
Chapter 5
Approximating Spectral Clustering via
Sampling: A Review

Nicolas Tremblay and Andreas Loukas

5.1 Introduction

Clustering is a cornerstone of our learning process and, thus, of our understanding
of the world. Indeed, we can all distinguish between a rose and a tulip precisely
because we have learned what these flowers are. Plato would say that we learned
the Idea—or Form [120]—of both the rose and the tulip, which then enables us to
recognize all instances of such flowers. A machine learner would say that we learned
two classes: their most discriminating features (shape, size, number of petals, smell,
etc.) as well as their possible intra-class variability.

Mathematically speaking, the first step on the road to classifying objects (such as
flowers) is to create an abstract representation of these objects: with each object
i we associate a feature vector pi ∈ R

d , where the dimension d of the vector
corresponds to the number of features one chooses to select for the classification
task. The space R

d in this context is sometimes called the feature space. The
choice of representation will obviously have a strong impact on the subsequent
classification performance. Say that in the flower example we choose to represent
each flower by only d = 3 features: the average color of each RGB channel (level
of red, green, and blue) of its petals. This choice is not fail-proof: even though the
archetype of the rose is red and the archetype of the tulip is yellow, we know that
some varieties of both flowers can have very similar colors and thus a classification
solely based on the color will necessarily lead to confusion. In fact, there are many
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different ways of choosing features: from features based on the expert knowledge of
a botanist to features learned by a deep learning architecture from many instances of
labeled images of roses and tulips, via features obtained by hybrid methods more-
or-less based on human intelligence (such as the first few components of a principal
component analysis of expert-based features).

The second step on the road to classifying n objects is to choose a machine
learning algorithm that groups the set of n points P = (p1, . . . , pn) in k classes
(k may be known in advance or determined by the algorithm itself). Choosing an
appropriate algorithm depends on the context:

• Availability of pre-labeled data. Classifying the points P in k classes may be
seen as assigning a label (such as “rose” or “tulip” in our k = 2 example) to
each of the points. If one has access to some pre-labeled data, we are in the
case of supervised learning: a more-or-less parametrized model is first learned
from the pre-labeled data and then applied to the unlabeled points that need
classification. If one does not have access to any pre-labeled data, we are in
the case of unsupervised learning where classes are typically inferred only via
geometrical consideration of the distribution of points in the feature space. If one
has only access to a few labeled data, we are in the in-between case of semi-
supervised learning where the known labels are typically propagated in one form
or another in the feature space.

• Inductive vs transductive learning. Another important characteristic of a
classification algorithm is whether it can be used to classify only the set of points
P at hand (transductive), or if it can also be directly used to classify any never-
seen data point pn+1 (inductive).

This chapter focuses on the family of algorithms jointly referred to as spectral
clustering. These algorithms are unsupervised and transductive: no label is known
in advance and one may not naturally1 extend the results obtained on P to never-
seen data points. Another particularity of spectral clustering algorithms is that the
number of classes k is known in advance.

Spectral clustering algorithms have received a large attention in the last two
decades due to their good performance on a wide range of different datasets, as
well as their ease of implementation. In a nutshell, they combine three steps:

1. Graph construction. A sparse similarity graph is built between the n points.
2. Spectral embedding. The first k eigenvectors of a graph representative matrix

(such as the Laplacian) are computed.
3. Clustering. k-means is performed on these spectral features, to obtain k clusters.

For background information about spectral clustering, such as several justifications
of its performance, out-of-sample extensions, as well as comparisons with local
methods, the interested reader is referred to the recent book chapter [144].

1Out-of-sample extensions of spectral clustering do exist (see, for instance, Section 5.3.6 of [144]),
but they require additional work.
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One of the drawbacks of spectral clustering is its computational cost as n, d,
and/or k become large (see Sect. 5.2.3 for a discussion on the cost). Since the turn
of the century, a large number of authors have striven to reduce the computational
cost while keeping the high level of classification performance. The majority of such
accelerating methods are based on sampling: they reduce the dimension of a sub-
problem of spectral clustering, compute a low-cost solution in small dimension, and
lift the result back to the original space.

The goal of this chapter is to review existing sampling methods for spectral
clustering, focusing especially on their approximation guarantees. Some of the
fundamental questions we are interested in are: where is the sampling performed
and what is sampled precisely? how should the reduced approximate solutions be
lifted back to the original space? what is the computational gain? what is the control
on performances—if it exists? Given the breadth of the literature on the subject, we
do not try to be exhaustive, but rather to illustrate the key ways that sampling can
be used to provide acceleration, paying special attention on recent developments on
the subject.

Chapter Organization We begin by recalling in Sect. 5.2 the prototypical spectral
clustering algorithm. We also provide some intuitive and formal justification of why
it works. The next three sections classify the different methods of the literature
depending on where the sampling is performed with respect to the three steps of
spectral clustering:

• Section 5.3 details methods that sample directly in the original feature space.
• Section 5.4 assumes that the similarity graph is given and details methods that

sample nodes and/or edges to approximate the spectral embedding.
• Section 5.5 assumes that the spectral embedding is given and details methods to

accelerate the k-means step.

Finally, Sect. 5.6 gives perspective on the limitations of existing works and discusses
key open problems.

Notation Scalars, such as λ or d, are written with lowercase letters. Vectors, such
as u, z, or the all-one vector 1, are denoted by lowercase bold letters. Matrices,
such as W or L, are denoted by bold capital letters. Ensembles are denoted by serif
font capital letters, such as C or X. The “tilde” will denote approximations, such
as in z̃ or Ũk . We use so-called Matlab notations to slice matrices: given a set of
indices S of size m and an n × n matrix W, W(S, :) ∈ R

m×n is W reduced to
the lines indexed by S, W(:, S) ∈ R

n×m is W reduced to the columns indexed by
S, and W(S, S) ∈ R

m×m is W reduced to the lines and columns indexed by S.
The equation Uk = U(:, :k) defines Uk as the reduction of U to its first k columns.
Also, C� is the transpose of matrix C and C+ its Moore–Penrose pseudo-inverse.
The operator X = diag(x) takes as an input a vector x ∈ R

n and returns an n ×
n diagonal matrix X featuring x in its main diagonal, i.e., X(i, j) = x(i) if i =
j and X(i, j) = 0, otherwise. Finally, we will consider graphs in a large part of
this paper. We will denote by G = (V, E, W) the undirected weighted graph of
|V| = n nodes interconnected by |E| = e edges. eij ∈ E is the edge connecting
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nodes vi and vj , with weight W(i, j) ≥ 0. Matrix W is the adjacency matrix of
G. As G is considered undirected, W is also symmetric. In general, W can be any
symmetric matrix with positive entries, but we usually prefer to work with sparse
graphs without self-loops, in which case the matrix is also sparse and has a zero
diagonal.

5.2 Spectral Clustering

The input of spectral clustering algorithms consists of (1) a set of points P =
(p1, p2, . . . , pn) (also called featured vectors) representing n objects in a feature
space of dimension d, and (2) the number of classes k in which to classify
these objects. The output is a partition of the n objects in k disjoint clusters.
The prototypical spectral clustering algorithm [102, 121] dates back in fact to
fundamental ideas by Fiedler [46] and entails the following steps:

Algorithm 1. The prototypical spectral clustering algorithm
Input. A set of n points P = (p1, p2, . . . , pn) in dimension d and a number
of desired clusters k.

1. Graph construction (optional)

(a) Compute the kernel matrix K ∈ R
n×n: ∀(i, j), K(i, j) = κ(‖pi −

pj‖2).
(b) Compute W = s(K), a sparsified version of K.
(c) Interpret W as the adjacency matrix of a weighted undirected graph G.

2. Spectral embedding

(a) Compute the eigenvectors u1, u2, · · · , uk associated with the k

smallest eigenvalues of a graph representative matrix R (usually a
Laplacian) computed from W.

(b) Set Uk = [ u1| u2| · · · | uk ] ∈ R
n×k .

(c) Embed the i-th node to xi = Uk(i,:)�
q(‖Uk(i,:)‖2)

, with q(·) a normalizing
function.

3. Clustering

(a) Use k-means on x1, . . . , xn in order to identify k centroids c1, . . . , ck .
(b) Voronoi tessellation: construct one cluster per centroid c� and assign

each object i to the cluster of the centroid closest to xi .

Output: A partition of the n points in k clusters.
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A few comments are in order:

• A common choice of kernel in step 1a is the radial basis function (RBF)
kernel κ(‖pi − pj‖2) = exp

(−‖pi − pj‖2
2/σ

2
)

for some user-defined σ . The
sparsification s of K usually entails setting the diagonal to 0 and keeping only
the k largest entries of each column (i.e., set all others to 0). The obtained matrix
Ksp is not symmetric in general and a final “symmetrization” step W = Ksp+K�

sp
is necessary to obtain a matrix W interpretable as the adjacency matrix of
a weighted undirected graph2 G = (V, E, W). This graph is called the k

nearest neighbor (k-NN) similarity graph (note that the k used in this paragraph
has nothing to do with the number of clusters). Other kernel functions κ and
sparsification methods are possible (see Section 2 of [138] for instance).

• There are several possibilities for choosing the graph representative matrix R in
step 2a. We consider three main choices [138]. Let us denote by D the diagonal
degree matrix such that D(i, i) = ∑

j W(i, j) is the (weighted) degree of node
vi . We define the combinatorial graph Laplacian matrix L = D − W, the
normalized graph Laplacian matrix Ln = I − D−1/2WD−1/2, and the random
walk Laplacian Lrw = I − D−1W. Other popular choices include3 the non-
backtracking matrix [73], degree-corrected versions of the modularity matrix [2],
the Bethe–Hessian matrix [114], or similar deformed Laplacians [34].

• The normalizing function q(·) used in step 2c depends on which representative
matrix is chosen. In the case of the Laplacians, experimental evidence as well
as some theoretical arguments [138] support using a unit norm normalization for
the eigenvectors of Ln (i.e., q is the identity function), and no normalization for
the eigenvectors of L and Lrw (i.e., q(·) = 1).

• Step 1 of the algorithm is “optional” in the sense that in some cases the input
is not a set of points but directly a graph. For instance, it could be a graph
representing a social network between n individuals, where each node is an
individual and there is an edge between two nodes if they know each other. The
weight on each edge can represent the strength of their relation (for instance,
close to 0 if they barely know each other, and close to 1 if they are best friends).
The goal is then to classify individuals based on the structure of these social
connections and is usually referred to as community detection in this context [47].
Given the input graph, and the number k of communities to identify, one can
run spectral algorithms starting directly at step 2. Readers only interested in such
applications can skip Sect. 5.3, which is devoted to sampling techniques designed
to accelerate step 1.

2Each node vi of V represents a point pi , an undirected edge exists between nodes vi and vj if and
only if W(i, j) �= 0, and the weight of that connection is W(i, j).
3In some of these examples, the k largest eigenvalues (instead of the k lowest in the Laplacian
cases) of the representative matrix, and especially their corresponding eigenvectors, are of interest.
This is only a matter of sign of the matrix R and has no impact on the general discussion.
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After the spectral embedding X = ( x1, . . . , xn ) has been identified, spectral
clustering uses k-means in order to find the set of k centroids C = (c1, . . . , ck ) that
best represents the data. Formally, the k-means cost function to minimize reads:

f (C; X) =
∑

x∈X

min
c∈C

‖x − c‖2
2. (5.1)

We would ideally hope to identify the set of k centroids C∗ minimizing f (C; X).
Solving exactly this problem is NP-hard [42], so one commonly resorts to approxi-
mation and heuristic solutions (see, for instance, [128] for details on different such
heuristics). The most famous is the so-called Lloyd-Max heuristic algorithm:

Algorithm 2. The Lloyd-Max algorithm [87]
Input. Set of n points X = (x1, x2, . . . , xn) and number of desired clus-
ters k.

1. Start from an initial guess Cini of k centroids
2. Iterate until convergence:

(a) Assign each point xi to its closest centroid to obtain a partition of X in
k clusters.

(b) Move each centroid c� to the average position of all points in cluster �.

Output: A set of k centroids C = (c1, . . . , ck).

When the clusters are sufficiently separated and Cini is not too far from
the optimal centroids, then the Lloyd-Max algorithm converges to the correct
solution [75]. Otherwise, it typically ends up in a local minimum.

A Remark on Notation Two quantities of fundamental importance in spectral
clustering are the eigenvalues λi and especially the eigenvectors ui of the graph
Laplacian matrix. We adopt the graph theoretic convention of sorting eigenvalues in
non-decreasing order: 0 = λ1 ≤ λ2 ≤ . . . ≤ λn. Also, for reasons of brevity, we
overload notation and use the same symbol for the spectrum of the three Laplacians
L, Ln, and Lrw. Thus, we advise the reader to rely on the context in order to discern
which Laplacian gives rise to the eigenvalues and eigenvectors. Finally, the reader
should keep in mind that the largest eigenvalue is always bounded by 2 for Ln and
Lrw.
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5.2.1 An Illustration of Spectral Clustering

The first two steps of the algorithm can be understood as a non-linear transformation
from the initial feature space to another feature space (that we call spectral feature
space or spectral embedding): a transformation of features pi in R

d to spectral
features xi in R

k . The first natural question that arises is why do we run k-means
on the spectral features X = (x1, . . . , xn) that are subject to parameter tuning and
costly to compute, rather than directly run k-means on the original P? Figures 5.1
and 5.2 illustrate the answer.

In Fig. 5.1, we show the result of k-means directly on a set of artificial features
P known as the two half-moons dataset. In this example, the intuitive ground truth
is that each half-moon corresponds to a class that we want to recover. Running k-
means directly in this 2D feature space will necessarily output a linear separation
between the two obtained Voronoi cells and will thus necessarily fail, as no straight
line can separate the two half-moons.

