks using a microbenchmark
as well as two well-known database systems (namely, Kyoto Cabinet [12] and
LevelDB [18]), on three different systems (two x86 machines and one SPARC).
The results show that GCR avoids the scalability collapse, which translates to
substantial speedup (up to three orders of magnitude) in case of high lock con-
tention for virtually every evaluated lock, workload and machine. Furthermore,
we show empirically that GCR does not harm the fairness of underlying locks (in
fact, in many cases GCR makes the fairness better). GCR-NUMA brings even
larger performance gains starting at even lighter lock contention.

2 Related Work

Prior work has explored adapting the number of active threads based on lock
contention [7,17]. However, that work customized certain types of locks, exploit-
ing their specific features, such as the fact that waiting threads are organized in a
queue [7], or that lock acquisition can be aborted [17]. Those requirements limit
the ability to adapt those techniques into other locks and use them in practice.
For instance, very few locks allow waiting threads to abandon an acquisition
attempt, and many spin locks, such as a simple Test-Test-Set lock, do not main-
tain a queue of waiting threads. Furthermore, the lock implementation is often
opaque to the application, e.g., when POSIX pthread mutexes are used. At the
same time, prior research has shown that every lock has its own “15 min of fame”,
i.e., there is no lock that always outperforms others and the choice of the optimal
lock depends on the given application, platform and workload [6,13]. Thus, in
order to be practical, a mechanism to control the number of active threads has
to be lock-agnostic, like the one provided by GCR.

366 D. Dice and A. Kogan

Other work in different, but related contexts has observed that controlling
the number of threads used by an application is an effective approach for meeting
certain performance goals. For instance, Raman et al. [24] demonstrate that with
a run-time system that monitors application execution to dynamically adapt
the number of worker threads executing parallel loop nests. In another exam-
ple, Pusukuri et al. [22] propose a system that runs an application multiple
times for short durations while varying the number of threads, and determines
the optimal number of threads to create based on the observed performance.
Chadha et al. [4] identified cache-level thrashing as a scalability impediment
and proposed system-wide concurrency throttling. Heirman et al. [15] suggested
intentional undersubscription of threads as a response to competition for shared
caches. Hardware and software transactional memory systems use contention
managers to throttle concurrency in order to optimize throughput [25]. The issue
is particularly acute in the context of transactional memory as failed optimistic
transactions are wasteful of resources.

Trading off between throughput and short-term fairness has been extensively
explored in the context of NUMA-aware locks [3,9,10,23]. Those locks do not
feature a concurrency restriction mechanism, and in particular, do not avoid
contention on the intra-socket level and the issues resulting from that.

3 Background

Contending threads must wait for the lock when it is not available. There are
several common waiting policies. The most simple one is unbounded spinning,
also known as busy-waiting or polling. There, the waiting threads spin on a
global or local memory location and wait until the value in that location changes.
Spinning consumes resources and contributes to preemption when the system is
oversubscribed, i.e., has more ready threads than the number of available logical
CPUs. Yet, absent preemption, it is simple and provides fast lock handover times,
and for those reasons used by many popular locks, e.g., Test-Test-Set.

An alternative waiting policy is parking, where a waiting thread voluntarily
releases its CPU and passively waits (by blocking) for another thread to unpark
it when the lock becomes available. Parking is attractive when the system is
oversubscribed, as it releases CPU resources for threads ready to run, including
the lock holder. However, the cost of the voluntary context switching imposed
by parking is high, which translates to longer lock handover times when the next
owner of the lock has to be unparked.

To mitigate the overhead of parking and unparking on the one hand, and
limit the shortcomings of unlimited spinning on the other hand, lock designers
proposed a hybrid spin-then-park policy. There, threads spin for a brief period,
and park if the lock is still not available by the end of that time. While tuning
the optimal time for spinning is challenging [16,19], it is typically set to the
length of the context-switch round trip [7].

Avoiding Scalability Collapse by Restricting Concurrency 367

4 Generic Concurrency Restriction

GCR “wraps” a lock API, i.e., calls to Lock/Unlock methods go through the
corresponding methods of GCR. In our implementation, we interpose on the
standard POSIX pthreads mutex lock and pthreads mutex unlock methods.
Thus, using the standard LD PRELOAD mechanism on Linux and Unix, GCR
can be made immediately available to any application that uses the standard
POSIX API, even without recompiling the application or its locks.

The pseudo-code implementation is provided in Fig. 22, where FAA, SWAP
and CAS stand for atomic fetch-and-add, swap and compare-and-swap instruc-
tions, respectively. In the following description, we distinguish between active
threads, that is, threads allowed by GCR to invoke the API of the underlying
lock, and passive threads, which are not allowed to do so. Note that this dis-
tinction is unrelated to the running state of the corresponding threads. That is,
active threads may actually be blocked (parked) if the underlying lock decides
doing so, while passive threads may be spinning, waiting for their turn to join
the set of active threads. In addition, given that GCR by itself does not provide
lock semantics (even though it implements the lock API), we will refer to the
underlying lock simply as the lock.

The auxiliary data structures used by GCR include Node and LockType
(cf. Fig. 2). The Node structure represents a node in the queue of passive threads.
In addition to the successor and predecessor nodes in the queue, the Node struc-
ture contains the event flag. This flag is used to signal a thread when its node
moves to the head in the queue.

The LockType structure contains the internal lock metadata (passed to the
Lock and Unlock functions of that lock) and a number of additional fields:

– top and tail are the pointers to the first and the last nodes in the queue of
passive threads, respectively.

– topApproved is a flag used to signal the passive thread at the top of the queue
that it can join the set of active threads.

– numActive is the counter for the number of active threads.
– numAcqs is a counter for the number of lock acquisitions. It is used to move

threads from the passive set to the active set, as explained below.

In addition to LockType structure, GCR uses nextLock (nextUnlock) func-
tion pointer, which is initialized to the Lock (Unlock, respectively) function of
the underlying lock. The initialization code is straightforward (on Linux it can
use the dlsym system call), and thus is not shown.

GCR keeps track of the number of active threads per lock. When a thread
invokes the Lock method wrapped by GCR, GCR checks whether the number
of active threads is larger than a preconfigured threshold (cf. Line 3, where we
use a threshold of 1). If not, the thread proceeds by calling the lock’s Lock

2 For the clarity of exposition, we assume sequential consistency. Our actual imple-
mentation uses memory fences as well as volatile keywords and padding (to avoid
false sharing) where necessarily.

368 D. Dice and A. Kogan

typedef struct Node {
struct Node ∗ next;
struct Node ∗ prev;
int event;

} Node;

typedef struct {
lock t internalMutex;

Node ∗ top;
Node ∗ tail;
int topApproved;

int numActive;

int numAcqs;
} LockType ;

static int (∗nextLock)(lock t ∗);
static int (∗nextUnlock)(lock t ∗);

1 int Lock(LockType ∗m) {
2 /∗ if there is at most one active thread ∗/
3 if (m−>numActive <= 1) {
4 /∗ go to the fast path ∗/
5 FAA(&m−>numActive, 1);
6 goto FastPath;
7 }

8 SlowPath:
9 /∗ enter the queue of passive threads ∗/

10 Node ∗myNode = pushSelfToQueue(m);

11 /∗ wait (by spin −then−park) for my
12 node to get to the top ∗/
13 if (!myNode−>event)
14 Wait(myNode−>event);

15 /∗ wait (by spinning) for a signal to join
16 the set of active threads ∗/
17 while (!m−>topApproved) {
18 Pause();
19 /∗ stop waiting if no active
20 threads left ∗/
21 if (m−>numActive == 0) break;
22 }

23 if (m−>topApproved != 0)
24 m−>topApproved = 0;
25 FAA(&m−>numActive, 1);

26 popSelfFromQueue(m, myNode);

27 FastPath:
28 return nextLock(&m−>internalMutex);
29 }

31 int Unlock (LockType ∗ m) {
32 /∗ check if it is time to bring someone from
33 the passive to active set ∗/
34 if (((m−>numAcqs++ % THRESHOLD) == 0)
35 && m−>top != NULL) {
36 /∗ signal the selected thread that it can go ∗/
37 m−>topApproved = 1;
38 }

39 FAA(&m−>numActive, −1);

40 /∗ call underlying lock ∗/
41 return nextUnlock(&m−>internalMutex);
42 }

43 Node ∗pushSelfToQueue(LockType ∗ m) {
44 Node ∗ n = (Node ∗)malloc(sizeof(Node));
45 n−>next = NULL;
46 n−>event = 0;
47 Node ∗ prv = SWAP (&m−>tail, n);
48 if (prv != NULL) {
49 prv−>next = n;
50 } else {
51 m−>top = n;
52 n−>event = 1;
53 }

54 return n;
55 }

56 void popSelfFromQueue(LockType ∗ m, Node ∗ n) {
57 Node ∗ succ = n−>next;
58 if (succ == NULL) {
59 /∗ my node is the last in the queue ∗/
60 if (CAS (&m−>tail, n, NULL)) {
61 CAS (&m−>top, n, NULL);
62 free(n);
63 return;
64 }
65 for (;;) {
66 succ = n−>next ;
67 if (succ != NULL) break;
68 Pause();
69 }
70 }

71 m−>top = succ;
72 /∗ unpark successor if it is parked in Wait ∗/
73 succ−>event = 1;

74 free(n);
75 }

Fig. 2. GCR pseudo-code implementation.

method after incrementing (atomically) the (per-lock) counter of active threads
(numActive) in Line 5. This constitutes the fast path of the lock acquisition.
We note that the check in Line 3 and the increment in Line 5 are not mutu-
ally atomic, that is, multiple threads can reach Line 5 and thus increment the
counter stored in numActive concurrently. However, the lack of atomicity may
only impact performance (as the underlying lock will become more contended),
and not correctness. Besides, this should be rare when the system is in the steady
state.

If the condition in Line 3 does not hold, GCR detects that the lock is sat-
urated, and places the (passive) thread into a (lock-specific) queue where that
thread waits for its turn to join the set of active threads. This queue is based on
a linked list; each node is associated with a different thread. Every thread in the
queue but the first can wait by spinning on a local flag (event) in its respective

Avoiding Scalability Collapse by Restricting Concurrency 369

node, yield the CPU and park, or any combination of thereof. (The thread at
the head of the queue has to spin as explained below.) In practice, we choose the
spin-then-park policy for all passive threads in the queue but the first, to limit
the use of system resources by those threads.

The thread at the top of the queue monitors the signal from active threads
to join the active set. It does so by spinning on the topApproved flag (Line
17). In addition, this thread monitors the number of active threads by reading
the numActive counter (Line 21). Note that unlike the topApproved flag, this
counter changes on every lock acquisition and release. Thus, reading it on every
iteration of the spinning loop would create unnecessary coherence traffic and
slow down active threads when they attempt to modify this counter. In the
longer version of this paper [8], we describe a simple optimization that allows to
read this counter less frequently while still monitoring the active set effectively.
Once the passive thread at the top of the queue breaks out of the spinning loop,
it leaves the queue, notifying the next thread t (if exists) that the head of the
queue has changed (by setting a flag in t’s node and unparking t if necessarily),
and proceeds by calling the lock’s Lock method.

When a thread invokes GCR’s Unlock method, it checks whether it is time
to signal the (passive) thread at the head of the queue to join the set of active
threads (cf. Lines 34–38). This is done to achieve a long-term fairness, preventing
starvation of passive threads. To this end, GCR keeps a simple counter for the
number of lock acquisitions (numAcqs), which is incremented with a simple store,
as it is done under the lock. (Other alternatives, such as timer-based approaches,
are possible.) Following that, GCR atomically decrements the counter of active
threads and calls the lock’s Unlock method.

In the longer version of the paper [8], we describe a number of optimizations
intended to reduce the overhead of GCR when the underlying lock is not satu-
rated. For instance, we show how to avoid atomic operations on the counter of
active threads (numActive) by dynamically enabling and disabling GCR based
on the actual contention on the lock.

5 NUMA-Aware GCR

As GCR controls which threads would join the active set, it may well do so in a
NUMA-aware way. In practice, this means that it should strive to maintain the
active set composed of threads running on the same socket (or, more precisely,
on the same NUMA node). Note that this does not place any additional restric-
tions on the underlying lock, which might be a NUMA-aware lock by itself or
not. Naturally, if the underlying lock is NUMA-oblivious, the benefit of such an
optimization would be higher.

Introducing NUMA-awareness into GCR requires relatively few changes. On
a high level, instead of keeping just one queue of passive threads per lock, we
keep a number of queues, one per socket. Thus, a passive thread joins the queue
corresponding to the socket it is running on. In addition, we introduce a notion
of a preferred socket, which is a socket that gets preference in decisions which

370 D. Dice and A. Kogan

threads should join the active set. In our case, we set the preferred socket solely
based on the number of lock acquisitions (i.e., the preferred socket is changed
in a round-robin fashion every certain number of lock acquisitions), but other
refined (e.g., time-based) schemes are possible.

We say that a (passive) thread is eligible (to check whether it can join the
active set) if it is running on the preferred socket or the queue (of passive threads)
of the preferred socket is empty. When a thread calls the Lock function, we check
whether it is eligible and let it proceed with examining the size of the active set
(i.e., read the numActive counter) only if it is. Otherwise, it immediately goes
into the slow path, joining the queue according to its socket. This means that
once the designation of the preferred socket changes (when threads running on
that socket acquire and release the lock “enough” times), active threads from
the now not-preferred socket will become passive when they attempt to acquire
the lock again.

Having only eligible threads monitor the size of the active set has two desired
consequences. First, only the passive thread at the top of the queue correspond-
ing to the preferred socket will be the next thread (out of all passive threads) to
join the set of active threads. This keeps the set of active threads composed of
threads running on the same (preferred) socket and ensures long-term fairness.
Second, non-eligible threads (running on other, non-preferred sockets) do not
access the counter of active threads (but rather wait until they become eligible),
reducing contention on that counter.

6 Evaluation

We implemented GCR as a stand-alone library conforming to the pthread mutex
lock API defined by the POSIX standard. We integrated GCR into LiTL [20],
an open-source project providing an implementation of dozens of various locks,
including well-known established locks, such as MCS [21] and CLH [5], as well
as more recent ones, such as NUMA-aware Cohort [10] and HMCS locks [3]. The
LiTL library also includes the implementation of a related Malthusian lock [7],
which introduces a concurrency restriction mechanism into the MCS lock. Fur-
thermore, the LiTL library allows specifying various waiting policies (e.g., spin
or spin-then-park) for locks that support that (such as MCS, CLH or Cohort
locks). Overall, we experimented with 24 different lock+waiting policy combina-
tions in LiTL (for brevity, we will refer to each lock+waiting policy combination
simply as a lock).

We run experiments on three different platforms. For this paper, we focus on
a dual-socket x86-based system with 40 logical CPUs in total. The qualitative
results from other two systems (a four-socket x86-based system with 144 logical
CPUs in total and a dual-socket SPARC-based system with 512 logical CPUs
in total) were similar, and are included in the longer version of the paper [8].

In all experiments, we vary the number of threads up to twice the capac-
ity of each machine. We do not pin threads to cores, relying on the OS to
make its choices. In all experiments, we employ a scalable memory allocator [1].

Avoiding Scalability Collapse by Restricting Concurrency 371

We disable the turbo mode to avoid the effect of that mode, which varies with
the number of threads, on the results. Each reported experiment has been run
3 times in exactly the same configuration. Presented results are the average of
results reported by each of those 3 runs.

6.1 AVL Tree Microbenchmark

The microbenchmark uses a sequential AVL tree implementation protected by a
single lock. The tree supports the API of a key-value map, including operations
for inserting, removing and looking up keys (and associated values) stored in the
tree. After initial warmup, not included in the measurement interval, all threads
are synchronized to start running at the same time, and apply tree operations
chosen uniformly and at random from the given distribution, with keys chosen
uniformly and at random from the given range. At the end of this time period
(lasting 10 s), the total number of operations is calculated, and the throughput
is reported. The reported results are for the key range of 4096 and threads
performing 80% lookup operations, while the rest is split evenly between inserts
and removes. The tree is pre-initialized to contain roughly half of the key range.
Finally, the microbenchmark allows to control the amount of the external work,
i.e., the duration of a non-critical section (simulated by a pseudo-random number
calculation loop). In this experiment, we use a non-critical section duration that
allows scalability up to a small number of threads.

The absolute performance of the AVL tree benchmark (in terms of the total
throughput) with several locks is shown in Fig. 3. Figure 3(a) and (b) show how
the popular MCS lock [21] performs without GCR, with GCR and with GCR-
NUMA, and how those locks compare to the recent Malthusian lock [7], which
implements a concurrency restriction mechanism directly into the MCS lock.
Locks in Fig. 3(a) employ the spinning waiting policy, while those in Fig. 3(b)
employ the spin-then-park policy. In addition, Fig. 3(c) and (d) compare the per-
formance achieved with the simple Test-Test-Set (TTAS) lock and the POSIX
pthread mutex lock, respectively, when used without GCR, with GCR and with
GCR-NUMA. The concurrency restriction mechanism of a Malthusian lock can-
not be applied directly into the simple TTAS or POSIX pthread mutex locks,
so we do not include a Malthusian variant in those two cases.

With the spinning policy (Fig. 3(a)), GCR has a small detrimental effect
(2% slowdown for a single thread, and in general, at most 12% slowdown) on
the performance of MCS as long as the machine is not oversubscribed. This is
because all threads remain running on their logical CPUs and the lock hand-
off is fast at the time that GCR introduces certain (albeit, small) overhead.
The Malthusian lock performs similarly to (but worse than) GCR. MCS with
GCR-NUMA, however, tops the performance chart as it limits the amount of
cross-socket communication incurred by all other locks when the lock is handed
off between threads running on different sockets. The performance of the MCS
and Malthusian locks plummets once the number of running threads exceeds the
capacity of the machine. At the same time, GCR (and GCR-NUMA) are not

372 D. Dice and A. Kogan

(a) MCS spin (b) MCS spin-then-park

(c) Test-Test-Set (d) Pthread mutex

Fig. 3. Throughput results for several popular locks (AVL tree).

sensitive to that as they park excessive threads, preserving the overall perfor-
mance. In case of GCR-NUMA, for instance, this performance is close to the
peak achieved with 10 threads.

The MCS and Malthusian locks with the spin-then-park policy exhibit a
different performance pattern (Fig. 3(b)). Specifically, the former shows poor
performance at the relatively low number of threads. This is because as the
number of threads grows, the waiting threads start quitting spinning and park,
adding the overhead of unparking for each lock handoff. The Malthusian lock
with its concurrency restriction mechanism avoids that. Yet, its performance is
slightly worse than that of MCS with GCR. Once again, MCS with GCR-NUMA
easily beats all other contenders.

In summary, the results in Fig. 3(a) and (b) show that despite being generic,
the concurrency restriction mechanism of GCR performs superiorly to that of
the specialized Malthusian lock. Besides, unlike the Malthusian lock, the choice
of a waiting policy for the underlying lock becomes much less crucial when GCR
(or GCR-NUMA) is used.

The TTAS and pthread mutex locks exhibit yet another performance pattern
(Fig. 3(c) and (d)). Similarly to the MCS spin-then-park variant, their perfor-
mance drops at low thread counts, however they manage to maintain reasonable
throughput even as the number of threads grows. Along with that, both GCR
and GCR-NUMA variants mitigate the drop in the performance.

Avoiding Scalability Collapse by Restricting Concurrency 373

(a) MCS Spin (b) Test-Test-Set

Fig. 4. Handoff time for the MCS (spin) and Test-Test-Set locks (AVL tree).

(a) MCS Spin (b) Test-Test-Set

Fig. 5. Total throughput measured with multiple instances of the microbenchmark,
each run with 40 threads.

We also run experiments in which we measured the handoff time for each of
the locks presented in Figure 3, that is the interval between a timestamp taken
right before the current lock holder calls Unlock() and right after the next lock
holder returns from Lock(). Previous work has shown that the performance of
a parallel system is dictated by the length of its critical sections [11], which is
composed of the time required to acquire and release the lock (captured by the
handoff data), and the time a lock holder spends in the critical section. Indeed,
the data in Fig. 4 shows correlation between the throughput achieved and the
handoff time. That is, in all cases where the throughput of a lock degraded
in Fig. 3, the handoff time has increased. At the same time, GCR (and GCR-
NUMA) manages to maintains a constant handoff time across virtually all thread
counts.

In a different experiment, we run multiple instances of the microbenchmark,
each configured to use the number of threads equal to the number of logical
CPUs (40). This illustrates the case where an application with a configurable
number of threads chooses to set that number based on the machine capacity
(as it typically happens by default, for instance, in OpenMP framework imple-
mentations). Figure 5 presents the results for two of the locks. Both GCR and
GCR-NUMA scale well up to 4 instances for all tested locks. Except for pthread
mutex (not shown), all locks without GCR (or GCR-NUMA) exhibit greatly

374 D. Dice and A. Kogan

reduced performance, especially when the number of instances is larger than one
(which is when the machine is oversubscribed). Pthread mutex fares relatively
well, although it should be noted that its single instance performance is worse
than several other locks in this experiment.

It is natural to ask how the fairness of each lock is affected once the GCR
mechanism is used. In the longer version of the paper [8], we demonstrate that
GCR can, in fact, improve the long-term fairness, i.e., the total number of oper-
ations performed by threads over a time interval. This is because some locks
can be grossly unfair mainly due to caching effects. That is, if multiple threads
attempt to acquire the lock at the same time, the thread on the same core
or socket as a previous lock holder is likely to win as it has the lock word in
its cache. GCR restricts the number of threads competing for the lock, and
shuffles those threads periodically, achieving long-term fairness. Interestingly,
GCR-NUMA achieves even better fairness, as it picks active threads from the
same socket. Thus, it reduces the chance that the same thread(s) will acquire
the lock repeatedly while another thread on a different socket fails to do that
due to expensive remote cache misses.

6.2 Kyoto Cabinet

We report on our experiments with the Kyoto Cabinet [12] kccachetest bench-
mark run in a wicked mode, which exercises an in-memory database. Similarly
to [7], we modified the benchmark to use the standard POSIX pthread mutex
locks, which we interpose with locks from the LiTL library. We also modified the
benchmark to run for a fixed time and report the aggregated work completed.
Finally, we fixed the key range at a constant (10M) elements. (Originally, the
benchmark set the key range dependent on the number of threads). All those
changes were also applied to Kyoto in [7] to allow fair comparison of performance
across different thread counts. The length of each run was 60 s.

Kyoto employs multiple locks, each protecting a slot comprising of a number
of buckets in a hash table; the latter is used to implement a database [12]. Given
that the wicked mode exercises a database with random operations and random
keys, one should expect a lower load on each of the multiple slot locks compared
to the load on the central lock used to protect the access to the AVL tree in the
microbenchmark above. Yet, Kyoto provides a view on how GCR behaves in a
real application setting.

The results are presented in Fig. 6, where we run GCR and GCR-NUMA on
top of 24 locks provided by LiTL. A cell at row X and column Y represents the
throughput achieved with Y threads when GCR (GCR-NUMA, respectively) is
used on top of lock X divided by throughput achieved when the lock X itself
is used (i.e., without GCR or GCR-NUMA). The shades of red colors represent
slowdown (speedup below 1, which in virtually all cases falls in the range of
[0.8..1), i.e., less than 20% slowdown), while the shades of green colors represent
positive speedup; the intensity of the color represents how slowdown/speedup
are substantial. Both GCR and GCR-NUMA deliver robust gains (at times,
over x1000), and those gains start for virtually all locks even before the machine
becomes oversubscribed.

Avoiding Scalability Collapse by Restricting Concurrency 375

(a) GCR (b) GCR-NUMA

Fig. 6. Speedup achieved by GCR and GCR-NUMA over various locks (Kyoto).

In the longer version of the paper [8], we also present results for LevelDB,
an open-source key-value storage library [18]. The LevelDB results largely echo
the results for Kyoto, and lead to the same high-level conclusion as in the other
benchmarks—increased lock contention leads to increased speedups achieved by
GCR and GCR-NUMA.

7 Conclusion

We have presented GCR, a generic concurrency restriction mechanism, and
GCR-NUMA, the extension of GCR to the NUMA settings. GCR wraps any
underlying lock and controls which threads are allowed to compete for its acqui-
sition. The idea is to keep the lock saturated by as few threads as possible,
while parking all other excessive threads that would otherwise compete for the
lock, create contention and consume valuable system resources. Extensive eval-
uation with more than two dozen locks shows substantial speedup achieved by
GCR on various systems and benchmarks; the speedup grows even larger when
GCR-NUMA is used.

References

1. Afek, Y., Dice, D., Morrison, A.: Cache index-aware memory allocation. In: Pro-
ceedings of ACM ISMM, pp. 55–64 (2011)

2. Boyd-Wickizer, S., Kaashoek, M., Morris, R., Zeldovich, N.: Non-scalable locks are
dangerous. In: Proceedings of the Linux Symposium (2012)

3. Chabbi, M., Fagan, M., Mellor-Crummey, J.: High performance locks for multi-level
NUMA systems. In: Proceedings of the ACM PPoPP (2015)

4. Chadha, G., Mahlke, S., Narayanasamy, S.: When less is more (LIMO): controlled
parallelism for improved efficiency. In: Conference on Compilers, Architectures and
Synthesis for Embedded Systems (CASES) (2012)

5. Craig, T.: Building FIFO and priority-queueing spin locks from atomic swap. Tech-
nical report TR 93–02-02, University of Washington, Department of Computer
Science (1993)

376 D. Dice and A. Kogan

6. David, T., Guerraoui, R., Trigonakis, V.: Everything you always wanted to know
about synchronization but were afraid to ask. In: Proceedings of the ACM Sym-
posium on Operating Systems Principles (SOSP), pp. 33–48 (2013)

7. Dice, D.: Malthusian locks. In: Proceedings of ACM EuroSys, pp. 314–327 (2017)
8. Dice, D., Kogan, A.: Avoiding scalability collapse by restricting concurrency. CoRR

(2019). https://arxiv.org/abs/1905.10818
9. Dice, D., Kogan, A.: Compact NUMA-aware locks. In: Proceedings of ACM

EuroSys (2019)
10. Dice, D., Marathe, V.J., Shavit, N.: Lock cohorting: a general technique for design-

ing NUMA locks. ACM TOPC 1(2), 13 (2015)
11. Eyerman, S., Eeckhout, L.: Modeling critical sections in Amdahl’s law and its

implications for multicore design. In: Proceedings of ACM ISCA, pp. 362–370
(2010)

12. Kyoto Cabinet. http://fallabs.com/kyotocabinet
13. Guiroux, H., Lachaize, R., Quéma, V.: Multicore locks: the case is not closed yet.

In: Proceedings of USENIX ATC, pp. 649–662 (2016)
14. He, B., Scherer, W.N., Scott, M.L.: Preemption adaptivity in time-published queue-

based spin locks. In: Proceedings of High Performance Computing (HiPC), pp. 7–18
(2005)

15. Heirman, W., Carlson, T., Van Craeynest, K., Hur, I., Jaleel, A., Eeckhout, L.:
Undersubscribed threading on clustered cache architectures. In: Proceedings of
IEEE HPCA (2014)

16. Johnson, R., Athanassoulis, M., Stoica, R., Ailamaki, A.: A new look at the roles
of spinning and blocking. In: Proceedings of the International Workshop on Data
Management on New Hardware (DaMoN). ACM (2009)

17. Johnson, R., Stoica, R., Ailamaki, A., Mowry, T.C.: Decoupling contention man-
agement from scheduling. In: Proceedings of ACM ASPLOS, pp. 117–128 (2010)

18. Leveldb. https://github.com/google/leveldb
19. Lim, B.H., Agarwal, A.: Waiting algorithms for synchronization in large-scale mul-

tiprocessors. ACM Trans. Comput. Syst. 11, 253–294 (1993)
20. LiTL: Library for Transparent Lock interposition. https://github.com/multicore-

locks/litl
21. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on

shared-memory multiprocessors. ACM Trans. Comp. Syst. 9(1), 21–65 (1991)
22. Pusukuri, K.K., Gupta, R., Bhuyan, L.N.: Thread reinforcer: dynamically deter-

mining number of threads via OS level monitoring. In: Proceedings of IEEE IISWC
(2011)

23. Radovic, Z., Hagersten, E.: Hierarchical backoff locks for nonuniform communica-
tion architectures. In: Proceedings of EEE HPCA, pp. 241–252 (2003)

24. Raman, A., Kim, H., Oh, T., Lee, J.W., August, D.I.: Parallelism orchestration
using DoPE: the degree of parallelism executive. In: Proceedings of ACM PLDI
(2011)

25. Yoo, R.M., Lee, H.H.S.: Adaptive transaction scheduling for transactional memory
systems. In: Proceedings of ACM SPAA (2008)

https://arxiv.org/abs/1905.10818
http://fallabs.com/kyotocabinet
https://github.com/google/leveldb
https://github.com/multicore-locks/litl
https://github.com/multicore-locks/litl

Graph Coloring Using GPUs

Meghana Aparna Sistla and V. Krishna Nandivada(B)

Department of CSE, IIT Madras, Chennai, India
sistla.meghana@gmail.com, nvk@iitm.ac.in

Abstract. Graph coloring is a widely studied problem that is used in a
variety of applications, such as task scheduling, register allocation, eigen-
value computations, social network analysis, and so on. Many of the mod-
ern day applications deal with large graphs (with millions of vertices and
edges) and researchers have exploited the parallelism provided by multi-
core systems to efficiently color such large graphs. GPUs provide a promis-
ing parallel infrastructure to run large applications. In this paper, we
present new schemes to efficiently color large graphs on GPUs.

We extend the algorithm of Rokos et al. [21] to efficiently color graphs
using GPUs. Their approach has to continually resolve conflicts for color
assignment. We present a data driven variation of their algorithm and use
an improved scheme for conflict resolution. We also propose two optimiza-
tions for our algorithm to reduce both the execution time and memory
requirements. We have evaluated our scheme (called SIRG) against the
NVIDIA cuSPARSE library and the work of Chen et al. [13], and show
that SIRG runs significantly faster: geomean 3.42× and 1.76×, respec-
tively. We have also compared SIRG against the scheme of Rokos et al. [21]
for CPUs and show that SIRG performs faster on most input graphs:
geomean 10.37×.

1 Introduction

Graph Coloring, widely studied as vertex coloring in an undirected graph, refers
to the assignment of colors to the vertices of a graph such that no two adjacent
vertices are assigned the same color. It is used in various applications such as
scheduling of tasks [16], register allocation [3], eigenvalue computations [15],
social network analysis [5], sparse matrix computations [12], and so on. The
problem of optimal graph coloring and even that of finding the chromatic number
of a graph (minimum number of colors needed to color the graph) are NP-Hard.
Hence, various heuristics have been proposed to solve the graph coloring problem.
As many modern applications deal with graphs containing millions of vertices
and edges, coloring of such large graphs sequentially leads to prohibitively high
execution times. To address this issue, various parallel graph coloring algorithms
have been designed for multi-core and many-core systems.

Though graph coloring as a problem has been solved using many heuris-
tics [1,7,17,20], parallel graph coloring algorithms have mostly been extensions
c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 377–390, 2019.
https://doi.org/10.1007/978-3-030-29400-7_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_27&domain=pdf
http://orcid.org/0000-0002-4215-0651
http://orcid.org/0000-0002-5949-0046
https://doi.org/10.1007/978-3-030-29400-7_27

378 M. A. Sistla and V. K. Nandivada

of two main approaches: (1) Maximal Independent Set (MIS) approach that
finds maximal independent sets of a graph and assigns a unique color to each
independent set. (2) Greedy approach that assigns each vertex v the smallest
color that has not been assigned to any adjacent vertices of v.

Luby [14] proposed one of the first parallel graph coloring algorithms by
computing MIS in parallel. The algorithm was later extended by Jones and
Plassmann [11]. Compared to the MIS based algorithms, owing to the simplic-
ity in implementation and ease of parallelization of greedy algorithms, many
researchers have proposed the greedy approach based parallel graph coloring
algorithms. For example, Gebremedhin and Manne [8] proposed a three-step
approach as the initial parallelization of the sequential greedy algorithm. In
Step1, the algorithm colors all the vertices in parallel with the minimum avail-
able color (that smallest color that has not been used to color any of the adjacent
vertices). This may lead to conflicts between adjacent vertices. In Step2, conflicts
are detected and for each conflict one of the vertices retains the color and the
other vertex loses its color. After resolving conflicts, in Step3, all the remaining
uncolored vertices are colored with the minimum available colors, sequentially.
The Step3 was parallelized by Çatalyürek et al. [2], by invoking Step1 and Step2
on the remaining uncolored vertices, repeatedly. The process continues until
there are no conflicts. After each invocation of Step1 and Step2, a barrier is
inserted to synchronize among the threads.

Rokos et al. [21] improved the algorithm of Çatalyürek et al. [2] by reducing
the synchronization overheads among the threads. In case of conflicts, instead
of uncoloring and recoloring, the algorithm recolors the conflicting-vertex in the
same iteration with the minimum available color. We refer to this improvised
algorithm as RIG (Rokos Improvised Greedy).

As GPUs provide massive amounts of parallelism and are widely being used
to run algorithms on large datasets, there also have been efforts to design parallel
algorithms that can run efficiently on GPUs. For example, the csrcolor function,
in the cuSPARSE library [19] of NVIDIA, implements the parallel MIS algorithm
for GPUs. Grosset et al. [9] presented the first implementation of the greedy
algorithm of Gebremedhin and Manne [8] on GPUs. Recently, Chen et al. [13]
extended the work of Çatalyürek et al. [2] on to GPUs with a few optimizations;
we refer to their work as ChenGC. One main drawback of their work is that their
algorithm needs a pre-set value of the maximum color required (maxColor) to
color the graph and the algorithm does not terminate if the value of maxColor
is too low. In contrast, setting maxColor to a very high value leads to very high
execution times and memory usage. Though the NVIDIA’s cuSPARSE library
does not suffer from any such limitations, it uses a large number of colors for
producing a valid coloring of the graph. And also it runs slower (55% [13]) than
ChenGC. In this paper, we present a solution to address these limitations.

We extend the algorithm of Rokos et al. [21] to efficiently color graphs using
GPUs. We provide a data-driven extension of their algorithm, along with new
heuristics for faster executions. We propose two optimizations for improving both
the execution time and memory requirements. We have evaluated our optimized

Graph Coloring Using GPUs 379

1 Function RIG (G) // G = (V, E)
2 begin
3 U = V ;
4 foreach v ∈ U do // parallel loop
5 C = {colors of u ∈ adj(v)};
6 color(v) = minimum color c �∈ C;

7 barrier();
8 while |U| > 0 do
9 L = φ;

10 foreach v ∈ U do // parallel loop
11 if ∃ v′ ∈ adj(v), v′ > v: color(v) == color(v′) then
12 C = {colors of u ∈ adj(v)};
13 color(v) = minimum color c �∈ C;
14 L = L ∪ {v};
15 barrier();
16 U = L;

Coloring Phase

Conflict Re-
solve and

Recolor Phase

Fig. 1. Improvised Greedy Algorithm of Rokos et al. [21].

algorithm (referred to as SIRG – Scalable and Improved RIG Algorithm for
GPUs) and found that SIRG runs 3.42× and 1.76× faster than csrcolor and
ChenGC, respectively. We have also compared SIRG (on GPUs) against RIG on
CPUs and found that SIRG runs 10.37× (geomean) faster than RIG. We have
also studied the impact of our proposed optimizations and the various design
decisions and found them to be effective.

2 Background

Algorithm of Rokos et al. For the sake of completeness, we briefly present the
improvised greedy algorithm of Rokos et al. [21] (Fig. 1). We refer to it as the RIG
(Rokos Improvised Greedy) algorithm. It consists of two phases: the Coloring
phase (lines 4–6) and the ConflictResolveAndRecolor phase (lines 8–16) with a
barrier in between, for synchronization. The Coloring phase tentatively assigns
(in parallel) every vertex a color based on the minimum available color (the
smallest color that is not assigned to any of its neighbouring vertices). After every
vertex has been processed, the ConflictResolveAndRecolor phase starts, where
every vertex v is checked for conflict of colors with its neighbouring vertices that
have vertex-number higher than that of v. If a conflict is detected, the vertex
with higher vertex number retains the color. The vertex with a lower vertex
number is recolored by checking for colors of its neighbours and assigning the
minimum available color. Once all the vertices have been processed (enforced
by a barrier), the phase continues with the recolored vertices. The algorithm
terminates when no vertices have to be recolored. This, in turn, indicates that
the graph vertices have a valid coloring.

380 M. A. Sistla and V. K. Nandivada

Parallelization on GPU. In CUDA programs, the computation is typically
divided between the host (CPU) and device (GPU). The host side computation
includes the allocation of the required memory on the device and copying of data
required by the program from the host to the device. The host also launches
the device code using a command like ≪M,N≫kernelFunc(), to launch N
number of threads on each of the M thread-blocks; the values of M and N are
set by the programmer. After the parallel execution of the kernels, the control
returns to the host. The required data is copied back to the host from the device.

3 Graph Coloring for GPUs

In this section, we present our novel graph coloring algorithm that can be run
efficiently on GPUs. We derive this algorithm from the insightful work of Rokos
et al. [21] (described in Sect. 2). We first show why their argument about the
non-termination of their algorithm (for GPUs) does not hold. Then we extend
their algorithm with a few heuristics for efficient execution on GPUs.

3.1 Non-termination of the RIG Algorithm

Rokos et al. [21, Section 5] discuss that the algorithm in Fig. 1 goes into an infinite
loop due to SIMT-style execution of GPU threads. However, the algorithm will
not lead to an infinite loop if the comparison at Line 11 is based on some unique
ids (such as vertex numbers), which ensures that no two adjacent vertices will
keep flipping their colors forever (as alluded by Rokos et al.). In this paper, we
maintain and use unique vertex ids for such conflict resolution.

3.2 Improvements to RIG

We now list two improvements to the RIG algorithm (Sect. 2). The first one
improves the conflict resolution criteria, and the second one is an efficient mech-
anism to implement the algorithm for GPUs.

Conflict Resolution. For the ease of presentation, for each vertex v, we use
S(v) to denote the set of neighbouring vertices that need to be checked for
conflicts in every iteration (Line 11, Fig. 1). Figure 1 resolves the conflicts by
giving priority to the higher number vertex (Line 11) and uses S(v) = {u|u ∈
adj(v), u > v}. While this works as a fine criterion for avoiding infinite loops, it
can be improved by using the degree of the nodes as the first criteria for conflict
resolution. We set S(v) = {u|u ∈ adj(v), degree(u) > degree(v))||(degree(u) ==
degree(v)&&u > v)}. Thus, S(v) includes the set of adjacent vertices of v, such
that either their degree is greater than that of v, or they have the same degree as
v, but have higher vertex-number than v. The intuition of setting S(v) by using
a prioritization scheme based on the degree is that it will lead to fewer conflicts,
as the vertices with higher degrees will be removed from contention early. Note
that we still include the vertex number based check to ensure that the algorithm
does not go into an infinite loop.

Graph Coloring Using GPUs 381

1 Function GraphColoring (G) // G = (V, E)
2 begin
3 ≪M, N≫Coloring(G);
4 barrier();
5 Win = V ;
6 while Win �= φ do
7 ≪M, N≫ConflictResolveAndRecolorKernel(G, Win);
8 barrier();
9 swap(Win, Wout);

Conflict Re-
solve and

Recolor Phase

Fig. 2. Data driven implementation - CPU

1 Function Coloring (G) // G = (V, E)
2 begin
3 for vertex v ∈ V | myThread do
4 C = {colors of u ∈ adj(v)};
5 color(v) = minimum color c �∈ C

6 return color

Fig. 3. Data driven implementation. Coloring phase on GPU

Data-Driven Implementation. We use the data-driven method proposed by
Nasre et al. [18] to realize an efficient implementation of the RIG algorithm
(Fig. 1) for GPUs. In the data-driven method, only vertices that do not have
valid colors are processed in every iteration unlike the topology-driven method,
where all vertices are processed in every iteration. The original algorithm has two
parts: (i) the coloring phase (lines 4–6) and (ii) the conflict-resolve-and-recolor
phase (lines 8–16). Our data-driven implementation mainly improves the second
part.

Figure 2 shows the main pseudocode to be executed on the host (CPU). The
initial Coloring phase (see Fig. 3) is similar to the RIG algorithm, except that
M × N GPU threads are launched; see Sect. 5, for a discussion on the optimal
choice of M and N . Each GPU thread is assigned a set of vertices to be colored
(shown by the projection V |myThread). In our implementation, we have used
a cyclic distribution.

The next phase (conflict-resolve-and-recolor) maintains two shared worklists
Win and Wout, where Win represents the vertices that still need to be recolored.
Initially, Win contains the list of all the vertices. In every iteration, the host
launches the GPU kernel on a set of GPU threads. Each of the GPU threads runs
the code shown in the function ConflictResolveAndRecolorKernel (Fig. 4).

Each thread picks a vertex from the list of vertices (from Win) that are
assigned to it (represented by the projection Win|myThread). In our implemen-
tation, we have used a cyclic distribution. Each vertex is checked for conflicts
based on the conflict-resolution heuristic discussed above. In case a conflict is
detected, the vertex is recolored with the minimum available color, and the

382 M. A. Sistla and V. K. Nandivada

1 Function ConflictResolveAndRecolorKernel (G, Win)
2 begin
3 Wout = φ;
4 for v ∈ Win | myThread do
5 if ∃ v′ ∈ adj(v), v′ ∈ S(v): color(v) == color(v′) then
6 C = {colors of u ∈ adj(v)};
7 color(v) = minimum color c �∈ C ;
8 Wout = Wout ∪ {v}; // Atomic operation

Fig. 4. Conflict resolution and recoloring phase on GPU.

vertex is added to Wout. Since Wout is a shared list across the GPU threads,
this operation has to be done atomically. See Sect. 5 on how we implement it
efficiently. If no conflict is detected for a vertex, then the vertex retains its color
and is not considered for (re)coloring in the subsequent iterations.

On the host, at the end of every iteration of the while-loop, Win and Wout

are swapped (double buffering [18]) and the process continues. The algorithm
terminates when Win does not contain any more vertices; that is, all the vertices
have been colored without any conflicts. Thus, the graph finally has a valid
coloring at the end of the algorithm.

4 Optimizations

We now list two optimizations for the baseline algorithm discussed in Sect. 3.
Both these optimizations are related to the efficient implementation of the data
structure that holds the set of colors of the adjacent vertices. We denote the base-
line algorithm of Sect. 3 along with the optimizations discussed in this section,
as SIRG (Scalable and Improved RIG Algorithm for GPUs).

In the GPU algorithm shown in Figs. 3 and 4, every thread colors/recolors a
vertex with the minimum available color. For this, a naive way of implementa-
tion would be to use, for each vertex, an integer array adjColors to hold one
bit for each of the colors that might be required to color the graph. Hence, the
size of adjColors = �(maxColor÷32)�, where maxColor is the estimated max-
imum number of colors required to color the graph. As a quick and conservative
estimate, we use the following equation as the estimate for maxColor.

maxColor = 2�(log2 (1+maximum-degree-of-the-graph))� (1)

For every vertex v, initially, every bit of the array adjColors is set to 1. For
every adjacent vertex of v, the bit corresponding to the color of that adjacent
vertex is unset in adjColors. Then, the color corresponding to the first bit in
adjColors that is set to 1, is assigned to v.

Considering the overheads of maintaining, for each vertex, an individual
adjColors array, and the scalability issues thereof, we allocate one adjColors
array for each thread on the GPU device. An important point to note is that

Graph Coloring Using GPUs 383

every thread may loop over all the elements of the adjColors array twice, for
every vertex in every iteration – finding the first set bit (to find the min color,
line 7, Fig. 4) and for resetting the array (to all 1s, at the end of processing each
vertex, after line 8, Fig. 4). Hence, the size of the adjColors has a significant
impact on the execution time of the individual threads and consequently the
overall kernel. We now discuss two optimizations to address this challenge.

4.1 Use of long long int and CUDA ffsll Instruction

CUDA provides a hardware instruction ffsll to find the first set bit in a
long long int number. Hence, we can use a long long int adjColors array
(instead of an int array), where each element of the array can hold 64 bits –
corresponding to 64 colors. The size of the array would be reduced to maxColor÷
64, from maxColor÷32. As the size of the array decreases by half, every thread
needs to loop a fewer number of times over the adjColors array, for every vertex
thereby improving the performance.

Considering that this optimization is useful only when the initial number
of colors is > 32, we use two versions of the code (one using ffsll and one
without); one of them is invoked at runtime, depending on the maximum degree
of the input graph.

4.2 Stepwise Doubling of Maximum Colors Required

As discussed before, we use maxColor to compute the estimate for the size of
adjColors. However many of the web graphs are usually sparse graphs, with a
small number of vertices having large degrees and the rest having low degrees.
Consequently, using Eq. (1), we end up setting maxColor to a unnecessarily
high value, even though the actual number of colors required to color the graph
is relatively very small. Such high values for maxColor increase the size of the
adjColors array, thereby increasing the execution time (and increasing the mem-
ory requirements). We now present a scheme to reduce these overheads.

We set the initial value of maxColor to be a small number K0. Consequently,
the initial size of the adjColors array will be small, but may not be enough to
color the graph without any conflicts. This insufficiency in the number of colors
can be detected when there is no bit set (color available) in the adjColors array
in an iteration (line 5 in Fig. 3 and line 7 in Fig. 4). In such a case, we double the
value of maxColor and resize the adjColors array, and continue the coloring
process for the remaining vertices. Such a resizing can happen till the maxColor
value is sufficient to color the graph without any conflicts.

By doubling the value of maxColor when required and not setting it to a large
value conservatively, the size of the adjColors array can be significantly reduced.
In our evaluation, we use K0 = min

(
256, 2�(log2 (1+maximum-degree-of-the-graph))�).

Thus, this optimization is impactful only for graphs whose maximum degree
is > 256.

384 M. A. Sistla and V. K. Nandivada

5 Discussion

We now present some of the salient points in the implementation of SIRG.

Compressed Sparse Row. We represent the graph using the standard com-
pressed sparse row (csr) format, that uses two arrays (ColIndices and Offset) to
represent the graphs. In addition, we maintain another array (called nextVer-
tices) to efficiently find, for each vertex v, the set of neighboring vertices that
need to be checked for conflicts, (given by S(v), see Sect. 3). The element nextVer-
tices[i] points to the index in ColIndices such that the vertices in adjacency list
of vi from nextVertices[i] to Offset[i+1] belong to S(vi). The ColIndices array
is arranged such that, for each vertex vi, the vertices in the adjacency list of vi
are ordered by the vertex number, or the vertex degree, depending on whether
vertex number or degree is used for conflict resolution (see Sect. 3). Maintaining
this additional array nextVertices can provide access to the elements of S(vi) in
O(1) time during the conflict resolution phase.

