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Abstract. This paper focuses on demand forecasts for parking facilities. Our
work utilizes open parking data for predictions. Several cities in Europe already
publish this data continuously in the standardized DATEX II format. Traffic
related information will become more ubiquitous in the future as all EU-member
states must implement real-time traffic information services including parking
status data since July 2017 implementing the EU directives 2010/40 and
2015/962. We demonstrate how to extract reliable and easily comprehensible
forecast models for future-parking demand based on open data. These models
find multiple use cases not only on a business planning level and for financial
revenue forecasting but also to make traffic information systems more resilient
to outages and to improve routing of drivers directing them to parking facilities
with availability upon predicted arrival. Our approach takes into consideration
that the data constitutes irregular time series and incorporates contextual
information into the predictive models to obtain higher precision forecasts.
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1 Introduction

Congestion of transport systems is a major and increasing pain point in large cities. In
the vision of smart cities this issue is tackled with “computerized systems comprised of
databases, tracking, and decision-making algorithms” [1] instead of brick-and-mortar
extensions of infrastructure. [2] cites multiple studies claiming that up to 30% of inner-
city traffic can come from drivers searching for a free parking space.

To reduce this type of traffic bigger cities typically provide stationary car-park
routing systems that indicate to drivers where spaces are currently available. A more
modern approach is additional online publication of this data. While some cities, such
as San Francisco, already provide app-based mobile information that can travel with the
driver. This approach also incorporates current availability information directly into
routing. For longer distance journeys a forecast of future availability is required, which
can be determined using predictive models trained on historical parking demand
information. Such predictive models are also useful in case of system outages pro-
viding a second means to assess the current status.

Predictive models for demand have also a great value for parking operators and can
be used to develop forecasts of revenue [3] or to improve prices through performance
pricing [4]. Recommendations for variable pricing of parking are around for a long
time [5]. Understanding the demand of competitors is also beneficial to improve
parking policies [6].
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With improved traffic management in mind, the European Commission has
required member countries to contribute to the co-ordination of traffic management and
development of seamless pan European services through the ITS directive 2010/40/EU.
Among many other things this directive also mandates the publishing of traffic-related
open data including parking status information for important cities and parking areas
along highways.

This paper focuses on demand forecasts for parking facilities based on a continuous
recording of the parking status updates of 42 parking facilities in Düsseldorf between
March and August 2015. Working towards a benchmark of predictive model algo-
rithms for parking demand predictions, we show that reliable and easy to understand
forecast models for future parking demand can be mined from this open data using
classical statistical learning approaches. Our approach takes into consideration that the
data constitutes irregular time series and incorporates contextual information into the
predictive models to obtain higher precision forecasts.

The paper is organized as follows: Sect. 2 describes the data set and its charac-
teristics. Section 3 details our objectives and common assumptions for predicting
parking. Section 4 reports on our results using linear regression as a technique that
forms a baseline for comparison. Section 5 discusses our experiment with decision
trees. Section 6 summarizes our findings and provides citywide results. We conclude in
Sect. 7 with discussion of related work and our next steps.

2 The Data Set

2.1 Data Format, Source and Content

The European Commission has sponsored the development of the XML-based DATEX
format to enable traffic-related information exchange. DATEX II version 2.3 published
in December 2014 now also provides a standard data model for parking information1.
This parking information is published in two separate files, one of which provides static
information (metadata) such as name, typical capacity and location of a parking facility
as well as categorization into city areas. The other file provides dynamic information
that contains current status, capacity and demand, absolute number of parkers, as well
relative occupancy and trend information both for single parking facilities and aggre-
gates for city areas.

While individual parking facilities could publish their status using this format, it is
more common for cities to aggregate the data from several parking facilities within its
city limits to provide drivers with an overview of current availabilities. For example,
Tampere (Finland) publishes the current parking status since February 2015 directly on
the Web2. However, the EU delegated regulation mandates every member state to
maintain national access points to such data that aggregates the data from various data
providers in each country.