Spectral clustering, via the computation of the spectral features of a similarity
graph, transforms these original features P in spectral features X that are typically
linearly separable by k-means: the two half-moons are successfully recovered! We
illustrate this in Fig. 5.2. In the next section, we will examine a theoretical argument
aiming to justify this phenomenon.

5.2.2 Justification of Spectral Clustering

A popular approach—and by no means the only one, see Sect. 5.2.2.3—to justify
spectral clustering algorithms stems from its connection to graph partitioning.
Suppose that the similarity graph G = (V, E, W) has been obtained and we want to
compute a partition4 P = {V1, V2, . . . , Vk} of the nodes V in k groups. Intuitively,
a good clustering objective function should favor strongly connected nodes to end

Fig. 5.1 Left: the two half-moons synthetic dataset (n = 500, d = 2, k = 2). Right: k-means with
k = 2 directly on P is unsuccessful to separate the two half-moons

4By definition, a partition P = {V1, V2, . . . , Vk} of the nodes V is such that ∪�=1,...,kV� = V and
∀� �= �′, V� ∩ V�′ = ∅.
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Fig. 5.2 Illustration of the spectral clustering algorithm on the two half-moons dataset (n = 500,
d = 2, k = 2). The graph is created with a RBF kernel and via a sparsification done with k-nearest
neighbors (with k = 5). The spectral embedding is done with the two eigenvectors associated with
the two smallest eigenvalues of the combinatorial Laplacian matrix L. The embedding X is here
in practice in 1D as the first eigenvector of L is always constant and thus not discriminative (to
confirm this, first show that L is a PSD matrix and then prove that Lc = 0 for any constant vector
c). Observe how the two clusters are now linearly separable in the spectral feature space. k-means
on these features successfully recovers the two half-moons

up in the same subset, and nodes that are far apart in the graph to end up in different
subsets. This intuition can be formalized with graph cuts.

Considering two groups V1 and V2, define w(V1, V2) = ∑
i∈V1

∑
j∈V2

W(i, j)

to be the total weight of all links connecting V1 to V2. Also, denote by V̄� the
complement of V� in V, such that 1

2w(V�, V̄�) is the total weight one needs to cut
in order to disconnect V� from the rest of the graph. Given these definitions, the
simplest graph cut objective function, denoted by cut, is:

cut (P = {V1, . . . , Vk}) = 1

2

k∑

�=1

w
(
V�, V̄�

)
. (5.2)

The best partition according to the cut criterion is P∗ = argminP cut(P). For
k = 2, solving this problem can be done exactly in O(ne + n2 log(n)) amortized
time using the Stoer–Wagner algorithm [126] and approximated in nearly linear
time [68]. Nevertheless, this criterion is not satisfactory as it often separates an
individual node from the rest of the graph, with no attention to the balance of the
sizes or volumes of the groups. In clustering, one usually wants to partition into
groups that are “large enough.” There are two famous ways to balance the previous
cost in the machine learning literature5: the ratio cut [143] and normalized cut [121]
cost functions, respectively defined as:

5The reader should note that in the graph theory literature, the measure of conductance is preferred
over ncut. Conductance is max� w(V�, V̄�)/w(V�). The two measures are equivalent when k = 2.



5 Approximating Spectral Clustering via Sampling: A Review 137

rcut(P) = 1

2

k∑

�=1

w(V�, V̄�)

|V�| and ncut(P) = 1

2

k∑

�=1

w(V�, V̄�)

vol(V�)
, (5.3)

where |V�| is the number of nodes in V� and vol(V�) = ∑
i∈V�

∑
j∈V W(i, j) is the

so-called volume of V�. The difference between them is that ncut favors clusters
of large volume, whereas rcut only considers cluster size—though for a d-regular
graph with unit weights the two measures match (up to multiplication by 1/d).
Unfortunately, it is hard to minimize these cost functions directly: minimizing these
two balanced costs is NP-hard [121, 139] and one needs to search over the space of
all possible partitions which is of exponential size.

A Continuous Relaxation Spectral clustering may be interpreted as a continuous
relaxation of the above minimization problems. Without loss of generality, in the
following we concentrate on relaxing the rcut minimization problem (ncut is
relaxed almost identically). Given a partition P = (V1, . . . , Vk), let us define

C =
(

z1√|V1|
| . . . | zk√|Vk|

)

∈ R
n×k, (5.4)

where z� ∈ R
n is the indicator vector of V�:

z�(i) =
{

1 if node i ∈ V�,

0 otherwise.
(5.5)

It will prove useful in the following to remark that, independently of how
the partitions are chosen, we always have that C�C = I, the identity matrix in
dimension k. With this in place, the problem of minimizing rcut can be rewritten
as (see discussion in [138]):

min
C∈Rn×k

tr
(

C�LC
)

s.t. C�C = I and C as in (5.4) (5.6)

To understand why this equivalence holds, one should simply note that

tr
(

C�LC
)

=
k∑

�=1

1

|V�|z�
� Lz� =

k∑

�=1

1

|V�|
∑

i>j

W(i, j)(z�(i) − z�(j))2

=
k∑

�=1

w(V�, V̄�)

|V�| = 2 rcut(P).

Solving (5.6) is obviously still NP-hard as the only thing we have achieved is to
rewrite the rcut minimization problem in matrix form. Yet, in this form, it is easier
to realize that one may find an approximate solution by relaxing the discreteness
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constraint “C as in (5.4).” In the absence of the hard-to-deal-with constraint, the
relaxed problem is not only polynomially solvable but also possesses a closed-form
solution! By the Courant–Fischer–Weyl (min-max) theorem, the solution is given
by the first k eigenvectors Uk = [u1, u2, . . . , uk] of L:

Uk = arg min
C∈Rn×k

tr
(

C�LC
)

subject to C�C = I.

This relaxation is not unique to the combinatorial Laplacian. In the same spirit, the
minimum ncut optimization problem can be formulated in terms of the normalized
Laplacian matrix Ln, and the relaxed problem’s solution is given by the first k

eigenvectors of Ln.
A difficulty still lies before us: how do we go from a real-valued Uk to a partition

of the nodes? The two next subsections aim to motivate the use of k-means as a
rounding heuristic. The exposition starts from the simple case when there are only
two clusters (k = 2) before considering the general case (arbitrary k).

5.2.2.1 The Case of Two Clusters: Thresholding Suffices

For simplicity, we first consider the case of two clusters. If one constructs a
partitioning Pt with V1 = {vi : u2(i) > t} and V2 = {vi : u2(i) ≤ t} for every
level set t ∈ (−1, 1), then it is a folklore result that

rcut(P∗) ≤ min
t

rcut(Pt ) ≤ 2

√

rcut(P∗)
(

dmax − λ2

2

)
, (5.7)

with P∗ = arg minP rcut(P) being the optimal partitioning, dmax is the
maximum degree of any node in V, and λ2 the second smallest eigenvalue of L. The
upper bound is achieved by the tree-cross-path graph constructed by Guattery and
Miller [57]. In an analogous manner, if P∗ = arg minP ncut(P) is the optimal
partitioning w.r.t. the ncut cost and every Pt has been constructed by thresholding
the second eigenvector of Ln, then

ncut(P∗) ≤ min
t

ncut(Pt ) ≤ 2
√
ncut(P∗). (5.8)

Inequality (5.8) can be derived as a consequence of the Cheeger inequality, a key
result of spectral graph theory [32], which for the normalized Laplacian reads:

λ2

2
≤ ncut(P∗) ≤ min

V

w(V, V̄)

min{w(V), w(V̄)} ≤ min
t

ncut(Pt ) ≤ √
2λ2.

As a consequence, we have
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ncut(P∗) ≤ min
t

ncut(Pt ) ≤ √
2λ2 ≤

√
4ncut(P∗) = 2

√
ncut(P∗),

as desired. The derivation of the rcut bound given in (5.7) follows similarly.

5.2.2.2 More Than Two Clusters: Use k-Means

As the number of clusters k increases, the brute-force approach of testing every
level set becomes quickly prohibitive. But why is k-means the right way to obtain
the clusters in the spectral embedding? Though a plethora of experimental evidence
advocate the use of k-means, a rigorous justification is still lacking. The interested
reader may refer to [83] for an example of an analysis of spectral partitioning
without k-means.

More recently, Peng et al. [107] came up with a mathematical argument showing
that, if G is well clusterable and we use a k-means algorithm (e.g., [76]) which
guarantees that the identified solution C̃ abides to

f (C̃; X) ≤ (1 + ε)f (C∗; X),

where C∗ is the optimal solution of the k-means problem, then the partitioning P̃
produced by spectral clustering when using Ln has ncut cost provably close to
that of the optimal partitioning P∗. In particular, it was shown that, as long as
λk+1 ≥ ck2ncut(P∗), then

ncut(P∗) ≤ ncut(P̃) ≤ ζ ncut(P∗)
(

1 + ε
k3

λk+1

)
,

for some constants c, ζ > 0 that are independent of n and k (see also [71]). Note that,
using the higher-order Cheeger inequality [83] λk/2 ≤ ncut(P∗), the condition
λk+1 ≥ ck2ncut(P∗) implies

λk+1

λk

≥ ck2

2
= �(k2).

Though hopefully milder than this one,6 such gap assumptions are very common
in the analysis of spectral clustering. Simply put, the larger the gap λk+1 − λk is,
the stronger the cluster structure and the easier it is to identify a good clustering.

6To construct an example possibly verifying such a strong gap assumption, consider k cliques of
size k connected together via only k−1 edges, so as to form a loosely connected chain. Even though
this is a straightforward clustering problem known to be easy for spectral clustering algorithms, the
above theorem’s assumption implies λk+1 = �(k2ncut(P∗)) = �(k) which, independently of
n, can only be satisfied when k is a small (recall that the eigenvalues of Ln are necessarily between
0 and 2).
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Besides quantifying the difficulty of the clustering problem, the gap also encodes
the robustness of the spectral embedding to errors induced by approximation
algorithms [36]. The eigenvectors of a perturbed Hermitian matrix exhibit an
interesting property: instead of being arbitrary, induced changes are localized w.r.t.
the eigenvalue axis, following an inverse square eigenvalue-distance law [89]. More
precisely, if ũi is the i-th eigenvector after perturbation, then the inner products
(ũ�

i uj )
2 decrease proportionally with |λi −λj |2. As such, demanding that λk+1−λk

is large is often helpful in the analysis of spectral clustering algorithms in order to
ensure that the majority of useful information (contained within Uk) is preserved (in
Ũk) despite approximation errors.7

5.2.2.3 Choice of Relaxation

The presented relaxation approach is not unique and other relaxations could be
equally valid (see, for instance, [17, 24, 112]). This relaxation has nevertheless
the double advantage of being theoretically simple and computationally easy to
implement. Also, justification of spectral clustering algorithms does not only come
from this graph cut perspective and in fact encompasses several approaches that we
will not detail here: perturbation approaches or hitting time considerations [138],
a polarization theorem [23], consistency derivations [84, 135], etc. Interestingly,
recent studies (for instance, [18]) on the stochastic block models have shown
that spectral clustering (on other matrices than the Laplacian, such as the non-
backtracking matrix [73], or the Bethe–Hessian matrix [114] or other similar
deformed Laplacians [34]) perform well up to the detectability threshold of the
block structure.

5.2.3 Computational Complexity Considerations

What is the computational complexity of spectral clustering as a function of the
number of points n, their dimension d, and the number of desired clusters k? Let us
examine the three steps involved one by one.

The first step entails the construction of a sparse similarity graph from the input
points, which is dominated by the kernel computation and costs O(dn2). In the
second step, given the graph G consisting of n nodes and e edges.8 one needs to
compute the spectral embedding (step 2 of Algorithm 1). Without exploiting the
special structure of a graph Laplacian—other than its sparsity that is—there are two
main options:

7Usually, one needs to ensure that
∑

i≤k,j>k(ũ
�
i uj )

2/k remains bounded.
8With e of the order of n if the sparsification step was well conducted.
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• Using power iterations, one may identify sequentially each non-trivial eigenvec-
tor u� in time O(e/δ�), where δ� = λ� − λ�−1 is the �-th eigenvalue gap and e

is the number of edges of the graph [136]. Computing the spectral embedding
therefore takes O(ke/δ) with δ = min� δ�. Unfortunately, there exist graphs9

such that δ = O(1/n), bringing the overall worst-case complexity to O(kne).
• The Lanczos method can be used to approximate the first k eigenvectors

in roughly O(ek + nk2) time. This procedure is often numerically unstable
resulting to a loss of orthogonality in the computed Krylov subspace basis.
The most common way to circumvent this problem is by implicit restart [26],
whose computational complexity is not easily derived. The number of restarts,
empirically, depends heavily on the eigenvalue distribution in the vicinity of
λk: if λk is in an eigenvalue bulk, the algorithms takes longer than when λk is
isolated. We decide to write the complexity of restarted Arnoldi as O(t (ek+nk2))

with t modeling the number of restarts. Note that throughout this paper, t will
generically refer to a number of iterations in algorithm complexities. We refer
the interested reader to [13] for an in-depth discussion of Lanczos methods.

The third step entails solving the k-means problem, typically by using the Lloyd-
Max algorithm to converge to a local minimum of f (C; X). Since there is no
guarantee that this procedure will find a good local minimum, it is usually rerun
multiple times, starting in each case from randomly selected centroids Cini. The
computational complexity of this third step is O(tnk2), where t is a bound on the
number of iterations required until convergence multiplied by the number of retries
(typically 10).