Adding Elements to Worklist. In Fig. 4 (Line 8), every thread updates a
shared worklist (Wout) and this has to be done atomically. This leads to the
invocation of a large number of atomic operations, which can be potentially
inefficient. To address this issue we use the popular idea of using parallel prefix
sum [10] to find the appropriate indices where each thread of a warp can write
(in parallel) to the shared worklist, independently of each other. This leads to
execution of one atomic operation per warp (in contrast to one atomic operation
per thread) and hence reduces the number of atomic operations by a factor of
up to 32 (warp size).

Distribution of Worklist Elements Among GPU Threads. The elements
of the worklist Win have to be divided among GPU threads in a data-driven
implementation. For efficiency, we implemented the worklists (Win and Wout)
as global arrays and these elements are distributed among the GPU threads
in a cyclic order. Therefore, a thread with id = t, accesses the vertices from
Win such that the index i of the vertex in Win satisfies the equation t =
i%totalNumThreads. Note that we have also tried using the blocked distri-
bution, but found the cyclic distribution to be more efficient.

Number of Threads. The optimal number of blocks per SM (maximum res-
idency) to be launched depend on many factors, such as the blocksize, number
of registers, shared memory size, and so on. We set the total number of blocks
launched to be equal to maximum residency × number of SMs. On experimenta-
tion, we found that setting blocksize = 1024 threads gave the best performance,
on our NVIDIA P100 system.

Topology-Driven Implementation. In addition to the data-driven imple-
mentation discussed in Sect. 3, we also implemented the coloring algorithm of
Rokos et al. [21] using the topology-driven method [18]. We observed that the
topology-driven implementation was significantly slower than the data-driven
implementation and hence not elaborated on, in this manuscript.

Graph Coloring Using GPUs 385

Difference in Memory Requirements Between SIRG and ChenGC.
Both SIRG and ChenGC [13] follow the greedy approach and the memory usage
is similar. Compared to ChenGC, SIRG uses only an extra of 16 bytes overall
to maintain some additional meta-data information.

6 Implementation and Evaluation

We have compiled our codes using the CUDA 9.1 compiler and executed them on
a Tesla P100 GPU, with 12 GB memory. We have evaluated our codes using eight
different graph inputs (details shown in Fig. 5), with vertices varying between
0.4M to 50M, edges varying between 57M to 903M. These inputs span both
real-world graphs like road networks and scale-free networks that follow power-
law, and synthetic graphs (last three). While the first six are obtained from
the Florida Sparse Matrix Collection [6], the last two are created using the R-
MAT [4] graph generator (using the parameters shown in Fig. 5). We now present
our evaluation to understand (i) the performance improvements realized by SIRG
(uses the schemes discussed in Sects. 3 and 4) over the existing graph coloring
algorithm of Chen et al. [13] that is targeted to GPUs (abbreviated ChenGC),
and NVIDIA’s cuSPARSE library. (ii) the effect of the proposed optimizations,
and (iii) the impact of some of the design decisions. All these codes (different
versions of SIRG, ChenGC, and the code using the cuSPARSE library) used for
the comparative evaluation can be found on GitHub [22].

Network Nodes (106) Edges (106) Avg degree Type
europe osm 50.9 108.1 2.12 Road Network
road usa 23.9 57.7 2.41 Road Network
orkut 3.1 234.3 76.28 Scale Free Network

livejournal 3.9 69.4 17.35 Scale Free Network
twitter7 41.6 323.3 7.76 Scale Free Network

mycielskian19 0.4 903.2 2296.95 General Network
rmat 1 10.0 199.9 20.00 Synthetic (0.5,0.5,0.5,0.5)
rmat 2 20.0 809.9 40.49 Synthetic (0.1,0.3,0.4,0.2)

Fig. 5. Graphs used in our experiments

6.1 Comparison of SIRG vs ChenGC and csrcolor

To perform a comparative evaluation of SIRG, we used ChenGC and the
NVIDIA’s cuSPARSE library (csrcolor function) to color the input graphs. While
csrcolor was general enough to color any given graph, we found that ChenGC
did not terminate for four of the eight input graphs. We found that the issue was
because ChenGC uses a fixed value for the maximum number of the required
colors (maxColor) – the value for this variable is hardcoded in their algorithm,
unlike in SIRG, where no such restriction is present. We found that in ChenGC,

386 M. A. Sistla and V. K. Nandivada

while setting maxColor to a very large number, made the programs run success-
fully on all the inputs, but it had a drawback – the programs took a very long
time to run. On experimentation, we found the minimum value for the variable
maxColor, in order for ChenGC to run successfully on all the input graphs was
1024; hence, we set maxColor=1024 in ChenGC.

Figure 6a shows the speedup of SIRG with respect to ChenGC in terms of
execution time. We can observe that across all the input graphs, SIRG performs
better than ChenGC (between 1.15× to 5.68×, geomean 1.76×).

We find that in the real-world graphs the gains are much more than that in
the synthetic graphs. In general, we found that the stepwise-doubling optimiza-
tion was most effective in these real-world graphs in improving the performance.
And this impact was much higher in power-law graphs (for example, twitter7).

Figure 6a shows the speedup of SIRG over csrcolor. In contrast to ChenGC,
we did not have to make any changes to csrcolor, for it to run. Figure 6b
shows that SIRG performs significantly better than csrcolor (1.15× to 21.38×,
geomean 3.42×). We see that except for rmat 1 and rmat 2, SIRG performs
leads to remarkably higher performance across both power-law and non-power-
law graphs. We believe the very high speedups obtained in mycielskian19 is
because of the specific nature of the input graph (higher density, total number
of nodes = 0.4 million, average degree ≈ 2300), which is making the csrcolor
perform poorly.

We have also compared the coloring quality (number of colors used) by the
three algorithms under consideration. While SIRG uses significantly fewer num-
ber of colors (geomean 77% less) than csrcolor, the number is comparable to that
of ChenGC (geomean difference < 6%). We have observed that even this minor
difference is mainly related to the order in which the threads process the vertices.
Further the main contributor for the increased geomean for SIRG (compared to
ChenGC) is the mycielskian19 input, where SIRG takes 29% more colors. This
is mainly because the specific structure of mycielskian19 where the increase in
the number of threads is leading to more conflicts and more number of colors.

(a) Speedup over ChenGC. (b) Speedup over csrcolor.

Fig. 6. Speedup of SIRG over ChenGC and csrcolor.

Graph Coloring Using GPUs 387

Fig. 7. Speedup of SIRG over RIG

Summary. We see that SIRG performs significantly better than csrcolor. It even
performs better than ChenGC, which has to be tuned manually in order to run
successfully on various graph inputs.

6.2 Comparison of SIRG vs RIG

We performed an comparative study of SIRG (on GPUs) over RIG (on CPUs)
(see Sect. 2). We evaluated RIG on a CPU with 40 cores. Similar to ChenGC,
we observed that RIG did not terminate for two of the eight input graphs,
because of hardcoding the maximum number of required colors (maxColor)
to 256. On experimentation, we found that the minimum value of maxColor
variable required for RIG to successfully run on all the input graphs was 512;
hence, we set maxColor= 512 in RIG and performed the evaluations.

Figure 7 shows the speedup of SIRG over RIG. We can observe that SIRG
performs better than RIG (geomean 10.37×) on almost all the input graphs
except mycielskian19. This is due to the specific structure of mycielskian19
graph, where the gains due to increased parallelism are getting overshadowed
by the overheads due to increased color conflicts, especially for large number of
threads.

Fig. 8. Effect of the optimizations. Fig. 9. Effect on memory usage due to
stepwise-doubling optimization.

388 M. A. Sistla and V. K. Nandivada

6.3 Impact of the Proposed Optimizations

Figure 8 shows the effect of the two proposed optimizations (Opt1: Sect. 4.1,
and Opt2: Sect. 4.2) over our baseline approach (Sect. 3); the graph shows the
achieved speedup over input graphs where the optimizations were invoked. For
europe osm, road usa and rmat 1 where the maximum degree was not more
than 32, Opt1 was not invoked, and Opt2 had no effect.

We see that, for most inputs, Opt1 performs better than the Baseline and
Opt2 adds to the performance improvements much more. We also observe
that in the power-law graphs, the effect of Opt2 is high and led to large
gains (up to 11.56×).

In Sect. 4.2, we discuss that Opt2 (stepwise-doubling optimization) can also
help reduce memory consumption. We show this impact in Fig. 9. The figure
compares the memory consumption of SIRG, against SIRG without Opt2, for
the inputs on which Opt2 had some impact. It shows that the impact of Opt2 on
the memory requirements is high: leads to geomean 96.59% reduction in memory.

Summary. Our evaluation shows that the proposed optimizations lead to
significant gains and attests to the importance of these optimizations.

6.4 Impact of Maintaining adjColors array per thread

In Sect. 4, we have discussed that due to the memory overheads and scalability
issues, we allocate adjColors array for each thread instead of each vertex. We
now discuss the impact of such a choice. We show the impact (in Fig. 10) in terms
of total time and memory usage for two configurations: (i) SIRG with adjColors
array allocated for each vertex, and (ii) default SIRG: with adjColors array
allocated for each thread.

Fig. 10. %Improvement due to per-thread Vs per-vertex allocation of adjColors.

The figure shows that allocating adjColors for each vertex can increase the
memory requirements significantly, which is avoided by doing per thread alloca-
tion (Geomean 96.41%). While a per-vertex scheme may lead to some minor gains

Graph Coloring Using GPUs 389

for some inputs (for example, 4.87% for twitter7), overall we find that per-
thread allocation of adjColors led to better execution times (geomean 13.48%).

We found that allocating adjColors per vertex increases the memory require-
ment so much that in the absence of Opt2 (which reduces the memory consump-
tion significantly), the program runs out of memory for many inputs (for exam-
ple, orkut, twitter7, mycielskian19). This further shows the importance of
our choice of per-thread allocation of the adjColors array.

Overall summary. Our evaluation shows that SIRG performs better than
both csrcolor and ChenGC. We found our optimizations and design choices lead
to efficient executions (both in terms of execution time and memory usage).

7 Conclusion

In this paper, we presented a fast and scalable graph coloring algorithm for
GPUs. We extended the algorithm by Rokos et al. [21] to efficiently color graphs
for GPUs using a data parallel implementation, with a better heuristics for color-
conflict resolution. We also proposed two optimization techniques to improve
both the execution time and memory requirements. We showed that compared
to the NVIDIA’s cuSPARSE library and the work of Chen et al. [13], our imple-
mentation runs significantly faster (geomean 3.42× and 1.76×, respectively). We
also showed that our algorithm (on GPUs) performs geomean 10.37× faster than
the scheme of Rokos et al. [21] (on CPUs).

References

1. Biggs, N.: Some heuristics for graph colouring. In: Nelson, R., Wilson, R.J. (eds.)
Graph Colourings, pp. 87–96 (1990)

2. Çatalyürek, Ü.V., Feo, J., Gebremedhin, A.H., Halappanavar, M., Pothen, A.:
Graph coloring algorithms for multi-core and massively multithreaded architec-
tures. Parallel Comput. 38(10–11), 576–594 (2012)

3. Chaitin, G.J.: Register allocation & spilling via graph coloring. ACM SIGPLAN
Not. 17, 98–105 (1982)

4. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: a recursive model for graph
mining. In: ICDM, pp. 442–446. SIAM (2004)

5. Chalupa, D.: On the ability of graph coloring heuristics to find substructures in
social networks. Inf. Sci. Technol. Bull. ACM Slovak. 3(2), 51–54 (2011)

6. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM
TOMS 38(1), 1 (2011)

7. Dorne, R.Ë., Hao, J.-K.: A new genetic local search algorithm for graph coloring.
In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998.
LNCS, vol. 1498, pp. 745–754. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0056916

8. Gebremedhin, A.H., Manne, F.: Scalable parallel graph coloring algorithms. Con-
curr. Pract. Exp. 12(12), 1131–1146 (2000)

9. Grosset, A.V.P., Zhu, P., Liu, S., Venkatasubramanian, S., Hall, M.: Evaluating
graph coloring on GPUs. ACM SIGPLAN Not. 46(8), 297–298 (2011)

https://doi.org/10.1007/BFb0056916
https://doi.org/10.1007/BFb0056916

390 M. A. Sistla and V. K. Nandivada

10. Harris, M., Sengupta, S., Owens, J.D.: Parallel prefix sum (scan) with CUDA.
GPU gems 3(39), 851–876 (2007)

11. Jones, M.T., Plassmann, P.E.: A parallel graph coloring heuristic. SIAM J. Sci.
Comput. 14(3), 654–669 (1993)

12. Jones, M.T., Plassmann, P.E.: Scalable iterative solution of sparse linear systems.
Parallel Comput. 20(5), 753–773 (1994)

13. Li, P., et al.: High performance parallel graph coloring on GPGPUs. In: IPDPS
Workshops, pp. 845–854. IEEE (2016)

14. Luby, M.: A simple parallel algorithm for the maximal independent set problem.
J. Comput. 15(4), 1036–1053 (1986)

15. Manne, F.: A parallel algorithm for computing the extremal eigenvalues of very
large sparse matrices. In: K̊agström, B., Dongarra, J., Elmroth, E., Waśniewski,
J. (eds.) PARA 1998. LNCS, vol. 1541, pp. 332–336. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0095354

16. Marx, D.: Graph colouring problems and their applications in scheduling. Period.
Polytech. Electr. Eng. 48(1–2), 11–16 (2004)

17. Mehrotra, A., Trick, M.A.: A column generation approach for graph coloring.
INFORMS J. Comput. 8(4), 344–354 (1996)

18. Nasre, R., Burtscher, M., Pingali, K.: Data-driven versus topology-driven irregular
computations on GPUs. In: IPDPS, pp. 463–474. IEEE (2013)

19. Nvidia, C.: CuSPARSE Library. NVIDIA Corporation, Santa Clara (2014)
20. Philipsen, W., Stok, L.: Graph coloring using neural networks. In: IEEE Interna-

tional Sympoisum on Circuits and Systems, pp. 1597–1600. IEEE (1991)
21. Rokos, G., Gorman, G., Kelly, P.H.J.: A fast and scalable graph coloring algorithm

for multi-core and many-core architectures. In: Träff, J.L., Hunold, S., Versaci, F.
(eds.) Euro-Par 2015. LNCS, vol. 9233, pp. 414–425. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48096-0 32

22. Sistla, M.A., Nandivada, V.K.: Artifact for Graph Coloring using GPUs (2019).
https://doi.org/10.6084/m9.figshare.8486123

https://doi.org/10.1007/BFb0095354
https://doi.org/10.1007/978-3-662-48096-0_32
https://doi.org/10.6084/m9.figshare.8486123

Featherlight Speculative Task Parallelism

Vivek Kumar(B)

IIIT-Delhi, New Delhi, India
vivekk@iiitd.ac.in

Abstract. Speculative task parallelism is a widely used technique for
solving search based irregular computations such as graph algorithms.
Here, tasks are created speculatively to traverse different search spaces
in parallel. Only a few of these tasks succeed in finding the solution, after
which the remaining tasks are canceled. For ensuring timely cancellation
of tasks, existing frameworks either require programmer introduced can-
cellation checks inside every method in the call chain, thereby hurting
the productivity, or provide limited parallel performance.

In this paper we propose Featherlight, a new programming model for
speculative task parallelism that satisfies the serial elision property and
doesn’t require any task cancellation checks. We show that Featherlight
improves productivity through a classroom-based study. Further, to sup-
port Featherlight, we present the design and implementation of a task
cancellation technique that exploits runtime mechanisms already avail-
able within managed runtimes and achieves a geometric mean speedup
of 1.6× over the popular Java ForkJoin framework on a 20 core machine.

Keywords: Speculative parallelism · Async-finish programming ·
Task cancellation · Managed runtimes · Work-stealing

1 Introduction

With the advent of multicore processors, variants of tasks based parallel pro-
gramming models [1,3,9,10,12,18,20,22] have gained a lot of popularity. They
are extremely well suited for parallelizing irregular computations such as graph
search algorithms. Some well-known examples are route planning in navigation
and guidance systems, searching for entities on social networking sites like peo-
ple and places, and finding the winning move in a game tree. Programmers
using these parallel programming frameworks expose a parallel task and rely
on an underlying work-stealing [10] runtime for dynamic load balancing. These
frameworks often satisfy the serial elision for basic tasking support, the property
that is eliding all parallel constructs results in a valid sequential program [10].
While serial elision improves programmer’s productivity, using an underlying
work-stealing runtime improves the parallel performance over multicore proces-
sors. However, this is not the case when using these frameworks for applications
requiring speculative task parallelism, where only a few tasks could provide desir-
able results, as all remaining tasks should terminate after the goal is found.
c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 391–404, 2019.
https://doi.org/10.1007/978-3-030-29400-7_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_28&domain=pdf
https://doi.org/10.1007/978-3-030-29400-7_28

392 V. Kumar

Productivity becomes a first-order concern as several frameworks such as Intel
TBB [22], C# [1], X10 [9] and TryCatchWS [18], require programmer inserted
task cancellation checks inside every method in the call chain for timely cancella-
tion of speculative tasks. Cilk [10] provides special support for task cancellation
but the programmer has to implement an inlet that is essentially a C function
internal to a Cilk procedure. The Java fork/join framework [20] does not sup-
port serial elision but provides a shutdownNow API for global task cancellation.
OpenMP 4.0 [3] tasking pragmas and Eureka programming in HJlib [13] provide
task cancellation checks, but the programmer must ensure optimal granularity
for calling these checks to avoid performance degradation.

In this paper, we introduce a new programming model, Featherlight, for spec-
ulative task parallelism that doesn’t require any form of task cancellation checks,
and improves the productivity by satisfying the property of serial elision. For
achieving high performance, Featherlight exploits runtime mechanisms already
available within managed runtimes, namely: (a) yieldpoint mechanism [21], (b)
ability to walk the execution stack of a running thread, and (c) support for
exception delivery. We use six well-know search based micro-benchmarks and
one real-world application from Dacapo benchmark suite [8] to compare the
productivity and performance of Featherlight with the ForkJoin framework, and
also with an approach that uses hand-coded implementation of the task cancel-
lation policy. We use lines of code and time to code based empirical analysis
to demonstrate high productivity in Featherlight. We show that Featherlight
is highly competitive. It achieves performance comparable to the hand-coded
implementation and significantly better than the ForkJoin implementation.

In summary, this paper makes the following contributions:

– Featherlight, a new task-based parallel programming model for speculative
parallelism that satisfies serial elision property.

– A lightweight runtime implementation that supports Featherlight by exploit-
ing existing managed runtime techniques.

– Productivity analysis of Featherlight by using it in a classroom-based study.
– Performance evaluation of Featherlight as compared to Java ForkJoin frame-

work and a hand-coded implementation of task cancellation policy by using
seven popular search based problems on a 20 core machine.

2 Background

2.1 Async-Finish Programming Model

Fig. 1. An async–finish program

Cilk language [10] popularized task paral-
lelism by using spawn and sync keywords
for creating and joining a parallel task. For
scheduling these tasks, an underlying work-
stealing runtime is employed that maintains
a pool of worker threads, each of which
maintains a double-ended queue (deque) of

Featherlight Speculative Task Parallelism 393

tasks. When the local deque becomes empty, the worker becomes a thief and
seeks a victim thread from which to steal work. Likewise, Java supports a
ForkJoin framework [20], and X10 language [9] introduced async–finish con-
structs for task parallelism. This async–finish construct satisfy serial elision
and have been adopted by other frameworks such as Habanero Java library
(HJlib) [12], Habanero C library (HClib) [19], and TryCatchWS [18]. Feath-
erlight is built on top of TryCatchWS and supports async–finish . Figure 1
shows a sample TryCatchWS program that uses async–finish constructs.
The async clause at Line 3 creates a task S1, which can run in parallel with the
continuation S2. An async can be used to enable any statement to execute as a
parallel task, including statement blocks, for loop iterations, and function calls.
A finish is a generalized join operation. Lines 2–5 encloses a finish scope
and ensures that both the parallel tasks S1 and S2 has completed before start-
ing the computation S3 at Line 6. Both async and finish can be arbitrarily
nested.

2.2 Managed Runtime Services

Managed runtimes gained popularity with the advent of the Java language and
have been a very active research area since then. Some of the key features of
managed runtimes exploited in Featherlight are (a) yieldpoint mechanism, (b)
ability to walk the execution stack of a running thread and (c) support for
exception delivery. Yieldpoints are the program locations where it is safe to run
a garbage collector and implement services such as adaptive optimization. The
compiler generates yieldpoints as program points where a running thread checks
a dedicated bit in a machine control register to determine whether it should
yield. The compiler generates precise stack maps at each yieldpoint. If the bit is
set, the yieldpoint is taken and some action is performed. If the bit is not set,
no action is taken and the next instruction after the yieldpoint is executed. In
JikesRVM virtual machine [7], yieldpoints are inserted in method prologues and
on loop back edges.

Exception handling is also an important feature that is well supported by
many modern programming languages like C++, Java, and C#. An exception
is an event that can occur during the execution of the program and disrupts
the program’s control flow. Handlers are subroutines where the exceptions are
resolved, and they may allow resuming the execution from the original location of
the exception. Java uses try and catch blocks for exception handling. Exception
delivery mechanism and other runtime services such as garbage collection are
supported in a managed runtime with the ability to walk the execution stack of
any thread. For walking the stack of a running thread (victim), the victim is first
stopped by using yieldpoint mechanism. The victim saves all its registers and
live program states before stopping. The thread requesting the stack walk can
then easily go over each frame on victim’s execution stack and can manipulate
them as well. The garbage collector uses a stack walk to identify live and dead
objects in the application thread.

394 V. Kumar

Fig. 2. TryCatchWS work-stealing implementation for executing the async–finish
program shown in Fig. 1

2.3 TryCatchWS Work-Stealing Runtime

We have implemented the runtime support for Featherlight by modifying Java
TryCatchWS work-stealing runtime developed by Kumar et al. [18]. TryCatchWS
is implemented directly inside JikesRVM [7] Java Virtual Machine, and as
demonstrated by Kumar et al. [16,18], it helps in achieving both good scalabil-
ity and good absolute performance. Figure 2 illustrates the TryCatchWS work-
stealing implementation for executing the async–finish program shown in
Fig. 1 by using two workers. The user code written by using async–finish is
first translated to plain Java code by using AJWS compiler [17]. TryCatchWS
follows the work-first principle for task scheduling. The generated code exploits
the semantics Java offers for exception handling, which is very efficiently imple-
mented in most modern JVMs. The result is that the runtime does not need
to maintain explicit deques. It uses the Java thread (execution) stack of both
the victim and thief as their implicit deque. The thief can directly walk a vic-
tim’s execution stack and identify all async and finish contexts, resulting
in a significant reduction in overheads. This allows the programmer to expose
fine granular tasks without worrying about the task creation overheads. For a
detailed overview of TryCatchWS we refer readers to [18].

3 Featherlight Programming Model

Featherlight extends async–finish programming supported by TryCatchWS
with two new constructs:

– finish_abort: This is the regular finish with an added responsibility
to ensure graceful cancellation of speculative async tasks without having
any cancellation condition checking code. Both async and finish can be

Featherlight Speculative Task Parallelism 395

Fig. 3. Searching a unique node in the UTS tree by using three different implementa-
tions of speculative task parallelism. Only Featherlight supports serial elision as erasing
the keywords finish_abort, async, and abort will fetch the original sequential UTS.

nested inside a finish_abort. A finish_abort cannot be nested but can
be called in parallel by placing it inside an async within a finish scope.

– abort: This construct cancels all speculative async tasks once the goal
is found. Cilk also supports a variant of abort but the semantics are
very different (Sect. 6). An abort can be called inside a Featherlight pro-
gram only if there is an encapsulating finish_abort in the method
call stack. If a worker encounters an abort statement, it will cancel only
those async that are (or yet to be) spawned inside a finish_abort
scope in this worker’s method call stack. For example, in the statement
“finish{async{finish_abort{S1;}} async{finish_abort{S2;}}}”,
calling an abort inside S1 will only cancel task S1 and its children (both
pending and running) but will not affect the execution of S2.

396 V. Kumar

Fig. 4. Source-to-source translation of the code shown in Fig. 3(a) to vanilla Java.
Underlined code is the default code generated by the compiler to support async–
finish .

To further motivate Featherlight, in Fig. 3, we show three different imple-
mentations of UTS program (Sect. 5) as a motivating example. These imple-
mentations use speculative task parallelism for searching a unique node in the
tree. Figure 3(a) shows Featherlight, Fig. 3(b) shows ManualAbort obtained by
hand-coding task cancellation checks in TryCatchWS, and Fig. 3(c) shows Java
ForkJoin implementation. Out of all these three implementations, only Feath-
erlight supports serial elision. Calling an abort at Line 9 in Featherlight will
cancel all async (as all async are inside single finish_abort scope), and
resume the execution right after finish_abort (i.e., Line 5). ManualAbort
requires an atomic cancellation token (Line 3), checking this cancellation token
before executing the task (Line 8), and also checking before creating any new
task (Line 14). These checks are prone to data races if not used properly. It could
also delay task cancellation if not used inside every method in the call chain.
Moreover, having multiple search criteria in the program can make it difficult
to identify the program points where the code for cancellation checks should be
added. Although Java ForkJoin does not require manual cancellation checks, it
does not supports serial elision and requires extensive changes to the sequential
program.

4 Design and Implementation

In this section, we briefly describe our implementation of Featherlight that builds
on Java TryCatchWS work-stealing runtime (Sect. 2.3). Our implementation and
the benchmarks are released open source online on GitHub [15].

For implementing Featherlight we exploit runtime mechanisms already avail-
able within managed runtimes, namely: (a) yieldpoint mechanism, (b) support
for exception delivery, and (c) ability to stack walk the execution stack of a run-
ning thread. When a worker encounters an abort call in a Featherlight program,
it will pause the execution of other workers by using yieldpoint mechanism. It
will then identify the subset of workers that are executing async spawned from
the same finish_abort scope as this worker. These shortlisted workers would

Featherlight Speculative Task Parallelism 397

then relinquish all pending and currently running async, and throw special
exceptions to start the computation from another program point. The insight
is that the cost of canceling the speculatively spawned async should not be
incurred in the common case and should occur only once when the goal has
been found. Our contribution is to design and implement Featherlight, a novel-
programming model for speculative task parallelism that implements our above
insight.

4.1 Source Code Translation of Featherlight to Java

Kumar et al. implemented the AJWS compiler [17] that could translate an
async–finish program into a plain Java program capable of running using
TryCatchWS runtime. We have extended their AJWS compiler to support Feath-
erlight by translating the two new constructs finish_abort and abort into
plain Java code. Figure 4 shows this generated Java code for Featherlight’s imple-
mentation of UTS, shown in Fig. 3(a). All underlined code is the default code
generated by the AJWS compiler to support TryCatchWS. For details on this
default code, we refer readers to [18].

4.2 Canceling Speculative async Once the Goal Is Found

In Featherlight’s implementation, the worker (victim) who started the compu-
tation (Line 3) will first create an object for this new finish_abort scope at
Line 5 and then continue its execution. Any thief who attempts to steal from
this victim will use default TryCatchWS, where it will stop this victim in yield-
point and perform a stack walk of victim’s execution stack to find out the oldest
unstolen continuation. To support Featherlight, we extended this victim’s stack
walk such that now the thief also searches the reachability to any catch block
for handling ExceptionFailAbort (Line 15). The thief will then verify if this catch
block is still reachable from the program point where this thief has to resume
the stolen computation (Line 39). If it is still reachable, this thief will copy the
object corresponding to finish_abort scope stored at the victim (created at
Line 5). Note that the thief will overwrite its copy of this scope object if it enters
another finish_abort.

Assume a worker W1 has found the goal (Line 23). W1 has to decide which
other workers should cancel their async tasks. Essentially, these should be the
workers having the same finish_abort scope object as with W1. This will
ensure that if there were async created from another finish_abort scope,
then they would not be canceled. W1 will first ensure that no other worker
has initiated abort inside this same finish_abort scope (Lines 24–25). W1
will then temporarily pause the work-stealing on all workers, including itself
(Line 26) to avoid deadlock. As thief also relies on the yieldpoint mechanism
to steal from a victim, there could be a deadlock when the thief is attempting
to steal from a victim that is, in turn, trying to yield that same thief from
abort call. After pausing work-stealing globally, W1 will force all other workers
to execute yieldpoint one by one (Line 29). Note that at this point, if any worker

398 V. Kumar

is executing a critical section by taking a mutual exclusion lock, W1 will wait
inside the call at Line 29 until this worker has released the mutual exclusion
lock. After a worker has paused its execution at yieldpoint, W1 will compare its
finish_abort scope object with that of this worker (Line 30). If it matches,
it will set a flag at this worker for throwing ExceptionFailAbort (Line 31) and
increment the join counter at this finish_abort scope object (Line 32). It
will then release this worker from yieldpoint (Line 33). Finally, W1 will throw
ExceptionSuccessAbort (Line 34) to resume its execution from Line 11.

4.3 ExceptionFailureAbort and ExceptionSuccessAbort

Recall that W1 paused the execution of all other workers inside yieldpoint (Line 29)
and released them after setting the flag throwExceptionFailureAbort
(Line 31) in some of them. After resuming the execution inside yieldpoint, every
worker will first check and reset their flag throwExceptionFailureAbort.
Those who found throwExceptionFailureAbort set to true will throw
ExceptionFailureAbort from yieldpoint to resume their execution from
Line 16. They will first decrement the join counter at this finish_abort scope
object (Line 17), and if the counter value reaches zero, this information is broad-
casted to W1 who is currently waiting at Line 13.

After setting the flag in relavant workers (Line 31), worker W1 will throw
ExceptionSuccessAbort at Line 34 and resume its execution from Line 11.
It will first update its immediate finish scope at Line 11 (if any) and then
wait until all the other relevant workers have resumed their execution inside
catch block for ExceptionFailureAbort. Finally, W1 will allow all workers
to resume their work-stealing (Line 14). After this, it will continue the execution
of user code from Line 19 onward.

5 Experimental Evaluation

We have used six well-known search based micro-benchmarks and one application
from Java DaCapo benchmark suite [8] for our experimental evaluation:

UTS. Variant of Unbalanced Tree Search [24] where it searches for a specific
goal node in the tree. We used T1 configuration (geometric tree) with a
maximum height of 10. Applications that fit in this category include many
search and optimization problems that must enumerate an ample state space
of the unknown or unpredictable structure.

LinearSearch. It searches for 10 items in a 2D array of size 1000 × 20000.
NQueens. Goal is to find 20% of total possible solutions for placing 14 queens

on a 14 × 14 board such that no two queens can attack each other [18].
This benchmark uses a backtracking algorithm that is also used for solving
constraint satisfaction and combinatorial optimization based problems.

Featherlight Speculative Task Parallelism 399

SLP. It adds edge weights in UTS and then finds shortest and longest path
from the root to goal nodes within a given range of 1058–7563 [13]. We used
T3 configuration (binomial tree) with a maximum height of 10 and a total of
254 goal nodes. This algorithm is also used for a large variety of optimization
problems in network and transportation analysis.

Sudoku. This solves a Sudoku puzzle by exploring a game tree [13]. Board size
was 16 × 16 and a total of 148 unsolved entries.

TSP. Traveling salesman problem [13] for 20 cities that searches for a path ≤ 156.
Similar to SLP, TSP is used in complex optimization problems such as plan-
ning and scheduling.

lusearch. Variant of lusearch-fix from Java DaCapo benchmark suite [8]. It uses
Apache Lucene [23] for text search of keywords over a corpus of data com-
prising the works of Shakespeare and the King James Bible. In this variant,
the search terminates when 80% of total search queries are completed.

To ensure serial elision we did not control task granularity in any of the above
benchmarks. We implemented four different versions for each benchmark: (a)
Featherlight that uses async, finish_abort, and abort constructs; (b) Man-
ualAbort that replaces finish_abort with finish in Featherlight, removes
abort, and uses token-based cancellation checks to cancel speculatively spawned
async; (c) ForkJoin based on Java ForkJoinPool that uses shutdownNow
library call for task cancellation; and (d) Sequential Java that is the serial elision
of Featherlight.

The benchmarks were run on a dual socket 10 core Intel Xeon E5-2650 v3
processor running at 2.3GHz and with a total of 96GB of RAM. The operating
system was Ubuntu 16.04.3 LTS. We have ported Kumar et al.’s TryCatchWS
runtime on JikesRVM GitHub version 087d300. This version of TryCatchWS was
used for the evaluation of ManualAbort. Sequential Java version of each bench-
mark was run directly on the above version of unmodified JikesRVM. Feath-
erlight was implemented and evaluated on the above mentioned TryCatchWS
version. For all evaluations, we used the production build of JikesRVM. Fixed
heap size of 3GB and single garbage collector thread was used across all experi-
ments. We bound work-stealing worker threads to individual CPU cores and did
not use hyper-threading. Other than this, we preserved the default settings of
JikesRVM. AJWS compiler version bd5535f on GitHub was extended to support
code generation for Featherlight. For each benchmark, we ran 30 invocations,
with 15 iterations per invocation where each iteration performed the kernel of
the benchmark. In each invocation, we report the mean of the final five iterations,
along with a 95% confidence interval based on a Student t-test. We report the
total execution time in all experiments (including time for garbage collection).

5.1 Productivity Analysis

Program size or Lines of Code (LoC) is a widely used metric for measuring
software productivity [13,17]. Table 1 shows this number for each benchmark
and its corresponding four variants. A support code is the common code across

400 V. Kumar

Table 1. Productivity metrics in terms of LoC in actual implementations and time
spent by students in classroom [6] for implementing speculative task parallelism.

Lines of Code (LoC) generated using
David A. Wheeler’s ‘SLOCCount’ [26]

Time (minutes) spent by students

Featherlight ForkJoin

Benchmark Common
code

Sequential Featherlight ManualAbort ForkJoin Subjects Mean St.Dev. Subjects Mean St.Dev.

UTS 545 39 39 45 58 9 8.6 6.1 9 52.2 13.5
LinearSearch 88 44 44 46 75 - - - - - -

NQueens 75 48 48 53 68 7 13.6 10.2 8 61 17.2
SLP 558 54 54 60 76 6 11.7 4.1 8 43.4 16.6

Sudoku 469 48 48 54 66 6 6 2.6 8 58.8 11.6
TSP 158 55 55 61 84 7 10.4 4 8 53.1 24.8

lusearch >126K 222 222 242 239 - - - - - -

all four variants of a benchmark. It is highest for lusearch as it uses Apache
Lucene for text search. Featherlight supports serial elision and has same LoC
as in Sequential. ManualAbort has more LoC than Sequential as it has hand-
coded task cancellation checks. ForkJoin requires significant modifications to the
Sequential and hence has the maximum LoC.

We also conducted an empirical study [6] to quantify programming effort
based on the time required for programming Featherlight and ForkJoin imple-
mentations. This classroom study was of 90min and involved 41 senior under-
graduate and postgraduate students from an introductory parallel programming
course at IIIT Delhi (CSE502, Spring 2019 semester). These students were first
taught about speculative task parallelism and were provided with working copies
of both Featherlight and ForkJoin implementations of LinearSearch benchmark
as a reference. For this study, each student was provided with two different
Sequential benchmarks (except lusearch due to its cumbersome setup). They
were then asked to implement ForkJoin version of one of these two Sequen-
tial benchmarks and Featherlight version of the other one. We recorded the
time taken by students for both these implementations and report the average
time along with the standard deviation in Table 1. Average time required for
Featherlight implementation ranged between 6–13.6min verses 43.4–61min for
ForkJoin. Support for serial elision and lesser time to code demonstrate that
Featherlight is extremely effective in enhancing programmer’s productivity, an
important consideration given the current hardware trend and the plethora of
real-world search based problems existing today.

5.2 Performance Analysis

Figure 5(a) shows the speedup of Featherlight relative to ManualAbort for all
benchmarks by using 20 workers. Except for Sudoku, both Featherlight and Man-
ualAbort perform within 5% of each other. This shows that Featherlight imple-
mentation does not add significant runtime overheads. Figures 5(b)–(g) shows
the speedup of both Featherlight and ForkJoin relative to Sequential implemen-
tation for each of the benchmarks. We can observe that Featherlight can achieve
significant speedup over the Sequential counterpart. Featherlight was also able to

Featherlight Speculative Task Parallelism 401

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

Workers=20

S
pe

ed
up

 o
ve

r
M

an
ua

lA
bo

rt

UTS
LinearSearch
NQueens
SLP

Sudoku
TSP
lusearch

(a) Speedup of Featherlight over
ManualAbort by using 20 workers

 0

 5

 10

 15

 20

 25

1 4 8 12 16 20

S
pe

ed
up

 o
ve

r
S

eq
ue

nt
ia

l

Total Workers

ForkJoin Featherlight

(b) UTS speedup over Sequential

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

1 4 8 12 16 20

S
pe

ed
up

 o
ve

r
S

eq
ue

nt
ia

l

Total Workers

ForkJoin Featherlight

(c) LinearSearch speedup over Se-
quential

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 4 8 12 16 20

S
pe

ed
up

 o
ve

r
S

eq
ue

nt
ia

l

Total Workers

ForkJoin Featherlight

(d) NQueens speedup over Sequen-
tial

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 4 8 12 16 20

S
pe

ed
up

 o
ve

r
S

eq
ue

nt
ia

l

Total Workers

ForkJoin Featherlight

(e) SLP speedup over Sequential

 0

 10

 20

 30

 40

 50

 60

1 4 8 12 16 20

S
pe

ed
up

 o
ve

r
S

eq
ue

nt
ia

l

Total Workers

ForkJoin Featherlight

(f) Sudoku speedup over Sequen-
tial

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 4 8 12 16 20

S
pe

ed
up

 o
ve

r
S

eq
ue

nt
ia

l

Total Workers

ForkJoin Featherlight

(g) TSP speedup over Sequential

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 4 8 12 16 20

S
pe

ed
up

 o
ve

r
S

eq
ue

nt
ia

l

Total Workers

ForkJoin Featherlight

(h) lusearch speedup over Sequen-
tial

Fig. 5. Performance analysis of Featherlight and ForkJoin on a 20 core machine. Some
benchmarks achieve super-linear speedup, which is possible in speculative parallel pro-
gramming.

402 V. Kumar

outperform ForkJoin across all benchmarks by increasing the parallelism (except
for SLP at 20 workers). Average speedup of Featherlight over ForkJoin across
all benchmarks and by using 20 workers was 1.7× with a geometric mean of
1.6×. Few benchmarks (UTS, LinearSearch, and Sudoku) achieved super-linear
speedup. It is possible as speculative decomposition may change the amount
of work done in parallel, thereby resulting in either sub-linear or super-linear
speedups [11].

For Sudoku benchmark, ForkJoin performed better than Featherlight at lower
worker counts. ForkJoin follows help-first work-stealing policy [27], i.e., fork call
merely pushes the task on the deque, and the continuation is executed before the
task. Featherlight follows work-first work-stealing policy, i.e., async is executed
before the continuation. We found that due to this difference, ForkJoin created a
lesser number of tasks in Sudoku than Featherlight, thereby performing better at
lower worker count. However, Featherlight outperformed ForkJoin by increasing
the parallelism.

We also noticed that unlike all other benchmarks, calling shutdownNow in
ForkJoin implementation of lusearch only partially canceled the tasks. As per
Javadoc [5], shutdownNow is typically implemented via Thread.interrupt(), so
any task that fails to respond to interrupts may never terminate. We found it
to be true in this case as there are several catch blocks for InterruptedException
inside Apache Lucene codebase over which lusearch is implemented. This is a
limitation that Featherlight does not suffer as long as appropriate Exception
subclasses are used instead of catch(Exception e){} blocks.

6 Related Work

Kolesnichenko et al. provided a detailed classification of task cancellation pat-
terns [14]. Java ForkJoin [20], Scala [4] and Python [2] simply terminate all the
threads once a cancellation is invoked by the user. Cilk allows speculative work
to be canceled through the use of Cilk’s abort statement inside function-scoped
inlets [10]. The abort statement, when executed inside an inlet, causes cancel-
lation of only the extant children but not the future children. For preventing
future children from being spawned, users should set a flag in the inlet indi-
cating that an abort has taken place, and then test that flag in the procedure
before spawning a child. This approach differs in Featherlight as an abort will
cancel both extant and future tasks inside the scope of finish_abort without
the need of any cancellation flag. OpenMP supports a task cancellation pragma
that allows grouping of tasks that could be canceled [3]. However, cancellation
could only be trigger by user-provided cancellation checks on task cancellation
pragma. Although OpenMP supports serial elision, user provided cancellation
checks hampers the productivity. Unlike Featherlight, both Cilk and OpenMP
have another limitation that cancellation is not possible when the code is exe-
cuting in a nested function call (long running tasks). TBB users must use either
cancellation tokens or interrupt checking for task cancellation [22,25]. C# sup-
ports cooperative cancellation by using cancellation token checking and throw-
ing an exception once the result is found [1]. Eureka programming in HJlib [13]

Featherlight Speculative Task Parallelism 403

allows the user to identify the program points where the task could be canceled
by using the runtime provided cancellation check call. A drawback is that the
programmer has to determine the frequency (granularity) of the check calls to
avoid overheads.

Featherlight radically differs from all existing approaches in following ways:
(a) it improves the productivity by satisfying serial elision, (b) it doesn’t require
any cancellation checks inside async tasks, and (c) it uses managed runtime
techniques to gracefully and safely cancel all speculatively spawned async when
abort is called.

7 Conclusion

Several modern real-world applications are comprised of search based problems
that perform best by using speculative parallelism. This parallel programming
technique often requires programmer inserted cancellation checks inside specula-
tively spawned parallel tasks to terminate them once the search result has been
found. In this paper, we designed and implemented a new programming model
for speculative task parallelism that improves the programmer productivity by
removing the need for any cancellation checking code and by satisfying serial
elision. It uses existing mechanisms in modern managed runtimes to cancel all
ongoing and pending computations once the search result is found. Our empiri-
cal results demonstrate that we can achieve better productivity and performance
compared to traditional approaches for speculative task parallelism.

Acknowledgments. The author is grateful to the anonymous reviewers for their sug-
gestions on improving the presentation of the paper, and to Imam et al. for open-
sourcing HJlib micro-benchmarks for speculative task parallelism [13].

References

1. Destroying threads in C#. https://docs.microsoft.com/en-us/dotnet/standard/
threading/destroying-threads. Accessed Feb 2019

2. Documentation on The Python standard library. https://docs.python.org/3/
library/concurrent.futures.html. Accessed Feb 2019

3. OpenMP API, version 4.5. http://www.openmp.org/wp-content/uploads/
openmp-4.5.pdf. Accessed Feb 2019

4. Scala scheduler. https://doc.akka.io/docs/akka/snapshot/scheduler.html?
language=scala. Accessed Feb 2019

5. Oracle docs, February 2019. https://docs.oracle.com/javase/7/docs/api/java/util/
concurrent/ExecutorService.html

6. Productivity analysis, February 2019. https://www.usebackpack.com/iiitd/
m2018/cse000

7. Alpern, B., et al.: The Jalapeño virtual machine. IBM Syst. J. 39(1), 211–238
(2000). https://doi.org/10.1147/sj.391.0211

8. Blackburn, S.M., et al.: The DaCapo benchmarks: Java benchmarking development
and analysis. In: OOPSLA, pp. 169–190 (2006). https://doi.org/10.1145/1167473.
1167488

https://docs.microsoft.com/en-us/dotnet/standard/threading/destroying-threads
https://docs.microsoft.com/en-us/dotnet/standard/threading/destroying-threads
https://docs.python.org/3/library/concurrent.futures.html
https://docs.python.org/3/library/concurrent.futures.html
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://doc.akka.io/docs/akka/snapshot/scheduler.html?language=scala
https://doc.akka.io/docs/akka/snapshot/scheduler.html?language=scala
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ExecutorService.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ExecutorService.html
https://www.usebackpack.com/iiitd/m2018/cse000
https://www.usebackpack.com/iiitd/m2018/cse000
https://doi.org/10.1147/sj.391.0211
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/1167473.1167488

404 V. Kumar

9. Charles, P., et al.: X10: an object-oriented approach to non-uniform cluster comput-
ing. In: OOPSLA, pp. 519–538 (2005). https://doi.org/10.1145/1094811.1094852

10. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5 multi-
threaded language. In: PLDI, pp. 212–223 (1998). https://doi.org/10.1145/277650.
277725

11. Grama, A., Kumar, V., Gupta, A., Karypis, G.: Introduction to Parallel Comput-
ing. Pearson Education, Upper Saddle River (2003)

12. Imam, S., Sarkar, V.: Habanero-Java library: a Java 8 framework for multicore pro-
gramming. In: PPPJ, pp. 75–86 (2014). https://doi.org/10.1145/2647508.2647514

13. Imam, S., Sarkar, V.: The Eureka programming model for speculative task paral-
lelism. In: ECOOP, vol. 37, pp. 421–444 (2015). https://doi.org/10.4230/LIPIcs.
ECOOP.2015.421

14. Kolesnichenko, A., Nanz, S., Meyer, B.: How to cancel a task. In: Lourenço, J.M.,
Farchi, E. (eds.) MUSEPAT 2013. LNCS, vol. 8063, pp. 61–72. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39955-8_6

15. Kumar, V.: Featherlight implementation (2019). https://github.com/hipec/
featherlight/archive/d60047a.tar.gz

16. Kumar, V., Blackburn, S.M., Grove, D.: Friendly barriers: efficient work-stealing
with return barriers. In: VEE, pp. 165–176 (2014). https://doi.org/10.1145/
2576195.2576207

17. Kumar, V., Dolby, J., Blackburn, S.M.: Integrating asynchronous task parallelism
and data-centric atomicity. In: PPPJ, pp. 7:1–7:10 (2016). https://doi.org/10.
1145/2972206.2972214

18. Kumar, V., Frampton, D., Blackburn, S.M., Grove, D., Tardieu, O.: Work-stealing
without the baggage. In: OOPSLA, pp. 297–314 (2012). https://doi.org/10.1145/
2398857.2384639

19. Kumar, V., Zheng, Y., Cavé, V., Budimlić, Z., Sarkar, V.: HabaneroUPC++: a
compiler-free PGAS library. In: PGAS, pp. 5:1–5:10 (2014). https://doi.org/10.
1145/2676870.2676879

20. Lea, D.: A Java fork/join framework. In: JAVA, pp. 36–43 (2000). https://doi.org/
10.1145/337449.337465

21. Lin, Y., Wang, K., Blackburn, S.M., Hosking, A.L., Norrish, M.: Stop and go:
understanding yieldpoint behavior. In: ISMM, pp. 70–80 (2015). https://doi.org/
10.1145/2754169.2754187

22. Marochko, A.: Exception handling and cancellation in TBB–Part II (2008)
23. McCandless, M., Hatcher, E., Gospodnetic, O.: Lucene in Action, Second Edition:

Covers Apache Lucene 3.0. Manning Publications Co., Greenwich (2010)
24. Olivier, S., et al.: UTS: an unbalanced tree search benchmark. In: LCPC, pp. 235–

250 (2007). http://dl.acm.org/citation.cfm?id=1757112.1757137
25. Peierls, T., Goetz, B., Bloch, J., Bowbeer, J., Lea, D., Holmes, D.: Java Concur-

rency in Practice. Addison-Wesley Professional, Reading (2005)
26. Wheeler, D.A.: SLOCCount (2001). http://www.dwheeler.com/sloccount/
27. Guo, Y., Barik, R., Raman, R., Sarkar, V.: Work-first and help-first scheduling

policies for Async-finish task parallelism. In: IPDPS, pp. 1–12 (2009). https://doi.
org/10.1109/IPDPS.2009.5161079

https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1145/277650.277725
https://doi.org/10.1145/277650.277725
https://doi.org/10.1145/2647508.2647514
https://doi.org/10.4230/LIPIcs.ECOOP.2015.421
https://doi.org/10.4230/LIPIcs.ECOOP.2015.421
https://doi.org/10.1007/978-3-642-39955-8_6
https://github.com/hipec/featherlight/archive/d60047a.tar.gz
https://github.com/hipec/featherlight/archive/d60047a.tar.gz
https://doi.org/10.1145/2576195.2576207
https://doi.org/10.1145/2576195.2576207
https://doi.org/10.1145/2972206.2972214
https://doi.org/10.1145/2972206.2972214
https://doi.org/10.1145/2398857.2384639
https://doi.org/10.1145/2398857.2384639
https://doi.org/10.1145/2676870.2676879
https://doi.org/10.1145/2676870.2676879
https://doi.org/10.1145/337449.337465
https://doi.org/10.1145/337449.337465
https://doi.org/10.1145/2754169.2754187
https://doi.org/10.1145/2754169.2754187
http://dl.acm.org/citation.cfm?id=1757112.1757137
http://www.dwheeler.com/sloccount/
https://doi.org/10.1109/IPDPS.2009.5161079
https://doi.org/10.1109/IPDPS.2009.5161079

One Table to Count Them All: Parallel
Frequency Estimation on Single-Board

Computers

Fatih Taşyaran, Kerem Yıldırır, Mustafa Kemal Taş(B), and Kamer Kaya

Sabancı University, Istanbul, Turkey
{fatihtasyaran,keremyildirir,mkemaltas,kaya}@sabanciuniv.edu

Abstract. Sketches are probabilistic data structures that can provide
approximate results within mathematically proven error bounds while
using orders of magnitude less memory than traditional approaches. They
are tailored for streaming data analysis on architectures even with lim-
ited memory such as single-board computers that are widely exploited
for IoT and edge computing. Since these devices offer multiple cores,
with efficient parallel sketching schemes, they are able to manage high
volumes of data streams. However, since their caches are relatively small,
a careful parallelization is required.