1 http://www.datex2.eu/news/2014/12/01/datex-ii-version-23-available-now.
2 http://wiki.itsfactory.fi/index.php/Tampere_Parking_DATEX2.
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In Germany this national access point is provided by the “Mobilitätsdatenmarkt-
platz” (MDM portal)3 and operated by the Bundesamt für Strassenbau (BaSt) on behalf
of the ministry of transport. Figure 1 shows how traffic information flows from pro-
viders to subscribers and end users through this portal. Data sets of data providers are
published on a secured URL endpoint by the MDM portal. Currently 64 German cities
are providing parking demand information for their most important parking facilities.
While data access may be restricted - and the MDM portal provides mechanisms for
data providers to register data subscribers and provides access control - some cities
such as Düsseldorf provide open5 data. Each data provider of the MDM portal can
individually choose a frequency in which the data is updated. For example, Düsseldorf
updates its dynamic parking information every minute. Each update typically only
contains the changes of parking demand since the last update, and some parking
facilities might not have changes in that period. Hence, subscribers must maintain
memory of the parking status across individual updates to get a complete up-to-date
perspective since parking facilities might provide updates at a smaller frequency than
the city and may not be providing any updates for longer periods of time during closing
times or because of technical difficulties. The updates received therefore constitute
highly irregular multivariate time series both at the level of single parking facilities and
city aggregates. Our data set is based on minutely parking data that has provided by the
city of Düsseldorf for 42 parking facilities on the MDM portal in the six months
between March and August 2015.

2.2 Data Processing Implementation

We receive the dynamic parking information using a scheduled job (cron job) that polls
the MDM portal URL endpoint(s) on a minutely basis. The DATEX message is then
parsed and its content is appended to individual CSV files to create time series for each
parking facility, parking area as well as one large CSV file that includes all updates
received.

These CSV files are then read by data analysis scripts executed by the statistical
software R [7]. In particular we use functions packages rpart [8] for decision tree fitting
and zoo [9] to aggregate and plot the irregular time series that are found in the data.

Fig. 1. A data flow of parking information through the MDM portal (Legend: ⃟ aggregation)

3 http://www.mdm-portal.de.
4 As of September 2015: Aachen (only charging stations), Düsseldorf, Frankfurt am Main, Kassel,
Magdeburg, and Wuppertal.

5 Parties interested in accessing the data still need to register with the MDM portal and setup security
certificates to receive data.
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2.3 Data Characteristics

In total we have received 264.376 updates in 331 MB of XML data containing 2,6
million single changes in parking status across the 42 parking facilities in our data set.
7 of these parking facilities provide incorrect data, such as negative occupancies, or
only a small number of data updates, for example updates that are several days apart,
and are therefore excluded from further analysis.

The number updates provided by the remaining 35 parking facilities in scope varies
greatly between 21.387 and 145.104 with a median of 75.499 observations per parking
facility. Hence, the average parking facility provides a status update every 3½ minutes
to the city of Düsseldorf.

The box plot6 Fig. 2 shows that the variance of occupancy is very high and also
that the demand characteristics vary greatly between the different parking facilities.
Hence, a robust predictive model is easier to obtain per parking facility than for the city
level and the city level predictive model should be computed by aggregating the
predictions made for individual parking facilities.

The data of individual parking facilities shows clear periodic patterns of demand,
such as illustrated by Fig. 3 for two parking facilities side by side. The periodic pattern
of Kunsthalle Düsseldorf is similar every day (with an increased demand on Saturdays)
and demand is high in late evening hours, possibly due to the fact that parking is possible
for 24 h and a reduced price is offered in the night. The parking facility is generally
among the cheapest in the city and never really empty. Kö Gallerie, a prominent luxury
store in the main shopping district located at Königsallee 60, shows a clear demand
pattern centered around the afternoon and almost double demand on Saturdays. Demand
is neglectable when the department store is closed in the night or on Sundays.

Fig. 2. Boxplot of parking facility occupancies (in %) in the data set

6 A.k.a. box and whisker diagram showing from left to right: minimum, first quartile, median (thick
line), third quartile and maximum as well as outliers (circles).
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3 Predicting Parking Demand

3.1 Objectives of Our Approach

Since our dataset is novel and the data has become publicly available just recently we
want to establish a baseline with linear regression, a classical statistical supervised
learning technique, and successively benchmark our results with other more recent
machine learning and data mining approaches. In scope of this paper we will compare
our linear regression baseline with decision trees, another well-known and broadly
implemented regression technique.