5.2.4 A Taxonomy of Sampling Methods for Spectral
Clustering

For the remainder of the chapter, we propose to classify sampling methods aiming
at accelerating one or more of these three steps according to when they sample.
If they sample before step 1, they are detailed in Sect. 5.3. Methods that assume
that the similarity graph is given or well-approximated and sample between steps
1 and 2 will be found in Sect. 5.4. Finally, methods that assume that the spectral
embedding has been exactly computed or well-approximated and sample before
the k-means step are explained in Sect. 5.5. This classification of methods, like all
classification systems, bears a few flaws. For instance, Nyström methods can be
applied to both the context of Sects. 5.3 and 5.4 and are thus mentioned in both.
Also, we decided to include the pseudo-code of only a few chosen algorithms that
we think are illustrative of the literature. This choice is of course subjective and

9The combinatorial Laplacian of a complete balanced binary tree on k ≥ 3 levels and n = 2k − 1
nodes has 1

n
≤ λ2 ≤ 2

n
[56].
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debatable. Notwithstanding these flaws, we hope that this taxonomy clarifies the
landscape of existing methods.

5.3 Sampling in the Original Feature Space

This section is devoted to methods that ambitiously aim to reduce the dimension of
the spectral clustering problem even before the graph has been formed. Indeed, the
naive way of building the similarity graph (step 1 of spectral clustering algorithms)
costs O(dn2) and, as such, is one of the main computational bottlenecks of spectral
clustering. It should be remarked that the present discussion fits into the wider realm
of kernel approximation, a proper review of which cannot fit in this chapter: we will
thus concentrate on methods that were in practice used for spectral clustering.

5.3.1 Nyström-Based Methods

The methods of this section aim to obtain an approximation Ũk of the exact spectral
embedding Uk via a sampling procedure in the original feature space.

The Nyström method is a well-known algorithm for obtaining a rough low-rank
approximation of a positive semi-definite (PSD) matrix A. Here is a high level
description of the steps entailed:

Algorithm 3. Nyström’s method
Input. PSD matrix A ∈ R

n×n, number of samples m, desired rank k

1. Let S be m column indices chosen by some sampling procedure.
2. Denote by B = A(S, S) ∈ R

m×m and C = A(:, S) ∈ R
n×m the sub-

matrices indexed by S.
3. Let B = Q�Q� be the eigen-decomposition of B with the diagonal of �

sorted in decreasing magnitude.
4. Compute the rank-k approximation of B as Bk = Qk�kQ�

k , where Qk =
Q(:, :k) ∈ R

n×k and �k = �(:k, :k).

Possible outputs:

• A low-rank approximation Ã = CB+C� ∈ R
n×n of A

• A rank-k approximation Ãk = CB+
k C� ∈ R

n×n of A
• The top k eigenvectors of Ãk , stacked as columns in matrix Ṽk ∈ R

n×k ,
obtained by orthonormalizing the columns of Q̃k = CQk�

−1
k ∈ R

n×k
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Various guarantees are known for the quality of Ã depending on the type of
sampling utilized (i.e., how the indices in S are selected in step 1) and the preferred
notion of error (spectral ‖.‖2 vs Frobenius ‖.‖F vs trace ‖.‖∗ norm) [50, 54, 77, 148].
For instance:

Theorem 5.1 (Lemma 8 for q = 1 in [54]) Let ε ∈ (0, 1) and δ ∈ (0, 1) and
suppose that S contains the indices of m columns drawn i.i.d. uniformly at random
(with or without replacement). Then:

‖A − Ã‖2 ≤
(

1 + n

(1 − ε)m

)
‖A − Ak‖2

holds with probability at least 1 − 3δ, provided that m ≥ 2ε−2μk log (k/δ), where

μ = n

k
max

i=1,...,n
‖Vk(i, :)‖2

2

is the coherence associated with the first k eigenvectors Vk of A, and Ak is the best
rank-k approximation of A.

Guarantees independent of the coherence can be obtained for more advanced
sampling methods. Perhaps the most well-known method is that of leverage scores,
where one draws m samples independently by selecting (with replacement) the i-th
column with probability pi = ‖Vk(i, :)‖2

2/k.

Theorem 5.2 (Lemma 5 for q = 1 in [54]) Let ε ∈ (0, 1) and δ ∈ (0, 1) and
suppose that S contains the indices of m columns drawn i.i.d. with replacement
from such a probability distribution. Then:

‖A − Ã‖2 ≤ ‖A − Ak‖2 + ε2‖A − Ak‖∗

holds with probability at least 0.8 − 2δ provided that m ≥ O(ε−2k log(k/δ)).

Computing leverage scores exactly is computationally prohibitive since it neces-
sitates a partial SVD decomposition of A, which we are trying to avoid in the
first place. Nevertheless, it is possible to approximate all leverage scores with a
multiplicative error guarantee in time roughly O(ek log(e)) if A has O(e) non-zero
entries. (see Algorithms 1–3 in [54]). Many variants of the above exist [77, 78], but
to the best of our knowledge, the fastest current Nyström algorithm utilizes ridge
leverage scores with a complex recursive sampling scheme and runs in time nearly
linear in n [100].

Nyström for Spectral Clustering Though initially conceived for low-rank approx-
imation, Nyström’s method can also be used to accelerate spectral clustering. The
key observation is that Uk , the tailing k eigenvectors of the graph representative
matrix R, can be interpreted as the top k eigenvectors of the PSD matrix A =
‖R‖2I − R. As such, the span of the k top eigenvectors of Ãk obtained by running
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Algorithm 3 on A is an approximation of the span of the exact spectral embedding.
Different variants of this idea have been considered for the acceleration of spectral
clustering [19, 48, 85, 86, 97, 141].

Following our taxonomy, we hereby focus on the case where we have at our
disposal n points pi in dimension d, and the similarity graph has yet to be formed.
The case where the graph is known is deferred to Sect. 5.4.

In this case, we cannot run Algorithm 3 on A = ‖R‖2I − R as the graph,
and a fortiori its representative matrix R has not yet been formed. What we can
have access to efficiently is B = s(K(S, S)) and C = s(K(:, S)), as these require
only a partial computation of the kernel and cost only O(dnm). Note that s is a
sparsification function that is applied on a subset of the kernel matrix.

The following pseudo-code exemplifies how Nyström-based techniques can be
used to approximate the first k eigenvectors Uk associated with the normalized
Laplacian matrix (i.e., here R = Ln):

Algorithm 3b. Nyström for spectral clustering [85]
Input. The set of points P, the number of desired clusters k, a sampling set S
of size m ≥ k

1. Compute the sub-matrices B=s(K(S, S)) ∈ R
m×m and C = s(K(:, S))

∈ R
n×m, where s is a sparsification function.

2. Let Dr = diag(B1) be the m × m degree matrix.
3. Compute the top k eigenvalues �k and eigenvectors Qk of D−1/2

r BD−1/2
r .

4. Set Q̃k = CD−1/2
r Qk�

−1
k .

5. Let Dl = diag(Q̃k�kQ̃�
k 1) be the n × n degree matrix.

6. Compute Ũk obtained by orthogonalizing D−1/2

l Q̃k .

Output: Ũk , an approximation of the spectral embedding Uk .

This algorithm runs in O(nm max(d, k)) time, which is small when m depends
mildly on the other parameters of interest. Nevertheless, the algorithm (and others
like it) suffers from several issues:

• Algorithm 3b attempts to use Nyström’s method on A = 2I − Ln = I +
D− 1

2 s(K)D− 1
2 via the exact computation of two sub-matrices of K. In doing

so, it makes two strong (and uncontrolled) approximations. First of all, the
sparsification step (step 1 in Algorithm 3b) is applied to the sub-matrices K(S, S)

and K(:, S), deviating from the correct sparsification procedure that takes into
account the entire kernel matrix K. Second, the degree matrix D is never exactly
computed as knowing it exactly would entail computing exactly s(K), which is
precisely what we are trying to avoid. Existing methods thus rely on heuristic
approximations of the degree in order to bypass this difficulty (see steps 2 and 5
of Algorithm 3b).
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• Since we do not have direct access to the kernel matrix, we cannot utilize
advanced sampling methods such as leverage scores to draw the sampling set
S. This is particularly problematic if (due to sparsification) matrices B and C are
sparse, as for sparse matrices uniform sampling is known to perform poorly [97].
Techniques that rely on distances between columns do not fair much better.
Landmark-based approaches commonly perform better in simple problems but
suffer when the clusters are non-convex [19]. We refer the reader to the work by
Mohan et al. [97] for more information on landmark-based methods. The latter
work also describes an involved sampling scheme that is aimed at general (i.e.,
non-convex) clusters.

For the reasons highlighted above, the low-rank approximation guarantees accom-
panying the classical Nyström method cannot be directly used here. A fortiori, it is
an open question how much the quality of the spectral clustering solution is affected
by using the centroids obtained by running k-means on Ũk .

Column Sampling Akin in spirit to Nyström methods, an alternative approach
to accelerating spectral clustering was inspired by column sampling low-rank
approximation techniques [37, 43].

An instance of such algorithms was put forth under the name of cSPEC (column
sampling spectral clustering) by Wang et al. [141]. Let C = UC�CV�

C be the
singular value decomposition of the n × m matrix C = s(K(:, S)). Then, matrices

�̃ =
√

n

m
�C and Ũ = CVC�+

C

are interpreted as an approximation of the actual eigenvalues and eigenvectors of K
and thus Uk can be substituted by the first k columns of Ũ. This algorithm runs in
O(ndm + nm2).

Authors in [29] propose a hybrid method, between column sampling and the
representative-based methods discussed in Sect. 5.3.3, where they propose the
following approximate factorization of the data matrix:

(p1| . . . |pn) � FZ ∈ R
d×n, (5.9)

where F ∈ R
d×m concatenates the feature vectors of m sampled points and Z ∈

R
m×n represents all unsampled points as approximate linear combinations of the

representatives, computed via sparse coding techniques [82].10 The SVD of D̃−1/2Z,
with D̃ the row-sum of Z, is then computed to obtain an approximation Ũk of Uk .
The complexity of their algorithm is also O(ndm + nm2).

10Authors in [116] have a very similar proposition as [29], adding a projection phase at the
beginning to reduce the dimension d (see Sect. 5.3.4.2). Similar ideas may also be found in [137].
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In these methods, the choice of the sample set S is, of course, central and has
been much debated. Popular options are uniformly at random or via better-tailored
probability distributions, via a first k-means (with k = m) pass on P, or via other
selective sampling methods. Also, as with most extensions of Nyström’s method to
spectral clustering, column sampling methods for spectral clustering do not come
with end-to-end approximation guarantees on Uk .

In the world of low-rank matrix approximation the situation is somewhat more
advanced. Recent work in column sampling utilizes adaptive sampling with leverage
scores in time O(e + npoly(k)), or uniformly i.i.d. after preconditioning by a fast
randomized Hadamard transform [41, 145]. Others have also used a correlated
version called volume sampling to obtain column indices [37]. Nevertheless, this
literature extends beyond the scope of this chapter and thus we invite the interested
reader to consider the aforementioned references for a more in-depth perspective.

5.3.2 Random Fourier Features

Out of several sketching techniques one could a priori use to accelerate spectral
clustering, we focus on random Fourier features (RFF) [110]: a method that samples
in the Fourier space associated with the original feature space. Even though RFFs
have originally been developed to approximate a kernel matrix K in time linear in
n instead of the quadratic time necessary for its exact computation, they can in fact
be used to obtain an approximation Ũk of the exact spectral embedding Uk .

Let us denote by κ the RBF kernel, i.e., κ(t) = exp(−t2/σ 2), whose Fourier
transform is:

κ̂(ω) =
∫

Rd

κ(t) exp−iω�t dt. (5.10)

The above takes real values as κ is symmetric. One may write:

κ(p, q) = κ(p − q) = 1

Z

∫

Rd

κ̂(ω) expiω�(p−q) dω, (5.11)

where, in order to ensure that κ(p, p) = 1, the normalization constant is set to
Z = ∫

Rd κ̂(ω)dω. According to Bochner’s theorem, and due to the fact that κ is
positive-definite, κ̂/Z is a valid probability density function. κ(p, q) may thus be
interpreted as the expected value of expiω�(p−q) provided that ω is drawn from κ̂/Z:

κ(p, q) = Eω

(
expiω�(p−q)

)
(5.12)

Drawing ω from the distribution κ̂/Z is equivalent to drawing independently each
of its d entries according to the normal law of mean 0 and variance 2/σ 2. Indeed:
κ̂(ω) = πd/2σd exp(−σ 2ω2/4) and Z = ∫

Rd κ̂(ω)dω = (2π)d , leading to
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κ̂(ω)

Z
=

(
σ

2
√

π

)d

exp−σ 2ω2/4 .

In practice, we draw independently m such vectors ω to obtain the set of sampled
frequencies � = (ω1, . . . ,ωm). For each data point pi , and given this set of samples
�, we define the associated random Fourier feature vector:

ψ i = 1√
m

[cos(ω�
1 pi )| · · · | cos(ω�

mpi )| sin(ω�
1 pi )| · · · | sin(ω�

mpi )]� ∈ R
2m,

(5.13)

and call � = (
ψ1| · · · |ψn

) ∈ R
2m×n the RFF matrix. Other embeddings are

possible in the RFF framework, but this one was shown to be the most appropriate
to the Gaussian kernel [127]. As m increases, ψ�

i ψj concentrates around its

expected value κ(pi , pj ): ψ�
i ψj � κ(pi , pj ). Proposition 1 of [127] states the

tightness of this concentration: it shows that the approximation starts to be valid
with high probability for m ≥ O(d log d). The Gaussian kernel matrix is thus
well approximated as K � ���. With such a low-rank approximation � of
K, one can estimate the degrees,11 degree-normalize � to obtain a low-rank
approximation of the normalized Laplacian Ln, and perform an SVD to directly
obtain an approximation Ũk of the spectral embedding Uk . The total cost to obtain
this approximation is O(ndm+nm2). These ideas were developed in Refs. [31, 146],
for instance.

As in Nyström methods however, the concentration guarantees of RFFs for
K do not extend to the degree-normalized case; moreover, the sparsification step
1b of spectral clustering is ignored. Note that improving over RFFs in terms of
efficiency and concentration properties is the subject of recent research (see, for
instance, [81]).