In this work, we focus on the frequency estimation problem and eval-
uate the performance of a high-end server, a 4-core Raspberry Pi and
an 8-core Odroid. As a sketch, we employed the widely used Count-Min
Sketch. To hash the stream in parallel and in a cache-friendly way, we
applied a novel tabulation approach and rearranged the auxiliary tables
into a single one. To parallelize the process with performance, we modi-
fied the workflow and applied a form of buffering between hash compu-
tations and sketch updates.

Today, many single-board computers have heterogeneous processors in
which slow and fast cores are equipped together. To utilize all these cores
to their full potential, we proposed a dynamic load-balancing mechanism
which significantly increased the performance of frequency estimation.

Keywords: Parallel algorithms · Streaming data ·
Single board computers

1 Introduction

Although querying streaming data with 100% accuracy may be possible by
using cutting edge servers equipped with a large memory and powerful proces-
sor(s), enabling power efficient devices such as single-board computers (SBCs),
e.g., Arduino, Raspberry Pi, Odroid, with smarter algorithms and data struc-
tures yields cost and energy efficient solutions. These devices are indeed cheap,
are equipped with multicore processors, and portable enough to be located at
the edge of a data ecosystem, which is where the data is actually generated.
c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 405–418, 2019.
https://doi.org/10.1007/978-3-030-29400-7_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_29&domain=pdf
https://doi.org/10.1007/978-3-030-29400-7_29

406 F. Taşyaran et al.

Furthermore, SBCs can be enhanced with various hardware such as cameras,
sensors, and software such as network sniffers. Hence, exploiting their superior
price/performance ratio for data streams is a promising approach. A compre-
hensive survey of data stream applications can be found in [12].

Sketches can be defined as data summaries and there exist various sketches in
the literature tailored for different applications. These structures help us to pro-
cess a query on a massive dataset with small, usually sub-linear amount of mem-
ory [1,3,9,10]. Furthermore, each data stream can be independently sketched
and these sketches can then be combined to obtain the final sketch. Due to the
implicit compression, there is almost always a trade-off between the accuracy of
the final result and the sketch size.

Count-Min Sketch (CMS) is a probabilistic sketch that helps to estimate
the frequencies, i.e., the number of occurrences, of the items in a stream [6].
The frequency information is crucial to find heavy-hitters or rare items and
detecting anomalies [4,6]. A CMS stores a small counter table to keep the track
of the frequencies. The accesses to the sketch are decided based on the hashes
of the items and the corresponding counters are incremented. Intuitively, the
frequencies of the items are not exact due to the hash collisions. An important
property of a CMS is that the error is always one sided; that is, the sketch never
underestimates the frequencies.

Since independent sketches can be combined, even for a single data stream,
generating a sketch in parallel is considered to be a straightforward task; each
processor can independently consume a different part of a stream and build
a partial sketch. However, with τ threads, this straightforward approach uses
τ times more memory. Although this may not a problem for a high-end server,
when the cache sizes are small, using more memory can be an important burden.
In this work, we focus on the frequency estimation problem on single-board
multicore computers. Our contributions can be summarized as follows:

1. We propose a parallel algorithm to generate a CMS and evaluate its per-
formance on a high-end server and two multicore SBCs; Raspberry Pi 3
Model B+ and Odroid-XU4. We restructure the sketch construction phase
while avoiding possible race-conditions on a single CMS table. With a single
table, a careful synchronization is necessary, since race-conditions not only
degrade the performance but also increase the amount of error on estimation.
Although we use CMS in this work, the techniques proposed in this paper can
easily be extended to other table-based frequency estimation sketches such as
Count-Sketch and Count Min-Min Sketch.

2. Today, many SBCs have fast and slow cores to reduce the energy consumption.
However, the performance difference of these heterogenous cores differ for dif-
ferent devices. Under this heterogeneity, a manual optimization is required for
each SBC. As our second contribution, we propose a load-balancing mecha-
nism that distributes the work evenly to all the available cores and uses them
as efficiently as possible. The proposed CMS generation technique is dynamic;
it is not specialized for a single device and can be employed on various devices
having heterogeneous cores.

Parallel Frequency Estimation on Single-Board Computers 407

3. As the hashing function, we use tabulation hashing which is recently proven to
provide strong statistical guarantees [16] and faster than many hashing algo-
rithms available; a recent comparison can be found in [7]. For some sketches
including CMS, to reduce the estimation error, the same item is hashed mul-
tiple times with a different function from the same family. As our final contri-
bution, we propose a cache-friendly tabulation scheme to compute multiple
hashes at a time. The scheme can also be used for other applications employ-
ing multiple hashes.

2 Notation and Background

Let U = {1, · · · , n} be the universal set where the elements in the stream are
coming from. Let N be size of the stream s[.] where s[i] denotes the ith element
in the stream. We will use fx to denote the frequency of an item. Hence,

fx = |{x = s[i] : 1 ≤ i ≤ N}|.

Given two parameters ε and δ, a Count-Min Sketch is constructed as a two-
dimensional counter table with d = �ln(1/δ)� rows and w = �e/ε� columns.
Initially, all the counters inside the sketch are set to 0.

There are two fundamental operations for a CMS; the first one is insert(x)
which updates internal sketch counters to process the items in the stream. To
insert x ∈ U , the counters cms[i][hi(x)] are incremented for 1 ≤ i ≤ d, i.e., a
counter from each row is incremented where the column IDs are obtained from
the hash values. Algorithm 1 gives the pseudocode to sequentially process s[.] of
size N and construct a CMS.

The second operation for CMS is query(x) to estimate the frequency of
x ∈ U as

f ′
x = min1≤i≤d{cms[i][hi(x)]}.

With d×w memory, the sketch satisfies that fx ≤ f ′
x and Pr (f ′

x ≥ fx + εN) ≤ δ.
Hence, the error is additive and always one-sided. Furthermore, for ε and δ small
enough, the error is also bounded with high probability. Hence, especially for
frequent items with large fx, the ratio of the estimation to the actual frequency
approaches to one.

Tabulation Hash: CMS requires pairwise independent hash functions to provide
the desired properties stated above. A separate hash function is used for each
row of the CMS with a range equal to the range of columns. In this work, we
use tabulation hashing [18] which has been recently analyzed by Patrascu and
Thorup et al. [13,16] and shown to provide strong statistical guarantees despite
of its simplicity. Furthermore, it is even as fast as the classic multiply-mod-prime
scheme, i.e., (ax + b) mod p.

408 F. Taşyaran et al.

ALGORITHM 1. CMS-Construction
Input: ε: error factor, δ: error probability

s[.]: a stream with N elements from n distinct elements
hi(.): pairwise independent hash functions where for

1 ≤ i ≤ d, hi: U → {1, · · · , w} and w = �e/ε�
Output: cms[.][.]: a d × w counter sketch where d = �1/δ�
for i ← 1 to d do

for j ← 1 to w do
cms[i][j] ← 0

for i ← 1 to N do
x ← s[i] for j ← 1 to d do

col ← hj(x)
cms[j][col] ← cms[j][col] +1

Assuming each element in U is represented in 32 bits (the hash function can
also be used to hash 64-bit stream items [16]) and the desired output is also
32 bits, tabulation hashing works as follows: first a 4 × 256 table is generated
and filled with random 32-bit values. Given a 32-bit input x, each character,
i.e., 8-bit value, of x is used as an index for the corresponding row. Hence, four
32-bit values, one from each row, are extracted from the table. The bitwise XOR
of these 32-bit values are returned as the hash value.

3 Merged Tabulation with a Single Table

Hashing the same item with different members of a hash family is a common
technique in sketching applied to reduce the error of the estimation. One can
use a single row for CMS, i.e., set d = 1 and answer the query by reporting the
value of the counter corresponding to the hash value. However, using multiple
rows reduces the probability of having large estimation errors.

Although the auxiliary data used in tabulation hashing are small and can
fit into a cache, the spatial locality of the accessed table elements, i.e., their
distance in memory, is deteriorating since each access is performed to a different
table row (of length 256). A naive, cache-friendly rearrangement of the entries in
the tables is also not possible for applications performing a single hash per item;
the indices for each table row are obtained from adjacent chunks in the binary
representation of the hashed item which are usually not correlated. Hence, there
is no relation whatsoever among them to help us to fix the access pattern for all
possible stream elements.

For many sketches, the same item is hashed more than once. When tabulation
hashing is used, this yields an interesting optimization; there exist multiple hash
functions and hence, more than one hash table. Although, the entries in a single
table is accessed in a somehow irregular fashion, the accessed coordinates in all
the tables are the same for different tables as can be observed on the left side of
Fig. 1. Hence, the columns of the tables can be combined in an alternating fashion
as shown in the right side of the figure. In this approach, when only a single
thread is responsible from computing the hash values for a single item to CMS,

Parallel Frequency Estimation on Single-Board Computers 409

the cache can be utilized in a better way since the memory locations accessed
by that thread are adjacent. Hence, the computation will pay the penalty for
a cache-miss only once for each 8-bit character of a 32-bit item. This proposed
scheme is called merged tabulation. The pseudocode is given in Algorithm 2.

Fig. 1. Memory access patterns for naive
and merged tabulation for four hashes. The
hash tables are colored with different colors.
The accessed locations are shown in black.
(Color figure online)

ALGORITHM 2. Merged-
Hash

Input: data: 32-bit data to be
hashed

Output: res[4]: filled with hash
values

mask ← 0x000000ff
x ← data
c ← 4 ∗ (x&mask)
for i ← 0 to 4 do

res[i] ← tbl[0][c + i]
x ← x >> 8
for i ← 1 to 4 do

c ← 4 ∗ (x&mask)
res[0] ← res[0] ⊕ tbl[i][c]
res[1] ← res[1] ⊕ tbl[i][c + 1]
res[2] ← res[2] ⊕ tbl[i][c + 2]
res[3] ← res[3] ⊕ tbl[i][c + 3]
x ← x >> 8

4 Parallel Count-Min Sketch Construction

Since multiple CMS sketches can be combined, on a multicore hardware, each
thread can process a different part of the data (with the same hash functions)
to construct a partial CMS. These partial sketches can then be combined by
adding the counter values in the same locations. Although this approach has
been already proposed in the literature and requires no synchronization, the
amount of the memory it requires increases with increasing number of threads.
We included this one sketch to one core approach in the experiments as one of
the baselines.

Constructing a single CMS sketch in parallel is not a straightforward task.
One can assign an item to a single thread and let it perform all the updates
(i.e., increment operations) on CMS counters. The pseudocode of this parallel
CMS construction is given in Algorithm 3. However, to compute the counter
values correctly, this approach requires a significant synchronization overhead;
when a thread processes a single data item, it accesses an arbitrary column of
each CMS row. Hence, race conditions may reduce the estimation accuracy. In
addition, these memory accesses are probable causes of false sharing. To avoid
the pitfalls stated above, one can allocate locks on the counters before every
increment operation. However, such a synchronization mechanism is too costly
to be applied in practice.

In this work, we propose a buffered parallel execution to alleviate the above
mentioned issues; we (1) divide the data into batches and (2) process a sin-
gle batch in parallel in two phases; (a) merged-hashing and (b) CMS counter
updates. In the proposed approach, the threads synchronize after each batch and

410 F. Taşyaran et al.

ALGORITHM 3. Naive-Parallel-CMS
Input: ε: error factor, δ: error probability

s[.]: a stream with N elements from n distinct elements
hi(.): pairwise independent hash functions where for

1 ≤ i ≤ d, hi: U → {1, · · · , w} and w = �e/ε�
τ : no threads

Output: cms[.][.]: a d × w counter sketch where d = �1/δ�
Reset all the cms[.][.] counters to 0 (as in Algorithm 1).
for i ← 1 to N in parallel do

x ← s[i]
hashes[.] ← MergedHash(x)
for j ← 1 to d do

col ← hashes[j]
cms[j][col] ← cms[j][col] +1 (must be a critical update)

process the next one. For batches with b elements, the first phase requires a buffer
of size b × d to store the hash values, i.e., column ids, which then will be used in
the second phase to update corresponding CMS counters. Such a buffer allows
us to use merged tabulation effectively during the first phase. In our implemen-
tation, the counters in a row are updated by the same thread hence, there will
be no race conditions and probably much less false sharing. Algorithm 4 gives
the pseudocode of the proposed buffered CMS construction approach.

ALGORITHM 4. Buffered-Parallel-CMS
Input: ε: error factor, δ: error probability

s[.]: a stream with N elements from n distinct elements
hi(.): pairwise independent hash functions where for

1 ≤ i ≤ d, hi: U → {1, · · · , w} and w = �e/ε�
b: batch size (assumption: divides N)
τ : no threads (assumption: divides d)

Output: cms[.][.]: a d × w counter sketch where d = �1/δ�
Reset all the cms[.][.] counters to 0 (as in Algorithm 1)

for i ← 1 to N/b do
jend ← i × b jstart ← jend − b + 1
for j ← jstart to jend in parallel do

x ← s[j]
�end ← j × d
�start ← �end − d + 1
buf[�start, · · · , �end] ← MergedHash(x)

Synchronize the threads, e.g., with a barrier
for tid ← 1 to τ in parallel do

for j ← 1 to b do
nrows ← d/τ
rend ← tid × nrows
rstart ← rend − nrows + 1
for r ← rstart to rend do

col ← buf[((j − 1) × d) + r]
cms[r][col] ← cms[r][col] + 1

Parallel Frequency Estimation on Single-Board Computers 411

5 Managing Heterogeneous Cores

A recent trend on SBC design is heterogeneous multiprocessing which had been
widely adopted by mobile devices. Recently, some ARM-based devices including
SBCs use the big.LITTLE architecture equipped with power hungry but faster
cores, as well as battery-saving but slower cores. The faster cores are suitable for
compute-intensive, time-critical tasks where the slower ones perform the rest of
the tasks and save more energy. In addition, tasks can be dynamically swapped
between these cores on the fly. One of the SBCs we experiment in this study
has an 8-core Exynos 5422 Cortex processor having four fast and four relatively
slow cores.

Assume that we have d rows in CMS and d cores on the processor; when
the cores are homogeneous, Algorithm 4 works efficiently with static schedul-
ing since, each thread performs the same amount of merged hashes and counter
updates. When the cores are heterogeneous, the first inner loop (for merged hash-
ing) can be dynamically scheduled: that is a batch can be divided into smaller,
independent chunks and the faster cores can hash more chunks. However, the
same technique is not applicable to the (more time consuming) second inner loop
where the counter updates are performed: in the proposed buffered approach,
Algorithm 4 divides the workload among the threads by assigning each row to
a different one. When the fast cores are done with the updates, the slow cores
will still be working. Furthermore, faster cores cannot help to the slower ones by
stealing a portion of their remaining jobs since when two threads work on the
same CMS row, race conditions will increase the error.

To alleviate these problems, we propose to pair a slow core with a fast one
and make them update two rows in an alternating fashion. The batch is pro-
cessed in two stages as shown in Fig. 2; in the first stage, the items on the
batch are processed in a way that the threads running on faster cores update
the counters on even numbered CMS rows whereas the ones running on slower
cores update the counters on odd numbered CMS rows. When the first stage is

Fig. 2. For a single batch, rows i and i + 1 of CMS are updated by a fast and a slow
core pair in two stages. In the first stage, the fast core performs row i updates and the
slow core processes row i+1 updates. In the second stage, they exchange the rows and
complete the remaining updates on the counters for the current batch.

412 F. Taşyaran et al.

done, the thread/core pairs exchange their row ids and resume from the item
their mate stopped in the first stage. In both stages, the faster threads process
fastBatchSize items and the slower ones process slowBatchSize items where
b = fastBatchSize + slowBatchSize.

To avoid the overhead of dynamic scheduling and propose a generic solu-
tion, we start with fastBatchSize = b/2 and slowBatchSize = b/2 and by
measuring the time spent by the cores, we dynamically adjust them to dis-
tribute the workload among all the cores as fairly as possible. Let tF and
tS be the times spent by a fast and slow core, respectively, on average. Let
sF = fastBatchSize

tF
and sS = slowBatchSize

tS
be the speed of these cores for the

same operation, e.g., hashing, CMS update etc. We then solve the equation
fastBatchSize+x

sF
= slowBatchSize−x

sS
for x and update the values as

fastBatchSize = fastBatchSize + x

slowBatchSize = slowBatchSize − x

for the next batch. One can apply this method iteratively for a few batches and
use the average values to obtain a generic and dynamic solution for such com-
putations. To observe the relative performances, we applied this technique both
for hashing and counter update phases of the proposed buffered CMS generation
algorithm.

6 Experimental Results

We perform experiments on the following three architectures:

– Xeon is a server running on 64 bit CentOS 6.5 equipped with 64 GB RAM
and an Intel Xeon E7-4870 v2 clocked at 2.30 GHz and having 15 cores. Each
core has a 32 KB L1 and a 256 KB L2 cache, and the size of L3 cache is 30 MB.

– Pi (Raspberry Pi 3 Model B+) is a quad-core 64-bit ARM Cortex A-53
clocked at 1.4 GHz equipped with 1 GB LPDDR2-900 SDRAM. Each core
has a 32 KB L1 cache, and the shared L2 cache size is 512 KB.

– Odroid (Odroid XU4) is an octa-core heterogeneous multi-processor. There
are four A15 cores running on 2 GHz and four A7 cores running on 1.4 GHz.
The SBC is equipped with a 2 GB LPDDR3 RAM. Each core has a 32 KB
L1 cache. The fast cores have a shared 2 MB L2 cache and slow cores have a
shared 512 KB L2 cache.

For multicore parallelism, we use C++ and OpenMP. We use gcc 5.3.0 on
Xeon. On Pi and Odroid, the gcc version is 6.3.0 and 7.3.0, respectively.
For all architectures, -O3 optimization flag is also enabled.

To generate the datasets for experiments, we used Zipfian distribution [17].
Many data in real world such as number of paper citations, file transfer sizes,
word frequencies etc. fit to a Zipfian distribution with the shape parameter
around α = 1. Furthermore, the distribution is a common choice for the studies
in the literature to benchmark the estimation accuracy of data sketches. To cover

Parallel Frequency Estimation on Single-Board Computers 413

the real-life better, we used the shape parameter α ∈ {1.1, 1.5}. Although they
seem to be unrelated at first, an interesting outcome of our experiments is that
the sketch generation performance depends not only the number of items but also
the frequency distribution; when the frequent items become more dominant in
the stream, some counters are touched much more than the others. This happens
with increasing α and is expected to increase the performance since most of the
times, the counters will already be in the cache. To see the other end of the
spectrum, we also used Uniform distribution to measure the performance where
all counters are expected to be touched the same number of times.

We use ε ∈ {10−3, 10−4, 10−5} and δ = 0.003 to generate small, medium and
large d × w sketches where the number of columns is chosen as the first prime
after 2/ε. Hence, the sketches have w = {2003, 20071, 200003} columns and
d = �log2(1/δ)� = 8 rows. For the experiments on Xeon, we choose N = 230

elements from a universal set U of cardinality n = 225. For Pi and Odroid,
we use N = 225 and n = 220. For all architectures, we used b = 1024 as the
batch size. Each data point in the tables and charts given below is obtained by
averaging ten runs.

6.1 Multi Table vs. Single Table

Although one-sketch-per-core parallelization, i.e., using partial, multiple
sketches, is straightforward, it may not be a good approach for memory/cache
restricted devices such as SBCs. The memory/cache space might be required by
other applications running on the same hardware and/or other types of sketches
being maintained at the same time for the same or a different data stream. Over-
all, this approach uses (d×w × τ) counters where each counter can have a value
as large as N ; i.e., the memory consumption is (d × w × τ × log N) bits. On the
other hand, a single sketch with buffering consumes

(d × ((w × log N) + (b × log w)))

bits since there are (d× b) entries in the buffer and each entry is a column ID on
CMS. For instance, with τ = 8 threads, ε = 0.001 and δ = 0.003, the one-sketch-
per-core approach requires (8×2003×8×30) = 3.85 Mbits whereas using single
sketch requires (8 × ((2003 × 30) + (1024 × 11))) = 0.57 Mbits. Hence, in terms
of memory footprint, using a single table pays off well. Figure 3 shows the case
for execution time.

In Fig. 3(a), the performance of the single-table (ST+) and multi-table (MT
and MT+) approaches are presented on Xeon. Although ST+ uses much less
memory, its performance is not good due to all the time spent while buffering
and synchronization. The last level cache size on Xeon is 30 MB; considering
the largest sketch we have is 6.4 MB (with 4-byte counters), Xeon does not
suffer from its cache size and MT+ indeed performs much better than ST+.
However, as Fig. 3(b) shows for Pi, with a 512 KB last-level cache, the pro-
posed technique significantly improves the performance, and while doing that, it
uses significantly much less memory. As Fig. 3(c) shows, a similar performance

414 F. Taşyaran et al.

Fig. 3. Performance comparison for multi-table (MT) and single table (ST) approaches.
MT uses the one-sketch-per-core approach as suggested in the literature, MT+ is the
MT-variant with merged tabulation. In all the figures, ST+ is the proposed scheme (as
in Algorithm 4), where in the last figure, ST++ is the ST+ variant using the load-
balancing scheme for heterogeneous cores as described in Sect. 5. For all the figures,
the x-axis shows the algorithm and ε ∈ {10−3, 10−4, 10−5} pair. The y-axis shows the
runtimes in seconds; it does not start from 0 for a better visibility of performance
differences. The first bar of each group shows the case when the data is generated
using uniform distribution. The second and the third bars show the case for Zipfian
distribution with the shape parameter α = 1.1 and 1.5, respectively.

improvement on Odroid is also visible for medium (640 KB) and especially
large (6.4 MB) sketches when only the fast cores with a 2 MB last-level cache are
used.

Figure 3 shows that the performance of the algorithms vary with respect to
the distribution. As mentioned above, the variance on the frequencies increases
with increasing α. For uniform and Zipfian(1.1), the execution times tend to
increase with sketch sizes. Nevertheless, for α = 1.5, sketch size does not have a
huge impact on the performance, since only the hot counters of the most frequent
items are frequently updated. Although each counter has the same chance to be
a hot counter, the effective sketch size reduces significantly especially for large
sketches. This is also why the runtimes for many configurations are less for
α = 1.5.

Parallel Frequency Estimation on Single-Board Computers 415

Fig. 4. Plots of fast-to-slow ratio F2S = fastBatchSize
slowBatchSize

of hashing and CMS update
phases for consecutive batches and for small (left) and medium (right) sketches.

6.2 Managing Heterogeneous Cores

To utilize the heterogeneous cores on Odroid, we applied the smart load dis-
tribution described in Sect. 5. We pair each slow core with a fast one, vir-
tually divide each batch into two parts, and make the slow core always run
on smaller part. As mentioned before, for each batch, we dynamically adjust
the load distribution based on the previous runtimes. Figure 4 shows the ratio
F2S = fastBatchSize

slowBatchSize for the first 256 batches of small and medium sketches. The
best F2S changes w.r.t. the computation performed; for hashing, a 4-to-1 division
of workload yields a balanced distribution. However, for CMS updates, a 1.8-to-1
division is the best. As the figure shows, the F2S ratio becomes stable after a
few batches for both phases. Hence, one can stop the update process after ∼30
batches and use a constant F2S for the later ones. As Fig. 3(d) shows, ST++, the
single-table approach both with merged tabulation and load balancing, is always
better than ST+. Furthermore, when τ = 8, with the small 512 KB last-level
cache for slower cores, the ST++ improves MT+ much better (e.g., when the
medium sketch performance in Figs. 3(c) and (d) are compared). Overall, smart
load distribution increases the efficiency by 15%–30% for τ = 8 threads.

6.3 Single Table vs. Single Table

For completeness, we compare the performance of the proposed single-table app-
roach, i.e., ST+ and ST++, with that of Algorithm 3. However, we observed
that using atomic updates drastically reduces its performance. Hence, we use
the algorithm in a relaxed form, i.e., with non-atomic updates. Note that in this
form, the estimations can be different than the CMS due to race conditions. As
Table 1 shows, with a single thread, the algorithms perform almost the same
except for Xeon for which Algorithm 3 is faster. However, when the number of
threads is set to number of cores, the proposed algorithm is much better due
to the negative impact of false sharing generated by concurrent updates on the
same cache line. In its current form, the proposed algorithm can process approx-
imately 60 M, 4 M, and 9 M items on Xeon, Pi and Odroid, respectively.

416 F. Taşyaran et al.

Table 1. Throughputs for sketch generation - million items per second. For each archi-
tecture, the number of threads is set to either one or the number of cores.

Zipfian Alg 3 (ST+ and

ST++)

Alg 2 - relaxed Zipfian Alg 3 (ST+ and

ST++)

Alg 2 - relaxed

α = 1.1 τ = 1 τ ∈ {4, 8} τ = 1 τ ∈ {4, 8} α = 1.5 τ = 1 τ ∈ {4, 8} τ = 1 τ ∈ {4, 8}
Xeon 17.6 60.0 22.6 17.8 Xeon 17.9 57.6 22.6 12.9

Pi 1.3 3.9 1.3 3.3 Pi 1.3 4.1 1.2 3.2

Odroid 1.6 9.0 1.6 6.6 Odroid 1.6 9.0 1.7 6.1

7 Related Work

CMS is proposed by Cormode and Muthukrishnan to summarize data
streams [6]. Later, they comment on its parallelization [5] and briefly men-
tion the single-table and multi-table approaches. There are studies in the lit-
erature employing synchronization primitives such as atomic operations for fre-
quency counting [8]. However, synchronization free approaches are more popu-
lar; Cafaro et al. propose an augmented frequency sketch for time-faded heavy
hitters [2]. They divided the stream into sub-streams and generated multiple
sketches instead of a single one. A similar approach using multiple sketches is
also taken by Mandal et al. [11]. CMS has also been used as an underlying struc-
ture to design advanced sketches. Recently, Roy et al. developed ASketch which
filters high frequent items first and handles the remaining with a sketch such as
CMS which they used for implementation [14]. However, their parallelization also
employs multiple filters/sketches. Another advanced sketch employing multiple
CMSs for parallelization is FCM [15].

Although other hash functions can also be used, we employ tabular hashing
which is recently shown to provide good statistical properties and reported to
be fast [7,16]. When multiple hashes on the same item are required, which is
the case for many sketches, our merging technique will be useful for algorithms
using tabular hashing.

To the best of our knowledge, our work is the first cache-focused,
synchronization-free, single-table CMS generation algorithm specifically tuned
for limited-memory multicore architectures such as SBCs. Our techniques can
also be employed for other table-based sketches such as Count Sketch [3] and
CMS with conservative updates.

8 Conclusion and Future Work

In this work, we investigated the parallelization of Count-Min Sketch on SBCs.
We proposed three main techniques: The first one, merged tabulation, is use-
ful when a single is item needs to be hashed multiple times and can be used
for different sketches. The second technique buffers the intermediate results to
correctly synchronize the computation and regularize the memory accesses. The
third one helps to utilize heterogeneous cores which is a recent trend on today’s

Parallel Frequency Estimation on Single-Board Computers 417

smaller devices. The experiments we performed show that the propose techniques
improve the performance of CMS construction on multicore devices especially
with smaller caches.

As a future work, we are planning to analyze the options on the SBCs
to configure how much data/instruction cache they use, and how they handle
coherency. We also want to extend the architecture spectrum with other accel-
erators such as FPGAs, GPUs, and more SBCs with different processor types.
We believe that similar techniques we develop here can also be used for other
sketches.

References

1. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the fre-
quency moments. In: Proceedings of the Twenty-Eighth Annual ACM Symposium
on Theory of Computing, STOC 1996, pp. 20–29. ACM, New York (1996)

2. Cafaro, M., Pulimeno, M., Epicoco, I.: Parallel mining of time-faded heavy hitters.
Expert Syst. Appl. 96, 115–128 (2018)

3. Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items in data streams.
In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy,
M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 693–703. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45465-9 59

4. Cormode, G., Korn, F., Muthukrishnan, S., Srivastava, D.: Finding hierarchical
heavy hitters in data streams. In: Proceedings of the 29th International Conference
on Very Large Data Bases, VLDB 2003, pp. 464–475 (2003)

5. Cormode, G., Muthukrishnan, M.: Approximating data with the count-min sketch.
IEEE Softw. 29(1), 64–69 (2012)

6. Cormode, G., Muthukrishnan, S.: An improved data stream summary: the count-
min sketch and its applications. J. Algorithms 55(1), 58–75 (2005)

7. Dahlgaard, S., Knudsen, M.B.T., Thorup, M.: Practical hash functions for similar-
ity estimation and dimensionality reduction. In: Advances in Neural Information
Processing Systems (NIPS), pp. 6618–6628 (2017)

8. Das, S., Antony, S., Agrawal, D., El Abbadi, A.: Thread cooperation in multicore
architectures for frequency counting over multiple data streams. VLDB Endow.
2(1), 217–228 (2009)

9. Dobra, A., Garofalakis, M., Gehrke, J., Rastogi, R.: Processing complex aggregate
queries over data streams. In: Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, SIGMOD 2002, pp. 61–72. ACM, New York
(2002)

10. Gilbert, A.C., Kotidis, Y., Muthukrishnan, S., Strauss, M.J.: How to summarize
the universe: dynamic maintenance of quantiles. In: Proceedings of the 28th Inter-
national Conference on Very Large Data Bases, VLDB 2002, pp. 454–465. VLDB
Endowment (2002)

11. Mandal, A., Jiang, H., Shrivastava, A., Sarkar, V.: Topkapi: parallel and fast
sketches for finding top-K frequent elements. In: NeurIPS 2018, Montréal, Canada,
pp. 10921–10931 (2018)

12. Muthukrishnan, S.: Data streams: algorithms and applications. Found. Trends
Theor. Comput. Sci. 1(2), 117–236 (2005)

13. Pǎtraşcu, M., Thorup, M.: The power of simple tabulation hashing. J. ACM 59(3),
14:1–14:50 (2012)

https://doi.org/10.1007/3-540-45465-9_59

418 F. Taşyaran et al.

14. Roy, P., Khan, A., Alonso, G.: Augmented sketch: faster and more accurate stream
processing. In: Proceedings of the 2016 International Conference on Management
of Data, SIGMOD 2016, pp. 1449–1463. ACM, New York (2016)

15. Thomas, D., Bordawekar, R., Aggarwal, C., Yu, P.S.: A Frequency-aware Parallel
Algorithm for Counting Stream Items on Multicore Processors. Technical report,
IBM (2007)

16. Thorup, M.: Fast and powerful hashing using tabulation. Commun. ACM 60(7),
94–101 (2017)

17. Zipf, G.: The Psychobiology of Language: An Introduction to Dynamic Philology.
MIT Press, Cambridge (1935)

18. Zobrist, A.L.: A new hashing method with application for game playing. Technical
report 88, University of Wisconsin, Madison, Wisconsin (1970)

Fine-Grained MPI+OpenMP Plasma
Simulations: Communication Overlap

with Dependent Tasks

Jérôme Richard1,2(B), Guillaume Latu1(B), Julien Bigot3(B),
and Thierry Gautier4(B)

1 CEA/IRFM, St-Paul lez Durance 13108, France
guillaume.latu@cea.fr

2 Zébrys, Toulouse, France
jerome.richard@zebrys.fr

3 Maison de la Simulation, CEA, CNRS, Univ. Paris-Sud, UVSQ,
Université Paris-Saclay, Gif-sur-Yvette, France

julien.bigot@cea.fr
4 Univ. Lyon, Inria, CNRS, ENS de Lyon, Univ. Claude-Bernard Lyon 1, LIP,

Lyon, France
thierry.gautier@inrialpes.fr

Abstract. This paper demonstrates how OpenMP 4.5 tasks can be used
to efficiently overlap computations and MPI communications based on
a case-study conducted on multi-core and many-core architectures. It
focuses on task granularity, dependencies and priorities, and also identi-
fies some limitations of OpenMP. Results on 64 Skylake nodes show that
while 64% of the wall-clock time is spent in MPI communications, 60%
of the cores are busy in computations, which is a good result. Indeed, the
chosen dataset is small enough to be a challenging case in terms of over-
lap and thus useful to assess worst-case scenarios in future simulations.

Two key features were identified: by using task priority we improved
the performance by 5.7% (mainly due to an improved overlap), and with
recursive tasks we shortened the execution time by 9.7%. We also illus-
trate the need to have access to tools for task tracing and task visu-
alization. These tools allowed a fine understanding and a performance
increase for this task-based OpenMP+MPI code.

Keywords: Dependent tasks · OpenMP 4.5 · MPI · Many-core

1 Introduction

The MPI and OpenMP programming models are widely used in numerical HPC
applications [8]. While combining both models is commonplace, several chal-
lenges must be addressed to obtain improved performance. One of them is the
efficient overlapping of communication with computation since communications
are often a major source of overhead. This is critical for future exascale machines
expected to interconnect a very large number of computing units.
c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 419–433, 2019.
https://doi.org/10.1007/978-3-030-29400-7_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_30&domain=pdf
https://doi.org/10.1007/978-3-030-29400-7_30

420 J. Richard et al.

With the recent shift of HPC platforms from multi-core to many-core archi-
tectures, the cumulated communication time can prevail over the computation
time [3]. Meanwhile, it can be difficult to keep all cores busy when dealing with
fine-grained computations since communication latencies and synchronization
costs are possibly an issue at large scale. It is especially challenging as it would
be preferable for parallel applications to provide portable performance on mul-
tiple platforms (with reduced development efforts).

Task-based programming is a promising approach to address these prob-
lems [5,16]. The introduction of this approach in the version 3.0 of OpenMP has
significantly improved the way of expressing parallelism in numerical applica-
tions. Especially data dependencies in OpenMP4.0 (i.e. the depend clause), and
both task priorities and task loops in the version 4.5 of the norm [11].

As a first contribution, this paper demonstrates that OpenMP tasks can be
used to efficiently overlap computations and MPI communications based on a
specific case-study on many-core and multi-core architectures. A second contri-
bution is the identification of three specific task parameters that should be care-
fully tuned to reach this goal: granularity, dependencies and priorities1. A third
contribution is the proposal of a method based on visualization to understand
and guide the tuning of these parameters. Finally, the paper identifies features
absent from OpenMP4.5 that could improve the situation; some of which are
already present in OpenMP 5.0 [12].

Section 2 describes the use-case studied in this paper: a hybrid MPI +
OpenMP 2D Vlasov-Poisson application while Sect. 3 discusses its implemen-
tation and specifically how we designed algorithms and tasks with communica-
tion/computation overlap in mind. Section 4 evaluates and discusses the perfor-
mance in terms of efficiency, scalability, overlapping; it identifies important task
parameters (granularity, dependencies, priorities) and presents a way to adjust
these parameters based on tasks visualization. Section 5 discusses related work
while Sect. 6 concludes the paper and presents some future work.

2 Use-Case Description

2.1 Overview and Numerical Approach

Overview. We consider an application that solves the Vlasov-Poisson equations2

to model the dynamics of a system of charged particles under the effects of a self-
consistent electric field. The unknown f is a distribution function of particles in
the phase space which depends on the time, the physical space, and the velocity.
This approach is useful to model kinetically different kinds of plasmas.

1 See [10] for an advanced tutorial about these points.
2 In practice, Poisson-Ampere [7] are solved instead of Poisson. But for sake of clarity,

Poisson-Ampere is not detailed here as the algorithm and performance are very close.

Fine-Grained MPI+OpenMP Plasma Simulations 421

Equations. The evolution of the distribution function of particles f(t, x, v) in
phase space (x, v) ∈ IR × IR is given by the Vlasov equation

∂f

∂t
+ v · ∇xf + E(t, x) · ∇vf = 0 (1)

In this equation, time is denoted t and the electric field E(t, x) is coupled to
the distribution function f . Considering the Vlasov-Poisson system, Poisson is
solved in the following way:

E(t, x) = −∇xφ(t, x), −Δxφ(t, x) = ρ(t, x) − 1 , (2)
with ρ(t, x) =

∫
IR

f(t, x, v) dv

where ρ is typically the ionic density, φ is the electric potential. One can express
the characteristic curves of the Vlasov-Poisson Eqs. (1)–(2) as the solutions of a
first-order differential system. It is proven that the distribution function f is con-
stant along the characteristic curves which are the basis of the semi-Lagrangian
method we employ to solve the Vlasov equation [17].

Numerical Method. The semi-Lagrangian method [17] consists in evaluating the
distribution function directly on a Cartesian grid in phase space. The driving
force of this explicit scheme is to integrate the characteristic curves backward in
time at each timestep and to interpolate the value at the feet of the character-
istics. The chosen interpolation technique relies on Lagrange polynomials [4] of
degree 5. To perform 2D interpolations, we use a tensor product on a fixed-size
square region of the 2D grid surrounding the feet of the characteristics.

2.2 Distributed Algorithm and Data Structures

Algorithms. Algorithm 1 presents one timestep of the application. It is divided
in two parts: the solving of the Poisson equation (lines 1–2) and the Vlasov solver
(lines 4–10). The Vlasov solver operates on a 2D regular mesh with ghost areas
(data structures are presented in the next paragraph). In the following, we will
denote by Δt the time step, by ρn =ρ(nΔt, x) the ionic density at time step n
(the superscript notation .n will be used also for E and f). Ghost exchange is
done through MPI isend/irecv between surrounding processes so they can be
available for the next iteration. The number of ghost cells in both direction is
denoted G. In the upcoming Sect. 4 we will set G = 8.

422 J. Richard et al.

Algorithm 1. One timestep
Input : fn, ρn

loc

Output: fn+1, ρn+1
loc

1 ρn = AllReduce(ρn
loc)

2 En = Field solver(ρn)
3 Perform diagnostics & outputs (En, ρn)

4 Launch all isend/irecv for ghost zones fn

5 2D advections for interior points (Algo. 2)
6 Receive wait for ghost zones fn

7 2D advections for border points (Algo. 3)
8 Send wait for ghost zones fn

9 ρn
loc = Local integral(fn)

10 Buffer swap between timestep n and n+1

Algorithm 2. Interior points advection
Input : Set of local tiles T∗ (representing fn) and

En

Output: Set of local tiles T∗
1 for k= [indices of local tiles] do
2 for j = [vstart(k) + G : vend(k) − G] do
3 for i = [xstart(k) + G : xend(k) − G] do
4 Compute the foot (x�

i , v
�
j) ending at

(xi, vj);
// All needed f values belong to Tk

5 fn+1
k (xi, vj) ← interpolate fn(x�

i , v
�
j);

Algorithm 3. Border points advection
Input : Set of local tiles T∗ (representing fn) and

En

Output: Set of local tiles T∗
1 DJ =[vstart(k) :vstart(k)+G[∪]vend(k)−G :vend(k)];
2 DI =[xstart(k) :xstart(k)+G[∪]xend(k)−G :xend(k)];
3 for k= [indices of local tiles] do
4 for j ∈ DJ do
5 for i ∈ DI do
6 Compute the foot (x�

i , v
�
j) ending at

(xi, vj);
// All needed f values belong to Tk

7 fn+1
k (xi, vj) ← interpolate fn(x�

i , v
�
j);

Fig. 1. Tiles and exchange of ghost buffers of the algorithm.

Data Structures. The whole (x, v) grid is split into uniform rectangular tiles.
Within a tile, two internal buffers are used for double buffering, each buffer
corresponding to a timestep. We have also two additional buffers to store ghosts
required for the interpolation stencil (virtually surrounding the internal buffers):
one for sending data to other tiles and one for receiving data. The ghost area of
each tile is split into 8 parts for the 8 neighbor tiles. The tile set is distributed
among processes using a 2D decomposition. The points (x, v) of a tile Tk are
defined in the domain: x ∈ [xstart(k);xend(k)[and v ∈ [vstart(k); vend(k)[.
The structure of a tile is illustrated in Fig. 1 wherein orange areas are ghost zones
while light-green areas are internal buffers updated by Vlasov 2D advections.

Fine-Grained MPI+OpenMP Plasma Simulations 423

Computations and Dependencies. In Algorithm 1, Poisson computation is com-
posed of two sub-steps. First (line l. 1), data is reduced to compute the integral
in velocity space (computing ρ as in Eq. 2). Then (l. 2), a local computation is
performed in each process. The reduction acts as a synchronization requiring
all advection data to be computed before solving Poisson and starting a new
step. Thus, most computations of the Vlasov advection and Poisson cannot be
overlapped.

Between two advection steps, ghost cells are exchanged with the 8 surround-
ing tiles (l. 4); data is copied between buffers for tiles that lie in the same process
and MPI is used otherwise. The interior points advection (l. 5) can start as soon
as Poisson is finished since their interpolation does not depend on ghosts. We
assume small displacements (i.e. |v.Δt| < Δx and |E.Δt| < Δv), thus all inter-
polations can be done locally [7]. Once all ghosts are received for one tile (l. 6),
its border points can be computed as well (l. 7).

When the advection of all points of a tile is done, the local part of the integral
(needed for the next Poisson computation) is computed (l. 9). Finally, when they
are not needed anymore by MPI Isend (l. 8) internal buffers are swapped (l. 10).

Figure 1 displays the communication pattern of the ghost exchange for two
MPI processes. Red solid arrows are MPI communications while green dashed
arrows are in-process ghost buffers copies. Sent buffers and received buffers are
distinct. For sake of clarity, communications/copies providing periodicity along
dimensions x and v are not shown here.

3 Implementation Design

We have implemented Algorithm 1 in C with OpenMP and MPI so as to eval-
uate the use of OpenMP tasks, priorities and task loops (see Footnote 1) for
communication/computation overlap. We have used the OpenMP Tool Inter-
faces (OMPT) [12] (from OpenMP 5.0) combined to tracing capabilities of the
KOMP [5] runtime to analyze the behavior and performance of the code.

Overall Design. Except where specified otherwise, we use a flat OpenMP task
model where the master thread submits all tasks that are then executed either
by worker threads or by the master thread itself. This is the only way to create
dependencies between sibling tasks [12]. We assign MPI calls and computations
to distinct tasks to improve the flexibility of the scheduling and rely on task
priorities to guide it. We submit all the tasks of each iteration in batch to provide
enough work to feed all workers during a single iteration (critical on many-core
systems). The tasks graph is similar on each MPI process.

On the MPI side, we use the MPI THREAD SERIALIZED mode where all threads
can access MPI, but only one at a time. Most MPI implementations use locks to
serialize communications in the MPI THREAD MULTIPLE mode which would inter-
fere with the task model. We instead serialize MPI calls using additional tasks
dependencies so that only one MPI task is active at a time. We use non-blocking
MPI calls with wait calls in distinct tasks for a fine control of dependencies.

424 J. Richard et al.

The tasks are submitted with the omp task directive and depend OpenMP
clauses are used to specify the dependencies between them (unless explicitly
stated). We decide to prune redundant data dependencies to mitigate submis-
sion and scheduling costs (which can be several time higher than the execution
if the submission is so slow that workers are starving). For the same reason,
we aggregated successive short calculations into single tasks, and consider the
whole ghost zone of each tile as a single atomic memory area to achieve coarser
granularity.

Algorithm Implementation. Poisson is implemented by two tasks. The first one
communicates (MPI AllReduce) the density field. The second task depends on
the first one and solves Poisson for a local subdomain along space dimension.
Once Poisson is solved, a task performs diagnostics: the output of the code.

Ghost buffers management is implemented by two tasks. The first one recur-
sively submits two groups of independent sub-tasks (using synchronous task loop
construct3). Sub-tasks of the first group copy data into ghost buffers and swap
tile buffers; those from the second group exchange ghost buffers between local
tiles, this avoids MPI transfers that would occur within each MPI process. The
second task depends on the first one (and also on the MPI AllReduce task due
to MPI tasks serialization) and performs all the isend/irecv required for tiles
whose neighbors are in a different MPI process.

Fig. 2. Submitted task graph of one iteration with the advection (top) and Poisson
(bottom) within the implementation.

Finally, the advection is implemented by four groups of tasks. Tasks in the
first group compute the advected values of internal points of the tiles; each
depends only on its own tile both as input and output. Tasks of the second group
wait for the reception of ghosts sent in the ghost buffer management tasks. Tasks
of the third group compute the advected values of border points and the density
integrals ρ; each depends on its own tile both as input and output and on the
associated ghost buffer as input. One last task waits for all buffers to be sent.