The two main reasons for choosing those approaches is that both predictive models
are very easy to comprehend for decision makers and can be implemented with few
effort and computational demand either by a linear equation (linear regression) or
nested if-else conditions (decision tree) in consumer apps or car information systems.

3.2 Decomposing Date and Time

As we have seen in Fig. 3 parking demand is typically periodic but exposes complex
seasonality. The periodicity of different parking facilities is highly individual due to
differences in opening and closing times and different intervals between data updates.
System outages that can occur at any party involved in the data chain (see Fig. 1) create
an additional source of irregularities in the data. Additionally, the timestamps of
parking status have millisecond precision.

We therefore decompose the date and time information provided by the timestamp
of each parking status update into variables for each component of time. Additionally,
we determine the corresponding weekday for each date. Hour and Weekday are then
used as input to the statistical learning algorithms, while all other components of time
are ignored. We do not aggregate the data by hour to avoid biases.

Fig. 3. Periodicity of parking demand with facility-specific temporal patterns (above #3
Kunsthalle (black) and below #39 Kö Gallerie (red)) (Color figure online)
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3.3 Adding Contextual Information

[10] show that weather conditions influence parking demand. We therefore add hourly
rainfall (in mm) and temperature (in degrees C°) data as recorded by the German
national weather service (DWD) in its downtown Düsseldorf weather station. Hourly
weather data is freely available7 as part of the public mandate of DWD throughout
Germany and world-wide from various data providers.

[11] discuss that public holidays influence electricity demand significantly. We
therefore add binary information to the data set whether a given day is a public holiday,
school holiday or a Brueckentag8. 35% of the observations in our data set are recorded
on either one of these special days.

Both contextual data sets are available ahead of making predictions as 24 h weather
forecasts and averaged historical weather observations as well as holiday calendars that
are planned many years ahead (school holidays) or regulated by legislature (public
holidays). We will compare how our predictive models perform with and without this
contextual data.

3.4 Identifying the Dependent Variable

Parking facilities provide information on their status by transmitting both relative
occupancy and absolute occupied spaces as well as vacant (available) spaces and their
current capacity that fluctuates, for example due to ongoing renovations or by sys-
tematically opening and closing levels based on demand. Obviously, this information is
redundant9 and highly correlated.

Since the capacities of the parking facilities vary greatly, we choose to predict the
absolute number of occupied spaces. capacity and the number of long-term parkers,
that some garages report, are also independent variables in the predictive models.

3.5 Splitting Training and Test Data

We subset all 2.6 million observations into separate smaller data sets that single out
observations per parking facility. Splitting the data sets into training and test data sets
by months as often found in related work will lead to biases due to the different number
of weekdays, length of months and occurrence of holidays. We therefore split the
facility-specific data sets into 75% training and 25% test data in an algorithmic fash-
ion10 that preserves the relative ratios of the dependent variable in both data sets. The
same training and test data sets are used to benchmark our approaches.

7 http://www.dwd.de/WESTE (free registration of user account required).
8 A Brueckentag is a single working day that fall between a public holiday and a weekend where
many Germans take a day off from work.

9 Occupancy = occupied/capacity and vacant = capacity – occupied.
10 Using sample.split function offered by caTools (Tuszynski 2014).
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3.6 Assessing Predictive Model Quality and Comparing Models

We assess the coefficient of determination R2 for each predictive model on the training
and test data. We indicate how well the models fit to the training data, and observe
whether this fit deteriorates when making predictions on the unknown test data
(indicated by a lower R2).

To assess the overall quality of the model and compare model quality between
experiments as well as between parking facilities we define the relative root mean-
square deviation (rRMSD), which normalizes the well known RMSD by capacity. The
rRMSDi is calculated for each parking facility i based on the predicted values byt for
times t of the dependent variable y (occupied) for all n different predictions as the
square root of the mean of the squares of the deviations and normalized by the capacity
of the parking facility ki (1).

rRMSDi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
t¼1

byt�ytð Þ2
n

r

ki
ð1Þ

The rRMSD allows comparing parking facilities with different capacities and
denotes the relative prediction error of a predictive model (in % of capacity). rRMSD is
an unbiased estimator like RMSD.