5.3.3 The Paradigm of Representative Points

The methods detailed here sample in the original feature space and directly obtain
a control on the misclustering rate due to the sampling process. They are based on
the following framework:

1. Sample m so-called representatives.
2. Run spectral clustering on the representatives.
3. Lift the solution back to the entire dataset.

11An approximation of the degree di of node vi is ψ�
i ψ̄ where ψ̄ = ∑

j ψj . All degrees can thus

be estimated in time O(nm2).
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Let us illustrate this with the example of KASP:

Algorithm 4. KASP: k-means-based approximate spectral cluster-
ing [147]
Input. A set of n points P = (p1, p2, . . . , pn) in dimension d, a number of
desired clusters k, and a number of representatives m.

1. Perform k-means with k = m on P and obtain:

(a) the cluster centroids Y = (y1, . . . , ym) as the m representative points.
(b) a correspondence table to associate each pi to its nearest representative

2. Run spectral clustering on Y to get the cluster membership of each yi .
3. Lift the cluster membership to each pi by looking up the cluster member-

ship of its representative in the correspondence table.

Output: k clusters

The complexity of KASP is bounded by12 O(mdnt + m3). For a summary
of the analysis given in [147], let us consider the cluster memberships given by
exact spectral clustering on P as well as the memberships given by exact spectral
clustering on P̃ = (p1 + ε1, . . . , pn + εn), where the εi are any small perturbations
on the initial points. Let us denote by Ln (resp. L̃n) the normalized Laplacian matrix
of the similarity graph on P (resp. P̃). The analysis concentrates on the study of the
miss-clustering rate ρ:

ρ = # of points with different memberships

n
. (5.14)

The main result, building upon preliminary work in [63], stems from a perturbation
approach and reads:

Theorem 5.3 Under the assumptions of Theorem 3 in [147]: ρ≤O

(
k

g2
0
‖Ln−L̃n‖F

)
,

where g0 is a value depending on the spectral gap. Also, under the assumptions of
Theorem 6 in [147], one has, with high probability:

‖Ln − L̃n‖F ≤ O
(
σ (2)

ε + σ (4)
ε

)
, (5.15)

with σ
(2)
ε and σ

(4)
ε the 2nd and 4th moments of the perturbation’s norms ‖εi‖2.

12It is in fact O(mdnt) for step 1, and bounded by O(dm2 + m2k + mk2) for step 2. As n ≥ m and
m ≥ k, the total complexity is bounded by O(mdnt + m3).
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Combining both bounds, one obtains an upper bound on the misclustering rate that
depends on the second and fourth moments of the perturbation’s norms ‖εi‖2. The
“collapse” of points onto the m representative points, interpreted as a perturbation
on the original points, should thus tend to minimize these two moments, leading the
authors to propose distortion-minimizing algorithms, such as KASP. A very similar
algorithm, eSPEC, is described in [141].

5.3.4 Other Methods

5.3.4.1 Approximate Nearest Neighbor Search Algorithms

The objective here is to approximate the nearest neighbor graph efficiently. Even
though these methods are not necessarily based on sampling, we include them in
the discussion as they are frequently used in practice.

Given the feature vectors p1, . . . , pn ∈ R
d and a query point q ∈ R

d , the
exact nearest neighbor search (exact NNS) associated with P and q is p∗ =
argminp∈P dist(q, p), where dist stands for any distance. Different distances are
possible depending on the choice of kernel κ . We will here consider the Euclidean
norm as it enters the definition of the classical RBF kernel. Computing the exact
NNS costs O(dn). The goal of the approximate NNS field of research is to provide
faster algorithms that have the following control on the error.

Definition 5.1 Point p∗ is an ε-approximate nearest neighbor of query q ∈ R
d , if

∀p ∈ P dist(q, p∗) ≤ (1 + ε) dist(q, p).

For ε = 0, this reduces to exact NNS.

Extensions of this objective to the k-nearest neighbor goal are considered in the
NNS literature. A k-nearest neighbor graph can then be constructed simply by
running an approximate k-NNS query for each object pi . Thus, approximate NSS
algorithms are interesting candidates to approximate the adjacency matrix of the
nearest-neighbor affinity graph, that we need in step 1 of spectral clustering.
Many algorithms exist, their respective performances depending essentially on the
dimension d of the feature vectors. According to [9], randomized k-d forests as
implemented in the library FLANN [98] are considered state of the art for dimension
of around 100, whereas methods based on balanced box decomposition (BBD) [4, 7]
are known to perform well for d roughly smaller than 100. In high dimensions, to
avoid the curse of dimensionality, successful approaches are, for instance, based on
hashing methods (such as locality sensitive hashing (LSH) [5], product quantization
(PQ) [66]), or k-d generalized random forests [9]. Finally, proximity graph methods
that sequentially improve over a first coarse approximation of the k-NN graph (or
other graph structures such as navigable graphs) have received a large attention
recently and are becoming state of the art in regimes where quality of approximation
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primes (see, for instance, [8, 40, 51, 94]). Such tools come with various levels of
guarantees and computation costs, the details of which are not in the scope of this
chapter.

Experimentally, to obtain an approximate k-NN graph with a typical recall rate13

of 0.9, these algorithms are observed to achieve a complexity of O(dnα) with α

close to 1 (α � 1.1 in [40], for instance).

5.3.4.2 Feature Selection and Feature Projection

Some methods work on reducing the factor d of the complexity O(dn2) of the
kernel computation via feature selection, i.e., the sampling of features deemed more
useful for the underlying clustering task, or feature projection, i.e., the projection
on usually random subspaces of dimension d ′ < d. Feature selection methods
are usually designed to improve the classification by removing features that are
too noisy or useless for the classification. We thus do not detail further these
methods as they are not approximation algorithms per se. The interested reader
will find some entries in the literature via references [25, 35, 60, 149]. Projection
methods use random projections of the original points P on spaces of dimension
d ′ ∼ log n in order to take advantage of the Johnson–Lindenstrauss lemma of norm
conservation: the kernel computed from the projected features in dimension d ′ is
thus an approximation of the true kernel with high probability. We refer to the
works [64, 116] for more details.

5.4 Sampling Given the Similarity Graph

We now suppose that the similarity graph is either given (e.g., in cases where the
original data is a graph) or has been well approximated (by approximate k-NN
search, for instance) and concentrate on sampling-based methods that aim to reduce
the cost of computing the first k eigenvectors of R.

These methods predominantly aim to approximate R by a smaller matrix R̃ of
size m. The eigen-decomposition is done in R

m which can be significantly cheaper
when m � n. In addition, each method comes with a fast way of lifting vectors from
R

m back to R
n (this is usually a linear transformation). After lifting, the eigenvectors

of R̃ are used as a proxy for those of R.
Unlike the previous section where a strong approximation guarantee of the exact

embedding Uk by an efficiently computed Ũk was a distant and difficult goal to
achieve in itself, we will see in this section that the knowledge of the similarity

13The recall rate for a node is the number of correctly identified k-NN divided by k. The recall rate
for a k-NN graph is the average recall rate over all nodes.
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graph not only enables to obtain such strong approximation guarantees, but also
enables to control how the error on Uk transfers as an error on the k-means cost.

To be more precise, recall (5.1) defining the k-means cost f (C; X) associated
with the n points X = (x1, . . . , xn) and a centroid set C. Now, suppose that we
have identified a set of n points X̃ = (x̃1| . . . |x̃n) that are meant to approximate
the exact spectral embedding X. Moreover, let C∗ (resp. C̃∗) be the optimal set of k

centroids minimizing the k-means cost on X (resp. X̃). We will see that several (not
all) approximation methods of this section achieve an end-to-end approximation
guarantee of the form

∣∣∣f (C∗; X)
1/2 − f (C̃∗; X)

1/2
∣∣∣ ≤ ε,

for some small ε with—at least—constant probability. Such an end-to-end guarantee
is indeed more desirable than a simple guarantee on the distance between Uk and
Ũk: it informs us on the approximation quality of the attained clustering.

5.4.1 Nyström-Based Methods

The Nyström-based methods discussed in Sect. 5.3.1 are also applicable here. Let
us concentrate on the choice R = Ln to illustrate the main ideas. As explained
in Sect. 5.3.1, the tailing k eigenvectors Uk of Ln can be interpreted as the top
k eigenvectors of the PSD matrix A = 2I − Ln. As such, the span of the top-
k eigenvectors of Ãk , span(Ũk), obtained by running Algorithm 3 on A should
approximate the span of Uk . Now, how does one go from Nyström theorems such
as Theorem 5.2 to error bounds on the k-means cost function?

The first step towards an end-to-end guarantee relies on the following result:

Lemma 1 (See the Proof of Theorem 6 in [21]) Denote by C̃∗ the optimal centroid
set obtained by solving k-means on the rows of Ũk . It holds that

∣∣
∣f (C∗; X)

1/2 − f (C̃∗; X)
1/2

∣∣
∣ ≤ 2‖E‖F , (5.16)

where E = UkU�
k − ŨkŨ�

k .

This means that the error made by considering the optimal k-means solution
based on Ũk (instead of Uk) is controlled by the Frobenius norm of the projector
difference E = UkU�

k − ŨkŨ�
k . Furthermore, since14 ‖E‖F ≤ √

2k‖E‖2 and

14Based on three arguments: (i) for any two matrices M1 and M2 of rank r1 and r2 it holds that
rank(M1 + M2) ≤ r1 + r2, (ii) for any matrix M or rank r , ‖M‖F ≤ √

r‖M‖2, and (iii) both Uk

and Ũk are of rank k.
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‖E‖2 = ‖ sin(�(Uk, Ũk))‖2, we can apply the Davis–Kahan sin � perturbation
theorem (see, for instance, Section VII of [16]) and, provided that σk − σ̃k+1 > 0,
obtain:

‖E‖F ≤ √
2k‖E‖2 ≤ √

2k
‖A − Ã‖2

σk − σ̃k+1
,

where {σi} (resp. {σ̃i}) are the singular values of A (resp. Ã) ordered decreasingly.15

The final bound is obtained by combining the above with the leverage score
sampling bound given by Theorem 5.2.

Theorem 5.4 Let Ũk be the eigenvectors obtained by running Algorithm 3 on A =
2I − Ln (with the leverage score sampling scheme for the m samples S of step 1).
Denote by C̃∗ the optimal centroid set obtained by solving k-means on the rows of
Ũk . Then, for some constant C > 1, we have

∣∣
∣f (C∗; X)

1/2 − f (C̃∗; X)
1/2

∣∣
∣ ≤ 2

√
2k

σk − σ̃k+1

⎛

⎝σk+1(A) + Ck log (k/δ)

m

n∑

j=k+1

σj

⎞

⎠

with probability at least 0.8 − 2δ.

Examining the above bound one notices that 2
√

2k
σk+1(A)

σk−σ̃k+1
is independent of the

number of samples. The incompressibility of this error term emanates from A being
(in general) different from its best low-rank approximation. On the other hand, all
remaining error terms can be made independent of k and n by setting

m = O

⎛

⎝k
√

k log k

n∑

j=k+1

σj

σk − σ̃k+1

⎞

⎠ .

This end-to-end guarantee is not satisfactory for several reasons. First of all, it relies
on the assumption σk > σ̃k+1, which is not necessarily true. Moreover, the Davis–
Kahan theorem could in theory guarantee ‖E‖2 ≤ ‖Ak − Ãk‖2/σk and ‖E‖2 ≤
‖A − Ãk‖2/σk , which are stronger than the bound depending on ‖A − Ã‖2 that
we used. Unfortunately, Nyström approximation theorems do not give controls on
‖Ak − Ãk‖2 nor on ‖A − Ãk‖2, impeding tighter end-to-end bounds.

5.4.2 Graph Coarsening

Inspired by the algebraic multi-grid, researchers realized early on that a natural
way to accelerate spectral clustering is by graph coarsening [38, 61, 69]. Here,

15Note that, in our setting, A = 2I − Ln and σk = 2 − λk .
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instead of solving the clustering problem directly on G, one may first reduce it to a
coarser graph Gc consisting of m � n nodes using a multi-level graph coarsening
procedure. The expensive eigen-decomposition computation is done at a lower cost
on the representative matrix of the small graph and the final spectral embedding is
obtained by inexpensively lifting and refining the result.

In the notation of [91], coarsening involves a sequence of c + 1 graphs

G = G0 = (V0, E0, W0) G1 = (V1, E1, W1) · · · Gc = (Vc, Ec, Wc)

(5.17)

of decreasing size n = n0 > n1 > · · · > nc = m, where each vertex of G�

represents one of more vertices of G�−1. To express coarsening in algebraic form,
we suppose that L(G0) = L is the combinatorial Laplacian associated with G. We
then obtain L(Gc) by applying the following repeatedly:

L(G�) = P∓
� L(G�−1)P

+
� , (5.18)

where P� ∈ R
n�×n�−1 is a matrix with more columns than rows, � = 1, 2, . . . , c is

the level of the reduction, and symbol ∓ denotes the transposed pseudo-inverse. An
eigenvector ũ ∈ R

m of L(Gc) is lifted back to R
n by backwards recursion

ũ�−1 = P�ũ�,

where ũc = ũ.

Matrices P1, P2, . . . , Pc are determined by the transformation performed at each
level. Specifically, one should define for each level a surjective map ϕ� : V�−1 → V�

between the original vertex set V�−1 and the smaller vertex set V�. We refer to the
set of vertices V

(r)
�−1 ⊆ V�−1 mapped onto the same vertex v′

r of V� as a contraction
set:

V
(r)
�−1 = {v ∈ V�−1 : ϕ�(v) = v′

r}

It is easy to deduce from the above that contraction sets induce a partitioning of
V�−1 into n� subgraphs, each corresponding to a single vertex of V�.