3 This construct specifies to execute iterations of one or multiple loops in parallel using
(independent) tasks. Unless specified by the user, it lets the runtime choose the best
granularity and perform a final synchronization.

Fine-Grained MPI+OpenMP Plasma Simulations 425

Finally, a taskwait directive is performed before moving back to the Poisson
phase that depends on the completion of all tasks. MPI tasks have the highest
priority, then come tile internal point tasks and border point tasks; other tasks
have a default lower priority.

Figure 2 summarizes the scheduled OpenMP task graph of one timestep on
one MPI process (similar on each process). Firstly, all MPI tasks (top and left)
are serialized using an inout fake variable. Moreover, while the MPI Isend/Irecv
task perform all the Isend/Irecv, each MPI WaitAll Irecv waits only for all
ghost buffers of a single tile to be received. For each tile, one task of each of the
three following types is submitted: MPI WaitAll Irecv, Tile center and Tile
border. The dependency pattern between the Tile center and Tile border
tasks is a 2D stencil (simplified view on Fig. 2).

4 Performance Evaluation

4.1 Experimental Setup

System Configuration. The experiments have been performed on the Skylake
(SKL) and Xeon Phi (KNL) partitions of the Marconi supercomputer4. SKL
nodes include two sockets Xeon 8160 with 24 cores. KNL nodes contain a Xeon
Phi KNL 7250 processor with 68 cores. The Xeon Phi is configured with the
quadrant clustering and cache memory modes5. Hyper-threading is disabled on
SKL and we chose to disable it on KNL. The network is an Intel Omni-Path
100 Gb/s (fat-tree). Experiments use one process per NUMA node (two pro-
cesses per socket for SKL and four processes per socket for KNL) to prevent
in-process NUMA effects which are out of the scope of this paper (the numactl
tool was used so that each process is bound to a unique quadrant and access to
its own memory). The code has been compiled with ICC 2018.0.1 and IntelMPI
2018.1.1636. The used OpenMP runtime is KOMP [5] (commit 32781b6), a fork
of the LLVM/Intel OpenMP runtime. This runtime helps us to produce and visu-
alize runtime traces in order to finely profile and track performance problems
and behaviors. It also implements tasks priorities and provides good performance
with fine-grained tasks [9].

Method. The median completion time is retrieved from a set of 10 runs. Each run
performs 1000 iterations for the scaling and granularity experiments and 100 for
the trace-based results (to reduce the trace size). Unless explicitly stated, each
run works with a (small) tile size of 64×64 over a 2D dataset of 8192×8192. We
choose a quite-small dataset for practical reasons: it exhibit issues that usually
occur with much more nodes on bigger datasets, but actually takes less time and
energy.

4 http://www.hpc.cineca.it/hardware/marconi.
5 The mode cannot be configured by the user on the selected computing machines.
6 The latest available versions on the computing machines during the experiments.

http://www.hpc.cineca.it/hardware/marconi

426 J. Richard et al.

4.2 Experimental Results

This Section presents and discusses the performance obtained on the considered
use-case. First, the overall scalability is analyzed and performance issues are
further investigated. Then, the benefits of using priorities is studied. After that,
the amount of overlapping is quantified. Finally, task overheads are analyzed: the
cost of the submission, the dependencies, and the impact of the task granularity.

Scalability. Figure 3a displays the completion time plotted against the number
of cores on both KNL and SKL nodes. It shows the hybrid application scales well
up to 64 nodes (respectively 4352 and 3072 cores) despite the small amount of
data to process. However, some scalability issues appear on 128 nodes (respec-
tively 8704 and 6144 cores).

Breakdown. Figure 3b shows the fraction of parallel time (cumulated sum of
the duration of the tasks) taken by each part of the application plotted against
the number of nodes used. First, we can see that the advection and the ghost
exchange needed by the advection take most of the time, while the Poisson part
seems negligible at first glance. However, from 32 to 128 nodes, the idle time
and the runtime overhead7 is increasing to the point of becoming dominant, and
this growth is mainly due to Poisson solver as we shall see.

Fig. 3. Scalability and performance results.

Figure 4 displays the task scheduling of one iteration on one MPI process of
64 SKL nodes (the work is uniformly balanced on each process). Let us focus on
Fig. 4a for the moment.

7 The idle time includes periods where threads are busy waiting for ready tasks to
be executed and thread synchronization periods, and the runtime overhead includes
scheduling and task submission costs.

Fine-Grained MPI+OpenMP Plasma Simulations 427

Schedule Analysis. Overall, the schedule is quite good since tasks related to the
advection and ghost exchanges (left side) are feeding almost all cores. The overlap
of communication is almost perfect in the Vlasov solver with MPI isend/irecv
triggered early in the timestep and the associated MPI Wait do not slow down
tiles computations. However, we can see that the Poisson solver (right side)
is less effective: the AllReduce does not scale well and the overlapping exists
but is dropping along with the number of cores. Indeed, it takes around 30%
of the overall execution time on 64 SKL nodes there (and 47% with 128 KNL
nodes), with a small fraction overlapped with computation. Please note that this
operation only consists in performing communications and can hardly be well
overlapped with computations at scale due to the actual dependencies between
the steps of Algorithm 1 itself.

It demonstrates the need of overlapping. But, the dependencies of the algo-
rithm prevent any additional overlap with computation in the Poisson solver.
Though, the results from all tiles are required to perform the global collective,
the result of which is used to solve Poisson, that finally leads to the next timestep.

At the beginning of the timestep, we can note that the master thread takes a
while before executing tasks. This delay is spent to submit all the tasks for the
current timestep and takes a non-negligible part of the time8.

Task Priorities. Figure 4b displays the task scheduling with task priorities dis-
abled, as opposed to Fig. 4a. This schedule is less efficient since MPI Wait tasks
are executed lately reducing the throughput of ready tasks that compute the
border points, and at a later stage is delaying the start of Poisson. Please note
that the AllReduce is slightly faster. We assume the management of traces by the
runtime causes network transfers that perturbs the AllReduce operation. Over-
all, this version is 5.7% slower than the version with priorities. Thus, it shows the
effectiveness of using task priorities. However, one can note that some OpenMP
implementations do not currently support priorities. Indeed, the LLVM/Intel
runtime does not yet, but KOMP and GOMP do.

Note that while GOMP could be used in the experiments of this paper, we
encountered some limitation when we tried to use it. Indeed, OMPT imple-
mented in GOMP that enable tracing capabilities is still in an early state and
we did not succeed to make it work on the tested computing environment (with
GCC 8.2.0). Studying results without such information was proven to be tricky.

Quantifying the Overlap. To measure the amount of overlapping more precisely
on the overall execution time, we have designed and used two metrics: rcomm

and ract. Let us define rcomm = tcomm
tall

where tcomm is the cumulated time of
MPI-only tasks (which are serialized) and the tall is the overall completion time.
rcomm gives hints on whether the application is compute-bound (rcomm ≈ 0) or
rather communication-bound (rcomm ≈ 1 with a small ract). ract = tcompute

tall × ncores

where tcompute is the cumulated sum of all computational task duration (parallel

8 This time could be shortened, if only one could store and resubmit the task graph
from one timestep to another such as in [2].

428 J. Richard et al.

(a) Task scheduling with priorities enabled and task loops.

(b) Task scheduling without priorities enabled and with task loops.

(c) Task scheduling with priorities enabled and without task loops.

Fig. 4. Task scheduling of one iteration within one MPI process using 64 SKL nodes.
White areas are idle time and runtime overheads. Dashed lines are the completion time
of the selected iterations.

time) and ncores the number of cores. ract represents the amount of activity of
all the cores without including communications and runtime overheads.

On Fig. 4a, rcomm represent the ratio of serialized hatched areas (MPI calls)
over the overall completion time and ract is the fraction of non-hatched colored
area (OpenMP computing tasks) over the overall two dimensional plotting area
(parallel time).

Results show that rcomm = 0.09 and ract = 0.96 on 1 SKL node and
rcomm = 0.64 and ract = 0.60 on 64 SKL nodes. It means the application is
clearly compute-bound on 1 node as 9% of the overall execution time is spent
in MPI calls and cores are busy to perform computation 96% of the time. On
64 nodes, the application spent a major part of its time in MPI calls (64%),
but cores are still busy 60% of the time, which indicates a good overlap. This is
quite consistent with the schedule of the selected iteration displayed in Fig. 4a
as serialized MPI calls take a significant portion of the sequential time and the
idle time is not predominant although it is clearly significant.

Fine-Grained MPI+OpenMP Plasma Simulations 429

Cost of the Dependencies. While synchronizations are known to cause load
imbalance between threads and could be costly on many-cores systems; the cost
of task dependencies can sometimes exceed them. Figure 4c displays the schedule
of non-recursive tasks with fine-grained dependencies rather than task loops in
recursive tasks of Fig. 4a. The task submission takes around 3 times as long as
the first version. This large overhead is due to the high number of dependencies
(9 per task) compared to the task granularity [9]. Still, the AllReduce is post-
poned and the master thread is busy at submitting tasks rather than executing
them. As a result, the overall completion time of this variant is 9.7% slower than
the first one. This justifies the use of task loops in recursive tasks. The overheads
are expected to increase with more worker threads or a finer granularity.

More generally, the number of dependencies per task should be minimized9.
Sometimes, it should be done at the expense of the code maintainability (e.g.
indirect dependencies, over-synchronizations, control-based dependencies). An
analysis of this kind of trade-offs is done in [9].

Impact of the Tile Granularity. Figure 5 displays the overhead coming from the
choice of the tile size regarding the number of KNL nodes used. Such over-
head includes the management of ghosts, runtime costs (e.g. task scheduling),
scheduling effect (e.g. load balancing), hardware effects (e.g. cache effects). A
ratio equal to 1 means that the selected tile size provides the best completion
time of all evaluated tile sizes for a given number of nodes. A ratio greater than
1 means that the completion time sub-optimal since another tile size that results
in a smaller completion time can be picked.

1 2 4 8 16 32 64 128
Number of nodes

64x32

64x64

128x64

128x128

256x128

256x256

B
lo
ck

si
ze

(w
id
th

x
he
ig
ht
)

1.0

1.2

1.4

1.6

1.8

2.0 (worse)

(best)

ra
ti
o

ratio =
tn,s

min
i= {64x32, ... 256x256}

tn,i

with s the block size,
n the number of node,
and tn,s the completion time

Fig. 5. Relative time (ratio) of the application plotted against both the tile size and
the number of nodes of KNL. For each set of nodes, the time is normalized to the best
tile size. For clarity, ratios greater than 2 are capped.

On one hand, a coarse tile granularity on a lot of nodes (under-decomposition)
results in worker starvation since there is not enough tasks to feed them (bottom-
right of the Figure). On the other hand, a small tile size on a few nodes (over-
decomposition) introduces prohibitive runtime costs due to the number of tasks

9 The management cost of dependencies could also be lowered by the runtime if ded-
icated studies are done along this line.

430 J. Richard et al.

to schedule proportionally to the overall execution time (top-left of the Figure).
Thus, the most efficient tile size is related to the number of nodes.

Strategies to Set the Tile Size. We can emphasize that the cost of an under-
decomposition of the domain causes more problems than an over-decomposition.
Thus, it is better to perform a slight over-decomposition, it provides more flexi-
bility to the runtime to ensure a decent load balance. Finally, choosing 64 × 64
tiles (see Sect. 4.1) is not always the best but is an adequate trade-off to ensure
the scalability of this code up to 128 nodes.

Discussion on the Granularity. The tile size, and more generally the granularity
of tasks is a matter of concerns to reach good performances. This problem is
usually addressed using recursive tasking in OpenMP: tasks can be submitted
from different threads and from other tasks recursively to lower the cost of
scheduling. However, in OpenMP dependencies can only be defined between
sibling tasks of the same parent task, this is a pitfall to avoid on this use-
case. Weak-dependencies proposal [14] would overcome the restriction if well
integrated in OpenMP. Since MPI tasks are serialized, they must be submitted
from the same thread or parent task and the same rule apply for the advection
tasks since they depend on MPI tasks. An alternative is to work at a coarser
grain using dependencies on recursive tasks. But, this approach mitigates the
submission overhead at the cost of an increased complexity and introduces over-
synchronizations that can harm overlapping. Practically, auto-tuning approaches
can be used to find the best granularity, especially for more complex use-case.

Leveraging Task Graph Tracing. OMPT and the tracing capability of KOMP are
the backbone of this paper. First of all, it has guided us to design the application
by providing constant feedback on the runtime scheduling and the source of over-
heads (dependencies, granularity, synchronizations). For example, it has enabled
us to reduce the critical path by tuning the submitted task graph and to improve
the overlapping at large scale. Moreover, it also enables the visualization of task
scheduling. It proves to be useful to profile the application or even track bugs
(e.g. bad dependency, abnormal slow task) as well as complex hardware issues
(e.g. cache effects relative to the locality). This feature also made it possible to
draw Fig. 4. However, there is no free lunch: tracing introduces an additional
overhead which can be significant at fine granularity. That being said, it is still
well-suited to analyze the complex behavior of OpenMP task-based applications
provided that performance measures are close enough with or without tracing.

Combining Tasks and MPI. The serialization of MPI communications tasks is
more a bypass to prevent issues related to MPI implementations than a definitive
solution. Indeed, the developer nor the user are not in the best position to: adjust
the number of threads allocated to MPI communications, pin them, deal with
issues related to MPI THREAD MULTIPLE. Indeed, the tuning strongly depends on
the MPI implementation, the runtime, the hardware. Moreover, it raises another
problem: in which order MPI tasks should be executed to minimize the overall

Fine-Grained MPI+OpenMP Plasma Simulations 431

execution time? While we have chosen to force a static schedule of such tasks in
the considered use-case, it may not be optimal in general. Indeed, the time of MPI
primitives varies regarding the node architectures, the network hardware, the
bindings of threads, as well as the actual use of the shared network infrastructure.
Moreover, regarding the dependencies and the critical path, it may be worthwhile
to start communications before others. OpenMP currently provides no way to
deal with such a constrained multi-objective optimization with communication.

5 Related Work

Many studies have been previously conducted on building OpenMP+MPI appli-
cations, especially for loop-based applications. But, to our knowledge, no previ-
ous work have studied the use of OpenMP 4.5 task-based features on CPU-based
many-core systems, especially fine-grained dependencies coupled with MPI.

The MultiProcessor Communications environment (MPC) [13] try to fill in
the gap between OpenMP and MPI. While this approach address problems per-
taining to the overlapping in hybrid applications, it mainly focuses on loop-based
applications. So far, MPC only supports OpenMP 3.1 and thus features like data
dependencies, task loops and priorities are not supported. Authors [15] consider
to signal blocking MPI calls to OpenMP for better scheduling. The grain of
their solution seems to be order of magnitude bigger than considered in our
target simulation.

Some task-based runtimes that support OpenMP also support extension rel-
ative to MPI. StarPU [1], for example, supports asynchronous and task-based
send/receive point-to-point communications, and more recently MPI collectives.
The runtime is based on a pooling thread to handle the asynchronous MPI
communications. It provides two main APIs: a C extension based on pragma
directives and a low-level C API. The first targets only GCC, and as far as we
know, it does not support MPI-related features. The last is flexible, but also
more intrusive as a lot of code is needed to submit and manage tasks. OmpSs [6]
is another runtime supporting MPI in a similar way. It extends OpenMP with
new directives so it can be used by end-users. However, OmpSs relies on its own
compiler. These approaches can be a good starting point to create a standard
interface between OpenMP and MPI or even an OpenMP extension that could
be supported by multiple runtimes as well as MPI implementations.

Although, as of today, designing practical hybrid applications is still chal-
lenging for developers adopting both MPI and OpenMP task-based constructs
to target recent and upcoming many-core systems. This is an active field of
research and the state-of-the-art is moving quickly.

6 Conclusion

This paper evaluated the use of the OpenMP task-related features like priorities
and task loops (introduced in the version 4.5 of the norm) in the context of a

432 J. Richard et al.

MPI+OpenMP application that solves the Vlasov-Poisson equations on many-
core architectures. It emphasized the impact of using tasks on the overlapping
and the overall performance. A specific focus has been put on the tracing and
visualization tools. The paper has also highlighted limits specific to OpenMP
and provided feedback.

Experiments have been conducted on systems with Skylake and Xeon Phi
processors from 1 up to 128 nodes. Results show that OpenMP tasks enable
achieving a good overlapping. Task priorities are proven to be effective, espe-
cially to schedule MPI communications. The overhead due to tasks submission
and due to dependencies management revealed to be quite high. We managed
to reduce this overhead by using: less dependencies, task loops constructs and
recursive tasks. Finally, OMPT and runtime tracing capabilities have enabled a
fine analysis of the behavior and performance of the code, and thus have been
essential.

We think that specific points should be mainly addressed in the future. First,
the interaction between OpenMP and MPI should be improved in a way the
runtime can reorder opportunistically the scheduling of tasks that embed MPI
communications. Second, fine-grained dependencies between siblings of recursive
tasks should be made possible. Indeed, it is difficult for the user to express all
the available parallelism with the existing task features.

Acknowledgments. This work was supported by the EoCoE and EoCoE2 projects,
grant agreement numbers 676629 & 824158, funded within the EU’s H2020 program.
We also acknowledge CEA for the support provided by Programme Transversal de
Compétences – Simulation Numérique.

References

1. Augonnet, C., Aumage, O., Furmento, N., Namyst, R., Thibault, S.: StarPU-MPI:
task programming over clusters of machines enhanced with accelerators. In: Träff,
J.L., Benkner, S., Dongarra, J.J. (eds.) EuroMPI 2012. LNCS, vol. 7490, pp. 298–
299. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33518-1 40

2. Besseron, X., Gautier, T.: Impact of over-decomposition on coordinated check-
point/rollback protocol. In: Alexander, M., et al. (eds.) Euro-Par 2011. LNCS,
vol. 7156, pp. 322–332. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-29740-3 36

3. Bouzat, N., Rozar, F., Latu, G., Roman, J.: A new parallelization scheme for the
Hermite interpolation based gyroaverage operator. In: 2017 16th ISPDC (2017)

4. Bouzat, N., et al.: Targeting realistic geometry in Tokamak code Gysela. ESAIM
Proc. Surv. 63, 179–207 (2018)

5. Broquedis, F., Gautier, T., Danjean, V.: libKOMP, an efficient OpenMP runtime
system for both fork-join and data flow paradigms. In: Chapman, B.M., Massaioli,
F., Müller, M.S., Rorro, M. (eds.) IWOMP 2012. LNCS, vol. 7312, pp. 102–115.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30961-8 8

6. Bueno, J., et al.: Productive cluster programming with OmpSs. In: Jeannot, E.,
Namyst, R., Roman, J. (eds.) Euro-Par 2011. LNCS, vol. 6852, pp. 555–566.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23400-2 52

https://doi.org/10.1007/978-3-642-33518-1_40
https://doi.org/10.1007/978-3-642-29740-3_36
https://doi.org/10.1007/978-3-642-29740-3_36
https://doi.org/10.1007/978-3-642-30961-8_8
https://doi.org/10.1007/978-3-642-23400-2_52

Fine-Grained MPI+OpenMP Plasma Simulations 433

7. Crouseilles, N., Latu, G., Sonnendrücker, E.: Hermite spline interpolationon
patches for parallelly solving the Vlasov-Poisson equation. IJAMCS 17(3), 335–349
(2007)

8. Diaz, J., Muñoz-Caro, C., Niño, A.: A survey of parallel programming modelsand
tools in the multi and many-core era. IEEE TPDS 23(8), 1369–1386 (2012)

9. Gautier, T., Pérez, C., Richard, J.: On the impact of OpenMP task granularity.
In: de Supinski, B.R., Valero-Lara, P., Martorell, X., Mateo Bellido, S., Labarta,
J. (eds.) IWOMP 2018. LNCS, vol. 11128, pp. 205–221. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-98521-3 14

10. Martorell, X., Teruel, X., Klemm, M.: Advanced OpenMP Tutorial (2018). https://
openmpcon.org/wp-content/uploads/2018 Tutorial3 Martorell Teruel Klemm.pdf

11. OpenMP Architecture Review Board: OpenMP Application Programming Inter-
face Version 4.5, November 2015. http://www.openmp.org

12. OpenMP Architecture Review Board: OpenMP Application Programming Inter-
face Version 5.0, November 2018. http://www.openmp.org

13. Pérache, M., Jourdren, H., Namyst, R.: MPC: a unified parallel runtime for clusters
of NUMA machines. In: Luque, E., Margalef, T., Beńıtez, D. (eds.) Euro-Par 2008.
LNCS, vol. 5168, pp. 78–88. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-85451-7 9

14. Perez, J.M., Beltran, V., Labarta, J., Ayguadé, E.: Improving the integration of
task nesting and dependencies in OpenMP. In: IPDPS 2017. IEEE (2017)

15. Sala, K., et al.: Improving the interoperability between MPI and task-based pro-
gramming models. In: Proceedings of EuroMPI 2018, pp. 6:1–6:11. ACM (2018)

16. Song, F., YarKhan, A., Dongarra, J.: Dynamic task scheduling for linear alge-
bra algorithms on distributed-memory multicore systems. In: Proceedings of the
Conference on HPC Networking, Storage and Analysis, SC 2009. ACM (2009)

17. Sonnendrücker, E., et al.: The semi-Lagrangian method for the numerical resolution
of the Vlasov equation. J. Comput. Phys. 149(2), 201–220 (1999)

https://doi.org/10.1007/978-3-319-98521-3_14
https://openmpcon.org/wp-content/uploads/2018_Tutorial3_Martorell_Teruel_Klemm.pdf
https://openmpcon.org/wp-content/uploads/2018_Tutorial3_Martorell_Teruel_Klemm.pdf
http://www.openmp.org
http://www.openmp.org
https://doi.org/10.1007/978-3-540-85451-7_9
https://doi.org/10.1007/978-3-540-85451-7_9

Parallel Adaptive Sampling with Almost
No Synchronization

Alexander van der Grinten(B), Eugenio Angriman, and Henning Meyerhenke

Department of Computer Science, Humboldt-Universität zu Berlin, Berlin, Germany
{avdgrinten,angrimae,meyerhenke}@hu-berlin.de

Abstract. Approximation via sampling is a widespread technique
whenever exact solutions are too expensive. In this paper, we present
techniques for an efficient parallelization of adaptive (a.k.a. progressive)
sampling algorithms on multi-threaded shared-memory machines. Our
basic algorithmic technique requires no synchronization except for atomic
load-acquire and store-release operations. It does, however, require
O(n) memory per thread, where n is the size of the sampling state. We
present variants of the algorithm that either reduce this memory con-
sumption to O(1) or ensure that deterministic results are obtained.

Using the KADABRA algorithm for betweenness centrality (a popular
measure in network analysis) approximation as a case study, we demon-
strate the empirical performance of our techniques. In particular, on a
32-core machine, our best algorithm is 2.9× faster than what we could
achieve using a straightforward OpenMP-based parallelization and 65.3×
faster than the existing implementation of KADABRA.

Keywords: Parallel approximation algorithms · Adaptive sampling ·
Wait-free algorithms · Betweenness centrality

1 Introduction

When a computational problem cannot be solved exactly within the desired time
budget, a frequent solution is to employ approximation algorithms [12]. With
large data sets being the rule and not the exception today, approximation is fre-
quently applied, even to polynomial-time problems [6]. We focus on a particular
subclass of approximation algorithms: sampling algorithms. They sample data
according to some (usually algorithm-specific) probability distribution, perform
some computation on the sample and induce a result for the full data set.

More specifically, we consider adaptive sampling (ADS) algorithms (also
called progressive sampling algorithms). Here, the number of samples that are
required is not statically computed (e.g., from the input instance) but also
depends on the data that has been sampled so far. While non-adaptive sam-
pling algorithms can often be parallelized trivially by drawing multiple samples

Partially supported by grant ME 3619/3-2 within German Research Foundation (DFG)
Priority Programme 1736 Algorithms for Big Data.

c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 434–447, 2019.
https://doi.org/10.1007/978-3-030-29400-7_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_31&domain=pdf
https://doi.org/10.1007/978-3-030-29400-7_31

Parallel Adaptive Sampling 435

in parallel, adaptive sampling constitutes a challenge for parallelization: check-
ing the stopping condition of an ADS algorithm requires access to all the data
generated so far and thus mandates some form of synchronization.

Motivation and Contribution. Our initial motivation was a parallel implemen-
tation of the sequential state-of-the-art approximation algorithm KADABRA [6]
for betweenness centrality (BC) approximation. BC is a very popular central-
ity measure in network analysis, see Sect. 2.2 for more details. To the best of
our knowledge, parallel adaptive sampling has not received a generic treatment
yet. Hence, we propose techniques to parallelize ADS algorithms in a generic
way, while scaling to large numbers of threads. While we turn to KADABRA to
demonstrate the effectiveness of the proposed algorithms, our techniques can be
adjusted easily to other ADS algorithms.

We introduce two new parallel ADS algorithms, which we call local-frame
and shared-frame. Both algorithms try to avoid extensive synchronization when
checking the stopping condition. This is done by maintaining multiple copies of
the sampling state and ensuring that the stopping condition is never checked on
a copy of the state that is currently being written to. Local-frame is designed to
use the least amount of synchronization possible – at the cost of an additional
memory footprint of Θ(n) per thread, where n denotes the size of the sampling
state. This algorithm performs only atomic load-acquire and store-release
operations for synchronization, but no expensive read-modify-write operations
(like CAS or fetch-add). Shared-frame, in turn, aims instead at meeting a desired
trade-off between memory footprint and synchronization overhead. In contrast to
local-frame, it requires only Θ(1) additional memory per thread, but uses atomic
read-modify-write operations (e.g., fetch-add) to accumulate samples. We also
propose the deterministic indexed-frame algorithm; it guarantees that the results
of two different executions is the same for a fixed random seed, regardless of the
number of threads.

Our experimental results show that local-frame, shared-frame and indexed-
frame achieve parallel speedups of 15.9×, 18.1×, and 10.8× on 32 cores, respec-
tively. Using the same number of cores, our OpenMP-based parallelization (func-
tioning as a baseline) only yields a speedup of 6.3×; thus our algorithms are up to
2.9× faster. Moreover, also due to implementation improvements and parameter
tuning, our best algorithm performs adaptive sampling 65.3× faster than the
existing implementation of KADABRA (when all implementations use 32 cores).

A full-length version of this paper (including an Appendix) is available from
https://arxiv.org/abs/1903.09422 [13].

Algorithm 1. Generic Adaptive Sampling
Variable initialization:

d ← new sampling state structure
d.data ← (0, . . . , 0) � Sampled data.
d.num ← 0 � Number of samples.

Main loop:

while not checkForStop(d) do
d.data ← d.data ◦ sample()
d.num ← d.num + 1

https://arxiv.org/abs/1903.09422

436 A. Grinten et al.

2 Preliminaries and Baseline for Parallelization

2.1 Basic Definitions

Memory Model. Throughout this paper, we target a multi-threaded shared-
memory machine with T threads. We work in the C11 memory model [15]
(more details in Appendix A of our full-length paper [13]); in particular, we
assume the existence of the usual atomic operations, as well as load-acquire
and store-release barriers.

Adaptive Sampling. For our techniques to be applicable, we expect that an
ADS algorithm behaves as depicted in Algorithm 1: it iteratively samples data
(in sample) and aggregates it (using some operator ◦), until a stopping con-
dition (checkForStop) determines that the data sampled so far is sufficient
to return an approximate solution within the required accuracy. This condition
does not only consider the number of samples (d.num), but also the sampled data
(d.data). Throughout this paper, we denote the size of that data (i.e., the num-
ber of elements of d.data) by n. We assume that the stopping condition needs
to be checked on a consistent state, i.e., a state of d that can occur in a sequen-
tial execution.1 Furthermore, to make parallelization feasible at all, we need to
assume that ◦ is associative. For concrete examples of stopping conditions, we
refer to Sect. 2.3 and Appendix A.

2.2 Betweenness Centrality and Its Approximation

Betweenness Centrality (BC) is one of the most popular vertex centrality mea-
sures in the field of network analysis. Such measures indicate the importance of
a vertex based on its position in the network [4] (we use the terms graph and
network interchangeably). Being a centrality measure, BC constitutes a function
b : V → R that maps each vertex of a graph G = (V,E) to a real number –
higher numbers represent higher importance. To be precise, the BC of u ∈ V is
defined as b(u) =

∑
s �=t∈V \{u}

σst(u)
σst

, where σst is the number of shortest s-t-
paths and σst(u) is the number of shortest s-t-paths that contain u. Betweenness
is extensively used to identify the key vertices in large networks, e.g., cities in a
transportation network [14], or lethality in protein networks [16].

Unfortunately, BC is rather expensive to compute: the standard exact algo-
rithm [8] has time complexity Θ(|V ||E|) for unweighted graphs. Moreover, unless
the Strong Exponential Time Hypothesis fails, this asymptotic running time
cannot be improved [5]. Numerous approximation algorithms for BC have thus
been developed (we refer to Sect. 5 for an overview). The state of the art of these
approximation algorithms is the KADABRA algorithm [6] of Borassi and Natale,
which happens to be an ADS algorithm. With probability (1 − δ), KADABRA
approximates the BC values of the vertices within an additive error of ε in
nearly-linear time complexity, where ε and δ are user-specified constants.
1 That is, d.num and all entries of d.data must result from an integral sequence of

samples; otherwise, parallelization would be trivial.

Parallel Adaptive Sampling 437

While our techniques apply to any ADS algorithm, we recall that, as a case
study, we focus on scaling the KADABRA algorithm to a large number of threads.

2.3 The KADABRA algorithm

KADABRA samples vertex pairs (s, t) of G = (V,E) uniformly at random and
then selects a shortest s-t-path uniformly at random (in sample in Algorithm 1).
After τ iterations, this results in a sequence of randomly selected shortest paths
π1, π2, . . . , πτ ; from those paths, BC is estimated as:

b̃(v) =
1
τ

τ∑

i=1

xi(v), xi(v) =

{
1 if v ∈ πi

0 otherwise.
∑τ

i=1 xi is exactly the sampled data (d.data) that the algorithm has to store
(i.e., the accumulation ◦ in Algorithm 1 sums xi over i). To compute the stopping
condition (checkForStop in Algorithm 1), KADABRA maintains the invariants

Pr(b(v) ≤ b̃(v) − f) ≤ δL(v) and Pr(b(v) ≥ b̃(v) + g) ≤ δU (v) (1)

for two functions f = f(b̃(v), δL(v), ω, τ) and g = g(b̃(v), δU (v), ω, τ) depending
on a maximal number ω of samples and per-vertex probability constants δL and
δU (more details in the original paper [6]). The values of those constants are
computed in a preprocessing phase (mostly consisting of computing an upper
bound on the diameter of the graph). δL and δU satisfy

∑
v∈V δL(v)+ δU (v) ≤ δ

for a user-specified parameter δ ∈ (0, 1). Thus, the algorithm terminates once
f, g < ε; the result is correct with an absolute error of ±ε and probability (1−δ).
We note that checking the stopping condition of KADABRA on an inconsistent
state leads to incorrect results. For example, this can be seen from the fact that
g is increasing with b̃ and decreasing with τ , see Appendix B of our full-length
paper [13].

2.4 First Attempts at KADABRA Parallelization

In the original KADABRA implementation2, a lock is used to synchronize concur-
rent access to the sampling state. As a first attempt to improve the scalability,

int epoch ← e
int num ← 0
int data[n] ← (0, . . . , 0)

(a) Structure of a state frame (SF)
for epoch e. num: Number of sam-
ples, data: Sampled data

bool stop ← false
int epochToRead ← 0

SF ∗ sfFin[T] ← (null, . . . , null)

(b) Shared variables

Fig. 1. Data structures used in epoch-based algorithms, including initial values

2 Available at: https://github.com/natema/kadabra.

https://github.com/natema/kadabra

438 A. Grinten et al.

we consider an algorithm that iteratively computes a fixed number of samples
in parallel (e.g., using an OpenMP parallel for loop), then issues a synchro-
nization barrier (as implied by the parallel for loop) and checks the stopping
condition afterwards. While sampling, atomic increments are used to update the
global sampling data. This algorithm is arguably the “natural” OpenMP-based
parallelization of an ADS algorithm and can be implemented in a few extra lines
of code. Moreover, it already improves upon the original parallelization. How-
ever, as shown by the experiments in Sect. 4, further significant improvements
in performance are possible by switching to more lightweight synchronization.

3 Scalable Parallelization Techniques

To improve upon the OpenMP parallelization from Sect. 2.4, we have to avoid the
synchronization barrier before the stopping condition can be checked. This is the
objective of our epoch-based algorithms that constitute the main contribution of
this paper. In Sect. 3.1, we formulate the main idea of our algorithms as a general
framework and prove its correctness. The subsequent subsections present specific
algorithms based on this framework and discuss trade-offs between them.

3.1 Epoch-Based Framework

In our epoch-based algorithms, the execution of each thread is subdivided into
a sequence of discrete epochs. During an epoch, each thread iteratively collects
samples; the stopping condition is only checked at the end of an epoch. The
crucial advantage of this approach is that the end of an epoch does not require
global synchronization. Instead, our framework guarantees the consistency of the
sampled data by maintaining multiple copies of the sampling state.

As an invariant, it is guaranteed that no thread writes to a copy of the state
that is currently being read by another thread. This is achieved as follows: each
copy of the sampling state is labeled by an epoch number e, i.e., a monotonically
increasing integer that identifies the epoch in which the data was generated.
When the stopping condition has to be checked, all threads advance to a new
epoch e+ 1 and start writing to a new copy of the sampling state. The stopping
condition is only verified after all threads have finished this transition and it
only takes the sampling state of epoch e into account.

More precisely, the main data structure that we use to store the sampling
state is called a state frame (SF). Each SF f (depicted in Fig. 1(a) consists of
(i) an epoch number (f.epoch), (ii) a number of samples (f.num) and (iii) the
sampled data (f.data). The latter two symbols directly correspond to d.num
and d.data in our generic formulation of an adaptive sampling algorithm (Algo-
rithm 1). Aside from the SF structures, our framework maintains three global
variables that are shared among all threads (depicted in Fig. 1(b): (i) a simple
Boolean flag stop to determine if the algorithm should terminate, (ii) a vari-
able epochToRead that stores the number of the epoch that we want to check
the stopping condition on and (iii) a pointer sfFin[t] for each thread t that

Parallel Adaptive Sampling 439

epochToRead = 5

Thread 2

Thread 9

SF of
epoch

4

SF of
epoch

5

SF of
epoch

6
. . .

sfFin[2]

fsam

SF of
epoch

4

SF of
epoch

5

SF of
epoch

6
. . .

sfFin[9]

fsam

Fig. 2. Transition after epochToRead is set to 5. Thread 2 already writes to the SF
of epoch 6 (using the fsam pointer). Thread 9 still writes to the SF of epoch 5 but
advances to epoch 6 once it checks epochToRead (dashed orange line). Afterwards,
thread 9 publishes its SF of epoch 5 to sfFin (dashed blue line). Finally, the stopping
condition is checked using both SFs of epoch 5 (i.e., the SFs now pointed to by sfFin).
(Color figure online)

points to a SF finished by thread t. Incrementing epochToRead is our synchro-
nization mechanism to notify all threads that they should advance to a new
epoch. Figure 2 visualizes such an epoch transition. In particular, it depicts the
update of the sfFin pointers after an epoch transition is initiated by increment-
ing epochToRead.

Algorithm 2 states the pseudocode of our framework. By ←relaxed, ←acquire and
←release, we denote relaxed memory access, load-acquire and store-release,
respectively (see Sects. 2.1 and Appendix A of our full-length paper [13]). In the
algorithm, each thread maintains an epoch number esam. To be able to check
the stopping condition, thread 0 maintains another epoch number echk. Indeed,
thread 0 is the only thread that evaluates the stopping condition (in check-
Frames) after accumulating the SFs from all threads. checkFrames deter-
mines whether there is an ongoing check for the stopping condition (inCheck
is true; line 16). If that is not the case, a check is initiated (by incrementing
echk) and all threads are signaled to advance to the next epoch (by updating
epochToRead). Note that inCheck is needed to prevent thread 0 from repeat-
edly incrementing echk without processing data from the other threads. After-
wards, checkFrames only continues if all threads t have published their SFs for
checking (i.e., sfFin[t] points to a SF of epoch echk; line 20). Once that happens,
those SFs are accumulated (line 27) and the stopping condition is checked on
the accumulated data (line 31). Eventually, the termination flag (stop; line 32)
signals to all threads that they should stop sampling. The main algorithm, on
the other hand, performs a loops until this flag is set (line 2). Each iteration
collects one sample and writes the results to the current SF (fsam). If a thread
needs to advance to a new epoch (because an incremented epochToRead is read
in line 7), it publishes its current SF to sfFin and starts writing to a new

440 A. Grinten et al.

Algorithm 2. Epoch-based Approach
Per-thread variable initialization:

esam ← 1
fsam ← new SF for esam = 1
if t = 0 then

echk ← 0
inCheck ← false

Main loop for thread t:

1: loop
2: doStop ←relaxed stop

3: if doStop then
4: break
5: fsam.data ← fsam.data ◦ sample()
6: fsam.num ← fsam.num + 1
7: r ←relaxed epochToRead

8: if r = esam then
9: reclaim SF of epoch esam − 1

10: sfFin[t] ←release fsam
11: esam ← esam +1
12: fsam ← new SF for esam

13: if t = 0 then
14: checkFrames()

Check of stopping condition by thread 0:

15: procedure checkFrames()
16: if not inCheck then
17: echk ← echk + 1
18: epochToRead ←relaxed echk
19: inCheck ← true
20: for i ∈ {1, . . . , T} do
21: ffin ←acquire sfFin[i]
22: if ffin = null then
23: return
24: if ffin.epoch �= echk then
25: return
26: d ← new SF for accumulation
27: for i ∈ {1, . . . , T} do
28: ffin ←relaxed sfFin[i]
29: d.data ← d.data ◦ ffin.data
30: d.num ← d.num + ffin.num

31: if checkForStop(d) then
32: stop←relaxed true

33: inCheck ← false

SF (fsam; line 12). Note that the memory used by old SFs can be reclaimed
(line 9; however, note that there is no SF for epoch 0). How exactly that is done
is left to the algorithms described in later subsections. In the remainder of this
subsection, we prove the correctness of our approach.

Proposition 1. Algorithm 2 always checks the stopping condition on a consis-
tent state; in particular, the epoch-based approach is correct.

Proof. The order of lines 10 and 12 implies that no thread t issues a store to a
SF f which it already published to sfFin[t]. Nevertheless, we need to prove that
all stores by thread t are visible to checkFrames before the frames are accu-
mulated. checkFrames only accumulates f.data after f has been published
to sfFin[t] via the store-relase in line 10. Furthermore, in line 21, check-
Frames performs at least one load-acquire on sfFin[t] to read the pointer to
f . Thus, all stores to f are visible to checkFrames before the accumulation in
line 27. The proposition now follows from the fact that ◦ is associative, so that
line 27 indeed produces a SF that occurs in some sequential execution. �	

3.2 Local-Frame and Shared-Frame Algorithm

We present two epoch-based algorithms relying on the general framework from
the previous section: namely, the local-frame and the shared-frame algorithm.
Furthermore, in Appendix D.2 of our full-length paper [13], we present the

Parallel Adaptive Sampling 441

deterministic indexed-frame algorithm (as both local-frame and shared-frame
are non-deterministic). Local-frame and shared-frame are both based on the
pseudocode in Algorithm 2. They differ, however, in their allocation and reuse
(in line 9 of the code) of SFs. The local frame algorithm allocates one pair of SFs
per thread and cycles through both SFs of that pair (i.e., epochs with even num-
bers are assigned the first SF while odd epochs use the second SF). This yields
a per-thread memory requirement of O(n); as before, n denotes the size of the
sampling state. The shared-frame algorithm reduces this memory requirement to
O(1) by only allocating F pairs of SFs in total, for a constant number F . Thus,
T/F threads share a SF in each epoch and atomic fetch-add operations need to
be used to write to the SF. The parameter F can be used to balance the memory
bandwidth and synchronization costs – a smaller value of F lowers the memory
bandwidth required during aggregation but leads to more cache contention due
to atomic operations.

3.3 Synchronization Costs

In Algorithm 2, all synchronization of threads t > 0 is done wait-free in the sense
that the threads only have to stop sampling for Θ(1) instructions to communicate
with other threads (i.e., to check epochToRead, update per-thread state and
write to sfFin[t]). At the same time, thread t = 0 generally needs to check all
sfFin pointers. Taken together, this yields the following statement:

Proposition 2. In each iteration of the main loop, threads t > 0 of local-frame
and shared-frame algorithms spend Θ(1) time to wait for other threads. Thread
t = 0 spends up to O(T) time to wait for other threads.

In particular, the synchronization cost does not depend on the problem instance
– this is in contrast to the OpenMP parallelization in which threads can idle for
O(S) time, where S denotes the time complexity of a sampling operation (e.g.,
S = O(|V | + |E|) in the case of KADABRA).

Nevertheless, this advantage in synchronization costs comes at a price: the
accumulation of the sampling data requires additional evaluations of ◦. O(Tn)
evaluations are required in the local-frame algorithm, whereas shared-frame
requires O(Fn). No accumulation is necessary in the OpenMP baseline. As can
be seen in Algorithm 2, we perform the accumulation in a single thread (i.e.,
thread 0). Compared to a parallel implementation (e.g., using parallel reduc-
tions), this strategy requires no additional synchronization and has a favorable
memory access pattern (as the SFs are read linearly). A disadvantage, however,
is that there is a higher latency (depending on T) until the algorithm detects
that it is able to stop. Appendix C.3 discusses how a constant latency can be
achieved heuristically.

4 Experiments

The platform we use for our experiments is a Linux server equipped with 1.5 TB
RAM and two Intel Xeon Gold 6154 CPUs with 18 cores (for a total of 36 cores)

442 A. Grinten et al.

at 3.00 GHz. Each thread of the algorithm is pinned to a unique core; hyper-
threading is disabled. Our implementation is written in C++ building upon the
NetworKit toolkit [29].3 We use 27 undirected real-world graphs in the experi-
ments (see Appendix E of our full-length paper [13] for more details). The largest
instances take tens of minutes for our OpenMP baseline and multiple hours for
the original implementation of KADABRA. The error probability for KADABRA
is set to δ = 0.1 for all experiments. Absolute running times of our experiments
are reported in Appendix F. The deviation in running time among different runs
of the same algorithm turned out to be small (e.g., around 3% for our local-frame
algorithm using 36-cores, in geom. mean running time over all instances). As it
is specifically small compared to our speedups, we report data on a single run
per instance.

In a first experiment, we compare our OpenMP baseline against the original
implementation of KADABRA (see Sect. 2.4 for these two approaches). We set
the absolute approximation error to ε = 0.01. The overall speedup (i.e., both pre-
processing and ADS) is reported in Fig. 3a. The results show that our OpenMP
baseline outperforms the original implementation considerably (i.e., by a factor
of 6.9×), even in a single-core setting. This is mainly due to implementation
tricks (see Appendix C.1) and parameter tuning (as discussed in Appendix C.2).
Furthermore, for 32 cores, our OpenMP baseline performs 13.5× better than
the original implementation of KADABRA – or 22.7× if only the ADS phase is
considered. Hence, for the remaining experiments, we discard the original imple-
mentation as a competitor and focus on the parallel speedup of our algorithms.

To understand the relation between the preprocessing and ADS phases of
KADABRA, we break down the running times of the OpenMP baseline in Fig. 3b.
In this figure, we present the fraction of time that is spent in ADS on three
exemplary instances and for different values of ε. Especially if ε is small, the
ADS running time dominates the overall performance of the algorithm. Thus,
improving the scalability of the ADS phase is of critical importance. For this rea-
son, we neglect the preprocessing phase and only consider ADS when comparing
to our local-frame and shared-frame algorithms.

In Fig. 4a, we report the parallel speedup of the ADS phase of our epoch-
based algorithms relative to the OpenMP baseline. All algorithms are con-
figured to check the stopping condition after a fixed number of samples (see
Appendix C.3 for details). The number F of SF pairs of shared-frame has been
configured to 2, which we found to be a good setting for T = 32. On 32 cores,
local-frame and shared-frame achieve parallel speedups of 15.9× and 18.1; they
both significantly improve upon the OpenMP baseline, which can only achieve
a parallel speedup of 6.3× (i.e., local-frame and shared-frame are 2.5× and 2.9×
faster, respectively; they also outperform the original implementation by factors
of 57.3 and 65.3, respectively). The difference between local-frame and shared-
frame is insignificant for lower numbers of cores; this is explained by the fact that

3 The algorithms of this paper have been integrated into NetworKit, in the
KadabraBetweenness class. NetworKit is publicly available at https://github.com/
kit-parco/networkit.

https://github.com/kit-parco/networkit
https://github.com/kit-parco/networkit

Parallel Adaptive Sampling 443

(a) Average speedup (preprecessing +
ADS, geom. mean) of OpenMP baseline
over the original sequential implementa-
tion of KADABRA

(b) Breakdown of sequential KADABRA
running times into preprocessing and
ADS (in percent) on instances orkut-
links (O), wikipedia link de (W), and
dimacs9-COL (D)

Fig. 3. Performance of OpenMP baseline

the reduced memory footprint of shared-frame only improves performance once
memory bandwidth becomes a bottleneck. For the same reason, both algorithms
scale very well until 16 cores; due to memory bandwidth limitations, this nearly
ideal scalability does not extend to 32 cores. This bandwidth issue is known to
affect graph traversal algorithms in general [2,18].

The indexed-frame algorithm is not as fast as local-frame and shared-frame
on the instances depicted in Fig. 4a: it achieves a parallel speedup of 10.8× on

(a) Average ADS speedup (geom. mean)
of epoch-based algorithms over sequential
OpenMP baseline

(b) Average ADS speedup (over 36-core
local-frame, geom. mean) and memory
consumption of shared-frame, depending
on the number of SFs

Fig. 4. Performance of epoch-based algorithms

444 A. Grinten et al.

32 cores. However, it is still considerably faster than the OpenMP baseline (by a
factor of 1.7×). There are two reasons why the determinism of indexed-frame is
costly: index-frame has similar bandwidth requirements as local-frame; however,
it has to allocate more memory as SFs are buffered for longer periods of time. On
the other hand, even when enough samples are collected, the stopping condition
has to be checked on older samples first, while local-frame and shared-frame can
just check the stopping condition on the most recent sampling state.

In a final experiment, we evaluate the impact of the parameter F of shared-
frame on its performance. Note that this experiment also demonstrates the differ-
ence in memory consumption of shared-frame (F ∈ {1, . . . , T}) and local-frame
(equivalent to F = T). Figure 4b depicts the results. The experiment is done
with 36 cores; hence memory pressure is even higher than in the previous exper-
iments. The figure demonstrates that in this situation, minimizing the memory
bandwidth requirements at the expense of synchronization overhead is a good
strategy. Hence for larger numbers of cores, we can minimize memory footprint
and maximize performance at the same time.