4 Linear Regression Models

We build similar linear regression models with (by þ ) and without (by�) contextual data
for every parking facility. The regression model without context predicts the number of
occupied parking spaces by� based on the independent variables occurring in the linear
equation v, where factor variables hour~h, weekday ~w, and numeric variables of current
capacity k and number of long-term parkers l are used as inputs, adjusted by the
intercept c�.

by� ¼ vþ c�
v ¼~ch~hþ~cw~wþ ckkþ cll

ð2Þ

The model with context predicts occupied parking spaces by þ in a similar fashion
and adds numeric variables for temperature t, rainfall r as well as binary variables for
Brueckentage b, school holidays s, and public holidays f , adjusted by the intercept cþ .

by þ ¼ vþ aþ cþ
a ¼ cttþ crrþ cbbþ cssþ cf f

ð3Þ

All coefficients ci in Eqs. (2) and (3) are determined by the supervised learning task
based on the training data, where factorial coefficients~cj will take different values for
every factor. The coefficients will be different for every predictive model and adjust to
the specific parking facility data.
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For example, Table 1 shows the coefficients learned for parking facility Kö-Gall-
erie (#39) to occupied spaces by þ with the contextual information. The basic estimate
cþ of occupied parking spaces at 2 pm is 121. Thus, we expect 121 more cars to be
present, while at 11 pm only a total of 121� 28 ¼ 93 cars are expected.

Similarly, on Saturdays11 we generally expect 134 more cars. Both higher tem-
peratures ct and rainfall cr increase occupancy by one car for every 2 °C and 3 cars for
every 2 mm of rain. 63 cars less can be expected on a public holiday and 10 cars less
on school vacations while 120 more cars are parking on Brueckentage. The predictive
model for Kö-Gallerie is robust and has a R2 of 0.68 (without context) and 0.71 (with
context) on the training data and 0.69/0.71 on the test data with a rRMSD of 6.9%
(without context) and 6.4% (context). Adding context provides a 4% improvement in
prediction.

Table 2 reveals that R2 the predictive models are generally robust on the test data.
By comparing contextual and context-free predictions and excluding both best and
worst models, it displays large deviations between 22% and 6.2% prediction error
(rRMSD) for models without context that only slightly improve when context is added
to 21% and 5.6%. In particular, context does not make bad models much better nor
good models any worse. Overall adding contextual data provides 5.2% improvement in
predictive quality on the capacity-weighted average of all linear regression models.

Table 1. Excerpt of the linear regression model with context predicting occupied spaces by þ for
parking facility Kö-Gallerie (#39)

(Factorial)
coefficient

Estimate Std. Error t value

cþ 121.06 4.10 29.55
~ch hour3 16.92 24.91 0.68

…

hour14 121.12 3.10 39.12
…

hour23 −28.13 8.79 −3.20
~cw weekday1 56.45 0.90 62.71

…

weekday6 134.28 0.88 152.03
ck −0.21 0.00 −60.13
ct 0.49 0.03 15.81
cr 0.63 0.39 1.62
cf −63.42 1.77 −35.87
cs −10.17 0.36 −28.40
cb 120.63 2.21 54.70

11 Saturday is day 6 counting from 0 as Sunday, etc.
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5 Decision Trees

The decision tree models [12] are trained with the same data set and input as the linear
regression models, in particular we train two variants without (2) and with (3) con-
textual information. Whether input variables are used in the model depends on the
results of the tree-fitting algorithm for the particular parking facility. Across all parking
facilities, we obtain fits with the same parameters. To avoid overfitting to the data a
minimum number of 30 observations must be in any terminal leaf node of the decision
tree. We additionally avoid additional tree splits when the overall R2 does not increase
by at least 1

1000.
The decision trees fitted from the training data for each parking facility are easy to

understand but cumbersome to read and best-fitted for automated decision support.
This is due to the fact that an average of 67 (maximum of 120) decision criteria are
involved for trees trained on data with context. Figure 4 therefore only shows a sample
tree that demonstrates important characteristics that are shared among the actual trees
fitted to the training data. Top-level distinctions are typically made based on hour ~ch
and weekday~cw variables. Without considering any input variables, evaluating the tree
would predict 107 occupied parking spaces. The first binary distinction is made based
on whether the hour~ch is either before 10 am after 6 pm. If so, we should assume only
61 occupied spaces. If not, we can assume 137 occupied spaces.