Then, for any v′
r ∈ V� and vi ∈ V�−1, matrices P� ∈ R

n�×n�−1 and P+
� ∈

R
n�−1×n� are given by:

P�(r, i) =
⎧
⎨

⎩

1
|V (r)

�−1|
if vi ∈ V

(r)
�−1

0 otherwise
and P+

� (i, r) =
{

1 if vi ∈ V
(r)
�−1

0 otherwise.

The preceding construction is the only one that guarantees that every L(G�) will be
the combinatorial Laplacian associated with G� [90].

Note that from a computational perspective the reduction is very efficient and can
be carried out in linear time: each coarsening level entails multiplication by a sparse
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matrix, meaning that O(e) and O(n) operations suffice, respectively, to coarsen L
and lift any vector (such as the eigenvectors of L(Gc)) from R

m back to R
n.

5.4.2.1 Coarsening for Spectral Clustering

Using coarsening effectively boils down to determining for each � how to partition
G�−1 into n� contraction sets V

(1)
� , . . . , V

(n�)
� , such that, after lifting, the first k

eigenvectors Ũk of L(Gc) approximate the spectral embedding Uk derived from
L. Alternatively, one may also solve the k-means problem in the small dimension
and only lift the resulting cluster assignments [38]. This scheme is computationally
superior but we will not discuss it here as it does not come with any guarantees.

Perhaps the most simple (and common) method of forming contraction sets is by
the heavy-edge matching heuristic—originally developed in the multi-grid literature
and first considered for graph partitioning in [69]. This method is derived based on
the intuition that the larger the weight of an edge, the less likely it will be that
the vertices it connects will reside in different clusters. We should therefore aim to
contract pairs of vertices connected by a heavy edge (i.e., of large weight) first. Let
us consider this case further. By focusing on edges, we basically constrain ourselves
by enforcing that every contraction set V

(r)
� contains either two nodes connected by

an edge or a single node, signifying that said node is chosen to remain as is in the
coarser graph. As such, we can reformulate the problem of selecting contraction sets
at each level as that of selecting the largest number of edges (to attain the largest
reduction), while also striving to make the cumulative sum of selected edge weights
as large as possible (giving preference to heavy edges). This is exactly the maximum
weight matching problem, which can be approximated in linear time [44].

A plethora of numerical evidence motivates the use of matching-based coars-
ening methods, such as the heavy-edge heuristic, for accelerating spectral clus-
tering [38, 69, 115]. From a theoretical perspective, the approximation quality of
matching-based methods was characterized in [91]. Therein, the matching was
constructed in the following randomized manner:

Algorithm 5. Randomized edge contraction (one level) [91]
Input. A graph G = (V, E)

1. Associate with each eij ∈ E a probability pij > 0.
2. While |E| > 0:

(a) Draw a sample eij from E with probability ∝ pij .
(b) Remove from E both eij as well as all edges sharing a common

endpoint with it.
(c) Construct contraction set (vi, vj ).

Output: Contraction sets
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The following approximation result is known:

Theorem 5.5 (Corollary 5.1 in [91]) Consider a graph with bounded degrees

di � n and λk ≤ mineij ∈E

{
di+dj

2

}
. Suppose that the graph is coarsened by

Algorithm 5, using a heavy-edge potential such that pij ∝ wij . For sufficiently large
n, a single level, and δ > 0,

∣
∣∣f (C∗; X)

1/2 − f (C̃∗; X)
1/2

∣
∣∣ = O

⎛

⎝

√
1 − m

n

δ

∑k
�=2 λ�

λk+1 − λk

⎞

⎠

with probability at least 1 − δ. Above, C̃∗ is the optimal k-means solution when
using the lifted eigenvectors of Lc as a spectral embedding.

We deduce that coarsening works better when the spectral clustering problem is easy
(as quantified by the weighted gap

∑k
�=2 λ�/(λk+1 − λk)) and the achieved error is

linear on the reduction ratio 1 − m/n.
There also exist more advanced techniques for selecting contraction sets that

come with stronger guarantees w.r.t. the attained reduction and quality of approx-
imation, but feature running time that is not smaller than that of spectral cluster-
ing [90]. In particular, these work also with the normalized Laplacian and can be
used to achieve multi-level reduction. Roughly, their strategy is to identify and
contract sets S ⊂ V for which x(i) ≈ x(j) for all vectors x ∈ Uk and vi, vj ∈ S.
This strategy ensures that the best partitionings of G are preserved by coarsening.
We will not expand on these methods here as they do not aim to improve the running
time of spectral clustering.

5.4.3 Other Approaches

In the following, we present two additional approaches for approximately comput-
ing spectral embeddings. The former can be interpreted as a sampling-based method
(but in a different manner than the techniques discussed so far), whereas the latter
is only vaguely linked to sampling. Nevertheless, we find that both techniques are
very interesting and merit a brief discussion.

5.4.3.1 Spectral Sparsification

This approach is best suited for cases when the input of spectral clustering is directly
a graph.16 Different from the methods discussed earlier, here the aim is to identify

16When one starts from a set of points, it is preferable to sparsify the graph by retaining a constant
number of nearest neighbors for each point. The resulting nearest neighbor graph has already O(n)

edges, which is the smallest possible.
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a Laplacian matrix L̃ of the same size as L but with fewer entries. Additionally, it
should be ensured that

1

1 + ε
x�Lx ≤ x�L̃x ≤ (1 + ε)x�Lx for all x ∈ R

n (5.19)

for some small constant ε > 0 [125]. Most fast algorithms for spectral sparsification
entail sampling O(n log n) edges from the total edges present in the graph. Different
sampling schemes are possible [72, 124], but the most popular ones entail sampling
edges with replacement based on their effective resistance. It should be noted
that though computing all effective resistances exactly can be computationally
prohibitive, the effective resistance of edges can be approximated in nearly linear
time on the number of edges based on a Johnson–Lindenstrauss argument [124].

There are different ways to use sparsification in order to accelerate spectral
clustering. The most direct one is to exploit the fact that the eigenvalues λ̃k and
eigenvectors Ũk of L̃ approximate, respectively, the eigenvalues and eigenvectors
of L up to multiplicative error. This yields the same flavor of guarantees as in
graph coarsening and ensures that the computational complexity of the partial
eigen-decomposition will decrease when e = ω(n log n). A variation of this
idea was considered in [140], though the latter did not provide a complete error
and complexity analysis. Alternative approaches are also possible. We refer the
interested reader to [136] for a rigorous argument that invokes a Laplacian solver.

Despite these exciting developments, we should mention that the overwhelming
majority of graph sparsification algorithms remain in the realm of theory. That is,
we are currently not aware of any practical and competitive implementation and thus
retain a measure of skepticism with regard to their utility in the setting of spectral
clustering.

5.4.3.2 Random Eigenspace Projection

There also exist approaches that do not explicitly rely on sampling. The key
starting point here is that, with regard to spectral clustering, one does not need the
eigenvectors exactly—any rotation of Uk suffices (indeed, k-means is an algorithm
based on distances and rotations conserve distances). Even more generally, consider
Ũk ∈ R

n×m with m ≥ k and denote:

ε = min
Q∈Q

‖UkIk×mQ − Ũk‖F ,

where Q is the space of m×m unitary matrices and Ik×m consists of the first k rows
of an m × m identity matrix.
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The following lemma (which is a generalization of Lemma 1) shows how ε can
be used to provide control on the k-means error:

Lemma 2 (Lemma 3.1 in [95])
Let C̃∗ be the optimal solution of the k-means problem on Ũk . It holds that17

∣∣∣f (C∗; X)
1/2 − f (C̃∗; X)

1/2
∣∣∣ ≤ 2ε. (5.20)

There exists (at least) two approaches to efficiently compute Ũk while controlling
ε [21, 130] (see also related work in [58]). We will consider here a simple variant of
the one proposed in [130] and further analyzed in [95]. Let G ∈ R

n×m be a random
Gaussian matrix with centered i.i.d. entries, each having variance 1

m
. Furthermore,

suppose that we project G onto span(Uk) by multiplying each one of its columns by
an ideal projector Pk defined as

Pk = U
(

Ik 0
0 0

)
U�. (5.21)

Theorem 5.6 ([95, 130]) Let C̃∗ be the optimal solution of the k-means problem on
the rows of Ũk = PkG. For every δ ≥ 0, one has

∣∣∣f (C∗; X)
1/2 − f (C̃∗; X)

1/2
∣∣∣ ≤ 2

√
k

m
(
√

k + δ), (5.22)

with probability at least 1 − exp(−δ2/2).

This result means that for an ideal projector Pk , dimension m = O(k2) suffices
to guarantee good approximation (since the error becomes independent of k

and n)! A similar argument also holds when the entries of G, instead of being
Gaussian, are selected i.i.d. from {−√

3, 0,+√
3} with probabilities {1/6, 2/3, 1/6},

respectively [1]. This construction has the benefit of being sparser and, moreover,
is reminiscent of sampling. It should be noted that in [130], m = O(log n) was
deemed enough because one only wanted that the distance between two rows of Uk

17A remark on the definition of the k-means cost. Note that, here, the lines X̃ of Ũk are points in
dimension m ≥ k, such that the optimal centroid set C̃∗ minimizing the k-means cost on X̃ is a set
of k points in dimension m ≥ k. In this context, the notation f (C̃∗; X) is ill-defined: it is a sum of
distances between points that do not necessarily have the same dimension. We abuse notations and
give the following meaning to f (C̃; X). First, consider the matrix form of the k-means cost, as used
in the proofs of Lemmas 1 and 2: f (C; X) = ‖X − CC�X‖2

F , where X = (x1| . . . |xn)
� ∈ R

n×k

and C ∈ R
n×k is the (weighted) cluster indicator matrix associated to the Voronoi tessellation of

X given C: Ci� = 1/
√

s� if data point i belongs to cluster �, and 0 otherwise, where s� is the
size of cluster �. Now, let C̃ ∈ R

n×k be the cluster indicator matrix associated with the Voronoi
tessellation of X̃ given C̃. One writes: f (C̃; X) = ‖X − C̃C̃�X‖2

F .
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was approximated by the distance between the same two rows of Ũk . There was in
fact no end-to-end control on the k-means error.

The discussion so far assumed that Pk is an ideal projector onto span(Uk).
However, in practice one does not have access to this projector as we are in fact
in the process of computing Uk . One may choose to approximate the action of Pk by
an application of a matrix function h on the representative matrix R [111, 129].
Assuming a point λ∗ in the interval [λk, λk+1) is known, one may select a
polynomial [122] or rational function [65, 92] that approximates the ideal low-pass
response, i.e., h(λ) = 1 if λ ≤ λ∗ and h(λ) = 0, otherwise. The approximated
projector P̃k = h(R) can be designed to be very close to Pk . For instance, in the
case of Chebyshev polynomials of order c using the arguments of [80, Lemma 1] it is
easy to prove that w.h.p. using h(R) instead of Pk does not add more than O(c−c√n)

error in (5.20). Furthermore, the operation P̃kG can conveniently be computed in
O(mce) time via this polynomial approximation.

The last ingredient needed for this approximation is λ∗, i.e., a point in the
interval [λk, λk+1). Finding efficiently a valid λ∗ is difficult. An option is to
rely on eigencount techniques [39, 105, 109] to find one in18 O(ck2(log n)(e +
n log(λn/(λk+1 − λk)))) time, which features similar complexity as the Lanczos
method (see discussion in Sect. 5.2.3). Another option is to content oneself with
values of λ∗ known only to be close to the interval [λk, λk+1), but thereby loosing
the end-to-end guarantee [130].

5.5 Sampling in the Spectral Feature Space

Having computed (or approximated) the spectral embedding X = (x1, x2, . . . , xn),
what remains is to solve the k-means problem on X, in order to obtain k centroids
together with the associated k classes obtained after Voronoi tessellation.

The usual heuristic used to solve the k-means problem, namely the Lloyd-Max
algorithm, is already very efficient as it runs in O(nk2t) time as seen in Sect. 5.2.3.
Nonetheless, this section considers ways to accelerate k-means even further. In the
following, we classify the relevant literature in five categories and point towards
representative references for each case. In our effort to provide depth (as well as

18Proof sketch: Given λ ∈ (0, λn], denote by j the largest integer such that λj ≤ λ and by Pj

the orthogonal projector on Uj . Let G ∈ R
n×m′

be a random Gaussian matrix with centered i.i.d.
entries, each having variance 1

m′ and denote by ĵ = ‖Pj G‖F . Relying on Theorem 4.1 (and the
following discussion in Section 4.2) of [109] with Eλ = 0, one has with prob. at least 1 − ε that
(1 − δ)j ≤ ĵ ≤ (1 + δ)j for all j = 1, . . . , n provided m′ ≥ 1

δ2 log n
ε

. Setting δ = 1/(2k + 3)

gives w.h.p. that 2k+2
2k+3 j ≤ ĵ ≤ 2k+4

2k+3 j for all j = 1, . . . , n provided m′ ≥ O(k2 log n). This implies

that w.h.p. for every j ≤ k + 1 it must be that round(ĵ ) = j , whereas when j > k + 1 we have
round(ĵ ) > k + 1. Note that round(ĵ ) is the closest integer to ĵ . By dichotomy on λ ∈ (0, λn], one
thus finds a λ∗ in time O(ck2(log n)(e + n log(λn/(λk+1 − λk)))).
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breadth) of presentation, the rest of the section details only methods that belong to
the first and last categories.

• Exact acceleration of Lloyd-Max. There exists exact accelerated Lloyd-Max
algorithms, some of them based on avoiding unnecessary distance calculations
using the triangular inequality [59, 101], or on optimized data organization [67],
and others concentrating on clever initializations [6, 104]. Unlike the former
methods, the latter methods involve sampling and are discussed in Sect. 5.5.1.