5 Related Work

Our parallelization strategy can be applied to arbitrary ADS algorithms. ADS
was first introduced by Lipton and Naughton to estimate the size of the transi-
tive closure of a digraph [17]. It is used in a variety of fields, e.g., in statistical
learning [26]. In the context of BC, ADS has been used to approximate dis-
tances between pairs of vertices of a graph [25], to approximate the BC values
of a graph [3,6,28] and to approximate the BC value of a single vertex [9]. An
analogous strategy is exploited by Mumtaz and Wang [24] to find approximate
solutions to the group betweenness maximization problem.

Regarding more general (i.e., not necessarily ADS) algorithms for BC, a sur-
vey from Matta et al. [20] provides a detailed overview of the state of the art.
The RK [27] algorithm represents the leading non-adaptive sampling algorithm
for BC approximation; KADABRA was shown to be 100 times faster than RK
in undirected real-world graphs, and 70 times faster than RK in directed graphs
[6]. McLaughlin and Bader [22] introduced a work-efficient parallel algorithm
for BC approximation, implemented for single- and multi-GPU machines. Mad-
duri et al. [19] presented a lock-free parallel algorithm optimized for specific mas-
sively parallel non-x86 64 architectures to approximate or compute BC exactly
in massive networks. Unlike our approach, this lock-free algorithm parallelizes
the collection of individual samples and is thus only applicable to betweenness
centrality and not to general ADS algorithms. Additionally, according to the
authors of [19], this approach hits performance bottlenecks on x86 64 even for 4
cores.

The SFs used by our algorithms are concurrent data structures that enable us
to minimize the synchronization latencies in multithread environments. Devis-
ing concurrent (lock-free) data structures that scale over multiple cores is not
trivial and much effort has been devoted to this goal [7,23]. A well-known solu-
tion is the Read-Copy-Update mechanism (RCU); it was introduced to achieve

Parallel Adaptive Sampling 445

high multicore scalability on read-mostly data structures [21], and was leveraged
by several applications [1,10]. Concurrent hash tables [11] are another popular
example.

6 Conclusions and Future Work

In this paper, we found that previous techniques to parallelize ADS algo-
rithms are insufficient to scale to large numbers of threads. However, significant
speedups can be achieved by employing adequate concurrent data structures.
Using such data structures and our epoch mechanism, we were able to devise
parallel ADS algorithms that consistently outperform the state of the art but
also achieve different trade-offs between synchronization costs, memory footprint
and determinism of the results.

Regarding future work, a promising direction for our algorithms is paral-
lel computing with distributed memory; here, the stopping condition could be
checked via (asynchronous) reduction of the SFs. In the case of BC this, might
yield a way to avoid bottlenecks for memory bandwidth on shared-memory
systems.

References

1. Arbel, M., Attiya, H.: Concurrent updates with RCU: search tree as an example. In:
Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing,
pp. 196–205. ACM (2014)

2. Bader, D.A., Cong, G., Feo, J.: On the architectural requirements for efficient
execution of graph algorithms. In: 2005 International Conference on Parallel Pro-
cessing, ICPP 2005, pp. 547–556. IEEE (2005)

3. Bader, D.A., Kintali, S., Madduri, K., Mihail, M.: Approximating betweenness
centrality. In: Bonato, A., Chung, F.R.K. (eds.) WAW 2007. LNCS, vol. 4863, pp.
124–137. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77004-
6 10

4. Boldi, P., Vigna, S.: Axioms for centrality. Internet Math. 10(3–4), 222–262 (2014).
https://doi.org/10.1080/15427951.2013.865686

5. Borassi, M., Crescenzi, P., Habib, M.: Into the square: on the complexity of some
quadratic-time solvable problems. Electr. Notes Theor. Comput. Sci. 322, 51–67
(2016). https://doi.org/10.1016/j.entcs.2016.03.005

6. Borassi, M., Natale, E.: KADABRA is an adaptive algorithm for betweenness via
random approximation. In: 24th Annual European Symposium on Algorithms,
ESA 2016, Aarhus, Denmark, 22–24 August 2016, pp. 20:1–20:18 (2016). https://
doi.org/10.4230/LIPIcs.ESA.2016.20

7. Boyd-Wickizer, S., et al.: An analysis of Linux scalability to many cores. In: OSDI,
vol. 10, pp. 86–93 (2010)

8. Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25(2),
163–177 (2001)

9. Chehreghani, M.H., Bifet, A., Abdessalem, T.: Novel adaptive algorithms for
estimating betweenness, coverage and k-path centralities. CoRR abs/1810.10094
(2018). http://arxiv.org/abs/1810.10094

https://doi.org/10.1007/978-3-540-77004-6_10
https://doi.org/10.1007/978-3-540-77004-6_10
https://doi.org/10.1080/15427951.2013.865686
https://doi.org/10.1016/j.entcs.2016.03.005
https://doi.org/10.4230/LIPIcs.ESA.2016.20
https://doi.org/10.4230/LIPIcs.ESA.2016.20
http://arxiv.org/abs/1810.10094

446 A. Grinten et al.

10. Clements, A.T., Kaashoek, M.F., Zeldovich, N.: Scalable address spaces using RCU
balanced trees. ACM SIGPLAN Not. 47(4), 199–210 (2012)

11. David, T., Guerraoui, R., Trigonakis, V.: Everything you always wanted to know
about synchronization but were afraid to ask. In: ACM SIGOPS 24th Symposium
on Operating Systems Principles, SOSP 2013, Farmington, PA, USA, 3–6 Novem-
ber 2013, pp. 33–48 (2013). https://doi.org/10.1145/2517349.2522714

12. Gonzalez, T.F.: Handbook of Approximation Algorithms and Metaheuristics
(Chapman & Hall/Crc Computer & Information Science Series). Chapman &
Hall/CRC, Boca Raton (2007)

13. van der Grinten, A., Angriman, E., Meyerhenke, H.: Parallel adaptive sampling
with almost no synchronization. CoRR abs/1903.09422 (2019). https://arxiv.org/
abs/1903.09422

14. Guimera, R., Mossa, S., Turtschi, A., Amaral, L.N.: The worldwide air transporta-
tion network: anomalous centrality, community structure, and cities’ global roles.
Proc. Natl. Acad. Sci. 102(22), 7794–7799 (2005)

15. ISO: ISO/IEC 14882:2011 Information technology – Programming lan-
guages – C++. International Organization for Standardization, Geneva,
Switzerland, February 2012. http://www.iso.org/iso/iso catalogue/catalogue tc/
catalogue detail.htm?csnumber=50372

16. Jeong, H., Mason, S.P., Barabási, A.L., Oltvai, Z.N.: Lethality and centrality in
protein networks. Nature 411(6833), 41 (2001)

17. Lipton, R.J., Naughton, J.F.: Estimating the size of generalized transitive closures.
In: Proceedings of the 15th International Conference on Very Large Data Bases
(1989)

18. Lumsdaine, A., Gregor, D., Hendrickson, B., Berry, J.: Challenges in parallel graph
processing. Parallel Process. Lett. 17(01), 5–20 (2007)

19. Madduri, K., Ediger, D., Jiang, K., Bader, D.A., Chavarria-Miranda, D.: A
faster parallel algorithm and efficient multithreaded implementations for evaluat-
ing betweenness centrality on massive datasets. In: IEEE International Symposium
on Parallel & Distributed Processing, IPDPS 2009, pp. 1–8. IEEE (2009)

20. Matta, J., Ercal, G., Sinha, K.: Comparing the speed and accuracy of approaches
to betweenness centrality approximation. Comput. Soc. Netw. 6(1), 2 (2019)

21. McKenney, P.E., Slingwine, J.D.: Read-copy update: using execution history to
solve concurrency problems. In: Parallel and Distributed Computing and Systems,
pp. 509–518 (1998)

22. McLaughlin, A., Bader, D.A.: Scalable and high performance betweenness central-
ity on the GPU. In: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pp. 572–583. IEEE Press
(2014)

23. Michael, M.M.: Hazard pointers: safe memory reclamation for lock-free objects.
IEEE Trans. Parallel Distrib. Syst. 6, 491–504 (2004)

24. Mumtaz, S., Wang, X.: Identifying top-k influential nodes in networks. In: Proceed-
ings of the 2017 ACM on Conference on Information and Knowledge Management,
pp. 2219–2222. ACM (2017)

25. Oktay, H., Balkir, A.S., Foster, I., Jensen, D.D.: Distance estimation for very large
networks using mapreduce and network structure indices. In: Workshop on Infor-
mation Networks (2011)

26. Provost, F., Jensen, D., Oates, T.: Efficient progressive sampling. In: Proceedings
of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 23–32. ACM (1999)

https://doi.org/10.1145/2517349.2522714
https://arxiv.org/abs/1903.09422
https://arxiv.org/abs/1903.09422
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372

Parallel Adaptive Sampling 447

27. Riondato, M., Kornaropoulos, E.M.: Fast approximation of betweenness centrality
through sampling. Data Min. Knowl. Discov. 30(2), 438–475 (2016)

28. Riondato, M., Upfal, E.: ABRA: approximating betweenness centrality in static
and dynamic graphs with rademacher averages. ACM Trans. Knowl. Discov. Data
(TKDD) 12(5), 61 (2018)

29. Staudt, C.L., Sazonovs, A., Meyerhenke, H.: NetworKit: a tool suite for large-scale
complex network analysis. Netw. Sci. 4(4), 508–530 (2016)

Theory and Algorithms for Parallel
Computation and Networking

Parallel Streaming Random Sampling

Kanat Tangwongsan1(B) and Srikanta Tirthapura2

1 CS Program, Mahidol University International College, Nakhon Pathom, Thailand
kanat.tan@mahidol.edu

2 Department of Electrical and Computer Engineering, Iowa State University,
Ames, USA

snt@iastate.edu

Abstract. This paper investigates parallel random sampling from a
potentially-unending data stream whose elements are revealed in a series
of element sequences (minibatches). While sampling from a stream was
extensively studied sequentially, not much has been explored in the par-
allel context, with prior parallel random-sampling algorithms focusing
on the static batch model. We present parallel algorithms for minibatch-
stream sampling in two settings: (1) sliding window, which draws samples
from a prespecified number of most-recently observed elements, and (2)
infinite window, which draws samples from all the elements received.
Our algorithms are computationally and memory efficient: their work
matches the fastest sequential counterpart, their parallel depth is small
(polylogarithmic), and their memory usage matches the best known.

1 Introduction

Consider a model of data processing where data is revealed to the processor
in a series of element sequences (minibatches) of varying sizes. A minibatch
must be processed soon after it arrives. However, the data is too large for all
the minibatches to be stored within memory, though the current minibatch is
available in memory until it is processed.

Such a minibatch streaming model is a generalization of the traditional data
stream model, where data arrives as a sequence of elements. If each minibatch
is of size 1, our model reduces to the streaming model. Use of minibatches is
common. For instance, in a data stream warehousing system [13], data is collected
for a specified period (such as an hour) into a minibatch and then ingested while
statistics and properties need to be maintained continuously. Minibatches may be
relatively large, potentially of the order of Gigabytes or more, and could leverage
parallelism (e.g., a distributed memory cluster or a shared-memory multicore
machine) to achieve the desired throughput. Furthermore, this model matches
the needs of modern “big data” stream processing systems such as Apache Spark
Streaming [22], where newly-arrived data is stored as a distributed data set (an
“RDD” in Spark) that is processed in parallel. Queries are posed on all the data
received up to the most recent minibatch.

c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 451–465, 2019.
https://doi.org/10.1007/978-3-030-29400-7_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_32&domain=pdf
https://doi.org/10.1007/978-3-030-29400-7_32

452 K. Tangwongsan and S. Tirthapura

This paper investigates the foundational aggregation task of random sam-
pling in the minibatch streaming model. Algorithms in this model observe a
(possibly infinite) sequence of minibatches B1, B2, . . . , Bt, We consider the
following variants of random sampling, all of which are well studied in the context
of sequential streaming algorithms. In the infinite window model, a random
sample is chosen from all the minibatches seen so far. Thus, after observing Bt,
a random sample is drawn from ∪t

i=1Bi. In the sliding window model with
window size w, the sample after observing Bt is chosen from the w most-recent
elements. Typically, the window size w is much larger than a minibatch size.1 In
this work, the window size w is provided at query time, but an upper bound W
on w is known beforehand.

We focus on optimizing the work and parallel depth of our algorithms. This is
a point of departure from the traditional streaming algorithms literature, which
has mostly focused on optimizing the memory consumed. Like in previous work,
we consider memory to be a scarce resource and design for scenarios where the
size of the stream is very large—and the stream, or even a sliding window of the
stream, does not fit in memory. But in addition to memory efficiency, this work
strives for parallel computational efficiency.

Our Contributions. We present parallel random-sampling algorithms for the
minibatch streaming model, in both infinite-window and sliding-window settings.
These algorithms can use the power of shared-memory parallelism to speedup
the processing of a new minibatch as well as a query for random samples.

�Efficient Parallel Algorithms. Our algorithms are provably efficient in parallel
processing. We analyze them in the work-depth model, showing (1) they are
work-efficient, i.e., total work across all processors is of the same order as an
efficient sequential algorithm, and (2) their parallel depth is logarithmic in the
target sample size, which implies that they can use processors nearly linear in
the input size while not substantially increasing the total work performed. In
the infinite-window case, the algorithm is work-optimal since the total work
across all processors matches a lower bound on work, which we prove in this
paper, up to constant factors. Interestingly, for all our algorithms, the work of
the parallel algorithm is sublinear in the size of the minibatch.

�Small Memory. While the emphasis of this work is on improving processing
time and throughput, our algorithms retain the property of having a small mem-
ory footprint, matching the best sequential algorithms from prior work.

Designing such parallel algorithms requires overcoming several challenges.
Sliding-window sampling is typically implemented with Priority Sampling
[1,3], whose work performed (per minibatch) is linear in the size of the minibatch.
Parallelizing it reduces depth but does not reduce work. Generating skip offsets,
à la Algorithm Z [20] (reservoir sampling), can significantly reduce work but
offers no parallelism. Prior algorithms, such as in [20], seem inherently sequential,
since the next location to sample from is derived as a function of the previously
1 One could also consider a window to be the w most recent minibatches, and similar

techniques are expected to work.

Parallel Streaming Random Sampling 453

chosen location. This work introduces a new technique called R3 sampling, which
combines reversed reservoir sampling with rejection sampling. R3 sampling is a
new perspective on Priority Sampling that mimics the sampling distribution
of Priority Sampling but is simpler and has less computational dependency,
making it amendable to parallelization. To enable parallelism, we draw samples
simultaneously from different areas of the stream using a close approximation of
the distribution. This leads to slight oversampling, which is later corrected by
rejection sampling. We show that all these steps can be implemented in parallel.
In addition, we develop a data layout that permits convenient update and fast
queries. As far as we know, this is the first efficient parallelization of the popular
reservoir-sampling-style algorithms.

Related Work. Reservoir sampling (attributed to Waterman) was known since
the 1960s. There has been much follow-up work, including methods for speed-
ing up reservoir sampling by “skipping past elements” [20], weighted reservoir
sampling [9], and sampling over a sliding window [1,3,10,21].

The difference between the distributed streams model [5–7,11] considered
earlier, and the parallel stream model considered here is that in the distributed
streams model, the focus is on minimizing the communication between proces-
sors while in our model, processors can coordinate using shared memory, and
the focus is on work-efficiency of the parallel algorithm. Prior work on shared-
memory parallel streaming has considered frequency counting [8,19] and aggre-
gates on graph streams [17], but to our knowledge, there is none so far on random
sampling. Prior work on warehousing of sample data [4] has considered meth-
ods for sampling under minibatch arrival, where disjoint partitions of new data
are handled in parallel. Our work also considers how to sample from a single
partition in parallel, and can be used in conjunction with a method such as [4].

2 Preliminaries and Notation

A stream S is a potentially infinite sequence of minibatches B1B2, . . ., where
each minibatch consists of one or more elements. Let St denote the stream so
far until time t, consisting of all elements in minibatches B1, B2, . . . , Bt. Let
ni = |Bi| and Nt =

∑t
i=1 ni, so Nt is the size of St. The size of a minibatch is

not known until the minibatch is received, and the minibatch is received as an
array in memory. A stream segment is a finite sequence of consecutive elements
of a stream. For example, a minibatch is a stream segment. A window of size w
is the stream segment consisting of the w most recent elements.

A sample of size s drawn without replacement from a set B with at least s
elements is defined as a random set whose distribution matches S, the result
of the following process. (1) Initialize S to empty. (2) Repeat s times: draw a
uniform random element e from B, add e to S and delete e from B. A sample of
size s drawn with replacement from a non-empty set B is defined as a random set
whose distribution matches T , the result of the following process. (1) Initialize
T to empty. (2) Repeat s times: draw a uniform random element e from B, add
e to T and do not delete e from B.

454 K. Tangwongsan and S. Tirthapura

Let [n] denote the set {1, . . . , n}. For sequence X = 〈x1, x2, . . . , x|X|〉, the
i-th element is denoted by Xi or X[i]. For convenience, negative index −i, written
X[−i] or X−i, refers to the i-th index from the right end—i.e., X[|X| − i + 1].
Following common array slicing notation, let X[a:] be the subsequence of X
starting from index a onward. An event happens with high probability (whp)
if it happens with probability at least 1 − n−c for some constant c ≥ 1. Let
UniformSample(a, b), a ≤ b, be a function that returns an element from {a, a +
1, . . . , b} chosen uniformly at random. For 0 < p ≤ 1, coin(p) ∈ {H,T} returns
heads (H) with probability p and tails (T) with probability 1−p. For m ≤ n, an
m-permutation of a set S, |S| = n, is an ordering of m distinct elements from S.

We analyze algorithms in the work-depth model assuming concurrent reads
and arbitrary-winner concurrent writes. The work of an algorithm is the total
operation count, and depth (also called parallel time or span) is the length of
the longest chain of dependencies within that algorithm. The gold standard in
this model is for an algorithm to perform the same amount of work as the
best sequential counterpart (work-efficient) and to have polylogarithmic depth.
This setting has been fertile ground for research and experimentation on parallel
algorithms. Moreover, results in this model are readily portable to other related
models, e.g., exclusive read and exclusive write, with a modest increase in cost
(see, e.g., [2]).

We measure the space complexity of our algorithms in terms of the number
of elements stored. Our space bounds do not represent bit complexity. Often,
the space used by the algorithm is a random variable, so we present bounds on
the expected space complexity.

3 Parallel Sampling from a Sliding Window

This section presents parallel algorithms for sampling without replacement from
a sliding window (SWOR-Sliwin). Specifically, for target sample size s and
maximum window size W , SWOR-Sliwin is to maintain a data structure R
supporting two operations: (i) insert(Bi) incorporates a minibatch Bi of new
elements arriving at time i into R and (ii) For parameters q ≤ s and w ≤ W ,
sample(q, w) when posed at time i returns a random sample of q elements chosen
uniformly without replacement from the w most recent elements in Si.

In our implementation, sample(q, w) does something stronger and returns a
q-permutation (not only a set) chosen uniformly at random from the w newest
elements from R—this can be used to generate a sample of any size j from 1 till
q by only considering the first j elements of the permutation.

One popular approach to sampling from a sliding window in the sequential
setting [1,3] is the Priority Sampling algorithm: Assign a random priority to
each stream element, and in response to sample(s, w), return the s elements
with the smallest priorities among the latest w arrivals. To reduce the space
consumption to be sublinear in the window size, the idea is to store only those
elements that can potentially be included in the set of s smallest priorities for
any window size w. A stream element e can be discarded if there are s or more

Parallel Streaming Random Sampling 455

elements with a smaller priority than e that are more recent than e. Doing so
systematically leads to an expected space bound of O(s + s log(W/s)) [1]2.

As stated, this approach expends work linear in the stream length to exam-
ine/assign priorities, but ends up choosing only a small fraction of the elements
examined. This motivates the question: How can one determine which elements
to choose, ideally in parallel, without expending linear work to generate or look
at random priorities? We assume W � ni ≥ s, where ni is the size of minibatch
i. The main result of this section is as follows:

Theorem 1. There is a data structure for SWOR-Sliwin that uses O(s +
s log(W/s)) expected space and supports the following operations:

(i) insert(B) for a new minibatch B uses O(s+s log(W
s)) work and O(log W)

parallel depth; and
(ii) sample(q, w) for sample size q ≤ s and window size w ≤ W uses O(q)

work and O(log W) parallel depth.

Note that the work of the data structure for inserting a new minibatch
is only logarithmic in the maximum window size W and independent of the
size of the minibatch. To prove this theorem, we introduce R3 sampling, which
brings together reversed reservoir sampling and rejection sampling. We begin by
describing reversed reservoir sampling, a new perspective on priority sampling
that offers more parallelism opportunities. After that, we show how to implement
this sampling process efficiently in parallel with the help of rejection sampling.

3.1 Simple Reversed Reservoir Algorithm

We now describe reversed reservoir (RR) sampling, which mimics the behav-
ior of priority sampling but provides more independence and more parallelism
opportunities. This process will be refined and expanded in subsequent sections.
After observing sequence X, Simple-RR (Algorithm 1) yields uniform sampling
without replacement of up to s elements for any suffix of X.

We say the i-th most-recent element has age i; this position/element will
be called age i when the context is clear. The algorithm examines the input
sequence X in reverse, X−1,X−2, . . . , and stores selected elements in a data
structure A, recording the age of an element in X as well as a slot (from [s]) into
which the element is mapped. Multiple elements may be mapped to the same
slot. The slot numbers are used to generate a permutation. The probability of
selecting an age-i element into A decreases as i increases.

For maximum sample size s > 0 and integer i > 0, define p
(s)
−i = min

(
1, s

i

)
,

which is exactly the probability age-i element is retained in standard priority
sampling when drawing s samples.

Let A denote the result of Simple-RR. Using this, sampling s elements
without replacement from any suffix of X is pretty straightforward. Define

χ(A) = (νA(1), νA(2), . . . , νA(s))
2 The original algorithm stores the largest priorities but is equivalent to our view.

456 K. Tangwongsan and S. Tirthapura

Algorithm 1. Simple-RR(X, s) — Näıve reversed reservoir sampling
Input: a stream segment X = 〈x1, . . . , x|X|〉 and a parameter s > 0, s ≤ |X|.
Output: a set {(ki, �i)}, where ki is an index into X and �i ∈ [s]

1 π ← Random permutation of [s], A0 = ∅
2 for i = 1, 2, . . . , s do Ai = Ai−1 ∪ {(i, πi)}
3 for i = s + 1, s + 2, . . . , |X| do
4 if coin(p

(s)
−i) == H then

5 � ←UniformSample(1, s)
6 Ai = Ai−1 ∪ {(i, �)}
7 else Ai = Ai−1

8 return A|X|

where νA(�) = arg maxk≥1{(k, �) ∈ A} is3 the oldest element assigned to slot �.
Given A, we can derive Ai for any i ≤ |X| by considering the appropriate subset
of A. We have that χ(Ai) is an s-permutation of the i most recent elements of
X. This is stated in the following lemma:

Lemma 1. If R is any s-permutation of X[−i :], then Pr[R = χ(Ai)] = (i−s)!
i!

Proof. We proceed by induction on i. The base case of i = s is easy to verify
since π is a random permutation of [s] and χ(As) is a permutation of X[−s :]
according to π. For the inductive step, assume that the relationship holds for
any R that is an s-permutation of X[−i :]. Now let R′ be an s-permutation of
X[−(i + 1) :]. Let x−(i+1) denote X[−(i + 1) :]. Consider two cases:

Case I: x−(i+1) appears in R′, say at R′
�. For R′ = χ(Ai+1), it must be the case

that x−(i+1) was chosen and was assigned to slot �. Furthermore, χ(Ai) must be
identical to R′ except in position �, where it could have been any of the i−(s−1)
choices. This occurs w.p. (i − [s − 1]) · (i−s)!

i! · p
(s)
−(i+1) · 1

s = (i+1−s)!
(i+1)! .

Case II: x−(i+1) does not appear in R′. Therefore, R′ must be an s-permutation
of X[−i :] and x−(i+1) was not sampled. This happens with probability (i−s)!

i! ·
(1 − p−(i+1)) = (i+1−s)!

(i+1)! .

In either case, this gives the desired probability. 	

Note that the space taken by this algorithm (the size of A|X|) is O(s +

s log(|X|/s)), which is optimal [10]. The steps are easily parallelizable but still
need O(|X|) work, which can be much larger than the (s + s log(|X|/s)) bound
on the number of elements the algorithm must sample. We improve on this next.

3 Because |X| ≥ s, the function ν is always defined.

Parallel Streaming Random Sampling 457

3.2 Improved Single-Element Sampler

This section addresses the special case of s = 1. Our key ingredient is the ability
to compute the next index that will be sampled, without touching the elements
that are not sampled.

Let X−i be an element just sampled. We can now define a random variable
Skip(i) that indicates how many elements past X−i will be skipped over before
selecting index −(i+Skip(i)) according to the distribution given by Simple-RR.
Conveniently, this random variable can be efficiently generated in O(1) time
using the inverse transformation method [15] because its cumulative distribution
function (CDF) has a simple, efficiently-solvable form: Pr[Skip(i) ≤ k] = 1 −
∏i+k

t=i+1(1−p−t) = 1− i
i+k = k

i+k . This leads to the following improved algorithm:

Algorithm 2. Fast-Single-RR(X) — Fast RR sampling for s = 1
1 i ← 1
2 while i < |X| do
3 A ← A ∪ {(i, 1)}
4 i ← i + Skip(i)

5 return A

This improvement significantly reduces the number of iterations:

Lemma 2. Let TFSR(n) be the number of times the while-loop in the
Fast-Single-RR algorithm is executed on input X with n = |X|.
Then, E[TFSR(n)] = O(1 + log(n)). Also, for m ≥ n and c ≥ 4,
Pr[TFSR(n) ≥ 1 + c · log(m)] ≤ m−c.

Proof. Let Zi be an indicator variable for whether x−i contributes to an iter-
ation of the while-loop. Hence, TFSR(n) = 1 + Z, where Z =

∑|X|
i=2 Zi. But

Pr[Zi = 1] = 1/i, so E[Z] = 1
2 + 1

3 + · · · + 1
n ≤ ln n. This proves the expectation

bound. The concentration bound follows from a Chernoff bound. 	

Immediately, this means that if A = Fast-Single-RR(X) is kept as a simple
sequence (e.g., an array), the running time—as well as the length of A—will be
O(1 + log(|X|)) in expectation. Moreover, Fast-Single-RR(X) produces the
same distribution as Simple-RR with s = 1, only more efficiently computed.

3.3 Improved Multiple-Element Sampler

In the general case of reversed reservoir sampling, generating skip offsets from
the distribution for s > 1 turns out to be significantly more involved than for
s = 1. While this is still possible, e.g., using a variant of Vitter’s Algorithm
Z [20], prior algorithms appear inherently sequential.

458 K. Tangwongsan and S. Tirthapura

This section describes a new parallel algorithm that builds on
Fast-Single-RR. In broad strokes, it first “oversamples” using a simpler dis-
tribution and subsequently, “downsamples” to correct the sampling probability.
To create parallelism, we logically divide the stream segment into s “tracks” of
roughly the same size and have the single-element algorithm work on each track
in parallel.

Track View. Define Create-View(X, k) to return a view corresponding to track
k on X: if Y = Create-View(X, k), then Y−i is X[−α

(k)
s (i)], where α

(k)
s (i) =

i · s + k. That is, track k contains, in reverse order, indices −(s + k),−(2s +
k),−(3s + k), Importantly, these views never have to be materialized.

Algorithm 3 combines the ideas developed so far. We now argue that
Fast-RR yields the same distribution as Simple-RR:

Algorithm 3. Fast-RR(X, s) — Fast reversed reservoir sampling
Input: a stream segment X = 〈x1, . . . , x|X|〉 and a parameter s > 0, s ≤ |X|.
Output: a set {(ki, �i)}, where ki is an index into X and �i ∈ [s]

1 π ← draw a random permutation of [s]

2 T0 ← {(i, πi) | i = 1, 2, . . . , s}
3 for τ = 1, 2, . . . , s in parallel do

4 X
(τ)
• ← Create-View(X, τ)

5 Tτ ← Fast-Single-RR(X
(τ)
•)

6 T ′
τ ← {(i, �) ∈ Tτ | coin(i · s/α(τ)

s (i)) = H} // filter, keep if coin shows heads
7 T ′′

τ ← {(i, UniformSample(1, s)) | (i, _) ∈ T ′
τ } // map

8 return T0 ∪ T ′′
1 ∪ T ′′

2 ∪ · · · ∪ T ′′
s

Lemma 3. Let A be a return result of Fast-RR(X, s). Then, for j = 1, . . . , |X|
and � ∈ [s], Pr[(j, �) ∈ A] = 1

s · p
(s)
−j .

Proof. For j ≤ s, age j is paired with a slot � drawn from a random permutation
of [s], so Pr[(j, �) ∈ A] = 1

s = 1
s · 1 = 1

s · p
(s)
−j . For j > s, write j as j = s · i + τ ,

so age j appears as age i in view X
(τ)
• . Now age j appears in A if both of these

events happen: (1) age i was chosen into Tτ and (2) the coin turned up heads
so it was retained in T ′

τ . These two independent events happen together with
probability p

(1)
−i · i·s

α
(τ)
s (i)

= 1
i · i·s

s·i+τ = s
j = p

(s)
−j . Once age j is chosen, it goes to

slot � with probability 1/s. Hence, Pr[(j, �) ∈ A] = 1
s · p

(s)
−j . 	

3.4 Storing and Retrieving Reserved Samples

How Should We Store the Sampled Elements? An important design goal is for
samples of any size q ≤ s to be generated without first generating s samples.
To this end, observe that restricting χ(A) to its first q ≤ s coordinates yields

Parallel Streaming Random Sampling 459

a q-permutation over the input. This motivates a data structure that stores the
contents of different slots separately.

Denote by R(A), or simply R in clear context, the binned-sample data struc-
ture for storing reserved samples A. The samples are organized by their slot
numbers (Ri)s

i=1, with Ri storing slot i’s samples. Within each slot, samples are
binned by their ages. In particular, each Ri contains �log2(�|X|/s�)� + 1 bins,
numbered 0, 1, 2, . . . , �log2(�|X|/s�)�—with bin k storing ages j in the range
2k−1 < �j/s� ≤ 2k. Below, bin t of slot i will be denoted by Ri[t].

Additional information is kept in each bin for fast queries: every bin k stores
φ(k), defined to be the age of the oldest element in bin k and all younger bins
for the same slot number.

Below is an example. Use s = 3 and |X| = 16. Let the result from Fast-RR
be A = {(1, 2), (2, 3), (3, 1), (7, 1), (10, 3), (11, 3), (14, 2)}. Then, R keeps the fol-
lowing bins, together with φ values:

Bin: Ri[0] Ri[1] Ri[2] Ri[3]

Slot i = 1 {3}φ=3 ∅φ=3 {7}φ=7 ∅φ=7

Slot i = 2 {1}φ=1 ∅φ=1 ∅φ=1 {14}φ=14

Slot i = 3 {2}φ=2 ∅φ=2 {10, 11}φ=11 ∅φ=11

From this construction, the following claims can be made:

Lemma 4. (i) The expected size of the bin Ri[t] is E[|Ri[t]|] ≤ 1.
(ii) The size of slot Ri is expected O(1 + log(|X|/s)). Furthermore, for c ≥ 4,

Pr[|Ri| ≤ 1 + c log2(|X|)] ≥ 1 − |X|−c.

Proof. Bin t of Ri is responsible for elements wit age j in the range 2t−1 <
�j/s� ≤ 2t, for a total of s(2t − 2t−1) = s · 2t−1 indices. Among them, the
age that has the highest probability of being sampled is (s2t−1 + 1), which is
sampled into slot i with probability 1

s · s
s2t−1+1 ≤ 1

s·2t−1 . Therefore, E[|Ri[t]|] ≤
s · 2t−1 · 1

s·2t−1 = 1.

Moreover, let Yt = 1{x−t is chosen into slot i}, so |Ri| =
∑|X|

t=1 Yt. Since E[Yt] =
p
(s)
−t/s = 1

s min(1, s/t), we have

E[|Ri|] =
|X|∑

t=1

E[Yt] = 1 +
|X|∑

t=s+1

1
t

≤ 1 +
∫ |X|

t=s

dt

t
= 1 + ln

(
|X|
s

)
,

which proves the expectation bound. Because Yt’s are independent, using an
argument similar to the proof of Lemma 2, we have the probability bound. 	

Data Structuring Operations. Algorithm 4 shows algorithms for constructing a
binned-sample data structure and answering queries. To Construct a binned-
sample data structure, the algorithm first arranges the entries into groups by slot
number, using a parallel semisorting algorithm, which reorders an input sequence
of keys so that like sorting, equal keys are arranged contiguously, but unlike
sorting, different keys are not necessarily in sorted order. Parallel semisorting of

460 K. Tangwongsan and S. Tirthapura

n elements can be achieved using O(n) expected work and space, and O(log n)
depth [12]. The algorithm then, in parallel, processes each slot, putting every
entry into the right bin. Moreover, it computes a min-prefix, yielding φ(·) for all
bins. There is not much computation within a slot, so we do it sequentially but
the different slots are done in parallel. To answer a Sample query, the algorithm
computes, for each slot i, the oldest age within X[−w:] that was assigned to
slot i. This can be found quickly by figuring out the bin k where w should be.
Once this is known, it simply has to look at φ of bin k − 1 and go through the
entries in bin k. This means a query touches at most two bins per slot.

Cost Analysis. We now analyze Fast-RR, Construct, and Sample for their
work and parallel depth. More concretely:

Lemma 5. (i) By storing T0, Ti’s, and T ′
i ’s as simple arrays, Fast-RR(X, s)

runs in expected O(s + s log |X|
s) work and O(log |X|) parallel depth.

(ii) Construct(A,n, s) runs in O(s+s log n
s) work and O(log n) parallel depth.

(iii) Sample(R, q, t) runs in O(q) work and O(log n) parallel depth, where n is
the length of X on which R was built.

For detailed analysis, see the full paper [18]. In brief, generating the initial length-
s permutation in parallel takes O(s) work and O(log s) depth [14]. The dominant
cost stems from running s parallel instances of Fast-Single-RR, which takes

Algorithm 4. Construction of binned-sample data structure and query
// Below, use the convention that max ∅ = −∞

1 Construct(A, n, s):
Input: A is a sequence of reserved samples, n is the length of the underlying stream

segment X, and s is the target sample size used to generate A.

Output: an instance of binned-sample structure R(A)

2 Use semisorting to arrange A into G1, G2, . . . , Gs by slot number

3 for i = 1, . . . , s in parallel do

4 Create bins Ri[0], . . . , Ri[β], β = log2(n/s�)�
5 foreach (j, _) ∈ Gi do

6 Write j into Ri[k], where 2k−1 < j/s� ≤ 2k

7 Let φ(Ri[0]) = maxRi[0]

// prefix max
8 for k = 1, . . . , β do

9 φ(Ri[k]) ← max(φ(Ri[k − 1]),maxRi[k])

10 return R
11 Sample(R, q, w):

Input: R is a binned-sample structure, q is the number of samples desired, w tells the

algorithm to draw sample from X[−w :].

Output: a q-permutation of X[−w :]

12 for i = 1, . . . , q in parallel do

13 Let k be such that 2k−1 < w/s� ≤ 2k

14 γ ← max{j ∈ Ri[k] | j ≤ w} // The oldest that is at least as young as w

15 ri ← max(γ, φ(Ri[k − 1]))

16 return (r1, r2, . . . , rq)

Parallel Streaming Random Sampling 461

O(1+log(|X|/s)) work and depth each by Lemma 2. Furthermore, aside from the
cost of semisorting, the cost of Construct follows from Lemma 4(i)–(ii) and
standard analysis. Finally, the cost of Sample follows from Lemma 4, together
with the fact that each query looks at q slots and only 2 bins per slot.

3.5 Handling Minibatch Arrival

This section describes how to incorporate a minibatch into our data structure to
maintain a sliding window of size W . Assume that the minibatch size is ni ≤ W .
If not, we can only consider its W most recent elements. When a minibatch
arrives, retired sampled elements must be removed and the remaining sampled
elements are “downsampled” to maintain the correct distribution.

Remember that the number of selected elements is O(s + s log(W/s)) in
expectation, so we have enough budget in the work bound to make a pass over
them to filter out retired elements. Instead of revisiting every element of the
window, we apply the process below to the selected elements to maintain the
correct distribution. Notice that an element at age i was sampled into slot �

with probability 1
sp

(s)
−i . A new minibatch will cause this element to shift to age j,

j > i, in the window. At age j, an element is sampled into slot � with probability
1
sp

(s)
−j . To correct for this, we flip a coin that turns up heads with probability

p
(s)
−j/p

(s)
−i ≤ 1 and retain this sample only if the coin comes up heads.

Therefore, insert(Bi), |Bi| = ni handles a minibatch arrival as follows:

Step i: Discard and downsample elements in R; the index shifts by ni.
Step ii: Apply Fast-RR on Bi, truncated to the last W elements if ni > W .
Step iii: Run Construct on the result of Fast-RR with a modification where

it appends to an existing R as opposed to creating a new structure.

Overall, this leads to the following cost bound for insert:

Lemma 6. insert takes O(s + s log(W/s)) work and O(log W) depth.

4 Parallel Sampling from an Infinite Window

This section addresses sampling without replacement from an infinite window,
consisting of all elements seen so far in the stream. This is formulated as the
SWOR-Infwin task: For each time i = 1, . . . , t, maintain a random sample
of size min{s,Ni} chosen uniformly without replacement from Si. We present
a work-efficient algorithm for SWOR-Infwin and further show it to be work
optimal, up to constant factors.

For p, q ∈ [r], let H(p, q, r) be the hypergeometric random variable, which can
take an integer value from 0 to min{p, q}. Suppose there are q balls of type 1
and (r − q) balls of type 2 in an urn. Then, H(p, q, r) is the number of balls of
type 1 drawn in p trials, where in each trial, a ball is drawn at random from the
urn without replacement. It is known that E[H(p, q, r)] = pq

r .

462 K. Tangwongsan and S. Tirthapura

Work Lower Bound. We first show a lower bound on the work of any algorithm
for SWOR-Infwin, sequential or parallel, by considering the expected change
in the sample output after a new minibatch is received.

Lemma 7. Any algorithm that solves SWOR-Infwin must have expected work
at least Ω

(
t +

∑t
i=1 min{ni,

sni

Ni
}
)

over minibatches B1 . . . Bt.

Proof. First consider the number of elements that are sampled from each mini-
batch. If Ni ≤ s, then the entire minibatch is sampled, resulting in a work
of Ω(ni). Otherwise, the number of elements sampled from the new minibatch
Bi is H(s, ni, Ni). The expectation is E[H(s, ni, Ni)] = s·ni

Ni
, which is a lower

bound on the expected cost of processing the minibatch. Next, note that any
algorithm must pay Ω(1) for examining minibatch Bi, since in our model the
size of the minibatch is not known in advance. If an algorithm does not examine
a minibatch, then the size of the minibatch may be as large as Ω(Ni), caus-
ing Ω(1) elements to be sampled from it. The algorithm needs to pay at least
Ω(t) over t minibatches. Hence, the total expected work of any algorithm for
SWOR-Infwin after t steps must be Ω

(
t +

∑t
i=1 min{ni,

sni

Ni
}
)
. 	

Parallel Algorithm for SWOR-Infwin. Our solution is presented in Algorithm5.
The main idea is as follows: When a minibatch Bi arrives, generate a random
variable κ according to the hypergeometric distribution to determine how many
of the s samples will be chosen from Bi, as opposed to prior minibatches. Then,
choose a random sample of size κ without replacement from Bi and update
the sample S accordingly. We leverage Sanders et al. [16]’s recent algorithm for
parallel sampling without replacement (from static data), restated below in the
work-depth model:

Observation 2 ([16]). There is a parallel algorithm to draw s elements at
random without replacement from N elements using O(s) work and O(log s)
depth.

Our algorithm uses static parallel sampling without replacement in two
places: once to sample new elements from the new minibatch, and then again
to update the current sample. In more detail, when a minibatch arrives, the
algorithm (i) chooses κ, the number of elements to be sampled from Bi, in
O(1) time; (ii) samples κ elements without replacement from Bi in parallel; and
(iii) replaces κ randomly chosen elements in S with the new samples using a
two-step process, by first choosing the locations in S to be replaced, followed by
writing the new samples to the chosen locations. Details appear in Algorithm 5.

Theorem 3. Algorithm 5 is a work-efficient algorithm for SWOR-Infwin.
The total work to process t minibatches B1, . . . , Bt is O

(
t +

∑t
i=1 min{ni,

sni

Ni
}
)

and the parallel depth of the algorithm for processing a single minibatch is
O(log s). This work is optimal up to constant factors, given the lower bound
from Lemma 7.

Parallel Streaming Random Sampling 463

Algorithm 5. Parallel Algorithm for SWOR-Infwin.
1 Initialization: Sample S ← ∅
2 if minibatch Bi is received then

// Recall ni = |Bi| and Ni =
∑i

j=1 ni

3 if Ni ≤ s then Copy Bi into S in parallel
4 else
5 Let κ be a random number generated by H(s, ni, Ni)
6 Si ← κ elements sampled without replacement from Bi (Obs. 2)
7 Ri ← κ elements sampled without replacement from {1, . . . , s} (Obs. 2)
8 for j = 1 to κ do Replace S[Ri[j]] ← Si[j]

Proof. When a new minibatch Bi arrives, for the case Ni ≤ s, copying ni ele-
ments from Bi to S can be done in parallel in O(ni) work and O(1) depth, by
organizing array S so that the empty locations in the array are all contiguous,
so that the destination for writing an element can be computed in O(1) time.

For the case Ni > s, random variable κ can be generated in O(1) work. The
next two steps of sampling κ elements from Bi and from {1, . . . , n} can each be
done using O(κ) work and O(log κ) depth, using Observation 2. The final for
loop of copying data can be performed in O(κ) work and O(1) depth. Hence,
the expected total work for processing Bi is 1 + min{ni,

sni

Ni
}, and the depth is

O(log κ). Summing over all t minibatches, we get our result. Since κ ≤ s, the
parallel depth is O(log s). 	

5 Parallel Sampling with Replacement

We now consider parallel algorithms for SWR-Infwin, sampling with replace-
ment. A simple solution, which uses O(s) work per minibatch and has O(1)
parallel depth, is to run s independent parallel copies of a single element stream
sampler, which is clearly correct. When minibatch Bi is received, each single
element sampler decides whether or not to replace its sample, with probability
ni/Ni, which can be done in O(1) time. We show that it is possible to do bet-
ter than this by noting that when ni/Ni is small, a single element sampler is
unlikely to change its sample, and hence the operation of all the samplers can be
efficiently simulated using less work. The main results are below (proof omitted):

Theorem 4. There is a parallel algorithm for SWR-Infwin such that for a
target sample size s, the total work to process minibatches B1, . . . , Bt is O(t +∑t

i=1 sni/Ni), and the depth for processing any one minibatch Bi is O(log s).
This work is optimal, up to constant factors.

This work bound is optimal, since the expected number of elements in the
sample that change due to a new minibatch is sni/Ni.

464 K. Tangwongsan and S. Tirthapura

6 Conclusion

We presented low-depth, work-efficient parallel algorithms for the fundamen-
tal data streaming problem of streaming sampling. Both the sliding-window
and infinite-window cases were addressed. Interesting directions for future work
include the parallelization of other types of streaming sampling problems, such
as weighted sampling and stratified sampling.

References

1. Babcock, B., Datar, M., Motwani, R.: Sampling from a moving window over
streaming data. In: Proceedings of the Annual ACM-SIAM Symposium on Dis-
crete algorithms (SODA), pp. 633–634 (2002)

2. Blelloch, G.E., Maggs, B.M.: Chapter 10: parallel algorithms. In: The Computer
Science and Engineering Handbook, 2nd edn. Chapman and Hall/CRC (2004)

3. Braverman, V., Ostrovsky, R., Zaniolo, C.: Optimal sampling from sliding windows.
In: Proceedings of the ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems (PODS), pp. 147–156 (2009)

4. Brown, P.G., Haas, P.J.: Techniques for warehousing of sample data. In: Proceed-
ings of the International Conference on Data Engineering (ICDE), p. 6 (2006)

5. Chung, Y., Tirthapura, S., Woodruff, D.P.: A simple message-optimal algorithm
for random sampling from a distributed stream. IEEE Trans. Knowl. Data Eng.
(TKDE) 28(6), 1356–1368 (2016)

6. Cormode, G.: The continuous distributed monitoring model. SIGMOD Rec. 42(1),
5–14 (2013)

7. Cormode, G., Muthukrishnan, S., Yi, K., Zhang, Q.: Continuous sampling from
distributed streams. J. ACM 59(2), 10:1–10:25 (2012)

8. Das, S., Antony, S., Agrawal, D., El Abbadi, A.: Thread cooperation in multi-
core architectures for frequency counting over multiple data streams. Proc. VLDB
Endow. (PVLDB) 2(1), 217–228 (2009)

9. Efraimidis, P.S., Spirakis, P.G.: Weighted random sampling with a reservoir. Inf.
Process. Lett. 97(5), 181–185 (2006)

10. Gemulla, R., Lehner, W.: Sampling time-based sliding windows in bounded space.
In: Proceedings of the International Conference on Management of Data (SIG-
MOD), pp. 379–392 (2008)

11. Gibbons, P., Tirthapura, S.: Estimating simple functions on the union of data
streams. In: Proceedings of the ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pp. 281–291 (2001)

12. Gu, Y., Shun, J., Sun, Y., Blelloch, G.E.: A top-down parallel semisort. In: Pro-
ceedings of the ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pp. 24–34 (2015)

13. Johnson, T., Shkapenyuk, V.: Data stream warehousing in tidalrace. In: Proceed-
ingsof the Conference on Innovative Data Systems Research (CIDR) (2015)

14. Reif, J.H.: An optimal parallel algorithm for integer sorting. In: Proceedings of
the IEEE Annual Symposium on Foundations of Computer Science (FOCS), pp.
496–504 (1985)

15. Ross, S.M.: Introduction to Probability Models, 10th edn. Academic Press,
Cambridge (2009)

Parallel Streaming Random Sampling 465

16. Sanders, P., Lamm, S., Hübschle-Schneider, L., Schrade, E., Dachsbacher, C.:
Efficient parallel random sampling - vectorized, cache-efficient, and online. ACM
Trans. Math. Softw. 44(3), 29:1–29:14 (2018)

17. Tangwongsan, K., Pavan, A., Tirthapura, S.: Parallel triangle counting in mas-
sive streaming graphs. In: Proceedings of the ACM International Conference on
Information and Knowledge Management (CIKM), pp. 781–786 (2013)

18. Tangwongsan, K., Tirthapura, S.: Parallel streaming random sampling.
arXiv:1906.04120 [cs.DS], https://arxiv.org/abs/1906.04120, June 2019

19. Tangwongsan, K., Tirthapura, S., Wu, K.: Parallel streaming frequency-based
aggregates. In: Proceedings of the ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pp. 236–245 (2014)

20. Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math. Softw. 11(1),
37–57 (1985)

21. Xu, B., Tirthapura, S., Busch, C.: Sketching asynchronous data streams over sliding
windows. Distrib. Comput. 20(5), 359–374 (2008)

22. Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., Stoica, I.: Discretized streams:
fault-tolerant streaming computation at scale. In: Proceedings of the ACM Sym-
posium on Operating Systems Principles (SOSP), pp. 423–438 (2013)

http://arxiv.org/abs/1906.04120
https://arxiv.org/abs/1906.04120

Parallel Numerical Methods and
Applications

Cholesky and Gram-Schmidt
Orthogonalization for Tall-and-Skinny QR
Factorizations on Graphics Processors

Andrés E. Tomás1,2(B) and Enrique S. Quintana-Ort́ı3

1 Dept. d’Enginyeria i Ciència dels Computadors, Universitat Jaume I,
12.071 Castelló de la Plana, Spain

tomasan@uji.es
2 Dept. de Sistemes Informàtics i Computació, Universitat Politècnica de València,

46.022 València, Spain
antodo@upv.es

3 Dept. d’Informàtica de Sistemes i Computadors,
Universitat Politècnica de València, 46.022 València, Spain

quintana@disca.upv.es

Abstract. We present a method for the QR factorization of large
tall-and-skinny matrices that combines block Gram-Schmidt and the
Cholesky decomposition to factorize the input matrix column panels,
overcoming the sequential nature of this operation. This method uses
re-orthogonalization to obtain a satisfactory level of orthogonality both
in the Gram-Schmidt process and the Cholesky QR.