These decisions are recursively refined while walking towards the leaves of the tree
turning left when a condition is met and right if not until a leaf node is reached. For
example, we assume 293 occupants between 1 pm and 4 pm on Saturdays, if our
capacity is below 888 parking spaces.

Table 3 shows that the R2 of the decision trees are also generally robust on the test
data. We again exclude the best and worst models and observe smaller deviations
between 14.6% and 5.7% prediction error (rRMSD) for models without context.
Adding context generally improves the models and can observe between 12.8% and
4.3% prediction error. Adding contextual data provides a 15.6% improvement in
predictive quality on the capacity-weighted average of all decision tree models.

Table 2. Overall quality of linear regression models across 35 parking facilities

by� (without context) by þ (with context)

Training R2 Test R2 rRMSD Training R2 Test R2 rRMSD

2nd Worst by�/by þ 0.53 0.53 14.6% 0.70 0.69 12.8%
Median by� 0.8 0.8 10.4% 0.87 0.87 8.3%
Median by þ 0.42 0.41 11.2% 0.58 0.57 9.64%
2nd Best by�/ by þ 0.79 0.79 5.7% 0.88 0.88 4.3%
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6 City-Wide Predictions and Overall Results

We define the citywide prediction error rRMSDcity as a capacity-adjusted aggregate that
normalizes the aggregated rRMSDi by the total capacity ki across all n parking
facilities:

rRMSDcity ¼
Pn

i¼1 ki � rRMSDi
Pn

i¼1 ki
ð4Þ

Table 4 compares the overall prediction error rRMSDcity across all 21.381 parking
spaces in the data set. We can observe that contextual data generally improves pre-
diction models in both approaches and provide a greater improvement to decision trees.
Likewise, we can observe that decision tree models outperform linear regression
models by 27.6% on the citywide level.

Fig. 4. Sample binary decision tree for Kö Gallerie parking facility (#39)

Table 3. Overall quality of decision tree models across 35 parking facilities

by� (without context) by þ (with context)

Training R2 Test R2 rRMSD Training R2 Test R2 rRMSD

2nd Worst by�/by þ 0.53 0.53 14.6% 0.70 0.69 12.8%
Median by� 0.8 0.8 10.4% 0.87 0.87 8.3%
Median by þ 0.42 0.41 11.2% 0.58 0.57 9.64%
2nd Best by�/by þ 0.79 0.79 5.7% 0.88 0.88 4.3%
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We can generally confirm these improvements for every single predictive model
although the improvements vary significantly across the individual parking facilities.
Since rRMSDcity is smaller than the median prediction error we can conclude that our
predictive models generally perform better for large parking facilities.

7 Conclusion

We have shown that robust predictive models for demand of parking facilities can be
obtained from open parking status data and that classic regression techniques readily
generate predictions with acceptable error rates while providing easy to understand
models for decision makers and easy to implement equations and rules to implement
decision-making algorithms. We have seen that contextual data related to (public and
school) holidays and weather data can decrease prediction errors significantly and also
show higher coefficients of determination R2.

We are currently pursuing several directions to expand our results. First, we intend
assessing the stability of the models with more data. This does include (a) stabilization
with data of other cities with published DATEX II parking status and (b) addressing the
challenges of irregularities by compensating failures in data provision with similar data
providers.

We are currently benchmarking our results with other algorithms for multivariate
time series with complex seasonality from the statistical community such as multi-
variate volatility models [13] as well as other supervised algorithms from the machine
learning community that have been proposed for parking predictions such as wavelet
neural networks [14].

Another direction for future research will be to develop an approach for short-term
demand forecasts that considers the last known status as well as expected progressions
from this status into the next couple of hours.

We will publish the data set after the anonymous review of this paper in an open
data repository to provide a benchmark for parking prediction models since prior work
on parking demand forecasts is based on proprietary data sets and our data set is the
largest generally available dataset encompassing data from several parking facilities.

Acknowledgements. We thank the city of Düsseldorf to provide the data set openly and an
anonymous company for providing technical assistance with the DATEX II format and providing
us with access to the MDM portal.

Table 4. Citywide prediction error rRMSDcity

Linear regression Decision tree Improvement

by� (without context) 8.9% 7.2% 18.7%
by þ (with context) 8.4% 6.1% 27.6%

Improvement 5.2% 15.6% 31.4%
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