• Approximate acceleration of Lloyd-Max. Approximately accelerating the
Lloyd-Max algorithm has also received attention, for instance, via approximate
nearest neighbor methods [108], via cluster closure [142], or via applying
Lloyd-Max hierarchically (in the large k context) [103]. An approach involving
sampling is introduced in [119]: it is based on mini-batches sampled uniformly
at random from X. We will not discuss further this method as it does not come
with guarantees on the cost of the obtained solution.

• Methods involving sampling in the Fourier domain. There are a few sampling-
based heuristics to solve the k-means problem that are different from the
Lloyd-Max algorithm. For instance, the work in [70] proposes to sample in the
frequency domain to obtain a sketch from which one may recover the centroids
with an orthogonal matching pursuit algorithm specifically tailored to this kind
of compressive learning task [55]. These methods are reminiscent of the random
Fourier features sketching approach introduced in Sect. 5.3.2. We will not discuss
them further.

• Methods involving sampling features. Similarly to ideas presented in
Sect. 5.3.4.2 but here specific to the k-means setting, some works reduce the
ambient dimension of the vectors, either by selecting a limited number of
features [3, 20] or by embedding all points in a lower dimension using random
projections [22, 33, 93]. The tightest results to day are a (1 + ε) multiplicative
error on the k-means cost f either by randomly selecting O(ε−2k log k) features
or by projecting them on a random space of dimension O(ε−2 log (k/ε))

(sublinear in k!). The sampling result is useless in the spectral clustering setting
as the ambient dimension of the spectral features is already k. The projection
result could in principle be applied in our setting, to reduce the cost of the k-
means step to O(tnk log k). We will nevertheless not discuss it further in this
chapter.

• Methods involving sampling points. Finally, the last group of existing methods
are the ones that solve k-means on a subset S of X, before lifting back the result
on the whole dataset. We classify such methods in two categories. In Sect. 5.5.2,
we detail methods that are graph-agnostic, meaning that they apply to any k-
means problem; and in Sect. 5.5.3 we discuss methods that explicitly rely on the
fact that the features x were in fact obtained from a known graph. We argue that
the latter are better suited to the spectral clustering problem.
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5.5.1 Clever Initialization of the Lloyd-Max Algorithm

Recall that the k-means objective on X is to find the k centroids C = (c1, . . . , ck)

that minimize the following cost function:

f (C; X) =
∑

x∈X

min
c∈C

‖x − c‖2
2. (5.23)

and that C∗ = arg minC f (C; X) is the optimal solution attaining cost f ∗ =
f (C∗; X). Recall also that the Lloyd-Max algorithm (see Algorithm 2) converges
to a local minimum of f that we will denote by Clm, for which the cost function
equals flm = f (Clm; X). It is crucial to note that the initialization of centroids Cini
in the first step of the Lloyd-Max algorithm, which usually is done by randomly
selecting k points in X, is what determines the distance |f ∗ − flm| to the optimal.
As such, significant efforts have been devoted to smartly selecting Cini by various
sampling schemes.

As usual, we also face here the usual trade-off between sampling effectively and
efficiently. The fastest sampling method is of course uniformly at random, but it
does not come with any guarantee on the quality of the local minimum Clm it leads
to. An alternative sampling scheme, called k-means++ initialization, is based on the
following more general D2-sampling algorithm.

Algorithm 6: D2-sampling
Input. X, m the number of required samples

1. Initialize B with any x chosen uniformly at random from X.
2. Iterate the following steps until B contains m elements:

(a) Compute di = minb∈B ‖xi − b‖2
2.

(b) Define the probability of sampling xi as di/
∑

i di .
(c) Sample xnew from this probability distribution and add it to B.

Output: B a sample set of size m.

k-means++ initialization boils down to running Algorithm 6 with m = k to obtain a
set of k initial centroids. Importantly, when the Lloyd-Max heuristic is run with this
initialization, the following guarantee holds:

Theorem 5.7 ([6]) For any set of data points, the cost flm obtained after Lloyd-
Max initialized with k-means++ is controlled in expectation: E(flm) ≤ 8(log k +
2)f ∗.

In terms of computation cost, D2-sampling with m = k runs in O(nkd), that is,
O(nk2) in our setting of a spectral embedding X in dimension k. This work inspired
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other initialization techniques that come with similar guarantees and are in some
cases faster [10, 12]. The interested reader is referred to the review [27] for further
analyses on the initialization of k-means.

5.5.2 Graph Agnostic Sampling Methods: Coresets

The rest of Sect. 5.5 considers sampling methods that fall in the following frame-
work: (i) sample a subset S of X, (ii) solve k-means on S, (iii) lift the result back on
the whole dataset X. Section 5.5.2 focuses on coresets: general sampling methods
designed for any arbitrary k-means problem, whereas in Sect. 5.5.3, we will take into
account the specific nature of the spectral features encountered in spectral clustering
algorithms.

5.5.2.1 Definition

Let S ⊂ X be a subset of X of size m. To each element s ∈ S associate a weight
ω(s) ∈ R

+. Define the estimated k-means cost associated with the weighted set S
as:

f̃ (C; S) =
∑

s∈S

ω(s) min
c∈C

‖s − c‖2
2. (5.24)

Definition 5.2 (Coreset) Let ε ∈ (0, 1
2 ). The weighted subset S is a ε-coreset for

f on X if, for every set C, the estimated cost is equal to the exact cost up to a relative
error:

∀C

∣∣∣∣∣
f̃ (C; S)

f (C; X)
− 1

∣∣∣∣∣
≤ ε. (5.25)

This is the so-called strong coreset definition,19 as the ε-approximation is required
for all C. The great interest of finding a coreset S comes from the following fact.
Writing C̃∗ the set minimizing f̃ , the following inequalities hold:

(1 − ε)f (C∗; X) ≤ (1 − ε)f (C̃∗; X) ≤ f̃ (C̃∗; S) ≤ f̃ (C∗; S) ≤ (1 + ε)f (C∗; X).

19A weaker version of this definition exists in the literature where the ε-approximation is only
required for C∗.
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The first inequality comes from the fact that C∗ is optimal for f , the second and last
inequality are justified by the coreset property of S, and the third inequality comes
from the optimality of C̃∗ for f̃ . This has two consequences:

1. First of all, since ε < 1
2 :

f (C∗; X) ≤ f (C̃∗; X) ≤ (1 + 4ε)f (C∗; X),

meaning that C̃∗ is a well-controlled approximation of C∗ with a multiplicative
error on the cost.

2. Estimating C̃∗ can be done using the Lloyd-Max algorithm on the weighted
subset20 S, thus reducing the computation time from O(nk2) to O(mk2).

Coreset methods for k-means thus follow the general procedure:

Algorithm 7. Coresets to avoid k-means on X
Input. X, sampling set size m, and number of clusters k ≤ m.

1. Compute a weighted coreset S of size m using a coreset-sampling
algorithm.

2. Run the Lloyd-Max algorithm on the weighted set S to obtain the set of k

centroids C̃.
3. “Closest-centroid lifting”: classify the whole dataset X based on the

Voronoi cells of C̃.

Output: A set of k centroids C = (c1, . . . , ck).

Coreset methods compete with one another on essentially two levels: the coreset
size m should be as small as possible in order to decrease the time of Lloyd-Max on
S, and the coreset itself should be sampled efficiently (at least faster than running
k-means on the whole dataset!), which turns out in fact to be a strong requirement.
The reader interested in an overview of coreset construction techniques is referred
to the recent review [99], as well as Chap. 2 of this book.

5.5.2.2 An Instance of Coreset-Sampling Algorithm

We focus on a particular coreset algorithm proposed in [11] that builds upon results
developed in [45, 79]: it is not state of the art in terms of coreset size, but has the
advantage of being easy to implement and fast enough to compute. It reads:

20Generalizing Algorithm 2 to a weighted set is straightforward: in step 2b, instead of computing
the center of each cluster, compute the weighted barycenter.
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Algorithm 8: a coreset sampling algorithm [11]
Input. X, m the number of required samples, t an iteration number

1. Repeat t times: draw a set of size k using D2-sampling. Out of the t sets
obtained, keep the set B that minimizes f (B; X).

2. α ← 16(log k + 2)

3. For each b� ∈ B, define B� the set of points in X in the Voronoi cell of b�

4. Set φ = 1
n
f (B; X).

5. For each b� ∈ B and each x ∈ B�, define

s(x) = α

φ
‖x − b�‖2

2 + 2α

φ|B�|
∑

x′∈B�

‖x′ − b�‖2
2 + 4n

|B�|

6. Define the probability of sampling xi as pi = s(xi )/
∑

x s(x)

7. S ← sample m nodes i.i.d. with replacement from p and associate to each
sample s the weight ωs = 1

mps
.

Output: A weighted set S of size m.

Theorem 2.5 of [11] states:

Theorem 5.8 Let ε ∈ (0, 1/4) and δ ∈ (0, 1). Let S be the output of Algorithm 8
with t = O(log 1/δ). Then, with probability at least 1 − δ, S is a ε-coreset provided
that:

m = Ω

(
k4 log k + k2 log 1/δ

ε2

)
. (5.26)

The computation cost of running this coreset-sampling algorithm, running Lloyd-
Max on the weighted coreset, and lifting the result back to X is dominated, when21

n � k, by step 1 of Algorithm 6 and thus sums up to O(nk2 log 1/δ).

Remark 1 The coreset-sampling strategy underlying this algorithm relies on the
concept of sensitivity [79]. Many other constructions of coresets for k-means
are possible [99] with better theoretical bounds then (5.26). Nevertheless, as the
coreset line of research has been essentially theoretical, practical implementations
of coreset-sampling algorithms are scarce. A notable exception is, for instance, the
work in [49] that proposes a scalable hybrid coreset-inspired algorithm for k-means.
Other exceptions are the sampling algorithms based on the farthest-first procedure, a
variant of D2-sampling that chooses each new sample to be arg maxi di instead of
drawing it according to a probability proportional to di . Once S of size m is drawn,

21To be precise, the statement holds if n ≥ O
(

k4

ε2
log k

log 1/δ

)
.
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then ∀s ∈ S, each weight ωs is set to be the cardinal of the Voronoi cell associated
with s. Authors in [113] show that such weighted sets computed by different variants
of the farthest-first algorithm are ε-coresets, but for values of ε that can be very
large. For a fixed ε, the number of samples necessary to have a ε-coreset with this
type of algorithm is unknown (see also Chap. 3 of this book).

5.5.3 Graph-Based Sampling Methods

The methods discussed so far in this section are graph agnostic both for the sampling
procedure and the lifting: they do not take into account that, in spectral clustering,
X are in fact spectral features of a known graph.

A recent line of work [52, 53, 95, 130] based on graph signal processing
(GSP) [118, 123] leverages this additional knowledge for accelerating both the
sampling and the lifting steps. For the purpose of the following discussion, denote
by z� ∈ R

n the ground truth indicator vector of cluster �, i.e., z�(i) = 1 if node vi is
in cluster �, and 0 otherwise. The goal of spectral clustering is, of course, to recover
{z�}�=1,...,k .

Broadly, GSP-based methods can be summarized in the following general
methodology [130]:

Algorithm 9. Graph-based sampling strategies to avoid k-means on X
Input. X, m the number of required samples, k the number of desired
clusters

1. Choose the random sampling strategy. Either:

(a) uniform (i.i.d.) Draw m i.i.d. samples uniformly.
(b) leverage score (i.i.d.) Compute ∀xi , p∗

i = ‖U�
k δi‖2

2/k. Draw m i.i.d.
samples from p∗. (optional:) set the weight of each sample s to 1/p∗

s .
(c) DPP Sample a few times independently from a DPP with kernel Kk =

UkU�
k . (optional:) set the weight of each sample s to 1/πs .

2. Run the Lloyd-Max algorithm on the (possibly weighted) set S to obtain
the k reduced cluster indicator vectors zr

� ∈ R
m.

3. Lift each reduced indicator vector {zr
�}�=1,...,k to the full graph either

with

(a) Least-square Solve (5.33) with y ← zr
�.

(b) Tikhonov Solve (5.34) with y ← zr
�.

(continued)
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In both cases, PS should be set to 1
N

Im if uniform sampling was cho-
sen, to diag(p∗

s1
, . . . p∗

sm
) if leverage score sampling was chosen, and to

diag(πs1 , . . . πsm) if DPP sampling was chosen.
4. Assign each node j to the cluster � for which ẑ�(j)/‖ẑ�‖2 is maximal.

Output: A partition of X in k clusters

To aid understanding, let us start by a high-level description of Algorithm 9.
The indicator vectors z� are interpreted as graph signals that are (approximately)
bandlimited on the similarity graph G (see Sect. 5.5.3.1 for a precise definition). As
such, there is no need to measure these indicator vectors everywhere: one can take
advantage of generalized Shannon-type sampling theorems to select the set S of m

nodes to measure (step 1). Then k-means is performed on S to obtain the indicator
vectors zr

� ∈ R
m on the sample set S (step 2). These reduced indicator vectors are

interpreted as noisy measurements of the global cluster indicator vectors z� on S.
The solutions zr

� are lifted back to X as ẑ� via solving an inverse problem taking
into account the bandlimitedness assumption or via label-propagation on the graph
structure reminiscent of semi-supervised learning techniques (step 3). As the lifted
solutions ẑ� do not have a binary structure as true indicator vectors should have, an
additional assignment step is necessary: assign each node j to the class � for which
ẑ�(j)

‖ẑ�‖2
is maximal (step 4).

The rest of this section is devoted to the discussion of the three sampling schemes
as well as the two lifting procedures considered in this framework. To this end, we
will first introduce a few graph signal processing (GSP) concepts in Sec. 5.5.3.1
before discussing in Sec. 5.5.3.2 several examples of graph sampling theorems
appropriate to the spectral clustering context.