Our approach has the additional benefit of enabling the introduction
of a static look-ahead technique for computing the Cholesky decomposi-
tion on the CPU while the remaining operations (all Level-3 BLAS) are
performed on the GPU.

In contrast with other specific factorizations for tall-skinny matrices,
the novel method has the key advantage of not requiring any custom
GPU kernels. This simplifies the implementation and favours portability
to future GPU architectures.

Our experiments show that, for tall-skinny matrices, the new app-
roach outperforms the code in MAGMA by a large margin, while it is
very competitive for square matrices when the memory transfers and
CPU computations are the bottleneck of Householder QR.

Keywords: QR factorization · Tall-and-skinny matrices ·
Graphics processing unit · Gram-Schmidt · Cholesky factorization ·
Look-ahead · High-performance

1 Introduction

There exist several relevant applications that require the computation of an
orthonormal basis for a relatively small set of very long vectors. This problem is

c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 469–480, 2019.
https://doi.org/10.1007/978-3-030-29400-7_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_33&domain=pdf
https://doi.org/10.1007/978-3-030-29400-7_33

470 A. E. Tomás and E. S. Quintana-Ort́ı

often tackled via a “tall-and-skinny” QR factorization (TSRQ), named for the
form of the matrix containing the vectors. This type of decomposition can be
leveraged, among others, for orthogonalization in Krylov subspace methods [11];
the analysis of big data applications characterized with a few descriptors only
(e.g., large datasets with a few variables produced by long data acquisitions of
several sensors) [2,9]; and as a preprocessing step when computing the singular
value decomposition (SVD) of a matrix [8] with many more row than columns.

It is well known that the blocked QR factorization based on Householder
reflectors [8], hereafter QRF-H, is not efficient for the factorization of tall-and-
skinny (TS) matrices on modern parallel processors; see, e.g., [4]. The reason is
that, for matrices that have few columns but a large number of rows, the fraction
of work of QRF-H that can be cast in terms of kernels from the Level-3 of BLAS
(basic linear algebra subprograms [5]), as part of the highly parallel and efficient
trailing update, cannot compensate the high cost of the panel factorization,
which is performed via the much slower Level-1 and Level-2 BLAS.

TSQR-H [4] is an algorithm specifically designed for the factorization of TS
matrices. In this approach, the matrix is split into small “square-like” blocks,
and a QRF-H is computed for each block. These small QRF-H are then merged
by pairs, using a structure-aware version of QRF-H. This procedure can fol-
low a linear scheme [9] or, in parallel machines, a recursion tree [4], yielding a
communication-reduction scheme.

The Cholesky QR factorization [12] (QRF-C) is an alternative that reduces
the amount of communications but, unfortunately, often suffers from high
orthogonality loss. The use of mixed precision (in particular, the introduction of
extended precision) in [15] can improve the accuracy of QRF-C, but its imple-
mentation cannot benefit from standard BLAS libraries. A simpler solution is
to perform a second step of QRF-C, to improve the orthogonality [6,14]. This
result connects neatly with the classical “twice is enough” rule for Gram-Schmidt
re-orthogonalization [7]. However, as the number of vectors grows, the cost of
QRF-C increases cubically. In addition, for very large problems the condition-
ing of the Gram matrix can become too large and a second “pass” may not be
sufficient.

In this paper we follow the approach in [16] to combine QRF-C and block
Gram-Schmidt (BGS) [10], but propose to perform two steps of QRF-C and
Gram-Schmidt instead of mixed (extended) precision. Furthermore, from the
implementation side, when the target platform is equipped with a graphics pro-
cessing unit (GPU), we propose to introduce a static look-ahead strategy [13]
to overlap computations on CPU, GPU, and CPU-GPU data transfers. At this
point we note that the formulation of a hybrid look-ahead variant of the algo-
rithm demonstrates that it is also possible to develop either a static implementa-
tion or a runtime-based version, for multicore architectures, where the cost of the
panel factorization can be practically amortized; see, e.g., [3] and the references
therein.

The rest of the paper is organized as follows. Section 2 presents the details
of our “two-pass” algorithm for the QR factorization of TS matrices. Next,

Cholesky and GS Orthogonalization for TSQR Factorization on GPUs 471

Sects. 3 and 4 respectively provide numerical and performance evaluations of
the new method in comparison with a state-of-the-art hybrid library for CPU-
GPU platforms. Finally, Sect. 5 summarizes the contributions of this work and
suggests future lines of research.

2 The QRF-CBGS Algorithm

The QRF-C and BGS algorithms can be combined in several manners, depend-
ing on the specific order of the operations. Although these variants are mathe-
matically equivalent, they have different numerical properties. In our work, we
follow [12] to interlace the steps of QRF-C and BGS, in order to reduce the
problems due to crossover orthogonality loss.

In particular, consider a TS matrix A ∈ IRm×n, with m � n, and the compact
QRF given by

A = QR, (1)

where Q ∈ IRm×n has orthonormal columns and R ∈ IRn×n is upper triangular.
Furthermore, consider the partitionings

A = [A1, A2, . . . , Ak] , R =

⎡
⎢⎢⎢⎣

R1,1 R1,2 . . . R1,k

0 R2,2 . . . R2,k

...
...

. . .
...

0 0 . . . Rk,k

⎤
⎥⎥⎥⎦ , (2)

where, for simplicity, we assume that n is an integer multiple of the algorithmic
block size b, so that all block columns Aj consist of b = n/k columns each, and
all blocks Ri,j contain b × b elements each.

Our approach QRF-CBGS, combining the Cholesky QR factorization with
the block Gram-Schmidt method, is then described in Algorithm1.

Algorithm 1. QRF-C with Block Gram-Schmidt (QRF-CBGS)

Input: A
Output: A, R

1 for j = 1, 2, . . . , k
2 B := AT

j Aj

3 Compute the Cholesky factorization B = UTU
4 Aj := AjU

−1

5 Rj,j := U
6 W := AT

j [Aj+1, Aj+2, . . . , Ak]
7 [Aj+1, Aj+2, . . . , Ak] := [Aj+1, Aj+2, . . . , Ak] − AjW
8 [Rj,j+1, Rj,j+2, . . . , Rj,k] := W
9 end

472 A. E. Tomás and E. S. Quintana-Ort́ı

In this formulation of the QRF-CBGS algorithm, upon completion, the input
matrix A is replaced by the output matrix Q, which contains the first n orthonor-
mal vectors of the factorization. Furthermore, in this algorithm, the block size
b is a key parameter that should be set to a large value, with the specific value
depending on the target platform, among other factors, to attain high perfor-
mance. However, a block size that is “too large” can result in a considerable
condition number of the Gram matrix AT

j Aj , which could cause numerical issues
for the Cholesky decomposition.

All the operations in QRF-CBGS, except for one in line 2, can be realized
using direct calls to the efficient Level-3 BLAS, such as the symmetric rank-k
update (xSYRK), the triangular solve with multiple right-hand sides (xTRSM), the
triangular matrix-matrix multiplication (xTRMM), and the general matrix-matrix
multiplication (xGEMM). The Cholesky factorization in line 2 can be realized via
a call to the LAPACK routine for the corresponding decomposition (xPOTRF),
which is then internally decomposed into Level-3 BLAS routines. However, the
Cholesky factorization contributes a minor factor to the total cost, as B ∈ IRb×b

and, in practice, b � n.
The Cholesky factorization can fail if the condition number of the matrix

AT
j Aj is too large. Fortunately, this failure is easy to detect thanks to the error

value returned by xPOTRF or, more safely, it can be explicitly (and cheaply)
identified by using a condition number estimator on AT

j Aj [8]. This breakdown
is not critical for QRF-CBGS as none of the original data has been modified, and
the algorithm can continue by just switching to QRF-H for the ill-conditioned
block Aj .

The QRF-CBGS algorithm is a row variant of BGS where the vectors are
updated several times during the orthogonalization process, similarly to what
is done in the modified Gram-Schmidt method for single vectors. However, the
orthogonality level attained by QRF-CBGS, measured as

‖QTQ − I‖, (3)

(where I denotes the identity matrix,) will often fail short of the maximum
attainable accuracy given the floating-point representation. This effect is due to
both the in-block QRF-C and the Gram-Schmidt among blocks.

The classical solution to the lack of orthogonality in Gram-Schmidt is to
re-apply the procedure yielding a re-orthogonalization. Naturally, this technique
is also a solution for the possible lack of orthogonality in the QRF-C proce-
dure. Therefore, it seems logical to perform twice QRF-CBGS, applying re-
orthogonalization to both and QRF-C and BGS, albeit in an interlaced manner.
Algorithm 2 (QRF-CBGS2) is a simple solution that applies two steps of QRF-
CBGS. Note that an efficient implementation should perform the update of R
in line 3 as the algorithm advances without storing the full matrices R1 and R2.

Cholesky and GS Orthogonalization for TSQR Factorization on GPUs 473

Algorithm 2. QRF-CBGS2

Input: A
Output: A, R

1 QRF-CBGS(A, R1)
2 QRF-CBGS(A, R2)
3 R := R2 · R1

An additional advantage of the row variant of BGS is that this algorithm
can overlap the orthogonalization inside a block with the orthogonalization of
the subsequent blocks. This look-ahead technique can be introduced into the
algorithm by a careful reordering of the operations. Concretely, Algorithm3 is
equivalent to QRF-CBGS but, in the new version, the Cholesky decomposition
in line 8 can be performed simultaneously with the trailing update in lines 9–13.

Algorithm 3. QRF-CBGS2 with look-ahead

Input: A
Output: A, R

1 for j = 1, 2, . . . , k
2 if j > 1
3 Rj−1,j := AT

j−1Aj

4 Aj := Aj − Aj−1Rj−1,j

6 end
7 B := AT

j Aj

8 Compute the Cholesky decomposition UTU = B
9 if j > 1

10 W := AT
j−1 [Aj+1, Aj+2, . . . , Ak]

11 [Aj+1, Aj+2, . . . , Ak] := [Aj+1, Aj+2, . . . , Ak] − Aj−1W
12 [Rj−1,j+1, Rj−1,j+2, . . . , Rj−1,k] := W
13 end
14 Aj := AjU

−1

15 Rj,j := U
16 end

The introduction of (a static) look-ahead is of paramount importance to
obtain an efficient hybrid CPU-GPU implementation. Concretely, in this version
the Cholesky factorization can be computed on the CPU while the GPU proceeds
with the trailing updates with respect to the factorization of previous panel(s).
Furthermore, this technique also allows that the necessary memory transfers
between CPU and GPU can be overlapped with computations in the GPU. The
look-ahead strategy also reduces the impact of any Cholesky breakdown, as the
QRF-H of the offending block can be performed while updating the rest of the
matrix.

The implementation of both variants of algorithm QRF-CBGS on a GPU
from NVIDIA is direct, as all operations are available in the cuBLAS GPU-
specific implementation of the BLAS. Therefore, compared with other algo-
rithms, an appealing property of QRF-CBGS2 is that no custom GPU kernels

474 A. E. Tomás and E. S. Quintana-Ort́ı

are required, as all major building blocks are available as part of cuBLAS. (Note
that xPOTRF is computed on the CPU.) This greatly simplifies the implemen-
tation as well as favours high performance on present as well as future GPU
architectures.

Table 1. Numerical comparison of QRF-H and QRF-CBGS2

ρ QRF-H QRF-CBGS2

‖QTQ − I‖F
‖A − QR‖F

‖A‖F
‖QTQ − I‖F

‖A − QR‖F

‖A‖F

10−1 6.41 × 10−15 5.79 × 10−16 5.13 × 10−15 4.73 × 10−16

10−2 6.56 × 10−15 5.80 × 10−16 5.21 × 10−15 4.74 × 10−16

10−3 6.62 × 10−15 5.80 × 10−16 5.16 × 10−15 4.75 × 10−16

10−4 6.28 × 10−15 5.79 × 10−16 5.06 × 10−15 4.74 × 10−16

10−5 6.36 × 10−15 5.77 × 10−16 5.18 × 10−15 4.76 × 10−16

10−6 6.51 × 10−15 5.79 × 10−16 5.18 × 10−15 4.78 × 10−16

10−7 6.39 × 10−15 5.79 × 10−16 5.35 × 10−15 4.77 × 10−16

10−8 6.37 × 10−15 5.78 × 10−16 5.41 × 10−15 4.76 × 10−16

10−9 6.48 × 10−15 5.79 × 10−16 5.21 × 10−15 4.78 × 10−16

10−10 6.34 × 10−15 5.79 × 10−16 5.30 × 10−15 4.77 × 10−16

10−11 6.29 × 10−15 5.80 × 10−16 5.26 × 10−15 4.78 × 10−16

10−12 6.59 × 10−15 5.81 × 10−16 5.13 × 10−15 4.76 × 10−16

10−13 6.69 × 10−15 5.80 × 10−16 5.34 × 10−15 4.77 × 10−16

10−14 6.40 × 10−15 5.78 × 10−16 5.01 × 10−15 4.77 × 10−16

10−15 6.55 × 10−15 5.79 × 10−16 5.03 × 10−15 4.76 × 10−16

3 Numerical Tests

In this section, we asses the numerical behaviour of the new algorithm QRF-
CBGS2 by running some numerical experiments with TS matrices specifically
designed to produce a breakdown of the Cholesky decomposition. This stress test
is based on [1] and should allow a comparison of the reliability of QRF-CBGS2
with other alternative methods, as those in [1], whose implementation does not
seem to be publicly available.

The test matrices are derived from the QR factorization of a m × n =
1000 × 200 matrix A with entries following a uniform random distribution in
the interval [0, 1). We then set R100,100 = ρ in the upper triangular factor R,
and multiply back Q and R to form Ã. The parameter ρ controls the condition
number of the assembled matrix, which is given by κ(Ã) ≈ 1/ρ so that, varying
ρ ∈ [10−1, 10−15], we obtain matrices with a condition number of up to 1015.

Table 1 compares the orthogonality loss

‖QTQ − I‖F (4)

Cholesky and GS Orthogonalization for TSQR Factorization on GPUs 475

and relative residual,
‖A − QR‖F

‖A‖F (5)

of the QR factorizations computed by QRF-H and QRF-CBGS2 for matrices
with different values of ρ. All the tests were performed in a Intel Xeon E5-2630 v3
processor using ieee double-precision arithmetic. The QRF-H implementation
corresponds to that in Intel MKL 2017 and the block size of QRF-CBGS2 was
set to b = 16.

Table 1 shows that QRF-CBGS2 offers orthogonality and relative residuals
quite similar to those of QRF-H. This excellent numerical behaviour is partially
due to the re-orthogonalization approach of QRF-CBGS2 and the Cholesky
breakdown detection mechanism. Specifically, in this experiment the fail-safe
detection on the Cholesky factorization only triggers once for each one of the
matrices with ρ ≤ 10−8. This means that, among the k(= �n/b	 = �200/16) =
13 Cholesky decompositions that have to be computed for each matrix, only one
had to be recomputed using QRF-H. We expect that, for real applications, the
probability of a Cholesky breakdown will be even smaller.

4 Performance Evaluation

Hardware Setup. In this section we compare the performance of QRF-CBGS2
and QRF-H on two distinct platforms equipped with two representative GPUs:
a high end NVIDIA Tesla P100 (Pascal) and a cost-effective NVIDIA GeForce
Titan X (Pascal). The P100 is paired with two Intel Xeon E5-2620 v4 processors
(8 + 8 cores) while the Titan X is paired with an Intel Core i7-3770K CPU (4
cores).

Software Setup. All codes are compiled with version 8.0 of the CUDA devel-
opment environment. The optimized implementations of BLAS and LAPACK
are those provided by NVIDIA cuBLAS 8.0 for the GPU and Intel MKL 2017
for the CPU. Hyper-threading is disabled in the Intel architectures as suggested
by the MKL library documentation. To reduce the variance of execution times,
the OpenMP and MKL number of threads is set to the number of physical cores
and each thread is mapped statically to one core. The GNU C compiler is the
default version provided by the Linux operating system installed on those com-
puters. Nevertheless, the optimizations made by these compilers are not relevant
for our study, because all the performance-sensitive code is implemented inside
the cuBLAS and MKL libraries. To avoid noise caused by other processes activ-
ity on the systems, the execution times reported are the median values from 10
executions. Those times are similar with the exception of the first execution in
a batch, which is significantly larger due to the dynamic loading of libraries.

Input Data. The input matrices are created following the same procedure
described in the numerical tests in Sect. 3, with random elements in range [0, 1),
and setting ρ = 1 so that the condition number is kept small. For brevity,
we report results in (ieee) double precision only for the P100; the comparison

476 A. E. Tomás and E. S. Quintana-Ort́ı

using single precision on this platform offers similar conclusions. Conversely, as
the Titan X offers very low performance in double precision, we only employ
single precision on that platform.

 1

 2

 3

 4

 5

 6

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Q
R

F
-H

 ti
m

e
/ Q

R
F

-C
B

G
S

2
tim

e

Number of columns

Number of rows
10000
25000
50000
75000

100000
125000

Fig. 1. Performance comparison of QRF-CBGS2 with look-ahead over QRF-H for TS
matrices on an two Intel Xeon E5-2620 v4 CPUs and an NVIDIA P100 GPU (double
precision).

QRF Implementations. The baseline GPU implementation QRF-H is pro-
vided by xGEQRF (QR factorization via Householder reflectors) and xORGQR
(assembly of the m × n orthonormal matrix) available in the MAGMA library
(version 2.2.0). Among the three variants of xGEQRF in MAGMA, we choose
the first one as this is the only one with a corresponding implementation of
xORGQR. To allow a fair comparison between QRF-H and QRF-CBGS2, as QRF-
CBGS2 always produces the orthonormal matrix Q, the execution times of QRF-
H reported next correspond to the combination of the runtimes for xGEQRF and
xORGQR from MAGMA. We note that the implementation of xGEQRF in MAGMA
employs look-ahead while xORGQR re-utilizes some intermediate factors computed
in xGEQRF (in particular, the triangular factors for the blocked Householder reflec-
tors) and it is much faster than xGEQRF. The block size in QRF-CBGS2 was set
to 1,024 which we found optimal for both platforms.

Evaluation. Figures 1 and 2 compare the performance of QRF-H and QRF-
CBGS2 with look-ahead on the P100 and the Titan X, respectively. The y-axis

Cholesky and GS Orthogonalization for TSQR Factorization on GPUs 477

 1

 2

 3

 4

 5

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Q
R

F
-H

 ti
m

e
/ Q

R
F

-C
B

G
S

2
tim

e

Number of columns

Number of rows
10000
25000
50000
75000

100000
125000

Fig. 2. Performance comparison of QRF-CBGS2 with look-ahead over QRF-H for TS
matrices on an Intel Core i7-3770K and an NVIDIA Titan X GPU (single precision).

shows the ratio between the execution time of QRF-H divided by that of QRF-
CBGS2. Each line corresponds to a group of matrices with the same number of
rows n while the number of columns m is fixed as specified in the x-axis of the
plot. The plots show a small performance gap in double precision for matrices
with more than 3000 columns, and a larger gap in single precision for more
than 7000 columns. Both cases are due to an increase of the block size internally
employed by MAGMA (from 64 to 128 in double precision and from 128 to 256 in
single precision). As expected, the performance of QRF-CBGS2 is much higher
for TS matrices (up to 6 times) but this advantage diminishes as the difference
between the number of columns and rows narrows. However, the performance
drop is considerably less sharp in the Titan X platform, since (in part) the
relative slow CPU on that machine drags the QRF-H performance down while
QRF-CBGS2 benefits from the reduced communications. Quite unexpectedly,
this effect allows QRF-CBGS2 to outperform QRF-H on the Titan X even for
square matrices, as shown in Fig. 3.

478 A. E. Tomás and E. S. Quintana-Ort́ı

 0

 5

 10

 15

 20

 25

 30

 10000 15000 20000 25000 30000 35000

T
im

e
(s

ec
.)

Matrix dimension

QRF-H
QRF-CBGS2

Fig. 3. Performance comparison of QRF-CBGS2 with look-ahead over QRF-H for
square matrices on an Intel Core i7-3770K and an NVIDIA Titan X GPU (single
precision).

5 Conclusions

The new algorithm presented in this work, QRF-CBGS2, is a variant of block
Gram-Schmidt that uses the Cholesky decomposition to orthogonalize the
columns inside a block. To obtain a satisfactory level of orthogonality, our pro-
posal leverages re-orthogonalization and avoids Cholesky breakdowns by lever-
aging the standard QR factorization via Householder reflectors (QRF-H) in case
of ill-conditioned blocks.

The QRF-CBGS2 algorithm computes the triangular factor by rows, allowing
for an effective look-ahead technique that computes the Cholesky decomposition
of the “current” block while Gram-Schmidt is applied to re-orthogonalize the
remaining columns of the matrix with respect to “previous” blocks. Furthermore,
this look-ahead alleviates the extra cost in case of a Cholesky breakdown.

The variant of QRF-CBGS2 with look-ahead can be efficiently implemented
on a hybrid CPU-GPU system, with the CPU in charge of the Cholesky decom-
position while the rest of operations (all BLAS level-3) are performed on the
GPU. One advantage of this approach is the reduced volume of communications
between CPU and GPU compared with the blocked Householder QR implemen-
tations available in MAGMA. An additional advantage of QRF-CBGS2 is that
its implementation is much simpler than other methods specifically designed for

Cholesky and GS Orthogonalization for TSQR Factorization on GPUs 479

tall-skinny matrices as no custom GPU kernels are required. This also favours
portability to new GPU architectures or even different types of accelerators.

The performance of the new approach is very competitive for tall-skinny
matrices, and even outperforms MAGMA for square matrices when the memory
transfers and CPU computations are the bottleneck of the Householder-based
QR.

The stability of QRF-CBGS2 has been analyzed with matrices that explic-
itly enforce Cholesky breakdowns. While this experiment shows that QRF-
CBGS2 offers a level of orthogonality and relative error similar to those of the
numerically-stable QRF-H, a numerical analysis may help to fully understand
the behaviour of the algorithm and devise future strategies for improving the
accuracy and reduce the re-orthogonalization cost.

Acknowledgment. This research was supported by the project TIN2017-82972-R
from the MINECO (Spain), and the EU H2020 project 732631 “OPRECOMP. Open
Transprecision Computing”.

References

1. Ballard, G., Demmel, J., Grigori, L., Jacquelin, M., Knight, N., Nguyen, H.: Recon-
structing Householder vectors from tall-skinny QR. J. Parallel Distrib. Comput.
85, 3–31 (2015). https://doi.org/10.1016/j.jpdc.2015.06.003. iPDPS 2014 Selected
Papers on Numerical and Combinatorial Algorithms

2. Benson, A.R., Gleich, D.F., Demmel, J.: Direct QR factorizations for tall-and-
skinny matrices in MapReduce architectures. In: 2013 IEEE International Confer-
ence on Big Data, pp. 264–272, October 2013. https://doi.org/10.1109/BigData.
2013.6691583

3. Catalán, S., Herrero, J.R., Quintana-Ort́ı, E.S., Rodŕıguez-Sánchez, R., Van De
Geijn, R.: A case for malleable thread-level linear algebra libraries: the LU fac-
torization with partial pivoting. IEEE Access 7, 17617–17633 (2019). https://doi.
org/10.1109/ACCESS.2019.2895541

4. Demmel, J., Grigori, L., Hoemmen, M., Langou, J.: Communication-optimal paral-
lel and sequential QR and LU factorizations. SIAM J. Sci. Comput. 34(1), 206–239
(2012). https://doi.org/10.1137/080731992

5. Dongarra, J.J., Du Croz, J., Hammarling, S., Duff, I.: A set of level 3 basic linear
algebra subprograms. ACM Trans. Math. Softw. 16(1), 1–17 (1990)

6. Fukaya, T., Nakatsukasa, Y., Yanagisawa, Y., Yamamoto, Y.: CholeskyQR2: a
simple and communication-avoiding algorithm for computing a tall-skinny QR
factorization on a large-scale parallel system. In: 2014 5th Workshop on Latest
Advances in Scalable Algorithms for Large-Scale Systems, pp. 31–38, November
2014. https://doi.org/10.1109/ScalA.2014.11

7. Giraud, L., Langou, J., Rozložńık, M., Eshof, J.v.d.: Rounding error analysis of
the classical Gram-Schmidt orthogonalization process. Numerische Mathematik
101(1), 87–100 (2005). https://doi.org/10.1007/s00211-005-0615-4

8. Golub, G., Van Loan, C.: Matrix Computations. Johns Hopkins Studies in the
Mathematical Sciences. Johns Hopkins University Press, Baltimore (2013)

9. Gunter, B.C., van de Geijn, R.A.: Parallel out-of-core computation and updating
the QR factorization. ACM Trans. Math. Softw. 31(1), 60–78 (2005). https://doi.
org/10.1145/1055531.1055534

https://doi.org/10.1016/j.jpdc.2015.06.003
https://doi.org/10.1109/BigData.2013.6691583
https://doi.org/10.1109/BigData.2013.6691583
https://doi.org/10.1109/ACCESS.2019.2895541
https://doi.org/10.1109/ACCESS.2019.2895541
https://doi.org/10.1137/080731992
https://doi.org/10.1109/ScalA.2014.11
https://doi.org/10.1007/s00211-005-0615-4
https://doi.org/10.1145/1055531.1055534
https://doi.org/10.1145/1055531.1055534

480 A. E. Tomás and E. S. Quintana-Ort́ı

10. Leon, S.J., Björck, Å., Gander, W.: Gram-Schmidt orthogonalization: 100 years
and more. Numer. Linear Algebr. Appl. 20(3), 492–532 (2013). https://doi.org/
10.1002/nla.1839

11. Saad, Y.: Iterative Methods for Sparse Linear Systems, 3rd edn. Society for Indus-
trial and Applied Mathematics, Philadelphia (2003)

12. Stathopoulos, A., Wu, K.: A block orthogonalization procedure with constant
synchronization requirements. SIAM J. Sci. Comput. 23(6), 2165–2182 (2001).
https://doi.org/10.1137/S1064827500370883

13. Strazdins, P.: A comparison of lookahead and algorithmic blocking techniques for
parallel matrix factorization. Technical report TR-CS-98-07, Department of Com-
puter Science, The Australian National University, Canberra 0200 ACT, Australia
(1998)

14. Yamamoto, Y., Nakatsukasa, Y., Yanagisawa, Y., Fukaya, T.: Roundoff error anal-
ysis of the Cholesky QR2 algorithm. Electron. Trans. Numer. Anal. 44, 306–326
(2015)

15. Yamazaki, I., Tomov, S., Dongarra, J.: Mixed-precision Cholesky QR factorization
and its case studies on multicore CPU with multiple GPUs. SIAM J. Sci. Comput.
37(3), C307–C330 (2015). https://doi.org/10.1137/14M0973773

16. Yamazaki, I., Tomov, S., Kurzak, J., Dongarra, J., Barlow, J.: Mixed-precision
block Gram Schmidt orthogonalization. In: Proceedings of the 6th Workshop on
Latest Advances in Scalable Algorithms for Large-Scale Systems, ScalA 2015, pp.
2:1–2:8. ACM, New York (2015). https://doi.org/10.1145/2832080.2832082

https://doi.org/10.1002/nla.1839
https://doi.org/10.1002/nla.1839
https://doi.org/10.1137/S1064827500370883
https://doi.org/10.1137/14M0973773
https://doi.org/10.1145/2832080.2832082

Automatic Exploration of Reduced
Floating-Point Representations

in Iterative Methods

Yohan Chatelain1,4(B), Eric Petit4,5, Pablo de Oliveira Castro1,4,
Ghislain Lartigue3, and David Defour2,4

1 Université de Versailles Saint-Quentin-en-Yvelines, Li-PaRAD, Versailles, France
yohan.chatelain@uvsq.fr

2 Université de Perpignan Via Domitia, LAMPS, Perpignan, France
3 Normandie Université, CORIA – CNRS, Caen, France

4 Exascale Computing Research, ECR, Paris, France
5 Intel Corporation, Paris, France

Abstract. With the ever-increasing need for computation of scientific
applications, new application domains, and major energy constraints,
the landscape of floating-point computation is changing. New floating-
point representation formats are emerging and there is a need for tools
to simulate their impact in legacy codes. In this paper, we propose an
automatic tool to evaluate the effect of adapting the floating point preci-
sion for each operation over time, which is particularly useful in iterative
schemes. We present a backend to emulate any IEEE-754 floating-point
operation in lower precision. We tested the numerical errors resilience of
our solutions thanks to Monte Carlo Arithmetic and demonstrated the
effectiveness of this methodology on YALES2, a large Combustion-CFD
HPC code, by achieving 28% to 67% reduction in communication volume
by lowering precision.

1 Introduction

Representing infinite real numbers on a finite machine format exposes complex
trade-off: IEEE-754 floating-point (FP) single and double are widely used stan-
dardized formats which have empirically proved their efficiency. Today’s numer-
ical algorithms conveniently rely on double precision FP format. Numerical for-
mats outside IEEE-754 single and double FP are largely unexplored in hardware
and software design for HPC.

With new application domains such as machine learning, FP arithmetic used
in general purpose processor is entering a new burst of evolution as the IEEE-
754 single and double FP are not necessarily the best choices for these problems.
Novel hardware and software solutions are explored: variable precision formats
(e.g. on FPGAs [15]), new vector instructions such (e.g. Intel Vector Neural
Network Instruction), novel FP representations (e.g. BFloat [11], posits [18],
fpanr [12]), and libraries for approximate computing [22].
c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 481–494, 2019.
https://doi.org/10.1007/978-3-030-29400-7_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_34&domain=pdf
https://doi.org/10.1007/978-3-030-29400-7_34

482 Y. Chatelain et al.

In this paper we propose a methodology to explore alternative representations
of hardware and software FP. Our first application is the widely used Compu-
tational Fluid Mechanics (CFD) solver YALES2 operated in many recent HPC
simulations [3,4,6,17,25].

Variable precision can be harnessed at the application, compiler, and archi-
tecture levels. Our exploration goes beyond traditional mixed precision (single
and double format). Due to hardware memory constraints of general purpose
processors, the target format can only be represented with 8,16,32 or 64 bits.
However, accuracy can be lowered to any given precision to limit the cost of
computation and energy. Finally, to go further in the optimization, one may use
architectural support, like FPGAs, where precision is fine-tuned up to the bit
level [15].

The contributions of this paper are:

– An empirical methodology integrated in Verificarlo [7,14] to automatically
lower precision in iterative algorithms while maintaining an user defined accu-
racy criterion.

– A VPREC backend to Verificarlo to emulate variable FP representations with
a [1, 11]-bits exponent and [0, 52]-bits pseudo-mantissa.

– Integration of the temporal dimension in the exploration of FP precision.
Precisions are not fixed for a variable or code section, but adapt as time
passes.

– A validation step based on stochastic arithmetic [37] to increase robustness
to rounding and cancellation errors.

– An evaluation of the validity and the performance gains of the proposed
methodology on an actual implementation demonstrating runtime savings in
an industrial use case.

2 Motivating Example

Let us consider as a simple example the Newton–Raphson method which finds
the root x� of a real-valued function f such that f(x�) = 0. Starting from an
initial guess x0, the method iteratively computes xk+1 = xk −f(xk)/f ′(xk) until
the relative error between two successive iterations is below a given threshold.
At iteration k, the error εk and the number of significant digits sβ

k in base β are
defined as:

εk =
∣
∣
∣
∣

x� − xk+1

x�

∣
∣
∣
∣

sβ
k = − logβ(εk)

The speed of convergence of this method is quadratic [20], which means that
the number of significant digits doubles at each iteration. Table 1 shows the
evolution of xk and sk when computing the inverse of π (f(x) = 1/x−π) with a
stopping threshold set to 10−15. The insignificant digits are highlighted in gray.

In the first iterations, most digits are incorrect, hinting that a low precision
for the evaluation of f is enough. We used the methodology proposed in this

Automatic Exploration of Reduced Floating-Point Representations 483

Table 1. (left)Convergence speed of Newton-Raphson for the computation of the
inverse of π using the IEEE-754 binary64 format (right). The stopping threshold is
10−15. Highlighted digits in gray are non significant.

k xk+1 s10k s2k

0 0.0690266447076745 0.11 0.37
1 0.1230846130203958 0.21 0.70
2 0.1985746566605835 0.43 1.43
3 0.2732703639721015 0.84 2.79
4 0.3119369815109966 1.79 5.95
5 0.3181822938100336 3.40 11.3
6 0.3183098350392471 6.79 22.6
7 0.3183098861837825 13.6 45.2
8 0.3183098861837907 15.6 51.8
9 0.3183098861837907 15.6 51.8

double newton(double x0) {

double x_k , x_k1=x0, b=PI;

do {

x_k = x_k1;

x_k1 = x_k*(2-b*x_k);

}while (fabs((x_k1 -x_k)/x_k)

>= 1e -15);

return x_k1;

}

paper and described in Sect. 3 to explore the impact of lowering the precision
with the VPREC backend for Verificarlo presented in Sect. 3.1.

Our methodology automatically finds for each iteration k, a reduced precision
pk; the pk are chosen such that the overall convergence speed is not degraded.
Figure 1 shows on the left the pk’s value found by VPREC. The plot at right
compares the convergence speed of the standard binary64 representation and
the VPREC configuration. Both versions converge within the 10−15 threshold in
nine iterations.

Fig. 1. (left) Precision found with VPREC for Newton-Raphson. (right) Both the stan-
dard IEEE-754 binary64 version and the VPREC low precision configuration converge
to 10−15 in nine iterations.

Since the first seven iterations require less than 24 bits of precision, they can
be executed in single precision (IEEE-754 binary32). To validate the solution
found by VPREC, we run a mixed-precision version of the Newton-Raphson

484 Y. Chatelain et al.

scheme where the first seven iterations use the binary32 format. We note that
the convergence speed and final result are almost identical to the full binary64
version. While more efficient, the solution found by VPREC has only been vali-
dated for a given input data set and its resiliency has to be examined as discussed
in Sect. 4.2.

3 Exploring Variable Precision

In large computational scientific codes, basic numerical computation functions
are used many times in various places. Each call of the function may require a dif-
ferent numerical precision. Furthermore, as seen in Sect. 2, the same code section
may require a different precision over time. To explore the temporal dimension
of numerical precision, we use two components presented in the remaining of
this section:

– A variable precision backend for Verificarlo: VPREC, detailed in Sect. 3.1;
– A heuristic optimizer to automatically minimize the precision configuration,

while ensuring accuracy and convergence as described in Sect. 3.2.

3.1 Verificarlo and the VPREC Backend

Fig. 2. General Verificarlo exploration workflow with VPREC backend

Verificarlo [14] is an open-source tool for FP interposition whose workflow is
described in Fig. 2. The LLVM front-end replaces every FP operations by a
call to the Verificarlo interface. After compilation, the program is dynamically
linked against various backends [7,14]. Interposing FP operations at the compiler
level allows to capture the compiler optimization effects on the generated FP
operation flow. Furthermore, it reduces the interposition overhead by optimizing
its integration with the original code.

The VPREC backend simulates FP formats that can fit into the IEEE-754
double precision format, avoiding the complex engineering process to implement
a shadow memory [36].

Automatic Exploration of Reduced Floating-Point Representations 485

Fig. 3. By setting r = 5 and p = 10, VPREC simulates a binary16 embedded inside a
binary32. Opaque bits represent the new exponent range and precision available. The
sign remains the same.

As illustrated in Fig. 3, the current implementation of VPREC allows modify-
ing the bit length of the exponent r ∈ [1, 11] and the pseudo-mantissa p ∈ [0, 52].
The explored format can be converted back and forth to double without loss of
precision. At each instrumented floating-point operation, VPREC rounds the
operands in (r, p), converts them to double, performs the operation in double
precision, rounds the result using the Round Ties to Even mode, and stores it
as a 64-bit number. This process presents two advantages:

– VPREC operands can be converted to double to use hardware operators
to perform VPREC operations with low overhead, including special values
(subnormal numbers, NaN and ±∞) related to the user defined format (r, p)

– After rounding, converting the result back to double enables graceful degra-
dation if some external libraries are not instrumented.

The user should note that in some rare cases, our implementation suffers from
double rounding issue [5], when the first rounding done by the hardware at 53
bits impacts the second rounding to the required precision p. In practice, these
cases, which occurs for numbers close to the midpoint of two p bits floating-point
numbers, have no significant impact on our experiments.

The VPREC backend requires a single execution of the program and Verifi-
carlo supports MPI. Therefore, we observe a reasonable overhead on full scale
parallel applications ranging from 2.6× to 16.8× for very FP intensive codes.

3.2 Piecewise Constant Exploration Heuristic

Let consider an iterative program with n iterations. VPREC simulates the effect
of using FP numbers represented on a pk-bit mantissa and rk-bit exponent at
iteration k. From now on, the sequence of values [(p0, r0), . . . , (pn, rn)] represents
one VPREC run called a configuration.

When the precision is too low, the program execution fails: either it does not
converge or it produces wrong results. We are only interested in valid config-
urations that preserve convergence and accuracy according to user knowledge.
In our experiment (Sect. 4), the validation function checks that the number of
iterations and the final results are within a threshold of some reference values.

Reducing the precision can be seen as introducing numerical errors terms in
the computation. Determining how and where to distribute the errors across the
iterations is an optimization problem with a large number of valid configurations.

486 Y. Chatelain et al.

Exploring the whole search-space is too costly on any non-trivial application, we
have to rely on heuristics.

We propose the piecewise search heuristic with the three following design
principles:

1. Configurations where the precision changes slowly over time are preferable to
configurations which quickly oscillate between a low and high precision.

2. Precision lowering should be distributed among all iterations.
3. Early iterations are generally more robust to error. Therefore we foster config-

urations with lower precision in early iterations compared to late iterations.

n
4

n
2

3n
4

n

20

40
0

1

2

3
4

5

6

iteration (k)

vi
rt
ua

l
pr
ec
is
io
n
(p

k
)

Fig. 4. First three steps of the piecewise constant search heuristic for the Newton-
Raphson problem. The constant piecewise functions of step 0,1 and 2 are represented
in green, blue and black. (Color figure online)

To enforce the first and second principles, we follow a top-down approach.
The solution is modeled by a piecewise constant function that is progressively
refined. Figure 4 illustrates the first three steps of the piecewise approach on the
Newton-Raphson problem. For the sake of simplicity, we are solely focusing on
lowering the mantissa size pk. However, the method can simultaneously deals
with the mantissa and exponent size. Initially, the piecewise constant function
has a single domain (marked 0) that spawns all the iterations [0, n). The valid
lowest precision, corresponding to 40, is found by dichotomy on the precision
domain between 1 and 53. In the second step, the domain is split in two subdo-
mains (marked 1 and 2). To enforce the third principle, the precision in the left
domain (marked 1) is lowered in a greedy manner, while keeping the maximal
precision found in the previous step for the right domain (marked 2). Once the
lowest precision for domain 1 is identified, we lower the precision in domain 2.
This ends the second step and produces the blue piecewise function. This pro-
cess continues recursively. This approach guarantees by construction that the
piecewise function at step i is an upper bound of the function at step i + 1 and
progressively refines the solution following the first principle. The exploration
is breadth-first to evenly distribute the reduction in precision, according to the
second principle.

Automatic Exploration of Reduced Floating-Point Representations 487

4 Large Scale Study Validation on YALES2

YALES2 is a parallel CFD library that aims at solving the unsteady Navier-
Stokes equations in the low-Mach number approximation for multiphase and
reactive flows [28]. It efficiently handles unstructured meshes with several billions
of elements, enabling the Direct Numerical Simulation of laboratory and indus-
trial configurations. A projection method [8,32] enforces the mass-conservation
constraint on the flow thanks to the resolution of a Poisson equation at each
time-step. In the HPC context, this is usually achieved with Krylov meth-
ods and we focus here on the Deflated Preconditioned Conjugate Gradient
(DPCG) [26,27,29] implemented in YALES2. In this algorithm, a coarse grid is
built from the fine mesh by merging a fixed number of elements together in super-
cells (this procedure is conceptually similar to the multi-grid approach [13]).
The general principle of deflation is the following. The coarse grid is used to
converge the low frequency eigenmodes of the solution which represent the long
range interactions of the Poisson equation. This requires much less work than
performing a classical CG on the fine mesh which is only used to obtain the
remaining high frequencies in a small number of iterations.

Numerically, the deflated operator is solved in iterdef iterations using a
usual PCG method such that the convergence criteria convcrit is met. The
solution is then expanded and injected into the main PCG loop on the finer
grid. This whole process is repeated until the maxnorm of the fine grid residual
is below a threshold. In both CG solvers (on coarse and fine grids), the system is
preconditioned by the inverse of the diagonal. In all experiments, we constraint
the total number of iterations performed,

∑
iterdefk, by the algorithm to be

below 1% of additional iterations compared to the original.
The representative use-case we focus on is the PRECCINSTA burner [2,24].

It is a well-known lab-scale burner used to validate combustion CFD solvers. We
use 3 different mesh sizes of 1.75 million, 40 million and 870 million of tetrahedral
elements. For all configurations, the super-cell size in the coarse grid was set to
500 elements. We set the max norm of residual convergence criteria to 10−8.

To reduce the search space, we consider two sets of functions. The first set,
named deflated, is the set of functions used on the coarse grid to solve the deflated
operator. The second set, named all, contained all the functions used to solve
the fine grid operator.

4.1 Adaptive Precision Algorithm Experiment on DPCG

In this section, we apply our VPREC tool on the 1.75M mesh case to explore
valid variable precision implementation. In order to use true single precision, we
statically set the exponent range to 8-bits in VPREC exploration.

Figure 5 shows the result of the exploration. In both graphics the x-axis
represents the number of iterations on the fine grid. In the top plot, the right
y-axis represents, on the same scale, the norm maxnorm of the residual between
two successive iterations and the convergence criterion convcrit of the deflated
operator. The left y-axis represents iterdef , the number of iterations on the

488 Y. Chatelain et al.

Fig. 5. Adaptive precision searching on YALES2’s DPCG with the deflated part (left)
and the entire code (right). On both plots, we can see that our reduced precision
solution follows the reference IEEE convergence profile.

deflated operator. In the bottom plot, the y-axis represents the virtual precision
used to compute the given iteration on x-axis.

Figure 5 (left) shows that less than 23 bits of precision are required for the
deflated operator on the 1.75 million elements mesh, with an average precision
of 18 bits. Therefore, the deflated operator can be computed with binary32,
resulting in a mixed-precision implementation detailed in Sect. 4.3.

Figure 5 (right) shows the results of the proposed explorations on both coarse
and fine grid at the same time. We notice that, contrary to the deflated experi-
ment, the required precision increases over iterations. This is expected because
the solver needs more and more precision to converge as it refines the solution.
Surprisingly, the required precision drops at iteration 50 from 34 bits to 21 bits.
We cannot yet explain this sudden drop, more investigations are needed.

4.2 Validating Resiliency to Round-Off Errors

In the previous sections, we demonstrated that YALES2’s DPCG converges with
a lower precision format. This result is only valid with the particular rounding
mode used by VPREC and is sensitive to the input dataset. In a realistic setup,
small rounding errors may occur when performing FP operations with a different
software representation and/or hardware.

Monte Carlo Arithmetic (MCA) is a stochastic method to model round-
off errors by artificially introducing noise within computations and perform-
ing Monte Carlo sampling. For the theoretical underpinnings, readers may refer
to [14,31]. MCA is able to simulate rounding errors at a given virtual precision.

Automatic Exploration of Reduced Floating-Point Representations 489

Fig. 6. Resiliency of VPREC and binary32 configurations. In red the IEEE maxnorm
convergence for reference. Blue envelop shows the 29 MCA samples for the previ-
ously found VPREC configuration. Green envelop shows the 29 MCA samples for
the binary32 configuration. All samples converge, showing the resiliency of both
configurations.

We use MCA as a second step of our VPREC analysis to find a configuration
that is resistant to round-off errors.

We model this process as a Bernoulli trial. We run 29 MCA samples to
simulate the effect of rounding errors. If any one of the samples fail to converge,
we conclude that the solution is not robust to round-off errors. On the other hand,
if all the 29 samples converge we conclude, thanks to the confidence intervals
introduced in [37], that the probability of convergence in the presence of round-
off errors is 90% with a 0.95 confidence level.

Figure 6 shows that the VPREC solution found in the previous section is
robust and converges for all the samples. Since the solution is very close to the
binary32 precision, our objective is to achieve a robust binary32 configura-
tion. The binary32 constant-precision configuration represented by the light red
envelop in Fig. 6 converges in 57 to 63 iterations in the presence of round-off
errors for all samples. This demonstrates that it is possible to safely rewrite the
coarse grid operator of DPCG in binary32.

4.3 Evaluating Mixed-Precision Version

The deflated operator of DPCG can be computed within the binary32 format
for most iterations as shown in previous sections. To validate the results, we com-
piled a mixed-version of YALES2 where the deflated operator can be executed
either in binary32 or binary64 format.