5.5.3.1 A Brief Introduction to Graph Signal Processing (GSP)

Denote by U = (u1| . . . |un) ∈ R
n×n the matrix of orthonormal eigenvectors of the

Laplacian matrix L, with the columns ordered according to their associated sorted
eigenvalues: 0 = λ1 ≤ λ2 ≤ . . . ≤ λn. In the GSP literature [118, 123], these
eigenvectors are interpreted as graph Fourier modes for two main reasons:

• By analogy to the ring graph, whose Laplacian matrix is exactly the (symmetric)
double derivative discrete operator, and is thus diagonal in the basis formed by
the classical 1D discrete Fourier modes.

• A variational argument stemming from the Dirichlet form can be exploited
to express eigenvectors ui of L as the basis of minimal variation x�Lx =
1
2

∑
ij Wij [x(i) − x(j)]2 on G and eigenvalues λi as a sum of local variations

of ui , i.e., a generalized graph frequency.
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A graph signal z ∈ R
n is a signal that is defined on the nodes of a graph: its i-th

element is associated with node vi . Given the previous discussion, the graph Fourier
transform of z, denoted by z̃, is its projection on the graph Fourier modes: z̃ =
U�z ∈ R

n. The notion of graph filtering naturally follows as a multiplication in the
Fourier domain. More precisely, define a real-valued filter function h(λ) defined on
[0, λn]. The signal x filtered by h reads Uh(�)U�x, where we use the convention
h(�) = diag(h(λ1), h(λ2), . . . , h(λn)). In the following, we will use the following
notation for graph filter operators:

h(L) = Uh(�)U�. (5.27)

For more details on the graph Fourier transform and filtering, their various defini-
tions and interpretations, we refer the reader to [133].

Of interest for the discussion in this chapter, one may define bandlimited graph
signals as linear combinations of the first few low-frequency Fourier modes. Writing
Uk = (u1| . . . |uk) ∈ R

n×k , we have the formal definition:

Definition 5.3 (k-Bandlimited Graph Signal) A graph signal z ∈ R
n is k-

bandlimited if z ∈ span(Uk), i.e., ∃ α ∈ R
k such that z = Ukα.

To grasp why the notion of k-bandlimitedness lends itself naturally to the approx-
imation of spectral clustering, consider momentarily a graph with k disconnected
components and z� ∈ R

n the indicator vector of cluster �. It is a well-known
property of the (combinatorial) Laplacian that {z�}�=1,...,k form a set of orthogonal
eigenvectors of L associated with eigenvalue 0: that is, the set of indicator vectors
{z�}�=1,...,k form a basis of span(Uk). Understanding arbitrary graphs with block
structure as a perturbation of the ideal disconnected component case, the indicator
vectors {z�}�=1,...,k of the blocks should live close to span(Uk) (in the sense that
the difference between any z� and its orthogonal projection onto span(Uk) is small).
This in turn implies that every z� should be approximately k-bandlimited.

As we will see next, the bandlimitedness assumption is very useful because
it enables us to make use of generalized versions of Nyquist–Shannon sampling
theorems, taking into account the graph.

5.5.3.2 Graph Sampling Theorems

The periodic sampling paradigm of the Shannon theorem for classical bandlimited
signals does not apply to graphs without specific regular structure. In fact, a number
of sampling schemes have been recently developed with the purpose of generalizing
sampling theorems to graph signals [30, 109, 117, 134] (see [88] for a review of
existing schemes).

Let us introduce some notations. Sampling entails selecting a set S =
(s1, . . . , sm) of m nodes of the graph. To each possible sampling set, we associate
a measurement matrix M = (δs1 |δs2 | . . . |δsm)� ∈ R

m×n where δsi (j) = 1 if
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j = si , and 0 otherwise. Now, consider a k-bandlimited signal z ∈ span(Uk). The
measurement of z on S reads:

y = Mz + n ∈ R
m, (5.28)

where n models measurement noise. The sampling question boils down to: how
should we sample S such that one can recover any bandlimited z given its
measurement y? There are three important components to this question: (i) how
many samples m do we allow ourselves (m = k being the strict theoretical
minimum)? (ii) how much does it cost to sample? (iii) how do we in practice recover
z from y and how much does that inversion cost?

There are a series of works that propose greedy algorithms to find the “best” set S
of minimal size m = k that embed all k-bandlimited signals (see, for instance, [131]
and references therein). These algorithms cost O(nk4) and are thus not competitive
in our setting.22 Moreover, in our case, we do not really need to be that strict on
the number of samples and can allow more than k samples. A better choice is to
use random graph sampling techniques. In the following we consider two types
of independent sampling (uniform and leverage-score sampling) as well as a more
involved method based on determinantal point processes.

Independent Sampling In the i.i.d. setting, one defines a discrete probability
distribution p ∈ R

n over the node set V. The sampling set S is then generated
by drawing m nodes independently with replacement from p. At each draw, the
probability to sample node vi is denoted by pi . We have

∑
i pi = 1 and write

P = diag(p). Under this sampling scheme, the following restricted isometry
property holds for the associated measurement matrix M [109].

Theorem 5.9 For any δ, ε ∈ (0, 1), with probability at least 1 − δ:

(1 − ε)‖z‖2
2 ≤ 1

m
‖MP−1/2z‖2

2 ≤ (1 + ε)‖z‖2
2 (5.29)

for all z ∈ span(Uk) provided that

m ≥ 3

ε2 (νk
p)2 log

2k

δ
(5.30)

where νk
p is the so-called graph weighted coherence:

νk
p = max

i

{
p−1/2
i ‖U�

k δi‖2

}
. (5.31)

This property is important as it says, in a nutshell, that any two different bandlimited
signals will be identifiable post-sampling provided the number of samples is large

22It takes longer to find a good sample than to run k-means on the whole dataset!
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enough. The concept of large enough depends on (νk
p)2: a measure of the interplay

between the probability distribution and the norms of the rows of Uk . In the uniform
i.i.d. case since pi = 1/n, one has (νk

p)2 = n maxi ‖U�
k δi‖2

2, which stays under
control only for very regular graphs, but can be close to n in irregular graphs such
as the star graph. The good news is that there exists an optimal sampling distribution
(in the sense that it minimizes the right-hand side of inequality (5.30)) that adapts
to the graph at hand:

p∗
i = ‖U�

k δi‖2
2

k
(5.32)

In fact, in this case, (νk
p∗)2 matches its lower bound k and the necessary number of

samples m to embed all bandlimited signals drops to O(k log k). The distribution
p∗ is also referred to by the name “leverage scores” in parts of the literature (see
discussion in Sect. 5.3.1) [41]. As such, i.i.d. sampling under p∗ will be referred to
as leverage score sampling.

Now, for lifting, there are several options.

• If one uses the unbiased decoder

ẑ = arg min
w∈span(Uk)

‖P−1/2
S (Mw − y)‖2

2 (5.33)

where P−1/2
S =MP−1/2M�, then the following reconstruction result holds [109]:

Theorem 5.10 Let S be the i.i.d. nodes sampled with distribution p and M be
the associated sampling matrix. Let ε, δ ∈ (0, 1) and suppose that m satisfies
(5.30). With probability at least 1 − δ, for all z ∈ span(Uk) and n ∈ R

m, the
solution ẑ of (5.33) verifies:

‖ẑ − z‖2 ≤ 2√
m(1 − ε)

‖P−1/2
S n‖2.

This means that a noiseless measurement of a k-bandlimited signal yields a
perfect reconstruction. Also, this quantifies how increasing m reduces the error
of reconstruction due to a noisy measurement. Note that this error may be large
if there is a significant measurement noise on a node that has a low probability of
being sampled. However, by definition, this is not likely to happen.

• One can also use a label-propagation decoder reminiscent to semi-supervised
learning techniques [15, 28]:

ẑ = arg min
w∈Rn

‖P−1/2
S (Mw − y)‖2

2 + γ w�g(L)w, (5.34)

where γ is a regularization parameter, g(L) a graph filter operator as in (5.27)
with g(λ) a non-decreasing function. As g is non-decreasing, the regularization
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term of (5.34) penalizes high frequency solutions, that is, solutions that are not
smooth along paths of the graph. Theorems controlling the error of reconstruction
are more involved and we refer the reader to Section 3.3 of [109] for details.

• Other decoders [14, 106] are in principle possible, replacing, for instance, the
�2 Laplacian-based regularization w�g(L)w by �1-regularizers ‖∇w‖1, but they
come with an increased computation cost, lesser guarantees, and have not been
used for spectral clustering: we will thus not detail them further.

Let us discuss the computation costs of the previous sampling and lifting
techniques. In terms of sampling time, uniform sampling is obviously the most
efficient and runs in O(k). Leverage score sampling is dominated by the computation
of the optimal sampling distribution p∗ of (5.32), which takes O(nk) time.23 In
terms of lifting time, solving the decoder of (5.33) costs O(nk + mk2). Solving
the decoder of (5.34) costs O(et) via the conjugate gradient method, where t is the
iteration number of the gradient solver (usually around 10 or 20 iterations suffice to
obtain good accuracy when g(L) = L).

This discussion calls for a few remarks. First of all, these theorems are valid if we
suppose that z is exactly k-bandlimited, which is in fact only an approximation if we
consider z to be the ground truth indicator vectors of the k clusters to detect in the
spectral clustering context. In this case, we can always decompose z as the sum of its
orthogonal projection onto span(Uk) and its complement β: z = UkU�

k z+β. (5.28)
becomes y = MUkU�

k z + n where n now represents the sum of a measurement
noise and the distance-to-model term Mβ. The aforementioned theorems can then
be applied to UkU�

k z. Moreover, note that the decoder of (5.34) is not only faster
than the other ones in general, it also does not constrain the solution ẑ to be exactly
in span(Uk), which is in fact desirable in the spectral clustering context: we thus
advocate for the decoder of (5.34).

DPP Sampling Determinantal point processes are a class of correlated random
sampling strategies that strive to increase “diversity” in the samples, based on
a kernel K expliciting the similarity between variables. DPP sampling has been
used successfully in a number of applications in machine learning (see, for
instance, [74]).

Denote by [n] the set of all subsets of {1, 2, . . . , n}. An element of [n] could be
the empty set, all elements of {1, 2, . . . , n} or anything in between. DPPs are defined
as follows:

Definition 5.4 (Determinantal Point Process [74]) Consider a point process, i.e.,
a process that randomly draws an element S ∈ [n]. It is determinantal if, ∀ A ⊆ S,

23Note that the complexity is different from the leverage score computation of the Nyström
techniques of Sects. 5.3.1 and 5.4.1 because, here, we suppose Uk known whereas Uk was not
known in the previous sections. With Uk known, computing the leverage scores only entails
computing the normalized energy of each line of Uk .
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P(A ⊆ S) = det(KA),

where K ∈ R
n×n, a semi-definite positive matrix 0 � K � 1, is called the marginal

kernel; and KA is the restriction of K to the rows and columns indexed by the
elements of A.

The marginal probability πi of sampling an element i is thus Kii . Consider the
following projective kernel:

Kk = UkU�
k . (5.35)

One can show that DPP samples from such projective kernels are necessarily of size
k. After measuring the k-bandlimited signal z on a DPP sample S, one has the choice
between the same decoders as before (see Eqs. (5.33) and (5.34)). For instance:

Theorem 5.11 For all z ∈ span(Uk), let y = Mz+n ∈ R
k be a noisy measurement

of z on a DPP sample obtained from kernel Kk . The decoder of (5.33) with P =
diag(π1, . . . , πn) necessarily enables perfect reconstruction up to the noise level.
Indeed, one obtains:

‖ẑ − z‖2 ≤ 1
√

λmin

(
U�

k M�P−1
S MUk

)‖P−1/2
S n‖2. (5.36)

Proof The proof is only partly in [131] and we complete it here. Let us write z =
Ukα. Solving (5.33) entails computing α̂ ∈ R

k s.t. ‖P−1/2
S (MUkα̂−y)‖2

2 is minimal.
Setting the derivative w.r.t. α̂ to 0, and replacing y by MUkα + n, yields:

U�
k M�P−1

S MUkα̂ = U�
k M�P−1

S MUkα + U�
k M�P−1

S n.

Recall that S is a sample from a DPP with kernel Kk: det(MUkU�
k M�) is thus

strictly superior to 0, which implies that MUk is invertible, which in turn implies
that α̂ = α + (MUk)

−1n. One thus has ‖ẑ − z‖2 = ‖α̂ − α‖2 = ∥∥(MUk)
−1n

∥∥
2 =∥∥∥(P−1/2

S MUk)
−1P−1/2

S n
∥∥∥

2
. Using the matrix 2-norm to bound this error yields

‖ẑ − z‖2 ≤
√

λmax

[(
U�

k M�P−1
S MUk

)−1
]
‖P−1/2

S n‖2,

as claimed.

Several comments are in order:

• The particular choice of kernel Kk = UkU�
k implies that the marginal probability

of sampling node vi , πi = ‖U�
k δi‖2

2, is proportional to the leverage scores p∗
i . The

major difference between the i.i.d. leverage score approach and the DPP approach
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comes from the negative correlations induced by the DPP. In fact, the probability
of jointly sampling nodes vi and vj in the DPP case is πiπj − K2

ij = πiπj −
(δ�

i UkU�
k δj )

2. The interaction term (δ�
i UkU�

k δj )
2 will be typically large if vi

and vj are in the same cluster, and small if not. In other words, different from the
i.i.d. leverage score case where each new sample is drawn regardless of the past,
the DPP procedure avoids to sample nodes containing redundant information.

• Whereas the leverage score approach only guarantees a RIP with high probability
after O(k log k) samples, the DPP approach has a stronger deterministic guaran-
tee: it enables perfect invertibility (up to the noise level) after precisely m = k

samples. The reconstruction guarantee of (5.36) is nevertheless not satisfactory:
even corrected by the marginal probabilities PS, the matrix U�

k M�P−1
S MUk can

still have a very small λmin, such that reconstruction may be quite sensitive to
noise. Improving this control is still an open problem. In practice, sampling
independently 2 or 3 times from a DPP with kernel Kk creates a set S of size
2k or 3k that is naturally more robust to noise.

• Whereas independent sampling is straightforward, sampling from a DPP with
arbitrary kernel costs in general O(n3) (see Algorithm 1 of [74] due to [62]).
Thankfully, in the case of a projective kernel such as Kk , one can sample a set in
O(nk2) based on Algorithm 3 of [132].

5.6 Perspectives

Almost two decades have passed since spectral clustering was first introduced. Since
then, a large body of work has attempted to accelerate its computation. So, has the
problem been satisfactorily addressed?—or, despite all these works, is there still
room for improvement and further research?

To answer, we must first define what “satisfactorily addressed” would entail. As
we have seen, the prototypical spectral clustering algorithm can be divided into
three sub-problems: the similarity graph computation runs in O(dn2); the spectral
embedding computation runs in O(t (ek + nk2)) using an Arnoldi algorithm with t

implicit restarts and assuming that e is the number of edges; and the k-means step
runs in O(tnk2), with t now being a bound on the number of iterations of the Lloyd-
Max algorithm. Our criteria for evaluating an approximation algorithm aiming to
accelerate one (or more) of these sub-problems are two-fold:

• We ask that the approximation algorithm’s computation cost is effectively lighter
than the cost of the sub-problem(s) it is supposed to accelerate! The ultimate
achievement is an order-of-magnitude improvement w.r.t. n (or e), d and/or k,
especially when the complexity has no hidden constants (i.e., the algorithm is
practically implementable). When such a gain is not possible, a gain on the
constants of the theoretical cost is also considered worthwhile.

• The algorithm should come with convincing guarantees in terms of the quality
of the found solution. Heuristics or partially motivated methods do not cut it. We
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require that, under mild assumptions, the proposed solution is provably close to
the exact solution. Let us clarify two aspects of this statement further:

– It is difficult to concretely classify assumptions as mild, but a useful rule
of thumb is checking whether the theoretical results are meaningful for the
significant majority of cases where spectral clustering would be used.

– The control of the approximation error comes in different flavors, that we
detail here from the tightest to the loosest. The best possible error control in
our context is a control over the clustering solution itself, via error measures
such as the misclustering rate. This is unfortunately unrealistic in many cases.
An excellent alternative is the multiplicative error—considered as the gold
standard in approximation theory—over the k-means cost,24 ensuring that the
cost of the approximation is not larger than 1 + ε times the cost of the exact
solution. Next comes the additive error over the cost: ensuring that the cost
difference between approximated and exact solutions is not larger than ε. All
these error controls are referred to as end-to-end controls, and represent the
limit of what we will consider a satisfactory error control.

Reviewing the literature, we were surprised to discover that there are rarely any
algorithms meeting fully the proposed criteria: a faster algorithm with end-to-end
control over the approximation error under mild assumptions. Let us revisit one by
one the different approaches presented in Sects. 5.3, 5.4, and 5.5 examining them
in light of our criteria for success. In each category of approximation algorithms,
we order the methods according to the power of their error control.

Sampling Methods in the Original Feature Space [Sect. 5.3]

• Representative points methods as described in [63, 147] allow for an end-to-end
control on the miss-clustering rate ρ, which is unfortunately quite loose. The
constants involved in Theorem 5.3 are in fact undefined—thus potentially large—
which is problematic knowing that ρ is by definition between 0 and 1. Also, the
theorem’s assumptions include independence of the εi , which is hard to justify
in practice. On the other hand, the computation gain of such methods is very
appealing.

• Feature projection methods, where the dimension d of the original feature space
is reduced to a dimension d ′ ≤ d based on Johnson–Lindenstrauss arguments,
come with a multiplicative error control on the pairwise distances in the original
feature space, thus providing a control on the obtained kernel matrix. The impact
of this initial approximation on the final clustering result has not been studied.

• Nyström-inspired methods [19, 48, 85, 97] can be very efficient in practice espe-
cially because they do not need to build the graph. However, precisely because
they do not build the graph, these methods cannot exactly perform two key

24A control in terms of the k-means cost is usually considered as k-means is the last step of spectral
clustering. Nevertheless, recalling the minimum cut perspective of Sect. 5.2.2, the control should
arguably be in terms of rcut or ncut costs.
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parts of the prototypical spectral clustering algorithm: the k-NN sparsification
and the exact degree computation. The partial knowledge and sparsity of the
kernel matrix also makes sampling difficult, as using leverage scores sampling is
not possible anymore, whereas most other sampling schemes do not work very
well with sparse matrices and come with weak guarantees. To the extent of our
knowledge, there is also no convincing mathematical argument proving that using
these methods will yield a clustering that is of similar quality to that produced by
the exact spectral clustering algorithm.

• Sketching methods such as the random Fourier features [110] is yet another way
of obtaining a pointwise multiplicative (1 + ε) error on the Gaussian kernel
computation. RFF enable to compute a provably good low-rank approximation of
the kernel. They nevertheless suffer from the same problems as Nyström-based
techniques: without building the graph, sparsification and degree-normalization
are uncontrolled. In addition, the guarantees on the low-rank approximation of
the kernel do not transfer easily to guarantees of approximation of the spectral
embedding Uk .

• Approximate nearest neighbors methods are numerous and varied, and come with
different levels of guarantees. Practical implementations of algorithms, however,
often set aside theoretical guarantees to gain on efficiency and performances;
and comparisons are usually done on benchmarks rather than on theoretical
performances. In the best of cases, there is a control on how close the obtained
nearest neighbor similarity graph is to the exact one, but with no end-to-end
control.

Spectral Embedding Approximation Methods [Sect. 5.4]

• Random eigenspace projection is a very fast method and has been rigorously
analyzed [95, 105, 111, 130]. It is true that a successful application depends on
obtaining a good estimate of the k-th eigenvalue, which is very hard when the
k-th eigenvalue gap is relatively small. Nevertheless, our current understanding
of spectral clustering suggests that it only works well when the gap is (at least)
moderately large. As such, though there are definitely situations in which random
eigenspace projection will fail to provide an acceleration, these correspond to
cases where one should not be using spectral clustering in the first place. The
same argumentation can also be used in defense of all methods that come with
mild gap assumptions (see coarsening and spectral sparsification).

• Simple coarsening methods, such as the heavy-edge matching heuristic [69], have
nearly linear complexity, seem to work well in practice, and are accompanied
by end-to-end additive error control [91]. Nevertheless, the current analysis of
these heuristics only accounts for very moderate reductions (m ≥ n/2) and thus
does not fully prove their success: in real implementations coarsening is used in a
multi-level fashion resulting to a drastic decrease in the graph size (m = O(n/2c)

for c levels), whereas the end-to-end control only works for a single level.
• Advanced coarsening methods, such as local variation methods [90], come with

much stronger guarantees that allow for drastic size reduction and acceleration.
Yet, thus far, all evidence suggests that finding a good enough coarsening is
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computationally as hard as solving the spectral clustering problem itself. As a
consequence, it is at this point unclear whether these methods can be used to
accelerate spectral clustering.

• Spectral sparsification techniques come with excellent guarantees in theory: one
may prove that a spectral sparsifier can be computed in nearly linear time and,
moreover, the latter’s spectrum will be provably close to the original one. Yet,
we have reasons to doubt their practicality. Indeed, current algorithms are very
complex, feature impractically large constants, and are only relevant for dense
graphs. In addition, spectral sparsifiers, by definition, approximate the entire
spectrum of a graph Laplacian matrix. However, spectral clustering only needs
an approximation of a tiny fraction of the spectrum. From that perspective, it
is reasonable to conclude that without modification current approaches will not
yield the best possible approximation.

• Nyström-approximation applied directly to the Laplacian matrix is a good option,
especially when combined with leverage score sampling. Nevertheless, an end-
to-end error control has only been partially derived and is not yet satisfactory.

Sampling to Accelerate the k-Means Step [Sect. 5.5]

• Exact methods to accelerate the Lloyd-Max algorithm, may they be via avoiding
unnecessary distance calculations or via a careful initialization are always useful
and should be taken into account.

• Coresets come with the strongest guarantees: the minimum number of samples
to guarantee a (1 + ε) multiplicative error on the cost function has been well
studied. Nevertheless, practical coreset-sampling methods are scarce; and in the
best cases, the sampling cost is of the same order of the Lloyd-Max running cost
itself.

• Graph-based sampling comes with strong guarantees, but not over the k-means
cost: on the reconstruction error based on a k-bandlimited model that is only an
approximation in practice. Moreover, we interpret the reduced indicator vectors
zr
� obtained by running Lloyd-Max on the sampled set S as (possibly noisy)

measurements of z� on S. This interpretation currently lacks solid theoretical
ground and impedes an end-to-end control of this approximation method.
Nevertheless, the leverage-score-based sampling allows for a reduction in order
of magnitude of the Lloyd-Max running cost.

• Other methods to accelerate k-means are not always appropriate to the spectral
clustering context. Spectral feature dimension reduction is unnecessary in our
context where d = k, sketching methods appropriate to distributed cases where
n is very large are not appropriate neither as the spectral features need centralized
data to be computed in any case.

In Practice The attentive reader will have remarked that, unsurprisingly, the
tighter the error control, the more expensive the computation, and vice versa. Also,
although we have put here an emphasis on the approximation error controls, it
should not undermine the fact that methods from the whole spectrum are in practice
useful, depending on the situation at hand, and specifically on the range of values of
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n, d, and k. In very large d situations, a first step of random projection (or feature
selection if some features are suspected to be too noisy) should be considered. Then,
in situations where the exact computation of the proximity graph is too expensive,
one may resort either to sketching methods or to Nyström-type methods to decrease
the cost from quadratic to linear in n, and directly obtain an approximation of
the spectral embedding without any explicit graph construction. These methods,
however, do not take into account a sparsity constraint on the proximity graph and
are usually rough on the degree correction they make.

The role of the sparsity constraint is not well understood theoretically, but seems
to be important in some practical cases [138]. In such instances, a better option is to
use approximate nearest neighbors methods to create a sparse similarity graph, and
work from there. In extremely large data, say n ≥ 108, the only workable methods
are the representative-based, with, if possible, a first k-means (or compressive k-
means [70]) to reduce n to m, or, in last resort, a uniform random sampling strategy.

In situations where one has to deal with such a large similarity graph that
Arnoldi iterations are too expensive to compute the spectral embedding (either a
graph created via approximate nearest neighbors or if the original data is a graph),
projection methods such as in [21, 130], coarsening methods such as in [90], or
Nyström-based methods are different possibilities.

Sampling methods to accelerate the last k-means step may seem to be a theoret-
ical endeavor given that the Lloyd-Max algorithm is already very efficient. Due to
the quadratic term in k, it is nevertheless in practice useful when k grows large. In
this situation, hierarchical k-means [103] is a nice option. Coresets, because they
are so stringent on the error control, have a hard time actually accelerating k-means,
unless hybrid coreset-inspired methods are envisioned [49]. Finally, graph-based
methods, because they take into account that spectral features are in fact derived
from the graph itself, enable significant acceleration and are well-suited to the
spectral clustering context.

Future Research Different directions of research could be envisioned to improve
the state of the art:

• For Nyström-inspired methods in the context of Sect. 5.3 (directly applied on
the original data) as well as the other methods based on computing a low-rank
approximation of the kernel matrix K, further work is needed to control both
the sparsification and the degree correction, in order to bridge the gap between
a provably good low-rank approximation of K to a provably good low-rank
approximation of R.

• For Nyström methods in the context of Sect. 5.4 (applied on a known or well-
approximated similarity graph), it would be interesting to extend Theorem 5.2
(for instance) to a control over ‖Ak − Ãk‖ instead of ‖A − Ã‖. This would
enable a tighter use of Davis–Kahan’s perturbation theorem in the discussion of
Sect. 5.4.1 and, in fine, a better end-to-end guarantee.

• Projection-based methods of Sect. 5.4.3.2 currently necessitate to compute a
value λ∗ known to be in the interval [λk, λk+1). The algorithm used to do so is
based on eigencount techniques that turn out to require as much computation time
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as the Lanczos iterations needed to compute Uk exactly. One should relax this
constraint to obtain end-to-end guarantees as a function of the distance between
a coarsely estimated λ∗ and the target interval.

• The derivation and analysis of randomized multi-level coarsening schemes with
end-to-end guarantees is very much an open problem. We suspect that by utilizing
spectrum-dependent sampling-schemes akin to leverage-scores one should be
able to achieve results superior to heavy-edge matching in nearly linear time.

• There is an interesting similarity between coreset techniques and the graph-
based sampling strategies discussed in Sect. 5.5.3 and it would be interesting to
investigate this link theoretically, maybe paving the way to coresets for spectral
clustering?

Finally, accelerating the prototypical spectral algorithm depicted in Algorithm 1
should not be the sole objective of researchers in this field. Indeed, taking the
graph cut point-of-view of Sect. 5.2.2, Algorithm 1 makes three insufficiently
motivated choices: (i) To begin with, the sparsification step in Algorithm 1 is
not well understood. Apart from the fact that it is always computationally more
convenient to work with a sparse similarity graph then a dense one, the precise
effect of sparsification on the clustering performance has not been analyzed. (ii)
As mentioned in Sect. 5.2.2.3, the relaxation employed by spectral relaxation is not
unique. Why should we focus our attention on this one versus another? See, for
instance, [24, 112] for recent alternative options. (iii) Finally, the use of k-means
on the spectral features is not yet fully justified. Most of the end-to-end guarantees
presented here compare the k-means cost of the exact solution to the k-means cost
of the approximate solution. Given that the very use of k-means is not theoretically
grounded, this choice of guarantee is debatable. Other options such as a control
over the rcut or ncut objectives are possible (as in [96]) and should be further
investigated.
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