We evaluated the mixed precision version on the three different grids of
PRECCINSTA and 10−9 convergence criteria. We limit the exploration algo-
rithm to double and single precision since we are not running on variable preci-
sion hardware.

490 Y. Chatelain et al.

We use CRIANN cluster constituted of 366 bisocket Intel Xeon E5-2680 nodes
and Intel Omnipath interconnect. We gather statistics using Intel IPM interface
for Intel MPI.

As predicted by our methodology, the computation converges and all versions
satisfy all accuracy constraints on the results. However, we noticed that larger
experiments require extra initial double precision iterations on the deflated grid.
For examples, respectively two and four extra double precision iterations are
necessary for the 40M and 870M mesh. This is coherent with the observations
of Cools et al. [9] about the importance of being precise in the first iteration of
a CG recurrence:

We noticed as well, that on these larger cases it is necessary to switch for
the deflated grid from single to double precision when the deflated convergence
criteria is difficult to reach with single precision ∼10−8.

This effect did not appear on the smaller case with 500 elements per group.
Our hypothesis is that the granularity difference between the two grids level
is larger on the small mesh and therefore the small errors on the coarse grid
iteration are less impacting on the fine grid iterations [26,27].

We measure a 28% to 67% reduction in the communication volume. The
energy gain can be estimated to be linearly related to this volume gain with the
simple model proposed in [1].

Since DPCG is mostly bounded by communication latency, the performance
gain is limited when the number of processor grows for a given size falling from
28% speedup to −2% slowdown on critical strong scaling experiments. However,
according to these results and end-user usage of the code, the expected speedup
for daily usage will be in the 10% range.

5 Related Works and Background

Many tools and strategies have been developed for lowering precision in codes.
For HPC purposes, the challenge is to have fast and scalable tools for address-
ing real world applications. A comparison with our methodology is presented in
Table 2. Most of the tools focus on the spatial dimension while we investigate
the temporal dimension as well. In addition, most of them focus on the mixed-
precision exploration while we provide a more in-depth analysis by working at a
bit level. Evaluating the resiliency to rounding errors is only proposed by Veri-
ficarlo and Promise although FlexFloat [21] and fpPrecisionTuning [38] propose
statistic optimization according to input data ranges. However, they require the
re-implementation of code to adopt the specific libraries.

Daisy [10], Herbie [30] and STOKE [35] are optimizing precision or accuracy
by rewriting formulas. Most of them provides high level of guarantees, however
they all face scalability issues.

Some authors propose adaptive schemes for specific linear algebra algorithms.
Anzt et al. [1,19] propose an adaptive precision version of the Block-Jacobi
preconditioner. Authors store data at low precision by truncating bits while
computations remain in double precision. The change of format is guided by

Automatic Exploration of Reduced Floating-Point Representations 491

Table 2. Comparisons of the different tools for exploring precision reduction.

Tool Localization Mixed prec. Variable prec. Round. error Automatic

Precimonious [34] Spatial � �
Blame-Analysis [33] Spatial � �1 �
Promise [16] Spatial � � �
CRAFT [23] Spatial � �2 �
fpPrecisionTuning [21] Spatial � �
FlexFloat [38] Spatial � �
Verificarlo (this paper) Temporal � � � �

the condition number and the data range. The authors estimate energy gains
with predictive models with the underlying hypothesis that the cost depend
linearly on the bit length of the data. These methods are interesting because
they use mathematical properties of numerical schemes for adapting precision
over iterations. However, the authors focused on small program sections based on
their knowledge at high engineering cost. Therefore, their results are restricted
to a class of specific algorithms unlike our method which provides a broader
exploration tool. Of course, educated developers are still required to take the
final decision to use lower precision provided by our VPREC tool.

6 Conclusion

Reducing communication volume and computation cost is important to reach
exascale computing. Tailoring the precision to the requirements of the appli-
cation offers consequent savings in performance and energy. We presented a
methodology to automatically and finely adapt the precision over time for numer-
ical iterative schemes. Our methodology goes beyond mixed-precision approaches
by exploring precision configurations at bit level. The method explores the pre-
cision requirements over time, and therefore chooses an optimal precision for
each application phase. To guarantee the accuracy of the results, we validate the
robustness of our solutions to rounding errors with the help of stochastic arith-
metic. Finally, our experiments show that the methodology handles large HPC
codes like the Combustion-CFD solver YALES2. For YALES2, our approach
shows that lowering the precision is viable and achieve 28% to 67% reduction in
the communication volume, lowering the energy and runtime cost.

Acknowledgments. We thank Exascale Computing Research Lab supported by
CEA, Intel, and UVSQ. This work has been granted access to the HPC resources of
CINES under the allocation 20XX-A0031010295 made by GENCI and the computing
resources of CRIANN (Normandy, France).

492 Y. Chatelain et al.

References

1. Anzt, H., Dongarra, J., et al.: Adaptive precision in block-Jacobi preconditioning
for iterative sparse linear system solvers. Concurr. Comput. Pract. Exp. 31, e4460
(2017)

2. Benard, P., Lartigue, G., et al.: Large-eddy simulation of the lean-premixed PREC-
CINSTA burner with wall heat loss. Proc. Combust. Inst. 37, 5233–5243 (2018)

3. Benard, P., Viré, A., et al.: Large-eddy simulation of wind turbines wakes
including geometrical effects. Comput. Fluids 173, 133–139 (2018).
https://doi.org/10.1016/j.compfluid.2018.03.015. http://www.sciencedirect.com/
science/article/pii/S0045793018301154

4. Benard, P., Balarac, G., et al.: Mesh adaptation for large-eddy simulations
in complex geometries. Int. J. Numer. Methods Fluids 81(12), 719–740
(2016). https://doi.org/10.1002/fld.4204. https://onlinelibrary.wiley.com/doi/abs/
10.1002/fld.4204

5. Boldo, S., Melquiond, G.: When double rounding is odd. In: 17th IMACS World
Congress, Paris, France, p. 11 (2005)

6. Boulet, L., Bénard, P., et al.: Modeling of conjugate heat transfer in a kerosene/air
spray flame used for aeronautical fire resistance tests. Flow Turbul. Combust.
101(2), 579–602 (2018). https://doi.org/10.1007/s10494-018-9965-8

7. Chatelain, Y., de Oliveira Castro, P., et al.: VeriTracer: context-enriched tracer
for floating-point arithmetic analysis. In: 25th IEEE Symposium on Computer
Arithmetic (ARITH), pp. 61–68 (2018)

8. Chorin, A.J.: Numerical solution of the Navier-Stokes equations. Math. Comput.
22(104), 745–762 (1968)

9. Cools, S., Yetkin, E.F., et al.: Analysis of rounding error accumulation in Conjugate
Gradients to improve the maximal attainable accuracy of pipelined CG. Research
Report RR-8849, Inria Bordeaux Sud-Ouest, January 2016. https://hal.inria.fr/
hal-01262716

10. Darulova, E., Horn, E., Sharma, S.: Sound mixed-precision optimization with
rewriting. In: Proceedings of the 9th ACM/IEEE International Conference on
Cyber-Physical Systems, pp. 208–219. IEEE Press (2018)

11. Das, D., Mellempudi, N., et al.: Mixed precision training of convolutional neural
networks using integer operations. CoRR abs/1802.00930 (2018). http://arxiv.org/
abs/1802.00930

12. Defour, D.: FP-ANR: a representation format to handle floating-point cancellation
at run-time. In: 25th IEEE Symposium on Computer Arithmetic (ARITH), pp.
76–83 (2018)

13. Dendy, J.: Black box multigrid. J. Comput. Phys. 48(3), 366–386 (1982).
https://doi.org/10.1016/0021-9991(82)90057-2. http://www.sciencedirect.com/
science/article/pii/0021999182900572

14. Denis, C., de Oliveira Castro, P., Petit, E.: Verificarlo: checking floating point
accuracy through Monte Carlo arithmetic. In: 23nd IEEE Symposium on Computer
Arithmetic (ARITH), pp. 55–62 (2016)

15. de Dinechin, F., Pasca, B.: Designing custom arithmetic data paths with FloPoCo.
IEEE Des. Test Comput. 28, 18–27 (2011)

16. Graillat, S., Jézéquel, F., et al.: PROMISE: floating-point precision tuning with
stochastic arithmetic. In: Proceedings of the 17th International Symposium on
Scientific Computing, Computer Arithmetics and Verified Numerics (SCAN), pp.
98–99 (2016)

https://doi.org/10.1016/j.compfluid.2018.03.015
http://www.sciencedirect.com/science/article/pii/S0045793018301154
http://www.sciencedirect.com/science/article/pii/S0045793018301154
https://doi.org/10.1002/fld.4204
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.4204
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.4204
https://doi.org/10.1007/s10494-018-9965-8
https://hal.inria.fr/hal-01262716
https://hal.inria.fr/hal-01262716
http://arxiv.org/abs/1802.00930
http://arxiv.org/abs/1802.00930
https://doi.org/10.1016/0021-9991(82)90057-2
http://www.sciencedirect.com/science/article/pii/0021999182900572
http://www.sciencedirect.com/science/article/pii/0021999182900572

Automatic Exploration of Reduced Floating-Point Representations 493

17. Guedot, L., Lartigue, G., Moureau, V.: Design of implicit high-order filters on
unstructured grids for the identification of large-scale features in large-eddy simu-
lation and application to a swirl burner. Phys. Fluids 27(4), 045107 (2015). https://
doi.org/10.1063/1.4917280

18. Gustafson, Y.: Beating floating point at its own game: posit arithmetic. Supercom-
put. Front. Innov. Int. J. 4(2), 71–86 (2017)

19. Haidar, A., Tomov, S., et al.: Harnessing GPU tensor cores for fast FP16 arithmetic
to speed up mixed-precision iterative refinement solvers. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage,
and Analysis, SC 2018, Piscataway, NJ, USA, pp. 47:1–47:11. IEEE Press (2018)

20. Higham, N.J.: Accuracy and Stability of Numerical Algorithms. SIAM,
Philadelphia (2002)

21. Ho, N.M., Manogaran, E., et al.: Efficient floating point precision tuning for approx-
imate computing. In: 22nd Asia and South Pacific Design Automation Conference
(ASP-DAC), pp. 63–68. IEEE (2017)

22. Intel Corp.: Intel VML (2018). https://software.intel.com/en-us/mkl-developer-
reference-c-vector-mathematical-functions

23. Lam, M.O., Hollingsworth, J.K., et al.: Automatically adapting programs for
mixed-precision floating-point computation. In: Proceedings of the 27th Interna-
tional conference on supercomputing, pp. 369–378. ACM (2013)

24. Lartigue, G., Meier, U., Bérat, C.: Experimental and numerical investigation of self-
excited combustion oscillations in a scaled gas turbine combustor. Appl. Therm.
Eng. 24(11–12), 1583–1592 (2004)

25. Legrand, N., Lartigue, G., Moureau, V.: A multi-grid framework for the extrac-
tion of large-scale vortices in large-eddy simulation. J. Comput. Phys. 349,
528–560 (2017). https://doi.org/10.1016/j.jcp.2017.08.030. http://www.
sciencedirect.com/science/article/pii/S0021999117306010

26. Malandain, M.: Massively parallel simulation of low-Mach number turbulent
flows. Theses, INSA de Rouen, January 2013. https://tel.archives-ouvertes.fr/tel-
00801502

27. Malandain, M., Maheu, N., Moureau, V.: Optimization of the deflated conju-
gate gradient algorithm for the solving of elliptic equations on massively parallel
machines. J. Comput. Phys. 238, 32–47 (2013). https://doi.org/10.1016/j.jcp.2012.
11.046. http://www.sciencedirect.com/science/article/pii/S0021999112007280

28. Moureau, V., Domingo, P., Vervisch, L.: Design of a massively parallel CFD code
for complex geometries. Comptes Rendus Mécanique 339, 141–148 (2011)

29. Nicolaides, R.A.: Deflation of conjugate gradients with applications to boundary
value problems. SIAM J. Numer. Anal. 24(2), 355–365 (1987)

30. Panchekha, P., Sanchez-Stern, A., et al.: Automatically improving accuracy for
floating point expressions. In: Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pp. 1–11. ACM (2015)

31. Parker, S.: Monte carlo arithmetic: exploiting randomness in floating-point arith-
metic. Technical report CSD-970002, UCLA Computer Science Department (1997)

32. Pierce, C.D., Moin, P.: Progress-variable approach for large-eddy simulation of
non-premixed turbulent combustion. J. Fluid Mech. 504, 73–97 (2004). https://
doi.org/10.1017/S0022112004008213

33. Rubio-González, C., Nguyen, C., et al.: Floating-point precision tuning using blame
analysis. In: Proceedings of the 38th International Conference on Software Engi-
neering, pp. 1074–1085. ACM (2016)

https://doi.org/10.1063/1.4917280
https://doi.org/10.1063/1.4917280
https://software.intel.com/en-us/mkl-developer-reference-c-vector-mathematical-functions
https://software.intel.com/en-us/mkl-developer-reference-c-vector-mathematical-functions
https://doi.org/10.1016/j.jcp.2017.08.030
http://www.sciencedirect.com/science/article/pii/S0021999117306010
http://www.sciencedirect.com/science/article/pii/S0021999117306010
https://tel.archives-ouvertes.fr/tel-00801502
https://tel.archives-ouvertes.fr/tel-00801502
https://doi.org/10.1016/j.jcp.2012.11.046
https://doi.org/10.1016/j.jcp.2012.11.046
http://www.sciencedirect.com/science/article/pii/S0021999112007280
https://doi.org/10.1017/S0022112004008213
https://doi.org/10.1017/S0022112004008213

494 Y. Chatelain et al.

34. Rubio-González, C., Nguyen, C., et al.: Precimonious: tuning assistant for floating-
point precision. In: International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), pp. 1–12. IEEE (2013)

35. Schkufza, E., Sharma, R., Aiken, A.: Stochastic optimization of floating-point pro-
grams with tunable precision. ACM SIGPLAN Not. 49(6), 53–64 (2014)

36. Serebryany, K., Bruening, D., et al.: AddressSanitizer: a fast address sanity checker.
In: USENIX ATC 2012 (2012)

37. Sohier, D., De Oliveira Castro, P., et al.: Confidence Intervals for Stochastic Arith-
metic (2018). https://hal.archives-ouvertes.fr/hal-01827319, preprint

38. Tagliavini, G., Mach, S., et al.: A transprecision floating-point platform for ultra-
low power computing. In: Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 1051–1056. IEEE (2018)

https://hal.archives-ouvertes.fr/hal-01827319

Linear Systems Solvers
for Distributed-Memory Machines

with GPU Accelerators

Jakub Kurzak1(B) , Mark Gates1 , Ali Charara1 , Asim YarKhan1 ,
Ichitaro Yamazaki1 , and Jack Dongarra1,2,3

1 University of Tennessee, Knoxville, TN 37996, USA
{kurzak,mgates3,charara,yarkhan,iyamazak,dongarra}@icl.utk.edu

2 Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
3 University of Manchester, Manchester M13 9PL, UK

https://www.icl.utk.edu/

Abstract. This work presents two implementations of linear solvers for
distributed-memory machines with GPU accelerators—one based on the
Cholesky factorization and one based on the LU factorization with par-
tial pivoting. The routines are developed as part of the Software for
Linear Algebra Targeting Exascale (SLATE) package, which represents
a sharp departure from the traditional conventions established by legacy
packages, such as LAPACK and ScaLAPACK. The article lays out the
principles of the new approach, discusses the implementation details, and
presents the performance results.

Keywords: Linear algebra · Distributed memory ·
Linear systems of equations · Cholesky factorization ·
LU factorization · GPU acceleration

1 Introduction

1.1 Linear Systems

Solving a system of linear equations Ax = b is a fundamental capability in sci-
entific and engineering computing. The most common approach is to apply the
lower–upper (LU) decomposition, which factors the matrix A as the product of
a lower triangular matrix L and an upper triangular matrix U . The procedure
usually requires row permutations for numerical stability, referred to as partial
pivoting. LU decomposition can be viewed as the matrix form of Gaussian elim-
ination. It is also a key step in inverting a matrix or computing the determinant
of a matrix. LU decomposition was introduced by Polish mathematician Tadeusz
Banachiewicz.

This research was supported by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of two U.S. Department of Energy organizations (Office of Science
and the National Nuclear Security Administration).

c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 495–506, 2019.
https://doi.org/10.1007/978-3-030-29400-7_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_35&domain=pdf
http://orcid.org/0000-0002-9697-0145
http://orcid.org/0000-0003-2996-1641
http://orcid.org/0000-0002-9509-7794
http://orcid.org/0000-0002-3901-9695
http://orcid.org/0000-0002-6196-2508
http://orcid.org/0000-0003-3247-1782
https://doi.org/10.1007/978-3-030-29400-7_35

496 J. Kurzak et al.

The system of linear equations Ax = b can be solved much faster when the
matrix A is Hermitian, positive definite in complex arithmetic; or symmetric,
positive definite in real arithmetics. Commonly, the Cholesky decomposition is
used to factor the matrix A into the product of a lower triangular matrix L and its
conjugate transpose. It was discovered by a French mathematician, André-Louis
Cholesky, for real matrices. When it is applicable, the Cholesky decomposition is
roughly twice as efficient as the LU decomposition for solving systems of linear
equations.

1.2 SLATE Project

Software for Linear Algebra Targeting Exascale (SLATE)1 is being developed
as part of the Exascale Computing Project (ECP),2 which is a collaborative
effort between two US Department of Energy (DOE) organizations, the Office of
Science and the National Nuclear Security Administration (NNSA). The objec-
tive of SLATE is to provide fundamental dense linear algebra capabilities to
the US Department of Energy and to the high-performance computing (HPC)
community at large.

The ultimate objective of SLATE is to replace the ScaLAPACK library [3],
which has become the industry standard for dense linear algebra operations
in distributed-memory environments. However, after two decades of operation,
ScaLAPACK is past the end of its life cycle and is overdue for a replacement,
as it can hardly be retrofitted to support hardware accelerators, which are an
integral part of today’s HPC hardware infrastructure.

Primarily, SLATE aims to extract the full performance potential and max-
imum scalability from modern, many-node HPC machines with large numbers
of cores and multiple hardware accelerators per node. For typical dense linear
algebra workloads, this means getting close to the theoretical peak performance
and scaling to the full size of the machine (i.e., thousands to tens of thousands of
nodes). This is to be accomplished in a portable manner by relying on standards
like MPI and OpenMP. Figure 1 shows SLATE in the ECP software stack.

Fig. 1. SLATE in the ECP software stack.

1 http://icl.utk.edu/slate/.
2 https://www.exascaleproject.org.

http://icl.utk.edu/slate/
https://www.exascaleproject.org

Linear Systems Solvers for Distributed-Memory Machines 497

2 Motivation

There is an urgent need for multi-GPU accelerated, distributed-memory soft-
ware. Currently, the fastest machines in United States are the Summit3 and
Sierra4 systems, at the Oak Ridge National Laboratory (ORNL) and the
Lawrence Livermore National Laboratory (LLNL), respectively. As of today,
they occupy positions #1 and #2 on the TOP500 list.

The urgency of the situation is underscored by the architectures of the afore-
mentioned systems.5 The Summit system contains three NVIDIA V100 GPUs
per each POWER9 CPU. The peak double-precision floating-point performance
of the CPU is 22 (cores)×24.56 gigaFLOP/s = 540.32 gigaFLOP/s. The peak
performance of the GPUs is 3 (devices)×7.8 teraFLOP/s = 23.4 teraFLOP/s.
I.e., 97.7% of performance is on the GPU side, and only 2.3% of performance is
on the CPU side.

Also, the U.S. Department of Energy has recently announced plans for achiev-
ing exascale. The system, called Frontier, will be built at ORNL. It is planned
to go online in 2021 and deliver 1.5 exaFLOP/s of theoretical peak performance.
Frontier’s nodes will contain one AMD EPYC CPU and four purpose-built AMD
Radeon Instinct GPUs.6

3 Related Work

Due to the popularity of the Cholesky and LU factorizations, it would be difficult
to survey all the related research efforts. Instead we opt for listing the most
popular software packages that implement the two routines. Distributed-memory
implementations are available in:

– ScaLAPACK (http://www.netlib.org/scalapack/),
– PLAPACK (http://www.cs.utexas.edu/users/plapack/),
– Elemental (http://libelemental.org),
– DPLASMA (http://icl.utk.edu/dplasma/).

While some efforts are being made to GPU-accelerate these packages, at this time
we consider these developments experimental. On the other hand, accelerated
implementations of the Cholesky and LU factorizations are available in:

– MAGMA (http://icl.cs.utk.edu/magma/),
– CULA (http://www.culatools.com/dense/),
– cuSOLVER (https://developer.nvidia.com/cusolver).

These packages, however, do not support distributed memory. In that respect,
the SLATE project seems to be a unique effort in specifically targeting multi-
GPU–accelerated distributed-memory systems.
3 https://www.olcf.ornl.gov/summit/.
4 https://hpc.llnl.gov/hardware/platforms/sierra.
5 https://en.wikichip.org/wiki/supercomputers/summit.
6 https://www.olcf.ornl.gov/frontier/.

http://www.netlib.org/scalapack/
http://www.cs.utexas.edu/users/plapack/
http://libelemental.org
http://icl.utk.edu/dplasma/
http://icl.cs.utk.edu/magma/
http://www.culatools.com/dense/
https://developer.nvidia.com/cusolver
https://www.olcf.ornl.gov/summit/
https://hpc.llnl.gov/hardware/platforms/sierra
https://en.wikichip.org/wiki/supercomputers/summit
https://www.olcf.ornl.gov/frontier/

498 J. Kurzak et al.

4 Original Contribution

This is the only open-source implementation, that we know of, that targets
Summit- and Sierra-class machines, i.e., large distributed-memory systems draw-
ing virtually all of their computing power from GPU accelerators. Obviously,
very efficient codes were written for the TOP500 runs for these machines. At
this point, however, these codes remain proprietary and the details of their inner
workings are not publicly available.

The implementations presented here are based on the infrastructure of the
SLATE project, which is a radical departure from the established conventions,
most notably from the legacy matrix layout of ScaLAPACK. Also, as far as
we know, we produced a unique implementation of the LU panel factorization,
which combines MPI messaging, OpenMP multithreading, internal blocking, and
cache residency.

5 Implementation

5.1 SLATE Basics

Matrix Storage. Unlike legacy dense linear algebra packages, which store the
matrix contiguously, by columns, SLATE stores the matrix as a collection of
individual tiles. This offers numerous advantages, for example:

– The same structure can be used for holding many different matrix types,7

e.g., general, symmetric, triangular, band, symmetric band, etc. No memory
is wasted for storing parts of the matrix that hold no useful data, e.g., the
upper triangle of a lower triangular matrix. There is no need for using complex
matrix layouts, such as the Recursive Packed Format (RPF) [1,2,9] in order
to save space.

– The matrix can be easily converted, in parallel, from one layout to
another with O(P) memory overhead, where P is the number of processors
(cores/threads) used. Possible conversions include: changing the layout of
tiles from column major to row major, “packing” of tiles for efficient exe-
cution of the gemm operation,8 low-rank compression of tiles, re-tiling of the
matrix (changing the tile size), etc. Notably, transposition of the matrix can
be accomplished by transposition of each tile and remapping of the indices.
There is no need for complex in-place layout translation and transposition
algorithms [10].

– Tiles can easily be moved or copied among different memory spaces. Both
inter-node communication and intra-node communication are vastly simpli-
fied. Tiles can easily and efficiently be transferred between nodes using MPI.
Tiles can also be copied to one or more device memories in the case of GPU
acceleration.

7 http://www.netlib.org/lapack/lug/node24.html.
8 https://software.intel.com/en-us/articles/introducing-the-new-packed-apis-for-

gemm.

http://www.netlib.org/lapack/lug/node24.html
https://software.intel.com/en-us/articles/introducing-the-new-packed-apis-for-gemm
https://software.intel.com/en-us/articles/introducing-the-new-packed-apis-for-gemm

Linear Systems Solvers for Distributed-Memory Machines 499

In practical terms, the SLATE matrix is implemented by
the std::map container from the standard C++ library; that is,
std::map< std::tuple< int64_t, int64_t, int >, Tile<scalar_t>* >

The key is a triplet consisting of the (i, j) position of the tile in the matrix
and the device number where the tile is located, The value is a pointer to an
object of a lightweight class that stores the tile’s data and its properties. One
issue that may require further attention is the logarithmic complexity of the
default implementation of the container in the standard library. If it turns out
to be a problem, the use of std::unordered_map may be required.

In addition to facilitating the storage of different types of matrices, this
structure also readily accommodates partitioning of the matrix to the nodes of a
distributed-memory system. Tile indexing is global, and each node stores only its
local subset of tiles. Mapping of tiles to nodes is defined by a C++ lambda func-
tion, and set to 2D block cyclic mapping by default. Remote access is realized by
mirroring remote tiles in the local matrix for the duration of the operation. In
that respect, SLATE follows the single program, multiple data (SPMD) program-
ming style. SLATE also has the potential to support matrices with non-uniform
tile sizes in the future.

For offload to GPU accelerators, SLATE implements a custom memory con-
sistency model, loosely based on the Modified/Owned/Shared/Invalid (MOSI)
coherency protocol [13]. The distinguishing feature is that SLATE’s model is
symmetric; that is, there is no notion of the main memory—all memories (host,
devices) are considered peers.

Matrix Class Hierarchy. SLATE has the matrix classes below. Inexpensive
shallow copy conversions exist between the various matrix types. For instance, a
general Matrix can be converted to a TriangularMatrix for doing a triangular
solve (trsm).

BaseMatrix Abstract base class for all matrices.
Matrix General, m × n matrix.
BaseTrapezoidMatrix Abstract base class for all upper or lower trapezoid

storage, m × n matrices. For upper, tiles A(i, j) for i ≤ j are stored; for
lower, tiles A(i, j) for i ≥ j are stored.
TrapezoidMatrix Upper or lower trapezoid, m×n matrix; the opposite

triangle is implicitly zero.
TriangularMatrix Upper or lower triangular, n × n matrix.

SymmetricMatrix Symmetric, n × n matrix, stored by its upper or
lower triangle; the opposite triangle is implicitly known by symmetry
(Aj,i = Ai,j).

HermitianMatrix Hermitian, n × n matrix, stored by its upper or
lower triangle; the opposite triangle is implicitly known by symmetry
(Aj,i = Āi,j).

The BaseMatrix class stores the matrix dimensions; whether the matrix is
upper, lower, or general; whether it is not transposed, transposed, or conjugate-
transposed; how the matrix is distributed; and the set of tiles.

500 J. Kurzak et al.

Handling of Multiple Precisions. SLATE handles multiple precisions by
C++ templating, so there is only one precision-independent version of the code,
which is then instantiated for the desired precisions. SLATE’s LAPACK++ com-
ponent [8] provides overloaded, precision-independent wrappers for all the under-
lying LAPACK routines, on which SLATE’s least squares routines are built. For
instance, lapack::potrf in LAPACK++ maps to spotrf, dpotrf, cpotrf, or
zpotrf LAPACK routines, depending on the precision of its arguments.

Where a data type is always real, blas::real_type<scalar_t> is a C++
type trait to provide the real type associated with the type scalar_t, so
blas::real_type< std::complex<double> > is double.

Currently, the SLATE library has explicit instantiations of the four main data
types: float, double, std::complex<float>, and std::complex<double>. In
the future, SLATE should be able to accommodate other data types, such as
quadruple precision (double-double) or half precision (FP16), given appropriate
implementations of the elemental operations.

5.2 Cholesky Implementation

SLATE provides routines for solving linear systems of equations, where the coef-
ficient matrix is symmetric (Hermitian) positive definite. These routines compute
the factorization A = LLT (A = LLH) using the Cholesky decomposition, and
follow with the steps of forward and backward substitution. The routines are
mathematically equivalent to their ScaLAPACK counterparts [6].

Figure 2 (left picture) shows the basic mechanics of the Cholesky factorization
in SLATE. Like most routines in SLATE, the implementation relies on nested
tasking using the OpenMP standard, with the top level responsible for scheduling
a small number of coarse-grained, interdependent tasks, and the nested level
responsible for dispatching large numbers of fine-grained, independent tasks.
In the case of GPU acceleration, the nested level is implemented using calls
to batched Basic Linear Algebra Subprograms (BLAS) routines, to exploit the
efficiency of processing large numbers of tiles in one call to a GPU kernel.

The Cholesky factorization in SLATE applies the technique of looka-
head [5,11,14], where one or more columns, immediately following the panel,
are prioritized for faster processing, to allow for speedier advancement along the
critical path. Lookahead provides large performance improvements, as it allows
for overlapping the panel factorization—which is usually inefficient—with updat-
ing of the trailing submatrix, which is usually very efficient and can be GPU-
accelerated. Usually, the lookahead of one results in a large performance gain,
while bigger values deliver diminishing returns.

5.3 LU Implementation

SLATE provides routines for solving linear systems of equations, where the coef-
ficient matrix is a general (nonsymmetric) matrix. These routines compute the
factorization PA = LU using the process of Gaussian elimination with partial

Linear Systems Solvers for Distributed-Memory Machines 501

Fig. 2. Left: Cholesky factorization with lookahead of one. Right: LU factorization
with lookahead of one.

(row) pivoting, and follow with the steps of forward and backward substitu-
tion. The routines are mathematically equivalent to their ScaLAPACK counter-
parts [6].

Figure 2 (right picture) shows the basic mechanics of the LU factorization in
SLATE. While the parallelization is based on the same principles as the Cholesky
factorization, the implementation is significantly more challenging, due to the
application of row pivoting. The primary consequence of row pivoting is a fairly
complex, and heavily synchronous, panel factorization procedure. The secondary
effect is the communication overhead of swapping rows to the left and to the right
of the panel. A further complication is introduced by GPU acceleration, which
requires layout translation, as the row swapping operation is extremely inefficient
in column major.

The critical component of the LU factorization is the step of factoring the
panel, which in SLATE is an arbitrary selection of tiles from one column of the
matrix. This operation is on the critical path of the algorithms and has to be
optimized to the maximum. Resorting to a simple, memory-bound implementa-
tion could have profoundly negative consequences for performance. The current
implementation of the LU panel factorization in SLATE is derived from the
technique of Parallel Cache Assignment (PCA) by Castaldo et al. [4], and the
work on parallel panel factorization by Dongarra et al. [7].

502 J. Kurzak et al.

Fig. 3. LU panel.

The LU panel factorization in SLATE relies on internal
blocking and persistent assignment of tiles to threads within
each MPI process. Unlike past implementations, it is not
recursive, as plain recursion proved inferior to blocking. Mem-
ory residency provides some level of cache reuse, while block-
ing provides some level of compute intensity. The resulting
implementation is no longer memory bound, and scales well
with the number of processes and the number of threads in
each process. The procedure is heavily synchronous and relies
on MPI collective communication to exchange pivot informa-
tion, and on thread barriers for intra-node synchronization.
An MPI sub-communicator is created for each set of processes
participating in each panel factorization.

Figure 3 shows the basic premise of the panel implemen-
tation. The tiles are assigned to MPI ranks, and to threads
within each rank, in a round-robin fashion. The assignment
is persistent, which allows for a high degree of cache reuse,
within each rank, throughout the panel factorization. Also,
the routine is internally blocked: the factorization of a panel
of width nb proceeds in steps of much smaller width ib. While
typical values of nb are 192, 256, etc., typical values of ib are
8, 16, etc. The ib factorization contains mostly level 1 and 2
BLAS operations, but can benefit to some extent from cache
residency, while the nb factorization contains mostly level 3
BLAS operations and can also benefit from cache residency.

At each step of the ib panel factorization, a stripe of the
lower triangular matrix (L) is computed, along with a small
part of the U factor (U11). All this work is done one column
at a time. What follows is application of the L transforma-
tions to the right, which includes updating the remaining A22

submatrix, and computing of a new horizontal stripe of the
U factor (U12). Most of this work is done using level 3 BLAS
operations.

Each panel factorization is followed by an update of the
trailing submatrix (Fig. 2), which involves: (1) applying row
swaps (laswp), (2) triangular solve (trsm), and (3) matrix
multiplication (gemm). This requires the following commu-
nication: (1) “horizontal” broadcasting of the panel to the
right, (2) “vertical” exchanges of the rows being swapped, and
(3) “vertical” broadcasting of the top row or tiles down the
matrix.

This creates the extra complication of multiple OpenMP
tasks issuing, possibly concurrently, independent communica-
tions. Specifically, the collective communication of the panel

factorization may coincide with sends and receives of multiple simultaneous row
swaps. This requires that the underlying MPI implementation be thread safe, and

Linear Systems Solvers for Distributed-Memory Machines 503

support the MPI_THREAD_MULTIPLE mode (i.e., multiple threads simultaneously
issuing MPI communications). It also requires that the different communications
be distinguished by different MPI tags.

6 Results

6.1 Setup

Performance numbers were collected using the SummitDev system9 at the Oak
Ridge Leadership Computing Facility (OLCF), which is intended to mimic the
OLCF’s much larger supercomputer, Summit. SummitDev is based on the IBM
POWER8 processors and the NVIDIA P100 (Pascal) accelerators, and is one
generation behind Summit, which is based on the IBM POWER9 processors
and the NVIDIA V100 (Volta) accelerators.

The SummitDev system contains three racks, each with eighteen IBM
POWER8 S822LC nodes, for a total of fifty-four nodes. Each node contains two
POWER8 CPUs, ten cores each, and four P100 GPUs. Each node has 256 GB
of DDR4 memory. Each GPU has 16 GB of HBM2 memory. The GPUs are
connected by NVLink 1.0 at 80 GB/s. The nodes are connected with a fat-tree
enhanced data rate (EDR) InfiniBand.

The software environment used for the experiments included GNU Com-
piler Collection (GCC) 7.1.0, CUDA 9.0.69, Engineering Scientific Subroutine
Library (ESSL) 5.5.0, Spectrum MPI 10.1.0.4, Netlib LAPACK 3.6.1, and Netlib
ScaLAPACK 2.0.2.

6.2 Performance

All runs were performed using sixteen nodes of the SummitDev system, which
provides 16 nodes × 2 sockets × 10 cores = 320 IBM POWER8 cores and
16 nodes × 4 devices = 64 NVIDIA P100 accelerators. ScaLAPACK was run
with one process per core, which is still the prevailing method of getting the
best performance from ScaLAPACK. SLATE, on the other hand, was run using
one process per GPU. While SLATE does provide multi-GPU support, the best
performance was reached by assigning each GPU to one process and splitting
the CPU cores evenly (i.e., five cores per process).

Figure 4 shows performance comparison of SLATE and ScaLAPACK for the
Cholesky factorization. The left chart shows performance when using CPUs only
for both SLATE and ScaLAPACK. The right chart compares CPU performance
of ScaLAPACK with GPU performance of SLATE. At this point, we are not
aware of an efficient way of GPU-accelerating ScaLAPACK.

9 https://www.olcf.ornl.gov/kb articles/summitdev-quickstart/.

https://www.olcf.ornl.gov/kb_articles/summitdev-quickstart/

504 J. Kurzak et al.

Fig. 4. Performance of dpotrf without acceleration (left) and with acceleration (right).
The CPU peak is 8,960 gigaFLOPs, the GPU peak is 339,200 gigaFLOPs.

Similarly, Fig. 5 shows a performance comparison of SLATE and ScaLA-
PACK for the LU factorization. The left chart shows performance when using
CPUs only for both SLATE and ScaLAPACK. The right chart compares CPU
performance of ScaLAPACK with GPU performance of SLATE.

Fig. 5. Performance of dgetrf without acceleration (left) and with acceleration (right).
The CPU peak is 8,960 gigaFLOPs, the GPU peak is 339,200 gigaFLOPs.

6.3 Discussion

For the Cholesky factorization, SLATE delivers superior performance compared
to ScaLAPACK. The CPU performance of SLATE is higher than the CPU per-
formance of ScaLAPACK, and SLATE delivers an order of magnitude speedup
from GPU acceleration. For the LU factorization, the CPU performance of
SLATE is lower than ScaLAPACK’s for smaller matrix sizes, but catches up
for larger sizes. GPU performance of LU is generally superior to ScaLAPACK’s,
although the gains of acceleration are smaller than for Cholesky.

Linear Systems Solvers for Distributed-Memory Machines 505

While SLATE clearly benefits from GPU acceleration, it only achieves a
small fraction of the GPU theoretical peak performance. This is mostly due
to the fact that the computing power of the GPUs completely outmatches the
communication capabilities of the interconnection, despite the fact that the net-
work represents state-of-the-art technology. With this trend continuing, it will
be necessary to seek new algorithms—algorithms that are even more compute-
intensive than the traditional solutions to dense linear algebra problems. One
such example is the QDWH algorithm [15] for computing the singular value
decomposition (SVD).

Another problem is the one of mixing MPI messaging with OpenMP multi-
threading. In SLATE, MPI messages are sent from inside OpenMP tasks, which
requires the highest level of MPI thread safety (MPI_THREAD_MULTIPLE) and
some other precautions to prevent deadlock. These measures have an adverse
effect on performance. Ultimately, what is needed is an MPI_TASK_MULTIPLE
mode of operation, as described by Sala et al. [12].

Finally, the biggest factor contributing to the poor performance of the LU
factorization is the cost of pivoting (i.e., the operation of swapping rows). Cur-
rently, it is done in a sequential fashion, the same way it is done in LAPACK and
ScaLAPACK. Moving to parallel pivoting, where all the rows can be swapped
simultaneously, may improve the situation. Also, storing the matrix in column-
major in the CPU memory has a significant impact on the performance of piv-
oting on the CPU side, and moving the CPU operations to row-major—same as
was done for GPUs—may be necessary.

Acknowledgments. This research was supported by the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of two U.S. Department of Energy organizations
(Office of Science and the National Nuclear Security Administration) responsible for the
planning and preparation of a capable exascale ecosystem, including software, applica-
tions, hardware, advanced system engineering and early testbed platforms, in support
of the nation’s exascale computing imperative.

Software. The SLATE software if freely available at https://bitbucket.org/icl/slate.
SLATE is distributed under the modified BSD license, imposing minimal restrictions
on the use and distribution of the software.

References

1. Andersen, B.S., Gunnels, J.A., Gustavson, F., Wasniewski, J.: A recursive formu-
lation of the inversion of symmetric positive definite matrices in packed storage
data format. PARA 2, 287–296 (2002)

2. Andersen, B.S., Waśniewski, J., Gustavson, F.G.: A recursive formulation of
Cholesky factorization of a matrix in packed storage. ACM Trans. Math. Softw.
(TOMS) 27(2), 214–244 (2001)

3. Blackford, L.S., et al.: ScaLAPACK Users’ Guide. SIAM, Philadelphia (1997)
4. Castaldo, A., Whaley, C.: Scaling LAPACK panel operations using parallel cache

assignment. In: ACM Sigplan Notices, vol. 45, pp. 223–232. ACM (2010)

https://bitbucket.org/icl/slate

506 J. Kurzak et al.

5. Chan, E., van de Geijn, R., Chapman, A.: Managing the complexity of lookahead
for LU factorization with pivoting. In: Proceedings of the Twenty-second Annual
ACM Symposium on Parallelism in Algorithms and Architectures, pp. 200–208.
ACM (2010)

6. Choi, J., Dongarra, J., Ostrouchov, S., Petitet, A., Walker, D., Whaley, C.: Design
and implementation of the ScaLAPACK LU, QR, and Cholesky factorization rou-
tines. Sci. Program. 5(3), 173–184 (1996)

7. Dongarra, J., Faverge, M., Ltaief, H., Luszczek, P.: Achieving numerical accuracy
and high performance using recursive tile LU factorization with partial pivoting.
Concurr. Comput. Pract. Exp. 26(7), 1408–1431 (2014)

8. Gates, M., et al.: SLATE working note 2: C++ API for BLAS and LAPACK.
Technical report ICL-UT-17-03, Innovative Computing Laboratory, University of
Tennessee, June 2017. Revision 03–2018

9. Gustavson, F., Henriksson, A., Jonsson, I., K̊agström, B., Ling, P.: Recur-
sive blocked data formats and BLAS’s for dense linear algebra algorithms. In:
K̊agström, B., Dongarra, J., Elmroth, E., Waśniewski, J. (eds.) PARA 1998.
LNCS, vol. 1541, pp. 195–206. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0095337

10. Gustavson, F., Karlsson, L., K̊agström, B.: Parallel and cache-efficient in-place
matrix storage format conversion. ACM Trans. Math. Softw. (TOMS) 38(3), 17
(2012)

11. Kurzak, J., Dongarra, J.: Implementing linear algebra routines on multi-core pro-
cessors with pipelining and a look ahead. In: K̊agström, B., Elmroth, E., Dongarra,
J., Waśniewski, J. (eds.) PARA 2006. LNCS, vol. 4699, pp. 147–156. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-75755-9 18

12. Sala, K., Teruel, X., Perez, J.M., Peña, A.J., Beltran, V., Labarta, J.: Integrating
blocking and non-blocking MPI primitives with task-based programming models.
Parallel Comput. 85, 153–166 (2019)

13. Sorin, D.J., Hill, M.D., Wood, D.A.: A primer on memory consistency and cache
coherence. Synth. Lect. Comput. Arch. 6(3), 1–212 (2011)

14. Strazdins, P., et al.: A comparison of lookahead and algorithmic blocking techniques
for parallel matrix factorization (1998)

15. Sukkari, D., Ltaief, H., Keyes, D.: A high performance QDWH-SVD solver using
hardware accelerators. ACM Trans. Math. Softw. (TOMS) 43(1), 6 (2016)

https://doi.org/10.1007/BFb0095337
https://doi.org/10.1007/BFb0095337
https://doi.org/10.1007/978-3-540-75755-9_18

Accelerator Computing

Radio-Astronomical Imaging: FPGAs
vs GPUs

Bram Veenboer(B) and John W. Romein(B)

ASTRON (Netherlands Institute for Radio Astronomy), Dwingeloo, The Netherlands
{veenboer,romein}@astron.nl

Abstract. FPGAs excel in performing simple operations on high-speed
streaming data, at high (energy) efficiency. However, so far, their difficult
programming model and poor floating-point support prevented a wide
adoption for typical HPC applications. This is changing, due to recent
FPGA technology developments: support for the high-level OpenCL
programming language, hard floating-point units, and tight integration
with CPU cores. Combined, these are game changers: they dramatically
reduce development times and allow using FPGAs for applications that
were previously deemed too complex.

In this paper, we show how we implemented and optimized a radio-
astronomical imaging application on an Arria 10 FPGA. We compare
architectures, programming models, optimizations, performance, energy
efficiency, and programming effort to highly optimized GPU and CPU
implementations. We show that we can efficiently optimize for FPGA
resource usage, but also that optimizing for a high clock speed is diffi-
cult. All together, we demonstrate that OpenCL support for FPGAs is
a leap forward in programmability and it enabled us to use an FPGA as
a viable accelerator platform for a complex HPC application.

1 Introduction

Field-Programmable Gate Arrays (FPGAs) have long been favoured as energy-
efficient platform for fixed-precision computations. Their floating-point perfor-
mance used to be sub-par, because floating-point units (FPUs) had to be assem-
bled from logic blocks, which is rather inefficient and consumes many FPGA
resources. Recent FPGAs, such as the Intel Arria 10, have hardware support
for floating-point operations, making them an interesting platform for high-
performance floating-point computing.

FPGAs are traditionally programmed using hardware description languages,
such as Verilog and VHDL, which is notoriously difficult, time-consuming, and
error-prone. FPGA manufacturers such as Intel (formerly Altera) and Xilinx
now support OpenCL as a high-level alternative. In this paper, we describe
how we use the Intel FPGA SDK for OpenCL to implement and optimize a
complex radio-astronomy imaging application for the Arria 10 FPGA, which
would have been a daunting task when using a hardware description language.
Radio-astronomical imaging is a computationally challenging problem and poses
c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 509–521, 2019.
https://doi.org/10.1007/978-3-030-29400-7_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_36&domain=pdf
https://doi.org/10.1007/978-3-030-29400-7_36

510 B. Veenboer and J. W. Romein

strict performance and energy-efficiency requirements, especially for future exa-
scale instruments such as the Square Kilometre Array (SKA). We previously
demonstrated that imaging works particularly well on GPUs [11], so how does
the FPGA perform in comparison?

The main contributions of this paper are: (1) We explain how we use the Intel
FPGA SDK for OpenCL to build an efficient data-flow network for a complex
radio-astronomy application; (2) We compare our implementation on the Arria
10 FPGA to highly optimized CPU and GPU implementations and evaluate
performance and energy efficiency; (3) We discuss the differences and similarities
between FPGAs and GPUs in terms of architecture, programming model, and
implementation effort.

The rest of this paper is organized as follows: Sect. 2 provides background
information on radio-astronomical imaging. Section 3 explains how we imple-
mented and optimized the most critical parts of an astronomical imaging appli-
cation. In Sect. 4 we analyze performance and show energy efficiency measure-
ments. Section 5 describes the lessons that we learned while implementing and
optimizing the same application for both FPGAs and GPUs. In Sect. 6 we discuss
related work and we conclude in Sect. 7.

The source code of the FPGA implementations discussed in this paper is
available online [1].

2 Radio-Astronomical Imaging

A radio telescope detects electromagnetic waves that originate from radio sources
in the universe, which are used to construct a map of the sky containing the
positions, intensity, and polarization of the sources. Radio telescopes (such as
LOFAR and the future SKA-1 Low telescope) comprise many receivers of which
the signals are combined using a technique called ‘interferometry’. Figure 1 shows
a simplified version of a radio-astronomical interferometer, where sky-images are
created in three steps: correlation, calibration, and imaging. Every receiver mea-
sures two signals, corresponding to two orthogonal polarizations. The signals
from a receiver pair (q, r) (called a baseline) are multiplied and integrated for
a short period of time (correlated) such that the resulting sample V(q,r) (called
a visibility) contains the 2 × 2 combinations of the (polarized) signals measured
by receiver q and r, hence V(q,r) ∈ C

2×2. Visibilities have associated (u, v, w)-
coordinates that depend on the location of the receivers with respect to the
observed sky. Due to earth rotation, (u, v, w)-coordinates change over time and
every baseline contributes a track of measurements. During an observation, each
baseline collects TObs integration periods, where every sample consists of CObs

measurements in frequency. There exists a Fourier relation between the sampled
data and the observed sky. Therefore, in the imaging step, visibilities are first
placed onto a regular grid by an operation called gridding. This operation cor-
responds to applying a convolution to every visibility. After gridding, the grid is
Fourier transformed to obtain a sky image. Degridding is the reverse operation
where visibilities are computed taking a grid as input.

Radio-Astronomical Imaging: FPGAs vs GPUs 511

gridding

degridding

iFFT

FFT

imagevisibilities
incoming radio waves

baseline (pair of receivers)

receiver

× C I

correlation calibration imaging

visibilities visibilities image

Fig. 1. In a radio-telescope, signals are received by pairs of receivers. The correlator
combines the signal into visibilities. After calibration of the visibilities, the imager
produces an image of the sky, using an imaging pipeline.

2.1 Image-Domain Gridding

Image-Domain Gridding (IDG [10,11]) is a novel imaging technique where neigh-
bouring visibilities are first gridded onto so-called subgrids, after which the sub-
grids are Fourier transformed and added to the full grid. Subgrids are N × N
pixels in size and are positioned such that they cover T integration periods
(each with C frequency channels) and their corresponding convolution kernels.
Algorithm 1 shows pseudocode for gridding.

By applying gridding in the image-domain, IDG avoids the use of convolution
kernels in traditional gridding. Furthermore, the computation of one subgrid (one
iteration of the loop on Line 2) is not dependent on the computation of another
subgrid, making IDG very suitable for parallelization. We will refer to Line 4
through Line 15 as the gridder. After this step, a-term correction, tapering and
a 2D FFT are applied. We will refer to these operations as post-processing.

Pixels of the subgrid are computed as a direct sum of phase-shifted visibil-
ities [10]. This shift takes both the position of the subgrid (the phase offset,
Line 5) and the position of the visibility in the subgrid (the phase index,
Line 7) into account. Furthermore, the phase index is scaled according to fre-
quency (Line 9).

The phasor term in Line 11 is a complex number that is computed by an
evaluation of cos(phase) and sin(phase) or in more common terms cis(phase)
where cis(x) = cos(x) + isin(x). cmul denotes a complex multiplication, which
comprises four real-valued multiply-add operations. Since P = 4, the loop on
Line 13 is typically unrolled. Thus for every iteration of the loop over frequency
channels in line 8, one sine, one cosine, and 17 multiply-add operations are
performed, one in the computation of phase in Line 10, and 16 in the complex
multiplication of phasor with visibilities and addition to the subgrid in Line 15.

The operations outside this critical loop (the offset computation on Line 5,
the index computation on Line 7, and post-processing steps) are described by
van der Tol et al. [10]. The grid can be several tens of GBs in size and is there-
fore typically stored on a CPU-based system, while the computationally most
challenging gridding step is preferably performed on an accelerator (such as a
FPGA or a GPU).

512 B. Veenboer and J. W. Romein

1 #pragma parallel
2 for s = 1 . . . S :
3 complex<float> subgrid[P][N×N];
4 for i = 1 . . . N×N :
5 float offset = compute offset(s, i);
6 for t = 1 . . . T :
7 float index = compute index(s, i, t);
8 for c = 1 . . . C :
9 float scale = scales[c];

10 float phase = offset - (index × scale);
11 complex<float> phasor = {cos(phase), sin(phase)};
12 #pragma unroll
13 for p = 1 . . . P : // 4 polarizations

14 complex<float> visibility = visibilities[t][c][p];
15 subgrid[p][i] += cmul(phasor, visibility);

16 apply aterm(subgrid);
17 apply taper(subgrid);
18 apply ifft(subgrid);
19 store(subgrid);

Algorithm 1: Gridding pseudocode that is executed for every subgrid s of N × N
pixels in size. T ×C visibilities are associated with a subgrid, where T and C denote
time and frequency channel, respectively. Typical values for these parameters are
N = 32, T = 128 and C = 16.

3 Implementation

As we discuss in more detail later, FPGA applications are typically implemented
as a data-flow pipeline. We show the data-flow pipeline that we created for the
Image-Domain Gridding algorithm (Algorithm 1) in Fig. 2. The floating-point
operations in this algorithm are implemented in hardware using DSP blocks.
Our design is scalable and optimizes both the number of DSPs used and the
occupancy of these DSPs such that every cycle, every DSP performs a useful
computation. Although the computations in gridding and degridding are similar,
the degridding data-flow network is different and not shown in Fig. 2.

To implement gridding on the FPGA, we applied the following changes to
Algorithm 1: (1) we create a gridder pipeline that executes Line 5 through Line
15 to compute a single subgrid; (2) we move the computation of the index
value (Line 7) and the computation of offset (Line 5) into separate kernels to
avoid underutilization of the DSPs used to implement these computations; (3)
we unroll the loop over pixels (Line 4) to increase reuse of input data; (4) we
replicate the gridder pipeline by a factor φ to compute multiple subgrids in
parallel; (5) input data (such as the visibilities, Line 14) is read from DRAM in
bursts in separate kernels and forwarded to the gridder pipelines in a round-robin
fashion.

Radio-Astronomical Imaging: FPGAs vs GPUs 513

read visibilities

read scales

read offset

read uvw

read lmn

write subgrid

repeat offset

compute index

iFFT

repeat index

apply taper

compute phase

reorder pixels

compute phasor

apply aterm

compute pixel

multiplexer

I/O kernels

gridder pipeline, replicated φ times

post-processing pipeline, not replicated

Fig. 2. All kernels in this design are single work-item kernels. The majority of the
computation takes place in the gridder pipeline, which is replicated φ times to compute
multiple subgrids in parallel. These subgrids are multiplexed and passed to the post-
processing pipeline, which applies a-term correction, tapering and a 2D FFT.

The remaining steps are implemented in the form of a post-processing pipeline
using as few resources as possible while still meeting throughput requirements
imposed by the gridder pipelines. A-term correction (Line 16) is implemented
as a series of two complex 2 × 2 matrix multiplications (one correction matrix
per receiver). Tapering (Line 17) is implemented as a scalar multiplication to
every pixel in the subgrid. The 2D FFT (Line 18) is based on the 1D Cooley-
Tukey FFT algorithm, which is applied to the rows and columns of the subgrid
to perform a 2D FFT.

3.1 The Sine/Cosine Computations

The Intel FPGA OpenCL compiler recognizes the sine and cosine pair and uses
8 memory blocks and 8 DSPs to implement it by creating a so-called IP block
(cisip). In comparison, only a single DSP is used to compute the phase term
on Line 10, and 16 DSPs are used to implement the computation on Line 15.
To reduce resource usage for cis(x), we investigated how lookup tables can be
used as an alternative to the compiler-generated version. In the case of cis(x)
the input x is an angle and the output is given as a coordinate on the unit circle,
which opens opportunities to exploit symmetry. Our lookup table implementa-
tion (cislu) contains precomputed values for sin(x) in the range of [0 : 1

2π]. We
use one DSP to convert the input x to an integer index and then derive indices
for sin(x) and cos(x) using logic elements. We analytically determined that a
1024-entry table provides sufficient accuracy.

3.2 Optimizing for Frequency

The OpenCL FPGA compiler gives feedback on resource usage by generating
HTML reports, which is highly useful when optimizing for resource usage. Opti-
mizing for high clock frequencies is difficult though: apart from a few general

514 B. Veenboer and J. W. Romein

guidelines, there is little guidance, such as feedback on which part of a (large) pro-
gram is the clock frequency limiter. There are low-level Quartus timing reports,
but these are difficult to comprehend by OpenCL application programmers. Also,
even though the FPGA has multiple clock domains, these are not exposed to the
programmer. The whole OpenCL program therefore runs at a single clock fre-
quency. Hence, a single problematic statement, possibly not even in the critical
path, can slow down the whole FPGA design.

We developed the following method to find clock-limiting constructs: we split
the OpenCL program into many small fragments, added dummy data generators
and sink routines (so that the compiler does not optimize everything away), and
compiled each of these fragments, to determine their maximum clocks. This way,
we found for example that a single, inadvertently placed modulo 13 operation
slowed down the whole application, something which was difficult to pinpoint
but easy to fix.

4 Results

We compare our gridding and degridding design on an Arria 10 FPGA to a GPU
in terms of performance and energy efficiency. We also add an optimized CPU
implementation for comparison. We use contemporary devices with a similar
theoretical peak performance and produced using a similar lithographical pro-
cess, see Table 1 for details. The imaging parameters are set as follows: N = 32,
T = 128 and C = 16. The FPGA designs are scaled up by increasing φ until the
maximum number of DSPs is reached.

The Arria 10 GX 1150 FPGA (Arria) comes in the form of an PCIe acceler-
ator card and has two banks of 4 GB DDR3 memory. The FPGA runs a so-called
Board-Support Package (BSP) that is required to use the FPGA using the Intel
FPGA SDK for OpenCL. We use the min BSP, which exposes all 1518 DSPs
present on the FPGA to the application and uses only one DDR3 memory bank.
We tested various combinations of the Intel FPGA SDK for OpenCL (versions
17.1, 18.0 and 18.1), recompiled each application with dozens of seeds, and report
the results for the version that achieves the best clock frequency.

The CPU that we use is part of a dual-socket system, of which we use only
a single processor (Haswell) and the corresponding memory. We use an Intel
compiler and the Intel Math Kernel Library (MKL) (both version 2019.0). The
GPU (Maxwell) uses the 396.26 GPU driver and CUDA version 9.2.88.

4.1 Resource Usage

We refer to designs that use cisip as gridding-ip and degridding-ip, while the
gridding-lu and degridding-lu designs use our alternative implementation
with lookup tables (cislu). We report resource usage and the highest achieved
clock frequency (Fmax) of all designs in Table 2. In all four designs the number of
DSPs used is very close to the 1518 DSPs available and we run out of DSPs before
we run out of any other resource (which is good). We provide a breakdown of DSP

Radio-Astronomical Imaging: FPGAs vs GPUs 515

Table 1. The Intel Haswell-EP CPU, Intel Arria 10 FPGA and NVIDIA Maxwell GPU
used in our experiments. We refer to these devices as Haswell, Arria and Maxwell.

FPUs Peak Bandwidth TDP Process

Intel Xeon E5-2697v3 224(a) 1.39 TFlop/s 68 GB/s 145W 22nm (TSMC)

Nallatech 385A 1518 1.37 TFlop/s 34GB/s 75W 20nm (TSMC)

NVidia GTX 750 Ti 640 1.39 TFlop/s 88GB/s 60W 28nm (TSMC)

(a) # cores × # vector units × vector length

Table 2. Resource usage of our gridding and degridding designs on Arria. Logic
(ALUTs or FFs) is counted in terms of thousand elements. The φ parameter is used
to scale up the design, see Fig. 2. The theoretical peak Fmax of Arria is 450 MHz.

ALUTs FFs RAMs DSPs MLABs φ Fmax

gridding-ip 334 (43%) 487 (31%) 1514 (64%) 1439 (95%) 5317 (71%) 14 258

degridding-ip 364 (47%) 550 (35%) 1711 (72%) 1441 (95%) 6418 (78%) 14 254

gridding-lu 207 (27%) 490 (32%) 1448 (61%) 1498 (99%) 5921 (57%) 20 256

degridding-lu 252 (33%) 583 (38%) 1723 (73%) 1503 (99%) 7520 (69%) 20 253

resource usage in Fig. 3 where we distinguish between the DSPs used to imple-
ment various subparts of the algorithm. E.g. for gridding (Algorithm 1): DSPfma
(Line 15), DSPcis (Line 11) and DSPmisc for the post-processing steps and miscel-
laneous computations, and similarly for degridding. The implementation of com-
putations outside of the critical path consume few resources (DSPmisc). Since cislu
uses fewer resources compared to cisip to implement the sine/cosine evaluation,
we are able to scale up gridding-lu and degridding-lu further (by increasing
φ from 14 to 20) than is possible with gridding-ip and degridding-ip.

4.2 Throughput and Energy Efficiency

We compare throughput, measured as the number of visibilities processed per
second, in Fig. 4a. The designs that use a lookup table to implement the
sine/cosine evaluation (cislu) achieve a higher throughput due to a larger number
of parallel gridder or degridder pipelines. Both Arria and Maxwell accelerate
gridding and degridding compared to Haswell by achieving more than double
the throughput.

On both the FPGA and GPU the visibilities (and other data) are copied to
and from the device using PCIe transfers. On Maxwell, we can fully overlap
PCIe transfers with computations, such that throughput is not affected by these
transfers. On Arria, we found that PCIe transfers overlap only partially: the
FPGA idles 9% of the total runtime waiting on PCIe transfers. This is probably
a limitation in the OpenCL runtime or Board Support Package. We see no fun-
damental reason why PCIe transfers could not fully overlap on the FPGA. In
Fig. 4a we therefore only include the kernel runtime to determine throughput.

516 B. Veenboer and J. W. Romein

Fig. 3. Breakdown of DSP resource usage

0 5 10 15 20 25 30

Haswell

Maxwell

Arria-IP

Arria-LU

Throughput [MVisibilities/s]

(a) Throughput comparison

0 0.2 0.4 0.6 0.8 1

Haswell

Maxwell

Arria-IP

Arria-LU

Energy efficiency [MVisibilities/J]

(b) Energy efficiency comparison

Fig. 4. Throughput (the number of visibilities processed per second, MVis/s) and
energy efficiency (the number of visibilities processed per Joule, MVis/J).

To asses energy-efficiency, we use PowerSensor [8] to measure energy con-
sumption of the full PCIe device in case of Arria. On Maxwell we use NVML
and on Haswell we use LIKWID [9]. Our measurements in Fig. 4b indicate that
both accelerators are much more energy-efficient then Haswell by processing
about an order of magnitude more visibilities for every Joule consumed.

4.3 Performance Analysis

Despite their almost identical theoretical peak performance, there is quite a large
disparity between the achieved throughput on the various devices. As we illus-
trate in Fig. 5, these differences are mainly caused by how sine/cosine (cis(x))
is implemented. On Haswell we use MKL to evaluate cis(x) in software by
issuing instructions onto the FPUs. In the operations mix found in IDG (17
FMAs and one evaluation of cis(x)) 80% of the time is spent in the sine/cosine
evaluation [11]. On Maxwell, Special Function Units (SFUs) evaluate cis(x)
in hardware in a separate processing pipeline, such that FMAs and sine/cosine
evaluations can be overlapped. Similarly, the distinct operations (fma, cis and
misc) also overlap on Arria, since these are all implemented using dedicated
DSPs. However, unlike Maxwell, these operations compete for resources. On
Haswell and Maxwell the miscellaneous operations contribute negligibly to

Radio-Astronomical Imaging: FPGAs vs GPUs 517

Fig. 5. Breakdown of gridding runtime for FMA operations (timefma), sine/cosine
evaluations (timecis) and all other operations (timemisc). On Haswell, 80% of the
time is spend in sine/cosine evaluations. On Maxwell and on Arria, the sine/cosine
evaluations are performed concurrently with the FMA operations.

Fig. 6. The implementation of sine/cosine evaluations in software imposes an upper
bound on performance on Haswell. Maxwell performs sine/cosine operations con-
currently with FMA operations and performs close to the theoretical peak. On Arria,
the performance is bound by the clock frequency.

the overall runtime. On Arria, the misc operations are implemented using as
few DSPs as possible (and shared by multiple gridder pipelines) to minimize
underutilization.

We analyze the achieved floating-point performance by applying the roofline
model [12], see Fig. 6. In this analysis, we only include all +, − and × floating-
point operations in the operation count (e.g. Flopsfma + Flopsmisc), while we
exclude all cis(x) operations (e.g. Opscis). According to the operational intensity,
the performance of gridding and degridding is compute bound on all devices. As
we illustrated in Fig. 5, on Haswell the Flops and Ops are both executed on the
FPUs and the performance is therefore bound by the performance of the cis(x)
implementation, e.g. Intel MKL (for which the bound is indicated with the blue
dashed line). A lookup table does not improve performance over using the Intel

518 B. Veenboer and J. W. Romein

MKL library. Due to the SFUs, on Maxwell the achieved performance is over
90% of the theoretical peak.

The dotted line on the roofline for Arria illustrates the theoretical peak,
at the advertised frequency of 450 MHz. In practice, even with only a single
DSP used, the maximum clock frequency that the compiler achieves is 350 MHz
resulting in a lower practical peak indicated by the solid line. Our gridding
and degridding designs on average achieve about 255 MHz (indicated with the
red dashed line). The percentage of DSPs used to implement Flops (63% for
gridding-ip and degridding-ip, 90% for gridding-lu and degridding-lu,
see Fig. 3) provides upper bounds on attainable performance. The achieved per-
formance is within 99% of these bounds, indicating that the designs are nearly
stall-free.

5 FPGAs vs. GPUs: Lessons Learned

As we implemented and optimized Image-Domain Gridding for both FPGAs
and GPUs, we found differences and similarities with respect to architecture,
programming model, implementation effort, and performance.

The source code for the FPGA imager is highly different from the GPU code.
This is mostly due to the different programming models: with FPGAs, one builds
a dataflow pipeline, while GPU code is imperative. The FPGA code consists of
many (possibly replicated) kernels that each occupy some FPGA resources, and
these kernels are connected by channels (FIFOs). The programmer has to think
about how to divide the FPGA resources (DSPs, memory blocks, logic, etc.) over
the pipeline components, so that every cycle all DSPs perform a useful computa-
tion, avoiding bottlenecks and underutilization. Non-performance-critical oper-
ations, such as initialization routines, can consume many resources, while on
GPUs, performance-insensitive operations are not an issue. On FPGAs, it is
also much more important to think about timing (e.g., to avoid pipeline stalls),
but being forced to think about it leads to high efficiency: in our gridding appli-
cation, no less than 96% of all DSPs perform a useful operation 99% of the
time.

FPGAs have typically less memory bandwidth than GPUs, but we found that
with the FPGA dataflow model, where all kernels are concurrently active, it is
less tempting to store intermediate results off-chip than with GPUs, where ker-
nels are executed one after another. In fact, our FPGA designs use memory only
for input and output data; we would not even have used FPGA device memory
at all if the OpenCL Board-Support Package would have implemented the PCIe
I/O channel extension. In contrast, the cuFFT GPU library even requires data
to be in off-chip memory.

Both FPGAs and GPUs obtain parallelism through kernel replication and
vectorization; FPGAs also by pipelining and loop unrolling. This is another
reason why FPGA and GPU programs look differently. Surprisingly, many opti-
mizations for FPGAs and GPUs are similar, at least at a high level. Maximiz-
ing FPU utilization, data reuse through caching, memory coalescing, memory

Radio-Astronomical Imaging: FPGAs vs GPUs 519

latency hiding, and FPU latency hiding are necessary optimizations on both
architectures. For example, an optimization that we implemented to reduce local
memory bandwidth usage on the FPGA also turned out to improve performance
on the GPU, but somehow, we did not think about this GPU optimization before
we implemented the FPGA variant. However, optimizations like latency hiding
are much more explicit in FPGA code than in GPU code, as the GPU model
implicitly hides latencies by having many simultaneously instructions in flight.
On top of that, architecture-specific optimizations are possible (e.g., the sin/cos
lookup table; see Sect. 3.1).

Overall, we found it more difficult to implement and optimize for an FPGA
than for a GPU, mostly because it is difficult to efficiently distribute the FPGA
resources over the kernels in a complex dataflow pipeline. Yet, we consider the
availability of a high-level programming language and hard FPUs on FPGAs an
enormous step forward. The OpenCL FPGA tools have considerably improved
during the past few years, but have not yet reached the maturity level of the
GPU tools, which is quite natural, as the GPU tools have had much more time
to mature.

6 Related Work, Discussion and Future Work

Licht et al. [4] present an overview of HLS FPGA code transformations such
as transposing of the iteration space, replication and streaming dataflow that
we also applied. However, they do not describe code transformation for over-
coming underutilization of resources. Yang et al. [14] address underutilization
of resources by using a consumer-producer model, which they implement using
channel arbitrage. We also connect kernels running at different rates using chan-
nels, but we use channel depth to facilitate buffering and to avoid stalls.

Several studies compare energy efficiency between OpenCL applications for
FPGAs and GPUs [3,5–7,15,16]. In most cases, they compare FPGAs and GPUs
manufactured using a similar lithographical process and report higher energy-
efficiency for FPGAs compared to GPUs. We compared contemporary and com-
parable devices (in terms of lithographical process and peak performance) and
apply the roofline model to illustrate that our implementations perform close to
optimal both on the FPGA and on the GPU. On Arria 10 we show that the
performance of our designs are bound by clock frequency, something we can not
improve with the current OpenCL compiler for FPGAs. We also explain that
the GPU has an advantage, by computing sine/cosine using dedicated hardware.
In contrast to what the related work suggests, our results indicate that FPGAs
are not necessarily more energy-efficient than GPUs.

Intel claims that the Stratix 10 FPGA (produced at 14 nm) will be about
3.6× as energy-efficient compared to Arria 10 [13] and have a peak performance
of up to 9 TFlop/s. In future work, we would like to extend our analysis to
compare Stratix 10 and NVIDIA Turing GPUs.

520 B. Veenboer and J. W. Romein

7 Conclusion

In this paper we set out to implement a complex radio-astronomy application
on an Arria 10 FPGA using the Intel FPGA SDK for OpenCL. Being able to
implement such an application illustrates that having support for a high-level
programming language is a major leap forwards in programmability, as we would
not have been able to implement this application using a hardware description
language. We show optimization techniques that make our implementation very
scalable as it uses almost all DSPs available to perform useful floating-point
computations while it stalls less than 1% of the time.

We compared optimized implementations of an astronomical imaging appli-
cation on a GPU, FPGA, and a CPU. While the theoretical peak-performance
for these devices is almost identical, the FPGA and GPU perform much better
than the CPU and they consume significantly less power. In absolute terms, the
GPU is the fastest and most energy-efficient device, mainly due to support for
sine/cosine operations using dedicated hardware. On the FPGA, our implemen-
tation of a custom lookup-table for these operations is advantageous, but the
maximum achieved clock frequency is only about 70% of the theoretical peak.
Unfortunately, the Intel FPGA SDK for OpenCL (currently) provides few means
to improve the clock frequency. This issue is non-existent on GPUs.

FPGAs are traditionally used for low-latency, fixed-point and streaming com-
putations. With the addition of hardware support for floating-point computa-
tions and the OpenCL programming model, the FPGA has also entered the
domain where GPUs are used: high-performance floating-point applications.

Acknowledgments. This work is funded by the Netherlands eScience Center
(NLeSC), under grant no 027.016.G07 (Triple-A 2), the EU Horizon 2020 research
and innovation programme under grant no 754304 (DEEP-EST) and by NWO
(DAS-5 [2]). The European Commission is not liable for any use that might be made
of the information contained in this paper. The authors would like to thank Atze van
der Ploeg (NLeSC) and Suleyman S. Demirsoy (Intel) for their support.

References

1. ASTRON Netherlands Institute for Radio Astronomy: Image-Domain Gridding for
FPGAs (2019). https://gitlab.com/astron-idg/idg-fpga

2. Bal, H., et al.: A medium-scale distributed system for computer science research:
infrastructure for the long term. IEEE Comput. 49(5), 54–63 (2016)

3. Cong, J., et al.: Understanding performance differences of FPGAs and GPUs. In:
2018 IEEE 26th International Symposium on Field-Programmable Custom Com-
puting Machines, pp. 93–96 (2018)

4. de Fine Licht, J., et al.: Transformations of high-level synthesis codes for high-
performance computing. Computing Research Repository (CoRR) (2018)

5. Jin, Z., Finkel, H.: Power and performance tradeoff of a floating-point intensive
kernel on OpenCL FPGA platform, pp. 716–720 (2018)

https://gitlab.com/astron-idg/idg-fpga

Radio-Astronomical Imaging: FPGAs vs GPUs 521

6. Minhas, U.I., Woods, R., Karakonstantis, G.: Exploring functional acceleration of
OpenCL on FPGAs and GPUs through platform-independent optimizations. In:
Voros, N., Huebner, M., Keramidas, G., Goehringer, D., Antonopoulos, C., Diniz,
P.C. (eds.) ARC 2018. LNCS, vol. 10824, pp. 551–563. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78890-6 44

7. Muslim, F.B., et al.: Efficient FPGA implementation of OpenCL high-performance
computing applications via high-level synthesis. IEEE Access 5, 2747–2762 (2017)

8. Romein, J.W., Veenboer, B.: PowerSensor 2: a fast power measurement tool. In:
2018 IEEE International Symposium on Performance Analysis of Systems and
Software, pp. 111–113 (2018)

9. Treibig, J., Hager, G., Wellein, G.: LIKWID: a lightweight performance-oriented
tool suite for x86 multicore environments. In: Proceedings of the International
Conference on Parallel Processing, pp. 207–216 (2010)

10. van der Tol, S., Veenboer, B., Offringa, A.: Image domain gridding. Astron. Astro-
phys. 616, A27 (2018)

11. Veenboer, B., Petschow, M., Romein, J.W.: Image-domain gridding on graphics
processors. In: Proceedings of the International Parallel and Distributed Processing
Symposium, IPDPS, pp. 545–554 (2017)

12. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52, 65–76 (2009)

13. Won, M.S.: Meeting the performance and power imperative of the Zettabyte era
with generation 10. Technical report, Intel Programmable Solutions Group (2013)

14. Yang, C., et al.: OpenCL for HPC with FPGAs: case study in molecular electro-
statics. In: 2017 IEEE High Performance Extreme Computing Conference (HPEC),
pp. 1–8 (2017)

15. Zohouri, H.R.: High performance computing with FPGAs and OpenCL. Ph.D.
thesis, Tokyo Institute of Technology (2018)

16. Zohouri, H.R., et al.: Evaluating and optimizing OpenCL kernels for high per-
formance computing with FPGAs. In: SC16: International Conference for High
Performance Computing, Networking, Storage and Analysis, pp. 409–420 (2016)

https://doi.org/10.1007/978-3-319-78890-6_44

Author Index

Ait Aba, Massinissa 117
Alcaraz, Jordi 74
Alistarh, Dan 317
Angriman, Eugenio 434
Archibald, Blair 184
Avati, Valentina 241
Azevedo, Frédéric 129
Azmi, Elnaz 256

Babaoglu, Ozalp 3
Bak, Seonmyeong 346
Barthou, Denis 29
Bartolini, Andrea 3
Bigot, Julien 419
Blaszkiewicz, Milosz 241
Bocchi, Enrico 241
Borghesi, Andrea 3
Bosilca, George 47

Canali, Luca 241
Canon, Louis-Claude 61
Cappello, Franck 47
Carribault, Patrick 29
Castro, Diogo 241
Cervantes, Javier 241
César, Eduardo 74
Chandramowlishwaran, Aparna 47
Charara, Ali 495
Chatelain, Yohan 481
Cordeiro, Daniel 197
Cosenza, Biagio 291

de Camargo, Raphael Y. 197
de Oliveira Castro, Pablo 481
Defour, David 481
Dice, Dave 334, 363
Dongarra, Jack 495

Ehret, Uwe 256
Elizarov, Roman 317

Fahringer, Thomas 291
Funke, Daniel 156

Gates, Mark 495
Gautier, Thierry 419
Gorman, Gerard 87
Grinten, Alexander van der 434
Grzanka, Leszek 241
Guerraoui, Rachid 227
Guiraud, Enrico 241

Hayashi, Akihiro 346
Héam, Pierre-Cyrille 61
Hovland, Paul 87
Huchant, Pierre 29
Hückelheim, Jan 87

Ilias, Qamar 17

Jannesari, Ali 17, 213
Jansen, Klaus 103
Jeannot, Emmanuel 47

Kalikar, Saurabh 142
Kaspar, Jan 241
Kaya, Kamer 405
Kiziltan, Zeynep 3
Klusáček, Dalibor 129
Koch, Andreas 170
Kogan, Alex 334, 363
Kolla, Hemanth 346
Kothuri, Prasanth 241
Koval, Nikita 317
Kukreja, Navjot 87
Kumar, Vivek 391
Kumm, Martin 170
Kurzak, Jakub 495

Lamanna, Massimo 241
Lartigue, Ghislain 481
Latu, Guillaume 419
Le Merrer, Erwan 227
Lebre, Adrien 273
Louboutin, Mathias 87

Maier, Patrick 184
Malawski, Maciej 241

Mayo, Jackson 346
Mazaheri, Arya 213
Meyer, Jörg 256
Meyerhenke, Henning 434
Mnich, Aleksandra 241
Moscicki, Jakub 241
Moskewicz, Matthew W. 213
Munier Kordon, Alix 117
Murali, Shravan 241

Nandivada, V. Krishna 377
Nasre, Rupesh 142
Netti, Alessio 3
Nguyen, Thuy Linh 273
Nicolae, Bogdan 47
Norouzi, Mohammad 17
Nou, Ramon 273

Oppermann, Julian 170

Padua, David A. 304
Pallez (Aupy), Guillaume 117
Patra, Rhicheek 227
Paul, Sri Raj 346
Petit, Eric 481
Pichel, Juan C. 304
Piparo, Danilo 241

Quintana-Ortí, Enrique S. 469

Rau, Malin 103
Reuter-Oppermann, Melanie 170
Richard, Jérôme 419
Romein, John W. 509

Saillard, Emmanuelle 29
Salzmann, Philip 291
Sanders, Peter 156

Sant’Ana, Luis 197
Sarkar, Vivek 346
Sayah, Mohamad El 61
Schulte, Johannes 213
Sikora, Anna 74
Sinnen, Oliver 170
Sîrbu, Alina 3
Sistla, Meghana Aparna 377
Sittel, Patrick 170
Slattengren, Nicole 346
Stewart, Robert 184
Streit, Achim 256
Strobl, Marcus 256
Suter, Frédéric 129

Tangwongsan, Kanat 451
Taş, Mustafa Kemal 405
Taşyaran, Fatih 405
Tejedor, Enric 241
Teranishi, Keita 346
Thoman, Peter 291
Tirthapura, Srikanta 451
Tomás, Andrés E. 469
Trinder, Phil 184
Tseng, Shu-Mei 47

van Pruijssen, Rik 256
Veenboer, Bram 509
Vigouroux, Jean-Ronan 227

Whitlock, Matthew 346
Winkler, Vincent 156
Wolf, Felix 17, 213

Yamazaki, Ichitaro 495
Yang, Chih-Chieh 304
YarKhan, Asim 495
Yıldırır, Kerem 405

524 Author Index

	Preface
	Organization
	Keynotes
	Complex Workflows Development in Distributed Computing Infrastructures
	Nanomachines at Work: Atomistic Simulations of Biomolecular Systems
	Scientific Applications and Heterogeneous Architectures Data Analytics and the Intersection of HPC and Edge Computing
	Contents
	Support Tools and Environments
	Online Fault Classification in HPC Systems Through Machine Learning
	1 Introduction
	2 The Antarex Dataset
	2.1 Dataset Overview
	2.2 Experimental Setup for Data Acquisition
	2.3 Features of the Dataset

	3 Creation of Features
	4 Experimental Results
	4.1 Comparison of Classifiers
	4.2 Comparison of Labeling Methods and Impact of Shuffling
	4.3 Impact of Ambiguous Feature Vectors
	4.4 Remarks on Overhead

	5 Conclusions
	References

	Accelerating Data-Dependence Profiling with Static Hints
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Reduced Instrumentation
	3.2 Unified Representation
	3.3 Hybrid vs. Dynamic Data Dependences

	4 Evaluation
	5 Conclusion
	References

	Multi-valued Expression Analysis for Collective Checking
	1 Introduction
	2 Motivation
	3 PARCOACH Control-Flow Analysis
	4 Multi-valued Expression Detection
	5 Collective Errors Detection
	6 Related Work
	6.1 Dependence Analyses Techniques
	6.2 Collective Error Detection Techniques

	7 Experimental Results
	8 Conclusion
	References

	Performance and Power Modeling, Prediction and Evaluation
	Towards Portable Online Prediction of Network Utilization Using MPI-Level Monitoring
	1 Introduction
	2 Related Work
	3 System Design
	3.1 Design Principles
	3.2 Portable MPI-Level Monitoring
	3.3 Sequence-to-Sequence Recurrent Neural Networks (Seq2Seq)
	3.4 Online Periodicity-Aware Forecasting Using |seq2seq| RNNs
	3.5 Implementation Details

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Methodology
	4.3 Monitoring Accuracy
	4.4 Prediction Accuracy
	4.5 Computational Overhead

	5 Conclusions
	References

	A Comparison of Random Task Graph Generation Methods for Scheduling Problems
	1 Introduction
	2 Related Work
	3 Background
	4 Analysis of Special DAGs
	5 Analysis of Existing Generators
	6 Evaluation on Scheduling Algorithms
	7 Conclusion
	References

	Hardware Counters' Space Reduction for Code Region Characterization
	1 Introduction
	2 Background
	2.1 Hardware Performance Counters
	2.2 Principal Component Analysis
	2.3 Linear Correlation Analysis

	3 Methodology
	3.1 Step 1: Hardware Performance Data Collection
	3.2 Step 2: Data Exploration
	3.3 Step 3: Hardware Performance Counter Reduction

	4 Experimentation
	5 Related Work
	6 Conclusion and Future Work
	References

	Combining Checkpointing and Data Compression to Accelerate Adjoint-Based Optimization Problems
	1 Introduction
	1.1 Adjoint-Based Optimization
	1.2 Example Adjoint Problem: Seismic Inversion
	1.3 Memory Requirements
	1.4 Summary of Contributions

	2 Compression Algorithms
	2.1 Lossless Compression
	2.2 Lossy Compression

	3 Checkpointing Performance Model
	4 Performance Model Including Compression
	5 Acceptable Errors and Convergence
	6 Problem and Test Case
	7 Results and Discussion
	8 Conclusions and Future Work
	References

	Scheduling and Load Balancing
	Linear Time Algorithms for Multiple Cluster Scheduling and Multiple Strip Packing
	1 Introduction
	2 Partitioning Technique
	3 A Faster Algorithm for a Practical Number of Jobs
	3.1 Proof of Theorem4

	4 Conclusion
	References

	Scheduling on Two Unbounded Resources with Communication Costs
	1 Introduction
	2 Model
	3 Results
	3.1 Complexity
	3.2 Polynomial Algorithms

	4 Future Directions
	References

	Improving Fairness in a Large Scale HTC System Through Workload Analysis and Simulation
	1 Introduction
	2 System Description
	3 Workload Analysis
	4 Revisiting the Configuration of the Batch System
	5 Workload Trace Production and Availability
	6 Conclusion and Future Work
	References

	Toggle: Contention-Aware Task Scheduler for Concurrent Hierarchical Operations
	1 Introduction
	2 Background and Motivation
	3 Toggle: Contention-Aware Scheduler
	3.1 Representing Hierarchy as a System of Nested Intervals
	3.2 Concurrent Data Structure for Task Classification and Scheduling
	3.3 Modified Locking Policy
	3.4 Nested Bucketing
	3.5 Task Stealing
	3.6 Thread Communication

	4 Experimental Evaluation
	4.1 STMBench7
	4.2 XML Hierarchy
	4.3 Effect of Skewness
	4.4 Effect of Task Stealing
	4.5 Effect of Hierarchy Size

	5 Related Work
	6 Conclusion
	7 Data Availability Statement and Acknowledgments
	References

	Load-Balancing for Parallel Delaunay Triangulations
	1 Introduction
	2 Preliminaries
	2.1 Delaunay Triangulations
	2.2 Related Work
	2.3 Parallel Divide-and-Conquer DT Algorithm

	3 Sample-Based Partitioning
	3.1 Recursive Bisection and Direct k-way Partitioning
	3.2 Geometric Primitives

	4 Evaluation
	4.1 Parameter Studies
	4.2 Partitioning Quality
	4.3 Runtime Evaluation

	5 Conclusions
	References

	Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling
	1 Introduction
	2 Scheduling Framework
	2.1 Formal Definitions
	2.2 Bounds

	3 ILP Formulations for the RAMS Problem
	4 Approaches for the MORAMS Problem
	4.1 -Approach
	4.2 Iterative Approach
	4.3 Dynamic Lower Bound for the Allocation

	5 Evaluation
	6 Conclusion and Outlook
	References

	Implementing YewPar: A Framework for Parallel Tree Search
	1 Introduction
	2 Existing Search Approaches
	3 YewPar Design
	3.1 Search Coordination Methods

	4 YewPar Implementation
	5 Depth-Pool: A Workpool that Respects Search Heuristics
	6 Evaluation
	6.1 Skeleton Overheads
	6.2 Global Knowledge Exchange
	6.3 Work-Stealing Performance
	6.4 Scalability of YewPar

	7 Conclusion
	References

	PLB-HAC: Dynamic Load-Balancing for Heterogeneous Accelerator Clusters
	1 Introduction
	2 Related Work
	3 Proposed Algorithm
	3.1 Processing Unit Performance Modeling
	3.2 Block Size Selection
	3.3 Execution Phase
	3.4 Complete Algorithm

	4 Implementation
	4.1 Applications

	5 Results
	5.1 Application Speedup
	5.2 Block Size Distribution
	5.3 Processing Unit Idleness
	5.4 Adaptability

	6 Conclusions
	References

	Data Management, Analytics and Deep Learning
	Enhancing the Programmability and Performance Portability of GPU Tensor Operations*-10pt
	1 Introduction
	2 Comparison of CUDA, OpenCL, and Vulkan
	3 Code Generation
	4 Experimental Results
	5 Related Work
	6 Conclusion and Outlook
	References

	Unified and Scalable Incremental Recommenders with Consumed Item Packs
	1 Introduction
	2 CIP Based Algorithms
	2.1 CIP-u: A User-Based Recommender
	2.2 CIP-i: An Item-Based Recommender
	2.3 DeepCIP: An Embedding-Based Recommender
	2.4 The FISM Algorithm Under CIPs

	3 Implementation with Spark and Evaluation
	3.1 Experimental Setup
	3.2 Comparison with Competitors
	3.3 Scalability of the CIP Based Algorithms

	4 Related Work
	5 Conclusion
	References

	Declarative Big Data Analysis for High-Energy Physics: TOTEM Use Case
	1 Introduction
	2 Related Work
	3 Declarative Data Analysis with ROOT RDataFrame
	3.1 From Imperative to Declarative: RDataFrame
	3.2 Local Parallelisation
	3.3 Distributed Parallelisation
	3.4 Data Management

	4 TOTEM Analysis Use Case
	4.1 Original Analysis
	4.2 Porting of Analysis to RDataFrame

	5 Evaluation – Interactive Data Analysis in the Cloud
	5.1 Science Box Software Bundle
	5.2 Testbed Details
	5.3 Correctness
	5.4 Scalability
	5.5 Interactivity
	5.6 Portability

	6 Conclusions
	References

	Clustering as Approximation Method to Optimize Hydrological Simulations
	1 Introduction
	2 Background
	2.1 Hydrological Model
	2.2 Study Case

	3 Related Work
	4 Methodology
	5 Processing Results
	5.1 Dimensionality Reduction
	5.2 Clustering

	6 Implementation Environment
	7 Conclusions and Future Work
	References

	Cluster and Cloud Computing
	YOLO: Speeding Up VM and Docker Boot Time by Reducing I/O Operations
	1 Introduction
	2 Background
	2.1 QEMU-KVM Virtual Machine
	2.2 Docker Container

	3 YOLO Overview
	3.1 YOLO Boot Image
	3.2 yolofs

	4 Experimental Protocol
	4.1 Experimental Conditions
	4.2 Boot Time Methodologies

	5 VM Boot Time Analysis
	5.1 Booting Multiple VMs Simultaneously
	5.2 Booting One VM Under I/O Contention

	6 Docker Container Boot Time Analysis
	6.1 Booting Multiple Distinct Containers Simultaneously
	6.2 Booting One Docker Container Under I/O Contention

	7 Related Work
	8 Conclusion
	References

	Parallel and Distributed Programming, Interfaces, and Languages
	Celerity: High-Level C++ for Accelerator Clusters
	1 Introduction
	2 Related Work
	3 The Celerity System
	3.1 The Programming Interface
	3.2 The Prototype Runtime System

	4 Evaluation
	4.1 Programmability
	4.2 Performance

	5 Conclusion
	References

	Dataflow Execution of Hierarchically Tiled Arrays
	1 Introduction
	2 Background
	2.1 Overview of Hierarchically Tiled Arrays
	2.2 Overview of Open Community Runtime

	3 Design and Implementation of HTA-OCR
	3.1 Program Execution
	3.2 Data Dependences
	3.3 Split-Phase Continuation

	4 Experiments
	4.1 Tiled Dense Cholesky Factorization
	4.2 Tiled Sparse LU Factorization
	4.3 NAS Parallel Benchmarks
	4.4 Summary of Experiments

	5 Related Work
	6 Conclusions
	References

	Scalable FIFO Channels for Programming via Communicating Sequential Processes
	1 Introduction
	2 Channel Semantics
	3 Related Work
	3.1 Coroutines and Actors
	3.2 Producer-Consumer Data Structures

	4 Preliminaries
	5 Algorithm Description
	5.1 Channel Structure Overview
	5.2 The send and receive Operations
	5.3 The select Expression

	6 Evaluation
	6.1 Experimental Results

	7 Discussion and Future Work
	References

	TWA – Ticket Locks Augmented with a Waiting Array
	1 Introduction
	2 The TWA Algorithm
	2.1 Example Scenario – TWA in Action

	3 Related Work
	4 Empirical Evaluation
	4.1 MutexBench
	4.2 throw
	4.3 libslock stress_latency
	4.4 LevelDB readrandom
	4.5 RocksDB readwhilewriting
	4.6 Linux Kernel locktorture

	5 Conclusion
	References

	Enabling Resilience in Asynchronous Many-Task Programming Models
	1 Introduction
	2 Design
	2.1 Resilient API Specifications
	2.2 Memory Management

	3 Implementation
	3.1 HClib
	3.2 Enabling Resilience in HClib

	4 Evaluation
	4.1 Performance Numbers Without Failures
	4.2 Performance Numbers with Failures
	4.3 Performance Numbers on Multiple Nodes

	5 Related Work
	6 Conclusions and Future Work
	References

	Multicore and Manycore Parallelism
	Avoiding Scalability Collapse by Restricting Concurrency
	1 Introduction
	2 Related Work
	3 Background
	4 Generic Concurrency Restriction
	5 NUMA-Aware GCR
	6 Evaluation
	6.1 AVL Tree Microbenchmark
	6.2 Kyoto Cabinet

	7 Conclusion
	References

	Graph Coloring Using GPUs
	1 Introduction
	2 Background
	3 Graph Coloring for GPUs
	3.1 Non-termination of the RIG Algorithm
	3.2 Improvements to RIG

	4 Optimizations
	4.1 Use of long long int and CUDA __ffsll Instruction
	4.2 Stepwise Doubling of Maximum Colors Required

	5 Discussion
	6 Implementation and Evaluation
	6.1 Comparison of SIRG vs ChenGC and csrcolor
	6.2 Comparison of SIRG vs RIG
	6.3 Impact of the Proposed Optimizations
	6.4 Impact of Maintaining adjColors array per thread

	7 Conclusion
	References

	Featherlight Speculative Task Parallelism
	1 Introduction
	2 Background
	2.1 Async-Finish Programming Model
	2.2 Managed Runtime Services
	2.3 TryCatchWS Work-Stealing Runtime

	3 Featherlight Programming Model
	4 Design and Implementation
	4.1 Source Code Translation of Featherlight to Java
	4.2 Canceling Speculative [basicstyle=]async Once the Goal Is Found
	4.3 [basicstyle=]ExceptionFailureAbort and [basicstyle=]ExceptionSuccessAbort

	5 Experimental Evaluation
	5.1 Productivity Analysis
	5.2 Performance Analysis

	6 Related Work
	7 Conclusion
	References

	One Table to Count Them All: Parallel Frequency Estimation on Single-Board Computers
	1 Introduction
	2 Notation and Background
	3 Merged Tabulation with a Single Table
	4 Parallel Count-Min Sketch Construction
	5 Managing Heterogeneous Cores
	6 Experimental Results
	6.1 Multi Table vs. Single Table
	6.2 Managing Heterogeneous Cores
	6.3 Single Table vs. Single Table

	7 Related Work
	8 Conclusion and Future Work
	References

	Fine-Grained MPI+OpenMP Plasma Simulations: Communication Overlap with Dependent Tasks
	1 Introduction
	2 Use-Case Description
	2.1 Overview and Numerical Approach
	2.2 Distributed Algorithm and Data Structures

	3 Implementation Design
	4 Performance Evaluation
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Related Work
	6 Conclusion
	References

	Parallel Adaptive Sampling with Almost No Synchronization
	1 Introduction
	2 Preliminaries and Baseline for Parallelization
	2.1 Basic Definitions
	2.2 Betweenness Centrality and Its Approximation
	2.3 The KADABRA algorithm
	2.4 First Attempts at KADABRA Parallelization

	3 Scalable Parallelization Techniques
	3.1 Epoch-Based Framework
	3.2 Local-Frame and Shared-Frame Algorithm
	3.3 Synchronization Costs

	4 Experiments
	5 Related Work
	6 Conclusions and Future Work
	References

	Theory and Algorithms for Parallel Computation and Networking
	Parallel Streaming Random Sampling
	1 Introduction
	2 Preliminaries and Notation
	3 Parallel Sampling from a Sliding Window
	3.1 Simple Reversed Reservoir Algorithm
	3.2 Improved Single-Element Sampler
	3.3 Improved Multiple-Element Sampler
	3.4 Storing and Retrieving Reserved Samples
	3.5 Handling Minibatch Arrival

	4 Parallel Sampling from an Infinite Window
	5 Parallel Sampling with Replacement
	6 Conclusion
	References

	Parallel Numerical Methods and Applications
	Cholesky and Gram-Schmidt Orthogonalization for Tall-and-Skinny QR Factorizations on Graphics Processors
	1 Introduction
	2 The QRF-CBGS Algorithm
	3 Numerical Tests
	4 Performance Evaluation
	5 Conclusions
	References

	Automatic Exploration of Reduced Floating-Point Representations in Iterative Methods
	1 Introduction
	2 Motivating Example
	3 Exploring Variable Precision
	3.1 Verificarlo and the VPREC Backend
	3.2 Piecewise Constant Exploration Heuristic

	4 Large Scale Study Validation on YALES2
	4.1 Adaptive Precision Algorithm Experiment on DPCG
	4.2 Validating Resiliency to Round-Off Errors
	4.3 Evaluating Mixed-Precision Version

	5 Related Works and Background
	6 Conclusion
	References

	Linear Systems Solvers for Distributed-Memory Machines with GPU Accelerators
	1 Introduction
	1.1 Linear Systems
	1.2 SLATE Project

	2 Motivation
	3 Related Work
	4 Original Contribution
	5 Implementation
	5.1 SLATE Basics
	5.2 Cholesky Implementation
	5.3 LU Implementation

	6 Results
	6.1 Setup
	6.2 Performance
	6.3 Discussion

	References

	Accelerator Computing
	Radio-Astronomical Imaging: FPGAs vs GPUs
	1 Introduction
	2 Radio-Astronomical Imaging
	2.1 Image-Domain Gridding

	3 Implementation
	3.1 The Sine/Cosine Computations
	3.2 Optimizing for Frequency

	4 Results
	4.1 Resource Usage
	4.2 Throughput and Energy Efficiency
	4.3 Performance Analysis

	5 FPGAs vs. GPUs: Lessons Learned
	6 Related Work, Discussion and Future Work
	7 Conclusion
	References

	Author Index

